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Proton Structure from Deep Inelastic and 
Diffractive Scattering 

Abstract 

We investigate various aspects of the proton structure in this thesis. The first ad

dresses the distribution of the proton spin among its constituents, quarks and gluons. 

We derive the framework of distribution functions for these constituents and study the 

properties of the polarized distributions which describe the spin structure of the proton. 

A determination of the polarized distributions on the basis of present experimental data is 

presented and options forjfuture measurements are critically evaluated. A second aspect 

under consideration is the phenomenology of hard diffractive electron-proton scattering. 

We show how diffractive interaction and hard scattering can be disentangled and suggest 

experimental tests for this interpretation. Finally, we illustrate how the knowledge on 

the proton structure can be used for the computation of observables in proton-antiproton 

collisions, confirming or extending our knowledge of the physics of elementary particles. 
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Chapter 1 

Introduction 

One of the primary objectives of physics is the understanding of the fundamental con

stituents of matter and their interactions. The historical development of physics has 

taught us that particles, which appear to be fundamental at first sight, display a rich 

substructure if looked at closely enough. Even the smallest crystal is made out of mil

lions of atoms; an atom consists of a nucleus surrounded by a cloud of electrons; any 

atomic nucleus contains a certain number of protons and neutrons, and even protons and 

neutrons are not yet fundamental. If probed at sufficiently small scales, they display a 

complex internal structure. Some aspects of this structure are studied in this thesis. 

In the remainder of this chapter, we will outline a formalism which enables us to 

describe the form and structure of the proton. A model for the structure of the proton 

and the nature of its constituents will be outlined in Chapters^ 2 and 3._In the_framework 

of this model, we will study the distribution of the proton's spin among its constituents 

in Chapters 4 to 6. An extension of this model to the diffractive scattering of electrons on 

protons is attempted in Chapter 7. We will furthermore demonstrate in Chapter 8, how 

precise knowledge on the proton structure can be used to compute observables in collider 

experiments, which can confirm or extend our present understanding of particle physics. 

Finally, Chapter 9 summarizes the main results presented in this thesis. Two appendices 

contain mathematical and computational methods used to obtain these results. 
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1.1 Probing the proton structure 
A microscope can help us to resolve objects which are too small to be seen with the 

naked eye, such as the cellular structure of plants and tissue. It therefore appears to be 

natural to assume, that even the structure of atoms, nuclei or protons can be studied 

under a microscope with sufficient resolution. This resolution is however limited by the 

wavelength of the light used in the microscope, as described by Rayleigh's criterion [1]. If 

the object lens covers an angle 20 when viewed from the probe, a minimum separation 

of 

A / m m = 0.61 A 

sin© 
can be resolved with light of wavelength A. To resolve structure in the proton, a microscope 

would have to operate with wavelengths at least a billion times smaller than visible light. 

Light at such small wavelengths cannot be deflected by lenses anymore, making a study 

of protons under a microscope unfeasible. 

Electrons of these wavelengths, corresponding to beam energies E\,eam > 1 GeV, can 

be focused with magnetic fields, scattered electrons are relatively easy to detect. Fur

thermore, electrons appear to have no internal structure up to the smallest scales probed 

at present, their dynamics are well understood. The proton structure can therefore be 

probed by scattering an electron beam off a proton target. Two substantially different 

cases of electron-proton scattering have to be distinguished1: 

1.1.1 Elastic scattering: Form factors 

An electron scattering elastically off a proton has interacted with the proton as a whole, 

not just with one of its constituents. The distribution of elastically scattered electrons 

therefore contains information on the form of the proton, not on its internal structure. 

The electromagnetic vertex for the interaction of a point-like proton (mass M) with a 

l rThe dynamics of electron-proton scattering are discussed in most textbooks on particle physics, the 

treatment presented here follows the book of Halzen and Martin [2], 
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virtual photon of momentum q is 

= —ie 

( l . i ) 

where the second term takes account of the anomalous magnetic moment of the proton 

fip = (1 + K) e/(2M), K = 1.8. Using this vertex, the elastic electron-proton cross section 

per unit of solid angle in the proton rest frame can be calculated: 

da a2 E'\(^ K2q2\ 2 0 9 2 „ ,2 - 2 0 \ 

where a ~ 1/137 is the electromagnetic coupling constant, and the energies of the incom

ing (outgoing) electron are denoted by E(E'). The angle 0 is defined between incoming 

and outgoing electron directions, the invariant momentum transfer to the proton can be 

measured by q2 = — 2EE'(l — cosfl). Deviations from the above prediction were observed 

in 1955 [3], only two years after the first measurement [4] of elastic electron-proton scat

tering. This observation provided the first experimental evidence for a finite size of the 

proton. 

The vertex (1.1) can be generalized for an object of finite size by introducing two 

independent form factors F\ and F 2 , which depend on the invariant momentum transfer 

? 2 : 

P 

The scattering cross section (1.2) reads then [5]: 

(1.3) 

da a2 E'[(„2 K 2 « 2

 N 2 \ 20 q2

 / r i ^ x 2 . 2 0 l „ J X 

m = I F ^ f -B {(5 " d r F > ) c o s 2 - 2b + s m 2} • «M> 
The above result is simplified by introducing electric and magnetic form factors [6] 

G E = F I + T K P F ' 
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G M = F, + KF2, (1.5) 

yielding 

= 4 W | I 1 1 + r 0 0 8 2 + 2 T G ^ S m 2 J ' ( L 6 ) 

da 
dO 

with r = —q2/AM2. These form factors can be interpreted as Fourier transformations of 

the radial charge and angular momentum density in the proton. 

The above scattering cross section has been measured up to momentum transfers of 

—q2 ~ 10 GeV 2 . The results [7] can be well parametrized in the simple form 
- 2 

a good approximation of the vertex factors is hence given by 

2 4 M 2 - 2 . 8 g 2 / 1 V 
rW > 4M2-q2 V l - 9 V ( 0 . 7 G e V 2 ) ; ' 

F 2 { q 2 ) = T^~^{l-qy(0.7GeV2)) • ( 1 ' 7 ) 

Using the above form factors, one can estimate the mean charge radius of the proton to 

be about 0.88 • 10~1 5m [7]. 

1.1.2 Inelastic scattering: Structure functions 

The inelastic scattering of an electron on a proton target can - in analogy to inelastic scat

tering in classical mechanics - have two different outcomes. If the energy deposited inside 

the proton is smaller"than"the~typicarbihding energy of its constituents, the proton will 

only be deformed, i.e. excited to resonant state (electro-excitation of nucleon resonances). 

Provided the energy deposit exceeds the typical binding energy of the constituents, the 

proton will be destroyed, yielding a final state with several particles. 

The first process allows an indirect, spectroscopic study of the proton as a bound 

state of its constituents. It does not yield conclusive information on the nature of the 

constituents and on their dynamics. This information can only be obtained from the 

second process, which is called "Deep Inelastic Scattering (DIS)". 



YW) 

P(P) 1 M 

Figure 1.1: Kinematics of deep inelastic scattering 

Definition Experimental Observable Description 

s = {P + k)2 s = M2 + 2ME Invariant centre-of-mass energy 

Q2 = -q2 = {k- k'f Q2 = 4EE' sin2 f Invariant momentum transfer 

v = (p • q)/M v = E-E' Energy of the virtual photon 

M2

x = (P + q)2 Mjc = M2+ IMv - Q2 Invariant mass of the final state 

x = Q2/(2P • q) x = Q2l{2Mu) 'Scaling variable' 

y = (P- q)/(P • k) y = (E-E')/E Fractional photon energy 

Table 1.1: Kinematical variables in deep inelastic scattering 

The kinematical situation [8] of deep inelastic scattering is illustrated in Fig. 1.1. The 

commonly used DIS variables are listed in Table 1.1. It should be noted that, given a fixed 
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centre-of-mass energy y/s, only two of the remaining variables are independent. These 

are usually chosen to be x and Q2, for reasons which will become clear in Section 2.4. It 

should be noted that all experimental definitions of the kinematical variables refer to a 

setup with an electron beam onto a fixed proton target. 

The differential scattering cross section for inelastic electron-proton scattering can be 

expressed as the product2 of a leptonic tensor LM„ and a hadronic tensor W1" 

d<7 a 
dE'dSl 1 6 £ 3 £ ' s i n 4 f 4 e (1.8) 

The leptonic tensor describes the emission of a virtual photon off the incoming electron, 

it can be calculated from first principles and reads for an electron of given helicity A: 

— 2 ^kpky -\- k^kp — Q g^n i A c^Upakpk ^ . (1.9) 

The hadronic tensor contains all information on the proton structure. Its most general 

decomposition contains all possible combinations of the four-vectors characterising the 

photon-proton interaction: the proton momentum P, the proton spin S and the photon 

momentum q: 

< 0 \ 

sin 0 cos <j> 

sin ^ sin <j> 

C O S 0 

P = 

( M \ 

0 

0 

0 

s = 

i E-E' \ 

-E' sin© 

0 

V £ - £ ' c o s © 

Current conservation and invariance under charge conjugation, parity and time reversal 

reduce the number of independent functions, such that 

W J1U + 
Pq 

Q2) 

+ clivpo 
M2 

Q 2 j i v >-* / M 2 y Q2^ ) \ Q 

^ ( ^ ( ^ ( ^ g ^ + ^ G ^ g ^ - ^ p . G ^ g 2 ) ) . (1.10) 

2Note that the normalization of the hadronic tensor is a matter of convention. We adopt the convention 

of [2, 8], such that the hadronic tensor of a poini-like target would be L'"'/(AnM). 
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The functions W\^{viQ2) a r e called unpolarized structure functions, G i ^ f , Q 2 ) are po

larized structure functions. 

The differential cross section (1.8) can then be expressed in terms of these structure 

functions. For future convenience, we decompose the cross section into a spin averaged 

and a spin dependent part: 

d<r = da + - A Acr 

The unpolarized cross section can then be written as [9] 

2 
(1.11) 

The polarized cross section can be further decomposed into longitudinal and transverse 

contributions, depending on the spin orientation of the proton. The angle formed by the 

proton spin and the electron spin is denoted by 0 , the projections of the outgoing electron 

momentum and the proton spin onto the plane perpendicular to the incoming electron 

direction form the angle <f>. The polarized cross section reads then: 

A<r = — i cos II>A(TL + i sin tpAax 

¥wk - ^§[(E+E>cose)MGMQ*)-Q*G^Q*)} (1.12) 

SSSfi =
 -™<i'-^^->>'>e{MG^,Q>) + 2EG,(v,Q>)} (1.13) 

Instead of measuring the absolute cross sections for different spin configurations, it is 

more convenient to^eTform"asymmetry measurements. The longitudinal spin asymmetry 

is defined as the difference between the cross sections for antiparallel (tj) = TT) and parallel 

(i> — 0) spin orientations 

The transverse spin asymmetry is the difference between opposite transverse orientations 

of the proton spin for fixed lepton helicity: 

A± EE ( L 1 5 ) 
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We will give explicit expressions for these asymmetries in section 4.1. 

The first unpolarized DIS experiments were carried out with the 20 GeV electron beam 

at S L A C in 1967/68. First results from these experiments [10] displayed a behaviour which 

was significantly different from the results of the earlier elastic scattering experiments. 

The elastic cross section (1.6) falls rapidly below the cross section expected for a point

like proton (1.2) as Q2 increases. On the contrary, the cross section for deep inelastic 

electron-proton scattering at sufficiently large v appeared to be proportional to the cross 

section for a pointlike target at all Q2. This scaling behaviour was the first evidence for 

point-like constituents in the proton. The nature of these constituents will be discussed 

in the following two chapters. 

Similar measurements can be carried out with muon or neutrino beams. The cross 

sections for electron-proton and muon-proton scattering are identical, they probe the elec

tromagnetic structure functions. Neutrino-proton scattering probes the weak structure 

functions of the proton, which are different from the above. 

Soon after these first observations, a large programme of deep inelastic scattering 

experiments was launched at S L A C , C E R N and Fermilab. These experiments studied 

proton, deuterium and nuclear targets, determining the unpolarized structure functions 

to a high level of accuracy. Reviews of these experiments can be found in [11, 12]. 

A different kinematical configuration for the study of deep inelastic scattering is given 

at the H E R A electron-proton collider at D E S Y , where electron and proton beams are 

collided at <s/s = 300 GeV, compared to y/s < 30 GeV at fixed target experiments. This 

allows^one to study the proton structure in a different kinematical regime and enables 

dedicated studies of the final state of DIS events. A final state configuration unique to 

H E R A , diffractive DIS, will be discussed in Chapter 7. 

The experimental knowledge on the polarized proton structure is far more incomplete 

than in the unpolarized case. First measurements of the longitudinal asymmetry (1.14) 

were made at S L A C in 1976 [13], a first study of the transverse asymmetry (1.15) followed 

only in 1994 [14]. An overview of the present experimental situation will be given in Sec

tion 4.1. The experimental data available at present are used to estimate the distribution 
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of the proton's spin amongst its constituents in Chapter 5. We will furthermore study, 

in Chapter 6, how future experiments can yield a more precise understanding of the spin 

structure of the proton. 
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Chapter 

Quarks*, Quantum Chromodynamics 

and the parton model 

The stability of the atomic nucleus - built up of positively charged protons and uncharged 

neutrons - cannot be explained as the effect of the two macroscopic forces in nature: 

the gravitational attraction between its constituents is far too small to compensate the 

electromagnetic repulsion among the protons. Therefore a new, strong interaction has to 

be present in the nucleus. A first formulation of the theory of the strong interaction [15] 

predicted three massive particles (Tr* ,^ 0 ) , which mediate the strong forces in the nucleus, 

much like the massless photon mediates the electromagnetic interaction. The discovery 

of the t t * [16] and ir° [17] around 1950 gave strong support to this picture. 

Soon after the discovery of the pion, experiments began_jto_obser_ve an_increasing 

number of different strongly interacting particles with properties similar to the proton, 

neutron and pion. This large number of new, apparently fundamental particles raised the 

question whether these are made up from a smaller number of fundamental particles in 

different configurations. 

We illustrate in Section 2.1 how the spectrum of strongly interacting particles can be 

explained in the static quark model. The dynamical interaction of quarks - the theory of 

Quantum Chromodynamics (QCD) - is described in Section 2.2. Q C D forms one of the 

10 



building blocks of the Standard Model of particle physics, which will be briefly sketched 

in Section 2.3. 

Taking the quark model literally, one could identify quarks with the point-like proton 

constituents observed in DIS experiments. This identification is the basis of the naive 

quark parton model, as described in Section 2.4, its implications on other experimental 

observables are discussed in Section 2.5. 

2 c 1 The static quark model 

By the year 1960, about 25 strongly interacting particles (hadrons) were observed exper

imentally. Their interaction laws and decay properties could be described approximately 

by requiring conservation of three quantum numbers - isospin T 3 , baryon number B and 

strangeness S - under strong interactions. The isospin is related to the symmetry between 

proton ( T 3 = +1/2) and neutron ( T 3 = —1/2) and among the pions ( T 3 = 0, ± 1 ) , baryon 

number discriminates between strongly interacting fermions (baryons, like p;n, B = 1) 

and bosons (mesons, like ir*'0, B = 0). The third quantum number, strangeness, was 

introduced to explain the anomalously large lifetimes of certain hadrons, justifying why 

their decays can not be mediated by strong interactions. 

It was shown independently by Gell-Mann and Ne'eman in 1961, that hadrons with 

identical spin and parity quantum numbers could be classified into particular represen

tations (multiplets) of the symmetry group SU(3) [18], their places within the multiplet 

determined by-their-isospinT3-and^ hypercharge F = " 5 ^ 5 (Fig. 2:1). 

An explanation of this complicated multiplet structure is given by the quark model [19], 

which postulates the existence of three quark flavours (up, down and strange), which 

form the fundamental triplet representation of the symmetry group SU(3) / (Fig. 2.2). All 

mesons can then be interpreted as quark-antiquark bound states, all baryons are bound 

states of three quarks (Fig. 2.1). 

The SU(3) / symmetry of hadrons is in fact only approximate, as the hadron masses 

within a multiplet vary. This behaviour can be explained in the quark model, if the s 

11 



K°(ds) 

j t (du) n 8 

— • 

(a) K f > 

K + (us) 

HP it+Oid) 

n (udd) 

E(dds) A0, 

p (uud) 

E°(uds) Z+(uus) 

K°(sa) 

A(ddd) A0 (udd) 

I'-(dds) Z*0 

« 

(b) S"(dss) s° (uss) 

A+(uud) A+t(uuu) 

(uds) L** (uus) 

(C) 

5*' (dss) E*° (uss) 

(sss) 

Figure 2.1: Multiplets of the J p = 0" mesons (a), the l / 2 + baryons (b) and the 3 / 2 + 

baryons (c) and their interpretation in the quark model. The T 3 = 0, Y — 0 states in 

(a) are superpositions: ir° = (uu — dd)/y/2, if — (uu + dd — 2ss)j\/%, where rjs and the 

singlet combination tj1 = (uu + dd + ss)/\/Z mix to give the physical states q and rf_. _ 

quark is heavier than the u and d quarks. Since the invention of the quark model, three 

more quarks (charm, bottom and top) have been discovered, all being heavier than u, d, s. 

Due to the large mass differences, it does not make sense to extend the SU(3) / symmetry 

to include these heavier flavours. 

The interpretation of hadron multiplets as products of fundamental SU(3) / quark 

triplets is, however, not without conceptual problems. Having spin-1/2, the quarks must 
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u 

u T 

(a (b) 

Figure 2.2: Fundamental representations of SU(3)/: quark (a) and antiquark (b) triplets. 

obey Fermi-Dirac statistics, i.e. they are forbidden to coincide in all their quantum num

bers inside a hadron. Looking at the 3 / 2 + baryon decuplet (Fig. 2.1c), we find that the 

particles on the three edges ( A + + , A - , seem to contradict this principle, each of 

them consists of three identically flavoured quarks, the quark spins pointing into identical 

directions. This conceptual difficulty can only be overcome by introducing a new quantum 

number, colour [20]. 

Quarks are assumed to carry one of three colours (red, green or blue), antiquarks one 

of the corresponding anticolours. Hadrons are only formed of colour singlet combinations 

of quarks and antiquarks: baryons consist of three quarks with different colours, mesons 

of a quark-antiquark pair with identical colours. 

2.2 Dynamical properties of quarks: QCD 

The conservation of colour in quark-quark interactions gives rise to a new interaction, 

which is described by the theory of Quantum Chromodynamics ( Q C D ) [21]. Interactions 

of quarks are mediated by the exchange of the gauge bosons of Q C D , the gluons. The 

structure of the colour symmetry group SU(3) C is more complicated than the structure of 

the electromagnetic symmetry group U ( l ) : while the quantum theory of electromagnetic 

interactions ( Q E D ) only requires one uncharged gauge boson, the photon, Q C D has 8 

gluons which carry different combinations of colour charge. Apart from a coupling between 
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gluons and quarks, Q C D predicts the self-coupling of gluons. 

The Lagrangian density of Q C D 1 is given by 

C = - \ F^F? + E & I ' V A . - "»tl *t , (2-1) 

with 

= d.Al-d.Al-gf^AlAl, 

D» = 0^ + igAlTa. (2.2) 

The SU(3) C symmetry determines the algebra of the T a matrices, in fixing the structure 

constants fa\,c' 
|rpa yfcj j jabcrpc 

From the above, we can read off the Q C D interactions: the covariant derivative gives 

rise to a quark-gluon vertex, the contraction of the field strength tensors F*VF£V yields 3-

gluon and 4-gluon vertices. The parameter g in the above expression is the Q C D coupling, 

it can only be determined experimentally. 

The colour structure of Q C D is contained in the T a matrices and their algebra. These 

can be factored out in practical calculations, yielding overall colour factors. The most 

common colour factors are: 

3 8 
E E ' 
fc=1 a=1 HI It 

i F "ij »J » 
k=l a=l 

1 ab ab a 
a 

j' 
8 

ab (2.3 a CA8 36 
f acd bed 

and furthermore Tj = nj Tp. 

1We will only give a brief outline of QCD in what follows, a more formal and complete treatment can 

for example be found in [22] 
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Like any other quantum field theory, Q C D faces the problem that only the computa

tion of the most simple (leading-order) contribution to a particular process yields a finite 

result, whereas all higher orders contain infinities. These infinities are always associated 

with an (unphysical) parameter / i 2 , which has the dimension (mass) 2 and appears either as 

cut-off in momentum integrals or as normalization constant in dimensional regularization. 

Apart from infinities associated with particular configurations of particles in the initial 

and final state, one finds certain infinities which appear to be process independent and 

are associated with the Q C D vertex functions. The universal infinities can be removed by 

redefining the Q C D coupling constant g in (2.1). This procedure is called renormaliza-

tion. The new, renormalized coupling is the sum of the original, bare coupling and terms 

containing infinities. As both the bare and the renormalized coupling are required to be 

dimensionless while the infinite terms contain the unphysical fi2, one has to introduce a 

renormalization scale f i R , at which the renormalized coupling is evaluated. Requiring the 

bare coupling to be independent of f i R yields a differential equation for the renormalized 

coupling. If we denote cxs(fiR) = 4irg((iR), this reads [23] 

(2.4) 

where the right hand side has been calculated in [24]. In the remainder of this thesis, 

we will use only the solution of the above equation up to fi0 for quantities evaluated at 

leading order and up to fix for quantities evaluated at next-to-leading order. 

Introducing a parameter A as constant of integration, one can solve (2.4): 

a („* \ - 4 * ( , A M l n ( / 4 / A 2 ) ) \ , 9 

a ^ * > ~ / ? o l n ( ^ / A 2 ) {'-Wo ~ H ^ m ~ ) ' ( 5 ) 

where 

A = l l - 2 2 i , A = 1 0 2 - ^ i . (2.6) 

Measurements of the strong coupling constant yield A « 200 MeV for five active quark 

flavours. 
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Figure 2.3: The strong coupling constant a s ( f i 2 ) as function of the renormalization scale 

fi, compared to experimental measurements. The curves correspond to a s ( M | ) = 0 . 1 1 6 ± 

0.005. Figure taken from [25]. 

The running of a„ is illustrated in Fig. 2.3, two characteristic features of Q C D can be 

read off: 

Asymptotic freedom at high energies 

At large scales the Q C D coupling constant becomes small, i.e. quarks only interact very 

weakly with each other and can be treated as free particles. This feature allows one to 

calculate high energy processes in a perturbative expansion - a series in powers of a„. 

Confinement at low energies 

The rise of the Q C D coupling towards small scales makes the theory uncalculable with 

perturbative methods, as no small expansion parameter is present anymore. This strong 
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coupling at low scales binds quarks together into hadrons. This phenomenon is presently 

not yet understood theoretically, as no reliable method for precise non-perturbative Q C D 

calculations is available. 

2.3 The other fundamental interactions: the Stan

dard Model 

Apart from Q E D and Q C D , a third interaction is present on the level of elementary 

particles: the weak interaction. This interaction is mediated by three gauge bosons: 

and Z° , which couple to a quantum number called weak isospin2. 

The electroweak gauge bosons have masses (Mw ~ 80 GeV, Mz ~ 91 GeV) due to 

the breaking of the high-energy symmetry between electromagnetic and weak interactions 

(Higgs mechanism). Although the weak coupling is larger than the electromagnetic cou

pling, all low-energy effects of the weak interaction are strongly suppressed by the large 

gauge boson masses, this interaction is only visible in nuclear /?-decay. The effective weak 

coupling at low energies is given by 

r _ net 1 
F y/2M& s in 2 e w ~ (300 G e V ) 2 ' 

where sin 2 0 ^ = 0.232 is the ratio of electromagnetic and weak coupling constants. 

A particular feature of the W and Z bosons is their coupling structure to fermions. 

The W only couples to the left-handed fermions, and the couplings of the Z to left-handed 

and right-handed fermions are different. This is expressed in couplings with vector and 

axial vector contributions. 

These three interactions form the basis of our current understanding of particle physics, 

the Standard Model. Up to the smallest scales accessible at present ( « 1 0 - 1 8 m), the 

Standard Model appears to be in very good agreement with experimental observations. 
2We will only give a brief outline of basic features of the Standard Model, more complete treatments 

are in the standard literature, e.g. [2] 
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e / Vf a } Particles 

Quarks 
2 
3 i - | s i n 2 0 w I 

2 it c t 
Quarks 

1 
3 - | + f s i n 2 e w 

1 
2 (i s b 

Neutrinos 0 I 
2 

1 
2 ve v„ 

Leptons - 1 - | + 2 s i n 3 e i v 1 
2 e V- T 

Table 2.1: Particle content of the Standard Model, electric charges ej, vector- and 

axialvector-couplings v j , a j . All particles are spin-1/2 fermions. 

Only very recently, some evidence for deviations from the Standard Model has been 

reported. These deviations will be discussed in more detail in Chapter 8. 

The particle content of the Standard Model can be grouped into three generations of 

quarks and leptons, which are listed in Table 2.1. The particles of different generations 

have - despite their different mass - identical properties. 

2.4 The naive quark part on model 
The scaling behaviour of the DIS cross section indicated the existence of point-like con

stituents ('partons') in the proton. With the quark model successfully describing hadron 

spectroscopy, it would be natural to assume that these partons are in fact one d and two 

u quarks, each carrying about a third of the proton's mass. 

R.P . Feynman developed a model for the proton structure which does not make any 

assumptions on the nature of these proton constituents, the parton model. Using the 

quantitative predictions of this model for the proton structure functions, one can test the 

above interpretation of the proton structure in terms of quark constituents. 

The kinematics of deep inelastic scattering are characterized by [26] 

Q2 

Q2 —• co, v —* oo with x = fixed. 

The parton model is formulated by choosing a frame, in which the longitudinal momentum 
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of the proton approaches infinity in the above limit. Such a frame is given by the infinite 

momentum frame, in which 

f ° ) 
0 0 

0 > 9 — 0 

Ps , 

p = 

with PB — Mv/y/Q^ = y/Q^/(2x). In this particular frame, one can make several as

sumptions on the proton as seen by the electron. These assumptions form the concept of 

the parton model for the structure of the proton; they are summarized in [27]: 

[In the infinite momentum frame]..., we visualize the intermediate state from which the electron scatters 

as follows: 

(a) It consists of a certain number N of free partons (with probability P/v ). 

(b) The longitudinal momentum of the ith parton is a fraction r , of the total momentum of the proton: 

Pi = XiP . 

(c) The mass of the parton, before and after the collision is small (or does not significantly change). 

(d) The transverse momentum of the parton before the collision can be neglected, in comparison with 
\/(Q2), the transverse momentum imparted as p —• oo. 

With these assumptions, it should be a good approximation to write, at infinite momentum, 

pf * XiP* • 

At the time of interaction, the virtual photon therefore 'sees' one parton carrying a fraction 

Xi of the proton's momentum, while the proton remnant carries a fraction (1 — #,), as 

illustrated in Fig. 2.4. Although this state is not stable, its lifetime is much longer than 

the time it takes the photon to interact with the parton. 

Assuming the partons to be spin-1/2 particles, one can compute (1.11) for the elastic 

scattering of the electron off the i-th parton, given a partonic charge e,. Comparison 

of the expression obtained with (1.11) yields the following partonic contributions to the 
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Figure 2.4: Deep inelastic scattering in the parton model, 

proton structure functions: 

We have to sum over all species i of different partons to obtain the structure functions 

of the proton. Furthermore, we must integrate the above expression over a;,-, weighted by 

the probability / , ( £ ) of finding a parton in the interval + d£]: 

W ) = E-f j f «W(0*(»-gr) 

= f £ « ? / < ( * ) • 

The above equation shows the scaling behaviour of structure functions: f W 2 ( f , Q2) only 

depends on the scaling variable x in the deeply inelastic limit Q2 —• <x>, v —• co. It can 

be interpreted as charge weighted sum of parton distributions fi(x). 

Similar scaling properties hold for the other proton structure functions [26] 

MWi{v,Q2) - F 1 ( x ) = 1 - Y i e 2 f i ( x ) , 
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"W 2 (i/ ,Q 2 ) - F a (x) = j;c?*/«(*)» 

^ ( ^ g 2 ) -> (2.8) 

where A / , ( x ) = //(a:) — /,• (x) denotes the difference between the distributions of partons 

fi with spins parallel and antiparallel to the proton spin. The structure function #2(a;) 

cannot be interpreted in terms of parton distributions. 

If the quark model is sufficient to describe the proton, one would expect distributions 

for u and d quarks, which are both peaked around x « 1/3, with 

Comparing these model predictions with data from the first DIS experiments [10] shows 

already the failure of this simple picture. The data on vWi appear to be constant for 

x —• 0 while the integrability of the distributions requires F2(x) —* 0 for x —• 0. 

This apparent discrepancy can be explained by assuming that the three valence quarks 

predicted by the quark model are accompanied by a sea of quark-antiquark pairs [27]. 

The sea does not contribute to the macroscopic quantum numbers of the proton and can 

therefore contain an arbitrary number of pairs of different flavours. 

As the proton and neutron are related by isospin symmetry, one can obtain the parton 

distributions in the neutron from the distributions in the proton by interchanging u and 

d quarks: 

fd/n(x) = fu/p(x), fu/n(x) = fd/p{x), fd/n(x) = fu/p(x), fu/n(x) = f d / p ( x ) . 

A common simplification of notation is the labelling of parton distributions by the symbol 

of the parton species, i.e. u(x) = fu(x), Au(x) = A/ U (a: ) , etc. Both notations will be 

used in the remainder of this thesis. 

When the quark parton model was postulated in 1969, the dynamics of quarks were 

not yet understood; Q C D only followed in 1973. Although Q C D introduces corrections 

/ / „ ( * ) d 
Jo Jo 

x = 2 and 1 x 
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to the parton model, the global picture as derived in this section still remains intact. We 

will discuss these corrections in Chapter 3. 

2.5 Implications of the parton model 
If the partonic interpretation of the proton structure is correct, it should not only describe 

the proton structure function, but also other observables in electron-hadron and hadron-

hadron collisions. The parton model predictions for these observables are given by: 

&e+h-+F - Yl I dx f i / h ( x ) a e + i ^ F ( x ) , (2.9) 
I J 

<7hi+h2-+F = / d l l dx2 f i / h l {Xi) f j / h 2 (x2) ^i+j-.F(Xl,X2) , (2.10) 
•• J 

where F denotes the particular final state under consideration, /,// , is the distribution of 

parton i in hadron h and a is the cross section on the parton level 

The first observable of this type was suggested by Drell and Yan [28]: the production 

of lepton pairs in hadron-hadron collisions due to quark-antiquark annihilation (Fig. 2.5). 

One usually studies this process as a function of the invariant mass of the lepton pair M2. 

The parton level cross section is given by 

da Ana2 

where s = xxx2s is the centre-of-mass energy of the quark-antiquark pair. Introducing a 

scaling variable r = M2/s and considering the asymptotic limit 

M2 —• oo, s —• oo with T fixed, 

the proton-proton cross section can be written as 

4ira2 . 
= — r ^ ( r ) , (2.12) 
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Figure 2.5: The parton model description of the Drell-Yan process. 

where the last relation demonstrates the scaling behaviour of the Drell-Yan cross section 

in the parton model. 

The experimental observation [29] of this process in 1970 was the first success of the 

parton model. Nowadays, a multitude of other observables in collider experiments can be 

described in a similar way, an overview can be found in [25]. 
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Chapter 3 

The evolution of parton 
distributions 

So far, we have considered the quarks of the parton model to be static noninteracting 

objects. This naive picture can, however, not be true anymore in QCD, where quarks are 

constantly interacting by emission and absorption of gluons. 

The naive quark parton model picture can be largely maintained even in QCD, al

though some corrections have to be applied. Apart from the quark distributions, a sizable 

distribution of gluons is found in the proton. Quarks and gluons are dynamically inter

acting inside the proton; if the distributions are probed at increasing values of Q2, more 

and more of these interactions will be resolved: the scaling behaviour of the na'ive quark 

parton model is violated in QCD. 

We will quantify these effects in the following chapter. Section 3.1 motivates QCD 

corrections to structure functions using a particular example and demonstrates how these 

corrections lead to scaling violations. These scaling violations yield evolution equations 

for unpolarized and polarized parton distributions which will be presented in section 3.2. 

Expanding quark and gluon contributions to the structure functions order by order, one 

obtains a consistent picture of deep inelastic scattering in QCD; the relevant formulae 

for a treatment of cross sections and structure functions at next-to-leading order are 
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summarized in Section 3.3. Finally, we will describe in Section 3.4 how the distribution 

functions for quarks and gluons in the proton can be determined from experimental data. 

3.1 QCD corrections to the naive part on model 

In the QCD-improved parton model, we have to consider a more complicated photon-

parton subprocess than in the naive parton model (cf. Fig. 2.4). We will illustrate this in 

the case of the structure function F2, a similar argumentation applies to all other structure 

functions. 

A parton i of momentum p,- carrying a fraction £ of the proton's longitudinal momen

tum can contribute to F2(x,Q2) via a parton level subprocess. This subprocess 

F2<i(z,Q2)(l* + i ^ X ) 

is characterized by two invariant variables: Q2

y the virtuality of the photon and the 

photon-parton centre-of-mass energy, more conveniently denoted by the dimensionless 

variable z = Q2/(2q-pi). The subprocess can be projected out of the hadronic tensor [30]. 

Integrating over all allowed values for £ and z, we obtain the structure function 

- F2(x, Q2) = £ / V dz 6(x - z$ MO F2<i(z, Q2) . (3.1) 
X —r* Jo 

In the QCD-improved parton model, this parton can be a quark as well as a gluon: 

/«'(£) = ?(0» Q(0^(0- We will elaborate the structure of the QCD corrections for 

the quark-initiated F2,q(z,Q2) process in what follows. The process F2#{z,Q2) can be 

described in the same formalism, only the lowest order contribution is absent, as gluons 

do not couple directly to the photon. 

At lowest order, one finds (Fig. 3.1.a) 

F^(z,Q2) = e2

qS(l-z), 

recovering the parton model result of (2.7). The QCD corrections from real gluon emission 

and virtual gluon exchange are due to the diagrams in Fig. 3.1.b-d. Integration of these 
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/(<7) Y(q) Y(q) 

Figure 3.1: Partonic contribution to deep inelastic structure functions: lowest order quark 

subprocess (a) and its 0(aa) corrections (b-d). 

contributions over the appropriate phase space yields at first sight an infinite result: the 

virtual contribution (d) diverges, if the gluon momentum becomes small; contributions 

(b/c) diverge, if the gluon momentum becomes collinear to the incoming/outgoing quark 

or small. In order to regulate these divergencies, one can evaluate the above contributions 

in d = 4 + 2c dimensions, which yields the following contribution [30] to the structure 

function 

W * < n - * £ w + 7 ) p ? ) ' ( i ^ w + ^ w + w ) , (3.2, 

where an arbitrary mass parameter y? has been introduced to maintain a dimensionless 

coupling constant. Explicit forms for Pffi and 4*] will be given later. It is apparent from 

the above equation that only a partial cancellation of singular terms has taken place. 

The leftover 1/e-term can be identified with the initial quark/gluon collinear divergence, 

which is not canceled by any other contribution to this process. 

As the left hand side of (3.1) is a finite, experimentally observable quantity, this 

divergence has to be compensated by a similar divergence in the bare quark distribution 

q((). We can decompose1 the bare quark distribution q(£) into a finite, renormalized 
1This decomposition is not unambiguous, as one could add an arbitrary finite term into the bare parton 

distribution. The particular choice of finite term defines the renormalization/factorization scheme. The 

results given below correspond to the so-called modified minimal subtraction (MS)-scheme. 
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parton distribution and an infinite contribution. To keep both distributions dimensionless, 

a mass factorization scale fi2

F has to be introduced, compensating the unphysical scale fi2, 

« 0 _ ,«,„., i ^ y t j ^ ( z ) q ( W . , , 3 , 

The renormalized parton distribution q((, (i2?) now depends on the chosen mass factoriza

tion scale. 

The mass factorization procedure removes all infinities from the right hand side of 

(3.1) , in the case of a quark in the initial state, it yields the replacement 

where the coefficient function 

Cu(z, Q2,&) = 8(l-z) + ^ (p£){z) In ^ + c£>(*)) 

contains two contributions at 0(as): a left-over term from the mass factorization pro

cedure, which vanishes if n2

F = Q2, and a term containing the finite corrections from 

(3.2) . 

Requiring the bare parton distribution q(x) to be independent of the mass factorization 

scale chosen yields an evolution equation for the renormalized parton distribution 

/ 4 ^ r ? ( s , ^ ) = J^~PSK»U{x/zyF). (3.4) 

The above equation is the most simple of the "Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi" (DGLAP) [31] evolution equations. Its solution depends on the boundary condi

tions imposed at a certain scale Qq. These are typically given in the form of an initial 

distribution q{x,Q%). An explicit solution for these boundary conditions will be derived 

in the appendix. 

The DGLAP evolution equation has a simple probabilistic interpretation. As Q2 in

creases, the available final state phase space volume becomes larger. It becomes therefore 

more likely that the incoming quark emits a gluon into the final state, losing a fraction 1—z 
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n 

1 

Q i > Q 0 

q (*,Qo) 

Figure 3.2: Interpretation of the DGLAP evolution equation: ladder of gluon emissions. 

of its initial longitudinal momentum before interacting with the photon. The probability 

for such a single parton splitting grows like 

if Q2 is increased from Q2 to Q2. The function 

2TT « K } 

quantifying this probability is called splitting function, it is related to the q—*q splitting 

process illustrated in Fig. 3.3. 

If we consider a given initial distribution q(x,Ql) with Ql <C Q2, a large number of 

these splittings can occur, resulting in a ladder of gluon emissions (Fig. 3.2). A ladder 

with n rungs contributes to the structure function with terms of 0(ct" ln n Q2) and less 
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singular terms, as the phase space for these contributions takes the form 

<F dk kT3 dk «T2 dk \nnQ Tn T2 

k^^ J k'j1^ J ^ • 

The solution of (3.4) resums only the most singular contributions from ladders with any 

n. The resulting distribution q(x,Q2) therefore contains all QCD corrections which are 

proportional to 0(o% In" Q2). 

The first subleading corrections to the above formalism are of the order 0(ct" l n n _ 1 Q2). 

These can be resummed into q(x, Q2) by solving (3.4), if the next-to-leading order correc

tions to the splitting function are included: 

It has to be kept in mind that the resummation at next-to-leading order only contains 

terms accompanied by InQ 2 , i.e. n > 2. The n = 1 term is in fact the c 2,,(z) from (3.2). 

A description of jP2(a:,Q2) at next-to-leading order in this formalism is therefore only 

consistent if the splitting functions are truncated to 0(c?s) and the coefficient functions 

are truncated to 0(aa). 

The most important consequence of these QCD corrections to the naive parton model 

is the violation of the scaling behaviour of parton distributions. These scaling violations 

- the explicit dependence of the parton distributions on Q2 - can be understood as due to 

multiple emission of collinear particles off the incoming parton and yield correction terms 

of 0{aa\nQ2). The experimental observation [32] of these scaling violations was one of 

the first confirmations of the theory of QCD. 

3.2 Evolution equations 

The evolution equation (3.4) is strictly speaking only valid for non-singlet combinations 

of quark distributions, such as the valence quark distributions qv = q — q. A more rigorous 

treatment must include the possibility of any parton species (quark, antiquark or gluon) 

splitting into any other parton species. At 0(ct8), only the splittings denoted in Fig. 3.3 

a a 
2TT 2TT 
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Figure 3.3: Parton splitting processes at leading order. Splitting processes involving 

antiquarks can be trivially obtained from the above and are not shown. 

rcnnnnrv > —> qHywwffv < 

qi - qj qi - qj 

Figure 3.4: Parton splitting processes only occuring in higher orders, i and j can denote 

identical or different flavours. 

are possible. The splitting of a quark of certain flavour into a quark of different flavour 

or into an antiquark are only possible at 0(a2

a) (Fig. 3.4). 

Including all possible splitting processes, the evolution equation (3.4) generalizes into 

a set of coupled evolution equations: 

_ f l d z 

Pgiqi ( z ) • P„M PM Y f qi(x/z,Q2) " 

q~n{x,Q2) Jx Z P*M • • JW*) qn{x/z,Q2) 

\ G{x,Q2) , • P9M PM ) \ G(x/z,Q2) j 
(3.5) 

where 

W = £ * P M + ( £ ) ' i * ' M + . . . 
and n denotes the number of quark flavours active in the evolution (see the discussion in 
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Appendix B.3.1). 

The above set of 2n + 1 coupled equations can be simplified to 2n — 1 uncoupled and 

2 coupled equations by introducing the following combinations of quark distributions: 

Q l i + ( : r , Q 2 ) = qt(x,Q2) + q1(x,Q2)-q2(x,Q2)-q2(x,Q2), 

Qn.h+(x,Q2) = £ \ f t ( * , g a ) + g . ^ , g a ) ) - ^ ( U * , Q a ) + 9^.9 a)) > 
i=i n 1 

Qh-(*,Q2) = q1(x,Q2)-q1(x,Q2), 

Qn,-(X,Q7) = q n { x , Q 2 ) - q n { X , Q 2 ) , 

V(*,Q2) = E(9 . - (* ,g a ) + * ( a , « 2 ) ) • (3.6) 

The Qi,+ (x,Q2) are called flavour non-singlet distributions and Qjt„(x,Q2) are called 

valence non-singlet distributions, alternatively denoted by the name of the corresponding 

quark species: uv(x,Q2) = u(x,Q2) — u(x, Q2),... . The sum of all quark distributions 

E(x,Q2) is called the quark singlet distribution. 

In terms of these combinations, one can write the DGLAP equations [31] as 

The leading order splitting functions Py'(z) have been calculated in [31], the next-to-

leading order corrections PjP{z) were derived in [33]. Their explicit form is stated in 

Appendix B.2. With given initial distributions for all quark flavours and the gluon, these 

equations can be solved as described in Appendix B.3. 

1 dz P„,+(z)Qi,+(x/z,Q2) 

i dz 
pqr,4z)QUx/z,Q2) 

I ?,{x,Q2) \ = rtdzf 
2\G(x,Q2) I J* z \ 

1 dz Pqq,s(z) PM d 
dQ PM PM 

T,{x/z,Q2) 

G(x/z,Q2) 

(i = 1... n - 1) 

(j = l . . . n ) , 

(3.7) 
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The quantitative effects of QCD evolution on the unpolarized parton can be under

stood from simple dynamical arguments: With increasing Q2, all distributions decrease 

in the large-a; region and increase in the small-a; region, as more and more partons with 

small momenta are radiated off. This rise is particularly emphasized in the sea quark and 

gluon distributions at small x. The small-a; rise of the gluon distribution is due to the 

generation of a large number of soft gluons in the evolution process. A fraction of these 

gluons splits into quark-antiquark pairs, causing the rise in the sea quark distribution. 

3.2.1 Extension to polarized deep inelastic scattering 

The treatment of the polarized structure function gi(x,Q2) in perturbative QCD is very 

similar to the treatment of the unpolarized structure function F2(x,Q2). Like in the 

unpolarized case, we can denote the contribution of a parton i to gi(x,Q2) by 

&..•(*, Ga)(7*+ » ' - * ) , 

defined by an appropriate projection onto the hadronic tensor [34]. The structure function 

then reads 

29i (x, Q2) = £ f1 d( dz 6{x - z() A/,(0 §u{z, Q2) , 

where A/,(£) = Aq(x),Aq(x),AG(x) is a bare polarized parton distribution. The contri

butions from the quark initiated subprocesses in Fig. 3.1 take the form [34] 

« < ^ > = ^ ^ ( ^ ' ( ^ ' W + M ' - W + Ote)) . 

Carrying out the mass factorization procedure on the above expressions yields a renor

malized quark distribution Aq(£,fi2

F) and a coefficient function ACq(z, Q2, / /^). The po

larized quark distribution obeys the DGLAP evolution equation (3.4) with a polarized 

splitting function APqq(z). 

Like in the unpolarized case, a complete treatment has to incorporate all splitting 

processes displayed in Fig. 3.3 and Fig. 3.4, resulting in coupled evolution equations 
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(3.7) for the polarized quark, antiquark and gluon distributions Aq(x,Q2), Aq(x,Q2), 

AG(x, Q2). These equations are controlled by polarized splitting functions AP,j(z), which 

have been derived in [31] at leading order and in [35] at next-to-leading order in QCD. 

Explicit expressions for the polarized splitting functions are summarized in Appendix B.2. 

The qualitative aspects of the polarized evolution will be studied in detail in sections 4.3 

and 4.4. 

3.3 Structure functions in the QCD corrected par-

ton model 
The previous sections have demonstrated that the description of deep inelastic scattering 

in QCD is most convenient in the variables x and Q2. In these variables, the DIS cross 

sections (1.11), (1.12) and (1.13) read 

da 4ira2 

dx dQ2 

dAaL 

dxdQ2 

dA&T 

xQ* 

16ira2y 

( l - y - ^ ) F2{x,Q2) + xy2F,{x,Q2) 

( i - f - 1 ^ ) g i M ^ - ^ M 2 ) ] 

\lgi(x,Q2)+g2(x,Q2) = -cost „A 

(3.8) 

(3.9) 

(3.10) 
dxdQ2d(f> Q4 V ~ ' 4 

where 7 = 2Mx/y/Q^ is a target mass correction factor. 

Deep inelastic scattering can be viewed as the absorption of a virtual photon by the 

proton. The DIS cross section can then be decomposed into absorption cross sections for 

the longitudinal and transverse components of the virtual photon. The transverse cross 

section is proportional to F1, the longitudinal cross section to FL = (l+y2)F2 — 2xFi. The 

ratio of longitudinal and transverse absorption cross sections is commonly abbreviated by 

R = FL/{2xFi). Replacing 

M*,Q2) = ^ { ( I + S)F2(X,Q2)-FL(X,Q2)} 

1 
2x{l + R(x,Q2)) 

33 

(l+^)F2(x,Q2), (3.11) 



the unpolarized cross sections expressed in terms of F2 and FL (or R) read: 

d<r iira2 

dxdQi g [ ( i - r ^ ) « ( . , f l + ^ ' , 

v2 , »VU-«(*•<?*)) 47ra2 

i - y + F2{x,Q2){Z.\2) 
2(l + /2(x,g»))T 4(l + i2(s,Q»)) 

In practice, the target mass correction factor 7 is small, terms proportional to it can be 

neglected. 

The structure functions F2(x,Q2), FL(X,Q2) and gi(x,Q2) are expressed in terms 

of quark and gluon distributions by convoluting these with the appropriate coefficient 

functions: 

+ ^ c < ^ ' S ) G M } - ( 3 1 3 ) 

* < « . « • > - i / ; ^ E e ? { A C , ( , , | ) [ A , ( f , ^ ) + A ? ( | , ^ ) ] 

+ ^ A C s ( 2 'S ) A G ( ; -^ )} ' ( 3 1 4 ) 

where the coefficient functions read in the MS scheme [36, 37, 38]2 

. / l n ( l - z ) \ 3 / 1 \ „ X 1 - , l + z \ 

+3 + 2 i - ( | + 2C,) « ( l - * ) } > 

(3.15) 2 7 T / 2(1 - 2* + 2z 2) In y — - 16z2 + 160-2 

2The coefficient functions as given here are truncated up to 0(a,), which is sufficient for a treatment 

of the structure functions at next-to-leading order. The 0{a2,) corrections [30, 34] and parts of the 0(a^) 

corrections [39] are known as well. 
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A C 

A C 

a CF2z 
2ir 

T,Sz{l-z ; 
•9 2TT 

<3 s S(l-z) + -^CF 1 - z + - 6(1 - z) In 
2TT 

f m ( l - * ) \ 3 / 1 \ 
V 1 - 2 / 2 V 1 - 2 / + 

1 
(l + 2 ) l n ( l - 2 +2 

+2 + 2 

(1 - z)Q2 a s Tf 2 (22-1) In + 6 - 8 2 
9 2ir Zflp 

1 - 2 

(3.16) 

(3.17) 

In 2 

All information on perturbative QCD corrections to the na'ive quark parton model is 

contained in these coefficient functions and in the factorization scale dependence of the 

parton distributions, determined by the splitting functions. Perturbative QCD is however 

only able to predict the change of the parton distributions with increasing scale, not their 

explicit form at a particular scale Q2. 

The dynamics of quarks and gluons at scales corresponding to the mass scale of the 

proton cannot be described with perturbative methods anymore, and non-perturbative 

techniques"are not yet-sufficiently developed to give reliable predictions. The distribu

tions of partons in the proton, reflecting these bound state dynamics, can hence not be 

computed with present methods. In recent times, some progress towards a calculation of 

these distributions has been made. Using a formulation of QCD on a discrete space-time 

lattice, the authors of [40] were able to estimate some moments (cf. Section 4.2) of the 

polarized and unpolarized quark distributions. 

Instead of attempting to compute these distributions from first principles, one can 

parametrize the present lack of understanding of QCD at low scales in the form of initial 

3.4 Parton distributions 
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Figure 3.5: Unpolarized parton distributions obtained from a global fit to experimental 

data [41]. The sets (G) and (A') correspond to difFerent estimates for the behaviour of 

the gluon distribution at small x, set (A) is from a previous analysis [42] and shown for 

reference. Figure taken from [41]. 

distributions at some scale QQ. In the case of the unpolarized distributions, these are 

characterized by ~ 20 parameters. Using the distribution at QQ as input to the evolution 

equations, the parameters are then fitted to experimental data on structure functions and 

related quantities at higher values of Q2. 

Global fits of unpolarized parton distributions are available from two groups [41, 43], 

which differ slightly in their data selection criteria and in the functional form chosen to 

parametrize their initial distributions at QQ ~ (1 . . . 4) m2. A somewhat different approach 

('dynamical parton model') is presented in [44]: the distributions are fitted at a scale far 

below (Ql ~ 0.3 m2) the proton mass scale, requiring both quark and gluon distributions 

to be valence-like. The singular behaviour of the sea quark and gluon distributions for 

36 



a; —»• 0 is then generated purely by perturbative evolution. All three sets [41, 43, 44] 

differ only within a few percent, which reflects the high precision of the experimental data 

entering into the fit. We will demonstrate in Chapter 8 how these distributions can be 

used to make precise predictions for observables in proton-antiproton collisions. As an 

example, Fig. 3.5 shows the parton distributions obtained in [41]. 

A determination of the polarized distributions Aq(x,Q2), Aq(x,Q2) and AG(x,Q2) 

has to rely on fewer, less accurate data. A global fit of these distributions has therefore to 

be supplemented with additional constraints on the distributions. We will motivate these 

constraints in the following chapter and apply them in a global fit of polarized parton 

distributions in Chapter 5. 

37 



Chapter 4 

The spin structure of the proton 

The treatment of the proton structure in the previous chapters always included the un

polarized as well as the polarized structure functions and parton distributions. In this 

and the following two chapters, we will focus on the polarized proton structure. This 

chapter introduces some of the specific features of the spin structure of the proton, while 

the following two will focus on the determination of polarized parton distributions from 

present and future experiments. 

The polarized structure function gi(x, Q2) is measured far less accurately than the un

polarized structure function F 2 (a:,Q 2 ) . We summarize the experimental results available 

at present in Section 4.1. An important aspect of the spin structure of the proton are the 

Bjorken and Ellis-Jaffe sum rules. Their origin and implications will be discussed in Sec

tion 4.2. Some basic properties of the polarized parton distributions will be .summarized 

in Section 4.3. Finally, we will discuss the behaviour of polarized parton distributions in 

the limit x 0 in Section 4.4. 

4.1 Experimental results 

Experimental measurements of polarized deep inelastic structure functions require both 

the incoming lepton beam and the proton target to be polarized. While lepton beams 
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axe often polarized naturally, proton polarization inside the target can only be obtained 

with dedicated target setups. Polarized targets are usually at least an order of magnitude 

smaller in size and density than unpolarized targets. Measurements of the polarized DIS 

cross section are therefore far less accurate than their unpolarized counterparts. The 

accuracy of polarized structure function measurements can be increased, if the polarized 

cross section is evaluated by multiplying the experimental asymmetries (1.14) and (1.15) 

with the known unpolarized cross section. 

If the asymmetry measurement is carried out at sufficiently large Q2, target mass 

corrections can be largely neglected. The asymmetries are then directly related to the 

ratios of structure funclrions. Keeping only the dominant target mass terms, (1.14) and 

(1.15) read: 

An(x,Q2) = D(A1(x,Q2)+'r^^-A2(x,Q2)y 

A_L = D 
2 v / r ~ ^ ( A 2 ( x , Q 2 ) - 7 ^ T l ^ 1 ( x , Q 2 ) ) , 

y 

where 

M ) a i w ' g y w , ,4.2) 
D s V ( 2 ~ V ) (43) 

D is the fraction of lepton polarization transferred to the virtual photon. If target mass 

corrections can be neglected completely, one obtains a simple form for the longitudinal 

asymmetry 

A\\(x,Q2)^DA1(x,Q2) with A ^ g ^ ; ; ^ , (4.4) 9x{x,Q2) 
Fx{x,Q2) 

which is normally used to extract the structure function gi{x, Q2) from experimental data. 
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Experiment Beam Beam energy Target Q 2 (GeV 2 ) X Results 

E80/E130 (SLAC) e 20 GeV V 3.5-10 0.180-0.7 [13] 

EMC (SLAC) /* 280 GeV V 1.5-70 0.010-0.7 [45] 

SMC (SLAC) 100-200 GeV p,d 1-60 0.003-0.7 [46, 47, 48] 

E142 (SLAC) e 30 GeV n 1-10 0.030-0.6 [49] 

E143 (SLAC) e 30 GeV p,d 1-30 0.029-0.8 [50, 51] 

Table 4.1: Fixed target experiments on polarized deep inelastic scattering. 

The measurements of the structure function g\(x, Q2) off proton, neutron and deuteron 

targets which have been carried out so far are summarized in Table 4.1. These experimen

tal results will be used in Chapter 5 to f i t the polarized parton distributions in the nucleon. 

Another experiment, HERMES (DESY) has recently presented [52] its first, preliminary 

results on the neutron spin structure function g"(x,Q2). Apart from the above gi(x,Q2) 

measurements, SMC and E143 have performed a measurement of the transverse asym

metry [14, 53], which has been used for a first determination of g2(x,Q2). Furthermore, 

E143 has studied the asymmetry Ai(x,Q2) in the region Q2 < 1 GeV 2 [54]. 

So far, the polarized proton structure has only been probed in deep inelastic scatter

ing. Various future experiments intend to study other hard processes involving polarized 

protons. An overview of these experiments will be given in Chapter 6. 

4.2 Sum rules 

Neither polarized nor unpolarized parton distributions can be calculated from first princi

ples with present techniques. Certain aspects of the distributions can however be inferred 

from the properties of the proton as a whole, such as its quantum numbers and its prop

erties in the hyperon multiplet (Fig. 2.1.b). 

These macroscopic properties can be related to integrals of the structure functions or 
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the parton distributions over the scaling variable a;. These integrals, weighted by a certain 

power of x are called moments, the n-th moment of a function f ( x ) is defined as 

/„= I 1 xn-xf{x)Ax. 
Jo 

A simple example of the physical content of certain moments are the second moments of 

the unpolarized quark and gluon distributions. To conserve energy and momentum of the 

proton, these should add up to unity 

jf1 x ( £ (* , Q2) + G(x, Q2)) dx = 1, (4.5) 

which has to be imposed at Ql and is preserved under perturbative evolution. Unfor

tunately, no similar relation can be constructed for the polarized distributions, as the 

proton spin receives contributions from polarization and orbital angular momentum of 

the partons 

\ = L,X{Q2) + LZiG(Q2) + £ ( | AE(x , Q 2 ) + AG(x, Q 2 ) ) dx. (4.6) 

No experimental or theoretical information on Lz<z(Q2) and Lz<a(Q2) is available at 

present, this equation can consequently not help to constrain the first moments of the 

polarized quark and gluon distributions. 

Information on the first moments of the polarized quark distributions can be gained 

from two sum rules [55, 56, 57] relating the first moment of the polarized structure function 

TT(Q2)= f9r{x,Q2)dx (4.7) 
Jo 

to the weak decay constants of hadrons in the l / 2 + multiplet (Fig. 2.1). Due to the chiral 

coupling of the W-boson, these weak decays receive contributions from hadronic vector 

and axial vector currents in the SU(3)/ octet. Al l axial vector currents within the octet 

can be expressed as combinations of the two diagonal octet currents a 3 and as, which are 

measured to be [58, 59] 

a3 = 1.2573 ±0.0028, 

a8 = 0.579 ± 0 . 0 1 1 . 
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The precision on a 3 is naturally higher, as i t can be determined from the neutron /3-decay 

only. 

The first moment of gi(x,Q2) probes the axial vector current between two identical 

nucleon states, which contains contributions from octet and singlet currents 

The quark model interpretation of the SU(3)/ octet relates these currents to the first 

moments of the polarized parton distributions 

a3 = f (Au(x) + Au(x) - Ad(x) - Ad(xf) dx , 
«/0 

a 8 = J 1 (Au(x) + Au(x) + Ad(x) + Ad(x) - 2As(x) - 2As(x)) dx, (4.9) 

a0 = J ( A u ( i ) + Au(x) + Ad(x) + Ad(x) + As(x) + As(x)) da; = J AZ(x)dx . 

According to (3.14), two different QCD corrections apply to (4.8). The first moment 

of the coefficient function is a power series in cts and the first moments of the parton 

distributions can have a non-zero Q2-dependence due to scaling violations. Due to the 

vanishing first moment of AP g 9 i + (B .33) , the flavour non-singlet combinations a 3 and a 8 

are unaffected by these scaling violations. On the contrary, Oo is only scale independent 

at leading order, the next-to-leading order splitting processes (Fig. 3.4) induce a non-

vanishing scale dependence 

- (i - msmzsm) aom, (4,0) 

Taking the difference between the proton and neutron structure functions, one obtains 

the Bjorken sum rule [55] 

1 r?(Q2) - r?(g2) = g«3, (4.11) 

where only the first term of the QCD corrections has been included; the corrections are 

known up to 0(a%) [60]. This sum rule is a fundamental prediction from the SU(2)r 
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isospin symmetry between proton and neutron, and i t is confirmed by the experimental 

measurements listed in Table 4.1. 

The first moments of the proton and neutron spin structure function are usually called 

the Ellis-Jaffe sum rule. Including QCD corrections, [61] they read 

rn<?>) = [ i - T ^ h r ^ 0 8 ) 
+ [ l - ^ + ©(«])] i 0 „ ( Q 3 ) . (4.12) 

They can only be predicted separately if a certain model assumption for the a priori 

unknown singlet current a0(Q2) is made. Two such estimates in the framework of the 

naive quark parton model (cf. Section 2.4) can be found in the literature. Attributing 

the whole proton spin to quark polarization, Gourdin [56] finds a0 = 1, while Ellis and 

Jaffe [57] obtain a0 = as « 0.579, assuming no contribution to the proton spin from the 

sea of strange quarks. Both these estimates are not stable under QCD corrections as they 

identify a non-conserved quantity with a constant. 

A l l experiments listed in Table 4.1 have measured the Ellis-Jaffe sum rule. Although 

the errors on the results are still sizable and the extrapolation of the measurement into the 

region of small values of x is not unambiguous (cf. Section 4.4), these measurements seem 

to indicate that a0 « 0.15-0.3 in the range 3 GeV 2 < Q2 < 12 GeV 2. Figure 4.1 displays 

the values of a0(Q2) as extracted from the experimental results using (4.12), together with 

the next-to-leading order QCD prediction (4.10) normalized to a0(Q2 = 4 GeV 2) = 0.219, 

the global average obtained from a fit described in the following chapter. -

The first precision measurement of the Ellis-Jaffe sum rule [45] initiated a long discus

sion on the origin of this apparent deviation from the naive quark parton model. In this 

model, the discrepancy between the expectation of Ellis and Jaffe and the experimental 

results could only be explained by a negative contribution from the strange quark sea to 

the proton spin. There is however a certain ambiguity in the decomposition of the singlet 

axial vector current a 0, as soon as QCD corrections to the naive quark parton model are 

taken into account. Only a 3 and a 8 can unambiguously be identified with the flavour 
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Figure 4.1: The singlet axial vector current determined from measurements of the Ellis— 

Jaffe sum rule. The solid line is the QCD prediction normalized to a fit at Q% = 4 GeV 2 , 

the dashed line shows the Ellis-Jaffe prediction in the quark parton model. 

non-singlet combinations in (4.9), the decomposition of a0 into contributions from quark 

singlet and gluon distribution depends on the renormalization scheme used. 

In the MS-scheme, this current is identified with the first moment of the polarized 

quark singlet only, 

a™(Q2) = rjp(Q2), (4.13) 

where we have introduced the abbreviations 

»/ E (Q 2 ) = / ' AS(x, Q2)dx, VG{Q2) = C AG(x,Q2)dx. 
Jo Jo 

In this scheme, r)z(Q2) varies with the scale Q2, as the first moment of P^s(z) x s n o n " 

zero. The scale dependence of TJE(Q2) in the MS-scheme can be trivially inferred from 

(4.10), the violation of the Ellis-Jaffe sum rule implies a negative polarization of the sea 

of strange quarks. 
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Alternatively, one can construct another scheme [62], usually called the Adler-Bardeen 

(AB) scheme [63], in which rfz(Q2) becomes independent of Q2. The appropriate scheme 

transformation introduces a contribution of the first moment of the polarized gluon dis

tribution to the Ellis-Jaffe sum rule, 

aoA B(Q 2) = ^ B - n / ^ G ( g 2 ) . (4.14) 

If viewed in this scheme, the violation of the Ellis-Jaffe sum rule can be attributed entirely 

to the effects of gluon polarization, a polarization of the strange quark sea is not necessary. 

I t is however likely that both gluons and strange quarks contribute to give the overall 

observed effect. 

The transformation between MS and AB scheme only redefines the polarized sea quark 

distributions while leaving the gluon distribution unchanged [34]. Both schemes are equiv

alent descriptions of the physical observable gi(x,Q2), if implemented consistently at 

next-to-leading order. Such a consistent treatment at NLO was not possible until very 

recently, as the complete NLO corrections to the polarized splitting functions A ? j / ' had 

not been known [35]. 

Earlier studies of the spin structure of the proton often introduced an ad-hoc gluonic 

contribution to the polarized structure function at leading order (see for example the 

discussion in [64, 65]) in order to obtain at least an order-of-magnitude estimate of the 

polarized gluon distribution. This approach faces conceptual problems if the resulting 

distributions are applied to other quark-initiated processes, such as the production of 

— Drell-Yan-pairsr ~ " 

The information gained from the Bjorken and Ellis-Jaffe sum rules can be incorporated 

into a consistent LO or NLO (MS) determination of the polarized parton distributions by 

using 0 3 and a» from the hyperon decay constants and aQ from the Ellis-Jaffe sum rule 

measurements to fix the first moments of the polarized u, d and s quark distributions. If 

further assumptions on the flavour structure of the polarization of the light quark sea are 

made, this information can be used for a separate determination of the first moments of 

the polarized valence and sea quark distributions. We will apply this in Chapter 5. 
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4.3 Qualitative features of polarized parton densi

ties 

This section collects information on the behaviour of the polarized parton distributions 

that can be obtained without a fit to experimental data. The asymptotic behaviour of the 

initial distributions for large and small values of x approaches simple power-like forms, 

which will be discussed in the following. Furthermore, we will elaborate the qualitative 

effects of the perturbative evolution on these distributions. 

4.3.1 Initial distributions at large and small x 

If a valence quark carries a large fraction of the proton's momentum, i.e. x —> 1, it 

should also be expected to carry a significant fraction of the helicity of the proton. The 

distribution of quarks with spin anti-aligned to the proton's spin is therefore suppressed 

at large x, the behaviour of polarized and unpolarized distributions becomes qualitatively 

identical in this l imit . Wi th the unpolarized valence quark distributions falling off like 

(1 — x)P (/? « 3 . . .5) for x —• 1, this property can be implemented into the polarized 

distributions by imposing the same value for the large-z parameter /3. A formal proof of 

this behaviour can be obtained from quark counting rules and is given in [66]. 

The behaviour of the initial distributions in the limit x —> 0 is by far less well un

derstood. In general, one should expect each of them to be proportional to xa, although 

neither magnitude nor sign of a are predictable^ Even the small-a: limit of the unpolar

ized parton distribution at typical starting scales of a few GeV is not yet understood at 

present [67], in particular for the gluon and sea quark distributions. 

4.3.2 Effects of the DGLAP evolution 

Several qualitative features of the polarized parton densities can already be determined by 

inserting simple test distributions t(x) in the right-hand side of Eq. (3.7). For a qualitative 

understanding i t is sufficient to truncate the splitting functions only to 0(a„) and to fix 
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the number of flavours to nj = 3. 

The resulting elements of the evolution matrix 

dy J AP,,(y) t 
x y 

(4.15) 

determine the local change of the parton densities with increasing ln(Q2). Furthermore, 

for Q2/Ql not too large one can approximate the solution of the DGLAP equations by 

which is similar to the analytic forms of the parton densities at Q\ used in recent fits to the 

polarized structure function data [65, 68, 69]. The exponent a determines the behaviour 

of the distribution in the small-x regime, whereas the large-a; behaviour is controlled by 

/?, as explained in the previous section. 

The elements of the evolution matrix can be computed analytically. Inspection of the 

leading order splitting functions (B.25) shows that all Aji can be expressed in terms of 

the four functions 

2 AX(x,Q2) 

AG(x,Q2) AG(x,Ql) 

f ' d y f 
Jx y \ 

.(Ql) f1 ^ APw(y) APqg(y) a + 2TT APgJy) APgJy) ) \AG(x/y,Ql) ) ""Wo) 

A realistic choice of test distribution is 

t(x) = xa(l - xf with ( - 1 < a < 0, > 0), 

P er -a dy 
( * ) = / 

Jx 

1 
1 

y (i-y) 
xa{l - x f [ l n ( l - x ) + q + ig + 1 

(1-x) 3 F a (2 + /3 + a , l , l ; 2 , 2 + / 3 ; ( l - x ) ) 

- W + 1 ) - 7 B ] , 

A2(x) 

1 - x 
1 

2 F 1 ( l - a , l + / ? ; 2 + / 3 ; ( l - a ; ) ) 
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x(l - x)0+1 
1 a-1 ct + P 

2F1(l-a,l+fi;2 + (3;(l-x)) x ( l -a ) ( /? + l) 1 - a 

A4(x) 

xa(l - x f , (4.16) 

where the hypergeometric function nFp can be found in [70]. The elements of the evolution 

matrix read in terms of these functions: 

Figure 4.2 shows all xAji(x) for a = —0.25, /? = 4. Several effects of the evolution can 

be read off: the quark-to-quark and gluon-to-gluon splittings decrease the corresponding 

distributions at large x while increasing them at small x. This effect is easily understood: 

the emission of soft particles diminishes the distributions of either helicity at large x, 

while increasing them at small x. The gluon-to-quark splitting Aqg generates a positive 

contribution to the polarizedjquark density at large a: and a negative contribution at small" 

x. The quark-to-gluon splitting enhances the polarized gluon density over the whole range 

in x. 

I t is however not possible to draw quantitative conclusions from the above, as the 

relative size of each of these corrections depends on the relative normalization of quark 

and gluon distributions. 

Aqg(x) 

Aqq(x) 

Agg(x) 

| 2At(x) - A2{x) - Az{x) + 1A4(X)] , 

3[-A2(x) + 2A3(x)], 

| [2A2(x) - A3(x)}, 

3 2A1(X) + 2A2{X)-4A3{X) + 1A4{X) . (4.17) 
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Figure 4.2: Elements of the evolution matrix for a test distribution with a = —0.25, 

0 = 4. 

4.4 Asymptotic behaviour at small x 

The behaviour of parton distributions and structure functions, both unpolarized and po

larized, at small x has been a matter of discussion over the last years. Various approaches 

in the polarized case can be found in [68, 71, 72, 73] and references therein. In this 

section, we wil l discuss analytic methods to determine the behaviour of polarized parton 

distributions"at small arfrolm the DGLAP evolution equations. 

We begin with a summary of the present experimental and theoretical knowledge on 

the polarized proton structure at small x in Section 4.4.1. Various approximations to the 

leading order DGLAP splitting functions at small x will be compared in Section 4.4.2 

on the basis of the evolution matrix described above. Furthermore, we will derive a new 

approach in Section 4.4.3 and discuss its domain of applicability. Finally, Section 4.4.4 

contains conclusions and implications of this study. 

x A q q (x) 
x Aqg (x) 
x A g q (x) 
x Agg (x) 
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4o4„l Motivation 

In the recent past, various authors have attempted to calculate the asymptotic behaviour 

of gi(x) at small x. At scales of low momentum transfer (Q2 « 1 GeV 2 ), a non-

perturbative calculation [71] of the flavour singlet contribution to gt shows good agreement 

with g\, but i t should be noted that the normalization of this non-perturbative contri

bution is highly sensitive to the only approximately known value of the vacuum quark 

condensate. The experimental discrepancy between g\ and g\ in the small-a: region seems 

to contradict the above result. As the singlet distribution is identical for both targets, 

this discrepancy indicates a sizable valence-quark contribution in this region. 

With increasing Q2, perturbative corrections become more and more important. These 

corrections affect both the valence and the singlet contributions to g\ and give rise to 

an evolution of the corresponding parton densities. A first detailed discussion of the 

asymptotic behaviour of <7i(x) due to these corrections was presented in [74]. 

In experimental measurements, perturbative corrections are incorporated by rescaling 

the value of g\ to the average Q2 of the experiment. This rescaling procedure relies 

on the assumption that the asymmetry g\{x)fFi(x) satisfies exact Bjorken scaling, i.e. 

that the Q2-dependence of g\ coincides with that of F\. Although this assumption is 

consistent with the present data (which cover only a small range of Q2 values at fixed x), 

there is no theoretical justification for i t . In particular, examination of the polarized and 

unpolarized splitting functions [31] shows that gi(x)/Fi(x) should indeed show only a very 

weak Q2 dependence in the large-a: region, where both structure functions are dominated 

by- the -valence quark "content,"as &Pqq(x) and Pgq(x) are identical. In contrast to this, 

the splitting functions in the singlet sector, which dominates the small-a; behaviour of F i , 

are different. The unpolarized Pgq(x) and Pgg(x) have a soft gluon singularity at a; = 0, 

which causes the steep rise of Fi in the small-a: region. As this singularity is absent in the 

polarized splitting functions (soft gluon emission does not change the spin of the parent 

parton), one would expect the ratio \gi(x)/Fx(x) | to decrease with increasing Q2. 

With the exact splitting functions it is not possible to find an analytic solution to (3.7) 
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with realistic boundary conditions for the whole range of x. By restricting themselves to 

small values of x (although it is not a priori clear which values of x can be regarded as 

small), various authors have attempted to determine the asymptotic behaviour of g\ in 

the limit Q2 —* oo. One possible approach [72] is to assume that all the Q2 dependence 

is dominated by the evolution of the gluon, i.e. by APgg(x). This method gives successful 

predictions for the unpolarized structure functions, due to the 1/x pole in the unpolarized 

Pgg. As this pole is not present in APgg, the validity of this approach needs to be examined 

more carefully. 

Another possible approach [68] to the asymptotic small- x behaviour is to transform 

(3.7) into moment space and to expand around the rightmost singularity at N = 0: 

(AP)N = ^ + B + 0{N) AP(x) « A + B6(l - x). 

This procedure yields the following approximate splitting functions 1: 

4 
3 r ^ 1 - * ) 

APW(x) = 2n} \ [ - 1 + 2*(1 - * ) ] , 

A P £ ( X ) = \ [2-S(l-x)], 

= 3 ^ ( 1 - * ) - (4-18) 

With these simplified splitting functions, one can analytically solve (3.7) for asymptotic 

values-of-Q2 with realistic-boundary-conditions in~the small-a;"region. This approach is 

based on the fact that the behaviour of the parton distributions at small x is governed 

by the region around N — 0 in moment space. This property can be understood from 

the A^-singularity structure of the initial distributions: a logarithmic ( ~ 1/x) singularity 

coincides with a pole at N = 0 in the moment transform, a power-like singularity of the 

form xa transforms into T(a + N), which has a singularity at N = —a. I t is important 
1 Similar splitting functions containing only the residue at N = 0 were studied in [75], giving qualita

tively comparable results to [68] 
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to notice, however, that the expansion around the N = 0 pole in moment space agrees 

with the fu l l splitting function only within a circle of unit radius. Outside this circle, the 

series might still be convergent, but its value will be different from that given by the fu l l 

splitting function. This especially affects the reliability of this approach for low values of 

a. In the extreme case a could approach —1 giving rise to a pole close to the boundary 

of the circle of convergence. 

4.4.2 Study of the evolution matrix 

The evolution matrix introduced in Section 4.3.2 provides us with a tool to study the 

quality of the approaches introduced above, as i t reflects the local effects of perturbative 

evolution at particular values of x. We will again work with simple test distributions of 

the form 

It is worth recalling that a determines the behaviour of the distribution in the small-a; 

regime, while the large-a; behaviour is controlled by /?. Variations of /3 should therefore not 

affect any predictions of the small-a; behaviour of the parton distributions. This property 

can be used to define the range of validity of these predictions, i.e. to indicate if x can be 

The leading-pole expanded [68] splitting functions of (4.18) yield the following elements 

for the evolution matrix: 

t(x) = x°(l - xf with ( - K a < 0, 0 > 0). 

regarded as small or not. 

4 » = 

3 [M*) + ^At(as)J , 

3[-A2(x) + 2A4(x)), 

l[2A2(x) - A4(x)], 

3 [4A 2 (x) - ^A4(x) (4.19) 

which have to be compared to the ful l Afi given in (4.17). 
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A closer inspection of the Aj, shows that all of them diverge like - + 0 . The 

different contributions (4.16) show the following behaviour: 

A2(x) =S J - x " , 
—a 

x->0 1 
1 - a •x 

A4(x) ^5 a ; Q . 

The behaviour in the limit x 0 can therefore be written as 

l im Aji(x) = a.jiXa. 

(4.20) 

(4.21) 

Provided that both the initial quark singlet and the initial gluon distributions have 

power-like boundary conditions in the limit i - » 0 , these most singular terms will domi

nate the right-hand side of (3.7). The replacement of the A$ by the above expressions 

(4.21) in (3.7) should therefore enable us to find an analytic solution for ATJ(X,Q2) and 

AG(x,Q2), which becomes exact for x —» 0. This exercise will be performed in the 

following section. 

The dji coefficients for the fu l l and the leading-pole expanded splitting functions are 

not identical: 

«e> = -
9 9 3 

- 3 
« a ( l - a ) ' 

91 

^/ , / \ \ 1 — 2a 3 

1 + a 

( 0 4 - 2 + a 
q q 3 2a ' 

-(0 - 3 1 + 22, 
_ a_. 

93 

3 a ( l - a ) ' 9 9 ~ 3 
(4.22) 

2 ( - < « - « ) - T K ) - - | f ^ T +1 a ( l — a) I • 2 - » 

a 

- 8 - 5 a 
2a 

Figure 4.3 shows examples of the AjP for /? = 4,9, together with the approximate 

forms A^] and the limits a^xa. This figure displays the following important features of 

the evolution matrix in the small-a; region: 
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Figure 4.3: Examples of elements of the splitting matrix for the test distribution xa(\—xf-

Solid line: fu l l splitting functions for /? = 4, long-dashed line: same for /? = 9, short-

dashed line: most singular xa contribution, dotted line: leading-pole expanded splitting 

functions for (3 = 4, dot-dashed line: same for (3 = 9. For better visibility, all elements 

are multiplied by x. 

(i) Although the test distributions x°'(l — x)4 and ^ " ( l — x)9 differ by less than 5% for 
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-1 -0.8 -0.6 -0.4 -0.2 0 -1 -0.8 -0.6 -0.4 -0.2 0 

Figure 4.4: Coefficients of the most singular pieces in the splitting matrix for the fu l l (left) 

and the leading-pole expanded (right) splitting functions. Solid line: aqq, long-dashed line: 

aqg, short-dashed line: agq, dotted line: agg. 

x < 0.01, the corresponding A^' differ by up to a factor of 2 in the same range. 

This clearly demonstrates that even at x = 0.01 and below the evolution is sensitive 

to the behaviour of the parton distributions in the large-a: region. The sensitivity 

of the AjP to variations of /3 can furthermore be used to define whether x can be 

regarded as small. For example, by requiring A^P to vary by less than 30% for all 

combinations in i and j and both values of a, we find that only x < 0.001 can 

be regarded as small, and the more conservative bound of less than 10% deviation 

yields x < 0.0001. It should therefore be clear that the mere knowledge of g\ at 

the lowest x values accessible with fixed-target experiments is insufficient to predict 

the asymptotic behaviour of g\ in the small-a: l imit , as the behaviour of the parton 

distributions at these values of x is still closely correlated with the distributions in 

the large-a: region. 

(ii) The convergence of the A^P towards a^x" improves for smaller values of a. This 
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behaviour just reflects the fact that A$ contains, in addition to this leading term, 

less singular terms proportional to ln(a;). In general, these lower | AjP \. If t(x) is 

less singular that a : - 1 / 6 , the logarithmic terms are larger than the power-like terms 

for 

x > x0(a) = (^^j , 
where u»(a) is defined in Appendix A.2. As xo decreases very quickly with a (XQ « 

10~ 1 5 for a = —0.1), the replacement A^{\x) —• a,jiXa, although formally still 

correct, loses its meaning for values of a close to 0 in any physically relevant region. 

(iii) While the Aj1? resemble the A^P for values of a close to 0, they disagree for smaller 

a. This feature becomes most striking for the Aqg (see Fig. 4.3). The full splitting 

functions (B.25) predict that a positive gluon polarization in the small-x region will 

always generate a negative contribution to the sea polarization. In contrast, the 

leading-pole expanded splitting functions of [68] predict a positive sea polarization, 

if the gluon polarization AG(x) is more singular than x~05. This behaviour can be 

inferred from the a dependence of the a,-,- displayed in Fig. 4.4. The good agreement 

for higher values of a is due to the fact that all leading contributions in ln(a;) 

are contained in the N = 0 pole and hence are well approximated by the A j ' \ 

As elaborated above, these contributions remain important for a finite range in 

x > xo > 0. The asymptotic predictions of [68] will therefore still approximate the 

full evolution, provided they are restricted to this finite range. 

(iv) The magnitude of Agg is larger by a factor 3 than the magnitude of all the other 

terms, but Agg is not more singular than any other contribution. Therefore, the 

small-a; estimate of [72] is qualitative at best, and should be expected to yield a 

less accurate prediction than the corresponding estimate of the unpolarized distri

butions. 

(v) The agreement between leading pole expanded and full splitting functions is better 

for the Aaa and Aaa than it is for Aaa and Aaa. This feature can be understood from 
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N < - 2 TV = - 1 N = 0 

3/4 APqq 2 1 1 

1/3 APqg 0 2 - 1 

3/4 APgq 0 - 1 2 

1/3 APgg 2 - 2 4 

Table 4.2: Residues of the polarized splitting functions in iV-moment space. The residues 

for all negative integers with N < — 2 are identical. 

the relative magnitude of the residues in the corresponding splitting functions (Table 

4.2): the N = 0 residue is dominant only in the Pgq and Pgg splitting functions, the 

other two splitting functions contain residues for N < 0, which are twice as big as 

the N = 0 residue. 

It should be clear from the above that the leading-pole expansion of [68] gives a reliable 

approximation to the evolution matrix in the small-a: region, provided that the initial 

distributions are significantly less singular than a ; - 1 / 6 . For more singular distributions, 

this approach results in a manifestly different evolution matrix and hence will yield a 

different small-a: behaviour of the polarized parton distributions. 

4.4.3 Solution of the D G L A P equations in the small x limit 

Provided both polarized singlet quark and gluon densities have power-like boundary con

ditions in the small-a: region, 

A E ( a : , Q l ) ~ x°">, AG(x, Q*) ~ xa° with - 1 < aq, aG < 0, 

one can find a solution of the D G L A P equations which becomes exact in the limit x —• 0 

and has the form 

Aqval{x,Q2) = Rv(Q\Ql)xa\ 
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AX(x,Q2) = Rqq(Q2,Ql)xa<+Rqg(Q2,Q2)xa°, 

AG(x,Q2) = Rgq(Q2,Ql)x^ + Raa(Q2,Ql)x^. (4.23) 

This behaviour can be derived by inserting (4.23) as ansatz into (3.7). Keeping only 

terms proportional to x"v, xa* and xaa on the right-hand side, we obtain the following 

evolution equations for the R coefficients (/?o = 11 — 2/3n/) : 

d 

3 I Rn l99 
a In a . R 

(Q\Ql) = 
'91 

I 

d In 

R 

-r-aqq{av)Rv{Q2,Q2), 
Po 

2_f aqq(aq) aqg(aq) 

#> \ agg(aq) agg(aq) 

I 

R '99 
R 

(Q\Ql), 
'39 

(Q\Ql) = - i -
\ R99 

2 R \ 

R 
(Q2,Ql)-

"99 
( a G ) aqg{aG) 

As we are interested in the asymptotic solution for the full splitting functions, all a J t in 

the above are 

Introducing 

W±(°0 = \ + A99(A) ± >/(««(«) ~ A 9 9 ( A ) ) 2 + 4 a f l 9 ( a ) 0 9 f l ( a ) ) » ( 4 ' 2 4 ) 

the general solution of these equations reads 

Rv(Q\Ql) = Nv exp j | - a „ ( a , , ) s j , 

^99+(Qo) e x p | - ^ u ; + ( a 9 ) 5 | + i 2 „ _ ( Q ^ ) exp j- |-u;_(a, ,)s j , 

R9i+(Ql)
 e x p | ^ + K ) 5 | +R9<,-(Ql) e x p | ^ w _ ( a , ) s | , 

6 X P { ^ + ^ 5 } + exp | - ^ w _ ( a G ) a J , 

e x p | ^ u ; + ( a G ) 5 | + fiflfl_(g2) exp j | - u > _ ( a 0 ) S | (4.25) 

i?,9(<52,Qo) 

Rq9(Q2,Ql) 

R99(Q2,Ql) 
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where the Rji±{Qo) are determined by the boundary conditions at Q\. As we assume that 

the initial distributions for the quark singlet and the gluon have the form 

AE(a: , Q\) = Nq x a \ A G ( i , Ql) = NG x°G, (4.26) 

these constants are determined to be 

Insertion of these boundary conditions into (4.25) finally yields (4.23). 

The bounds on a 

- 1 < aq,aa < 0 

cover the whole theoretically allowed range: as the first moments of the distributions 

have to be finite, we find a > — 1. Furthermore, inspection of the singularity structure of 

the evolution equations shows that any initial distribution, which is finite in the small-a; 

region, will develop a logarithmic divergence due to the N = 0 singularity of the splitting 

functions. The case of finite or logarithmic boundary conditions can be treated correctly 

with the leading-pole^approximation - its_asymptotics are discussed in-[68). - I n a n earlier 

analysis [65] of the experimental data on polarized structure functions we have found 

aq = av ~ —0.55. The experimental data used in this analysis were insufficient to 

determine cca, and therefore it was fixed to be 0. The more recent study presented in the 

following Chapter yields av ~ —0.4, aq = <XQ ~ —0.5. 

As we have neglected all contributions of order ln(x) in the above solution, we expect 

it to be reliable only for x < xo{m&x(aq,aa))- In order to compare this approach with the 

leading pole expansion of [68] and the numerical solution of (3.7) with the full splitting 
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functions, we have evaluated the distributions for QQ = 4 G e V 2 and Q2 = 100 G e V 2 , 

using nj = 3, AQCD = 200 MeV and the following initial distributions: 

To illustrate the validity of the various approximations, we choose the following parameter 

values: aq,otQ,av = —0.6, —0.25, /? = 4,9, and for simplicity we take Nq = Ng = Nv = 1. 

Figures 4.5.a-c show examples of the behaviour of the gluon, singlet quark and va

lence quark distributions respectively, at small x and Q2 = 4, 100 G e V 2 . The initial 

distributions ^"( l — x)4 are indicated as solid lines. 

Starting with the gluon distribution (Fig. 4.5.a), we find that for x < 1 0 - 2 , the leading-

pole approximation to the splitting functions (dotted lines) gives excellent agreement with 

the full evolution (dashed line), especially for values of aq,aa close to 0. This is consistent 

with the agreement between the corresponding Agg functions shown in Fig. 4.3 and can be 

understood from the N = 0 dominance in the A P J ? and APgg splitting functions. In con

trast, the xa approximation (short-dashed line) significantly overestimates the evolution 

in the x range shown, especially for ceq,ao close to 0. Convergence of this approach can 

only be observed at even smaller values of x. Note, however, the sensitivity to the large-a: 

behaviour. While both the dotted and the dashed lines are computed with /? = 4, the 

dot-dashed curve corresponds to full splitting function evolution for /? = 9, i.e. a softer 

large-a: distributionT^Evidently there~is~a significant sensitivity to the behaviour at large 

x even for x values as small as O ( 1 0 - 3 ) . This casts doubt on the idea of using data on the 

evolution of the small-a: structure functions alone to determine the gluon distribution. 

For the singlet quark distribution (Fig. 4.5.b) the situation is rather different. Here 

the leading-pole approximation overestimates the evolution at small x. This is readily 

understood from the behaviour of the corresponding Aqq and Aqg functions in Fig. 4.3, 

both of which are systematically more positive for the leading-pole splitting functions. In 

fact we see that for aq = —0.25 and aG = —0.6, the full evolution gives a negative singlet 

A E ( a : , Q 2 ) 

AG(x,Ql) 

Aqva,(x,Ql) 

Nqxa<{l - xf 

N G x a a ( l - x f 

Nvx°"-{l-xf. 

(4.28) 
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Figure 4.5: Examples of the evolution of test distributions for gluons (xAG(x, Q2)),(a), 

singlet quarks_(a:AS(a;, Q2-).),(h) and valence qua,rks-{xAqvaj(x, Q2))~(c) as "described in 

the text. Solid line: starting distribution at 4 G e V 2 , long-dashed and dot-dashed line: 

evolved distributions at 100 G e V 2 for different large-a: behaviour at Q%, short dashed line: 

result of xa approximation, dotted line: result of leading-pole approximation. 

distribution at small x, whereas the leading pole splitting functions give a positive distri

bution. Notice also that the evolution is less sensitive to the large-x behaviour (compare 

the dashed and dot-dashed curves which correspond to /? = 4,9 respectively) than for the 
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gluon distribution. For aq = aG = —0.6, the xa approximation is quite reasonable, and 

certainly better than the leading-pole approximation. However the opposite is true when 

both ctq,atQ are close to 0. 

Finally, Fig. 4.5.c compares the valence quark evolution in the various approxima

tions. This depends only on A P „ , and so the behaviour here is a direct reflection of the 

corresponding Aqq shown in Fig. 4.3. In particular, for aq = —0.6 the xa approximation 

is very good, while the leading-pole approximation overestimates the evolution at all x 

values shown. For less singular small-a; behaviour (aq = —0.25), however, both approx

imations reproduce the full evolution, the leading-pole approximation showing slightly 

better convergence for x > O ( 1 0 - 4 ) . 

In practice, the normalizations of the singlet quark and gluon distribution, Nq and NG, 

will not be the same. As the evolution of the gluon density is dominated by the gluon-to-

gluon splitting, it will be almost unaffected by changes of Nq. Only if Nq is one or more 

orders of magnitude larger than NG, will the impact of quark-to-gluon splitting become 

visible. More drastic effects of a change in the relative normalization can be expected for 

the quark singlet distribution, as contributions from quark-to-quark and gluon-to-quark 

splitting have the same magnitude but opposite signs (cf. Fig. 4.4). Therefore, a relative 

increase of NG yields a faster evolution of the quark distribution to negative values. 

The convergence properties of the different analytic approaches are almost unaffected 

by changes in the normalization. Only for NG ^> Nq do we find that convergence of the 

xa approximation to the singlet distribution sets in for smaller values of x. This simply 

reflects an-increased impact of the gluon-to-gluon splitting.^ 

4.4.4 Conclusions 

In this section we have studied the feasibility of two different analytic approaches to the 

evolution of polarized parton densities at small x, finding that none of these approaches 

is able to give reliable predictions for the whole theoretically allowed range of boundary 

conditions in the small-x region. In the leading-pole expansion [68, 75], the full splitting 
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functions APji are replaced by the leading terms of their Laurent series around N = 

0. As this approach correctly reproduces all terms proportional to In a; generated in 

the evolution, it is found to be in good agreement with the full evolution if the initial 

quark and gluon distributions are less singular than x~xle. For more singular boundary 

conditions, only the gluon distribution is reproduced correctly, in particular the quark 

distribution is overestimated. Keeping only terms with power-like singularities in the 

evolution equation, we were able to derive an exact solution of this equation in the limit 

x —* 0. As we have neglected all logarithmic terms in this approach, its convergence is best 

for boundary conditions of quark and gluon distributions more singular than a : - 1 / 6 . For 

less singular boundary conditions, this approach still converges towards the full solution, 

but its predictions are far away from the full solution for any realistic experimental value 

of x. 

We have also shown that the evolution of the polarized gluon distribution is sensitive 

to the shape of this distribution in the large-a; region. This observation raises doubts 

on the possibility of determining the gluon polarization from the evolution of g\ in the 

small-a; region. It furthermore demonstrates the need for complementary measurements 

of AG(x), which will be discussed in Chapter 6. 

We have seen that the effects of the evolution on the quark distributions in the small-a; 

region are rather small, as the quark-to-quark and the gluon-to-quark splitting contribute 

with opposite signs. The gluon distribution is indeed rising with increasing Q2, but 

only contributes to g\ at order aa{Q2). Bearing in mind that AG(x) contributes with a 

negative_coefficient-function-to g\-, one expects that yrwill'become negative at small x 

for asymptotic values of Q2. This behaviour is due to the gluonic contribution and the 

negative sea polarization generated from g —» qq splitting. 

In general, the effects of the evolution on the polarized parton densities will be more 

moderate than the effects on the unpolarized densities. The assumption of approximate 

scaling for gi[x)/F1(x) in the small-x region is therefore rather doubtful. It seems more 

realistic to assume approximate scaling for gi(x) at small x, due to the partial cancellation 

of quark and gluon evolution as explained above. 
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Chapter 5 

Polarized parton distributions 

It was already outlined in Chapter 3 that perturbative Q C D only predicts the change 

of parton distributions with increasing Q2 without determining these distributions them

selves. These are intrinsic features of the nucleon, which are controlled by the non-

perturbative dynamics of Q C D at scales below the proton mass. They cannot be com

puted with present techniques. 

In this chapter, we attempt to extract the polarized parton distributions from a global 

fit to the presently available data on the polarized proton structure. These data are 

however of much lower precision than in the unpolarized case. The fit needs therefore to 

be constrained by additional assumptions and approximate symmetries, as motivated in 

the previous chapter. The distributions obtained will be less well determined than their 

unpolarized counterparts. ... _ 

5.1 A global fit to polarized structure function data 

We adopt a similar approach to the global analysis of unpolarized parton distributions in 

the nucleon [41] by parametrizing the polarized distributions at the starting scale in the 

form: 

xAuv{x, Ql) = riuAuxan(l - x)b»(l + iux + p u x i / 2 ) 
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xAdv(x,Ql) = t}dAdxa"(l - x)b*(l + *fdx + pdxx'2) 

xAq(x, Ql) = Tiq-Aq-xa'(l - x)b'{l + + p^x1'2) 

xAG(x,Q2) = r j G A G x a G { l - x ) b a ( l + j G x + pGx^2), (5.1) 

where we take QQ = 4 G e V 2 . The normalization factors are 

A-*(f-« r \ - U «/ \ r ( a / ) r ( 6 / + 1 ) r ( a / + o.5)r(&y + 1 ) 

which ensures that the first moments of the distributions, / J dxAf(x,Q%), are given by 

Vf-

Various experimental measurements of unpolarized lepton(= e,p,, i/)-nucleon and un-

polarized Drell-Yan cross sections yield a reasonably precise flavour decomposition of the 

light quark (u,d,s) sea. Such a decomposition is not yet possible for the polarization of 

the light quark sea, as measurements of the structure function gi are only sensitive to 

the charge weighted sum of all quark flavours, not to the individual distributions. We 

therefore assume a SU(3)-symmetric antiquark polarization Aq(x,Ql) = AU^JQQ) = 

Ad(x,Qo) = AS(X,QQ). This ad-hoc assumption is only justified at the present level of 

experimental knowledge, and is furthermore immediately broken by next-to-leading order 

evolution [76]. 

As outlined in the previous chapter, one can infer the first moments of the polarized 

quark distributions from the measured values of the Ellis-Jaffe sum rule. Imposing SU(3) -

symmetry at Q%, this sum rule reads 

- r r ( Q 0 ) = ( l - ^ 1 ) ( ± i « . + + la0(Ql)) (5.2) 

with 1 

«3 = T)u(Ql)-rid(Ql) = F + D, 

as = Vu(Ql) + Vd(Ql) = 3F-D, 

MQl) = V M ) + Vd(Ql) + tvM)-
1 Recall that the first moments of the valence quark polarizations are not conserved in next-to-leading 

order (B.33). Nevertheless, the scaling violations are only at the per-mille level for realistic values of Q7. 
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L O N L O 

Vu 0.823 0.918 

Vd -0.303 -0.339 

1.9 

-0.0495 -0.060 

3.73 3.96 

h 4.73 4.96 

Table 5.1: Fixed parameters in the L O and NLO(MS) polarized parton distribution fits. 

L O N L O (3 G e V 2 ) N L O (10 G e V 2 ) 

r ; - r ? 0.188 0.191 0.195 

r? 0.133 0.132 0.135 

r? -0.055 -0.059 -0.060 

ri 0.039 0.037 0.037 

Table 5.2: Values of the Bjorken and Ellis-Jaffe sum rules. 

In this approach, the first moments of the valence quark polarizations are obtained from 

the nonsinglet axial-vector current matrix elements [59], while the first moment of the sea 

quark distribution is inferred from the measured value of I V For the leading-order (LO) 

distributions, we correct th^normalization_of t}u andj/j-by the 0{cta^coefficient function 

in (5.2) [65]. The first moments obtained by this procedure are listed in Table 5.1. The 

resulting values for the Bjorken and Ellis-Jaffe sum rules at L O and N L O are listed in 

Table 5.2. Note that the Ellis-Jaffe sum rule is a (Q2-independent) constant at leading 

order in perturbation theory, as the leading-order coefficient functions are only expanded 

up to 0 ( a ° ) and scaling violations in i]g(Q2) arise only from the splitting functions at 

next-to-leading order (cf. Section 4.2). 

The polarized gluon distribution enters gi(x,Q2) at next-to-leading order. It is only 
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very weakly constrained so far, as no experimental data are available on gluon-initiated 

processes such as direct-7 or heavy meson production. The polarized gluon distribution 

AG(x, Q2) is therefore not well-determined by a fit to the gi data alone, and so additional 

theoretical constraints have to be applied. It was demonstrated in the last chapter that 

the small-a: behaviour of the gluon and sea quark distributions are closely related [77], 

which justifies the assumption aG = o,q in (5.1). In the region x > 0.1, structure functions 

and their evolution are dominated by valence quark contributions, and the impact of the 

gluon is completely negligible. We therefore explore various possibilities for the form of 

A G ( i , Q2) at large x: hard (A) and soft (B) distributions with the spin aligned with that 

of the parent hadron, and a distribution (C) with the spin anti-aligned. We show in the 

following that all three choices give equally good descriptions of the structure function 

data. They will be relatively easy to discriminate, once data on polarized gluon-initiated 

processes are available. The three possible scenarios for the behaviour of AG(x, Q$) can 

be parametrized as follows: 

Gluon A : 7G = 0, pG = 0, 

Gluon B : 7G = 1, pa - - 2 , 

Gluon C : 7G — 0, PG = —3. 

The normalization rjG of the gluon distribution can only be determined consistently 

from the experimental data in a next-to-leading order analysis, where it still has a large 

error. At leading order, we can estimate nG by attributing all the violation of the Ellis— 

Jaffe sum rule to a large gluon polarization and vanishing sea quark polarization. In 

this way we obtain t]G = 1.9, only slightly different from the value 1.97 obtained in our 

previous analysis [65]. Note, however, that at leading order the apportioning of the singlet 

contribution to T i between gluons and sea quarks is completely arbitrary [34]. In fact we 

shall see below that a consistent N L O treatment gives a value of nG somewhat less than 

our estimated leading order value, and similar to the range of values found in [63]. 

If parton distributions are interpreted in the probabilistic picture of the naive parton 

model, the magnitude of the polarized distributions cannot exceed the unpolarized distri-
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butions, in order to guarantee positive probabilities for the individual polarization states, 

i.e. 

| A / ( x ) | < / ( x ) , (f = q,G). (5.3) 

This is in fact only a rigid constraint at leading order, since parton distributions at higher 

orders are just scheme-dependent renormalization constants and not strict probability 

densities. The fundamental constraint at any order in perturbation theory is the positivity 

of physical cross sections for all possible helicity configurations. This constraint does not 

necessarily imply the positivity of the distributions. 

Positivity of the polarized distributions is achieved by constraining the parameters of 

the starting distributions at QQ such that 

\Af(x,Qo)\ < f{x,Ql), (f = q,G). 

Perturbative evolution preserves the positivity of the individual helicity distributions, 

hence (5.3) is fulfilled at any Q2. 

In our leading-order analysis, we use the unpolarized distributions from [44] for refer

ence. At Ql = 4 G e V 2 these are 

xuv{x,Q2

Q) 

xdv(x,Ql) 

x(u + d)(x,Ql) 

3.221 x 0 S 6 4 ( l - x f 7 2 6 ( l - 0 . 6 8 8 9 x O 2 O ° + 2.254x + 1.261x 3' 2), 

0.507 x 0 3 7 6 ( l - x ) 4 4 7 6 ( l + 1.615x 0- 5 5 3 + 3.651x + 1.299x 3' 2), 

[x o l 5 8 (0 .738 - 0.981x + 1.063x 2)(- l n x ) 0 0 3 7 + 

0.00285 exp-(V-4.Q10 In x) ] (1 - x ) 6 i 3 5 6 , 

xs{x,Ql) = 0 . 0 0 3 4 ( - l n x ) - 1 1 5 ( l - 2.392x 1 / 2 + 7.094x)(l - x ) 6 1 6 6 

exp (y-G.llVInx) , 

xG{x,Q2) = [x°- 7 3 1 (5 .110 - 1 .204x- 1 . 9 1 1 x 2 ) ( - l n x ) - o - 4 7 1 8 + 

0.0527 exp (V-4.5841nx) ] (1 - x ) 5 5 6 6 . (5.4) 

The reference unpolarized distributions at next-to-leading order are the A' set of [41], 
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which are parametrized at Ql = 4 G e V 2 as 

xuv{x, Ql) = 2.26 X 0 5 5 9 (1 - x)3 9 6 (1 - 0 .54x 1 / 2 + 4.65a:), 

xdv(x, Ql) = 0.279 x 0 3 3 5 (1 - x ) 4 A 6 (1 + 6.80a;1/2 + 1.93a:), 

a;Sea(a:, Ql) = 0.956 a : - 0 1 7 (1 - a : ) 9 6 3 (1 - 2.55x 1 / 2 + 11.2a;), 

xG{x,Ql) = 1 . 9 4 a ; - o l 7 ( l - a : ) 5 - 3 3 ( l - 1 . 9 0 a ; 1 / 2 + 4.07a:). (5.5) 

Note that the choice of unpolarized distributions is not crucial for the present analysis. 

All the widely available leading and next-to-leading order distributions provide very good 

fits to the unpolarized structure function data, and the small differences between them 

are much smaller than the precision with which the polarized distributions are currently 

determined. The flavour decomposition of the unpolarized sea quark distributions is also 

unimportant for our present analysis and will therefore be disregarded. The starting sea 

quark distribution of [41] contains a very small charm quark contribution which can safely 

be ignored in the present analysis. To be consistent with the evolution of the unpolarized 

distributions, we take 

A ^ 4 = 200 MeV [44], A ^ Q 4 = 231 MeV [41]. 

These correspond to a , ( M | ) = 0.123 (LO) and a s ( M | ) = 0.112 (NLO) . 

The parameters most affected by the positivity constraints are the large-x exponents 

bf. For the valence quarks, we fix bu — 6u(unpol.) and 6<j = 6u(unpol.) + 1, motivated by 

counting rule estimates [66]. The parameters bG and bq are constrained to be at least as 

large as their unpolarized counterparts in the fit. This constraint has however minimal 

impact. We find that only the Adv(x) distribution tends to saturate positivity, requiring 

the combination 7* + pd to be limited in the fit. 

The data currently available on g\ are not able to test the various theoretical model 

predictions for the small-a: behaviour of the polarized parton distributions. These are 

however expected to apply at much lower values of x (cf. Section 4.4). The parameters 

dj are therefore only effective exponents valid over some finite interval in x. It therefore 

makes no sense to postulate positivity for x —> 0 by constraining the aj. 
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The contribution of charmed quarks to gx{x,Q2) is negligible at present experimental 

energies [78, 79] and will not be considered in this analysis. We therefore adopt the 

evolution procedure of [44] and fix the number of flavours in the splitting functions at 

nj = 3, while the number of flavours in ata increases at each mass threshold, 

m c = 1.5 GeV, mb = 4.5 GeV, mt = 180 GeV, 

and A(ny) is determined by requiring Q 5 to be continuous across each threshold. 

Rather than measuring g\{x,Q2) directly from absolute cross section differences, it is 

the relative asymmetry 

which is determined experimentally. The structure function gi(x,Q2) is then inferred 

using a particular parametrization of F\(x,Q2). Some experimental groups assume en

sealing of A\(x,Q2) in their extraction of gi(x,Q2). In order to have a consistent set 

of data, we have instead used the measured values of A\(x,Q2) quoted by the experi

ments and re-evaluated gi(x,Q2) from E q . (4.4), constructing F^(x,Q2) (3.11) from the 

parametrizations of F2 [80] and R [81] which were used in the most recent measurements. 

Applying the constraints outlined above, we have used all available world data on 

A\{x,Q2), Af(x,Q2) a n d Al(x,Q2) listed in Table 4.1 to fit [82] the polarized quark 

and gluon distributions with the parametric forms of (5.1) imposed at Ql = 4 G e V 2 . 

About 35% of these data were taken at Q2 < QQ. TO have sensible constraints on the 

distributions, in particular for x < 0.02, we include these data-points in the global fit. The 

distributions in~the region 1 G e V 2 < Q2 < Ql are obtained by inverting the evolution, 

which is straightforward in n-moment space (cf. Appendix B.3). 

A problem with using low Q2 data points in the fit is the possible contamination 

by higher-twist contributions. We have tried to estimate the magnitude of such contri

butions to using the parametrization of F 2

r from [83] and assuming <7i(x ,Q 2 ) H T « 

g\{x, Q 2 ) L T ( 1 + CHT(x)/Q2). The higher-twist contributions estimated in this way are 

found to be small for all data-points apart from the two lowest x bins of the S M C exper

iment. 
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Figure 5.1: Leading order polarized parton distributions as described in the text at Q\ 

4 G e V 2 compared to the unpolarized distributions of [44]. 

The global fit is performed using D G L A P evolution algorithms in A^-moment space, as 

described in Appendix B.3. The distributions and structure functions are then restored 

by a numerical inversion into x space (Appendix B.4). The results of the global fit using 

the leading and next-to-leading order (MS) expressions for the splitting functions and the 

gi coefficient functions are listed in Table 5.3. The resulting distributions at Ql are shown 

in Figs. 5.1 ( L O ) and 5.2 (NLO). 

The resulting parameters are not independent of each other. In particular, au, and 

a-G — a? are strongly correlated. The a,- of the valence distributions are anticorrelated 
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Figure 5.2: Next-to-leading order polarized parton distributions as described in the text 

at QQ = 4 G e V 2 compared to the unpolarized distributions of [41]. 

with the corresponding 7,-, reflecting the fact that a,- is only an effective exponent for a 

finite range in x. The 7,- and pi are also anticorrelated. The x2 distribution is very flat 

around the local minima found by the global fits, especially with respect to the gluon and 

sea quark parameters. 

The three gluon scenarios give fits of almost identical quality, reflecting the small 

impact of the gluon distribution on gi(x,Q2) at large and medium x. The \ 2 obtained 

in the N L O fits are systematically lower due to the additional degree of freedom given by 

the normalization of the polarized gluon distribution. All fits give very good descriptions 
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Figure 5.3: Structure function measurements xgi(x,Q2) of the proton, deuteron and 

neutron compared to the next-to-leading order predictions obtained using Gluon A. 

for the polarized structure functions g%,n,d(xy Q2). This is illustrated in Fig. 5.3, which 

shows the N L O description of the various gi measurements using Gluon A. The curves 

correspond to Q2 = 1,4,10,50 G e V 2 , reflecting the spread in Q2 values of the different 

data sets. There is a systematic decrease in the Q2 values of the data points from large 

x to small x. 

The contributions of Auv(x,Q2) and Adv(x,Q2) to the neutron structure function 

gi(x,Q2) are almost equal in magnitude but opposite in sign. The neutron structure 
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A (LO) B (LO) C (LO) A (NLO) B ( N L O ) C (NLO) 

0.578 0.585 0.582 0.512 0.504 0.471 

9.38 9.31 9.50 11.65 11.98 13.14 

Pu -4.26 -4.28 -4.28 -4.60 -4.61 -4.90 

«d 0.666 0.662 0.660 0.780 0.777 0.809 

Id 10.46 10.91 11.04 7.81 8.18 6.73 

Pi -5.10 -5.09 -5.06 -3.48 -3.61 -1.99 

no 1.71 1.63 1.02 

a,a 0.520 0.524 0.456 0.724 0.670 0.425 

bG 9.45 6.87 8.72 5.71 5.34 11.05 

15.06 15.96 11.82 14.40 18.06 16.40 

2.30 2.42 2.11 4.63 5.30 -2.67 

-2.00 -2.00 -1.95 -4.96 -5.25 -3.08 

x2 98.3 97.7 100.0 89.7 91.0 93.4 

Table 5.3: Fitted parameters in the L O and NLO(MS) polarized parton distributions at 

QQ. The x2 values are with respect to the 110 data points included in the global fit. 

function is therefore much more sensitive to the sea quark polarization than g\(x, Q2) and 

gf{x,Q2). It displays a clear double peak structure, as the sea quarks are dominant in 

a_different a>region than the valence-quarks. A precision measurement of g"{x,Q2) [84] 

will therefore be able to provide important new information on the shape of the sea quark 

polarization. 

From a consideration of the size of the errors on the various fitted parameters, it is ap

parent that the world data on g^(x,Q2) really only constrain the polarized valence quark 

distributions and, to a lesser extent, the overall magnitude of the sea quark polarization. 

The flavour decomposition of the polarized sea is still completely unknown. Only dedi

cated experiments, such as the production of Drell-Yan lepton pairs or the flavour-tagging 
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of final-state hadrons in polarized deep inelastic scattering, will be able to provide further 

information. Most important of all, the x dependence of the polarized gluon distribution 

is almost completely undetermined, as its impact on the polarized structure function is 

less than the present experimental accuracy 2. The variation between our three gluon sets 

certainly underestimates the true uncertainty in this particular distribution. 

5.2 Comparison with other approaches and outlook 

In this chapter, we have performed leading and next-to-leading order Q C D fits to the 

world data on the g\ polarized structure function measured with proton, neutron and 

deuteron targets. We obtain sets of polarized parton distributions which can be used for 

further phenomenological analyses. The experimental precision is highest for the proton 

and deuteron data. These constrain the shapes of the valence u and d distributions. 

The sea quark and gluon distributions are still largely undetermined. There is a weak 

constraint on the overall size of the former, but almost no information at all on the 

flavour decomposition of the sea. We have presented three qualitatively different gluon 

distributions, characterized by different behaviours at large x. 

A similar analysis of polarized structure functions has been reported recently in [85], 

using the 'dynamical parton model' approach in which the distributions at small x are gen

erated dynamically from valence-like distributions at a small starting scale Q% ~ 0.3 ra2. 

Requiring positivity at this low scale yields more severe constraints on the polarized 

distributions (in particular the polarized gluon "distribution) than in our analysis. The 

authors of [85] suggest two scenarios for the flavour decomposition of the light quark sea. 

The 'standard' scenario is identical with our approximation of an SU(3) symmetric sea 

quark polarization at Ql, while the 'valence' scenario assumes the SU(3)/-symmetry in 

2Working in the Adler-Bardeen scheme, the authors of [63] were able to constrain the first moment 

of the polarized gluon distribution to be TJG = 1.54 ± 0.74 at Q\ = 1 GeV 2 , which is consistent with our 

results (Table 5.3). As in our analysis, the ^-dependence of AG(x,Q2) was found to have only a weak 

impact on fli(a:,Q2). 
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Figure 5.4: Comparison of different polarized parton distributions: Set (A)- (C) obtained 

in this analysis and Set (s) and (v) from [85]. 

the Ellis-Jaffe sum rule only to apply to the valence quark contributions - i.e. it breaks, 

strictly speaking, the SU(3) / symmetry of the hadronic current by decomposing it into 

a valence and a sea current. In the 'valence' scenario, all deviations from the na'ive ex

pectation of the Ellis-Jaffe sum rule can be attributed to an enhanced polarization of 

u and d quarks. A comparison between the N L O distributions of [85] and our results 

is shown in Fig. 5.4. The valence quark distributions obtained in both analyses are in 
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relatively good agreement with each other, while the sea quark and gluon distributions 

show large differences. This again reflects the lack of experimental information on these 

distributions. 

The authors of [63] carry out a comparable analysis in the Adler-Bardeen scheme 

(cf. Section 4.2), with particular emphasis on a determination of rjG from the structure 

function data. The resulting distributions do not necessarily respect positivity of the 

distributions at large x and yield the conceptual problem that asymmetries can exceed 

unity at large x. Therefore, we refrain from a detailed comparison with our results. 

A variety of experiments on polarized nucleons is presently under discussion. In the 

following chapter, we will examine several observables which could provide more precise 

information on the polarized gluon and sea quark distributions than the structure func

tions measured at present. This will illustrate the application of the parton distributions 

obtained above to other hard processes. 
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Chapter 6 

Measuring polarized parton 

distributions at future experiments 

Up to now, all experimental information on the polarized proton structure comes from 

the structure function g^(x,Q2) of the proton, neutron and deuteron (cf. Table 4.1). It 

was demonstrated in the previous chapter that these measurements provide sufficient in

formation for a determination of the polarized valence quark distributions Auv(x, Q2) and 

Adv(x, Q2), while the polarized sea quark and gluon distributions are only loosely con

strained by the structure function data. As g\ (a;, Q2) is dominated by valence quark contri

butions at presently accessible energies, complementary measurements of other quantities 

appear to be crucial for a more precise determination of these distributions. This chapter 

summarizes experimental options presently_under construction or .discussion and examines 

the sensitivity of particular observables to polarized parton distributions. 

6.1 Future experiments on polarized nucleons 

Initiated by the original gi(x,Q2) measurement of the E M C collaboration [45] an exten

sive programme of spin-structure function measurements was started at C E R N (SMC) , 

S L A C (E142/E143) and D E S Y ( H E R M E S ) . All these experiments have now produced 
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first results which were the key ingredients in the global parton distribution fit of Chap

ter 5. The experiments at C E R N and D E S Y are still taking data on various polarized 

targets while a new generation of experiments at higher beam energies (E154/E155) is 

presently in operation at S L A C . A variety of spin experiments is planned presently. A 

short description of the most promising proposals is given below. 

R H I C - S P I N 

The Relativistic Heavy Ion Collider ( R H I C ) at Brookhaven will have two longitudinally 

polarized proton beams at y/s = 200 — 500 GeV [86]. This collider is presently under 

construction, first data-taking is expected in the year 2001. Two multi-purpose detectors 

( S T A R and P H E N I X ) will be installed in the interaction regions; an integrated luminosity 

of 320 p b - 1 at y/s = 200 GeV or 800 pb" 1 at y/s = 500 GeV for two years of operation is 

anticipated. 

Inclusive photon and jet production asymmetries will provide a measurement of the 

polarized gluon distribution, information on the polarized sea quark distributions might 

be gained from Drell-Yan pair and W-boson production. 

C O M P A S S 

Using the muon beam ( £ M = 100 — 200 GeV) and the polarized target of the present S M C 

experiment with an upgraded detector setup, the COMPASS collaboration [87] plans to 

study the final states of polarized deep inelastic scattering events. If this experiment is 

approved, it could start operation in 1999; the expected luminosity is 1.9 f b - 1 per year. 

Apart from an improved measurement of the structure function gi(x,Q2), this exper

iment will yield information on AG(x,Q2) from the production of charmed mesons. 

S L A C programme 

In addition to the E154/E155 experiments [88], which are presently measuring polar

ized structure functions at Ebeam — 50 GeV, several future spin experiments are under 
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discussion. 

The most promising option for a measurement of A G ( i , Q2) is the study of polarized 

photon-proton collisions using a beam of bremsstrahlung photons at Ey = 45 GeV [89]. 

S P I N @ H E R A 

A possible option for the future of the H E R A collider is the operation of a polarized proton 

beam. This would provide the unique opportunity of a study of polarized ep collisions at 

y/s ~ 300 GeV [90]. Studies on the machine aspects of this project are presently being 

carried out. If these yield positive results and the project is approved, it could be realized 

in the middle of the next decade. Presently, H E R A provides a luminosity of 15 pb _ 1 /year , 

which could be increased by a factor 4 over the next few years. 

The physics prospects of this project have been studied in a working group of the 

"Future physics at HERA"-workshop [91], yielding several possible measurements which 

appear to be unique at H E R A . The prospects for a measurement of gx(x,Q2) will be 

discussed below. 

H E R A - N 

Operating the present H E R M E S spectrometer in the H E R A proton beam ( H E R A - N , [92]) 

offers the possibility to study singly polarized (unpolarized beam on polarized target) 

hadron-hadron collisions at ^/s = 40 GeV. Such an experiment is under discussion and 

could start operation after the end of the H E R M E S programme in 1999. An integrated 

luminosity of 240 p b _ 1 for three years of data-taking is anticipated. 

As single spin asymmetries vanish in the perturbative domain of Q C D , this experiment 

would need additional information on final state polarizations in order to construct a 

double spin asymmetry sensitive to polarized parton distributions. An example of such 

an asymmetry is discussed in detail in section 6.6. 

If H E R A is operated with a polarized proton beam, this experiment could study 

asymmetries in polarized proton-nucleon collisions at energies well below R H I C - S P I N , 
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offering in particular better prospects for the measurement of asymmetries in the Drell-

Yan process, which will be studied in Section 6.3 

6.2 Precision measurements of the polarized struc

ture functions 

The derivative of F2(x, Q2) with respect to Q2 has been used to measure the unpolarized 

gluon distribution in fixed target experiments [93] (0.008 < x < 0.5) and at H E R A [94] 

(2 • 10" 4 < a; < 3 • 1 0 - 2 ) . The method is particularly powerful at small x, where the gluon 

distribution dominates the Q2 evolution, dF2(x)ld\nQ2 ~ Pqa{y)®G{xjy). In the same 

way, we can use our three sets of distributions A, B and C to explore the sensitivity of 

the polarized structure function evolution to AG(x,Q2). 

6.2.1 Fixed target experiments 

The kinematic range of fixed target experiments is limited, as the available lepton-proton 

centre-of-mass energy only grows like the square root of the beam energy. A substantial 

increase above the present energies (cf. Table 4.1) cannot be expected. 

Fig. 6.1 shows predictions for the asymmetry Ai(x,Q2) as a function of Q2 in the 

kinematic range representative of current fixed target experiments. The asymmetry is 

obtained from E q . (4.4) with g\ calculated using the polarized distributions presented in 

the^previous chapter and F\ calculated using the N L O unpolarized~MRS(A') distributions 

of [41]. The latter are extrapolated to lower values of Q2, which reproduces the full 

backwards evolution to within a few per cent. 

At large x, there is no sensitivity to AG(x, Q2) - the evolution is completely dominated 

by the quark contribution. At small x, on the other hand, we see some dependence on the 

gluon. In this region APqa(y) ® AG(x/y) < 0 (cf. Section 4.3.2), and so the derivative 

dAi/d In Q2 is more negative for the sets that have a larger gluon polarization above the x 

value considered. In particular, we see that at x ~ 0.01 the proton asymmetry is almost Q2 
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Figure 6.1: Q2 dependence of A\'A{x, Q2) in next-to-leading order using the Gluons A, 

B and C . To illustrate the sensitivity of current experiments, we show the x = 0.035 

data-points from the recent S M C and E l 4 3 measurements. 

independent for Set C , but decreases with increasing Q2 for Sets A and B. Unfortunately, 

the sensitivity of the present experiments is much worse than the differences between the 

various sets. To illustrate this, we have included two data-points at x = 0.035 from the 

recent S M C and E143 measurements. For the deuteron, the quark contribution to the 

structure function is smaller, and so the dependence on AG(x, Q2) at small x is somewhat 

enhanced. Considering the large errors on the present data, it seems doubtful that a 

measurement of the polarized gluon distribution from the Q2 variation of Ai(x,Q2) is 

feasible for values of Q2 where perturbative expressions can be safely applied. The S L A C 

E154/E155 experiments will clearly improve this measurement, a further decrease of the 

statistical errors may be achieved by combining several bins in x. Nevertheless, it still has 

to be kept in mind that a determination of AG(x, Q2) from the Q2 dependence of At(x, Q2) 

can never reach the quality of the corresponding unpolarized measurement, as the gluonic 

contribution is not as dominant in the evolution of polarized parton distributions as it is 

in the unpolarized evolution (cf. Section 4.4). 
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6.2.2 H E R A 

In the foreseeable future, the H E R A collider may be able to accelerate polarized protons 

[90]. This would offer the unique opportunity of measuring the polarized structure func

tion g\(x, Q2) far beyond the Q2 range of present fixed target experiments. In order to 

judge the quality of the new information gained from such a measurement, an order-of-

magnitude estimate of the statistical errors is crucial. The structure function g\{x,Q2) 

is extracted from a measurement of the asymmetry (4.4). Under realistic experimental 

conditions, the electron and proton beam will only be partially polarized, yielding the 

experimentally observable asymmetry 

where A e (A p ) denote the polarizations of the electron (proton) beam. The statistical error 

on xgx(x,Q2) is therefore: 

i i + ( i - y ) 2 

2xF?(x,Q2) + ^ ^ n ^ Q 2 ) 

( . J2-(unpol.) 

C I N T I - A x - 6 Q T A x A Q ) s l l - A \ \ M % (61) 

where the unpolarized differential cross section is integrated over the bin used in the 

experimental measurement. 

To study the accuracy of a measurement of g\(x, Q2) in the collider mode of H E R A , 

we have evaluated the above expression using-the unpolarized-parton distribution l e t 

MRS(A') from [41] with the next-to-leading order polarized parton distribution set A 

described in Chapter 5. We apply the following cuts to the H E R A phase space [95]: 

0.1 < y < 0.95, Q2 > 1 G e V 2 , 0 e , < 176° and Ee, > 5 GeV, and consider two scenarios 

for the beam energies: 

(a) : y/s = 300 GeV with Ee = 27.44 GeV, Ep = 820 GeV, 

(6) : x /J = 150 GeV with Ee = 18.75 GeV, Ep = 300 GeV. 
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Figure 6.2: Expected errors for a measurement of g[{x,Q2) at the H E R A collider with 

s 1 ' 2 = 300 GeV and s1'2 = 150 GeV. 

The expected errors for an integrated luminosity of 60 p b - 1 at A e = A p = 0.8 in these two 

scenarios are shown in Fig. 6.2. We take two bins per decade in x and only one bin in 

Q2. These results are consistent with the leading-order estimates of [96], bearing in mind 

the different cuts applied. In particular, we estimate smaller errors in the small-a: region, 

as we apply no cuts on the hadronic final state. 

The average Q2 values probed at H E R A range from 2 G e V 2 (x « 6-10"5) to 1060 G e V 2 

(x fa 0.05) for y/s = 300 GeV and from 1.7 G e V 2 ( i « 2 - 10" 4) to 270 G e V 2 (x m 0.05) 

for y/s = 150-GeV. For-reference, we also show-in Figr 6.2 a parametrization~of gi(x,~Q2) 

obtained from the N L O set A. To illustrate the impact of a measurement at H E R A , we 

include the three lowest data-points reported by the S M C experiment [47], corresponding 

to Q2 values around 1.5 G e V 2 . It is apparent that a measurement at lower beam energies 

will yield data of higher statistical quality. In contrast, the higher beam energies yield a 

measurement at smaller x. 

A measurement of g[{x,Q2) at the H E R A collider will evidently not provide a large 

number of precision data on the x and Q2 dependencies of this structure function. Hence, 
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it will not provide sufficient information for an indirect determination of the polarized 

gluon density1. The important physics result of such a measurement is the determination 

of the small-as behaviour of g\{x,Q2), for which various, significantly different predictions 

exist [71, 72, 73]. It is important to stress that a measurement of gi(x,Q2) at small x will 

reduce the experimental uncertainty on the Ellis-Jaffe sum rule. The impact of the small 

x region can be easily seen in Fig. 6.2, as the Ellis-Jaffe sum rule is proportional to the 

area enclosed by xg*(x,Q2) and the x axis. 

A final remarkable point on the measurability of g\(x, Q2) at H E R A is the impact of 

the minimum cut on y on the statistical error. As the photon depolarizes for small y, a 

small cut on y (such as y > 0.01) diminishes the average polarization in the bin, even 

though more data are included. We find that a minimal cut on y between 0.1 and 0.2 

yields the optimal accuracy of the measurement. 

6.3 Hadroproduction of Drell—Yan pairs 

Structure functions measured in deep inelastic lepton-nucleon scattering probe a par

ticular combination of quark distributions in the nucleon. The mere knowledge of these 

structure functions is therefore insufficient for a distinction between valence and sea quarks 

and for a further decomposition of the light quark sea into different flavours. These are 

only possible if additional information from other experimental observables is taken into 

account. 

Fits of unpolarized .parton-distributions (e.g. [41]) obtain this iriformationTrom two 

sources. The weak structure functions measured in neutrino-nucleon scattering probe 

different combinations of parton distributions than their electromagnetic counterparts. 

The inclusion of these structure functions in a global fit can therefore constrain the flavour 

structure of the unpolarized sea. A direct probe of the antiquark distributions in the 

nucleon is given by the production of lepton pairs in hadron-hadron collisions [28], the 

1 Recall that a determination of AG(x,Q2) requires a precise measurement of the slope of g\ as a 

function of Q 2 . 
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Drell-Yan process. It is in fact the inclusion of data from both processes in the global 

fits which allows a precise determination of the distribution of antiquaries and its flavour 

decomposition. 

The recent fits of polarized parton distributions described in Chapter 5 have to rely 

entirely on the available data on the polarized structure function g\'d,n{x, Q2). The dis

tinction between valence and sea quark contributions to this structure function is possible 

to a certain extent if additional information from sum rules is taken into account. The 

flavour structure of the polarized sea is however completely unknown at present. It seems 

rather doubtful whether more precise measurements of this structure function will be able 

to provide more information on these two issues. 

Polarized neutrino-nucleon scattering experiments will not be feasible in the foresee

able future, a measurement of polarized weak structure functions may however be possible 

from charged current interactions at H E R A [97] if polarization in the collider mode can 

be achieved. 

An experimental study of the polarized Drell-Yan cross section would be possible with 

the H E R A - N experiment, operated with a polarized proton beam onto a polarized nucleon 

target. We will examine the prospects of such a measurement in this section. 

6.3.1 The polarized Drell-Yan process 

The production of lepton pairs in hadronic collisions was already introduced as a test 

of the parton model in Section 2.5. It can be understood as annihilation of a quark-

antiquark pair to a virtual photon, which decays into a lepton pair of invariant mass M2. 

The polarized and unpolarized cross sections for this process are conventionally defined 

to be [98] 

dAa = i (da++ - da+~) , da = I (d<r + + + d<r + _ ) , 

where (++) and (-|—) denote the configurations of aligned and antialigned hadron spins. 

In the Q C D corrected parton model, these hadronic cross sections can be expressed as a 
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Figure 6.3: Unpolarized Drell-Yan cross section in proton-proton and proton-neutron 

collisions. 

convolution of parton level coefficient functions with the appropriate parton distributions: 

d[A]<7 _ iira y i ^ ^ ^ , 
d M 2 9sM2 

| { [ * M x u t i ) + (1 - 2) } ( [ - ]*( 1 - z) + ^M)-[A\c^{z)^ 

+ { ( [ A } q 1 ( x u f l l ) + [A]q1(xutij) [A]G2{x2,ti) + (l ^ 2 ) } ^ ^ [ A ] c ^ ( z ) } , 

(6.2) 

where fj,F indicates the mass factorization scale and r = M2/s is the Drell-Yan scaling 

variable. 

The next-to-leading order corrections to the unpolarized coefficient functions have been 

calculated in [153] and are listed in (8.6). The polarized corrections are given in [98, 100], 

they read in the MS-scheme: 

A c f Y ( z ) = -CF 

1 - z 

Ac°Y(z) = -TF (2z - 1) In 

1 - z 

M2 

H2

F 

( I - * ) 2 . 5 

+ « ( l - , ) ( _ 8 + 4 6 ) + 2 1 n ^ { ( r i 7 ) + - l - , + | * ( l - , ) } 

+ i - * - t * 2 +
 l nS-{( 2*- 1)} 

M2 

(6.3) 

87 



8 

25 GeV, pp 

GS(A) 

GRSVs 
GRSVv 

MfGeV] 

s"' = 25GeV,pn 

12.5 

0.06 

0.04 

0.02 

0 

-0.02 

-0.04 

-0.06 

GS(A) -
- GS(B) . 

GS(C) .. 
GRSVs ... 
GRSVv _ 

_1_ 
2.5 5 7.5 

M[GeV] 
10 12.5 

0.2 

0.15 

0.1 

0.05 

0 

-0.05 

-0.1 

-0.15 

-02 

1 1 1 
- s , o = 40GeV,pp 

t I 1 1 

GS(A) _ S \ 
GS(B) 
GS(C) 

GRSVs 
GRSVv 

1 1 1 1 J 1 - 1 
2.5 7.5 10 12.5 15 173 20 

M [GeV] 

0.06 

0.04 

0.02 . 

0 

-0.02 

-0.04 

-0.06 

s m = 40GeV,pn 

GS(A) 
GS(B) 
GS(C) . . . 

GRSVs 
GRSVv _.. 

I L 
0 2.5 5 7.5 10 12.5 15 17.5 20 

M[GeV] 

Figure 6.4: Expected asymmetries in the polarized Drell-Yan process. 

It turns out that inclusion of these corrections is crucial at fixed target energies, as they 

contribute about 30% of the total cross section. A fully consistent study of the Drell-Yan 

process at next-to-leading order was up to now only possible in the unpolarized case, as 

the polarized parton distributions could only be determined to leading accuracy. With the 

recently calculated polarized two-loop splitting functions [35], the polarized distributions 

can now be determined to next-to-leading order from fits to structure function data [69, 

85]. 

Using these distributions in combination with the unpolarized distributions (set A') 

from [41], we have calculated the total Drell-Yan cross section dcr/dM and the expected 
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asymmetry 
. . . . . dA<r/dM 

A { M ) s - ^ k u 

for proton and (idealized) neutron targets at centre-of-mass energies yfs = 40 GeV 

( H E R A - N ) and y/s = 25 GeV. The latter could be achieved by operating H E R A - N with 

a proton beam energy of about 330 GeV. Figure 6.3 shows the unpolarized Drell-Yan 

production cross section as a function of the invariant mass of the lepton pair. It has to 

be noted that invariant masses M < 4 GeV and 9 GeV < M < 11 GeV must be excluded 

from an experimental measurement, as lepton pair production in these mass regions is 

dominated by the decay of quarkonium resonances. An experiment with y/s = 25 GeV 

will clearly be restricted to the invariant mass range 4 GeV < M < 9 GeV; depend

ing on the available luminosity, a measurement for M > 11 GeV could be possible at 

y/s = 40 GeV. 

The Drell-Yan cross section at H E R A - N (y/s = 40 GeV) is about two orders of 

magnitude bigger than at R H I C - S P I N (y/s = 200 GeV) if evaluated at fixed r . 

Figure 6.4 shows the asymmetries obtained with the polarized N L O parton distribu

tions of [69] ( G S ( A , B , C ) ) and [85] (GRSVs,v) . The spread in these predictions reflects the 

present lack of knowledge on the behaviour of polarized parton distributions in the region 

x > 0.1. A sizable asymmetry of more than ± 1 0 % can be expected in proton-proton 

collisions, the asymmetry in proton-neutron collisions is considerably smaller. 

We have checked the perturbative stability of these results by variation of the mass 

factorization scale. It turns out that the absolute value of the asymmetry is decreased 

(increased) by a maximum of 1.5% if we take y,p = 2 M (pp = M/2). This variation is 

significantly smaller than the difference between the different parton distribution func

tions. 

6.3.2 Conclusions and Outlook 

A measurement of the polarized Drell-Yan cross section in the double polarized mode of 

H E R A - N appears feasible, provided an integrated luminosity of 100 pb or more can be 
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achieved. Such a measurement would provide important information on the polarization 

of the light quark sea at large x, a region which cannot be probed with measurements of 
—• 

polarized weak structure functions. Such a measurement would be unique to H E R A - N , as 

the polarized Drell-Yan process cannot be studied at the R H I C . Furthermore, H E R A - N 

could measure Drell-Yan asymmetries off different targets, which might be used to infer 

the flavour structure of the polarized sea. Such a measurement would however require 

much higher luminosity due to the low asymmetries on the (idealized) neutron target. 

So far, we have only examined the invariant mass distribution of the Drell-Yan pairs, 

which is already able to discriminate different parametrizations for the polarized sea quark 

distributions. Even more information can be gained from more differential distributions 

(e.g. in the lepton pair rapidity y), which could be obtained with higher luminosity. 

6.4 P hot opro duct ion of open charm 

The parton model as described in Chapter 3 assumes that the proton mainly consists 

of light (u,d, s) quarks and gluons. As the photon in the deep inelastic scattering only 

couples to the charged quarks, the proton structure functions are dominated by the light 

quark contributions. If the final state of a deep inelastic scattering event contains heavy 

(c, b) quarks, it seems very likely that these have been produced by photon-gluon fu

sion in the particular event2. Assuming the photon-gluon fusion mechanism, the parton 

level cross section has been calculated [101], including full helicity dependence [78]. The 

process is dominated by-the photoproduction (Q2 ~ 0) region. Therefore, it is a rea

sonable approximation to consider only real photon-proton interactions with a beam of 

2 Alternatively (see e.g. [42]), one could choose to work with an intrinsic heavy quark distribution in 
the nucleon. This distribution is - apart from a marginal contribution at low scales - generated due 
to g —• QQ-splitting in the evolution process. The impact of the gluon distribution on the physical 
observable is qualitatively similar, the approaches only differ close to the production threshold. 
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bremsstrahlung photons3. The parton level cross sections then read: 

22iraas(s) 
a(s) = e ( - ^ ( 2 - ^ 2 ) + ^ ( 3 - / ? 4 ) l n i ± | ) , 

Acr(s) = e ; H l ^ ( 3 ^ - l n f ^ j , (6.4) 

where s is the invariant mass squared at the parton-level and /3 = yjl — 4m^/s is the 

velocity of the heavy quark. The bremsstrahlung spectrum of real photons emitted off a 

lepton beam is 

2ir y mf 

with y = E^/Ei. Depending on the photon energy, only a certain fraction 

*Mv) i - ( i - v f ,fifix 

of the lepton polarization is transferred to the photon. 

Photoproduction of charm quarks has been used by the E M C collaboration to deter

mine the unpolarized gluon distribution [102], yielding consistency with other determi

nations. Furthermore, various phenomenological studies [64, 79] have demonstrated the 

sensitivity of this process to the polarized gluon distribution. In the following we inves

tigate the prospects of such a measurement with the proposed C O M P A S S experiment 

described above. 

The allowed kinematic range for s is determined by the heavy quark production thresh

old and the maximum available energy 

4mJ < s < s = 2yEtMp. 

At fixed photon energy, one can then define an observable asymmetry 

W M y ) Jds<r(s)G(s/s,s) • {0-'> 

3Although perturbative approaches fail to describe structure functions at Q"2 ~ 0, this treatment is 

justified for the production of heavy quarks, as the quark mass provides a natural hard scale. 
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Figure 6.5: Open charm photoproduction asymmetry. 

Fig. 6.5 shows this asymmetry evaluated for Ell = 100 GeV and = 200 GeV, using 

the leading order polarized gluon distributions A - C in combination with the unpolarized 

GRV94 [44] gluon distributions. Given the anticipated luminosity, this asymmetry should 

be measurable to an accuracy of 3% for a single bin 0.35 < y < 0.85 [87]. It is apparent 

that the measurement will yield a better discrimination of the different gluon distributions 

if carried out at lower beam energies. At low energies, the polarized gluon distribution 

is probed at larger values of x, where AG(x)/G(x) is larger. Hence a clear distinction 

between Gluon A and C is possible, and the sign of the polarized gluon distribution at 

large x can be measured. 

6.5 Photoproduction of J/i/> mesons 

The J ftp meson is the lightest (cc) bound state. Its discovery [103] provided first evidence 

for the existence of charmed quarks. It decays with a branching ratio of about 12% into 

lepton-antilepton pairs [58] and can therefore be detected relatively easily as a peak in 

the final state lepton-antilepton invariant mass distribution of a particular experiment. 

Inelastic J/production from a nucleon target directly probes the gluon distribution 
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via the photon-gluon fusion subprocess 7* + g —* (cc) + g, which can be described in 

the colour-singlet model of [104]. This model assumes that both quarks forming the 

J ftp have exactly half its velocity and form a colour singlet. The transition amplitude 

from the quark pair to the meson state is then inferred from the magnitude of the J ftp 

wavefunction at the origin. This model successfully describes the production of J ftp 

mesons in lepton-hadron collisions [105, 106], provided the theory prediction is scaled 

with a if-factor accounting for higher order corrections. This if-factor is of order 4 and 

almost independent of the kinematical variables. The next-to-leading order calculation of 

J ftp photoproduction [107] is in better agreement with the experimental data, but still 

needs to be scaled by a (smaller) K-factor at fixed target energies. 

Depending on the virtuality of the photon, one can distinguish two different classes of 

events: photoproduction (Q2 « 0) and leptoproduction (Q2 > 0). The E M C [105] and 

N M C experiments [106] have obtained measurements of the unpolarized leading-order 

gluon distribution in the range x ~ 0.05 — 0.25 from the photoproduction process. The 

results agree well - after K factor correction - with gluon distributions extracted from 

other processes, for example large-py direct photon production. The corresponding cross 

section for polarized J/ip leptoproduction has been calculated in [108]. 

Taking the photoproduction limit Q2 —» 0, one obtains 

dp\dz a 
• vGx(v,M2 

JN> 
8 o | 

3 [ M h J l - z ) + P

2

T ] 2 

z(l - z) 

x [A{z) + h\C(z)\ • f ( p 2

T , z ) , (6.8) 

with 

F{p2

T,z) 
z2(\ - zf 1 

C(z) 

A(z) 

0 4 + (1 - * W / * ) a {vl + M W 

M2 

- f . ( , 2 ( M j M _ z s ^ N f + ( 1 _ 2 ) 2 ( M 2

/ 1 I / + 

(1 - z ) s y N ) 2 + ( s y N - M2^)2) , 
(1 - z ) ( M j ^ - zs^N){zM]^{M2

Jh - z s l N ) + { z - 2)M},^N) 
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slN 2MNE^, 

p*T + ( l - z ) M ^ 

A 

z 

z(l - z)s~N 

E j H> 
1 E 

gluon helicity, 

h lepton helicity. 

The polarized (unpolarized) cross sections are obtained by taking the difference (sum) over 

the helicity states. The polarized cross section is then proportional to AG(rj) = G+(T]) — 

G-(t}) and depends only on C(z), while the unpolarized cross section is proportional to 

G(rj) = G+(rj) + G-(tj) and depends only on A(z). Taking the cross sections integrated 

over one of the variables, one can define two physics asymmetries: 

Such an asymmetry could be studied in a dedicated experiment with a 45 GeV photon 

beam at S L A C [89] or using the spectrum of bremsstrahlung photons (E^ ~ 25 GeV) 

at H E R M E S . Both these experiments work at lower photon energies than [105, 106], 

a discrimination between elastic z = 1 and inelastic z < 1 photoproduction of J/V> 

mesons will therefore" be more difficult7if not"impossible. The expected cross sections for 

PT > Prmin = 0 1 G e V 2 a n d * = 0.9 (cuts like in [105, 106]) are shown in Fig. 6.6. The 

cut on -p\ is required to guarantee the applicability of the colour singlet model, which 

assumes the colour neutrality of the (cc)-pair to be obtained by the emission of a single, 

hard gluon. The bulk of J / i f ) mesons produced will be rejected by this cut. 

As illustrated in Fig. 6.7, significantly different asymmetries are expected for the three 

gluon distributions A, B and C . These predictions are obtained for the asymmetries A(z) 

and A(PT), calculated for E^ = 45 GeV using the three leading order distributions in 

/ dA^N(Ey) da"iN{E^) 
A(z) 

dz dz 
(6.9) 

API) 
dAcr'yN(E^) /daiN(E~) / dp dp 

(6.10) 
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Figure 6.6: Cross section for photoproduction of J/ip mesons. 
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Figure 6.7: Expected asymmetry for J/ip photoproduction at Ey = 45 GeV. 

combination with the unpolarized leading order gluon distributions of [44]. The asym

metries at = 25 GeV are identical in shape but only half in magnitude. It should 

be noted that these asymmetries assume 100% photon polarization. Depending on the 

fraction of photon and lepton energy, the photon only carries a certain percentage of the 

lepton polarization (cf. eq. (6.6)). 

Note that small z corresponds to large -q and vice versa. It is furthermore noted that 
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the ordering of the predictions obtained with different gluon sets simply reflects the or

dering of the different gluon distributions in the region 77 > 0.1. Due to the relatively 

large asymmetry of up to 15%, such a measurement could provide first information on 

the leading order polarized gluon distribution at Q2 « Mj^. The arrange in which the 

distribution is probed depends on the acceptance cuts used in the experimental measure

ment. A dedicated simulation for the H E R M E S experiment [109] has shown that a range 

0.22 < x < 0.5 would be accessible there. 

It should be noted that the cross section for J/tp production is about two orders 

of magnitude lower than the cross section for open charm production. The experimental 

advantage of studying J/if; production is the clear decay signature in the leptonic channel, 

which makes a precise reconstruction of the kinematics possible. 

6.6 Hadropro duct ion of J/ip pairs 

All asymmetries considered so far in this section required the polarization of both initial 

state particles. Present accelerators can provide polarized electron and muon beams at 

high energies and satisfactory intensities. These are then scattered off fixed polarized 

nucleon targets. In contrast, polarized proton beams are presently only available as sec

ondary beams from A-decay and have hence a low luminosity and a wide energy spread. 

The acceleration of polarized proton beams and their storage still remains a challenging 

task. 

Therefore it is worth eonsidering-whether one can-determine the polarized gluon distri

bution AG(x,Q2) from collisions of an unpolarized proton beam with a polarized proton 

target. As outlined above, such a configuration would be possible at the H E R A - N exper

iment. 

Parity invariance of Q C D implies vanishing of all single spin asymmetries in the per-

turbative region. Therefore, information on the spin state of at least one particle in the 

final state is required for the construction of a measurable asymmetry. Several observ-

ables [92], such as jet handedness or ^'-polarization have been suggested in the literature. 
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Unfortunately, all these channels suffer from low luminosities and poor analysing power 

(correlation between parton and hadron helicity). In this section, we examine another 

process, which might allow the construction of an asymmetry containing one initial and 

one final spin state: the production of J/ip pairs in proton-proton collisions. 

6.6.1 Theoretical framework 

The colour singlet model introduced in the previous section can be extended to the pro

duction of J/X/J pairs in hadron-hadron collisions: the dominant subprocess is gluon-gluon 

fusion to two (cc) pairs. The condition of non-zero transverse momentum again has to 

be applied to justify a perturbative treatment. This model yields the parton level cross 

section [110] 

The helicity averaged matrix element M. was first calculated in [110], and its full helicity 

dependence was derived in [111]. The explicit formulae are too lengthy to be included in 

this chapter. 4. 

To relate this parton level cross section to a measurable observable at the hadronic 

level, it has to be convoluted with the corresponding parton distributions 

da{p + J/xj>J/*P) = £ / dx 1 d a : 2 / a / p ( a ; i ) / f c / P (x 2 )d<T(a + b -+ J/4>J/tJ>). (6.12) 

The above expression-is dominated by the (g^g) subprocess, whose contribution is about 

restrict ourselves to a study of the gluonic contribution. 

To estimate the expected cross section at y/s = 40 GeV, we have evaluated the above 

expression for the leading order parton distributions given in [112] ( D O l . l ) and [44] 

(GRV94). The resulting p\ distributions are shown in Fig. 6.8. We use A ^ D = 200 MeV 

and | *(0) | 2 = 0.043 G e V 3 , obtained from the leptonic width of the J/tJ> [58]. 

4We would like to thank Sergey Baranov for providing the FORTRAN-code for M 

d a ( a + b -> J/V»J/V») = 7r 3 a 4 ( l - M j ^ / g ) 1 / 2 |$(Q)|* 1 

dcosO* 72s M2,,, 64 
| A < | 2 (a+b = q+q or g+g). 

(6.11) 

five times as big as the one from (q + q) at H E R A - $ energies. In what follows, we will 
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Figure 6.8: Cross section for production of J/tp pairs at H E R A - N 

atot a{p2

T > 1 G e V 2 ) 

D O l . l 10.3 pb 6.5 pb 

GRV94 4.9 pb 3.0 pb 

Table 6.1: Total cross sections for pp —• J / t / j J / i j ) evaluated for the parton distributions 

of [112] and [44]. 

The large discrepancy between both predictions reflects mainly the uncertainty in 

the unpolarized gluon distribution G(x) in the high-a: region. For consistency with the 

polarized distributions considered in the remainder of this section, we will work with G(x) 

from [44]. For the proposed luminosity of H E R A - N , one can expect 1200 J/ip pairs.to be 

produced. 

It should be recalled that the colour singlet model assumes the colour neutrality of the 

(cc)-pair to be obtained by a single, hard gluon exchange. This condition is only satisfied 

for sufficiently large transverse momentum of the final state particles. In the forward 

region (p^ < 0.5 G e V 2 ) , the same neutral state can be obtained by the multiple exchange 

of soft gluons. Hence the colour singlet model tends to underestimate the cross section in 

this region. 
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6.6.2 Reconstruction of the J / i f y 

The total cross section for proton-proton collisions at y/s = 40 GeV is crtoi(pp) — 41 mb 

[58], ten orders of magnitude bigger than the cross section for the production of J ftp pairs. 

In order to identify these events in the background of mulithadron production, a clear 

decay signature of at least one of the J/tj) mesons is needed. Only the leptonic decay 

J/xj) —• 7 * —• / + / ~ can provide such a clear signature, as the pair of oppositely charged 

leptons can easily be distinguished from the hadronic background. The branching ratio 

[58] 

Br(J/ij> - » 7 * -> /+/") = 12% 

of this decay channel therefore reduces the number of visible events. 

H E R A - N will (at least for the first years of running) only have a polarized target, with 

an unpolarized beam. Information on the initial state polarization will therefore have to 

be extracted from the final state. In the case of J j i j ) pair production, at least the helicity 

of one of the J ftp's has to be measured. As the J/rp is a massive spin-1 vector meson, it 

has three possible helicity states: —1,0, +1. The 0 and ± 1 states correspond to different 

partial waves, and can therefore be easily distinguished from the energy spectra of the 

decay products. Unfortunately, no information on the initial state polarization can be 

gained from the 0 state, as the corresponding differential cross section is symmetric under 

the change of one initial state helicity. We will discuss the possible decay channels of the 

J ftp with a view to distinguishing the +1 and —1 helicity states: 

(i) ~weak"decays: Parity violating weak decay modes could provide a clear separation 

between these two states. As the J ftp does not have any known weak decay modes, 

this possibility is ruled out. 

(ii) leptonic decays: Parity invariance of the electromagnetic interaction relates the 

decay cross sections of both helicity states. As the lepton helicities cannot be mea

sured, both states are indistinguishable. 

(iii) decays to scalar mesons: The distribution of the final state particles in these 
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decays is given by the / = l , m = ± 1 partial waves. As the partial waves for 

m = — 1 and m = 1 are identical for vector particles, this decay channel cannot 

distinguish between these states. 

(iv) radiative decays: If the J / t p decays into a real photon and scalar mesons (e.g. 

J / t p —• r j c f ) , the helicity of the J / i f ) could be reconstructed from the measured 

helicity of the photon 5. This decay channel contributes with a branching ratio of 

about 4% [58]. Provided a helicity measurement on the photon, this is the only 

channel in which the helicity of the J/ip can be measured. 

From the above considerations, it becomes clear xthat a J / i f ) pair produced in single 

polarized proton-proton collisions can only be used for an asymmetry measurement for 

the specific final state configuration in which one J/tp decays leptonically while the other 

decays into a photon accompanied by scalar mesons. The probability of this configuration 

is 

P = 2 x (Br(J/rP - » /+/")) x (Br(J/tj> - > 7 + scalars)) ~ 1%. 

Therefore, only twelve of the expected 1200 events can provide an asymmetry measure

ment under ideal experimental conditions at H E R A - N . It should therefore be already 

clear at this point that such a measurement will fail to provide information on AG(x). 

Regardless of this negative result, we will provide an estimate of the asymmetries one 

could expect at H E R A - N . 

6.6.3 Expected asymmetries -

Under ideal experimental conditions at H E R A - N , the spin of the target proton and 

the helicity of one of the two J/ip mesons can be measured in a rather small fraction of 

the events. Using this information, we can construct the following asymmetry 

da{p+J/^+) + d<r(p- J / ^ - ) - da(p- J/V>+) - Aa{p+J/iJ>-) 

dalp+J/^ + dalp-J/^) 

5Even though such a measurement could be possible in principle, it seems rather doubtful that it could 

be carried out with the HERA-N apparatus. 
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Figure 6.10: Expected asymmetry in the double polarized mode of H E R A - N . 

This asymmetry can be related to the parton level cross sections, keeping in mind that 

the helicity state of the second J / i f ) is summed over. For convenience, we use the following 

shorthand notation for the parton level matrix elements of particular helicity combina

tions: 

[h(g,bea,m) h(g, target) h(J/ipi) h^/fo)] = 

dcr(g(h(bea.m)) + ^ ( t a r g e t ) ) -+ J/^(h^J/^(h2)). (6.13) 
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Omitting terms related by parity invariance, the asymmetry is 

A = fdXldx2G{xuQ2)AG(x2,Q2) { 2 [ S A + +] + [BA0+] + [SA + 0]} 

Jdxidx2G{x1,Q2)G(x2,Q2){VZ±±] ' { ' ) 

where £ ( A ) denotes the sum (difference) of the possible helicity states. 

The scale of the parton distributions in the above expression and the scale of as(Q2) 

in the matrix elements is taken to be Q2 = {Mj/$)2. We have evaluated the above asym

metry as a function of the angle between the J/ij) pair and the proton beam direction 

in the parton-parton centre-of-mass system (which can be reconstructed from the final 

state). The unpolarized G(x,Q2) is taken from [44]. In Fig 6.9, we compare the pre

dictions obtained with the parametrizations of AG(x,Q2) from [113] (standard scenario) 

and [69] (Gluon A - C ) . Although the asymmetries obtained with these parametrizations 

are significantly different from each other, y4(COS 0*) never exceeds 3%. The asymmetry 

becomes maximal if the J/t/> pair is produced at very small angles with respect to the 

proton beam, i.e. at low transverse momenta. 

Keeping in mind the low number of reconstructable events, this small asymmetry turns 

out to be unmeasurable in the single polarized mode of H E R A - N . The situation would be 

different for a double polarized measurement (i.e. with a polarized H E R A proton beam): 

in this case, the reconstruction of helicities in the final state is no longer necessary for an 

asymmetry measurement. Therefore, one can expect about 270 J/ip pairs with at least 

one lepton pair decay. The asymmetry can be defined in the standard way 

^ _ d<r(p+p+) + da(p~p~) — da(p+p~) — da(p~p+) 
da{pp) 

In terms of the parton densities this asymmetry reads 

_ fdx^xtAGix^Q^AGjx^Q^+AXX) - [ - A S S ] 

fdXldx2G(xuQ2)G(x2,Q2)[XZXX] ' 1 ; 

Fig. 6.10 shows this asymmetry as a function of p\ for the different parametrizations of 

AG(x, Q2) mentioned above. Depending on the parametrization, the asymmetry could be 

as large as 7% and depends only weakly on p\. If H E R A - N would have a polarized H E R A 

proton beam available, this measurement could give some indications on AG(x, Q2) for 

x « 0.3. 
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6.7 Prospects and outlook 

In this section we have discussed several experimental observables which could probe the 

polarized gluon and sea quark distributions. We have found that an indirect determination 

of the polarized gluon distribution from the evolution of the cross section asymmetry 

Ai(x, Q2) seems to be hardly feasible both at fixed target experiments and at H E R A with 

polarized beams. 

The production of Drell-Yan pairs in polarized proton-proton collisions can put severe 

constraints on the shape of the polarized sea quark distribution at x > 0.1. Due to the 

decrease of the cross section with energy, a fixed target experiment would be favourable. 

It was found that the production of charmed quarks in lepton-proton collisions induced 

by quasi-real photons could be a sensitive probe on the polarized gluon distribution. We 

have studied the production of charmed mesons (open charm) and of the lightest (cc) 

bound state, both turn out to provide promising experimental observables. Finally, we 

have studied a rather exotic channel in singly polarized proton-proton collisions, which 

yielded a negative result like most other singly polarized observables. 

The R H I C - S P I N collider will provide first information on the polarized gluon distribu

tion at the beginning of the next decade. If the C O M P A S S experiment is approved, it will 

yield a complementary measurement at the same time. Provided all technical problems 

can be overcome, the H E R A collider might be operated with a polarized proton beam in 

about ten years from now. This would open a new kinematic region for the measurement 

of the polarized structure function and provide a facility for polarized proton-nucleon 

collisions at fixed target energies. 
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Chapter 7 

Hard diffraction at H E R A 

The electron-proton collider HERA allows detailed studies of the final state of deep 

inelastic scattering events, which are not possible at fixed target experiments. It is in 

particular possible in the hadronic final state, to distinguish between fragments of the 

struck parton (current jet) and fragments of the remnant proton (remnant jet). While 

the former are found in direction of the virtual photon, the latter are moving in the 

direction of the proton beam. 

The struck parton (quark or gluon) and the proton remnant both carry colour charge, 

whereas the final state contains only colour-neutral hadrons. The hadronization of current 

and remnant jets is not completely independent, a few hadrons are emitted in the rapidity 

interval between these jets. 

Soon after the start of the experimental programme at HERA, the ZEUS collaboration 

reported [114] that a significant fraction of DIS events at small x showed a different event 

topology: no remnant jet was observed and no hadronic activity was found in the rapidity 

region between the current jet and the proton beam direction (Fig. 7.1). This observation 

was confirmed by the HI experiment shortly afterwards [115]. 

The lack of any hadronic activity around the proton beam direction and the mismatch 

between the initial-state and observed final-state energy requires the proton (deflected 

only by a small angle and therefore outside the rapidity coverage of the detectors) to be 
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Figure 7.1: Event topology of deep inelastic scattering (a) and diffractive deep inelastic 

scattering (b) at HERA. 

in the final state, still carrying a large fraction of its initial momentum. These events with 

a remnant proton in the final state are classified as diffractive deep inelastic scattering 

(DS) events. 

The physical origin of this phenomenon is not understood at present. A possible 

explanation is given by the pomeron model, which was originally introduced in [116] to 

explain the high energy behaviour of elastic hadron-hadron cross sections. 

In this chapter we will study the application of the pomeron model to diffractive deep 

inelastic scattering at HERA. An introduction to the phenomenology of this process and 

its interpretation in terms of the pomeron model is given in Section 7.1. As the remnant 

proton in DS cannot bejdetected, a complete reconstruction of-the event kinematicsis not" 

possible. We examine the reliability of the kinematical approximations made at HERA 

in Section 7.2 and show in Section 7.3 that the pomeron model predicts a kinematical 

correlation between outgoing electron and remnant proton. If the pomeron interpretation 

of DS is correct, one should be able to study the pomeron structure function from this 

process. A very simple model for the pomeron structure will be presented in Section 7.4. 

This model allows the study of other observables, such as the charm quark contribution 

to DS, which can provide a consistency check of the pomeron interpretation. We will 
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determine the parameters of this model from experimental data in Section 7.5. Finally, 

section 7.6 contains the conclusions of our study. Experimental data on diffractive deep 

inelastic scattering have improved considerably since the study in this chapter was orig

inally published [117]. We shall briefly comment on these new results in the conclusions 

of this chapter. 

7.1 Phenomenology of hard diffraction at H E R A 

Measurements at HERA have indicated that a significant fraction of deep inelastic elec

tron-proton scattering events have a final state with a large rapidity gap between the 

proton beam direction and the observed final state particles [114, 115]. The cross section 

for this diffractive deep inelastic scattering can be written in a form similar to the cross 

section for deep inelastic scattering (3.12), it reads 

do1® 4ira2 j y2 1 m 2 

dapdtdxdQ2 = lW Y ~V + 2[1 +R^(x,Q2,ap,t)]J 2 { X ' Q , C l p , t ) ' ( } 

Apart from the DIS variables x and Q2, we need two more variables to describe the four-

momentum of the outgoing proton: the proton loses a fraction ap of its initial longitudinal 

momentum, its deflection is described by the invariant momentum transfer t between the 

incoming and outgoing proton. 

The presence of a large rapidity gap between the proton beam direction and the 

current jet suggests that the diffractive events are caused by a deep inelastic scattering 

off an uncharged" and colourless object, which was emitted from the proton beforehand, 

Fig. 7.3. We shall show below that the experimental data give strong indications that 

this object is the pomeron, which was postulated to explain the high energy behaviour of 

hadronic cross sections. To motivate this interpretation, we briefly review some features 

of the theory of elastic hadron interactions (Regge theory) in this section. The Regge 

theory interpretation of hadron-hadron scattering yields the existence of the pomeron 

and determines some of its properties. 
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7.1.1 A brief excursion into Regge theory-
Elastic hadron-hadron dynamics at high energies and low momentum transfers are not 

calculable in perturbative QCD. A theoretical description of these dynamics is however 

possible in the framework of Regge theory [118, 119]1. 

Quantum field theories like QED or QCD have matter fields and gauge fields as fun

damental degrees of freedom, scattering amplitudes are calculable from first principles. 

Regge theory does not provide a method to calculate scattering amplitudes, but to relate 

amplitudes for different processes using fundamental symmetry and analyticity proper

ties. In addition to the 'classical' symmetries such as isospin or crossing, Regge theory 

introduces the analyticity in the angular momentum variable /. We illustrate this using 

the example of an arbitrary 2 —• 2 scattering amplitude A(s,t). Keeping in mind, that 

the variable s can be reexpressed by the centre-of-mass scattering angle zt = cos0|< at 

fixed t, this amplitude can be written 

oo 
A(s,t) = 1 6 T T £ ( 2 / + l)A,{t)Pl{zt), (7.2) 

(=o 

where P/ is the /-th Legendre polynomial. The above expression is called partial wave 

expansion of the scattering amplitude. Its coefficients can be obtained from 

M * ) = — ^ d i ^ W ^ t ) , * ) . (7.3) 

The analytical continuation of the Legendre polynomials is given by the hypergeomet-

ric function-[-70] 

Pi(z)= a / i ( - / , / + l ; l ; ( l - * ) / 2 ) , 

which is an alternating finite series for integer values of /. Like for the partial sums 

encountered in Appendix A.4, one finds that the sums with odd / are on a different 

branch in the complex / plane than those with even /. The analytical continuation for 

odd and even / will therefore be different. Hence we have to consider amplitudes of odd 

*We will outline the basic features of Regge theory in this section. The discussion follows closely the 

book of Collins [119], where more details can be found. 
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(At ) and even ( A f ) signature, which can be expressed similar to (7.2) 

oo 
As(s,t) = 1 6 * £ ( 2 i + l)Af(t)P,{zt). (7.4) 

The fundamental assumption of Regge theory is that the partial wave amplitude Af (t) 

has only isolated poles in a(t) in the complex / plane. If this is true, and Af (t) is moreover 

free of branch cuts in the right half plane Re(/) > 0, the partial wave expansion (7.4) can 

be written as a contour integral in the complex /-plane [119]: 

L% J-O-5-ioo Sin7T( 

sin ire*(i) 

For simplicity it is assumed, that Af has only a single pole a(t), which is in the right half 

plane. The behaviour at 5 —• co can be studied from the limit zt —• oo. One finds that the 

first term in (7.5) is suppressed like s - 0" 5, while the second term behaves like sa^\ i.e. it 

dominates the high energy behaviour of the scattering amplitude. This term is called 

Regge pole. The function a(t) is called Regge trajectory. In calculating the contribution 

of a Regge pole to the physical trajectory A(s, t), which contains partial waves of odd 

and even signature, one has to take into account that the corresponding trajectory has a 

definite signature. Even trajectories should only yield poles in the amplitude for even /, 

odd trajectories only for odd /. The physical amplitude therefore reads 

A(s, t) = -A%v*{2a(t) + !)/?(*) (l-+ Se"'™*')) P°(t)i~,Z'}. (7.6) 

Inspection of the above amplitude yields that A(s, t) develops a resonance pole if a(t) 

coincides with a positive (odd or even) integer. If this occurs for a positive argument t = 

tR, it can be interpreted as a particle resonance of spin a ( t j i ) and mass y/tR. Classifying 

light hadrons of identical quantum numbers and increasing spin onto Regge trajectories, 

one finds that a(t) can be put into the simple form 

a(t) = a0 + a't. 
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Figure 7.2: An example of a particle trajectory (solid line) and the pomeron trajectory 

(dashed line). The particle trajectory shown is the quadruple degenerate (p, u), a2, $2)-

trajectory. The masses of the particles on this trajectory are taken from [58], the particles 

in square brackets have only been observed indirectly. A recently observed X(1900) 

state [120] is the first particle candidate on the pomeron trajectory. The parameterizations 

for both trajectories are taken from the fit of [121]. 

The crossed amplitude with negative t can be understood as simultaneous exchange 

of all particles on the particular trajectory. The differential cross section for the exchange 

of a Regge trajectory in 2 —* 2 scattering in the limit s —• 0 0 can be written 

where F(t) is a function of t only, s0 is an arbitrary scale factor. The optical theorem 

yields moreover the total 2 —• X cross section due to Regge trajectory exchange to be 

While many elastic hadron-hadron scattering processes can be described as due to 

the exchange of particle trajectories, it turns out that experimental data on certain elas

tic scattering processes and on total hadron-hadron cross sections at large s cannot be 

2a(t)-2 d(T 

dt 
(7.7) 

3 tot (7.8) 
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explained by the exchange of known particle trajectories. While the most singular Regge 

stant - even slightly rising - at large s. This indicates the presence of a trajectory with 

a(0) « 1 - the pomeron trajectory [116]. An example of a particle trajectory and the 

pomeron trajectory are displayed in Fig. 7.2. 

So far, no particle on the pomeron trajectory has been observed experimentally, there is 

however some experimental evidence [120] for a spin-2 resonance state on this trajectory 

(cf. Figure 7.2). The properties of the pomeron trajectory, in particular the pomeron 

coupling to hadrons, can therefore not be studied from pomeron production and decay, 

they have to be modeled on the basis of cross section data. A successful description 

of hadronic scattering data can be obtained in the pomeron model of Donnachie and 

Landshoff [122]. This model assumes, that the pomeron couples to the total number of 

constituent quarks in a hadron with a coupling strength b. The pomeron-proton vertex 

is very similar to the photon-proton vertex of (1.3), with two minor modifications: (a) 

the anomalous magnetic form factor i*2(i) vanishes, as the pomeron is an isoscalar; (b) 

an overall factor of i yields the positive C-parity of the pomeron. The contribution of 

pomeron exchange to the elastic proton-proton cross section reads in this model 

The pomeron coupling strength to quarks b « 1.8 GeV 1 and the pomeron trajectory 

are tuned to explain a wide range of experimental results in pp, pp, and irp scattering 

[121]. The vertex form factor Fi(t) is identical to the photon-proton form factor of (1.7). 

7.1.2 The pomeron interpretation of diffractive deep inelastic 
scattering 

From the kinematical distribution of the diffractive deep inelastic scattering events at 

HERA, it seems most likely that this process is mediated by the pomeron. The deep 

trajectories have a(0) « 0.5, the total proton-proton cross section appears to be con-

4 2a(t)-2 da [36Fi(£)] 
dt Air 

(7.9) 

a(t) = 1 + e + a't with t = 0.086, a' = 0.25 G e V - 2 (7.10) 
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Figure 7.3: Kinematics of deep inelastic electron-pomeron scattering 

inelastic scattering in this process (Fig. 7.3) therefore probes the structure function of 

the pomeron. The idea that the pomeron has partonic constituents was first proposed by 

Ingelman and Schlein [123], and given strong support by the hadron collider experiments 

of the UA8 collaboration [124, 125]. 

If this interpretation is correct, then one would expect that the diffractive cross section 

(7.1) could be factorized into a part corresponding to the emission of an uncharged, 

colourless pomeron from the proton and another part corresponding to a hard scattering 

off the partonic constituents of the pomeron: 

da08 \4ira2 , „„, „„ .v 

/(<*„,*), (7.11) dapdtdzdQ2 { 1 - y p + 2 T T T ^ % Q V 0 j } F ^ Q 2 ^ \ zQ 

where z = z(x,Q2 ,ap,t) is the fraction of pomeron .momentum carried by the struck 

parton and 

VP = ^ (7.12) avz 

is the virtual photon energy 'seen' by the pomeron. Ffiz, Q2, t) denotes the DIS structure 

function of the pomeron, f(ap, t) represents the probability that a proton emits a pomeron 

with momentum fraction ap and f-channel invariant momentum transfer t. 

A common but only approximately correct way of parametrizing this factorization 

property is to write the diffractive structure function as the product of an emission factor 
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and the deep inelastic structure function of the pomeron [126, 127]: 

f f O e . Q ' . O p , * ) = F2

p(z,Q\t) f(ap,t). (7.13) 

However R03 and Rp functions cannot be related in such a simple manner. We will discuss 

various tests of the factorizability of the cross section and investigate the applicability of 

the factorization at the level of structure functions (7.13) later. 

If the object struck by the virtual photon in diffractive deep inelastic scattering is 

indeed the same pomeron which controls the high energy behaviour of hadronic scattering 

amplitudes, then its basic properties and in particular its coupling to the proton are 

already known. For example, Donnachie and Landshoff give a simple form for f(ap, t) 

[126] which they derive from their model for the pomeron-proton coupling discussed in 

the previous subsection: 
Q/J 2 

/(«„,<)=|^[^wNr 2 a ( i )- (7.i4) 

Other similar forms2 for / have been proposed in the literature, see for example [123], 

but the differences are not crucial to the present discussion. 

The above picture has recently been given strong support by a detailed analysis of 

diffractive deep inelastic scattering events by the HI collaboration at HERA [130]. Their 

principle conclusions are: 

(i) The Q2 dependence of F2

DS is consistent with scattering off point-like objects. 

(ii) The factorization of the diffractive structure function into pieces which depend sep

arately on z and ap, cf. (7.13), is observed. 

(iii) The ap dependence of / is consistent with that predicted by Donnachie and Land

shoff, i.e. - a i - 2 °(°) . 
2There have been several recent attempts to derive a perturbative formulation of the pomeron. These 

approaches [128], all based on the B F K L equation [129], will not be discussed in the present context, 

as there is insufficient conclusive evidence at present for the applicability of the B F K L equation in the 

kinematic range covered at H E R A . In the following discussion, we will always assume f ( a p , t ) (as for any 

other hadron-hadron interaction at low invariant momentum transfer) to represent a non-perturbative 

coupling of pomerons to the proton, which can be determined from the experimental data. 
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(iv) The pomeron structure function Ff is 'hard', i.e. the point-like constituents carry 

a significant fraction of the pomeron's momentum on average. 

Not yet determined experimentally are: 

(i) The 'nature' of these hard constituents (i.e. whether the pomeron predominantly 

consists of quarks or of gluons). 

(ii) The kinematical distribution of the remnant protons. 

If diffractive deep inelastic scattering is interpreted as deep inelastic scattering off a 

pomeron target, it is possible to make definite predictions for these undetermined ob-

servables. These can serve as experimental test of this interpretation, once a more precise 

measurement is possible. The 'nature' of the pomeron constituents can be determined 

from an analysis of its structure function if interpreted in the parton model. The kine

matical distribution of the remnant protons can be calculated from the known emission 

factor f ( a p , t ) . We will address both issues below. 

7.2 Kinematics of electron-pomeron deep inelastic 

scattering 

7.2.1 Reconstruction of the kinematical invariants 

To. reconstruct-all kinematical-parameters in the diffractive deep inelastic scattering cross 

section (7.11), it is sufficient to measure the momenta of the outgoing electron (</2) and 

the remnant proton (p'). It is convenient to parametrize these momenta in a Sudakov 

decomposition using two light-like vectors directed along the beam and a space-like trans

verse vector. Since we are ignoring the electron mass we can use the incoming electron 

momentum qi for one of the light-like vectors. For the other, we define 

M2 
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where s = (p + qx)2, p2 = M 2 and, by construction, p2 = 0. Hence we can write 

g 2 = Ap + Bqx + qr , 

p' = Cp + Dqt + kr, (7.15) 

which implies 

q = -Ap + (1 - B)qx - qT , 

k = (i-c)p+(7^-a)ft-fi 
The eight degrees of freedom in (7.15) are reduced to five by requiring that q\ = 0, 

pn = M2 and disregarding an overall azimuthal angle. The next step is to relate the 

remaining degrees of freedom to more familiar deep inelastic and diffractive variables. 

The electron is described by the usual two DIS variables x and Q2, and three additional 

parameters define the proton: 

ap = fraction of longitudinal momentum transferred to the pomeron, 

t = t-channel invariant momentum transfer to the pomeron, 

( f > e p = angle between the outgoing electron and outgoing proton 

in the plane transverse to the beam direction. 

In terms of Lorentz invariants, 

C? = -q\ x = ^ - , t=k2, « p = k - ^ . (7.16) 
2pq p-qx 

Some straightforward algebra then gives the photon and pomeron momenta: 

/ Q2 \ r (i M2 \ 

, t — e t r , M 2 .„ „ „. 
* = a » p + s-M2 q i ~ r > ( 7 ' 1 7 ) 
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where 

Q> - 0*U Q2 M2Q2 \ 
Q t ~ V V 1 x(s-M2) ( s - M 2 ) 2 ) ' 

k2 = - t ( l - a p ) - a 2

p M 2 , 
—t 

cos < j ) e p = 

As already mentioned, neither ap, t or <f>ep are directly measured. An additional 

constraint on the kinematical variables can however be obtained by measuring the mass 

of the final state in the ~f*(q)P(k) —» X hard scattering, M\ = {q + k)2. In analogy with 

the usual Bjorken x variable (7.16) we introduce 

Q2 _ Q2 , 7 1 o . 
2q-k M2

x + Q 2 - f { J 

Substituting the expressions for 9 and A: from (7.17) then yields a relation between z and 

the other kinematical variables: 

1 _ Op 2apM2 -1 
z x s — M2 

2 cos (f>, ep ' {-t(l - ap) - a2

pM2} ( l - ^ - ^ I (7.19) 
Q 

From (7.14) we see that the DS cross section is expected to be heavily suppressed for 

large values of \t\. This is consistent with the fact that no final-state protons are observed 

outside the beam pipe. It isjtherefore a reasonable first approximation to-set t = 0 in-the 

kinematical relations above. With the substitution t = M2 = 0, (7.19) becomes 

1 = ^ ap=X-. (7.20) 
Z X z 

Hence, the momentum fraction of the quark in the proton (x) is simply the product of 

the momentum fraction of the quark in the pomeron (z) and the momentum fraction of 

the pomeron in the proton ( c t p ) . Note that in this approximation 

z = Q2/(Q2 + M2). (7.21) 
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In this way, the parameter ap is easily determined from measured quantities. 

It is important to stress, however, that the corrections to (7.20) are not obviously 

negligible. In particular, we note that the terms of order y/^i/Q and M/Q may not be 

small. Corrections to (7.21) start at order t / (M£ + Q2) and will therefore be ignored 

in the following. In practice, diffractive events are identified by the presence of a large 

rapidity gap. This requires the pomeron to be slowly moving in the laboratory frame, and 

consequently o p < l . In this limit, including the most important subleading corrections 

gives 
x 
z 

This result shows that the distribution in the angle < f > e p will not be uniform in general. 

For any non-zero t, and at fixed z, x and Q 2 , ap varies with < j > e p . Since the diffractive 

structure function (7.13,7.14) is a steeply falling function in ap the impact of a variation of 

4 > e p can be quite large. This effect will be studied in greater detail below, and in particular 

the implications for angular correlations between the outgoing electron and the remnant 

proton will be elaborated in Section 7.3. 

7.2.2 Estimates for the systematic uncertainties at H E R A 

The dependence of ap on the presently unmeasurable angle < f > e p gives rise to a systematic 

uncertainty on reconstructing the variables yp and ap which appear in (7.11). In this 

section we attempt to quantify these uncertainties in order to test the validity of the 

approximations-

« P « y p & y (7.23) 
z 

used to extract Ff(z, Q2) from the HERA data [130]3. We will also test the factorizability 

of the diffractive structure function (7.13). 

For any parametrization of f ( a p , t ) which has a similar a p dependence to (7.14), 

one obtains a diffractive cross section which decreases steeply with ap. This decrease 
3 We use y/s = 296 GeV for all following numerical evaluations. 

1 + 2 W 1 - 91 z^~i 

xs Q 
cos (j>, ep (7.22) 
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is quantified by the pomeron intercept 2a(0) — 1 in (7.14), which is equal to 1.17 for the 

Donnachie-Landshoff model. 

Due to this non-linear decrease, the correction (7.22) will not average out over all 

angles < f > e p , it will rather accumulate to give a non-zero average deviation from (7.23). 

The relative deviation of ap from x/z is given by 

<»P -
 x l z

 n L Q2 zV-t , 
7 = 2 \ 1 7T~ C O S ^ P ' 

x/z V xs Q 
while the relative deviation of yp from y has a similar form: 

VP - V x Q2 zy/^i a p - x/z 
= 1 ^ - 2 t / l — cos ( j > e p = — i • 

y zap V xs Q x/z 

Since ( j > e p and t are not directly measured, we define the expectation value of the deviation 

to be the weighted average over all angles and values4 of t: 

, , v f° dt r d ^ ( ^ ^ ) f ( a p , t ) 
/ a p - X / Z \ ( x Z Q2} =

 J-°° J0 V X I Z I 
X / Z I f° dt d<f>epf(ap,t) 

J-oo Jo 

y p - y 
\ y 

which becomes, for any f(ap,t) with a similar form to (7.14), 

\ ) - » ^ „ ) g . j ° j t f - ( t , t ) 
(7.24) 

Figure 7.4.a shows this systematic deviation for the DL parametrization of f(ap,t) 

(7.14). We see that there is a small (<5%) negative correction to the approximation 

(7.23) for ap and the same, but positive, correction for yp. This effect can be understood 

intuitively as follows. The form of f(ap, t) favours low values of ap and therefore values of 

90° < 4 > e p < 270°, i.e. cos<^ep < 0. In this region, the pomeron moves towards the virtual 

4 We assume here that Ff is independent of t, i.e. that f ( a p , t ) in (7.11) takes account of the full 

^-dependence. 
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Figure 7.4: Systematic deviations after averaging over t and < f > e p , using the DL-

parametrization for f(ap,t) (7.14): (a) systematic relative deviation between ap and its 

approximation x/z as a function of x. The upper lines correspond to z = 0.2, the lower 

ones to z — 0.8. yp and y show the same systematic deviations with the opposite sign; 

(b) magnitude of the Jacobian factor denned in (7.28). 

photon, thus increasing the virtual photon energy yp 'seen' by the pomeron. Note that 

this effect decreases with increasing Q2 and so will vanish in the asymptotic scaling limit. 

Furthermore, the deviation is proportional to the intercept 2a(0) —1. As phenomenological 

studies of the B F K L equation predict larger intercepts [128] than the model of Donnachie-

Landshoff, one should expect corrections of up to 8% in B F K L motivated approaches. 

In order to examine the factorizability of the diffractive structure function (7.13), we 

return to (7.1) in its fully differential form: 

_ 4*q» r l + ( l - y ) 2

 p D S ( r n 2 . 
dapdtdxdzdQ2 xQ4 I 2 

- y F^(x,Q2,ap,t)} f j ^ 6(z - z(x,Q2,ap,t)), (7.25) 

where we have made the replacement 

^ • ^ - w ^ r ^ o r ^ y (7-26) 
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Assuming that the factorization (7.13) of the structure functions F2 and FL gives a valid 

approximation for the factorizability of the cross section, this can be expressed as 

^ m _ W {l + j l - y f P a 

dapdtdxdzdQ2 ~ xQ4 \ 2 2 1 ' V ' ' 

<2 1 /-2T d^ e - y i^(*,ga,*)}/(^,t) jf * -|=-*(* - z(x,Q\ap,t)). 

After a simple integration over <f> and a;, restricted to the kinematically allowed values 

of the latter for fixed ap and z, we finally obtain an expression for the differential cross 

section similar to (7.11): 

dam W / 4 i z 2 \ ~ * t2 ( 4tz2\~* f v2 1 

(7.27) 

Assuming F2

P and Fjf to be independent of t, we can estimate of the magnitude of the 

Jacobian factor, 

(J)(z,Q2,ap) = ( ( l + ^ ) *)(z,Q2,ap) = 
y / / / d i / ( a p , * ) 

J—oo 
(7.28) 

which is shown in Fig. 7.4.b as a function of z and Q2.5 We see that this Jacobian 

factor differs by less than 5% from unity for the whole kinematical range experimentally 

accessible at HERA. Together with the systematic difference between yp and y, which is 

of about the same order,"we find that the cross sections defined by (7.11) and (7.27) agree 

within a maximum deviation of 10%, which is attained only in the large-z region. For 

values of z < 0.4 the agreement is already better than 5%. Furthermore, both expressions 

become equal in the scaling limit Q2 —• oo. As the experimental errors on the diffractive 

structure function are still well above these corrections [130], and uncertainties arising 

from the i2-factor are twice as big as these corrections, it seems appropriate at this time 

5 The ap dependence turns out to be negligible. 
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to factorize the diffractive structure function into a pomeron emission factor and a deep 

inelastic structure function of the pomeron, (7.13). 

When, in the future, the data improve and the full pomeron kinematics can be re

constructed, it should be kept in mind that the factorization (7.13) of the diffractive 

structure function is only an approximation to the factorization of the diffractive cross 

section (7.11). 

A final point concerns the measured intercept of the pomeron trajectory. As a mea

surement of t is not possible at present, only an 'average' coupling of the pomeron to the 

proton can be determined: 

f ( a p ) = f° d * / ( a , * ) ~ * p - n ( e f f ) . (7.29) 
J —CO 

Using the DL-parametrization (7.14) for f(otp), one finds rc(eff) ~ 1.09 ± 0.02. The error 

here represents the spread in n(eff) values as ap varies over the range 1 0 - 4 < ap < 1 0 - 2 . 

If ap is approximated by x/z, the effective power increases slightly to n(eff) ~ 1.11 ± 0 . 0 3 , 

which is a non-negligible shift. Both these values are significantly lower than the 'naive' 

approximation n(eff) « 1 — 2a(0) = 1.17, and therefore this effect should be taken into 

account in comparing the measured intercept with model predictions. 

In summary, we have shown in this section that effects arising from an incomplete 

reconstruction of the pomeron kinematics at H E R A give systematic corrections of only a 

few percent to ap, yp and the measured intercept of the pomeron trajectory. Furthermore 

we have demonstrated that the factorization of the diffractive structure function gives a 

correct approximation of the factorization of "the diffractive cross section up to a relatively 

minor error, which vanishes in the large Q2 scaling limit. 

7.3 Final-state electron-proton correlations 

It should be clear from the above discussion that identification of the scattered proton 

and measurement of its four momentum p' will provide a crucial test of the pomeron 

picture. In principle, this would allow a direct measurement of the parameters ap and t 
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and hence of the pomeron emission factor / . However in practice it will be difficult to 

make a precision measurement of the proton energy, which would be needed to obtain 

sufficient experimental resolution on ap and hence a precise determination of t. In the 

short term, it therefore seems more promising to test the ^-dependence of / by using the 

angular correlation between the transverse momenta of the outgoing electron and proton, 

Fig. 7.3. 

As discussed in the previous section, the ap dependence of any Regge-motivated 

f ( a p , t ) favours low values of ap, and therefore final state configurations in which the 

scattered electron and proton are approximately back-to-back. This correlation will be 

enhanced with increasing transverse momentum of the pomeron. Thus the distribution 

of events in the relative azimuthal angle <j)ep is a measure of the average size of t involved 

in the process. The <f>ep dependence of the diffractive cross section can be parametrized 

in the form of a distribution function: 

f d t f ( - + 2xJl-^-^cos<t>ep,t 
Jtmin \z V xs Q i AN 

-—(x,z,Q\ # „ ) = — S _ _ ^—L (7.30) 

d K /_<•"(!•') 
where the lower limit on t arises from the physical range of the fractional proton momen

tum carried by the pomeron 0 < otp < l : 6 

Q2 

90° < <f>ep < 270° 
l u s " y>ep 

4(1 — Q2/xs) cos 2 <j)ep 

. _ . 4 z 2 ( l - Q2/xs)cos2 <f>ep 

n O2 / l 1 \ 2 

\x ~ 7 r : < 9 0 ° ' ^ p > 2 7 0 ° -

In practice, these bounds on t have minimal impact on the dN/d(f>ep distribution, since 

one expects / to be strongly suppressed for |t| values larger than a 'typical' hadronic scale 

of C>( lGeV 2 ) . 

Figure 7.5 shows the predicted correlation between the outgoing electron and the 

remnant proton as a function of x, z and Q2. In fact it turns out that this function is 
6This constraint is not to be confused with the more restrictive experimental cuts on the quantity 

x/z, since x and z are fixed in this distribution. 
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Figure 7.5: dN/d(f>ep(x,z,Q2,<f>ep) distribution for fixed values of x/z and Q2, at z = 0.2 

(solid lines), z = 0.4 (dashed lines), z = 0.6 (dotted lines), and z = 0.8 (dot-dashed lines). 

almost independent of the ratio x/z, the naive expectation for ap. As expected from 

(7.30), the maximum asymmetry between the same-side and opposite-side hemispheres is 

obtained for low values of Q2 and high values of z. Note that the asymmetry reaches a 

magnitude of up to 30% for realistic H E R A kinematics (Q2 = 8 G e V 2 , z = 0.6), and hence 
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should be distinguishable from statistical fluctuations. 

As we have discussed in detail in the previous section, the discrepancy between fac

torization at the level of diffractive structure functions and diffractive cross sections is 

of order —t/Q2, which is subleading to the y/—i/Q dependence in (7.30). It is therefore 

appropriate to use the angular distribution dN/d<j)ep in connection with the factorized 

structure function (7.13). Assuming the structure functions F% and Ff to be indepen

dent of t, this yields the following result for the diffractive cross section: 

d ( 7 m _ W j y2 \ P 2 1 dJV 2 i \ 

dxdzdQ2d<j>ep " ~zW + 2(1 + Rp(z,Q*))l F> { Z ' Q }2ird<f>ep

[X>Z>Q ' 0 e p ) ' 

(7.31) 

The error implicit in this expression due to the neglect of the Jacobian factor discussed 

in the previous section affects the normalization of dN/d(f>ep, and leads to 

<-2ir <jjv 

Jo d<f>ep 

However this deviation is less than 5% for the kinematical range at H E R A , since it only 

reparametrizes the Jacobian factor (7.28), which is small compared to the angular asym

metry of up to 30%. 

E q . (7.31) can be used to extract the dN/d<j>ep distribution from the H E R A data, 

since it only requires information on the coordinates of the remnant proton, and not on 

its momentum. This distribution can provide a crucial test of the applicability of D L -

like parametrizations of f ( a p , t ) . Furthermore, any i-dependence of F 2

P would result in 

deyiations_from the predicted z-dependence-of dN/d(f>ep. In particular, a significant t-

dependent contribution to Ff would map the z-dependence of Ff onto the z-dependence 

of dN/d<f>ep. 

In summary, we have derived a kinematical correlation between the transverse mo

menta of the outgoing electron and proton momenta in DS. Assuming the pomeron emis

sion factor of (7.14), we find an asymmetry of up to 30% between aligned and anti-aligned 

configurations. This asymmetry can serve as a first test of the pomeron interpretation of 

diffractive deep inelastic scattering. 
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7.4 Predictions for F f and F f 5 

7.4.1 Models for the partonic content of the pomeron 

The type and distribution of the parton constituents of the pomeron has been the topic 

of some debate [131]. On one hand, it seems natural to assume that the pomeron is 

predominantly 'gluonic' [132]. On the other hand, the pomeron has to couple to quarks 

at some level. In fact Donnachie and Landshoff have presented [126] a prediction for the 

quark distribution in a pomeron 

zqp(z) « \Citz{\ - z), (7.32) 

with C «3 0.17. This result is obtained from calculating the box diagram for 7*P —> qq, 

in the same way as the photon structure function is calculated in the parton model from 

the box diagram for 7*7 —• qq. A crucial difference for the above pomeron calculation 

is the softening of the pomeron-quark vertex by a form factor which suppresses large 

virtualities. This leads to the scaling behaviour (7.32) in the Q2 —• 00 limit, in contrast 

to the asymptotic growth q^{x, Q2) ~ a(x) \n(Q2/A2) obtained for the quark distributions 

in the photon 7. 

The absence of point-like pomeron-quark couplings in the above model, which gives 

rise to asymptotic Bjorken scaling for the pomeron structure function, suggests that the 

partonic content of the pomeron is on a similar footing to that of any other hadron, 

with the quark and gluon distributions in the pomeron obeying the D G L A P evolution 

equations (3.7)r There is, however, a" crucial difference between the pomeron and other 

hadrons. The second moments of quark singlet and gluon distributions of on-shell hadrons 

have to add up to unity due to momentum conservation (4.5). This condition is not true 

for the pomeron, as it cannot be regarded as on-shell or quasi on-shell particle. 

The sum of quark and gluon momenta in the pomeron can therefore be an arbitrary 

number, which can only be determined from experimental data. This normalization factor 

Alternative scenarios with a point-like quark-pomeron coupling have been discussed in the litera

ture [117, 133]. 
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M is however preserved by perturbative evolution. 

The first evidence for partons in the pomeron was given by the discovery of jets at large 

transverse momenta in diffractive proton-antiproton collisions [124]. This measurement 

has indicated that the parton distributions in the pomeron are hard, i.e. individual par-

tons carry a significant fraction of the pomeron's momentum on average, as in (7.32) for 

example. From this data, it was however not possible to determine, whether the pomeron 

consists of quarks or gluons. 

To enable further studies of possible observables, we would like to propose a very 

simple, physically motivated model for the pomeron's parton structure. It basic features 

are outlined below. Two free parameters of the model are adjusted to the recent data on 

the diffractive structure function published by the H I collaboration [130]. 

As the pomeron carries the quantum numbers of the vacuum, its quark and antiquark 

distributions have to be identical. Therefore, one has to consider only two parton distri

butions in the pomeron, the quark singlet S p = YliiqC + q f ) and the gluon. These are 

assumed to have the following, valence-like shapes at Ql = 2 G e V 2 : 

zXp(z, Ql) = fq(Ql) 6z(l - z), zgp(z, Q2) = fg(Ql) 6z(l - z), (7.33) 

where / , and fg are the fractions of pomeron momentum carried by quarks and gluons. 

The D G L A P evolution equations (3.7) determine the change of these momentum fractions 

with increasing Q2. In fact, leading-order perturbative Q C D predicts that the asymptotic 

(Q2 —• oo) momentum fractions are, regardless of the type of hadron, 

f , 3 n / f

 1 6 

J q 16 + 3 n / J s 16 + 3 n / 

This model is motivated by the dynamical parton model [134] for the parton distributions 

in the proton, which assumes valence-like shapes for quarks and gluons [135] at some low 

scale (Q2 < 1 G e V 2 ) . 

In the evolution of these parton distributions we always define the quark singlet to be 

the sum of only three light quark flavours (u, d,s). Contributions of heavy quarks to F p , 

of which we will only consider the dominant charm quark contribution, are incorporated 
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by projecting the massive contribution from the *f*g —> cc fusion process onto F p (cf. 

Section 3.1). The number of active flavours in the evolution is fixed to nj = 3, as 

explained in Appendix B.3.1. 

Assuming that SU(3) flavour symmetry is already established at Qq, the contribution 

of the light quarks flavours to F p is just the singlet distribution times a charge factor: 

F^d<s\z,Q*)=2-zVp{z,Q2). (7.34) 

The massive charm contribution arising from photon-gluon fusion takes the form 

F2 {Z,Q , m c ) - 2 z q — J a - C ^ , - ) 9 ( y , , c ) , (7.35) 

with the kinematical bound a = 1 + 4m2/Q2 and the L O coefficient function 

C«,r) = I[C 2 + ( l - C ) 2 + 4 C ( l - 3 C ) r - 8 C V ] l n l ± | 

+ 8 C ( i - C ) - 4 C ( i - C H 

2 , 4rC 
where 

It has been shown in [136] that a mass factorization scale of p2 = 4m 2 for the gluon 

distribution in (7.35) is the most appropriate choice with regard to the perturbative 

stability of the expression. We will use m c = 1.5 GeV in our numerical evaluations 

presented below. The complete prediction for F p is the sum of light and heavy quark 

contributionsy it reads 

Fp(z, Q2) = § z E p ( z , Q2) + FFc){z, Q\ m2

c). (7.36) 

The above treatment of the charm contribution takes proper account of the threshold 

behaviour which, as we will see in Section 7.5, makes a significant contribution to the Q2 

dependence of the structure function. 

Finally, to take into account the ambiguity in the pomeron momentum sum rule dis

cussed above, we multiply the structure function (7.36) by an overall normalization factor 
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KM2)—>ATFp(z,Q2). (7.37) 

We shall see below that M « 2 gives a good representation of the H I data. 

7.4.2 Q2 evolution of F f 8 

The assumption that F^ is factorizable into an emission and a DIS part (7.13) implies 

that the Q2 dependence of F^8 arises entirely from F p . Assuming the parton inter

pretation of F p to be valid, then this Q2 dependence is given by the standard D G L A P 

evolution equations (3.7) of perturbative Q C D , as we will prove in this subsection. The 

observation of such a Q2 dependence is an important test of the parton interpretation of 

the pomeron and of the factorizability of diffractive scattering cross sections. 

For F^ we must fold the results with the pomeron flux factor / . In particular we can 

define 'difFractive' parton distributions in the proton by 

/ £ * > ( * , Q M ) \ / i / Ep(z,Q2,t) \ 
ns, ^ 2 ^ = L d z d a P \ P , „2 J X ] f { a p , t ) S ( z - x / a p ) , (7.38) 

^ gm(x,Q2,t) J Jo y gP(z,Q2,t) ) 

where we have used (7.19), dropping the small corrections due to finite t and M2 effects. 

Taking d/d In Q2 of both sides, and using the fact that the pomeron parton distributions 

E p , gv satisfy the D G L A P equation, gives 

dlnQ2{ 9 * i x , Q 2 , t ) )_ _ 1* Jo P W J - [ gPiy',Q2,t) ) 

x f ( a P , t ) S(z - x / a p ) 8{z - riy'), 

where ["P(ty)] is the 2 x 2 matrix of splitting functions (B.24). Introducing 1 = / dy6(y — 

y'oip) and integrating over y' and z gives 

which is the usual D G L A P equation, but now for the difFractive parton distributions. 
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Therefore, one should find experimentally that the Q2 dependence of both F2

DS{x, Q2, t ) 

and F2{z,Q2,t) is consistent with perturbative Q C D while the corresponding parton dis

tributions are related by (7.38). 

It is worth stressing that the Q2 dependences of the proton structure function F2 and 

F^ at the same Bjorken x value are completely unrelated. In particular, F% rises rapidly 

with increasing Q2 at small a; as more and more slowly-moving partons are generated by 

the branching process. This rise is observed [137] to be proportional to InQ2 at fixed 

a;, which is consistent with recent parametrizations [41, 43, 44] of the parton densities 

in the proton. In contrast, the quarks in the pomeron are sampled at z values much 

larger than x, where the distributions evolve more slowly. One should therefore find that 

the fraction of diffractive events in deep inelastic scattering at fixed x (corresponding to 

F2

DS(x)/F2(x)) is decreasing approximately like I/InQ2. 

7.5 Comparison with data 

When the study presented in this chapter was carried out originally [117], only the H I 

collaboration had measured [130] the diffractive structure function. A similar measure

ment from the Z E U S collaboration appeared some months later [138]. We will therefore 

focus on the results from H I in this section. The description of the pomeron structure 

function obtained in our analysis is however consistent with the Z E U S measurement, as 

we will show at the end of this section. 

Based on a__sample of events without hadronie activity around the proton beam direc

tion, the H I collaboration has measured [130] the diffractive structure function F®^ 

_ 4 ™ 2 l + ( l - 3 / ) 2
 F o ( 3 ) r , Q 2 r , 

dxdQ2dxP - ^ 2 F* W>Q>xri 

as a function of the three kinematic variables, {/?, Q2,xp) where 

X 

xp = - « ap , 
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with the approximations becoming exact when t = M2 = 0. The variables ap, t and <j>ep 

are not measured directly. It is estimated that | i | < 7 G e V 2 [130], while <f>ep is uncon

strained. 

A prediction for the measured diffractive structure function F 2 ^ from our model can 

be obtained by inserting (7.13) into (7.1) and integrating over ap, t and <f>ep 

lf>(A «»,.,) = dl j f t£tS(,,.-l-g) f ( « p , t ) f f (*,0»,t), 

with z given in terms of the other variables by (7.19). Ignoring the t dependence every

where except in / , and setting the proton mass to zero, we obtain the simple factorising 

approximation 
8 , ( / ? , Q a , * p ) » \ T" dt f ( x P , t ) ] F2

P(P,Q% 

which implies that the dependence of the structure function on xp should be universal, 

i.e. independent of /? and Q2. Furthermore, if we substitute for / using (7.14) we find 

F2

D{3)(/3,Q2,xP) « K xpn F2

p(f3,Q2). 

Precisely this behaviour has recently been observed by the H I collaboration [130]. In fact 

their measured 'universal' power n of xp is n = 1.19 ± 0.06(stat.) ± 0.07(sys.), which 

is in excellent agreement with our prediction of 1.11 ± 0.03 (Section 7.2.2) based on a 

correct treatment of kinematics and using the pomeron emission factor of Donnachie and 

Landshoff [126]. 

The H I collaboration have also attempted to measure_the pomeron structure function 

directly, by defining an £p-integrated diffractive structure function 

F2D(P,Q2)= / dxPF2

D{3)(/3,Q2,xp), (7.39) 
J0.0003 

where the range of integration is chosen to span the entire xp measurement range. Accord

ing to the simple factorization hypothesis, the diffractive structure function is proportional 

to the pomeron structure function: 

F2

D(p,Q2)z*AFp{p,Q2), (7.40) 
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with 
rO.05 f t m a x 

A(E1)= dap d t / ( a . , t ) » 1 . 5 . (7.41) 
J0.0003 Jtmi,, 

The numerical value in (7.41) corresponds to the Donnachie-Landshoff form (7.14) for / . 

In what follows we will use (7.40) with A = 1.5 to convert the measured structure function 

[130] into the pomeron structure function. The measurement of Z E U S [138] covers only 

a smaller xp range (0.00063 < xp < 0.01). One therefore obtains: 

v 4 ( Z E U S ) = / dap / dt / ( < * » , * ) « 0.8. 
./0.OOO65 J t m i a 

In [130], data on F2

D{p,Q2) are presented in four Q2 bins, Q2 = 8.5, 12, 25, 50 G e V 2 . 

In the first of these, the charm contribution should be relatively small, and hence F2

D(fi, Q2) 

can be directly compared with the predictions of our simple model for the light quark dis

tributions derived in the previous section. It furthermore allows us to tune the parameters 

of this model. 

In particular, the first moment of F2

D, which is related to the the momentum fraction 

carried by quarks in the pomeron, reads 

A-1 j f 1 d/3 F2

D(0, Q2) « j f 1 dfi F 2

P ( / ? , Q2) « \ t f £ dz zVp(z, Q2) = 2-Mfq{Q2). (7.42) 

The parameters J\f and /9(<5o) a r e strongly correlated — their product is essentially 

determined by the first moment of F2 in the lowest Q2 bin. We find the best agreement 

with the data for M = 2 and the following momentum fractions of quarks and gluons at 

Qh 

UQlT~=W, 7 , ( 3 2 ) ="0.83. " (7.43) 

Fig. 7.6 shows the values of / , extracted from the H I data [130] in this way 8 at the four 

Q2 values. Note that in the measured Q2 range, the momentum fractions are predicted 

to vary only slightly with Q2. The apparent rise in the data has a simple interpretation 

as the onset of the charm contribution, as predicted by (7.36). 
8The /3-integrated structure function in (7.42) is estimated by assuming that the structure function is 

independent of /? at each Q2 value. This is a very crude procedure, and we have no way of estimating 

the errors on the integral obtained by this method. Our comparison is therefore only qualitative at best. 
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Figure 7.6: Fractions of total pomeron momentum carried by light quarks and gluons as 

predicted by leading-order D G L A P evolution for three light flavours. The H I data-points 

shown in comparison are the values for the momentum fraction carried by the sum of all 

light quarks under the naive assumption of a negligible direct charm contribution to F f . 

The data are furthermore divided by a normalization of M = 2, as discussed in the text. 

In Fig. 7.7 the predictions of this model for the pomeron structure function are com

pared with the data from H I and Z E U S , as defined by (7.40). The solid curves show the 

full prediction including the charm contribution, and the dotted curves are the contribu

tions from the three light quarks only. We note that 

(i) the variation of the dotted curves with Q2 shows that the scaling violations predicted 

-by the Q G D evolution "equations are rather weak in this kinematic range; 

(ii) the charm contribution grows rapidly above threshold (in fact, this growth is evi

dently responsible for the bulk of the predicted Q2 dependence), and constitutes a 

significant fraction of the structure function at high Q2 and low z; 

(iii) as Q2 is increased to higher values, the pomeron structure function is expected to 

rise rapidly at low z and to decrease slowly at high z. 
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Figure 7.7: The deep inelastic structure function of the pomeron F2

p(z,Q2). The H I 

data are obtained from values for the diffractive structure function in terms of these 

variables [130], divided by a pomeron emission factor of 1.5 (derived from the model of 

Donnachie and Landshoff). This factor is 0.8 for the Z E U S data [138]. The theoretical 

predictions are scaled by a factor Af = 2, as discussed in the text. 

Finally, in Fig. 7.8 we show the gluon and singlet (light) quark distributions in the 

pomeron, as predicted in this model. Since we are assuming exact SU(3) flavour symmetry, 

theindividuarquark or antiquark distributions are simply qp = Note that as Q2 

increases, both the quark and gluon distributions evolve slowly to small z, as expected. 

The emergence of a small-z 'sea' of qq pairs can be seen at high Q2. 

7.6 Conclusions and Outlook 

The idea that the pomeron has a partonic structure [123] has been given strong support by 

the recent measurements of the diffractive structure function at H E R A . In this chapter 
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Figure 7.8: Parton distributions in the pomeron, assuming a valence-like structure at 

Q\ = 2 G e V 2 . The relative normalizations are chosen such that gluons carry 83% and 

light quarks carry 17% of the pomeron's momentum at QQ. 

we have presented a detailed study of deep inelastic electron-pomeron scattering. We 

first derived the complete set of kinematic variables for the deep inelastic diffractive 

cross section. We showed that when expressed in terms of .appropriate variables-this cross 

section is expected to factorize into a pomeron structure function multiplied by a pomeron 

emission factor, the latter being obtainable from hadron-hadron cross sections. At present 

the variables which define the pomeron momentum are not directly measured, although 

they can be inferred from the observed hadronic final state. However, in terms of the 

measured variables the factorization is only approximate. In Section 7.2 we quantified 

the corresponding systematic error, and showed that it was below the present level of 

experimental precision. 
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When the remnant protons are eventually detected at H E R A , it should be possible 

to measure their scattering angle <f>ep relative to the electron in the transverse plane. If 

the electron-pomeron scattering picture is correct, this distribution is predicted to be 

non-uniform, with a preference for back-to-back scattering. We presented quantitative 

predictions for this angular distribution in Section 7.3, using the Donnachie-Landshoff 

parametrization for the pomeron emission factor. 

Finally, we presented a simple phenomenological model for the pomeron structure 

function in Section 7.4. This model is based on the idea that at a low Q2 scale, the 

pomeron consists predominantly of valence-like gluons, with a small admixture of valence

like quarks. At higher Q 2-scales the distributions are determined by standard D G L A P 

perturbative evolution. Our starting quark distributions are identical in shape, and similar 

in size, to those calculated by Donnachie and Landshoff. In this model it is necessary to 

rescale the pomeron momentum sum (by a factor of approximately 2 in the case of the 

emission factor of [121]) to account for the normalization of the H I data, whereupon good 

agreement is obtained with the measured z and Q2 dependence of the pomeron structure 

function. The light (it, d, s) quarks carry about 17-25% of the pomeron's momentum in 

the range of Q2 currently measured by H I . 

The experimentally measured (z, Q2) range of the pomeron structure function includes 

the charm quark threshold region. This requires special treatment, since the charm contri

bution to F p is expected to be significant above threshold. We have calculated this effect 

using the photon-gluon fusion process, which takes the threshold kinematics correctly into 

account. We have found-that the-charm contribution to F 2

P is "indeed_sizabre, especially 

at high Q2 and low z. The rapid increase of the charm contribution with increasing Q2 

appears to account for the bulk of the observed Q2 dependence. 

Our results on the quark and gluon content of the pomeron have many implications. 

As already mentioned, we expect that a significant fraction of hard diffractive scatter

ing events will contain charm, and our distributions provide a way of quantifying this. 

The overall magnitude of the gluon distribution compared to the quark distribution also 

predicts a large value for the pomeron's iMactor. In particular, we expect Rp ~ 0(1) , 
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in contrast to R ~ 0(cts) «C 1 for the proton, which results in a similar magnitude of 

R1®. However, a consistent estimate of this would require a full next-to-leading order 

perturbative calculation, which is beyond the scope of the present study. 

In summary, we have shown that a simple quark and gluon parton model of the 

pomeron, combined with a pomeron emission factor extracted from the high energy be

haviour of elastic hadron-hadron scattering cross sections, gives an excellent description 

of the H I data. There are many ways in which this simple picture can be tested, both at 

H E R A and elsewhere. In the short term, the measurement of the <f>ep correlation, the Q2 

dependence of the pomeron structure function and the diffractive structure function and 

the identification of the predicted large charm contribution to the diffractive structure 

function appear to offer the best possibilities. 

7.6.1 Hard diffraction in the light of new H E R A data 

Both H E R A collaborations [139, 140] have very recently presented new, improved mea

surements of the diffractive structure function. These measurements appear to be in 

significant disagreement. The selection criteria for diffractive events are however different 

at H I and Z E U S , and the pomeron model as presented in this chapter appears to be only 

applicable to the H I measurement, which defines diffractive scattering by an observed 

rapidity gap around the proton beam direction. 

The new H I measurement covers a largely extended kinematical range compared 

to [130]. It shows, that the simple factorization of the diffractive structure function 

(7.13) is broken for large values of ap. This observation can be interpreted [141] as due 

to the presence of subleading Regge trajectories (vector mesons) at increasing ap. The 

dominant contribution to this process is however due to pomeron exchange. 

The new data on the diffractive structure function F2

D allow a more precise deter

mination of the parton distributions in the pomeron. A fit to these data [139] yields 

a gluon distribution which is even harder than in our simple model, the ratio between 

the pomeron momentum carried by gluons and quarks is found to be 80:20. Using the 
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distributions obtained from a fit to the new data, one can furthermore make predictions 

for the charm content of the diffractive structure function and for the transverse energy 

flow in diffractive DIS events. These are found in good agreement with the experimental 

measurements of these two observables [139]. 
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Chapter 8 

A study beyond the Standard 
Model 

With this chapter we will leave the general topic of this thesis, the structure of the proton, 

for a while to demonstrate an important application of parton distributions: the precision 

calculation of cross sections in hadron-hadron collisions at high energies. 

The present understanding of the physics of elementary particles is described by the 

Standard Model, whose basic aspects were outlined in Section 2.3. This model has been 

tested in a great variety of collider experiments over the last twenty-five years, yielding 

an impressive agreement between theory and experiment. However, during the last two 

years, some experimental evidence for deviations from the Standard Model has been 

reported. Motivated by these observations, a multitude of models for new physics beyond 

the Standard Model has been suggested. A stringent constraint on all these models is 

given by the large number of experimental observables which are found to be in good 

agreement with the predictions of the Standard Model: any new physics should only 

have minor impact on them. I t is such a consistency check which we will perform in the 

following chapter. 

We are studying the impact of a new neutral vector boson Z' , with a mass of 0(1 TeV), 

on the top quark production cross section at the Fermilab Tevatron collider. This cross 
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section has been measured only very recently, and it agrees within large errors with the 

prediction of the Standard Model. We motivate the introduction of the Z' , discuss its 

properties and illustrate how a more precise measurement of the top quark cross section 

can provide a crucial test of the Z ' model. 

8.1 Motivation 

Two experimental observations have received particular attention in recent times, as they 

appear to deviate from the predictions of the Standard Model. The nature of these obser

vations is very different. The fractions of charm and bottom quarks produced in hadronic 

decays of the Z-boson are measured within an accuracy of better than 1%, and appear 

to differ from the Standard Model expectations by a few percent. The other observable, 

the single jet inclusive cross section in pp collisions at the highest energies accessible at 

present, is only measured with large systematic and statistical uncertainties. Even within 

these errors, it appears to deviate systematically from the theoretical prediction as the 

energy of the jet increases. Both observations are not reproduced by competing experi

ments, and they can therefore only be considered as indications for a possible failure of 

the Standard Model, not as solid evidence. We will briefly discuss the observables. 

8.1.1 Rb and Rc at L E P 

The collision of electrons and positrons at y/s = Mz at LEP(CERN) and SLC(SLAC) 

allows a precise study of the decay properties of the Z-boson. By tagging hadrons con

taining charm or bottom quarks in the final state, a direct measurement of the decay 

probability into these quark flavours is possible. The ratio between the partial decay 

width 

T(Z - qq) = 
GFMl 

+4 V 

and the total hadronic width is then indicated by Rq. The ratios Rc and Rb provide a 

precise measurement of the couplings of charm and bottom quarks to the Z-boson. While 
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the Standard Model predicts 

Rc = 0.17238, Rb = 0.21569, 

a measurement at LEP (average over all four experiments) yields [142] 

Rc = 0.1543 ± 0.0074, Rb = 0.2219 ± 0.0017. 

On the contrary, a similar measurement at SLAC [143] is in good agreement with the 

Standard Model: 

Rb = 0.2176 ± 0.0033 ± 0.0017. 

8.1.2 Large-E T jets at C D F 

Jet production in hadron-hadron collisions at high energies is mediated by hard parton-

parton scattering processes. The kinematical distribution of jets can therefore be calcu

lated by convoluting the parton-parton scattering cross sections with the partonic dis

tributions in the proton. Usually, jet cross sections are expressed as function of the 

transverse energy ET and the rapidity 7} of the jet. For jets produced in the central region 

of the detector (rj ~ 0), the transverse energy is approximately ET ^ l/2y/x1x2s, where 

Xi and x2 are the longitudinal momentum fractions carried by the incoming partons. The 

jet cross section at large transverse momenta is therefore determined by the behaviour of 

parton densities at large x: it is dominated by quark-antiquark scattering, a considerably 

smaller contribution comes from (anti-)quark-gluon scattering. The quark distributions 

at large x are accurately determined from lepton-nucleon scattering experiments at lower 

energies, and so a precise prediction of the single jet inclusive cross section is possible. 

The recent measurement of the CDF collaboration [144] seems to indicate, that the 

jet production cross section for ET > 250 GeV is systematically above the theoretical 

prediction. It seems rather unlikely that the uncertainty on the parton distributions 

is responsible for this disagreement: attempts to adjust the quark [145] or gluon [146] 

distributions yielded results inconsistent with data at lower energies. 
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Figure 8.1: Single jet inclusive cross section at the Tevatron: (Data-Theory)/Theory. 

Figure taken from [67], only statistical errors are shown. 

A similar measurement of the same observable by the DO collaboration [147] is on 

the other hand in good agreement with the Standard Model. Both measurements are 

compared with the theoretical prediction in Fig. 8.1, which is taken from [67]. 

8.2 Z' model 

Both observations discussed in the above section can not yet be regarded as solid evidence 

for a failure of the Standard Model. Nevertheless, one might speculate about possible 

explanations for these anomalies. It has recently been pointed out [148, 149] that both 

these effects could be explained by introducing a new U ( l ) gauge boson (Z') of mass 

0(1 TeV) which mixes at the 1 0 - 3 level with the Z° and has similar couplings to quarks. 

In the remainder of this chapter, we will work with the Z' model suggested in [148], whose 

basic features are outlined below. 

The neutral current sector of the electroweak Lagrangian receives an additional con-

140 



tribution 

z sin t>w cos ^ 
(8.1) 

where the vector and axial couplings of the Z ' are parametrized as 

v'u = x + y, a'u = -x + yx 

v'd — x + yd , o'd = —a; + yd 

v'i = v'v = 0 , a'/ — a'„ = 0 , 

with v'u = v'c = v't etc. The couplings to leptons are assumed to be negligible and are 

hence set to zero. I t is furthermore assumed that the mass eigenstates Z° and Z' are 

mixtures of the weak eigenstates Z{y and Z'w: 

Z° = cost Z^r + sin£ Z'w, Z ' = - sin£Z° + cos£ Z'w, 

which modifies the couplings of the physical Z-boson to quarks: 

v°fI - cos £ vq + sin £ v'g, ae

q

ff = cos £ aq + sin (a'q. 

The mixing furthermore affects the mass ratio of W and Z bosons, the />-parameter, which 

is unity at tree level: 

and enters in practically every physical observable in Z-boson decays. 

Fixing the mass of the Z ' at Mz> = 1 TeV, the parameters £, x, yu and yd can be 

adjusted to-fit the measurements of #f,,c while retaining the quality of the Standard Model 

description of other electroweak observables. 

The centre-of-mass energy at the Tevatron is not sufficient to produce a sizable number 

of on-shell Z'-bosons of the above mass. Effects of the Z ' are nevertheless visible in jet 

production at large ET, as quark-quark scattering can be mediated by the 3- or £-channel 

exchange of an off-shell Z' . Including the CDF jet data in a combined f i t , the authors 

of [148] obtain 

\MZJ ? 

Ml w elf P + M | 0 cos2 Ow 

i = 3 . 8 • 1 0 -3 x = - 1 , yu = 2.2, yd = 0 , (8.2) 
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which we will refer to as 'final fit' in the following. Note that a variation of a; between 

— 1.5 and —0.5 and of yu between 2 and 4 yields values for observables which are still 

compatible with the experimental data [148]. 

An important feature of the Z' models of [148, 149] is that the Z' vector and axial 

couplings to u—type quarks turn out to be quite large. In fact the effective Z'uu coupling 

is of the same order as the strong coupling: ( t / 2 + A'2

U)OTW ~ O(10) AW ~ a s , which 

explains why the Z' contribution to the large ET jet cross section is comparable to the 

QCD contribution. Another implication of this is that the top quark production cross 

section at the Tevatron collider (crt) is similarly enhanced, i.e. the model gives rise to an 

additional 'anomalous' contribution a\ from qq —* (Z')* —• ti which is the same order as 

the standard QCD contribution crt from qq, gg —• ti. A precise measurement of the top 

cross section therefore provides an important check on the model. We shall quantify this 

in what follows, using the same parameters as were determined in [148]. 

8.3 Hadropro duct ion of top quark pairs 

The top cross section has been studied in the context of a variety of new physics scenarios 

[150], especially since the original measurement by the CDF collaboration gave a value 

somewhat higher than the standard QCD prediction [151]. What distinguishes the present 

study is that we are using a model whose parameters have already been constrained, and 

therefore our predictions are on a firmer footing. 

The production of top quark pairs at Tevatron energies is predominantly due to quark-

antiquark annihilation. The leading-order subprocess cross sections from standard QCD 

and from the anomalous Z' contribution are: 

4iro!? 
at(qq^ti) = ^ /?(3 - /?2) , 

Kin 6TT (S - M l , ) 2 + (sTz,/Mz,y 

£ ( 3 - / ? > ' 2 + / ? V 2 (8.3) 
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Figure 8.2: Parton-level cross sections for the production of a it pair at leading order. 

The coupling parameters for the Z' correspond to the 'final f i t ' of [148]. 

where ft2 = 1 — 4m2/s and the Z' width is (for Mz> >• mq) 

GFM2 

V z > = i ^ i f 3 M z ' ^ + o / " + v " d + a ' 2 ^ • ( 8 - 4 ) 

Figure 8.2 displays these parton-level cross sections as a function of the subprocess centre-

of-mass energy for rat = 175 GeV. For the anomalous contribution, it is evident that only 

uu annihilation will yield a sizable contribution to the cross section. 

Our calculations of the corresponding pp cross sections use the MRS (A') parton dis

tributions [41], with a s ( M | ) = 0.112. The factorization and renormalization scales are 

set equal to mt. Note that approximately 90% of the QCD cross section comes from the 

qq —> it subprocess. We include also the next-to-leading-order (NLO) perturbative QCD 

corrections to (8.3). For the standard QCD qq,gg —• it cross sections these are taken 

from [152]. 

The hadroproduction of a it pair via Z' exchange can be viewed as the production of 

an off-shell Z'-boson which then decays into a it pair. The NLO corrections to a't can 
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therefore be factored into two contributions, which we discuss in turn below. 

8.3.1 Initial state corrections 

The Z ' behaves - apart from the different values of its vector and axial vector couplings -

like the standard model Z-boson. The initial state corrections for the hadronic produc

tion of an off-shell Z' are therefore identical to the corrections to the Drell-Yan cross 

section [153]: 

(T\{S) = I dxi / dx-i f dz 6(xix2z — M2/s) 
JT J T / X \ J T / ( X J X 2 ) 

cr't(zxxx2s) e] I Dqq(z) (q(xi,ii.2

F)q(x2,n2

F) + (a:, <-» a;2)) 

+D™{z)((q{x1,p2

F) + q{xu»2

F))g{x2,p2

F) + {x1 ~ i 2 ) ) } (8.5) 

K ^ ) + - 2 ^ l n 2 " 4 ( 1 + ' ) l n ( 1 " 2 ) 

^ ( l _ , ) ( _ 8 + 4C0 + 2 1 n J { ( T i 7 ) + - l - , + | « ( l - , ) } _ 

(z2 + (1 - z)2) In G — £ + 1 + 3z - \z2 

v ' z I L 

D<*(z) = 6(l-z) + ?4M-CF 
lit 

A/f2 

+ l n ^ r { ( z 2 + ( l - z ) 2 ) } 
rF 

(8.6) 

with the production threshold r = imf/s and the invariant mass of the off-shell vector 

boson M2 = ZX1X2S. The mass factorization scale is chosen to be fi2

F = m2-, variation 

of fiF enables us to estimate the uncertainty of the theoretical prediction. <r't(s) denotes 

the cross section for the parton level subprocess qq —• Z' —• it. Final state radiative 

corrections will only apply to this quantity. 

8.3.2 Final state corrections 

The final state corrections for the decay Z' —• ti are identical to the corrections for the 

Z-boson decay into heavy quarks [154]. We can express the parton level cross section 
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qq -» Z' -» tt as [155] 

( G F M | ) 2 

3(5) = 

Kv = - r 

6TT (S - M 2 , ) 2 + ( S r Z i / M Z / ) a 

x (< + O [f (3 - ( l + V ^ i ^ v ) + P A ( l + f w o ) (8.7) 

A + 
1 - /3 2 /3 1 - 0 1 - / S 2 / 3 j ' 

( l + /?2) C2 + In In — h 2 L i 2 [ ., , n | + 2 L i 2 

1-P 

- 2 L i 2 

.1 + ^ 

4Li 2(/?) + Li 2(/? 2) + 3/3 In 

2 

1 - f f 2 

4/? 
31 + ^_1, 4 24 24^ 24^ ' 

32 + 3 2 P + 3 2 P 3 2 P ' 

5 . 3 ^ 

The vector-corrections KV in the above formula were originally derived in the QED treat

ment of the hyper-fine structure of atoms [156], where they cause the splitting between 

the 2 5 i / 2 and 2 P i / 2 levels. 

Quantitatively, we observe that each of the above corrections increases the lowest-order 

cross section by about 15-20%. Using the 'final f i t ' of (8.2), we find at ^/s = 1.8 TeV and 

ro» = 175 GeV: 

'LO 

<J'LO <g> K D Y 

° t = ° L O ® KDY ® KZ'^TI 

( T i n = 1.50 pb 

1.74 pb 

2.00 pb, (8.9) 

to be compared to the Standard Model prediction of AT = 4.75 pb. An estimate of the the

oretical uncertainty on these quantities can be obtained by varying the mass factorization 
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Figure 8.3: Variation of a\ with x, yu. 

scale between m*/2 and 2mt: 

<rt + a\ (nF = mt/2) = 5.00 pb + 2.09 pb , 

(rt + a't ( f i F = 2mt) = 4.25 pb +1.88 pb. (8.10) 

The NLO a't cross section, for pp collisions at y/s = 1.8 TeV with mt — 175 GeV and 

MRS(A') partons [41], is shown as a function of the parameters x and yu in Fig. 8.3. The 

dependence on the third parameter yj, is very weak. Note that that yu < 2 is disfavoured 

by the LEP/SLC data [148]. The relative insensitivity to the parameter x evident in the 

figure can be easily understood, as x enters directly in the uu,dd —> Z' production cross 

sections, see Eq. (8.3). An increase in the production of Z'-bosons is however compensated 

by a larger amount of Z' decays to rf-type quarks. In contrast, an increase in yu yields 

only an increase in uu —• Z' , and correspondingly in the overall top cross section. 
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Figure 8.4: Predictions for a% + at> as a function of m t , with data points from CDF and 

Figure 8.4 shows the total cross section at + a't as a function of mt at the Tevatron 

collider. The solid line is the standard NLO QCD prediction, the dashed line includes 

Z'-exchange with the 'final f i t ' (8.2) coupling parameters, and the dot-dashed (dotted) 

line corresponds to a smaller (larger) value for the coupling parameter yu. The data points 

are from CDF [157] and DO [158]. I t is apparent that large values yu ~ 3 are already ruled 

out by the CDF and DO measurements. The 'final f i t ' estimate (8.2) for the Z ' couplings 

is however still consistent with both experiments. Taking the average of the CDF and 

DO results, one finds a top quark cross section slightly above, but consistent with the 

Standard Model prediction. At the present level of experimental accuracy, the presence 

of an anomalous contribution can therefore neither be confirmed nor ruled out. 

The confirmation of an excess in the measured top cross section must of course take 

into account the theoretical uncertainty in the Standard Model prediction. There are 

three major sources of such uncertainty: unknown higher-order perturbative corrections, 

the value of as and parton distributions. A very complete study of this issue has recently 

DO. 
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Figure 8.5: Invariant mass distribution of tt final states at the Tevatron. 

been performed in [159] (see also earlier discussions in [160]). The 'best estimate' of the 

top cross section (at y/s = 1.8 TeV) and its error from [159] is 

.+0.73 
at = 4.75 

-0.62 
pb (8.11) 

Note that the central value in (8.11) agrees with our result for crt given above. More gen

erally, the error is approximately ±15% over the allowed top mass range. The important 

point to note is that the 'final f i t ' prediction for a't is about three times larger than the 

error on the QCD prediction. 

Given the uncertainties in the standard QCD prediction and in the data, it is important 

to investigate other properties of the final state which could help distinguish an anomalous 

contribution to the cross section. Examples include the angular distributions of the top 

quarks and their decay products, as emphasized in [161]. 

Notice in particular that the rapidity distribution of the t quark produced in qq —> 

Z' —• it is not forward-backward symmetric, in contrast to the standard production mech

anism. However the simplest discriminator of the anomalous and standard contributions 

is the distribution in the invariant mass Mmv = X\X<is of events containing tt pairs, shown 
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in Fig. 8.5 for y/s = 1.8 TeV, mi = 175 GeV and the parameters of (8.2). The dashed line 

denotes the Standard Model prediction, the additional contribution due to the exchange 

of the 'final fit' Z' is indicated by the dotted line, and the solid line is the sum of these. 

Just as for the excess in the single jet inclusive distribution [144], the Z' contribution is 

visible as an enhancement of the measured cross section at large invariant masses. Note 

that the final-state invariant mass at next-to-leading order can include the contribution 

from additional gluon emission where appropriate. In practice, the invariant mass distri

bution of ti pairs wil l also depend on kinematical cuts and the jet definition used in the 

event reconstruction. A detailed study of these effects is beyond the scope of this thesis. 

8.4 Summary and Outlook 

In summary, we have shown that the new-physics model proposed in [148] to explain the 

anomalies in the measurements of RbtC at LEP and the CDF large E? jet cross section 

predicts a significant enhancement of the top quark production cross section. The 'final 

fit' estimate of the increase is about three times larger than the theoretical uncertainty in 

the standard QCD prediction and yields a substantially different distribution in the final 

state invariant mass. Given the expected increase in the precision of the experimental 

measurement, the presence of such an additional non-standard contribution to the cross 

section should be detectable. 

The sensitivity to an anomalous Z' contribution to the ti production cross section will 

be increased further once the Tevatron has been upgraded to operate at yfs = 2 TeV. The 

effect is considerably smaller at the LHC, where the predominant top quark production 

mechanism is gluon-gluon fusion. The expected cross sections at the upgraded Tevatron 

and the LHC are shown in Fig. 8.6: 

<*t + K {PP, V* = 2 TeV) = 6.53 pb + 3.33 pb , 

at + a't (pp, y/s = 10 TeV) = 357 pb + 61 pb , 

a t + 0< {pp, y/s = 14 TeV) = 768 pb + 115 pb. 

149 



10000 

1000 

§ 100 
o 

10 

1 

0 2 4 6 8 10 12 14 16 18 20 

sm [TeV] 

Figure 8.6: Expected top quark cross sections in pp and pp collisions as a function of the 

collider energy. 

I t has to be stressed that the observation of an anomalous enhancement of the top 

quark cross section will not be sufficient to prove the existence of the Z'-boson. On the 

contrary, a measurement of this cross section in agreement with the Standard Model 

would put severe bounds on allowed space of parameters for the Z'. These bounds could 

be sufficient to contradict the existence of the Z' as postulated in [148]. 
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Chapter 9 

Summary and Conclusions 

Protons and neutrons, the fundamental constituents of atomic nuclei, display a compli

cated substructure if looked at closely enough. Several aspects of this substructure have 

been studied in this thesis. 

The form and structure of the proton are described by form factors and structure 

functions, which can be measured in electron-proton scattering. We reviewed the phe

nomenology of elastic and inelastic electron-proton scattering in Chapter 1. While the 

elastic proton form factors are rapidly decreasing with increasing momentum transfer Q2, 

it appears that the inelastic structure functions are only weakly dependent on Q2. This 

scaling behaviour indicates the existence of point-like constituents, partons, inside the 

proton. An interpretation of the proton structure is given in the parton model, which 

describes the proton structure in terms of distribution functions fi(x,Q2) for pointrlike, 

non-interacting partons. These determine the probability that a parton of species i car

ries a momentum fraction x of the total proton momentum if probed at a scale Q2. We 

discussed the parton model and its implications in Chapter 2. These partons can be 

identified with quarks and gluons, which appear to be the fundamental constituents of 

the proton. The dynamics of quarks and gluons are described by the theory of Quan

tum Chromodynamics (QCD), Section 2.2. A calculation of parton distribution functions 

in perturbative QCD is not possible with present methods. However, one can calculate 
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the change of these distributions with increasing Q2 from first principles. This change is 

described by the splitting functions and evolution equations introduced in Chapter 3. 

The spin structure of the proton in the parton model is described by the polarized 

parton distributions Afi(x,Q2) = f}{x,Q2) — fi(x,Q2), where (/•*) denotes the dis

tribution for partons with spin aligned (anti-aligned) to the proton spin. Several aspects 

of these distributions can be determined from sum rules for their first moments and from 

a study of the QCD predictions in asymptotic kinematical limits. We summarized this 

information in Chapter 4. We studied in particular the behaviour of the polarized parton 

distributions in the limit x —• 0 (Section 4.4), finding a complicated interplay of con

tributions from quarks and gluons. This is in contrast to the small-a: behaviour of the 

unpolarized distributions, which are dominated by evolution of the gluon distribution and 

consecutive g —• qq splitting. 

In Chapter 5, we attempted to determine the polarized quark and gluon distributions 

in the proton from a fit to the experimental data on the polarized structure functions 

g*,d,n(x, Q2). It turned out that these data, supplemented with additional information 

from sum rules, constrain the size and shape of the polarized valence quark distributions 

Auv(x,Q2) and Adv(x,Q2). The overall magnitude of the polarized sea quark distribu

tion was determined as well. A flavour decomposition of the polarized quark sea and a 

determination of the polarized gluon distribution AG(x,Q2) were however not possible 

on the basis of the polarized structure function data. 

Motivated by these uncertainties, we investigated in Chapter 6 how future experiments 

could measure, the polarized sea quark and gluon distributions. It was found that even 

improved measurements of the polarized structure function will fail to provide sufficient 

information on these distributions. 

A determination of the polarized sea quark distributions in the region x > 0.1 seemed 

to be feasible from the measurement of asymmetries in the Drell-Yan process. It has 

however to be kept in mind that fixed target measurements of the Drell-Yan cross section 

usually only cover a restricted rapidity region of the final state phase space. A reliable 

determination of the polarized sea quark distributions from fixed target Drell-Yan data 
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will therefore require the knowledge of the QCD corrections to the Drell-Yan cross section 

as a function of the lepton pair rapidity. This study is presently in progress. 

The polarized gluon distribution could be measured from charm production asymme

tries in polarized electron-proton scattering. The production of charmed mesons and of 

the lightest (cc) bound state both appeared to be promising observables. 

Another aspect of the proton structure is the experimental observation of diffractive 

deep inelastic scattering in electron-proton collisions at HERA. We showed in Chapter 7 

how this observation can be interpreted as emission of a pomeron off the proton, followed 

by deep inelastic electron-pomeron scattering. We studied implications of this model, 

finding an angular correlation between the outgoing electron and proton momenta. Fur

thermore, we suggested a very simple phenomenological model for the partonic structure 

of the pomeron. In this model, the pomeron is made up of valence-like gluons with a 

small admixture of valence-like quarks at some low scale Q\. Perturbative evolution then 

increases the quark content of the pomeron with increasing Q2. Using this model, we 

predicted a large fraction of diffractive events with charmed quarks in the final state. 

The angular correlation and the charm content of diffractive events could both serve as 

experimental tests of this interpretation. Preliminary measurements of charm production 

in diffractive deep inelastic scattering appear to be consistent with the pomeron picture. 

The most important application of parton distributions is the precise prediction of 

observables in hadron-hadron collisions. Comparison of these predictions with the ex

perimental results can help to confirm or extend our present understanding of particle 

physics as described by the Standard Model. 

We illustrated this for a particular example in Chapter 8. In the recent past, several 

authors have postulated the existence of a heavy neutral vector boson Z' to explain two 

experimental observations which appear to deviate from the predictions of the Standard 

Model. We calculated the effect of the Z' on the top quark production cross section in high 

energy hadron-hadron collisions. I t was found that the Z' contribution yields a sizable 

enhancement of this observable at presently accessible energies. Recent measurements of 

the top quark cross section at the Fermilab Tevatron can already put constraints on the 
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coupling of the Z' to quarks, but do not yield conclusive information to verify or falsify 

the existence of the Z'. Given the anticipated increase in luminosity and collider energy at 

the Tevatron, the presence or absence of a non-standard contribution due to Z' exchange 

should be detectable. 

In summary, we investigated three different aspects of the internal structure of the 

proton in this thesis. The first aspect concerned the distribution of the proton spin among 

its constituents. We estimated the polarized quark and gluon distributions in a global 

analysis of polarized structure function data. We studied furthermore how the knowledge 

on the spin-structure of the proton can be improved at future experiments. Secondly, we 

showed how hard diffraction in electron-proton collisions can be understood to be due 

to the pomeron, an object predicted from hadronic interaction physics. We suggested 

various tests for this interpretation. Finally, we demonstrated how the precise knowledge 

of the proton structure can be used to compute observables in proton-antiproton collisions, 

extending or confirming the Standard Model picture of particle physics. 
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Appendix A 

Special functions 

A . l The Gamma function T(x) and its derivatives 

The Gamma function is defined as [70] 

T(z)= / t ^ e - ' d t { R e ( z ) > 0 } . (A . l ) 
J 0 

For positive integer arguments, T(n) can be expressed as factorial 

T(n + l ) = n!, 

which yields the recurrence formula 

T{z + 1) = zT(z). (A.2) 

T(z) can be continued analytically to ({Re(-z) < 0} \ {z = — i \ i G I N 0 } ) by recursive use 

of this formula. 

The r/)-function is the logarithmic derivative of the T-function 

df lnr(z)] 

= 1

 d 2

K (A.3) 

= % (A-4) 

V{z) = ^ . (A.5) 
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These functions reduce to finite sums for positive integer arguments 

# 0 = - 7 £ + £ V \ (A.6) 

n-l 

< / > » = - 2 C 3 + 2 X ; f c - 3 , (A.8) 

where -yE = 0.5772156649..., C2 = tt 2/6, ( 3 = 1.2020569031.... The recurrence formulae 

^ ( z + 1) = ^ \ z ) + (-1)*' t! z~{-1 (A.9) 

yield an analytic continuation for ({Re(z) < 0} \ {z — — i \ i 6 I N 0 } ) . 

Numerical implementation 

Due to the factorial growth of the r-function, a numerical implementation of lnr(ar) is 

more appropriate. We have used the following interpolation formula [162] for Re(z) > 0: 

l n l » = ( z - I ) l n ( z + 7 - I ) - z - 7 + I + l n ( > / S : f , ( z ) ) > (A.10) 

F(z) 

with 7 = 5 and 

6 c„ 
^ z + n - l j ' 

co,..,6 = (1,76.18009173,-86.50532033,24.01409822, 

-1.231739516,0.00120858003,-0.000005364). 

For negative arguments, (A.2) is used recursively. 

Using (A. 10), it is straightforward to obtain interpolations for the function and its 

derivatives: 

*w = r ^ r + l n ( , + 1 ' - 5 ) - 1 + ?' 
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•y i F"F- \F'\2 

2 
/12 _ 2 7 i ^ F"'F2 -SF"F'F + 2[F'\ 

( , + 7 - l ) " ( 2 + 7 - | ) " ^ 

where F' etc. denote derivatives of F(z) with respect to z. For negative arguments, the 

recursion relations (A.9) are applied. 

A.2 The Lambert u;-function 

The Lambert u;-function [163] is defined by the implicit equation 

u>(x)exp{u}(x)} = x, (A.11) 

which has infinitely many solutions u(x) in the complex plane. A principal branch can 

be defined by requiring analyticity of u(x) in x = 0. This principal branch is real-valued 

in the interval [— l/e;oo[ and is displayed in Fig. A . l . 

1 

0.5 

0 

0.5 

1 
-1/e 0 0.5 1 1.5 2 

x 

Figure A . l : The principal branch of the Lambert tu-function. 

The a;-function can be used to solve the equation 

a;a + lna; = 0 
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with respect to x. For a > — 1/e, this equation has a real solution 

(A.13) 

which can be used to discriminate regions in x dominated by logarithmic and powerlike 

terms. 

A.3 The dilogarithm Li2(x) 

The dilogarithm is denned by the integral [164] 

U2(x) = - f 1 ] ^ - ^ l d x . (A.14) 
Jo X 

I t is real-valued in the interval ] — oo; 1] and can be expressed as a power series 

L i ' ( * ) = E ^2- (A.15) 
n=l " 

The following formulae relate dilogarithms of different arguments: 

L i 2 ( l — x) = — L i 2 ( i ) — In x ln ( l — x) + C2, 

L i 2 Q = - L i a ( x ) - i l n a ( - * ) - C a , 
Lia(rb) = L i 2 ( a : ) - r l n ( l - a ; ) l n ( - a ; ) - i l n 2 ( l - a : ) + C2, 

( 1 — x \ 1 L i 2 I —J = Li2(a;) + In a: ln ( l - x) - - \n2 x - (2, 

L i 2 ( - T ~ ) = - ^ ( x ) - ^ \ n 2 ( l - x ) . (A.16) 

Numerical implementation 

The power series expression (A.15) is only slowly convergent. It is therefore not ap

propriate for an efficient numerical evaluation of the dilogarithm function. Introducing 

u = — l n ( l — x), the dilogarithm can be expressed as [164] 

U * ( x ) = / 1—7d*> Jo e ' - l 
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Figure A.2: The dilogarithm function L i 2 (x ) . 

where the integrand is now the generating function of the Bernoulli numbers [70]. There

fore, 

We have used the above equation truncated to finite order to compute Li2(a;) i f —0.5 < 

x < 0.5. For arguments outside this range, one of the relations (A.16) can be applied. 

A.4 Finite sums 

Computation of the moments of DGLAP splitting functions yields the following finite 

sums (cf. Appendix B . l . l ) : 

= E l 7 (»' = 1,2,3) (A.18) 

Si{n) = (< = 1,2,3) (A.19) 
fc=i K 

Su(n) + Sn(n) = £ Qs2(*) + ^ S , ( * ) ) (A.20) 
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S12(n) = E r & W - (A.21) 

The inversion of moments into z-space requires continuation of the n-moments into the 

complex plane. This is straightforward only for 

Si2(n) + S<n(n) = 5 ,i(n)5 2(n) + 5 3 (n) , 

Si(n) = yE + tP(n + l), 

S2(n) = ( 2 - V » ' ( n + l ) , 

Ss(n) = <3 + \ r ( n + l), (A.22) 

using the definitions (A.6)-(A.8). For the remaining sums, we have to distinguish the 

cases n even and n odd, which we denote by n = ± 1 . 

We define [165] 

S?(n/2) ^ 2 ' - 1 f : 1 + [71)fc
 (A.23) 

fc=i K 

= j ( l + 17) Si(n/2) + 1(1 - 5,((n - l ) /2 ) 

= ( A - 2 4 ) 

In terms of these, the remaining sums read 

5i(n) = 2 1 - , '5j(n/2) - 5,-(n) 

5n(n) = 5 i ( n ) & ( n ) + S 3 ( n ) - S ( n ) . (A.25) 

The analytic continuation of (A.24) is given by 1 [135]: 

S(n) = -5-Cs + V - | W ( » + l ) /2 ) - *(n/2)) + j f x » ~ * ^ ^ , 

1Please note that this expression is misprinted in the appendices of [85, 135]. 
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where the last term can be numerically approximated by replacing the factor (1 + x)~l 

by its orthogonal expansion with the weight function (x(l — x))'1^2 (shifted Chebyshev 

of first kind [70]). The integral can then be computed analytically by use of (B.12) 2. 

A peculiar feature of the finite sums (A.23) and (A.24) is that their analytic continu

ations depend on rj, i.e. they are different if even and odd moments are considered. 

A.5 "+"-functions 

Both coefficient and splitting functions develop a singular behaviour as i -> 1, which 

is compensated by a contribution in x = 1, such that the convolution integral of these 

functions with any test function is finite. This behaviour is expressed conveniently by the 

introduction of a "-(-"-prescription: 

f dx [f(x)}+ g{x) = I* dx f(x) [g(x) - g(l)] . (A.26) 
Jo Jo 

Only two types of "+"-functions appear in the coefficient and splitting functions up to 

the next-to-leading order: 
A n ( l - x ) \ 

( l - J + 
and 

1 - x 
(A.27) 

The convolution integrals with the parton distributions usually take the form 

Using the definition (A.26), we can rewrite the two "-(-"-functions (A.27) into a form 

suitable for numerical implementation: 

f ^ i J - ) , ( £ ) = s W , n i ^ + / ^ L M w , 
J* y V - y J + \ y j * Jx y \ - y [ \ y ) '\ 

+ Z1 dy ln ( l - y) 
Jx y 1-2/ 

(A.28) 

2 This expansion applied to the whole integrand [135] converges far more slowly due to the nonanalyt-

icity of Li2(a;) in x = 1. 
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Appendix B 

Evolution of parton densities 

This chapter contains the mathematical techniques used in our parton distribution evolu

tion programme, the algorithm applied is outlined. For reference, we give explicit expres

sions for both polarized and unpolarized splitting functions at leading and next-to-leading 

order in x and n space. 

B . l Mellin transformations and their inversion 

The Mellin transformation f(n) = M. [/(#)] of a function f ( x ) is defined to be 

f(n) = M[f(x)} = I' Ax xn-'f{x). (B. l ) 
Jo 

This transformation can be inverted in the complex n-plane 

f(x) = ± / ^ ' " d n * - / ( » » ) , (B.2) 

where a is to be chosen such that all singularities of the function are lying to the left of 

the integration contour. The following properties of the transformation are relevant in 

the present context: 

M[af{x) + bg(x)} = af{n) + bg(n) (Linearity), (B.3) 
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M 
dk 

= ( _ ! ) " r ( W ) f ( n _ k) (Derivative), 

M 
Jx y 

T(n -Jb)' 

= f{n)g{n) 

(B.4) 

(Convolution). (B.5) 

It is the latter property which makes this transformation useful to reduce the DGLAP 

integro-differential equations in x space to a set of coupled ordinary differential equations 

in n space. 

B . l . l Mellin integrals 

In the following, we list the integrals required to compute the moments of splitting func

tions and initial distributions: 

dx 

dx 

dx 

/ x 

Jo 

f i " - 1 In a; 
Jo 

f / " 1 In 2 x 
Jo 

T x " " 1 l n ( l -x)dx 
Jo 

f 1 x"-1 l n 2 ( l -x)dx 
Jo 

f x " - 1 lna:ln(l - x ) d a : 
Jo 

( X xn~x Li 2(a:)d3: 
Jo 

I x n _ 1 (L i 2 ( -a : ) - r l n x l n ( l + x)) dx 
Jo 

/ xn~x l nxdx 
Jo 1 — x 

/ V ^ - i — l n 2 x 
Jo 1 — x 

/ x n _ 1 l n x l n ( l -x)dx 
Jo 1 — X 

3 ' 

(B.6) 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

( B . l l ) 

(B.12) 

- h ^ + t ^ & + § M ) > ( B - 1 3 ) 

TV 

5 i ( n ) , 
n 

-\S2(n) + Sl(n)} , 

1 S1(n) - - (C2 - S2(n)) , n n 
J<2 ~ -^St(n), 
n r r 

= S 2 ( n ) - C 2 - ^ , 

dx = 2 ( c 3 + ^ - 5 3 ( n ) ) , 

1 
= (3-(Sn(n) + S21(n)) + —Sl(n) 

(B.14) 

(B.15) 
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+ x 

Inxdx 

I 

Jo 1 + 

Jo 1 + X 

C xn~x —^— ln2xdx 
Jo 1 + X 

1

 n _ i U2{-x) + \nxln(l + x) 
1 +x 

+ -S2(n) - ( - - S^n)) < 2 , (B.16) 

dx = - - ( - l ) n (ln2 + 5i(n)) , (B.17) 

_ i + ( - ! ) » ( & ( « ) + 1 & ) , (B.18) 

J . _ 2 ( - l ) » g & + &(»»)) , (B.19) 

d a ; = - ^ C 2 + ( - l ) n [ ^ 2 ( n ) - 5 1 2 ( n ) - i c 3 

+ I c a ( l n 2 + 5 1 ( n ) - 5 1 ( n ) + i ) 

1 .»- . M i -*) ' 

= - S , ( n ) + i , 
n 

,(B.20) 

(B.21) 

1 -x 
dx = 

f 1 xn-1xa(l-x)0dx = 
Jo 

\\S]{n) + S 2(n)) - l-S,{n), (B.22) 

(B.23) 

2 ^ / n 

r(n + a ) r ( l + ^ ) 
T(n + 1 + a + /?) 

B.2 Splitting functions 

B.2.1 x-space 

The evolution of (polarized) parton distributions is governed by the splitting function 

matrix (A)Pji(x) in the DGLAP evolution equations (3.7). These splitting functions can 

be expanded in powers of the QCD coupling constant 

(A)J>,(*,a.) = £ ( A ) J # » + g) 2 (A)i#> + 

and have a na'ive interpretation as the probability of a parton i splitting into a parton j 

while transferring a fraction x of its initial momentum. 

The leading order unpolarized and polarized splitting functions are [31] 

2 \ . 3 p(0) 
99 CF 
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p(0) 
19 = 2T, 

p(0) = C F 

p(°) 
99 = 2C, 

= C F 

A p ( o ) 
93 

= 2Tf 

A p ( o ) 
39 

= C F 

33 = 2C 

X 

1 - 2x + x2 - x3 

( l - x ) + 

( r b l - 1 — ^ 1 - ) 

; (B.24) 

1 - ( 1 - ^ ) 2 

x 

(B.25) 

The leading order splitting function (A)Pff governs the evolution of all possible non-

singlet quark combinations and of the quark singlet in the coupled singlet-gluon equations. 

Beyond the leading order, the evolution of flavour non-singlet (+) combinations (A)g,- + 

(A)g, — (A)<jij — (A)</j and valence non-singlet (-) combinations (A)g,- — (A)g,- is controlled 

by different splitting functions ( A ) P 9 9 i + and (A)P M > _ ; the evolution of the non-singlet 

quarks is controlled by a third splitting function ( A ) P q g t s - These three splitting functions 

can be written as 

( A ) P „ , ± = ( A ) P „ ± (A)Pqq and (A)Pqq>s = ( A ) P „ , + + ( A ) P „ , P S . (B.26) 

The next-to-leading order correction terms read [33, 35]: 

1 +x2 / 3 , „ N /3 7 pW = 
99 

c l 
1 + x (3 \ /3 7 \ 

- - — — ( - l n x + 21na:ln(l - x ) \ -5 + bx - ( - + -x) In 

- 1 ( 1 + x) In 2 x + (1 - 3 C 2 + 6 Ca) *(1 - *) 

+ y ( l - *) + (1 + x)\nx + + - 3 C 3 ) 
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+CFT, 
2 1 + * ' , 2 0 / 1 \ 2 22 j \ 4 , \ „ , , 

1 1 + x 2 

( in 2 a; - 4 In a; l n ( l + x) - 4 L i 2 ( - x ) - 2( 2 ) 

2CFTF 

CAT} 

+2(1 + x) In x + 4(1 - x ) j , 

56 , r . 8 

+ C F 7 > 

+CFCA 

20 56 / 8 \ 
— - 2 + 6a; - y x 2 + M + 5x + -x2) In a; - (1 + x) In 2 

97 + IT + TX + ( j 1 ~ T) LNX ~ 41N^ ~ X) ~ (2 + SX)LN2X 

+ + j lnx + 41n(l - a) - In 2 x - 21n 2(l - x) + 2C 2) 

( x 2 + (1 - x ) 2 ) + ( l n 2 x - 4 1 n x l n ( l + x ) - 4 L i 2 ( - x ) - 2 C 2 ) 

( x 2 + (1 + x ) 2 ) 

4 - 9x - (1 - 4x) In x - (1 - 2x) In 2 x + 4 ln ( l - x) 

+(10 + 4 1 n x - 4 1 n ( l - x ) - 4 1 n x l n ( l - x) + 21n2 x + 21n 2(l - x) 

- 4 6 ) (* 2 + ( l - x ) 2 ) 

- - - - x + (2 + - x j lnx - 2x l n ( l — x) — f 1 — - x j In 2 x 

- (3 ln ( l - x) + l n 2 ( l - x)) 1 + 

28 65 44 2 / 8 2 \ , rt , „ 
~g+i8X + y ~ (, + 5 x + 3 J + ^ ~ ^ 

+(4 + x) In 2 x + + ^ - ln( l - x) - 2 In x l n ( l - x)+ \ In 2 

+ ln ! ( i - ^ ) - C 2 ) 
l + ( l - x ) 2 / I , 

x 
- ^ 2 m 2 ; E _ 2 m a ; m ( 1 + 

_ 2 t I l { _ , ) _ 6 ) i ± ( i ± f i : 
/ X 
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p(l) 
33 

11 

L-*1 qq 

AP qq,PS 

qg 

39 

C2. 
27/, s 67 / 2 1 \ /25 11 44 2 \ . 2 

y (1 _ , ) + _ ( , « - - ) _ ( _ - - , + y x 2 ) In x + 4(1 + , ) In 2 

- (4Inx l n ( l - x) - In 2 x) + (f + 3 Cs) *(1 - «) 

^67 rtA\/7 1 \ l - 2 x + x 2 - x 3 \ 

+ ( T - J 6 ) ( ( — ) + + j J 
- O"21

 - 4 l n * l n ( l + *) " 4Li - % ) 
x ( l + X J v 7 

+CATf 

20 
3x 

- 16 + 8x + — x 2 - (6 -I - 10x) In x - 2(1 + x) In 2 x - 8(1 - x) 

2-2*+?(*2-;H<1+*>' 
~T (d - x ) + 

1 - 2 x + x 2 - x 3 \ 4 C / 1 

+ - ) - 3 * ( l - « ) (B.27) 

(i) 

API 1 ) = Pfi>, 

_p(») 
J 99 » 

2CFTf [ l - x - (1 - 3x) ln x - (1 + x) In 2 x] , 

CAT} [24 - 22x + 2(1 + 8x) ln x - 8(1 - x) ln ( l - x) - 2(1 + 2x) In 2 

+2(1 - 2x) l n 2 ( l - x) - 4(1 + 2x) In x l n ( l + x) 

- 4 ( l + 2 x ) L i 2 ( - x ) - 4 C 2 

+CFTf [ - 22 + 27x - 9 In x + 8(1 - x) ln ( l - x) - (1 - 2x) In 2 x 

+4(1 - 2x) lnx ln ( l - x) - 2(1 - 2x) l n 2 ( l - x) + 4(1 - 2x) ( 2 

10 1 
= CACF 

41 . 35 
9 

+ —x + ( 4 - 1 3 x ) l n x + ln ( l - X) 

- ( 4 - 2x) ln x ln ( l - x) + (2 + x) In 2 x + (4 + 2x) ln x ln ( l + x) 

+(2 - x) l n 2 ( l - x) + (4 + 2x) L i 2 ( - x ) + 2x f a 
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+ci - y + 4x - ^2 - ^ x ^ Inx - (2 + x) ln ( l - x) + (l -^x^j In 2 

+CFTj 

- ( 2 - x ) l n 2 ( l -x)J 

16 4 /8 4 

pa 

9" " 9* " G " 3 X ) l n ( 1 ~ X ) ] ' 
^ J / 6 7 \ / 1 \ 37 97 /29 67 \ , 

+ f8x - —^ 4) l n x l n ( l -x)+ (Sx + —- h 4) l n x l n ( l + x) 
\ 1 — X J \ 1 + x / 

+ ( i ^ - T r ; + 4 K * + ( 8 * + d b ) ^ 
+ { S x + T T x ' + 4 ) L i 2 ( - ^ ) + ( 3 C 3 + | ) * ( ! - * ) 

^ m \ 20 / 1 \ 56 76 4 „ X 1 4 C M 

+CpTj [ - 10 + 10x - (10 - 2x) In x - (2 + 2x) In 2 x - £(1 - x ) ] . (B.28) 

Recall the QCD colour factors (2.3): CF = 4/3, CA - 3 and T/ = n, /2 . 

B.2.2 n-space 

The DGLAP evolution equations, formulated in x-space, are a coupled system of integro-

difFerential equations. I f the equations are transformed to n-space, they reduce to a 

system of coupled differential equations, which can be solved analytically. Instead of using 

the Mellin-transformations of the above splitting function matrix, one can alternatively 

consider the matrix of the anomalous dimensions of the parton operators 

2 

which are related to the moments of the splitting functions 

( A ) 7 j , 0 ) = - 4 / ' X"" 1 ( A ) P f (x)dx, 
J 0 

+ 
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The leading order anomalous dimensions are [31, 74, 166] 

Iqq 

'19 

~(0) 

<gg 

4 C F 

- 8 2j 

- 4 C F 

25 a (n) -
n(n + l ) 2 

n 2 + n + 2 
/ n ( n + l ) ( n + 2) ' 

n 2 + n + 2 

= *cA 

= 4CF 

= - 8 7 } 

- -iCF 

= icA 

( n - l ) n ( n + l ) ' 

n 2 + n + 1 
2 5 i ( n ) - 4 

2 5 i ( n ) -

( n 2 - l )n(n + 2) " 6 + 3 CA 

1 
n(n + 1) 2 

n - 1 
n(n + l ) ' 

n + 2 
n(n + 1) ' 

25!(n) - 4 -
1 11 2 7) 

- — + - - 1 

(B.29) 

(B.30) 
n(n + l ) 6 3CU 

A decomposition of the next-to-leading order quark-to-quark anomalous dimensions 

into qq, qq and qq, PS contributions - although possible - appears not to be adequate, as 

the resulting expressions are far more complicated than the (+ ) , (—) and (S) combinations 

appearing in the evolution equation. In the following expressions [35, 167], we denote the 

non-singlet signatures by the variable r\ = ± 1 : 

7, (i) - 165 t (n) 1 2 " + ? L + 1 6 ( t S M -
1 

n 2 (n + l ) 2 

+245 2 (n) + 645(n) - 8S'3{n/2) - 3 - 8 

2n 2 + In + 1 

n(n + 1) 

3n 3 + n 2 - 1 

(5 2 (n) - 5 2 (n/2)) 

n 3 (n + l ) 3 

-16tj-
n 3 (n + l ) 3 
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+CPCA 
536 

9 
S^n) - 8 fan) - -r^-Tr) (25 a(n) - S'2(n/2)) 

QQ 1 7 

- y 5 2 ( n ) - 3 2 S ( n ) + 4 5 ^ ( n / 2 ) - y 

4 151n4 + 236n3 + 88n2 + 3n + 18 2n 2 + 2n + 1 
~9 n 3 (n + l ) 3 + ^ n 3 (n + l ) 3 

160 3 2 n / x 4 1 6 1 1 n 2 + 5 r a - 3 
+C,T, [ - — 5 , ( » ) + T S 2 ( n ) + - + — n 2 ( n + 1 ) 2 (B.31) 

7£!s = 7 £ ! + - 1 6 C f T , 
5n s + 32n 4 + 49n 3 + 38n 2 + 28n + 8 

( r c - l ) n 3 ( n + l ) 3 ( n + 2) 2 

n 2 + n + 2 
- 2 ( 5 2 ( n ) - 5 2 ( n ) + ^ / 2 ) ) n ( ; + ; ) ( ; + 2 ) 

+85, (n)- 2 n + 3 

+2 

(n + l ) 2 ( n + 2) 2 

n 9 + 6n 9 + 15n 7 + 25n 6 + 36rc5 + 85n 4 + 128n3 + 104n2 + 64n + 16 

-SCFTj 

( n - l ) n 3 ( n + l ) 3 ( n + 2) 3 

( 2 5 > ) - 2 S 2 ( n ) + a ) n ; ; +

1 ) ' ' ( ^ 2 ) - 4 5 , W l 

l l n 4 + 26n 3 + 15n 2 +8n + 4" 
n 3 (n + l ) 3 ( n + 2) 

~0) = 'an -4Cl (10S,(») + * • ( . ) - 2 * ( „ ) ) ( „ " _ ^ 1 ) - ^ ( n ) ^ 

12n 6 + 30n 5 + 43n 4 + 28n 3 - n 2 - 12n - 4' 

—8Cf CA 

(n - l ) n 3 ( n + l ) 3 

-5,(n) 
17n4 + 41n 2 - 22n - 12 

3(n - l ) 2 n 2 ( n + 1) 

109n9 + 621n8 + 1400n7 + 1678n6 + 695n5 - 1031n4 - 1304n3 - 152n2 + 432n + 144' 

32 

9(n - l ) 2 n 3 ( n + l ) 3 ( n + 2) 2 

(<*( ^ 8^ n 2 + n + 2 , 1 
V 1 [ U ) 3 ; ( n - l ) n ( n + l ) + (n + 
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199 — $ , ( „ ) +64fr(n) ( n _ 1 ) 2 n 2 ( n + 1 ) 2 ( n + 2 ) 2 y + 325(n) 

+3252(n/2)-
n 2 + n + 1 

( n - l M n + l K n + J ) - 1 6 5 ' ' " ) ^ 2 ' - 4 5 ^ / 2 ) 

4457n 9 + 2742n8 + 6040n7 + 6098n6 + 1567ns - 2344n4 - 1632n3 + 560n2 + 1488n + 576 

+CATF 

+CFT, 

7 ( 1 ) 

( n - l ) 2 n 3 ( n + l ) 3 ( n + 2) 3 

_ 160 32 16 38n 4 + 76n 3 + 94n2 + 56ra + 12 
9 + 3 + 9 ( n - l ) n 2 ( n + l ) 2 ( n + 2) 

8 + 16 
2n 6 + 4n 5 + n 4 - 10n 3 - 5n 2 - 4n - 4 

7 £ ! _ + 16CyT/ 

(n - l ) n 3 ( n + l ) 3 ( n + 2) 

n 4 + 2n 3 + 2n 2 + 5n + 2 

A t 2 > = 8C F7> 

n 3 (n + l ) 3 

2 " ~ * (5 2 (n) - S?(n)) + 4 Si(n) n(n + 1) v ' ra2(n + 1) 
n - 1 

5n 5 + 5n 4 - 10n 3 - n2 + 3n - 2 

+16CUT, 

n 3 (n + l ) 3 

n 6 + n 4 - 4n 3 + 3n 2 - In-2 

A7<;> = 3 2 0 7 } 

n 3 (n + l ) 3 

n + 2 _ . . 5n 2 + 12n + 4 
Si{n) + 

+ 4 C F 

3n(n + 1) 

2n + 4 

9n(n + l ) 2 

(s; (n) + S 2 ( n ) ) - ^ ± i i 2 + l S l ( n ) 

n(n + l ) V ~ 1 V ' " / ' ~ ' v ' ' > n(n + l ) 2 

9n 5 + 30n 4 + 24n 3 - 7n 2 - 16n - 4 
n 3 (n + l ) 3 

+SCACF 
n + 2 

76n 5 + 271n4 + 254n3 + 41n 2 + 72n + 36 

(B.32) 

(B.33) 

n -t£ ( x 0, \ , Q>, /o^^ , H « 2 + 2 2 n + 12 

9n 3 (n + l ) a 
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8 

+ 

n(n + 1) 

134n4 + 268n3 + 134n2 - f 288n + 144 

S'2{n/2) - S'3{n/2) + SS{n) 

St(n) 
9 n 2 ( n + l ) 2 

48n 6 + 144n5 + 469n4 + 698n3 + 7n 2 + 258n + 144' 

+Z2CATj 

+8CFTj 

-gS , (n) + 

9n 3(n + l ) 3 

3n 4 + 6n 3 + 16n2 + 13n - 3 
9n 2 (n + l ) 2 

n 6 + 3n 5 + 5n 4 + n 3 - 8n 2 + 2n + 4 
(B.34) 

n 3 (n + l ) 3 

I t was outlined in Section A.4 that the analytic continuation of some of the finite sums 

occurring in the above expressions is different for odd and even moments. The analytic 

continuation of the above quantities is nevertheless well defined. A formal treatment of 

lepton-hadron scattering in the operator product expression (e.g. [39]) shows that in the 

singlet case only the even moments of the unpolarized scattering amplitude and the odd 

moments of the polarized scattering amplitude are well defined. The remaining integer 

singlet moments are fixed by analytic continuation. In the unpolarized non-singlet case, 

one finds that the flavour non-singlet combinations have only even physical moments 

while the valence non-singlet combinations have only odd. This situation is inverted in 

the polarized case. In the above equations, one has therefore to use t/ = 1 in (B.32) 

and T] = — 1 in (B.34), the value of rj in (B.31) and (B.33) depends on the non-singlet 

combination under consideration. 

B.3 Solution in n-space 

The numerical programme used to obtain the parton distributions presented in this thesis 

is based on an analytic solution of the DGLAP equations in n-space, which is inverted 

into re-space numerically. We outline a brief derivation of the solution in n-space below, 

which follows closely the approach of Furmanski and Petronzio [168]. 
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The evolution equation for any 1 non-singlet combination of parton distributions with 

signature rj reads 

m \ 2 d 
d\nQ' <iv(x/y,Q2), 

(B.35) 

which transforms to 2 

d 
d l n Q 2 

qv(n,Q2) = - -
4TT 7 < " ^ 

7 ( D + 

'MM ' 
qn{n,Q2). (B.36) 

Using the evolution equation (2.4) for the running coupling 

l n a s ( Q 2 ) = -
d l n ( 2 2 

we can rewrite the above equation as 

4ir -A> + 
4TT 

d In a s ( g 2 ) 

which can be expanded in a s (Q 2 ) 

a i n g ? ) ( n , g 2 ) = 1 
a i n a a ( Q 2 ) 2#> 

(o) , Q « ( Q 2 ) (1) 
d i n g ^ n , ^ 2 ) _ 1 %i + ^ 1<n,v 

2 A + 2 ^ A 
47T 

7 ( 0 ) + « , ( g 2 ) 
4TT 

Integration of this equation yields the solution for non-singlet combinations of parton 

distributions 

-y(O) 
Iqq 

qv(n,Ql). (B.37) 

The solution at leading order can be obtained from the above by omitting the second 

term in the brackets. 
1 The derivation below applies to flavour and valence non-singlet combinations of unpolarized and 

polarized parton distributions. We will omit the polarization index in the following. 
2 A l l anomalous dimensions in the remainder of the section are functions of n: y = y(n). 
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The solution in the quark singlet sector is more complicated as quark and gluon 

distributions are mixed in the evolution process. The evolution equations read 

d 
d\nQ2 I G(x,Q2) = / i f ^ 

Jx y 
G(x/y,Q2) 

(B.38) 

with 

V(y) = 

( 
a 

2ir 12 
2TT + ... 

\ J? 

Transformation into moment space yields 

d / s ( n , g 2 ) 

d\nQ2\ G(n,Q2) 
1 
2 47T ( 4 7 r ) 

7 ( 1 ) + 
E ( n , g 2 ) 

G(n,Q2) 

with 

7(o) = 

7 (i) _ 

( -v(O) ^(0) \ 
Iqq Iqg 

\ 19Q '99 I 

lqq,S Iqg 

\ igq >99 I 

Which again yields 

d E ( n , g 2 ) 

3 I n a s { Q 2 ) y G(n,Q2) 
J _ 

Wo 
7(Q) , ^ ( ^ 2 ) 7 f i 

47T 

£ ( n , Q 2 ) 

G ( n , g 2 ) 

7 « ^ 7 ( 1 ) - f 7 ( 0 ) 

Let us first consider the leading order equation 

a / S ( n , g 2 ) \ = J _ ^ ( 0 ) / S(n,Q 2 ) 

d l n o ^ Q 2 ) ^ G{n,Q2) ) 2/?0 ' ^ G(n,Q2) 
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(B.40) 

(B.41) 

(B.42) 

(B.43) 



The eigenvalues of 7 ^ are given by 

Ai, 2 - 2 7£> + 7<? ± y (7S ) -7 i? ) 2 + 4 7 < ? 7 £ ) 

If we introduce projection matrices 

- V [ 7 ( 0 , - A A L ] , 

l — A2

 1 J 

l - 7 ( 0 ) + A! 1 

with the properties 

ei = 

e2 

1 = 

7<o) = 

ci + e2, 

Aiei + A 2 e 2 , 

(B.43) can be diagonalized 

d S ( n , g 2 ) 

d\nas(Q*) 1 G(n,Q2) 

and integrated 

G ( n , g 2 ) J v v o ; \ c ( n , g 2 ) 

Ai 

\ 

For the solution of (B.41), we can now make the ansatz 

9 ( * ? „ A = ( 1 + W#»{<?,Ql) V G(n,Q*) dlna s(<22) 

/ S(n,QS) 

which yields an evolution equation for the matrix U: 

du \<*,(Q2) 
din as{Q2) 2/30 4ir 

7 « + 7 ( o ) f / _ [ / 7 ( o ) 
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Using the fact that the matrices e, form an orthonormal basis, we can decompose any 

matrix 

M = e1Me1 + e2Me2 + exMe2 + e2Met 

into its components. Applying this to the above equation, we obtain evolution equations 

for individual projections of U: 

With the solution of the inhomogeneous diiferential equation f'(x) = Aex + B f ( x ) : 

A 
e

x _ exo+B(x-x0) + /(*o)eB(*-*°> 

we obtain 

e,f/e, = 
1 

4TT (20o - A, + Xj) 

A,- — Xj 

Insertion into (B.47) yields the solution 

' £ ( n , ( ? 2 ) 

v G{n,Q2) 

A, 

/ ( « . m \ 2 p 0 

i WQD! 

4TT (2/?0 — A 2 + A I ) 

i 2 . 

W W 

<**(Q2) 

4* (2j8b - A! + A a ) 

e2 + g ^ - ( « s ( g 2 ) - a.{Ql)) e 2 l

R e 2 

•e 17Re 2 -
4 7 r ( 2 / ? 0 - A , + A 2 ) " 4 7 r ( 2/? 0 - A2 + A x) 

f S(n, Q 2 ) 

^ G(n, Ql) 

(B.48) 
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where 7 R is denned in (B.42). 

Given the moments of parton distributions at a scale QQ, (B.37) and (B.48) enable us 

to evolve these to some different scale Q2. 

B.3.1 Heavy flavour thresholds 

The number of 'active' quark flavours nj appears both in the anomalous dimensions and 

the coefficients of the QCD /9-function. At scales of Q2 ~ M2, the number of active 

quark flavours is obviously three: u,d,s. The situation becomes more complicated as Q2 

increases; if Q2{\ — x)/x = W2 > 4m 2 , one is able to produce a pair of charm quarks, 

above this threshold the c quark has become 'active'. I f Q2 is increased even further, the b 

quark will become 'active' as well. These thresholds can be incorporated into the running 

of aa(Q2) by increasing the number of flavours in the /^-function and changing A in (2.5) 

at each threshold Q2 = m2, requiring that as(m2) is continuous. For o : s (M| ) = 0.112, as 

used in Chapter 5 and [41] this procedure yields 

A^3,4, 5,6 = 281,231,154,59 MeV. 

So far, it has not been possible to incorporate the flavour threshold behaviour consistently 

into the evolution equations. Two different approaches are possible, each has advantages 

and drawbacks: 

(1) The heavy flavours are assumed to be an intrinsic part of the proton structure. 

Their distribution is zero for Q- < m2, and starts to evolve like any other massless 

distribution for Q2 > m2. This is implemented by changing the number of active 

flavours in the splitting functions as well as in the running coupling and the /?-

function. Furthermore, a new flavour non-singlet distribution 

q+>NS = E - (n/ - l){qnj + q n j ) 

starts evolving at each threshold. This approach yields the correct behaviour of the 

distributions at Q2 —* oo, where quark mass effects vanish. 
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(2) The heavy flavours are assumed to be not intrinsically present in the proton. They 

are only generated via a photon-gluon fusion in the DIS interaction. Therefore, 

the number of flavours in the splitting functions and anomalous dimensions is fixed 

to n / = 3, while it increases at each threshold in the running coupling and the 

/3-function. This approach allows a correct treatment of the heavy quark content of 

structure functions around threshold. 

In practice, the difference between both approaches is only sizable around the threshold. 

Throughout this thesis, we have used the second approach, which is incorporated by 

applying (B.37) and (B.48) repeatedly for Q% —• ra2, m 2 —> Q2 with the appropriate ft 

and A in each interval. 

B.3.2 Coefficient functions 

A global f i t of parton distributions to experimental data requires the evaluation of struc

ture functions and related quantities for a large number of points in (x,Q2). I f the evo

lution is performed in s-space (e.g. [42]), one usually creates large grids with the parton 

distributions f ( x , Q2). Any observable to be fitted can then be computed as convolution 

integral of coefficient functions and parton distributions. 

Evolution in n-space has the advantage that the moments of splitting functions and 

initial parton distributions have only to be computed once along the contour of inversion. 

The distributions at a particular value of (x, Q2) are then obtained by inverting (B.37, 

B.48). The computation time needed for a f i t is further optimized by computing the 

moments of the experimental observables, which reduces the convolution of coefficient 

functions and parton densities to a product of their moments. The coefficient functions 

for the unpolarized and polarized structure functions (3.15-3.17) read in n-space: 

C 2 , , (n ,a s ) = I + ^ C F S2 ( n ) - 5 2 ( n ) + ^ ( n ) -
n(n + 1) 

1 

9n 3 + 2n 2 - 5n - 2 
2n 2 (n + 1) 
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. ) = 2 ^ T f 

0 n 2 + n + 2 2n-
[ n(n + l ) (n + 2 p l J n 

C L i 9 (n , a . ) = 
2 

n + 1 ' 

. ) = 
8 

. ) = 2TT ' (n + l)(n + 2 ) ' 

ACq(n,a .) = 1 + ^ C F 5 2 (n) - 5 2 (n) + ^ ( n ) -

n 2 (n + l ) ( n + 2) 
, (B.49) 

(B.50) 

n(n + 1) 
Si(n) 

9n 3 + 6n 2 - 3n - 2 

A C 3 ( n , a s ) = 
n(n + 1) 

B.4 Inversion into cc-space 

2n 2(n + 1) 

n 2 (n + l ) 
(B.51) 

Once the parton distributions or structure functions in n-space have been computed ac

cording to the above formulae, the expressions in x-space can in principle be regained by 

use of (B.2). It turns out that this is rather difficult in practice, as most functions appear

ing are strongly oscillating along the contour ]a — ioo; a + ioo[ used in (B.2), while falling 

off only very slowly for large absolute values of n. Instead of using a dedicated integration 

algorithm for oscillating functions, we decided to deform the contour of integration in 

the complex n-plane such that an ordinary integration algorithm can be applied. Such a 

deformation of the contour does not change the value of the integral, provided the inte

grand is free of singularities in the area enclosed by the old and new contour (Cauchy's 

integration law). 

The results of the n-space evolution contain the following singularities: 

(1) A l l anomalous dimensions are singular for {n = — i \ i € INo}-

(2) The unpolarized singlet anomalous dimensions are furthermore singular for n = +1 

(soft gluon singularity). 
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(3) I f the initial distributions are singular like xa (a < 0) for a: —• 0, their Mellin 

transformations are singular for n = —a. 

As all singularities are located on the real axis, we are free to choose any contour in 

the complex plane which crosses the real axis to the left of all singular points. Spurious 

singularities occur where the eigenvalues (B.44) of the leading order anomalous dimension 

matrix degenerate. To guarantee numerical stability, the integration contour should not 

touch these singularities either. 

10 

0 

10 
10 8 0 

Re(n) 

Figure B . l : Inversion contour used in the polarized evolution. 

The results presented in this thesis were obtained with the contour 

Re(n) = a — tan 2 <f> 

Im(n) = b tan (f>, (B.52) 

in which (B.2) reads 

1 d<j> 1 f bRe ( x " " w / ( n f » ) ) - 2 tan <f>lm (x~nW / ( n ( » ) ) ] . (B.53) 
- T T / 2 C O S 2 <f> 

We have chosen a = 1.05, b = 3 for the polarized and a = 2.05, b = 3 for the unpolarized 

evolution. The (^-integration was performed using Simpson's rule; to avoid sampling of 
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the integrand in irrelevant regions, we have cut | ^ | < 1.48 for x > 0.4 and | ^ | < 1.37 for 

x < 0.4. 
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