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Proton Structure from Deep Inelastic and
Diffractive Scattering

Abstract

We investigate various aspects of the proton structure in this thesis. The first ad-
dresses the distribution of the proton spin among its constituents, quarks and gluons.
We derive the framework of distribution functions for these constituents and study the
properties of the polarized distributions which describe the spin structure of the proton.
A determination of the polarized distributions on the basis of present experimental data is
presented and options for future measurements are critically evaluated. A second aspect
under consideration is the phenomenology of hard diffractive electron—proton scattering.
We show how diffractive interaction and hard scattering can be disentangled and suggest
experimental tests for this interpretation. Finally, we illustrate how the knowledge on
the proton structure can be used for the computation of observables in proton—antiproton

collisions, confirming or extending our knowledge of the physics of elementary particles.
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Chapter 1
Introduction

One of the primary objectives of physics is the understanding of the fundamental con-
stituents of matter and their interactions. The historical development of physics has
taught us that particles, which appear to be fundamental at first sight, display a rich
substructure if looked at closely enough. Even the smallest crystal is made out of mil-
lions of atoms; an atom consists of a nucleus surrounded by a cloud of electrons; any
atomic nucleus contains a certain number of protons and neutrons, and even protons and
neutrons are not yet fundamental. If probed at sufficiently small scales, they display a
complex internal structure. Some aspects of this structure are studied in this thesis.

In the remainder of this chapter, we will outline a formalism which enables us to
describe the form and structure of the proton. A model for the structure of the proton
and the nature of its go_nstituggts will be outlined in Chapters 2 and 3. In the framework
of this nlgdel,—\;e will study the distribution of the proton’s spin among its constituents
in Chapters 4 to 6. An extension of this model to the diffractive scattering of electrons on
protons is attempted in Chapter 7. We will furthermore demonstrate in Chapter 8, how
precise knowledge on the proton structure can be used to compute observables in collider
experiments, which can confirm or extend our present understanding of particle physics.
Finally, Chapter 9 summarizes the main results presented in this thesis. Two appendices

contain mathematical and computational methods used to obtain these results.




1.1 Probing the proton structure

A microscope can help us to resolve objects which are too small to be seen with the
naked eye, such as the cellular structure of plants and tissue. It therefore appears to be
natural to assume, that even the structure of atoms, nuclei or protons can be studied
under a microscope with sufficient resolution. This resolution is however limited by the
wavelength of the light used in the microscope, as described by Rayleigh’s criterion [1]. If
the object lens covers an angle 20 when viewed from the probe, a minimum separation

of
A

sin ©

can be resolved with light of wavelength A. To resolve structure in the proton, a microscope

Alpin = 0.61

would have to operate with wavelengths at least a billion times smaller than visible light.
Light at such small wavelengths cannot be deflected by lenses anymore, making a study
of protons under a microscope unfeasible.

Electrons of these wavelengths, corresponding to beam energies Eje., & 1 GeV, can
be focused with magnetic fields, scattered electrons are relatively easy to detect. Fur-
thermore, electrons appear to have no internal structure up to the smallest scales probed
at present, their dynamics are well understood. The proton structure can therefore be
probed by scattering an electron beam off a proton target. Two substantially different

cases of electron-proton scattering have to be distinguished*:

- 1.1.1 Elastic scattering: Form factors

An electron scattering elastically off a proton has interacted with the proton as a whole,
not just with one of its constituents. The distribution of elastically scattered electrons
therefore contains information on the form of the proton, not on its internal structure.

The electromagnetic vertex for the interaction of a point-like proton (mass M) with a

1The dynamics of electron—proton scattering are discussed in most textbooks on particle physics, the

treatment presented here follows the book of Halzen and Martin [2].



virtual photon of momentum gq is

q

, p’ = —ie [7“ + %id’“’q,,] , :
(1.1)

where the second term takes account of the anomalous magnetic moment of the proton
pp = (14 &) e/(2M), k = 1.8. Using this vertex, the elastic electron—proton cross section

per unit of solid angle in the proton rest frame can be calculated:

do a® F k%q? o 0 2 . 20
a0~ 1E?sin’ gf{(l B 4M2) o5’ 3 = 577 77 (14 ) i 2 (1.2)

where a ~ 1/137 is the electromagnetic coupling constant, and the energies of the incom-

ing (outgoing) electron are denoted by E(E’). The angle © is defined between incoming
and outgoing electron directions, the invariant momentum transfer to the proton can be
measured by ¢ = —2EE'(1 — cos ). Deviations from the above prediction were observed
in 1955 [3], only two years after the first measurement [4] of elastic electron—proton scat-
tering. This observation provided the first experimental evidence for a finite size of the
proton.

The vertex (1.1) can be generalized for an object of finite size by introducing two
independent form factors F; and F3, which depend on the invariant momentum transfer

q*

q

& V , = —Zg[Fl(q2)7“ + WF2( 2) Z.U“uq,,} .
p p (1.3)

The scattering cross section (1.2) reads then [5]:

do o FE . K4, 2 0
m‘wzsin‘*gf{(FI o °°s§"2M2

(Fy + £F,)? sin g} (1.4)
The above result is simplified by introducing electric and magnetic form factors [6]

- kq*
Ge = h+55h



Gu = K +«F, (1.5)

yielding
do o E (GL+7G} ,0 6
—_— = ([ZE M - 4+ 27G2, sin? — .
a0 4E2sin4g-E( T1r o gTZrCusina), (19)
with 7 = —¢%/4M?. These form factors can be interpreted as Fourier transformations of

the radial charge and angular momentum density in the proton.
The above scattering cross section has been measured up to momentum transfers of

—q% ~ 10 GeV?. The results [7] can be well parametrized in the simple form

2 -2
(1+K,)GE=GM=(1 1 ) ,

0.7 GeV?
a good approximation of the vertex factors is hence given by
4M? — 2.8¢7 1 ’
Rle) = gt 5)
4M? — ¢ 1 —¢2/(0.7 GeV?)

\ 4M? 1 2
B@) = 4M2—q2(1—q2/(0.7GeV2)) ' (1)

Using the above form factors, one can estimate the mean charge radius of the proton to
be about 0.88 - 10~"%m [7].

1.1.2 Inelastic scattering: Structure functions

The inelastic scattering of an electron on a proton target can — in analogy to inelastic scat-
tering in classical mechanics — have two different outcomes. If the energy deposited inside
the-proton is smaller-than the typical binding energy of Vits—édngi;itualis,“tﬂé ;rot;x_l will
only be deformed, i.e. excited to resonant state (electro-excitation of nucleon resonances).
Provided the energy deposit exceeds the typical binding energy of the constituents, the
proton will be destroyed, yielding a final state with several particles.

The first process allows an indirect, spectroscopic study of the proton as a bound
state of its constituents. It does not yield conclusive information on the nature of the
constituents and on their dynamics. This information can only be obtained from the

second process, which is called “Deep Inelastic Scattering (DIS)”.
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e(k’)

e(k)

Figure 1.1: Kinematics of deep inelastic scattering

Definition Experimental Observable | Description
s=(P+k)? s=M?*+2ME Invariant centre-of-mass energy
R*=—-¢*=(k—-FK)? Q* =4EF’' sin*$ Invariant momentum transfer
v=(p-q)/M v=E—F Energy of the virtual photon

M = (P +q)? M% = M? + 2Mv — Q? | Invariant mass of the final state
X X Invarian s h al state |

z= Q% (2P q) = Q*/(2Mv) ‘Scaling variable’

y=(P-q)/(P k) y=(FE-E)/E Fractional photon energy

Table 1.1: Kinematical variables in deep inelastic scattering

The kinematical situation [8] of deep inelastic scattering is illustrated in Fig. 1.1. The

commonly used DIS variables are listed in Table 1.1. It should be noted that, given a fixed



centre-of-mass energy 4/s, only two of the remaining variables are independent. These
are usually chosen to be z and @2, for reasons which will become clear in Section 2.4. It
should be noted that all experimental definitions of the kinematical variables refer to a
setup with an electron beam onto a fixed proton target.

The differential scattering cross section for inelastic electron—proton scattering can be
expressed as the product? of a leptonic tensor L,, and a hadronic tensor W**
2

do _ a
dE'dQ ~ 16 E3 E'sin? %—

LW, (1.8)

The leptonic tensor describes the emission of a virtual photon off the incoming electron,

it can be calculated from first principles and reads for an electron of given helicity A:
1 .
L, =2 (kuk,', ok, = 5@ — i) e,,,,,,,,k”k"’) . (1.9)

The hadronic tensor contains all information on the proton structure. Its most general
decomposition contains all possible combinations of the four-vectors characterising the
photon—proton interaction: the proton momentum P, the proton spin S and the photon

momentum g:

M 0 ‘ E-F
P 0 , 5= sin v cos ¢ ’ .= —FE'sin®

0 sin ¥ sin ¢ 0

0 cos ¢ E - F'cos©®

~Currént conservation and invariance under charge c_oirvljrug‘ziti-on, parity and time reversal
reduce the number of independent functions, such that

v v, ¢ 1 P v P,
ww = - (gp + Q? )WI(V,Q2)+ Mz (Pp + quq”) (P + quq W2(V1Q2)
rtzemng, (5, (611 @) + EL6a0, @) - 2L PGyv, @) - (110)
M2 qP o 1 ’ M2 2 V’ M2 o\T2 V’ . .
ZNote that the normalization of the hadronic tensor is a matter of convention. We adopt the convention

of [2, 8}, such that the hadronic tensor of a point-like target would be L** /(47 M).




The functions W (v, Q?) are called unpolarized structure functions, G; 2(v, @?) are po-
larized structure functions.

The differential cross section (1.8) can then be expressed in terms of these structure
functions. For future convenience, we decompose the cross section into a spin averaged
and a spin dependent part:

do =do + %/\ Ao
The unpolarized cross section can then be written as [9]

do
dEdQ 4E2 sin

TS [2W1(u @?) sin’ 9— + W (v, Q%) cos? —] (1.11)

The polarized cross section can be further decomposed into longitudinal and transverse
contributions, depending on the spin orientation of the proton. The angle formed by the
proton spin and the electron spin is denoted by 1,b,' the projections of the outgoing electron
momentum and the proton spin onto the plane perpendicular to the incoming electron

direction form the angle ¢. The polarized cross section reads then:

Ao = -—% cospAoy, + %Sin PpAor
dA 402 E'
dE'Z?) = Mng (E + E' cos ®)MGi(1,Q") - Q*Ga(v,Q")]  (112)
dA 208 E"?
dE’:;l = —cos ¢M3Q2 E sin©® [MGl(u Q%) + 2EG, (v, Qz)] (1.13)

Instead of measuring the absolute cross sections for different spin configurations, it is

—- ~more convenient to perform asymmetry measurements. The longltudlhal spin asymmetry

is defined as the difference between the cross sections for antiparallel () = ) and parallel

(¥ = 0) spin orientations
AU[,
25

The transverse spin asymmetry is the difference between opposite transverse orientations

A= (1.14)

of the proton spin for fixed lepton helicity:

A cos
AL = _“1”210—¢ (1.15)



We will give explicit expressions for these asymmetries in section 4.1.

The first unpolarized DIS experiments were carried out with the 20 GeV electron beam
at SLAC in 1967/68. First results from these experiments [10] displayed a behaviour which
was significantly different from the results of the earlier elastic scattering experiments.

The elastic cross section (1.6) falls rapidly below the cross section expected for a point-
like proton (1.2) as @Q? increases. On the contrary, the cross section for deep inelastic
electron-proton scattering at sufficiently large v appeared to be proportional to the cross
section for a pointlike target at all Q?. This scaling behaviour was the first evidence for
point-like constituents in the proton. The nature of these constituents will be discussed
in the following two chapters.

Similar measurements can be carried out with muon or neutrino beams. The cross
sections for electron-proton and muon—proton scattering are identical, they probe the elec-
tromagnetic structure functions. Neutrino-proton scattering probes the weak structure
functions of the proton, which are different from the above.

Soon after these first observations, a large programme of deep inelastic scattering
experiments was launched at SLAC, CERN and Fermilab. These experiments studied
proton, deuterium and nuclear targets, determining the unpolarized structure functions
to a high level of accuracy. Reviews of these experiments can be found in [11, 12].

A different kinematical configuration for the study of deep inelastic scattering is given
at the HERA electron-proton collider at DESY, where electron and proton beams are
collided at /s = 300 GeV, compared to /s < 30 GeV at fixed target experiments. This
allows one_to study the proton structure in-a different kinematical régime and enables
dedicated studies of the final state of DIS events. A final state configuration unique to
HERA, diffractive DIS, will be discussed in Chapter 7.

The experimental knowledge on the polarized proton structure is far more incomplete
than in the unpolarized case. First measurements of the longitudinal asymmetry (1.14)
were made at SLAC in 1976 [13], a first study of the transverse asymmetry (1.15) followed
only in 1994 [14]. An overview of the present experimental situation will be given in Sec-

tion 4.1. The experimental data available at present are used to estimate the distribution



of the proton’s spin amongst its constituents in Chapter 5. We will furthermore study,
in Chapter 6, how future experiments can yield a more precise understanding of the spin

structure of the proton.



Chapter 2

Quarks, Quantum Chromodynamics

and the parton model

The stability of the atomic nucleus — built up of positively charged protons and uncharged
neutrons — cannot be explained as the effect of the two macroscopic forces in nature:
the gravitational attraction between its constituents is far too small to compensate the
electromagnetic repulsion among the protons. Therefore a new, strong interaction has to
be present in the nucleus. A first formulation of the theory of the strong interaction [15]
predicted three massive particles (7%, ), which mediate the strong forces in the nucleus,
much like the massless photon mediates the electromagnetic interaction. The discovery
of the 7* [16] and #° [17] around 1950 gave strong support to this picture.

Soon after the discovery of the pion, experiments began to observe an_increasing- —

number of different strongly interacting particles with properties similar to the proton,
neutron and pion. This large number of new, apparently fundamental particles raised the
question whether these are made up from a smaller number of fundamental particles in
different configurations.

We illustrate in Section 2.1 how the spectrum of strongly interacting particles can be
explained in the static quark model. The dynamical interaction of quarks — the theory of

Quantum Chromodynamics (QCD) - is described in Section 2.2. QCD forms one of the

10



building blocks of the Standard Model of particle physics, which will be briefly sketched
in Section 2.3.

Taking the quark model literally, one could identify quarks with the point-like proton
constituents observed in DIS experiments. This identification is the basis of the naive
quark parton model, as described in Section 2.4, its implications on other experimental

observables are discussed in Section 2.5.

2.1 The static quark model

By the yeé.r 1960, about 25 strongly interacting particles (hadrons) were observed exper-
imentally. Their interaction laws and decay properties could be described approximately
by requiring conservation of three quantum numbers - isospin T3, baryon number B and
strangeness S — under strong interactions. The isospin is related to the symmetry between
proton (T3 = +1/2) and neutron (73 = —1/2) and among the pions (T3 = 0,+1), baryon
number discriminates between strongly interacting fermions (baryons, like p;n, B = 1)
and bosons (mesons, like 7%, B = 0). The third quantum number, strangeness, was
introduced to explain the anomalously large lifetimes of certain hadrons, justifying why
their decays can not be mediated by strong interactions.

It was shown independently by Gell-Mann and Ne’eman in 1961, that hadrons with
identical spin and parity quantum numbers could be classified into particular represen-

tations (multiplets) of the symmetry group SU(3) [18], their places within the multiplet

. determined by their isospin T3-and hyperchargeY-=B=S (Fig. 2.1).” —
An explanation of this complicated multiplet structure is given by the quark model {19,
which postulates the existence of three quark flavours (up, down and strange), which
form the fundamental triplet representation of the symmetry group SU(3); (Fig. 2.2). All
mesons can then be interpreted as quark-antiquark bound states, all baryons are bound
states of three quarks (Fig. 2.1).
The SU(3); symmetry of hadrons is in fact only approximate, as the hadron masses

within a multiplet vary. This behaviour can be explained in the quark model, if the s
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Figure 2.1: Multiplets of the J® = 0~ mesons (a), the 1/2* baryons (b) and the 3/2+
baryons (c) and their interpretation in the quark model. The T3 = 0, Y = 0 states in
(a) are superpositions: 7° = (u@t — dd)/v/2, 3® = (uit + dd — 233)//6, where 78 and the
singlet combination ' = (ui@ + dd + 35)/v/3 mix to give the physical states n and 5.

quark is heavier than the u and d quarks. Since the invention of the quark model, three
more quarks (charm, bottom and top) have been discovered, all being heavier than u,d, s.
Due to the large mass differences, it does not make sense to extend the SU(3); symmetry
to include these heavier flavours.

The interpretation of hadron multiplets as products of fundamental SU(3); quark

triplets is, however, not without conceptual problems. Having spin-1/2, the quarks must
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Figure 2.2: Fundamental representations of SU(3);: quark (a) and antiquark (b) triplets.

obey Fermi-Dirac statistics, i.e. they are forbidden to coincide in all their quantum num-
bers inside a hadron. Looking at the 3/2* baryon decuplet (Fig. 2.1c), we find that the
particles on the three edges (A**, A=, Q7) seem to contradict this principle, each of
them consists of three identically flavoured quarks, the quark spins pointing into identical
directions. This conceptual difficulty can only be overcome by introducing a new quantum
number, colour [20].

Quarks are assumed to carry one of three colours (red, green or blue), antiquarks one
of the corresponding anticolours. Hadrons are only formed of colour singlet combinations
of quarks and antiquarks: baryons consist of three quarks with different colours, mesons

of a quark-antiquark pair with identical colours.

2.2 Dynamical properties of quarks: QCD

The conservation of colour in quark-quark interactions gives rise to a new interaction,
which is described by the theory of Quantum Chromodynamics (QCD) [21]. Interactions
of quarks are mediated by the exchange of the gauge bosons of QCD, the gluons. The
structure of the colour symmetry group SU(3),. is more complicated than the structure of
the electromagnetic symmetry group U(1): while the quantum theory of electromagnetic
interactions (QED) only requires one uncharged gauge boson, the photon, QCD has 8

gluons which carry different combinations of colour charge. Apart from a coupling between

13



gluons and quarks, QCD predicts the self-coupling of gluons.
The Lagrangian density of QCD? is given by
1 Y =
L= "ZF:uF«f +Z'/)q [Z’Y“Dn _mq] Yy (2'1)
q
with

F2 = 9,A%-0,A% —gf AL A

nv nftvr

D, = 8, +igA°T.. (2.2)

The SU(3). symmetry determines the algebra of the T* matrices, in fixing the structure

constants fup.:
[Ta,Tb] — ifabcTc.

From the above, we can read off the QCD interactions: the covariant derivative D, gives
rise to a quark-gluon vertex, the contraction of the field strength tensors Fj; F** yields 3-
gluon and 4-gluon vertices. The parameter g in the above expression is the QCD coupling,
it can only be determined experimentally.

The colour structure of QCD is contained in the T matrices and their algebra. These
can be factored out in practical calculations, yielding overall colour factors. The most

common colour factors are:

3 z8: 4
! k ) = Créj=36;,
k=1a=1 Ta Ty I
a b b 1 b
= Tpé®=-§%,
=T T 2
8 60 Ty
3 b = Cl8%=36%, (2.3)

and furthermore Ty = ny Ty.

1 We will only give a brief outline of QCD in what follows, a more formal and complete treatment can

for example be found in [22]
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Like any other quantum field theory, QCD faces the problem that only the computa-
tion of the most simple (leading-order) contribution to a particular process yields a finite
result, whereas all higher orders contain infinities. These infinities are always associated
with an (unphysical) parameter 2, which has the dimension (mass)? and appears either as
cut-off in momentum integrals or as normalization constant in dimensional regularization.
Apart from infinities associated with particular configurations of particles in the initial
and final state, one finds certain infinities which appear to be process independent and
are associated with the QCD vertex functions. The universal infinities can be removed by
redefining the QCD coupling constant g in (2.1). This procedure is called renormaliza-
tion. The new, renormalized coupling is the sum of the original, bare coupling and terms
containing infinities. As both the bare and the renormalized coupling are required to be
dimensionless while the infinite terms contain the unphysical 4%, one has to introduce a
renormalization scale u%, at which the renormalized coupling is evaluated. Requiring the
bare coupling to be independent of u% yields a differential equation for the renormalized

coupling. If we denote a,(u%) = 4ng(p}), this reads [23]

3
i 28 5 (a2) = e [ 2:h)g, 4 (2 i"”)) o+ (22) ﬂz] ,
(2.4)
where the right hand side has been calculated in [24]. In the remainder of this thesis,
we will use only the solution of the above equation up to fy for quantities evaluated at

leading order and up to 3, for quantities evaluated at next-to-leading order.

Introducing a parameter A as constant of integration, one can solve (2.4):

2y _ Am BiIn (1n(#R/A2)))
«(r) = BTG A% (1 B (/A ) (25)
where
Bo=11 — 23ﬂ B =102 — 383”f . (2.6)

Measurements of the strong coupling constant yield A =~ 200 MeV for five active quark

flavours.
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Figure 2.3: The strong coupling constant a,(p?) as function of the renormalization scale
#, compared to experimental measurements. The curves correspond to a,(M2%) = 0.116 +

0.005. Figure taken from [25].

The running of o, is illustrated in Fig. 2.3, two characteristic features of QCD can be
read off:
Asymptotic freedom at high energies

At large scales the QCD coupling constant becomes small, i.e. quarks only interact very
weakly with each other and can be treated as free particles. This feature allows one to
calculate high energy processes in a perturbative expansion — a series in powers of a,.

Confinement at low energies

The rise of the QCD coupling towards small scales makes the theory uncalculable with

perturbative methods, as no small expansion parameter is present anymore. This strong
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coupling at low scales binds quarks together into hadrons. This phenomenon is presently
not yet understood theoretically, as no reliable method for precise non—perturbative QCD

calculations is available.

2.3 The other fundamental interactions: the Stan-

dard Model

Apart from QED and QCD, a third interaction is present on the level of elementary
particles: the weak interaction. This interaction is mediated by three gauge bosons: W#
and Z°, which couple to a quantum number called weak isospin2.

The electroweak gauge bosons have masses (My ~ 80 GeV, Mz ~ 91 GeV) due to
the breaking of the high-energy symmetry between electromagnetic and weak interactions
(Higgs mechanism). Although the weak coupling is larger than the electromagnetic cou-
pling, all low-energy effects of the weak interaction are strongly suppressed by the large
gauge boson masses, this interaction is only visible in nuclear -decay. The effective weak
coupling at low energies is given by

TO 1

F= AMZ, sin? Oy (300 GeV)? ’

G

where sin? @y = 0.232 is the ratio of electromagnetic and weak coupling constants.

A particular feature of the W and Z bosons is their coupling structure to fermions.
The W only couples to the left-handed fermions, and the couplings of the Z to left-handed
and right-handed fermions are different. This is expressed in couplings with vector and
axial vector contributions.

These three interactions form the basis of our current understanding of particle physics,
the Standard Model. Up to the smallest scales accessible at present (~ 10~'® m), the

Standard Model appears to be in very good agreement with experimental observations.

2We will only give a brief outline of basic features of the Standard Model, more complete treatments

are in the standard literature, e.g. [2]
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ef vy ay | Particles

2 1 4.2 1
2 = — 238in” O s lulec]|t
Quarks 3 2 3 2
1) 1 24in? -1
5 7+ 38in° Oy s|dls|b
Neutrinos { 0 % % Ve |V | vr
Leptons | —1| —2+2sin@w |—1]le|p |7

Table 2.1: Particle content of the Standard Model, electric charges ey, vector- and

axialvector-couplings v, a;. All particles are spin—1/2 fermions.

Only very recently, some evidence for deviations from the Standard Model has been
reported. These deviations will be discussed in more detail in Chapter 8.

The particle content of the Standard Model can be grouped into three generations of
quarks and leptons, which are listed in Table 2.1. The particles of different generations

have — despite their different mass — identical properties.

2.4 The naive quark parton model

The scaling behaviour of the DIS cross section indicated the existence of point-like con-
stituents (‘partons’) in the proton. With the quark model successfully describing hadron
spectroscopy, it would be natural to assume that these partons are in fact one d and two
u quarks, each carrying about a third of the proton’s mass.

R.P. Feynman developed a model for the proton structure which does not make any
assumptions on the nature of these proton constituents, the parton model. Using the
quantitative predictions of this model for the proton structure functions, one can test the
above interpretation of the proton structure in terms of quark constituents.

The kinematics of deep inelastic scattering are characterized by [26]

2
Q* o o0, v—ooo with ¢ = 2%!1/ fixed.

The parton model is formulated by choosing a frame, in which the longitudinal momentum
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of the proton approaches infinity in the above limit. Such a frame is given by the infinite

momentum frame, in which

v/ P% + M? 0

p 0 0
= ’ q= ’

0 0

Ps —J

with Pg = Mv//Q? = +/Q?/(2z). In this particular frame, one can make several as-
sumptions on the proton as seen by the electron. These assumptions form the concept of

the parton model for the structure of the proton; they are summarized in [27):

[In the infinite momentum frame)..., we visualize the intermediate state from which the electron scatters

as follows:

(8) It consists of a certain number N of free partons (with probability Py ).

(b) The longitudinal momentum of the ith parton is a fraction z; of the total momentum of the proton:
pi=z;P.

(c) The mass of the parton, before and after the collision is small (or does not significantly change).

(d) The transverse momentum of the parton before the collision can be neglected, in comparison with
\/(@?), the transverse momentum imparted as p — oo.

With these assumptions, it should be a good appraximation to write, at infinite momentum,

pf o g PH

At the time of interaction, the virtual photon therefore ‘sees’ one parton carrying a fraction
z; of the proton’s momentum, while the proton remnant carries a fraction (1 — z;), as
illustrated in Fig. 2.4. Although this state is not stable, its lifetime is much longer than
the time it takes the photon to interact with the parton.

Assuming the partons to be spin-1/2 particles, one can compute (1.11) for the elastic
scattering of the electron off the i-th parton, given a partonic charge e;. Comparison

of the expression obtained with (1.11) yields the following partonic contributions to the
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Figure 2.4: Deep inelastic scattering in the parton model.

proton structure functions:

2 2
(0O — 29 _Q
lel(”)Q ) - et 43:'2M26 (V 2$,M) ]

o) = (o oZs) -

We have to sum over all species ¢ of different partons to obtain the structure functions
of the proton. Furthermore, we must integrate the above expression over z;, weighted by

the probability. f;(€) of finding a parton in the interval [£; ¢ + dé]:
1 2
Wa(r,Q%) = Xi:e?/o d¢fi(§)é (V - 2?M)
= %Ze?f;(w)-

The above equation shows the scaling behaviour of structure functions: vW;(v, @?) only
depends on the scaling variable z in the deeply inelastic limit Q% — oo, v — co. It can
be interpreted as charge weighted sum of parton distributions fi(z).

Similar scaling properties hold for the other proton structure functions [26)

MW;(v,Q*) — Fl(x)=%z_6?fi(-’f),
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vWa(r, Q%) — Fy(z) =) elzfi(a),
7O = o) =3 T EALE),

L 6@ ~ ale), 28)

where Afi(z) = f}(z) — f}(z) denotes the difference between the distributions of partons
fi with spins parallel and antiparallel to the proton spin. The structure function g,(z)
cannot be interpreted in terms of parton distributions.

If the quark model is sufficient to describe the proton, one would expect distributions

for v and d quarks, which are both peaked around z = 1/3, with

1 1
/(; fulz)dz =2 and/(; fa(z)dz=1.

Comparing these model predictions with data from the first DIS experiments {10} shows
already the failure of this simple picture. The data on vW, appear to be constant for
z — 0 while the integrability of the distributions requires F3(z) — 0 for z — 0.

This apparent discrepancy can be explained by assuming that the three valence quarks
predicted by the quark model are accompanied by a sea of quark-antiquark pairs [27].
The sea does not contribute to the macroscopic quantum numbers of the proton and can
therefore contain an arbitrary number of pairs of different flavours.

As the proton and neutron are related by isospin symmetry, one can obtain the parton
distributions in the neutron from the distributions in the proton by interchanging u and

d quarks:

fapn(@) = fupp(@)s  furn(@) = fapp(2)s  Sayn(@) = fusp(2),  fapn(2) = fapp(2)-

A common simplification of notation is the labelling of parton distributions by the symbol
of the parton species, i.e. u(z) = f.(z), Au(z) = Af,(z), etc. Both notations will be
used in the remainder of this thesis.

When the quark parton model was postulated in 1969, the dynamics of quarks were

not yet understood; QCD only followed in 1973. Although QCD introduces corrections
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to the parton model, the global picture as derived in this section still remains intact. We

will discuss these corrections in Chapter 3.

2.5 Implications of the parton model

If the partonic interpretation of the proton structure is correct, it should not only describe
the proton structure function, but also other observables in electron-hadron and hadron-

hadron collisions. The parton model predictions for these observables are given by:
oevier = 3 [ A2 fin(2) berir (@), (29)
OhidhomF = D3, / dzy dz; fim (21) fifne(22) Gitjmr(21,22) (2.10)
i

where F denotes the particular final state under consideration, f;/ is the distribution of
parton ¢ in hadron h and & is the cross section on the parton level

The first observable of this type was suggested by Drell and Yan [28]: the production
of lepton pairs in hadron-hadron collisions due to quark-antiquark annihilation (Fig. 2.5).
One usually studies this process as a function of the invariant mass of the lepton pair M2.
The parton level cross section is given by

dé  4no?

dM? ~ 93

e28(5 — M?), (2.11)

where 8§ = x,2,s is the centre-of-mass energy of the quark—antiquark pair. Introducing a

scaling variable 7 = M? /s and considering the asymptotic limit
M? 5 00, s — 00 with 7 fixed,

the proton-proton cross section can be written as

2
M d‘zz - 41r9a T /01 dzy dzy (2120 — 7)Y ej {fo(z1) f5(z2) + (¢ © )}
- 47r9a2 Tj:‘(,,.), (2.12)
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Figure 2.5: The parton model description of the Drell-Yan process.

where the last relation demonstrates the scaling behaviour of the Drell-Yan cross section
in the parton model.

The experimental observation [29] of this process in 1970 was the first success of the
parton model. Nowadays, a multitude of other observables in collider experiments can be

described in a similar way, an overview can be found in [25].
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Chapter 3

The evolution of parton

distributions

So far, we have considered the quarks of the parton model to be static noninteracting
objects. This naive picture can, however, not be true anymore in QCD, where quarks are
constantly interacting by emission and absorption of gluons.

The naive quark parton model picture can be largely maintained even in QCD, al-
though some corrections have to be applied. Apart from the quark distributions, a sizable
distribution of gluons is found in the proton. Quarks and gluons are dynamically inter-
acting inside the proton; if the distributions are probed at increasing values of Q?, more
and more of these interactions will be resolved: the scaling behaviour of the naive quark
parton model is violated in QCD.

We will quantify these effects in the following chapter. Section 3.1 motivates QCD
corrections to structure functions using a particular example and demonstrates how these
corrections lead to scaling violations. These scaling violations yield evolution equations
for unpolarized and polarized parton distributions which will be presented in section 3.2.
Expanding quark and gluon contributions to the structure functions order by order, one
obtains a consistent picture of deep inelastic scattering in QCD; the relevant formulae

for a treatment of cross sections and structure functions at next-to-leading order are

24




summarized in Section 3.3. Finally, we will describe in Section 3.4 how the distribution

functions for quarks and gluons in the proton can be determined from experimental data.

3.1 QCD corrections to the naive parton model

In the QCD-improved parton model, we have to consider a more complicated photon—
parton subprocess than in the naive parton model (cf. Fig. 2.4). We will illustrate this in
the case of the structure function F3, a similar argumentation applies to all other structure
functions.

A parton ¢ of momentum p; carrying a fraction £ of the proton’s longitudinal momen-

tum can contribute to Fy(x,Q?) via a parton level subprocess. This subprocess
Fi(5, Q)7 +i - X)

is characterized by two invariant variables: QZ?, the virtuality of the photon and the
photon-parton centre-of-mass energy, more conveniently denoted by the dimensionless
variable z = Q?/(24- p;). The subprocess can be projected out of the hadronic tensor {30].

Integrating over all allowed values for £ and 2z, we obtain the structure function
1 1 A .
~Fy(2,Q) = % [ dedzb(z — 26) £i(€) Fai(2, Q%) - (3.1)

In the QCD-improved parton model, this parton can be a quark as well as a gluon:
fi(€) = q(£),3(€),G(€). We will elaborate the structure of the QCD corrections for
the quark-initiated £} ,(z,Q@?) process in what follows. The process Fy,(z,Q?) can be
described in the same formalism, only the lowest order contribution is absent, as gluons
do not couple directly to the photon.

At lowest order, one finds (Fig. 3.1.a)

F(2,Q%) = €28(1 - 2),

recovering the parton model result of (2.7). The QCD corrections from real gluon emission

and virtual gluon exchange are due to the diagrams in Fig. 3.1.b-d. Integration of these
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Figure 3.1: Partonic contribution to deep inelastic structure functions: lowest order quark

subprocess (a) and its O(«,) corrections (b-d).

contributions over the appropriate phase space yields at first sight an infinite result: the
virtual contribution (d) diverges, if the gluon momentum becomes small; contributions
(b/c) diverge, if the gluon momentum becomes collinear to the incoming/outgoing quark
or small. In order to regulate these divergencies, one can evaluate the above contributions
in d = 4 4+ 2¢ dimensions, which yields the following contribution [30] to the structure

function

@) =g () (P9 +dio+00), @2

where an arbitrary mass parameter u? has been introduced to maintain a dimensionless
coupling constant. Explicit forms for Pq((?) and cglg will be given later. It is apparent from
the above equation that only a partial cancellation of singular terms has taken place.
The leftover 1 /e-term can be identified with the initial quark/gluon collinear divergence,
which is not canceled by any other contribution to this process.

As the left hand side of (3.1) is a finite, experimentally observable quantity, this
divergence has to be compensated by a similar divergence in the bare quark distribution

q(€). We can decompose! the bare quark distribution g(£) into a finite, ‘renormalized

1This decomposition is not unambiguous, as one could add an arbitrary finite term into the bare parton
distribution. The particular choice of finite term defines the renormalization/factorization scheme. The

results given below correspond to the so-called modified minimal subtraction (MS)-scheme.
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parton distribution and an infinite contribution. To keep both distributions dimensionless,

a mass factorization scale pi. has to be introduced, compensating the unphysical scale u?,

00 = ae) - s () 2 [ LrP@aern. 69

The renormalized parton distribution ¢(¢, u%.) now depends on the chosen mass factoriza-
tion scale.
The mass factorization procedure removes all infinities from the right hand side of

(3.1), in the case of a quark in the initial state, it yields the replacement

9(5) ﬁ‘li(z: Q2) - ‘1(5, F%)CZC‘M(Z, Q2a l‘%‘)’

where the coefficient function
Cualsr @) = 801 = )+ 22 (P90 1 4 (2

contains two contributions at O(a,): a left-over term from the mass factorization pro-
cedure, which vanishes if u2. = @2, and a term containing the finite corrections from
(3.2).

Requiring the bare parton distribution ¢(z) to be independent of the mass factorization

scale chosen yields an evolution equation for the renormalized parton distribution

gy aeid) = [ Z SR alel5,1). (3.4
The above equation is the most simple of the “Dokshitzer—Gribov-Lipatov-Altarelli-
Parisi” (DGLAP) [31] evolution equations. Its solution depends on the boundary condi-
tions imposed at a certain scale Q2. These are typically given in the form of an initial
distribution ¢(z,@2). An explicit solution for these boundary conditions will be derived
in the appendix.
The DGLAP evolution equation has a simple probabilistic interpretation. As Q? in-
creases, the available final state phase space volume becomes larger. It becomes therefore

more lfkely that the incoming quark emits a gluon into the final state, losing a fraction 1—2
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Figure 3.2: Interpretation of the DGLAP evolution equation: ladder of gluon emissions.

of its initial longitudinal momentum before interacting with the photon. The probability
for such a single parton splitting grows like
Q?

as
— Pq(o)(z) In = o?

2T

if @? is increased from Q? to Q2. The function
_p(D)( )

quantifying this probability is called splitting function, it is related to the ¢ — ¢ splitting
process illustrated in Fig. 3.3.

If we consider a given initial distribution ¢(z, Q%) with Q3 < @?, a large number of
these splittings can occur, resulting in a ledder of gluon emissions (Fig. 3.2). A ladder

with n rungs contributes to the structure function with terms of O(a? In" Q?) and less
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singular terms, as the phase space for these contributions takes the form

[ dh i dhra g By 1o Q°
kb k%, k3 nt
The solution of (3.4) resums only the most singular contributions from ladders with any
n. The resulting distribution ¢(z,Q?) therefore contains all QCD corrections which are
proportional to O(a? In” Q?).

The first subleading corrections to the above formalism are of the order O(a” In™~* Q?).
These can be resummed into ¢(z, @?) by solving (3.4), if the next-to-leading order correc-

tions to the splitting function are included:
SO — 2P0+ (S2) PG,

It has to be kept in mind that the resummation at next-to-leading order only contains
terms accompanied by InQ?, i.e. n > 2. The n = 1 term is in fact the c;,4(2) from (3.2).
A description of Fy(z,Q?) at next-to-leading order in this formalism is therefore only
consistent if the splitting functions are truncated to O(a?) and the coefficient functions
are truncated to O(a,).

The most important consequence of these QCD corrections to the naive parton model
is the violation of the scaling behaviour of parton distributions. These scaling violations
— the explicit dependence of the parton distributions on Q2 — can be understood as due to
multiple emission of collinear particles off the incoming parton and yield correction terms
of O(a,;1nQ?). The experimental observation [32] of these scaling violations was one of

the first confirmations of the theory of QCD.

3.2 Evolution equations

The evolution equation (3.4) is strictly speaking only valid for non-singlet combinations
of quark distributions, such as the valence quark distributions ¢, = ¢ —§. A more rigorous
treatment must include the possibility of any parton species (quark, antiquark or gluon)

splitting into any other parton species. At O(a,), only the splittings denoted in Fig. 3.3
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Figure 3.3: Parton splitting processes at leading order. Splitting processes involving

antiquarks can be trivially obtained from the above and are not shown.
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Figure 3.4: Parton splitting processes only occuring in higher orders, 7 and j can denote

identical or different flavours.

are possible. The splitting of a quark of certain flavour into a quark of different flavour
or into an antiquark are only possible at O(a?) (Fig. 3.4).
Including all possible splitting processes, the evolution equation (3.4) generalizes into

a set of coupled evolution equations:

alz,Q) | { Poas(2) + Poga(2) Pug(2) Y [ ar(2/2,Q?)

Q2 : =/lif : " : : :
Q% | Gu(z,Q? 2 2| Pro(2) r Prg(2) Prg(2) | | @(z/2,Q?)

G(z,Q%) Pon(2) or Poga(2)  Foy(2) G(m/z,Q2)( )
3.5

where
as 8
1’,’:’(2):%1),'(?)( )+( ) Pj(il)(z)+...

and n denotes the number of quark flavours active in the evolution (see the discussion in
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Appendix B.3.1).
The above set of 2n + 1 coupled equations can be simplified to 2n — 1 uncoupled and

2 coupled equations by introducing the following combinations of quark distributions:

Q1+(z, Q2) = qz, Qz) + 41 (z, Qz) - @z, Qz) — @z, Q2) ’

(a2, @) + 6(2,@9) — —= (2(2, @) + 8:(=, @Y) ,

man) - QI(Z’Q2) ’

!
ML

Qn-1,4(2, Qz)
Q,'_(m,Qz) = 4

N

Qn,—(x, Qz) = qn(m’ Q2) - qn(m’ Qz) ’
22, = 3 (a2 Q) + a2, @) - (3.6)

i=1

The Q;+(z, Q%) are called flavour non-singlet distributions and @Q; - (z,Q?) are called
valence non-singlet distributions, alternatively denoted by the name of the corresponding
quark species: u,(z,Q?) = u(x,Q?) — i(z,Q?),... . The sum of all quark distributions
¥(z, Q%) is called the quark singlet distribution.

In terms of these combinations, one can write the DGLAP equations [31] as
0 1dz :
Q2in,+($,Q2) = L — P+ (2)Qin(e/2,QY)  (i=1...n-1),
2 0 2 1dz 2 :
P39 = [ ZPu (D5 QD) (G=1..m),
BQ z 2
in 3(z, Q%) — /1 dz Prs(z) Fyl2) 2(z/2,Q?) (3.7)
9"\ G(=,Q" = 2\ Pu() Pol2) | \ Gla/2Q?)
The leading order splitting functions P}? )(z) have been calculated in [31], the next-to-
leading order corrections Pj(,-l)(z) were derived in [33]. Their explicit form is stated in

Appendix B.2. With given initial distributions for all quark flavours and the gluon, these

equations can be solved as described in Appendix B.3.
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The quantitative effects of QCD evolution on the unpolarized parton can be under-
stood from simple dynamical arguments: With increasing Q?, all distributions decrease
in the large-z region and increase in the small-z region, as more and more partons with
small momenta are radiated off. This rise is particularly emphasized in the sea quark and
gluon distributions at small z. The small-z rise of the gluon distribution is due to the
generation of a large number of soft gluons in the evolution process. A fraction of these

gluons splits into quark—antiquark pairs, causing the rise in the sea quark distribution.

3.2.1 Extension to polarized deep inelastic scattering

The treatment of the polarized structure function ¢:(z,Q?) in perturbative QCD is very
similar to the treatment of the unpolarized structure function Fy(z,Q?). Like in the

unpolarized case, we can denote the contribution of a parton i to g:(z,Q@?) by
gl,i(z) Q2)(7* +1—- X))

defined by an appropriate projection onto the hadronic tensor [34]. The structure function

then reads
1
201(2,Q%) = ¥ [ d¢ dz8(z - ) A€ 31:(2,@?)

where Af;(§) = Aq(z), Ag(z), AG(z) is a bare polarized parton distribution. The contri-
butions from the quark initiated subprocesses in Fig. 3.1 take the form [34]

i,QY) = €1 -2),

. o, 1 47Q?\° /1
1= Q) = T g ( u?) (F8POE) + A=)+ 0(9)) .

Carrying out the mass factorization procedure on the above expressions yields a renor-
malized quark distribution Ag(¢, #%) and a coefficient function AC,(z, @?, z%). The po-
larized quark distribution obeys the DGLAP evolution equation (3.4) with a polarized
splitting function AP, (2).

Like in the unpolarized case, a complete treatment has to incorporate all splitting

processes displayed in Fig. 3.3 and Fig. 3.4, resulting in coupled evolution equations
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(3.7) for the polarized quark, antiquark and gluon distributions Ag(z,Q?), Ag(z, @?),
AG(z,Q?). These equations are controlled by polarized splitting functions AP;;(2), which
have been derived in [31] at leading order and in [35] at next-to-leading order in QCD.
Explicit expressions for the polarized splitting functions are summarized in Appendix B.2.
The qualitative aspects of the polarized evolution will be studied in detail in sections 4.3

and 4.4.

3.3 Structure functions in the QCD corrected par-

ton model

The previous sections have demonstrated that the description of deep inelastic scattering
in QCD is most convenient in the variables z and Q2. In these variables, the DIS cross

sections (1.11), (1.12) and (1.13) read

O 2 2,2
da:d(;‘Q2 - iWQa“ [(1 —y- 749 ) Fy(2,Q%) + mygFl(w,Qz)] ) (3.8)
d Tol 2,2 2
nig = o [(1 -5 %) 91(2,Q") - "Q—Egz(m,QZ)] . (39)
dAc 2 2.2
da:szTM = “’°34’8va 1-y-1 47 [%gl(w,Q2)+gz(m,Q’)] ,  (3.10)

where v = 2Mz//Q? is a target mass correction factor.

Deep inelastic scattering can be viewed as the absorption of a virtual photon by the
proton. The DIS cross section can then be decomposed into absorption cross sections for
the longitudinal and transverse components of the virtual photon. The transverse cross
section is proportional to Fj, the longitudinal cross section to Fy, = (14+v2)F;—22 F;. The
ratio of longitudinal and transverse absorption cross sections is commonly abbreviated by

R = Fi/(2zF}). Replacing

Fi(z,Q%) = 2—1m- [(1 + 4% Fa(2, Q%) - Fi(z,Q?)]
L
2z (1+ R(z, Q%))

1 + 7)) Fy(z, Q%), (3.11)
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the unpolarized cross sections expressed in terms of F; and Fy, (or R) read:

_ \ , ) | 2
TiF 1o [(1 -+ f’—(z—:l—)) Pl @)+ Fule, Q)]

_ 4rd? y? v*4*(1 — R(z, Q%))

- et [1 YT RE, Q) T 41+ Rz, Q) ] Fy(z,Q%)(3.12)

In practice, the target mass correction factor v is small, terms proportional to it can be
neglected.
The structure functions Fy(z,Q?), Fr(z,Q?) and g,(z,Q?) are expressed in terms

of quark and gluon distributions by convoluting these with the appropriate coefficient

functions:
1dz Q? T [z
Fane,@) = = [ 5 efcans (= F) [o(S02) +a(52)]
1 Q? T
+'n_fC(2.L).9 (Z, E) G ('z‘) #%‘) } ) (313)
1 f1dz Q? z Sz
2 —_ -~ 2 e e 2 el 2
a(z,Q%) = 2/2 - ;eq{ACq (z, ﬂ%) [Aq (z,up) +Aq(z,up)]
2
+—AC, ( < ) a6 (2,u) } , (3.14)
nf V4

where the coefficient functions read in the MS scheme [36, 37, 38]?

2

Q) _ a, 2 3 Q
C’Z‘Q(Z,”T) = 6(1—2)-*—51—;0}:'{[( )+—1—z+56(1—z)]1n”—%‘—

1—-2

F
I .‘lﬂ(.l —-Z)v 3/ 1 - - 1+~22
+2 (—1—.7) -3 (=), -+ amE -2 - Tz
+
+3 422 — (g+2(2) 5(1_2)} ,
Q2 o 2 (1 — Z)Q2 ) .
Cayg (z, Py = Ty 12(1 — 2z + 22°)In ") —162° + 16z — 2| ; (3.15)

2The coefficient functions as given here are truncated up to @(a,), which is sufficient for a treatment
of the structure functions at next-to-leading order. The ((a?) corrections (30, 34] and parts of the O(a?3)

corrections [39] are known as well.
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Q2 Q,
CL,q (Z, —#%‘ = -2; CF 22,
Q* @,
CL,g (2, ;2; = g Tf82(1 - Z); (316)

Q? _ Qs 2 3 Q?
AC, (z,,—t—%-‘-) = 5(1_Z)+gCF{l(l—z)+—1_z+§6(1—z)] lnl—;g'-
In(1 — 2) 37 1 1+ 22
+2(1—-z'—)+'“2'(1—z)+—(1+z)ln(l_z)_ 7=, n*
+2+z—(§+2C2) 6(1—z)},
Q*\ _ a, (1-2)Q?
AC, (z,;%-‘) = E;Tf [2(2z—l)ln—zu%——+6—82] : (3.17)

All information on perturbative QCD corrections to the naive quark parton model is
contained in these coeflicient functions and in the factorization scale dependence of the
parton distributions, determined by the splitting functions. Perturbative QCD is however
only able to predict the change of the parton distributions with increasing scale, not their

explicit form at a particular scale Q2.

3.4 Parton distributions

The dynamics of quarks and gluons at scales corresponding to the mass scale of the
proton cannot be described with perturbative methods anymore, and non-perturbative
techniqes are not yet sufficiently developed to give reliable predictioils. The distribu-
tions of partons in the proton, reflecting these bound state dynamics, can hence not be
computed with present methods. In recent times, some progress towards a calculation of
these distributions has been made. Using a formulation of QCD on a discrete space-time
lattice, the authors of [40] were able to estimate some moments (cf. Section 4.2) of the
polarized and unpolarized quark distributions.

Instead of attempting to compute these distributions from first principles, one can

parametrize the present lack of understanding of QCD at low scales in the form of initial
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Figure 3.5: Unpolarized parton distributions obtained from a global fit to experimental
data [41]. The sets (G) and (A’) correspond to different estimates for the behaviour of
the gluon distribution at small z, set (A) is from a previous analysis [42] and shown for

reference. Figure taken from [41].

distributions at some scale Q_?,. In the case of the unpolarized distributions, these are
characterized by ~ 20 parameters. Using the distribution at @2 as input to the evolution
equations, the parameters are then fitted to experimental data on structure functions and
related quantities at higher values of Q2.

Global fits of unpolarized parton distributions are available from two groups [41, 43],
which differ slightly in their data selection criteria and in the functional form chosen to
parametrize their initial distributions at Q5 ~ (1...4) m2. A somewhat different approach
(‘dynamical parton model’) is presented in [44]: the distributions are fitted at a scale far
below (@2 ~ 0.3 mz) the proton mass scale, requiring both quark and gluon distributions

to be valence-like. The singular behaviour of the sea quark and gluon distributions for
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x — 0 is then generated purely by perturbative evolution. All three sets [41, 43, 44]
differ only within a few percent, which reflects the high precision of the experimental data
entering into the fit. We will demonstrate in Chapter 8 how these distributions can be
used to make precise predictions for observables in proton-antiproton collisions. As an
example, Fig. 3.5 shows the parton distributions obtained in [41].

A determination of the polarized distributions Ag(z,Q?), Ag(z,Q?) and AG(z,Q?)
has to rely on fewer, less accurate data. A global fit of these distributions has therefore to
be supplemented with additional constraints on the distributions. We will motivate these
constraints in the following chapter and apply them in a global fit of polarized parton

distributions in Chapter 5.
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Chapter 4

The spin structure of the proton

The treatment of the proton structure in the previous chapters always included the un-
polarized as well as the polarized structure functions and parton distributions. In this
and the following two chapters, we will focus on the polarized proton structure. This
chapter introduces some of the specific features of the spin structure of the proton, while
the following two will focus on the determination of polarized parton distributions from
present and future experiments.

The polarized structure function g, (z, Q?) is measured far less accurately than the un-
polarized structure function F3(z,Q?). We summarize the experimental results available
at present in Section 4.1. An important aspect of the spin structure of the proton are the
Bjorken and Ellis-Jaffe sum rules. Their origin and implications will be discussed in Sec-
tion 4.2. Some basic properties of the polarized parton distributions will be summarized
in Section 4.3. Finally, we will discuss the behaviour of polarized parton distributions in

the limit £ — 0 in Section 4.4.

4.1 Experimental results

Experimental measurements of polarized deep inelastic structure functions require both

the incoming lepton beam and the proton target to be polarized. While lepton beams
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are often polarized naturally, proton polarization inside the target can only be obtained
with dedicated target setups. Polarized targets are usually at least an order of magnitude
smaller in size and density than unpolarized targets. Measurements of the polarized DIS
cross section are therefore far less accurate than their unpolarized counterparts. The
accuracy of polarized structure function measurements can be increased, if the polarized
cross section is evaluated by multiplying the experimental asymmetries (1.14) and (1.15)
with the known unpolarized cross section.

If the asymmetry measurement is carried out at sufficiently large Q?, target mass
corrections can be largely neglected. The asymmetries are then directly related to the

ratios of structure functions. Keeping only the dominant target mass terms, (1.14) and
(1.15) read:

M= @) = D (M0 +r 5L e ),

2 —
a = D2 Iyy (A2

(0" -7 52 4w, Q")

where
Me@) = 2ETTand), @)
Az(m,Qz) = Y (gl(m}?lzlj'Qg;;(m7 Q2)) , (4-2)
y(2-y)

D

¥ +2(0 - )1+ RE,QY)) - (43)

D is the fraction of lepton polarization transferred to the virtual photon. If target mass

corrections can be neglected completely, one obtains a simple form for the longitudinal

asymmetry

M@, Q) = DA(2,@7) with 4,0 = BT (44)

which is normally used to extract the structure function ¢;(z, @?) from experimental data.
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Experiment Beam | Beam energy | Target | Q% (GeV?) x Results
E80/E130 (SLAC) e 20 GeV P 3.5-10 | 0.180-0.7 | [13]

EMC (SLAC) n 280 GeV P 1.5-70 { 0.010-0.7 | [45]

SMC (SLAC) w 100-200 GeV | p,d 1-60 | 0.003-0.7 | [46, 47, 48]
E142 (SLAC) e 30 GeV n 1-10 | 0.030-0.6 | [49]

E143 (SLAC) e 30 GeV | p,d 1-30 | 0.029-0.8 | [50, 51]

Table 4.1: Fixed target experiments on polarized deep inelastic scattering.

The measurements of the structure function g;(x, @?) off proton, neutron and deuteron
targets which have been carried out so far are summarized in Table 4.1. These experimen-
tal results will be used in Chapter 5 to fit the polarized parton distributions in the nucleon.
Another experiment, HERMES (DESY) has recently presented [52] its first, preliminary
results on the neutron spin structure function ¢7(z,@?). Apart from the above g;(z, @?)
measurements, SMC and E143 have performed a measurement of the transverse asym-
metry [14, 53], which has been used for a first determination of g;(z,Q@?). Furthermore,
E143 has studied the asymmetry A;(z,Q?) in the region Q? < 1 GeV? [54].

So far, the polarized proton structure has only been probed in deep inelastic scatter-
ing. Various future experiments intend to study other hard processes involving polarized

protons. An overview of these experiments will be given in Chapter 6.

42_ Sum rules

Neither polarized nor unpolarized parton distributions can be calculated from first princi-
ples with present techniques. Certain aspects of the distributions can however be inferred
from the properties of the proton as a whole, such as its quantum numbers and its prop-
erties in the hyperon multiplet (Fig. 2.1.b).

These macroscopic properties can be related to integrals of the structure functions or

40




the parton distributions over the scaling variable z. These integrals, weighted by a certain

power of = are called moments, the n-th moment of a function f(z) is defined as

fa= /01 " ! f(z)dz.

A simple example of the physical content of certain moments are the second moments of
the unpolarized quark and gluon distributions. To conserve energy and momentum of the

proton, these should add up to unity

/0 ‘2 (2(z,Q%) + G(z,Q%) dz =1, (4.5)

which has to be imposed at Q2 and is preserved under perturbative evolution. Unfor-
tunately, no similar relation can be constructed for the polarized distributions, as the
proton spin receives contributions from polarization and orbital angular momentum of
the partons

1

5= Ln(@) + L@+ [ (5A5(,Q") + AG(z, @) de. (4.6)
No experimental or theoretical information on L,x(Q?) and L,c(Q?) is available at
present, this equation can consequently not help to constrain the first moments of the
polarized quark and gluon distributions.

Information on the first moments of the polarized quark distributions can be gained

from two sum rules [55, 56, 57) relating the first moment of the polarized structure function

Q) = [ (e, QY de (4.7)
to the weak decay constants of hadrons in the 1 /2t multiplet (Fig. 2.1). Due to the chiral
coupling of the W-boson, these weak decays receive contributions from hadronic vector
and axial vector currents in the SU(3); octet. All axial vector currents within the octet

can be expressed as combinations of the two diagonal octet currents a3 and ag, which are

measured to be [58, 59]

as = 1.2573 +0.0028,

as = 05794+ 0.011.
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The precision on a3 is naturally higher, as it can be determined from the neutron 3-decay
only.
The first moment of g,(z, Q?) probes the axial vector current between two identical

nucleon states, which contains contributions from octet and singlet currents

. 1 1 1
Ff‘ = :I;Ea;; + %as + §a0 . (48)

The quark model interpretation of the SU(3); octet relates these currents to the first

moments of the polarized parton distributions

/ " (Au(z) + Au(z) - Ad(z) - Ad(z)) de,

a3

w = [ ' (Au(e) + Aa(e) + Ad(z) + Ad(z) - 288(z) — 205(2)) da, (4.9)

w = [ ' (Au(2) + Au(z) + Ad(z) + Ad(z) + As(z) + A3(z)) dz = / ' A(c)ds.
According to (3.14), two different QCD corrections apply to (4.8). The first moment
of the coeflicient function is a power series in a, and the first moments of the parton
distributions can have a non-zero Q*-dependence due to scaling violations. Due to the
vanishing first moment of AP, ;(B.33), the flavour non-singlet combinations a3 and as
are unaffected by these scaling violations. On the contrary, a¢ is only scale independent
at leading order, the next-to-leading order splitting processes (Fig. 3.4) induce a non-

vanishing scale dependence

aO(Q2) = (1 _ 126;:’: Aaav(Q?));ras(’Q‘)) ao(Qg) (410)

Taking the difference between the proton and neutron structure functions, one obtains

the Bjorken sum rule [55]
s 1
THQY - T3@) = [1 - 2+ 0(ed)] zas, (4.11)

where only the first term of the QCD corrections has been included; the corrections are

known up to O(a?) [60]. This sum rule is a fundamental prediction from the SU(2)r
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isospin symmetry between proton and neutron, and it is confirmed by the experimental
measurements listed in Table 4.1.

The first moments of the proton and neutron spin structure function are usually called
the Ellis-Jaffe sum rule. Including QCD corrections, [61] they read

2" (Q?) [1 ~ 240 2)] (:t-—aa + %as)

+ [1 -2y O(af)] 590(Q7). (4.12)

They can only be predicted separately if a certain model assumption for the a priori
unknown singlet current ao(Q?) is made. Two such estimates in the framework of the
naive quark parton model (cf. Section 2.4) can be found in the literature. Attributing
the whole proton spin to quark polarization, Gourdin [56] finds @ = 1, while Ellis and
Jaffe [57] obtain ag = as =~ 0.579, assuming no contribution to the proton spin from the
sea of strange quarks. Both these estimates are not stable under QCD corrections as they
identify a non-conserved quantity with a constant.

All experiments listed in Table 4.1 have measured the Ellis-Jaffe sum rule. Although
the errors on the results are still sizable and the extrapolation of the measurement into the
region of small values of z is not unambiguous (cf. Section 4.4), these measurements seem
to indicate that ag &~ 0.15—0.3 in the range 3 GeV? < Q? < 12 GeV?. Figure 4.1 displays
the values of ap(Q?) as extracted from the experimental results using (4.12), together with
the next-to-leading order QCD prediction (4.10) normalized to ao(Q? = 4 GeV?) = 0.219,
the global average obtained from a fit described.in the following chapter.- -

The first precision measurement of the Ellis-Jaffe sum rule [45] initiated a long discus-
sion on the origin of this apparent deviation from the naive quark parton model. In this
model, the discrepancy between the expectation of Ellis and Jaffe and the experimental
results could only be explained by a negative contribution from the strange quark sea to
the proton spin. There is however a certain ambiguity in the decomposition of the singlet
axial vector current ap, as soon as QCD corrections to the naive quark parton model are

taken into account. Only a3 and ag can unambiguously be identified with the flavour
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Figure 4.1: The singlet axial vector current determined from measurements of the Ellis-
Jaffe sum rule. The solid line is the QCD prediction normalized to a fit at Q% = 4 GeV?,
the dashed line shows the Ellis-Jaffe prediction in the quark parton model.

non-singlet combinations in (4.9), the decomposition of a, into contributions from quark
singlet and gluon distribution depends on the renormalization scheme used.
In the MS-scheme, this current is identified with the first moment of the polarized
quark singlet only,
aS5(Q?) = niF(Q?), (4.13)

where we have introduced the abbreviations
2 ! 2 2 1 2
(@)= [ A%(,@de,  16(QY) = [ AG(z,Q)de.

In this scheme, 75(Q?) varies with the scale @2, as the first moment of Pq(;‘)s(z) is non-
zero. The scale dependence of nz(Q?) in the MS-scheme can be trivially inferred from
(4.10), the violation of the Ellis-Jaffe sum rule implies a negative polarization of the sea

of strange quarks.
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Alternatively, one can construct another scheme [62], usually called the Adler-Bardeen
(AB) scheme [63], in which 7z(Q?) becomes independent of Q2. The appropriate scheme
transformation introduces a contribution of the first moment of the polarized gluon dis-

tribution to the Ellis-Jaffe sum rule,

ad®(Q?) = mt® - n; na(Q?). (414)

If viewed in this scheme, the violation of the Ellis—Jaffe sum rule can be attributed entirely
to the effects of gluon polarization, a polarization of the strange quark sea is not necessary.
It is however likely that both gluons and strange quarks contribute to give the overall
observed effect.

The transformation between MS and AB scheme only redefines the polarized sea quark
distributions while leaving the gluon distribution unchanged [34]. Both schemes are equiv-
alent descriptions of the physical observable g,(z,Q?), if implemented consistently at
next-to-leading order. Such a consistent treatment at NLO was not possible until very
recently, as the complete NLO corrections to the polarized splitting functions APJ-(,-I) had
not been known [35].

Earlier studies of the spin structure of the proton often introduced an ad-hoc gluonic
contribution to the polarized structure function at leading order (see for example the
discussion in [64, 65]) in order to obtain at least an order-of-magnitude estimate of the
polarized gluon distribution. This approach faces conceptual problems if the resulting

distributions are applied to other quark-initiated processes, such as the production of

Drell-Yan-pairs.-

The information gained from the Bjorken and Ellis—-Jaffe sum rules can be incorporated
into a consistent LO or NLO(MS) determination of the polarized parton distributions by
using a3 and eg from the hyperon decay constants and ao from the Ellis-Jaffe sum rule
measurements to fix the first moments of the polariz'ed u, d and s quark distributions. If
further assumptions on the flavour structure of the polarization of the light quark sea are
made, this information can be used for a separate determination of the first moments of

the polarized valence and sea quark distributions. We will apply this in Chapter 5.
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4.3 Qualitative features of polarized parton densi-
ties

This section collects information on the behaviour of the polarized parton distributions
that can be obtained without a fit to experimental data. The asymptotic behaviour of the
initial distributions for large and small values of z approaches simple power-like forms,
which will be discussed in the following. Furthermore, we will elaborate the qualitative

effects of the perturbative evolution on these distributions.

4.3.1 Initial distributions at large and small z

If a valence quark carries a large fraction of the proton’s momentum, i.e. z — 1, it
should also be expected to carry a significant fraction of the helicity of the proton. The
distribution of quarks with spin anti-aligned to the proton’s spin is therefore suppressed
at large z, the behaviour of polarized and unpolarized distributions becomes qualitatively
identical in this limit. With the unpolarized valence quark distributions falling off like
(1 —z)? (B ~ 3...5) for z — 1, this property can be implemented into the polarized
distributions by imposing the same value for the large-z parameter 8. A formal proof of
this behaviour can be obtained from quark counting rules and is given in [66].

The behaviour of the initial distributions in the limit £ — 0 is by far less well un-
derstood. In general, one should expect each of them to be proportional to z*, although
neither magnitude nor sign of a are predictable. Even the small-z limit.of the unpolar--
ized pa,r_t_bn d_i.siril_);lt_io; at typical starting scales of a few GeV is not yet understood at

present [67], in particular for the gluon and sea quark distributions.

4.3.2 Effects of the DGLAP evolution

Several qualitative features of the polarized parton densities can already be determined by
inserting simple test distributions t(z) in the right-hand side of Eq. (3.7). For a qualitative

understanding it is sufficient to truncate the splitting functions only to O(e,) and to fix
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the number of flavours to ny = 3.

The resulting elements of the evolution matrix
1
ai= [ Lar(2) (415)
z Y

determine the local change of the parton densities with increasing In(Q?). Furthermore,

for Q?/Q? not too large one can approximate the solution of the DGLAP equations by

A%, QY | _ [ A%EQ)
AG(2,Q%) AG(z, Q})

4+ 2@ i (SRO AP ) (8@ ) | (&)
2r = Y AP(y) AP,(y) AG(m/y,Qg) Q3

A realistic choice of test distribution is
t(z)=z(1—2)’ with (-1<a<0, §>0),

which is similar to the analytic forms of the parton densities at Q2 used in recent fits to the
polarized structure function data [65, 68, 69]. The exponent a determines the behaviour
of the distribution in the small-z regime, whereas the large-z behaviour is controlled by
B, as explained in the previous section.

The elements of the evolution matrix can be computed analytically. Inspection of the
leading order splitting functions (B.25) shows that all A;; can be expressed in terms of

the four functions

LR SN S A N A
Ale) = /z y (1—y)s (y) (l y)
- ma(l-z)ﬁ[lnu-x)+°‘—;—f%l(1—m)3F2(2+ﬂ+a,1,1;2,2+ﬁ;(1—a,-))
_w(ﬂ + 1) - 75']7
_ [ty (2\ (=)
Aalw) = /,,. y (y) (1 y)
= (1_m)ﬁ+1ﬂ+12Fl(1—a,1+ﬂ;2+ﬂ;(1—x)),
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where the hypergeometric function ,, F), can be found in [70]. The elements of the evolution

matrix read in terms of these functions:

An(@) = 3 [241(0) = Ax(e) ~ As(e) + 3A4(2)]
Ag(z) = 3[-As(z) +243(2)],

A(e) = 3[2A4x(z) — Ax@)],
Ay(z) = 3[2A1(m)+2A2(m)—4A3(a:)+gA4(:v)]. (4.17)

Figure 4.2 shows all £A;;(2) for @ = —0.25, 8 = 4. Several effects of the evolution can
be read off: the quark-to-quark and gluon-to-gluon splittings decrease the corresponding
distributions at large z while increasing them at small z. This effect is easily understood:
the emission of soft particles diminishes the distributions of either helicity at large =z,
while increasing them at small z. The gluon-to-quark splitting A,, generates a positive
contribution to the polarized quark density at large = and a negative-contribution-at small
z. The quark-to-gluon splitting enhances the polarized gluon density over the whole range
in z.

It is however not possible to draw quantitative conclusions from the above, as the
relative size of each of these corrections depends on the relative normalization of quark

and gluon distributions.
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Figure 4.2: Elements of the evolution matrix for a test distribution with a = —0.25,

8 =4

4.4 Asymptotic behaviour at small z

The behaviour of parton distributions and structure functions, both unpolarized and po-
larized, at small = has been a matter of discussion over the last years. Various approaches

in the polarized case can be found in [68, 71, 72, 73] and references therein. In this

section, we will discuss analytic methods to determine the behaviour of polarized parton

distributions-at small z feom the DGLAP evolution equations.

We begin with a summary of the present experimental and theoretical knowledge on
the polarized proton structure at small z in Section 4.4.1. Various approximations to the
leading order DGLAP splitting functions at small z will be compared in Section 4.4.2
on the basis of the evolution matrix described above. Furthermore, we will derive a new
approach in Section 4.4.3 and discuss its domain of applicability. Finally, Section 4.4.4

contains conclusions and implications of this study.
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4.4.1 Motivation

In the recent past, various authors have attempted to calculate the asymptotic behaviour
of gi(z) at small z. At scales of low momentum transfer (Q? ~ 1 GeV?), a non-
perturbative calculation [71] of the flavour singlet contribution to g, shows good agreement
with g}, but it should be noted that the normalization of this non-perturbative contri-
bution is highly sensitive to the only approximately known value of the vacuum quark
condensate. The experimental discrepancy between g} and ¢¢ in the small-z region seems
to contradict the above result. As the singlet distribution is identical for both targets,
this discrepancy indicates a sizable valence-quark contribution in this region.

With increasing Q?, perturbative corrections become more and more important. These
corrections affect both the valence and the singlet contributions to ¢g; and give rise to
an evolution of the corresponding parton densities. A first detailed discussion of the
asymptotic behaviour of g;(z) due to these corrections was presented in [74].

In experimental measurements, perturbative corrections are incorporated by rescaling
the value of g, to the average Q% of the experiment. This rescaling procedure relies
on the assumption that the asymmetry g,(z)/Fi(z) satisfies exact Bjorken scaling, i.e.
that the Q?-dependence of g; coincides with that of Fj. Although this assumption is
consistent with the present data (which cover only a small range of Q2 values at fixed z),
there is no theoretical justification for it. In particular, examination of the polarized and
unpolarized splitting functions [31] shows that g;(z)/Fi(z) should indeed show only a very

weak Q? dependence in the large-z region, where both structure functions are dominated

by-the-valence quark-content; as AP,,(xz) and P,,(z) are identical. In contrast to this,
the splitting functions in the singlet sector, which dominates the small-z behaviour of Fj,
are different. The unpolarized Py,(z) and Pyy(z) have a soft gluon singularity at ¢ = 0,
which causes the steep rise of F in the small-z region. As this singularity is absent in the
polarized splitting functions (soft gluon emission does not change the spin of the parent
parton), one would expect the ratio |g,(z)/Fi(z)| to decrease with increasing Q.

With the exact splitting functions it is not possible to find an analytic solution to (3.7)
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with realistic boundary conditions for the whole range of z. By restricting themselves to
small values of z (although it is not a priori clear which values of 2 can be regarded as
small), various authors have attempted to determine the asymptotic behaviour of g; in
the limit Q* — oco. One possible approach [72] is to assume that all the Q2 dependence
is dominated by the evolution of the gluon, i.e. by AP,,(z). This method gives successful
predictions for the unpolarized structure functions, due to the 1/z pole in the unpolarized
P,,. As this pole is not present in APy, the validity of this approach needs to be examined
more carefully.

Another possible approach [68] to the asymptotic small-z behaviour is to transform
(3.7) into moment space and to expand around the rightmost singularity at N = 0:

(AP)y = % + B+ O(N) = AP(z) ~ A+ B5(1 — z).

This procedure yields the following approximate splitting functions!:
4 1
APW(z) = 3 [1 +56(1 - x)],
1
APY(z) = 20y [-1426(1-2)],

APO(z) = g 2 - 8(1—2)],

I

APO@) = 3 [4- -16—35(1 ~a)| - Hs(1-a) (4.18)

With these simplified splitting functions, one can analytically solve (3.7) for asymptotic
_values_of_Q? with realistic-boundary-conditions inm the small-z tegion. This approach is
based on the fact that the behaviour of the parton distributions at small z is governed
by the region around N = 0 in moment space. This property can be understood from
the N-singularity structure of the initial distributions: a logarithmic (~ 1/z) singularity
coincides with a pole at N = 0 in the moment transform, a power-like singularity of the

form z* transforms into I'(a + N), which has a singularity at N = —a. It is important

!Similar splitting functions containing only the residue at N = 0 were studied in [75], giving qualita-

tively comparable results to [68]
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to notice, however, that the expansion around the N = 0 pole in moment space agrees
with the full splitting function only within a circle of unit radius. Outside this circle, the
series might still be convergent, but its value will be different from that given by the full
splitting function. This especially affects the reliability of this approach for low values of
a. In the extreme case a could approach —1 giving rise to a pole close to the boundary

of the circle of convergence.

4.4.2 Study of the evolution matrix

The evolution matrix introduced in Section 4.3.2 provides us with a tool to study the
quality of the approaches introduced above, as it reflects the local effects of perturbative
evolution at particular values of z. We will again work with simple test distributions of

the form

t(z) =21 —-2z)’ with (-1<a<0, 8>0).

It is worth recalling that o determines the behaviour of the distribution in the small-z
regime, while the large-z behaviour is controlled by 3. Variations of 3 should therefore not
affect any predictions of the small-z behaviour of the parton distributions. This property
can be used to define the range of validity of these predictions, i.e. to indicate if z can be

regarded as small or not.

The leading-pole expanded [68] splitting functions of (4.18) yield the following elements

for the evolution matrix:

A(z) = %[iz(w)+;¥A4(x)],
A)(z) = 3[-As(z) +24A4(2)],

Ae) = 3RA) - Aa)],
AO(z) = 3[4A2(z)—gA4(a:)], (4.19)

which have to be compared to the full A;{ ) given in (4.17).
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A closer inspection of the A;; shows that all of them diverge like 2* as £ — 0. The

different contributions (4.16) show the following behaviour:
Ay(z) T3 2 [-y(-a) = 78],

z—0 1
Ayz) =8 —z°

—a
A(e) T8
3z 1— am ’
Ag(z) =3 2o (4.20)

The behaviour in the limit z — 0 can therefore be written as
lim Aji(z) = ajiz”. (4.21)
Provided that both the initial quark singlet and the initial gluon distributions have
power-like boundary conditions in the limit 2 — 0, these most singular terms will domi-
nate the right-hand side of (3.7). The replacement of the Ag{ ) by the above expressions
(4.21) in (3.7) should therefore enable us to find an analytic solution for AX(z,Q?) and
AG(z,Q?), which becomes exact for £ — 0. This exercise will be performed in the
following section.

The aj; coefficients for the full and the leading-pole expanded splitting functions are

not identical:

4 1-2a 3 4 -2+«

N =2 9(—tb(—a) — B W (I

% =3 [2( (=)~ ) + a(l - a) + 2] ’ Y0 T3 Toq
1 + a 1 + 2a

a‘("f’) =3 a(l —a)’ (f‘(’g: 3_ a. .
) =2 2te w_4-2-a (4.22)

99 3 a(l _ a)’ 99 3 a b)

2+ 2a 3 —8 — 5o

) =3 |9(—tpfa) — ) 222 3 ) _q 8—5

gy =3 [ (=¥(=2) =) a(l — a) + 2] ’ Agg =3 200

Figure 4.3 shows examples of the Ag{ for § = 4,9, together with the approximate
forms Ag-) and the limits ag-{ )z, This figure displays the following important features of

the evolution matrix in the small-z region:
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Figure 4.3: Examples of elements of the splitting matrix for the test distribution z*(1—z)>~.
Solid line: full splitting functions for 8 = 4, long-dashed line: same for # = 9, short-
dashed line: most singular z* contribution, dotted line: leading-pole expanded splitting
functions for # = 4, dot-dashed line: same for 8 = 9. For better visibility, all elements

are multiplied by z.

1) Although the test distributions z%(1 — z)? and z*(1 — z)? differ by less than 5% for
g
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Figure 4.4: Coeflicients of the most singular pieces in the splitting matrix for the full (left)
and the leading-pole expanded (right) splitting functions. Solid line: a,,, long-dashed line:

a44, short-dashed line: a4, dotted line: a,4,.

99?

z < 0.01, the corresponding A;,f ) differ by up to a factor of 2 in the same range.
This clearly demonstrates that even at 2 = 0.01 and below the evolution is sensitive
to the behaviour of the parton distributions in the large-z region. The sensitivity
of the A(-tf ) to variations of B can furthermore be used to define whether z can be
regarded as small. For example, by requiring A(’f ) to vary by less than 30% for all

combinations in 7 and j and both values of o, we find that only z < 0.001 can

be regarded as small and the more conservative bound of less than 10% deviation
yields 2 < 0.0001. It should therefore be clear that the mere knowledge of g, at
the lowest z values accessible with fixed-target experiments is insufficient to predict
the asymptotic behaviour of ¢; in the small-z limit, as the behaviour of the parton
distributions at these values of z is still closely correlated with the distributions in

the large-z region.

(i1) The convergence of the A(f ) towards a(f )z* improves for smaller values of a. This
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behaviour just reflects the fact that Ag{ ) contains, in addition to this leading term,

less singular terms proportional to In(z). In general, these lower |A§{ . I t(z) is

~1/e

less singular that z~'/¢, the logarithmic terms are larger than the power-like terms

z > zo(a) = (M)%,

for

a
where w(a) is defined in Appendix A.2. As zo decreases very quickly with a (zo &
10715 for @ = —0.1), the replacement AS{)(m) — aj;z% although formally still

correct, loses its meaning for values of a close to 0 in any physically relevant region.

(iii) While the Ag? resemble the Asf ) for values of a close to 0, they disagree for smaller
a. This feature becomes most striking for the Ay, (see Fig. 4.3). The full splitting
functions (B.25) predict that a positive gluon polarization in the small-z region will
always generate a negative contribution to the sea polarization. In contrast, the
leading-pole expanded splitting functions of [68] predict a positive sea polarization,
if the gluon polarization AG(z) is more singular than z~%5. This behaviour can be
inferred from the o dependence of the a;; displayed in Fig. 4.4. The good agreement
for higher values of a is due to the fact that all leading contributions in In(z)
are contained in the N = 0 pole and hence are well approximated by the Ag-?.
As elaborated above, these contributions remain important for a finite range in
z > zo > 0. The asymptotic predictions of [68] will therefore still approximate the

full evolution, provided they are restricted to this finite range.

o (iv)_ The Iil'ag‘n‘i:c“u;le ofﬂ_Agg _is larger by a factor 3 than the magnitude of all the other
terms, but A,, is not more singular than any other contribution. Therefore, the
small-z estimate of [72] is qualitative at best, and should be expected to yield a
less accurate prediction than the corresponding estimate of the unpolarized distri-

butions.

(v) The agreement between leading pole expanded and full splitting functions is better

for the Agq and Agyq than it is for Agy and Ayy. This feature can be understood from
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N<—-2|N=-1|N=0
3/4 AP, | 2 1 1
1/3AP,| © 2 -1
3/4AP,| 0 -1 2
1/3AP, | 2 -2 4

Table 4.2: Residues of the polarized splitting functions in N-moment space. The residues

for all negative integers with N < —2 are identical.

the relative magnitude of the residues in the corresponding splitting functions (Table
4.2): the N = 0 residue is dominant only in the P,, and P,, splitting functions, the
other two splitting functions contain residues for N < 0, which are twice as big as
the N = 0 residue.

It should be clear from the above that the leading-pole expansion of [68] gives a reliable
approximation to the evolution matrix in the small-z region, provided that the initial
distributions are significantly less singular than £~'/¢. For more singular distributions,
this approach results in a manifestly different evolution matrix and hence will yield a

different small-z behaviour of the polarized parton distributions.

4.4.3 Solution of the DGLAP equations in the small z limit

Provided both polarized singlet quark and gluon densities have power-like boundary con-

ditions in the small-z region,
AS(z,Q3) ~ 2™, AG(z,Q?) ~ z°¢ with —1 < a,,06 <0,

one can find a solution of the DGLAP equations which becomes exact in the limit £ — 0

and has the form

Aqual(x’ Q2) = Ru(QZ: Qg) z,
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AX(z, Q2) = qu(Q2a Qg)xaq + Ry (QQ’ Qg)mac,
AG(2,Q%) = Rge(Q%Q5)z™ + Rye(Q?, Q5)2C. (4.23)

This behaviour can be derived by inserting (4.23) as ansatz into (3.7). Keeping only
terms proportional to %, £*¢ and £ on the right-hand side, we obtain the following

evolution equations for the R coeflicients (fo = 11 — 2/3ny) :

o 2
mRu(QZ»Qg) = _anq(av)R"(Qz’Qg)’

(R, )
9 Ry, 2 2y _ _2__ @gq(q) aqq(ay) Ryq 2 A2
Olna, \ R,, / (@) = Bo ( ge(0g)  @ge(ry) ) ( Ry, ) (@90

(R, )
0 R, 02 0 — _ l tge(aG) ag(ag) Ry, 2 02
Odlna; \ Bos / (@ @0) Bo ( age(ac) ag(ac) ) ( R, ) (@ &a)

As we are interested in the asymptotic solution for the full splitting functions, all a;; in

the above are a(f ).

Introducing

s =

w8(@) = 5 (a00(0) + tyg(@) £ V{a0e(@) — g (@) + dtge(e)age()) , (4.28)

the general solution of these equations reads

R(@QY = Noow{Toml@ls)

qu(Qz,Qg) = qu+(Qg) exp

le ;:QIM

wy(0g)s p + Rog—(Q5) exp {';; (aq)s} )
qu(Q27Qg) = qu+(Q(2)) exp {
ng(Qz,Qg) = ng-l-(Qg) exp

Ryy(Qz,Qg) = R99+(Q(2)) €xp

+(aG)3

e P

tb'm 'Qlw

w+(aG)3} + Ry (Q3) exp
}

{7
Fay-(@) oxp{ 0-(ac)e} (429



where the R;;3(Q32) are determined by the bounda.fy conditions at Q3. As we assume that

the initial distributions for the quark singlet and the gluon have the form
A%(z,Q3) = N, 2, AG(z,@QF) = Ng 2°°, (4.26)

these constants are determined to be

2y wy () — age(q) 2y _ _ w_(ag) — age(ay)
R9¢1+(Q0) - w+(aq) (wi(aq)Nw qu—(QO) - w+(aq) (—w)_(aq)Nq’
R9q+(Q(2)) = w+(aq§q— :)_ (aq)Nq; qu—(Qtz)) = - w+(a§q_ :,_(aq) Nq’

R+ (Q7) = w+(azq)g(_ag)_(ag) Ny, Ry (QF) = - w+(azq)g(_ag_)_(acj 9

2y _ wi(ag) — aglag) 2y _ w_(ag) — ag(aq)
Rye+ (Q3) = w:(ag) — w_(ag) Ny, Ry (@) = wy(ag) — w_(anNg-

(4.27)

Insertion of these boundary conditions into (4.25) finally yields (4.23).

The bounds on «

—1<agae<0

cover the whole theoretically allowed range: as the first moments of the distributions
have to be finite, we find a > —1. Furthermore, inspection of the singularity structure of
the evolution equations shows that any initial distribution, which is finite in the small-z
region, will develop a logarithmic divergence due to the N = 0 singularity of the splitting
functions. The case of finite or logarithmic boundary conditions can be treated correctly
with the leading-pole approximation - its asymptotics are discussed in-[68].-In-an earlier
“a,na,lysis [65] of the experimental data on polarized structure functions we have found
o, = a, ~ —0.55. The experimental data used in this analysis were insufficient to
determine aq, and therefore it was fixed to be 0. The more recent study presented in the

following Chapter yields a, ~ —0.4, o, = ag ~ —0.5.
As we have neglected all contributions of order In(z) in the above solution, we expect

it to be reliable only for z < zo(max(a,, ag)). In order to compare this approach with the

leading pole expansion of [68] and the numerical solution of (3.7) with the full splitting
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functions, we have evaluated the distributions for Q2 = 4 GeV? and Q? = 100 GeV?,
using ny = 3,A9°P = 200 MeV and the following initial distributions:

A%(z,Q}) = Nga*(1-z)
AG(z,Q%) = Ngz*°(1—z)° (4.28)
Aua(2,Q) = Noa™(1-z).

To illustrate the validity of the various approximations, we choose the following parameter
values: a,,aq, 0, = —0.6,—0.25, 8 = 4,9, and for simplicity we take N, = N, = N, = 1.

Figures 4.5.a-c show examples of the behaviour of the gluon, singlet quark and va-
lence quark distributions respectively, at small z and Q? = 4, 100 GeV?. The initial
distributions z*(1 — z)* are indicated as solid lines.

Starting with the gluon distribution (Fig. 4.5.a), we find that for z < 1072, the leading-
pole approximation to the splitting functions (dotted lines) gives excellent agreement with
the full evolution (dashed line), especially for values of a,, ag close to 0. This is consistent
with the agreement between the corresponding A,, functions shown in Fig. 4.3 and can be
understood from the N = 0 dominance in the AP, and AP,, splitting functions. In con-
trast, the £ approximation (short-dashed line) significantly overestimates the evolution
in the z range shown, especially for a,, ag close to 0. Convergence of this approach can
only be observed at even smaller values of 2. Note, however, the sensitivity to the large-z
behaviour. While both the dotted and the dashed lines are computed with 8 = 4, the
dot-dashed curve corresponds to full splitting function evolution for # = 9, i.e. a softer
large-z distribution:—Evidently there is a significant sensitivity to the behaviour at iar“ge
z even for z values as small as O(10~3). This casts doubt on the idea of using data on the
evolution of the small-z structure functions alone to determine the gluon distribution.

For the singlet quark distribution (Fig. 4.5.b) the situation is rather different. Here
the leading-pole approximation overestimates the evolution at small z. This is readily
understood from the behaviour of the corresponding A, and A,, functions in Fig. 4.3,
both of which are systematically more positive for the leading-pole splitting functions. In

fact we see that for @, = —0.25 and ag = —0.6, the full evolution gives a negative singlet
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Figure 4.5: Examples of the evolution of test distributions for gluons (zAG(z,@?)),(a),
singlet quarks (zAX(z, @?)),(b) and_valence quarks—(zAgq;.i(T, @%));(c) as described in
the text. Solid line: starting distribution at 4 GeV?, long-dashed and dot-dashed line:
evolved distributions at 100 GeV? for different large-z behaviour at Q3, short dashed line:

result of z* approximation, dotted line: result of leading-pole approximation.

distribution at small z, whereas the leading pole splitting functions give a positive distri-
bution. Notice also that the evolution is less sensitive to the large-z behaviour (compare

the dashed and dot-dashed curves which correspond to § = 4,9 respectively) than for the
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gluon distribution. For oy = ag = —0.6, the £ approximation is quite reasonable, and
certainly better than the leading-pole approximation. However the opposite is true when
both a,, a¢ are close to 0.

Finally, Fig. 4.5.c compares the valence quark evolution in the various approxima-
tions. This depends only on APF,,, and so the behaviour here is a direct reflection of the
corresponding A,, shown in Fig. 4.3. In particular, for a; = —0.6 the z* approximation
is very good, while the leading-pole approximation overestimates the evolution at all =
values shown. For less singular small-z behaviour (a, = —0.25), however, both approx-
imations reproduce the full evolution, the leading-pole approximation showing slightly
better convergence for z > O(10~%).

In practice, the normalizations of the singlet quark and gluon distribution, N, and Ng,
will not be the same. As the evolution of the gluon density is dominated by the gluon-to-
gluon splitting, it will be almost unaffected by changes of N,. Only if N, is one or more
orders of magnitude larger than Ng, will the impact of quark-to-gluon splitting become
visible. More drastic effects of a change in the relative normalization can be expected for
the quark singlet distribution, as contributions from quark-to-quark and gluon-to-quark
splitting have the same magnitude but opposite signs (cf. Fig. 4.4). Therefore, a relative
increase of Ng yields a faster evolution of the quark distribution to negative values.

The convergence properties of the different analytic approaches are almost unaffected
by changes in the normalization. Only for Ng > N, do we find that convergence of the

z® approximation to the singlet distribution sets in for smaller values of z. This simply

reflects an-increased- impact of the gluon-to-gluon splitting.

4.4.4 Conclusions

In this section we have studied the feasibility of two different analytic approaches to the
evolution of polarized parton densities at small z, finding that none of these approaches
is able to give reliable predictions for the whole theoretically allowed range of boundary

conditions in the small-z region. In the leading-pole expansion {68, 75], the full splitting
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functions AP;; are replaced by the leading terms of their Laurent series around N =
0. As this approach correctly reproduces all terms proportional to Inz generated in
the evolution, it is found to be in good agreement with the full evolution if the initial
quark and gluon distributions are less singular than z=/¢. For more singular boundary
conditions, only the gluon distribution is reproduced correctly, in particular the quark
distribution is overestimated. Keeping only terms with power-like singularities in the
evolution equation, we were able to derive an exact solution of this equation in the limit
z — 0. As we have neglected all logarithmic terms in this approach, its convergence is best
for boundary conditions of quark and gluon distributions more singular than z~'/¢. For
less singular boundary conditions, this approach still converges towards the full solution,
but its predictions are far away from the full solution for any realistic experimental value
of «.

We have also shown that the evolution of the polarized gluon distribution is sensitive
to the shape of this distribution in the large-z region. This observation raises doubts
on the possibility of determining the gluon polarization from the evolution of g, in the
small-z region. It furthermore demonstrates the need for complementary measurements
of AG(z), which will be discussed in Chapter 6.

We have seen that the effects of the evolution on the quark distributions in the small-z
region are rather small, as the quark-to-quark and the gluon-to-quark splitting contribute
with opposite signs. The gluon distribution is indeed rising with increasing @2, but
only contributes to ¢, at order a,(Q?). Bearing in mind that AG(z) contributes with a
negative_coefficient-function-to-¢;; one expects that gi- will-becomme negative at small =
for asymptotic values of Q2. This behaviour is due to the gluonic contribution and the
negative sea polarization generated from g — ¢g splitting.

In general, the effects of the evolution on the polarized parton densities will be more
moderate than the effects on the unpolarized densities. The assumption of approximate
scaling for g;(z)/Fi(z) in the small-z region is therefore rather doubtful. It seems more
realistic to assume approximate scaling for g,(z) at small z, due to the partial cancellation

of quark and gluon evolution as explained above.
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Chapter 5
Polarized parton distributions

It was already outlined in Chapter 3 that perturbative QCD only predicts the change
of parton distributions with increasing Q? without determining these distributions them-
selves. These are intrinsic features of the nucleon, which are controlled by the non-
perturbative dynamics of QCD at scales below the proton mass. They cannot be com-
puted with present techniques.

In this chapter, we attempt to extract the polarized parton distributions from a global
fit to the presently available data on the polarized proton structure. These data are
however of much lower precision than in the unpolarized case. The fit needs therefore to
be constrained by additional assumptions and approximate symmetries, as motivated in
the previous chapter. The distributions obtained will be less well determined than their

unpolarized counterparts. o - -

5.1 A global fit to polarized structure function data

We adopt a similar approach to the global analysis of unpolarized parton distributions in
the nucleon [41] by parametrizing the polarized distributions at the starting scale in the

form:

2Auy(2,Q2) = muAwz®(1 - 2)**(1 + vz + puz'/?)
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zAd,(2,Q5) = naAaz®(1 —z)™(1 + vz + paz'/?)
zAG(z,Q7) = ngAz™(1 - 2)"(1 + vz + pgz'/?)
zAG(z,Q) = neAcz®e(1 — z)*(1 + yez + paz'’?), (5.1)

where we take Q2 = 4 GeV?. The normalization factors are

} T(aj)T(b; +1)  T(aj+0.5)T(bs +1)
AN (f=¢,G)=[1 & !
1=90) ( YU 5, +1) T, 46,40 T T, + b, + 1.5)

which ensures that the first moments of the distributions, fj dzA f(z, Q2), are given by

ny.

Various experimental measurements of unpolarized lepton(= e, g, v)-nucleon and un- -
polarized Drell-Yan cross sections yield a reasonably precise flavour decomposition of the
light quark (u,d, s) sea. Such a decomposition is not yet possible for the polarization of
the light quark sea, as measurements of the structure function g, are only sensitive to
the charge weighted sum of all quark flavours, not to the individual distributions. We
therefore assume a SU(3)-symmetric antiquark polarization Ag(z,Q?) = Au(z,Q3) =
Ad(z,Q3%) = As(z,Q32). This ad-hoc assumption is only justified at the present level of
experimental knowledge, and is furthermore immediately broken by next-to-leading order
evolution [76]. .

As outlined in the previous chapter, one can infer the first moments of the polarized
quark distributions from the measured values of the Ellis-Jaffe sum rule. Imposing SU(3)-

symmetry at Q32, this sum rule reads

2 o
@)= (-2 (e g fa@d) T 6D
with!
as = nu(Q3) —n4(Q3) = F + D,
as = n.(Q3) +na(Q3) = 3F ~ D,

ao(Q3) = 1u(Q3) + 1a(Q3) + 6n5(Q3).

1Recall that the first moments of the valence quark polarizations are not conserved in next-to-leading

order (B.33). Nevertheless, the scaling violations are only at the per-mille level for realistic values of Q2.
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LO| NLO
Ny 0.823 1 0.918
na | —0.303 | —0.339
NG 1.9
7 | —0.0495 | —0.060
b, 3.73 3.96
bq 4.73 4.96

Table 5.1: Fixed parameters in the LO and NLO(MS) polarized parton distribution fits.

LO | NLO (3 GeV?) | NLO (10 GeV?)

T2 —Tr | 0.188 0.191 0.195
I 0.133 0.132 0185
r* | —0.055 —0.059 —0.060
I 0.039 0.037 0.037

Table 5.2: Values of the Bjorken and Ellis-Jaffe sum rules.

In this approach, the first moments of the valence quark polarizations are obtained from
the nonsinglet axial-vector current matrix elements [59], while the first moment of the sea
quark distribution is inferred from the measured value of I';. For the leading-order (LO)
distributions, we correct the normalization of 7, and.ny-by the O(a,)-coeflicient function
N in'(g,2)— [_63] The first moments obtained by this procedure are listed in Table 5.1. The
resulting values for the Bjorkeﬁ and Ellis-Jaffe sum rules at LO and NLO are listed in
Table 5.2. Note that the Ellis-Jaffe sum rule is a (Q%independent) constant at leading
order in perturbation theory, as the leading-order coefficient functions are only expanded
up to O(a?) and scaling violations in n;(Q?) arise only from the splitting functions at

next-to-leading order (cf. Section 4.2).

The polarized gluon distribution enters g,(z, @?) at next-to-leading order. It is only
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very weakly constrained so far, as no experimental data are available on gluon-initiated
processes such as direct-y or heavy meson production. The polarized gluon distribution
AG(z,Q?) is therefore not well-determined by a fit to the g; data alone, and so additional
theoretical constraints have to be applied. It was demonstrated in the last chapter that
the small-z behaviour of the gluon and sea quark distributions are closely related [77],
which justifies the assumption ag = @; in (5.1). In the region z > 0.1, structure functions
and their evolution are dominated by valence quark contributions, and the impact of the
gluon is completely negligible. We therefore explore various possibilities for the form of
AG(z,Q?) at large z: hard (A) and soft (B) distributions with the spin aligned with that
of the parent hadron, and a distribution (C) with the spin anti-aligned. We show in the
following that all three choices give equally good descriptions of the structure function
data. They will be relatively easy to discriminate, once data on polarized gluon-initiated
processes are available. The three possible scenarios for the behaviour of AG(z,Q3?) can

be parametrized as follows:
Gluon A : =0, pg=0,
Gluon B : 4y5=1, pg=-2,
Gluon C : Y6 =0, pc = —3.

The normalization ng of the gluon distribution can only be determined consistently
from the experimental data in a next-to-leading order analysis, where it still has a large
error. At leading order, we can estimate g by attributing all the violation of the Ellis-
Jaffe sum rule to a large gluon polarization and_;/anis};ing sea quark polarization. In
this way we obtain ng = 1.9, only slightly different from the value 1.97 obtained in our
previous analysis [65]. Note, however, that at leading order the apportioning of the singlet
contribution to I'; between gluons and sea quarks is completely arbitrary [34]. In fact we
shall see below that a consistent NLO treatment gives a value of 7 somewhat less than
our estimated leading order value, and similar to the range of values found in [63].

If parton distributions are interpreted in the probabilistic picture of the naive parton

model, the magnitude of the polarized distributions cannot exceed the unpolarized distri-
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butions, in order to guarantee positive probabilities for the individual polarization states,

|Af(2)] < (=), (f=4g,G) (5-3)

This is in fact only a rigid constraint at leading order, since parton distributions at higher
orders are just scheme-dependent renormalization constants and not strict probability
densities. The fundamental constraint at any order in perturbation theory is the positivity
of physical cross sections for all possible helicity configurations. This constraint does not
necessarily imply the positivity of the distributions.

Positivity of the polarized distributions is achieved by constraining the parameters of

the starting distributions at Q2 such that

|Af(z,Q0)l < f(=,Q8), (f=4,G)

Perturbative evolution preserves the positivity of the individual helicity distributions,
hence (5.3) is fulfilled at any Q2.

In our leading-order analysis, we use the unpolarized distributions from [44] for refer-
ence. At Q2 = 4 GeV? these are
zu, (2, Q) = 3.221 2%5%4(1 — 2)37%6(1 — 0.6889x°%% + 2.254x + 1.2612%/2),
zd,(z,Q3) = 0.507 z%37(1 — 2)**"8(1 4 1.6152%°%% + 3.651z + 1.299z%/%),
z(a + d)(z, Q) = [w°'158(0.738 —0.981z + 1.0632%)(— ln x)*97 +
0.00285 ex—p~(\/I010_IE) ](1 — z)8:35€
zs(r, Q) = 0.0034(—Inz) '15(1 - 2.392z/2 4 7.094z)(1 — z)5-1%
exp (VT6TTOTT)

.’BG(.’L’, Qg) = [-’1:0'731(5,110 —1.204z — 19113:'2)(_11,1 z)—0.4718 +

0.0527 exp (V—45841nz) |(1 — z)*5°, (5.4)

The reference unpolarized distributions at next-to-leading order are the A’ set of [41],
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which are parametrized at Q2 = 4 GeV? as
zu,(z,QF) = 2.26 2% (1 — 2)>% (1 — 0.542"/2 + 4.65z),
zd,(z,Q%) = 0.279 %335 (1 — 2)*6 (1 + 6.80z"/% + 1.93x),
zSea(z, Q) = 0.956 2717 (1 — 2)°3 (1 — 2.55z"/2 4+ 11.2z),
2G(z,Q%) = 1.94 7% (1 — )5 (1 — 1.90z'/2 + 4.07z). (5.5)

Note that the choice of unpolarized distributions is not crucial for the present analysis.
All the widely available leading and next-to-leading order distributions provide very good
fits to the unpolarized structure function data, and the small differences between them
are much smaller than the precision with which the polarized distributions are currently
determined. The flavour decomposition of the unpolarized sea quark distributions is also
unimportant for our present analysis and will therefore be disregarded. The starting sea
quark distribution of [41] contains a very small charm quark contribution which can safely
be ignored in the present analysis. To be consistent with the evolution of the unpolarized

distributions, we take
ATt =200 MeV [44),  AMS =231 MeV [41).

These correspond to a,(MZ%) = 0.123 (LO) and a,(M2) = 0.112 (NLO).

The parameters most affected by the positivity constraints are the large-z exponents
bs. For the valence quarks, we fix b, = b,(unpol.) and b4 = b,(unpol.) + 1, motivated by
counting rule estimates [66]. The parameters bg and b; are constrained to be at least as
large-as their unpolarized counterparts in the fit. This constraint has_howe;ef minimal
impact. We find that only the Ad,(z) distribution tends to saturate positivity, requiring
the combination v4 + p4 to be limited in the fit.

The data currently available on g, are not able to test the various theoretical model
predictions for the small-z behaviour of the polarized parton distributions. These are
however expected to apply at much lower values of z (cf. Section 4.4). The parameters
ay are therefore only effective exponents valid over some finite interval in z. It therefore

makes no sense to postulate positivity for £ — 0 by constraining the a;.
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The contribution of charmed quarks to g;(z, @?) is negligible at present experimental
energies [78, 79] and will not be considered in this analysis. We therefore adopt the
evolution procedure of [44] and fix the number of flavours in the splitting functions at

ny = 3, while the number of flavours in «, increases at each mass threshold,
m. = 1.5 GeV, mp = 4.5 GeV, m, = 180 GeV,

and A(ny) is determined by requiring a, to be continuous across each threshold.

Rather than measuring ¢,(z,@?) directly from absolute cross section differences, it is

the relative asymmetry (2.0
112,

As(z, Q?) ~ w
which is determined experimentally. The structure function g;(z,Q?) is then inferred
using a particular parametrization of Fy(z,Q@?). Some experimental groups assume Q?-
scaling of A;(z,Q?) in their extraction of ¢1(z,Q?). In order to have a consistent set
of data, we have instead used the measured values of A;(z,Q?) quoted by the experi-
ments and re-evaluated g,(z,Q?) from Eq. (4.4), constructing Fy(z,@?) (3.11) from the
parametrizations of F; [80] and R [81] which were used in the most recent measurements.

Applying the constraints outlined above, we have used all available world data on
Al(z,Q?), A¥(z,Q?) and Af(z,Q?) listed in Table 4.1 to fit [82] the polarized quark
and gluon distributions with the parametric forms of (5.1) imposed at @3 = 4 GeV>.
About 35% of these data were taken at Q% < Q2. To have sensible constraints on the
distributions, in particular for < 0.02, we include these data-points in the global fit. The
distiibutions in the region 1 GeV? < Q? < Q32 are obtained By inverting the évdlution,
which is straightforward in n-moment space (cf. Appendix B.3).

A problem with using low Q? data points in the fit is the possible contamination
by higher-twist contributions. We have tried to estimate the magnitude of such contri-
butions to g; using the parametrization of FT from [83] and assuming ¢(z,@%)PT =
a1(z, @)Y (1 + CHT(2)/Q?). The higher-twist contributions estimated in this way are
found to be small for all data-points apart from the two lowest z bins of the SMC exper-

iment.
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Figure 5.1: Leading order polarized parton distributions as described in the text at Q2 =

4 GeV? compared to the unpolarized distributions of [44].

The global fit is performed using DGLAP evolution algorithms in N-moment space, as
described in Appendix B.3. The di:s.tributions and structure functions are then restored
by a numerical inversion into z space (Appendix B.4). The results of the global fit using
the leading and next-to-leading order (MS) expressions for the splitting functions and the
g1 coeflicient functions are listed in Table 5.3. The resulting distributions at Q2 are shown
in Figs. 5.1 (LO) and 5.2 (NLO).

The resulting parameters are not independent of each other. In particular, a,, aq and

ag = a; are strongly correlated. The a; of the valence distributions are anticorrelated
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Figure 5.2: Next-to-leading order polarized parton distributions as described in the text

at Q2 = 4 GeV? compared to the unpolarized distributions of [41].

with the corresponding 7;, reflecting the fact that a; is only an effective exponent for a
finite rangé in z. The _7,- and h; a,re;,lso anticorrelated. The x? distribution is very flat
around the local minima found by the global fits, especially with respect to the gluon and
sea quark parameters.

The three gluon scenarios give fits of almost identical quality, reflecting the small
impact of the gluon distribution on g¢,(z,@?) at large and medium z. The x? obtained
in the NLO fits are systematically lower due to the additional degree of freedom given by

the normalization of the polarized gluon distribution. All fits give very good descriptions
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Figure 5.3: Structure function measurements zg;(z,Q?) of the proton, deuteron and

neutron compared to the next-to-leading order predictions obtained using Gluon A.

for the polarized structure _fuilctioné_gf'"'g(m,Q_zj. This is illustrated in Fig. 5.3, which
shows the NLO description of the various g; measurements using Gluon A. The curves
correspond to Q2 = 1,4,10,50 GeV?, reflecting the spread in Q? values of the different
data sets. There is a systematic decrease in the Q? values of the data points from large
"z to small z.
The contributions of Au,(z,Q?) and Ad,(z,Q?) to the neutron structure function

g7 (z,Q?) are almost equal in magnitude but opposite in sign. The neutron structure
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A (LO) | B (LO) | C (LO) | A (NLO) | B(NLO) | C (NLO)
a, | 0578| 0585| 0582 0512| 0504| 0471
v | 938 931| 950 11.65| 11.98 13.14
pu | —426| —428| —428| —460| -—461| —4.90
ag | 0.666 | 0.662| 0.660 0.780 |  0.777 0.809
va | 1046 | 1091 | 11.04 7.81 8.18 6.73
pa| —510| —509| —506| —348| -361| —1.99
ne - 1.71 1.63 1.02
ac| 0520 0524| 0456 0.724 |  0.670 0.425
b | 945| 687 872 5.71 5.34 11.05
b | 15.06| 1596 | 11.82 1440 | 18.06 16.40
v | 230 242| 211 4.63 530 | —2.67
ps | —200| —200| -195| —-496| -525| —3.08
x| 983 97.7| 1000 89.7 91.0 93.4

Table 5.3: Fitted parameters in the LO and NLO(MS) polarized parton distributions at
Q2. The x? values are with respect to the 110 data points included in the global fit.

function is therefore much more sensitive to the sea quark polarization than ¢f(z, Q?) and
g%(z,Q?). Tt displays a clear double peak structure, as the sea quarks are dominant in
a_different .z-region than the valence-quarks. A precision measurement of g7(z, Q?) [84]
will therefore be able to provide important new information on the shape of the sea quark
polarization.

From a consideration of the size of the errors on the various fitted parameters, it is ap-
parent that the world data on g,(z,Q?) really only constrain the polarized valence quark
distributions and, to a lesser extent, the overall magnitude of the sea quark polarization.
The flavour decomposition of the polarized sea is still completely unknown. Only dedi-

cated experiments, such as the production of Drell-Yan lepton pairs or the flavour-tagging
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of final-state hadrons in -polarized deep inelastic scattering, will be able to provide further
information. Most important of all, the 2 dependence of the polarized gluon distribution
is almost completely undetermined, as its impact on the polarized structure function is
less than the present experimental accuracy?. The variation between our three gluon sets

certainly underestimates the true uncertainty in this particular distribution.

5.2 Comparison with other approaches and outlook

In this chapter, we have performed leading and next-to-leading order QCD fits to the
world data on the g, polarized structure function measured with proton, neutron and
deuteron targets. We obtain sets of polarized parton distributions which can be used for
further phenomenological analyses. The experimental precision is highest for the proton
and deuteron data. These constrain the shapes of the valence v and d distributions.
The sea quark and gluon distributions are still largely undetermined. There is a weak
constraint on the overall size of the former, but almost no information at all on the
flavour decomposition of the sea. We have presented three qualitatively different gluon
distributions, characterized by different behaviours at large z.

A similar analysis of polarized structure functions has been reported recently in (85],
using the ‘dynamical parton model’ approach in which the distributions at small z are gen-
erated dynamically from valence-like distributions at a small starting scale Q3 ~ 0.3 m2.
Requiring positivity at this low scale yields more severe constraints on the polarized
distributions -(in particular the polarized gluon distribution) than in our analysis. The
authors of [85] suggest two scenarios for the flavour decomposition of the light quark sea.
The ‘standard’ scenario is identical with our approximation of an SU(3) symmetric sea

quark polarization at @3, while the ‘valence’ scenario assumes the SU(3);~symmetry in

*Working in the Adler-Bardeen scheme, the authors of [63] were able to constrain the first moment
of the polarized gluon distribution to be ng = 1.54 £ 0.74 at Q3 = 1 GeV?, which is consistent with our
results (Table 5.3). As in our analysis, the z-dependence of AG(z,Q?) was found to have only a weak

impact on g,(z, Q?).
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Figure 5.4: Comparison of different polarized parton distributions: Set (A)-(C) obtained
in this analysis and Set (s) and (v) from [85].

the Ellis-Jaffe sum rule only to apply to the valence quark contributions - i.e. it breaks,
strictly speaking, the SU(3); symmetry of the hadronic current by decomposing it into
a valence and a sea current. In the ‘valence’ scenario, all deviations from the naive ex-
pectation of the Ellis-Jaffe sum rule can be attributed to an enhanced polarization of
4 and d quarks. A comparison between the NLO distributions of [85] and our results

is shown in Fig. 5.4. The valence quark distributions obtained in both analyses are in
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relatively good agreement with each other, while the sea quark and gluon distributions
show large differences. This again reflects the lack of experimental information on these
distributions.

The authors of [63] carry out a comparable analysis in the Adler-Bardeen scheme
(cf. Section 4.2), with particular emphasis on a determination of g from the structure
function data. The resulting distributions do not necessarily respect positivity of the
distributions at large z and yield the conceptual problem that asymmetries can exceed
unity at large z. Therefore, we refrain from a detailed comparison with our results.

A variety of experiments on polarized nucleons is presently under discussion. In the
following chapter, we will examine several observables which could provide more precise
information on the polarized gluon and sea quark distributions than the structure func-
tions measured at present. This will illustrate the application of the parton distributions

obtained above to other hard processes.
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Chapter 6

Measuring polarized parton

distributions at future experiments

Up to now, all experimental information on the polarized proton structure comes from
the structure function g,(z,Q?) of the proton, neutron and deuteron (cf. Table 4.1). It
was demonstrated in the previous chapter that these measurements provide sufficient in-
formation for a determination of the polarized valence quark distributions Au,(z, Q%) and
Ad,(z,Q?), while the polarized sea quark and gluon distributions are only loosely con-
strained by the structure function data. As g,(z, @?) is dominated by valence quark contri-
butions at presently accessible energies, complementary measurements of other quantities
appear to be crucial for a more precise determination of these distributions. This chapter
summarizes experimental options presently under construction or discussion and examines

the sensitivity of particular observables to polarized parton distributions.

6.1 Future experiments on polarized nucleons

Initiated by the original g;(z, Q%) measurement of the EMC collaboration [45] an exten-
sive programme of spin-structure function measurements was started at CERN (SMC),

SLAC (E142/E143) and DESY (HERMES). All these experiments have now produced
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first results which were the key ingredients in the global parton distribution fit of Chap-
ter 5. The experiments at CERN and DESY are still taking data on various polarized
targets while a new generation of experiments at higher beam energies (E154/E155) is
presently in operation at SLAC. A variety of spin experiments is planned presently. A

short description of the most promising proposals is given below.

RHIC-SPIN

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven will have two longitudinally
polarized proton beams at /s = 200 — 500 GeV [86]. This collider is presently under
construction, first data-taking is expected in the year 2001. Two multi-purpose detectors
(STAR and PHENIX) will be installed in the interaction regions; an integrated luminosity
of 320 pb~" at /5 = 200 GeV or 800 pb™! at /s = 500 GeV for two years of operation is
anticipated.

Inclusive photon and jet production asymmetries will provide a measurement of the
polarized gluon distribution, information on the polarized sea quark distributions might

be gained from Drell-Yan pair and W-boson production.

COMPASS

Using the muon beam (£, = 100 —200 GeV) and the polarized target of the present SMC
experiment with an upgraded detector setup, the COMPASS collaboration [87] plans to
study the final states of polarized deep inelastic scattering events. If this experiment is
approved, it could start opératigh in 1>999; the ex;;e(;"ted iuminosity is 1.9 fb™! per year.
Apart from an improved measurement of the structure function ¢;(z,@?), this exper-

iment will yield information on AG(z,@?) from the production of charmed mesons.

SLAC programme

In addition to the E154/E155 experiments [88], which are presently measuring polar-

ized structure functions at Ej.,,, = 50 GeV, several future spin experiments are under
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discussion.
The most promising option for a measurement of AG(z,Q?) is the study of polarized

photon-proton collisions using a beam of bremsstrahlung photons at E., = 45 GeV [89].

SPIN @ HERA

A possible option for the future of the HERA collider is the operation of a polarized proton
beam. This would provide the unique opportunity of a study of polarized ep collisions at
V3 ~ 300 GeV [90]. Studies on the machine aspects of this project are presently being
carried out. If these yield positive results and the project is approved, it could be realized
in the middle of the next decade. Presently, HERA provides a luminosity of 15 pb~? /year,
which could be increased by a factor 4 over the next few years.

The physics prospects of this project have been studied in a working group of the
“Future physics at HERA”-workshop [91], yielding several possible measurements which
appear to be unique at HERA. The prospects for a measurement of g;(z,Q?) will be

discussed below.

HERA-N

Operating the present HERMES spectrometer in the HERA proton beam (HERA-N, [92])
offers the possibility to study singly polarized (unpolarized beam on polarized target)
hadron-hadron collisions at /s = 40 GeV. Such an experiment is under discussion and
could start operation after the end of the HERMES programme in 1999. An integrated
luminosity of 240 pb~! for three gréars of Vd;;a-t.:a.kirng _is anti(;ipated.

As single spin asymmetries vanish in the perturbative domain of QCD, this experiment
would need additional information on final state polarizations in order to construct a
double spin asymmetry sensitive to polarized parton distributions. An example of such
an asymmetry is discussed in detail in section 6.6.

If HERA is operated with a polarized proton beam, this experiment could study

asymmetries in polarized proton—nucleon collisions at energies well below RHIC-SPIN,
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offering in particular better prospects for the measurement of asymmetries in the Drell-

Yan process, which will be studied in Section 6.3

6.2 Precision measurements of the polarized struc-

ture functions

The derivative of Fy(z,Q?) with respect to Q? has been used to measure the unpolarized
gluon distribution in fixed target experiments [93] (0.008 < z < 0.5) and at HERA [94]
(2:107* < £ < 3-107%). The method is particularly powerful at small z, where the gluon
distribution dominates the Q2 evolution, F3(z)/0In Q* ~ P,g(y) ® G(z/y). In the same
way, we can use our three sets of distributions A, B and C to explore the sensitivity of

the polarized structure function evolution to AG(z,Q?).

6.2.1 Fixed target experiments

The kinematic range of fixed target experiments is limited, as the available lepton—proton
centre-of-mass energy only grows like the square root of the beam energy. A substantial
increase above the present energies (cf. Table 4.1) cannot be expected.

Fig. 6.1 shows predictions for the asymmetry A;(z,Q?) as a function of Q? in the
kinematic range representative of current fixed target experiments. The asymmetry is
obtained from Eq. (4.4) with ¢ calculated using the polarized distributions presented in
the previous chapter and F calculated using the-NLO unpolarized MRS(A') distributions
of [41]. The latter are extrapolated to lower values of Q% which reproduces the full
backwards evolution to within a few per cent.

At large z, there is no sensitivity to AG(z, @?) — the evolution is completely dominated
by the quark contribution. At small z, on the other hand, we see some dependence on the
gluon. In this region AP)g(y) ® AG(z/y) < 0 (cf. Section 4.3.2), and so the derivative
0A;/01n Q? is more negative for the sets that have a larger gluon polarization above the x

value considered. In particular, we see that at z ~ 0.01 the proton asymmetry is almost Q?
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Figure 6.1: Q? dependence of A{”d(m,Qz) in next-to-leading order using the Gluons A,
B and C. To illustrate the sensitivity of current experiments, we show the £ = 0.035

data-points from the recent SMC and E143 measurements.

independent for Set C, but decreases with increasing Q? for Sets A and B. Unfortunately,
the sensitivity of the present experiments is much worse than the differences between the
various sets. To illustrate this, we have included two data-points at z = 0.035 from the
recent SMC and E143 measurements. For the deuteron, the quark contribution to the
structure function is smaller, and so the dependence on AG(z,@Q?) at small z is somewhat
enhanced. Considering the large errors on the present data, it seems doubtful that a
measurement of the polarized gluon distribution from the Q? variation of Al(m,Qz) is
feasible for values of Q? where perturbative expressions can be safely applied. The SLAC
E154/E155 experiments will clearly improve this measurement, a further decrease of the
statistical errors may be achieved by combining several bins in z. Nevertheless, it still has
to be kept in mind that a determination of AG(z, @?) from the Q? dependence of A,(z, @?)
can never reach the quality of the corresponding unpolarized measurement, as the gluonic
contribution is not as dominant in the evolution of polarized parton distributions as it is

in the unpolarized evolution (cf. Section 4.4).
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6.2.2 HERA

In the foreseeable future, the HERA collider may be able to accelerate polarized protons
[90]. This would offer the unique opportunity of measuring the polarized structure func-
tion g7(z, @?) far beyond the Q? range of present fixed target experiments. In order to
judge the quality of the new information gained from such a measurement, an order-of-
magnitude estimate of the statistical errors is crucial. The structure function ¢}(z,@?)
is extracted from a measurement of the asymmetry (4.4). Under realistic experimental
conditions, the electron and proton beam will only be partially polarized, yielding the
experimentally observable asymmetry
z. 02
Az, @) = A, D %,
where A, ();) denote the polarizations of the electron (proton) beam. The statistical error

on zg:1(z,Q?) is therefore:

1 1+(1—-y)? pr 2 01 —y) o 2
P T— (1= y) [QmFl (=,Q%) + m&(z,@ )]

d2a.(unpol.) ) -1/2 -
X (L,'m dedQ ) \/1 - A”(.‘L’,Q ), (61)

where the unpolarized differential cross section is integrated over the bin used in the

8[zgi(e, Q)] =

experimental measurement.

To study the accuracy of a measurement of gf(z,Q?) in the collider mode of HERA,
we have evaluated the above expression using the unpolarized- parton distribiition set
i\/IRé(A’) from [41] with the next-to-leading order polarized parton distribution set A
described in Chapter 5. We apply the following cuts to the HERA phase space [95]:
0.1<y<095 Q*>1GeV? O, < 176° and E, > 5 GeV, and consider two scenarios

for the beam energies:

(6) : +5=300GeV with E,=27.44 GeV, E, = 820 GeV,

() : V5=150GeV  with E, =18.75 GeV, E, = 300 GeV.
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Figure 6.2: Expected errors for a measurement of ¢§(z,Q?) at the HERA collider with
s!/2 = 300 GeV and s'/? = 150 GeV.

The expected errors for an integrated luminosity of 60 pb™" at A, = A, = 0.8 in these two
scenarios are shown in Fig. 6.2. We take two bins per decade in z and only one bin in
@?. These results are consistent with the leading-order estimates of [96], bearing in mind
the different cuts applied. In particular, we estimate smaller errors in the small-z region,
as we apply no cuts on the hadronic final state.

The average Q? values probed at HERA range from 2 GeV? (z = 6-10~%) to 1060 GeV?
(z ~ 0.05) for /s = 300 GeV and from 1.7 GeV? (z ~ 2-10~%) to 270 GeV? (z =~ 0.05)
for \/s = 150_GeV. For reference, we-also show-in Fig-6.2 a parametrization of ¢}(z,Q?)
obtained from the NLO set A. To illustrate the impact of a measurement at HERA, we
include the three lowest data-points reported by the SMC experiment [47], corresponding
to @? values around 1.5 GeV2. It is apparent that a measurement at lower beam energies
will yield data of higher statistical quality. In contrast, the higher beam energies yield a
measurement at smaller z.

A measurement of g7(z,Q?) at the HERA collider will evidently not provide a large

number of precision data on the z and Q? dependencies of this structure function. Hence,
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it will not provide sufficient information for an indirect determination of the polarized
gluon density!. The important physics result of such a measurement is the determination
of the small-z behaviour of gf(z,@?), for which various, significantly different predictions
exist [71, 72, 73]. It is important to stress that a measurement of g (z, Q%) at small z will
reduce the experimental uncertainty on the Ellis—Jaffe sum rule. The impact of the small
z region can be easily seen in Fig. 6.2, as the Ellis-Jaffe sum rule is proportional to the
area enclosed by z¢}(z,Q?) and the z axis.

A final remarkable point on the measurability of ¢f(z,Q?) at HERA is the impact of
the minimum cut on y on the statistical error. As the photon depolarizes for small y, a
small cut on y (such as y > 0.01) diminishes the average polarization in the bin, even
though more data are included. We find that a minimal cut on y between 0.1 and 0.2

yields the optimal accuracy of the measurement.

6.3 Hadroproduction of Drell-Yan pairs

Structure functions measured in deep inelastic lepton—nucleon scattering probe a par-
ticular combination of quark distributions in the nucleon. The mere knowledge of these
structure functions is therefore insufficient for a distinction between valence and sea quarks
and for a further decomposition of the light quark sea into different flavours. These are
only possible if additional information from other experimental observables is taken into
account.

Fits of unpolarized parton-distributions (e.g. {41]) obtain this information from two
sources. The weak structure functions measured in neutrino-nucleon scattering probe
different combinations of parton distributions than their electromagnetic counterparts.
The inclusion of these structure functions in a global fit can therefore constrain the flavour
structure of the unpolarized sea. A direct probe of the antiquark distributions in the

nucleon is given by the production of lepton pairs in hadron-hadron collisions [28], the

'Recall that a determination of AG(z, @?) requires a precise measurement of the slope of g; as a
function of Q2.
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Drell-Yan process. It is in fact the inclusion of data from both processes in the global
fits which allows a precise determination of the distribution of antiquarks and its flavour
decomposition.

The recent fits of polarized parton distributions described in Chapter 5 have to rely
entirely on the available data on the polarized structure function g”*"(z,Q?). The dis-
tinction between valence and sea quark contributions to this structure function is possible
to a certain extent if additional information from sum rules is taken into account. The
flavour structure of the polarized sea is however completely unknown at present. It seems
rather doubtful whether more precise measurements of this structure function will be able
to provide more information on these two issues.

Polarized neutrino—nucleon scattering experiments will not be feasible in the foresee-
able future, a measurement of polarized weak structure functions may however be possible
from charged current interactions at HERA [97] if polarization in the collider mode can
be achieved.

An experimental study of the polarized Drell-Yan cross section would be possible with
the HERA-N experiment, operated with a polarized proton beam onto a polarized nucleon

target. We will examine the prospects of such a measurement in this section.

6.3.1 The polarized Drell-Yan process

The production of lepton pairs in hadronic collisions was already introduced as a test
of the parton model in Section 2.5. It can be understood as annihilation of a quark-

a.ntiqua,rl; prair to a virtual photon, which decays into a lepton pair of invariant mass M2,

The polarized and unpolarized cross sections for this process are conventionally defined

to be [98]

dAo = - (do** —do*"), do= % (dot* + dot7),

where (++) and (+—) denote the configurations of aligned and antialigned hadron spins.

In the QCD corrected parton model, these hadronic cross sections can be expressed as a
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Figure 6.3: Unpolarized Drell-Yan cross section in proton-proton and proton—neutron

collisions.

convolution of parton level coefficient functions with the appropriate parton distributions:

dAle  4xa f1 '
e = 93M2_/0 d$1d$2d26($1m2z - T);e:

{[Algi(z1, 1d) [Alda(z2, 13) + (1 & 2) } [ [-16(1 - 2) + M‘—)[Alc;”(z)
2r

+{([Ala(es, 13) + [Alai(e1, 43)) [AlGa(aa, b3) + (1 0 2) } =5 "F) {Alcé’y(z)}
(6.2)

where p? indicates the mass factorization scale and 7 = M?/s is the Drell-Yan scaling
variable.

The next-to- leadmg order corrections to the unpolarized coefficient functions have been
calculated in [153] and are listed in (8.6). The polarized corrections are given in [98, 100],
they read in the MS-scheme:

Acl¥(z) = —CF[S (l_ngl__—zz_)) ——211—4;—2—21nz—4(1+z)ln(1—z)
+
+6(1 —2)(— 8+4(2)+2ln-1‘—4;{<-1—_2_—z)+—-1—z+%5(1—-z)}],
AcBY(z) = —-Tp[(2z—1)ln(1_zz)2+g—z—gzz+ln%{(2z—l)}]. (6.3)
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Figure 6.4: Expected asymmetries in the polarized Drell-Yan process.

It turns out that inclusion of these corrections is crucial at fixed target energies, as they
contribute about 30% of the total cross section. A fully consistent study of the Drell-Yan
process at next-to-leading order was up to now only possible in the unpolarized case, as
the polarized parton distributions could only be determined to iez;ding a,c;ura,c_:);. With the
recently calculated polarized two-loop splitting functions [35], the polarized distributions
can now be determined to next-to-leading order from fits to structure function data [69,
85].

Using these distributions in combination with the unpolarized distributions (set A’)

from [41], we have calculated the total Drell-Yan cross section do/dM and the expected

88



asymmetry dBo/dM
o
A(M) = do/dM

for proton and (idealized) neutron targets at centre-of-mass energies /s = 40 GeV
(HERA—I(’I) and /3 = 25 GeV. The latter could be achieved by operating HERA-N with
a proton beam energy of about 330 GeV. Figure 6.3 shows the unpolarized Drell-Yan
production cross section as a function of the invariant mass of the lepton pair. It has to
be noted that invariant masses M < 4 GeV and 9 GeV < M < 11 GeV must be excluded
from an experimental measurement, as lepton pair production in these mass regions is
dominated by the decay of quarkonium resonances. An experiment with /s = 25 GeV
will clearly be restricted to the invariant mass range 4 GeV < M < 9 GeV; depend-
ing on the available luminosity, a measurement for M > 11 GeV could be possible at
Vs =40 GeV.

The Drell-Yan cross section at HERA-N (/s = 40 GeV) is about two orders of
magnitude bigger than at RHIC-SPIN (1/s = 200 GeV) if evaluated at fixed r.

Figure 6.4 shows the asymmetries obtained with the polarized NLO parton distribu-
tions of [69] (GS(A,B,C)) and [85] (GRSVs,v). The spread in these predictions reflects the
present lack of knowledge on the behaviour of polarized parton distributions in the region
z > 0.1. A sizable asymmetry of more than £10% can be expected in proton—proton
collisions, the asymmetry in proton-neutron collisions is considerably smaller.

We have checked the perturbative stability of these results by variation of the mass
factorization scale. It turns out that the absolute value of the asymmetry is decreased
(increased) by a maximum of 1.5% if we take m} = oM 7(;1;- = M/2). This variation is
significantly smaller than the difference between the different parton distribution func-

tions.

6.3.2 Conclusions and Outlook

A measurement of the polarized Drell-Yan cross section in the double polarized mode of

HERA-N appears feasible, provided an integrated luminosity of 100 pb~! or more can be
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achieved. Such a measurement would provide important information on the polarization
of the light quark sea at large z, a region which cannot be probed with measurements of
polarized weak structure functions. Such a measurement would be unique to HERA-NT, as
the polarized Drell-Yan process cannot be studied at the RHIC. Furthermore, HERA-N
could measure Drell-Yan asymmetries off different targets, which might be used to infer
the flavour structure of the polarized sea. Such a measurement would however require
much higher luminosity due to the low asymmetries on the (idealized) neutron target.
So far, we have only examined the invariant mass distribution of the Drell-Yan pairs,
which is already able to discriminate different parametrizations for the polarized sea quark
distributions. Even more information can be gained from more differential distributions

(e.g. in the lepton pair rapidity y), which could be obtained with higher luminosity.

6.4 Photoproduction of open charm

The parton model as described in Chapter 3 assumes that the proton mainly consists
of light (u,d,s) quarks and gluons. As the photon in the deep inelastic scattering only
couples to the charged quarks, the proton structure functions are dominated by the light
quark contributions. If the final state of a deep inelastic scattering event contains heavy
(c,b) quarks, it seems very likely that these have been produced by photon—gluon fu-
sion in the particular event?. Assuming the photon—gluon fusion mechanism, the parton
level cross section has been calculated [101], including full helicity dependence [78]. The
process is dominated by-the photoproduction (@? ~ 0) region. Therefore, it is a rea-

sonable approximation to consider only real photon—proton interactions with a beam of

2Alternatively (see e.g. [42]), one could choose to work with an intrinsic heavy quark distribution in
the nucleon. This distribution is — apart from a marginal contribution at low scales — generated due
to g — QQ-splitting in the evolution process. The impact of the gluon distribution on the physical

observable is qualitatively similar, the approaches only differ close to the production threshold.
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bremsstrahlung photons®. The parton level cross sections then read:

o) = aZ2 (g )4y - gy EE),
Ao(3) = eﬁm—‘:’@ (3[3 lig) (6.4)

where § is the invariant mass squared at the parton-level and § = (/1 —4m2/3 is the
velocity of the heavy quark. The bremsstrahlung spectrum of real photons emitted off a

lepton beam is

= 1_+(l__-'/)2 "E’ (6.5)

y my
with y = E, /E;. Depending on the photon energy, only a certain fraction

Afply) _1-(01 )’
fanly) 1+ (1-y)?

of the lepton polarization is transferred to the photon.

(6.6)

Photoproduction of charm quarks has been used by the EMC collaboration to deter-
mine the unpolarized gluon distribution [102], yielding consistency with other determi-
nations. Furthermore, various phenomenological studies [64, 79] have demonstrated the
sensitivity of this process to the polarized gluon distribution. In the following we inves-
tigate the prospects of such a measurement with the proposed COMPASS experiment
described above.

The allowed kinematic range for § is determined by the heavy quark production thresh-

old and the maximum available energy
4m3 <3< s=2yEM,.

At fixed photon energy, one can then define an observable asymmetry

_ Af() [d5Ac(3)AG(3/s,3)
AV =T TG CG/53)

(6.7)

3Although perturbative approaches fail to describe structure functions at Q2 ~ 0, this treatment is

justified for the production of heavy quarks, as the quark mass provides a natural hard scale.
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Figure 6.5: Open charm photoproduction asymmetry.

Fig. 6.5 shows this asymmetry evaluated for £, = 100 GeV and E, = 200 GeV, using
the leading order polarized gluon distributions A-C in combination with the unpolarized
GRV94 [44] gluon distributions. Given the anticipated luminosity, this asymmetry should
be measurable to an accuracy of 3% for a single bin 0.35 < y < 0.85 [87]. It is apparent
that the measurement will yield a better discrimination of the different gluon distributions
if carried out at lower beam energies. At low energies, the polarized gluon distribution
is probed at larger values of z, where AG(z)/G(z) is larger. Hence a clear distinction
between Gluon A and C is possible, and the sign of the polarized gluon distribution at

large = can be measured.

6.5 Photoproduction of J/1 mesons

The J/¢ meson is the lightest (¢€) bound state. Its discovery [103] provided first evidence
for the existence of charmed quarks. It decays with a branching ratio of about 12% into
lepton—antilepton pairs {58] and can therefore be detected relatively easily as a peak in
the final state lepton-antilepton invariant mass distribution of a particular experiment.

Inelastic J/v production from a nucleon target directly probes the gluon distribution
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via the photon-gluon fusion subprocess ¥* + g — (¢€) + g, which can be described in
the colour-singlet model of [104]. This model assumes that both quarks forming the
J/1 have exactly half its velocity and form a colour singlet. The transition amplitude
from the quark pair to the meson state is then inferred from the magnitude of the J/v
wavefunction at the origin. This model successfully describes the production of J/¢
mesons in lepton-hadron collisions [105, 106], provided the theory prediction is scaled
with a K-factor accounting for higher order corrections. This K-factor is of order 4 and
almost independent of the kinematical variables. The next-to-leading order calculation of
J/¢ photoproduction [107] is in better agreement with the experimental data, but still
needs to be scaled by a (smaller) K-factor at fixed target energies.

Depending on the virtuality of the photon, one can distinguish two different classes of
events: photoproduction (Q? = 0) and leptoproduction (Q? > 0). The EMC [105] and
NMC experiments [106] have obtained measurements of the unpolarized leading-order
gluon distribution in the range z ~ 0.05 — 0.25 from the photoproduction process. The
results agree well — after K factor correction — with gluon distributions extracted from
other processes, for example large-pr direct photon production. The corresponding cross
section for polarized J [ leptoproduction has been calculated in [108].

Taking the photoproduction limit Q% — 0, one obtains

doY (E,) o 802 M sy s/ g st e z(1 - 2)
My 2D M2,) . =2 [Yete” |
dpt.dz a nC(m, Mipy) 3 (M3,,(1 = 2) + p7]?
x [A(z) + hAC(2)] - F(p},2), (6.8)
with
2}(1 = 2)? 1
Flpr,z) = -2

(7 +(1- z)2M3/¢)2 (P} + M.?/:p)z’
M3/¢ 20 142 2 20 242
A(z) = —3 (z (MJN, —z8,n)" + (1 - 2) (M_,N,+
(1= 2)o,n)? + (3w — M) ,
C(Z) = (l - Z)(M3/¢ - zs—yN)(ZMgl‘p(M;/‘p b zS,YN) + (z —_ 2)M§/¢S’YN))
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sy = 2MNE,,
pr+(1-2)M3,,
2(1 — 2)syN

Ejpy
E,

A = gluon helicity,

Z =

h = lepton helicity.

The polarized (unpolarized) cross sections are obtained by taking the difference (sum) over
the helicity states. The polarized cross section is then proportional to AG(n) = G4+(n) —
G-(n) and depends only on C(z), while the unpolarized cross section is proportional to
G(n) = G4+(n) + G-(n) and depends only on A(z). Taking the cross sections integrated

over one of the variables, one can define two physics asymmetries:

oV oV

Az) = dz(E") / d diE"), (6.9)
"N o N

App) = & dp%(E") d dp(%'E'Y)' (6.10)

Such an asymmetry could be studied in a dedicated experiment with a 45 GeV photon
beam at SLAC [89] or using the spectrum of bremsstrahlung photons (E, ~ 25 GeV)
at HERMES. Both these experiments work at lower photon energies than [105, 106],
a discrimination between elastic 2 = 1 and inelastic z < 1 photoproduction of J/v
-mesons will therefore be moré difficalt; if not impossible. The expected cross sections for
D% > Pormin = 0.1 GeV? and z = 0.9 (cuts like in [105, 106]) are shown in Fig. 6.6. The
cut on p3 is required to guarantee the applicability of the colour singlet model, which
assumes the colour neutrality of the (c¢)-pair to be obtained by the emission of a single,
hard gluon. The bulk of J/t¢ mesons produced will be rejected by this cut.

As illustrated in Fig. 6.7, significantly different asymmetries are expected for the three
gluon distributions A, B and C. These predictions are obtained for the asymmetries A(z)

and A(p%), calculated for E, = 45 GeV using the three leading order distributions in
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Figure 6.6: Cross section for photoproduction of J/y mesons.

0.2
| A |
0.15| .
0.1
0.05
L O -
. < \
005 .
A — e (A
0.1} - 01 -
®- 1 0 (®B) ---
015} (©) ... - 015} © ... 1
-0.2 ] I | -0.2 I I N |
0 02 04 06 08 1 01 2 3 4 5 6
2=E, IE, Pt [GeV’]

Figure 6.7: Expected asymmetry for J/v photoproduction at E, = 45 GeV.

combination with the unpolarized leading order gluon distributions of [44]. The asym-
metries at E, = 25 GeV are identical in shape but only half in magnitude. It should
be noted that these asymmetries assume 100% photon polarization. Depending on the
fraction of photon and lepton energy, the photon only carries a certain percentage of the
lepton polarization (cf. eq. (6.6)).

Note that small 2 corresponds to large 7 and vice versa. It is furthermore noted that
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the ordering of the predictions obtained with different gluon sets simply reflects the or-
dering of the different gluon distributions in the region 5 2 0.1. Due to the relatively
large asymmetry of up to 15%, such a measurement could provide first information on
the leading order polarized gluon distribution at Q2 ~ M3/¢. The z-range in which the
distribution is probed depends on the acceptance cuts used in the experimental measure-
ment. A dedicated simulation for the HERMES experiment [109] has shown that a range
0.22 < 2 < 0.5 would be accessible there.

It should be noted that the cross section for J/i¢ production is about two orders
of magnitude lower than the cross section for open charm production. The experimental
advantage of studying J/1 production is the clear decay signature in the leptonic channel,

which makes a precise reconstruction of the kinematics possible.

6.6 Hadroproduction of J/y pairs

All asymmetries considered so far in this section required the polarization of both initial
state particles. Present accelerators can provide polarized electron and muon beams at
high energies and satisfactory intensities. These are then scattered off fixed polarized
nucleon targets. In contrast, polarized proton beams are presently only available as sec-
ondary beams from A-decay and have hence a low luminosity and a wide energy spread.
The acceleration of polarized proton beams and their storage still remains a challenging
task. »

Therefore it is worth considering-whether one-can-determine the polarized gluon distri-
bution AG(z,Q?) from collisions of an unpolarized proton beam with a polarized proton
target. As outlined above, such a configuration would be possible at the HERA-N exper-
iment.

Parity invariance of QCD implies vanishing of all single spin asymmetries in the per-
turbative region. Therefore, information on the spin state of at least one particle in the
final state is required for the construction of a measurable asymmetry. Several observ-

ables [92], such as jet handedness or x/-polarization have been suggested in the literature.
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Unfortunately, all these channels suffer from low luminosities and poor analysing power
(correlation between parton and hadron helicity). In this section, we examine another
process, which might allow the construction of an asymmetry containing one initial and

one final spin state: the production of J/v pairs in proton—proton collisions.

6.6.1 Theoretical framework

The colour singlet model introduced in the previous section can be extended to the pro-
duction of J/i pairs in hadron-hadron collisions: the dominant subprocess is gluon—gluon
fusion to two (c€) pairs. The condition of non-zero transverse momentum again has to
be applied to justify a perturbative treatment. This model yields the parton level cross
section [110]

do(a+b— J/pJ/p) _ meg(l— M3, [5) 2 |w(o)|* 1
d cos O* B 723 M3, 64

IMPP (a+b=g+q or g+g).

(6.11)

The helicity averaged matrix element M was first calculated in [110], and its full helicity

dependence was derived in [111]. The explicit formulae are too lengthy to be included in
this chapter.®.

To relate this parton level cross section to a measurable observable at the hadronic

level, it has to be convoluted with the corresponding parton distributions
do(p+p = J/pI[8) = 3 [ derdesfopp(or)fispla)db(a+b— I/wI[9).  (6.12)
a,b

The above expression is dominated by-the-(g=+g) subprocess, whose contribution is about
five times as big as the one from (g + q) at HERA-N energies. In what follows, we will
restrict ourselves to a study of the gluonic contribution.

To estimate the expected cross section at /s = 40 GeV, we have evaluated the above
expression for the leading order parton distributions given in [112] (DO1.1) and [44]
(GRV94). The resulting p? distributions are shown in Fig. 6.8. We use Ag%D = 200 MeV
and | ¥(0)|?= 0.043 GeV?, obtained from the leptonic width of the J/ [58).

“We would like to thank Sergey Baranov for providing the FORTRAN-code for M
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Figure 6.8: Cross section for production of J/% pairs at HERA-N

ot | o(pt > 1 GeV?)
DO1.1 | 10.3 pb 6.5 pb
GRV94 | 49pb 3.0 pb

Table 6.1: Total cross sections for pp — J/¥J/1 evaluated for the parton distributions
of [112] and [44].

The large discrepancy between both predictions reflects mainly the uncertainty in
the unpolarized gluon distribution G(z) in the high-z region. For consistency with the
polarized distributions considered in the remainder of this section, we will work with G(z)
from [44]. For the proposed luminosity of HERA-ﬁ,_ one can expect 1200 J/1 pairs_to be

“produced. - I

It should be recalled that the colour singlet model assumes the colour neutrality of the
(¢€)-pair to be obtained by a single, hard gluon exchange. This condition is only satisfied
for sufficiently large transverse momentum of the final state particles. In the forward
region (p% < 0.5 GeV?), the same neutral state can be obtained by the multiple exchange
of soft gluons. Hence the colour singlet model tends to underestimate the cross section in

this region.

98



6.6.2 Reconstruction of the J/v

The total cross section for proton-proton collisions at /s = 40 GeV is o' (pp) = 41 mb
[58], ten orders of magnitude bigger than the cross section for the production of J/ pairs.
In order to identify these events in the background of mulithadron production, a clear
decay signature of at least one of the J/i¢ mesons is needed. Only the leptonic decay
J/¢Y — 4* = 1F1~ can provide such a clear signature, as the pair of oppositely charged
leptons can easily be distinguished from the hadronic background. The branching ratio
[58]
Br(J/p =4 = 1717)=12%

of this decay channel therefore reduces the number of visible events.

HERA-N will (at least for the first years of running) only have a polarized target, with
an unpolarized beam. Information on the initial state polarization will therefore have to
be extracted from the final state. In the case of J/t pair production, at least the helicity
of one of the J/1’s has to be measured. As the J/i is a massive spin-1 vector meson, it
has three possible helicity states: —1,0,+1. The 0 and 1 states correspond to different
partial waves, and can therefore be easily distinguished from the energy spectra of the
decay products. Unfortunately, no information on the initial state polarization can be
gained from the 0 state, as the corresponding differential cross section is symmetric under
the change of one initial state helicity. We will discuss the possible decay channels of the

J/v¢ with a view to distinguishing the 4+1 and —1 helicity states:

(i)-weak decays: Pafity violating weak decay modes could provide a clear separation
between these two states. As the J/v does not have any known weak decay modes,

this possibility is ruled out.

(ii) leptonic decays: Parity invariance of the electromagnetic interaction relates the
decay cross sections of both helicity states. As the lepton helicities cannot be mea-

sured, both states are indistinguishable.
(ili) decays to scalar mesons: The distribution of the final state particles in these
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decays is given by the | = 1,m = X1 partial waves. As the partial waves for
m = —1 and m = 1 are identical for vector particles, this decay channel cannot

distinguish between these states.

(iv) radiative decays: If the J/+ decays into a real photon and scalar mesons (e.g.
J/Yp — n.y), the helicity of the J/i could be reconstructed from the measured
helicity of the photon®. This decay channel contributes with a branching ratio of
about 4% [58]. Provided a helicity measurement on the photon, this is the only
channel in which the helicity of the J/1 can be measured.

From the above considerations, it becomes clear.that a J/v pair produced in single
polarized proton-proton collisions can only be used for an asymmetry measurement for
the specific final state configuration in which one J/t¢ decays leptonically while the other
decays into a photon accompanied by scalar mesons. The probability of this configuration
is

P=2x (Br(J/zp — l+l‘)) X (Br(J/$ — v + scalars)) ~ 1%.
Therefore, only twelve of the expected 1200 events can provide an asymmetry measure-
ment under ideal experimental conditions at HERA-N. It should therefore be already
clear at this point that such a measurement will fail to provide information on AG(z).

Regardless of this negative result, we will provide an estimate of the asymmetries one
could expect at HERA-N.

6.6.3. Expected asymmetries - -

Under ideal experimental conditions at HERA-N, the spin of the target proton and
the helicity of one of the two J/1 mesons can be measured in a rather small fraction of
the events. Using this information, we can construct the following asymmetry

A= Yot /YY) + do(p™J/y) — do(p™ J/¥*) — do(p* /7).
do(p*J/9*) + do(p=J/$*)
SEven though such a measurement could be possible in principle, it seems rather doubtful that it could
be carried out with the HERA-N apparatus.
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Figure 6.9: Expected asymmetry in the single polarized mode of HERA-N.
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Figure 6.10: Expected asymmetry in the double polarized mode of HERA-N.

This asymmetry can be related to the parton level cross sections, keeping in mind that
the helicity state of the second J/1 is summed over. For convenience, we use the following

shorthand notation for the parton level matrix elements of particular helicity combina-

tions:

[k(g, beam) h(g, target) h(J/1r) h(J/4s)] =
dé(g(h(beam)) + g(h(target)) — J/b(h1)J /3 (ha)). (6.13)
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Omitting terms related by parity invariance, the asymmetry is

[ dedesGla, Q)AG(ws, @) {2[EA + +] + [SA0+] + [SA +0])
] &:dz:G(z1, Q)G ez, QI[EE £ 1] !

where ¥ (A) denotes the sum (difference) of the possible helicity states.

A=

(6.14)

The scale of the parton distributions in the above expression and the scale of a,(Q?)
in the matrix elements is taken to be Q% = (My;y)?. We have evaluated the above asym-
metry as a function of the angle between the J/v pair and the proton beam direction
in the parton-parton centre-of-mass system (which can be reconstructed from the final
state). The unpolarized G(z,Q?) is taken from [44]. In Fig 6.9, we compare the pre-
dictions obtained with the parametrizations of AG(z, @?) from [113] (standard scenario)
and [69] (Gluon A-C). Although the asymmetries obtained with these parametrizations
are significantly different from each other, A(cos ©*) never exceeds 3%. The asymmetry
becomes maximal if the J/t¢ pair is produced at very small angles with respect to the
proton beam, i.e. at low transverse momenta.

Keeping in mind the low number of reconstructable events, this small asymmetry turns
out to be unmeasurable in the single polarized mode of HERA-N. The situation would be
different for a double polarized measurement (i.e. with a polarized HERA proton beam):
in this case, the reconstruction of helicities in the final state is no longer necessary for an
asymmetry measurement. Therefore, one can expect about 270 J/9 pairs with at least
one lepton pair decay. The asymmetry can be defined in the standard way

A= do(ptp?) +da(p7pT) — do(ppT) —do(p7pt)
~ do(pp)
In terms of the parton densities this asymmetry reads

_ [ dz1de;AG(e1, Q) AG (a5, Q)+ALE] — [~ATT]
B [ dz:1d2,G(z1, @) Gz, Q) [EELT)

Fig. 6.10 shows this asymmetry as a function of p% for the different parametrizations of

A

(6.15)

AG(z,Q?) mentioned above. Depending on the parametrization, the asymmetry could be
as large as 7% and depends only weakly on p%. If HERA-N would have a polarized HERA
proton beam available, this measurement could give some indications on AG(z,Q?) for

r =~ 0.3
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6.7 Prospects and outlook

In this section we have discussed several experimental observables which could probe the
polarized gluon and sea quark distributions. We have found that an indirect determination
of the polarized gluon distribution from the evolution of the cross section asymmetry
Ai(z, @?) seems to be hardly feasible both at fixed target experiments and at HERA with
polarized beams.

The production of Drell-Yan pairs in polarized proton-proton collisions can put severe
constraints on the shape of the polarized sea quark distribution at z > 0.1. Due to the
decrease of the cross section with energy, a fixed target experiment would be favourable.

It was found that the production of charmed quarks in lepton—proton collisions induced
by quasi-real photons could be a sensitive probe on the polarized gluon distribution. We
have studied the production of charmed mesons (open charm) and of the lightest (cc)
bound state, both turn out to provide promising experimental observables. Finally, we
have studied a rather exotic channel in singly polarized proton-proton collisions, which
yielded a negative result like most other singly polarized observables.

The RHIC-SPIN collider will provide first information on the polarized gluon distribu-
tion at the beginning of the next decade. If the COMPASS experiment is approved, it will
yield a complementary measurement at the same time. Provided all technical problems
can be overcome, the HERA collider might be operated with a polarized proton beam in
about ten years from now. This would open a new kinematic region for the measurement
of the polarized structure function and provide a facility for polarized proton-nucleon

collisions at fixed target energies.
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Chapter 7

Hard diffraction at HERA

The electron—-proton collider HERA allows detailed studies of the final state of deep
inelastic scattering events, which are not possible at fixed target experiments. It is in
particular possible in the hadronic final state, to distinguish between fragments of the
struck parton (current jet) and fragments of the remnant proton (remnant jet). While
the former are found in direction of the virtual photon, the latter are moving in the
direction of the proton beam.

The struck parton (quark or gluon) and the proton remnant both carry colour charge,
whereas the final state contains only colour-neutral hadrons. The hadronization of current
and remnant jets is not completely independent, a few hadrons are emitted in the rapidity
interval between these jets.

Soon after the start of the experimental programme at HERA, the ZEUS collaboration
reported [_11 4] that a sig_niﬁcan; fracti_on of DIS events at small z showed a different event
topology: no remnant jet was observed and no hadronic activity was found in the rapidity
region between the current jet and the proton beam direction (Fig. 7.1). This observation
was confirmed by the H1 experiment shortly afterwards [115].

The lack of any hadronic activity around the proton beam direction and the mismatch
between the initial-state and observed final-state energy requires the proton (deflected

only by a small angle and therefore outside the rapidity coverage of the detectors) to be
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Figure 7.1: Event topology of deep inelastic scattering (a) and diffractive deep inelastic
scattering (b) at HERA.

in the final state, still carrying a large fraction of its initial momentum. These events with
a remnant proton in the final state are classified as diffractive deep inelastic scattering
(DS) events.

The physical origin of this phenomenon is not understood at present. A possible
explanation is given by the pomeron model, which was originally introduced in [116] to
explain the high energy behaviour of elastic hadron-hadron cross sections.

In this chapter we will study the application of the pomeron model to diffractive deep
inelastic scattering at HERA. An introduction to the phenomenology of this process and
its interpretation in terms of the pomeron model is given in Section 7.1. As the remnant
proton in DS cannot be detected, a.complete reconstruction-of-the event kinematicsis not
possible. We examine the reliability of the kinematical approximations made at HERA
in Section 7.2 and show in Section 7.3 that the pomeron model predicts a kinematical
correlation between outgoing electron and remnant proton. If the pomeron interpretation
of DS is correct, one should be able to study the pomeron structure function from this
process. A very simple model for the pomeron structure will be presented in Section 7.4.
This model allows the study of other observables, such as the charm quark contribution

to DS, which can provide a consistency check of the pomeron interpretation. We will
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determine the parameters of this model from experimental data in Section 7.5. Finally,
section 7.6 contains the conclusions of our study. Experimental data on diffractive deep
inelastic scattering have improved considerably since the study in this chapter was orig-
inally published [117]. We shall briefly comment on these new results in the conclusions

of this chapter.

7.1 Phenomenology of hard diffraction at HERA

Measurements at HERA have indicated that a significant fraction of deep inelastic elec-
tron—proton scattering events have a final state with a large rapidity gap between the
proton beam direction and the observed final state particles [114, 115]. The cross section
for this diffractive deep inelastic scattering can be written in a form similar to the cross

section for deep inelastic scattering (3.12), it reads

do™ 47 y? s \

Apart from the DIS variables z and Q?, we need two more variables to describe the four-
momentum of the outgoing proton: the proton loses a fraction e, of its initial longitudinal
momentum, its deflection is described by the invariant momentum transfer ¢ between the
incoming and outgoing proton.

The presence of a large rapidity gap between the proton beam direction and the
current jet suggests that the diffractive events are caused by a deep inelastic scattering
off an uncharged and colourless object, which was emitted from the Apr:)tc;n beforehand,
Fig. 7.3. We shall show below that the experimental data give strong indications that
this object is the pomeron, which was postulated to explain the high energy behaviour of
hadronic cross sections. To motivate this interpretation, we briefly review some features
of the theory of elastic hadron interactions (Regge theory) in this section. The Regge
theory interpretation of hadron-hadron scattering yields the existence of the pomeron

and determines some of its properties.
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7.1.1 A brief excursion into Regge theory

Elastic hadron-hadron dynamics at high energies and low momentum transfers are not
calculable in perturbative QCD. A theoretical description of these dynamics is however
possible in the framework of Regge theory [118, 119]'.

Quantum field theories like QED or QCD have matter fields and gauge fields as fun-
damental degrees of freedom, scattering amplitudes are calculable from first principles.
Regge theory does not provide a method to calculate scattering amplitudes, but to relate
amplitudes for different processes using fundamental symmetry and analyticity proper-
ties. In addition to the ‘classical’ symmetries such as isospin or crossing, Regge theory
introduces the analyticity in the angular momentum variable I. We illustrate this using
the example of an arbitrary 2 — 2 scattering amplitude A(s,t). Keeping in mind, that
the variable s can be reexpressed by the centre-of-mass scattering angle z, = cos ©|; at
fixed t, this amplitude can be written

(oo}

A(s,t) = 167 (21 + 1) Ai(t)P(z2), (7.2)

=0
where P, is the I-th Legendre polynomial. The above expression is called partial wave

expansion of the scattering amplitude. Its coefficients can be obtained from

11
Alt) = 73 /_ daPi(2)A(s(z1),1). (7.3)
The analytical continuation of the Legendre polynomials is given by the hypergeomet-
ric function [70]

Pl(z) = 2Fl(—lal+ 1;1;(1 - Z)/2),

which is an alternating finite series for integer values of I. Like for the partial sums
encountered in Appendix A.4, one finds that the sums with odd [ are on a different
branch in the complex ! plane than those with even . The analytical continuation for

odd and even ! will therefore be different. Hence we have to consider amplitudes of odd

'We will outline the basic features of Regge theory in this section. The discussion follows closely the

book of Collins [119], where more details can be found.
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(A7) and even (A}) signature, which can be expressed similar to (7.2)
AS(s,t) = 167 Y (21 + 1) AT (t) Pi(z). (7.4)
1=0

The fundamental assumption of Regge theory is that the partial wave amplitude AP (t)
has only isolated poles in a(t) in the complex ! plane. If this is true, and A (¢) is moreover
free of branch cuts in the right half plane Re(l) > 0, the partial wave expansion (7.4) can
be written as a contour integral in the complex !-plane [119]:

—0.5410c0 —_
AS(s,t) = 07 / (2l+1)Af(t)1:—(it)dl

2t J-0.5-ico inxl

_167%(20(t) + 1)ﬂ(t)%. (7.5)

For simplicity it is assumed, that A} has only a single pole a(t), which is in the right half
plane. The behaviour at s — oo can be studied from the limit z; — oo. One finds that the
first term in (7.5) is suppressed like s~%3, while the second term behaves like s*®) i.e. it
dominates the high energy behaviour of the scattering amplitude. This term is called
Regge pole. The function a(t) is called Regge trajectory. In calculating the contribution
of a Regge pole to the physical trajectory A(s,t), which contains partial waves of odd
and even signature, one has to take into account that the corresponding trajectory has a
definite signature. Even trajectories should only yield poles in the amplitude for even I,
odd trajectories only for odd I. The physical amplitude therefore reads

Pa)(=2)
sinwa(t)

A(s,t) = =167(2a(t) + 1)B(t) (L-+Se~®) (7.6)

Inspection of the above amplitude yields that A(s,t) develops a resonance pole if a(t)
coincides with a positive (odd or even) integer. If this occurs for a positive argument ¢t =
LR, it can be interpreted as a particle resonance of spin a(tg) and mass v/Tg. Classifying
light hadrons of identical quantum numbers and increasing spin onto Regge trajectories,

one finds that a(t) can be put into the simple form
a(t) =ap+a't.
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Figure 7.2: An example of a particle trajectory (solid line) and the pomeron trajectory
(dashed line). The particle trajectory shown is the quadruple degenerate (p, w, a3, f2)-
trajectory. The masses of the particles on this trajectory are taken from [58], the particles
in square brackets have only been observed indirectly. A recently observed X(1900)
state [120] is the first particle candidate on the pomeron trajectory. The parameterizations

for both trajectories are taken from the fit of [121].

The crossed amplitude with negative ¢t can be understood as simultaneous exchange
of all particles on the particular trajectory. The differential cross section for the exchange

of a Regge trajectory in 2 — 2 scattering in the limit s — oo can be written

do s \2e)-2 o o
“ ‘d—t‘fF(‘t‘)"(;—o)‘ , (7.7)

where F'(t) is a function of ¢ only, sp is an arbitrary scale factor. The optical theorem

yields moreover the total 2 — X cross section due to Regge trajectory exchange to be

a(0)~1
ot (i) . (7.8)

S0
While many elastic hadron-hadron scattering processes can be described as due to
the exchange of particle trajectories, it turns out that experimental data on certain elas-

tic scattering processes and on total hadron-hadron cross sections at large s cannot be
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explained by the exchange of known particle trajectories. While the most singular Regge
trajectories have a(0) ~ 0.5, the total proton-proton cross section appears to be con-
stant — even slightly rising — at large s. This indicates the presence of a trajectory with
a(0) =~ 1 - the pomeron trajectory {116]. An example of a particle trajectory and the
pomeron trajectory are displayed in Fig. 7.2.

So far, no particle on the pomeron trajectory has been observed experimentally, there is
however some experimental evidence [120] for a spin-2 resonance state on this trajectory
(cf. Figure 7.2). The properties of the pomeron trajectory, in particular the pomeron
coupling to hadrons, can therefore not be studied from pomeron production and decay,
they have to be modeled on the basis of cross section data. A successful description
of hadronic scattering data can be obtained in the pomeron model of Donnachie and
Landshoff [122]. This model assumes, that the pomeron couples to the total number of
constituent quarks in a hadron with a coupling strength b. The pomeron—proton vertex
is very similar to the photon—proton vertex of (1.3), with two minor modifications: (a)
the anomalous magnetic form factor F,(t) vanishes, as the pomeron is an isoscalar; (b)
an overall factor of i yields the positive C-parity of the pomeron. The contribution of
pomeron exchange to the elastic proton-proton cross section reads in this model

do _ [3bFy(2)]" (i) 20(t)-2
dt 4n '

So
The pomeron coupling strength to quarks b~ 1.8 GeV™! and the pomeron trajectory

(7.9)

a(t)=1+e+a't with €=0086, o =025GeV2 (7.10)

are tuned to exp_la,in a wide range of experimental results in pp, pp, and 7p scattering

[121]. The vertex form factor Fy(t) is identical to the photon—proton form factor of (1.7).

7.1.2 The pomeron interpretation of diffractive deep inelastic

scattering

From the kinematical distribution of the diffractive deep inelastic scattering events at

HERA, it seems most likely that this process is mediated by the pomeron. The deep

110



e(q)

e(gy)
Qep ’
PP’
p@@’)

Figure 7.3: Kinematics of deep inelastic electron-pomeron scattering

e(q) ~
=

inelastic scattering in this process (Fig. 7.3) therefore probes the structure function of
the pomeron. The idea that the pomeron has partonic constituents was first proposed by
Ingelman and Schlein [123], and given strong support by the hadron collider experiments
of the UAS8 collaboration [124, 125].

If this interpretation is correct, then one would expect that the diffractive cross section
(7.1) could be factorized into a part corresponding to the emission of an uncharged,
colourless pomeron from the proton and 'a,nother part corresponding to a hard scattering

off the partonic constituents of the pomeron:

do™ dma’® y2 . )

g _ |ZEe _ : .
do,dtdzdQ? [zQ4 {1 vty R any)) 2 2@ flewt), (1)
where z = z(a;_z Q_a,a,{,t) is the fraction of pomeron_momentum.-carried by the struck

parton and
Yz

=— 12
yp oy (7.12)

is the virtual photon energy ‘seen’ by the pomeron. Ff (z,@?,t) denotes the DIS structure
function of the pomeron, f(a,,t) represents the probability that a proton emits a pomeron
with momentum fraction o, and ¢-channel invariant momentum transfer ¢.

A common but only approximately correct way of parametrizing this factorization

property is to write the diffractive structure function as the product of an emission factor
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and the deep inelastic structure function of the pomeron [126, 127):

FP¥(z,Q% ap,t) = Ff (2,Q%,1) f(ayp,t). (7.13)

However RPS and RF functions cannot be related in such a simple manner. We will discuss
various tests of the factorizability of the cross section and investigate the applicability of
the factorization at the level of structure functions (7.13) later.

If the object struck by the virtual photon in diffractive deep inelastic scattering is
indeed the same pomeron which controls the high energy behaviour of hadronic scattering
amplitudes, then its basic properties and in particular its coupling to the proton are
already known. For example, Donnachie and Landshoff give a simple form for f(a,,t)
[126]) which they derive from their model for the pomeron-proton coupling discussed in
the previous subsection:

flap,t) = "9b_2
472

Other similar forms? for f have been proposed in the literature, see for example [123],

[Fi($))* oy~ (7.14)

but the differences are not crucial to the present discussion.
The above picture has recently been given strong support by a detailed analysis of
diffractive deep inelastic scattering events by the H1 collaboration at HERA [130]. Their

principle conclusions are:

i) The Q? dependence of F is consistent with scattering off point-like objects.
2 g ol p J

(ii) The factorization of the diffractive structure function into pieces which depend sep-

arately on z and a,, cf. (7.13), is observed.

(iii) The a, dependence of f is consistent with that predicted by Donnachie and Land-

shoff, i.e. ~ =220,

2There have been several recent attempts to derive a perturbative formulation of the pomeron. These
approaches [128], all based on the BFKL equation [129], will not be discussed in the present context,
as there is insufficient conclusive evidence at present for the applicability of the BFKL equation in the
kinematic range covered at HERA. In the following discussion, we will always assume f(ay,t) (as for any
other hadron-hadron interaction at low invariant momentum transfer) to represent a non-perturbative

coupling of pomerons to the proton, which can be determined from the experimental data.
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(iv) The pomeron structure function FY is ‘hard’, i.e. the point-like constituents carry

a significant fraction of the pomeron’s momentum on average.
Not yet determined experimentally are:

(i) The ‘nature’ of these hard constituents (i.e. whether the pomeron predominantly

consists of quarks or of gluons).
(ii) The kinematical distribution of the remnant protons.

If diffractive deep inelastic scattering is interpreted as deep inelastic scattering off a
pomeron target, it is possible to make definite predictions for these undetermined ob-
servables. These can serve as experimental test of this interpretation, once a more precise
measurement is possible. The ‘nature’ of the pomeron constituents can be determined
from an analysis of its structure function if interpreted in the parton model. The kine-
matical distribution of the remnant protons can be calculated from the known emission

factor f(ca,,t). We will address both issues below.

7.2 Kinematics of electron-pomeron deep inelastic

scattering

7.2.1 Reconstruction of the kinematical invariants

_To.reconstruct-all kinematical-parameters in-the diffractive deep inelastic scattering cross
section (7.11), it is sufficient to measure the momenta of the outgoing electron (¢;) and
the remnant proton (p’). It is convenient to parametrize these momenta in a Sudakov
decomposition using two light-like vectors directed along the beam and a space-like trans-
verse vector. Since we are ignoring the electron mass we can use the incoming electron

momentum ¢, for one of the light-like vectors. For the other, we define

M2
p=p—3_M2q1)
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where s = (p + ¢1)?, p> = M? and, by construction, p? = 0. Hence we can write
@ = Ap+Bq+ar,
p = Cp+Dq +kr, (7.15)
which implies
¢ = —Ap+(1-B)ar—qr,

ko= u-cm+(

2

s— M?

—D)ql—k-f;".

The eight degrees of freedom in (7.15) are reduced to five by requiring that ¢ = 0,
p? = M? and disregarding an overall azimuthal angle. The next step is to relate the
remaining degrees of freedom to more familiar deep inelastic and diffractive variables.
The electron is described by the usual two DIS variables z and Q?, and three additional

parameters define the proton:

a, = fraction of longitudinal momentum transferred to the pomeron,
t = t-channel invariant momentum transfer to the pomeron,
#ep = angle between the outgoing electron and outgoing proton

in the plane transverse to the beam direction.

In terms of Lorentz invariants,

2 k.
Q? = —¢, x=21?-q’ t= k2, a,,:p_ZI. (7.16)

Some straightforward algebra then gives the photon and pomeron momenta:

_ Q2 ~ 1 M2 .
qQ = 3—M2 _p+ ;+3—M2 Q| — 41

t —a,M? -
5—_';/[—2411 —kr, (7.17)

k= o,p+
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where

2 22
: _ o, @ __MQ
r = ¢ (1 z(s — M?) (S—M2)2)’
kp = —t(l-a,)—iM?,
gt - kr

CO8 Pep = .
VarkE

As already mentioned, neither a,, ¢t or ¢, are directly measured. An additional
constraint on the kinematical variables can however be obtained by measuring the mass
of the final state in the v*(¢)P(k) — X hard scattering, M3 = (¢ + k)?. In analogy with
the usual Bjorken z variable (7.16) we introduce

Q? Q?
2 -k Mi+Q*-t

¥4

(7.18)

Substituting the expressions for ¢ and k from (7.17) then yields a relation between 2 and

the other kinematical variables:

-2t e - {1- 5 - | a

From (7.14) we see that the DS cross section is expected to be heavily suppressed for

large values of |¢|. This is consistent with the fact that no final-state protons are observed
outside the beam pipe. It is therefore a reasonable first approximation to.set t. = 0 in-the

kinematical relations above. With the substitution ¢t = M? = 0, (7.19) becomes

! =
— T — &, =
P 14

N8

(7.20)

Hence, the momentum fraction of the quark in the proton (z) is simply the product of
the momentum fraction of the quark in the pomeron (z) and the momentum fraction of

the pomeron in the proton (a,). Note that in this approximation

2= Q@+ M), (7.21)
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In this way, the parameter o, is easily determined from measured quantities.

It is important to stress, however, that the corrections to (7.20) are not obviously
negligible. In particular, we note that the terms of order v/—%/Q and M/Q may not be
small. Corrections to (7.21) start at order t/(M% + Q?) and will therefore be ignored
in the following. In practice, diffractive events are identified by the presence of a large
rapidity gap. This requires the pomeron to be slowly moving in the laboratory frame, and

consequently o, < 1. In this limit, including the most important subleading corrections

1421~ S_: z\g‘_t cos ¢ep] . (7.22)

This result shows that the distribution in the angle ¢,, will not be uniform in general.

gives

x
a, = —
Pz

For any non-zero t, and at fixed z, z and Q?, o, varies with ¢.,. Since the diffractive
structure function (7.13,7.14) is a steeply falling function in a, the impact of a variation of
¢ep can be quite large. This effect will be studied in greater detail below, and in particular
the implications for angular correlations between the outgoing electron and the remnant

proton will be elaborated in Section 7.3.

7.2.2 Estimates for the systematic uncertainties at HERA

The dependence of o, on the presently unmeasurable angle ¢, gives rise to a systematic
uncertainty on reconstructing the variables yp and a, which appear in (7.11). In this

section we attempt to quantify these uncertainties in order to test the validity of the

approximations-

T
ol ypY (7.23)

used to extract Ff (z, @?) from the HERA data [130]3. We will also test the factorizability
of the diffractive structure function (7.13).
For any parametrization of f(ap,t) which has a similar a, dependence to (7.14),

one obtains a diffractive cross section which decreases steeply with a,. This decrease

3We use /s = 296 GeV for all following numerical evaluations.
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is quantified by the pomeron intercept 20:(0) — 1 in (7.14), which is equal to 1.17 for the
Donnachie-Landshoff model.

Due to this non-linear decrease, the correction (7.22) will not average out over all
angles ¢.,, it will rather accumulate to give a non-zero average deviation from (7.23).

The relative deviation of a, from /2 is given by

a, —zfz / Q? 2o/t
Py =24/1 25 Q COS Pep,

while the relative deviation of yp from y has a similar form:

oy _ &y g fy PV =gz
Yy zay, zs @ z/z

Since ¢., and t are not directly measured, we define the expectation value of the deviation

to be the weighted average over all angles and values* of i:

> at [Tag., (a—"l/z) flay,t)
<a"_x/z>(m,z,Q2) _ [—oo 0 A\ z/z
/_ e /0 dderf(ay,t)

z/z
() o0 - (25 s,

y z/

which becomes, for any f(a,,t) with a similar form to (7.14),

op—zf\, 0y 2 [ dt (-0 -2a0)f (,¢)
<T>(?”"Q’=2(“%)_Q_f [arz) (724

Figure 7.4.a shows this systematic deviation for the DL parametrization of f(a,,t)

)

(7.14). We see that there is a small (<5%) negative correction to the approximation
(7.23) for a, and the same, but positive, correction for yp. This effect can be understood
intuitively as follows. The form of f(a,,t) favours low values of «, and therefore values of

90° < ¢ep < 270°, i.e. cos ¢, < 0. In this region, the pomeron moves towards the virtual

“We assume here that Ff is independent of ¢, i.e. that f(ap,t) in (7.11) takes account of the full

t-dependence.
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Figure 7.4: Systematic deviations after averaging over t and ¢.,, using the DL-
parametrization for f(ap,t) (7.14): (a) systematic relative deviation between a, and its
approximation z/z as a function of z. The upper lines correspond to z = 0.2, the lower
ones to z = 0.8. yp and y show the same systematic deviations with the opposite sign;

(b) magnitude of the Jacobian factor defined in (7.28).

photon, thus increasing the virtual photon energy yp ‘seen’ by the pomeron. Note that
this effect decreases with increasing Q? and so will vanish in the asymptotic scaling limit.
Furthermore, the deviation is proportional to the intercept 2a(0)—1. As phenomenological
studies of the BFKL equation predict larger intercepts [128] than the model of Donnachie—
Landshoff, one should expect corrections of up to 8% in BFKL motivated approaches.
In order to examine the factorizability of the diffractive structure function (7.13), we

Tetiirn to (7.1) in its fully differential form:

F2Ds(ma QZ’ amt)

do™ _ 41m:2{1+(1—y)2
dapdtdzdzdQ? ~ zQ* 2
2 27 d¢
_Y pps 2 ep _ 2
- S (@,@% a0 t)) [ (2 - 2(2,Q%, ), (725)

where we have made the replacement

FL(-’B, szamt)
(.’ll, Q2, Qp, t) - FL(m, Q2, Qp, t) .
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Assuming that the factorization (7.13) of the structure functions F, and Fj, gives a valid

approximation for the factorizability of the cross section, this can be expressed as

do™s dra? (14+(1—-y)® _p )
da,dtdzd=zd@? = zQ* { 2 Fy (2,Q%1)

2 T
L @0 ) [ 28— (2, Q% ).

After a simple integration over ¢ and z, restricted to the kinematically allowed values
of the latter for fixed o, and z, we finally obtain an expression for the differential cross

section similar to (7.11):

dg™® dra® a2\ "% y?
do,dtdzdQ? ~ zQ* (1 + 0 ) {1 —y+ A+ RP(z’Qg,t)]} F7(2,Q%t) f(apt).
(7.27)

Assuming Ff and FF to be independent of t, we can estimate of the magnitude of the

Jacobian factor,

0 4tz -3
2\ - % 2 2d (1+_2') f(ap’t)
@)= ((1+55) 6@t - L G
/_w dt f(ay,t)

y

(7.28)
which is shown in Fig. 7.4.b as a function of 2 and Q2.5 We see that this Jacobian
factor differs by less than 5% from unity for the whole kinematical range experimentally
accessible at HERA. Together with the systematic difference between yp and Y5 whlch is
of about the same order, we find that the cross sections defined by (7 11) and (7 27) agree
within a maximum deviation of 10%, which is attained only in the large-z region. For
values of 2 < 0.4 the agreement is already better than 5%. Furthermore, both expressions
become equal in the scaling limit Q% — oco. As the experimental errors on the diffractive
structure function are still well above these corrections [130], and uncertainties arising

from the R-factor are twice as big as these corrections, it seems appropriate at this time

5The ap dependence turns out to be negligible.
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to factorize the diffractive structure function into a pomeron emission factor and a deep
inelastic structure function of the pomeron, (7.13).

When, in the future, the data improve and the full pomeron kinematics can be re-
constructed, it should be kept in mind that the factorization (7.13) of the diffractive
structure function is only an approximation to the factorization of the diffractive cross
section (7.11).

A final point concerns the measured intercept of the pomeron trajectory. As a mea-
surement of ¢ is not possible at present, only an ‘average’ coupling of the pomeron to the
proton can be determined:

fle) = | ‘; dt f(a,) ~ o, (7.29)

Using the DL-parametrization (7.14) for f(a,), one finds n(eff) ~ 1.09 £ 0.02. The error
here represents the spread in n(eff) values as a, varies over the range 10~ < a, < 1072
If a, is approximated by z/z, the effective power increases slightly to n(eff) ~ 1.11 £0.03,
which is a non-negligible shift. Both these values are significantly lower than the ‘naive’
approximation n(eff) & 1 — 2a(0) = 1.17, and therefore this effect should be taken into
account in comparing the measured intercept with model predictions.

In summary, we have shown in this section that effects arising from an incomplete
reconstruction of the pomeron kinematics at HERA give systematic corrections of only a
few percent to a,, yp and the measured intercept of the pomeron trajectory. Furthermore
we have demonstrated that the factorization of the diffractive structure function gives a
correct-approximation of the factorization of the diffractive cross section up toa reiétivély_

minor error, which vanishes in the large Q? scaling limit.

7.3 Final-state electron-proton correlations

It should be clear from the above discussion that identification of the scattered proton
and measurement of its four momentum p’ will provide a crucial test of the pomeron

picture. In principle, this would allow a direct measurement of the parameters a, and ¢
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and hence of the pomeron emission factor f. However in practice it will be difficult to
make a precision measurement of the proton energy, which would be needed to obtain
sufficient experimental resolution on o, and hence a precise determination of ¢. In the
short term, it therefore seems more promising to test the t-dependence of f by using the
angular correlation between the transverse momenta of the outgoing electron and proton,
Fig. 7.3.

As discussed in the previous section, the o, dependence of any Regge-motivated
f(ap,t) favours low values of a,, and therefore final state configurations in which the
scattered electron and proton are approximately back-to-back. This correlation will be
enhanced with increasing transverse momentum of the pomeron. Thus the distribution
of events in the relative azimuthal angle ¢., is a measure of the average size of t involved
in the process. The ¢., dependence of the diffractive cross section can be parametrized

in the form of a distribution function:

0

z —t
ol _x epy
AN 2 ‘mmdt f (z + 2z¢\[1 vs O CO8 Pep )
(:B,Z,Q ,¢ep)=

[G)

where the lower limit on t arises from the physical range of the fractional proton momen-

2

(7.30)

tum carried by the pomeron 0 < o, < 1:8
Q?
C422(1 - Q?/z3) cos? Pep
2

1 1 \ .
-t T4 = Q%/7s) cos? 4., (EE ’“"Z‘)” P b < 905 > 270°.

In practice, these bounds on ¢ have minimal impact on the dN/dé¢,, distribution, since

90° < 4., < 270°

tmin =

one expects f to be strongly suppressed for |t| values larger than a ‘typical’ hadronic scale
of O(1GeV?).
Figure 7.5 shows the predicted correlation between the outgoing electron and the

remnant proton as a function of x, z and Q2. In fact it turns out that this function is

5This constraint is not to be confused with the more restrictive experimental cuts on the quantity

z/z, since z and z are fixed in this distribution.
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Figure 7.5: dN/dde(z, 2, Q?, ¢ep) distribution for fixed values of z/z and Q?, at z = 0.2
(solid lines), z = 0.4 (dashed lines), z = 0.6 (dotted lines), and z = 0.8 (dot-dashed lines).

almost independent of the ratio z/z, the naive expectation for a,. As expected from
(7.30), the maximum asymmetry between the same-side and opposite-side hemispheres is
obtained for low values of Q? and high values of z. Note that the asymmetry reaches a

magnitude of up to 30% for realistic HERA kinematics (Q* = 8 GeV?, z = 0.6), and hence



should be distinguishable from statistical fluctuations.

As we have discussed in detail in the previous section, the discrepancy between fac-
torization at the level of diffractive structure functions and diffractive cross sections is
of order —t/Q?, which is subleading to the v/~%/Q dependence in (7.30). It is therefore
appropriate to use the angular distribution dN/dg,, in connection with the factorized
structure function (7.13). Assuming the structure functions Ff and FY to be indepen-
dent of ¢, this yields the following result for the diffractive cross section:

do™ 4mal { ) y? } 1 dN

dzdzdQ%d4,, = 200 -y+ M+ RP(2,00)] sz(z,Qz)g%(x,z, Q% dep)-
(7.31)

The error implicit in this expression due to the neglect of the Jacobian factor discussed

in the previous section affects the normalization of dN/d¢.,, and leads to
2 dN
[ dée Ta (5 @) > 2m

However this deviation is less than 5% for the kinematical range at HERA, since it only
reparametrizes the Jacobian factor (7.28), which is small compared to the angular asym-
metry of up to 30%.

Eq. (7.31) can be used to extract the dN/d¢., distribution from the HERA data,
since it only requires information on the coordinates of the remnant proton, and not on
its momentum. This distribution can provide a crucial test of the applicability of DL-
like parametrizations of f(a,,t). Furthermore, any t-dependence of Ff would result in
deviations_from the predicted z-dependence-of dN/d¢,.,. In particular, a significant t-
dependent contribution to Fj would map the z-dependence of F onto the z-dependence
of dN/d¢e,.

In summary, we have derived a kinematical correlation between the transverse mo-
menta of the outgoing electron and proton momenta in DS. Assuming the pomeron emis-
sion factor of (7.14), we find an asymmetry of up to 30% between aligned and anti-aligned
configurations. This asymmetry can serve as a first test of the pomeron interpretation of

diffractive deep inelastic scattering.
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7.4 Predictions for F¥ and F¥

7.4.1 Models for the partonic content of the pomeron

The type and distribution of the parton constituents of the pomeron has been the topic
of some debate [131]. On one hand, it seems natural to assume that the pomeron is
predominantly ‘gluonic’ [132]. On the other hand, the pomeron has to couple to quarks
at some level. In fact Donnachie and Landshoff have presented [126] a prediction for the

quark distribution in a pomeron
2¢¥(z) m 1Cmz(1 - 2), (7.32)

with C = 0.17. This result is obtained from calculating the box diagram for v*P — ¢g,
in the same way as the photon structure function is calculated in the parton model from
the box diagram for 4*y — ¢g. A crucial difference for the above pomeron calculation
is the softening of the pomeron—quark vertex by a form factor which suppresses large
virtualities. This leads to the scaling behaviour (7.32) in the @? — oo limit, in contrast
to the asymptotic growth ¢”(z,Q?) ~ a(z)1n(Q?*/A?) obtained for the quark distributions
in the photon”.

The absence of point-like pomeron—-quark couplings in the above model, which gives
rise to asymptotic Bjorken scaling for the pomeron structure function, suggests that the
partonic content of the pomeron is on a similar footing to that of any other hadron,
with the quark and gluon distributions in the pomeron obeying the DGLAP evolutlon _
equations (3.7): There is, however, a crucial difference ‘between the pomeron and other
hadrons. The second moments of quark singlet and gluon distributions of on-shell hadrons
have to add up to unity due to momentum conservation (4.5). This condition is not true
for the pomeron, as it cannot be regarded as on-shell or quasi on-shell particle.

The sum of quark and gluon momenta in the pomeron can therefore be an arbitrary

number, which can only be determined from experimental data. This normalization factor

7 Alternative scenarios with a point-like quark—pomeron coupling have been discussed in the litera-
ture [117, 133).
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N is however preserved by perturbative evolution.

The first evidence for partons in the pomeron was given by the discovery of jets at large
transverse momenta in diffractive proton—antiproton collisions [124]. This measurement,
has indicated that the parton distributions in the pomeron are hard, i.e. individual par-
tons carry a significant fraction of the pomeron’s momentum on average, as in (7.32) for
example. From this data, it was however not possible to determine, whether the pomeron
consists of quarks or gluons.

To enable further studies of possible observables, we would like to propose a very
simple, physically motivated model for the pomeron’s parton structure. It basic features
are outlined below. Two free parameters of the model are adjusted to the recent data on
the diffractive structure function published by the H1 collaboration [130].

As the pomeron carries the quantum numbers of the vacuum, its quark and antiquark
distributions have to be identical. Therefore, one has to consider only two parton distri-
butions in the pomeron, the quark singlet ©¥ = ;(¢F + g©) and the gluon. These are

assumed to have the following, valence-like shapes at Q3 = 2 GeV?:

257(2,Q8) = fo(QF) 62(1 — 2), 297(2,Q}) = fo(Q3) 62(1 — 2), (7.33)

where f, and f, are the fractions of pomeron momentum carried by quarks and gluons.
The DGLAP evolution equations (3.7) determine the change of these momentum fractions
with increasing Q2. In fact, leading-order perturbative QCD predicts that the asymptotic
(Q* — c0) momentum fractions are, regardless of the type of hadron,
h~ it b i

This model is motivated by the dynamical parton model [134] for the parton distributions
in the proton, which assumes valence-like shapes for quarks and gluons [135] at some low
scale (Q? < 1 GeV?).

In the evolution of these parton distributions we always define the quark singlet to be
the sum of only three light quark flavours (u,d, s). Contributions of heavy quarks to Fy ,

of which we will only consider the dominant charm quark contribution, are incorporated
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by projecting the massive contribution from the y*¢g — c¢ fusion process onto Ff (cf.
Section 3.1). The number of active flavours in the evolution is fixed to n; = 3, as
explained in Appendix B.3.1.

Assuming that SU(3) flavour symmetry is already established at Q3, the contribution

of the light quarks flavours to FY is just the singlet distribution times a charge factor:

P49z, Q) = 2257(2,9). (734
The massive charm contribution arising from photon-gluon fusion takes the form
P(c) 2y _ o, ,20(82) [ dy zme\ po o2
F ( Q )mc) - 2zqc o oz C Q2 g (y’ ,‘tc)’ (735)
with the kinematical bound @ = 1 + 4m?/Q? and the LO coefficient function
1 1
C(Gr) = 6+ (1= 0P +4¢0 = 30r - 8¢ 20

+ol1 48— -4 - o)

where

4r(
2— _

=1 T—¢

It has been shown in [136] that a mass factorization scale of u? = 4m? for the gluon

distribution in (7.35) is the most appropriate choice with regard to the perturbative
stability of the expression. We will use m; = 1.5 GeV in our numerical evaluations

presented below. The complete predlctlon for F2 is the sum of llght and heavy quark

contributions; it reads -
FP(2,Q% = 223P(2,Q%) + F (2, Q% m?). (7.36)

The above treatment of the charm contribution takes proper account of the threshold
behaviour which, as we will see in Section 7.5, makes a significant contribution to the Q?
dependence of the structure function.

Finally, to take into account the ambiguity in the pomeron momentum sum rule dis-

cussed above, we multiply the structure function (7.36) by an overall normalization factor
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N,
FF(2,Q%) — NFF(2,QY). (7.37)

We shall see below that /' &~ 2 gives a good representation of the H1 data.

7.4.2 @Q? evolution of F¥

The assumption that F¥ is factorizable into an emission and a DIS part (7.13) implies
that the @Q? dependence of F)?° arises entirely from Ff. Assuming the parton inter-
pretation of FY to be valid, then this Q? dependence is given by the standard DGLAP
evolution equations (3.7) of perturbative QCD, as we will prove in this subsection. The
observation of such a Q% dependence is an important test of the parton interpretation of
the pomeron and of the factorizability of diffractive scattering cross sections.

For FS we must fold the results with the pomeron flux factor f. In particular we can

define ‘diffractive’ parton distributions in the proton by
208 (z, Q¢ 1 $P(z, Q¢
m(m Q2 ) =/ dzda, P(Z Q2 ) Fap )bz — z/ay), (738)
q (va 1t) 0 g (2,Q ,t)

where we have used (7.19), dropping the small corrections due to finite ¢ and M? effects.
Taking 8/01n Q? of both sides, and using the fact that the pomeron parton distributions
©P, g” satisfy the DGLAP equation, gives

0 £55(z, Q% 1) _ Oz,,(Q2 du'dndzda P 2P(y', Q% 1)
ong? ( (2, Q% 1) ) e | e, 20 W )
X f(ap,t) 8(z — z/e,) 6(z — ny'),

where [P(7)] is the 2 x 2 matrix of splitting functions (B.24). Introducing 1 = [dyé(y —

y'a,) and integrating over y’ and z gives
8 08 (z, Q2 1) (@) [dy o%(y, @%1)
ome? ( %5(z,Q2,1) ) e Ly P Sw,Q41) |

which is the usual DGLAP equation, but now for the diffractive parton distributions.
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Therefore, one should find experimentally that the > dependence of both F.2°(z, Q?,1)
and Ff(z,Q%1) is consistent with perturbative QCD while the corresponding parton dis-
tributions are related by (7.38).

It is worth stressing that the Q% dependences of the proton structure function F; and
FDS at the same Bjorken z value are completely unrelated. In particular, F; rises rapidly
with increasing )? at small z as more and more slowly-moving partons are generated by
the branching process. This rise is observed [137] to be proportional to InQ? at fixed
z, which is consistent with recent parametrizations [41, 43, 44] of the parton densities
in the proton. In contrast, the quarks in the pomeron are sampled at 2 values much
larger than z, where the distributions evolve more slowly. One should therefore find that
the fraction of diffractive events in deep inelastic scattering at fixed z (corresponding to

FDS(2)/Fy(z)) is decreasing approximately like 1/1n Q2.

7.5 Comparison with data |

When the study presented in this chapter was carried out originally [117], only the H1
collaboration had measured [130] the diffractive structure function. A similar measure-
ment from the ZEUS collaboration appeared some months later [138]. We will therefore
focus on the results from H1 in this section. The description of the pomeron structure
function obtained in our analysis is however consistent with the ZEUS measurement, as
we will show at the end of this section.

Based on a_sample of events without hadronic activity -around the proton beam direc-
tion, the H1 collaboration has measured [130] the diffractive structure function F;>®

dO’Ds 47!'(12 1+ (1 —_ y)2 D(3) 2
dzdQ%dzp  zQ° 2 F(8, Q% zp)

as a function of the three kinematic variables, {3, Q% zp} where

- @
ﬂ_M}+Q2~Z’

rp = ~ ap,

™| 8
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with the approximations becoming exact when t = M? = 0. The variables ap, t and ¢,
are not measured directly. It is estimated that |t| S 7 GeV? [130], while ¢, is uncon-
strained.

A prediction for the measured diffractive structure function FQD ®) from our model can

be obtained by inserting (7.13) into (7.1) and integrating over a,, t and ¢,

1 tmax 27
FPOB,Qap) = [ day, [Tt [

with z given in terms of the other variables by (7.19). Ignoring the ¢t dependence every-

(o2 ) et

where except in f, and setting the proton mass to zero, we obtain the simple factorising

approximation
tmax
FPO(8,@ap) m | [ dt f(ar,t)| FE (8,07,
which implies that the dependence of the structure function on zp should be universal,

i.e. independent of 8 and Q2. Furthermore, if we substitute for f using (7.14) we find

FP®(B,Q% zp) ~ K z3" FF(B,QY).

Precisely this behaviour has recently been observed by the H1 collaboration [130]. In fact
their measured ‘universal’ power n of zp is n = 1.19 £ 0.06(stat.) £ 0.07(sys.), which
is in excellent agreement with our prediction of 1.11 £ 0.03 (Section 7.2.2) based on a
correct treatment of kinematics and using the pomeron emission factor of Donnachie and
Landshoff [126].

The H1 collaboration have also attempted to measure the pomeron structure function

di_x‘éct:,ly, by defining an zp-integrated diffractive structure function

BP8,Q) = [ dep FPO(8,Q%,2p), (739

where the range of integration is chosen to span the entire zp measurement range. Accord-
ing to the simple factorization hypothesis, the diffractive structure function is proportional

to the pomeron structure function:

FP(8,Q% ~ A FF(8,Q%), (7.40)
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with
0.05 tmax
A(H1) = /0 __da, /zm- dt f(ap,t) ~ 1.5, | (7.41)
The numerical value in (7.41) corresponds to the Donnachie-Landshoff form (7.14) for f.
In what follows we will use (7.40) with A = 1.5 to convert the measured structure function
[130] into the pomeron structure function. The measurement of ZEUS [138] covers only
a smaller zp range (0.00063 < zp < 0.01). One therefore obtains:
0.01 tmax
A(ZEUS) = /0 __da /tm dt f(ap,t) ~ 0.8.

In [130], data on FP(B,Q?) are presented in four Q? bins, Q2 = 8.5, 12, 25, 50 GeV>2.
In the first of these, the charm contribution should be relatively small, and hence ﬁ';P (8, Qz)
can be directly compared with the predictions of our simple model for the Iight quark dis-
tributions derived in the previous section. It furthermore allows us to tune the parameters
of this model.

In particular, the first moment of F,D , which is related to the the momentum fraction

carried by quarks in the pomeron, reads

Al Al dg F2D(ﬂ,Q2) o /: dg Ff(ﬂ’Q2) ~ gNAl dz ZEP(Z,Q2) — ngq(QZ) (742)

The parameters N and f,(Q32) are strongly correlated — their product is essentially
determined by the first moment of F~'§3 in the lowest @ bin. We find the best agreement
with the data for ' = 2 and the following momentum fractions of quarks and gluons at
Qb S
S - f(QY =017, £,(Q3%) =0.83. (7.43)

Fig. 7.6 shows the values of f, extracted from the H1 data [130] in this way® at the four
Q? values. Note that in the measured @? range, the momentum fractions are predicted
to vary only slightly with Q2. The apparent rise in the data has a simple interpretation
as the onset of the charm contribution, as predicted by (7.36).

8The B-integrated structure function in (7.42) is estimated by assuming that the structure function is
independent of § at each Q2 value. This is a very crude procedure, and we have no way of estimating

the errors on the integral obtained by this method. Qur comparison is therefore only qualitative at best.
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Figure 7.6: Fractions of total pomeron momentum carried by light quarks and gluons as
predicted by leading-order DGLAP evolution for three light flavours. The H1 data-points
shown in comparison are the values for the momentum fraction carried by the sum of all
light quarks under the naive assumption of a negligible direct charm contribution to Fy .

The data are furthermore divided by a normalization of N’ = 2, as discussed in the text.

In Fig. 7.7 the predictions of this model for the pomeron structure function are com-
pared with the data from H1 and ZEUS, as defined by (7.40). The solid curves show the
full prediction including the charm contribution, and the dotted curves are the contribu-

tions from the three light quarks only. We note that

(i) the variation of the dotted curves with Q? shows that the scaling violations predicted

- by the QCD -evolution equatiofis are rather weak in this kinematic range;

(ii) the charm contribution grows rapidly above threshold (in fact, this growth is evi-
dently responsible for the bulk of the predicted Q* dependence), and constitutes a

significant fraction of the structure function at high @2 and low z;

(iii) as @? is increased to higher values, the pomeron structure function is expected to

rise rapidly at low z and to decrease slowly at high 2.
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Figure 7.7: The deep inelastic structure function of the pomeron Fy(z,Q%. The Hl
data are obtained from values for the diffractive structure function in terms of these
variables [130], divided by a pomeron emission factor of 1.5 (derived from the model of
Donnachie and Landshoff). This factor is 0.8 for the ZEUS data [138]. The theoretical

predictions are scaled by a factor N = 2, as discussed in the text.

Finally, in Fig. 7.8 we show the gluon and singlet (light) quark distributions in the
pomeron, as predicted in this model. Since we are assuming exact SU(3) flavour symmetry,
the-individual quark or antiquark distributions are simply ¢F = inFP . Note that as Q—2
increases, both the quark and gluon distributions evolve slowly to small z, as expected.

The emergence of a small-z ‘sea’ of ¢4 pairs can be seen at high Q2.

7.6 Conclusions and Outlook

The idea that the pomeron has a partonic structure [123] has been given strong support by

the recent measurements of the diffractive structure function at HERA. In this chapter
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Figure 7.8: Parton distributions in the pomeron, assuming a valence-like structure at
Q% = 2 GeV?. The relative normalizations are chosen such that gluons carry 83% and

light quarks carry 17% of the pomeron’s momentum at Q2.

we have presented a detailed study of deep inelastic electron-pomeron scattering. We
first derived the complete set of kinematic variables for the deep inelastic diffractive
cross section. We showed that when expressed in terms of appropriate variables-this cross
section is exp.ééfed_t;o fa;ctorize into a pomeron structure function multiplied by a pomeron
emission factor, the latter being obtainable from hadron-hadron cross sections. At present
the variables which define the pomeron momentum are not directly measured, although
they can be inferred from the observed hadronic final state. However, in terms of the
measured variables the factorization is only approximate. In Section 7.2 we quantified
the corresponding systematic error, and showed that it was below the present level of

experimental precision.
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When the remnant protons are eventually detected at HERA, it should be possible
to measure their scattering angle ¢, relative to the electron in the transverse plane. If
the electron—pomeron scattering picture is correct, this distribution is predicted to be
non-uniform, with a preference for back-to-back scattering. We presented quantitative
predictions for this angular distribution in Section 7.3, using the Donnachie-Landshoff
parametrization for the pomeron emission factor.

Finally, we presented a simple phenomenological model for the pomeron structure
function in Section 7.4. This model is based on the idea that at a low Q? scale, the
pomeron consists predominantly of valence-like gluons, with a small admixture of valence-
like quarks. At higher Q%-scales the distributions are determined by standard DGLAP
perturbative evolution. Our starting quark distributions are identical in shape, and similar
in size, to those calculated by Donnachie and Landshoff. In this model it is necessary to
rescale the pomeron momentum sum (by a factor of approximately 2 in the case of the
emission factor of [121]) to account for the normalization of the H1 data, whereupon good
agreement is obtained with the measured z and Q? dependence of the pomeron structure
function. The light (u,d, s) quarks carry about 17-25% of the pomeron’s momentum in
the range of Q? currently measured by H1. A

The experimentally measured (z, @?) range of the pomeron structure function includes
the charm quark threshold region. This requires special treatment, since the charm contri-
bution to Ff is expected to be significant above threshold. We have calculated this effect
using the photon—gluon fusion process, which takes the threshold kinematics correctly into
account. We have found-that the-charm-contribution to Fy is-indeed sizable, especially
at high @* and low 2. The rapid increase of the charm contribution with increasing Q?
appears to account for the bulk of the observed Q? dependence.

Our results on the quark and gluon content of the pomeron have many implications.
As already mentioned, we expect that a significant fraction of hard diffractive scatter-
ing events will contain charm, and our distributions provide a way of quantifying this.
The overall magnitude of the gluon distribution compared to the quark distribution also

predicts a large value for the pomeron’s R-factor. In particular, we expect RY ~ O(1),
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in contrast to R ~ O(a,) < 1 for the proton, which results in a similar magnitude of
RPS. However, a consistent estimate of this would require a full next-to-leading order
perturbative calculation, which is beyond the scope of the present study.

In summary, we have shown that a simple quark and gluon parton model of the
pomeron, combined with a pomeron emission factor extracted from the high energy be-
haviour of elastic hadron-hadron scattering cross sections, gives an excellent description
of the H1 data. There are many ways in which this simple picture can be tested, both at
"HERA and elsewhere. In the short term, the measurement of the ¢., correlation, the Q?
dependence of the pomeron structure function and the diffractive structure function and
the identification of the predicted large charm contribution to the diffractive structure

function appear to offer the best possibilities.

7.6.1 Hard diffraction in the light of new HERA data

Both HERA collaborations [139, 140] have very recently presented new, improved mea-
surements of the diffractive structure function. These measurements appear to be in
significant disagreement. The selection criteria for diffractive events are however different
at H1 and ZEUS, and the pomeron model as presented in this chapter appears to be only
applicable to the Hl measurement, which defines diffractive scattering by an observed
rapidity gap around the proton beam direction.

The new H1 measurement covers a largely extended kinematical range compared

to [130]. It shows, that the simple factorization of the diffractive structure function

(7.13) is broken for large values of a,. This observation can be interpreted [141] as due
to the presence of subleading Regge trajectories (vector mesons) at increasing a,. The
dominant contribution to this process is however due to pomeron exchange.

The new data on the diffractive structure function F? allow a more precise deter-
mination of the parton distributions in the pomeron. A fit to these data [139)] yields
a gluon distribution which is even harder than in our simple model, the ratio between

the pomeron momentum carried by gluons and quarks is found to be 80:20. Using the
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distributions obtained from a fit to the new data, one can furthermore make predictions
for the charm content of the diffractive structure function and for the transverse energy
flow in diffractive DIS events. These are found in good agreement with the experimental

measurements of these two observables [139)].
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Chapter 8

A study beyond the Standard
Model

With this chapter we will leave the general topic of this thesis, the structure of the proton,
for a while to demonstrate an important application of parton distributions: the precision
calculation of cross sections in hadron-hadron collisions at high energies.

The present understanding of the physics of elementary particles is described by the
Standard Model, whose basic aspects were outlined in Section 2.3. This model has been
tested in a great variety of collider experiments over the last twenty-five years, yielding
an impressive agreement between theory and experiment. However, during the last two
years, some experimental evidence for deviations from the Standard Model has been
reported. Motivated by these observations, a multitude of models for new physics beyond
the Standard Model has been suggested. A stringent constraint on all these models is
given by the large number of experimental observables which are found to be in good
agreement with the predictions of the Standard Model: any new physics should only
have minor impact on them. It is such a consistency check which we will perform in the
following chapter.

We are studying the impact of a new neutral vector boson Z’, with a mass of O(1 TeV),

on the top quark production cross section at the Fermilab Tevatron collider. This cross
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section has been measured only very recently, and it agrees within large errors with the
prediction of the Standard Model. We motivate the introduction of the Z’, discuss its
properties and illustrate how a more precise measurement of the top quark cross section

can providé a crucial test of the Z’' model.

8.1 Motivation

Two experimental observations have received particular attention in recent times, as they
appear to deviate from the predictions of the Standard Model. The nature of these obser-
vations is very different. The fractions of charm and bottom quarks produced in hadronic
decays of the Z-boson are measured within an accuracy of better than 1%, and appear
to differ from the Standard Model expectations by a few percent. The other observable,
the single jet inclusive cross section in pp collisions at the highest energies accessible at
present, is only measured with large systematic and statistical uncertainties. Even within
these errors, it appears to deviate systematically from the theoretical prediction as the
energy of the jet increases. Both observations are not reproduced by competing experi-
ments, and they can therefore only be considered as indications for a possible failure of

the Standard Model, not as solid evidence. We will briefly discuss the observables.

8.1.1 R; and R, at LEP

The collision of electrons and positrons at /s = Mz at LEP(CERN) and SLC(SLAC)
allows a precise study of the decay pI:operti—es of the Z-boson. By tagging hadrons con-
taining charm or bottom quarks in the final state, a direct measurement of the decay

probability into these quark flavours is possible. The ratio between the partial decay

width

GFM% 2 2

1 2n [vq + aq]

and the total hadronic width is then indicated by R,. The ratios R, and R, provide a

[(Z —q7) =

precise measurement of the couplings of charm and bottom quarks to the Z-boson. While
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the Standard Model predicts
R, =0.17238, Ry, = 0.21569,
a measurement at LEP (average over all four experiments) yields [142]
R, =0.1543 £ 0.0074, Ry, = 0.2219 £ 0.0017.

On the contrary, a similar measurement at SLAC [143] is in good agreement with the
Standard Model:

R, = 0.2176 1 0.0033 £ 0.0017.

8.1.2 Large-FEr jets at CDF

Jet production in hadron—hadron collisions at high energies is mediated by hard parton—
parton scattering processes. The kinematical distribution of jets can therefore be calcu-
lated by convoluting the parton—parton scattering cross sections with the partonic dis-
tributions in the proton. Usually, jet cross sections are expressed as function of the
transverse energy Er and the rapidity 7 of the jet. For jets produced in the central region
of the detector (7 ~ 0), the transverse energy is approximately Ey ~ 1/2,/z1Z;s, where
zy and ¢, are the longitudinal momentum fractions carried by the incoming partons. The
jet cross section at large transverse momenta is therefore determined by the behaviour of
parton densities at large z: it is dominated by quark—antiquark scattering, a considerably
smaller contribution comes from (anti-)quark-gluon scattering. The quark distributions
at larée z are accurately determined from lepton—nucleon scattering experiments at lower
energies, and so a precise prediction of the single jet inclusive cross section is possible.
The recent measurement of the CDF collaboration [144] seems to indicate, that the
jet production cross section for Ep > 250 GeV is systematically above the theoretical
prediction. It seems rather unlikely that the uncertainty on the parton distributions
is responsible for this disagreement: attempts to adjust the quark [145] or gluon [146]

distributions yielded results inconsistent with data at lower energies.
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Figure 8.1: Single jet inclusive cross section at the Tevatron: (Data—Theory)/Theory.

Figure taken from [67], only statistical errors are shown.

A similar measurement of the same observable by the DO collaboration [147] is on
the other hand in good agreement with the Standard Model. Both measurements are

compared with the theoretical prediction in Fig. 8.1, which is taken from [67].

8.2 7' model

Both observations discussed in the above section can not yet be regarded as solid evidence
for a failure of the Standard Model. Nevertheless, one might speculate about possible
explanations for these anomalies. It has recently been pointed out .[148, 149] that both
these effects could be explained by introducing a new U(1) gauge boson (Z’) of mass
(9(1 TeV) which mixes at the 103 level with the Z° and has similar couplings to quarks.
In the remainder of this chapter, we will work with the Z’ model suggested in [148}, whose
basic features are outlined below.

The neutral current sector of the electroweak Lagrangian receives an additional con-
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tribution
e

Lo = 2sin O cos Ow 2" L bsmlv's + ')y (8.1)
f

where the vector and axial couplings of the Z’ are parametrized as
Ve=24+Ys, du=-z+y
vVi=z 4y, da=-z+yq
/

vi=v, =0, d/=d,=0,

with v, = v/, = v'; etc. The couplings to leptons are assumed to be negligible and are
hence set to zero. It is furthermore assumed that the mass eigenstates Z° and Z' are

mixtures of the weak eigenstates Z3), and Zj:
Z° = cos € ZYy + siné Zyy,, Z' = —sin€Z° + cos€ Zyy,
which modifies the couplings of the physical Z-boson to quarks:
vl = cos€v, +siné v, af = cos€a, +sinéd’,.

The mixing furthermore affects the mass ratio of W and Z bosons, the p-parameter, which

is unity at tree level:

M}, ot (MZ,)2 2
P= Mhcosity P =Pt \we) &

and enters in practically every physical observable in Z-boson decays.

Fixing the mass of the Z' at Mz = 1 TeV, the parameters £, z, y, and y4 can be
adjusted tofit the measurements of R, . while rétaining the quality of the Standard Model
description of other electroweak observables.

The centre-of-mass energy at the Tevatron is not sufficient to produce a sizable number
of on-shell Z’-bosons of the above mass. Effects of the Z’' are nevertheless visible in jet
production at large Er, as quark—quark scattering can be mediated by the s- or t-channel
exchange of an off-shell Z’. Including the CDF jet data in a combined fit, the authors
of [148] obtain

£=38-10"2 z=-1, 5. =22, y;=0, (8.2)
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which we will refer to as ‘final fit’ in the following. Note that a variation of 2 between
—1.5 and —0.5 and of y, between 2 and 4 yields values for observables which are still
compatible with the experimental data [148].

An important feature of the Z’' models of [148, 149] is that the Z’ vector and axial
couplings to u—type quarks turn out to be quite large. In fact the effective Z'uti coupling
is of the same order as the strong coupling: (v'2 + a’2)aw ~ O(10) aw ~ a,, which
explains why the Z’ contribution to the large Er jet cross section is comparable to the
QCD contribution. Another implication of this is that the top quark production cross
section at the Tevatron collider (o) is similarly enhanced, i.e. the model gives rise to an
additional ‘anomalous’ contribution o} from ¢g — (Z’)* — ¢t which is the same order as
the standard QCD contribution o, from ¢§,gg — tf. A precise measurement of the top
cross section therefore provides an important check on the model. We shall quantify this

in what follows, using the same parameters as were determined in [148].

8.3 Hadroproduction of top quark pairs

The top cross section has been studied in the context of a variety of new physics scenarios
[150], especially since the original measurement by the CDF collaboration gave a value
somewhat higher than the standard QCD prediction [151]. What distinguishes the present
study is that we are using a model whose parameters have already been constrained, and
therefore our predictions are on a firmer footing.

The production of top-quark pairs-at Tevatron energies is predominantly due to quark—
antiquark annihilation. The leading-order subprocess cross sections from standard QCD
and from the anomalous Z' contribution are:

slag—t) = % g3,
(GrM2)? 3
6w (8 — M2)? 4+ (8Tz /Mz:)?

Hlag— 7'~ H) =
< W2+a?) (Ba-piepdt . (63)
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Figure 8.2: Parton-level cross sections for the production of a t pair at leading order.

The coupling parameters for the Z’ correspond to the ‘final fit’ of [148].

where 8% = 1 — 4m?/5 and the Z’ width is (for Mz > m,)

GrM?2
Nz = 552 3Mz [Ve+at+vi+add . (8.4)

Figure 8.2 displays these parton-level cross sections as a function of the subprocess centre-

of-mass energy for m; = 175 GeV. For the anomalous contribution, it is evident that only
ut annihilation will yield a sizable contribution to the cross section.

Our calculations of the corresponding pp cross sections use the MRS(A’) parfon dis-
tributions [41], with a,(M2) = 0.112. The factorization and renormalization scales are
set equal to m,. Note that approximately 90% of the QCD cross section comes from the
qq — it subprocess. We include also the next-to-leading-order (NLO) perturbative QCD
corrections to (8.3). For the standard QCD ¢g,gg — tt cross sections these are taken
from [152].

The hadroproduction of a ¢t pair via Z' exchange can be viewed as the production of

an off-shell Z’-boson which then decays into a tt pair. The NLO corrections to o} can
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therefore be factored into two contributions, which we discuss in turn below.

8.3.1 Initial state corrections

The Z' behaves — apart from the different values of its vector and axial vector couplings —
like the standard model Z-boson. The initial state corrections for the hadronic produc-
tion of an off-shell Z’ are therefore identical to the corrections to the Drell-Yan cross

section [153]:
1 1 1
o(s) = / d:n/ d$2/ dz 6(z 202 — M?/s)
T T/z) r/(z122)

5i(sa1228) T €2 { D(2) (alon, i) 2(on,u3) + (o1 > 22)

+D%(2) ((g(=1, 43) + @(z1, 83)) 9(32, %) + (21 © 22)) } (8.5)

In(1 —

1—2

DY(2) = 6(1—2)-}-?3—;,71‘:%'—)01:‘[8( )) 211+ il Inz—-4(14+2)In(1 - 2)
+

+6(1 - z) (- 8+4C2)+21n—”1v€—2{( 2 )+—1—z+gﬁ(1—z)}]

F 1—2z
D¥(z) = a’é’:f) F[(z2+(1—z)g)ln(—lz—zy+%+3z—-27-z2
M? ¢ 2
+1n-g{(z +(1—2) )}] (8.6)

with the production threshold 7 = 4m}/s and the invariant mass of the off-shell vector
boson M? = ZT1Z98. The mass factorization scale is chosen to be- $% = m?; variation
of p% enables us to estimate the uncertainty of the theoretical prediction. 6}(5) denotes
the cross section for the parton level subprocess ¢4 — Z' — tt. Final state radiative

corrections will only apply to this quantity.

8.3.2 Final state corrections

The final state corrections for the decay Z’' — tt are identical to the corrections for the

Z-boson decay into heavy quarks [154]. We can express the parton level cross section

144



qG — Z' — it as [155]

(GpM2)? §
61 (8 — MZ)? + (3L /Mz.)?

6:(3) =

x (o2 +a'2) [g(s - B’y (1 + %CFKV) + B (1 + %CFKA)] (8.7)

1 Py 1+ 8 Qv
v = E[“l—ﬂ%‘ BT T=p7s)
_ 1 PA 148  Qa
a = ﬂ[A+ﬂ2 - ﬂ’]
A= (1+p) [C2+ln1+§l I;ﬂ (1+§)+2Li2(1;ﬂ>
—9Li, (1 ;ﬁ) —4Li2(ﬂ)+Li2(ﬂ”)] +381n > Zﬂﬂz _AIng,
33 5 3
Py = ozt ﬂ2 ﬁ4, QV=Zﬁ—ZS,
21 3
P, = 32 ﬂ2 ,34—3—2,56, Qa = ~—,3+—ﬂ3 —,35- (8.8)

The vector-corrections Ky in the above formula were originally derived in the QED treat-

ment of the hyper-fine structure of atoms [156], where they cause the splitting between

the 251/2 and 2Py, levels.

Quantitatively, we observe that each of the above corrections increases the lowest-order

cross section by about 15-20%. Using the ‘final fit’ of (8.2), we find at /s = 1.8 TeV and

my = 175 GeV:

i
%L0

0';,0 ® Kpy

o,=010® Kpy @ Kzi_ii

= 1.50 pb
= 1.74 pb

= 2.00 pb, (8.9)

to be compared to the Standard Model prediction of o, = 4.75 pb. An estimate of the the-

oretical uncertainty on these quantities can be obtained by varying the mass factorization
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Figure 8.3: Variation of o; with z, y,.

scale between m,/2 and 2m,:
6.+ 0, (b =my/2) = 5.00 pb+2.09 pb,

o+o, (kp=2m,) = 4.25pb+ 1.88 pb. (8.10)

The NLO o cross section, for pp collisions at 1/3 = 1.8 TeV with m, = 175 GeV and
MRS(A’) partons [41], is shown as a function of the parameters z and y, in Fig. 8.3. The
dependence on the third parameter y4 is very weak. Note that that y, < 2 is disfavoured
by the LEP/SLC data [148]. The relative insensitivity to the parameter z evident in the
figure can be easily understood, as x enters directly in the uii,dd — Z' production cross
sections, see Eq. (8.3). An increase in the production of Z’-bosons is however compensated
by a larger amount of Z’ decays to d-type quarks. In contrast, an increase in y, yields

only an increase in vt — Z’, and correspondingly in the overall top cross section.
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Figure 8.4: Predictions for oy + oy as a function of m,, with data points from CDF and

Do.

Figure 8.4 shows the total cross section o, + o} as a function of m, at the Tevatron
collider. The solid line is the standard NLO QCD prediction, the dashed line includes
Z'-exchange with the ‘final fit’ (8.2) coupling parameters, and the dot-dashed (dotted)
line corresponds to a smaller (larger) value for the coupling parameter y,. The data points
are from CDF [157] and D0 [158]. It is apparent that large values y, ~ 3 are already ruled
out by the CDF and D0 measurements. The ‘final fit’ estimate (8.2) for the Z’ couplings
is however still consistent with both experiments. Taking the average of the CDF and
DO results, oné finds a top quark cross section slightly above, but consistent with the
Standard Model prediction. At the present level of experimental accuracy, the presence
of an anomalous contribution can therefore neither be confirmed nor ruled out.

The confirmation of an excess in the measured top cross section must of course take
into account the theoretical uncertainty in the Standard Model prediction. There are
three major sources of such uncertainty: unknown higher-order perturbative corrections,

the value of a, and parton distributions. A very complete study of this issue has recently
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Figure 8.5: Invariant mass distribution of ¢f final states at the Tevatron.

been performed in [159] (see also earlier discussions in [160]). The ‘best estimate’ of the
top cross section (at 4/s = 1.8 TeV) and its error from [159] is

+0.73
—0.62 P

Note that the central value in (8.11) agrees with our result for o, given above. More gen-

o, =4.75 b. (8.11)

erally, the error is approximately £15% over the allowed top mass range. The important
point to note is that the ‘final fit’ prediction for o} is about three times larger than the
error on the QCD prediction.

Given the uncertainties in the standard QCD prediction and in the data, it is important
to investigate other properties of the final state which could help distinguish an anomalous
contribution to the cross section. Examples include the angular distributions of the top
quarks and their decay products, as emphasized in [161].

Notice in particular that the rapidity distribution of the ¢ quark produced in ¢§ —
Z' — tt is not forward-backward symmetric, in contrast to the standard production mech-
anism. However the simplest discriminator of the anomalous and standard contributions

is the distribution in the invariant mass M;,, = 125 of events containing ¢ pairs, shown
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in Fig. 8.5 for /s = 1.8 TeV, m; = 175 GeV and the parameters of (8.2). The dashed line
denotes the Standard Model prediction, the additional contribution due to the exchange
of the ‘final fit’ Z’ is indicated by the dotted line, and the solid line is the sum of these.
Just as for the excess in the single jet inclusive distribution [144], the Z’ contribution is
visible as an enhancement of the measured cross section at large invariant masses. Note
that the final-state invariant mass at next-to-leading order can include the contribution
from additional gluon emission where appropriate. In practice, the invariant mass distri-
bution of ¢ pairs will also depend on kinematical cuts and the jet definition used in the

event reconstruction. A detailed study of these effects is beyond the scope of this thesis.

8.4 Summary and Outlook

In summary, we have shown that the new-physics model proposed in [148] to explain the
anomalies in the measurements of R;. at LEP and the CDF large Er jet cross section
predicts a significant enhancement of the top quark production cross section. The ‘final
fit’ estimate of the increase is about three times larger than the theoretical uncertainty in
the standard QCD prediction and yields a substantially different distribution in the final
state invariant mass. Given the expected increase in the precision of the experimental
measurement, the presence of such an additional non-standard contribution to the cross
section should be detectable.

The sensitivity to an anomalous Z’ contribution to the tf production cross section will
be increased further-once the Tevatron has been upgraded to operate at 1/s = 2 TeV. The
effect is considerably smaller at the LHC, where the predominant top quark production

mechanism is gluon—gluon fusion. The expected cross sections at the upgraded Tevatron

and the LHC are shown in Fig. 8.6:

0.+ 0} (pp,/s= 2TeV) = 6.53 pb+3.33 pb,
o+ 0, (pp,/s =10 TeV) = 357 pb+61 pb,
o+ 0, (pp,v/s =14 TeV) = 768 pb + 115 pb.
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Figure 8.6: Expected top quark cross sections in pp and pp collisions as a function of the

collider energy.

It has to be stressed that the observation of an anomalous enhancement of the top
quark cross section will not be sufficient to prove the existence of the Z’-boson. On the
contrary, a measurement of this cross section in agreement with the Standard Model
would put severe bounds on allowed space of parameters for the Z’. These bounds could

be sufficient to contradict the existence of the Z' as postulated in [148].
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Chapter 9

Summary and Conclusions

Protons and neutrons, the fundamental constituents of atomic nuclei, display a compli-
cated substructure if looked at closely enough. Several aspects of this substructure have
been studied in this thesis.

The form and structure of the proton are described by form factors and structure
functions, which can be measured in electron—proton scattering. We reviewed the phe-
nomenology of elastic and inelastic electron—proton scattering in Chapter 1. While the
elastic proton form factors are rapidly decreasing with increasing momentum transfer Q?,
it appears that the inelastic structure functions are only weakly dependent on Q2. This
scaling behaviour indicates the existence of point-like constituents, partons, inside the
proton. An interpretation of the proton structure is given in the parton model, which
describes the proton structure in terms of distribution functions f;(z, Q%) for point-like,
non—i‘ntera.cti‘ng partoné. These determine the probability that a parton of species ¢ car-
ries a momentum fraction z of the total proton momentum if probed at a scale @Q%. We
discussed the parton model and its implications in Chapter 2. These partons can be
identified with quarks and gluons, which appear to be the fundamental constituents of
the proton. The dynamics of quarks and gluons are described by the theory of Quan-
tum Chromodynamics (QQCD), Section 2.2. A calculation of parton distribution functions

in perturbative QCD is not possible with present methods. However, one can calculate
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the change of these distributions with increasing Q? from first principles. This change is
described by the splitting functions and evolution equations introduced in Chapter 3.

The spin structure of the proton in the parton model is described by the polarized
parton distributions Afi(x,Q?) = fl(x,Q?) — f}(z,Q?), where fT (f!) denotes the dis-
tribution for partons with spin aligned (anti-aligned) to the proton spin. Several aspects
of these distributions can be determined from sum rules for their first moments and from
a study of the QCD predictions in asymptotic kinematical limits. We summarized this
information in Chapter 4. We studied in particular the behaviour of the polarized parton
distributions in the limit z — 0 (Section 4.4), finding a complicated interplay of con-
tributions from quarks and gluons. This is in contrast to the small-z behaviour of the
unpolarized distributions, which are dominated by evolution of the gluon distribution and
consecutive g — ¢q splitting.

In Chapter 5, we attempted to determine the polarized quark and gluon distributions
in the proton from a fit to the experimental data on the polarized structure functions
gf‘d’"(m,Q2). It turned out that these data, supplemented with additional information
from sum rules, constrain the size and shape of the polarized valence quark distributions
Au,(z,Q?) and Ad,(z,Q?). The overall magnitude of the polarized sea quark distribu-
tion was determined as well. A flavour decomposition of the polarized quark sea and a
determination of the polarized gluon distribution AG(z,Q?) were however not possible
on the basis of the polarized structure function data.

Motivated by these uncertainties, we investigated in Chapter 6 how future experiments
could measure the polarized sea quark and gluon -distributions. It was found that even
improved measurements of the polarized structure function will fail to provide sufficient
information on these distributions.

A determination of the polarized sea quark distributions in the region z > 0.1 seemed
to be feasible from the measurement of asymmetries in the Drell-Yan process. It has
however to be kept in mind that fixed target measurements of the Drell-Yan cross section
usually only cover a restricted rapidity region of the final state phase space. A reliable

determination of the polarized sea quark distributions from fixed target Drell-Yan data
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will therefore require the knowledge of the QCD corrections to the Drell-Yan cross section
as a function of the lepton pair rapidity. This study is presently in progress.

The polarized gluon distribution could be measured from charm production asymme-
tries in polarized electron—proton scattering. The production of charmed mesons and of
the lightest (cc) bound state both appeared to be promising observables.

Another aspect of the proton structure is the experimental observation of diffractive
deep inelastic scattering in electron—proton collisions at HERA. We showed in Chapter 7
how this observation can be interpreted as emission of a pomeron off the proton, followed
by deep inelastic electron-pomeron scattering. We studied implications of this model,
finding an angular correlation between the outgoing electron and proton momenta. Fur-
thermore, we suggested a very simple phenomenological model for the partonic structure
of the pomeron. In this model, the pomeron is made up of valence-like gluons with a
small admixture of valence-like quarks at some low scale Q2. Perturbative evolution then
increases the quark content of the pomeron with increasing Q%. Using this model, we
predicted a large fraction of diffractive events with charmed quarks in the final state.
The angular correlation and the charm content of diffractive events could both serve as
experimental tests of this interpretation. Preliminary measurements of charm production
in diffractive deep inelastic scattering appear to be consistent with the pomeron picture.

The most important application of parton distributions is the precise prediction of
observables in hadron-hadron collisions. Comparison of these predictions with the ex-
perimental results can help to confirm or extend our present understanding of particle
physics as described by the Standard Model.

We illustrated this for a particular example in Chapter 8. In the recent past, several
authors have postulated the existence of a heavy neutral vector boson Z’ to explain two
experimental observations which appear to deviate from the predictions of the Standard
Model. We calculated the effect of the Z’ on the top quark production cross section in high
energy hadron-hadron collisions. It was found that the Z’ contribution yields a sizable
enhancement of this observable at presently accessible energies. Recent measurements of

the top quark cross section at the Fermilab Tevatron can already put constraints on the
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coupling of the Z’ to quarks, but do not yield conclusive information to verify or falsify
the existence of the Z’. Given the anticipated increase in luminosity and collider energy at
the Tevatron, the presence or absence of a non-standard contribution due to Z’ exchange
should be detectable.

In summary, we investigated three different aspects of the internal structure of the
proton in this thesis. The first aspect concerned the distribution of the proton spin among
its constituents. We estimated the polarized quark and gluon distributions in a global
analysis of polarized structure function data. We studied furthermore how the knowledge
on the spin-structure of the proton can be improved at future experiments. Secondly, we
showed how hard diffraction in electron-proton collisions can be understood to be due
to the pomeron, an object predicted from hadronic interaction physics. We suggested
various tests for this interpretation. Finally, we demonstrated how the precise knowledge
of the proton structure can be used to compute observables in proton-antiproton collisions,

extending or confirming the Standard Model picture of particle physics.
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Appendix A

Special functions

A.1 The Gamma function I'(z) and its derivatives

The Gamma function is defined as [70]
I(z) = /0 “¢letdt  {Re(2) > 0} (A1)
For positive integer arguments, I'(n) can be expressed as factorial
I'(n+1) =nl,
which yields the recurrence formula
I'(z41) = 2I'(2). (A.2)

I'(2) can be continued analytically to ({Re(z) < 0} \ {z = —i | : € INg}) by recursive use
of this formula.

The -function is the logarithmic derivative of the I'-function

pz) = Ll (A3)
P'(2) = %, (A4)
Y'(z) = (il—f (A.5)
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These functions reduce to finite sums for positive integer arguments

n-1
P(n) = -+ k7, (A.6)
k=1
n—1
Pn) = G- k72 (A.7)
k=1
$in) = —26+23 K, (A8)
k=1

where v5 = 0.5772156649. .., {; = 72/6, (3 = 1.2020569031. ... The recurrence formulae
POz +1) = pO(z) + (<1) it 5~ (A.9)
yield an analytic continuation for ({Re(z) <0} \ {z¢ = —i]i € INp}).

Numerical implementation

Due to the factorial growth of the I'-function, a numerical implementation of inT'(z) is

more appropriate. We have used the following interpolation formula [162] for Re(2) > 0:

Inl(z) = (z—l) In (z+'y—%) —z—7+%+ln(\/ﬂF(z)), (A.10)

2
6 .
() = [mgl———”n_l],
with ¥ = 5 and

¢o..c = (1,76.18009173,—86.50532033,24.01409822,

—1.231739516, 0.00120858003, —0.000005364).

For negative arguments, (A.2) is used recursively.
Using (A.10), it is straightforward to obtain interpolations for the 1) function and its
derivatives:
1

_ _ET3 ( _l)_ Ll
P(2) z+7_%+ln 2+ 3 1+F,
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¥ 1 F"F — [F)?
P'(z) = + + :
(z+’7—%)2 Z+7 -3 F*
) = -1 F"FI-3FPF A YFY
= 3 2 y
R Ao .

where F' etc. denote derivatives of F'(z) with respect to z. For negative arguments, the

recursion relations (A.9) are applied.

A.2 The Lambert w-function

The Lambert w-function [163] is defined by the implicit equation
w(z)exp{w(z)} = =, (A.11)

which has infinitely many solutions w(z) in the complex plane. A principal branch can
be defined by requiring analyticity of w(z) in £ = 0. This principal branch is real-valued
in the interval [—1/e; 0o[ and is displayed in Fig. A.1.

Figure A.1: The principal branch of the Lambert w-function.

The w-function can be used to solve the equation
4+ lnx=0 (A12)
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with respect to z. For a > —1/e, this equation has a real solution
1/a
T = ((i(;—)) , (A.13)

which can be used to discriminate regions in 2 dominated by logarithmic and powerlike

terms.

A.3 The dilogarithm Liy(z)

The dilogarithm is defined by the integral [164]

Li2(x)=_/‘M

0 T

dz. (A.14)

It is real-valued in the interval | — 0o;1] and can be expressed as a power series

Liy(z) =} % (A.15)
n=1
The following formulae relate dilogarithms of different arguments:
Li;(1—z) = -Lis(z)—Inzln(l —2)+ (;,
. (1 . 1
ng (;) = —ng(:l'f) — -2—1112(—33) - Cg,

Li, (1 i :c) = Lig(z) +In(1 — 2)In(—2) — -;—ln2(1 — ) + (s,
Li, (__1;3:) = Liz(m)+lnxln(1—-m)—-%lnzm—('g,
Lis (~12=) = ~Liz(e) L -2 (A.16)

1) — T2 ‘ ’

Numerical implementation

The power series expression (A.15) is only slowly convergent. It is therefore not ap-
propriate for an efficient numerical evaluation of the dilogarithm function. Introducing
u = —In(1 — z), the dilogarithm can be expressed as [164]
LI £
i) = [
ia(2) o ete—1""
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Figure A.2: The dilogarithm function Liy(z).

where the integrand is now the generating function of the Bernoulli numbers [70]. There-

fore,
L‘z Ir) = Bn -———u : A li

We have used the above equation truncated to finite order to compute Liy(z) if —0.5 <

z < 0.5. For arguments outside this range, one of the relations (A.16) can be applied.

A.4 Finite sums

Computation of the moments of DGLAP splitting functions yields the following finite
sums (cf Appendix B.1.1):

Sin) = zkl (i=1,2,3) (A.18)
k=1
n o 1\k
Si(n) = g( kl,-) (1=1,2,3) (A.19)
S1a(n) + Su(n) = i(%&(k)+%sl(k)) (A.20)

a€
1]
-
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Suln) = - 25u(b)

k=1

n

(A.21)

The inversion of moments into z-space requires continuation of the n-moments into the

complex plane. This is straightforward only for

S12(n) + Sa1(n)
S] (n)
Sg(n)

S3(n)

= S51(n)Sz(n) + Ss3(n),
= C2 - 'd)’(n + 1)7

= C3 + %¢"(n + 1),

(A.22)

using the definitions (A.6)-(A.8). For the remaining sums, we have to distinguish the
cases n even and n odd, which we denote by n = X1.
We define [165]

Sin/2) = 2*-1’;# (A.23)
= S+n)Si(n/2) + 51— ) Si(n~1)/2)
$n) = g:l(“klz)ksl(k) (A.24)
In terms of these, the remainin; sums read
S = 27SI(n/2) - Si(n)
Sia(n) = S1(n)S,(n) + Ss(n) — S(n). (A.25)

The analytic continuation of (A.24) is given by! [135]:

50 = —3 -+ (252 - L wtto+ 012 - w2 + [ B2 o)

!Please note that this expression is misprinted in the appendices of [85, 135).
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where the last term can be numerically approximated by replacing the factor (1 + z)™*
by its orthogonal expansion with the weight function (z(1 — ))~'/? (shifted Chebyshev
of first kind [70]). The integral can then be computed analytically by use of (B.12)>2.

A peculiar feature of the finite sums (A.23) and (A.24) is that their analytic continu-

ations depend on 7, i.e. they are different if even and odd moments are considered.

A.5  “4Y_functions

Both coefficient and splitting functions develop a singular behaviour as £ — 1, which
is compensated by a contribution in z = 1, such that the convolution integral of these
functions with any test function is finite. This behaviour is expressed conveniently by the

introduction of a “4”-prescription:

1 1
| de @), o) = [ do £(@) lg(e) - 9] - (A.26)
Only two types of “+”-functions appear in the coefficient and splitting functions up to

the next-to-leading order:

(lim)+ and (Eﬁ'l—:jm)')Jr (A.27)

The convolution integrals with the parton distributions usually take the form

L2 v, ().

Using the definition (A.26), we can rewrite the two “4”-functions (A.27) into a form

suitable for numerical implementation:
(5.0 () - o [ 5 () -l
—\T -] = g(z) In + ] = — =) —g(2)] ,
/ry 1—y+gy 9() z ./;yl—ygy 9(<)
1dy (In(l—1y) AN (1 \ ' )
-/:: y ( 1—y +g 5 = g(z) 5111(1—:1:)—(’2-}-[,12(:1:)

+f 'dy In(l—y) [g (i;.) - g(m)] . (A.28)

y l-y

2This expansion applied to the whole integrand [135] converges far more slowly due to the nonanalyt-

icity of Lig(z) in z = 1.
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Appendix B

Evolution of parton densities

This chapter contains the mathematical techniques used in our parton distribution evolu-
tion programme, the algorithm applied is outlined. For reference, we give explicit expres-
sions for both polarized and unpolarized splitting functions at leading and next-to-leading

order in £ and n space.

B.1 Mellin transformations and their inversion

The Mellin transformation f(n) = M[f(z)] of a function f(z) is defined to be

1
fn) = MUf@)] = [ doa™ f(a). (B.)

This transformation can be inverted in the complex n-plane
L[ gno B.2

where a is to be chosen such that all singularities of the function are lying to the left of
the integration contour. The following properties of the transformation are relevant in

the present context:

Mlaf(z) + bg(z)] = af(n)+ bg(n) (Linearity), (B.3)
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M [d%; f(a:)] =

M| [ & waten) -

@V

f(n)g(n)

f(n—k)

(Derivative),

T(n — k)

(Convolution).

(B.4)

(B.5)

It is the latter property which makes this transformation useful to reduce the DGLAP

integro-differential equations in z space to a set of coupled ordinary differential equations

in n space.

B.1.1 Mellin integrals

In the following, we list the integrals required to compute the moments of splitting func-

tions and initial distributions:

1
/ " Vdz
0
1
/ 2" ' Inzdz
0

1
/ " ' Infzdz
0

/: " In(l — z)de

/01 "' In®}(1 — z)dz

/01 2" ! lnzln(l — 2)de

/ "2 Lig(x) de

/: "1 (Lig(—z) + InzIn(l + z)) dz

1 1
n—-1
/o T

-

Inzdz

1
/x"'l 1 In? 2 dz
0 11—z

1
/ 117"_1 1
0 1

it

Inzin(l — z)dz

= —ISi(m),

- ;11.[52(n)+53(n)] ,
= S~ = (G- Sam)
_ l@ _ lsl(n),

= ——C2+( 1)n

( G+ Sam)
= Sa(n)— (2 - L
= 2(G+ -71; _ Ss(n)) ,

= G (Suln) + Su(n) + 255:(n)

(B.6)
(B.7)
(B.8)
(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)



1 n-1 1
/m dz
0 142
1 1
n—-1
/om 14+ =
1 1
n—1
/ox 14z

/1 - Lig(—z) + InzIn(1 + ) da
0 1+«

Inzdz

In?zdz

1 1
[ (),
0 l—-z/4
1 —
/ g1 (ln(l m)) dz
0 1—12 +
/lxn—l a(
0

)ﬂ dz

B.2.1 2z-space

2
PY = Cr [(

l1—2

B.2 Splitting functions

+5o(m) — (= = i) G, (B.16)
- % — (1) (In2+ §i(m)) (B.17)
= 4 () (B +56),  (BI9)
- ;?—3 —2(-1)" (% G+ 5'3(n)) : (B.19)

= oGt (U7 283t - Sl -

+%42 (1n2 + Si(n) - Si(n) + %)] ,(B.20)

= % (sf(n) + Sa(n)) — %Sl(n), (B.22)

F(n+1+a+p)

The evolution of (polarized) parton distributions is governed by the splitting function
matrix (A)P;;(x) in the DGLAP evolution equations (3.7). These splitting functions can
be expaﬂde& in pbwers of the QCD coupling constant

(8)Pi(z,0,) = S2(A)P + (2,,) (A)PY 4

and have a naive interpretation as the probability of a parton ¢ splitting into a parton j
while transferring a fraction z of its initial momentum.

The leading order unpolarized and polarized splitting functions are [31]

)+—1—x+g6(1—m)] ,
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1+ (1 —z)?
1 1 -2z 4+ 2% — 28 1 1T
© — ____L)
Fao 2Ca [(1—9:).,. z (12 3¢,/ %0 x)]’(B%)
2 3

APO) = cp[(l_m)+—1-z+55(1—m)],
APQ = 2Ty [2?-(1-2)?],

1—(1-2)?

1 11 17T

PO — ( ) 1 - (—___f) _a)| . .
AP, 2C, [ T ++ 2z + 53C, 51 —z) (B.25)

The leading order splitting function (A)Pq(;’) governs the evolution of all possible non-
singlet quark combinations and of the quark singlet in the coupled singlet—gluon equations.
Beyond the leading order, the evolution of flavour non-singlet (4+) combinations (A)g; +
(A)gi— (A)g; — (A)g; and valence non-singlet (-) combinations (A)g; — (A)g; is controlled
by different splitting functions (A)P,, 4+ and (A)P,,, —; the evolution of the non-singlet
quarks is controlled by a third splitting function (A)P,, s. These three splitting functions

can be written as
(A)qu,i = (A)qu T (A)P; and (A)qu,s = (A)Pp 4+ + (A)qu,PS' (B.26)

The next-to-leading order correction terms read [33, 35):

1+2? /3 3 7
1 — 21 _ - — - (=4 =
P, C’F[ T (21nm+21nzln(l :z:)) 5+ 5z (2+2m)lnx

—%(1 +z)In?z + (%—3@4—6{;;) 6(1 —x)]

1+2% /1, , 11 67 2
+ch,,[1_$ (gis+ g ine) + (5 -4) ((1_x)+“1‘x)

+2?0(1—a:)+(1+m)lnw+<%+%1C2—3C3) 6(1—w)]
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21+ 22 20 1 2 22 1 4
+Cr Ty [‘5 T ‘”"5‘(14);5%“(6*5@) 5(1“””)]’

1 2
Py = (cﬁ - §CFCA) [111 — (In*2 — dlnzln(l + ) — 4Lis(—2) - 2

+2(1 + z)Inz + 4(1 — m)] ,

Pq(;,)PS = 2C¢Ty -;%—2-{-63:—5?63:24-(1+5z+§z2>lnm—(l+x)ln2m] ,
40 182 14 136 38
1 — — =y = - —z)— 2
P, CaTy wto * 9m+< 32 3)lna: 4In(l —2)— (24 8z)In"z
+(—g;—8+4§4-1nx+41n(1—m)—anm—2ln2(1—m)+2C2)
(.7:2 +(1- :1:)2) + (lm2 ¢ ~4lnzln(l + z) — 4Liy(~z) — 2(2)
(a:2 +(1+ 93)2)]

+CrTy [4— 9z — (1 —4z)Inz — (1 — 2z)1In’z + 41n(1 — z)
+(10+4Ilnz —4In(1 —z) —4lnzln(l — z) + 210’z + 21n*(1 — z)

—4(,) (m2 +(1-~- m)z)] ,

Pg(:) = C}[—g—;m+ (2+ ;m) Inz —2zIn(l —z) — (1 - %m) In’z

T

— (3In(1 - 2) + In’(1 — 7)) M]

+CrCyu [29—8 + ?—gm + %ﬁ - (12 + 5z + g:ﬁ) Inz 4+ 2zIn(1 — z)

11

1 1
+(4+ z)In*z + (5—{- —3—ln(] —z)—2lnzln(1 —m)+§ln2m

)2
+1n%(1 —a:)—(g) l;l—_(_lx_x)__ (lanm —2IlnzlIn(1+ )

2
1+ (1+2z)
I ’

—2Liy(—2) — ('2)
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P
3 3 3

- (41n:vln(1 —z) —lnzx) (—x?(_ii_-;—)lli%- (3 +3C3) 6(1 - z)

(o) (1), 1)

(B +az+1)
z(1+z)

e = CA[27(1— )+ﬂ< —%)—(2—5—2 +ﬁm)lnx+4(1+z)ln2x

(l z—4Inzln(l + z) — 4Lis(—z) — 2(2) ]

+CrTy [54; —16 + 8z + 2—3(-)-1:2 — (64 10z)Inz —2(1 + z)In®z — §(1 — :1:)]

26 1 4
+CATf[2 2m+?(z —-x—)—g(l+a:)lnm
20 1 1 -2z 4 2% —28 4
-5 ((1 “w)++ m ) ~ 360 —m)], (B27)
APY = PD,
APY — _p

9 99

APWs = 2CkTy [l —2 - (1= 32) Ine - (1 +2) Ina] ,
APY) = CaTy[24 - 222 +2(1 + 8z)Inz — 8(1 — z)In(1 — z) — 2(1 + 2z)In’z
+2(1 — 2z)In*(1 — 2) — 4(1 + 2z) Inz In(1 + 2)
—4(1 + 2z) Lig(~z) — 4]
+CFTf[ —22+27z —9Inz 4+ 8(1 — z)In(1l —z) ~ (1 — 2z)In’ 2

+4(1 - 2z) InzIn(1 - z) - 2(1 — 2z) In’(1 — z) + 4(1 — 22) &),

APQ(;) = CACF[491 3_95_;1; +(4-13z)Inz + (% + %.7:) In(1 — z)

~(4—-2z)Inzn(l —z)+ 2+ z)In*z 4+ (4 +22)Inzln(l + z)

+(2~—2)In®(1 — z) + (4 + 2z) Liz(—2) + 22 Cz]

167



+C% [—1—27+4m— (2—%—z)lnx—(2+w)ln(1—z)+ (1—%m)ln2z

—(2 - 2)In*(1 - :1:)]

16 4 8 4
+05 Ty [~g 5o = (5 - 52) n(1==)]

67 1 37 97 (29 67
2 — — — — — SS—— — — S——
C"[(g 242) (1—w)+ 18 18$+(3 3””)1“’

4 4
+ (8:1:— 1—;—£——4) Inzln(l —z)+ (8m+1+—$+4) Inzln(l + z)

APY

1 1 2
+< ———+4)ln2m+(8m+——) (s
+z

+(8a:+%-+4) Liy(— m)+(3C3+ )6(1—3:)]
[ 56 76
-

4
+CaTy ——+—x——(l+z)lnz—§6(1—m)]

1—.’II+ 9 9

+CpTy| —10 4 10z — (10 — 2z)Inz — (2 4 2z) In? 2z — §(1 — :1:)} (B.28)

Recall the QCD colour factors (2.3): Cr =4/3, Ca = 3 and Ty = ns/2.

B.2.2 n-space

The DGLAP evolution equations, formulated in z-space, are a coupled system of integro—
differential equations. If the equations are transformed to n-space, they reduce to a
system of coupled differential equations, which can be solved analytically. Instead of using
the Mellin-transformations of the above splitting function matrix, one can alternatively

consider the matrix of the anomalous dimensions of the parton operators

(Arile,a) = (A1 + () (A +..,

which are related to the moments of the splitting functions
(B = 4 [ o™ (A)PO(z)d,
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1
@y = -8 [ 27 (8)PP(a)da.

The leading order anomalous dimensions are [31, 74, 166]

1 3
® —_—— =
WO = 4cp [251(n) D 2} ,
2
Tag 87y n(n+1)(n+2)’

n24+n+2
’)’52) = —4CF

(n—Dn(n+1)’

T R e - R TS
A4 = 4Cp [251(")"5(’{157‘%]’

Aq'g[g’) = —ST;#;;_'_II—)-,

A’ygg) = —4Cpn—8%21—),

aop) = 10a [psim) 4o - B 2 (B.30)

A decomposition of the next-to-leading order quark-to-quark anomalous dimensions
into ¢q, ¢¢ and ¢q, PS contributions - although possible — appears not to be adequate, as
the resulting expressions are far more complicated than the (+), (—) and (S) combinations
appearing in the evolution equation. In the following expressions (35, 167], we denote the

non-singlet signatures By the variable n ==l

M 2 @2ntD) __ _g
Tag.n Cr|16S1(n) n2(n + 1)2 +16 { 251(n) n(n+1) (S2(n) — S3(n/2))
. 3 2 _ 1
+245,(n) + 645(n) — 854 (n/2) — 3 — 8 %
2 +2n+1
_16n———n3(n+ Iy ]
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17
3
4 151n* + 23613 4 88n?% + 3n + 18 2n? 4+ 2n + 1]

_§3§52(n) —325(n) +4S3(n/2) -

9 n3(n +1)3 +8n n3(n +1)3

_ 160
9

+CrTy [ (B.31)

32 4 161In?2+5n—3
Si(n) + 3-5a(n) + 3 + nt+on ]

9 ni(n+ 1)
5n% + 32nt + 49n3 + 38n? + 28n + 8

1 (1)
Yoos = Vet ~ WO CF S T o

= —s0umy| -2 (3 — $am) + Sin/2) T2

(n) 2n+3
(n+1)2(n + 2)?
n® 4 6n° + 15n7 4 25n° + 36n° + 85n* + 128n3 + 104n? + 64n + 16
(n — n3(n +1)3(n + 2)3

+85;

+2

2 n?4+n+42 1
—8CFTy [ (252(n) — 28(n) + 5) i ++1) o 15:(n)—

11n* + 26n3 + 1502 + 8n + 4
n3(n+1)3(n +2) ’

n?4n+2 1
_ 4 -
mo D) P Te
12n8 + 30n° + 43n* + 28n3 — n% — 12n — 4
(n—1)n3(n+1)3

Yoo = —40%[ (1081 (n) + 253 (n) — 252(n))

n?4+n+2
(n—1)n(n+1)
1Tn 4+ 41n? — 22n — 12
3(n—1)n%(n+1)
+109n9 + 621n8 4 1400n" 4 1678n% + 695n° — 1031n* — 1304n3 — 152n2 + 432n 4 144
9(n —1)2n3(n + 1)3(n + 2)?

_%Cpr [(Sl(n) - §) (HT;;:(:E D' j 1)2] ’

—8CrCy [ (Sf(n) + Sz(n) - S;(n/Q))

—51(n)
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536 2n5 +5nt 483+ —-2n—-2 64
mo Pt 1) (nt 2?3

n+n+1

+3254(n/2) (n— Dn(n + 1)(n + 2)

4 325(n)

— 1654 (n)SY(n/2) — 4S4(n/2)

_ 445Tn® + 274208 + 6040n” + 6098n° + 1567n® — 2344n* — 1632n° + 560n% + 1488n + 576]

9 (n—1)?n3(n 4+ 1)3(n +2)3
160 2 16 38n* + 76n3 + 94n? + 56n + 12
T, | — —
+Ca f[ S1(n) + 9 (n—1)n%(n+1)%(n+2)
2n8 + 4n’® + n* — 10n® —5n? —4n — 4]
(n=1)n3(n+1)3(n+2) ’

+CrTy [8 +16

1
A'Yg)n = 7!5:1)—17’
4 a 2

() _ 1) n*+2n°4+2n° 4+ 5n 42

1) — _
AY = scFTf[ e 1) (Sa(n) - S’l(n))+4 ( )Sl(n)

5n° 4+ 5n% — 10n3 —n? + 3n — 2
n3(n 4+ 1)3

+160ATf [—(—_*:1—) (Sl( ) Sz(n) + S;(n/2)) - 4%—1_'_—1—)2-51(11)
n® + nt —4n3+3n2—7n—2]
n3(n+1)3
n+2 5n2 +12n + 4
D M 1y ]

A = 32CFTy [—

2n+4 2 6n? + 14n + 4

9nd + 30n4 +24n3 - Tn? —16n — 4
n3(n + 1)3

S) (n)

n+2 11n2 + 22n + 12

+CACr | T2 (=53m) = Sulo) + S3(o/2) +

_76n° + 271n* + 254n° + 41n® + T2n + 36
In3(n + 1)° ’

3n?(n+1)
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(B.33)

Si(n)



8 -
Avy = 40 [ —4Si(W)S3(n/2) + o=y Siln/2) = y(n/2) +85(n)
134n* 4 268n2 + 134n? + 288n + 144
2 2 Si(n)
In?(n+1)
_48n6 + 144n% + 469n* + 698n3 + Tn? + 258n + 144
9n3(n +1)3
5 Int4+6n24+16n2+13n -3
+3204T; [—551(77,) + In?(n + 1)?
n®+3n° +5nt+n2—-8n?+2n+14

+8CF Ty St . (B.34)

It was outlined in Section A.4 that the analytic continuation of some of the finite sums
occurring in the above expressions is different for odd and even moments. The analytic
continuation of the above quantities is nevertheless well defined. A formal treatment of
lepton-hadron scattering in the operator product expression (e.g. [39]) shows that in the
singlet case only the even moments of the unpolarized scattering amplitude and the odd
moments of the polarized scattering amplitude are well defined. The remaining integer
singlet moments are fixed by analytic continuation. In the unpolarized non-singlet case,
one finds that the flavour non-singlet combinations have only even physical moments
while the valence non-singlet combinations have only odd. This situation is inverted in
the polarized case. In the above equations, one has therefore to use n = 1 in (B.32)
and 7 = —1 in (B.34), the value of # in (B.31) and (B.33) depends on the non-singlet

combination under consideration.

B.3 Solution in n-space

The numerical programme used to obtain the parton distributions presented in this thesis
is based on an analytic solution of the DGLAP equations in n-space, which is inverted
into z-space numerically. We outline a brief derivation of the solution in n-space below,

which follows closely the approach of Furmanski and Petronzio [168].
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The evolution equation for any! non-singlet combination of parton distributions with

signature 7 reads

_8 13Q2 q,,(a:,Qz):/zld;y- [as( ) (0)( ) (ﬁ’_éf_)) q(;)n(y) ] qn(m/y,Q2),
(B.35)

which transforms to?

g (1 Q") = [ 2+ (& (Q)) 1+ }%ULQ%, (B.36)

Using the evolution equation (2.4) for the running coupling

m%?mmw%=—[‘wh+( SU2) P }

we can rewrite the above equation as

dlng,(n, QY _ 17 ?+”@)$%
dlna,(Q?) 2 fo+ as(Qg)ﬂ !

which can be expanded in a,(Q?)

Olngy(n, Q%) _ 1 [ o, %(@) ( (1) _EI_A,(O))]
6 lna,(Q2) 2,6 qq 4n qqn ﬁo 99 .

Integration of this equation yields the solution for non-singlet combinations of parton

distributions

7(0)

w1 (SRR S (e

The solution at leading order can be obtained from the above by omitting the second

term in the brackets.

1The derivation below applies to flavour and valence non-singlet combinations of unpolarized and
polarized parton distributions. We will omit the polarization index in the following.

2All anomalous dimensions in the remainder of the section are functions of n: y = y(n).
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The solution in the quark singlet sector is more complicated as quark and gluon

distributions are mixed in the evolution process. The evolution equations read

0 X(z, Qz) 1 dy 2(m/y,Q2)
=[ —P : B.38
6an2 ( G($,Q2) ) _/z y (y) ( G(a:/y,Qz) ) ( )
with
0 as(Q%) L1 . po as(@%)
ety | PO+ IR 4 PO+ S P +
P(y) = o

Q? a,(Q?
PO+ 2 p0y) 45 POm) + 2D ) 4

Transformation into moment space yields

0 (@) ) _ la 9, (%) %(n, Q%)
61nQ2 ( G(n,Q2) ) 9 [4#7 + (4,”) 9 +] G(n,Q2) , (B.39)

with

(0)

0
Yy Tap

709
0 0

A

(1) )

Yaq.s 7.
MO B (B.40)

1 1
w5

Which again yields

_ 9 [Em@) ) _ 1], %@ &) Eme)
aln as(QQ) ( G(n, Qz) ) 2ﬂ0 [7 + Ar 7 ] ( G(n’Q2) ) . (B41)

Ro= 40 gl-'y(o) (B.42)
Bo
Let us first consider the leading order equation
2(n, Q? S(n, Q?
Olne, (@) \ G(n,Q*) | 2fo G(n,Q?)
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The eigenvalues of 4(? are given by

1
o= [ 9 [ =)+ S| (B.44
If we introduce projection matrices
1
- (0 _
el - A] _ /\2 [7 A2 1] )
1
= —~(0)
er = Al—Az[ 7O+ A1), (B.45)
with the properties
€; - €; = 5,",'6,',
1 = el + €2,

7(0) = Aey + Aeg,

(B.43) can be diagonalized

F) Lm,QY) ) _ 1 . . %(n, Q%)
d1n a,(Q?) ( G(n, Q%) ) =~ 2% (Arer + Age;) ( G(n, Q%) )

and integrated
E(n,Qz) (N2 N2 2(7’&, (2)
= E ’ ?
(G(n,Qz)) @4 G(n, Q2

/\1 A2

(o) v [2s(@%)) 268 (aa(Qz) 260
ENQY,QF) = (a, oD e+ (220D 0 ¢,. (B.46)

For the solution of (B.41), we can now make the ansatz

4 %(n, Q%) ) N2 N2 3(n, Q3)
-_— = U)E , , B.47
8T a,(@) ( G(n, @) ) HHOFEDN g0 >

which yields an evolution equation for the matrix U:
au 2,(Q) © ©
(@D [ 740U = Uy
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Using the fact that the matrices e; form an orthonormal basis, we can decompose any

matrix

M=eMe+eMey+ ey Mey + esMey

into its components. Applying this to the above equation, we obtain evolution equations

for individual projections of U:

4 a(@%) g 1
—  _(ele)=22% L R 1 (X = NV eUe. .
91 0, (Q?) (e;Ue;) 87 eiv e; + Qﬂo( i i)eiUe;
With the solution of the inhomogeneous differential equation f'(z) = Ae* + Bf(z) :
A z zo+B(z—z B(zx—zo
f(z) = 7= e — e+ + f(ag)ePm)
we obtain
Ai— A
e — 1 2 2 [2s(@%)) 280 R,
6erJ - 47r (zﬂo _ A‘ + AJ) a&(Q ) as(QO) (QS(Q%) 617 eJ'

Insertion into (B.47) yields the solution
£(n,@Y |
G(n, QY |
M
a:(Q@%)\ 260 1
{ (&(Q@) & [ + 5o, (@) = (@0)) exve:

Qs (Qz) ,(Q3) e1 712 62]

R —
+47T (250 - Ag + A]) 27 & 4 (2ﬁ0 - /\1 + /\2)

A
n (%) 26 [ez + 8—7% (0:(Q%) — ,(Q3)) exv™es

(%) (@) %(m, Qo)
@t T @ — a0 e”Re‘” ( G(n, Q) ) ’

(B.48)
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where v® is defined in (B.42).
Given the moments of parton distributions at a scale Q3, (B.37) and (B.48) enable us

to evolve these to some different scale Q2.

B.3.1 Heavy flavour thresholds

The number of ‘active’ quark flavours n; appears both in the anomalous dimensions and
the coefficients of the QCD S-function. At scales of Q% ~ M?, the number of active
quark flavours is obviously three: u,d,s. The situation becomes more complicated as Q2
increases; if Q*(1 — z)/z = W? > 4m?, one is able to produce a pair of charm quarks,
above this threshold the ¢ quark has become ‘active’. If Q2 is increased even further, the b
quark will become ‘active’ as well. These thresholds can be incorporated into the running
of a,(Q?) by increasing the number of flavours in the S-function and changing A in (2.5)
at each threshold @Q* = m2, requiring that a,(m3?) is continuous. For a,(M%) = 0.112, as

used in Chapter 5 and [41] this procedure yields
AS}SMM = 281,231,154,59 MeV.

So far, it has not been possible to incorporate the flavour threshold behaviour consistently

into the evolution equations. Two different approaches are possible, each has advantages

and drawbacks:

(1) The heavy flavours are assumed to be an intrinsic part of the proton structure.
Their distribution is zero for Q* < m2, and starts to evolve like any other massless
distribution for Q* > mg. This is implemented by changing the number of active
flavours in the splitting functions as well as in the running coupling and the 8-

function. Furthermore, a new flavour non-singlet distribution

g+.Ns =L — (ng — 1)(gn; + Gn,)

starts evolving at each threshold. This approach yields the correct behaviour of the

distributions at Q% — oo, where quark mass effects vanish.
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(2) The heavy flavours are assumed to be not intrinsically present in the proton. They
are only generated via a photon-gluon fusion in the DIS interaction. Therefore,
the number of flavours in the splitting functions and anomalous dimensions is fixed
to ny = 3, while it increases at each threshold in the running coupling and the
B-function. This approach allows a correct treatment of the heavy quark content of

structure functions around threshold.

In practice, the difference between both approaches is only sizable around the threshold.
Throughout this thesis, we have used the second approach, which is incorporated by
applying (B.37) and (B.48) repeatedly for Q3 — m?2, m2 — Q? with the appropriate 8

and A in each interval.

B.3.2 Coefficient functions

A global fit of parton distributions to experimental data requires the evaluation of struc-
ture functions and related quantities for a large number of points in (z,Q?). If the evo-
lution is performed in z-space (e.g. [42]), one usually creates large grids with the parton
distributions f(z,@?). Any observable to be fitted can then be computed as convolution
integral of coefficient functions and parton distributions.

Evolution in n-space has the advantage that the moments of splitting functions and
initial parton distributions have only to be computed once along the contour of inversion.
The distributions at a particular value of (z,Q?) are then obtained by inverting (B.37,
B.48). The computation time needed for a fit- is further optimized by computing the
moments of the experimental observables, which reduces the convolution of coefficient
functions and parton densities to a product of their moments. The coefficient functions

for the unpolarized and polarized structure functions (3.15-3.17) read in n-space:

1

a, 3
Cg,q(n,as) = 1+ g Cr 512(71) - Sg(n) + ESl(n) - m.ﬁ(’ﬂ)

9n3 + 2n? — 5n - 2
2n%(n + 1) ’
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Q, n?+n+2 Mm% —8n? —2n — 4
- == - — 4

Crg(ny @) 27 Tf[ 2n(n +1)(n +2) S1(n) n*(n+1)(n+2) |’ (B.49)

o, 2
CL,q(n) Oés) = 5; Fm,

Qa, 8
Cromes) = ooy (B.50)

0 3 1
ACq(n,as) = 14 -2_7l' CF [Sf(n) - Sg('n) + 551(’".) - mSl(n)
_9n3 +6n%—3n—2
2n2(n + 1) ’

Q, n—1 % —4n + 2

ACg(n,a,) = E:Il'. [— msl(n) - w] . (B51)

B.4 Inversion into z-space

Once the parton distributions or structure functions in n-space have been computed ac-
cording to the above formulae, the expressions in z-space can in principle be regained by
use of (B.2). It turns out that this is rather difficult in practice, as most functions appear-
ing are strongly oscillating along the contour Ja — i00; a + too[ used in (B.2), while falling
off only very slowly for large absolute values of n. Instead of using a dedicated integration
algorithm for oscillating functions, we decided to deform the contour of integration in
the complex n-plane such that an ordinary integration algorithm can be applied. Such a
deformation of the contour does not change the value of the integral, provided the inte-
grand is free of singularities in the afea enclosed by the old and new contour (Cauchy’s
integration law).

The results of the n-space evolution contain the following singularities:
(1) All anomalous dimensions are singular for {n = —i | i € INo}.

(2) The unpolarized singlet anomalous dimensions are furthermore singular for n = +1

(soft gluon singularity).
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(3) If the initial distributions are singular like z* (a < 0) for 2 — 0, their Mellin

transformations are singular for n = —a.

As all singularities are located on the real axis, we are free to choose any contour in
the complex plane which crosses the real axis to the left of all singular points. Spurious
singularities occur where the eigenvalues (B.44) of the leading order anomalous dimension
matrix degenerate. To guarantee numerical stability, the integration contour should not

touch these singularities either.

10 1 | | 1

5 L -
S oL i) _
B

S L -

-10 ] ] ] |

-10 -8 -6 -4 -2 0 2
Re(n)

Figure B.1: Inversion contour used in the polarized evolution.

The results presented in this thesis were obtained with the contour

Re(n) = a—tan’¢

Im(n) = btan¢, (B.52)
in which (B.2) reads
_ L _dé —n(d) —n()
f(z) = o /_"/2 o’ [bRe (z f(n(qS))) —2tan ¢Im (a: f(n(qS)))] . (B.53)

We have chosen a = 1.05,b = 3 for the polarized and a = 2.05,b = 3 for the unpolarized

evolution. The ¢-integration was performed using Simpson’s rule; to avoid sampling of
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the integrand in irrelevant regions, we have cut | ¢|< 1.48 for = > 0.4 and | ¢|< 1.37 for
z <04.
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