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A b s t r a c t 

Results are presented for Floquet calculations of photodetachment rates f rom 

a one-dimensional model atom irradiated by intense laser light. Light-induced 

quasibound states are found to originate f rom the movement of poles of the 

multichannel scattering matr ix on the Riemann energy surface. The appearance 

of new bound states of the negative Hydrogen ion, recently predicted, is related 

to the motion of resonance poles that correspond to autoionising states in the 

absence of the field. A number of pole trajectories, leading to light-induced 

states, are discussed for the one-dimensional model atom. 

The Floquet method allows one to represent the wave funct ion of a quantum 

system in a laser field, as an infinite sum of harmonic basis functions. In any 

practical calculation this infini te sum must be truncated. The consequences of 

representing the wave function, via the Floquet method, by a finite sum of har

monics is addressed. A n il lustration of these consequences is made by way of 

a number of representative calculations performed on a one-dimensional model 

atom. 

Results are presented of calculations performed to determine the influence of 

a laser field, of low to moderate intensity, upon the partial and total photode

tachment rates of the negative Hydrogen ion, H ~ . Using the /^-matrix Floquet 

method, a study is undertaken into the detachment of an electron f rom the ion, 

via mult iphoton transitions through one of several autodetaching resonances of 

the ion. The discussion focuses on the influence of the laser field upon autodetach

ing pathways. I t is found that the laser may induce structure into the continuum 

that does not exist in the absence of the laser field, or, conversely, may suppress 

field-free structure. In the latter case, the suppression of structure is related to 

the appearance of laser-induced degeneracies. 
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Chapter 1 

Introduction 

The aim of this thesis is to study a number of the fascinating processes that arise 

f rom the interaction of matter wi th intense electromagnetic radiation. W i t h the 

advent of the laser in the 1960's, as a viable experimental tool, both theoreti

cal and experimental activity in the field of matter-radiation physics, began to 

flourish. Mul t iphoton ionisation is one aspect of the interaction of atomic and 

molecular systems to intense radiation. Predicted in the early 1960's [41, 46], ex

perimental observations were soon to follow [92], which confirmed the existence of 

the process. A typical mult iphoton ionisation process is illustrated in figure 1.1. 

Here, the photons of the irradiating laser field are too low in energy to permit 

ionisation of the atom by the absorption of just one photon. As a consequence 

the atom may only ionise by simultaneously absorbing several photons and, in 

the process, pass through a number of "vir tual" intermediate states before reach

ing the continuum. By "vir tual" i t is meant that the states are not neccessarily 

eigenstates of the atom, but are laser-induced states that exist, assuming no res

onances occur w i th intermediate atomic eigenstates, only for a t ime, r , of the 

order of one optical cycle of the laser field. However, i f an intermediate atomic 

eigenstate is present, and has a detuning /S.E f r om a laser-induced vir tual state, 

then the l ifetime of the latter can be modified to r ~ h/AE. Typically, the 

nearby eigenstate wi l l prolong the lifetime of the vi r tual state. 

This multiple absorption process does not stop at the continuum. I t has 

been found that the atom may continue to absorb photons above the ionisation 
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Figure 1.1: A schematic diagram il lustrat ing a mult iphoton ionisation process. 
Here the absorption of three photons is required (TVo = 3) in order that the atom 
may ionise. The atom also may absorb N0 + S photons. 

threshold, in a process known as "above-threshold ionisation" or, perhaps more 

aptly, "excess-photon ionisation". This process is also illustrated in figure 1.1, 

where N0 denotes the minimum number of photons required to ionise the system 

and S the number of excess photons. The photoelectron spectrum resulting f rom 

transitions of this type wi l l possess a series of peaks at photoelectron energies 

Es, where 

Es = (N0 + S)hoo - Ei + A (1.1) 

and Ei is the ionisation potential of the atom. The quantity A is the intensity-

dependent shift in the energy level of the atom (from which the atom ionises) 

induced by the laser field. Therefore, number N0 is defined as the minimum 

number that satisfies NQULO — E^ + A > 0, and S is any positive integer. 

When calculated using leading-order perturbation theory, the probability, 

P(iv), of an TV-photon transition occurring is proportional to the / V t h power of 

the laser intensity, that is 

P N = a N I N (1.2) 
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where a AT is some intensity-independent constant. Thus a plot of log(P/v) versus 

log(J) reveals a straight line of gradient N0 + S, i.e. the order of the process. The 

schematic graph in figure 1.2 demonstrates this property for several orders. The 

ordinate of the graph shows \og(PN), however i t could equally well represent the 

experimentally measured heights of the peaks in the photoelectron spectrum [60]. 

Figure 1.2 illustrates the observation that, as the order of the process increases, so 

too does the minimum intensity at which i t can be observed. As the intensity of 

the laser continues to rise however, one approaches a point at which leading-order 

perturbation theory can no longer give an adequate description of the laser-atom 

process. For example, under such circumstances, high-order mult iphoton channels 

(S > 0) can become dominant over the lower orders (S > 0) [60]. Perturbation 

theory may overestimate or underestimate the photoionisation rates. In addition, 

the laser field may induce significant shifts in the energy levels of the atom so as 

to bring about mult iphoton resonances between the bound states of the atom and 

so dramatically alter the photoionisation rates. Another str iking consequence of 

such light-induced shifts is the closure of mult iphoton ionisation channels. Here, 

the shift A , i f negative, becomes such that N0hu) — E{ + A < 0 and the absorption 

of N0 photons nolonger ionises the atom; only NQ + 1 photons w i l l do so. Thus, 

alternative techniques are then required that take account of the strong coupling 

of the atom to the radiation field. 

One approach is through the direct integration of the time-dependent 

Schrodinger equation (e.g. [52]). The method is best suited to dealing w i t h short 

laser-atom interaction times such as in short, rapidly varying laser pulses, where 

integration over long time intervals is not required. An alternative approach, 

best suited to long interaction times, is the Floquet method [81, 94, 78]. Here, 

the time-dependent Schrodinger equation can be recast into an infinite system of 

coupled, time-independent equations. This method has been applied extensively 

to the study of atomic Hydrogen in intense laser fields [74], and more recently 

to non-perturbative laser-atom processes in multielectron atoms and ions such 

as He, Ar and H ~ [30, 54, 77]. I t has been found that intense radiation fields 

can dramatically alter the structure of an atom, such that the atom in the pres-
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Figure 1.2: A schematic diagram il lustrat ing the multiphoton ioisation probabili ty 
as a funct ion of laser intensity, for mult iphoton transitions of a number of orders. 
Here N0 = 1. 

ence of the field bears l i t t le resemblance to the same atom in the absence of the 

field [35, 39, 61]. 

I t has been the aim of this thesis to investigate several of the many non-

perturbative processes that occur when atoms are under these conditions. The 

atoms suffer a distortion caused by the electromagnetic field of the laser, a dis

tor t ion that increases as the intensity of the laser rises. When the atomic and 

electromagnetic potentials are comparable, dramatic new features can be found 

to occur. Some of these features wi l l be studied here in detail. 

The format of this thesis is as follows. Chapter 2 introduces a number of the 

theoretical principles and methods that have been used in calculations we shall 

discuss hereafter. Chapter 3 concerns the application of the Floquet ansatz to 

the calculation of the structure of a model atom in an intense radiation field. I t 

is shown that the effect of the radiation field is, among other things, to induce 

additional, discrete, quasibound states in the atom at certain laser intensities. 

The origin of these states is discussed. As is derived in Chapter 2, the Floquet 

4 



method represents the wave function of an atom in a laser field, as an infinite 

sum of harmonic basis functions. In Chapter 4 we address the consequences 

of representing the wave function , via the Floquet method, by a finite sum of 

harmonics. Finally, in Chapter 5, which contains the largest body of results, we 

study the influence of a laser field, of low to moderate intensity, upon a two-

electron system, namely the negative Hydrogen ion H ~ . Using the i?-matrix 

Floquet method, also introduced in this chapter, a study is undertaken into the 

detachment of an electron f rom the ion, via mult iphoton transitions through one 

of several of the autodetaching resonances of the ion. In particular we shall 

discuss the influence of the laser field upon the autodetaching pathways of the 

ion. I t shall be shown that the laser may induce structure into the continuum 

that does not exist in the absence of the laser field, or, conversely, may suppress 

field-free structure. Each chapter begins wi th a review, where necessary, of the 

field of research relevant to the topic of that chapter. 
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Chapter 2 

Fundamental principles 

In this chapter we shall discuss the theoretical principles that underpin all fo l 

lowing calculations. The mathematical description of the electromagnetic field of 

the laser and its interaction wi th an isolated atomic system shall be explained. 

In forming this description, a number of approximations w i l l be made. These 

approximations, and the physical assumptions upon which they rest, shall be 

presented as they arise. For the sake of simplicity we w i l l l imi t the following 

details to the case of a single-electron atom irradiated in a linearly polarised, 

monochromatic laser field. The generalisation of the theory to multi-electron 

atoms or ions is relatively simple and shall be illustrated in chapter 5. Similarly 

the specialisation to model atomic systems of fewer than three dimensions is clear 

and is introduced in chapter 3. 

2.1 The Schrodinger equation 

The non-relativistic Schrodinger equation for a free electron can be writ ten most 

generally as 

ih-*(r,t) = H*(r,t) (2.1) 

where the classical Hamiltonian, H — p 2 / 2 m , contains only the canonical mo

mentum (p) of the electron. For the case of an electromagnetic field acting upon a 

free electron the Hamiltonian, which now contains the electromagnetic potentials, 
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may be wri t ten classically as 

H = ̂ -»2-e* < 2 - 2 > 

where the quantities m and e (e > 0) are the mass and charge of the electron and c 

is the speed of light (see Bransden and Joachain [14]) . The quantities A and 4> are 

the vector and scalar potentials of the electromagnetic field respectively. We are 

interested in the interaction of atoms or ions wi th the intense electromagnetic field 

of a laser and as such should allow for the creation and destruction of photons. 

This may be achieved by representing the laser field electrodynamically, in which 

case the Hamiltonian in the Schrodinger equation w i l l read 

H 1 P " - A ( r ) ecf) + Hiad. (2.3) 
2m L c 

The vector potential A ( r ) can be wri t ten in terms of photon creation (and anni

hilation) operators a* (and a) as 

A(r)=(^-J ( a e e ' k r W e * e - l k r ) (2.4) 

where V is the quantisation volume of the field and e is the polarisation unit 

vector. The last term in this Hamiltonian represents the non-interacting electro

magnetic field energy operator 

- f f r a d = hu)a*a = hujn (2.5) 

where n is the operator whose eigenvalue is the photon occupation number of the 

field, N . In a laser field however, the photon occupation numbers are typically 

very high. This fact makes i t possible to accurately describe the electromagnetic 

field classically. We may transform the Schrodinger equation [58] such that the 

field energy operator - f / r a d , is no longer an explicit term in the Hamiltonian but 

is absorbed into the wave function: 

^ = exp 

such that 

n 
* ' (2.6) 

ff = 2 S ( P - ! ( 2 7 ) 

7 



This transformation has introduced a t ime dependence to the vector potential 

A ( r ) , through the relation 

A ( r , t) = exp 
ft 

A ( r ) exp (2.8) 

I t can be shown [58], for high photon occupation numbers N, and therefore for 

intense laser fields, that to the leading order in N 

A ( r , t) oc VN (e exp[i(k • r - ut)] + c.c) + 5A. (2.9) 

The first te rm in this expression is just the classical value for the vector poten

t ia l ; i t contains no creation or annihilation operators. The term 6A is the first 

quantum electrodynamical correction to the classical field; i t does contain such 

operators, however the amplitude of this term scales as 1/VN. For intense laser 

fields this term shall be assumed to be negligible in relation to the classical field. 

Henceforth we shall work wi th a classical representation of the vector (and scalar) 

potentials. 

These two potentials together produce an electric field F , given by 

c dt 
V</> (2.10) 

while the vector potential alone produces a magnetic field B , defined by 

B = V x A . (2.11) 

We can include the scalar potential of an atomic nucleus, of charge Ze, w i th in the 

Hamiltonian simply by adding i t as a new potential energy term, V = —Ze2/r. 

The classical Hamiltonian in the Schrodinger equation can now undergo first 

quantisation according to the relations 

-ihV r —> r. (2.12) 

The electromagnetic potentials shall be left in their classical forms however, so 

as to yield a semi-classical Schrodinger equation given by 

ih^*{r,t) = [H0 + H'{t)]* (2.13) 

8 



where the atomic Hamiltonian in centre-of-mass coordinates, is given by 

ffo = - ^ V 2 + V (2.14) 

where fi is the reduced mass of the electron. The semi-classical Hamiltonian for 

the interaction of the electron wi th the laser field is given by 

7 fa P 

H'(t) = [V • A ( r , t) + A ( r , t) • V ] + ^ A 2 ( r , t) - e<f>. (2.15) 

2.1.1 The Coulomb gauge 
The electromagnetic potentials A and </> are not unique however, since the physical 

fields, F and B , remain unaltered when we make the following gauge transforma

tion: 
A —» A ' = A + V A , = 4>- (2.16) 

c ot 

where A is any real valued scalar field. Substituting these equations into expres

sions (2.10) and (2.11) yields 

F ' = — _ - V 0 ' 
c ot 

c ot 

and 

B ' = V x A ' 

= V x (A + V A ) 

= V x A + ( V x V A ) 

= V x A 

respectively. The latter equality arises f rom the fact that the curl of a gradient is 

zero. This property of the electromagnetic field is known as gauge invariance . I t 

9 



allows us to describe the electromagnetic potentials in a way that simplifies the 

mathematics but does not change the physics of the problem. Indeed, if the wave 

function \I> satisfies the time-dependent Schrodinger equation (2.13), containing 

potentials A and (f>, then wave function w i l l satisfy the same equation but 

wi th A —> A ' and ip —> tp' under the condition that 

%e 
= e x p ( — — A ) * ' . (2.17) 

he 

Hence, a gauge transformation of the electromagnetic potentials is equivalent to 

a phase change in the wave function. This cannot be detected in any physical 

observables and so w i l l not alter the physics of the problem. 

We shall choose to work in the Coulomb gauge which stipulates that 

V - A = 0. (2.18) 

Under these conditions and as a result of Maxwells equations, the vector potential 

A satisfies the following wave equation 

V 2 A - ? 1 F = 0. (2.19) 

This equation has solutions in the form of radiating waves: 

A{T,t) = eA0cos(k-T-ut + 6) (2.20) 

where k is the propagation vector of the field and | k | = to/c is its wave number. 

The arbitrary phase of the field is represented by 6. A consequence of choosing 

the Coulomb gauge in which to describe the laser field is that when the above 

wave solution is substituted into equation (2.18), the following relation appears: 

k - e = 0 (2.21) 

where e is the field polarisation unit-vector. This means that the electromagnetic 

wave is transverse, and hence the Coulomb gauge is often called the transverse 

gauge. 

10 



2.1.2 The dipole approximation 

The laser-atom interaction term in the Hamiltonian can now be simplified a l i t t le 

by way of equation (2.18) since 

( V - A + A - V ) * = V - ( A * ) + A - ( V * ) (2.22) 

= ( V • A ) t f + A • ( V t f ) + A • ( V # ) (2.23) 

= 0 + 2 A - ( V ^ ) . (2.24) 

The f u l l non-relativistic, semi-classical Hamiltonian can now be wri t ten as 

H = ~ V 2 + V - — A ( r , t) • V + ^ A 2 ( r , t) - e0. (2.25) 
2/x fie 2/xc2 

Here the vector potential A ( r , t) is a function of both space and t ime as we have 

seen. I t is now appropriate to consider the spatial fo rm of this funct ion in relation 

to the dimensions of the atom or ion that we choose to study. Using equation 

(2.20) we may write 

A( iy<) = iA0 

' g ik -r _j_ g — j k r \ / g i k r g—ik r 

cos(wt + 5) + ( — j sm(u)t 4- 6) 

(2.26) 

for a linearly polarised beam. I f the wavelength of the laser, A = 2ix/ \ k |, is 

much larger than the spatial dimension of the atomic charge distr ibution, which 

can be considered to reside wi th in a sphere of radius R, then we can assert that 

| kR |<C 1. This means that, physically speaking, the atom or ion is too small to 

be able to experience any of the retardation effects of the laser field. Instead i t 

'sees' a purely time-dependent field. As a consequence of this we may make the 

following approximation: 

elK T = 1 + zk • r + • • • « 1. (2.27) 

This is known as the dipole approximation and i t means that we may approximate 

the vector potential, and therefore electric field, of the laser as 

A(t) = eA0 cos(tot + 5) (2.28) 

11 



and 

respectively, where 

F(t) = iF0s\n(ut + 6) (2.29) 

(2.30) 

However, a consequence of this approximation is that we can no longer represent 

the interaction of the electron wi th the magnetic component of the laser field 

since 

B = V x A ( i ) = 0 . (2.31) 

2.1.3 The velocity gauge 
I t is possible to simplify the laser-atom interaction Hamiltonian even further by 

making an additional gauge transformation. The term in A2 wi th in equation 

(2.25) can be removed by wr i t ing 
e rt 

A = 
2yuc 

J A'2{t)di! 

such that 

* ( r , i ) = exp i e fA'2{t)dt' 

(2.32) 

(2.33) 

I f we also stipulate that 4> = 0 (and V • A = 0) then the time-dependent 

Schrodinger equation becomes 

ihe . ... _| ( 2 3 4 ) - ^ - V 2 + F - — A(t) • V 
2ji [ic 

This is known as the velocity gauge. 

2.1.4 The length gauge 

An alternative gauge exists in which we ini t ia l ly choose A = 0 (therefore V • A 

0) and (J) = 0 before making the transformation 

A —> A ' = V A (2.35) 

12 



such that 

A(r,t) = A'{t) -T + C{t) (2.36) 

and therefore 

4>'(T,t) = -F(t)-T (2.37) 

where C(t) is a constant of integration that we shall set to zero. This gauge is 

known as the length gauge, for which we may write 

*(r, t ) = exp 
he 

A ' ( t ) • r 

such that 

4 ^ ( M ) hl 

- — V 2 + V + eF(£) • r 
2 jj/ 

* L M ) . 

(2.38) 

(2.39) 

2.1.5 The Kramers-Henneberger frame 

One of the obvious consequences of transforming to either the velocity or length 

gauges is the removal of the term 
„ 2 

2/xc' 
• A\t) = P x 2 cos1 {cot + 5) (2.40) 

f rom the Hamiltonian. This term represents the instantaneous classical kinetic 

energy associated wi th the oscillatory motion imposed upon the electron by the 

laser field. The cycle-averaged value of this quantity is known as the ponderomo-

tive energy of the electron, P, as indicated above. The oscillatory motion can be 

described by the quantity 

a (t) = — fA'(t')dt' = ea0sm(ut) (2 .4i ; 

which represents the instantaneous position of a free electron in the laser field, 

and satisfies the classical equation of motion 

e d A 

c d* ' 

d2a 
dt2 

(2.42) 

There exists a non-centre-of-mass reference frame into which we can transform 

f rom the velocity gauge, via the unitary transformation 

K.H. (r, t) = exp 
h 

P • ot(t) (2.43) 

13 



which is known as the Kramers-Henneberger transformation (Kramers [51], Hen-

neberger [44]). This leads to a modified Schrodinger equation 

dt v ' 

2 

* K " ( r , t ) (2.44) 

which, physically speaking, describes the laser-atom system f rom the reference 

frame of the oscillating electron. The time-dependence of the electromagnetic 

field is carried entirely by the space-translated Coulomb potential 

V(T + a(t)) = - ^ (2.45) 

2.2 The Floquet method 

Here we shall discuss the Floquet theory, formally developed by Shirley [81] 

(and also by Zel'dovich [94] and by Ritus [78]), as applied to the solution of the 

Schrodinger equation w i t h a time-dependent Hamiltonian. The Floquet ansatz 

permits one to reduce the time-dependent Schrodinger equation, for an atom irra

diated by a classical monochromatic laser field of constant intensity, to an infinite 

set of time-independent coupled equations. The theory accounts for the effects 

of the laser field upon the state of the atom but not for effects of the atom back 

upon the state of the laser field. 

2.2.1 Formal aspects 

Floquet theorem asserts that particular solutions of a differential equation with 

periodic coefficients can be wri t ten in the form 

\b(t)) = exp F(t)). (2.46) 

The Floquet vector | F(t)), is periodic in time wi th the same period as the 

Hamiltonian which, in this case, is equal to the period of the laser field, T = 2TC/U), 

such that 

| F(t + T ) ) = | F(t)). (2.47) 

14 



The time-independent quantity e is known as the Floquet characteristic exponent 

or "quasienergy" and is a complex quantity in general. I t is analogous to the 

"quasimomentum" of a Bloch eigenstate in a spatially periodic solid. Indeed, the 

Floquet theorem is completely equivalent to Bloch's theorem. In the former, the 

Hamiltonian is temporally periodic, while in the latter, i t is spatially periodic. 

There exist an infini te number of solutions of the form of equation (2.46) and 

a given number of these correspond to the discrete energy states of the atom in 

the laser field. They are connected adiabatically to the field-free bound states of 

the atom, in the l i m i t of vanishing laser intensity, and are physically meaningful. 

For any such solution however, having a quasienergy of e,-, there exist infini tely 

many other solutions wi th quasienergies of 

e'. = E i + nhco (2.48) 

where n — 0, ± 1 , ± 2 , — These solutions, which are sometimes called "sponta

neous" solutions [70] represent the same physical state of the atom as can be 

inferred f rom the periodic structure of the Floquet vector. Drawing upon the 

analogy w i t h Bloch's theorem once more, we can regard each of the quasienergies 

e\ of the spontaneous solutions, as residing in one of an infinite number of well-

defined zones in energy space of width fiuj. These zones are directly analogous to 

the Br i l lou in zones of momentum space. 

In addition to the physically meaningful solutions and their associated spon

taneous partners, there exist solutions to equation (2.46) that satisfy unphysical 

boundary conditions and are known as "shadow" states. These states also have 

associated wi th them an infinite number of spontaneous solutions. We shall delay 

a discussion of shadow states unt i l Chapter 3. The Floquet theory is valid for 

any system involving discrete quantum states interacting wi th a classical field of 

well defined phase and constant amplitude. 

2.2.2 The Floquet ansatz applied 

Consider the wave function \ I / j ( r , t ) , which represents a particular quantum state 

of an atom irradiated by a classical laser field of constant, non-zero intensity. 

15 



Making the Floquet ansatz, the atom can be represented by a wave function of 

the form 

Vi(T,t) = exp 
h 
Sit Fi(r,t). (2.49) 

Since the Floquet function, F j ( r , t), is t ime periodic we may expand i t in a Fourier 

series as 

H r , t ) = E —inuit 
Fi,n(r). (2.50) 

Substituting this Floquet-Fourier expansion into the Schrodinger equation yields 

H(t) - ih-^_ J exp -ed -iruot Ft,n(r) = 0 (2.51) 

where the Hamiltonian H(t), can be split into a time-independent atomic part 

(Ha) and a time-dependent laser-atom part D(t), where 

D(t) = D+eMt + D_e -iwt (2.52) 

Operating the t ime derivative in equation (2.51) and collecting terms coherent in 

time leads to an infini te set of time-independent coupled equations (the Floquet 

equation) for the harmonic components F ^ n ( r ) : 

(ei + nhu - Ha) F i > n ( r ) = D + F i > n _ 1 ( r ) + D _ F J ; „ + 1 ( r ) 

where n = 0, ± 1 , ± 2 , . . . and the coupling terms D± are given by 

D 

in the velocity gauge, and 

(V) 
+ [D 

ieh 
2fic 

. W i t 

(2.53) 

(2.54) 

(2.55) 

in the length gauge. 

The Floquet harmonics describe an electron that has absorbed a total of n 

real and vi r tual photons. I f m of these photons are real then the photoelectron 

wi l l move outwards f rom the residual atomic (ionic) core wi th a "channel" energy 

F i , m = Si + mhuj. (2.56) 
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Since there are infinitely many ways in which an electron can absorb n photons 

(e.g. i t may emit m photons and then absorb n + m photons) we must represent 

every possible m-photon channel, wi th in each Floquet harmonic, such that 

n n ( r ) = E * U m ( r ) . (2.57) 
m 

The harmonics must be regular at the origin and, for the open channels, must go 

to a superposition of outgoing waves at r ~ oo: 

Fl,n,m{r) — (2-58) 

where the wavenumber of the electron in the m t h channel is 

Km = j:y/2»Eiim. (2.59) 

Imposing these physically appropriate boundary conditions on the FijTl!m(r) allow 

one to solve the Floquet equation (typically as a matr ix eigenvalue problem) for 

Ei, the quasienergy for the i t h atomic state. This complex quantity can be split 

into three terms: 

e = E0 + A 0 . c . - (modulo hu>) (2.60) 

where — E0 is the field-free binding energy of the given atomic state and A a c is 

its (real valued) field-induced a.c. Stark shift . The total ionisation rate f rom this 

state, averaged over one field cycle, integrated over all directions and summed 

over all mult iphoton channels, is given by the imaginary part of the quasienergy 

as 
r 

Rate = - . (2.61) 

This relation can be considered meaningful only i f r <C Tuo, such that the atom 

ionises over many field cycles and so the notion of a cycle-averaged rate makes 

sense. 

Each Floquet harmonic contains both open and closed photoelectron channels. 

The channel m is open i f 

Re(e + mfiLo) > 0 (2.62) 
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and the photoelectron is free to go to r ~ oo as an outgoing wave. The channel 

is closed i f 

Re(e + mhio) < 0 (2.63) 

in which case the electron remains bound to the atom and w i l l not be found at 

r ~ oo. These conditions determine which branch of the square-root of equa

tion (2.59) should be taken in order to ensure that the harmonics have the 

required physical behaviour. Bearing in mind expression (2.58), this requires 

that S m ( f c j i m ) > 0 i f channel m is closed (negative branch of (2.59)) and that 

$le(ki,m) > 0 i f the channel is open (positive branch). This ensures that the ex

ponential in expression (2.58) decays for closed channels and has the form of an 

outgoing wave for open channels. However, for open channels, expression (2.58) 

wi l l increase exponentially as r increases since Sm(/cj ) T r i) < 0, and w i l l explode at 

r ~ oo. This behaviour, although i t may seem unphysical, is not unreasonable 

provided that T j <C ^R.e(Eijin). The outgoing electron wi l l have an energy 

1 
2 - / / < m = Ue{Ehm) (2.64) 

therefore we can write 

^ L = 5 K ™ ( l + ^ , (2-65) 
;,m, 

such that, i f T j <C ^.e(EitTn) then 

hh™ ~ MUi,m - ^ 7 ^ - (2.66) 

and therefore 

Si « (E0 - A a x . - 2mhu)) + hkitmVi>m. (2.67) 

The component of the wave function that represents the outgoing electron in 

the m t h channel wi l l contain the term 

e - t e i t / h _ , 2 6 g ) 

r 

Thus, upon substituting expression (2.67) into this term, we can approximately 

write 
e-ieit/h^ ^ ±eiki>m{r—t/i,mt)_ (2.69) 

r r 
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This outgoing wave increases in space but decreases in time (remember that k^m 

is complex). Its spatial component wi l l explode at r ~ oo but, since i t would take 

an electron an infinite amount of time to reach this point, this explosion is can

celled by the vanishing of the temporal term, e ~ t k i ' m V i < m t . Indeed, this exponential 

decrease is a direct result of the decay of the atom in response to the ionising 

radiation field. Once the field is switched on the atom begins to decay wi th a 

characteristic t ime ft/IY This becomes clear when we consider the probabili ty of 

finding the electron in some volume of space V , centered upon the nucleus of the 

atom. A t a t ime t we have 

Both Ti and A a c . depend upon the parameters of the laser field (intensity, fre

quency etc.) but are independent of time. While the total ionisation rate is gauge 

invariant, the a.c. Stark shift is not. The value found in the velocity gauge differs 

f rom that in the length gauge by an amount equal to the ponderomotive energy 

P. 

When the coupling term is used in equation (2.53) the ionisation thresh

old of the atom is shifted upwards by an amount P, while the energy of the atomic 

state is changed by A Q C . In the velocity gauge however, the term D±^ does not 

shift the ionisation l imi t but does shift the energy by 

Hence, although absolute binding energy values are not gauge invariant, energy 

differences are gauge invariant. Indeed, only energy differences can be measured 

experimentally. Finally, the Floquet method can also be used to calculate partial 

rates of ionisation into specific mult iphoton channels [72]. 

Uit/hFi(r,t)\2dV h 
oc e (2.70) 

A W = - P. 
a.c. a.c. 

(2.71) 
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Chapter 3 

A one-dimensional model 

Much physical insight into the qualitative properties of atoms in intense laser 

fields can be gained through performing calculations on model potentials. This 

method of research may be all the more helpful since i t often allows a larger pro

portion of analytical work wi th in calculations than would be possible otherwise. 

In the field of laser-atom interactions this advantage has been exploited to the 

fu l l by numerous theorists enabling them not only to gain qualitative analytical 

knowledge but also insight into physical processes occurring under extreme con

ditions. Such conditions include the high intensity field and low frequency field 

regimes where the size or complexity of a calculation using a realistic potential 

may prove prohibitive. However, the calculation may become feasible i f a model 

potential is used. 

Under high intensity field conditions i t may well be that the laser field be

comes the dominant component of the laser-atom system. This suggests that the 

response of the atom to such a laser field may become qualitatively similar for 

a wide range of both model atomic potentials and physical ones. I f the model 

potential is simple then i t is often possible to interpret a set of results w i t h less 

ambiguity than might otherwise be the case. More complex potentials may be, for 

example, strongly gauge or basis dependent and so diff icul t to work wi th . How

ever, simple potentials permit only a qualitative comparison, or extrapolation, to 

reality at the very most. 

The aim of this chapter is to present a one-dimensional model which shall be 
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used to demonstrate the effects of a strong electromagnetic field interacting wi th 

a bound electron. In doing so we may gain a qualitative understanding of the 

phenomena that arise in atoms or ions under such circumstances. 

3.1 The model 

3.1.1 Overview 

W i t h i n this chapter we shall apply the Floquet ansatz to a local, finite-range 

model atomic potential in the form of a one-dimensional well. The advantages of 

using such a model lie in its simplicity, as wi l l become clear later in the chapter. 

The definition of the well is 

This potential has been used a number of times in the past to represent the 

short-ranged potential (i.e. no Coulomb tai l ) of the negative Hydrogen ion. I t is 

clearly a very loose approximation to the true potential of the ion; i t cannot take 

into account correlation or exchange effects. Nevertheless, i t has been applied, 

in the context of mult iphoton processes, by L . A . Bloomfield [12] who considered 

photodetachment by a radiation field consisting of two components of differing 

frequency and amplitude (one component having a time-dependent amplitude, 

the other a constant one). The calculation took the form of direct integration 

of the time-dependent Schrodinger equation. A similar study was undertaken by 

L .A. Collins and A . L . Merts [22] who considered a square-well irradiated by a 

monochromatic laser field wi th an amplitude varying both temporally and spa

tially. This amplitude variation was included in an attempt to take into account 

the effects of laser pulse shape on the detachment process. Electron scattering 

f rom a one dimensional square-well in the presence of a strong monochromatic 

laser field has been discussed by Jerzy Z. Kaminski [45] and also by S. Vano 

and F. Ehlotsky [90]. An extensive study of this topic was undertaken by R.A. 

Sacks and A. Szoke [79] who produced results that w i l l be compared, together 

V, 0 ) V(x 
0, 

x\ < L, the internal region 
x\ > L , the external region. (3.1) 
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with some of the results of Collins and Merts [22], to the results calculated via 

the present Floquet method a l i t t le later in this chapter. 

To calculate the binding energy, E, for a quantum state wi th in the well, one 

must constrain the wave function for the given state, ip, to be continuous at one 

edge of the well (symmetry ensures that this condition is met at the other edge) 

such that ip(x) satisfies 

f a \ L ) = </> e x t(£) (3.2) 

and 

^ i n t ( x ) | l = i = S f t ( l ) U l ' ( 3 - 3 ) 

The symbols -0 m t and i/> e x t denote the wave function for the internal and external 

regions of the well respectively. These conditions reduce the wave function to a 

set of transcendental equations which, when the appropriate boundary conditions 

are chosen, have the fo rm 

—ik = Ktan(«:L) , even parity state (3.4) 

or 

where 

and 

ik = «;cot(«;L) , odd parity state (3.5) 

(3.6) k = \y/2mE 
n 

K=y2m(E + V0) = ]Jk> + ( ^ . (3.7) 

are the wavenumbers of the electron in the external and internal regions of the 

well respectively. The quantity m is the mass of the electron. In the absence of 

a field the number of bound states supported by the well is determined by the 

dimensionless parameter 7, where 

J = ^\/2mVo. (3.8) 

When 0 < 7 < 7r/2 the well supports one even parity bound state. Successive 

excited states appear, as 7 increases through multiples of 7r/2, w i t h alternate 
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even and odd parity, such that in the range 

(n - 1)TT /2 < 7 < nvr/2 (3.9) 

the well supports n bound states. 

3.1.2 Including the Laser field 

The field is represented here by a monochromatic plane wave in the dipole ap

proximation. In the Coulomb gauge, the vector potential for this field is given 

by 

A(t) = A0cos{ujt) (3.10) 

such that the t ime dependent Schrodinger equation (T.D.S.E) becomes 

* ( x , i ) . (3.11) 

A simple transformation to, in this case, the velocity gauge removes the A\ term 

in the T.D.S.E to yield 

-h2 d2 iheA0 , x d 
H cos{cot) 

2m dx mc dx 
V(x) *{x,t). (3.12) 

The simplicity of the potential allows an exact solution of the T.D.S.E in the 

form of free particle Volkov states [91], 

(j)(x, t) = exp 
E 

—i(—t — kx + ka(t)) (3.13) 

These states represent the electron as a plane wave propagating through free space 

(or a constant potential) w i th an instantaneous position x — a(t) where a(t) is 

the classical quiver amplitude of the electron in the field A(t). This quantity was 

introduced in the previous chapter (see equation(2.41)) and can be wri t ten as 

eA0 

a(t) = sin(wt) = a0sm(ujt). 
mew 

(3.14) 

The quantity E is the time averaged energy of the electron in the field and the 

wavenumbers, k and K, are defined through E as in equations (3.6) and (3.7) 

respectively. E is now a quasienergy and can acquire complex values. 
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The above solutions can be split into three types, each corresponding to one 

of the three regions of the potential: 

• T y p e ( l ) solutions correspond to the region of space x < —L and have the 

form 

(x, t) = exp 
E 

~^(~^ + kx — ka(t)) (3.15) 

Type(2) solutions correspond to the region |x| < L, they must have the 

form of stationary waves such as 

^ 2 ) ( x , t ) = exp 

± P exp 

-z(—t — KX + KOi{t)) 

..E 
~ H " ^ + KX — Ka[t)) (3.16) 

Type(3) solutions for the region x > L differ f rom t y p e ( l ) solutions only in 

the sign of the wavenumber, k, such that 

r E 
(jP\x,t) = exp t - kx + ka(t)) (3.17) 

3.1.3 Floquet theory 

As we have seen, the Floquet theory consists of seeking solutions to the problem 

of the form 

V{x,t) = e-iEtlhF{x,t) (3.18) 

where the Floquet function, F(x,t), has the same temporal periodicity as the 

laser field and can be expanded in a harmonic series such that 
oo 

F{x,t)= Y, e-iNutFN(x). (3.19) 
N=-oo 

Since the solutions for the square-well potential, being Volkov waves, satisfy this 

condition and are exact solutions, we may write the most general solution of the 

T.D.S.E in the form 

¥ l \ x , t ) = J2AM^(x)t) 

M 

M 

* ( s ) ( * . t ) = E ^ ( i ) t ) 

region(l) 

region(2) 

region(3) 

(3.20) 

(3.21) 

(3.22) 
M 
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The quantities AM,BM and CM are amplitude terms that are constant in space 

and t ime but do depend upon the parameters of the laser and square-well po

tentials (e.g. UJ^AQ,^ etc.). In expressing the wave funct ion as an infinite sum 

of Volkov waves </>M , we are able to represent all the different M—photon ab

sorption/emission channels required to describe the field-atom interaction ful ly . 

The electron that in i t ia l ly resides wi th in the laser irradiated square-well, with a 

quasienergy E, can absorb or emit any number ( M ) of photons f rom the field. 

The probabili ty amplitudes for such processes are given by the amplitude terms 

AM, BM and CM for the three different regions of the well. 

Each channel wave function ( f $ has an energy given by 

E ( M ) = E + Mhco, (3.23) 

wi th M being any integer. The corresponding wavenumbers are 

kM = \y/2mEM (3.24) 
n 

and 

KU = ^2m(EM + V0). (3.25) 

These wave functions may then be expanded in a Fourier series in terms of or

dinary Bessel functions of integer order. For example, type (3) solutions may be 

wri t ten as 
oo 

*2>0M) = e - l E { M H ' h £ e - ^ J N { - a , k M ) e ^ \ (3.26) 
iV=-oo 

such that, 

oo oo 
¥ 3 \ x , t ) = £ C M e - , £ ( M " / s £ e - * N w t J N ( - a 0 k M ) e i k M X . (3.27) 

M=—oo N=—co 

From the definition of E ( M ) and upon reversing the order of summation, we can 

write 
oo oo 

¥ 3 \ x , t ) = e~iEtlh £ e - M £ CMJN,_M(-a0kM)eik»x (3.28) 
jV'=-oo M = -oo 

wi th N' = N + M. 
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A cursory glance at the above equation immediately identifies each Floquet 

harmonic as being a coherent sum over all M-photon channels. Tha t is, after 

dropping the primes on TV, 

oo 

Fji3)(x)= Y , C M J N _ M ( - a 0 k M y k M X . (3.29) 
M=—oo 

and similarly, for type (2) solutions, 

oo 
Fi2)(x)= £ BMJN_M(-a0KM)(e™MX±(-l)N-MPe-*KMX) (3.30) 

M=—oo 

where the term /3 — (—1) M so as to ensure that the parity of the Floquet harmonic 

changes sign every time a photon (virtual or real) is absorbed. The ± sign signifies 

that the Floquet wave function may represent even or odd parity quasienergy 

states of the well. The Floquet harmonics of region (1) of the square-well can be 

produced by making the substitutions x —> —x and CM —> (—1)NCM into the 

expression for the Floquet harmonics of region (3) above. 

I f we substitute the expression for the Floquet harmonics, of any region, into 

the Floquet equation discussed in the previous chapter, that being 

(E + Nhuj - H0)FN = V+FN_X + V_FN+U (3.31) 

we f ind that 

[E + Nhuj — (E + Mhuj)}JN_M{-a0kM) = 

hiO- - [ J N _ 1 _ M ( — C * 0 ^ M ) + J N + I - M { ~ &QkM)]. 

When we define the quantity z = —aokM, a well-known recursion relation for 

integer order Bessel functions appears f rom the coupled Floquet harmonics, 

(N - M)JN_M{z) = ^{JiN_M)_,{z) + J i N . M ) + 1 ( z ) } . (3.32) 

This suggests that the theory is mathematically consistent. 
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3.1.4 Calculating the quasienergy 

In a manner directly analogous to the field-free method, the eigenvalues of the 

field-atom system are calculated by stipulating that the wave function be con

tinuous at the edge of the potential well (i.e. |x| = L). Since this constraint is 

spatial only, i t must be met at all times. Thus, continuity must be satisfied by 

each and all Floquet harmonics. A t x = L we must have 

and 

(3.33) 

(3.34) F<?\L) = F f H L ) 

for all N. 

Equations (3.33) and (3.34) define an infinite set (infinite in TV and M ) of 

algebraic equations, that can be expressed fu l ly in mat r ix fo rm. I f we write the 

/ V t h Floquet harmonic, for a given solution type, in terms of ip„]

M, where 

i = 2, 3, (3.35) 
M=—oo 

(2) (3") 
w i th A y = BM and A M = C M , then the continuity condition may be wri t ten 

concisely as 

where 

M A = 0 (3.36) 

M = 

x=L dx 

(3.37) 

and 

A ( 2 ) 

A(3) 
(3.38) 
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The determinant of the matching matrix, M , must vanish in order that the 

solution to the system of equations be non-tr ivial . In the zero-field l imi t , when 

A M = <5M,o) the system reduces to equation ( 3 . 4 ) for an even parity state or to 

equation ( 3 . 5 ) for odd parity, as expected. 

An alternative to directly calculating the determinant of M is to consider the 

eigenvalue equation 

M . A = A A . ( 3 . 3 9 ) 

The matr ix Nl(E) is complex and has, in general, complex eigenvalues, \(E). Its 

elements depend solely upon the complex parameter E for a given set of field 

parameters. For a certain value of the number E, one eigenvalue of M.(E) may 

be zero such that equation ( 3 . 3 9 ) wi l l reduce to equation ( 3 . 3 6 ) . One can then 

identify the complex number E as being the quasienergy of the dressed state in 

the potential well. 

This approach was adopted to determine the quasienergy in the present cal

culations. The matr ix M has infini te dimensions in theory but, of course, such a 

matr ix cannot be solved numerically. For practical purposes the Floquet expan

sion must be truncated to a f ini te size such that equation ( 3 . 1 9 ) becomes 

F(x,t)= £ e - i N u t F N ( x ) ( 3 . 4 0 ) 
N=NMIN 

and equations ( 3 . 2 0 ) , ( 3 . 2 1 ) and ( 3 . 2 2 ) are similarly truncated, w i th their expan

sions ranging f rom M = M m i n to M = M m a x . The consequences of truncating 

the Floquet expansion in this way, wi l l be discussed, in detail, in Chapter 4 . 

For reasons of energy conservation we must stipulate that Mm-m = N m i n and 

M m a x = N m a x . Since N represents the total number of photons absorbed by 

the electron, both real and vi r tua l , one must take into account the possibility 

that all such photons are real (N = M). On a purely practical note, this con

dit ion also ensures that there are as many equations (the range of N) as there 

are unknowns (the range of M) in either of ( 3 . 3 3 ) or ( 3 . 3 4 ) such that the system 

of coupled equations can be solved. Hence, M is a square matr ix of dimension 

2 ( A ?

m a x — AT m j n + 1 ) , w i th the same number of eigenvalues A. 
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The computational method chosen for the present calculations was to deter

mine all such eigenvalues and to identify the one wi th the smallest magnitude, 

A m ; n . This complex quantity is a function solely of the complex number E, for a 

given square-well and set of laser field parameters. Its magnitude, |A m j„ | , varies, 

as the real and imaginary components of E are varied, so as to scan out a surface 

IAmin(5Re(£7), 5sm(E))\. This surface touches the plane | A m i n | = 0, at particular 

values of E, namely the quasienergies, that satisfy equation (3.36). The magni

tude of A m i n never quite vanishes in any given calculation, of course, but i t can 

be considered to be sufficiently small to satisfy equation (3.36) i f | A m j n | < 1 0 - 1 0 . 

Using the simplex method [64] to f ind the zero point on the | A m i n | surface, 

one can easily home-in on the quasienergy one seeks. This technique proved 

to be very effective in most calculations. However, problems emerged in high 

laser-intensity calculations, which typically require large Floquet expansions and 

therefore a large matr ix M . The minimum in | A m j n | became increasingly large as 

the dimensions of M grew, such that | A m j n | > 10~ 1 0 (often much larger) for all E. 

In such a situation a clear and unambiguous minimum could not be found that 

would satisfy equation (3.36) and hence a quasienergy could not be accurately 

determined. 

In order to check the validity of any fu l ly numerical results, i t is useful to evaluate 

a perturbative expression for the quasienergy and Floquet harmonics of the wave 

function. This can be achieved by expressing the desired quantity as a power 

series in Ao, the amplitude of the vector potential of the laser field. That is, 

3.2 Perturbation theory 

3.2.1 Theory 

E = E^+A0E^+AlE^ + --- (3.41) 

FN = F ^ + A 0 F ^ + A l F ^ + ... (3.42) 
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where the terms in Ao are assumed to be small perturbations. The above expres

sion may then be substituted into the Floquet coupling equation 

{E + Nhu - Ha)FN = V+FN., + V - F N + U (3.43) 

where Ha is the field-free Hamiltonian of the square-well and V+ — V _ ( = AQV) 

are the photon absorption and emission operators, where 

y = ^ l - (3-44) 2mc ox 

Collecting terms w i t h common factors in A0 (i.e. A®, A0, ...) yields a set of 

differential equations: 

Terms in A®: 

(#<°> + Nhu) - Ha) F^ = 0. (3.45) 

Terms in A0: 

(EM + Nhco - Ha) f # > + E^F^ = VFSl, +VFSI,. (3.46) 

Terms in A$: 

+ Nhuj - Ha) i f } + E^F^ = V F ^ + V F ^ + L . (3.47) 

I f we denote the wave function of the field-free well as ip, then 

- Ha) V = 0 (3.48) 

since E^ must be the field-free eigenenergy. Comparing equation (3.48) wi th 

equation (3.45) suggests that F 0

( 0 ) = V and = 0 for all N ^ 0. These facts 

allow one to reduce equation (3.46) to 

( £ { 0 ) + NULO - Ha) F$] = V F 0

( 0 ) N = ±l (3.49) 

since E^ = 0 (see Appendix A ) . Note that equation (3.49) applies only to first-

order corrections to the harmonics F ± i . 

In addition, one can also show (see Appendix A) that equation (3.47) gives 

£ < 2 ) = (Fi0)\V\F[lh + (Fi0)\V\Fil))_ ( 3 5 0 ) 

(F0\F0) 
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Hence, the solutions of equation (3.49) wi l l yield the first-order terms in F±\ 

which, in tu rn , allow one to calculate the second-order correction ( E ^ ) to the 

ground state energy 

Calculations, shown in Appendix A, reveal that 

FQ(X) = C COS(KO^) (3.51) 

and 

Fi¥(ar) = A±lsm(K±1x) T C ( 3 - 5 2 ) 

for |rr| < L , and that 
F0(x) = CekoL cos(K0L)e-hoX (3.53) 

and 

F$(x) = B±le~k^x =p [ ^ ^ j CekoL cos{K0L)e~koX (3.54) 

for x > L. The quantities k±\ and K±\ are defined as 

k ± l = ^2m\{E(°)±hu)\ (3.55) 

and 

«±i = ~^2m\(E(°) + VQ±hu)\. (3.56) 

The terms F±i(x) above are exactly equal to the first order terms in the Taylor 

expansion of the exact expressions for F±i(x), given by equations (3.29) and 

(3.30). The amplitude terms A±x and B±\ are given by 

. 4 ± 1 = ±C ( 1 6 ) (^o + fcp) COS(KQL) ^ 5 ^ 
\2rncu)J K±I COS(K±\L) + k±\ sin(«;±iL) 

and 

B±i = A±l sm{K±1L)ek±lL (3.58) 

where the normalisation constant 

C = J - ^ — . (3.59) 
V hL + 1 
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Substituting these expressions into equation (3.50) yields 

^ = - ( ^ l ) ( ^ k ) « + * S ) - 2 ( ^ ) E ± i (S-60) 

where 

= , n K N n , (&o COS(KJVL) - sin(/t7vL)) - T T ~ ^ — r s i n ( « ; A , L ) (3.61) 

and 

Z N = Kjv COS(KNL) + hpf sin(KNL). (3.62) 

Note that this expression, and all those involved in its calculation, were derived 

assuming the one-photon absorption channel to be closed. The harmonic 

w i l l , under such circumstances, contain the decaying exponential term e~klX (for 

x > L) as is required of a closed channel. As such, the quantity E^ w i l l be 

real ( i t cannot account for photodetachment) and wi l l represent the first-order 

term in the a.c. Stark-shift, A a x . , of the quasienergy E calculated in the velocity 

gauge. 

However, E^> can easily be generalised to account for photodetachment i f the 

one-photon channel is open. This can be achieved by making the substitution 

ki —>• — ikx in expression (3.60) such that e~ f c l X —> e l k x X and the exponential term 

in F^ represents an outgoing plane wave as required. Under such circumstances 

E^ becomes a complex quantity, and a first order approximation to the fu l l 

(complex) quasienergy. That is, 

E = E^ + A , c . - ^ « £ ( 0 ) + KE^\ (3.63) 
2 

such that, 

and 

Re(A2

0E^) « A , c . (3.64) 

$m{A2

QE<V) « (3.65) 

in the l i m i t of low laser intensities. 
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3.2.2 Results 

A t this stage we may draw a number of comparisons. The first comparison to 

be drawn is between the results of first-order perturbation theory and the exact 

results of a Floquet calculation (discussed in the previous section) containing 

many harmonic components. The latter containing terms of very high order in the 

laser field amplitude Ao. In the l im i t of low laser intensities, and therefore small 

Ao, one may expect the exact Floquet results to approximate the perturbation 

theory results to a high degree of accuracy. The two results wi l l never be exactly 

equal of course, since the former w i l l always contain high order terms (however 

small) in Ao. Table 3.1 contains such a comparison for a square-well of depth 

Vo = 0.6 a.u. and half width L = 0.5 a.u. This well supports one bound state of 

energy — —0.130235 a.u. which acquires a shift A a c , and a wid th T, when 

the laser field is turned on. 

W i t h a field of frequency UJ = 0.2 a.u. only one photon need be absorbed 

to detach the electron and hence, the detachment rate (width , in a.u.) wi l l be 

quadratic in A0 since, in a low intensity field, an TV-photon detachment rate is 

proportional to A\N. 

Table 3.1: A comparison of the a.c. Stark-shift, A a x . , and detachment rate, T, of 
the ground state of the square-well irradiated by a laser of frequency to = 0.2 a.u. 
as calculated by: (1) first-order Perturbation Theory (PT); (2) an Exact Floquet 
(non-perturbative) calculation (EF); (3) the calculations of Sacks and Szoke (SS); 
(4) the calculations of Collins and Merts (CM) . 

Method T (a.u.) A a . c . (a.u.) 

P T 34.7711 x 10" - 6 4 2 -8.7295 x 10" 6 4 2 

EF 34.7714 x 10" - 6 / 1 2 
^ 0 -8.7293 x 10" 6 A2 

SS 35 ± 2 x 10" -9.8248 x 10" 6 A2 

C M 33.9 x 10" 6 — 
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Both the detachment rates and the a.c. Stark-shifts in table 3 . 1 agree very well. 

The exact Floquet calculation (EF) was performed, using the method outlined in 

the previous sections, over a number of intensities upto 1 0 1 2 W / c m 2 and i t was 

found that for intensities above 1 0 1 0 W / c m 2 the rate (V) and particularly the 

Stark-shift ( A a x . ) began to deviate by at least a few per-cent f rom being quadratic 

in ,4o. The results quoted in table 3 . 1 were calculated for a laser intensity of 

1 x 1 0 9 W / c m 2 , and used 1 5 Floquet harmonics (TV = — 7 , . . . , + 7 ) . Also shown 

in table 3 . 1 are some results f rom the electron scattering calculations of Sacks and 

Szoke [ 7 9 ] . These authors considered an electron scattering f rom a square-well, 

of exactly the same form as the present one, in the presence of a monochromatic 

laser field of constant amplitude and a frequency u> = 0 .2 a.u. A resonance was 

found to exist in the transmission coefficient of the scattering electron, caused 

by the presence of a bound state in the well at an energy Eg = — 0 . 1 3 0 2 3 5 a.u. 

The position and wid th of this resonance structure should, in principle, coincide 

wi th the position Eg + A a c . and width T (rate in a.u.) of the quasienergy of 

the bound state of the well, for any given laser intensity. I t is these quantities 

that are shown in table 3 .1 for laser intensities of up to 3 . 1 5 x 1 0 U W / c m 2 . 

The agreement w i th the present results is good. The calculations of Collins 

and Merts [ 2 2 ] , also shown in table 3 . 1 , were concerned wi th photodetachment 

f rom the square-well defined above, by a monochromatic laser field wi th a time-

and space-dependent amplitude. These calculations were fu l ly time-dependent 

in nature and involved the direct integration of the time-dependent Schrodinger 

equation. They illustrated that i f the laser field amplitude is slowly varying 

function of time, such that the intensity changes l i t t l e during a field cycle, then 

the photodetachment probabili ty per unit time tends towards a constant value. 

This value is quoted in table 3 . 1 . Again, the agreement between the present 

Floquet results and the time-dependent results of Collins and Merts is good. 

This demonstrates that the Floquet method provides an accurate alternative to 

a ful ly time-dependent solution of the Schrodinger equation, provided that the 

intensity of the laser field in question is not rapidly varying. 

Further comparisons are drawn in table 3 .2 . In this instance the laser fre-
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Table 3.2: A comparison of the a.c. Stark shift A a x . and detachment rate T as 
for table 3.1 but wi th a laser of frequency to = 0.1 a.u. 

Method T (a.u.) A a x . (a.u.) 

P T — -17.232 x 1Q-4A2

0 

EF 2.01 x 10~9A4

0 -17.231 x 1 0 " 4 ^ 

SS 2.27 x 10~gA4

0 - 1 6 x 10~4A2

0 

quency has been halved such that two photons must now be absorbed in order 

that the electron can detach f rom the well. As such the one-photon channel is 

closed and equation (3.50) now represents only the lowest order component of 

the a.c. Stark-shift, A a x . . The agreement w i th the exact Floquet results (EF) is 

st i l l good however. The results of Sacks and Szoke (SS) also agree well wi th the 

Floquet data. 

We have seen that the present exact Floquet (EF) calculations provide an ac

curate description of the mult iphoton absorption processes in the one-dimensional 

square-well. Rather than continue an analysis of low-intensity mult iphoton pro

cesses, we shall, in the following section, focus on the dynamics of very high 

intensity laser-atom interactions. 

3.3 Light-induced states, shadow states, and the 
dressed potential 

In the following, we shall discuss the results of fu l l Floquet (non-perturbative) 

calculations of the quasienergies of the one-dimensional square well irradiated by 

an intense laser field. The results have been discussed by A. S. Fearnside, R. 

M . Potvliege and R. Shakeshaft [35]. Here we shall closely follow the discussion 

of [35], and expand upon i t where necessary. 
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3.3.1 The high-frequency limit 

When an atom is irradiated by an intense laser field the eigenstates of the atom 

suffer a degree of distortion caused by the time-dependent electromagnetic field 

of the laser. The degree of this distortion increases as the intensity of the laser 

rises. When the laser and atomic potentials become comparable in magnitude 

one reaches a situation in which i t is no longer appropriate to apply perturbation 

formulas for energy shifts and widths. Indeed, for intense laser fields i t becomes 

essential to consider the atomic and laser potentials on the same footing. The Flo

quet method provides a technique by which this may be achieved in many cases. 

However, the drawback to the Floquet method comes f rom having to perform 

calculations of an increasingly large and time-consuming nature for increasingly 

high laser intensities. This being a consequence of having to take account of high-

order mult iphoton processes and, accordingly, having to use very large Floquet 

expansions. 

An alternative non-perturbative method can be derived f rom what is known as 

the high-frequency Floquet theory. This technique, closely related to the standard 

Floquet theory discussed above, was developed by M . Gavrila and J.Z. Kamin-

ski [40] to treat the case of high frequency laser fields (also discussed by Gersten 

and Mi t t l eman [42] and Mit t leman [59] and extensively by Gavrila [39]). The 

method, based in the Kramers-Henneberger frame [44, 51], is particularly suited 

to intense high-frequency laser fields where an expansion of the quasienergy in 

terms of inverse powers of the laser frequency is particularly appropriate. 

3.3.2 The dressed potential 

Transforming to the Kramers-Henneberger frame, f rom the velocity gauge, leads 

to a modified Schrodinger equation (see Chapter 2) 

hl d 
2m ox2 

+ V(x + a{t)) V K H ( x , t) = th—<bK H (x, t) (3.66) 

in one dimension, where 

d K.H \&"M(x,t) = exp -a{t) 
ox 

(3.67) 
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and tyv(x,t) is the wave function in the velocity gauge. The classical quiver 

motion of the electron in the laser field is given by 

a(t) = a>Qsm(ujt) (3.68) 

where 

a0 = = 7i (3.69) 

and the quantities e, c and m have their usual meanings and the amplitude of 

the electric field of the laser, F 0 , is related to the intensity through the relation 

/ = cF 0

2/87r. Note that m would represent the reduced mass of the electron for the 

case of atomic Hydrogen etc. The High-frequency theory proceeds by expanding 

the time-dependent potential V(x + ce(t)) in a Fourier series as 

V(x + a(t)) = J2e-iMuJtVM(a0;x). (3.70) 
M 

Substituting this expression, together wi th the Floquet ansatz, into equation 

(3.66) yields a system of coupled equations for the Floquet harmonics FN, and 

Fourier components of the potential VM-

E + Nhu - V 0 + 
2m dx2 

VM-N(a0;x)FM (3.71) 
M 

This expression involves no approximations, other than those involved in con

structing the Schrodinger equation. 

I t can be shown [39] that by successively iterating equation (3.71), start

ing f rom the terms for TV = 0 and M = 0, one introduces corrections to the 

quasienergy E of increasing order in 1/UJ. In the high-frequency l im i t (co —> oo) 

equation (3.71) reduces to its zero-order iterate, which is the time-independent 

Schrodinger equation 

^ ^ + K d r ( a 0 ; , ) - £ d r 
* d r = 0 (3.72) 

for an electron in the static potential V d r ( « o ; x), known as the "dressed" potential. 

As well as being the zeroth-order Fourier component i t is also the cycle-average 
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of V(x + cx(t)), that is 

V0(o!o; X) = — / V(x + a(t))dt = Vdr(a0; x) (3.73) 
2TT JO 

This result has a physical meaning. In the field of a very intense laser of very high 

frequency the electron w i l l no longer experience the oscillations of the potential 

of the atomic nucleus, V(x + a(t)), i f the potential changes more rapidly than 

the electron is able to respond to i t . Rather, the electron w i l l "see" a smeared-

out linear charge distr ibution, represented by V^r, extending f rom x = — a0 to 

x = a0 (approximately) along the line of oscillation of the nucleus. Clearly such 

an approximation is appropriate only i f the laser frequency is much higher than 

the characteristic atomic frequency of the "dressed" atom, that is 

where E^T (ceo) is the lowest eigenvalue of equation (3.66). 

The dressed potential, being static, supports bound states rather than decay

ing quasienergy states, hence E^T is real. This indicates that in the high-frequency 

l im i t the atom is stable against ionisation by the field. 

The range of the dressed potential increases wi th the amplitude of the quiver 

motion of the electron. Therefore, as the intensity or wavelength of the laser 

increases, the number of bound states supported by the dressed potential also in

creases, i.e. new bound states appear, a phenomenon found by Bhatt , Piraux and 

Burnett [8] in their work on electron scattering f rom a polarisation potential in 

the presence of strong monochromatic light. The appearance of new bound states 

was observed by several other investigators, e.g. by Bardsley and Cornelia [6] and 

by Yao and Chu [93] and also by Marinescu and Gavrila [56], in their study 

of photodetachment f rom a one-dimensional Gaussian potential. More recently 

Muller and Gavrila [61] carried out ful ly correlated calculations on the structure 

of the negative Hydrogen ion in the high-frequency l imi t . They also found new 

bound states. The purpose of the present study of the one-dimensional square-

well is to provide further clarification on the origin of new discrete states induced 

by the laser field. 

hu^>\E^(a0)\ (3.74) 
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Not all new discrete states correspond to new bound states of the dressed 

potential. For example, fu l l Floquet calculations carried out for atomic Hydrogen, 

for wavelengths in the V U V [28] as well as in the infrared or the visible [71, 27], 

have revealed new discrete states, and yet the dressed Coulomb potential does 

not support additional bound states at high intensity. The appearance of light-

induced states similar to those found in Hydrogen has also been established for 

Sodium and Potassium [82]. Thus i t is useful to distinguish, in the following, 

new discrete states found in f u l l Floquet calculations f rom the additional bound 

states supported by the dressed potential; reserving the appelation "light-induced 

states" for the former, and simply "new bound states" for the latter (without 

adding "of the dressed potential"). 

In the f u l l Floquet calculations the non-static components of the Kramers-

Henneberger potential V(x + a(t)), are included, and their inclusion allows the 

atom to decay. Hence the quasienergies of "bound" states, when calculated be

yond the high-frequency approximation, are complex, and their imaginary parts 

negative since the states can decay. Bardsley and Cornelia, Yao and Chu, and 

Marinescu and Gavrila, not only calculated the energy levels of the dressed 

Gaussian potential, they also carried out fu l l Floquet calculations of complex 

quasienergies for this system. They found that the real parts of the quasiener

gies remain close to the energies of the bound states supported by the dressed 

potential, and that the appearance of a new bound state of the dressed potential 

coincides w i t h the appearance of a new light-induced state in the f u l l Floquet cal

culations. This property was discussed recently by Marinescu and Gavrila for the 

quasienergies of a one-dimensional Gaussian potential. They demonstrated that 

the leading order correction (in l/u>) to the bound-state energies of the dressed 

Gaussian potential scale as 1/u2. Hence, as the frequency of the laser increases the 

eigenvalues of the dressed potential become increasingly accurate approximations 

to the quasienergies of the potential as determined via a f u l l Floquet calculation 

for a given value of a0. In general, new bound states are the high-frequency l imi t 

of light-induced states. However, as noted above, some light-induced states have 

no obvious counterpart in the spectrum of the dressed potential. 
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The dressed potential of the one-dimensional square-well, shown in figure 3.1 

for several values of a0, is given by (see Appendix B) 

V d r ( a 0 ; x ) = 
7T 

A • - 1 (L - X \ n • - 1 (L + X 

7r + A s i n ( ] - B s i n w 

Q'O 

where 

A = 1,B = 1 i f 

A = 1,B = 0 i f 

A = 0 , 5 = 1 i f 

A = 0 , £ = 0 i f 

1 < (x + L)/a0 < 1 and (x - L)/a0 < - 1 

0, B = 0 i f {x + L)/a0 > 1 and (x - L)/a0 < - 1 

and 

Vdr(Q!o; x) = 0 i f \x\ > a0 + L 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

(3.79) 

(3.80) 

Note how, as ao increases, the range of the potential increases f rom x = ±L 

in the absence of the field, to x = ±(L + a0) when the field is switched on. In 

tandem w i t h this increase in the range of the potential comes a decrease in its 

depth, especially at the mid-point x = 0. When a0 > L the well rapidly becomes 

shallower at this point indicating that for a portion of a given field cycle, the 

oscillating square-well potential is pushed beyond the origin (where the electron 

is located, in the Kramers-Henneberger frame). Alternatively, one could visualise 

this process as being that the electron is driven beyond the range of the square-

well potential by the laser field, as seen from the reference frame of the potential. 

Note the presence of two minima in V j r at x = ±a0 corresponding to the turning 

points of the oscillating potential. Here the potential is strongest, reflecting the 

fact that the electron spends most of its t ime at these points and accordingly, the 

wave functions of a bound states of Vd r w i l l be localised around these points. 

The ground state of V^r and its first two new bound (excited) states are 

plotted in figure 3.2. When the field of the laser is switched on, the binding 

energy of the ground state begins to fa l l , as a direct consequence of the dressed 

potential becoming shallower under the same circumstances. As the a 0 continues 
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to increase, a new bound state emerges f rom the continuum at ao ~ 4 a.u. This 

state has odd parity in distinction to the even parity of the ground state. A 

second new bound state, of even parity, appears when a0 ~ 20 a.u. Both of 

the new bound states behave ini t ia l ly in rather a different way to the ground 

state, becoming more bound as a 0 increases and the dressed potential becomes 

shallower. However, this trend is soon reversed and the excited states begin to 

become less bound wi th further increases in a0 when a0 becomes very large. 

Although the appearance of new bound states in a potential of decreasing 

depth may seem counter-intuitive at first sight, i t is not unreasonable provided 

that the range of the potential increases faster than its depth decreases. Indeed, 

it can be shown (see Appendix B) that the number of bound states supported by 

the dressed one-dimensional square-well increases linearly wi th a0 (in the l imi t 

a0 —> oo), hence for sufficiently large ao any number of new bound states can be 

supported by this potential. An increase in the number of bound states supported 

by a dressed potential should not be expected to be a universal phenomenon 

however, since, in some 3-dimensional potentials, the decrease in the depth of the 

potential may be so rapid as to prevent the appearance of new bound states. 

Calculations have shown that any one of the new bound states of figure 3.2 

can be made to develop into excited bound states of the field-free square-well by 

simply increasing the values of V0 (the depth of the well) and/or L (the width of 

the well) in the expression for V^r for a fixed value of ao- This simply reflects the 

fact that the stretching action of the laser field upon the well, so as to produce 

the dressed potential (in the high-frequency l i m i t ) , acts in a manner directly 

analogous to simply extending the range L, of the field-free potential. Both 

procedures lead to the appearance of new bound states, in the latter case (the 

field-free well) the new bound states originate f rom antibound states of the well 

and, therefore so must the new bound states of the dressed potential. I t is the 

extension of this idea to the light-induced states of an atomic system supporting-

decaying quasienergy states, in a laser field of finite frequency, that we shall now 

discuss. 
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3.3.3 Wave functions of light-induced states 

Let us assume that the system consists simply of one active electron, ini t ia l ly 

bound by a short-range force, exposed to a monochromatic laser field. Making 

the dipole approximation and using the Floquet ansatz (we assume that the in

tensity is constant) we shall work in the velocity gauge. The wave function of 

any discrete dressed state of the system is a solution of the Schrodinger (Flo

quet) equation satisfying Siegert boundary conditions. Outside the range of the 

potential i t reduces to a linear superposition of infini tely many spherical waves 

exp[ikM(E)r]/r in three dimensions or plane waves exp[iA;M(£ l) |a; |] in one dimen

sion, where E is the (complex) quasienergy and kM{E) is a channel wave number; 

i f to is the photon angular frequency, we have 

where m is the mass of the electron. Hereafter, when there is no possibility of 

confusion, we abbreviate kM(E) by kM- We denote by M0 the smallest integer 

M such that $t.e(E) + Mhto > 0. For each channel wave number, there are two 

different branches of the square-root funct ion, and the choice of branch deter

mines whether the eigensolution describes a "dominant" state, i.e. a decaying 

"bound" state which is physically significant, or a nonphysical state. I f the state 

is dominant, its quasienergy must have an imaginary part that is negative, and, at 

asymptotically large distances, its wave function must behave as an outgoing wave 

in the open channels (i.e. channels M > M 0 ) and vanish in the closed channels 

( M < M0). Therefore, the wave numbers must be such that —7r /4 < arg(/c M ) < 0 

for M > M 0 and 7r / 2 < arg(/cM) < 37r/4 for M < M 0 ; these are the "physical" 

branches. States whose wave functions do not satisfy these conditions may be 

either antibound states or "shadows" of dominant states or antibound states. 

Shadow states, which are discussed further in the next subsection, are analytic 

continuations, onto different sheets of the Riemann energy surface, of discrete 

states — either true bound states, physically significant resonances, or antibound 

states — of the bare system. A nondominant (i.e. shadow or antibound) state 

corresponds to the choice of an "unphysical" branch for at least one wave number. 

1/2 
kM(E) = \(2rn/h2)(E + Mhu)} (3.81) 

42 



Dominant and shadow states are associated wi th dominant and shadow poles, re

spectively, of the multichannel scattering matrix [32]. Dominant poles lie close 

to the physical energy axis, while shadow poles lie relatively far f r o m this axis. 

The light-induced states are particular instances of dominant states. 

The quasienergy and the wave function of a dominant state vary wi th the 

amplitude of the laser electric field, as well as w i th the frequency and the po

larisation, and at some intensity a mult iphoton threshold may be crossed (i.e. 

M0 changes by uni ty) . However, i t is advantageous to study these functions in 

a domain of definition larger than that where the state is dominant. Hence, we 

shall analytically continue the quasienergy and the wave function and consider 

that they vary continuously across the thresholds, without any jump in arg(/c M o ) . 

Dominant and shadow states are treated on the same foot ing in this way. Any 

dominant state becomes a shadow state upon passage by a mult iphoton thresh

old. In particular, any light-induced state becomes a shadow state when the 

intensity decreases below its appearance intensity. (In all cases analyzed so far, 

for Hydrogen, alkalis, and model systems alike, the light-induced states appear 

at an intensity where the real part of their quasienergy is an integral multiple of 

the photon energy, i.e. r ight at a multiphoton threshold; evidently, the binding 

energy of the new bound states supported by the dressed potential is zero at their 

appearance intensity.) 

The question of the zero-field l imi t of light-induced states has not received 

a great deal of attention so far. On general grounds, one would expect that all 

dominant and shadow states reduce to discrete states of the bare system in the 

zero-intensity l i m i t , i.e. to bound or antibound states or field-free resonances. For 

example, i t has been shown [26] that at least one of the light-induced states found 

by Bardsley, Szoke and Cornelia [5] for the one-dimensional Gaussian potential 

could indeed be traced back to a true excited bound state in this l im i t as has been 

found for the new bound states of the present one-dimensional well. However, the 

existence of a rigorous mathematical study of the zero-field l i m i t of light-induced 

states is not known at present. 
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3.3.4 Poles of the Scattering Matrix 

The appearance of light-induced states can be discussed in terms of trajectories 

of poles of the multichannel scattering matr ix . The scattering matr ix has poles in 

the energy variable at those (quasi)energies where the system has discrete states. 

Furthermore, i t has infinitely many branch points on the real axis, one at each 

mult iphoton ionisation threshold where one of the &M vanishes, in addition to 

branch point(s) at thresholds of the bare system. One can draw cuts f rom each 

branch point downwards in the lower-half energy plane, parallel to the imaginary 

axis, so that each sheet of the Riemann manifold corresponds to a different choice 

of branches of the square-root functions in equation (3.81). This choice of cuts, 

while not new, departs f rom the usual convention of drawing the cuts overlapping 

on the real axis. In the present case, the poles that are dominant at a given energy 

(those associated to dominant states) can be reached f r o m the real axis of the 

physical sheet by a path starting at this energy and going downwards without 

crossing any cut. In other words, wi th the present choice of cuts any dominant 

pole lies on the physical sheet. In general, the dominant poles are closer to the 

real physical axis than the other poles, and therefore have a larger influence on 

how the scattering amplitudes vary wi th energy; only near thresholds can shadow 

poles and antibound state poles be of any physical significance. 

In the absence of the radiation field, the mult iphoton ionisation channels 

are uncoupled, and therefore the scattering matr ix is single-valued when it is 

continued along a closed path that encircles a mult iphoton ionisation branch 

point without encircling a branch point (threshold) of the bare system. Hence, 

when the radiation field is very weak, any pole which represents a bound state or 

resonance of a bare atomic system must have a "shadow" partner, at almost the 

same location, on each of those unphysical sheets which can be reached without 

encircling a threshold of the bare atomic system [32]. As the intensity increases, 

and the mult iphoton ionisation channels become more strongly coupled, these 

shadow poles may follow very different trajectories on the Riemann manifold, and 

some of them may move close to the physical energy axis and become physically 

significant. Often, the trajectories of these poles are such that when a dominant 
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pole shifts across a cut and takes on a shadow character, i t is replaced, at about 

the same intensity and at about the same energy, by a shadow pole which becomes 

dominant. Conversely, there are cases where a dominant pole shifts across a cut 

without being replaced by a dominant pole [26, 5]. On the other hand, a light-

induced state appears when a shadow pole becomes dominant without replacing an 

existing dominant pole. A light-induced state also appears when an antibound 

state pole becomes dominant. 

I t should be noted that the quasienergy E of any dominant or shadow state has 

a mul t ip l ic i ty of values, differing f rom one another by an integral multiple of hco, 

but associated to wave functions that differ f rom one another only by an overall 

phase factor (recall the "spontaneous" solutions discussed in Chapter 2). Thus 

any discrete state of the system gives rise to infinitely many poles of the scattering 

matrix. These poles appear in different elements of the scattering matr ix and 

correspond to laser-assisted resonances associated wi th the same state of the 

dressed target, i.e. they arise f rom stimulated absorption and emission of photons 

f rom and to the same state. A dominant pole and all of its multiples are located 

on the same (physical) sheet of the Riemann surface. However, a shadow pole and 

its multiples lie on different sheets, as we now explain: Suppose that a shadow 

pole is located at energy E, and that i t corresponds to choosing the unphysical 

branch for the M t h wave number, i.e. kM(E). (Since the pole is a shadow pole, 

at least one of the wave numbers must take on the unphysical branch.) To reach 

this shadow pole (from the physical sheet) the M t h branch cut must be crossed. 

Now consider a multiple of this shadow pole, located say at energy E + Lhcu. This 

multiple corresponds to choosing the unphysical branch for kM-L{E + Lhu), and 

to reach this multiple the ( M — L)th branch cut must be crossed, so i t lies on 

a different sheet. Hence a shadow pole and its multiples each lie on a different 

(unphysical) sheet. Let E0 denote the energy of the field-free state to which a 

dressed state reduces in the zero-field l imi t ; in this l im i t the different quasienergies 

corresponding to this dressed state reduce to E0 + nhuj, w i th n = 0, ± 1 , ± 2 , . . . 

The numerical results described in the following are normalised so that n = 0, 

except where stated otherwise. 
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The role of shadow poles in multiphoton processes was first addressed by 

Ostrovskii [66], and a fair ly detailed discussion of the theory was given several 

years ago by Potvliege and Shakeshaft [72], and by Pont and Shakeshaft [70]. 

3.3.5 Antibound states 

In figure 3.3 is illustrated the trajectory in the complex energy plane, as the 

field intensity I varies, of the pole of the scattering matr ix corresponding to the 

quasienergy, E, of an antibound state. One of the mult iphoton ionisation channel 

thresholds has been indicated, namely the one corresponding to the absorption 

of 0 photons. The pole is dominant along the solid line part of the trajectory and 

corresponds to a shadow state wi th unphysical character along the dotted line 

part. The pole begins as an antibound-state pole situated on the negative real 

energy axis of an unphysical sheet of the Riemann surface, but at a sufficiently 

high intensity I > 7 a p p , i t crosses the branch cut emanating f rom the zero-photon 

threshold, and moves onto the physical sheet where i t becomes a light-induced 

state. 

When I > 7 a p p we have 7r < arg(E) < 37r/2; the real part of E is negative, 

as befits a bound state, but the imaginary part is nonzero, and negative, since 

this "bound" state decays through the absorption of one photon. The Floquet 

wave function describing the new "bound" state has a closed-channel component, 

representing the bound electron, and an open-channel component representing the 

free electron that has absorbed photons. The closed-channel component satisfies 

the usual boundary condition of a bound state, namely i t decreases exponentially 

at large distances as exp(zfcoM) in one dimension, where ko = [{2m/ft2)E}112 w i th 

7r /2 < arg(& 0) < 3n/A. The open-channel component satisfies the usual exploding 

ou£going-wave boundary condition of a physically significant resonance, that is, 

it behaves as exp(ikMx) where kM = [(2m/h2)(E + Mhu)))ll2 w i th —zr /2 < 

arg(2? + Mhto) < 0 and —ir/4 < a r g ( & M ) < 0. The electron moves outwards 

f rom the potential as the "bound" state decays, so 5Re(/cA/) > 0. Let us follow 

the trajectory of the pole as I decreases below 7 a p p , to I = 0 ( i t is represented 

by a dotted line where I < 7 a p p and by a solid line where I > / a p p ) ; arg(E0 
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increases monotonically along this trajectory. When / falls below / a p p , E crosses 

the negative imaginary axis and its real part becomes positive: M 0 decreases f rom 

1 to 0. However, the state cannot decay by absorbing net zero photons. Indeed, as 

arg(.E) increases past 37r/2, arg(fco) increases past 37r/4, and since Ue(ko) remains 

negative exp(iko\x\) is st i l l an ingoing (exponentially damped) wave, and so does 

not have the ongoing wave behaviour expected of an open-channel component. 

The state has become a shadow state, wi th unphysical properties. When the 

quasienergy crosses the positive energy axis, so arg(JS') > 2-ir, the zero-photon 

open-channel component becomes an exploding ingoing wave. As / decreases 

st i l l further, we see that the pole circles about the origin and finally, at / = 0, i t 

is on the negative real axis of the unphysical sheet [arg(.E') = STY]. A t this point, 

the shadow state is an anfo'bound state of the bare system. A similar trajectory 

to this was found by Ostrovski [66] for a time-periodic delta potential. 

3.3.6 Autoionising states 

Also shown in figure 3.3 is a schematic diagram of a possible trajectory of a 

pole which starts out corresponding to an autoionising state. In i t ia l ly the pole is 

on the physical sheet not far f rom the physical energy axis [—7r/2 < arg(E) < 0, 

M 0 = 0] so i t is physically significant. A t zero field strength the autoionising-state 

wave function behaves at large distances as exp(z/c0|a;|) (in one dimension) wi th 

—7r /4 < arg(& 0) < 0, that is, the wave function satisfies an exploding outgoing-

wave boundary condition. A t first, as the field strength increases, the autoionising 

state becomes broader and shifts; the pole begins to move further away f rom the 

physical energy axis. Once the pole crosses the negative imaginary axis we have 

- 7 r < axg(E) < - 7 r / 2 , whence - 7 r / 2 < arg(/c0) < - 7 r / 4 although M 0 > 0; 

the pole takes on a shadow character. However, as the field strength increases 

further the pole crosses the same branch cut a second time, without crossing any 

other cuts. Af te r this second crossing, Mo = 1, — 3TV < arg(-E) < —5ir/2 and 

—37r/2 < arg(/co) < —bn/4 — or, equivalently, since the branch point at k0 — 0 

is a square-root type (first order) branch point, 7r / 2 < arg(&o) < 3-7r/4. The 

pole is now, once again, dominant, and, since $le(E) < 0, i t corresponds to a 
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light-induced "bound" state. 

In a very weak field the dressed autoionising state gives rise to infinitely 

many poles. In particular there are shadow poles located at (almost) the same 

energy, in the half-plane ^fte(E) > 0, as the field-free autoionising pole; but these 

shadow poles are only on sheets that can be reached f rom the physical sheet 

by crossing the branch cut at the M = 0 threshold an even number of times, 

since this threshold is a threshold of the bare system. Hence, among the shadow 

poles which in a weak field are located at (almost) the same energy as the field-

free autoionising pole, none can emerge on the physical sheet in the half-plane 

$le(E) < 0, as / varies, unless they encircle the M = 0 branch point an odd 

number of times. I t is also impossible for one of these poles to move around the 

M = 0 branch point without crossing the cut at all (i.e. by moving onto the upper 

half-plane on the physical sheet) since any pole ly ing on the physical sheet must 

have a negative (or zero) imaginary part. 

On the other hand, suppose that the bare system has an autoionising state 

wi th an energy whose real part is larger than hui, so that in a weak field there is 

a shadow pole which is located to the right of the branch point at hu>. I f , as the 

field varies, this shadow pole becomes dominant, i t w i l l in general be accompanied 

by the appearance of a dominant pole wi th 5fte(E) < 0, since the multiples of a 

dominant pole al l lie on the same (physical) sheet. This is illustrated in figure 3.3. 

In this diagram a shadow pole associated wi th the autoionising pole shifts past 

the M = — 1 branch point (at kco) and becomes dominant. I f E is the energy of 

this pole, another (multiple, or "spontaneous") pole is located at E — huj, but 

before the poles become dominant they are on different sheets. The two poles 

become dominant, and move onto the physical sheet, simultaneously; the multiple 

appears on the physical sheet after passing the M = 0 threshold. When the poles 

are dominant, they correspond to a state that can be described as an autoionising 

state dressed by the field, or, i f the wave function is more similar to that of a 

dressed bound state, as a light-induced state. Therefore an autoionising state 

may change adiabatically into a light-induced state as the intensity increases, 

without ever disappearing as a physically realisable state of the system, provided 
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its energy does not shift below the ionisation threshold. 

3.4 The one-dimensional square potential well 
We shall now turn to the case of photodetachment of an electron f rom the one-

dimensional square potential 

= { ~ \ \:\ -> l 

In the absence of the field, the number of bound states supported by this well 

depends solely on the dimensionless parameter 7 = L(2mVo/h2)1^2. We choose 

L = 2.129619 a.u. and V0 = 0.110247 a.u. (3 eV). For these parameters, 7 = 

1.000001, there is only one bound state (wi th a binding energy of 0.05 a.u.) 

and the energy of the highest lying antibound state is -0.110246 a.u. [38]. The 

trajectories of the bound state pole, of some of its shadow poles, and of the 

antibound state pole are presented in figures 3.4 and 3.5, for wavelengths between 

266 nm (to = 0.173 a.u.) and 2128 nm (u) = 0.0214 a.u.). (Because of their scale, 

the diagrams may suggest, incorrectly, that the slopes of some of the trajectories 

are not continuous. In fact, the positions of these poles vary smoothly wi th the 

intensity.) The real parts of the quasienergy of these states are compared to the 

energy levels which the electron can occupy in the high-frequency approximation 

in figure 3.6. The first light-induced bound state supported by the dressed square 

potential appears at a 0 ~ 4 a.u.; the second one, not shown in figure 3.6, appears 

at a0 « 20 a.u. (see figure 3.2) 

The results of figures 3.4(a) and 3.5(a), for 266 nm wavelength, are typical of 

the high-frequency case. The trajectory of the bound state pole is also similar to 

that of the ground state pole of atomic hydrogen in a high-frequency field [28]: 

The binding energy of the state decreases as the intensity increases, while the 

rate of mult iphoton detachment, —2^m(E)/h, first increases, and then decreases 

in the stabilisation regime. (The rate increases again at very high intensity [62].) 

The antibound state pole emerges on the physical sheet at an intensity very close 

to the appearance intensity of the first new bound state supported by the dressed 
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potential — see figure 3.6(b). A t higher intensity, the real part of the quasienergy 

of the light-induced state, as found in the f u l l Floquet calculation, remains close 

to the energy of that new bound state. The photodetachment wid th of the light-

induced state is large at the appearance intensity (about 0.004 a.u.). However, i t 

decreases rapidly at higher intensity. 

Results for 532 nm are presented in figures 3.4(b), 3.5(b) and 3.6. Overall, 

they are similar to those for 266 nm. The high frequency approximation is not as 

good, though, but i t improves at high intensity. The photodetachment wid th of 

the light-induced state at its appearance intensity (1.59 x 10 1 3 W / c m 2 ) is rather 

small, about 6.6 x 10~ 5 a.u., at this particular wavelength. 

Photodetachment f r o m the ground state in a weak field requires the absorption 

of at least two photons, at 1064 nm (i.e. M 0 = 2). In contrast w i t h the previous 

cases, the energy shift of the ground state pole is now negative. The dominant 

pole starting as the ground state pole in zero field passes the 2-photon threshold 

at 9.3 x 10 1 2 W / c m 2 ; this pole is labeled 1 in 3.4(c). A t 1.1 x 10 1 3 W / c m 2 , 

pole 2 also crosses the cut emanating f rom the 2-photon threshold, upon which 

i t becomes dominant and "replaces" pole 1 as the dominant ground state pole. 

The trajectory of pole 1 brings i t on the right of the 2-phqton threshold between 

2.1 x 10 1 3 and 2.8 x 10 1 3 W / c m 2 ; i t corresponds to a light-induced state in this 

interval of intensity, albeit one that does not appear to be related to any light-

induced bound state supported by the dressed potential. Like pole 2, pole 3 

starts in weak field as a shadow of pole 1. Yet, unlike pole 2, its shift soon 

changes sign and above 1.7 x 10 1 1 W / c m 2 its t rajectory is similar to that of 

the dominant ground state pole at 266 nm and 532 nm, although i t lies on an 

unphysical sheet. Pole 3 becomes dominant at 5.55 x 10 1 1 W / c m 2 , and continues 

to follow a trajectory close to the trajectory the I s dominant pole follows at 

higher frequency. In particular, the real part of the quasienergy of this state 

remains close to the energy of the ground state of the dressed potential — see 

figure 3.6(a) — and gets closer at high intensity. 

The appearance at 1064 nm of a light-induced state associated wi th a shifted 

antibound state pole is illustrated in figures 3.5(c) and 3.6(b). The state appears 
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at an intensity, about 2.45 x 10 1 3 W / c m 2 , 13 times higher than calculated in the 

high-frequency approximation, and its photodetachment wid th (0.058 a.u.) is 

very large at this intensity. However, this light-induced state is not a counterpart 

of the lowest light-induced bound state predicted by the high frequency theory. 

Instead, another light-induced state can be obtained at 1064 nm f rom that at 532 

nm, by varying the intensity and the wavelength continuously starting at a large 

intensity. This other state is studied in figure 3.7. The pole i t is associated wi th 

reduces, in the zero field l i m i t , to a resonance pole shifted by hco (recall that the 

possibility that a light-induced state may originate in that way was suggested 

earlier). Here we see that the state appears and disappears several times as 

the intensity increases. I t first appears at a weak intensity, about 1.2 x 10 1 1 

W / c m 2 , but w i th an extremely large width . The wid th decreases rapidly at 

higher intensity; at an intensity of 2.66 x 10 1 3 W / c m 2 , where a0 = 15 a.u., i t is 

down to 8.7 x 10~ 3 a.u. and the real part is in good agreement wi th the binding 

energy of the lowest light-induced bound state supported by the dressed potential. 

Finally, figure 3.4(d) illustrates a low frequency case; M 0 = 3 at the wave

length of the figure, 2128 nm. This case is similar, qualitatively, to the 1064 nm 

case. Here a shadow pole of the bound state pole starts by fol lowing closely the 

real axis, as the intensity increases f rom 0 to 5.845 x 10 9 W / c m 2 , at which point 

the pole interacts w i th another pole — not shown in figure 3.4(d) — and i t starts 

moving rapidly downwards. The pole then describes a loop in the lower half-

plane, passes across three cuts, and emerges on the physical sheet at 6.64 x 10 1 0 

W / c m 2 . Although the photon energy is quite a bi t smaller than the ground state 

binding energy of the field-free system, the energy of the ground state of the 

dressed potential s t i l l gives, at sufficiently high intensity, a good approximation 

to the real part of the quasienergy of the light-induced state — see figure 3.6(a). 

The appearance of this light-induced state is similar to one previously described 

for mult iphoton ionisation of atomic hydrogen in a low-frequency (infrared or op

tical) laser field [71, 27]. Also worth noting in figure 3.6(a) is the closeness of the 

1064 nm curve and the 2128 nm curve, which shows that a0 remains a relevant 

dynamical parameter outside the high-frequency regime. 
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3.4.1 Light-induced states of H 

Here, we shall summarise the results of calculations, performed by D. Proulx and 

R. M . Potvliege, for some of the quasienergies of atomic Hydrogen irradiated by a 

monochromatic, linearly polarised laser field. These results are discussed, in more 

detail, by Fearnside, Potvliege and Shakeshaft [35], but are only briefly discussed 

here so as to illustrate the existence of light-induced states in a real atomic sys

tem. The only discrete states of the bare hydrogen atom are bound states; atomic 

hydrogen has no resonance or antibound states, and so light-induced states can 

only evolve f rom shadows of bound states. Figure 3.8 shows the real part of the Is 

quasienergy of atomic hydrogen vs the "quiver amplitude" ao for several different 

angular frequencies u (figure 8 of [35]) The dash-dotted line is the quasienergy in 

the high-frequency l i m i t , |-Eoo| (i.e. the energy of the ground state of the dressed 

Coulomb potential) [69]. The other lines represent results of f u l l Floquet cal

culations performed by D. Proulx and R. M . Potvliege, on a basis of complex 

Sturmian functions [28, 74, 21]. The broken lines pertain to frequencies larger 

than the threshold frequency, u>thr = 0.5 a.u., for one-photon ionisation f rom the 

I s state in the weak-field l i m i t , while the solid lines pertain to frequencies smaller 

than o>thr- There is a str iking similarity between these results and those shown in 

figure 3.6(a) for photodetachment f rom a one-dimensional square potential well. 

When u) < c j t h r some of the shadow poles of the I s pole — or for that matter 

any bound state pole for which M 0 > 1 in a weak field — can move upwards in 

energy and become dominant, like pole 3 in figure 3.4(c). This is demonstrated by 

the solid lines in figure 3.8, which begin abruptly at a nonzero intensity and corre

spond to a light-induced state f rom which one-photon ionisation is possible. The 

Sturmian basis proved unsuitable for following the trajectory of the correspond

ing pole as i t moves beyond the threshold for one-photon ionisation when the 

intensity decreases below the appearance intensity. Consequently, the zero-field 

l imi t of this state for the different values of the frequency was not determined. 
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3.4.2 summary 

I t is now well established, for one-electron one-dimensional models, that the light-

induced states found in the high-frequency approximation persist when the cou

pling wi th the field is fu l ly taken into account. In this respect, calculations for 

simple models support Muller's and Gavrila's prediction of light-induced states in 

H ~ [61]. However, correlation is likely to play an important role in the negative 

ion, which evidently l imits the scope of the comparison. As for the photodetach-

ment rate, no f i rm conclusion can be drawn either. I t should be noted that in none 

of the model systems investigated so far are the widths of light-induced states 

narrow enough to make their appearance readily observable in an experiment 

(supposing for a moment these systems were real). 

I t is possible to study the quasienergy and the wave function of a light-induced 

state at intensities below the appearance intensity by introducing shadow states 

whose wave functions satisfy unphysical boundary conditions. In this chapter i t 

has been seen that the trajectory of the quasienergy in the complex plane, as 

the intensity decreases to zero, could be similar to that drawn in figure 3.3(a), 

or, when the light-induced state originates f rom an autoionising state, to that 

drawn in figure 3.3(c) or figure 3.3(b). In fact, light-induced states other than 

those predicted by the high-frequency calculations of Muller and Gavrila may also 

occur in H ~ . For example light-induced states originating f rom shadow states of 

the bound state of the bare system are possible. The results of calculations on the 

one-dimensional well also indicate that even low-frequency fields might produce 

light-induced states, at relatively modest intensities. 

Finally, the interpretation of the ground state of the dressed Coulomb poten

t ial for photon energies smaller than the binding energy of the bare I s state, \Eis\, 

has been addressed. I t has been argued that the (intensity-dependent) ground 

state energy of the dressed Coulomb potential, E^, should be in good agreement 

wi th the quasienergy of the dressed I s state provided the intensity is so high that 

\Eoo\ <C hiv. This proposition is indeed well supported by the present results. 

In particular, there is s t i l l agreement when hco is slightly smaller than \EU\ — 

although the state whose quasienergy follows E^ is in fact a light-induced Is ' 
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state in this case. 

There is a remarkable similarity between the results for the one-dimensional 

finite-range potential and those described later for the three-dimensional Coulomb 

potential. Clearly, the appearance in f u l l Floquet calculations of light-induced 

states associated wi th the energy levels of the dressed potential is a quite general 

feature at moderate and high intensities, over a wide range of frequencies. 
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Figure 3.1: The dressed one-dimensional square potential for a few values of the 
quiver amplitude a0. The field-free well (i.e. a0 = 0) has a depth Vo = 0.1102479 
a.u. (3 eV) and a half width L = 2.129619 a.u. such that the well supports only 
one bound state at an energy of E = —0.05 a.u. 
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Figure 3.2: The dependence of the eigenvalues of equation (3.72) on the quiver 
amplitude a 0 , for the dressed one-dimensional square potential Vdr, defined in the 
text. In the absence of a laser field (i.e. a0 — 0) the well supports only one bound 
state at an energy of E = —0.05 a.u. Solid curve: ground state. Dot-dashed 
curves: new bound states. 
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Figure 3.3: Schematic diagram of a possible path of a pole which represents a 
state that begins at the solid circle (a) as an antibound state, or (b), (c) as an 
autoionising state. The trajectory is represented by a dotted line where the pole 
is not dominant. 
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Figure 3.4: Trajectory of poles which coincide wi th the bound state pole of the 
square-well potential (3.82) in the zero-field l imi t , for different wavelengths. The 
trajectory is represented by a dotted line where the pole is not dominant. The 
horizontal and vertical scales give Ue(E) and Ssm(E), respectively, in a.u. The 
ticks on the trajectory are at intervals of 1 a.u. in a0, and the zero-field position 
of the pole is marked wi th a solid circle. The thick vertical lines represent the 
cuts originating f rom the multiphoton branch points. 
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Figure 3.5: The same as in figure 3.4, but for poles which coincide w i t h the first 
antibound state pole of the square-well potential (3.82) in the zero-field l i m i t . 
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Figure 3.6: (a) The real part of the quasienergy of the same states as in f ig
ure 3.4(a,b,d) and of state 3 of figure 3.4(c), vs the quiver amplitude a 0 . The 
curve is dotted where the state is not dominant. The energy of the ground state 
of the dressed square potential is represented by a dash-dotted line. From top to 
bot tom at a 0 = 5 a.u., the curves correspond to the following wavelengths: 2128 
nm, 1064 nm, 532 nm, 266 nm, and 0 nm (infinite frequency), (b) The same as 
in part (a), but for the same states as in figure 3.5. Here the dash-dotted line 
represents the energy of the lowest light-induced bound state supported by the 
dressed square potential. The curves starting f rom dte(E) — 0 at a 0 ~ 3, 5, and 
14.5 a.u. correspond to 532 nm, 266 nm, and 1064 nm wavelength, respectively. 
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Figure 3.7: The same as in figures 3.4 and 3.6, but for a pole which coincides in 
the zero-field l i m i t w i th a resonance pole shifted to the left by hco. The wavelength 
is 1064 nm. 
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Figure 3.8: The energy of the I s state for u> = co (dash-dotted line), the real 
part of the quasienergy of the dressed I s state for w > 0.5 a.u. (broken lines), 
and that of the the I s ' state for u> < 0.5 a.u. (solid lines), vs the quiver amplitude 
a0. From top to bot tom, at a 0 = 2.5 a.u., the curves correspond to the following 
frequencies: u = 0.16, 0.1713, 0.25, 0.30, 0.40, 0.49, 0.51, 0.65, 1.0, 2.0 a.u. and 
to — oo. 
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Chapter 4 

Truncation of the Floquet 
expansion 

4.1 Introduction 

Applying the Floquet ansatz to the Solution of the t ime dependent Schrodinger 

equation requires one to wri te the wave function in the fo rm of a summation wi th 

an infini te number of terms. For example, in one dimension we have seen that 
00 

*(x,t) = e - l E t / h e-iNwtFN{x). (4.1) 
N=—oo 

As has been shown in chapter 3, any practical implementation of this equation 

requires one to truncate the infini te summation, over N, to a summation over 

a finite range of values of N (Nmin < N < Nma,x) that is both computationally 

tractable and physically meaningful. The lower (Nm-m) and upper ( N m a x ) l imits 

of the truncated summation are found empirically in calculations of this type. 

They are chosen so as to provide stability in the quasienergy (E, in equation 

(4.1)) w i t h respect to any further increase in the number of terms in the sum. 

Therefore one is forced to represent an infinite summation by a finite one of 

the form 

*{x,t) = e ~ i E t / h £ e-iNwiFN(x). (4.2) 
N=Nmm 

The impl ic i t assumption in all Floquet calculations is that in the l imits (Nm{n —> 

—oo,AT m a x —> oo) we can expect that $(x,t) —> $(x, t) such that E —> E . 
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Secondly, i t is assumed that the momenta of the various photoelectron channels 

can st i l l be related to the quasienergy by the simple analytical expression 

at asymptotically large distances f rom the origin of coordinates. Strictly speaking 

this cannot be true since equation (4.2) is not an exact solution of the t ime de

pendent Schrodinger equation, and equation (4.3) applies only to such solutions. 

However, equation (4.2) can provide a consistent solution i f we accept that, for 

the truncated Floquet expansion, equation (4.3) is not exact and that the channel 

momenta HUM, must deviate or 'shift ' f rom this analytical expression. 

This consideration was first discussed by Dorr et al [29] in relation to the 

solution of asymptotic mult iphoton ionisation channels in the velocity gauge, us

ing the i?-matrix-Floquet theory. The authors discussed the implications of the 

truncation of the Floquet expansion to a finite basis. They considered multipho

ton ionisation f rom a general atom and showed that the truncated system can be 

solved exactly only when one allows the asymptotic channel momenta to become 

free parameters, that is, to allow the momenta to ' shif t ' f rom their analytical 

values, specifically, 

W i t h i n a Floquet expansion that uses a finite number of terms one faces the al

ternative of using either the method of 'shifted'-momenta, so as to solve the t run

cated system exactly, or the usual method of unshifted-momenta (where equa

tion (4.3) is adhered to) so as to approximate the solution of the untruncated 

system. As the size of the expansion increases both methods are expected to 

converge upon the same (exact) solution. However, this assumption has not been 

tested thoroughly. One can also expect that the self-consistency of the method 

of 'shifted'-momenta may facilitate a better convergence as the Floquet basis ex

pands, thus offsetting any extra computational efforts i t demands. Similarly, this 

expectation may not be true in all situations. 

The one-dimensional model potential encountered in chapter 3 is a very con

venient testing ground in which to undertake a f u l l numerical analysis of these 

j2m(E + Mhu) hk M (4.3) 

hkM -> hqM / j2fj,(E + Mhu)) (4.4) 
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questions. The model enables large expansions and high intensities to be consid

ered such that convergence trends can be established clearly. The simplicity of 

the potential also ensures that the basis functions used in unshifted-momentum 

calculations may be unambiguously generalised for use in 'shifted'-momentum cal

culations, as shown below. However, the obvious l imitations of having only one 

dimension have forbidden an extension of the analysis to the angular momentum 

aspect of the problem. 

4.2 Theory 
Upon substituting the Floquet ansatz of equation (4.1) into the time-dependent 

Schrodinger equation for the one-dimensional square potential, in the presence 

of a monochromatic laser field of frequency u>, we arrive at an infini te system of 

coupled equations 

' ft2 d2 

E + NHLO 
2m dx2 

+ V(x) N V+F, N+l (4.5) 

where V(x) = 0 for \x\ > L , V(x) — — V0 for \x\ < L and, in the velocity gauge 

The Floquet harmonics, FN(x), can be expressed in terms of plane waves as was 

shown in chapter 3: 

FN = ^ ( - l j ^ M ^ w e - " " 1 x < - L 
M 

FN = Y , B M H N , M ( e i Q M X ± ( ~ l ) N e - i Q M X ) \x\ < L 
M 

FN = Y<CMhK,Meimx x>L 

(4.7) 

(4.8) 

(4.9) 
M 

Substituting these expressions into equation (4.5) yields a set of quadratic equa

tions in the channel momenta <?M and Q M of the fo rm 

E + NJko -

E + Nhu - h2Q2

M 

2m 

2m 

+ V0 

h'N,M 

HN,M 
a>ohu) 

qM {hN-i}M + h N + i i M ) (4.10) 

QM {HN-\,M + HN+I,M) (4-11) 
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where a0 is the quiver amplitude of a free electron in the laser f ield. Wi thou t 

truncation in N or M the Floquet wave function becomes a linear superposition of 

free-particle Volkov waves such that the channel momenta qM and QM reduce to 

the usual analytical form, and the coefficients HN,M and HN,M reduce to ordinary 

Bessel functions of integer order as expected, 

QM ^\/2m(E + Mhw), hN,M - » J / V - M ( - 0 ! O ? M ) (4.12) 

and 

-y/2m{E + V0 + Mhuj), H N M -> JN-M{-OIQQM)- (4.13) 

On the other hand, i f the range of N and M is truncated then equations (4.10) 

and (4.11) must be solved numerically for the ( / M ' s ) Q M ' S , ^ J V , M ' S and Hpj^s. 

These quantities may differ greatly f rom the expressions (4.12) and (4.13). 

4.3 Finding the shifted channel momenta 

The Floquet wave funct ion, truncated or otherwise, must be continuous at the 

well boundaries, x = ± L . Accordingly, its harmonics must satisfy the matching-

matrix equation, defined by expression (3.36), wi th the added complication that 

the elements of the matching matr ix itself (equation (3.37)) are no longer simple 

functions of the quasienergy. Consequently, the two equations (4.10) and (4.11), 

in qM and QM, must be solved for all channels M , before the matching matrix 

can be constructed. 

4.3.1 Numerical solution 

After a l i t t l e rearrangement, equation (4.10) can be expressed as 

qM

hN,M - QM^T~ (hN-l,M + h N + l > M ) - ~ S - ( E + N h u l ) hN,M = o. (4.14) 

nc a 

This is clearly a quadratic eigenvalue (qM) matr ix equation that can be further 

generalised to 
(lq2

M+BqM + c).xM=Q (4.15) 
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where I is the unit matr ix and xM is the column vector 

The matrices B and C are given by 

(4.16) 

B = eAo 
he 

( • • . i \ 
1 0 1 

1 0 1 

1 '•• J 

(4.17) 

and 

C = -
2m E + (N — l)hco 

E + Nhto 
E + (N+l)hu 

\ 

(4.18) 

/ 

Similarly, equation (4.11) can also be wr i t ten in matr ix form as 

(IQ2

M + BQM + C + IVo) .XM = 0 (4.19) 

where 

2LM — (-WjVmax.M, • • •, H N m i n > M ) T • (4.20) 

Equations (4.15) and (4.19) each have N M A X — N M I N + 1 eigenvalues, qM and QM, 

and associated eigenvectors, X.M a n d 2LM respectively. By wr i t ing 

yM = QMXM (4.21) 

we can recast the equation (4.15) into the form 

0 I 
- C - B 

'£-M 

V-M 
qM (4.22) 

This matr ix equation can be easily solved [63], i t has two eigenvalues ±qM (and 

vectors) for every eigenvalue qM of equation (4.15). These simply represent the 

two different branches of the square-root that has been taken, effectively, by 
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wri t ing yM = QM^M m equation (4.15), so as to rewrite a quadratic equation as a 

linear one. One can also solve the quadratic equation (4.19) in exactly the same 

way by wr i t ing Y_M = QM2LM s o 3 5 t 0 yield 

(4.23) 
C - I V n - B 

4.3.2 Asymptotics of the wave function 

Only half of the 2 ( i V m a x — i V m i n + 1) eigenvalues, qM, of equation (4.22) and 

QM of (4.23), are required to construct the matching matr ix . The eigenvalues 

to be used are chosen on the basis of whether or not they produce physically 

appropriate behaviour in the wave function at |a;| ~ oo. This amounts to choosing 

the correct signs f rom the eigenvalue pairs ±qM and ±QM (i.e. the correct branch 

of the square-root) for the channel M. I f the channel M is open, such that 

$le(E + MTLU) > 0 then we choose the one eigenvalue of the pair ±qM that 

satisfies Me(qM) > 0 so that the channel wave function has the form of an outgoing 

wave. I f the channel is closed however, such that $le(E + Mhu) < 0, then the 

other eigenvalue of the pair is chosen. Exactly the same method can be used to 

determine which of the eigenvalues ± Q M , of equation (4.23), should be chosen. 

However, in this case the channel M is open i f $t.e(E + V0 + Mhu>) > 0. 

This prescription wi l l only work i f the momenta qM (and QM) do not shift 

so much as to move into regions of the complex momentum plane that cause 

unphysical behaviour in the wave funct ion. Consider a scenario in which channel 

M is open but the momentum hqM has shifted so much that i t now lies above the 

real axis of the complex plane instead of below i t . The channel wave function in 

such a case would be an outgoing wave (physical) that decreases exponentially 

and vanishes at |rc| ~ oo (unphysical). This unphysical behaviour, i f i t arises, 

may or may not have consequences that can be detected in the quasienergy (i.e. 

the shifted-momentum calculations converging upon an unphysical quasienergy 

or, indeed, not being able to converge upon any energy at a l l ) . These questions 

shall be addressed a l i t t le later in this chapter. I t should be noted however that, 

strictly speaking, the momenta TiqM and hQM do not represent the mechanical 

68 



momenta of the photoelectron. Only the quasienergy can be given a physical 

interpretation in a shifted-momentum calculation. 

4.3.3 Computational method 

In the manner described above one can calculate all the quantities required to 

construct the matching matr ix and so calculate the quasienergy for the truncated 

Floquet expansion. I t should be noted however that the matching matrix is 

no longer an explicit function of the quasienergy, E . The quasienergy appears 

explicitly only in the matr ix C of equations (4.22) and (4.23), which determine 

the shifted channel momenta. One can always f ind a solution to this equation for 

an arbitrary value of E , but we require the unique value that satisfies both this 

equation and the matching equation. This unique value can be obtained via an 

iterative search technique as follows. 

Iterative search 

1. Guess a value of E. 

2. Substitute E into equation (4.22) and solve. Repeat for equation (4.23). 

• Get the qM and HM,M for all allowed N and M. 

• Get the QM and /f /v,M for all allowed TV and M. 

• Choose the appropriate branches for the qM and QM-

3. Construct the matching matr ix and find its smallest eigenvalue. 

• IF the modulus of smallest eigenvalue, A m j n , of the matching matrix is 

small enough ( | A m i n | < K T 1 3 say) then STOP. 

• ELSE go to step 1 . 

I f the in i t ia l guess in step 1 is reasonably good then one can always 'home-in' 

on the correct quasienergy. The point at which one may choose to stop iterating 

depends entirely on the rate at which the modulus of the eigenvalue, A m ; n , of 

the matching-matrix falls. Strictly speaking i t should vanish when the exact 
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quasienergy has been found, but in practice this never occurs and instead one 

must choose a reasonable lower bound such as | A m ; n | < 1 0 - 1 3 below which one 

stops iterating, as shown in step 3 of the iteration algorithm. 

4.4 Results 

Two distinct cases shall now be studied. The first case is that in which the laser 

field frequency is low and the intensity high. For the second case we shall consider 

a laser field of high frequency and high intensity. Under these circumstances (both 

cases) one can properly address the questions raised earlier, namely, 

1. One can choose either the usual method of unshifted momenta or the rigorous 

method of shifted momenta to calculate the quasienergy of an atom in a laser 

field. Do both methods converge upon the same value for the quasienergy 

as the Floquet expansions, for each method, increase? 

2. I f the two methods do converge upon the same value, which converges fastest 

w i th respect to the number of Floquet harmonics in its expansion? 

3. How do the shifted momenta hqM and HQM, differ f rom the unshifted mo

menta, UUM and KKM respectively, for increasing values of M ? 

The square-well chosen for this purpose has a depth V0 — 0.11025 a.u. and a 

half-width of L = 2.13 a.u. producing a ground state wi th a binding energy 

of Eg = 0.05 a.u. This well is identical to the one encountered in the previous 

chapter in the study of light-induced states. 

4.4.1 The low frequency case 

By 'low' frequency i t is meant that the square-well is chosen so as to have only 

one bound state (in the absence of the laser field), such that, w i t h a laser field 

of wavelength A = 2128 nm the electron in the ground state must absorb three 

photons in order to reach the continuum when the intensity is low. More photons 

are required for this purpose as the intensity becomes higher and the (negative) 
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a.c. Stark shift pushes the ground state energy across a number of multipho-

ton detachment thresholds. In such a 'high' intensity situation a large Floquet 

expansion would be required in order to properly represent the system. 

Figure 4.1 illustrates the trajectory of the quasienergy, E, in the complex 

plane, as a funct ion of laser intensity. In i t ia l ly residing on the negative real-

energy axis (at E = Eg) at zero field intensity, i t acquires a small wid th as 

the intensity increases and moves into the lower half of the energy plane. In 

addition to a wid th , the ground state also acquires a negative a.c. Stark-shift, 

Aa.c. (~-Ponderomotive energy, P ) , which draws the quasienergy down to the 

point where dte(E) = 3hu at an intensity of approximately 7.93 x 10 1 1 W / c m 2 . 

Over this range of intensities i t was found that a Floquet expansion of up to 17 

harmonics (- /V m j n = —8, 7 V m a x = 8) was quite sufficient to provide a quasienergy 

converged to at least the 6th digit in the imaginary part. In any given calculation 

the real part of the quasienergy always converged faster than the imaginary part 

did. This means that i f the imaginary part is converged to the n t h digit then 

the real part is converged to better than the n t h digit . Repeating the calculation 

using the unshifted-momentum method, i t was found that this port ion of the 

trajectory could be reproduced exactly , however up to 23 harmonics (7V m i n = 

— l l , i V m a x = 11) were required to achieve the same level of convergence in the 

imaginary part of the quasienergy. A t intensities above 7.93 x 1 0 n W / c m 2 the 

quasienergy is pushed across the 3-photon cut and moves onto an unphysical 

sheet of the Riemann surface. As such, the ground state develops an unphysical 

asymptotic behaviour ( i t becomes a 'shadow' state, see chapter 3) and shall be 

studied no further. 

A t about the same intensity however, another shadow state on a different 

(unphysical) sheet of the Riemann surface is pushed across the 3-photon cut and 

onto the physical sheet so as to replace the former 'dominant ' ground state below 

the cut. I t is the trajectory of the quasienergy of this state that is shown in f ig

ure 4.1 between the 3- and 4-photon cuts. Once more the a.c. Stark shift pushes 

$le(E) down the real axis. This shift is s t i l l approximately equal in magnitude 

to the ponderomotive energy and at an intensity of about 2 x 1 0 1 2 W / c m 2 the 
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quasienergy reaches the 4-photon cut. Over this portion of the trajectory the Flo

quet expansion had to be extended to up to 19 harmonics ( i V m i n = —9, Nmax = 9) 

in order to at tain 6 t h digit convergence in ^sm(E). The trajectory was repro

duced exactly when the calculation was repeated using the unshifted-momentum 

method, but upto 37 harmonics where necessary to achieve the same convergence 

in Qm(E). A t st i l l higher intensities E moves across the 4-photon cut, f rom 

above, and onto an unphysical sheet. Once more another quasienergy appears 

f rom below the cut to replace the former and become the new 'dominant' ground 

state. 

This, the f inal portion of the trajectory shown in figure 4.1, contains three 

components. Each component corresponds to the quasienergy trajectory as cal

culated using a Floquet expansion of a fixed size. This is done in order to i l 

lustrate the rapid increase of the expansion required to achieve an acceptable 

convergence in 5sm(E) (to the 4 t h d igi t ) . The first component of the trajectory 

illustrates the result of l imi t ing the Floquet basis to an expansion of 21 harmonics 

(Nmin = —10, A^max = 10). I t is well converged up to an intensity of 4.5 x 10 1 2 

W / c m 2 . I t could be reproduced, where converged, by the unshifted-momentum 

method, over the same range of intensities but w i th a convergence of no better 

than a few per-cent in ^srn(E), owing to the fact that up to 41 Floquet harmon

ics were required. Numerical problems began to emerge when the Floquet basis 

became this large, problems of a nature outlined in chapter 3. For intensities 

above 4.5 x 10 1 2 W / c m 2 the quasienergy convergence rapidly deteriorates for the 

21-harmonic calculations. This can be seen by a comparison wi th the second 

component of the trajectory which is calculated f r o m an intensity of 5.0 x 10 1 2 

W / c m 2 using a 29-harmonic Floquet expansion (Nmin = —14, A f m a x = 14). 

This port ion of the trajectory shows features that are strikingly different to 

those seen so far. These features are best illustrated by figure 4.2 which shows 

both ^Ste(E) and —2 x ^sm(E) , the detachment rate in a.u., as functions of laser 

intensity. Above an intensity of 5.0 x 10 1 2 W / c m 2 the detachment rate f rom the 

well rapidly increases, by a factor of approximately 20 over only a small intensity 

range. In tandem wi th this increase is a rapid increase in the size of the Floquet 
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expansion required to maintain convergence in the quasienergy. For intensities 

of up to 4.5 x 10 1 2 W / c m 2 a Floquet expansion of up to 21 harmonics proved to 

be sufficient whereas up to 29 harmonics were necessary in order to follow the 

trajectory to 5.3 x 1 0 1 2 W / c m 2 . This proved to be the maximum intensity at 

which a quasienergy could be calculated using the unshifted-momentum method, 

and a massive 49 Floquet harmonics were required to do so. Not surprisingly, 

the convergence of $sm(E) was only to a few per-cent in that case. Beyond this 

intensity a well defined solution to the matching mat r ix could not be found when 

using unshifted momenta. Specifically, a quasienergy could not be found that 

yielded an eigenvalue (smallest), | A m ; n | < 10~ 6 . 

Intensities beyond 5.3 x 10 1 2 W / c m 2 and up to at least 6.63 x 10 1 2 W / c m 2 re

quire Floquet expansions of 35 harmonics when the shifted-momentum technique 

is used. This component of the trajectory, converged to the 4 t h digi t , cannot be 

reproduced by the unshifted-momentum method for the reasons outlined above. 

A comparison of convergence of quasienergies wi th respect to Floquet expansion 

size, associated wi th both the unshifted- and shifted-momentum techniques, is 

given in table 4.1 . 

This illustrates the fact that, as a rule of thumb, when one uses the shifted-

momentum technique to calculate a quasienergy, one requires a Floquet basis 

of about half the size usually required when using unshifted-momenta. This 

rule appears to hold true for high laser frequencies as well and not just the low 

frequency case, as wi l l be seen later. 

T h e low frequency l imit 

In the l imi t of low frequency laser fields (a; —> 0), the detachment dynamics of 

the electron w i l l undergo a change. From being principally due to multiphoton 

absorption processes when the frequency is high relative to the 'atomic' frequency 

w a t = Eg/h, the detachment rate increasingly becomes due to barrier-tunneling 

processes as the laser frequency falls below a>at. This becomes evident when we 

consider the fo rm of the Hamiltonian which, in the length gauge, has the form 

h2 d2 

H = —z—^ + V(x) - eFQx sm(ut) (4.24) 
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Table 4.1: Floquet expansion sizes required to achieve a convergence of at least 
1 % ( typically 0.0001 % ) in both $le(E) and %m(E) . The laser wavelength is 
2128 nm. A comparison is made between the methods of shifted- and unshifted-
momenta for a number of laser intensities. The quantity N represents the T O T A L 
number of Floquet harmonics required in a given calculation. The corresponding 
intensity is the maximum intensity for which an Af-harmonic Floquet expansion 
is adequate. 

Intensity 
( x l O 1 2 W / c m 2 ) 

N Intensity 
( x l O 1 2 W / c m 2 ) Unshifted Shifted 

0.793 23 17 
2.0 37 19 
4.5 4 l t 21 
5.3 49* 29 

6.63 ? 35 

(f) Quasienergy convergence « a few % . 

(?) Calculation could not be performed. 

where V(x) is the square-well potential and F 0 = — UAQ/C is the amplitude of the 

electric field of the laser. I f we consider that, for low frequencies to <C w a t , the 

electron w i l l experience an effective potential 

V&(x, t) = V(x) - eF0x sin(wt) (4.25) 

that varies slowly on the atomic time scale. This potential, shown in figure 4.3 

for a given instant of the laser field cycle, possesses a barrier at x = ± L of 

height |9fte(.E)| — eF0L\ sin(a>t)| above the ground state energy ^fte(E), where the 

quasienergy E is that calculated in the length gauge. I f the potential barrier 

changes l i t t l e during the time i t would take for the electron to tunnel through i t , 

then the oscillating electric field w i l l be 'seen' by the electron as a static d.c. field 

of strength F 0 | sin(u><)|, while tunneling occurs. 

The tunneling t ime t t n n is given simply by the width of the potential barrier 

divided by the electron velocity. A t a peak of the laser field cycle this quantity 

has a minimum, since the potential barrier is thinest at these points. However, 

for tunneling to be a viable detachment mechanism the tunneling t ime must be 
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much smaller than the cycle t ime of the field T = 2ir/u), such that 

^ « / ^ < l (4-26) 

where P is the ponderomotive energy of the electron. 

This fact was recognised by Keldysh [46] who analysed the connection between 

multiphoton ionisation in a low frequency laser field and tunneling ionisation in 

a d.c. field. He introduced the "Keldysh" parameter 7 = ^Eg/2P « t t u n / T , and 

showed that , as 7 —» 0, the tota l ionisation rate of an atom tends towards the 

cycle average of the ionisation rate in a d.c. field. That is 

ra*.(F,a;)-><rd.c.(F,0)) (4.27) 

where 

( r d x . ( F , 0 ) ) = — / d*r d . c .(F o |sinM) | ,0). (4.28) 
ui Jo 

There exists the possibility that the electric field of the laser may become suf

ficiently strong that at and above some critical value F c r i t = 5fte(F)/eL, the 

potential barrier is pushed down below the the energy level of the ground state. 

In such a case the electron may simply flow out over the top of this suppressed 

barrier rather than have to tunnel through i t . Note however that since the electric 

field oscillates in time, there w i l l always be portions of the field cycle for which 

F 0 | s i n ( ( j t ) | < F c r i t and detachment occurs by tunneling. However, one may ex

pect the detachment rate f rom the square-well to rise rapidly as the field strength 

is increased above F c r ; t since detachment via barrier-suppression w i l l begin to 

contribute to the tota l detachment rate. 

This could explain, in part, the origin of the rapid rise seen in the detachment 

rate r a x . ( F , to), f rom the square-well presently under study. Figure 4.4 illustrates 

tota l (converged) detachment rate for the laser wavelength of A = 2128 nm. 

The rate begins to rise sharply at an intensity of approximately 5 x 10 1 2 W / c m 2 

at which point the Keldysh parameter 7 fa 0.5 such that tunneling behaviour 

should be a significant but certainly not yet dominant detachment mechanism. 

Indeed, this area of intensity represents a transition region f rom multiphoton to 

tunneling detachment where both mechanisms play a role. Barrier-suppression 

75 



detachment w i l l begin to contribute at and above a certain critical laser intensity 

/cnt = cFc

2

rit/87r, for which 

Re{EM) = -eFCTitL (4.29) 

where £ ^ L ' is the quasienergy in the length gauge, and 

Ue(E^) = Ue{EW) + P (4.30) 

where ^te(E^), the quasienergy in the velocity gauge, is shown in figure 4.2 as a 

function of intensity. Above the critical intensity, the electron in the ground state 

energy level can detach f rom the well by flowing over the top of the suppressed 

potential barrier for that part of the laser field cycle for which F\ sm(ut)\ > F c r i t . 

Under such conditions the electron need not tunnel through the barrier at al l . In 

this way barrier-suppression may increasingly contribute to the total detachment 

rate f rom the well as the laser intensity is raised. The ground state of the well 

has a critical intensity of approximately 4.3 x 10 1 2 W / c m 2 which corresponds 

reasonably well w i th the intensity at which r a. c. sharply rises. One should not 

expect the rate to rise immediately 7 c r j t is reached since i t is only for intensities 

a l i t t l e ab ove / c r i t for which F\ sin(wt)| > FCT^ for a sic/nificcint port ion of a field 

cycle. Also shown in figure 4.2, for comparison, is the cycle average of the d.c. 

(static field) detachment rate (r^.c^F, 0)) , f rom the same square-well at the same 

laser wavelength [3]. This rate is solely a result of detachment by tunneling 

and barrier-suppression and, as a result, has none of the mult iphoton threshold 

structure seen in r a x . at intensities below 2.5 x 10 1 2 W / c m 2 . This fact makes a 

detailed comparison of the two rates a l i t t l e diff icul t ; yet one can see that the a.c. 

rate loosely approximates the d.c. rate at the highest of the intensities shown. 

A t these intensities, however, the validity of the Floquet method must be 

cast into doubt since r a c . ~ hco and the electron detaches f rom the well typically 

wi th in one cycle of the laser field. The notion of a cycle averaged detachment rate 

(ra.c.) becomes meaningless under such circumstances and the Floquet method 

becomes inadequate. Nevertheless, we may st i l l expect that r a x . s t i l l gives a 

rough indication of the detachment rate. 
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4.4.2 The high frequency case 

Figure 4.5 illustrates the quasienergy trajectory of the ground state of the well, 

calculated using shifted-momenta, in a laser field of wavelength A = 266 nm. 

This is the second of the case studies mentioned earlier, the high-frequency and 

high-intensity case. By 'high' frequency i t is meant that the photon energy is 

much higher than the binding energy of the electron in the well for any intensity. 

Indeed, 7ko/Eg > 3.4 for all intensities and 'high' intensity refers to large Floquet 

expansions. 

The first remark to make is that for all the intensities considered in this case, 

the converged quasienergy, calculated via the shifted-momentum method, could 

always be reproduced by the usual unshifted-momentum method. However, this 

could only be achieved by doubling the size of the Floquet basis, as table 4.2 

illustrates for a variety of intensities up to the maximum of 2.428 x 10 1 5 W / c m 2 . 

Table 4.2: Floquet expansion sizes required to achieve a convergence of at least 
1 % ( typically 0.0001 % ) in both &e(E) and %m(E) . The laser wavelength is 
266 nm. A comparison is made between the methods of shifted- and unshifted-
momenta for a number of laser intensities. The quantity N represents the T O T A L 
number of Floquet harmonics required in a given calculation. The corresponding 
intensity is the maximum intensity for which an A^-harmonic Floquet expansion 
is adequate. 

Intensity 
( x l O 1 5 W / c m 2 ) 

Intensity 
( x l O 1 5 W / c m 2 ) Unshifted Shifted 

0.2 13 7 
1.0 23 11 

1.198 35 17 
2.428 47t 23 

(f) Quasienergy convergence « a few % . 

The trajectory in figure 4.5 has four components. Each component corre

sponds to the quasienergy trajectory as calculated using a Floquet expansion 

wi th fixed number of harmonics (N of table 4.2). The maximum intensity for 

which an Af-harmonic Floquet expansion accurately produces a quasienergy is 
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also listed in table 4.2. However, the first three components of the trajectory are 

continued to intensities beyond those listed in the above table. This is done in 

order to illustrate how rapidly convergence of the quasienergy can be lost through 

over-truncation of the Floquet expansion. We shall not embark upon a detailed 

analysis of these results since this was undertaken in Chapter 3 in connection 

wi th light-induced states. 

4.4.3 The channel momenta 

The idea of solving the Schrodinger equation exactly by allowing the channel 

momenta of a truncated Floquet expansion to shift f rom their usual analytical 

was first considered by Dorr et al [29]. They performed calculations for the mul-

t iphoton ionisation of atomic hydrogen in its ground state. Specifically, they 

considered ionisation by a linearly polarised, monochromatic laser field of fre

quency oo = 0.65 a.u. and intensity / = 2.0 x 10 1 6 W / c m 2 . The atom was 

represented by a Floquet expansion wi th harmonics N = -2, . . . ,3 and values of 

angular momentum I < 3. Two calculations were compared. One in which the 

and a second in which they were (i.e. hkN -> h~qN). This enabled the authors 

to calculate the extent of the momentum shift (h(qN — for N = -2, . . . ,3 

. The results are shown in table 4.3 (from table 2 of Dorr et al ). The first 

column in this table contains the channel number N, the second column contains 

the value of the (complex) unshifted-momentum, hkN, for the given iV-photon 

channel. The last two columns contain the momentum shift for each channel (real 

and imaginary parts). Note that the parity of the harmonic N = 0 w i l l be even 

in this case since, in the zero field l imi t , i t is this harmonic that reduces to the 

Hydrogen ground state. In the same l imi t , all other Floquet harmonics vanish 

since the electron can only absorb N photons when the laser field is present. The 

Nxh harmonic has parity ( — l ) N . The electron can also acquire I units of angular 

momentum f rom the field such that, in its final state, the system consists of a 

forms, i.e: 

hkN —> hqN ^ (4.31) 

asymptotic momenta were not allowed to 'shift ' (i.e. hkN = j2fi(E + Nhu)) 
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bare nucleus and a photoelectron wi th angular momentum / having absorbed N 

photons. The final state w i l l have a parity equal to ( — 1)'. Since the polarisation 

of the laser field was linear in the calculations of Dorr et al, there are two possible 

angular momentum final states wi th the same parity for every TV (e.g. / = 0 or 

I = 2 for N = 2). The magnitudes of the unshifted-momenta hkpj are indepen

dent of I but when the momenta are allowed to shift , Dorr et al found that this 

degeneracy was removed, i.e: the shift depended upon / as well as N. I t is for 

this reason that there are two shifts per channel N, rather than one (columns 3 

and 4 of table 4.3). 

Table 4.3: Shifts, QN — ICN, in the complex momenta, incurred when the truncated 
Floquet expansion is solved exactly. The unshifted momentum of column 2 are 
the & j v . 

N Unshifted momentum 
(a.u.) 

Shifts in momentum (a.u.) N Unshifted momentum 
(a.u.) Shift 1 Shift 2 

-2 
-1 
0 
1 
2 
3 

(-0.038553, 1.792415) 
(-0.049952, 1.383387) 
(-0.087833, 0.786752) 
( 0.834027,-0.082855) 
( 1.411076,-0.048972) 
( 1.813887,-0.038097) 

(-0.003672, 0.116071) 
( 0.001343,-0.009832) 
(-0.000007, 0.000012) 
(-0.000015, 0.000007) 
(-0.006305, 0.000576) 
(-0.103309, 0.000672) 

(-0.296920, 0.511292) 
( 0.283130, 0.126454) 
(-0.002474, 0.003680) 
(-0.003006, 0.001373) 
(-0.149495, 0.008702) 
(-0.584311, 0.003438) 

The important feature of these results is that the shifts associated wi th the 

innermost channels (N =0 , 1) are very small whilst the largest shifts are confined 

to the outermost channels (TV = -2, 3). Indeed, i t was shown that to the lowest 

order in the field intensity ( / ) , the shift of the outermost channels is of the order 

/ , and of higher order in / for the inner channels. This suggests that , in a given 

calculation, one must choose the Floquet basis that includes more harmonics than 

the least necessary to describe the multiphoton process under study (in all but 

the zero-intensity l i m i t ) . For example, an TV-photon ionisation process wi l l not 

be well described by a Floquet expansion that is truncated at the 7V t h harmonic. 

The shifts in the channel momenta for the one-dimensional square-well proved 

to be qualitatively similar to those found by Dorr et a/for atomic Hydrogen, under 
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most circumstances. However, some important intensity-dependent features did 

arise in the momentum shifts for the square-well that were strikingly different 

to those discussed by the above authors. These, and other, features proved to 

be independent of the laser wavelength (qualitatively speaking) used in a given 

calculation. Hence, the following discussion of the channel momenta shall be 

l imited to only the low-frequency case. 

The open channels 

Figure 4.6 illustrates the trajectories, in the complex plane, of some of the channel s 

momenta for our one-dimensional square-well. The wavelength of the laser is 

A = 2128nm. Both the shifted momenta HQM, and the unshifted momenta hkM, 

are shown for four open channels M = 5 to M = 8. The shifted momenta 

in this figure are those associated wi th the first port ion of the quasienergy E, of 

figure 4.1 (wi th 0 < / < 7.93 x 10 1 1 W / c m 2 and ( 7 V m i n , J V m a x ) = (-8,8)). Hence, qB 

of figure 4.6 is the momentum of the outermost channel in the truncated Floquet 

expansion. The unshifted momenta in this figure are calculated via the usual 

equation 

where E is the converged quasienergy of the ground state and M = 5,6,7 or 8. 

As the intensity increases above zero and the quasienergy moves into the lower 

half of the complex energy plane (figure 4.1), both UkM and hqM move off the 

positive real momentum axis (for open the channels, M > 3) and into the lower 

half of the complex momentum plane. The trajectories of the hkM and hqM then 

begin to diverge (for a given channel M) as the intensity of the laser increases 

further. Moreover, one can see that the magnitude of this divergence (i.e. the 

shift, h(qM — & M ) ) also increases, for a given intensity, as the channel number ( M ) 

increases. Hence, a cursory glance at these trajectories immediately confirms our 

expectations concerning the nature of the momentum shifts. As was found by 

Dorr et al [29] for atomic Hydrogen (table 4.3), we see that the largest shifts 

are confined to the outer channels of the Floquet expansion whatever the laser 

intensity. The momenta, hqM, of the innermost channels, shif t very l i t t le over this 

hkM = J2m(E + Mhuo) (4.32) 
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range of intensity. Table 4.4 further demonstrates this finding. A t an intensity 

of I = 7.9 x 10 1 1 W / c m 2 the quasienergy of the ground state of the well has 

(almost) reached the 3-photon cut (figure 4.1) such that 

E & SHLU - ?:1.53 x 10~ 3a.u. (4.33) 

A Floquet expansion wi th a minimum of 17 harmonics is required to calculate 

this energy using the shifted-momentum method, and table 4.4 lists the momenta 

HqM of the six open channels associated wi th this expansion at this intensity. Also 

listed are the (converged) unshifted momenta JikM, for each channel. 

Table 4.4: Shifted momenta TiqM and unshifted momenta hkM, for the open 
channels of the ground state of the well at a laser intensity of I = 7.9 x 10 1 1 

W / c m 2 and wavelength A = 2128 nm. 

M Unshifted momentum (a.u.) Shifted momentum (a.u.) 
3 
4 
5 
6 
7 
8 

(0.030550,-0.025121) 
(0.207698,-0.003695) 
(0.293180,-0.002618) 
(0.358852,-0.002138) 
(0.414242,-0.001853) 
(0.463053,-0.001657) 

(0.030560,-0.025112) 
(0.207745,-0.003701) 
(0.297250,-0.002768) 
(0.388806,-0.002510) 
(0.496981,-0.002135) 
(0.622771,-0.001738) 

The momenta hqM, of table 4.4 represent the limit of the shifted-momentum 

method for this laser intensity and wavelength, since any further increase in the 

intensity must be accompanied by an increase in the size of the Floquet expansion 

i f the quasienergy is to be calculated accurately. Adding more harmonics to the 

expansion reduces the size of the shifts of all of the momenta hqM, listed in 

table 4.4 such that iJM —> kM as expected. 

The closed channels 

In addition to the six open channels associated wi th the 17-harmonic Floquet 

expansion discussed above, the ground state has 11 closed channels ( M = -8, 

. . . ,2.). The momenta for these channels reside on the positive imaginary axis of 
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the complex momentum plane in the l imi t of zero laser intensity. Once the laser 

intensity begins to increase to small but f ini te values, the momenta shift off this 

axis and acquire negative real components. 

This is in response to the quasienergy of the ground state acquiring a negative 

imaginary component (a decay width) under the same conditions. Figure 4.7 

illustrates this process for the momenta of three of these channels. They are the 

channels M = -2, -3 and -4 (2-, 3- and 4-photon emission). Firstly, consider the 

trajectory of hq_2- This trajectory closely approximates that of the unshifted-

momentum, Tik-2 at low intensities (i.e. when nearest to the imaginary axis) and 

only begins to appreciably diverge f rom hk^2 at the higher laser intensities (up 

to / = 7.93 x 1 0 u W / c m 2 ) . 

As was found for the open-channel momenta, the shift U{qM — kM), of a 

closed channel momentum, increases in magnitude as the channel index ( M ) 

increases (for any given intensity). This effect is dramatically demonstrated by the 

trajectories of the momenta of the channels M = —3 and M = — 4 of figure 4.7. 

These momenta quickly diverge f rom their respective unshifted values ( M _ 3 and 

hk-4) as the laser intensity increases. Indeed, at an intensity of I 2.7 x 10 1 1 

W / c m 2 the trajectory of hq^4 changes direction and begins to move towards the 

real axis rather than away f rom i t as, hk^4 does. This change in direction brings i t 

closer to fcg_3 as the laser intensity is increased further such that, at an intensity 

of I = 4.43 x 10 1 1 W / c m 2 , the two momenta collide (i.e. they reach a point of 

closest approach). 

Having collided, the two momenta then rapidly separate in opposite directions 

as the laser intensity rises. The momenta ftg_5 amd hq-e undergo a collision of 

precisely the same form at an intensity of / = 1.495 x 10 1 1 W / c m 2 as do hq_7 and 

hq_8 at / = 2.869 x 10 1 0 W / c m 2 . Figure 4.8 illustrates these collisions. In this 

figure, the trajectories of the lower seven closed channel momenta are shown over 

the intensity range 0 < / < 7.93 x 1 0 u W / c m 2 . The general property of these 

remarkable features is that, having undergone a collision, the two relevant channel 

momenta, TiqM and hqM-i, become approximately related by the expression 

hqM ~ -HM-X M = - 3 , - 5 , - 7 . (4.34) 
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The extent of the shift in these post-collisional channel momenta is quite consid

erable, as can be deduced f rom table 4.5. 

Table 4.5: Shifted momenta % M and unshifted momenta hkM, for the closed 
channels of the ground state of the well at a laser intensity of I = 7.9 x 10 1 1 

W / c m 2 and wavelength A = 2128 nm. 

M Unshifted momentum (a.u.) Shifted momentum (a.u.) 
2 (-0.003721, 0.206238) (-0.003721, 0.206236) 
1 (-0.002627, 0.292147) (-0.002627, 0.292146) 
0 (-0.002144, 0.358009) (-0.002143, 0.358008) 

-1 (-0.001856, 0.413511) (-0.001867, 0.413663) 
-2 (-0.001660, 0.046240) (-0.001398, 0.455460) 
-3 (-0.001515, 0.506593) (-0.039248, 0.486284) 
-4 (-0.001402, 0.547228) ( 0.036781, 0.486866) 
-5 (-0.001312, 0.585047) (-0.090854, 0.531427) 
-6 (-0.001236, 0.620576) ( 0.088382, 0.531852) 
-7 (-0.001173, 0.654160) (-0.150733, 0.592459) 
-8 (-0.001118, 0.686111) ( 0.148312, 0.592682) 

I t is not clear at present why such collisions should occur and, moreover, 

why having collided, the two channel momenta concerned should be related by 

expression (4.34). Whatever the reasons may be, one important point should be 

considered concerning the possible consequences of such collisions. 

Namely, given that the post-collision momenta move rapidly through the com

plex plane as the laser intensity is increased, one could imagine a situation in 

which one or more of these momenta move into regions of the complex plane 

that induce unphysical properties in the wave function of the ground state, at 

\x\ ~ oo. For example, consider the post-collision momentum hqM, of a closed 

channel, shif t ing below the real axis of the complex plane at some fini te intensity 

/ = I'. When I < I' the spatial component of ^ representing this channel would 

exponentially decay and vanish at |x | ~ oo, as required of a closed channel. How

ever, when I > I' \t would explode at \x\ ~ oo since ^sm(qM) < 0. This behaviour 

is entirely unphysical in a closed channel since there should not be a finite proba

bi l i ty of 'observing' a photoelectron that cannot exist. Conversely, collisions may 
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occur between the momenta of two open channels such that, after the collision, 

one of the momenta hqM may move into the upper half of the complex plane. In 

such a case the spatial component of ^ representing this channel would vanish at 

|x | ~ oo (since ^sm(qM) > 0. This would result in a zero probabili ty of 'observing' 

a photoelectron that should exist. 

Under one or both of the above conditions the shifted-momentum method 

may no longer be able to converge upon any quasienergy solution because of the 

unphysical nature of the wave funct ion. This situation, i f i t ever arises, could only 

be remedied by increasing the size of the Floquet expansion to whatever extent 

proves necessary to draw the relevant (unphysical) momenta hqM, back towards 

their unshifted (physical) values, hkM- This would ensure that the wave function 

ty, regained physically appropriate behaviour at \x\ ~ oo. 

4.5 Summary 

W i t h the results of the previous section in mind, one can answer clearly the first 

two questions raised earlier concerning the merits or drawbacks of the method of 

shifted-momentum. Firstly, i t is clear that, for a given set of atomic and laser-

field parameters, the shifted-momentum and the unshifted-momentum methods 

produce quasienergies that converge upon the same value in the l im i t of large 

Floquet expansions. This rule appears to hold true for any laser field intensity 

or frequency. And one can infer that i t wi l l also hold true for any set of atomic 

parameters. 

Secondly, the method of shifted-momenta has a convergence rate roughly twice 

that of the unshifted-momentum method for the calculations discussed here. A l 

though the former method required somewhat more computational effort than 

would be required of the latter for a Floquet expansion of the same size, i t was 

found that, in general, this additional effort (more CPU time) was more than off

set by the t ime gained by being able to roughly halve the size of the calculation. 

This advantage can, in some instances, permit one to perform successful calcu

lations in situations where the usual method of unshifted-momenta proves to be 

inadequate; for example, the present low frequency and high intensity case where 
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A = 2128 nm and / > 5.3 x 10 1 2 W / c m 2 . These calculations entered into a regime 

in which the Floquet expansion appears to break down, practically speaking, i.e. 

the size of the expansion rises rapidly for only small increases in intensity. This 

behaviour may possibly be explained in terms of the detachment dynamics of the 

electron changing f rom a mult iphoton absorption nature to being increasingly of 

a barrier-suppression nature. The increase in the convergence rate may not be a 

universal phenomenon however. 

We have seen that the channel momenta hqM, can shift considerably f rom 

their usual values hkM, as the intensity of the laser field is increased. For any 

given Floquet expansion, the largest shifts appear to be confined to the momenta 

of the outermost channels. This observation concurs wi th that of Dorr et al [29]. 

However, in allowing the momenta to shift in this way one may possibly 

uncover situations in which the wave function of the atom, represented by a 

system of truncated equations, acquires unphysical characteristics that prevents 

any solution being found, for that system of equations. No such situation was 

uncovered in any of the present calculations, although it cannot be disregarded. 
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Figure 4.1: The trajectory of the quasienergy for the ground state of the square-
well defined in the text. The method of shifted-momentum has been used 
throughout and the intensity varied f rom zero to / = 6.63 x 10 1 2 W / c m 2 . The 
wavelength is A = 2128 nm which corresponds to a photon energy of hoo = 0.0214 
a.u. The thick vertical lines positioned at E — 3/kJ and 47kJ represent the 3- and 
4-photon cuts respectively. The numbers on the curves indicate the size of the 
Floquet expansion used i.e. Nmax — Nmin + 1. 
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Figure 4.2: The real and imaginary components the trajectories in figure 4.1. (a): 
The total detachment rate plotted as a funct ion of laser intensity. The Floquet 
basis has to be expanded greatly when / > 5 x 10 1 2 W / c m 2 as the rate rapidly 
increases, (b): The real part of E as a function of intensity. Note the existence of 
two distinct intensity domains. The first, where 0 < / < 2.6 x 10 1 2 W / c m 2 , and 
A„. c . « - P (dashed straight line). The second, where 2.6 x 10 1 2 < / < 5 x 10 1 2 

W / c m 2 , w i th A 0 . c . « 0 a.u. 
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V eff 
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Figure 4.3: The effective potential V eff seen, in the length gauge, by the electron 
at a given instant of the laser field cycle. Note that the electron may tunnel 
through the potential barrier in order to detach from the well. 
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Figure 4.4: The total detachment rate r a . c . , f rom the square-well defined in the 
text. The arrow indicates the critical intensity 7 c r i t , for the ground state energy 
level. Also shown is the cycle average of the d.c. (static field) detachment rate 
(rd.c.(-F> 0)) , f rom the same well. The laser wavelength is A = 2128 nm. 
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Figure 4.5: (a): The trajectory of the quasienergy for the ground state of the well 
defined in the text. The method of shifted-momentum has been used throughout 
and the intensity varied f rom zero to / = 2.428 x 10 1 5 W / c m 2 . The wavelength of 
the laser is A = 266 nm which corresponds to a photon energy of huj — 0.1712 a.u. 
(b): A n enlargement of the trajectory where the Floquet expansion becomes much 
larger. The numbers on the curves indicate the size of the Floquet expansion used 
i.e. N„ 
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Figure 4.6: The trajectories of the momenta of four of the six open channels 
included in this calculation, for the ground state quasienergy of the square-well. 
The laser wavelength is A = 2128 nm and the intensity ranges f rom zero to 
7.93 x 10 1 1 W / c m 2 . The shifted- (and unshifted-) momenta are marked by open 
(closed) circles at intensity intervals of 1.0 x 10 1 0 W / c m 2 , for the channels M = 5 
and M = 8. 
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Figure 4.7: The trajectories of the momenta of three of the eleven closed channels 
included in this calculation, for the ground state quasienergy of the square-well. 
The laser wavelength is A = 2128 nm and the intensity ranges f rom zero to 
7.93 x 10 1 1 W / c m 2 . The shifted-momenta are marked by open circles at intensity 
intervals of 1.0 x 10 1 0 W / c m 2 , for the channels M = - 3 and M = - 4 . These 
two trajectories undergo a collision at an intensity of 4.43 x 1 0 n W / c m 2 . 
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Figure 4.8: The trajectories of the shifted-momenta of seven of the eleven closed 
channels included in this calculation, for the ground state quasienergy of the 
square-well. The laser wavelength is A = 2128 nm and the intensity ranges 
f rom zero to 7.93 x 10 1 1 W / c m 2 . The shifted-momenta for channels M = — 3 
to M — — 8 undergo collisions wi th their neighbours. Channels w i t h even index 
(M) shift to the right of the imaginary axis while those wi th odd index shift to 
the left. 
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Chapter 5 

Dressed autodetaching 
resonances of the negative 
Hydrogen ion 

5.1 Introduction 

Over the last few years, the investigation of atoms and ions in strong laser fields 

has been very lively, experimentally as well as theoretically. The challenge for 

the theoretician lies in accurately representing a field-atom system in which the 

field can no longer be regarded as a perturbation upon the atom. This means 

that approaches are required that treat the atomic structure and the laser field on 

the same footing. Much success has already been made in this regard for atomic 

Hydrogen [74]. The behaviour of multi-electron atoms in laser fields can, wi th 

some success, be studied using a single electron method for a variety of processes, 

however one-electron models are l imited to qualitative descriptions of laser-atom 

processes at best. They have been applied most widely in modeling negative 

ions and alkalis in which one can reasonably assume that the Coulomb field of 

the atomic nucleus is screened by the charge distr ibution of the inner atomic 

electrons. The outer electron is assumed to move in the "short-range" field of the 

"frozen" atomic core, the electrons of which do not move in a correlated fashion 

wi th the outer electron. 

To take into account the influence of a laser field on electronic correlation, 
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in doubly excited states for example, w i l l require an explicitly multi-electron 

method. Indeed, any study of doubly excited autoionising resonances in mul t i -

electron atoms or ions must have a good description of electronic correlation, wi th 

or without a laser field, i f i t is to be successful. Just such a method, suited to 

long laser-atom interaction times, is the ^ - m a t r i x Floquet (RMF) approach. The 

theory behind this method has been described in detail by Burke et al [16] and 

by Dorr et al [29]. I t is a technique in which the Floquet method is combined 

wi th i?-matrix theory to enable the study of mult iphoton processes in a general 

atom irradiated by a light field of arbitrary strength [16, 29, 30, 77]. 

In this chapter, we shall discuss the results of calculations on the mul t i -

photon detachment of the negative Hydrogen ion, H ~ . The calculations have 

been aimed specifically at investigating the effects of autodetaching resonances 

(doubly-excited states) on the mult iphoton detachment spectra of the ion. The 

R—matrix Floquet method has been used throughout [2]. Resonant mult iphoton 

detachment, through doubly excited states of atoms or ions, has attracted rel

atively l i t t l e interest unt i l recently. Proulx, Pont and Shakeshaft [75, 76] have 

considered processes of this nature in H ~ and He in the perturbative field regime 

(low intensity l i m i t ) as have Sanchez et al [80]. Cormier et al [23, 24] have also 

discussed this process in He in the perturbative regime, while Zhang and Lam-

bropoulos [95] have focused on the same processes in non-perturbative fields. 

Similar results, using the 7?-matrix Floquet method, have been reported by 

Purvis et al [77] and Dorr et al [30]. The role of doubly excited resonances of H ~ 

in the formation of light-induced degenerate states (LIDS) , has been discussed 

by Latinne et al [54]. These structures can be produced when the frequency and 

the intensity of the light field are adjusted such that the energy and the wid th 

of the dressed ground state of the ion coincides w i t h the energy (modulo huj) 

and wid th of an autodetaching state. In such a case, the terms ground state 

and autodetaching state lose their precise meaning, as the ground state may 

adiabatically evolve into the autodetaching state, and vice versa, while either the 

frequency or the intensity of the field is slowly varied through resonance. 

Intense laser fields may induce structure in parts of the continuum where, in 
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the absence of the field, no structure exists. This is the so-called light-induced 

continuum structure (LICS) [18, 19, 49, 50, 84]. The most typical configuration 

cited for creating LICS involves raising an excited bound state, of energy Eb, into 

the continuum wi th a dressing laser of frequency u)a so as to embed i t there at an 

energy = Eb + u>d- A second probe laser then excites the ground state into the 

same continuum at energies around Ed- In doing so i t interferes w i th the embed

ded continuum state to produce autoionising-like structures in the photoelectron 

spectrum [18, 19, 84]. Autoionising resonances can also assist in the creation of 

such structure in a very similar manner [34]. Here we shall discuss the role of 

autodetaching resonances of H ~ in the formation of both LIDS and LICS. 

A good overview of mult iphoton processes in H - has been reported by Dorr 

et al [30]. Among the multiphoton calculations that have been performed on H ~ 

some have explicitly included electronic correlation, most having been performed 

using a model potential (see Chapter 3 and references therein). Of the calculations 

including correlation, most have focused on the low frequency regime; that is, the 

regime in which more than one photon is required to detach an electron f rom the 

ion [57, 55, 77, 43]. We shall consider the process where an electron of the H ~ ion 

must absorb only one photon in order to detach, but must absorb an additional 

photon to reach (energetically) a doubly excited state of the ion. 

Only few mult iphoton experiments have been performed on H ~ [85, 88, 83], 

as the difficulties involved in subjecting H ~ to intense laser fields are enormous. 

A consequence of these difficulties being that, unfortunately, experimental un

certainties render a direct comparison wi th theory rather problematic. Recently, 

however, progress in this area has been made and the first two-photon (one above 

threshold) detachment spectrum for H ~ , spanning a resonance, has been obtained 

[83], A comparison of the experimental data wi th perturbative theoretical pre

dictions [75, 77, 80] shows reasonably good agreement in both the position and 

the lineshape of the resonance in question (the (2p 2) lDe state). 
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5.2 Theoretical Approach 

5.2.1 i?-matrix theory applied 

For the present calculations the .R-matrix Floquet approach has been employed. 

The condensed summary of the principles underlying the method, is offered in 

Appendix C. We now only touch upon the most general aspects of the R M F 

technique and its application to H ~ and refer the interested reader to Appendix 

C for technical details, or to the previously cited articles for further details [16, 

29]. The principle behind the theory is to divide configuration space into two 

regions, an internal and an external region. The internal region is defined by a 

sphere of radius a, centred upon the nucleus of the ion, wi th in which the fu l l 

multi-electron problem is solved. That is, both correlation and exchange effects 

are fu l ly accounted for wi th in this region of space where we may consider the 

charge distr ibution of the target atom (Hydrogen) to be confined. The rest of 

configuration space is regarded as the external region. In this region we may 

reasonably neglect both exchange and correlation effects between the target atom 

and the outgoing photoelectron since the two are suitably distant. The latter 

electron now interacts wi th the residual Hydrogen atom through a multipole 

potential, in addition to the applied laser field. 

The laser field is represented classically, in the dipole approximation, as 

a linearly polarised, spatially homogeneous mono-mode electric field, F(t) = 

eF0cos(iot), where F0 is the electric field amplitude, UJ its angular frequency 

and e the polarisation unit vector. The vector potential of this field can now be 

wri t ten , using the relation A0 = —cF0/u>, as 

The time-dependent Schrodinger equation for the two electron system in the laser 

field can be wri t ten , in atomic units, 

The symbol X 2 denotes the set of 2 electronic space and spin coordinates, 

A(t) = eA0 sin(u^). (5.1) 

i§-*(X2, t) = \H2 + -A(t) • P + \A2(t)] ( X 2 , t). (5.2) 
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{ x i , x 2 } , where x, = { r j , r^, <7j}. The field-free Hamiltonian, H2, reads as 

and the tota l electronic momentum is given by 

P = X > (5-4) 
i=i 

Taking advantage of the periodicity of the laser field we apply the Floquet ansatz 

by representing the wave function, as 

V(X2,t) = e-lEt £ e-in»V„(X2). (5.5) 
7l= — CO 

In order to solve the multi-electron problem in the inner region an fi-matrix 

basis expansion is chosen that comprises functions of the form 

^fen(X2) = Aj2^(^i,h,(T2)r2

lul(r2)alkn 

Til 

+ £x[(x 2)&L (5.6) 
Ti 

where A is the antisymmetrisation operator. The functions ^ ( x 1 , f 2 , c r 2 ) are 

channel wave functions formed by coupling the core wave functions <fo(xi) (of the 

residual Hydrogen atom) wi th the spin-angle functions of the outgoing photoelec-

tron, resulting in a state wi th quantum numbers Y = ^LSMLMS-K . The symbol 

L is the quantum number for total orbital angular momentum, S for total spin, 

ML and Ms are the respective magnetic quantum numbers and n is the parity 

of the 2-electron system. The symbol 7 serves to specify any remaining quantum 

numbers required to fu l ly define the channel. 

The continuum orbitals, uf are radial basis functions that are non-vanishing 

on the boundary of the two regions of configuration space, that is, at r 2 = a. They 

represent the radial component of the wave function of the outgoing photoelectron 

(hence "continuum"). Conversely, the L2 functions % f are vanishingly small at 

this boundary. They are known as "correlation" functions and consist of two-

electron bound state configurations formed by coupling any two of the 0, together. 
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Their role is to model correlation and resonance effects. The coefficients a\lkn and 

b\kn are obtained by diagonalising the Floquet Hamiltonian within the internal 

region. Substi tuting these equations into equation 5.2 yields the famil iar Floquet 

coupling equation, that defines the f u l l Floquet Hamiltonian, as 

( H 2 - E - n w ) i + D2(ipn-i + ^„+i) = 0, (5.7) 

where D 2 is the dipole operator 

D 2

L = i F 0 6 - ( r i + r 2 ) (5.8) 

in the length gauge, and 

D\ = j - A 0 e - ( P l + p 2 ) (5.9) 

in the velocity gauge, and the -0 n are Floquet Harmonics which are formed f rom 

the basis of functions (5.6). In the internal region of configuration space the 

dipole operator is represented in the length gauge, for reasons of improved con

vergence. A l l angular symmetries wi th the correct parity and up to the maximum 

total angular momentum L are present wi th in each Floquet block. This matr ix is 

diagonalised and f rom the resulting eigenvalues and vectors we obtain the Floquet 

.R-matrix for the system on the boundary at r 2 = a. The next step of the calcula

t ion involves transforming the R- matr ix, at the boundary, f rom the length to the 

velocity gauge by way of a unitary transformation. Note that this transformation 

concerns only the outgoing photoelectron (electron 2) since, effectively speaking, 

the residual target electron is not present in this region of space. The H-matr ix 

is then propagated outwards to some large distance ( r 2 = a') suitably chosen 

such that asymptotic expressions for the channel wave functions may be matched 

to the propagated solutions thereby yielding the quasienergy and the branching 

ratios for the various photoelectron channels of the system. These channels are 

defined by the kinetic energy of the outgoing electron (electron 2), which is mea

sured relative to the field-distorted detachment threshold (i.e. the energy of the 

residual Hydrogen atom in the laser field), and the angular momentum of the 

electron. 
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5.2.2 The basis set 

The two-photon excitation of the ground state of H ~ into one of its doubly-excited 

states, lying below the n = 2 threshold, is illustrated by the schematic diagram of 

figure 5.1. I t is this process upon which we shall focus our attention henceforth. 

In order to study this process, one must employ a basis constructed f rom 

orbitals that include at least the n = 2 states of Hydrogen. The present calcu

lations include the I s , 2s and 2p hydrogenic orbital states. These three states 

are used to construct the ft-matrix basis as discussed above. They represent the 

4>i of equation (5.6) and are the states f rom which the correlation terms Xi a r e 

constructed. In a few of the following results, four orbitals were used — the 

above three plus a pseudo-state, 3p — for reasons that wi l l be discussed later. 

This state was chosen simply to mimic (very roughly) the form of radial function 

of the physical 3p orbital: 

h p = 8 1 ^ ( 6 ~ r ) r V , V 3 ( 5 ' 1 0 ) 

and yet not be as extended in space as this state. The latter constraint is quite 

important since by including cj)3p wi th in the /^-matrix basis one would be forced 

to extend the R-matrix boundary (i.e. make the internal region larger) so as to 

envelop the more diffuse radial distribution of <\>iv. As a consequence, the size 

of the /^-matrix calculation would increase considerably. For this reason, the 

pseudo-state 3p was chosen to be much more compact than the 3p orbital , and 

to be orthogonal to the other three physical orbitals. A l l four orbitals are listed 

in table 5.1. 

Calculations of resonant multiphoton detachment of H ~ have been performed 

by Purvis et al [77] and Dorr et al [30], and also by Latinne et al [54] in the 

study of light-induced degenerate states of H ~ . A l l of the above used the R-

matrix Floquet method wi th a basis constructed from the I s , 2s and 2p orbitals 

listed above. The 3p orbital , when used in the present calculations, was only 

ever included as a correlation funct ion. That is, i t was used in constructing the 

Xi terms of equation (5.6) but not the terms. This ensured that no spurious 

threshold effects would be produced and also kept the calculation times down, 
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Table 5.1: The basis orbitals. Three physical Hydrogen orbitals I s , 2s and 2p 
and a non-physical pseudo-state 3p. 

Orbital Radial function (a.u.) Energy (a.u.) 

I s 2re-r -1/2 

2s (2/Vs)(l-r/2)re-T^2 -1/8 

2p ( l / A / 2 4 > 2 e - r / 2 -1/8 

3p ( l / y / 1 2 0 ) ( 5 - r ) r 2 e - r / 2 -1/40 

since additional final-state channels did not have to be computed. 

An inner region radius of a = 28 a.u. together w i t h an .R-matrix basis con

structed using 22 continuum orbitals — the uf of equation (5.6) — per angular 

momentum proved to be adequate when either the 3-orbital or 4-orbital basis 

was used. The outer region propagation distance, a', varied between 50 a.u. and 

300 a.u. depending upon how close to the n = 2 threshold the doubly-excited 

state under study was located. Generally speaking, the closer the state was (in 

energy) to this threshold, the higher a' had to be in order to ensure stability in 

the mult iphoton branching ratios against further increase in a'. The 3-orbital 

basis results in a zero-field electron affinity, for the second electron of the ion, of 

0.02216 a.u. while the four-orbital basis provides a marginally improved value of 

0.02317 a.u. Both energies fa l l a l i t t l e short of the accepted value of 0.027751 a.u. 

(Pekeris [68]). This discrepancy is not of crucial importance, however, since the 

laser field frequencies we shall consider are several times larger than the electron 

affinity. Detachment-threshold effects wi l l not be apparent in the photoelectron 

spectra wi th which we are concerned. Finally, this basis expansion allows us to 

study processes in which at least one electron is confined to a core Hydrogen 

state, hence double-electron detachment processes cannot be taken into account. 
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5.3 The low intensity limit 

5.3.1 Preliminaries 

Since the ground state of the negative Hydrogen ion, ( I s 2 ) 1 5 e , is of even parity, 

selection rules permit the excitation of only the even parity doubly-excited states 

through a two-photon transition. Indeed, for this very reason, these even parity 

resonances can be reached through a mult iphoton transition involving only an 

even number of photons. Additionally, since there are no spin-dependent terms 

in the Hamil tonian in equation (5.2), only singlet states can be reached from 

the ground state in the present calculations. The schematic diagram of figure 5.1 

illustrates only one of the detachment channels open to the ion. In fact, the lowest 

open channel is the one-photon absorption channel which, at low laser intensities 

dominates the total detachment rate. Also contributing to the total rate are the 

A^-photon absorption channels in which N — 1 of the photons are absorbed above 

threshold. Here N = 2 (figure 5.1), 3, 4, . . . , A7™^ where Nmax is the uppermost 

channel included in a given calculation. These channels tend to contribute much 

less to the total detachment rate except at high laser intensities. 

In the low-intensity l imi t i t is well known that an A"-photon absorption or 

emission process occurs wi th a rate given approximately, by the perturbative 

expression 

< > = 2 ,n ( f a / ) " i M ' f ' r (5-11) 

where M j f is the Af-photon transition amplitude f rom the in i t ia l state \i) to 

the f inal state | / ) . The laser intensity is denoted by / and a = e 2 / h e is the 

fine structure constant. I t is very useful to consider the quantity W ^ / I N when 

discussing A-photon partial detachment rates in the low-intensity regime since 

the quantity M j f ^ contains all the dependence of W f P on the atomic (ionic) 

structure and is independent of the laser intensity. 
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5.3.2 Numerical results 

In the present calculations the partial detachment rates are determined via 

branching ratios such that only their relative magnitudes are calculated initially. 

These branching ratios are then normalised by stipulating that the sum of all the 

partial rates should equal the total rate, thus 

k ^ E r w (5. i2) 

where 

^r = - | 9 f m ( S ) (5.13) 

is the total detachment rate and the /h are the TV-photon partial detachment 

rates calculated via the branching ratios. Note that the T^N^ are calculated beyond 

perturbation theory in the present calculations and that only at low intensities 

can one expect that VW/h -> w j p . 

Figure 5.2(a) shows the two-photon partial detachment rate, /h, divided 

by I2, calculated in the low intensity 1 l im i t using a Floquet expansion (equation 

(5.5)) of harmonics n = — 3 , . . . , 4. This expansion took account of the absorption 

of up to 4 photons f rom the ground state and included final state symmetries of 

up to 1 F ° . The photoelectron energy in this figure, e = Re(E) + 2hu, extends 

from e = 0.34 a.u. up to the Hydrogenic n = 2 threshold at e = 0.375 a.u. This 

range of energies encompasses all of the even parity singlet symmetry doubly-

excited states of the ion lying below the n = 2 threshold. The existence of the 

first five of these states is clearly indicated by the resonance profiles in figure 5.2. 

The f u l l two-photon partial rate has been decomposed into two components, 

Ir<2) = 1 (rW(ls°) + r ( 2 ) ( 1 D e ) ) . (5.14) 

One component for detachment into the LSE symmetry final state continuum ( L 

= 0) and a second into the lDe continuum (L = 2). Each of these channels can 

be reached by the direct absorption of two photons f rom the \ 5 e ground state, 

such as 

lSe ^ ipo ^ lDe ^ lSe (5.15) 

1l atomic unit of intensity - 6.4365 x 101 5 W/cm 2 
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or by the indirect absorption of a net, of two photons, such as, 

l S e ^ Ipo ^ l D e > l 5 e ±*p Ipo ? Ipo Igje ? I p e ? 1 ^ (5 l g ) 

Test calculations revealed that the V?6 f inal state channel produced an entirely 

negligible contribution to the f u l l two-photon rate for the intensities at which the 

data in figure 5.2 were calculated ( / < 10 1 0 W / c m 2 ) . I t was therefore neglected. 

The first resonance profile in figure 5.2(a) occurs at a photoelectron energy 

of e = 0.351847 a.u. and is of lSe symmetry, i t is associated w i t h the (2s 2) lSe 

doubly-excited state of H ~ . The profile proved to be independent of intensity (to 

wi th in a few per-cent) for I < 10 1 0 W / c m 2 . A second profile, this t ime in the 
1 D e channel, appears at an energy e — 0.373383 a.u. and is caused by resonance 

w i t h the (2p2) lDe state. A t a slightly higher energy of e = 0.374064 a.u., the 

ground state is brought into resonance wi th the (2p 2 ) lSe state, so as to produce 

the small and narrow resononce profile seen in lSe symmetry just above the 1 D e 

. The latter two profiles proved to be independent of intensity (to wi th in a few 

per-cent) provided that I < 10 1 0 W / c m 2 . A further two very narrow profiles can 

be seen in figure 5.2(b), in the lSe symmetry channel, located at e — 0.3749470 

a.u. and e = 0.37499704 a.u. 

Figure 5.3(a) draws a comparison between the present non-perturbative re

sults for the full two-photon rate and the perturbative results of Proulx and 

Shakeshaft [75, 76] and of Sanchez et al [80]. The agreement is reasonably good 

overall. The positions and heights of the resonance profiles associated wi th the 

(2s 2) lSe and (2p2) lDe states agree well wi th the predictions of Proulx and Shake-

shaft, and Sanchez et al. Whi le the former authors were unable to resolve reso

nance structure above the lDe profile, the latter authors found a profile in lSe 

symmetry at an energy of e ~ 0.374 a.u. very close to the profile in the present 

results associated wi th the (2p 2) lSe state, but less than half its height and also 

a l i t t le wider. This discrepancy may be a result of inaccuracies in the present 

calculations caused by l imi t ing the basis (equation (5.6)) to be expressed in terms 

of only three Hydrogen orbitals; I s , 2s, and 2p (table 5.1). 

This can be tested by considering the effects of adding another orbi tal to the 

basis. The orbital chosen for this purpose is the 3p pseudo-state discussed earlier. 
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Added only as a correlation function, its effects upon the two-photon detachment 

spectrum are illustrated in figure 5.4. In this figure a comparison is drawn between 

the earlier three-orbital results, the new four-orbital results (both of which were 

calculated w i t h / = 1 x 10 1 0 W / c m 2 ) and the data of Proulx and Shakeshaft, and 

of Sanchez et al, for the energy range encompassing the (2p2) lSe and lDe state 

resonance profiles. The first remark to make is that the discrepency between the 

present results and those of Sanchez et al, for the 1 5 e profile, appears to have been 

increased by the addition of the 3p pseudo-state. The height of the profile has 

grown. This additional state expands the present basis set to include the ls3p, 

2s3p, 2p3p and 3p2 configurations and as such i t may directly contribute to lDe 

symmetry as well as lSe . Indeed, its addition slightly improves the agreement 

on the height of the profile for the 1 D e symmetry. Clearly, the 3p pseudo-state 

produces relatively l i t t l e change in the positions or widths of the resonance profiles 

in question. This suggests that calculations using a more extensive basis set may 

not draw the present R M F results into closer agreement w i t h those of Sanchez 

et al for the lSe resonance profile. Sanchez et al noted difficulties in calculating 

detachment rates for energies above the (2p2) \S e profile and so were unable to 

resolve higher resonances as is the case wi th the present calculations. One may 

only conclude that perhaps Sanchez et al underestimated the height of this profile 

a l i t t le , even though the wid th of the resonance is quite accurate (see table 5.2), 

and that while the position and width of the resonance profile are accurate, the 

shape of the profile is less accurate. A l l subsequent results in this chapter have 

been obtained using the three-orbital basis. 

Also shown in figure 5.3(b) are the experimental measurements of Stintz et al 

who have considered the two-photon detachment rate at photoelectron energies 

around the (2p 2) 1De state. The laser intensity was said to be around 3 x 10 1 0 

W / c m 2 and the height of the resulting resonance profile was normalised so as 

to match the peak of the corresponding profile of Proulx and Shakeshaft. None 

of the theoretical results in figure 5.3(b) agree very well wi th the position of 

the experimental profile, but then, none of these calculations where aimed espe

cially at optimising this quantity. Similarly the width of the experimental profile 
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([3.86±0.37] x 10~ 4 a.u.) is a l i t t le greater than any of the predictions. However, 

the results of Proulx and Shakeshaft are wi th in the experimental error. Stintz 

et al argue that the broadness of the profile cannot, in their opinion, be a re

sult solely of systematic error in the experiment. This may be a result of errors 

caused by variations in the laser intensity, since the the intensity was said to be 

"near" 3 x 10 1 0 W / c m 2 . I t could be that, since the signal being detected scales 

as the square of the laser intensity, i t wi l l be particularly sensitive to intensity 

variations. 

Apparently there have been no previous investigations concerning multipho-

ton transitions, experimental or theoretical, into the energy region encompassing 

the last two lSe resonance profiles shown in figure 5.2(b), just below the n = 2 

threshold. These two profiles result f rom the two-photon excitation of, respec

tively, the th i rd and four th resonance states in a series of such states, in x 5 e 

symmetry, that converge upon the n = 2 threshold. This series was first pre

dicted by Gailit is and Damburg [37] in the context of electron scattering f rom 

atomic Hydrogen. I f the scattered electron leaves the target atom in its ground 

state Is , then the dominant long-range force experienced by the outgoing electron 

w i l l come f rom the polarisation potential which goes as r ~ 4 . I f however, the resid

ual Hydrogen atom is left in an excited state (2s or 2p say) then the dominant 

force wi l l go as r ~ 2 at large distances. Under such circumstances and assum

ing that all long range multipole forces, except those in r ~ 2 , can be neglected, 

Gailitis and Damburg showed that, asymptotically, the Schrodinger equations for 

the degenerate 2s and 2p final-state channels, are coupled by a square matr ix 

containing the effective dipole potential terms; 

where the components in I arise f rom the centrifugal barrier and the component 

in d arises f rom the r - 2 terms in the multipole expansion. Gaili t is and Damburg 

showed that this potential may become attractive and strong enough to support 

an infini te number of resonance states below the n = 2 threshold (in fact be

low every threshold that is taken into account). Indeed i t can be shown [53] 

that potentials of the fo rm —b/r2 support an infini te number of bound states i f 

V(r) = -[l(l + l ) + d } / r 2 (5.17) 
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b > —1/4. In the present case, the series of resonance states below the n = 2 

threshold would be bound states, wi th respect to this threshold, were i t not for 

their interaction wi th the Is scattering continuum. This interaction makes the 

"bound" states into resonances. 

This resonance series can be reached through photodetachment of H ~ as well 

as by electron scattering, the former being essentially a "half-scattering" process. 

Gailitis and Damburg also showed that three distinct resonance series exist be

low the n = 2 threshold for each angular momentum L < 2. These series are 

distinguished by the positions and widths of their constituent members such that 

where eN = 0.375 — EN w i th EN being the energy position of the Nth resonance 

state in the series relative to the I s threshold, and TN is its wid th . For the 

series in lSe symmetry, i t was shown that R = 17.429 and for 1 D e symmetry, 

R — 4423.828. This result is an approximation of course, and its accuracy depends 

upon the validity of assuming that the second electron of the ion experiences 

mainly a r~2 dipole potential f rom the core Hydrogen atom. Assuming that this 

approximation is reasonable, then i t should be the case that the positions and 

widths of the resonance profiles in the lSe channel of figure 5.2(a) conform to 

the relation expressed by equation (5.18). In order to test this assumption, i t is 

neccessary to find a method of accurately measuring the EN and TN f rom the 

numerical data. 

5.3.3 Fano parameterisation 

This can be done by fitting a Fano type formula [33] to the data for the two-

photon detachment rates in figure 5.2. Fano considered resonance states as being 

composed of a discrete state \b), embedded in the continuum \c(e)). Under this 

assumption, the wave function \a(e)), for an isolated autoionising (autodetaching) 

state, can be expressed as 

6jv Tjv 
= R (5.18) 

eN+l Tjv+1 

oo /*o(j 
(e)) = B{e)\b) + de'C{e,e')W)) 

Jo 
a (5.19) 

107 



where \b) and \c(e)) are eigenstates of the independent-electron Hamiltonian, in 

which the inter-electronic Coulomb repulsion term is neglected. Fano showed that 

„ , N s in(A) 
B{e) = 5.20) 

and 

C{e, e') = B £ £ ^ ~ c o s ( A ) 5 ( £ - e) (5.21) 

where A = — arctan(<5) . The matr ix element 

Ve = (c(e)\H\b) (5.22) 

couples the discrete state \b), to the continuum state \c(e)), and derives f rom 

the inter-electronic Coulomb repulsion terms of the f u l l Hamiltonian H. This 

coupling is often denoted "configuration-interaction", and induces a shift in the 

position of the discrete state f rom Eb to E = Ef, + F(e) where 

F(e) = V J de'\V£,\2(e - e')'1 (5.23) 

The dimensionless quantity 

s = i W <5'24' 

measures the photoelectron energy e relative to the energy E, of the resonance 

state |a), in units of its half -width T/2 = ir\VE\2. A 1-photon transition f rom 

the ground state \g) to the resonance state \a(e)), induced by a weak laser field, 

results in a decay rate of 

where is the 1-photon transition rate directly into the continuum as ex

pressed by equation (5.11). The "shape" parameter q arises f rom the interference 

between the competing direct and indirect photodetachment pathways. The d i 

rect pathway involves detachment directly into the continuum at an energy e 

whereas the indirect pathway first ly excites the atom (ion) into a resonance state 

which then autoionises (-detaches) releasing an electron into the same continuum 

at the same energy e. These two pathways can interfere constructively or de

structively so as to produce maxima and minima in the photoelectron spectrum. 
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Fano originally derived an expression for q and WjlJ on the basis of one-photon 

transitions (N = 1) in weak laser fields. Cormier et al [23] have generalised the 

expression to N = 2, 3, where the additional N — 1 photons are absorbed in the 

continuum. For N = 2 the result is 

and 
i ( 2 ) _ M$+Vjde'V£lM$(E - e'Y 
q^ = - 2 2 - i ^ _ (5.27) 

where "P denotes the Cauchy principal value integration. The generalisation lies 

in the structure of the two-photon transition amplitudes Mj*\ When the second 

photon is absorbed in the continuum, by an intermediate v i r tua l state at 

an energy hu>Uo = Eg + hu, then the perturbative expression for the two-photon 

transition amplitude 

M<? = Urn * tolD-'HHP^I./) t | U , t | y " " U ; (5.28) 
[L0V — U)„ — UJ + IT)) rj->-6- ^ (LUV — cog — LO + i r f ) 

becomes a complex quantity, where the summation sign denotes summation over 

bound states and integration over continuum states. This is caused by the pole 

in equation (5.28) at w„ = uVo which can be accounted for by Cauchys theorem, 

to give 

One can see that this expression, when substituted into equation (5.27) produces 

a complex shape parameter q(2\ in equation (5.26). Note that here, e is the laser 

field polarisation unit vector, and D is the dipole transition operator, that is, 

D = V / w in the velocity gauge, and D = r in the length gauge. 

The positions and widths of the resonance profiles for both lSe and 1De sym

metry in figure 5.2 are listed in table 5.2. They have been obtained by fitting 

to the data of figure 5.2 an expression of the form (5.26). The f i t , performed 

using a non-linear curve-fit t ing graphics routine, provided a very good fit, wi th 
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the sum of the squares of the relative errors between the numerical data and the 

Fano formula, being less than 10~ 7 . The values agree reasonably well w i t h other 

estimates obtained via the electron scattering calculations of Odgers et al [65], 

Pathak et al [67], for the first two members of the lSe series, denoted l S e ( l ) and 
1Se(2) in table 5.2, and for the lDe resonance. Callaway et al [17] performed a 

variational calculation of the s-wave phase shifts in low energy electron-Hydrogen 

scattering using a I s — 2s — 2p close coupling approximation. They uncovered 

the th i rd member of the lSe series. Chen [20] uncovered the th i rd and four th 

members of the series, denoted lSe(3) and 1 5 e ( 4 ) respectively in table 5.2, using 

a projection operator formalism. 

Table 5.3 contains the complex shape parameters, q^2\ together wi th the di

rect background contribution, divided by I2, for each of the profiles in 

figure 5.2. A l l the shape parameters have negative real parts. This means that a 

minimum occurs in the 2-photon partial detachment rates, into 1Se or 1De sym

metries, at photoelectron energies just above the peak of each resonance profile. 

The min imum corresponds to destructive interference between the two competing 

detachment pathways (direct and indirect) to the continuum; interference that 

would be completely destructive, at e = — 5fte(</(2'), were i t not for the non-zero 

imaginary component of q(2\ in equation (5.26), preventing the partial rate f rom 

vanishing at this point. Note that only ( 3 m ( g ( 2 ) ) ) 2 can be determined from f i t 

t ing expression (5.26) to numerical data, hence , the sign of 5 m ( ^ 2 ' ) cannot be 

determined. 
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Table 5.2: Ground state energy and the positions and autodetachment widths of 
some of the even parity doubly excited states of H ~ lying below the first excitation 
threshold in atomic Hydrogen. The multiphoton data are obtained f rom the 
resonance profiles in the two-photon partial detachment rates: (a) Present results, 
using the orbitals I s , 2s and 2p. (aa) Present results, using the orbitals I s , 2s, 
2p and Sp. (b) The results of Sanchez et al. (c) The results of Proulx and 
Shakeshaft [1]. Compare to other estimates, (d) Pekeris for the electron affinity. 
For the resonance positions and widths; (e) Pathak et al ( f ) Odgers et al (g) Chen 
(h) Callaway et al determined via electron-scattering calculations. 

Mul t iphoton results Others 
Symmetry E (a.u.) T (10" 3 a.u.) E (a.u.) T ( 1 0 - 3 a.u.) 

( l s 2 ) \ S e -0.02216 a -0.027751 f / 

-0.02317 a a 

-0.0275766 

- 0 . 0 2 7 5 ± l c 

^ ( l ) 0.35186Q 2.014" 0.35121-'' 1.7235' 
0.3512956 1.92b 0.3513 s 1.508s 

0.351234c 1.730c ô sisss'1 2.0^ 

lSe{2) 0.37406 a 0.085° 0.373986 0.09926 

0.374065 a a 0.0854"" 0.373763 s 0.08 s 

0.373991 6 0.09926 0.0374065'1 0.08hh 

lSe(3) 0.374947" 4 . 7 8 4 ( x l 0 " 3 ) " 0.37493 s 4 . 6 3 ( x l 0 - 3 ) s 

0.374948'1 5 . 0 ( x l 0 " 3 ) / l 

0.37499704" 2 . 6 4 5 ( x l 0 - 4 ) " 0.374994 s 2 . 6 5 3 ( x l 0 - 4 ) s 

l D e 0.37338" 0.2868" 0.37208 / 0.32376 / 

0.37337"" 0.2959"" 
0.372151 6 0.3276 

0.372239c 0.3546 c 
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Table 5.3: The Fano shape parameters, q^2\ for the resonance profiles i f figure 5.2, 
and the data of Proulx and Shakeshaft; (a) Present results, using the I s , 2s, and 
2p orbitals. (aa) Present results, using the I s , 2s, 2p and 3p orbitals. (b) From 
the data of Proulx and Shakeshaft. 

Symmetry q(2) W t f / I 2 (a.u.) 

l S e ( l ) -3.94 ± i 2 . 5 8 a 

-4.57 ± i 2 . 2 b 

8.22 
7.33 

lSe(2) -2.48 ± i 6 . 2 1 Q 

-3.06 ± i 5 . 5 7 a a 

5.87 
7.27 

lSe{3) -2.34 ±i5.93a 5.92 

1 5 e ( 4 ) -2.44 ± i 6 . 2 2 Q 5.95 

l D e -5.13 ±i3.6a 

-5.27 ±i3.54aa 

-4.91 ±z3.04 f t 

19.93 
17.44 
21.17 

Table 5.4 contains the values of the ratios eN/eN+i, and T N / T N + i , for the 

relative positions and widths of the Nth and (N + l ) t h resonance profiles, lSe(N), 

in the lSe channel of the partial 2-photon rate of figure 5.2. The ratios were 

determined via the I s , 2s, 2p results for EN and TN listed in table 5.2 (the 

numbers wi th superscript a). 

Starting wi th the ^ ( l ) and 1Se{2) profiles, associated w i t h the (2s 2) 1Se 

and (2p2) lSe doubly-excited states, one can see immediately that, while e i / e 2 ~ 

r i / r 2 , as predicted by Gailit is and Damburg — through equation (5.18) — the 

actual value of the ratios somewhat exceeds the predicted value ( R = 17.429). 

This occurs, possibly, because the outer electron of the ion in the (2s 2) lSe state, 

is able to penetrate the Hydrogen core state sufficiently to "feel" the Coulomb 

potential of the nucleus. Hence, i t may be that this resonance state is not sup

ported mainly by a r~2 potential as assumed by Gaili t is and Damburg. Moving 
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Table 5.4: The ratios of the positions and widths of the resonance profiles in 
the lSe symmetry channel of the partial 2-photon detachment rate of figure 5.2. 
The position, e^, of the i V t h profile is measured relative to the n = 2 threshold 
in Hydrogen, and is the width . The theoretical value of the ratios is R (see 
text) . 

Ratio N = 1 N = 2 N = 3 R 

e N / e N + l 24.736 17.660 17.905 17.429 

T N / T N + i 23.109 17.747 18.087 17.429 

now to the second and th i rd profiles, lSe(2) and 1Se(3), one can see f rom table 5.4 

that, once again, e 2 /e 3 « r 2 / T 3 . Both ratios are now in very good agreement 

wi th Gaili t is and Damburg, as are the corresponding ratios for the 1 5 e (3 ) and 

\S e(4) profiles. This indicates that the th i rd and four th profiles in lSe symmetry 

of figure 5.2 are indeed associated wi th a 2-photon transition to resonance states 

supported mainly by an r~2 potential. Consequently one cannot assign a config

uration to these states in terms of principal quantum numbers, as has been done 

for the (2s 2) lSe and (2p 2 ) x 5 e resonances, since the functional form of the radial 

wave function for the external electron in such a state wi l l not be Hydrogenic. 

Addit ional members of this series were not resolved in the present calculations, 

and could not be resolved experimentally, since EN, as predicted by equation 

(5.18), becomes smaller than the relativistic (fine-structure) spl i t t ing of the n = 

2 threshold when N > 4 (for 1 5 e symmetry) or when N > 1 (for lDe symmetry) 

as predicted by Gailit is [36]. 

5.4 Beyond the low intensity limit 

In this section we shall discuss results that illustrate a strong non-perturbative 

intensity dependence in the two-photon partial detachment rates. An intensity 

dependence, confined largely to the resonance profiles, occurs in some cases at 
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very low laser intensities. The first example of this behaviour is illustrated in 

figure 5.5. Here, the two-photon partial detachment rate into the lSe channel 

is shown, divided by I2, for photoelectron energies around the energy of the 

highest lSe resonance state, denoted \S e(4) in the previous section. These results 

and all those that follow, have been obtained using the Is , 2s, 2p basis. The 

figure contains three profiles, which are practically indistinguishable but for their 

differing peak heights. The first and smallest profile, peaking at T ^ / I 2 « 260 

a.u., was calculated for a laser intensity of / = 1 x 10 8 W / c m 2 , and corresponds 

to the profile shown in figure 5.2. I t is stable in height and width , to wi th in 

10 per-cent, against further decreases in I. The second profile, w i th a peak of 

T ^ / I 2 ;« 330 a.u., was calculated at a laser intensity of / = 2 x 10 8 W / c m 2 , 

while the th i rd and highest profile corresponds to an intensity of 3 x 10 8 W / c m 2 . 

Note how, off resonance, the lSe partial rate remains stable against these 

intensity increases; the three profiles are vir tual ly identical at energies above 

and below the profile peaks. This suggests that the non-perturbative behaviour 

derives f rom the indirect two-photon detachment pathway, through the resonance 

state, rather f rom the direct pathway. Also shown in figure 5.5 is the two-photon 

partial rate into lDe symmetry, divided by I2, for the same three laser intensities. 

This rate, like the non-resonant lSe rate, is essentially unchanged by the increases 

in intensity. Formulas of the form of equation (5.26), can be f i t ted to the three 
lSe profiles of figure 5.5, as has been shown in the previous section. The resulting 

data are listed in table 5.5. 

One can see f rom this table that the width of the resonance profile decreases 

linearly w i th intensity as 

r 4(/) ~ 2.91 x 1 0 - 7 - 2.7 x 10" 1 G 7 (5.30) 

where / is an W / c m 2 (1 a.u. = 6 .4365x l0 1 5 W / c m 2 ) . This expression provides 

a good estimate of T 4 over the range of intensities considered here, but may 

become inaccurate at higher intensities where non-linear terms in / may become 

important . In tandem wi th the decrease in the width comes an increase in the real 

and imaginary components of the shape parameter, q(2\ This is a consequence 

of the decrease in VJ, in the denominator of equation (5.27), since T 4 = 27r|V r

J | | 2 . 
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Table 5.5: The intensity dependence of the parameters in the Fano formula (5.26), 
f i t ted to the three lSe profiles of figure 5.5. Note that T4 and E4 represent 
the width and position of these resonance profiles, associated wi th the lSe(4) 
resonance state. 

/ ( W / c m 2 ) WW/T2 (a.u.) E4 (a.u.) T 4 (10~ 7 a.u.) q^ 

1 x 10 8 5.95 0.37499704 2.64 -2 .44±i6 .21 

2 x 10 8 6.00 0.37499704 2.37 -2.52±z7.02 

3 x 10 8 5.98 0.37499704 2.10 -3 .00±i8 .23 

Unfortunately, i t proved impossible to calculate accurate two-photon rates, at 

photoelectron energies around the 1 5 e (4 ) state, for intensities much below 10 8 

W / c m 2 or above 3 x 10 8 W / c m 2 . The spectra began to show spurious fluctuations, 

that where unstable against changes in any of the parameters of the basis, and 

f rom which no meaningful information could be gained. 

Figure 5.6 illustrates a very similar intensity dependence in the resonance 

profile associated w i t h the 1Se(3) resonance state. Once again, the non-resonant 
1 5 e partial rate scales only as 7 2 , as does the lDe rate. However on-resonance, 

the \S e rate increases faster than I2 w i th increasing laser intensity. In order 

of increasing peak height, the three profiles of figure 5.6 correspond to laser 

intensities of / = 1 x 10 9 (the profile shown in figure 5.2), 2 x 10 9 and 3 x 10 9 

W / c m 2 . The parameters of the Fano formula, f i t ted to the three curves, are listed 

in table 5.6. 

The wid th of this profile also decreases linearly w i th intensity, as 

r 3 (7 ) « 5.05 x 10~ 6 - 2.7 x W~l6I (5.31) 

wi th I in W / c m 2 . Once more, i t was not possible to calculate a meaningful 

photoelectron spectrum, encompassing the lSe(3) profile, for intensities much 

below 10 9 W / c m 2 or above 3 x 10 9 W / c m 2 , for the reasons outlined earlier. 
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Table 5.6: The intensity dependence of the parameters in the Fano formula (5.26), 
f i t ted to the three lSe profiles of figure 5.6. Note that T 3 and E3 represent 
the wid th and position of these resonance profiles, associated w i t h the 1 5 e (3 ) 
resonance state. 

/ ( W / c m 2 ) W£/P (a.u.) E3 (a.u.) T 3 ( 10 - 6 a.u.) g(2) 

1 x 10 9 5.92 0.374947 4.78 -2 .34±i5 .93 

2 x 10 9 6.00 0.374947 4.51 -2 .41±i6 .27 

3 x 10 9 5.95 0.374947 4.24 -2 .67±i6 .78 

Problems of this nature were not encountered when the spectrum around the 
lSe(2) profile (associated wi th the (2p 2 ) lSe state) was studied. The intensity 

variation of this resonance profile is illustrated in figure 5.7 for a wide range of 

laser intensities. The solid curves correspond to the low-intensity form of the 

spectrum, starting at I = 1 x 10 1 0 W / c m 2 for the lowest solid curve. As the laser 

intensity rises, so too does the height of the resonance profile, quite dramatically 

so, such that, at an intensity of 2.5 x 1 0 u W / c m 2 , the profile peaks at a value 

roughly 20 times higher than its low-intensity l imi t ing value, as shown by the 

uppermost solid curve in figure 5.7. The dotted curves in this figure show the 

response of the spectrum to further increases in the laser intensity. The uppermost 

dotted curve shows the spectrum at the laser intensity of 4 x 10 1 1 W / c m 2 and 

the lower four dotted curves correspond to intensities, in order of decreasing peak 

height, of / = 5 x 1 0 u , 7.5 x 10 1 1 , 1 x 10 1 2 and 1.5 x 10 1 2 W / c m 2 , each of which was 

calculated using a Floquet expansion of 10 harmonic components (n = — 4 , . . . , 5) 

wi th to ta l angular momenta of upto L — 6 included. Note how the position of 

the resonance shifts (linearly in / ) to higher energies as / increases, in response 

to the a.c. Stark-shift of the dressed (2p 2) \S e state. 

Three distinct intensity domains can be identified for this profile; the first, 

where / < 2.5 x 10 1 1 W / c m 2 , in which the resonance profile becomes taller and 
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narrower wi th increasing laser intensity; the th i rd , where 7 > 4 x 10 1 1 W / c m 2 , 

in which the opposite occurs. The second and intermediate domain, where 2.5 x 

10 1 1 < I < 4 x 10 1 1 W / c m 2 , is quite different f rom the latter two. In this domain 

one cannot assign a width or height to the profile in the photoelectron spectrum 

since the section of the spectrum at energies below resonance is not adiabatically 

connected to that at energies above resonance. I t was found that, in this intensity 

domain, the quasienergy of the ground state of the ion, Eg, would pass through 

an avoided crossing, in the real part, w i th the shifted quasienergy of the (2p2) xSe 

doubly-excited state, Ea — 2hw, as the two states passed through resonance. The 

wave functions of the two states interchange character at this crossing. We shall 

delay any further discussion of this process to the next section. 

The intensity dependence of the width , r 2, and asymmetry parameter,q( 2\ 

of the 1 5 e ( 2 ) resonance profile of figure 5.7, is illustrated in figure 5.8. Both 

quantities have been determined via fitting equation (5.26) to the numerical data 

for all but the highest two profiles, where I = 2.5 x 10 1 1 and 4 x 10 1 1 W / c m 2 . 

In these two cases equation (5.26), while providing reasonable estimates for T 2 

and E2, proved inadequate for representing the off-resonant parts of the profile, 

W f f / I 2 . The wid th of the profile, r 2, can be well represented by the line 

r 2 (7 ) = |8.7281 x 1CT5 - 2.729 x 1 0 - l 6 / | (5.32) 

which is shown in figure 5.8(a), and has been interpolated through the second 

intensity domain, where 2.5 x 10 1 1 < I < 4.0 x 10 1 1 W / c m 2 . Al though expression 

(5.32) is not strictly valid in this domain, i t is very informative to note that i t 

predicts the vanishing of the width of the profile at I = 3.198 x 1 0 u W / c m 2 . This 

would correspond to a so-called "bound-state in the continuum" since the width 

of the resonance profile is inversly proportional to the life-time of the resonance 

state. The radiative detachment channels open to the resonance state prevent i t 

f rom becoming t ru ly stable against decay however, since the state is dressed by 

the laser field and can decay by absorbing or emitting photons. The vanishing 

of the resonance profile in lSe symmetry would represent stabilisation of the 

resonance state against decay by autodetachment, radiative decay would persist. 

Also shown in figure 5.7 are the two-photon partial detachment rates into the 
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lDe and *Ge symmetry channels, divided by 7 2 , for I = 1.5 x 10 1 2 W / c m 2 . The 

corresponding lSe rate, at this intensity, is shown by the lowest of the dotted res

onance curves. Clearly, the channel provides a significant contribution to the 

total two-photon datechment rate, through the four-photon pathway indicated by 

expression (5.16). Consequently, the ^Ge rate scales as I4 (i.e. T ^ 2 ' / / 2 is quadratic 

in I for this channel). The very same pathway w i l l , in principle, contribute to the 
lSe and 1 D e two-photon datechment channels. Indeed, on-resonance, we shall see 

that this process may well be responsible for the non-perturbative behaviour in 

all of the resonance profiles under study. A t photoelectron energies off-resonance 

however, its contribution to the lSe channel is very small; for example, the two-

photon detachment rate into this symmetry is r(2) = 5.87/ 2 a.u. at 7 = 10 1 0 

W / c m 2 , and = 5.86/ 2 a.u. at I = 1.5 x 10 1 2 W / c m 2 . Conversely, over the 

same intensity range, the off-resonant two-photon partial rate into lDe symmetry, 

goes as « 19.92(1 + 51827)I 2 a.u., w i th I in a.u., indicating that the pathway 

(5.16) contributes significantly to the 1De channel. 

The resonant two-photon rate into the 1 D e channel is illustrated by the 

spectra of figure 5.9. The behaviour of this resonance profile, associated wi th the 

(2p 2) lDe doubly-excited state, differs f rom that of the upper three lSe profiles we 

have discussed, in that i t decreases in height and becomes broader as I increases, 

f rom 10 1 0 W / c m 2 (uppermost profile) to 1.5 x 10 1 2 W / c m 2 (lowest profile). Note 

that the profile also shifts to higher energies, as I increases, in response to the a.c. 

Stark-shift in the quasienergy of the (2p2) lDe state. The intensity dependences of 

the profile wid th , T( lDe), and shape parameter, q^2\ are illustrated in figure 5.10. 

The profile wid th increases linearly as the laser intensity rises, as indicated by 

the straight line 

r(/) = 2.832 x 10~ 4 + 4.689 x W'WI, (5.33) 

shown in the figure. A t and slightly below I = 4 x 10 1 1 W / c m 2 , the data points 

in figure 5.10 deviate a l i t t l e f rom this line; this is a result of over-truncation of 

the basis. Increasing the Floquet expansion to include 10 harmonic components 

(n = — 4 , . . . , 5), and accounting for final-state symmetries of upto 1H° (L = 5), 

restored the linearity of T( lDe) for I > 5 x 1 0 u W / c m 2 . The magnitudes of 
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both 5fte(g(2)) and 3 m ( g ' 2 ' ) decrease steadily as I increases, a consequence of the 

denominator of equation (5.27) increasing. 

Figure 5.9 also contains the contribution of the 1 G e two-photon partial rate, 

at intensities of 1 x 10 1 2 and 1.5 x 10 1 2 W / c m 2 (lower and upper dotted curves re

spectively). This partial rate shows a very shallow, asymmetric resonance profile 

centred at roughly the same position, and w i t h approximately the same width , 

as the lDe profile at the same intensities. Hence, the resonance structure in the 
lDe continuum is embedded into the ¥re continuum by the four-photon pathway 

of (5.16). The same pathway may also embed the resonance structure in the lSe 

continuum, associated w i t h the (2p2) 1Se state, at e = 0.37406 a.u., into the 1 D e 

continuum, at the same energy, so as to produce the small resonance structures 

seen in figure 5.9. 

Finally, the intensity dependence of the resonance profile associated wi th the 

lowest doubly-excited state of H~, the (2s 2) lSe state and denoted l S e ( l ) in the 

previous section, is illustrated in figure 5.11. The intensities considered are, in 

order of increasing profile peak-height, I = 10 1 1 , 5 x 10 1 1 , 7.5 x 10 1 1 , 1.5 x 10 1 2 , 

3 x 10 1 2 and 5 x 10 1 2 W / c m 2 . The results need l i t t le elaboration, since this profile 

clearly conforms to the intensity dependence displayed by the profiles, associated 

wi th the upper three 1Se states, that we have already discussed. The wid th of 

the profile in figure 5.11, is given in table 5.7 for a number of laser intensities. 

For the higher laser intensities, of 3 x 10 1 2 and 5 x 10 1 2 W / c m 2 , the Floquet 

expansion was extended to 11 harmonic components (n = —4, . . . ,6 ) . A t these 

intensities however, the two-photon partial rates into 1De and ^Ge symmetries, 

could not be accurately determined. The rates displayed spurious features that 

proved to be unstable against changes in the basis (e.g. the number of angular 

momenta, Floquet harmonics etc.). Although the 1Se two-photon rate seemed 

stable provided 7 < 5 x 10 1 2 , the upper two profiles of figure 5.11 may be un-

converged for this reason. Finally, a point to note is that calculations of the 

two-photon part ial detachment rates f rom H ~ , have been published recently by 

Dorr et al [30] that illustrate the photoelectron energy spectrum at energies en

compassing the lower three profiles discussed presently (i.e. the l S e ( l ) , lSe(2) 
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Table 5.7: The intensity dependence of the position and wid th of the lSe reso
nance profile of figure 5.11. 

I ( W / c m 2 ) Ex (a.u.) Ti ( 1 0 - 3 a.u.) 

1.0 x 10 1 1 0.351847 1.962 

7.5 x 10 1 1 0.351934 1.856 

3.0 x 10 1 2 0.352296 1.56 

5.0 x 10 1 2 0.352569 0.99 

, and lDe profiles). The detachment rates of Dorr et al where calculated at an 

intensity of 1 x 10 1 1 W / c m 2 and, assuming a perturbative I2 scaling law, were 

scaled down to what the rate was assumed to be at I = 1 x 10 9 W / c m 2 . We have 

seen here that this cannot be done for the these resonance profiles, however i t is 

an accurate assumption provided that the photoelectron energy is off-resonance. 

5.5 Dressed autodetaching states 

5.5.1 Theory 

The theory of mult iphoton ionisation through autoionising states has been stud

ied extensively over the years. K i m and Lambropoulos [47, 48] have discussed 

the effects of a laser field upon the configuration interaction in a multielectron 

atom, in the context of mult iphoton ionisation via an autoionising state. They 

have illustrated how a laser field may introduce intensity-dependent multipho

ton ionisation pathways that compete directly wi th the intensity-independent 

autoinisation pathway associated wi th configuration interaction. They discussed 

the iV-photon ionisation of an atom, where TV ( = 2, 3) is the minimum number 

of photons required to ionise the system, and where the absorbtion of N photons 

brings the ground state of the atom, \g), into resonance wi th an autoionising state 
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\a). I t was shown that, provided no resonances occur w i th intermediate atomic 

bound states, the iV-photon ionisation rate can be expressed by the Fano type 

formula 

(1 + 6 2 ) < ] = ^ f ^ h ^ (5-34) 

The quantities 6 and have the same meaning as the corresponding 

terms in equation (5.26). The important new feature, in equation (5.34), that 

distinguishes i t f rom (5.26), is the generalisation of the term VE, so as to include 

an explicit intensity dependence. That is 

V*^VE = V; + Mj»(lVI (5.35) 

such that 

q{N)->Q{N) = L V L H 9 " r j T ! 7 ^ 1 — — (5'3 6) 
and 

TvVEM{

cp 

E 

r /2 
(5.37) 

wi th 

r = 27r|V^ + M i 2 ) a t ) / | 2 (5.38) 

being the intensity-dependent autoionising width . Note that the term "autoion-

ising" is no longer strictly correct since T now depends upon the laser field 

through the two-photon transition matrix element M^}{Y\)I, where the ampli

tude A / ^ ^ t ) is of the form of expression (5.28). The term derives f rom the 

two-photon transition that couples the autoionising state \a) to the degenerate 

continuum state \c) via the stimulated emission and subsequent absorption of a 

photon f rom \a) to |c) or f rom \c) to |a), as indicated by the schematic diagram of 

figure 5.12(a). This diagram illustrates the process in the context of our present 

study, in which photons are absorbed in the continuum. This generalisation, to 

above-threshold photon transitions, can be readily accounted for in expression 

(5.34), by considering that the iV-photon transition amplitudes in this equation 

become complex, as was discussed by Cormier et al [23] (see equation (5.29)). 

A further generalisation of (5.34) can be introduced by considering the con

t r ibut ion of additional mult iphoton pathways, such as the stimulated absorption 
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and subsequent emission of a photon, f rom \a) to |c) and vice versa, as illustrated 

by the schematic diagram of figure 5.12(b). This process would contribute a term 

M ^ ' ( t 4 , ) 7 to (5.38). Higher order pathways must also contribute. For example 

by the stimulated emission of two photons, and subsequent reabsorption of two, 

f rom |a) to |c) via \g). The amplitude for this four-photon process would scale as 

P. In general one may write 

T = 2>K\V* + [M^Ut) + Mj»(n)]I + M£> I2 + • • • | 2 (5.39) 

Two scenarios were considered by K i m and Lambropoulos, and can be de

duced f rom equation (5.39). The first is were V£ and 5f te[M^(4. t ) + M ^ ( f | ) ] 

have opposite signs, and the second, where they have the same signs. I f the 

signs are opposite, then T w i l l decrease and the magnitude of increase as 

I increases f rom zero. This is assuming that the terms of second order in I, 

and higher, are negligible. This effect corresponds to the net destructive inter

ference between the configuration interaction (field-independent) autodetaching 

pathway, and the field-induced pathways described above. The resulting pho-

toelectron spectrum of the two-photon (resonant) partial detachment rate, wi l l 

possess a resonance profile that becomes taller and narrower as I increases, unt i l l 

T passes through a minimum, whereupon the reverse would occur as I increases 

further. This description is in qualitative agreement wi th the intensity depen

dence of the lSe resonance profiles we have considered presently, especially the 

(2p2) lSe profile. K i m and Lambropoulos considered the three-photon ionisation 

of Strontium, through the (5p6s) lP° autoionising resonance, and found precisely 

this intensity dependence in the three-photon ionisation cross-section of the atom 

(their Fig.2, which shows a str iking resemblence to the present figure 5.7). 

The second scenario considered by K i m and Lambropoulos, was that in which 

the signs of Vg and 5Re[M^)( | | ) + M^(-\\)} are the same. This results in a 

resonance profile that broadens and flattens as I rises. This may explain the 

intensity dependence of the resonance profile in the two-photon lDR channel of 

figure 5.9. The field-induced pathways f rom \a) to |c), illustrated in figures 5.12(a) 

and (b), produce a net constructive interference wi th the configuration interaction 

pathway, when \a) is the (2p 2) lDe state. On the other hand, i f \a) is one of the 

122 



lSe resonance states below the n — 2 threshold of Hydrogen, the net interference 

is destructive. I f this interference were, for some intensity, completely destructive 

(i.e. T of equation (5.39) vanishes), then the resonance state would become stable 

against decay by autodetachment (but not by mult iphoton absorption/emission). 

This condition is inferred by the straight line in figure 5.8(a), which predicts 

stabilisation of the (2p 2) lSe state against autodetachment, at a laser intensity of 

/ ~ 3.2 x 10 1 1 W / c m 2 . 

As mentioned previously, this condition is never fu l ly realised. For any fixed 

intensity, in the approximate range 2.5 x 1 0 u < 7 < 4.0 x 10 1 1 W / c m 2 , the real 

part of the quasienergy of the ground state of the ion, $te(Eg), passes through 

an avoided crossing wi th the real part of the quasienergy of the (2p2) lSe state 

shifted in energy by 2hu). That is, Ue(Eg) ^ Re(Ea — 2huj) as cu is varied through 

resonance ( at w r e s ~ 0.198116 a.u.). Under the same conditions Qm(Eg) # 

^sm(Ea), as shown in figure 5.13. Hence the notion of a resonance profile in any 

of the photodetachment channels can no longer be maintained over this intensity 

range, since \g) ^ \a) and the spectra at negative detunings f rom resonance are 

not adiabatically connected to those at positive detunings. In figure 5.13 the 

total detachment rate f rom the ground state of the ion, —2^sm(Eg) in a.u., is 

illustrated for a number of laser intensities (solid curves), as a function of the 

laser frequency, over a narrow range of frequencies encompassing u r e s . The lowest 

curve, which corresponds to the rate at a laser intensity of 2.5 x 10 1 1 W / c m 2 , 

shows a weak enhancement at UJ « w r e s , in an otherwise flat spectrum. As the 

laser intensity rises, so too does the detachment rate; linearly in 7, when LO is far 

f rom u;res, as 

-2<3m(Eg) « 2.7 x 10~ 1 6 7 (5.40) 

where 7 is in W / c m 2 . As the intensity increases through 3 x 10 1 1 to 3.5 x 

1 0 u W / c m 2 , the wid th of the ground (rate in a.u.) closely approximates the 

width of the dressed (2p2) lSe state, — 2^sm(Ea) (dot-dashed curves). Under these 

circumstances the characters of the two widths exchange roles as a; is varied 

through cores. When I = 4 x 10 1 1 W / c m 2 , no such change occurs in the ground 

state (uppermost solid curve) and a resonance profile is seen once more in <ism(Eg). 
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I t is instructive to consider the variation of Ea and Eg for fixed values of the 

laser frequency and over a continuous range of intensities. The trajectory of Eg, 

in the complex plane, is shown in figure 5.14 for the intensity range 0 < 7 < 

5 x 10 1 1 W / c m 2 . Here, six different laser frequencies in the range 0.198112 < u < 

0.198121 a.u., are considered. The zero-intensity position of the ground state is 

marked by the dot on the real axis at Eg = —0.0221638 a.u. Once the laser field 

is switched on and the intensity rises, the ion becomes able to decay, principally 

via the absorption of one photon, and in responce, the energy of the ground state 

acquires an imaginary component that varies as 

where I is in W / c m 2 . This linear intensity variation is accurate for all of the 

six laser intensities presently considered, upto intensities of around 2.5 x 10 1 1 

W / c m 2 , whereupon one of two things happens. Firstly, i f UJ < 0.198114 a.u. 

or ui > 0.198121 a.u., then the linear increase in ^sm{Eg) persists, to a good 

approximation, for intensities of at least 5 x 1 0 u W / c m 2 . This is illustrated by 

the two solid-line trajectories in figure 5.14, denoted curves b and f, for which 

to = 0.198114 a.u. and u = 0.198121 a.u. respectively. Note that slight variations 

f rom linearity occur over the range of intensities 2.5 x 10 1 1 < I < 4 x 1 0 n W / c m 2 , 

when ^m(Eg) « 4.3 x 1 0 - 5 a.u. I f however, the laser frequency is in the range 

0.198115 < to < 0.198120 a.u., then ^sm(Eg) becomes relatively stable against 

intensity increases beyond 3.2 x 1 0 n W / c m 2 , settling upon 

for intensities of at least 5x 10 1 1 W / c m 2 . Illustrated by curves b to e in figure 5.14, 

this effect represents the stabilisation of the ground state detachment rate (the 

loops to the right of the figure). 

The trajectory of the quasienergy of the (2p2) lSe state is shown in figure 5.15 

over the same intensity range, and for the same six laser frequencies as in fig

ure 5.14. Here, the zero-intensity position of the energy of the autodetaching state 

is marked by the solid circle at Ea = 0.374063 — «4.365 x 10~ 5 a.u. As the laser 

S m ( £ 9 ) « -1 .35 x 1 0 " 1 6 / (5.41) 

^m(Eg) « -4.365 x 10" 5 - 9.25 x 1 0 _ 1 9 7 (5.42) 
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field is switched on the real part of Ea acquires a positive a.c. Stark-shift that 

pushes the energy upwards, while the imaginary part of Ea is given by expres

sion 5.42. This intensity dependence is dramatically modified when I > 2.5 x 10 1 1 

W / c m 2 i f 0.198115 < to < 0.198120 a.u., such that 

$m(Ea) -> $m(Ea) « -1.35 x 10" 1 6 7 (5.43) 

and the detachment rate f rom the resonance becomes a much more rapidly in

creasing funct ion of intensity, indistinguishable f rom expression (5.41). Hence the 

autodetaching state acquires the character of the ground state and vice versa, as 

I increases through the values 2.5 x 1 0 u W / c m 2 to 4.0 x 10 1 1 W / c m 2 , provided 

that 0.198115 < UJ < 0.198120 a.u. 

This character exchange is clearly demonstrated in figure 5.16 where the com

plex energies of the ground state and autodetaching state (shifted by — 2hu)) are 

shown for two laser frequencies. The maximum laser intensity is, in each case, 

5 x 1 0 u W / c m 2 , and the solid curves correspond to the trajectories of Eg and 

Ea — 2hu> when uj = 0.198114 a.u., and the dot-dashed curves when UJ = 0.198115 

a.u. For the lower frequency, both the ground state and (2p2) lSe state quasiener-

gies (and the states themselves) preserve their characters as I increases. However, 

when u) = 0.198115 a.u. the quasienergies undergo an avoided crossing in both 

their real and imaginary parts, such that the trajectories of the energies are seen 

to strongly repel each other as the transition Eg # Ea — 2%UJ occurs. 

Latinne et al [54] have found a process of precisely this form occurring between 

the ground state quasienergy of H ~ and the (2s 2) lSe autodetaching state at a 

laser intensity of 7 x 10 1 2 W / c m 2 (see Fig.3 of [54]). The authors used the 

same /^-matrix Floquet codes, and wi th exactly the same basis that has been 

used to calculate the present results. In addition, Latinne et al discussed the 

appearance of very similar processes in Ar and He, indicating that the effect is a 

general feature of multielectron atoms. They also argued that , in principle, the 

laser frequency can be tuned and the intensity varied in such a way that dressed 

ground and dressed autodetaching (autoionising) state are made to be degenerate 

in both their real and imaginary parts, thus, producing a pair of "laser-induced 

degenerate states" (LIDS). The appearance of such states in atomic Hydrogen 
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has also been reported by Potvliege and Smith [73]. They considered a situation 

in which a Hydrogen atom is irradiated by a superposition of a linearly polarised 

monochromatic laser field and its th i rd harmonic. 

I t is not possible to determine, unambiguously, at exactly what intensity and 

frequency LIDS w i l l occur for the (2p 2) lSe and ground state considered presently. 

Suffice to say that one can infer that the intensity for LIDS to occur w i l l be that 

at which 'Sm(Eg) and ^sm(Ea) of expressions (5.41) and (5.42) become equal. 

This would be at 7 L I D S = 3.25 x 10 1 1 W / c m 2 . 

5.5.2 Discussion 

I t is interesting to note that / L I D S is in in close approximation to the intensity at 

which the wid th of the resonance profile, in figure 5.7, is predicted to vanish, by 

equation (5.32). We have seen how the theory of K i m and Lambropoulos predicts 

the narrowing of resonance profiles, under the condition that the radiative cou

pling of the autodetaching state to the continuum, destructively interferes wi th 

the non-radiative coupling (see figures 5.12). The qualitative agreement between 

this prediction and the profile in figure 5.7, is good. Further, the theory, taken at 

face value, suggests that the non-radiative autodetachment channel can be com

pletely suppressed by this interference, at a laser intensity of / ' = 3.198 x 10 1 1 

W / c m 2 . Under such conditions the dressed autodetaching state would become 

rather more like a dressed bound state in the continuum, decaying only via mul t i -

photon absorption or one-photon emission. This condition is never fu l ly realised 

however, and we have seen that the autodetaching state evolves adiabatically 

into the dressed resonant ground state, and vice versa, over a narrow range of 

intensities centred upon / ' « / L I D S -

This suggests that LIDS in H ~ may be a consequence of the suppression of 

non-radiative autodetachment through the dressing of the autodetaching state by 

the laser, the approach to the degeneracy point being signalled by the decrease in 

the wid th of the resonance profile in the resonant two-photon partial detachment 

rate. I f this is so, we can estimate that the 1S' e(3) and lSe(4) resonance states, 

above the (2p 2 ) lSe state (see figures 5.5 and 5.6), w i l l have LIDS at intensities 
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of / L I D S = 1-87 x 10 1 1 W / c r n 2 and 7 L IDS = 1.08 x 10 9 W / c m 2 respectively. These 

are the intensities at which the widths of the resonances are predicted to vanish, 

by expressions (5.31) and (5.30). From the data in table 5.7 one can tentatively 

estimate that the width of the (2s2) 1Se resonance profile, denoted T\, w i l l vanish 

at / L I D S ~ 7 x 10 1 2 W / c m 2 , in agreement wi th the value found by Latinne et 

al [54]. No laser-induced degeneracy could be found between the ground and the 

(2p 2 ) lDe autodetaching state. 

5.6 Laser-induced continuum structure 

Here we shall discuss how mult iphoton transitions involving the ground state of 

H ~ and the (2p2) lDe autodetaching state, may induce structure into the con

t inuum where, in the absence of the laser field, no structure exists. This is the 

so-called light-induced continuum structure (LICS) [18, 19, 49, 50, 84]. The most 

typical configuration cited for creating LICS involves raising an excited bound 

state, of energy Eb, into the continuum wi th a dressing laser of frequency u>d so 

as to embed i t there at an energy Ed — Eb + u}d. A second probe laser then ex

cites the ground state into the same continuum at energies around E^. In doing 

so i t interferes w i th the embedded continuum state to produce autoionising-like 

structures in the photoelectron spectrum [18, 19, 84]. Autoionising resonances 

can also assist in the creation of such structure in a very similar manner [34]. 

Here shall discuss the role of autodetaching resonances of H~~ in the formation of 

LICS. 

Figure 5.17 illustrates the one-photon partial detachment rate f rom the ground 

state into the lF° final-state channel, over a range of laser intensities f rom 10 1 0 

to 10 1 2 W / c m 2 . The ordinate of this graph represents the partial rate divided by 

the cube of the laser intensity. Certainly, in order to reach a lF° f inal state, in 

which the residual Hydrogen atom is left in the I s state, as is the case here, the 

outgoing photoelectron must have undergone a mult iphoton transition involving 

at least three photons (hence the rate scales as I3). This can be achieved by the 

absorption of three photons f rom the ground state, acquiring one unit of angular 

momentum at each absorption. Alternatively, the ground state may absorb two 
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photons and then emit one, or i t may absorb one photon and then emit and 

subsequently re-absorb one photon. Either of the latter two pathways may also 

result in an outgoing photoelectron having three units of angular momentum and 

an energy Eg + hco, since a net of only one photon was absorbed. 

These last two pathways into the one-photon 1 F ° channel are illustrated by 

the schematic diagram of figure 5.18. I t is the upper pathway in this figure (solid 

arrows), through the autodetaching state denoted |a), that is responsible for the 

resonance profile seen in lF° rate in figure 5.17. The laser frequency is, in this 

case, tuned so as to produce a two-photon resonance between the ground state and 

the (2p 2 ) 1 D e autodetaching state. Af te r having reached the autodetaching state, 

at E = Ea, the upper pathway then involves the stimulated emission of a photon 

which takes the photoelectron into the 1 F ° continuum at E = Ea — hcu. The lower 

pathway, represented by the dashed arrows in figure 5.18, then interferes w i th 

the upper so as to produce the profiles seen in figure 5.17. The upper pathway 

can be regarded as having embedded a structure into the lF° continuum, derived 

from the lDe autodetaching state, at the energies around E = Ea — hu), the lower 

pathway, which does not "see" the lDe state, responds to this structure. 

The resonance profiles in the one-photon lF° channel display the same inten

sity dependence as the 1De profiles of figure 5.9: namely, the tendency to flatten 

and broaden i f I increases. Indeed, the position of the lF° profile, E( lF° ) , listed 

in table 5.8, agrees well w i t h the relation 

E{ lF° ) = E ( l D e ) - hco (5.44) 

where E( 1 D e ) is the intensity dependent position of the resonance profile in 

the two-photon 1 D e channel and UJ the resonant frequency (e.g. 0.373383 a.u. 

and 0.197773 a.u. respectively, at I — 10 1 0 W / c m 2 ) . Also, the widths of the 

one-photon lF° and two-photon 1 D e profiles (see figure 5.10) are related by 

T( lF° ) = i r ( lDe ) (5.45) 

to a good approximation. 

The sharp spikes in the profiles, located at E ^ 0.17595 a.u. correspond 

wi th the shallow resonance profiles seen at e = 0.37406 a.u., in the lDe rate of 
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Table 5.8: The intensity dependence of the position and wid th of the resonance 
profile of figure 5.17. 

I ( W / c m 2 ) E{ lF° ) (a.u.) T(lF° ) ( 10 - 4 a.u.) 

1.0 x 10 1 0 0.175610 1.448 

1.0 x 10 1 1 0.175611 1.637 

2.0 x 10 1 1 0.176515 1.836 

5.0 x 10 1 1 0.175634 2.676 

figure 5.9. They result f rom the contribution, to the one-photon lF° rate, f rom 

the (2p 2 ) lSe autodetaching state via a five-photon pathway such as 

( I s 2 ) ^ lP° (2p 2) lSe "4" 1 P ° +4W (2p 2 ) lDe "4" lF° . (5.46) 

This pathway is only able to contribute significantly at intensities for which the 

autodetachment channel of the (2p2) \S e state is strongly but not completely 

suppressed by the destructive interference of the radiative channels as discussed 

above. 

5.7 Summary 

We have seen that through a two-photon transition, the even symmetry resonance 

states of H - , lying just below the n = 2 thresold, can be excited. Five resonances 

have been identified, one in 1 D e symmetry and four in lSe symmetry. The higher 

members of the latter symmetry appear to be members of the series predicted by 

Gailit is and Damburg. 

I t has been found that the resonance profiles in the partial two-photon de

tachment channels, associated wi th these resonance states, show a strong inten

sity dependence. This intensity dependence has been explained in terms of the 
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interference between non-radiative autodetachment channels and radiative de

tachment channels, induced by the dressing of the resonance state by the laser. 

The appearance of a laser-induced degeneracy has been found between the ground 

state of H ~ and the (2p 2) lSe autodetaching state. I t has been suggested here that 

this appearance is directly related to the suppression of the non-radiative autode

tachment channel by the destructive interference of radiative channels. Finally, 

resonance structure has been found in the one-photon partial detachment rate, 

f rom the ground state, into the 1F° channel. This has been explained in terms of 

the laser field inducing structure into the lF° continuum through a three-photon 

transition via the (2p2) 1De autodetaching state. 
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Figure 5.1: The two-photon absorption f rom the ground state of H ~ to one of 
its even parity doubly-excited resonances lying below the n = 2 threshold at an 
energy of 0.375 a.u. relative to the n = 1 detachment threshold. Note that this 
schematic represents the two-photon channel which is only a partial detachment 
channel. 
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Figure 5.2: (a) Two-photon detachment rates divided by I2. The fu l l rate (solid 
curve) and the contribution f rom the lSe (dot-dashed curve) and lDe (dotted 
curve) partial detachment channels as a function of photoelectron energy, (b) A 
magnification of the higher energy resonances. The highest two resonances in 1Se 

symmetry can be distinguished. The results represent the low-intensity l imi t of 
the spectra, when I < 10 8 W / c m 2 . 
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Figure 5.3: (a) As for figure 5.2, but here the fu l l two-photon detachment rate 
divided by I2, is shown. Solid curve: present results. Dot-dashed curve: Proulx 
and Shakeshaft. Solid circles: Sanchez et al. (b) A magnified view of the spectra 
at higher energies, including the experimental data of Stintz et al (open circles). 
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Figure 5.4: A comparison of the spectra around the lDe and 1S' e resonance 
profiles discussed in the text. Calculated for a laser intensity of 10 1 0 W / c m 2 

(present results). Dotted curve: present results using the three-orbital basis. 
Solid curve: present results using the four-orbital basis. Dot-dashed curve and 
solid circles: as for figure 5.3(b). 
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Figure 5.5: Intensity dependence of the resonance profile in the two-photon lSe 

partial rate, denoted 1 5 e (4 ) in the text. The laser intensities are, in order of 
increasing profile peak height: 10 8 , 2 x 10 8, and 3 x 10 8 W / c m 2 . Also shown is 
the partial rate into the 1 D e channel, for the same intensities. In fact only one 
curve is shown here since the three intensities considered, the 1De curves are 
indistinguishable on the scale of the figure. 
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Figure 5.6: The intensity dependence of the resonance profile in the two-photon 
1S' e partial rate, denoted 1S' e(3) in the text. The laser intensities are, in order 

of increasing profile peak height: 10 9 , 2 x 10 9, and 3 x 10 9 W / c m 2 . Also shown 
is the part ial rate into the lDe channel, for the same intensities. 
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Figure 5.7: The intensity variation of the resonance profile in the two-photon \S e 

partial rate, denoted lSe(2) in the text, associated wi th the (2p 2 ) 1 5 e autode
taching state. Here, the laser intensities considered are, in order of increasing 
resonance peak height and in units of 10 1 1 W / c m 2 : Solid curves — 0.1, 0.25, 0.5, 
0.75, 1.0, 1.5, 2.0, and 2.5 . In order of decreasing peak height: Dotted curves 
— 4.0, 5.0, 7.5, 10.0, and 15.0. Also shown is the partial rate into the lDe and 

1 G e channels, for 7 = 1.5 x 10 1 2 W / c m 2 . 
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Figure 5.8: (a) The intensity variation of the width of the resonance profile in 
the two-photon lSe partial rate of figure 5.7. (b) The intensity variation of 
the profile shape parameter, . Here the real part and the modulus of the 
imaginary part is shown, since the sign of the latter cannot be determined. 
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Figure 5.9: The intensity variation of the resonance profile in the two-photon 
lDe partial rate, associated with the (2p2) 1De autodetaching state. Here, the 
laser intensities considered are, in order of decreasing resonance peak height and 
in units of 1 0 u W/cm 2 : Solid curves — 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 
3.0, 3.5, 4.0, 5.0, 7.5, 10.0, and 15.0. Also shown is the partial rate into the \ } e 

channel, for the laser intensities of 10 1 2 and 1.5 x 10 1 2 W/cm 2 . 
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Figure 5.10: (a) The intensity variation of the width of the resonance profile in 
the two-photon lDe partial rate of figure 5.9. (b) The intensity variation of 
the profile shape parameter, q(2\ Here the real part and the modulus of the 
imaginary part is shown, since the sign of the latter cannot be determined. 
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Figure 5.11: The intensity variation of the resonance profile in the two-photon 1 5 e 

partial rate, denoted ^ ( l ) in the text, associated with the (2s2) 1Se autode-
taching state. Here, the laser intensities considered are, in order of increasing 
resonance peak height: Solid curves — 10 1 0, 5 x 10 1 1, 7.5 x 10 1 1, 1.5 x 10 1 2, 
3 x 10 1 2, and 5 x 10 1 2 W/cm 2 . Also shown is the partial rate into the lDe and 
V e channels, for / = 1.5 x 10 1 2 W/cm 2 . 
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Figure 5.12: Schematic diagrams illustrating how the laser may induce radia
tive detachment pathways (dashed arrows), from an autodetaching state, that 
interfere with the non-radiative autodetachment pathway (solid arrow marked 
V).(a) Stimulated emission and subsequent absorbtion of a photon, (b) Stimu
lated absorption and subsequent emission of a photon. Both pathways take the 
photoelectron to the same final state continuum as V does. 
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Figure 5.13: The total detachment rate from the ground state (solid curves), for 
a few laser intensities, at and around the laser frequency that produces a two-
photon resonance with the (2p2) lSe autodetaching state. At u) = 0.1981 a.u., 
from bottom to top, the laser intensities considered are,in units of 10 1 1 W/cm 2 : 
2.5, 3.0, 3.25, 3.5 and 4.0. Also shown is the total detachment rate from the (2p2) 

lSe autodetaching state (dot-dashed curves) for the laser intensities of 3.0, 3.25 
and 3.5 x 1 0 u W / c m 2 (from bottom to top at u = 0.1981 a.u.). 
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Figure 5.14: The trajectory of the quasienergy of the ground state of H~ for a 
number of fixed laser frequencies, as the laser intensity increases from zero (solid 
circle) to / = 5 x 1 0 n W/cm 2 . The curve marked 'a' corresponds to ui = 0.198112 
a.u. and the other five curves correspond, in alphabetical order, to frequencies of 
0.198114, 0.198116, 0.198118, 0.198120 and finally 0.198121 a.u. (curve T ) . 
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Figure 5.15: The trajectory of the quasienergy of the autodetaching state (2p2) 
xSe for a number of fixed laser frequencies, as the laser intensity increases from 
zero (solid circle) to / = 5 x 1 0 u W/cm 2 . The curve marked 'a' corresponds to 
u> = 0.198112 a.u. and the other five curves correspond, in alphabetical order, 
to frequencies of 0.198114, 0.198116, 0.198118, 0.198120 and finally 0.198121 a.u. 
(curve ' f ' ) . 
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Figure 5.16: The trajectories of the quasienergies of the ground state (2p2) xSe 

autodetaching state of H~, the latter shifted by —2hu), for two laser frequencies, 
as the laser intensity increases from zero to I = 5 x 10 1 1 W/cm 2 . The solid curves 
show the trajectories of both quasienergies when w = 0.198114 a.u., and the dot-
dashed curves show the trajectories when to = 0.198115 a.u. In the former case 
the states maintain their character as / is increased, while in the latter, the states 
exchange character. 
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Figure 5.17: The intensity variation of the resonance profile in the one-photon LF° 
partial rate. The profile is associated, indirectly, with the (2p2) 1 D e autodetaching 
state. Here, the laser intensities considered are, in order of decreasing resonance 
peak height and in units of 1 0 n W/cm 2 : 0.1, 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 
3.0, 4.0, 5.0, 7.5, and 10.0. 
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Figure 5.18: A schematic diagram illustrating how the laser may produce a final 
state of LF° symmetry in the one-photon channel. By two-photon absorption 
to an autodetaching state, followed by one-photon emission (solid arrows). Also 
by one-photon absorption followed by the emission and subsequent re-absorption 
of a photon (dashed arrows). These two pathways may interfere. 
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Appendix A 

First-order perturbation theory 

A . l Principles 

To calculate leading-order perturbative expressions for the laser field induced shift 
A a . c . , and width T, of the energy of the ground state, one may begin by expanding 
the quasienergy for state in terms of the amplitude of the vector potential of the 
laser field, A0. That is 

E = E ( 0 ) + A 0 E { 1 ) + A2

0EW + ... (A . l ) 

Similarly, the Floquet harmonics may be written 

FN = F i 0 ) + A0F£] + A 2 4 2 ) + . . . (A.2) 

such that when both expressions are substituted into the Floquet coupling equa
tion 

(E + Nhu - Ha) FN = y+Fyy-i + V ^ F N + L (A.3) 

where, in the velocity gauge 

T , . ieh d — 
V ± = A'2^cTr = A°V- ( A - 4 ) 

one arrives at, in effect, a power series expansion of the Floquet coupling equation 
in terms of A0. The term Ha is the field-free Hamiltonian of the square-well. 
Collecting together the terms in this expansion with common factors in A0 yields, 
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Terms in A®: 
(EW + Nhw - Ha) = 0. (A.5) 

For N = 0, this differential equation is identical to the field-free Schrodinger 
equation for the square-well and thus Fq 0 ) must be equal to the field-free eigen-
state, tp. For N / 0, the only solution can be that F$ = 0 since these harmonics 
cannot exist without the presence of the laser field. 

Terms in AQ: 

(£<°> + Nhco - Ha) F ^ + E^F™ =VFSU +VFSI,. (A.6) 

For N = 0 we have 

( £ < 0 > - f f A ) F 0

{ 1 ) + £ < L > F 0

( 0 ) = 0 (A.7) 

which yields 

(A.8) F ( 1 ) _ (Fl0)\EM - Ha\F^) 

However, equation (A.5) stipulates that the numerator in the expression for E^ 
must be zero and so, therefore, must E^. For N — ± 1 the differential equation 
(A.6) yields 

(E^ + hu-Ha)Fi1) = F F 0

{ 0 ) (A.9) 

( F(o) _ h u _ # o j F ( \ ) = y F W ( A 1 0 ) 

Note that in each of the above equations we have taken into account the fact that 
E™ = 0 and that F$ = 0. 

Terms in A%: 

(f?<°> + Nhco - Ha) F^ + E^F^ = V F ^ + V F ^ . ( A . l l ) 

Multiplying this equation, with N = 0, from the left by Fg 0 ' and integrating over 

all space yields 

( F f | F ( o ) _ H a l F ( 2 ) } + E ( 2 ) ( F ( o ) | F ( o ) ) = { F ( ° ) | i 7 | F ( i ) ) + (Fi0)\V\Fi\ (A.12) 

The first term in this expression must be zero because of expression (A.5). The 
remaining terms then define the leading-order correction AQE^2\ to the field-free 
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ground state energy Eg, in terms of the field-free ground state wave function 

•0, the photon absorption/emission operator A0V, and the leading-order terms 

A0F$, in the Floquet harmonics F ± 1 . 

A . 2 Floquet harmonics 

The leading order term in the Floquet harmonics F ± 1 can be determined via the 

solution of equations (A.10) and (A.10). The solutions for the internal region 

\x\ < L, will be distinct from those for the external region |x| > L. We shall 

consider these two solution types in turn. 

A.2.1 The internal region 

The field-free ground state wave function in this region has the form 

•0 = CCOS(K0X) (A.13) 

such that equation (A.10) becomes 

( * + n i ] F ^ = - ( ^ ) s i n M (A.14) 
\dx2 J V he 

where 

C = \j k o ^ ° + 1 and KN = ^2m(V0 + Nhuj + Eg). (A.15) 

The complementary function for this differential equation (i.e. with the right 

hand side set to zero) is 

F^l) = Ai sin(«ia;) + Bx COS(KXX). (A.16) 

Since the ground state wave function has even parity, Fx must have odd, and 

so B\ = 0. The particular integral (inhomogeneity) for equation (A.14) is easily 

found so as to yield 

F,{1) = A l S in ( /c ix) - Csm{n0x). (A.17) 

The same method applied to equation (A.10) gives 

FlV = A^sinUxx) + (mm.) Csm(K0x). (A.18) 
\2mauJ 
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A.2.2 The external region 

The field-free ground state wave function in the external region has the form 

if) = C cos{n0L)e-k^x-L) (A.19) 

such that equation (A. 10) becomes 

where 

kN = ^2m(\Eg + Nhu)\). (A.21) 

Here it is assumed that the one-photon absorption channel is closed and, as 

such, will contain only exponentially decaying terms. However, were the 

one-photon absorption channel open, one would simply have to make the substi

tution k\ —> —iki such that contained the exponential e l f c l X, representing an 

outgoing wave as required for an open channel. 

The complementary function for equation (A.20), for the region x > L, is 

clearly 

F t

( 1 ) = Bxe~klX (A.22) 

and, together with the particular integral, the general solution reads 

F[l) = Bxe-^x - (-^M Ccos(K0L)e-k^-L\ (A.23) 
y zmcuj J 

The same method applied to equation (A.10) gives 

F{2} = B^e~k^x + ( C c o s ( K 0 L ) e - k ^ x - L \ (A.24) 
\2mcu) J 

The corresponding solutions for the region x < —L are easily obtained from the 

above two solutions by making the substitutions k^ —> — k^ (except for k0 in 

C), L —> —L and B±\ —> — B±\. With all the solutions in hand, it is then a 

simple matter to determine the amplitude terms B±i and A±x. This is done by 

stipulating that the Floquet harmonics be continuous at the points x = ±L. The 

solutions, and the gradients of the solutions, for the internal region must be equal 

to those of the external region at x = ± L . 
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A.3 Matching the solutions 

Since the square-well is symmetric, we need only consider matching the Floquet 

harmonics at the point x = L, since continuity at this point automatically ensures 

continuity at the point x = —L. Adhering to the notation of Chapter 3, we shall 

denote the Floquet harmonics for the internal region and external region (x > L) 
as F$ and F$ respectively. 

We require that 

F i? (L) = F |? (L) and £F£}(X)\L = £F£1(X)\L (A.25) 

which, when applied to equations (A.17), (A.18), (A.23) and (A.24), and after a 

little algebra, yields 

A±L = ±C ( ^ - ) ( ; S +

f f : ° S ( K ° L ) , . . . (A.26) 

and 

B±i = A±x sm(K±lL)ek±iL. (A.27) 

The leading order term AQE(2), in the quasienergy, can now easily be evaluated. 

Formally, it is 

<F<Vo(OI> ( ' 
which, upon performing the integration over all space (internal and external re
gions) gives 

E" = - (drr) (s^y ( K»+* cos2(K»L) „?±1

 NY»IZ» ( A M ) 

where 

YN = , 9

 K N O , {ho COS(KNL) - KN S\I\(KNL)) - fcjv—- s\n(KNL) (A.30) 
( K Q KN ) (k0 + k N ) 

and 
ZN = KN COS(KNL) + kN s\n(KNL). (A.31) 
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Appendix B 

The dressed one-dimensional 
square potential 

B . l The potential 
The one-dimensional square potential is defined as 

in the centre-of-mass frame. In the Kramers-Henneberger frame we have 

x —> x — a0 s in(r) (B-2) 

where 

«o = ^ (B.3) 
moo 

and T = cut. Then, wr i t ing V(x — a 0 s i n ( r ) ) = V ( r ) , we have 

V ( T ) = { ~ ( L ~ X ^ a ° ~ S [ n ^ ~ ( L + X ^ a ° (B 4) 
1 0, \x\ > L -f- o;o 

thus 

VAr(a0;x) = ±- f 2 V ( r ) d r (B.5) 

and by the definit ion of V ( T ) we have 

V d r ( a 0 ; x ) = - [e\-V0)dr (B.6) 
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where 

and 

9o = s i n" 1 - L — x 
a0 

. _! (L + x\ 
0i = sin . 

Thus, i f \x\ < L + a0, then 

V0 Vdr{a0;x) 
7T 

. . _ i (L x 
7r + A sin 1 

a0 

B sin" 1 (L + x 
a0 

where we have used the fact that 

sin 1 (— z ) = TV + sin l(z). 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

The coefficients A and/or B are equal to unity when the argument of the s i n - 1 

funct ion, to which either one corresponds, has a magnitude less than or equal 

to unity. Otherwise, the coefficient is zero since the s i n - 1 function is undefined. 

Thus, i f \x\ > L + ao, then V j r = 0. 

B.2 The number of bound states 

A n estimate of the number, N, of bound states of the dressed potential can be 

obtained [7] f rom the expression 

/

oo 
\x\\Vdr{x;a0)\dx 

-oo 

which, f rom the expression (B.9), and in the l imi t (XQ —> oo, gives 

TV < 1 + 72 

where 7 — \/2mVoL/h and j3 = a0/L. 

( B . l l ) 

2 I f , (B.12) 
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Appendix C 

i?-matrix Floquet Theory 

Consider an atom, of nuclear charge Z, possessing N + 1 electrons. Irradiated 

by an electromagnetic field, wi th a vector potential A(r,t), the non-relativistic, 

time-dependent Schrodinger equation for the system, in the Coulomb gauge, reads 

d ( 1 N + l 1 N + l \ 
i—*(X.N+l,t) = ( # N + I + - £ A&,t).pi + — Y / A 2 ( r ^ ) j * ( X N + l , t ) , 

( C . l ) 

in atomic units. Here, X j v + i = {x\, ...,XN+\} denotes the set of N + 1 electronic 

space and spin coordinates, Xj = {fi^u^i}; and p , = —iV^ is the momentum of 

the i t h electron. The field-free Hamiltonian reads 
N+l , -, 7 X N+l i 

* W = T. ( ~ v ? - f) + T. f • (c .2) 
i=l v z ' l / i<j=l 

The laser field is represented classically, in the dipole approximation, as a linearly 

polarised, spatially homogeneous mono-mode vector potential 

A(t) = eA)Sin(wt) , (C.3) 

where ui is the angular frequency and e the polarisation unit vector of the field. 

W i t h this vector potential the Schrodinger equation becomes 

i J ^ ( X * + l , t ) = ( H N + l + -cA(t).PN+l + ^ ± J - A 2 ( i ) ) ( X „ + 1 > t ) , ( C 4 ) 

where 
N+l 

P N + l = £ p<. (C.5) 
i=l 
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Configuration space is split into two regions. The first , known as the internal 

region, is defined by a sphere of radius a, centred upon the atomic nucleus. In 

this region, the radial coordinates of all TV + 1 electrons satisfy < a, and the 

charge distr ibution of the residual atom or ion is considered to be contained, such 

that exchange effects between all TV + 1 electrons must be considered. The length 

gauge is used in the internal region, for reasons of improved convergence. In the 

external region, i t is assumed that only one of the TV + 1 electrons can be found 

(the photoelectron) while the remaining TV electrons of the residual atom are 

confined wi th in the sphere of radius a. Thus, exchange effects between the outer 

electron and the inner TV electrons can be assumed negligible. This enables the 

use of a close-coupling expansion without exchange terms. In the external region, 

the velocity gauge is used out to some large distance a! where a transformation 

to the Kramers-Henneberger frame is made. Figure C . l illustrates the divisions 

of configuration space. 

Internal 
Region 

(N+l)-electrons 

Length or 

Velocity Gauge 

External Region 

1 electron 

Velocity Gauge Kramers-Henneberger 
Frame 

Figure C . l : Division of configuration space. 

C . l The Internal Region Solution 

The internal region is defined as that region enclosed by a sphere of radius a 

which just envelops the charge distribution of the residual atom or ion. Since in 
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this region, the spectrum of the system is purely discrete, standard Hermitian 

Floquet theory can be used. 

C . l . l The Length Gauge Solution 

We start w i th the Schrodinger equation satisfied by the total wave function (C.4) 

and apply the following unitary transformation 

* { X N + l , t ) = exp ( - ^ A ( * ) . R J V + I ) L ( X J V + 1 , t ) (C.6) 

where 
N+l 

K N + 1 = (C7) 
i=l 

Substituting (C.6) into (C.4) gives 

i J U ^ X J V + I , t ) = ( H N + l + F ( t ) . R N + l ) * L ( X „ + 1 , t ) (C.8) 

where the electric field F ( t ) is given by 

F(t) = ~ ^ A ( * ) = i F o cos(wt). (C.9) 

Applying the Floquet ansatz, we assume a quasi-periodic t ime dependence of the 

wave funct ion which can be expanded into its time independent components and 

introduce the expansion 

+00 
* L { X N + u t ) = e x p ( - i E t ) exp{-\nivt)^(XN+l). (C.10) 

n=—00 

Substituting this into (C.8), using (C.9) and equating 

the coefficients of exp[— \(E + noo)t] gives the system of coupled equations 

( 7 W - E - n w ) ^ + DL

N+L + 1) = 0 (C.11) 

where 

DN+I — ^OZ-HN+I- (C.12) 
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Regarding the harmonic functions a s components of a vector \ipL) in photon 

space, one can express ( C l l ) in the formally equivalent matr ix notation 

( H L — E)\ipL) = 0 (C.13) 

where H L is the Floquet Hamiltonian. This Hamiltonian is not Hermitian over 

the internal region. This problem occurs also in the field-free case, and is due to 

surface terms at r = a which arise f rom the V f term in HN+\. These terms can 

be removed by the addition of a Bloch [11] operator L b , so that the Hermit ici ty 

of H L is restored. Therefore (C.13) can be wri t ten as 

( H L + L b - £ ) | V L ) = L b|</>L) (C.14) 

where 

Lb = \ £ l # ( V i ) W r ; " a) ( ± - ^ ) ( 0 [ ( \ r , ) | . (C.15) 
T j j \ 3 3 / 

Here b is just an arbitrary constant, while the 4>\ are channel functions formed by 

coupling the atomic target states and pseudo states included in the calculation 

wi th the spin-angle functions of the scattered or ejected electron j to give a state 

wi th quantum numbers T, where 

<l>i(Vj) = 0 j , ( x 1 ) . . . , x i _ 1 ) X j + i , . . . x ^ + 1 , r i a i ) , (C.16) 

and 

T = ^LSMLMS7T. (C.17) 

Note that \rj means that the radial coordinate of all electrons are included except 

the jth. L and S represent respectively the total orbital angular momentum 

quantum number and total spin quantum number, while ML and Ms are their 

corresponding magnetic quantum numbers, ir is the parity of the N + 1 electron 

system and 7 specifies the remaining quantum numbers required to completely 

define the channel. 

A t this point, the /^-matrix basis expansion can be introduced 

^ ( X J V + X ) = AYJ¥l{\r])r-luT

l{r])oFlM + ( X w + i ) & L (C18) 
r« n 
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which is similar to the basis used in the field-free case. A is the antisymmetrisation 

operator and the the continuum orbitals, u\ are radial basis functions that are 

non-vanishing on the boundary of the two regions of configuration space, that 

is, at r<i — a. They represent the radial component of the wave function of the 

outgoing photoelectron (hence "continuum"). Conversely, the L 2 functions x\ a r e 

vanishingly small at this boundary. They are known as "correlation" functions 

and consist of two-electron bound state configurations formed by coupling any 

two of the target states together. Their role is to model correlation and resonance 

effects. The quantities a^ni and are obtained by diagonalising H L + L b 

H + Lv V>]b) = EkSkk> (C.19) 

where \ipl) is the vector in photon space whose components are ip\n. The inte

gration in (C.19) is performed over the internal region of space. By projecting 

the formal solution of (C.14) onto the channel functions <f>\(\r7) and onto the nth 

component of photon space, evaluating on the boundary at r = a, one obtains 

the R-matrix, defined as 
i L r L r ' 

L p I T ' 1 Wink Wi'n'k' t r o n \ 
Kini'n' Kb) - Y a 2^ — E k - E — ^ ' 

such that the wave function on the boundary of the inner region can be expressed 

in terms of the i?-matrix by 

Vi'n' dr 
bF, v 

n' (C.21) 

where the reduced radial functions are defined as 

F$n,(rN+l) = r N + l ( f i ( \ r N + l ) \ \ t f l ) (C22) 

and the fl-matrix surface amplitudes 

L « L = « ( # ( W ) I I V £ ) | r K + I = « . (C23) 

Equation (C.21) demonstrates the relationship between the wave function of the 

ejected electron on the boundary to its logarithmic derivative in terms of the 

7?-matrix; i t is this property which makes the .R-matrix ideal for matching the 

wave function. The equations (C.20) and (C.21) define the inner region solutions 

to the original Schrodinger equation, (C.4). 
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C.2 The External Region Solution 

Because the ejected electron is now outside the enclosure of the inner region, we 

can assume that i t is far enough away from the N inner target electrons so that 

exchange effects between the ejected electron and the remaining elections can be 

ignored. We can also say that the correlation effects wi l l be unimportant, and 

so the wave function can be represented accurately by a simple unsymmetrised 

close-coupling expansion. In the length gauge the F. r ;v+i coupling term would 

explode as r N + i —>• oo, so a velocity gauge formalism is used here to describe the 

interaction between the field and the (N + l ) t h electron. The following unitary 

transformation is applied to (C.4) 

* ( X W + 1 , t) = exp (-±A(t).KN - / ^ 2 W ) * V ( X J V + 1 , t) (C.24) 

where 

U<a * = 1,2, . . . TV r N + l > a (C.25) 

and where HN is defined by 
N 

Riv = £ r i . (C.26) 
i=i 

Substituting this into (C.4) yields 

\ - < f v ( X N + u t ) = [H%+1 + F(t).RN] V V ( X N + U t ) (C.27) 

where the Hamiltonian H^+l is given by 

H%+1 = H N - \ V 2

N + 1 - — + £ , 1 + - A ( t ) . p N + l . (C.28) 

HN is the field-free Hamiltonian describing the nucleus and N inner electrons. 

Equations (C.28) and (C.27) show that the TV inner electrons are treated in the 

length gauge, f rom the F ( t ) . R w term, while the ejected or (N + l ) t h electron 

is treated in the velocity gauge, f rom the ( l / c ) A ( f ) . p term. The outer electron 

has now escaped f rom the enclosure of the inner region and is treated using the 

velocity gauge in the external region. 
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However, another gauge is possible in the external region. A t some large 

radius a' a transformation to the Kramers-Henneberger frame can be made. By 

the following unitary transformation 

* v ( X N + 1 , i ) = exp ( - I p ^ . y " A( t ' ) c f t ' ) * K - H - ( X A r + 1 > i ) (C.29) 

the Schrodinger equation becomes 

. d 
\ ^ K l i ( X N + l , t ) = [H™i + F(t).RN] * K - H - ( X J V + 1 > f ) (C.30) 

where 

1 Z N 1 
H%-*{ = HN - - V 2

N + l - — —— + tz v——rr ( c- 3 1^ 
2 l r i v + i + a I i = l \ r N + i + oc - Ti\ 

and 
1 rl 

a{t) = - A(t')d{t') = ia0cos(ut) (C.32) 
C J 

and where a0 = F0/tu2. The major difference between (C.31) and (C.28) is that 

the radial coordinate of the ejected electron, r N + i , is replaced by 

\TN+1 + a(t)\. (C.33) 

The advantage is that the coupling of the field dies off as r N + i —> oo. In this case 

(C.31) reduces to the field-free Hamiltonian and the coupling of the channels by 

the field vanishes as r^+i —» oo. I t is then possible to impose simpler asymptotic 

boundary conditions for the ejected electron, analogous to field-free processes. 

As in the internal region, to transform to a t ime independent picture f rom 

the time dependent Schrodinger equation (C.27) the Floquet-Fourier expansion 

is introduced 

+ 0O 

tfv(Xjv+1,t) = e x p ( - i E * ) Y , exp{-\nwt)^(XN+l), (C.34) 
n=—oo 

where now the Schrodinger equations become 

(H%+1 - £ v - nu) 1% + DN + r f t + l ) = 0 (C.35) 
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and where is the operator 

Dh

N = ^FQe.RN (C.36) 

The I/J^ can be thought of as components of the vector \tpv) in photon space, and 

so (C.35) can be expressed as 

( H v - E v ) | V V ) = 0. (C.37) 

In the inner region the i?-matrix basis expansion was introduced to solve a 

similar equation, so that important correlation and exchange effects could be 

accurately represented. However, in this region, exchange effects between the 

(N + \ ) t h electron and the N target electrons are negligible, and i t is possible 

now to introduce a close coupling expansion 

C ( X W + 1 ) = £ # ( \ r „ + 1 ) r ^ + 1

 WG\n{rN+l) (C.38) 
r, 

for the components of where the expansion over V and i is over the same 

range as in the inner region basis expansion. Substituting this into (C.37), pro

jecting onto the channel functions $^(\rN+i), and onto the nth component of 

photon space yields the set of coupled differential equations describing the mo

tion of the ejected electron in the electromagnetic field 

~ ^ P 1 + m

T

m + k>') V G . » M = 2 £ V W £ ? * M V G k ( r ) 
V / F'i'n' 

(C.39) 

where r = rN+i and where r N + i > a. ii is the orbital angular momentum of the 

scattered electron in the i t h channel, 
k\n = 2 ( E v - ui + nco) , (C.40) 

where u>i is the energy of the atomic target state. What remains to be defined 

are the long range potentials coupling the channels, vW[r^',ni. Separating H^+1 

into its field-free components means that (C.35) can be expressed as 

( H N + l - £ v - nu) ^ + DN + V 7T + i) + ^ - P N + I ( C - i + C + i ) = 0. 
(C.41) 

The coupling matr ix wi l l consist of three types: 
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• The field independent bi-electronic interaction arising f rom the interaction 

of the outer electron wi th the remaining" target electrons, given by the term 

k iv+ i - r j | _ 1 in H N + l . 

• The target electron-field interaction, due to the DN operator. 

• The ejected electron-field interaction from the (A0/2c)e.pN+i term. 

We can then write the potential coupling matr ix in matr ix notation, 

W = W E + W D + W P (C.42) 

where W E , W D and W p represent in turn each of the above three types of 

coupling. In the field-free case, the W D and W P vanish, and we are left wi th the 

W E coupling. 

C.3 Matching the Internal and External Region 
Solutions 

Before the set of coupled differential equations (C.39) can be solved for V G , the 

conditions that VG must satisfy at the boundaries r = a and r = a' must be 

known. The fl-matrix defines a relationship between the solutions and their first 

derivatives on the boundary of the internal region. The internal region calcu

lation has been performed in the dipole length gauge, for convergence,reasons. 

Therefore, to match the solutions at the boundary, we have to transform the in

ner region length gauge solutions to the corresponding velocity gauge solutions, 

or equivalently, perform a gauge transformation on the length gauge i?-matrix 

to the velocity gauge. Then the transformed 7?-matrix provides the boundary 

conditions for VG in the external region. 

C.3.1 Matching the Internal Region Solution 

A t the internal region boundary, we know the inner region solutions L F , and we 

want to obtain the boundary conditions satisfied by the external region solutions, 
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VG at this boundary, so that (C.39) can be solved for VG. These boundary 

conditions can be obtained from the i?-matrix equation (C.21) by performing a 

unitary transformation f rom L F in the internal region to VG in the external region. 

This transformation matches the total wave function ^ ( X / v + i , t) f rom each of the 

two regions at the boundary between them, obtained f rom the transformations, 

(C.6) and (C.24). These equations yield 

* V ( X / V + 1 ) t) = exp f A2(t')dt' - -cA(t).rN+^) < f L ( X N + l , t) (C.43) 

where 

Ti < a i = l,...N r N + l = a (C.44) 

I f we express the vector potential explicitely as A(t) = iA0smcot, the integral in 

(C.43) can be calculated simply and so we can wri te 

( A 2 A0 \ 
e x P ( ~ L ° 9 s\n(2iot) - i — e . r N + l sin(utf) . (C.45) 

\ ou)Cl c J 

The first exponential is of the form exp(\EPt), where EP is the ponderomotive 

energy of the (N + l ) t h electron and is given by 

= g = K (C46) 
4c 2 OJJ1 

Expanding the second term of (C.45) in a Fourier series, and introducing the 

Floquet-Fourier expansions for <]/L ( C I O ) and ^ v (C.34) we can write 

V G = A . L F , (C.47) 

by projecting onto the channel functions <j>\ and evaluating on the boundary, 

rN+i — a, and using the definitions of L F and V G , where A is the matr ix whose 

elements are 

AS'n> = (RNl+i $(VN+I) | / n - n ' ( A 0 , r N + L ) \ r j , l

+ 1 ^ ' { \ r N , (C.48) 
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where 
+00 / A2 \ / A \ 

/ , ( A 0 , r w + 1 = £ J f ' W ^ ) Jt-2e\-fe.rN+A (C.49) 

where Je is an ordinary Bessel function of order L A t this point we have a 

relationship between the reduced radial functions in the internal region and the 

external region, and i f we want to match at the boundary by means of/^-matrices, 

then we need to f ind a relationship between V G and its first deriative, d v G / d r . I f 

we differentiate both sides of (C.47) wi th respect to r, and use the matr ix relation 

(C.21) between the radial function and the 73-matrix in the internal region, upon 

setting 6 = 0, one obtains 

V G = a v R ^ . (C.50) 
dr 

Hence we can express the .R-matrix in the velocity gauge on the boundary in terms 

of the transformation matr ix A and the internal region length gauge .R-matrix, 

as 

R = a'1 A. ^ + a - 1 A . L R - 1 

dr 
(C.51) 

C.3.2 Matching the External Region Solution 

Having propagated the i?-matrix f rom the inner region boundary r = a to the 

external region boundary r = a', we perform an asymptotic expansion at r = a' 

which w i l l return a matr ix of solutions V G that satisfy known boundary conditions 

as r —> 00. I f we use the Kramers-Henneberger frame then, at large r, where r > 

a' we have shown how the coupling of the field vanishes and so field-free boundary 

conditions can be imposed. The corresponding solutions in the velocity gauge can 

then be obtained by considering the asymptotic part of the transformation f rom 

the Kramers-Henneberger frame to the velocity gauge. 

In the Kramers-Henneberger frame, the asymptotic solution ( r w + i — > 00) 

corresponding to a channel in which the total system has absorbed n„ photons is 

given by 

K.H i ( X , + 1 ) t ) ~ £ k ' O ^ e - ^ - ^ r - ^ K *-Gv{rN+l) (C.52) 
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where the atomic channel functions (j>v are of the form 

< M W + i ) = E {IvMiJvmtvlLvMLvKSvMsyimvlSvMsv) 
Mivmlu 
Msvmu 

X ( f ) l / ( X N ) Y e i / m ^ ( r N + l ) x i m ^ { ( J N + l ) . (C.53) 

In the absence of field, LU is the total orbital angular momentum quantum 

number, Su the total spin quantum number, MLV and Msv the corresponding 

magnetic quantum numbers. i v is the orbital angular momentum quantum num

ber of the outer electron, the corresponding magnetic quantum number and 

mu the electron spin magnetic quantum number. The ^ ( X j v ) are the field-free 

target wave functions, characterised by the quantum numbers, l^.S^^M^ and 

Ms„- The 0„/„ are the elements of the matrix O that diagonalises the coupling 

W . 

Considering a radial function K H G„(rjv+i) of the form 

K H-Gv{rN+l) = -i= exp [\0„{rN+r)} (C.54) 

where 

Bv = k u r N + i - ~ ^ i / 7 r - r)v ln(2/c„r) + otu{v\v) 

rju = - z / k v 

a M = 2 i l n { r ( / y + i - i ^ ) ) - ( c - 5 5 ) 

and the quantity kv is the asymptotic momentum in channel v. 

Using (C.52) to (C.54) and upon transforming f rom the Kramers-Henneberger 

frame to the velocity gauge, one finds that, in the l im i t r N + x —> oo, the asymptotic 

form of the solution is 

vMX*+ut) ~ E E ^ ' ^ v e - ^ - ^ ' ^ ^ f J ^ — e i M ™ + 1 > . (c.56) 
s i ? v*" 

where 

167 



E {l»"MivJ„me„\Lul,MK„) {lvlMK,t^mtv\Lv,MLv) 

(2^ + l)(24 + l ) ' 
( ^ t - | m , J ) ! ( 4 - | m , J ) ! l " 
( ^ + | m J ) ! ( 4 + | m J ) ! j 

r ' d x P ^ ' C x J P ^ ' ^ J n ^ ^ C - ^ o o a : ) . (C.57) 
J 0 

where we have made use of a generating function for the Bessel functions, of the 

orthonormality of the spherical harmonics and the summation rules of Clebsh-

ordan coefficients. 

We can express equation (C.56) in matr ix notation as (r = r N + i ) 

tfv ~ e - i £ t - i n w S $ O A ( a s y ) e i 6 > - ^ - . (C.58) 

This suggests an asymptotic expansion of the form 

0 0 _ / i l l 
* v= E e ^ - ^ ^ O A W e ^ - p -. (C.59) 

Inserting equation (C.59) into the Schrodinger equation we get a set of differential 

equations w i t h solutions of the form 

These solutions are of the form e x p { i # ( r ) } corresponding to an outgoing spher

ical wave, which is relevant for the mult iphoton ionisation problem. For the open 

channels, the (complex) value of the momentum k lies close to the positive real 

axis and we have purely outgoing waves. For the closed channels the asymptotic 

energy has a real part that is less than zero, and we must choose the branch of 

the square root funct ion such that the value of the momentum is close to the 

positive imaginary axis. Then the outgoing-wave asymptotics yield a function 

that decays exponentially. 

The total energy E appearing in the Schrodinger equation in the presence of 

a laser field is the same in the Kramers-Henneberger frame and in the velocity 

gauge, and so are the channel energies. Only in the Kramers-Henneberger frame, 
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where the channels are asymptotically uncoupled, can we interpret the quantities 

n and £ as the number of real photons exchanged and as the angular momentum 

of the outer electron. 

I f we wri te the asymptotic solutions as 

m 
F " ( r ) = £ w„„<(r)av, i / = l , . . . ,m (C.61) 

i/'=i 

where we have m channels, they satisfy the simultaneous equations 

x'v = 0. (C.62) 

An iterative method is used to f ind the complex quasienergy E = Eo + A — iT/2 

at which the determinant of the matrix is zero (E0 is the unperturbed energy 

of the in i t ia l state, A is the stark shift and T is the total ionisation rate). The 

solution vector x is then found as the right singular vector corrseponding to the 

zero eigenvalue of the matr ix in square brackets, while the components of x in the 

open channels give the relative probability amplitudes for ionisation. I t is f rom 

these we are able to obtain partial ionisation rates and angular distributions. 

w. 
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