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Abstract 
Measurements on free standing films of the conductive polymer polyaniline 

(PANi) have revealed that charge transport within this material depends upon the level of 

intermolecular order. This factor is found to depend upon the method of sample 

preparation. PANi protonated by immersion of solid emeraldine base in aqueous methane 

sulphonic acid has low conductivity, 30-40 Scm'^ This can be enhanced, up to 250 Scm' 

^ if films are stretch oriented prior to protonation. Stretched samples have an electrical 

conductivity anisotropy factor of order 7 at 300 K, also revealed in their thermopower 

over the range 100 - 300 K. The behaviour of electrical conductivity with temperature is 

commensurate with charge transport in a disordered system. Protonation of PANi 

dissolved in meta cresol by addition of camphor sulphonic acid (CSA) yields material 

with conductivity of 250-300 Scm"^ Variation of the acid concentration has revealed a 

transition to a metallic response in conductivity (near 300 K) when 20-30% of polymer 

nitrogen sites are protonated. This character extends to progressively lower temperatures 

as protonation is increased to 60%. The metallic nature of this material is evident in the 

linear temperature dependence of thermopower and is ascribed to the presence of 

crystalline regions within the polymer film, as revealed by an independent x-ray analysis 

The role of molecular order upon the properties of thin films of 3[2(S2-

methylbutoxy)ethyl]-polythiophene has been investigated. Starting with polymer 

dissolved in 'good' solvent, quantities of nonsolvent lead to reorganisation of the 

sidechain groups when added. This promotes an increase in effective conjugation length 

which can be transferred to the soUd state by the spin coating process as indicated by 

spectroscopic stiidies. With these films acting as the active layer in a field effect 

transistor the charge carrier mobility can be measured. It is found that as molecular order 

increases, mobihty decreases from 10'̂  cm^V^s'^ to 710'^ cm^V'̂ s"^ This is ascribed to 

increased interchain separation and effects due to macroscopic aggregate grain 

boimdaries. 
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Preface 
Electrically conductive polymers have become an area of intense research 

activity. These materials hold some considerable promise for future appUcations as a 

versatile group of new electronic materials. The findings and conclusions presented in 

this thesis are based on research into the fundamental electrical properties of two 

particular polymeric systems; polyaniline and a substituted polythiophene. 

The first chapter of this volume includes a review of some principles and theories 

which detail tiie important aspects of conjugated polymers, witii regard to tiie electronic 

structure and bonding of the polymer chain. Particular attention is given to the 

emeraldine form of polyaniline (PANi) and its transition to conductive behaviour upon 

protonation with acid species. The synthesis and processing steps involved in the 

production of PANi-NMP and PANi-CSA, in the form of conductive, free standing films 

are described. 

Chapter two contains a review of the electrical transport mechanisms within 

disordered and non crystalline materials, with reference to the typical behaviour observed 

in polymer species such as polyaniline and polyacetylene. The minimum metallic criterion 

and the factors that contribute to charge carrier locaUsation in a disordered system are 

considered. The charge transport mechanisms which ensue in a disordered conductor are 

then discussed, e.g. variable range hopping and fluctuation induced tunnelling. Also 

included in this chapter is a description of the origin of thermoelectricity in metallic 

conductors, and also disordered conductors in which the conduction band electronic 

states are localised. Finally, attention is given to the heterogeneous conductor model 

which is frequentiy used to explain the electrical transport properties in conductive 

polymers 

The results obtained from measurements of the conductivity and thermopower of 

PANi (in both the NMP and CSA forms) are presented and discussed in chapters three 

and four, along with details of the experimental apparatiis and techniques employed. It is 

known that the electiical properties of PANi are affected by tiie method of sample 



preparation. Control of the level of doping of PANi-CSA reveals the onset and 

progression of a metallic response in the temperature dependence of the electrical 

conductivity which is supported by the evidence from thermopower measurements. 

PANi-NMP is found to be characteristic of a disordered conductor in which 

charge carriers are localised at some microscopic level. No metallic response is observed 

in the conductivity, although it is suggested by the thermopower behaviour observed 

along the axis of maximum conductivity, in stretch oriented samples. 

In chapter five the role of order in conductive materials is highlighted again, with 

respect to the application of polymers in electronic devices. Spin cast films of a 

conjugated polymer 3[2(S2-methylbutoxy)ethyl]-polythiophene were incorporated within 

the active layer of a field effect transistor, allowing the mobility of charge carriers within 

the polymer to be studied. Treatment of the spin casting solution with a nonsolvent was 

found to increase the intramolecular order and thus the effective length of conjugation in 

the polymer chains. Spectroscopic analysis revealed that this order was preserved in thin 

films of the polymer spun from solvent-polymer-nonsolvent mixtures. A reduction in 

charge carrier mobility was observed within films spun from solutions treated with 

nonsolvent, compared to films spun from pure polymer-solvent mixtures. This is ascribed 

in part to increased interchain separation and also to the presence of grain boundaries 

between macroscopic aggregates. 

Chapter 6 includes a summary of the findings and conclusions presented in 

previous sections and also contains some suggestions for the direction of future research. 



CHAPTER 1 

Introduction To Conductive Polymers 

1.1 History 
In the last twenty years there has been a great interest in the field of electroactive 

organic materials. In particular, the study of conjugated polymers has become an 

important branch of solid state physics. An early breakthrough was the discovery that 

treatment of polyacetylene with oxidative species, e.g. iodine, resulted in a transition to 

conductive behaviour, e.g. Berets and Smith [1]. An improvement, in the chemical 

synthesis of polyacetylene was made by Shirakawa in the early 1970's [2] and the 

material was later shown to undergo transition to high conductivity upon oxidative 

doping [3]. The result was that the electrical conductivity could be increased by up to 11 

orders of magnitude to reveal almost metalhc behaviour. Since this discovery, other 

conductive polymeric species have been synthesised and materials including polypyrrole, 

polythiophene, polyparaphenylene and polyanilines are now the subject of intensive 

studies. 

Interest in the family of conductive polymers has arisen for two main reasons. 

Firstly, from a purely physical point of view, the majority of charge transport in a 

polymer is believed to be along the body or backbone of the polymer chain and of quasi -

1 - dimensional nature. However, carrier transfer between the chains must also have a 

part to play in the bulk properties of such a conductor. The exact mechanisms behind 

such electrical transport are not yet clearly understood. 

Secondly, once synthesised, polymers are easier to process than inorganic 

conductors and semiconductors. They can be cast or spun from solution as thin films 

directiy where they are required, without the need for high temperature processing. This 

has led the way to research into the use of the conductive polymers as tiie active material 

in devices such as thin film transistors [4,5] and light emitting diodes [6]. 



1.2 Polyacetylene 
Polyacetylene has the simplest chemical form of the conjugated conductive 

polymers and has served as a starting point for most of the theoretical models developed 

for the wider family of materials. 

The structure of trans-polyacetylene, see fig. 1.1, is shown pictorially as a 

conjugated arrangement of carbon atoms i.e. a chain of alternate single and double 

bonds, with one atom of hydrogen bonded to each carbon atom. A simple picture of the 

electi-onic structure within this system can be constincted if the arrangement of tiie 

chemical bonding is examined in more detail. 

Each carbon atom possesses four valence electrons which are contained in so 

called bonding orbitals. Three of the electrons reside in sp hybridised orbitals and form 

covalent or O bonds with two adjacent carbon atoms and with one hydrogen itom. Such 

bonds are strong, i.e. a great deal of energy is required to excite the electrons in a (J 

orbital to a non bonding state and as a result these valence electrons remain localised. 

The fourth valence is contained in a orbital which extends above and below the line of 

the polymer chain, perpendicular to the a bonds. The p̂  orbitals from adjacent carbon 

atoms overlap to form a K bonding orbital which extends above and below die entire 

length of the bond. The electrons contained in this orbital are not localised between 

particular atoms, as in the case of the <J bonding electrons, but are delocalised 

throughout the K orbital system. It is this delocalisation of electron states in the 7C system 

which gives conjugated polymers the possibiUty to exhibit electrically conductive 

behaviour. 

Early theoretical models for polyacetylene predicted that its properties should 

tend from semiconducting to metalHc as the chain length is increased. It was reasoned 

that each additional carbon atom would contribute a new state in both the 7C (ground 

state) and n* (first excited state) molecular bands, as a result of the mixing of tiie new 

wave function with the system. This is the behaviour predicted by an application of the 

theory of tiie linear combination of atomic orbitals (LCAO) to a chain witii 



/ V V \ A 
trans-polyacaetylene ds- polyacetylene 

polythiophene 

H H 

I 
H H 

polypyrrole 

polyparaphenylene 

N 

N 

polyaniline, emeraldine base 

H 

Fig. 1.1 Chemical structures of some conductive polymers, ignoring C-H bonds. 



all carbon-carbon bond lengths of equal size. The addition of these new states would 

then act to reduce the band gap of the K to K* transition between the two degenerate 

energy levels. In the limit for this system, as the number of carbon atoms, n, tends to 

infinity the additional states would eventually fill the energy gap. Each carbon atom 

donates 1 electiron per site and since from tiie Pauli exclusion principle, each site can be 

occupied by two electrons with opposite spins, the result would be a material with a half 

fiilled continuum band containing delocalised electrons, which should exhibit raetalhc 

characteristics. 

However, polyacetylene is intrinsically semiconducting and can only be rendered 

conductive upon doping witii electron withdrawing or electron donating species, even for 

long chain lengths [3]. Studies of tiie progression of tiie n to K* bandgap energy as a 

function of the length of the conjugated chain in polyenes has revealed that it tends to a 

minimum energy around 1.4 eV for long chains, not to zero as first predicted by much 

earlier measurements on short chain conjugated species [7]. 

1.3 The Su. Schrieffer. Heeqer Model 
The shortcomings in the early model for polyacetyiene, which a predicts metallic, 

rather than semiconductive band structure were tackled by Su, Schrieffer and Heeger [8]. 

In tills approach (the SSH model) a Hamiltonian is constructed which consists of two 

parts, H(j and Hjj, to account for contributions to the total system energy fi-om tiie C 

and K bonding electrons respectively [9]. 

H(y is written as: 

H a = ( K o / 2 ) S ( u „ , i + u j ' eqn.1.1 
n 

Where represents tiie displacement of tiie n̂^̂  atom from equilibrium and KQ is 

the lattice force constant. This term describes the elastic potential energy of the lattice 

(chain) as a function of the relative displacement of adjacent carbon atoms. If we assume 



that the carbon atoms are equally spaced, with bond length a, and a bond angle of 120 

then the separation of atoms along the chain is 2a/-v/3. 

The second part of the Hamiltonian, H;j, contains the tight binding energy 

description for the TZ electrons: 

H„ = -Ztn,n+l(<sCn+l,s + cJ+i,sC„,s) eqn. 1.2 
n,s 

Where ^ and § are creation and annihilation operators for 7C electrons with 

spin s (± 1/2) at carbon atom site, n. i^ji+i is the transfer integral and is a function of the 

carbon-carbon bond length. It is expanded linearly about the equilibrium C-C spacing to 

give: 

tn,n+l = to - a(Un+l " ) eqn. 1.3 

Where a is a coupling constant which links the process of electron transfer 

between carbon sites to displacements of those sites, in effect an electron - phonon 

coupling constant for n electrons, tjj is then a representation of the K wave function 

overlap between adjacent carbon atoms. It becomes larger if the two atoms are moved 

closer together and smaller if the separation is increased. 

For the case where all carbon-carbon bond lengths are chosen to be equal, i.e. 

lln=0 for all n the model predicts a tight binding band with the dispersion relation: 

Ej^ = -2to COS ka eqn. l .4 

This is then the continuous 7C band first predicted for polyacetylene. It has 

bandwidth of 4tQ and with each carbon atom contributing 1 electron it is half filled, thus 

constituting a 1-dimensional metallic system. 

It is well known, however that polyacetylene displays an alternation in the bond 

length between the carbon atoms in the chain backbone, commensurate with the single 

bond - double bond picture in fig. 1.1. The distortion, or dimerisation of polyacetylene 



into an alternating bond structure can be likened to the case of a 1-dimensional metal 

which has undergone a Peierls distortion [10,11]. 

Peierls showed that a 1-dimensional metal can achieve a lower system energy via 

distortion of the lattice. As a consequence of this distortion, a gap opens in the band 

structure at the Fermi level separating tiie occupied and empty states, see fig. 1.2. This 

state is more stable since the energy of the occupied states is reduced by the presence of 

the gap. 

For polyacetylene, distortion of the chain as a result of dimerisation is equivalent 

to the system undergoing a Peierls distortion. The finite band gap then arises naturally as 

a consequence of this transition. The Hamiltonians used in the SSH model can be used to 

model the distorted system, with displacement of the carbon sites given by: 

U „ = ( - l ) ° U o eqn.1.5 

The result is a band structure with the dispersion relation: 

= (4to coŝ  ka + 4a\l sin^ ka)̂ ^̂  eqn. 1.6 

This expression reveals a gap in the band structure for k=7t/2a which separates 

unoccupied and occupied states by an energy: Eg = SOLUQ. The density of electronic 

states N(E) as a function of energy can be found using the tight binding model: 

N /7C 
N(E) = - — eqn. 1.7 

( 4 t 2 - ( E - E o f ) 

In simple terms, the distorted system is more stable because the decrease in 

energy of the 7C electi-on system as a result of opening the bandgap at Ep is greater than 

the increase in potential energy driving the lattice distortion. Hence the system a whole 

can exist at a lower total energy by assuming a structure of alternating bonds. The 

energy gain per carbon atom as a function of the degree of distortion u, can be shown to 

follow the relation: 

E (u ) = 2koU^ - In (to / UUQ ) eqn. 1.8 



n-3 

dimerised 

C 

carbon site 

n-2 n-;l n n+1 

< a > 
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C 

Un 
<> 
c 
; ^ 

•2a 
C 

n+2 n+3 

Fig. 1.2 The Peierls transition in polyactylene; dimerisation of the structure 

resulting firom the unequal lengths of single and double bonds. 
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where the first term represents elastic potential energy increase due to distortion and tiie 
second the energy decrease in the 7t electron system. This expression has minima for ii = 

±Uo. 

The result is a model of polyacetylene with a filled 7t (valence) and empty 7C* 

(conduction) bands separated by an energy gap Eg. This picture fits tiie experimental 

data, the existence of the bandgap is well known from optical studies and the very low 

intrinsic conductivity of polyacetylene is exactiy what would be expected from a system 

with filled valence and empty conduction bands. High conductivity can tiius only be 

achieved through altering the filling in these bands, by chemical doping to add or remove 

electrons to or from the polymer chain backbone. Improvements have been made in the 

synthesis of polyacetylene to increase chain length and purity such that examples capable 

of displaying conductivity of metallic magnitude upon doping are documented [12,13]. 

1.4 Bond Defects 
Because it is the simplest of the conjugated polymers, polyacetylene has been 

widely used in the development of a great deal of the theory applied to conductive 

polymers in general. For example, all conjugated polymers are intrinsically 

semiconducting in that they exhibit some band gap which separates so caUed valence and 

conduction band electronic states. Also, like polyacetylene these materials only become 

conductive upon doping with an oxidative or reductive species to liberate some form of 

charge carrier which has a finite mobility on the polymer chain. 

The important differences between polyacetylene and most of the more complex 

materials arise, unsurprisingly, from structiiral differences that, in tiim, affect tiie way 

that charge carrying electronic states are accommodated into the K electron system. To 

develop a picture of how charge carriers exist within the conjugated system it is useful to 

look again at polyacetylene. 

Consider the dimerised structure of polyacetylene, with alternating single and 

double backbone bonding. Clearly the distortion can occur in two resonance forms or 
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phases as illustrated in fig. 1.3(a) and 1.3(b) where the bond alternation runs in opposite 
senses. The energy gain for this dimerisation into phases A and B is equal since the forms 
are just equivalent to the two energy minima solutions (u = ±U{)) given previously for 
equation 1.8. Hence these two phases are said to be degenerate. But, what would be the 
consequence if a chain was formed that contained both A and B forms? 

This case is shown pictorially in fig. 1.3(c), where the change in the bond 

alternation pattern is at the centre of the chain. The separation of A and B phases forces 

a bond mismatch leaving one carbon atom unable to form a K bond with either of its 

neighbours. The defect thus has an associated spin, s ±1/2, as a result of the lone 

electron in the carbon orbital, although no net charge is associated with the defect A 

bond alternation defect of this type is called a soliton, partly as a result of its particle-like 

properties and because of its non dispersive nature i.e. a single defect of this type is 

trapped on the chain. The soliton is free to move in either direction on the chain and will 

convert successive regions of the polymer to either the A or B phase with no cost in 

energy (the two phases are degenerate) 

The picture in fig. 1.3(c) which represents the soliton as a definite, localised 

entity separating the two dimerization phases is oversimplified, however, since it does 

not take into account the Heisenberg principle which links the uncertainty of position and 

momentum of a particle. 

Rice [14] and Su, Schrieffer and Heeger [15] suggested a wave function for 

solitons, at site n in the chain, of the form: 

(̂ jj = U Q tanh 
^na^ 

eqn. 1.9 

Where a is the repeat unit length of the dimerised chain lattice and ^ is a variational 

parameter that represents the length scale over which the soliton extends. Numerical 

calculations to minimise energy with respect to ^ give an optimum of: ^ ~ 7a. Hence the 

soliton is really a region in which a gradual switch over of phases takes place, with a 

length of order 7a corresponding to an influence over some 14 carbon atoms. 
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/ V V V V ww\ 
(a) phase 'A' (b) phase 'B' 

/ V V V W V V V X 
(c) soliton 

Fig. 1.3 Structural representation of a bond alternation defect (soliton) in 

polyacetylene, the dot represents an unpaired electron. 
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The distortion of the system around the soliton also results in a modification of 
the electronic structure. Creation of a soliton induces the creation of an electronic state 
halfway between the top of the valence (7C) and bottom of the conduction (TZ*) band. The 
lone electron associated with the bond mismatch is accommodated at this new energy 
level. The creation of the state at mid gap allows the lone electron to reside at an energy 
lower than a state in the conduction band. This mid gap state is, however, localised to 
the bond alternation lattice distortion, or soliton defect. 

If this lone electron is removed or another added, by oxidation or reduction, it is 

clear that the soliton state can have three combinations of charge and spin as per fig. 1.4. 

These are: 

1. Neutral soliton, Ŝ , as described above, which has zero charge and 

spin, S ±1/2 contributed by the lone electron in the mid gap state. 

2. Negatively charged soliton S' with two electrons occupying the mid 

gap state, hence possessing zero net spin. 

3. Positively charged soliton 8+ with no electron at mid gap and thus no 

spin 

The soliton then describes how charges may exist on the chain of polyacetylene 

after doping. Such charges are highly localised, being bound to the lattice distortion i.e. a 

situation analogous to strong electron-phonon coupUng in conventional inorganic 

semiconductors. 

In the process of doping (oxidative or reductive) of polyacetylene it can be 

shown that it is energetically favourable to create charged soliton states as opposed to 

removing or adding electrons from the conduction or valence bands respectively. It is 

this fact which outlines the major difference between organic and inorganic conductors. 
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Fig. 1.4 Energy level diagrams for tiie three possible charge and spin 

combinations of the soliton state. 
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Of course, the presence of a few positive or negatively charged solitons cannot in 
itself give rise to electrically conductive, metallic behaviour since neither of the charged 
soliton species would give rise to a partially filled band structure with an appreciable 
density of states at tiie Fermi level. The solitons are also localised individual states. If tiie 
level of doping is increased, however, the density of charged soUtons will reach a point 
where the mean distance between these defects is comparable with their length scale, ̂ . 
This transition should occur when around 6% of the carbon sites are doped, if ^ = 7a. 
At this point the chain ceases to be a lattice of A and B phases separated by discrete 
charged soliton defects. Instead the lattice is considered to have a homogeneous 
displacement pattern in which interaction between soliton mid gap states gives rise to a 
band of delocalised states between the main conduction and valence bands, which 
extends along the chain backbone. 

The soliton band is still only completely filled (negative soliton lattice) or empty 

(positive soliton lattice) and therefore metallic conductive behavioiu:, which is observed 

experimentally, would not be expected. To explain the observed conductive behaviour of 

doped polyacetylene requires a consideration of the effect of pinning of lattice defects by 

the charge of the electron donating or withdrawing species i.e. the dopant counterion. 

The description given here is only intended as a brief outline and the reader is referred to 

tiie paper of Rice and Mele [16] for a detailed explanation. 

This model predicts a perturbation of the system as a results of defect pinning by 

charged species in proximity to the chain backbone of doped polyacetylene. This causes 

an extension of band tails into the valence-soliton and soliton-conduction band gaps. In 

this way it is possible to have a significant density of states at the Fermi level, so 

permitting metaUic characteristics. 



16 

1.5 Polarons And Bipolarons 
In polyacetylene then, charged solitons are formed as electrons are added to or 

removed from the polymer chain during doping. These entities are really a region of 

lattice distortion, with associated charge ) 1, that separate two degenerate dimerisation 

phases of the chain system. 

Consider a polymer with non-degenerate A and B phases e.g. Polyparaphenylene 

(PPP) as shown in fig. 1.5 (a)&(b). Here, the benzenoid (A) form is considered to be of 

lower energy than the quinoid (B) form. A single soliton defect cannot exist in this 

situation since it would separate two phases of unequal energy. Because a soliton is 

mobile it would be unstable to a shift in site position that would reduce the length of the 

higher energy quinoid form until the whole chain relaxed to the lower energy of the 

benzenoid structure. 

Any bond alternation defect arising from the addition or removal of electrons to 

or from the polymer must therefore be configured in such a way that the chain returns to 

the same phase on either side of that defect. A defect of this type is termed a polaron and 

can be regarded as a bound pair of one charged and one neutral soliton. For PPP this is 

expected to take some form similar to that of fig. 1.5(b), in which a positively charged 

polaron has been formed as the result of removal of an electron from the chain [9]. 

The creation of a polaron, as for the soliton, causes a subtle change in the 

electronic band structure. In polyacetylene the formation of a polaron can be imagined 

when a neutral soliton approaches a charged soliton on the chain. At long separations i.e. 

greater than the soliton length scale, the two entities are discrete and the mid gap 

electronic states remain localised to the two specific sites. As the separation reduces to 

around one bond length, interaction of the two electronic states causes the raid gap state 

to split, leaving two new energy levels distributed symmetrically about the centre of the 

TZ—n* band gap. The general form of the electronic structiu-e characteristic of a 

positively charged polaron is shown in fig. 1.6(a). This singly charged defect has an 

associated spin (±1/2) in contrast to the spinless nature of the charged soliton, S+. 
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(a) benzenoid form (b) quinoid form 

(c) polaron 

Fig. 1.5 (a) and (b), the non degenerate conjugation phases of PPPand (c), 

charged polaron consisting of two bond defects. 

n 

4 
n 

polaron, ^ bipolaron, S ^ polaron-exiton 

Fig. 1.6 Energy level diagram for tiiree spin and charge configurations of tiie 

polaron. 
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This is contributed by a single unpaired electi-on which in simple terms, can be associated 
with tiie presence of tiie neutral sohton in tiie bound pair which forms tiie polaron [17]. 
Removal of the electron results in tiie formation of tiie doubly charged, spinless polaron 

or bipolaron, see fig 1.6(b). 

Another way to view the polaron formation is to consider the possible energy 

schemes available for removal of an electron (ionisation) of, for example PPP. The Frank 

- Condon principle (which states that during an excitation, an election is unable to 

change momentum) must apply during the ionisation process. Hence the electronic 

transitions are represented as vertical jumps in the energy diagram of fig. 1.7. In tiiis 

diagram it can be seen that an effective lowering of the ionisation energy, Ej-gj, can be 

achieved if the structure is first distorted to the quinoid form. Hence the local distortion 

of the lattice provides a stable configuration for accommodation of a positive charge. 

The formation of a bipolaron will take place if, when the impaired electron is 

removed, further distortion of the lattice at the polaron site can produce an energy 

advantage greater than the reduction in electiostatic energy tiiat would result from 

increasing the separation between the two positive charges. In polyacetylene bipolarons 

are expected to dissociate into two polarons as a consequence of the above energy 

consideration, whereas bipolarons are a favourable configuration in systems such as PPP 

and polypyrrole (PPy). Indeed, the very low Pauli paramagnetic susceptibility measiu-ed 

in both PPP and PPy at high doping concentrations would suggest the presence of 

spinless bipolarons and not polarons, which would contribute an appreciable 

concentration of unpaired spins. 
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Energy 

ionised state 

ground state 

Y ^ — ,Y .distort 

Increased distortion 

benenoid quinoid 

Fig. 1.7 Representation of the decrease in ionisation energy E^^i gained as a 

result of structural distortion in a non degenerate polymer e.g. PPP. 
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1.6 Polyaniline 
Examples of polymers which contain heteroatoms are numerous and include 

materials such as polypyrrole (PPy), polythiophene (PT) and many other configurations 

incorporating elements of these structures. In these species atoms other than carbon are 

resident in the polymer chain. The sulphur and nitrogen atoms in PT and PPy are 

members of ring groups, hence the conjugation of carbon-carbon bonds is not broken in 

these structures. 

The polyanilines are another family of heteroatomic polymers. Unlike the many 

thiophene and pyrrole variants, however, the nitrogen atoms in the polyaniline (PANi) 

structures occupy primary sites in the chain backbone. In these structures the heteroatom 

plays a key role in governing the properties of the system since there is no continuous 

carbon-carbon system. The name polyaniline applies in general to a group of three 

possible structures which were first synthesised in some form more than 100 years ago 

[18,19]. The three forms, shown in fig. 1.8, are regarded as different oxidation forms of a 

polymer [20], constructed from alternate benzene rings and nitrogen atoms. These, in 

increasing order of oxidation are: 

1. Leucoemeraldine, fig. 1.8(a), the fully reduced form of the polymer 

which contains no quinoidimine units. This material is unstable to 

oxidation in air. 

2. Emeraldine base, fig. 1.8(b), which has a mixture of benzenoid and 

quinoidimine groups. This form is stable in air and soluble in some 

polar solvents. 

3. Pemigraniline, fig. 1.8(c), the fiilly oxidised form which is also 

conjugated to full extent. This structure is difficult to synthesise 

because of a susceptibility of the quinoid sites to hydrolysis. 
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(a) leucoemeraldine base 

(b) emeraldine base 

(c) pemigraniline base 

Fig. 1.8 The polyaniline family 
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Altiiough tiie intiinsic properties of the 3 oxidation states of PANi are tiiose of 
electrical insulators, emeraldine base yields a salt form, PANi-ES upon treatment witii 
acid of pH < 3. This protonation is accompanied by an increase in tiie electrical 
conductivity of the material by a factor in the region of 10^ .̂ PANi-ES can be processed 
in the form of free standing films which have maximum conductivity in the range 200 to 
400 Scm-1 as reported here (chapter 3) and elsewhere by otiier groups e.g. [21]. 

The degree of protonation can be controlled through variation of the pH of the 

acid, with lower pH values giving increased levels of protonation. It is widely accepted 

that the maximum doping level and hence the highest conductivity obtained occurs when 

half of the nitrogen sites on the chain are protonated. Treatment of PANi-ES with 

aqueous alkali causes de-protonation and the insulating emeraldine base form is 

recovered. 

The transition to conductive behaviour observed upon acid doping is doubly 

intriguing. Firstiy, the emeraldine base form of the polymer is not strictiy conjugated i.e. 

alternation of single and double bonding does not extend along the full length of tiie 

polymer repeat unit, as it does in the pemigraniline structure. Secondly, the process of 

protonation does not alter the number of electrons on the chain c.f oxidative doping of 

polyacetylene, polythiophene or polypyrrole. How then does PANi-ES fit in with the 

tiieories for tiie 'conventional' conjugated polymers discussed in previous sections? 

To answer this question it is necessary to look at the effect on the system arising 

through protonation. In the doping process it is thought that protons attach themselves 

to the imine nitrogen atoms [20]. Therefore at full doping, botii imine nitrogen atoms are 

protonated per repeat unit, in line with the theoretical maximum protonation (50% of the 

nitrogen atoms) mentioned above and the repeat unit might be expected to have the 

configiu-ation shown in fig. 1.9(a). This is clearly a polymer chain with one bipolaron per 

repeat unit, contained in the quinoid structure. However, magnetic studies on well 

characterised PANi-ES [22] show that the material is stiongly paramagnetic, in 

contradiction to the diamagnetic behaviour which would be expected of a lattice of 

spinless bipolarons. 
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The widely accepted view is that once the two imine sites have been protonated 

the bipolaron structure disproportionates into a polysemiquinone radical cation structure 

as per fig. 1.9(b) which has two separated polarons per repeat unit [23,24]. Alternative 

resonance forms of this structure are possible where the positive charges and spins reside 

on the other two nitrogen sites. With this configuration it is possible for significant 

delocalisation of charge and spin along the chain backbone. 

Interaction of the polaron wave functions of neighbouring sites is predicted 

because polarons must have some spatial 'spread' similar to that described for soliton 

defects in section 1.4. Mixing of the polaron states then gives rise to a partially iBlled 

band of delocalised states [23]. This model of PANi-ES as a pseudo-one-dimensional 

lattice of interacting polaron states thus provides a possible explanation for the metallic 

properties which have been observed by experiment 
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(a) bipolaronic structure in protonated emeraldine 

(b) polyseraiquinone radical cation structure 

(disproportionated bipolaron) 

Fig. 1.9 Alternative arrangements for the structure of protonated emeraldine 
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1.7 Synthesis And Processing Of PANi 
The experimental studies of the properties of PANi-ES presented later in this 

thesis were made using free standing films of the material. Synthesis and processing of 

the samples was performed 'in house' according to the following methods. 

Emeraldine base polymer was synthesised chemically by oxidative coupling of 

aniline in acidic solution [25]. This process has been optimised by Dr P.N. Adams 

through careful choice of reaction temperature and oxidant to yield a material of high 

molecular weight, yet low concentration of impurities and chemical defects [26]. The 

high molecular weight of this material (typ > 100,000) as estimated by GPC analysis 

corresponds to polymer chains consisting of some 250 or more four ring repeat units. 

Emeraldine base is thus produced in the form of a blue-black powder which is 

moderately soluble in a limited number of organic solvents. Processing of this material 

into films of the highly conductive emeraldine salt is realised with either of two methods. 

1. The NMP route: Emeraldine base is dissolved in N-methyl-2-

pyrrolidinone(NMP) to a concentration of 5% by weight and 

homogenised to ensure complete dispersion of the polymer. The 

solution is centrifiiged for 1 hour at 4000 rpm to force out any 

suspended particulates before it is poured onto the surface of glass 

slides at an approximate density of 0.05 gcm-2. Evaporation of the 

solvent in a vacuum oven at approx. 60^ yields films with a dark 

coppery appearance of thickness = 80 |xm which can be peeled fi-om 

die glass substrate. If desired the samples can at this stage be stretched 

to induce some uniaxial orientation of the polymer chains. Hiis 

process involves the application of mechanical stress to the film under 

conditions of elevated temperature (typ 80 to PO^C). Finally 

protonation of the material to give the conductive form is performed 

by immersion of the film in aqueous methane sulphonic acid at a 

concentration of 15% by volume, for a period of 4 hours. After doping 
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the appearance of the films is changed to a glossy dark blue.This 
material is referred to as PANi-NMP 

2. The CSA route: Quantities of emeraldine base and meta cresol are 

weighed such that a solution of 4% emeraldine base by weight will be 

produced. A small portion of the solvent is set aside before the 

polymer is dissolved, homogenised and centrifuged as per method 1. 

The polymer is then protonated in solution by addition of camphor 

sulphonic acid (CSA), dissolved in the unused meta cresol. The ratio 

of acid to polymer can be varied, thus the level of protonation and 

hence the charge carrier density in the polymer can be controlled. For 

example, ratio of 2 moles of polymer to 1 mole CSA would constitute 

50% nitrogen site doping. This mixture is spread onto silicon wafers 

and dried in a vacuum oven to produce conductive films, 

approximately 50 |im thick. This material is referred to as PANi-CSA 

A comparison of the films produced by these two methods reveals that there are 

advantages and disadvantages associated with each. The NMP route allows the 

production of very high quality films of even thickness which, are virtually free from 

pinholes. Alignment of the polymer chains within these samples is relatively easy 

through the stretching process developed by P.J.Laughlin which allows sample 

elongation exceeding 700% (ULQ = 8). This facilitates the study of electrical anisotropy 

arising from the partial orientation of the conductive chain backbones along a common 

axis. 

However, the typical electrical conductivity obtained in NMP processed samples 

is significantly less than for comparable samples produced via the CSA route e.g. for 

unstretched fihns CffMP « Scm-1 while (̂ csA " 300 Scra'l. This difference is 

thought to be a result of more homogeneous dispersion of the dopant species when 

protonation takes place in solution (CSA route) as opposed to in the solid state (NMP 
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route). The NMP samples also show a strong relation between conductivity and 
moisture content. Removal of water absorbed by a film by placing it under vacuum is 
accompanied by a drop in conductivity to a around 20% of the original value measured 
under normal atmospheric conditions. 

Samples produced via the CSA route, on the other hand, show a conductivity 

decrease of less than 5% after 24 hours under vacuum. It is, however, more difficult to 

produce large area films ( >10 cm^) of the CSA material with a quality comparable to 

that provided by that of the NMP route. In addition this material is not so readily 

stretch oriented (typical maximum extension ~ 100%). 

These two methods of producing conductive polyaniline films, provide two 

oppormnities for the study of electrical transport mechanisms in a polymeric medium. 
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CHAPTER 2 

Conduction l\/lechanisfns 

2.1 l\/»acroscopic Structure Of Polymers 

In chapter 1 the mechanisms through which organic polymers such as 

polyacetylene and polyaniline are able to exhibit electrically conductive behaviour on the 

molecular scale have been described. At the macroscopic level, however, electrical 

conduction within a sample of material does not depend on transport along the polymer 

backbone alone. Otiier charge transport processes must also affect the progress of holes 

or electrons, for example transfer of carriers between polymer chains or across chemical 

defects in a chain. If the polymer has any crystal structure, grain boundaries may also be 

present within the material, and will make a contribution to the large scale electrical 

properties. 

The electrical conductivity of bulk polymer samples can be modified if, via 

application of uniaxial stress, some alignment of the chain structures is introduced. Along 

the axis of aligmnent, conductivity can be increased markedly over that of an unoriented 

sample. Conversely, perpendicular to this axis, the conductivity is relatively unchanged. 

This phenomenon provides evidence for the (quasi) one-dimensional nature of 

electrical carrier transport within individual chains. The electrical anisotropy induced in 

chain oriented samples indicates that the polymer backbone provides a path of least 

resistance for carriers, since the direction in which chains are aligned is also that for 

which the conductivity is a maximum. The conductivity observed in the direction 

perpendicular to alignment, for polyaniline (see chapter 3), is similar to that observed in 

unoriented samples. This is ascribed to the fact that the frequency of interchain transfer 

"hops' required for carriers to traverse the sample along this axis is relatively similar to 

that in an unsfretched sample of polymer. It is a widely held view that the interchain 

transfer process is a major limiting factor of conduction in polymer samples where there 

is littie or no regular interchain order [1]. In fact, stretch orientation has been widely 

employed to enhance the conductivity of polymer samples in the search for the intrinsic 
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nature of the polymer chains. Polyacetylene prepared in this manner has been reported to 
exhibit conductivity >100,000 Scm'̂  along the alignment axis [2]. This is an extremely 
high value for a polymeric conductor and is comparable with that of copper {- 650,000 

Scmh 

The mechanisms involved in the transport of charge carrier species in any 

material can be investigated via measurement of properties such as conductivity and 

thermoelectric power. Most conductive polymers, including polyaniline, have electrical 

conductivity with a temperature dependence far removed firom that of crystalline metals. 

Typically, there is an exponential dependence on temperature which fits the general form 

for variable range hopping (VRH) described in section 2.4. 

In contrast to conductivity, thermoelectric power measurements on polyacetylene 

[3,4,5] and polyaniline [6,7] have repeatedly shown a linear dependence on temperature, 

which is strong evidence for the existence of metallic states in these materials. The 

dichotomy in measured electrical properties has given rise to a heterogeneous model as 

proposed by Kaiser [8,9,10]. The polymer is considered, on some microscopic scale, to 

be constructed fi-om highly conductive metallic regions which are separated by thin, 

electrically insulating barriers. It is the presence of these barriers which then governs 

current flow in the bulk material. In this general model the insulating barriers could arise 

on the molecular scale, from the energy required for carriers to make the transfer to 

another polymer chain or the barrier to charge transfer between larger regions of the 

polymer in a granular system. In either case, the heterogeneous model provides one 

explanation for the absence of classical metallic behaviour in the conductivity properties 

of organic conductors. This model does, however, still allow for the character of the 

metallic regions to show up in non current carrying processes such as thermopower, see 

section 2.5. 

In recent years, the chain length of polyaniline has been increased and the density 

of defects reduced by optimisation of the chemical synthesis described in sec. 1.7. In 

addition to this, development of the CSA solution state doping process has improved the 

conductivity to values of 300 Scm"̂  or more in unoriented film samples. In addition, the 
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temperatiire dependence of conductivity has changed from the VRH form to that of a 
system very close to true metalUc behaviour [11,12]. It is useful, tiierefore to consider 
the nature of these materials in more detail. 

2.2 Disorder And Electron Localisation 
For Polyaniline, the conductivity, displays characteristics which differ from 

classical metallic behaviour in two major respects. Firstiy, the magnitude of conductivity 

reaches only to 300-400 Sera"! in the best samples whereas typical metals are of the 

order 1000 times more conductive. Secondly the variation of conductivity with 

temperature typically shows a large positive coefficient i.e. conductivity iucreases 

strongly as a fimction of temperature and tends to zero in the limit of zero temperature. 

Most crystalline metals, Cu, Al, etc. display a small negative temperature-conductivity 

coefficient However, according to Menon etal. [11,12] some samples of polyaniline, in 

the form PANi-CSA, have recently been shown to exhibit slowly decreasing conductivity 

with increasing temperature over the range 180 to 300 K This metallic character was, 

however, fi-ozen out at low temperatures and below a peak at 180 K, conductivity 

decreased as temperature was reduced. 

A starting point for understanding the electronic properties of polyaniline (and 

other conductive polymers) is provided by theory developed for non crystalline inorganic 

semiconductors and metals and discussed in the book by Mott and Davis [13]. The 

structure of polyaniline, at the intermolecular level is strongly dependent upon the 

method of processing employed. PANi-NMP (in stretched or unstietched form) does not 

appear to posses any long range stiiictural order. This would not be expected either, 

since the bulk polymer is likely to be a matrix of tangled chains of unequal lengths and 

dissimilar structural conformations. Hence there is littie chance for regular crystalline 

stiTicture to become established. However, x-ray stiidies upon PANi-CSA reveal that 

this material contains crystalline regions. This feature, combined witii the (relatively) high 

magnitude and metallic response of its electrical conductivity, is commensurate with the 
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idea that charge transport in PANi-CSA is due in part to diffusion through metallic 
regions [11,12]. 

The absence of a regular lattice structure in a non crystalline material directly 

affects the nature of electronic wave functions therein. There is certainly Little chance that 

they take the periodic or Bloch form imposed by a regular stmcture. Mott and Davis 

[13] suggest two possibilities for the scattering effect on electrons resulting from the 

presence of defects or impurities. The first is that the scattering is only weak so that the 

free electron approximation can be applied and the electron energy written as: 

E(k) = eqn.2.1 
2m 

Where k is the electron wavevector and m the effective mass. Since only two electrons 

(with opposing spins) can occupy the same energy level, the expression for density of 

states in a three dimensional solid can be written: 

N(E)=^ . 3 eqn.2.2 
7C n 

Where N(E) is the density of states at energy E per imit volume. This case is really only 

applicable to a lattice system containing defects or impurities at low density such that the 

mean free path is long i.e. k ^ » 1. 

In a non crystalline medium the disorder in the structure leads to both a reduction 

in mean free path and deviation from the simple density of states function of eqn 2.2. In 

this second case, first applied to amorphous metals and alloys, as the scattering becomes 

strong, i.e. k ^« 1, there is a significant alteration of the density of states function from 

the free electron form and the concept of a Fermi surface becomes meaningless due to 

the large uncertainty in Ic As the strength of scattering increased, the electron wave 

functions at some energies become localised, decreasing exponentially in amplitude with 

distance. Still stronger scattering results in a wider band of energies over which the 

elecfronic states become localised. 
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This phenomenon is known as Anderson localisation after Anderson who first 
proved that this effect occurs in the case of strong electronic scattering. The important 
feature of non crystalline systems revealed by this theory is that it is possible to have an 
electronic band structure with a finite continuous density of states function in which 
some, or all of the states are localised. Consider the case where die band states are filled 
to some Fermi energy, Ep, where the electi-onic states are localised. Anderson showed 
that it is possible to realise a condition where electiical conductivity vanishes as 
temperature approaches die absolute zero limit, even tiiough the density of states N (Ep) 
is non zero. Materials in which this behaviour occurs are called Fermi glasses. For 
crystalline materials, insulating behaviour only occurs where N(Ep) = 0, a condition 
typically provided by the presence of an energy gap separating the filled and empty 
electronic states, e.g. in intrinsic semiconductors such as silicon. 

In theoretical terms it is considered that the condition of Anderson localisation 

occurs when there is sufficient disorder in a given structure such that solutions to the 

Schrodinger wave equation are spatially localised. The model used by Anderson in order 

to picture the process of localisation begins with a regular array of potential wells, 

spaced at interval a. Application of the tight binding model to this system reveals that the 

allowed electionic states lie in a narrow energy band. This case is just equivalent to the 

creation of metallic impurity bands by donor/acceptor species in a semiconductor. 

If the wave functions of adjacent wells have only small overlap and are assumed 

to have spherical symmetry, the energy levels for a simple cubic lattice take the form: 

E = Wo+W^ eqn.2.3 

Where WQ is the energy for an electron in a single well and 

Wk = - 2 l ( c o s M -f-coskya-l-cosk^aj eqn. 2.4 

The factor I in eqn. 2.4 is die ti-ansfer integral which describes how strongly 

neighbouring states interact. It is considered to take the form, [13]: 

I = Ioexp(-aR) eqn. 2.5 
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where R is the distance from the well. So the wave function for an electron in a single 
well is modulated by the exponential factor in the transfer integral such that it decreases 
in amplitude with increasing distance with a length factor a shown to be: 

a = -̂̂  —— eqn. 2.6 

n 
where m is the electronic mass. The bandwidth of energies produced by the array of 

wells with lattice co-ordination number z, is given by the relation: 

B = 2zl eqn. 2.7 

Disorder can be introduced into this system in two ways such that the array of 

potential wells becomes aperiodic. 

1. Random variation in the well potential. 

2. Random spatial displacement of the well sites such that the long range 

order is destroyed. 

For case 1 Anderson supposed that the well depths take values at random 

between theoretical Umits at ±VQ, which describe the spread of energies. The effect on 

electronic mean free path I for small VQ is described approximately [13], by the relation: 

- = ^ — ^ = -2- = 5z eqn.2.8 

where a is the lattice spacing and z is the co-ordination number. 

What then is the critical condition which marks the onset of localisation? The 

loffe-Regel mle places a general lower limit on the mean free path of an electron such 

that the case k̂  < 1 is not allowed. Interpreted in another way, this means that I cannot 

be shorter than the distance between scattering species. Therefore if this limiting 

condition l-Siis imposed, eqn. 2.8 gives: 

- ^ = V32i eqn. 2.9 
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This defines the condition for which the potential well energy disorder (characterised by 
VQ) becomes great enough to force the mean free path to its smallest theoretical limit 

Quantitatively, the onset of localisation is reached when VQ/B reaches some 

value, ~ 2 according to Mott [13], such that wave functions of individual wells only 

suffer tiny perturbations from their neighbours. If die interaction is small enough, wave 

functions become localised and electrons are no longer free to diffuse. Hence the Fermi 

glass state is reached and conductivity tends to zero with decreasing temperature. 

For a conductive polymer, spatial disorder is expected to have a strong bearing 

on the electrical behaviour of the material. An estimation of the localisation criterion in a 

system with such irregular order is again given by Mott and Davis [13] : For a material 

consisting of N atomic sites per unit volume the distance from one atom to its nearest 

neighbour is assigned the value where: 

4 1 
-7Cr,=— eqn. 2.10 
3 ^ N ^ 

The energy of an electron centied at either of the sites on any chosen pair of atoms is 

then defined, from the expression for the transfer integral (eqn. 2.5) as: 
Ioexp(-(Xri) = Vo eqn, 2.11 

Because the distance is different for all pairs due to the spatial disorder, Mott 

uses the resulting spread in electron energy states to define an approximate VQ. This 

parameter thus provides an approximate representation for the range of site energies, in 

analogy with the case where disorder arises due to random variation in potential well 

energy. Similarly, a bandwidth B for die electronic states is defined from die average 

distance V2 =(N/2)-l''3 between site pairs. Using die transfer integral again, and by 

analogy to eqn. 2.7 this is: 

B = 2zIo exp(-(Xr2 ) eqn. 2.12 

where z is the co-ordination number. From diis approximation it is again possible, in 

dieory, to define some criterion for die level of spatial disorder at which die ratio VQ/B 

approaches the range for which the electi-onic states become localised. For the case of a 

conductive polymer, where the electronic states are molecular, rather than the atomic 
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states assumed in the models of Anderson and Mott, it is difficult to apply the ideas 
discussed in this section except on a simple qualitative basis. However, the theory of 
disorder induced charge carrier localisation does provide one possible explanation for the 
low values of electrical conductivity displayed by polymeric materials, e.g. early 
polyaniline [6,7,11] 

2.3 Conductivity In Disordered Media 
Electrical transport in a disordered medium depends strongly on the nature of the 

electronic states at the Fermi level. The nature of these states, be they localised or 

diffuse, leaves its signature in the temperature dependence of the electrical conductivity 

of a material. In section 2.2 it is shown that as a conductive medium becomes 

progressively more disordered, localisation of electronic states occurs over a wider range 

of energy. For some typical amorphous materials it might be expected that electronic 

states up to some energy are localised. E^. then defines the boundary that separates 

localised and non-localised states in a band. This boundary is termed a mobihty edge. 

The electrical properties of the system thus depend on the position of the Fermi 

level, Ep, in relation to E^ for which there are considered to be three important cases: 

Ep > Ec 

Ep < Ee 

Ep = Ee 

Condition 1 is the simplest configuration, since Ep lies in the region for which 

electtonic states are delocahsed. This is just the metaUic case where the electrons which 

contribute to conduction (those with energy ~ Ep) are free to diffuse. In the second case, 

where the Fermi level is below E^ in the region of localised states, electron transport can 
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occur via two mechanisms: Thermally activated hopping (see section 2.4) and by 

excitation to the band of delocalised states above the mobihty edge at E^. The electrical 

conductivity in diis latter case has an activation energy which depends upon (Ep - E^) 

and takes the general form [13]: 

«̂ ex = <5min exp[(Ep - E^) / k l ] eqn. 2.13 

^min ^ minimum metallic conductivity which occurs in the case Ep = E^. It 

represents the smallest non-zero value that conductivity can have before the onset of 

localisation, whereupon conductivity vanishes in the zero temperature Umit The value of 

^min depends upon the factor VQ/B defined in section 2.2 and hence upon the ratio of I, 

the carrier mean free path to a, the nominal spacing of electronic 'sites' and is described 

by Mott for the case of disordered alloys. An approximation for the minimum metallic 

conductivity is given [13] for the case where the criterion for Anderson locahsation is 

satisfied, nominally VQ/B = 2. This is 

0.0266^ 610 
^ m i n = — ; = Scm-1 eqn. 2.14 

hdi a 

Menon et al. [12] have found strong evidence from conductivity measurements 

that polyaniline, in the form PANi-CSA is characteristic of a material very close to the 

metal insulator tiransition boundary defined earlier by consideration of the relative 

positions of Ep and E^.. In this work a comparison is also drawn between the 

conductivity of die polymer («300 Scm-1) and typical estimates for die minimum metallic 

conductivity in disordered alloys, e.g.[13]. 

2.4 Variable Range Hopping 
In section 2.3, two conductivity mechanisms are described for the case where Ep, 

the Fermi energy lies below the boundary energy separating localised and extended 

conductive states. These are excitation of electrons to the mobility edge at E^. for which 

the conductivity behaves according to the form of equation 2.13 and variable range 

hopping. 
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The excitation process is expected to make only fractional contribution to the 

total electrical transport unless the temperature is high, or the activation energy (Ep-E(^ 

is low. When Ep is situated well below E^, the dominant mechanism of conduction arises 

via thermally activated hopping of electrons between localised electronic states. This 

gives rise to a conductivity of the form derived by Mott [13]: 
1 

a = GQ exp[-To / T]d+1 eqn. 2.15 

for d = 1, 2 or 3 depending upon the number of dimensions for in which electron 

transport is allowed. In simple terms, this formula arises from a consideration of the fact 

that an electron at Ep will be most likely to make a hop to some state which requires the 

lowest activation energy. Mott considered that there is a greater number of suitable sites 

for larger hop distances. However, since the electrons are localised, the probability of 

making a hop reduces exponentially as a function of the distance between initial and final 

states. 

The average distance of electron hops defines a localisation length, L .̂ upon 

which TQ, the characteristic temperature depends. For conduction in three dimensions, 

TQ can be expressed as: 

where Kg is the Bolt2mann constant and N(Ep) is the density of states at the Femii 

level. 

In the many studies of the conductive behaviour of heavily protonated PANi, the 

temperature dependence of the electrical conductivity fits a form of the variable range 

hopping model and appears to tend to zero in the limit of zero absolute temperature. 

Typically, in samples with lower ranges of conductivity (10-30 Scm'̂ ), as reported in [7] 

or [14], the behaviour is characteristic of a quasi-1-dimensional system i.e. d = 1 in 

equation 2.15. In more highly conductive samples e.g. [11,12] for which it has been 

claimed that the system is close to a insulator-metal boundary, the conductivity at low 
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temperatures (< 100 K) has a character suggestive of variable range hopping in three 
dimensions. 

However, variable range hopping (VRH) is not the only means by which the 

macroscopic charge transport may deviate from a metalhc nature in a system with 

disorder or defects. Other models which have been suggested to account for the non-

metallic properties observed in conductive polymers include fluctuation induced 

tunnelling (FTT) and charging energy limited tunnelling (CLT). 

The fluctuation induced tunnelling model of Sheng [15] provides a model for the 

electronic transport in a disordered or granular metallic system. In this case charge is not 

localised to states on the atomic level, as for VRH, rather the material is considered to 

comprise large regions with extended 'metallic' states separated by potential barriers. 

Tunnelling of electrons between these metallic grains or islands is considered to be the 

limiting factor for the conductivity of the bulk material. Sheng considered that the 

effective height of a given tunnel barrier could be reduced by fluctuation of the voltage 

across the timnel 'junction' owing to the random thermal motion of charge (electrons) 

within the adjoining metallic regions. The result of this consideration is that the 

tunnelling current becomes temperature dependent. The form of conductivity which 

results from a network of metallic islands and barriers in a macroscopic system is 

calculated by Sheng [15] and described by the relation: 

O = exp[-Ti / (T + To )] eqn. 2.17 

where depends upon the average barrier height or grain spacing. Tg represents the 

temperature for which the thermal fluctuations produce a significant contribution to the 

timnelling current compared with the temperature independent elastic timnelling. 

Early polyacetylene results c.a. 1980 [16] were shown to have an electrical 

conductivity characteristic very close to that predicted by the FIT model. The metaUic 

island and barrier structure required for true FIT conduction was thought to arise as a 

consequence of chemical bonding defects in the polymer chains or from inhomogeneous 

doping of the material. 
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Motion of electrons by tunnelling in a granular system is also subject to 
limitations due to electrostatic forces. If the metallic grains are small enough then the 
electrostatic energy required to move an electron from one grain to another will become 
significant compared to the thermal energy =kT available to make the hop. In this case 
the conductivity of a material is expected to have the following form [17]: 

0 = GQ exp[-To / T]^^^ eqn. 2.18 

where TQ depends upon the size and spacing of the metallic islands. It could be 

envisaged that such a process might affect the transfer of charge carriers between the 

metallic states of neighbouring chains in a conducive polymer. 

The electrical transport within any disordered material is therefore subject to 

limitations arising from several possible phenomena. These effects can be described by 

models such as VRH between localised states on the atomic/molecular scale and 

tunnelling between extended metallic regions. 
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2.5 Thermopower 
Measurement of the thermoelectric power (thermopower) of a conductive or 

semiconductive material provides another approach in addition to measurement of 

conductivity by which electrical transport mechanisms may be studied. Thermoelectric 

measurements are made with a zero current process, that is, no external electric field is 

applied to samples under test. This important factor permits the thermopower to show 

behaviour in a material which is not revealed in the data from electrical conductivity 

measurements. With particular reference to conductive polymers, such as polyacetylene 

and polyaniline, it is common for thermopower to reveal strongly metallic character 

whilst conductivity data best fits a hopping or tunnelling transport model. 

The thermoelectric properties of metals were studied by Seebeck in the early 

nineteenth century. He discovered that the presence of a thermal gradient in a conductor 

gives rise to a small e.m.f., a phenomenon which is now known as the Seebeck effect. A 

quantitative definition for this property is as follows: 

AE 
S(T) = eqn. 2.19 

AT ^ 
S(T) is the Seebeck coefficient, commonly referred to as the thermopower and has the 

units microvolts per Kelvin. It defines the e.m.f, AE generated across a small 

temperature gradient, T ^ T + AT in a given material. The absolute thermopower is a 

function of temperature, so that the total e.m.f. resulting from a large temperature 

gradient, say from Tj to T2 is calculated by the integral: 

E = Ĵ ^S(T)dT eqn. 2.20 

The property S(T) depends on the exact electronic structure of the material in 

question, and is different for aU metals and semiconductors. Indeed it is the difference in 

e.m.f. generated by two different metals under the same temperamre boundary 

conditions that permits the constiiiction of thermocouples for use in thermometiy. The 

thermopower of a material therefore contains valuable information regarding the nature 

of electronic states involved in charge transport processes. 
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The simplest model of a metallic system is that of the diffusion thermopower, in 
which only the heat carried by electrons is considered [18]. The more complicated 
electron-phonon interaction is ignored at this stage. In simple terms the diffusion 
thermopower is the e.m.f. resulting from the movement of charge carriers in taking heat 
from the 'hot' to the 'cold' end of the sample. The thermal energy carried by an electron in 
a metal is the difference between its internal (total) energy and the Fermi energy such 
that: 

h i = E i - E p eqn. 2.21 

The Peltier heat 11 of a material is defined as the ratio of heat flow to charge 

flow, or the thermal energy carried per unit charge and can be expressed as: 

eqn. 2.22 
eXiVi(^) 

Where the total thermal and electrical current is the summation over individual electrons 

with thermal energy lij and velocity component Vj along the x axis. The Peltier and 

Seebeck effects are related through the expression: 

n = TS eqn. 2.23 

where T is the absolute temperature. Combining equations 2.21,2.22 and 2.23 yields an 

expression for the thermopower: 

1 I i ( E i - E F ) V i ( ^ ) 
S = — ^ eqn. 2.24 

If the expression is changed from a simimation over electron velocities to a 

summation over currents i.e. Jj = evj and the electrons grouped according to energy, so 

that a current j(E)d(E) is associated with all electrons in the energy range from E to 

E-»-dE it can be shown that [18]: 

1 J ( E - E F ) j , ( E ) d E 
S = — r • eqn. 2.25 

eT Jj,(E)dE 
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The individual currents, j„ can be broken down in terms of <J,(E), the 

contribution to conductivity by electi-ons with a given energy, the electi-on distribution 

(Fermi) function,/o(E) and an electric field such tiiat: 

j . = - e J < ^ . ( E ) ^ d E eqn. 2.26 

substitiiting for j„ in equation 2.25 gives: 

1 j ; a . ( E ) ( E - E p ) | d E 
S = — eqn. 2.27 

Jo ' d E 

This general expression contains the fundamental clues about the nature of the 

diffusion thermopower. In a metal d^/dE, the differential of the Fermi-Dirac distribution 

function is only of a significant size over a range =dJcT about the Fermi energy. Hence, 

just as for conduction only the fraction of electrons with energies close to Ep make a 

contribution to the thermopower. Also, if GJE) is invariant with respect to energy then 

the integral in the numerator of equation 2.26 is zero and so in this case there would be 

no diffusion thermopower. 

So, a non zero thermopower arises only where there is a difference in the thermal 

flux due to electrons above and below the Fermi level. The sign of this effect depends on 

the nature of the election scattering. If the majority charge carriers are electrons and 

normal scattering applies i.e. higher energy electrons are scattered less, then G,(E) 

increases witii energy, so electrons transport heat and negative charge from tiie hot to 

the cold regions of a given sample. The thermopower is then of negative sign, since the 

resultant electric field is in the opposite direction to the thermal gradient. Positive 

thermopower is observed in semiconductors where holes are responsible for conduction 

e.g. the thermopower of p-type silicon. Therefore if only normal scattering of carriers is 

considered, the sign of the Seebeck coefficient should reflect tiie charge sign of species 

responsible for electiical OiansporL 
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To yield an expression for S specifically for metals it is possible to expand 
equation 2.27 with respect to temperature about Ep, since the expression is only 
significant for the small range of energies in the window Ep ±kT. The temperature 
gradient is assumed to be one-dimensional along the x axis, so the suffices can be 
dropped. This yields the most familiar expression for the metallic diffusion thermopower 
[18]: 

)^ raina(E)-
3e| I dE JE=E, 

where Ic is the Boltzmann constant and lei is the magnitude of the electronic charge. The 

important feature of this expression is that the diermopower contribution resulting from 

thermal diffusion of charge carriers has a linear dependence upon absolute temperature. 

However, direct calculation of S(T) is impossible since a(E) cannot be evaluated. 

The linear, negative therraopower predicted by the first order calculation of 

equation 2.28 is in fact widely disobeyed. For example the noble metals copper, silver 

and gold are all found to have positive thermopower. This phenomenon has been partly 

explained through a consideration that anomalous scattering of electrons may occur. In 

addition to this, a deviation from linear temperature dependence is observed in many 

metals (including the noble metals) at low temperatures, in the form of a peak at =50 K. 

This feature is known as the phonon drag peak. At low temperatures, the phonon-

phonon interaction is weak and so a net phonon flux arises where a thermal gradient is 

present. It is thus possible for phonons to contribute a net momentum to electrons via the 

electron-phonon interaction. This effect gives rise to an additional thermopower from the 

so called phonon drag. The sign of this contribution depends upon the nature of the 

electron-phonon scattering, such that normal scattering causes a negative phonon drag 

e.m.f. whilst Umklapp or backscattering causes a positive term, with electrons scattered 

against the phonon flux. 

At high temperatures, much greater than the Debye characteristic temperature of 

a material the phonon-phonon interaction is strong such that the phonons are in 
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equilibrium. In this case just as many phonons scatter an electron in one direction along 
the temperature gradient as in the opposite direction, so the net contribution to the total 
thermopower from phonon drag effects is practically zero. 

An important feature observed in data obtained firom highly doped conductive 

polymers such as polyacetylene [10] and, more recentiy, high quality polyaniline [12] is 

that the tiiermopower has an ahnost entirely Unear dependence upon temperature. In fact 

the behaviour of the thermopower in these materials is closer to the form of pure 

diffusion thermopower as predicted in equation 2.28 than for most metallic elements. 

There appears to be Htde evidence for the occurrence of phonon drag effects except for 

isolated examples of polyacetylene, as suggested by Kaiser [9] in an analysis of the 

results of Park et. al. [4]. 

The positive sign of thermopower in oxidatively doped polyacetylene is 

concurrent with the theory that doping results in the formation of positively charged 

solitons i.e. electrical ttansport is by conduction of 'holes'. For polyaniline, the formation 

of polarons in the chain structure upon protonation might also be expected to fit this 

picture. 

It can be shown [19] that the expression for diffusion thermopower can be 

written in an alternative form: 

S = 
3lel 

eqn. 2.29 
l E = E . AdE I aE. 

here S is expressed in terms of the Fermi surface area A and the carrier mean free path I. 

This form is useful because it facilitates some qualitative explanations for some of the 

deviations from expected behaviour which occur in the thermopower of metals. 

In the simple case, for a spherical Fermi surface, the area of the constant energy 

surface increases with increasing energy, hence 3 A/3E is positive. If scattering is again 

assumed to be normal, then dt /3E is positive also. This set of conditions yields the 

negative diffusion thermopower which is expected intuitively i.e. if electrons carry heat 

from hot to cool regions. 



47 

However for a system with a spherical Fermi surface in which positive holes are 
the dominant charge carrier the terra dA/dE is negative and so an overall positive 
thermopower can result where the magnitode of the term in A in equation 2.29 exceeds 
that of the term in E. In more complicated situations, distortion of the Fermi surface 
resulting in a non-spherical geometry and effects due to anomalous scattering affect the 
magnitude and sign of dAJdE and dl /dE respectively. Hence the thermopower of 
metallic systems depends on the electronic and physical structure of each individual 
material in such a way that there are few, if any general rules governing their 
thermoelectric properties, as revealed by experiment, e.g. the anomalous, positive 
thermopower displayed by the noble metals, Cu, Ag and Au [19]. 

Equation 2.29 also reveals that there is some dependence of thermopower on the 

mean free path length I, of carriers in a conductive medium. This is of particular interest 

with reference to the properties of polymer samples for which electrical anisotropy 

introduced via strain induced chain alignment The electrical conductivity of such 

samples is enhanced in one dimension, along the axis of chain alignment, which suggests 

that the mobility of charge carriers is higher when transport along chain backbones is 

predominant. Additional support for this theory is provided by the decrease in 

conductivity upon alignment for the conductivity perpendicular to the stretch axis. It is 

feasible to imagine that the mean free path length in aligned sample is anisotropic, with 

the largest value of i in the direction parallel to the axis of chain orientation. 

The supposed anisotropy in J, in conjunction with the expression for 

thermopower given in equation 2.29 is one possible explanation for the anisotropy 

observed in the thermopower data obtained from stretch oriented polyaniline, as reported 

in both [14] and in this thesis, in chapter 4 

When scattering of electrons becomes very strong, near the loffe-Regel limit in a 

disordered meditim, what happens to the thermoelectric power, does it assume a 

different behaviour, just as the form of the conductivity changes? Previously, the effect 

of imposing disorder upon a conductive medium has been considered (sections 2.2 to 

2.4). It has been shown that once disorder has reached the point where scattering 
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reduces the mean carrier path to the minimvun defined by the loffe - Regel rule, further 
disorder forces electronic states over some range of energies to become localised. 
Increasing the disorder past this threshold widens tiie band of energies over which states 
are localised. Furthermore, when the Fermi level is situated in a region of locaUsed 
states, the electrical conductivity ceases to show a metallic behaviour and becomes 
temperature activated, tending to zero at zero temperature. This is the Anderson 
transition, and the material is described as a Fermi glass. 

According to Mott and Davis [13] if the mean free path is shortened such that fr= 

a, where a is a measure of atomic spacing for an inorganic conductor, equation 2.28 can 

be written as: 

2(nkfTd\n[N(E^)\ 

'^^)=-in5 aT^ 
where N(Ep) is tiie density of states at tiie Fenni level. This expression ^pUes where 

scattering is not strong enough that elections are localised. When the electronic states 

are localised and electron ttansport is by hopping it is necessary to calculate a new 

expression for thermopower by integration of equation 2.27 over the range of hopping 

energies. Mott suggests that this range is of the order: 
W l̂cCToT^)^^^ eqn. 2.31 

for which Tg is defined in the expression for conductivity by variable range hopping 

(equation 2.15), So, for a system where the electtonic states at the Fermi level are 

localised as a result of disorder, the thermopower due to charge carriers transporting 

heat in a thermal gradient is: 

2 '"9li l(N)' 

2lel 
S(T)=:--^(ToT)i/2 eqn. 2.32 

I E . dE 

So, in an amorphous material, localisation of the electtonic states and the 

ttansition to Fermi glass behaviour does lead to a change in tiie behaviour of 

thermopower: S is expected to vary according to the square root of absolute 

temperature. 
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Therraopower data commensurate with electron transport via variable range 

hopping (VRH) have been reported for samples of conductive polymers. In 

polyacetylene, where only a small fraction of chains were oxidised (Hght doping), 

thermopower has shown a temperature dependence very close to that predicted in 

equation 2.32, e.g. Park et. al. [3,4]. Polyaniline samples have also displayed character 

akin to VRH as gauged from thermopower data, e.g. Sakkopoulos et. al. [21]. Electrical 

transport via hopping might be expected in these cases, where doping is incomplete, or 

uneven, such that electronic states contributing to a conduction band are widely or 

unevenly spaced. 
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2.6 Heterogeneous Models 
The data from measurement of electrical transport properties of conductive 

polymers frequently show a somewhat confusing behaviour. Whilst the electrical 

conductivity of a given material may have a temperature dependence most unlike that of 

a crystalline metal, its thermopower can display characteristics which fit the form for 

metallic diffusion thermopower almost perfectly. 

The highly metallic nature of thermopower in these cases suggests that, unlike the 

inorganic semiconductors [18], the number of charge carriers is invariant with respect to 

temperature. Therefore the positive variation of the conductivity with temperature, 

always observed in the lower regions of the available experimental temperature range 

must arise from some other mechanism. One way in which this unusual behaviour has 

been tackled is through the heterogeneous model, introduced briefly in section 2.1. The 

general supposition upon which this model is based is thai the material contains a 

microscopic network of distinct regions, each with individual conductivity values. In the 

simplest case the bulk medium would consist of two phases: highly conductive 'metallic' 

fibrils or islands and low conductivity or insulating barrier regions. The macroscopic 

electrical properties of the material depend on the quantity and electrical properties of 

both regions. 

Kaiser [9] considered that the conductive and insulative regions are characterised 

by conductivities Qj and G2 respectively. In a given sample, the conductivity depends 

upon the combination of all path lengths and areas of the two phases such that: 

O = L A - ^ X C L i j A r / a r ^ + L2jA2ja2^)-^ eqn. 2.33 
J 

where I^j is the length of the j ^ path in material i and Ay is the corresponding cross 

sectional area of the path. L and A are the respective length and cross sectional area of 

the bulk sample. If all paths through the sample have the same fractions of their total 

resistance arising from regions of each phase the conductivity can be written as: 

= fl^l^ + fl^l^ eqn. 2.34 
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where/i are geometrical weighting factors that represent tiie contribution made by each 

phase to the total sample resistivity. For appUcation to polymeric materials. Kaiser 

considered that tiie highly conductive regions are fibrils e.g. small bundles of chains. If all 

paths across the sample have the same resistance it is possible to write: 

L-A 
f . = - \ - eqn. 2.35 

here p is the number of fibrils which pass through the cross sectional area. In the case 

when C5i» O2 tiie macroscopic conductivity can be written: 

cJ^£^<,2 eqn. 2.36 

where L2 is the effective length of insulating material in a sample of total length L. 

The magnitude of the bulk conductivity in this case is governed by the length 

factor L2, of insulating material, so if L2«L, G can exceed However, the nature of 

the conductivity (its temperature dependence) follows tiiat of tiie insulating regions and 

reflects the electrical ttansport therein. The behaviour of the metaUic regions is thus 

masked. 

If a temperature gradient AT is applied to a heterogeneous sample, contributions 

to a thermoelectric voltage are expected from both phases of the material. The 

thermopower will be the sum of these two contributions i.e.: 

S = 45-Sl+4S-S2 eqn.2,37 
AT AT 

where and S2 are the absolute thermopower of the two material phases and ATj /AT 

is the fraction of the total temperature difference that exists across all regions of type i . It 

can easily be deduced that if the insulating barriers are thin i.e. L 2 « L again, and they 

conduct heat well then since ATi»AT2 the macroscopic therraopower is essentially just 

tiiat of tiie highly conductive regions, Sj. 

Witii tiie use of a heterogeneous model applied to conductive polymers it is 

tiierefore possible to provide an explanation for tiie unusual mixtiire of electrical 
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transport properties which are commonly associated with highly conductive polymers. 
The heterogeneous 'structure' could arise in these materials as a result of inhomogeneous 
doping, such that undoped sites act as insulating barriers. Alternatively, on a larger scale 
it has been proposed that samples containing crystalline regions are separated by 
boundary regions of low conductivity. Much of the work by Kaiser [5,8,9,10] is 
concerned with the development and application of these theories to conductive 
polymers. 
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CHAPTER 3 

Electrical Conductivity 

3.1 Experimental Techniques 

Aside from the scientific interest in conductive polymers it has long been 

recognised that they are a potential source of new electronic materials. For polyaniline, 

which offers the advantage of a relatively long term stability in air, applications such as 

electromagnetic shielding and electrically conductive coatings are envisaged. 

It is therefore important that the electrical properties of the material are 

characterised and an attempt is made to understand its behaviour in physical terms. The 

electrical conductivity of a substance is perhaps the most fundamental measure of its 

'electronic' nature. The magnimde of this property is a useful guide to the quality of the 

material and hence, its suitability for any for a particular application. Conductivity as a 

function of temperature can provide still more information about the mechanism(s) which 

govern charge transport in a material. 

In order to measure the electrical conductivity of a material precisely, there are 

several factors which influence the choice of an appropriate technique. These include the 

range of magnitude of conductivity, whether or not samples display electrical anisotropy 

and lastly, upon their physical proportions. Two methods were used to obtain the 

electrical conductivity data, presented later in this chapter, on free standing conductive 

polyaniline films: 

1. The Montgomery four point technique. 

2. The four in Line technique. 

Although the mathematical treatments involved in processing the raw data 

generated by these methods are different, some fundamental aspects are common to 

both. In particular, both techniques require electrical contact to be made at four points 



56 

on the sample under test. This is to permit independent application of a probe current 
and measurement of voltage and thus avoid errors in measurement due to parasitic 
contact resistances. 

For all measurements, voltage readings were made using a Keithley digital 

voltmeter (model 2000) which has a very high input impedance (>100 MQ). This factor 

is important since the tiieoretical definitions of both techniques assume that no current 

flows through the voltmeter. A Keithley programmable constant current source (model 

220) was used to establish a precise sample current. 

3.1.1 The Montgomery Technique 
This procedure for measuring conductivity was first described by Montgomery 

[1] who made a mathematical analysis of the electrical field distribution in a rectangular 

prism when a current is passed between adjacent vertices, based on the calculations of 

Logan et. al. [2]. For two reasons, this technique is of particular use in the conductivity 

analysis of stretch oriented polyaniline films. Firsdy, it provides a method for 

simultaneous calculation of the two principle electrical conductivity components in an 

anisotropic sample. Secondly, special consideration is given in [1] to the case where the 

dimension of the prism is small, i.e. the technique is well suited to measurement of thin 

samples. 

Consider a rectangular sample with dimensions Ij and I2 and of thickness t where 

t « (I1I2) • I f a contact is made at each comer, a measure of resistance, R j can be 

obtained i f a current I is passed between comers 1 and 2 and the potential difference V 

between comers 3 and 4 is measured, see fig. 3.1. Similarly a value R2 can be found if a 

90° commutation of the voltage and current connections is performed. In the simplest 

case, for an isotropic sample the conductivity of the material is given by the relation [1]. 

a=[HRit]"^ eqn.3.1 

where H is a function of I2/I1 having a dependence described graphically and numerically 

in fig. 3.2. For a square sample i.e. Ii=l2, then H = 4.531. 
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T 

Fig. 3.1 The arrangement of electrical contacts to a sample during 

Montgomery type conductivity measurements. 
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I f the sample is anisotropic and prepared so that the axis along which the 
conductivity is highest lies parallel to one side of the square, then analysis becomes more 
complicated. Two resistances R j and R2 can again be obtained, for which Ri>R2 if the 
maximum conductivity is in the direction of side I j in fig. 3.1. Along I2 the 
conductivity has the value Gj. 

From the ratio R2/R1 an effective dimension ratio I2 / Ij must be defined. This 

quantity represents the dimensions which an isotropic sample (having the same average 

conductivity) must have to present the same ratio of resistances. The relation used to 
t I 

calculate I2 / Ij is shown graphically in fig. 3.3 along with a numerical solution. A new 

factor H must also be evaluated using the value obtained for I2 / Ij just as for the case 

of an isotropic sample in equation 3.1. Finally the two conductivity components parallel 

to the axes of the square sample can be calculated by substitution of the appropriate 

values into the equations: 

H 
^1' ^ 

Rjt eqn. 3.2 

H I Rit eqn. 3.3 

Implementation of the Montgomery technique thus allows the electrical 

conductivity components of square, isotropic and anisotropic samples of polyaniline film 

to be calculated from two measurements of resistance and one of thickness (it can be 

shown that the sample dimensions need not be known explicitly). 

Practical implementation of this method requires that electrical contact be made 

to each of the four comers of a square section of polyaniline film. This was achieved (for 

room temperature measurements) using a purpose built probe stage, with four 
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independently sprung gold probe tips arranged in a square configuration of dimensions 6 
X 6 mm. These could be lowered gentiy onto a section of the film under test, cut to fit 
the probe arrangement. Errors were minimised by ensuring that the sample size exceeded 
the perimeter of the square defined by the probes by less tiian 0.5 mm. Gold is used for 
the point contacts for two main reasons. Firsdy, it is an unreactive metal except in the 
most extreme conditions, therefore electrochemical degradation of the polymer does not 
occur at the probe junctions. Secondly it ensures that reliable, low resistance contacts 
can be established between the sample and measurement apparatus. This is important in 
order that noise in the voltage measurements is kept to a minimum to allow a high 
resolution in the final data. 

Connections from the sample were fed to the current source and voltmeter via a 

four way switch unit. This arrangement permitted four successive 90° commutations of 

the voltage and current connections, without the need to disturb the probes in position 

on the fihn. In this way the risk of damage to the sample is minimised. It also allows 

values of both R j and R2 to be obtained i f the sample is inaccessible e.g. inside a 

cryostat. 

Measurement of the conductivity of a sample of polyaniline fihn thus involved the 

following steps. 

1. Cutting a square section of film to a close fit of the four point probe 

stage. For oriented (anisotropic) samples, the stretch axis must be 

parallel to one pair of edges of the square. 

2. Measurement the thickness of the film, using a digital nucrometer, 

checking to ensure uniformity of the sample. 

3. Measurement of voltage/current ratios for each of the four probe 

commutations. 
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I f the sample is unstretched (isotropic), all four resistance values will be equal. The 
conductivity can be calculated using equation 3.1, with H = 4.531. I f the sample is from 
an anisotropic film, then the four resistance readings will comprise of two similar smaller 
and two similar larger values. The average of the smaller readings is calculated and taken 
as R j . Similarly R2 is the average of the two larger values. As described previously, the 
ratio R2/R1 is used to obtain an effective length ratio I2 / l i which in turn is used to 
obtain an appropriate value for the factor H . 

The two components of conductivity, along the axes of the square of the sample 

can then be calculated using equations 3.2 and 3.3. A computer program was written to 
I t 

perform this calculation, for which the functions connecting R2/R1,12 / l i and H were 

modelled numerically from data in the paper by Montgomery [1]. 

The accuracy of the technique was limited in this case to the accuracy of the 

sample thickness measurements obtained using the micrometer, which had a resolution of 

1 | im The typical minimum sample thickness was of the order 15 to 20 |im. Therefore 

the maximum error introduced is approximately 6%. 

Of greater importance is the precision with which changes in a sample 

conductivity can be measured. This is governed by the resolution which can be obtained 

in the reading of voltage. It was therefore desired that, in order to retain accuracy in the 

smallest readings, the system noise was kept well below 1 ^iV. This was ensured by the 

use of clean gold probes to contact the film surface. In this way voltage readings could 

be made to four significant figures. 

The choice of probe current also affects the accuracy of readings, with higher 

currents resulting in increased voltage signals and therefore a greater signal to noise 

ratio. However, too high a current density at the probe/film junction can lead to a 

burning out of the film at the contact point. High currents can also lead to significant 

Joule heating of the fi lm, with the result that readings are unsteady since the conductivity 

varies significantly with temperature. For measurements made at room temperature, a, 

probe current of 1mA was found to provide a good compromise, giving ample resolution 

with no risk of damage to the sample, or erroneous effects due to film heating. 
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The Montgomery metiiod does have some disadvantages. Fkstiy, samples must 
be cut exactiy to fit the square outline of tiie probe. Subsequentiy, manipulation of the 
sample onto the probe stage so that contact is made to each comer of the sample is an 
awkward and time consuming process. The area of electrical contact made by each probe 
point is small and these must be cleaned regularly to ensure low junction resistances and 
hence mininuse system noise. In addition to die above practical difficulties, a lengthy 
calculation procedure is required to obtain the conductivity values from the raw data. 
However, this method still provides the most convenient approach to the characterisation 
of electrically anisotiopic materials. 

3.1.2 The Four In Line Technique 
This method is a simple altemative to the rather complex Montgomery technique 

described in the previous section. The theory is derived using Ohm's law and die physical 

definition of electrical conductivity with respect to sample dimensions and resistance. 

Consider a thin, rectangular strip of uniformly conductive material of width W 

and thickness t with four parallel linear junctions extended across the width of the sample 

as illustrated in fig. 3.4. I f a current I flows as shown, between the two outer contacts, 

then a potential difference V will be present between the inner pair, which are separated 

by a distance L . The resistance, R of this small section of the sample is simply V / I . I f the 

dimensions W , T and L are known it can be shown that die sample conductivity can be 

calculated using the formida: 

L 
a = eqn. 3.4 

R W t 

So in this case the spacing between the voltage probes must be known expUcidy, 

in addition to the other sample dimensions, unlike the Montgomery technique which 

requires determination of only one sample dimension - the thickness. 
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X W > 

Fig. 3.4 The arrangement of sample and electrical contacts required 

for correct operation of the four in line method. 
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In order to measure the individual conductivity components of anisotropic materials, e.g. 
stretch oriented polyaniline, two separate strips must be prepared from the main sample 
such that probe current can be passed parallel to the elongation axis in one strip and 
perpendicular to this axis in the second. 

To facilitate measvurement of the conductivity of polyaniline films at room 

temperature a hand held probe unit was builL This consisted of four 0.25 mm diameter 

platinum wires stretched in parallel over an insulating perspex plate. The separation 

between the inner (voltage) and outer (current) contacts was 2 mm and 10 mm 

respectively. Platinum was used in order to provide a low resistance, chemically 

unreactive contact to the film surface to ensure reliable operation. This probe unit was 

easily positioned over a suitably prepared rectangle (typically. 5x15 mm) of the film 

under investigation and held under gentle hand pressure whilst current and voltage 

readings were taken. Lengthy manipulation of the sample/probe arrangement was not 

necessary to achieve reliable readings. 

The increased surface area of the four in line junctions employed in this 

technique, compared to the point probes required by the Montgomery method provided 

excellent electrical contact to the film samples. This had two beneficial consequences, the 

first of which was that noise in the voltage measiu-ement circuit was reduced, permitting 

high resolution in the final conductivity measm êments. Secondly, as a result of the larger 

contact area, the current density for a 1 mA probe current at the outer contacts was 

much less than that at a point contact and hence the risk of damage to the sample is 

reduced. 

The accuracy of the four in line technique is limited by the precision to which the 

sample dimensions can be measured. The sample thickness t, measured using a digital 

micrometer and the width W of the strip are considered to be the greatest possible 

sources of error. The maximum uncertainty in the final conductivity data is estimated at 

some 10%. However, when measuring the temperature dependence of the conductivity 

of a given sample it was possible to determine changes in the conductivity of less than 

1% due to the high resolution of the voltage and current data. Since the larger errors 
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present in the size measurements were fixed once the sample is prepared, they need only 
be taken into account when comparing different samples. Therefore for individual 
samples it is feasible to present die much smaller changes observed as genuine functions 
of anodier parameter e.g. temperature. 

3.1.3 Low Temperature Techniques 
Whilst measurement of the electrical conductivity at room temperatiire provides 

some information on the nature of conductive polyaniline, fi-om a physical viewpoint, the 

most important factor is the dependence of this property upon temperature. In chapter 2 

it has been shown that nature of the electronic states near the Fermi level dictates the 

charge transport mechanisms and hence the behavioiu: of the conductivity. To gain a 

clearer picture of the physical nature of polyaniline it was therefore important to 

characterise electrical conductivity of various samples as a function of temperature. This 

process has been one of the major objectives during the author's research period. 

To perform diis task two special, probe units were constiiicted so diat either the 

Montgomery or four in line techniques could be performed within a Leybold closed cycle 

helium refrigeration cryostat. This unit, in conjunction with an Oxford Instruments ITC4 

temperature controller provided the means to investigate sample properties in the 

temperature range from 10 to 300 K. Temperature control accuracy was better than 1 K 

over this range. The Montgomery probe consisted of four independendy sprung gold 

point contacts arranged in a 4 mm x 4 mm square configuration which held the sample 

against a base plate. A thin layer of nuca provided electrical insulation between this 

brass plate and the sample. The four in line probe had four parallel platinum wire 

contacts on an insulating former each 10 mm long, with the voltage sensing wires spaced 

4 mm apart. The sample was held under light pressure by six fixing screws between die 

probe and an alununium base plate, covered with an insulating mica sheet. Thin 

connecting wires were used to make intemal electrical connections to the conductivity 

probe/sample holder units. The wires were carefully wrapped around the cryostat cold-
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finger to minimise heat transmission to the sample and hence permit the lowest possible 
minimum temperature. 

During early experiments it was found that at the low end of the temperature 

range, T<50 K, Joule heating of the sample by the current passed during resistance 

measurements led to a significant error in the results obtained. Fortunately, this effect 

could easily be identified by a drift in the voltage readings, after the constant current 

source was applied and the sample started to warm. To avoid this problem, which 

occurred with either measurement technique, the probe current was reduced at the lower 

temperatures from the typical 1 mA to levels as low as 10 | iA so that steady readings 

were obtained. Since the sample resistance was generally much higher at low 

temperatures, the reduced probe current did not significandy reduce the resolution of the 

voltage readings. Consequently the electrical power dissipated momentarily during a 

particular reading could be kept well below 1 ^iW and errors due to sample heating 

effects are considered negligible. 

Further problems were encountered with a longer term drift in the conductivity 

value of polyaniline samples at higher temperatures e.g. 300 K which has been associated 

with the removal of moisture from the films to the vacumn environment of the cryostat. 

Newly mounted samples were therefore allowed at least 10 hom-s to stabilise at 300 K 

under vacuum (<10 Torr) before measurements were commenced. 

The choice of measurement technique was govemed by the nature of the sample. 

For stretch oriented, electrically anisotropic films the Montgomery probe was employed 

since it required only one sample preparation to permit simultaneous characterisation of 

the conductivity components in directions parallel and perpendicular to the axis of 

elongation. However the small area of the four sample contact points of the Montgomery 

probe sometimes led to contact failure at low temperatures. This could not be rectified 'in 

situ' as there was no way to adjust samples during operation of the cryostat. The only 

solution was to prepare a new sample for a fresh experiment 

The four in line technique was used for the measurement of conductivity of 

unstretched polyaniline samples. Although some problems with faulty contacts were 
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encountered at low temperatures, diis difficulty was solved by a subde modification to 
the probe - sample contact arrangement. Instead of four parallel wires held direcdy 
against the surface of the polyaniline as per room teraperatiore measurements, samples 
were first prepared with four thin gold stripes on one siuface in positions corresponding 
that of the probe wires. The gold was applied via a vacuum evaporation process and 
ensured excellent metallic contact to the film. In this configuration, the foiu" in line 
method offered the highest resolution; changes of less than 1% in sample conductivity 
could be observed as a function of temperature. 
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3.2 Conductivity Of PANi-NI\/IP 
The first material available for study was polyaniline prepared via the NMP route 

(PANi-NMP) in the form of free standing films. Samples were supplied in two forms, 

unstretched films direct from the solution casting process and fihns elongated by 500% 

to induce a degree of uniaxial orientation of the polymer chains. Both types of sample 

were doped by immersion in aqueous mediane sulphonic acid (MSA) widi a 

concentration of 15% by volume, for a period of 4 hours. 

3.2.1 Results 
spot measurements were made at room temperature (290 K) on each sample. 

These revealed some important general properties of the material. The conductivity of 

unoriented samples was found to be isoti-opic (within experimental error) and displayed a 

typical value of the order 30 - 40 Scm" .̂ Fihns subjected to stietch elongation prior to 

doping displayed a significant electrical aiusotiopy, with the conductivity parallel to the 

axis of orientation greatiy enhanced. In this case values of 250 Scm'^ were typical, with 

isolated samples having conductivity up to 300 Scm" .̂ In contrast the conductivity 

perpendicular to the stretch axis was approximately 30 - 35 Scm'^ apparendy 

unchanged by the chain orientation process. 

It is important to note that the conductivity values quoted above are much higher 

than comparable data obtained during measurements of the temperature dependence of 

die conductivity. A set of data typical of that obtained from many samples of PANi-NMP 

is presented in fig. 3.5. This anomaly arises from the strong dependence of the electrical 

properties of PANi-NMP upon die presence of moisture within the material as noted in 

previous studies e.g.[3]. In order to measure die temperatiire dependence of die 

conductivity, samples were contained under vacuum (<10'^ Torr). The evaporation of 

absorbed water, under these conditions resulted in a dramatic reduction in the 

conductivity to ^proximately 20% of die value measured in ambient conditions, 

immediately after removal from die doping solution. 
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Upon removal from the vacuum environment the conductivity was observed to 
return to approximately half the original value over the period of a few minutes, 
presumably as moisture from the atmosphere was absorbed. The absence of a full 
recovery is ascribed to a loss of MSA from the fihns. For this reason samples were 
allowed some 10 hours to reach a stable value of conductivity under vacuum, before 
measurements were commenced. 

The graph in fig 3.5 shows the form of the temperature dependence of the 

electrical conductivity of stretch oriented PANi-NMP. The parallel component increases 

from 3.3 Scm'^ to 49 Scm"̂  over the measured range (13 K to 300 K) whilst the 

perpendicular data extend from 0.4 Scm'^ to 8.9 Scm'^. Both components have a similar 

temperature dependence, they increase monotonically with temperature. Additionally, the 

rate of increase, da/dT increases as temperature becomes greater. The anisotropy ratio 

^Parallel/^Peipendicular presented in fig. 3.6 has a weak dependence upon temperature, 

decreasing slowly from 7.3 to 5.5 over the range 13 K to 300 K. 

3.2.2 Discussion 
The results reveal that the conductivity of PANi-NMP decreases rapidly as 

temperature is reduced and therefore provide no evidence for metaUic charge transport. 

Aligiunent of the polymer chains by stretch elongation prior to doping enhances the 

conductivity along the direction of orientation by a factor of six and induces a significant 

electiical anisotropy. 

Many previous studies have been performed in which the electrical properties of 

PANi, doped by immersion of the solid state, base form of the polymer in aqueous acid. 

These include characterisation of unoriented samples [3,4,5] and stretched films [6,7]. 

Without exception, tiie temperature dependence of the conductivity reported in these 

cases is characteristic of charge ti-ansport by variable range hopping (VRH) of localised 

electiical carriers contained in either a quasi-1-dimensional, or a tiiree dimensional 

system. However, the conductivity data presented in the preceding subsection of this 
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thesis do not fit the form of conduction by VRH and thus imply that the material 
investigated differs in some way from that available in previous studies. The strong 
dependence of conductivity upon temperature suggests that charge transport is limited by 
localisation on some unknown scale. However, since the VRH model cannot provide an 
explanation for the observed behaviour, some effect other than Anderson localisation due 
to disorder is thought to be responsible in this case. An equation of the form associated 
with fluctuation induced tunnelling (FIT), as described in section 2.4, has been used to 
compute the curve fits included with the data in fig. 3.5. In fact this model can only 
provide an acceptable fit for temperatures exceeding 50 K and it has not proved possible 
to explain the data at lower temperatures in terms of any of the contemporary models. 
The parameters used to produce the line fits to equation 2.17 are presented in the table 
below. 

Orientation To T i 

Scm'^ K K 

Parallel 370 ±50 863 ±50 147 ±20 

Perpendicular 75 ±5 890 ±50 140 ±20 

Table 3.1. Curve fit parameters for the fluctuation induced tunnelling model of 

stretch oriented PANi-NMP. 

The fact that the data presented in fig. 3.5 is best described by tiie FIT model 

implies that charge transport is dominated by a tunnelling process between metalhc 

islands, rather than hopping between localised electironic states. In fact, thermopower 
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measurements on similar stretch oriented samples of PANi-NMP, presented in the 
following chapter, indicate that there are metallic states or regions within this material. 

From table 3.1, it can be seen that there is Uttie difference between the 

temperattire parameters, T q and T j obtained for the parallel and perpendicular data by 

curve fitting to the FIT model. Only the intrinsic conductivity, GQ , is significantly 

different in these two cases, with the ratio ao(parallel)/Oo(perpendicular) =5, which is 

sinular to the real conductivity anisotropy ratio at 300 K (« 6, see fig. 3.6). This would 

seem to suggest tiiat any metallic regions are electrically anisotropic, presumably as a 

result of tile stiretch induced alignment of tiie polymer chains performed prior to die 

doping process. It is proposed that the doping of soUd PANi-NMP by immersion in 

aqueous MSA results in inhomogeneous protonation of the material. I f this is the case, 

poorly doped insulatiung or semiconductive regions might well be expected to separate 

well doped 'metallic' islands. In this case, in Une with the heterogeneous model (see 

section 2.6), the insulating barriers prevent complete delocalisation of charge and it is the 

transport through these regions which dominates the nature of the conductivity of the 

bulk material. Thus true metalhc behaviour is not observed and the electrical 

conductivity increases strongly with temperature as the energy available for charge 

carriers to tunnel between raetaUic regions increases. 

The anisotropy in the conductivity of stretch aligned samples occurs because the 

direction along the polymer backbone is thought to provide the easiest path for charge 

carrier flow [8]. This is evident from tiie large enhancement effected by stretch alignment 

upon the electrical conductivity in one dimension, along the axis of elongation. 

Presumably, the alignment of polymer chains permits a greater proportion of charge 

tiransport by propagation along polymer backbones, so the frequency of scattering by 

incoherent interchain transfer processes is reduced in the parallel direction. Hence the 

anisotropy is considered to arise due to a stretch induced anisotropy in the carrier mean 

free path length. See also section 4.3.2, in the next chapter. 

PANi-NMP is an amorphous material, as evidenced by neuti:on scattering studies 

[9] which provide no evidence for any crystal structure or large scale phase order 
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between the polymer chains. Therefore a relatively high probability of scattering is 
expected at interchain transfer events, even in 'metallic' regions of the material [10]. 
Therefore, even i f there were no inhomogeneity in the dispersal of dopant within PANi-
NMP, a conductivity of truly metallic magnitude cannot be expected even in highly 
aligned samples. This idea is supported by the low values of the intrinsic conductivity, 
OQ, predicted by the fluctuation induced tunnelling model (see table 3.1) when compared 
to similar estimates for the intiinsic conductivity of polyacetylene [11] which exhibits a 
high degree of crystallinity. 
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3.3 Conductivity Of PANi-CSA 
Polyaniline prepared in a conductive form via die CSA route (PANi-CSA) has 

very different electrical properties to those of PANi-NMP. Fihn samples of PANi-CSA 

doped to the theoretical maximum level (50% of nitrogen chain sites protonated) have 

electrical conductivity of the order 200 to 300 Scm'^ at room temperature before stretch 

aligmnent, this is almost tenfold greater than unstretched PANi-NMP. Moreover, stretch 

oriented fihns of PANi-CSA have exhibited conductivity values up to 800 Scm"̂  at room 

temperature [12]. 

Unlike PANi-NMP, PANi-CSA is doped in solution prior to the film casting 

process, as described in section 1.7 of chapter 1. For two reasons therefore, this material 

provides an ideal opportunity to study the electrical properties of PANi as a function of 

the extent of protonation. Firstiy, the camphor sulphonic acid (CSA) can be added to a 

quantity of undoped polymer in an accurately known molar ratio. Secondly, since the 

protonation is performed in solution it can be assumed that the dopant is diffused evenly 

throughout the samples. 

3.3.1 Results 
In order to probe the transition to conductive behaviour which PANi exhibits 

upon protonation, the temperature dependence of the electrical conductivity was 

investigated for unstietched PANi-CSA at different levels of doping. Films were 

prepared with CSA contents intended to yield 10, 20, 30, 40, 50 and 60% protonation 

levels, i.e. 10% = 1 in 10 nitrogen chain sites protonated. Conductivity was measured 

under vacuum (< 10 Torr) over the temperature range 10 K to 300 K via the four in 

Une technique described in section 3.1.2. Samples were allowed 5-6 hours in die vacuum 

environment prior to the measurement process to ensure that moisture absorbed from 

the atmosphere was extracted. The conductivity of PANi-CSA upon removal of moisture 

is typically 80 to 85% of tiiat measured in normal atmospheric conditions, a small 

reduction compared to that of PANi-NMP. Additionally, films recover their original 
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conductivity on standing in air for a few minutes, which suggests that no dopant is lost in 

high vacuum conditions. 

The conductivity data for films at all doping levels are presented in fig. 3.7. It is 

clear that as tiie level of protonation is increased, die conductivity increases r^idly. At 

10 K, the 60% sample is five orders of magnitude more conductive than the 10% sample. 

Also, the conductivity becomes a weaker function of temperature in the more heavily 

protonated films. The normalised conductivity, o(T)/o(300 K ) , for each data set is 

presented in fig. 3.8 and allows the trend in conductivity of each sample with 

temperature to be compared more easily. It reveals in detail, a transition in the 

conductive behaviour of PANi-CSA as the level of doping is varied. 

At the two lowest levels of protonation (10% and 20%) the conductivity rises 

monotonically as temperature is increased. Additionally, the rate of increase of G(T) 

increases vnxh temperature. When the protonation level is set to 30% and above tiie data 

reveal a very different behaviour. At low temperatures, conductivity increases as 

temperature rises, but da(T)/dT decreases with increasing T. Moreover, each data set 

in the 30% to 60% doping range possesses a characteristic maximum in G(T) 

somewhere in the measured range. The temperature at which this peak occurs, Tp, has 

an inverse relation to the level of doping of the sample in question. In table 3.2, typical 

peak positions and their accompanying conductivity values are presented. For each case, 

at temperatures above that at which the peak occurs, the conductivity decreases slowly 

with increasing temperature, i.e. electrical conductivity has a negative temperature 

coefficient In fig 3.9 the data from a 50% doped sample is presented on a linear scale to 

reveal in detail the temperature dependence of the conductivity of highly conductive 

PANi-CSA. 
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Protonation Peak conductivity Peak temperature a(iO)/a(300) 

% Scm"̂  K 

30 90 270 0.13 

40 130 225 0.44 

50 178 190 0.67 

60 268 130 0.94 

Table 3.2 Temperaftire values at which conductivity maxima occur in PANi-CSA. 

It is widely accepted that the density of charge carriers within samples of 

conductive polyaniline is approximately equal to the density of protonated chain sites 

(see section 1.6). I f it is assumed that all the CSA dopant added to the polymer causes 

protonation, even where the theoretical 50% level is exceeded, it is possible to estimate 

the charge carrier density in samples prepared at each of the six doping levels 

investigated. Furthermore, using the general expression for electrical conductivity: 

a = ne|j. eqn. 3.5 

it is possible to make an estimate of the charge carrier mobility, ]X, where n is the carrier 

density and e is the charge on an electron. Values of the charge carrier density and 

mobility, based upon die conductivity of each PANi-CSA sample at 300 K have been 

calculated and are included in table 3.3. In addition the mobility and conductivity data 

are also presented graphically, as a fimction of protonation level in fig. 3.10(a) and 

(b).Initially as the protonation level increases from 10%, the carrier mobility rises 

sharply, presumably as the separation between conductive states is diminished. 
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1000 

Protonation / % 

Fig 3.10(a) Conductivity of PANi-CSA at 300 K versus dopant 

concentration. 

1 0.01 

0.001 

Protonation / % 

Fig 3.10(b) Mobility estimates for PANi-CSA prepared 

with different dopant concentrations. 
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Doping a(300 K) n(300 K) ^(300K) 

% Scm'^ xlO^^ cm-^ cm^-^s"^ 

10 0.6 0.8 4.6x10"^ 

20 7 1.6 2.7x10"^ 

30 90 2.4 0.23 

40 125 3.2 0.24 

50 165 4.0 0.25 

60 240 4.8 0.31 

Table 3.3. Charge carrier density and mobility data from PANi-CSA 

at different doping levels. 

Above the 30% level, however, a nearly constant mobility is observed, within the bounds 

of experimental error. 

3.3.2 Discussion 

The data presented in section 3.2.1 reveal a complex evolution in the conductive 

properties of PANi-CSA. From figs. 3.7 and 3.8 it would appear tiiat tiiere are two 

regimes of charge transport in this material, according to the level of protonation to 

which it is prepared. Samples prepared at 10% and 20% protonation, the two lowest 

doping levels, display an electrical conductivity which is a strong fiinction of 

temperature, suggestive of a charge carriers dependent upon some form of thermal 

activation. The variable range hopping mechanism, in one or two dimensions, has been 

used to describe the charge transport observed in PANi from previous studies [3,4,7]. 

However, none of the data in fig. 3.7 is characteristic of ti-ansport by VRH. At 

temperahires above 100 K die 10% and 20% samples can be described by the 
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fluctuation induced tunnelling ( M l ) model, described in chapter 2. At lower 
temperatures, a fit to this data, based upon the form of equation 2.17, deviates 
significandy from the measured values. 

A very different ttend is revealed by samples prepared widi protonation levels in 

the range between 30% and 60%. At low temperatiu-e, the conductivity still displays an 

activated behaviour. As the level of protonation is increased from 30% the decrease in 

conductivity at the lowest temperatures is much reduced, as illustrated in table 3.2 by the 

values of a(10)/a(300) in each case. The most intriguing feature of the samples in this 

doping range is that the conductivity exhibits a peak at some temperature, Tp, according 

to the doping level, see table 3.2. In each case, as temperature increases above the value 

at which the peak occurs, the conductivity decreases slowly in a manner characteristic of 

classical metallic behaviour. A similar trend has been reported in other recent studies of 

PANi-CSA, protonated to the theoretical 50% maximimi implied by the polysemiquinone 

radical cationic structure discussed in section 1.6. In these cases a peak in conductivity is 

observed at approximately 180 K [13,14]. 

The results presented in this thesis reveal that attempts to protonate PANi-CSA 

in excess of the 50% level result in enhanced electiical properties. At 60% doping, the 

magnimde of the conductivity is increased significandy. From measurements of the 

temperature dependence of conductivity, the peak value of conductivity occurs at a 

temperature significantiy lower than that 50% doped samples Also, the reduction in 

conductivity at temperatures below the peak is less pronounced. This evidence implies 

that doping above the 50% level is capable of driving the PANi-CSA system far closer to 

true metallic behaviour than observed in any of the previous studies. Two explanations 

are suggested which may account for this unexpected behavioiu. 

1. Samples prepared with 50% doping do not react completely with the 

CSA added to the polymer. An excess of acid is required to protonate 

all the imine sites on the polymer chain. Of course there will be some 

error, perhaps 5% on the the exact dopant level within a sample. 
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2. Protonation of more than 50% of the nitrogen sites generates more 
conduction band states and allows a higher charge carrier density 
within the material. 

Some further investigation is required to determine the optimum doping level for PANi, 

and, i f the actual protonation level does exceed 50%, the chemical structure is adopted 

by die system. 

From the results obtained it is evident tiiat PANi-CSA is an example of a 

conductor close to a metal-insulator (MI) transition. As the level of doping is increased 

from 10% to 60% the trends in conductivity imply that there is a transition in the nature 

of charge transport from hopping/tunneUing due to localisation of carriers on some scale, 

to partial 'metallic' diffusion transport. The exact mechanism by which this dransition 

occurs is unclear but two explanations are suggested. 

In tiie first picture, it is assumed tiiat in the doping process, protonation occurs 

completely at random resulting in a homogeneous distribution over the available chain 

sites. At low concenttations, the conduction band states formed at protonated sites 

would be widely separated and the interaction between neighbouring sites limited. 

Consequentiy, charge carriers would be localised and thus conduction by thermally 

activated hopping, VRH, would be expected. In this case, as the doping level is increased 

the average separation between conduction band states would decrease. Since this would 

have the effect of increasing both the charge carrier density and the sttength of 

interaction between carrier states, an increase in conductivity and carrier mobility would 

be expected. At the highest doping levels, the high spatial density of doped sites may 

result in the formation of a conduction band containing both localised and diffuse 

electi-onic states, separated at some energy by a mobility edge (see section 2.3). 

According to Larkin and Khmel'nitskii [15] in a system such as this, where the Fermi 

level resides in tiie region of localised states, but is close to the mobility edge, tiie 

conductivity at low temperatures follows a power law dependence upon temperature i.e.: 
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eqn. 3.6 

Where 1 < T| < 3. At high temperatures, where conduction by carriers thermally excited 

to the band of delocalised states, conduction could be limited by phonon scattering, 

giving rise to the negative temperature coefficient of conductivity observed by 

experiment 

This first theory provides a usefiil way to describe the behaviour of the highly 

conductive samples of PANi-CSA i.e. those with 30% doping and above. However, the 

prediction of VRH ttansport at low doping levels is not supported by the experimental 

evidence presented in the previous subsection. The second theory which might account 

for the evolution of the conductive properties of PANi-CSA is that die doping process is 

not homogeneous on all scales. Protonation may occur in such a way that favours 

repeated doping of polymer chains or conglomeration of doped chains rather than an 

unbiased distribution, such that metallic islands are present when the material is cast as a 

solid film. 

As the level of doping is increased in this system, the nimiber and or size of 

metallic islands would be expected to increase. Hence an increase in the conductivity 

would occur due to three factors: The increased 'metallic' content of the sample, a 

reduction in the tunnelling/hopping distance between metallic regions and the increased 

charge carrier density. At some tiireshold level of doping, significant overlap of metalhc 

islands could permit a large fraction of charge transport via percolation. This would 

allow the charge fransport within the metallic regions, rather than the tunnelling process, 

to become apparent in the properties of the bulk material. 

Perhaps the most important feature of highly doped PANi-CSA is that die dc 

electrical conductivity is capable of displaying a negative temperature coefficient over a 

significant portion of die temperatiire range, e.g. above 130 K in die case of 60% doped 

samples. This provides direct evidence for charge transport mechanisms similar to those 

in crystalline metals. In tiiis stiidy, the onset and progression of this 'metallic' natiore has 

been observed through measurements made on PANi samples with different doping 
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levels up to and above the theoretical maximum of 50%. The origin of this character is 
now discussed in more detail. 

The stark change in the behaviour of the conductivity between 20% and 30% 

doping suggests that there is a threshold within this range that marks the boundary 

between two charge transport regimes. At 30% doping, PANi-CSA is just able to display 

a metallic signature above a peak in conductivity at 270 K even the conductivity 

(approximately 90 Scm'-̂ ) is much lower than that of a typical metal. It is interesting to 

note that the transition to pseudo-metallic behaviour occurs where samples have a 

conductivity of similar magnitude to that of the minimum metaUic conductivity criterion 

discussed in section 2.3. This describes a minimum value of conductivity which a 

disordered conductor can have, before diffuse conduction band electronic states become 

localised and metallic charge transport can no longer be supported, it is in the range 100 

to 300 Scm'^ As the doping level is raised above 30%, the metallic character becomes 

more evident; the peak conductivity occurs at a progressively lower temperature as the 

conductivity samples and thus the metallic behaviour is displayed over a larger range of 

temperature. 

So far, the term 'metaUic' has been used to describe some of the aspects of 

electrical conduction in the PANi-CSA system, but what does this really mean ? What 

factors affect the charge transport within this material and how do they interact ? 

Theoretically for a typical crystalline metal (e.g. copper, which has no 

superconducting phase) the maximum value of the electrical conductivity occurs at 

absolute zero temperature. Conduction is via diffusion of valence electrons, which 

occupy a partially filled energy band, through the crystal lattice. Charge transport is 

limited by electron scattering by impurities, and atoms disturbed from their equilibrium 

lattice positions due to thermal vibrations, i.e. phonon scattering. At high temperatiires it 

is die latter of tiiese processes which dominates and in this case, the vibration of atoms in 

the crystal lattice can be treated classically. It can be shown that the mean time between 

scattering events is inversely proportional to temperatiire and thus the resistivity of tiie 

metal has an approximately linear dependence above liquid nitrogen temperature. The 
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observation of a similar behaviour in PANi-CSA implies that charge transport is less 
restricted by the effects of insulatmg barriers, or the static disorder in the polymer 
structure than is the case in PANi-NMP (this is evident from a comparison of the 
conductivity of these two materials). In fact, there is evidence that PANi-CSA can 
exhibit a significant level of crystallinity [5,14,15,16] and this has been verified in recent 
X-ray studies on the 50% doped samples used to obtain the data presented in this thesis. 

In crystalline regions of the polymer a precise phase order exists between 

adjacent polymer chains and this is expected to allow coherent electrical carrier transport 

along and between individual chains, i.e. the system is a regular polaron lattice structure. 

Hence, carrier delocalisation can occur in more than one dimension, on a scale larger 

than the average interchain separation. Therefore, the mean free path is not Umited by 

scattering at interchain tiansfer events, but by phonon scattering due to thermal motion 

of the crystal lattice, or by molecular vibrational modes. The properties of the crystalline 

regions could therefore account for the 'metallic' trends observed in the conductivity of 

PANi-CSA. It should be noted tiiat oriented polyacetylene [11,17,18] has a highly 

crystaUine structure and a conductivity which although of much higher magnitude, 

depends upon temperature in a manner similar to that observed in PANi-CSA. Coherent 

order on the molecular scale is therefore necessary if organic conductors are to realise 

high values of conductivity. For example unstretched PANi-CSA is seven times more 

conductive than unstretched PANi-NMP. 

Macroscopic charge transport within highly doped PANi-CSA is, however, not 

characteristic of that within a metal and even in the case of the most highly conductive 

samples, the conductivity decreases with decreasing temperature. It would therefore 

appear that there are at least two charge transport mechanisms that contribute to the 

properties of the bulk material. These must include a temperatiire activated process 

which results in the drop in conductivity seen in aU cases at low temperatures. Secondly 

at high temperatures the effects of a temperatiire dependent scattering process (phonon 

scattering) becomes apparent. This suggests that there is some ti-ansport by 'metallic' 

diffusion. The balance between these two mechanisms in any particular sample appears 
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to depend upon the level of doping. This is evident from three aspects of the data 
presented in subsection 3.3.1, as the level of doping is increased: 

1. Conductivity and mobihty increase. 

2. The onset of temperatiire dependent scattering occurs at lower 

temperatures. This is characterised by the temperature at which the 

peak conductivity is reached 

3. , The drop in conductivity at low temperatures is reduced, i.e. the ratio 

a(10 K)/a(300 K) is diminished. 

It is feasible therefore to view PANi-CSA as a composite material and invoke the 

heterogeneous conductor model described in section 2.6. In this case, it is proposed that 

there are two charge transport mechanisms at large in the polymer. These are metallic 

diffusion within the crystalline regions and temperature activated transport in the 

disordered or poorly doped regions, or grain boundaries which surround the crystallites. 

Using this assumption it is possible to model the electrical conductivity for 

samples doped in the range 30% to 60%. The simplest approach is to consider die way in 

which each region of the sample contributes to the total resistivity of the bulk material. 

For the 'metallic' regions, at temperatures above 10 K phonon scattering gives rise to an 

approximately linear increase in resistivity with temperature [19]. For the disordered 

regions, it is more difficult to justify the choice of any one mechanism. However, since 

the FIT model provides the best explanation of the conductivity data from PANi-NMP 

(see section 3.2.2) it has been chosen for this composite model. The resistivity of die 

heterogeneous material is simply the sum of the individual resistivities due to each 

mechanism: 
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p = A T + B exp 

-1-1 

eqn. 3.7 

where A and B are fitting parameters and Tq and T j are the characteristic temperatures 

in the FIT model (see section 2.4). This expression has been used to generate curves that 

are a close fit to the conductivity data, see fig 3.11. The parameters for each curve are 

presented in the table 3.4 

Sample A B To T i 

%CSA QcmK"^ Qcm K K 

30 1.12x10-^ 4.49 xlO"^ 188 54 

40 1.06 xlO-^ 2.93 xlO"^ 186 92 

50 1.01 xlO-^ 1.48 xlO-^ 332 172 

60 6.62 xlO'^ 9.31 x lO^ 519 332 

Table 3.4. Parameter values for the curve fits to the conductivity data from 

highly doped PANi-CSA. 

Although it is impossible to prove that charge tiansport really is governed by the 

particular mechanisms chosen for this heterogeneous model, the combination of FTT with 

phonon scattering provided far superior fits to other models; e.g. an expression with a 

phonon scattering term and a temperature activated term modelled on VRH, or a power 

law re equation 3.6. To some extent, therefore, PANi-CSA appears to provide an 

example of a heterogeneous material in which there are crystalline, 'metallic' regions 

separated by disordered regions through which charge ttansport is via a tunnelling 

process. 
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By variation of the level of protonation it is possible to alter the balance between 
these conduction mechanisms, presumably as the 'metalhc' regions vary in nimiber or 
size. The metallic character evident in PANi-CSA doped at 50% [13,14] can be 
enhanced by exceeding this theoretical level. 
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CHAPTER 4 

Thermoelectric Power 

4.1 Theory Of Measurement 

In the measurement of electrical conductivity, the methods employed are said to 

be direct i.e. all the parameters used to calculate a final data point are just simple 

properties of the sample under test e.g. physical dimensions and electrical resistances. An 

entirely different approach is necessary where thermoelectric effects are concemed. 

Direct measurement of the thermoelectric e.m.f. generated by a material is impossible 

because there is always an additional component contiibuted by die thermal gradients in 

the connecting wires. Any method for measuring the absolute thermopower of a material 

must therefore involve a theoretical consideration of the thermoelectric properties of all 

components of the measurement circuit 

The technique used to obtain the thermopower data presented in this thesis 

required samples to be included as part of a thermoelectric network, as illustrated in fig. 

4.1. The approach is similar to that detailed in [1]. This arrangement can be tieated as 

two separate circuits with common nodes at the two junctions made to the sample. These 

circuits are the copper-sample-copper loop, with output e.m.f. V j and the constantan-

sample-constantan loop which develops an output e.m.f. V2. Making use of equation 

2.20, the e.m.f. generated at the ends of the copper wires by the first circuit can be 

written as: 

V i = f S c u (T)dT+p SpA (T)dT + Scu (T)dT 

eqn. 4.1 

Where Scu(T) and Sp^CT) are the respective Seebeck coefficients (thermopowers) for 

copper and the sample material, at temperatiire T. T^f is a reference temperatiire at 
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which the outputs of both thermal circuits are anchored. If this value is constant equation 
4.2 simplifies to: 

V i = r'Sc„(T)dT+ PSpA(T)dT eqn.4.2 
JTj JT, 

Since the Seebeck coefficient is, in general, a slowly varying function of 

temperature, i f nri-T2l < 1 K the parameters Scu(T) and Sp^CT) can be treated as 

constants. With this assumption it is possible to re-write equation 4.2 in the form: 

V i = [ S p a ( T ) - S c „ ( T ) ] A T eqn.4.3 

where A T = T2 — Tj 

A similar analysis of the constantan-sample-constantan circuit yields: 

V2 = [SpA (T) - Sco (T) ] AT eqn. 4.4 

where Sco(T) is the Seebeck coefficient of constantan. Manipulation of equations 4.3 

and 4.4 yields an expression for the Seebeck coefficient of the sample: 

SpA ( T ) = M[Sc^ ( T ) - Sco(T)] + ( T ) eqn. 4.5 

where ]VI = V j / (V2 - V j ) eqn. 4.6 

Therefore by making measurements of V j and V2 over a range of values of A T 

it is possible to evaluate the sample thermopower. Tables of Scu(T) and ScqCT) were 

obtained fi"om suitable sources [2,3]. The factor M is best obtained from the gradient of 
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PANi 

^Ref 

Fig. 4.1 Schematic diagram of die thermoelectiic circuit employed 

for thermopower analysis. 
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V j versus V2 - V j , since in this way errors due to constant offsets in the signal voltages 
do not affect the accuracy of the technique. 

An important feature of this method is that no knowledge of either AT or the 

temperatures T j , T2, or Tj^f are required exphcifly. The calculation of the sample 

thermopower depends solely upon the relationship between the two voltage signals and 

the thermoelectric properties of the four wires connected directiy to the sample. Only the 

average temperature of the sample is required so that the thermopower can be charted as 

a function of absolute temperature. The method is of sufficient accuracy given that the 

following conditions are met 

1. The maximum temperature difference AT extending across any sample 

must not exceed IK, so that the approximations used to obtain equation 

4.3 remain valid. 

2. The reference junctions remain at equal, constant temperature during 

acquisition of all V j , V2 data set pairs used to calculate a particular 

thermopower point 

3. The instruments used to measure V j and V2 have input impedances 

which far exceed that of the two sample circuits so that errors due to 

current flow are not significant 

The third condition is especially important because the thermopower 

measurement is assumed to be a zero current process. In addition to this, if the 

impedance of the voltage measuring instruments is too low, the two circuits cannot be 

considered independent and current flows around the circuit formed by the two copper-

constantan junctions and the voltmeters themselves. In this case, spurious voltage 

readings occur which are independent of die presence of a sample. 
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4.2 Experimental Techniques 
In order to facilitate measurement of the thermopower of conductive polyaniline 

films via the technique described in section 4.1, a suitable apparatus had to be designed 

and assembled. To ensure satisfactory operation, the following criteria were set 

1. To ensure accurate determination of the factor M (equation 4.6), a 

sufficient quantity of voltage data must be obtained. In addition, due to 

the small typical size of thermoelectric signals, voltage resolution should 

be better than 0.1 [lY. 

2. The temperature gradient appUed to the sample must be variable, but not 

allowed to exceed a maximum of IK. Also accurate control of the average 

sample (base) temperature is required. 

3. Good electiical and thermal contact must be maintained between the 

sample and connecting wires at the two contact nodes shown in fig 4.1 

The volume of raw data collection and extensive parameter control involved in 

such a system required the use of computer control to automate the measurement 

process. The architecture of the system developed to obtain the results presented in this 

thesis is shown in fig. 4.2. 

Samples under test were contained in an Oxford Instnmients MD4 cryostat, with 

temperature monitoring and control provided by an Oxford Instruments ITC4. Using 

liquid nitrogen as a refrigerant it was possible to investigate the thermopower of samples 

in the temperatiire range from 80 to 300 K. With a fiill charge of cryogen, the system 

was capable of running for at least 16 hours at any temperature. During operation, the 

sample chamber was evacuated, and a small quantity of dry helium gas 
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was admitted to provide a medium for heat transfer from the sample probe to the 
cryostat heat exchanger (typical pressure 10^ Torr). 

Al l instruments were connected to an IBM compatible 80286 PC via an IEEE 

488 interface bus. This allowed automation of the voltage data acquisition sequence, 

sample temperature gradient control and control over the sample base temperature. 

Contiol software was written in Turbo Pascal to perform the required interfacing and 

data processing functions. 

The greatest difficulty presented by the chosen technique was that of making 

accurate measurements of the two slowly varying dc signals, V j and V2 as die thermal 

gradient applied to the sample is changed. It was initially thought that these could be 

measured by direct connection of the thermoelectric circuit to two precision digital 

voltineters (Keithley DVM, model 195 ). These instilments provide adequate resolution 

(0.1 f iV) and high input impedance (100 MQ.). However, thermal fluctuations and 

electrical interference induced in the leads connecting to the cryostat probe head led to 

spurious dc offset voltages and noise levels of a magnitude comparable to that of the 

expected signal. 

It was therefore deemed necessary to amplify the voltage signals, with the 

physical link between the cryostat probe and the preamplifier made as short as possible in 

order to reduce problems due to thermal offsets and noise pickup. 

In this way it was possible to increase the signal to noise ratio in the longer leads needed 

to carry signals to the voltmeters, in addition to this, the amplification increased the 

resolution of the measurements. The essential requirements of a dc coupled voltage 

amplifier for this task are: 

1. High input impedance, Rjjj > 100 MQ. 

2. Low input offset voltage Vjo < 1 \iW, low offset drift and low noise. 

3. High rejection of ac noise. 
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Several approaches were tried before the author designed the circuit, illustrated 
in schematic form in fig. 4.3. This circuit consists of two stages, the first of which is a 
non inverting amplifier with a voltage gain of 100. This was constructed using a self 
stabilising operational amplifier (op-amp) IC, the IC 7650, which offers an extremely low 
input offset voltage, high stabiUty against thermal drift and a very high input impedance. 
The output of the first stage is fed into an ac noise rejection stage with overall gain 1/2, 
based around a standard low noise op-amp (TL 071). A low pass filter removes any 
noise generated by this circuit at frequencies above 10 Hz before the output is fed to a 
KeitiileyDVM. 

Two such amplifiers were built, each with an independent, voltage regulated 

power supply so that the two voltage signals, V j and V2 could ampUfied and measured 

separately. Careful design and construction of the circuits ensured that both amplifiers 

were of matched performance, independent and isolated from earth; no common 

connection between the two measurement circuits could be allowed, except where 

contact is made to the sample. 

The accuracy of thermopower measurements obtained with this technique is 

dependent upon the quahty of the electrical contacts in the circuit, particularly those at 

the sample surface. These must provide good thermal and electrical junctions to the 

sample at all times i f the thermoelectric analysis of the system, presented in section 4.1 is 

to be accurate. In addition, good electrical contact must be maintained to ensure the 

minimum level of noise, given that typical signal levels are of the order of microvolts. 

The sample holder/contact probe arrangement consisted of a flat copper plate, 

having a split along its centie to form a two bladed fork. This was mounted at the end of 

the cryostat cold finger, to a copper block containing a rhodium-iron temperature sensor 

and heating element which provided the means for measurement and control of the 

sample base temperature. 
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Electrical and thermal contacts to the sample were established by two copper-
constantan thermocouple junctions, one to hold each end of a suitably prepared sample 
onto each blade of die probe so tiiat it traversed the split Samples were cut from a large 
film to typical dimensions of approximately 10 mm x 5 mm, though the exact size is not 
critical, nor is it required for the calculation of thermopower. The contacts were 
maintained by pressure from a PTFE plate bolted to the probe unit. A thin sheet of mica 
provided electrical insulation between the sample and the copper probe plate. 

The two copper and two constantan wires were led approximately 10 cm up the 

cold finger to junctions which served as the constant temperature reference point (fig. 

4.1). Four enamelled copper wires then transmitted the two signal voltages to a junction 

at the top of the cold finger from which they were transferred to the pre-amplifier via low 

noise screened cable. The cryostat body and cold finger chassis were earthed to ensure 

adequate screening of the unshielded wiring within the cryostat system. Also, routing of 

the signal cables along the cold finger was chosen carefully to provide maximum 

isolation against interference from the additional wiring required for operation of the 

cryostat. 

An important note regarding the electrical junctions made to the surface of 

samples of polyaniline is that the polymer is susceptible to an electrochemical reaction 

with copper, resulting in a degradation of the film around the contact area. To prevent 

this, the two thermocouple contacts contained in die sample probe were bound with fine 

platinum wire. Reference measurements made on samples of aluminium and magnesium 

revealed that no discernible error was introduced as a result of this modification. For 

polyaniline samples, no degradation was observed. The platinum surfaces were polished 

with fine emery paper and cleaned with isopropanol to ensure good contact to each new 

sample. 

Two purpose-built heating elements were attached, one to the underside of each 

blade of the probe. This allowed independent heating of the blades, thus enabling a 

thermal gradient to be established across the sample mounted between them. 
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Fig. 4.4 Schematic diagram of the thermal gradient control system. 
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Stretch oriented samples could be prepared and mounted so that the thermal gradient 
extended either parallel or perpendicular to the axis of polymer chain alignment 

The power supplied to the two heating elements (and thus the size of the 

temperature gradient) was controlled by the computer software via A Hewlett Packard 

HP 59501 programmable bipolar dc voltage source. The output from this unit was fed 

through a current amplifier consisting of a power op-amp (L 165V) in a voltage follower 

configuration, to provide adequate power for the heating circuits. The two heating 

elements on the probe were connected to the supply as per the diagram in fig. 4.4. The 

diodes included in the circuit ensure that only one element receives power at a time, so 

that a thermal gradient can be applied to the sample. In this configuration one side of the 

sample is heated when the power supply output is positive with respect to ground, the 

other being heated when the output is negative. 

This simple arrangement allows reversal of the direction of the direction of the 

temperature gradient to be achieved without the need for a computer controlled 

changeover switch. The software procedure written to control the output of the heater 

supply was programmed to perform a sweep such that the temperature gradient was 

varied up and down, first in one direction, then in the other, in a 'sawtooth' pattern over a 

period of approximately 6 minutes. The voltage source, stepped at 20 mV intervals to +/-

6 V, was programmed to avoid values in the range -1 V to +1 V, the diode forward 

voltage drop, in order to prevent a 'dead portion' during each sweep where no current 

could pass to either element In this way, efficient control of the thermal gradient was 

achieved. 

Acquisition of data was performed entirely by computer via the instruments 

connected to the IEEE 488 communication bus. Software was written to allow a M y 

automated scan of thermopower over some of temperatures (between 80 and 300 K) 

specified by the operator at the start of each experiment Determination of the sample 

thermopower at one particular temperature interval involved the following steps: 
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1. Programming of the temperature controller with the appropriate base 
temperature and monitoring of the sample temperature until the set value 
is reached and under stable control. 

2. Performing one cycle of the thermal gradient variation procedure whilst 

making simultaneous measurements of V j and V2. To ensure sufficient 

accuracy, these values were sampled 400 times, each pair read at intervals 

of one second over the course of the gradient cycle. 

3. The factor M used to calculate the sample thermopower in equation 4.5 is 

evaluated by linear regression, it is the gradient of V j with respect to V2 

- V j . The sample thermopower proper is calculated using equation 4.5 

and appropriate thermopower data for copper and constantan retrieved 

from an array in the program. This value is then saved to a previously 

specified file on disk. 

This procedure was run four times at each chosen sample temperature in order 

that diermopower value could be calculated with greater certainty. Multiple 

measurements also ensured that an anomalous result from one particular scan could be 

ignored if necessary, without complete loss of data at that particular temperature. 

Occasionally the voltage data could be corrupted by noise 'spikes' carried on the mains 

electrical supply, which affected the highly sensitive amplifiers. For this, reason the 

apparatus was typically run overnight, out of normal working hours when the electtical 

supply was comparatively noise free. A typical scan of thermopower over the 

temperature range from 100 to 300 K would take approximately 14 hours, which could 

easily be completed under these favourable working conditions. 
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4.3 Thermopower Of Highly Doped PANi-NMP 
As described in the previous chapter, stretching of PANi-NMP samples to induce 

alignment of the polymer chains enhanced the conductivity along the axis of elongation. 

As a result of this procedure, the samples were electrically anisotropic. To obtain more 

information about the effect of chain alignment upon charge transport properties, 

thermopower measurements were made on stretch oriented (elongated by 500%) and 

imstretched samples of highly doped material. The results from this study have also 

formed the basis of a recent publication [4]. 

4.3.1 Results 

Thermoelectric power was measured over the temperature range 100 K to 

300K. In the case of oriented samples, the thermopower components parallel and 

perpendicular to the axis of elongation were measured using separate sections from a 

common sample. A plot of typical results is shown in fig. 4.5. 

The data obtained for the thermopower measured parallel to the elongation axis 

in stretched samples (parallel thermopower) have a marked linear dependence upon 

temperature. The data are positive throughout the available temperature range and rise 

from «2 |LiVK-l at 100 K to =6 nVK"! at 300K. They represent a typical result for the 

parallel thermopower component, which displayed excellent reproducibility between 

samples. Some similarity to data obtained from highly doped 'new' polyacetylene is 

evident [5,6,7,8]. 

Perpendicular to the stretch axis, therraopower displays a strikingly different 

behaviour. At the low end of the temperature range, thermopower is negative (==-0.7 

|xVK-l) and decreases in magnitude with increasing temperature. A crossover to positive 

values occurs at 220 K and as temperature is increased, the thermopower rises, reaching 

+0.6 ^iVK-l at 300 K. 

The thermopower of unstretched PANi-NMP is similar in form to the 

perpendicular thermopower component of oriented samples. However, no change of sign 
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is observed and values are all negative, but with a positive slope (-1.5 at 100 K to 

0.5 | iVK-l at 300 K). 

The anisotropic nature of the thermopower of stretch oriented PANi-NMP bears 

some resemblance to the data presented by Wang et. al. [9], although there are some 

subtle differences. Firstly, the parallel data presented in this thesis have a temperature 

dependence closer to linear behaviom- than any comparable data in [9]. Secondly, a 

comparison of the perpendicular data sets from fig. 4.5, and [9] reveals a different 

behaviour of this quantity. In the case of [9], the perpendicular data at lower 

temperatures (100 to 200 K) has a U shaped temperature dependence. Additionally, at 

higher temperatures (200 300 K) die positive gradient of the perpendicular thermopower 

increases, tending toward a slope similar to that of the parallel data, much steeper than 

for the data presented in fig. 4.5. 

4.3.2 Discussion 

The observation of a strong anisotropy in the thermopower of stretch oriented 

PANi-NMP suggests that the microscopic electrical properties of this material are 

strongly dependent upon the order at a microscopic level. This should not be surprising, 

given that the typical electrical conductivity anisotropy is of order 10 for samples 

elongated by 500%. 

The linear dependence of the parallel component of thermopower fits the form of 

equation 2.29 closely. This behaviour indicates, to first order, that carrier transport along 

the direction of alignment of the polymer chains contains a large contribution due to 

metallic diffusion [10]. It is possible that, for thermal transport at least, the aUgnment of 

polymer chains within a film allows the character of 'metallic' transport to dominate along 

the axis of orientation. 

This view is supported by the enhanced electrical conductivity which is observed 

in the direction parallel to the stretch axis of oriented fihns. The temperature dependence 
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of the electrical conductivity parallel and perpendicular to the axis of alignment are 
remarkably similar, as revealed in fig 3.5.1. These data sets reveal a trend which is not 
typical of metallic conduction, nor does the conductivity appear to tend to zero at zero 
temperature and is therefore not commensurate with the model for variable range 
hopping (VRH). This is in contrast with the conductivity data presented by Wang et al. 
which suggest transport via 3-D VRH in their material [9]. 

However, the temperature independence of Pauli magnetic susceptibility in PANi-

NMP, prepared to the same specifications as that used to obtain the results presented for 

thermopower in this thesis, provides more evidence for the existence of 'metaUic' 

electronic states [11]. The evidence for metallic character which these results provide 

implies that the charge carrier density is relatively invariant with temperature. In turn this 

suggests that the temperature dependent variation of the electrical conductivity cannot be 

explained by considering the polymer to be a conventional semiconductor e.g. silicon. 

Instead, the electrical properties of polymeric conductors are widely considered to be a 

function of structure or order within the material via the effect which this factor has upon 

the conununication of charge along and between polymer chains [10,12]. The low 

magnitude of the parallel thermopower presented in this thesis, compared with that for 

polyacetylene e.g.[8] and in some cases for PANi, [13,14] can be attributed to a density 

of states function with little variation (with respect to energy) near the Fermi level. 

In contrast to the parallel data, the thermopower observed perpendicular to the 

axis of orientation (perpendicular thermopower) and that of unstretched samples is 

difficult to interpret. In the simplest terms, however, the results suggest the influence of a 

different charge transport mechanism in these two cases i.e. not metaUic diffusion. A 

comparison of these two sets of data provides some indication that there is a similar 

balance of transport mechanisms at work, despite the difference in order of the two 

samples. How might this arise? 

Consider, at the molecular level, an unstretched film of PANi-NMP. It is 

envisaged that the tangled matrix of chains leaves very little opportunity for charge to 

travel significant distances along individual polymer chains. As a result of this, the 
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interchain transport mechanism will dominate the bulk properties of the material. In a 
stretch oriented film, there is partial alignment of the polymer chains along the axis of 
elongation. For electrical transport of charge in the direction perpendicular to this axis it 
is logical to assume that interchain transport has a larger influence over the bulk 
properties than the intrinsic properties of the polymer chains, just as expected in the 
unstretched samples. 

In the theoretical limit of a perfectly aligned sample i.e. all polymer chains lie 

along one axis it might be expected that in the direction perpendicular to the alignment, 

the charge transport would display the characteristics of VRH or tunnelling mechanisms 

due to quasi-one-dimensional charge localisation. However, in the case of the samples 

studied in this thesis, perfect alignment of the chains cannot be achieved. This is apparent 

from the low value of electrical conductivity anisotropy of chain aligned PANi-NMP, 

when compared to examples of other polymers subjected to stretch orientation e.g. 

polyacetylene [15]. For this reason, it is possible that the thermopower of unstretched 

films and the perpendicular component measured in stretched samples both contain 

contributions due to 'metallic' diffusion and interchain transfer processes. 

A simple model has been constructed in an attempt to describe the behaviour of 

the thermopower of PANi-NMP samples. This is based upon the heterogeneous model 

for electrical transport proposed by Kaiser, which is described in chapter 2. Apphcation 

of this model to thermoelectric properties reveals that the thermopower of a material can 

be considered as the sum of components generated by each particular transport 

mechanism, as per equation 2.37. 

In the case of the parallel thermopower data, a linear interpolation, included in fig 

4.5, results in an excellent fit to the measured values. This supports the argument that 

transport parallel to the chain alignment axis is predominantly governed by metallic 

diffusion of the form described in section 2.5. To describe the thermopower data 

obtained perpendicular to chain alignment and also for unstretched films of PANi-NMP, 

a composite model has been constructed. The general expression used to produce the 

line fits presented in fig 4.5 for these two cases is shown below: 
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S = AT-BT^^2 ^^^j 
Where A and B are fitting parameters and T is the absolute temperature. The term 
proportional to temperature is included to model a 'metallic' contribution to 
thermopower, which could arise if some fraction of charge transport is via intrachain 
diffiision, or if there is strong interaction of the electronic states between some polymer 
chains. The term in T^̂ ^ included to account for interchain hopping between states or 
chains which are localised as a result of disorder in the polymer structure. This is based 
upon the temperature dependence of thermopower which arises where charge transport 
is via VRH, re equation 2.32. Both the 'unstretched' and 'perpendicular' data sets in fig 
4.5 have an acceptable correlation to the line fits based upon equation 4.7. However, 
data is required at temperatures below 100 K to test tiie validity of this model. 

In the previous chapter, the idea that orientation of the polymer chains induces an 

anisotropy in the carrier mean free path, was introduced. It is now proposed that this 

factor might offer a partial explanation for the anisotropy observed in the thermopower 

of stietch oriented PANi-NMP, in addition to the more obvious consequences for the 

conductivity. As described in section 2.5, diffusion thermopower can be expressed in a 

general form (equation 2.29) to reveal a dependence upon the mean free path I, and the 

energy dependence of the area of the Fermi surface. The reader is referred to section 2.5 

for a fiill description of the parameters in this expression. For convenience, the equation 

is written again below: 

S = 
3lel 

1 aA Idl 
+ — A 9E IdE 

eqn. 4.8 
JE=E. 

In the case of stretch oriented PANi-NMP the carrier mean free path 

perpendicular to the axis of chain alignment is expected to be significantly shorter than 

the mean free path in the parallel direction. This factor might be expected to have some 

bearing upon the size of the component arising from diffusion transport which 

contributes to the thermopower in directions parallel and perpendicular to the alignment 

axis. If as described in section 2.5, the first term (within the square brackets) in the above 
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equation is negative, and the second term positive then for large I the expression will 
yield 'large' positive thermopower. For short I, the second term, which is inversely 
proportional to I would have a greater magnitude, so the overall magnitude of the 
diffusion thermopower would be reduced. 

The precise effect which an anisotropic mean free path could exert upon 

thermopower depends upon the relative sizes of the two terms contained in square 

brackets in the above equation. Unfortunately, there is no way to make a quantitative 

analysis of the factors contained in this expression. However, the contrast in the size of 

the positive gradient of thermopower versus temperature between the parallel and 

perpendicular data suggests that there is a much larger diffiision thermopower in the 

parallel case. This lends some qualitative support to the theory that mean free path 

variations are partly responsible for the anisotropy observed in the thermopower of 

stretch oriented films of PANi-NMP. 

The negative values of thermopower observed at low temperatures (<2(X) K) in 

the perpendicular data from stretched samples and over the whole experimental range for 

unstretched films are more difficult to explain. The heterogeneous model used to 

generate line fits to these results includes a negative term which models a contribution 

from VRH or tunnelling. 

Another possibility is that effects due to electron-phonon (E-P) interactions make 

a contribution to thermopower in addition to diffusion. This effect, termed phonon drag, 

is evident in the thermopower vs. temperature curves of many metals, e.g. copper, as a 

peak or 'shoulder' in the region below the Debye temperature of the material. The sign of 

such contributions (where conduction is by electrons) are negative for 'normal' E-P 

interactions, i.e. electrons given additional momentum along the direction of a thermal 

gradient by collisions with phonons. If the E-P interaction is via Umklapp or 

backscattering processes, the phonon drag thermopower is positive. However, there is 

litde evidence for phonon drag effects from any thermopower studies on conductive 

polymers, except perh^s for highly conductive polyacetylene [8,10]. 
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It is really necessary to test the explanations proposed for some features of the 
thermopower of the PANi-NMP samples presented in this section by investigation at 
much lower temperatures. The minimum temperature of 100 K, imposed by the 
limitations of die experimental apparatus placed a significant restriction on the detail 
revealed by thermopower results, in comparison to the conductivity data presented in 
chapter 3. 
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4.4 Thermopower Of PANI-NMP vs. Doping 
The therraopower measurements made on stretched films of highly conductive 

PANi-NMP presented in the previous section, revealed that electtonic transport in 

parallel to the polymer chain aUgnment has some character akin to that of metals. To 

probe this behaviour in more detail, the thermopower of similar samples was investigated 

as a function of the level of sample doping. 

4.4.1 Results 
Films of emeraldine base, stietch oriented by 500% elongation were doped by 

immersion in an aqueous solution of methane sulphonic acid (MSA) for four hours. To 

obtain samples with different levels of protonation, four acid solutions were prepared at 

concentiations (by volume) of 0.2%, 1%, 5%, and 15%. The room temperature 

conductivity of each sample, parallel to the axis of stietch orientation was measured on 

its removal from the doping solution. Typical values for each case are presented in the 

table below: 

Doping Solution Conductivity 

%MSA PH Scm-1 

0.2 1.8 0.05 

1 1.0 50 

5 0.3 300 

15 -0.2 300 

Table 4.1 Doping preparations of PANi-NMP. 

The data reveal a sharp transition to a conductive state for doping solutions with 

pH < 2. This is in general agreement with the results presented by Park et al. in a study 

of unoriented PANi, although the highest conductivity values presented here are 
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approximately ten times that of comparable samples in [13]. This difference is thought to 
arise from a number of factors. Firstly, the samples used in [13] were unoriented and 
secondly, their conductivity was measiured under vacuum, so the removal of water will 
have had an adverse effect on the values obtained. 

Investigation of the of the films doped in different concentrations of MSA 

solution was restricted to determination of the thermopower developed parallel to the 

axis of polymer chain alignment This is the component which provides most evidence 

for diffusion thermopower, which in turn indicates the presence of metallic states or 

regions witiiin the polymer [10]. A set of typical results is shown in fig. 4.6. 

Unfortunately, samples prepared at the lowest doping level (0.2% MSA) presented a 

very high resistance in the thermopower measurement circuit Consequently this 

introduced a large degree of noise into the system, particularly at low temperatures 

where the sample conductivity decreased still fiirther. It is for this reason that data is only 

presented over a limited temperature range (200 to 300 K) in this case. The results show 

a clear trend towards larger values of thermopower as the level of doping was decreased. 

The linear dependence of thermopower upon temperature, seen in the most heavily 

doped sample (15% MSA) was retained in the samples doped in 5% and 1% MSA, 

though the gradient of the lines increases as the protonation level is reduced. 

4.4.2 Discussion 

The results obtained suggest that the metallic character of stretch oriented PANi-

NMP observed parallel to the chain alignment in highly conductive samples is evident 

even at low levels of protonation, despite the marked reduction in room temperature 

conductivity. This is inferred by the linear dependence upon temperature of the 

thermopower of samples prepared from 1%, 5% and 15% doping solutions, which 

matches the form of diffusion thermopower (equation 2.28). Whilst the data from 

samples prepared in 0.2% doping solutions are included for comparison, the limited 
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range of this set means that it cannot be used to determine the presence of any particular 
charge transport mechanism. 

As described in chapter 2, diffusion thermopower arises in a conductor where 

there is an imbalance in the heat transported by charge carriers at different energies when 

the material is subjected to a thermal gradient. The most significant contribution is from 

the charge carriers within a thermal energy window, of width =kT about the Fermi 

energy. Hence the size of thermopower is chiefly determined by the rate of change (with 

respect to energy) of the density of states function at the Fermi level. The expression for 

diffusion thermopower (equation 2.28) can be written as a function of ll(E), the density 

of states per carrier, per unit energy at the Fermi level [16]: 

S = - ^ ^ n ( E p ) eqn.4.9 

This simplified expression is reached using the assumption that carrier scattering 

is independent of energy, i.e. ^(E), the carrier mobility is invariant with respect to 

energy. Park et. al. [6] have made use of this formula to estimate n(E) in samples of 

highly conductive polyacetylene, from dS/dT, the gradient of thermopower vs. 

temperature. A similar analysis of the results for the most highly conductive of the PANi-

NMP samples, e.g. the parallel data from fig. 4.5, suggests a value for n(E) of =1.5 

states/eV/carrier. Application of this model to the data of fig. 4.6 would lead to the 

conclusion that the density of states per carrier (at Ep) increases as the level of doping is 

reduced, since dS/dT becomes larger in this case. However, the density of radical cation 

states in the material is direcdy related to the extent of protonation and it is these states 

which are thought to be responsible for the conductive nature of the polymer (see section 

1.6). As the number of protonated sites is reduced, the average separation of states 

which contribute to a 'conduction band' would be expected to increase. Hence the extent 

of interaction between states must also depend upon the level of doping and this in turn 

will affect the density of states function. It might therefore be expected that the density 

of states is smaller at reduced doping levels. According to equation 4.8, a decrease in the 
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magnitude of thermopower would then be predicted as the level of protonation is 
reduced, contrary to the observed behaviour. 

Therefore, it does not seem possible to explain the change in thermopower 

characteristics (as a function of doping) purely in terms of variation in the density of 

states parameter in equation 4.8. Additionally, the validity of this model to PANi-NMP is 

uncertain since it cannot be assumed that carrier scattering is energy independent 

If the linear form of the thermopower data observed for the samples doped in 

1%, 5% and 15% solutions of MSA is a result of a dominant diffusion thermopower, the 

general expression of equation 2.29 is perhaps the best standpoint from which to 

interpret the nature of these results. As described previously, at levels of doping less than 

the theoretical maximum (50% of nitrogen sites protonated on each polymer chain) it is 

expected that interaction between 'conduction' states becomes weaker as their average 

spacing is increased. In addition, decreasing the level of protonation reduces the charge 

carrier density. The effect of both these factors is reflected in the large decrease in 

conductivity as the doping level is decreased. In these samples, it is therefore suggested 

that there are two effects which may influence the behaviour of the diffusion 

thermopower. Firstly, the density of states function will depend upon the protonation 

level, because the strength of interactions between doped states on and between PANi 

chains will vary according to their separation in the material. Secondly, the mean free 

carrier path will be reduced if the interaction between electronic states is weakened by 

increased separation. 

No evidence for localised charge carrier states is apparent in the thermopower of 

the stretch oriented samples (measiu-ed parallel to the alignment axis). Transition to 

hopping transport, characterised by a square root dependence of thermopower upon 

temperature (equation 2.32), might be expected to occur at low levels of doping if the 

separation of protonated sites is large enough to prevent significant overlap of the 

electronic states which contribute to a conduction band. Although the much reduced 

conductivity and greater magnitude of the thermopower of samples doped in 0.2% MSA 

suggest that there could be significant differences in comparison to the more heavily 
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doped samples, the limited range of data precludes any attempt at a quantitative 
explanation. 

Therefore in the case of PANi-NMP it is suggested that there are two effects 

which result from a variation of the level of protonation, that influence the behaviour of 

difftision thermopower. Firstly, the mean free carrier path wiU be reduced if the 

interaction between neighbouring electronic states is weakened by reduction of the 

density of protonation. Secondly, the density of states function is expected to vary 

because the strength of interaction between electronic states contributing to the 

conduction band will also depend upon the average separation of doped sites. The 

quantitative effect which these factors exert upon the thermopower of this material is 

impossible to predict with any accuracy since the thermopower of metals is not fully 

understood. 
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4.5 Thermopower Of PANi-CSA 
The electrical conductivity studies detailed in chapter 3 revealed a significant 

difference between polyaniline films prepared via the NMP and CSA routes. Unstretched 

PANi-NMP displays a relatively low conductivity (=30 Scm'̂  at 300 K) that has a 

dependence upon temperature characteristic of charge transport via tunnelling. In 

contrast, unstretched PANi-CSA (250 Scm"̂  at 300 K) is far more characteristic of a 

partially metallic system. The thermopower of unstretched PANi-CSA was measured, 

with the aim of a further investigation into the metallic nature of the electronic properties 

of this material. 

4.5.1 Results 
Unoriented PANi-CSA films were prepared according to the process detailed ia 

chapter 1, with dopant concentrations of 30% 40% and 50%, The thermopower of these 

samples was measured as a function of temperature over the range 100 K to 300 K. A 

set of typical results from samples of each doping level is presented in fig. 4.7. Except for 

a larger magnitude, the data reveal a trend similar to that observed in the thermopower 

component of stretch oriented PANi-NMP parallel to the axis of elongation (see fig. 

4.5); the thermopower of PANi-CSA is positive and displays a linear dependence upon 

temperature. A small reduction in the gradient, dS/dT, is apparent as the level of doping 

is increased. This behaviour is similar to that observed for stretch oriented films of PANi-

NMP in which the level of protonation was controlled by variation of the doping solution 

pH (see section 4.4). 

4.5.2 Discussion 
The thermopower data obtained from PANi-CSA is broadly similar to that 

described in other reports [17,18] for material prepared by similar methods. By 

comparison with theory (see chapter 2) the linear dependence of the data upon 

temperature implies that the thermopower is dominated by 'metallic' diffusion transport. 

This correlates with the data from electrical conductivity studies made on similar 
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samples, presented in chapter 3, which revealed a negative temperature coefficient of 
conductivity in the high temperature regime near 300 K. This is a typical feature of the 
behaviour of crystalline metals. Thus, the information provided by conductivity and 
thermopower studies provide strong evidence for the presence of metaUic charge 
transport within PANi-CSA. The bulk properties of this material suggest that it is not 
purely metallic, but very close to a metal-insulator transition. 

The variation of dS/dT with respect to sample doping concentration, is 

somewhat more difficult to understand than the origin of their linear form. The general 

expression for diffusion thermopower (equation 2.29) would seem to provide a suitable 

starting point from which to consider this behaviour. However, it is envisaged that 

variation of the dopant concentration within PANi-CSA will result in a complex 

alteration of the system parameters. For example, in a similar fashion to that described in 

section 4.4, at different doping levels there must be a different charge carrier 

concentration and a different average separation between polaronic states. Variation in 

the density of states function and/or the position of the Fermi level within the electronic 

band structure and thus the value of dA/dE at Ep is therefore expected. In addition, the 

mean free carrier path, I, is thought to depend upon the level of protonation of the 

polymer, because the metallic character evident in the conductivity of PANi-CSA 

becomes more pronounced as doping is increased. 

It is impossible therefore to quantify the influence exerted upon the 

thermoelectric properties of the polymer, by variation of the concentration of CSA. It is 

unusual that, unlike the differences in conductivity values, the thermopower readings 

from 30%, 40% and 50% PANi-CSA fihns are remarkably similar. This suggests that 

metallic regions of a very simUar namre are present within all three sample types. 

A heterogeneous model was used in chapter 3 to describe the conduction within 

the PANi-CSA system at compositions at and above 30% doping. This combined 

phonon scattering of charge carriers in crystalline regions of polymer in series with a 

tunnelling mechanism, thought to govern conduction in disordered boundary regions. 

The balance between these two mechanisms appears to depend upon the concentration of 
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dopant contained within a given sample; samples gain more metalhc character as the 
doping level is increased. 

The Kaiser model of heterogeneous conductors (described in chapter 2) states 

that metallic regions contained within a heterogeneous system can provide a dominant 

contribution to thermopower if other regions are small and conduct heat well. It is clear 

from the results presented in fig. 4.7, that a similar situation presides in PANi-CSA; the 

excellent fit to each data set by linear regression suggests that thermopower is almost 

entirely due to charge carrier diffiosion within metallic regions for temperatures in the 

range 100 K to 300 K. Additional contributions to the thermopower of PANi-CSA may 

be generated within non-metallic regions, but are not evident in any data obtained from 

PANi-CSA samples. Measurement of thermopower in the temperature range below 100 

K is required to confirm this suspicion and also might reveal a deviation from metallic 

behaviour, as displayed in the conductivity of similar PANi-CSA samples at low 

temperatures. Investigation over a wider range of sample doping levels, e.g. 10% to 

60%, could provide additional information about the transition observed in the electronic 

properties of this material upon protonation. 

The contrast in electrical behaviour between PANi-NMP and PANi-CSA 

revealed by electrical conductivity studies is again evident, in the thermopower data 

collected from these two materials. Unstretched PANi-CSA has a positive thermopower 

with a linear dependence upon temperature, typical of charge transport via metaUic 

diffusion. Highly doped unstretched PANi-NMP on the other hand, has a negative 

thermopower with a complex form that is difficult to ascribe to any particular charge 

transport mechanism. Upon stretch orientation, the thermopower of PANi-NMP (parallel 

to the axis of elongation) undergoes a transition to a hnear form comparable with that of 

PANi-CSA, see figs. 4.5 and 4.7. Unlike PANi-CSA however, the electrical conductivity 

of stietch oriented PANi-NMP displays none of the features associated with metallic 

charge transport. 

Clearly the thermoelectric properties of unstretched polyaniline films prepared by 

the NMP and CSA methods, reflect differences in charge ti-ansport mechanisms 
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suggested by the electrical conductivity data from each material. This provides more 
evidence that the structural arrangement of polymer chains at the molecular scale has a 
great influence upon the electrical nature of the bulk solid. The non-metalhc 
thermopower and the temperature activated behaviour of conductivity observed in 
unoriented PANi-NMP suggest charge carrier transport is hmited by a disordered 
structure. This conclusion is in good agreement with the results of neutron scattering 
studies made upon stretched and unstretched samples [19] which indicate that this form 
of polyaniline is amorphous. Alignment of the polymer chains within PANi-NMP, by a 
process of stretch elongation enhances the magnitude of the conductivity and yields a 
metal like response in the thermopower, in one dimension. The lack of regular 
intermolecular order is thought to prevent coherent interchain charge transfer even in 
stretch aligned PANi-NMP, with the result that no metallic character is observed in the 
electrical conductivity. 

The partially metallic properties observed in the thermopower and conductivity of 

PANi-CSA are ascribed to the presence of crystalline regions in the polymer, indicated 

by recent (as yet unpublished) X-ray diffraction studies upon film samples. Therefore it is 

envisaged that a significant proportion of charge transport in this material is by metallic 

diffusion of carriers in a regular lattice of polaronic states. At low temperatures, the 

effect of non-metallic regions becomes evident from a change over in the sign of do/dT 

to positive values. Since this feature occurs at lower temperatures in more highly doped 

samples, it is taken to imply that the influence of the crystalline 'metallic' regions 

increases as a function of the protonation level (this is described in detail in chapter 3, 

section 3.3). 



127 

References 
[ I ] A.P. Monkman, F. Hampson & A.J. Milton, from "Electronic Properties of 

Polymers", Springer Series in Solid State Sciences 107, Springer Berlin (1992) 

p. 255 

[2] R.D. Barnard, from "Thermoelectricity in Metals and alloys", Taylor & Francis, 

(1972) London 

[3] British Standard 4937: Part 5 (1974) 

[4] E.R. HoUand & A.P. Monkman, Synth. Met. 74 (1995) p. 75 

[5] Y.W. Park, A.J. Heeger, M.A. Druy & A.G. MacDiarmid, J. Chem. Phys. 73 

(1980) p. 946 

[6] Y.W. Park, A Denenstein, C.K. Chiang, A.J. Heeger & A.G. MacDiarmid, 

Solid state comms. 29 (1979) p. 247 

[7] Y.W. Park, W.K. Han, C.K. Choi & H. Shirakawa, Phys. Rev. B, 30 (1984) p. 5487 

[8] R. Zukok, A.B. Kaiser, W. Pukacki & S. Roth, J. Chem. Phys. 95 (1991) p. 1270 

[9] Z.H. Wang, C. Li, E.M. Scheir, A.G. MacDiarmid & A.J.Epstein, Phys. Rev. 

Lett. 66 (1991) p. 1745 

[10] A.B. Kaiser, Synth. Met. 45 (1991) p. 183 

[ I I ] P.N. Adams, P.J. Laughlin, A.P. Monkman & N. Bemhoeft, Solid State Comms. 

91 (1994) p. 875 

[12] F. Zuo, M. Angelopoulos, A.G. MacDiarmid & A. J. Epstien, Phys. Rev. B 36 

(1987) p. 3475 

[13] Y.W. Park, Y.S. Lee, C. Park, L.W. Shacklette & R.H. Boughraan, Solid State 

Comms. 63(1987) p. 1063 

[14] S. Sakkopoulos, E. Vitoratos, E. Dalas, G. Pandis & D. Tsamouros, J. Phys. 

Condensed Matter 4 (1992) p. 2231 

[15] Y.W. Park, C. Park, Y.S. Lee, CO. Yoon, H. Shirakawa, Y. Suezaki & 

K. Akagi, Solid State Comms. 65 (1988) p. 147 

[16] J.M. Ziman, from "Properties of the Theory of Solids", Cambridge University 

Press, 2nd edition (1972) p. 235 



128 

[17] R. Menon, CO. Yoon, D. Moses, A.J. Heeger, & Y. Cao, Phys. Rev. B 48 
(1993) p. 17 689 

[18] S.K. Jeong, J.S. Suh, E.J. Oh, Y.W. Park, C.Y. Kim & A.G. MacDiarmid, Synth 

Met. 69(1995) p. 171 

[19] A. J. Milton, Ph.D. Thesis, University of Durham 1993, A. J. Milton, N. Bemhoeft 

& A.P. Monkman, to be submitted 



129 

CHAPTER 5 

Polymeric Field Effect Devices 

5.1 introduction 
Recendy there has been a substantial interest in the use of conjugated polymers as 

the active semiconductor in field effect transistor (FET) devices [1,2]. From a 

technological viewpoint, these materials offer a considerable advantage over 

conventional inorganic semiconductors with respect to the ease of processing. Spin 

coating, for example, can be employed to deposit high quality thin films of polymer. 

From a purely scientific viewpoint, the characteristics of a polymer based FET can 

provide useful information about the electrical properties of the material, such as the 

charge carrier sign, and mobility [2]. The effect of order and disorder in the polymer film 

upon its charge transport properties can therefore be studied through the utilisation of 

such devices. 

It is generally accepted that for a conjugated polymeric material, the degree of 

straight intrachain conjugation has an important effect upon its conductive properties. 

This is mainly through increased conjugation leading to an increase in the mobility of 

carriers along the polymer backbone, because there are fewer deifects in the conjugated 

structure able to act as scattering centres. In the work described in this chapter, the role 

of polymer chain order, with respect to carrier mobility, was investigated. This was 

achieved by measuring the field effect mobility in thin films of the regioregular, chiral, 

3[2(S2-methylbutoxy)ethyl]-polythiophene, (PMBET) [3] prepared from solutions 

containing different amounts of a nonsolvent. The results from FET device analysis were 

combined with optical absorption measurements upon similar film samples. The findings 

of this investigation form the basis of a publication [4]. 

5.2 Theory Of Field Effect Devices 

The operation of a thin film FET relies upon the metal-insulator-semiconductor 

(MIS) system and its behaviour with respect to electrical biasing. There are two possible 
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configurations of an MIS structiure, depending on whether it is formed with n-type or p-
type semiconductor. The latter case is appropriate to describe the operation of the 
polymer FET. 

In order to understand the action of an FET it is usefiil to consider the energy 

band structure of an ideal MIS diode under different regimes of voltage bias [5]. These 

conditions are represented pictorially in fig. 5.1. Ej is the theoretical Fermi level for the 

intrinsic (undoped) semiconductor, and lies midway between the edges of the valence 

and conduction bands. In this explanation it is assumed that the insulator is perfect, i.e. 

no charge can pass from the metal to the semiconductor, hence the Fermi level in the 

semiconductor remains unchanged when the system is biased. The voltage bias, V is that 

of the potential applied to tiie metal, with respect to the semiconductor. 

The simplest case, V = 0, i.e. zero bias, is termed die flat band condition, see fig. 

5.1(a). The Fermi levels in the metal and semiconductor are equal and the charge carrier 

density in the semiconductor at the interface to the insulator is the same as in the bulk 

material. In the case of a MIS structure formed with a p-type semiconductor, there are 

three further regimes induced by electrical biasing: 

The first is the depletion regime, with V > 0, see fig. 5.1(b). The appUed 

potential difference has the effect of raising the Fermi level in the metal, with respect to 

the semiconductor. This causes a distortion of the energy band structure from the flat 

band condition, due to the variation in electrostatic potential energy across the structure. 

As the majority carrier (hole) concentration P is dependent upon the difference between 

the intrinsic and true Fermi levels: 

P = niexp ' ^ eqn.5.1 
V kT ; 

where iij is the intrinsic electron concentration. Near the insulator-semiconductor 

interface, where band bending occurs, the carrier concentration is reduced and a 

depletion layer is formed. 

If the positive bias applied to die metal is increased to very large values, V » 0 , 
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Fig. 5.1 Energy band diagrams for an ideal MIS structure under electrical bias. 
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the energy band distortion induced in the semiconductor reaches the point where the 
intrinsic Fermi level is depressed such that E, < Ep, as illustrated in fig. 5.1(c). The 
electron concentration N , described by equation 5.2 thus exceeds the hole concentration 
in a layer of semiconductor near the interface. 

N = n i e x p f ^ l eqn. 5.2 

This is termed an inversion layer, since the majority carriers in this region are elections, 

not holes -a small portion of the p-type material has been forced into n-type behaviour. 

A different situation exists in the accumulation case, where V > 0. As illustrated 

in fig. 5.1(d) the Femu level of the metal is raised with respect to that of the 

semiconductor, causing a distortion of the semiconductor which increases the value of Ej 

- Ep near the semiconductor-insulator boundary. By comparison with equation 5.1 it can 

be seen tiiat die appUcation of positive bias results in an increase in die hole 

concentration in a thin layer at the surface of the semiconductor. This is termed an 

accumulation layer. 

In each of the above cases, the changes induced in the semiconductor extend only 

a very short distance from the interface with the insulator, the bulk of the semiconductor 

remains unaffected by the biasing conditions. The operation of a field effect device 

depends upon the change in charge carrier density, and hence the conductivity that can 

be induced in this surface layer in a MIS sandwich. The so called MISFET employs a 

structure sinailar to that illustrated in fig. 5.2. Basically, this is a MIS diode, to which 

source and drain electrodes have been added, such that the semiconductor is contained in 

a channel region of length L and width W. The metal contact underneath the channel 

region is termed the gate electiode. The influence of an electrical bias applied to the gate 

alters the electrical conductivity of the surface layer of the semiconductor. In the 

MISFET, this is exploited to provide a means of control over the flow of cturent 

between the source and drain contacts [5]. 

It is common to consider transistor operation with die source electtode at earth 

potential (common source mode). With a p-type semiconductor contained in the channel 
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region, positive electrical bias applied to the gate electrode causes carrier depletion in the 

semiconductor, near its interface with the insulator as per fig. 5.1(b). Hence the 

resistance of the charmel is increased. On the other hand, negative gate bias results in the 

formation of an accumulation layer at the semiconductor-insulator interface so the charge 

carrier concentration within the channel is enriched, and the channel resistance is 

decreased. 

The electrical behaviour of a MISFET depends upon the sign and magnitude of 

the electrical bias applied to the source, drain and gate electrodes and the physical 

dimensions of the device. In the common source configuration (V^ = 0), the source-

drain current Ips, which passes through the chaimel region is considered for negative 

gate and drain voltages ( V ^ and V D < 0). This is known as accumulation or 

enhancement mode because raising the magnitude of VQ increases the device current. It 

can be shown that [5]: 

^Ds - ; ( V o - v „ K - ^ + In eqn. 5.3 

where |X is the charge carrier mobihty, W is the channel width, L is the channel length 

and Cj is the gate capacitance per imit channel area. The parameter VQ is an offset 

voltage which accounts for the effects of surface charge states trapped at the 

semiconductor-insulator interface. The first term in this expression describes the gate-

voltage-modulation of the source-drain current, caused by the formation of an 

accumulation layer in the negative gate bias regime. The term IQ is included to account 

for current flow in the bulk semiconductor, i.e. the region unaffected by gate biasing, and 

can be described, to first order by the expression: 

1 ^ = ^ — V D eqn. 5.4 

where G is the electrical conductivity of the channel material and t is the total thickness 

of the layer. It will be seen that this term contributes a significant proportion of the total 

source-drain current in PMBET devices because the 'static' conductivity of the channel 
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material is comparable to any enhancement of the conductivity induced by gate terminal 
biasing. 

The main factor of interest in the study of MISFET devices that employ a 

conjugated polymer in the channel is the mobility of charge carriers within the polymer. 

A high value of p. is essential if these materials are to yield devices with a performance 

comparable to that provided by inorganic semiconductors, e.g. porous siUcon, which has 

electron mobiUty )Ll = 10̂  cm^V^s"^ The carrier mobility within the channel can be 

calculated from measurements of the characteristics the FET. The method developed for 

obtaining the field effect mobility are now described: When the device is operating in the 

linear regime [5], with IVQI > IVj)!, it can be shown that Ijjs has a linear dependence 

upon V Q . Differentiating equation 5.3 with respect to VQ gives: 

eqn.5.5 

Therefore a plot of IQS VS. V Q for a device with constant V j j results in a straight 

line with gradient M , from which the carrier mobility can be calculated: 

M L 
U = eqn. 5.6 

W C J V D 

The electrical conductivity of the channel material can also be estimated using equation 

5.4, if WQ is set to zero and it is assumed that there is no contribution to Ijjs from the 

first term in equation 5.4. 

5.3 Experimental Techniques 
A typical example of the structure used to fabricate polymeric MISFETs is 

illustrated in fig. 5.3 The devices were built on a conductive (n"*" doped) silicon wafer 

substrate that acted as the metal control gate in the MIS system. 2000 Angstroms of 

silicon dioxide (insulating layer) was grown on the top of the top of the wafer and upon 

this, interdigitated gold electrodes were deposited to form source and drain terminals. 

The channel width, W and length, L were available with all permutations of W: 3 mm to 
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20 mm and L: 2 |a.m to 20 pim. The conjugated polymer semiconductor, PMBET, has the 
chemical structure illustrated in fig. 5.4. It was dissolved in tetrahydrofuran (THF) to a 
concentration of 0.5% by weight and deposited in a thin film upon the surface of the 
device substrate from solution, by spin coating at 1000 rpm. 

Typical electrical biasing conditions employed during the measurement of carrier 

mobility and electrical conductivity from FET devices were: Vj ) set to a fixed value 

between -1 and -5 V (with respect to V j at 0 V) whilst V Q was scanned from -20 to -10 

V and IDS measured. The mobility was calculated using equation 5.5. Scans were made 

with Vj ) set to several different values to enable repeated measurements of ^ l . The 

conductivity of the polymer was calculated using the I^g vs. Vj ) characteristics with V Q 

= 0 V and equation 5.4. All electrical measurements were made using a Hewlett-Packard 

4140B pA meter/DC voltage source, controlled via computer to facihtate automation of 

the data acquisition process. 

To obtain PMBET with various degrees of chain order a technique used in the 

field of polydiacetylenes (PDA) was exploited; that of adding quantities of nonsolvent to 

solutions of PDA in good solvent [6]. In the case of PDAs such as 9BCMU [7] this 

would be chloroform (good solvent) and hexane (bad solvent). In the case of PMBET 

the solvent used is THF and the nonsolvent added to it is methanol. In the study 

described in this thesis, a typical set of solutions was studied. All sample solutions were 

made by first dissolving 0.02 g of PMBET in 4 ml of THF. After all the polymer had 

dissolved, different quantities of methanol were added to the solutions at the ratios (by 

volimie) given in table 5.1. 

In solution a solvatochromic effect was observed. Progressive methanol addition 

caused the originally orange solution to become dark orange red and then dark red. 

When the ratio of methanol to THF exceeded 4:10 a red precipitate was formed, 

indicating that the polymer had been forced out of solution. From each of the five 

solutions detailed in table 5.1, thin films of PMBET were spin coated imder identical 

conditions, onto glass slides and FET structures, so that their optical and electrical 

properties could be investigated. 
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Fig. 5.3 Polymer MISFET device structure 
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Fig. 5.4 Repeat unit structure of 3[2(S2-methylbutoxy)ethyl]-polythiophene 

(PMBET), * denotes a chiral centre. 
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Sample Ratio of THF iCH^OH Solution colour 

1 100% THF yellow-orange 

2 10:1 dark orange 

3 10:2 red 

4 10:3 dark red 

5 10:4 dark red 

Table 5.1 Details of the solutions used to prepare spin cast fihns of PMBET. 

5.4 Results 

5.4.1 UV-vis Spectroscopy 
The solvatochromic effects observed in the initial spinning solutions are 

preserved in the optical absorption properties of the spin cast polymer films. However, 

the red shifts, induced by the presence of nonsolvent in solution, are enhanced in the 

solid state. The absorption spectrum of a PMBET film spun from pure THF solution 

(sample 1) shows a main peak at 546 nm, with a shoulder at around 600 nm (fig. 5.5). 

PMBET films spun from solutions with increasing methanol content show this main peak 

to shift to longer wavelengths, 552 nm for sample 2 and 564 nm for sample 3. The peak 

absorbance decreases in intensity. A new peak emerges from the shoulder at 600 nm in 

sample 1, and also shifts towards longer wavelengths as the methanol content of the 

spinning solution is increased. For sample 3 the new peak is seen at 610 nm while for 

films spun from solutions 4 and 5 it occurs at 628 nm. It was noted that the films spun 

from methanol treated solutions caused a significant scattering of UghL The degree of 

scattering was increased for films spun fi:om solutions of greater methanol content, as 

suggested by an increase in their absorption in the UV range, circa 300 nm. 
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The shoulder in spectrum 1, and new peaks which are clearly evident in the 
subsequent spectra of fig. 3 are ascribed to vibronic bands. In all cases the lowest energy 
band is the 0-0 transition, with the first vibronic sideband being 190 meV higher in 
energy. This is very consistent with the electronic transition being strongly coupled to the 
C = C stretch of the polymer backbone. Typically for most thiophenes, the C = C stretch 
occurs at =1500 cm"̂  or 185 meV. This energy separation is independent (to within a 
few meV) of chromic shift The results from these films are consistent with those 
reported by Rughooputh et. al. [8] in solutions of polyalkylthiophenes. 

5.4.2 FET Characterisation 
As previously stated, all mobility measurements were performed with devices 

operating in accumulation mode in the linear regime [9] i.e. IVQI > IVpl. A set of typical 

results from a PMBET FET is presented in fig. 5.6. As predicted by theory (equation 

5.3) the data sets, each of which correspond to a different value of VQ, are linear, thus 

allowing accurate determination of \L from their gradient 

The mobihty data from MISFET devices formed by spinning films from the 5 

PMBET solutions treated with methanol are presented in table 5.2. Sample 5 displayed 

no measurable modulation of the source-drain current with applied gate voltage. Along 

with the mobility data, the electrical conductivity of the polymer within each device was 

estimated. The film thickness, required for calculation of G, was estimated at ==100 

Angstroms by comparison of the absolute absorption of the samples prepared for the 

spectroscopic study, to the absorption coefficient of PMBET. The conductivity of 

sample 3 appears to be somewhat low. This is ascribed to an overestimate of the film 

thickness, and the inherently low accuracy of two terminal conductivity measurements. 

A correlation is found between the methanol content of the solution used to 

produce each film, the field effect mobility and electrical conductivity. In all cases an 

increased methanol content in the spinning solution yields lower carrier mobility and 

reduced bulk conductivity. 
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Sample Conductivity Mobility 

Scm"̂  cmV^s-^ 

1 1.7 xlO"^ 4.0x10"^ 

2 7.3 xlO"^ 1.5 xlO'^ 

3 6.1 xlO"^ 1.5 xlO"^ 

4 3.0 xlO-^ 1.5 xlO"^ 

5 9.5 xlO-^ unmeasurable 

Table 5.2 Conductivity and mobility data from PMBET fdms. For preparation 

details see table 5.1. 

5.4.3 Discussion 
From the optical absorption measurements, it can be seen that generally, as poor 

solvent is added to the solutions used to spin cast films of PMBET, the absorption of the 

resultant films is red shifted. This is accompanied by an increase in UV absorption 

ascribed to an increase in scattering. The shift in the absorption peak towards longer 

wavelengths is interpreted as an increase in die effective intrachain conjugation length. 

This arises in solution because the average length of rigid rod along the polymer chain 

increases as the concentration of methanol (nonsolvent) in the solution is increased. 

Similar effects are well documented in side chain substimted PDAs. In this case the 

addition of hexane to solutions of BCMU derivatives [7] causes solvatochromatic shifts 

in the absorption spectrum. Here chains occiu: as random wormlike coils in good solvent, 

the addition of bad solvent causes the individual chains to collapse down on diemselves 

via intramolecular interactions such that sections of die polymer chain form into rigid 

rods [10]. These rigid chains readily aggregate, even in dilute solution. The driving force 

for their collapse is not hydrogen bonding [11], but an intramolecular attraction. In die 
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BCMUs, it is still not clear whether the aggregates are amorphous or fringed micelles 
which have partial crystallinity. 

In good solvent the side chains of the PMBET molecules will have plenty of free 

volimie, enabling them to move rapidly. This degree of side chain freedom will cause the 

polymer to take up a wormlike configuration [12], This will in turn cause a twisting 

between neighbouring rings along the polymer backbone. This deviation from planarity 

of the conjugated structure will drive the system to a more localised geometry [13]. 

These effects are locked in when films are spun as the solvent evaporates r^idly (from 

the very thin fihns), not giving the chains and side groups time to reorient. As poor 

solvent is added to the solution, the degree of sidechain freedom is thought to be 

reduced, via an intramolecular interaction as in the case of the BCMUs, introducing 

order (rigid rod character) to the chains and allowing aggregation to occur. Thus the 

chains can return to a more planar and hence more conjugated form, shifting the 7C-7C* 

absorption to lower energy. Again after film spinning the chain configuration is locked in. 

At very high nonsolvent content, aggregation dominates, leading to the observed high 

degree of scattering from the films. 

The appearance of spin cast films of PMBET, becoming progressively more 

cloudy as the nonsolvent content of the spinning solution was increased, suggests an 

increase in the crystalline fraction of the films or that aggregation of the polymer chains 

occurs in solution prior to (or during) the spinning process. This would explain the 

existence of the scattering tail on the low energy side of the of the 7C-7C* transition of the 

polymer. Further evidence for this comes from the gain in oscillator strength of the 0-0 

and vibronic side bands, indicative of an increased number of one dimensional chains, 

which would be the case in the crystalline fractions. 

The effects of the changes in chain configuration and aggregation in PMBET can 

clearly be seen in die mobility and conductivity data from cast films. At first sight the 

findings are coimterintuitive, field effect mobility and hence conductivity fall markedly as 

nonsolvent is added to the spinning solution, but at the same time, the effective 

conjugation length of each chain in the fihn is increased. An enhancement in the 
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intrachain electrical transport might have been expected to reveal itself in die bulk 

properties of the polymer. However, within the more ordered regions of the film, the 

conjugated backbone will be more rigid. This rigidity will reduce the degree of freedom 

of the substituent side groups, causing them to order. This ordering of the side groups 

will, on average, increase the interchain separation of the conjugated backbones reducing 

the hopping probabihty of interchain charge carrier transport. It is this factor which 

contributes to the decrease of mobility and conductivity in the films prepared from 

solutions containing nonsolvent. These results are in good agreement with the report of 

Paloheimo et. al. [9] in which it is shown that increasing the size of the side substituent 

of polythiophene derivatives, thus increasing interchain separation, also leads to a 

decrease in the carrier field effect mobility. 

On comparing our values of mobihty with those quoted by Horowitz et. al. for 

various thiophene systems [14], nothing untoward is seen. The value 4x10"̂  cm^V'̂ s"̂  

obtained for the field effect mobility of PMBET films cast from purely good solvent is 

high for a substituted polymer, but not unduly so. Thus the observed effects on mobility 

must be caused by the effects of either order or aggregation or both. Recent work in the 

field of oligomeric thiophenes [14,15] has shown tfiat interchain transport is all 

important. Compared to a substitation (end of chain), P substitution (side chain) 

drastically reduced carrier mobility, due in part to loss of crystallinity and because die 

adjacent, facing thiophene rings are much fiorther apart. The electroiuc states that 

contribute to the electrical properties of this material are contained within the thiophene 

units. Reducing the communication between the electrically active parts of the polymer 

(the conjugated backbone) will decrease the ease of charge transport between chains and 

hence limit the mobility. Placing large substituent groups on the side of the polymer chain 

will have just this effect, ^-substituted dodeca thiophene has a field effect mobility of 

5x10 cm V s" , a value approaching the maximum value obtained in PMBET. From 

these findings, we deduce diat in the pristine films PMBET, there is a fair degree of order 

between the more closely spaced chains, as the optical absorption spectrum of such a 

film displays vibronic structure, hence interchain transport is high with a concomitant 



145 

high carrier mobihty. As nonsolvent is added to die spinning solution chain rigidity 
increased conjugation ensues, corresponding to increased order within. the film; 
aggregation occurs, as deduced from the increased optical scattering. The mobility of 
carriers witiiin such films falls, however, this is ascribed to tiie effects of increased chain 
separation on a molecular scale and to the effects of grain boundaries on a macroscopic 
scale. The boundaries between individual aggregate particles disrupts the bulk mobility, 
which is the parameter probed by investigation of FET devices. Although, if particles 
contain regions of significant interchain order, the carrier mobility within them may be 
higher than the bulk (measiu-ed) value. 

5.5 Conclusions 
The MISFET structure has been used to measure the charge carrier mobihty and 

electrical conductivities of thin films of PMBET, spun cast from solvent : nonsolvent 

nuxtures. Optical characterisation of films spun from solutions containing varying ratios 

of THE (solvent) and methanol (nonsolvent) shows clear vibronic structure on the 7C-7C* 

electroiuc transition. Solvatochromatic shifts are maintained in the spun films due to the 

rapid evaporation of the solvent from the (thin) films during the spinning process. The 

rapid evaporation locks in the chain conformation estabUshed in solution. As the 

nonsolvent content of the spinning solution is increased, films show increased 

conjugation, i.e. red shift of the visible absorption. This is ascribed to increased rigidity, 

and hence longer conjugation lengths along the polymer chain. Accompanying this, films 

appear to scatter more strongly; this is ascribed to aggregation of polymer within the 

solutions, and the films produced from them. 

The latter observation is very important when considering the charge carrier 

mobihty and electiical conductivity data obtained from films incorporated into FET 

devices. As nonsolvent content increases, the mobihty in films spim from these solutions 

decreases. This can be ascribed to effects on both the microscopic and macroscopic 

scales. On the microscopic level, increased chain rigidity will cause the side chain groups 
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on the polymer to order, increasing interchain separation and hence decreasing the ease 
of interchain charge transfer. The presence of macroscopic grain boundaries, associated 
with the aggregation particles in the films affects the bulk mobihty within the films. 

These results should be kept in mind when considering transistor devices made 

with high mobihty oligomers, as again grain boundaries may be limiting the maximum 

attainable carrier mobihty and thus compromising the ultimate device performance. 

Further experiments, perhaps including microwave measurements of the electrical 

conductivity are required to probe the intrinsic properties of ordered regions of the 

polymer. This might reveal whether the mobihty is enhanced in these ordered regions, or 

if it is Unuted by increased interchain separation. 
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CHAPTER 6 

Summary 

6.1 Review Of Research 

6.2.1 Polyaniline 

The electrical conductivity and thermopower of conductive polyaniline films, 

prepared by two alternative methods (PANi-NMP and PANi-CSA) have been measured 

as a function of temperature. The results indicate a stark contrast between the charge 

transport mechanisms in these two materials. 

Conductivity data from free standing Sim samples of PANi-NMP in which there 

is no deliberate polymer chain orientation reveal that this material is a relatively poor 

conductor, O <30 Scm'̂  at 300 K. Sti-etch elongation of fihns, by 500% prior to 

protonation induces partial chain aUgmnent, with the result that the material has a 

significant electrical anisotropy. Parallel to the axis of orientation, conductivity is 

enhanced to <250 Scm'̂  whilst in the perpendicular direction (7 is relatively unchanged 

from that of unstretched PANi-NMP. The magnitude of O in all cases is found to reduce 

(typically by 80%) when moisture absorbed by the polymer is extracted on exposure to 

high vacuimi conditions. 

The monotonic increase of G with temperahire in tiie range 10 K to 300 K is 

indicative of a disordered conductor in which charge carriers are localised, perhaps upon 

the molecular scale. Curve fits to the data suggest that the mechanism of fluctuation 

induced ttmnelling (FIT) provides a good, but not complete description of electrical 

transport in this system. 

Thermopower measurements upon stretch ahgned films have highhghted the 

anisotropic nature of chain oriented PANi-NMP. A metal-like behaviour, indicated by 

linear variation of the Seebeck coefficient with temperature is observed in parallel to the 

direction of chain aligrunenL Perpendicular to this axis the thermopower is similar to 

that measured in unoriented PANi-NMP. However it is difficult to ascribe these results 

to the influence of any particular charge tiransport mechanism. 
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It is argued tiiat die anisotropic behaviour displayed in bodi die conductivity aiid 
diermopower of stretch oriented PANi-NMP arises firom an anisotropy induced in die 
charge carrier mean free padi as a result of polymer cham alignment A longer mean free 
path is expected along the orientation axis because the polymer backbone provides a low 
resistance padi for charge transport. Ahgnment of chains is thought to permit a far 
greater proportion of transport (along the common axis) by propagation along the 
chains. Therefore the frequency of carrier scattering by interchain transfer events is 
reduced. This is supported by the fact that the maximvun conductivity of samples occurs 
in a direction parallel to the stretch axis. This is not the case in the direction 
perpendicular to chain ahgnment or for unoriented samples, where the frequency of 
interchain charge transfer processes is expected to be higher, thus hmiting the mean free 
path. This might account for the similar trends which have been observed in conductivity 
and thermopower in these two cases. 

Polyaniline prepared as PANi-CSA is capable of displaying far greater 

conductivity than PANi-NMP. For example, at nominal 60% doping, the conductivity of 

unstretched fihns can approach 300 Scm'̂  and by stretch orientation of this material, 

values as high as 800 Scm"̂  can be achieved. In addition, removal of volatile species 

under high vacuum results in only a 20% drop in die magnitude of a. The metalhc 

behaviour observed in "highly doped' PANi-CSA, indicated by a negative temperature 

coefficient of the conductivity has been the subject of intense study. By variation of the 

dopant concentration, the onset and progression of this metalhc response has been 

revealed using a range of samples, prepared with CSA contents sufficient to protonate 

10, 20, 30, 40, 50 and 60% of die polymer chain nitrogen sites. At 10% and 20% 

doping, low conductivity is observed (0.6 Scm'̂  and 7 Scm'̂  respectively) and this has a 

temperature dependence similar to that observed for PANi-NMP. The metal-hke 

response appears in samples doped at, and above 30%. In these cases a has a positive 

temperature coefficient at low temperatiires, but reaches a peak at a characteristic 

temperature Tp, above which conductivity falls in a manner akin to that of crystalline 

metals e.g. copper. In fact, regions of crystalline order have been identified within PANi-
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CSA, by an independent x-ray diffraction analysis which is yet to be published. As the 
level of doping is increased beyond 30% conductivity increases and Tp shifts to lower 
temperatures, such that the metallic behaviour becomes more evident. The fall off in O at 
low temperatures is also less pronounced. Thermopower data from PANi-CSA (at 30% 
40% and 50% doping levels) has a linear dependence upon temperature which 
compliments the evidence for metallic charge transport provided by the conductivity 
data. 

Estimates of the charge carrier mobility within samples were made from the value 

of a at 300 K in each case. This revealed that the mobility increases sharply as a function 

of increased doping, until the transition to metal-like behaviour at 30% protonation is 

crossed e.g. at 10% doping \L = 4x10"̂  cm\'^s'^, whilst for 60% doping \L = 0.3 cm^V" 

^s'^ This behaviour could be due to an increased overlap of conduction band electronic 

states as more chain sites are protonated, such that charge carrier localisation, occurring 

at low doping levels, is gradually eliminated. Alternatively, the change in |1 could arise 

due to a growth in the number or size of metallic regions within the polymer as the level 

of protonation is increased. 

6.1.2 PMBET Field Effect Transistors 
The charge carrier mobility was investigated within thin fihns of 3[2(S2-

methylbutoxy)ethyl]-polythiophene (PMBET) formed by spin coating the polymer from 

solution in tetrahydrofuran. This was achieved by incorporating the material as the active 

layer in a metal-insulator-semiconductor field effect transistor (MISFET) structure and 

measuring the device characteristics, during operation in enhancement mode. The 

influence of different states of molecular order within the polymer was investigated. By 

treating the spin casting solution with different quantities of methanol, a nonsolvent for 

PMBET, reorganisation of the polymer sidechain groups can be induced, which leads to 

an increased effective conjugation length in the chain backbone. This is indicated by a 

solvatochromatic shift upon addition of the nonsolvent. A spectroscopic study revealed 
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that the intramolecular order induced by the nonsolvent is preserved when thin films are 
cast from the solvent-polymer-nonsolvent mixtures. 

However, the electrical conductivity and field effect mobility of thin films 

containing ordered polymer chains is far below that measured in films spun fi-om simple 

solvent-polymer mixtures, where | I <4xl0'^ cmV'^s'^ and a <1.7xl0"^ Scm'^ In the 

most extreme cases, the mobility was below measurable limits, in this case < 1x10 

cm^V^s'^. The conductivity was reduced to <9xlO"^ Scm'^ The reduction in mobility 

and conductivity which accompanies the increase in intramolecular order within thin films 

PMBET is ascribed in part to an increased interchain separation resulting fi-om an 

outward ordering of the side chain substituent species. This is thought to reduce the 

probability of interchain charge transfer. In addition, the presence of grain boundaries 

between aggregated regions of polymer, or small crystallites becomes more evident in 

films with more intramolecular order. This is expected to inhibit electrical transport 

within the bulk film. 

6.2 Conclusions 
It is clear that the nature of interraolecular order is a very important factor 

governing the bulk charge transport properties of the conductive polymer systems 

considered in this thesis. In the case of polyaniline, two very different conductors can be 

produced by the use of different methods, described in chapter one, of processing the 

unprotonated emeraldine base form. These are PANi-NMP and PANi-CSA. 

Within PANi-NMP samples, there is no evidence for long range order on the 

molecular level. It is unsurprising therefore that the electrical conductivity has a 

temperature activated behaviour, indicating that charge carriers are not free to diffuse as 

they are in the structure of a crystalline conductor. Since there is little or no coherence 

between polymer chains in the amorphous structure of PANi-NMP a high probability of 

carrier scattering is expected at interchain charge transfer processes. The enhancement of 

the conductivity along one direction which can be induced by stretch elongation of this 
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material is ascribed to a reduction in the number of interchain scattering events due to 
the partial alignment of polymer chain backbones, along which charge transport is 
preferred. 

The crystal structure revealed by an (independent) x-ray analysis of samples of 

PANi-CSA and the evidence, from conductivity data, that charge transport is limited by 

phonon scattering at high temperatures, e.g. above 130 K, for 60% doped films, suggest 

that this material is very close to the metal-insulator boundary. The conductivity of 

'metaUic' samples is in the region predicted for the minimum metallic conductivity of a 

disordered system described in chapter 2, and is almost ten times higher than that in 

samples of unoriented PANi-NMP. The conductivity of PANi-CSA is still limited, 

presumably by disordered regions, such that at lower temperatures (<100 K) 

conductivity is temperature activated, A combination of two charge transport 

mechanisms, fluctuation induced tunnelling and phonon scattering has been used to 

model the conductivity data obtained from PANi-CSA doped to levels at and above 

30%, see chapter 3, section 3.3.2). It is also interesting to note that attempts to exceed 

the theoretical maximum protonation level, of 50% (see, section 1.6, chapter 1) by 

doping the polymer with CSA sufficient for 60% protonation resulted in improved 

conductivity and an enhanced 'metaUic' response. 

Most studies of conductive polymers are concerned with the value of electrical 

conductivity, because this property indicates the suitability of the material for real 

applications. Thermoelectric analysis, on the other hand, is useful only as a scientific tool. 

Since measurement of thermopower is (ideally) a zero current process, this technique can 

be used to identify the presence of "hidden' metallic states, not revealed by analysis of the 

conductivity, for example in stretch oriented PANi-NMP (see chapter 4, section 4.3). 

However, in the case where data deviate from a linear dependence upon temperature, 

predicted for diffusion of carriers in a metal, the results are very difficult to interpret It 

was hard therefore, to make anything other than a qualitative analysis from the 

thermoelectric measurements obtained from polyaniline samples, especially given the 
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limited range of temperature, 100 to 300 K, over which data could be acquired with the 
apparatus available. 

The role of order and disorder is again revealed in the smdy of charge carrier 

mobility in PMBET. In this case it was revealed that although the intramolecular order 

within thin films of this polymer can be increased, a detrimental effect upon the interchain 

charge transfer resulted in decreased conductivity and mobility. This finding highlights 

one difficulty with conjugated polymers to which sidechain groups are added to increase 

the solubility of the material. Whilst the addition of these groups increases the ease of 

processability their presence also increases the average separation between polymer chain 

backbones. Since it is this part of the polymer which contains electronic states for mobile 

charge carriers, if the overlap between the 7C orbitals of adjacent chain backbones is 

reduced, the bulk electrical properties of the material will suffer. 

The ideal conductive polymer is therefore a material which is easily processed, 

but has no bulky sidechain groups. In addition, it must contain a high degree of long 

range interchain order, i.e. crystallinity, to allow coherent charge transport with a high 

mobility. 

6.3 Suggestions For Future Study 
There are a number of questions raised by the work presented in this thesis, 

particularly concerning the nature of electrical transport within PANi-CSA. The balance 

of metallic and non-metallic charge flow mechanisms exhibited by this material deserves 

a more detailed investigation. Ideally, this would involve detailed x-ray diffraction 

analysis to determine the structural conformation and coherence length within the 

crystalline regions of the polymer. Microwave techniques of electrical conductivity 

measurement might succeed in revealing the intrinsic properties of these regions. A fine 

mning of the polymer film production method is required to see if greater crystalline 

order can be achieved. In particular, the effects upon die chemical structure of including 

CSA at levels intended to exceed 50% protonation must be quantified, in order to 
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determine whether the polysemiquinone radical cation structure (described in chapter 1, 
section 1.7) is the ultimate conductive form of polyaniline. These factors and others must 
be addressed before polyaniline and other organic conductors are suitable for widespread 
use as reUable and easily processed electronic materials. 
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