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The Regulation of Fatty Acid Synthetase Genes in 

B. napus 

ABSTRACT 

The main aim of this work was to analyse a cloned ACP gene promoter, which 

had been shown to contain regulatory information that directed both spatial 

and temporal expression. Gel retardation assays were used initially to define 

protein binding sites within the ACP05 promoter. Following such analysis, a 

DNA motif that interacted with a sequence specific binding factor was 

identified. This factor was detected in embryo extracts and was not present in 

leaf extracts. The stability and binding characteristics of the ACP promoter 

binding protein were studied after heparin agarose chromatography, using 

gel retardation assays to follow the protein. A binding site oligonucleotide was 

synthesised and used as a probe to screen an expression library, in a "South 

Western" cloning experiment. A single positive clone, A.BS2xi, was isolated. 

The DNA binding specificity of the recombinant protein was determined by gel 

retardation. The clone was confirmed to encode a functional sequence . 

specific DNA binding domain. Northern hybridisations demonstrated the 

mANA was expressed and in a tissue specific manner: levels of message 

were high in seed, low in root and not detected in leaf tissue. Endonuclease 

restriction of the lambda clone with EcoRI excised a 3.0kbp fragment that 

corresponded to the entire eDNA. The fragment was subcloned in pSK+ and 

several strategies were used to characterise and sequence it. A set of nested 

deletions was generated, but reliable sequence data was not obtained from 

the first half of the eDNA. A section of readable sequence data was obtained 

approximately 1.5Kbp from the 5' end of the deleted eDNA. Exhaustive 

databank searches using the sequence data demonstrated that it 

corresponded to ~- galactosidase. Southern analysis further demonstrated 

that this sequence was present in A.BS2xi. Further work required to 

characterise A.BS2xi is discussed. 

A second related subject of this thesis concerns a second member of the FAS 

complex, enoyl- ACP reductase (ER). Prior to this work it was shown that there 



were four ER isoforms, expressed in both leaf and seed. The levels of 

expression of individual isoforms were different, there being two major forms 

and two minor forms. One leaf expressed clone, pERL8 had been isolated 

and characterised. A DNA probe that encompassed the 3' untranslated region 

(3'UTR) was generated from pERL8 and used to screen a eDNA library 

generated from embryo. Eleven positives were isolated and ten were 

successfully subcloned by plasmid rescue. The clones were sequenc'ed with 

internal primers. Exhaustive searches of databanks using the sequence data 

demonstrated that five clones corresponded to seed storage proteins and five 

were confirmed as ER. The ER clones were divided into two groups on the 

basis of sequence differences. One clone was identical to pERL8 and 

represented an isoform expressed in both leaf and seed. The sequences of 

the clones within a group was identical, apart from an "insert" present in the 3' 

UTR of one clone from both groups. Whether these inserts were real or 

artifacts could not be demonstrated conclusively as further sequencing 

showed both clones with inserts in the 3' UTR were 5' truncated. In order to 

determine whether all four ER isoforms had been isolated further work would 

be required. This is also discussed. 
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General Introduction 



Chapter 1 

General Introduction 

1.1 Plant lipids 

Acyl lipids are major constituents of plant tissue (Harwood, 1988; Harwood et 

a/., 1990; Gun stone and Heslof, 1992; Ohlrogge et a/., 1991; Murata and 

Nishida, 1987; Slabas and Fawcett, 1992; Slabas eta/., 1984; 1987; 1993; 

1994; Somerville and Browse, 1991 ). They are a group of hydrophobic 

compounds which are derivatives of fatty acids coupled to alcohols (in 

particular glycerol), bases, phosphate esters sugars and sterols, or with 

combinations of these (Gunstone, 1992; Gunstone and Heslof, 1992). The 

main component of the lipid fraction in most plants are glycerides (derived 

from glycerol), however waxes, cutins, sterols and sphingolipids also occur 

commonly (Gunstone and Heslof, 1992; Murata and Nishida, 1987). The 

glycerides are subdivided into three groups, triglycerides (or 

triacylglycerides), phosphoglycerides and glycosylglycerides, which serve 

distinct roles within the plant (Siabas and Fawcett., 1992). The general 

structures of plant lipids are presented in figure 1.1. 

1.2 Structure and functions of plant lipids 

The main constituent of lipids are fatty acids, the composition of which 

effectively defines the physical properties of the lipid. The nomenclature of 

fatty acids (Gunstone and Heslof, 1992) is normally based on the 

hydrocarbon chain having the largest number of carbon atoms. Double bonds 

are usually defined from the carboxyl end of the molecule and are indicated 

as~ (or as m, when numbered from the methyl end). 

In total over five hundred fatty acids have been identified, most of which are 

rare, being found only in a single, or few species (Gunstone and Heslof, 1992; 

Hillditch and Williams, 1964). Many of the common fatty acids have trivial 

names which are listed in table 1.1. Analysis of the composition of membrane 

fatty acids reveal little variation in acyl side chains, which are mainly long 

1 



Figure 1.1: The general structure of acylglycerides 

A: General structure of triglycerides. R1, R2 and R3 denote the fatty acid 

(acyl) chain esterified to the sn- 1 , sn- 2 and sn- 3 positions, respectively, of 

the glycerol backbone. 8: phosphoglyceride. C, D and E: glycosylglycerides. 

MGDG, monogalactosyl diacylglyceride, DGDG, digalactosyl diacylglyceride 

and SQDG, sulphoquinovosyl diacylglyceride (Gunstone and Heslof, 1992). 
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chain (C16- 18}. This invariance reflects the importance of fatty acids in 

maintaining fully functioning membranes (Somerville and Browse, 1991; 

Murata, 1983). In contrast, storage lipids have widely varying fatty acid side 

chains (Murata and Nishida, 1987; Somerville and Browse, 1991 ). 

Conservation of structure is not as important when the primary function of the 

molecule is to act as an energy reserve and is eventually degraded to acetyl 

Co A. 

The functions of lipids are diverse (Gibson et a/., 1994). Among the most 

important is their structural role in membranes (Briskin, 1994). The analysis of 

the lipids isolated from different subcellular membranes reveals distinct 

profiles. For instance glycosylglycerides are a major component in the 

thylakoid membranes of the chloroplast (Douce and Joyard, 1980). Evidence 

indicates that lipids provide the necessary environment for biological activity 

of membrane proteins, such as ATPase (Mitchell, 1979) and glycerol- 3-

phosphate- acyl transferase (Green and Bell, 1984; Larson et a/., 1980). 

Membrane lipids are also critical in determining the chilling sensitivity of 

certain plants (Murata, 1983; Murata et al., 1992) and cyanobacteria (Wada 

eta/., 1990; 1994}. It has been demonstrated that in chilling tolerant species 

there is an increase in the degree of unsaturation of membrane lipids 

following a decrease in temperature (Gombos et a/., 1994; Murata, 1983; 

Murata eta/., 1992; Wada eta/., 1994). In this manner plants are able to adapt 

to environmental stress by altering membrane fluidity (and therefore 

maintaining biochemical function) (Moon et a/., 1995; Murata and Wada, 

1995}. An additional structural role is that of cutins and waxes on the outside 

of the plant that act as physical barriers against pathogen attack (Kolattakudy, 

1987). 

Lipid~ have many biosynthetic functions. As acyl Acyl Carrier Proteins (ACP) 

and acyl Coenzyme As (Co A) they act as intermediates in the synthesis of 

complex lipids and as substrates for acyl transfer and desaturation (Frentzen 

eta/., 1983; 1990). In addition there is evidence that suggests sulphated lipo

oligo sacch~uides elicit root nodulation in Rhizobium meliloti, (Lerouge eta/., 

19.91; Spaink, eta/., 1991 ). 

3 



Table 1.1 Commonly occurring plant fatty acids 

Trivial name Systematic name Formula 

Saturated 

capric acid decanoic acid C10:0 

lauric acid docanoic acid C12:0 

myristic acid tetradecanoic acid C14:0 

palmitic acid hexadecanoic acid C16:0 

steric acid octadecanoic acid C18:0 

arachachic acid eicosanoic acid C20:0 

Monounsaturated 

palmitoleic acid cis- 9- hexadecanoic acid C16:1 [b.9c) 

oleic acid cis- 9- octadecenoic acid C18:1 [b.9c] 

vaccenic acid cis- 11- octadecenoic acid C18:1 [b.11c) 

erucic acid cis- 13- docosanoic acid C22:1 [b.13c] 

Polyunsaturated 

linoleic acid cis, cis- 9, 12, C18:2 [.1.9, 12c] 
octadecadienoic acid 

y linolenic acid all cis- 6, 9, 12, C18:3 [.1.6, 9, 12c) 
oCtadecatrienoic acid 

a linolenic acid all cis- 9, 12, 15, C18:3 [.1.9, 12, 15c] 
octadecatrienoic acid 

4 



Lipids also have an important role in storage. Many plants accumulate large 

amounts of storage lipids in fruits or seeds as triglycerides (Murphy, 1990; 

Pryde and Rothfus, 1989). Field crops such as rapeseed, flax, sunflower, 

sesame and peanut accumulate oil up to -45% of the seed weight, 

concentrated in oil bodies. Such stores represent latent energy and fatty acid 

sources for seed development and are subject to considerable commercial 

exploitation (Pryde and Rothfus, 1989). 

1.3 Biosynthesis of plant acyl lipids 

Fatty acid synthesis is an ubiquitous feature of living organisms as it is 

essential for membrane biogenesis and growth. The same pathway is also 

used to synthesise fatty acids which are incorporated into triacylglycerides, 

which represent a concentrated energy store. The mechanism of fatty acid 

synthesis is essentially the same in all organisms, however the Eatty Acid 

Synthase (FAS) complex exists in a variety of structural forms. In plants 

(Ohlrogge, 1982; Shimakata and Stumpf, 1982a; Stumpf and Shimakata, 

1983) and most bacteria (Vagelos, 1974) there is a type II, or dissociated FAS 

system, in which each of the individual partial reactions are carried out by 

separate proteins. This is in contrast to the type I FAS system found in 

vertebrates (Smith, 1994; Witkauski et a/., 1991 ), fungi (Schweizer et a/., 

1987) and yeasts (Stoops and Wakil, 1980), in which components are 

combined within one or two high molecular· weight multi- functional 

polypeptides. 

The major site of fatty acid biosynthesis in higher plants is the chloroplast 

(Stumpf, 1981 ). The close similarity between cynaobacterial and plant FAS 

systems has led to the suggestion that type II FAS may represent a vestige of 

the procaryotic origins of the chloroplast (McCarthy et a/., 1983). There is 

evidence which suggests that type I FAS may have arisen by gene fusion 

events of component type II enzymes during evolution (Werkmeister et a/., 

1983; Witkauski eta/., 1991 ). 

5 



1.3.1 Precursors of biosynthesis 

Fatty acids are synthesised from acetyl- CoA and malonyl- CoA precursors, 

the C1 and C2 carbon atoms of the fatty acid are derived from acetyl- CoA 

and the 2-C units required for elongation are provided by malonyl- CoA 

(Stumpf, 1980; 1981). Most or all of de novo biosynthesis of C16- 18 fatty 

acids occurs in the plastids of both leaves and developing seeds (Ohlrogge 

et a/., 1979; Weaire and Kekwick, 1975). Subsequent elongation and 

modification occur in membrane associated systems (Harwood et a/., 1990). 

The source of acetyl- CoA has not yet been demonstrated unequivocally. It 

has been proposed that the generation of free acetate by the mitochondrial 

pyruvate dehydrogenase complex coupled to acetyl CoA hydrolase could 

produce free acetate, which could then enter plastids and be incorporated 

into lipids (Stumpf, 1980). In the chloroplast acetate would then be rapidly 

converted to acetyl- CoA via acetyl- CoA synthetase in the stroma (Harwood, 

1988). 

More recently it was suggested that L- acetylcarnitine was a likely precursor 

for plastid lipid synthesis (Masterson eta/., 1990). This was based on the five 

fold greater increase in fatty acid synthesis of isolated pea chloroplasts fed 

acetylcarnitine as compared to those fed with acetate. However, in complete 

contrast Roughan and colleagues {1993) found that the rate of long chain fatty 

acid synthesis in isolated plastids from several species (including pea) fed 

with acetylcarnitine was less that 2% of those fed with acetate. Carnitine 

acyltransferase activity was not detected in isolated plastids and they 

concluded that it could not be a possible precursor. 

The first committed step of de novo fatty acid synthesis is the ATP dependent 

carboxylation of acetyl- CoA to form malonyl- CoA (see figure 1.2). Malonyl 

CoA is an important central metabolite and is utilised for the synthesis of 

flavenoids, very long chain fatty acids and stilbenoids (Stumpf, 1980). The 

reaction is catalysed by Acetyl- CoA Carboxlase (ACC), the structure and 

subunits of which vary between species. In mammals the enzyme consists of 

a single large multifunctional polypeptide of at least 200 kDa. The three 

functional domains are biotin carboxylase, biotin carboxylase carrier protein 
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and carboxyltransferase. In E.coli the enzyme consists of a complex of 

polypeptides, on which the composite reactions reside (Wood and Barden, 

1977). All four polypeptide subunits have been purified to homogeneity and 

the acyl carrier protein has been found to be the only biotin containing protein 

in E. coli (Fall eta/., 1975; Fall, 1979). 

Both the large multifunctional type I ACC and the multisubunit bacterial type II 

ACC are present in plants (Li eta/., 1992; Saskai eta/., 1993). Both types 

have different cellular and subcellular locations (Alban eta/., 1994; Ohlrogge 

et al., 1979). Type I ACC is found in epidermal cells and is cytosolic and type II 

is found in mesophyll cells and is chloroplastic. The type I ACC is induced by 

uv light and fungal elicitors and as a result is thought to be involved in 

flavanoid and wax biosynthesis (Shorrosh eta/., 1994). Type II ACC is thought 

to be associated with de novo lipid synthesis in the chloroplast (Ohlrogge et 

a/., 1979). All ACCs have a biotin moiety covalently bonded to a specific 

lysine residue, which is thought to act as a molecular arm passing the 

carboxyl group between subunit active sites (Samols eta/., 1988). 

Figure 1.2 Carboxylation of acetyl- GoA by ACC 
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In mammalian systems ACC activity is the rate limiting enzyme for de novo 

fatty acid biosynthesis and is regulated by phosphorylation and 

polymerisation/ depolymerisation (Numa and Tanabe, 1984). In plants there is 

also evidence which suggests ACC is the rate limiting enzyme for FAS. A 

study of the acyl CoA and acyl ACP pools in spinach chloroplasts suggested 

a regulatory role (Post-Beittenmiller eta/., 1992). Also a correlation between 

ACC activity and the deposition of lipid in developing Brassica napus seeds 

was reported (Harwood, 1988). However a more recent study of ACC activity 

in developing B. napus embryos found a negative correlation with lipid 

deposition (Kang eta/., 1993). The exact mechanisms which regulate ACC in 

plants are not clearly defined (Siabas and Fawcett, 1992). 

1.3.2 The fatty acid synthetase system 

Comparatively little was known about the enzymes involved in the de novo 

biosynthesis of fatty acids in plants until the 1960s. In the 1950s the 

incorporation of 14C- acetate into palmitic and oleic acids in plant tissue 

extracts was demonstrated (Newcomb and Stumpf, 1953; Stumpf and Barber, 

1957; Squires et a/., 1958). Subsequently, isolated chloroplasts were 

demonstrated as being capable of incorporating 14C - acetate into 14C -

palmitic acid and 14C - oleic acid (Mudd and MacManus, 1962; Weaire and 

Keckwick, 1975). In 1967 ACP was isolated from three different plant species 

(Simoni eta/., 1967). This was the first evidence that implied plant FAS was a 

type II or dissociated FAS system, like that from E. coli. However, it was not 

until 1982 that the partial or complete purification of individual component 

enzymes of FAS was published from barley leaves (Hoj and Mikkelsen, 

1982), avocado mesocarp (Caughey and Kekwick, 1982), safflower seeds 

(Shimakata and Stumpf, 1982a), spinach leaves (Shimakata and Stumpf, 

1982b; 1982c and 1982d) and parsley suspension culture (Schulz et a/, 

1982). Many of the enzymes that are involved in lipid biosynthesis are minor, 

membrane bound components and are difficult to purify using standard 

techniques (Topfer and Martini, 1994). Thus obtaining antibody or 

oligonucleotide probes for eDNA cloning (which require purified protein for 

their generation) is often technically difficult. Several alternative eDNA cloning 

strategies which circumvent the problem of protein purification exist and have 
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been used successfully to clone FAS components. These include T- DNA 

tagging (Browse eta/., 1993), chromosome walking (Lemieux et a/., 1990) 

and complementation cloning (Brown eta/., 1995). 

De novo synthesis of G16 and G18 fatty acids is catalysed by the combined 

action of AGG and the cyclic FAS system (Siabas and Fawcett, 1992; Slabas 

eta/., 1994). In addition, the cofactor AGP is required to act as a shuttle for the 

growing acyl chains. The intermediates in the pathway are attached to AGP 

as thioesters via a phosphopantetheine prosthetic group (Ohlrogge, 1987). 

The component reactions of the FAS system are shown in table 1.2. 

The exact mechanism of the initial reaction of fatty acid biosynthesis is 

unclear and there are three main possibilities. The first is the production of 

acetoacyl- AGP from the condensation of acetyl- GoA and malonyl- AGP, 

catalysed by 3- Ketoacyl- AGP Synthetase (KAS) Ill (Jaworski and Rock, 

1987; Jaworski eta/., 1989; Walsh eta/., 1990). The second is the conversion 

of acetyl- GoA to acetyl- AGP by either Acetyl- GoA: AGP transacylase or KAS 

Ill. The acetyl- AGP produced would be condensed with malonyl- AGP by 

KAS I to form acetoacetyl- AGP. The last possibility is the decarboxylation of 

malonyl- AGP by KAS I to form acetyl- AGP, which is then condensed with 

malonyl- AGP (Magnuson eta/., 1993). Following the initial condensation, 

subsequent condensations between acyl- AGP intermediates and malonyi

AGP are catalysed by KAS I. The 3-ketoacyl- AGP intermediates are then 

reduced (by 3- ketoacyl- AGP- reductase), dehydrated (by 3- hydroxyacyi

AGP- dehydratase) and reduced again (by enoyl- AGP reductase) to yield the 

saturated acyl- AGP intermediate. The final condensation, from G16 to G18, 

which yields the end product of fatty acid synthesis requires yet another 3-

ketoacyl- AGP- synthase (KAS II) (Shimikata and Stumpf, 1982c). 

A carbon chain of 18 atoms is the longest acyl chain produced by the plastid 

located cyclic FAS system. However all plants produce long chain saturated 

fatty acids for the formation of cutins, suberin and waxes. Some plants such 

as Brassica juncea synthesise long chain monounsaturated fatty acids 

(G22: 1, erucic acid) in their seed triglyceride oil fraction. Long chain fatty 

acids are elongated and modified by membrane associated enzyme systems 
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Table 1.2: Individual reactions of the fgttY. acid synthetase system 

1) Acetyl- GoA: ACP transacylase (KAS Ill?) 

Acetyl- GoA + ACP <------> Acetyl- ACP + GoA 

2) Malonyl- GoA: ACP transacylase (MCAT) 

Malonyl- GoA + ACP <------> Malonyl- ACP + GoA 

3) 3- Ketoacyl- ACP synthase Ill (KAS Ill) 

Acetyl- GoA + Malonyl- ACP <------> Acetoacyl- ACP + C02 + GoA 

4) 3- Keto- ACP synthase I (KAS I) 

nAcyl- ACP + Malonyl- ACP <------> (n + 2) Acyl- ACP + C02 + ACP 

5) 3- Keto- ACP synthase II (KAS II) 

Palmitoyl- ACP + Malonyl- ACP <------> 3- ketooctadecanoyl- ACP + C02 + 

ACP 

6) 3- Ketoacyl- ACP reductase 

3- ketoacyl- ACP + NADPH <------> 3- Hydroxyacyl- ACP + NAD(P) 

7) 3- Hydroxyacyl- ACP dehydrase 

3- Hydroxyacyl- ACP <------> Enoyl- ACP + H20 

8) Enoyl- ACP reductase 

Enoyl- ACP + NAD(P)H <------> Acyl- ACP + NAD(P) 
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which are well characterised in animal systems. ACP does not appear to be 

involved in these elongation reactions but the 2C- donor is malonyl- CoA 

(Harwood eta/., 1990). 

1.4 The acyl carrier protein 

1.4.1. Historical perspectives 

The original studies of Acyl Carrier Protein (ACP) were in E. coli (Prescott 

and Vagelos, 1972), where ACP was initially described as a heat stable 

cofactor to which the intermediates of fatty acid synthesis were attached 

(Prescott and Vagelos, 1972). Following this discovery the structures of the 

intermediates in fatty acid biosynthesis were elucidated over several years 

(Bloch, 1970; Bloch and Vance, 1977; Prescott and Vagelos; 1972; Volpe and 

Vagelos, 1976; Wakil eta/., 1970). 

The role of ACP in plants was demonstrated initially by ammonium sulphate 

fractionation studies of avocado mesocarp extracts. FAS activity could be 

separated into two components, which were inactive alone, but able to 

synthesise palmitic and stearic acids when recombined. One fraction was 

heat and acid stable, but protease sensitive and could partially substitute for 

the analogous E. coli fraction in the stimulation of E. coli FAS. This fraction 

was subsequently demonstrated to contain ACP and was taken as evidence 

for the similarity between plant and bacterial FAS systems. ACP is currently 

the most completely studied protein in both plant and bacterial lipid 

metabolism (Ohlrogge, 1987). 

1.4.2 Functions of ACP 

ACP is an absolute requirement for de novo fatty acid biosynthesis in bacteria 

(Cronan and Rock, 1987) and plants (Siabas and Fawcett, 1992). Probably its 

best known role is as the cofactor to which the intermediates of fatty acid 

biosynthesis are attached (Ohlrogge, 1987). ACP contains a 4 

phosphopantetheine prosthetic group which is linked to the protein via a 

phosphodiester bond with a specific serine residue. Acyl groups (the 
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substrates, intermediates and products of fatty acid synthesis) are then 

attached via a thioester bond to the terminal sulphydryl of the prosthetic 

group. In the de novo biosynthesis of C16 and C18 fatty acids ACP acts as the 

carrier of the growing acyl chains between active sites of the various enzymes 

involved. The prosthetic group is donated to apo ACP from coenzyme A in a 

reaction catalysed by a chloroplast located holo ACP synthase (Jaworski and 

Rock, 1983; Post-Beittenmilleret a/., 1989b). The reverse reaction, the 

formation of apo- ACP is catalysed by holo- ACP hydrolase. Evidence for the 

importance of maintaining a fully phosphopantetheinylated ACP is provided 

by the E. coli mutant MP4. This mutant has reduced holo- ACP synthase 

activity and subsequently grows at only half the rate of the parent strain 

(Polacco and Cronan, 1981 ). 

ACP also functions as an acyl donor in transfer, desaturation and hydrolysis 

reactions. A strong selectivity for acyl- ACPs rather than acyl CoAs is shown. 

by stearoyl- ACP desaturase (McKeon and Stumpf, 1982), glycerol- 3-

phosphate- acyl transferase (Frantzen et a/., 1983) and an acyl- ACP 

hydrolase (McKeon and Stumpf, 1982) at physiological substrate 

concentrations. ACP has been shown to function in several other distinct 

areas. In E. coli it acts as a cofactor in the synthesis of membrane derived 

lipo- oligo saccharides (Therisod and Kennedy, 1987) and polyketides (Shen 

et a/., 1992) and has a putative role the activation of the membrane toxin, 

haemolysin (lssortal eta/., 1991 ). In Rhizobia meliloti ACP is essential in the 

induction of nitrogen fixing nodules, via the synthesis of acylated 

oligosaccharides (Geiger et al., 1994; Spaink eta/., 1991 ). 

1.4.3 Structure of ACP 

ACP has been purified and sequenced from many sources including E. coli 

(Vanaman eta/., 1968), barley leaf (Hoj and Svendsen, 1983), spinach leaf 

(Kuo and Ohlrogge, 1984), castor seed, soybean (Ohlrogge and Kuo, 1985), 

B. napus seed (Siabas eta/., 1987), rabbit (McCarthy eta/., 1983) and goose 

(Poulose eta/., 1984). ACP has not yet been purified from leaf and seed in the 

same species. All ACPs analysed so far are characterised by their small size 

(81- 117 amino acid residues), and amino acid composition, which is high in 
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acidic residues and low in hydrophobic and aromatic residues. The E. coli 

ACP has been extensively studied, it is 68 amino acids long, with an 

isoelectric point of 4.1 and represents one of the most abundant proteins in 

E. coli (Fall, 1979). However, it is difficult to observe on SDS- gels due to its 

acidic nature and low binding capacity for coomassie blue dye (Cronan and 

Rock, 1987). The three dimensional structure of ACP from E. coli has been 

resolved using NMR techniques. It is strikingly asymmetric and contains four 

alpha helical regions connected by beta turns and random coils (Holak eta/., 

1988; Kim and Prestegard, 1989; 1990). 

A comparison of the amino acid composition and sequence data of ACP 

between different species illustrates extensive homology, especially in the 

area corresponding to the prosthetic group attachment site. Such sequence 

comparisons reveal that ACP is highly conserved between plant species, for 

example spinach and barley ACPs share 70% homology at the amino acid 

level. It is also apparent that plant ACPs are more closely related to bacterial 

ACPs than those isolated from animals. For example at the amino acid level 

spinach and E. coli ACPs share 40% homology as compared to 25% 

homology between spinach and rabbit ACP. Such a high degree of 

conservation is probably due to the fact that ACP is cofactor which interacts 

with at least 10 enzymes, thus any alteration in structure would not be easily 

accommodated (Ohlrogge, 1987). 

1.4.4 Distribution 

Plant ACP is predominantly located in the plastid (Ohlrogge et a/., 1979; 

Ohlrogge and Kuo, 1985) but following its discovery in the mitochondria of 

Neurosporra crassa (Brody et a/., 1988) was also detected in plant 

mitochondria (Chuman and Brody, 1989). In bovine heart muscle ACP is 

found as a component of NADH:ubiquitone oxidoreductase complex (I) 

(Runswick eta/., 1991 ). Fatty acid synthesis has never been demonstrated in 

the mitochondria, therefore its exact function is unknown. Mitochondrial 

acyltransferases suggests that this organelle be partially autonomous with 

respect to lipid synthesis (Frentzen eta/., 1990), however ACP can participate 

as an acyl carrier in reactions other than fatty acid synthesis, so the 
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mitochondrial form may be involved in secondary acylation reactions. 

1.4.5 ACP isoforms 

The initial sequencing of spinach ACP revealed heterogeneity in amino acid 

composition of some peptide fragments. This was taken as evidence to 

suggest the existence of two forms of ACP (Matsumura and Stumpf, 1968). 

Initial evidence for differential gene expression controlling fatty acid 

biosynthesis came from ACP in spinach (Kuo and Ohlrogge, 1984) and barley 

(Hoj and Svendsen, 1984). In both species there are two isoforms of ACP in 

the leaf and a single form in the seed. Such sequence heterogeneity has 

been found in all plant ACPs subsequently examined. The analysis of the 

pattern of expression of ACP isoforms in many plant species using 

immunoblotting techniques revealed a common pattern of organ specific 

expression (Schmid and Ohlrogge, 1990). There is one form that is expressed 

in seeds and root and usually two or more ACPs expressed in leaf. 

Redundant oligonucleotides were designed against the highly conserved 

region around the ACP prosthetic group attachment site. These were used as 

probes to clone ACP cDNAs from spinach leaf (Scherer and Knauf, 1987) and 

root (Schmid and Ohlrogge, 1990), barley leaf (Hansen, 1987; Hansen and 

Kauppinen, 1991), Brassica campestris seed (Rose et a/., 1987) and 

Brassica napus seeds (Safford eta/., 1988). Sequence heterogeneity was 

also found at the nucleotide level, confirming the existence of a multigene 

family. 

1.4.6 Putative roles for ACP isoforms 

The presence of only one ACP in unicellular algae and cyanobacteria infers a 

role in tissue specificity for ACP isoforms in higher plants (Battey and 

Ohlrogge, 1990). This would mean that some ACP isoforms are constitutively 

expressed to serve Jhousekeeping functions and some are regulated in an 

organ/ tissue specific fashion (Schmid and Ohlrogge, 1990). In support of this 

hypothesis several B. napus isoforms that are preferentially expressed in 

developing seeds have been characterised (Safford eta/., 1988). However in 
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spinach, there are two ACP isoforms, ACP I is expressed only in leaves and 

ACP II in leaves, roots and seeds, which is contradictory. It would have been 

predicted that seeds would have two forms of ACP, a core FAS component 

and one involved in triacylglyceride biosynthesis and that leaf would only 

have one. Further experiments using ACP as substrates for acyltransferases 

and acylthioesters have drawn no conclusions. It was found that oleoyl- ACP I 

was the preferred substrate for oleoyl thioesterase, which results in oleate 

being fed into triacylglyceride synthesis. Oleoyl ACP- II was shown to be more 

reactive with glyceroi-3-P- acyl transferase which directs oleate along lipid 

synthesis within the plastid. These results are inconsistent with the fact that 

ACP II is more abundant in the seeds, where triacylglyceride synthesis should 

be more active due to the lipid storage role of this organ (Guerra eta/., 1986). 

The true physiological role of the different isoforms therefore still remains to 

be elucidated. 

1.4. 7 ACP in Brassica nap us 

1.4. 7.1 Pattern of induction and expression in the seed 

Safford and colleagues (1988) determined the activity of ACP and correlated 

this with lipid deposition in developing embryos from B. napus. A correlation 

was found, with ACP activity preceeding lipid deposition (which is associated 

with fatty acid biosynthesis). This pattern of induction is consistent with ACP 

having a central role the regulation tissue specific and temporal control of 

lipid deposition. 

1.4. 7.2 eDNA cloning 

There is only one molecular weight form of ACP inB.napus embryos, but 

eDNA cloning revealed a more complex situation. Mixed oligonucleotide 

probes were designed against the highly conserved sequence surrounding 

the prosthetic group attachment site. These were used to screen a mid

development embryo eDNA library (Safford eta/., 1988). From ten cDNAs, six 

unique clones were isolated, that confirmed ACP is encoded by a multigene 

family. Five mature protein sequences were encoded by the different cDNAs, 
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which confirmed heterogeneity observed in N- terminal sequencing of protein 

isolated from rape seed embryo (Siabas eta/., 1987). 

The clones were divided into two subclasses, on the basis of DNA sequence 

differences. These differences, which also occur at the amino acid level, 

probably reflect the fact that B. napus is amphidiploid and originated from a 

cross of Brassica campestris and Brassica oleracea. Analaysis of sequence 

data demonstrated that ACP from B. napus is synthesised as a 134 amino 

acid cytoplasmic precursor and contains a 51 amino acid N- terminal 

extension. This transit sequence directs targeting to the plastid and is 

processed to give the mature protein of 83 amino acids (MW 9 200). The 

amino acid composition of rapeseed embryo ACP is typically high in acidic 

residues (24% ASP/ GLU} and extensive homology with ACPs from divergent 

species is apparent; the percentage of identical amino acid sequence 

between rapeseed embryo ACP and E. coli, barley leaf and spinach leaf 

ACPs is 31, 61 and 62, respectively (Safford eta/., 1988}. 

The expression of the ACP cDNAs isolated from embryos were analysed by 

Northern hybridisations. When the insert from a full length eDNA clone was 

used as a probe, it did not hybridise to leaf mRNA, even at low stringency 

(Safford et a/., 1988). This was unexpected, due to the high degree of 

sequence homology between leaf and seed ACPs. It was concluded that 

seed expressed ACP isoforms were encoded by a multigene family that was 

not expressed in leaf tissue. This result is coincident with the fact that during 

B. napus seed development, the level of ACP significantly rises prior to the 

start of storage lipid synthesis (Safford eta/., 1988). This could suggest that a 

specific subset of ACP genes are activated, to fulfil the role of lipid deposition. 

1.4.7.3 Genomic cloning 

The first genomic data for a plant FAS protein was that for an Arabidopsis 

thaliana ACP gene, AD4 (Post- Beittenmiller eta/., 1989a). Subsequently two 

seed- expressed B. napus genes (de Silva eta/., 1990), a seed specific B. 

campestris gene (Rose eta/., 1987; Scherer eta/., 1992) and another two 

linked genes from A. thaliana (Lamppa and Jacks, 1991) were isolated. 

16 



The B. napus genomic clones ACP05 and ACP09 were isolated using a 

probe generated from an ACP eDNA clone (Safford et al., 1988). Both ACP05 

and ACP09 are seed expressed cDNAs and are very closely related. The 

clones share 94% homology within their coding sequences and 96% and 

94% (respectively) homology to a B. campestris ACP eDNA sequence. This 

level of homology suggests that the B. campestris seed ACP gene is the 

progenitor of these two clones (de Silva et a/., 1990). The general 

organisation of the genes is the same, for example there are three introns; 

The first is in the transit peptide, the second at the transit peptide cleavage 

point and the third at the centre of the highly conserved prosthetic group 

attachment point. The A. thaliana and B. campestris clones also have introns 

in analogous locations (Lamppa and Jacks, 1991; Post-Beittenmiller et a/., 

1989a; Scherer eta/., 1992). 

ACP05 was subsequently studied in greater detail by de Silva and 

colleagues (1990) who used transgenic studies to investigate its tissue 

specific expression pattern. A construct was made in which a 1.4kb restriction, 

that contained the 5 upstream region of the gene plus 50bp of 5 non-coding 

was transcriptionally fused to the J3- glucuronidase (GUS) reporter gene. The 

chimaeric gene was transformed into tobacco and expression monitored in 

developing seeds and in leaves. GUS activity was found to increase through 

seed development and reached a maximum that was coincident with the most 

active phase of storage lipid synthesis (on average 100 fold higher than in 

leaf). It was concluded that the 1.4kb 5 flanking region of ACP05 contained 

strong promoter elements that directed both spatial and temporal expression 

(de Silva eta/., 1992). 

B. napus contains approximately 35 seed expressed ACP genes per haploid 

genome (deSilva et a/., 1990}. This large number may reflect different 

isoforms being compartmentalized, having different physiological roles, or 

tissue- specific FAS functions. It was envisaged that a more detailed 

examination of the seed- expressed ACP05 gene promoter would provide an 

insight into this aspect of ACP regulation. 
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1.5 Enoyl ACP Reductase 

1.5.1 Partial reaction catalysed 

Enoyl ACP- Reductase (ER) is an integral component of the plant type II fatty 

acid synthetase complex, catalysing the second reductive step of each cycle. 

ER catalytically reduces the trans- 2, 3 double bond of a 3- ketoacyl- ACP 

intermediate, to form a saturated acyl- ACP (figure 1.3), which in turn can 

serve as the substrate for the next condensation reaction (Siabas and 

Fawcett, 1992). 

Figure 1.3: Reduction of ketoacyl intermedates ~ ER 

ENOYL-ACP ACYL- ACP 

1.5.2 lsoforms and expression of ER 

ER is a well characterised member of the FAS complex. In plants, two enzyme 

activities have been detected (Siabas eta/., 1984). Discrimination between 

the two forms may be achieved using several criteria. The forms have different 

substrate specificities (Shimakata and Stumpf, 1982a). One form is NADH

dependent and the other prefers NADPH (Weeks and Wakil, 1968; Harwood, 

1988). The two forms also have distinct patterns of expression. Both are 

detected in safflower, castor bean and B. napus seeds (Siabas eta/., 1984), 

but only the NADH dependent form is detected in spinach leaf and avocado 

18 



mesocarp (Shimakata and Stumpf, 1982a; Caughey and Keckwick, 1982). 

NADH dependent ER was purified to near homogeneity from B. napus 

embryos and the molecular mass shown to be approximately 35kDa (Siabas 

eta/., 1986). The enzyme is homo- tetrameric in structure (Siabas eta/., 1986; 

1990) and was over expressed in E. coli (Kater eta/., 1991) and crystallised 

(Rafferty eta/., 1994). The crystals were analysed by X- ray diffraction and the 

tertiary structure was resolved to 1.9A (Rafferty et a/., 1995). Southern 

analysis of ER in B. napus demonstrated the presence of four genes, two 

inherited from each of it parents, B. oleracae and B. campestris (Kater et a/., 

1994). The expression of ER mANA and protein isoforms was analysed by 

hybridisation studies and two dimensional Western blots (Fawcett et a/., 

1994). These experiments demonstrated that ER was regulated temporally 

during seed development. The increase in message preceded the increase in 

protein levels, which in turn preceded the deposition of lipid (which is 

associated with fatty acid deposition), as expected. Four isoforms were 

detected in both leaf and seed tissue, with expression in the seed at much 

higher levels than in the leaf. The pattern of expression was similar within the 

seed and leaf, there being the same two major isoforms and two minor 

isoforms (Fawcett eta/., 1994). 

1.5.3 Cloning ER 

NADH- dependent ER was cloned from B. napus cv Rafael embryos, by 

immunoscreening a A-gt11 expression library using antisera raised against 

purified protein (Kater et a/., 1991 ). The identity of the eDNA pEAR? was 

confirmed by in vivo expression of the clone in E. coli, the vast overproduction 

of enoyl- ACP reductase expression resulting in extremely high levels of 

enzyme activity (Kater et a/., 1994). The eDNA was subsequently used to 

isolate a full length genomic clone from Arabidopsis (Kater eta/., 1994). 

A leaf eDNA library from B. napus cv Jet Neuf leaf mANA was screened with 

the eDNA pEAR? (A. Fowler, unpublished results). Nucleotide sequencing 

confirmed that all the positive clones were identical and represented a single 
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isoform, pERL8.The full length was 1.3kb and a 73 amino acid leader peptide 

was present. There was no evidence to prove whether all four ER genes 

present in B. napus were expressed and correspoded to the four detected 

isoforms. An objective of this work was therefore to re-screen a B.napus cv jet 

Neuf library for addtional clones with the aim of relating any information 

derived from their study, back to the differential expression of ER. 

1.6 Regulation of gene expression 

Initially most data on gene regulation was derived from studies on the 

organisation and expression of bacterial and mammalian systems. 

Techniques developed during the study of these genes were successfully 

applied to plants and allowed the analysis of many unique plant systems 

(Benfey and Chua, 1989; Coen and Meyerowitz, 1991; Consonni eta/., 1993; 

Dooner eta!., 1991; Flurh eta/., 1986; Gilmartin eta/., 1990; Hake, 1992; 

Huworth and Dugham, 1993; Katagiri eta/., 1992; Katagiri and Chua, 1992; 

Kuhlemeier, 1992; Purugganan eta/., 1995; Schindler and Cashmore, 1990; 

Tobin and Silverthorne, 1985). Plant genes are differentially regulated in 

response to a complex set of environmental and developmental stimuli. 

Specific gene products accumulate in specialised cell types, at certain stages 

of development or following a distinct environmental cue. Several different 

inducers can activate a single gene, for example uv light and fungal elicitors 

both induce phenylpropanoid genes (Kaulin eta/., 1986; Bell eta/., 1986) and 

the type I ACC gene (Shorrosh et at., 1994). In contrast, a single stimulus may 

differentially regulate related genes. For example, abscisic acid induces the 

synthesis of the alpha subunit of ~- conglycin specifically, the genes for the 

other subunits are not affected (Bray and Beachy, 1985). A major challenge is 

therefore to elucidate the molecular mechanisms underlying gene regulation, 

that is to determine exactly how gene expression is regulated in a temporal 

and spatial way during the life cycle of a plant. 

The regulation of fatty acid biosynthesis is of interest as it has dual functions, 

both a housekeeping role and a temporally regulated organ specific role 

(Siabas and Fawcett, 1992). The synthesis of membranes is essential in all 

cells, therefore the FAS genes must be expressed constitutively as a 
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housekeeping function. However during seed development, fatty acids in the 

form of triglycerides are deposited as a major carbon store. Deposition of 

storage lipid is also temporally regulated and requires expression of the FAS 

system at significantly higher levels than in leaf or root tissue. As FAS proteins 

must function in both housekeeping and oil production their study offers a 

system to examine how plants regulate genes that are needed for two 

divergent functions. 

1.6.1 Control points at which regulatory mechanisms act 

The general structure of eukaryotic genes is the same (see figure 1.4). For 

example, features such as introns are ubiquitous in protein coding genes 

(transcribed by RNA polymerase II). In principle, similar parallels can be 

drawn between the mechanisms that regulate gene expression. 

Figure 1.4: Schematic view of an eukaryotic nuclear gene 

CAP 
INTRON Poly A 

cis cis TATA ~ S'leader ;zsz 3'UTR ~ 
ma E'7SI , , -,, 
Gt ® ~ t t t TFs ..___, RNA pol II 

complex START STOP TCN 
ATG TAAITAG TERM 

TGA 

The beginning and end of the DNA actually transcribed into RNA are indicated by CAP and TCN TERM. 

These encompass the 5 leader region, which is often important in product compartmentalisation and the 

3 untranslated region {3 UTR), which may be involved in differential mRNA stability. Directly upstream is 

the TATA box, which is the binding site for RNA poll I transcription complex. The more distal upstream cis 

sequences can bind a variety of transcription factors {TFs) that may be regulatory. The coding region is 

defined by the translational initiation and stop codons and is usually spm by introns, which are present in 

the primary RNA transcript but are subsequently spliced out, so are absent from mRNA. 
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Transcription is a major level at which expression is regulated and is 

discussed in the following section. Regulation is also possible and has been 

observed at the post-transcriptional level (Gallie, 1993). Control is exerted 

over the correct processing and transportation of primary nuclear RNA 

transcripts (Sanfacon, 1992). Differential stability and turnover of mANA 

maintain steady state levels of message in the cytoplasm (Hagan et al., 1995). 

Following translation of mANA a variety of post- translational modifications to 

the resultant polypeptides can be important. All of the stages outlined provide 

points at which control of gene expression could be exerted (Decker and 

Parker, 1994; Nanbu eta!., 1994; Raghow, 1987; Xu and Cohen, 1995). Thus 

a given protein is produced in a cell- type specific or inducible manner. 

Transcriptional regulation is primarily under the control of the gene promoter, 

which contains regulatory cis acting sequences (detailed in section 1.6.2). 

Regulation of transcription is augmented by a number of other factors which 

include DNA methylation (lngelbrecht eta!., 1994), the chromatin structure of 

the DNA (Prioleau eta!., 1994) and proteins that are able to relax supercoiled 

DNA (Merino eta!., 1993). 

Core histones are basically octamers that contain 2 molecules each of 

histones H2A, H2B, H3 and H4. Two superhelical turns (165bp) of DNA are 

wrapped around this core. One molecule of H1 subsequently binds the 

exterior of each core and its carboxy terminus interacts with the DNA in the 

linker region (0- 80bp) (Chaboute eta/., 1993). This polynucleosome filament 

is further compacted in vivo, by coiling to form a solenoidal structure with 

about six nucleosomes per turn. The resultant fibre is about 30nm in diameter. 

Higher levels of compaction are observed, but less well understood (Smith et 

a!., 1995). 

The role of the nucleosome as a general repressor of transcription is well 

established (Felsenfeld, 1992). For example tissue specific genes are 

transcribed when transfected as purified DNA into non- expressing cell lines 

or into cell extracts (Weintraub, 1985). In yeast it has been demonstrated that 

the alteration of the stoichiometry of core histones alters transcription patterns. 

When histone H4 is depleted the activation (or derepression) of specific 
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genes in the absence of induction is observed {Clark- Adams et a!., 1988; 

Han eta/., 1988). Mutational analyses of histones points to the linker histone 

H 1 being important in the differential repression of transcription. Histone H 1 

in turn is regulated by the core histone amino terminal (Ziatanova and van 

Holde, 1992; Juan eta!., 1994). 

The way in which histones participate in the activation of genes is not clear. 

Activation must involve a sequential unfolding of chromatin structure if 

transcription is to occur (Laybourn and Kadonga, 1991; reviewed by 

Felsenfeld, 1992). The initial step involves the removal of molecules that 

maintain genes in a silent state, a process known as anti- or de- repression 

(Croston eta/., 1991 ). The second step represents true activation, in which 

levels of expression of particular genes are increased well above basal 

levels. Evidence points to competition during the initiation of transcription as 

being an important point at which histones act. Competition between 

chromatin and the assembly of transcription complexes has been shown to 

regulate gene expression in several systems (Prioleau et a/., 1994). 

However, the presence of bound core histone octamers however is not 

necessarily detrimental to transcription. It has been shown in vitro at least that 

RNA polymerase is able to transcribe through histones associated with the 

gene body (Lorch eta/., 1987). 

Proteins that are able to relax supercoiled DNA have been implicated to have 

a role in the regulation of transcription (Merino eta/., 1993). Topoisomerases 

are often associated with transcriptionally active genes and have been shown 

to be involved in both repression and activation (Kretzschmar et a/., 1993; 

Merino eta/., 1993). 

1.6.2 The structure and organisation of promoters and enhancers 

The term promoter generally defines the group of control elements that are 

clustered around the initiation site for RNA polymerase II, whereas enhancers 

may be located at a more distal position, but both are often structurally and 

functionally analogous. An early insight into how promoters and enhancers 

were organised was provided by the study of the early transcription unit from 
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the DNA tumour virus SV40 (Weiher eta/., 1983; Gruss and Scaler, 1984). 

Enhancers were detected as cis-acting genetic elements that increased 

transcription from a distal position, in an orientation independent manner and 

with heterologous promoters. Subsequently it was demonstrated that 

enhancers are organised much like promoters, with multiple individual DNA 

motifs each of which bind one or more proteins (McKinght and Tjian, 1986). 

Such motifs can function at various distances from the TATA box and are have 

also been found in leader sequences (Elliot eta/., 1989; HetheriQgton and 

Quatrano, 1992, Marcotte et al., 1989) downstream of the translational start 

site {Thompson eta/., 1988) and in introns (Luehrsen and Walbot, 1991 ). It is 

thought that motifs which occur in "unusual" positions may not function 

entirely at the transcriptional level. There is evidence that suggests roles in 

mRNA stability or the stability of the transcript' during translation (Hagan eta/., 

1995). 

1.6.3 Cis- acting sequences 

In terms of transcriptional regulation plant promoters are large, complex 

arrangements of short DNA sequence elements (cis sequences, boxes or 

motifs), as illustrated in figure 1.4. Mutation of promoters has defined two 

classes of DNA sequences, both of which represent binding sites for protein 

transcription factors: core promoter elements and regulatory motifs. 

1.6.3.1 Core promoter elements 

The TATA box, or functionally related sequence represents this class of cis 

acting sequence and is essential for the initiation of transcription by RNA 

polymerase II (RNA pol II). It is recognised by a sequence specific TATA 

· binding protein (a component of the basal transcription factor TFIID complex). 

which determines where transcription will start from (in general approximately 

30bp downstream from where it binds) (Buratowski eta/., 1994). In the case of 

TATA- less promoters sequences that flank the site of transcriptional initiation 

are important. for the assembly of a preinitiation transcriptional complex (Aso 

eta/., 1994; Ellis eta/., 1993; Pugh and Tjian, 1991). When TATA boxes are 

transcriptionally fused to reporter genes, low transcript levels are usually 

24 



observed. However, there is evidence that the TATA box (or surrounding 

sequences) is involved in the light regulated expression of pea rbcS genes 

(Morelli et at., 1985) which suggests a role for core promoter elements in the 

regulated expression of some genes. 

1.6.3.2 Regulatory motifs 

Regulatory DNA motifs represent binding sites for proteins that interact with 

the RNA pol complex. Interactions between individual elements are complex 

and motifs may function independently, cooperatively or competitively 

(Donald and Cashmore, 1990). The spacing between motifs is often not 

critical and promoter function may be maintained when individual elements 

are inverted or moved relative to one another (Benfey and Chua, 1990). 

These DNA elements are often regulatory, they enhance or repress 

transcription under specific cellular or environmental conditions. A classic 

example is the heat shock element, which only increases transcription of a 

reporter gene at high temperatures (soybean heat shock gene, Baumann et 

at., 1987; maize heat shock gene, Rochester et at., 1986). The analysis of 

more complex promoters from higher plants has discovered cis motifs that are 

involved in the regulation of expression by many factors. For example: light 

(pea cab gene, Simpson et at., 1986; pea rbcS gene, Flurh and Chua, 1986; 

Gilmartin eta/., 1990), uv light (chalcone synthase gene from A. majus, Kaulin 

et at., 1986; Type I ACC from Alfalfa, Sharrosh et at., 1994), anaerobic stress 

(maize Adh 1 gene, Ellis, 1987), wounding (Ryan, 1988) and developmental 

queues such as hormones (Lincoln and Fischer, 1988), embryo specific 

development (soybean storage gene protein, Chen et at., 1988; wheat 

glutenin gene,, Thomas and Flavell, 1990; pea lectin gene, dePater et a/., 

1993; reviewed in Bevan eta/., 1993) and nodulation (reviewed in Verma and 

Delauney, 1988). 

1.6.3.3 "Regulated" and "Constitutive" promoters 

The most comprehensive studies of promoters have included those regulated 

by light and those expressed in the seed (Fiurh et at, 1986). These have 

revealed the complexity of cis-acting elements through which regulated 
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expression is mediated. Dissection of several light regulated promoters has 

identified conserved motifs such as the GT box and the GATA motif (Gilmartin 

et a/., 1990). The conservation of such motifs between light regulated 
' 

promoters from different genes and even species, is taken as evidence for a 

partially common pathway of regulation. The analysis of promoters that are 

developmentally regulated has revealed that both negative and positive 

domains are required for the correct spatial and temporal pattern of 

expression (Bustos eta/., 1991 ). 

Regulated promoters are often contrasted with so called constitutive 

promoters. An interesting example of an apparent strongly constitutive 

promoter is the Cauliflower Mosaic Virus 35S promoter (CaMV 35S). Initial 

analysis involved transcriptionally fusing 1 Kbp of promoter to a reporter gene 

which resulted in high levels of constitutive expression in transformed plants 

(Odell eta/., 1985; Ow eta/., 1987). However, further analysis of defined 

promoter deletions revealed several things. Only 350bp upstream of the TATA 

box was required for constitutive expression at high levels, the remaining 

promoter sequence could be deleted, inverted or even replaced without a 

reduction in the level of expression (Benfey and Chua, 1990). However, if the 

promoter was deleted to within 90bp of the TATA box, expression became 

tissue specific (Benfey and Chua, 1990). This demonstrates the point that a 

"constitutive" promoter is as complex as a "regulated" promoter. All promoters 

consist of an array of cis- elements, the sum of which results in a specific 

pattern of expression. 

1.6.4 Trans acting factors 

Transcription of protein coding genes in eukaryotes is complex and is carried 

out by a multi enzyme complex that includes RNA pol II and a number of 

accessory transcription factors. These accessory factors fall into two classes. 

The first are the general or basal transcription factors, which act through core 

promoters elemE!nts (TATA box and related motifs). General transcription 

factors are required for basal levels of transcriptional initiation at all RNA pol II 

promoters. The second class of factors are sequence specific DNA binding 

proteins that recognise the regulatory motifs, integrate the encoded regulatory 
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information and subsequently interact with the RNA pol II complex. These 

factors determine transcription rates and result in gene specific expression. 

1.6.4.1 RNA polymerase and associated basal transcription factors 

RNA pol II transcribes nuclear protein encoding genes and has been isolated 

from a number of plant species (Guilfoyle eta/., 1990). A similar general 

structure is seen, with two large and eight small subunits. The largest subunit 

contains 35- 40 tandem repeats of the heptapeptide PTSPSYS at the carboxy 

terminus. Phosphorylation may regulate the activity of this subunit in terms of 

its ability to interact with accessory proteins and chromatin (Guilfoyle eta/., 

1990). Mutation of these repeats suggest they directly contact transcription 

factors and thus may, in part determine the response to enhancer signals (Kim 

eta/., 1994; Scafe eta/., 1990; Seipel eta/., 1994). 

The general transcription factors isolated from Hela cells that are necessary 

to form a stable preinitiation complex with RNA pol II are TFIIA, TFIIB, TFIID, 

TFIIE, TFIIF and TFIIH. Of these only TFIIA and TFIID have been characterised 

in plants. TFIIA is homologous to the mammalian equivalent (Burke eta/., 

1990) and TFIID shows some homology to bacterial sigma factor (Gasch et 

a/., 1990). The TATA binding protein is highly conserved between species 

(Haas eta/., 1994; Heard eta/., 1993; Hernandez, 1993) and has a saddle 

like DNA binding domain, which sits in the minor groove of DNA at the TATA 

box. It has been demonstrated that the outer surface is involved in protein

protein interactions (Kiug, 1993) 

For RNA pol II to transcribe a gene, up to 20 accessory factors may be 

required (George et a/., 1995). A variety of reconstitution experiments 

(Buratowski et a/., 1989; 1994; Conaway and Conaway, 1993; Zawel and 

Reinberg, 1993; 1995) were used to reconstruct the order of assembly of a 

pre- initiation complex at the promoter. The resultant model is outlined in 

figure 1.5, (adapted from Buratowski, 1994). 

The first step that nucleates assembly of the transcription complex consists of 

TFIID binding the TATA box. TFIIA can then bind to the TFIID- promoter 
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Figure 1.5: Schematic view of the initiation of transcription 

Transcription factors are represented by their letter designations (for example TFIID=D). Double headed 

arrows represent protein- protein interactions and bent arrows indicate the site of initiation into complex 

assembly. Complex initiation is nucleated by TFIID binding to the TATA box (open square), which is 

usually located approximately 30bp 5' to the transcription initiation site (TCS). The TFIID- promoter 

complex may be stabilised by TFIIA (which may block repressor (R) activity). The assembly of a minimal 

initiation complex is augmented by the interaction of TFIIE and TFIIH, which complete the preinitiation 

complex. 
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complex (Yokomori et a/., 1994). This interaction is not necessary for 

transcription in vitro with purified factors, but is thought to function in 

maintaining the complex under physiological conditions. There is evidence to 

suggest this might be as a result of blocking the action of transcriptional 

repressors, that displace TFIID (Auble and Hahn, 1993). The next factor to join 

the complex is TFIIB, which binds the TFIID- promoter complex and recruits 

RNA pol II, acting as a "bridging protein". The order of these interactions is not 

known. TFIIF greatly stimulates RNA pol II entry into the complex, possible via 

an interaction with TFIIB (Tyree eta/., 1993, Ha eta/., 1993) and also affects 

transcriptional elongation (Price eta/., 1989). The minimal complex necessary 

to recruit and accurately position RNA pol II consists of TFIID, TFIIB and TFIIF. 

The complete complex has a further two factors. TFIIE is necessary to recruit 

TFIIH (Flores eta/., 1991; Maxon eta/., 1994), which is probably the factor that 

mediates activation of the complex and powers elongation by ATP hydrolysis. 

There is evidence to suggest that TFIIE requires zinc for full activity (Maxon 

and Tjian, 1994 ). However the initiation of transcription is possible without 

TFIIE and TFIIH in vitro so it may be that TFIIE and TFIIH function to convert 

initiation complexes in to elongation complexes (Flores et al., 1991 ). 

1.6.4.2 Regulatory transcription factors 

The spectrum of transcription factors present in a cell type and their own 

levels of expression therein, determines which genes, or sets of genes are 

transcribed. The ratio between transcription factors is often crucial, especially 

if competing positive and negative factors are involved (Brindle eta/., 1990; 

Grierson eta/., 1994). Additional factors other than those that directly bind 

DNA may be involved such as protein cofactors, (Sakurai eta/., 1994; Martin, 

1991) and accessory molecules such as metal ions (Berg, 1990). 

The most highly studied transcription factors are multifunctional and highly 

modular proteins. It is commonly found that different functions, such as DNA 

binding, dimerisation and transcriptional activation are contained on discrete 

domains (Keegan et a/., 1986). The .function of individual domains is often 

preserved when swapped among various factors or fused to heterologous 

protein sequences (Ptashne, 1992). Transcription factors with novel 
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sequence specificities have been designed by combining known DNA 

binding domains. For example, a fusion protein that contained a binding 

domain constructed from zinc fingers and a homeodomain was found to bind 

optimally to sequences that contained adjacent homeodomain (TAATTA) and 

Zinc finger (NGGGNG) binding sites. An activator domain was subsequently 

fused onto this binding domain and the resultant fusion protein regulated 

promoter activity in a sequence specific manner (Pomerantz eta/., 1995). 

1.6.4.3 Characterised transcription factor protein motifs 

The salient features of some of the best characterised motifs (Frampton eta/., 

1989; Grussem, 1990} found in plant DNA binding proteins are discussed 

below. 

The basic helix- loop- helix: bHLH. This motif was first identified in animal 

systems as a conserved region shared by the myc proto- oncogene and the 

immunoglobulin enhancer binding factor (Murre et a/., 1989). The maize 

regulatory protein Lc was the first plant protein shown to have this domain 

(Ludwig and Wessler, 1990). The bHLH domain is multifunctional, the HLH 

region consists of two amphipathic helixes connected by a loop. This serves 

as a dimerisation interface for other bHLH proteins. The basic region lies 

immediately upstream of the HLH domain and is the DNA binding domain 

(reviewed in Lusher and Eisenman, 1990) 

The helix- turn- helix: HTH. The HTH motif is typified in the yeast MAT a2 

protein (Sauer eta/., 1988) and bears resemblance to the homeobox domain 

(Gehring eta/., 1994), which is a highly conserved region in homeotic genes 

(so called as the identity of an organ is altered in homeotic mutants). This 

homology led to the suggestion that HTH proteins could be DNA binding 

factors (Laughon and Scott, 1984). Plant homeotic mutants like deficiens in 

Antirrhinum (Schwazsommer eta/., 1990) and agamous in Arabidopsis, 

(Yanofski et a/., 1990) were cloned and do have considerable sequence 

homology to the human and yeast DNA binding domains of transcription 

factors. In addition the def and agamous proteins seem to be very precise 

regulators of steps in the pathway of floral development, although their target 
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genes are unknown (Rounsley eta/., 1995). 

The zinc finger: The zinc finger is probably the best known and most well 

characterised DNA binding motif (reviewed by Klug and Rhodes, 1993). Zinc 

(Zn) fingers were found originally as short, repeated motifs in the TFIIA factor 

from Xenopus oocytes (Brown et a/., 1985). Each repeat contained an 

invariant pair of cysteine and histidines, which coordinate with a zinc atom in 

the tertiary structure (Johnston, 1987). Zn fingers are ubiquitous (Takatsuji et 

a/., 1994) and are found in plant factors such as En-1 from maize and Tgm5 

from soybean (Vodkin and Vodkin, 1989). 

bZIP motif: This class of proteins is particularly well -represented in putative 

plant transcription factors. The domain consists of a leucine zipper 

dimerisation motif and a basic DNA binding region (Hai eta/., 1989; Hurst, 

1994). The leucine zipper has been well characterised in such proteins as 

jun and fos oncoproteins (Glover and Harrison, 1995) and the yeast GCN4 

transcriptional activator (Struhl., 1989). Plant proteins that contain this domain 

include opaque 2 (Schmidt eta/., 1987), HBP- 1 (Tabata eta/., 1989), EmBP-

1 (Guiltinan eta/., 1990), TGA 1 a/ TGA 1 b (Katigiri eta/., 1989) and OCSBF- 1 

(Singh eta/., 1990). bZIP proteins are highly homologous over the basic DNA 

binding domain. Analysis of the cis-sequences used to isolate such proteins 

reveal a core palindromic consensus motif: CACGTG (Foster et a/., 1994). 

This means that bZIP factors are capable of binding to more than their 

cognate cis sequence (Armstrong eta/., 1992). This is exemplified by TAF-1 

binding to its own cis motif in the ABA-regulated rice rab16 gene and also 

various G boxes from photoregulated genes (Oeda eta/., 1991) 

1.6.5 DNA looping and potential targets for activators and repressors 

The principal model for the way in which transcription factors bound to distal 

cis-acting DNA elements influence the rate of transcription involves the 

intervening DNA being looped out (Martin et a/., 1990). Transcription factors 

bound to distal elements are then brought into contact with the RNA pol II 

complex at the TATA box. The contact may then occur directly or via bridging 

molecules (Martin, 1991 ). The basics of this model are outlined in figure 1.6. 
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DNA looping has been described for several procaryotic systems including 

cooperative repressor binding over a distance, site specific recombination 

and DNA replication (Dunn, 1984; Hochschild and Ptashne, 1986; Griffith et 

at., 1986). Several lines of evidence support the theory of DNA looping in 

eukaryotic systems. Roy and colleagues (1991) demonstrated the cooperative 

interaction between an initiation binding factor and the USF activator. The 

addition of an odd number of half helical turns between the SV40 early 

Figure 1.6: DNA looping 

cis cis 

TATA ATG 

Evidence suggests the way in which distal regulatory motifs exert their influence on the rate of 

transcription involves DNA looping. This would allow transcription factors (TF) bound to distal 

cis-sequences to be brought into close proximity with their targets- basal transcription factors in 

the transcriptional initiation complex (TIC), when the intervening DNA sequence is looped out, 

as shown above. Contact may be direct or via protein cofactors (CoF). 
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promoter upstream elements and the TATA box reduced the level of 

transcription (Takahashi, 1986). This implies cooperative binding between 

factors and thus looping out of the intervening DNA. Also the SV40 enhancer 

or cytomegalovirus (CMV) enhancer can stimulate transcription in vitro when 

linked to its promoter via a streptavidin- or avidin- biotin bridge (Muller eta/., 

1989). 

Several classes of effecter domains have been identified in transcription 

factors. Conserved activation domains include glutamine rich, proline rich and 

acidic motifs (Lieberman and Berk, 1994; Lin et a/., 1991; Ptashne, 1988; 

Tjian and Maniatis, 1994). The molecular mode of activation of one 

transcriptional activator, VP16 has been elucidated. It interacts directly with 

the basal transcription factor TFIIB. This contact disrupts intramolecular bonds 

between the C- and N- terminii of TFIIB which induces a conformational 

change and results in its recruitment into the preinitiation complex. The 

change in conformation also exposes binding sites for RNA pol II and TFIIF 

which are subsequently recruited into the preinitiation complex (Roberts and 

Green, 1994). Thus, most models suggest activators either stabilise and 

facilitate the formation of the preinitiation complex or modify the complex after 

assembly to increase its stability. Negative regulators of transcription have 

been shown to displace TFIID from the promoter or to block interactions 

between TFIID and other basal transcription factors, thus preventing active 

preinitiation complex formation (Auble and Hahn, 1993; Auble eta/., 1994). 

There is evidence which suggests that the general transcription factor TFIIA 

may "shield" TFIID from repressor action (Auble and Hahn, 1993). 

1. 7 Detection, purification and cloning of plant DNA binding 

proteins and (putative) transcription factors 

1.7.1 In vitro detection methods 

The initial characterisation of sequence specific DNA binding proteins used 

in vitro detection methods such as filter binding assays (Jones and Berg, 

1966, Riggs et a/., 1968), electrophoretic mobility shift (EMSA) or gel 

retardation assays (Green et a/., 1988; Lane et a/., 1992) and footprinting 
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assays (Green et at., 1988). Using these assays DNA binding is detected 

either through the separation of bound from unbound DNA or by the 

protection of bound, as opposed to unbound sequences. 

1. 7.1.1 Separation methods 

Filter binding and gel retardation techniques are based on the separation of 

bound from unbound DNA. A labelled DNA fragment is mixed with protein 

under conditions that favour specific complex formation. The mixture is then 

either spotted onto a filter that will only retain complexed DNA following 

subsequent washing steps; or electrophoresised through a non- denaturing 

gel matrix. During a mobility shift assay binding of protein to a DNA fragment 

usually leads to a reduction in the electrophoretic mobility of the fragment and 

is viewed in comparison to free DNA. The specificity of an interaction is 

monitored by the addition of an excess of unlabelled DNA to the binding 

reaction. DNA with a sequence related to the cis- acting element will compete 

for binding (unrelated or mutated will not). The theory behind gel retardation/ 

EMSA assay is presented in figure 1.7. 

The use of gel retardation to analyse DNA- protein interactions has its roots in 

early work studying rRNA- protein interactions (Jones and Berg, 1966). Its 

widespread use dates from its development for studies on transcriptional 

regulation in bacteria (Fried and Crothers, 1981; Garner and Revzin, 1981 ). 

Separation methods for the detection of DNA:protein interactions are 

sensitive. Small amounts of material are required and low abundance 

interactions can be located. Additionally, the mobility shift assay can detect 

multiple protein binding sites along a DNA fragment. This assay has proved 

successful in elucidating the regulation of plant genes by many factors, such 

as light (Gilmartin et at., 1990; Lam et at., 1990; Lam and Chua, 1989), uv light 

(Kaulin et at., 1986) and anaerobic stress (Ellis, 1987). 

1.7.1.2 Protection methods 

DNA foot printing techniques rely on the protection of DNA by bound protein. 

Reagents used to attack naked DNA include DNase I, Exonuclease Ill, 

34 



Figure 1.7: The principles of the gel retardation assay 

Panel 1: 
Labelled promoter fragment 

*c===I::I::====::J 

Incubate labe1 DNA whh protein and an 
excess of non- specific, competitor DNA 
(poly dldC) 

EMBRYO LEAF 
.....Q 

*c:::==r::c:::::J 

Protein
bound DNA 

Free DNA 
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A labelled (indicated by star) DNA fragment is mixed with protein (represented by circles) under 
conditions that favour binding. Specific complex formation is ensured by including an excess of 
non- specific competitor such as poly (dldC:dldC). In the example above, an embryo specific 
factor (striped circle) binds to its cis motif (open box), forming a complex. During electrophresis, 
complex migration is retarded, relative to free probe. Subsequently a retarded band is seen on 
the autoradiograph. The second panel shows a competition assay, in which an excess of 
unlabelled Specific Competitor (SC) or NonSpecific Competitor (NSC) was added. Competitors 
are usually oligonucleotides, designed to contain putative binding motifs (open box) or altered 
versions of the binding sites (striped box) as control competitors. The excess of a specific 
competitor motif will compete for the factor of interest and the retarded band will disappear on 
the autoradiograph. 
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Panel 2: Competition 
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dimethylsulphate (OMS) and methidium propyi-EDTA-Fe (MPE) (Galas and 

Schmitz, 1978; Green eta/., 1988; Neilson 1990). Footprinting can identify 

protein binding sites on DNA with high (single base pair) resolution 

1.7.2 Cloning techniques 

Both separation and protection methods have been used as assays to follow 

DNA binding proteins during biochemical purification (Briggs eta/., 1986; 

Chodosh eta/., 1986; Lee eta/., 1987). Pure protein is a pre- requisite for the 
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conventional methods of eDNA cloning, which utilises specific antiserum or 

oligonucleotide probes. In either case the minimal amount of purified protein 

required for probe preparation is 1 OOpmol- 1J..Lmol which represents a 

massive amount of starting material, due to the rarity of most transcription 

factors. An alternative cloning strategy that relies upon the use of 

radiolabelled binding sites as probes to screen expression libraries was 

developed (Singh eta/., 1988; 1990 and detailed in section 4.1 ). This method 

is commonly know as "SouthWestern" cloning and has proved particularly 

successful in isolating plant DNA binding proteins, many of which are 

structurally related in terms of their dimerization and DNA binding domains 

(described elsewhere). Several other techniques have also been used 

successfully to isolate DNA binding proteins and putative transcription factors 

(a number of which are listed in table 1.3). The flower specific homeotic gene 

agamous was isolated from Arabidopsis by T- DNA insertional mutation. The 

floral sex organs in the mutant are transformed to a ''flower within a flower" 

morphology that is sterile. Agamous belongs to a large family of regulatory 

genes that possess a characteristic DNA binding domain known as the 

MADS- box (Pnueli eta/., 1991 ). Members of this family are homologous to 

transcription factors found in several animal and fungal species: DEF A 

(Antirrhinum majus), SRF (humans), MCM I and ARG80 (yeast). Phylogenetic 

analyses indicate that members of the plant MADS gene family are organised 

into several distinct groups: Agamous, APETAL3/ PISTILLATA and APETAL 1/ 

AGL9. These groups are thought to reflect the roles that these genes play in 

flower development (Purugganan et a/., 1995; Rounsley et a/., 1995). It is 

thought that the agamous gene encodes a transcription factor that regulates 

stamen and carpel development in the wild type flower (Yanofski eta/., 1990). 

The homologous transcription factors R (Dellaporta et a/., 1988) and delia 

(Goodrich eta/., 1992) were both cloned by transposon tagging. They are 

involved in the regulation of expression of anthocyanin biosynthesis genes 

(pigmentation) in maize and Antirrhinum, respectively. R belongs to a small 

gene family, the other members, Lc, Sn and 8 also regulate pigment 

accumulation, but in different parts of the maize plant (Dooner eta/., 1991; 

Tonelli eta/., 1994). Their gene products are all highly homologous, which 

suggests that their own expression patterns specifies the distinct pigmentation 
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patterns they dictate (Consonni eta/., 1993, Radicelli eta/., 1992). 

1.7.3 Plant DNA binding proteins and transcription factors 

The number of cases in which evidence has shown that DNA binding proteins 

do actually regulate transcription are few in comparison to the number of DNA 

binding proteins that have been isolated. TGA- 1 has been demonstrated to 

stimulate transcription in both HeLA cell and in plant in vitro systems (Katagiri 

eta/., 1990; Yamazaki eta/., 1990). 

An alternative approach at proving transcriptional regulation was taken with 

TAF- 1, which was transformed into plants as a eDNA. In plants that were 

cotransformed with a reporter gene that carried the cognate cis- sequence, 

expression was significantly increased (Oeda eta/., 1991) 

1.8 Aims and objectives 

Plant biotechnology has generated an enormous interest, based on the 

potential of genetically modified transgenic plants (Vanderleij and Witholt, 

1995). An area of research that has important implications for both industry 

and agriculture is the genetic modification of oilseed crops (Topfer et a/., 

1995). 

Currently the oleochemical industry has a wide and increasing demand for 

oils, to act as substrates in the manufacture of greases, plasticisers, lubricants 

and detergents (Gunstone, 1992). Obvious targets for genetic manipulation 

would be increases in yield and quality of oil, the ability to produce oil of 

uniform character being of significant interest. The modification of oilseeds 

requires a fundamental understanding of the genetics of fatty acid 

biosynthesis and also a knowledge of the biochemical factors that govern 

chain length, degree of unsaturation and esterification of fatty acids (Knutzen 

eta/., 1992). 

The genes that synthesis fatty acids have divergent functions. They are 

involved in synthesising membranes, a housekeeping function and also are 
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Table 1.3: Plant DNA binding proteins and transcription factors 

Factor Class Target sequence Reference 

I FilA general 
TFIID- 1 general TATA box 2 
TFIID- 2 general TATA box 2 

3AF-1 zinc finger AT- rich 3 

ASF-2 GAIA 4 
GA-1 GAIA 5,6 

GC-1 Sp1-like GC- rich 6 

GI-1 GTGG 6,7 
GT-2 GTGG 8 

Knotted- 1 homeobox 9 
Athb- 1 HD-ZIP 10 
Athb- 2 HD-ZIP 10 

HSF8 heat shock GAAnnTTC 10 
HSF24 heat shock GAAnnTTC 11 
HSF30 heat shock GAAnnTTC 11 

TGA1a+b bZIP TGACG 12, 13, 14 
OCSTF bZIP GACGTA 15 
TAF1 bZIP ACGTG 16 

Deficiens MADS 17 
Agamous MADS 18 
TM3- TM8 MADS 19 

R bHLH CAGGTGC 20 
81 bHLH 21 
Myb-like bHLH 22 
Lc bHLH 23 
C1 bHLH 24,25 
delia bHLH 26 

References: 1Burke eta/., 1987; 2Gasch eta/., 1990; 3Lam eta/., 1990; 4Lam and Chua, 

1989; 5oonald and Cashmore, 1990; 6Schindler and Cashmore, 1990; 7 Green eta/., 1988; 
8oehesh eta/., 1990; 9Tobin and Silverthorne, 1985; 10Ruberti eta/., 1991; 11 Scharf 1990; 
12Katagiri eta/., 1989; 13Katagiri eta/., 1990; 14Weisshaar eta/., 1991; 15Schmidt eta/., 

1987; 16oeda eta/., 1991; 17 Singh eta/., 1990; 18coen and Meyerowitz, 1991; 19Pnueli et 

a/., 1991; 20Dellaporta eta/., 1988 ; 21 Goff eta/., 1990; 21 Jackson eta/., 1991; 22Ludwig 

and Wessler, 1990; 23Dooner eta/., 1991; 24Paz- Ares eta/., 1990; 25cone eta/., 1986; 

2.6Goodrich eta/., 1992 

Abbreviations used: HD-ZIP, homeodomain- leucine zipper; bZIP, basic domain-leucine zipper; 

MADS, MCM1- Agamous, Deficiens- SRF1 family; bHLH, basic helix-loop- helix. 
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required for the production of storage lipid, a developmentally regulated 

function. A major challenge of current research is therefore to determine the 

mechanism by which plants discriminate between the pathways of genes with 

divergent roles. 

It is well established that regulation of gene expression at the level of 

transcriptional initiation is mediated by DNA motifs that represent binding 

sites for transcription factors. The main aim of this research was to define a 

characterised ACP gene promoter in terms of sequence specific DNA- protein 

interactions. Previously the ACP05 promoter was shown to contain regulatory 

information sufficient to direct its correct spatial and temporal expression 

(deSilva et a/., 1992). Gel retardation assays were used to define, in vitro, 

protein binding sites contained within this promoter. As it was known that this 

was a seed expressed promoter, assays were performed with both embryo 

and leaf extract, with the aim of identifying binding interactions with embryo 

specific proteins. It was envisaged that binding sites identified in this manner 

could be isolated on an oligonucleotide and used as a probe to screen an 

expression library for the corresponding DNA binding protein. 

The second subject of this thesis concerns a second member of the FAS 

complex, enoyl- ACP reductase (ER). It has been demonstrated that there are 

four ER isoforms, expressed in both leaf and seed. A probe was generated 

from an existing leaf expressed clone, pERLB, isolated from B. napus cv Jet 

Neuf. This was used to screen a Jet Neuf embryo library for additional ER 

clones. It was envisaged that any additional clones would be characterised to 

generate new information on the differential gene expression of ER proteins. 
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Chapter2 

General Materials and Methods 



Chapter 2 

General materials and methods 

2.1. Chemicals and reagents. 

All general laboratory chemicals and biological reagents were from the 

Sigma chemical company Ltd or BDH Ltd and were AnalaR grade or the best 

grade obtainable. Other chemicals and reagents are as listed below. 

Deoxyribonucleotide triphosphates, Taq DNA polymerase and poly 

(dldC:dldC); Bohringher Mannheim UK, Lewes, Sussex, UK. 

Electrophoresis grade agarose; GIBCO- BRL Ltd, Paisley Scotland. 

Fuji RX X- Ray film; Fuji Photo Film Co. Ltd, Japan. 

Nitrocellulose filter discs BA85 (0.45mm); Schleicher and Schluell, Dassel, 

FAG. 

Radiochemicals, hybridisation membranes ("Hybond C" and "Hybond N"); 

Amersham International Ltd, Bucks, UK. 

Restriction endonucleases, DNA modifying enzymes, IPTG and X- GAL; 

Northumbria Biologicals Ltd, Cramlington, Co. Durham, UK, New England 

Biolabs Inc, Bishops Stratford, Harts, UK 

Other commercially supplied consumables and equipment are acknowledged 

at the first reference to use. 

The water used for this work was double deionised (Milli Q: 17- 18 MV/ em 

resistivity; Millipore, Watford, UK). Water used for DNA manipulation was 

autoclaved before use. 
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2.2 Experimental plant material. 

Brassica napus (cv. Jet Neuf) plants were greenhouse grown. Growth 

conditions were maintained at a 16h light period and a minimum temperature 

of 1 0°C. Leaf and root samples were harvested at the four- leaf stage, snap 

frozen in liquid nitrogen and stored at -80°C. Staged embryo samples were 

harvested from tagged plants generated in the following way: the terminal 

flowers of plants were dated with colour coded tags every 2 days. Embryos 

were then dissected from pods directly into and subsequently stored in liquid 

nitrogen. 

2.3 Escherichia coli strains 

The E.coli strains used during the course of this research were: 

Strain 

JM101 

"SURE" 

XL 1- BLUE 

Y1089 

Y1090 

Genotype 

supE, thi, d(lac-proAB) F' 

[traD36, pro AB+, /aq lq, lacZ d M 15], Messing, 1979 

mer A, (mcrBC- hsdRMS- mrr) 171, supE44 thi-1, 'A-, 

gyrA96, re/A 1, lac, recB, recJ, sbcC, um t£ :: Tn5 (kan~ 

uvrC [F', proAB,Ia~UM15, Tn10, (tetR)] 

Stratagene 

supE44, hsdR17, recA1, endA1, gyrA46, 

thi, ref A 1, lac- F' [pro AB+, /aclq, lacZdM15, Tn1 O(tetR) 

Bullock eta!., 1987 

araD 139, dlac U169, pro A+ dlon, rpsLhf/A150 [chr:: 

Tn10 (tetR), pMC9, Huynh eta/., 1985 

hsdR, sup F, araD 139, d /on, d lac, U 169, rpsl 

trpC22 :: Tn1 0 (tetR), pMC9, (rk +mk +), Huynh et a/.,1985 
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2.4 Plasmids 

Plasmid Comments Reference 

pUC19 ampR Vieira and Messing, 1982 

pBiuescript ampR, with T7 promoter Stratagene 

A.gt11 ampR Young and Davis, 1983 

Other plasm ids used in the course of this research were: 

ACP29C08 ACP eDNA clone in pBR322 Safford et a/., 1988 

pTZ5PS 1.7kb ACP05 genomic de Silva eta/., 1992 
fragment in pTZ18R 

pTZ5PA 916bp ACP05 promoter constructed during the 
fragment in pUC19 course of this work 

pOBS4 multimerised oligonucleotide constructed during the 
binding site (8 copies) course of this work 
in pUC19 

A.BS2xi sequence specific ACP05 isolated from a A.gtll 
binding protein eDNA, in library during course of 

A.gt11 this work 

pBF2 3.0kb eDNA insert constructed during the 
from A.BS2xi in pSK+ course of this work 

pEALS B.napus enoyl- ACP A. Fowler, 
reductase eDNA clone unpublished results 

in psK-

pERE B.napus enoyl- ACP isolated from a A.ZAPII 
plasm ids reductase eDNA clones library during the course 

in pSK- of this work 
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2.5 Bacterial media a_nd growth conditions 

Bacterial strains were routinely grown in Iuria broth (LB) (Sambrook et a/., 

1989) or on LB- agar or LB- agarose at either 37oc (E. coli) or 42 oc (phage 

hosts). If LB were required for phage host growth 2g of MgS04 .7H20 per litre 

was added. The media was then autoclaved as detailed in section 2.6. For 

purification of bacteriophage DNA, A.gt11 clones were grown on NZYCM 

media (Sambrook eta/., 1989). Plates were stored in the dark at 4°C for up to 

1 week. If plates were required for blue/ white screening, X- GAL was made 

as a 2% stock in DMF and 2001ll added for every 1 OOml autoclaved LB. IPTG 

was made as a 100mM stock in water and added to a final concentration of 

1 mM. When antibiotic selection was required, stock solutions were prepared, 

filter sterilised and the appropriate volume added to cooled, autoclaved 

media as detailed in the table below. 

Antibiotic Stock solution 

(mg/ml) 

Ampicillin (Amp) 50 

Kanamycin (Km) 25 

Tetracyclin (Tc) 12.5 

2.6 Sterilisation procedure 

Solvent Final Cone 

(llg/ml) 

50 

25 

10 

All glasswear, plasticwear and other equipment required for aseptic 

manipulation was autoclaved or 20 minutes at 120°C, 15psi. Solutions were 

autoclaved or filter sterilised through 0.2jlm filters before use. 

2.7 Stock solutions and buffers 

2.7.1 Denatured and sonicated DNA 

Calf thymus DNA or herring sperm DNA was dissolved in water at a 

concentration of 1 Omg/ mi. The DNA was sheared to approximately 1 kb 
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fragments by passing the solution 12 times through a 17- gauge hypod~rmic 

syringe. The DNA was then heat denatured by boiling for 10 minutes, then 

quenched on ice for 5 minutes before use or storage at -20°C. In 

prehybridisation solutions DNA was used at a concentration of 1 OOJ..Lg/ mi. 

2.7.2 DNase free RNase A 

Pancreatic RNase A was dissolved at a concentration of 1 Omg/ ml in 15mM 

NaCI, 1 OmM Tris.HCI pH7.5. Any DNases present were inactivated by boiling 

the solution for 15 minutes and allowing it to cool slowly to room temperature, 

before aliquots were stored at -20°C. 

2.7.3 PMSF 

PMSF (polymethysulfonylfluoride) was made freshly, prior to use as a 1 OOmM 

stock in acetone and kept at 4°C for no longer than 20minutes. It was added 

to a solution by injection underneath the surface of the liquid, while stirring 

rapidly. 

2.7.4 Poly (dldC:dldC): non- specific competitor DNA 

Lyophilised poly (dldC:dldC) was resuspended in TE at a concentration of 

1.0- 5.0 J..Lg/J..LI. To ensure the polyanion was double stranded the solution was 

heated to 55oc and allowed to cool to room temperature, then placed on ice 

for 15 minutes. Working aliquots were stored at -20°C. 

2.7.5 Restriction endonuclease and DNA modifying enzyme buffers 

Restriction enzyme and DNA modifying enzyme reaction buffers were 

supplied with the enzymes used. Those buffers described in individual 

protocols were as described by Sambrook (1989), or detailed at the first 

reference to use. 

2.8 General molecular biology methods 

The methods not described in detail in this section were performed as 

described by Sambrook, (1989). 
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2.8.1 Isolation of plasmid DNA 

2.8.1.1 Mini- prep 

A single colony of bacteria was grown overnight in 5ml of LB, with 

appropriate antibiotic selection. 1.5ml of this culture was pipetted into a 

sterile eppendorf tube and the cells harvested by centrifugation for 30 

seconds at top speed in a microfuge (MSE MicroCentaur, approximately 

12,000g). The supernatant was discarded and the tube was inverted. 1 OOJ.ll 

of ice-cold solution 1 {1% glucose, 10mM EDTA pHS.O, 25mM Tris.HCI pH8.0) 

was added and briefly vortexed. Following incubation at room temperature for 

5 minutes, 200J.ll of solution 2 {0.2M NaOH, 1% SDS) was added and mixed 

by inversion. After 5 minutes on ice, 150J.ll of ice-cold solution 3 {11.5ml of 

glacial acetic acid and 28.5ml of distilled water added to 60ml of 5M 

potassium acetate. The solution has an overall pH of 4.8 and is 3M with 

respect to potassium and 5M with respect to acetate) was added to the 

mixture and the tube vortexed briefly before being placed on ice for a further 5 

minutes. The tube was then microfuged for 5 minutes to remove bacterial 

debris. The supernatant was transferred to a fresh tube and extracted with an 

equal volume of TE (1 OmM Tris.HCI pH8.0, 1 mM EDTA pH8.0) - saturated 

phenol:chloroform:isoamyl alcohol {25:24:1, v/v), (section 2.9.2). Following 

centrifugation for 2 minutes in the microfuge, the aqueous phase was 

transferred to a fresh tube and the DNA precipitated by the addition of 2.5 

volumes of ethanol. The tube was left for 30 minutes on ice and the DNA 

collected by centrifugation for 5 minutes. The DNA pellet was washed in 70% 

ethanol and air dried at room temperature for 5 minutes. The final pellet was 

resuspended in 501J.I of TE with RNAase A {2.7.2) added to a concentration of 

20J.lg/ mi. 

2.8.1.2 "Quick" mini- prep 

When a large number of plasmid mini- preps had to be isolated from E.coli 

strains, this quicker method was used. Plasmid DNA of lower yield and purity 

was obtained (the nicked forms of plasmids were commonly seen and preps 

were usually contaminated with bacterial chromosomal DNA), relative to DNA 

prepared by alkaline lysis. However this method was most often used to 
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rapidly screen large numbers of clones for an increase or decrease in insert 

size (for example in selecting nested deletions). Hence once the correct 

plasmid containing strain had been identified by this method, alkaline lysis 

minipreps were then carried out to obtain large amounts of pure DNA. 

Individual bacterial colonies were streaked onto LB- agar plates, with the 

appropriate antibiotic selection. 90% of the streak was scraped off the 

masterplate and transferred to an eppendorf containing 40~-LI solution A 

(100mM NaCI, 20mM Tris.CI pH 7.5, 10mM EDTA). The cells were 

resuspended by brief vortexing and 401-!1 phenol: chloroform (1: 1 v/v) added. 

The cells were lysed by vortexing for 30 seconds and the phases separated 

by centrifuging for 3 minutes at top speed in a microfuge. 20111 of the upper 

aqueous phase was transferred to a fresh tube and RNAse A added to 20~-Lg/ 

mi. Following a 20 minute incubation at room temperature the entire 20111 was 

analysed by gel electrophoresis, with appropriate plasmid controls as size 

markers. 

2.8.1.3 Midi- prep 

This larger scale preparation of plasmid DNA was essentially a scale- up of 

the mini- prep described in section 2.8.1.1, with an additional PEG 

precipitation step to selectively purify supercoiled plasmid. 

A fresh 5ml bacterial culture, grown with the appropriate selection, to an 

OD600 of approximately 0.6 was subcultured into a fresh volume of 

prewarmed LB, in the ratio of 1:1 00 (culture: LB) and grown overnight. The 

cells were chilled on ice for 10 minutes and then harvested by centrifugation 

at 6 OOOrpm for 10 minutes at 4°C in a Sorvall GS3 rotor. The supernatant 

was decanted and the tube inverted over tissue. The pellet was then vortexed 

and 3.0ml ice- cold solution I (section 2.8.1.1) added and vortexing continued 

to resuspend the cells. Following incubation at room temperature for 5 

minutes, 6.0ml of solution 2 was added and the contents of the tube mixed by 

inversion. After 10 minutes on ice, 4.5ml of ice-cold solution 3 was added and 

the tube vortexed briefly before incubation on ice for a further 15 minutes. 

Bacterial debris was pelleted by centrifugation at 6000rpm in a sorvall GS3 
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rotor. The supernatant was transferred to a fresh tube and extracted with an 

equal volume of phenol:chloroform (2.9.2). After centrifuging for 5 minutes, the 

aqueous phase was transferred to a fresh tube and the DNA precipitated by 

the addition of an equal volume of isopropanol (pre- chilled to -2QOC). The 

tube was left for 2 hours in icy water or at 4oc overnight and the DNA 

collected by centrifugation for 10 minutes at 10 OOOrpm in a Sorvall SS34. 

The supernatant was removed and the DNA pellet was washed in 70% 

ethanol, air dried and then resuspended in SOO!JI TE. RNase A was added to 

a final concentration of 201Jg/ ml and incubated for 20 minutes at 37oc. An 

equal volume of solution 4 (1.6M NaCI containing 13% (w/ v) PEG- 8, 000) 

was added and mixed by inversion. The DNA was precipitated by incubation 

on ice for 1 hour and the plasmid recovered by centrifugation at top speed for 

10 minutes in a microfuge. The supernatant was removed and the pellet 

dissolved in SOO!JI TE. The solution was extracted once with an equal volume 

of phenol:chloroform (2.9.2) followed by an equal volume of chloroform. The 

supernatant was transferred to a fresh eppendorf and precipitated on the 

addition of 1251JI 1OM ammonium acetate and 2 volumes of ethanol. The tube 

was incubated on ice for 1 hour and plasmid DNA recovered by centrifugation 

at 12 OOOg for 10 minutes. The final pellet was washed twice with 70% 

ethanol, air dried for 10 minutes and resuspended in 2001JI of TE. 

2.8.2 Transformation of bacteria 

2.8.2.1 Calcium chloride method for preparing competent cells 

This method is a modified version of Mandel and Higa (1970) and was used 

when large numbers of transformations were to be carried out or when 

competent cells were made for long term storage. 

One milliltre of an overnight culture of E. coli was subcultured into 100ml 

prewarmed LB and grown until the OD600 was approximately 0.4 (2- 3 hours). 

The cells were chilled on ice for 10 minutes and then harvested by 

centrifugation at 4,000g for 5 minutes at 4°C. The supernatant was discarded 

and the pellet gently resuspended in 1Om I of ice- cold buffer R (1 OOmM 
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CaCI2, 1 OmM Tris.HCI pH8.0). The cell suspension was maintained on ice for 

30 minutes then centrifuged as before. The supernatant was removed and the 

pellet resuspended in 1.0ml buffer R' (100mM CaCI2: 100% glycerol; 85:15 

v/v), then dispersed into 1 OOJ.!I aliquots and snap frozen in liquid nitrogen. 

Cells were stored at -80°C. 

2.8.2.2 Transformation of E.coli competent cells 

An aliquot of frozen cells was thawed on ice and diluted with 0.9ml ice- cold 

buffer R. The cells were mixed gently and dispersed into 100111 aliquots. The 

required DNA or ligation mix was added to a diluted aliquot and maintained 

on ice for 30- 90 minutes. Up to 40ng DNA was used per tube (following 

which transformation efficiency was reduced). The cells were then heat 

shocked at 43.5°C for 45 seconds then placed on ice for 2 minutes. 0.9ml LB 

was added and the cells incubated at 37oc for 30 minutes (Tc selection) or for 

1 hour (Amp/Km selection) to allow antibiotic resistance to be expressed. 

Appropriate aliquots (generally 1/1 Oth and 9/1 Oths of the tube) were spread 

on selective agar plates. Controls of undigested vector and cut vector were 

included. Dilutions were plated on LB to determine transformation efficiency 

and ligase efficiency was determined with cut and re- ligated vector controls. 

2.9 DNA manipulations 

2.9.1 RNase A treatment 

Contaminating RNA was removed from a DNA solution by the addition of 

RNase A (section 2.7.2) to a final concentration of 20Jlg/ml and incubation at 

25°C or 37°C for an appropriate length of time. Usually for RNase A treatment 

of plasmid DNA this incubation was carried out along with restriction 

endonucleases. For larger amounts of DNA, contaminating RNA was 

removed by digestion with 50Jlg/ ml RNAase A for 1 hour at 37°C. The 

enzyme was then removed by phenol-chloroform extraction (2.9.2) before 

precipitation of the DNA. 

2.9.2 Phenol- chloroform extraction 

A 25:24:1, v/v/v solution of phenol:chloroform:isoamyl alcohol was 
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equilibrated 3 times with TE buffer and stored under TE in a light-proof bottle 

at 4°C. To remove proteins from DNA solutions an equal volume of 

phenol:chloroform:isoamyl alcohol was added, the solutions mixed by 

vortexing for 30 seconds and the phases separated by centrifugation for 2 

minutes in a microfuge. The aqueous phase was transferred to a fresh tube. 

This was repeated until no further protein was visible (as a white precipitate) 

at the boundary of the two phases. A final extraction with chloroform:isoamyl 

alcohol (24: 1 v/v) was carried out to remove any traces of phenol from the 

DNA solution. 

2.9.3 Ethanol precipitation 

DNA was precipitated from solution by the addition of 0.1 volumes of 3M 

sodium acetate (pH4.8) and 2 volumes of ethanol, unless specified otherwise. 

The sample was mixed by vortexing and plasmid DNA solutions were placed 

on ice or at -20°C for at least 30 minutes. The DNA was pelleted by 

centrifugation in a microfuge at 12 OOOg for 10 minutes. After which the 

supernatant was removed, the pellet washed twice in 70% ethanol, air dried 

and finally resuspended in TE buffer or sterile distilled water. 

2.9.4 Quantification of DNA solutions 

2.9.4.1 Spectrophotometric determination 

The absorbance of an appropriate dilution (usually 1 :50) of the DNA sample 

in sterile H20 was read at 260nm and 280nm on a Beckman DU7500 

spectrophotometer, using sterile distilled water as a blank. As an A26onm of 

1.0 is equivalent to a concentration of 50J..Lg/ ml of double stranded DNA or 

-33J..Lg/ ml of single stranded oligonucleotides, sample DNA concentrations 

could be calculated. 

2.9.4.2 Ethidium bromide fluorescence determination: "Dot" method 

When the amount of DNA to be quantified was limited or at a low 

concentration then the following method was used (adapted from Sambrook 

et at .• 1989), which could detect as little as 1-5ng DNA. A standard solution of 

A DNA was made in dH20 and a dilution series of the standard DNA spotted 
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onto a circular 9cm agar plate. 1- 5J.!I of the DNA sample was then spotted on. 

An equal volume of TE containing 2f.lg/ ml ethidium bromide was added to 

every sample then viewed through a trans illuminator (UVP Inc). 

Concentration of the DNA is determined by comparison of the intensity of 

fluorescence in the sample with that of the standard solutions. 

2.9.5 Restriction endonuclease digestions 

Digestions were carried out according to the enzyme manufacturer's 

instructions. Generally plasmid DNA was digested at a concentration of 0.01-

0.1 J.lg/ f.!l} in a total volume of 1 0-50f.ll, with 5 units of restriction endonuclease, 

0. 1 volumes of the supplied 1 Ox concentrated enzyme buffer and sterile H20 

to make up the volume. The reaction was incubated at the recommended 

temperature (usually 3]CC) for 1-2 hours. If more than one restriction enzyme 

was to be used in the same reaction and the buffers supplied differed, the 

reaction was buffered using one-phor-all buffer PLUS {Pharmacia). 

If the digestions were to be analysed by gel electrophoresis, 0.2 volumes of 

6x gel-loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol FF, 

40% sucrose) was added prior to loading. 

2.9.6 Electrophoretic separation of DNA fragments 

2.9.6.1 Agarose gel electrophoresis 

Gel electrophoresis was carried out with large gels 1 OOx 80mm (volume 

70ml) or minigels 1 05x 60mm and 50x 60mm (volume 40 and 20m I 

respectively). Electrophoresis was performed in horizontal gel tanks 

(Pharmacia). The concentration of agarose within a gel was varied depending 

on the size of DNA to be separated (Sambrook eta/., 1989). Usually 0.7-

1.0% agarose gels were used, which efficiently separated linear DNA 

between 10- 0.8kb. The required amounts of agarose and 1 x TAE (Sam brook 

eta/., 1989) buffer were mixed and the agarose dissolved by microwaving the 

mixture. The solution was cooled to about 60°C, ethidium bromide was 

added to a final concentration of 0.2mg/ ml, and the agarose poured into the 

gel mould with a well comb in place. Once set, the gel was put in a tank and 
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covered with 1x TAE buffer containing 0.2mg/ ml ethidium bromide. Samples 

plus appropriate size markers were loaded and electrophoresis carried out at 

5-10 V/ em for the required amount of time. DNA within the gel was visualised 

on a trans illuminator (UVP Inc.), and photographed with a video copy 

processor (Mitsubishi), using a red filter. 

2.9.6.2 Polyacrylamide gel electrophoresis 

Polyacrylamide gels were used for resolving proteins and low molecular 

weight DNA fragments. Electrophoresis was performed in either the Bio-Rad 

Protean I or Protean II tanks using 0.5x or 1 x TBE buffer (Sam brook et a/., 

1989) for DNA gels and SDS- running buffer (Laemmli., 1970) for protein 

gels. The acrylamide used in the gels was diluted from a 30% acrylamide 

stock which was made by the addition of 29g acrylamide and 1g N,N'

methylenebisacrylamide to 60ml distilled water. The solution was heated to 

37°C to dissolve the chemicals and the volume then adjusted to 100ml with 

distilled water. The percentage of acrylamide used in resolving gels was 

varied depending on the size of the fragments to be fractionated (Sambrook 

eta/., 1989) and either 3% or 5% stacking gels were used. 0.07% Ammonium 

persulphate (APS: made fresh and kept for a week at 4 oC) was added to the 

acrylamide and polymerisation catalysed by the addition of TEMED- 1 1111 ml 

of gel. Samples and appropriate size markers were loaded and 

electrophoresis carried out at 5-10V/ em for the required amount of time. 

2.9.6.3 Non-denaturing (native) polyacrylamide gel electrophoresis 

The separation of protein- DNA complexes for gel mobility shift or gel 

retardation analysis was achieved using native polyacrylamide gel 

electrophoresis. Thoroughly washed (to remove any residual SDS) Protean I 

or mini-Protean II (Bio-Rad) vertical gel equipment was assembled according 

to the manufacturers instructions. 3- 5% polyacrylamide gels, with a ratio of 

acrylamide : bisacrylamide of 30: 1 were used (suitable for proteins with a 

molecular mass of 15- 500kDa and DNA fragments 12- 600bp in length). The 

gel was made in 0.5x TBE, supplemented with 2.5% glycerol, 0.07% APS and 

the gels were polymerised using TEMED- 0.5 Ill/ ml of gel. Gels were pre- run 

at 1 OOV for 20minutes. If DNA probes were used the wells were washed out 

with incubation buffer prior to loading and the running buffer was doubly 
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recirclated from anode to cathode during electrophoresis. Following 

electrophoresis, gels were frozen at -80 °C or dried and the DNA located by 

autoradiography with an exposure from 1 hour to overnight (section 2.9.12.3). 

2.9.7 DNA fragment isolation 

If DNA was to be recovered from an agarose gel then the specific fragment 

was excised in the smallest possible volume and isolated be one of the 

following methods. 

2.9. 7.1 Electroelution using Biotrap B-1 000 

Electroelution of DNA from an agarose gel slice was performed using the 

Biotrap B 1000 (Schleicher & Schuell) apparatus. The Biotrap apparatus was 

assembled according to the manufacturers instructions and placed into an 

horizontal electrophoresis tank (Pharmacia). 1x TAE was added to the 

apparatus chambers, then poured into the electrophoresis tank until a 

complete circuit was made. The gel slice was submerged in the sample 

chamber and electrophoresis was at 100V for at least 1 hour. The current was 

then reversed for 1 minute and the TAE from the collection chamber taken up 

and placed into an eppendorf. DNA was then ethanol precipitated (2.9.3). 

Recovery was dependent on the size and initial amount of DNA, but on 

average was approximately 70%. 

2.9.7.2 "Freeze- squeeze" 

The excised DNA fragment was placed in an 0.5ml eppendorf tube which had 

been pierced, then plugged with siliconised glass wool. The gel slice was 

frozen at -8ooc for 30 minutes then the tube was placed in a 1.5ml eppendorf 

and centrifuged for 10 minutes at top speed in a microfuge. The DNA solution 

which collected in the 1.5ml eppendorf was extracted once with an equal 

volume of chloroform and then ethanol precipitated (2.9.3). 

2.9.8 Filling in 3'- recessed termini 

If it was necessary to convert a DNA restriction fragment with 3' recessed 

ends to one with blunt ends, the following method was used (Sam brook eta/., 

1989). The DNA fragment (maximum of 500ng) was resuspended in 10-
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15!-IJ of sterile distilled water. 1 f..ll of a stock dNTP solution (each at 1 mM in 

H20) was added to the DNA with 2f..ll of Klenow buffer. The volume made up 

to 19f..ll with H20 and the reaction was started with addition of 1 f..ll (1 Weiss 

unit) of Klenow fragment. The reaction was incubated at ambient temperature 

for 30 minutes then at 70°C for 5 minutes, if the Klenow enzyme had to be 

inactivated. 

2.9.9 Ligation of DNA 

T 4 DNA ligase was used to ligate DNA fragments with compatible cohesive or 

blunt termini. The fragments of insert and vector DNA were usually mixed at a 

ratio of 3:1 (insert:vector) with a maximum of 300ng DNA. 0.1 volume of 1 Ox 

ligase buffer (0.66M Tris.HCI pH7.5, 50mM MgCI 2, 50mM OTT, 10mM ATP

(stock ATP solution - 1 OOmM disodium salt, pH adjusted to 7.0 by adding 

1/1 Oth volume 1M Tris.CI pH 9.5 and stored at -20°C)) was added and for 

cohesive termini 1 unit of DNA ligase added. This was then incubated at 

room temperature for 2 hours or overnight at 4°C. For blunt-ended termini, 3 

units of ligase were added and the reaction incubated at 15°C overnight. The 

ligation mix was then used to transform competent E. coli cells. 

2.9.1 0 DNA sequencing 

DNA sequencing of double stranded plasmid templates was performed by the 

dideoxy- sequencing method of Sanger and colleagues (1977), using 

fluorescent dye- linked universal M13 primers. Sequences were analysed 

using an Applied Biosystems 373A DNA Sequencer. Plasmids were 

sequenced in both directions using forwards and reverse primers. Custom

synthesised primers (section 2.14) were used in conjunction with the Applied 

Biosystems Taq dyedeoxy terminator cycle sequencing kit. Reactions were 

prepared according to protocols described by the manufacturer. Standard 

control reactions supplied by the manufacturer were prepared in tandem with 

each batch of sequencing reactions. 

2.9.1 0.1 Preparation of double stranded DNA template 

For optimum sequence data the purity of the template was important and was 
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prepared using a modified Prom ega Magic Miniprep ™ kit method. A 1Om I 

culture with appropriate selection was grown overnight and the cells 

harvested by centrifugation for 5 minutes at 2 500rpm in a MSE minor. The 

supernatant was discarded and the cells were resuspended in 300J.1I buffer 1 

{50mM Tris.CI, pH 7.5, 10mM EDTA, 100J.1g/ ml RNAse A) in a sterile 

eppendorf. Lysis solution 2 (300J.1I of 0.2M NaOH, 1% SDS) was added and 

the tube inverted several times until the suspension cleared (lysis}, then 300J.1I 

of neutralisation solution 3 (1.32M potassium acetate pH4.8) was added and 

mixed by gentle vortexing. The tube was then centrifuged for 3 minutes at top 

speed in a microfuge to remove bacterial debris. The supernatant was 

transferred to a fresh tube and the last step repeated. The clear supernatant 

was divided between two tubes and 500J.1I Magic miniprep DNA purification 

resin added to each. The resin /DNA slurry was incubated at room 

temperature for 5 minutes, with occasional mixing by inversion and then 

pipetted into a syringe attached to a magic miniprep mini column. The slurry 

was injected into the column, then washed with 3ml solution 4 (200mM NaCI, 

20mM Tris.CI pH 7.5, 5 mM EDTA, 55% ethanol) via the syringe, which was 

removed and the column transferred to a fresh eppendorf. The column was 

centrifuged for 1 minute at 12 OOOg, transferred to a fresh tube and air dried 

for 5 minutes. The DNA was eluted with 100J.1I sterile milli Q water, preheated 

to 7ooc. This was applied and eluted after one minute by spinning at top 

speed in a microfuge for 1 minute. The eluent was reapplied to the column 

and centrifuged as before. The purity and quantity of the DNA was assessed 

by comparison against known standards. 

2.9.1 0.2 DNA sequence analysis 

Primary DNA sequence analysis was carried out by entering the DNA 

sequence into the DNA-Strider program (Marek., 1988}. Additionally, the DNA 

sequence was down-loaded to the Daresbury SERC SEQNET facility and an 

analysis using the UWGCG (Devereux eta/., 1984) package was performed. 

This included database searches and determination of DNA sequence 

features, such as terminators, start and stop .codons and searches for 

upstream regulatory elements at the appropriate distance from a given start 
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site. When required dedu£?ed protein sequence analysis was compared to 

previously published sequences, searching the OWL non-redundant 

database on SEQNET with NEWSWEEP and a daily updated GenEMBL 

database with TFASTA and FASTA, alignment programs based on the 

algorithm of Lipman and Pearson, 1985. 

2.9.11 Preparation of radiolabelled probes 

2.9.11.1 Random primer reactions 

DNA fragments were labelled with [a-32P] dCTP by the random primer 

labelling method using an Amersham Megaprime kit. 50- 200ng of DNA in a 

total volume of 45Jll was boiled for 5 minutes with 5Jll of random 

hexanucleotide primers. 1 OJll of labelling buffer, 5Jll [ a32P] dCTP (specific 

activities of both 500Ci/ mmol and 3000 Ci/ mmol were used) were added 

with H20 to make the total volume 48Jll. The labelling reaction was started by 

the addition of 2111 of Klenow enzyme and left to proceed for 1 hour at room 

temperature. The labelled DNA was boiled for 5 minutes, then quenched on 

ice immediately before use. If required, unincorporated label removed by 

chromatography using a Bio spin P-30 (Bio-Rad) column according to the 

manufacturers instructions. Following chromatography at 1, 1 OOg for 4 

minutes through the P-30 gel matrix most of the unincorporated nucleotide 

was retained and the purified probe was eluted. 

2.9.11.2 Oligonucleotide end labelling 

Synthetic binding sites for gel retardation assays were made as 

complementary oligonucleotides. These were labelled at their 5' ends using 

poly nucleotide kinase (PNK), according to a modified method of Chaconas 

and Van de Sande (1980). The following were incubated in an eppendorf at 

37°C for 30 minutes: 

oligonucleotide (3.5pmol/ Jll) 

1 OX kinase buffer 

y32P- ATP(5 000 Ci/mmol) 

H20 

T4 PNK(8- 10U/I) 
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Individual labelling reactions were combined then 50 j..LI light mineral oil was 

layered on. The mixture was briefly microfuged and then placed in a 92°C 

water bath which was switched off and subsequently allowed to cool to room 

temperature. The oligonucleotides were then placed on ice for 15 minutes 

and stored at -20°C. Purified oligonucleotides were counted by liquid 

scintillation and diluted such that 1.0j..LI (0.35pmol=0.5ng=1 0, 000 - 50, 

OOOcpm) and 1.0j..LI was used in each gel retardation assay. 

When oligonucleotides were used as competitors, the above method was 

followed, with the substitution of 1m M ATP instead of y32P- ATP in the kinase 

reaction. 

2.9.11.3 Filling in 3'- recessed terminii with a32p_ dNTP's 

The 3' recessed ends of gel purified DNA restriction fragments were filled in 

using Klenow DNA polymerase using the standard method (2.9.8). The stock 

dNTP solution was substituted with 2j..LI of each a32p_ NTP (specific activity 5 

000 Ci/mmol) plus the appropriate nonradioactive dNTPs at 1 mM. 

2.9.12 DNA hybridisation procedures 

2.9.12.1 Transfer of DNA to membranes 

The following method is a modification of that of Southern (1975). DNA was 

_transferred to Hybond- N (nylon) membranes or Hybond- C (nitrocellulose) 

membranes (Amersham), as described below. The agarose gel containing the 

DNA samples was photographed with a fluorescent calibration rule. If DNA 

fragments greater than 1 Okb in size were present, the gel was soaked in 

0.25M HCI for 15 minutes, to partially depurinate the DNA, then rinsed twice 

with distilled water. For blotting, the gel was soaked in denaturation buffer 

(1.5M NaCI, 0.5M NaOH) for 45 minutes, then rinsed twice with distilled water 

and soaked in neutralisation buffer (1.5M NaCI, 0.5M Tris.HCI pH7.2, 0.001 M 

EDTA) for 45 minutes. After rinsing the gel with distilled water, then 20X SSC 

(3M NaCI, 0.3M sodium citrate) the gel was blotted overnight. For one-way 

blots a platform was placed over a reservoir of 1 OX SSG. A wick made of 
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Whatman 3MM paper was put on this platform with its ends in the reservoir. 

The gel was placed, wells uppermost, on the 3MM paper followed by a piece 

of Hybond-N and 3 sheets of Whatman 3MM paper (all cut to the same size as 

the gel). Finally 2 layers of disposable nappies were placed on top, the stack 

was covered with a glass plate and a 0.5kg weight placed on top. Double 

sided (two-way) blots were created by sandwiching the agarose gel between 

two membranes. Both types of blot were left for at least 16 hours to allow DNA 

transfer, afterwhich the apparatus was dismantled and the positions of the 

wells marked on the filters and air dried. DNA was fixed to the membranes 

according to the manufacturers instructions. 

2.9.12.2 Hybridisation of radio-labelled probes to Southern blots 

Hybridisation was carried out in Techne Hybridisation tubes using a Techne 

Hybridiser HB-1 oven. Blots were incubated in 50ml of pre-hybridisation 

solution (5x SSe, 5x Denhardt's solution [50x Denhardt's solution is 1% ficoll, 

1% polyvinylpyrrolidone, 1% BSA fraction V], 0.5% SDS and 1 OOJ.Lg/ ml of 

denatured salmon sperm DNA) (section 2.7.1) at 65°e for 2- 4 hours. A fresh 

1Om I aliquot of prehybridisation buffer that contained denatured, labelled 

probe was then added and incubation continued at 65°e for at least 2 hours. 

Blots were subsequently washed twice in 2x SSe, 0.1% SDS for ten minutes 

at room temperature, followed by one wash in 0.- 1.0 X sse, 0.1% SDS for 15 

minutes at 65°e. Lower stringency washes were done with 2x SSe alone at 

42°e. After each washing solution was removed, the filter was checked with a 

Geiger counter and the washing continued until sufficient (apparent) non

specific radio-labelled probe was removed. Finally the filters were wrapped 

in clingfilm and hybridising bands detected as described below. 

2.9.12.3 Detection of hybridising probes 

This was achieved in one of two ways. 

a: The wrapped filter was taped onto a larger piece of Whatman 3MM paper 

and radioactive ink orientation marks spotted onto the edges. Radioactive 

bands were detected on exposure to pre- flashed Fuji RX-100 X-ray film, at

soae, in cassettes fitted with tungstate intensifying screens, for varying 

amounts of time. Aligning the radioactive ink spots on the film to those on the 

3MM paper allowed the position of the wells on the filter to be marked on the 
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film. Hence the size of any hybridising fragments could be calculated using 

the original gel photograph (with fluorescent calibration rule included). 

b: The filter was taped onto a GS-250 high sensitivity phosphoimager plate 

and exposed for varying lengths of time at room temperature. The plate was 

then screened and the result visualised and displayed using the 

manufacturers software and instructions (GS- 250 Molecular Imager, BioRad). 

Bands were oriented using pre-existing grids on the phosphoimager plates. 

2.9.12.4 Removal of radioactive probes from filters 

To strip radioactive probes from Hybond- C filters for reprobing, the filter was 

washed with 0.4M NaOH at 45°C for 30 minutes. This was followed by a wash 

with 0.1 x SSG, 0.1% SDS and 0.2M Tris.HCI pH7.5 for 30 minutes at 45°C. 

To strip radioactive probes from Hybond- N filters, boiling 0.1 xSSC, 0.1% 

SDS was poured over the blot and left to cool to room temperature. 

Successful removal of probes from nylon filters only occurred if the filter had 

never been allowed to dry out completely after hybridisation/ washing. Filters 

were checked for probe removal by re-exposure to X-ray film, as described 

above. 

2.9.13 Nested deletions of double stranded DNA 

The nested deletion system for double stranded DNA (Pharmacia P-L 

Biochemicals) was designed to carry out unidirectional deletions with Exo Ill 

nuclease. Exo Ill will digest blunt and 5' protruding termini, but not 3' 

protruding termini. Plasmids were double digested with two restriction 

enzymes; one enzyme created a 5'-protruding or blunt end (nuclease

sensitive), adjacent to the target sequence and one that produced a 3'

protruding termini (nuclease resistant). The linearised DNA was then 

incubated with Exo Ill according to the manufacturer's recommendations, 

using reagents supplied with the kit. Samples were removed at intervals then 

treated with S1 nuclease to remove single- stranded region. Half of the 

deletion mix was then analysed by agarose gel electrophoresis and half was 

recircularised using T4 DNA ligase and transformed into calcium competent 

E. coli cells (2.8.2). 
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2.9.14 Polymerase Chain Reaction for in vitro amplification of DNA 

The polymerase chain reaction (PCR) for in vitro amplification was carried out 

essentially as described by McPherson eta/., 1991 with modifications to avoid 

mispriming as described by Don eta/., 1991. Template DNA made according 

to the standard protocols (2.8.1 and 2.12.9) was used as target sequence for 

amplification. 

For a single 1 OOfll PCR reaction the following components were added to a 

0.5ml sterile eppendorf tube on ice: 

. 1xTaq polymerase buffer (10mM Tris pH8.3, 1.5mM MgCI2, 

50mM KCI, 0.1mglml gelatin) 
. dNTP's- 0.2mM (dATP/ dTTP/ dCTP/ dGTP) 
. 0.1- 1 Ong of template DNA 

. Primers 5' and 3' to a final concentration of 0.1- 11J.M 

. H20 to 1 OO!J.I 

The reaction was spun briefly to mix the components prior to the addition of 

1 OOfll of light mineral oil. The tubes were placed in a programmable heating 

block and the first round of denaturation and annealing was performed. 1.0U 

Taq DNA polymerase was then added and amplification allowed to proceed. 

Cycling parameters were varied according to the annealing temperature and 

length of target sequence, but the basic method was as follows: 

Temp (OC) Time (mins) 
Twenty five cycles: denaturation 92 0.5 

annealing 50-55 0.5 
extension 72 0.5-2 

One cycle: denaturation 92 0.5 
annealing 50- 55 0.5 
extension 72 1- 4 

Control reactions were performed in tandem to monitor contamination by 

foreign DNAs. These consisted of reactions with no template DNA, no enzyme 

and no primers. A method of "touchdown" PCR (Don et a/., 1991) was 

adopted when shorter non- specific bands were seen in the PCR product 

(often products associated with mispriming). The correct primer annealing 
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temperature ("touchdown" temperature) was calculated, then the PCR was 

initiated at 5°C above this. Every second cycle the annealing temperature 

would be dropped 1 °C until the "touchdown" temperature was reached. A 

further 15 cycles were then performed. This method effectively prevents 

mispriming (and subsequently only specific products are amplified). 

Custom primers used during were synthesised (2.14) and are listed below. 

Table 2.1: Sequence of oligonucleotides used during this work 

A: Forward and reverse primers used with pUC based plasmids 

Oligo Sequence 5' to 3' Position in pUC 19 

Forward GTTTTCCCAGTCACGAC 359 to 375 

Reverse CAGGAAACAGCTATGAC 465 to 481 

8: Primers used for gel retardation probe amplification 

Oligo Sequence 5' to 3' 
Position in ACP05 

promoter 

For1 TGGTAAGATATGGGTACTGT -263 to -282 

Rev 1 CTCGTCGTCATTTATAAGCTTG -13 to -34 

For2 TGCGAATTGTGAGTGGTACTA -643 to -663 

Rev2 ACAGTACCCATATCTTACCA -263 to -282 
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C: Internal primers used to sequence pUC5PA 

Oligo Sequence 5' to 3' Position in promoter 

701 TGCGAATTGTGAGTGGTACTA -663 to -641 

730 TAGTACCACTCACAATTCGCA -641 to -663 

320 TATAATTAGTCTTTGTTTTATTT -368 to -346 

321 AAATAAAACAAAGACTAATTATA -346 to -368 

0: Internal primers used to sequence ER 

Oligo Sequence 5' to 3' Position in pERL8 

367N GGCTTCATAGACACCAT 977 to 995 

371 AATCTCCATCAATGAC 451 to 468 

776 GAAGTCCAGAAGAAGCCTTG 239 to 259 

2.9.15 The gel retardation/ gel mobility shift assay: Binding 

reaction 

Various conditions of the basic assay were varied to optimise specific binding. 

The optimised assay conditions were then adopted as standard and used 

consistently to maintain an extent of uniformity between different assays. 

2.9.15.1 Assay used with oligonucleotide probes 

In the standard binding assay (final volume 1 Ojll), 1.0jll (5- 1 Ojlg) protein 

extract (section 2.11.6) was incubated for 5 minutes on ice with 1- 5jlg poly 

(dldC:dldC) (2.7.4) in 20mM Tris-HCI, pH 7.5, 1mM OTT, 1mM EDTA, 100mM 
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KCI and 3% glycerol. 10 000- 50 OOOCPM 32P-Iabelled substrate DNA was 

then added and incubation continued for 10 minutes. Samples were loaded 

onto 3- 5% polyacrylamide native gels and subjected to electrophoresis as 

detailed in section 2.9.6.3. Sample dye was not added to the assays as the 

glycerol content in the assay buffer provided sufficient density for loading. 

Bromophenol blue and xylene cyanol (0.25%) in 3% glycerol was added to a 

spare track as marker during electrophoresis. 

2.9.15.2 Assay used with DNA probes 

High levels of background were observed when using promoter probes as 

substrate. This could have been due to non specific protein- DNA interactions 

or disintegration of complexes during electrophoresis. A number of 

modifications to the standard assay conditions were made to reduce the 

problem. The electrophoresis buffer used was 0.5x TBE which may result in a 

pH shift through electrolysis of the buffer which could interfere with the 

stability of the protein- DNA complex. Therefore the buffer was double 

recirculated from the anode to the cathode during electrophoresis. Also 

differences in the composition of the binding buffer and the gel running buffer 

potentially could alter protein binding during loading and entry of complex 

into the gel. To avoid these problems the wells of the gel were washed out 

with the binding buffer (made up without glycerol) before the assays were 

loaded. Immediately after which they were rapidly run in to the gel matrix at 

high voltage (500v, for approximately 30 seconds), before electrophoresis at 

1 OOV for an hour. · 

2.10 RNA procedures 

2.1 0.1 General techniques 

Due to the high stability of ribonucleases, care was taken to create a 

ribonuclease-free environment whenever possible. Aqueous solutions which 

were first treated with diethyl pyrocarbonate (DEPC) which is a non-specific 

inhibitor of RNases. DEPC was added to 0.1% v/v, incubated at ambient 

temperature for 16 hours then autoclaved. Solutions containing Tris could not 

be treated directly with DEPC, as the two compounds react to form a stable 
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complex. Instead Tris buffers were made with autoclaved DEPC-treated 

distilled water and then re-autoclaved. 

2. 1 0.2 Northern blotting 

Total RNA was isolated from leaf and seed material by the method of Hall et 

a/ (1978). Poly A+ enriched RNA was prepared by one round of 

chromatography on oligo- dT cellulose (Pharmacia), using the recommended 

manufacturers procedure and solutions. RNA was quantified by 

spectrophotometry. RNA was fractionated on 1% formaldehyde containing 

MOPS buffered gels as described in Fawcett et a/., 1994 and transferred to 

Hybond-N nylon membranes as described in section 2.9.12.1. 

Pre-hybridisation and hybridisation were carried out as described in 2.9.12, 

except SSPE was used instead of sse (at the same concentration) and 

formamide was added to a final concentration of 50%. The incubation 

temperature was always 42°C. 

Washing was carried out with 0.1- 1 xSSPE, 0.1% SDS at 42°C for 2- 5x 10 

minute intervals. After each wash the blot was checked using the Geiger 

counter and this step repeated until excess (apparent) non- specific probe 

had been removed. Hybridising bands were visualised as described in 

2.9.12.3. 

2.1 0.3 Laser densitometry 

An LKB Ultroscan XL densitometer ·was used for laser densitometry. Two 

exposures of an experiment were analysed to ensure that data in the linear 

range of film were obtained. 

2. 11 Protein procedures 

2.11.1 SDS polyacrylamide gel electrophoresis 

SDS polyacrylamide gel electrophoresis (SDS-PAGE) for proteins was 

performed in either the Bio-Rad Mini Protean I or Protean II equipment using 

the method of Laemmli, 1970. The equipment was assembled according to 
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the manufacturers instructions and the gels were electrophoresised under the 

conditions outlined in section 2.9.6.2. 

Resolving gels were made using 5- 10% acrylamide, 0.1% SDS, 0.07% 

ammonium persulphate (APS) and 0.375M Tris.HCI pH8.8. Stacking gels 

were made using 3- 5% acrylamide, 0.1% SDS, 0.07% APS and 0.125M 

Tris.HCI pH 6.8. Gels were polymerised with TEMED- 1 Jll/ ml of gel. Before 

loading, the samples were mixed with an equal volume of 2x sample buffer 

(4% SDS, 20% glycerol, 120mM Tris.HCI pH 6.8 and 0.005% bromophenol 

blue, with 10% P-mercaptoethanol added immediately before use), then 

boiled for 5 minutes and spun down in the microfuge before loading with a 

Hamilton syringe. 

2.11.2 Staining polyacrylamide gels with Coomassie Brilliant Blue 

Stain was prepared by dissolving 0.25g of Coomassie Brilliant Blue in 90ml of 

methanol:distilled water (1: 1 v/v) and 1Om I of glacial acetic acid. The solution 

was filtered through Whatman no. 1 filter paper. This solution was poured over 

the gel in a plastic tray, a lid put on the tray, and the tray microwaved for 30 

seconds at medium power. The stain was allowed to cool for 10 minutes then 

remicrowaved. The gel was allowed to cool to room temperature then 

destained overnight in 90ml of methanol:distilled water (1 :1 v/v). Destaining 

was accelerated by placing sponge in the tray which absorbed stain it as it 

leached from the gel. The gel was photographed or dried between cellulose 

sheets. 

2.11.3 Determination of protein concentrations:Bradford method 

The protein concentration of cell extracts was determined by a Bradford 

microassy (total assay volume 300J.1I) using Bio-Rad reagent (Bradford., 

1976). The dye reagent was diluted 1 in 5 with distilled water and mixed with 

1 OOJ.ll of sample (diluted as necessary). The assays were carried out in a 

microtitre plate (Falcon) and the A59snm measured using a Titertek Multiscan 

plate reader. The protein concentrations were calculated from the absorbance 

readings using a calibration curve generated from known concentrations of 

ovalbumin. 
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2.11.4 Precipitation of proteins 

Protein samples were concentrated using chloroform- methanol precipitation 

(Sam brook eta/., 1989). 400Jll methanol was added to 1 OOJ.!I protein sample 

and mixed briefly by vortexing. The solution was then centrifuged at top speed 

in a microfuge for 1 Ominutes. 1 OOJ.!I chloroform was then added and the 

mixture was vortexed and recentrifuged. 300Jll distilled water was then 

added, mixed and recentrifuged. The aqueous (upper) phase was discarded 

and another 300Jll of methanol was added, vortexed and centrifuged as 

before. The supernatant was discarded and the protein pellet dried under 

nitrogen. 

2.11.5 Electrophoretic blotting of proteins 

Electrophoretic blotting of proteins (Western blotting) was performed. in a 

Trans-Blot electrophoretic transfer cell (Bio-Rad) according to the 

manufacturers specifications. All steps were performed at room temperature 

in a Techne hybridiser oven, unless otherwise stated. Following SDS- PAGE 

(section 2.11.1 ), gels were equilibrated in 100 ml transfer buffer (1 OmM 

CAPS, pH 11.0, 10% methanol) for 30 minutes. PVDF membrane was cut to 

size and briefly submerged in methanol. The activated membrane was then 

equilibrated in transfer buffer. The transfer apparatus was assembled, 

avoiding the enclosure of air-bubbles and electrophoresis was performed at 

100 VI 150m A for 1-2 hours. To assess protein transfer the membrane was 

stained with Ponceau S (0.2% Ponceau S in 3% TCA) for 5 minutes and then 

destained with H20. The membrane was blocked in 10ml TBS- T (20mM Tris, 

pH 7.6, 137mM NaCI, 0.1% Tween- 20) supplemented with 5% carnation non

fat milk powder for 1 hour. The membrane was then washed four times in 

1 OOml TBS- T for 15 minutes. Primary antibody was diluted as appropriate, in 

1Om I TBS- T and incubated with the blot for 1 hour. The blot was washed as 

described above, incubated with diluted secondary antibody and washed 

again. Bound antibodies were visualised using the Enhanced 

ChemiLuminescence (ECL) kit (Amersham). Detection reagents supplied with 

the kit were diluted prior to use and added to the membrane, followed by 

exposure to blue light sensitive film (varying from 10 seconds to 1 minute). 
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2.11.6 Cell free extracts 

2.11.6.1 Brassica napus embryo (cv. Jet Neuf). 

All solutions and equipment, unless otherwise stated, were pre- chilled to 4°C 

before use. Embryos from staged plants (2.2) were excised from the testa then 

snap frozen in liquid nitrogen. For each protein extract, between 2 and 5 

grams embryo was ground to a powder in liquid nitrogen using a pestle and 

mortar. Extraction buffer (1 OmM TrisHCI pH7.5, 1 mM EDTA pHS.O, 250mM 

KCI, 0.5mM OTT, 10% glycerol, 1 mM PMSF) was added in the ratio of 1ml to 

1 g embryo. The embryo was homogenised with 5x20 second passes of a 

polytron blender in a glass beaker surrounded with a packing of icy water. 

The high lipid content of the extract prevented protein precipitation, so the 

extract was centrifuged at 15 OOOg for 30 minutes, to separate the phases. 

The supernatant was carefully removed through the lipid pad and transferred 

to a fresh tube and recentrifuged if necessary. The extract was incubated on 

ice for 30 minutes then 0.4g powdered ammonium sulphate was added per 

ml {65% saturation w/v) while stirring, and left for 1 hour on ice. Protein was 

pelleted by centrifugation at 15 OOOg for 30 minutes and resuspended in 1 ml 

R buffer {10mM TrisHCI pH7.5, 1 mM EDTA pH8.0, 0.5mM OTT, 10% glycerol, 

1m M PMSF) per gram embryo. 

To reduce salt for binding assays the extract was dialysed in spectraphor 

dialysis membrane (molecular weight cut- off limit of 6 0000, which was 

prepared by rinsing thoroughly in H20), in 1000 fold excess of R buffer with 

constant agitation. The buffer was changed 4x1.5 hour intervals or 2 x 1.5 hour 

intervals followed by dialysis overnight. 

As embryo material was limited it was investigated using gel retardation 

assays whether individual protein aliquots could be re- used (see section 

3.2.5). It was found that multiple rounds of freeze- thawing resulted in rapid 

loss of DNA binding activity. A strategy was adopted where individual drops of 

protein were aliquoted into liquid nitrogen, using a finnpippette. The protein 

drops could be stored at -80°C and individually thaweCl. 
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2.11.6.2 B. napus Leaf (cv. Jet Neuf) 

Whole cell extracts were prepared as described above (section 2.11.6.2) 

using young leaf tissue harvested from green house grown 4 leaf stage plants 

(2.2). 

2.11. 7 Chromatography 

All solutions and equipment were pre- chilled to 4°C and chromatography 

was at 4°C, unless otherwise stated. 

2.11. 7.1 Heparin agarose chromatography 

1.0- 2.0ml heparin immobilised agarose affinity matrix (Sigma) was packed 

into an 0.5 em diameter column (Bio-Rad). The column was equilibrated with 

10X column bed volumes R buffer (20mM Tris.CI, pH7.5, 1mM EDTA, 10% 

glycerol, 0.5mM OTT, 1 mM PMSF) under gravity. A further 1 OX column bed 

volumes R buffer was pumped through, at 1 OOJ.ll/ minute. 20- 50mg B. napus 

embryo cell free extract (section 2.11.6) diluted to 1.0ml in R buffer, was then 

loaded. The column was subsequently washed with 1 OX column bed volumes 

R buffer at 1 OOJ.ll/ minute. Protein was eluted with stepped salt solutions, 

consisting of 1 ml aliquots of KCI in R buffer (0- 1M KCL, in 1 OOmM steps) at 

1 OOJ.ll/ minute. Fractions of 1 OOJ.ll were collected, snap frozen in liquid 

nitrogen and stored at -80°C. 

2.11.7.2 Gel filtration chromatography 

A 2.4ml (3.2x3000mm) superose 12 (optimun separation of 1-300kDa) 

column (Pharmacia) was equilibrated and run in 150mM NaCI. Buffers were 

pumped through the column at a rate of 40J.ll/min. The column was calibrated 

with 5J.1g each molecular weight markers (p- galactosidase, BSA, ovalbumin 

and trypsin) and protein was detected at 280nm. The column was re

equilibrated and 100- 250J.1g of the protein sample was injected. 100111 

fractions were collected, snap frozen in liquid nitrogen and stored at -80°C. 
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2.12 Cloning DNA binding proteins using recognition 

site probes: "Southwestern" cloning 

Genes that encode DNA binding proteins, or DNA binding motifs can be 

isolated by screening A.gt11 expression libraries with binding site DNAs. This 

strategy was developed by Singh and colleagues (1988) from the use of 

antibody probes to screen expression libraries. The protocol described below 

was adapted from Singh et a/., (1989), with a denaturation/ renaturation 

protocol from Vinson eta/., (1988). Lysogens were generated using the 

method of Cowell and Hurst (1993). 

2.12.1 Plating cells: preparation of cells for bacteriophage infection 

The E. coli host Y1 090 cells are sup F, (section 2.3: E. coli strains), which 

suppresses the normally defective lysis of A.gt11, leading to a high frequency 

of lysis, which facilitates screening. Y1 090 is also Jon protease deficient, 

which increases the stability of the P- galactosidase fusion protein and allows 

proteins to accumulate. Y1 090 also carries the plasmid pMC9 (AmpR), which 

encodes the lac/ gene. This allows regulated expression of P- galactosidase 

fusion proteins, which may be harmful to the growth of the bacterial host. 

Y1 090 are used to plate out and screen A.gt11 libraries. E. coli Y1 089 was 

used primarily to generate preparative amounts of P- galactosidase fusion 

protein. This is possible due to the hfl A 150 and ~lon mutations, which result 

in a high frequency of lysogeny and decreased proteases activity 

(respectively). 

Both strains were prepared for infection in the same manner. A single 

bacterial colony was inoculated into 20m I LB that co~tained 1 OmM MgS04 

and 0.2% maltose and was grown overnight with selection. Aliquots of the 

plating cells were used directly and kept on ice for further use for up to 24 

hours. 

2.12.2 Bacteriophage titration 

1 OOJ.ll plating Y1 090 were mixed with 3m I top agarose and poured onto a 
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prewarmed and dried 1 OOmm LB ampicillin plate and left to solidify at room 

temperature. Serial dilutions of the phage were made in SM buffer and 1 O!J.I 

of each was spotted, in an ordered array onto the E. coli Y1 090 lawn. The 

phage were allowed to adsorb for 10 minutes the the plate was inverted and 

incubated overnight at 37°C. The plaques were then counted to determine 

the original pfu/ml. 

2.12.3 Plating phage for screening and preparation of protein replica 

filters 

5001J.I aliquots of E. coli Y1 090 plating cells were infected with 3- 5x1 04 pfu of 

A.gt11 library and incubated at 37°C for 20 minutes to allow phage adsorption. 

1Om I of melted top agarose that had been maintained at 50°C was added to 

each 5001J.I aliquot and mixed by inversion. The mixture was spread evenly 

onto prewarmed and dry 22cm2 LB- amp plates. The plates were then 

incubated at 42°C until small plaques were visible (approximately 3- 4 hours). 

20cm2 Hybond-C filters (presoaked in 10mM IPTG for 30 minutes and air 

dried) were carefully layered onto the surface of the plate. The plates were 

then incubated at 30°C for a further 6 hours then chilled at 4°C for 10 minutes. 

The filters were numbered and their position on the plate marked by piercing 

orientation holes using a sterile hypodermic needle. The filters were lifted and 

air dried, protein side up for 15 minutes. For each filter 50ml binding buffer 

(25mM HEPES, pH 7.9, 25mM MgCI2, 0.5mM OTT) supplemented with 6M 

guanidine hydrochloride (GuHCI) was added and incubated with slow 

shaking at 4°C for 1 Ominutes. This was repeated once more then the filters 

were transferred to binding buffer supplemented with 3M GuHCI and 

incubated as before. This was repeated a further 4 times, with binding buffer 

supplemented with a 2- fold dilution of the GuHCI from the previous step. The 

filters were then incubated in binding buffer for 5 minutes at 4°C, this step was 

repeated an additional time. The filters were blocked by immersion in 5% 

carnation non- fat milk powder, 50mM Tris HCI, pH7.5, 1mM EOTA, 1mM on, 
for 30minutes at 4°C, with swirling, then in binding buffer supplemented with 

0.25% carnation non- fat milk powder for 1 minute at 4°C. 
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2.12.4 Screening protein replica filters 

Each blocked filter was incubated in 25ml binding buffer to which 125jlg 

denatured sonicated calf thymus DNA (2.7.1) and 1 x 107 cpm of 32p_ labelled 

DNA recognition site probe had been added, at room temperature for 60 

minutes. Each filter was washed four times at room temperature for 10 

minutes with 50ml of binding buffer. The filters were briefly dried with blotting 

paper and subsequently autoradiographed (2.9.12.3). Short versus long (18 

and 36 hours) exposure times were generated to help distinguish between 

true (fuzzy, comet shaped) and false (intense centres) positives. 

2.12.5 Identification and purification of positive plaques 

Putative positives were identified by aligning the autoradiographs with the LB 

plates and removed with the wide end of a sterile Pasteur tip. Each plug was 

placed in 1 ml SM buffer, vortexed and left for several hours to allow the phage 

to diffuse out. Due to the plaque density on the original plate it was not 

possible to remove a single plaque without taking non- positives as well. A 

second round of screening was therefore performed on dilutions of the phage 

plug containing the positive signal so that individual positive plaques could 

be isolated. 2001-11 E. coli Y1 090 plating cells were mixed with dilutions of the 

primary phage suspension. Following adsorption 3ml top agarose was added 

and the mixed solution poured onto 9cm LB- amp plates. Plates with well 

isolated plaques were selected to prepare protein filter replicas using 80mm 

nitrocellulose discs as described overleaf. The filters were screened as 

described above, using 1Om I aliquots of all the buffers mentioned. Positive 

plaques were stored in SM at 4°C, with a drop of chloroform to prevent 

bacterial growth. 

Secondary filters representing true positives were purified to homogeneity by 

a further round of plaque purification and then rescreened with the wild- type 

recognition site DNA probe, plus the following controls: a DNA probe that 

lacked the binding site and a- 32p dCTP. 

2.12.6 Generation of phage stock 

To provide a concentrated phage stock for the generation of lysogens, for the 
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purification of phage DNA and for long term storage a plate lysate was made. 

The purified phage were inoculated at a high density (approximately 1 05pfu 

per 1 OOJ..LI plating cells) such that total lysis of the Y1 090 lawn occurred 

overnight (9cm LB agarose plates with 3ml top agarose overlay). Confluent 

plates were cooled and 3ml prechilled SM buffer was added to each plate 

and swirled at 4°C for 4 hours. The supernatant was transferred to a sterile 

tube and a further 1 ml SM was added to the plate, swirled briefly then tilted, 

drawn off and pooled with the rest of the lysate. The lysate was then 

centrifuged at 8, OOOg for 1 Ominutes at 4°C, to remove bacterial debris and 

transferred to a new tube to which a drop of chloroform was added. The plate 

lysate was titred before use (routinely 1010 pfu/ml) and stored at 4°C, for up to 

6 months. 

2.12.7 Isolation of recombinant phage lysogens 

E. coli Y1 089 plating cells (2.12.1) were diluted 100 fold in LB supplemented 

with 10mM MgCI 2. 200J..LI of the diluted culture was then mixed with 107 pfu of 

recombinant phage stock and incubated at 32°C for 20 minutes. The infected 

cells were then diluted to 1Om I with LB. 15J..LI of this dilution further diluted to 

1Om I with LB. 200J..LI aliquots were spread onto LB- ampicillin plates and 

incubated at 32°C overnight. At 32°C the temperature sensitive A.gt11 

encoded repressor is functional and establishes the lysogenic state. 

Individual colonies were tested for lysogeny by replica plating. The master 

plate was incubated at 32°C and the replica at 42°C. Clones that grew at 

32°C but not at 42 °C represent lysogens. Stocks were made by adding 15% 

glycerol to log phase cultures which were aliquoted and stored at -80°C, 

however protein extracts were always generated from freshly plated colonies/ 

cultures. 

2.12.8 Preparation of cell free extracts from phage lysogens 

Overnight cultures of phage lysogens and wild type E. coli Y1 089 (control 

extract) were grown in LB with selection. 20J..LI of each overnight culture was 
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added to 2ml LB and grown with selection at 32°C until an 00600=0.5 was 

reached. The cells were then immersed in a 43°C water bath to raise the 

temperature rapidly, then incubated with vigorous shaking at 43°C for a 

further 20 minutes. IPTG was added to a final concentration of 1 OmM, from a 

stock of 1 OOmM, in order to induce expression of the ~- galactosidase fusion 

protein. The cells were shaken at 38°C for an hour, for fusion protein to 

accumulate. From each culture 1.5ml was transferred to two sterile 

eppendorfs and the cells harvested by centrifugation at top speed in a 

microfuge for 1 minute. The supernatant was discarded and the cell pellet 

resuspended in 100111 extraction buffer {50mM Tris.CI, pH 7.5, 1mM EDTA, 

5mM OTT, 1 mM PMSF). The aliquots were recombined, snap frozen in liquid 

nitrogen and thawed on ice, this freeze-thaw lysis was repeated twice more. 

Lysozyme was added to 0.5mg/ml and incubated for 15minutes on ice, 

following which NaCI was added to 1M and the cells shaken gently for 

15minutes at 4°C. The lysates were then centrifuged for 30minutes in a 

microfuge at 4°C and the supernatant transferred to a fresh eppendorf. The 

supernatant was a crude bacterial protein extract which contained the 

induced recombinant protein. The wild type Y1 089 provided an appropriate 

control extract (lacked specific recombinant proteins) and was assayed in 

tandem. To reduce salt for retardation binding assay extract were dialysed in 

Spectrapor dialysis membrane (molecular weight cut- off of 6 OOODa), against 

11itre of extraction buffer supplemented with 10% glycerol for 3x60 minutes at 

4°C in a roller bottle. The protein was aliquoted as described in section 

2.11.6.1. and stored at -80°C. 

2.12.9 Preparation of phage DNA 

Both the methods used were adapted from Sambrook eta/., (1989). 

2.12.9.1 Plate lysate method 

Lysate from 5- 10 confluent plates (2.12.5) was pooled and made 10% with 

respect to PEG- 8000 and 4% with respect to NaCI, from 40% stock solutions. 

The tubes were incubated on ice for 1 hour to precipitate the phage particles 

and pelleted by centrifugation at 15 minutes at 10 OOOg at 4°C. The 
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supernatant was discarded and the pellet resuspended in 200J.il SM buffer. To 

remove bacterial DNA and RNA, RNAase A and DNAase were added to 

200J.lg/ ml and incubated at 37°C for 30minutes. The solution was phenol 

extracted (2.9.2) then extracted with an equal volume of chloroform. DNA was 

precipitated by the addition of 0.1 volumes 3M sodium acetate and 2 volumes 

of ethanol. The solution was incubated in icy water for 2 hours and the DNA 

pelleted by centrifugation at 10 OOOg for 10 minutes. The pellet as washed 

twice in 70% ethanol, air dried and resuspended in 1 OOJ.il TE. 

2.12.9.2 Liquid culture method 

A single phage plaque was taken using a Pasteur pipet and expelled into 

1001-11 SM buffer, which was left overnight at 4°C. A single E. coli Y1 090 

colony was inoculated into 5ml LB supplemented with 1 OmM MgS04 and 2% 

maltose and grown overnight at 37°C. 500J.il of the ove,rnight Y1 090 culture 

was infected with 201-11 of the top agar plug el~ate and incubated at 37°C for 

20 minutes. 500!-11 of the infected culture was transferred to 1 OOml prewarmed 

LB, 10mM MgS0 4 and grown at 37°C for 5- 7 hours until lysis occured at 

which point 500!-11 of chloroform was added and shaking resumed for a further 

15 minutes. The lysate was centrifuged at 8 OOOg for 10minutes to remove 

bacterial debris and the supernatant drawn off and transferred to a fresh tube. 

RNAase A and DNAase A were added to 20!-lg/ ml and incubated at 37°C for 

30minutes. An equal volume of precipitation buffer (20% PEG- 8000, 2M 

NaCI, in SM) was added, mixed thoroughly and incubated on icy water for an 

hour. The phage were pelleted by centrifugation at 10 OOOg for 10 minutes 

and resuspended in 1.5ml TE. 15!-11 10% SDS was then added and the 

solution incubated for 5 minutes at 68°C after which 30J.il 5M NaCI was 

added. The phage were purified by extraction once with an equal volume of 

phenol:chloroform (2.9.2) and once with chloroform. The supernatant was 

precipitated with an equal volume of isopropanol at -70°C for 15minutes and 

the DNA recovered by centrifugation at 12 OOOg for 15 minutes. The pellet 

was then washed twice with 70% ethanol, air dried and resuspended in 50J.il 

TE. 
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2.13. Screening a A.Zapll eDNA library 

The advantages of high efficiency of lambda library construction and 

convenience of a plasmid system are combined in A.Zapll. Either DNA or 

antibody probes may be used for screening and in vivo excision of the 

pBiuescript phagemid allows positive clones to be analysed in a plasmid. 

2. 13.1 Preparation of cells for bacteriophage infection 

The E. coli host cells XL 1 Blue are rec A- and contains the DM15 mutation of 

the lac Z gene on the F' episome, required for complementation of the amino 

terminus of the lac Z gene in A.Zapll, which subsequently allows blue- white 

selection. XL 1 Blue was used as plating cells and were prepared for infection 

as described in 2.12.1. Bacteriophage were titrated as described in 2.12.2. 

2.13.2 Screening the library 

All buffers used are listed in section 2.9.12. Hybridisation and washes were 

performed in a Techne hybridisation oven at 65°C, unless otherwise stated. 

5001JI aliquots of E. coli XL 1 Blue plating cells were infected with 5x1 Q4 pfu of 

the A.Zap II library and incubated at 37°C for 20 minutes to allow phage 

adsorption. Each aliquot was then spread onto 22cm 2 plates and incubated 

as described in 2.12.3 until plaques were beginning to touch. The plates were 

then chilled at 4°C, then Hybond- N 20cm2 membranes were layered on for 1 

minute. Orientation marks were made and a second lift of the primary screen 

was performed (to help distinguish false positives). The second filter was 

incubated for 2 minutes. Filters were transferred (face up) to sheets of 3MM 

paper which had been soaked in denaturing buffer, for 5 minutes, then 

transferred to 3MM paper soaked in neutralising buffer, for 5 minutes. Finally 

the filters were transferred to 3MM soaked in 2xSCC solution for 5 minutes. 

The filters were then air dried and the DNA from the phage plaques was 

bound to the nylon by exposure to U.V. irradiation for 3 minutes. 

Filters were prehybridised for 5 hours in 50ml buffer/ filter. The buffer was then 

removed and replaced by 1Om I hybridisation buffer, containing 1 Q6 CPM 
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denatured DNA probe for 5 hours. Filters were washed with 2xSCC for 5 

minutes at room temperature followed by two one hour washes in 1xSCC, 

0.1% SDS at 65°C. After the final wash filters were wrapped in cling film and 

hybridised probe detected as described in section 2.9.12.3. Putative positives 

were identified by comparing both lifts and purified to homogeneity with a 

second round of screening on 9cm plates. Hybridisation and washes were as 

described above. Tertiary screening was performed with purified phage. 

Positives were stored at 4°C in SM buffer, with a drop of chloroform for up to 6 

months. 

2.13.3 Plasmid rescue 

An insert cloned in AZapll may be excised and recircularized in vivo to form a 

phagemid that contains the insert. In vivo excision is dependent upon f1-

bacteriophage derived proteins, which are produced by a f1- "helper" phage. 

The f1- protein initiator and terminator recognition sites for phage DNA 

synthesis were subcloned either end of the AZapll polylinker region. AZapll 

phage are made accessible to the f1- proteins by simultaneously infecting E. 

coli with both A vector and the f1- helper phage. The helper f1 proteins 

recognise the initiator site in the A vector and nick the strand, to initiate DNA 

replication. DNA synthesis continues through the cloned insert until the 

terminator signal is reached. The single stranded DNA is recircularised and 

packed for secretion with other f1- gene products. Conversion to the 

phagemid represents subcloning as it contains all sequences of the 

phagemid, pSK- and the insert, whereas all A sequences are positioned 

outside of the initiator and terminator signals and are not contained within the 

· circularised DNA. 

2001J.I of an overnight culture of XL 1 Blue, grown with selection in LB 

supplemented with 10mM MgS0 4 and 0.2% maltose was used to seed 5ml 

LB which was grown with vigorous shaking for 3 hours. 2001J.I aliquots of the 

culture were infected with 5x1 07 pfu positive phage and 106 pfu R408 helper 

phage (Stratagene). After incubating the cells at 37°C for 15minutes 3.0ml YT 

(Sam brook et a/., 1989) was added, incubation was then continued for a 
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further 3 hours, with shaking. The cells were then transferred to 70°C for 20 

minutes. Bacterial debris was removed by _centrifuging at 4,500g for 5 

minutes. The supernatant c~ntained the recircularized phagemids. A serial 

dilution of the supernatant was performed with 200111 XL 1 Blue (generated in 

the first step) and incubated at 37°C for 10 minutes. The cells were then 

spread onto LB Tc- Amp plates and incubated overnight at 37°C. Controls of 

XL 1 Blue cells with helper phage only (no lambda phagemids) and XL 1 Blue 

cells, with /.. phagemids only (no helper phage) were performed in tandem. 

Plasmid DNA was isolated from recovered plasmids by standard methods 

(2.8.1) 

2.14 Synthesis of oligonucleotides. 

Oligonucleotides were synthesised by using an Applied Biosystems 381 A 

DNA synthesiser operated with a standard synthesis programme as 

reccommended by the manufacturer. After cleavage and deprotection the 

oligonucleotides were dried under vacuum, twice resuspended in H20 and 

vacuum dried. Oligonucleotides were stored dry at -20°C or as an aqueous 

solution at 4°C and were used without further purification. 
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Chapter 3 

Detection of DNA- Protein Interactions. 

3.1 Introduction. 

3. 1 . 1 The gel retardation assay 

Identifying the DNA sequences that mediate regulated transcription is an 

essential step in understanding the fundamental processes that govern the 

molecular biology of gene expression. The gel retardation assay provides a 

means by which the difference in transcription factor content may be 

correlated with difference in gene behaviour (Hendrickson and Schleif, 1984; 

Gilmartin and Chua, 1990). The theory behind the assay is discussed fully in 

section 1. 7, but essentially it entails the electrophoretic separation of protein

DNA complexes from unbound DNA. A DNA fragment is incubated with 

protein under conditions favourable for binding. The formation of specific 

complexes depends on the presence of motifs in the DNA and on detectable 

levels of the cognate binding factor in the extract. 

3.1.2 Types of gel retardation assay 

Three types of gel retardation assays were performed with each promoter 

fragment, to determine different parameters. 

1: Poly (dldC:dldC) titration 

When labelled DNA substrate is added alone to a cell extract, most of the 

radioactivity is found as a smear up the gel, bound in very large complexes 

with many different proteins. It is therefore necessary to add non- specific 

competing DNA such as poly (dldC:dldC). The optimal amount of competitor 

is determined experimentally using a poly (dldC:dldC) titration. Basically, an 

increasing amount of competitor is added to the assay, until the level of 

radioactivity in complexes at the top of the gel diminishes and the intensity of 

specific complex(es) and the free DNA band rise (for example, compare the 

retardation assays in lanes 2 and 3 in panel A of figure 3.8). 
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2: Competition assays 

Synthetic oligonucleotides that contained a putative binding site were used 

as specific competitors and oligonucleotides that contained a mutated version 

of the same motif were used as control competitors. This allows the sequence 

specificity of DNA binding protein(s) in individual complexes to be examined. 

When competition assays were performed, assays were set up as standard, 

and the oligonucleotide added to the assay immediately after probe DNA. 

3: Enzyme controls 

Enzyme controls were performed in order to examine the nature of the factor 

that was involved in the formation of complexes. Proteinase K was added to 

analyse the role of protein factors in complex formation and stability. Enzyme 

assays were performed at room temperature. SDS was added to a final 

concentration of 0.5%, 50ng of Proteinase K and 20ng of RNAse A per assay 

were added, directly after probe DNA. 

3.1.3 Factors that determine the detection of DNA- protein interactions 

Detection of protein- DNA complexes within a gel depends on a number of 

factors. Eukaryotic transcription factors are rare proteins, varying from 1 03 

molecules per cell (retinoic acid receptors) to 105 molecules per cell (GATA- 1 

factor in erythroid cells) (Nicolas and Goodwin, 1993). The exact detection 

limit of gel retardation is not known but sensitivity can be maximised by 

labelling substrate DNA to a high specific activity and careful preparation of 

protein extract. 

Protein extracts suitable for gel mobility shift assays may be prepared from 

isolated nuclei or whole cells. In general the use of nuclear extracts is 

preferable due to the relatiVely high concentration of transcription factors they 

contain. However, intact nuclei from B. napus embryos could not be prepared 

due to limited material (nuclear membranes are disrupted on freezing). As an 

alternative, the preparation of extracts from whole cells has several 

advantages. It enables the entire DNA- binding protein content of the cell to 

be examined rather than those transcription factors with access only to the 
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DNA. In addition, fewer manipulations involved in the preparation of whole 

cell extracts minimises loss and damage of transcription factors. 

Once bound, the protein- DNA complexes must be resolved from unbound 

nucleic acid, which involves maximising their stability within the gel during 

electrophoresis. In addition, the significance of detectable complexes 

depends largely upon the specificity of the interactions involved, assay 

conditions must therefore favour the formation of specific complexes. The 

stability of these complexes is also an important factor to consider when 

optimising electrophoresis conditions. 

3.1.4 The ACP05 promoter 

Prior to this work, Safford and colleagues (1988) demonstrated that ACP 

isoforms in B. napus seed tissue were encoded by a seed specific multigene 

family. A genomic clone, ACP05 that corresponded to a seed- expressed 

eDNA was isolated (de Silva et a/., 1990). A 1.8kb Pst 1- Sst I restriction 

fragment from the ACP05 gene promoter was subcloned into the plasmid 

vector pTZ18R to generate the subclone pTZ5PS. This contained 928bp ACP 

5' flanking promoter DNA and -0.8kb of the transcriptional unit of the ACP 

gene. pTZ5PS (de Silva eta/., 1992) was made available for this study and a 

restriction map is presented in figure 3.2. The expression pattern of the 

ACP05 gene was analysed in transgenic tobacco transformed with promoter

reporter gene fusions. 1.4Kb of 5' ACP05 sequence was sufficient to direct 

tissue specific and temporal expression (de Silva et a/., 1992). It was 

concluded that the isolated ACP05 promoter contained all the regulatory 

information required for the correct pattern of expression (de Silva eta/., 

1992). 

3.1.5 Aim of experiment 

The aim of this work was to build up a profile of the protein- binding sites in 

ACP05 promoter using the gel retardation assay to detect sequence specific 

interactions. Of particular interest in this study were tissue specific 

interactions, as the ACPOS gene was known to correspond to a seed 
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expressed ACP isoform (deSilva et a/., 1990). Each assay was therefore 

performed with extract from embryo and leaf tissue, on the assumption that 

the profile of transcription factors directing spatial expression would be 

different in each extract. It was envisaged that this should enable the 

identification of complexes specific to seed extract. 

3.2 Results 

3.2.1 Subcloning and sequencing the ACP05 promoter 

The ACP05 subclone pTZ5PS was not fully sequenced in the promoter region 

(deSilva eta/., 1992). The object of the study was to determine putative DNA 

binding motifs so a restriction fragment from the ACP05 promoter (see panel 

A of figure 3.2) was subcloned and fully sequenced in both directions. 

pTZ5PS was digested with Ava I and Pst I to liberate a 916bp promoter 

fragment which was gel purified (section 2.9.7.2) and ligated into pUC19 to 

generate pUC5PA. The size of clones was estimated by PCR amplification 

(section 2.9.14) and analysed for internal restriction sites (figure 3.1 ). Uncut 

PCR product was run in lane 1 and a single band of approximately 1 038bp 

was seen, which corresponds to amplified promoter (plus primer sequences). 

The Eag I digestion was run in lane 2. Two bands of the expected size {578 

and 437) were observed. The Pvu II digestion was run in lane 3 and again 

produced the expected fragments {536 + 479bp). It was concluded that the 

promoter fragment had been subcloned successfully in pUC5PA and was 

subsequently sequenced (section 2.9.1 0). The sequencing strategy is 

indicated in panel B of figure 3.2. 

3.2.2 Sequence analysis of the ACP05 promoter 

The nucleotide sequence data from each set of primers (approximately 300bp 

after editing) overlapped (panel B), was collated and is presented in panel C 

of figure 3.2. The nucleotide sequence of pUC5PA was compared to the 

published pTZ5PS data and no differences were found. pUC5PA was 

analysed for repeat sequences and palindromes (see section 2.9.1 0.2). 
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Figure 3.1 

PCR analysis of pUCSPA 

1 O!J.g pTZSPS was digested with Ava I and Pst I to excise a 916bp promoter 
fragment. This was gel purified, recovered by freeze squeeze and ligated into 
Aval- Pst1 cut pUC19 to generate pUCSPA. The size of clones was determined 
by PCR amplification using the standard forward and reverse primers for 
pUC19 (listed in table 2.1 A, section 2.9.14). SOng of the PCR product was 
digested with Eag I and Pvu II (both known to have internal sites in the 
promoter) and analysed on a 1% agarose gel. 

The lanes contained: 1- 3, SOng PCR product of pUCSPA; 1 , uncut ( 1.38kb ); 
2, Eag I cut (S78 + 437bp); 3, Pvu II cut (S36 + 479bp); M, 1.01J.g Hin Dill cut A. 
DNA. 

1 2 3 M 

Kbp 

4.36 

1.16 
1.09 

0.56 



Several features of interest were identified and are indicated in panel C of 

figure 3.2. A motif, the core of which was AAGAC was noted because of the 

high frequency which it appeared and its palindromic arrangement. The 

presence of multiple binding sites is a common feature of eukaryotic 

enhancers (Schaffner eta/., 1988), for example the light responsive elements 

of pea ribulase bisphosphate carboxylase are repeated (Green eta/., 1987; 

Kuhlemier eta/., 1988) as are the heat shock elements in soybean (Bauman 

eta/., 1987). Within 500bp of the start of transcription, the sequence AAGAC 

appears five times (both orientations included). A specific 5bp sequence 

would only be expected to appear once every 1 024bp by random chance, so 

the number of times that it did appear was significantly greater than expected 

by random chance. Each AAGAC motif (both orientations) with the immediate 

flanking sequence is given below in table 3.1. The motif is numbered from the 

first A in the motif (or first G in the complementary sequence, GTCTT) relative 

to the start of transcription. 

Table 3.1: The AAGAC core motif in the ACP promoter 

Motif number DNA Seguence Position in ACP 
promoter 

1 AAAGGGTCTTTCTTTC -470 

2 TGGTTAAGACTGGTT -385 

3 AATTAGTCTTTGTTT -360 

4 CGGTTAAGACCGGTT -190 

5 AATTTAAGACTTAAC -93 
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Figure 3.2 

Subcloning and seguencing the ACP promoter 

A: Subcloning 

pTZ5PS contained a -1.8kb Pst 1- Sst I fragment from the genomic clone ACP05{de 
Silva eta/., 1992). A map is given below, with restriction sites numbered relative to the 
start of transcription {TCS= + 1 ). A 916bp Pst 1- Ava I restriction fragment that 
contained the TATA box (as indicated) was subcloned into pUC19 to form pUC5PA. 

Pst I 
-924 
I 

PTZ5PS 

Ava I 
-8 TCS 

;~·· 
CTIATAAATGA 
GAATATTIACT 

8: Seguencing strategy of pUC5PA 

Sst I 
+887 

I 

pUC5PA was sequenced using universal M13 primers and the specific internal primers 
that follow: Sequencing primers: a - M13 Reverse primer; b - oligo 701; c - oligo 
320; d - M 13 -20 primer; e - oligo 321; f - oligo 730. The sequence of primers is given 
in table 2.1 C (section 2.9.14). 

Pst I pUC5PA Ava I 

300bp 
LJ 

a 300bp 
~ LJ 

b cS 300bp ...... 
...... LJ 

....... LJ 300bp d 

...... LJ 300bp e 

300bp f 



C. Nucleotide sequence of pUC5PA 

The sequence is numbered relative to the start of transcription (+1). The TATA box is 
underlined and the motif AAGAC and its compliment GTCTT are in bold typeface. 

10 20 30 40 50 60 

CTGCAGCCAG AAGGAT AAAG AAA TTTTGGA CGCCTGAAGA AGAGGCAGTT CTGAGGGAAG - 8 6 5 

GAGTAAAAGA GTATGTCTCC TTAACTCTAC TATCAAGTTT CAAGAAGCTG AGCTTGGCTC -805 

TACCTTGATA TGTTTATTGC TGTTGTGCAG GTATGGTAAA TCATGGAAAG AGATAAAGAA -7 45 

TGCAAACCCT GAAGTATTCG CAGAGAGGACTGAGGTGAGA GAGCATGTCACTTTTGTGTT -685 

ACTCATCTGA ATTATCTTAT ATGCGAATTG TGAGTGGTAC TAAAAAAqGT TGTAACTTTT -625 

GGTAGGTTGA TTTGAAGGAT AAATGGAGGA ACTTGGTTCG GTAGCCGTAA CAAGTTTITG -565 

GGAATCTCTT GGGTTTTAAA TTGCTATGGA GTTTTTTTTT GCCTGCGTGA CAACATATCA -505 
1 I . ," 

TCAGCTGTTG AGAAGGAAGA TGGTAtAGA AAGGGTCTTI CTTTCACATT TTgTGTTGTG
2 

-445 

GACAAATATT AAAGTCAAAT GTGGCACATG GATTTTAATT CGGCCGGTAT IGGTTTGGTTA -385 
_.~-----------.-----J--~3~----------, :~, --------
AGACTGGTTT AACAT TAT A ATT AGTCTTI GTTTT A TTTG GCTCAGCGGT TTGTTGGTGT - 3 2 5. 

I . 
TGGTTAGGAA CTTAGGCTTG TCTCTTTCTG ATAAGATCTG ATTGGTAAGA TATGGGTACT-265 

GTTTGGTTTA TATGTTTTGA.CTATTCAGTC ACTATGGCCC CCATAAATTT TAATTCGGCT -205 
. 4 ·I 

GGTATGTCTC IGGTTAAGACC GGTTTGACAT G~HTCATTTC AGTTCAATTA TGTGAATCTG -145 
I 

GCACGTGATA TGTTTACCTT CACACGAACA TTAGTAATGA TGGGCTAATT TAAGACTTAA -85 

•. 

CAGCCTAGAA AGGCCCATCT TATTACGTAA CGACATCGTT TAGAGTGCAC CAAGCTTATA -2 5 

IGACGACGAG CTACCTCGGGGCA +1 



Extended sequence homology between motif numbers 1 and 3 and 2 and 4 

was noted and is shown below (the core motif in bold typeface). 

1 TAGAAAGGGTCTTTCTTTCACAlTTTG 

3 TAT MTTA GTCTTTGTTT -A- - TTT- G 

2 GGTT AAGACTGGTTT MCATG 

4 GGTTAAGACCGGTTTGACATG 

The gel mobility shift analysis of the ACP05 promoter was designed to 

address whether this motif represented a protein binding site and if 

interactions were detected, to determine whether they were tissue specific. 

3.2.3 Promoter probe preparation for gel retardation 

The preparation and labelling of DNA probes for gel retardation analysis is 

complicated by several factors. These include size of the DNA fragment (the 

optimal size is below 2QObp, to enable clear distinction of the free probe from 

complexes) and exposure to factors that might alter structure and (therefore) 

capability to bind transcription factors accurately. For example, it has been 

reported that small DNA fragments can denature following ethanol 

precipitation (Svaren et a/., 1987). The resultant single stranded species 

migrates aberrantly during PAGE and strongly binds proteins found in nuclear 

extracts (Svaren eta/., 1987). Such restrictions complicate probe preparation 

by standard techniques. 

3.2.3. 1 Strategy 

A strategy based on the PCR amplification of promoter probes was 

developed. An overview of the protocol is shown in figure 3.3. Two promoter 

probes, fragments 1 and 2, were . amplified using end labelled 
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Figure 3.3 

OveNiew of probe preparation for gel retardation. 

Promoter probes for gel retardation analysis were generated by PCR 
amplification. The strategy is illustrated below. Radiolabelled (indicated by star) 
primers were used to amplify two promoter fragments, which were purified, and 
restricted to generate four probes for gel retardation assays. 

*I 

Pst I 
I 

Fragment 2 
Hint I Eagl 

I I ,_ 
II 

• 

I Ill I* 

pUCSPA 

II M 

--* *___. 

CJ AAGAC 

B GTCTI 

• TATA 

.__*Ava I 
I- I 

~ PCR using radiolabelled primers 

Fragment 1 

Hint I 

I 
*I I I I -

Digest and end-lable PCR product 

Promoter probes for gel retardation assays 

8- 1S1bp A-138bp 

•• 

0- 159bp C-141bp ...... ~...... ~ ................ ~ 

* Cl ==:::JM111C::::JI * * I I I M I* * Cl ::::::::I::::C::::JI * *I I I M I* 



oligonucleotides as primers. The PCR products were gel purified, then 

digested and end- filled with radiolabelled nucleotides, to generate the four 

probes A, B, C and D, each of which were assayed by gel retardation. Each 

probe contained at least one copy of the sequence AAGACT/C (or the 

complimentary sequence: G/AGTCTT). 

3.2.3.2 PCR for probe amplification 

Two pairs of oligonucleotides complimentary to internal sequences were used 

as. PCR primers. The sequences of these and their position within the ACP 

promoter relative to the start of transcription are given in table 2.1 B (section 

2.9.14). Two PCRs were performed: 

Reaction 1: For 1 and Rev 1 ---------fragment 1 (269bp) 

Reaction 2: For 2 and Rev 2 ---------fragment 2 (400bp) 

Two PCR reactions for each set of primers were performed. One reaction was 

primed with non- radiolabelled oligonucleotides and the second with 

radiolabelled oligonucleotides. Tandem reactions allowed analysis of 

reactions by standard techniques (using the non- radioactive reaction). 

3.2.3.3 Primer preparation 

Each primer was diluted to 5.0!1M with H20. Ten pmol (2.0 111 of each diluted 

primer) was kinase labelled with 2011Ci y32p ATP (>5, 000 Ci/mmol) (section 

2.9.11.2) or 0.1 mM ATP. The primers were ethanol precipitated, washed twice 

with 200j..tl 80% ethanol and resuspended in 6j..tl of H20. One 111 of the 

radioactive reactions was counted by liquid scintillation. Oligonucleotides 

were routinely labelled to a specific activity of 1x107 cpm/pmol. The remaining 

5.0j..tl was used directly in the PCR as primer. 
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3.2.3.4 PCR conditions 

The standard PCR method (section 2.9.14) was used to amplify pUC5PA. An 

internal size control PCR was performed in tandem using pUC forward and 

reverse primers (table 2.1A, section 2.9.14) to amplify a defined insert (280bp 

product). 

3.2.3.5 Analysis and purification of PCR products 

Following amplification each non- radioactive PCR product was sequenced 

(section 2.9.1 0) to confirm their integrity before subsequent use as probes in 

gel retardation assays. Sequence differences were not observed in the 

amplified fragments (data not shown). 

Each non- radioactive PCR was analysed by gel electrophoresis (panel A, 

figure 3.4). A product of the expected size (280bp) was observed in lane 1, 

which contained the positive control reaction. The PCR with primers for1 and 

rev1 amplified a fragment of 269bp (expected size for promoter fragment 1 ), 

as can be seen in lane 5. The PCR with primers for 2 and rev 2 amplified a 

fragment of 400bp (expected size for promoter fragment 2) as can be seen in 

lane 6. Negative controls failed to amplify any product (lanes 2- 4). 

The remaining PCR products were gel purified (section 2.9. 7.1 ), resuspended 

in 40Jll TE and quantified by standard methods (2.9.4.2). The purified 

promoter fragments were analysed for internal restriction sites (see table 3.2 

below). The digestions were fractionated by gel electrophoresis (panel B of 

figure 3.4). 
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Figure 3.4 Probe preparation for gel retardation assays 

Two fragments were amplified from pUC5PA using internal primers (table 2.1 B, 

section 2.9.14). 20111 of each non- radioactive PCR was analysed by 
electrophoresis through a 1% agarose gel (panel A). The fragments were gel 
purified and analysed for internal restriction sites. Digestions were fractionated 

on a 1.5% agarose gel (panel B). Gels were calibrated with Pst I digested A DNA 
(lane M). 

A:PCR 8: Analysis of purified PCR products 

1 2 3 4 5 6 M 

The lanes contained: 

Origin 

bp 

800 

510 
470/460 
340 

260 
216/211 
164 

Panel A: 1-6, 20111 PCR; 1 , size control template (280bp); 2, no primer control; 
3, no template control; 4, no enzyme control; 5, pUC5PA template, primers For 1 
and Rev 1 (269bp---fragment I); 6, pUC5PA template, p~imers For 2 and Rev 2 
(400bp---fragment 2); M: 1.0jlg Pstl cut A- DNA. i 

Panel 8: 1: 50ng fragment 1 (269bp); 2: 50ng Hint I cut fragment 1 (138 and 
131 bp); 3: 1 OOng fragment 2 (400bp); 4: 1 OOng Hint I cut fragment 2 (300 and 
lOObp); 5: 100ng Eagl cut fragment 2 (259 and 141bp); 6: 100ng Hintl I Eag I 
cut fragment 2 (159, 141 and 1 OObp); M, 1.0jlg Pst I cut A- DNA. 



Table 3.2: Restriction Sites in Fragments 1 and 2 

PCR Product Enzyme Digestion Fragments Lane 
(bp) 

Fragment 1 269 1 

Fragment 1 Hinfl 
138 (probe A) 

2 131 (probe B) 

Fragment 2 400 3 

Fragment 2 Hinfl 300 and 100 4 

Fragment 2 Eagl 259 and 141 5 

Fragment 2 Hinfl + 
141 (probe C) 

6 159 (probe D) 
Eagl 100 

3.2.3.6 Purification of promoter probes 

Radiolabelled fragments 1 and 2 were digested with Hint I and Eag I and the 

overhangs generated were end filled in situ using a 32P dCTP and dATP 

(section 2.9.11.3). The digests were gel fractionated (2.9.6.2) and the probes 

were located by autoradiography (figure 3.5). A 20 second exposure of the 

gel is shown in panel B and probes A (138bp) and B (131 bp) are indicated. A 

90 second exposure is shown in panel A and probes C (141bp) and D 

(159bp) can be seen. Probes were excised from the gel and electroeluted 

(2.9.7.1 ). Purified probes were diluted to 20 000 CPM/111 and quantified using 

standard methods (2.9.4.2). Typically 1.0 111 DNA =1 0- 20,000CPM = 1 ng was 

used per assay. 
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Figure 3.5 

Gel purification of promoter probes A. B. C and D 

Purified, radiolabelled fragments were digested as follows: SOOng of fragment 
1 DNA was digested with 1 U of Hint I at 37°C for 2 hours. SOOng of fragment 2 
DNA was double digested with 1 U of Hint I and 1 U of Eag I at 37oc for 2 
hours. The Eag I and Hint I overhangs generated were end filled in situ using 

201J-Ci each of a32P dCTP (>S OOOCi/mM) and a32p dATP (>S OOOCi/mM), 

1 .O!J-I 1 mM dGTP, 1 .O!J-I 1 mM dTTP and O.S U Klenow fragment. The digests 
were fractionated on a 1S% TBE buffered acrylamide gel, calibrated with 

radiolabelled Hinfl digested <j)X174 markers. 

A: 90 seconds B: 20 seconds 

M 1 2 3 4 4 

~.I~ ~~ 
I ·-· l 
I I ... I - ··. : 

-{ __ 1 

The lanes contained: ·1, SOng unrestricted fragment 2; 2, SOOng Hint II Eag I 
restricted fragment 2; 3, SOng unrestricted fragment 1 DNA; 4, SOOng Hint I 
restricted fragment 1; M I Hint I digested ex 17 4 markers. Panel A: 
autoradiograph generated from 90 second exposure; panel 8: 
autoradiograph generated from 20 second exposure. 



3.2.4 Optimisation of gel retardation assay incubation conditions 

The detection of protein- DNA interactions depends both on the formation and 

subsequent stability of the complex within the gel, which in turn depend upon 

the specific incubation (in large part the binding buffer) and electrophoresis 

conditions. The TATA box from the ACP promoter was incorporated in a pair of 

synthetic complimentary oligonucleotides TATA1 and TATA2 which were used 

as probes in gel retardation assays. It was envisaged that the annealed 

oligonucleotides would form a sequence specific complex with the TATA 

binding factor (which is a component of the basal transcription factor TFIID). 

This interaction could then be used as a index when optimising binding 

conditions. 

3.2.4.1 Substrate DNA 

The single stranded oligonucleotides TATA1 and TATA2 were complimentary 

and encompassed the TATA box from the ACP05 promoter. The sequence of 

oligonucleotides used as probes is presented is table 3.3. TATA 

oligonucleotide was labelled and annealed as described in section 4.2.3 and 

1 O,OOOcpm double stranded DNA was used as substrate DNA per assay 

(section 2.9.15.1 ). 

3.2.4.2 Parameters varied. 

The basic assay was performed in 20mM Tris.HCI pH 7.5, 1 mM DIT, 1 mM 

EDTA, 3% glycerol for 15 minutes. The pH, incubation time, salt concentration 

(stringency) and additon of loading dye were varied and the effect on DNA 

binding analysed (figure 3.6). The assay run in lane one contained no protein 

ahd the mobility of the unbound probe is indicated. Non- specific competitor, 

poly (dldC:dldC), was excluded from lane 2 and the majority of the probe is 

shifted in non- specific complexes which are seen as a smear of radioactivity 

up the gel. Assays with the various buffers (listed in the figure) were run in 

lanes 3- 8, respectively. A single retarded complex (indicated with an arrow) 

was formed. The formation of this complex was consistent with it 

corresponding to probe bound- TATA binding factor. The complex is sensitive 
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to extremes of pH (compare intensity of retarded band in lanes 3 and 4 with 

that in lane 6) and the addition of loading dye (lane 5). The complex was 

stable in 1 OOmM KCI (lane 6) and no additional complexes formed when 

incubation time was doubled from 10 to 20 minutes (lane 7 compared to 8). 

The assay was repeated using leaf protein extract, with identical results (not 

shown). Buffer 5 was used in subsequent assays. Further modifications to 

these assay conditions are listed at the first instance of use. 

3.2.5 Analysis of protein extracts from Brassica napus 

Deposition of lipid is at a maximum in mid maturation embryos (Norton and 

Harris, 1983; Safford eta/., 1988). In developing seeds the level of ACP has 

been show to rise prior to the onset of storage lipid synthesis (Safford et 

a/., 1988), which would be consistent with the activation of specific members of 

the ACP gene family. It should be expected that maximal levels of 

transcription factors involved in the regulation of expression of ACP should 

also be present at this stage. In particular, those transcription factors involved 

in tissue specific regulation should be abundant. Tissue specific factors 

should be absent or present in very low abundance in leaf extract, which was 

used as a control to investigate this aspect of ACP expression. 

Aliquots of protein extract (2.11.6) from both embryo and leaf were analysed 

by SDS- PAGE (2.11.1) as shown in panel A of figure 3.7. Staged embryo 

tissue was limited, therefore it was determined whether individual protein 

aliquots could be re- used. The effect of prolonged storage at -8ooc on DNA 

binding activity was also investigated. The formation of the specific DNA

protein complex using TATA containing oligonucleotide (table 3.3) was again 

used as an index to assay DNA binding activity in the extracts. 

Three aliquots of the same batch of embryo extract were assayed for the 

effects of freeze- thawing (to mimic re- use of a sample). One aliquot was kept 

at -80°C while the second aliquot was thawed on ice, refrozen in liquid 

nitrogen, then transferred back to -80°C. The third aliquot was thawed and 

refrozen twice. All three samples were then assayed for the effects of sample 

re- use on binding activity. The effects of prolonged storage on the activity of 
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B: Storage and re- use of protein extracts. 

LANE 1 2 3 4 5 6 7 

PROTEIN 

ORIGIN__.. 

DNA-PROI. I 

COMA..EX 

The lanes contained: 1, 1.01J.Q poly (dldC:dldC), no protein (0); 2, no poly 

(dldC:dldC), 1.01J.I fresh embryo protein (F); 3- 7 1.0J.lg poly (dldC:dldC); 3 , 

1.01J.I 1 X thawed protein (1 X); 4, 1.01J.I 2X thawed protein (2 X); 5, 1.01J.I fresh 

protein (F); 6, 1.0jll protein that had been stored for 6 months (S 6); 7, 1.0jll 
12 month stored protein (S 1 2). 



DNA binding proteins in embryo extract was analysed using different extracts, 

prepared in an identical manner, that had been stored at -80°C for 6 and 12 

months. 

The results are presented in panel B of figure 3.7. Lane one contained no 

protein and the mobility of the free probe is indicated. Poly (dldC:dldC) was 

omitted from the assay in lane two and the non- specific shift of substrate DNA 

was observed. Fresh embryo extract was added to the assay in lane 5. A 

single retarded complex (indicated with an arrow) was observed as seen 

before. The formation of this complex was significantly reduced in extracts that 

had been thawed and re-used (lanes 3 and 4) and in extracts that had been 

stored for a prolonged period at -8ooc (lane 6, 6 months stored and 7, 12 

months stored). 

3.2.6 Gel retardation assays with ACP05 promoter probes 

Three types of gel retardation assay: poly (dldC:dldC) titrations, competition 

assays and enzyme controls (discussed fully in section 3.1.2) were performed 

with each promoter fragment. Each type of assay was repeated at least 3 

times with each probe to ensure that complexes were consistent. 

3.2.6.1 Poly (dldC:dldC) titrations 

To a series of standard assays an increasing amount of the non- specific 

competitor poly (dldC:dldC) was added in order to detect sequence specific 

complexes. Figure 3.8 is divided up into four panels, each presents a typical 

poly (dldC:dldC) titration for promoter fragments A- D, respectively. 

A: Fragment A 

A poly (dldC:dldC) titration (2.9.15.1) with fragment A using both embryo and 

leaf protein is shown in the first gel in panel A of figure 3.8. The assay in lane 

1 contained no protein and the mobility of the free probe is indicated. In lanes 

2 and 6 poly (dldC:dldC) was excluded from the assay and it can be seen that 

the probe is shifted in a smear of non- specific interactions. On the addition of 

poly (dldC:dldC) non- specific interactions are competed out as shown by the 
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titration in lanes 3- 5, with embryo protein and in lanes 7- 9 with leaf protein. 

Two specific complexes were formed with embryo extract (indicated with 

arrows). These complexes had similar mobilities and were difficult to resolve 

from each other. A single specific shift was observed with leaf extract. The 

mobility of this complex was approximately the same as the embryo 

complexes. 

A much higher level of background was observed when promoter probes 

were used (as compared to oligonucleotide probes), which could have been 

as a result of an increased number of non- specific DNA binding interactions, 

or disintegration of complexes during electrophoresis. The electrophoresis 

buffer used was 0.5x TBE. A low ionic strength is required because at high 

salt concentration protein- DNA complexes carry a small fraction of the current 

and therefore do not migrate very far. Also a high salt concentration may lead 

to heating during electrophoresis. However a low salt buffer may result in a 

pH shift through buffer electrolysis which could reduce the stability of the 

protein- DNA complex. 

anode: 

cathode: 

H20 ---------> 2e- + 2H+ + 1/2 0 2 

2e- + 2 H20 ---------> 20H- + H2 

pH decreases 

pH increases 

In order to circumvent such problems, the buffer was double recirculated from 

the anode to the cathode and vice verse during electrophoresis. Protein-DNA 

complexes that dissociate quickly in binding buffer can be subjected to 

electrophoresis for several hours without substantial dissociation. This is 

possibly due to "caging" effects of the gel matrix (Hendrickson 1985; Revzin, 

1989) or that the affinity of the protein for the DNA is increased in low ionic 

strength buffers used for electrop.horesis. However differences in the 

composition of the binding and running buffers could alter protein binding 

during loading and entry of complex into the gel. To avoid these problems the 

wells of the gel were washed out with the binding buffer (made up without 

glycerol) before the assays were loaded. Immediately after which they were 

rapidly run in to the gel matrix at high voltage (500v, for approximately 30 

seconds), before electrophoresis at 100V for an hour. 
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A second set of assays were performed using the modified conditions 

described above (section 2.9.15.2) and are presented in the second gel of 

panel A. Protein was excluded from the assay in lane 1 and the mobility of the 

free probe is indicated. Poly (dldC:dldC) was omitted in lanes 2 and 4 and it 

can be seen that substrate DNA was shifted in a smear of non- specific 

interactions. On the addition of the non- specific competitor poly (dldC:dldC) 

to a leaf assay one complex (as indicated) was observed (lane 3). This assay 

was repeated with embryo extract (lane 5) and two complexes were observed 

to form. Fragment A contains both an AAGAC sequence and the TATA box. It 

should therefore be expected to form a TFIID- bound complex with both leaf 

and embryo extract. However, if the AAGAC box was recognised by a specific 

factor then an additional band should be observed in tissues that contain this 

factor. From the poly (dldC:dldC) titrations (described above) one complex 

one complex formed with leaf extract and two formed with embryo extract. 

This would be consistent with one complex in both extracts corresponding to 

TFIID- bound DNA and the second, embryo specific complex corresponding 

to an interaction with a tissue specific factor. Competition experiments 

(presented in the following section) should demonstrate the binding specificity 

of each of the retarded bands. 

The modified electrophoresis conditions were used in all subsequent assays 

· when promoter fragments were used as substrate DNA. 

B: Fragment B 

Panel B of figure 3.8 shows a poly (dldC:dldC) titration with promoter fragment 

B. Protein was omitted from the assay in lane 1 and the mobility of unbound 

probe is indicated. Poly (dldC:dldC) was excluded from lanes 2 and 6, which 

were with embryo and leaf assays respectively. In both assays DNA was 

shifted non- specifically, bound in very large complexes. Lanes 3- 5 show a 

poly (dldC:dldC) titration with embryo extract. A single specific complex was 

resolved from non- specific interactions. The poly (dldC:dldC) titration was 

repeated with leaf extract, in lanes 6- 9. Probe was not retarded. The DNA

protein complex was therefore formed with an embryo specific factor. In 

subsequent assays 2.01J-g poly (dldC:dldC) per assay was used. 
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Figure 3.8: Poly (dldC:dldC) titrations 

The figure is divided up into four panels, each presents a typical poly 
(dldC:dldC) titration for promoter fragments A- D, respectively. An increasing 
amount of poly (dldC:dldC) was added to a series of standard assays in order 
to detect sequence specific complexes. Assays were fractionated on 3% 
polyacrylamide native gels. In order to decrease the level of non- specific 
DNA- protein interactions several modifications were made to the basic 
electrophoresis conditions (details are given the text). 

A: Promoter fragment A 

The lanes contained: 1, no protein, 1.0J.lg poly (dldC); 2- 5, 1.0J.ll embryo 
extract and 0, 1.0, 2.0, 3.0J.lg poly (dldC), respectively; 6- 9 , 1.0J.ll leaf extract 
and 0, 1.0, 2.0, 3.0J.lg poly (dldC), respectively. 

Gel 1: Unmodified Conditions 

LANE 1 2 3 4 5 6 7 8 9 

POLY(dldC) ~ ~ 

PROTEIN [L] I EMBRYO I I LEAF I 

ORIGIN 

DNA- PROTEIN 
COMPLEXES 

FREE 
PROBE 



Gel 2: Modified conditions 

LANE 1 2 3 4 5 

POLY (dldC) + + + 

PROTEIN LEAF II EMBRYOI 

ORIGIN 

The lanes contained: 1, no protein, 2.01J.g poly (dldC:dldC); 2, 1.01J.I leaf 

protein, no poly (dldC:dldC), 3, 1.01J.I leaf protein, 2119 poly (dldC:dldC); 4, 
1.01J.I embryo protein, no poly (dldC:dldC); 5, 1.01J.I embryo protein, 2119 poly 
(dldC:dldC}. 

D c B A 

c AAGAC • TATA • GTCTI 



B: Promoter fragment 8 

The lanes contained: 1, no protein and 1.0J.Lg poly (dldC:dldC); lanes 2-5 
contained 1.0J.LI embryo extract and 0.0, 1.0, 2.0, 3.0J.Lg poly (dldC:dldC) 

respectively; lanes 6-9 contained 1.0J.LI leaf extract and 0.0, 1.0, 2.0, 3.0J.19 
poly (dldC:dldC), respectively. 

LANE 

POLY (dldC) 

PROTEIN 

ORIGIN 

DNA- PROTEIN 
COMPLEX 

FREE 
PROBE 

12 3 4 56 7 8 9 

-c====:::::::J-c====:::::::J 
Q I EMBRYO II LEAF I 

D c 8 A 

• I I M I I II M 

c AAGAC • TATA • GTCTI 



C: Promoter fragment C 

The lanes contained: 1, no protein, 1.0J..LQ poly (dldC:dldC); 2- 5 , 1.0J..ll 

embryo protein and 0, 1, 2, 3J..LQ poly (dldC:dldC), respectively; 6- 9, 1.0J..llleaf 

extract and 0, 1, 2, 3J..LQ poly (dldC:dldC), respectively. 

LANE 

POLY (dldC) 

PROTEIN 

ORIGIN 

DNA- PROTEIN 
COMPLEX 

DNA- PROTEIN 
COMPLEX 

FREE 
PROBE 

12 3 4 56 7 8 9 

-==::::::1-=:=:::::J 
~ L-1 _E_M_B_RY_o_ ..... l L-1 __ L_EA_F _ ____J 

D c B A 

• II M II I I + 

c AAGAC • TATA • GTCTI 



D: Promoter fragment D 

The lanes contained: 1, no protein, 1.0Jlg poly (dldC:dldC); 2- 5, 1.0Jll 

embryo extract, 0.0, 1.0, 2.0 and 3.0Jlg poly (dldC:dldC) respectively; 6- 9, 
1.0Jllleaf extract with 0.0, 1.0, 2.0, 3.0Jl9 poly (dldC:dldC) respectively. 

LANE 

POLY (dldC) 

PROTEIN 

ORIGIN 

DNA- PROTEIN 
COMPLEX 

DNA- PROTEIN 
COMPLEX 

FREE 
PROBE 

12 3 4 56 7 8 9 

~~ 
~ I EMBRYO II LEAF I 

D c B A 

• II N I I II M 

c AAGAC • TATA • GTCTI 



C: Fragment C 

A typical poly (dldC:dldC) titration with fragment C is presented in panel C of 

figure 3.8. Lane 1 contained no protein and subsequently free probe was 

observed. Poly (dldC:dldC) was not added to the assays in lanes 2 and 6 and 

the DNA substrate is shifted non- specifically. Increasing amounts (0.0- 3.0 

llg) of non- specific competitor was added to lanes 3- 5 in a titration with 

embryo protein. Two complexes were observed and are indicated. The poly 

(dldC:dldC) titration was repeated with leaf extract (lanes 7- 9), and one 

complex was observed (with approximately the same mobility as the lower 

complex observed in embryo extract). 

D: Fragment D 

Panel D of figure 3.8 shows a poly (dldC:dldC) titration with fragment D, 

protein was excluded from the assay in lane 1 and unbound fragment D is 

indicated. Poly (didC:dldC) was omitted from lane 2, and the typical non

specific shift of probe was observed. A poly (dldC:dldC) titration with embryo 

extract was performed in lanes 2- 5. Two sequence specific complexes 

formed and are indicated. The poly (dldC:dldC) titration was repeated with 

leaf extract in lanes 6-9. No specific complexes were observed with leaf 

proteins. In subsequent assays 2.0Jlg poly (dldC:dldC) per assay was used. 

3.2.6.2 Competition assays 

3.2.6.2.1 Design of oligonucleotides as probes and competitors 

It was an objective of this analysis to determine whether the AAGAC motif 

participated in the formation of any of the embryo specific complexes 

observed following the poly (dldC:dldC) titrations with promoter probes 

(discussed in the previous section). Oligonucleotides that contained the 

AAGAC motif and a mutated version of the motif (listed in table 3.3) were 

synthesised and used as competitors to determine the role of this motif in 

complex formation. 
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Table 3.3: Complimentary oligonucleotides used as probes and 

competitors in gel retardation assays 

Oligo Sequence Comments 

TATA1: 5' CAAGCTTATAAATGACGACGAG 3' contained 
TATA box 

TATA2: 3' GTTCGAATATTTACTGCTGCTC 5' 

881: 5' CGCATGCTTAAGACTGGTAC 3' contained 
AAGAC motif 

882: 3' GCGTACGAATTCTGACCATG 5' 

M8S1: 5' GCGATGCTTGATACTGGTAC 3' identical to 
881:882, apart 

M8S2: 3' CGCTACGAACTATGACCATG 5' from altered 
bases in AAGAC 

Oligonucleotides (oligos) TATA1 and TATA 2 were complimentary and encompassed the TATA 

box (in bold text) from the ACP05 promoter. Nine out of the eleven bases from the TATA box of 

the ACP promoter fit the consensus plant TATA box sequence (CCTATAAATTA). Oligos BS1, 

BS2 contained an AAGAC motif (in bold). Oligos MBS1, MBS2 were identical to BS1 and BS2 

apart from the altered bases in the AAGAC motif (underlined). Complimentary oligos were 

annealed and referred to as BS (Binding Site), MBS (Mutated Binding Site) and TATA. 

3.2.6.2.2 The preparation of oligonucleotides as probes and competitors 

Oligonucleotide probes were kinase labelled and annealed using the 

standard method (2.9.11.2). Unincorporated label was removed by 

chromatography through a 8io-Rad P- 30 gel filtration column. Purified probe 

was counted by liquid scintillation and diluted to 10- 20,000 CPM/!JI. Typically 

1.0 Ill {-0.3ng) double stranded DNA was used in each gel retardation assay. 

Oligonucleotides that were required as specific competitors were 
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phosphorylated with 1 mM ATP and annealed by the standard methods 

(section 2.9.11.2). 

3.2.6.2.3 Competition assays 

The four panels in figure 4.9 present competition assays for each of the 

complexes detected. 

A: Fragment A 

Fragment A formed three specific complexes, two with embryo factor(s) and 

one with leaf factor(s) (see panel A of figure 3.8). Promoter fragment A 

contained the TATA box, and therefore it should be expected that fragment A 

form a TFIID bound complex with both embryo and leaf protein extracts. (The 

TATA binding protein is a component of the general transcription factor TFIID). 

A competition assay is shown in panel A of figure 3.9. Competition of embryo 

complexes is shown in the first gel. Lane 1 contained no protein and the 

mobility of the free probe is indicated. Poly (dldC:dldC) was not added to the 

assay in lane 2 and the probe was shifted in non- specific interactions. Both 

non- specific competitor and leaf protein were added to the assay in lane 3 

and the formation of the specific leaf complex was observed. The effect of the 

competitor oligo BS on this complex was observed in lane 4, the addition of a 

1 Ox molar excess of BS had no effect. This assay was repeated in lane 5, with 

embryo extract. It was observed that one complex was titrated out and the 

remaining band had the same mobility as the leaf complex. This would be 

consistent with the competed complex corresponding to an interaction 

between fragment A and an AAGAC- binding factor and the remaining 

complex corresponding to probe- bound TFIID. The specificity of this complex 

was analysed in lane 6, with the further addition of a 1 OX molar excess of 

competitor MBS. No effect on its formation was observed, however a repeat of 

this assay with a 1 Ox molar excess of oligonucleotide TATA resulted in its 

competition. These results are consistent with this complex corresponding to 

an interaction between the TATA box and TFIID. 

Competition of the specific leaf complex is presented in the second gel of 
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Figure 3.9 Competition assays 

The figure is divided into four panels, each presents a competition assay for 
a complex formed with the promoter fragments. Sequence specificity was 
analysed with oligonucleotide (oligo) competitors. The sequence of these 
are given in table 3.3 (see text). A set of standard assays were performed 
and fractionated on 3% polyacrylamide native gels. 

A: Promoter fragment A 

GEL 1- Competition of embryo specific complexes 

The lanes contained: 1, no protein, 3.01J.g poly (dldC); 2, 1.01J.I leaf protein, 

no poly (dldC); 3, 1.01J.IIeaf protein, 3.01J.g poly (dldC); 4, 1.01J.IIeaf protein, 

3.01J.g poly (dldC), 1.5ng oligo competitor BS; 5- 10, 1.01J.I embryo protein, 

3.01J.g poly (dldC); 5, 1.5ng oligo BS; 6, 1.5ng each BS oligo and MBS 
oligo; 7, 1.5ng TATA oligo; 8, 1.5ng each TATA and MBS oligos; 9, 1.5ng 
each TATA and BS oligos; 1 0, unmodified assay. 

LANE 

PROTEIN 

COMPETITOR 

ORIGIN ~ 

DNA-PROTEI~ 
COMPLEXES 

FREE ~ 
PROBE 

1 
~I 

2 3 4 5 
LEAF II 

BS 

6 7 8 9 10 
EMBRYO I 
II TATA I 

IMBsl ~[§§] 



GEL 2- Competition of specific leaf complex 

The lanes contained: 1, no protein, 3.01J.g poly (dldC:dldC); 2, 1.01J.I leaf 

protein and O.OIJ.g poly (dldC:dldC); 3-6, 1.01J.I leaf protein and 3.01J.g poly 

(dldC:dldC); 4, 1.01J.I 1.5ng BS oligo competitor; 5, 1.5ng MBS oligo; 6, 

1.5ng TATA oligo; 7, 1.01J.I embryo protein and 3.01J.g poly. 

LANE 

PROTEIN 

COMPETITOR 

ORIGIN __.. 

DNA-PROTEI~ 
COMPLEXES 

FREE ~ 
PROBE 

1 2 
[X] I 

3 4 5 6 7 
LEAF I~ 
~~~TATJ\J 

D c 8 A 

c AAGAC • TATA • GTCTI 



8: Promoter fragment 8 

The lanes contained: 1, no protein and 2.0Jlg poly (dldC:dldC) ; 2, 1.0Jll 
protein and no poly (dldC:dldC); 3- 9 1.0 111 protein and 2.0Jlg poly 
(dldC:dldC); 4- 5, 0.3ng and 0.8ng of oligo MBS, respectively; 6- 9, 0.15, 
0.3, 0.8, 1.5ng unlabelled oligo BS, respectively. 

LANE 

PROTEIN 

COMPETITOR 

ORIGIN 

FREE ____... 
PROBE 

12 3 4 56 7 8 9 
~ ~~ ~~-E~M~B-RY~O--~~--~~~ 

MBS II BS I 

D c 

• II M 

c AAGAC • TATA 

8 A 

I I II M 

• GTCTI 



C: Promoter fragment C 

Gel 1: Embryo DNA- protein complexes 

The lanes contained: 1, no protein and 2.0Jlg poly (dldC:dldC); 2, 1.0Jll 

embryo protein and no poly (dldC:dldC); 3- 9, 1.0 Jll embryo protein and 

2.0Jlg poly (dldC:dldC); 4- 5, 0.15, 0.3ng and 0.8ng MBS oligo competitor, 
respectively; 6- 9, 0.15, 0.3, 0.8ng BS oligo, respectively. 

LANE 

PROTEIN 

COMPETITOR 

ORIGIN ~ 

DNA-PROTEI~ 
COMPLEX 

DNA-PROTEI~ 
COMPLEX 

FREE ~ 
PROBE 

12 3 4 56 7 89 
~~ ~ -----E-M-8-RY-O----------~~ 

MBS II BS I 

D c B A 

c AAGAC • TATA • GTCTI 



Gel 2: Leaf DNA-protein complex 

The lanes contained: 1, 1.01J.I leaf protein and no poly (dldC:dldC); 2, no 

protein and 2.01J.g poly (dldC:dldC); 3- 9, 1.0 !J.I leaf protein and 2.01J.g poly 
(dldC:dldC); 4- 5, 0.3ng and 0.8ng BS oligo competitor, respectively; 6- 7, 
0.3, 0.8ng TATA oligo, respectively; 8-9, 0.3ng and 0.8ng MBS oligo 
respectively. 

LANE 

PROTEIN 

COMPETITOR 

ORIGIN -· 

DNA-PROTEI~ 
COMPLEX 

FREE __.. 
PROBE 

12 3 4 56 7 8 9 
~ ~~~~~~L-EA-F~~--~~~ 

MBS II TATA II BS I 



D: Promoter fragment D 

The lanes contained: 1, no protein and 2.0j..Lg poly (dldC:dldC); 2, 1.0 llg 

protein and no poly (dldC:dldC); 3- 9; 1.0 Ill protein and 2.0j..Lg poly 
(dldC:dldC); 4-6, 0.15, 0.3 and 0.75ng MBS oligo competitor, respectively; 7-
9; 0.15, 0.3 and 0.75ng BS oligo, respectively 

LANE 

PROTEIN 

COMPETITOR 

ORIGIN ~ 

DNA-PROTEI~ 
COMPLEX 

DNA-PROTEI~ 
COMPLEX 

FREE......_ 
PROBE 

1 2 3 45 6 7 8 9 
~ ~I ----~===E:M:B:RY~O~====~I 

MBS II BS I 

~- - .... ,._ . 

D c 
• II M 

c AAGAC • TATA 

B A 

II II M 

• GTCTI 



panel A. Free probe is indicated in lane 1 (contained no protein). The assay 

run in lane 2 contained no poly (dldC:dldC) and a non- specific shift of probe 

DNA was observed. Both leaf protein and non- specific competitor were 

included in lane 3 and the complex is indicated. In lanes 4, 5 and 6 a 1 OX 

molar excess of the oligonucleotide competitors BS, MBS and TATA were 

added, respectively. The complex was titrated out only with the TATA 

containing competitor andthus suggests that it arose as a result of an 

interaction between the TATA binding protein (which is a component of TFIID) 

and the TATA box in the probe. 

B: Fragment B 

Fragment B formed one sequence specific complex with an embryo factor. 

Panel B of figure 3.9 shows a competition assay using fragment B substrate 

DNA. The mobility of the free probe is indicated in lane 1, which contained no 

protein. Lane 2 was a control assay with no poly (dldC:dldC) and showed 

non- specific shift of the probe. Lane 3 contained both embryo protein and 

non- specific competitor and the specific shift of probe was observed. 

Oligonucleotide competitor MBS was added to lanes 4 and 5 (2X and 5X 

molar excess, respectively) No effect on the complex was observed. The 

competition was repeated in lanes 6-9 (1 X, 2X, 5X, 1 OX molar equivalents 

respectively) with competitor oligonucleotide BS. The complex was competed 

and it was concluded that this complex is AAGAC bound fragment B. 

C: Fragment C 

Fragment C formed three complexes, two with embryo DNA binding protein(s) 

and one with a leaf factor. A competition assay of the embryo complexes is 

presented in the first gel of panel C. Protein was omitted from the assay in 

lane 1 and free probe is indicated. Lane 2 contained no poly (dldC:dldC) and 

the probe is shifted in a non- specific interactions. Lane 3 was the positive 

control, containing both protein and poly(dldC:dldC) and the formation of the 

upper complex was clearly observed. In lanes 4-6 a competition titration with 

oligonucleotide MBS (1x, 5x and 10x molar excess added, respectively) was 

performed. No effect on complex formation was observed. An identical 

titration with oligonucleotide BS was performed in lanes 7-9 and the upper 

band was titrated out. No effect on the high mobility complex was observed. 
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Figure 3.1 0: Analysis of the factors involved in complex formation 

The figure is divided up into four panels, each presents a typical enzyme 
retardation assay for promoter fragments A- D, respectively. Lane 1 assays 
contained no protein and the mobility of unbound probe is indicated. Poly 
(dldC:dldC) was omitted from assays in lane 2. Lane 3 contained standard 
assays with both non- specific competitor and protein extract. The formation of 
specific complexes is indicated in each case. The standard assay was added 
to lane 4 and Proteinase K and SDS were both added to the assays in lane 5. 
RNase A was added to the standard assay and run in lane 6. 

The lanes contained: 1, no protein and 2.0~g poly (dldC:dldC); 2, 1.0~1 

protein and no poly (dldC:dldC); lanes 3- 6, 1.0~1 protein and 2.0~g poly 
(dldC:dldC), 4; SDS to 0.5%; 5, 0.5% SDS and Proteinase K (PRK); 6, 
RNase A (RA) 

A: Fragment A 

LANE 1 2 3 4 5 6 

PROTEIN ~~ 
CONTROLS 

ORIGIN~ 

DNA-PROT ~ 
COMPLEXES 

FREE 
PROBE~ 

EMBRYO I 
SDS l[ffi) 
~ 



B: Fragment B 

LANE 

PROTEIN 

CONTROLS 

ORIGIN 

DNA-PROT 
COtvPLEX 

FREE 
PROBE 

C: Fragment C 

1 2 3 4 5 6 

lliJ I EMBRYO I 
I SDS I~ 
~ 

LANE 1 2 3 4 5 6 1 2 3 4 5 6 

PROTEIN ~ I EMBRYO I 
CONTROLS I SDS II RA.I 

DNA-PROT~ 
COMPLEX 

DNA-PROT~ 
COMPLEX 

FREE 
PROBE 

[ffi] 

~I LEAF I 
I SDS I~ 

[ffi] 



D: Fragment D 

LANE 

PROTEIN 

CONTROLS 

ORIGIN ~ 

DNA-PROT~ 
COMPLEX 

DNA-PROT~ 
COMPLEX 

FREE ~ 
PROBE 

1 2 3 4 5 6 

~ L-1 __ E_MBr=R=Y::::O:::::;-;::::====!l 

I SDS I[B;J 
~ 



A competition assay of the high mobility complex in leaf protein is presented 

in the second gel of panel C. The non- specific shift of substrate DNA was 

observed in lane 1, which contained no poly (dldC:dldC). Free probe is 

indicated in lane 2 (assay which contained no protein). Lane 3 contained both 

protein and poly (dldC:dldC) and the specific band shift is indicated. In lanes 

4 and 5 the oligonucleotide competitor BS was added (5x and 1 Ox molar 

excess respectively). This competition was repeated in lanes 6 and 7 with 

oligonucleotide TATA and in lanes 8 and 9 with MBS. No significant effect on 

the formation of this complex was observed. A factor, of unknown binding 

specificity resulted in the formation of this high mobility complex. 

D: Fragment D 

Fragment D formed two embryo specific complexes and a standard binding 

assay with oligonucleotide competitors is presented in panel D of figure 3.9. 

Lane 1 contained no protein and shows the mobility of unbound fragment D. 

Lane 2 contained embryo protein, but no poly (dldC:dldC). The typical non

specific probe shift was observed. Lane 3 contained embryo extract and poly 

(dldC:dldC) and the two specific complexes are indicated. To the· assays in 

lanes 3- 5 oligonucleotide MBS competitor was added (1X, 2X and 5X molar 

equivalents of AAGAC respectively). It can be seen that there is no 

competition of either band. These assays were repeated in lanes 6- 9, with 

BS. Both complexes were competed out and it was concluded that the 

sequence AAGAC is involved in the formation of both specific band shifts. 

3.2.6.3 Enzyme controls 

To determine the nature of the factors that were involved in complex 

formation, the standard assay was modified to include enzymes. Proteinase 

K was used to confirm that protein factor(s) were integral to probe retardation 

and RNAse A was included to determine if RNA was involved. 

Figure 3.10 is divided up into four panels A- D, each panel presents a typical 

enzyme retardation assay for promoter fragments A- D, respectively. The 

mobility of unbound probe is seen in the first lane of every gel. Poly 

(dldC:dldC) was omitted from assays in lane 2 and standard assays that 

96 



contained both non- specific competitor and embryo extract were loaded into 

lane 3. The formation of specific complexes is indicated in each case. The 

standard assay was modified in lane 4 with the addition of SDS to 0.5%, 

which had a similar effect on complex formation for each fragment. There was 

a reduction in complex formation but in all cases retarded probe was still 

observed. The effect of Proteinase K was analysed in the assays in lane 5 

and was identical with all four probes. The retardation of probe was 

completely inhibited. This suggests that protein factors are responsible for 

complex formation resulting in probe retardation. RNAse A was added to the 

standard assay and run in lane 6. RNAse A had no discernible effect on the 

formation of any complex. This indicated that DNA-protein interactions were 

being observed. 

3.3 Summary 

An overview of the DNA- protein interactions detected with ACP05 promoter 

probes A- D is presented in table 3.4, which collates the number and type of 

complexes formed with each fragment. Prior to this work the ACP05 promoter 

was demonstrated to contain regulatory information that directed its spatial 

and temporal expression (deSilva eta/., 1992}. An Ava 1- Pst I restriction 

fragment from the ACP05 promoter was subcloned and sequenced. The 

sequence was analysed for direct repeats and palindromes, both of which are 

characteristic of cis-acting regulatory motifs. Nuclear factors, such as GT1, 

which is involved in light regulated expression, cannot bind significantly 

unless its cognate binding sequence is repeated at least three times (Green 

et al., 1989}. Multiple palindromic copies of the core motif AAGAC were 

identified. Gel retardation assays using promoter fragments that contained 

this motif (or its compliment) demonstrated it was necessary and sufficient for 

stable complex formation with a sequence specific embryo DNA binding 

protein. 

Similar regulatory elements have been identified in seed protein genes. For· 

example multiple copies of the motif A AIG CCCA occur within the promoter of 

the a- subunit of the soybean ~ conglycinin gene (Chen eta/., 1986; 1988). 

This motif was shown to be the core of a protein binding site that interacts with 
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an embryo nuclear protein, SEF (Allen eta/., 1989). 

Table 3.4: Summary of DNA- protein interactions with the ACP05 promoter 

Probe Motifs DNA- Protein Complexes Conclusion 

Embryo Leaf 

A AAGAC TWO ONE Band shifts with an 
AAGAC protein BF 

TATA box and TATA BF 

B AAGAC ONE NONE Band shift with an 
AAGAC protein BF 

c AAGAC TWO ONE Band shifts with an 
AAGAC protein BF 

GTCTT and a high mobility 
factor 

D GTCTT TWO NONE Band shift with an 
AAGAC protein BF 

BF: DNA binding factor 

The AAGAC motif was incorporated on synthetic oligonucleotides and 

multimerised to be used as a binding site probe to screen an expression 

library for the cognate binding protein. These experiments are described in 

chapter 4. 
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Chapter 4 

Cloning DNA Binding Proteins with Recognition Site Probes: 

"Southwestern" Cloning 

4.1 Introduction 

4.1.1 Problems associated with cloning DNA binding proteins 

The majority of transcription factors are present in very low quantities in the 

cell. A major difficulty associated with the purification of such rare proteins is 

the requirement for large amounts of starting material. This makes purification 

on a preparative scale very difficult for most DNA binding proteins. The 

development of DNA-affinity chromatography matrices by Kadonaga and 

Tjian (Kadonaga and Tjian., 1986) facilitated the biochemical purification of a 

number of DNA binding proteins using conventional techniques (Rosenfield 

et a!., 1986; Kadonaga and Tjian, 1986; 1987; Landschulz eta/., 1988). The 

method uses a column matrix to which a large number of DNA binding sites 

are covalently linked. Gel retardation assays, DNase I foot printing and filter 

binding assays are used to follow specific DNA binding proteins during their 

purification. 

4.1.2 Alternative cloning strategy 

An alternative cloning method which circumvented the problems associated 

with low abundance was developed by Singh and colleagues (Singh et a/., 

1988; 1989). The first eDNA isolated by this method coined "Southwestern" 

screening corresponded to the human enhancer binding protein H2TF1/ 

NFKB (Singh eta/., 1988). The basic concept was derived from screening 

A.gt11 expression libraries with antibody probes (Young and Davies, 1983; 

1985) and many parallels exist between the techniques. Both methods rely 

upon the expression of functional recombinant protein in E.coli. During 

antibody screening positive clones are detected through a specific interaction 

between an epitope of the recombinant protein and the antibody probe. 
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During Southwestern screening positives are detected through the specific 

interaction of a DNA binding domain with its cognate binding site which is 

used as a probe (Singh eta/., 198~; 1989; Vinson eta/., 1988). 

4.1.3 Parameters that limit Southwestern screening 

Several factors limit the success of Southwestern screening experiments. The 

type of library used is of great importance. In order to maximise the chance of 

detecting rare clones the library should be generated from mANA isolated 

from a tissue source with the highest levels of a given binding factor. In 

addition, a primary, unamplified library should be used for initial screening as 

each round of amplification can lead to a selective loss of low abundance 

bacteriophage. This appears to be the case especially for phage that encode 

DNA binding proteins (Singh eta/., 1989). It has been shown that following 

successive rounds of library amplification and probing for known DNA binding 

proteins, their numbers rapidly become unrepresentative (Singh eta/., 1989). 

The library should also be randomly primed rather than oligo-dT primed 

(Berger and Kimmel, 1987) as binding domains may lie at the C or N 

terminus. Thus random primed libraries give improved representation of 

mANA species. Library complexity is also of importance when cloning low 

abundance transcripts. The frequency at which a eDNA clone of a given 

mANA appears in a library is generally proportional to the abundance of that 

species in the mANA population. It has been estimated that a typical 

eukaryotic cell contains 106 mANA molecules, transcribed from 15 000 

different genes (Berger and Kimmel, 1987). Low abundance mANAs may only 

have 20 copies of message present. A library must therefore contain sufficient 

numbers of individual recombinants to ensure the DNA sequence of interest 

is represented. 

A further consideration is the type of probe used. Single binding site probes 

have been used successfully to clone DNA binding proteins. However the 

use of multiple binding sites has been shown to increase the signal intensity 

of a positive clone (Staudt eta/., 1988; Vinson eta/., 1988). This is possibly 

due to several protein molecules binding the probe simultaneously and thus 

stabilising the interaction. Multiple binding site probes have been particularly 
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successful in cloning members of the leucine zipper family of factors (Katigiri 

et a/., 1989; Maekawa eta/., 1989; Poli eta/., 1990; Singh eta/., 1988) and 

other classes of factors including the helix- turn- helix and zinc finger 

(Kageyana and Pastan, 1989; Klemsz eta/., 1990; Lum eta/., 1990; Williams 

eta/., 1991 ). 

A major limitation of Southwestern screening is that proteins which require 

additional factors for DNA binding will not be detected. For example, 

components of multi protein complexes and heterodimers cannot be detected 

using this strategy. Furthermore, full length cDNAs are often not isolated by 

this method. Binding site probes are used to detect the presence of binding 

domains and successful detection of a positive depends only upon the 

presence of a functional DNA binding domain. 

4.2 Results 

The ACP05 promoter was screened for protein binding sites using gel 

retardation assays, as described in chapter 3. The interaction between a 

promoter motif and an embryo DNA binding protein was characterised. 

Complimentary oligonucleotides that contained a copy of this sequence were 

synthesised for use in a Southwestern cloning experiment. BS1 and BS2 

were complimentary and contained a single copy of the motif AAGAC. MBS1 

and MBS2 were similar to BS1 and BS2, apart from two altered nucleotides in 

the AAGAC motif (see table 3.3; pp.92). 

4.2.1 Analysis of probes 

Single stranded DNA forms have been shown to bind strongly to nuclear 

proteins, forming anomalous complexes (Svaren et a/., 1987). Binding site 

oligonucleotides were synthesised as single strands which were annealed 

(section 2.9.11.2} and analysed by gel electrophoresis (figure 4.1 ). Both forms 

were clearly resolved from each other and are indicated. The formation of 

double stranded probe was maximal when equimolar amounts of 

complimentary oligonucleotides were annealed using this method. 
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Figure 4.1 

Analysis of oligonucleotide annealing conditions 

Oligonucleotide probes were analysed as follows. Different ratios of 5' 
labelled, single stranded complimentary oligos annealed over a temperature 
gradient. The products were subsequently fractionated through a 15% 
polyacrylamide gel. Single stranded (ss) and double stranded (ds) forms 
were clearly resolved from each other. 

Lane 1 2 3 4 5 6 7 

Ratio of 1:0 9:1 7:3 1:1 3:7 1:9 0:1 
BS1:BS2 

ds ... BS1 :BS2 

ss .. ss 

BS1 BS2 



4.2.2 Protein interactions with binding site oligonucleotide 

Gel retardation assays were performed to determine the binding 

characteristics and specificity of the isolated AAGAC core motif in BS. Typical 

poly {dldC:dldC) titrations with embryo and leaf extracts are presented in 

panels A and B, respectively of figure 4.2. Protein was excluded from the 

assays in lane 1 and the mobility of the free probe is indicated. Poly 

(dldC:dldC) was excluded from the assays in lane 2 and non-specific shift of 

substrate DNA was observed. In these assays the majority of probe was 

bound in very large complexes at the top of the gel. Increasing amounts of the 

non- specific competitor, poly (dldC:dldC) were added to the remaining 

assays (lanes 3- 9) to titrate out non- specific interactions. One specific 

complex (indicated) was observed to form with an embryo factor. No specific 

complexes were observed with to form when incubated with leaf extract. 

The specificity of the embryo binding factor was analysed by competition with 

the unlabelled oligonucleotides BS and MBS (table 3.3) and is shown in 

panel C of figure 4.2. Increasing amounts of the specific competitor BS 

(AAGAC motif) was added to the assays in lanes 4-8 and the DNA- protein 

complex was competed out. Competitor oligonucleotide MBS (altered 

AAGAC) was added to the assays in lanes 11 and 12, with no effect complex 

formation. 

Poly {dldC:dldC) assays showed that a binding site motif that was 

incorporated on an oligonucleotide specifically bound an embryo DNA 

binding protein. Furthermore, competition assays demonstrated that the 

formation of the DNA- embryo protein complex was dependent upon the 

AAGAC motif. It was concluded that the binding site oligonucleotide BS 

behaved in an analogous manner to a promoter fragment that contained an 

AAGAC motif. 

4.2.3 Polymerisation of binding site oligonucleotide 

The presence of multiple binding sites in a probe has been shown to increase 

the signal intensity of a positive clone (Staudt et a/., 1988; Vinson et a/., 

102 



Figure 4.2 

A binding motif identified in the ACP05 promoter was incorporated in a pair of 
complimentary oligonucleotides. These were labelled and annealed and used 
in gel retardation assays. Poly (dldC:dldC) titrations were performed with both 
embryo and leaf extracts. The specificity of complexes was analysed by 
competition with unlabelled oligonucleotides. Assays were fractionated on 4% 
polyacrylamide native gels. 

Gel retardation assays with binding site oligonucleotide 

The Lanes contained: 1, 1.0j..Lg poly (dldC:dldC); 2- 10, 1 ,Oj..LI protein extract; 3-

1 0, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0 and 1 Oj..Lg poly (dldC:dldC) respectively. 

Panel A: Poly(dldC:dldC) titration with embryo extract. 

LANE 

POLY (dldC:dldC) 

Origin 

01 

Free 
probe 

12 3 4 56 7 8 9 



Panel 8: Poly(dldC:dldC) titration with leaf extract. 

lANE 12 3 4 56 7 8 9 

POLY (dldC:dldC) 

ORIGIN-..,.. 

,..___. 



Panel C: Competition of DNA- protein complex 

The lanes contained: 1, 1.011g poly (dldC:dldC); 2, 1.0111 embryo extract; 3- 8, 

1.011g poly (dldC:dldC) and 1,0111 embryo extract ; 4- 8; 0.25, 0.5, 1.0, 2.5, 5.0ng 
oligo BS, respectively (0.5X, 1 X, 2X, 5X and 1 OX molar excess) ; 9 and 10, 

1,0111 leaf protein with 0.5 and 1.011g poly (dldC:dldC) respectively; 11 and 12 , 

1.0111 embryo, 1.011g poly (dldC:dldC) and 2.5 and 5.0ng oligo MBS, respectively 
(5X and 1 OX molar excess). 

LANE 

PROTEIN 

COMPETITOR 

ORIGIN 

DNA-PROT 
COMPLEX 

FREE 
PROBE 

2 3 4 5 6 7 8 9 10 11 12 

EMBRYO II LEAF II EMBRYO' 
....___---;:===============~ 

...__ ___ B_s ___.I I MBS I 



1988). However probes longer than 250bp give higher background signals 

(Singh eta/., 1989). It was therefore decided to generate a defined 5- 10 mer 

of BS for use as a probe in a SouthWestern cloning experiment. 

BS1 and BS2 were ligated (section 2.9.9) and gel fractionated (figure 4.3) 

and a gel slice that contained 5-1 Omers was taken and cloned into pUC 19 to 

generate the pOBS series of plasmids. Insert sizes were determineded by 

PCR amplification, using the standard method (2.9.14) and primers listed in 

table 2.1 (panel A of figure 4.4). Insert sizes (and the corresponding number 

of copies of cloned oligos) are presented in table 4.1. 

Table 4.1: PCR amplification of pOBS clones 

Insert Corresponding copies 

Lane pOBS clone size(bp) of cloned oligo BS 

1 1 340 11 

2 2 280 8 

3 8 340 11 

4 4 280 8 

5 6 240 6 

6 5 200 4 

7 3 200 4 

8 12 160 7 

9 9 220 5 

4.2.4 Sequencing multiple binding site clone pOBS4 

From PCR analysis it was estimated that there were 8 copies of BS cloned 

into pOBS 4, which was sequenced using universal M13 primers (section 

2.9.1 0). Approximately 300bp of overlapping nucleotide sequence was 

obtained and is presented in panel B of figure 4.4. p0BS4 contained 8 
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Figure 4.3 

Generating a multimerised binding site probe 

Two micrograms each of phosphorylated BS1 and BS2 were annealed and 
ligated. Products were fractionated on a 2.0% LMP agarose gel, with 
molecular weight markers in order that a gel slice that corresponded to 5-
1 Omers could be isolated. DNA was recovered by freeze squeeze {lane 4). 

The lanes contained: 1, 2, 3: 0.3, 1.0 and 0.7J..Lg (respectively) annealed and 

ligated BS oligo; 4, 20fll gel slice eluent. M: 1.0J..Lg Hae Ill cut <j>X17 4 DNA. 

281 
271 
234 
194 
118 

72 

M 1 2 3 4 

'------' 



complete copies of oligonucleotide BS, with the end copy motif cloned in a 

reversed orientation relative to the other seven (as indicated by the direction 

of the arrows above the motifs in figure 4.4 ). 

4.2.5 Preparation of radiolabelled binding site probe 

Theoretically, a probe with a specific activity of 1 07cpm/ pmol could detect 10-2 

fmol of active protein in a plaque (1 pg if MWt was 170kDa). This assumes a 

1:1 stoichiometry for the protein: DNA interaction. The level of expression of an 

overexpressed lacZ fusion protein in a plaque should result in the 

accumulation of 1 OOpg of fusion protein (Cowell and Hurst, 1993). If there are 

1 05 infected cells/plaque and the ~- galactosidase fusion represents 1% of 

the total protein mass. Therefore the sensitivity of detection is well within limits 

and similar to that of 1251- labelled primary antibody or a secondary antibody 

system based on a secondary antibody conjugated with alkaline phosphatase 

(Broome and Gilbert, 1978; Leary eta/., 1983; Singh eta/., 1989). 

pOBS 4 was digested with EcoRI and Hin Dill to excise the multiple binding 

site (211 bp). The fragment was gel purified (panel A of figure 4.5) and end 

labelled (section 2.9.11.3) using 50j..LCi of a32p dATP and a32p dCTP (3 

OOOCi/ mmol). Unincorporated label was removed by a Bio spin P- 30 column 

(2.9.11) and the specific activity calculated from liquid scintillation (routinely 

1 07 cpm/ pmol). 

4.2.6 Preparation of a control DNA probe 

A control DNA was required to screen putative positive phage for sequence 

specificity. A general DNA binding protein would hybridise to any DNA probe 

· used, whereas a specific protein would only hybridise to its cognate binding 

site. A 141 bp HinDIII- Pvull pUC19 restriction fragment was chosen. This 

fragment did not contain AAGAC motifs and it included the polylinker region 

that was also present in the binding site probe. Therefore it could be used to 

discriminate between a specific and general DNA binding clone. pUC19 was 

digested with Hin Dill and Pvu II (restriction fragments of 2058, 305, 181 and 
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Figure 4.4: Analysis of cloned concatimers 

Oligonucleotide binding sites were polymerised and fractionated on a 2.0% 
agarose gel. The DNA was recovered by freeze squeeze and ligated into Sma I 
cut pUC19 to generate pOBS clones. The exact number of cloned copies was 

determined by PCR amplification with 1 ng template and 05J1M each primer per 
reaction. PCR reactions were analysed n a 1% agarose gel and and pOBS4 
(lane 4- 8mer) was subsequently sequenced (panel B). 

A:PCR 

The lanes contained: Lane 1- 9, 20111 each PCR 1 , pOBS 1; 2, p0BS2; 3, pOBS 
8; 4, pOBS 4; 5, pOBS 6; 6, pOBS 5; 7, pOBS 3; 8, pOBS 12; 9, pOBS 9; M, 
1 .OJlg EcoR I cut 'A DNA. 

bp 
947. 
831 
564 

M123456789 

8: Nucleotide sequence of pOBS4 

The orientation of the binding motif AAGAC is indicated with an arrow. 

_ ....... ~ .... 
1 CGCATGCTTAAGACTGGTAC CGCATGCTTAAGACTGGTAC 40 

-~~~ ~ 

41 CGCATGCTT AAGACTGGTAC CGCATGCTT AAGACTGGTAC 80 

---.... ~ .... 
81 CGCATGCTTAAGACTGGTAC CGCATGCTIAAGACTGGTAC 120 

---~~~ ........ ...__ 
121 CGCATGCTTAAGACTGGTAC GTACCAGTCTTAAGCATGCG 160 



141 bp) and gel fractionated (see panel a of figure 4.5). The 141 bp restriction 

fragment was gel purified and 1 OOng end labelled (section 2.9.11.3) using 

501J-Ci of a32p dATP (5 OOOCi/ mmol) and a32p dCTP (3 OOOCi/ mmol). 

Unincorporated label was removed by centrifugation through a Bio spin p- 30 

column (2.9.11) and the specific activity calculated from liquid scintillation 

(routinely 1 Q7 cpm/ pmol). 

4.2.7 Description of library used 

A A.gt11 Brassica campestris (cv. RV500} embryo eDNA library was provided 

by Prof. A. R. Slabas. The library was generated from mANA extracted from 

mid- maturation embryos (coincident with both maximum lipid synthesis and 

ACP expression). The library was randomly primed and unamplified. eDNA 

was cloned into the unique A.gt11 Eco Rl site (53 amino acids from the amino 

terminus in the lac Z gene) with Eco Rl adapters. Fusion proteins expressed in 

A.gt11 usually contain all but 53 N terminal amino acids of ~- galactosidase, 

which is thought to increase the stability of recombinant fusion protein. The 

library was titred before use, according to the standard protocol in section 

2.12.2 and was 4x 1 Q7 pfu/ mi. 

4.2.8 Screening the library 

Four aliquots of competent cells were infected with 5x1 Q4 pfu and screened 

with 1 x 1 Q7cpm 32P- labelled DNA binding site probe as described in section 

2.12. A primary filter is shown in panel A of figure 4.6. Eight putative positives 

with the characteristic "comet" shaped plaque were chosen for further 

analysis. The ringed positive corresponded to BS2xi, which was the only 

phage that remained positive after a second round of screening (panel B). 

A.BS2xi was purified to homogeneity by a tertiary round of screening. Clone 

A.BS2xi was re- screened with two controls: A 141 bp pUC 19 HinDIII- Pvu II 

restriction fragment (4.2.6} was used to determine whether the putative 

positive was a specific or general DNA binding protein. In order to 

demonstrate that A.BS2xi did not have a general nucleotide binding site it was 
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Figure 4.5 

Preparation of probes for screening expression library. 

1 Oj..tg of pOBS DNA was double digested with EcoRI and Hin Dill to excise the 
211 bp insert. The digest was gel fractionated on a 1.5% LMP agarose gel and 
the DNA was recovered by electroelution. 1 OOng of the purified DNA was 
subsequently end- filled with radionucleotides. A second DNA was needed as 
a control to screen putative positive phage for their DNA binding specificity. A 
pUC 19 restriction fragment that contained the polylinker sequence included 

in the binding site probe was chosen. 10j..tg of pUC19 DNA was double 
digested with Pvu II and Hin Dill and the 141 bp fragment was purified as 
described above. 

A: The lanes contained: 1, 1.0j..tg pOBS 4; 2, 20j..tg EcoRI- Hin Dill restricted 

p0BS4 (211bp insert); 3, 0.5j..tg pUC19; 4, 20j..tg Hin Dill- Pvu II restricted 

pUC19 (2058, 305, 181, 141bp); M 1, 0.5j..tg Hin Dill restricted A DNA; M2, 

1.0j..tg Pst I restricted A DNA. 

8: Gel purified probes 

The lanes contained: M 2, 1.0j..tg Pst I restricted A DNA; 1, Hin Dill- Pvu II 
fragment D (141bp}; 2, EcoRI- Hin Dill fragment B (211bp). 

A 

M1 1 2 M2 3 M1 4 

bp 
a-- 305 

IS== 181 
141 

8 

1 2 M2 

bp 

211 
141 



also screened with 0.5fll a 32P- dCTP. The control filters are shown in panel 

C of figure 4.6. Clone A.BS2xi only hybridised with the multimerised binding 

site probe. These results suggested that A.BS2xi contained a sequence 

specific DNA binding domain. 

4.2.9 Generation of bacteriophage lysogens 

A high titer phage stock of A.BS2xi was made (2.12.6) and used to generate 

lysogens (described in section 2.12.7) which were noted as L 1- L7. Protein 

extracts from L 1- L7 and Y1 089 were made (2.12.8) and the concentration 

was determined by the Bio-Rad assay (2.11.3). On average the concentration 

of lysogen extracts (typically 1 Jlg/Jll) was lower than that of Y 1 089 (typically 5-

1 Oflg/Jll) as induced recombinant cultures always exhibited partial cell lysis. 

4.2. 10 Analysis of lysogen protein extracts 

4.2. 10.1 SDS- PAGE 

Protein extract was analysed by SDS- PAGE (panel A of figure 4.7). Control 

extract (Y1 089) can be observed in lane 1 and lysogen extracts L 1- L7 in 

lanes 2- 8, respectively. Differences in the polypeptide composition of lysogen 

extracts and Y1 089 were observed. Several additional bands in the range 66-

116kDa and a prominent band at approximately 40kDa were observed in the 

induced lysogens. 

4.2.1 0.2 Gel retardation assays 

Lysogens and Y1 089 were assayed for DNA binding activity using the 

binding site oligonucleotide BS as a probe (sequence given in table 3.3). 

Assays were performed using the standard method (2.9.15.1) in a modified 

incubation buffer that was made with a lower salt concerntration than the 

standard buffer. DNA binding activity was not observed when the standard 

incubation buffer was used. A short exposure (4hours) of s set of typical 
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Figure 4.6 

South western screen of a A.gt 11 library 

500J.tl aliquots of competent E. coli Y1 090 cells were each infected with 5x1 04 pfu 
of the A.gt11 library. Each was plated out and screened with 1x 107cpm 32p_ 

labelled DNA binding site probe. A primary screen filter which hybridised to 

A.BS2xi (ringed) is presented in panel A. Agar plugs containing eight putative 
positives were isolated, however each plug also contained non- positives, due to 
the high plating density. Following the second round of screening only BS2xi 
remained positive (see panel B). This phage was purified to homogeniety by a 
third round of screening and was re-screened with control DNAs (panel C). 

A: Primary screen filter 

The positive 'phage BS2xi is ringed 

-+---BS2xi 



8: Secondary screen. Two dilutions of phage BS2xi were screened with binding 
site probe 

1 0-3 1 o-s 

C: Tertiary control screen. Purified phage BS2xi was screened with two control 
probes (described in the text). 

Control DNA Free nucleotide 



assays is presented in panel 8 of figure 4. 7. Y1 089 extract was used as a 

control to determine whether there was any endogenous sequence specific 

DNA- binding activity. Y1 089 was assayed in lanes 1- 3. Poly (dldC:dldC) was 

omitted from the assay in lane 1 and several non- specific interactions that 

were competed out (lane 3) were observed. Lane 2 contained no protein and 

free probe is indicated. A standard assay that included poly (dldC:dldC) and 

lysogen extract was repeated in lanes 4- 10. The highest binding activity was 

noted in L6, with the formation of two DNA- protein complexes (indicated with 

arrows). The same pattern of retarded bands were detected in the other 

lysogen extracts (L 1- 6) with longer exposures (data not shown). 

The binding specificity of the two complexes formed with factor(s) in L6 was 

investigated with competition assays (the sequence of oligonucleotide 

competitors is given in table 3.3). The results of competition are shown in 

panel C of 4.7. Free probe is indicated in the assay in lane 1, from which 

protein had been excluded. Poly (dldC:dldC) was excluded from lane 2 and 

the probe DNA was shifted non- specifically. A standard assay with lysogen 

L6 protein and poly (dldC:dldC) was run in lane 3 and the two specific 

complexes are indicated. Non- specific competitor oligonucleotide MBS was 

added in increasing amounts to the assays in lanes 4-6. Complex formation 

was not inhibited. Competition was repeated in lanes 7- 10 with the addition 
<1 

of an excess of BS. Both complexes were titrated out. These results are 

consistent with a specific interaction between the AAGAC motif and the 

induced recombinant protein in lysogen L6. 

4.2.1 0.3 Western blotting 

In A.gtll the unique Eco Rl eDNA cloning site in lac Z is located 53 amino acids 

from the carboxy terminus. Assuming translation of the recombinant fusion 

protein occurred from the normal initiation codon, an induced recombinant 

protein would be fused to all (but 53 amino acids) of ~- galactosidase 

(molecular weight of 116kDa). Western blots, using an anti ~- galactosidase 

antibody (Sigma) were performed in order to determine whether the DNA 

binding activity in lysogen L6 was a recombinant fusion protein. 
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Figure 4. 7: Analysis of Y1 089 lysogen extracts 

Lysogens were generated from the DNA binding clone A.BS2xi and analysed 
by SDS- PAGE and gel retardation assays. Y1089 extract was used as a 
control to determine whether there was any endogenous bacterial DNA 
binding activity. A modified low salt incubation buffer was used in these 
assays: (20 mM Tris.HCI, pH7.5, 1 mM OTT, 1 mM EDTA, 20mM KCI). 

A: SDS- PAGE 
Protein extracts were concentrated by chloroform- methanol precipitation and 

electrophoresised through 5% acrylamide gels. The lanes contained: 1, 2.0J..LI 

Y1089 cell free extract; 2- 8, 5.0J..LI Y1089 lysogen extract L 1- L7 respectively. 

M, 1.0J..Lg each of myosin (205 kDa) and BSA (66kDa). 0.5J..Lg each of ~
galactosidase {116kDa) and BSA (66kDa). 

LANE 

ORIGIN 

kDa 

205 

116 

66 

45 

I 

M 12 3 4 56 7 8 



Primary antibody (Sigma) was titred to determine its detection limit and 

specificity. p- galactosidase (Sigma) was run on SDS- PAGE gels and blotted 

onto PVDF filters as described in 2.11.5. Blots were developed using ECL 

(Enhanced Chemi b.uminescence), Amersham as described in 2.11.5 and are 

presented in panel A of figure 4.8. A prominent band at 116kDa was observed 

in the lanes that contained P- galactosidase ( 1 Ong was detected at 20 second 

exposure of blots) and there was no cross reaction with the molecular weight 

standards in lane M. 

Chloroform- methanol precipitated (2.11.4) protein extracts from Y1 089 and 

lysogen L6 were analysed as described above. The results are presented in 

panel B of figure 4.8. A 116kDa band was observed in lanes that contained P
galactosidase (lane M and 1 ). A single band at approximately 1 OOkDa was 

observed in lane 4 (lysogen L6). This band corresponds to truncated p
galactosidase, the translation of which must have been terminated by an in

frame stop codon in the cloned eDNA. From this result it was concluded that 

the detected DNA binding activity must reside on a polypeptide translated 

from an internal ATG codon. This has been found most commonly in cloned 

cDNAs complete at their 5' end, as 5' leader regions often contain in frame 

stop codons, thus preventing read- through from p- galactosidase. 

4.2.11 Characterisation of A.BS2xi 

The eDNA clone A.BS2xi was analysed by several methods. A.DNA was 

prepared as described in section 2.12.9. and digested with Eco Rl (lane 2, 

figure 4.1 0). A 3.0kb fragment that corresponded to the entire eDNA insert 

was excised. Preparative Eco Rl digests (2.9.5) were performed and the 

3.0kbp fragment was recovered by electroelution (lane 3, figure 4.1 0). 

4.2.11.1 PCR 

PCRs were performed with phage BS2xi template and a characterised A.gtll 

clone, A.gt6 (provided by C. Lilley). A.gt6 was used as a positive control (eDNA 
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insert of 0.9kb). PCRs were analysed by gel electrophoresis (figure 4.9). 

Negative controls failed to amplify a product (lanes 1 and 2) and a 0.9kb 

band was amplified from A.gt6, as expected (lane 4), however no product was 

amplified from A.BS2xi (lane 3). As amplification of the template eDNA did not 

occur using standard conditions, several modifications to the basic method 

were made. A magnesium titration is presented in figure 4.9. Several reaction 

buffer formulations have been published, but the standard MgCI2 final 

concentration is 1.5mM (McPherson et a/., 1991 ). In many circumstances 

different concentrations of MgCI 2 are necessary for successful amplification. 

On this basis it was decided to titrate the magnesium concentration. 1 Ox 

reaction buffers were made up with a range of magnesium concentrations. In 

each case the positive control PCR amplified a band at 0.9kb (as indicated), 

however no products were produced in any PCR when A.BS2xi was used as 

template (lanes 5, 6 and 8). 

4.2.11.2 Sub- cloning the Eco Rl eDNA restriction fragment 

An overview of the subcloning strategy and production of nested deletions 

from A.BS2xi is given in panel A of figure 4.-13. The 3.0kbp EcoRI eDNA insert 

was ligated {2.9.9) into pSK+ (2.9.5), to generate pBF2. Transformants were 

digested with Eco Rl and a fragment of the correct size (3.0kb) was excised 

(compare lanes 3 and 4 with lane 5 in figure figure 4.1 0). However PCR 

analysis of pBF2 also failed to amplify the insert. 

4.2.11.3 Nested deletions 

To facilitate sequencing pBF2 a series of nested deletions were generated 

(section 2.9.13). Unidirectional nested deletions rely upon the presence of a 

nuclease sensitive site (from which deletions proceed) and a nuclease 

resistant site. A Kpn I digestion of pBF2 produced two fragments (see panel B 

of figure 4.1 0, lane 7). Fragment A was excised from the gel and and an in gel 

self ligation performed (section 2.9.9) to generate pBFK. pBFK was digested 

with a variety of restriction endonucleases to map nuclease sensitive and 
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Figure 4.9 

PCR amplification of phage BS112xi 

PCR was used to amplify the DNA binding clone BS2xi. Ten nanograms of 

phage template DNA and 0.5J.1M each A.gtll forward and reverse primers 
(Promega) were added to each PCR. The magnesium concentration of the 

buffer was varied and a characterised A.gtll clone, A.gt6 was used as a positive 
control (eDNA insert of 0.9kb). Once the cycling programme had been 

completed, 20J.1I aliquots of each PCR were analysed on a 1% agarose gel. 

The lanes contained: 20J.1I PCR; 1, no template control; 2, no primers control; 

3, PCR with A.BS2xi template,1.5mM MgCI2; 4 , PCR with A.gt6, 1.5mM MgCI2; 

5, A.BS2xi, 0.5mM MgCI2; 6, A.BS2xi, 3.0mM MgCI2; 7, A.gt6, 0.5mM MgCI2; 8 , 

A.BS2xi, 7mM MgCI2; 9, A.gt6, 3.0mM MgCI2; 1 0, A.gt6, 7.0mM MgCI2. The gel 

was calibrated with 1.0J.lg Hin Dllll cut A.- DNA molecular weight markers in 
lane M. 

2.32Kb 
2.02Kb 
0.9kb 

M 1 2 3 4 5 6 7 8 9 10 



Figure 4.10 

Subcloning the EcoAI eDNA insert from A.BS2xi 

The entire eDNA insert from DNA binding protein clone A.BS2xi was excised 
by Eco AI digestion (A). The insert was gel purified and subcloned into Eco Al-

eut pSK+ to generate pBF2 (8). The lanes contained: M 1.01J.g Hin Dill- cut 

A.DNA. M1 1.01J.g Pst I cut A.DNA. 1, 1 OOng uncut A.BS 112xi; 2, 1.01J.g Eco Al

eut A.BS 112xi. Panels b and 8 are different exposures of the same gel. The 

lanes contained: 3, 1 OOng gel purified Eco AI fragment from A.BS2xi; 4, 1 Ong 

purified Eco AI- cut pSK+; 5, 1 OOng Eco AI cut pBF2; 6, 1 OOng Pst 1- cut pBF2; 
7, 1 OOng Kpn 1- cut pBF2 

3.0kb-

8 

3 4 5 6 7 M1 

A 

1 2 M 

Kbp 

2.84 
2.55 
2.14 
1.98 
1.7 

Kbp 

9.41 
6.56 
4.36 
2.32 
2.02 

b 

M13 4 5 6 7 

_KpnA 
fragment 

_ KpnB 
fragment 



resistant sites (figure 4.11 ). pBFK had a single Eco Rl site (5' overhang 

therefore nuclease sensitive), see lane 2 and a single Sac I site (3' overhang, 

therefore nuclease resistant), see lane 8. These two sites were in the correct 

orientation for use in the generation of nested deletions from the Eco Rl site. 

pBFK was double digested with Eco Rl and Sac I (figure 4.12, panel A). Exo Ill 

was added and a set of nested deletions, pBFND, were generated (section 

2.9.13). pBFND clones were annonoted with the time point from which they 

were taken, for example as pBFND2a was generated following 28 minutes 

treatment with Exolll. Timed samples from the Exo Ill digestion mix were 

analysed by gel electrophoresis (figure 4.15, panel B) and appropriately 

deleted reactions were transformed into competent E. coli SURE cells 

(2.8.2.2). 

4.2.11.4 Sequencing pBFK and nested deletions 

The universal M 13 reverse and M 13 ( -20) forward primers consistently failed 

to generate appreciable sequence data from pBF2 and pBFK (despite 

standard control sequencing reactions carried out in tandem working 

consistently). When sequencing from the M 13-20 primer site, the enzyme 

sequenced through the polylinker region into cloned insert then was unable 

to extend past a site located approximately 40bp into the eDNA (panel B, 

figure 4.13). Attempts at re- sequencing using different preparations of DNA 

were made, but sequence data was never obtained from this primer site. 

Sequence data generated in the reverse direction was of poor quality, with 

high background and was not of sufficient quality to be used for data bank 

searches or for the synthesis of internal primers. 

4.2.11. 5 Sequencing clone BS2xi directly 

A.gtll forward and reverse primers (Promega) were used to sequence A.BS2xi 

DNA directly. Various lambda DNA preparations were used, but reliable 

sequence data was not obtained from either primer site. 
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4.2.11.6 Sequencing nested deletions 

Nested deletions sequenced from the M13 forward primer site produced the 

same result as seen from pBFK (panel B of figure 4.13). The sequencing 

enzyme was not able to extend through the cloned insert. Nested deletions 

also consistently failed to sequence in the reverse direction until 

approximately half way (1.5kbp) through the eDNA insert (panel C of figure 

4.13). Low background nucleotide sequence data was obtained from clone 

pBFND2a, which was edited and used in an exhaustive homology search 

through the GenEmbl data banks (2.9.1 0.2). An exact match with ~

galactosidase sequence was given. The position and extent of this sequence 

within pSK+ is indicated in panel C of figure 4.13. 

4.2.12.7 Origin of~- galactosidase sequence 

Southern analysis of A.BS2xi was performed to determine whether ~

galactosidase was present. pSK+ was digested with Fok I (panel A of figure 

4.14) and the 181 bp fragment (which corresponded to the majority of 

pBFND2a sequence as indicated in panel D of figure 4.13) was used as a 

probe. The fragment was excised from the gel and randomly labelled 

(2.9.11.1 ). The specificity of the probe was determined by hybrid ising it to a 

southern blot that contained a dilution series of EcoRI cut pSK+ (panel B of 

figure 4.14). The blot was blocked and then incubated overnight with the 

181 bp pSK+ Fok I probe (described above). A single hybrid ising band of 

2.9Kbp (linearised pSK+) was observed, which did not cross react with the 

A.DNA in the marker lane. 

An agarose gel loaded with various restriction digests of phage A.BS2xi was 

blotted and probed with the Fok1 181 bp probe as described above (panel C of 

figure 4.14). The probe hybridised to the 3.0Kbp EcoRI fragment (lane 2) 

which confirmed that ~- galactosidase sequence was present in A.BS2xi. 
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Figure 4.13 : Analysis of nested deletions 

Panel A: Generation of nested deletions from A.BS2xi 

An overview of the generation of nested deletions from A.BS2xi is given below. The 
3.0kb eDNA is represented by an open box and vector sequences by a black line. E 
represents EcoRI; K, Kpn I and S, Sac I. The sites for the M 13 universal primers are 

designated by FOR and REV. The location of~- galactosidase sequence detected in 
pBFND28 is designated by a dashed box. 
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B(i): Nucleotide sequence of pBFK 

Sequence data using the M13 universal forward primer with clones pBFK and pBFND2a (panel C) is presented below. Sequencing 
from this primer site consistently produced the same pattern of result, with the sequencing enzyme encountering a structure that it could 
not read through just outside the polylinker region. Nucleotide sequence data from the M13 universal reverse primer site was of 
consistently poor quality, until approximately half of the eDNA had been deleted. A stretch of good quality sequence was obtained from 
pBFK2a. This sequence was demonstrated to correspond to ~- galactosidase. The position and extent of this sequence in ~
galactosidase in pSK+ is shown in panel D. 
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Panel B(ii): Nucleotide seguence of pBFND2a 

Modei373A 
Version 1.2.0 

060794_33 
Dye T erminator{AnyPrimer} 
Lane 33 
Signal: G:400 A:129 T:73 C:39 
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Panel C: pBFND28 

The lanes contained: 1- 3, 1 OOng Bam HI- cut pBFND clones. 1 , pBF16; 2 , 

pBFK26; 3, pBFND2a; 4, 100ng BamHI cut pSK+. The gel was calibrated 

with 1.0j..lg Pst 1- cut/.. DNA in lanes M. 

1 2 3 4 M 

5.07 
4.75 
4.5 



D: Extent of pBFND2s nucleotide sequence within pSK+ 

NlaiV Sau3AI 
flQnl Mboi 

TspRI Dpnii 
Maeiii Msei Mnli ~ Dpni 
I I I I I - I I 

GTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCT 
CA~;ACCAGACTGTCAATGGTTACGAATTAGTCACTCCGTGGATAGAGTCGCTAGACAGA 

GTTCATCCATAG 80 
GCAAGTAGGTATC 

I • I • I I I - I • I 
18 29 38 49 55 

34 55 
40 55 
40 55 

TspRI 
Bsri 

Sau96I 
NlaiV BsrDI 

.!&Qfl 
fl.Qtl 

CviJI 
Hnli 

Haeiii 
CviJI 

72 
72 

TTGCCTGACTGCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGA 160 
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Figure 4.14 

Southern analysis of DNA binding protein phage BS2xi 

A.BS2xi was analysed by Southern hybridisation with a pSK+ restriction 
fragment that corresponded to plasmid sequence detected in pBFND28. 

Panel A: Generation of probe 

The Fok I 181 bp fragment of pSK+ corresponded to the majority of pBF2a 
sequence data and was used as a probe. The lanes contained: 1, preparative 

Fold digest of pSK+ (1481, 1010, 287, 181bp fragments). 2,1.0Jlg uncut 

pSK+. The gel was calibrated with 1.0Jlg Pst 1- cut A.DNA in lanes M 

2.84 ===~=~ 
2.44 
2.14 
1.98 
1.70 

M 1 2 



Panel B: Southern blot of EcoRI- cut pSK+ 

The specificity of the probe was determined by hybridising it to a southern blot 

that contained a dilution series of Eco AI cut pSK+. A 1% agarose gel was 
blotted as described in materials and methods and then incubated with 1 os 
cpm of the pSK+ Fok I (181 bp) probe. The lanes contained: 1- 61 101 51 1 I 

0.1 I 0.01 and 0.001 ng Eco AI cut pSK+ respectively. The gel was calibrated 

with 1.0J.Lg Pst 1- cut A.DNA in lanes M. 

M1234 56 M 123 456 

2.9kbp 



Panel C: Southern blot of A BS2xi 

The lanes contained: 1- 5, 2.0J.19 ABS2xi DNA; 1 , uncut; 2, EcoRI- cut; 3 , Pst I 
cut; 4, Hin Dill- cut; 5 , BamHI- cut. The gel was calibrated with a fluorescent 

rule in lane FR and 1.0J.19 Pstl cut A DNA in lane M. 

FR 1 2 3 4 5 M 

kbp 
11.5 

5.07 
4.75 
4.50 
2.84 
2.44 
2.14 
1.98 
1.7 

1.16 
1.09 

0.8 

2 3 4 5 M 



4.3 Summary and further experiments 

Chapter three described the analysis of the ACPOS gene promoter in terms of 

its protein binding sites. A motif was identified that bound a protein detectable 

only in embryo. Complimentary oligonucleotides that contained this binding 

site were synthesised. These were multimerised and use as a probe to screen 

a library in a Southwestern experiment. A A.gtll library generated from mid

maturation B. campestris embryos was screened. The decision to use a B. 

campestris library was made due to the fact that the B.napus ACPOS gene 

probably originated from B. campestris. ACPOS shares 96% homology, within 

its coding sequence to a B. campestris eDNA clone, which is strong evidence 

that the B. campestris seed ACP gene is the progenitor of the B. napus 

genomic ACPOS (B. napus originated from a cross between B. campestris and 

B. oleracea). One positive clone was isolated, phage BS2xi, which did not 

bind to control DNAs. This was taken as evidence that A.BS2xi contained a 

sequence specific DNA binding clone. Lysogens were generated from 

A.BS2xi and the encoded recombinant protein was analysed by gel 

retardation. Poly (dldC:dldC) assays demonstrated that a sequence specific 

DNA binding domain was present. Furthermore competition assays 

demonstrated that the formation of DNA- protein complexes was dependent 

on the presence of AAGAC. Western blots using anti ~- galactosidase 

antibodies demonstrated that this DNA binding motif was translated from an 

internal initiation codon. 

Several strategies were attempted to in order to characterise and sequence 

the eDNA. Endonuclease restriction of A.BS2xi with Eco Rl excised the entire 

3.0kbp eDNA insert. This was subcloned into pSK+, to generate pBF2 and 

maintained in SURE cells. However it was observed that when the subcloned 

eDNA insert was maintained in JM1 01 cells, the correct plasmid could not be 

obtained. In addition PCR amplification of phage BS2xi and subclones 

consistently failed. 

A series of nested deletions, pBFND, were generated and sequenced. Data 

from the forward primer site was blocked, possibly by secondary structure and 

112 



reliable data from the reverse direction was not obtained until approximately 

1.5 Kbp from the 5' end of the eDNA. This result is consistent with PCR not 

amplifying a product as the Taq polymerase would have encountered the 

same structure that prevented the sequencing enzyme extending through it. 

The sequence data from clone pBFND2a was used in an homology search 

through the GenEmbl databanks which demonstrated that it corresponded to 

~- galactosidase sequence. Southern analysis with a restriction fragment that 

encompassed the identified ~-galactosidase sequence showed that it was 

also present in the original A.BS2xi clone. The origin of this sequence was 

unknown. 

The presence of contaminating plasmid DNA in A.BS2xi obviated one strategy 

which could have been used to isolate a full length clone. This was to re-

screen a A.Zap II library with the eDNA insert from A.BS2xi. eDNA sequence is 

automatically subcloned following plasmid rescue in A.ZAPII. However the 

A.ZAPII vector contains ~- galactosidase, so this approach was not possible. A 
I 

possible strategy that could be tried in order to obtain clones that do not 

contain plasmid sequence is one of "shotgun cloning". This would involve 

digesting A.BS2xi with a frequent cutter, such as Sau 3A and to clone the 

restriction fragments into a non pUC based vector such as pSU 19 (from the 

pSU series of plasmids). Southern analysis of the recombinants with a probe 

that contained ~- galactosidase sequence could discriminate between clones 

that contained plasmid sequence and those that did not. Clones that did not 

contain plasmid sequence could then be sequenced, or used directly to re-

screen a A.ZAPII library. If this approach failed then a new library could be 

screened with the multimerised binding site probe to re- isolate the binding 

protein. 
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Chapter 5 

Characterisation of the ACP Promoter Binding Protein. 

5.1 Introduction 

The analysis of the ACP05 promoter in terms of its protein binding sites was 

discussed in chapter 3. A motif that bound an embryo protein was 

characterised. This motif was incorporated into a pair of oligonucleotides 

which were polymerised and used to screen an expression library for the 

corresponding DNA binding protein. A single clone, A.BS2xi was isolated from 

this Southwestern experiment and is described fully in chapter 4. Gel 

retardation assays were used to analyse the recombinant protein encoded by 

A.BS2xi. Competition assays demonstrated that the eDNA encoded a 

sequence specific DNA binding domain. This chapter deals with the 

characterisation of A.BS2xi and the recombinant protein that it encodes. 

5.1.1 Expression of A.BS2xi 

The main objective of experiments described in this chapter was to determine 

whether clone A.BS2xi corresponded to an expressed protein. The entire 3.0 

kbp eDNA insert from A.BS2xi was excised upon EcoRI digestion and used to 

probe northern blots in order to ascertain whether it hybridised to an 

expressed message. Gel retardation assays showed that detectable levels of 

the ACP05 promoter binding protein were only present in embryo extract (and 

not in leaf extract). Northern blots that contained RNA extracted from different 

tissues and from developing rapeseed were also probed to analyse the 

expression pattern of A.BS2xi. A second probe was generated from a seed 

expressed ACP eDNA and was used to determine whether there was a 

correlation between the expression of A.BS2xi and the protein it was proposed 

to be involved in regulating. 
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5.1.2 Chromatography 

The stability and binding characteristics of the ACP05 promoter binding 

protein from embryo extract were examined following liquid chromatography. 

It was envisaged that if the stability and concentration of the binding protein 

remained high enough following a round of chromatography, parameters 

such a native molecular weight could be assigned. Embryo protein was 

limited, therefore the first round of chromatography had to represent a large 

purification step. It has been well documented that the polyanion heparin 

interacts with nucleic acid enzymes and DNA binding proteins (Losito et a/., 

1981; Farooqui and Horrocks., 1983). 1m mobilised heparin has been used as 

a successful affinity matrix in the purification of several DNA binding proteins, 

such as reverse transcriptase (Bhikhabhai eta/., 1992) and RNA polymerases 

(Hammon and Holland., 1983). Gel retardation assays were used to analyse 

column fractions and thus follow the DNA binding protein through 

chromatography. 

5.2 Results 

5.2.1 ·Northern blots 

In order to determine whether A.BS2xi eDNA hybridised to an expressed RNA, 

northern blots were probed. Blots were prepared with poly (A)+ enriched RNA 

as described in section 2.1 0.1. The blots were blocked and then hybridised 

with the probes described overleaf as detailed in section 2.1 0.2. Filters were 

washed and hybridising bands detected as outlined in section 2.9.12.3. The 

density of specific bands on autoradiographs was determined by laser 

densitometry (2.1 0.3). 

5.2.2 Probe preparation 

Probe 1: ACP promoter DNA binding protein eDNA clone A.BS2xi 

The entire 3.0kb eDNA insert of phage BS2xi was excised on digestion with 
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Figure 5.1 

Analysis of probe 2 
2ng of the seed expressed eDNA ACP29C08 was used as target template in 

each PCR. O.SJ.LM internal primers (see below) were used to amplify a 240bp 
3' coding fragment (panel A). The 240bp PCR product was gel purified and 
the DNA recovered by freeze squeeze. SOng of the gel purified product was 
further analysed by restriction digestion (panel B). 

PCR primers used for probe preparation: 

for: S' 
rev: S' 

GGCCTAGGTCACCTCTTGGCTTGCACGAGC 3' 
GGCCATGGCCAAACCAGAGACAGTTGAG 3' 

5.07 
4.7 
4.5 

A:PCR 

M 

M 1 2 3 4 5 

1 2 

240bp 

131bp 
109bp 

The lanes contained:1- 5, 20111 each PCR; 1, no template DNA control 
reaction (CR); 2, no enzyme CR; 3, no primers CR; 4, for and rev primers, 
ACP29C08 template DNA (240bp product); 5, for and rev primers, pUC 
template (280bp product) 

B: Analysis of Probes 
1 and 2, SOng purified product from ACP29C08 reaction; 1 , undigested; 2, 

Hin~ digested. The gel was calibrated in lane M with 1.0J.Lg Psn digested A. 
DNA 



Eco Rl (panel A of figure 4.1 0). Purified DNA was labelled by random primer 

reaction (2.9.11.1) and purified by centrifugation through a Biospin P-30 

column (2.9.11.1) and the specific activity calculated from liquid scintillation 

(routinely 106 cpm/ng). 

Probe 2: ACP eDNA 29C08 

The seed specific ACP eDNA clone ACP29C08 (Safford et a/., 1988) was 

provided by Prof. A.R.Siabas. PCR was used for probe preparation, to amplify 

a 240bp 3' coding sequence fragment using internal primers. A size control 

PCR using a pUC plasmid with a characterised insert (280bp} was set up in 

tandem using pUC forward and reverse primers (2.9.14). Following 

amplification, PCRs were analysed by gel electrophoresis (panel A of figure 

5.1 ). Negative control reactions performed to monitor contamination failed to 

amplify any product (lanes 1- 3) and the positive control reaction contained a 

product of the expected size (280bp, lane 5}. The PCR of ACP29C08 

amplified a fragment of the expected size, 240bp (lane 4). The remaining 

240bp PCR product was gel purified (2.9.6.1) and analysed by restriction 

digestion. The correct product contains one internal Hint I site, which would 

produce fragments of 131 bp and 1 09bp on digestion. It can be seen in panel 

8 of figure 5.1 that the PCR product produced two fragments of the expected 

size (lane 7) which was consistent with it being the correct product. The 

purified PCR product was labelled by random primer reaction (2.9.11.1) and 

purified from unincorporated radionucleotide by centrifugation through a P-

30 spin column and the specific activity calculated from liquid scintillation 

(routinely 106 cpm/ ng DNA). 

5.2.3 Northern hybridisations 

These were performed using the two probes described above in section 5.2.2: 

Probe 1: eDNA BS2xi 

A 10 hour phospho imager exposure of a northern blot hybridised with probe 1 

is presented in panel A of figure 5.2. A single hybridising band of 
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Figure 5.2 

Expression pattern of the DNA binding clone A.BS2xi 

Poly A+ enriched RNA was electrophoresised through 1.4% formamide gels and 
blotted onto Hybond N membranes. Blots contained RNA extracted from leaf, root, 
seed and series of developing embryo. Blots were blocked and then hybridised 
with probe 1 (described in text), then stripped and reprobed with probe 2. A 10 
hour phosphoimager exposure and a 36 hour autoradiograph of a blot probed in 
this way are presented in panel A and C respectively. The relative expression of 
the binding clone was determined by laser densitometry (panel B). A series of 
developing embryos were also hybridised with both probes (panel D). 

A: Northern blot hybridised with probe (1 ): eDNA A.BS2xi 

The lanes contained: 1.011g mANA from E, embryo; L, leaf and R, root. 

E L R 

1.8Kbp 

8: Relative expression of DNA binding clone 

B = Background 

c 
0 ·;n 
(/) 

~ 
c.. 
X 60 Q) 
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approximately 1.8kb was observed in both the embryo and root lanes. An 

appreciable level of expression was not observed in the leaf lane. This result 

demonstrated that A.BS2xi eDNA hybridised to an expressed message, which 

was detected in embryo but not in leaf mRNA, at this exposure. The relative 

level of expression was measured by densitometry (2.1 0.3) and determined to 

be approximately five fold higher in embryo than in root tissue (as shown in 

panel B). This correlated with data obtained from gel retardation experiments 

(chapter 3), in which the activity of the ACP promoter binding protein was also 

only detected in embryo tissue. 

Probe 2: ACP29C08 eDNA 

Northern filters were stripped (2.1 0.2), reb locked then rep robed probe 2, the 

PCR fragment amplified from ACP29C08. The results are presented in panel 

C of figure 5.2, which shows a 36hour autoradiograph. A single hybridising 

band of approximately 0.75kb was observed in the embryo and root lanes, but 

not in the leaf lane. This band corresponds to full length ACP eDNA 29C08 as 

demonstrated previously (Safford eta/., 1988). 

Northern blot using mRNA from developing rapeseed 

Both probes were hybridised simultaneously to northern blots that contained 

mRNA from a series of developing rapeseed. Blots were blocked, hybridised 

and washed as described previously. Panel D of figure 5.2 shows a 20hour 

Phosphoimager exposure of a northern blot probed as described above. Two 

hybridising bands bands were observed; the 0.75kb represents full length 

rapeseed ACP29C08 mRNA and the second band at 1.8kb represented the 

ACP05 promoter binding protein transcript. It can be seen that the expression 

of ACP increases to a maximum around 50DAF, then decreases (as 

previously described by Safford and colleagues (Safford et a/., 1988). The 

level of expression of the DNA binding protein transcript is far lower than the 

ACP transcript (estimated to be approximately 20- 30 fold less as the level of 

background in double hybridised blots was too high to quantify the relative 

expression accurately by densitometry). The level of the DNA binding protein 

transcript also increased to a maximum at around 50DAF then decreased, but 

117 



was still detected at 63 OAF, at which point the ACP transcript was not 

detected . 

. 5.2.4 Preliminary characterisation of the ACP promoter binding 

protein from B.napus 

5.2.4.1 Effect of salt on embryo protein-DNA binding interaction 

A gel retardation assay performed over a range of salt concentrations with 

embryo extract (2.11.6.1) is presented in figure 5.3. Sequence specific DNA

binding is mainly mediated through electrostatic interactions. On the addition 

of salt, these interactions should be disrupted and subsequently at high salt 

concentration binding completely inhibited. Thus with an increase in the salt 

concentration the formation of retarded complex should disappear. The 

concentration of salt at which binding is inhibited was used as an 

approximate guide when assaying column fractions for eluted activity. 

The AAGAC containing oligonucleotide BS (table 3.3) was used as probe in a 

set of standard assays (section 2.9.15.1 ). The only variant was the KCI 

concentration of the binding buffer (figure 5.3). Lane 1 is the no protein control 

and shows the mobility of the free probe (indicated as FP). The assays in 

lanes 2- 8 were incubated in binding buffer made with 0, 1 00, 200, 250, 300, 

500, and 1 OOOmM KCI, respectively. The formation of the DNA- protein 

complex was stable in KCI up to 1 OOmM. Above this salt concentration the 

stability of the retarded complex was reduced, probably due to disrupted 

electrostatic interactions and subsequently was not observed. The titration 

was repeated using NaCI, with identical results (not shown). 

5.2.4.2 Effect of different polyanion competitors on complex formation 

It has been reported that by changing the non- specific polyanion competitor 

in a gel retardation assay, different DNA- protein complexes can form (Lee 

and Schwartz, 1992). In retardation assays using the same DNA probe and 

protein extract, but different polyanion competitors, different DNA complexes 

were observed with each competitor. For instance one complex was detected 
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with poly (dldC:dldC}, but with poly (dGdC:dGdC} an additional, previously 

undetected complex was observed. It was concluded that multiple complexes 

formed as a result of differential affinities of the binding proteins in the extract 

used for each polyanion competitors (Lee and Schwartz, 1992). 

The ACP promoter binding protein was assayed for its affinity towards 

different polyanion competitors. Leaf extract was also analysed in case a 

previously unobserved binding protein was present and detectable using an 

alternative competitor. Various poylanions (poly (dldC:dldC), heparin, poly 

(dGdC:dGdC) and E. coli DNA) were used as non- specific competitors in a set 

of standard assays (2.9.15.1) with oligonucleotide BS as probe (figure 5. 4). A 

single DNA- protein complex formed consistently with all the polyanions 

tested and no activity was detected in leaf extract with any of the alternative 

competitors. It was concluded that the AAGAC binding protein was embryo 

specific and did not possess differential binding affinities for any of the 

competitors analysed. 

5.2.4.3 Heparin agarose affinity column chromatography 

Heparin agarose liquid chromatography was performed as described in 

section 2.11.7.1. with embryo extract. The fractions were analysed using gel 

retardation assays (figure 5.5 panel B) in a modified binding buffer made 

without salt, in order to compensate for the increased salt in column eluent 

("no salt": 20 mM Tris-HCI, pH 7.5, 1 mM OTT, 1 mM EDTA and 3% glycerol). 

The protein concentration of each fraction was assayed by. the Bradford 

method (2.11.3) and is presented in panel A of figure 5.5. A gel retardation 

assay with column fractions 25- 38. is presented in panel B. Lane 1 contained 

no protein and the mobility of the free probe is indicated (FP). Lanes 2-15 

contain 1.01J.I of the fractions 25- 38, respectively. DNA binding activity started 

to elute at approximately 250mM KCI (fraction 27) and the highest activity was 

contained in fractions 27- 30, which was in the main peak of eluted protein 

(panel A). Binding was not detected in fractions above 35. 

/ 
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Figure 5.4 

Analysis of the binding characteristics of BS probe with different polyanion 
competitors 

DNA binding proteins can possess differential affinities for polyanion 
competitors which can result in the detection of additional DNA- protein 
complexes. The following set of poly anion competitors (COMP) were used to 
assay the ACP promoter binding protein for differential binding activity: 
poly(dldC:dldC)- polydldC; poly(dGdC:dGdC)- pG; heparin- H; E. coli DNA
Ec). Both leaf and embryo extract was analysed. The Origin (0) and mobility 
of the Free Probe (F P) and DNA- Protein complex (DNA-PROT) are 
indicated. 

LANE 

PROT 

COMP 

0 

DNA 
PROT 

FP 

1 2 3 4 5 6 

LEAF 

POLy dldC II dGI [8] ~ 

1 2 3 4 5 6 

EMBRYO I 
POLy dldC II dGI [8] ~ 

The lanes contained: 1, no protein, 1.0jlg poly (dldC:dldC), 2, 1.0jll protein, 
no poly (dldC:dldC); 3, 1.0111 protein, 1.0jlg poly (dldC:dldC); 4, 1.0jll protein, 
1.0jlg poly(dGdC:dGdC); 5, 1.0jll protein, 1.0jlg heparin; 6, 1.0jll protein, 

1.0jlg E. coli DNA. 



5.2.4.4 Analysis of the DNA binding protein detected in heparin column 

fractions 

Heparin column fractions 27- 30 exhibited the strongest interaction with the 

AAGAC binding site probe. These were pooled and the specificity of the DNA 

binding interaction was determined by a set of competition assays (3.2.1 ), 

using the modified "no salt" binding buffer. The results of a typical competition 

assay are presented in panel C of figure 5.5. Lane 1 contained no poly 

(dldC:dldC) and lane 2 contained no protein. The mobility of the free probe is 

indicated. Lane 3 contained protein and poly (dldC:dldC) and the specific 

DNA - protein complex is indicated. A excess of the non- specific competitor 

oligo MBS was added to the assays run in lanes 4 and 5. MBS contained a 

modified AAGAC motif (table 3.3) and the addition of a large excess of this 

competitor has no effect on the formation of the specific complex. An excess of 

the specific oligonucleotide competitor BS were added to assays 6-8. BS 

bears an AAGAC motif (table 3.6) and the retarded DNA- protein complex was 

effectively competed with unlabelled BS. It was concluded that the DNA 

binding protein detected in fractions 27- 29 from the heparin agarose column 

was the embryo AAGAC binding protein. 

5.2.4.5 Further chromatography 

The fractions that contained the highest specific binding activity (27-29) from 

heparin column chromatography were pooled and used in an attempt to 

determine the native molecular weight of the binding protein. Fifty microlitres 

(approximately 2501J-g) of the pooled fractions was thawed on ice and 

immediately loaded onto a calibrated gel filtration column (2.11.7.2). The 

column was eluted as described in 2.11.7.2 and fractions were collected, 

snap frozen in liquid nitrogen and subsequently assayed by gel retardation 

with oligonucleotide BS, as described above. Gel filtration columns were 

repeated, but reproducible binding activity was not seen. Following heparin 

agarose chromatography the active column fractions were stored as frozen 

drops at -80°C (2.11.6). Periodic checks of activity showed that the stability of 

the DNA binding protein was significantly reduced, with most binding activity 

lost within a week. 
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Figure 5.5 

Gel retardation analysis of heparin column fractions for embryo DNA binding 
protein 

Heparin agarose affinity liquid chromatography was performed with 50mg 
embryo protein as described in materials and methods. 1 OOJ..LI fractions were 
collected and snap frozen in liquid nitrogen. The protein concentration of 
each column fraction was determined by the Bradford method, using 
ovalbumin to generate calibration curves (panel A). Fractions were also 
analysed using gel retardation assays, for the presence of ACP promoter 
binding protein (panels B and C). 

Panel A: Protein concentration of fractions 

30 

DNA BINDING ACTIVITY 

20 -D) 1!1 ::t 

Vv". -c ·a; 
0 
~ 10 \... c.. 

0 
10 20 30 40 50 

Fraction number 



Panel B: Gel retardation analysis of column fractions 

Heparin agarose column fractions were analysed by gel retardation assays for DNA binding activity. The The lanes 

contained: 1-1 5, 1.0j..lg poly (dldC:dldC), 10 OOOCPM labelled oligonucleotide BS; 1, no protein; 2-1 5, 1.0 1-11 fractions 
15- 28, respectively. Incubation was in modified binding buffer: 20mM Tris.HCI pH 7.5, 1 mM DTT, 1 mM EDTA and 3% 
glycerol. 

300MM 

LANE I 1 2 3 4 5 6 I 7 8 9 10 11 12 13 14 15 

FRACTION 25 26 27 28 29 I 30 I 31 32 33 34 35 36 37 38 

01 

.. 

FP ~ 



5.3 Summary and further experiments 

Northern blots were probed with A.BS2xi eDNA. A single hybridising band of 

approximately 1.8kb was detected. This showed that A.BS2xi corresponded to 

an expressed message. It also demonstrated that the clone contained 

approximately 1.2kb unrelated DNA sequence. This result was consistent with 

Southern experiments that detected plasmid DNA sequence in A.BS2xi 

(chapter 4). The expression of the DNA binding protein was not detected in 

leaf tissue, was expressed at a high level in embryo tissue and at a lower 

level in root tissue. This pattern of expression correlated with that of the seed 

specific ACP29C08 eDNA clone (Safford et a/., 1988). Such a correlation 

should be expected for a putative transcription factor and its cognate gene 

product. The expression of the DNA binding clone was also examined in 

developing rapeseed and was found to increase to a maximum level at 

approximately 50 OAF (Days After Flowering), then decrease. The timing of 

maximum expression again correlated with ACP29C08. 

Embryo extract was fractionated by heparin agarose liquid chromatography. 

Fractions were assayed for the presence of the ACP promoter binding protein 

by the use of gel retardation assays. The protein was followed through one 

round of heparin agarose chromatography, however following 

chromatography there was a marked reduction in stability and 

characterisation of the protein was taken no further. This reduction in stability 

could have been as a result of dilution, the removal of stabilising protein 

factors during chromatography or mechanical damage from ice crystal 

formation. The main difficulty in the characterisation of the ACP05 promoter 

binding protein was the limited amount of starting material. The preparation of 

staged embryos was time consuming and bulk preparations could not be 

made. A future strategy which could possibly circumvent this limitation would 

be to optimise a protein extraction protocol using whole seed. If binding 

factors were still present at a detectable level in this extract, then alternative 

purification strategies could be attempted with the greater amounts of material 

available. 
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Chapter 6 

eDNA Cloning of Enoyl ACP- Reductase 

6.1 Introduction. 

6. 1 . 1 Enoyl ACP- reductase 

Enoyl ACP- reductase (ER) is a well characterised component of the plant 

fatty acid synthetase complex (Siabas eta/., 1986; 1990; Kater eta/., 1991; 

1994; Slabas and Fawcett., 1992; Fawcett eta/., 1994). It catalytically reduces 

the trans- 2, 3 double bond of a 3- ketoacyl- ACP intermediate, to form a 

saturated acyl- ACP, which in turn can serve as the substrate for the next 

, condensation reaction {the individual reactions of the FAS system are listed in 

table 1.2) . 

. The Reduction of ketoacyl intermedates .by ER 

There are two detectable enzyme activities in plants which have different 
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patterns of expression and different substrate specificities, one form is NADH

dependent and the other prefers NADPH. (Shimakata and Stumpf, 1982a; 

1982d; Slabas eta/., 1986; 1990). The expression of ER mR.NA and protein 

isoforms was previously analysed by hybridisation studies and two 

dimensional Western blots (Fawcett et a/., 1994). These experiments 

demonstrated that ER was regulated temporally during seed development, 

with the increase in message preceding the increase in ER protein. This in 

turn preceded the deposition of lipid. Four isoforms (ERI- IV) were detected in 

both leaf and seed tissue, but not at equimolar amounts. There were two 

major and two minor isoforms, with the expression of all four proteins 

significantly higher in the seed than in the leaf (Fawcett eta/., 1994). 

Southern analysis of ER in B. napus showed there were four genes present, 

two of which were inherited from each of its parents, B. campestris and B. 

oleracae (Kater eta/., 1991 ). Prior to this work, only two full length eDNA 

clones had been characterised from B. napus: pEAR?, isolated from a Rafael 

cv embryo library (Kater., eta/ 1991) and pEALS, isolated from a Jet Neuf cv 

leaf library (A. Fowler., unpublished results). 

The main objective of experiments described in this chapter was to derive 

additional information about the differential expression patterns of ER 

isoforms. A prerequisite was to screen a B. napus library in order to isolate 

additional ER clones and analyse specific regions of interest. It is well 

established that the leader peptide sequence serves to direct the 

compartmentilisation of nascent polypeptides (Zimmermann and Meyer., 

1986). Several lines of evidence currently show that there are one or possibly 

two membrane associated forms of ER (pers. comm. A. Fowler), so this area 

was of interest. In addition, the 3' untranslated area of transcripts has been 

shown to be important in the stability and turnover of message (Decker and 

Parker., 1994; Hagan et a/., 1994; Nanbu et a/., 1994). This area might 

therefore be implicated in the differential expression of the ER isoforms, so 

was also targeted. 
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6.2 Results 

6.2.1 Probe preparation 

The nucleotide sequence of pEALS is presented in panel A, figure 6.1 (A. 

Fowler., unpublished results). It is approximately 1.3kb, with a 73 amino acid 

leader peptide. A 3' EcoRI restriction fragment that contained 16 codons and 

the entire 3' untranslated region (boxed in panel A) was used as probe. 

pEALS was digested with EcoRI (section 2.9.5) to generate fragments of 295S, 

1163 and 1S7 bp (panel B, figure 6. 1 ). The digestion was gel fractionated 

(2.9.6.1) and the 1S7bp fragment was excised and labelled directly in the gel 

slice by a random primer reaction (section 2.9.11.1 ). The labelled DNA was 

purified by centrifugation through a Biospin p-30 gel filtration column and the 

specific activity was calculated from liquid scintillation. 4x 1 Q6 CPM was used 

to screen 200 000 pfu. 

6.2.2 Description of library used 

The library used was constructed from total B. napus cv. Jet Neuf RNA 

isolated from mid- maturation embryo. First round eDNA synthesis was poly A 

primed and adapters were used to directionally clone the eDNA into the 

lambda vector A.Zapll, such that the 5' end of the eDNA was cloned into the 

EcoRI site and the 3' end into the Xhol site. 

6.2.3 Screening the library 

A total of 200, 000 pfu (50, OOOpfu/ 22cm2 plate) were screened as described 

in section 2.13. Ten putative positives that had the characteristic comet 

shaped plaque were isolated and taken through a further two rounds of 

screening. Plasmids that contained the positive cDNAs were generated by 

plasmid rescue (in vivo excision of bluescript phagemid from the A.ZAPII 

vector) as described in section 2.13.3, to generate the pERE series of 

plasm ids. 
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Figure 6.1 

ER eDNA clone pERLB 

A: Nucleotide sequence 

The complete nucleotide sequence of pERL8 is given below (A. Fowler, 
unpublished results). The sequence begins with the start codon for the leader 
peptide and the start and stop codons for the mature peptide are boxed. The 
position of internal sequencing primers is indicated above the complimentary 
sequence. The 3' EcoRI fragment used as a probe is outlined. 

:uu 

~~~~~~~~~~~~~~~~~~~ 
. • r. • . . . . ~ .... .... -~ • .'-I. • l R • ~ 1 S S 

9ci31 
.:..AA GTT GTT ;._;..; GC; GCG .:..cc 7.:..c .:...TT S-:'C GGT GCC .~.AT CCC .;GG ;._:..c GCA TCA TGG GA.C 
K V ~/ t: . . G ..; ;... N ? ?. ~J .-. S W D 

121/41 l:1t51 
.:..AA C'IT GCC TGC .0.C'T CGC G.T c:.o. TCG .o_:_; C.'-.C GGA TGT TI'G .'.GA ;:._;c .o_o.c AGT TCT CIT 
K L n. C 'I' :\ . . S . . G C w • • :-! :·. S S L 

181/61 2ll/71 ~ ~ 
~~~~~~~~~~~~~K."TG~~~~~~ 
= '' S K K S ~ 3 ~ ~ : K A M S ~ S S E N 

776 271/?1 
.;AG GeT TCT TC':' GG.; C'?:' CCT _:._:-:- G.:..T ':"':'--.:; .:..G.:.. GGG ;..;.A .<..GG GCT TTC .!.TT GCT GGT ATA 
K A S S G L J ~ G K R A ~ A G 
301/101 ::1/111 
GCT GAT G.;T .:_;T C-G.; T.o.T GGT ·:GG GCC .0.":.; GCC .:...;;.. TCT CIT GCT GCT GCT GCT GCT GAA 
A D :J N G :::; ., .. .. :Z S L .:.. .-. .-. .:-~. .;. E 
361/121 :Sc/131 
ATA TTG GTI' GGG .:..c.:.. TC-G G7I' CC:' GC.:.. ::: _:_:_c .:..'IT TTC GrlG .:..CG nGC C':'G r.GA CGT GGA 
I L V G ~ :1 .. ~ 1 E T 5 - ~ R G 
421/141 <' 371 
.=.....~ TIT GA.C c.:..G ':':.; CC-C ::7G c:-.:; CC7 ::;_:_c C--CG TC.; TTG ATG G . .;G .:..IT _:.._:...._; .~'\G GTT TAT 
K F D Q _ .. _ S S L M _ ~ K V Y 
481/161 ~!1/171 

CCT TI'G GAT GC'I' GTG T':":' G.:;c .0D:' CCT ::;.:_:; G.:..T GTG CCT GAA GAT GTG .:_:_; GCG AAT AAG 
P L D ~ - _ J V P E D V ~ ~ N K 
541/181 571/191 
====~~~~~=~~=GCT~~~~~= 
RY.~G...,S .... QSAASC .=\i\0 

601/201 .031/211 
TTT GGA ACC .;TT G.:;c .o.?:: :::T G':"C C.0.C :::.:.. CTI GCA .>.AT GGG CCC G.>.G GTT .:..GC AAA CCT 
F G T -, .. _ _; N G ? .... 3 K ? 

661/221 o91t231 
CIT CTG G.'.G AC.'. TC:.; .:,s.: .. :...:...; GC.C ':".0.C C":C GCT GCT ATC TCT GCT TCG .'.GT T.>.C TCT TTT 
L L - T _ .. .. G .. A I S A S _ S F 
721/241 75U251 
GIT TCC CTC CC .~GG C.'-.T C":C C":G CC.; .:.::-:: .~TG .;AC CC.; GGA GGT GCT TC": .;T.; TCT CIT 
V S L ~ .. .. ~ ~~ ~r P G G ~ - S L 
781/261 311/271 
.;CT TAC A'IT GCT ':'C':' -::;.::._; .::..GG .:..!c .:.TI :::::' C-GG T.;T GGT GGG GGT _;TG .:..G: TCT GCC .!..AA 

TY ··--·· ·~ GGG~·!SS.'\K 
841/281 371/291 
GCC GCA CT.; G.;G .:.GT G.:O..T .:.:;. cc.,:; GTG :::-:: GT.; TTT GAA GCT GGA .:;GG ;....;.; C.;A A..:;A AIT 
A.'"'L .... _J .. FEAGR:\QKI 
901/301 931/311 
AGG GTC A.;c ACC .;TC TCT C.CA GGT CCT 7.'S c.,:;;. AGC CGA GCA GCG AM GCA AIT = TTC 
P.. NT_ .. <'? GSRA.".K.~ GF 

36ZN > ?91/331 
ATA GAC ACC .;TG .;TT G.:O..G T.;T TC.:; T.;c .:_;T .:;AT GCG CCT GIT CAG ~ .;c.; TI'G ACC GCA 
I D T M _ S Y . . ": .~ P V Q K '" '-' T .; 
1021/341 1051/351 
GAT G.V\ G'IT GC-G _.:_.;T ·~.; G.:.; CCC T~C ~~ GT.; TCT CCA 'ITG GCC TCT GCC ATA ACC GGT 

D E V G N .. .. .. V S P L A S ~ T G 

1081/361 ~E~co~R~!~~~~~--~~--~-------------
GCA~~=~~~~~~#~~~~~~~~~ 
A T I ":: . . ;--. :! (; ~ . . S H G V _; ~ J 3 ? V 
1141 381 I 1171/391 
TTC i'.AA GAC CTC .;.;.; T.;G.'-.~.o<... c,, T'!'.; .-,~: .~;c TGT AGT AAC TCA CTT 'IT':' CIT GTG CTG 
F K D L ~ • . 
1201/401 '"31/411 
CAT TTT TIT c.;.; CTG .;GT GG.; TGC TGT . _. TCA A..'<C TAC TTT GIT TTC T.:..G .;.;c ~ ATA 



6.2.4 Characterisation of the positive clones 

6.2.4.1 Determination of eDNA insert size 

The size of the eDNA insert was determined by PCR amplification, using the 

standard method described in section 2.9.14 and forward and reverse primers 

for pSK (listed in table 2.1 ). Following amplification PCRs were analysed by 

gel electrophoresis (figure 6.2). A positive control using pSK+ as template 

was performed in tandem (lanes 11 and 12: no insert=245bp) and the no

template control reaction (lane 13) failed to amplify any product. The size of 

the eDNA inserts were calculated from comparison with the molecular weight 

standards and are listed in table 6.1 below (the contribution from primer 

sequence has been subtracted). 

Table 6.1: Size of eDNA insert for positive Enoyl- ACP reductase clones 

p ERE Clone Size (Kbp) 

1.9 0.35 

1.9h 2.5 

1.30 0.8 

1.30h 2.9 

1.31 0.76 

4.0h 1.3 

3.33 0.4 

4.3 1.2 

4.21 0.7 

4.21h 1.6 

From the determination of insert size it was noted that only pERE 4.0h (1.3kb), 

4.21 h (1.6kb), 1.30h (2.9kb) and 1.9h (2.5kb) could possibly contain full 
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Figure 6.2 

PCR analysis of positive clones 

The size of cDNAs was determined by PCR amplification. 2ng template DNA 

and 0.5Jlg pSK primers were used per reaction. Following amplification 20Jll 
each reaction was analysed on a 1% agarose gel. The lanes contained: 1 -
1 2, 20Jll PCR reaction performed by the standard method with the following 
pERE clones as target templates; 1, 1.9; 2, 1.9h; 3, 1.30; 4, 1.30h; 5, 1.31; 6, 

4.0h; 7, 3.33; 8, 4.3; 9, 4.21; 1 0, 4.21 h; 11 and 1 2, 20 and 30 Jll respectively 
of positive size control PCR (245bp); 1 3, no template control PCR. The gel 

was calibrated with 1.0 Jlg Pstl- cut A. DNA in lanes marked M. 

1.16 
1.09 
0.51 

M123456 78 9 10 11 12 13 



from the large size of these cDNAs) multiple ligation events had resulted in 

additional clones present at the 5' and/ or 3' end of the ER eDNA. FASTA 

searches (2.1 0) were conducted for the unknown eDNA sequences and the 

top matches are presented in table 6.3. 

Table 6.2: Sequence analysis of artifacts: Top matches from 

FASTA search of GenEMBL database 

pERE clone 

1.9 

1.30 

1.31 

3.33 

4.21 

Top Match from FASTA search 

79.2% identity to Brassica campestris clone BE5 

(storage protein napin clone) 

91% identity with B. campestris clone pBC2SC 

(2S storage protein clone) 

96.7% identity with B. campestris clone BE5 

(storage protein napin clone) 

98.1% identity with Brassica napus cru4 mANA 

(cruciferin cru4 subunit clone) 

99.1% identity with BngNAP 1 gene 

(B. napus napin gene) 

6.2.4.5 Sequence comparisons of authentic clones 

The clones were divided into two groups based on nucleotide sequence 

differences: 

Group A: pERL8, pERE1.30h and 4.3 

Group B: pERE1.9h, 4.0h and 4.21 h 
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The nucleotide and corresponding translated amino acid sequences of the 

authentic ER clones are presented in figure 6.3 and the comparison of 

different regions is discussed further below. 

Table 6.3: Sequence analysis of 5' and 3' cDNAs in multiple ligated clones: 

Top matches from FAST A search of GenEMBL database 

pERE clone 

1.9h 5' eDNA 

1.9h 3' eDNA 

1.30h 5' eDNA 

4.21 h 5'cDNA 

A: 3' Coding region 

Top match from FASTA search 

expressed eDNA clone SBC4T7P (unknown function) 

82.3% identity over 250bp 

expressed eDNA clone SBB2T7P (unknown function) 

78.6% match over 200bp. 

GT- rich ·mouse period clock protein 

40.2% over 150bp 

Arabidopsis clone FAFJ60 (unknown function) 

87.9% over 200bp 

A comparison of the nucleotide sequences of the 3' coding region (160bp 

immediately preceding the stop codon) is presented in panel Ai of figure 6.3. 

The derived amino acid sequence is compared in panel Aii. Based on 

differences in this region (boxed for clarity in the figure) the clones were 

classified into two groups A and B (see above). pERL8 and pERE1.30h were 

identical and thus represent an isoform expressed both in embryo and leaf 

tissue. pERE 4.0 and 1.9h and 4.21 h were identical to each other in this 

region and represented a new ER isoform. Sequence was highly conserved 

overall between the two groups, with only.3 amino acid changes out of 160 in 

this region. 
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A 

B 

Figure 6.3 

Seguence comparisons of Enoyl- ACP reductase clones 

Five clones were confirmed to contain authentic enoyl- ACP reductase: pERE 
1.9h, 1.30h, 4.21 h, 4.0h and 4.3. The nucleotide sequence was determined 
using both universal and internal primers (see text). After editing, 
approximately 2- 300bp of good quality nucleotide sequence data was 
initially analysed using the DNA strider programme (Marek, 1988). Alignments 
were carried out with the GAP and PILEUP programmes in the GCG package 
at SERC SEQNET. Sequence differences are boxed for clarity and provided 
the basis on which the clones were classified into two groups, A and B. 
Comparisons are presented below. 

Panel A: Comparison of the 3' coding region 

i: Nucleotide sequence comparison 

pERE130h 
pER£43 

pERLS 
pERE19h 

pERE421h 
pERE40h 

1 
G TCAGAAAA C T GACCGC AGATGAAGTT GGGAATGCAG 
G TCAGAAAA C T GACCGC AGATGAAGTT GGGAATGCAG 
G TCAGAAAA C T GACCGC AGATGAAGTT GGGAATGCAG 
A TCAGAAAA C C GACCGC AGATGAAGTT GGGAATGCAG 
A TCAGAAAA C C GACCGC AGATGAAGTT GGGAATGCAG 

TCAGAAAA C GACCGC AGATGAAGTT GGGAATGCAG 

51 -

so 
CCTTCTT 
CCTTCTT 
CCTTCTT 
CCTTCTT 
CCTTCTT 
CCTTCTT 

100 
GGTATCTCCA TTGGCCTCTG CCATAA C, G TGCAACCATC TATG ACA 
GGTATCTCCA·TTGGCCTCTG CCATAA G TGCAACCATC TATG ACA 
GGTATCTCCA TTGGCCTCTG CCATAA G TGCAACCATC TATG ACA 
GGTATCTCCA TTGGCCTCTG CCATAA G TGCAACCATC TATG 
GGTATCTCCA TTGGCCTCTG CCATAA G TGCAACCATC TATG 
GGTATCTCCA TTGGCCTCTG CCATAA G TGCAACCATC TATG 

-

101 
pERE130h ATGGCTTGAA TTCAATGGGT 

150 
GT TTTCAAAGAC 

f"'.,.•f"'"1GT TTTCAAAGAC pER£43 
pERLS 

pERE19h 
pERE421h 

pERE40h 

pERE130h 
pER£43 

pERLS 
pERE19h 

pERE42lh 
pERE40h 

151 
CTC 
CTC 
CTC 
CTC 
CTC 
CTC 

I 

162' 
TAG . . . 
TAG . . . 
TAG. .. 

CAAGT AG 
CAAGT AG 

GT TTTCAAAGAC 
GT TTTCAAAGAC 
GT TTTCAAAGAC 
GT TTTCAAAGAC 



A 

B 

ii: Derived amino acid comparison 

pERE19h 
pERE40h 

pERE42lh 
pERE130h 

pERE43 
pERL8 

so 
KTLTADEV GNAAAFLVSP LASAITGATI YVDNGLNSMG VALDSPVFKD 
KTLTADEV GNAAAFLVSP LASAITGATI YVDNGLNSMG VALDSPVFKD 
KTLTADEV GNAAAFLVSP LASAITGATI YVDNGLNSMG VALDSPVFKD 
KTLTADEV GNAAAFLVSP LASAITGATI YVDNGLNSMG VAIDSPVFKD 
KTLTADEV GNAAAFLVSP LASAITGATI YVDNGLNSMG VAIDSPVFKD 
KTLTADEV GNAAAFLVSP LASAITGATI YVDNGLNSMG VAIDSPVFKD 

Panel B: Comparison of the 3' untranslated region 

i: Groups A and 8 

A 

B 

pERElJOl! 
pERLJ 

pERE43 
pERE19h 

pERE42lh 
pERE40h 

pERElJOh 
pERLJ 

pERE43 
pERE19h 

pERE42lh 
pERE40h 

pERElJOh 
pERLJ 

pERE43 
pERE19h 

pERE42lh 
pERE40h 

pERElJOh 
pERLJ 

pERE43 
pERE19h 

pERE42lh 
pERE40h 

pERElJOh 
pERLJ 

pERE43 
pERE19h 

pERE42lh 
pERE40h 

1 50 
........... . . . . . . . . . . .. TAGAGCCT TTTAAGTAAC TGTAGTAACT 
........... . . . . . . . . . . .. TAGAGCCT TTTAAGTAAC TGTAGTAACT .......... . . . . . . . . . . .. TAGAGCCT TTTAAGTAAC TGTAGTAACT 
TAGGGTCTTC TTGATCGACG AATAGAGCAT ATGATCTCCC CATCGGCTTT 
TAGGGTCTTC TTGATCGACG AATAGAGCAT ATGATCTCCC CATCGGCTTT 
TAGGGTCT .. TTGATCGACG AATAGAGCAT ATGA .. TCCC CATCGGCTTT 

51 
CACTTTTTCT TGTGCTGCAT 
CACTTTTTCT TGTGCTGCAT 
CACTTTTTCT TGTGCTGCAT 

100 
TTTTTTCAAC TGAGTGGATG CTGTTTTTCA 
TTTTTTCAAC TGAGTGGATG CTGTTTTTCA· 
TTTTTTCAAC TGAGTGGATG CTGTTTTTCA 

GTTTTTCTTT TAAGTTTCA . 
GTTTTTCTTT TAAGTTTCA . 
GTATTTTCTT TCCCTTTCA . 

.. AGAGAACA TGTTATGTTT CTAGTTTGTC 

.. AGAGAACA TGTTATGTTT CTAGTTTGTC 

.. AGAGAACA TGTTATGTTT CTAGTTTGTC 

101 
AACTACTTTG 
AACTACTTTG 
AACTACTTTG 
ACTTTAGCTG 
ACTTTAGCTG 
ACTTTAGCGA 

151 
AAAAAAAA •• 

150 
TTTTCTAGAA CAAAATAAAA TATTTAAAAC AAAAAAAAAA 
TTTTCTAGAA CAAAATAAAA TATTTAAAAC AAAAAAAAA. 
TTTTCTAGAA CAAAATAAAA TATTTAAAAC AATCAGAATA 
ATATGTAATA ACTGCTGCAC TATTTCTCTA ATGATTGAAG 
ATATGTAATA ACTGCTGCAC TATTTCTCTA ATGATTGAAG 
ATGTGTAATA ACTGCTGCAT TATTTCTCTG ATGATTGAAG 

200 

AATTCCAGTC AAATAAAAAA AAAAAAAAAA AAAA •..............• 
·rTTGNAAGTT TCTAAAAAAA AAAAAAAAAA AAAAA •.............. 
TTTGCAAGTT TCTACTTTGT AATTGAACCA CTTTACATGT TTATGGTTTC 
TTTGCACGTT TCTAAAAAAA AAAAAAAAAA AAAA ........•.••.... 

201 242 

........................................ 
ATAGACGGCT TTGTTCAAGT TGTTAAAAAA AAAAAAAAAA AA ........................................ 



A clone within each group could be subdivided depending on the presence of 
an extra sequence in the 3' untranslated area. This "insert sequence" is 
boxed. 

ii: Group A 

pERE130h 
pERL8 

pERE43 

pERE130h 
pERL8 

pERE43 

pERE130h 
pERL8 

pERE43 

1 50 
TAGAGCCTTT TAAGTAACTG TAGTAACTCA CTTTTTCTTG TGCTGCATTT 
TAGAGCCTTT TAAGTAACTG TAGTAACTCA CTTTTTCTTG TGCTGCATTT 
TAGAGCCTTT TAAGTAACTG TAGTAACTCA CTTTTTCTTG TGCTGCATTT 

51 100 
TTTTCAACTG AGTGGATGCT GTTTTTCAAA CTACTTTGTT TTCTAGAACA 
TTTTCAACTG AGTGGATGCT GTTTTTCAAA CTACTTTGTT TTCTAGAACA 
TTTTCAACTG AGTGGATGCT GTTTTTCAAA CTACTTTGTT TTCTAGAACA 

101 150 
AAATAAAATA TTTAAAACAA AAAAAAAAAA AAAAAA .••.•...•••.•• 
AAATAAAATA TTTAAAACAA AAAAAAA ...................... . 
AAATAAAATA TTTAAAACAAITCAGAATAAA TTCCAGTCAA A~ 

151 162 
pERE130h . . . . . . . . . . . . 

pERL8 ........... . 
pERE 4 3 AAA.AAAAAAA AA 

iii: Group B 

1 50 
pERE19h TAGGGTCTTC TTGATCGACG AATAGAGCAT ATGATCTCCC CATCGGCTTT 

pERE421h TAGGGTCTTC TTGATCGACG AATAGAGCAT ATGATCTCCC CATCGGCTTT 
pERE40h TAGGGTCT .. TTGATCGACG AATAGAGCAT ATGA .. TCCC CATCGGCTTT 

51 100 
pERE19h GTTTTTCTTT TAAGTTTCAA GAGAACATGT TATGTTTCTA GTTTGTCACT 

pERE421h GTTTTTCTTT TAAGTTTCAA GAGAACATGT TATGTTTCTA GTTTGTCACT 
pERE40h GTATTTTCTT TCCCTTTCAA GAGAACATGT TATGTTTCTA GTTTGTCACT 

101 150 
pERE19h TTAGCTGATA TGTAATAACT GCTGCACTAT TTCTCTAATG ATTGAAGTTT 

pERE421h TTAGCTGATA TGTAATAACT GCTGCACTAT TTCTCTAATG ATTGAAGTTT 
pERE40h TTAGCGAATG TGTAATAACT GCTGCATTAT TTCTCTGATG ATTGAAGTTT 

151 200 
pERE19h GNAAGTTTCT AAAAAAAAAA AAAAAAAAAA AA ........ . . . . . . . . . . 

pERE421h GCAAGTTTCT ~TTTGTAAT TGAACCACTT TACATGTTTA TGGTTTCATA 
pERE40h GCACGTTTCT AAAAAAAAAA AAAAAAAAAA A ......... . . . . . . . . . . 

201 239 
pERE19h . . . . . . . . . . .......... . ........ 

pERE42lh GACGGCTTTG TTCAAGTTGT AAAAAAAAA 
pERE40h . . . . . . . . . . .......... . . . . . . . . . . . ........ 



Panel C: Comparison of the leader peptide sequences of full length enoyl- . 
ACP reductase clones 

i: Nucleotide sequence 

pERE130h 
pERL8 

pERE19h 
p£RE40h 

=' .. ;J.. ,.....______ -- .. - . . ·· . 
TCT 1AGCNAAGTTG TTAAAGC 
TCT AGCAAAGTTG TTAAAGC 

100 
GACCTACATT GTCGGTGCCA 
GACCTACATT GTCGGTGCCA 

pERE130h 
pERLS 

p£RE19h 
p£RE40h 

.!.AGCA 

101 

TCT GCTGCCTCTA GCAAAGC 
CT GCTGCCTCTA CCAAAGC 

pERElJOh .:'-.TCCCAGGM CGCAT 
pERL8 ,\TCCCAGGAA CGCAT 

p£RE19h ,\TCCCAGGAA CGCAT 
p£RE40h ATCCCAGGAA CGCAT 

151 ., 
pERE130h .~ CGGAT GTTTGAGAAA 

p£RL8 .~ CGGAT GTTTGAGAAA 
pERE19h AAC CGGGT GTTTGAGAAA 
p£RE40h .~C • GGGT GTTTGAGAAA 

pERElJOh 
pERL8 

p£RE19h 
p£RE40h 

101 

GACCTACATT GTCGGTGCCA . 
GACCTACATT GTCGGTGCCA 

150 
TG CCTGCACTCG CCATCTATCG 
TG CCTGCACTCG CCATCTATCG 
TG CTTGCACTCC CCATCTATCG 
TG CTTGCACTCC CCATCTATCG 

200 
CT'!' CTAAAAAGAG 
CT'::' CTAAAAAGAG 

TT CTAAAAAGAG 
TT CTAAAAAGAG . 

GACCTACATT GTCGGTGCCA 
GACCTACATT GTCGGTGCCA 
GACCTACATT GTCGGTGCCA 
GACCTACATT GTCGGTGCCA 

p£RE130h ATCCCAGGAA CGCATCATGG GACAAACTTG 
pERL8 ATCCCAGGM CGCATCATGG GACAAACTTG 

p£RE19h ATCCCAGGAA CGCATCGTGG GACAAAATTG 
p£RE40h ATCCCAGGM CGCATCGTGG GACMMTTG 

150 
CCATCTATCG 
CCATCTATCG 
CCATCTATCG 
CCATCTATCG 

151 
pERElJOh 

pERL8 
pERE19h 
p£RE40h 

GTTTGAGAAA 
GTTTGAGAAA 

200 
CAGTTCT CTTCCMCTT CTAAAAAGAG 
CAGTTCT CTTCCAACTT CTAAAAAGAG 

GTTTGAGAAA 
GTTTGAGAAA 

CAGTGCT CTTCCAGCTT CTAAAAAGAG 
CAGTGCT CTTCCAGCTT CTAAAAAGAG 

pERE130h 
p£R~8 

pERE19h 
p£RE40h 

201 
TTTTTCCTTT T 
TTTTTCCTTT T 
TTTTTCCTTT T 
TTTTTCCTTT T 

.,' 225 
CAAAGG CCATG 
CAAAGG CCATG . 
CAAAGG CCATG 
CAAAGG CCATG 

i i: oerjyed amjno acjd seguence 

-~ 

pERE130h TIRPSIS 
pERL8 TIRPSIS 

pERE19h TTRPSIS 
pERE40h TTRPSIS 

75 
pERE130h CLRNNSS KKSFSF STKAM 

pERL8 CLRNNSS KKSFSF STKAM 
pERE19h CLRNDSA KKSFSF STKAM 
pERE40h CLRNDSA KKSFSF STKAM 

VGANPRNASW D 
VGANPRNASW D 
VGANPRNASW D 
VGANPRNASW D 

50 
CTRHLS 
CTRHLS 
CTPHLS 
CTPHLS 



8: 3' Untranslated region 

A comparison of the 3' untranslated regions of pEAE clones is presented in 

panel Bi of figure 6.3. Poly A tails were identified in all the Jet Neuf clones and 

TAG was used as the stop codon. Differences in sequence in this area classify 

the same clones into the same groups as determined by differences in the 

coding region. Each group is compared separately in Bii and iii. One clone 

from each group could be subdivided due to the presence of an "insert 

sequence" in this region. In group A, pEAE4.3 was identical to pEAE 1.30h 

(pEAL 8), apart from an extra 22bp, which occurred just before the poly A tail 

(boxed). Group B clones were subdivided in an analogous way. pEAE 4.0 and 

1.9h were identical (panel C ii) to each other and to pEAE4.21 h, apart from an 

extra 61 bp, in 4.21 h (boxed), in 4.21 h which again occurred just before the 

poly A tail. 

C: 5' Leader peptide region: 

The 5' leader peptide region was sequenced with the internal primer 776 (see 

figure 6.1 A for position of primers in EA) in order to help resolve whether the 

· clones with "inserts" in the 3' untranslated regions were distinct. However no 

conclusions could be drawn for group A as pEAE 4.3 was 5' truncated. Group 

B clones were also sequenced with 776 and pEAE 4.21 h and 4.3 were also 

5' truncated. Comparisons of the 5' leader peptide region from the full length 

clones pEAE clones are presented in panel C. It can be seen that the clones 

fall into the same two groups based on differences (boxed for clarity) in this 

region as well. The overall level of sequence conservation is again very high 

(with twelve amino acid changes between the two groups). 

6.3 Summary and further experiments 

A restriction fragment from the 3' region of the characterised EA eDNA clone 

pEALS was used to screen a B. napus embryo library. Ten positives were 

isolated and subcloned by plasmid rescue of bluescript phagemids from 

A.ZAPII to generate pEAE plasmids. The clones were sequenced with 

universal primers and five did not correspond to EA. Homology searches of 

sequence databanks were performed to determine the putative identity of 

these artifacts. The highest homology was with storage proteins. The level of 
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storage protein message in a library generated from mid- development 

embryos would be high, which could have facilitated isolation of false 

positives. Enoyl reductase sequence was identified in the remaining five 

clones pERE 1.30h, 1.9h and 4.0h, 4.21 h and 4.3. However ER sequence 

was internal to unrelated cDNAs ligated at the 5' and 3' ends in pERE 4.21 h, 

1.30h and 1.9h. Furthermore, sequencing with a 5' internal primer 

demonstrated that only three clones were full length 1.30h, 1.9h and 4.0h. 

pERE 4.21 h and 4.3 were 5' truncated. 

Nucleotide sequence comparisons demonstrated that pERL8 was identical to 

pERE130h and provided a basis on which to divide the clones into two 

groups. Within a group one clone could be further subdivided, due to the 

presence of an "insert" in the 3' untranslated region (pERE 4.21 h and 4.3). 

Both clones with "3' inserts" were 5' truncated so analysis of the leader 

peptide region could not be performed. Therefore a definite conclusion as to 

whether these represented an additional two new isoforms could not be 

made. 

If the "inserts" in the 3' untranslated region were real features (and not 

artifacts that arose during library construction) this would mean that a total of 

four ER isoforms had been cloned from B.napus (pERL8 and three from this 

experiment). This would correlate with observed data for ER in B. napus, there 

being four genes and four isoforms detected in both leaf and seed tissue 

(Fawcett eta/., 1994). It was also shown that there were two "major'' isoforms 

(ER II and IV), which were expressed at a greater level than the two "minor" 

isoforms (ER I and Ill}. It is tempting to speculate at this stage that this could 

correlate to the two putative groups, A and B, of clones characterised in this 

expriment. 

To ascertain whether the "inserts" in the 3' untranslated regions were real 

their presence in another population of mRNAs would have to be 

demonstrated. There are several possible strategies including the analysis of 

Northern blots with specific probes and 3' RACE (Rapid Amplification of QDNA 

Ends). This technique utilises a set of 3' nested primers, used in conjunction 

with a poly T primer to amplify the 3' end of target sequences. The presence 
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of "inserts" in the 3' regions would then be demonstrated by 

electrophoretically resolving different PCR products or by nucleotide 

sequencing. 
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General Discussion and Overall Conclusions 

The initial aim of this work was to analyse a temporally and spatially regulated 

gene promoter for protein binding motifs. Analysis of promoters in general has 

revealed that both negative and positive domains are required for the correct 

pattern of expression (Benfey and Chua, 1990). These regulatory domains 

are comprised of discrete functional units, or cis motifs, each consisting of 

small (4- 20bp) DNA sequences which represent recognition sites for 

transcriptional regulatory proteins. 

Previous studies of the ACP05 promoter, included the analysis of 

transcriptional promoter- reporter gene fusions in transgenic plants. 

Experiments had shown that 1.4kb of 5' promoter sequence encoded all the 

regulatory information that directed correct expression within the seed. DNA 

sequence analysis of the ACP05 promoter for direct repeats and palindromes 

(both typical features of cis sequences) highlighted the presence of a motif, 

the core of which was AAGAC. The presence of multiple binding sites is a 

common feature of eukaryotic enhancers. For example the light response 

element of pea ribulase bisphosphate carboxylase is a repeat motif 

(Kuhleimer et al., 1988). Also it has been shown that the binding sites of 

certain classes of common DNA binding protein, for example factors with bZIP 

motifs, are arranged palindromically (Foster eta/., 1994). 

Four probes that contained at least one copy of this motif (or its compliment) 

were generated from the ACP05 promoter. These were used in gel retardation 

assays and all formed specific complexes with embryo protein. Competition 

experiments using unlabelled oligonucleotides showed that the embryo DNA 

binding protein formed a sequence specific complex with the AAGAC motif. 

Binding activity with this motif was not detected with leaf protein extract. 

Similar motifs (repeated hexameric sequences in the a subunit of the 

soybean conglycin gene) that bind embryo specific nuclear proteins have 

been characterised previously (Chen et a/., 1986; Allen et a/., 1989). The 

AAGAC sequence was therefore of interest as it potentially represented a 

regulatory motif. 
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The motif was incorporated onto a binding site oligonucleotide, which was 

multimerised and used to screen an expression library in a Southwestern 

experiment. A positive clone was isolated, A.BS2xi. Lysogens were generated 

from A.BS2xi and the DNA binding specificity of the recombinant protein that it 

encoded was analysed using gel retardation assays. The clone was found to 

encode a DNA binding domain that formed a specific complex with the 

binding site oligonucleotide. Northern hybridisations demonstrated the clone 

was expressed in seed and root, and that the RNA transcript was 

approximately 1.8kbp. The highest level of hybridisation was detected in 

developing embryo at 50DAF. Hybridisation was not detected in leaf. A 

correlation between the expression of the DNA binding transcript and a seed 

specific ACP eDNA was noted (see chapter 5 for details); Northern 

hybridisations demonstrated that both transcripts were expressed in a similar 

pattern: hybridisation was detected in root, was highest in the seed and not 

detected in leaf. Such a correlation should be expected if the DNA binding 

clone A.BS2xi was involved in the spatial regulation of ACP. 

Several strategies were used to characterise A.BS2xi. Both PCR amplification 

and direct nucleotide sequencing were unsuccessful. EcoRI digestion excised 

the entire 3.0kb eDNA fragment, which was subcloned into pSK+, to generate 

pBS2. The size of the eDNA indicated that it contained at least 1.2kb 

additional unrelated sequence as a 1.8kb RNA transcript was detected when 

Northern blots were probed. Nested deletions were generated from the 

subclone and sequenced. Sequencing past the polylinker region from the 

M13 forward primer site was not achieved and sequence data from the 

reverse primer site was of poor quality until approximately 1.5kb from the 5' 

end. The analysis of sequence data from clone pBSND28 showed that it 

corresponded to ~- galactosidase sequence. Southern analysis further 

demonstrated that this sequence was present in A.BS2xi. Further work is 

required to characterise this clone and possible strategies include: re

screening a B. napus library with the multimerised binding site probe; shotgun 

cloning and sequencing of A.BS2xi and protein sequencing induced peptides 

from lysogen extract. These strategies are discussed fully in chapter 4. 
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Other ACP promoters have been analysed using similar techniques. A study 

on a B. campestris ACP promoter, Beg 4-4, used promoter- reporter gene 

fusions to analyse its pattern of expression in transgenic plants (Sherer eta/., 

1991 ). Expression was high in the developing seed and very low in the leaf. 

The promoter region was characterised by the presence of three different 

types of direct repeats in the 200bp immediately 5' to the putative TATA box 

(these repeat motifs were not present in the promoter ACP05). Three AAGAC 

sequences (but not GTCTT) were also detected in this region. These direct 

repeats were deleted and analysed in transgenic plants to determine the 

effect on expression in the seed. It was found that expression was unaffected 

in both seed and leaf and was concluded that they did not play a part in the 

regulation of tissue specific expression (Sherer eta/., 1991 ). 

Studies that combined gel retardation assays and promoter- reporter gene 

fusions was performed on the Acll.2 promoter from Arabidopsis (Baerson et 

a/., 1994; Baerson and Lamppa, 1993; Lamppa and Jacks, 1991) to define 

regulatory domains. There are five ACP isoforms in Arabidopsis, three of 

which have been characterised and are all expressed in seed, leaf and root. 

The fourth isoform is restricted to seed and the fifth is restricted to leaf. 

Baerson and colleagues (1993; 1994) conducted a deletion analysis of the 

Acll.2 gene promoter, which is a major isoform in the seed, but is also 

expressed at lower levels in the leaf and root. Transcriptional promoter

reporter gene fusions were made and transformed into tobacco. Expression of 

the undeleted promoter was highest in the seed and lowest in the leaf. 

Deletion analysis further defined three main domains responsible for different 

aspects of expression. A large domain from -466 to -55bp directed expression 

in the roots; An 85bp domain from -320 to -236bp directed expression within 

the leaf and also had an effect on the maximal expression within the root; and 

a 180bp domain from -235 to -55bp that directed expression within the seed 

(Baerson et a/., 1994). A 91 bp probe that encompassed the domain that 

directed maximal promoter activity in the leaf and root was generated and 

analysed by gel retardation. A specific complex was detected in leaf and root 

(data not shown for seed) that bound to the core motif ACGT (which is part of 

a larger domain that contained AAGAC) (Baerson eta/., 1994). 
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This data contradicts the results from gel retardation analysis of the ACP05 

promoter, in which the AAGAC motif interacted with an embryo specific factor. 

There are several possible explanations for this difference. Firstly the 

expression patterns of the Arabidopsis gene is distinct from that of the B. 

napus and campestris genes and as a result the regulatory motifs in such 

complex promoters are likely to be different. However the promoter 

sequences of ACP05 and Beg 4-4, which are both seed expressed isoforms, 

are also distinct: Beg 4-4 is characterised by direct repeats (Scherer et at, 

1991) and ACP05 ·is characterised by palindromic repeats (chapter 3 for 

details). It has been shown that putative transcription factors bind to more than 

only their cognate binding site (Foster et at., 1994). For example the G- box 

binding factor TAF1 binds to its cognate cis element in the aba regulated rice 

rab 16 gene but also to G boxes motifs in various light regulated genes 

(Foster et at., 1994 ;Oeda et at., 1991). This reflects the fact that binding 

affinities in vitro do not reflect those in vivo. 

A major limitation of gel retardation assays is the inability to measure 

transcription rates. Usually a simplified situation is presented, factors such as 

chromatin structure have an important role to play in transcription. Genes may 

be masked by histones and other DNA binding proteins, thus rendering it 

inaccessible to transcription factors (Felsenfeld, 1992; Smith, 1995; Zlatanova 

and VanHolde, 1990). The results from mobility shift assays (and other in 

vitro techniques) therefore must be considered as indicators of what may be 

happening in vivo i.e. a binding site in vitro does not necessarily represent a 

binding site in vivo. 

To unequivocally define the domains that regulate the expression of ACP05 

additional transcriptional promoter reporter gene fusions would have to be 

constructed and analysed in transgenic plants. Constructs in which the 

AAGAC motif were deleted and .mutated would demonstrate its importance in 

regulation of expression within the seed in B.napus. 

A second related subject of this thesis concerned another member of the FAS 

complex in B. napus, enoyl- ACP reductase (ER). There are four ER isoforms 
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and four ER genes. The isoforms are all expressed in the leaf and seed (but 

not at equimolar levels). Expression is appreciably higher in the seed and 

there appear to be two major isoforms and two minor isoforms. Prior to this 

study two cDNAs had been characterised, but were isolated from different 

varieties. It was therefore unclear whether they actually represented different 

cDNAs. 

A 3' probe was generated from pERLB, the existing Jet Neuf leaf expressed 

ER clone (A. Fowler., unpublished results). This was used to screen a eDNA 

library generated from Jet Neuf embryo. Ten positives were isolated and 

subcloned by plasmid rescue. Nucleotide sequencing showed that five clones 

corresponded to ER, and were divided into two groups on the basis of 

sequence differences, both in the coding and 3' untranslated regions. One 

clone, pERE130h, was identical to pERLB and represented an isoform 

expressed in both leaf and seed. The remaining clone in group A, pERE 43 

was identical to pERE 130h, apart from an "insert" present in its 3' 

untranslated region. This pattern was repeated in group B where clones 

pERE 40 and 19h were identical to each other and to pERE 421 h, apart from 

an insert in the 3' untranslated area of pERE421 h. The clones with inserts 

were both 5' truncated, so differences could not be confirmed at the 5' end of 

the eDNA. Further experiments are needed to clarify whether the inserts were 

real features and strategies include the use of Northern blots or 3' RACE 

experiments. These are discussed fully in chapter 6. However, at this point it is 

tempting to speculate about a possible correlation between the two groups of 

clones isolated and the two families (major and minor expressed ER isoforms) 

of ER detected in B. napus by two dimensional western blotting (Fawcett eta/., 

1994). 

136 



References 



Alban, C., Baldet, P. and Douce, R. (1994} 
Localisation and characterisation of two strucurally different forms of acetyl 
CoA carboxylase in young pea leaves, of which one is sensitive to 
aryloxyphenoxypropionate herbicides. Biochem. J. 300: 557- 565 

Allen, R. D., Lessard, P. A. and Beachy, R. N. (1989) 

Nuclear factors interact with a soybean ~- conglycinin enhancer. Plant Cell. 1: 
623- 631 

Armstrong, G. A., Weisshaar, B. and Hahlbrock, K. (1992) 
Homodimeric and heterodimeric leucine zipper proteins and nuclear factors 
from parsley recognize diverse promoter elements with ACGT cores. Plant 
Cell. 4: 525- 537 

Aso, T., Conaway, J. C. and Conaway, R. C. (1994} 
Role of core promoter structure in assembly of the RNA polymerase- II 
preinitiation complex. J. Bioi. Chern. 269: 26575- 26583 

Auble, D. T., and Hahn, S. (1993) 
An ATP- dependent inhibitor of TATA binding protein binding to DNA. Genes 
Dev. 7: 844- 856 

Auble, D. T., Hansen, K. E., Mueller, C. G. F., Lane, W. S., Thorner, J. and 
Hahn, S. (1994) 
MOT1, a global repressor of RNA polymerase II transcription inhibits TBP 
binding to DNA by and ATP- dependent mechanism. Genes and Dev. 8: 
1920-1934 

Baerson, S. R. and Lamppa, G. K. (1993a) 
Functional analysis of Arabidopsis acyl carrier protein (ACP) gene promoter 
activity. Plant Physiol. 1 0 2: 1 03 

Baerson, S. R. and Lamppa, G. K. (1993b) 
Developmental regulation of an acyl carrier protein gene promoter in 
vegetative and reproductive tissues. Plant Mol. Bioi. 22: 255- 267 

Baerson, S. R., Matthew, G., Heiden, V. and Lamppa, G. (1994) 
Identification of domains in an Arabidopsis acyl carrier protein gene promoter 
required for maximal organ- specific expression. Plant Mol. Bioi. 26: 1947-
1959 

Battey, J. F. and Ohlrogge, J. B. (1990) 
Evolutionary and tissue specific control of expression of multiple acyl- carrier 
protein isoforms in plants and bacteria. Planta. 1 8 0: 352- 360 

Baumann, G., Raschke, E., Bevan, M. and Schoffl, F. (1987) 
Functional analysis of sequences required for transcriptional activation of a 
soybean heat- shock gene. EMBO J. 6: 1161- 1166 



Bell, J. N., Ryder, T. B., Wingate, V. P. M., Bailey, J. A. and Lamb, C. J., (1986) 
Differential accumulation of plant defence gene transcripts in a compatible 
and an incompatible plant- pathogen interaction. Mol. Cell Bioi. 118: 61- 70 

Benfey, P. N. and Chua, N. H. (1989) 
Regulated genes in transgenic plants. Science. 244: 174- 181 

Benfey, P. N. and Chua, N. H. (1990) 
The cauliflower mosaic virus 35S promoter: Combinatorial regulation of 
transcription in plants. Science. 2 50: 959- 965 

Berg, J. M. (1990) 
Zinc fingers and other metal binding domains. J. Bioi. Chern. 265: 6513-
6516 

Berger, S. L. and Kimmel, A. R. (1987) 
In: Guide to molecular cloning techniques. Academic Press Inc., New York. 

Bevan, M., Colot, V., Hammondkosack, M., Holdsworth, M., Dezabala, M. T., 
Smith, C., Grierson, C. and beggs, K. (1993) 
Transcriptional control of plant- storage protein genes. Phil. Trans. Royal. 
Soc. Lon. Ser. 342: 209- 215 

Bhiknabhai, R., Joelson, T., Unge, T., Strandberg, B., Carlsson, T., Lougren, S. 
(1992) 
Purification, characterisation and crystalisation of recombinant HIV-1. J. 
Chromatog. 604: 157- 170 

Bloch, K. (1970) 
Hydroxydecanoyl thioester dehydrase, pp. 441- 464. In: The Enzymes. P. D. 
Boyer (Ed.). 3rd ed, val. 5. Academic Press, Inc., New York. 

Bloch, K. and Vance, D. (1977) 
Control mechanisms in the synthesis of saturated fatty acids. Annu. Rev. 
Bochem. 46: 236- 298. 

Bradford, M. H. (1976) . 
A rapid and sensitive method for the quantitation of microgram quantities of 
protein utilising the principle of protein- dye binding. Anal. Biochem. 72: 248-
254 

Bray, E. and Beachy, R. N. (1985) 
Regulation by ABA of beta- conglycin expression in cultured developing 
soybean cotyledons. Plant Physiol. 79: 746- 750 

Briggs, M. R., Kadonaga, J. T., Bell. S. P. and Tjian. R. (1986) 
Purification and biochemical characterisation of the promoter- specific 
transcription factor, Sp1. Science. 234: 47- 52 



Brindle, P. K., Holland, J. P., Willet, C. E., Innes, M.A. and Holland, M. J. (1990) 
Multiple factors bind the upstream activation sites of the yeast enolase genes 
EN01 and EN02: ABF1 protein, like repressor protein RAP1, binds- acting 
sequences which modulate repression or activation of transcription. Mol. 
Cell. Bioi. 1 0: 4872- 4885 

Briskin, D. P. (1994) 
Membranes and transport systems in plants- an overview. Weed Sci. 42: 
255- 264 

Brody, S and Mikolajczyks, S. (1988) 
Neurospora mitochondria contain acyl carrier protein. Eur. J. Biochem. 173: 
353- 359 

Broome, S. and Gilbert, W. (1978) 
Immunological screening method to detect specific translation products. 
Proc. Nat!. Acad. Sci. USA. 75: 2746- 2749 

Brown, A. P., Brough, C. L., Kroon, J. T. M. and Slabas, A. R. (1995) 
Identification of a eDNA that encodes a 1- acyl- sn- glycerol- 3- phosphate 
acyltransferase from Limnanthes Douglas II. Plant Mol. Bioi. 29: 267- 278 

Brown, R. S., Sander, C. and Argos, P. (1985} 
The primary structure of transcription factor TFIIA has twelve consecutive 
repeats. FEBS Lett. 1 8 6 : 271- 27 4 

Browse, J., Mcconn, M., James, D. and Miquel, M. (1993) 
Mutants of Arabidopsis deficient in the synthesis of alpha linolenate
Biochemical and genetic characterisation of the endoplasmic reticulum 
linolenase desaturase. J. Bioi. Chern. 268: 16345- 16352 

Bullock, W. 0., J. M. Fernandez, and J. M. Short. (1987) 
XL 1- Blue: A high efficiency plasmid transforming recA Escherichia coli strain 
with beta- galactosidase selection. Biotechniques. 5: 376- 378 

Buratowski, S. (1994) 
The basics of basal transcription by RNA polymerase II. Cell. 77: 1-3 

Buratowski, S., Hahn, S., Sharp, P. A. and Guarente, L. (1989) 
Five intermediate complexes in transcription initiation by RNA polymerase II. 
Cell. 56: 549- 561 

Burke, C., Yu, X. B., Marchitelli, L., Davis, E. A. and Ackermann, S. (1987) 
Transcription factor IIA of wheat and human function similarly with plant and 
animal promoters. Nuc. Acid Res. 1 8: 3611- 3620 

Bustos, M. M., Begum, D., Kalkan, F. A., Battraw, M. J. and Hall, T. H. (1991) 
Positive and negative cis- acting DNA domains are required for spatial and 



temporal regulation of gene expression by a seed storage protein promoter. 
EMBO. J. 10: 1469- 1479 

Caughey, I. and Keckwick, R. G. 0. (1982} 
The characteristics of some components of the fatty acid synthetase system in 
the plastids from the mesocarp of avocado (Persea americana). Eur. J. 
Biochem. 1 2 3: 553- 561 

Chaboute, M. E., Chaubet, N., Gigot, C. and Phillipps, G. (1993} 
Histones and histone genes in higher plants- structure, and genomic 
organisation. Biochemie. 7 5: 523- 531 

Chaconas, G. and J. H. Van de Sande. (1980) 
5' 32p labelling of RNA and DNA restriction fragments. Methods Enzymol. 65: 
75- 88 

Chen, Z. L., Pan, N. S. and Beachy, R.N. (1988) 
A DNA sequence element that confers seed- specific enhancement to a 
constitutive promoter. EMBO. J. 7: 297- 302 

Chen, Z. L., Schuler, M.A. and Beachy, R. N. (1986) 
Functional analysis of regulatory elements in a plant embryo specific gene. 
Proc. Nat/. Acad. Sci. USA. 83: 8560- 8564 

Chodosh, L. A., Carthew. L. W. and Sharp, P. A. (1986) 
A single polypeptide possesses the binding and transcription activities of the 
adenovirus major late transcription protein. Mol. Cell. Bioi. 6: 4723- 4733 

Chuman, L. and Brody, S. (1989} 
Acyl carrier protein is present in mitochondria of plants and in eukaryotic 
microorganisms. Eur. J. Biochem. 184:643- 649 

Clark- Adams, C. D., Norris, D., Osley, M. A., Fassler, J. S. and Winston, F. 
(1988) 
Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2: 
150- 159 

Coen, E. S. and Meyerowitz, E. M. (1991) 
The war of the whorls: genetic interactions controlling flower development. 
Nature. 353: 31- 37 

Conaway, R. C. and Conaway, J. W. (1993) 
General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62: 
161- 190 

Cone, K. C., Cocciolone, S. M., Moehlenkamp, C. A., Weber, T., Drummond, B. 
J., Tagliani, L.A., Bowen, B. A. and Perrot, G. H. (1986) 
Role of the regulatory gene pi in the photocontrol of maize anthocyanin 
pigmentation. Plant Cell. 5: 1807- 1816 



Consonni, G., Guena, F., Gavazzi, G. and Tonelli, C. (1993) 
Molecular homology among members of the R gene family from maize. Plant 
J. 3: 335- 346 

Cowell, I. G. and Hurst, H. C. (1993) 
Cloning transcription factors from a eDNA expression library. pp, 105- 123. In: 
Transcription factors, A practical approach. D. S. Latchman. (Ed.). IRL, Oxford 
University press., Oxford. 

Cronan, J. E. Jr. and Rock, C. (1987) 
Biosynthesis of membrane lipids. pp. 474- 497, In: Escherichia coli and 
Salmonella typhimuriem cellular and molecular biology. F. C. Neidhardt. (Ed.). 
vol 1., American Society for Microbiology., Washington, D. C. 

Croston, G. E., Kerrigan, L. A., Lira, L. M., Marshack. and Kadonga, J. T. 
(1991) 
Sequence specific antirepression of histone H1 mediated inhibition of basal 
RNA polymerase II transcription. Science. 2 51 : 643- 649 

Decker, C. J. and Parker, R. (1994) 
Mechanism of messenger- RNA degradation in eukaryotes. TIBS. 19: 336-
340 

Dehesh, K., Bruce, W. B. and Quail, P H. (1990) 
A trans- acting factor that binds to a GT- motif in a phytochrome gene 
promoter. Science. 250: 1397- 1399 

Dellaporter, S. L., Greenblatt, 1., Kermicle, J. L., Hicks, J. B. and Wessler, S. 
(1988) 
Molecular cloning of the maize R-nj allelle by transposon tagging with Ac. pp, 
263- 282. In: Chromosome structure and function: Impact of new concepts. J. 
P. Gustafson and R. Appels. (Eds.). Plenum Press., New York. 

dePater, S., Pham, K., Chua, N. H., Memelink, J. and Kijne, J. (1993) 
A 22bp fragment of the pea lectin promoter containing essential TGAC- like 
motifs confers seed- specific gene expression. Plant. Cell. 5: 877- 886 

deSilva, J., Loader, N. M., Jarman, C., Windust, J. H. C., Hughes, S. G. and 
Safford, R. (1990) 
The Isolation and sequence analysis of two seed expressed acyl carrier 
protein genes from Brassica nap us. Plant Mol. Bioi. 1 4: 537- 548 

deSilva, J. Robinson, S. J. and Safford, R. (1992) 
The isolation and characterisation of a B. napus acyl carrier protein 5' flanking 
region involved in the regulation of seed storage lipid synthesis. Plant Mol. 
Bioi. 1 8: 1163- 11 72 

Devereux, J., Haeberli, P. and Smithies, 0. (1984) 



A comprehensive set of sequence analysis programmes for the VAX. Nuc. 
A c. Res. 12: 387- 395 

Don, R. H., Cox, P. T., Wainwright, B. J and Mattick, J. S. (1991) 
"Touchdown" PCR to circumvent spurious priming during gene amplification. 
Nuc. Acid Res. 1 9: 4008 

Donald, R. G. K. and Cashmore, A. R. (1990) 
Mutation of either G box or I box sequences profoundly affects expression 
from the Arabidopsis rbcS-1 A promoter. EMBO J. 9: 1717- 1726 

Dooner, H. K., Robbins, T. and Jorgensen, R. (1991) 
Genetic and developmental control of anthocyanin biosynthesis. Annu. Rev. 
Genet. 25: 173- 199 

Douce, R. and Joyard, J. (1980). 
pp. 321- 362. In: Biochemistry of Plants. P. K. Stumpf and E. E. Conn (Eds.). 
vol4. Academic Press, Inc., New York. 

Dunn, T. M., Hahn, S., Ogden, S. and Schleif, R. F. (1984) 
An operator at -280 base pairs that is required for repression of araBAD 
operon promoter: Addition of DNA helical turns between the operator and 
promoter cyclically hinders repression. Proc. Nat/. Acad. Sci. USA. 81: 5017-
5020 

Elliot, R. C., Dickey, L. F., White, M. J. and Thompson, W. F. (1989) 
Cis- acting elements for light regulation of pea ferredoxin I gene expression 
are located within transcribed sequences. Plant Cell. 1:691- 698 

Ellis, J. G., Llewellyn, D. J., Walker, J. C., Dennis, E. S. and Peacock, W. J. 
(1993) 
The ocs element- a 16bp palindrome essential for activity of the octipine 
synthase enhancer. EMBO J. 6: 3203- 3208 

Ellis, J. G., Tokuhisa, J. G., Llewellyn, D. J., Bouchez, D., Singh, K., Dennis, E. 
S. and Peacock, W. J. (1987) 
Does the ocs- element occur as a functional component of the promoter of 
plant genes. Plant J. 4: 433- 443 

Fall, R. R. (1979) 
Analysis of microbial biotin proteins. Methods Enzymo/. 62: 390- 398 

Fall, R. R., Alberts, A. W. and Vagelos, P. R. (1975} 
Analysis of bacterial biotin proteins. Biochem. Biophys. Acta. 379: 496- 503 

Farooqui, A. and Horrock, S. L. (1984) 
Heparin sepharose affinity chromatography. Adv. in Chromatog. 23: 127- 148 

Fawcett, T., Simon, W. J., Swinhoe, R., Shanklin, J., Nishida, 1., Christie, W. W. 



and Slabas, A. R. ( 1994) 
Expression of m RNA and steady- state levels of protein isoforms of enoyi
ACP reductase from Brassica nap us. Plant Mol. Bioi. 2 6: 155- 163 

Felsenfeld, G. (1992) 
Chromatin as an essential part of the transcriptional mechanism. Nature. 
355: 219-224 

Flores, 0., Lu, H., Killeen, M., Greenblatt, J., Burton, Z. F. and Reinberg, D. 
( 1991) 
The small subunit of transcription factor IIF recruits RNA polymerase II into the 
preinitiation complex. Proc. Nat!. Acad. Sci. USA 88: 9999- 10003 

Flurh, R. and Chua, N. H. (1986) 
Developmental regulation of two genes encoding ribulose- bisphosphate 
carboxylase small subunit in pea and transgenic petunia plants: Phytochrome 
response and blue light induction. Proc. Nat!. Acad. Sci. USA. 83: 2358-
2362 

Flurh, R., Kuhlemeier, C., Nagy, F. and Chua, N. H. (1986) 
Organ- specific and light- induced expression of plant genes. Science 232: 
1106- 1112 

Foster, R., lzawa, T. and Chua, N. H. (1994) 
Plant bZIP proteins gather at ACGT elements. FASEB. J. 8: 192- 200 

Frampton, J., Leutz, A., Gibson, T. and Graf, T. (1989) 
DNA- binding domain ancestry. Nature. 342: 134 

Frantzen, M., Heinz, E., McKeon, T. A. and Stumpf, P. K. (1983) 
Specificities and selectivities of glycerol- 3- phosphate acyltransferase and 
monoacylglycerol- 3- phosphate acyltransferase from pea and spinach 
chloroplasts. Eur. J. Biochem. 129: 629- 636 

Frantzen, M., Neuburger, M., Joyard, J. and Douce, R. (1990) 
lntraorganelle localization and substrate specificities of the mitochondrial 
acyi-CoA-sn-glycerol-3-phosphate a-acyl-transferase and acyi-CoA-1-acyl
sn-glycerol-3-phosphate o- acyltransferase from potato tubers and pea leaf. 
Eur. J. Biochem. 187: 395- 402 

Fried, M. G. and Crothers, D. M. (1981) 
Equilibria and kinetics of lac repressor- operator interactions by 
polyacrylamide gel electrophoresis. Nuc. Acid. Res. 9: 6505- 6524 

Galas, D. and Schmidtz, A. (1978) 
DNase footprinting: A simple method for quantifying the binding of proteins to 
specific DNA regions : Applications to components of the E. coli lactose 
operon regulatory system. Nuc. Acid Res. 5: 3157- 3170 



Gallie, D. R. (1993) 
Post transcriptional regulation of gene expression in plants. Annu Rev. Plant 
Physiol. and Plant Mol. Bioi. 44:77- 105 

Garner, M. M. and Revzin, A. (1981) 
A gel electrophoresis method for quantifying binding of proteins to specific 
DNA regions: Applications to components of the Escherichia coli lactose 
operon regulatory system. NucAcid Res. 9:3047- 3060 

Gasch, A., Hoffmann, A., Horikoshi, M., Roeder, R. G. and Chua, N. H. (1990) 
Arabidopsis thaliania contains two genes for TFIID. Nature. 346: 390- 394 

Gehring, W. J., Qian, Y Q., Billeter, M., Furukubo- Tokunaga, K., Schier, A. F., 
Resendez- Perez, D., Affolter, M. and Otting, G. (1994) 
Homeodomain- DNA recognition. Cell. 7 8: 211- 223 

Geiger, 0., Ritsema, T., Vanbrussel, A., Tak, T., Wijfjes, A., Bloemberg, G., 
Spaink, H. and Lutenberg, B. (1994) 
Role of Rhizobia/ lipo oligosacharides in root nodule formation in leguminous 
plants. Plant and Soil. 1 61 : 81- 89 

George, C. P., Liradevito, L. M., Wampler, S. L. and Kadonaga, J. T. (1995) 
Spectrum of mechanisms for the assembly of the RNA- polymerase II 
transcription preinitiation complex. Mol. and Cell Bioi. 15: 1049- 1 059 

Gibson, S., Falcone, D. L., browse, J. and Somerville, C. (1994) 
Use of transgenic plants and mutants to study the regulation and function of 
lipid- composition. Plant Cell and Environ. 17: 627- 637 

Gilmartin, P. M. and Chua, N. H. (1990) 
Spacing between GT- 1 binding sites within a light- responsive element is 
critical for transcriptional activity. The Plant Cell. 2: 447- 455 

Gilmartin, P. M., Sarokin, L., Memelink, J. and Chua, N. H. (1990) 
Molecular light switches for plant genes. The Plant Cell. 2: 369- 378 

Glover, J. N. M. and Harrison, S. C. (1995) 
Crystal structure of the heterodimeric bZIP transcription factor c- fos- c- jun 
bound to DNA. Nature. 373: 257- 261 

Goff, S. A., Klein, T. M., Roth, B. A., Fromm, M. E., Cone, K. C., Radicelli, J. P. 
and Chandler, V. L. (1990) 
Transactivation of anthocyanin biosynthetic genes following transfer of B 
regulatory genes into maize tissue. EMBO. J. 9: 2517- 2522 

Gombos, Z., Wada, H., Hideg, E. and Murata, N. (1994) 
The unsaturation of membrane lipids stabilizes photosynthesis against heat
stress. Plant Physiol. 104: 563- 567 



Goodrich, J., Carpenter, R. and Coen, E. S. (1992) 
A common gene regulates pigmentation pattern in diverse plant species. 
Cell. 68: 955- 964 

Green, P. R. and Bell, R. M. (1984} 
Asymmetric reconstitution of homogeneous Escherichia coli sn- glycerol- 3-
phosphate- acyltransferase into phospholipid vesicles. J. Bioi. Chern. 259: 
1 4688- 14694 

Green, P. J., Kay, S. A., and Chua, N. H. (1987) 
Sequence specific interactions of a pea nuclear factor with light responsive 
elements upstream of the Rbc3A gene. EMBO. J. 6: 2543- 2549 

Green, P. J., Kay, S. A., Lam, E. and Chua, N. H. (1988) 
In vitro DNA footprinting. pp, 1- 21. In: Plant Mol. Bioi. Manual. 

Grierson, C., Du, J. S., de Torres Zabala, M., Beggs, K., Smith, C., Holdsworth, 
M. and Bevan, M. (1994} 
Separate cis sequences and trans acting factors direct metabolic and 
developmental regulation of a potato tuber storage protein gene. The Plant J. 
5: 815- 826 

Griffith, J., Hochschild, A and Ptashrie, M. (1986) 
DNA loops induced by cooperative binding of I repressor. Nature. 3 2 2: 750-
752 

Gruss, P. and Scoler, H. (1984) 
Enhancers as transcriptional control elements. DNA 3: 70 

Grussem, W., (1990) 
Of fingers, zippers and boxes. Plant Cell. 2: 827- 828 

Guerra, D. J. Ohlrogge, J. B. and Frentzen, M. (1986) 
Activity of ACP isoforms in reactions of plant fatty acid metabolism. Plant 
Physiol. 82: 448- 453 

Guilfoyle, T. J., Dietrich, M. A., Prenger, J.P. and Hangen, G. (1990} 
Phosphorylation/ dephosphorylation of the carboxyl terminal domain in the 
largest subunit of RNA polymerase II. Curr. Top. Plant Biochem. Physiol. 9: 
299- 312 

Guiltinan, M. J., Marcotte, W. and Quatrano, R. (1990) 
A plant leucine zipper that recognises an abscisic acid response element. 
Science. 2 50: 267- 271 

Gunstone, F. D. (1992} 
Oils and fats in the nineties. Fat Sci. Techno/. 94: 237- 238 

Gunstone, F. D. and Heslof, B. D. (1992}. 



A lipid glossary, The oily press Ltd., Scotland.) 

Ha, 1., Roberts, S., Maldonado, E., Sun, X., Kim, L. U., Green, M. and 
Reinberg, D. (1993) 
Multiple functional domains of human transcription factor liB: distinct 
interactions with two general transcription factors and RNA polymerase II. 
Genes Dev. 7: 1021- 1308 

Haass, M., Griess, E., Goddemeier, M., Egly, J. M. and Feix, G. (1994) 
The TATA box binding protein I (TBP-1) of maize displays promoter specific 
binding affinities. Plant Science. 1 00: 187- 194 

Hagan, K. W., Ruizechevarria, M. J., Quan, Y and Peltz, S. W. (1995) 
Characterisation of cis- acting sequences and decay intermediates involved 
in nonsense- mediated messenger- RNA turnover. Mol. and Cell Bioi. 1 5: 
809- 923 

Hai, T. W., Liu, F., Coucos, W. J. and Green, M. R. (1989) 
Transcription factor ATF eDNA clones- an extensive family of leucine zipper 
proteins able to selectively form DNA binding heterodimers. Genes Dev. 3: 
2083- 2090 

Hake, S. (1992) 
Unravelling the knots in plant development. TIGS. 8: 109- 114 

Hall, T. C., Ma, Y., Buchbinder, B. U., Pyne, J. W., Sun, S. M. and Bliss, F. A. 
(1978) 
Messenger RNA for G 1 of French bean seeds: cell free translation and 
product characterisation. Proc. Nat!. A cad. Sci. USA. 7 5: 3196- 3200 

Hammond, C. and Holland, M. (1983) 
Purification of yeast RNA polymerases using heparin agarose affinity 
chromatography- Transcriptional properties of the purified enzymes on 
defined templates. J. Bioi Chern. 258: 3230- 3241 

Han, M., Kim, U. J., Kayne, P. and Grunstein, M (1988) 
Depletion of histone H4 and nucleosomes activates PH05 gene in 
Saccharomyces cerevisiae. EMBO J. 7: 2221- 2228 

Hansen, L. (1987) 
Three eDNA clones for barley leaf acyl carrier proteins I and Ill. Carlsberg 
Res. Commun. 52: 381- 392 

Hansen. L. and Kauppinen, S. (1991) 
Barley acyl carrier protein II: nucleotide sequence of eDNA clones and 
chromosomal location of the Ac/2 gene. Plant Physiol. 97: 472- 474 

Harwood, J. L. (1988) 
Fatty acid metabolism. Annu. Rev. Plant Physiol. 39: 101- 138 



Harwood, J. L., Walsh, M. C. and Walker, K. A. (1990) 
Enzymes of fatty acid synthesis. Meth. Plant Biochem. 3: 192- 216 

Heard, D. J., Kiss, T. and Filipowicz, W. (1993) 
Both Arabidopsis TATA- binding protein (TBP) isoforms are functionally 
identical in RNA polymerase- II and polymerase- Ill transcription in plant cells
evidence for gene specific changes in DNA- binding specificity of TBP. 
EMBO. J. 12: 3519- 3528 

Hendrickson, W. (1985} 
Protein- DNA interaction studies by the gel electrophoresis -DNA binding 
assay. Biotechniques. 3: 198- 207 

Hendrickson, W. and Schleif, R. (1984) 
Regulation of the E. coli L- arabinose operon studied by gel electrophoresis 
DNA binding assay. J. MOl. Bioi. 1 7 8: 611- 628. 

Hernandez, N. (1993) 
TBP an universal eukaryotic transcription factor. Genes Dev. 7: 1291- 1308 

Hillditch, T. P. and Williams, P. N. (1964} 
Chemical constitution of natural lipids. Chapman and Hall., London 

Hochschild, A. and Ptashne, M. (1986} 

Cooperative binding of 'A repressor to sites separated by integral turns of the 
DNA helix. Cell. 44:681- 687 

Hoj, P. B. and Mikkelsen, J. D. (1982) 
Partial separation of individual enzyme activities of an ACP- dependent fatty 
acid synthetase from barley chloroplasts. Carlsberg Res. Commun. 4 7: 119-
141 

Hoj, P. B. and Svendsen, I. (1983} 
Barley acyl carrier protein: its amino acid sequence and assay using purified 
malonyl CoA:ACP transacylase. Carlsberg Res. Commun. 48: 285- 305 

Hoj, P. B. and Svendsen, I. (1984} 
Barley chloroplast contain two acyl carrier proteins coded for by different 
genes. Carlsberg Res. Commun. 49: 483- 492 

Holak, T. A., Kearsley, S. K., Kim, Y. and Prestegard, J. H. (1988) 
Three dimensional structure of ACP determined by NMR pseudoenergy and 
distance geometry calculations. Biochem. 27: 6135- 6142 

Hurst, H. C. (1994) 
Trabscription factors 1- bZIP proteins- introduction. Prot. Profile. 1: 123- 168 



Huworth, C. J. and Dugham, H. J. {1993) 
Gene expression under temperature stress. New Phytol. 1 2 5: 1- 26 

Huynh, T.V., Young, R. A. and Davies, R. W. (1985) 

Constructing and screening eDNA libraries in A.gt1 0 and A.gt11. pp, 49- 78. In: 
DNA cloning: A practical approach. D. M. Glover (Ed.). IRL, Oxford University 
press., Oxford. 

lngelbrecht, 1., Vanhoudt, H., Vanmontagu, M. and Depicker, A. {1994) 
Posttranscriptional silencing of reporter transgenes in tobacco correlates with 
DNA methylation. Proc. Nat/. Acad. Sci. USA. 22:331- 34 

lssortal J. P., Koronakis, V. and Hughes, C. (1991) 
Activation of Escherichia coli pro- haemolysin to the mature toxin by acyl 
carrier protein dependent fatty acylation. Nature. 3 51 : 759- 761. 

Jackson, D., Culianez- Macia, F., Prescott, A. G., Roberts, K. and Martin, C. 
(1991) 
Expression patterns of rnyb genes from Antirrhinurn flowers. Plant Cell. 3: 
115- 125 

Jaworski, J. G., Clough, R. C. and Barnum, S. R. (1989) 
A cerulenin insensitive short chain 3- ketoacyl- acyl carrier protein synthase in 
Spinacea oleracea leaves. Plant physiol. 9 0: 41- 44 

Jaworski, S. and Rock, C. 0. {1983) 
Ratio of active to inactive forms of acyl carrier protein in Eschericia coli. J. 
Bioi. Chern. 258: 16186- 16191 

Jaworski, S. and Rock, C. 0. {1987) 
Acetoacyl- acyl carrier protein synthase, a potential regulator of fatty acid 
biosynthesis in bacteria. J. Bioi. Chern. 262: 7927- 7931 

Johnston, M. (1987) 
Genetic evidence that zinc is an essential co- factor in the DNA- binding 
domain of GAL 4 protein. Nature. 328: 353- 355 

Jones, 0. W. and Berg, P. (1966) 
Studies on the binding of RNA polymerase to polynucleotides. J. Mol. Bioi. 
22: 199- 209 

Juan, L. J., Utley, R. T., Adams, C. C., Vetese- Dade, M. and Workman, J. L. 
{1994) 
Differential repression of transcription factor binding by histone H 1 is 
regulated by the core histone amino termini. EMBOJ. 13: 6031- 6040 

Kadonaga, J. T., Garnier, K. R., Marsiarz, F. R. and Tjian, R. (1987) 
Isolation of a eDNA encoding transcription factor Sp1 and functional analysis 



of the DNA binding domain. Cell. 51 : 1079- 1090 

Kadonaga, J. T. and Tjian, R. (1986) 
Affinity purification of sequence- specific DNA binding proteins. Proc. Nat/. 
Acad. Sci. USA. 83: 5889- 5893 

Kageyama, R. and Pastan, I. (1989) 
Molecular cloning and characterisation of a human DNA binding factor that 
represses transcription. Cell. 59: 815- 825 

Kang, F., Ridout, C. J., Morgan, C. L. and Rawsthorne, S. (1994) 
The activity of ACC is not correlated with the rate of lipd synthesis during 
development of oilseed rape (Brassica napus. L) embryos. Planta. 193: 320-
325 

Kater, M. M., Koningstein, G. M., Nijkamp, H. J. J. and Stuitje, A. R. (1991) 
eDNA cloning and expression of Brassica napus enoyl- acyl carrier protein 
reductase in Escherichia coli. Plant Mol. Bioi. 1 7: 895- 909 

Kater, M. M., Koningstein, G. M., Nijkamp, H. J. J. and Stuitje, A. R. (1994) 
The use of a hybrid genetic system to study the functional relationships 
between procaryotic and plant multienzyme fatty acid synthetase complexes. 
Plant Mol. Bioi. 2 5: 771- 790 

Katagiri, F. and Chua, N. H. (1992) 
Plant transcription factors- present knowledge and future challenges. TIGS. 8: 
22- 27 

Katagiri, F., Lam, E. and Chua, N. H. (1989) 
Two tobacco DNA binding proteins with homology to the nuclear factor CREB. 
Nature. 340: 727- 730 

Katagiri, F., Yamazaki, K., Hrikoshi, M., Roeder, R. G. and Chua, N.H. (1990) 
A plant DNA- binding protein increases the numbers of active preinitiation 
complexes in a human in vitro transcription system. Genes Dev. 4: 1899-
1909 

Kaulin, H., Schell, J. and Kreuzaler, F (1986) 
Light- induced expression of the chimeric chalcone synthase- NPTII gene in 
tobacco cells. EMBO J. 5: 1- 8 

Keegan, L., Gill, G. and Ptashne, M. (1986) 
Separation of DNA binding from the transcription- activating function of an 
eukaryotic regulatory protein. Science. 2 31: 699- 704 

Kim, Y, Bjorklund, S., Li, Y., Sayre, M. H. and Kornberg, R. D. (1994) 
Multiprotein mediator of transcriptional activation and its interaction with the C 
terminal repeat domain of RNA- polymerase II. Cell. 77: 599- 608 



Kim, Y H. and Prestegard, J. H. (1989) 
A dynamic model for the structure of ACP in solution. Biochem. 28: 8792-
8797 

Kim, Y H. and Prestegard, J. H. (1990) 
Refinement of the NMR structures for ACP with scalar coupling data. Proteins 
Structure Function Genet. 8: 377- 385 

Klemsz, M. J., McKercher, S. R., Celada, A., Van Beveren, C. and Maki, R. A. 
(1990) 
The macrophage and B cell specific transcription factor PU.1 is related to the 
ETS oncogene. Cell. 61: 113- 124 

Klug, A. (1993) 
Transcription- opening the gateway. Nature. 365: 486- 487 

Klug, A. and Rhodes, D. (1993) 
Zinc fingers. Scientific American. 268: 56 

Knutzon, D. S., Thompson, G. A., Radke, S. E., Johnson, W. B., Knauf, V. C., 
and Kridl, J. C. (1992b) 
Modification of Brassica seed oil by antisense expression of a stearoyl- acyl 
carrier protein desaturase gene. Proc. Nat/. Acad. Sci. USA. 89:2624- 2628 

Kolattukudy, P. E. (1987) 
Lipid- derived defence polymers and waxes and their role in plant microbe 
interaction. pp, 571- 646, In: Biochemistry of Plants. P. K. Stumpf and E. E. 
Conn (Eds.). val 4. Academic Press Inc., New York. 

Kretzschmar, M., Meisterernst, M. and Roeder, R. G. (1993) 
Tl: Identification of human topoisomerase- I as a cofactor for activator
dependent transcription by RNA polymerase- II. Proc. Nat!. Acad. Sci. USA. 
90: 11508- 11512 

Kuhlemeier, C. (1992) 
Transcriptional and post- transcriptional regulation of gene expression in 
plants. Plant Mol. Bioi. 1 9: 1- 14 

Kuhlemeier, C., Luozzo, M., Green, P. J., Gayvaert, E., Word, K. and Chua, N. 
H. (1988) 
Localisation and conditional redundancy of regulatory elements in rbcs-3A, a 
pea gene encoding the small subunit of ribulase bisphosphate carboxylase. 
Proc. Nat!. Acad. Sci. USA. 8 5: 4662- 4666 

Kuo, T. M. and Ohlrogge, J. B. (1984) 
The primary structure of spinach acyl carrier protein. Arch. Biochem. Biophys. 
234: 290- 296 

Laemmli, E. K. (1970) 



Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature. 227:680- 685 

Lam, E. and Chua, N. H. (1989) 
ASF2: A factor that binds to the cauliflower mosaic virus 35S promoter and a 
conserved GATA motif in cab promoters. Plant Cell. 1 : 114 7- 1156 

Lam, E., Kano-Murakami, Y., Gilmartin, P., Niner, B. and Chua, N.H. (1990) 
A metal- dependent DNA-binding protein interacts with a constitutive element 
of a light-responsive promoter. The Plant Cell. 2: 857- 866 

Lamppa, G. and Jacks, C. (1991) 
Analysis of two linked genes coding for the acyl carrier protein (ACP) from 
Arabidopsis thaliana (columbia). Plant Mol. Bioi. 16: 469- 474 

Landschultz, W. H., Johnson, P. F,. Adashi, E. Y,. Graves, B. J. and McKnight, 
S. L. (1988) 
Isolation of a recombinant copy of the gene encoding C/EBP. Genes and dev. 
2: 786- 800 

Lane, D., Prentki, P. and Chandler, M. (1992) 
Use of gel retardation to analyse protein- nucleic acid interactions. Microbial. 
Rev. 56: 509- 528 

Larson, T. J., Lightner, V. A., Green, P. R., Modrich, P. and Bell, R. M. (1980) 
Membrane phospholipid synthesis in Escherichia coli. Identification of the sn
glycerol- 3- phosphate- acyltransferase polypeptide as the plsB gene product. 
J. Bioi. Chern. 255: 9421- 9426. 

Laughon, A. and Scott, M. P. (1984) 
Sequence of a Drosphi/a segmentation gene: protein structure homology 
with DNA binding proteins. Nature. 310:25 

Laybourn, P. J. and Kadonaga, J. T. (1991) 
Role of nucleosomal cores and histone H 1 in regulation of transcription by_ 
RNA polymerase II. Science. 2 54: 238- 245 

Leary, J. J., Brigati, D. J. and Ward, D. C. (1983) 
Rapid and sensitive colorometric method for visualising biotin- labelled DNA 
probes hybridised to DNA or RNA immobilised on nitrocellulose: Bioblots. 
Proc. Nat!. Acad. Sci. USA. 80: 4045- 4049 

Lee, W., Mitchell, P. and Tjian, R. (1987) 
Purified transcription factor AP- 1 interacts with TPA- inducible enhancer 
elements. Cell. 49: 741- 752 

Lee, T. C. and Schwartz, R. J. (1992) 
Differential detection of multiple DNA- binding complexes using dissimilar 
polyanion competitors. Nuc. Acid Res. 20 (1 ): 140 



Lemieux, B., Miquel, M., Somerville, C. R. and Browse, J. (1990) 
Mutants of Arabidopsis with alterations in the fatty acid composition of their 
seed lipids. Theor. Appl. Genet. 80: 234- 240 

Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prome, J. C, and 
Denarie, J. (1991) 
Symbiotic host- specificity of Rhizobium melitoti is determined by a sulphated 
and acylated glucosamine oligosaccharide signal. Nature. 344: 781- 784 

Li, S. and Cronan, J. E. (1992) 
Putative zinc finger protein encoded by a conserved chloroplast gene is very 
likely a subunit of a biotin dependent carboxylase. Plant Mol. Bioi. 2 0: 759-
761 

Lieberman, P. M. and Berk, A. J. (1994) 
A mechanism for TAFs in transcriptional activation: activation and 
enhancement of TFIID- TFIIA- promoter DNA complex formation. Genes and 
Dev. 8: 995- 1 006 

Lin, Y S. and Green, M. R. (1991) 
Mechanism of action of an acidic transcriptional activator in vitro. Cell. 6 4: 
971- 981 

Lincoln, J. E. and Fischer, R. L. (1988) 
Regulation of gene expression by ethylene. pp, 155- 167. In: Temporal and 
Spatial Regulation of Plant Genes. D. P. S. Verma and R. B. Goldberg (Eds.). 
Springer- Verlag., Berlin. 

Lipman, D. J. and Pearson, W. R. (1985) 
Rapid and sensitive protein similarity searches. Science. 227: 1435- 1441 

Lorch, Y, LaPointe, J. W. and Kornberg, R. D. (1987) 
Nucleosomes inhibit the initiation of transcription but allow chain elongation 
with the displacement of histones. Cell. 49: 203- 210 

Losito, R., Gattiker, H., Bilodeao, G. and Longpre, B. {1981) 
Heparin chromatography. Thrombosis and Haemostasis. 46: 235 

Lu, H., Zawel, L., Fischer, L., Egly, J. M. and Reinberg, D. (1992) 
Human general transcription factor IIH phosphorylates the C terminal domain 
on RNA polymerase II. Nature. 358: 641- 645 

Ludwig, S. R. and Wessler, S. R. (1990) 
Maize R gene family: Tissue- specific helix- loop- helix proteins. Cell. 62: 
849- 851 

Luehrsen, K. R. and Walbot, V. (1991) 
lntron enhancement of gene expression and the splicing efficiency of introns 



in maize cells. Mol. Gen. Genet. 225: 81- 93 

Lum, L. S. Y., Sultzman, L. A., Kaufman, R. J., Linzer, D. I. H. and Wu, B. J. 
(1990) 
A cloned human CCAAT box binding factor stimulates transcription from the 
human HSP70 promoter. Mol. Cell Bioi. 10: 6709- 6717 

Lusher, B. and Eisenman, R.N. (1990) 
New light on myc and myb. Genes Dev. 1: 2025- 2035 

Maekawa, T., Sakura, H., Kanei- ishii, C., Sudo, T., Yoshimura, T., Fujisawa, J. 
1., Yoshida, M. and Ishii, S. (1989) 
Leucine zipper structure of the protein CRE-BPI binding to the cyclic- AMP 
response element in brain. EMBO J. 8: 2023- 2028 

Magnuson, K., Jackowski, S,. Rock, C. 0. and Cronan, Jr. J. E. (1993) 
Regulation of fatty acid biosynthesis in Escherichia coli. Miocrobiol. Rev. 57: 
522- 542 

Mandel, M. and Higa, A. (1970) 
Calcium- dependent bacteriophage DNA infection of E. coli. J. Mol. Bioi. 98: 
503- 517 

Marek, C. (1988) 
DNA Strider- a c program for the fast analysis of DNA and protein sequences 
in the apple macintosh family of computers. Nuc. Acid Res. 16: 1829- 1836 

Marcotte, W. R., Russel, S. H. and Quatrano, R. S. (1989) 
Abscisic acid- responsive sequences from the Em gene of wheat. Plant Cell. 
1: 969- 976 

Martin, K. J. (1991) 
The interaction of transcription factors and their adaptors, coactivators and 
accessory proteins. Bioessays. 1 3: 499- 503 

Martin, K. J., Lillie, W. J. and Green, M. R. (1990) 
Evidence for interaction of different eukaryotic transcriptional activators with 
distinct cellular targets. Nature. 346: 147-152 

Masterson, C., Wood, C. and Thomas, D. R. (1990) 
L- acetylcarnitine, a substrate for chloroplast fatty acid synthesis. Plant Cell 
Environ. 1 3: 755- 765 

Matsumara, S. and Stumpf, P. K. (1968) 
Fat metabolism in higher plants: Partial primary structure of spinach acyl 
carrier protein. Arch. Biochem. Biophys. 125: 932- 941 

Maxon, M. E., Goodrich, J. A. and Tjian, R. (1994) 
Transcription factor liE binds preferentially to RNA- polymerase IIA and 



recruits TFIIH- a model for promoter clearance. Genes and Dev. 8: 515- 524 

Maxon, M. E. and Tjian, R. (1994) 
Transcriptional activity of transcription factor liE is dependent on zinc binding. 
Procl. Nat. Acad. Sci. USA. 91 : 9529- 9633 

McCarthy, A. D., Aitken, A. and Hardie, D. G. (1983) 
The multifunctional polypeptide chain of rabbit mammary fatty acid synthase 
contains a domain homologous with the acyl carrier protein of Escherichia 
coli. Eur. J. Biochem. 136: 501- 508 

McKeon, T. A. and Stumpf, P. K. (1982) 
Purification and characterisation of the steroyl- acyl carrier protein desaturase 
and the acyl- acyl carrier protein thioesterase from maturing seeds of 
safflower. J. Bioi. Chern. 257: 12141- 12147 

McKnight, S. and Tjian, R. (1986) 
Transcriptional selectivity of viral genes in mammalian cells. Cell. 46: 795-
805 

McPherson, M. J., Quirke, P. and Taylor, G. R. (1991) 
In: PCR: A practical approach. The practical approach series. D. Rickwood 
and B. D. Harnes. (Eds.). Oxford University Press. 

Merino, A., Madden, K. R., Lane, W. S., Champoux, J. J. and Reinberg, D. 
(1993) 
DNA topoisomerase-1 is involved in both repression and activation of 
transcription. Nature. 365: 227- 232 

Messing, J. (1979) 
A multipurpose cloning system based on single stranded DNA bacteriophage 
M13. Recomb. DNA Tech. Bull. 2: 43 

Mitchell, P. (1979) 
Keilins respiratory chain concept and its chemiosmotic consequences. 
Science. 206: 1148- 1159. 

Moon, B. Y, Higashi, S. 1., Gombos, Z. and Murata, N. (1995) 
Unstauration of the membrane lipids of chloroplasts stabilizes the 
photosynthetic machinery against low temperature photoinhibition in 
transgenic tobacco plants. Procl. Nat. Acad. Sci. USA. 92: 6219- 6223 

Morelli, G., Nagy, F., Fraley, R. T., Rogers, S. G. and Chua, N.H. (1985) 
A short conserved sequence is involved in the light inducibility of a gene 
encoding ribulose 1, 5- bisphosphate carboxylase small subunit of pea. 
Nature. 31 5: 200- 204 

Mudd, J. B. and McManus, T. T. (1962) 
Metabolism of acetate by cell- free preparations from spinach leaves. J. Bioi. 



Chern. 237: 2057- 2063. 

Muller, H. P., Sago, J. M. and Schnaffner. W. (1989) 
An enhancer stimulates transcription in trans when attached to the promoter 
via a protein bridge. Cell. 58: 767- 777 

Murata, N. (1983) 
Molecular species composition of phosphatidylglycerols from chilling 
sensitive and chilling resistant plants. Plant Cell Phisiol. 24: 81- 86 

Murata, N., lshizakinishizawa, Q., Higashi, S., Tasaka, Y. and Nishida, I. 
(1992) 
Geneticaly engineered alteration in the chilling sensitivity of plants. Nature. 
356: 710-713 

Murata, N. and Nishida, I. (1987) 
Lipids: Structure and Function, pp, 315- 347, In: The Biochemistry of Plants: 
A Comprehensive Treatise. P. K. Stumpf and E. E. Conn. (Eds.). vol 9. 
Academic press., Orlando 

Murata, N. and Wada, H. (1995) 
Acyl- lipid destaurases and their importance in the tolerance and 
acclimatization to cold of cyanobacterium. Biochem. J. 308: 1- 8 

Murphy, D. J. (1990) 
Storage lipid bodies in plants and other organisms. Plant Lip. Res. 29:299-
324 

Murre, C., McCaw, P. S. and Baltimore, D. (1989) 
A new daughter DNA binding and dimerization motif in immunoglobulin 
enhancer binding, daughterless, Myo D and myc proteins. Cell. 56: 777- 783 

Nanbu, R., Menoud, P. A. and Nagaminey, Y. (1994) 
Multiple instability regulating sites in the untranslated region of the 
plasminogen activator messenger RNA. Mol. and Cell Bioi. 17: 4920- 4928 

Nicolas, R. H. and Goodwin, G. H. pp. 81- 104. Purification and cloning of 
transcription factors. In: Transcription Factors: A practical Approach. D. S. 
Latchman. (Ed.). IRL, Oford University Press., Oxford. 

Nielson, P. E. (1990) 
Chemical and photochemical probing of DNA complexes. J. Mol. Recog. 3: 1-
25 

Newcomb, E. H. and Stumpf, P. K. (1953) 
Biogenesis of higher fatty acids by slices of peanut cotyledens in vitro. J. Bioi. 
Chem.200:233- 239 

Norton, G. and Harris, J. F. (1983) 



Triacylglycerols in oilseed rape during seed development. Phytochemistry . 
2 2: 2703- 2707 

Numa, S. and Tanabe, T. (1984) 
In: Fatty Acid Metabolism and its Regulation. S. Numa. (Ed.). Elsevier., 
Amsterdam. 

Odell, J. T., Nagy, F. and Chua, N. H. (1985) r 

Identification of DNA sequences required for activity of the cauliflower mosaic 
virus 35S promoter. Nature313: 810- 812 

Oeda, K., Salinas, J. and Chua, N.H. (1991) 
A tobacco bZI P transcription activator (TAF-1) binds to a G- box- like motif 
conserved in plants. EMBO J 1 0: 1793- 1802 

Ohlrogge, J. B. (1982) 
Fatty acid synthetase- plants and bacteria have similar organisation. TIBS. 7: 
386- 387 

Ohlrogge, J. B. (1987) 
Biochemistry of plant acyl carrier proteins. pp. 137- 157, In: Lipids: structure 
and function. P. K. Stumpf and E. E. Conn (Eds.). The Biochemistry of Plants, 
Vol 9: Academic Press., New York. 

Ohlrogge, J. B., Browse, J. and Sommerville, C. R. (1991) 
The genetics of plant lipids. Biochem. Biophys. Acta. 1082: 1- 26 

Ohlrogge, J. B., Kuhn, D. K. and Stumpf, P. K. (1979) 
Subcellular localisation of acyl carrier protein in leaf protoplasts of Spinacia 
oleracea. Proc. Nat/. Acad. Sci. USA. 7 6: 1194- 1198 

Ohlrogge, J. B. and Kuo, T. M. (1985) 
Plants have isoforms for acyl carrier protein that are expressed differently in 
different tissues. J. Bioi. Chern. 260: 8032- 8037 

Ow, D. A., Jacobs, J. D. Howell, S. H. (1987) 
Functional regions of the cauliflower mosaic virus 35S RNA promoter 
determined by the use of the firefly luciferase gene as a reporter of promoter 
activity. Proc. Nat!. A cad. Sci. USA. 8 4: 4870- 487 4 

Paz- Ares, J., Ghosal, D. and Saedler, H. (1990) 
Molecular analysis of the C1- I allele from Zea mays: a dominant mutant of the 
regulatory c11ocus. EMBO. J. 9: 315- 321 

Pnueli, L., Abu- Abeid, M., Zamir, D., Nacken, W., Schwarz- Sommer, Z. and 
Lifschitz, E. ( 1991) 
The MADS box gene family in tomato: temporal expression during floral 
development, conserved secondary structures and homology with homeotic 
genes from Antirrhinum and Arabidopsis. Plant J. 1 : 255- 266 



Polacca, M. L. and Cronan, J. E. Jr. (1981) 
A mutant of Eschericia coli conditionally defective in the synthesis of halo
acyl carrier protein. J. Bioi. Chern. 256: 5750- 5754 

Poli, V., Mancini, F. P. and Cortese, R. (1990) 
IL-6DBP, a nuclear protein involved in interleukin- 6 signal transduction 
defines a new family of leucine zipper proteins. Cell. 63: 643- 653 

Pomerantz, J. L., Sharp, P. A. and Pabo, C. 0. (1995) 
Structure- based design of transcription factors. Science. 267: 93- 96 

Post- Beittenmiller, M.A., Hlousek- Radojcic, A. and Ohlrogge, J. B. (1989a) 
DNA sequence of a genomic clone encoding an Arabidopsis acyl carrier 
protein (ACP). Nuc. Acid Res. 17: 1777 

Post- Beittenmiller, M.A., Schmid, K. M. and Ohlrogge, J. B. (1989b) 
Expression of holo and apo forms of spinach acyl carrier protein- I in leaves of 
transgenic tobacco plants. The Plant Cell. 1: 889- 899 

Post- Beittenmiller, D., Roughan, G. and Ohlrogge, J. B. (1992) 
Regulation of plant fatty acid biosynthesis- analaysis of acyl coenzyme A and 
acyl acyl carrier protein substrate pools in spinach and pea chloroplasts. 
Plant Physiol. 1 0 0: 923- 930 

Poulose, A. J., Bonsall., R. F. and Kolattakudy, P. E. (1984) 
Specific modification of the condensing domain of fatty acid synthase and the 
determination of the primary structure of the modified active site polypeptides. 
Arch Biochem. Biophys. 230: 117- 128 

Prescott, D. J. and Vagelos, P. R. (1972) 
Acyl carrier protein. Adv. Enzymol. Relat. Areas. Mol. Bioi. 3 6: 269- 311 

Price, D. H., Sluder, A. E. and Greenleaf, A. L. (1989) 
Dynamic interaction between a Drosophila transcription factor and RNA 
polymerase II. Mol. Cell. Bioi. 9: 1465- 1475 

Prioleau, M. N., Huet, J., Sentenac, A. and Mechali, I. M. (1994) 
Competition between chromatin and transcription complex assembly 
regulates gene expression during early development. Cell. 77: 439- 449 

Pryde, E. H. and Rothfus, J. A. (1989) 
pp, 87- 117. In: Oil Crops of the World. G. Robbelen., R. K. Downey, and A. 
Ashri, (Eds.). McGraw- Hill., New York. 

Ptashne M. (1988) 
How eukaryotic transcriptional activators work. Nature. 335: 683- 689 

Ptashne M. (1992) 



A genetic switch. 2nd ed. Blackwell Scientific Publishers., Cambridge 
Massachusetts. 

Pugh, B. F. and Tjian, R. (1991) 
Transcription from a TATA less promoter requires a multisubunit TFIID 
complex. Genes Dev. 5: 1935- 1945 

Purugganan, M.D., Rounsley, S.D., Schmidt, R. J. and Yanofski, M. F. (1995) 
Molecular evolution of flower development- diversification of the plant MADS 
box regulatory gene family. Genetics. 140: 345- 356 

Radicella, J. P., Brown, D., Tolar, L.A. and Chandler, V. L. (1992) 
Allellic diversity of the maize B regulatory gene: different leader and promoter 
sequences of two B alleles determine distinct tissue specificities of 
anthocyanin production. Genes Dev. 6: 2152- 2164 

Rafferty, J. B., Simon, J., Baldock, C., Artymik, P. J., Baker, P. J., Stuitje, A. R., 
Slabas, A. R. and Rice, D. W. (1995) 
Structure. 3: 927- 938 

Rafferty, J. B., Simon, J., Stuitje, A. R., Slabas, A. R., Fawcett, T. and Rice, D. 
W. (1994) 
Crystallisation of the NADH- specific enoyl acyl carrier protein reductase from 
Brassica napus. J. Mol. Bioi. 237: 240- 242 

Raghow, R. (1987) 
Regulation of messenger RNA turnover in eukaryotes. TIBS. 1 2: 358- 360 

Revzin, A. (1989) 
Gel electrophoresis assays for DNA- protein interactions. Biotechniques. 7: 
346- 355 

Riggs, A. D., Bourgeois, S., Newby, R. F. and Cohn, M. (1968) 
DNA binding of the lac repressor. J. Mol. Bioi. 3 4: 365- 368 

Roberts, S. G. E. and Green, N. R. (1994) 
Activator- induced conformational change in general transcription factor TFIIB. 
Nature. 317: 717- 720 

Rochester, D. E., Wine, J. A. and Shah, D. M. (1986) 
The structure and expression of maize genes encoding the major heat shock 
protein HSP70. EMBO J. 5: 451- 458 

Rose, R. E., deJesus, C. E., Moylan, S. L., Ridge, N. P., Scherer, D. E. and 
Knauf, V. C. (1987) 
The nucleotide sequence of a eDNA clone encoding acyl carrier protein 
(ACP) from Brassica campestris seeds. Nuc. Acid Res. 1 7: 719 

Rosenfield, P. J. and Kelly, T. J. (1986) 



Purification of nuclear factor I by DNA recognition site affinity chromatography. 
J. Bioi. Chern. 2 61: 1398- 1408 

Roughan, G., Post- Beittenmiller, D., Ohlrogge, J. and Browse, J. (1993) 
Is acetylcarnitine a substrate· for fatty acid synthesis in plants? Plant Physiol. 
101: 1157- 1162 

Rounsley, S. D., Ditta, G. S. and Yanofski, M. F. (1995) 
Diverse roles for MADS box genes in Arabidopsis development. Plant Cell. 7: 
1259- 1269 

Roy, A. L., Meisterernst, M., Pognonec, P. and Roeder, R. G. (1991) 
Cooperative interaction of an initiator binding factor and the helix loop helix 
activator USF. Nature. 354: 245- 248 

Ruberti, 1., Sessa, G., Lucchetti, S. and Morelli, G. (1991) 
A novel class of plant proteins containing a homeodomain with a closely 
linked leucine zipper motif. EMBO J. 1 0: 1789- 1791 

Ruch, F. E. and Vagelos, P. R. (1973) 
The isolation and general properties of Escherichia coli malonyl- GoA- ACP 
transacylase. J. Bioi. Chern. 248: 8086- 8094 

Runswick, M. J., Fearn ley, I. M., Skehel, J. M. and Walker, J. E. (1991) 
Presence of an acyl carrier protein in NADH- ubiquinone oxidoreductase from 
bovine heart mitochondria. FEBS Lett. 286: 121- 124 

Ryan, C. A. (1988) 
Proteinase inhibitor gene families: tissue specificity and regulation. pp, 223-
233 In: Temporal and spatial regulation of plant genes. D.P. S. Verma and R. 
B. Goldberg (Eds.). Springer- Verlag., Berlin. 

Safford, R., Windust, J. H. C., Lucus, C., de Silva, J., James, C. M., Hellyer, S. 
A., Smith, C. G., Slabas, A. R. and Hughes, S. G. (1988) 
Plastid localised seed acyl carrier protein of Brassica napus is encoded by a 
distinct, nuclear multigene family. Eur. J. Biochem. 17 4: 287- 295 

Saikai, R. A. (1989) 
The design and optimisation of the PCR. In: PCR Technology: Principles and 
Applications for DNA Amplification. H. A. Erlich. (Ed.). Stockton Press., New 
York. 

Sakurai, H., Ohishi, T., Amakasu, H. and Fukasawa, T. (1994) 
Yeast GAL 11 protein stimulates basal transcription in a gene specific manner 
by a mechanism distinct from that by DNA- bound activators. FEBS. Letts. 
3 51 : 176- 180 

Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) 
Molecular cloning: A laboratory manual (2nd edition.). Cold Spring Harbour 



Laboratory Press., New York. 

Samols, D., Thornton, C. G., Murtif, V. L., Kumar, G. K., Haase, C. and Wood, 
H. G. {1988) 
Evolutionary conservation among biotin enzymes. J. Bioi. Chern. 208: 6461-
6464 

Sanfacon, H. {1992) 
Regulation of messenger RNA formation in plants- lessons from the 
cauliflower mosaic virus transcription signals. Can. J. Bot .. 70: 885- 899 

Sanger, F., Nicklen, S. and Coulsen, A. R. {1977) 
DNA sequencing with chain- terminating inhibitors. Proc. Nat!. Acad. Sci. 
USA. 74:5463-5467 

Sasaki, Y., Hakamada, K., Suama, Y., Nagamo, Y., Furusawa, I. and Matsuno, 
R. (1993) Chloroplast- encoded protein as a subunit of acetyl- GoA 
carboxylase in pea plants. J. Bioi. Chern. 33:25118- 25123 

Sauer, R. T., Smith, D. L. and Johnson, A. D. {1988) 

Flexibility of the yeast a2 repressor enables it to occupy the ends of its 
operator, leaving the centre free. Genes Dev. 2: 807- 816 

Scafe, C., Chao, D., Lopes, J., Hirsch, J. P., Henry, S. and Young, R. A. {1990) 
RNA polymerase II C- terminal repeat influences response to transcriptional 
enhancer signals. Nature. 34 7: 491- 494 

Schaffner, G., Schirms, S., Muller, M., Baden, B., Weber, F. and Schaffner, W. 
(1988) 
Redundancy of information in enhancers as a principle of mammalian 
transcriptional control. J. Mol. Bioi. 2 01 : 81- 90 

Scharf, K. D., Rose, S., Zott, W., Schoff, F. and Nover, L. (1990) 
Three tomato genes code for heat- stress transcription factors with a region of 
remarkable homology to the DNA binding domain of the yeast HSF. EMBO J. 
9: 4495- 4501 

Scherer, D. E. and Knauf, V. C. (1987) 
Isolation of a eDNA clone for the acyl carrier protein- I of spinach. Plant. Mol. 
Bioi. 9: 127- 134 

Scherer, D. E., Sato, A., McCarter, D. W., Radke, S. E., Kridl, J. C. and Knauf, 
v. c. {1992) 
Non- essential repeats in the promoter region of a Brassica rapa acyl carrier 
protein gene expressed in developing embryos. Plant Mol. Bioi. 18: 591- 594 

Schindler, U. and Cashmore, A. R. (1990) 
Photoregulated gene expression may involve ubiquitous DNA binding 



proteins. EMBO J. 9: 3415- 3427 

Schmid, K. M. and Ohlrogge, J. B. (1990) 
A root acyl carrier protein- II from spinach is also expressed in leaves and 
seeds. Plant. Mol. Bioi. 1 5: 765- 778 

Schmidt, R. J., Frances, A. B. and Burr, B. (1987) 
Transposon tagging and molecular analysis of the maize regulatory locus 
opaque- 2. Science. 238: 960- 963 

Schulz, R., Ebel, J. and Hahlbrook, K. (1982) 

Partial purification of ~ -ketoacyl acylcarrier protein synthase from a higher 
plant. FEBS Lett. 1 4 0: 207- 209 

Schwazsommer, Z., Huijser, P., Nacken, W., Saedler, H. and Sommer, H. 
(1990) 
Genetic control of flower development by homeotic genes in Antirrhinum 
majus. Science. 2 50: 931- 936 

Schweizer, E., Muller, G., Roberts, L. M., Schweizer, M., Rosch, J., Wiesner, P., 
Beck, J., Stratmann, D. and Zainer, I. (1987) 
Genetic control of fatty acid synthesis and structure in lower fungi. Fat Sci. 
Techno/. 570- 577 

Seipel, K., Georgiev, 0., Gerber, H. P. and Scaffner, W. (1994) 
Basal components of the transcriptional apparatus (RNA- polymerase II, TATA
binding protein) contain activation domains- is the repetitive C- terminal 
domain (CTD) of RNA- polymerase II a portable enhancer domain. Mol. 
Repro. and Dev. 3 9: 215- 225 

Sharp, P. A. (1992) 
TATA- binding protein is a classless factor. Cell. 6 8: 819- 821 

Shen, B., Summers, R. G., Gramajo, H., Bibb, M. J. and Hutchinson, C. R. 
(1992) 
Purification and characterisation of the acyl carrier protein of the 
Streptomyces glaucescens tetracenomycin C polyketide synthase. J. 
Bacterial. 1 7 4: 3818- 3821 

Shimakata, T. and Stumpf, P K. (1982a) 
The procaryotic nature of the fatty acid synthetase of developing Carthamus 
tinctorius L. (safflower) seeds. Arch. Biochem. Biophys. 217: 144- 154. 

Shimakata, T. and Stumpf, P K. (1982b) 
Fatty acid synthetase of Spina cia oleracea leaves. Plant Physiol. 6 9: 125 7-
1262 

Shimakata, T. and Stumpf, P K. (1982c) 



Isolation and function of spinach leaf- ketoacyl- [acyl- carrier- protein] 
synthases. Proc. Nat!. A cad. Sci. USA. 7 9: 5808- 5812 

Shimakata, T. and Stumpf, P K. (1982d) 
Purification and characteristics of -ketoacyl- [acyl- carrier- protein] reductase. -
hydroxyacyl- [acyl- carrier- protein] dehydrase and enoyl- [acyl- carrier
protein] reductase from Spinacia oleracea leaves. Arch. Biophys. Biochem. 
218: 77- 91 

Shorrosh, B. S., Dixon, R. A. and Ohlrogge, J. B. (1994) 
Molecular cloning, characterisation and elicitation of acetyl CoA carboxylase 
from alfalfa. Proc. Nat!. Acad. Sci. USA. 91 : 4323- 4327 

Simoni, R. D., Criddle, R. S. and Stumpf, P. K. (1967) 
Purification and properties of plant and bacterial acyl carrier proteins. J. Bioi. 
Chern 242: 573- 581 

Simpson, J., Schell, J., Vanmontagu, M. and Herrerastrella, L. (1986} 
Light inducible and tissue specific pea LHCP gene expression involves an 
upstream element combining enhancer like and silencer like properties. 
Nature. 323: 551- 554 

Singh, H., Clerc, R. G. and LeBowitz, J. H. (1989) 
Molecular cloning of sequence- specific DNA binding proteins using 
recognition site probes. Biotechniques. 7:252- 261 

Singh, K., Dennis, E. S., Ellis, J. G., Llewellyn, D. J. Tokuhisa, J. G., 
Wahleithner, J. A. and Peacock, W. J. (1990} 
OCSBF- 1, a maize ocs enhancer binding factor: Isolation and expression 
during development. The Plant Cell. 2: 891- 903 

Singh, H., LeBowitz, J. H., Baldwin, A. S. and Sharp, P A. (1988) 
Molecular cloning of an enhancer binding protein: Isolation by screening of 
an expression library with a recognition site DNA. Cell. 52: 415- 423 

Slabas, A. R., Brown, A., Sinden, B. S., Swinhoe, R., Simon, J. W., Ashton, A. 
R., Whitfield, P. R. and Elborough, K. M. (1994) 
Pivotal reactions in fatty acid synthesis. Prog. Up. Res. 33: 39- 46 

Slabas, A. R., Cottingham, I. R., Austin, A., Hellyer, A., Safford, R. and Smith, 
C. G. (1990} 
Immunological detection of NADH- specific enoyl- ACP reductase from rape 

seed (Brassica napus)- induction, relationship of a and~ polypeptides, mRNA 
translation and interaction with ACP. Biochem et Biophys Acta. 1 039: 181-
188 

Slabas, A. R. and Fawcett, T. (1992) 
The biochemistry and molecular biology of plant lipid biosynthesis. Plant 



Mol. Bioi. 1 9: 169- 191 

Slabas, A. R., Fawcett, T., Griffiths, G. and Stobard, K. (1993) 
Biochemistry and molecular biology of lipid synthesis in plants: Potential for 
genetic manipulation. pp, 104- 139. In: Biosynthesis and manipulation of 
plant products. D. Grierson (Ed.). University Press., Cambridge. 

Slabas, A. R., Harding, J., Hellyer, A., Roberts, P. and Bambridge, H. E. (1987) 
Induction, purification and characterisation of acyl carrier protein from 
developing seeds of oil seed rape (Brassica napus). Biochem. Biophys. Acta. 
921:50-59 ' 

Slabas, A. R., Harding, J., Hellyer, A., Sidebottom, C. M., Gwyne, H., Kessel, R. 
and Tombs, M. P. (1984). 
Enzymology of plant fatty acid biosynthesis. pp 3- 10., In: Structure, function 
and metabolism of plant lipids. P. A. Siegenthaler and W. Eichenberger (Eds. ). 
Elsevier., New York. 

Slabas, A. R., Sidebottom, C. M., Hellyer, A., Kessell, R. M. J. and Tombs, M. P. 
(1986) 
Induction, purification and characterisation of NADH- specific enoyl- acyl 
carrier protein reductase from developing seeds of oil seed rape (Brassica 
napus) Biochem. Biophys. Acta. 877:271- 280 

Smith, S. (1994) 
The animal fatty acid synthetase- one polypeptide, 7 enzymes. FASEB. J. 8: 
12480- 1259 

Smith, J. G., Hill, R. S. and Baldwin, J. P. (1995) 
Plant chromatin structure and posttranslational modifications. Grit. Rev. Plant 
Sci. 14: 299- 328 

Somerville, C. and Browse, J. (1991) 
Plant lipids: Metabolism, mutants and membranes. Science. 252: 80- 87 

Southern, E. M. (1975) 
Detection of specific sequences among DNA fragments separated by gel 
electrophoresis. J. Mol. Bioi. 98: 503- 517 

Spaink, H. P., Shelley, D. M., van Brussel, A. A. N., Glushka, J., York, W. S., 
Tak, T., Gerger, 0., Kennedy, E. P., Reinhold, V. N. and Lugtenberg, B. J. J. 
(1991) 
A novel highly unsaturated fatty acid moiety of lipo- oligosaccharide signals 
determines host specificity of Rhizobium. Nature. 3 54: 125- 130 

Squires, C. L., Stumpf, P. K. and Schmid, C. (1958) 
Effect of bicarbonate on the enzymic synthesis of long chain fatty acids. Plant 
Physiol. 33: 364- 366 



Staudt, L. M., R. G. Clerc, H. Singh, J. H. LeBowit~. P. A. Sharp and Baltimore, 
D. (1988) 
Cloning of a lymphoid specific eDNA encoding a protein binding the 
regulatory octomer DAN motif. Science. 241: 577- 580 

Stoops, J. K. and Wakil, S. J. (1980} 
Yeast fatty acid synthetase: structure- function relationship and nature of the 

13- keto acyl synthetase site. Proc. Nat/. Acad. Sci. USA. 77: 4544- 4548 

Struhl, K. (1989) 
Molecular mechanisms of transcriptional regulation in yeast. Annu. Rev. 
Biochem. 58: 1051- 1077 

Stumpf, P. K. (1980} 
Biosynthesis of saturated and unsaturated fatty acids. pp, 177- 204. In: The 
Biochemistry of Plants. P. K. Stumpf (Ed). Academic Press, New York., USA 

Stumpf, P. K. (1981} 
Plants, fatty acids, compartments. TIBS. 6: 173- 176 

Stumpf, P. K. and Barber, G. (1957} 
Fat metabolism in higher plants. IX. Enzymatic synthesis of long chain fatty 
acids by avocado particles. J. Bioi. Chern. 2 2 7: 407- 417 

Stumpf, P. K. and Shimakata, T. (1983) 
Molecular structures and functions of plant fatty acid synthetase enzymes. pp, 
1- 16. In: Biosynthesis and Function of Plant Lipids. J. B. Mudd. (Ed.). Waverly 
Press., UK. 

Svaren, J., lnagami, S., Louegren, E. and Chalkley, R. (1987) 
DNA denatures upon drying after ethanol precipitation. Nuc. Ac. Res. 15: 
8739- 8754 

Tabata, T., Takase, H., Takayama, S., Mikami, K., Nakasuka, A., Kawata, T., 
Nakayama, T. and lwabuchi, M. (1989) 
A protein that binds to a cis- acting element of wheat histone genes has a 
leucine zipper motif. Science. 245: 965- 967 

Takatsuji, H., Nakamura, N. and Katsumoto, Y. (1994) 
A new family of zinc- finger proteins in petunia- structure, DNA- sequence 
recognition and floral organ- specific expression. Plant Cell. 6(7): 947- 958 

Therisod, H. and Kennedy, E. P. (1987) 
The function of acyl carrier protein in the synthesis of membrane derived 
oligosaccharides does not require its phosphopantetheine prosthetic group. 
Proc. Nat!. A cad. Sci. USA 84: 8235- 8238 

Thomas, M. S. and Flavell, R. B. ( 1990) 



Identification of an enhancer element for the endosperm specific expression 
of high molecular weight glutenin. The Plant Cell. 2: 1171- 1180 

Thompson, W. F., Elliot, R. C., Dickey, L. F., Gallo, M., Pedersen, T. J. and 
Tonelli, C., Dolfini, S., Ronchi, A., Consonni, G., Gavazzi, G., (1994) 
Light inducibility and tissue specificity of the R gene family in maize. 
Genetica. 9 4: 225- 234 

Tjian, R. and Maniatis, T. (1994) 
Transcriptional activation, a complex puzzle with a few easy pieces. Cell. 77: 
5-8 

Tobin, E. M. and Silverthorne, J. (1985) 
Light regulation of of gene expression in higher plants. Annu. Rev. Biochem. 
36: 569- 593 

Topfer, R. and Martini, N. (1994) 
Molecular cloning of cDNAs or genes encoding proteins involved in de novo 
fatty acid biosynthesis in plants. J. Plant Physiol. 143: 416- 426 

Topfer, R., Martini, N. and Schell, J. (1995) 
Modification of plant lipid synthesis. Science. 268: 681- 686 

Turnham, E. and Northcote, D. H. (1983) 
Changes in the activity of acetyl coA carboxylase during rapeseed formation. 
Biochem. J. 212: 223 

Tyree, C. M., George, C. P., Lira- DeVito, L. M., Wampler, S. L., Dahmus, M. E., 
Zawel, L. and Kadonga, J. T. (1993) 
Identification of a minimum set of proteins that is sufficient for accurate 
initiation of transcription by RNA polymerase II. Genes Dev. 7: 1254- 1265 

Vagelos, P. K. ( 197 4) 
Biosynthesis of saturated fatty acids. pp, 100- 140. In: Biochemistry of Lipids. 
T. W. Goodwin. (Ed.). Butterworth., London. 

Vanaman. T., Wakil, S. and Hill, R. (1968) 
The complete amino acid sequence of the acyl carrier protein of Escherichia 
coli. J. Bioi. Chern. 243: 6420- 6431 

Vanderleij, F. R. and Witholt, B. (1995) 
Strategies for the sustainable production of new biodegradable polyesters in 
plants- A review. Can. J. Microbial. 41 : 222- 238 

Verma, V. P. S and Delauney, A. J. (1988) 
Root nodule symbiosis: nodulins and nodulin genes. pp, 170- 199. In: 
Temporal and Spatial Regulation of Plant Genes. D. P. S. Verma and R. B. 
Goldberg (Eds.) Vienna, Springer- Verlag., Berlin. 



Viera, J. and Messing, J. (1982) 
The pUC plasmids, an M13mp7- derived system for insertion mutagenesis 
and sequencing with synthetic universal primers. Gene. 19: 259- 268 

Vinson, C. R., K. L. LaMarca, P. F. Johnson, W. H. Landschultz and McKnight, 
S. L. (1988) 
In situ detection of sequence- specific DNA binding activity specified by a 
recombinant bacteriophage. Genes dev. 2: 801- 806 

Vodkin, M. H. and Vodkin, L. 0. (1989) 
A conserved zinc finger domain in higher plants. Plant Mol. Bioi. 1 2: 593- 594 

Volpe, J. J. and Vagelos, P. R. (1976) 
Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol. 
Rev. 56: 339- 417 

Wada, H., Gombos, Z. and Murata, N. (1990) 
Enhancement of chilling tolerance of a cyanobacterium by genetic 
manipulation of fatty acid desaturation. Nature. 34 7: 200- 203 

Wada, H., Gombos, Z. and Murata, N. (1994) 
Contibution of membrane lipids to the ability of the photosynthetic machinery 
to tolerate temperature stress. Proc. Nat/. Acad. Sci. USA 91: 4273- 4277 

Wakil, S. J., Stoops, J. K. and Joshi, V. C. (1983) 
Fatty acid synthesis and its regulation. Annu. Rev. Biochem. 52: 537- 539 

Walsh, M. C., Klopfenstein, W. E. and Harwood, J. L. (1990) 
The short chain condensing enzyme has a widespread occurrence in the fatty 
acids synthetases from higher plants. Phytochemistry. 29: 3792- 3799 

Weaire, P. J. and Keckwick, R. G. 0. (1975) 
The synthesis of fatty acids in avocado mesocarp and cauliflower bud tissue. 
Biochem. J. 146:425- 437 

Weeks, G. and Wakil, S. J. 91968) 
Studies on the mechanism of fatty acid synthesis. J. Bioi. Chern. 243: 1180-
1189 

Weiher, H., Konig, M. and Gruss, P. (1983) 
Multiple point mutations affecting the simian virus 40 enhancer. Science. 
2 1 9 : 626- 631 

Weintraub, H. (1985) 
Assembly and propagation of repressed and de- repressed chromosomal 
states. Cell. 4 2: 705- 711 

Weisshaar, B., Armstrong, A. A., Block, daCosta e Silva, 0. and Hahlbrock, 
K. (1991) 



Light- inducible and constitutively expressed DNA- binding proteins 
recognising a plant promoter element with functional relevance in light 
responsiveness. EMBO J 1 0: 1777- 1786 

Werkmeister, K., Johnston, R. B. and Schweizer, E. (1993) 
Complimentation in vitro between point mutants of fatty acid synthase 
complexes. Eur. J. Biochem. 11 6: 303- 309 

Williams, T. M., Moolten, D., Burlein, J., Romano, J., Bhaerman, R., Godillot, A., 
Mellon, M., Rauscher, F. J. and Kant, J. A. (1991) 
Identification of a zinc finger protein that inhibits IL-2 gene expression. 
Sc~nca254:1791- 1794 

Williamson, A. C. and Rybicki, E. P. (1991) 
Detection of genital human papillomaviruses by PCR amplification using 
nested primers. J. Medical Vir. 33: 165- 171 

Witkauski, A., Ranyan, V. S., Randhawa, Z. 1., Amy, C. M. and Smith, S. (1991) 
Structural organisation of the multifunction animal fatty acid synthetase. Eur. 
J. Biochem .. 198: 571- 579 

Wood, H. G. and Barden, R. E. (1977) 
Biotin enzymes. Annu. Rev. Biochem. 46:385- 413 

Xu, F. F. and Cohen, J. N. (1995) 
RNA degradation in E. coli regulated by 3' adenylation and 5' 
phosphorylation. Nature. 37 4: 180- 183 

Yamazaki, K. 1., Katagiri, F., lmaseki, H. and Chua, N. H. (1990) 
TGA 1 a, a tobacco DNA- binding protein, increases the rate of initiation in a 
plant in vitro transcription system. Proc. Nat!. A cad. Sci. USA. 8 7: 7035- 7039 

Yanisch- Perron, C., Viera, J. and Messing, J. (1985) 
Improved M 13 phage cloning vectors and host strains- nucleotide sequences 
of the M 13 mp 18 and pUC vectors. Gene. 33: 1 03- 119 

Yanofsky, M. F. Ma, H., Bowman, J. L. Drews, G. N., Feldman, K. A. and 
Meyerowitz, E. M. (1990) 
The protein encoded by the Arabidopsis homeotic gene agamous resembles 
transcription factors. Nature. 346: 35- 39 

Yokomori, K., Zeidler, M. P., Chen, J. L., Verrijzer, C. P., Mlodzik, M. and Tjian, 
R. (1994) 
Drosophila TFIIA directs cooperative DNA- binding with TBP and mediates 
transcriptional activation. Genes and Dev. 8: 2313-2323 

Young, R. A. and Davies, R. W. (1983) 
Efficient isolation of genes using antibody probes. Proc. Nat!. Acad. Sci. USA 
8 0: 1194- 11 98 



Young, R. A. and Davies, R. W. (1985) 

lmmunoscreening A.gt11 recombinant DNA expression libraries. In: Genetic 
engineering. J. Setlow and D. Hollander (Eds.). Plenum Press., New York. 

Zawel, L. and Reinberg, D. (1993) 
Initiation of transcription by RNA polymerase II- a multistep process. Prog. 
Nuc. Acid Res. and Mol. Bioi. 44: 67- 108 

Zawel, L. and Reinberg, D. (1995) 
Common thetmes in assembly and function of eukaryotic transcription 
complexes. Annu. Rev. Biochem. 64: 533- 561 

Zimmerman, R. and Meyer, D. I. (1986) 
A year of new insights into how proteins cross membranes. TIBS. 11 : 512-
514 

Zlatanova, J. and Van Holde, K. (1992) 
Histone HI and transcription: still an enigma. J. Cell. Science. 103: 889- 895 


