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Abstract

Neutron stars are very dense stars composed almost entirely of neutrons. As such,

they should be able to be described by Quantum Chromodynamics (QCD). As QCD

is a very complicated theory from which it is difficult to produce quantitative results

we rely on effective theories to describe QCD physics. It has previously been shown

that the Skyrme model [1], [2], [3], which has topological soliton solutions that can

be identified as baryons, is such a low energy effective field theory for QCD [4].

In this thesis, after presenting background material in chapters 1, 2 and 3, we

explore the results of attempting to use the theory proposed by Skyrme to model

neutron stars by investigating two models. The first, discussed in chapter 4 and

based on the original research in [5], considers rational map ansatz solutions to the

Skyrme model. By coupling the model using this ansatz to gravity and introducing

a new way of stacking together the shell-like solutions that form we find minimum

energy configurations that are stable models of neutron stars. They are, however,

slightly too small to be considered a good model so a second approach is tried.

The second model considers Skyrme crystal configurations. By using a relation

between the energy per baryon of a Skyrme crystal and its anisotropic deformations

we are able to find two equations of state for the crystal. These are combined with

a Tolman-Oppenheimer-Volkoff equation, generalised to describe anisotropic defor-

mations, to model neutron stars. We find that below a critical mass all deformations

are isotropic and above it they are anisotropic up to a particular maximum mass

and that this approach compares well with experimental observations. This second

model is described in chapter 5 and is based on the original research in [6].
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Chapter 1

The Skyrme Model

1.1 Introduction

The first explorations into using conserved topological properties as a basis for de-

scribing matter were made by Kelvin’s vortex atom model [7]. He proposed that

atoms could be thought of as knots in a perfect fluid with the various knots, which

are unable to be smoothly transformed from one to another and hence have a con-

served topology, describing the various atoms. Atomic spectra would arise from the

dynamics of the fluid producing vibrations of the knots. Kelvin’s ideas were never

realised but the concept of using topology to describe particles of matter inspired

Skyrme in his own thoughts half a century later.

Ideas along this line led Skyrme to propose a field theory where the degree of

the various topological soliton solutions, known as Skyrmions, that arise from it is

identified with the baryon number of the solution and hence he began to form a

topological field theory of atoms [1], [2], [3].

The Skyrme model was set aside after the discovery of the currently accepted

theory of strong interactions, quantum chromodynamics, in the late 1960s but it was

later shown by Witten [4] to be an approximate, low energy, effective field theory for

QCD which becomes more exact as the number of quark colours becomes large. This

revived interest in the Skyrme model and it has since been successful in modelling

the structures of various nuclei [8].

In this introductory chapter we shall review the Skyrme model, discussing its

1



1.2. The Skyrme Lagrangian 2

Lagrangian, topological charge, topological stability and its energy before showing

how it can be considered to be an approximate, low energy, effective field theory for

QCD. This will provide background material for the original research presented in

chapters 4 and 5. References for general background to the Skyrme model, including

the areas discussed below include [9], [10].

1.2 The Skyrme Lagrangian

1.2.1 Properties of the Lagrangian

The Skyrme model is described by the Lagrangian

LSk =

∫

R3

[

F 2
π

16
Tr(∂µU∂

µU−1) +
1

32e2
Tr[(∂µU)U

−1, (∂νU)U
−1]2

]

d3x. (1.1)

Here the Skyrme field, U = U(~x, t), is a SU(2) valued scalar field. The parameters

Fπ and e are the pion decay constant and the Skyrme coupling respectively and, as

will be discussed in section 1.2.2, the Skyrme model can be fitted to experimental

data to determine their values.

The first term of the Skyrme Lagrangian is the non-linear σ model term while the

second is known as the Skyrme term and acts to stabilise the solutions that would

otherwise be found from the first term. We note that all the work in this thesis

concerns the SU(2) Skyrme model, in keeping with the majority of studies, where

the Skyrme field is SU(2) valued, however the model can be extended to SU(N)

valued fields where N is the number of quark flavours.

To the Skyrme model Lagrangian (1.1) we can also add a mass term which is

usually [11], [12] taken to be

LSkm =

∫

R3

F 2
πm

2
π

8
(Tr(U − I2))d

3x. (1.2)

This introduces a pion mass term mπ, which again can be determined by fitting the

model to experimental data.

When we restrict the model to only fixed time fields, as we will do throughout

this work, the Skyrme field, U = U(~x), is a map from R
3 7→ S3. However, we

October 11, 2012



1.2. The Skyrme Lagrangian 3

must also impose a boundary condition on the Skyrme field, U , to ensure that any

solutions found will have finite energy. This is taken to be

U(~x) → I2 as |~x| → ∞. (1.3)

This boundary condition implies a one-point compactification of space at infinity

meaning that topologically the Skyrme field, U , can now be considered as a map

from S3 7→ S3 because of the identification between the three-sphere and R
3∪{∞}.

The corresponding homotopy group for such a map, π3(S
3), is the integers, Z, so

each map between three-spheres falls into an homotopy class indexed by an integer

which is identified with the topological charge, B, and can be defined as

B = − 1

24π2

∫

R3

ǫijkTr[(∂iU)U
−1(∂jU)U

−1(∂kU)U
−1]d3x. (1.4)

This conserved topological charge does not arise from an invariance of the Skyrme

Lagrangian under any symmetry transformation and is therefore not a Noether

charge. It instead comes about from the non-trivial topology of the Skyrme model

solutions.

Skyrme proposed that this topological charge is then identified as the baryon

number of the solutions to the Skyrme model. Baryon number is also a conserved

quantity indexed by an integer that was introduced [13], [14] to particle physics

primarily to restrict certain types of interactions between baryons. For example,

proton decay is disallowed under conservation of baryon number because protons

are the lightest states among the baryons and this is a restriction that agrees with

all experimental observations.

Baryon number conservation has some differences with other conserved quanti-

ties such as electric charge conservation, in that it can not be related to the coupling

constant of strong interactions, g, in the way that, for example, the electric charge

can be related with the coupling constant in quantum electrodynamics. This means

that we can not derive the baryon number conservation law from the invariance of

the QCD Lagrangian under gauge transformations as we do analogously in QED for

the conservation of electric charge. This is familiar when we consider that the con-

served topological charge for the Skyrme model can not be found using a symmetry

October 11, 2012



1.2. The Skyrme Lagrangian 4

transformation, and so the topological nature of Skyrmions provides a theoretical

explanation for the conservation of baryon number.

As well as a conserved topological charge we need to make sure that Derrick’s

theorem [15] does not rule out the existence of topological soliton solutions. This

theorem states that for a field theory in flat space a field configuration that is a

stationary point of the energy should be stationary against any variations applied

to it, including spatial rescalings. If there are no field configurations apart from the

vacuum that have zero variation under spatial rescalings then there are no static

finite energy solutions of the field equation in any homotopy class except the trivial

one.

The Skyrme energy functional, when it is restricted to static fields, can be written

as

ESk = E2 + E4, (1.5)

where

E2 =

∫

R3

F 2
π

16
Tr(∂iU∂

iU−1)d3x. (1.6)

and

E4 =

∫

R3

− 1

32e2
Tr[(∂iU)U

−1, (∂jU)U
−1]2d3x. (1.7)

The first energy term, E2, arising from the non-linear σ model term in the La-

grangian, is quadratic, while the second term, E4, arising from the Skyrme term

is quartic in spatial derivatives of the Skyrme field. When we rescale the spatial

coordinates under ~x 7→ µ~x the Skyrme energy becomes

ESk(µ) =
1

µ
E2 + µE4. (1.8)

It is clear that the non-linear σ model term scales in the opposite way to the Skyrme

term, meaning that there exists a minimal value of ESk(µ) for a finite µ 6= 0. Because

of this, any Skyrmion solution will have a well defined scale at a finite size. It is in

this way that the second term stabilises the model.

A Skyrmion is defined as the minimal energy configuration in a homotopy class

and therefore must have µ =
√

E2/E4, meaning that the energy contributions from

the two energy terms are equal.

October 11, 2012



1.2. The Skyrme Lagrangian 5

Instead of the Skyrme term as the second term in the Lagrangian (1.1) we could

instead stabilise the non-linear σ model with any term that is of degree four or higher

in spatial derivatives. The Skyrme term, however, is the only term of degree four

that is Lorentz invariant and for which the resulting field equation remains second

order in the time derivative.

Because of the non-trivial topological nature of the Skyrmion solutions a lower

bound of the energy of the solutions can be found. The energy of the Skyrme model

(1.5) can be rewritten as a perfect square plus a term proportional to the topological

charge

ESk = −
∫

R3

Tr

[

Fπ

4
((∂iU)U

−1)−
√
2

8e
[(∂iU)U

−1, (∂jU)U
−1]

]2

d3x+
Fπ

√
23π2

2e
B,

(1.9)

where B is the topological charge as defined in (1.4). Writing the Skyrme energy in

this way, and using the fact that for any antihermitian matrix A, TrA2 ≤ 0, makes

it clear that

ESk ≥
Fπ

√
23π2

2e
|B|. (1.10)

This bound was found by Bogomolny [16] and it shows that for any baryon number

there is a lower bound for the energy of Skyrmion solutions. Skyrme also found this

bound in [2].

1.2.2 Fitting the Skyrme Parameters

The Skyrme model was proposed as a means to describe baryons and as such its

dimensionless coupling e can be calibrated by comparing the Skyrmion solutions we

find to the properties of known baryons. While one of the other parameters, the pion

decay constant, Fπ is, strictly speaking, set by experiment, with an experimental

value of 186MeV, it can be considered as a parameter, and therefore in need of

calibration, if it is thought of as the renormalised pion decay constant.

Skyrme initially conjectured values of Skyrme model parameters by considering

which dimensions would mean that the quantisation of the Skyrme field led to

particle states. Later the parameters of the Skyrme model with a zero pion mass

were calibrated by Adkins, Nappi and Witten [17] by fitting the Skyrmion solution

October 11, 2012



1.3. The Skyrme Model and QCD 6

with a baryon number of B = 1 to the masses of the proton and the delta resonance.

The values found were Fπ = 129MeV and e = 5.45.

This first calibration assumed chiral symmetry which is broken when the pion

mass term (1.2) is included in the Skyrme Lagrangian (1.1). Since then there have

been attempts to improve this calibration, including one again for the B = 1 case

with massive pions by Adkins and Nappi [18]. This is currently the most often used

calibration and takes the values Fπ = 108MeV, e = 4.84 and the experimentally

determined pion mass mπ = 138MeV.

Recently Battye et al. [8] carried out a thorough investigation into the Skyrme

parameters. By considering a semi classical rigid-body quantisation of various small

baryon number Skyrmions they determined the allowed quantum states of each one.

These states could then be matched to known states of nuclei and by comparing

the results the Skyrme parameters could be calibrated. In this calibration the pion

mass is also kept at its experimentally determined value of mπ = 138MeV while the

coupling, e, and pion decay constant, Fπ, are allowed to vary with the baryon number

of the solution so e = e(B) and Fπ = Fπ(B). This means that Skyrmion solutions

will have different Skyrme parameters depending on their baryon number. For

example, the B = 4 alpha particle has the parameters Fπ = 91.146MeV, e = 3.694

and mπ = 138MeV.

Following on from the work of [19], [20], which removed some of the assumptions

used in [18] and again matched the Skyrmion masses to those of the proton and the

delta resonance, the pion mass parameter can also be considered as a renormalised

pion mass [21]. In this way it can be treated as a free parameter, not fixed to its

experimental value, which can be varied to best describe the properties of nuclei.

1.3 The Skyrme Model and QCD

1.3.1 QCD

The Skyrme model did not receive much attention in the years following its publica-

tion but more recently it has been shown by Witten [4] to be a low energy effective

field theory for QCD, after which interest increased greatly. Here we shall follow the

October 11, 2012



1.3. The Skyrme Model and QCD 7

approach of Witten to show how the Skyrme model can describe low energy strong

interactions.

Before the 1960s the nuclear interactions that were thought to bind protons

and neutrons together in nuclei were not understood. The Skyrme model was one

proposal to try and understand these interactions.

However another idea, first discussed by Gell-Mann and Neeman [22] soon took

hold. This idea was first proposed in order to explain the results from experiments

that were finding new baryonic particles. The idea was the now well known and

accepted quark theory where elementary particles known as quarks, q, which are

fermions and have spin one half, are found in bound states. Baryons are composed

of three quarks in a bound state, qqq, while mesons are bound states of two quarks,

qq̄. To explain the experimentally known baryons at the time three flavours of

quarks were introduced, up (u), down (d) and strange (s). Since then three other

quarks have been experimentally discovered, charm, (c), bottom (b) and top (t). For

example, the proton is a bound state of uud while the neutron is a bound state of

udd.

Baryons conventionally have an integer electric charge and hence quarks are

described as having a fractional electric charge so that the baryons have the appro-

priate charge when considered as a bound state of quarks. Mesons, the carriers of

the nuclear force also have integer electric charge which is again appropriate when

considered as a bound state of quarks. They also have integer spin (0 or 1) which

is compatible with quarks having spin one half.

The quark theory of Gell-Mann and Neeman explained all the baryons and

mesons known at the time and was successful in predicting new, heavier, baryons

and mesons. One of the new baryons that it managed to predict was the ∆++ state.

This state has electric charge +2 and spin 3/2 and hence must be considered a bound

state of three identical up quarks. As it also has zero orbital angular momentum,

the three up quarks have parallel spins and are therefore indistinguishable. Such

identical fermions are not allowed by the Pauli exclusion principle so it looked like

the quark theory described by Gell-Mann and Neeman still left something to be

desired.

October 11, 2012



1.3. The Skyrme Model and QCD 8

This problem however was solved by Greenberg [23] and Han and Nambu [24].

They did this by the introduction of a new quantum number, now known as colour.

While having no relation to visible light colour, quarks are characterised by the three

primary colours, blue, green and red. The introduction of colour solves the problem

of the ∆++ state apparently violating the Pauli exclusion principle by assigning a

different colour to each of the three up quarks, meaning they are no longer in the

same quantum state.

As colour is not observed experimentally it is required that all baryons and

mesons are colourless, for example a baryon composed of three quarks would have

one of each colour combining to make a colourless whole. This is a result of a

phenomenon known as colour confinement.

By assigning an extra quantum number to quarks an exact local symmetry, the

SU(3)c colour symmetry [25] is introduced. To understand this local gauge symme-

try we consider Quantum Electrodynamics where we have an analogous scenario.

The QED Lagrangian describes electrically charged particles such as electrons and

positrons via charged fermionic fields, ψ, and is written as

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν . (1.11)

The covariant derivative Dµ is defined using the U(1) gauge field Aµ via

Dµψ = (∂µ − ieAµ)ψ, (1.12)

where e is the electric charge, the coupling constant of electromagnetic interactions.

Fµν is the electromagnetic field strength tensor defined as

Fµν = ∂νAν − ∂νAµ. (1.13)

This QED Lagrangian is invariant under the simplest local symmetry, Abelian U(1)

gauge transformations ψ → eiaψ.

To find the correct analogous Lagrangian for quark colour there were two experi-

mental obstacles to take into account. The first was that there was no experimental

evidence for free quarks as opposed to the free electrons and positrons of QED. This

means that any correct theory of quarks, and therefore strong interactions, should

confine them into known possible states.
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The second obstacle was that experiments had shown that strong interactions

were remarkably weak at short distances, meaning that quarks behaved as if they

were free at short distances and therefore high energies. This property is known as

asymptotic freedom and has to be a property of a correct theory of strong interac-

tions.

Fortunately it was soon after discovered [26], [27], [28], [29], that non Abelian

gauge theories behave as free theories at short distances, and are therefore suitable

to describe asymptotically free strong interactions. The quark colour symmetry that

had been introduced can be described by such a non Abelian gauge theory, namely

it is a SU(3)c symmetry. The suitable Lagrangian to describe strong interactions is

therefore a non Abelian extension of the QED Lagrangian described above and can

be written as

LQCD =
∑

α

q̄αa (iγ
µDµ −mα)q

α
a − 1

4
Tr(GµνG

µν). (1.14)

Here the quark fields are qαa where α = 1, ..., Nf is the flavour index of the quarks

and a = 1, 2, 3 is the colour index. The mass of the quarks is given by mα. The

covariant derivative is now defined by

Dµq
α
a =

(

δab∂µ − ig

(

λi
2

)

ab

Aµi

)

qαb , (1.15)

where λi, i = 1, ..., 8, are the Gell Mann matrices and g is the colour coupling

constant of strong interactions. The components of the field strength tensor, Gi
µν

are described by

Gi
µν = ∂νA

i
ν − ∂νA

i
µ + gf i

jkA
j
µA

k
ν , (1.16)

where f ijk are the SU(3)c colour symmetry structure constants.

The Lagrangian (1.14) describes Quantum Chromodynamics (QCD), the cur-

rently accepted theory of strong interactions. It explains the propagation of massive

quarks, qαa , which interact via the exchange of massless gauge bosons known as glu-

ons. The gauge gluon fields are described by Aµ = Ai
µ
λi

2
in the QCD Lagrangian.

While in QED the carriers of electromagnetic interactions, the photons, have no

electric charge, the gluons do possess colour and therefore are more complicated

self-interacting fields.
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This exchange of massless gluons, however, does lead to long range colour forces

which are not desirable, as they are not shown to occur experimentally. Weinberg

[30] introduces an explanation of confinement to counteract this and to understand

why hadrons are only observed as colourless states and do not appear to to feel a

colour force. Briefly, as quarks are pulled apart the weakly felt interactions between

them get stronger so they cannot be deconfined.

The Lagrangian (1.14) describing Quantum Chromodynamics brings about a

complicated theory from which it is very difficult to produce many quantitative

results. One approach to try and produce some results from QCD is achieved by

returning to the Skyrme model as shown by Witten [4]. We shall describe the

relation between the Skyrme model and QCD in the forthcoming section. Further

details of the complications arising from the study of QCD can be found in general

references [31], [32], [33].

1.3.2 The 1/Nc Expansion of QCD

Before considering the 1/Nc Expansion of QCD we will describe an illustrative ex-

ample first discussed by Witten [34]. The Hamiltonian of the hydrogen atom when

described in atomic physics is

H =
p2

2m
− e2

r
, (1.17)

where p is the momentum, m the reduced mass of the system which is approximately

equal to the mass of the electron, e the coupling and r the radius of the atom. While,

generally, a perturbation expansion could be used to find the ground state energy,

for this Hamiltonian the potential energy term −e2/r cannot be used as a expansion

parameter. This is because e is not dimensionless and hence its value depends on

the choice of units. Also, after the rescalings r → r/me2 and p → pme2, the

Hamiltonian (1.17) is given by

H = me4
(

p2

2
− 1

r

)

. (1.18)

In this form it is clear that the parameter e2 appears only as an overall factor

and, as such, the hydrogen atom can equivalently be described by a parameter free
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Hamiltonian

H̃ =

(

p2

2
− 1

r

)

, (1.19)

implying that except for the overall scale of length and energy the physics of the

hydrogen atom is independent of e2.

As there is no longer an obvious expansion parameter, to carry out a perturbation

expansion an implicit one must be found by considering quantities that would usually

be regarded as fixed. In the case of the Hamiltonian describing the hydrogen atom

the most suitable candidate is the number of dimensions which will be extended

from 3 to N . In this case the Schrödinger equation for the wave function ψ = ψ(r)

can be written as

[

− 1

2m

(

d2

dr2
+
N − 1

r

d

dr

)

− e2

r

]

ψ(r) = Eψ(r). (1.20)

By the transformation ψ → r−(N−1)/2ψ the term containing the first derivative can

be eliminated leaving

[

− 1

2m

d2

dr2
+

(N − 1)2

8mr2
− e2

r

]

ψ(r) = Eψ(r), (1.21)

and then by the rescaling of the radial coordinate r = (N − 1)2r′ the Schrödinger

equation becomes

1

(N − 1)2

[

− 1

2m(N − 1)2
d2

dr′2
+

(N − 3)

8m(N − 1)r′2
− e2

r′

]

ψ(r′) = Eψ(r′), (1.22)

which describes the motion of a particle with an effective mass meff = m(N − 1)2

moving in an effective potential

Veff =
N − 3

N − 1

1

8mr′2
− e2

r′
. (1.23)

This description of the motion (1.22) is greatly simplified for large N . In this case

the effective mass meff becomes very large and it is reasonable to assume that the

particle is located at the minimum of the effective potential well. Hence the problem

can be treated semi-classically and the ground state energy is the minimum of the

effective potential

E = −1

2
me4

4

(N − 1)2
. (1.24)
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Replacing N with the correct number of dimensions we find

E = −1

2
me4, (1.25)

which is equal to the expected result for the ground state energy of the hydrogen

atom.

This example illustrates how a property that is usually thought to be constant,

here the number of dimensions, can be used as an expansion parameter when no

other expansion parameter is available.

While the asymptotic freedom nature of QCD means that the coupling constant

g is small at high energies so can be used as an expansion parameter in such cases, at

large distances and low energies g is large so can no longer be used as an expansion

parameter, unlike the case of QED where the electric charge coupling constant e

can be used. As only the overall energy scale depends on the coupling constant g,

problems such as confinement and predicting the mass spectrum can not be solved

by perturbation theory and in fact, just as in the example above, g can be scaled

out of the QCD Lagrangian. At these low energies there are in fact no parameters of

QCD that can be used as an expansion parameter and hence an implicit parameter

must be found.

Such a parameter was suggested by ’t Hooft [35]. He found that if the number

of quark colours, Nc, is allowed to vary then 1/Nc could be used as an expansion

parameter. This alters the SU(3)c colour symmetry of QCD to a SU(Nc) symmetry

so the gluon field is now an N × N rather than a 3 × 3 matrix. Just as in the

example above, a change in the number of quark colours to a large Nc simplifies the

problem of QCD greatly and it is then hoped that the results of the large Nc theory

are sufficiently qualitatively and quantitatively close to the standard Nc = 3 theory

of QCD.

Again following Witten [36], we consider the lowest order contribution to the

gluon vacuum polarisation, where one gluon can split into two gluons which then

recombine into one. The Feynman diagram for this is shown in figure 1.1. For

any choice of initial and final gluon states, Ai
j , it can be seen that there are Nc

possibilities for the intermediate states, Ai
k and Ak

j , of the diagram as there are

Nc possible values of the index k. In addition to this factor there is also a factor
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1.3. The Skyrme Model and QCD 13

Figure 1.1: One-loop gluon vacuum polarisation.

associated with the vertices of the diagram. This factor must proportional to g

and so that there exists a smooth limit for a large Nc version of QCD the factor is

defined to be g/
√
Nc. As there are two vertices the factors cancel, Nc(g/

√
Nc)

2 = g2

meaning that there is no overall dependence on Nc.

This definition of the vertex factor has important consequences. All the Feynman

diagrams for quantum corrections to the gluon propagator will have a factor of

g/
√
Nc at each vertex and unless, as found in the simple one-loop diagram, the

diagrams have combinatoric factors large enough to cancel all the vertex factors

they will vanish as Nc → ∞. The diagrams that do not vanish all have a certain

property, they are all planar.

The vanishing of nonplanar diagrams can be illustrated by considering the two

Feynman diagrams shown in figure 1.2. These are both three-loop diagrams de-

scribing quantum corrections to the gluon propagator and both will have a factor of

(g/
√
Nc)

6 arising from their six vertices. However, the first diagram, figure 1.2a, will

have a combinatoric factor of N3
c found by summing over the various intermediate

states, and therefore will have an overall factor of N3
c (g/

√
Nc)

6 = g6. As this is

not dependent on Nc this diagram will survive at large Nc. The second diagram,

figure 1.2b, only has a combinatoric factor of Nc and hence its overall factor will be
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(a) Planar. (b) Non-planar.

Figure 1.2: Three-loop gluon vacuum polarisations.

Nc(g/
√
Nc)

6 = g6/N2
c which will vanish when the limit Nc → ∞ is taken. Figure

1.2a is an example of a planar diagram while figure 1.2b is non-planar. A planar

Feynman diagram is one that can be drawn in the plane with no two propagators

crossing.

The fact that only planar diagrams survive is known as a selection rule and in

fact there is also another selection rule, this one concerning quark, rather than gluon,

loops as quantum corrections to the gluon propagator. The one-loop diagram for

such a case is shown in figure 1.3. As there are no closed gluon loops there are no

combinatoric factors but the two vertices will provide a factor of (g/
√
Nc)

2. Hence

we can see that diagrams with internal quark loops are also suppressed as Nc → ∞.

These two selection rules imply that for large Nc the dominant diagrams are the

planar diagrams with no internal quark loops.

Figure 1.3: One-quark-loop gluon vacuum polarisation.
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Even with the vanishing of all the nonplanar diagrams and those with internal

quark loops we are still left with all the planar ones without internal quark loops and

summing all of these up is still too ambitious a task. If this were possible we could

predict the particle lifetimes, masses, magnetic moments, and everything else arising

from QCD, to lowest order in 1/Nc which would be very interesting. However, even

without being able to sum all the diagrams there are qualitative insights into QCD

to be found from the 1/Nc expansion. This is because there are certain qualitative

properties that are preserved by each of the planar diagrams without internal quark

loops, but which are violated by the nonplanar diagrams and those with internal

quark loops.

One such qualitative result [35], [37] is that for Nc → ∞ mesons are free, stable

and non-interacting. Their decay amplitudes are shown to be of order 1/
√
Nc and

meson-meson scattering amplitudes are of order 1/Nc. These amplitudes are given

by the sum of tree diagrams involving only the exchange of physical mesons, and

not quarks or gluons and hence meson physics in the large Nc limit can be described

by the tree diagrams of an effective local Lagrangian with local vertices and local

meson fields.

Witten [37] then went on to observe that weakly coupled field theories, such as

this one describing mesons, can sometimes produce additional states whose masses

diverge, for a weak coupling α, like 1/α. These additional states are topological

solitons, the most familiar type being ’t Hooft-Polyakov monopoles that exist as so-

lutions to Yang-Mills-Higgs theory. The large Nc QCD analogue to these monopoles

are baryons. Baryons have a mass of order Nc which can be written as (1/Nc)
−1

and is therefore the inverse of the meson coupling constant 1/Nc. This result began

the revival of Skyrme’s idea that baryons arise as topological solitons from weakly

interacting meson fields, as the Skyrme model is the simplest suitable theory for an

effective low energy limit of QCD.

As the Skyrme model can be used as effective low energy limit of QCD it can be

used to model nuclei which would otherwise be too complicated for QCD to describe

directly. This has been done with a fair amount of success [8]. In this thesis we aim

to study whether the Skyrme model can also be used to model an object as large
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1.3. The Skyrme Model and QCD 16

as a neutron star where strong interaction physics plays a large part but which has

no hope of being studied by QCD directly. Before doing this we will review the

various methods by which solutions to the Skyrme model can be found and discuss

the properties of these solutions.
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Chapter 2

Skyrmion Solutions

2.1 Introduction

The Skyrme model is highly non-linear, however despite this approximate solutions

to it have been found by direct numerical calculation and through the introduction

of various ansatze. In this chapter we first discuss the initial solution found by

Skyrme using what is known as the hedgehog ansatz and then explore the extent

to which purely numerical solutions can be found. We then investigate the rational

map ansatz which leads to approximate solutions for a wide range of baryon num-

bers, before considering Skyrme crystal solutions which are the minimum energy

configuration for an infinite number of baryons. Again, this chapter will provide

background material for the original research presented in chapters 4 and 5.

2.2 Hedgehog Ansatz Solutions

Skyrme presented a solution for the B = 1 Skyrmion in his original papers [2], [38].

This solution is spherically symmetric and is believed to be the B = 1 energy

functional minimiser proved to exist by Esteban [39]. The use of the term spherically

symmetric here implies that the effect of a spatial rotation of the Skyrme field can

be compensated by an isospin transformation, rather than the Skyrme field being

only dependent on the radial coordinate. Both the energy and baryon density of the

solution obey this symmetry. This spherically symmetric, B = 1 Skyrmion solution

17



2.2. Hedgehog Ansatz Solutions 18

is known as the hedgehog ansatz and has the form

U(x) = exp{if(r)x̂ · τ}, (2.1)

where τ are the standard Pauli matrices. The radial profile function, f(r) is real and

has the boundary conditions f(0) = π and f(∞) = 0. The first of these conditions

imposes that U(0) is well defined and that B = 1 when we substitute the solution

that we find into the baryon number equation (1.4), while the second imposes the

finite energy condition (1.3) that U(~x) → I2 as |~x| → ∞.

If the parameters that appear in the Skyrme Lagrangian (1.1) are scaled away

using energy and length units of Fπ/4e and 2/eFπ respectively we can compute the

Skyrme field equation to be

∂µ

(

(∂µU)U−1 +
1

4
[(∂νU)U−1, [(∂νU)U

−1, (∂µU)U−1]]

)

= 0. (2.2)

We can substitute the hedgehog ansatz (2.1) into this Skyrme field equation,

resulting in the second order nonlinear ordinary differential equation for the radial

profile function f(r),

(r2 + 2 sin2 f)f ′′ + 2rf ′ + sin 2f

(

f ′2 − 1− sin2 f

r2

)

= 0. (2.3)

While this differential equation, with the appropriate boundary conditions imposed,

can not be solved analytically, its solution can be computed numerically using a

shooting method, and is shown in figure 2.1.

The hedgehog ansatz can also be substituted into the Skyrme energy equation

(1.5) and after the above rescaling we find

E =
1

3π

∫ ∞

0

(

r2f ′2 + 2 sin2 f(1 + f ′2) +
sin4 f

r2

)

dr, (2.4)

When the numerical solution for the radial profile function is used this shows that

the B = 1 Skyrmion solution has an energy approximately 23% above the lower

bound found by Skyrme (1.10).

The boundary condition f(0) = π used for the B = 1 Skyrmion described above

can be altered to f(0) = kπ, where k is an integer, and U(0) will remain well

defined. Under this alteration the solution, which exists for all k [38], [40], is still
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Figure 2.1: Radial profile function f(r) for the B = 1 Skyrmion found using the

Hedgehog ansatz.

spherically symmetric but now with a baryon number, B = k. The value of k can

be negative which will result in an antiSkyrmion solution, for example the k = −1

solution has a radial profile function that can be obtained from that of the B = 1

Skyrmion case by the replacement f 7→ −f . However, for |k| > 1 these solutions

are not the minimal energy Skyrmions for the given baryon number, easily verified

by the fact that they will have a higher energy than the corresponding energy for

k individual B = 1 Skyrmions, so will not be bound against a break up into well

separated B = 1 Skyrmions. The solutions are therefore unstable saddle points of

the energy and hence the hedgehog ansatz is not applicable for finding minimum

energy solutions for any baryon number greater than B = 1. To find such solutions

numerical calculations were employed based on the full Skyrme field equation and

these will be described in the next section.

2.3 Numerical Solutions

Skyrme calculated the behaviour of two well separated B = 1 Skyrmions [2] and

showed that they are maximally attracted when one is rotated, with respect to

the other, by 180◦ about a line perpendicular to the line connecting them. This

attraction led to the idea [41] that two or more, initially well separated B = 1
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Skyrmions could attract each other and then bind together to form stable, localized

multi Skyrmions with a baryon number greater than one. It was hoped that such

multi Skyrmions would describe the classical states of nuclei of the corresponding

atomic number.

The B = 2 solution was found numerically by three different groups indepen-

dently [42], [43], [44], the latter using the full three dimensional field equations

without assuming any a priori symmetries of the configuration, unlike the work of

the other two groups.

By initially placing two B = 1 Skyrmions that were numerically discretised on a

grid close to each other in the attractive channel as described by Skyrme and then

allowing numerical relaxation to a minimum energy configuration once a bound state

had formed, the binding energy and symmetries of the B = 2 Skyrmion solution

could be found. It was shown that an axially symmetric bound state could be formed

and its symmetries show that it it not simply formed as a product of two hedgehog

ansatz solutions.

By taking the appropriate number of B = 1 Skyrmions, placing them in their

mutually attractive configuration and then numerically relaxing the full Skyrme field

equations of the bound state that forms led to multi Skyrmion solutions being found

up to a baryon number of six [45], although the solutions for the B = 5 and B = 6

Skyrmions in that work were improved subsequently in [46] which only used the

mutually attractive channels for the initial configuration up to a baryon number of

B = 4 as above this value it was not possible to naively use the product ansatz to

generate such configurations. Above B = 4, configurations in which only most of the

Skyrmions were in the attractive channel were used. This work found numerically

relaxed solutions up to B = 9, and further work by the same authors extended this

to up to B = 22 [47].

Numerically relaxing the full Skyrme field equations up to a baryon number of

B = 22 found these solutions and also led to some interesting insights into the

expected form of Skyrmion solutions for all baryon numbers, in particular regarding

their symmetries. The B = 1 hedgehog solution is spherically symmetric, but no

other Skyrmion solution is. They do, however, have various other highly symmetric
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forms. The B = 2 solution is found to be axisymmetric and has a toroidal structure,

the B = 3 solution has tetrahedral symmetry and the B = 4 solution has cubic

symmetry. To investigate the symmetries of higher charge Skyrmions it is often

useful to plot surfaces of constant baryon density, B, where

B = − 1

24π2
ǫijkTr[(∂iU)U

−1(∂jU)U
−1(∂kU)U

−1], (2.5)

the integrand of (1.4). By doing this it can easily be seen that higher charge

Skyrmions have their baryon charge, and also their energy charge which is dis-

tributed qualitatively similarly, concentrated along the edges of polyhedra, for ex-

ample a tetrahedron and a cube for the B = 3 and B = 4 Skyrmion solutions

respectively. The B = 5 solution has an associated polyhedron that is composed of

four squares and four pentagons, and polyhedra associated with all the Skyrmion

solutions found can be described in such a way.

In [46] a rule, known as the Geometric Energy Minimisation (GEM) rule was

proposed. This stated that for any baryon number greater than B = 2 the poly-

hedron that can be associated with the Skyrmion solution is composed of almost

regular polygons meeting at 4(B− 2) trivalent vertices and that the baryon density

is concentrated along the edges of these polygons. This GEM rule does not predict

the exact form of solutions as the number of possible structures that will satisfy such

a condition is large for large baryon numbers but it does appear that all but two,

which shall be discussed shortly, minimum energy solutions found so far satisfy it.

Using Euler’s formula and the trivalent vertex property the rule can also be stated

as the structures having 2(B − 1) faces or 6(B − 2) edges and since at the centre of

each face there will be a hole in the baryon density isosurface is can also be stated

that the isosurface contains 2(B − 1) such holes in total.

For a baryon number greater than B = 7 the GEM rule can always be satisfied

by a structure composed of 12 pentagons and 2B−14 hexagons. Such structures are

called fullerene-like because they have the form of the fullerene structures found in

carbon chemistry where carbon atoms are located at the vertices of such polyhedra

[48]. Because of this description, as the baryon number increases the Skyrmions

become more like a hollow spherical shell composed primarily of hexagons.

The numerically calculated results up to B = 22 [47] show that for all but two
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cases, B = 9 and B = 13, the minimum energy Skyrmion solutions have these

fullerene-like structures. The B = 9 and B = 13 structures both contain tetravalent

vertices as well as the expected trivalent ones. However, the polyhedra can be ob-

tained from fullerene-like structures by a process known as symmetry enhancement

which has the effect of combining two trivalent vertices into one tetravalent vertex.

Again, knowing that solutions are expected to be fullerene-like structures does not

uniquely define the solution as there will be a number of possible configurations that

are fullerene-like.

Finding solutions by numerically relaxing the full non-linear Skyrme field equa-

tions from a suitable initial configurations of lower charge Skyrmions has the ad-

vantage of being quantitatively accurate, however the procedure is understandably

very demanding computationally, even on modern computers and an improvement

to this technique was necessary to continue studying higher baryon numbers and in-

vestigating their symmetries. Such an improvement came in the form of the rational

map ansatz.

2.4 Rational Map Ansatz Solutions

Using numerical methods on the full field equations to study the highly nonlin-

ear Skyrme model, though producing accurate results, is limited by the amount of

heavy computation involved, meaning detailed studies into the structure of the so-

lutions found is difficult and time consuming. Another ansatz, however, found by

Houghton et al. [49], known as the rational map ansatz, allows good approximations

to multi-Skyrmion solutions that can be used to study their energies and symmetries

without using the detailed numerical methods previously described. The majority

of solutions found using this ansatz for B ≤ 22 are found to clearly have the same

symmetries as the true Skyrmions found using the numerical methods while for

some baryon numbers, B = 10, 16, 22, there are multiple solutions found that have

close energies and due to inaccuracies in using the ansatz it is not clear which the

minimum energy solution is. The Skyrmion solutions found using the rational map

ansatz have an energy only 3−4% above that of the true minimum energy solutions
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found using numerical calculations.

The rational map ansatz was proposed when Houghton et al. [49] considered the

similarities between known SU(2) BPS monopole solutions and Skyrmions. When

a monopole solution with monopole number N is compared with a Skyrmion with

baryon number B = N , it was found that, although the fields are not the same, the

energy densities have equivalent symmetries and approximately the same spatial dis-

tributions. Donaldson [50] had previously established a one-to-one correspondence

between rational maps of degree N and N -monopoles. A rational map of degree N

is a holomorphic function from S2 7→ S2 where each S2 can be treated as a Riemann

sphere, with the domain S2 having the complex coordinate z. The rational map,

R(z), of degree N then has the form

R(z) =
p(z)

q(z)
, (2.6)

where p(z) and q(z) are both polynomials with at least one having degree N and

neither having a degree greater than N . Additionally they must have no common

factors.

The work of Donaldson required a choice of direction in R
3 as the transformation

between the rational map of degree N and the N -monopole does not respect all the

Euclidean symmetries of R3. This is not convenient but later work by Jarvis [51]

only requires a choice of the origin and it is on this work, where monopoles can be

constructed given a rational map, that the Skyrme model rational map ansatz is

based.

We have seen that rational maps are maps from S2 7→ S2 while the Skyrme field

is a map from R
3 7→ S3 so clearly some adaptation is needed to extend the idea of

rational maps to the Skyrme model. This is done by identifying the domain S2 of

the rational map with concentric spheres in R
3 so that R3 can be considered as the

product of the angular component, (θ, φ), forming the S2, and the radial component,

r. The target S2 of the rational map is then identified with spheres of latitude on

S3.

For a point x ∈ R
3 given by spherical coordinates (r, θ, φ) we can map the

angular coordinates, (θ, φ), to the complex plane (z, z̄) via stereographic projection

using z = tan(θ/2)eiφ. The point z on the complex plane then corresponds to a unit
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vector n̂z on the unit sphere S2

n̂z =
1

1 + |z|2
(

2Re(z), 2Im(z), 1− |z|2
)

. (2.7)

The rational map is a map from a complex plane point z to another complex plane

point R(z) which also corresponds to a unit vector on S2

n̂R =
1

1 + |R|2
(

2Re(R), 2Im(R), 1− |R|2
)

. (2.8)

We can now denote a point in R
3 by (r, z) where the r coordinate is the radial

distance from the origin and the z coordinate specifies the direction from the origin.

The rational map ansatz for the Skyrme field can now be defined as

U(r, z) = exp(if(r)n̂R · τ ), (2.9)

where f(r) is a radial profile function which satisfies the appropriate boundary

conditions f(0) = π, so that the ansatz is well defined at the origin, and f(∞) = 0

which arises from the finite energy condition that U = I2 as r → ∞. The τ =

(τ1, τ2, τ3) are the usual Pauli matrices.

By substituting the rational map ansatz into the usual general expression for the

topological charge (1.4), and hence the baryon number, of the Skyrmion solutions,

we find that the degree of the rational map used, N , is equal to the baryon number,

B.

An SU(2) Möbius transformation on the target of rational map ansatz corre-

sponds to an isospin rotation of the Skyrme field. We note that for B = N = 1

the suitable rational map to use is R(z) = z and the rational map ansatz reduces

to the hedgehog ansatz found by Skyrme, and therefore describes an exact solution,

whereas for B > 1 the solutions found are approximate.

One of the main advantages of using the rational map ansatz to find approximate

Skyrmion solutions is that the the Skyrme model energy (1.5) can be simplified

considerably. To demonstrate this we consider a geometrical formulation of the

Skyrme model first described by Manton [52]. The Skyrme field energy density

depends on the local stretching associated with the Skyrme map U : R3 7→ S3, as

in nonlinear elasticity theory. The strain tensor Dij , at each point x ∈ R, can be
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defined as

Dij = −1

2
Tr((∂iU)U

−1(∂jU)U
−1). (2.10)

This strain tensor is a symmetric, positive definite, 3×3 matrix with eigenvalues λ21,

λ22 and λ23 which quantifies the deformation induced by the Skyrme map U . Using

this interpretation the Skyrme energy, (2.4) can be expressed as

E =
1

12π2

∫

(λ21 + λ22 + λ23 + λ21λ
2
2 + λ22λ

2
3 + λ21λ

2
3)d

3x, (2.11)

and the baryon density as

B =
1

2π2
λ1λ2λ3. (2.12)

For the rational map ansatz the strain in the radial direction is orthogonal to

the strain in the angular directions, and because the rational map is conformal the

angular strains are isotropic. The eigenvalue λ21 can be identified with the radial

strain and λ22 and λ23 identified with the angular strains and these eigenvalues can

be computed as

λ1 = −f ′(r), λ2 = λ3 =
sin f

r

1 + |z|2
1 + |R|2

∣

∣

∣

∣

dR

dz

∣

∣

∣

∣

. (2.13)

This implies that the Skyrme energy (2.11) can be written as

E =
1

12π2

∫
[

f ′2 + 2(f ′2 + 1)
sin2 f

r2

(

1 + |z|2
1 + |R|2

∣

∣

∣

∣

dR

dz

∣

∣

∣

∣

)2

(2.14)

+
sin4 f

r4

(

1 + |z|2
1 + |R|2

∣

∣

∣

∣

dR

dz

∣

∣

∣

∣

)4 ]
2idzdz̄r2dr

(1 + |z|2)2 . (2.15)

The expression
(

1 + |z|2
1 + |R|2

∣

∣

∣

∣

dR

dz

∣

∣

∣

∣

)2
2idzdz̄

(1 + |z|2)2 , (2.16)

is the pull-back of the area form,

2idRdR̄

(1 + |R|2)2 , (2.17)

on the target sphere of the rational map and because the term,

2idzdz̄

(1 + |z|2)2 , (2.18)

is equivalent to the usual area element on a 2-sphere, sin θdθdφ, the integral of (2.16)

is 4π times the degree N of the rational map. This simplifies the Skyrme energy
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expression to

E =
1

3π

∫
(

r2f ′2 + 2N(f ′2 + 1) sin2 f + I sin
4 f

r4

)

dr, (2.19)

where I is the integral

I =
1

4π

∫
(

1 + |z|2
1 + |R|2

∣

∣

∣

∣

dR

dz

∣

∣

∣

∣

)4
2idzdz̄

(1 + |z|2)2 , (2.20)

which depends only on the rational map, R(z).

To minimise this Skyrme energy, for a given baryon number B, the integral I
must firstly be minimised over all the rational maps of degree N = B. Then the

radial profile function f(r) can then be varied to find the minimum energy Skyrmion

solution.

In fact for small baryon numbers B ≤ 8, the symmetries that we know the

Skyrmion solutions must possess from studying the results of the numerical calcu-

lations using the full Skyrme field equations constrain the options for choosing a

suitable rational map to a high extent. For baryon numbers B = 2, 3, 4, 7 there is

a unique rational map that will reproduce the desired symmetries. For the remain-

ing baryon numbers a family of rational maps are found that would reproduce the

symmetries but a minimisation of I from these easily picks out the suitable rational

map to use.

For higher charge Skyrmions the symmetries of the numerical solutions found

do not constrain the rational map to a sufficient extent and we want the rational

map ansatz to be of use when we have no prior knowledge of the symmetries of the

solution. In these cases a full minimisation of I does have to be performed. This has

been done [47] for baryon numbers B ≤ 22 using a simulated annealing algorithm

(see Appendix A for a discussion of numerical methods).

For B ≤ 8 a full minimisation of I reproduces the results found by using sym-

metries to constrain the rational map and for the majority of the higher baryon

numbers, using this method does reproduce the results found from the direct nu-

merical relaxation of the full Skyrme field equations. By considering minimisations

that rule out those with the symmetries of the minimal energy solutions, other criti-

cal solutions can be found. For most of the baryon numbers these solutions have an
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energy sufficiently higher than that of the minimal energy solution, meaning that it

is clear which solution we should consider to be the true minimum. In these cases

the symmetries of the solutions are the same as those found from the numerical

calculation.

For baryon numbers B = 10, 16, 22, however, the situation is less clear as solu-

tions found by minimising I with no restrictions can be very close in energy to those

found by minimising I with other symmetries imposed. Therefore, as the rational

map ansatz contains inherent inaccuracies anyway it is not clear which solution will

be the true minimum. By comparing the symmetries of the solutions with those

found by direct numerical relaxation of the full Skyrme field equations, which are

believed to be the true minimal energy solutions, it is expected that in fact, for

these baryon numbers, one of the other solutions, rather than the minimal energy

one found by minimising I, is the true Skyrmion solution.

For the case of B = 14 the rational map found from minimising I is again not

thought to be the rational map describing the minimum energy solution. As the

solution found from direct numerical calculations is known to be elongated and have

very little symmetry it has been difficult to describe it by employing the rational

map ansatz.

As the baryon number increases to very large values it can be seen that the value

of I tends to 1.28B2, this simplifies the calculations for such large B as no rational

map has to be directly calculated to obtain an energy minimisation.

Use of the rational map ansatz gives an insight into the Geometric Energy Min-

imisation (GEM) rule. Consider the Wronskian, W (z) of a rational map R(z) =

p(z)/q(z),

W (z) = p′(z)q(z)− q′(z)p(z), (2.21)

which will be of degree 2B−2 for a rational map of degree N = B. When the value

of W (z) is zero the value of the derivative of the rational map with respect to z,

dR/dz, is also zero, implying that the strain eigenvalues in the angular directions, λ2

and λ3 are both equal to zero too. As can be seen from the equation for the baryon

density (2.12) this means that the baryon density will vanish when the value of the

Wronskian, W (z), is zero. This explains why the isosurfaces of baryon density have
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2B− 2 holes in them as this is the number of zeros of the Wronskian, implying also

that the polyhedra formed have 2B − 2 faces.

The rational map ansatz has been shown to produce approximate Skyrmion

solutions, at a much lower computational cost than direct numerical calculation of

the full Skyrme field equations. To find more accurate solutions the rational map

ansatz solutions can be used as the initial condition for numerical relaxation. The

rational map ansatz was later generalised to the harmonic map ansatz [53] which

allows approximate solutions to be found to the SU(N) Skyrme model, though in

this work we shall just be considering the SU(2) Skyrme model so we shall use the

rational map ansatz as described.

2.5 Skyrme Crystal Solutions

We have seen how direct numerical relaxation of the full Skyrme field equations and

the rational map ansatz can both be used to find approximate minimum energy so-

lutions for small baryon numbers and in chapter 4 we will extend the reach of the the

rational map ansatz to very large baryon numbers. However, another configuration,

the Skyrme crystal, is expected, in the pure Skyrme model, to have a lower energy

per baryon at high baryon numbers than the shell-like structures that arise when

we find approximate solutions using the rational map ansatz. To demonstrate this

we first investigate the limit of the rational map ansatz as B → ∞, the hexagonal

two dimensional lattice.

The approximate solutions to the Skyrme model found when the rational map

ansatz is used exhibit a decreasing energy per baryon as the baryon number is

increased and we wish to find the asymptotic value of this energy per baryon. The

rational map ansatz Skyrmion solutions of baryon number B are described by a

shell-like, fullerene-like structure composed of 12 pentagons and 2B − 14 hexagons

so at the larger baryon numbers the hexagons become more and more dominant.

The 12 pentagons can be thought of as defects which, when inserted into a flat sheet

of a hexagonal lattice, produce the necessary curvature to close the sheet into a

shell-like structure. An infinite hexagonal lattice flat sheet can be shown to be more
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energetically favourable than when pentagons are inserted into it but, due to the fact

that we are considering finite baryon numbers here, adding pentagons and closing

the shell becomes more energetically favourable than cutting off the flat sheet giving

it an edge.

The limit, therefore, of the Skyrmion solutions found using the rational map

ansatz as B → ∞ is expected to be the infinite, two dimensional, hexagonal lattice

flat sheet. While the total energy of this sheet of Skyrmions would be infinite due to

its infinite size the sheet’s energy per baryon would be finite and is the asymptotic

value of the energy per baryon of the Skyrmion solutions found using the rational

map ansatz.

Using numerical relaxation after finding an approximation to the field config-

uration Battye and Sutcliffe [54] found the hexagonal lattice to have an energy

per baryon 6.1% above that of the unobtainable lower bound found by Skyrme

(1.10) [38]. As expected this energy is lower than the energies per baryon found for

any finite baryon number Skyrmion solution found using the rational map ansatz.

Each hexagon making up the lattice has a baryon number of B = 1
2
which is ex-

pected when it is considered that the rational map ansatz produces polyhedra that

have 2(B − 1) faces [49].

We now want to compare the energy per baryon found for this infinite, two

dimensional, hexagonal lattice flat sheet with a new configuration known as the

Skyrme crystal.

Dense neutron matter had previously been studied from a solid state physics

perspective [55] and of particular interest arising from these studies is how the

neutrons should be arranged in the dense matter so as to produce the minimum

energy per neutron. As Skyrmions are identified with baryons this is also a problem

that arises when considering Skyrme crystals.

The first investigations from a Skyrme model perspective were carried out by

Kutschera, Pethick and Ravenhall [56]. They placed identical Skyrmions on a simple

cubic lattice at a low density. At the centre of each Skyrmion, which is taken to

be the spherical B = 1 Skyrmion described by the hedgehog ansatz, the field U

takes the value U = −1. As the density is increased they will begin to overlap
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but the points where U = −1 continue to define the positions of the centres of the

Skyrmions.

To solve this configuration for the field one of the Skyrmions is taken and ap-

propriate boundary conditions are placed on it, replicating the periodic conditions

of the repeated lattice. The unit cells here are taken to be spherical and the bound-

ary condition is that the radial profile function, f(r), found in the definition of the

hedgehog ansatz (2.1) is taken to be f(r) = 0 on the sphere radius rc. We note

that for an isolated Skyrmion the boundary condition would be f(r) = 0 as r → ∞
and for both cases f(r) = π at r = 0. The energies per baryon at different values

of rc were then calculated and at their minimum they were found to be 36% higher

than Skyrme’s lower bound. However, as this configuration of Skyrmions is the most

repulsive possible, with no isospin rotations of the Skyrmions to make use of the

most attractive channels between them, this high energy per baryon value was to

be expected.

The next study of possible minimum energy Skyrme crystals was carried out

by Klebanov [57] who, while still using a simple cubic lattice of B = 1 Skyrmions,

improved on previous work by taking into account isospin rotations to maximise

attractive channels. Skyrme [38] had calculated that the most negative asymptotic

pair potential between two Skyrmions of baryon number B = 1 occurred when

the relative position vector between the two Skyrmions, X, and the relative rotation

through an angle ψ about an axis n̂ fulfil the conditions X̂ · n̂=0 and ψ = π, and this

was later confirmed by a direct numerical calculation in [58]. Klebanov suggested

that this condition should hold for every set of nearest neighbours on a simple cubic

lattice, meaning that each pair of nearest neighbours of Skyrmions of baryon number

B = 1 are mutually rotated through an angle π about a line perpendicular to the

line connecting them.

As previously described, for the numerical calculations of the Skyrme field and

of the energy per baryon, one Skyrmion is taken in a unit cell and appropriate

boundary conditions that encode the periodic conditions of the lattice and the nec-

essary isospin rotations are calculated and used. To avoid infinite degeneracy of

the Skyrmion cells the origin can be chosen by ensuring that the solution is invari-
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ant under reflections with respect to the coordinate planes when combined with

appropriate isospin rotations.

Klebanov’s Skyrmion configuration [57] leads to a Skyrme crystal that has an

energy 8% above Skyrme’s lower bound, a large improvement on the first attempt

by Kutschera, Pethick and Ravenhall [56].

The simple cubic lattice is not the only lattice with cubic symmetry and other

types were explored in further work on the Skyrme crystal, in particular, Goldhaber

and Manton [59] considered a body-centred cubic lattice of half Skyrmions. While

Klebanov’s configuration appears valid for a large lattice spacing they considered

whether it would still hold at shorter distances, and this led them to study other

types of cubic configurations.

It had previously [60], [61] been found that as two Skyrmions are brought close

together the field configuration changes qualitatively when they become coincident

as described in section 2.3. At this point the reflection symmetries that are present

at the non-zero length minimal energy separation disappear and the absolute min-

imum energy is attained. The Skyrmions are shown to no longer have individual

identities here. This suggests that Klebanov’s configuration of clearly defined indi-

vidual Skyrmions may not be the minimum energy crystal and instead one where

there is less definition between the Skyrmions may be more suitable.

Work in this direction is also motivated by the observation that as the Klebanov

Skyrme crystal becomes denser a phase transition can be shown to occur [62]. When

this happens lumps of baryon density appear in the centres of the cells of the simple

cubic lattice as opposed to just being located on the corners of the cells. It was

calculated that the minimum of the energy per baryon of this Skyrme crystal occurs

in this high density phase and also noted that chiral symmetry restoration occurs

here and hence the crystal can be considered as quark matter.

Goldhaber and Manton took a body centered cubic lattice configuration at a

high density and then split the space up into Wigner-Seitz cells, defined as cells

containing all points in space that are closer to the lattice point at the centre of the

cell than to any of the other lattice points. These are centred on the body centered

cubic lattice of points meaning that each Wigner-Seitz cell has a baryon number of
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B = 1
2
, so each cell is called a half Skyrmion, of which there are two types. One

type of half Skyrmion cell will have f(r) = π at r = 0 and f(r0) = π/2 at some

radius r0 defining the edge of the cell while f(r) and is undefined outside the cell

edge. The other type of half Skyrmion will have f(r) = π/2 at r0 again but this

type will have f(r) = 0 at r = 0. One type of half Skyrmion are centered on the

simple cubic lattice sites and the other on the body centre lattice sites. Their fields

can be made continuous where they touch and the spherical half Skyrmions need to

be carefully distorted to fill the Wigner-Seitz cells.

Goldhaber and Manton were not able to accurately estimate the minimum energy

per baryon of their configuration but later calculations by Kugler and Shtrikman [63]

showed that it is similar to that of the Skyrme crystal of Klebanov. It was observed

that between the low density simple cubic lattice of well separated Skyrmions and

the more symmetric body centered cubic lattice of half Skyrmions there is a second

order phase transition.

Jackson and Verbaarschot [64] proposed an alternative way of implementing

an improvement to Klebanov’s configuration by using a rectangular rather than

cubic lattice for the minimum energy Skyrme crystal. They noted that the work of

Klebanov did not display the symmetries expected by Pandharipande and Smith [55],

who had studied the problem in solid state physics, and did not account for any

interactions except those between nearest neighbours and this motivated their choice

to study the rectangular lattice to rectify these issues.

In the simple cubic lattice used by Klebanov the nearest neighbour attraction

is maximised but the contributions from next nearest neighbours are not accounted

for. Jackson and Verbaarschot found that taking into account all the interactions

by using a rectangular symmetry the total attraction can be maximised. This leads

to a Skyrme crystal with a smaller energy per baryon at suitable densities than

than when using a cubic lattice. In addition to this, the symmetries proposed by

Pandharipande and Smith are reproduced.

Again, there is a second order phase transition from low density to high density

configurations where Skyrmions lose their individual identities and develop a half

Skyrmion symmetry. The minimum energy for this configuration found by Jackson
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and Verbaarschot, located in the high density phase, is found to be 7% above the

lower bound found by Skyrme.

The configuration that describes the Skyrme crystal with the minimum energy

per baryon, however, was found simultaneously by Castillejo et al. [65] and Kugler

and Shtrikman [63]. Instead of using a numerical relaxation method to find the

minimum energy as used in previous studies, Kugler and Shtrikman used a method

inspired by condensed matter physics. They expanded the field as a Fourier series

keeping all the necessary symmetries and the energy is then minimised by varying

the Fourier series coefficients. The lattice used in the high density phase is a simple

cubic lattice of appropriately rotated half Skyrmions and from this they found a

minimum energy only 3.8% higher than the lower bound calculated by Skyrme. In

the low density phase a face centered cubic lattice of Skyrmions is found and there

is a second order phase transition between the two phases.

Castillejo et al. considered face centered cubic, body centered cubic and inter-

mediate symmetries for the low density phase and used numerical relaxation to find

the minimum energies of the resulting crystals. They found a face centered cubic

lattice is favoured because it balances maximising the attractive forces between the

Skyrmions while avoiding too close an approach which would see the Skyrmions be-

ing repulsed due to their topological properties. As in Kugler and Shtrikman’s work

there is a second order phase transition to a simple cubic lattice of half Skyrmions

in the high density phase and the lowest minimum energy of all the configurations is

found here. The details of the low density face centered cubic lattice of Skyrmions

and high density simple cubic lattice of half Skyrmions are given in chapter 5 which

will also explore the intermediate symmetries and how their energy is related to the

number density and aspect ratio of the Skyrmions.

Here we refer back to the energy per baryon found for the infinite two dimensional

hexagonal lattice which was 6.1% above the lower bound. It is clear that the minimal

energy infinite Skyrme crystal has a lower energy per baryon than this. It is therefore

expected that at some value of the baryon number, Bcrit, the minimum energy

Skyrmion configuration changes from the shell-like structures found by using the

rational map ansatz to a Skyrme crystal structure. The value of Bcrit will depend
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more on a surface area effect than a volume effect as the difference in energy per

baryon is small, while the process of taking a finite portion of the solutions will add

a large amount of energy, even more so for smaller baryon numbers.

In this chapter we have described various Skyrmion solutions and the methods

used to calculate their properties. Both the rational map ansatz and the Skyrme

crystal approaches will be used when we consider how to model neutron stars using

Skyrmions. Before doing this, the next chapter will explore some of the properties

of neutron stars that we hope to recreate in our models.
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Chapter 3

Neutron Stars

3.1 Introduction

This thesis aims to explore how the Skyrme model of baryons can be used to model

neutron stars. Neutrons stars are one of the three types of compact object that

arise when normal stars die. These types are white dwarfs, neutron stars and black

holes. A normal star begins to die when the fuel used for nuclear fusion inside the

star starts to run out. This occurs when parts of the star have fused to iron and

therefore can not fuse any further because iron 56 has the highest binding energy

per nucleon of any element, so its fusion requires an energy input. At some point the

pressure created by the nuclear reactions is no longer strong enough to balance out

the force of gravity and the star will collapse, eventually forming one of the three

types of compact object.

The major factor in determining which type of compact object a normal star

will become at the end of its life is its mass. The least massive stars will go on to

form white dwarfs and about 97% of stars in our galaxy have a mass in the range

of masses for this to happen [66]. The most massive stars will go on to form black

holes, while those in between will become neutron stars. However the difficultly

in predicting which normal stars will go on to form which compact object lies in

uncertainty about the processes that occur when the star dies and in particular

about the amount of mass that will be ejected from the star. This may be where

other factors such as rotation, magnetic fields and binary star effects will have more
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of an important influence. A more massive normal star may go on to eject more

mass as it dies meaning that it may end up with a smaller mass that will collapse

to a compact object than a normal star with a smaller original mass. This means

that the boundaries between which normal stars will go on to form which types of

compact objects becomes very blurred around the dividing lines.

Compact objects differ from normal stars in two important respects. Firstly they

do not burn nuclear fuel and as such they can not support themselves against gravi-

tational collapse by creating thermal pressure as in a normal star. White dwarfs are

instead supported by electron degeneracy pressure while neutron stars are supported

by neutron degeneracy pressure. Black holes have no way of supporting themselves

and are the result of completely collapsed stars, in fact collapsed to singularities.

Secondly, as the name compact suggests, they are very small objects when compared

with normal stars of comparable mass, for example a white dwarf, the largest type

of compact object, has a radius typically between 0.008 and 0.02 times the radius

of the Sun [67]. Their small size and large mass means that the effects of general

relativity start to become important when studying them, especially in the cases of

neutron stars and black holes.

We note that black holes can also be formed by other processes including when

supermassive stars formed in the early universe collapse due to instabilities. There

is also another type of compact object hypothesised to exist, a quark star, which is

supported by quark degeneracy pressure and would have a mass between neutron

star and black hole masses. However, these remain, for now, purely hypothetical.

Neutron stars are formed when the death of a massive enough star triggers a

violent explosion known as a supernova. This throws off a lot of the mass of the

star and what remains may form a neutron star if its mass is within the correct

range. This occurs when the star is so massive that the electron degeneracy pressure

resulting from the Pauli exclusion principle is not large enough to balance out the

gravitational attraction of the matter, as is the case for a white dwarf. When the

mass is within the correct neutron star range it becomes energetically favourable

for protons and electrons to combine to form neutrons plus neutrinos through the
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reaction

p+ e− → n + ν. (3.1)

After scattering through the star the neutrinos escape and the neutrons settle down

to become a neutron star. Essentially the remaining star can be thought of as con-

sisting entirely of neutrons, though more complicated models may include the few

nuclei still left in the star. Neutron stars are supported by the neutron degeneracy

pressure, again caused by the Pauli exclusion principle. Degenerate neutrons are

spaced much more closely than degenerate electrons because the more massive neu-

tron has a much shorter wavelength at a given energy, resulting in the smaller size

of neutron stars than white dwarfs.

The dense nuclear matter that neutron stars are thought to consist of is not

well understood, especially as it can not be recreated in the laboratory. Because of

this, neutron stars provide an important testing ground for theories of dense nuclear

matter such as, in our case, the Skyrme model. However, to test such theories we

need to know what the properties of neutron stars are and these can be very difficult

to observe.

The rate of occurrences of supernovae in our galaxy is around one every 50

years [68]. Most of these supernovae are expected to produce neutron stars rather

than black holes so in the 10 billion year lifetime of our galaxy there have probably

been 108 to 109 neutron stars formed. This may indicate that they are many neutron

stars that we can observe to gather information about them but the fact that they

are very small and far away makes collecting this data extremely difficult.

Pulsars are one type of neutron star that are easier to observe. They are strongly

magnetised, rotating neutron stars that emit a beam of electromagnetic radiation.

From Earth this radiation can only be observed when the beam is pointing directly

towards the Earth. This results in the stars appearing to pulsate and this pulsation

is produced at very precise intervals, making the stars easier to observe and hence

be useful in gathering data about neutron stars. The observables that there have

been attempts to measure are described below and during the remainder of this

thesis will compare the findings of the first two of these to our Skyrmion models of

neutron stars.
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3.2 Neutron Star Observables

3.2.1 Neutron Star Masses

We have seen that neutron stars must fall into a certain mass range. If they are

too massive then they will collapse into a black hole and if the original star was

not massive enough it will form a white dwarf. This range of masses however is

currently uncertain observationally and theoretically. The theoretical range will be

determined by the model we use to form a neutron star and we want this to compare

well with observational results.

Like many astronomical bodies the best way to find the mass of a neutron star

is to monitor the effect its gravity has on any other objects around it. About 5%

of currently identified neutron stars are members of a binary system in which they

and another object orbit around their common centre of mass. Neutron stars have

been observed in binary systems with white dwarfs, normal stars and other neutron

stars.

When one of the neutron stars in the binary system is a pulsar how the timing

of its electromagnetic radiation pulses are affected by the gravitational field arising

from the two objects can be measured. From this, the masses of the objects in the

binary system, including the pulsar can be determined [69]. This is a fairly accurate

method for finding neutron star masses, with a well observed system of two pulsars

producing results to within 0.0002 solar masses.

Masses can sometimes also be estimated for a small number of neutron stars

that emit x-rays as they accrete matter from the other body in their binary system.

However this method is less accurate as there are more uncertainties about the

system.

There are currently almost 60 neutron stars for which masses have been esti-

mated. Many of these cluster around 1.3 to 1.6 solar masses, but some are higher,

with the most precise and accepted highest neutron star mass yet observed being

that of one of the most recent observations by Demorest et al. [70]. This neutron

star is located in a binary system with a white dwarf and its mass was measured to

be 1.97± 0.04 solar masses.
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3.2.2 Neutron Star Radii

The radii of neutron stars are considerably harder to measure than their mass as

neutrons stars are of order 10 kilometres in radius but must be measured from

astronomical distances. One measurement of radii that can occur comes about from

studying the thermal emissions of neutron stars [71]. From thermal emissions the

radiation radius of a star can be determined with errors arising from uncertainties

including the distance to the star and the unknown nature of its atmosphere. The

radiation radius can then be related to the radius if there is knowledge of the redshift

of the star. Redshifts can in theory be determined from the spectra of the stars,

but there is still debate about spectra measurements [71]. All these uncertainties

mean that there is still no precise measurement for radii of neutron stars. They are

however estimated to be within the range of 10-15km.

3.2.3 Other Neutron Star Observables

Another important neutron star observable is its temperature. It is estimated that

when a neutron star is initially formed it has a temperature of order 1011K [72] equiv-

alent to the nucleons that compose it having an energy of approximately 10MeV per

neutron. The star then cools off very quickly by emitting neutrinos via the process

(3.1) and because of this within a day the temperature drops to approximately 109-

1010K and continues to fall quickly. After a period of 10-100 years the temperature

will have fallen to 1.5-3× 106K, equivalent to an energy of 0.1keV per neutron and

the star will be approximately isothermal over its total volume [72]. The neutron

star will then stay at a temperature of order 105-106K for the next 107 years while

cooling slowly. The temperature of a neutron star is important because as it is not

high in comparison to nuclear energies many models, including our Skyrmion model,

assume a zero temperature.

Other data that can be gathered about neutron stars include their pulsation rate

which defines their rate of rotation. This is an important observable as it can rule

out neutron star models that would break apart at the higher rotation rates found

and it can be measured accurately.
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Future detections of both neutrinos and gravitational waves emitted from neu-

tron stars are also expected to provide more information about them which theoret-

ical models will have to match.

3.3 Modelling Neutron Stars

Neutron stars were first modelled theoretically before they became an astronomical

reality, with the first model [73] being proposed shortly after the discovery of the

neutron in 1932 [74]. This work assumed the neutron star matter to be composed of

an ideal degenerate gas of non interacting neutrons at an appropriately high density

and included the effects of general relativity. While the equations used to balance

the matter and gravitational forces in a relativistic star that were found are still used

in most models today, and indeed in the model studied in chapter 5, the equation of

state that arises from assuming an ideal gas of free particles is not realistic. Since

this initial work there has been much theoretical progress on studying how neutron

matter may behave at very high densities and these ideas have been applied to

neutron star models. However, due to the vast uncertainties that still exist about

the equation of state of dense nuclear matter there are many competing theories

including [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], to which this thesis

adds.

The observables described in this chapter, in particular the masses and radii of

neutron stars, can be used to constrain which neutron star models are realistic and

hence should be taken into account when constructing models. As the constraints

on their values improve through more sophisticated observations they rule out or

support various ideas about dense neutron matter.

In this thesis we begin by considering the fact that as neutron stars are composed

almost entirely of neutrons they should fundamentally be able to be described by

QCD. As we have seen doing this directly is far too complicated, but we have

also seen that the Skyrme model provides an approximate, low energy, effective

field theory for QCD. Because of this in the next two chapters based on original

research [5], [6] we will attempt to use the Skyrme model to construct neutron star
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models. In doing so we will refer to the mass and radius estimates made above.

We will first describe a model using the rational map ansatz to construct Skyrmion

solutions before exploring a Skyrme crystal approach.
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Chapter 4

Skyrmion Neutron Star Models

Using The Rational Map Ansatz

4.1 Introduction

In the last chapter we have seen that neutron stars are composed almost entirely

of neutrons and hence should fundamentally be able to be described by QCD. The

Skyrme model has been shown to be an approximate, low energy, effective field

theory for QCD in chapter 1 and as such we want to explore how we can use it

effectively to construct neutron star models.

Chapter 2 described how the Skyrme model has Skyrmion solutions that can be

found by applying the rational map ansatz. This produced solutions whose surfaces

of constant baryon density became more like a hollow spherical shell as the baryon

number increased. This chapter studies how the rational map ansatz in particular

can be used to form a model of neutron stars.

As neutron stars have such a large mass and a small size the effects of gravity have

to be taken into account in any model. Because of this, instead of the pure Skyrme

model as described previously, we study the Einstein-Skyrme model which couples

the Skyrme model to general relativity. The Einstein-Skyrme model and some of

the previous studies of it will be discussed in the next section 4.2. The construction

of neutron star models using the rational map ansatz within the Einstein-Skyrme

coupling has been studied previously [86] as will be described in section 4.3. The rest
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of this chapter continues this work by describing new research as published in [5].

It first introduces an improved model based on a multilayered rational map ansatz

and then discusses the results obtained from such a model.

4.2 The Einstein-Skyrme Model

Due to the large mass, yet small size, of neutron stars any model of them has to

take the effects of gravity into account. The Einstein-Skyrme model couples the

Skyrme model to Einstein’s theory of gravity, general relativity, and as such can be

described by the action

S =

∫

M

√
−g
(

LSk +
R

16πG

)

d4x. (4.1)

This combines the action of the standard Skyrme model for the matter field and the

Einstein-Hilbert action for the gravitational field, all defined on the manifold M, to

produce an action for self-gravitating Skyrmions. The Lagrangian density for the

Skyrme model, LSk, is defined here as

LSk =
F 2
π

16
Tr(∇µU∇µU−1) +

1

32e2
Tr[(∇µU)U

−1, (∇νU)U
−1]2 +

F 2
πm

2
π

8
(Tr(U− I2)).

(4.2)

This Lagrangian is the same as the combination of (1.1) and (1.2) except that the

partial derivatives have been replaced by covariant derivatives as we are now consid-

ering a more general curved manifold M rather than the R
3 flat space used in the

previous definition. Hence before finite energy considerations the Skyrme field, U , is

a map from M → S3. After the conditions imposed by finite energy considerations

the Skyrme field is again a map between two three-spheres and Skyrme’s interpre-

tation of Skyrmions as baryons remains complete with the topological charge being

interpreted as the baryon number.

During this chapter we will use the experimental value of the pion decay constant,

186MeV and a Skyrme coupling value of e = 4.84, in keeping with the values used

in [86], and for the majority of this chapter the pion massmπ will be set to zero. The

constant G in the gravitational term of the action (4.1) is Newton’s gravitational

constant.
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The term in the action arising from the gravitational field depends on the Ricci

scalar, R, of the metric relating to the manifold M that we are considering. The

choice of metric is determined by the fact that we want to model non-rotating

neutron stars which are expected to be spherically symmetric objects. We might

consider what conflict will arise as this spherically symmetric metric is imposed on

the Skyrmion solutions found using the rational map ansatz, the vast majority of

which will not possess exact spherical symmetry. However, as the baryon number

is increased to that of a realistic neutron star the spherical symmetry of the shell-

like solutions becomes more and more enhanced as the lattice of baryons on the

shell becomes tighter and the shell more spherical. This has the effect that the

discrepancy between the symmetries will not be significant. Also, at these high

baryon numbers the gravitational back-reaction is small when it is compared to the

Skyrme interaction.

The spherically symmetric metric, gµν , that we will use is that associated with

the line element

ds2 = −A2(r)

(

1− 2m(r)

r

)

dt2 +

(

1− 2m(r)

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (4.3)

Here the coefficient A(r) and the mass m(r) are field profile functions which must

be determined when solving the model. The fact that these are fields as opposed

to constants encodes the fact that we are not studying Skyrmions on a fixed curved

background as would be the case if we were studying the Skyrmions in the presence

of a fixed mass. Instead we are considering self gravitating Skyrmions which interact

with their own gravitational field.

This metric is also a static metric, chosen as we are considering non-rotating

neutron star solutions. Being a modified Schwarzschild metric it is suitable for

modelling the interior of a neutron star and as it should cleanly match up with

the exterior Schwarzschild metric at the edge of the star the boundary condition

A(R) = 1, where R is the radius of the star, has to be imposed. There is also

the boundary condition that the mass at the centre of the star is zero arising from

physical considerations.
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From the chosen metric (4.3) the Ricci scalar,

R = gµνRµν = gµνRλ
µλν = gµν(∂λΓ

λ
νµ − ∂νΓ

λ
λµ + Γλ

λσΓ
σ
νµ − Γλ

νσΓ
σ
λµ), (4.4)

that appears in the Einstein-Skyrme action (4.1) can be directly calculated using

the definition of the Christoffel symbols,

Γλ
µν =

1

2
gλρ(∂µgνρ + ∂νgρµ − ∂ρgµν), (4.5)

as

R =
−2

Ar2
(

−A′′r2 − 2A′r + 2A′′rm+ A′m+ 3A′rm′ + Arm′′ + 2Am′
)

, (4.6)

where ′ indicates the derivative with respect to the radial coordinate r and the fields

A and m are still functions of r.

We also note that again from the metric

√
−g = Ar2sin(θ). (4.7)

To complete the Einstein-Skyrme model we must also add an appropriate bound-

ary term to the gravitational term in the action to include the necessary contribu-

tions from the boundary of the manifold. This is known as the Gibbons-Hawking

action term, SGH , and it ensures that when the total action is varied with respect

to the metric, and this variation is set to zero,

δS

δgµν
= 0, (4.8)

Einstein’s equations,

Gµν = Rµν −
1

2
Rgµν = 8πTµν , (4.9)

are recovered [87]. The generic Gibbons-Hawking action term can be found by

varying the Einstein-Hilbert action and comparing the result to Einstein’s equations.

It can be expressed as

SGH =
−1

8πG

∫

∂M

√
−h∇µn

µd3x, (4.10)

where hµν is the metric induced by gµν on the boundary and nµ is the unit normal

to the boundary of the manifold M. For the metric and manifold we are considering

the Gibbons-Hawking action term can be reduced to

SGH =
−1

2G

∫

m(∞)dt. (4.11)
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where m(∞) is the mass at infinity, in other words the total mass of the star that

we are modelling.

Using the calculated expression for the Ricci scalar (4.6), the total gravitational

action, Sgr, composed of the gravitational term in (4.1) and the appropriate bound-

ary Gibbons-Hawking action term (4.11) for this action, can then be simplified to

the expression

Sgr =

∫

A(r)

(−m′(r)

G

)

dr +
m(∞)

G
, (4.12)

It will become convenient to combine the parameters of the model into one

dimensionless coupling constant, α. This can be done by scaling to the dimensionless

variables,

x = eFπr/2, (4.13)

µ = eFπm/2, (4.14)

µπ = 2mπ/(eFπ), (4.15)

resulting in the coupling α = πGF 2
π/2. For the experimental values of the pion

decay constant Fπ = 186Mev and Newton’s gravitational constant, G = 6.67300×
10−11m3kg−1s−2, we can calculate the realistic value of the coupling to be α =

3.6× 10−40.

The first detailed study of self-gravitating Skyrmions with the metric (4.3) using

the Einstein-Skyrme model action (4.1) was carried out by Bizon and Chmaj [88].

They worked with the zero pion mass case so set the pion mass term in the La-

grangian (4.2), mπ, to zero. They looked at the solutions found when the hedgehog

ansatz (2.1) for the Skyrme field,

U(x) = exp{if(r)x̂ · τ}, (4.16)

was taken with, as described in chapter 2, the appropriate boundary conditions for

a multi-Skyrmion solution,

F (x = 0) = Bπ, (4.17)

F (x = ∞) = 0, (4.18)

where B is the baryon number associated with the multi-Skyrmion configuration

being described.
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They substituted this hedgehog ansatz into the Einstein-Skyrme model action

and solved the resulting Euler-Lagrange equations for the three fields F (x), A(x)

and µ(x) numerically.

They found that for every baryon number, B, there is a critical value, αB
crit, of

the coupling parameter α beyond which no solutions exist. As the baryon number

increases αB
crit scales approximately as α1

crit/B
2. They suggested that solutions above

αB
crit do not exist because their Schwarzschild radius approaches their actual radius

and hence they will collapse into black holes.

For α < αB
crit Bizon and Chmaj found two branches of solutions which annihi-

late at αB
crit. The limit of the lower branch as α → 0 is the flat space Skyrmion

solution, and hence corresponds the decoupling of gravity from the Einstein-Skyrme

model, while the upper branch has no clear physical meaning but is well defined

mathematically.

It was hoped that by coupling the Skyrme model to gravity multi-baryon bound

states could be found using solutions generated by the hedgehog ansatz, in opposition

to the pure Skyrme model where Skyrmion solutions with a baryon number greater

than one are unstable against breaking up into many individual B = 1 Skyrmions.

However Bizon and Chmaj [88] showed that this was not the case and Skyrmion

configurations with B > 1 were still energetically unfavourable when compared to

B B = 1 Skyrmions. Because of this it looked unlikely that a model of a neutron

star could be constructed from Skyrmion solutions as it would not be stable against

breaking up.

The above study however was done before the introduction of the rational map

ansatz, which is found to produce energetically stable solutions for a baryon number

greater than one, even in the pure Skyrme model without the aid of gravity. The

remainder of this chapter explores previous work [86] on coupling the rational map

ansatz Skyrmion solutions to gravity before describing new research on a much

improved model.

Other studies and review articles on the coupling of gravity and the Skyrme

model which do not coincide with this work but provide useful background in-

clude [89] and [90]. Other astrophysical implications of the Skyrme model include a
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number of studies of Skyrmion black hole formation including [91], [92] and [93].

4.3 Rational Map Ansatz Solutions

As we have seen in chapter 2 the rational map ansatz introduced by Houghton et

al. [49], [94], produces approximate solutions to the Skyrme model. The Skyrmion

solutions found are not in general spherically symmetric but the ansatz does decom-

pose the field into a radial profile function and a rational map which can both be

determined.

Recall that the ansatz is defined using polar coordinates in R
3 and by setting

the stereographic coordinates as z = tan(θ/2)eiφ. The Skyrme field is then defined

as [49]

U(r, z) = exp(iF (r)n̂R · τ ), (4.19)

where

n̂R =
1

1 + |R|2
(

2Re(R), 2Im(R), 1− |R|2
)

, (4.20)

which is a unit vector and R a rational function of z.

The appropriate boundary conditions for the rational map ansatz, again as dis-

cussed in chapter 2, are

F (x = 0) = π, (4.21)

F (x = ∞) = 0. (4.22)

Recall that using this ansatz the degree of the rational map is found to be equal to

the baryon number.

Substituting this rational map ansatz (4.19) into the Einstein-Skyrme action

(4.1) for the model and scaling to the dimensionless variables (4.15) described earlier,

the following reduced expression for the energy can be obtained [86]

E =
2

eFπG

[
∫ ∞

0

[

− A(x)µ′(x) + A(x)α

[

S(x)F (x)′2x2

+ 2B sin2 F (x)(1 + S(x)F (x)′2) +
I sin4 F (x)

x2

+ µ2
πx

2(2− cosF (x))

]]

dx + µ(∞)

]

, (4.23)
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where the function S(x) is the function that appears in the metric (4.3), after the

scalings (4.15),

S(x) = 1− 2µ(x)

x
, (4.24)

and I is the integral (2.20)

I =
1

4π

∫
(

1 + |z|2
1 + |R|2

∣

∣

∣

∣

dR

dz

∣

∣

∣

∣

)4
2idzdz̄

(1 + |z|2)2 , (4.25)

that depends on the chosen rational map. For low baryon number configurations

the rational map that minimises I must be found and used. This has been done

previously in [49] and [47] and their results can be used here. However, for large

baryon numbers the approximation I ≈ 1.28B2 is shown to be appropriate [47] and

can be used. This approximation becomes more accurate as the baryon number is

increased and it greatly simplifies the overall minimisation of the energy (4.23) to

find appropriate Skyrmion solutions.

The previous study [86] considered the energy (4.23) with a zero pion mass,

µπ = 0, and used the fact that the minimum energy solutions of the energy expression

of the model can be found by locating the stationary points of the Lagrangian of

the model via the Euler-Lagrange equations

∂L

∂ψ(x)
=

d

dx

(

∂L

∂ψ′(x)

)

, (4.26)

for the three fields F (x), A(x) and µ(x). As we are considering static solutions

the Lagrangian is equal to the negative of the energy (4.23). The resulting Euler-

Lagrange equations are

A′ = 2αAF ′2

(

x+
2B sin2 F

x

)

, (4.27)

µ′ = α

(

SF ′2x2 + 2B sinF (1 + SF ′2) +
I sin4 F

x2

)

, (4.28)

and

2A sin(2F )

(

B(1 + SF ′2 +
I sin2 F

x2

)

=
[

2ASF ′
(

x2 + 2B sin2 F
)]′
, (4.29)

where the arguments of the fields F (x), A(x) and µ(x) and the function S(x) have

been dropped for convenience. We can show that the last of these Euler-Lagrange
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equations is actually independent of the field A(x) by performing the differentia-

tion and substituting in A′(x) from the first Euler-Lagrange equation. The linear

dependence on A(x) can then be cancelled. This means that both of the final Euler-

Lagrange equations are independent of A(x). After they are solved as coupled pair

of differential equations numerically using a shooting method with the careful im-

plementation of appropriate boundary conditions, the field A(x) can then be found

independently by numerical integration with the condition A(R) = 1.

The solutions to these Euler-Lagrange equations are calculated and discussed

in [86] in a first attempt to produce solutions that would model realistic neutron

stars.

They initially used a small number of baryons for a variety of values of the

coupling α so the solutions could be found numerically. They did this so they

could begin to investigate what features the model had. They rediscovered the two

branches of solutions which annihilate at αB
crit as in [88] where the hedgehog ansatz

was used to find solutions. However the behaviour of αB
crit was found to be altered,

now scaling as α1
crit/B

1/2 as opposed to α1
crit/B

2 for the hedgehog ansatz generated

solutions. This means that for a given value of the coupling α the Skyrmions gener-

ated through the rational map ansatz can possess a much larger topological charge

than the corresponding hedgehog ansatz generated solutions before there ceases to

be any solutions.

That there ceases to be any solutions above αB
crit is here explained by the fact that

the two branches represent two different local extrema of the energy. The difference

in energy between these two solutions is decreased as the value of the coupling, α,

is increased. At the critical coupling, αB
crit, the two branches coincide and the two

different solution branches annihilate resulting in no further solutions being found.

As the radius is in fact not close to the Schwarzschild radius as was suggested in [88],

their simple explanation that the solutions collapse into black holes is not enough

to understand the existence of αB
crit.

They then took the coupling α to be α = 0.5× 10−6 which is much larger than

the realistic value at α = 3.6× 10−40. This has the effect of increasing the strength

of gravity and was chosen to make the numerical calculations produce clear results
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easily so the qualitative features of the model could be seen. Using this value of

α the most important finding of the study was produced, as the baryon number is

increased the solutions become more energetically favourable and hence can form

bound states. This is in contrast to the solutions generated by using the hedgehog

ansatz which were unstable against breaking up in to individual B = 1 Skyrmions,

and is very promising in the context of wanting to construct neutron star models

from the Skyrme model coupled to gravity.

The above conclusion was found using an unrealistic value of the coupling α

and an unrealistic number of baryons, up to B = 17, when compared with actual

neutron stars that have a baryon number of order 1057. However as the baryon

number is increased and α made smaller the Euler-Lagrange equations become in-

creasingly difficult to solve numerically and to study more realistic values a further

approximation is needed.

It was discussed in chapter 2 that the Skyrmion solutions found using the the

rational map ansatz had the form of shell-like structures composed of 12 pentagons

and 2B − 14 hexagons. This is also true of the structure of the solutions found

using the rational map ansatz in conjunction with the Einstein-Skyrme model. This

is shown by the fact that the fields of the configuration F (x), A(x) and µ(x), go-

ing outwards from the origin of the solution, remain approximately at their initial

boundary conditions over a large radius and then dramatically and monotonically

change to their final boundary condition over a small radius [86]. All three fields

change at the same point and over the same radial values.

As the baryon number is increased the shell-like structure becomes more pro-

nounced, with the distance before the fields change, denoted as the shell radius,

increasing significantly, while the distance over which the fields change, denoted as

the shell width, settles to a constant size. This discrepancy in scales results in the

Euler-Lagrange equations becoming increasingly difficult to solve numerically but it

also provides the inspiration for a suitable approximation.

This approximation was called the ramp profile approximation [86] and it replaces

the profile functions of the fields F (x), A(x) and µ(x) by those which are piecewise

linear. The new profiles are similar to those that they replace in that they remain
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approximately at their initial boundary conditions over a large radius and then

dramatically and monotonically change to their final boundary condition over a

small radius and then remain at that boundary condition. However, here, each

section will be a suitable linear function determined by energy minimisation of the

modified energy expression. This was an idea first used in [95], [96] and in [86] it was

shown that this approximation is in good agreement with the rational map ansatz

solutions for larger baryon numbers.

Using this ramp profile approximation realistic values of both the coupling α =

3.6 × 10−40 and baryon number to model a realistic neutron star can be taken

without numerical difficulty. However this results in a neutron star model that has

a radius of order 1010km. This is obviously much larger than the radius of 10-15km

estimated for actual neutron stars as discussed in chapter 3. As well as this flaw the

fact that this solution is a giant hollow sphere where all the baryons are located on

the spherical shell is also a major obstacle in this being an appropriate model of a

neutron star.

Hope that the rational map ansatz in conjunction with the Einstein-Skyrme

model can lead to more suitable neutron star models is found in the consideration

of whether the self-gravitating shell-like Skyrmion structures that had been found

so far could be stacked together to form a more solid sphere. There is a simple

yet naive way such a stacking can be achieved as described in [86]. It is done by

modifying the boundary conditions to

F (x = 0) = Nπ, (4.30)

F (x = ∞) = 0, (4.31)

where N is the number of shells to be stacked, an idea first used for the pure Skyrme

model in [94]. These new boundary conditions still ensure that the ansatz is well

defined at the origin and that the finite energy condition that U = I2 as r → ∞ is

satisfied.

The baryon number is now N times the degree of the rational map as there will

be N shells each of baryon number determined by the rational map. By studying the

profiles of the fields F (x), A(x) and µ(x) the stacked shell structure can clearly be
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seen. The fields will again stay at their initial boundary condition for some distance

over the radius and then they will dramatically and monotonically change to a new

value. For the radial profile function F (x) this new value will be (N − 1)π. They

will then stay at this value for some distance before again changing dramatically and

monotonically over a short distance with F (x) now at (N − 2)π. This succession

of sharp changes over short distances with lengths of no change between them will

continue until F (x) = 0, clearly showing the stacked shell structure.

It was shown in [86] and this stacked shell configuration results in energetically

favourable solutions when compared to single-layer solutions with the same total

baryon number. This means the solutions will not be unstable and expand to a

single shell solution and so this stacked shell structure provides the basis of a better

model of a neutron star.

Again, the numerical solutions to this model become increasingly difficult as the

baryon number grows and an approximation analogous to the ramp profile approx-

imation must be introduced. This is the ladder profile approximation that again

replaces the true profiles functions of the fields F (x), A(x) and µ(x) by those which

are piecewise linear, this time having many linear sections covering all the changes

of the fields over short distances and the gaps in between them. Again it has been

shown [86] that this ladder profile approximation is in good agreement with the so-

lutions found numerically from the rational map ansatz with stacked shell boundary

conditions.

Minimising the energy (4.23) with this ladder profile approximation in place leads

to solutions with realistic values of both the coupling α = 3.6 × 10−40 and baryon

number to model a realistic neutron star being able to be found without numerical

difficulty. The solutions at these high baryon numbers are still found to be stable

and, at the critical number of layers before there ceases to be any solutions, the

radius of the star is approximately 20.91km, comparable to a neutron star with a

typical radius of 10-15km. This is obviously a much better result than the single

shell model.

This smaller radius is achieved by two processes. The first is that as there are

more shells for the baryons to be distributed over than in the single shell model
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where there was just one shell with a very small width. In this model there are

many shells and therefore there is a much greater volume for the baryons to be

distributed over and hence a much smaller radius is required to pack all the baryons

in. Secondly, there is an increase in the gravitational compression for the stacked

shell model as the outer layers will feel the gravitational attraction due to the inner

layers.

While this stacked shell model does offer a big improvement in the predicted

radius of a neutron star model it does still have various drawbacks. The first is that

the resulting stacked shells all have the same baryon number. In reality we would

expect that the baryon number should vary significantly over the shells. Secondly,

the widths of the stacked shells are all the same due to the simplicity of the model.

We would expect that realistically the widths of the inner shells should be smaller

due to the higher pressures they are under while the outer layers would have more

freedom to be larger.

Perhaps the most significant obstacle in this stacked shell model being a good

approximation to a realistic neutron star is that it still has a hollow centre before

the stacked shells begin. This can be seen by the fact that the fields F (x), A(x)

and µ(x) all stay at their initial boundary condition for a significant distance before

they start to change. Physically a hollow centre is in no way expected from a real

neutron star.

As can be seen there are still many improvements to be made to using the

rational map ansatz in conjunction with the Einstein-Skyrme model to find good

approximations to real neutron stars. The remainder of the chapter will describe

new research in this area, as published in [5], resulting in a much improved model.

4.4 The Multilayer Rational Map Ansatz

While keeping the stacked shell structure idea of the rational map ansatz Einstein-

Skyrme model described in the last section we wish to improve it by allowing the

number of baryons in each shell, bi, and the widths of the shell, Wi, to vary. By

including these more realistic factors we hope to be able to produce a more realistic
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model of a neutron star. We also want to remove the hollow centre found when

using the stacked shell model and instead construct a star that is a solid sphere, as

would be expected in reality.

To improve the model we begin by defining the radial charge density of each

shell, Bi, as

Bi = bi/Wi, (4.32)

where the baryon number of each shell, indexed by the integer i, that we are stacking

together is denoted by bi and Wi is the width of each of the shells. In this way we

allow the widths and the baryon numbers of the shells to be individually determined,

as opposed to the previously discussed model where there was no way to control them

individually.

As we have seen, the radial profile function, F (x), varies between nπ and (n−1)π

for an integer n over one layer of width Wi. We have also noted that the ladder

profile approximation which replaces the field profile functions by those which are

piecewise linear is a good approximation when compared with numerical results.

Hence we can use the approximation

−F (x)′ ≈ π/Wi. (4.33)

Substituting this into our definition of the radial charge density (4.32) we find it can

be written as

Bi = −F (x)′bi/π. (4.34)

We are considering neutron star models and hence we will be using a very large

number of shells and because of this we promote the baryon number of each shell,

bi, to a shell baryon field, b(x) where x is the rescaled (4.15) radial coordinate. This

results in an equation for the total baryon number, B,

B = −
∫ R

0

b(x)
F (x)′

π
dx, (4.35)

where R is the total radius of the star which will be a parameter that can be varied

and must be found by minimisation of the energy.

The approximation, also used in [86],
∫

G(x) sinp F (x)dx ≈
∫

G(x0) sin
p F (x)dx, (4.36)

October 11, 2012



4.4. The Multilayer Rational Map Ansatz 56

for any function G(x) that varies very little over the width of the shell and the fact

that
∫ x0+Wi/2

x0−Wi/2

sinp F (x)dx =
Wi

π

∫ π

0

sinp F (x) dF (x), (4.37)

allows the energy (4.23), found from the combination of the rational map ansatz

and the Einstein-Skyrme model, to be reduced to

E =
2

eFπG

[
∫ R

0

[

− A(x)µ′(x) + A(x)α

[

S(x)F (x)′2x2

+ b(x)(1 + S(x)F (x)′2) + 1.28b(x)2
3

8x2

+ 2µ2
πx

2

]]

dx+ µ(∞)

]

. (4.38)

Here the large baryon number approximation I ≈ 1.28b(r)2 [47] discussed in

chapter 2 has been incorporated and the function S(x) is again the rescaled metric

function (4.24), S(x) = 1 − 2µ(x)
x

. The boundary conditions are the same as in the

stacked shell model as we still want a similar structure of layers of rational map

ansatz Skyrmion solutions. Hence they are

F (x = 0) = Nπ, (4.39)

F (x = ∞) = F (x = R) = 0, (4.40)

where N is the number of shells that will be stacked together. As this model does

not produce a hollow centre to the star because the shells begin at x = 0, the radius

of the star, R will be defined by R =
∑N

i=1Wi. Hence the average width of the

shells, W , is defined as W = R/N , and this is a parameter that we will use in our

minimisation of the energy.

For convenience when performing the numerical calculations we define a rescaled

shell baryon field, q(x), by q(x) = b(x)/x2. We also rescale the radial profile function,

the radial coordinate and the mass profile function using

F (x) = f(x)N, (4.41)

x = Ny, (4.42)

µ(x) = Nν(x), (4.43)
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again for numerical convenience reasons. After doing this the energy (4.38) can be

rewritten as

E =
2N3

eFπG

∫ W

0

[

− A(y)
ν ′(y)

N2
+ A(y)αy2

[(

1− 2ν(y)

y

)

f ′(y)2(1 + q(y))

+ q(y) + 1.28q(y)2
3

8
+ 2µ2

π

]]

dy +
2Nν(∞)

eFπG
, (4.44)

and the total baryon number as

B = −N3

∫ W

0

q(y)
f ′(y)

π
y2dy. (4.45)

In the previous stacked shell model the minimum of the energy was located

by finding the stationary points of the Lagrangian by solving the Euler-Lagrange

equations for the three fields F (x), A(x) and µ(x). In this improved model we

have four fields, three of them equivalent to the previous model, the radial profile

function, f(y), the metric coefficient, A(y), and the mass profile function, ν(y), and

the additional shell baryon field q(y). Euler-Lagrange equations can be found for

this energy expression

A′ = 2αN2yf ′2(1 + q)A, (4.46)

ν ′ = αN2y2
[(

1− 2ν

y

)

f ′2(1 + q) + q + 1.28q2
3

8
+ 2µ2

π

]

, (4.47)

0 =
d

dy
(αA2(y2 − 2yν)(1 + q)f ′), (4.48)

0 = Aαy2
[(

1− 2ν

y

)

f ′2 + 1 + 1.28q
6

8

]

, (4.49)

where the argument y of the fields has been dropped for brevity. These Euler-

Lagrange equations, however, could not be solved using the shooting method, unlike

those of the previous stacked shell model. Even when various approximations such

as a constant shell width or assuming the form of the shell baryon field were taken

no appropriate solution using just the Euler-Lagrange equations could be found.

Instead of using only the Euler-Lagrange equations to find solutions we have to

minimise the energy directly. This involves minimising over the four fields f(y),

ν(y), A(y) and q(y), and also the parameters W , the average width of the shells,

and N , the number of shells, for any given baryon number.

To proceed with this energy minimisation we use a simulated annealing algo-

rithm, the details are which are described in appendix A.2. Attempting to use this
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method on all four fields for constant values of W and N , achieved by applying

the changes to the fields to one field at a time cycling through them for each itera-

tion, proved not to be effective as the solutions did not converge to sensible profile

functions. Instead the simulated annealing algorithm was applied to just two of the

fields, f(y) and q(y), alternating the application of changes to the fields at every

iteration, and rescaling q(y) to keep the total baryon number constant. After every

alteration to these two fields the Euler-Lagrange equations were used to calculate

the remaining two fields, ν(y) and A(y), using a fourth-order Runge-Kutta method

again described in appendix A.1. The energy of the overall configuration was then

calculated at every iteration and the decision made as to whether to implement the

field change.

The simulated annealing algorithm was applied over 250 points along the radius

of the star and was kept running for 108 iterations in total, by which time the field

profiles functions had settled into the forms that produce the minimum energy for the

given values of W and N . This process was then repeated over a suitable parameter

space of values of W and N and the overall minimum energy configuration for the

given baryon number was then identified.

This procedure was again repeated for various baryon numbers and we shall

discuss the results of doing so in the next section.

4.5 Multilayer Rational Map Ansatz Solutions

Here we present the results of applying the multilayer rational map ansatz to the

Einstein-Skyrme model and then finding the minimum energy configurations using

the procedure described above. Table 4.1 presents the results of the minimisation

of the energy (4.44) for various baryon numbers, here all calculated for a zero pion

mass.

As can be seen we find solutions up to a baryon number of B = 8.2 × 1056.

For B = 8.3 × 1056 and above no minimum energy solutions for the energy (4.44),

over varying the average width, W , and the number of layers, N , could be found.

This can be compared with a realistic neutron star which typically has a baryon
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B N W (fm) Energy/B(J) R (m) Smin

1.0× 1010 1.250× 103 1.40 2.0413× 10−10 1.75439× 10−12 1.000000

1.0× 1020 2.700× 106 1.40 2.0412× 10−10 3.78947× 10−9 1.000000

1.0× 1030 5.825× 109 1.40 2.0412× 10−10 8.17544× 10−6 1.000000

1.0× 1040 1.250× 1013 1.40 2.0412× 10−10 1.75439× 10−2 1.000000

1.0× 1050 2.700× 1016 1.40 2.0412× 10−10 37.8947 0.999991

1.0× 1055 1.275× 1018 1.38 2.0296× 10−10 1761.51 0.981034

1.0× 1056 2.775× 1018 1.32 1.9858× 10−10 3651.32 0.910497

2.0× 1056 3.525× 1018 1.27 1.9518× 10−10 4483.55 0.856723

3.0× 1056 4.150× 1018 1.21 1.9222× 10−10 5005.48 0.810419

4.0× 1056 4.600× 1018 1.16 1.8948× 10−10 5346.49 0.766729

5.0× 1056 5.100× 1018 1.10 1.8685× 10−10 5592.11 0.725089

6.0× 1056 5.475× 1018 1.05 1.8426× 10−10 5763.16 0.684327

7.0× 1056 5.900× 1018 0.99 1.8166× 10−10 5822.37 0.640609

7.2× 1056 6.000× 1018 0.96 1.8113× 10−10 5789.47 0.629328

7.4× 1056 6.125× 1018 0.94 1.8059× 10−10 5775.77 0.619260

7.6× 1056 6.250× 1018 0.92 1.8005× 10−10 5756.58 0.608849

7.8× 1056 6.350× 1018 0.90 1.7949× 10−10 5709.43 0.596488

8.0× 1056 6.450× 1018 0.88 1.7892× 10−10 5657.89 0.583697

8.2× 1056 6.700× 1018 0.81 1.7832× 10−10 5436.40 0.557388

Table 4.1: Properties of the minimum energy solutions of the energy (4.44) with a

zero pion mass, µπ = 0.
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number of order 1057. Table 4.1 shows that, while the minimum of the rescaled

metric function S(x) = 1 − 2µ(x)
x

for the minimum energy solution found decreases

as the baryon number increases, it remains non zero. This means that no horizon

has formed and hence the star solutions found have still not collapsed to form a

black hole even at the highest baryon number.

Due to the limited accuracy of the numerical methods that we have implemented

and the fact that solutions with a Smin approaching zero may not be easily found,

an increase in the number of significant figures for the maximum baryon number

for which there are solutions could not be easily and accurately reached. Figure 4.1

shows how the value of Smin changes with varying the total baryon number and it

can be seen from it that Smin begins to drop rapidly as the maximum baryon number

is approached. It is expected that it will continue to decrease at an increasing pace

and any significant increase to the maximum baryon number found will result in a

minimum energy solution that collapses into a black hole.
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Figure 4.1: The function Smin for various baryon numbers.

The data shown in Figure 4.1, though quite smooth, are affected by various

types of numerical errors. First of all, the energy fluctuations during the simulated

annealing that have not fully settled within the number of iterations used located

around the minimum energy values induce an error that we estimate to be less than

0.1% by looking at the range of the fluctuations. There is also an error created

by the discrete sampling nature of the parameter values, W and N , from which
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the minimum energy solution has been determined. From interpolating the curve

around the minimum energy value we find that again this error is less than 0.1%.

There are also systematic errors due to the discretisation of the problem on a lattice

that are harder to estimate but we don’t expect them to affect the critical value of

the baryon number substantially.

Table 4.1 shows that as the baryon number is increased the solutions become

more and more energetically favourable as the energy per baryon decreases. This

indicates that the solutions are stable and our model can therefore not be ruled out

as a suitable model of neutron stars.

At the smaller baryon numbers the radius grows as B1/3 indicating that the

average density of the stars remains constant. The widths of the shells in this

region are also seen to remain at a value of 1.40fm which is equivalently 3.20 in the

dimensionless units (4.15). Kopeliovich [95], [96] previously calculated the minimum

energy value for the width of a shell in a stacked shell structure of a substantial

number of baryons in flat space using the pure Skyrme model to be W = π in the

same dimensionless units, and as the gravitational interactions are not significant

at these smaller baryon numbers we find there is little deviation from this value in

these solutions found from the Einstein-Skyrme model.

As the maximum baryon number is approached the average density over the

whole star solutions of the Skyrmions, and therefore baryons, increases, reaching up

to 2.75 times the density found at the smaller baryon numbers. This indicates that

the gravitational interaction becomes more important as the higher baryon numbers

are reached, as expected.

The increase in density at the higher baryon number recreates the feature also

found previously for the stacked shell model [86]. This is that, as the baryon num-

ber approaches its maximum at which a solution can be found, the radius of the

star solutions start to decrease as more baryons are added due to the increasing

dominance of the gravitational interactions. This in an interesting property as for

realistic neutron stars the radius must decrease for an increase in mass in order to

achieve sufficient degenerate neutron pressure to balance the increased gravitational

force.
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It is important to note that the baryon density increase for the larger baryon

numbers is not just accounted for by the decrease in the widths of the shells found to

occur in this high mass region of solutions. We find the Skyrmions are compressed

in all three directions.

We also note that when compared with realistic neutron stars with a radii of

approximately 10-15km the solutions found using this multilayer ansatz model have

radii of appropriate values when we take into account their smaller baryon number.
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Figure 4.2: Radial profile functions for the dimensionless f(y), A(y) and ν(y) fields

for B = 8.2× 1056.

This model only finds solutions up to a baryon number of B = 8.2 × 1056 and

when compared with a realistic neutron star with a baryon number of approximately

2 × 1057 our solutions have about 2.4 times too few baryons. The fact that our

neutron star solutions are less massive than they should be could be due to the

fact that we overestimate the energies of the solutions. For example when solutions

found using the rational map ansatz for the pure Skyrme model itself are compared

to the solutions found using numerical methods they are found to overestimate the

energies of the solutions by 3% to 4% [49]. In addition to this using a multiple shell

ansatz has been shown to produce solutions with larger energies than can be found

when the solutions are numerically relaxed [94]. These overestimations of the energy

will cause the solutions to collapse into black holes at a baryon number less than

would be realistic.
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Figure 4.3: Ratio of the width to the length (square root of the cross-sectional area)

of the Skyrmions for B = 8.2× 1056.

We now consider the structures of the Skyrmion star solutions that have been

found, in particular figure 4.2 shows the field profile functions for the fields f(y), A(y)

and ν(y) for the maximum baryon number, B = 8.2×1056, for which a solution could

be found. We, however, find the same qualitative behaviour appearing for all the

minimum energy solutions at the larger baryon numbers. We recall that the width

of the shells is given by Wi ≈ −π/fy and it is observed that because the gradient of

the rescaled radial profile function f(y) decreases towards the edge of the star. This

means that, as should be expected, the widths of the shells increase as the radial

distance increases, due to less compression from the gravitational interactions for

the outer shells.

As well as the Skyrmions being compressed in the radial direction they are also

found to be compressed in the tangential directions, again, with more compres-

sion towards the centre of the star than towards the edge. Figure 4.3 shows, by

comparing the width of the shells in the radial direction with their length in the

tangential directions, that this tangential compression becomes more pronounced,

when compared with the radial compression, as the centre of the star is reached,

becoming the dominant reason for the decrease in baryon volume there. While the

compression would be expected to occur in all directions equally, the structure of the

Skyrmions when using the multilayer ansatz may be causing them to shrink more
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in the tangential directions than in the radial direction in the high density centre of

the star.

Due to this radial and tangential compression of the Skyrmions there is a large

variation in baryon number density over the radius of the star. Figure 4.4 shows

that, as expected, the baryon density is high in the centre of the star, decreasing as

the radius increases.

 0

 10

 20

 30

 40

 50

 60

 70

 0  1  2  3  4  5

De
ns

ity
(fm

-3
)

Radius(km)

Figure 4.4: Baryon density for B = 8.2× 1056.

The observed substantial change in both baryon number per shell, which, for

example, ranges from 2.9 × 1036 to 2.1 × 1038 for the solution with a total baryon

number of B = 8.2 × 1056, and the widths of the shells, ranging from 0.67fm to

1.00fm over the radius for the same baryon number, justify our improvement to the

previous model that allows this to occur.

We also want to consider what effect changing the pion mass from a zero to a

non zero value in the energy (4.44) will have on the solutions found in this model.

In particular we set mπ = 138MeV, the experimental pion mass. Table 4.2 details

the results found when such a pion mass is added.

We can see that the maximum baryon number for which solutions can be found

decreases from B = 8.2 × 1056 in the zero pion mass case to B = 7.2 × 1056 in the

mπ = 138MeV case. Including a pion mass will increase the energy of the Skyrmion

star solutions found so it is to be expected that due to this they will collapse at a

smaller baryon number. This increase in total energy can be seen from the increase
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B N W (fm) Energy/B( 1
eFπG

) R(m) Smin

1.0× 1010 1.225× 103 1.32 2.1089× 10−10 1.61184× 10−12 1.000000

1.0× 1020 2.650× 106 1.32 2.1089× 10−10 3.48684× 10−9 1.000000

1.0× 1030 5.700× 109 1.32 2.1089× 10−10 7.50000× 10−6 1.000000

1.0× 1040 1.225× 1013 1.32 2.1089× 10−10 1.61184× 10−2 1.000000

1.0× 1050 2.650× 1016 1.32 2.1089× 10−10 34.8684 0.999999

1.0× 1055 1.225× 1018 1.32 2.0953× 10−10 1611.84 0.978609

1.0× 1056 2.775× 1018 1.21 2.0443× 10−10 3347.04 0.899493

2.0× 1056 3.525× 1018 1.16 2.0047× 10−10 4097.04 0.838966

3.0× 1056 4.175× 1018 1.10 1.9702× 10−10 4577.85 0.787541

4.0× 1056 4.650× 1018 1.05 1.9381× 10−10 4894.74 0.739371

5.0× 1056 5.150× 1018 0.99 1.9073× 10−10 5082.24 0.691223

6.0× 1056 5.625× 1018 0.92 1.8768× 10−10 5180.92 0.642346

7.0× 1056 6.050× 1018 0.86 1.8453× 10−10 5174.34 0.589209

7.2× 1056 6.250× 1018 0.81 1.8387× 10−10 5071.27 0.570434

Table 4.2: Properties of the minimum energy solutions of the energy (4.44) with a

pion mass mπ = 138MeV.
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in energy per baryon between tables 4.1 and 4.2 for any given baryon number. Again

the minimum of the rescaled metric function S(x) = 1 − 2µ(x)
x

is still non zero at

0.570434 for this maximum baryon number solution so no horizon has formed and

hence it has not collapsed into a black hole and remains a suitable model of a neutron

star.

Comparing table 4.2 with the equivalent table for the zero pion mass case 4.1 we

can see that for any given baryon number the inclusion of the pion mass decreases

the average width of the shells. This will happen because there will be stronger

gravitational interactions between the more massive Skyrmions and therefore the

shells will be more compressed. The minimum value of the metric S(x) is decreased

for any given large baryon number when the pion mass is included, also due to the

increase in energy.

Including a non zero pion mass is not found to affect the qualitative features of

the field profile functions for the f(y), ν(y), A(y) and q(y) fields that were found

for the zero pion mass case and discussed above.

We also note here that for baryon numbers between B = 5 × 1056 an B =

2.5×1057 another minimum energy solution to the energy (4.44) appears to be found

numerically. This solution seems to take the form of a hollow shell-like structure

with a centre devoid of baryons, the majority of the baryons located in a dense layer

between a narrow range of radii and then another gas-like layer almost completely

devoid of baryons. It is expected that these solutions are an artefact of our model

and for various reasons, including the unrealistic large hollow centre, do not produce

suitable models of neutron stars. Because of this we will not explore them any

further.

4.6 Conclusions

This chapter has introduced the Einstein-Skyrme model and described some of the

early work by Bizon and Chmaj [88] on the self-gravitating Skyrmion solution found

from it, in their case generated using the hedgehog ansatz.

We then went on to explore previous work on using the Einstein-Skyrme model
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to describe stable Skyrmion stars making use of the rational map ansatz and how by

doing this, hollow shell-like objects were produced. By stacking these shells together

a more realistic model of a neutron star was produced with an appropriate radius.

However the stacking of the shells was only done naively as the baryon number for

all the shells, as well as their width, was kept constant. While for a large baryon

number with few shells this is a reasonable approximation, when many shells are

used, such as when modelling an object as large as a neutron star, we would expect

a large variation in baryon number across the shells as well as a decrease in the

width of the shells towards the centre of the star.

In the remainder of this chapter we have described new work where we have

allowed the baryon number to vary across the shells, and also the width of those

shells to vary to produce a more realistic description of a neutron star. Stable

solutions can be found with radii that compare well with realistic neutron stars

which are approximately 10-15km in radius, however solutions could only be found

up to B = 8.2×1056, with a radius of 5436.40m, while the expectation is that neutron

stars should have a slightly larger baryon number of approximately 2 × 1057. This

is likely due to an overestimation of the energy of the solutions produced by the

model.

It is interesting to see that as the maximum baryon number for which there is a

solution is approached, the radius decreases as more baryons are added, reflecting

how real neutron stars behave.

Including a non zero pion mass into the Skyrme Lagrangian decreases the max-

imum baryon number at which solutions can be found and for any given baryon

number the average width, and therefore radius of the star, is decreased. The qual-

itative features of these solutions however are found to be similar to the zero pion

mass case.

The solutions found justify allowing the widths and baryon numbers of the shells

to vary and show the expected change in baryon density over the radius of the star,

with a high density centre decreasing rapidly at first and then at a slower rate as

the radius increases. This is a more realistic model of a neutron star as the density

should increase as the centre of the star is reached.
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While this multilayer rational map ansatz model provides a large improvement

on the previous stacked shell model we still want to consider other approaches to

modelling neutron stars using Skyrmions. As we have seen in chapter 2 the minimum

energy configuration for a very large number of baryons does not come about as a

solution found using the rational map ansatz but instead has the form of a crystal

lattice. The next chapter explores how a crystal lattice of Skyrmions can be used

to construct a better model of a neutron star.
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Chapter 5

Skyrmion Neutron Star Models

Using Skyrme Crystals

5.1 Introduction

We have seen in the last chapter how we can combine Skyrmion solutions found

using the rational map ansatz with the theory of general relativity to produce a

model of neutron stars. This model was a large improvement on a previous similar

model studied in [86] however, it only found minimum energy configurations that

had a total baryon number smaller than that expected of observed neutron stars.

This was due to the rational map ansatz used overestimating the energies of the

Skyrmion solutions found and also the naive procedure of stacking shells together

overestimating the energy of the transitions between the shells, meaning that so-

lutions collapsed into black holes at a smaller value of total baryon number than

would be expected.

We saw in chapter 2 that for a very large number of baryons, such as we are

considering when we model neutron stars, the minimum energy configuration is in

fact a Skyrme crystal solution, rather than a hollow shell-like solution found using

the rational map ansatz. Taking this into account this chapter explores new research,

as published in [6], on whether a crystal lattice of Skyrmions can therefore be used

to construct a better model of a neutron star.

We begin by describing the Skyrme crystal configuration thought to be the solu-
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tion with the lowest energy per baryon. This is the configuration found simultane-

ously by Castillejo et al. [65] and Kugler and Shtrikman [63]. In particular we will

consider the effects of anisotropic deformations to this crystal lattice as studied in

detail in [65]. We will then describe whether such a crystal can be used to model

neutron stars and how this can be done by using a generalised Tolman-Oppenheimer-

Volkoff (TOV) equation to balance the matter and gravitational forces within the

star. We then discuss the results of numerically finding the minimal energy star

configurations, looking in particular at the difference between stars that are made

of isotropically deformed crystal and those made of anisotropically deformed crystal

and the phase transition between them. We also compare these results with observed

neutron stars.

5.2 Skyrme Crystals

As discussed in chapter 2 the Skyrme crystal configuration with the minimal energy

per baryon is that described by Castillejo et al. [65] and Kugler and Shtrikman [63].

It is found to have an energy only 3.8% higher than the unobtainable lower bound

calculated by Skyrme [38] (1.10). In the low density regime this crystal is a face

centered cubic (fcc) lattice of Skyrmions. This is a lattice that has Skyrmions with

the standard orientation centred on the vertices of a lattice of cubes, in addition to

Skyrmions rotated by 180◦ about a axis normal to the cube faces placed on the face

centres.

In this configuration each Skyrmion is attracted to its twelve nearest neighbours

and a face centered cubic lattice is favoured because it balances maximising the

attractive channels between the Skyrmions while avoiding too close an approach

which would see the Skyrmions being repulsed from each other due to their topo-

logical properties.

Each cube is a unit cell of side length a and has a baryon number of B = 4. The

Skyrme crystal can therefore be considered as a periodic lattice of α particles. As

the Skyrme model, at the semi-classical level we are considering, does not include

the electroweak interaction it does not distinguish between neutrons and protons.
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The Skyrme crystal can therefore be also thought of a lattice composed of cubes of

four neutrons.

The Skyrme baryon density, and therefore the locations of the baryons, in this

crystal is periodic after translation by the unit cell size a in each of the x, y or z

directions. When the origin is fixed at the centre of one of the Skyrmions with the

standard rotation the configuration has the combined spatial and isospin symmetries

described below. We can write the Skyrme field explicitly in terms of the component

fields of which it is composed, σ and π1, π2, π3, as U = σ + iπ · τ where τ are the

usual Pauli matrices and π = (π1, π2, π3). We note that because U ∈ SU(2) the

condition σ2 + π · π = 1 is imposed. The symmetries of the minimal energy Skyrme

crystal are then generated by the following four transformations,

(x, y, z) 7→ (−x, y, z), (σ, π1, π2, π3) 7→ (σ,−π1, π2, π3), (5.1)

(x, y, z) 7→ (y, z, x), (σ, π1, π2, π3) 7→ (σ, π2, π3, π1), (5.2)

(x, y, z) 7→ (x, z,−y), (σ, π1, π2, π3) 7→ (σ, π1, π3,−π2), (5.3)

(x, y, z) 7→ (x+ 1
2
a, y + 1

2
a, z), (σ, π1, π2, π3) 7→ (σ,−π1,−π2, π3). (5.4)

Symmetry (5.1) is a reflection in a face of a cube, (5.2) is a rotation around a

three-fold axis along a diagonal, (5.3) is a four-fold rotation around an axis through

opposite face centres and (5.4) is a translation from the corner of a cube to a face

centre. All other symmetries of the crystal can be obtained by applying combinations

of the above generators.

This face-centred cubic lattice configuration describes the low density Skyrme

crystal where each Skyrmion is localised around the positions described and each

has an almost spherical isosurface of σ = 0, where without loss of generality we take

σ = −1 as the centre of the Skyrmions and the region 0 < σ < 1 extends to the

neighbouring Skyrmions.

An increase in density for this configuration results in a second-order phase

transition, first shown by Goldhaber and Manton [59], to a crystal of a simple cubic

lattice of half Skyrmions. One type of these half Skyrmions are located at the fcc

lattice sites where σ = −1 and are enclosed by a cube where σ < 0. The second

type are positioned at sites where σ = 1 between the fcc lattice sites and they are
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enclosed by a cube where σ > 0. The Skyrme crystal can therefore be thought of

as an ’anti-ferromagnetic’ configuration of half Skyrmions. It is within this phase

that the minimal energy crystal occurs, numerically found to be located at a number

density of 0.216fm−3 [65]. This high density phase has an additional symmetry given

by the transformation

(x, y, z) 7→ (x+ 1
2
a, y, z), (σ, π1, π2, π3) 7→ (−σ,−π1, π2, π3), (5.5)

which is a translation half-way along the cube edge. Whereas the previous sym-

metries (5.1)-(5.4) involve just a SO(3) isospin transformation, symmetry (5.5) also

involves a SO(4) chiral rotation. Note that the symmetry (5.4) can now be achieved

by applying the generator (5.5) along with this generator rotated by 90◦. This high

density phase still remains a crystal lattice of B = 4 cubes and hence a lattice of α

particles.

As well as considering the minimal energy Skyrme crystal in detail Castillejo

et al. [65] also investigated the energy of dense Skyrmion crystals where the initial

configuration is not a face-centred cubic lattice described above but rather a fcc

lattice that has been deformed anisotropically. The deformation is such that the

aspect ratio of the unit cell, B = 4 α particle, of side a is altered so that it becomes

rectangular with aspect ratio r3. This means that in the x and y directions there

are lattice displacements of ra and in the z direction of a/r2. As in Castillejo et al.

we use the measure p = r−1/r to describe the deviation away from the face-centred

cubic lattice symmetries which have p = 0.

We note that p = 0.23 describes a body centred cubic lattice. For p ≫ 1 the

crystal configuration is that of separate one dimensional columns of closely packed

Skyrmions, while p≪ −1 describes separate planes of square arrays of Skyrmions.

The effect that this deformation of the Skyrme crystal structure has on its energy

was investigated and it was found that the second-order phase transition to the

crystal of half Skyrmions occurred at least for all the values of p in the range−0.35 <

p < 0.32 and probably for all p.

The numerical solutions found by Castillejo et al. provide an equation for the

dependence of the energy of a Skyrmion on its size, L = n−1/3, where n is the

Skyrmion number density, and its aspect ratio measure, p. They found that altering
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the aspect ratio measure did not result in a simple stretching of the fields and

instead a more complicated energy dependence equation was found by fitting it to

the numerical results. This energy equation is here quoted for Skyrmion densities

within the high density half Skyrmion crystal phase,

E(L, p) = Ep=0(L) + E0[α(L)p
2 + β(L)p3 + γ(L)p4 + δ(L)p5 + ...], (5.6)

where the coefficients are given by

Ep=0(L) = E0

[

0.474

(

L

L0
+
L0

L

)

+ 0.0515

]

, (5.7)

α(L) = 0.649− 0.487
L

L0
+ 0.089

L0

L
, (5.8)

β(L) = 0.300 + 0.006
L

L0
− 0.119

L0

L
, (5.9)

γ(L) = −1.64 + 0.78
L

L0
+ 0.71

L0

L
, (5.10)

δ(L) = 0.53− 0.55
L

L0
. (5.11)

Here E0 = 727.4MeV, and L0 = 1.666× 10−15m. The equation can be extended to

include lower densities [65] but they are not of interest here where we only expect

Skyrme crystals with densities higher than the minimal energy crystal to occur in

our neutron star model. It can be seen that for any value of L the minimum energy

occurs at the face centred cubic lattice configuration, p = 0, and the global minimum

is reached for L = L0.

The Skyrme parameters used by Castillejo et al. [65] were those first calibrated

by Adkins, Nappi and Witten [17] and were a pion decay constant of Fπ = 129MeV

and a Skyrme coupling of e = 5.45. As in this chapter we will be using their equation

for the energy per Skyrmion of the anisotropically deformed crystal we will use these

parameters too.

The Skyrme crystal described by Castillejo et al. [65] and the resulting energy

dependence equation assumed a zero pion mass in the Skyrme Lagrangian and for

the majority of this chapter we will too. Section 5.4.3 describes the effect of the

inclusion of a pion mass.
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5.3 The TOV Equation for Neutron Stars

Using the equation (5.6) relating the energy of a Skyrmion in a Skyrme crystal to

its size and aspect ratio we will now investigate whether and how one can construct

a neutron star model using a Skyrme crystal approach. In particular we will study

in what ways the crystal lattice is deformed under the high gravitational field it

experiences.

We must first consider if constructing a neutron star using a solid Skyrme crystal

as a building block is appropriate or whether they are better modelled as a liquid

or gas of Skyrmions. As discussed in chapter 3 after a period of 10-100 years the

temperature of a neutron star will have fallen to 1.5-3 × 106K, equivalent to an

energy of 0.1keV per neutron and the star will be approximately isothermal over

its total volume [72]. This is a high temperature when compared with the binding

energy of an electron around a nucleus but we find it is small when we compare it

to nuclear energies. Experimentally, the lowest excited state of an α particle has

an energy of 23.3MeV [97] and the lowest vibration mode of a B = 4 Skyrmion has

been calculated to be of the order 100MeV [98], [99]. Walhout [100] showed that

even under an intense gravitational field the excitation energy of a lattice of B = 1

Skyrmions is also of the order of 100MeV. The low temperature of a cooled neutron

star in comparison to these nuclear excitation energies means that we can take a

zero temperature assumption for our stars and model them as a solid rather than

as a liquid or gas. It is therefore shown to be sensible to model a neutron star using

a Skyrme crystal lattice.

Another interesting point to consider here is whether there will be an atmosphere

surrounding the star. As an illustrative example we consider a neutron star that is

twice the mass of the Sun. At the surface of such a star the gravitational acceleration

is g ≈ 2.6× 1012ms−2. From this we can compute that the average height that an α

particle with a thermal energy of 0.1keV will be able to jump is of the order of 1mm

and so is obviously much smaller than the radius of the star. Hence any atmosphere

that could occur would be extremely thin and as such we do not include it in our

model.

We note that using a Skyrme crystal lattice approach to model neutron stars has
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be studied previously. Walhout used the simple cubic lattice of B = 1 Skyrmions

[100] as proposed by Klebanov [57] to construct a neutron star model and later

improved his results [101] by using the lower energy per baryon face centered cubic

lattice of B = 4 Skyrmions described by Castillejo et al. [65]. In both cases an

isotropic compression of the lattice was assumed and it was modelled as if it were

a gas. The maximum mass he obtained for the neutron star was 2.57M⊙. This

chapter considers the Skyrme crystal in a different manner. It uses it as a solid

with a zero temperature assumption and also allows anisotropic deformations of the

crystal lattice and hence will produce a different model.

Having shown that a Skyrme crystal is appropriate to use in a neutron star

model and also how its energy per Skyrmion depends on how it is anisotropically

deformed we can now proceed to begin considering how a neutron star model can

be constructed using these properties.

The question of how to model a neutron star was first addressed simultaneously

by Tolman [102] and Oppenheimer and Volkoff [73]. They considered a non rotating

spherically symmetric distribution of matter which is in static equilibrium, meaning

that the matter forces are exactly counterbalanced by the self gravitational forces

produced by the matter. While previous studies into stars in static equilibrium

had just considered the case of Newtonian gravity, these studies included the effects

of general relativity. This is very important when modelling neutron stars which

have a very large amount of matter contained within a small radius. Their model,

however, was only applicable to cases where the neutron star matter is isotropically

deformed. Later their work was extended to include cases where the matter can

be anisotropically deformed [103]. We will describe this extension here and point

out where it differs from the original work by Tolman [102] and Oppenheimer and

Volkoff [73].

In the last chapter we coupled the Skyrme model to general relativity by including

a Einstein-Hilbert term in the action (4.1). We then found an appropriate Gibbons-

Hawking action term, SGH , so that when the total action was varied with respect to

the metric, and this variation is set to zero, Einstein’s equations were recovered [87].

We then minimised the resulting energy expression using some of the Euler-Lagrange

October 11, 2012



5.3. The TOV Equation for Neutron Stars 76

equations to find the minimal energy solutions. The work by Tolman, Oppenheimer

and Volkoff and its extension which we shall use in this chapter takes a slightly

different approach.

We again consider that our neutron star configuration has to be a solution of

Einstein’s equations,

Gab = Rab −
1

2
Rgab = 8πTab, (5.12)

where we have set G = c = 1. Here, however, we take these equations as the starting

point for our model rather than the action used in the previous chapter. Both

approaches are equivalent because the variation of the action, with the appropriate

boundary terms, with respect to the metric results in Einstein’s equations when we

note that

Tab = −2
1√−g

δSM

δgab
, (5.13)

where SM is the matter term in the action.

To begin solving these Einstein’s equations we need to specify both the metric,

gab, and the stress tensor, Tab. We reasonably expect that neutron stars should

be spherically symmetric and in this model we will also impose that the star is

non rotating, in other words, its metric is static. The most general metric for a

static spherically symmetric distribution of matter can be written in Schwarzschild

coordinates as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdφ2, (5.14)

where eν(r) and eλ(r) are functions of the radial coordinate that need to be determined

for our solutions.

To calculate the stress tensor we do not use the definition (5.13) described above

with SM = LSk, the Skyrme Lagrangian (4.2), as might be expected. We instead

assume that the field changes very little over small distances and so we only want

to consider the bulk properties of the matter, rather than the fine details of the

individual Skyrmions. To do this we again consider a spherically symmetric static

distribution of matter. Spherical symmetry demands that the stress tensor, T a
b , is

diagonal and that all the components are a function of the radial coordinate, r, only.
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We denote this stress tensor as

T a
b = diag(ρ(r),−pr(r),−pθ(r),−pφ(r)), (5.15)

and consider that, again due to spherical symmetry, pθ(r) = pφ(r) which we will

denote by pt(r) = pθ(r) = pφ(r). The bulk properties of the matter are hence

described by this stress tensor. The quantities pr(r) and pt(r) describe the stresses

in the radial and tangential directions of the star respectively while the quantity

ρ(r) is the mass density. In this work we are going to be considering matter that

can be deformed anisotropically and so we do not set pr(r) = pt(r) as would be the

case for isotropically deformed matter. This is where the extension [103] of the work

by Tolman [102] and Oppenheimer and Volkoff [73] differs from the original work,

as in that case pr(r) = pt(r) as only isotropically deformed matter is considered.

We now want to use the combination of the metric (5.14) and the stress tensor

(5.15) to find solutions to Einstein’s equations (5.12). We must first calculate the

Ricci tensor and Ricci scalar from the metric using the definitions (4.4) and (4.5).

When we do this we find

Rtt = −eν−λ

[

1

2
ν ′′ +

(

1

2
ν ′
)2

− 1

4
ν ′λ′ +

1

r
ν ′

]

, (5.16)

Rrr =
1

2
ν ′′ +

(

1

2
ν ′
)2

− 1

4
ν ′λ′ − 1

r
λ′, (5.17)

Rθθ = −e−λ
[r

2
(λ′ − ν ′)− 1

]

− 1, (5.18)

Rφφ = sin2 θRθθ, (5.19)

and

R = 2e−λ

[

1

2
ν ′′ +

(

1

2
ν ′
)2

− 1

4
ν ′λ′ − 1

r
(ν ′ − λ′) +

1

r2
(1− eλ)

]

. (5.20)

Substituting these expressions into Einstein’s equations (5.12) we find

e−λ

(

λ′

r
− 1

r2

)

+
1

r2
= 8πρ ; (5.21)

e−λ

(

ν ′

r
+

1

r2

)

− 1

r2
= 8πpr ; (5.22)

e−λ

(

1

2
ν ′′ − 1

4
λ′ν ′ +

1

4
(ν ′)

2
+

(ν ′ − λ′)

2r

)

= 8πpt . (5.23)
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We now want to rearrange these equations into a more useful form that will

highlight some of the physical properties. Equation (5.21) can be rewritten as

(re−λ)′ = 1− 8πρr2, (5.24)

and integrated to give

e−λ = 1− 2m

r
, (5.25)

where m = m(r) is defined to be the gravitational mass contained within the radius

r and can be calculated by

m =

∫ r

0

4πr2ρdr. (5.26)

We can now substitute the equation (5.25) for e−λ into another of the Einstein’s

equations (5.22) to find
1

2
ν ′ =

m+ 4πr3pr
r(r − 2m)

. (5.27)

The generalised Tolman-Oppenheimer-Volkoff equation that we will use to find

suitable neutron star configurations can now be obtained by differentiating equation

(5.22) with respect to r and substituting it into equation (5.23) to find

dpr
dr

= −(ρ+ pr)
ν ′

2
+

2

r
(pt − pr) . (5.28)

Now, substituting equation (5.27) into (5.28), we get

dpr
dr

= −(ρ+ pr)
m+ 4πr3pr
r(r − 2m)

+
2

r
(pt − pr) , (5.29)

which is the generalised TOV equation.

Alternatively equation (5.28) can be found by using the conservation of energy

momentum

∇aT
ab = 0. (5.30)

Letting b = r we find

T a
r;a = T a

r,a − Γc
raT

a
c + Γc

acT
a
r = 0, (5.31)

which results in the same generalised TOV equation (5.29).

The standard TOV equation found by Tolman [102] and Oppenheimer and

Volkoff [73] is used for the case where the neutron matter is isotropically deformed
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and hence here pr = pt = p and so the last term in the generalised TOV equation

(5.29) does not appear. The standard TOV equation is thus

dp

dr
= −(ρ+ p)

m+ 4πr3p

r(r− 2m)
, (5.32)

which, if we add back in the values G and c can also be written as

dp

dr
= −Gmρ

r2

[

(

1 +
p

c2ρ

)(

1 +
4πr3p

c2m

)(

1− 2Gm

c2r

)−1
]

. (5.33)

In this form it is clear to see that the TOV equation is the expected equation in

Newtonian gravity, the equation of hydrostatic equilibrium,

dp

dr
= −Gmρ

r2
, (5.34)

with special and general relativistic corrections. All these corrections are greater

than one implying that relativistic gravity is stronger than the equivalent Newtonian

gravity at any r.

We note that due to the very small scales of the Skyrme crystal lattice in com-

parison with the size and curvature of the star we can simply take the x and y

directions of the crystal described by Castillejo et al. to be the tangential directions

within the star. Similarly the z direction will be taken as the radial direction. Hence

in our numerical work we will use the Skyrmion length in the radial direction of the

star, λr, and the Skyrmion length in the tangential direction, λt, as our parameters

and note that the parameters used in the energy dependence equation (5.6), the

size, L, and the aspect ratio, p, can be found from them using

L = (λrλtλt)
1

3 , and p =

(

λt
λr

)
1

3

−
(

λr
λt

)
1

3

. (5.35)

We also need to specify appropriate boundary conditions. First, we must require

that the solution is regular at the origin and impose that m(r) → 0 as r → 0. Then

pr must be finite at the centre of the star implying that ν ′ → 0 as r → 0. Moreover,

the gradient dpr/dr must be finite at the origin too and so (pt − pr) must vanish at

least as rapidly as r when r → 0. This implies that we need to impose the boundary

condition pt = pr at the centre of the star.

The radius of the star, R, is determined by the condition pr(R) = 0 as the radial

stress for the Skyrmions on the surface of the star will be negligibly small. The
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equations, however, do not impose that pt(R) vanishes at the surface. One should

also point out that physically relevant solutions will all have pr, pt ≥ 0 for r ≤ R. We

note that an exterior vacuum Schwarzschild metric can always be matched to our

metric for the interior of the star across the boundary r = R as long as pr(R) = 0,

even though pt and ρ may be discontinuous there, implying that the star can have

a sharp edge, as expected from a solid rather than gaseous star.

Note that the set of equations (5.21)-(5.23) from which the generalised Tolman-

Oppenheimer-Volkoff equation is found is a system of three equations with five un-

knowns. Hence for them to be solvable two further expressions need to be specified,

these are the equations of state, pr = pr(ρ) and pt = pt(ρ). As argued at the start of

this section we are able to use a zero temperature assumption for the equations of

state so there is no temperature dependence. The relevant equations of state that

will be used in finding suitable neutron star configurations can be calculated from

equation (5.6) which depends on the lattice scale L, and aspect ratio, p, which are

both functions of the radial distance from the centre of the star, r.

From the theory of elasticity we then find that the radial and the tangential

stresses are related to the energy per Skyrmion, equation (5.6), as follows

pr = − 1

λ2t

∂E

∂λr
, and pt = − 1

λr

∂E

∂λ2t
. (5.36)

Using the generalised TOV equation (5.29) and the two equations of state (5.36),

a minimum energy configuration for various values of the total baryon number can

be calculated numerically. The minimum energy configuration is defined as the

minimum value of the gravitational mass, MG,

MG = m(R) = m(∞) =

∫ R

0

4πr2ρdr, (5.37)

where R is the total radius of the star and

ρ =
E

λrλ2t c
2
. (5.38)

Here, we also note that the proper volume of a spherical layer of the star for the

metric (5.14) is given by

dV = 4πe
λ

2 r2dr = 4π

(

1− 2m

r

)−
1

2

r2dr (5.39)
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where we have used equation (5.25). Using this we can calculate the total number

of baryons within the star, B, using

B =

∫ R

0

4πr2n(r)

(1− 2Gm
c2r

)
1

2

dr, (5.40)

where the n(r) is the baryon number density calculated by

n(r) =
1

λr(r)λt(r)2
. (5.41)

We can also calculate the proper mass of the star, that is the mass of each baryon

multiplied by the total number of baryons. In other words the proper mass is the

mass of the constituent elements of the star if they were all dispersed to infinity.

The proper mass is given by

MP =

∫ R

0

4πr2ρ(r)

(1− 2Gm
c2r

)
1

2

dr. (5.42)

The difference between the proper mass and the gravitational mass gives the

binding energy of the star, EB

EB = (MP −MG)c
2, (5.43)

and this will always be greater than zero.

To calculate the minimum energy configurations we need to minimise MG as a

function of λr and λt which both depend on the radial coordinate r. To achieve

this, we first assume a profile for λt(r) and compute MG for this profile as described

below. We will then determine the configuration of the neutron star, with a specific

baryon charge as calculated by equation (5.42), by minimising MG over the field λt.

This can be done using the simulated annealing algorithm as described in appendix

A.2 where the λt field is the one that will be altered at every step in the process.

In more detail, to compute MG we notice that at the origin, one can use (5.36)

to determine pr(0) and pt(0) from the initial values of λr(0) and λt(0). Then the

integration steps can be performed as follows. Knowing λr(r) and λt(r) one com-

putes ρ(r) using (5.38) and m(r) using (5.26). Then, knowing pr(r), pt(r), ρ(r)

and m(r) one can integrate (5.29) by one step to determine pr(r + dr) using the

numerical integration process described in appendix A.1. One can then use (5.36)
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to determine λr(r + dr) and as the profile for λt(r) is fixed, one can proceed with

the next integration step.

One then integrates (5.29) up to the radius R for which pr(R) = 0; this sets the

radius of the star. In our integration, we used a radial step of 50m.

One must then evaluate the total baryon charge of the star using equation (5.42)

and rescale λt to restore the baryon number to the desired value. One then repeats

the integration procedure until the baryon charge reaches the correct value without

needing any rescaling.

MG is calculated in this way after every change induced by the stimulated an-

nealing process and the change is accepted according to the process as detailed in

appendix A.2. In this way MG is minimised.

We now present the results of this energy minimisation procedure in the next

section.

5.4 Results

5.4.1 Stars Made of Isotropically Deformed Skyrme Crystal

By using the energy minimisation procedure described in the last section we found

that up to a baryon number of 2.61 × 1057, equivalent to 1.49M⊙, the minimum

energy configurations are all composed of Skyrme crystals that are isotropically

deformed, with λt(r) = λr(r) across the whole radius of the star.

To confirm the results obtained for stars composed of isotropically deformed

crystals, we will now determine the properties of these symmetric stars by imposing

that symmetry, i.e. pt = pr. In this case the problem simplifies greatly and the

generalised TOV equation (5.29) reduces to the standard TOV equation (5.32). To

use this standard TOV equation, a central Skyrmion length λt(r = 0) = λr(r =

0) = L(r = 0) must be specified at the centre of the star. The equation can then

be numerically integrated over the radius of the star using the Skyrmion energy

equation (5.6) with

pr = − ∂E

∂λ3r
, (5.44)
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Figure 5.1: Total baryon number as a function of the size of the Skyrmions at the

centre of the star, L(r = 0).

where, as we are only considering isotropic Skyrme crystal deformations, λt = λr

and p = 0 in the energy equation. This was done using a fourth order Runge

Kutta method, as described in appendix A.1, over points every 20m. Notice that

this did not require the explicit minimisation of MG as in the case that allows for

anisotropic deformations of the Skyrme crystal. Figure 5.1 shows a plot of the total

baryon number of the star against its Skyrmion length at the centre, L(r = 0),

calculated using this method.

We found that isotropically deformed Skyrme crystal solutions can be found

only up to a baryon number of 2.61×1057, which is equivalent to a mass of 1.49M⊙.

This agrees with the results that we found from our energy minimisation procedure

using the generalised TOV equation (5.29) that allows for anisotropic Skyrme crystal

deformations. We also note that as the central Skyrmion length is decreased further

than shown in figure 5.1 towards zero, although the proper density becomes infinite

it still remains integrable and it can be shown that the configuration with an infinite

central density has a finite radius and mass [104].

Table 5.1 shows some of the properties of the minimum energy solutions for

various baryon numbers obtained from the energy minimisation of the generalised

TOV equation. The results are in perfect agreement with the results obtained by

solving the isotropic TOV equation (5.32) as described above. The quantity Smin is
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B Total Energy (J) Energy/B (J) Mass/M⊙ R(m) Smin

1.0× 1055 1.16210× 1045 1.16210× 10−10 0.00649160 2219.20 0.991503

1.0× 1056 1.15114× 1046 1.15114× 10−10 0.0643083 4714.35 0.959976

2.0× 1056 2.28551× 1046 1.14276× 10−10 0.127680 5875.04 0.936375

4.0× 1056 4.51669× 1046 1.12917× 10−10 0.252325 7266.13 0.897929

6.0× 1056 6.70497× 1046 1.11750× 10−10 0.374573 8177.42 0.865580

8.0× 1056 8.85463× 1046 1.10683× 10−10 0.494664 8852.67 0.835232

1.0× 1057 1.09679× 1047 1.09679× 10−10 0.612721 9379.47 0.808115

1.2× 1057 1.30461× 1047 1.08718× 10−10 0.728823 9798.86 0.781969

1.4× 1057 1.50899× 1047 1.07785× 10−10 0.842997 10133.2 0.755523

1.6× 1057 1.70994× 1047 1.06871× 10−10 0.955258 10394.6 0.730148

1.8× 1057 1.90741× 1047 1.05967× 10−10 1.065578 10588.7 0.704181

2.0× 1057 2.10132× 1047 1.05066× 10−10 1.173903 10714.6 0.677181

2.2× 1057 2.29147× 1047 1.04158× 10−10 1.280129 10761.8 0.649383

2.4× 1057 2.47750× 1047 1.032293× 10−10 1.38406 10694.5 0.619124

2.6× 1057 2.65860× 1047 1.022536× 10−10 1.48522 10367.5 0.577658

Table 5.1: Properties of the isotropic minimum energy neutron star configurations

for various baryon numbers.
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the minimum value, over the radius of the star, of

S(r) = e−λ(r) = 1− 2m(r)

r
, (5.45)

a function which appears in the static, spherically symmetric metric (4.3) that we

are considering. The zeros of S(r) correspond to singularities in the metric, or in

other words, to horizons. Had Smin been negative, we would have concluded that

the neutron star would have collapsed into a black hole, but this never occurs within

our results.

We note that the solutions are energetically favourable as the energy per baryon

decreases when the total baryon number increases, indicating that the solutions are

stable. They can not therefore be ruled out as models of neutrons stars in the way

that stars composed of Skyrmions using the hedgehog ansatz were. They correspond

to the solutions to the right of the maximum in figure 5.1 with solutions to the left

being unstable with a higher energy per baryon for a given baryon number, and

therefore not found by the energy minimisation procedure.

The neutron star solutions which have masses larger than the mass of the Sun

have radii of about 10km, which very much matches the experimental estimates of

the radii of observed neutrons stars. Notice also that the largest neutron star in our

model has a mass of approximately 1.28M⊙, and above that value, the radius of the

stars decreases while their mass increases (see table 5.1 and figure 5.2).

We now consider the structures of these isotropic Skyrme crystal stars, in par-

ticular we consider the case of a star with a mass of 1.40M⊙, a typical mass for a

realistic neutron star, equivalent to a baryon number of 2.44 × 1057, although all

the isotropic Skyrme crystal minimum energy solutions show the same qualitative

behaviour. Figure 5.3 shows the size of the Skyrmions, L(r), over the radius of the

star. As expected the Skyrmions are deformed more towards the centre of the star

than at the edge, increasing the Skyrmion mass density by a factor of 4.44. Due

to this decrease in the size of the Skyrmions as we reach the centre of the star the

stress is higher at the centre and decreases towards zero at the edge of the star as

imposed by the boundary conditions.

The isotropic Skyrme crystal solutions have a Smin that is always greater than

zero so the configurations do not collapse into black holes. Figure 5.3 also shows
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Figure 5.2: Radius of the neutron star solutions as a function of their mass (solid

line), and that of the maximum mass solution (cross).
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Figure 5.3: Variation of the size of the isotropic Skyrmions, L(r), (solid line) and

of the metric function S(r) (dotted line) over the radius of a star of mass 1.40M⊙.

how the value of S(r) varies over the radius of the star.

5.4.2 Stars Made of Anisotropically Deformed Skyrme Crys-

tal

Having shown in the previous section that no isotropic Skyrme crystal solutions

exist for baryon numbers larger than 2.61× 1057, we will now show that anisotropic

solutions do exist within that region.
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Table 5.2 shows some of the properties of the anisotropic minimum energy

Skyrme crystal solutions for various baryon numbers obtained using the generalised

TOV equation. We found solutions in this way up to a baryon number of 3.25×1057,

corresponding to 1.81M⊙, after which the numerical energy minimisation procedure

became difficult to implement. This was due to the baryon number rescaling break-

ing down because the region for which the baryon number is a linear function of

the total energy decreased to the point at which calculations took an unreasonable

amount of time.

However by using a similar simulated annealing process to maximise the baryon

number, rather than minimise the energy for a particular baryon number, we found

anisotropic Skyrme crystal solutions up to a baryon number of 3.41×1057, equivalent

to 1.90M⊙. At this maximum baryon number solution there is only one possible

configuration of the Skyrmions, as any modification to it results in a decrease in

the baryon number, hence it is the minimum energy solution. Above this baryon

number, solutions do not exist.

As in the case of isotropic Skyrme crystal deformations we find that the solutions

are energetically favourable as the energy per baryon decreases as the total baryon

number increases, indicating stable solutions. As the baryon number is increased

towards its maximum value of 3.41× 1057 the energy per baryon begins to level off

and we find that the maximum baryon number has the lowest energy per baryon,

as in the isotropic case.

We can see that the configurations we have constructed do not collapse into a

black hole by noticing that the values of Smin are always positive, as shown in figure

5.4.

Figure 5.2 shows a plot of the mass radius curve for both the isotropically and

anisotropically deformed Skyrme crystal cases, with the mass in units of M⊙. As

stated above, large isotropic crystal neutron stars have a radius that decreases as

the mass increases. We can clearly see in figure 5.2, that at the critical mass of

1.49M⊙, the radius keeps decreasing as the mass of the star increases. Moreover, we

also observe a sharp drop of radius just over 1.5M⊙ followed by a plateau at about

9.5km.

October 11, 2012



5.4. Results 88

B Total Energy (J) Energy/B (J) Mass/M⊙ R(m) Smin

2.65× 1057 2.70277× 1047 1.01991× 10−10 1.50990 10091.8 0.559060

2.70× 1057 2.74605× 1047 1.01706× 10−10 1.53408 9555.51 0.526465

2.75× 1057 2.78943× 1047 1.01434× 10−10 1.55832 9460.46 0.514207

2.80× 1057 2.83310× 1047 1.01182× 10−10 1.58271 9456.89 0.506402

2.85× 1057 2.87706× 1047 1.00949× 10−10 1.60727 9456.46 0.498735

2.90× 1057 2.92133× 1047 1.00735× 10−10 1.63200 9457.92 0.491152

2.95× 1057 2.96592× 1047 1.00540× 10−10 1.65691 9460.65 0.483633

3.00× 1057 3.01087× 1047 1.00362× 10−10 1.68202 9465.06 0.476231

3.05× 1057 3.05619× 1047 1.00203× 10−10 1.70734 9469.97 0.468880

3.10× 1057 3.10191× 1047 1.00062× 10−10 1.73288 9475.76 0.461631

3.15× 1057 3.14807× 1047 9.99388× 10−11 1.75867 9481.95 0.454438

3.20× 1057 3.19472× 1047 9.98351× 10−11 1.78473 9489.04 0.447382

3.25× 1057 3.24191× 1047 9.97510× 10−11 1.81109 9496.62 0.440435

Table 5.2: Properties of the anisotropic minimum energy neutron star configurations

for various baryon numbers.
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Figure 5.4: Smin of the neutron star solutions as a function of their mass. The

maximum mass solution is shown as a cross.

By considering anisotropic as well as isotropic Skyrme crystal solutions we have

extended the mass range over which solutions can be found, finding masses up to

28% above the maximum mass of the isotropic case. This is an interesting finding

because isotropy of matter is often taken as an assumption when studying neutron

star models, including the Skyrme crystal case considered in [100], [101], [105] and a

maximum mass is then derived. We have shown that by not assuming isotropy and

instead allowing anisotropic matter configurations the maximum mass can be in-

creased by a significant amount. In this simple Skyrme crystal model the maximum

mass found is equivalent to 1.90M⊙ and the recent discovery of a 1.97 ± 0.04M⊙

neutron star [70], the highest neutron star mass ever determined, makes this an en-

couraging finding, especially when we consider that including the effects of rotation

into our model will increase the maximum mass found, by approximately 2% for a

star with a typical 3.15ms spin period [106].

Figure 5.5 shows a selection of plots of the Skyrmion lengths λr and λt and the

Skyrmion size L, equation (5.35), over the radius of the star for four special stars: the

largest star, with radius R = 10.8km and massM = 1.28M⊙ (figure 5.5a); the heav-

iest isotropically deformed starM = 1.49M⊙ (figure 5.5b); the densest neutron star,

M = 1.54M⊙ (figure 5.5c) and the heaviest neutron star,M = 1.90M⊙ (figure 5.5d).

The first two are made out of an isotropically deformed crystal, while the last two are
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Figure 5.5: Skyrmion lengths λr(r) (solid line), λt(r) (dashed line) and L(r) (dotted

line) for a) Largest neutron star (R = 10.8km): M = 1.28M⊙ b) Heaviest isotropic

neutron star: M = 1.49M⊙ (all lengths coincide as they are made of isotropically

deformed crystal); c) Densest neutron star: M = 1.54M⊙; d) Heaviest neutron star:

M = 1.90M⊙.
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Figure 5.6: Mass density ρ(r) for: a) Largest neutron star (R = 10.8km): M =

1.28M⊙ (solid line) b) Heaviest isotropic neutron star: M = 1.49M⊙ (dashed line);

c) Densest neutron star: M = 1.54M⊙ (dotted line); d) Heaviest neutron star:

M = 1.90M⊙ (dash dotted line).

anisotropically deformed and one notices that the amount of anisotropy increases

as the mass increases (the divergence between λr and λt increases). Throughout

this section, we will use these four special stars as examples to illustrate various

properties of the neutron stars.

As the maximum mass is approached the gradient of the profile of tangential

Skyrmion lengths over the radius of the star becomes smaller and we note that

physically meaningful stars composed of anisotropically deformed crystal should

have dλt/dr ≥ 0 [107]. This confirms that the minimum energy solution for the

maximum mass found, 1.90M⊙, for anisotropically deformed Skyrme crystal solu-

tions is the configuration with a constant tangential Skyrmion length as illustrated

in figure 5.5d.

The generalised TOV equation imposes that the sizes of the Skyrmions are

equal in all directions at the centre of the star, but away from the centre, for all

the anisotropic Skyrme crystal solutions, we find that the amount of Skyrmion

anisotropy increases as we move towards the edge of the star, reaching the maxi-

mum at the edge. The Skyrmions are deformed to a greater extent in the tangential

direction in agreement with the value of the aspect ratio, p, being negative over the

values where λr 6= λt.
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As expected, the profiles for λr and λt show that the mass density at the centre

of the star is higher than at the edge, decreasing monotonically as the radial distance

increases. This is shown by figure 5.6 for the largest, heaviest isotropic, densest and

maximum mass solutions.

In figure 5.7 one can see how the lengths of the Skyrme crystal λr and λt vary

with the mass of the star both at the centre (r = 0) and the edge of the star (r = R).

For isotropically deformed stars, λr(R) = λt(R) is constant and corresponds to the

minimum energy Skyrme crystal in the absence of gravity. Not surprisingly, λr(0) =

λt(0) decreases steadily as the mass of the star increases, showing that the density at

the centre of the star increases. Once the phase transition has taken place and the

star is too heavy to remain isotropically deformed, we observe that λr(0) = λt(0)

drops sharply to a local minimum, reached for M ≈ 1.54M⊙. Meanwhile, λr(R)

and λt(R) remain nearly identical. Beyond the minimum of λr,t(0), λr(R) and λt(R)

start to diverge sharply; λr(R) decreases slightly in value while λt(R) decreases

rapidly. These stars are thus much more compressed in the tangential direction

than in the radial one. As also seen on figure 5.5d, λt(R) = λt(0) for the maximum

mass neutron star.
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Figure 5.7: Skyrmion lengths at the edge of the star, λr(R) (solid line) and λt(R)

(dashed line), and at the centre of the star, λr(0) = λt(0) (dotted line), as a function

of the star mass.

Another property of a neutron star worth considering is the speed of sound.
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Figure 5.8: Radial speed of sound, vr(r) for a) Largest neutron star (R = 10.8km):

M = 1.28M⊙ (solid line) b) Heaviest isotropic neutron star: M = 1.49M⊙ (dashed

line); c) Densest neutron star: M = 1.54M⊙ (dotted line); d) Heaviest neutron star:

M = 1.90M⊙ (dash dotted line).

To compute it one needs to know how the energy of the crystal varies when it is

deformed in the direction of wave propagation. Using (5.6) we can thus compute

the speed of sound in the z direction. To compute the speed of sound in the x and

y directions when the crystal is deformed we need to know how the energy of the

crystal varies when the crystal is deformed in all three directions independently, an

expression we do not have.

Because of this we are only able to compute the radial speed of sound inside a

neutron star and it is given, in the nonrelativistic, bulk approximation where there

are no shear stresses, by

vr =

(

dpr
dλr

(

dρ

dλr

)−1
)1/2

(5.46)

where both pr and ρ are functions of λr and λt given respectively by (5.36) and

(5.38). Obviously, when the crystal inside the star is isotropically deformed, the

speed of sound is the same in all 3 directions.

First of all it is interesting to notice that the speed of sound in the minimum

energy Skyrme crystal, in the absence of a gravitational field, is v = 0.57 c. This is

the speed of sound at the surface of a neutron star when it is deformed isotropically.

From figure 5.8 one sees that vr increases as one moves towards the centre of the
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Figure 5.9: The function S(r) for: a) Largest neutron star (R = 10.8km): M =

1.28M⊙ (solid line) b) Heaviest isotropic neutron star: M = 1.49M⊙ (dashed line);

c) Densest neutron star: M = 1.54M⊙ (dotted line); d) Heaviest neutron star:

M = 1.90M⊙ (dash dotted line).

star. As vr is directly related to the density of the star, it is not surprising to find

that the maximum radial speed, vr = 0.78c, is reached at the centre of the densest

neutron star, i.e. the one with M = 1.54M⊙. As expected, vr < c everywhere.

Figure 5.9 shows how the value of S(r) varies over the radius of the star for, again,

the largest, heaviest isotropic, densest and maximum mass solutions, showing how

the metric is altered as r varies. The minimum value of S(r) is always located at the

edge of the star, i.e. Smin = S(R), and it is presented in figure 5.4 as a function of

the star masses. One sees that Smin decreases monotonically as the mass increases,

and exhibits a sharp decrease just over 1.5M⊙, i.e. just above the critical mass

of the phase transition. However Smin always remains positive, indicating that no

black hole is formed.

Figure 5.10 shows how the total baryon number and the mass of all the solu-

tions found are related. As the baryon number increases the effects of gravitational

attraction increase, resulting in a slightly lower gravitational mass per baryon than

expected from a linear relation.

We note that the minimum value of the aspect ratio, p, for the minimum energy

configurations found is −0.283 and the minimum value of L is 8.11× 10−16, both of

which are within the valid range of values for equation (5.6) [65].
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Figure 5.10: Mass of the neutron star solutions as a function of their baryon number.

The maximum mass solution is shown as a cross.

5.4.3 Inclusion of the Pion Mass

Throughout the work described we have assumed a zero pion mass. The inclusion

of a non-zero pion mass can be considered by including the pion mass term, (1.2),

in the static Skyrme Lagrangian (1.1).

Using the cubic lattice of α-like Skyrmions that has been considered above one

finds that Tr(U − I2) = −2, meaning that the energy Eπ arising from the pion mass

term reduces to

Eπ =
1

4
m2

πF
2
πL

3, (5.47)

an energy term proportional to the volume of the Skyrmions.

It can be seen in figure 5.11 that including a pion mass of m = 138MeV in the

case of stars found using the isotropic TOV equation (5.32) decreases the maximum

mass of the star by a very small amount from 1.49M⊙ to 1.47M⊙ while also slightly

decreasing the central density at which this occurs.

Including a pion mass of m = 138MeV in the simulated annealing process used

to find the maximum baryon number for the anisotropic Skyrme crystal solutions

results in a maximum baryon number of 3.34×1057, equivalent to 1.88M⊙, a decrease

of 0.02M⊙ from the maximum mass found in the case without a pion mass.

This gives an indication as to how the pion mass affects the structures of the

neutron star configurations that can be constructed, and a similar reduction in the
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Figure 5.11: Mass of the star as a function of the size of the Skyrmions at the centre,

L0, for zero pion mass (solid line) and m = 138MeV (dashed line), found using the

isotropic TOV equation (5.32).

maximum mass is expected for all the anisotropic crystal solutions, however when

the pion mass is included it also has the effect of driving the Skyrme crystal lattice

away from the half-Skyrmion symmetry [65]. This will be a small effect for the

dense Skyrme crystals that we are considering because while the pion mass term is

the dominant term in the Lagrangian far away from the centres of the Skyrmions

when they are well separated, in the dense Skyrme crystal there is no space away

from the centres of the Skyrmions so it becomes less important in affecting the field

distributions. Its effect will be to reduce the pion mass term, Eq. (5.47), by a small

amount.

5.4.4 Stars above the Maximum Mass

As in other studies of neutron stars based on the Skyrme model, we found a critical

mass above which solutions do not exist. In other words, when the star is too

massive, the crystal of which it is made is not capable of counterbalancing the

gravitation pull and the star then collapses into a black hole. This is indeed what

we observed when trying to construct solutions above the critical mass: the energy

of the configuration kept decreasing as the radius of the star decreased and the Smin

function became negative, indicating the formation of an horizon, and hence a black
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hole.

Throughout this work we have assumed a spherically symmetric metric and stress

tensor, however, these assumptions could be removed and it may be that higher mass

solutions could be found. We could instead consider an axially symmetric metric,

the most general form [108] being

ds2 = α2(dr2 + dz2) + β2dφ2 − γ2dt2, (5.48)

when written in cylindrical coordinates. The stress tensor,

T a
b = diag(ρ,−p1,−p2,−p3), (5.49)

could then be completely anisotropic with p1 6= p2 6= p3. Minimum energy solutions

to Einstein’s equations for such a metric and stress tensor could be found by direct

minimisation of the action of the Skyrme model coupled to gravity or by using an,

as yet undetermined, axisymmetric form of the TOV equation.

Another approach to investigate such solutions would be to perturb the spher-

ically symmetric solutions that we have found. Following the procedure for doing

so described in [108] the exterior metric for an axially symmetric solution can be

written in Schwarzschild coordinates and, after comparing the exterior spherically

symmetric Schwarzschild solution to our solutions for the interior metric of the star

and finding the substitutions necessary to move from one to the other, we can make

to same substitutions to the axially symmetric exterior metric. This allows us to

then describe approximately both the metric and the stress energy tensor of the

axially symmetric solution. To carry out such investigations into axially symmetric

static configurations an equation analogous to (5.6) which would relate the energy of

the Skyrme crystal to its size and deformation in all three directions independently

would need to be considered.

We have also assumed that the stress tensor, T a
b = diag(ρ,−pr,−pθ,−pφ), is

diagonal, however, if shear strains are included in our model off diagonal components

would have to be introduced. This would also remove the assumption of spherical

symmetry altering the configurations found.

Spherical symmetry also needs to be removed to consider rotating stars. This

will result in configurations above the maximum mass found in this work, by ap-
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proximately 2% for a star with a typical 3.15ms spin period [106], and as neutron

stars are known to be rotating, this is an important effect to consider.

5.4.5 Stability and Oscillations

Having found the minimum energy solutions to a Skyrme crystal neutron star model

we now briefly consider their stability and oscillations. Radial perturbations and the

stability of neutron stars against them were first studied by Chandrasekhar [109] in

the purely isotropic case. In this work the time dependent Einstein’s equations are

linearised around the equilibrium solution resulting in a linear wave equation for

the radial perturbations. This, together with the appropriate boundary conditions

comprises an eigenvalue problem of the Sturm-Liouville type. Positive eigenvalues

are interpreted as the squares of the frequencies of the normal modes of radial

pulsations, while negative eigenvalues imply exponentially growing perturbations

indicating an instability of the star. Because the eigenvalues are ordered as ω2
0 <

ω2
1 < ω2

2 < ... a star is stable against small radial perturbations if and only if its

fundamental squared frequency, ω2
0, is positive.

This analysis has been extended to the anisotropic cases in [110], [111], [112], [113]

to stars with a predetermined amount of anisotropy encoded in the equations of

state and stable solutions were found. As the Skyrme crystal model described in

this chapter does not have such simple equations of state a full analysis of the normal

modes of radial pulsations will be much more difficult so will be left to future work

and not be explored here.

Even without the full radial analysis the stability of our solutions against any

radial perturbations can be considered. In fact, this is simple as the numerical

method that we have used has picked out the minimum energy configuration for a

given baryon number by definition. Radial perturbations do not produce gravita-

tional radiation because at a distance there is no difference between the gravitational

field of two spherically symmetric objects of the same mass with different radii. This

means that the total energy of the perturbed configuration has to remain constant

and, because the kinetic energy will be positive, an unbounded growth of the per-

turbation requires that the potential energy is negative. The fact that our solutions
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represent a minimum of the energy of solutions for the same total baryon number

means that the potential energy will never be negative and hence the solution is

stable.

We can also consider non radial oscillations which would provide an insight into

possible gravitational wave emission from the star solutions found. Such a non radial

mode analysis would require a fully anisotropic model of the Skyrme crystal in which

the lengths in all three directions can be varied independently and the shear stresses

are taken into account. Hence we will not be able to derive it here as we do not

have a generalisation of the Skyrme crystal energy equation (5.6) for such a case.

We can, however, consider a similar study [114] in which the non radial oscillations

of a neutron star model with a simpler anisotropic equation of state is investigated.

They computed the spectrum of frequencies of the non radial oscillations of an

anisotropic neutron star using an equation of state where the amount of anisotropy

was put in by hand and controlled by a parameter they called λ. Stars composed of

isotropically deformed matter have λ = 0 while those with tangential stresses larger

that radial ones, as in our case, had λ < 0.

While in our Skyrme crystal model the amount of anisotropy is found by an

energy minimisation procedure rather than being put in by hand, we find that we

can compute an equivalent λ using their definition

λ =
r(pr − pt)

2mpr
, (5.50)

from our solutions found. We find that although our λ is a function of the radial

coordinate it does stay fairly constant for the majority of the star, namely in the

region not close to the origin or edge of the star. We see that λ = 0 for all the

isotropic solutions and then its average value decreases as the mass, and therefore

the amount of anisotropy, in the star increases. For the maximum mass star we have

found λ ≈ −2.

It was found that for λ < 0 increasing the amount of anisotropy increased the

frequencies of the oscillations of the modes studied, for example by a few percent

for λ = −2. They concluded that while for small masses and small amounts of

anisotropy the non radial oscillation spectrum can be mimicked by altering the

equation of state, large masses with large amounts of anisotropy will produce oscil-
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lation frequencies that can only be accounted for by the anisotropy rather than a

change in the equation of state. Hence we expect that for the larger mass solutions

that we have found the oscillation frequencies will be such that they clearly indicate

that the star is composed of anisotropically deformed matter.

Throughout this model we have used a zero temperature assumption but we can

also note the effect that a non zero temperature could have on the solutions found.

As we are considering stars composed of a solid, thermal excitations will correspond

to the excitation of phonon modes. We expect that this will lead to an increase in

energy of the Skyrmions. When including a pion mass we saw that the an increase

in energy of the Skyrmions reduced the value of the maximum mass of the solutions

that can be found by a small amount. As such, we expect thermal excitations to

have a similar effect. This means that stars that are not close to the maximum mass

will therefore be stable against small temperature increases.

5.5 Conclusions

This chapter considered whether a neutron star composed of Skyrme crystals would

be a good model. The motivation for doing this was that at large baryon numbers

the Skyrme crystal has a lower energy per baryon than that of solutions found using

the rational map ansatz as in the previous chapter. We began by describing previous

work on the Skyrme crystal configuration by Castillejo et al. [65] showing how the

energy of the Skyrmions that are used to construct it is dependent on both their

size and the aspect ratio of the lattice. This allowed us to consider anisotropically

deformed Skyrme crystals.

We then constructed the generalised Tolman-Oppenheimer-Volkoff equation that

allows for a balancing of the matter and gravitational forces within an isolated, non-

rotating, spherically symmetric, self-gravitating mass composed of anisotropically

deformed matter where general relativistic effects are important. Using the Skyrme

crystal as a building block and combining it with the TOV equation we were able

to produce a model of neutron stars via an energy minimisation procedure.

We found that up to a baryon number of 2.61× 1057, equivalent to 1.49M⊙ the
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minimum energy solutions are all configurations of isotropically deformed Skyrme

crystal. Above this mass, and up to a baryon number of 3.25 × 1057, 1.81M⊙,

we find minimum energy anisotropic Skyrme crystal solutions, where there is a

variation between the radial width and the tangential length of the Skyrmions at a

given radius. Above this baryon number the numerical procedure to find minimum

energy solutions becomes difficult to implement, but by using simulated annealing

to find the maximum baryon number for the anisotropic solutions we find it to be

3.41× 1057, equivalent to a mass of 1.90M⊙, matching the recent observation of the

most massive neutron star observed so far [70].

The amount of Skyrmion anisotropy increases as the baryon number of the solu-

tions is increased, and also increases, for a given baryon number, over the radius of

the star as the edge of the star is reached. The Skyrmions were found to be smaller

in the tangential direction and as the maximum baryon number is reached the tan-

gential Skyrmion length becomes constant across the radius of the star. Moreover

the radius of the stars found matches the estimated radii of real neutron stars at

approximately 10km.

Including a pion mass term in the isotropic Skyrme crystal model results in a

small reduction of the maximum mass of the configurations found and a similar result

is found for the maximum mass anisotropic Skyrme crystal star where the mass is

reduced from 1.90M⊙ for the zero pion mass case to 1.88M⊙ when mπ = 138MeV.

By allowing anisotropic Skyrme crystal configurations we have found a maximum

mass that is up 28% greater than the maximum mass found using only an isotropic

Skyrme crystal equation of state. This shows numerically that the assumption of

isotropy found in many neutron star models is not ideal and the maximum masses

found by such models are a large underestimate of the true maximum mass. Still

higher masses may be possible by considering axially symmetric solutions and by

including the effects of rotation to the current model.

While there is still plenty to add to this model such as the removal of the assump-

tion of spherical symmetry, including shear strains, adding rotation and studying

the radial and non radial oscillations we find that, overall, using a Skyrme crys-

tal approach has produced significantly better results that the rational map ansatz
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constructions of the previous chapter when compared to the properties of realistic

neutron stars, most notably their masses and radii.
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Chapter 6

Conclusions

6.1 Summary

In this thesis we began by understanding how the Skyrme model can be thought of

as an approximate, low energy, effective field theory for QCD, the theory of strong

interactions. We then considered the various solutions to the Skyrme model and

the methods used to find them. The background chapters then concluded with an

introduction to neutron stars. Neutron stars consist almost entirely of neutrons and

in that respect should fundamentally be able to be described by QCD. However, as

QCD is a very complicated theory, to produce any quantitative results from it is

difficult and modelling a neutron star using it is far too ambitious. The research

aim of this thesis was, considering these facts, to explore whether the Skyrme model

can produce suitable models of neutron stars. Two models were considered, the first

used Skyrmion solutions generated by the rational map ansatz while the second used

a Skyrme crystal approach.

The first model used the Einstein-Skyrme Lagrangian to couple Einstein’s theory

of gravity, general relativity, to the Skyrme model. It built on the previous work

in [86] which explored whether rational map ansatz solutions, which have the form

of large, empty, spherical shells, can be stacked together to form structures more like

the solid spheres of realistic neutron stars. It was concluded that this could be done

and went on to produce energetically favourable solutions. However, the method of

stacking the shells was only done naively. The number of baryons in each shell was
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kept constant throughout the star as were the widths of the shells, both obviously

unrealistic assumptions. The minimal energy configurations found also had large

hollow centres, another obstacle in claiming that the solutions were good models of

neutron stars.

We built on this stacked shell idea by improving the model. This was done by

allowing the baryon number per shell and the widths of the shells to vary over the

radius of the star and by removing the occurrence of the hollow centre. This resulted

in a more complicated model that needed more advanced numerical techniques to

be used to find minimal energy solutions.

The solutions found were shown to be energetically stable and have radii of the

correct order. The maximum baryon number for which solutions could be found

was 8.2 × 1056, which is below the expected baryon number of a realistic neutron

star at approximately 2× 1057. This is most likely due to an overestimation of the

energies of the solutions produced by the model, both from the rational map ansatz

overestimating the energies of the baryons and the stacking procedure resulting in

a higher energy than a fully relaxed configuration would produce.

Including a pion mass term in this improved stacked shell model reduced the

maximum baryon number for which solutions could be found but the qualitative

results remained similar to the zero pion mass case.

The variation in shell width and baryon number per shell over the radii of the

solutions found justify including these more realistic features in the model and we

note that there is no hollow centre in the improved model.

We concluded that this improvement to the previous stacked shell model provided

a much better model of neutron stars using the Skyrme model, but, due to the small

maximum baryon number that solutions could be found for, we wanted to consider

another approach. For large baryon numbers, such as those which we are considering

when modelling neutron stars, the solutions to the Skyrme model found using the

rational map ansatz do not describe the configurations of Skyrmions with the lowest

energy per baryon. These are instead described by Skyrme crystal configurations.

One of the problems with the stacked shell model is that an overestimation of the

energies of the solutions causes it to collapse into black holes at a smaller baryon
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number than we would otherwise expect so by using a Skyrme configuration that

has a lower energy per baryon we hoped to produce more realistic solutions with a

larger baryon number.

To model a neutron star using a Skyrme crystal approach we began by consid-

ering the effect of anisotropic deformations of the face centered cubic lattice crystal

on its energy per baryon. This had been studied previously in [65] and we use their

numerical results.

From the relation between the energy of the crystal and its size and aspect ratio

we obtained two equations of state. These could then be combined with the Tolman-

Oppenheimer-Volkoff equation, which ensures a balance between the matter forces

within the star and the gravitational forces that arise for a spherically symmetric

body, generalised to described matter that is anisotropically deformed. A zero tem-

perature assumption was used for the equations of state as the temperature of a

cooled down neutron star is much lower than the temperature needed to excite the

baryons.

Using this Skyrme crystal approach we observed that up to 1.49 solar masses

the crystal making up the star was only deformed isotropically so the length of the

Skyrmions in the radial direction of the star was equal to the lengths in the tangen-

tial directions at any given radial point. At this maximum mass there is a phase

transition and above it anisotropic solutions are found. Stars composed of anisotrop-

ically deformed matter were found up to 1.90 solar masses and any configurations

above this maximum mass can not support themselves against gravitational collapse

into a black hole.

The recent observation of the neutron star with the highest mass ever found

showed it to be 1.97 ± 0.04 solar masses, just above the maximum mass that we

find for our Skyrme crystal neutron star model. The radii that we find for these

configurations are also appropriate when compared to experimental estimates for

real neutron stars, being between 9.5km and 10.8km.

Overall the Skyrme crystal model of neutron stars provides a good model when

compared with experimental observations of neutron stars and it clearly identifies

the phase transition between isotropically and anisotropically deformed matter at a
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particular mass. This is the first numerical study into the effects of anisotropically

deformed matter on neutron stars using a realistic equation of state and shows that

anisotropy is an important factor to consider in a neutron star model as it can

increase the maximum mass of the model by a significant amount, for example here

it was increased by 28%.

6.2 Future Directions

While the models that we have researched and discussed are beginning to look like

appropriate models for neutrons stars, in particular the Skyrme crystal approach,

there are still improvements that can be made.

One important fact to consider is that it is known that neutron stars rotate,

often at very high rates. As discussed in section 5.4.4, including the effects of ro-

tation will have the effect of increasing the maximum mass that can be found for a

neutron star model, so rotation is very important to consider when comparing maxi-

mum masses against neutron star observations. However, considering rotation is not

straightforward and increases the complexity of any model by a significant amount,

although approximations such as Hartle’s slow rotation approximation [115], which

has been shown to be a good approximation for the majority of rotating neutron

stars [116], can ease the computation involved. A rotating Skyrme model neutron

star is therefore left to future work.

In chapter 5 we also considered if an axially symmetric, rather that spherically

symmetric, metric and stress tensor in the Skyrme crystal approach could produce

solutions with a higher maximum mass. This would require knowledge of how the

energy per baryon of the Skyrme crystal is affected when it is squeezed in all three

directions independently, as well as a, as yet undetermined, axisymmetric form of

the Tolman-Oppenheimer-Volkoff equation. Both these factors could be studied in

future work and minimal energy neutron star configurations constructed.

In the Skyrme crystal configurations we have considered we have used the Skyrme

parameters used by Castillejo et al. [65] in their paper relating the Skyrme crystal

energy to its deformations. These are not the most up-to-date parameters and the
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ones that were fitted to the B = 4 α-particle by Battye et al. [8] would be a more

appropriate set to use. Reworking the results found in Castillejo et al. based on

the more recent parameters and then proceeding to construct minimum energy star

configurations in the same way would improve the Skyrme crystal model.

The spectra of both radial and non radial oscillations of the neutron star solutions

that we have found would also be interesting, as discussed in section 5.4.5. In

particular the gravitational waves produced by non radial perturbations could be

observed in the future and would provide an important test of the model. Again the

calculations needed would require a fully anisotropic Skyrme crystal energy equation

that also accounted for shear stresses, which would be an interesting study in its

own right.

Overall, through the Skyrme crystal approach in particular, we have produced a

good model of neutron stars. With further work, especially on including the effects

of rotation, and by considering future work on the Skyrme model we hope that a

Skyrmion model of neutron stars will prove to be useful and informative.
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Appendix A

Numerical Methods

A.1 Numerical Integration

The ordinary differential equations encountered in this work are first order and they

needed to be numerically integrated over a discrete set of points. They also all had

only one boundary condition, the initial value. The general form of such a first order

ordinary differential equation is

dy(x)

dx
= f(x, y), (A.1.1)

where the function f(x, y) is known, as is the initial boundary condition which is

the initial value of f(x, y), f(xi, yi). The idea behind any numerical integration

method is to replace the dy and dx terms in the general form (A.1.1) with finite

step terms ∆y and ∆x. If this idea is implemented directly and the equation is

then multiplied by an overall factor of ∆x then this results in Euler’s method of

numerical integration,

yn+1 = yn + hf(xn, yn). (A.1.2)

Here n denotes the index of the discrete set of points over which we want to numer-

ically integrate and the x step, ∆x, is replaced by h while yn+1 − yn is equal to the

y step, ∆y. The initial boundary condition must be used as a starting point for this

method and then each point is calculated in turn. As the size of h is decreased this

becomes a better approximation to the original ODE.
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Euler’s method, however, is not often used as the error in each step is of order

h2, only one power of h smaller than the change in x and the method is found to be

unstable in many cases.

A family of more accurate and stable methods is the class of Runge-Kutta meth-

ods. In particular throughout the work described we have used a fourth order Runge

Kutta method so this will be considered here. Other order Runge Kutta methods

are also available but the fourth order one is most commonly used in a wide variety

of applications.

Euler’s method evaluates the derivative at each point only once in order to

find the next point, whereas the fourth order Runge Kutta method evaluates the

derivative four times, once at the point in question, twice at trial midpoints and

then once at a trial endpoint. From these four derivatives the final version of the

endpoint, the point we are calculating, is found. In analogy with (A.1.2) the method

can be written as

k1 = hf(xn, yn), (A.1.3)

k2 = hf(xn +
1

2
h, yn +

1

2
k1), (A.1.4)

k3 = hf(xn +
1

2
h, yn +

1

2
k2), (A.1.5)

k4 = hf(xn + h, yn + k3), (A.1.6)

yn+1 = yn +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4. (A.1.7)

Here, again, h is the size of the steps to be numerically integrated over, yn+1 − yn

is equal to the y step and the initial boundary condition must be used as a starting

point.

The fourth order Runge Kutta method has an error of order h5 so is much more

accurate that Euler’s method and is also found to be much more stable. This method

can be improved by considering a step size, h, that is adaptive and hence reacts to

how fast y is changing, but for the work in this thesis a constant step size provides

a good balance between improved accuracy and the speed of the calculation. More

information about the accuracy and applicability of Runge Kutta methods can be

found in [117].
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A.2 Simulated Annealing

During the work discussed at various points we wanted to find the global minimum of

the total energy of the systems described. There are a variety of numerical methods

that could have been used to try and optimise the energy but the one with the

most advantages, as described below, was determined to be a simulated annealing

method.

The method of simulated annealing [118] is used when a global minimum or

maximum is to be found, especially where there may be other local minima or

maxima to be avoided when doing so. It is based on an analogy with the way that

solid metals cool resulting in their molecules forming a crystal lattice structure.

At high temperatures the molecules of the solid move freely with respect to each

other but as it cools this freedom of movement is lost and they form an ordered

crystal that is the minimum energy state of the system. This crystallisation only

occurs when the metal is cooled slowly. If it is cooled too quickly then the minimum

energy configuration is not found and the metal forms into a local energy minimum

polycrystalline or amorphous state. Cooling that is slow enough as to allow enough

time for the molecules to redistribute themselves as they lose mobility, and hence

allows for crystallisation, in known as annealing.

Annealing, and therefore simulated annealing, invokes the Boltzmann probability

distribution function

Prob(E) ∝ exp

(−E
kT

)

, (A.2.8)

where Prob(E) is the probability that a system with temperature T will have en-

ergy E and where k is Boltzmann’s constant. This function implies that at a low

temperature there will still be a small probability that the system could be found

to be in a high energy state. This means that the system has a given probability

of increasing in energy rather than always decreasing and because of this there is a

chance that the system can get itself out of a local minimum, and over time find the

global minimum.

These ideas from the annealing of metals are incorporated into simulated an-

nealing methods to find global extrema. Initially the system that we are considering
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is set at a high temperature. An arbitrary initial configuration is allocated and its

total energy is found and recorded. A change, randomly picked from the allowed

changes to the system that must be determined, to the initial configuration is then

implemented. The total energy of the system after the change is then found and

recorded and if this change results in a decrease in the total energy of the system

then the change is accepted and another random change is considered. If, however,

the change results in an increase in the total energy then, in analogy to the Boltz-

mann probability distribution function found in the annealing process of metals, the

change is accepted with a probability, P , of

P = exp

(

δE

T

)

, (A.2.9)

where δE is the change in the total energy of the configuration and T is the cur-

rent temperature. This probability is higher for higher temperatures, reflecting the

high mobility of molecules in a high temperature metal, and also higher for smaller

changes in energy. While in the systems we have considered the energy is in fact

the physical energy of the the configuration, simulated annealing methods can also

work with other definitions of energy of systems, so long as the finding the extrema

of the defined energy is the overall goal.

After a selected number of changes the system should reach a thermal equilibrium

at the given temperature. The temperature is then decreased to a value controlled

by an annealing schedule that has to be determined to find a balance between

accuracy and computation time, and the process is then repeated with another

given number of changes to be applied. At this lower temperature there will be

a smaller probability of uphill energy changes taking place according to (A.2.9).

The temperature is then decreased slowly towards zero according to the annealing

schedule, reaching thermal equilibrium at each temperature. As the temperature

tends towards zero the system will move towards a energy minimum that in the

limit of infinitesimally slow variations in temperature can be shown to be the global

minimum [118].

Simulated annealing methods have a large advantage over other energy minimi-

sation techniques such as other Monte Carlo methods as it allows for increases in

the total energy of the system. This allows the system to be able to get out of
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local minima and find the global minimum. Computational resources, however, will

restrict the number of iterations of changes at each temperature and the number

of temperature decreases that can be performed and hence finding the true global

minimum can not be fully guaranteed, but with care taken in applying the method

and sufficient time allowed the final minimum can be confidently taken as the global

minimum.

October 11, 2012



Bibliography

[1] T.H.R. Skyrme. A Nonlinear theory of strong interactions.

Proc.Roy.Soc.Lond., A247:260–278, 1958.

[2] T.H.R. Skyrme. A Nonlinear field theory. Proc.Roy.Soc.Lond., A260:127–138,

1961.

[3] T.H.R. Skyrme. Particle states of a quantized meson field. Proc.Roy.Soc.Lond.,

A262:237–245, 1961.

[4] Edward Witten. Global Aspects of Current Algebra. Nucl.Phys., B223:422–

432, 1983.

[5] Susan Nelmes and Bernard M.A.G. Piette. Skyrmion stars and the multilay-

ered rational map ansatz. Phys.Rev., D84:085017, 2011.

[6] S.G. Nelmes and B.M.A.G. Piette. Phase Transition and Anisotropic Defor-

mations of Neutron Star Matter. Phys.Rev., D85:123004, 2012.

[7] William Thomson and Sir Joseph Larmor. Mathematical And Physical Papers

- Volume IV - Hydrodynamics And General Dynamics. Cambridge University

Press, 1910.

[8] Richard A. Battye, Nicholas S. Manton, Paul M. Sutcliffe, and Stephen W.

Wood. Light Nuclei of Even Mass Number in the Skyrme Model. Phys.Rev.,

C80:034323, 2009.

[9] N. Manton and P.M. Sutcliffe. Topological Solitons. Cambridge Monographs

on Mathematical Physics. Cambridge University Press, 2004.

113



Bibliography 114

[10] V.G. Makhankov, Y.P. Rybakov, and V.I. Sanyuk. The Skyrme model: funda-

mentals, methods, applications. Springer series in nuclear and particle physics.

Springer-Verlag, 1993.

[11] Vladimir B. Kopeliovich, Bernard Piette, and Wojtek J. Zakrzewski. Mass

terms in the skyrme model. Phys. Rev. D, 73:014006, Jan 2006.

[12] Bernard Piette and Wojtek J. Zakrzewski. Skyrme model with different mass

terms. Phys.Rev., D77:074009, 2008.

[13] E.C.G. Stueckelberg. Interaction energy in electrodynamics and in the field

theory of nuclear forces. Helv.Phys.Acta, 11:225–244, 1938.

[14] E.P. Wigner. Invariance in physical theory. Proc Am Philos Soc, 93(7):521–6,

1949.

[15] G.H. Derrick. Comments on nonlinear wave equations as models for elementary

particles. J.Math.Phys., 5:1252–1254, 1964.

[16] E.B. Bogomolny. Stability of Classical Solutions. Sov.J.Nucl.Phys., 24:449,

1976.

[17] Gregory S. Adkins, Chiara R. Nappi, and Edward Witten. Static Properties

of Nucleons in the Skyrme Model. Nucl.Phys., B228:552, 1983.

[18] Gregory S. Adkins and Chiara R. Nappi. The Skyrme Model with Pion Masses.

Nucl.Phys., B233:109, 1984.

[19] Richard A. Battye, Steffen Krusch, and Paul M. Sutcliffe. Spinning skyrmions

and the skyrme parameters. Phys.Lett., B626:120–126, 2005.

[20] Conor Houghton and Shane Magee. The Effect of pion mass on skyrme con-

figurations. Europhys.Lett., 77:11001, 2007.

[21] Richard Battye and Paul Sutcliffe. Skyrmions with massive pions. Phys.Rev.,

C73:055205, 2006.

October 11, 2012



Bibliography 115

[22] M. Gell-Mann and Y. Neeman. The eightfold way: a review, with a collection

of reprints. Frontiers in physics. W.A. Benjamin, 1964.

[23] O.W. Greenberg. Spin and Unitary Spin Independence in a Paraquark Model

of Baryons and Mesons. Phys.Rev.Lett., 13:598–602, 1964.

[24] M.Y. Han and Yoichiro Nambu. Three Triplet Model with Double SU(3)

Symmetry. Phys.Rev., 139:B1006–B1010, 1965.

[25] H. Fritzsch, Murray Gell-Mann, and H. Leutwyler. Advantages of the Color

Octet Gluon Picture. Phys.Lett., B47:365–368, 1973.

[26] H.David Politzer. Reliable Perturbative Results for Strong Interactions?

Phys.Rev.Lett., 30:1346–1349, 1973.

[27] D.J. Gross and Frank Wilczek. Asymptotically Free Gauge Theories. 1.

Phys.Rev., D8:3633–3652, 1973.

[28] D.J. Gross and Frank Wilczek. Ultraviolet Behavior of Nonabelian Gauge

Theories. Phys.Rev.Lett., 30:1343–1346, 1973.

[29] D.J. Gross and Frank Wilczek. Asymptotically Free Gauge Theories. 2.

Phys.Rev., D9:980–993, 1974.

[30] Steven Weinberg. Nonabelian Gauge Theories of the Strong Interactions.

Phys.Rev.Lett., 31:494–497, 1973.

[31] M.E. Peskin and D.V. Schroeder. Introduction to quantum field theory. Ad-

vanced Book Program. Addison-Wesley Pub. Co., 1995.

[32] L.H. Ryder. Quantum field theory. Cambridge University Press, 1996.

[33] F. Halzen and A.D. Martin. Quarks and leptons: an introductory course in

modern particle physics. Wiley, 1984.

[34] G. Hooft. Recent developments in gauge theories. NATO ASI series: Physics.

Plenum Press, 1980.

October 11, 2012



Bibliography 116

[35] Gerard ’t Hooft. A Planar Diagram Theory for Strong Interactions.

Nucl.Phys., B72:461, 1974.

[36] EWitten. Quarks, Atoms, Aand The 1-N Expansion. Physics Today, 33:38–43,

1980.

[37] Edward Witten. Baryons in the 1/n Expansion. Nucl.Phys., B160:57, 1979.

[38] T.H.R. Skyrme. A Unified Field Theory of Mesons and Baryons. Nucl.Phys.,

31:556–569, 1962.

[39] M.J. Esteban. A Direct Variational Approach To Skyrme’s Model For Meson

Fields. Commun.Math.Phys., 105:571–591, 1986.

[40] A.D. Jackson and Mannque Rho. Baryons as Chiral Solitons. Phys.Rev.Lett.,

51:751–754, 1983.

[41] Eric Braaten and Larry Carson. Deuteron as a soliton in the skyrme model.

Phys. Rev. Lett., 56:1897–1900, May 1986.

[42] V.B. Kopeliovich and B.E. Stern. Exotic Skyrmions. JETP Lett., 45:203–207,

1987.

[43] J.J.M. Verbaarschot, T.S. Walhout, J. Wambach, and H.W. Wyld. Symmetry

And Quantization Of The Two Skyrmion System: The Case Of The Deuteron.

Nucl.Phys., A468:520, 1987.

[44] Alec J. Schramm, Yossef Dothan, and L.C. Biedenharn. A Calculation Of The

Deuteron As A BiSkyrmion. Phys.Lett., B205:151, 1988.

[45] Eric Braaten, Steve Townsend, and Larry Carson. Novel structure of static

multisoliton solutions in the skyrme model. Physics Letters B, 235(12):147 –

152, 1990.

[46] Richard A. Battye and Paul M. Sutcliffe. Symmetric skyrmions.

Phys.Rev.Lett., 79:363–366, 1997.

October 11, 2012



Bibliography 117

[47] Richard A. Battye and Paul M. Sutcliffe. Skyrmions, fullerenes and rational

maps. Rev.Math.Phys., 14:29–86, 2002.

[48] P.W. Fowler and D.E. Manolopoulos. An atlas of fullerenes. International

series of monographs on chemistry. Clarendon Press, 1995.

[49] Conor J. Houghton, Nicholas S. Manton, and Paul M. Sutcliffe. Rational

maps, monopoles and Skyrmions. Nucl.Phys., B510:507–537, 1998.

[50] S.K. Donaldson. Nahm’s Equations And The Classification Of Monopoles.

Commun.Math.Phys., 96:387–407, 1984.

[51] Stuart Jarvis. A rational map for euclidean monopoles via radial scattering.

Journal für die Reine und Angewandte Mathematik (Crelles Journal), 524:17–

41, 2000.

[52] N. S. Manton. Geometry of skyrmions. Communications in Mathematical

Physics, 111:469–478, 1987.

[53] Theodora A. Ioannidou, B. Piette, and W.J. Zakrzewski. SU(N) skyrmions

and harmonic maps. J.Math.Phys., 40:6353–6365, 1999.

[54] Richard A. Battye and Paul M. Sutcliffe. A Skyrme lattice with hexagonal

symmetry. Phys. Lett., B416:385–391, 1998.

[55] V. R. Pandharipande and R. A. Smith. A model neutron solid with [pi]0

condensate. Nuclear Physics A, 237(3):507 – 532, 1975.

[56] M. Kutschera, C.J. Pethick, and D.G. Ravenhall. Dense Matter In The Chiral

Soliton Model. Phys.Rev.Lett., 53:1041–1044, 1984.

[57] Igor R. Klebanov. Nuclear Matter In The Skyrme Model. Nucl.Phys.,

B262:133, 1985.

[58] A. Jackson, A. D. Jackson, and V. Pasquier. The skyrmion-skyrmion interac-

tion. Nuclear Physics A, 432(3):567 – 609, 1985.

October 11, 2012



Bibliography 118

[59] Alfred S. Goldhaber and N.S. Manton. Maximal Symmetry Of The Skyrme

Crystal. Phys.Lett., B198:231, 1987.

[60] N. S. Manton. Is the b=2 skyrmion axially symmetric? Physics Letters B,

192(1-2):177 – 179, 1987.

[61] J.J.M. Verbaarschot. Axial Symmetry Of Bound Baryon Number Two Solu-

tion Of The Skyrme Model. Phys.Lett., B195:235, 1987.

[62] E. Wust, G. E. Brown, and A. D. Jackson. Topological chiral bags in a baryonic

environment. Nuclear Physics A, 468(3-4):450 – 472, 1987.

[63] M. Kugler and S. Shtrikman. A new skyrmion crystal. Physics Letters B,

208(3-4):491 – 494, 1988.

[64] A.D. Jackson and J.J.M. Verbaarschot. Phase structure of the skyrme model.

Nuclear Physics A, 484(3-4):419 – 431, 1988.

[65] L. Castillejo, P. S. J. Jones, A. D. Jackson, J. J. M. Verbaarschot, and A. Jack-

son. Dense skyrmion systems. Nuclear Physics A, 501(4):801 – 812, 1989.

[66] G. Fontaine, P. Brassard, and P. Bergeron. The potential of white dwarf

cosmochronology. Publications of the Astronomical Society of the Pacific,

113(782):pp. 409–435, 2001.

[67] H. L. Shipman. Masses and radii of white-dwarf stars. III - Results for 110

hydrogen-rich and 28 helium-rich stars. apj, 228:240–256, February 1979.

[68] Roland Diehl, Hubert Halloin, Karsten Kretschmer, Giselher G. Lichti, Volker

Schoenfelder, et al. Radioactive Al-26 and massive stars in the galaxy. Nature,

439:45–47, 2006.

[69] James M. Lattimer and Maddapa Prakash. Neutron Star Observations: Prog-

nosis for Equation of State Constraints. Phys.Rept., 442:109–165, 2007.

[70] Paul Demorest, Tim Pennucci, Scott Ransom, Mallory Roberts, and Jason

Hessels. Shapiro Delay Measurement of A Two Solar Mass Neutron Star.

Nature, 467:1081–1083, 2010.

October 11, 2012



Bibliography 119

[71] J.M. Lattimer and M. Prakash. The physics of neutron stars. Science, 304:536–

542, 2004.

[72] W. Becker and W. Becker. Neutron stars and pulsars. Astrophysics and space

science library. Springer, 2009.

[73] J.R. Oppenheimer and G.M. Volkoff. On Massive neutron cores. Phys.Rev.,

55:374–381, 1939.

[74] J. Chadwick. Possible Existence of a Neutron. Nature, 129:312, 1932.

[75] B. Friedman and V.R. Pandharipande. Hot and cold, nuclear and neutron

matter. Nucl.Phys., A361:502–520, 1981.

[76] V.R. Pandharipande and R.A. Smith. Nuclear Matter Calculations with Mean

Scalar Fields. Phys.Lett., B59:15–18, 1975.

[77] Robert B. Wiringa, V. Fiks, and A. Fabrocini. Equation of state for dense

nucleon matter. Phys.Rev., C38:1010–1037, 1988.

[78] A. Akmal and V.R. Pandharipande. Spin - isospin structure and pion conden-

sation in nucleon matter. Phys.Rev., C56:2261–2279, 1997.

[79] Horst Mueller and Brian D. Serot. Relativistic mean field theory and the high

density nuclear equation of state. Nucl.Phys., A606:508–537, 1996.

[80] H. Mther, M. Prakash, and T.L. Ainsworth. The nuclear symmetry energy in

relativistic brueckner-hartree-fock calculations. Physics Letters B, 199(4):469

– 474, 1987.

[81] L. Engvik, M. Hjorth-Jensen, E. Osnes, G. Bao, and E. Ostgaard. Asymmetric

nuclear matter and neutron star properties. Phys.Rev.Lett., 73:2650–2653,

1994.

[82] M. Prakash, T.L. Ainsworth, and J.M. Lattimer. Equation of state and the

maximum mass of neutron stars. Phys.Rev.Lett., 61:2518–2521, 1988.

October 11, 2012



Bibliography 120

[83] N.K. Glendenning and S.A. Moszkowski. Reconciliation of neutron star masses

and binding of the lambda in hypernuclei. Phys.Rev.Lett., 67:2414–2417, 1991.

[84] Norman K. Glendenning and Jurgen Schaffner-Bielich. First order kaon con-

densate. Phys.Rev., C60:025803, 1999.

[85] M. Prakash, J.R. Cooke, and J.M. Lattimer. Quark - hadron phase transition

in protoneutron stars. Phys.Rev., D52:661–665, 1995.

[86] Bernard M.A.G. Piette and Gavin I. Probert. Towards skyrmion stars: Large

baryon configurations in the Einstein-Skyrme model. Phys.Rev., D75:125023,

2007.

[87] Robert M. Wald. General Relativity. University Of Chicago Press, first edition

edition, 1984.

[88] P. Bizon and T. Chmaj. Gravitating skyrmions. Phys.Lett., B297:55–62, 1992.

[89] Norman K. Glendenning, Takeshi Kodama, and Frans R. Klinkhamer. Skyrme

Topological Soliton Coupled To Gravity. Phys.Rev., D38:3226, 1988.

[90] Mikhail S. Volkov and Dmitri V. Gal’tsov. Gravitating nonAbelian solitons

and black holes with Yang-Mills fields. Phys.Rept., 319:1–83, 1999.

[91] Hugh Luckock and Ian Moss. Black Holes Have Skyrmion Hair. Phys.Lett.,

B176:341, 1986.

[92] I. G. Moss. Exotic black holes. In M. Sasaki, editor, Relativistic Cosmology,

pages 129–139, 1994.

[93] Serge Droz, Markus Heusler, and Norbert Straumann. New black hole solu-

tions with hair. Phys.Lett., B268:371–376, 1991.

[94] N. S. Manton and B. M. A. G. Piette. Understanding Skyrmions using Rational

Maps. ArXiv High Energy Physics - Theory e-prints, August 2000.

[95] Vladimir B. Kopeliovich. The Bubbles of matter from multiskyrmions. JETP

Lett., 73:587–591, 2001.

October 11, 2012



Bibliography 121

[96] Vladimir B. Kopeliovich. MultiSkyrmions and baryonic bags. J.Phys.G,

G28:103–120, 2002.

[97] D.R. Tilley, H.R. Weller, and G.M. Hale. Energy levels of light nuclei a = 4.

Nuclear Physics A, 541(1):1 – 104, 1992.

[98] Chris Barnes, Kim Baskerville, and Neil Turok. Normal modes of the B = 4

Skyrme soliton. Phys.Rev.Lett., 79:367–370, 1997.

[99] W.T. Lin and B. Piette. Skyrmion Vibration Modes within the Rational Map

Ansatz. Phys.Rev., D77:125028, 2008.

[100] T.S. Walhout. Dense Matter In The Skyrme Model. Nucl.Phys., A484:397,

1988.

[101] T.S. Walhout. The Equation of state of dense skyrmion matter. Nucl.Phys.,

A519:816–830, 1990.

[102] Richard C. Tolman. Static solutions of Einstein’s field equations for spheres

of fluid. Phys.Rev., 55:364–373, 1939.

[103] R. L. Bowers and E. P. T. Liang. Anisotropic Spheres in General Relativity.

Astrophys. J., 188:657, 1974.

[104] Steven Weinberg. Gravitation and Cosmology: Principles and Applications of

the General Theory of Relativity. Wiley, New York, NY, 1972.

[105] Prashanth Jaikumar and Rachid Ouyed. Skyrmion stars: Astrophysical mo-

tivations and implications. Astrophys.J., 639:354–362, 2006.

[106] Emanuele Berti, Frances White, Asimina Maniopoulou, and Marco Bruni.

Rotating neutron stars: an invariant comparison of approximate and numerical

spacetime models. Mon. Not. Roy. Astron. Soc., 358:923–938, 2005.

[107] M. K. Mak and T. Harko. Anisotropic stars in general relativity. Proceed-

ings: Mathematical, Physical and Engineering Sciences, 459(2030):pp. 393–

408, 2003.

October 11, 2012



Bibliography 122

[108] Walter C. Hernandez. Static, axially symmetric, interior solution in general

relativity. Phys. Rev., 153:1359–1363, Jan 1967.

[109] S. Chandrasekhar. Dynamical Instability of Gaseous Masses Approaching the

Schwarzschild Limit in General Relativity. Phys.Rev.Lett., 12:114–116, 1964.

[110] W. Hillebrandt and K. O. Steinmetz. Anisotropic neutron star models - Sta-

bility against radial and nonradial pulsations. AAP, 53:283–287, December

1976.

[111] Krsna Dev and Marcelo Gleiser. Anisotropic stars. 2. Stability. Gen.Rel.Grav.,

35:1435–1457, 2003.

[112] Max Karlovini, Lars Samuelsson, and Moundheur Zarroug. Elastic stars in

general relativity. 2. Radial perturbations. Class.Quant.Grav., 21:1559–1581,

2004.

[113] Dubravko Horvat, Sasa Ilijic, and Anja Marunovic. Radial pulsa-

tions and stability of anisotropic stars with quasi-local equation of state.

Class.Quant.Grav., 28:025009, 2011.

[114] Daniela D. Doneva and Stoytcho S. Yazadjiev. Gravitational wave spectrum of

anisotropic neutron stars in Cowling approximation. Phys.Rev., D85:124023,

2012.

[115] James B. Hartle. Slowly rotating relativistic stars. 1. Equations of structure.

Astrophys.J., 150:1005–1029, 1967.

[116] F. Weber and N.K. Glendenning. Applicability of Hartle’s method for the

construction of general relativistic rotating neutron star models. Astrophys.

J., 1991.

[117] W.H. Press. Numerical Recipes: The Art of Scientific Computing. Cambridge

University Press, 2007.

[118] P.J.M. Laarhoven and E.H.L. Aarts. Simulated annealing: theory and appli-

cations. Mathematics and its applications. D. Reidel, 1987.

October 11, 2012


