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Abstract 

The chemical and topographical nature of a polymer surface can be 

changed by non-equilibrium glow discharge treatment. Surface 

modification of polysulfone and polyethersulfone was examined using a 

variety of plasma treatments at a fixed power, pressure and treatment time. 

The modification observed was found to be dependent upon the type of feed 

gas employed. 

Tetrafluoromethane plasmas fluorinate polymer surfaces. The 

influence of polymeric structure on the extent of modification was 

examined. Phenyl ring containing polymers experienced a greater extent of 

modification compared to saturated polymers. The extent of modification is 

dependent upon both the fluorination mechanism and the surface affinity. 

Plasmas contain a variety of species accompanied by an 

electromagnetic spectrum. The role of vacuum ultraviolet radiation in a 

plasma was investigated as a function of feed gas (argon, krypton, xenon and 

oxygen) on polyethylene and polystyrene, in an oxygen atmosphere. The 

xenon vacuum ultraviolet treatment gave rise to the greatest oxidation 

whilst the O2 vacuum ultraviolet treatment was found to result in the least 

oxidation. The activation mechanisms varied with the feed gas chosen for 

the experiment. 

Non-equilibrium glow discharge treatment can alter the transport 

properties of gases permeating through an asymmetric polysulfone 

membrane. The selectivity and permeability alter as a function of the 

treatment. The deposition of a methane plasma polymer onto the surface of 

the membrane resulted in an increase in the gas flux. Similarly CF4 plasma 

treatment also gave rise to an increase in the gas flux. The deposition of a 

methcme plasma polymer followed by a CF4 plasma treatment resulted in a 

decrease in gas flux and a small increase in the oxygen/nitrogen selectivity. 
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Chapter One 

An Introduction to Non-equilibrium Glow 
Discharges, Gas Separation Membranes and 

Characterization Techniques 

1.1 I N T R O D U C T I O N 

The impetus behind this work was to develop the gas separation 

properties of a polysulfone membrane for use in the gas industry. Natural 

gas is obtained from tapping into gas reservoirs beneath the ground at many 

sites aroimd the world. Unfortunately the gas quality can vary enormously 

from site to site and it is necessary to treat the gas in order to remove 

impurities and to produce gas that meets the specified quality standards. 

Natural gas often has impurities such as CO2, H2O and H2S present along 

with a proportion of hydrocarbons. If the gas reserve is especially high in 

hydrocarbons it may be commercially viable to extract them and sell them 

independently. Moreover, it may be necessary for them to be removed in 

order to meet quality standards. Gaseous impurities, for example CO2, need 

to be removed as it is an acidic gas which can cause corrosion to pipelines. 

Natural gas can be purified in a number of ways such as low 

temperature separation or adsorption processes using silica or liquids (e. g. 

diethylene glycol). The use of membranes to separate impurities is an 

alternative technique which offers the advantage of lower capital 

investment and maintenance costs in the long term. This thesis 

investigates the use of plasma modification to achieve this goal. 

Chapter one summarizes the background knowledge required for the 

work entailed. It covers how permeation processes are influenced by 

different factors and the implications this has for the transport of gases 

through a membrane. This is followed by a brief description of plasmas; 
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what they are, their uses and the advantages they possess over other 

techniques used for modification. Finally, chapter one also describes some 

of the analytical techniques that are used to study modifications achieved 

through the use of plasmas. 

Chapter two is concerned with how polysulfone and structurally 

related polyethersulfone react when subjected to different gas plasma 

treatments. Chapters three and four investigate further some of the results 

found in chapter two, namely the influence of chemical structure on the 

extent of fluorination and the role of the radiation component in a plasma. 

Chapters five and six are concerned with plasma treatment of a 

membrane in order to improve its gas separation properties. The transport 

properties of N2 and O2 through a plasma treated membrane are examined. 

1.2 PERMEABILITY 

1. Z 1 Background 

Permeation is the passage of species through a membrane via the 

influence of a pressure/concentration gradient. It is dependent on several 

factors such as diffusion, solubility, concentration, pressure, structure etc 

and therefore as a result permeation is a complex process. Figure 1 

illustrates the process of permeation through a membrane^. The two 

different components in the feed are separated into the retenate, which is 

rich in one of the species and the permeate which is rich in the other 

species, by the membrane. 



Figure 1: Function of a membrane^. 
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Permeability plays an important role in many areas. One example can 

be seen in the food and packaging industry where food preservation is 

dependent upon the barrier properties of the material. Permeation is also 

important for separation processes, for example in gas separation 

membranes or in controlled release devices which are used in medicine. 

In order to develop efficient gas separation membranes, an extensive 

knowledge of how parameters such as the sorption gas, temperatures and 

the structure of the material affect the permeability is required. 

Permeability is defined^-^ by equation 1. 

P = DS (1) 

where P is the permeability, D is the diffusion coefficient and S is the 

solubility coefficient. 

Since permeabihty is directly dependent on diffusion and solubility, 

then factors which influence these will influence permeabihty. 



1.2. 2 Factors Influencing Permeability 

The permeation of gas molecules through a non porous membrane is 

generally regarded as a solution-diffusion process. This separation process is 

based upon both solubility and mobility factors. Diffusion selectivity 

favours the passage of the smallest molecule and solubility selectivity 

favours the passage of the most condensible molecule5,6. 

The diffusion of penetrant through a membrane is a process by which 

sorbed gas molecules are transported from one part of a polymeric 

membrane to another as a result of random motions of the molecules4'7-9. 

Diffusion is described by Pick's Law, equation 

J = -D(dc/dx) (2) 

where J is the flux through the membrane, D is the diffusion coefficient and 

dc/dx is the concentration gradient through the membrane. 

The cohesive energy density (CED) describes the forces between 

polymer chains. The greater the attractive forces between the chains the 

greater the expenditure of energy required to open a transient gap for the 

passage of a penetrant. Diffusivity is very sensitive to small changes in the 

parameters which affect the CED. The free volume of the polymer also 

affects the diffusion, since a large fractional free volume will enable easy 

passage of penetrants. A lower fractional free volume will reduce the 

available free volume required for the size of the penetrantl2. T h e 

following paragraphs summarize how the membrane structure influences 

the permeability by affecting the solubility and diffusion coefficients. 

The penetrant size and shape has a marked effect on the permeability. 

Small compact penetrants are more mobile than large bulky penetrants and 

are more likely to find a 'gap' in the polymer through which the molecule 



can pass. Linear molecules are more flexible and have greater mobility to 

pass through the polymer^'^'^. 

The organisation of the polymer has great implications for the 

permeability. The packing of the polymer chains and therefore the density 

of the polymer w i l l either enable or prevent penetrants passing through the 

membrane, depending on how tightly packed the structure is. The degree of 

crystallization is important as crystallites act as barriers to the transport of 

molecules creating a more tortuous path. This results in a decrease i n 

permeabi l i ty since the d i f fu s ion coefficient w i l l be decreased. The 

amorphous regions are considered to be the transport pathways of the 

penetrants. Crosslinking has a similar effect as there w i l l be a decrease in 

free volume through which the molecules can move. This is an especially 

important point for large molecules, for example N 2 compared to He9'i2. 

Orientation of crystalline domains wi th in the polymer w i l l also alter 

the permeability. I f the crystalline domains are parallel to the direction of 

d i f fu san t then the permeabil i ty w i l l be high. I f the domains are 

perpendicular to the direction of diffusion molecules then the permeability 

w i l l decrease since the domain now acts as a barrierl3-l4. 

Since d i f fus ion and solubility are both temperature dependent then 

the permeability w i l l also depend on temperature. 

1.2. 3 Membranes 

There are many kinds of membranes which differ both i n their 

structure and their function. Figure 2 illustrates the relationships between 

the type of membrane process, pore diameter and the penetrant size^. 



Figure 2: Relationship between pore diameter, separation process and 

penetrant size^. 
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A membrane is a material which constitutes a physical barrier to a 

solution or gas. The extent to which the diffusing molecules permeate 

through the material is dependent, among many things, on the structure of 

the membrane. The permeation of an ideal polymer film (with no 

microvoids) involves three phenomena:-

1) Adsorption of gas at the film surface. 

2) Diffusion of the dissolved gas towards the other surface of the membrane 

as a result of a pressure or concentration gradient. 

3) Detachment from the film surface. 

The sorption/desorption processes are rapid compared to diffusion. 

Membranes are important for the selective permeation of molecules. 

The expression for the definition of the selectivity of a membrane is the 

ratio of the permeability coefficients, equation 315. 



OC A / B = P A / P B (3) 

Where a is the selectivity of A and B , P A is the permeabihty coefficient of A 

and P B is the permeability coefficient of B . 

The selectivity is characteristic of the membrane, which in turn is 

dependent upon the structure. The production of a membrane has a great 

influence on the performance of the membrane because the way in which it 

is formed relates to its' final structiu-e. There are three types of membrane 

structure to be considered; dense, composite and asymmetric 

membranes^'i^. 

Dense membranes, often referred to as polymeric fihns, are prepared 

by dissolution of a pol5aner substrate in a solvent medium followed by the 

application of the solution onto a substrate. The solvent then evaporates 

leaving behind a dense polymer film. The polymer and solvent determine 

the morphology of the film. 

Composite membranes consist of two different materials. They are 

usually formed by depositing a thin film onto a microporous membrane. 

The selectivity of such membranes may be determined solely by the thin 

film. 

Asymmetric membranes consist of a dense skin layer supported by a 

sponge-like matrix^'6. The porous underlayer and the thin dense skin are 

composed of the same material. Asymmetric membranes are formed by a 

phase inversion process which involves casting a polymer solution onto a 

substrate and immersing in non-solvent. Exchange between the solvent 

and non solvent occurs forming the membrane. The dense skin layer is a 

result of the faster exchange process at the surface where it is directly in 

contact with the non-solvent. There are many variables such as 

concentration of solution, choice of solvent, temperature, evaporation time 

and so on^^'i^. As a result it is difficult to achieve good membranes. 

8 



However asymmetric membranes have the advantage of good productivity, 

i.e high flux. 

The criteria of a membrane are that it has high selectivity, high 

permeability and a long lifetime. For a membrane to have high selectivity it 

requires a material which is inflexible (so as to behave in a sieve-like 

maimer), crystalline and highly crosslinked. High permeability requires a 

material which is amorphous with no crosslinking so that there are many 

available pathways for the penetrant to diffuse through. It can therefore be 

seen that there is a play off between permeability and selectivity and this has 

been a point of much research. 

This aim of this thesis is to modify a polysulfone membrane so as to 

enhance the gas separation properties. There has been extensive research to 

find the "ideal membrane", that is one possessing both high selectivity and 

high permeability using a variety of methods. These methods broadly cover 

the search for new and better membrane materialsl9-21 refining the 

preparation of a membrane22,23 and the modification of existing 

membranes. Since polysulfone already possesses reasonable gas separation 

properties, modification of the polysulfone membrane itself may lead to an 

overall improvement in its gas transport properties. Modification of a 

membrane can be achieved in many ways such as chemical grafting of 

functionalities^^, irradiation with ion beams25 and photooxidation^^. In this 

thesis the method chosen to modify the polysulfone was by plasma 

treatment. Section 1. 3 briefly describes what plasmas are, their uses and 

some of the fundamental reactions that occur within plasmas. 

1.3 P L A S M A S 

A plasma27is a partially ionized gas consisting of many species such 

as ions, electrons and neutral species^S. Plasmas are often referred to as the 

fourth state of matter. Figure 3 illustrates this idea. In the diagram the 
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temperatiure corresponds to the heavier particles only since the energy of the 

electrons is much higher in a non-equilibrium plasma. This wil l be 

explained in a subsequent section. 

Figure 3: The states of matter29 
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In order for a plasma to exist, the number of positive and negative 

charge carriers must be approximately equal, since this means that as a 

whole the plasma retains electrical neutrality. This criterion is satisfied 

when the dimensions of the discharged gas volume are much greater than 

the Debye length, equation 4 29,30 

XD = (eokTe/ne2)l/2 (4) 

where Xj) is the Debye length, ZQ is the permittivity of free space, k is the 

Boltzmann constant, Tg is the electron temperature and n is the electron 

density, kj) defines the distance over which a charge imbalance can exist, in 

other words although the plasma as a whole remains neutral, there will be 

perturbations (e. g point charges) over distances XD-

10 



1.3.1 Types of Plasmas 

There are two main types of plasma which can be considered, 

equilibrium and non-equilibrium. 

1. 3.1.1 Equilibrium Plasma 

In equilibrium or "hot" plasmas the electron and gas temperatures 

are approximately equal resulting in a high gas temperature^^. Therefore 

equilibrium plasmas are unsuitable for treating polymers since processing 

would lead to degradation. Examples of equilibrium plasmas are arc and 

plasma torches which are, amongst other applications, used for melting, 

refining and other metallurgical applications^!. Thermal plasmas are also 

used to produce controlled nuclear fusion^^. 

1. 3.1. 2 Non-equilibrium Plasmas 

"Cold" or non-equilibrium plasmas are characterized by a low gas 

temperature and a high electron temperature. There are several different 

types of non-equilibrium discharges. They are described as27,32,33:-

1. 3. 1. 2. 1 Silent Discharge 

This type of discharge is easily produced and can operate at pressures 

up to 1 atmosphere. High power dissipation can be achieved at lower 

voltages. The main disadvantage of a silent discharge is that the apparatus 

requires a small gap between the elech-odes of large surface area. This often 

causes problems when dealing with organic reactants since the reactants can 

bridge the gap or accumulate on the walls of the reactor. 

11 



1. 3. 1. 2. 2 Radio-frequency Discharge 

In radio-frequency discharges(>lMHz) there is no direct contact 

between the electrodes and the energy is fed into the plasma indirectly via 

capacitive or inductive coupling. Relatively homogeneous plasmas can be 

generated as the electric field wavelength is much larger than the vessel 

dimensions. Radio-frequency discharges work weU at low pressures and are 

therefore a popular type of discharge used in the laboratory. 

1. 3. 1. 2. 3 Corona Discharge 

Corona discharges require extremely high pressures for production. 

At high pressures the discharge becomes unstable and is transformed into a 

high current arc discharge. However the discharge can be stabihsed by the 

use of different sized electrodes e.g. a pointed electrode and a plane 

electrode. The volimie of reactive species produced by the apparatus is very 

small and are therefore unsuitable for industrial applications since large 

quantities of active species is difficult. 

1.3.2 Origin of a Glow Discharge 

A small amount of free electrons is always present in a gas due to 

naturally occurring radioactivity or cosmic rays. If a voltage is apphed to a 

gas then the available free electrons are accelerated by the electric 

field2930,34. 

Initially the electrons will have insufficient energy to cause 

ionization or excitation because their collisions are elastic and transfer of 

energy between electrons and ions or neutrals is very small. As the electron 

continues to gain energy between colhsions it causes ionization of the gas 

through inelastic collisions. Such collisions result in a large transfer of 
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energy between the electrons and the larger species within the plasma. 

Steady state is achieved when the rate of formation of ions is in equilibrium 

with the rate of recombination with electrons. The discharge is then self 

sustaining29,34,35. 

At a critical voltage there is an abrupt increase in current. This is 

known as the electric breakdown of the gas and occurs when the rate of 

ionization is sufficient to balance the loss of electrons by various processes. 

The breakdown of the gas depends on the parameters of the particular 

system e.g. gas pressure, and is determined experimentally. Paschen's law 

relates the breakdown velocity to the gas pressure and the distance between 

electrodes29,30. Equation 5 expresses the condition required for electric 

breakdown. 

ui = XD/A2 (5) 

u. is the electron velocity, is the Debye length and A is the discharge gas 

volume^ 

The electron temperature30/36 a non-equilibrium plasma is much 

greater than the ion temperature. Typical values are Te=3-30 eV and Ti=0.5 

eV. Both of these values correspond to the bulk plasma. The difference in 

the temperatures is a consequence of the difference in mass of the two 

species, since electrons are much Ughter than ions and therefore can attain 

more kinetic energy from the applied electric field, equation 6. 

Work done by field = Eex= (Eet)2/ 2m (6) 

where E is the applied electric field, x is the distance travelled, t is the time, e 

is the elctronic charge and m is the mass of the particle being considered 
i 

(electron or ion). 
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The characteristic "glow" of a non-equilibrium plasma corresponds to 

the relaxation of excited species to lower energy levels. This l ight spectrum 

contains components ranging f rom the infra-red to the ultraviolet regions. 

Once ionization of the gas has been achieved, a variety of reactive species are 

generated e.g. positive and negative ions, neutral species and radicals. There 

are many reactions which may occur between these species, which are 

discussed in section 1. 3. 4. 

1. 3. 3 Basic Concepts of a Plasma 

There are several terms which are used to describe the conditions 

w i t h i n a plasma. 

1. 3. 3.1 Electron Energy Distribution Function (EEDF) 

The electron velocity^^ distr ibution plays an important role in 

determining the physical properties of a plasma as i t determines the electron 

energy distribution, average electron energy as wel l as the electron transport 

properties and reactions. 

Electron energy33 wi th in a plasma is determined by the total f ield the 

electron is subjected to and their interactions w i t h other particles. The 

Maxwel l distr ibution describes the energy distr ibution of the electrons. 

Figure 4 demonstrates a typical distribution. 
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Figure 4: Maxwell energy distribution^^. 
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Note the existence of electrons with much higher energies (high 

energy tail) than the average election energy. It is these electrons which are 

responsible for sustaining the plasma. The Maxwell distribution assumes 

that Te = Tg, which is not the situation within a non-equilibrium plasma. A 

better distribution of electron energies can be described using the 

Druyvesteyn distribution, although this is still only an approximation to the 

situation within a plasma. Similarly to the Maxwellian distribution, the 

Druyvesteyn distribution possesses a high energy tail, but the Druyvesteyn 

distribution predicts a larger number of high energy electrons. 

1.3.3. 2 Plasma Potential 

It has been found that the potential of a plasma is usually at least 

several volts more positive than the most positive surface in contact with 

the plasma30/37 j^d^ is because electrons usually have a higher mobility in 

plasmas than ions and will therefore reach the limits of the plasma much 

more quickly. If this process were sustained then the net result would be an 

increase in the positive charge since the elections will leave the plasma at a 
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quicker rate than the ions. As the net charge increases, then i t becomes 

energetically less favourable for the electrons to escape. However a steady 

state w i l l be arrived at eventually i f the plasma potential is high enough so 

that the rate loss of electrons is equal to the rate loss of ions. This is how a 

plasma retains its neutrality. 

1. 3. 3. 3 Floating Potential 

A n electrically floating surface when placed in contact w i th a plasma 

becomes negatively charged as a consequence of the greater f lux of electrons 

compared to ions29,30,37 j ^ e surface at a particular point becomes 

sufficiently negative to cause electrons to be repelled. When this occurs 

there is an equal f lux of ions and electrons and the potential on the surface 

is said to have reached "floating potential". 

1. 3. 3. 4 Plasma Sheath 

There is a variation of electron density in a plasma where the edge of 

the plasma is in contact w i t h a surface which is significantly different f r o m 

the bulk plasma region. This region, known as the plasma sheath37,38̂  has a 

much lower voltage accounting for the low electron density present there. 

Since the plasma has a uni form potential then most of the variat ion/drop 

in potential occurs at the sheath. 

The plasma sheath is observable as a dark space adjacent to all 

surfaces in contact w i t h the plasma. The darkness is the result of the low 

electron density in that region which leads to less excitation. 
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1.3. 4 Chemistry of Non-equilibrium Discharges 

Once a discharge has been ignited, there are numerous reactions 

which can occur between the species39. Complications arise because not 

only are there several distinct types of reaction but they can occur 

simultaneously^O. Typical reactions are ion-molecule recombination, 

electron attachment, electron-ion recombination and i o n - i o n 

recombination33. As a result new species are generated which can also 

contribute to reactions within a plasma. There may be sufficient energy for 

excitation of atoms and molecules to higher energy levels and metastable 

states. The metastable can then transfer energy via a collision and result in 

ionization or dissociative ionization events. The schematic diagram, figure 

5, shows some of the reactions taking place within a plasma. 

Figure 5: Possible reactions within a plasma27,33. 
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The existence of the many different species within the plasma 

together with a broad electromagnetic spectrum results in many different 

reactions occurring at a sample surface inside the plasma. Impacts from 
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neutrals, electrons, ions and photons result in numerous physical and 

chemical processes, figure 6 28,29,41, 

Figure 6: Interaction of species in a plasma with a surface29. 
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On impact with a surface, neutral particles transmit only small 

amounts of energy, resulting in the heating of the surface. If additional 

activation occurs, chemical reactions can occur, radicals can recombine and 

also react chemically by combining with radical sites. Electron impact can 

lead to desorption and/or dissociation of absorbed molecules. Due to the 

existence of the plasma sheath, positive ions are accelerated and gain energy 

which can lie in the region 10 - 500 eV depending on the plasma conditions. 

On impact this energy is released to the soUd body. The UV radiation in a 

plasma can also impart energy to a surface. The actual energy will depend 

upon the type of plasma, however typical energies can be up to several eV. 

These photons have sufficient energy to produce radical sites on the surface, 

induce crosslinking and break chemical bonds. The depth of penetration of 

the radiation is greater than that found for other direct energy transfer 

processes 29,34,42,43 
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1. 3. 5 The effect of Plasmas on Polymers 

The use of plasmas to modify surfaces over recent years has become of 

great interest because of the technique's many advantages over the more 

conventional processes. One advantage of particular interest in industry is 

that the desirable properties of treated materials can be achieved in seconds 

rather than minutes or hours e.g. thermal pyrolysis used to obtain changes 

in wettability27. Not only does plasma surface modification increase 

efficiency, but it is often the only technique whereby a particular reactive 

pathway can be achieved. 

Modification of a sample after plasma treatment can be observed 

experimentally via changes in the wettability, adhesion and chemical 

composition using techniques such as contact angle measurements, XPS and 

A T R - F T I R . 

Plasma treatment modifies the surface to a layer of 50 A -10 ^m^^ in 

depth. Since only the surface is modified, the bulk properties remain 

unchanged. This has obvious implications in industry as the surface of a 

material can be improved for a particular purpose whilst leaving the bulk 

properties e.g. strength unchanged. 

The types of modification which a plasma can induce on a material 

can be split into three main groups^^;. 

1) Etching 

2) Modification 

3) Plasma polymerization 

1. 3. 5.1 Etching 

Plasma etching is used extensively in the semiconductor industry. 

With the growing technological advances in the field, it has become 
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necessary for higher density of pattern transfer to be achieved46,47. Wet 

chemical etching is unable to produce the dimensional control needed for 

the minimum feature dimensions (<few fAm)28,47 jhe use of plasmas for 

etching has the advantage of producing highly anisotropic etch features with 

less waste products. Figure 7 illustrates the difference between isotropic (no 

etch direction) and anisotropic (defined etch direction) etching. 

Figure 7: Isotropic and anisotropic etching36. 
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1.3. 5. 2 Modification 

Plasma treatment of a polymer can give rise to numerous surface 

modifications, such as incorporation of new groups, changes in wettability 

and adhesion and crosslinking. 
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1. 3. 5. 2. 1 Molecular Weight Changes 

Plasma treatment of a polymer can result in molecular weight 

changes, the extent of which is dependent upon the plasma used27. Noble 

gases, N2 and H2 gas plasmas are more likely to result in crosslinking whilst 

oxygen containing plasmas more often than not favour chain scission. 

However molecular weight changes are also dependent upon the polymer*^ 

It is thought that since noble gas plasmas^ lead to crosslinking, then 

the explanation behind such behaviour is the presence of excited 

metastables transferring energy from the plasma to the polymer. This 

behaviour is called CASING (cross-linking by activated species of inert 

gases)27 The mechanism of energy transfer is shown in equation 7. 

> RH* + M (7a) 

R - H + M* > R« + H * + M (7b) 

> R 1 » + R 2 » + M (7c) 

O2 plasmas generally lead to a decrease in molecular weight at the 

surface probably as a result of chain scission. In oxygen atom reactions*^, 

abstraction does not lead to bond weakerung in saturated or unsaturated 

molecules. It is only the addition of oxygen to an unsaturated molecule to 

form a saturated radical which results in a weakened C-C bond. Subsequent 

attack of the radical site results in bond breaking or chain scission and the 

production of low molecular weight volatile fragments. Obviously the 

susceptibility of attack of the polymer is dependent upon the polymer 

structureSO e. g. the presence of polar functional groups and metallic atoms. 

One particular example of this is oxygen plasma treatment of polypropylene 

which leads to chain scission, whereas oxygen plasma treatment of 

polyethylene leads to crosslinking as a consequence of hydrogen 

abstraction^O. 
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Oxygen plasmas etch the surface of polymers, but the addition of 

another gas e. g. CF4 can alter the etching rate. An optimum in fluorine 

atoms will yield a maximum in etching rate^l but an excess of fluorine 

atoms will result in fluorination and inhibit etching through competition 

with oxygen atoms52. The critical parameter in determining whether 

etching , polymerization or fluorination occurs is the C / CFx rations. 

Plasma treatment at higher powers leads to ablation. For a chemical 

group to be implanted, the particle responsible must possess a certain 

minimal amount of energy^*. Below this level, there will be insufficient 

energy to trigger a specific reaction. However above a certain power level, 

there is an increase in the kinetic energy of the particle and therefore there 

wil l be an increase in the rate of surface bombardment. Newly grafted 

structures will have a-greater probability of being pulled away from the 

surface and therefore less chance of being incorporated into the surface 

structure. 

1. 3. 5. 2. 2 Wettability 

Wettabihty is the extent to which a liquid spreads on the surface of a 

solid55. It is often measured using contact angles. 

It has been reported that the effect of oxygen plasma treatment on 

various polymers generally increases the wettability56,57_ \\ jg thought that 

the improvement in wettability on a polymer's surface is brought about by 

the formation of C=0, O H , - C O O H groups. Using depth profiling 

techniques, it has been found that the percentage of alcohol and ether 

species increase, suggesting the carbonyl and carboxyl groups are 

concentrated within the first monolayer of material58,59. the case of 

polypropylene most of the oxygen introduced is in the form of hydroxy! 

groups which is shown by XPS. The bulk polymer essentially remains 

unaffected by plasma treatment. 
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Contact angle measurements carried out on aged plasma treated 

polymers have shown that there is a decay in wettability, or "hydrophobic 

recovery"60,61, x^js is thought to be a consequence of the evolution of a 

high free energy system towards a thermodynamically stable state, rather 

than a result of contaminant adsorption. The extent of hydrophobic 

recovery is dependent upon the amount of crosslinking in the polymer. For 

example it was found that in polyethylene^l, hydrophobic recovery was far 

less effective than in polypropylene. Results from XPS show that the the 

surface composition is unaffected by ageing therefore eliminating diffusion 

of untreated bulk polymer as a cause for hydrophobic recovery^l. The 

explanation of such results suggests the motion of macromolecules within 

the plasma modified layer in order to minimize the number of polar groups 

at the surface. However many polymers do age after plasma treatment62 

and the hydrophobic recovery is dependent upon the substrate and the 

temperature. The segmental and macromolecular motions intervene with 

the hydrophobic recovery63-65. 

1. 3. 5. 2. 3 Adhesion 

The adhesion of two materials is dependent upon the intermolecular 

attractions between the phases^S. In order to obtain maximum joint 

strength, the adhesive of a given surface must possess optimimi polarity (so 

as to maximize wetting). This is obtained when the polarities of the 

adhesive and substrate are exactly equal. 

In the literature, it has been recorded that plasma treatment improves 

adhesion66. It is likely that the reason for the improvement in the adhesive 

properties is possibly due to:-

a) electrostatic interactions 

b) elimination of weak boundary layers by ablation 

c) cross linking 
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d) mechanical interlocking as a result of increase in surface roughness 

e) chemical changes 

It is unlikely that the formation of a weak boundary layer results in 

the improvement of adhesion as sufficient cleaning of the sample will 

remove any such layer. It is known that plasma treatment often crosslinks 

polymers and this may possibly be an important factor in improving the 

cohesive strength. 

There are a number of mechanisms suggested for the increase of 

adhesion in treated materials which involve macromolecular motions^S, In 

most cases reorganisation appears to be the more important mechanism. 

However, at high temperatures, polystyrene favours the diffusion model. 

In both mechanisms, the driving force is the minimization of surface 

tension and the optimization of intramolecular interactions. 

1. 3. 5. 2. 4 Incorporation of New Species 

It has been found that plasma treatment of a material leads to the 

incorporation of new species into the surface^^. The mechanism involves 

free radical formation followed by the reaction of activated species in the 

plasma gas. Each type of plasma wiU react vmiquely with the polymer^^ An 

example of this is that O2 plasma treatment of polyethylene results in the 

formation of carbonyl and carboxyl groups, however in a N2 plasma, 

nitrogen complexes are formed resulting in the release of hydrogen cyanide, 

cyanogen etc. It is interesting to note that gas mixture plasmas behave as 

though each component acts as if it were occupying the chamber alone. 

The degree of incorporation of new functionalities on the surface is 

dependent upon polymer structure^^. The concentration of fluorine atoms 

in CF4 plasmas is high and grafting of CF groups often occurs69,70. Surface 

fluorination can also be thought of as a substitution reaction of hydrogen in 

the polymer structure^l. 
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The addition of new functional groups on the surface can be 

monitored by surface sensitive techniques as it is only the extreme 

monolayers of the polymer which are affected. Changes of the surface 

composition are often carried out by varying the plasma parameters e. g. 

pressure, power, temperature and by moiutoring particular peaks of a 

spectrum. This enables a more comprehensive idea of the reaction 

mechanism to be obtained. 

1. 3. 5. 3 Plasma Polymerization 

Plasma polymerization72-74 jg a process whereby high molecular 

weight products can be formed by passing an organic vapour through a 

plasma produced in a low pressure discharge. This process is applicable to a 

wide range of starting materials including those not normally considered to 

be monomers for conventional polymerisation. Plasma polymerization 

produces an irregular network-like material which is amorphous and 

highly cross-linked 75, The material has high thermal stability, high melting 

point and low solubility. The stoichiometric composition of the plasma 

deposited film differs from that of the of the initial monomer76-78 

The process of plasma polymerization is complex, involving a large 

nvmiber of both homogeneous and heterogeneous reactions. Although the 

overall polymer deposition mechanism is not understood, results from 

experiments suggest that free radicals are the primary species propagating 

chain growth in the gas phase and on the surface of the deposited polymer. 

These species are formed by collisions in the gas phase. The growth of the 

polymer film occurs by the reaction of surface-free radicals with either gas 

phase free radicals or unsaturated monomer, figure 8. 
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Figure 8: Bicyclic step growth mechanism of plasma polymerization^*. 
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Figure 8 shows two major routes of step growth polymerization. 

Cycle I represents a repeated activation of the reaction products from 

monofunctional activated species. Cycle II represents pathways via 

difunctional/multifunctional activated species. Both cycles play a role74in 

plasma polymerization. 

1. 3. 5. 3. 1 Plasma Enhanced Chemical Vapour Deposition (PECVD) 

In conventional chemical vapour deposition, the substance to be 

deposited is vaporized and the vapour is decomposed or reacted with other 

gases on the substrate47. The film growth is determined by the slowest 

process. One of the major disadvantages of thermal C V D is the high 

temperature of the substrate required. The high temperature is often 

prohibitive in the growth of films, however in PECVD^^^SO the gas is excited 

to form reactive species which can adsorb to the substrate and undergo 

deposition to form thin films at lower substrate temperatures^!. The use of 
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RF discharges causes partial ionisation of the gas producing ions and 

electrons whilst the temperature of the gas remains near room temperature. 

P E C V D is advantageous as complex shaped parts can be treated as the gas 

penetrates into the smallest and most irregular areas. 

1. 3. 6 Summary 

Plasma treatment of a material leads to a variety of chemical and 

structiu-al changes, altering the physical properties of the material. The use 

of plasmas enables the processing of materials in a most efficient way, 

possibly reducing the treatment time to minutes compared to other more 

conventional techniques. Only the first few monolayers of material are 

modified whilst leaving the bulk properties of the material unchanged, 

which therefore enables the possible uses of a particular material to be 

further increased. 

1.4 A N A L Y T I C A L T E C H N I Q U E S 

1.4.1 Photoelectron Spectroscopy 

The surface sensitivity of any experimental technique is dependent 

on the probing depth of the technique used. In photoelectron methods82, 

the surface sensitivity is not dependent upon the penetration depth of the 

incident radiation but upon the probability of an electron escaping without 

further loss of energy. The escape depth of an electron, figure 9, is 

dependent upon losses in energy due to phonons (lattice vibrations) and 

electron-electron excitations, so the mean free path of an electron before any 

inelastic scattering will vary with its kinetic energy^S. That is, at very low 

energies there is insufficient energy for the excitation of the losses 

mentioned above so the mean free path will be long, butat very high 
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energies the mean free path is long because the probability for excitation 

decreases with increase of the kinetic energy. The mean free path passes 

through a minimum which is approximately 3 nm. Photoelectron 

spectroscopy is therefore a surface sensitive technique because it detects 

ejected electrons which have sufficient energy to escape from the first few 

monolayers of the sample. 

Figure 9: The dependence of attenuation length, X (in monolayers), on the 

emitted electron energy^ 

1000 — 

1 0 0 -

10 — 

1 -

1 \ 1 
10 100 1000 

Electron energy /eV 

Photoelectron spectroscopy involves the ejection of electrons from 

atoms or molecules when they are bombarded with photons84,85. This can 

be related to the photoelectric effect i.e. electrons are ejected from the surface 

of an alkali metal at frequencies greater than the threshold frequency. As 

the frequency increases, the kinetic energy of the ejected electrons or 

photoelectrons increases linearly with frequency. 

At the threshold frequency, the energy of the photon is sufficient to 

overcome the workftmction of the metal (0 is the energy required to ionize 

electrons from the bulk to the vacuum level). At higher frequencies the 
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excess energy of the photons is converted into the kinetic energy of the 

emitted electrons (photoelectrons). From the conservation of energy, 

equation 8. 

h u = 0 + l/2mev2 (8) 

Where me is the mass of electron, v is the electron velocity, hv is the 

photon energy and 0 is the work function. 

Photoelectron spectroscopy is a simple extension of the photoelectric 

effect. Since the energy of the photons bombarding the specimen is known 

and the kinetic energy of the electrons emitted are measured, then the 

binding energy of the specimen can be calculated, equation (9). 

BE = hu - K E (9) 

where BE is the binding energy of the core electron, hu is the X-ray photon 

and K E is the kinetic energy of the emitted photoelectron. Photoionization 

of a core electron is shown in figure lOa^ ,̂ 

The removal of a core electron in the photoionization process leaves 

a "vacancy". The filling of this vacancy by an electron from a higher energy 

shell can result in two different processes, x-ray fluorescence and the 

emission of an Auger electron, fig 10 b and c. X-ray fluorescence results in 

the emission of of an X-ray photon whereas the Auger process uses any 

excess energy from the relaxation process in the emission of an electron, an 

Auger electron. The energy of the Auger electron is dependent upon both 

the valence and core energy levels and Auger Electron Spectroscopy (AES) 

uses this to determine information about the energy levels of the sample. 

The emission of Auger electrons can complicate the XP spectrum, however, 

photoelectrons and Auger electrons can be distinguished by using a different 

ionization source. The KE of the photoelectrons will change (equation 9) 
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whilst the Auger electrons will remain unchanged simply because the 

energy of the Auger electron emitted is independent of the source and 

depends upon the energy levels of the process86,87 

Figure 10: A schematic diagram of the photoionization process, x-ray 

fluorescence and Auger process^^. 
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a) Photoionization b) X-ray fluorescence c) Auger Process 

In XPS, the monochromatic source of photons is soft or low energy x-

rays, which have sufficient energy to ionize electrons from core levels. By 

using the technique a variety of information can be obtained84,88,89;. 

a) Absolute binding energies, which indicate the species present since the 

core levels are unique to a particular element and therefore elemental 

composition. 

b) The ability to distinguish different oxidation states since the binding 

energy shifts upon change in valency. 

c) To detect changes in the chemical environment. 
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1. 4.1.1 Complications in Spectral Interpretation 

I . 4. 1. 1. 1 X-ray Satellites 

X-rays are emitted when a beam of electrons produced by thermionic 

emission strikes a surface. The X-ray spectrum produced may be considered 

in two parts i.e. continuous radiation and the characteristic radiation, figure 

I I . The continuous spectrum has a well defined minimum wavelength 

corresponding to an electron losing all its energy in a single collision. The 

longer wavelengths correspond to electrons undergoing several collisions 

and deflections and therefore losing energy gradually. Al l or some of the 

kinetic energy of the electron is converted into the energy of the photon. 

This radiation is known as Bremsstrahlung radiation82,84,87 

Figure 11: X-ray spectrum82. 
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The sharp peaks or characteristic lines in the spectrxmi are due to one 

of the bombarding electrons in the beam knocking out one of the lightly 

bound electrons from the target element, leaving a vacancy in one of the 

lower energy levels. A transition of the electron from higher to lower 

energy level occurs resulting in the emission of a quantum of radiation. 
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Transitions are described by the particular energy levels concerned. A 

transition which ends at the K shell in the target atom is the K line and is 

classified in terms of the higher energy level e.g. L to K is a K Q line. 

lines are generally more intense than Kp lines (M to K transition) and are 

usually selected for isolation when monochromatic X-ray radiation is 

required. 

In most laboratory spectrometers, the x-ray sources are not usually 

monochromatic. Not only is Bremsstrahlung radiation (broad continuous 

distribution) produced upon which is superimposed the characteristic lines 

of the target material (anode), but a series of small intensity lines are also 

present, known as x-ray satellites. These satellites arise from less probable 

transitions (e.g. Kp) or transitions in a multiply ionized atom and are 

present as less intense peaks at known binding energy and FWHM. 

1. 4. 1. 1. 2 X-ray Ghosts 

These are due to excitations arising from impurity elements in an x-

ray source, e. g. an A l K ^ i 2 ghost from a Mg K Q source84/87 The ghost is a 

consequence of the secondary electrons produced inside the source hitting 

the thin A l window which is present to prevent the secondary electrons 

hitting the sample. Dual x-ray sources are often used in spectrometers in 

order to differentiate between auger lines and peaks from XPS since auger 

electrons are independent of x-ray energy. Unfortimately if there is cross­

talk between the filaments and anodes this can lead to ghost satelhtes. 

32 



1. 4. 1. 1. 3 Multiplet Splittitig 

This is important in systems with unpaired electrons in the valence 

levels e. g. transition metals. It is the exchange interaction which can occur 

between unpaired electrons which results in a lower energy than the anti 

parallel spin which is responsible for the phenomenon. Multiplet 

splitting87 causes broadening in peaks and leads to a variation in the 

separation of the peak maxima. 

1. 4. 1. 1. 4 Shake-up Satellites 

Upon loss of a core electron by photoemission, the valence electrons 

associated have an apparent increase in nuclear charge. This results in a 

reorganisation of the valence electrons known as "relaxation"84,87 

Relaxation may involve the excitation of a valence electron to a higher 

unfilled level which is referred to as shake-up. This gives rise to shake-up 

satelUtes on the low BE side of the photo-electron peaks. 

In the C(ls) spectrum, shake-up satellites can give information about 

the unsaturated chemical bonds. In conjugated systems and in particular 

aromatics, the shake-up satellite can be 5-10 % of the main peak. In aromatic 

systems, the shake-up peak corresponds to a K-K* transition, that is, a 

transition between the two highest filled orbitals and lowest unfilled 

orbitals. Monitoring of the peak in such cases can give an indication of the 

degree of aroma ticity before and after modification of a surface. 
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Figure 12: Shake-up and shake-off processes87 
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1. 4. 1. 1. 5 Shake-off Satellites 

"Shake-off" is a process whereby a valence electron is completely 

ionized leaving an ion with vacancies in both core and valence levels. A 

diagram of the shake-up and shake-off processes is displayed in figure 12. 

1. 4. 1. 1. 6 Vibrational Broadening 

This effect gives rise to asynunetry in the peak which is due to 

vibrational fine structure84,87 There is a redistribution of electronic charge 

on core level ionization and this generally results in a decrease in bond 

length and a narrower molecular potential curve. Therefore core ionization 

is likely to result in vibrational excitation. 

34 



1. 4.1. 2 Experimental Methods in Electron Spectroscopy 

X-rays are produced by electrons (produced by thermionic emission) 

bombarding an aluminium or magnesium target giving rise to characteristic 

lines. The x-rays bombard the sample in the target chamber resulting in 

electrons being emitted in all directions. Some of the electrons emitted pass 

through the exit slit into the electron energy analyser onto an electron 

detector. The spectrum recorded is the number of electrons per imit time as 

a function of either ionization energy or kinetic energy of photoelectrons. 

1.4.2 Infrared Spectroscopy 

Infrared radiation lies in the electromagnetic spectrum between the 

visible and microwave regions, with wavelengths corresponding to 10"^-10' 

3 m. The energy of most molecular vibrations corresponds to that of the IR 

region and the particular energy is characteristic of the molecule. Certain 

groups of atoms give rise to bands at, or near, the same frequency regardless 

of the structure of the rest of the molecule. The persistence of these 

characteristic bands enable structural information to be obtained. 

Infrared90/91,92 radiation promotes transitions in a molecule between 

rotational and vibrational energy levels of the ground electronic states. IR 

Ught is only absorbed when the oscillating dipole moment interacts with the 

oscillating electric field vector of the IR beam. Absorption only occurs if 

there is a change in the dipolar character of the molecule and this is 

determined by a selection rule. 

A n important result of the selection rules is that a molecule with a 

centre of symmetry is inactive in the IR whilst an unsymmetric molecule is 

active. The symmetry properties of a molecule in a solid can be different 

from those of an isolated molecule, therefore absorption bands are possible 

in the solid state which are forbidden in other phases. 
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A molecvde can hold a large number of vibrational modes which can 

be the result of the vibrations of functional groups or individual bonds. 

Examples of molecular vibrations are; stretching where there are rhythmical 

movements along the bond axis therefore interatomic distance changes and 

bending where there is a change in bond angle between bonds with a 

common atom. The theoretical number of fundamental vibrations is 

usually never observed because overtones (multiples of a given frequency) 

and combinations (sum of two other vibrations) increase the number of 

bands. However, other phenomena decrease the number of bands. 

IR has a number of applications. The spectrum of a compound is 

characteristic of the compound and can therefore be used for identification 

purposes. It can also be used for the determination of molecular structure 

and purity. IR can be used for both bulk and surface analysis depending on 

whether transmission or reflectance techniques are used. 

A T R (Attenuated Total reflection)^^ is a technique used for obtaining 

the absorption spectra of thin films and opaque materials. In a single 

interference situation, radiation hits the sample and is reflected according to 

Snell's law, figure 14. The reflection or transmitted beams can be calculated 

using the Fresnel relations. In ATR, the sample is placed in contact with the 

reflecting face of a prism. The radiation is reflected along the prism by total 

internal reflection which gives rise to a standing wave due to the incident 

and reflected light beams coherently interfering at the interface. If the rarer 

medium is absorbing, then attenuated total reflection occurs. The energy 

that escapes temporarily from the prism is selectively absorbed and is 

independent of sample thickness. 
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Figxire 13: Total reflection of radiation in a medium of refractive index n2 by 

a thin film of refraction ni (n2 > ni)86 

n2 

1. 4.3 Mass Spectrometry 

Electron impact mass spectrometry allows data about molecular 

weight and molecular formula to be obtained from a fragmentation pattern 

of ions separated by their mass to charge ratio (m/z). The technique 

involves molecules in the vapour phase being subjected to bombardment by 

a high energy electron beam resulting in ionization88,93. 

There are several types of mass spectrometer such as magnetic and 

time of flight (TOF). However in this section the quadrupole mass 

spectrometer is discussed since it is the most appropriate to this thesis. 

A quadrupole mass spectrometer (QMS) consists of four parallel 

voltage carrying rods. An RF field exists between the rods and a varying D C 

field is superimposed on the the RF field, figure 14. Ions entering the the 

QMS will experience complex oscillations and only those ions with one 

particular m/z ratio at a given set of conditions will have a stable path and 

traverse the length of the rods through the filter. All the other ions will 

have unstable oscillations and will be defocussed and lost by collisions with 

either the rods or the casing of the spectrometer. 
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Figure 14: Schematic diagram of a quadrupole mass spectrometer29 

y - , 

The QMS operates at low sovurce voltages. The velocity of high mass 

ions is therefore slow and will experience few oscillations under the 

influence of the quadrupolar fields. This limits the performance of the mass 

spectrometer as high mass ions are less efficiently detected. The advantage 

of using a QMS is that the passage of positive and negative ions can occur 

simultaneously. It is also easier to enclose the system in U H V rather than to 

provide the pumping required for a magnetic mass spectrometer^^^^. 

1. 4. 4 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) is a useful technique to "image" 

surfaces. It enables information about surface topography, molecular and 

atomic order, absolute feature dimensions, homogeneity of the surface and 

surface mechanical properties to be obtained. It has several advantages over 

other microscopy techniques since UHV is not a requirement (analysis can 

be obtained at ambient temperatures), high energy beams are not needed 
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(and therefore will not damage the sample) and special sample preparation 

is not necessary (e. g. metallization). The technique can be used on a variety 

of materials such as conductors, insulators and even liquids^^ 

A schematic of an AFM is illustrated in figure 15. 

Figure 15: Schematic diagram of an atomic force microscope^^ 

Photodiode Cantilever 

Sample 

A sharp tip is mounted on a cantilever which is rastered across a 

sample surface^^-lOl. xhe forces acting between the sample surface and 

stylus deflect the cantilever. The bending cantilever (vertical up direction) 

is proportional to the magnitude of the force. Measurement of the 

displacement gives a real 3D topographical representation of the surface. 

The cantilever deflections can be measured in two ways. 

1) monitoring cantilever deflections as sample moved in plane (constant 

height mode). 

2) monitoring cantilever deflection vertical displacements to maintain the 

cantilever deflection (constant force mode). 

There is also the choice of two modes depending on the sample being 

analysedl02, contact mode, the tip is in close contact with the surface 

force. In non-contact mode (tapping mode), the tip hovers above the surface 

and is especially useful for the analysis of soft samples, e. g. polymers, where 

tip contact could produce artefacts / damage the surface. 
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Chapter Two 

Plasma Modification of Polysulfone and 
Polyethersulfone 

2.1 I N T R O D U C T I O N 

The aim of this chapter was to determine h o w the surface of 

polysulfone changed, chemically and topographically, when subjected to 

various gas plasma treatments. The work was carried out on dense polymer 

f i lms so as to gain a fundamental understanding of the plasma reactions 

occurring at the surface. Polyethersulfone was also studied to compare how 

the slightly different chemical structure may affect the reactions at the 

surface. 

2.1.1 Background 

Polysulfones have a diverse range of applications such as connectors 

used i n telecommunications, printed wi r ing substrates and as membranes. 

They holds many advantages over other materials fo r example high 

thermal resistance, f lexibil i ty yet toughness and good electrical properties. 

Many of these properties are derived f r o m the r ig id i ty of the polymer 

backbone^ and the intersegmental chain packing. 

In the bulk polymer^, the presence of diarylsulfone grouping 

enhances stabilisation of S-C bonds via conjugation w i t h aromatic groups 

resulting in a Tg greater than 200 °C. Such bonds are hydrolytically stable 

conferring strong resistance to attack by acids and alkalis. 

The basic properties of polysulfones are favourable when compared to 

other high temperature plastics. They are generally transparent and exhibit 

high r ig idi ty , low creep, good thermal stability and flame resistance. The 
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main disadvantage of the poljoner is it's lack of chemical resistance to polar 

solvents. 

2. L 2 Uses of Polysulf ones 

Polysulfone and its derivatives are versatile materials. They are used 

in the electronics industry for chip carriers, capacitor dielectrics and 

connectors. They are also used for printing wiring board fabrication2/3/4. 

Polysulfones can be used as a permselective separation barrier, with 

applications in both large scale production and on a laboratory scale^. 

Hydrodynamic sieving is an area where polysulfone membranes are 

particularly important^. Hydrod)mamic sieving can be split into two main 

groups, ultrafiltration and microfiltration. Polysulfone is a popular material 

used for microfiltration, which has applications in biotechnology. The 

introduction of ionic groups^ extends the application range as a separation 

membrane, for example neutral polysulfone can be prepared so that it sorbs 

oppositely charged particles. This is carried out by mixing the neutral 

polysulfone with an ion exchange polymer or by introducing ionic groups 

on the polymer. Other uses for polysulfone membranes include gas 

separation membranes^, barrier packaging and in controlled release devices 

used in medicine and agriculture^. 

Its usage can be further increased by modifying the polymer 

chemically and physically, or by mixing it with other polymers to form 

composite structures'^. 
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2.1.3 Modification of Polysulfone 

There are a number of ways to treat polysulfone chemically8'9,l0 but a 

far simpler method is by the use of plasmas, which is the area being studied 

in this chapter. By employing plasma treatment, the surface of polysulfone 

can be modified so as to alter the intrinsic properties of the polymer such as 

permeability, gas selectivity, adhesion and wettability. 

The use of plasmas is an area of growing interest as a low temperature 

treatment which is applicable to a wide variety of materials. The 

disadvantages of using plasmas is that as yet there is not a good 

understanding of the interactions going on within the plasma and the 

reactions of the species with the sample surface. However with the use of 

diagnostic techniques such as U V emission spectroscopy and mass 

spectrometry, a more comprehensive idea of the reactions occurring within 

a plasma can be obtained. 

It has been reported^ ̂  that a plasma process (H2O and He plasmas) has 

been optimized (pressure, power etc) to give maximum wettability, which is 

important in the fabrication of ultrafiltration and microfiltration 

membranes. XPS analysis^^ of the surface shows that treatment with the 

plasma increases the oxygen content at the surface. 

Polysulfone has also been subjected to O2, CF4/O2 and He plasma 

treatments in order to determine changes in wettability and adhesion^^ ^ 

the plasma treatments gave rise to a decrease in the contact angle whilst 

giving rise to excellent adhesion to aluminium, even after sample ageing. It 

is thought that the formation of oxygen containing groups on the surface 

result in the formation of covalent bonds between oxygen and aluminium 

when metallized. 
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This chapter investigates the effect of a variety of plasma treatments 

on polysulfone and polyethersulfone. These two polymers were studied so 

as to compare and contrast how the polymeric structure was influenced by 

each plasma treatment. The structures are shown in figure 1. 

Figure 1: Chemical Structure of Polysulfone (PSF) and Polyethersulfone 

(PES). 
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XPS and A F M have been used to probe the chemical and 

topographical changes encountered at the polymer surfaces during exposure 

to a variety of non-polymerizable glow discharge treatments. 

2. 2 E X P E R I M E N T A L 

2.2.1 Plasma Modification 

Small strips of polysulfone (PSF) and polyethersulfone (PES) 

(Westlake Plastics Company) were ultrasonically washed in an isopropyl 

alcohol (BDH) / hexane (BDH) mixture for 30 seconds and dried in air. High 

p u r i t y oxygen (99.6%, BOC), hydrogen (99.99%, BOC), hel ium (99.995%, 

B O O , neon (99.999%, BOC), argon (99.999%, BOC), and carbon tetrafluoride 
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(99.7%, Air Products) gases were used for the various types of plasma 

treatment. 

Glow discharge experiments were carried out in a cylindrical glass 

reactor (4.5 cm diameter, 515 cm^ volume, base pressure of 1.5 x 10"3 Torr), 

enclosed in a Faraday cage^ ,̂ figure 2. 

Figure 2: Schematic representation of the plasma rig. 
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The reactor was fitted v^th a gas inlet Edwards LVIOK needle valve, 

an Edwards PR-IOK Pirani pressure gauge, and a Leybold 27 L min'^ two-

stage rotary pump attached to a liquid nitrogen cold trap. Power from a 

Tegal Corporation 13.56 MHz radio frequency (RF) sovirce was inductively 

coupled to the reactor via a copper coil (4 mm diameter, 13 turns, spaniung 9 

- 18 cm from the gas inlet) wound around the reactor. An RS SWR / power 

meter was used to gauge the input power into the plasma. After ignition of 

the plasma the system was balanced using the L - C matching network in 
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order to maximize the power input into the plasma. This was carried out by 

minimizing the standing wave ratio (SWR) (SWR= Total power 

generated/power transmitted to the plasma) of the forward power. Al l joints 

were grease-free. 

A typical experimental run comprised initially scrubbing the reactor 

with detergent, rinsing with isopropyl alcohol, oven drying followed by a 60 

min high power (50 W) air plasma cleaning treatment. Next, the reactor 

was opened up to atmosphere, a strip of polymer was inserted into the 

centre of the RF coils. The system was then evacuated back down to its 

original base pressure. At the beginning of each experiment the leak rate of 

the system was calculated (see section 2. 2. 3). This was carried out by 

isolating the pump from the reactor and measuring the increase in pressure 

over a given time. If an acceptable leak rate was determined, typically better 

than 2x10''^ cm^ min"^, then the gas of interest was introduced into the 

reaction chamber at 2 x 10'̂  mbar pressure at a flow rate of approximately 1.9 

cm3 min-l (i.e. at least 99.6% of the reactor contents). After allowing 10 min 

for purging, the glow discharge was ignited at 20 W for 5 min. Upon 

termination of treatment, the RF generator was switched off and the system 

was purged for a further 5 min before opening up the reactor to atmosphere. 

Each sample was characterized immediately after electrical discharge 

treatment by X-ray photoelectron spectroscopy (XPS) and atomic force 

microscopy (AFM). 

2. 2. 2 Characterization of the treated samples 

2.2.2.1 X-ray Photoelectron Spectroscopy (XPS) 

A Kratos ES300 electron spectrometer equipped with a Mg Ka X-ray 

source (1253.6 eV) and a hemispherical analyser was used for XPS surface 

analysis, figure 3. 
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Figure 3: Schematic representation of an electron spectrometer^O. 
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Photo-emitted core level electrons were collected at a take-off angle of 

30° from the substrate normal, with electron detection in the fixed retarding 

ratio (FRR, 22:1) mode. XPS spectra were accumulated on an interfaced PC 

computer and curve fitted using a Marquardt minimization algorithm. 

Instrument performance was calibrated with respect to the gold 4f7/2 peak at 

83.8 eV with a full width at half maximum (FWHM) of 1.2 eV. 

Instrumentally determined sensitivity factors for unit stoichiometry were 

taken as being C(ls): 0(ls): S(2p): N(ls): F(ls) equals 1.00 : 0.55 : 0.54 : 0.74 : 
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0.53. XPS was used to check cleanliness of the polysulfone substrate and for 

the absence of any surface-active inorganic additives. 

Samples were mounted on a stainless steel probe tip (2 cm x 0.7 cm) 

using Scotch adhesive tape. The probe was cleaned with analar isopropyl 

alcohol prior to insertion into the spectrometer. 

2. 2. 2. 2 Atomic Force Microscopy (AFM) 

Atomic force microscopy offers structural characterization of surfaces 

in the 10"'* - 10"^m range without the prerequisite of special sample 

preparation, for example metallization as required for SEM. A Digital 

Instruments Nanoscope III atomic force microscope was used to examine 

the topographical nature of the polysulfone surface prior to and after 

electrical discharge exposure. All of the AFM images were acquired in air 

using the non-contact tapping models, and are presented as unfiltered data. 

The technique employs a stiff silicon cantilever oscillating at a large 

amplitude near its resonance frequency (several hundred kHz). 

The samples were moimted on magnetized stainless steel discs using 

Scotch adhesive tape. 

2.2.3 Flow Rate Calculation 

Gas flow and leak rates were calculated by assuming ideal gas 

behaviour^^. 

PV = nRT (1) 

where P is the pressure (atm), V is the volume of the reactor (1), n is the 

number of moles of gas, R is the universal gas constant (atm 1 K'^) and T is 

the absolute temperature (K). At STP one mole of gas occupies 22414 cm .̂ 
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The flow rate and leak rate can be calculated by measuring the increase in 

pressure over a given time, equation 2. 

Flow rate = dn/dt= (dP/dt) (V/RT) x 22414 cm3 min-1 (2) 

where t is in minutes. 

2.3 RESULTS 

2.3.1 Untreated Polymers 

The C : O : S ratio for untreated PSF and PES films obtained fi-om XPS 

is in resonable agreement with the theoretically predicted value of the 

sample, since the presence of impurities or additives is difficult to fully 

assess firom commercially produced samples, tables 1 and 2. The slightly 

higher concentration of sulfur for PES can be attributed to preferential 

orientation of the sulfone group at the polymer surfacel7,18. C(ls) XPS 

spectra were fitted with Gaussian peaks of equal full width at half maximum 

(FWHM)19, using a Marquardt minimisation computer program. This 

program minimizes the parameter using a least squares fit by linear 

regression. It is important to note that a good mathematical fit is not 

necessarily a curve fit with chemical meaning. The ciu^e fits contained 

within this thesis were fitted using reference values from the literature in 

order to input the initial peak positions and chemical shifts. Values for 

peak amplitudes and widths were also input into the program. During the 

curve fitting process, values for peak positions, amplitudes and widths were 

limited to values which were chemically meaningfull. 

Aromatic carbon atoms attached to hydrogen/carbon, sulfone, and 

ether groups exhibit C(ls) core level binding energies of 285.0 eV, 285.6 eV, 

and 286.6 eV respectively^7,18,20, Low-energy shake-up transitions 
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accompanying core level ionization around 291.7 eV were fitted with a 

Gaussian peak of different FWHM in order to assess the level of aromatidty 

present before and after glow discharge treatment2l/22^ figures 4 and 5. The 

0(ls) peak of PSF is a 1:1 doublet with the peaks centred at 532.1 eV and 533.6 

eV corresponding to oxygen bonded to sulfur (sulfone groups) and oxygen 

bonded to carbon in the backbone (ether linkage)l7,20, A doublet structure 

was also noted in the 0(ls) region of PES with a 2 : 1 intensity ratio, which 

corresponds to twice as many oxygen atoms attached to sulfur, sulfone 

groups (531.9 eV), as there are oxygen atoms located in ether enviromnents 

(533.5 eV)l7,20. The S(2p) peak for both PSF and PES was found to be an 

unresolved 2:1 doublet centred at 168.0 eV, this can be taken as being 

characteristic of a sulfone group, rather than a sulfide (163.6 eV), or sulfate 

(169.3 eV) environment^8,20,22,23. The errors in the table refer to the 

reproducibility of the results from several independent experiments. 

A very low level of surface roughness was measured for the clean 

polymer substrates by AFM with no indication of any ordered regions, 

which is agreement with the polymers being in an amorphous statê ,̂ table 

4 and figures 6 and 13. 

2.3.2 Oxygen Plasma Treatment 

The greatest degree of oxidation for PSF and PES occurs for the oxygen 

plasma treatment, tables 1 and 2. There was virtually no change in the S(2p) 

binding energy value, or in its FWHM. Munro foimd that sulfate species 

are generated during the UV photo-oxidation of PSF and PES25,26 however 

these groups are absent following oxygen plasma treatment of the polymers. 

This difference in behaviour is most likely due to a less oxidized surface 

forming during the course of plasma oxidation as a consequence of 

simultaneous sputtering and UV photo-irradiation of the substrate^ .̂ 
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Table 1: Summary of changes in elemental composition following plasma 

modification of polysulfone (20 W, 5 mins). 

Treatment %C %S %o %N %F 

Theoretical 77.1 7.6 15.2 _ 

Untreated 82.4±0.1 4.110.4 13.610.2 _ 

02 plasma 59.1±3.2 4.910.6 32.212.6 2.910.1 _ 

H2 plasma 89.212.4 1.410.02 9.112.0 _ 

He plasma 70.8±0.4 2.810.1 21.010.7 4.610.6 _ 

Ne plasma 70.210.2 3.110.3 23.210.7 3.310.5 _ 

Ar plasma 71.412.6 2.710.2 21.711.7 2.710.007 _ 

CF4 plasma 41.110.2 0.510.6 6.910.8 - 51.511.4 

Table 2: Simimary of changes in elemental composition following plasma 

modification of polyethersulfone (20 W, 5 mins). 

Treatment %C %S %o %N %F 

Theoretical 75.0 6.3 18.7 - -

Untreated 76.311.5 7.910.8 15.910.8 -

O2 plasma 55.613.2 7.210.4 34.410.04 2.710.2 -

H2 plasma 84.911.5 3.210.3 10.910.2 2.2 -

He plasma 64.311.1 5.410.5 25.510.5 3.210.6 -

Ne plasma 64.010.5 6.610.3 24.710.4 3.910.2 

Ar plasma 68.413.03 6.710.9 26.313.1 3.010.6 -

CF4 plasma 40.910.8 1.210.1 10.310.1 - 47.511.1 

The AFM figures of PSF (figure 7) and PES (figure 14) oxygen plasma 

treatments illustrate the severity of the treatment on the surface topography. 

A very uneven surface is generated exhibiting a globular texture. 
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All of the glow discharge treatments, of PSF and PES, undertaken in 

this study were found to result in complete disappearance of the C(ls) K-K* 

shake-up satellite, and loss of the resolved 0(ls) doublet into a broad single 

peak. A small amount of nitrogen was detected (approximately 2%) on 

some treated samples, the most likely origin for this being reaction between 

trapped free radical centres at the surface and the atmosphere during 

transport of the modified substrate from the glow discharge apparatus to the 

XPS spectrometer. 

2. 3. 3 Hydrogen Plasma Treatment 

Hydrogen glow discharge treatment of PSF and PES gave rise to an 

increase in the amotmt of surface carbon and a decrease in oxygen and 

sulfur content at the surface. There is a strong attenuation in the relative 

proportion of oxygenated carbon centres required to fit the C(ls) peak. The 

S(2p) peak displays an extra shoulder towards the low binding energy side of 

the sulfone peak (164.3 eV), which can be attributed to a -C-S-O- crosslinked 

environment^^, table 3. The corresponding C(ls) binding energy for this 

linkage is 285.6 eV '̂̂ '̂ O. From these experiments it can be concluded that 

hydrogen glow discharge treatment causes surface reduction. The 

constituent phenyl rings in the polymers probably undergo hydrogenation 

and crosslinking, whereas the ether and sulfone linkages are eliminated as 

gaseous H2O and H2S molecules respectively. Such species have been 

detected on heating polysulfone, where the breakdown of the sulfone 

linkages is postulated as being a result of hydrogen abstraction^ .̂ 

AFM figures of hydrogen plasma treated PSF and PES, figures 8 and 15 

respectively, show a significant degree of disruption compared to the clean, 

untreated surface. There is a strong variation in the surface topography 

within the area sampled. 
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Figure 4: C(ls) XP spectra of plasma treated PSF. 
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Figure 5: C(ls) XP spectra of plasma treated PES. 
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Table 3: Summary of peak fits S(2p) spectra following plasma modification 

(20 W, 5 mins). 

PSF PES 

Plasma 

Treatment 

% -C-S-O- % o=s=o % -C-S-O- % o=s=o 

Theoretical 0.0 100.0 0.0 100.0 

Untreated 0.0 100.0 0.0 100.0 

02 0.0 100.0 0.0 100.0 

H2 28.9±2.8 71.1±2.8 12.8+0.1 87.2+0.1 

He 11.0+0.1 89.0±0.1 5.6+0.6 94.4+0.6 

Ne 8.6+2.9 91.4±2.9 3.2±1.1 96.8±1.1 

Ar 5.9±0.4 94.1±0.4 3.4±0.6 96.7±0.6 

2. 3. 4 Inert Gas Plasma Treatment (Helixmi, Neon, and Argon) 

Modification of PSF and PES by helium, neon and argon glow 

discharges yield very similar chemical changes at the polymer surface, both 

polymers show an increase in the oxygen content and a reduction in both 

carbon and sulfur content for the inert gas plasma treatments. This 

behaviour is similar to that reported previously for the argon glow 

discharge treatment of polysulfone22. A slight shoulder towards lower 

binding energy is evident in the S(2p) spectra of the poljnners, which can be 

attributed to the occurrence of a small level of svilfone reduction, table 3. It 

is interesting to note that an additional gaussian peak is required to f i t the 

C(ls) envelope of PSF, corresponding to the carbonate functionality at 290.4 

eV, compared to PES. 
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There are a number of plausible explanations for the observed 

increase in oxygen content during surface modification by these non-oxygen 

containing glow discharges:-

(i) reaction of the activated polymer surface with the atmosphere during 

sample transfer to the XPS spectrometer 

(ii) main chain scission is known to occur photochemically^O, which could 

lead to preferential elimination of sulfone groups attached to chromophoric 

phenyl species 

(iii) sputtered oxygen species may subsequently recombine with different 

sites at the polymer surface 

(iv) surface rearrangement 

The amount of sulfur retained at the polymer surface for PSF and PES 

follows the same trend , i . e., argon ~ neon > helium. This is not what 

might have been expected in terms of a simple momentum transfer 

sputtering model. 

Al l three types of inert gas plasma treatments of PSF and PES result in 

the growth of a uniform columnar/globular surface topography, this effect 

being greatest with helium plasmas, figures 9-11,16-18, table 4. Much larger 

globular features have been observed previously during corona treatment of 

polypropylene3l'32 which was attributed to the agglomeration of low-

molecular-weight oxidized materials which could be washed off with 

solvent. This possibility of low molecular weight material was ascertained 

by comparing the AFM micrographs of noble gas plasma treated PSF, PES 

surfaces before and after washing with water, isopropyl alcohol, and hexane. 

No change in the surface texture was observed following rinsing in these 

solvents. Hehum glow discharge causes the greatest chemical and physical 

disruption at the surface of PSF and PES, table 4. 
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Table 4 : AFM data of plasma treated PSF and PES. 

PSF PES 

Gas RMS Particle N ° particles RMS Particle NO 

Treatment Roughness/ Height/ nm Rougjmess/ Height/ nm particles 

rm rm Hm^ 

Clean 1.012 - _ 0.4 _ 

O2 6.6 - - 9.8 

H2 1.2 - - 5.1 -

He 11.0 32.6±5.4 388 11.0 31.5±5.4 445 

Ne 4.0 6.Q±1.6 295 3.0 6.6±1.7 380 

A r 7.8 23.6±3.2 492 5.5 15.5±2.0 452 

CF4 0.6 - - 2.5 -

2. 3. 5 CF4 Plasma Treatment 

CF4 plasma treatment of PSF and PES results in a substantial amount 

of fluorination at the surface (approximately 50%), tables 1 and 2. This is 

accompanied by a dramatic change in the C(ls) XP spectrum with CF2 

functionalities being the predominant fluorine moiety^^. The C(ls) peak 

was not fu l ly deconvoluted due to overlapping peaks between carbon 

bonded to sulfur , oxygen and fluorine, however CF2 and CF3 peaks can be 

fitted since they appear at higher binding energies and do not overlap with 

the functionalities mentioned. For PSF these peaks were found to 

correspond to 13.6% CF3 (293.6 eV) and 34.6% CF2 (291.2 eV), CF-CFn (289.5 

eV) functionalities were also present̂ O. The 1:1 0(ls) doublet can no longer 

be resolved. Carbon bound to fluorine fimctionalities for PES were found to 

be 13.0% CF3 (293.6 eV), 40.9% CF2 (291.2 eV) accompanied by a degree of CF-

CFn (289.5 eV) functionalities which overlap in binding energy with 
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oxygenated carbon centres^O. The 2:1 0(ls) doublet can no longer be 

resolved. There was a strong attenuation of the S(2p) feature for both PSF 

and PES. The degree of fluorination of PES at the surface was greater than 

that for PSF. 

Contrary to what might have been expected in terms of the highly 

reactive nature of CF4 glow discharges, the treated PSF and PES surfaces 

(figures 12,19 respectively) exhibit the smoothest texture amongst this series 

of feed gases, table 4. Similar behaviour has been previously reported using 

SEM characterization of polymer surfaces which have been exposed to pure 

CF4 plasmas35/36, 

2.4 DISCUSSION 

There are a range of energy transfer mechanisms in operation within 

a low pressure RF discharge, these include electron acceleration in the bulk 

of the plasma, electron deflection from sheath potentials, and ion and 
37 

electron acceleration in the wall boundary sheaths . For surface 

modification, the most important criteria of a glow discharge are the nature, 

the arrival rates, and the angular and energy distributions of the species 

impinging upon the surface . Electron impact processes influence the 

density of ions, radicals, metastables, and photons contained within the 

plasma. 

Inert gas plasmas interact with organic substrates via a direct energy 

transfer component arising from ions and metastables down to ~ 10 A, and a 

radiative transfer component consisting of vacuum ultraviolet (VUV) 

photo-irradiation which can penetrate up to ~ 10 |j,m below a polymer 

surface^^'^i. The direct energy surface component is a consequence of 

species such as ions, neutrals and metastables bombarding the sample 

surface and transferring energy. The mean free path of an electron at near 

zero kinetic energy is small, therefore the contribution to the direct energy 
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component is small and is dominated by phonon excitation. In a radio-

frequency discharge the output is mainly in the form of line spectra^^ (the 

transitions of atoms in the first excited state to the grotmd state, giving rise 

to a two line series designated I and II). In general, the M I emission lines 

are the most intense for low pressure noble gas plasmas (where M is the 

noble gas)̂ '̂̂ "̂ , these are listed in table 5. 

Table 5: Most intense vacuum UV emission lines for inert gas plasmas 41 

Noble Gas (M) M I Emission 

Lines / nm 

M I I Emission 

Lines / nm 

M2* Continuum 

Emission / run 

He 58.4 30.4 58 -110 

Ne 73.3,74.4 46.1,46.2 74 -100 

Ar 104.8,106.7 92.0,93.2 105-155 

On moving to heavier noble gas atoms (increasing atomic number), 

the observed trend in the level of surface roughening for PSF and PES is 

contrary to what might be expected in terms of a direct energy (momentum) 

transfer viewpoint^^. It is however consistent with the radiative energy 

transfer model^^'^''*^. As the inert gas series is descended, the M I resonance 

lines become less energetic (wavelength increases), table 5, which wil l result 

in lower photochemical ablation. For heavier noble gas atoms, momentum 

transfer effects w i l l make a greater contribution towards surface roughness. 

The competitive nature of these two effects is shown in table 4, Ne appears 

to have an intermediate roughness between the values obtained for 
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treatment with Ar and He plasmas for PSF and PES. He has the highest 

energy M I lines, however Ar has a greater mass therefore giving rise to a 

greater surface roughness value compared to Ne. 

Oxygen plasmas contain a large number of different species such as 

atomic oxygen, metastables, singlet oxygen O 2 (^Ag) and a small 

concentration of ozone*^. This can lead to a large number of chemical 

reactions, however, oxygen atoms are generally regarded as being the 

primary reactive species in conjunction with vacuum UV surface activation 

in an oxygen plasma^ '̂'* '̂* .̂ This combination produces the most oxidized 

surface for both PS and PES in the experiments undertaken. Such a high 

level of surface oxidation during oxygen plasma treatment has been 

reported for a number of phenyl containing polymers, e.g. 

po lye the rke tone^^ , polystyrene^^'^^, po lye the re the rke tone^^ , 

polyparaphenylene^^. This can be attributed to the vacuum UV 

photoexcitation of the aromatic centres '̂̂ '̂ .̂ 

The extent of sulfone reduction of PSF in a hydrogen glow discharge 

is much greater than that found for the structurally r e l a t e d 

polyethersulfone. Such an observation can be attributed to the difference in 

the chemical structure. The pendant methyl groups in the bisphenol-A unit 

in polysulfone have an intrinsically lower chemical stability^O. These 

aliphatic groups are much more reactive in hydrogen donation than the 

aromatic ring and can be readily explained in terms of the bond energies 

involved. To remove hydrogen from a phenyl ring requires 112 kcal/ mol, 

whereas to break C-H bond requires 104 kcal/mol54 Similar reasoning may 

be used to explain the greater sulfone reduction observed for the inert gas 

plasma treatment of PSF compared to PES. 

A pure CF4 glow discharge can be primarily regarded as a source of 

fluorine atoms with a low concentration of CF, CF2, and CF3 radicals55-59. 

This is supported by electron impact experiments with CF4, which indicate 

that F atoms are the primary specieŝ O. Substitution of hydrogen atoms in C-

80 



H bonds by fluorine to yield HF and fluorinated polymer is energetically 

favourable61-63. A pure CF4 plasma displays poor etching behaviour^ and it 

is generally considered to result in surface modification rather than plasma 

polymerization63. This is a consequence of the high F / C ratio in the gas 

which gives rise to many excited F* species in the plasma^S. The fluorine 

gas is activated by U V light̂ .̂ The extent of fluorine incorporation into the 

polymer surfaces is found to be greater than theoretically predicted on the 

basis of a straightforward exchange of hydrogen atoms for fluorine atoms, 

table 6. CF4 glow discharges are also capable of imparting crosslinking^ and 

the slightly higher carbon content compared to the expected theoretical 

value following substitution of hydrogen by fluorine is consistent with this. 

Hydrogen and sulfiu- atoms are probably removed from the polysulfone 

surface as HF and SF6 respectively, however the reaction of fluorine atoms 

with oxygen will be energetically less favourable. This is consistent with 

fluorine atoms attacking the aromatic group in phenyl containing 

polymerŝ '''̂ '''̂ .̂ 

Table 6: Comparison of the theoretical and experimental values for 

completely fluorinated PSF and PES (20 W, 5 min) 

PSF PES 

Elemental % Theoretical 

Fluorinated 

Experimental 

Fluorinated 

Theoretical 

Fluorinated 

Experimental 

Fluorinated 

C 39.4 41.1±0.1 38.3 40.910.8 

0 5.8 6.9±0.8 12.8 10.310.1 

s 3.9 0.3±0.1 8.5 1.2+0.1 

F 50.9 51.5±1.0 40.4 47.511.1 
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The results for CF4 treatment of polysulfone are very similar to those 

found for the direct fluorination of polysulfone by fluorine gas^^. The 

experiments found that the aromatic rings became ful ly saturated after 

fluorination and that there was an attenuation in the sulfur content due to 

sulfur ejection accompanying fluorination. This suggests that a CF4 glow 

discharge acts as a fluorinating agent by attacking the phenyl rings by 

substitution of the hydrogen atoms with fluorine atoms. The greater extent 

of fluorination of PES than PSF may be explained by this model. 

The smoother surface of the CF4 plasma treated polymers compared 

to the untreated surfaces suggests that the highly reactive F atoms etch the 

surface tmiformly, giving rise to the surface topography observed. 

2. 5 CONCLUSIONS 

Non-equilibrium glow discharge treatment of polysulfone using non-

polymerizable gases results in surface modification. The type of 

modification depends upon the feed gas employed for the glow discharge. 

Oxygen plasma treatment gives rise to the highest level of oxidation. A 

hydrogen glow discharge treatment causes simultaneous loss of both oxygen 

and sulfur from the surface. Inert gas plasma treatment promotes the 

formation a uniform columnar texture accompanied by a small degree of 

oxidation at the surface. Extensive fluorination of PSF and PES occurs with 

CF4 glow discharge treatment, which is thought to take place by substitution 

of C-H bonds by C-F bonds in the polymeric structure. There are sUght 

differences in the extent of modification between the two polymers which 

can be explained in terms of the different chemical structiire. 
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Chapter Three 

Non-equilibrium Glow Discharge Fluorination 
of Polymer Surfaces 

3.1 INTRODUCTION 

Chapter two illustrated that two similar polymers, PES and PSF, react 

differently to an identical plasma treatment. The CF4 plasma treatment was 

particularly demonstrative of this result. This section further investigates 

how the chemical structure of the polymer substrate influences the extent of 

fluorination when subjected to a tetrafluoromethane non-equilibrium glow 

discharge. 

3.1.1 Background 

It is well documented that plasma treatment of polymers results in 

modification of the surface. The extent of modification depends partly upon 

the the gas used for the treatment. Gases used for plasma modification can 

be classified as foUows:-

1) Chemically non-reactive plasma. 

2) Chemically reactive plasma. 

3) Polymer forming plasma. 

Inert monatomic gases are examples of those which give rise to 

chemically non-reactive plasmas. Chemically reactive plasmas are formed 

from inorganic or organic molecular gases such as oxygen or nitrogen. 

Tetrafluoromethane results in such a plasma^'^, thus in the plasma state 

there wi l l be a reaction with the polymer sample but polymerization does 

not occur. 
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CF4 plasmasl'3'4/5 are often used as a source of atomic fluorine which 

can participate in chemical reactions. However a CF4 plasma can also 

promote crosslinking^ and be used as an etching enhancer^. 

3.1.2 Gas Mixtures 

Development of the semiconductor industry over the past few 

decades has led to the requirement of techniques enabling higher circuit 

densities with low defect densities to be formed, in other words, precise 

process control. In the past chemical etching was used, however this 

method gave rise to no preferential etch direction and isotropic circular 

profiles. Plasma etching enables the vertical etch rate to exceed the 

horizontal etch rate allowing anisotropic etch profiles to be formed^. 

If a CF4 plasma has a small amount of oxygen added, then the etch 

rate increases. This is due to shifts in the atomic concentration of the 

plasma. The oxygen atoms react with unsaturates, giving rise to F atoms 

and depleting polymer forming spedes, CFx. The oxygen can be considered 

as burning the fluorocarbon radicals^. The essential reactions occurring in a 

CF4/O2 plasma are shown in figure 1. 
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Figure 1: Reactions occurring in a CF4/O2 plasma^. 
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The selectivity of plasma etching can be enhanced by choosing an 

appropriate gas mixture. The gas mixture can be tailored for the particular 

application therefore achieving the selectivity requiredl^'ll'^^ 

3.1. 3 Pure CF4 Gas Plasma Treatment 

3.1 . 3.1 Cf 4 Dissociation Mechanism 

Pure CF4 plasma treatment of polymers often results in fluorination 

of the surface and is frequently used as a source of fluorine atoms. In 

general, fluorocarbon plasmas can result in two types of reaction:-
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(i) Fluorination. 

(ii) Plasma polymerization. 

The reaction of a fluoroplasma has one main criterion which is the 

fluorinated carbon to atomic fluorine ratio, CFx/F The CFx radicals are 

responsible for the building blocks in plasma polymerization. The RF 

accelerates electrons by means of an oscillating field, which causes bond cleavage 

and ionization. The radicals are amongst the many species formed by ionization 

and account for the chemistry observed.^ The dissociation of CF4 gas in a 

plasma is as follows^^ 

e- e- e-

CF4 <—> F* + CF3 <—> F- + CF2 <—> F« + CF 

M M M 

Spedes such as CF2 and C2F2 have been detected in CF4 plasmas by the use 

of absorption spectroscopy^^, n ^as found that CF2 spedes are present as 

approximately 1% of the source gas. These spedes were particularly enhanced in 

the plasma sheath region from direct dissociation of the source gas or by 

production through exdted intermediate spedes. 

Not only does the feed gas determine the plasma discharge but the 

experimental parameters such as electrode configuration and operating 

frequency are also important. Experiments^^ have shown that mechanisms of 

CF4 decomposition and subsequent surface modification are dosely dependent 

on the electrode geometry and excitation frequencies. Non-symmetrical 

configurations and low operating frequency result in the increase in the dectron 

energy and enhance the dissodation of the plasma gas. 
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3.1.3.2 Surface Modification 

High C F x / F ratios favour polymer formation^^ whilst low ratios 

favour etching and grafting. CF4 plasmas tend to result in fluorination and 

grafting since there is a high concentration of fluorine atoms, ions and 

radicals relative to CFx species. This can be observed in the CF4 plasma 

treatment of polypropylene and polyethylene. Fluorine fimctionalities graft 

directly onto the stuiace of the polymers resulting in the formation of CF3, 

CF2 and CF spedes, which have been observed by XPS and IR spectroscopy. 

A polymer surface can be made hydrophobic by the use of 

fluorocarbon plasmas^ .̂ Plasma treatment of nylon has shown that plasma 

treatment using fluorocarbon precursors results in a high contact angle 

regardless of the molecular size of the fluorocarbon used, i.e there is no 

dependence on the nimiber of carbon atoms present in CnF2n+2 • However, 

the durabililty of the plasma treated layer is dependent on the molecular 

size of the fluorocarbon. CF4, although an efficient fluorination gas, 

resulted in poor durability of the plasma treated surface because of the short 

segment size implanted. The use of larger fluorocarbons^ means that there 

are longer chains which can participate in greater and more complicated 

reactions. Regardless of the size of the fluorocarbon, at higher powers there 

is an increase in the active species and possible active surface sites. This is 

due to the higher energy input which results in possible crosslinking and 

ablation rather than simple fluorination. 

It is thought that fluorination of polymer surfaces upon exposure to a 

C F 4 plasma proceeds via a substitution reaction^8,l9. Hydrogen is 

eliminated whilst fluorine or fluorocarbon groups are simultaneously 

activated by the plasma which can then fill the "vacancies". However the 

mechanism is as not as simple as it seems since fluorination by a CF4 

plasma depends - not only on the feed gas but also on the polymer being 

treated^ .̂ The polymeric substrate complicates matters because elimination 
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of various species such as hydrogen and oxygen can take part in the 

reactions within the discharge resulting in the possible deposition of a 

plasma polymer. 

3.1. 4 Siunmary 

Plasma treatment using CF4 is a means of fluorinating the surface of a 

polymer without the utilisation of wet chemistry. It is a method which 

avoids the problem of toxic waste disposal. Not only is CF4 used as a 

fluorinating reagent but it is often used in conjunction with oxygen in order 

to provide a way to maximize etching rates by increasing the atomic 

concentration. The ratio of carbon to fluorine atoms is fundamental in 

determining the type of reaction which occurs at the polymer-plasma 

interface, whether it is etching , fluorination or pol)anerization. 

The influence of the chemical nature of a polymer substrate 

influences the level of surface fluorination during CF4 non-equilibrium 

glow discharge treatment imder comparable experimental conditions is 

examined in this chapter. A variety of polymers ranging from saturated to 

conjugated systems were chosen. The molecular structures of the various 

poljnners employed in this study are summarised in figure 2. 
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Figure 2: Chemical structures of the polymeric substrates. 
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The structures of PES and PSF are illustrated in Chapter 2, figure 1. 
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3.2 EXPERIMENTAL 

Small strips of additive-free low density polyethylene (ICI), 

polypropylene (ICI), polystyrene (Goodfellows), polyetheretherketone (ICI), 

polyethylene terephthalate (Hoechst), polycarbonate (General Electric 

Plastics), polyethersulfone (Westlake Plastics Company), and polysulfone 

(Westlake Plastics Company), were ultrasonically washed in a hexane / 

isopropyl alcohol mixture for 30 seconds and dried in air. Polyisoprene 

(Shell) was spin coated onto clean glass slides from 2% weight/volume 

toluene solution. High purity carbon tetrafluoride gas (99.7%, Air Products) 

was used for plasma treatment. 

The plasma treatments were carried out as outlined in section 2. 2. 

The samples were analysed using XPS, the procedure is also decscribed in 

section 2. 2. 

3.3 RESULTS 

XPS spectra of the clean saturated polyolefins (polyethylene and 

polypropylene) displayed a single C(ls) peak at 285.0 eV arising from -CxHy-, 

Figure 3(a). Clean polystyrene exhibits a main C(ls) hydrocarbon peak at 

285.0 eV and an additional high energy featiire at -291.6 eV (6% of the total 

C(ls) intensity) which is associated wi th low-energy T C - T C * shake-up 

transitions that accompany core level ionization20'2l. xhe C(ls) region of 

untreated polyisoprene comprises a main hydrocarbon peak, and a weak K-

K* shake-up feature (3% of the total C(ls) intensity) shifted by 6.5 eV towards 

higher binding energy. In the case of PET, polycarbonate, and 

polyetheretherketone, additional oxidised carbon centres were fitted^l, 

carbon adjacent to carboxylate (>C-C02) at 285.7 eV, ether / alcohol / 

hydroperoxide linkage (>C-0-) at 286.6 eV, carbonyl / double ether Unkage 

(>C=0 / -0-C-0-) at 287.9 eV, carboxylate (-0-C=0) at 289.0 eV, and carbonate 
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(-0-C0-0-) at 290.4 eV. For polyethersulfone and polysulfone, carbon atoms 

attached to sulfone groups were also included at 285.6 eV22/23. in all cases, 

XPS peak fits for the untreated substrates were consistent with parent 

polymer structures^!. 

Elemental concentrations following CF4 plasma treatment of the 

various polymer substrates are compiled in table 1 (these are corrected for 

Mg Ka3,4 satellites). Experimentally measured F:C values are compared 

w i t h the theoretically expected F:C ratios assuming a straightforward 

substitution of hydrogen by fluorine reaction pathway. It is clearly evident 

that polymer substrates containing phenyl rings experience much greater 

fluorine incorporation compared to that found for the saturated polymers, 

figure 4 and table 1. A small amount of oxygen incorporation was found in 

some cases, this is most likely to be due to reaction between trapped free 

radical sites at the surface with the laboratory atmosphere during sample 

transfer from the plasma chamber to the XPS spectrometer^^. 
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Table 1: Experimental and theoretical elemental percentages for various 

polymers after CF4 plasma treatment. 

S = 100% 

Polymer 

Type of 

Fluorination 

%C %o %F %S Theoretical 

H:C 

(clean) 

Experimental 

F:C 

PE Theoretical 33.3 66.7 2.00 1.1810.03 PE 

Experimental 44.3±0.2 3.1+2.1 52.611.9 

PP Theoretical 333 66.7 2.00 1.1110.08 PP 

Experimental 45.0±1.7 5.510.1 49.511.6 

PIP Theoretical 38.5 61.5 1.50 1.1710.08 PIP 

Experimental 44.4±0.4 4.012.6 51.712.9 

PS Theoretical 50.0 50.0 1.00 1.1+0.09 PS 

Experimental 44.311.2 7.713.6 48.014.8 

PEEK Theoretical 55.9 8.8 35.3 _ 0.63 0.9310.01 PEEK 

Experimental 44.610.8 13.812.3 41.611.5 

PET Theoretical 45.4 18.2 36.4 0.83 0.7010.01 PET 

Experimental 46.910.2 19.510.5 33.710.7 

PC Theoretical 48.5 9.1 42.4 0.93 1.0710.03 PC 

Experimental 44.010.5 9.010.1 45.612.2 

PSF Theoretical 50.0 7.4 40.7 1.9 0.81 1.2610.04 PSF 

Experimental 41.110.1 6.910.8 51.511.0 0.310.2 

PES Theoretical 50.0 12.5 33.3 4.2 0.67 12110.04 PES 

Experimental 40.910.8 10.310.1 47.510.8 1.210.1 
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Figure 3 (a): C(ls) spectra of untreated polyethylene, polypropylene, 

polyisoprene, polystyrene, polyetheretherketone, polyethylene 

terephthalate, polycarbonate, polysulfone, and polyethersulfone. 
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Figure 3 (b): CF4 plasma treated polymers (20 W, 5 min) 
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Deconvolut ion of the C( ls) envelopes f o l l o w i n g CF4 electrical 

discharge modification indicates the presence of >CF2 and -CF3 groups at 

291.2 eV and 293.6 eV respectively, f igure 3(b). Such fimctionalit ies 

fo l l owing f luorinat ion have been observed by several workersl4'25-27, No 

attempt has been made here to deconvolute the low binding energy side of 

the C( l s ) peak, since there is overlap between part ial ly fluorinated, 

oxygenated, and hydrogenated carbon functionalities^!. 

3.4 DISCUSSION 

The presence of an alternating RF electromagnetic f ie ld across a CF4 

plasma causes electron acceleration, which i n tu rn leads to bond cleavage 

and ionization of CF4 molecules. The reactive component of a CF4 plasma 

is reported to be fluorine atoms w i t h a small concentration of CF, CF2, and 

C F 3 radicals (a l l hav ing v ib ra t iona l and rota t ional temperatures 

approximately equal to room temperature)15,28-31. j h i s is supported by 

electron impact experiments w i t h CF4, which indicate that fluorine atoms 

are the primary spedes32. This is a consequence of the high F /C ratio in CF4 

which gives rise to many excited F* spedes i n the plasma33. The vacuum 

ultraviolet component of the g low discharge can also lead to electronic 

excitation of fluorine atoms^S, This abimdance of fluorine radicals can graft 

onto an organic surface29 to )deld »CF, >CF2, and -CF3 functionalities. 

I n the present study, i t has been shown that the predominant reaction 

dur ing CF4 plasma treatment of polymeric substrates is surface fluorination, 

table 1, figure 3(b). For all the pol5nners studied, the degree of fluorination 

was f o u n d to be extensive. The F:C ratios obtained for polyethylene, 

polypropylene, and polyst)n"ene are in agreement w i t h previous reports^^'24. 

Hydrogen abstraction by fluorine to fo rm hydrogen fluoride is the initiation 

step for saturated polymers^*, although there is also likely to be some C-H 

bond rupture by the vacuum ultraviolet radiation component of the glow 



discharge''^. The formation of HF is thermodynamically favourable, since C-

H bond strengths are i n the 3-4 eV range3'36 compared to 5.9 eV for H-F and 

5.0 eV for C-F. Figure 5 illustrates the reaction pathway for the fluorination 

of a saturated polymer. 

Figure 5: Mechanistic Pathway for the Surface Fluorination of Saturated 

Polymers. 
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I t is evident f rom the experimentally measured F:C ratios, that phenyl 

r ing containing polymers are much more susceptible to plasma fluorination 

than might be expected on the basis of a hydrogen substitution reaction 

pathway, table 1. For example , the replacement of alternate H atoms by 
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phenyl groups along the polyethylene backbone i n polystyrene significantly 

enhances the degree of fluorination. Phenyl-containing polymeric 

backbones w i t h additional functionalities (e.g. polyethylene terephthalate26, 

polyetherketone^^, polyetheretherketone, polycarbonate, polysulfone, 

polyethersulfone) also tmdergo extensive surface fluorination. A reaction 

pathway comprising fluorine addition at >C=C< double bond / aromatic 

carbon centres provides a viable explanation for the much higher levels of 

siuface fluorination observed i n the case of unsaturated polymers^^, figure 

6. 

Figure 6: Mechanistic Pathway for Surface Fluorination of Unsaturated 

Polymers. 
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For both types of mechanism, the resultant free radical can be 

subsequently fluorinated to yield saturated >CHF functionalities. Repetition 

of the abst ract ion/f luor inat ion mechanism at the >CHF moiety w i l l 

eventually lead to the formation of >CF2 groups. I n the case of polysulfone 

and polyethersulfone, sulfur atoms are probably lost f r o m the surface during 

CF4 plasma treatment i n a similar manner to that expected for hydrogen 

atoms, i.e. as SF6 (instead of HF). However the reaction of fluorine atoms 

w i t h oxygen w i l l be energetically less favourable (OF* bond strength = 2.4 

eV)5,37 

The overall trajectory of a fluorine atom incident upon a polymeric 

surface can be discussed in terms of its surface a f f i n i t y ^ This is the affinity 

that the reactants have for the polymer, or in other words the probability of 

f i n d i n g the reactants i n close proximi ty to the polymer surface. I t is 

governed by the interactions between the valence p orbitals of fluorine wi th 

the highest occupied and the lowest unoccupied molecular orbitals of the 

polymer, figure 7. 

Figure 7: Bonding interactions between F and polymer orbitals^^ 
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Approach of a fluorine group is governed by orbital A, figure 8. It can 

be considered as an antibonding interaction of F with the highest occupied 

molecular orbital of the polymer but is stabilized by a second order 

interaction with the lowest unoccupied orbital. Calculations based on a 

three orbital interaction model predict that the affinity of a fluorine atom 

towards a polymer surface is governed by the energy gap between the 

highest occupied and the lowest unoccupied molecular orbitals of the 

polymer34. Saturated polymers have a large energy gap, which leads to a 

high energy trajectory for fluorine atoms approaching saturated groups. The 

gap between the highest occupied and lowest unoccupied molecular orbitals 

is much smaller in unsaturated materials, and therefore incident fluorine 

atoms experience a greater surface affinity. Therefore the overall fluorine 

surface coverage measured for a given polymer following CF4 plasma 

treatment is dependent upon its surface affinity and the dominant reaction 

mechanism. 

The aforementioned description can be used to explain the 

observation made in this study that, in general, the experimental F:C ratios 

of phenyl containing polymers (polystyrene, polyetheretherketone, 

polycarbonate, polysulfone, and polyethersulfone), are found to be higher 

than the theoretically expected values for straightforward substitution of 

hydrogen atoms by fluorine atoms. In the case of saturated polymers 

(polyethylene and polypropylene), table 1 and figure 2, the F:C ratios are 

lower than predicted. This description is supported by results obtained 

from CF4 or F2 plasma treatment of several polymers where phenyl 

containing substrates were shown to be much more susceptible to 

fluorination28-29,38-39. Polyethylene terephthalate is an exception to this 

model. I t is instructive to plot the observed F:C ratio divided by the 

theoretically expected values based upon hydrogen atom replacement by 

fluorine atoms (as a percentage conversion) versus the percentage of >C=C< 

double bond / aromatic carbon centres in the parent polymer structure, 
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figure 8. In this manner only the possible sites for fluorination are taken 

into account. As the %sp2 or degree of unsaturation is increased, there is an 

increase i n the %conversion. Clearly there is now a good correlation 

between the degree of unsaturation and the extent of fluorination observed 

for all of the polymers examined in this work. 

3.5 CONCLUSIONS 

The higher level of fluorine incorporation at carbon centres observed 

for unsaturated polymers during CF4 plasma treatment is consistent w i t h 

atomic fluorine addit ion being the major reaction pathway. The lower 

levels of fluorine measured for the saturated polymer structures is i n 

agreement w i t h hydrogen substitution by atomic fluorine radicals being the 

dominant mechanism. The aff in i ty of the fluorine atom approaching a 

surface must also be taken into account. 

The overall extent of fluorination is dependent upon both the 

reaction mechanism and the surface affinity. 
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Chapter Four 

Synergistic Oxidation at the Plasma/Polymer 
Interface 

4 .1 I N T R O D U C T I O N 

Results found i n chapter two indicated that the vacuum ultraviolet 

( V U V ) component i n an inert gas plasma plays a vi tal role i n the 

modif icat ion of polysulfone and polyethersulfone. The importance of the 

energy transfer mechanisms at a plasma/polymer interface is sti l l under 

much debate and the a im of this study is to investigate the reaction 

pathways taking place . This work studies the effect of VUV radiation f rom 

the iner t gases argon, k ryp ton and xenon plasmas, on the surface 

modification of polyethylene and polystyrene i n an oxygen atmosphere. 

4 . 1 . 1 Background 

Electromagnet ic Radia t ion ou tpu t is largely dominated by 

characteristic line spectra originating f r o m electronic transitions of neutral 

M ( I ) and singly ionized M + ( I I ) 1 to the ground state (where M is the 

element). The wavelengths of V U V radiation correspond to the region of 

the electromagnetic spectrum which is absorbed in air, hence experiments 

are carried out i n a vacuum2. The wavelength range is generally considered 

to be 180-130 nm. The photon energies are approximately 6 eV which is 

sufficient for excitation of electronic transitions i n many molecules^. 

The Rydberg transitions are used to describe electronic transitions i n 

the U V region, described by equation 1. 

T n = LP -Un=R/ (n -6 )2 (1) 
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where Tn is the Rydberg transition un is the frequency of absorbed photon, 

R is the Rydberg constant, n is an integer, LP is the ionization potential and 

6 is a quantum defect. 

4 .1 .2 Sources of V U V 

V U V radiation spans a range of wavelengths and the choice of a V U V 

source is dependent upon its application. A few different types of sources 

are listed below, 

4 , 1 . Z 1 Conventional VUV light source^'^ 

V U V light sources are typically gas discharge lamps and their spectra 

depend upon the type of gas and the experimental conditions, for example 

pressure. A n example of such a lamp is a low pressure He lamp which gives 

rise to specific emission lines at 58.4 im\ (He(I) 2p->ls) and 30.4 n m (He (H) 

2s->ls). The line spectra are produced by electronic transitions w i t h i n atoms 

and molecules and are usually more intense than a continuum spectrum. 

4 . 1 . 2. 2 Synchrotron Radiation^^ 

Synchrotron radiation is produced as a consequence of accelerating 

electrons emitting radiation. The radiation emitted is a good l ight source 

and provides radiation at all wavelengths. 

4 . 1 . Z 3 Plasmas^ 

A plasma is a source of electromagnetic radiation extending f r o m the 

V U V to the visible along wi th a number of different species such as positive 

and negative ions, atoms, metastables and electrons. 
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4 . 1 . 3 Plasmas and their Interaction w i t h Polymers 

A l l plasmas emit varying amounts of radiation i n the VUV region 

depending on the type of dischargel'4A7 vUV cross-sections can be large 

and therefore surface reactions w i t h a polymer contain a significant 

contr ibut ion arising f r o m radiative transfer. The energy f r o m VUV 

radiation can be absorbed in the first few monolayers of the surface and the 

energy is sufficient to break organic bonds. 

Inert gas plasmas are considered to emit strongly i n the VUV. The 

resonance lines (transitions between two levels permitted by selection rules) 

f r o m an inert gas plasma arise f rom transitions f rom the excited state to the 

ground state, equation 2 (a) and 2 (b). 

ns2np5(n+l)s (]=0,1) > ns2np6 a=0) (2a) 

neutral atom 

nsp6a=l/2) > ns2np5 0=1/2,3/2) (2b) 

singly ionized species 

Ne, Ar , Kr, Xe give rise to two component structures arising from the 

J splitting. He has only one component i n each case .̂ 

The ionization process occurring to f o r m the excited states in a 

plasma are shown in equations 3 (a) and 3 (b). 

A + A > A + A* excitation (3a) 

A + A* > A + A+ ionization (3b) 
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I f molecules are collisionally excited metastable states, then they can 

remain i n excited states for long lifetimes due to their inability to radiate to 

the ground state^. 

The emission of V U V f rom an inert gas plasma may also be due to 

the format ion of excimers. Excited dimers of A r , Kr and Xe emit i n the 

V U V region. Formation of dimers is shown in figure 1. 

Figure 1: Excimer Formation. 

e + Xe > e + Xe* 

> Xe** + e 

>Xe+ + 2e 

Xe * + Xe + Xe > Xe2* + Xe 

Xe2* > Xe + Xe + hv (7.2 eV) 

Excimer format ion is a three body process and higher pressures are 

requiredlO. Table 1 shows the ionization potential and metastable energies 

for the inert gases used in this set of experiments. 

Table 1: Inert gas ionization potential and metastable energy data^ 

Ionization Potential Metastable Energy 

A t o m Designation Energy (eV) Designation Energy (eV) 

A r 2P3/2 15.759 3P0 11.723 

2p i /2 15.937 3p2 11.548 

K r 2P3/2 13.999 3P0 10.562 

2p i / 2 14.665 3p2 9.915 

Xe 2P3/2 12.130 3P0 9.447 

2p i / 2 13.436 3p2 8.315 
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In polymers, V U V radiation has been found to cause a number of 

reactions, from crosslinking of polymer surfaces, fluorination of polymers to 

initiation of photochemical modification. However, the importance of the 

role of V U V radiation in the modification of polymers is still much in 

debate. 

4.1. 3.1 Mechanism 

Clark and Dilks addressed^ the question of whether direct energy 

transfer is competitive with radiative transfer, that is, polymer modification 

at the surface is either a result of modification of both radiative energy 

transfer (VUV) and/or direct energy transfer from species such as ions, 

schematically represented in figure 2, 

Figure 2: Schematic representation of energy transfer to a polymer surface^. 

VUV photon 

M* =metastable, ion species 

d= depth to which metastables/ions penetrate in polymer 
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The attenuation coefficient for E M radiation arising from the 

photoionization from transitions to diffuse Rydberg states, is such that there 

wi l l be little attenuation and therefore the surface reaction wil l be 

dominated mainly by ions and metastables. The contribution from 

radiative transfer is minor. The surface reactions in the first few 

monolayers are dominated by direct energy transfer, however the longer 

range radiative source will penetrate deeper into the sample. 

Other work carried out by various authorsll'12,13,14 has also 

demonstrated that plasma treatment of polymers is a combination of rapid 

reaction due to direct energy transfer at the surface and a longer range 

radiative component due to UV and VUV radiation. Plasmas contain a 

number of different species such as electrons, ion, atoms and metastables, 

however vacuum ultraviolet radiation is an important component in glow 

discharges when treating polymers. At the surface, the ions, metastables and 

other species play an important role through direct energy transfer, radiative 

energy transfer becomes the more dominant mechanism for modification in 

the bulk, since it can penetrate further than ions/metastables which really 

only have a major part to play in modification at the first few monolayers. 

In situ studies of argon plasma treatment of several polymers^^ 

showed that there were no new species incorporated. The it-Ji* shake up 

transition, indicative of aromaticity, however did decrease compared to the 

untreated polymer and it was suggested that the argon plasma led to bond 

breaking and possible chain scission of the polymer. It is the aim of this 

study to determine whether it is the VUV radiation or the excited species 

within a plasma that lead to modification of polymer surfaces. 
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4.2 EXPERIMENfTAL 

The experimental procedure followed for the V U V experiments was 

similar to the plasma experiments described in section 2. 2. Polyethylene 

(PE) film (ICI) was ultrasonically washed in a 1:1 mixture of iso-propanol 

alcohol and cyclohexane for 30 s, dried in air, then placed into the reactor 

vessel, figure 3. The system was evacuated and the reaction gases were let 

into the apparatus via needle valves to a pressure of 0.2mbar (plasma gas on 

the left hand side in the diagram and oxygen on the right hand side). The 

plasma was ignited at a power of 30 W and the ions and other such species 

were filtered out, allowing only the VUV radiation to pass to the reaction 

chamber, using a L i F crystal (cutoff wavelength 105 nm). After a treatment 

time of 30 minutes, the gases were purged for a further 5 minutes before 

opening up the chamber to atmosphere. The sample was then transferred to 

a Kratos ES300 X-ray spectrometer for analysis, as described in section 2. 2. 

Figure 3. V U V experimental apparatus. 

Gas in Oxygen 

Cu coils 

L i F 
window 

oooo 
to pimip 

to pimip 

ooo 
Polymer 

Nitrogen (99.995%, BOC), argon (99.999% BOC), krypton (99.997%, 

Spectra Gases) and xenon (99.999%, Spectra Gases) were used for the plasma. 
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sample side was oxygen (99.999%, BOC). The experiments were repeated 

using polystyrene (PS) (BP). 

The plasma treatment of the polymers followed the procedure as 

recorded in section 2,2, at a power of 30 W. 

The p lasma/VUV treatments were nm at steady state conditions, 

t3^ically 30 min for a V U V treatment and 5 min for a plasma treatment. 

4.3 R E S U L T S 

4.3.1 Polyethylene 

XP spectra of the dean polyethylene displayed a single C(ls) peak at 

285.0 eV arising from -CxHy- . Detailed chemical information about the 

modified polymer surfaces was obtained by peak fitting the C(ls) XPS spectra 

to a range of carbon ftmctionalitiesl6/17: carbon adjacent to a carboxylate 

group (C-CO2 ~ 285.7 eV), carbon singly bonded to one oxygen atom (C-O 

-286.6 eV), carbon singly bound to two oxygen atoms or carbon doubly 

bonded to one oxygen atom ( O C - O or C=0 -287.9 eV), carboxylate groups (O-

C=0 -289.0 eV), and carbonate carbons (O-CO-O -290.4 eV), table Z Errors 

within the tables refer to reproducibility results between independent 

experiments. C - O groups were fotmd to be the most prominent oxidised 

carbon species. Surprisingly, very little oxygen incorporation into the 

polyethylene surface was found during O2/VUV exposure, figiu-e 4. 

Oxygen exposure to noble gas glow discharge treated polyethylene 

produced a lower level of svu-face oxidation compared to the corresponding 

V U V / O 2 experiments, with Xe-VUV/02 yielding a level of surface 

oxidation which is almost comparable to oxygen plasma treatment, figures 5, 

6 and 7. 
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Table 2: Simimary of oxidation treatments of polyethylene. 

% FUNCTIONALrriES 
TREATMENT C-H -C-CO2 -C-O >c=o -C(0)=0 -0-

C(0)=0 
O2 

PLASMA 
72.0±0.6 4.7±0.4 8.5±2.3 6.1±0.5 4.7±0.4 3.2±0.3 

O2 VUV 93.6±0.4 - 4.3±0.2 2.1±0.2 - -
Ar 

PLASMA 
77.4±0.04 4.57±0.25 8.67±0.65 4.31±0.47 4.57±0.3 0.5±0.7 

Ar VUV 69.6±0.1 7.6±0 10.1±0.6 5.1±0.4 7.6±0 -
Kr 

PLASMA 
76.5±2.6 5.1±1.2 9.2±1.0 4.12±0.9 5.08+1.2 -

Kr VUV 69.8±0.3 6.5±0.1 10.3±0.4 5.6±0.4 6.5±0.1 1.35±0.4 
Xe 

PLASMA 
79.9±0.7 4.3±0.6 8.3±3.8 3.1±1.2 4.3±0.6 1.1±1.1 

Xe V U V 62.4±0.3 8.1±0.1 11.7±0.1 7.8±0.1 8.1±0.1 1.8±0.1 

4.3.2 Polysytrene 

Polystyrene consists of an alkyl chain polymeric backbone, to which 

phenyl rings are attached . Two peaks are observed in the C(ls) region of the 

XPS spectrum for the clean starting material: a hydrocarbon component 

(285.0 eV, 94% of total C(ls) signal) and a distinctive satellite structure at 

-291.6 eV (6% of total C(ls) signal), which is associated with low-energy 31 ~ > 

jt* shake-up transitions that accompany core ionization! 8. Oxygen plasma 

treatment of polystyrene produced a range of oxygenated surface 

functionalities, table 3, however the extent of oxidation was found to be 

much greater than observed for polyethylene. Once again, very Uttle oxygen 

incorporation into the polystyrene surface was found during O2-VUV/O2 

exposure. 

Reaction of ground state molecular oxygen following the various 

noble gas plasma treatments gave rise to a greater level of oxidation at the 

polystyrene surface compared to V U V / O 2 modification except for Xe-

V U V / O2 where in fact the reverse was found to be true, figures 8, 9 and 10. 

120 



Table 3: Summary of the oxidation treatments of polystyrene. 

% FUNCriONALITIES 
TREATMENT C-H -C-C02 -C-O >c=o -C(0)=0 -0-

CfO)=0 
O2 

PLASMA 
58.8±0.3 4.0±0.7 11.9±0.1 10.4±0.7 4.0±0.7 8.8±0.1 2.6±0.5 

O2 VUV 89.90.5 - 3.5±0.1 - - - 6.5±0.4 
Ar 

PLASMA 
71.4±2.3 3.0±0.7 10.4±0.1 5.9±0.4 3.0±0.7 4.4±0.4 2.0±0.1 

Ar VUV 67.7±1.6 5.9±0.3 9.1±0.5 5.6±0.1 2.5±0.9 6 
Kr 

PLASMA 
65.8+0.6 3.9±1.1 11.4+1.4 6.8+1.4 3.9±1.1 5.3±2.4 1.9±0.6 

Kr VUV 71.7±3.1 1.9±0.3 10.7±0.2 5.5±1.7 1.9±0.3 5.7±1.4 2.7±0.8 
Xe 

PLASMA 
70.5±2.6 3.9±0.6 11.7±0.7 5.4±0.1 3.9+0.6 2.7±0.9 1.9±0.6 

Xe VUV 63.4±2.5 3.6±0.7 10.5±0.5 8.1±0.3 3.6±0.7 8.0±0.2 2.7±0.2 
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Figure 5: Typical C( ls ) peak fit for Xe-VUV/02 treatment of polyethylene. 
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Figure 6: C(ls) XP spectrum of PE: (a) Untreated PE (b) O2 plasma treatment 

(c) A r plasma treatment (d) Kr plasma treatment (e) Xe plasma 

treatment. 
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Figure 7: C(ls) XP spectrum of PE: (a) Untreated PE (b) O2 VUV (c) Ar VUV 

(d) Kr V U V (e) Xe VUV 
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Figure 9: C(ls) XP spectrum of PS: (a) Untreated PS (b) O2 plasma treatment 

(c) Ar plasma treatment (d) Kr plasma treatment (e) Xe plasma 

treatment. 
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Figure 10: C(ls) XP spectrum of PS: (a) Untreated PS (b) O2 V U V (c) A l VUV 

(d) K r V U V (e) Xe VUV. 
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4.4 DISCUSSION 

Inert gas plasmas interact with organic substrates via a direct energy 

transfer component arising from ions and metastables down to ~ 10 A, and a 

radiative transfer component consisting of vacuum ultraviolet (VUV) 

photo-irradiation which can penetrate up to ~ 10 fim below a polymer 

surface^. Typically, ion densities lie in the range of 10̂  - 10^° cm' with 

energies of 0 - 100 eV^^, whilst mean electron energies <e> span 0 - 20 eV 

with a high energy tail reaching out to 100 eV due to reflections at sheath 

boundaries20. 

Crossed-beam electron impact induced fluorescence studies with 

argon atoms have shown that the most intense VUV emission lines appear 

at 104.8 nm and 106.7 nm, these give rise to the Ar (I) transitions between 

the lowest lying electronically excited states and the ground state of the atom 

(i.e. 3ŝ 3p 4̂ŝ  ~ > 3s^p^)21. The excited ion Ar (U) resonance lines at 91.98 nm 

and 93.21 nm also emit strongly, and correspond to the 3s^3p* ~> 3s^p^ 

transitions. The Ar (I) lines display a maximum excitation cross section at ~ 

30 eV electron energies, whilst this occurs at " 50 eVfor the A r (U) lines. In 

general, the M (I) emission lines are the most intense for low pressure noble 

gas plasmas (where M is the noble gas)4, these are 104.8, 106.7, 116.5, 123.6 

and 131.2,147 nm for Ar, Kr, and Xe respectively^. The background consists 

of a radiation continuum arising from excited inert gas molecules M2* and 

there is also emission in the UV/visible, but the intensity is at least two 

orders of magnitude lower than for the V U V region. A sample located in 

the centre of an inert glow discharge essentially receives irradiation from 

M(I) and M(II) resonance lines only 1/22 and it is these resonance lines which 

are considered as the main excitation energy. As mentioned in the 

introduction to this chapter, V U V wavelengths of the M(I) and M(II) 

resonance lines correspond to the region of the electromagnetic spectrum 

where radiation is absorbed by air (below 180 nm)2 with photon energies 

129 



sufficiently high to induce electronic transitions and photoionization in 

many molecules^. 

A pure oxygen plasma contains many different species such as ions, 

atoms, ozone, and metastables of atomic and molecular oxygen, as well as 

electrons and a broad electromagnetic spectrum23,24_ During plasma 

oxidation of a polymer surface, the observed incorporation of oxygenated 

functionalities is accompanied by the continual evolution of small volatile 

molecules (eg. CO, CO2, H2O, etc.)25. 

The photo-excitation of the oxygen molecule can be summarised in 

terms of the following threshold wavelengths: 

02(X32g-) —> Oz{A^lu+) 250 - 300 nm 

02(X32g-) —> Q2(B32u-) 175 - 200 nm 

02(X32g-) - - > 0(3P) + 0(3P) < 242 nm 

p2(X32g-) - - > 0(3P) + 0(1D) < 175 nm 

02(X32g-)—>0(3P) + 0(lS) <133nm 

The molecular oxygen absorption cross-section passes through a maximum 

at approximately 145 nm and is very small below 130 nm (numerous 

Rydberg transitions26) and above 175 nm (the Schumann-Runge 

continuum^6'27). 

Vacuum UV photons typically possess energies corresponding to the 

order of electronic excitation and first ionization potentials for polymers^S. 

Direct abstraction of hydrogen atoms from polymer molecules by oxygen is 

an endothermic reaction requiring 30 to 45 kcal/mol29, therefore the attack 

by ground state atomic oxygen or molecular oxygen is thermodynamically 

unlikely with a ground state polymer^. However, reaction of oxygen at a 

generated polymer radical site by either direct attachment of atomic oxygen 

or addition of molecular oxygen followed by O-O bond rupture are 

possibilities30. 
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Photons can create active sites in polymers if the radiation is 

sufficiently energetic, that is, the photon must be at least equal in energy to 

the first ionization potential of polymers for modification to occur. For 

example, saturated polymers require greater energy for active sites to be 

created, due to the strong coupling between atoms, polyethylene requires 

X<145nm, corresponding to 8.6 eV. The longest wavelength absorption 

band in polyethylene is associated to a-—>a* transition and lies in the VUV 

regional . Unsaturated polymers require longer wavelengths and 

modification has been shown to occur at X>200nm28. Polystyrene contains 

phenyl rings which are chromophores32, a specific group of atoms which 

absorb in a molecule giving rise to characteristic absorption bands, reducing 

the energy needed for modification of the surface to occur, since the 

difference between the HOMO and LUMO states is smaller for imsaturated 

than saturated polymers33 The longest wavelength for absorption is the n— 

->7i* transitional. 

In order to activate polymers, there is an activation barrier to 

overcome before surface reactions can take place34. In the case of the O2-

V U V / O 2 experiments, the observed low levels of surface oxidation can be 

attributed to the absence of any a bond photoionization (just a -a* 

transitions) together with a very small molecular O2 dissociation cross-

section being coincident with the characteristic 130 nm emission line from 

the O2 glow discharge. 

Both the Ar (I) (104.8, 106.7 nm) and Kr (I) (116.5, 123.6 nm) emission 

lines overlap with a high photoionization cross-section for o bonds35,36 to 

create free radical centres which can undergo reaction with molecular O2. 

The higher levels of oxidation observed for Xe-VUV/02 experiments can be 

attributed to the Xe(I) (147 nm) line coinciding with the peak of the 

molecular O2 dissociation cross-section, i.e. attack by excited oxygen atoms. 

In the case of polyethylene, molecular oxygen attack at the free radical 

centres generated following noble gas plasma treatment results in a lower 

131 



level of surface oxidation compared to the VUV/O2 treatments. On 

consideration of the Xe V U V treatment, the generation of surface free 

radical sites will mainly be occurring by ion bombardment because the Xe (1) 

line wavelength is is not low enough to coincide with the photoionization 

cross-section of the polymer. The possibility of the Xe (H) line (110, 124.5 

nm) simultaneously creating free radical centres, as in the Ar and Kr V U V 

treatment, would also contribute to the higher oxidation observed for the Xe 

V U V treatment. 

For polystyrene, the higher levels of oxidation observed for the Ar 

and Kr plasma treatments imply that a greater concentration of surface free 

radicals are produced during glow discharge treatment, tiiis can be attributed 

to ion bombardment of the phenyl rings being able to generate a significant 

number of extra free radical centres originating from their unsaturated 

nature, whereas this is not as important in the case of xenon. 

Two important differences emerge between the two types of polymer 

substrate employed in this study: firstly polystyrene is far more susceptible to 

surface oxidation than polyethylene, and secondly, more highly oxidized 

functionalities are detected for the former. This can be attributed to the 

phenyl groups present in polystyrene, since photo-excitation readily 

generates imsaturated carbon centres at the polymer surface during V U V 

and plasma exposure. 

Previous V U V studies using a N2 glow discharge (strongest emission 

lines at 174 nm and 149 nm) in the presence of O2 gas gave rise to significant 

amoimts of surface oxidation for both polyethylene^^ and polystyrene^^ 

corresponding to 0 : C ratios of 1.25 and 1.11. These results are consistent 

with the present study, since the N2 plasma emission lines coincide with the 

very high absorption cross-section of molecular O2 leading to the formation 

oiO(^P) + OCD). 
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Work carried out by Hollander et a/.39,40 on the role of V U V in a 

variety of plasmas found that the oxygen contaiiung gas mixture (O2-H2) 

V U V experiments gave rise to the lowest level of oxidation which is 

consistent with the results found in this chapter. They concluded that 

atonuc oxygen played a minor role in oxidation, since the wavelengths from 

a O2-H2 plasma enabled production of the atomic oxygen without activation 

of the PE surface. However in their discussion of how the polymer becomes 

activated, they fail to take into accoimt the ionization potential of the 

polymer being treated and therefore only attribute modification to 

activation of the polymer by absorption of the VUV radiation. 

4.5 CONCLUSIONS 

The experiments have shown that V U V irradiation of polyethylene 

and polystyrene will result in surface modification providing that the 

energy of the V U V is sufficiently energetic to cause ionization of the 

polymer. Oxidation occurs via the V U V radiation activating the polymer 

giving rise to radical sites which subsequently can react with atomic oxygen 

or molecular oxygen, resulting in oxidation. The two processes, polymer 

activation and oxidation of the sites can occur simultaneously during the 

reaction. 

The extent of modification observed depends upon the polymeric 

substrate and the type of feed gas used for the experiment. 
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Chapter Five 

CF4 Plasma Treatment of Asymmetric 
Polysulfone Membranes 

5.1 I N T R O D U C T I O N 

This chapter investigates the effect a non-polymerizable, chemically 

reactive plasma has on the transport properties of an asymmetric 

polysulfone membrane. Results from chapter two and three show that a 

CF4 plasma dramatically changes the surface properties both chemically and 

topographically. Transport properties of a permeant through a membrane 

are influenced by both chemical and physical properties and the aim of this 

chapter was to probe how plasma treatment affected such properties. 

5.1.1 Background 

Permeability plays an important role in many areas such as the food 

and packaging industry, gas separation membranes, filtration processes and 

in controlled release devices used in medicine. This work concentrates on 

gas separation membranes. The aim within this area is to produce 

membranes with high permeability and permselectivity (separation factor). 

There is usually a trade-off between these two properties since the factors 

which influence them conflict. High selectivity requires a material which is 

rigid, crystalline and highly crosslinked. High permeability requires a 

membrane which is amorphous because it is the amorphous regions in a 

polymer which the penetrants diffuse through. However materials can be 

produced where the traditional "trade-off" between these two properties is 

reduced and membranes can be prepared that possess both high selectivity 

and permeability. There are two general rules which are thought to explain 
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the structure/property relations. Structural changes in the membrane that 

inhibit packing such as the formation of relatively rigid chains can increase 

permeability whilst retaining selectivity. Alternatively, reduction of the 

rotational mobility about flexible linkages in the polymer backbone lead to 

higher permselectivities without losses in permeability, provided that the 

intersegmental packing is not significantly affected^. 

Research into achieving such a membrane is prolific and there are 

several methodologies:-

1. Development of new materials for gas separation. 

2. Changing membrane structure. 

3. Modifying membranes. 

5.1.2 New Materials for Gas Separation 

Several authors have achieved enhanced membrane properties by the 

preparation of new polymers for gas separation. A series of polycarbonates2, 

with various substitutions on the aromatic ring, for example halogens, 

enabled the structure/property relationship to be investigated. It was foimd 

that CI and Br resulted in a reduction in the permeability. This was 

attributed to the action of the cohesive forces due to the polarity of the 

halogens resulting in more densely packed chains. Fluorine substituted 

polycarbonates gave rise to high diffusivity coefficients due to fluorine 

hindering rotational movements about flexible linkages in the polymer 

backbone^. There has been similar work on polyimides* and polyaaylates^. 

5.1.3 Membrane Structure. 

There are three main types of membrane structure, homogeneous (or 

dense), asymmetric and composite. A homogeneous membrane consists of 

one material with the same type of structure throughout. In contrast, an 
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asymmetric membrane consists of a dense skin layer supported by a porous 

matrix of the same material. Composite membranes are composed of 

materials of vastly different chemical structures^. 

The advantage of using an asymmetric membrane is that it allows 

high productivity, that is, the skin layer is the selective part of the 

membrane but it is very thin and therefore does not detrimentally alter the 

permeance. The "sponge-like" matrix acts as a mechanical support allowing 

gas to pass through with little resistance. 

The phase inversion technique for the preparation of asymmetric 

membranes utilises a change in composition of initial polymer 

concentration for initiation of the phase separation. Preparation of an 

asymmetric membrane by concentration inunersion involves three main 

stepŝ '̂ '̂ '̂ *" 

1. Casting homogeneous film onto flat surface (typically a glass 

substrate). 

2. Evaporation of casting film (evaporation step). 

3. Immersion of evaporated film into nonsolvent/solvent bath or 

coagulation bath (quench step). 

Figure 1: Schematic diagram of asymmetric membrane preparation. 

Surrounding Medium 

Casting Film 

'Substrate Side 
/ / / / / / / / / / / / / / A 

In the evaporation step the surrounding medium is air. In the 

quench step, the coagulation bath is the surroimding medium. 
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Each step involves many variables such as the solvent, quench 

medium, evaporation time, solvent concentration and so on. The final 

product is heavily dependent on the process of formation, leading to 

variations in the films even prepared from the same batch^O. The ideal 

asymmetric membrane should comprise a very thin defect free skin layer 

and a substructure which does not contribute any resistance to gas 

transport^l. 

5.1.4 Modification of Membranes. 

Numerous different methods for the modification of membranes 

have been utilised including U V grafting of functionalities'^^ fluorination'3^ 

photooxidationl*, ion beam irradiation's and plasma treatment'6,17. 

Modification via plasma treatment has been studied by depositing a thin 

layer of "plasma polymer" onto the membrane and by the grafting of 

functionalities onto the surface. 

The deposition of an ultra-thin coating by plasma polymerization has 

been of interest in several areas of membrane technology from reverse 

osmosis membranes'^ to gas separation membranes'. The technique 

enables a permselective layer to be deposited on a highly permeable 

polymer. Matsuyama et fl/.'^ foimd that the performance of pervaporation 

membranes was improved by using siloxane monomers with long chains 

due to more continuous linking within the polymer structure. The 

deposition of a plasma polymer from fluorine containing monomers was 

foimd to improve the oxygen/nitrogen selectivity20/2l. piasma gas mixtures 

were also found to improve the hemocompatibility22 of membranes. 

Wang23 modified polypropylene by using an ammonia plasma, 

which is considered to be a non-poljonerizing gas but does chemically 

modify a surface in a glow discharge. Due to amination from the NH3 

plasma, the treated side becomes hydrophilic^S. Ideally modification via 
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plasma treatment should utilise a gas treatment in a one step process, rather 

than the deposition of a plasma polymer, as this is more likely to reduce the 

flux through the membrane. 

5. 2 EXPERIMENTAL 

Asymmetric polysulfone membranes were prepared by casting 

polysulfone (Udel P3500, Union Carbide) 20% by weight dissolved in 

dimethylacetamide (99%+, Lancaster) onto a glass substrate at ambient 

temperatiu"e followed by immersion in deionized water. High purity carbon 

tetrafluoride (99.7%, Air Products) gas was used for the plasma treatments. 

Figure 2: Experimental procedure for the formation of an asymmetric 

membrane. 

Membrane 

Polymer solution 

Glass substrate 

Knife 

C A S T I N G E V A P O R A T I O N 

Glass substrate 

deionised water 

C O A G U L A T I O N 

Discs (2.1 cm diameter) of the polysulfone asymmetric membranes 

(dense skin side) were plasma treated in accordance with the experimental 

outline described in section 2.2. The samples were analysed immediately by 

XPS and A F M (section 2.2). 

Mass spectrometric sampling devices24 have been previously used to 

evaluate the permeability of common elastomers25,26_ this study. 
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methane plasma polymer was deposited onto the dense side of the 

asymmetric polysulfone membrane and placed into a permeability probe27, 

figures 3 and 4, which consisted of two drilled-out stainless steel flanges. A 

copper gasket was used to ensure a leak-tight seal and an electron 

microscope grid provided mechanical support to the membrane. 

Figure 3: Schematic diagram of the permeability apparatus. 
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Figure 4: Cross section of permeability probe. 
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The probe was coupled to the sample preparation chamber of a Kratos 

ES300 X-ray photoelectron spectrometer (base pressure of 2 x lO'lO mbar) by 

means of a stainless steel tube inserted through a ball valve. The coated side 

of each sample film was exposed to a gas pressure of 800 mbar. Permeant 

pressure was monitored with a UHV ion gauge (Vacuum Generators, VIG 

24). A quadrupole mass spectrometer (Vacuum Generators SX200) 

interfaced to a P C computer was used to follow compositional analysis of the 

permeant species. High purity nitrogen (BOC, 99.995%) and oxygen (BOG, 

99.6 %) gases were used. The quadrupole mass spectrometer's response per 

unit pressure was calculated by introducing each gas in turn into the 

chamber and recording the corresponding mass spectrum intensity at a 

predetermined pressure of 5x10"^ mbar (taking into account ion gauge 

sensitivity factors^S). The mean equilibrium permeant partial pressure of 

each gas was measured in the steady-state flow regime^^. 
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5.3 R E S U L T S 

5.3.1 XPS 

The chemical structure of clean untreated polysulfone was found to 

be consistent with the known structure (figure 1, section 2.2)30, figure 5(a). 

The XP spectra of C(ls), 0 ( l s ) and S(2p) regions of untreated polysulfone 

have been discussed in section 2.3.1. 

CF4 plasma treatment of the asymmetric polysulfone membrane 

results in a substantial amount of fluorination at the surface. This is 

accompanied by a dramatic change in the C(ls) XPS spectrum with >CF2 

functionalities being the predominant fluorine moiety. Fluorinated 

functionalities corresponding to CF3 at 293.6 eV and CF2 at 291.2 eV30 can be 

assigned, as described in Chapter 2(section 2. 3), figure 5(b). The 1:1 0( l s ) 

doublet could no longer be resolved and the S(2p) feature was found to be 

strongly attenuated. 

The elemental ratio varied as a function of plasma duration and 

power, figure 6 and 7, approaching limiting values of approximately 48% C, 

48%F, 0.8%S and 4%0 at greater than powers of 5 W (15 minute treatment 

time) and no longer than a 5 minute treatment time (for a fixed power of 10 

W) consistent with results found by a 5 minute fluorination (2% F2 in He) 

treatment of poly(4-methyl-l-pentene)31. 
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Figure 5: C(ls) XP spectrum of (a) untreated polysulfone, (b) CF4 plasma 

treated polysulfone (20 W, 15 min). 
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Figure 6: Elemental composition as a function of CF4 plasma treatment 

time. 
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Figure 7: Elemental composition as a function of CF4 plasma power. 
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5.3. 2 AFM 

The untreated dense skin side of the asymmetric polysulfone 

membrane has a compact structure, figure 8(a), whilst 1.27 ± 0.16 ^im pores 

apertures are evident on the opposite face, figure 8(b). 

A gradual roughening of the surface was observed during CF4 plasma 

treatment of the dense skin side of the asymmetric membrane with 

increasing input powers and exposure times, figures 9 (a and b) and 10 (a and 

b) which eventually leads to small holes in the surface. 

5.3.3 Permeability Measurements 

Figure 11 shows the changes in permeant pressure with the power 

variation of a 15 minute CF4 plasma treatment. There is initially a drop in 

permeant pressure for the 5 W treatment relative to the untreated 

membrane. As the power is increased, the permeant pressure rises with the 

greatest change observed at 30 W. 02/^2 selectivity is shown in figure 12. 

A similar trend was observed when the power was maintained at 10 W, 

whilst the treatment time was increased, as shown in figure 13. Such trends 

are consistent with the results found for fluorination of various polymers 

with fluorine gas^3,32. 

Examining the selectivity (represented as a) of O2/N2, there appears 

to be slightly improved, at short treatment time (e.g. 5 min) or low powers (5 

W). The a(02/N2) of the 5 W, 15 min CF4 plasma treated sample increased 

by to 1.38 ± 0.11, figure 12, and the a(02/N2) of the 10 W, 5 min CF4 plasma 

treated sample increased to 2.670 ± 0.34, figure 14. The errors refer to 

repetition of the permeability measurement on the same sample. 

148 



a; 
2 

CO 

CO 

C 
-O 

a, 
l-i 
6 0 
O 

u 

• < 

{JO 

> > 

E E 
=L i 

CNJCNJ 
II II 
X N 

On 



0) 
C cs l-l I 
*C 
"5 
B 
B 
(S 

C 

CO 

>^ 
"o 

es 

T3 
CO 

2 
o CI. 

a, 
S 
a 

< 

0 0 

CM CM 

1 

o in 



CO 

c 

,e 
in 

> > 

LO 

C 

2 
I 
a; 
C • 

CO 

O 
& < 

.a 
i-i 

g 

es 

£ 
CO 
CO 

U 

ts i-l to 
o 
I-l 

< 

in 

S 
to 



CO 

"2 c 

in > > 

< 

O C M 

CM 
in 



o 

CO 

g 
g 

in 
V 
C 
2 
I 
c: 
v2 3 • 

CO 

>^ 

: <s 

es 

e 
CO 

u 

o 

2 
6 0 
O 

< 
1? 

>•> 

i i 
O C M 

II 
X N 

CO 

in 

cc 

2 
6 0 



o 

CO 

a; "5 
C 

o 
CO 

I c 
12 
s 
g 
C 
o 

• 3 • 
CO 

O 

> > 

O C M 



2 
1 
i 
i 
CO 

< 
U in o o o 

rH CN CO 

a 
u 

B 
CO 

"a-

o 
CO 

CO 

> 

« 
o 
o 

o 
00 

o O 

< 
H 
z 
< 

w 

w 

in in 

2 
CO 
(O 

jEqm 9-ox / i N v a m a j d o s r a n s s 3 H c i 

6 0 



e _o 
"C c 

es 
CO 

e 

0̂  

3 
CO 

3 
ON 

04 s 
B 

3 

g 
CO 
( S 

U 
o 

3 
CO 

c 
a; 
O 

0 0 C 

^ i 
• • 

CM 

(^N / ^0)» 'AlIALLD313Sm3d 

2 

< 

H 

in 

2i 
bp 



C 
( S 

I 
I 

CO 

O 

Cm 

'it 

<^ 1-7 ^ ^ ^ 

w I S S S S 
U LO 

o 10 o o 
( N CO 

• ^ • 

(S 
(B 

<B V 
(8 

CO 

"&< 

PL, 
u 

o 
« I-l 

CO 

S 
CO I-l a» > 
C 
(B 
I-l 
ON 

H 

2 

w 

in 

i-< 
CO 
CO j^qui 9-01 / I N V a m S J dO 3HnSS3HJ 
cn 
I-l 
3 
60 



CO 

C 

ca 

B 

s 
3 

CO 

3 

B 
B 
CO 

(8 

•T3 
01 

g 
CO 

U 

I 

C J 

3 
CO 

S 
o 

0) 

B 

i 

(0 
g 
CO 

o 
CO 

— I — 

o 

0 0 

m 

c 

O 

c o 

C 
3 

(3N / ^0)» 'AlIAIlD313Sm3c[ 

3 
bO 



5.4 DISCUSSION 

Fluorination of a membrane surface has been studied by several 

workersl3'32-34 ^ho found that the gas separation properties can be 

improved. Their work involved fluorination of dense and asymmetric 

polymer films by using a small percentage of fluorine gas in an inert gas, 

typically He. In this work, a CF4 plasma was employed to fluorinate the 

surface which has the advantage of being an efficient, "clean" technique. 

CF4 plasma treatment of the asymmetric structiu-e can be thought of 

as resulting in a composite structure, figure 15. 

Figure 15: Schematic diagram of CF4 plasma treatment of an asymmetric 

polysulfone membrane. 
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Since the dense skin layer and the fluorinated layer will have 

different permeation properties, a series resistance model can be used to 

describe the transport properties'^. This model shows that the permeation 

of the gases will depend on both the depth and composition of the 

fluorinated layer, equation 1. 
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(P/l)i= [aa/Pa)i + ab/Pb)i]-^ 

where (F/1) is the permeance through the membrane, P^ is the permeability 

through the unfluorinated layer, P^j is the permeability through the 

fluorinated layer and 1^, are tiie thicknesses of the unfluorinated and 

fluorinated layers respectively. The porous substructure has not been 

included in the equation since, in theory, i t should not contribute to the 

permeation properties32/33. xhe solubility, diffusivity and permeability of 

the gases studied may also be different in the fluorinated layer than for die 

untreated layer. 

Fluorination of poly(4-methyl-l-pentene), PMP, produces a material 

which is insoluble in cyclohexane or chloroform^l, indicating that the 

surface was crosslinked since the solvents are used to make PMP. The VUV 

component in a CF4 plasma wi l l give rise to crosslinking in the subsurface 

of the polysulfone membrane. This may account for the observed decreases 

in permeant pressure for the gas molecules because a closed, rigid structure 

wi l l present a more tortuous pathway to the permeant gas36 than in the 

imtreated membrane at low powers and short treatment times. The effect of 

crosslinking upon the passage of small molecules wi l l be less effective^^/ 

however since N2 and O2 are of comparable size (gas diameter 3.75, 3.61 A 

respectively)^^, the attenuation in permeant pressure is similar. 

Diffusivity selectivity is based upon the ability of polymer matrices to 

operate as size and shape selectivity through chain mobility and 

packing34,38. Fluorination of a polysulfone membrane by CF4 plasma 

treatment wi l l not only give rise to crosslinking at the surface but also 

rotational hindrance (since the F atom is bigger than the hydrogen atom it is 

replacing). This is likely to result in a more rigid structure due to the 

restriction of mobility of the molecular chains after fluorination. Since 02 

and N2 are of a similar size then the change in permselectivity must depend 

upon changes in the solubility selectivity (dependent upon the solubility of 
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the permeating gases in the fluorinated structure) rather than the diffusivity 

selectivity. 

The increase in O2/N2 selectivity is consistent with the greater affinity 

of fluorine functionalities to molecular oxygen in fluorocarbon bilayer films 

39,40 compared to nitrogen, explaining the change in selectivity for short 

treatment time and low power CF4 plasma treated samples. 

Fluorination of as)mtunetric polysulfone by 2%F2 in He gave rise to 

better gas transport characteristics at shorter exposure times^3 than the 

untreated polymer. It was suggested that at longer times the entire or a 

significant amoimt of the skin layer was fluorinated and since this was not 

the optimum value, then a decline in permselectivity is observed^^. Similar 

results were foimd for polyphenyleneoxide and composite membranes3l'32. 

In CF4 plasmas the depth of fluorination is controlled by a balance 

between fluorination and ablation. The F atoms can etch/ablate the 

polymer whilst a combination of F atoms and CFx radicals can contribute to 

the formation of the fluorinated layer*!. The skin layer of an asymmetric 

membrane is very thin, 500-1000 A^' and the plasma treatment could result 

in damage of tiie skin at very thin or weak regions32/33. At higher powers, 

the extent of degradation due to "physical" etching by the CF4 plasma as a 

result of increased ion flux32,42 ̂ ay lead to the destruction of the delicate 

skin layer leading to the observed increase in permeability. Beyond a critical 

power level the CF4 plasma begins to result in more etching/degradation at 

the membrane surface than fluorination. 

This can clearly be seen in the AFM micrographs where higher input 

powers and longer treatment times give rise to holes appearing in the dense 

skin surface to reveal the underlying "sponge-like" matrix of the 

asymmetric membrane. This leads to increases in gas permeability and a 

loss of any enhancement of permselectivity due to the rupture of the 

fluorinated skin. 
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It is interesting to note that the fluorination of an aysmmetric 

polysulfone membrane by exposure to F2 gas does not show any change in 

the surface topography upon treatment^, therefore the CF4 plasma is a much 

more reactive mediiun compared to F2 gas exposure. 

5.5 CONCLUSIONS 

CF4 plasma treatment of an asymmetric membrane changes the 

permeation of gases through the membrane. Longer treatment times and 

higher powers of the plasma lead to higher permeant pressures as a 

consequence of damage of the thin skin layer by the action of the CF4 

plasma. The 5 W, 15 minute and the 10 W, 5 minute samples both gave rise 

to a reduction in permeant pressure and an increase in the a(02/N2). The 

properties of these samples can be attributed to a number of possibilities 

predominantly that the action of the plasma is sufficient to cause 

fluorination of the skin layer without causing detrimental etching or 

damage to the permselective layer. The fluorinated layer itself wi l l have 

different properties than the imfluorinated polysulfone, that is, the layer 

may be crosslinked resulting in a more rigid structure giving rises in the 

diffusion of the permeant gases. There may also be an interaction between 

the molecular oxygen and polar fluorine moieties. 

Higher powers and longer plasma treatment times result in increases 

in the permeant pressure and decrease in oxygen/nitrogen selectivity due to 

damage of the dense selective layer of the polysulfone asymmetric 

membrane. The appearance of holes in the skin layer, reinforce the 

suggestion that more aggressive plasma treatment results in surface damage. 

The exposed underlying "sponge-like matrix" offers littie resistance to the 

permeation of gases, hence the observed increase in permeant pressure 

accompanied by a decrease in the permselectivity with long/high power 

plasma treatments. 
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In conclusion there appears to be an optimiun fluorination depth and 

composition for CF4 plasma treatment after which, the selective skin layer 

becomes damaged resulting in increased permeability and a decrease in 

pemselectivity of oxygen and nitrogen. Using the oxygen/nitrogen 

selectivity as a gauge to the behaviour of C H 4 / C O 2 within a sample, 

membranes wi th enhanced gas separation properties w i l l be able to be 

formed, through optimization of the experimental plasma parameters such 

as the power and length of treatment 
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Chapter Six 

CF4 Plasma Treatment of Methane Plasma 
Polymer Layers Deposited on Asymmetric 

Polysulfone Membranes 

6.1 I N T R O D U C T I O N 

Chapter five investigated the effect of CF4 plasma modification on 

the permeation properties of an asymmetric polysulfone membrane. This 

chapter makes use of another area of plasma treatment, p l a s m a 

polymerization, in order to deposit a methane plasma polymer onto the 

membrane surface. The surface composition and permeation properties are 

analysed and the effect of a post CF4 plasma treatment is also investigated. 

6.1.1 Background 

The utilisation of plasma polymerization for the preparation of 

permselective membranes is a growing area. The technique enables the 

deposition of ultra-thin, uniform, pinhole free films 1/2/3,4 with applications 

in reverse osmosis, ion-exchange and gas separation membranes^. 

Plasma polymerization essentially involves the deposition of an 

organic (or organometallic) film through the excitation of a monomer by an 

electrical discharge. The precursor is dissociated and exdted in the plasma 

resulting in the subsequent polymerization and deposition of a film6/7. It is 

a different type of process compared to conventional polymerization and 

the differences of plasma polymerization can be characterized in several 

ways. Firstly, for plasma polymerization of a monomer to occur, the 

monomer does not have to contain a functional group such as a 

double/ triple bond or a cyclic group as with conventional polymerization. 
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The resultant polymer does not have a discernible repeat unit and is 

characterized by the plasma parameters rather than the monomer itself^. 

Plasma polymerization is thought to occur by a rapid step growth 

mechanism, where free radicals are the dominant reactive species. It is a 

complex process where not only are reactive species formed but the 

formation of non-reactive species and reaction of the plasma with the 

substrate can also occur. Figure 1 illustrates some of the reaction pathways 

which can occur during plasma polymerization^. 

Figure 1: Reaction pathways occurring during plasma polymerization^. 
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The monomer can polymerize and deposit a film (pathway 1) or be 

converted into reactive products (2) or form non-reactive products (4). 

Reactive products can convert to form polymer film (3) or be converted into 

non-reactive products (5). Alternatively degradation of the polymer fi lm 

can occur (6). Reaction pathway 1 is known as plasma induced 

polymerization. Reaction pathways 2 and 3 are plasma polymerization. 
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The intermediate reactive products can be ions, exdted molecules or free 

radicals. 

Gas permeation through plasma polymers does not follow the 

conventional "solution-diffusion" mechanism as found with polymer films 

but follows a molecular-sieve type model2 which is espedally noticeable for 

small gas molecules. The difference in behaviour observed for diffusion in 

plasma polymers is a consequence of the absence of large scale segmental 

mobility and the high degree of cross-linking7. As a consequence of the 

nature of the films, plasma polymers can, in theory, make excellent gas 

separation membranes. 

The characteristics of a plasma polymerized membrane depend upon 

many variables, such as the choice of monomer, substrate and plasma 

parameters^/lO'll. Careful choice of the monomer is very important as the 

plasma polymerized membrane produced is dependent upon the monomer 

used for the deposition. Halogen containing monomers have shown to be 

potentially good membranes for gas separation or barrier properties^, whilst 

monomer mixtures containing sulfonic groups have been linked to 

increased ionic conductivity and are therefore useful for areas of electrolytic 

activity e. g. batteries and ion-exchange membranes^^. 

Glow discharge polymerization of methane results in crosslinked, 

pinhole-free films^^-lS. Methane plasma polymer films are used as barrier 

coatings in biomedical applications^^. They also possess excellent adhesion 

properties, suffidently good to improve the adhesive bonding of inert 

surfaces such as PTFE and stainless steell* for adhesive bonding. As a result 

of the compact network of a methane plasma polymer, it is of potential 

interest in the the field of gas separations^. Often a mixture of methane in 

conjunction with a fluoromonomer can be used to deposit plasma polymer 

coatings which can improve the gas separation performance of polymer 

membranes^^, in this study, rather than taking a fluoromonomer/methane 

gas mixture, a pure methane plasma polymer is post-treated with a CF4 

169 



plasma with a view to enhancing the O2/N2 gas separation characteristics of 

the imderlying substrate, since CF4 glow discharges can be regarded as a 

source of atomic fluorine which can participate in chemical reactionsl7-21. 

The CF4 glow discharge treated methane plasma polymer films have been 

characterised by XPS, transmission FT-IR, A F M and permeability 

measurements as a function of glow discharge power. 

6.2 E X P E R I M E N T A L 

Small strips of polysulfone (bisphenol-A-polysulfone, Westlake 

Plastics Company) were ultrasonically washed in an isopropyl alcohol / 

hexane mixture for 30 seconds and dried in air. High purity carbon 

tetrafluoride (99.7%, Air Products) and methane (99.7%, Air Products) gases 

were used for the various types of plasma treatment. Asymmetric 

polysulfone membranes were prepared as outlined in section 5.2. All 

treatments were carried out on the dense skin side of the asymmetric 

membrane. 

The methane glow discharge treatment was carried out following the 

procedure outlined in section 2. 2. Subsequent CF4 plasma treatment 

involved pumping down the vacuum system to base pressure before 

purging the system with CF4. The plasma treatment then follows the 

procedure outlined in section 2, 2. Analysis by XPS and A F M w a s 

performed , section 2. 2, on the prepared samples. 

FT-IR analysis involved depositing the plasma polymer onto a BCBr 

disc. The plasma treatments were carried out over a longer period of time 

in order to improve sensitivity, typically 30 min for a methane plasma and 

15 min for CF4 treatment. A Mattson Polaris FTIR spectrometer was 

employed for analysis, 100 scans were accimiulated at a resolution of 4 cm^ .̂ 
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Permeability experiments were carried out in accordance with section 

5. 2. Typical plasma conditions for a permeability sample is a 30 minute 

CH4 plasma followed by a 15 minute CF4 plasma. 

6.3 R E S U L T S 

6.3 .1XPS 

The XP spectra of the clean untreated polymer was consistent with 

the parent structure of bisphenol-A-polysulfone (PSF)22^ figure 2(a), as 

discussed in section 2.2.1. 

Plasma polymerization of methane results in the deposition of a 

hydrocarbon layer onto the polysulfone substrate with trace amounts (less 

than 2%) of oxygen and nitrogen incorporated into the film due to free 

radicals reacting with the atmosphere on transferral of the sample to the 

spectrometer23,24. Complete coverage by CH4 plasma polymer was signified 

by the absence of any S(2p) signal showing from the polysulfone substrate 

and the alteration of the C(ls) spectrum to just a CxHy environment, figure 

2(b). No change in the C(ls) envelope was found over the 5-50 W power 

range. This is not surprising since core level XPS does not detect hydrogen. 

CF4 plasma treatment of the deposited plasma polymer results in a 

dramatic change of the C(ls) envelope. Fluorinated moieties become the 

predominant groups with 12.8 ± 3.2 % CF3, 31.9 ±3.1 % CF2,16.9 ±3% CFn-

C F n , 9.1 ± 0.3 % C F and 8.1 + 0.6 % C-CFn present at the surface25, figure 

2(c). This gives rise to a F:C ratio of 1.08 ± 0.05. Once again no sulfvu- is 

observed indicating complete coverage of the substrate. 

Variation in the power of the methane plasma (5-50 W), whilst 

retaining the CF4 discharge power at 10 W gave rise to no changes in the 

elemental content at the surface nor the relative distribution of fluorine 

moieties. Similarly, the CF4 discharge power was changed (10-50 W) did not 
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appear to influence the level of fluorination when the power of the 

methane glow discharge was kept constant at 20 W. 
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Figure 2 (a): C(ls) XP spectra of clean polysulfone. 
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Figure 2 (b): C(ls) XP spectra of CH4 plasma polymer coated polysulfone (5 

min, 20 W). 
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Figure 2 (c): CF4 plasma treatment of 2(b). 
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6. 3. 2 FTIR 

Methane plasma polymerization resulted in the deposition of a 

hydrocarbon layer. FTIR absorbances occurred at 2950 cm^l (asymmetric 

C H 3 stretch), 2928 cm"! (CH2 asymmetric stretch), 2870 cm-1 (CH3 

symmetric stretch)24,26,27,28 g broad peak centred around 1637 cm-l(C=C), 

1460 cm-l(CH2 wagging or scissoring29) and 1377 arr^ (CH3 symmetric 

bending), figure 3(a). These infrared absorbances displayed no variation 

with increasing electrical discharge power (10 - 50 W), similar findings have 

been reported previously^O. There was an additional weak absorbance band 

at 2349 cm^l due to background CO2 impurities present in the FTIR 

spectrometer during data aquisition. 

CF4 plasma treatment of the hydrocarbon plasma polymer layer 

produced a slight enhancement of the broad feature in the 1600-1700 cm'l 

region, which overlaps with the following FTIR absorbances^l; 1626 cmr^ (-

CF=C< stretch in a crosslinked environment) and 1730 cm-^ (-CF=CF-

stretch), figure 3(b). A difference in depth of analysis accounts for the much 

more dramatic change in the XPS spectra compared to the FTIR data32. 

Clearly, fluorination must only be occiuxing at the plasma polymer surface. 
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6.3. 3 A F M 

The dense side of an asymmetric polysulfone membrane has a 

compact structure. The A F M micrograph is shown in chapter five, figxire 

8a. 

Plasma polymerization of methane produced a globular surface 

texture. A n increase in methane glow discharge power causes the particle 

size to decrease, i.e. become more densely packed, figure 4. There also 

appears to be more defects at higher powers, figure 5 (a and b) 

Post-treatment of the methane plasma polymer with a CF4 glow 

discharge resulted in the unveiling of a much better defined globular 

surface texture which again reflects the decrease in particle size with 

increasing glow discharge power, illustrated in figure 5(c and d). 

Figure 4: Variation of CH4 plasma polymer particle size with glow discharge 

power. 
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6. 3. 4 Penneability Measurements 

A n O 2 / N 2 permselectivity of 3.09 ± 1.02 was measured for the 

untreated asymmetric polysulfone membrane. This compares w i t h 

literature values of 4.733 Both the N2 and O2 n\ean equil ibrium permeant 

partial pressures increase w i t h glow discharge power dur ing CH4 plasma 

po lymer i za t ion onto the dense side of the asymmetric polysulfone 

membrane, figure 6(a), whilst the O2/N2 permselectivity is approximately 

halved w i t h respect to the untreated substrate, figure 6(b). 

CF4 plasma treatment at 10 W for 15 nun of a range of CH4 plasma 

polymers deposited onto the dense side of the asymmetric membrane 

causes a decrease i n permeant pressures relative to the untreated 

asymmetric membrane-and just CF4 glow discharge modification of the 

asymmetric membrane, figure 7(a) This is accompanied by a shift i n the 

O2/ N2 selectivity back towards that of the vmtreated polysulfone membrane, 

figure 7(b). 
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6.4 DISCUSSION 

There are numerous reaction pathways which can occur i n a 

methane plasma to form many reactive intermediates such as CH3, CH2, C H 

and ionic species, however the CH3 radical is considered to be the dominant 

deposition species. Figure 8 shows some of the possible reactions can occur 

i n a methane plasma34,35 

Figure 8: Schematic Diagram of the processes taking place i n a C H 4 

plasma^S. 
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Depending upon the experimental conilitions employed, either 

d iamond- l ike-carbon or polymeric hydrocarbon materials can be 
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depositedl4'l5,36. The amorphous hydrocarbon films produced in this study 

were found to readily imdergo fluorination by a CF4 glow discharge. 

CF4 is considered to be a non-polymerizable gas which does not form 

plasma polymer material, but instead grafts fluorine moieties to polymeric 

surfaces^8,19,37. most important species in a CF4 plasma is the fluorine 

atom^S resulting from the dissociation of the CF4 molecule39,40̂  equation 1. 

CF4 + e- >CF3 + F + e- (1) 

The dissociation of CF4 to give CF3 can imdergo further dissociation 

to form CF2 and F. CF4 itself can also dissociate to form CF2 upon initial 

electron impact^l. Graf t ing of fluorine moieties onto polymeric surfaces 

can be understood in terms of constituent fluorine atoms in the CF4 

plasma38-40 imdergoing hydrogen abstraction and substitution reactions at 

the hydrocarbon plasma polymer surface to produce CF, CF2 and CF3 

functionalities*!. The presence of the CF and tertiary C indicate a highly 

crosslinked network, whilst CF3 moieties imply the end group of 

oligomers36. The fluorinated layer is fairly thin (< 1 îm) since it is absent 

during infrared analysis42. A C / H of approximately one has been reported 

in the literature for a methane plasma polymer deposit24, which is 

consistent with the XPS F:C ratio foimd in this chapter if a substitution type 

mechanism of hydrogen replacement with fluorine is assumed. 

The globular feattu-es observed at the surface of the methane plasma 

polymer can be attributed to particle formation during plasma 

polymerization7/43-45. These particles are formed in the gas phase and 

adsorb onto the polysulfone substrate, where they become embedded in the 

polymeric spedes being produced during surface reactions between incident 

oligomeric species on the substrate surface. Ffigher glow discharge input 

power leads to a shift in population of energetic electrons in the tail of the 

Maxwellian electron energy distribution, thereby providing a more 
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energetic plasma environment which can produce increased electron / ion 

densities*^. G low discharge polymerization of methane at higher powers 

results i n a f iner globular structure, which can be correlated to a greater 

number of potential nudeation centres for plasma pol)anerization, figuj*e 5 

(a and c). The observed change in surface texture of the methane plasma 

polymer layer after CF4 plasma treatment can be attr ibuted to the 

simultaneous fluorination of the embedded particles and etching of the 

surrounding polymeric layer, g iv ing rise to the better defined globular 

particles, figures 5 (b and d). 

Previous wor k has shown that plasma polymerization of CF4 / 

monomer mixtures can lead to a significant improvement i n O2 and N2 gas 

permselect ivi ty and changes i n permeabil i ty , depending upon the 

experimental conditions chosen47,48. Similar behaviour has been observed 

i n the w o r k carried out i n this chapter, where the deposition and 

modification steps have been carried out consecutively. The increase in gas 

permeation observed by depositing a hydrocarbon plasma polymer onto an 

asymmetric polysulfone membrane is contrary to what one may expect, 

since a methane plasma polymer layer deposited at h igh g low discharge 

powers should produce a more cross-linked plasma polymer network, 

which i n t u r n should further attenuate the gas permeation. The opposite 

trend is observed, figure 6(a). The observed inaease i n permeant pressure 

w i t h C H 4 plasma power can be attributed to either greater intrinsic stress i n 

the g rowing f i l m , or higher permeant solubility^^. Intrinsic stress arises 

f r o m deposited plasma polymer f i l m wedging inbetween existing chain 

segments*^. Higher powers w i l l lead to greater crosslinking which i n turn 

causes more intrinsic stress*^ and therefore cracking^^ at the plasma 

polymer / polysulfone interface. The A F M images show the presence of 

more defects and irregularities at the surface at higher powers, figure 5(c). 

C F 4 g low discharge fluorination of the C H 4 plasma polymer w i l l 

effectively replace hydrogen atoms by fluorine atoms^^, thereby causing a 
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change in the polymeric network structure. The introduction of the polar 

fluorine groups results i n stronger cohesive forces between the chainsSO, 

which is maiufested by a drop i n the gas permeation characteristics of the 

composite membrane structure. Alternatively, i f gas separation occurs by a 

molecular sieve mechanism (separation by gas size) 16 then greater 

crosslinking i n the subsurface region may lead to restricted motion of the 

polymer segments w h i c h i n t u rn w i l l a l low fewer permeants to pass 

through. Such effects w o u l d therefore reduce the di f fus ion velocity of the 

gas molecules across the membrane, however reduction i n permeability 

could also be the result of a decrease i n the solubili ty of the permeating 

gases47 i n the membrane. 

6.5 CONCLUSIONS 

Plasma polymerization of CH4 gas onto an asymmetric polysulfone 

gas separation membrane results i n the deposition of an amorphous 

hydrocarbon coating which improves the gas permeation characteristics of 

the substrate but lowers the relative O2/N2 permselectivity. Subsequent CF4 

glow discharge treatment of these coatings leads to a drop in gas permeation 

to below that of the original polysulfone membrane accompanied by a slight 

enhancement i n the O2/N2 gas permselectivity. 

The changes i n the permeability are possibly due to the extent of 

crosslinking i n the plasma polymer at the surface of the polysulfone. The 

CF4 treatment of the plasma polymer introduces fluorine moieties which 

may influence the permeation of gases through the membrane by restricting 

the available pathways. 

Further work optimizing the plasma parameters, time and power, of 

the consecutive treatment should lead to better gas separation membranes. 
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Chapter Seven 

Conclusions 

7. 1 INTRODUCTION 

The performance of a gas separation membrane is dependent upon 

both chemical and physical properties. The dense skin layer of an 

asymmetric membrane is considered to be the region responsible for the 

permeability and permselectivity properties. Plasmas can be used to 

enhance the physicochemical nature of the surface and are therefore an 

ideal method of altering-the permselectivity of a membrane. 

7.2 SUMMARY OF CONCLUSIONS 

This thesis has investigated some fundamental plasma-polymer 

interactions, the results have then subsequently been used in the application 

of the plasma treatment of polysulfone gas separation membranes. 

The treatment of dense polysulfone f i l m by different gas plasma 

treatments was studied. The change in both the physical and chemical 

structure at the surface was dramatic. The inert gas plasmas resulted in the 

most pronounced topographical changes whilst tetrafluoromethane plasma 

treatment resulted in significant chemical changes. This work not only 

highlighted that different chemical species in a plasma result in different 

chemical surface structures but that the electromagnetic radiation 

component wi th in a plasma may also contribute to some of the 

modification observed. Further work investigated this aspect and it was 

indeed found that the vacuum ultraviolet radiation does play a role i n 

surface modification and that the modification is gas dependent. 
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Fluorination of several polymeric membranes has been shown to 

successfully enhance the separation of certain gas pairsl'2. In a plasma an 

inert CF4 molecule is dissociated and can be considered to be a source of F 

atoms. Fluorination of a polymer surface using a plasma offers an efficient, 

"clean" alternative technique to conventional fluorination. Fluorination of 

a polysulfone membrane by a CF4 plasma results in an increase in permeant 

pressure with little enhancement in oxygen/nitrogen selectivity except at 

very short treatment times and low powers. Such improvements in the 

membrane performance can be attributed to a number of factors. CF4 

plasmas can result in crosslinking at the surface skin layer which in turn 

w i l l have an effect on the transport of permeating gases. Interaction 

between the permeant gas and surface chemical structure may also play a 

role in the transport properties. With more aggressive plasma treatment, 

etching or ablation of the membrane surface occurs resulting in destruction 

of the delicate skin layer of the asymmetric membrane which is manifested 

by a decrease in selectivity and an increase in the permeability. Changes in 

the membrane surface topography were observed whilst the surface 

chemical structure remained constant suggesting that the physical changes 

are responsible for the differences in gas transport properties. This 

illustrates the different effects of a plasma and the importance of both 

chemical and structural changes on a polymeric membrane and its 

relationship between permeability and permselectivity. 

An alternative method of modification of a membrane surface is to 

deposit a polymer layer. The formation of the composite membrane wi l l 

change the gas transport properties by blocking pores in the surface. A 

composite structure was achieved by depositing a methane plasma polymer 

onto the asymmetric polysulfone membrane, figure 1, The oxygen/nitrogen 

selectivity was not significantly enhanced. 
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Figure 1: Plasma treatment of membranes. 

Membrane 
Plasma Modification Plasma Polymerization 

Change surface structure "Block" pores 

Ideally a single step process would be utilised in the modification of a 

membrane, however the two approaches described above did not achieve 

the enhancement in transport properties aimed for. The two approaches 

were combined resulting in the deposition of a methane plasma polymer 

which was subsequently fluorinated. This combination resulted in a slight 

improvement of the oxygen/nitrogen selectivity accompanied by a decrease 

in permeant pressure. This may be due to the positive effects of the 

methane plasma polymer plugging pores and defects in the skin layer and 

the fluorinated layer interacting with oxygen, enhancing its gas transport 

over nitrogen. 

One of the major problems in deahng with asymmetric membranes is 

the difficulty in their formation. The production of the membrane involves 

numerous parameters making reproducibility even from the same casting 

solution diff icul t . However wi th the continuing research into the 

refinement of the phase-inversion casting technique^, the formation of 

reproducible asymmetric membranes should be more readily obtainable. 

Plasma treatment of membranes as a technique for the modification 

of membranes to improve the gas separation properties is a viable method. 
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With optimization of the plasma parameters, such as duration of treatment 

time and power level, the maximum gas selectivity of a particular 

membrane should be obtained. Coupled with the on-going "tuning" of 

membrane preparation, the target of achieving the ideal membrane is 

becoming closer. 

7. 3 FUTURE WORK 

7. 3.1 Optimization of Plasma Parameters 

The plasma parameters varied in this thesis were length of treatment 

time and the power, optimization of these parameters needs to be obtained, 

possibly using a chemometric approach for the production of the best 

membrane. The effect of pressure which the plasma is operated at is 

another variable which needs to be taken into account since this parameter 

w i l l alter the characteristics of the plasma, for example the plasma density, 

which in turn w i l l change the chemical and topographical features of the 

treated svirface. 

7.3. 2 Plasma Feed Gas 

Chapter two found that different feed gases used for the plasma had a 

dramatic effect upon the surface of the sample. The membranes 

investigated have been treated with CF4 and CH4 plasmas, however there is 

almost an unlimited number of different plasmas that can be used. One 

example to be considered would be inert gas plasma treatment of a 

membrane. Inert gas plasma treatment of polysulfone f i lm resulted in 

dramatic topographical changes. Changes in the surface topography 

accompanied by any chemical changes could be exploited for the 

enhancement of asymmetric membrane performance. 
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7. 3. 3 Vacuum Ultraviolet Treatment 

Results f rom chapter four indicated that the vacuum ultraviolet 

component within a plasma results in modification. This technique offers a 

less harsh modification environment when compared to the equivalent 

plasma treatment. The treatment of membranes by this method would 

predominantly offer to change the membrane performance by the physical 

structure. 

7.3. 4 Pulsed Plasmas 

Pulsed plasmas are of growing interest because it enables the control 

of the rate of which radicals are generated and sufficient time for the radicals 

to react in the "off" cycle^. Such control would enable only specific 

functional groups to be deposited in plasma polymerization, in other words 

tailoring of the sample surface. This would be of great interest in the area of 

gas separation membranes since groups which interact specifically with 

particular permeating gases could be deposited. Pulsed plasmas also offer 

the advantage of less damage to the membrane upon treatment. 
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EXAMINED LECTURE COURSES 

October to December 1992 General Laboratory Techniques 

(Dr. Hampshire) 

Spectroscopies (Dr. Halliday) 

Electron Microscopy (Dr. Durose) 
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COLLOQUIA, LECTURES AND SEMINARS FROM INVITED SPEAKERS 
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October 28 Dr. J. K . Cockcroft, University of Durham 

Recent Developments in Powder Diffraction. 
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