

Durham E-Theses

Free radical routes to functional fluorine-containing organic compounds

Sneddon, Alan W.A.

How to cite:

Sneddon, Alan W.A. (1995) Free radical routes to functional fluorine-containing organic compounds, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5218/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk

UNIVERSITY OF DURHAM

A Thesis Entitled

FREE RADICAL ROUTES TO FUNCTIONAL FLUORINE-CONTAINING ORGANIC COMPOUNDS

Submitted by

Alan W. A. Sneddon B.Sc. (University of Glasgow)

A Candidate for the Degree of Master of Science

\$

Department of Chemistry

1995

The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged.

This is for my parents, who have given me considerable support throughout, and for Mrs. J. Little, a friend I will miss a lot.

\$

Teacher, starve your child, P.C. approved As long as the right words are used Systemised atrocity ignored

•

- PCP, Manic Street Preachers

MEMORANDUM

The copyright of this work rests solely with the author. No part of this thesis may be reproduced, stored in a retrieval system, transmitted or published in any form without written permission of the author.

NOMENCLATURE

1

Throughout this thesis an 'F' in the centre of a ring is used to denote that all unmarked bonds are to fluorine.

ACKNOWLEDGEMENTS

The assistance of university technical staff, and others outwith, is acknowledged.

Most importantly, I am grateful to my parents for their considerable support throughout.

ABSTRACT

Free radical additions of functional hydrocarbons such as alcohols, aldehydes and ethers to the highly fluorinated alkenes 2*H*-pentafluoropropene and hexafluoropropene have been studied. In particular, reactions involving 2*H*-pentafluoropropene have given rise to a series of new fluorinated alcohols and ketones. For the purpose of synthesising the 1:1 adducts, γ -ray initiation was shown to provide a superior method to ultra violet radiation or peroxides.

Competition reactions were carried out between homologous alcohols and between different species, *viz* alcohol, aldehyde, amine, ether. These reactions enabled reactivity series to be established.

Chemistry of the derived polyfluorinated alcohols was investigated, and it has been shown that these compounds may be reacted with a broad spectrum of electrophiles to give new esters, carbonates, sulphonates and ethers, including the first reported such reactions with perfluorinated aromatic and heteroaromatic compounds as electrophiles.

Interestingly, it was observed that tosylated polyfluoroalcohols would not undergo nucleophilic displacement, in contrast to the situation which exists with non-fluorinated analogues.

2-(1,1,2,3,3,3-Hexafluoropropyl)oxolane was chlorinated selectively at the 5-position, and subsequently reacted with a range of different types of nucleophile. This study gave a number of novel compounds, and reasons were proposed for the variation in reactivity of nucleophiles under study.

Direct chlorination of this ketone gave rise to the chloromethyl and dichloromethyl ketones, as did direct chlorination of 3,3,4,5,5,5hexafluoropentan-2-ol. A pathway for the latter reaction is proposed, involving 1,1,1,2,3,3-hexafluoropentan-2-one as an intermediate.

CONTENTS

CHAPTER ONE	
GENERAL INTRODUCTION	
A. Natural Occurence of Fluorine	2
B. Historical Perspective	2
C. Properties of Fluorinated Organic Compounds	3
D. Applications of Fluorinated Organic Compounds	5
D.1. Biologically Useful Compounds	5
D.1.a. Biological Activity	5
D.1.b. Examples of Biologically Active Fluorinated Organic	
Compounds	5
D.1.c. Anaesthetics	8
D.1.d. Artificial Blood Substitutes	8
D.1.e. Positron Emission Topography	9
D.2. Surfactants	9
D.3. Inert Fluids	10
E. Synthetic Routes to Fluorinated Organic Compounds	10
E.1. Fluorinating Agents	10
E.1.a. Elementary Fluorine	10
E.1.a.(I). The LaMar Process	11
E.1.a.(II). Aerosol Direct Fluorination	11
E.1.a.(III). Liquid Phase Fluorination	12
E.1.b. High Valency Metal Fluorides	12
E.1.c. Hydrogen Fluoride	13
E.1.C.(I). Addition Across Multiple Bonds	13
E.1.C.(II). Substitution	14
E.1.d. Electrochemical Fluorination	14
E.1.e. Sulphur Tetrafluoride	15
E.1.f. Diethylamino Sulphur Trifluoride	15
E.1.g. Boron Trifluoride/Tetrafluoroboric Acid -	
(The Balz-Schlemann Reaction)	16
E.1.h. Interhalogen Compounds	17
E.1.i. Xenon Difluoride	18
E.1.j. Caesium Fluoroxysulphate	19
E.1.k. Perchloryl Fluoride	19
E.1.I. N-Fluoro Compounds	20

E.1.m. Hypofluorites	21
E.1.m.(i). Acetyl Hypofluorite	21
E.1.m.(ii). Trifluoromethyl Hypofluorite	21
E.2. Free Radical Polyfluoroalkylation	22
CHAPTER TWO	
FREE RADICAL ADDITION TO FLUOROALKENES	
A. Review of Free Radical Addition to Alkenes	24
A.1. General Introduction	24
A.2. Review of Recent Work on Free Radical Addition to	
Alkenes	24
A.2.a. Free Radical Addition of Acyl Radicals to Electron	
Deficient Alkenes	24
A.2.b. Free Radical Addition to Fluoroalkenes and	
Fluoroalkynes	26
A.3. Review of Chemistry of 2H-Pentafluoropropene	29
A.3.a. Preparation	29
A.3.b. Reactions of 2H-Pentafluoropropene	30
A.3.b.(i). Carbanion Chemistry	30
A.3.b.(ii). Addition of Inorganic Compounds to the	
Double Bond	33
A.3.b.(iii). Cycloaddition	35
A.3.(iv). Miscellaneous Reactions of 2H-Pentafluoropropen	e 35
, A.3.c. Conclusions	36
A.4. Mechanism of Free Radical Addition	36
A.4.a. Initiation Methods	37
A.4.a.(i). Chemically Induced Initiation	37
A.4.a.(ii). Radiation Induced Initiation	38
A.4.b. Radical Stability	41
A.4.c. Factors Affecting Orientation of Addition	41
A.4.c.(i). Theoretical Considerations	41
A.4.c.(ii). Experimental Findings on Steric and Electronic	
Influences on Attack	42
A.4.d. Telomerisation B. Present Work - Free Radical Addition Proceedings of Highly	43
Fluorinated Alkenes	44 1
B.1 Objectives of the Project B.2. Addition of Aldehydes to Fluoroalkenes	44 44

•

B.2.a. Reactions with Aliphatic Aldehydes	44
B.2.b. Conclusions	45
B.2.c. Reactions with Aromatic Aldehydes	46A
B.3. Addition of Alcohols to Fluoroalkenes	47
B.3.a. Solvent Effects	48A
B.4. Addition of Diols to Fluoroalkenes	49
B.5. Addition of Ethers to Fluoroalkenes	51
B.6. Addition of Silanes to Fluoroalkenes	51
B.7. Competition Reactions	52
B.7.a. Alcohols	52
B.7.b. Between Species	53

CHAPTER THREE

.

DERIVATISATION OF POLYFLUORINATED ALCOHOLS	
A. Introduction	55
B. Nucleophilic Reactions of Polyfluorinated Alcohols	55
B.1. Esterifications	55
B.2. Carbonate Synthesis	56
B.3. Ether Synthesis	57
B.3.a. Alkyl Halides	58
B.3.b. Activated Halides	58
B.3.c. Fluoroaromatic Compounds	60
B.3.c.(i). Caesium Fluoride as a Base	60
B.3.c(ii). Reactions Involving Fluoroaromatic Compounds	61
B.3.d. Perfluoroaromatic Compounds	63
B.4. Sulphonation	66
B.4.a. Synthesis of Sulphonates	66
B.4.b. Reactions of Sulphonates	67
B.4.b.(i). Halogen Nucleophiles	67
B.4.b.(ii). Oxygen Nucleophiles	67
B.4.b.(iii). Nitrogen Nucleophiles	68
B.4.b.(iv). Carbon Nucleophiles	68
B.4.b.(v). Sulphur Nucleophiles	68
B.4.c. Conclusion	69
C. Miscellaneous Reactions of Polyfluorinated Alcohols	69
C.1. Oxidation	69
C.2. Dehydration	70

C.3. Direct Chlorination	71
D. Conclusion	71
CHAPTER FOUR	
DERIVATISATION OF POLYFLUORINATED ETHERS	
A. Halogenation of Cyclic Adducts	74
A.1. Introduction	74
A.1.a. Halogenation Reactions	74
A.1.b. Mechanism of Direct Halogenation	75
B. Nucleophilic Substitution Reactions of 2-Chloro-5-	
(1,1,2,3,3,3-Hexafluoropropyl)oxolane (41)	77
B.1. Oxygen Nucleophiles	77
B.2. Nitrogen Nucleophiles	78
B.3. Carbon Nucleophiles	79
B.4. Sulphur Nucleophiles	80
B.5. Phosphorus Nucleophiles	80
B.6. Conclusions	80
DEPINATION OF DOLVELLOPINATED KETONES	
A Englate Chemistry	03
A. Enolate Chemistry	00
A.1. Ellolates III Organic Chemistry	03 02
A.2. Fluoroenolates	83
A.2.a. Early Fluoroenolate Chemistry	83
A.2.b. Perfluoroenolates	84
A.2.c. Polyfluoroenolates	84
A.2.d. 'Internal' Versus 'External' Enolate Formation	86
A.3. Reactions of 3,3,4,5,5,5-Hexafluoropentan-2-one (36)	87
B. Other Attempted Reactions of (36)	88
C. Conclusion	90
	91
CHAPTER SIX	0.
EXPERIMENTAL TO CHAPTER TWO	
Instrumentation	92
A. General Procedures	93A 93A
A.1. γ -Ray Initiated Reactions	94

•

•

A.2. Ultraviolet Initiated Reactions	94
A.3. Peroxide Initiated Reactions	94
B. Synthesis	95
B.1. Synthesis of Polyfluorinated Ketones	95
B.1.a. γ-Ray Initiated Free Radical Addition of Ethanal	to
Hexafluoropropene	95
B.1.b. γ-Ray Initiated Free Radical Addition of Ethanal f	to
2H-Pentafluoropropene	95
B.1.c. γ-Ray Initiated Free Radical Addition of Propanal	to
Hexafluoropropene	95
B.1.d. γ-Ray Initiated Free Radical Addition of Propanal	l to
2H-Pentafluoropropene	96
B.1.e. γ-Ray Initiated Free Radical Addition of Butanal	to
Hexafluoropropene	96
B.1.f. γ-Ray Initiated Free Radical Addition of Butanal t	0
2H-Pentafluoropropene	96
B.1.g. γ -Ray Initiated Free Radical Addition of Pentanal	to
Hexafluoropropene	97
B.1.h. γ-Ray Initiated Free Radical Addition of Pentanal	to
2H-Pentafluoropropene	97
B.1.i. γ-Ray Initiated Free Radical Addition of	
Dimethylpropanal to Hexafluoropropene	97
B.1.j. γ -Ray Initiated Free Radical Addition of	
Dimethylpropanal to 2H-Pentafluoropropene	98
B.1.k. γ-Ray Initiated Free Radical Addition of Dodecane	ədial
to Hexafluoropropene	98
B.1.I. Attempted γ-Ray Initiated Free Radical Addition of	of
Aromatic Aldehydes to Hexafluoropropene	98
B.2. Synthesis of Polyfluorinated Alcohols	99
B.2.a. γ -Ray Initiated Free Radical Addition of Methanol	to
Hexafluoropropene	99
B.2.b. γ-Ray Initiated Free Radical Addition of Methanol	to
2H-Pentafluoropropene	99
B.2.c. γ-Ray Initiated Free Radical Addition of Ethanol t	0
Hexatluoropropene	99
B.2.d. γ-Ray Initiated Free Radical Addition of Ethanol t	0
2H-Pentatluoropropene	100

-

B.2.e. γ-Ray Initiated Free Radical Addition of Propan-1-ol to Hexafluoropropene 100 B.2.f. y-Ray Initiated Free Radical Addition of Butan-1-ol to Hexafluoropropene 100 B.2.g. y-Ray Initiated Free Radical Addition of Pentan-1-ol to Hexafluoropropene 100 B.2.h. γ -Ray Initiated Free Radical Addition of Hexan-1-ol to Hexafluoropropene 101 B.2.i. y-Ray Initiated Free Radical Addition of Heptan-1-ol to Hexafluoropropene 101 B.3. Synthesis of Polyfluorinated Diols 101 B.3.a. y-Ray Initiated Free Radical Addition of 1,2-Ethanediol to Hexafluoropropene 101 B.3.b. y-Ray Initiated Free Radical Addition of 102 1,3-Propanediol to Hexafluoropropene B.3.c. y-Ray Initiated Free Radical Addition of 1,4-Butanediol to Hexafluoropropene 102 B.3.c.(i). Synthesis of 5,5,6,7,7,7-Hexafluoroheptane-1,4-diol 102 B.3.c.(ii). Synthesis of 1,1,1,2,3,3,8,8,9,10,10,10-Dodecafluorodecane-4,7-diol 102 B.3.d. y-Ray Initiated Free Radical Addition of 1,5-Pentanediol to Hexafluoropropene 103 **β** B.3.e. γ-Ray Initiated Free Radical Addition of 1,6-Hexanediol to Hexafluoropropene 103 B.4. Synthesis of Polyfluorinated Ethers 103 B.4.a. γ -Ray Initiated Free Radical Addition of Oxolane to Hexafluoropropene 103 B.5. Synthesis of Polyfluorinated Silanes 104 B.5.a. y-Ray Initiated Free Radical Addition of Methoxytrimethylsilane to Hexafluoropropene 104 104 C. Competition Reactions C.1. General Procedures 104 C.2. Synthesis of 2-(1,1,2,3,3,3-Hexafluoropropyl)pyrrolidine-1-carboxaldehyde 105

CHAPTER SEVEN EXPERIMENTAL TO CHAPTER THREE A. Esterifications

	A.1. Acetylation	107
	A.1.a. Acetylation of 2,2,3,4,4,4-Hexafluorobutanol (29)	107
	A.1.b. Acetylation of	
	3,3,4,5,5,5-Hexafluoropentan-2-ol (28)	107
	A.2. 3,5-Dinitrobenzoylation	108
	A.2.a. 3,5-Dinitrobenzoylation of (29)	108
	A.2.b. 3,5-Dinitrobenzoylation of (28)	108
	A.3. 1,4-Dibenzoylation	108
	A.3.a. 1,4-Dibenzoylation of (28)	108
Β.	Synthesis of Carbonates	109
	B.1. Synthesis of Phenyl Carbonate of (29)	109
	B.2. Synthesis of Phenyl Carbonate of (28)	109
C.	Synthesis of Ethers	110
	C.1. Reaction with Alkyl Halides	110
	C.1.a. Reaction of (28) with Iodomethane	110
	C.1.b. Reaction of (28) with 1-Bromopropane	110
	C.1.c. Reaction of (28) with 2-Bromopropane	111
	C.1.d. Reaction of (28) with 1,1,1-Trifluoro-2-iodoethane	111
	C.2. Reaction with Activated Halides	111
	C.2.a. Reaction of (29) with Allyl Bromide	111
	C.2.b. Reaction of (28) with Allyl Bromide	112
	C.2.c. Reaction of (29) with Benzyl Bromide	112
	C.2.d. Reaction of (28) with Benzyl Bromide	112
	C.3. Reaction with Fluorobenzenes	113
	C.3.a. Reaction of (28) with 4-Fluorobenzonitrile	113
	C.3.b. Reaction of (28) with 4-Fluoroacetophenone	113
	C.3.c. Reaction of (28) with 4-Fluorobenzophenone	114
	C.3.d. Reaction of (28) with 4-(Trifluoromethyl)-	
	fluorobenzene	114
	C.3.e. Reaction of (29) with Hexafluorobenzene	114
	C.3.f. Reaction of (28) with Hexafluorobenzene	115
	C.3.g. Reaction of (29) with Fluoro-2,4-dinitrobenzene	115
	C.3.h. Reaction of (28) with Fluoro-2,4-dinitrobenzene	115
	C.4. Reaction with Perfluoroheteroaromatic Compounds	116

C.4.b. Reaction of (28) with Pentafluoropyridine116C.4.c. Reaction of (29) with Tetrafluoropyrimidine117C.4.c. Reaction of (29) with Tetrafluoropyrimidine117C.4.e. Reaction of (29) with Tetrafluoropyriazine117C.4.f. Reaction of (29) with Tetrafluoropyridazine118C.4.h. Reaction of (29) with Tetrafluoropyridazine118C.4.h. Reaction of (29) with Tetrafluoropyridazine118C.4.h. Reaction of (28) with Tetrafluoropyridazine118D. Synthesis of Sulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1.a. Tosylation of (29)119D.1.b. Tosylation of (28)120D.1.c. Tosylation of (23)120D.2. Synthesis of Trichloromethanesulphonates120D.3. Synthesis of Trifluoromethanesulphonates121(Triflation)120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.2. Oxygen Nucleophiles121E.2. Reaction with Methoxide121E.3. Nitrogen Nucleophiles122E.3. Reaction with Diethylamine122E.3. Reaction with Grignard Reagents122E.4. Reaction with Grignard Reagents123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	C.4.a. Reaction of (29) with Pentafluoropyridine	116
C.4.c. Reaction of (29) with Tetrafluoropyrimidine116C.4.d. Reaction of (28) with Tetrafluoropyrimidine117C.4.e. Reaction of (29) with Tetrafluoropyrazine117C.4.f. Reaction of (28) with Tetrafluoropyridazine117C.4.g. Reaction of (29) with Tetrafluoropyridazine118C.4.h. Reaction of (29) with Tetrafluoropyridazine118C.4.h. Reaction of (29) with Tetrafluoropyridazine118D. Synthesis of Sulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1.a. Tosylation of (29)119D.1.b. Tosylation of (23)119D.1.c. Tosylation of (23)120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.2.a. Reaction with Bromide121E.2.a. Reaction with Bromide121E.3. Nitrogen Nucleophiles122E.3. Nitrogen Nucleophiles122E.3. Reaction with Diethylamine122E.3. Reaction with Diethylamine122E.4.a. Reaction with Diethylamine122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124G. Dehydration124	C.4.b. Reaction of (28) with Pentafluoropyridine	116
C.4.d. Reaction of (28) with Tetrafluoropyrimidine117C.4.e. Reaction of (29) with Tetrafluoropyrazine117C.4.f. Reaction of (28) with Tetrafluoropyridazine117C.4.g. Reaction of (29) with Tetrafluoropyridazine118C.4.h. Reaction of (28) with Tetrafluoropyridazine118D. Synthesis of Sulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1.a. Tosylation of (29)119D.1.b. Tosylation of (28)119D.1.c. Tosylation of (28)119D.2. Synthesis of Trichloromethanesulphonates120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates121(Triflation)120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1.a. Reaction with lodide121E.2.a. Reaction with Bromide121E.2.a. Reaction with Bromide121E.2.a. Reaction with Methoxide122E.3.a. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123F.1. Chromic Acid Oxidations123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	C.4.c. Reaction of (29) with Tetrafluoropyrimidine	116
C.4.e. Reaction of (29) with Tetrafluoropyrazine117C.4.f. Reaction of (28) with Tetrafluoropyrazine117C.4.g. Reaction of (29) with Tetrafluoropyridazine118C.4.h. Reaction of (28) with Tetrafluoropyridazine118D. Synthesis of Sulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1.a. Tosylation of (29)119D.1.a. Tosylation of (23)119D.1.c. Tosylation of (23)120D.2. Synthesis of Trichloromethanesulphonates120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates121(Triflation)120D.3.a. Triflation of (28)121E.1.a. Reaction with lodide121E.1.a. Reaction with Bromide121E.2.a. Reaction with Bromide121E.2.a. Reaction with Methoxide121E.3.a. Reaction with Diethylamine122E.3.a. Reaction with Diethylamine122E.3.a. Reaction with Grignard Reagents122E.4.a. Reaction with Grignard Reagents123F.1. Chromic Acid Oxidations123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	C.4.d. Reaction of (28) with Tetrafluoropyrimidine	117
C.4.f. Reaction of (28) with Tetrafluoropyrazine117C.4.g. Reaction of (29) with Tetrafluoropyridazine118C.4.h. Reaction of (28) with Tetrafluoropyridazine118D. Synthesis of Sulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Tosylation of (29)119D.1.b. Tosylation of (23)119D.2. Synthesis of Trichloromethanesulphonates120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates121(Triflation)120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1.a. Reaction with lodide121* E.1.b. Reaction with Bromide121E.2.a. Reaction with Bromide121E.2.a. Reaction with Methoxide122E.3. Nitrogen Nucleophiles122E.3. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles123E.5. Sulphur Nucleophiles123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	C.4.e. Reaction of (29) with Tetrafluoropyrazine	117
C.4.g. Reaction of (29) with Tetrafluoropyridazine118C.4.h. Reaction of (28) with Tetrafluoropyridazine118D. Synthesis of Sulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1.a. Tosylation of (29)119D.1.b. Tosylation of (23)119D.1.c. Tosylation of (23)120D.2. Synthesis of Trichloromethanesulphonates120D.3. Synthesis of Trifluoromethanesulphonates120D.3. Synthesis of Trifluoromethanesulphonates121E.1.a. Reaction of (28)120E. Attempted Reaction of Sulphonates121E.1.a. Reaction with lodide121F.1.a. Reaction with lodide121E.2.a. Reaction with Bromide121E.2.a. Reaction with Methoxide122E.3.a. Reaction with Diethylamine122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles123F. Oxidation123F. Oxidation123F. Oxidation123G. Dehydration124	C.4.f. Reaction of (28) with Tetrafluoropyrazine	117
C.4.h. Reaction of (28) with Tetrafluoropyridazine118D. Synthesis of Sulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1.a. Tosylation of (29)119D.1.b. Tosylation of (23)119D.1.c. Tosylation of (23)119D.2. Synthesis of Trichloromethanesulphonates120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates120D.3. Synthesis of Trifluoromethanesulphonates121C.1.flation)120D.3.a. Triflation of (28)121E.1.a. Reaction with lodide121E.1.a. Reaction with lodide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.2.a. Reaction with Diethylamine122E.3. Nitrogen Nucleophiles122E.3. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	C.4.g. Reaction of (29) with Tetrafluoropyridazine	118
D. Synthesis of Sulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1. Synthesis of 4-Methylbenzenesulphonates119D.1.a. Tosylation of (29)119D.1.b. Tosylation of (23)119D.1.c. Tosylation of (23)119D.2. Synthesis of Trichloromethanesulphonates120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates120D.3. Synthesis of Trifluoromethanesulphonates120D.3. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121* E.1.b. Reaction with Bromide121E.2.a. Reaction with Methoxide121E.2.a. Reaction with Methoxide122E.3. Nitrogen Nucleophiles122E.3. Nitrogen Nucleophiles122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles122E.5. Sulphur Nucleophiles123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	C.4.h. Reaction of (28) with Tetrafluoropyridazine	118
D.1. Synthesis of 4-Methylbenzenesulphonates (Tosylation)119D.1.a. Tosylation of (29)119D.1.b. Tosylation of (28)119D.1.c. Tosylation of (23)119D.2. Synthesis of Trichloromethanesulphonates (Triclation)120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121F.1.b. Reaction with Bromide121E.2.a. Reaction with Methoxide121E.2.a. Reaction with Ethoxide122E.3.a. Reaction with Diethylamine122E.3.a. Reaction with Diethylamine122E.3.a. Reaction with Grignard Reagents122E.4.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	D. Synthesis of Sulphonates	119
(Tosylation)119D.1.a. Tosylation of (29)119D.1.b. Tosylation of (23)119D.1.c. Tosylation of (23)119D.2. Synthesis of Trichloromethanesulphonates(Triclation)(Triclation)120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates(Triflation)(Triflation)120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121F.1. D. Reaction with Bromide121E.2.a. Reaction with Bromide121E.2.a. Reaction with Methoxide122E.3.a. Reaction with Ethoxide122E.3.a. Reaction with Diethylamine122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123G. Dehvdration124	D.1. Synthesis of 4-Methylbenzenesulphonates	
D.1.a. Tosylation of (29)119D.1.b. Tosylation of (28)119D.1.c. Tosylation of (23)119D.2. Synthesis of Trichloromethanesulphonates120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates120C.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.3.a. Reaction with Ethoxide122E.3.a. Reaction with Diethylamine122E.3.a. Reaction with Grignard Reagents122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	(Tosylation)	119
D.1.b. Tosylation of (28)119D.1.c. Tosylation of (23)119D.2. Synthesis of Trichloromethanesulphonates120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates120C.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121F.1.a. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.3. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	D.1.a. Tosylation of (29)	119
D.1.c. Tosylation of (23)119D.2. Synthesis of Trichloromethanesulphonates120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Bromide121E.2.a. Reaction with Methoxide121E.3. Nitrogen Nucleophiles122E.3. Reaction with Diethylamine122E.3. Reaction with Grignard Reagents122E.4.a. Reaction with Thiophenate123F. Oxidation123F. Oxidation123F. Oxidation123F. Oxidation123G. Dehvdration124	D.1.b. Tosylation of (28)	119
D.2. Synthesis of Trichloromethanesulphonates (Triclation)120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates (Triflation)120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1. Halogen Nucleophiles121# E.1.b. Reaction with lodide121# E.1.b. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.3.a. Reaction with Ethoxide122E.3.a. Reaction with Diethylamine122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	D.1.c. Tosylation of (23)	119
(Triclation)120D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates120D.3. Synthesis of Trifluoromethanesulphonates120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121E.1.b. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.3.a. Reaction with Ethoxide122E.3.a. Reaction with Diethylamine122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	D.2. Synthesis of Trichloromethanesulphonates	
D.2.a. Triclation of (28)120D.3. Synthesis of Trifluoromethanesulphonates120(Triflation)120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121F.1.b. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.2.b. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4.a. Reaction with Grignard Reagents123E.5. Sulphur Nucleophiles123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	(Triclation)	120
D.3. Synthesis of Trifluoromethanesulphonates(Triflation)120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121* E.1.b. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.2.b. Reaction with Ethoxide122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles122E.5. Sulphur Nucleophiles123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	D.2.a. Triclation of (28)	120
(Triflation)120D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121* E.1.b. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.2.b. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	D.3. Synthesis of Trifluoromethanesulphonates	
D.3.a. Triflation of (28)120E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121* E.1.b. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.2.b. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	(Triflation)	120
E. Attempted Reaction of Sulphonates121E.1. Halogen Nucleophiles121E.1.a. Reaction with lodide121* E.1.b. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.2.b. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.4. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	D.3.a. Triflation of (28)	120
E.1. Halogen Nucleophiles121E.1.a. Reaction with Iodide121F.1.b. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.2.b. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles122E.5. Sulphur Nucleophiles123F. Oxidation123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	E. Attempted Reaction of Sulphonates	121
E.1.a. Reaction with lodide121* E.1.b. Reaction with Bromide121E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.2.b. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	E.1. Halogen Nucleophiles	121
 E.1.b. Reaction with Bromide E.2. Oxygen Nucleophiles E.2. Oxygen Nucleophiles E.2.a. Reaction with Methoxide E.2.b. Reaction with Ethoxide E.3. Nitrogen Nucleophiles E.3.a. Reaction with Diethylamine E.4. Carbon Nucleophiles E.4.a. Reaction with Grignard Reagents E.5. Sulphur Nucleophiles E.5.a. Reaction with Thiophenate F. Oxidation F.1. Chromic Acid Oxidations F.2. Permanganate Oxidations G. Dehydration 	E.1.a. Reaction with lodide	121
E.2. Oxygen Nucleophiles121E.2.a. Reaction with Methoxide121E.2.b. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	E.1.b. Reaction with Bromide	121
E.2.a. Reaction with Methoxide121E.2.b. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	E.2. Oxygen Nucleophiles	121
E.2.b. Reaction with Ethoxide122E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	E.2.a. Reaction with Methoxide	121
E.3. Nitrogen Nucleophiles122E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	E.2.b. Reaction with Ethoxide	122
E.3.a. Reaction with Diethylamine122E.4. Carbon Nucleophiles122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	E.3. Nitrogen Nucleophiles	122
E.4. Carbon Nucleophiles122E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	E.3.a. Reaction with Diethylamine	122
E.4.a. Reaction with Grignard Reagents122E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	E.4. Carbon Nucleophiles	122
E.5. Sulphur Nucleophiles123E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	E.4.a. Reaction with Grignard Reagents	122
E.5.a. Reaction with Thiophenate123F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehvdration124	E.5. Sulphur Nucleophiles	123
F. Oxidation123F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	E.5.a. Reaction with Thiophenate	123
F.1. Chromic Acid Oxidations123F.2. Permanganate Oxidations123G. Dehydration124	F. Oxidation	123
F.2. Permanganate Oxidations 123 G. Dehvdration 124	F.1. Chromic Acid Oxidations	123
G. Dehvdration 124	F.2. Permanganate Oxidations	123
	G. Dehydration	124

G.1. Phosphorus Pentoxide Dehydration	124
G.2. Phosphorus Pentoxide/Sulphuric Acid Dehydration	124
H. Direct Chlorination	124
CHAPTER EIGHT	
EXPERIMENTAL TO CHAPTER FOUR	
A. Halogenation	126
A.1. Direct Halogenation of	
2-(1,1,2,3,3,3-Hexafluoropropy!)oxolane (25)	126
A.1.a. Direct Chlorination of (25)	126
A.1.b. Direct Bromination of (25)	126
A.2. Direct Halogenation of	
2,5-Bis(1,1,2,3,3,3-hexafluoropropyl)oxolane (26)	126
A.2.a. Direct Chlorination of (26)	126
A.2.b. Direct Bromination of (26)	127
A.3. Nucleophilic Displacement Reactions of	
2-Chloro-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane (41)	127
A.3.a. Oxygen Nucleophiles	127
A.3.a.(i). Methoxide	127
A.3.a.(ii). 2-Propoxide	127
A.3.a.(iii). 4-Nitrophenoxide	127
A.3.b. Nitrogen Nucleophiles	128
A.3.b.(i). Diethylamine	128
A.3.b.(ii). Potassium Phthalimide	128
A.3.b.(iii). Piperidine	128
A.3.b.(iv). Morpholine	128
A.3.b.(v). Piperazine	129
A.3.b.(vi). Aromatic Amines	129
A.3.c. Carbon Nucleophiles	129
A.3.c.(i). Diethylmalonate	129
A.3.d. Sulphur Nucleophiles	129
A.3.d.(i). Thiophenate	129
A.3.e. Phosphorus Nucleophiles	130
A.3.e.(i). Triphenyl Phosphine	130

CHAPTER NINE EXPERIMENTAL TO CHAPTER FIVE

Α.	Enolate Chemistry	132
	A.1. Derivatisation of (36) by Enolate Trapping	132
	A.1.a. Butyl Lithium Method	132
	A.1.b. Caesium Fluoride Method	132
	A.2. Enolate Quenching with Ethanol-d	132
Β.	Direct Chlorination	132

APPENDICES

\$

APPENDIX ONE : NMR Spectra	134
APPENDIX TWO : Mass Spectra	177
APPENDIX THREE : Infra Red Spectra	243
APPENDIX FOUR : Research Colloquia, Seminars, Lectures	
and Conferences	258
REFERENCES	268

CHAPTER ONE

GENERAL INTRODUCTION

.

1

A. NATURAL OCCURRENCE OF FLUORINE

Fluorine is the thirteenth most abundant terrestrial element, representing *ca.* 0.065% of the earth's crust.¹ However it is present almost exclusively as inorganic salts, chiefly fluorspar (calcium fluoride), cryolite (sodium hexafluoroaluminate) and fluoroapatite (calcium hydroxyphosphate in which fluoride replaces some hydroxide),¹ due to its high electronegativity.

Naturally occurring organic compounds containing fluorine are few in number, examples known thus far include fluoroacetate (the toxic constituent of gifblaar or *Dichapetalum cymosum*),² ω -fluorooleic acid (found in ratsbane or *Dichapetalum toxicarium* seeds)² and the fluorinated nucleoside, nucleocidin (1).³

B. HISTORICAL PERSPECTIVE

Though hydrogen fluoride was discovered in 1771 by Scheele, it was not until 1886 that Moissan prepared elementary fluorine.^{4,5}

Even well into the twentieth century, little consideration was given to the field of organofluorine chemistry until the potential was realised for the industrial and military application of such materials. In the 1930s the unreactive nature of chlorofluorocarbons was harnessed for use as refrigerants,⁷ and the Manhattan Project provided further impetus for organofluorine research in the quest for materials which exhibited high thermal stability and remained chemically intact when exposed to such

2

strong oxidising agents as uranium hexafluoride at elevated temperatures.⁸

C. PROPERTIES OF FLUORINATED ORGANIC COMPOUNDS

The C-F bond has unique properties. As can be seen from Table 1.1⁹ this bond is the strongest single bond to carbon, and is in fact stronger than the C-C bond itself.

Bond	Bond Strength (kcal mol ⁻¹)
C-F	106-121
C-CI	81
C-Br	68
C - I	57
C-O	85.5
C-N	72.8
C-S	65
C-H	98.7
C-C	82 ¹¹

TABLE 1.1: C-X BOND STRENGTHS9

This property, and the shielding effect of fluorine as a substituent, gives rise to the remarkable thermal stability of organofluorine compounds which, even on thermal degradation, tend to decompose by means of skeletal fragmentation to lower molecular weight analogues (Equation 1.1).

$$(CF_2CF_2)_n \xrightarrow{\Delta} CF_2 = CFCF_3 + CF_2 = CFC_2F_5 + CF_2 = C(CF_3)_2 [1.1]^{10}$$

The existence of fully fluorinated alkanes contrasts with analogues of other halogens, whose steric requirements induce instability and prevent formation of higher perchloro-, perbromoor periodocarbons.

The length of the C-F bond is comparable with that of the C-H bond (C-F 1.317Å, c.f. C-H 1.091Å, c.f. C-CI 1.766Å), enabling

exchange of fluorine for hydrogen in a molecule without dramatic alteration of the geometry or steric requirements of the molecule. The significantly different electronic properties of fluorine affect the physical properties of such materials.^{12,13} As the number of fluorine substituents increases, the remaining hydrogens assume more acidic natures, and hydrogen bonding increases, resulting in increased boiling points of partially fluorinated hydrocarbons (Figure 1.1).

However the fully fluorinated compounds, in which no hydrogen bonding effects can increase intermolecular attractions,

do not show boiling points significantly different from those of the corresponding hydrocarbons despite the increase in molecular weight (Figure 1.2).

This is attributable to the competition between electronic repulsion, which serves to decrease intermolecular forces and boiling points, and increasing molecular weight.

D. APPLICATIONS OF FLUORINATED ORGANIC COMPOUNDS

D.1 BIOLOGICALLY USEFUL COMPOUNDS

D.1.a. BIOLOGICAL ACTIVITY

Fluorinated organic compounds can show biological activity¹⁴⁻¹⁶ because of the fulfilment of certain necessary conditions. An important condition governs the acceptability of fluorinated compounds in biological systems, and is fulfilled by the similarity in bond lengths (C-F = 1.317Å, C-H = 1.091Å, C-O = 1.43Å), steric similarities (van der Waal's radii: F = 1.35Å; H = 1.1Å), and the isoelectronic and isosteric properties of CF₂ with respect to O, in some systems.¹⁷

Geometrically and sterically, enzymes and other active sites accept fluorinated organic compounds, but cannot metabolise them correctly, as a result of the second condition for biological activity, *i.e.* altered electronic effects, which may involve *in vivo* hydrogen bonding, prevention of enzyme substrate complexation and prevention of metabolism of the compound due to the high C-F bond strength relative to C-H or C-O.

D.1.b. EXAMPLES OF BIOLOGICALLY ACTIVE FLUORINATED ORGANIC COMPOUNDS

A wide range of biologically active fluorinated organic compounds is now known, spanning a vast scope of modes of activity.¹⁶ Only a small selection of examples is given here. <u>Fungicides:</u> $e.g. \alpha$ -Difluoromethylornithine (2) inhibits cell proliferation.18,19

$$\begin{array}{c} \mathsf{NH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CF}_2-\mathsf{CH}\cdot\mathsf{CO}_2\mathsf{H}\\ \mathsf{NH}_2\\ (\mathbf{2})\end{array}$$

Herbicides: e.g. 2-Trifluoromethylpyridine (3).²⁰

(3)

Antimicrobial: e.g. 3-Fluoro-2-[²H]-D-alanine (4).²¹

$$CH_2F - CD - CO_2H$$

 I
 NH_2
(4)

Antibacterial: e.g. 3-Fluoro-D-alanine (5),22 3-fluorophenylalanine (6).23

> CHF-CH-CO₂H CH₂F-CH-CO₂H NH₂ (5) (6)

Antiviral: In this area, anti-herpes active compounds are of considerable interest and commercial value, e.g. 5-trifluoromethyluracil (7),²⁴ α -fluorophosphonacetic acid (8),²⁵ 5-(2,2-difluorovinyl)uracil (9).²⁶ Other examples of compounds exhibiting antiviral activity include 2-fluorohistidine (10),^{27,28} which inhibits the synthesis of cellular protein and also shows antimetabolite activity.

<u>Antimetabolites:</u> e.g. (Z)-2,3-Bis-(4-methoxyphenyl)hexafluorobut-2-ene (11) retards growth of breast tumours.²⁹

(11)

In this area, fluorinated steroids and fluoro- and trifluoromethyl-substituted amino acids, such as α -fluoro- β -alanine (12),^{30,31} are particularly effective.³²⁻³⁴

NH₂CH₂CHFCO₂H

(12)

Enzyme Inhibitors: Fluorinated ketones have been shown to inhibit hydrolytic enzymes by formation of stable hemiketals with the active site.³⁵

<u>Muscle Relaxants:</u> Trifluoromethyl substituted aromatic compounds have been shown to promote muscle relaxation, have anti-convulsant action and to induce sleep, *e.g.* 2-(3-trifluoromethylphenyl)propenamide (13).³⁶

(13)

D.1.c. ANAESTHETICS

Fluorinated organic compounds have found application in the field of anaesthesia³⁷ due to their volatility and their low to moderate toxicity, under conditions of use. The most commonly used surgical inhalation anaesthetics are:³⁷

Halothane	-	CF ₃ CHBrCl
Methoxyflurane	-	CH ₃ OCF ₂ CHCl ₂
Fluroxene	-	CF3CH2OCH=CH2
Enflurane	-	CHF2OCF2CHCIF

D.1.d. ARTIFICIAL BLOOD SUBSTITUTES

Perfluorinated organic compounds are virtually inert, and so can be safe for use in the body. Since these compounds are entirely synthetic in nature they are unrecognised by the body and are not rejected by the immune system. However, the main purpose of blood is to transport oxygen round the body and remove carbon dioxide, and perfluorocarbons are ideal for this purpose due to their high gas solubility (Table 1.2).

Liquid*	Oxygen Solubility**	Carbon Dioxide Solubility**
(<i>n</i> -C ₄ F ₉) ₃ N	40.3	142
(<i>n</i> -C ₃ F ₇) ₃ N	45.3	166
(14)	45.0	126
FF	48.5	160
(15) Water	2.5	65
Plasma	2.3	54
Blood	20.6	-

TABLE 1.2 : OXYGEN SOLUBILITIES

* Perfluorocarbons in emulsion form

** % volume at 1atm and 37°C

In 1967, (14) was the first successfully used artificial blood substitute.^{38,39} The problem of transportation of essential minerals which are insoluble in perfluorocarbons was overcome by using the perfluorocarbons in emulsion form. To date, (14) and *cis*- and *trans*- (15) have achieved most success as artificial blood substitutes.

D.1.e. POSITRON EMISSION TOPOGRAPHY

The half life of the isotope ¹⁸F, 110 minutes, makes it useful for positron emission topography (PET) studies,⁴⁰ where positron emitting isotopes of other elements have half lives too short to permit synthesis and administration of active species, *e.g.* ¹¹C ($t_{1/2}$ =20 minutes), ¹³N ($t_{1/2}$ =10 minutes), ¹⁵O ($t_{1/2}$ =2 minutes).

This isotope decays by positron emission as shown:

$${}^{18}_{9}F \longrightarrow {}^{18}_{8}O + {}^{0}_{1}\beta^{+}$$
 [1.2]

The technique of PET allows safe study of living tissue in such areas as brain imaging, *e.g.* in instances of Parkinson's disease, for which 6α -[¹⁸F]-fluoro-L-dopa is used, and for breast cancer examination, employing the fluorinated steroid 16α -[¹⁸F]-fluoro-E-dopa steroid steroid 16α -[¹⁸F]-fluoro-E-dopa steroid steroid steroid 16α -[¹⁸F]-fluoro-E-dopa steroid steroi

6α-[¹⁸F]-Fluoro-L-dopa

 $16\alpha - [^{18}F] - Fluoroestradiol - 17\beta$

D.2. SURFACTANTS

Compounds such as perfluoroalkyl substituted carboxylic and sulphonic acids, or the salts of such compounds, have been used as surface-active materials⁴¹ due to their extremely low surface energies, which reduces surface tension in aqueous media, even at low concentrations.

e.g.
$$n$$
-C₇F₁₅CO₂NH₄ (3M's FC[®]-26)

D.3. INERT FLUIDS

Various applications exist for fluorinated organic compounds as inert fluids (Table 1.3).

TABLE 1.3: INERT FLUID APPLICATIONS OF FLUORINATED ORGANIC COMPOUNDS

Application	Fluorinated Organic Compound
Fire Retardant	Brominated Fluorocarbons,
	<i>e.g.</i> CF ₃ Br
Coolant	e.g. CF ₂ Cl ₂
Refrigerant	e.g. CF ₂ Cl ₂ , CFCl ₃
Lubricant	Perfluoropolyethers
	<i>e.g.</i> Fomblin®, Krytox®

E. SYNTHETIC ROUTES TO FLUORINATED ORGANIC COMPOUNDS

Several articles on fluorination methods exist,⁴²⁻⁴⁴ and only a brief discussion is presented here.

E.1. FLUORINATING AGENTS

E.1.a. ELEMENTARY FLUORINE

A great deal of work has gone into the 'harnessing' of highly reactive elementary fluorine to the task of fluorination of organic compounds. Early work was extremely hazardous, with frequent explosions due to the exotherm associated with formation of the carbon fluorine bond ($\Delta H_f(C-F) = 447-485$ kJ mol⁻¹, $\Delta H_f(C-H) = ca$. 413kJ mol⁻¹),⁹ and consequently little progress was made. In time, however, a number of successful techniques have been developed for this application, such as cryogenic direct fluorination,⁴⁵⁻⁴⁷ aerosol direct fluorination⁴⁸⁻⁵⁸ and liquid phase fluorination,⁵⁹ carried out using a substrate solution in perhalogenated solvent, *e.g.* 1,1,2-trichlorotrifluoroethane.

A number of reviews on the direct fluorination of organic compounds are now available.^{45,60-62}

E.1.a.(i). THE LAMAR PROCESS

Cryogenic direct fluorination, the so-called 'LaMar Process', has as its essential features to control reaction, use of low reaction temperatures, and use of elementary fluorine at extremely high dilutions, in an inert carrier gas.

The process involves charging of the gaseous organic compound into the reaction vessel, which consists of several sections at different temperatures, typically from -78°C to ambient temperature. As reaction proceeds the concentration of fluorine is increased and temperature may be adjusted to ensure perfluorination.

Examples of compounds fluorinated by this method are shown in Equations 1.3-1.5.

E.1.a.(ii). AEROSOL DIRECT FLUORINATION

This method utilises adsorption of the organic species onto a sodium fluoride aerosol (generated by heating sodium fluoride to ca. 1000°C in a stream of helium). The aerosol thus generated is passed through a reactor column and elementary fluorine diffused through the walls of the reactor.

Similarly to the LaMar process, the aerosol direct fluorination reactor employs zones of different temperature

(typically -78°C to -40°C) to effect reaction to completion. In the final stage, photofluorination is employed to ensure perfluorination of the substrate.

Examples of materials fluorinated by this method are given in Equations 1.6-1.8.

C(OCH ₃) ₄	>	C(OCF ₃) ₄ 8%	[1.6]
(CH ₃) ₃ CCI	>	(CF ₃) ₃ CCI 74%	[1.7]
CH3OCH2CH2OCH3		CF ₃ OCF ₂ CF ₂ OCF ₃ 86%	[1.8]

E.1.a.(iii) LIQUID PHASE FLUORINATION

This method provides a simple route by which solutions of organic materials in a fully halogenated solvent are reacted with elementary fluorine in an inert carrier gas, at a reaction temperature of between -10°C and 50°C.^{59,63} A free radical initiator has been used to promote dissociation of fluorine in the later stages of reaction, as an alternative method to photofluorination, to effect perfluorination.

$$CH_{3}CO(CH_{2})_{5}CH_{3} \longrightarrow CF_{3}CO(CF_{2})_{5}CF_{3}$$
[1.9]
87%

 $CH_3O(CH_2CH_2O)_2OCH_3 \longrightarrow CF_3O(CF_2CF_2O)_2OCF_3$ [1.10] 56%

E.1.b. HIGH VALENCY METAL FLUORIDES

3

High valency metal fluorides such as CoF3,⁶⁴⁻⁶⁶ KCoF4,⁶⁷ AgF2,⁶⁸ MnF4,^{68,69} CeF4,^{68,69} enable fluorination of organic materials in a more controllable manner since the heats of reaction associated with this method are considerably lower than those

associated with the use of elementary fluorine (Equations 1.12, 1.13). Indeed, while reactions with elementary fluorine are generally performed at ambient temperature or below, reactions involving high valency metal fluorides are often performed at temperatures as high as 440°C.

2 $CoF_3 + C-H \longrightarrow C-F + HF + 2 CoF_2$ Ca.-50 [1.12] $F_2 + C-H \longrightarrow C-F + HF$ ca.-102 [1.13]

Cobalt trifluoride fluorination may be viewed as use of elementary fluorine with a metal fluoride catalyst, since, when fluorination proceeds and the metal is reduced to its lower valent fluoride, elementary fluorine is used to regenerate the original high valency species (Scheme 1.1).

SCHEME 1.1: OVERALL REACTION SCHEME OF COBALT TRIFLUORIDE FLUORINATION

F ₂	+ 2	CoF ₂		2CoF ₃			
2 C	oF ₃ +	R-H	>	2CoF ₂	<u>2</u> +	R-F +	H-F
F 2	+	R-H	>	R-F	+	H-F	

E.1.C. HYDROGEN FLUORIDE

Hydrogen fluoride is a highly corrosive, volatile (boiling point 19°C) liquid, which must be handled with great care. An easier method of handling this reagent is in the form of a solution, up to 70% w/w HF, in pyridine, a technique developed by Olah and co-workers.⁷⁰

E.1.c.(i). ADDITION ACROSS MULTIPLE BONDS

In these classical reactions, hydrogen fluoride adds across a double or triple bond in the conventional manner of a hydrogen halide (Equations 1.14, 1.15).

$$e.g.$$
 HF + RC \equiv CR \longrightarrow RCH₂CF₂R [1.15]

This may be achieved with⁷¹⁻⁷⁶ or without⁷⁷ catalysis.

E.1.c.(ii). SUBSTITUTION

Hydrogen fluoride is a mild fluorinating agent with respect to the displacement of leaving groups, *i.e.* a moderate nucleophile. Typically, assistance is required, either by activation of the leaving group⁷⁸ or by catalysis with antimony pentafluoride⁷⁹ or mixed tri- and pentafluorides of antimony.⁸⁰

E.1.d. ELECTROCHEMICAL FLUORINATION

Developed in the course of the Manhattan Project by Simons,⁸¹⁻⁸⁶ this procedure involves the setting up of a low voltage across a dilute solution of reactant in anhydrous hydrogen fluoride. Conditions of voltage, current density and temperature are such as to prevent evolution of fluorine, but allow perfluorinated materials to form at the nickel anode, hydrogen gas being liberated at the nickel or steel cathode.

"Electrochemical fluorination has the advantage of being a controlled reaction, allowing replacement of hydrogen by fluorine, saturation of carbon carbon multiple bonds, but retaining many functional groups. Skeletal rearrangement can occur (Equation 1.16), limiting product yields and this factor, combined with electricity costs, limit the application of electrochemical fluorination.

e.g.
$$F$$
 F $E.C.F.$
 F $+$ F $+$ $n - C_6 F_{14} + i - C_6 F_{14}$ [1.16]
 $<3\%$
 29% 40%
14

E.1.e. SULPHUR TETRAFLUORIDE

Sulphur tetrafluoride is a gaseous reagent (boiling point -40°C), which is generally used for the conversion of carbonyl and thiocarbonyl functionalities to difluoromethyl, and of hydroxyl to fluoro, selectively:

Other functionalities can also be manipulated, *e.g.* fluoroformates to trifluoromethyl ethers, fluoroformyl anilines to *N*-trifluoromethyl anilines.

Disadvantages of sulphur tetrafluoride lie in its volatility, toxicity (comparable to phosgene), ease of hydrolysis, which produces hydrogen fluoride, and the elevated temperatures necessary for some transformations, which can result in decomposition.

E.1.f. DIETHYLAMINO SULPHUR TRIFLUORIDE

3

Diethylamino sulphur trifluoride (DAST) brings about similar transformations to sulphur tetrafluoride,⁸⁷ but is less volatile and hence easier to handle, and requires less forcing conditions.⁸⁸ The mild conditions used enable high selectivity to be achieved, and hence subtle structural modifications may be carried out with the knowledge that other functionalities remain unchanged (Equation 1.19).⁸⁹

E.1.g. BORON TRIFLUORIDE/TETRAFLUOROBORIC ACID -(THE BALZ-SCHIEMANN REACTION)

This classical reaction (Equation 1.20) remains in many cases the best method for selective incorporation of fluorine into an aromatic ring.^{90,91}

Ar-H
$$\xrightarrow{(i)}$$
 Ar-NO₂ $\xrightarrow{(ii)}$ ArNH₂ $\xrightarrow{(iii)}$
ArN₂⁺ BF₄ $\xrightarrow{(iv)}$ [Ar⁺BF₄] $\xrightarrow{}$ Ar-F [1.20]
(i) = HNO₃, (ii) = H₂/Pt,
(iii) = 50% HBF₄/NaNO₂, (iv) = Δ or hv

No more than four fluorine substituents may be incorporated into a benzene ring *via* this step-wise process, since further attempted nitration results in expulsion of *para*-fluorines, giving 2,5-difluorobenzoquinone.⁹²

$$e.g. \xrightarrow{H_2N}_{R} \xrightarrow{N}_{Cl} \underbrace{\frac{NaNO_2, HBF_4}{(CH_3CH_2)_2O}}_{R}$$

$$BF_4 \xrightarrow{+N_2}_{R} \underbrace{\frac{cyclo-C_6H_{12}}{reflux, 35hr}}_{R} \underbrace{F_{N} \xrightarrow{N}_{Cl}}_{R} \underbrace{[1.21]}_{81\%}$$

$$R = N NC(O)CH_3$$

$$e.g. \xrightarrow{N}_{NH} \underbrace{\frac{1.50\%}{2.NaNO_2}}_{NH_2} \underbrace{\frac{N}_{N} \xrightarrow{NH}}_{N_2^+BF_4} \underbrace{\frac{hv}{5}}_{30\%} \underbrace{N}_{F_{30\%}}^{NH} [1.22]$$

Despite this limitation, the Balz-Schiemann reaction is a useful synthetic method for the introduction of fluorine into both

aromatic (Equation 1.21)⁹³ and heteroaromatic (Equation 1.22)^{94,95} systems.

E.1.h. INTERHALOGEN COMPOUNDS

.

Species of the form XF_n (n=1,3,5,7), where X is another halogen, can be used to add XF across a multiple bond (Equations 1.26-1.28).⁹⁶ Generally, for halogen monofluorides (n=1), the gaseous reagents are prepared *in situ* (Equations 1.23-1.25),⁹⁶⁻⁹⁹ while liquid halogen polyfluorides (n= 3, 5 or 7) are more stable and can be stored for use as required.

e.g. HF + CH₃C(O)NHBr
$$\frac{(CH_3CH_2)_2O}{-78^\circ C}$$
 [BrF] [1.24]

e.g.
$$IF_5 + 2I_2 \xrightarrow{150^{\circ}C, 24 hr} [IF] [1.25]$$

Non-specificity of these reagents imposes a limit on their application (Equations 1.26-1.28).

e.g. CHCI=CHCI
$$\frac{CIF_{3}}{55^{\circ}C, 24.5hr}$$

CHCIF-CHCI₂ + CHCIF-CHCIF [1.26]
25% 42%
e.g. CFCI=CF₂
$$\frac{BrF_{3}/Br_{2}}{20^{\circ}C, 2hr}$$

CFCIBr-CF₃ + CF₂CI-CF₂Br [1.27]
13% 73%
e.g. CFCI=CF₂
$$\frac{IF_{5}/2I_{2}}{20^{\circ}C, 2hr}$$

CFCII-CF₃ + CF₂CI-CF₂I [1.28]
37% 45%

E.1.i. XENON DIFLUORIDE

First prepared in 1962,¹⁰⁰ xenon difluoride of high purity (99%) may be produced by passing an electrical discharge through a mixture of the component gases at room temperature, or exposure of the mixture to ultra violet radiation. As a thermodynamically stable solid, xenon difluoride is a commercially available, easy to handle, mild and selective fluorinating agent.^{44,101,102}

Fluorination proceeds *via* a radical cationic pathway,¹⁰³⁻¹⁰⁸ and the reagent can be used in a variety of applications, such as addition of fluorine across double bonds^{109,110} and replacement of

hydrogen by fluorine in aromatic systems^{111,112} and in saturated hydrocarbons.^{102,113}

E.1.j. CAESIUM FLUOROXYSULPHATE

Caesium fluoroxysulphate is prepared by passage of elementary fluorine through aqueous caesium sulphate solution.^{114,115} The reagent operates under mild conditions as a selective fluorinating agent and can be both regio- (Equation 1.34)^{116,117} and stereospecific (Equation 1.35).³

E. r.k. PERCHLORYL FLUORIDE

Perchloryl fluoride is an electrophilic fluorinating agent,^{118,119} used under mild conditions, but with little selectivity.¹²⁰ Care must be taken in the use of perchloryl fluoride, for an explosive danger exists if the neat liquid contacts organic material.

E.1.I. N-FLUORO COMPOUNDS

These relatively inexpensive, easily handled selective fluorinating agents have a highly specific electrophilic mode of action.¹²¹⁻¹²⁵

Many N-fluoro alicyclic and aromatic amines have been employed to effect fluorination of organic compounds,⁴⁴ and the use of N-fluoroamines and N-fluoroamides is a rapidly expanding field.

E.1.m. HYPOFLUORITES

E.1.m.(i). ACETYL HYPOFLUORITE

Acetyl hypofluorite is produced by direct fluorination of sodium acetate,¹²⁶ and reacts cleanly with metal enolates to form the corresponding α -fluoro ketones (Equation 1.40),¹²⁶ and with activated aromatic compounds.¹²⁷

$$e.g. \underset{R^1}{\overset{O}{\longrightarrow}} R^2 \underset{R^1}{\overset{LDA}{\longrightarrow}} R^1 \underset{R^2}{\overset{OLi}{\longrightarrow}} R^2 \underset{R^2}{\overset{CH_3CO_2F}{\longrightarrow}} R^1 \underset{F}{\overset{O}{\longrightarrow}} R^2 [1.40]$$

E.1.m.(ii). TRIFLUOROMETHYL HYPOFLUORITE

Trifluoromethyl hypofluorite, most efficiently (90% yield) prepared from carbon monoxide and elementary fluorine at 350°C,¹²⁸ provides a one-step method of introducing fluorine *via* a free radical (Scheme 1.2),²¹ (Equations 1.41, 1.42)^{21,22} or electrophilic process (Scheme1.3),^{129,130} (Equation 1.43).¹³⁰

SCHEME 1.2: FREE RADICAL MECHANISM OF FLUORINATION BY CF3OF

 $CF_{3}OF \xrightarrow{hv} CF_{3}O' + F'$ $R-H + F' \xrightarrow{} R' + HF$ $R' + CF_{3}OF \xrightarrow{} R-F + CF_{3}O'$ $CF_{3}OF + R-H \xrightarrow{} R' + COF_{2} + HF$

SCHEME 1.2: ELECTROPHILIC MECHANISM OF FLUORINATION BY CF3OF

 $CF_3OF + R-H \longrightarrow [CF_3O - F - R - H] \longrightarrow R-H + CF_3O^{-} + H^{+}$

e.g. $CH_2=CH_2 + CF_3OF \longrightarrow CF_3OCH_2CH_2F$ [1.43]

Low regiospecificity limits the application of trifluoromethyl hypofluorite for synthetic purposes.

E.2. FREE RADICAL POLYFLUOROALKYLATION

Free radical polyfluoroalkylation represents a quite different approach to the incorporation of fluorine into an organic compound since it differs from the examples of fluorination methods mentioned in previous sections by incorporation of a polyfluoroalkyl group rather than the substitution of hydrogen, or other leaving group, by fluorine, or addition of fluorine or hydrogen fluoride across a multiple bond.

Since the earliest days of modern fluorine chemistry in the 1940s, many reactions of this type have been carried out. From these pioneering experiments of low product selectivity,¹³¹⁻¹³⁴ increasing expertise in this area, mainly carried out by workers in the U.K.,¹³⁵⁻¹⁴⁰ Japan¹⁴¹⁻¹⁴⁶ and the U.S.S.R.¹⁴⁷ has resulted in development of methodology for synthesis of a wide range of fluorinated organic compounds *via* these free radical processes. Chapter Two provides a fuller discussion of polyfluoroalkylation *via* free radical addition reactions.

CHAPTER TWO

FREE RADICAL ADDITION TO FLUOROALKENES

. ?>

A. REVIEW OF FREE RADICAL ADDITION TO ALKENES

A.1. GENERAL INTRODUCTION

*

Much work has been carried out on the free radical addition to unsaturated hydrocarbons¹⁴⁸⁻¹⁵¹ and to highly fluorinated alkenes.^{135-138,141-147,152-154} The clearest difference between these systems is the reversal of electron density, *i.e.* hydrocarbon alkenes are electron rich and so react with electrophiles, while the effect of electron withdrawing fluorine substituents is to render the double bond electron deficient, hence highly fluorinated alkenes are reactive towards nucleophilic species, in the case of this study towards nucleophilic radicals.

Recent general reviews of free radical reactions of fluorinated alkenes are available,¹⁵⁵⁻¹⁶² and this discussion will instead focus more specifically on recent developments in the area of free radical addition reactions of alkenes.

A.2. REVIEW OF RECENT WORK ON FREE RADICAL ADDITION TO ALKENES

A.2.a. FREE RADICAL ADDITION OF ACYL RADICALS TO ELECTRON DEFICIENT ALKENES

Non-halogenated alkenes rendered electron deficient by the presence of electron withdrawing substituent groups are also subject to attack by nucleophilic radicals. Recent work in this area has involved the addition of the 1-adamantyl radical to alkenes and alkynes (Equations 2.1, 2.2)¹⁶³ and intermolecular addition of the acyl radical (Equation 2.15) to electron deficient alkenes (Equations 2.3, 2.4)¹⁶⁴ and cyclisation reactions (Equation 2.5).¹⁶⁵

A.2.b. FREE RADICAL ADDITION TO FLUOROALKENES AND FLUOROALKYNES

A number of research groups have recently reported their results on free radical reactions of unsaturated fluorinated compounds, and a summary of this work is given here.

The only reaction recently reported in which a perfluoroalkyne was made to undergo free radical addition to organic compounds was the radiation induced addition of alcohols to hexafluorobut-2-yne (Equation 2.6).¹⁶⁶

Product stereochemistry was observed to be dependent on steric interactions between trifluoromethyl groups on the alkyne and alkyl substituent groups on the alcohol.

Chen¹⁶⁷ has carried out a series of reactions in which thermal addition of carbon tetrachloride to the terminal alkene perfluorohept-1-ene was effected (Equation 2.7).

(i) or (ii) or

$$n-C_5F_{11}CF=CF_2 + CCl_4 \xrightarrow{(iii) \text{ or } (iv)}{\Delta} \qquad n-C_5F_{11}CFClCF_2CCl_3 \quad [2.7]$$

(i) = Ni(P(C₆H₅)₃)₄,
(ii) = Ni(P(C₆H₅)₃)₂(CO)₂,
(iii) = benzoyl peroxide,
(iv) = AIBN

These reactions proceeded in an entirely unidirectional manner most probably as a result of steric considerations.

Much work has been carried out regarding the free radical reactions of tetrafluoroethene and chlorotrifluoroethene, generally the telomerisation reactions thereof. One study, however, is an interesting exception.¹⁶⁸ This publication reports the ease with which the selectivity of the reaction between these fluoroalkenes and perfluoroalkyl dichloroamines of the form R_FNCI_2 ($R_F = CF_3$, C_2F_5) may be controlled (Equations 2.8, 2.9) by means of reaction temperature.

$$R_{F}NCI_{2} + CF_{2} = CFX \xrightarrow{65-70^{\circ}C} R_{F}N \xrightarrow{CF_{2}CFXCI} [2.8]$$
60-80%

$$R_{F}NCI_{2} + CF_{2} = CFX \xrightarrow{95-100^{\circ}C} R_{F}N \xrightarrow{CF_{2}CFXCI} [2.9]$$

$$R_{F} = CF_{3}, C_{2}F_{5} \qquad 60-65\%$$

$$X = F, CI$$

Czech workers¹⁶⁹⁻¹⁷² have reported the peroxide or photochemically initiated reactions between perfluoroalkenes and aliphatic alcohols. In reactions involving addition of alcohols to tetrafluoroethene (Equation 2.10), use of longer wavelength ultra violet radiation was claimed to give high yields (73-82%) of 1:1 adduct and 2:1 telomer, with high selectivity between these species being possible under certain conditions. No higher telomers were reported. e.g. $CF_2 = CF_2 + R^1 R^2 CHOH \xrightarrow{(i), (ii), (iii), (iv) \text{ or } (v)} [2.10]$ $R^1 R^2 C(CF_2)_2 H \xrightarrow{+} R^1 R^2 C(CF_2)_4 H$

(i) = AIBN, hv (ii) = benzoin methyl ester, hv

(iii) = benzophenone, hv (iv) = acetone, hv

(v) = benzoyl peroxide

Two papers examining the telomerisation of tetrafluoroethene,¹⁷³ hexafluoropropene¹⁷³ and chlorotrifluoroethene¹⁷⁴ have been published. These publications are primarily concerned with the telogens used to effect telomerisation. Both papers cite the use of diiodoperhaloalkanes as effective telogens (Scheme 2.1).

SCHEME 2.1: TELOMERISATION OF TETRAFLUOROETHENE AND HEXAFLUOROPROPENE

 $I_{2} + CF_{2}=CF_{2} \longrightarrow I(CF_{2}CF_{2})_{n}I$ n = 1,2,3,4. $I(CF_{2}CF_{2})_{n}I + CF_{3}CF=CF_{2} \longrightarrow$ $I(CF_{2}CF_{2})_{n}CF(CF_{3})CF_{2}I + I(CF_{2}CF_{2})_{n}CF_{2}CF(CF_{3})I$ 1 : 15 at 200C

 $I(CF_2CF_2)_nC_3F_6I + CF_3CF=CF_2$

I(CF₂CF₂)(C₃F₆)₂I + I(C₃F₆)(CF₂CF₂)(C₃F₆)I → telomers

Formation of telomers of tetrafluoroethene may be controlled by altering reaction parameters, *e.g.* temperature, reactant ratios. However, no discrete telomers of hexafluoropropene have been isolated, instead only 'bands' of approximate composition may be produced.

SCHEME 2.2: TELOMERISATION OF CHLOROTRIFLUOROETHENE

$$l_2 + CF_2 = CFCI \xrightarrow{\gamma rays} ICF_2CFCII$$

quantitative

 $I_2 + CF_2 = CFCI$ \longrightarrow $I(CF_2CFCI)_nI$

$$\frac{Pt/C}{(CF_2CFCI)_nI + CH_2=CH_2} \xrightarrow{Pt/C} ICH_2CH_2(CF_2CFCI)_nCH_2CH_2I$$

Chlorotrifluoroethene may be telomerised as shown (Scheme 2.2), and the telomers thus formed reacted with ethene, using a catalyst, to produce telechelic cooligomers.

A.3. REVIEW OF CHEMISTRY OF 2H-PENTAFLUOROPROPENE

It is unfortunate that the only review of chemistry carried out using the unusual polyfluorinated alkene 2H-pentafluoropropene was written in Russian,²³⁴ thereby limiting its potential readership. The following section is intended to provide a brief account of recent work in this area.

A.3.a. PREPARATION

2H-Pentafluoropropene is readily prepared in good yield by decarboxylative decomposition of the sodium salt, or mixed sodium and potassium salts, of hexafluoro-*i*-propanoic acid (Equation 2.11)^{235,236}

$$(CF_3)_2CHCO_2M \longrightarrow CF_3CH=CF_2 + MF \qquad [2.11]$$

M = Na, K/Na M = Na, 83%
M = Na/K, 88%

÷.,

A.3.b. REACTIONS OF 2H-PENTAFLUOROPROPENE

A.3.b.(i). CARBANION CHEMISTRY

Haszeldine and co-workers¹⁸¹ have made a thorough examination of nucleophilic attack on *2H*-pentafluoropropene by sulphide ions (Equation 2.12).

It can be seen that the carbanion thus generated does not preferentially proton abstract to give the saturated analogue (though low levels of saturated species were detected in two experiments), but instead loses fluoride ion to give the substitution products, predominantly the product of *anti* addition.

Further reactions of carbanions derived from 2Hpentafluoropropene have been reported.¹⁷⁷⁻¹⁷⁹ Chambers and coworkers¹⁷⁹ have used caesium fluoride as the nucleophilic species to generate the hexafluoro-*i*-propyl carbanion, which was subsequently trapped using activated fluorobenzenes (Scheme 2.3).

SCHEME 2.3: TRAPPING OF 2H-PENTAFLUOROPROPENE DERIVED CARBANIONS

The product of the reaction with perfluoronitrobenzene can undergo further reaction to give an isoxazole, and a mechanism has been proposed by which this transformation may occur (Scheme 2.4).

Banks and co-workers^{177,178} have reacted 2Hpentafluoropropene with N-iminopyridinium ylides, producing the addend carbanion, which subsequently cyclises to pyrazolo-[1,5-a]pyridine (Scheme 2.5). The mechanism which has been suggested, though as yet unconfirmed, is a stepwise one.

A.3.b.(ii). ADDITION OF INORGANIC COMPOUNDS TO THE DOUBLE BOND

Addition of inorganic species to the double bond of 2H-pentafluoropropene has been reported, and a summary of these reactions is given here.

Photochemical addition of RS-Cl (R=(CF₃)₂N) has been reported by Tipping¹⁸² to proceed bidirectionally (Equation 2.13), while the thermal addition of S₂Cl₂ gave rise to a mixture of products (Equation 2.14).²³⁷

$$(CF_{3})_{2}NS-CI + CF_{2}=CHCF_{3} \xrightarrow{hv} (CF_{3})_{2}NSCH(CF_{3})CF_{2}CI 35\% (CF_{3})_{2}NSCF_{2}CHCICF_{3} 22\%$$

$$(CF_{3})_{2}NSCF_{2}CHCICF_{3} 22\%$$

$$S_{2}CI_{2} + CF_{2}=CHCF_{3} \xrightarrow{150-160^{\circ}C} \xrightarrow{CF_{3}CHCICF_{2}S_{n}CI} (F_{3}CHCICF_{2})_{2}S_{n}$$

$$n = 2.3$$

$$(CF_{3})_{2}NSCF_{2}CHCICF_{2}S_{n}$$

Soviet workers^{238,239} have succeeded in adding fluorosulphates to *2H*-pentafluoropropene (Equations 2.15, 2.16).

$$ISO_3F + CF_2 = CHCF_3 \longrightarrow FSO_3CF_2CHICF_3$$

$$O_2NSO_3F + CF_2 = CHCF_3 \longrightarrow FSO_3CF_2CH(CF_3)NO_2$$

$$[2.16]$$

* Photochemical reaction of SF₅Cl with 2H-pentafluoropropene gives the simple addition product (Equation 2.17),¹⁸⁰ which may be further manipulated by dehydrochlorination and indirect addition of the elements of HF as shown in Equation 2.18.¹⁸⁰

$$CF_2=CHCF_3 + SF_5CI \longrightarrow SF_5CH(CF_3)CF_2CI$$
 [2.17]

$$SF_{5}CH(CF_{3})CF_{2}CI \xrightarrow{KOH} F_{3}C \xrightarrow{F_{5}S} CF_{2}$$

$$\underbrace{KF/HC(O)NH_{2}}_{F_{5}S} SF_{5}CH(CF_{3})CF_{3} \qquad [2.18]$$

A.3.b.(iii). CYCLOADDITION

Few cycloaddition reactions involving 2H-pentafluoropropene have been carried out, and only two papers^{175,176} have been published in recent years.

Knunyants and co-workers¹⁷⁵ have synthesised a β -sultone in 1975 from the thermal [2+2] cycloaddition of sulphur trioxide and 2*H*pentafluoropropene (Equation 2.19) and in 1988 another paper by Knunyants' team¹⁷⁶ reported the [4+2] thermal cycloaddition of furan and 2*H*-pentafluoropropene (Equation 2.20).

A.3.b.(iv). MISCELLANEOUS REACTIONS OF 2H-PENTAFLUOROPROPENE

Other miscellaneous reactions of 2H-pentafluoropropene reported in recent years have originated in Soviet laboratories.^{183,248}

One group found that dimerisation of 2H-pentafluoropropene under pressure and in the presence of antimony pentafluoride gave predominantly *cis* product (Equation 2.21),²⁴⁸ while the free radical copolymerisation of 2H-pentafluoropropene and 1,2-difluoroethene (vinylidene fluoride) was reported by a group at Tashkent University.¹⁸³

A.3.c. CONCLUSIONS

It is clear that relatively little work has been carried out with 2H-pentafluoropropene, though some areas, principally carbanion chemistry, addition of inorganic species across double bonds and cycloadditions have been shown to give good results.

It is surprising that little free radical chemistry of 2H-pentafluoropropene has been investigated since the free radical chemistry of so many other fluoroalkenes is well documented. Consequently, study of the free radical chemistry of 2H-pentafluoropropene was made in parallel to its fully fluorinated analogue.

A.4. MECHANISM OF FREE RADICAL ADDITION

In the generally applicable case in which R-H is added across a double bond, the mechanism of addition follows the steps shown in Scheme 2.6.

Initially, homolytic cleavage of the R-H bond occurs to produce the organic radical R[•], which reacts with an alkene molecule to give the radical mono-adduct (18), which may then proceed to Step 3a, giving rise to molecular mono-adduct (19), or to Step 3b, if thermodynamically favourable, to give rise to telomeric species. If the latter pathway is followed, Step 3b may occur several more times before chain transfer *via* hydrogen atom abstraction, similar to Step 3a, terminates the chain growth.

A.4.a. INITIATION METHODS

Three main methods of initiation are used: chemical initiation, radiation initiation, and redox initiation. The first two forms were employed in this study and will now be discussed. Discussion of initiation methods using single electron reduction or oxidation processes may be found elsewhere.¹⁸⁴

A.4.a.(i). CHEMICALLY INDUCED INITIATION

Chemically induced initiation involves homolytic thermolysis of weak bonds in organic species such as peroxides to give the corresponding radicals (Equation 2.22), which initiate reaction by hydrogen atom abstraction (Equation 2.23).

$$RO-OR \xrightarrow{\Delta} 2RO' [2.22]$$

2RO' + R'-H → ROH + R' [2.23]

Peroxide initiation can give rise to a high yield of products but is useful only within a narrow temperature range over which the half life of the peroxide of choice is suitably short. Such reaction temperatures can lead to thermal degradation of reactants or products. Contamination of products with chemical initiators or peroxide degradation products necessitates an additional step of purification following reaction.

A.4.a.(ii). RADIATION INDUCED INITIATION

Radiation induced initiation is a 'cleaner' method of initiation, since no chemical additives need be present in the reactant mixture, and reactions of this type are generally temperature independant, relying on the energy of the incident initiating radiation or electrons. Hence, photons or electrons must have an energy equal to, or greater than, that of the bond to be cleaved.

Ultraviolet radiation has been used effectively in some circumstances,^{139,147,171,172} but can be less selective a technique than initiation by γ -radiation. This is due to the high energy species (R*) produced by this method, resulting from initial excitation of a ultraviolet active chromophore, *e.g.* C=O, promoting an electron from a π to a π^* orbital (Equation 2.24), which subsequently loses energy through collisions which in turn may, in some cases, cause bond cleavage, *i.e.* initiation.

$$\begin{array}{ccc} R(\pi) & \xrightarrow{h\nu} & [R](\pi^*) \\ \text{ground state} & \text{excited state} \end{array} \qquad [2.24] \end{array}$$

In contrast, it is believed that secondary electrons produced from interaction between γ -rays and the metal γ -source housing are of a lower energy and hence the corresponding initiating species are less energetically excited, thus more selectively inducing C-H bond cleavage.

Additional factors which could have a bearing on these reactions are the increased temperature at which ultraviolet reactions which will subsequently be discussed took place (measured to be *ca*. 60°C), because of the heating effect of the ultraviolet lamp, and the possibly greater radical flux produced by ultraviolet radiation, since a higher proportion of this radiation may interact with matter while the majority of γ -photons pass through unaffected.

The processes by which radiation may interact with matter are summarised in Figure 2.1. At energies below *ca.* 1MeV (λ =1.2x10⁻¹²m) the Photoelectric Effect is predominant. This process involves interaction of the γ -photon with an inner shell electron, whereby the energy of the photon is used to overcome electrostatic attractive forces binding the electron within the atom. Any residual energy of the photon is observed as kinetic energy of the freed electron.

The Compton Effect is observed for photon energies around 1MeV, and is the method by which 60 Co γ -radiation interacts with matter and initiates free radical reactions, as this nucleus decays to 60 Ni (Equation 2.25), emitting β -particles which are absorbed by the source housing, and γ -rays with energies of 1.332MeV and 1.173MeV. The Compton Effect involves interaction between incident radiation and an outer shell electron such that the photon is deflected from its original pathway with a reduced energy and the electron is accelerated as shown. Decrease in photon energy is dependent on angle of deflection, θ , and energy imparted to the electron.

$$\frac{60}{27}Co \longrightarrow \frac{60}{28}Ni + \frac{0}{1}\beta^{-} + \gamma$$
 [2.25]

The third method by which high energy radiation may interact with matter is *via* pair production. In this scenario photon energy is used to produce an electron and a positron near to the nucleus. For this to occur the photon must possess an energy of 1.02MeV or greater, since this is the rest mass of the electron-positron pair produced. Residual photon energy is observed following pair production as kinetic energy of the pair.

3

The result of any of these processes is production of high energy secondary electrons, which lose energy by collisions with matter, causing consequent excitation of the molecules within. Such excited molecules can lose energy in a variety of ways,¹⁸⁵ one common way being cleavage to give free radicals.

A.4.b. RADICAL STABILITY

If a heteroatom with a lone pair of electrons, e.g. O, N, S, or a functionality with π -electrons, is present in a molecule in a position α to C-H, radical formation at that site will be favoured¹⁸⁶ due to donor substituent group stabilisation of the radical (Equation 2.26, 2.27).

A.4.c. FACTORS AFFECTING ORIENTATION OF ADDITION

A.4.c.(i). THEORETICAL CONSIDERATIONS

The addition of an alkyl or acyl radical to an alkene is an exothermic process and the Hammond postulate¹⁸⁷ indicates that an early transition state will exist, with the geometry of this transition state most closely resembling that of reactants. Hence it can be seen (Figure 2.2) that the transition state is unsymmetrical and interactions between α -substituents and the approaching radical will dominate over those between β -substituents and the radical.

FIGURE 2.2: ATTACK OF RADICAL ON ALKENE

This early transition state geometry and the ability to neglect β -effects enables a Frontier Orbital (FO) theory approach to be considered.¹⁵⁰ In the case of the reaction between a highly fluorinated alkene and a nucleophilic radical, the relevant frontier orbitals of interest are the alkene Lowest Unoccupied Molecular Orbital (LUMO) and the radical Singly Occupied Molecular Orbital (SOMO) (Figure 2.3).

FIGURE 2.3: FRONTIER ORBITAL INTERACTIONS

Since substitution of the alkene by electronegative species, such as fluorine, reduces LUMO energy, and nucleophilic radicals have high SOMO energies, the difference in energy between these MOs is small, and reaction is thus promoted.

A.4.c.(ii) EXPERIMENTAL FINDINGS ON STERIC AND ELECTRONIC INFLUENCES ON ORIENTATION OF ATTACK

For an unsymmetrical alkene, it is found that the less sterically hindered end of the double bond will be preferentially attacked.^{188,189} It is also found that the polarity of the attacking radical, and that of the alkene, will have a bearing on the orientation of attack. In the examples given in Equation 2.28, these factors are working in unison to promote attack at the most electrophilic carbon. However, in the case of the free radical addition of RSH to $CF_2=CFCF_3$, polar effects were shown to be of considerable importance, where steric influences did not work in concert.¹⁸⁸

As electrophilicity of the attacking radical species increases a greater proportion of attack is observed to occur at the less electrophilic end of the double bond, despite steric factors which promote attack at the opposite end.

e.g. $RSH + CF_2 = CFCF_3$ $RSCF_2CHFCF_3 + RSCF(CF_3)CHF_2$ [2.28] (20) (21) $R = CH_3, 92\%$ 8% $R = CH_2CF_3,70\%$ 30% $R = CF_3, 45\%$ 55%

The conclusion which can be drawn is that both steric and electronic effects play a significant part in the process of free radical addition to alkenes, though it is generally accepted^{150,186,190,191} that steric influences play the major role.

A.4.d. TELOMERISATION

Telomerisation can be seen (Scheme 2.6) to compete with chain transfer. Many factors affect whether or not telomerisation will occur:¹⁹² reaction conditions, such as temperature of reaction and reactant ratios; thermodynamics of each reaction step; steric considerations; electronic considerations, *i.e.* polarity of species, lone pair repulsive interactions. While, for a given monomer species, some of these factors are fixed, changing reaction conditions or telogen used can lead to changes in product (Equations 2.29, 2.30).

$$CH_2 = CF_2 + C_2F_5I \xrightarrow{190^{\circ}C, 45hr} C_2F_5(CH_2CF_2)_nI$$
 [2.29]
n=1, 92%
n=2, 6%
n=3, 2%

 $CH_{2}=CF_{2} + i \cdot C_{3}F_{7}I \xrightarrow{220^{\circ}C, 36hr} i \cdot C_{3}F_{7}(CH_{2}CF_{2})_{n}I \quad [2.30]$ n=1, 2% n=2, 21% n=3, 29% n=4, 26% n=5, 18% n=6, 4%

B. PRESENT WORK - FREE RADICAL ADDITION REACTIONS OF FLUORINATED ALKENES

B.1 OBJECTIVES OF THE PROJECT

The aim of this section was to synthesise, via free radical routes, functionalised organic compounds containing polyfluorinated substituent groups. Since the free radical chemistry of 2H-pentafluoropropene is largely unknown, it was of interest to examine its reactions in parallel with those of hexafluoropropene, and to compare and contrast results.

In addition, the relative reactivity of different species in these types of reaction was explored.

B.2. ADDITION OF ALDEHYDES TO FLUOROALKENES

Previous workers have reported the addition of saturated aldehydes to perfluoroalkenes^{137,139,143} and perhaloalkenes in high yield.

B.2.a. REACTIONS WITH ALIPHATIC ALDEHYDES

Results of free radical addition reactions between hexafluoropropene and saturated aldehydes are given in Table 2.1. Previously studied reactions are indicated by reference.

CF₂CHFCF₃ [2.32]

TABLE 2.1: REACTIONS BETWEEN HEXAFLUOROPROPENE AND ALDEHYDES

γrays

R	conversion	References
CH3	100%	137
C ₂ H ₅	100%	-
<i>n</i> -C3H7	100%	193
<i>n</i> -C4H9	87% (66)	-
(CH3)3C	54% (68)	194
OHC(CH ₂₎₁₀	100% (70)	194
	(diadduct)	

Dodecanedial supplied by Shell U.K.

Syntheses of novel pentafluoro substituted ketones, from reactions of 2H-pentafluoropropene, are given in Table 2.2.

RCHO + CF₂=CHCF₃
$$\xrightarrow{\gamma \text{ rays}}$$
 RCHO + CF₂=CHCF₃ [2.33]

TABLE 2.2: REACTIONS BETWEEN 2H-PENTAFLUOROPROPENE AND ALDEHYDES

R	conversion
CH3 (61)	73%
C2H5(63)	83%
<i>n</i> -C3H7 (65)	87%
<i>n</i> -C4H9 (67)	80%
(CH3)3C (69)	27%

B.2.b. CONCLUSIONS

From Table 2.1, it can be seen that the difunctional compound dodecanedial, which may be prepared by sequential ring opening of

cyclo-dodecene, 195, 196 electrochemical oxidation of 1, 12dodecanediol, ^{197,198} chemical reduction of 1,12-dodecanedioic acid¹⁹⁹ or rhodium catalysed hydroformylation of 1,9-decadiene,²⁰⁰ reacted quantitatively with hexafluoropropene. This is a particularly interesting area since it touches on the effect of one functionality on the reactivity of another within the same molecule. In the case of dodecanedial it is clear that no effect occurs, however in this case the two detrimental functionalities are well separated structurally. Few compounds containing two closer functionalities relevant to this study are commercially available, but Section B.7 gives an example of an competition reaction with one such compound, internal 1-pyrrolidinecarboxaldehyde, and a more detailed study of the effect two functionalities on reactivity is available of elsewhere.160

While only two hexafluoro substituted ketones are previously unreported, all five pentafluoropropyl ketones are new compounds.

From the NMR spectra of pentafluoropropyl ketones which were synthesised (Table 2.2), it is clear that free radical addition to 2*H*pentafluoropropene was unidirectional.

The ¹⁹F NMR spectra of these compounds are characteristic of the geminal dihydropentafluoropropyl group, i.e. a triplet of triplets in the region of -61 ppm (due to CF_3) and a multiplet - resolved as a triplet of quartets at 400 MHz - at around -106 ppm (due to CF_2). Integration of these peaks shows the ratio to be 3:2. No other signals were observed to indicate some degree of bidirectionality of addition occurring, e.g. a high field doublet, perhaps with finer coupling, due to the difluoromethylene group.

Similarly, the ¹H NMR revealed only two types of hydrogen environment, neither at a sufficiently low field to suggest the presence of geminal fluorine substituents.

Had bidirectionality of addition occurred, it is likely that gas chromatography/mass spectrometry would have indicated the presence of a second compound of identical molecular weight to the addition products identified, but with a slightly different retention time on the GC column, and a different fragmentation pattern under mass spectrometry. No such compounds were detected.

B.2.c. REACTIONS WITH AROMATIC ALDEHYDES

Some experiments between fluoroalkenes and aromatic and heteroaromatic aldehydes were performed (Equation 2.34). In these cases no fluorinated products were obtained.

This is thought to be due to the reluctance of the resonance stabilised α -aryl radical formed to react further (Equation 2.35).

B.3. ADDITION OF ALCOHOLS TO FLUOROALKENES

.

The field of free radical addition reactions between aliphatic alcohols and fluoroalkenes has seen a great deal of research activity.^{137,139,140,142-145,169,171,172} Reactions between hexafluoropropene and alcohols have been studied previously, as noted by references.

$$\begin{array}{c} & CF_2CHFCF_3 \\ & \gamma rays \\ R-CH_2-OH + CF_2=CFCF_3 \\ \hline \\ & R-CH-OH \end{array}$$
 [2.36]

TABLE 2.3: REACTIONS BETWEEN ALCOHOLS AND HEXAFLUOROPROPENE

<u> </u>	conversion	References
Н	99%	137,139,144,
		193,201
CH ₃	100%	139,144,201
C ₂ H ₅	100% (73)	144
<i>n</i> -C ₃ H ₇	100% (74)	139,201
<i>n</i> -C4H9	86% (75)	139,201
<i>n</i> -C ₅ H ₁₁	100%(76)	139,201
$(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0% (77)	-

Novel fluorinated alcohols were synthesised by the reaction between *2H*-pentafluoropropene and alcohols, as shown in Equation 2.37.

 $\begin{array}{c} \begin{array}{c} \gamma rays \\ R-CH_2-OH + CF_2=CHCF_3 \end{array} \xrightarrow{\gamma rays} R-CH-OH \quad [2.37] \\ R = H, 90\% \quad (71) \\ R = CH_3, \ 100\% \quad (72) \end{array}$

It is seen that conversions in reactions involving either aldehydes or alcohols and 2H-pentafluoropropene are lower than those with hexafluoropropene. This can be interpreted by consideration of electronic factors, *i.e.* due to the lesser number of electron withdrawing fluorine substituents, 2H-pentafluoropropene is less electrophilic than its fully fluorinated analogue.

As in the case of the polyfluorinated ketones synthesised through free radical addition of aldehydes to 2*H*-pentafluoropropene, spectroscopic analyses of the products of reaction between alcohols and 2*H*-pentafluoropropene show no evidence to suggest bidirectionality of addition.

All products from reactions carried out between alcohols and 2*H*-pentafluoropropene showed only two ¹⁹F NMR resonances, once again indicative of difluoromethylene and trifluoromethyl groups, i.e. around -110 ppm (2F) and around -61 ppm (3F). In the case of the addition of 2*H*-pentafluoropropene to ethanol, the difluoromethylene fluorine signal shows these fluorines to be diastereotopic and hence magnetically inequivalent, giving rise to a characteristic AB type system. This signal is quite different to that which would be expected had the product of addition at the opposite end of the double bond been formed; in such a case, diastereoisomers would have been formed, and would have been clearly identifiable from NMR and gas chromatography/mass spectrometry analyses.

The ¹H NMR spectrum reveals a characteristic pattern arising from methylene protons shifted to low field as a result of being sandwiched between fluorine-bearing carbons. Coupling interactions between the protons and the adjacent difluoromethylene fluorines show that these fluorine atoms are magnetically inequivalent. Had the alternative orientation of addition occurred, two different peaks (of equal area) would have been observed in the ¹H NMR spectrum, corresponding to a trisubstituted CH and a difluoromethyl group.

Gas chromatography/mass spectrometry shows no evidence for the presence of products arising from addition at the opposite end of the double bond of the polyfluoroalkene, e.g. by observation of the presence of a second compound of identical molecular weight to the addition products identified, but with a slightly different retention time on the GC column, and a different fragmentation pattern under mass spectrometry.

B.3.a. SOLVENT EFFECTS

For higher alcohols, *i.e. n*-propanol and above, an inert solvent such as acetone was used to reduce viscosity of the liquid phase and increase miscibility of reactants, since it was found that low conversions were achieved in the absence of a solvent (Table 2.4).

TABLE 2.4: EFFECT OF SOLVENT ON CONVERSION

	conversion to monoadduct	
Alcohol	no solvent	acetone solvent
CH ₃ OH	99%	100%
C ₂ H ₅ OH	100%	100%
<i>n</i> -C ₃ H ₇ OH	54%	100%
<i>п</i> -C ₄ H ₉ OH	14%	100%
<i>п</i> -С ₅ Н ₁₁ ОН	17%	100%

The choice of solvent for free radical reactions is important since one must be selected which will not interfere with the reaction process. Solvents of this type include 2,2,2-trifluoroethanol, acetone and *t*-butanol, which are found to be unreactive under conditions used.

48A

When peroxide initiated reactions were carried out, no improvement on conversions or yields was noted. Ultra violet initiated reactions were found to show low selectivity, *i.e.* over three equivalents of hexafluoropropene were incorporated in one ultra violet initiated reaction. Possible reasons for this finding are discussed in Section A.3.a.(ii).

Consequently, the most effective initiation method for our purposes was γ -irradiation, and this method was employed thereafter.

B.4. ADDITION OF DIOLS TO FLUOROALKENES

Though the free radical reactions of aliphatic alcohols with hexafluoropropene and other fluorinated alkenes have been documented, no literature reports exist regarding the study of aliphatic diols in analogous reactions. Therefore it was of interest to undertake a study of these reactions, in order to determine whether the presence of the second heteroatom had an effect on the reactivity of the compounds.

Aliphatic diols studied were viscous liquids, or solid in the case of 1,6-hexanediol, and so it was essential to use a solvent in all of these reactions.

Peroxide initiated reactions, or standard γ -irradiation periods of ca. five days failed to produce the required incorporation of fluoroalkene, despite use of a large excess of the fluoroalkene and repeated reaction of partially reacted materials. It was found that increased (ca. fivefold) irradiation times led to substantially mono- (22) and α, ω -di-adducts of the (**23**) of synthesis 1,4-butanediol and the α,ω -di-adduct (24) of 1,5-pentanediol, though extensive decomposition limited yields. A combination of mass spectrometric breakdown patterns and NMR ensured spectra unambiguous identification of (22), (23) and (24).

$$HOCH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH \xrightarrow{\text{excess } CF_{2}=CFCF_{3}}{\gamma rays}$$

$$CF_{3}CHFCF_{2}CH(OH)CH_{2}CH_{2}CH_{2}CH(OH)CF_{2}CHFCF_{3} \quad [2.40]$$

$$64\%$$

$$(24)$$

1,6-Hexanediol performed less well. The reason for this finding is unclear since low solubility was ruled out by performing a peroxide initiated reaction with no improvement on incorporation of hexafluoropropene, and purification of reagents (recrystallisation and distillation) was carried out to eliminate impurities which may act as radical scavengers and hence halt the reaction.

TABLE 2.5: REACTIONS BETWEEN DIOLS AND HEXAFLUOROPROPENE

÷.

Diol	Fluoroalkene
(acetone solvent)	incorporation (max.)
1,2-Ethanediol	0.75 eq.
1,3-Propanediol	0.60 eq.
1,4-Butanediol	2.00 eq.
1,5-Pentanediol	2.21 eq.
1,6-Hexanediol	0.12 eq.

In summary, lower reactivity was observed for diols than for alcohols, and since the possibility of inhibitor inpurities was excluded and solvents used to increase mobility of, and contact between, reactants, it must be concluded that the reason for this decrease in reactivity was the deactivating effect of the second electronegative heteroatom.

B.5. ADDITION OF ETHERS TO FLUOROALKENES

Dialkyl ethers of the form $R^1R^2CH0CHR^1R^2$ may not only form 1:1 adducts, but also symmetrical diadducts^{135,136} or higher species if R^1 =H and/or R^2 =H.

In some cases polyaddition can be beneficial, e.g. in the synthesis of perfluorinated polyether precursors,¹⁵⁹ but it can be disadvantageous for synthetic applications where discrete products are desired. While it is possible to modify product distribution, e.g. by using a vast excess of ether for the synthesis of monoadduct, it is difficult to selectively synthesise one product only.

The addition of oxolane to hexafluoropropene has been described,^{135,144,147} and this reaction was repeated, with product distribution shown (Equation 2.41), to produce materials for subsequent derivatisation (see Chapter Four).

B.6. ADDITION OF SILANES TO FLUOROALKENES

Methoxytrimethylsilane contains only one site which is subject to radical stabilisation, and so, following preliminary study in this area,¹⁵⁶ we were able to cleanly synthesise the monoadduct in high yield:

$$(CH_3)_3 SiOCH_3 + CF_2 = CFCF_3 \xrightarrow{\gamma rays} (CH_3)_3 SiOCH_2 CF_2 CHFCF_3 [2.42]$$

$$73\%$$
(80)

B.7. COMPETITION REACTIONS

Though the free radical addition reactions of highly fluorinated alkenes to organic compounds have been well studied, little work has been carried out by way of characterisation of the reactivities of different species. This section represents an attempt to systematically analyse the relative reactivities within a homologous series of alcohols and also across a range of different functional compounds.

In order to examine the relative reactivities of different species in free radical additions to fluorinated alkenes, a series of competition reactions was carried out. In these reactions a stoichiometric amount, rather than simply equimolar to take into account the polyfunctionality of ethers and amines, of the two species under study was reacted with a deficiency of fluoroalkene, and the relative ratios before and after reaction compared.

B.7.a. ALCOHOLS

The reactivities of the series methanol to *n*-pentanol was found to be:

$$C_2H_5OH > CH_3OH ≈ C_3H_7OH > C_4H_9OH ≈ C_5H_{11}OH$$

1.3x 1.3x

Although individually these alcohols can be made to react quantitatively with hexafluoropropene, there was found to be a small difference in their reactivities. That is, a reactivity difference of the order of 1.3 was found to exist between ethanol and the next most reactive members of the series, methanol and *n*-propanol, and a similar difference in reactivity between those compounds and the higher alcohols *n*-butanol and *n*-pentanol was observed.

B.7.b. BETWEEN SPECIES

Competition reaction between different functionalities were carried out, using the ethyl derivatives of each species. The following reactivity series was discovered:

Alcohol > Amine > Ether > Aldehyde 1.1x 3.2x 1.25x

A very small difference in reactivities was observed between the most reactive species, alcohols and amines, and a greater difference noted between the other species, *i.e.* alcohols were found to be 3.5 times more reactive than the analogous ether, and 4.0 times more reactive than the analogous aldehyde.

One intramolecular competition reaction was carried out, using 1-pyrrolidinecarboxaldehyde. In this reaction, quantitative conversion to the new fluorinated compound (27) was achieved.

^{*}These data give only an empirical guide to the reactivity of species and it is not possible to postulate further the reason for such differences. It may be the case that, for example, adjacent π electrons stabilise a radical less effectively than a heteroatom bearing an electron lone pair, though it could equally well be that the radical species themselves are more reactive.

Study has been made elsewhere²⁰² of the stabilising effect of substituent groups on radicals, and the order of reactivity above is in general agreement with the findings of those workers.
CHAPTER THREE

DERIVATISATION OF POLYFLUORINATED ALCOHOLS

3

.

A. INTRODUCTION

Fluorinated alcohols produced via free radical reactions have been known for some years, and it is perhaps surprising that little investigation of the chemistry of these compounds has been carried out.

Since the principle effect of incorporation of fluorine substituents into an alcohol is to increase the acidity of the compound, it was interesting to attempt nucleophilic reactions of alcohols discussed in Chapter Two. What must be considered in addition to increased acidity, however, is the stabilising effect of fluorine substituents on an anion, an effect which lowers the nucleophilicity of such compounds. Therefore, the question posed is this: will polyfluorinated alcohols react well, if at all, as nucleophiles?

B. NUCLEOPHILIC REACTIONS OF POLYFLUORINATED ALCOHOLS

B.1. ESTERIFICATIONS

The simple acetate esters were the first synthesised in our study (Equation 3.1).

$$R_{F}CHROH \xrightarrow{CH_{3}C(O)Cl}{(Base)} R_{F}CHRO-CCH_{3} [3.1]$$

R	Base	Yield
Н		52% (81)
CH3	~	59% (82)
CH3	N(C2H5)3	25% (82)

Addition of base resulted in a lower yield, probably due to the added purification necessary.

New crystalline derivatives were produced by reaction of fluorinated alcohols with 3,5-dinitrobenzoyl chloride (Equation 3.2). In these reactions, a reduced yield was achieved with the alkoxide of 3,3,4,5,5,5-hexafluoropentan-2-ol (28), and this may be attributed to steric congestion between the bulky electrophile and the attacking alkoxide. Reaction temperatures above *ca.* 0°C resulted in decomposition, giving no identifiable products.

Reaction of the alcohol with a difunctional acid chloride as a model study towards polymer synthesis gave low yield of a novel diester. This may be due to low solubility of the diacid chloride in solvents appropriate to the reaction.

 $2 R_{F}CHROH \xrightarrow{CI(O)C}{p \text{ yridine}} R_{F}CHRO_{2}C \xrightarrow{CO_{2}CHRR_{F}} [3.3]$ $RF = CF_{3}CHFCF_{2} \qquad 12\%$ $R = CH_{3} \qquad (85)$ B.2. CARBONATE SYNTHESIS

Analogous to the reaction with acid chlorides to produce esters, alcohols will react with chloroformates to give carbonates. The new phenyl carbonates of hexafluoropropyl substituted alcohols were synthesised as shown (Equation 3.4).

56

$$R_{F}CHROH \xrightarrow{CICO_{2}} R_{F}CHRO \xrightarrow{O} II$$

$$R_{F}=CF_{3}CHFCF_{2}$$

$$R = H, 58\% (86)$$

$$R = CH_{3}, 54\% (87)$$

B.3. ETHER SYNTHESIS

Following the Williamson method for synthesis of ethers from alcohols (Equation 3.5), a range of novel polyfluorinated ethers was synthesised from corresponding alcohols.

$$R^{1}OH \xrightarrow{Base} R^{1}O \xrightarrow{R^{2}X} R^{1}OR^{2}$$

$$X = leaving group$$
(3.5)

This procedure normally requires a strong base such as sodium hydride to deprotonate the alcohol,²⁰³ and it is indicative of the increased acidity of fluorinated alcohols that the following reactions proceed with hydroxide ion, a much weaker base.

Although the alkoxide anion may be readily formed (Equation 3.6), its further reaction to form an ether (Equation 3.7) is not encouraged by the fluorine substituents since their effect serves to reduce the nucleophilicity of the alkoxide by withdrawing electron density.

B.3.a. ALKYL HALIDES

Alkyl halides were employed as R²X in Equation 3.5, and the results of these reactions are given in Table 3.1.

TABLE 3.1 REACTIONS BETWEEN FLUORINATED ALCOHOLS AND ALKYL HALIDES

_	R ¹	R ² X	Base	Temperature	Conversion
	RFCH(CH3)	CH3I	NaOH	ambient	14% (88)
	RFCH(CH3)	<i>п</i> -СзН7Вr	NaOH	ambient	25% (89)
	RFCH(CH3)	<i>п</i> -СзН7Вr	NaOH	56°C	55%
	RFCH(CH3)	<i>i</i> -C3H7Br	NaOH	ambient	0%*
	RFCH(CH3)	CF3CH2I	NaOH	ambient	0%
	RE. CEACHECEA *HPr avaluad				

RF= CF3CHFCF2, *HBr evolved

Though reasonable results were obtained for reactions with 1-bromopropane, it was found that, in general, conversions were disappointing. This is indicative of the lowering of nucleophilicity experienced on incorporation of a number of fluorine substituents. It was proposed to investigate reactions with more reactive organic halides as a possible way of increasing yields of ethers.

B.3.b. ACTIVATED HALIDES

Allylic and benzylic halides are more reactive than alkyl halides towards nucleophilic attack (Table 3.2).

The reason for the greater reactivity of allylic species is principally a steric one. As the reaction intermediate in $S_N 2$ reactions with alkyl halides has trigonal bipyramidal geometry, the steric requirements of a bromine substituent will adversely affect rate of reaction, while $S_N 2'$ attack on an allylic system results in a tetrahedral intermediate where hindrance by bromine at the β -position is negligable.

58

TABLE 3.2: RELATIVE REACTIVITY RATES OF SELECTED ALKYL SUBSTITUENTS²⁰⁴

Alkyl substituent	Relative reactivity
Methyl	30
Ethyl	1
<i>n</i> -Propyl	0.4
<i>i</i> -Propyl	0.025
<i>neo</i> -Pentyl	10-5
Allyl	40
Benzyl	120

In the case of the benzylic species, electronic factors play the major part. The electron withdrawing effect of the phenyl ring serves to weaken the C-Br σ -bond, consequently its cleavage requires a lesser energy input. In addition, allylic and benzylic species are activated towards reaction by their transition states' unhybridised p orbitals' ability to interact with both the incoming nucleophile and the leaving group.

Therefore reactions were carried out between examples of these activated alkyl halides and fluorinated alcohols.

TABLE 3.3: REACTIONS BETWEEN FLUORINATED ALCOHOLS AND ACTIVATED ALKYL HALIDES

<u>* R</u> 1	R ² X	Base	Temperature	Yield	
RFCH2	CH2=CHCH2Br	NaOH	50°C	trace	(90)
RFCH(CH3)	CH2=CHCH2Br	NaOH	ambient	58%	(91)
RFCH2	C6H5CH2Br	NaOH	56°C	67%	(92)
RFCH(CH3)	C6H5CH2Br	NaOH	ambient	78%	(93)
RF= CF3CHI	FCF2				

These activated electrophiles gave generally higher yields of novel ether products than alkyl halides. Yields for the derivatives of 2,2,3,4,4,4-hexafluorobutanol (29) were generally lower than those for derivatives of (28). This was attributed to the dominance of electronic factors over steric factors in these reactions, *i.e.* the alkoxide generated from (28) is a stronger nucleophile since the effect of the methyl substituent is electron donating, resulting in increased nucleophilicity of the alkoxide.

B.3.c. FLUOROAROMATIC COMPOUNDS

It has been shown that fluoroaromatic compounds react with nucleophiles (Equations 3.8, 3.9).²⁰⁵

The experiments carried out involved highly fluorinated or perfluorinated aromatic compounds, and consequently it was of interest to investigate whether fluorobenzenes activated towards nucleophilic attack by electron withdrawing substituent groups were sufficiently activated to react with fluorinated alcohols.

B.3.c.(i). CAESIUM FLUORIDE AS A BASE

Use of a metal fluoride as base increases the nucleophilicity of alcohols by means of hydrogen bonding,²⁰⁶ and reduces the

possibility of side reactions, *e.g.* nucleophilic displacement by the base itself. The reason for choosing caesium fluoride in preference to potassium fluoride, a less expensive reagent, lies in its higher activity and greater solubility, though it is accepted that even caesium fluoride is only moderately soluble in most protic solvents, and that surface reaction is commonplace. Precautions must be taken to ensure the anhydrous nature of the reagent, since complexation with water masks the fluoride ion, lowering its availability for reaction.

Examples in which caesium fluoride has been used as base in syntheses of ethers from alcohols are given in Equations 3.10-12.²⁰⁷⁻²⁰⁹

 $R = C_6H_5CH_2CH_2$

R = t - A | k

B.3.c.(ii). REACTIONS INVOLVING FLUOROAROMATIC COMPOUNDS

An investigation was carried out into the reactivity of a number of fluorobenzenes activated towards nucleophilic displacement by the presence of electron withdrawing substituent groups at the 4-position. It was found that those less reactive compounds did not undergo reaction (Equation 3.13, Table 3.4), but more highly activated compounds could be made to react in the manner hoped for (Equations 3.14, 3.15), producing four new polyfluorinated substituted benzenes.

TABLE 3.4: UNSUCCESSFUL REACTIONS BETWEEN ACTIVATED FLUOROBENZENES AND FLUORINATED ALCOHOLS

R	Temperature	Solvent
CN	82 ⁰ C	CH3CN
CN	100°C	~
CH3C0	100°C	-
C6H5C0	100°C	-
CF3	100°C	-

The reason for some 4-substituted fluorobenzenes reacting in this way, and not others, may be understood by consideration of the reaction intermediates (30) and (31), in which the negative charge is stabilised, by perfluorination in the case of reaction with hexafluorobenzene (Equation 3.16) and by the presence of two nitro groups in the case of reaction with fluoro-2,4-dinitrobenzene (Equation 3.17). No such stabilisation is possible with the other substituted fluorobenzenes tested.

B.3.d. PERFLUOROAROMATIC COMPOUNDS

Nucleophilic displacement reactions involving fluorinated aromatic compounds have been reported, from nucleophilic substitution reactions involving penta- and hexa-fluorobenzene²¹⁰ to anion trapping experiments with pentafluoropyridine to give 4-substituted tetrafluoropyridines^{179,211-213} (Equations 3.18, 3.19)²⁰⁵ and substitution of polyhetero species^{211,214-216} (Equations 3.20, 3.21).²¹⁷

Since little work has been carried out in the area of reacting fluorinated nucleophiles with fluoroheteroaromatics, a number of reactions of this type were performed and it was discovered that the nucleophiles which were employed, fluorinated alkoxides derived from the fluorinated alcohols produced in Chapter Two, behaved in the hoped for manner, *viz* nucleophilic displacement of fluorine at the most reactive sites in the heterocycle. Results of reactions with perfluorinated pyridine and three diazabenzenes, in

which moderate to quantitative yields of eight readily isolated new highly fluorinated substituted aromatic compounds were obtained, are given in Equations 3.22-3.25.

$$CF_{3}CHFCF_{2}CHROH + \bigvee F_{N} \xrightarrow{CsF} CF_{3}CHFCF_{2}CHRO - \bigvee F_{N} [3.22] \\ R=H, 81\% (102) \\ R=CH_{3}, 65\% (103) \\ CF_{3}CHFCF_{2}CHROH + \bigvee F_{N} \xrightarrow{CsF} CF_{3}CHFCF_{2}CHRO - \bigvee F_{N} [3.23] \\ R=H, 57\% (104) \\ R=CH_{3}, 39\% (105) \\ CF_{3}CHFCF_{2}CHROH + \bigvee F_{N} \xrightarrow{CsF} CF_{3}CHFCF_{2}CHRO - \bigvee F_{N} [3.24] \\ R=H, 73\% (106) \\ R=CH_{3}, 25\% (107) \\ CF_{3}CHFCF_{2}CHROH + \bigvee F_{N} \xrightarrow{CsF} CF_{3}CHFCF_{2}CHRO - \bigvee F_{N} [3.24] \\ R=H, 73\% (106) \\ R=CH_{3}, 25\% (107) \\ CF_{3}CHFCF_{2}CHROH + \bigvee F_{N} \xrightarrow{CsF} CF_{3}CHFCF_{2}CHRO - \bigvee F_{N} [3.25] \\ R=H, 69\% (108) \\ R=CH_{3}, 100\% (109) \\ \end{array}$$

Analogous reactions carried out with trifluoro-s-triazine and perfluoro-iso-propyl-s-triazine failed to produce identifiable products. As it is known that the salt (32) is readily formed from the reaction of caesium fluoride with perfluoro-iso-propyl-striazine, it seems likely that preferential formation of (32) occurred, and that this compound was subsequently hydrolysed in the course of the work-up procedure.

:

65

B.4. SULPHONATION

B.4.a. SYNTHESIS OF SULPHONATES

Further nucleophilic chemistry of partially fluorinated alcohols was carried out when the 4-methylbenzenesulphonate derivatives (tosylates) of the compounds were synthesised, in a confirmation of previous workers results.¹⁴⁰

Two methods for synthesis of tosylated alcohols were examined: Haszeldine's heterogeneous method (Equation 3.26)¹⁴⁰ and homogeneous low temperature conditions, employing pyridine as both solvent and base (Equation 3.27). Both methods were seen to give good yields of tosylated product, though long reaction times (*ca.* 2 days) were necessary for high yield, and temperature increase resulted in decomposition.

 $CF_{3}CHFCF_{2}CH_{2}OH \xrightarrow{1. TsCl/pyridine}{2. NaOH_{(aq)}} CF_{3}CHFCF_{2}CH_{2}OTs \qquad [3.26]$ 81% (33)

$$CF_{3}CHFCF_{2}-CH-CH_{3} \xrightarrow{T s C I} CF_{3}CHFCF_{2}-CH-CH_{3} \qquad [3.27]$$

The new ditosylate (35) was also synthesised from (23) in 39% yield (Equation 3.28).

$$\begin{array}{c} \begin{array}{c} \mathsf{OH} & \mathsf{OH} & \mathsf{TsCl} \\ \mathsf{CF_3CHFCF_2} & \mathsf{CH} \cdot \mathsf{CH_2CH_2} \cdot \mathsf{CH} \cdot \mathsf{CF_2CHFCF_3} & \mathsf{pyridine, <0^{\circ}C} \\ (\mathbf{23}) \\ & \mathsf{OTs} & \mathsf{OTs} \\ \mathsf{CF_3CHFCF_2} & \mathsf{CH} \cdot \mathsf{CH_2CH_2} \cdot \mathsf{CH} \cdot \mathsf{CF_2CHFCF_3} & [3.28] \\ & & 39\% \\ (\mathbf{35}) \end{array}$$

Attempts to synthesise halogenated sulphonates gave poor results (Equations 3.29, 3.30).

$$\begin{array}{c} OH & OSO_2CCI_3 \\ I \\ CF_3CHFCF_2 - CH \cdot CH_3 & \underbrace{CCI_3SO_2CI}_{50°C} & CF_3CHFCF_2 - CH \cdot CH_3 & [3.29] \\ 12\% & (110) \end{array}$$

$$\begin{array}{c} OH\\ I\\ CF_3CHFCF_2-CH+CH_3 \end{array} \xrightarrow{(CF_3SO_2)_2O} \\ \hline CH_2Cl_2/pyridine, <3^{\circ}C \end{array} No reaction [3.30]$$

B.4.b. REACTIONS OF SULPHONATES

B.4.b.(i). HALOGEN NUCLEOPHILES

One report detailing the iodination of (28) and (29) via tosylation and subsequent displacement of the leaving group by iodide ion exists.¹⁴⁰ An attempt was made to repeat the iodination step under identical conditions (Equation 3.31), but no product was observed. Reactions carried out under different conditions (Equation 3.32), and reactions with bromide ion (Equation 3.33), failed to produce the corresponding halogenated compounds.

$$\begin{array}{c} \begin{array}{c} \mathsf{OTs} \\ \mathsf{CF}_3\mathsf{CHFCF}_2-\mathsf{CHCH}_3 \end{array} & \begin{array}{c} \mathsf{KI} \\ \hline (\mathsf{HOCH}_2\mathsf{CH}_2\mathsf{)}_2\mathsf{O}, \\ 235\,^\circ\mathsf{C} \end{array} & \begin{array}{c} \mathsf{OF}_3\mathsf{CHFCF}_2\mathsf{CHICH}_3 \end{array} & \begin{array}{c} [3.31] \\ (112) \end{array} & \begin{array}{c} (112) \end{array} & \begin{array}{c} \\ \mathsf{OTs} \\ \mathsf{CF}_3\mathsf{CHFCF}_2-\mathsf{CHCH}_3 \end{array} & \begin{array}{c} \mathsf{KI} \\ \hline \mathsf{CH}_3\mathsf{CN}, \ \mathsf{reflux} \end{array} & \begin{array}{c} \mathsf{CF}_3\mathsf{CHFCF}_2\mathsf{CHICH}_3 \end{array} & \begin{array}{c} [3.32] \\ (112) \end{array} & \begin{array}{c} \\ \mathsf{OTs} \\ (112) \end{array} & \begin{array}{c} \\ \mathsf{OTs} \\ \mathsf{CF}_3\mathsf{CHFCF}_2-\mathsf{CHCH}_3 \end{array} & \begin{array}{c} \\ \begin{array}{c} \mathsf{NaBr} \\ \hline \mathsf{CH}_3\mathsf{CN}, \ \mathsf{reflux} \end{array} & \begin{array}{c} \mathsf{CF}_3\mathsf{CHFCF}_2\mathsf{CHBrCH}_3 \end{array} & \begin{array}{c} \\ \mathsf{S}.32] \\ (112) \end{array} & \begin{array}{c} \\ \mathsf{OTs} \\ (113) \end{array} & \begin{array}{c} \\ \mathsf{OTs} \end{array} & \begin{array}{c} \\ \mathsf{OTs} \\ \mathsf{OH}_3\mathsf{CN}, \ \mathsf{reflux} \end{array} & \begin{array}{c} \\ \mathsf{OF}_3\mathsf{CHFCF}_2\mathsf{CHBrCH}_3 \end{array} & \begin{array}{c} \\ \mathsf{S}.33] \\ (113) \end{array} & \begin{array}{c} \\ \mathsf{S}.33] \end{array} & \begin{array}{c} \\ \mathsf{S}.33] \end{array} & \end{array} & \end{array}$$

B.4.b.(iii). OXYGEN NUCLEOPHILES

The alkoxides methoxide and ethoxide were ineffective in displacing the tosyl group, under various reaction conditions (Equations 3.34, 3.35).

$$CF_{3}CHFCF_{2}-CHCH_{3} \xrightarrow{NaOCH_{3}} CF_{3}OH \text{ or } (CH_{3})_{2}NCHO, \qquad CF_{3}CHFCF_{2}-CHCH_{3} \quad [3.34]$$

$$CF_{3}OH \text{ or } (CH_{3})_{2}NCHO, \qquad (114). \qquad (115). \qquad (115).$$

B.4.b.(iii). NITROGEN NUCLEOPHILES

Diethylamine (Equation 3.36) was found to be ineffective in displacing the tosyl group.

$$CF_{3}CHFCF_{2} \cdot CHCH_{3} \underbrace{(C_{2}H_{5})_{2}NH}_{H_{3}CN, 150°C} \times CF_{3}CHFCF_{2} - CHCH_{3}$$
(116).

B.4.b.(iv). CARBON NUCLEOPHILES

Grignard reagents, both aliphatic and aromatic, were used in these reactions. No displacement of the tosyl group occured.

$$CF_{3}CHFCF_{2} \cdot CH \cdot CH_{3} \xrightarrow{RMgBr} X \xrightarrow{R} CF_{3}CHFCF_{2} \cdot CH \cdot CH_{3} \quad [3.37]$$

$$R = C_{2}H_{5}, C_{6}H_{5} \qquad (117)$$

B.4.b.(v). SULPHUR NUCLEOPHILES

Attempted displacement of the tosyl group by thiophenate ion gave diphenyl disulphide as the only isolable product.

$$CF_{3}CHFCF_{2} \xrightarrow{\text{OTs}} C_{6}H_{5}SH/NaH C_{6}H_{5}SSC_{6}H_{5}$$
(3.38)
(118)

B.4.c. CONCLUSION

The tosylate group is commonly used as a leaving group in organic chemistry. However from the reactions carried out, it is clear that the tosylate group does not function effectively in this capacity with the polyfluorinated alcohols (28) and (29). It has not been proven whether the combination of steric effects of the six fluorine substituents hindering approach, and the electronic repulsion between the fluorine lone pairs and an incoming nucleophile is the reason for this lack of reactivity, but it is not unreasonable to conclude that this factor must be a significant one.

C. MISCELLANEOUS REACTIONS OF POLYFLUORINATED ALCOHOLS

C.1. OXIDATION

It has been reported¹⁴³ that partial oxidation of fluorinated alcohols had been achieved under mild conditions, though no attempt was made to isolate ketones thus produced. Neither repetition of these experiments nor use of alternative oxidising agents and reaction conditions resulted in oxidation of (28) to the corresponding ketone (36). It is suggested that a possible reason for this lies in the electronic repulsion or steric hindrance effects between the polyfluorinated alkyl group and the bulky incoming complexed metal, which prevents formation of the metal ester oxidation intermediate. Methods investigated are found in Table 3.5.

Oxidising	Solvent	Reaction	Temperature
agent		time	
Jones' reagent ²¹⁸	Acetone	3 hr	0°C
Chromic acid ²¹⁹	Diethyl ether	3 hr	ambient
Chromic acid ²¹⁹	Diethyl ether	18 hr	ambient
Chromic acid	CH ₂ Cl ₂	5 hr	ambient
Chromic acid	Water	18 hr	ambient
Chromic acid	Water	18 hr	100°C
Chromic acid	Water	70 hr	100°C
Chromic acid	Water	18 hr	160°C
KMnO₄/H+	Water	18 hr	ambient
KMnO₄/H+	Water	18 hr	100°C

TABLE 3.5: ATTEMPTED OXIDATION OF (28)

C.2. DEHYDRATION

As with oxidation, some reference has been made to dehydration of (28) to the alkene (37), using phosphorus pentoxide.¹⁴⁵ However, when this experiment was repeated, no dehydration product was observed. Table 3.6 gives details of the various dehydrating agents and reaction conditions employed during attempts to effect dehydration. None of the experiments were successful in producing (37).

TABLE 3.6: ATTEMPTED DEHYDRATION OF (28)

Dehydrating agent	Temperature
P ₂ O ₅	50°C to100°C
P ₂ O ₅	120ºC
P_2O_5/H_2SO_4	90°C
t-C₄H9O⁻	45°C

C.3. DIRECT CHLORINATION

Reaction of elementary chlorine with alcohol (28) gave rise to a complex mixture of compounds, in which the new ketones 1-chloro-3,3,4,5,5,5-hexafluoropentan-2-one (38) (75% by g.l.c.) and 1,1-dichloro-3,3,4,5,5,5-hexafluoropentan-2-one (39) (18% by g.l.c.) were identified (by mass spectrometry).

3

D. CONCLUSION

In the introduction to this chapter, the question was posed: will the polyfluorinated alcohols under study react as nucleophiles, due to their increased acidity, or not, due to the stabilising effect of fluorine substitution? It has been shown in this chapter that reactions which were carried out with electrophilic species such as acid chlorides, chloroformates, alkyl and activated halides, and sulphonyl chlorides indicate that (28) and (29) can indeed be made to react nucleophilically, though experimental evidence has been advanced for the lowered nucleophilicity, *viz* lower yields or lack of reaction altogether in some cases involving less reactive electrophilic species.

The lack of reactivity of tosylated alcohol (34) towards displacement by a range of nucleophiles may be due to one of two reasons. It may be that the bulk of the hexafluoropropyl group hinders approach (*cf.* low reactivity of *neo*-pentyl tosylate) or it may be that electronic repulsion between the fluorine lone pairs and the incoming nucleophile is the cause of the low reactivity of this compound, but whichever factor dominates, it is seen from the systematic study of a range of nucleophiles which has been carried out that no further reaction will take place.

Direct chlorination provides a one-pot synthesis of the chlorinated ketones (38) and (39) from (29), presumably *via* an oxidative chlorination/dehydrochlorination route.

3

CHAPTER FOUR

DERIVATISATION OF POLYFLUORINATED ETHERS

.

A.1.b. MECHANISM OF DIRECT HALOGENATION

Direct halogenation is a free radical process (Scheme 4.1), the first step being dissociation of the diatomic halogen, commonly achieved by irradiation with visible or ultraviolet radiation. Step Two involves the abstraction of a hydrogen atom by the radical halogen atom. Factors affecting which hydrogen atom is abstracted include the ease of cleavage of the C-H bond (*i.e.* bond strength), stability of the intermediate organic radical thus formed, polar interactions between the incoming radical species and the site of attack and steric hindrance to approach of the halogen atom.

SCHEME 4.1: MECHANISM OF DIRECT HALOGENATION OF (25)

In the case illustrated in Scheme 4.1, the influences of steric constraints, *i.e.* the bulky hexafluoropropyl substituent group prevents approach of the large incoming halogen radical at the 2-position, and polar factors, *i.e.* electrophilic halogen radicals are discouraged from attack at that electron deficient position, combine to prevent reaction at the 2-position, and so halogenation proceeds exclusively at the 5-position.

The reason for the observed difference in reactivities towards halogenation of (25) may be found on examination of the thermodynamics of halogenation reactions.

Whilst increasing temperature or using higher energy irradiation will increase radical flux, it is not lack of dissociation of halogen molecules (Step One) which prevents reaction. Examination of Steps Two (hydrogen atom abstraction) and Three (C-X bond formation) that chlorination is much more readily achieved shows than bromination, due to more favourable thermodynamic factors. The result is a good yield of chlorinated oxolane derivative (41), while bromination by this method is a less thermodynamically feasible proposition. Since thermally assisted reaction between bromine and (25) failed to increase conversion to (40) above trace amounts, it is presumed that the energy barriers to be overcome are significant ones. Though no data are available for the specific reactions under study, an example of comparison of thermodynamic data for halogenation of an alkane is given in Figure 4.1.

FIGURE 4.1: THERMODYNAMIC PARAMETERS FOR HALOGENATION OF PROPANE

Attempts to halogenate (26) yielded no products. This can be explained by the fact that radical approach at the position α to oxygen is prevented by the bulk of the polyfluoroalkyl substituent groups, and that polar effects discourage reaction at that site, *i.e.* both attacking radical and α -carbon are electrophilic species.

B. NUCLEOPHILIC SUBSTITUTION REACTIONS OF (41)

The easily synthesised chloro derivative (41) was thought to provide an accessible route to further derivatives of (25) *via* nucleophilic substitution. Hence a series of reactions of this type were attempted.

B.1. OXYGEN NUCLEOPHILES

Oxygen nucleophiles are among the most efficient nucleophiles for nucleophilic substitution reactions. Sodium methoxide (Equation 4.3) and sodium *i*-propoxide (Equation 4.4) were reacted with (41), but only a trace amount of new acetal (42) was observed, by gas chromatography, and no (43) was produced.

In an attempt to produce a crystalline derivative, sodium 4-nitrophenoxide was reacted with (41). No reaction occurred.

B.2. NITROGEN NUCLEOPHILES

A series of aliphatic amino compounds was reacted with (41). These reactions, summarised in Table 4.1, gave rise to a series of novel substituted amines.

Piperidine gave the highest conversion to (44) of the cyclic amines. This can be rationalised by consideration of the inductive effect experienced by the nitrogen atom in each of these compounds. Piperazine and morpholine contain a second electronegative heteroatom which withdraws charge from the nitrogen, thereby reducing its effectiveness as a nucleophile by decreasing the availability of the lone pair. This is also true for phthalimide, where charge is withdrawn by both the phenyl ring and the carbonyl groups, but this deactivation is overcome to some extent by the existance of a formal negative charge on the nitrogen.

It is less easy to understand the lack of reactivity of diethylamine, which has none of these factors working against reaction, and no explanation can be given at this stage for this finding.

Aromatic nitrogen nucleophiles (45-48) were reacted with (41), without success, presumably once more due to withdrawal of electron density from the nitrogens, thereby reducing their nucleophilicity.

B.3. CARBON NUCLEOPHILES

Diethyl malonate was reacted with (41). No trace of product was observed.

B.4. SULPHUR NUCLEOPHILES

Thiophenate anion, generated *in situ* by the reaction of thiophenol and sodium hydride, reacted with (41) to give rise to the new sulphide (49).

B.5. PHOSPHORUS NUCLEOPHILES

Triphenyl phosphine did not react with (41). This finding was not unexpected as it is known²⁰³ that reaction of triphenyl phosphine with most primary alkyl halides proceeds readily, but rarely does reaction occur with secondary alkyl halides.

B.6. CONCLUSIONS

Not all nucleophiles will react thus with (41). Those which did react, sulphur and electronically favoured nitrogen nucleophiles, fulfil three conditions, viz they are soft nucleophiles, are not hindered by steric constraints, and have no electronic factors disfavouring reaction. In accordance with this postulate, those nucleophiles which do not react do not fulfil these conditions, *e.g.* alkoxides are hard nucleophiles and hence do not react with the soft electrophile (41), phosphorus and carbon nucleophiles examined do not react because of steric congestion and those nitrogen nucleophiles which do not react

80

do so as a result of electronic factors such as withdrawal of charge lowering nucleophilicity (see Section B.2).

.

CHAPTER FIVE

DERIVATISATION OF POLYFLUORINATED KETONES

.

A. ENOLATE CHEMISTRY

A.1. ENOLATES IN ORGANIC CHEMISTRY

The role of enolates in organic chemistry is a central one, enabling various synthetically useful transformations to be carried out through reactivity at one of two nucleophilic sites: carbon or oxygen (Equation 5.1).

It would therefore be reasonable to believe that fluorinated enolates could assume a correspondingly important role in organofluorine chemistry, providing a method by which organofluorine compounds could be accessed. The major difficulty associated with this strategy is that fluorinated enolates themselves are not easily produced due to the lack of suitable precursor species. Compounds which have been employed as precursors have included perfluorinated alcohols $(50)^{220,221}$ and $(51)^{220}$ and ketene $(52)^{.222}$

$$\begin{array}{cccc} OH & OH \\ I \\ CF_3 - CH \cdot CF_3 & CF_3 - CH \cdot C_2F_5 & (CF_3)_2C = C = O \\ (50) & (51) & (52) \end{array}$$

A.2. FLUOROENOLATES

A.2.a. EARLY FLUOROENOLATE CHEMISTRY

The first reported work on fluoroenolates was carried out by Bergmann and co-workers,^{31,223-227} (Equation 5.2) who studied the standard enolate chemistry undergone by α -fluoroacetates and structurally related compounds.

In more recent years Japanese and American teams have made a more thorough investigation of the properties and reactivity of polyand perfluorinated enolates.

A.2.b. PERFLUOROENOLATES

Perfluoroenolates are formed quantitatively by the action of two molar equivalents of strong base on highly fluorinated alcohols such as 2H-hexafluoropropan-2-ol (Equation 5.3).

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} OH\\ e.g. \ R_{F}\text{-}CH\text{-}CF_{2}R_{F}' & \hline n\text{-}C_{4}H_{9}\text{Li} \\ \hline oxolane, \\ (i) \ or \ (ii) \end{array} \\ \left[\begin{array}{c} OLi\\ R_{F}\text{-}CH\text{-}CF_{2}R_{F}' \end{array} \right] & \hline Base & \begin{array}{c} OLi\\ R_{F}\text{-}C\text{-}CFR_{F}' \\ (53) \end{array} \\ \begin{array}{c} \begin{array}{c} OLi\\ R_{F}\text{-}C\text{-}CFR_{F}' \\ (53) \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} R_{F}\text{-}C\text{-}CFR_{F}' \\ (53) \end{array} \\ \begin{array}{c} Base = n\text{-}C_{4}H_{9}\text{Li}, \\ (53) \end{array} \\ \begin{array}{c} Base = n\text{-}C_{4}H_{9}\text{Li}, \\ NaH, \ KH \\ M=\text{Li}, Na, K \end{array} \end{array}$$

Enolates such as (53), which is stable even at room temperature, participate in reactions typical of metal enolates, *i.e.* carbon and oxygen nucleophilicity, and also react electrophilically (Scheme 5.1) at the β position as a result of loss of electron density due to the inductive effect of the fluorine substituents. Such reactions are typical of highly fluorinated alkenes.

SCHEME 5.1: REACTIVITY OF (53)

Aldol reactions may be carried out with β , β -difluoro substituted enolates, but not with β -perfluoroalkyl- β -fluoro substituted enolates since the effect of β -perfluoroalkyl substitution serves to decrease the nucleophilicity of the α carbon. In contrast, β carbon electrophilicity, and hence rate of nucleophilic substitution of β fluorine, is increased. These effects are due to the greater electron withdrawing effect of the trifluoromethyl group over a single fluorine substituent, since back donation exhibited by fluorine does not occur with the trifluoromethyl group.

A.2.c. POLYFLUOROENOLATES

Polyfluoroenolates such as (54) show reactivity typical of metal enolates, *i.e.* carbon and oxygen nucleophilicity, but do not react with nucleophiles *via* fluoride ion displacement at the β position. This is due to the electron donating effect of alkyl substituents which impart electron density to the β carbon.

An interesting rearrangement undergone by β , γ unsaturated polyfluoroenolate esters is the Ester Enolate Claisen Rearrangement (Scheme 5.2).²²⁸⁻²³⁰

SCHEME 5.2: ESTER ENOLATE CLAISEN REARRANGEMENT

A.2.d. 'INTERNAL' VERSUS 'EXTERNAL' ENOLATE FORMATION

In cases where asymmetry allows for the potential for synthesis of two distinct enolates (Scheme 5.3), it is observed that the 'internal' enolate (55) is formed in preference to the 'external' enolate (56). Both thermodynamic and kinetic factors favour production of (55).

SCHEME 5.3: 'INTERNAL' VERSUS 'EXTERNAL' ENOLATE FORMATION

Formation of 'external' enolates may be forced by use of α -fluoro esters (Equation 5.4) in which no 'internal' enolate formation is possible.

A.3. REACTIONS OF (36)

It was decided to investigate whether (36), synthesised via a free radical process (see Chapter Two), could be made to undergo enolate type chemistry, by utilisation of the increased acidity of the methyl ketone protons as a result of polyfluoro substitution.

Anion trapping experiments involving attempted abstraction of these protons using fluoride ion or butyl lithium as base, and subsequent generation of the corresponding enolate anion (Scheme 5.5), failed to produce evidence for the reaction proceeding in this manner, since no anion was trapped.

The attempted enolisation reaction was repeated, then the reaction quenched using ethanol-*d*. No deuterated ketone (57) was observed (Scheme 5.6).

The attempted reactions produced a great many compounds, with highly complex n.m.r. spectra and gas chromatographs which precluded interpretation.

B. OTHER ATTEMPTED REACTIONS OF (36)

Elementary chlorine was reacted with ketone (36) to give a complex mixture containing the new chloromethyl ketone (38) (17%) and the new dichloromethyl ketone (39) (4%).

SCHEME 5.4: DIRECT CHLORINATION OF (36)

Chloromethyl ketones are formed since the initial hydrogen abstraction step occurs to form the more stable radical, *i.e.* abstraction of a methyl hydrogen to give a radical stabilised by adjacent π electrons rather than abstraction of a fluoromethylene hydrogen to give a radical destabilised by the presence of α perfluoroalkyl substituents.^{202,231}

Some attempts were made to effect perfluorination of (36) and two higher homologues (58) and (59) by means of cobalt trifluoride fluorination, without success. However, doubt was cast on the effectiveness of the apparatus used when earlier work, involving fluorination of (25) and (26),⁶⁴ could not be repeated.

C. CONCLUSION

.

Using a variety of methods, we have been unable to react ketone (36) through its enolate form. It seems likely that this compound will not prove feasible as a fluoroenolate precursor.

Direct chlorination of the compound produced the new chloromethyl (38) and dichloromethyl (39) ketones, in low yield. Since a substantially greater yield was obtained from alcohol (28), it seems possible that radical inhibitors may have been present as impurities.
CHAPTER SIX

EXPERIMENTAL TO CHAPTER TWO

\$

INSTRUMENTATION

GAS LIQUID CHROMATOGRAPHY

Gas liquid Chromatography (g.l.c.) was carried out on a Hewlett Packard 5890A gas chromatograph fitted with a 25m. cross-linked methyl silicone capillary column (time programmed, temperature controlled). Preparative scale g.l.c. was performed on a Varian Aerograph Model 920 (catharometer detector) gas chromatograph.

DISTILLATION

Fractional distillation of product mixtures was carried out using a Fischer Spahltrohr MMS 255 small concentric tube apparatus. Boiling points were recorded during distillation.

BOILING POINTS

Boiling points were carried out at atmospheric pressure and are uncorrected.

ELEMENTAL ANALYSES

Carbon, hydrogen and nitrogen elemental analyses were obtained using a Perkin-Elmer 240 Elemental Analyser or a Carlo Erba 1106 Elemental Analyser. Analyses for halogens were performed as described in the literature.²³²

INFRA RED SPECTRA

Infra Red spectra were recorded on either a Perkin-Elmer 457 or 577 Grating Spectrophotometer using conventional techniques.

NMR SPECTRA

Proton NMR spectra were recorded on a Bruker AC250 (250MHz), Varian Gemini (200MHz) or Varian VXR400S (400MHz) NMR

92

spectrometer.

Fluorine NMR spectra were recorded on a Bruker AC250 (235MHz) or a Varian VXR400S (365MHz) NMR spectrometer.

Carbon NMR were recorded on a Bruker AC250 (63MHz) or Varian VXR400S (100MHz) NMR spectrometer.

MASS SPECTRA

1

Mass spectra of solid samples were recorded on a VG 7070E spectrometer. G.C. mass spectra were recorded on the VG 7070E spectrometer linked to a Hewlett Packard 5790A gas chromatograph fitted with a 25m cross-linked methyl silicone capillary column.

REAGENTS AND SOLVENTS

In general chemicals were used as received from suppliers (Aldrich, Fluka. Fluorochem, Janssen, Lancaster) and solvents were dried by standard procedures.

A. GENERAL PROCEDURES

A.0 IRRADIATION FACILITY

A purpose-built irradiation facility is available to the university, and was used for all gamma ray initiated free radical reactions reported. The facility consists of an irradiation chamber connected to an outer room by a labyrinthine corridor. Interlocked multiple gates linked to the source withdrawal mechanism ensure that entry to the irradiation chamber is impossible when the ⁶⁰Co source is in the irradiation position.

Reaction mixtures, suitably contained within an autoclave or a Carius tube shielded within a metal sleeve to prevent injury or damage in the event of violent release of the pressurised contents, are placed in one of a number of positions in a circular array centred on the source. Knowledge of the geometry permits accurate calculation of doses received by the reaction mixtures.

1

A.1. Y-RAY INITIATED REACTIONS

Reactions were carried out in vacuo in a sealed Carius tube (capacity ca. 30ml or 60 ml) into which reactants and solvent, if used. Solid reagents were dissolved in a suitable, *i.e.* inert. were charged. solvent before being placed in the Carius tube. Gaseous reagents were introduced by means of standard vacuum line techniques. After the Carius tube was twice degassed, it was frozen down (liquid air) and sealed under vacuum, placed in a metal sheath and allowed to warm to ambient temperature in a fume cupboard, before being transferred to the irradiation facility. The Carius tube was irradiated at a controlled temperature of 18°C for a standard period of ca. 5 days (ca. 12 MRads) unless otherwise stated. After this time, the tube was removed from the irradiation source, frozen down (liquid air), opened, and gaseous species transferred under vacuum.

A.2. ULTRAVIOLET INITIATED REACTIONS

Carius tube procedures were as described in the preceding section. The charged Carius tube was irradiated for 3-5 days with ultraviolet light (1000W, medium pressure, mercury lamp, at a distance of *ca.* 0.1m) whilst being cooled by an electric fan to prevent overheating.

A.3. PEROXIDE INITIATED REACTIONS

Peroxide initiated reactions were carried out in stainless steel autoclaves (capacity 100ml or 250ml) fitted with a bursting disc. Autoclaves were charged by the same methods as were Carius tubes. The charged autoclaves were transferred, frozen to liquid air temperature, to the high pressure facility and fitted into a rocking furnace, connected to a catchpot in the event of rupture of the bursting disc, before being heated to the appropriate temperature for the appropriate time (programmed). On completion of the programme, the autoclave was permitted to cool to ambient temperature before being discharged identically to a Carius tube.

B. SYNTHESIS

B.1 SYNTHESIS OF POLYFLUORINATED KETONES

B.1.a. γ-RAY INITIATED FREE RADICAL ADDITION OF ETHANAL TO HEXAFLUOROPROPENE

A Carius tube was charged with ethanal (6.3 g, 143 mmol) and hexafluoropropene (23.1 g, 154 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (16.0 g, 28 mmol) was removed and the remaining liquid distilled to give 3,3,4,5,5,5-hexafluoropentan-2one (**36**) (10.1 g, 52 mmol, 36%); b.p. 78°C; (Found: C, 31.24; H, 2.29; F, 57.4%; C₅H₄F₆0 requires C, 30.93; H 2.06; F, 58.7%); IR spectrum 1; NMR spectrum 1; mass spectrum 1.

B.1.b. γ-RAY INITIATED FREE RADICAL ADDITION OF ETHANAL TO 2H-PENTAFLUOROPROPENE

A Carius tube was charged with ethanal (2.4 g, 54 mmol) and 2H-pentafluoropropene (14.1 g, 107 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (8.9 g, 67 mmol) was removed and the remaining liquid distilled to give <u>3.3.5.5.5-pentafluoropentan-2-one</u> (5.3 g, 30 mmol, 76%); b.p. 25°C (74 mmHg); (Found: C. 34.30; H, 2.40; F, 53.5%. Calc. for C₅H₅F₅0 C, 34.09; H, 2.87; F, 54.0%); IR spectrum 2; MMR spectrum 2; mass spectrum 2. Compound No. (61)

B.1.c. γ-RAY INITIATED FREE RADICAL ADDITION OF PROPANAL TO HEXAFLUOROPROPENE

A Carius tube was charged with propanal (12.1 g, 208 mmol) and hexafluoropropene (49.0 g, 327 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (19.9 g, 133 mmol) was removed and the remaining liquid distilled to give <u>4.4.5.6.6.6-hexafluorohexan-3-one</u> (58) (39.3 g, 189 mmol, 98%); (Found: C, 34.86; H, 3.66; F, 54.1%. Calc. for C₆H₆F₆0 C, 34.62; H, 3.40; F, 54.8%); IR spectrum 3; NMR

spectrum 3; mass spectrum 3.

B.1.d. γ-RAY INITIATED FREE RADICAL ADDITION OF PROPANAL TO 2H-PENTAFLUOROPROPENE

A Carius tube was charged with propanal (2.2 g, 39 mmol) and 2H-pentafluoropropene (10.0 g, 76 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (5.7 g, 43.6 mmol) was removed and the remaining liquid distilled to give <u>4.4.6.6.6-pentafluorohexan-3-one</u> (4.9 g, 26 mmol, 80%); b.p. 39°C (70 mmHg); (Found: C, 37.81; H, 3.98; F, 50.3%. Calc. for C₆H₇F₅O C, 37.90; H, 3.72; F, 50.0%); IR spectrum 4; MMR spectrum 4; mass spectrum 4. Compound No (63)

B.1.e. γ-RAY INITIATED FREE RADICAL ADDITION OF BUTANAL TO HEXAFLUOROPROPENE

A Carius tube was charged with butanal (24.5 g, 340 mmol) and hexafluoropropene (61.6 g, 411 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (13.3 g, 89 mmol) was removed and the remaining liquid distilled to give 1,1,1,2,3,3-hexafluoroheptan-4-one (59) (48.32 g, 322 mmol, 95%); (Found: C, 37.49; H, 3.56; F, 51.8%. C₇H₈F₆O requires C, 37.84; H, 3.60; F, 51.2%); IR spectrum 5; NMR spectrum 5; mass spectrum 5.

B.1.f. γ-RAY INITIATED FREE RADICAL ADDITION OF BUTANAL TO 2H-PENTAFLUOROPROPENE

. Y

A Carius tube was charged with butanal (2.6 g, 36 mmol) and 2H-pentafluoropropene (9.4 g, 71 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (5.34 g, 40 mmol) was removed and the remaining liquid distilled to give <u>1.1.1.3.3-pentafluoroheptan-4-one</u> (4.48 g, 22 mmol, 71%); b.p. 39°C (31 mmHg); (Found: C, 40.86; H, 4.80; F, 46.1%. Calc. for C₇H₉F₅0 C, 41.18; H, 4.46; F, 46.6%); IR spectrum 6; NMR spectrum 6; mass spectrum 6. Compound No. (65)

B.1.g. γ-RAY INITIATED FREE RADICAL ADDITION OF PENTANAL TO HEXAFLUOROPROPENE

A Carius tube was charged with pentanal (4.0 g, 47 mmol) and hexafluoropropene (16.5 g, 110 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (8.1 g, 54 mmol) was removed and the remaining liquid distilled to give 1,1,1,2,3,3-hexafluorooctan-4-one (4.4 g, 18 mmol, 38%); b.p. 86°C (16 mmHg); (Found: C, 40.24; H, 4.60; F, 42.7%. C₈H₁₀F₆0 requires C, 40.67; H, 4.28; F, 48.3%); IR spectrum 7; NMR spectrum 7; mass spectrum 7. Compound No. (66)

B.1.h. γ-RAY INITIATED FREE RADICAL ADDITION OF PENTANAL TO 2H-PENTAFLUOROPROPENE

A Carius tube was charged with pentanal (4.0 g, 47 mmol) and 2H-pentafluoropropene (14.1 g, 107 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (9.1 g, 69 mmol) was removed and the remaining liquid distilled to give <u>1.1.1.3.3-pentafluorooctan-4-one</u> (7.0 g, 32 mmol, 84%); b.p. 92°C (18.5 mmHg); (Found: C, 44.22; H, 5.30; F, 42.9%. Calc. for C₈H₁₁F₅0 C, 44.04; H, 5.10; F, 43.6%); IR spectrum 8; MMR spectrum 8; mass spectrum 8. Compound No. (67)

B.1.i. γ-RAY INITIATED FREE RADICAL ADDITION OF DIMETHYLPROPANAL TO HEXAFLUOROPROPENE

A Carius tube was charged with dimethylpropanal (5.0 g, 58 mmol) and hexafluoropropene (16.4 g, 109 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (7.9 g, 53 mmol) was removed and the remaining liquid distilled to give 4,4,5,6,6,6-hexafluoro-2,2-dimethylhexan-3-one (7.11 g, 30 mmol, 54%); b.p. 29°C (47 mmHg); (Found: C, 40.27; H, 4.30; F, 47.8%. C₈H₁₀F₆0 requires C, 40.68; H, 4.28; F, 48.3%); IR spectrum 9; NMR spectrum 9; mass spectrum 9. Compound No. (68)

97

B.1.j. γ-RAY INITIATED FREE RADICAL ADDITION OF DIMETHYLPROPANAL TO 2H-PENTAFLUOROPROPENE

A Carius tube was charged with dimethylpropanal (5.0 g, 58 mmol) and 2H-pentafluoropropene (13.2 g, 100 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (9.4 g, 71 mmol) was removed and the remaining liquid distilled to give <u>4.4.6.6.6-pentafluoro-2.2-dimethylhexan-3-one</u> (1.5 g, 7 mmol, 27%); b.p. 45°C (68 mmHg); (Found: C, 43.95; H, 5.03; F, 44.0%. Calc. for C₈H₁₁F₅0 C, 44.04; H, 5.10; F, 43.6%); IR spectrum 10; NMR spectrum 10; mass spectrum 10. Compound No. (69)

B.1.k. Y-RAY INITIATED FREE RADICAL ADDITION OF DODECANEDIAL TO HEXAFLUOROPROPENE

A Carius tube was charged with dodecanedial (0.9 g, 5 mmol), acetone (20 ml) and hexafluoropropene (5.1 g, 34 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (3.6 g, 24 mmol) was removed and the remaining solid recrystallised (acetone) to give <u>1.1.1.2.3.3.16.16.17.18.18.18-dodecafluorooctadecan-4.15-dione</u> (1.2 g, 2 mmol, 40%); (Found: C, 73.04; H, 11.06; F, 46.0%. Calc. for C₁₈H₂₂F₁₂O₂ C, 72.72; H, 11.11; F, 45.8%); IR spectrum 11; NMR spectrum 11; mass spectrum 11. Compound No. (70)

B.I.I. ATTEMPTED Y-RAY INITIATED FREE RADICAL ADDITION OF AROMATIC ALDEHYDES TO HEXAFLUOROPROPENE

3

Experiments were carried out as shown in the following example:

A Carius tube was charged with the aldehyde (*ca.* 50 mmol), acetone (*ca.* 10 ml) in the case of viscous aldehydes, and hexafluoropropene (*ca.* 100 mmol) and irradiated with γ -rays. On opening the tube, no hexafluoropropene was found to have reacted.

98

B.2. SYNTHESIS OF POLYFLUORINATED ALCOHOLS

B.2.a. Y-RAY INITIATED FREE RADICAL ADDITION OF METHANOL TO HEXAFLUOROPROPENE

A Carius tube was charged with methanol (4.4 g, 138 mmol) and hexafluoropropene (32.1 g, 214 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (14.1 g, 94 mmol) was removed and the remaining liquid distilled to give 2,2,3,4,4,4-hexafluorobutan-1-ol (29) (18.2 g, 100 mmol, 83%); (Found: C, 26.40; H, 2.60; F, 63.0%. C₄H₄F₆0 requires C, 26.37; H, 2.22; F, 62.6%); IR spectrum 12; NMR spectrum 12; mass spectrum 12.

B.2.b. γ-RAY INITIATED FREE RADICAL ADDITION OF METHANOL TO 2H-PENTAFLUOROPROPENE

A Carius tube was charged with methanol (2.0 g, 62 mmol) and hexafluoropropene (15.6 g, 118 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (11.3 g, 86 mmol) was removed and the remaining liquid distilled to give <u>2.2.4.4.4-pentafluorobutan-1-ol</u> (4.7 g, 29 mmol, 90%); b.p. 48°C (30 mmHg); (Found: C, 30.22; H, 3.29; F, 58.0%. Calc. for C₄H₅F₅0 C, 29.27; H, 3.08; F, 57.9%); IR spectrum 13; NMR spectrum 13; mass spectrum 13. Compound No. (71)

B.2.c. γ-RAY INITIATED FREE RADICAL ADDITION OF ETHANOL TO HEXAFLUOROPROPENE

.

A Carius tube was charged with ethanol (9.3 g, 203 mmol) and hexafluoropropene (59.7 g, 398 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (28.8 g, 192 mmol) was removed and the remaining liquid distilled to give 3,3,4,5,5,5-hexafluoropentan-2ol (28) (39.0 g, 199 mmol, 98%); b.p. 118°C; (Found: C, 31.04; H, 3.17; F, 57.8%. C₅H₆F₆O requires C, 30.61; H, 3.09; F, 58.2%); IR spectrum 14; NMR spectrum 14; mass spectrum 14.

B.2.d. γ-RAY INITIATED FREE RADICAL ADDITION OF ETHANOL TO 2H-PENTAFLUOROPROPENE

A Carius tube was charged with ethanol (2.5 g, 53 mmol) and 2H-pentafluoropropene (18.7 g, 142 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (12.7 g, 102 mmol) was removed and the remaining liquid distilled to give <u>3,3,5,5,5</u>-<u>pentafluoropentan-2-oi</u> (7.1 g, 40 mmol, 100%); b.p. 54°C (45 mmHg); (Found: C, 34.05; H, 4.30; F, 53.0%. Calc. for C₅H₇F₅O C, 33.71; H, 3.97; F, 53.4%); IR spectrum 15; NMR spectrum 15; mass spectrum 15. Compound No. (72)

B.2.e. γ-RAY INITIATED FREE RADICAL ADDITION OF PROPAN-1-OL TO HEXAFLUOROPROPENE

A Carius tube was charged with propan-1-ol (4.0 g, 67 mmol) and hexafluoropropene (20.7 g, 138 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (8.1 g, 54 mmol) was removed and the remaining liquid distilled to give 4,4,5,6,6,6-hexafluorohexan-3ol (11.1 g, 53 mmol, 79%); b.p. 67°C (7 mmHg); (Found: C, 33.93; H, 4.02; F, 53.9%. C₆H₈F₆O requires C, 34.29; H, 3.85; F, 54.3%); IR spectrum 16; NMR spectrum 16; mass spectrum 16. Compound No. (73)

B.2.f. γ-RAY INITIATED FREE RADICAL ADDITION OF BUTAN-1-OL TO HEXAFLUOROPROPENE

A Carius tube was charged with butan-1-ol (4.1 g, 55 mmol), acetone (10 ml) and hexafluoropropene (21.7 g, 145 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (13.5 g, 90 mmol) was removed and the remaining liquid distilled to give 1,1,1,2,3,3-hexafluoroheptan-4-ol (5.4 g, 18 mmol, 33%); b.p. 40°C (4 mmHg); (Found: C, 33.96; H, 4.04; F, 54.0%. C₅H₇F₅O C, 34.29; H, 3.85; F, 54.3%); IR spectrum 17; NMR spectrum 17; mass spectrum 17. Compound No. (74)

B.2.g. γ-RAY INITIATED FREE RADICAL ADDITION OF PENTAN-1-OL TO HEXAFLUOROPROPENE

A Carius tube was charged with pentan-1-ol (4.1 g, 46 mmol),

acetone (10 ml) and hexafluoropropene (17.7 g, 118 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (11.7 g, 78 mmol) was removed and the remaining liquid distilled to give 1,1,1,2,3,3-hexafluorooctan-4-ol (2.5 g, 11 mmol, 25%); b.p. 56°C (14 mmHg); (Found: C, 40.38; H, 5.19; F, 48.4%. C₈H₁₂F₅0 requires C, 40.34; H, 5.09; F, 47.9%); IR spectrum 18; NMR spectrum 18; mass spectrum 18. Compound No. (**75**)

B.2.h. Y-RAY INITIATED FREE RADICAL ADDITION OF HEXAN-1-OL TO HEXAFLUOROPROPENE

A Carius tube was charged with hexan-1-ol (4.1 g, 40 mmol), acetone (10 ml) and hexafluoropropene (19.7 g, 131 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (11.2 g, 75 mmol) was removed and the remaining liquid distilled to give 1,1,1,2,3,3-hexafluorononan-4-ol (2.7 g, 12 mmol, 30%); b.p. 56°C (4 mmHg); (Found: C, 43.23; H, 6.02; F, 45.2%. C₉H₁₄F₆0 requires C, 42.86; H, 5.61; F, 45.2%); IR spectrum 19; MMR spectrum 19; mass spectrum 19. Compound No. (**76**)

B.2.i, γ-RAY INITIATED FREE RADICAL ADDITION OF 2-THIOPHENEMETHANOL TO HEXAFLUOROPROPENE

A Carius tube was charged with 2-thiophenemethanol (5.0 g, 44 mmol) and hexafluoropropene (15.3 g, 102 mmol), and irradiated with γ -rays for 20 days. On opening the tube, no reaction was observed to have occured and all hexafluoropropene was recovered.

B.3. SYNTHESIS OF POLYFLUORINATED DIOLS

B.3.a. γ-RAY INITIATED FREE RADICAL ADDITION OF 1.2-ETHANEDIOL TO HEXAFLUOROPROPENE

A Carius tube was charged with 1,2-ethanediol (2.3 g, 37 mmol), acetone (10 ml) and hexafluoropropene (18.1 g, 121 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (13.9 g, 93 mmol) was removed. Having established the degree (by recovered

fluoroalkene) and nature (by ¹⁹F NMR) of incorporation, no further analysis was carried out. Compound No. (78)

B.3.b. Y-RAY INITIATED FREE RADICAL ADDITION OF 1.3-PROPANEDIOL TO HEXAFLUOROPROPENE

A Carius tube was charged with 1,3-propanediol (3.1 g, 41 mmol), acetone (10 ml) and hexafluoropropene (14.1 g, 94 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (10.4 g, 69 mmol) was removed. Having established the degree (by recovered fluoroalkene) and nature (by ¹⁹F NMR) of incorporation, no further analysis was carried out. Compound No. (**79**)

B.3.c. γ-RAY INITIATED FREE RADICAL ADDITION OF 1.4-BUTANEDIOL TO HEXAFLUOROPROPENE

B.3.c.(i). SYNTHESIS OF 5.5.6.7.7.7-HEXAFLUOROHEPTANE-1.4-DIOL

An autoclave (125ml capacity) was charged with 1,4-butanediol (16.0 g, 177 mmol), acetone (20 ml) and hexafluoropropene (108.1 g, 721 mmol), and irradiated with γ -rays for *ca.* 29 days. On opening the tube, it was discovered that gaseous reagents had escaped over an unknown period of time. However, it was possible to isolate from the materials remaining in the autoclave <u>5.5.6.7.7.7-hexafluoroheptane-1.4-diol</u> (22) (0.9 g, 4mmol, 2%); (Found: C, 35.21; H, 4.05; F, 47.2%. Calc. for C₇H₁₀F₆O₂ C, 35.03; H, 4.21; F, 47.5%; IR spectrum 20; NMR spectrum 20; mass spectrum 20.

B.3.c.(ii). SYNTHESIS OF 1.1.1.2.3.3.8.8.9.10.10.10-DODECAFLUORODECANE-4.7-DIOL

A Carius tube was charged with 1,4-butanediol (4.0 g, 44 mmol), acetone (10 ml) and hexafluoropropene (31.8 g, 212 mmol), and irradiated with γ -rays for *ca.* 27 days. On opening the tube, excess alkene (18.6 g, 124 mmol) was removed, and the remaining solid purified by sublimation to give <u>1.1.1.2.3.3.8.8.9.10.10.10.10</u>-dodecafluorodecane-4.7-diol (23) (5.1 g, 13 mmol, 29%); (Found: C,

30.75; H, 2.55; F, 58.1%. Calc. for C₁₀H₁₀F₁₂O₂ C, 30.77; H, 2.56; F, 58.4%); IR spectrum 21; NMR spectrum 21; mass spectrum 21.

B.3.d. γ-RAY INITIATED FREE RADICAL ADDITION OF 1.5-PENTANEDIOL TO HEXAFLUOROPROPENE

A Carius tube was charged with 1,5-pentanediol (4.1 g, 39 mmol), acetone (10 ml) and hexafluoropropene (23.5 g, 157 mmol), and irradiated with γ -rays for *ca.* 29 days.

On opening the tube, excess alkene (10.6 g, 71 mmol) was removed, and the crude product purified by distillation (Kugelrohr apparatus) to give <u>1.1.1.2.3.3.9.9.10.11.11.11.dodecafluoroundecane-4.8-diol</u> (24) (10.1 g, 25 mmol, 64%); b.p. 170°C (0.2 mmHg); (Found: C, 33.04; H, 3.13; F, 55.8%. Calc. for $C_{11}H_{12}F_{12}O_2$ C. 32.67; H, 2.97; F, 56.4%); IR spectrum 22; NMR spectrum 22; mass spectrum 22.

A Carius tube was charged with 1,6-hexanediol (5.1 g, 43 mmol), acetone (*ca.* 10 ml) and hexafluoropropene (12.9 g, 86 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (10.6 g, 71 mmol) was removed. Having established the degree (by recovered fluoroalkene) and nature (by ¹⁹F NMR) of incorporation, no further analysis was carried out.

B.4. SYNTHESIS OF POLYFLUORINATED ETHERS

B.4.a. γ-RAY INITIATED FREE RADICAL ADDITION OF OXOLANE TO HEXAFLUOROPROPENE

A Carius tube was charged with oxolane (14.1 g, 195 mmol) and hexafluoropropene (21.6 g, 144 mmol), and irradiated with γ -rays. On opening the tube, all alkene was found to have reacted. The remaining liquid was distilled to give 2-(1,1,2,3,3,3-hexafluoropropyl)oxolane (25) (22.7g, 102 mmol, 71%); b.p. 39°C (14 mmHg); (Found: C, 37.29; H, 3.96; F, 51.5%. C₇H₈F₆O requires C, 37.84; H, 3.64; F, 51.4%); IR spectrum 23; NMR spectrum 23; mass spectrum 23, and 2,5bis(1,1,2,3,3,3-hexafluoropropyl)oxolane (26) (10.1 g, 27 mmol, 9%); b.p. 66°C (8 mmHg); (Found: C, 32.38; H, 2.25; F, 60.9%. C₁₀H₈F₁₂0 requires C, 32.26; H, 2.17; F, 61.3%); IR spectrum 24; NMR spectrum 24; mass spectrum 24.

B.5. SYNTHESIS OF POLYFLUORINATED SILANES

B.5.a. Y-RAY INITIATED FREE RADICAL ADDITION OF METHOXYTRIMETHYLSILANE TO HEXAFLUOROPROPENE

A Carius tube was charged with methoxytrimethylsilane (7.4 g, 71 mmol) and hexafluoropropene (26.4 g, 176 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (14.2 g, 101 mmol) was removed. The remaining liquid was distilled to give 2,2,3,4,4,4-hexafluorobutoxytrimethylsilane (13.2 g, 52 mmol, 73%); b.p. 44°C (48 mmHg); (Found: C, 29.41; H, 4.10; F, 40.3%. C₇H₁₂F₆0Si requires C, 29.37; H, 4.24; F, 39.9%); IR spectrum 25; NMR spectrum 25; mass spectrum 25. Compound No. (80)

C. COMPETITION REACTIONS

C.1. GENERAL PROCEDURES

Competitive reactions between different alcohols were carried out as illustrated below:

A Carius tube was charged with an equimolar mixture of alcohols A and B, and a deficiency (*ca.* one third of the molar quantity) of hexafluoropropene, and irradiated with γ -rays. When the Carius tube was opened, all alkene had reacted. Comparison was made, by gas chromatographic means, of the relative proportions of A and B prior to and following reaction, and hence their relative reactivities towards free radical addition to hexafluoropropene was determined.

Competitive reactions between different species, *e.g.* alcohols and amines, were carried out as above, but with the modification that,

should either species under study be di- (e.g. diethyl ether) or trifunctional (e.g. triethylamine) the appropriate correction was made to the molar proportion of each reactant to ensure an equal number of reactive sites of each kind., e.g. competition between alcohols and aldehydes employed a 1:1 molar mixture while competition between triethylamine and ethanol employed a 1:3 molar mixture.

C.2. SYNTHESIS OF 2-(1.1.2.3.3.3-HEXAFLUOROPROPYL)PYRROLIDINE-1-CARBOXALDEHYDE

A Carius tube was charged with pyrrolidine-1-carboxaldehyde (8.8 g, 89 mmol) and hexafluoropropene (13.8 g, 92 mmol), and irradiated with γ -rays. On opening the tube, excess alkene (0.6 g, 4 mmol) was removed. The remaining liquid was purified by vacuum transfer to give <u>2-(1,1,2,3,3,3-hexafluoropropyl)pyrrolidine-1-</u> carboxaldehyde (27) (17.7 g, 71 mmol, 79.8%); (Found: C, 39.04; H, 4.00; N, 5.22; F, 45.4%. Calc. for C₈H₉F₆N0 requires C, 38.55; H, 3.65; N, 5.62; F, 45.8%); IR spectrum 26; NMR spectrum 26; mass spectrum 26.

.

CHAPTER SEVEN

EXPERIMENTAL TO CHAPTER THREE

.

A. ESTERIFICATIONS

A.1. ACETYLATION

A.1.a. ACETYLATION OF (29)

(29) (3.0 g, 16 mmol) was stirred under an atmosphere of nitrogen, and acetyl chloride (1.6 g, 21 mmol) added dropwise. Evolution of HCl was observed. The reaction was stirred for 27 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure to give 2.2.3.4.4.4-hexafluorobutyl ethanoate (1.9 g, 8 mmol, 52%); (Found: C, 32.06; H, 2.71; F, 50.4%. C₆H₆F₆O₂ requires C, 32.14; H, 2.67; F, 50.9%); IR spectrum 27; NMR spectrum 27; mass spectrum 27. Compound No. (81)

A.1.b. ACETYLATION OF (28)

Method 1: (28) (3.3 g, 17 mmol) was stirred under an atmosphere of nitrogen, and acetyl chloride (1.7 g, 22 mmol) added dropwise. Evolution of HCl was observed. The reaction was stirred for 1.5 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure to give 3.3.4.5.5.5-hexafluoropent-2-yl ethanoate (2.3 g, 10 mmol, 59%); (Found: C, 35.20; H, 3.48; F, 48.4%. C₇H₈F₆O₂ requires C, 35.29; H, 3.39; F, 47.9%); i.r spectrum 28; NMR spectrum 28; mass spectrum 28. Compound No. (82)

Method 2: A mixture of (28) (4.6 g, 24 mmol) and triethylamine (3.6 g, 36 mmol) was stirred under an atmosphere of nitrogen, and acetyl chloride (2.3 g, 29 mmol) added dropwise, maintaining temperature below 20°C. The reaction was stirred for 1 hr, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure to give 3.3.4.5.5.5-hexafluoropent-2-yl ethanoate (1.3 g, 5 mmol, 25%); (Found: C, 35.30; H, 3.45; F, 47.0%. C₇H₈F₆O₂ requires C, 35.29; H,

3.39; F, 47.9%); i.r spectrum 28; NMR spectrum 28; mass spectrum 28.

A.2. 3.5-DINITROBENZOYLATION

A.2.a. 3.5-DINITROBENZOYLATION OF (29)

A mixture of (29) (1.0 g, 5 mmol) and triethylamine (0.6 g, 6 mmol) was stirred at -5°C under an atmosphere of nitrogen, and 3,5-dinitrobenzoyl chloride (1.1 g, 5 mmol) in anhydrous diethyl ether (25 ml) added dropwise. The reaction was stirred for 3 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure to give 2.2.3.4.4.4-hexafluorobutyl 3.5-dinitrobenzoate (0.4 g, 1 mmol, 22%); (Found: C, 34.93; H, 1.79; N, 7.18; F, 30.8%. Calc. for $C_{11}H_6F_6N_2O_6$: C, 35.10; H, 1.61; N, 7.45; F, 30.3%); i.r spectrum 29; MMR spectrum 29; mass spectrum 29. Compound No. (83)

A.2.b. 3.5-DINITROBENZOYLATION OF (28)

A mixture of (28) (5.9 g, 26 mmol) and triethylamine (2.6 g, 26 mmol) was stirred at -5°C under an atmosphere of nitrogen, and 3,5-dinitrobenzoyl chloride (3.1 g, 16 mmol) added dropwise. The reaction was stirred for 30 mins, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure to give <u>3.3.4.5.5.5-hexafluoropent-2-yl 3.5-dinitrobenzoate</u> (6.1 g, 16 mmol, 99%); (Found: C, 36.65; H, 2.26; N, 7.33; F, 29.4%. Calc. for C₁₂H₈F₆N₂O₆: C, 36.92; H, 2.07; N, 7.18; F, 29.2%); i.r spectrum 30; NMR spectrum 30; mass spectrum 30. Compound No. (84)

A.3. 1.4-DIBENZOYLATION (TEREPHTHALOYLATION)

A.3.a. 1.4-DIBENZOYLATION OF (28)

A suspension of 1,4-dibenzoyl chloride (1.0 g, 5 mmol) in pyridine (31 ml) was stirred under an atmosphere of nitrogen, and

(28) (2.4 g, 12 mmol) added dropwise. The reaction was stirred for 24 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure to give <u>bis(3.3.4.5.5.5-hexafluoropent-2-yl)</u> <u>1.4-dibenzoate</u> (0.3 g, 0.6 mmol, 12%); (Found: C, 40.89; H, 3.30; F, 49.1%. Calc. for C₁₆H₁₄F₁₂O₂ requires C, 41.19; H, 3.03; F, 48.9%); i.r spectrum 31; NMR spectrum 31; mass spectrum 31. Compound No. (85)

B. SYNTHESIS OF CARBONATES

B.1. SYNTHESIS OF PHENYL CARBONATE OF (29)

To a stirred solution of (29) (3.0 g, 16 mmol) in pyridine (1.3 g), phenyl chloroformate (3.4 g, 22 mmol) was added dropwise. The reaction was stirred for 27 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure. Molecular distillation gave 2.2.3.4.4.4-hexafluorobutyl phenyl carbonate (2.9 g, 10 mmol, 58%); (Found: C, 43.66; H, 2.79; F, 38.2%. Calc. for C₁₁H₈F₆O₃: C, 43.71; H, 2.68; F, 37.7%); i.r spectrum 32; NMR spectrum 32; mass spectrum 32. Compound No. (86)

B.2. SYNTHESIS OF PHENYL CARBONATE OF (28)

To a stirred solution of (28) (1.8 g, 9 mmol) in pyridine (1.2 g), phenyl chloroformate (1.6 g, 10 mmol) was added dropwise. The reaction was stirred for 17 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure. Molecular distillation gave <u>3.3.4.5.5.5-hexafluoropent-2-yl phenyl carbonate</u> (1.6 g, 5 mmol, 54%); (Found: C, 45.70; H, 3.51; F, 35.9%. Calc. for $C_{12}H_{10}F_6O_3$: C, 45.57; H, 3.20; F, 36.1%); i.r spectrum 33; NMR spectrum 33; mass spectrum 33. Compound No. (87)

109

C. SYNTHESIS OF ETHERS

C.1. REACTION WITH ALKYL HALIDES

C.1.a. REACTION OF (28) WITH IODOMETHANE

To a stirred solution of NaOH (0.9 g, 22 mmol) in acetone (10 ml) under an atmosphere of nitrogen, (28) (2.0 g, 10 mmol) was added dropwise. Stirring was continued for a further 4 hrs, before addition of iodomethane (1.7 g, 12 mmol). The reaction was stirred for 18 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure. Molecular distillation gave a mixture which was shown to contain 14% (by g.l.c.) of <u>3.3.4.5.5.5-hexafluoro-2-methoxypentane</u>; IR spectrum 34; NMR spectrum 34. Compound No. (88)

C.1.b. REACTION OF (28) WITH 1-BROMOPROPANE

<u>Method 1:</u> To a stirred solution of NaOH (0.6 g, 14 mmol) in acetone (10 ml) under nitrogen, (28) (1.3 g, 7 mmol) was added dropwise. Stirring was continued for a further 2 hrs, before addition of 1-bromopropane (1.2 g, 10 mmol). The reaction was stirred for 18 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure. Molecular distillation gave a mixture which was shown to contain 25% (by NMR) of <u>3.3.4.5.5.5-hexafluoro-2-propoxypentane</u>; IR spectrum 35; NMR spectrum 35; mass spectrum 34. Compound No. (89)

Method 2: To a stirred, refluxing solution of NaOH (0.5 g, 12 mmol) in acetone (6 ml) under nitrogen, (28) (1.5 g, 7 mmol) was added dropwise, before addition of 1-bromopropane (1.0 g, 8 mmol). The reaction was stirred for 18 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure. Molecular distillation gave a mixture

which was shown to contain 55% (by NMR) of <u>3.3.4.5.5.5-hexafluoro-</u> <u>2-propoxypentane</u>; IR spectrum 35; NMR spectrum 35; mass spectrum 34.

C.1.c. REACTION OF (28) WITH 2-BROMOPROPANE

To a stirred solution of NaOH (0.8 g, 20 mmol) in acetone (10 ml) under nitrogen, (28) (3.1 g, 16 mmol) was added dropwise. Stirring continued for a further 1.5 hrs. before was addition of 2-bromopropane (1.8 g, 15 mmol). The reaction was stirred for 18 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO3 until neutral, dried (MgSO₄), and ether removed under reduced pressure. G.I.c. showed that no 3,3,4,5,5,5-hexafluoro-2-(1-methylethoxy)pentane had been formed.

C.1.d. REACTION OF (28) WITH 1.1.1-TRIFLUORO-2-IODOETHANE

To a stirred solution of NaOH (0.8 g, 21 mmol) in acetone (10 ml) under nitrogen, (28) (1.1 g, 6 mmol) was added dropwise. Stirring was continued for a further 2 hrs, before addition of 1,1,1-trifluoro-2-iodoethane (1.6 g, 11 mmol). The reaction was stirred for 18 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure. G.I.c. showed that no 3,3,4,5,5,5-hexafluoro-2-(1,1,1-trifluoro-2-iodoethoxy)pentane had been formed.

C.2. REACTION WITH ACTIVATED HALIDES

C.2.a. REACTION OF (29) WITH ALLYL BROMIDE

To a stirred solution of NaOH (0.8 g, 21 mmol) in acetone (20 ml), heated to 50°C, under an atmosphere of nitrogen, (29) (2.0 g, 11 mmol) was added dropwise. Stirring was continued for a further 2 hrs, before addition of allyl bromide (1.4 g, 11 mmol). The reaction was allowed to cool to room temperature and stirred for 18 hrs. A

small volume of water was then added and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure. Molecular distillation gave a mixture which was shown by g.I.c/mass spectrometry to contain a trace amount of 2.2.3.4.4.4-hexafluoro(prop-2-enoxy)-butane; mass spectrum 35. Compound No. (90)

C.2.b. REACTION OF (28) WITH ALLYL BROMIDE

To a stirred solution of NaOH (0.5 g, 12 mmol) in acetone (5 ml) under an atmosphere of nitrogen, (28) (2.1 g, 11 mmol) was added dropwise. Stirring was continued for a further 2 hrs, before addition of allyl bromide (1.2 g, 10 mmol). The reaction was stirred for 3 hrs, a small volume of water added, and product extracted into diethyl ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and ether removed under reduced pressure. Molecular distillation gave 3.3.4.5.5.5-hexafluoro-2-(prop-2-enoxy)pentane (1.3 g, 6 mmol, 58%); (Found: C, 40.28; H, 4.40; F, 48.2%. Calc. for C₈H₁₀F₆0: C, 40.68; H, 4.28; F, 48.3%); i.r spectrum 36; MMR spectrum 36; mass spectrum 36. Compound No. (91)

C.2.c. REACTION OF (29) WITH BENZYL BROMIDE

To a stirred solution of NaOH (0.8 g, 20 mmol) in acetone (20 ml) under an atmosphere of nitrogen, (29) (2.0 g, 11 mmol) was added dropwise. Stirring was continued for a further 2 hrs, before addition of benzyl bromide (1.9 g, 11 mmol). The reaction was stirred under reflux for 18 hrs, allowed to cool to ambient temperature, and worked up as before. Molecular distillation gave a mixture which was shown to contain 67% (by g.l.c.) <u>2.2.3,4.4,4-hexafluoro-1-(phenylmethoxy)-butane;</u> NMR spectrum 37; mass spectrum 37. Compound No. (92)

C.2.d. REACTION OF (28) WITH BENZYL BROMIDE

To a stirred solution of NaOH (0.6 g, 16 mmol) in acetone (5 ml) under an atmosphere of nitrogen, (36) (1.8 g, 9 mmol) was added dropwise. Stirring was continued for a further 2 hrs, before addition of benzyl bromide (1.4 g, 8 mmol). The reaction was stirred for 18 hrs and worked up as before. Molecular distillation gave <u>3.3.4.5.5.5-hexafluoro-2-(phenylmethoxy)pentane</u> (1.9 g, 7 mmol, 78%); (Found: C, 50.16; H, 4.28; F, 38.9%. Calc. for $C_{12}H_{12}F_60$: C, 50.35; H, 4.23; F, 39.9%); i.r spectrum 37; NMR spectrum 38; mass spectrum 38. Compound No. (93)

C.3. REACTION WITH FLUOROBENZENES

C.3.a. REACTION OF (28) WITH 4-FLUOROBENZONITRILE

Method 1: A mixture of (28) (2.1 g, 11 mmol), 4-fluorobenzonitrile (2.4 g, 20 mmol) and caesium fluoride (3.6 g, 24 mmol) in acetonitrile (20 ml) was heated under reflux for 6 hrs. No 4-(3,3,4,5,5,5-hexafluoro-pent-2-oxy)benzonitrile was produced (by NMR). Compound No. (94)

<u>Method 2:</u> A Carius tube was charged with (28) (4.0 g, 20 mmol), 4-fluorobenzonitrile (2.5 g, 20 mmol) and caesium fluoride (3.7 g, 24 mmol), sealed under vacuum and heated to 100°C for 17.5 hrs. The tube was frozen down (liquid air), opened, and the contents discharged and organic materials extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. No 4-(3,3,4,5,5,5-hexafluoropent-2-oxy)benzonitrile was produced (by NMR).

C.3.b. REACTION OF (28) WITH 4-FLUOROACETOPHENONE

A Carius tube was charged with (28) (5.0 g, 25 mmol), 4-fluoroacetophenone (3.4 g, 25 mmol) and caesium fluoride (6.0 g, 40 mmol), sealed under vacuum and heated to 100°C for 17.5 hrs. The tube was frozen down (liquid air), opened, and the contents discharged and organic materials extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. No 4-(3,3,4,5,5,5-hexafluoropent-2-oxy)acetophenone was produced (by NMR). Compound No. (95)

C.3.c. REACTION OF (28) WITH 4-FLUOROBENZOPHENONE

A Carius tube was charged with (28) (4.0 g, 21 mmol), 4-fluoroacetophenone (3.8 g, 19 mmol) and caesium fluoride (5.2 g, 35 mmol), sealed under vacuum and heated to 100°C for 17.5 hrs. The tube was frozen down (liquid air), opened, and the contents discharged and organic materials extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. No 4-(3,3,4,5,5,5-hexafluoropent-2-oxy)benzophenone was produced (by NMR). Compound No. (96)

C.3.d. REACTION OF (28) WITH 4-(TRIFLUOROMETHYL)FLUOROBENZENE

A Carius tube was charged with (28) (2.9 g, 15 mmol), 4-(trifluoromethyl)fluorobenzene (2.4 g, 15 mmol) and caesium fluoride (4.8 g, 32 mmol), sealed under vacuum and heated to 100°C for 17.5 hrs. The tube was frozen down (liquid air), opened, and the contents discharged and organic materials extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent reduced removed under pressure. Νo 4-(3,3,4,5,5,5-hexafluoropent-2-oxy)(trifluoromethyl)benzene was produced (by NMR). Compound No. (97)

C.3.e. REACTION OF (29) WITH HEXAFLUOROBENZENE

A Carius tube was charged with (29) (2.1 g, 12 mmol), hekafluorobenzene (2.9 g, 15 mmol) and caesium fluoride (3.3 g, 22 mmol), sealed under vacuum and heated to 100°C for 16.5 hrs. The tube was frozen down (liquid air), opened, and the contents discharged and organic materials extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave (2.2.3.4.4.4.hexafluorobutoxy)pentafluorobenzene (0.2 g, 0.5 mmol, 4%); (Found: C, 34.40; H, 0.99; F, 60.9%. Calc. for $C_{10}H_3F_{11}0$: C, 34.48; H, 0.87; F, 60.1%); i.r spectrum 38; NMR spectrum 39; mass spectrum 39. Compound No. (98)

C.3.f. REACTION OF (28) WITH HEXAFLUOROBENZENE

A Carius tube was charged with (28) (3.6 g 18 mmol), hexafluorobenzene (3.9 g, 21 mmol) and caesium fluoride (5.8 g, 38 mmol), sealed under vacuum and heated to 100°C for 17.5 hrs. The tube was frozen down (liquid air), opened, and the contents discharged and organic materials extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave (<u>3.3.4.5.5.5-hexafluoropent-2oxy)pentafluorobenzene</u> (0.1 g, 0.3 mmol, 15%); i.r spectrum 39; NMR spectrum 40; mass spectrum 40. Compound No. (99)

C.3.g. REACTION OF (29) WITH 2.4-DINITROFLUOROBENZENE

A Carius tube was charged with (29) (2.9 g, 16 mmol), 2,4-dinitrofluorobenzene (2.5 g, 13 mmol) and caesium fluoride (2.8 g, 19 mmol), sealed under vacuum and heated to 100°C for 16.5 hrs. The tube was frozen down (liquid air), opened, and the contents discharged and organic materials extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave (2.2.3.4.4.4-hexafluorobutoxy)-2.4-dinitrobenzene (4.5 g, 13 mmol, 100%); (Found: C, 34.07; H, 1.77; N, 8.25; F, 33.4%. Calc. for $C_{10}H_6F_6N_20_5$: C, 34.48; H, 1.74; N, 8.05; F, 32.8%); i.r spectrum 40; NMR spectrum 41. Compound No. (100)

C.3.h. REACTION OF (28) WITH 2.4-DINITROFLUOROBENZENE

A mixture of (28) (3.1 g, 16 mmol), 2,4-dinitrofluorobenzene (2.7 g, 14 mmol) and caesium fluoride (2.8 g, 19 mmol) in acetonitrile (25 ml) was heated to 50°C for 2.5 hrs. The reaction mixture was allowed to cool to ambient temperature and products extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave (3.3,4.5,5,5-hexafluoropent-2-oxy)-2,4-dinitrobenzene (4.7 g, 13 mmol, 92%); (Found: C, 36.79; H, 7.99; N, 2.63; F, 30.8%. Calc. for $C_{11}H_8F_6N_2O_5$: C, 36.46; H, 7.73; N, 2.23; F, 31.5%); i.r spectrum 41; NMR

spectrum 42; mass spectrum 41. Compound No. (101)

C.4. REACTION WITH PERFLUOROHETEROAROMATIC COMPOUNDS

C.4.a. REACTION OF (29) WITH PENTAFLUOROPYRIDINE

A mixture of (29) (4.2 g, 23 mmol), pentafluoropyridine (3.6 g, 21 mmol) and caesium fluoride (4.0 g, 26 mmol) was heated to 100°C for 16 hrs. The reaction mixture was allowed to return to ambient temperature and products extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave 4-(2,2,3,4,4,4-hexafluorobutoxy)tetrafluoropyridine (5.0 g, 15 mmol, 81%); (Found: C, 32.77; H, 1.16; N, 3.97; F, 57.0%. Calc. for C₉H₃F₁₀N0: C, 32.63; H, 0.92; N, 4.23; F, 57.4%); i.r spectrum 42; NMR spectrum 43; mass spectrum 42. Compound No. (102)

C.4.b. REACTION OF (28) WITH PENTAFLUOROPYRIDINE

A mixture of (28) (3.5 g, 18 mmol), pentafluoropyridine (2.7 g, 23 mmol) and caesium fluoride (4.3 g, 29 mmol) was heated to 100°C for 18 hrs. The reaction mixture was allowed to return to ambient temperature and products extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave 4-(3,3,4,5,5,5)-hexafluoropent-2-oxy)tetrafluoropyridine (4.0 g, 12 mmol, 65%); (Found: C, 34.26; H, 1.66; N, 3.82; F, 54.7%. Calc. for C₁₀H₅F₁₀N0: C, 34.78; H, 1.46; N, 4.06; F, 55.1%); i.r spectrum 43; NMR spectrum 44; mass spectrum 43. Compound No. (103)

C.4.c. REACTION OF (29) WITH TETRAFLUOROPYRIMIDINE

A Carius tube was charged with (29) (4.7 g, 26 mmol), tetrafluoropyrimidine (3.9 g, 26 mmol) and caesium fluoride (4.3 g, 29 mmol) and heated to 100°C for 16 hrs. The Carius tube was frozen down (liquid air), opened, and products extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave 4-(2,2,3,4,4,4)hexafluorobutoxy)trifluoropyrimidine (3.7 g, 12 mmol, 57%); (Found: C, 30.62; H, 1.19; N, 8.68; F, 53.8%. Calc. for C₈H₃F₉N₂0: C, 30.57; H, 0.96; N, 8.92; F, 54.5%); i.r spectrum 44; NMR spectrum 45; mass spectrum 44. Compound No. (104)

C.4.d. REACTION OF (28) WITH TETRAFLUOROPYRIMIDINE

A Carius tube was charged with (28) (5.1 g, 26 mmol), tetrafluoropyrimidine (3.9 g, 26 mmol) and caesium fluoride (4.1 g, 27 mmol) and heated to 100°C for 16 hrs. The Carius tube was frozen down (liquid air), opened, and products extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave <u>4-(3,3,4,5,5,5-hexafluoropent-2-oxy)trifluoropyrimidine</u> (3.2 g, 10 mmol, 39%); (Found: C, 33.30; H, 1.20; N, 8.22; F, 52.7%. Calc. for C₉H₅F₉N₂0: C, 32.93; H, 1.54; N, 8.54; F, 52.1%); i.r spectrum 45; NMR spectrum 46; mass spectrum 45. Compound No. (**105**)

C.4.e. REACTION OF (29) WITH TETRAFLUOROPYRAZINE

A Carius tube was charged with (29) (2.0 g, 11 mmol), tetrafluoropyrazine (2.9 g, 19 mmol) and caesium fluoride (3.3 g, 22 mmol) and heated to 100°C for 17 hrs. The Carius tube was frozen down (liquid air), opened, and products extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave <u>5-(2,2,3,4,4,4-hexafluorobutoxy)trifluoropyrazine</u> (2.4 g, 8 mmol, 73%); (Found: C, 32.74; H, 1.80; N, 8.29; F, 52.7%. Calc. for C₉H₅F₉N₂0: C, 32.93; H, 1.54; N, 8.54; F, 52.1%); i.r spectrum 46; NMR spectrum 47; mass spectrum 46. Compound No. (106)

C.4.f. REACTION OF (28) WITH TETRAFLUOROPYRAZINE

A Carius tube was charged with (28) (3.2 g, 16 mmol), tetrafluoropyrazine (9.3 g, 61 mmol) and caesium fluoride (5.9 g, 39 mmol) and heated to 100°C for 17.5 hrs. The Carius tube was frozen

down (liquid air), opened, and products extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave 5-(3.3.4.5.5.5-hexafluoropent-2-oxy)trifluoropyrazine (1.4 g, 4 mmol, 25%); (Found: C, 32.72; H, 1.38; F, 51.9%. Calc. for C₉H₅F₉N₂0: C, 32.93; H, 1.54; N, 8.54; F, 52.1%); i.r spectrum 47; NMR spectrum 48; mass spectrum 47. Compound No. (107)

C.4.g. REACTION OF (29) WITH TETRAFLUOROPYRIDAZINE

A Carius tube was charged with (29) (2.1 g, 11 mmol), tetrafluoropyridazine (1.5 g, 10 mmol) and caesium fluoride (2.6 g, 17 mmol) and heated to 100°C for 17.5 hrs. The Carius tube was frozen down (liquid air), opened, and products extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave 4-(2.2.3.4.4.4-hexafluorobutoxy)trifluoropyridazine (2.1 g, 7 mmol, 69%); (Found: C, 33.18; H, 1.35; N, 8.88; F, 51.9%. Calc. for C₉H₅F₉N₂0: C, 32.93; H, 1.54; N, 8.54; F, 52.1%); i.r spectrum 48; NMR spectrum 49; mass spectrum 48. Compound No. (108)

C.4.h. REACTION OF (28) WITH TETRAFLUOROPYRIDAZINE

A Carius tube was charged with (28) (3.6 g, 18 mmol), tetrafluoropyridazine (4.1 g, 27 mmol) and caesium fluoride (6.0 g, 40 mmol) and heated to 100°C for 17.5 hrs. The Carius tube was frozen down (liquid air), opened, and products extracted into diethyl ether. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave 4-(3,3.4,5.5,5-hexafluoropent-2-oxy)trifluoropyridazine (6.0 g, 18 mmol, 100%); (Found: C, 33.38; H, 1.26; N, 8.29; F, 52.0%. Calc. for C₉H₅F₉N₂0: C, 32.93; H, 1.54; N, 8.54; F, 52.1%); i.r spectrum 49; NMR spectrum 50; mass spectrum 49. Compound No. (109)

D. SYNTHESIS OF SULPHONATES

D.1. SYNTHESIS OF 4-METHYLBENZENESULPHONATES (TOSYLATION)

D.1.a. TOSYLATION OF (29)

<u>Method 1:140</u> To a stirred solution of (29) (4.8 g, 26 mmol), 4methylbenzenesulphonyl chloride (6.3 g, 33 mmol) in water (15 ml), aqueous NaOH (1.4 g, 35 mmol) was added dropwise. Stirring was continued for 4 days, and product extracted into petroleum ether. Combined organic fractions were washed with aqueous CaCO₃ until neutral, dried (MgSO₄), and solvent removed under reduced pressure. Molecular distillation gave 2,2,3,4,4,4-hexafluorobutyl 4methylbenzenesulphonate (33) (7.5 g, 21 mmol, 81%); (Found: C, 39.32; H, 3.36; F, 33.2%. Calc. for C₁₁H₁₀F₆0₃S requires C, 39.29; H, 3.01; F, 33.9%); i.r spectrum 50; NMR spectrum 51; mass spectrum 50.

D.1.b. TOSYLATION OF (28)

<u>Method 2</u>: To a stirred solution of (28) (5.4 g, 28 mmol) in pyridine (5 ml) at -5°C, 4-methylbenzenesulphonyl chloride (16.2 g, 85 mmol) in pyridine (30 ml) was added dropwise over a period of 2 hrs, maintaining a temperature of <0°C. Stirring was continued for 3 days, and reaction mixture quenched by pouring onto ice/water (*ca.* 750 ml), whereupon crude tosylate precipitated out. Recrystallisation (ethanol) gave 3,3,4,5,5,5-hexafluoropentyl 2-(4-methylbenzenesulphonate) (34) (9.8 g, 28 mmol, 100%); (Found: C, 40.65; H, 3.22; F, 32.4%. $C_{12}H_{12}F_{6}OS$ requires C, 41.14; H, 3.43; F, 32.6%); i.r spectrum 51; NMR spectrum 52; mass spectrum 51.

D.1.c. TOSYLATION OF (23)

<u>Method 2:</u> To a stirred solution of (23) (5.0 g, 13 mmol) in pyridine (9 ml) at -5°C, 4-methylbenzenesulphonyl chloride (13.1 g, 69 mmol) in pyridine (40 ml) was added dropwise over a period of 2 hrs, maintaining a temperature of <0°C. Stirring was continued for 6 days, and reaction mixture quenched by pouring onto ice/water (*ca.* 500 ml), whereupon crude tosylate precipitated out. Recrystallisation (ethanol) gave <u>1.1.1.2.3.3.4.8.8.9.10.10.10-dodecafluorodecyl</u> <u>4.7-di-(4-methylbenzenesulphonate)</u> (**35**) (3.5 g, 5 mmol, 39%); (Found: C, 41.00; H, 326; F, 33.0%. Calc. for $C_{24}H_{22}F_{12}O_6S_2$ requires C, 41.26; H, 3.18; F, 32.7%); i.r spectrum 52; NMR spectrum 53; mass spectrum 52.

D.2. SYNTHESIS OF TRICHLOROMETHANESULPHONATES (TRICLATION)

D.2.a. TRICLATION OF (28)

Following the method of Steinman *et al*,²³³ to a stirred solution of (28) (4.4 g, 22 mmol), trichloromethanesulphonyl chloride (5.1 g, 23 mmol) in water (20 ml) at a temperature of 50°C, NaOH (1.0 g, 25 mmol) in water (5 ml) was added dropwise. Stirring was continued for 2 hrs, and the reaction mixture allowed to cool overnight. Product was then extracted into petroleum ether. Combined organic fractions were washed successively with aqueous NH₃ and water until neutral, dried (MgSO₄), and solvent removed under reduced pressure to give an opalescent white solid, which was purified by sublimation to give 3.3.4.5.5.5-hexafluoropentyl 2-(trichloromethanesulphonate) (1.0 g, 3 mmol, 12%); (Found: C, 19.27; H, 1.60%. Calc. for C₆H₅Cl₃F₆O₃S: C, 19.07; H, 1.33%); i.r spectrum 53; NMR spectrum 54; mass spectrum 53. Compound No. (110)

D.3. SYNTHESIS OF TRIFLUOROMETHANESULPHONATES (TRIFLATION)

D.3.a. TRIFLATION OF (28)

To a stirred solution of (28) (3.5 g, 18 mmol) and pyridine (6.1 g, 8 mmol) in dichloromethane (45 ml) at a temperature of 0° C, trifluoromethanesulphonic anhydride (5.1 g, 23 mmol) was added dropwise, maintaining temperature <3°C. Stirring was continued for 1.5 hrs, and the reaction mixture extracted into diethyl ether, washed with aqueous HCI and water, dried (MgSO₄), and solvent removed under reduced pressure. No 3,3,4,5,5,5-hexafluoropentyl 2-trifluoromethanesulphonate was present. Compound No. (111)

E. ATTEMPTED REACTION OF SULPHONATES

E.I. HALOGEN NUCLEOPHILES

E.1.a. REACTION WITH IODIDE

<u>Method 1:</u> A solution of (34) (1.3 g, 4 mmol) and potassium iodide (0.7 g, 4 mmol) in acetonitrile (15 ml) was heated under reflux for 3 days. No 1,1,1,2,3,3-hexafluoro-4-iodopentane was formed (by NMR); (34) (0.7 g, 2 mmol, 54%) was recovered. Compound No. (112)

Method 2: ¹⁴⁰ A Carius tube was charged with (34) (2.1 g, 6 mmol), potassium iodide (1.0 g, 6 mmol) and 2-(2-hydroxyethoxy)ethanol (15 g) was heated to 235°C for 4.5 hrs. No 1,1,1,2,3,3-hexafluoro-4-iodopentane was formed (by NMR).

E.1.b. REACTION WITH BROMIDE

A solution of (34) (0.7 g, 2 mmol) and sodium bromide (0.5 g, 5 mmol) in acetonitrile (10 ml) was heated under reflux for 18 hrs. No 1,1,1,2,3,3-hexafluoro-4-bromopentane was formed (by NMR). Compound No. (113)

E.2. OXYGEN NUCLEOPHILES

E.2.a. REACTION WITH METHOXIDE

^{*} Various reaction conditions, *i.e.* temperatures and solvents, were tried. A typical experiment is outlined below:

An autoclave (capacity 150 ml) was charged with a solution of sodium methoxide (0.25 g, 5 mmol) in anhydrous methanol (10.2 g) and (34) (1.5 g, 4 mmol) and heated to 200°C for 2.75 hrs. No 1,1,1,2,3,3-hexafluoro-4-methoxypentane was formed (by NMR and g.c./mass spec.). Compound No. (114)

E.2.b. REACTION WITH ETHOXIDE

Various reaction conditions, *i.e.* temperatures and solvents, were tried. A typical experiment is outlined below:

An autoclave (capacity 150 ml) was charged with sodium (0.29 g, 13 mmol) in anhydrous ethanol (10.6 g) and (34) (2.4 g, 7 mmol) and heated to 150°C for 3 hrs. No 1,1,1,2,3,3-hexafluoro-4-ethoxy-pentane was formed (by NMR and g.c./mass spec.). Compound No. (115)

E.3. NITROGEN NUCLEOPHILES

E.3.a. REACTION WITH DIETHYLAMINE

An autoclave (capacity 150 ml) was charged with a solution of (34) (1.6 g, 4 mmol) and diethylamine (0.8 g, 11 mmol) in acetonitrile (16 g) and heated to 150° C for 5.5 hrs. Reaction was worked up by extraction with diethyl ether, washing with aqueous Na₂CO₃ until neutral. Combined organic fractions were dried (MgSO₄), and solvent removed under reduced pressure. No 3,3,4,5,5,5-hexafluoropent-2-yl diethylamine was formed (by NMR and g.c./mass spec.).Compound No. (116

E.4. CARBON NUCLEOPHILES

E.4.a. REACTION WITH GRIGNARD REAGENTS

* Grignard reagents ethyl magnesium bromide and phenyl magnesium bromide were prepared by standard methods.²⁰³. To ethereal solutions thus prepared (typically 8-10 mmol), (34) (8-10 mmol) in diethyl ether (*ca.* 10-25 ml) was added, and the solution stirred from 3.5 to 64 hrs. Workup by extraction into diethyl ether showed that no 4-alkyl-1,1,1,2,3,3-hexafluoropentane was formed (by NMR). Compound No. (117)

E.5. SULPHUR NUCLEOPHILES

E.5.a. REACTION WITH THIOPHENATE

Thiophenate ion was generated by adding thiophenol (2.1g, 19 mmol) dropwise to a stirred solution, under a nitrogen atmosphere, of sodium hydride (0.5 g, 21 mmol) in *N*,*N*-dimethylformamide (18 ml). (34) (1.0 g, 3 mmol) in *N*,*N*-dimethylformamide (5 ml) was added dropwise and the solution stirred for 5 days. Workup by extraction into diethyl ether, washing with base and subsequent concentration gave only diphenyl disulphide. Compound No. (118)

F. OXIDATION

F.1. CHROMIC ACID OXIDATIONS

Typically reactions by this method involved stirring a solution of (28) (ca. 10 mmol) and aqueous chromic acid (twofold or greater excess), prepared by standard methods,^{218,219} in the appropriate solvent for a set period at a given temperature, before workup by extraction (diethyl ether) and concentration. Sealed tube experiments were also carried out to enable temperatures above the normal boiling points of solvents used to be attained. Oxidation by this method was unsuccessful.

F.2. PERMANGANATE OXIDATIONS

Typically reactions by this method involved stirring an acidic $(ca. 1M H_2SO_4)$ solution of (28) (ca. 10 mmol) and aqueous potassium permanganate (twofold or greater excess), at a given temperature, before workup by extraction (diethyl ether) and concentration. Oxidation by this method was unsuccessful.

G. DEHYDRATION

G.1. PHOSPHORUS PENTOXIDE DEHYDRATION

Apparatus consisted of a two-necked 50 ml or 100 ml round bottom flask with a dropping funnel and stillhead with condenser, receiver adapter and collecting vessel cooled by an ice/salt bath attached. Reactions were carried out by dropping (28) (*ca.* 20 mmol) onto phosphorus pentoxide (*ca.* 30 mmol) supported on glass wool. The reaction flask was heated to *ca.* 100°C to achieve flash distillation of dehydration product. No dehydration by this method was accomplished, the general result being extensive decomposition to black tarry residues.

G.2. PHOSPHORUS PENTOXIDE/SULPHURIC ACID DEHYDRATION

Apparatus was constructed as described in Section G.1. Oleum was produced *in situ* by dehydration of sulphuric acid (*ca.* 10 ml) by phosphorus pentoxide (*ca.* 3 g). To this solution at 145°C, (28) (3.7 g, 19.1 mmol) was added dropwise. No material was distilled across and hence no dehydration by this method was accomplished.

H. DIRECT CHLORINATION

A Pyrex[®] tube fitted with a Rotaflo[®] tap was charged with (28) (4.2 g, 23 mmol) and elementary chlorine (1.9 g, 27 mmol), by standard vacuum line techniques. The tube was exposed to visible radiation from a 60W Tungsten lamp for 21 hrs, by which time decolourisation was complete. A mixture of compounds was produced, and <u>1-chloro-3.3.4.5.5.5-hexafluoropentan-2-one</u> (38) (75% by g.l.c.); mass spectrum 54, and <u>1.1-dichloro-3.3.4.5.5.5-hexafluoropentan-2-one</u> (39) (18% by g.l.c.); mass spectrum 55 were identified as being present.

CHAPTER EIGHT

EXPERIMENTAL TO CHAPTER FOUR

.
A. HALOGENATION

A.1. DIRECT HALOGENATION OF (25)

A.1.a. DIRECT CHLORINATION OF (25)

A Pyrex[®] tube fitted with a Rotaflo[®] tap was charged with (25) (5.0 g, 23 mmol) and elementary chlorine (1.6 g, 23 mmol), by standard vacuum line techniques. The tube was exposed to visible radiation from a 60W Tungsten lamp for 3 hrs, by which time decolourisation was complete. Evolved HCl was vented in a fume cupboard leaving <u>2-chloro-5-(1.1.2.3.3.3-hexafluoropropyl)oxolane</u> (41) (5.8 g, 23 mmol, 100%); (Found: C, 32.19; H, 3.06; F, 44.8%. Calc. for C₇H₇ClF₆0: C, 32.75; H, 2.76; F, 44.4%); i.r spectrum 54; NMR spectrum 55; mass spectrum 56.

A.1.b. DIRECT BROMINATION OF (25)

A Carius tube was charged with (25) (5.2 g, 23 mmol) and elementary bromine (9.4 g, 59 mmol), frozen down (liquid air) and sealed under vacuum. The tube was exposed to ultra violet radiation (1000W, medium pressure, mercury lamp, at a distance of *ca*. 0.1m) for 3 days as.detailed for earlier experiments. A trace amount of <u>2-bromo-5-(1.1.2.3.3.3-hexafluoropropyl)oxolane</u> (40) was identified by gas chromatography; mass spectrum 57.

A.2. DIRECT HALOGENATION OF (26)

A.2.a. DIRECT CHLORINATION OF (26)

A Pyrex[®] tube fitted with a Rotaflo[®] tap was charged with (26) (4.0 g, 11 mmol) and elementary chlorine (1.8 g, 26 mmol), by standard vacuum line techniques. The tube was exposed to visible radiation from a 60W Tungsten lamp for 4 days, by which time little decolourisation was evident. No 2-chloro-2,5-bis(1,1,2,3,3,3hexafluoropropyl)oxolane was produced (by g.c./mass spec. and NMR). Compound No. (119)

A.2.b. DIRECT BROMINATION OF (26)

A Carius tube was charged with (26) (13.7 g, 37 mmol) and elementary bromine (5.9 g, 37 mmol), frozen down (liquid air) and sealed under vacuum. The tube was exposed to ultraviolet radiation (1000W, medium pressure, mercury lamp, at a distance of *ca*. 0.1m) as detailed for earlier experiments. No 2-bromo-2,5-bis(1,1,2,3,3,3hexafluoropropyl)oxolane was produced (by NMR). Compound No. (120)

A.3. NUCLEOPHILIC DISPLACEMENT REACTIONS OF (41)

A.3.a. OXYGEN NUCLEOPHILES

A.3.a.(i). METHOXIDE

(41) (10.7 g, 42 mmol) was added dropwise to a stirred solution of sodium methoxide (2.6 g, 49 mmol) in anhydrous methanol (30 ml). The solution was heated under reflux for 50 hrs and allowed to cool to ambient temperature. Following ether extraction, a trace amount of <u>2-methoxy-5-(1.1.2.3.3.3-hexafluoropropyl)oxolane</u> (42) was observed, by gas chromatography; mass spectrum 58.

A.3.a. (ii). 2-PROPOXIDE

Sodium (1.1 g, 48 mmol) was dissolved in *i*-propanol (20 ml) under an atmosphere of nitrogen. When all of the sodium had reacted, $(41)^{i}$ (10.7 g, 42 mmol) was added dropwise to the stirred solution. The solution was heated to 50°C for *ca*. 18 hrs, then allowed to cool to ambient temperature. No 2-(1-methylethoxy)-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane was produced (by NMR).

A.3.a. (iii). 4-NITROPHENOXIDE

A Carius tube was charged with sodium 4-nitrophenoxide (6.9 g, 43 mmol) and (41) (11.7 g, 46 mmol), sealed under vacuum and heated to 150°C for *ca.* 18 hrs, then allowed to cool to ambient temperature, frozen down (liquid air) and opened. Work-up by ether extraction

showed that no 2-(4-nitrophenoxy)-5-(1,1,2,3,3,3hexafluoropropyl)oxolane was produced (by NMR). Compound No. (121)

A.3.b. NITROGEN NUCLEOPHILES

A.3.b.(i). DIETHYLAMINE

(41) (11.3 g, 44 mmol), diethylamine (3.2 g, 44 mmol), sodium carbonate (10.5 g, 99 mmol) in anhydrous oxolane (45 ml) was stirred for 7 hrs. Following ether extraction, no 2-diethylamino-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane was produced (by NMR).

A.3.b.(ii). POTASSIUM PHTHALIMIDE

A solution of (41) (11.3 g, 44 mmol) and potassium phthalimide (7.5 g, 40 mmol) in anhydrous N,N-dimethylformamide (35 ml) was stirred for *ca.* 18 hrs, solvent removed by distillation, and residue extracted into diethyl ether to give crude product, which was recrystallised (CH₂Cl₂) to give <u>2-phthalimido-5-(1.1.2.3.3.3-hexafluoropropyl)oxolane</u> (3.0 g, 8 mmol, 21%); (Found: C, 48.85; H, 2.80; N, 3.73; F, 31.2%. Calc. for C₁₅H₁₁F₆NO₃: C, 49.05; H, 3.03; N, 3.81; F, 31.1%); i.r spectrum 55; NMR spectrum 56; mass spectrum 59.

A.3.b.(iii). PIPERIDINE

(41) (11.0 g, 43 mmol), piperidine (3.8 g, 45 mmol) and sodium carbonate (5.4 g, 51 mmol) in anhydrous oxolane (20 ml) was stirred for *ca.* 18 hrs, and worked up by extraction (diethyl ether) to give an inseparable mixture containing <u>2-piperidino-5-(1.1.2.3.3.3-hexafluoropropyl)oxolane</u> (50% by g.l.c.); i.r spectrum 56; NMR spectrum 57; mass spectrum 60.

A.3.b.(iv). MORPHOLINE

(41) (11.3 g, 44 mmol), morpholine (4.0 g, 46 mmol) and triethylamine (6.5 ml, 47 mmol) in anhydrous oxolane (10 ml) was stirred for 3 days. Following extraction (diethyl ether), a trace

amount of <u>2-morpholino-5-(1.1.2.3.3.3-hexafluoropropyl)oxolane;</u> i.r spectrum 57; NMR spectrum 58; mass spectrum 61.

A.3.b.(v). PIPERAZINE

(41) (11.3 g, 44 mmol), piperazine (3.8 g, 44 mmol) and sodium carbonate (7.2 g, 68 mmol) in anhydrous oxolane (30 ml) was stirred for 25 days. Following extraction (diethyl ether), no displacement products were observed (by NMR).

A.3.b.(vi). AROMATIC AMINES

Reactions involving the aromatic amines imidazole, 2-imidazolidinone, indole and 1,2,3,4-tetrahydroquinoline were carried out in identical ways to those already described. In these reactions no products were obtained (by NMR).

A.3.c. CARBON NUCLEOPHILES

A.3.c.(i). DIETHYLMALONATE

The diethyl malonate anion was produced by adding diethyl malonate (7.4 g, 46 mmol) to a stirred solution, under a nitrogen atmosphere, of sodium hydride (1.1 g, 46 mmol) in anhydrous diethyl ether (30 ml) and oxolane (15 ml). To this solution, (41) (12.7 g, 48 mmol) was added and the reaction mixture stirred for *ca*. 18 hrs, before extraction (diethyl ether). No displacement product was obtained (by NMR). Compound No. (122)

A.3.d. SULPHUR NUCLEOPHILES

A.3.d.(i). THIOPHENATE

To a solution of thiophenol (5.1 g, 47 mmol) and sodium carbonate (4.7 g, 44 mmol) in anhydrous oxolane (15 ml), (41) (11.3 g, 44 mmol) was added and the reaction mixture heated under reflux for 22 hrs, before extraction (diethyl ether), and molecular distillation to

give <u>2-(1.1.2.3.3.3-hexafluoropropyl)-5-thiophenyloxolane</u> (49) (4.0 g, 12 mmol, 28%); (Found: C, 47.70; H, 3.39; F, 35.1%. C₁₃H₁₂F₆0S requires C, 47.27; H, 3.67; F, 34.5%); NMR spectrum 59; mass spectrum 62.

A.3.e. PHOSPHORUS NUCLEOPHILES

A.3.e.(i). TRIPHENYL PHOSPHINE

3

A solution of triphenyl phosphine (8.1 g, 31 mmol) and (41) (10.7 g, 42 mmol) in anhydrous oxolane (15 ml) was stirred for 2 days. No reaction was observed (by NMR). Compound No. (123)

CHAPTER NINE

EXPERIMENTAL TO CHAPTER FIVE

;

A. ENOLATE CHEMISTRY

A.1. DERIVATISATION OF (36) BY ENOLATE TRAPPING

A.1.a. BUTYL LITHIUM METHOD

A solution of (36) (1.0 g, 5 mmol) in anhydrous oxolane (10 ml) was stirred at -78°C, and *n*-butyl lithium (5.1 mmol) in hexanes added by syringe. After 3.5 hrs stirring at -78°C under an atmosphere of nitrogen, the solution was allowed to return to ambient temperature and propanoyl chloride (0.5 g, 5.4 mmol) added. After stirring for *ca*. 18 hrs, work-up by extraction (diethyl ether) failed to show any enolate derived product (by NMR).

A.1.b. CAESIUM FLUORIDE METHOD

A solution of (36) (3.3 g, 10 mmol) and caesium fluoride (3.0 g, 20 mmol) in pentafluoropyridine (7.7 g, 46 mmol) was stirred under a nitrogen atmosphere for 4 days, before work-up by extraction (diethyl ether). No enolate derived product was detected (by NMR).

A.2 ENOLATE QUENCHING WITH ETHANOL-d

A solution of (36) (1.0 g, 5 mmol) in anhydrous oxolane (10 ml) was stirred at -78°C under an atmosphere of nitrogen, and *n*-butyl lithium (5.5 mmol) in hexanes added slowly. The reaction was stirred for 2.5 hrs, allowed to warm to 5°C and ethanol-*d* (0.3 g, 6 mmol) added. Work-up by extraction (diethyl ether) showed no α -deuterated ketone was present (by NMR).

B. DIRECT CHLORINATION

A Pyrex[®] tube fitted with a Rotaflo[®] tap was charged with (36) (4.4 g, 23 mmol) and elementary chlorine (1.4 g, 20 mmol), by standard vacuum line techniques. The tube was exposed to visible radiation from a 60W Tungsten lamp for 10 days. Evolved HCl was vented in a fume cupboard and the remaining liquid found (by g.l.c. and NMR) to

contain <u>1-chloro-3.3.4.5.5.5-hexafluoropentan-2-one</u> (38) (17% by g.l.c.); mass spectrum 54, and <u>1.1-dichloro-3.3.4.5.5.5-hexafluoropentan-2-one</u> (39) (4% by g.l.c.); mass spectrum 55.

¥

APPENDIX ONE

NMR SPECTRA

.

1.1

Unless otherwise stated, spectra of samples were recorded as solutions in deuterochloroform (CDCl₃).

For proton and carbon spectra, shifts are quoted in ppm, relative to internal tetramethylsilane, with downfield shifts positive. For fluorine spectra, shifts are quoted in ppm relative to external trichlorofluoromethane, with upfield shifts negative.

For the splitting patterns on NMR resonances, the following abbreviations are used:

s = singlet d = doublet t = triplet q = quartet br = broad

For an AB system, shifts are quoted as the 'centre of gravity', or $\pm(\nu/2)$ from the midpoint of the pattern, calculated from:

$$(\delta_1 - \delta_3) = (\delta_2 - \delta_4) = \sqrt{[(\delta_v)^2 + J^2]}.$$

CONTENTS

1.	3,3,4,5,5,5-Hexafluoropentan-2-one
2.	3,3,5,5,5-Pentafluoropentan-2-one
3.	3,3,4,5,5,5-Hexafluorohexan-2-one
4.	3,3,5,5,5-Pentafluorohexan-2-one
5.	3,3,4,5,5,5-Hexafluoroheptan-2-one
6.	3,3,5,5,5-Pentafluoroheptan-2-one
7.	3,3,4,5,5,5-Hexafluorooctan-2-one
8.	3,3,5,5,5-Pentafluorooctan-2-one
9.	3,3,4,5,5,5-Hexafluoro-2,2-dimethylhexan-3-one
10.	3,3,5,5,5-Pentafluoro-2,2-dimethylhexan-3-one
11.	1,1,1,2,3,3,16,16,17,18,18,18-Dodecafluorooctadecane-4,15-
	dione
12.	2,2,3,4,4,4-Hexafluorobutanol
13.	2,2,4,4,4-Pentafluorobutanol
14.	3,3,4,5,5,5-Hexafluoropentan-2-ol
15.	3,3,5,5,5-Pentafluoropentan-2-ol
16.	4,4,5,6,6,6-Hexafluorohexan-3-ol
17.	1,1,1,2,3,3-Hexafluoroheptan-4-ol
18.	1,1,1,2,3,3-Hexafluorooctan-4-ol
19.	1,1,1,2,3,3-Hexafluorononan-4-ol
20.	5,5,6,7,7,7-Hexafluoroheptane-1,4-diol
21.	1,1,1,2,3,3,8,8,9,10,10,10-Dodecafluorodecane-4,7-diol
22.	1,1,1,2,3,3,9,9,10,11,11,11-Dodecafluorodecane-4,8-diol
23. ,	2-(1,1,2,3,3,3-Hexafluoropropyl)oxolane
24. *	2,5-Bis(1,1,2,3,3,3-hexafluoropropyl)oxolane
25.	2,2,3,4,4,4-Hexafluorobutoxytrimethylsilane
26.	2-(1,1,2,3,3,3-Hexafluoropropyl)pyrrolidine-1-
	carboxaldehyde
27.	2,2,3,4,4,4-Hexafluorobutyl ethanoate
28.	3,3,4,5,5,5-Hexafluoropent-2-yl ethanoate
29.	2,2,3,4,4,4-Hexafluorobutyl 3,5-dinitrobenzoate
30.	3,3,4,5,5,5-Hexafluoropent-2-yl 3,5-dinitrobenzoate
31.	3,3,4,5,5,5-Hexafluoropent-2-yl 1,4-dibenzoate
32.	2,2,3,4,4,4-Hexafluorobutyl phenyl carbonate
33.	3,3,4,5,5,5-Hexafluoropent-2-yl phenyl carbonate
34.	3,3,4,5,5,5-Hexafluoro-2-methoxypentane
35.	3,3,4,5,5,5-Hexafluoro-2-propoxypentane
36.	3,3,4,5,5,5-Hexafluoro-2-(prop-2-enoxy)pentane

37. 2,2,3,4,4,4-Hexafluoro-1-(phenylmethoxy)butane 3,3,4,5,5,5-Hexafluoro-2-(phenylmethoxy)pentane 38. 39. (2,2,3,4,4,4-Hexafluorobutoxy)pentafluorobenzene 40. (3,3,4,5,5,5-Hexafluoropent-2-oxy)pentafluorobenzene (2,2,3,4,4,4-Hexafluorobutoxy)-2,4-dinitrobenzene 41. 42. (3,3,4,5,5,5-Hexafluoropent-2-oxy)-2,4-dinitrobenzene 43. 4-(2,2,3,4,4,4-Hexafluorobutoxy)tetrafluoropyridine 44. 4-(3,3,4,5,5,5-Hexafluoropent-2-oxy)tetrafluoropyridine 45. 4-(2,2,3,4,4,4-Hexafluorobutoxy)trifluoropyrimidine 4-(3,3,4,5,5,5-Hexafluoropent-2-oxy)-trifluoropyrimidine 46. 5-(2,2,3,4,4,4-Hexafluorobutoxy)trifluoropyrazine 47. 48. 5-(3,3,4,5,5,5-Hexafluoropent-2-oxy)-trifluoropyrazine 4-(2,2,3,4,4,4-Hexafluorobutoxy)trifluoropyridazine 49. 50. 4-(3,3,4,5,5,5-Hexafluoropent-2-oxy)-trifluoropyridazine 51. 2,2,3,4,4,4-Hexafluorobutyl 4-methylbenzenesulphonate 3,3,4,5,5,5-Hexafluoropentyl 2-(4-methylbenzenesulphonate) 52. 1,1,1,2,3,3,8,8,9,10,10,10-Dodecafluorodecyl 53. 4,7-bis(4-methylbenzenesulphonate) 54. 3,3,4,5,5,5-Hexafluoropentyl 2-(trichloromethanesulphonate) 55. 2-Chloro-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 2-Phthalimido-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 56. 2-Piperidino-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 57. 58. 2-Morpholino-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 2-(1,1,2,3,3,3-Hexafluoropropyl)-5-thiophenyloxolane 59.

¥

				1	
			CF3CHFCF2	d CH ³	
			арс	е	
Sh	ift	Multiplicity	Coupling	Relative	Assignment
_(PP	m)			Intensity	
1H	÷				
2.4	14	ddd	⁴ J _{HF} ≈2.4Hz	3	е
			⁴ JHF [.] = ⁵ JHF=		
			0.4Hz		
5.2	25	dddq	Z J _{HF} ≈43.2Hz	1	b
			³ J _{HFc} =14.2Hz		
			³ JHFc'=6.8Hz		
			³ J _{HFa} =6.0Hz		
1 a E					
-74	.40	dddd	³ JFF=19.2Hz	3	а
			⁴ JFF=10.9Hz		
			⁴ JFF = 8.3Hz		
			³ J _{HFa} =5.6Hz		
-116	5.54	ddqd	JAB=297.3Hz	1	с
			³ JFF= ⁴ JFF=		
			10.2Hz		
			³ JHF=6.4Hz		
-12	1.9	l ddqd	J _{AB} =298.0Hz	1	С
			³ JFF= ⁴ JFF=		
			3.0Hz		
			³ J _{HF} =1.9Hz		
-210	5 0	7 dddq	² J _{HF} =43.3Hz	1	b
			3JFFc=3JFFC'=		
			³ J _{FFa} =11.9Hz		

1. 3.3.4.5.5.5-Hexalluoropentan-2-one

13 <u>C:-</u>			
24.17	s		е
83.61	dqdd	¹ JCF=196.5Hz	b
		² J _{CFa} =35.4Hz	
		² J _{CFc} =30.9Hz	
		² J _{CFc} =24.7Hz	
110.74	ddd	¹ JCF=267.0Hz	с
		¹ JCF=260.5Hz	
		² J _{CF} =25.5Hz	
120.42	qdd	¹ JCF=282.2Hz	а
		² J _{CF} =25.5Hz	
		³ J _{CF} =1.9Hz	
195.33	dd	² JCF=30.9Hz	d
		² J _{CF} = 27.1Hz	

2. 3.3.5.5.5-Pentalluoropentan-2-one

Shift	Multiplicity	Coupling	Belative	Assignment
(mqq)		ooopg	Intensity	
1H.:				
2.40	t	⁴ J _{HF} =1.6Hz	3	е
2 98	tq	³ J _{HFc} =13.9Hz	2	b
		³ J _{HFa} ≓9.9Hz		
19 <u>F.</u>				
-61 05	t t	³ J _{FH} =9.8Hz	3	а
		⁴ JfF≈8.3Hz		
-105.67	tqq	³ J _{FH} =15.0Hz	2	С
		⁴ JFF=8.3Hz		
		⁴ J _{FH} =1.5Hz		
13 <u>Ç</u>				
23.19	S			e
36.70	qt	² J _{CFa} =30.7Hz		b
		² J _{CFc} =24.6Hz		
113.70	td	¹ JCF=255.5Hz		с
		³ J _{CF} =2.6Hz		
123.32	qt	¹ JCF=276.7Hz		а
		³ JCF=5.0Hz		
196.48	t	² JCF=31.7Hz		d

3. 3.3.4.5.5.5-Hexafluorohexan-3-one

Shift	Multiplicity	Coupling	Belative	Assignment
(ppm)			Intensity	
1H.				
لبلية 1 17	dd	31	2	1
1.17	00	~JHH=~JHH.=	3	i.
0.70	_	7.202		_
2.79	q	JHH=1 SHS	1	е
2.80	q	JHH=1.2Hz	1	e
5.27	ddqd	² J _{HF} =43.2Hz	1	d
		³ J _{HFc} =13.4Hz		
		³ J _{HFa} =6.8Hz		
		³ J _{HFc} =5.6Hz		
19 <u>E:-</u>				
-73.55	S		3	а
-115.69	dd	J _{AB} ⇒295.0Hz	1	С
		³ JFF=10.2Hz		
-123.05	dd	JAB=295.2Hz	1	с
		3JFF=5.0Hz		
-215 33	dm	² Јғн=43 3Hz	1	Ь
13C:-				
6.44	s			t
30.68	s			e
84.05	hpop	Ucs=196.3Hz		b
	6400	2 loca=35 3Hz		Ũ
		2 loc - 31 3Hz		
		2105-24.847		
111 34	ddd	1 loc=266 2Hz		c
111.04	000	1 Jos. 250 8Uz		L L
		2 Jan 25 01/-		
120 74	bo	-JCF=20.9HZ		a
100 /4	45	2 lor - 24 6Hz		ų
108 72	dd	2 0 29 8		đ
190 / 3	00	-JUF=25.012		u
		-J(F=23.9HZ		

4. 3.3.5.5.5-Pentalluorohexan-3-one

0 CF3CH2CF2 d CH2CH3 a b c e 1

Shift	Multiplicity	Coupling	Relative	Assignment
(ppin)			Intensity	-
11.:				
1.15	t t	3.) ₁₀₃ - 7-201z	U	I.
2 77	q I	JjHH=7 2Hz	2	e
		$4 J_{HF} = 1/2 Hz$		
2.99	19	³ JHFc=14 8Hz	2	b
		J _{HFa} =10 OHz		
19 <u>F -</u>				
-61 05	t L	J}HF = 9 81 Hz	3	d.
		⁴Jff=8 5Hz		
+105 93	19	J _{FH=} 14 7Hz	2	C
		⁴ JFF=8 5Hz		
13C -				
6.61	s			t
29 25	5			u:
37 02	qt	² JCFa=30 5Hz		υ
		2JCFc=24 8Hz		
113 99	t q	¹ JCF=255 6Hz		C
		J _{CF} ≡2 8Hz		
123-37	ų 1	NJCE - 277-1117		.1
		3JCF = 5.111Z		
199 60	t	2.ton -30 111z		d

-

~

.

.

-

5 3.3.4.5.5.5-Hexafluoroheptan-4-one

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
<u>• H · -</u>				
0.97	t	³ Ј _{НН} =7.2Нz	3	g
1.70	ta	³ J _{HHe} =	2	ť
		3J _{HHa} =7.2Hz		
2.74	t	3J _{HH} =7.2Hz	2	е
5.27	dqdd	² J _{HF} =42.8Hz	1	b
	•	³ J _{HFa} =6 4Hz		
		³ J _{HFc} ≖		
		³ J _{HFc} = 5.8Hz		
19 <u>F</u>				
-73.62	S		3	а
-115.92	d	JAB=295.8Hz	1	b
-123.09	d	J _{AB} =295.8Hz	1	b
215.55	đ	² J _{FH} =40.7Hz	1	b
13 <u>C -</u>				
13.49	S			g
16 48	S			f
39.21	S			e
84 43	dqdd	¹ JCF=195.9Hz		b
		² J _{CFa} =35.3Hz		
		² J _{CFc} =31.7Hz		
		² JCFc = 24.8Hz		
111.67	ddd	¹ JCF=266.7Hz		а
		¹ JCF'=259.8Hz		
		² JCF=25.5Hz		
121.19	dq	¹ JCF=282.0Hz		а
		² JCF=25.5Hz		
198.4	dd	² JCF=30.6Hz		d

6. 3.3.5.5.5-Pentailuoroheptan-4-one

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>Н</u>				
0.96	t	³ J _{HH} =7.6Hz	3	g
1.68	t t	3J _{HHe} ≕	2	f
		³ J _{HHg} ≖7.2Hz		
2.71	t t	³ J _{HH} =7.2Hz	2	е
		⁴ J _{HF} =1.2Hz		
299	tq	³ J _{HFc} =14.8Hz	2	b
		³ J _{HFa} =9.9Hz		
¹⁹ E:-				
-61.02	t t	³ J _{FH} ≑9.9Hz	3	а
		⁴ JFF=8.3Hz		
-106.07	tq	³ J _{FH} =15.1Hz	2	с
		⁴ JFF=8.3Hz		
13 <u>C:-</u>				
13.35	s			for g
16.07	s			forg
36.93	m			b
37 49	S			е
113.91	t	¹ JCF=256.4Hz		с
123.38	q	¹ J _{CF} =275.4Hz		а
198.92	t	² J _{CF} =30.1Hz		d

a	ь	c c	e	f	a	h 1	

		·····		
Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>H:-</u>				
0.94	t	³ J _{HH} =7.3Hz	3	ł
1.37	tq	³ Јнн _g = ³ Јнні=	2	h
		7.2Hz		
1 65	t t	3JHHt=3JHHn=	2	g
		7.4Hz		
2.76	t	3J _{HH} =7.2Hz	2	ŧ
5.27	ddq	² J _{HF} =42.8Hz	1	b
		³ J _{HFc} =20.4Hz		
		³ J _{HFa} =6.0Hz		
19 <u>F:-</u>				
-74.82	S		3	а
-117.01	đ	JAB=294.4Hz	1	с
-124.31	d	JAB=294.9Hz	1	с
-216.67	d	² J _{HF} =35.3Hz	1	b
13 <u>C:-</u>				
13.46	s			I.
21.89	s			h
24 34	s			g
36.51	s			ť
83.73	dqdd	¹ JCF=196.0Hz		b
		² J _{CFa} =35.1Hz		
		² J _{CFc} =31.3Hz		
		² JCFc = 24.3Hz		

111.02	ddd	¹ J _{CF} =265.8Hz	С
		¹ J _{CF} = 259.8Hz	
		² J _{CF} =25.9Hz	
120.69	qdd	¹ J _{CF} =282.3Hz	а
		² J _{CF} =25.5Hz	
		³ J _{CF} =1.9Hz	
198.00	dd	² J _{CF} =30.2Hz	a
		² J _{CF} = 25.6Hz	

.

Q CF3CH2CF2 d CH2CH2CH2CH a b c e f≪sig h

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>H:-</u>		_		
0.93	t	³ J _{HH} ≕7.2Hz	3	i
1.37	tq	³ J _{HHg} ≖ ³ J _{HHi} = 7.2Hz	2	h
1.64	t t	³ J _{HHI≕} 3J _{HHh} = 7.2Hz	2	g
2.73	t	³ J _{HH} =7.2Hz	2	f
2.99	tq	³ J _{HFc} =14.8Hz ³ J _{HFa} =10.0Hz	2	b
19 <u>F:-</u>				
-61.90	S		3	а
-106.88	S		2	С
13 <u>C:-</u>				
13.42	5			1
21.87	S			h
24.46	s			g
35.17	S			f
36.68	qt	² J _{CFa} =30.5Hz ² J _{CFc} =24.7Hz		b
113.93	tq	¹ J _{CF} =255.6Hz ³ J _{CE} =3.0Hz		С
123.39	qt	¹ J _{CF} =276.6Hz ³ J _{CF} =5.1Hz		а
198.88	t	² J _{CF} =30.3Hz		e

9 4.4.5.6.6.6-Hexafluoro-2.2-dimethylhexan-3-one

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>H∶-</u>				
1.14	s		9	f
4.92	ddqd	² J _{HFc} =43.6Hz	1	b
		³ J _{HF} =19.6Hz		
		³ J _{HFa} =6.0Hz		
		³ J _{HFc} = 1.1Hz		
19 <u>F:-</u>				
-73.94	dddd	³ J _{FF} =24.5Hz	3	а
		⁴ J _{FF} =10.2Hz		
		³ J _{HF} =6.0Hz		
		⁴ JFF = 4.1Hz		
-117.45	ddq	J _{AB} =270.2Hz	1	с
		³ JFF=13.0Hz		
		⁴ JFF=3.8Hz		
-125.50	dq	J _{AB} =271.3Hz	1	С
		⁴ JFF=10.2Hz		
-206.28	dm	² J _{HF} =42.5Hz	1	α
13 <u>C:-</u>				
23.64	ddd	⁴ J _{CF} =7.7Hz		ť
		⁴ JcF=4.2Hz		
		⁵ JCF=3.4Hz		
28.45	dd	³ J _{CF} =22.1Hz		e
		³ J _{CF} = 21.3Hz		
84.38	ddqd	¹ JCF=197.2Hz		d
		³ J _{CFc} =41.9Hz		
		³ J _{CFa} =33.8Hz		
		³ J _{CFc} =26.2Hz		
		³ J _{CFc} =26.2Hz		

120.52	ddd	¹ JCF≖261.2Hz		с
		¹ JCF=246.9Hz		
		² JCF=12.6Hz	***	
121.14	qd	¹ JCF=283.4Hz		а
		² JCF=26.1Hz		
165.64	S			d

10 4.4.6.6.6-Pentafluoro-2.2-dimethylhexan-3-one

Shift	Multiplicity	Coupling	Relative	Assignment
<u>(ppm)</u>			Intensity	
1 <u>H:-</u>				
1.06	s (br)		9	ŕ
2.69	tq	³ J _{HFc} =17.6Hz	2	D
		³ J _{HFa} =10.0Hz		
19 <u>F:-</u>				
-61.68	s		3	а
-112.37	S		2	С
13 <u>C -</u>				
23.38	t	⁴ JCF=4 2Hz		ť
36.04	tq	² J _{CFc} =25.7Hz		Ø
		² JCFa=29.4Hz		
38.43	t	³ JCF=22.6Hz		e
123,44	tq	¹ JCF≖248.7Hz		с
		³ J _{CF} =1 8Hz		
124.55	q	¹ JCF=277.4Hz		а
206.20	S			a

<u>11 1 1 2 3 3 16 16 17 18 18 18 dodecafluorooctadecane-</u> <u>+ 15 dione</u>

0 CF3CHFCF2 CF2CHFCF Сн,Сн,Сн,Сн,Сн,Сн,Сн,Сн,Сн,Сн,Сн, abc defghi

Spectra run in acetone-de

29.30

36.90

s

s

Chilt	Multiplication	Cavaluar		
Snut	muniphenty	Coupling	Helative	Assignment
<u>(ppm)</u>			Intensity	
1 <u>Н:</u>				
1 30	s (br)		6	g. n 🧯
1.65	τt	³ J _{HHe} =7.2Hz	2	í
		³ JHHg≕6.8Hz		
2.75	t	3J _{HH} =7.2Hz	2	e
5.26	ddaq	² J _{HF} =43.2Hz	1	D
		³ J _{HFc} =14.4Hz		
		³ J _{HFc} ·=		
		³ J _{HFa} =6.0Hz		
19 <u>E -</u>				
-73.25	dm	³ J _{FF} =11.3Hz	3	а
-115 50	a	J _{AB} =295.4Hz	1	С
-122.74	a	J _{AB} =295.4Hz	1	С
-215.12	dqda	² J _{FH} =43.6Hz	1	Ö
		³ JFFa= ³ JFFc=		
		$3J_{FFC} = 11.5Hz$		
13 <u>C -</u>				
22.36	S			ſ
28.78	s			forgor:
29.22	S			forgorn

forgorn

е

83.79	dqdd	${}^{1}J_{CF}=196.2Hz$ ${}^{2}J_{CFa}=35.1Hz$ ${}^{2}J_{CFc}=6.9Hz$	d
		² J _{CFc} =3.8Hz	_
111.05	daa	¹ JCF=266.4Hz ¹ JCF ⁻ =259.9Hz	С
		² J _{CF} =26.0Hz	
120.55	qd	¹ JCF=282.3Hz	а
		² J _{CF} =25.1Hz	
198.05	dd	² JCF=30.2Hz	đ
		² J _{CF} =25.9Hz	

CF3CHFCF2CH2OH

abcd e

Shift	Multiplicity	Coupling	Relative	Assignment
<u>(ppm)</u>		···	Intensity	<u> </u>
ч <u>н:-</u>				
3.94	m		2	d
4 22	S		1	e
5 04	dm	² J _{HF} = 43.2Hz	1	d
19 <u>F</u>				
-75.31	ada	³ JFF≈ 16.6Hz	3	а
		² J _{FF} = 10.9Hz		
		³ J _{HF} ≠ 6.4Hz		
-119.63	d	JAB= 274.7Hz	1	с
-123.59	d	J _{AB} = 274.7Hz	1	с
-214.88	dm	² J _{HF} = 42.9Hz	1	b
13 <u>C:-</u>				
61.51	dd	² JCF= 32.4Hz		d
		$^{2}J_{CF} = 26.4Hz$		
84.53	ddad	¹ JCF= 193.8Hz		b
		${}^{2}J_{CFc} = 70.2Hz$		
		$^{2}J_{CE_{a}} = 35.1Hz$		
		$^{2}J_{CE'} = 27.1Hz$		
118,13	ddd	¹ Jc= 251.7Hz		с
-		1 JCF = 247.5Hz		-
		$2J_{CE} = 24.8H_{7}$		
121.63	nd	$1_{\rm Hcc} = 281.5Hz$		а
	40	2 lor= 25.5 Hz		u

13 2.2.4.4.4-Pentafluorobutanol

CF3CH2CF2CH2OH

abcd e

 1	Shift	Multiplicity	Coupling	Relative	Assignment
	(ppm)			Intensity	
	1 <u>H:-</u>				
	2 88	tq	3J _{HFc} =14.6Hz	2	C
			3J _{HFa} =10.4Hz		
	3 4 9	5		1	e
	3 84	t	3J _{HF} =12 6Hz	2	С
	19 <u>F.</u>				
	-61 80	t t	³ J _{FH} =10 8Hz	3	а
			⁴ JFF=9.4Hz		
	105 92	ιtq	³ J _{FHb} =15 2Hz	2	C
			³ J _{FHd} =13 2Hz		
			⁴ JFF=9.4Hz		
	13 <u>C</u> -				
	37 29	qt	² J _{CFa} =30.5Hz		D
			² J _{CFc} =26.6Hz		
	63.34	tq	² J _{CF} =31.0Hz		a
			⁴ J _{CF} =1.4Hz		
	119 19	tq	¹ JCF=244.5Hz		с
			³ J _{CF} =2.9Hz		
	123 68	qt	¹ J _{CF} =276.6Hz		а
			³ J _{CF} =5.7Hz		

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>Н</u>				
1 39	d	³ J _{HH} ≕5.9Hz	3	ť
2 50	s (br)		1	е
4 15	m		1	a
5 13	dm	² J _{HF} =43.7Hz	1	d
19 <u>F</u>				
-74-41	m		3	а
-74 80	m			
-124.05	d	J _{AB} =270.4Hz	1	С
-129.35	d	J _{AB} =270.4Hz	1	с
-213.60	d	² J _{HF} =41.0Hz]1	b
-215.90	d	² J _{HF} =42.4Hz	ſ	

15 3.3.5.5.5-Pentafluoropentan-2-ol

f OHCF₃CH₂CF₂CHCH₃ a b c d e

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>H:-</u>				
1.32	dt	³ J _{HH} =6.8Hz	3	е
		⁴ J _{HF} =3.0Hz		
2.14	s (br)		1	ť
2.86	ddq	³ J _{HFc} =21.4Hz	2	a
		³ J _{HFc} = 11.7Hz		
		³ J _{HFa} =9.6Hz		
3.98	ddq	³ J _{HF} =13.9Hz	1	e
		3 ^{]не=3}]нн=		
		6.4Hz		
19 <u>F:-</u>				
-61.26	t t	3JEH=1JEE=	3	а
		10.2Hz		
-109.20	d	J _{AB} =258.9Hz	1	с
-114.33	d	J _{AB} =258.5Hz	1	С
13 <u>C:-</u>				
15.54	t	³ J _{CFa} =3.6Hz		e
36.53	qdd	² J _{CFa} ≃30.2Hz		b
		² J _{CFc} =27.1Hz		
		² JCFc'=24.4Hz		
68.91	t	² JCF=28.7Hz		a
120.10	ddq	¹ JCF= ¹ JCF ⁻ =		С
		246.3Hz		
		³ JCF=2.7Hz		
124.06	qdd	¹ JCF≠277.0Hz		а
		³ JCF=5.7Hz		
		³ J _{CF} =1.1Hz		

g OHCF₃CHFCF₂CHCH₂CH₃ a b c d e f

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>H:-</u>				
1.06	t	3J _{HH} ≖7.2Hz	3	f
1.58	dq	³ J _{HHd} = ³ J _{HHI} = 7.2Hz	1	e
1.80	đq	³ J _{HHd} = ³ J _{HHI} = 7.1Hz	1	e
2.85	s (br)		1	9
3.81	m		1	d
5.11	dm	² J _{HF} =40.0Hz	1	b
19 <u>F:-</u>				
-74.71	S]3	а
-74.80	S		J	
-120.72	d	J _{AB} =272.5Hz]1	С
-125.58	d	J _{AB} =273.0Hz]	
-126.19	d	J _{AB} =271.6Hz	1 [С
-130.73	d	J _{AB} =271.6Hz]	
-213.78	d	² J _{HF} =38.1Hz] 1	b
-216.05	d	² J _{HF} =40.2Hz	J	

17 1 1.1.2.3.3-Hexafluoroheptan-4-ol

^h Он L CF₃CHFCF₂CHCH₂CH₂CH₃

ab cd efg

Shift	Multiplicity	Coupling	Relative	Assignment
(00m)	Manapheny	oouping	Intendive	Assignment
<u>(ppin)</u>			mensity	
1 <u>H∶-</u>				
0.95	t	3J _{HH} ≕7.2Hz	3	g
1 37	q	³ J _{HH} =7 1Hz	2	f
1.56	m (br)		2	ê
3.61	m		1	a
3.83	s		1	h
5.14	dm	² J _{HF} =43.4Hz	1	b
19 <u>F:-</u>				
-74.43	S		13	а
-74.83	S]	
-120.25	d	J _{AB} =271.6Hz] 1	с
-125.21	d	J _{AB} =270.4Hz	J	
-125.89	d	J _{AB} ≠270.6Hz	71	с
-130.58	d	J _{AB} =270.6Hz	Ţ	
-213.55	d	² J _{HF} =36.0Hz] 1	b
-216.73	d	² J _{HF} =44.7Hz	J	

rOH CF₃CHFCF₂CHCH₂CH₂CH₂CH₃ a b c d e íg n

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>H:-</u>				
0.91	t	3J _{HH} ≈6.8Hz	3	'n
1.33	m		4	f.g
1.56	t	³ Ј _{НН} =6.2Hz	2	e
3.45	s (br)		1	1
3.60	tm	³ Ј _{НН} =6.3Нz	1	a
5.21	dm	² J _{HF} =37.1Hz	1	a
19 <u>F:-</u>				
-74.45	s]3	а
-74.83	S		J	
-120.24	ď	J _{AB} =270.2Hz] 1	С
-125.42	d	JAB=274.4Hz]	
-125.99	d	J _{AB} =269.5Hz]1	с
-130.84	đ	J _{AB} =270.4Hz]	
-213.78	d	² J _{HF} =39.1Hz]1	a
-216.05	d	² J _{HF} =38.1Hz	j	

19 1.1.1.2.3.3-Hexafluorononan-4-ol

İQH CF3CHFCF2CHCH2CH2CH2CH2CH2CH3 a b c d eíghi

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
<u>'н:-</u>				
0.91	m		3	1
1.32	m		6	f.g.h
1.55	m		2	e
3.12	s (br)		1	ł
3.63	t m	³ Јнн=6.6Hz	1	α
5.24	m		1	d
19 <u>F:-</u>				
-74.43	S]3	a
-74.81	S		l	
-120.25	d	J _{AB} =294.2Hz	1	С
-125.43	d	J _{AB} =294.2Hz]	
-126.00	d	J _{AB} =286.7Hz]1	С
-130.85	đ	J _{AB} =286.7Hz	j	
-213.60	d	² J _{HF} =37.9Hz	1	a
-215.91	d	$^{2}J_{HF}=37.9Hz$	j	

149

 \mathbf{b}

20 5.5.6.7.7.7-Hexafluoroheptane-1,4-diol

¹ OH CF₃CHFCF₂CHCH₂CH₂CH₂OH a b c d efgh

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)	_		Intensity	
1 <u>н·.</u>				
1.70	11	³ Јнно=5.1Hz	2	t
		³ J _{HHe} =2.6Hz		
1.83	m		2	÷
2.00	s (br)		1	h
3.11	S		1	i
3.69	t	³ J _{HH} =5.1Hz	1	g
5.19	am	² J _{HF} =39.4Hz	1	b
19 <u>F:-</u>				
-74.43	ŝ]3	а
-74.69	s		j	
-122.50	d	J _{AB} =275.2Hz	1	с
-127.80	d	J _{AB} =272.9Hz	1	с
-213.40	m	_]1	b
-215.02	m			

21 1 1 1 2 3 3 8 8 9 10 10 10 Dodecatluorodecane-4 7 0:01

.

i Ç	рн (рн
CF3CHFCF2	CHCH ₂ CH ₂ CH	

abcde

				-	-
Spectra	run	in	ace	etoni	e∙dŝ

. 🖘

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
¹ Н				
1 94	٢N		2	е
2 75	s (br)		1	f
4 04	m		1	d
5:6	dm	² J _{HF} =38.9Hz	1	b
۱۹ <u>۲.</u>				
-73.96	m		3	а
-74 70	m		l.	
-122 45	đ	JAB=279.5Hz	1	С
-127 50	d	J _{AB} =277.0Hz	1	с
-213 92	d	² J _{HF} =38.1Hz	1	b
215.90	đ	² J _{HF} =41.2Hz]	

22. 1.1.1.2.3.3.9.9.10.11.11.11-Dodecafluoroundecane-4.8diol

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>H.</u> -				
1.77	m		3	e.f
3.10	S		1	g
5.24	m		1	a
5.68	dm	² J _{HF} =40.3Hz	1	b
19F				
-73.48	s]3	а
-73.85	S		ļ	
-119.53	d	J _{AB} =267.6Hz	Ì	
-124.23	d	J _{AB} =270.2Hz	2	с
-124.67	d	J _{AB} =270.9Hz	1	
-129.34	ď	J _{AB} =268.3Hz	ļ	
-213.46	m]1	b
-215.49	m		ļ	

23 2-(1.1.2.3.3.3-Hexafluoropropyi)oxolane

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>H:-</u>				
1.98	m		2	f
2.11	m	J=6.0Hz	1	е
2.19	m	J=6.4Hz	1	е
3.90	m		2	g
4.29	ddtm	₃ ∫HE≈3∫HE.=	1	a
		25.6Hz ³ J _{HH} = 3.6Hz		
5.09	ddq	² J _{HF} =43.2Hz ³ J _{HFc} =20.8Hz ³ J _{HFa} =6.0Hz	1	b
 ¹⁹ <u>F:-</u> ,-73.82	dddd	³ J _{FF} =27.5Hz ⁴ J _{FF} =21.8Hz ⁴ J _{FF} :=16.9Hz ³ J _{HF} =11.3Hz	3	а
-74.34	dddd	³ JFF=30.1Hz ⁴ JFF=21.8Hz ⁴ JFF=18.1Hz ³ JHF=11.3Hz	j	
-119.88	dm	J _{AB} =269.4Hz	ļı	с
124.12	dm	JAB=269.4Hz	J	

8

-124.66	ddq	J _{AB} =269.4Hz ³ J _{FF} = ⁴ J _{FF} = 10.9Hz	1	С	
-130.19	ddqd	J _{AB} =270.6Hz ³ J _{FF} = ⁴ J _{FF} = 12.4Hz			
212.01	d	21 42.0Hz]1	h	
-212.91	dm	~JHF=42.9HZ	1	U	
-218.23	am	-1HE=28.8HS	1		
¹³ <u>C:-</u>					
24.28	d	⁴ JCF=4.2Hz		f	
25.82	dd	³ J _{CF} =16.8Hz		e	
		³ J _{CF} =0.7Hz			
69.94	S			g	
70.09	S			g	
75.40	dd	² J _{CF} =34.0Hz		đ	
		² J _{CF} = 22.9Hz			
83.36	ddqd	¹ JCF=143.0Hz		b	
		² J _{CFc} =39.7Hz			
		² J _{CFa} =34.3Hz			
		² J _{CFc} =24.0Hz			
85.29	ddqd	¹ JCF=144. 5H z		b	
		² J _{CFc} =54.9Hz			
		² J _{CFa} =34.7Hz			
		² JCFc'≈27. 5H z			
117.59	ddd	¹ J _{CF} =254.1Hz		С	
		¹ JCF [.] =251. 3 Hz			
		² JCF=18.7Hz			
117.89	ddd	¹ JCF=277.7Hz		С	
		¹ JCF'=252.1Hz			
		² J _{CF} =25.5Hz			
120.79	qdd	¹ JCF=281. 9H z		а	
		² J _{CF} ≃25.9Hz			
		³ J _{CF} =7.6Hz			
121.20	qdd	¹ JCF=272. 3H z		а	
		² J _{CF} =25.9Hz			
		311 54-			

24 2.5-Bis(1.1.2.3.3.3-hexafluoropropyl)oxolane

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>н:-</u>				
2.30	d	³ Ј _{НН} =3.6Нz	2	e
4.51	m		1	a
5.02	dm	² J _{HF} =44.0Hz	1	b
19 <u>F</u> .		_		
-73.80	dada	³ JFF=35.0Hz	_	
		*JFF=22.2Hz	1	_
		JHF=10.5HZ	3	a
		JFF.=2.0HZ		
-74.33	m		j	
-119.25	dm	J _{AB} =272.8Hz]1	с
-124.33	dm	JAB=273.9Hz	j	
-124.80	dm	JAB=282.6Hz]1	с
-130.44	dm	J _{AB} =283.7Hz	ļ	
-212.50	m]	b
-217.65	ddq	² J _{HF} =44.4Hz	1	
		³ J _{FFc} =11.7Hz	{	
		³ J _{FFc} =10.5Hz	ł	
. ≫ 13C				
21.02	ala	3100 20 143		
24.02	uu	3 Jac. 25 0 Hz		e
25.02	_	31 31 3H-		
25.03	a	JCF=21.3HZ		e
1141	٥	-JCF=59.2Hz		С
		² JCF =23.2Hz		
78.84	dd	² JCF=31.6Hz		C
		² JCF =24.8Hz		

83 44	ddqd	¹ J _{CF} =170.7Hz	σ	252	2.2.3.4.4.4-Hex	afluorobutoxytr	metnylsilar	ne
		² JCFc=38.9Hz						
		² J _{CFa} =35.1Hz				b = b = c = d	u⊓3)3 ≏	
		² J _{CFc} =23.9Hz					c -	
85.04	dm	¹ J _{CF} =167.1Hz	σ	Shit	Multiplicity	Coupling	Relative	Assignment
116.78	ddd	¹ JCF=272.8Hz	С		v in unipricity	ooping	Intensity	Naaiginnent
		¹ J _{CF} = 253.7Hz		;piii	<u>,</u>		intensity	
		² JCF=20.2Hz		· · · · · · · · · · · · · · · · · · ·	-		0	~
117.29	ddd	¹ J _{CF} =280.8Hz	С	5.17	5	31 - 04 011-	9	e
		¹ JCF ⁻ =255.2Hz		3 90	aaaa	³ JHF=24.0HZ	2	d
		² JCF=25.9Hz				21 11		
120.63	qdd	¹ JCF=276.6Hz	а			JHE.=.		
		² JCF=18.7Hz				4.4Hz		
		³ JCF=6.8Hz		5 05	agad	² JHF=43.2Hz	1	D
120.99	qđ	¹ JCF=282.6Hz	а			³ J _{HFC} = ³ J _{HFC} =		
		² JCF=24.7Hz				10.8Hz		
						³ J _{HFa} =5.6Hz		
				^{.9} Е.				
				-74.2	7 m.		3	а
				- 19.3	9 d	J _{AB} =271.3Hz	1	С
				-123.8	33 d	J _{AB} =271.6Hz	1	С
				-214.9	2 dm	² J _{HF} =41.8Hz	1	b
				• 3 <u>C -</u>				
				1 15	S			e
				61.3	3 dd	² JCF=36.2Hz		d
						² J _{CF} =26.7Hz		
				33.0	3 ddqd	¹ JCF=193.4Hz		b
						² J _{CFa} = ² J _{CFc} =		
				•		35.1Hz		
				-77		$^{2}J_{CFC} = 25.0Hz$		
				17.6	5 ddd	$^{1}JCF=^{1}JCF=$		с
						250.5Hz		
						² JCF=24.5Hz		
				-21.1	8 ad	¹ JCF=281.8Hz		а
				L 1 . 1	- 44	² JCE=25.7Hz		-
						00F-20.7112		

26. 2-(1,1,2,3,3,3-Hexafluoropropyl)pyrrolidine-1-

<u>carboxaldehyde</u>

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
<u>'Н:</u> -				
2.01	m (br)		4	e,f
3.38	m		1	g
3.63	m		1	9
4.24	dm	³ J _{HF} ≃18.1Hz]1	d
4.53	dm	³ J _{HF} =23.4Hz]	
5.07	m (br)		1	b
8.14	S		Jı	h
8.17	S]	
19 <u>F-</u>			-	
-74 69	S		3	а
-75.02	S		J	
-120.07	d	J _{AB} =275.4Hz	1	с
-123.38	d	J _{AB} =280.0Hz]	
-122.86	đ	J _{AB} =287.4Hz]1	с
-127.90	d	J _{AB} =274.0Hz]	
-211 57	d	² J _{HF} =36.2Hz]1	b
-212.26	d	² J _{HF} =41.7Hz]	

27. 2.2.3.4.4.4-Hexafluorobutyl_ethanoate

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
¹ H:-				
2.16	S		3	f
4.46	m		2	d
5.00	dm	² J _{HF} =43.6Hz	1	b
19 <u>F</u>				
-74.15	m		3	а
-115.44	dm	J _{AB} =279.2Hz	1	С
-120.17	dm	J _{AB} =278.8Hz	1	С
-21 2.86	dm	² J _{HF} =43.5Hz	1	b
¹³ C:-				
19. 99	S			I
60. 75	dd	² J _{CF} =35.0Hz		d
		² JCF = 26.9Hz		
83. 9 7	ddqd	¹ JCF=195.7Hz		b
		² JCFa= ² JCFc=		
		35.1Hz		
		² J _{CFc} = 27.0Hz		
115.83	ddd	¹ JCF= ¹ JCF ⁻ =		С
		250.9Hz		
		² J _{CF} =24.8Hz		
120.44	qd	¹ JCF=282.0Hz		а
		² J _{CF} =25.3Hz		
169.30	S			е

C = 14	Multiplication			A
5000	munipricity	Coupling	Helative	Assignment
<u>(ppm)</u>			Intensity	· · · · · · · · · · · · · · · · · · ·
1 <u>H:-</u>		-		
1.41	d	³ Јнн=6.4Hz	3	е
2.14	S		3	g
4.92	dm	J unresolved	1	d
5.29	m		1	d
19 <u>F:-</u>			_	
-73.73	dddd	³ JFF= ⁴ JFF=] 1	
		⁴ JFF [·] =10.8Hz		a
		JHE=2.2HZ		
-74.13	m]	
-123.11	d	J _{AB} =276.6Hz	1	С
124.50	d	J _{AB} =276.9Hz	1	с
-212.47	d	² J _{HF} =43.6Hz]1	
-213.51	dq	² J _{HF} =43.1Hz	J	b
		³ J _{FF} ≃10.2Hz		
¹3 <u>C∶-</u>				
11.74	d	³ JCF=3.0Hz		е
13.16	d	³ J _{CF} =3.1Hz		е
20.65	S			g
20.72	s			g
67.28	dd	² JCF=35.1Hz		d
		${}^{2}J_{CF} = 24.7Hz$		
68.35	dd	² JCF=28.7Hz		d
		² JCF = 27.8Hz		-
83.50	dm	¹ Jc=195.2Hz		b

116.57	ddd	¹ JCF=252.5Hz		С
		¹ JCF =234.6Hz	•	
		² JCF=25.2Hz		
121 69	qd	¹ JCF=282.3Hz		а
		² JCF=25.5Hz		
168.78	s			f
169.03	s			f

, %

29 2.2.3.4.4.4-Hexafluorobutyl 3.5-dinitrobenzoate

Spectra	run	ın	acetone-d6

opecia	iun ni aceione	-05		
Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
<u>н.</u>				
5.04	ddd	³ J _{HF} =14.9Hz	2	a
		³ J _{HF} = 10.3Hz		
		⁴ J _{HF} =2.2Hz		
5 98	ddqd	² J _{HF} =42.2Hz	1	b
		³ J _{FFc} =10.7Hz		
		³ JFFa= ³ JFFc [·] =		
		5.5Hz		
9 05	d	⁴ J _{HH} =2.0Hz	1	1
9 1 5	d	⁴ J _{HH} =1.8Hz	1	g
19 <u>F:-</u>				
-74.78	s		3	а
-116.83	đ	J _{AB} =276.1Hz	1	с
-120.98	d	J _{AB} =275.8Hz	1	с
-215.86	d	³ J _{HF} =39.5Hz	1	b

30. 3,3,4,5,5,5-Hexafluoropent-2-yl 3 5-dinitrobenzoate

Spectra	run	in	acetone-d ₆	
---------	-----	----	------------------------	--

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
<u>¹Н:-</u>				
1.63	da	³ Јнн=6.4Нz]	
		⁴ J _{HF} =0.8Hz	1	è
1 67	dd	³ Ј _{НН} =6.8Нz		
		⁴ J _{HF} =1.2Hz]	
5.80	m		1	a
9.13	d	⁴ J _{HH} =2 0Hz	2	'n
914	d	⁴ J _{HH} =2.4Hz	J	
19 <u>F</u>				
-78.86	m]3	а
-79.14	m		j	
-124 72	dd	J _{AB} =274.1Hz	1	с
		³ J _{FF} =5.3Hz		
-128.19	dd	J _{AB} =275.2Hz	1	с
-218.38	dm	² J _{HF} =39.5Hz]1	Ь
-219.31	dm	² J _{HF} =39.9Hz	}	
13C				

13 <u>C:-</u>			
12.26	m		e
13 36	ddd	3JCE=3JCE=	e
. • **		4.6Hz	
		⁴ JCF=3.4Hz	
69.81	dd	² JCF=34.9Hz	a
		² J _{CF} = 24.2Hz	
71.04	dd	² J _{CF} =29.1Hz	a
		² J _{CF} = 26.5Hz	
133 14	S		g

33.25	S	g
49.66	S	I
49.75	S	L
62.14	S	f
62.24	S	ť

31 3.3.4.	<u>5.5.5-Hexat</u>	luoropent-2-y	<u> 1.4-0</u>	<u>benzoate</u>
-----------	--------------------	---------------	----------------	-----------------

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>Н:-</u>				
2.06	m		3	е
5.66	m		1	d
5.96	m		1	b
8.20	m		2	h
¹⁹ <u>F:-</u>				
-73.26	m		3	а
-118.92	d	J _{AB} =272.8Hz		
-122.17	d	J _{AB} =273.6Hz	2	С
-122.67	d	J _{AB} =274.7Hz	l	
-124.01	d	J _{AB} =274 7Hz]	
-212.99	dm	² J _{HF} =42 1Hz	71	D
-213 92	dm	² J _{HF} =41 8Hz	1	

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	-
1 <u>H:-</u>				
4.66	ddd	³ J _{HF} = ³ J _{HF} = 8.4Hz	2	d
		⁴ J _{HF} =3.2Hz		
5.08	ddqd	² J _{HF} =43.3Hz	1	b
		³ J _{HFc} =15.4Hz		
		³ J _{HFa} =5.6Hz		
		³ J _{HFc} =0.8Hz		
7.22	dđ	3J _{HH} =7.6Hz	2	g
		⁴ J _{HHi} =1.2Hz		
7.30	tt	³ J _{HH} =7.6Hz	1	1
		⁴ Jнн=1.0Hz		
7.43	dd	³ J _{HHg} = ³ J _{HHi} ≖ 7.6Hz	2	h
19 <u>F:-</u>				
-74.21	dddd	³ JFF= ⁴ JFF=	3	а
		7.6Hz		
		³ JHE= ⁴ JHEE [.] =		
		6.4Hz		
-115.87	dm	J _{AB} =294.2Hz	1	с
-120.95	dm	J _{AB} =295.2Hz	1	с
-212.88	dm	JHF=46.4Hz	1	ъ
13 <u>C:-</u>				
64.20	dd	² JCF=36.2Hz		d
		² JCF = 27.1Hz		
83.85	ddqd	¹ JCF=196.0Hz		d
	·	² JCFa= ² JCFc=		
		35.1Hz		

115.46	ddd	¹ JCF=251.7Hz	с
		¹ J _{CF} = 251.0Hz	
		² J _{CF} =25.1Hz	
120.42	qd	¹ J _{CF} =282.2Hz	а
		² JCF=25.6Hz	
120.63	s		h
126.56	s		l
129.63	s		i

. .

h

33. 3.3.4.5.5.5-Hexafluoropent-2-yl phenyl carbonate

Shift (00m)	Multiplicity	Coupling	Relative	Assignment
111.		· · · · · · · · · · · · · · · · · · ·	mensity	······································
1.50	لم	31 6 414-	n	
1.00	0 	³ JHH=0.4 ¹ Z	3	e L
5.08	am	~JHF=44.2MZ	•	D
5.20	n Jail	4. 7.00	1	a
7.19	aaa	*JHHi=7.2Hz	1	n
		JHH=6.0HZ		
		+J _{HHj} =0.8Hz		
7.28	tt	³ J _{HH} =7.2Hz	1	1
		^₄ J _{HH} =0.8Hz		
7.41	dd	³ J _{HHj} =7.3Hz	1	i
		³ Ј _{ННћ} =6.4Нz		
¹⁹ E:-				
-73.73	dddd	³ JFF= ⁴ JFF=]	
		10.9Hz		
		³ J _{HF} = ⁴ J _{HFF} =	3	а
		6.0Hz		
-74.16	m		j	
-117.99	d	J _{AB} =278.1Hz]	
-123.09	d	J _{AB} =276.9Hz	2	с
-123.60	đ	J _{AB} =276.9Hz		
-124.81	d	J _{AB} =275.1Hz	j	
-212.49	dm	² J _{HF} =43.6Hz]1	b
-213.71	dm	² J _{HF} =43.3Hz		
13C·-				
11.61	d	3.Jon=5.4Hz		P
11 17	d	3.lor=6.6Hz		6
71 40	L L	2 lor=36 2Hz		e d
/ 1.43	40	${}^{2}J_{CF} = 24.7Hz$		ŭ
83.85	m			Ь

116.43	m	С
121.03	m	_ a
120.73	s	h
121.10	S	h
126.00	s	j
126.55	s	j
129.49	s	í
129.68	S	i

. 🖘

ź.

f OCH_3 $CF_3CHFCF_2CHCH_3$ a b c d e

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>Н:-</u>				
1 39	t	³ Јнн=6.3Hz	3	e
2 12	S		3	f
4 98	dm	² J _{HF} =43 3Hz	1	b
5.27	m		1	d
19 <u>F</u>				
-74.50	S]3	а
-74.91	S		j	
series	s of lines		2	С
between				
118.11	& 133.39			
-212.49	d	² J _{HF} =39.8Hz]1	b
-213.71	d	² J _{HF} =42.1Hz]	

160

35. 3.3.4.5.5.5-Hexafluoro-2-propoxypentane

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
¹ <u>Н:-</u>				
0.92	t	3J _{HH} =7.4Hz]3	h
0.93	t	3J _{HH} =7.4Hz	J	
1.60	m		2	g
2.16	d	³ Ј _{НН} =10 6Нz	3	e
3.36	tq	³ Ј _{НН} =9.2Н <i>г</i>	1	Í
		⁴ J _{HH} =6.8Hz		
3.59	tq	³ J _{HH} =8.8Hz	1	ŕ
		⁴ Jнн=6.8Hz		
3.79	m		1	a
5.14	ddm	² J _{HF} =42.4Hz	1	b
		³ J _{HFc} =6.4Hz		
¹⁹ <u>F:-</u> -73.71 -74.30	dddd	³ J _{FF} = ³ J _{HF} = ⁴ J _{FF} =11.1Hz ⁴ J _{FF} =5.6Hz ³ J _{FF} = ³ J _{HF} = ⁴ J _{FF} =11.3Hz	3	а
_118.65	d	⁴ J _{FF'} =6 8Hz J _{AB} =271.7Hz		
-123.26	d	J _{AB} =271.7Hz	2	с
-124.14	d	J _{AB} =272.8Hz	[
-129.05	d	J _{AB} =272.6Hz]	
-213.1 3 -216.19	dm dqdd	² J _{HF} =42.5Hz ² J _{HF} =42.5Hz ³ J _{FFa} = ³ J _{FFc} = ³ J _{FFc} =10.7Hz] 1	b

36. 3.3.4.5.5.5-Hexafluoro-2-(prop-2-enoxy)pentane

$\begin{array}{c} f & g & h \\ OCH_2CH=CH_2 \\ I \\ CF_3CHFCF_2CHCH_3 \\ a & p & c & d & e \end{array}$

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
' <u>H∶-</u>				
2.11	d	³ J _{HH} = 2.6Hz	3	е
3.79	m		2	f
3.81	m		1	đ
5.22	dm	² J _{HF} ≠ 40.0Hz	1	b
6 07	٢n		2	h
6.28	m		1	g
19 <u>F:-</u>				
-74.75	S		3	а
-117.78	d	J _{AB} =275.1Hz	1	С
-124.14	d	J _{AB} =275.1Hz	1	С
-215.04	d	² J _{HF} =39.3Hz	1	ъ

37 2.2.3.4.4.4-Hexafluoro-2-(phenylmethoxy)butane

$$CF_3CHFCF_2CH_2OCH_2 - f$$

a b c d e g h

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>Н·-</u>				
4 06	m		2	d or e
4 61	m	JAB=11.5Hz	2	d or e
5.21	dm	² J _{HF} =43.0Hz	1	b
7.36	m]5	h. i. j
7.38	m		ſ	
19 <u>E:-</u>				
-74.18	m		3	а
-119.90	d	J _{AB} =270.8Hz	2	c
-124.22	d	J _{AB} =272.0Hz]	
-218.06	dm	² J _{HF} =42.1Hz	1	b
38 3.3.4.5.5.5-Hexafluoro-2-(phenylmethoxy)pentane

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>Н:-</u>				
1.33	đ	³ J _{HH} =6.1Hz	3	е
3 94	m		1	đ
4 54	d	JAB=11.5Hz]	
4.65	d	J _{AB} ≃11.5Hz	2	ť
4 48	d	JAB=11.4Hz		
4 68	đ	J _{AB} =11.4Hz		
5.14	ddqd	² J _{HF} =42.8Hz	1	b
		³ J _{HFc} =20.8Hz		
		³ J _{HFa} =6.3Hz		
		³ J _{HFc} =1.6Hz		
7.33	m]5	h. i. j
7.34	m		j	
19 <u>F:-</u>				
-73.75	dddd	³ JFF= ³ JHF=	3	а
		⁴ JFF=11.3Hz		
		⁴ JFF=6.8Hz		
-118.14	dm	JAB=272.8Hz	1	
-122.98	ddddq	JAB=272.8Hz		
		³ JFF= ³ JHF=	İ	
		31H.E=41EE=		
		9.4HZ		
-123.99	ddddq	JAB=273.6Hz	2	С
		³ J _{FF} = ³ J _{HF} =		
		3JH'F="JFF=		
		11.0112	}	
128.54	ddddq	JAB=273.6Hz	!	
		JFF=*JFF=	ļ	
		12.0⊓2 3.1uc≃11.3Hz	ļ	
		3Jµr∈=3.5Hz		

	-213.11 -215.29	dm dddq	² J _{HF} =42.8Hz ² J _{HF} =43.4Hz ³ J _{FFc} = ³ J _{FFc} '= ³ J _{FFa} =10.7Hz		b
				j	
	130				
	10.70				
	10.79	a	⁴ JCF=4.9Hz		e
	13 04	d	⁴ JCF=3.0Hz		e
	53.84	S	2		f
	72 18	dd	² JCF=32.4Hz		α
	1.00		² JCF=22.8Hz		
	14 62	dd	² JCF=27.2Hz		a
	22.00		² J _{CF} =26.7Hz		
	83 26	dqdd	¹ JCF=193.0Hz		b
			² JCFa=34.5Hz		
			² JCFc=24.4Hz		
			$^{2}J_{CFc} = 2.8Hz$		
	83 27	dqdd	¹ JCF=191.9Hz		b
			² JCFa=34.2Hz		
			² JCFc=24.1Hz		
	_		² JCFc'=2.2Hz		
	117.64	ddd	¹ JCF=249.8Hz		с
			¹ JCF'=249.5Hz		
			² JCF=21.0Hz		
	117.78	ddd	¹ JCF=1JCF=		С
			253.7Hz		
			² JCF≃25.9Hz		
. 5	121 25	qd	¹ JCF=282.4Hz		а
			² JCF=25.5Hz		
	128.00	S			h
	128.10	S			h
	128.27	S			1
	128.36	S			i
	128.67	S			i
	128.70	s			i
	136 87	S			g
	137.06	s			0 0

g

39 (2.2.3.4.4.4-Hexafluorobutoxy)pentafluoropenzene

Shift (ppm)	Multiplicity	Coupling	Relative Intensity	Assignment
₩ <u>−</u>				
4 62	m		2	d
5 21	m		1	a
19 <u>F -</u>				
-75 16	S		3	а
series	otimes		2	с
betwee	in -118.85			
&	129.06			
-156.95	S		1	h
-157 54	S		2	ť
-158.86	S		2	g
-214.39	d	² J _{HF} =36.7Hz],	b
-215.44	ď	² J _{HF} =30.1Hz]'	

40 (3.3.4.5.5.5-Hexailuoropent-2-oxylpentafluorobenzene

CF3CHFCF2CHO g n

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)	. ,	. 5	Intensity	2
1 <u>H -</u>	·····	······································		
1 05	m		3	u
1.29	d	³ Јнн=4 3Hz	ز	
4.22	m		1	Ġ
471	m		j	
4 82	m		1	α
19 <u>F -</u>				
75.65	S		3	а
-76.00	s		ł	
-119.89	d	J _{AB} =280 0Hz	1	
-124.64	d	J _{AB} =279.8Hz	2	с
-125.26	d	J _{AB} =277 5Hz	l	
-130.66	d	J _{AB} =277 5Hz	J	
-157.12	S		2	g
*162.20	S		1	1
-164.52	s		2	h
-214 29	s		1	D

41 (2.2.3.4.4.4-Hexafluorobutoxy)-2.4-dinitrobenzene

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>н.</u>				
4.72	m		2	d
5 32	dm	² J _{HF} =40.5Hz	1	b
7 36	đ	3J _{HH} =17.7Hz	1	f
8.49	dd	³ J _{HH} =21.3Hz	1	g
		⁴ J _{HH} ≡2.7Hz		
8 75	d	⁴ J _{HH} =2.7Hz	1	i.
19 <u>E:-</u>				
-74.95	s		3	а
-116.90	d	J _{AB} =279.4Hz]2	С
-122.24	d	J _{AB} =280.1Hz]	
-214.48	d	² J _{HF} =36.2Hz	1	b

2

42 (3.3.4.5.5.5-Hexafluoropent-2-oxy)-2.4-dinitrobenzene

	Shift	Multiplicity	Coupling	Relative	Assignment
	_(ppm)	· · · · · · · · · · · · · · · · · · ·		Intensity	
	1 <u>H</u> ⊡				
	1.64	d	³ Ј _{НН} =6.5Нz	13	е
	1.67	d	³ J _{HH} =6.5Hz	J	
	5.03	m		1	d
	5.35	m		1	b
	7 25	d	³ Ј _{НН} =10.3Нz	1	9
	8.50	dd	3J _{HH} =9.5Hz	1	h
			⁴ J _{HH} =2.8Hz		
	8 81	d	⁴ J _{HH} =2.9Hz	1	i
	10-				
	· <u>- 1</u> e ·			10	
	-74.31	S		3	а
	-/4.81	s		. j	
	-117.90	d	J _{AB} =277.2Hz	11	С
.	-122 72	d	J _{AB} =275.8Hz	1	
	-124.21	d	J _{AB} =276.1Hz	1	С
	-126.56	d	J _{AB} =275.8Hz	J	
	-213.57	d	² J _{HF} =38.4Hz]1	b
	-215.54	d	² J _{HF} =40.0Hz]	

х.

<u>43</u><u>4-(2,2,3,4,4,4-Hexafluorobutoxy)tetrafluoropyridine</u>

144.11	dddd	¹ JCF=243.8Hz	ť
		² JCF=15.6Hz	
		³ JCF=14.1Hz	
		⁴ JCF=3.0Hz	
145.46	m		e

Snift	Multiplicity	Coupling	Relative	Assignment
(mgg)			Intensity	
¹ Н				
4.79	m		2	d
518	ddqd	² J _{HF} ≖43.2Hz	1	b
		³ J _{HFc} =16.0Hz		
		³ J _{HFa} =5.6Hz		
		³ J _{HFC} =4 8Hz		
19 <u>E</u>				
-74 51	m		3	а
-88.98	dad	³ J _{FF} =14.7Hz	2	g
-116.80	dm	J _{AB} =282.2Hz	1	с
-121.85	dm	J _{AB} =279.2Hz	1	С
-158.34	ddd	³ JFF=14.7Hz	2	f
-213.45	dm	² J _{HF} =42.9Hz	1	b
13 <u>C:-</u>				
70.24	dd	³ JCF=37.4Hz		d
		³ J _{CF} = 27.1Hz		
83.53	ddqd	¹ JCF=196.1Hz		b
		² JCFc= ² JCFa=		
		35.5Hz		
		² J _{CFc} ·=26.4Hz		
115.66	ddd	¹ JCF= ¹ JCF [.] =		с
		253.0Hz		
		² J _{CF} ≖25.5Hz		
120.44	qđ	¹ J _{CF} =282.3Hz		а
		² J _{CF} =25.3Hz		
135.09	dam	¹ J _{CF} =259.2Hz		g
		² J _{CF} =39.0Hz		

<u>44</u><u>4-(3,3,4,5,5,5,Hexailuoropent-2</u><u>oxy)tetrafluoropyridine</u>

 $CF_3CHFCF_2CHO f$ a b c d g h

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>н:-</u>				
1.61	d	³ J _{HH} =6.4Hz	3	e
5.14	m		1	C
19 <u>F:-</u>				
-73.79	ddd	³ JFF=21.8Hz]	
		⁴ JFF=10.9Hz		
		³ J _{HF} =6.0Hz	l	
-74.10	ddd	³ JFF=19.3Hz	3	a
		⁴ JFF=8.7Hz		
		³J _{HF} =6.0Hz	1	
-88.34	m		2	h
-117.98	dm	J _{AB} =279.2Hz	1	
-122.64	dm	JAB=280.0Hz	!	
-123.19	dm	JAB=276.9Hz	2	с
-127.23	dm	JAB=277.3Hz	j	
-157.17	m		2	a
-212.44	dm	² Јнг=43.3Hz	1	5
-213.42	ddq	² J _{HF} =43.6Hz	1	b
		³ J _{HFc} =12.8Hz	(
		³ J _{HFa} =9.8Hz	J	
13 <u>C:-</u>				
12.05	d	³ JCF=4.6Hz		e
79.48	dd	² JCF= ² JCF [.] =		d
		27.7Hz		-
83.44	dm	¹ JCF=197.4Hz		р
116.19	ddd	$^{1}JCF = ^{1}JCF =$		c

3	uuu	· JCF = · JCF.=	
		254.9Hz	
		² J _{CF} =26.8Hz	

120.52 qm ¹JCF=282.7Hz

а

135 51	dd	¹ JCF=259 4Hz	g
		² J _{CF} =39.3Hz	
144 13	dm	¹ JCF=244 5Hz	h
144 33	m		f

. 🖘

166

ł

45 4-(2.2.3.4.4.4-Hexafluorobutoxy)trifluoropyrimidine

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
¹ <u>H∶-</u>				
4.87	m		1	d
5.12	ddqd	4 J _{HF} =43.6Hz	1	b
		³ J _{HFc} =15.2Hz		
		³ J _{HFa} =5.6Hz		
		³ J _{HFc} =5.1Hz		
19 <u>F:-</u>				
-74.67	m		3	а
-78.01	d	⁴ J _{HF} =17.7Hz	1	h
115.47	dm	J _{AB} =272.4Hz	1	с
-120.93	dm	J _{AB} =272.4Hz	1	С
-174.76	dd	³ J _{FF} =26.2Hz	1	f or g
		JFF=17.5Hz		
-176.74	dd	³ J _{FF} =26.2Hz	1	f or g
		J _{FF} =17.7Hz		
-213.19	d	² J _{HF} =44.0Hz	1	b
13 <u>C:-</u>				
64.86	dd	² JCF≠36.8Hz		d
		² J _{CF} = 27.3Hz		
84.02	ddqd	¹ JCF=196.1Hz		b
		² J _{CFc} =70.5Hz		
		² J _{CFa} =35.5Hz		
		² J _{CFc'=} 29.0Hz		
115.57	ddd	¹ JCF= ¹ JCF·=		с
		252.1Hz		
		² JCF=25.5Hz		
120.46	qd	¹ JCF=282.0Hz		а
		² J _{CF} =25.5Hz		

ddd	¹ JCF=262.8Hz	h
	³ J _{CF} =23.4Hz	
	⁴ JCF=29.0Hz	
ddd	¹ JCF=225.5Hz	ť
	² JCF=20.9Hz	
	⁴ J _{CF} =10.2Hz	
ddd	¹ J _{CF} =253.9Hz	g
	² JCF=17.2Hz	
	³ JCF=12.0Hz	
ddd	² JCF=15.6Hz	e
	³ JCF=9.9Hz	
	³ J _{CF} = 7.2Hz	
	ddd ddd ddd ddd	$\begin{array}{c} ddd & {}^{1}J_{CF}{=}262.8Hz \\ {}^{3}J_{CF}{=}23.4Hz \\ {}^{4}J_{CF}{=}29.0Hz \\ \\ ddd & {}^{1}J_{CF}{=}225.5Hz \\ {}^{2}J_{CF}{=}20.9Hz \\ {}^{4}J_{CF}{=}10.2Hz \\ \\ ddd & {}^{1}J_{CF}{=}253.9Hz \\ {}^{2}J_{CF}{=}17.2Hz \\ \\ {}^{3}J_{CF}{=}12.0Hz \\ \\ ddd & {}^{2}J_{CF}{=}15.6Hz \\ {}^{3}J_{CF}{=}9.9Hz \\ \\ {}^{3}J_{CF}{=}7.2Hz \end{array}$

. *>

46 4-(3.3.4.5.5.5-Hexafluoropent-2-oxy)-

trifluoropyrimidine

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
' <u>Н:-</u>				
1.62	d	³ J _{HH} =6.4Hz	3	e
5.12	m		1	b
5.66	m		1	d
19 <u>F:-</u>				
-74.31	adad	³ JFF=21.4Hz	1	
		⁴ J _{FF} =17.3Hz	I	
		JHF=10.9HZ	1	
		'JFF'=5.0HZ		
-74.63	dada	³ J _{FF} =20 3Hz	13	а
		⁴ JFF=17.3Hz		
		⁴ Icc:-6 4Hz]	
-78 20	m	0FF -0.4112	1	I.
-117.96	ddm	JAB=278.8Hz	'n	I
		J _{AB} =9.8Hz		
-122.83	dm	J _{AB} =278.8Hz	2	С
-125.89	dm	J _{AB} =271.3Hz		
-132.59	dm	J _{AB} =271.7Hz	J	
-174.43	m		1	g or n
-176.23	dd	³ JFF=25.6Hz	1	g or h
		⁴ JFF=17.3Hz		
-212.89	dm	² J _{HF} =44.0Hz]1	b
-213.42	dm	² J _{HF} =43.8Hz		
13 <u>C:-</u>				
11.22	d	³ JCF=5.5Hz		ė
14 29	d	³ JCF=4.8Hz		е
72.29	da	² JCF=36.4Hz		d

²J_{CF} = 25.4Hz

73 43	dd	² J _{CF} = ² J _{CF} = 29.0Hz	d
83.67	m		α
116.29	ddd	$^{1}JCF=^{1}JCF=$ 254.1Hz	С
120.58	qđ	² JCF=26.3Hz ¹ JCF=282.3Hz ² JCF=25.5Hz	а
129.85	dm	¹ JCF=262.1Hz	;
153.36	ddd	¹ J _{CF} =225 7Hz ² J _{CF} =20.8Hz ⁴ J _{CF} =4.9Hz	g
158.94	ddd	¹ JCF=254.1Hz ² JCF=17.2Hz ³ JCF=12.2Hz	n
160.36	m		:

160.36

. 🖘

47 5-(2.2.3.4.4.4-Hexafluorobutoxy)trifluoropyrazine

$CF_3CHFCF_2CH_2O = \begin{pmatrix} F \\ F \\ a \\ b \\ c \\ d \end{pmatrix} g$

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
۱ <u>н۰-</u>				
471	ad	³ J _{HF} =14.7Hz	2	a
		3J _{HF} =7.7Hz		
5.09	d	² J _{HF} =43.6Hz	1	b
19 <u>F -</u>				
-75.28	S		3	d
-93.41	d	³ JFF=44.6Hz	Ţ1	f or g
-94.37	d	3J _{FF} =46.1Hz	-	
-99.08	d	3J _{FF} ≖45.9Hz	1	f or g
-100.58	d	³ J _{FF} =46.4Hz		
-103.49	s		<u>]</u> 1	n
-108.02	S		1	
-116.37	d	J _{AB} ⇒281.0Hz	1	с
-121.75	d	J _{AB} =280.8Hz	1	С
-214.06	d	² J _{HF} =41.2Hz	1	O

<u>48. 5-(3.3.4.5.5.5-Hexafluoropent-2-oxy)-</u> trifluoropyrazine

 $CF_3CHFCF_2CHO_f$

	Shift	Multiplicity	Coupling	Relative	Assignment
	(ppm)			Intensity	
	1 <u>н.</u> -				
	1 58	d	³ Ј _{НН} =5.9Нz	3	е
	511	m		1	d
	5 48	m		1	a
	19 <u>F.</u>				
	-75 14	m		73	а
	-75 53	m]	
	-93.63	s		1	g
	-98.87	d	³ JFF=27.1Hz	1	I.
	-103.76	S		1	'n
	119 02	đ	J _{AB} =277.5Hz	1	
	-123.76	d	J _{AB} =281.5Hz	2	С
	-124 06	d	J _{AB} =284.1Hz		
	126 31	d	J _{AB} ≂272.5Hz	j	
* *	-213 83	m]1	α
	-215.36	m		ļ	

ş.

49 4-(2.2.3.4.4.4-Hexafluorobutoxy)trifluoropyridazine

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
¹ <u>Н</u> .				
4.80	ddd	³ J _{HF} =17.1Hz	2	a
		3J _{HF} =7.7Hz		
		⁴ J _{HF} =2.7Hz		
5 13	dm	² J _{HF} =43.5Hz	1	a
19 <u>F</u>				
-75.10	S		3	а
-93 61	m		1	g
-99.61	m			f
-116.17	đ	J _{AB} =281.3Hz	1	с
-121.58	d	J _{AB} =280.8Hz	1	с
-163.06	m		1	h
-213 87	d	² J _{HF}	1	ď

50. 4-(3.3.4.5.5.5-Hexafluoropent-2-oxy)trifluoropyridazine

Snift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
ч <u>н-</u>				
1 54	d	³ Ј _{НН} =6.3Нz]3	е
1.65	d	³ Ј _{НН} =6.2Нz	j	
5 06	m]1	a
5 23	m			a
19 <u>F</u>				
-74 81	s]3	а
.75 05	s		1	
88.25	s		1	g
94 50	m		1	n
-119,46	đ	J _{AB} =278.9Hz	ļ	
-123.47	d	J _{AB} =272.1Hz	2	с
-123,95	d	J _{AB} =277.9Hz		
-127.45	d	J _{AB} =274.2Hz]	
-144.46	m		1	I
-213.24	m		1	ď

. **

ł:

51 2.2.3.4.4.4 Hexafluorobutyl 4methylbenzenesulphonate

 $(F_3CHFCF_2CH_2OSO_2-abcd)$ CHe) a

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>н -</u>				
2.48	d	⁴ J _{HH} =6.0Hz	3	i
4.32	m		2	d
4 96	m		1	a
7.40	d	³ J _{HH} =8.0Hz	2	g
781	d	³ J _{HH} =7.6Hz	2	f
19 <u>F:-</u>				
-73.79	dddd	3JFF=4JFF=	3	а
		10.9Hz		
		³ JHE= ⁴ JEE.≂		
		6.4Hz		
-115.46	dm	J _{AB} =280.3Hz	1	с
-120.95	dm	JAB=280.3Hz	1	с
-212.68	dm	³ J _{HF} =43.6Hz	1	b
¹³ C:-				
21.66	S			Ļ
64.97	dd	² J _{CF} =38.5Hz		d
		² J _{CF} = 27.5Hz		
83.26	dqm	¹ J _{CF} =195.3Hz		d
		² JCFa=25.9Hz		
115.12	ddd	¹ J _{CF} =253.4Hz		С
		¹ JCF ⁻ =252.5Hz		
		² J _{CF} =25.5Hz		
120.32	qd	¹ JCF=282.3Hz		d
		² J _{CF} =25.5Hz		
127.02	S			h
128.10	S			g
130.25	S			f
131.42	s			е

52 3.3.4.5.5.5-Hexafluoropentyl 2-(4methylbenzenesulphonate)

Shift	Multiplicity	Coupling	Relative	Ass:gnment
(ppm)			Intensity	
1 <u>Н -</u>				
1 12	ddd	³ Ј _{НН} =7 2Нz	3	e
		⁴ J _{HF} =3.6Hz		
		⁴ J _{HF} = 6.8Hz		
2.48	S		3	1
5.15	m		1	d
5.53	dm	² J _{HF} =42.8Hz	1	a
7.54	d	3 _{JHH} =8.4Hz	2	h
7.90	d	3J _{HH} =8.4Hz	2	g
19 <u>E -</u>			_	
-73.95	s		3	а
-74.12	s		[
-120.38	d	J _{AB} =272.5Hz	1	С
123.04	d	J _{AB} =272.8Hz		
-123.86	d	J _{AB} =276.1Hz]1	с
-125.80	d	J _{AB} =276.8Hz]	
-213.12	S]1	b
-213.48	d	²J _{HF} =44.5Hz	ļ	

. 🖘

è

53 1.1.1.2.3.3.8.8.9.10.10.10-Dodecafluorodecyl 4.7-

bis(4-methylbenzenesulphonate)

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>н</u>				
1.85	m		2	g
2.48	s		3	а
5.14	m		1	f
5.53	dm	² J _{HF} =42.8Hz	1	a
7 54	m	³ J _{HH} =8.4Hz	1	С
7.89	m	³ J _{HH} =8.4Hz	1	α
19F -				
-73.31	S		3	а
-117.86	d	J _{AB} =277.3Hz	1	с
-120.25	d	J _{AB} =277.3Hz	1	С
-221 47	d	² J _{HF} =32.2Hz	1	b

54 3.3.4.5.5.5-Hexafluoropentyl 2-(trichloromethanesulphonate)

e_{CH_3} $[F_3CHFCF_2CHOSO_2CCI_3]$ a b c d f

Shiit	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>H</u> ⊡				
1 75	d	³ Јнн=5.6Нz	3	e
5.05	ddqd	² Јнн=43.6Hz	1	ġ
		³ J _{HFc} =19.6Hz		
		³ J _{HFa} =6.0Hz		
		⁴ J _{HFc} =2.0Hz		
5.31	m		1	d
¹⁹ E.				
-73,41	dddd	³ JFF= ⁴ JFF=		
		3.1ur=4.1rr=	Í	
		5.3Hz	1	
.73 72	dddd	3.100=4.100=	13	а
-13.12	0000	10.5Hz		-
		³ JHF= ⁴ JFF'=	j	
		5.3Hz	-	
-117.70	d	J _{AB} =273.9Hz		
-120.73	d	J _{AB} =273.6Hz	2	с
-122.85	d	J _{AB} =281.5Hz		
-124.98	d	J _{AB} =275.4Hz]	
-210.99	d	² J _{HF} =43.3Hz	1	b

55. 2-Chloro-5-(1.1.2.3.3.3-nexafluoropropyl)oxolane

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>Н:-</u>				
2.33	m		2	e or t
2.50	m		2	e or f
4.40	m		1	a
5.33	m		1	b
5.51	m		1	g
19 <u>F</u>				
-73.65	m		3	а
-74.02	m		1	
-117.29	dm	J _{AB} =279.4Hz]1	с
-120.24	d	J _{AB} =280.3Hz	ſ	
-120.98	d	J _{AB} =276.4Hz]1	с
-122.54	d	J _{AB} =277.1Hz]	
-212.08	m]1	ġ
-215.40	m]	

56 2-Phthalimido-5-(1.1.2.3.3.3-hexafluoropropyl)oxolane

Spectra run in acetone-de Shift Multiplicity Coupling Relative Assignment (ppm) Intensity 1<u>Н·-</u> 2.29 2 e or f m 2.66 2 e or f m 4 4 2 11 m a 4.75 m 5.42 m 1 D 11 6 00 m g 6.15 m 19<u>F -</u> -79.22 $^{3}J_{FF}=27.1Hz$ dddd ⁴JFF=16.9Hz ³J_{HF}=10.9Hz а 3 ⁴JFF = 6.0Hz -79.61 m -124,45 J_{AB}=272.0Hz dm -126.08 J_{AB}=270.2Hz dm -128.29 J_{AB}=272.1Hz dm -129.46 J_{AB}=270.2Hz 2 dm С -130.04 dm J_{AB}=258.9Hz -130.71 dm J_{AB}=268.4Hz -132.82 J_{AB}=263 8Hz dm -134,31 J_{AB}=270.9Hz dm

57	_2-Piperidino	5-(1.1.2.3.3.3-hexa	(iluoropropyi)oxolane

-218.53	m]	
-219.00 -220.73	m ddq	² J _{HF} =43.3Hz ³ J _{FFa} = ³ J _{FFc} = ³ J _{FFc} =9.8Hz	1	۵
-221.99	dơq	² J _{HF} =42.1Hz 3J _{FFa} =3J _{FFc} = 3J _{FFc} =7.9Hz		
13 <u>C:-</u>				
28.03	s			ŧ
28.08	s			f
29.89	S			е
30.55	s			e
77.39	dd	² J _{CF} =36.3Hz		d
		² J _C ≓ =23.2Hz		
82.62	s			9
82.99	s			9
84.95	m			b
121.00	m			a.c
123.99	S			k
124.31	s			k
132.75	S			i
132.80	S			L
135.27	S			J
135.71	s			i

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
¹ <u>H:-</u>				
1.49	m		2	i
1.57	m		4	I
serie	s of lines		4	e.f
b	etween			
1.9	8 & 2.13			
2.74	m		4	h
4.22	m		1	d
5.08	dm	² J _{HF} =49.8Hz	1	b
6.16	m]1	g
6.20	m]	
19 <u>F</u>				
-74.05	ddm	J=6.4Hz	1	
		J≖4.1Hz	13	а
-74.62	dm	J=6.4Hz]	
-121.41	dm	J _{AB} =263.8Hz	J	
-125.10	dm	J _{AB} =256.3Hz	2	С
-126.98	dm	JAB=268.7Hz		
-131.31	dm	J _{AB} =269.1Hz		
-213.10	dm	² J _{HF} =42.5Hz]1	b
-218.70	dm	² J _{HF} =44.2Hz	1	
13 <u>C:-</u>				
24.66	S			I
24.78	S			1
26.17	S			!
26.30	S			:

• İ

е

26.79

26.83

27.68

s

s

5

. 95

	CF₃CH	FCF2 d O g 1	$\langle \rangle$	
	a b	с	h i	
Shift	Multiplicity	Coupling	Relative	Assignment
(ppm)			Intensity	
1 <u>Н</u>				
serie	s of lines		4	e,f
De	etween			
1.62	2 & 1.78			
2.24	m		2	h
2.45	m		2	h
3.31	m		4	1
4.43	dm	² J _{HF} =20.7Hz	1	d
4.88	dm	² J _{HF} =36.8Hz	1	b
5.90	m]1	g
5.97	m]	
19 <u>F</u>				
-75.39	m		3	а
serie	s of lines		2	с
be	etween			
-12	21.27 &			
- 1	32.85			
-214.49	m]1	b
-219.47	m		1	

58. 2-Morpholino-5-(1.1.2.3.3.3-hexafluoropropyl)oxolane

27.88	S		е
48.58	s		h
48.88	s		h
73.93	dd	² J _{CF} =35.1Hz	đ
		² J _{CF} =22.9Hz	
75.58	m		g
84.16	m		Ö
117 65	m		С
121 32	qd	¹ JCF=282.3Hz	а
		² J _{CF} =24.0Hz	

. *

59. 2.01.1.2.3.3.3-hexafluoropropyl)-5-thiophenyloxolane

Shift	Multiplicity	Coupling	Relative	Assignment
(ppm:			Intensity	
1 <u>H:-</u>				
2.02	m		2	÷.
2.45	m		2	ŧ
3.87	m		1	a
4.33	m		1	9
5.08	dm	² J _{HF} =43.6Hz	1	D
7 21	m		2	
7.30	m		2	;
7.47	m		1	k
19 <u>F -</u>				
-74.36	S]3	а
-74.83	d	³ J _{HF} =34.6Hz	J	
-119 85	d	J _{AB} =274.6Hz]	
-120.37	d	JAB=268.8Hz		
-124.67	d	J _{AB} =268.1Hz		
-125.24	d	J _{AB} =259.3Hz	2	c

1

С

J_{AB}=259.3Hz -125.24 d -125.84 JAB unresolved d -130.44 d J_{AB}=274.6Hz -130.77 J_{AB}=274.68Hz d -213.34 m -213.39 m -215.53 m

-218.71 m

. **

.

d.

APPENDIX TWO

MASS SPECTRA

CONTENTS

1.	3,3,4,5,5,5-Hexafluoropentan-2-one
2.	3,3,5,5,5-Pentafluoropentan-2-one
3.	3,3,4,5,5,5-Hexafluorohexan-3-one
4.	3,3,5,5,5-Pentafluorohexan-3-one
5.	3,3,4,5,5,5-Hexafluoroheptan-4-one
6.	3,3,5,5,5-Pentafluoroheptan-4-one
7.	3,3,4,5,5,5-Hexafluorooctan-4-one
8.	3,3,5,5,5-Pentafluorooctan-4-one
9.	4,4,5,6,6,6-Hexafluoro-2,2-dimethylhexan-3-one
10.	4,4,6,6,6-Pentafluoro-2,2-dimethylhexan-3-one
11.	1,1,1,2,3,3,16,16,17,18,18,18-dodecafluorooctadecane-4,15-
	dione
12.	2,2,3,4,4,4-Hexafluorobutanol
13.	2,2,4,4,4-Pentafluorobutanol
14.	3,3,4,5,5,5-Hexafluoropentan-2-ol
15.	3,3,5,5,5-Pentafluoropentan-2-ol
16.	4,4,5,6,6,6-Hexafluorohexan-3-ol
17.	1,1,1,2,3,3-Hexafluoroheptan-4-ol
18.	1,1,1,2,3,3-Hexafluorooctan-4-ol
19.	1,1,1,2,3,3-Hexafluorononan-4-ol
20.	5,5,6,7,7,7-Hexafluoroheptane-1,4-diol
21.	1,1,1,2,3,3,8,8,9,10,10,10-Dodecafluorodecane-4,7-diol
22.	1,1,1,2,3,3,9,9,10,11,11,11-Dodecafluoroundecane-4,8-diol
23.	2-(1,1,2,3,3,3-Hexafluoropropyl)oxolane
24.	2,5-Bis(1,1,2,3,3,3-hexafluoropropyl)oxolane
25.	2,2,3,4,4,4-Hexafluorobutoxytrimethylsilane
26.	2-(1,1,2,3,3,3-Hexafluoropropyl)pyrrolidine-1-carboxaldehyde
27.	2,2,3,4,4,4-Hexafluorobutyl ethanoate
28.	3,3,4,5,5,5-Hexafluoropent-2-yl ethanoate
29.	2,2,3,4,4,4-Hexafluorobutyl 3,5-dinitrobenzoate
30.	3,3,4,5,5,5-Hexafluoropent-2-yl 3,5-dinitrobenzoate
31.	3,3,4,5,5,5-Hexafluoropent-2-yl 1,4-dibenzoate
32.	2,2,3,4,4,4-Hexafluorobutyl phenyl carbonate
33.	3,3,4,5,5,5-Hexafluoropent-2-yl phenyl carbonate
34.	3,3,4,5,5,5-Hexafluoro-2-propoxypentane

. . .

35. 2,2,3,4,4,4-Hexafluoro-1-(prop-2-enoxy)butane 36. 3,3,4,5,5,5-Hexafluoro-2-(prop-2-enoxy)pentane 37. 2,2,3,4,4,4-Hexafluoro(phenylmethoxy)butane 3,3,4,5,5,5-Hexafluoro-2-(phenylmethoxy)pentane 38. 39. (2,2,3,4,4,4-Hexafluorobutoxy)pentafluorobenzene (3,3,4,5,5,5-Hexafluoropent-2-oxy)pentafluorobenzene 40. 41. (3,3,4,5,5,5-Hexafluoropent-2-oxy)-2,4-dinitrobenzene 4-(2,2,3,4,4,4-Hexafluorobutoxy)tetrafluoropyridine 42. 4-(3,3,4,5,5,5-Hexafluoropent-2-oxy)tetrafluoropyridine 43. 44. 4-(2,2,3,4,4,4-Hexafluorobutoxy)trifluoropyrimidine 4-(3,3,4,5,5,5-Hexafluoropent-2-oxy)-trifluoropyrimidine 45. 46. 5-(2,2,3,4,4,4-Hexafluorobutoxy)trifluoropyrazine 5-(3,3,4,5,5,5-Hexafluoropent-2-oxy)-trifluoropyrazine 47. 4-(2,2,3,4,4,4-Hexafluorobutoxy)trifluoropyridazine 48. 4-(3,3,4,5,5,5-Hexafluoropent-2-oxy)-trifluoropyridazine 49. 50. 2,2,3,4,4,4-Hexafluorobutyl 4-methylbenzenesulphonate 51. 3.3.4.5.5.5-Hexafluoropentyl 2-(4-methylbenzenesulphonate) 1,1,1,2,3,3,8,8,9,10,10,10-Dodecafluorodecyl 52. 4,7-bis(4-methylbenzenesulphonate) 3,3,4,5,5,5-Hexafluoropentyl 2-(trichloromethanesulphonate) 53. 1-Chloro-3,3,4,5,5,5-hexafluoropentan-2-one 54. 1,1-Dichloro-3,3,4,5,5,5-hexafluoropentan-2-one 55. 2-Chloro-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 56. 2-Bromo-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 57. 2-Methoxy-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 58. 2-Phthalimido-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 59. 2-Piperidino-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 60. 61. 2-Morpholino-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 62. 2-(1,1,2,3,3,3-Hexafluoropropyl)-5-thiophenyloxolane

52.03	0 42	91.08	8.87	128.12	0 20
53.03	1 05	92.09	0.27	131.09	1 38
55.03	0.68	93.09	4.49	132.09	0.90
56.04	1.42	94.10	0.62	133 11	0.30
57.05	3.60	95.10	3,07	135 11	0.20
58.05	0.37	96.10	0.13	137 38	2 70
59.07	0.75	97.13	2.71	141 13	2.70
60.04	0.51	99 . 10	0.11	144 14	0.13
61.05	2.43	100.09	2.12	145 15	0.13
62.05	3.10	101.10	2.20	147 15	2 79
63.05	7 74	104.12	0.20	150.11	0 17
64 .06	2.71	105.12	0.10	151.12	18 69
65.07	15.54	106.11	0.28	152.13	0.60
66.08	0.36	107.11	2.90	154, 13	0.12
67.06	1.56	108.12	0.40	155,13	71 49
68.06	0.28	109.12	1.76	156.14	3 87
69.05	100.00	110.11	0.24	157.14	0.35
70.06	1.37	111.10	0.11	159.16	0.24
71.05	0.97	112.09	2.73	175.15	9 89
72.07	0.16	113.10	25.40	176.16	0.52
73.07	0.58	114.11	2.80	177.15	2.87
74.06	1.01	119.11	2.71	195.16	5.31
75.07	6 63	121.11	0.16	196.19	0.30
76.08	0.88	125.11	1.00	209.19	0.23
77.09	22.45	126.10	0.45		
78.07	1.67	127.11	5.32		
79.12	0.13				
81.09	3.71				
82.08	28.79				
83.09	1.43				
87.09	0.12				
88 09	0.31				
89.10	0.94				
90.11	0.17				

Mass

% Base

180

ŵ

σ.

2.

3. 3,3,4,5,5,5-Hexafluorohexan-3-one

4a s s		: Sase									
18	82	ు	83		82.	02	25	56	131	02	2 34
-19	82	3	91		83.	03	1.	23	132.	03	2 82
50	93	34	38		87	04	1	17	133	C 1	7 42
51	34	0	78		88.	04	0	. 39	139.	06	078
52	95	Э.	91		89	04	1	56	141.	05	977
53	96	0	78		90.	05	0	. 39	142.	06	0.39
54	87	13	28		91.	03	20.	94	149	05	0 39
55.	39	-1	55		92.	04	0	78	151	02	35 97
56.	94	100	00	Ĉ	93.	02	2	. 73	152.	03	1.17
57	91	19	14		94	02	0	. 78	159.	05	0.39
58	92	7	81		95.	03	5	86	160.	03	1.17
59	92	1	. 17		97	05	0	. 78	161	04	15.63
60	91	1	17		99.	03	0	. 39	162.	04	0 78
61	91	0	78		100	02	2	. 34	169.	07	2.73
62.	93	7	03		101	04	6	. 25	179.	04	0 39
63	94	ı	22		103	06	0	39	209	08	2.78
64	95	13	78		107	05	5	55			
65	96	0	39		109	04	2	. 73			
66.	95	1	17		111	02	0	39			
67	97	0	39		112.	02	0	. 39			
68	96	100	00	0	113.	02	12	. 50			
69	99	1	56		114	03	0	. 39			
71	00	2	. 73		115.	04	1	21			
72.	00	0	39		119.	05	0	78			
73	01	0	. 39		121	06	25	. 00			
73.	99	0	39		122.	06	1	. 17			
75.	. 00	3	91		126	06	0	78			
76	01	0	39		129	03	0	39			
77	02	21	09								
78	01	1	66								
79	24	5	47								
81	02	1	17								

. -

4. 3,3,5,5,5-Pentafluorohexan-3-one

Mass		% Base												
10	92	7	04		74.	84	5.	03		112	. 77	25	. 26	
41.	90	16	02		75.	84	0.	60		113	. 78	3	. 44	
42.	90	21	26		76.	85	10.	55		114	79	3	. 91	
43.	89	4	09		77.	84	2.	21		120	. 80	2	. 11	
44	89	29	04		78.	86	8	98		121	. 78	4	48	
45.	90	1	18		79.	85	Ο.	40		122	. 79	9	93	
46	90	3	31		80.	83	Ó.	52		123	. 79	C	54	
48.	89	0	59		81.	82	2.	73		124	78	C	49	
49	88	3	13		82.	84	2.	15		125	. 78	0	32	
50	38	12	01		86	83	ō	44		130	76	0	78	F
51.	39	ō	40		87	82	0	44		131	. 69	1	. 07	F
52	88	5	24		88.	83	0.	78		132	. 74	76	. 38	F
53.	88	1	31		89.	83	Ō.	39		133	75	2	37	F
54	88	16	41	F	90.	82	4	55		140	75	ō	61	
55.	88	6	09	F	92.	80	2.	42		141	74	6	49	
56	94	100	00	FO	93.	80	2.	06		142	. 74	2	. 56	
57.	90	28	89	F	94.	81	9.	21		149	.71	0	. 58	F
58.	89	26	93		95.	81	٥.	39		150	. 75	16	. 97	F
59.	89	1.	19		96.	79	0.	39		151	. 76	1	. 14	
60.	87	1.	01		100.	82	1.	56		160	. 71	0	. 61	
61.	87	0	42		101.	82	Ο.	78	F	170	. 73	3	. 13	
62.	86	3	. 13		102.	82	30.	31.	F	190	. 71	3	. 92	
63.	86	34	40		103.	82	1.	60						
64	87	3	43		104.	80	Ο.	39						
66.	84	0	54		105.	77	Ο.	44						
68	86	100	00	0	106.	80	Ο.	88						
69.	83	1.	66	F	107	80	Ο.	50						
70	85	1	21	F	109.	80	2.	77						
71	87	0	44		110.	78	0	83						
72.	85	15	12											
73	84	0	97											

r:

5. 3,3.4.5,5,5-Hexafluoroheptan-4-one

	5601302+ 104:0 1:10v 133 0.1 ASEC	11 555=0; 1) 11 555=0;	18-001-99 1 C:166682888	15 40+0 04 10 - 28E Acnt	•i3 •ss =30	Sys SNEDDON Cal Prv15001		HAR AASS	a5534x
188.	Л								
<u>is</u> [·								
:8]	•								
45	i								
30 (Į.					R			
25	ĺ					Ц			
18					CFa	CHFCF,	CH ₂ CH ₂ CH ₃		
55					5	L			
60 1									
55	:								
101	· · · ·								
48	:					1 6 1	đ ⁱ .		
E									
;0	1								
3	11								
18 I	l.								
15					:51	162 1.15	155 865 191		
18					1				
51									
,	4 5034 5555567924 55556700123457911599002 999992	<pre>% 3as 99 01 01 01 02 99 00 02 99 99 00 03 00 03 99 99 99 99 90 00 02 00 00 00 00 00 00 00 00 00 00 00</pre>	• •	97 00 98 99 99 98 100 98 103 02 104 99 103 02 104 99 129 00 122 97 125 01 121 01 124 99 126 99 130 96 132 38 135 01 137 00 139 00 130 00 1	1 37 38 55 57 1 2 2 3 55 57 7 7 2 6 0 5 57 7 7 7 6 0 5 57 7 7 7 6 0 5 57 7 7 7 7 6 0 5 5 7 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 5 7 7 7 7 6 0 5 5 7 7 7 6 0 5 5 5 7 7 7 7 6 0 5 5 5 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 7 7 7 6 0 5 5 5 7 7 7 7 6 0 5 5 5 7 7 7 7 6 0 5 5 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 5 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 5 7 7 7 7 6 0 5 7 7 7 7 6 0 5 7 7 7 7 4 4 1 9 1 9 7 5 5 5 7 7 7 4 4 1 9 1 3 7 5 5 5 7 7 4 4 1 9 1 3 8 2 5 5 5 7 7 4 4 1 1 9 1 3 6 9 1 4 7 5 5 5 5 5 7 7 4 4 7 1 3 6 9 1 4 7 5 5 5 5 7 7 4 4 7 1 3 6 9 1 4 7 5 5 5 7 7 4 4 7 1 3 6 9 1 4 7 5 5 5 5 7 7 4 4 7 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	206 98 207 99 221 00 223 00	J 77 1 40 1 55 1 38		

•

7. 3,3,4,5,5,5-Hexafluorooctan-4-one

.

10. 4,4,6,6,6-Pentafluoro-2,2-dimethylhexan-3-one

11. 1,1,1,2,3,3,16,16,17,18,18,18-dodecafluorooctadecane-4,15- dione

12. 2.2.3.4.4.4-Hexafluorobutanol

Mass	% Base		
52.00	0.84	96.07	2 54
53.01	0.58	97.05	0 84
56.01	1.03	100.05	1 28
57.02	1.68	101.05	2 66
60.01	0.96	111.06	0 82
61.02	71.26	112.04	1 07
62.03	4.95	113.05	100 00
63.02	5.77	114.06	14 03
64.03	8.36	115 07	10 86
65.04	16.39	116 07	0 44
67.02	0.47	123 04	47 07
69.02	79.34	124.05	0 77
73.04	5.77	131.04	1 63
74.04	0.72	132 04	89 70
75.04	5.04	133.05	17 86
77.05	18.61	134.04	0 77
79.04	2.15	141.05	3 36
80.04	5.65	143.06	10 11
81.05	41.61	145.05	0 44
82.04	54.91	151 06	1 66
83.04	5.46	162 09	1 45
88 .06	0.58	163 08	6 05
91.04	3.06	183 09	3 60
93.05	13.17	100.00	5.00
94.06	1.66		
95.06	71.21		

.

.

13. 2,2,4,4,4-Pentafluorobutanol

18. 1,1,1,2,3,3-Hexafluorooctan-4-ol

.00

\$

24. 2,5-Bis(1,1,2,3,3,3-hexafluoropropyl)oxolane

203

.

25. 2,2,3,4,4,4-Hexafluorobutoxytrimethylsilane

27. 2,2,3,4,4,4-Hexafluorobutyl ethanoate

ma 5 5		· /.	Base				
49	954		1	72	81.94	21	96
50	95		90	95	82 94	27	28
51	97		0	94	90 93	0	77
55	97		0	86	92 94	2	75
56	97		1	03	93.96	ō	51
59.	97		1	24	94 93	45	35
60	96		8	79	95.94	1	76
62.	95		4	03	99 92	1	12
6.3.	96		14	93	100 92	8.	15
64.	97		2	15	112.92	9	18
68.	93		83	14	122 93	4	63
69	91		0	60	130 91	0	90
69	95		Ō	86	131 91	1	54
72	96		100	00	144 92	1	76
73	96		З	86	150.92	3	56
74	95		5	71	164 90	2	87
75	96		Q	90	184 98	0	64
76.	95		21	96	203.88	1.	12
77	96		0	69	204 93	1	12
79	96		0	94	224,90	1	20
80	95		Ú.	51			

.

28. 3,3,4,5,5,5-Hexafluoropent-2-yl ethanoate

207

J,

51	́С З	â	7 7	10月 11	a.	90
61	01	2	99	113 04	2	21
62	05	5	34	119 07	s	6.1
63	05	i) j	90	115 00	ĩ	07
64	05	3	52	138 05	,	01
-69	03	.:6	30	1.19 69	י. רו	21
7.1	05	26	56	151 00	13	33
75	06		67	101 08	4	39
	00		67	165 11	.2	99
75	06	L	56	195 09	100	00
77	∿6	ů.	33	196 03	-	6 I
<u>6</u> 0	09	2	21	225 07		00
92	0.1	2	3.1	272 14	÷	17
83	05	۲	26	293.10	-	47 00
91	09	2	60	316 17		22
95	06		60		-	- I J
101	05	2	<u> </u>	2016 12	1	/ 3
1.91	00	j	65	5 1 7	-	0 R
102	<u>05</u>	.1	30			
103	0.7	5	90			

۰.

209

Ťŝ.

.....

,

51	02	11	68	92	07	23	40
52	04	2	28	93	07	1	35
53	0.1	0	70	95	02	4	69
57	0 3	0	32	105	04	4	61
60	55	- 0	65	106	05	1	65
62	02	0	99	107	05	4	25
63	03	4	25	108	07	0.	50
64	03	1.	45	109	05	0	53
65	05	13.	43	113	00	0	51
66	05	0	70	128	. 91	0	40
69	00	-	25	131	. 94	0.	55
74	02	0	61	133	. 92	0	36
75	04	0	74	145	. 03	0	71
76	04	0	69	153	06	0.	37
77	04	14	89	183	04	0	51
78	05	2	91	222	. 04	1	10
79	06	32	05	252	. 04	2	02
80	07	2	13	271	. 04	17	99
82	01	0	55	272	05	26	15
89	04	1	28	273	05	3	0.1
30	15		ά n			,	

216

1 98 F

0 15

217

٠.

286.95

11.5 4 5	O s e
51	5 25
5	4 45
60,53	£0.00
·· •	11 33
82 -	101 7.1
<u>ap no</u>	1 88
28 01	3 32
100 98	3 52
105 01	3 50
115 00	50 CC
133 🔅	3 5 2
135 00	14 84
137 01	5 66
151 04	n 6-84
154 99	0 100 VĐ
159 01	3 52
166 99	2 46
167 05	5 5 27
182 2	50 00
183 2	n (Feo 66)
167 20	4 5 47
	7 62
261 91	9 50 OC
, 191 J	5 3 71

.

...

41. (3,3,4,5,5,5-Hexafluoropent-2-oxy)-2,4-dinitrobenzene

₿,

1153.5	. : •					
ત્રુણ હતુ	:	38	Э.1	રો છે	-	00
50 38	15	- 6	÷ 3	27	1	89
51 09	-	51	2-1	95	11	33
52 97	5	05	95	3.4	د	91
56 39	3	91	1.00	94	! !	1.3
60 07	6	5.1	109	24	ίΟΟ	00
61 98	50	00	107	9.1	1.2	30
62 98	1.00	00	108	95	7	42
63 08	à	77	112	24	3	32
61 98	.]	<u>9.1</u>	114	36	3	13
្រុក្រូ ១ភ្	1	00	100	<u>a</u> a	3	71
73 26	Ģ	96	126	9	3	13
11 9	16	0.5	138	ίr	12	30
75 07	n	01	150	a∵.	50	0,0
76 97	1.5	0.2	153	93	ίο <mark></mark>	00
77 28	11	21	154	94 94	5	27
78 96	- 6	7 Ę	158	90	10	74
20 96	£.	71	166	9.	50	0 Q
81 95	Ę	77	167	24	. B	80
98 96	4	64	169	9 2	3	51
<u>90 97</u>	3	J J	183	α_{i}	100	0.0
o la	i)	•1 °	19.1	() () ()	4	5.I
			. 4 %	9 i	1	19
			351	97	1	88
			100	50	د ي	27

220

221

· ; ·

44 4-(2.2.3.4.4.4-Hexalluorobutoxy)trilluoropyrimidine

ï

-11.5

;

₫.

11355		• :	Pare	
49	96		<u>ل</u>	55
50	97		15	1.2
56	<u>a</u> 7		3	91
59	0.5		ŗ.	3.1
- 1	<u>9</u> 6		2	25
64	97		1	69
64	35		2	60
-68	95		100	00
70	83		.1	82
רי	96		9	! 1
74	97		ċ	91
75	36		11	59
76	98		<u> 3</u> 3	33
7.7	99		5	60
91	96		12	24
92	96		ι.	56
100	85		3	38
104	95		13	02
149	95		12	2.4
150	93		á	37
728	00		!	25

ъ.

÷

C1+

Mass	% Base		
44.00	3.66	107.99	16.14
45.00	0.53	108.99	1.44
52.04	5.08	117.04	0.56
58.01	0.52	123.97	0.75
64 98	0.48	125.00	0.47
77 00	0 53	138.91	1.32
77 99	0 59	154.90	0.68
79 98	0.32	155.92	0.50
81 99	2 05	173, 93	0.92
88 96	0 57	188.93	0.74
89 97	0 36	349,86	0.31
90 97	1 58	367.83	100.00 F
92 97	1.50	368.84	14.39 F
92.97	1.00	369 83	5.96 F
33.90	0.48	370.03	0.75 5
105.97	0.72	370.83	U. /5 F
106.97	1.34		

4,7-bis(4-methylbenzenesulphonate)

·****	• •	Ease	~ -	
-	7	_	с ї	
-1 =	95	V -		
1.5	9.5	-	-9	1
5.1	5.5	~ -		
	99		31	
56	01			
57	02	<i>۱</i> ,	9 5	
E 1	00	-	44	
63	Q.C.	-	26	
64	0.		40	
00	98	•	90	
65	99	-1	80	
	0 C		10	
74	00	•	30	
- 5	с :	:	7.2	
- 5	98	:	9(
78	êč	100	0¢	
77	99	3	3.2	
- 9	98	31	36	
	96		72	
80	99	с. -	36	
82	01	ć	12	
81	02	:	12	
8.3	99	<u>:</u>	35	
21	01	-	26	
23	01		04	
30	03	:	20	
29	00		21	
100	01		22	
1.1	01	:	13	
111	0.0	-	30	
113	01	-	2	
123	00		50	
128	99		64	
131	01		a n	
1 7 -	07		-	
142	00	-	35	
142	96		¢.	
145	C 3	-	32	
151	C C	÷	51	
161	0.5	1	41	
:63	07		27	
199	01	:	17	
191	с:		3 E	

 $\dot{\tau}$

,

£

•

Mass	% Base		
55.04	0.52	123.10	0.31
56.05	0.83	124.10	11.11
57.06	0.75	125.11	15.47
68.05	0.51	126.11	2.05
69.05	3.70	127.02	0.62
70.06	1.01	131.99	0.33
71.04	0.93	152.09	0.81
82.05	0.46	153.06	0.72
83.06	0.91	154.09	100.00
84.06	12.96	155.09	11.11
85.06	1.85	156.10	0.73
86 .07	0.86	173.03	0.53
96.07	1.87	221.03	3.07
97.08	0.49	286.10	3.95
98.07	5. 56	287.10	0.54
110.08	18.53	303.10	0.45
111.09	2.34	304.07	14.81 F
112.06	7.90	305.09	15.13 F
113.06	3.70	306.09	2.16
114.07	0.62		
122.08	0.44		

APPENDIX THREE

.

INFRA RED SPECTRA

ŧ,

All infra red spectra were run as thin films for liquid samples, or KBr discs for solids.

Scale in wavenumbers (cm⁻¹) is shown at the foot of each page.

₿.

CONTENTS

- 1. 3,3,4,5,5,5-Hexafluoropentan-2-one
- 2. 3,3,5,5,5-Pentafluoropentan-2-one
- 3. 3,3,4,5,5,5-Hexafluorohexan-3-one
- 4. 3,3,5,5,5-Pentafluorohexan-3-one
- 5. 3,3,4,5,5,5-Hexafluoroheptan-4-one
- 6. 3,3,5,5,5-Pentafluoroheptan-4-one
- 7. 3,3,4,5,5,5-Hexafluorooctan-4-one
- 8. 3,3,5,5,5-Pentafluorooctan-4-one
- 9. 4,4,5,6,6,6-Hexafluoro-2,2-dimethylhexan-3-one
- 10. 4,4,6,6,6-Pentafluoro-2,2-dimethylhexan-3-one
- 11. 1,1,1,2,3,3,16,16,17,18,18,18-dodecafluorooctadecane-4,15dione
- 12. 2,2,3,4,4,4-Hexafluorobutanol
- 13. 2,2,4,4,4-Pentafluorobutanol
- 14. 3,3,4,5,5,5-Hexafluoropentan-2-ol
- 15. 3,3,5,5,5-Pentafluoropentan-2-ol
- 16. 4,4,5,6,6,6-Hexafluorohexan-3-ol
- 17. 1,1,1,2,3,3-Hexafluoroheptan-4-ol
- 18. 1,1,1,2,3,3-Hexafluorooctan-4-ol
- 19. 1,1,1,2,3,3-Hexafluorononan-4-ol
- 20. 5,5,6,7,7,7-Hexafluoroheptane-4,7-diol
- 21. 1,1,1,2,3,3,8,8,9,10,10,10-Dodecafluorodecane-4,7-diol
- 22. 1,1,1,2,3,3,9,9,10,11,11,11-Dodecafluoroundecane-4,8-diol
- 23. 2-(1,1,2,3,3,3-Hexafluoropropyl)oxolane
- 24. 2,5-Bis(1,1,2,3,3,3-hexafluoropropyl)oxolane
- 25. 2,2,3,4,4,4-Hexafluorobutoxytrimethylsilane
- 26. 2-(1,1,2,3,3,3-Hexafluoropropyl)pyrrolidine-1-carboxaldehyde
- 27. 2,2,3,4,4,4-Hexafluorobutyl ethanoate
- 28. 3,3,4,5,5,5-Hexafluoropent-2-yl ethanoate
- 29. 2,2,3,4,4,4-Hexafluorobutyl 3,5-dinitrobenzoate
- 30. 3,3,4,5,5,5-Hexafluoropent-2-yl 3,5-dinitrobenzoate
- 31. 3,3,4,5,5,5-Hexafluoropent-2-yl 1,4-dibenzoate
- 32. 2,2,3,4,4,4-Hexafluorobutyl phenyl carbonate
- 33. 3,3,4,5,5,5-Hexafluoropent-2-yl phenyl carbonate
- 34. 3,3,4,5,5,5-Hexafluoro-2-methoxypentane
- 35. 3,3,4,5,5,5-Hexafluoro-2-propoxypentane

36. 3,3,4,5,5,5-Hexafluoro-2-(prop-2-enoxy)pentane 3,3,4,5,5,5-Hexafluoro-2-(phenylmethoxy)pentane 37. (2,2,3,4,4,4-Hexafluorobutoxy)pentafluorobenzene 38. 39. (3,3,4,5,5,5-Hexafluoropent-2-oxy)pentafluorobenzene 40. (2,2,3,4,4,4-Hexafluorobutoxy)-2,4-dinitrobenzene (3,3,4,5,5,5-Hexafluoropent-2-oxy)-2,4-dinitrobenzene 41. 42 4-(2,2,3,4,4,4-Hexafluorobutoxy)tetrafluoropyridine 4-(3,3,4,5,5,5-Hexafluoropent-2-oxy)tetrafluoropyridine 43. 44. 4-(2,2,3,4,4,4-Hexafluorobutoxy)trifluoropyrimidine 45. 4-(3,3,4,5,5,5-Hexafluoropent-2-oxy)-trifluoropyrimidine 46. 5-(2,2,3,4,4,4-Hexafluorobutoxy)trifluoropyrazine 47. 5-(3,3,4,5,5,5-Hexafluoropent-2-oxy)-trifluoropyrazine 48. 4-(2,2,3,4,4,4-Hexafluorobutoxy)trifluoropyridazine 4-(3,3,4,5,5,5-Hexafluoropent-2-oxy)-trifluoropyridazine 49. 2,2,3,4,4,4-Hexafluorobutyl 4-methylbenzenesulphonate 50. 51. 3.3.4.5.5.5-Hexafluoropentyl 2-(4-methylbenzenesulphonate) 1,1,1,2,3,3,8,8,9,10,10,10-Dodecafluorodecyl 52. 4,7-bis(4-methylbenzenesulphonate) 53. 3,3,4,5,5,5-Hexafluoropentyl 2-(trichloromethanesulphonate) 2-Chloro-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 54. 2-Phthalimido-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 55. 2-Piperidino-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane 56.

57. 2-Morpholino-5-(1,1,2,3,3,3-hexafluoropropyl)oxolane

ł

...

•

APPENDIX FOUR

₫.

RESEARCH COLLOQUIA, SEMINARS,

LECTURES AND CONFERENCES

. .

FIRST YEAR INDUCTION COURSES: OCTOBER 1989

The course consists of a series of one hour lectures on the services listed below:

- 1. Departmental Organisation
- 2. Safety Matters
- 3. Electrical Appliances and Infrared Spectroscopy
- 4. Chromatography and Microanalysis
- 5. Atomic Absorption and Inorganic Analysis
- 6. Library Facilities
- 7. Mass Spectroscopy
- 8. Nuclear Magnetic Resonance
- 9. Glass Blowing Techniques

EXAMINED LECTURE COURSE (OCTOBER - NOVEMBER 1989)

The course consisted of six one-hour lectures followed by a written examination:

ŧ.

"Modern N.M.R. Techniques"- Prof. R.K. Harris.

 \sim

COLLOQUIA, LECTURES AND SEMINARS GIVEN BY INVITED SPEAKERS (* indicates attendance by the author)

- BADYAL, Dr J.P.S. (Durham University) 1st November 1989 Breakthroughs in Heterogeneous Catalysis
- *<u>BECHER</u>, Dr.J. (Odense University) 13th November 1989 Synthesis of New Macrocyclic Systems using Heterocyclic Building Blocks.
- <u>BERCAW</u>, Prof. J.E. (Calif. Inst. of Tech.) 10th November 1989 Synthetic and Mechanistic Approaches to Zieger-Natta Polymerisation of Olefins
- BLEASDALE, Dr. C. (Newcastle University) 21st February 1990 The Mode of Action of some Anti-Tumour Agents
- BOWMAN, Prof. J.M. (Emory University) 23rd March 1990 Fitting Experiment with Theory in Ar-OH
- *<u>BUTLER</u>, Dr. A. (St. Andrews University) 7th December 1989 The Discovery of Penicillin: Facts and Fancies
- <u>CHEETHAM</u>, Dr.A.K. (Oxford University) 8th March 1990 Chemistry of Zeolite Cages
- *<u>CLARK</u>, Prof. D.T. (ICI Wilton) 22nd February 1990 Spatially Resolved Chemistry (using Nature's Paradigm in the Advanced Materials Arena).
- <u>COLE-HAMILTON</u>, Prof. D.J. (St. Andrews Uni.) 29th November 1989 New Polymers from Homogeneous Catalysis
- <u>CROMBIE</u>, Prof. L. (Nottingham University) 15th February 1990 The Chemistry of Cannabis and Khat
 - <u>DYER</u>, Dr. U. (Glaxo) 31st January 1990 Synthesis and Conformation of C-Glycosides

- <u>FLORIANI</u>, Prof. C. (Lausanne Uni., Switz'land) 25th October 1989 Molecular Aggregates- A Bridge Between Homogeneous and Heterogeneous Systems
- *<u>GERMAN</u>, Prof. L.S. (USSR Academy of Sciences) 9th July 1990 New Syntheses in Fluoroaliphatic Chemistry: Recent Advances in the Chemistry of Fluorinated Oxiranes.
- <u>GRAHAM</u>, Dr.D. (B.P. Research Centre) 4th December 1989 How Proteins Absorb to Interfaces
- <u>GREENWOOD</u>, Prof. N.N. (University of Leeds) 9th November 1989 Novel Cluster Geometries in Metalloborane Chemistry
- *HOLLOWAY, Prof. J.H. (University of Leicester)1st February 1990 Noble Gas Chemistry
- *<u>HUGHES</u>, Dr.M.N. (King's College, London) 30th November 1989 A Bug's Eye View of the Periodic Table
- *<u>HUISGEN</u>, Prof. R. (Universität München) 15th December 1989 Recent Mechanistic Studies of [2+2] Additions
- <u>KLINOWSKI</u>, Dr.J. (Cambridge University) 13th December 1989 Solid State NMR Studies of Zeolite Catalysts
- *<u>LANCASTER</u>, Rev. R. (Kimbolton Fireworks) 8th February 1990 Fireworks - Principles and Practice.
- LUNAZZI, Prof. L. (University of Bologna) 12th February 1990 Application of Dynamic NMR to the Study of Conformational Enantiomerism
- <u>PALMER</u>, Dr. F. (Nottingham University) 17th October 1989 Thunder and Lightning
- *<u>PARKER</u>, Dr. D. (Durham University) 16th November 1989 Macrocycles, Drugs and Rock'N'Roll

PERUTZ, Dr. R.N. (York University) 24th January 1990 Plotting the Course of C-H Activations with Organometallics.
* <u>PLATONOV</u> , Prof. V.E. (USSR Academy of Sciences)9th July 1990 Polyfluoroindanes: Synthesis and Transformation
* <u>POWELL</u> , Dr.R.L. (ICI) 6th December 1989 The Development of CFC Replacements
<u>POWIS</u> , Dr. I. (Nottingham University) 21st March 1990 Spinning off in a Huff: Photodissociation of Methyl Iodide
* <u>ROZHKOV</u> , Prof. I.N. (USSR Academy of Sciences) 9th July 1990 Reactivity of Perfluoroalkyl Bromides
<u>STODDART</u> , Dr.J.F. (Sheffield University) 1st March 1990 Molecular Lego
<u>SUTTON</u> , Prof. D. (Simon Fraser University., Vancouver B.C.) 14th February 1990
Synthesis and Applications of Dinitrogen and Diazo Compounds of Rhenium and Iridium.
THOMAS, Dr.R.K. (Oxford University)28th February 1990Neutron Reflectometry from Surfaces
<u>THOMPSON</u> , Dr. D.P. (Newcastle University) 7th February 1990 The Role of Nitrogen in Extending Silicate Crystal Chemistry.
ALDER, Dr. B.J. (Lawrence Livermore Labs., California) 15th January 1991
Hydrogen in all its glory
<u>BELL</u> , Prof. T. (SUNY, Stoney Brook, U.S.A.) 14th November 1990 Functional Molecular Architecture and Molecular Recognition
BOCHMANN, Dr. M. (University of East Anglia) 24th October 1990 Synthesis, Reactions and Catalytic Activity of Cationic Ti Alkyls

*<u>BRIMBLE</u>, Dr. M.A. (Massey University, N. Z.) 29th July 1991 Synthetic Studies Towards the Antibiotic Griseusin-A <u>BROOKHART</u>, Prof. M.S. (Uni. of N. Carolina) 20th June 1991 Olefin Polymerisations, Oligomerisations and Dimerisations

Using Electrophilic Late Transition Metal Catalysts

BROWN, Dr. J. (Oxford University) 28th February 1991 Can Chemistry Provide Catalysts Superior to Enzymes?

BUSHBY, Dr. R. (Leeds University) 6th February 1991 Biradicals and Organic Magnets

<u>COWLEY</u>, Prof A.H. (University of Texas) 13th December 1990 New Organometallic Routes to Electronic Materials

*<u>CROUT</u>, Prof. D. (Warwick University) 29th November 1990 Enzymes in Organic Synthesis

DOBSON, Dr. C.M. (Oxford University) 6th March 1991 NMR Studies of Dynamics in Molecular Crystals

<u>GERRARD</u>, Dr. D. (British Petroleum) 7th November 1990 Raman Spectroscopy for Industrial Analysis

*<u>HUDLICKY</u>, Prof. T. (Virginia Polytech. Inst.) 25th April 1991 Biocatalysis and Symmetry Based Approaches to the Efficient Synthesis of Complex Natural Products

*JACKSON, Dr. R. (Newcastle University) 31st October 1990 New Synthetic Methods: a-Amino Acids and Small Rings

<u>KOCOVSKY</u>, Dr. P. (Uppsala University) 6th November 1990 Stereo-Controlled Reactions Mediated by Transition and Non-Transition Metals

LACEY, Dr. D. (Hull University) 31st January 1991 Liquid Crystals

LOGAN, Dr. N. (Nottingham University) Rocket Propellants	1st November 1990			
*MACDONALD, Dr. W.A. (ICI Wilton) Materials for the Space Age	11th October 1990			
MARKAM, Dr.J. (ICI Pharmaceuticals) DNA Fingerprinting	7th March 1991			
<u>PETTY</u> , Dr. M. (Durham University) Molecular Electronics	14th February 1991			
PRINGLE, Dr. P.G. (Bristol University) Metal Complexes with Functionalised Phosp	5th December 1990 hines			
PRITCHARD, Prof. J. (Queen Mary & Westfield College, London Univ.)				
Copper Surfaces and Catalysts	21St November 1990			
SADLER, Dr. P.J. (Birbeck College, London) 24th January 1991 Design of Inorganic Drugs: Precious Metals, Hypertension + HIV				
* <u>SARRE</u> , Dr. P. (Nottingham University) Comet Chemistry	17th January 1991			
<u>SCHROCK</u> , R.R. (Massachusetts Institute of Technology)				
Metal-ligand Multiple Bonds and Metathesis	s Initiators			
* <u>SCOTT</u> , Dr. S.K. (Leeds University) Clocks, Oscillations and Chaos	8th November 1990			
<u>SHAW,</u> Prof. B.L. (Leeds University) Syntheses with Coordinated, Unsaturated Ph Ligands	20th February 1991 nosphine			
<u>SINN</u> , Prof. E. (Hull University) Coupling of Little Electrons in Big Molecules Active Sites of (Metalloproteins and other)	30th January 1991 s. Implications for the Macromolecules			

<u>SOULEN</u>, Prof. R. (South Western University, Texas) 26th October 1990 Preparation and Reactions of Bicycloalkenes

WHITAKER, Dr. B.J. (Leeds University) 28th November 1990 Two-Dimensional Velocity Imaging of State-Selected Reaction Products

ANDERSON, Dr. M. (Shell Research) 30th January 1992 Recent Advances in the Safe and Selective Chemical Control of Insect Pests

BILLINGHAM, Dr. N.C. (University of Sussex) 5th March 1992 Degradable Plastics - Myth or Magic?

<u>BUTLER</u>, Dr. A.R. (St. Andrews University) 7th November 1991 Traditional Chinese herbal drugs: a different way of treating disease

<u>COOPER</u>, Dr. W.D. (Shell Research) 11th December 1991 Colloid science: theory and practice

<u>FENTON</u>, Prof. D.E. (Sheffield University) 12th February 1992 Polynuclear complexes of molecular clefts as models for copper biosites

<u>GANI</u>, Prof. R. (St. Andrews University) 13th November 1991 The chemistry of PLP-dependent enzymes

<u>GEHRET</u>, Dr. J-C (Ciba-Geigy, Basel) 13th May 1992 Some aspects of industrial agrochemical research

<u>GRIGG</u>, Prof. R. (Leeds University) 4th December 1991 Palladium-catalysed cyclisation and ion-capture processes

HANN, Dr. R.A. (ICI Imagedata) 12th March 1992 Electronic Photography - An Image of the Future

HARRIS, Dr. K.D.M. (St. Andrews University) Understanding the properties of solid-inclus	22nd January 1992 sion compounds			
HITCHMAN, Prof. M.L. (Stratchlyde Univ.) Chemical vapour deposition	26th February 1992			
* <u>HOLMES</u> , Dr. A. (Cambridge University) Cycloaddition reactions in the service of th of piperidine and indolizidine natural produ	29th January 1992 ne synthesis nets			
<u>JOHNSON</u> , Prof. B.F.G. (Edinburgh University) Cluster-surface analogies	6th November 1991			
<u>KEELEY,</u> Dr. R. Modern forensic science	31st October 1991			
KNIGHT, Prof. D.M. (University of Durham) Interpreting experiments: the begining of	7th April 1992 electrochemistry			
MASKILL, Dr. H. (Newcastle University) Concerted or stepwise fragmentation in a reaction	18th March 1992 deamination-type			
*MORE O'FERRALL, Dr. R. (Univ. Coll., Dublin) 20th November 1991 Some acid-catalysed rearrangements in organic chemistry				
NIXON, Prof J.F. (University of Sussex) <i>The Tilden Lecture</i> Phosphaalkynes: new b in inorganic and organometallic chemistry	25th February 1992 uilding blocks			
* <u>SALTHOUSE</u> , Dr. J.A. (University of Manche Son et Lumiere - a demonstration lecture	ster)17th October 1991			
SAUNDERS, Dr. J. (Glaxo Group Research Lin Molecular Modelling in Drug Discovery	nited)13th February 1992			
<u>SMITH</u> , Prof. A.L. (ex Unilever) Soap, detergents and black puddings	5th December 1991			

THOMAS, Prof. E.J. (Manchester University) 19th February 1992 Applications of organostannanes to organic synthesis

<u>THOMAS</u>, Dr. S.E. (Imperial College) 11th March 1992 Recent advances in organoiron chemistry

*<u>VOGEL</u>, Prof. E. (University of Cologne) 20th February 1992 *The Musgrave Lecture* Porphyrins: Molecules of Interdisciplinary Interest

*<u>WARD</u>, Prof. I.M. (IRC in Polymer Science and Tech., Uni. of Leeds) 28th November 1991 *The SCI Lecture* The Science and Technology of Orientated Polymers

RESEARCH CONFERENCES ATTENDED

£

SCI Fine Chemicals Group, Graduate Symposium, University of York. March 1990.

North East Graduate Symposium, University of Durham. April 1991.

13th International Symposium on Fluorine Chemistry, Bochum,

Germany.

2-6th September 1992.

REFERENCES

REFERENCES

- 1. T. A. O'Donnell, *The Chemistry of Fluorine*, Pergamon Press, Oxford, 1973.
- 2. R. A. Peters, R. J. Hall, P. F. V. Ward and N. Sheppard, 1960, 77, 17.
- 3. J. T. Welch and S. Eswarakrishnan, *Fluorine in Bioorganic Chemistry*, Wiley Interscience, New York, 1991.
- 4. H. Moissan, *Compte Rendu*, 1886, **102**, 1543.
- 5. H. Moissan, *Compte Rendu*, 1886, **103**, 203.
- 6. F. Swarts, Bull. Acad. Roy. Belg., 1892, 24, 474.
- 7. T. Midgely Jr. and A. L. Henne, Ind. Eng. Chem., 1932, 24, 637.
- 8. Preparation, Properties and Technology of Fluorine and Organofluorine Compounds, ed. C. Slesser and S. R. Schram, McGraw-Hill, New York, 1951.
- 9. T. L. Cottrell, *The Strengths of Chemical Bonds*, Butterworths Scientific Publications, London, 1958.
- A. T. Morse, P. B. Ayscough and L. C. Leitch, *Can. J. Chem.*, 1955, 33, 453.
- 11. W. Templeton, *Organic Chemistry*, McDonald and Evans, Plymouth, 1978.
- 12. G. H. Cady, Proc. Chem. Soc., 1960, 133.
- 13. J. W. Sargent and R. J. Seffl, *Fed. Proc. Fed. Proc. Amer. Soc. Exp. Biol.*, 1970, **29**, 1699.
- 14. P. Goldman, Science, 1969, 164, 1723.
- 15. D. E. Bergstrom and D. J. Swartling, in *Fluorine-Containing Molecules: Structure, Reactivity, Synthesis, and Applications,*
- ed. J. F. Liebman, A. Greenberg and W. R. Dolbier Jr., VCH, Deerfield Beach, Florida, 1988, p. 259.
- 16. R. Filler, in *Organofluorine Chemicals and their Industrial Applications,* ed. R. E. Banks, Ellis Horwood, Chichester, 1979.
- 17. R. D. Chambers, D. O'Hagan, R. B. Lamont and S. C. Jain, *J. Chem. Soc., Chem. Commun.*, 1990, **15**, 1053.
- 18. J. Seidenfeld and L. J. Marton, *Biochem. Biophys. Res. Commun.*, 1979, **86**, 1192.
- 19. M. V. Rajam, L. H. Weinstein and A. W. Galston, *Proc. Natl. Acad. Sci. U.S.A.*, 1985, **82**, 6874.
- 20. USP 3 711 486.
- 21. J. Kollonitsch and L. Barash, J. Am. Chem. Soc., 1976, 98, 5591.
- J. Kollonitsch, L. Barash, F. M. Kahan and H. Kropp, *Nature*, 1973
 243, 346
- 23. T. N. Wade, F. Gaymand and R. Geudj, Tet. Lett., 1979,
- 24. B. Schwarz, D. Cech and J. Reefschlagger, *J. Prakt. Chem.*, 1984 **326**, 985.
- 25. G. M. Blackburn, D. Brown, S. J. Martin and M. J. Paratt, J. Chem. Soc., Perkin Trans. I, **1987**, 181.
- 26. M. Bobek, I. Kavai and E. De Clercq, J. Med. Chem., 1987, 30, 1494.
- 27. N. H. Pardanani and N. Muller, Org. Prep. Proc. Int., 1978, 10, 279.
- E. De Clercq, A. Billiau, V. G. Edy, K. L. Kirk and L. A. Cohen, Biochim. Biophys. Res. Commun., 1978, 82, 840.
- 29. R. W. Hartmann, A. Heindl, M. R. Schneider and H. Schoenenberger, J. Med. Chem., 1986, 29, 322.
- 30. E. D. Bergmann and S. Cohen, J. Chem. Soc., 1961, 4669.
- E. D. Bergmann, S. Cohen and I. Shakak, J. Chem. Soc., 1959, 3286.
- 32. H. M. Walborsky, M. E. Baum and D. F. Lomcrini, *J. Am. Chem. Soc.*, 1955, **77**, 3637.
- 33. H. M. Walborsky and M. E. Baum, J. Am. Chem. Soc., 1958, 80, 187.
- 34. H. M. Hill, E. B. Towne and J. B. Dickey, J. Am. Chem. Soc., 1950, **72**, 3289.
- 35. M. H. Gelb, J. P. Svaren and R. H. Abeles, *Biochemistry*, 1985, 24, 1813.
- 36. W. J. Houlihan, J. H. Gogerty, E. A. Ryan and G. Schmitt, *J. Med. Chem.*, 1985, **28**, 28.
- 37. W. G. M. Jones, in *Organofluorine Chemicals and their Industrial Applications*, ed. R. E. Banks, Ellis Horwood, Chichester, 1979.
- 38. F. Gollan and L. C. Clark, Ala. J. Med. Sci., 1967, 4, 336.
- F. Gollan and L. C. Clark, *Trans. Assoc. Amer. Phys.*, 1967, 31, 102.
- 40. K. Saito, G. A. Digeuis, A. A. Hawi and J. Chaney, *J. Fluorine Chem.*, 1987, **35**, 663.
- 41. H. C. Fielding, in *Organofluorine Chemicals and their Industrial Applications*, ed. R. Filler, Ellis Horwood, Chichester, 1979.

. ;

- 42. M. R. C. Gerstenberger and A. Haas, *Angew. Chemie., Int. Ed. Eng.,* 1981, **20**, 647.
- 43. M. Hudlicky, *Chemistry of Organic Fluorine Compounds*, Ellis Horwood, Chichester, 1972.
- 44. New Fluorinating Agents in Organic Synthesis, ed. L. German and
 S. Zemoskov, Springer, Berlin, 1989.
- 45. USP 4 113 435.
- 46. R. J. Lagow and J. L. Margrave, Prog. Inorg. Chem., 1979, 26, 161.
- 47. R. J. Lagow, T. R. Bierschenk, T. J. Juhlke and H. Kawa, in Synthetic Fluorine Chemistry, ed. G. A. Olah, R. D. Chambers and G. K. Surya Prakash, Wiley, 1992, p. 97.
- 48. J. L. Adcock, K. Horita and E. B. Renk, J. Am. Chem. Soc., 1981, 103, 6937.
- 49. USP 4 330 475.
- 50. J. L. Adcock, W. D. Evans and L. Heller-Grossma^fn, *J. Org. Chem.*, 1983, **48**, 4953.
- 51. J. L. Adcock and M. L. Robin, J. Org. Chem., 1983, 48, 2437.
- 52. J. L. Adcock and M. L. Robin, J. Org. Chem., 1984, 49, 191.
- 53. J. L. Adcock and W. D. Evans, J. Org. Chem., 1984, 49, 2719.
- 54. J. L. Adcock and M. L. Robin, J. Org. Chem., 1984, 49, 1442.
- 55. J. L. Adcock and M. L. Cherry, J. Fluorine Chem., 1985, 30, 343.
- 56. J. L. Adcock, J. Fluorine Chem., 1986, 33, 327.
- 57. J. L. Adcock and M. L. Cherry, Ind. Eng. Chem. Res., 1987, 26, 208.
- 58. J. L. Adcock, M. L. Robin and S. Zuberi, *J. Fluorine Chem.*, 1987, **37**, 327.
- 59. WOP 90/03 353.
- 60. S. T. Purrington, B. S. Kagen and T. B. Patrick, *Chem. Rev.*, 1986, **86**, 997.
- 61. S. Rozen, Acc. Chem. Res., 1988, 21, 307.
- 62. Bigelow, Chem. Rev., 1947, 40, 51.
- 63. US P 4 113 435.
- 64. R. D. Chambers, B. Grievson, F. G. Drakesmith and R. L. Powell, *J. Fluorine Chem.*, 1985, **29**, 235.
- 65. A. Sekiya, S. Kurosawa and T. Yamada, Chem. Lett., 1991, 2183.
- 66. J. Burdon, J. C. Creasey, L. D. Proctor, R. G. Plevey and J. R. N. Yeoman, *J. Chem. Soc., Perkin Trans. II,* **1991**, 445.
- 67. Ger P 1 925 836.

:>

- 68. J. Burdon, I. W. Parsons and J. C. Tatlow, *Tetrahedron*, 1972, 28, 43.
- 69. D. A. Rausch, R. A. Davis and D. W. Osborne, *J. Am. Chem. Soc.*, 1963, **28**, 494.
- 70. G. Olah, J. T. Welch, Y. D. Vankar, N. Nojima, I. Kerkes and J. A. Olah, *J. Org. Chem.*, 1979, **44**, 3872.
- 71. USP 3 190 930.
- 72. USP 3 178 484.
- 73. USP 1178 483.
- 74. Fr P 1 383 927.
- 75. Fr P 1 396 709.
- 76. BP 612 914.
- 77. H. Hopff and G. Valkanas, Helv. Chim. Acta, 1963, 46, 1818.
- 78. J. H. Simons and C. J. Lewis, J. Am. Chem. Soc., 1938, 60, 492.
- 79. J. H. Brown and W. B. Whalley, J. Soc. Chem. (London), 1948, 67, 331.
- 80. T. Midgely Jr. and A. L. Henne, Ind. Eng. Chem., 1932, 24, 637.
- J. H. Simons and R. D. Dresdner, J. Electrochem. Soc., 1949, 95, 64.
- J. H. Simons, J. H. Pearlson, W. H. Brice, W. A. Watson and R. D. Dresdner, J. Electrochem. Soc., 1949, 95, 59.
- J. H. Simons and W. J. Hartand, J. Electrochem. Soc., 1949, 95, 55.
- 84. J. H. Simons, H. T. Francis and J. A. Hogg, *J. Electrochem. Soc.*, 1949, **95**, 53.
- 85. J. H. Simons, J. Electrochem. Soc., 1949, 95, 47.
- 86. USP 2 519 983.
- 87. M. Hudlicky, Org. React., 1987, 35, 513.
- 88. W. J. Middleton, J. Org. Chem., 1975, 40, 574.
- C. Scolastico, E. Couca, L. Prati, G. Guanti, L. Banfi, A. Berti,
 P. Farina and U. Valcavi, *Synthesis*, **1985**, 850.
- 90. H. Suschitzky, Adv. Fluorine Chem., 1965, 4, 1.
- 91. A. Roe, Org. React., 1949, 5, 193.
- G. C. Finger, F. H. Reed, D. M. Burness, D. M. Fort and R. R. Blough, J. Am. Chem. Soc., 1951, 73, 145.
- 93. M. S. Newman and K. C. Lilje, J. Org. Chem., 1979, 44, 1347.

52

- 94. J. Matsumoto, T. Miyamoto, T. Minimada, Y. Nishimura, H. Egawa and H. Nishimura, *J. Heterocyclic Chem.*, 1984, **21**, 673.
- 95. K. L. Kirk and L. A. Cohen, J. Am. Chem. Soc., 1971, 93, 3060.
- 96. R. D. Chambers, W. K. R. Musgrave and J. Savory, *J. Chem. Soc.*, **1961**, 3779.
- 97. W. K. R. Musgrave, Adv. Fluorine Chem., 1960, 1, 1.
- 98. L. D. Hall and J. F. Manville, Can. J. Chem., 1969, 47, 379.
- 99. R. E. A. Dear, J. Org. Chem., 1970, 35, 1703.
- 100. R. Hoppe, W. Daehne, H. Mattauch and K. Roedder, *Angew. Chem., Int. Ed.*, 1962, **1**, 599.
- 101. T. Tsushima, K. Kawada and T. Tsuji, Tet. Lett., 1982, 23, 1165.
- 102. A. F. Janzen, J. Fluorine Chem., 1983, 22, 557.
- 103. M. Zupan and A. Pollak, J. Chem. Soc., Chem. Commun., 1973, 845.
- 104. M. Zupan and A. Pollak, Tetrahedron, 1977, 33, 1017.
- 105. M. Zupan, A. Gregorcic and A. Pollak, *J. Org. Chem.*, 1977, **42**, 562.
- 106. M. Zupan and A. Pollak, J. Org. Chem., 1977, 42, 1559.
- 107. A. Gregorcic and M. Zupan, J. Org. Chem., 1979, 44, 4120.
- 108. S. A. Shackleford, Tet. Lett., 1977, 4265.
- 109. T.-C. Shieh, N. C. Yang and C. L. Chernick, *J. Am. Chem. Soc.*, 1964, **86**, 5021.
- 110. N. C. Yang, T.-C. Shieh, E. D. Feit and C. L. Chernick, J. Org. Chem., 1970, **35**, 4020.
- 111. D. R. MacKenzie and J. Fajer, J. Am. Chem. Soc., 1970, 92, 4994.
- 112. USP 3 833 581.
- 113. A. T. Podkhalyuzin and M. P. Nazarova, *Zh. Org. Khim.*, 1975, 11, 1568.
- 114. B. H. Appelman, L. J. Basile and R. C. Thompson, *J. Am. Chem. Soc.*, 1979, **101**, 3384.
- 115. S. Stavber and M. Zupan, J. Org. Chem., 1985, 50, 3609.
- 116. S. Stavber and M. Zupan, Tetrahedron, 1989, 45, 2737.
- 117. S. Stavber and M. Zupan, J. Org. Chem., 1991, 56, 7347.
- 118. J. Fried and D. K. Mitra, J. Med. Chem., 1980, 23, 234.
- 119. Osadchii, Izv. Akad. Nauk. S.S.S.R., 1970, 1409.
- 120. H. Gershon, J. A. A. Renwick, W. K. Wynn and R. D'Ascoli, *J. Org. Chem.*, 1966, **31**, 916.
- 121. G. Resnati and D. D. DesMarteau, J. Org. Chem., 1992, 57, 4281.

- 122. T. Umemoto, K. Harasawa, G. Tomizawa, K. Kawada and K. Tomita, Bull. Chem. Soc. Japan, 1991, 64, 1081.
- 123. A. J. Poss, W. J. Wagner and R. L. Frenette, *Abstr. Papers Am. Chem. Soc.*, 1991, **202**, 76.
- 124. R. E. Banks and I. Sharif, J. Fluorine Chem., 1991, 55, 207.
- 125. V. R. Polishchuk, B. Y. Medvedev, N. N. Bubnov, L. S. German and
 I. L. Knunyants, *Bull. Acad. Sci. U. S. S. R.*, 1973, **21**, 2736.
- 126. S. Rozen and M. Brand, Synthesis, 1985, 665.
- 127. O. Lerman, S. Rozen and M. Kol, *J. Chem. Soc., Chem. Commun.,* 1981, **1981**, 443.
- 128. G. H. Cady, Proc. Chem. Soc., 1960, 133.
- 129. M. J. Robins, M. MacCoss, S. R. Naik and G. Ramani, *J. Am. Chem. Soc.*, 1976, **98**, 7381.
- 130. K. Bischofberger, A. J. Brink and A. Jordaan, J. Chem. Soc., Perkin Trans. I, 1975, 2457.
- 131. USP 2 559 628.
- 132. USP 2 411 158.
- 133. USP 2 433 844.
- 134. USP 2 559 638.
- 135. R. D. Chambers and B. Grievson, J. Chem. Soc., Perkin Trans. I, 1985, 2215.
- 136. R. D. Chambers, B. Grievson and N. M. Kelly, J. Chem. Soc., Perkin Trans. I, 1985, 2209.
- 137. R. D. Chambers, N. Kelly and J. W. Emsley, *J. Fluorine Chem.*, 1978, **12**, 49.
- 138. R. D. Chambers, N. Kelly, W. K. R. Musgrave, W. G. M. Jones and R. W. Rendell, *J. Fluorine Chem.*, 1980, 16, 351.
- 139. USP 3 927 129.
- 140. R. N. Haszeldine, R. Rowland, R. P. Sheppard and A. E. Tipping, J. Fluorine Chem., 1985, **28**, 291.
- 141. H. Muramatsu, K. Inukai and T. Ueda, J. Org. Chem., 1964, 29, 2220.
- 142. H. Muramatsu, K. Inukai and T. Ueda, Bull. Chem. Soc. Japan, 1965, 30, 2546.
- 143. H. Muramatsu, S. Moriguchi and K. Inukai, J. Org. Chem., 1966, 31, 1306.

- 144. H. Muramatsu, K. Inukai and T. Ueda, *Bull. Chem. Soc. Japan,* 1967, **40**, 903.
- 145. H. Muramatsu, K. Inukai and T. Ueda, *Bull. Chem. Soc. Japan,* 1968, **41**, 2129.
- 146. H. Muramatsu, H. Kimoto and K. Inukai, *Bull. Chem. Soc. Japan,* 1969, **42**, 1155.
- 147. T. N. Abronskina, A. D. Sorokin, R. V. Kudryautsev and
 Y. A. Cheburkov, Bull. Acad. Sci. U.S.S.R., Div. Chem. Sci., 1974, 23,1741.
- 148. M. S. Kharasch, W. H. Urry and B. M. Kuderna, *J. Org. Chem.*, 1949, **14**, 248.
- 149. W. H. Urry, F. W. Stavey, O. O. Juveland and C. H. McDonnell, J. Am. Chem. Soc., 1953, **75**, 250.
- 150. B. Giese, Angew. Chemie., Int. Ed. Eng., 1983, 22, 753.
- 151. C. Walling and E. S. Huyser, Org. React., 1963, 13, 91.
- 152. R. D. Chambers, S. L. Jones, S. J. Mullins, A. Swales, P. Telford and M. L. H. West, in *A.C.S. Symposium Series*, ed. J. T. Welch, A. C. S., Washington D. C., 1991, p. 68.
- 153. F. Liska and V. Kubelka, *Collect. Czech. Chem. Commun.*, 1972, **37**, 1381.
- 154. A. T. Podkhalyuzin and M. P. N. Nazarova, *Khim. Vys. Energ.*, 1979, **13**, 130.
- 155. N. M. Kelly, PhD Thesis, University Durham, 1979.
- 156. B. Grievson, PhD Thesis, University of Durham, 1983.
- 157. R. W. Fuss, Ph.D. Thesis, University of Durham, 1989.
- 158. S. L. Jones, PhD Thesis, University of Durham, 1987.
- 159. A. K. Joel, PhD Thesis, University of Durham, 1992.
- 160. P. H. Whitby, PhD Thesis, University of Durham, 1992.
- 161. P. T. Telford, Ph.D. Thesis, University of Durham, 1986.
- 162. A. P. Swales, PhD Thesis, University of Durham, 1989.
- 163. M. Ohno, S. Eguch and K. Ishizaki, J. Org. Chem., 1988, 53, 1285.
- 164. F. A. Macias, J. M. G. Molinillo, G. M. Massanet and F. Rodriguezluis, *Tetrahedron*, 1992, **48**, 3345.
- 165. D. L. Boger and R. J. Mathvink, *J. Am. Chem. Soc.*, 1990, **112**, 4008.
- 166. M. Nishida, Y. Hayakawa, M. Matsui, K. Shibata and H. Muramatsu, Bull. Chem. Soc. Japan, 1991, 64, 3494.

- 167. L. S. Chen, J. Fluorine Chem., 1990, 47, 261.
- 168. G. Sarwar, J. M. Shreeve and R. L. Kirchmeier, *Inorg. Chem.*, 1989, **28**, 2187.
- 169. Czech P 262 373.
- 170. O. Paleta, Z. Budkova, J. Kvacala and H. Timpe, *Tet Lett*, 1991, **32**, 251.
- 171. Czech P 268 247.
- 172. O. Paleta and V. Dedek, J. Fluorine Chem., 1989, 42, 345.
- 173. V. Tortelli and C. Tonelli, J. Fluorine Chem., 1990, 47, 199.
- 174. R. D. Chambers, M. P. Greenhall, A. P. Wright and G. Caporiccio, J. Chem. Soc., Chem. Commun., **1991**, 1323.
- 175. N. P. Aktaev, G. A. Sokol'skii and I. L. Knunyants, *Izv. Akad. Nauk* SSSR, Ser. Khim., **1975**, 2530.
- 176. V. A. Al'bekov, A. F. Benda, A. F. Gontar, G. A. Sokol'skii and I. L. Knunyants, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1988**, 897.
- 177. R. E. Banks and S. M. Hitchen, *J. Chem. Soc., Perkin Trans. I,* **1982**, 1593.
- 178. R. E. Banks and S. M. Hitchen, J. Fluorine Chem., 1980, 179.
- 179. R. D. Chambers, M. P. Greenhall and M. J. Seabury, J. Chem. Soc., Perkin Trans. I, 2061.
- 180. R. A. De Marco and W. B. Fox, J. Fluorine Chem., 1978, 12, 137.
- 181. R. N. Haszeldine, J. R. McAllister and A. E. Tipping, J. Chem. Soc., Perkin Trans. I, **1975**, 2015.
- 182. C. F. Service and A. E. Tipping, J. Fluorine Chem., 1982, 20, 135.
- 183. T. K. Sarros et al, Nauch. Trudy. Tashk. Univ., 1973, 435, 139.
- 184. D. C. Nonhebel, J. M. Tedder and J. C. Walton, *Radicals*, Cambridge University Press, Cambridge, 1979.
- 185. H. Sutcliffe and I. McAlpine, Fluorine Chem. Rev., 1973, 6, 1.
- 186. J. M. Tedder, Quart. Rev., 1960, 14, 336.
- 187. G. S. Hammond, J. Am. Chem. Soc., 1955, 77, 334.
- 188. J. F. Harris and F. W. Stacey, J. Am. Chem. Soc., 1961, 83, 840.
- 189. F. Leavitt, M. Levy, M. Swarc and V. Stannet, J. Am. Chem. Soc., 1955, **77**, 5493.
- 190. J. M. Tedder and J. C. Walton, Tetrahedron, 1980, 36, 701.
- 191. J. M. Tedder, Angew. Chem., Int. Ed. Eng., 1982, 21, 401.
- 192. C. M. Starks, *Free Radical Telomerisation*, Academic Press, New York, 1974.

÷.,

- 193. J. D. LaZerte and R. J. Koshar, J. Am. Chem. Soc., 1955, 77, 910.
- 194. O. Abu-Nasrieh, MSc Thesis, University of Durham, 1990.
- 195. Eur P 432 541.
- 196. Ger P 4 000 163.
- 197. T. Inokuchi, S. Matsumoto and S. Torii, *J. Org. Chem.*, 1991, 56, 2416.
- 198. Jpn. Kokai Tokkyo Koho JP 02 107 790.
- 199. J. S. Cha, J. E. Kim, S. Y. Oh, J. C. Lee and K. W. Lee, *Tet. Lett.*, 1987, **28**, 2389.
- 200. Eur P 309056
- 201. USP 3 816 286.
- 202. D. J. Pasto, R. Krasnansky and C. Zercher, J. Org. Chem., 1987, 52, 3062.
- 203. J. McMurry, Organic Chemistry, Brooks/Cole, Monterey, California, 1984.
- 204. J. March, Advanced Organic Chemistry, Wiley-Interscience, New York, 1985.
- 205. C. L. Cheong and B. J. Wakefield, J. Chem. Soc., Perkin Trans. I, 1988, 3301.
- 206. J. H. Clark, Chem. Rev., 1980, 80, 429.
- 207. M. Yamada, S. Yahiro, T. Yamano, Y. Nakatani and G. Ourisson, *Bull. Soc. Chim. Fr.*, **1990**, 824.
- 208. G. G. Yakobson and N. N. Vorozhtsov, Zh. Vses. Khim. Obshch. D. I. Mendeleeva, 1961, 6, 360.
- 209. V. A. Sokolenko, Reakts. Sposobnost. Org. Soedin., 1968, 5, 429.
- 210. P. P. Rodionov and G. G. Furin, J. Fluorine Chem., 1990, 47, 361.
- 211. R. E. Banks, W. Jondi and A. E. Tipping, J. Fluorine Chem., 1989,
 44, 441.
- 212. R. E. Banks, A. E. Tipping and W. Jondi, J. Chem. Soc., Chem. Commun., 1989, 1268.
- 213. G. A. Artamskina, S. V. Kovalenko, I. P. Beletskaya and O. A. Reutov, *Zhur. Org. Khim.*, 1990, **26**, 2259.
- 214. R. D. Chambers, Y. A. Cherbukov, J. A. H. McBride and W. K. R. Musgrave, *J. Chem. Soc. (C)*, **1971**, 532.
- 215. R. D. Chambers, J. A. H. McBride and W. K. R. Musgrave, J. Chem. Soc. (C), **1971**, 3384.

- 216. R. D. Chambers, R. P. Corbally and W. K. R. Musgrave, J. Chem. Soc., Perkin Trans. I, 1972, 1281.
- 217. W. Dmowski and A. Haas, J. Chem. Soc., Perkin Trans. I, 1988, 1179.
- 218. K. Bowden, I. M. Heilbron, E. R. H. Jones and B. C. L. Weedon, *J. Chem. Soc.*, **1946**, 39.
- 219. H. C. Brown, C. P. Garg and K. T. Liu, J. Org. Chem., 1971, 36, 387.
- 220. C. P. Qian and T. Nakai, Tet. Lett., 1988, 29, 4119.
- 221. C.-P. Qian, T. Nakai, D. A. Dixon and B. E. Smart, *J. Am. Chem. Soc.*, 1990, **112**, 4602.
- 222. W. B. Farnham, W. J. Middleton, W. C. Fultz and B. E. Smart, *J. Am. Chem. Soc.*, 1986, **108**, 3125.
- 223. E. D. Bergmann and S. Cohen, J. Chem. Soc., 1961, 3537.
- 224. E. D. Bergmann and S. Cohen, J. Chem. Soc., 1959, 3278.
- 225. E. D. Bergmann and J. Schwarcz, J. Chem. Soc., 1956, 1524.
- 226. E. D. Bergmann and S. Szinai, J. Chem. Soc., 1956, 1521.
- 227. I. Blank, J. Mager and E. D. Bergmann, J. Chem. Soc., 1955, 2190.
- 228. J. T. Welch and S. Eswarakrishnan, in *Fluorine Containing Molecules*, ed. J. Liebman, A. Greenberg and W. R. Dolbier Jr., VCH, Deerfield Beach, Florida, 1988, p. 123.
- 229. J. T. Welch, R. W. Herbert and J. S. Plummer, *Abstr. Papers Am. Chem. Soc.*, 1988, **195**, 356.
- 230. J. T. Welch, J. S. Plummer and T. S. Chou, *J. Org. Chem.*, 1991, 56, 353.
- 231. X.-Y. Jiang, L. Xing-Ya and K.-Y. Wang, *J. Org. Chem.*, 1989, **54**, 5648.
- 232. R. E. Banks, F. Cuthbertson and W. K. R. Musgrave, Anal. Chim. Acta, 1955, **13**, 442.
- 233. M. Steinman, J. G. Topliss, R. Alekel, Y. S. Wong and E. E. York, J. Med. Chem., 1973, 16, 1354.
- 234. V. F. Tomanovskaya and V. N. Cherepova, 2H-Pentafluoropropylene: Preparation, Properties and Use, NIITEkhim, Moscow, 1979.
- 235. Jpn. Kokai Tokkyo Koho JP 80 57 525.
- 236. Jpn. Kokai Tokkyo Koho JP 80 57 526.
- 237. G. F. Il'in, S. N. Shkarak, A. F. Kolomiets, G. A. Sokol'skii, *Zh. Vses. Khim. Obshch. D. I. Mendeleeva*, 1983, **28**, 235.

- 238. A. V. Fokin, Yu. N. Studnev, A. I. Rapkin, T. M. Potarina and O. V. Vereinikinov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1981**, 2376.
- 239. A. V. Fokin, A. I. Rapkin, I. N. Krylov, A. P. Kutepov and Yu. N. Studnev, *Izv. Akad. Nauk SSSR, Ser. Khim.*, **1986**, 2364.
- 240. Yu. L. Kopaevich et al, Zh. Vses. Khim. Obshch. D. I. Mendeleeva, 1972, 236.

f.