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A B S T R A C T 

The Krafla volcanic system is a spreading segment in north Iceland. A decade-long 
crustal spreading episode began there in 1975. Up to 8 m of rift-normal surface 
widening occurred along an 80-90 km-long section of the plate boundary. Isostatic 
uplift in the vicinity of the melting icecap Vatnajokull has been proposed. A third 
GPS survey of a regional network surrounding the Krafla system was conducted 
in 1992. In 1991 a 10-point GPS network was installed and measured for the first 
time around Vatnajokull. 

The 1991 and 1992 GPS data were processed using the Bernese software. Differenc­
ing the 1992 results with those from 1987 and 1990 revealed a regional deformation 
field with a maximum, rift-normal expansion rate of 4.4 cm/yr near the r i f t , de­
creasing to 3 cm/yr at large distances. The time-averaged spreading rate in north 
Iceland, 1.8 cm/yr, cannot account for this deformation. The vertical deformation 
field reveals regional uplift throughout the network area, at its maximum closest 
to the r i f t and decreasing with distance. 

Three different models were applied to study the postdyking ground deformation, 
(1) continued opening at depth on the dyke plane in an elastic halfspace, (2) stress 
redistribution in an elastic-viscous layered medium, and (3) stress redistribution in 
an elastic layer over a viscoelastic halfspace. The latter model was developed by 
extending mathematical techniques previously used to model surface displacements 
resulting from thrust faulting to the case of dyke emplacement. 

For the model of continuous dyking at depth, a range of dykes will fit the deforma­
tion field. Using the elastic-viscous model, the motion 1987-1990 and 1990-1992 
is simulated adequately given the survey errors, but the 1987-1992 deformation is 
poorly fitted, suggesting that a more realistic geophysical model is required. Us­
ing the elastic-viscoelastic approach the effects of historical episodes in the region 
were subtracted from the observed displacement fields and the remaining motion 
was modelled as relaxation following the recent Krafla rifting episode. The best-fit 
model involves a halfspace viscosity of 1.1 x 10 1 8 Pa s. The vertical field is noisy, 
but indicates that the Krafla dyke complex rifted the entire elastic layer. Isostatic 
uplift centred on Vatnajokull is inconsistent with the vertical deformation field. 
The model suggests that the Krafla volcano became inactive after 1988/1989. The 
model further predicts that the width of the "plate boundary zone" is greater than 
that of Iceland itself. 
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Chapter 1 

The Structure and Evolution of Iceland 

1.1 Introduction 

Iceland sits astride the mid-Atlantic ridge and has a unique role in the study of 

processes taking place at mid-ocean ridge crests. It exhibits the largest exposure of 

ridge (400 km) and land area (103,000 km 2 ) anywhere along the mid-ocean ridge 

system. Over thirty spreading segments and two fracture zones are revealed. The 

oldest rocks found in Iceland are 16 Ma old and 11% of the land area is covered by 

lava less than 10,000 years old. 

Why does Iceland exist at all, an isolated landmass in the middle of the Atlantic? 

Wegener [1915] suggested that-Iceland was a relic of "continental-scum" left over 

from the separation of Greenland and Europe [Steinthorsson and Jacoby, 1985], 

despite his earlier contemplation of a mechanism similar to seafloor spreading [ We­

gener, 1912]. However, that spreading occurs in Iceland, though originally ques­

tioned by some [e.g., Einarsson, 1967; Beloussov, 1970] is now virtually universally 

accepted and was convincingly demonstrated in action by a recent rifting episode 

in north Iceland. The spreading process is now the fundamental basis for geo­

logical and geophysical interpretations of Iceland, and its subaerial nature there 

is attributed to excessive lava production caused by an underlying, ridge-centred 

hotspot. 



1.2 Geology 

1.2.1 Introduction 

Comprehensive reviews of the geology of Iceland are given by S<£mundsson [1978, 

1979]. The geology is controlled by Iceland's position on the mid-Atlantic ridge, 

with extensional features predominating. Active deformation occurs in axial r if t 

zones, non-rifting flank zones and along oblique fracture zones that connect offset 

segments of the axial r i f t zones either within Iceland or to the submarine mid-ocean 

ridge axis (Figure 1.1). Flanking the active volcanic zones is a broad expanse of 

lava-flow sequences that are exposed in cliff or valley sections sometimes over 1 km 

high. 

1.2.2 The Volcanic Pile of Iceland 

The volcanic pile of Iceland consists dominantly of tholeiitic basalts (90%) with 

acid and intermediate rocks constituting 5% and sediment of volcanic origin the 

remaining 5%. Vertical sections of the volcanic sequence expose up to 1500 m of 

rocks below which, seismic evidence has shown, a further 2-5 km of extrusives lie. 

Structural relationships indicate that the pile grew as lenticular units from elongate 

volcanic systems involving swarms of dykes and fissures usually localised about 

central volcanoes. Dykes tend to thicken towards the central volcanoes [Helgason 

and Zentilli, 1985]. The majority of faults and dykes are near-vertical, but normal 

faults with dips of 60-70° also occur, and are believed to be associated with the 

shallow parts of the fissure swarms. 

Detailed studies of deeply eroded, older flood basalts in the east of Iceland show a 

regional dip of the lava pile towards the active zone, increasing from 0° at the top 

of the pile to 5-10° at sea level, 1-2 km lower down in the stratigraphic succession. 

The increase in dip is matched by a thickening of the succession, indicating that the 

pile tilted as it thickened. Superpositioning indicates that the oldest rocks occur in 

the furthest northwest and east of Iceland, since age increases with distance from 

the active zone. This is confirmed by K - A r dating, with ages in the northwest of 

around 16 Ma, and 13 Ma in the east. 
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1.1: Structural geology map of Iceland, after Siemundsson [1986]. 
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Figure 1.2: Location of place names and areas of Iceland referred to in the text. 

1.2.3 The Axial Rift Zones 

The axial r i f t zones are thought to represent the zones where active plate growth 

is taking place. Their structure is dominated by en echelon fissure swarms up to 

5-10 km wide and 100 km long. The trend of the swarms is variable but tends to 

be fairly uniform within each branch of the r i f t zone. The en echelon arrays are 

either left-lateral or right-lateral, depending on the trend of the individual branch 

with respect to the direction of relative plate separation (which is near N100°E 

[Minster and Jordan, 1978]). Sinuous, branching, often en echelon volcanic fissures 

and non-eruptive gaping cracks are the dominant surface features of the fissure 

swarms. Normal faults with dips of greater than ~60° and displacements of 1-

100 m also occur. Dyke thicknesses range from less than 1 m to greater than 20 m, 

but are usually in the 1-3 m range. 

Most of the fissure swarms pass through central volcanoes, and together constitute 
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a "volcanic system". The central volcanoes are the locus of most frequent eruptions 

and maximum lava production. About one half of the active central volcanoes in 

the axial r if t zones have developed calderas, with diameters of 5-10 km. Caldera 

collapse is related to explosive eruptions producing sheets of ash or airfall tuffs (e.g., 

Krafla, Tindafjallajokull, Askja (Figure 1.2)) and to the withdrawal of magma from 

underlying chambers (e.g., Askja, Grimsvotn (Figure 1.2)). Basaltic flows from 

central volcanoes are composed of either olivine-poor tholeiites, forming aa lavas, 

or olivine-rich tholeiites, forming thick pahoehoe flows. The highly fluid nature of 

these lavas favours the formation of a volcano with gently sloping flanks (unless 

the eruption occurs subglacially). The axial r i f t zones contain many large lava 

shields composed mainly of olivine tholeiites, indicating that they have been fed 

by subcrustal magma sources. Many of the central volcanoes are also associated 

with persistent high-temperature geothermal areas, suggesting relatively shallow, 

long-term intrusive activity. 

A certain degree of uniformity in the volcanic processes during the last 10-15 Ma 

is envisaged by Pdlmason [1980]. A two-dimensional steady-state plate-tectonic 

kinematic model of Iceland describing the overall, time-averaged movements of 

solid crustal elements produced during the accretion process, predicts that the 

evidence for active volcanic and tectonic processes in the central part of the active 

zone gradually disappear into the deeper part of the distant crust with time. 

Three axial r if t zones currently exist in Iceland. The Western Volcanic Zone (WVZ) 

extends from the Reykjanes Ridge in the southwest to Langjokull in western central 

Iceland (Figure 1.2). From here the Hofsjokull zone extends eastwards to Kverkfjoll 

(Figure 1.2), from where the Northern Volcanic Zone (NVZ) extends northwards to 

Axarfjordur and the Eastern Volcanic Zone (EVZ) extends southwestwards towards 

the Torfajokull-Vestmannaeyjar flank zone (Figure 1.2). 

1.2.4 The Flank Zones 

Three active volcanic zones occur that have poorly developed extensional features 

and are located outside the main axis of accretion. These are the Sneefellsnes 

volcanic zone, the Torfajokull to Vestmannaeyjar section of the Eastern Volcanic 

Zone, and the Orasfajokull to Snaefell volcanic zone in southeast Iceland (Figures 1.1 

and 1.2). Their volcanic products lie unconformably upon older volcanics that 
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suffered erosion before the volcanism started. Most of the central volcanoes of the 

flank zones are large stratovolcanoes, many with summit craters and sometimes a 

caldera. The rate of heat flow in the flank zones is much lower than in the axial 

r i f t zones. 

The total volume of lava erupted within the neovolcanic zones in the last 10,000 

years is estimated at 400-500 k m 3 [Thorarinsson, 1965; Jakobsson, 1972], 85% 

within the axial r i f t zones and 15% in the flank zones [Jakobsson, 1972]. 

1.2.5 The Fracture Zones 

The South Iceland Seismic Zone (SISZ) (Figure 1.2) connects the Reykjanes Penin­

sula with the southern end of the Eastern Volcanic Zone, and the Tjornes Fracture 

Zone (TFZ) (Figure 1.2) connects the axial r if t zone in northern Iceland with the 

offshore mid-Atlantic ridge segment, the Kolbeinsey Ridge (Figure 1.2). They dis­

play a variety of tectonic features along their strike, including oblique spreading 

segments in en echelon arrays as well as older crust broken up by active fault­

ing. Marine geophysical studies also reveal some morphological similarities be­

tween oceanic fracture zones and the fracture zones onland in Iceland, enabling a 

tentative analogy to be drawn between the two. 

1.3 Geophysics 

1.3.1 The Seismicity of Iceland 

The plate boundary in Iceland is seismically active. Figure 1.3 shows the epicentres 

and focal mechanisms of earthquakes which occurred in the Iceland area during the 

period 1963-1987. Most large earthquakes in Iceland occur within the two trans­

form zones (the SISZ and TFZ), which are defined primarily by their seismicity, 

earthquake focal mechanisms and configuration with respect to the spreading axes 

[Sykes, 1967; Ward, 1971; Tryggvason, 1973]. These two zones are responsible for 

the largest magnitude earthquakes in Iceland, with magnitudes exceeding 7 (com­

pared to a maximum of up to about 6 for events occurring within the r i f t zones) 

[Einarsson, 1991]. Plate kinematic considerations suggest right-lateral strike-slip 

6 
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projection on the focal sphere. Compressional quadrants are black, after Einarsson [1991]. 

motion in the TFZ and left-lateral strike-slip motion in the SISZ. Focal mechanisms 

of earthquakes, and the strike of seismic lineations in the TFZ, confirm the right-

lateral transform nature of this zone [Einarsson, 1991] and that motion is being 

taken up along three, northwest trending, subparallel faults (Figure 1.3). These 

faults, from northwest to southeast, are known as the Grimsey, Husavik and Dalvik 

faults. However, in the SISZ, the destruction areas of individual earthquakes and 

surface faulting show that each event is associated with faulting on a north-south 

striking plane. Right-lateral faulting on such planes is a candidate interpretation of 

focal mechanisms there, so the overall, regional left-lateral transform motion along 

this zone thus appears to be accommodated by right-lateral faulting on many par-
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allel, north-south faults. Anticlockwise rotation of the blocks between them has 

been proposed [Einarsson, 1991; Morgan and Kleinrock, 1991; Foulger et ai, 1993]. 

Hypocentral depths in the SISZ are in the range 0 to 9 km at the western end, but 

extend down to 12 to 14 km in the east [Stefansson et ah, 1993]. 

The Reykjanes Peninsula (Figure 1.2) is a zone of high seismicity and recent vol-

canism that forms a transition between the Reykjanes Ridge to the west and the 

Western Volcanic Zone and SISZ to the east. The plate boundary is thought to 

be defined by a narrow seismic zone that runs along the peninsula. This seismic 

zone is less than 2 km wide in most places [Klein et al, 1973, 1977]. Earthquakes 

mostly occur at a depth of 1-5 km and are not located on any one particular fault. 

They have been attributed to the deformation of a brittle crust above a deep, aseis-

mic deformation zone [Einarsson, 1991]. The stress regime is characterised by a 

northwest-oriented minimum compressive stress, and as dykes are formed, fissures 

normal to this direction open up [Einarsson, 1991]. 

The area where the Reykjanes Peninsula plate boundary bifurcates into the West­

ern Volcanic Zone and the SISZ is known as the Hengill triple junction, an area 

of persistent, geothermal seismicity. The seismicity extends over both the active 

Hengill volcano and the extinct Grensdalur volcano (Figure 1.2), with hypocentres 

in the depth range 1-7 km [Foulger, 1988a,b]. About half of the events have mecha­

nisms that show normal and strike-slip faulting in response to a northwest-oriented 

minimum compressive stress. Other events indicate the formation of tensile cracks 

at depth and have been interpreted as resulting from cooling and contraction of 

hot rock by circulating geothermal fluids. 

A close correlation exists between central volcanoes, high temperature geothermal 

areas and microearthquake activity [e.g., Ward and Bjornsson, 1971]. It is likely 

that much of the background seismicity around central volcanoes is a consequence 

of the geothermal processes occurring at these sites. However, other seismogenic 

processes occur, e.g., magma chamber deflation or inflation, magma movements at 

depth and increase in pore pressure due to glacial melting [Einarsson, 1991]. 

Intraplate earthquakes, not directly related to the plate boundary, also occur. 

[Einarsson, 1991]. One group of such events occurred west of Langjokull (Fig­

ures 1.2 and 1.3) and was associated with internal deformation of the North Amer­

ican plate. Most of the hypocentres were at depths of 0 to 8 km but some events 
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extended down to 10 km, indicating that fracturing extended through most of the 

crust [Einarsson, 1989]. A second group of intraplate earthquakes occurred on the 

insular shelf off eastern and southern Iceland and are thought to have resulted from 

differential cooling in the crust across the shelf edge [Einarsson, 1989, 1991]. 

1.3.2 The Seismic Structure of Iceland 

Over 80 low-resolution (1-4 km station spacing) refraction profiles were analysed 

in a traditional way by Pdlmason [1971], who compiled an average velocity model 

for Iceland. This model has four crustal layers and an upper mantle with an 

anomalously low P-wave velocity of 7.2 km/s. The velocities of the crustal layers 

correspond closely to those in oceanic crust. Layer 0, consisting of recent lava 

flows, has a maximum thickness of 1000 m and has the lowest P-wave velocities of 

2.0-3.3 km/s. Layer 1, consisting mainly of highly porous young basalt lavas, has 

an average thickness of 1 km and P-wave velocities of 4.1 km/s. Layer 2, composed 

mainly of flood basalts, has an average thickness of 2.1 km and a P-wave velocity 

of 5.2 km/s. Layer 3 has a P-wave velocity of 6.5 km/s, consists of sheeted dykes 

and gabbros, and is 4-5 km thick (thicker in northern Iceland). The thicknesses of 

these layers varies considerably over Iceland with the depth to the base of layer 2 

being between 3 and 10 km, and total crustal thickness probably between 10 and 

15 km [Pdlmason, 1971; Flovenz, 1980; Flovenz and Gunnarsson, 1991]. 

Flovenz [1980] reanalysed the refraction data, modelling waveforms using synthetic 

seismograms, and interpreted the results in terms of a structure with velocity gra­

dients rather than layers with constant velocities. The results showed that the 

Icelandic crust can be divided into two parts, the upper crust, with a velocity con­

tinuously increasing with depth (corresponding to layers 0, 1 and 2), and the lower 

crust with an almost constant velocity (corresponding to layer 3). In this model, 

the P-wave velocity increases rapidly with depth in the velocity range 2.0-3.5 km/s, 

followed by an interval with an approximately constant gradient of 0.57 s _ 1 down 

to the 6.5 km/s level, below which the velocity is virtually constant. Depths to 

the top of the lower crust do not vary significantly from those predicted for the 

depth to layer 3 using the layered velocity model (Figure 1.4). 

The identification of an anomalously low-velocity upper mantle beneath Iceland 

arose from several observations. First, the highest upper mantle velocities reported 
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from older seismic refraction experiments are between 7.0-7.4 km/s [Bath, 1960; 

Pdlmason, 1971; Gebrande et al., 1980]. Second, teleseismic arrival-time delays 

measured in Iceland are approximately 1.6 s larger than those measured in Green­

land and Europe [Tryggvason, 1964; Long and Mitchell, 1970] and correspond to 

upper mantle velocities of 7.4 km/s to depths of 169-240 km. Third, high tempera­

tures at shallow depth beneath Iceland would produce high degrees of partial melt 

that would depress mantle velocities [Pdlmason and Scemundsson, 1974; Gebrande 

et al., 1980]. 

In 1977, a long-range seismic refraction experiment (RRISP-77) was carried out 

along an S00 km-long line across Iceland and along the flank of the Reykjanes 
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Ridge (Figure 1.5a). This study determined that 10 Ma old crust on the flank of 

the Reykjanes Ridge is underlain by low-velocity (7.7 km/s) mantle at 10 km depth 

and that the velocity increases to 8.2 km/s at 16 km depth [Goldflam et al., 1980]. 

Beneath Iceland however, upper mantle velocities ranged from 7.0 km/s at the base 

of the crust at approximately 15 km depth to 7.4 km/s at 30 km depth [Gebrande et 

al., 1980] (Figure 1.5b). The RRISP-77 experiment thus confirmed interpretations 

of the relatively normal crustal and upper mantle structure of the Reykjanes Ridge 

and the anomalously low-velocity upper mantle under Iceland. A normal Vp /Vs 

velocity ratio of 1.76 was found within the crust, but this ratio was found to reach 

unusually high values of between 1.96 to 2.2 in the anomalous upper mantle beneath 

Iceland [Gebrande et al, 1980], probably indicating flow-related anisotropy. 

A more recent refraction study along a profile running across the WVZ and obliquely 

through the SISZ to the western edge of the EVZ, showed a crustal thickness 

in south Iceland of 20-24 km [Bjarnason et al., 1993] (Figures 1.2 and 1.4). In 

this interpretation, the P-wave velocity increases smoothly from a surface value 

of 3.5 km/s to 7.2 km/s at ~22 km depth, beneath which i t jumps to 7.7 km/s. 

This interface at 22 km depth was interpreted as the Moho. The thick crust pre­

dicted by this study is in sharp contrast with the results of earlier studies, which 

determined thicknesses of 7 to 11 km (Figure 1.4) in the same area. However, 

it is in agreement with theoretical models of geochemical upper mantle melting 

modes [McKenzie, 1984] and rare-earth isotopic inversions [White et al., 1992], 

which predict 20-30 km thick crusts at hotspots [Menke and Levin, 1994]. 

The seismic structure of the Kolbeinsey Ridge has not been studied in detail 

[Flovenz and Gunnarsson, 1991]. The structure of the Iceland-Faeroes ridge (south­

east of Iceland) is well determined and has a crustal structure similar to that of 

Iceland, but with a thicker crust (28-35 km) and a subcrustal velocity of 7.8 km/s 

[Zverev et al., 1976; Bott and Gunnarsson, 1980]. 

1.3.3 Structure From Magnetotelluric Data 

Magnetotelluric (MT) measurements made at about 70 sites in Iceland have been 

used to study lower crustal and upper mantle electrical properties [Hermance, 1973; 

Hermance et al., 1976; Thayer et al., 1981; Beblo and Bjornsson, 1978, 1980; Beblo 

et al., 1983]. These measurements have revealed the presence of a regional, low-
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resistivity layer beneath Iceland. In northeast Iceland it lies at a depth of 10 km 

beneath the axial r if t zone, increasing to 20-30 km outside of this zone, and is 

about 5 km thick [Beblo and Bjornsson, 1978, 1980; Beblo et al., 1983]. It has 

a resistivity of about 10 flm. Figure 1.6a shows the depth in kilometres to the 

top of the low-resistivity layer in northeast Iceland. One interpretation of the 

observations is that basaltic partial melt is migrating upwards and accumulating 

below Iceland at the crust-mantle interface, an explanation that is supported by 

laboratory experiments [Beblo and Bjornsson, 1978]. The region below the low-

resistivity layer has a resistivity of about 100 Clm and is interpreted as partially 

molten, ultramafic material. A temperature of 1000-1100°C is inferred for the 

low-resistivity layer. 

Beblo and Bjornsson [1978] concluded that increasing depth to the partially molten 

layer with increasing distance from the axial r i f t zone indicated crustal thickening 

with age (Figure 1.6b). This agrees with models of the geological structure. The 

crust is thinner beneath the axial r i f t zone (~8—10 km) and thickens to over 20 km 

elsewhere [Bjornsson, 1985]. The degree of partial melt in the low-resistivity layer 

is thought to be at least 5% but may be as high as 20% [Beblo et al., 1983] or even 

23% [Schmeling, 1985]. It must therefore have a very low viscosity [Bjornsson, 

1985]. A second explanation for the low-resistivity layer beneath Iceland is that it 

is caused by small amounts of highly conductive mineral phases at depth [Duba et 

al., 1994]. 

1.3.4 Other Geophysical Research 

Iceland is characterised by a bowl-shaped, 100 mGal Bouguer gravity low centred 

in the northwestern Vatnajokull region (Figure 1.2) [Einarsson, 1954], which in­

dicates a major mass deficit in both the crust and mantle [Hermance, 1981]. An 

underplating mechanism and an Airy-type isostatic compensation model, has been 

used to explain the observations [Hermance, 1981]. In this mechanism low density, 

mantle-derived melt accumulates at the base of the crust beneath the neovolcanic 

zone and accretes to it as the plates move apart, a model that is in agreement with 

the observation that the crust thickens with age [e.g., Pdlmason, 1971; Beblo and 

Bjornsson, 1978]. 

Magnetic anomalies, identifiable northwest and southeast of Iceland, have not 
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Figure 1.7: Simplified map of the Iceland block showing marine magnetic anomalies, after 

Sasmundsson [1986]. 

been traced on Iceland, with the exception of anomaly 5 (10 Ma) that is iden­

tifiable in the north, northwest and east [Talwani and Eldholm, 1977] (Figure 1.7). 

Magnetic-stripe patterns are obscured by extensive lava flows and by the frequent 

plate boundary migrations that have occurred on land since anomaly 5 time. The 

NUVEL-1A global model [DeMets et al., 1994], using data on marine magnetic 

anomalies, transform fault azimuths and earthquake slip vectors from all major 

spreading, destructive and transform plate boundaries in the world, predicts that 

present-day expansion of 1.8 cm/yr is occurring in Iceland. 

1.4 The Evolution of Iceland 

1.4.1 The Icelandic Hotspot 

Several diverse observations indicate that the normal process of crustal accretion 

which occurs on adjacent sections of the mid-Atlantic ridge is joined by another 

dynamic process at Iceland. These observations include the high topography of 
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Iceland, the anomalously thick crust, the culmination of intensity of volcanism in 

central Iceland and the ~120 km easterly offset of the axial r if t zones in Iceland 

relative to the submerged mid-Atlantic ridge. Geochemical variations in trace-

element and isotope compositions of Icelandic rocks compared with those of the 

oceanic crust also occur, referred to as the Icelandic geochemical anomaly. These 

observations can be explained by a model of crustal accretion over a mantle plume. 

1.4.2 The Evolution of the Icelandic Platform 

Iceland and its insular shelf form part of a transverse ridge which crosses the North 

Atlantic from Greenland to the Faeroe Islands (Figure 1.8) [Bott, 1974]. Other 

components of the ridge are the Iceland-Greenland ridge and the Iceland-Faeroes 

ridge. The Iceland-Faeroes ridge has crustal seismic velocities similar to those 

beneath Iceland [Bott and Gunnarsson, 1980] but the crust is 30-35 km thick, 

one of the thickest sections of oceanic crust in the world, and more than four 

times thicker than normal oceanic crust [Bott, 1983b]. The upper mantle beneath 

the Iceland-Faeroes ridge does not exhibit the exceptionally low seismic velocities 

observed beneath Iceland and it is believed that this ridge formed at the mid-

Atlantic ridge under the influence of the Icelandic hotspot during the early stages 

of opening of the North Atlantic [e.g., Bott, 1983a,b; Vink, 1984]. The large crustal 

thickness can then be attributed to either unusually intense magma differentiation 

from the mantle during the early evolution of the North Atlantic [Bott, 1983a], to 

subsequent underplating [Bott, 1983b], or to lateral flow from the hotspot [Vink, 

1984]. 

A reconstruction of marine magnetic anomalies suggests a three-stage evolution 

history for the Greenland-Faeroes ridge [Nunns, 1983]. From 55-44 Ma, a major 

transform fault existed along the northern edge of the Greenland-Faeroes Ridge, 

across the Aegir spreading axis to the north and Reykjanes Ridge to the south. 

Between 44 Ma and 26 Ma, a ridge-ridge-transform triple junction formed, as the 

Jan Mayen microcontinent separated from Greenland, and sea floor spreading pro­

ceeded along the Aegir axis to the north and the new Kolbeinsey axis to the west. 

After 26 Ma, the Aegir axis became extinct and spreading north of Iceland was 

taken up on the Kolbeinsey Ridge. At the latitude of Iceland the spreading ridge 

was displaced eastwards in response to the position of the hotspot that was east of 

16 
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the Reykjanes and Kolbeinsey Ridges. The Icelandic platform subsequently built 

up around these ridges asymmetrically [Bott, 1985]. 

The plate tectonic evolution of the north Atlantic has also been reconstructed us­

ing magnetic isochrons and a fixed hotspot reference frame [Vink, 1984]. In this 

model, material from the hotspot is assumed to be channelled to the closest sec­

tion of the mid-ocean ridge (Figure 1.9). According to this reconstruction, the 

formation of the Iceland-Faeroes ridge was initiated when the hotspot, situated 

beneath Greenland, started to feed the mid-Atlantic ridge, and was completed 

when the hotspot emerged from beneath Greenland at about 36 Ma (in contrast to 

the model of Nunns [1983]) and the spreading ridge jumped westwards in response. 

The Greenland-Iceland section of the Greenland-Faeroes Ridge had been formed 

by about 20 Ma, since which time a series of eastwards ridge jumps repeatedly repo­

sitioned the westward-migrating ridge crest over the hotspot in the neighbourhood 

of Iceland [Vink, 1984]. 
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1.4.3 Plate Tectonic Evolution 

The evolution of the plate boundary in Iceland can be determined to a limited 

extent only using magnetic anomalies since they are poorly developed on land. 

Bott [1985] suggested that a second active r i f t zone on Iceland first developed 

at about 26 Ma when the Aegir spreading axis became extinct. Flexures in the 

volcanic pile formed by downsagging in response to the piling up of lavas have been 

used to identify extinct r i f t zones [Sasmundsson, 1979]. Two such zones have been 

recognised, one on the Snaefellsnes peninsula and the other on Skagi (Figure 1.2). 

K-Ar dating suggests that volcanism in these zones became extinct at about 6-

7 Ma whilst new rif t zones were initiated or existing zones to the south and east 

became more active [Stemundsson, 1979]. As a result the present day Reykjanes-

Langjokull zone and NVZ developed (Figure 1.2). 

These reorganisations resulted in eastward migration of the r i f t zones with respect 

to the mid-Atlantic ridge and occurred alongside the westward drift of the ridge 

relative to the hotspot [Scemundsson, 1974; Helgason, 1985]. The volcanic zone 

north of the hotspot centre jumped eastwards first and a similar response is cur­

rently occurring in the south [Foulger, 1988a]. Longitudinal magma flow from the 

hotspot to the old ridge to the north (the Skagi zone (Figure 1.1)) has died out 

but is still occurring to the south and maintains activity in the WVZ. The WVZ 

is slowly being replaced by the EVZ. 

A peak in the potassium content of postglacial basalts suggests that the Iceland 

hotspot is presently centred beneath Kverkfjoll [Sigvaldason et al., 1974] with the 

Langjokull-Kverkfjoll zone (Figure 1.2) representing its migration trajectory. The 

Iceland geochemical anomaly (Section 1.4.1) may then be the result of interaction 

between the hotspot and its own productivity trail [Oskarsson et al., 1985]. 

The SISZ is thought to be migrating southwards in response to southerly propa­

gation of the EVZ [Einarsson and Eirtksson, 1982]. Sasmundsson [1979] has sug­

gested alternatively that the SISZ may represent an early stage of the formation 

of an oblique r i f t axis that will eventually connect the Reykjanes Peninsula to the 

southern part of the EVZ. 

19 



1.5 Recent Glacial History 

At present glaciers and icecaps cover 11,260 km 2 of Iceland or 11%. The biggest 

icecap is Vatnajokull which covers an area of 8,300 km 2 . Icecaps completely covered 

Iceland several times in recent geological history [Einarsson and Albertson, 1988]. 

During the last (Weichselian) glaciation, the island was covered by an icecap which, 

at its maximum, was somewhat larger than the current size of Iceland. Ice retreat 

began around 13,000 BP, followed by postglacial rebound of the Earth's surface 

which was rapidly completed in about 1,000 years [Sigmundsson, 1991]. 

Since the last glaciation several periods of ice advance and retreat on a much 

smaller scale occurred. The glacial history of the past 1,000 years has been re­

constructed from historical records of fluctuations in the length of outlet glaciers 

of Vatnajokull, maps and Landsat images [Sigmundsson and Einarsson, 1992]. A 

period of glacial advance is inferred from 900 to 1750, relatively stable conditions 

from 1750 to 1890, a second period of glacial advance from 1890 to 1930 followed 

by a period of glacial retreat since 1930 {Sigmundsson and Einarsson, 1992]. These 

fluctuations correspond with climatic variations inferred from historical records and 

recorded temperature data. From these records it is known that at about the year 

1200 climatic cooling began that culminated in a cold period from 1600 to 1900 

[Sigmundsson and Einarsson, 1992]. This period is known as the Little Ice Age 

and was a period of worldwide glacial advance [Grove, 1988]. From 1890 to 1930 

a 1°C warming occurred causing a climatic temperature maximum from 1930 to 

1960, since which time the climate has cooled somewhat. 

The morphology of volcanic features erupted during glacial periods differs markedly 

from those formed during interglacial periods. Extensive, flat lava flows formed 

during interglacial periods, and mounds, ridges of pillow lavas and hyaloclastite 

rocks characterise subglacial volcanism. Elongate ridges indicate subglacial fissure 

eruptions, and volcanic table mountains indicate point-source subglacial eruptions. 

1.6 Summary 

Three distinct morphological units are identified in Iceland; axial rift zones where 

active plate growth is occurring, non-rifting flank zones, and the surrounding vol-
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canic pile, a monotonous sequence of lava flows which grew from volcanic systems 

similar to those active today. 

The plate boundary in Iceland is seismic and displaced to the east of the mid-

Atlantic ridge by two major fracture zones, the left-lateral SISZ in the south and 

the right-lateral TFZ in the north. These zones generate the largest earthquakes 

in Iceland. Seismic areas outside these zones are mostly central volcanoes where 

geothermal processes and magma migration occur. Intraplate earthquakes occur 

occasionally as a result of internal plate deformation and differential crustal cooling. 

The Icelandic crust can be divided into the upper crust, with velocity continuously 

increasing with depth, and the lower crust with constant velocity. A low-resistivity 

layer beneath Iceland shallows towards the axial rift zones and the centre of Iceland, 

and may represent a layer of partial melt at the base of the crust. Geochemistry 

indicates that the crust is derived from a chemically-anomalous mantle source and, 

in some areas, from partial melt formed by reworking of the crust. 

The existence of Iceland is consistent with excessive volcanism over a ridge-centred 

hotspot. The hotspot may have started to feed the newly-opened mid-Atlantic 

ridge from its original position beneath Greenland, and initiated the formation of 

the Iceland-Faeroes ridge. Migrating eastwards with respect to the plate boundary, 

it caused the spreading ridge initially to jump westwards in response, leading to the 

formation of the Greenland-Iceland ridge. Since that time a series of eastwards ridge 

jumps have progressively repositioned the ridge over the hotspot as the Icelandic 

landmass developed. The ridge in north Iceland jumped eastwards from the Skagi 

Zone to form the NVZ. A similar process is currently occurring in the south to form 

the EVZ. Longitudinal magma flow from the hotspot to the Skagi ridge has ceased 

but flow is still occurring to the dying WVZ in the south and is thus maintaining 

activity there. 

Two periods of glacial advance, 900-1750 and 1890-1930, have occurred separated 

by a period of relative stability and followed by glacial retreat up to the present. 
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Chapter 2 

Crustal Deformation in North and East 
Iceland 

2.1 Overview 

Major crustal deformation occurs in Iceland, the dynamics and magnitude of which 

are highly relevant to plate tectonics, in particular crustal spreading. Crucial to 

our understanding of the deformation is the rate at which the tectonic plates are 

moving relative to one another. Global models predict that present-day east-west 

extension of 1.8 cm/yr is occurring in Iceland. These models include the RM2 

[Minster and Jordan, 1978], NUVEL-1 [DeMets et al, 1990] and the NUVEL-1A 

[DeMets et al., 1994] models, which use data from marine magnetic anomalies, 

transform fault azimuths and earthquake slip vectors from all the major spreading 

and transform plate boundaries in the world, and assume that spreading rates have 

remained constant throughout the past 10 Ma. The RM2 model predicts relative 

motion between the North American and European plates of 18.8 ± 1.4 mm/yr at 

N107.5±2°E and the NUVEL-1 model predicts 19.3 ± 0.5 mm/yr at N106.9±1.2°E. 

Recent studies showed that the NUVEL-1 model overestimates vectors by ~5% 

[Gordon, 1993], and it has been revised, giving the NUVEL-1A model which es­

timates 18.5 ± 0.5 mm/yr of spreading at N106.9±1.3°E for Iceland (Table 2.1) 

[DeMets et al, 1994]. 

The early continental drift ideas of Wegener implied spreading rates of about 10 

to 40 m/yr since they were based on the assumption that Greenland, North Amer­

ica and Europe had separated after the end of the last glaciation, i.e., (as was 
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Table 2.1: Relative plate motions of the European and North American plates between 65°N 

1 5 ° W and 6 5 ° N 2 4 ° W from the R M 2 and N U V E L - 1 global plate models. 

Global Model Rate Azimuth 

mm/yr ° E of N 

R M 2 18.8 ± 1.4 107 .5±2 .0 

N U V E L - 1 19.3 ± 0.5 1 0 6 . 9 ± 1 . 2 

N U V E L - 1 A 18.5 ± 0.5 1 0 6 . 9 ± 1 . 3 

thought then) in the preceding 50,000 to 100,000 years (see Vogt [1986] for sum­

mary). Longitude differences, calculated with the aid of radio time signals, between 

northeastern Greenland and Europe at various times between 1823 and 1927, ap­

peared to support the sense and magnitude of the predicted rates, with a westward 

drift rate of 0.6 ± 2.4 m/yr calculated by Wanach [1926] and 0.32 ± 0.08 m/yr by 

Littell and Hammond [1928]. 

The modern tectonic view of Iceland began with Nielsen [1930] who stated that 

fissure eruptions and fault structures were "the result of a pull from east to west 

which has simply split the land into innumerable fissures" (see Vogt [1986] for 

summary). The first effort to measure the extensional rate directly by geodetic 

means, was made in 1938 by a German expedition. A network of precisely surveyed 

triangulation points was established across the rif t zone in north Iceland [Niemczyk 

and Emschermann, 1943]. A predicted drift rate was made (3.56 mm/yr) , based on 

observations of the widening of fissures splitting postglacial lavas [B'ernauer, 1943] 

(see Vogt [1986] for summary). This is the same order of magnitude as current 

estimates of plate motion. The 1938 network was reoccupied and reconstructed 

in 1964/1965 with considerable improvements in its configuration [Gerke, 1974; 

Wendt et al, 1985]. 

Distance measurements began in south Iceland across the tip of the Reykjanes 

Peninsula in 1968 and 1972 [Brander et ah, 1976], across the Thingvellir graben in 

the Western Volcanic Zone in 1967, 1968, 1970, 1971, 1972 and 1973 [Brander et al., 

1976; Gerke, 1974; Decker et al., 1971, 1976], and across the southern part of the 

EVZ in 1970 and 1973 [Decker et al., 1976]. These surveys revealed 65 ± 31mm 

of extension in the 3 year period 1967-1970 in the EVZ [Decker et al., 1971], 

but no significant motion during the following two years [Brander et al., 1976]. 

No significant motion was detected in the network in north Iceland around Lake 
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Figure 2.1: Location of places in northeast Iceland commonly referred to in the text. T h e black 

box in the inset indicates the location of the main figure. 

Myvatn (Figure 2.1) from 1968 to 1972, no more than 3 mm of extension per year in 

the Thingvellir network during the same period, and a combination of left-lateral 

motion and extension at ~9 mm/yr at the tip of the Reykjanes Peninsula from 

1968 to 1972 [Brander et a/., 1976]. These measured extension rates are all much 

less than those predicted by the global plate models. 

Recent advances in surveying technology have made highly accurate, regional scale 

surveys feasible. Several surveys using Global Positioning System (GPS) satellite 

surveying techniques have been conducted, including a country-wide survey in 1986 

[Foulger et al, 1993], and large regional surveys in 1987, 1989, 1990, 1991, 1992 

and 1993 [Foulger et al., 1992; Heki et al., 1993; Jahn et a/., 1994; Hackman, 

1991; Sigmundsson et al., 1992; Sigmundsson and Einarsson, 1992; Sturkell et a/., 

1994]. These surveys covered most densely the Reykjanes Peninsula, the SISZ 

and the NVZ. Several points in the EVZ were also occupied. They have revealed 

a picture of crustal deformation in Iceland far more complex than predicted by 

simple kinematic global models. 
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2.2 Isostatic Rebound in Southeast Iceland 

Load changes on the surface result in deformation of the outer layers of the Earth 

until isostatic equilibrium is attained. In some areas, e.g., Fennoscandia, the surface 

is still uplifting in response to deglaciation at the end of the last glacial period. The 

rate of movement depends on the thickness of the lithosphere, the load distribution, 

and the rheology of the underlying asthenosphere. Similar uplift took place in 

Iceland at the end of the last glaciation, but was completed in less than 1,000 years 

[Sigmundsson, 1991]. Marine deposits, 100 m or more above current sea level and 

50 km or more from the current coastline, and submerged freshwater peat, reveal 

the history of ice distribution and vertical movements around Iceland during this 

time. 

Prior to 13,000 BP most of Iceland was covered by an icecap. The icecap retreated 

to within the boundaries of the present coastline more quickly than the land could 

uplift in response. Marine organisms colonised deglaciated, submerged coastal ar­

eas. The land slowly uplifted and the sea regressed to such an extent that, by about 

9,000 BP when isostatic equilibrium was established, relative sea level was 30 m 

below the present level. Eustatic sea level rise to the present height subsequently 

occurred. The length of the postglacial-rebound time interval constrains the max­

imum value of the asthenosphere viscosity to be 1 x 10 1 9 Pa s or less [Sigmundsson 

1991]. 

Isostatic uplift is believed to be occurring currently in southeast Iceland following 

deglaciation since about 1930 when the icecap Vatnajokull began retreating in the 

wake of the Little Ice Age [Grove, 1988]. The area and volume of Vatnajokull 

have decreased by 300 km 2 and 180 km 3 respectively since 1930, inferred from 

estimates of length changes of outlet glaciers and Landsat images [Sigmundsson 

and Einarsson, 1992]. Modelling the Earth as a Newtonian viscous fluid halfspace 

overlain by an elastic layer, and assuming a spherical icecap produces 11.4 cm/yr of 

thinning within the innermost 35 km of the icecap, 23 cm/yr between 35-47.5 km, 

and 57 cm/yr from 47.5-52.5 km, indicates that the volume decrease should lead 

to surface uplift immediately around Vatnajokull at a rate of 5-10 mm/yr at the 

present time and t i l t away from the icecap if the viscosity of the asthenosphere 

beneath Iceland is in the range 1 x 1018—5 x 10 1 9 Pa s [Sigmundsson and Einarsson, 

1992]. 
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2.3 Crustal Spreading at the Kraft1 a Volcanic 
System 

2.3.1 Introduction 

The Krafla volcanic system is one of five en echelon volcanic systems that together 

constitute the NVZ. These five systems, from north to south, are the Theistareykir, 

Krafla, Fremrinamur, Askja and Kverkfjoll systems (Figure 2.2). Each volcanic 

system consists of a fissure swarm oriented at about N10°E which passes through 

a central volcano. The direction of plate spreading, deduced from the NUVEL-1A 

global model [DeMets et al., 1994] is N106°E, about perpendicular to the strike 

of the fissure swarms. However, the plate boundary, defined by a line joining the 

central volcanoes [Bjornsson, 1985], is oblique to the direction of spreading. The 

NVZ is offset by approximately 120 km to the east from the Kolbeinsey Ridge by 

the TFZ, a broad zone of sub-parallel seismic lineations and extensional features 

(Section 1.2.5). 

The Krafla volcanic system is characterised by open fissures and faults. Its total 

length is some 100 km and its width ranges from about 4 to 10 km. The Krafla 

central volcano has a caldera and is situated just north of the latitudinal mid­

point of the swarm. The northern end of the fissure swarm connects with the TFZ 

iri Axarfjordur bay (Figure 2.2). A major rifting episode lasting about a decade 

started in the Krafla volcanic system in December 1975, providing a unique oppor­

tunity to study the spreading process, and in particular the accompanying crustal 

deformation. 

2.3.2 Pre-Rifting Deformation 

The 1938 triangulation network in north Iceland, reconstructed and improved in 

1964/1965 was remeasured at that time, and again in 1971 and 1975 using EDM 

(electronic distance measuring) techniques [Moller and Ritter, 1980]. The network 

spanned the fissure swarms of the NVZ for a distance of 110 km east to west 

(Figure 2.3). The results revealed no significant motion from 1938 to 1965 [Gerke, 

1974]. Significant contractions of up to 50 cm across the Krafla volcanic system 
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1980]. 
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were detected from 1965 to 1971. Between 1971 and 1975, the sense of motion 

reversed and up to 30 cm of expansion occurred, possibly a precursor to the rifting 

event that followed [Moller and Ritter, 1980]. 

2.3.3 The 1975-1985 Rifting Episode 

2.3.3.1 Introduction 

During the period 1975 to 1985 the Krafla volcanic system experienced basaltic 

fissure eruptions, earthquakes, and fissure opening between about latitudes 65°34'N 

and 66°18'N. About twenty rifting events occurred during the decade-long episode, 

in short periods of activity every few months. During each event magma flowed 

rapidly out of a crustal magma chamber underlying the Krafla central volcano into 

the fissure swarm forming dykes, or, in nine instances, volcanic eruptions. This 

activity was accompanied by migrating seismicity and ground movements. Between 

these events the caldera inflated steadily as the magma chamber was filled from 

below, causing earthquake activity in the caldera floor when the land height rose 

above its previous maximum. The repeated, sudden extension of the fissure swarm 

caused extensive faulting and Assuring above the intruded dykes, and resulted in 

the downthrow of the central part of the fissure swarm and uplift of the flanks. 

2.3.3.2 The First Event 

The first rifting event started December 20th 1975 and lasted for several weeks. It 

was preceded by an unusually high level of seismic activity in the Krafla caldera in 

early 1975, alerting the authorities to the possibility of an eruption and prompting 

installation of monitoring equipment. On the morning of December 20th continuous 

tremor was detected close to the caldera. One hour later an eruption began from 

a 2 km-long fissure in Leirhnjukur in the centre of the caldera (Figure 2.1). Its 

vigour decreased rapidly whilst the seismic activity propagated northwards from 

Leirhnjukur along the fissure swarm. Within two hours about 40 km of the fissure 

swarm had been activated. After a few hours the persistent seismicity following 

the eruption was mainly confined to two separate areas; inside the caldera and 

in the Axarfjordur region along known faults of the TFZ. There, 42 earthquakes 
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of magnitude 4.5 or larger occurred from December 20 to mid-February. Earth­

quakes in the Krafla region were between 0 and 4 km deep. The volcanic eruption 

at Leirhnjukur proceeded from three craters along a fissure which had been active 

during a previous eruption, the "Myvatn fires", that accompanied what is now in­

terpreted as a historic spreading episode from 1724-1729 (Section 2.4). The 1975 

Leirhnjukur eruption lasted only 20 minutes except for later minor steam explo­

sions. Within a day only water and steam were being erupted from the craters. 

The total surface area of erupted lava was 0.36 km 2 [Bjdrnsson et al., 1977]. 

During this tectonic event down-faulting occurred of a central area of the fissure 

swarm about 5 km wide (east-west) and 20 km long (north-south). Fissure forma­

tion and widening was also observed. Extension across the fissure zone was obvious 

from the stretching and breaking of telephone lines and fences [Sigurdsson, 1980]. 

The Krafla caldera floor subsided by nearly 2.5 m [Bjdrnsson et al., 1977]. Surface 

measurements after the event revealed horizontal extension of about 1 m in the 

Krafla area and 2.0-3.0 m in the Axarfjordur area [Tryggvason, 1984]. Relative 

subsidence of up to 1.5 m within the fissure swarm occurred along with 40 cm of 

flank elevation [Sigurdsson, 1980]. 

2.3.3.3 Subsequent Activity 
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Figure 2.4: Correlation between (a) the north-south tilt of the Krafla power station, and (b) 

seismic activity within the caldera. Increasing numbers mean tilt down towards the north. N is 

the five-day running average of the number of earthquakes recorded per day at the seismic station 

Reynihlid (Figure 2.1) with recorded amplitude above a certain threshold. From 20 < h December 

1975 to 14th February 1976, N was > 130 and most of the time > 1000. The tilt measurements 

before 20th August 1976 were done by optical levelling, after Bjornsson et al. [1977]. 
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Figure 2.5: Land elevation changes at bench mark FM5596, about 1 km southeast of the centre 

of the Kraf la caldera. The reference benchmark (FM6414) is 20 km away, at the southern end of 

lake Myvatn (Figure 2.1), adapted from Jacoby ti al. [1989]. 

Inflation of the Krafla magma chamber began soon after the end of the earthquake 

swarm associated with the first rifting event. The rate of uplift, at its maximum 

near the centre of the caldera, was relatively constant. By May 1976 there was 

a noticeable increase in earthquake frequency which became more marked until 

September 28th 1976 when a sudden decrease occurred (Figure 2.4). At the same 

time rapid subsidence in the Krafla caldera began, lasting 6 days, and amounting 

to about 25 cm near Leirhnjukur (Figure 2.5). During the period of most rapid 

subsidence, bursts of continuous tremor were recorded along with small earthquakes 

originating in the fissure swarm about 15 km north of the caldera. From this i t was 

concluded that magma had flowed from the Krafla magma chamber north along 

the fissure swarm to form a dyke. On October 4 t / l the subsidence stopped and 

the caldera started rising again at a similar rate as before [Bjornsson et al., 1977] 

(Figure 2.5). 

This cycle of relatively slow magma-chamber inflation followed by rapid deflation 

accompanied by seismic activity, fault movements and occasionally volcanic erup­

tions as dykes were injected into the fissure swarm was repeated numerous times for 

about 10 years (Figure 2.5). Rifting events occurred only when the caldera was el­

evated beyond its previous maximum level, i.e., when stress in the magma chamber 

roof exceeded the previous maximum. Seismic activity in the caldera stopped as 

soon as the inflation stopped or deflation began. Volcanic tremor accompanied de­

flation with an amplitude roughly proportional to the deflation rate. Earthquakes 
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Table 2.2: Magma movements in rifting events, adapted from Bjornsson [1985]. 

Direction of Area of 

Subsidence-rifting Maximum subsidence intrusion extruded 

event (time) at the apex (cm) ( N / S of caldera) lava ( k m 2 ) 

Dec. 20, 1975 to Feb. 1976 230 N 0.036 

Sept 28 to Oct. 4, 1976 17 N + S 

Oct. 31 to Nov. 1, 1976 51 N 

Jan . 20,1977 32 N 

Apri l 27-28, 1977 81 S 0.001 

Sept. 8-9, 1977 24 S 0.5 

Nov. 2, 1977 3 N 

Jan . 7-8, 1978 119 N 

July 10-12, 1978 64 N 

Nov. 12-15, 1978 72 N 

May 13-18, 1979 88 N 

Dec. 6-10, 1979 3 ? 

Feb. 10-13, 1980 11 S 

March 16, 1980 53 N + S 1.3 

June 20, 1980 2 ? 

July 10-18, 1980 43 N 5.3 

Oct. 18-23, 1980 29 N 11.5 

Dec. 22-27, 1980 16 N 

J a n . 30 to Feb. 4, 1981 44 N 6.3 

Nov. 18-23, 1981 47 N 17 

Sept. 8-14, 1984 60 S ? 

S u m total 10.89 m 42 k m 2 

Estimated total volume 0.6 k m 3 0.1 k m 3 

then propagated from the caldera along the fissure swarm with the propagating 

dyke tip [Einarsson, 1991]. Rifting occurred predominantly to the north of the 

caldera (Table 2.2). 

During each event extensive Assuring and normal faulting occurred above the in­

truded dyke, the central part of the fissure swarm subsided, and the flanks were 

uplifted. This is shown by geodetic data. Levelling data collected along a profile 

10 km south of the Krafla caldera during the rifting episode reveal vertical land 

movements from 1974 to 1979 (Figure 2.6). Subsidence of up to 1 m occurred 

within the fissure swarm during rifting events, along with uplift of tens of centime-
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Figure 2.6: Elevation changes along a profile across the Kraf la fissure swarm at Namafjall (Fig­

ure 2.1), 10 km south of the caldera, from 1974 to 1979, after Bjdrnsson [1985]. 

tres on the flanks. Regional geodetic measurements made over longer time periods 

revealed horizontal and vertical movements out to over 50 km east and west of the 

axial r i f t zone. Trilateration data from a network crossing the axial r if t zone in 

northeast Iceland demonstrated that up to 8 m of extension occurred in the centre 

of the fissure swarm from 1971 to 1980 and contraction of the flanks [Moller and 

fiitter, 1980; Moller et al., 1982] (Figure 2.7a). Two points, 90 km apart on either 

side of the r i f t zone, revealed only ~0.5 m of widening during this same period. 

Elevation changes on a 140 km-long east-west profile, crossing the active zone near 

Namafjall (Figure 2.1), indicate a regional uplift of some 0.6 m centred on the 

Krafla fissure swarm between 1975 and 1980 and subsidence within the central 
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the Kraf la area, (b) Elevation changes from 1975 to 1980 on an east-west profile, projected onto 

latitude 16°40' , adapted from Bjomsson [1985]. 

caldera 600m 
Surface elevation 

400 

200 
sea level 

8m Widening 
Nov 1981 9h 

"»at, Jan 1981 e 6 
Oct 1980 / May 1979 X * -

Jul 1980 Nov 1978 
4 Mar 1980. Jul 1978 Jan 1978 

Sep 1977 
Apr 1 9 7 7 1 9 7 7 Dec 1975 1 Oct 1976 

S-20 10 30 60 km N 10 20 50 40 

Figure 2.8: A n estimate of the accumulated widening of fissures of the Kraf la fissure swarm 

between 1975 and 1982, with crude estimates of the contribution of certain time intervals to the 

widening. T h e high and low estimates indicate the possible range of the total widening in the 

northern half of the rifted zone where no geodetic measurements were made prior to rifting. Land 

elevation along the Kraf la fissure swarm is also shown (top), after Tryggvason [1984]. 
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part of the fissure swarm [Kanngieser, 1983] (Figure 2.7b). Before July 1980 the 

deflation events were associated mainly with rifting and subsurface magma trans­

port with only minor surface eruptions. However, from July 1980 the majority of 

events produced eruptions in addition to surface widening. 

Despite the extensive surveying work done, there is still considerable uncertainty 

in the actual thicknesses of the dykes injected. First, since neighbouring areas con­

tracted when dykes were injected, this must be taken into account for measuring 

lines of moderate length crossing newly injected dykes. Second, the surface widen­

ing is expected to be less than the maximum dyke thickness for dykes that do not 

reach the surface [A. Rubin, pers. comm., 1995]. Third, the dykes are unlikely 

to have uniform thickness throughout their height. Tryggvason [1984] predicts the 

best set of dyke-thickness estimates available for the whole episode (Figure 2.8). 

2.3.3.4 Dyke Injection 

Migrating earthquake swarms during the rifting events, and the correlation between 

caldera subsidence rate and activity in the fissure swarm, suggest that the rifting 

events were associated with the movement of magma outwards from beneath the 

volcano into the fissure swarm forming dykes. Modelling of gravity data is con­

sistent with a model where the inflation and deflation of the volcano was caused 

entirely by the flow of magma into and out of a chamber at about 3 km depth 

[Johnsen et ah, 1980]. S-wave shadows of local earthquakes were used to map a 

shallow crustal magma reservoir at depths of approximately 3-7 km near the centre 

of inflation in the caldera. This magma chamber is about 2 x 7 km in area with 

the long axis oriented east-west and is divided at its top [Einarsson, 1978]. Inflow 

into the chamber was at an average rate of 5 m 3/s [Bjornsson, 1985]. 

A total of about 0.5 k m 3 of magma was injected into the fissure swarm, estimated 

from the total accumulated deflation of the Krafla volcano and assuming the crustal 

magma chamber can be approximated by a sphere, and about 0.1 k m 3 was extruded 

[Bjornsson, 1985]. Total widening across the fissure swarm was approximately 2 m 

along 50 km of its length and 6 m along another 30 km, suggesting the average 

height of the injected dykes to be about 2 km [Bjornsson, 1985]. These estimates 

are in agreement with calculations of dyke height made for single rifting events on 

the basis of widening of surface features [Tryggvason, 1984], and on the observed 
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length of the dyke tip [Einarsson and Brandsdottir, 1980]. 

Estimates for dyke height in eroded dyke swarms in eastern Iceland, are much 

greater however - of the order of 10 km [Gudmundsson, 1983]. Estimates based 

on the modelling of geodetic data from the Krafla episode are also much larger. 

Geodetic data collected from 1971 to 1980 across the southern part of the fissure 

swarm [Moller and Ritter, 1980; Moller et al, 1982; Wendt et al., 1985] suggested 

dykes that extended from the surface to 4-6 km depth [Marquart and Jacoby, 

1985]. Geodetic data measured in the same region between 1975 and 1980 were 

also modelled [Rubin, 1992]. In this study the several dykes that were injected 1975-

1980 were treated as a single dyke intrusion with uniform top and bottom depth and 

a relative thickness that varies along strike in accordance with the surface horizontal 

displacement observations. Two normal faults on either side of the dyke were also 

included. This work suggested a vertical dyke extending from 1.25 to 8.5 km depth 

[Rubin, 1992]. The actual depth extent of the dykes is thus controversial, but it 

seems clear that they have a greater volume than can be accounted for solely by 

magma supplied by the magma chamber during deflation events. 

Seismic evidence (Figure 2.9) suggests that the dykes were injected laterally from 

the crustal magma chamber, because there was little seismicity during the rifting 

events below 4-6 km depth. However, this does not prove that rifting and magma 

transport were confined to the upper 4 km. Below 4-5 km in the axial r if t zone 

temperatures are high and at some depth viscoelastic behaviour must onset, where 

stress can be released by creep, and rifting may take place largely aseismically 

[Bjornsson, 1985]. Dykes injected from the crustal magma chamber were probably 

confined to the shallow crust, but dykes at greater depths and at large distances 

from the caldera may have been engineered by material that ascended from a deeper 

layer of partial melt [Bjornsson, 1985] (Figure 2.10). Such a process is supported 

by the observation that lava with differing chemical composition, that suggests a 

deeper origin, was erupted far to the north, and within the caldera. An alternative 

explanation for the observed compositional variations is that the magma was drawn 

from different depths within a layered magma chamber [Bjbrnsson, 1985]. 

Observations of dyke dips in northwest Iceland show that ~94% of the eroded 

dykes dip within 5° of the vertical [Gudmundsson, 1984]. Modelling of geodetic 

data from the Krafla episode suggested a vertical dyke [Rubin, 1992]. 
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2.3.4 Post-Rifting Deformation 

An array of ground tiltmeters has been operated continuously in the Krafla area 

since the cessation of major tectonism in order to monitor continued activity in the 

volcano. Data from these meters, which are all within 15 km of the Krafla caldera, 

indicate alternating periods of uplift and and subsidence [Tryggvason, 1994]. From 

early 1985 to the end of October 1986 vertical ground movements of stations within 

5 km of the caldera were negligible. From the end of October 1986 to March/April 

1987 uplift occurred with the rate slowing until early 1989 when the sense of motion 

reversed and subsidence began. Subsidence continued until 1992. Stations 5-

9 km from the caldera underwent uplift 1985-1989 followed by no motion or very 

slight subsidence 1989-1992. Stations more than 9 km from the caldera uplifted 

1985-1989 followed by no detectable motion 1989-1992 [Tryggvason, 1994]. These 

observations were interpreted as indicating inflation of the Krafla magma chamber 

1985-1989, deflation of this same body 1989-1992 accompanied by inflation of some 

deeper source and subsidence of the fissure swarm 1985-1992 [Tryggvason, 1994] 

(Table 2.3). 

Table 2.3: Summary of the vertical motion in the vicinity of the Kraf la magma chamber, detected 

using tiltmeters 1986-1992 [Tryggvason, 1994]. 

Distance from caldera 
Epoch < 5 km 5-9 km > 9 km 
1986-1989 uplift uplift uplift 
1989-1992 subsidence no motion/slight subsidence no detectable motion 

Major geodetic surveys using GPS were carried out in northeast Iceland in 1987 and 

1990. Differencing the results revealed a large, systematic, rift-normal expansion 

with a maximum amplitude of ~18 cm [Foulgtr et al., 1992; Heki et al., 1993; Jahn 

et al., 1994] (Figure 2.11a). This expansion was clearest around the centre of the 

fissure swarm where the Krafla dyke complex was injected. The maximum east-west 

expansion occurred 20-30 km from the rif t axis (Figure 2.11b), was approximately 

three times the time-averaged spreading rate for Iceland (Table 2.1) and decreased 

somewhat beyond this. Rift-parallel motion was also observed but was of a much 

smaller magnitude [Heki et al., 1993]. This resulted in a pattern of deformation 

that had a radial component. Vertical movements were around a few centimetres 

but were less systematic than the horizontal displacements, possibly because of a 
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Figure 2.11: (a) Horizontal point displacements between 1987 and 1990. 68% confidence (1.5<r) 

error ellipses are shown. T h e dashed profile zone indicates the part of the network around the 

middle of the intruded dyke complex, extending 26.5 km north of a point on Mt. Kraf la to 16.9 km 

south of it, and perpendicular to the strike of the Kraf la volcanic system, (b) The rift-normal 

motion, as a function of distance from the volcanic system, for the points within the profile zone 

shown in (a). l<r confidence bars are shown, adapted from Heki ei al. [1993]. 
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westernmost point in the network, which is shown as a dot, adapted from Heki et al. [1993]. 
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Figure 2.13: Comparison of the observed and simulated displacements 1987-1990, according to 

the model of Heki et al. [1993]. The shaded arrows represent simulated data and solid arrows 

observed. 68% {l-btr) confidence error ellipses for the observed displacements are shown. T h e 

points within 10 km of the dyke were excluded in fitting the data and are shown with open arrow 

heads. A stress diffusivity of 10 m 2 / s was used, adapted from Heki et al. [1993]. 
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lower signal to noise ratio (Figure 2.12). 

These movements were interpreted as postrifting relaxation of compressional stress 

accumulated in the near-boundary region of the plates during the recent Krafla 

rifting episode [Foulger et al., 1992; Heki et al., 1993]. A simple model was used 

consisting of a thin, elastic plate overlying a thin, viscous layer [Elsasser, 1969; Bott 

and Dean, 1973]. The 1975-1984 series of dyke intrusions was modelled both as a 

single, instantaneous, infinitely-long dyke (the one-dimensional model) [Foulger et 

al., 1992], and as a series of such dykes with finite lengths (the two-dimensional 

model) [Heki et al, 1993]. This latter approach was more consistent with the 

actual history of dyke emplacement, which involved the multiple injections of thin, 

rapidly-cooling dykes over a five-year period. This work provides a first order 

analysis of the data only, since real Earth rheology is known to be better described 

by viscoelasticity or power-law creep. 

The model explained the observations to a first order. Observed and predicted 

displacements 1987-1990 for the two-dimensional model are shown in Figure 2.13. 

The poor fit to the data in the vicinity of the dyke was attributed to the response of 

the elastic crust to inflation of the Krafia magma chamber [Heki et al., 1993], and 

on these grounds points within 10 km of the dyke were excluded in the inversion 

process. Another region where the fit was relatively poor was in the northwest, 

within the TFZ, and this was attributed to postevent motion on the faults in this 

region modifying.the deformation field. The eastward motion of the northernmost 

point was considered to be reasonable from a plate tectonic viewpoint since it is 

actually situated on the Eurasian side of the plate boundary (Figure 1.1). 

Comparison of the one-dimensional predictions of the stress-diffusion model with 

the observed displacements along a profile across the dyke (Figure 2.11b) gave 

an estimate for stress diffusivity of 1 m 2 /s , corresponding to a viscosity of 0.3-

2 x 10 1 9 Pa s [Foulger et al., 1992] 1 . Using the two-dimensional model, a best-fit 

stress diffusivity of 10 m 2/s was obtained, corresponding to a viscosity of 0.3-

2 x 10 1 8 Pa s. These estimates are in agreement with that obtained from postglacial 

rebound studies of 1 x 10 1 8 Pa s [Sigmundsson and Einarsson, 1992]. The one-

dimensional solution involved points close to the r i f t , i.e., those later thought to be 
1 Foulger et al. [1992] modelled G P S results calculated using the G E O N A P software at the 

University of Hannover. T h e results shown in Figure 2.11b were calculated using the Bernese 

software at the University of Durham. 
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Figure 2.14: (a) Displacement and (b) velocity of the flanks of the plate boundary 3-50 years 

after the intrusion. Displacements initially occur close to the boundary, but diffuse out over time. 

Velocity is highest close to the boundary shortly after the intrusion, but the velocity maximum 

propagates out and decreases in amplitude over time. According to the model of Htki ei al. 

[1993] motion results from the relaxation of compressional stresses generated during recurring 

rifting episodes. A 1-dimensional model was used, dyke thickness 1 m, and stress diffusivity of 

10 m 2 / s , adapted from Heki et al. [1993]. 
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Figure 2.15: Displacement versus time at points (a) 25 km, (b) 50 km, (c) 100 km, and (d) 200 km 

from the plate boundary. A rifting event is assumed to occur every 100 years when a i m thick 

dyke is intruded. The resultant, average full-spreading rate is 1 cm/yr . Movements change from 

episodic to continuous with distance from the plate boundary, adapted from Heki et al. [1993]. 
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Figure 2.16: Plate velocity as a func t ion of distance f r o m the divergent plate boundary immed i ­

ately prior to a r i f t i n g event, according to the model o f Heki et al. [1993]. Veloci ty is constant in 

the plate in ter ior bu t is zero at the boundary where the mot ion is purely episodic, adapted f r o m 

Heki et al. [1993]. 

Figure 2.17: Plate m o t i o n near an accretionary plate boundary. Movement of most of the plate 

is continuous, bu t i t is episodic at the boundary, adapted f r o m Heki et al. [1993]. 
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most affected by the radial outgoing displacements due to the pressured inflation 

of the Krafla magma chamber [Heki et al., 1993], giving a lower estimate for the 

diffusivity as a result. However, this factor could not entirely account for the 

discrepancy and a real spatial variation in diffusivity was suggested throughout 

northeast Iceland [Heki et al., 1993]. 

Plate motion at varying distances from the boundary were inferred using a one-

dimensional model and the diffusivity calculated by Heki et al. [1993]. The motions 

at far distance from the boundary from the summation of a number of diffusion 

pulses produced by regular events at the plate boundary were calculated. Near the 

boundary, a rifting event causes a sudden displacement similar to a step function 

(Figure 2.14a). A pulse of velocity ensues that has the largest amplitude immedi­

ately after an event, which subsequently decreases (Figure 2.14b). Closest to the 

boundary (less than 25 km), motion is highly episodic (Figure 2.15a). At 50 km 

from the boundary, episodicity is less pronounced and continuing movement occurs 

just before the onset of a new episode (Figure 2.15b). Further (100 km) from the 

boundary, movement is continuous with only small "ripples" apparent in the veloc­

ity rate (Figure 2.15c). Plate motion is nearly constant 200 km from the bound­

ary and essentially indistinguishable from continuous plate motion (Figure 2.15d). 

Crustal motion just before the onset of a spreading episode is shown in Figure 2.16. 

The velocity is zero at the boundary and approaches the half-spreading rate with 

distance. Between these two is a transition zone where movement at intermediate 

rates occurs, the "plate boundary" zone (Figure 2.17). 

I t is important to realise that this model is independent of the plate driving forces 

(ridge push, slab pull, drag on the undersides of the lithospheric plates) and makes 

no assumptions or predictions in this respect. It merely models the pattern of 

motion that results from episodic motion at the boundary in north Iceland for this 

particular Earth structure model. 

2.4 Previous Rifting Events in North Iceland 

Information on earlier rifting events in the NVZ may be obtained from geology and 

historical accounts. However, the information available mainly concerns volcanism 

and felt earthquakes and it is conjectural whether all these events were accompanied 
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by dyking. Tephrochronology gives the detailed history of volcanism in the Krafla 

area since early postglacial time. Five major volcanic episodes have occurred within 

the last 3,000 years [Bjdrnsson et ai, 1977]. Most eruptions in the Krafla fissure 

swarm occurred within the Krafla caldera or in the Namafjall area [Bjornsson et 

a/., 1979]. 

There is only one historically documented eruption in the Krafla fissure swarm, 

known as the "Myvatn fires" which occurred 1724-1729 [Bjornsson et a/., 1977]. 

The initial eruption, 17th May 1724, was from the main crater, Vi'ti (Figure 2.1) 

and was followed by earthquakes, fissure opening and crater formation. In August 

1727 a fissure eruption started near Leirhnjukur, extended southwards to Namafjall 

in April 1728 and continued until September 1729. 

In the Askja fissure swarm (Figure 2.2), steam emissions, intense earthquake ac­

tivity, and fissure opening occurred 50 km to the north of the caldera from 1874 

to 1875. This preceded a small eruption in the caldera and in the newly formed 

fissures. March 29th 1875 an ash eruption occurred in the Askja caldera and a new 

caldera with a volume of about 2 k m 3 collapsed within the already existing caldera 

[Bjornsson et o l , 1977]. 

Earthquakes and faulting lasting several months were recorded in 1618 in the The-

istareykir fissure swarm (Figure 2.2) to the north of the Krafla area [Bjornsson et 

al, 1977]. Periods of volcanic activity have been reported in the Kverkfjoll volcanic 

system (Figure 2.2) in 1655, 1711, 1717 and 1729 [Gudmundsson and S<£mundsson, 

1980], but little is known about this activity as that area has always been unin­

habited. 

2.5 Other Recent, Tectonic Activity in North 

and East Iceland 

In May 1983, a subglacial eruption occurred in the Grimsvotn volcano beneath 

the Vatnajokull icecap (Figure 1.2) [Einarsson and Brandsdottir, 1984]. It was 

preceded by a significant increase in seismic activity which lasted for about three 

months, and an intense earthquake swarm on the presumed day of the eruption, 

the pattern of which closely resembled the increased activity observed in Krafla 
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Table 2.4: Earthquakes greater than magnitude 6.0 in the Tjornes Fracture Zone and close to 

land, 1900-1992. Dates, epicentre locations, and magnitudes are from Tryggvason [1973] and 

Bjornsson el al. [1977]. 

Date Epicentre Activated fault. Magnitude 

Jan . 22 1910 N 6 6 . 5 ° W17 .0 0 Grimsey 7.1 

June 2 1934 N66.0 0 W 1 8 . 5 ° Dalvik 6.3 

Mar. 28 1963 N 6 6 . 3 ° W 1 9 . 6 ° Dalvik 7.0 

Jan . 13 1976 N 6 6 . 2 ° W 1 6 . 7 ° Grimsey 6.3 

before some of the eruptions and rifting events. The volcanic eruption is believed 

to have occurred between May 28</ l and June 5th 1983. 

Ti l t , levelling and gravity observations at the Askja volcano since 1966 have re­

vealed alternating uplift and subsidence cycles. Within ~10 km of the centre of 

the Askja caldera subsidence at a rate of a few centimetres a year was detected 

1966-1967, uplift 1967-1968, and subsidence 1968-1970. In the same region rapid 

uplift occurred at a rate of ~20 cm/yr 1970-1972, followed by a net subsidence 

of 20 cm 1972-1983. Since 1983 subsidence at a rate of 4-6 cm/yr has occurred 

(see Camitz et al. [1995] for summary). The majority of this ground deformation 

may be explained as a response to pressure changes in a shallow magma chamber 

[Tryggvason, 1984], and on the basis of t i l t measurements 1988-1991, Rymer and 

Tryggvason [1993] concluded that 80% of the observed ground deformation could 

be explained by the deflation of a spherical magma chamber centred at 65° 3.19'N, 

16° 46.10'W at a depth of 2.8 ± 0.3 km. This point is approximately at the centre 

of the Askja caldera. GPS measurements 1990-1993 were interpreted using this re­

sult, and imply a maximum subsidence of 11 ± 2.5 cm 1990-1993 and 5.5 ± 1.5 cm 

1992-1993 over the centre of the chamber [Camitz et al., 1995]. Outside of a 30-

40 km plate boundary zone Camitz et al. [1995] report divergent plate movements 

at a rate of 2.4 ± 0.5 cm/yr for the period 1990-1993. 

In addition to what appears to be continuous activity in the magma chamber, two 

earthquake swarms occurred along a 20 km-long zone trending N57°E, east of the 

Askja volcanic system in 1982/1983 [Einarsson, 1991]. 

Five large earthquakes greater than magnitude 6.0 have occurred in the TFZ in 

this century (Table 2.4) [Tryggvason, 1973; Einarsson, 1991]. Focal mechanisms 

available for these events show them to be associated with right-lateral, strike-slip 
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motion in the TFZ. The 1976 event was triggered by the first dyke injection of the 

recent Krafla spreading episode. 

Seismic activity has been high in the northwestern Vatnajokull region during the 

last 30 years or so [e.g., Einarsson, 1991]. The most seismically active feature in 

the area is the central volcano Bardabunga. From 1974-1980, nine earthquakes 

greater than magnitude 5 occurred there and this was the most significant seismic 

occurrence in this area for ~50 years [Einarsson, 1991]. The activity appeared to 

correlate with dyke injections during the recent Krafla episode and led Einarsson 

[1991] to hypothesise that they were triggered as a result of a hydraulic link between 

the central volcanoes of north Iceland, that could be the proposed layer of partial 

melt at the base of the crust (Section 1.3.3). 

2.6 Dynamics of Crust al Spreading 

A model for episodic crustal rifting was proposed by Bjornsson [1985]. The rifting 

episode in Krafla can be explained by the gradual buildup of extensional stress 

over a period of a few hundred years, in a narrow zone of the crust near the plate 

boundary, simultaneously with the slow retreat of the plates (Figure 2.18). The 

buildup of extensional stress in the axial r if t zone results in gradual crustal thinning 

and subsidence. This stress is periodically, suddenly released in rifting episodes, 

accompanied by magma intrusions into crustal fissures. Rifting initiates where 

magma chambers occur since these form weak points in the crust. However, the 

existence of a magma chamber is not a requisite for the rifting process - magma 

infiltration through pre-existing or newly-created joints and cracks in the lower 

crust is also capable of initiating a rifting episode. A volcanic system containing 

a magma chamber in the roots of its central volcano should r i f t more frequently 

than a system that does not have one. 

During the Krafla rifting episode repeated dyke injections into the fissure swarm 

progressively reduced extensional stress in the crust. When the extensional stress 

in the crust had been released, eruptions occurred since it was no longer easier for 

the magma to be intruded than erupted. This indicates that the magma supply 

was not controlled by stress in the shallow crust, but was in fact driving volcano-

tectonic activity, whilst the ambient stress field was governing its style. This is 
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Figure 2.18: A model of episodic crustal rifting in northeast Iceland. The net effect of the plate 

motions is to build up extensional stresses gradually in the axial rift zone. These are released 

every few hundred years in a rifting episode, after Bjornsson [1985]. 

further illustrated by the fact that the episode came to an end when the supply of 

magma to the chamber essentially stopped. 

Major volcano-tectonic activity is episodic in the rif t zone of north Iceland, occur­

ring every 100-150 years. Only one fissure swarm is active at a time [Bjornsson et 

al., 1977; Sigurdsson and Sparks, 1978]. Increased compressional stresses produced 

in the flanks of the r i f t zone during a rifting episode in one volcanic system will de­

crease the extensional stress in adjacent, overlapping, en echelon volcanic systems 

and so prevent them from rifting simultaneously. 

According to the stress diffusion hypothesis, after the dyking, the stress built up in 

the adjacent plates diffuses out from the boundary producing a transient deforma­

tion field. Pulses from repeated episodes sum in the plate interior to the constant 

rate of motion observed there. In this manner the spatial transition from episodic 

to continuous plate motion may be simulated. 
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2.7 Summary 

Geodetic surveying has revealed a picture that is far from simple of crustal de­

formation in Iceland. In southeast Iceland deglaciation of Vatnajokull throughout 

this century is thought to be resulting in surface uplift immediately around the ice­

cap. Across the spreading plate boundary in north Iceland, geodetic results reveal 

up to 50 cm of contraction 1965-1971, 30 cm of expansion 1971-1975, up to 8 m 

of expansion 1975-1985 and variable, regional expansion at up to three times the 

time-averaged plate rate of 1.85 cm/yr in the period 1987-1990. 

On December 20 t h 1975 a major, decade-long crustal rifting episode began in the 

Krafla volcanic system. About 20 rifting events occurred, during which magma 

flowed out of a crustal magma chamber into the fissure swarm forming dykes. 

The total widening across the fissure swarm and the volume of intruded magma 

suggests the average height of dykes from the magma chamber to be 2 km, less 

than the observed heights of eroded dyke swarms in eastern Iceland (about 10 km) 

and those obtained from geodetic data inversions (4-8.5 km). This suggests that 

material from the crustal magma chamber formed the upper parts of the dykes 

only and the lower and distant parts formed from material from a different source. 

GPS measurements in north Iceland 1987-1990 revealed a large, systematic, rift-

normal expansion with a maximum amplitude of ~18 cm a few tens of kilometres 

from the r i f t axis. These were attributed to the relaxation of compressional stress 

built up during the Krafla rifting episode. A viscosity estimate of 0.3-2 x 10 1 8 Pa s 

was obtained, but a real spatial variation is likely. 

Other volcano-tectonic activity in the region includes activity in the Krafla fissure 

swarm (1724-1729) and eruptions in the Askja volcanic system (1874-1875). The 

Askja magma chamber is currently believed to be deflating, and an eruption oc­

curred in Grimsvotn in 1983. Significant, recent seismicity has occurred in the 

TFZ, the Askja system and Bardabunga. 

The picture of crustal spreading that emerges involves slow divergence of the plates 

and the gradual build up of local extensional stress in a narrow zone of the crust 

near the plate boundary. Stress is released in periodic rifting episodes that occur 

every 100-150 years in the Krafla volcanic system. Postdyking, transient stress 

patterns result. 
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Chapter 3 

Satellite Surveying Using the Global 
Positioning System 

3.1 Introduction 

Much of the emphasis of geodetic research in recent years has been placed on 

methods based on space technology. Three space geodetic techniques are currently 

widely used for determining the coordinates of points on the Earth's surface. These 

are Very Long Baseline Interferometry (VLBI) , Satellite Laser Ranging (SLR) and 

the Global Positioning System (GPS). V L B I enables the coordinates of points to be 

determined using the signals from extra-galactic quasar radio sources whose posi­

tions are assumed fixed. SLR involves measuring the times taken for a series of short 

energy pulses to travel from a transmitter on the ground to a satellite and back. 

GPS involves determining the travel times of signals transmitted by three or more 

GPS satellites with known orbits. V L B I and SLR are observatory-based techniques 

whereas GPS provides a relatively inexpensive, mobile, all-weather method of de­

termining the three-dimensional coordinates of geodetic points. Using terrestrial 

techniques, two methods would have to be combined to obtain three dimensional 

coordinates, for example, EDM and levelling. 

The GPS system, and data processing principles and methodologies are highly 

complex and variable and the subject of several substantial publications. Only a 

broad overview of the basic principles and methods used in this project is possible 

in this thesis. Readers requiring greater depth are referred to the publications cited 

in the next section. 
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3.2 Fundamentals of GPS Satellite Surveying 

3.2.1 The GPS System 

GPS geodesy is described in detail by many authors including Dixon [1991], Hager 

et al. [1991], Leick [1990], Rocken [1988] and Wells et al. [1986]. GPS is a real-time, 

military navigation system that has been exploited by civilian users for geodetic 

surveying. It can provide absolute positioning (i.e., the position of a point in a 

known coordinate system) to an accuracy of a few metres and relative positioning 

(i.e., the position of a point relative to another point) at the sub-centimetre level. 

The ful l orbital constellation consists of 21 space vehicles, hereinafter referred to 

as satellites, with orbital periods of just less than 12 hours, at an altitude of about 

20,000 km above the Earth's surface. The satellites are distributed in six orbital 

planes inclined at 55° to the Earth's equator. The system is designed such that at 

least four satellites are always visible simultaneously from almost any point on the 

Earth's surface. 

Table 3.1: G P S signal characteristics, after Dixon [1991]. 

Carriers Code Modulations 

L I L2 P C/A (LI only) 

Frequency (carrier) 1.57542 1.2276 10.23 1.023 

or chip rate (code GHz GHz MHz MHz 

modulation) 

Wavelength 19.0 cm 24.4 cm ~ 30 m ~ 300 m 

Each satellite transmits signals on two frequencies, known as L I and L2, with fre­

quencies of 1.57542 GHz (19 cm wavelength) and 1.2276 GHz (24.4 cm wavelength) 

respectively. These two carriers are modulated with known binary codes that are 

different for each satellite. The precision (P) code has a period of 267 days and 

modulates both L I and L2. The coarse acquisition (C/A) code has a period of 1 

millisecond and modulates L I only (Table 3.1). In addition, a binary satellite mes­

sage containing the Keplerian orbital elements of the satellites and satellite clock 

corrections is broadcast. These satellite ephemerides are updated every hour, pro­

viding orbits that are as accurate as possible at any one time whilst being broadcast 
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in the format of Keplerian elements which yields great economy of information. 

3.2.2 Ranging 

Instantaneous positioning using GPS is done by one way ranging. In order to 

obtain the position of a point, the ranges to a minimum of three satellites must be 

determined. The position of the point is then one of the two intersection points 

of the three spheres having the one-way ranges as their individual radii and the 

respective satellites as their centres. For observation points on the surface of the 

Earth, one of these two intersection points may be eliminated (the one in space). 

In practice, the satellite and receiver clocks are not perfectly synchronised, and 

ranging to a fourth satellite is necessary to obtain the receiver clock correction. 

Continuous tracking yields a series of range estimates and reduces the minimum 

required number of satellites to two. 

3.2.3 Measurements 

In addition to receiving the broadcast satellite message, GPS receivers can make 

two kinds of measurements; code pseudorange and carrier beat phase measurements. 

These measurements are made at regular, discrete intervals, known as epochs. A 

pseudorange measurement is made by cross-correlating the P- or C/A-code with a 

replica code generated by the receiver. The time shift required to line up the two 

codes, multiplied by the speed of light, is the code pseudorange (Figure 3.1). This is 

equivalent to the distance (range) of the satellite from the receiver, corrupted by the 

mis-synchronisation of the receiver and satellite clocks. Ranging to four satellites 

enables both the three-dimensional coordinates of the antenna phase centre and the 

receiver clock correction to be determined. Correlation of about 1% of the code 

wavelength can be achieved, so a range measurement precision of about 30 cm is 

obtained from the P-code and 3 m from the C/A-code (Table 3.1). 

The observation equation for the code pseudorange measurement is given by 

p = c • dr, (3-1) 

where p is the pseudorange, c is the speed of light and dr is the measured time-

shift. Taking into account tropospheric and ionospheric delays and the different 
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(a) Pseudorange Measurement 

Code arriving 
from satellite 

Replica of code 
generated in receiver 

Time delay 
(pseudorange 
measurement) 

(b) Carrier Beat Phase Measurement 

Observed phase: 12n<> 
Total phase: 3 6 0 o x n + 120° 

45° 
360° x (n+3) + 45° 

Carrier arriving 
from satellite 

(doppler shifted) 

Carrier generated 
in receiver 

Beat signal 

Figure 3.1: The two kinds of range-related measurements made by G P S receivers, (a) Code 

pseudorange measurements are made by cross-correlating the P or C / A code with a replica 

generated by the receiver, and is the time delay required to line the two codes up multiplied by 

the speed of light, (b) Carrier beat phase measurements result when the phase of the incoming, 

doppler-shifted carrier is differenced with one generated in the receiver at the standard L I or L2 

frequency. The integer number of whole cycles between the satellite and receiver, n, is unknown. 
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time frames of the receiver and satellite clocks, equation 3.1 becomes 

p = p + c-(dt-dT) + dion + dtrop, (3.2) 

where p is the true range to the satellite, dt and dT are the offsets of the satellite 

and receiver clocks from true GPS time, and c?,on and dtTOp are the corrections for 

ionospheric and tropospheric delays. 

The carrier beat phase is the phase of the radio carrier which remains when the 

phase of the incoming, doppler-shifted carrier is differenced with one generated in 

the receiver (Figure 3.1). Since the wavelengths of the carriers are much shorter 

than those of either of the codes (Table 3.1), the precision of the pseudorange 

measured using the carrier beat phase is much greater than that measured using 

the code, and is about 2 mm for L I . A problem in using carrier beat phase mea­

surements to calculate satellite ranges is that the integer number of whole cycles 

between the satellite and receiver (i.e., the initial satellite range) is unknown - only 

changes in range can be measured by phase measurements. This is a problem for 

phase pseudoranges only since the code sequences are so long that the number of 

repetitions between satellite and observer on the Earth's surface is unambiguous. 

Provided the receiver maintains continuous phase lock on a satellite during the 

observation session, only one initial cycle ambiguity will exist per satellite/receiver 

pair per session. The total phase, <t>totai, may be expressed as 

<f>totai = Fr{<j>) + Int{<f>;10, t) + N{t0), (3.3) 

where Fr(<f>) is the measured fractional phase part, Int((f);to,t) is the integer num­

ber of phase cycles from the initial epoch t0 to epoch t, counted by the receiver, 

and an unknown integer number N cycles exists between the satellite and receiver 

at the initial epoch t0. In other words 

</>total = ^measured + N(t0). (3.4) 

The carrier phase observation equation (in length units) is 

$ = -\<j>meaSured, (3-5) 

where (j>measured is the carrier phase measurement (in cycles), A is the wavelength 

of the carrier and 3> is the phase pseudorange. Including atmospheric effects, the 

phase pseudorange equation can be written as 

<b = p + c - (dt — dT) + X - N - dion + dtTop, (3.6) 
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where N is the initial integer phase ambiguity. The form of this equation is almost 

identical to the code pseudorange equation (3.2), apart from the sign change of 

the dion component which reverses for the following reason. The GPS signal is 

dispersed by the ionosphere. This is dependent on the refractive index and hence 

can be modelled using the effect on the signal velocity. Code measurements are 

dependent on the group velocity, and phase measurements on the phase velocity. 

Group velocity is the derivative of the phase velocity and hence the sign difference 

of dion between the code and phase pseudorange equations. 

Various types of receivers are used including dual frequency P-code receivers and 

dual frequency C/A-code receivers. The former can replicate the P-codes and 

are able to make code measurements on L I and L2. The latter type of receiver 

can replicate the C/A code only, can thus make code measurements on L l only, 

and measures the phase of the L2 carrier by multiplying it by itself to remove the 

(unknown) code. The phase is thus measured at intervals of one-half the wavelength 

(the squaring technique). 

3.2.4 Differencing the Measurements 

The two types of ranges recorded by receivers, code and phase pseudoranges, are 

differenced in various ways to reduce or eliminate errors. These are known as single, 

double and triple differences. Single difference equations may be formed between-

receivers (Figure 3.2a) and then involve a pair of stations simultaneously observing 

the same satellite. Differencing the two ranges, r, to the satellites gives 

A(r) = ( r ) r e c e , v e r 2 — ( r)recet'uerli (3-7) 

where A denotes the difference between two receivers. The code pseudorange equa­

tion then becomes 

Ap = Ap - c • AdT + Adion + Adtrop. (3.8) 

The satellite clock error is identical at both receivers and will cancel out. A d , o n 

and Adtrop are now the differential corrections for the ionospheric and tropospheric 

delays, and AdT is a differential correction for the receiver clock error. Similarly, in 

the case of phase measurements, the between-receiver single difference pseudorange 

equation becomes 

A $ = Ap - c • AdT + XAN - Adion + A ( / < r o p . (3.9) 
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(a) (b) (c) 

A 
Figure 3.2: Linear differencing of observations by forming (a) between-receiver single differences, 

(b) receiver-satellite double differences, and (c) receiver-satellite-time triple differences. 

Orbit errors and atmospheric delays are correlated over short times and distances, 

and therefore, providing the survey lines are short (less than a few hundred kilo­

metres), these errors will be smaller in the single differences than they are in the 

pseudoranges. 

Receiver-satellite double differences are obtained by differencing two between-re­

ceiver single differences between two satellites (Figure 3.2b). For code pseudorange 

measurements, the receiver-satellite double difference observation equation is 

V A p = V A / J + VAdion + VAdtrop, (3.10) 

where V denotes differences between two satellites. The receiver clock error, dT, 

will cancel as i t is identical for both satellites. Similarly, for phase measurements 

V A $ = VAp + A • VAJV - VA<f, o n + VAdtrop. (3.11) 

Again the errors associated with misalignment between two receiver clocks cancels 

out. 

Triple differences are the change in receiver-satellite double differences from one 

epoch to the next (Figure 3.2c). In this combination initial integer ambiguities 

are eliminated in the. case of phase measurements. The observation equation for 

triple-difference phase pseudoranges is 

<5VA$ = SVAp - SVAdion + 6VAdtrop, (3.12) 

where 8 denotes differences between two epochs. 
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3.2.5 Satellite Orbits and Reference Frames 

Accurate satellite orbit information is important for GPS positioning. A satellite 

orbiting the Earth is subject to a force from the Earth's gravitational field. Its 

equations of motion are described by Kepler's three laws using a quasi-inertial 

(celestial) reference frame, in which the orientation of the axes remains fixed with 

respect to the stars and the origin coincides with the Earth's centre of mass. The 

orbit of satellite is described by an ellipse, with one focus at the Earth's centre of 

mass. 

However, Kepler's Laws do not account for other forces acting on the satellite that 

are significant for GPS surveying, including the effect of the Earth's equatorial 

bulge, the gravitational attractions of the sun and moon, solar radiation pressure 

and atmospheric drag. These forces perturb the orbits of the satellites, and thereby 

degrade positional estimates unless taken into account. 

Survey point coordinates are required in a terrestrial reference frame. A right-

handed coordinate system is used with its origin at the Earth's centre of mass. The 

first axis of this system passes through the intersection of the Greenwich Meridian 

and the equatorial plane, the third axis is in the average position of the Earth's 

rotation pole for the years 1900-1905, and the second axis is orthogonal to the first 

and third axes. The reference frame of the satellites and that of the points are re­

lated by the rotational motion of the Earth including precession, rotation, nutation 

and polar motion which are currently estimated using V L B I measurements. 

The time signal broadcast by the satellites is in GPS Time (GPST). This is synchro­

nised with atomic clocks at the GPS master control station at Colorado Springs, 

which in turn are synchronised with Coordinated Universal Time (UTC). UTC 

is based on International Atomic Time (IAT), the fundamental time scale of the 

Earth's time keeping that is obtained from analyses of the atomic standards of 

many countries. IAT does not account for the slowing of the Earth's rotation with 

respect to the sun, currently averaging 1 s per year, so to account for this UTC is 

incremented by 1 s (a leapsecond) when necessary. GPST was set to UTC at 0 hr 

on 6< / l January 1980, is not incremented by leap seconds, and at the time of the 

1992 GPS survey in Iceland was 7 s offset from UTC. 
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3.2.6 Intentional Signal Degradation 

Two effects have been introduced by the U.S. military to degrade the real-time 

navigational capabilities of GPS to unauthorised (civilian) users. These effects are 

selective availability (SA) and antispoofing (AS). SA is the "dithering" of the satel­

lite clock frequency such that the accuracy of the code pseudoranges is decreased. 

This mainly affects real-time operations, i.e., navigation. Differencing the pseu­

doranges at the same epoch between two receivers eliminates the effects. SA also 

involves truncation of the transmitted navigation message, so the coordinates of 

the satellites cannot be so accurately computed in real time. Since April 1990, SA 

has been implemented intermittently. 

AS involves turning off the P-code. Authorised (military) personel use the classified 

Y-code. In order to record data on both the L I and L2 frequencies, which is 

necessary to make the substantial ionospheric correction, civilian users must then 

either count half wavelengths of the L2 carrier ("squaring") or reconstruct the P-

code, a technique that increases noise in the P-code pseudoranges. Since October 

1993, AS has been turned on permanently. 

3.2.7 Error Sources 

The accuracy of relative point positions calculated using GPS measurements is 

dependent on two factors: the measurement accuracy, and the geometric strength 

of the satellite configuration. The measurement accuracy is affected by biases and 

errors. Three types of bias are important: satellite-, station- and observation-

dependent biases. They project into the calculated range and sum to produce 

the range bias. Satellite biases include errors in the satellite ephemeris and clock 

corrections. Station biases include biases in the receiver clock, and observation-

dependent biases include errors from atmospheric delays and the carrier beat phase 

ambiguity (Tables 3.2 and 3.3). 

Errors affecting the measured pseudoranges include phase cycle slips and multipath 

effects. A cycle slip results from a mistake in the integer cycle count, and may 

occur for a variety of reasons, e.g., signal- or receiver-generated noise or loss of 

lock because of a shaded antenna. The fractional part of the measured phase 

remains correct but the integer number of cycles is miscounted. Efficient methods 
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Table 3.2: Error sources of G P S measurements. 

BIASES 

Satellite Dependent 

• satellite ephemeris 

• satellite clock 

Station Dependent 

• receiver clock 

Observation Dependent 

• ionosphere delay 

• troposphere delay 

• carrier beat phase ambiguity 

ERRORS 

• cycle slips 

• multipath 

• antenna phase centre movement 

• random observation error 

Table 3.3: Individual contributions to the range bias. 

bias contribution to range bias 

satellite clock 300000 m (decreases to 10 m if broadcast correction 

is used) 

receiver clock 10 m to 100 m 

ionospheric delay 150 m at horizon to 50 m at zenith 

tropospheric delay 20 m at 10° above horizon to 2 m at zenith 

carrier beat phase ambiguity anything 
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of detecting and correcting cycle slips now exist. Multipath occurs when a signal 

arrives at a receiver via two or more paths, e.g., because of reflection from nearby 

buildings. The difference in path lengths causes the signal to interfere at the 

receiver and may result in a noisy signal or indirect path of the signal recorded. 

One measure of the geometric strength of the satellite configuration is the geometric 

dilution of precision (GDOP). GDOP is inversely proportional to the volume of 

the geometric body defined as having the satellites and the point as corners. This 

changes with time, as the satellites move. A small value of GDOP indicates well 

distributed satellites. 

3.2.8 Linear Combinations of Dual Frequency Data 

To facilitate cycle-ambiguity resolution and to reduce the effect of biases, the double 

differenced phase pseudoranges measured on the two carrier frequencies are linearly 

combined. Five combinations may be formed and processed. These are L I and L2 

(the original, double-differenced phase-range measurements), and the L3, L4 and 

L5 combinations (Table 3.4), obtained by combining L l and L2 in the following 

manner [e.g., Wells et ai, 1986]: 

i 3 = 7 2 ^ ^ - 7 2 ^ 7 2 ^ ( 3 - 1 3 ) 
J l ~ J 2 Jl ~ J 2 

L4 = LI-L2, (3.14) 

L5 = -r^Ll - - A - 1 2 , (3.15) 
J l ~ 72 Jl — J2 

Table 3.4: Linear combinations of the carriers L l and L 2 , after Wells et al. [1986]. 

Carrier Comment Wavelength (cm) 

L l carrier wave 19 

L2 carrier wave 24 

L3 ionosphere-free linear combination 0 

L4 geometry-free linear combination infinite 

L5 wide-lane 86 
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where f x is the frequency of carrier L I , f2 is the frequency of carrier L2 and L I and 

L2 are in metres. These linear combinations offer different processing advantages. 

L I and L2 have the lowest noise. L3 contains no first-order ionospheric refraction 

effects and thus virtually eliminates the error from this source. L4 is independent 

of the receiver clocks and geometry (receiver and satellite positions), and is depen­

dent only on the ionosphere and the ambiguities (for phase measurements). L5 is 

dependent on the point coordinates, the ionosphere and the difference between the 

L I and L2 ambiguities (known as the L5 ambiguities). It has a very long wave­

length, and thus resolution of the L5 ambiguities (from which may be derived the 

difference between the L I and L2 ambiguities) is relatively easy. 

3.2.9 Combining Multiple Point Coordinate Estimates 

Combining several estimates of point coordinates is generally necessary in large 

surveys as multiple occupations of points are made in order to detect blunders 

and reduce random errors. The basic relationship between the baseline vector 

components is [e.g., Heki, 1992] 

bii=Pi-Pii ( 3 - 1 6 ) 

where 6^ is a baseline vector connecting the zth and j t h points, and pi and pj are 

the i t h and-j'th point position vectors. The-observation equation is 

y = Ax + v, (3.17) 

where x is the vector composed of 3m parameters (p%,p\,p{, • • • ,PmiPmiPm)i V i S 

the vector composed of the observations (6f 2, b\2, • • •) (i-e., the individual session 

results), and v is its error vector. A is a Jacobian matrix composed of O's and plus 

and minus l's. A stochastic model of v is obtained by combining the covariance 

matrices for the individual sessions, Q,, into Q. The following normal equation is 

then solved: 

(ATWA)x = ATWy, (3.18) 

where W, the weight matrix, is Q - 1 , and T denotes the transpose matrix, to give 

an estimate of x, ,r, i.e., 

S=(ATWA)-1ATWy. (3.19) 
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The coordinates are obtained by estimating corrections to a-priori coordinates. 

One or more points must be fixed or constrained in space since the problem is 

independent of an arbitrary translation. If fiducial points (points whose coordinates 

are known accurately) were occupied in the survey, then their coordinates can be 

fixed and the coordinates of the other points calculated relative to them. Fixing a 

point eliminates it from the observation equation or constrains it around its a-priori 

coordinates with a given uncertainty. If fiducial points have not been occupied in 

the survey, then the most accurately determined network point is used. The final 

set of point coordinates minimises the weighted sum of the squares of the differences 

between the individual session, and final coordinates. 

3.3 G P S Data Processing 

3.3.1 Introduction 

The field data, consisting of code and phase pseudoranges and satellites ephem-

erides, must be processed to calculate precise, point-position coordinates. Several 

data processing software packages exist, e.g., GIPSY [Stephens, 1986; Lichten and 

Border, 1987] and the Bernese software [Rothacher et ai, 1990]. The latter software, 

installed on UNIX SUN workstations at the University of Durham, was used to 

process the Iceland data. 

3.3.2 Overview 

The Bernese version 3.2 GPS processing software [Rothacher et a/., 1990] creates 

double differences from the field data and inverts these to estimate the final pa­

rameters. Figure 3.3 shows the main components of the software. 

1. The transfer component. This comprises a collection of programs to reformat 

field data with various formats into Bernese v3.2-readable form. The field data 

are first converted into RINEX format (Receiver INdependent EXchange format 

[Gurtner et. a/., 1989]), and then into Bernese format. Separate files containing 

phase pseudoranges, code pseudoranges and satellite ephemerides are produced. 
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TRANSFER 

Transfer raw data 

into Bemese format 

ORBIT 

Check broadcast 
ephemerides 

Create standard orbits 

PROCESSING 

Check code pseudoranges 
Ionosphere modelling 

Form single differences 
Identify and correct phase 

cycle slips/outliers 
Parameter estimation 

Figure 3.3: Flow diagram of G P S processing using Bernese G P S software version 3.2. 

2. The orbit component. Accurate satellite orbits are generated for subsequent data 

processing. The broadcast orbit files are first checked for outliers then modelled 

to calculate continuous (tabular) orbits spanning the observation session. The 

ephemerides, originally transmitted as Keplerian elements, are transferred to an 

inertial coordinate frame, i.e., one which is either stationary or in uniform motion 

in space. Then, with each ephemeris treated as a series of data points spanning 

the hour for which it is valid, smooth (so-called standard) orbits are fitted, that 

correctly model the gravitational attraction of the sun and moon, higher orders 

of the Earth's gravitational field and solar radiation pressure. Each measurement 

session may have its own standard orbit file or one may be generated to cover 

several sessions. Precise orbits may be imported from some external source and 

modelled instead of broadcast ephemerides recorded in the field. 

3. The processing component. These programs identify and correct outliers and 

cycle slips and generate an ionospheric model prior to parameter estimation. Pa­

rameters that may be determined include cycle ambiguities, point coordinates, 

troposphere and ionosphere delays and the ful l covariance matrix. Many steps are 

required to accomplish this. 

Step 1. The code pseudorange data are checked for outliers. This is done by testing 

the data for short-period smoothness by fitting a low order polynomial. 

Step 2. Receiver clock corrections and rough receiver antenna positions are simulta­

neously calculated using the outlier-free code pseudorange data. The receiver clock 

offset may be modelled as a polynomial with time, or as an independent offset at 

each epoch. The clock corrections are written into the phase files. The degree 

of the polynomial chosen depends on the quality of the receiver oscillator and a 

degree of 2 + the session length in hours is recommended. The receiver positions 
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are calculated for each epoch using the ranges to the satellites and a single result 

is determined by computing the least squares solution for the whole measurement 

session. Absolute positions accurate to ~10 m may typically be determined. 

Step 3. An ionospheric model for each measurement session is created for use when 

processing linear combinations of the pseudoranges other than L3 (in which the 

ionospheric delay cancels out). The ionosphere is modelled as a shell of infinitesimal 

thickness containing free electrons at a height of 350 km above the Earth's surface. 

The electron content of the layer is modelled as a low-order polynomial function of 

latitude and hour-angle of the sun. Data from all satellites and all stations are used 

to produce a least-squares model. This produces a smooth, average model, that 

may be used to make first order corrections for the ionospheric delay. However, it 

does not model ionospheric-delay fluctuations on the time scale of the recording 

interval (~30 s). If these "scintillations" are of the order of the wavelength of the 

phase data they may be confused with cycle slips. Ideally ionosphere modelling 

should be done after removing cycle slips from the phase data, but in practice it 

does not make much difference. 

Step 4- Between-receiver phase single differences are created. 

Step 5. Outliers and cycle slips are identified and corrected in the phase data by 

checking for smooth variation of the data. For normal data the number of outliers 

identified should not exceed 10% of the total data, otherwise an unusual problem 

exists [A'. Heki, pers. comm., 1991]. 

Step 6. Parameter estimation is done. Parameters that may be estimated include 

the initial cycle ambiguities in the carriers, the X, Y and Z coordinates of the 

points, orbit parameters, ionosphere and troposphere models and the ful l covariance 

matrix for all estimated parameters. The greatest precision is achieved if the cycle 

ambiguities are resolved to their integer values, eliminated from the inversion and 

as few parameters as possible are estimated. Parameter estimation is conducted 

in several stages. Selected kinds of parameters are determined at each stage and 

problems solved progressively. 

In the first stage of parameter estimation, the L3 combination is used and cycle 

ambiguities and point coordinates are estimated. The coordinates estimated in 

this step are the most precise yet generated, and this solution is known as the 

ambiguity-free, ionosphere-free solution since the ambiguities are not constrained 
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to integers but solved as floating-point numbers. Atmospheric delays are usually 

made using a standard model, e.g., that of Saastarnoinen [1972], which assumes 

standard meteorological conditions. At this stage any remaining cycle slips may 

be detected through inspection of the residuals of the single differences, in which 

slips appear as step discontinuities. Outliers and uninterrupted observation periods 

less than 30 epochs long are manually removed by editing the single difference files 

and the positions of new cycle slips are marked. The ambiguity-free solution is 

recalculated and this process repeated until there are no remaining cycle slips in 

the data. 

In the second stage, the coordinates are fixed to the values calculated previously, 

and the L5 combination is used to estimate the L5 ambiguities as integers. The 

third stage is optional. The L5 ambiguities are held fixed at the integer values 

calculated, and the L I and L2 cycle ambiguities are estimated using the L4 com­

bination. Finally, the L3 combination is used and the point coordinates and any 

remaining L I and L2 ambiguities are estimated simultaneously. The third, optional 

stage may be dispensed with if the data are of high-quality. This final solution is 

the ambiguity-fixed, ionosphere-free solution. Local tropospheric models may also 

be estimated, but this has been found to give little improvement in Iceland since 

the troposphere is cool, and thus contains little water vapour, which is the source of 

the most significant tropospheric delay (the "wet" component) [Heki et a/., 1993]. 

Step 7. In the case of surveys where some or all points were measured multiple 

times, several point-position estimates are obtained. Network adjustment is the 

process by which these estimates are combined to form a single, weighted least-

squares set of point coordinates (a network solution). One method is to form a 

standard orbit file covering the entire survey, and to run the parameter estimation 

program once for all the data from all sessions. This may be a very large computa­

tional problem, but the Bernese software will correctly take account of correlations 

from such sources as common orbits in constructing the covariance matrix. Alter­

natively, the final coordinates and covariance matrices from the individual sessions 

may be used to calculate a post-processing, least-squares solution. This method is 

less computer-intensive but does not take account of all possible correlations. 
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3.3.3 Processing Procedure 

The Bernese software comprises about 50 individual programs, only a few of which 

are used for a single data set [Rothacher et ai, 1990]. The programs used to 

process the Icelandic data collected as part of this project are specified in bold 

type. Processing proceeded as follows: 

1. Translation of the field data into RINEX ( A S H T O R I N ) . The field data 

were separated into S-files, containing the point information, N-files containing 

ephemeris data, and O-files containing the pseudoranges. The RINEX files contain 

a-priori station locations, obtained by instantaneous positioning by the receiver 

using the code pseudoranges. 

2. Translation of the RINEX observation files into Bernese v3.2 format ( R X O B V 3 ) . 

3. Translation of the RINEX navigation files into Bernese v3.2 format ( R X N B V 3 ) . 

4. Scanning of the orbit data files for outliers ( B R D T S T ) . 

5. Translation of the orbit files from an Earth-fixed coordinate system to an inertial 

reference frame, and the formation of a tabular orbit ( B R D T A B ) . 

6. Formation of the standard orbit file ( D E F S T D ) . 

7. Scanning of the code-pseudorange data for outliers ( C O D C H K ) . 

8. Calculation of point positions and clock corrections using the code pseudorange 

data ( C O D S P P ) . 

9. Graphical examination of the residuals to check the result ( B R E S ) . 

10. Estimation of an ionosphere model ( I O N E S T ) . 

11. Graphical examination of the ionosphere model to check the result ( ION-

G R A ) . 

12. Formation of single difference files ( S N G D I F ) . 

13. Cycle slip detection and coordinate estimation using a triple difference solution 

( M A U P R P ) . Program M A U P R P performs three steps; pre-preprocessing, for­

mation of a triple-difference solution and automatic cycle slip detection. In the pre-
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preprocessing stage, time intervals are identified within which, with great certainty, 

no cycle slips are present in the double differences. This is determined by fitting 

a low-order polynomial to a short time interval of data and marking poorly fitting 

points as outliers. Cycle slips appear as steps in the double differences. A triple 

difference coordinate solution is then calculated using the outlier-free data. Using 

these coordinates, the residuals of the original data are computed and cycle slips 

in the phase and code pseudorange files are identified and corrected. M A U P R P 

works separately on L I and L2 in order to check whether detected cycle slips are 

real, or merely artifacts resulting from a turbulent ionosphere. 

If code pseudoranges on both L I and L2, are available, then steps 12. and 13. 

are performed in reverse order and cycle slip detection may be performed on the 

undifferenced phase data using the algorithm TurboEdit [Blewitt, 1990]. This 

often performs better than M A U P R P . Outliers and cycle slips are detected by 

comparing subsequent-epoch data. The difference between consecutive epochs must 

lie within 4 x the standard deviation of the running mean, or else a cycle slip is 

considered to be detected [Blewitt, 1990]. 

Both M A U P R P and TurboEdit are insensitive to cycle slips less than 5 or 6 

cycles in size, and minimum thresholds of about 5 may be set. Smaller cycle slips 

are detected by eye and corrected by hand at the parameter estimation stage (14. 

below). 

14. Estimation of the coordinates and ambiguities as floating point numbers, fixing 

the coordinates of one station ( G P S E S T ) . 

15. Graphical inspection of the single-difference residuals for outliers and cycle 

slips smaller than the detection threshold of M A U P R P or TurboEdit ( B R E S ) . 

16. Correction of undetected cycle slips in phase data files by manual insertion of 

cycle slip flags ( B V I ) . 

17. Repetition of steps 14.-16. until the data are free of cycle slips. 

18. Estimation of L5 ambiguities (program G P S E S T ) , fixing all station coor­

dinates to the values calculated in the previous run of G P S E S T and using the 

ionosphere model calculated using I O N E S T . 

19. Graphical inspection of L5 residuals for any remaining cycle slips (slips that 
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are the same size in L I and L2 do not show up in step 15.) ( B R E S ) . 

20. Correction of cycle slips as for step 16. and repetition of steps 18. and 19. 

until the data are free of slips. 

21. Estimation of point coordinates and resolution of the L I and L2 ambiguities. 

Two methods were used. The first used the G P S E S T L4 option where the L I and 

L2 ambiguities are resolved and the point coordinates held fixed, followed by the 

G P S E S T L3 option in which the remaining ambiguities and station coordinates 

are estimated simultaneously. The second method used the G P S E S T L3 option 

and solved for the L I ambiguities and station coordinates simultaneously in one 

step. The first method was used for the 1991 data set and the second method for 

the high-quality 1992 data set. 

22. Network adjustment ( N E T A D J [Heki, 1992]). 

3.4 Summary 

GPS is one of three space-geodetic techniques currently widely used for surveying 

point positions. The system consists of 21 satellites, each transmitting signals 

on two carrier frequencies which are modulated with known binary codes. GPS 

receivers can record transmitted orbital and timing information, and also make 

code- and carrier-beat phase-pseudorange measurements. These are affected by 

several error sources, including orbit errors, ionospheric dispersion effects and cycle 

slips. In addition, the accuracy of relative point positions calculated using these 

measurements is dependent on the geometric strength of the satellite configuration. 

To reduce or eliminate these errors, the code- and phase-pseudorange data are 

combined to form single, double and triple differences. 

Satellite orbits are described in a celestial reference frame using Kepler's three 

laws. Account is also taken of the effect of additional perturbing forces such as 

solar radiation pressure and atmospheric drag. Station locations are required in a 

terrestrial reference frame. The time signal broadcast by the satellites is based on 

International Atomic Time. Two effects have been intentionally introduced by the 

US military to degrade the real-time navigational capabilities of the system. 
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Several GPS data processing software packages exist, and can analyse the field data 

to produce point positions with sub-centimetre precision. The Bernese v3.2 soft­

ware was used for this project. It can be split into three main components. The first 

translates field data into Bernese format. The second component enables checking 

of the broadcast orbit files for smoothness before generating a standard orbit file. 

The third component includes programs to identify and correct outliers and cycle 

slips, generate an ionosphere model and estimate parameters. This last step can 

use five different linear combinations of the double-differenced carrier-phase data 

to estimate the L I and L2 ambiguities and produce point coordinates. If points 

were surveyed independently multiple times a weighted least-squares estimate of 

the point coordinates is made (network adjustment). 
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Chapter 4 

G P S Satellite Surveying in Iceland 

4.1 Introduction 

GPS surveying has now been widely applied to determine crustal deformation in 

Iceland. Several surveys have been carried out including a countrywide survey in 

1986 [Foulger et al., 1993], and several regional surveys. These include surveys 

in 1987 and 1990 in north Iceland to detect ground motion following the rift ing 

episode that began in the Krafla volcanic system in 1975 [Foulger, 1987; Jahn et 

al., 1990; Heki et al., 1993; Jahn et al., 1994], surveys in 1989 and 1992 in the SISZ 

and on the Reykjanes Peninsula [Hackman, 1991; Sturkell et al., 1994], surveys in 

1991 around the Vatnajokull icecap and the Hengill triple junction, and a survey 

in 1993 in the southernmost EVZ to determine motion following an eruption of the 

volcano Hekla [Sigmundsson et al., 1992]. 

In addition to a description of the fieldwork, an overview of the most important 

points concerning the data processing are given in this chapter. The fu l l data-

processing computer directory trees are archived electronically at the University of 

Durham, and all the processing details not covered in this chapter are preserved 

there. 

4.2 Field Procedure 

The GPS survey points measured in Iceland usually consist of metal discs or pins 

embedded in bedrock and on open ground. A small dot is marked in the centre 
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s Ada 
Figure 4.1: A typical set of G P S field equipment. 

of the disc over which the antenna is centred. Identification marks are usually 

stamped around the r i m , indicating the site number and the owner-institute. 

A set of GPS field equipment includes a receiver and antenna (and associated 

connecting cables), a power source for the receiver, a t r ipod, tr ibrach, optical plumb 

and tape measure (Figure 4 .1). The procedure for setting up the equipment involves 

the following basic steps: 

1. Antenna positioning. The t r ipod is accurately centred over the geodetic point 

using a tribrach and optical plumb. I t is first positioned as accurately as possible 

over the point and coarsely levelled by moving two of the legs. Accurate levelling is 

achieved by adjustment of the tribrach, which is then centred over the point using 

the optical plumb. The optical plumb is then removed and the antenna screwed 

onto the tribrach and oriented north in order to reduce phase centre biases between 

antennas at different points. 

2. Antenna height measurement. The slant height of the antenna r im above the 

point is measured, usually at three different azimuths in order to provide a check. 

3. Equipment power up. The antenna is connected to the receiver which is then 

switched on. 

4. Recording. The receiver is checked periodically to ensure that recording is 

continuing. 
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5. Ending the session. The receiver is switched off at the end of the recording 

session, typically several hours for regional-scale surveys. 

6. Antenna height remeasurement. This is done before the t r ipod is taken down 

to check that the t r ipod has not moved, e.g., in the wind. 

7. Data download. This is done as soon as possible to, for example, floppy discs. 

4.3 GPS Surveys in Iceland 

4.3.1 Surveys Prior to 1991 

GPS surveys were carried out in Iceland in 1986, 1987, 1989 and 1990 (Table 4.1). 

The 1986 survey [Foulger et al., 1993] aimed to survey the SISZ to accuracies 

adequate for geodynamic research, and to measure a country-wide network which 

would form the basis of a new first-order geodetic network. Site descriptions for 

this survey are given by Gudmundsson and Einarsson [1986]. 

In July 1987, a GPS survey of north Iceland covering an area of 250 x 250 k m , was 

conducted by the Universities of Durham, Hannover and members of the Icelandic 

GPS Coordinating Committee [Foulger, 1987; Jahn et al., 1990; Heki et al., 1993]. 

This survey aimed to establish a dense network to study tectonic motion around 

the spreading plate boundary there. The points occupied were densely spaced 

wi th in the Kraf ia volcanic system and sparsely distributed throughout an area 

extending 130 km into the adjoining plates (Table 4.1; Figure 4.2). The network 

Table 4.1: T h e 1986, 1987, 1989 and 1990 G P S surveys in Iceland. 

Date Location Number 

of points 

Number of 

receivers 

Total 

Satellites 

Session 

length 

References 

13/7/86-24/7/86 all Iceland 51 7 Tl4100's 4 50 min (am) 

1 hr 50 min (pm) 

Foulger [1987] 

Foulger et al. [1993] 

3 /8/87-24/8/87 N Iceland 63 7 TMlOO's 6 3 hr 20 min Jahn et al. [1990] 

Heki et al. [1993] 

27/7/89-21/8/89 S Iceland 57 6 Tl4100's 3-4 6 hr 30 min (am) 

5 hr 04 min (pm) 

Hackman [1991] 

30/7/90-19/8/90 N Iceland 61 7 TMlOO's 7 4 hr 10 min Jahn et al. [1991] 

Heki et al. [1993] 
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Figure 4.2: The 1986, 1987, 1990 and 1992 Iceland G P S point s. 
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also covered the Askja volcanic system and the T F Z . Site descriptions are given by 

Gudmundsson and Einarsson [1987]. 

In 1989, the 1986 network in the SISZ, was densified and resurveyed in order to 

detect crustal deformation in and around the SISZ [Hackman, 1991]. 

In August 1990, most of the 1987 network was remeasured [Jahn et ai, 1991; Heki 

et ai, 1993] (Table 4.1). Selective availability was implemented for the first two 

thirds of the survey. Site descriptions for this survey are given by Einarsson [1992]. 

GPS surveying began very early in Iceland. This has resulted in the Icelandic data 

providing some of the earliest GPS deformation results in the world. Early surveys 

suffered f rom few satellites and having to use TI4100 receivers, which are only 

capable of tracking four satellites at a time, and these factors degraded accuracy. 

However, accuracies presently attainable are degraded by SA and AS, so the early 

results do not compare as badly w i t h the newer ones as might be supposed. 

4.3.2 The 1991 Vatnajokull GPS Survey 

In July 1991, GPS measurements were made around the Vatnajokul l icecap, in 

order to establish a network to monitor isostatic movements in response to melting 

during the 20th century. The stations were sited at varying distances f rom the edge 

of the icecap in order to detect the variation of up l i f t w i t h distance f r o m the icecap, 

since points farther f rom the icecap are expected to undergo smaller-magnitude 

isostatic movements. The project was collaborative between the Universities of 

Colorado, USA, Iceland and Durham. Three Ashtech M D X 1 1 C/A-code GPS 

receivers, supplied by the Natural Environment Research Council (NERC) U K , 

recording squared L2 phase data were used. From July 6th to 19th, 10 points east 

and southeast of the icecap were occupied (Figure 4.3; Table 4.2). Of these, eight 

were installed during the survey period and the remaining two (Djup and Hofn) 

were existing survey points occupied in the 1987 survey. Point Hofn was occupied 

v i r tua l ly continuously f rom July 6th to 19"1 and the other sites were occupied a 

min imum of three times each. Two observation windows per day were used. The 

start and end t ime of these windows varied somewhat f rom session to session as a 

result of site accessibility and transport availability. The windows 00:30 to 08:00 

(local t ime) (session 0) and 15:00 to 19:00 (session 1) were usually used. During 
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Figure 4.3: The 1991 Vatnajokull G P S network. 

these windows up to six satellites were observed simultaneously and up to a total 

of 15 were observed throughout a single session. 

Data were recorded at 10-second intervals during session 0, in order to fit them 

on a single 1.4 Mbyte floppy disc (the downloading software at the time precluded 

the spl i t t ing of data files), and at five-second intervals during session 1. A 10° 

min imum satellite elevation angle was used. The data for sessions 188.1, 189.1, 

191.1 and 192.1 were collected using a kinematic technique [P. Einarsson, pers. 

comm., 1991], before the author's arrival in the field. The power sources used for 

the receivers were standard car batteries, and these, the tripods, levels for antenna 

set-up and other equipment, e.g., tape measures, were supplied by the University of 

Iceland. Two, four-wheel drive vehicles were used, also supplied by the University 

of Iceland. Sleeping bag accommodation was provided by a local school in Hofn, 

where downloading of the data and battery recharging also took place. 

From July 27th to 31 s *, five points southwest of Vatnajokul l were occupied using 

GPS (Table 4.2), and measurements of the water level of Lake Langisjor (Figures 4.3 

and 4.4), a glacial lake at the edge of the icecap, were also made. Several sets of 
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Table 4.2: Point occupation schedule during 1991 Vatnajokull G P S Survey. 

Point 

July Session Hofn Stap Gild Hoff Flat Hein Upps Hrol Hval Djup Nlan Slan Brei Geir Herd 

6 187.1 • • 
7 188.0 • • 
7 188.1* • • 
8 189.0 • • 
8 189.1* • • 
9 190.0 • • 
10 191.0 • • 
10 191.1* • • 
11 192.0 • • 
11 192.1* • • 
12 193.0 • • 
12 193.1 • • 
13 194.0 • • • 
13 194.1 • • • 
14 195.0 • • • 
14 195.1 • • • 
15 196.0 • • 
15 196.1 • • • 
16 197.0 • • • 
16 197.1 • • • 
17 198.0 • • • 
17 198.1 • • • 
18 199.0 • • 
18 199.1 • • • 
19 200.0 • • • 
27 208 • • • 
28 209 • • • 
29 210 • • • 
30 211 • • • 
31 212 • • • 

* Data collected using a kinematic technique, not analysed as part of this project. 
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Figure 4.4: Lake Langisjor , l ook ing n o r t h f r o m the southwestern end o f the lake. 

Figure 4.5: Measuring the height o f a (submerged) s t rand line relative to the lake level. 
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i i 
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Figure 4.6: The device invented by the University of Iceland to measure lake-level variations on 

an hourly basis. A levelling rod was erected over the G P S point, and the device was mounted 

on a tripod in the lake. Points P and Q were level with each other at different azimuths. Their 

values were read using the optical levelling device. T h e tap on the capillary was then closed, and 

the height PR read directly from the tape measure. Lake level variations were evident from the 

differences between P and R. 

Figure 4.7: Typical field accommodation during the 1991 Vatnajokull G P S survey. 
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strand lines are visible around the edge of Lake Langisjor and measurement of the 

heights of these above the present lake level at the northeast and southwest ends of 

the lake provided an estimate of t i l t of the lake due to recent isostatic movements. 

Measurements were also taken of the height of a submerged strand line relative to 

the lake level (Figure 4.5). I f the t i l t is a result of isostatic up l i f t due to melting of 

Vatnajokul l , then the difference in height between the strand lines should increase 

as the icecap is approached. Estimates of the heights above the present lake level 

were made by laying a tape measure parallel to the dip of the beach, and taking 

height measurements relative to the present lake level using a levelling rod and an 

optical level. The position of the optical level was kept fixed and successive height 

measurements taken at intervals of about 50 cm along the tape measure using the 

levelling rod and optical level. 

Hourly variations in the level of the lake were also measured at both ends of the 

lake, close to GPS points, using the level and a device invented by the University 

of Iceland which allows precise differences between a fixed point on a rod and the 

water level to be read (Figure 4.6). This device consists of a capillary tube wi th 

a tap on the lower end, fixed onto a board wi th a tape measure. The device was 

mounted on a t r ipod and positioned in the lake w i t h the tap open. The optical 

level was then used to make a reading on the level rod placed on the GPS point and 

then rotated to make a reading f r o m the device tape measure. The tap was then 

closed and the height of the water in the capillary read using the tape measure. 

The lake level variations were estimated f rom the difference in height between the 

GPS point and the water level in the capillary tube. 

Accommodation during the Langisjor survey consisted of two tents (Figure 4.7). 

Downloading of data onto 1.4 Mbyte floppy disks was done in the field vehicles and 

powered by the car batteries. Recharging of these batteries was done using petrol 

powered generators. 

4.3.3 The 1992 G P S Survey 

From 26th July to 24th August 1992, much of the GPS network in north Iceland 

that was measured in 1987 and 1990 was remeasured, and additional points were 

added (Figure 4.2). The fieldwork was colloborative between the Universities of 

Durham and Hannover. Seven Ashtech M D X l l dual-frequency GPS receivers were 
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Table 4.3: Point occupation schedule of the Iceland 1992 G P S survey. 
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Figure 4.9: Sky chart of satellites observed above a 10° cut-off angle during the period 09:00 to 

18:00, 31" August 1992 at 6 5 ° N 1 6 ° W . 
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used, three supplied by NERC and four by the University of Hannover. The points 

measured, and new points added to the network, were selected on the basis of 

forward extrapolations f r o m modelling the 1987 to 1990 deformation field in north 

Iceland [Heki et al., 1993]. Some closely-spaced points wi th in the neovolcanic zone 

measured in previous surveys were omit ted, and 14 more distant points were added. 

Three of these had been occupied using GPS in 1986 and 11 were new GPS points 

to the east, west and southeast of the network (Figure 4.2). A total of 62 points 

were measured over a 20-day period (Table 4.3). No observations were made at 

the weekends as AS was in effect at these times and the receivers could not record 

under such circumstances. 

A five-hour recording session was used, w i th data being recorded at 15-second 

intervals. This session was usually during the day, since experience has shown that 

ionospheric noise is lowest then in north Iceland [C.-H. Jahn, pers. comm, 1992]. 

However, on some occasions data were recorded for considerably longer periods 

(up to 18 hours) when the drive times to the points were long. The tripods were 

sometimes reset in the middle of these recording sessions. The reason for this 

was tha t the data f rom these sessions were split to provide two sessions and if 

the tripods had not been reset, misleadingly good coordinate repeatabilities would 

have resulted f rom the absence of t r ipod set-up errors between the sessions. The 

second halves of these split sessions are coded .1 in Table 4.3. 

The satellite constellation was almost complete at the t ime of the survey, so ob­

servations could be made at vir tual ly any t ime of the day. No site was occupied 

continuously as in previous surveys since this had been found to produce no signif­

icant improvement in the final results as a consequence of the more numerous long 

lines w i t h relatively poor accuracy [C.-H. Jahn, pers. comm., 1992]. Up to 18 satel­

lites were observed during each session and up to seven satellites simultaneously 

(Figure 4.9). 

Tripods and optical levels (supplied by the University of Hannover) were used for 

positioning the antennas above the points and the slant height of the antenna 

above the point was measured using a tape measure. The power sources for the 

receivers were standard car batteries and these were recharged overnight using 

mains, petrol generators or car engines. Seven, four-wheel drive vehicles were used, 

two supplied by the University of Durham and five by the University of Hannover. 

Field accommodation was in the Krafla power station, a local school at Skutustadir 
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(Figure 4.8) and in tents or bed-and-breakfast places when points were measured 

long distances f rom the survey headquarters in the Myvatn area (Figure 4.8). 

Few major problems were encountered. Extreme winds in the Icelandic interior 

resulted in some tripods being blown down, but the field practice of weighting the 

legs of the tripods wi th rocks largely prevented this problem. One antenna was 

not working at the start of the survey, but a replacement was rapidly delivered by 

Ashtech. The NERC receivers occasionally lost recorded data f r o m memory when 

they were switched off at the end of a session, and data were lost on the first day 

because of this. To prevent this recurring, the data were thereafter downloaded to 

floppy disk at the survey point before the receivers were switched off. This was done 

using portable PC's powered by the field-vehicle batteries via the cigarette lighter. 

The data f r o m the Hannover receivers were downloaded either at Skutustadir or at 

the Kraf la power station. A t the end of the survey, the whole data set was archived 

onto two 60-Mbyte data cartridge tapes using a portable HP workstation, supplied 

by the University of Hannover. 

4.4 Data Analysis 

4.4.1 Analysis of the 1986, 1987 and 1990 G P S Data 

The 1986 data were processed by scientists at the University of Bern [Foulger et 

al, 1993]. Analysis was diff icul t as a result of the short morning satellite window, 

the small number of satellites available in 1986 and rapid ionospheric variations. 

An ambiguity-fixed, ionosphere-free solution was produced for the southern part of 

the network, and an ambiguity-free, ionosphere-free solution for the country-wide 

network. These two solutions were combined to give the f inal total survey solution. 

The 1987 and 1990 data sets were processed at the University of Durham using the 

Bernese v3.2 software [Heki et a/., 1993]. Resolution of the L I and L2 ambiguities 

for the 1987 data set was successful. However, this was more dif f icul t in the case 

of the 1990 data, due to excessive ionospheric noise at the t ime of the sunspot 

maximum. The best solution for the 1990 data was the ambiguity-free, ionosphere-

free solution. To reduce mult ipath effects, 15°-20° satellite cut-off angles were used. 

The 1987 and 1990 data sets were also processed independently at the University 
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of Hannover using the GEONAP software [Jahn et a/., 1994]. 

4.4.2 Analysis of the 1991 Vatnajokull G P S Data 

The data f rom all sessions were split into two halves for processing, except sessions 

187.1, 188.0, 198.1 and 199.1 which were too short to split. Data analysis was 

conducted as summarised in Section 3.3.3, wi th details as follows. Processing step 

numbers correspond to those of Section 3.3.3. 

1. Translation of the field data into R I N E X format ( A S H T O R I N ) . The S-files of 

the f i rs t nine sessions were not downloaded to floppy disk because of insufficient 

space on the floppies. I n order to create the R I N E X files for these receiver sessions, 

S-files f r o m different sessions were substituted. 

2. Translation of the R I N E X observation files to Bernese format ( R X O B V 3 ) . 

The site information in the Bernese files were checked, in particular the vertical 

antenna height above the point which is calculated f r o m the slant height and entered 

manually. 

3. Translation of the R I N E X navigation files to Bernese format ( R X N B V 3 ) . One 

file per session was created. 

4. Scanning of the orbit file for outliers ( B R D T S T ) . During some sessions the orbit 

messages f r o m some otherwise-usable satellites were not broadcast. Substitute data 

f rom the Scripps Insti tute of Oceanography, USA, were used where possible, but 

some satellite data had to be deleted f rom the pseudorange and phase files where 

no orbits were available. 

5. Formation of a tabular orbit file ( B R D T A B ) . 

6. Modell ing to fo rm a standard orbi t file ( D E F S T D ) . One file per session was 

created. Two iterations were usually required. Typical post-fit RMSs were ~ 1.0 m. 

7. Scanning of the code pseudorange data for outliers ( C O D C H K ) . Typically one 

outlier per satellite was detected. 

8. and 9. Single point positioning to calculate clock corrections and rough absolute 

station locations ( C O D S P P ) . The a-priori station positions were obtained f rom 
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Figure 4.10: Ionospheric models for sessions 198.1 (bottom), 199.0 and 199.1 (top), covering the 

local time periods 13:18-21:24 (8.1 hours), 23:42-07:24 (7.7 hours) and 13:30-21:42 (8.2 hours) 

respectively. 

the original RINEX files, except for station Hofn for which the 1987 coordinates 

were used. A 10° cut-off angle was used and the troposphere modelled using a 

Saastamoinen model. One clock correction per epoch was estimated. RMS resid­

uals of about 20 m for the point coordinates were usually obtained. New-a-priori 

coordinate differences were generally up to a few 100 m. 

10. and 11. Estimation of an ionosphere model ( I O N E S T ) . A 20° cut-off angle 

was used. Figure 4.10 shows the results for sessions 198.1, 199.0, and 199.1. The 

electron content varies by about an order of magnitude and the wide variation in 

ionospheric behaviour between sessions at different times of the day, and the simi­

larity between sessions at the same times on consecutive days is evident. Electron 

content tends to be lower during the day than at night. Post-fit RMS residuals of 

0.1-0.3 m were typically obtained. 

12. Formation of single difference files ( S N G D I F ) . Stations were paired in such a 

way as to maximise the amount of single difference data and minimise the distances 

between paired stations. 

13. Outlier and cycle-slip detection and correction in the phase and pseudorange 

data. Program M A U P R P was used. The 1991 data were abnormally noisy and 
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Figure 4.11: L2 residuals (calculated - observed) ( p o s t - M A U P R P ) of single differences between 

stations Hofn and Hoff for the unsplit session 194.1. The data correspond to the time period 

14:38 to 19:38 local time for satellite combinations (a) 11 and 17, and (b) 2 and 16. 

such a large number of outliers were identified that i t was clear that the program 

was not working well w i t h these data. The noise probably resulted f r o m both 

ionospheric scintillations and cycle slips. In order to prevent M A U P R P f r om 

eliminating many false outliers, i t was necessary to increase the maximum iono­

spheric difference allowable between epochs as a percentage of the L I wavelength 

f rom the recommended 40% to the maximum allowed of 999%, this latter effectively 

disabling outlier rejection completely. In this case M A U P R P functioned solely to 

produce point coordinates using tr iple differences. 

Figure 4.11 shows the p o s t - M A U P R P L2 residuals for single differences between 

stations Hofn and Hoff on the unsplit session 194.1. The noisy nature of the data 

is well illustrated in the residuals of satellite pair 11 and 17 (Figure 4.11a). I t is 

impossible to tell whether this noise is ionospheric scintillations at a similar fre­

quency to the measurement frequency (0.1 or 0.2 Hz) or frequent cycle slips. This 

figure also illustrates the effect of orbital errors. The average residual deviates sys-
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tematically f r o m zero over long periods as a result of broadcast orbit inaccuracies. 

The data f rom satellite combination 2 and 16 (Figure 4.11b) are much less noisy. 

A cycle slip of 5 cycles occurs near epoch 500. 

14. to 17. Estimation of the coordinates and ambiguities as floating point numbers 

using the L3 combination ( G P S E S T ) . The coordinates of site Hofn were fixed 

to the values obtained f rom the 1987 data processing. Other a-priori coordinates 

used were the tr iple difference coordinates calculated by program M A U P R P . As 

the data were so noisy and cycle slip detection using M A U P R P worked rarely, 

many slips remained that had to be detected by inspection of the residuals of the 

single differences after coordinate estimation. As the L3 combination eliminates 

most of the ionospheric effect, cycle slips could be unambiguously detected at this 

stage. The data f rom some satellites were so noisy as to be unusable, and had to 

be deleted. 

A 20° min imum satellite elevation angle was used. As wi th previous surveys, local 

tropospheric parameters were not estimated. 

This step was repeated several times and cycle slips gradually eliminated un t i l the 

data were clean. Approximately 10% of the data were discarded and three sessions 

were unusable due to the extreme noise levels in the data. These were the second 

half of session 194.1 and the entire session 195.1. Line-length RMS residuals were 

of the order of 0.1 m . 

18. to 20. Estimation of L5 ambiguities using G P S E S T . A l l point coordinates 

were held fixed to the values calculated in the last run of G P S E S T . A 15° min i ­

mum satellite elevation angle was used. A l l L5 ambiguities were resolved once all 

cycle slips had been detected and corrected. Typical RMS residuals of 0.2 m were 

obtained. 

21. Estimation of point coordinates and resolution of the L l and L2 ambiguities. 

The G P S E S T L4 option was used to resolve the L l ambiguities, followed by the 

L3 option to resolve the coordinates and remaining L l ambiguities. Remaining 

ambiguities were rarely resolved in the L3 option, however, in total , 98% of the 

L l and L2 ambiguities were resolved. A 20° min imum satellite elevation angle 

was used. Typical RMS residuals of 0.15 m were obtained in the L4 option and 

line-length RMS residuals of 0.2 m in the L3 option. 
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22. Network adjustment ( N E T A D J ) . This was done relative to site Hofn. The 

coordinates of site Hofn were held fixed to the values obtained f r o m the 1987 data 

processing. 

4.4.3 Analysis of the 1992 GPS Data 

The 1992 data set was of a higher quality than the 1991 data. This was due to 

the decrease in sunspot act ivi ty following the 1990 sunspot maximum resulting in 

fewer ionospheric scintillations, the more complete GPS satellite configuration, and 

the fact that P-code data were recorded. Data analysis was conducted as follows, 

and very few processing problems were encountered. 

1. to 3. Translation of the field data into R I N E X ( A S H T O R I N ) . Translation 

of the R I N E X observation and navigation files to Bernese format ( R X O B V 3 , 

R X N B V 3 ) . One file per session was created. 

4. Scanning of the orbit file for outliers ( B R D T S T ) . 

5. Formation of a tabular orbit f i le ( B R D T A B ) . 

6. Formation of a standard orbit f i le ( D E F S T D ) . One file per session was created. 

Two orbit-modelling iterations were usually required. Typical post-fit RMSs were 

~1.5 m . 

7. Scanning of the code-observation file for outliers ( C O D C H K ) . 

8. and 9. Single point positioning to calculate clock corrections and station lo­

cation estimates ( C O D S P P ) . The a-priori station positions were obtained f rom 

the 1987 results, except for new sites whose coordinates were obtained f r o m the 

R I N E X files. A 10° cut-off angle was used, and the troposphere modelled using a 

Saastamoinen model. One clock correction per epoch was estimated. RMS resid­

uals of about 20 m for the point coordinates were usually obtained. New-a-priori 

coordinate differences were generally in the range 10-20 m, except for new sites 

when differences were of the order of a few 100 m. 

10. and 11. Estimation of an ionosphere model ( I O N E S T ) . The ionosphere models 

for each session showed similar trends to the 1991 model (Figure 4.12). Over the 

survey as a whole, ionospheric variations are not as great as they were during 1991. 
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Figure 4.12: Ionospheric models for sessions 223 (bottom), 224 and 225 (top) covering time periods 

07:30-19:54 (12.4 hours), 08.54-18:36 (9.7 hours), and 08:06-19:18 (11.2 hours) respectively. 

Post-fit RMS residuals of 0.1-0.3 m were typically obtained. 

12. Outlier and cycle slip detection and correction in the phase and code pseu-

dorange data. Program T u r b o E d i t could be used as P-code data were recorded. 

Backup copies of the phase and pseudorange files were first made as T u r b o E d i t 

edits the original files. Cycle slips larger than a min imum threshold of six were 

detected. Typically about five cycle slips were detected in each file. Significantly 

fewer cycle slips occurred in the 1992 data set than in the 1991 data, and T u r ­

b o E d i t performed well w i th the data. 

13. Formation of single difference files ( S N G D I F ) . 

14. to 17. Estimation of the coordinates and ambiguities as floating point numbers 

using G P S E S T . A-priori coordinates used were the 1987 results. The coordinates 

of one site per session was fixed. Since T u r b o E d i t worked so well, and the data 

were so noise-free, few additional cycle slips were detected in the post-fit residuals 

and those that were detected were smaller than the min imum threshold of T u r ­

b o E d i t . A 20° min imum satellite elevation angle and a standard Saastamoinen 

tropospheric model were used. As wi th previous surveys, local tropospheric pa­

rameters were not estimated. Approximately 1% of the data were discarded and 

no sessions were unusable. Line-length RMS residuals were of the order of 0.03 m. 
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18. to 20. Estimation of L5 ambiguities ( G P S E S T ) . A 15° min imum satellite 

elevation angle was used. A l l L5 ambiguities were resolved. Typical RMS residuals 

of 0.01 m were obtained. 

21. Estimation of point coordinates and resolution of the L I and L2 ambiguities. 

As the data were high quality, the G P S E S T L3 option was used to simultaneously 

resolve the L I ambiguities and estimate the coordinates. 92% of the L I and L2 

ambiguities were resolved. Line-length RMS residuals of 0.01 m were obtained. 

22. Network adjustment ( N E T A D J ) . This was done relative to site 117, the coor­

dinates of which were fixed to those obtained f r o m the 1987 data processing. 

The data were also processed independently at the University of Hannover using 

the G E O N A P (Geodetic N A V S T A R Positioning) software [Wiibbena, 1989]. 

4.5 Summary 

Several GPS surveys have been carried out in Iceland including a country-wide 

survey in 1986, and regional surveys in north Iceland i n 1987 and 1990. 

In July 1991, a first-epoch GPS survey was done around the southeastern and 

southwestern edges of Vatna jokul l to detect glacio-isostatic adjustments follow­

ing melt ing of the icecap during the 20th century. This was combined w i t h lake 

level experiments in the southwest region. Fifteen points were occupied in two 

recording sessions per day using three Ashtech GPS receivers, squaring L2 data. 

In July/August 1992, much of the 1987 and 1990 network in northern Iceland 

was resurveyed and fourteen additional, distant points included. The points were 

selected on the basis of forward extrapolation of the 1987-1990 postdyking defor­

mation field. 62 points were occupied using seven Ashtech, dual frequency receivers. 

Data analysis was performed using the Bernese software. The 1991 data analysis 

was problematic due to a large amount of noise present in the data. Substantial 

editing of the data and the exclusion of two unusable sessions were necessary. The 

1992 data were high quality and analysis proved relatively unproblematic. The 

1987, 1990 and 1992 data sets were also processed independently at the University 

of Hannover using the G E O N A P software. 
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Chapter 5 

G P S Processing Results 

5.1 Introduction 

The results f r o m repeated GPS surveys of the same network may be differenced 

to determine crustal deformation wi th in the survey region. However, because the 

signahnoise ratio for geodetically-determined crustal deformation is often low, the 

accuracy of the survey results must first be carefully assessed before geophysical 

interpretations are attempted. Different measures of the quality of survey results in­

clude precision, repeatability and accuracy. In the case of the north Iceland surveys, 

two different GPS software packages were used to process the data independently, 

and this provides an additional check of the reliabil i ty of the results. 

5.2 Precision and Accuracy 

5.2.1 Introduction 

In all physical experiments, errors occur that must be reduced to an acceptable 

level by experimental technique. I t is important , particularly in surveying, to dis­

tinguish between precision, repeatability and accuracy. Precision is a measure of 

the scatter in the data used to determine the result. Repeatability is the consis­

tency of mult iple , independent determinations of the same quantity. Accuracy is 

a measure of how close the result is to the true value. I n Figure 5.1 the difference 

between precision and accuracy is illustrated. 
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Figure 5.1: The difference between precision and accuracy. The straight line indicates the true 

values, the dots measurements and the vertical lines R M S error bars, (a) Precise but inaccurate 

data, (b) Accurate but imprecise data, after Bevmgton and Robinson [1992]. 

Precision is a measure of random errors, whereas repeatability involves errors such 

as experimental setup errors that may not affect the precision of the determination 

f rom a single experiment setup but wi l l degrade the consistency of mult iple mea­

surements. Neither, however, can ful ly quantify systematic errors that are common 

to all the determinations. The accuracy of a determination is degraded by both 

random and systematic errors in the data. Thus the precision underestimates the 

true accuracy, and the repeatability underestimates the accuracy somewhat less. 

Random errors are fluctuations in observations that can be reduced -by averaging 

larger sets of data. Systematic errors are not easily detectable and may result f rom, 

for example, incorrect calibration of the equipment. 

The precision of a GPS-determined coordinate is obtained f rom the scatter of the 

satellite range measurements used. The repeatability is estimated f r o m the varia­

tion in repeated determinations of the same coordinate, and w i l l generally indicate 

much larger errors than the precision of a single determination. I t is to be expected 

that, in the absence of crustal deformation, the repeatability of determinations of 

coordinates spanning months or years would be even larger than the repeatabilities 

determined f rom multiple measurements during a single, short survey. Accuracy is 

determined f rom the agreement of the results wi th those obtained by some other, 

better technique, e.g., V L B I or SLR. Since there have been no simultaneous occupa­

tions of sites in Iceland by GPS and V L B I or SLR instruments (as is sometimes the 
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case for GPS surveys), the accuracy of the results cannot be rigorously determined, 

but only estimated. 

In GPS surveying, the precision of a point coordinate is defined as the formal 

standard error associated wi th the individual determination, and is calculated as 

the RMS residual about the mean of the phase data. Repeatability is defined as 

the weighted RMS residual about the mean of repeated point coordinate estimates. 

For a vector distance component (east, north or vertical) this is given by 

7V-1 2 
1 = 1 ' — , (5-1) N 1 

l = 1 °? 

where N is the number of determinations, y, is the estimate of the component on 

day i, (y) is the weighted mean of the y^s and a,- is the formal standard error for 

the estimate made on day i. 

Systematic errors that vary over a longer period than the survey, for example those 

due to orbital errors, w i l l not be quantified by the repeatability of the results f rom 

a single survey. I n order to quantify the effects of long-term systematic errors, 

the repeatability of GPS results derived over a t ime scale of months to years is 

required. This is possible in stable regions, and in regions of active tectonics i t may 

be possible i f deformation is regular and well understood and may be confidently 

modelled. However, i f the deformation is complicated and not perfectly understood, 

as is the case in north Iceland, this is not possible. 

The network adjustment program N E T A D J [Heki, 1992] calculates the so-called 

"scaled formal errors" of the coordinates. The program uses the individual esti­

mates of point coordinates to calculate mean values that minimise the weighted 

RMS, and optimise the repeatability of the whole network (equation 5.1). The fac­

tor by which the precision of the whole survey is underestimated can be quantified 

using the Normal RMS (NRMS) , where 

NRMS = , = 1 * - . (5.2) 
N - l 

This is used to scale the precisions (formal errors) of each component. These scaled 
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formal errors provide error estimates that combine both precision and repeatability, 

and are used in this thesis as the best measure of accuracy available. 

The accuracies of individual GPS line-length estimates are dependent on various 

factors, some of which are dependent and some independent of line length. Length-

independent errors are expected f rom sources such as mult ipath , receiver noise and 

t r ipod setup errors, whilst length-dependent errors may be due to atmospheric and 

satellite orbit-related errors. Atmospheric errors are dependent on the line length 

up to a certain length beyond which atmospheric variation becomes uncorrelated 

at the two ends of the line. 

5.2.2 Results 

The repeatability of the site coordinates was evaluated using the weighted RMS 

scatter of the differences between the coordinates f rom the individual sessions and 

the network solution (Figures 5.2 to 5.5; Table 5.1). The scaled formal error ellipses 

for the 1987, 1990, 1991 and 1992 local coordinate solutions are shown in Figures 5.6 

to 5.9. Since satellites are visible in one hemisphere only, up-down repeatabilities 

w i l l be poorer than those in the horizontal directions. Outliers are acceptable i f the 

errors are correspondingly large, but indicate a processing error, e.g., an ambiguity 

fixed to an incorrect value, i f the errors are small. 

In 1987 the north-south component was best, and the up-down component poor­

est (Table 5.1). Several outliers w i t h small errors are evident and may indicate 

incorrect ambiguity resolution (Figure 5.2). 

In 1990 the north-south and east-west components are of a comparable quality wi th 

the up-down component poorest. Large errors are present in all components, since 

more parameters were estimated when forming the final solution (ambiguities as 

well as coordinates). 

The east-west component of the 1991 results is better than the north-south, and 

the up-down is again poorest. Several outliers, corresponding to points D jup , Gi ld 

and Hrol , are present in the north-south and up-down components. The errors 

are generally small compared to the deviation f rom the mean and may indicate 

problems such as incorrect fixed ambiguities or t r ipod setup errors. 
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Figure 5.2: Variations about the mean in (a) the vertical and (b) the horizontal for the 1987 

results. Error bars represent 1<t scaled formal errors. From the L3 ambiguity-fixed solution 

determined by Htki et al. [1993]. 
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Figure 5.5: Same as Figure 5.2, except for the 1992 L3 ambiguity-fixed G P S solution. 
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Table 5.1: Repeatability of site coordinates (equation 5.1) at the Iff confidence level in the three 

components for the Iceland G P S surveys. 

Survey North-South East-West Up-Down 

mm mm mm 

1987° 6.4 9.2 16.7 

19906 10.1 11.0 19.3 

1991° 6.0 4.2 17.1 

1992" 7.1 6.2 19.0 
0 L3 ambiguity-fixed solution. 
b L3 ambiguity-free solution. 

The north-south and east-west components of the 1992 results are of comparable 

quality, w i t h the up-down component substantially poorer. Several results are 

clearly poor (points n05, n07, n08,180 and 101) indicating some processing problem, 

probably during session 227.1 when these sites were simultaneously occupied. 

The repeatabilities of the 1990 survey are worse than those of the other surveys 

because of greater measurement noise f r o m ionospheric disturbances which also 

precluded ambiguity resolution. The north-south repeatabilities of the 1991 and 

1992 surveys are comparable to that of the 1987 result. The east-west repeata­

bilities for the 1991 and 1992 surveys are better than for the 1987 survey because 

of the improved satellite constellation. Shorter between-point lines were occupied 

during the 1991 survey leading to greater precisions, and this is reflected in the 

smaller scaled formal errors (cf., Figures 5.8 and 5.9). The 1992 scaled formal er­

rors are comparable to those of the 1987 survey and are smaller than those f r o m 

1990. Thus, the 1987 and 1992 results are of a substantially higher quality than 

those f r o m 1990. 

5.3 Comparison Between Software Packages 

5.3.1 Introduction 

The quali ty of the GPS results for 1987, 1990 and 1992 can be studied fur­

ther by comparing the final coordinates calculated by two software packages, the 



Bernese v3.2 GPS processing software [Rothacher et a/., 1990] and GEONAP 

[Wubbena, 1989]. The 1987, 1990 and 1992 Iceland GPS data were independently 

processed at the University of Hannover (Germany) using the G E O N A P software 

[Jahn et a/., 1994]. The results were compared wi th those obtained f r o m the Bernese 

software using a Helmert transformation. The transformation between two coordi­

nate sets can be represented by the expression 

XB = c + fiRXG, (5.3) 

—• —* 

where XB and XQ are the vectors representing the Bernese and G E O N A P coordi­

nates respectively, fi is a scale factor, c is a shift vector and R is a rotation matr ix 

composed of three orthogonal rotations. Three translations, three rotations and a 

scale factor (seven parameters) were calculated. A least-squares f i t is determined 

for the point coordinates to obtain the m i n i m u m transformation parameters. The 

calculations were done using program H E L M E R T , which is part of the Bernese 

software. 

5.3.2 Results 

The 1987 and 1990 results from G E O N A P and Bernese processing were compared 

by Heki et al. [1993]. Comparison of the 1992 results was done as part of this 

project. 

Both the 1987 and 1992 GEONAP and Bernese solutions are L3 ambiguity-fixed. 

For the 1990 survey, two thirds of the ambiguities are fixed in the G E O N A P re­

sults and none in the Bernese results [Heki et al, 1993]. Tropospheric and orbi ta l 

parameters were not estimated in any analysis. The results of the Helmert trans­

format ion applied to the Bernese results w i t h respect to the G E O N A P results are 

shown in Table 5.2 and the residuals in Figures 5.10 to 5.12. 

Af te r application of the Helmert transformation, agreement is wi th in 2 cm, 4 cm 

and 10 cm for the north-south, east-west and up-down components in 1987 (Fig­

ure 5.10). This is wi th in 2a for the north-south and east-west components but the 

discrepancy is up to ~5<x in the up-down. The extent of the disagreement is thus 

more poorly modelled by the errors in the up-down component. 

In 1990 agreement is wi thin 6 cm, 11 cm and 9 cm for the north-south, east-west 
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Table 5.2: Summary of the Helmert transformations applied to compare the 1987, 1990 and 

1992 Bernese and G E O N A P final coordinates, x, y and z are axes in the local (east, north, up) 

coordinate system. 

Parameter Survey 

1987 1990 1992 

Translation (m) X 2.1 ± 0.003 0.3 ± 0.004 2.5 ± 0.003 

y 6.2 ± 0.003 -1.0 ± 0.004 5.7 ± 0.003 

z 0.2 ± 0.003 -1.4 ± 0.004 -0.4 ± 0.003 

Rotation (arcsec) X 0.01 ± 0.01 0.02 ± 0.02 0.02 ± 0.01 

y 0.02 ± 0.01 0.12 ± 0.02 0.02 ± 0.01 

z 0.01 ± 0.01 0.05 ± 0.01 0.00 ± 0.01 

Scale factor ( m m / k m ) -0.05 ± 0.03 0.16 ± 0.06 0.01 ± 0.04 

and up-down components respectively (Figure 5.11). This is up to 6er for the 

east-west component, and ~4<r for the north-south and up-down components. 

In 1992 agreement i n the north-south and east-west components is w i th in 2 cm 

(Figure 5.12). In the up-down component i t is much larger, up to ~ 1 1 cm. This is 

wi th in 2cr for the horizontal components, but up to ~6<r for the vertical. 

The agreement of the 1987 results is similar to that of the 1992 results. Agreement 

of the 1990 results is much worse than in either of the other two surveys, except 

in the vertical component, in which similar agreements are obtained for all three 

surveys. 

Significant translations were required for all three surveys (Table 5.2). However, 

this is not of importance here as i t may result f rom t r iv i a l differences in processing, 

e.g., variations in the coordinates of the fixed point used, and this study is only 

concerned wi th internal network deformations. Two rotations are significant at 

greater than the 3<r level, about the local y and z axes in Iceland in 1990. A 

scale factor relatively large and significant at the 2cr level was also found for the 

1990 analyses. These results indicate that the G E O N A P coordinates show lower 

elevations of the northern points relative to the southern points compared wi th 

the Bernese results, and that they also indicate a more expansive network in 1990 

than the Bernese results. For the 1987 and 1992 surveys, no non-translational 

parameters were significant at the 3cr level. These results are a fur ther indication 
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that the 1990 results are the poorest of al l . 

In addition to these comparisons, the 1987 G E O N A P results were compared by 

Jahn [1990] wi th terrestrial measurements of part of the network made simultane­

ously by the University of Braunschweig, Germany [Moller, 1989]. A scale factor 

of about 3 ppm wi th a standard deviation of about 0.5 ppm was detected, which 

was at t r ibuted to miscalibration of the terrestrial survey equipment (see Jahn et 

al. [1994] for summary). 

5.4 Derivation of the Deformation Field 

The final Bernese coordinates and covariance matrices were used to compare the 

results between surveys. A weighted Helmert transformation was applied, keep­

ing the three components of a reference site fixed. The results of seven-parameter 

weighted Helmert transformations are show in Table 5.3. A t the 2a level, all rota­

tions are insignificant for all epochs. Large scale factors significant at greater than 

the 7(7 and 4cr levels are determined for the 1987-1990 and 1987-1992 epochs. This 

contrasts w i t h the 1990-1992 epoch where no significant scale factor is determined. 

Expansion of the network is the type of deformation expected to predominate as a 

result of postdyking stress redistribution in north Iceland. Therefore, the Helmert 

transformations were repeated wi thout the scale transformation since this trans­

formation would-correct for-the network-deformation due to tectonic motion. 

The results of six-parameter weighted Helmert transformations are shown in Ta­

ble 5.4. Again, no rotations are significant at the 2<7 level. 

The horizontal deformation fields (Figures 5.13 to 5.15) indicate a large systematic 

expansion perpendicular to the plate boundary, which is consistent w i th the results 

that Foulger et al. [1992] obtained using G E O N A P results. During the period 1987 

to 1990, the maximum amplitude of this expansion was approximately 18 cm [Heki 

et al., 1993] (Figures 5.13 and 5.16). The largest expansion occurs around the centre 

of the Kraf la r i f t zone where the dyke complex injected 1975-1984 was widest. A 

radial component is also evident [Heki et a/., 1993]. The relative motion is at a 

maximum a few tens of kilometers f r o m the spreading axis and decreases wi th 

distance f r o m the spreading zone (Figure 5.16a). A very pronounced maximum 

occurs at distances of ± 2 5 km f rom the r i f t zone. Between 60-100 km on either 
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Table 5.3: Results of seven-parameter weighted Helmert transformations applied to compare the 

Bernese results of the 1987, 1990 and 1992 surveys. 

Parameter Epoch Parameter 

1987 - 1990 1990 - 1992 1987 - 1992 

Translation (cm) X 355.68 ± 2.24 -350.05 ± 1.66 1.91 ± 3.24 

y 540.97 ± 1.96 -538.45 ± 1.31 -1.15 ± 2.15 

z -102.07 ± 2.35 105.02 ± 2.59 0.41 ± 6.54 

Rotat ion (arcsec) X -0.31 ± 0.23 -0.16 ± 0.20 -0.27 ± 0.30 

y -0.55 ± 0.32 -0.35 ± 0.32 -0.04 ± 0.35 

z 0.06 ± 0.17 0.11 ± 0.12 0.22 0.14 

Scale factor ( m m / k m ) 0.85 ± 0.12 0.06 ± 0.09 0.47 ± 0.09 

Table 5.4: Results of six-parameter weighted Helmert transformations applied to compare the 

Bernese results of the 1987, 1990 and 1992 surveys. 

Parameter Epoch 

1987 - 1990 1990 - 1992 1987 - 1992 

Translation (cm) x 353.80 ± 2.57 -350.13 ± 1.65 1.04 ± 3.54 

y 542.53 ± 2.25 -538.41 ± 1.31 -2.10 ± 2.35 

z -103.06 ± 2.72 105.00 ± 2.58 1.24 ± 7.18 

Rotation (arcsec) x -0.47 ± 0.26 • -0.18 ± 0.20 -0.36 ± 0.33 

y 0.52 ± 0.33 -0.33 ± 0.32 -0.31 ± 0.38 

z 0.29 ± 0.20 0.12 ± 0.12 0.23 ± 0.16 
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Figure 5.16: Displacements of G P S points within the zone shown in Figures 5.13-5.15, perpen­

dicular to the Kraf la volcanic system, as a function of distance from it (i.e., in the uy direction). 

T h e trend of the plate boundary is assumed to be N 1 5 ° E . T h e vertical bars indicate la scaled 

formal errors. Positive displacement occurs to the east of the spreading segment and negative 

displacement to the west, (a) 1987 to 1990, (b) 1990 to 1992, and (c) 1987 to 1992. T h e zero 

reference point for displacements is arbitrary and not consistent between epochs. 
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Figure 5.17: Same as Figure 5.13, except for the period 1986-1992. 
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Figure 5.18: Same as Figure 5.16, except for the period 1986-1992. T h e formal errors of the 1986 

data have been scaled by a factor of 5. 
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Figure 5.19: Vertical point displacements 1987-1990. The thicknesses of the arrows are inversely 

proportional to the vertical scaled formal errors. T h e two arrows at the base of the figure give 

the scale of the arrows. Al l velocities are shown relative to the westernmost point in the network, 

denoted by a black dot. The Krafia and A s k j a volcanic systems are represented by the parallel, 

dark and light grey-shaded lines respectively, adapted from Heki et al. [1993]. 

114 



ID 
ID 

« 

to 
to 

0 

|0 

0 

1 
s 

Ik 
15 

Figure 5.20: Same as Figure 5.19, except for 1990-1992. 
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Figure 5.21: Same as Figure 5.19, except for 1987-1992. 
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Figure 5.22: Same as Figure 5.19, except for 1986-1992 
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side of the r i f t the motion apparently increases again, and large deformation rates 

are observed out to the edge of the network. 

The results of the 1990 and 1992 surveys (Figures 5.14 and 5.16b) indicate the 

continuation of the east-west expansion observed between 1987 and 1990. This 

motion is barely significant at the la level, probably because of the short inter-

survey t ime, resulting in a small expansion, and the large errors associated wi th 

the 1990 results. The maximum is about 8 cm during that two year period. A 

pronounced maximum again occurs at distances of about 20 k m f r o m the r i f t zone. 

L i t t l e relative motion is detected at large distances f rom the r i f t . 

The best-defined deformation field is obtained by comparing the 1987 and 1992 

results (Figures 5.15 and 5.16c) due to the higher quality of bo th the 1987 and 1992 

results compared to the 1990 results and the larger deformation signal. A better-

defined deformation-field is obtained, and a clear east-west expansion is evident. 

The expansion is up to approximately 22 cm wi th in a few tens of kilometres of 

the r i f t , decreasing to approximately 14 cm farthest f r o m the central axis. The 

radial deformation pattern is clearly seen. The maximum expansion occurs at 

distances of ± 2 0 km f rom the r i f t zone. Between 60 and 100 k m f r o m the r i f t zone 

a slight increase in the deformation rate is observed, but at 60-140 k m a relatively 

constant rate of motion is observed. High deformation rates extend to the edge of 

the network. 

The first order features of the 1987-1992 horizontal displacement field is well-

illustrated by the profiles shown in Figures 5.16a-c. The deformation field is fa i r ly 

symmetrical about the Kraf la spreading segment. The rate of motion is variable, 

w i th higher velocities close to the r i f t and decreasing by about 30% further away. 

The expansion rate appears to have decreased wi th t ime between 1987 and 1992. 

From 1987 to 1990 the maximum expansion rate was about 6 ± 0.5 cm a - 1 , 

this decreased to about 4 ± 0.9 cm a - 1 for the period 1990 to 1992, and was 

4.5 ± 0.3 cm a - 1 for the total period 1987 to 1992. The time-averaged plate mo­

t ion in northeast Iceland, 1.8 cm/yr [DeMets et a/., 1994], cannot account for this 

expansion. 

A comparison of the 1986 and 1992 data (Figures 5.17 and 5.18) reveals a horizontal 

deformation field that agrees wi th the trend shown in the 1987, 1990 and 1992 

results. There appear to be several outliers in the field (points 143, 162, 113 and 
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n07; Figure 5.18). Additional information on the distant motion is provided by 

points n05 and n08. That provided by n08 however, duplicates that of 101, and 

therefore adds little except confidence in the motion of 101. The motion of point 

n05 suggests that the high rate of motion observed extends to 120-180 km from 

the rif t zone. 

The vertical displacement fields (Figures 5.19 to 5.22), shown relative to the west­

ernmost point in the network, exhibit considerable scatter which is to be expected 

as the errors in this component are several times greater than those in the horizon­

tal. The vertical deformation observed from 1987 to 1990 is of the order of a few 

centimetres and the southern points appear to subside with respect to the more 

northerly points [Heki et ai, 1993]. General uplift appears to be occurring around 

the Krafla r i f t zone, with maximum uplift closest to this zone. Virtually all the 

points 1990-1992 appear to uplift relative to the westernmost point, especially in 

the region of the Krafla volcanic system where maximum uplift occurred closest 

to the r i f t . The best-constrained vertical deformation field is that determined for 

1987-1992. Within the Krafla region points near the r i f t axis uplift relative to more 

distant points. The 1986-1992 vertical deformation field shows uplift of all points 

relative to the westernmost point. Again, points closest to the Krafla r if t zone 

undergo maximum uplift , decreasing with distance from the rif t zone. Apparent 

reversals in the direction of the vertical motion occurred. For example, from 1987-

1990 the two stations furthest from the fixed point underwent substantial uplift , 

whereas for 1990-1992 the situation appeared to reverse. 

5.5 Summary 

The precisions and repeatabilities of the Iceland GPS results were assessed using 

standard statistical techniques. Both the repeatability, evaluated using the WRMS 

scatter between the individual coordinate solution and the network solution, and 

the scaled formal errors output by N E T A D J , show that the 1987, 1991 and 1992 

results are of a comparable and high quality, with better repeatabilities and smaller 

scaled formal errors than the 1990 results. This is a consequence of substantial 

ionospheric turbulence at the time of the 1990 survey. 

The 1987, 1990 and 1992 data sets were independently processed using two differ-
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ent software packages, and the results compared using seven-parameter Helmert 

transformations. The 1987 and 1992 results agree well but significant rotations 

were detected for the 1990 results, confirming that this survey is the least accurate 

of the three. 

Differencing the results of the 1987, 1990 and 1992 surveys reveals a systematic 

expansion perpendicular to the plate boundary, with maximum amplitude occur­

ring a few tens of kilometres from the r i f t axis, decreasing slightly beyond this, but 

continuing at a high level to at least 180 km from the r i f t . The deformation rate 

was variable. From 1987 to 1990, a maximum of 6 cm/yr of rift-normal expan­

sion was detected, decreasing to 4 cm/yr 1990-1992. The best-defined deformation 

field, 1987-1992, indicated a total of 22 cm of expansion, decreasing to 15 cm far-

field. The time-averaged plate motion in northeast Iceland cannot account for this 

deformation. The vertical deformation field reveals regional uplift throughout the 

network area. Uplift is at its maximum close to the r i f t zone and decreases with 

distance from it . 
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Chapter 6 

Geophysical Models of Post-Rifting 
Crustal Deformation 

6.1 Introduction 

An important goal of modern crustal deformation studies is to understand the 

transient, postevent ground deformation sometimes seen following a large, sudden 

tectonic event, e.g., an earthquake or dyke emplacement. There are several possible 

explanations for this transient strain. These include stress relaxation in nonelastic 

material below a surface elastic layer [e.g., Thatcher and Rundle, 1984; Thatcher 

et a/., 1980; Cohen, 1984], and continued slip at depth on the fault or continued 

dyking. 

Several methods are used to predict co- and postevent deformation fields. Usually 

these involve modelling the dynamics of a finite or infinitely long fault in an elastic 

or viscoelastic halfspace, or in a structure that involves both of these rheologies. 

An elastic halfspace structure provides an adequate description of the co-event 

deformation field from an earthquake or dyke injection, but is unable to explain 

continuing transient strain following the event without introducing a source that 

has a time-dependent mechanism. Many authors have proposed homogeneous or 

layered elastic halfspace models involving different dislocation sources [e.g., Steke-

tee, 1958; Maruyama, 1964; Knopoff, 1958; Chinnery, 1961; Press, 1965; Okada, 

1985; Jovanovich et ai, 1974]. 

Recent work has focussed on models involving viscoelastic material below a sur-
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face elastic layer. Postevent displacements may then be explained by the gradual 

relaxation of stresses built up by tectonic events through yielding of the viscoelas-

tic material. Models involving various fault geometries and a variety of external 

effects have been studied. One-dimensional models (infinitely long faults and ver­

tically averaged stresses) have been proposed by, for example, Savage and Prescott 

[1978] and Rydelek and Sacks [1990], to explain motion resulting from transform 

and thrust faulting. The cumulative effect of successive earthquakes on the same 

fault has been evaluated by Thatcher and Rundle [1984], Cohen and Kramer [1984] 

and Rundle [1986], and the effects of self-gravitation have been incorporated [e.g., 

Rundle, 1982; Melosh, 1983; Cohen, 1984]. The displacement fields from finite 

faults have also been modelled. Several mathematical methods have been applied, 

including analytical methods where the stresses at an elastic layer/viscoelastic half-

space boundary are approximated by the average stresses in the elastic layer [e.g., 

Lehner et ah, 1981], numerical methods using, for example, finite element methods 

[e.g., Yang and Toksdz, 1981], and the derivation of exact analytical solutions [e.g., 

Rundle and Jackson, 1977; Rundle, 1978]. 

Much work deals with strike-slip and thrust sources, but models have also been 

proposed for dilational sources. One of the first authors to deal with this type 

of source was Mogi [1958], who used a centre of dilation in an elastic halfspace 

to interpret the ground deformation attributed to the inflation and deflation of 

magma chambers. This model has been applied to areas such as Kilauea, Hawaii 

[e.g., Fiske and Kinoshita, 1969], Long Valley Caldera, California [e.g., Savage 

and Clark, 1982] and Krafla, Iceland [e.g., Bjornsson et ah, 1977]. Bonafede et 

al. [1986] solved the problem of a centre of dilation in a viscoelastic halfspace by 

applying the correspondence principle (Section 6.4.6) to the solutions obtained by 

Maruyama [1964] for an elastic halfspace. Pollard et al. [1983] used a boundary 

element method for interacting cracks in elastic material to simulate a system of 

two-dimensional, injected dykes in a homogeneous, elastic halfspace. Roth [1993] 

presented a solution for an opening crack contained in a layered halfspace that 

could be extended to model a system of dykes, and Bott and Dean [1973] proposed 

a viscous diffusion model to predict stress relaxation at divergent plate boundaries 

following short-lived, extensional episodes. However, most modelling of dilational 

sources has dealt with the coemplacement strain fields and very little has been 

done on the postemplacement response. The remainder of this chapter will focus 

on approaches to modelling postdyking strain transients. 
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6.2 Continuous Dyke Intrusion at Depth 

w 

Figure 6.1: Geometry of source model, after Okada [1985]. 

One possible explanation for transient, postdyking deformation is that continued, 

aseismic dyke intrusion occurs at depth following the main dyke injection event. 

Modelling of this process is easily performed using elastic halfspace methods. 

From the formulae of Okada [1985], the surface displacements, ux, uy and u 2 , 

resulting from opening of amount U, on a three-dimensional dyke in an elastic 

halfspace (Figure 6.1), are given by 
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(6.6) 
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and 
p = y cos V> + dsin V', 

? = y sin T/> — dcos 0, 

t/ = r/cos^ + gsinV", 

d = 7/ sin t/> — q cos t/>, 

# = f + ,; 2 + q\ 

The along-strike coordinate is x, y is the strike-normal coordinate, ip is the dip 

angle, d is the distance from the surface to the bottom of the dyke, L is the dyke 

half-length, W is its downdip width and A, / i are the Lame elastic moduli of the 

halfspace (Figure 6.1). 

Chinnery's notation [Chinnery, 1961], ||, is used to represent the substitution 

/(£, n)\\ = H*,P) - f(*,p- W) - f ( x -L,p) + f ( x -L,p- w). 

6.3 The Elastic-Viscous Model 

6.3.1 One-Dimensional Model 

A second possible explanation for postdyking, transient strain fields is that of stress 

relaxation in a nonelastic layer below a surface elastic layer. In the simple model 

shown in Figure 6.2, a thin elastic plate overlies a thin viscous layer, which is 

underlain by a rigid halfspace. 

h Elastic, Modulus = M 

b Viscosity = r\ Newtonian 

/ / / / / / / / / 
Rigid 

z 

Figure 6.2: Schematic diagram of the 1-D stress diffusion model, after Foulger et al. [1992]. 
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The source is considered to be a vertical dyke, infinitely long in the y direction, 

where x is the horizontal distance normal to the dyke and t is time. By balancing 

the viscous traction at the base of the elastic layer with the elastic forces within, 

and assuming plane-stress conditions, the equation of motion for u(x,t), the only 

non-zero component of the horizontal displacement, is found to be identical to 

the one-dimensional heat diffusion equation [Elsasser, 1969; Bott and Dean, 1973]. 

The area of the elastic layer adjacent to the line x = 0 is considered to be initially 

at rest, and then displaced to the right or left by an amount Uo when a dyke of 

thickness 2UQ is intruded at time t = 0. The appropriate solution to the diffusion 

equation is then [Carslaw and Jaeger, 1959] 

x 
u(x,t) = ^ o e r / c ^ p p (6.9) 

and the horizontal velocity is 

d_u = Uo_x y4K 

where 
b h M f« 11 \ K = , (6.11) 

V 

is the diffusivity, b and rj are the thickness and viscosity of the viscous layer, h is 

the thickness of the elastic layer and M is the elastic modulus relating horizontal 

stress and strain within the elastic layer. For the plane-stress conditions assumed 

in the x-z plane, M = ^l1 ft + i J L ) / f t + fy), where A and fi are the Lame moduli. 

6.3.2 Two-Dimensional Model 

For a dyke of finite length, two non-zero components of horizontal displacement 

exist, u(x,y,t) in the x direction and v(x,y,t) in the y direction. By proceeding as for 

the one-dimensional case, and modifying the three-dimensional version of Hooke's 

Law to the two-dimensional case assuming plane-stress conditions (to obtain the 

normal and shear stresses in the x and y directions), the equations of motion for u 

and v are given by [Heki et ai, 1993] 

(6.12) 

(6.13) 

du d2u d2v d2u 
dt = K l ^ K2dxdy + K3dy> 

dv d2v d2v 
di ay ax ax2 
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where 

«2 = V + / / ) - , 
bh 

and 

« 3 

A + 2^ 

Note that is the same as n in the one-dimensional case (equation 6.11). 

(6.14) 

(6.15) 

The solutions to equations 6.12 and 6.13 may be found analytically [e.g., Crouch 

and Starfield, 1983], or non-analytically, e.g., using a finite-difference method [Heki 

et al., 1993]. The boundary conditions imposed on the displacement solution are 

for zero displacement at an infinite distance from the the dyke axis and zero shear 

stress at the dyke axis, i.e., axy = \ | ^ + | ^ = 0 . 

6.4 The Elastic-Viscoelastic Model 

6.4.1 Introduction 

Following the method of Rundle [1978, 1980] and Hofton et al. [1995] (preprint in 

pocket at back of thesis), a model is constructed for a finite, two-dimensional, rect­

angular dyke in an elastic layer overlying a viscoelastic halfspace. The mathemat­

ical method used to obtain the near field, time-dependent displacements proceeds 

as follows : 

Step 1. The Green's functions for a dilational point source in an elastic layer over 

an elastic halfspace are computed. 

Step 2. The correspondence principle [Lee, 1955] is applied to introduce viscoelastic 

properties into the halfspace. 

Step 3. The resultant Green's functions are integrated over the finite source region. 

The choice of materials in the viscoelastic region is limited to those whose rhe-

ological properties have linear constitutive laws, and the rheology chosen is that 

of a Maxwell viscoelastic solid, i.e., one that behaves as an elastic solid on short 

timescales and as a Newtonian fluid on long timescales. For times short compared 
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to a year the Earth behaves elastically, while for longer times permanent, non-

elastic deformations occur and i t is these observations that influence the choice of 

rheological properties for this model. The Maxwell solid is the simplest kind of 

medium that exhibits this dual behaviour. A Maxwell element is shown in Fig­

ure 6.3. If a constant displacement is suddenly applied to the free end, the spring 

will immediately stretch, and over the course of time it will gradually contract 

again as the piston in the dashpot moves. The applied force is analogous to stress 

and displacement to strain. 

• A A / ^ H ] 

spring viscosity 
constant 'H 

Figure 6.3: A Maxwell Element. 

Gravitational effects are also included in the model. For deformation at the surface 

of an elastic halfspace, gravitational effects become important over distances greater 

than 1000 km [Rundle, 1981] but have little effect near the source region. However, 

in viscoelastic structures this is not the case. There, stresses in some regions of the 

media decrease as flow occurs. This is because the initial elastic stresses induce flow 

in the media, producing time-dependent displacements and generating gravitational 

stresses as a result. Equilibrium is eventually attained between the gravitational 

and elastic stresses in the flowing region. Gravitational effects are important over 

long time periods, and when an event is assumed to recur periodically, but are 

small over short time periods [Rundle, 1981]. 

Gravitational effects are dependent on two factors; the vertical component of the 

surface gravitational acceleration, g, and the Gravitational constant, Go. To com­

pute the displacement solutions that involve terms associated with g and Go (re­

ferred to as the "full solution" hereafter), Step 1 must be subdivided into two 

separate problems [Rundle, 1980]. First, the equations for an infinite elastic-

gravitational halfspace are solved. Then using these solutions, the Green's func­

tions for a point source in an elastic-gravitational layer over a elastic-gravitational 

halfspace are calculated. 

The calculation of the Green's functions for a point source in a layered, elastic-
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Figure 6.4: Coordinate system and geometry of layered halfspace, after Rundle [1980]. 

gravitational halfspace involves the Haskell-Thomson propagator matrix method 

[Haskell, 1953; Thomson, 1950], which simplifies the algebra involved in relating 

the solution in one layer to that in the next. In the ful l solution, eight quantities, 

organised into an 8 x 8 matrix, must be propagated. These quantities are the 

kernel functions, three of which are for displacement, three for normal tractions 

and two for the gravitational potential and its gradient minus a multiple of the 

vertical displacement. Rundle [1981] showed that most of the gravitational effects 

for dislocations arise from the terms associated with g, not Go- Using this fact the 

number of quantities propagated from one layer to another can be reduced from 

eight to six. This reduced "full solution" is presented here. 

6.4.2 Solution to the Infinite Space Problem 

For purposes of clarity, it is necessary to review briefly earlier work [Rundle, 1980, 

1981]. Rundle [1980] used a polar coordinate system (r, 0, z) with unit vectors e r, 

e$, ez, the z axis oriented into the medium and the origin at the surface of a layered 

elastic-gravitational halfspace (Figure 6.4). The elastic moduli in the nth layer are 

denoted by A„ and / / n , the density by pn and the thickness by dn. The depth to 

the top of the halfspace is H, which is the sum of the dn. In the structure there are 

p — 1 layers with the halfspace being the pth layer. The interface between layers 

n and n -f 1 is defined as zn, hence ZQ = 0 is the free surface and z p _i = H is the 

boundary between the deepest layer and the halfspace. 
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The equations to be solved in the ful l solution are the vector static perturbation 

equations of elastic-gravitational equilibrium [Love, 1911], 

V 2 u + V V • u + ^-V(u -ez)- ^ V<£ - ^ e ; V • u = 0, (6.16) 
1 — 2a p p p 

V2<f> = -47T/>0GoV • u, (6.17) 

where u and <f> are the displacement and gravitational potential perturbations eval­

uated at a deformed coordinate x, g is the vertical component of the unperturbed 

surface gravitational acceleration, Go is the Gravitational constant, a is Poisson's 

ratio, pQ is density and p is rigidity. 

To simplify the problem somewhat, g is assumed to be constant and a linear func­

tional of the density. In addition, g is assumed to be invariant with depth since 

this contributes a higher-order effect to this first-order problem. Al l perturbed 

quantities are presumed to tend to zero as z —• oo and the free surface is assumed 

to be stress free. 

Using the fact that for displacements resulting from an event in a layered elastic-

gravitational medium, self-gravitational effects arising from Go a r e generally much 

smaller than g [Rundle, 1981], equations 6.16 and 6.17 can be reduced to 

V 2 u + T - ^ T - V V • u + ^-V(u • ez) - ^-ezV • u = 0 , (6.18) 
1 — 2(7 p p 

since setting Go = 0 implies <j> is constant. It is the solutions to this reduced 

equation that must be found. 

Rundle [1980], using the orthonormal basis vector functions 

Pm = Jm(kr)e'm'e„ (6.19) 

EL = iv(Jm(*rK»») = ( £ ^ r ) e ; + i m ^ i e , ) e « , (6.20) 

C ; = I V X P ; = ( . W ^ e ; - ^ W ) e » » , (6.21) 

where Jm(kr) are cylindrical Bessel functions, i = yf—Y and k is the wavenum-

ber in dynamical problems [cf., Ben-Menahem and Singh, 1968], expanded u, the 

perturbed displacement, as 

kdk[Wm(z)Pm + Um{z)Bm + Vm(z)Cm]. (6.22) 
m=0 J O 
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Substituting equation 6.22 into 6.18 yields the ordinary differential equations for 

the functions Wm(z), Um(z) and Vm(z). The solution given by Vm(z) is found to 

be identical to the solution in the non-gravitating case [Singh, 1970] and will be 

derived in the next section. The functions Um(z) and Wm(z) are given by [Rundle, 

1981] 

V Vm(z) t \ pt(k) > V p - { k ) J \ pt(k) J V p-(k) J 
(6.23) 

where 

± a i = ±(k2 + k n j l f l 2 , (6.24) 

±a2 = ±(k2-kny/c)1'2, (6.25) 

and 

n dej Pog dej , „ o f i s 
n = = (6-28) 

(6.29) 

The quantities aj and pj (j=l,2) are either real or complex, depending upon whether 

k is greater than or less than a quantity termed the "gravitational wave number", 

kg, and which is found by solving the equation a2 = 0. Hence, kg is given by 

kg = n f i . (6.30) 

6.4.3 Solution to the Layered Half Space Problem 

For an elastic, uniform, infinite space, the vector displacements u satisfy the Navier 

equation, 

V 2 i ? + 1 V V - u = 0. (6.31) 
1 — 2<r 

The solution in the rath layer is given by [Singh, 1970; Rundle, 1980] 

= £ / k dk tC . (6.32) 
m=0 J O 

u" 
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If the source is at the interface between two layers, may be considered to be a 

solution to the homogeneous problem such that 

< = <Pm + yn

mBm + zn

mCm. ( 6 . 33 ) 

Pmi Bm and Cm are the orthonormal basis vectors given by equations 6.19 to 6 .21 . 

The displacement kernel functions, xJJ,, y1^ and z^, are given by 

xn

m = p;e-a»B-n+piea>*B+n + kp^e'^'D^ + kp+t^D^ , ( 6 . 34 ) 

yn

m = e-*'B~n + e"'B+n + ke-»'D~n + ke"»D+n , ( 6 . 3 5 ) 

*m = « - * * C - B + ek*C+n , ( 6 . 36 ) 

where B~n, B+n, C~n, C+ n , D~n and D+n are constants to be determined. Simi­

larly, the perturbed normal tractions across a plane z = constant in the nth layer 

are 

where 

Tl = XlPm + YZBm + Zn

mCm, ( 6 . 3 8 ) 

and X^, Y£ and Z£ are the normal traction kernel functions given by 

X l = fc(l-2<r){(1 ~ a ) ^ ~ a k v A ' ( 6 ' 3 9 ) 

Zn

m = / * « ) ' , (6-41) 

and 

« ) ' = ' - " ^ m n + r f e " 1 ' ^ , ( 6 . 4 2 ) 

(ynJ' = ^i-z-aizB-n + e'»B+n) + ka2(-e-^D-n + e»'D+n) , ( 6 . 4 3 ) 

( £ ) ' = fc(e"*'C-n + e"'C+n) . ( 6 . 44 ) 

Inspection of equations 6.34 to 6 .36 and 6 .39 to 6.42 reveals that the problem can 

be divided into two separate parts, the "R" problem involving the x^, y£,, X^ and 
—• —* 

Y£, i.e., the Pm and Bm, terms (a 4 x 4 matrix problem) , and the "L" problem 

involving the z^ and i.e., the Cm, terms (a 2 x 2 matrix problem) [Singh, 1970; 

Rundle, 1980] . 
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In order to solve the "R" problem, two column matrices, [ . ^ (z ) ] and [K£\, are 

defined as [Singh, 1970] 

[An

m(z)} = [ < ( z ) , yn

m(z), Xn

m{z), Y»(z)}T, (6.45) 

[ia = [B-n,B+n,D-n,Dtin}T- (6-46) 

Using the expressions for x1^, y^^X^ and Y£ given above, [ ^ ( z ) ] can be written 

as 

[An

m(z)} = [Zn{z)][KH (6.47) 

where the elements of [Z"(z)] are [Rundle, 1981] 

1,1) 
1,2) = p+e a ' 2 , 

1,3) = hp; e - ° 2 2 , 

1,4) = kp+ea>z, 

2,1) = e - ° 1 2 , 

2,2) = e ° 1 2 , 

2,3) = ke~a2Z, 

2,4) - kea2Z, 

3,1) = Hn(crn[aiPi - k ] - a1pi)e~aiZ/([l - 2an]k) 

3,2) = fin(alPt - (Tn[alPt + k))ea>z/{[l -- 2an)k), 

3,3) = l*n(<Tn[a2P2 ~ k ] ~ <*2P2 ) e ~ a 2 2 / ( l • - 2an), 

3,4) = Hn(a2Pt - <Tn[a2Pt + k))ea2Zj(l - 2vn), 

4,1) = pin{kpi - a a)e- a i 2/2fc, 

4,2) = fin{kpt + ax)e^z/2k, 

4,3) = (in{kpi - a 2 )e -° 2 72, 

4,4) = fin(kpt + a 2)e a 2 2/2. 

(6.48) 

The matrix [Z n (z)] is used to calculate the Haskell-Thomson propagator matrix 

[an] associated with the layer n. By inverting equation 6.47 to obtain 

[K] = [Zn(z))-1[An

m(z)}, (6.49) 

and considering the layer n — 1, it can be easily seen that [Singh, 1970] 

[I<Z] = [Zn(zn^)}-1[An

m(zn_l)}. (6.50) 
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Hence, equating and rearranging equations 6.49 and 6.50 gives 

iK(zn-i)} = [an}[[AnJzn)i (6.51) 

where [an] is given by 

[a"] = [Z»{zn-l)][Z»(zn)]-\ (6.52) 

To compute [a n ] , the origin is shifted temporarily to z = zn [Singh, 1970], so 

equation 6.52 becomes 

[a»] = [Zn(-dn)}[Zn(0)}-\ (6.53) 

and the elements of matrix [an] can be determined. 

The continuity condition at the interface z = z n _j yields the expression 

[ K - \ * n - i ) ] = [AUzn-l)). (6.54) 

The point source is considered to be situated on the z-axis at a depth c below the 

free surface. The source layer is designated as layer s, with boundaries z = z3-\ 

and zs. Layer s is divided into two layers of identical properties, s\ and S2- S\ is 

bounded by the layers z = zs-\ and zSl, and z 2 is bounded by the layers z = zSl and 

zS2. The introduction of the point source will therefore give jump discontinuities 

in x™ , i/JJj, and Y£ across the plane z = zSl. Hence, using equation 6.54 

[A%(zSl)}-[A%(zSl)} = [Dm]. (6.55.) 

The vector [Dm] is a vector of discontinuities for a particular source, and has been 

derived for various source functions by Singh [1970]. 

Using equations 6.51, 6.54 and 6.55, and the relation [Haskell, 1953] 

[a sV] = [as], (6.56) 

it is found that 

[AM = [U)[A>m{H)] - [V][Dm], (6.57) 

where 

[U} = [aV)...[a^], (6.58) 

[V] = [aV}...[a*>]. (6.59) 
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The boundary conditions specify that the free surface must be stress free, and that 

zero displacements and stresses occur at infinity, hence equations 6.45 and 6.46 

become 

[ ^ ( 0 ) ] = [ ^ ( 0 ) , ^ ( 0 ) , 0 , 0 ] T , (6.60) 

[KP

m) = [BZPAD-p,0]T. (6.61) 

Substituting these two expressions in equation 6.57, it is found that 

K ( 0 ) , ^ ( 0 ) , 0 , 0 ] T = [E][B-p,0,D-p,0}T - [Fm], (6.62) 

where 

[E] = [U)[Z'(H)}, (6.63) 

tfj = MtAn]- (6.64) 

Solving equations 6.62 for the coefficients B~p and Z)~ p yields the expressions for 

the kernel functions [Singh, 1970] 

4.(0) = {EnFJs + E ^ F ^ - E ^ i F M / E ^ (6.65) 

yl(0) = {E\l$(Fm)3 + £ ? | £ ( F m ) 4 - E\»{Fm)3}/E\%, (6.66) 

where 

E\% = EikEjt - E«Ejk. (6.67) 

Eij are the components of matrix [E] defined by equation 6.63 and (Fm)j are the 

components of vector [Fm] defined by equation 6.64. 

The "L" problem is tackled in a similar manner to obtain [Singh, 1970] 

^ ( 0 ) = {EfoFfa - EfaFZM/E}^ (6.68) 

where the superscript L distinguishes [EL] and {F^)j from their counterparts in 

the "R" problem. 

Equations 6.65 to 6.68 define a solution for the displacements which have zero 

tractions at z = 0 and vanish as z —* oo. 
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6 . 4 . 4 Source Functions 

The source vectors [Dm] and [D^\ for the six elementary dislocations have been 

determined by Singh [1970]. In the notation of Steketee [1958], these six elementary 

dislocations are : (i,j) = (1,1), (2,2), (3,3), (2,3), (1,3) and (1,2) (Figure 6.5), 

where i refers to the direction of the corresponding force system at the source and 

j refers to the normal to the plane across which the force system is applied. For 

example, the source (1,2) relates to a vertical strike-slip faul t and (2,3) to a dip-slip 

faul t . 

To find the source funct ion for a dyke wi th dip ip, the coordinate system must be 

rotated through the same angle about the origin. Using the rotation 

(*',/) = [n](i,m}-\ (6.69) 

where the matr ix [Q] is given by 

( / cos0 s i n * X ( 6 7 Q ) 

^ — sin t/> cos i/> / 

the expression for the source function for a dyke wi th dip ?/> is 

(?:',/) = (3,3) cos2 0 + (2,2)sin 2V> - (2, 3) sin 2</>. (6.71) 

The components are [Singh, 1970] 

( i , j ) = (2,2); (Do), = 2 7 f ^ , (D0)4 = n

7 - § ^ , 

(D2)4 = , i 7 > {D$)2 = - 2 ^ i , 

(» , j ) = (3,3); ( D o ) i = 2 7 , 

( i j ) = (2,3); (Z) , ) 2 = - 2 7 i , (£>f)i = - 2 7 , 

and 7 = AUdE/4w, where AU is the relative displacement across the dyke, is 

an element of area on the dyke and <5=1 /(3-4cr). Hence, three force systems are 

included in the dyking problem; one describing opening in the vertical direction 

(m=0), a second describing opening in the horizontal direction (m=2) and a th i rd 

describing shearing (m=l). 

6 . 4 . 5 Surface Displacements From a Dilating Point Source 

Using equations 6.32, 6.33 and 6.71, the displacement vector at the surface resulting 

f rom a di lat ing point source in an elastic layer over an elastic halfspace, both of 
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Figure 6.5: The force couples corresponding to the six elementary dislocations. 

which are subject to gravitational effects, may be wri t ten as 

u = jH k dk{ [4 ( 3 3 )(0)P 0 + y f 3 \ 0 ) B o ] cos2 </> 

+ [xl(Q)P0 + yl(0)Bo + x](0)P2 + yl(0)B2 + 4(0)C 2 sin 2 ip 

sin 2V> 
}• 

(6.73) 

where x ^ ( 0 ) , y^ (0 ) and are given by equations 6.65 to 6.68. The superscript 

(3,3) distinguishes the kernel functions of the = (3,3) component f r o m the 

= (2,2) component. 

—* —• 

Substituting equations 6.19 to 6.21 for Pm,Bm and C m , obtaining the real part 

of the expression and spl i t t ing the displacement vector into its three components 

gives 

uT = - J" kdk^ylm(0)J1{kr)cos2rP+ (yl{0)Mkr) 

(6.74) 
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'Ji(kr) + J3{kr) 
- v m 

+ *J(0) 
Jo(kr) - J2(kr) 

sin 26 sin2i/> + 

cos 9 sin 2rjj j , (6.75) 

and 

u 2 = ^ A j r f i k l x ^ ^ J o l ^ c o s ^ + ^ W J o l ^ s i n 2 ^ 

+ x*(O)J 2(fcr)cos20sin 2V> + yx}(0) J x (fcr) sin 0 sin 2V>}. (6.76) 

The following relations have been used to simplify these expressions: 

2m 
Jm-i(kr) + J m + 1 ( k r ) = —Jm{kr) 

kr 

Jm-i(kr) - J m + 1 ( k r ) = 2^-Jm{kr). (6.77) 
a kr 

6 . 4 . 6 Introduction of Time Dependence 

The correspondence principle [Lee, 1955] is used to add appropriate viscous proper­

ties to the halfspace. This principle states that i f the elastic solution to a problem 

is known and the inert ial forces are negligible, the quasi-static solution for a linear, 

viscoelastic medium is obtained by replacing all the time-dependent quantities by 

their transformed quantities and then inverting the resulting expression. I n prac­

tice, this requires that //, A and UH(t) in each component of the elastic solution 

u(t), be replaced by s\(s), sp,(s) and U/s to obtain u(s), where the bar signifies 

the Laplace transformed quantity and s is the parameter conjugate to t ime. H(t) 

is the Heaviside step function and is the time dependent part of the applied dislo­

cation. I t indicates that the displacement is zero when t < 0. The function u(s) 

is then inverted to give uv(t), the solution to the viscoelastic problem. In order to 

compute the Laplace transformed solution, an approximation method appearing to 

give smooth time-domain results in the t ime interval studied, and involving as few 

funct ion evaluations as possible, is used [Rundle, 1982]. This method involves the 

Prony series where uv(t) is approximated by a function u*v(t) comprising of a series 
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of decaying exponentials [Schapery, 1961; Cost, 1964]: 

uv(t) * £ AiTi(l - e - ^ ' ) = u*v(t). (6.78) 

The A; are a set of constants that can be determined by a least squares method 

and the { r , } are a set of N relaxation times and were set equal to: 

{ 0 . 5 r a , r a , 5 r a , 1 0 r a , 5 0 r a , 1 0 0 r Q } . (6.79) 

Both elastic moduli of the halfspace, A// and may possess stress relaxation 

properties. However, the variation of both parameters w i t h t ime produces results 

that differ by only a few percent f rom those obtained using a model in which only 

f i j j is varied [Rundle, 1982]. Hence, only the Maxwell constitutive relation for Hjj(t) 

is used so that 

S + 2/Ta 

where r a is the characteristic relaxation t ime given by r Q = 2??///^ . 77 and fj,^ are 

the viscosity and the elastic modulus of the Maxwell f lu id . The required solution 

is then obtained by integrating u*(t) over the source region. 

6 . 4 . 7 Results 

6.4.7.1 Introduct ion 

The deformation field predicted by the elastic-viscoelastic model is strongly depen­

dent on many parameters, the most important of which are H, W/H, AL, ra and 

Much of the model behaviour can be summarised w i t h dimensionless figures, 

and this policy is adopted in this section. The variation of parameters peripherally 

relevant to the situation in north Iceland (e.g., r f j ) was explored by Hofton et al. 

[1995]. In this section the models most relevant to north Iceland are explored in 

detail, including the effects of varying H, W/H, AL and ra. 

6.4.7.2 V a r y i n g H, W/H, AL and r a 

Total postdyking displacement is illustrated for the case of a vertical dyke 200 km 

long wi th an elastic layer thickness of 30 km at t ime 2r a after intrusion (Figures 6.6 

138 



H 

Figure 6.6: Geometry and coordinate system for a rectangular, dipping dyke in an elastic-

gravitational layer over a viscoelastic-gravitational halfspace. H is the thickness of the layer, 

D is the depth to the top of the dyke, 2AL is the along-strike length, W is the downdip width, 

and V is the dip. 

to 6.10). Gravitational effects are included in all the figures, which show nondi-

mensional motion perpendicular to the dyke over an area scaled by H. Strictly 

speaking this is not rigorous as independent length scales exist in the gravitational 

problem, for example, H, the layer thickness, kg, the gravitational wave number for 

the layer, and k^, the gravitational wave number for the halfspace. A nondimen-

sionalising of the kernel functions for the gravitational problem results in a ratio 

of gravitational effects, represented by pgH, to elasticity effects //, e.g., pgH/p. 

[Rundle, 1982]. However, for the short t ime scale most relevant to the deformation 

in north Iceland (Chapter 7), scaling by H is a reasonable approximation (e.g., 

compare Figures 3 and 4 of Hofton et al. [1995]). 

The horizontal and vertical total postdyking displacement fields for t — 2 r a re­

sulting f rom a dyke extending completely (W/H = 1) and partially (W/H = 0.5 

and W/H — 0.25) through the elastic layer are shown in Figures 6.7 (in profile) 

and 6.8 ( in map view). The dyke-normal horizontal displacement field for a dyke 

extending completely through the elastic layer shows l i t t le deformation in the very 

near-source region, but beyond this, substantial displacement at distances of up 

to several downdip dyke widths f rom the source (Figure 6.7a). Substantial up l i f t 

is produced above the dyke, much less motion on either side (i.e., in the flank 

zones) at distances comparable to the thickness of the elastic layer, and upl i f t fur­

ther away of the same order of magnitude as that produced immediately above 

Layer 

Halfspace 

density: p, 

elastic moduli: u,, A, 

density: p„ 

elastic moduli: u«, A* 
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Figure 6.7: Nondimensional (a) horizontal and (b) vertical total postdyking surface displacement 

against distance normal to the dyke at time 2r„ after dyke emplacement. Model parameters are 

H = 30 km, 1AL = 2 0 # / 3 , p, = ph = 3.0 g / c m 3 , / i , = ph = A, = A„ = 3 x 10 1 0 Pa , D/H = 0, 

and rp = 90° . T h e profiles from a surface dyke extending completely (W/H = 1), and partially 

(W/H = 0.5 and W/H = 0.25) through the elastic layer are shown by the solid and dashed 

curves. Each displacement profile has been evaluated at the midpoint of the dyke. U is the full 

dyke thickness. 
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Figure 6.8: Nondimensional total postdyking surface displacement at time 2 r a after dyke em­

placement. Model parameters are identical to those in Figure 6.7. (a) Horizontal and (b) vertical 

deformation fields for W/H = 1 and (c) horizontal and (d) vertical fields for W/H = 0.5. T h e 

dyke is shown by the solid line in the centre. Vertical contours are every 0.02U. 
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Figure 6.9: Same as Figure 6.7, except the effects of varying AL when W/H — 1 are illustrated. 
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Figure 6.10: Same as Figure 6.7, except the effects of varying fih when W/H = 1 are illustrated. 
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the dyke (Figure 6.7b). Decreasing the downdip width of the dyke causes a corre­

sponding decrease in the amplitude of the postdyking horizontal displacement field 

and a pronounced peak at a distance comparable to the thickness of the elastic 

layer. The vertical deformation field is substantially altered wi th subsidence pre­

dicted above the dyke, upl i f t of the flank zones and subsidence beyond this. These 

effects are caused by the reduction of the source size and by the increase in distance 

f rom the base of the dyke to the top of the viscoelastic halfspace which causes the 

viscoelastic effects to diminish. 

Outward, radial horizontal motion f r o m the dyke is predicted in all areas (Fig­

ures 6.8a and c). However, the displacements at the ends of the dyke are much 

smaller than those predicted elsewhere. The maximum motions occur at distances 

of about 2H f r o m the dyke. When W/H < 1 motion decays at smaller distances 

f r o m the dyke than when W/H = 1. When W/H = 1 up l i f t of all points is 

predicted, w i t h the maximum upl i f t of 0.1U occurring above the dyke and in the 

flank zones, and the local minimum occurring wi th in 2H of the dyke (Figures 6.7b 

and 6.8b). When W/H = 0.5 subsidence is predicted in all areas, except at dis­

tances of ~2H on either side of the dyke where a small amount of up l i f t occurs. 

The max imum subsidence occurs at ~ 9 i / f r o m the dyke (Figures 6.8b and d) . 

The elastic-viscoelastic model predicts outward motion parallel to the dyke at the 

dyke ends. This contrasts wi th the elastic-viscous model which predicts inward 

motion there. Heki et al. [1993] found that the elastic-viscous model fits the 

1987-1990 dyke-parallel motion very poorly, and in this aspect in particular the 

elastic-viscoelastic model clearly provides a superior f i t to the observations. 

Decreasing the dyke length decreases the magnitude and range of the horizontal 

and vertical postdyking displacement (Figure 6.9) since the source size has been 

reduced. However, the shape of the displacement field is not substantially affected. 

The amplitudes of the postdyking horizontal and vertical displacement fields in­

crease w i t h Hh (Figure 6.10), which also leads to a more pronounced peak in the 

horizontal field several dyke widths f rom the source. Increasing //^ corresponds to 

an increase in viscosity since r a = 2rj/nh, assuming r a is constant. This means that 

the viscoelastic halfspace has become "stiffer", and produces a larger magnitude 

response to a dislocation in the elastic layer. 
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6.4.7.3 Var ia t ion in Deformat ion W i t h T i m e Following a Single E v e n t 

The elastic-viscoelastic model predicts that the deformation field w i l l vary w i t h 

time. This is illustrated for an infinitely-long example dyke in Figure 6.11 over 

time scales of 0 to 10,000 ra. The elastic (codyking) horizontal displacements are 

large close to the dyke and decrease rapidly wi th distance (Figure 6.11a). The 

postdyking response shows a general increase in accumulated displacement over 

time at large distances. Very close to the dyke (at distances less than 10 k m ) the 

amount of postdyking displacement decreases w i t h t ime. A t intermediate distances 

(~20-150 km) the motion is more complex and varies considerably at different 

distances. Large displacements outward f r o m the dyke occur early on, but later 

the direction of motion reverses and the total outward displacement decreases. 

Codyking subsidence is predicted w i t h i n ~20 k m of the dyke, which decreases 

rapidly w i t h distance (Figure 6.11b). The postdyking motion is in the opposite 

sense wi th up l i f t occurring in the vic in i ty of the dyke, the amount of which increases 

wi th time. A pattern of local subsidence and up l i f t further away is predicted 10-

150 k m either side of the dyke, that migrates out w i t h t ime. No significant vertical 

motion is predicted fur ther than 150 k m f r o m the dyke. 

The total displacement field (i.e., the elastic plus the viscoelastic effects) f r o m 

a single event is shown in Figure 6.12. Postdyking anelastic deformation causes 

horizontal displacements outwards f r o m the dyke to accumulate at all distances 

shortly after the intrusion (Figure 6.12a). This results in the rather surprising 

phenomenon of excess displacement in the flank areas (at distances of less than 

~150 k m f r o m the dyke in this case). The direction of motion in these areas reverses 

at some t ime, and after a long period the accumulated displacement at all distances 

is approximately equal to the amount of dyke opening. W i t h i n 350 k m of the dyke 

the amount of displacement is underestimated by a few percent. This is a result 

of the boundary conditions inherent in the model (as y —• ± o o the displacement 

field is constrained to converge to zero) and the approximation technique used to 

perform the Laplace inversion. In this inversion the { r , } were roughly approximated 

(in order to save computational t ime) , when str ict ly speaking they are determined 

by the poles of the funct ion uv(t). 

Postdyking anelastic vertical deformation causes the in i t ia l subsidence to decrease 

over time in the vicini ty of the dyke (Figure 6.12b). Addit ional subsidence accu-
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Figure 6.11: Predicted (a) horizontal and (b) vertical displacement including the elastic re­

sponse and the postdyking displacement (t > 0) due to an infinitely-long dyke using the elastic-

viscoelastic model. Model parameters are H = W = 10 km, pt = 2.8 g / c m 3 , ph = 3.1 g / c m 3 , 

/i,=2.7 x 1 0 1 0 Pa , A; =4.9 x 1 0 1 0 P a , f j h =4.1 x 1 0 1 0 Pa, \ h =9.9 x 1 0 1 0 Pa , and V = 90° . 

The profiles are evaluated at the midpoint of the dyke. The small oscillations in the vertical 

predictions when y > ± 3 0 0 km are due to the fineness of the integration interval, the level of 

which is set to produce a practical computation runtime (no more than a few hours using a Sparc 

station 10). 
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Figure 6.12: Same as Figure 6.11, except total (elastic plus viscoelastic) displacement from t = 0 

(a) horizontal and (b) vertical. 
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t = 0 with distance from the axis with time, due to a single dyking event. Model parameters are 

identical to those used for Figure 6.11. 
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Figure 6.15: Same as Figure 6.14, except for the vertical field. 
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mulates at distances of ~20-120 km. Af t e r a long t ime period net subsidence is 

predicted wi th in ~100 km of the dyke, w i th local, relative up l i f t wi th in ~20 k m of 

the dyke. 

Following a single event, the same amount of horizontal deformation eventually 

results everywhere as a result of stress redistribution in the viscoelastic halfspace. 

However, the evolution of the displacement field w i th t ime depends on distance 

f rom the boundary. Close to the plate boundary very l i t t l e transient motion is 

observed (Figure 6.13a), and the major i ty of the final displacement occurs at the 

time of the event. Further away f r o m the plate boundary (e.g., at ~15 k m ) , the 

total amount of displacement increases unt i l ~10r a after the event. The sense of 

motion then reverses and contraction towards the dyke occurs unt i l ~ 3 0 T q , at which 

time a second reversal occurs and expansion begins again. The maximum amount 

of displacement occurs at ~100r a after the event and exceeds the amount of dyke 

opening by 35%. This general displacement pattern occurs at all points out to 

distances of ~ 150 k m f rom the boundary, w i th the amplitude of the displacements 

decreasing w i t h distance (Figure 6.13a). Beyond distances of ~150 k m f r o m the 

boundary, e.g., at ~210 km, l i t t l e excess displacement occurs and a simple pattern 

of evolution of displacement w i th t ime is predicted. There, the curve can be divided 

into two stages. In the first stage the displacement quickly increases to near its 

maximum value (wi th in ~15r a of the event). Following this is a much more gradual 

increase as the displacement reaches its final and maximum value over the next 

~50r o . 

The vertical field clearly shows that w i th in ~120 k m of the dyke, net subsidence 

is predicted following a single r i f t i n g event (Figures 6.12b and 6.13b). Close to 

the dyke (wi th in 15 km) the amount of subsidence decreases w i t h increasing t ime 

until ~ 2 5 r „ , at which time a slight, relative increase occurs. Decreasing subsidence 

is again predicted after ~100r a . Between 30 and 90 k m f rom the dyke axis the 

amount of subsidence progressively increases to a maximum at ~ 5 0 r a . A t distances 

of greater than ~120 km there is insignificant vertical response to the intrusion. 

A deformation rate that is highly variable spatially and temporally is thus pre­

dicted. Close to the axis a maximum expansion of ~60 c m / r a is predicted shortly 

after the event (Figure 6.14). This quickly decreases and wi th in ~ 2 r 0 of the event 

contraction at a rate of up to 10 c m / r a is predicted wi th in ~120 k m f rom the dyke. 

The rate of motion then increases and at 5r„ after the event an expansion of up to 
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9 c m / r a occurs. The rate of motion subsequently decreases, and at ~50 ra after 

the event the expansion rate has decayed to ~ 1 c m / T A . The rate decreases to zero 

at all distances wi th in ~100r o of the event. As was apparent in Figure 6.13a, the 

counter-intuitive reversal of sense of motion is discernible, in the cases studied here, 

out to distances of ~120 km. 

The predicted vertical displacement rate also shows a complicated pattern (Fig­

ure 6.15). W i t h i n ~15 k m of the dyke a high subsidence rate of up to 20 c m / r a 

ini t ia l ly occurs. The rate then reverses and wi th in 2 r a an up l i f t rate of up to 

~3 c m / r a is predicted close to the dyke. Low rates of up l i f t and subsidence are 

then predicted unt i l ~ 3 0 r a when the rate becomes zero. A t distances of ~30 km 

from the dyke a subsidence rate of ~ 4 c m / r a is predicted wi th in l r a of the event. 

This decreases to near-zero by ~ 5 r a after the event. Between ~60 k m and ~120 k m 

upl i f t of up to 7 c m / r „ is predicted shortly after the event, followed by subsidence 

of up to 1 c m / r 0 by 2 r a after the event. Mot ion subsequently decreases to zero. 

From 180-210 k m subsidence at a rate of up to 3 c m / r a is predicted shortly after 

the event, decreasing to zero by ~ 3 r a after the event. 

6.4.7.4 The Summation of Repeated Events 

I f an event is assumed to recur periodically the pattern of motion w i l l vary w i t h t ime 

and distance f r o m the axis. The case for a recurrence t ime of 100 r a is i l lustrated 

in Figure 6:16. Mot ion at the boundary is highly episodic, w i th most of the motion 

occurring at the t ime of the event and l i t t l e or none just before the onset of the 

next episode. Further away (e.g., ~30 k m f r o m the boundary) episodic motion 

occurs at the t ime of the event. For a short while the motion decreases, and then 

sharply increases to a peak at ~10 r o after the event, after which i t decreases to 

zero. From ~ 3 0 r a after the event to just before the next event, very l i t t l e motion 

occurs. A t larger distances (e.g., ~90 km) f rom the boundary a similar though 

attenuated pattern of motion occurs, and at distances of over 200 km f r o m the 

plate boundary, most of the motion occurs during the first 15r a , after which l i t t l e 

motion occurs unt i l the next event. A n important prediction of the viscoelastic 

model, for the case where the dyke ruptures the entire elastic layer, is that the 

average motion at all points is the same. 

Unlike the horizontal motion, the average vertical motion is not the same at all 
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Figure 6.16: (a) Horizontal (b) vertical displacement against dimensionless time at 0.1 km, 

30.1 km, 90.1 km and 210.1 km from the plate boundary. A n event is assumed to recur every 

100r a . A large number of previous events are assumed to have occurred prior to time </r„ = 0 

in order for the displacement field to reach a steady state. T is the event recurrence time. A s a 
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displacement. 
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distances f rom the dyke. Close to the dyke a net subsidence is predicted, the 

amount of which decreases with increasing distance f rom the dyke (Figure 6.16b). 

Vertical motion at the boundary is also highly episodic w i t h substantial subsidence 

occurring at the time of the intrusion followed by upl i f t for a short t ime after the 

event and no significant motion immediately prior to the next event. A t larger 

distances f rom the dyke, a similar but attenuated deformation pattern occurs w i th 

vir tually no motion beyond about 150 k m . 

I f the recurrence interval is made shorter (or equivalently, the relaxation t ime is 

increased for these plots where t is scaled by r„) the spatial scale of the transient 

motion changes (Figure 6.17a). Motion is discernible throughout the interevent 

period for distances of up to ~100 k m f r o m the dyke, and at distances of ~200 k m 

motion is more continuous than for long recurrence intervals, though st i l l clearly 

episodic. The vertical field (Figure 6.17b) is very similar to that predicted when 

T=100 T A , and thus the predicted vertical field appears to be less dependent on the 

recurrence t ime than the horizontal field. 

The width of the "plate boundary zone", i.e., the zone wi th in which transient, time-

dependent deformation occurs, is shown thus to be dependent on the relaxation 

t ime. I f apparent continuous, uniform "plate" motion is to occur wi th in about 

200 km of the plate boundary, the recurrence time must be of the order of ~15 r 0 , 

i.e., the next event must occur before the displacement gradient change occurs for 

a point at that distance (Figure 6.13a). 

6.5 Simulating Plate Motion 

I t can be seen f rom the example in the preceding section that models involving 

repeated, infinitely-long dykes rupturing the entire elastic layer can simulate the 

continuous motion of the plates i f dyke thicknesses are chosen to be consistent 

w i t h the event recurrence times and the time-averaged plate velocity. This was 

also illustrated graphically for the elastic-viscous model by Heki et al. [1993], who 

gave the total displacement, U(x,t), for the one-dimensional solution as 
oo 

U{x, t) = u(x, t) + Y^ U ( X , 1 + n T ) i ( 6 - 8 1 ) 
n=l 

where T is the recurrence interval of the events (Figure 2.15). This model predicts 
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that the transient velocity pulses f rom the events at the plate boundary diffuse out 

and sum to produce the constant motion of the plate interiors. The viscoelastic 

model does not show the same "diffusion" pattern as the viscous model, but is 

similar in as much as the deformation is in i t ia l ly predicted to be greatest close 

to the dyke, and to spread to greater distances wi th t ime. This model does not 

imply the origin of plate driving forces, and a similar result would be obtained 

if an infinitely-long destructive or transform plate boundary were modelled. The 

continuous dyking model involves elastic responses only and in order to simulate 

continuous plate-like motion, continuous dyking at the appropriate rate and over 

the whole observation period is required. 

6.6 Summary 

Fundamentally different explanations have been invoked to predict transient, post-

dyking ground deformation; continued opening at depth on the dyke plane and 

stress relaxation in a nonelastic region situated below a surface elastic zone. The 

first of these is easily modelled using elastic-halfspace methods. 

Two methods are used to model postdyking deformation resulting f rom the relax­

ation of a nonelastic region. The first assumes that dyking occurs i n a surface elastic 

layer underlain by a viscous (Newtonian) layer. Stress, assumed to originate in the 

r i f t i n g episode, obeys the classical,-linear-diffusion equation. The second method 

involves dyking in an elastic layer overlying a Maxwell viscoelastic halfspace, both 

of which are subject to gravitational effects. This method involves computing the 

Green's functions for a dilational point source in an elastic-gravitational layer over 

an elastic-gravitational halfspace. The correspondence principle is applied to give 

the functions for a source in an elastic-gravitational layer overlying a viscoelastic-

gravitational halfspace. Finally these functions are integrated over the f ini te source 

region to give the required horizontal and vertical surface displacements. 

Example calculations involving a vertical dyke that extends to the surface indicate 

that the greater the length and downdip wid th of the dyke, the greater the defor­

mation. Changing the viscosity of the viscoelastic region substantially affects the 

deformation pattern. A l l examples predict substantial motion at large distances 

f rom the dyke and at early times, in contrast to the elastic-viscous model. 

156 



Alternat ing periods of expansion and contraction wi th very variable displacement 

rates are predicted following a single r i f t i ng event. For an infinite dyke, and after 

a long t ime, the amount of cumulative horizontal displacement at all distances is 

approximately equal to the amount of dyke opening. In the vertical, net subsi­

dence is predicted in the vicinity of the dyke, the amount of which decreases wi th 

increasing distance. I f an event is assumed to recur periodically the nature of the 

horizontal displacement field is dependent on the ratio of the recurrence t ime of 

the event to the relaxation time. The vertical field is less sensitive to this ratio. 

Continuous plate motion may be simulated by the summation of the displacements 

f rom a large number of events rupturing the entire plate boundary, using either the 

elastic-viscous or elastic-viscoelastic model. 
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Chapter 7 

Modelling the Measured Deformation in 
North and East Iceland 

7.1 Introduction 

Suggested explanations for the deformation observed 1987-1992 in north and east 

Iceland involve several conceptually different processes. Continuous, aseismic dyke 

intrusion at depth beneath the Krafla spreading segment has been suggested that 

may be modelled using an elastic halfspace [J. Savage, pers. comm., 1994]. The 

deformation field has been attributed to postdyking stress relaxation in viscous or 

viscoelastic structural elements following the recent Kraf la r i f t i ng episode. Mod­

elling of the deformation using these processes and structures has the potential 

to place constraints on tectonic processes and the rheology of the Earth beneath 

Iceland. 

An Earth model incorporating viscoelasticity is the most realistic of these processes, 

and the case of the viscous model has been dealt w i t h i n depth by Heki et al. [1993]. 

This latter model, and that of continuous dyking, w i l l thus be treated only briefly 

in this chapter, which concentrates mainly on modelling using a structure that 

involves viscoelasticity. 
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7.2 Continuous Dyking in an Elastic Halfspace 

In this approach the surface displacements observed in Iceland 1987-1992 (Fig­

ure 7.1) are at t r ibuted to continuous, aseismic dyke intrusion at depth beneath the 

Krafla spreading segment. This process is modelled using an elastic halfspace and 

the formulae of Okada [1985] (Section 6.2). 

End-member example cases of short, thick and ta l l , th in dykes for the infini tely 

long case are shown in Figure 7.2. Observed displacements wi th in a narrow profile 

spanning the Kraf la dyke are superimposed on the modelled displacement profile to 

decrease the effects of the finite length of the dyke complex intruded in the Kraf la 

episode on the data plotted. 

The models predict horizontal displacement fields that increase steeply to a peak 

wi th in a few tens of kilometres f rom the spreading axis, and then fa l l off more 

slowly at greater distances (Figure 7.2a). Zero vertical motion is predicted along 

the spreading axis, substantial up l i f t on either side, peaking somewhat closer to 

the spreading axis than the horizontal motions, and decreasing w i t h distance to 

zero fur ther away (Figure 7.2b). 

Figure 7.2 shows that this model predicts the overall shape of the observed defor­

mation f ield, and suggests that a range of dykes w i t h various depths and dimensions 

intermediate to those shown w i l l f i t the observations f r o m the profile zone. The 

short, thick dyke fits reasonably the horizontal displacements clbse~to the spreading 

axis but predicts poorly the motion further away. The ta l l , th in dyke underesti­

mates the motion close to the axis but provides a reasonable fit for the more distant 

points. The short, thick dyke fits the observed vertical displacements fair ly well, 

whereas the ta l l , t h in dyke predicts a deformation field w i th somewhat larger dis­

placements far f r o m the spreading axis than those observed. 

A well-f i t t ing case w i t h dyke length comparable to that of the recent Krafla episode 

is shown in Figures 7.3 and 7.4. In order to approximate the motion of the furthest 

points a t a l l , t h in dyke is required. The observed horizontal motion is large close 

to the r i f t and decreases slightly w i th distance. A maximum of 10 cm is predicted 

close to the r i f t , decreasing to about 6 cm approximately 100 k m f rom the axis. 

Residuals significant at greater than 2a occur in the vicini ty of the dyke and in 

the far southeast of the network, where residuals of up to 7 cm occur. The vertical 
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Figure 7.2: (a) Horizontal and (b) vertical displacements 1987-1992 as a function of distance 

from the plate boundary for the points within the profile zone shown in Figure 7.1. Vertical bars 

indicate \a errors. Lines are theoretical curves for models of continuous dyke intrusion at depth 

in an elastic halfspace. T h e depth extent and amount of opening for the modelled dykes are given 

in the figures. T w o end-member cases are shown, a short, thick dyke and a tall, thin dyke. 
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simulated field (Figure 7.4b) has a maximum upl i f t of 5 cm close to the dyke axis, 

decreasing to zero wi th distance. Residuals of up to 15 cm, and significant at 

greater than 2a occur in the south of the network, and in the vicini ty of the dyke 

(12 cm). 

A quantitative measure of ^he quality of fit to the data is given by the reduced \ / 2 

statistic [e.g., Bevington and Robinson, 1992], given by 

jU (v?° - vTod? 

where vobs and v m o d are the observed and predicted displacements, a is the scaled 

formal error, N is the number of data points, and M is the number of adjustable 

model parameters. Values of xl much larger than 1 indicate that the measurement 

errors cannot account for all of the data misfit , and suggest either an incorrect 

representation of the physical situation (an incorrect model or model parameters) 

or incorrect estimates of the errors. I f xl is l e s s than 1 the errors in the data are 

likely to have been overestimated or else measurement error is being modelled, xl 

is 3.7 in the horizontal and 5.3 in the vertical for the model shown in Figures 7.3 

and 7.4. 

Clearly, fur ther improvement to the fit could be achieved by making the model 

more complicated by using several dykes wi th different dimensions and times of 

intrusion. However, this line of research is not pursued further here. 

7.3 Stress Diffusion in an Elastic Layer Over­

lying a Viscous Layer 

Following the method of Foulger et al. [1992], a one-dimensional stress d i f fu­

sion model was applied to the 1987-1990, 1990-1992 and 1987-1992 displacements, 

which were viewed as instantaneous velocities 11 and 13 years after the dyke in t ru­

sion event. The best-fi t t ing form ( in a least-squares sense) of the one-dimensional 

horizontal velocity equation (equation 6.10) to the observations was found and es­

timates of the dyke thickness and diffusivi ty obtained. The position of the dyke is 

well known f r o m previous geodetic measurements and was held to a fixed location. 
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Table 7.1: Summary of the diffusivities and dyke half thicknesses obtained using the stress diffu­

sion model. 

Epoch Diffusivity ( m 2 / s ) Half dyke thickness (m) 

1987-1990 1.10 ± 0.30* 1.00 ± 0.10* 

1987-1990 1.78 ± 0.38 1.43 ± 0.12 

1990-1992 0.64 ± 0.35 0.72 ± 0.17 

1987-1992 3.11 ± 0.68 1.27 ± 0.14 

1986-1992 0.65 ± 0.33 1.30 ± 0.67 

1987-1990 10.0 f -
* Estimates obtained by Foulger et al. [1992] using the G E O N A P results. 

f Estimate obtained by Heki ei al. [1993] using the two-dimensional model. 

Best-fit models to profiles perpendicular to the r i f t axis w i t h i n the zone shown in 

Figure 7.1 yield estimates for the thickness of the dyke complex (averaged through­

out the elastic layer) of 0.72-1.43 m and stress diffusivities of 0.64-3.11 m 2 / s (Ta­

ble 7.1, Figure 7.5). Whils t the motion in the proximity of the r i f t can be predicted 

well by this simple model, the motion of points further than 60 k m f r o m the r i f t 

is poorly modelled. The predicted relative motion f r o m a single intrusion is zero 

whereas substantial motion is observed at these distances. This is most clearly 

seen in the 1987-1992 epoch (Figure 7.5c). Increasing the di f fus ivi ty to 10 m 2 / s 

(the value calculated by Heki et al. [1993] by two-dimensional modelling of the 

1987-1990 epoch) gives a better f i t for these far points, but at the expense of the 

f i t to the points close to the r i f t . The estimates for the dyke half thickness suggest 

a value of 2-3 m for the average f u l l thickness of the dyke complex, i.e., smaller 

than the 3.5-8 m of surface widening observed during the r i f t i n g episode. The 

diffusivi ty and dyke thickness calculated using data f r o m the 1986-1992 epoch are 

less reliable since the 1986 results are of low quality and there are few points close 

to the r i f t where point velocities are most variable. 

The two-dimensional deformation fields for 1990-1992, 1987-1992 and 1986-1992 

were compared wi th the predictions of Heki et al. [1993] (a di f fus ivi ty of 10 m 2 / s , 

and dyke thicknesses as estimated by Tryggvason [1984]) (Figure 7.6). The dis­

crepancy between predicted and observed deformation, highlighted by the one-

dimensional analysis where the predictions using a d i f fus iv i ty of 10 m 2 / s are shown 

(Figure 7.5), is again seen (i.e., a reasonable fit to the far- and poor fit to the 

near-rift points). The model can predict most of the motion for the 1987-1990 and 
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Figure 7.5: Horizontal displacements (a) 1987-1990, (b) 1990-1992, (c) 1987-1992, and (d) 1986-

1992, as a function of distance from the spreading axis for the points within the profile zone 

shown in Figure 7.1. Vertical bars indicate l<r errors. The best-fit curves for models of stress 
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(infinitely-long dyke) was used. 
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Figure 7.6: Comparison between observed and simulated displacements for (a) 1987-1990, (b) 

1990-1992, (c) 1987-1992. and (d) 1986-1992 using a two-dimensional model and a diffusivity of 

10 m2/s (the best-fit diffusivity for the 1987-1990 epoch from Heki ei al. [1993]). 68% (1.5<r) 

confidence error ellipses are shown. Points within 10 km of the dyke have not been included in 

the analysis. The dyke complex is shown shaded, (a) is adapted from Heki ei al. [1993]. \1 is 2.6, 
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Figure 7.8: Same as Figure 7.5 for the period 1987-1992 except an infinite number of previous 

episodes were assumed to occur, (a) Dyke thicknesses and event recurrence times are consistent 

with the value for the time-averaged half plate velocity in Iceland of 1.0 c m / y r , and (b) an example 

of a model which fits well but requires an unrealistically large dyke thickness for the preceding 

event (in this case about six times the thickness of the dyke complex intruded in the recent Kraf la 

episode). 

1990-1992 epochs, but clearly works poorly in the case of the better-constrained 

1987-1992 epoch (Figure 7.7). The poor quality 1986 data again gives poor results 

for the 1986-1992 epoch. These results suggest that a more realistic geophysical 

model is required. 

I f the effects of previous events are taken into consideration (equation 6.81), w i t h 

dyke thicknesses and recurrence times consistent with current estimates of the time-

averaged plate velocity in Iceland, the fit is improved somewhat as the motion at 

distance f r o m the r i f t does not f a l l off to zero. However, a substantial discrepancy 

sti l l exists between the predicted and observed motion of the furthest points (Fig­

ure 7.8a). The motion at these far points can be modelled, but unrealistically large 

dyke thicknesses are required for the preceding event, e.g., 6.5 m (Figure 7.8b). 
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7.4 Stress Redistribution in an Elastic Layer 

Overlying a Viscoelastic Halfspace 

7.4.1 Introduction 

A n improved fit to the observations, and advance in our understanding of the 

spreading process and structure is to be expected i f a more realistic geophysical 

model is used. Here, a model incorporating an elastic layer overlying a viscoelastic 

halfspace, and including gravitational effects, is applied. However, as the early 

work using stress diffusion principles highlighted, before modelling of the Krafla 

episode can be correctly conducted the effects of other processes that contribute to 

the deformation must be taken into account. These processes include older dyke 

intrusions in the Kraf la volcanic system, past r i f t i ng episodes in the other systems 

of the N V Z , earthquakes in the T F Z , and other known tectonism, for example, 

inflations and deflations of the central volcanoes. There is much uncertainty about 

some of these processes, but fortunately their effects are minor, as w i l l be shown 

below. 

7.4.2 Deformation From Processes Other Than the Krafla 
Spreading Episode 

7.4.2.1 Model Parameters 

In order to reduce the number of variables, certain model parameters for which 

strong, independent constraints exist, are assumed known and their values held 

fixed during the modelling process. These include the thickness of the elastic layer, 

H, the height of the dyke, W, the dip of the dyke, xp, the elastic moduli of the 

elastic layer, pi and A/, and the halfspace, ph and \h, and the densities of the layer 

and the halfspace, pi, and ph (Table 7.2). 

A value of 10 km was assumed for the elastic layer thickness. This is the depth to the 

regional, low resistivity layer beneath north Iceland in the neighbourhood of Kraf la , 

inferred f rom magnetotelluric evidence [Bjornsson, 1985]. This value is further 

supported by the observed depth range of earthquakes [Einarsson, 1991], and later 
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Table 7.2: Model parameters held fixed during modelling of the events and processes described 

in Sections 7.4.2.2-7.4.2.6. 

Model parameter Symbol Value 

Elastic layer thickness H 10 k m 

Dyke height W 10 k m 

Dip 90° 

Elastic moduli: layer Pi 2.7 x 10 1 0 Pa 

A, 4.9 x 10 1 0 Pa 

halfspace Ph 4.1 x 10 1 0 Pa 

9.9 x 10 1 0 Pa 

Layer density Pi 2.8 g / c m 3 

Halfspace density Ph 3.1 g / c m 3 

Viscosity V 1.1 x 10 1 8 Pa s 

modelling of the recent Krafia episode (Sections 7.4.3.1 and 8.2.3.2.2). The dykes 

are assumed to rupture the entire elastic layer, i.e., M^=10 k m , i n accordance w i t h 

the model of Bjdrnsson [1985] and the results of Rubin [1992] (Section 2.3.3.4). 

This model implies that all the far-field, plate-like motion is the summed effect of 

the Kraf ia episode and other large spreading episodes and earthquakes along the 

plate boundary (Section 6.5). 

The dykes are assumed to be vertical, in agreement j y i t h f ie ld geologicaLobser-

vations [Gudmundsson, 1984]. Seismic refraction experiments suggest an average 

value for V p of 5.5 km/s at 0-10 k m depths, and 7.0-7.4 km/s at 10-30 k m depths 

[Gebrande et al., 1980]. The Vp/V3 ratio for the crust is about 1.76, and 1.96-2.2 

for the upper mantle [Gebrande et al., 1980]. Using the standard seismological 

relations: p. = V*p and A = Vp

2p — 4/3^, and a velocity-density relationship of 

p = 1530 + 2301^, [Christensen and Wilkins, 1982], values for the densities and 

elastic moduli of the layer and halfspace were calculated (Table 7.2). 

A value of 1.1 x 10 1 8 Pa s was used for the viscosity of the halfspace. This value 

is based on numerous forward models of the dyke complex intruded in the Krafia 

episode. A large major i ty of the deformation detected using GPS 1987-1992 results 

f rom this episode, and modelling i t as such can constrain the viscosity to wi th in 

about 10%. In the absence of a fu l l inverse modelling program and in view of 
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Figure 7.9: Map of northeast Iceland showing the date, location, and dimensions of previous 

rifting episodes in the N V Z . T h e Kraf la caldera is positioned at x = y = 0. 

the fact that their effects are minor, this was the most reasonable approach to 

selecting a halfspace viscosity for modelling the minor contributing tectonic events 

other than the Kraf la episode. 

Dyke thicknesses for the historic spreading episodes in the N V Z (Figure 7.9) (Sec­

t ion 2.4) were estimated assuming that the average widening at all points along 

the r i f t is 2 cm/yr . In addition, i t is assumed that during a dyking episode no 

thicker dyke can be injected than corresponds to the amount of potential extension 

accumulated since the last episode at that latitude. This implies that the dykes 

taper where they overlap one another along the strike of the r i f t zone. However, 

this has to be approximated by square-ended dykes for modelling purposes. I t is 

assumed that no unreported r i f t i ng events occurred since the 1618 Theistareykir 

episode (Figure 7.9). 

R i f t i ng is thought to recur every 100-150 years in north Iceland [Bjornsson, 1985]. 

I t is assumed that 150 years prior to the 1618 Theistareykir episode, r i f t ing occurred 

in the Askja system, and 150 years prior to that in the Krafla system. These 
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assumptions result in estimates of the dyke thicknesses of the Askja 1875 episode 

and the Myvatn fires episode of 1725 that are about the same as that known for 

the recent Krafla episode, a reasonable result (Figure 7.9). Thicknesses of 8 m and 

7 m respectively are obtained. 

These assumptions about the thickness of the early dykes in the N V Z are based 

on very l i t t l e information. However, the modelling results show that their effect 

is small, and thus errors f rom this source do not greatly affect later modelling of 

the recent Krafla episode. The assumed dyke lengths were based on observations 

of fissure swarm widening and eruptive act ivi ty at the times of the eruptions. 

7.4.2.2 The 1618 Theistareykir Episode 

A value of 7 m was used for the thickness of the dyke complex inferred to have 

been injected in the Theistareykir system in 1618. This value is probably an upper 

bound as the dyke is thought to be fa i r ly short (~20 k m ) , and a thickness of 7 m 

yields an aspect ratio of 0.29 x 10 3 which is somewhat high for Icelandic dykes 

[Gudmundsson, 1984]. 

The horizontal displacements at the GPS network points for the period 1987-1992 

that result f rom this intrusion are shown in Figure 7.10. A l l points i n the network 

are undergoing motion towards the dyke. A maximum displacement of 0.25 cm is 

predicted, occurring close to the dyke. The displacement decreases w i t h distance 

f rom the dyke. The southernmost points are unaffected by this dyke intrusion. 

The vertical displacement field 1987-1992 shows that the maximum upl i f t is about 

0.06 cm and i t occurs above the dyke (Figure 7.11). The maximum subsidence, 

which is about 0.1 cm, occurs at distances of ~50 k m either side of the dyke. The 

amount of subsidence decreases w i t h increasing distance f rom about 50 k m f rom 

the dyke, and points in the southern part of the network underwent subsidence of 

only 0.02-0.04 cm due to this intrusion. 
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7.4.2.3 The 1724-1729 Myvatn Fires Episode 

To estimate the dyke thickness of the 1724-1729 Myvatn fires episode, a previous 

episode was assumed to have occurred in the Krafia volcanic system ca. 1300. 

This yielded a dyke thickness estimate comparable wi th that of the recent Kraf la 

dyke complex (up to 7 m) . A dyke of variable along-strike thickness was used, 

that tapers where there is overlap w i t h the preceding 1618 Theistareykir dyke. 

Three end-to-end dykes, simultaneously intruded in 1729, were used to simulate 

the intrusion, a northern and a southern one wi th thicknesses of 4 m, and a central 

one w i t h a thickness of 7 m (Figure 7.9). 

The predicted horizontal and vertical deformation fields 1987-1992 (Figures 7.12 

and 7.13) show similar patterns to those predicted for the Theistareykir episode, 

but of larger amplitude. A horizontal contraction of the network 1987-1992 is 

predicted wi th maximum displacements of 1.2 cm occurring closest to the central 

part of the dyke complex. Displacement decreases wi th distance f rom the dyke. 

Points south of the dyke undergo very l i t t l e motion, as do the points fur ther than 

~80 k m f rom the dyke. 

U p l i f t occurs in the vicini ty of the dyke to a maximum of 0.2 cm, and subsidence 

of up to 0.6 cm at distances of ~50 k m on either side of the dyke axis. The amount 

of subsidence decreases at larger distances f rom the r i f t , w i th the southernmost 

points in the network predicted to experience a maximum 0.2 cm of subsidence as 

a result of this dyke "intrusion episode. 

7.4.2.4 The 1874 Askja Episode 

In order to determine the thickness of the hypothesised dyke intruded in 1874 in the 

Askja system, the previous episode there was assumed to have occurred ca. 1450, 

an assumption based on the episodicity of spreading in the N V Z . This gives a dyke 

which is 8 m thick along much of its length, which is comparable to the thickness 

of the recent Krafla dyke complex. Five end-to-end, simultaneously-injected dykes 

were used, which had dyke thicknesses of 3 m, 6 m, 8 m , 6 m and 3 m. 

The horizontal deformation field predicts an expansion of the network during 1987— 

1992 as a result of this episode (Figure 7.14). A maximum displacement of 2 cm 
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is predicted wi th in a few tens of kilometres of the dyke. Motion decreases w i t h 

distance f rom the dyke and is very small at large distances. Points to the south 

and north of the dyke also experience l i t t l e motion. 

The vertical field (Figure 7.15) shows that most of the network experienced up l i f t 

as a result of the intrusion, except for points in the region of the dyke complex 

which underwent subsidence of up to 0.6 cm. The maximum upl i f t of about 0.8 cm 

occurred at distances of ~50 km on either side of the dyke. Vertical motion of the 

farthest points was ~0.4 cm, decreasing wi th increasing distance f rom the dyke. 

7.4.2.5 Recent, Large Earthquakes in the Tjornes Fracture Zone 

The deformation resulting f rom recent, large earthquakes in the TFZ also con­

tr ibuted to the 1987-1992 displacement field. The events in this region are pre­

dominantly right-lateral strike-slip. A l l events large enough, close enough or recent 

enough to significantly affect points of the GPS network were selected (Table 7.3). 

Their effects were modelled using a version of the elastic-viscoelastic modelling 

program adapted for strike-slip sources [T. T. Yu, pers. comm., 1995]. 

Table 7.3: Earthquakes greater than magnitude 6.0 in the Tjornes Fracture Zone and close to 

land, 1900-1992. Dates, epicentre locations, and magnitudes are from Tryggvason [1973] and 

Bjomsson et al. [1977]. 

Date ~ Epicentre Magnitude Fault length (km) Dislocation (m) 

J a n . 22 1910 N 6 6 . 5 ° W 1 7 . 0 0 7.1 50 2.0 

June 2 1934 N66.0 0 W 1 8 . 5 ° 6.3 25 0.5 

Mar. 28 1963 N 6 6 . 3 ° W 1 9 . 6 ° 7.0 50 2.0 

J a n . 13 1976 N 6 6 . 2 ° W 1 6 . 7 ° 6.3 20 0.5 

Estimates of the fault length and dislocation for each event were made (Table 7.3) 

using the relations M = 2/3 log M0 — 10.7 [Hanks and Kanamori, 1979], where M 

is the magnitude and M0 is the seismic moment (in dyne cm), and M 0 = fiAu [e.g., 

Aki and Richards, 1980], where fi is the rigidity, A is the area of fault slip, and u is 

the amount of slip. The T F Z is segmented on a scale of ~25 k m [Einarsson, 1991]. 

Assuming magnitude 6 and 7 events rupture one and two segments respectively this 

suggests fault lengths of about 25 k m and 50 km for these events. The estimates for 

the magnitude 6.3 events are supported by the length of the 1976 aftershock zone. 
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Figure 7.16: Same as Figure 7.10, except for recent, large earthquakes in the T F Z . The stars give 
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A l l events were assumed to rupture al l of the elastic layer. Hence, slip estimates of 

2 m and 0.5 m were obtained for the magnitude 7.0 and 6.3 events. 

A maximum horizontal displacement of 0.5 cm was predicted as a result of these 

events, occurring just north of the edge of the Vatnajokull icecap (Figure 7.16). 

The min imum displacement of ~0 .1 cm occurs closest to the TFZ. Motions are 

directed towards the TFZ. 

The vertical displacement field shows that a maximum subsidence of up to 0.04 m m 

occurred 1987-1992 in the vicini ty of the T F Z (Figure 7.17). Upl i f t occurred over 

most of the network, increasing w i t h distance f rom the T F Z , and reaching a max­

imum of about 0.16 m m in the south of the network. However, as can clearly be 

seen, vertical displacements resulting f rom recent, large earthquakes in the T F Z 

are negligible compared wi th the accuracy of GPS surveying. 

7.4.2.6 Activity in the Askja Magma Chamber 

Substantial, recent vertical motions are reported close to the Askja central vol­

cano (Section 2.5). Ini t ia l investigations of the probable effect on vertical motion 

there of the recent Krafla episode show that this cannot explain the vertical mo­

tions reported for 1987-1992, since an almost smoothly varying field is predicted 

(Figure 7.18). I t can therefore be concluded that deflation of the magma chamber 

probably did occur, and this effect must be included in. modelling the observed 

deformation field. A source depth of 2.8 k m and an average deflation of 4.8 cm/yr 

were assumed, as estimated by Rymer and Tryggvason [1993]. 

A simple Mogi point source is used here to predict the deformation field. This as­

sumes a small sphere wi th varying pressure (a point source) in an elastic halfspace. 

The horizontal, Ad, and vertical, Ah, displacements on the surface are [Mogi, 1958] 

M = C ( F T W ' ' ( 7- 2 ) 

where / is the depth to the point source, C is the source strength, and d is the 

horizontal (radial) distance at the surface f rom the point source. C is related to 

the vertical displacement above the point source, Aha, by C — A / i n / 2 . 
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Figure 7.18: Simulated vertical displacements 1987-1992 for an area centred around the Askja 

caldera due to the recent Kraf la dyke intrusion (see Section 7.4.3.1). The Askja caldera is situated 

at (17, -71) (corresponding to 65° 3.19'N, 16° 46.10'W) and the vertical motion is set to zero at 

this point. T h e Krafla caldera is positioned at x = y — 0. 

The simulated horizontal deformation field for the period 1987-1992 shows a radial 

pattern of motion, directed inwards towards the caldera (Figure 7.19). Only a very 

few points that are close to the caldera are significantly affected, w i th a maximum 

of 4.1 cm of displacement predicted. 

The vertical motion 1987-1992 wi th in the GPS network is shown in Figure 7.20. 

The ma jo r i t y of the network was unaffected. The point closest to the source sub­

sided by ~2.4 cm 1987-1992, and the subsidence is less than 0.1 cm at all other 

points. 

7.4.2.7 Activity in the Krafla Magma Chamber 

Data f r o m tiltmeters in the vicini ty of the Krafla caldera indicate substantial ver­

tical motion there 1987-1992 (Section 2.3.4, Table 2.3), interpreted as inflation 

and deflation of at least two magma chambers beneath Krafla [Tryggvason, 1994]. 

However, much of this t i l t is well modelled as viscoelastic relaxation resulting f rom 

the recent Kraf la episode, as wi l l be shown in Section 7.4.3.2. For this reason, 

act ivi ty in the Krafla magma chamber is not modelled at this stage. 
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Figure 7.19: Same as Figure 7.10, except for a point source located 2.8 k m deep at (17, -71) 

(corresponding to 65° 3.19'N, 16° 46.10'W), deflating at 4.8 cm/yr in an elastic halfspace. 
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Figure 7.20: Same as Figure 7.11, except for the deflation at 4.8 cm/yr of a 2.8 km deep source 

located at 65° 3.19'N, 16° 46.10'W in an elastic halfspace. 
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7.4.2.8 The Total Deformation Field Resulting From Historical Spread­
ing Episodes in the NVZ, Earthquakes in the T F Z , and Activity 
in the Askja Magma Chamber 

The total effect of the processes modelled in Sections 7.4.2.2 to 7.4.2.6 are shown 

in Figures 7.21 and 7.22. The horizontal deformation field is complicated wi th 

contraction of the network predicted across the Krafla volcanic system and expan­

sion across the Askja system (Figure 7.21). Predicted displacements decrease wi th 

distance f rom the r i f t zones. The maximum displacement is 4 cm, occurs close to 

the Askja caldera, and is mostly a result of the deflation of the magma chamber 

1987-1992. Apart f r o m this, the maximum displacements occur to the north of 

the Askja system and to the southeast of the Krafla system. A maximum motion 

of about 1.5 cm is expected there. The displacements shown are relative to the 

total model, and wi th in this framework, points east of the Askja system undergo 

negligible motion, as do points in the far south, west and east of the network. 

The vertical field shows that the maximum subsidence of 2.7 cm occurs in the vicin­

i ty of the Askja caldera (Figure 7.22). Apart f rom this, the maximum subsidence 

of 0.8 cm occurs wi th in the Askja volcanic system, and ~0.2 cm in the northwest 

of the network (in the T F Z ) . Up l i f t of 0.4 cm occurs in the Krafla volcanic sys­

tem. However, the major i ty of the vertical motion resulting f rom the processes and 

episodes in the T F Z and N V Z is very small. 

7.4.3 Movements Resulting From the Krafla Spreading 
Episode 

7.4.3.1 The Best-fit Model 

The effects of the episodes and processes modelled in Sections 7.4.2.2 to 7.4.2.6 

were subtracted f rom the observed horizontal and vertical deformation fields, and 

the residual fields modelled as viscoelastic relaxation following the recent Kraf la 

spreading episode. A large number of candidate models were tr ied, varying the 

viscosity and dyke thicknesses only. The best-fit model selected was the one that 

produced the min imum (in a least squares sense) differences between the predicted 

and observed displacements 1987-1992, the best-constrained epoch. Consistency 
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Figure 7.21: Same as Figure 7.10, except the total horizontal deformation field resulting from the 

processes dealt with in Sections 7.4.2.2 to 7.4.2.6 are shown. 
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Figure 7.22: Same as Figure 7.11, except the total vertical displacements resulting from the 

processes dealt with in Sections 7.4.2.2 to 7.4.2.6 is shown. Note that the scale is not linear 

throughout the whole range. 
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was maintained with previous estimates for the dyke thickness that were crudely 

based on the measured amount of expansion within the fissure swarm and the 

amount of motion outside of the fissure swarm [Tryggvason, 1984]. 

Four end-to-end, simultaneously-injected dykes were used to simulate the along-

strike variation in dyke thickness. In reality the dykes were injected over a period 

of about 10 years. Modelling the intrusions as such however, surprisingly produces 

negligible differences in the resultant deformation field for 1987-1992 when com­

pared with the simultaneously-injected case. From south to north dyke thicknesses 

of 4.5 m, 5.0 m, 4.5 m and 3.0 m were used, along with a viscosity of 1.1 x 10 1 8 Pa s. 

Al l other model parameters were identical to those given in Table 7.2. 

Figure 7.23 illustrates the fit of the model to the points in the profile zone (Fig­

ure 7.1). Up to 21 cm of expansion is predicted 1987-1990, decreasing to 9 cm 

further away (Figure 7.23a). The maximum displacement occurs at ~25 km from 

the rif t axis. The motion of the points to the west of the dyke are reasonably 

well fitted, but the model overestimates motion slightly to the east at intermediate 

distances. Continued expansion of the network is predicted 1990-1992, with up 

to 4 cm of motion within ~30 km of the r i f t , decreasing to 2 cm further away 

(Figure 7.23b). Motion to the west of the dyke and those of the furthest points 

are well simulated. However, within 15 km east of the dyke, the motion is signif­

icantly underestimated. A maximum expansion of 24 cm is predicted 1987-1992 

(Figure 7.23c), occurring at distances of ~40 km from the r i f t . Further away the 

motion decreases to ~12 cm. The observed displacements are well predicted by 

the model, although the observed maximum displacement occurs closer to the r i f t 

than is predicted. A reasonable fit to the far field is achieved, with motion under­

estimated by ~3 cm at distances of 100 km west of the r i f t . 

In plan view, the model predicts a quasi-radial horizontal displacement field, with 

motion outward from the dyke at all points for the periods 1987-1990, 1990-1992 

and 1987-1992 (Figure 7.24). The maximum motion occurs within a few tens of 

kilometres of the dyke, and decreases with distance beyond. Motion directly to the 

south of the dyke is considerably smaller than that on either side, and points in 

the far south of the network are predicted to experience 1-3 cm of motion 1987-

1992. xl is 3.8, 1.3 and 3.4 for the 1987-1990, 1990-1992, and 1987-1992 epochs 

respectively, xl's reduced to 3.2 for the 1987-1992 epoch if the three points with 

large residuals in the southeast of the network are neglected. For comparison, 
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Figure 7.23: Comparison of observed and best-fitting simulated horizontal displacements (a) 

1987-1990, (b) 1990-1992, and (c) 1987-1992 of points within the profile zone shown in Figure 

7.1. T h e effects of the processes dealt with in Sections 7.4.2.2-7.4.2.6 have been subtracted from 

the observed displacements. 
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Figure 7.24: Comparison of observed and best-fit simulated displacements (a) 1987-1990, (b) 

1990-1992, and (c) 1987-1992, The solid arrows represent the observed displacements, minus the 

effects of the processes dealt with in Sections 7.4.2.2-7.4.2.6, and the red arrows simulated. T h e 

position of the dyke complex and its dimensions are shown schematically. 
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Figure 7.25: T h e residual vectors remaining after subtracting the best-fit simulated displacements 

from those observed (a) 1987-1990, (b) 1990-1992, and (c) 1987-1992. 
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Figure 7.27: Same as Figure 7.23, except for the 1987-1992 vertical deformation field. 

the weighted variances of the observations (equation 7.1 for the case where the 

v?od = 0) are 12.6, 1.9, and 16.2 for the 1987-1990, 1990-1992, and 1987-1992 

epochs respectively. The model thus fits the observed displacements fairly well. 

The residual fields for the three epochs are shown in Figure 7.25. There are two 

significant areas of misfit. The first is close to the dyke complex, where motion is 

overestimated by up to ~5 cm. The second is in the far south and southeast of the 

network for the 1987-1992 epoch, where residuals of up to 7 cm remain. No other 

areas of systematic residuals, significant at the 2a level are evident. 

A maximum of 30 cm of expansion is predicted for 1986-1992, decreasing to 12 cm 
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Figure 7.28: (a) Observed vertical displacements minus the effects of the processes dealt with 

in Sections 7.4.2.2-7.4.2.6, and (b) simulated motions 1987-1992 as a result of the recent Krafla 

rifting episode, using the model t hat fits best the 1987-1992 horizontal field. 
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Figure 7.29: The residual vertical field for the epoch 1987-1992 after subtracting the best-fit 

simulated displacements from the observed. 

further away (Figure 7.26). The 1986-1992 epoch exhibits some scatter and large 

error bars as a result of the poor quality 1986 data, but the displacements are well 

simulated in general. 

Because of the larger errors in the vertical component of GPS surveying results, 

only the 1987-1992 epoch is modelled. Relative uplift of up to ~11 cm is predicted 

close to the rif t axis for this epoch (Figure 7.27). The uplift decreases to zero at 

about 20-40 km from the dyke complex. At greater distances relative uplift occurs 

and is ~4 cm at distances of ~100 km from the dyke. Of the points in the profile 

zone, only four out of seventeen do not fit the model to within 3<r, and all of these 

are within ~20 km of the dyke axis. 

The observed and predicted two-dimensional vertical fields are shown in Figure 7.28. 

The motion increases with distance from the r if t . Relative uplift of up to ~4 cm 

is predicted for most of the network. \l is 4.3, compared with a weighted variance 

of the data of 3.4. 

The poor statistical fit, and the residual vertical field (Figure 7.29) shows that 

substantial unexplained vertical motions still remain, in particular in the far south 
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Figure 7.30: Same as Figure 7.27, except for (a) 1987-1990, and (b) 1986-1992. 

of the network (up to 12 cm of subsidence), and in the vicinity of the dyke where 

uplift is underestimated by up to 8 cm. The fit is poorer to the east of the dyke 

than to the west. 

Relative uplift of ^8 cm of the points within the profile zone is predicted 1987— 

1990, decreasing to ~4 cm further away (Figure 7.30a). Considerable scatter is 

present in the data from this epoch. However, all but four of the twenty points fit 

the model to within 3a. Both \l a n d the weighted variance are 5.9. The 1986-1992 

data are poorer still, but again, most of the points fi t to within 3<r (Figure 7.30b). 
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7.4.3.2 Localised Tilt in the Neighbourhood of the Krafla Volcano 

Much of the ground t i l t in the vicinity of the Krafla magma chamber following the 

end of the dyking episode can be explained by vertical movements following the 

Krafla rifting episode. In order to fit these local, t i l t data the Krafla episode was 

modelled using six discrete dykes, injected over a five-year period, corresponding 

to the December 1975, October 1976, September 1977, January 1978, July 1978 

and March 1980 events. These had dyke thicknesses of 2.5 m, 1.2 m, 1.5 m, 1.2 m, 

2.4 m and 2.3 m, and lengths of 44 km, 23 km, 38 km, 34 km, 35 km and 34 km 

respectively [dimensions taken from Tryggvason, 1984]. The vertical motion was 

predicted for six, year-long intervals from 1986 to 1992 (Figure 7.31). A viscosity 

of 0.8 x 10 1 8 Pa s was required to match the observed t i l t data. 

In the vicinity of the Krafla caldera, uplift is predicted relative to a point 30 km to 

the southeast throughout the six-year interval, the magnitude of which decreases 

with time. However, within ± 5 km or so of the dyke axis, local subsidence is 

predicted 1989-1992, the rate of which increases with time. 

This model was used to calculate t i l t rates to the north and east from 1986 to 

1992 at eighteen tilt-station locations (Figure 7.32a). Good agreement between 

observed and simulated t i l t is found for many stations. For example, stations 0000 

and 0260 (Figure 7.32b), 0240 (Figure 7.32c), 0070 and 0050 (Figure 7.32d) show 

good agreement between the predicted and observed east-tilt data. The north t i l t 

component shows, in general, a larger signal. For the majority of these stations, 

i t is clear that there is good agreement after late 1988/early 1989, but significant 

differences 1986-1988. Stations 0090 (Figure 7.32b), 0240, 0210 (Figure 7.32c) and 

0070 (Figure 7.32d) are good examples. 

These results suggest that stress redistribution following the Krafla rifting episode 

can account for the observed t i l t data after late 1988/early 1989, but that prior to 

this time some other process was occurring, which caused t i l t in the area. Inflation 

of the Krafla magma chamber is a likely candidate process [Tryggvason, 1994]. A 

slightly different physical model from that used for the regional deformation field 

was required, which may indicate local variations in Earth structure in the vicinity 

of the spreading axis and variations in the dyke shape. 
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Figure 7.31: Predicted vertical motion within a 40 k m 2 area around the southern end of the 

intruded Kraf la dyke complex during six, year-long intervals from 1986 to 1992. The Kraf la 

caldera is situated at. x = y = 0. The position of the dyke complex is shown lightly shaded. 
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Figure 7.32: (a) Map of the Krafla area showing optical levelling tilt stations. The centre of 

the Kraf la caldera is located at x = y = 0. Observed ground tilt 1982-1992 and simulated tilt 

from Figure 7.31 are shown at six optical levelling stations at distances of (b) less than 5 km, (c) 

5-9 km, and (d) farther than 9 km from the centre of the caldera. The scale bar centre left gives 

the (variable) tilt scale. Increasing uplift is to the east (top curves) and north (bottom curves). 

The solid circles and open stars show the observed and simulated east tilt, and the open circles 

and solid stars show the observed and simulated north tilt. The observed tilt data and station 

locations are taken from Tryggvason [1994]. 
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7.4.4 Modelling of the Residual Motion 

7.4.4.1 Explanations for the Residual Motion 

After accounting for all the major known tectonic events in north Iceland, signifi­

cant residual motion remains in both the horizontal and the vertical deformation 

fields. The origins of the deformation are non-unique so it is not possible to de­

termine from the data where the tectonic activity originates that causes these 

residual motions. In this section the possible effects of known, minor activity that 

may provide an explanation are explored. Ongoing isostatic uplift due to melting 

of Vatnajokull is predicted to cause significant vertical motion around that icecap 

[Sigmundsson and Einarsson, 1992]. Recent seismic and eruptive activity in Bard-

abunga and Grimsvotn, and hypothetical, minor dyke intrusions in the Kverkfjoll, 

Askja, or Oraefajokull-Snaefell (Figure 1.1) volcanic systems may contribute hori­

zontal and vertical motion. 

7.4.4.2 Isostatic Uplift due to Recent Melting of Vatnajokull 

Sigmundsson and Einarsson [1992] modelled recent melting of the Vatnajokull ice­

cap (Section 2.2) and calculated the isostatic uplift rate as a function of distance 

from the centre of the icecap for 1975. A variety of values of asthenosphere viscosity 

and lithosphere thickness were used (Figure 7.33). These calculations are used to 

estimate vertical motion for the points of the GPS network 1987-1992 (Figures 7.34 

to 7.36). 

Using a viscosity of 1 x 10 1 8 Pa s, a maximum uplift of 18 cm is predicted for 

the points closest to the northern and southern edges of the icecap (Figure 7.34). 

Motions decrease with distance to reach zero at about 50 km from the perimeter 

of Vatnajokull. The majority of points in the network are unaffected by isostatic 

uplift according to this model. Horizontal motions as a result of glacial rebound are 

very small [F. Sigmundsson, pers. comm, 1995]. Predicted vertical displacement 

fields using viscosities of 1 x 10 1 9 Pa s and 1 x 10 2 0 Pa s are similar in shape but 

attenuated in amplitude (Figures 7.35 and 7.36). 

A comparison of Figures 7.29 and 7.34 clearly shows that the isostatic uplift model 

of Vatnajokull bears little resemblance to the residual vertical field. Only the 
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Figure 7.33: Calculated uplift rates for the year 1975 for three upper-mantle viscosities assuming a 

spherical icecap that experiences 11.4 cm/yr of thinning within the innermost 35 km of the icecap, 

23 cm/yr 35-47.5 km, and 57 cm/yr 47.5-52.5 km. T h e E a r t h was modelled as a Newtonian 

viscous fluid halfspace overlain by an elastic layer [Sigmundsson and Einarsson, 1992]. The 

elastic plate was assumed to be 10 k m thick. T h e black dots indicate the predicted uplift rates at 

the northern and southern ends of lake Langisjor, as determined by the Vatnajokull 1991 survey 

(Section 4.3.2), adapted from Sigmundsson and Einarsson [1992]. 
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Figure 7.34: Vertical displacements 1987-1992 of points of the G P S network as a result of isostatic 

adjustments in south Iceland following the removal of iceload during this century. Points more 

than 90 km from the centre of the assumed spherical icecap undergo no significant motion. The 

motion of points less than 90 km from the centre are estimated using Figure 7.33 for a viscosity 

of 1 x 1 0 1 8 P a s. T h e icecap centre is at N64.40 0 , W 1 6 . 6 8 ° [Sigmundsson and Einarsson, 1992]. 

As pointed out for Figure 7.4, linear interpolation between t he points is used, so the shape of the 

contour lines is not meaningful between single pairs of points. 
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Figure 7.36: Same as Figure 7.34, except a viscosity of 1 x 10 2 0 P a s was used. 
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residual motion at point Hofn (Figure 4.3) on the southeastern edge of Vatnajokull 

shows uplift of the magnitude predicted by this model relative to, say, intraplate 

points distal to the west and east. The residual field (Figure 7.29) shows a large 

relative subsidence of points to the south and west of the icecap, i.e., an apparent 

t i l t of the icecap up to the northeast, broadly consistent with the predicted effects 

of isostatic uplift. However, the general pattern of motion is not modelled by any 

of the viscosity choices used in Figures 7.34 to 7.36. 

7.4.4.3 Tectonic Activity in Bardabunga, Grimsvotn, Askja, Kverkfjoll 
and the Oraefajokull-Snaefell Flank Zone 

Although seismic activity in northwestern Vatnajokull was high 1974-1980, the 

earthquake magnitudes were all less than ~6 (Section 2.5). Modelling of earth­

quakes with similar magnitudes in the TFZ (Section 7.4.2.5) shows that such events 

have very little effect on the deformation field, and therefore cannot provide an 

explanation for the large residual horizontal field to the south and southeast of 

Vatnajokull (Figure 7.25). 

No direct evidence of dyke intrusion accompanying the 1983 eruption of the Grims­

votn volcano (Section 2.5) is reported. However, on the basis of the spatial distribu­

tion of earthquakes preceding the eruption, the intrusion of a small dyke may have 

accompanied this seismo-volcanic activity. A 10 km-long, 1 m-thick dyke, centred 

at N64.41°, W16.32° along azimuth N62°E is modelled here (Figure 7.37). Other 

model parameters used are identical to those given in Table 7.2. Such an intrusion 

can explain a maximum of 1.5 cm of the horizontal residual field 1987-1992, at 

point 158. The azimuths of the displacement vectors are broadly consistent with 

those of the residual field. However, the amplitudes of the residual motions are 

poorly modelled. 

The earthquake swarms that occurred close to the Askja volcanic system in 1982 

and 1983 [Einarsson, 1991] (Section 2.5) may have accompanied the injection of 

a small dyke. An intrusion 1 m-thick, 36 km-long and extending from 0.1 km to 

10 km depth is modelled. Such an intrusion predicts motion of about 5 cm at points 

158, 159 and 160 (Figure 7.38), and up to 2 cm at 157 and 161, closely resembling 

the residual field (Figure 7.29c). However, large motions are predicted close to the 

northern edge of the icecap which do not appear in the residual field. 
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Figure 7.37: Horizontal displacement field 1987-1992 from a hypothetical dyke accompanying the 

1983 Grimsvotn eruption. Motion is shown relative to point 128 to enable direct comparison with 

Figure 7.25c. Black bar indicates the modelled dyke. 
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Figure 7.38: Same as Figure 7.37, except for a hypothetical dyke accompanying the 1983 earth­

quake swarm close to the Askja volcanic system. 

199 



I . . . . I . - l - J 100 
1987-1992 

50 

0 

50 
(A 

S - 00 

05 150 

200 1985 Kverkfioll Event 
1 cm 

n r — i — i — T I I I r—r 

-150 -100 -50 0 50 100 150 200 
Rift-normal distance (km) 

Figure 7.39: Same as Figure 7.37, except for a speculative intrusion in the Kverkfjoll system in 

1985. 
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Figure 7.40: Same as Figure 7.37, except for a speculative intrusion in the Oraefajokull-Snasfell 

flank zone in 1983. 
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Although there is no supporting observational evidence, a speculative intrusion 

20 km-long and 1 m-thick in the Kverkfjoll system is modelled. The dyke is assumed 

to be centred at N64.85°, W16.29°, to strike along azimuth N30°E, and to have 

been intruded in 1985. The predicted motions do not model the residual field well 

(Figure 7.39) in amplitude, and the direction of motion predicted to the south 

and southeast of Vatnajokull is substantially different from that of the observed 

residuals. 

A speculative intrusion 36 km-long and 2 m-thick in the Oraefajokull-Snaefell flank 

zone is also modelled, extending from 2 to 10 km depth. The dyke is assumed 

to be centred at N64.38°, W16.29°, to strike along azimuth N53°E, and to have 

been intruded in 1984. The predicted displacements model the residual field well to 

the south of the icecap (Figure 7.40), both in amplitude and direction. However, 

significant displacements are predicted close to the northern edge of the icecap 

which are not present in the residual field (Figure 7.25). 

7.5 Summary 

For a model of continuous dyking at depth in an elastic halfspace, a range of dykes 

will fit the 1987-1992 deformation field, for example, a tall, thin dyke. Further 

improvement is doubtless possible i f the model is made more complicated, e.g., by 

combining several dykes, though this work is not pursued in this project. 

Motion 1987-1990 and 1990-1992 is simulated well using an elastic-viscous, stress-

diffusion model. However, the 1987-1992 epoch, with its improved signahnoise 

ratio, highlights that a more realistic geophysical model is required, in particular 

to explain the displacements of the more distant points. A good fit to the data is 

possible if previous events in the NVZ are taken into account, but unrealistically 

large dyke thicknesses are required for the preceding episode. 

For modelling using the elastic-viscoelastic approach, certain of the parameters 

were assumed known where good constraints on their values were available from 

other geophysical results. Dyke thicknesses for historic spreading episodes in the 

NVZ were chosen assuming that the average widening at all points along the r i f t is 

2 cm/yr. The 1618 Theistareykir, 1724-1729 Myvatn fires and 1874 Askja episodes 

were modelled, along with recent large events in the TFZ and activity in the Askja 
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magma chamber. A complicated deformation field was revealed. The effect of these 

events was subtracted from the observed displacement fields and the remaining 

motion modelled using viscoelastic relaxation following the recent Krafla rifting 

episode. A best-fit model, selected from a large suite of forward models, uses a 

viscosity of 1.1 x 10 1 8 Pa s. The only significant, horizontal unmodelled motion 

occurred in the vicinity of the dyke and in the far south of the network 1987-1992. 

The vertical deformation field is noisier because of the larger errors in the data, 

and more poorly modelled. This model also explains the localised t i l t observations 

1989-1992 in the vicinity of the Krafla caldera. However, prior to this time, the 

t i l t cannot be fully explained by this process and some other process was probably 

occurring, e.g., inflation of the Krafla magma chamber. The residual vertical mo­

tion provides no clear supporting evidence for isostatic uplift due to recent melting 

of Vatnajokull. Recent, tectonic activity in other volcanic systems is a possible 

explanation for the residual motion, and activity in the Oraefajokull-Snaefell flank 

zone appears to model the data best. 
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Chapter 8 

Discussion and Conclusions 

8.1 The G P S Results 

The 1991 GPS data were collected during a period of severe ionospheric distur­

bance, which resulted in problems in the data analysis. The average repeatability 

of the survey was ~ 1 cm in the horizontal and ~3 cm in the vertical. Typical 

scaled formal errors of ~0.5 cm were obtained in the horizontal and ~ 1 cm in the 

vertical. The repeatabilities and scaled formal errors are up to four times larger 

than those obtained from GPS surveys in southern California [Larson and Agnew, 

1991]. This is probably a result of the larger ionospheric variations and the poorer 

satellite configuration in the Iceland region compared to California. The north-

south repeatability was comparable to, and the east-west" better than, that of the 

Iceland 1987 survey, probably as a result of the improving satellite constellation and 

the shorter lines measured in 1991. The scaled formal errors of the 1991 solution 

indicate that the results were more accurate than earlier surveys in Iceland. 

The average repeatability of the 1992 survey was ~1.5 cm in the horizontal and 

~4 cm in the vertical. Typical scaled formal errors of ~ 1 cm were obtained in the 

horizontal and ~2 cm in the vertical. The north-south repeatability of the 1992 

survey was comparable to that of the 1987 survey, whilst the east-west repeatability 

was better. The repeatability of all three components of the 1992 survey were better 

than those from 1990. The 1992 scaled formal errors were comparable to those of 

the 1987 survey, but smaller than those from 1990. Thus, the 1992 results are of 

a comparable quality to the 1987 results, and of a higher quality than those from 

1990. The accuracy of the 1992 results should be typical of the accuracy of similar, 
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future GPS surveys in north Iceland since the full satellite constellation is now in 

operation, and sunspot activity is declining. 

The GEONAP and Bernese 1992 solutions agree well. Poorer agreement is obtained 

between the vertical components, and may be due to the different processing ap­

proaches, for example, to the use of different tropospheric models. The agreement 

is better for the 1992 results than that for the 1987 results, and considerably bet­

ter than those for 1990, indicating again that the 1992 results are of a comparable 

quality to the 1987 results, and of a higher quality than those from 1990. The 

good agreement between the results from different software packages also lends 

confidence that the GPS deformation results reflect the true crustal movements, 

and are not just errors. Such multiple measurements are important in this kind of 

crustal deformation work, where the ratio of the deformation signal to the noise is 

relatively low compared with other geophysical measurements, e.g., seismic record­

ings. 

8.2 Modelling of the Deformation Field in North 
and East Iceland 

8.2.1 The Continuous Dyking Model 

A reasonable f i t to the 1987-1992 data was achieved using the simple model of 

an 80 km-long, 1000 km-high dyke with an opening of 35 cm. Indeed, the value 

of xl indicates that the fit to the data was almost as good as that of the best-fit 

viscoelastic model. A statistically perfect fit using the continuous dyking model 

would certainly be possible if a complex of dykes of various dimensions, times and 

rates of intrusion were used and probably a large suite of possible combinations 

would be allowable. 

Proponents of the continuous-dyking model envisage a process as follows. At a 

spreading plate boundary, a large dyke intrusion at shallow depth will produce in­

creased extensional stress levels at its base, encouraging the upward leakage of 

magma, and resulting in continued, postevent dyking and surface deformation 

in the same sense as the coevent deformation. The strike-slip and normal fault 
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counterparts of this model have been widely applied to modelling regional motion 

around the San Andreas and other fault zones [e.g., Williams, 1995], and to mod­

elling accelerated, postseismic deformation. At divergent plate boundaries this is 

to a large extent an ad hoc approach, that is not based on independent, supporting 

data, and has limited ability to contribute to our understanding of the Earth, or 

our predictive capabilities. The Earth at depth is known from isostatic uplift to 

flow over long time periods, and the very high temperature gradients in Iceland 

suggest that low viscosity material occurs at relatively shallow depth. This argues 

against halfspace models, and in favour of models involving viscous flow. I t is 

possible, however, that, depending on the structure and tectonic setting, these two 

processes may both occur, either separately or simultaneously. 

8.2.2 The Stress Diffusion Model 

The best-fit values for the 1987-1990 one-dimensional analysis of the Bernese GPS 

results closely agree with those obtained by Foulger et al. [1992] using GEONAP 

results. These analyses yield a best-fit diffusivity of 1-2 m 2 /s and a half-dyke 

thickness of 1-1.5 m. Two-dimensional analysis of the Bernese results however, 

suggested a diffusivity an order of magnitude larger [Heki et al., 1993]. The stress 

diffusion model can explain most of the motion for the 1987-1990 and 1990-1992 

epochs. However, a significantly poorer-fit to the 1987-1992 results, the best-

constrained epoch, revealed the basic shortcomings of the model and showed that 

a more realistic, geophysical model was required. 

Analysis of the 1987-1990 results yielded viscosity estimates for the material be­

low the elastic layer of 0.3-2.0 x 10 1 8 Pa s (one-dimensional model) and 0.3-

2.0 x 10 1 9 Pa s (two-dimensional model) [Foulger et al., 1992; Heki et al, 1993]. 

These estimates were in broad agreement with the viscosity estimates of Sigmunds-

son [1991] and Sigmundsson and Einarsson [1992] of 1 x 10 1 8-5 x 10 1 9 Pa s from 

glacio-isostatic uplift rates (Section 2.2). The better-defined displacement field 

provided by the addition of the 1992 GPS results does not allow improvement of 

the viscosity estimate as the model is clearly inadequate. 

The stress diffusion model is highly idealised and contains many simplifying as­

sumptions, the most important of which is Newtonian behaviour of the viscous 

layer. This prevents any elastic response at the time of dyking, and results in the 
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overestimation of motion at later times [Heki et ai, 1993]. However, this simplistic 

model was adequate for the early observations, contributed greatly to our under­

standing of the underlying processes and pointed the way to the more advanced 

work using the viscoelastic model that is described in this thesis. 

8.2.3 The Viscoelastic Model 

8.2.3.1 The Effect of Early Events 

In order to enhance modelling of the recent Krafla rifting episode, the effects of his­

torical and current events in the NVZ and TFZ were first calculated and subtracted 

from the observed displacement field. These calculations are subject to consider­

able uncertainty because of the paucity of constraints of the event magnitudes. In 

addition, the effects of these early events are small in comparison with the effect 

of the recent Krafla episode. For this reason i t was of peripheral value to correct 

for these processes prior to modelling the Krafla episode, and indeed it could be 

argued that making such small and uncertain corrections is merely increasing the 

noise in the deformation field. However, the influence is small and studying these 

effects is very illustrative of the style and timescale of deformation following typical 

large events in Iceland. 

Tectonic events in other parts of Iceland were not accounted for, e.g., earthquakes 

in the SISZ where magnitude 7 sequences occur at intervals of 45-112 years, rifting 

episodes in the EVZ and WVZ, and the effects of several recent, volcanic eruptions, 

e.g., that of Hekla in 1991. However, comparable events in the TFZ and NVZ are 

causing such small displacements within the GPS network at the present time that 

the effects of events more distant in space or time or smaller in size are insignificant 

to the present analysis. 

8.2.3.2 The Krafla Dyking Episode 

8.2.3.2.1 Constraints on Rock Properties 

The layer densities were estimated from seismic velocities and a standard velocity-

density relationship for Iceland [Christensen and Wilkins, 19S2]. The variations 
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in seismic velocity, and uncertainty in the velocity-density relationship indicate 

that density variations and uncertainties of ~10% in both the layer and halfspace 

are expected. Previous results using a dip-slip source indicate that varying the 

layer and halfspace densities by 10-20% produces little difference in the predicted 

displacement fields [Rundle, 1981]. From this it is concluded that the density 

variations expected in Iceland will have little effect on the modelling results. 

Observed variations of Vp and the Vp/Vs ratio with depth indicate variations and 

uncertainties in the average elastic moduli of ~25%. Variations in ///, are most likely 

to affect the modelling results since it is this parameter that is varied with k in the 

introduction of time dependence into the problem (Section 6.4.6). / / / i is expected 

to vary in the range 3.2-4.6 x 10 1 0 Pa. Example calculations have shown that a 

variation of fih by a factor of 10 produces a change of ~50% in the amplitude of the 

displacement field (compare Figures 2 and 3, Hofton et al. [1995]). The expected 

variations in fi^ of ~22% in Iceland will thus not significantly affect the results of 

the present analysis. 

8.2.3.2.2 Constraints on Structure and the Dimensions of the Kraf la 

Dyke Complex 

Elastic Layer Thickness, H, Downdip Width, W, and W/H 

Inversion for parameters is not possible as the software is only set up for forward 

modelling. The sensitivity of the data to the input parameters can thus only be 

explored by studying suites of forward models. In order to illustrate clearly the 

effects of varying parameters, the f i t to the points within the profile zone shown in 

Figure 7.1 to various models is considered. 

The elastic layer thickness is constrained in the range ~8-12 km, if magnetotelluric 

evidence for a low resistivity layer at ~10 km depths, and seismological evidence 

on the depth extent of earthquakes is taken to indicate the thickness of the elastic 

layer in north Iceland. 

Estimates of the height of injected dykes based on the amount of surface widening 

and volume of injected lava that flowed out of the Krafla magma chamber are 

~2 km [Bjornsson, 1985]. However, lava of differing chemical composition erupted 

northerly in the fissure swarm, and estimates of ~8.5 km for the dyke heights 

from geodetic data modelling [Rubin, 1992] are strong evidence that the dykes 
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Figure 8.1: Comparison of observed and simulated horizontal displacements (a) 1987-1990, (b) 

1990-1992, and (c) 1987-1992 of points within the profile zone shown in Figure 7.1 for dykes 

extending completely (W = 10 km) (solid curves) and partially (W = 9 km, W = 2 km) (short-

dashed curves) through the elastic layer. All other model parameters are identical to those given 

in Table 7.2. The effect of the processes dealt with in Sections 7.4.2.2-7.4.2.6 have been subtracted 

from the observed displacements. 1<t error bars are shown. 
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Figure 8.2: Same as Figure 8.1, except for the 1987-1992 vertical deformation field. 

may have ruptured the entire elastic layer with the extra material required being 

injected from greater depths [Bjornsson, 1985]. Evidence for large dyke heights 

is available for only some intrusion events however, which may indicate that only 

some events ruptured the entire elastic layer. Very short dykes can simulate well the 

displacements within ~20 km of the r i f t , but the more distant points are poorly 

simulated, with motion underestimated by many centimetres for the 1987-1992 

epoch (Figure 8.1). Vertical subsidence is predicted in the vicinity of the dyke in 

the cases of dykes that do not rupture the entire elastic layer (Figure 8.2). These 

factors, in particular the vertical observations, are strong evidence that the dyke 

complex ruptured to the bottom of the elastic layer. 

Within the range~8-12 km, the best-fit value for the elastic layer thickness was found 

to lie in the range 10-12 km (Figure 8.3). Decreasing the elastic layer thickness 

increases the amplitude of the displacements of the near-dyke points relative to the 

more distant points (Figure 8.4). However, the shape of the predicted deformation 

profile is fairly insensitive to variations in H of a few kilometres. 

In the case of the vertical field, as H increases, the amplitude of subsidence on 

either side of the dyke decreases, and larger values of H produce a better fit to 

the observations (Figures 8.3 and 8.5). For the cases studied here, a value of H 

of 30 km fit the vertical field best. The results from modelling the horizontal and 

vertical deformation fields are thus very different. 

A likely explanation for some of the difference between the predictions of the hori­

zontal and vertical fields is that the vertical field is significantly affected by move-
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Figure 8.3: Variation of reduced x2 (equation 7.1) with elastic layer thickness for the epochs 

1987-1992, 1987-1990 and 1990-1992. The thin, solid curve shows the variation of \l in the 

vertical for 1987-1992. 

merits on high-angle normal faults. Rubin [1992] modelled geodetic data from the 

Krafla rift ing episode and found that a single vertical dyke and two normal faults 

dipping towards the dyke at 70° best matched the observed data. However, the 

suggested faults significantly affected displacements only within ~4 km of the dyke, 

and were able to explain only 80% of the observed vertical displacements [Rubin, 

1992]. Fault constitutive behaviour and geometry were deemed unlikely to explain 

the remaining, unmodelled motion, and led Rubin [1992] to question the model 

assumptions of elasticity, homogeneity and isotropy. Modelling the postseismic 

transients from fault movements may be able to explain the residuals found here 

in the vicinity of the dyke axis. 

The fi t to the east of the dyke is poorer than that to the west, and there is asym­

metry in both the horizontal and vertical deformation fields. This could result 

from an asymmetric Earth structure about the rif t zone in north Iceland, with 

a thicker elastic layer to the east of the r i f t . Such asymmetry is to be expected 

as a result of the successive eastwards ridge jumps in north Iceland over the past 

7 Ma (Section 1.4.3). However, it is fair to say that the dyke model that fits the 

horizontal field best provides only a broad, qualitative fit to the vertical field, and 

that investigating the reasons for this is an important area of future research. 
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Figure 8.4: Same as Figure 8.1, except the effect of varying the elastic layer thickness (H) is 

shown. Values of H of 6, 8, 10, 12 and 30 km were used. The dyke complex is assumed to rupture 

the entire elastic layer. 
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Figure 8.5: Same as Figure 8.4, except for the 1987-1992 vertical deformation field. 

Depth, D, to the Top of the Dyke 

Prior to 1980, deflation of the Krafla magma chamber was accompanied by injection 

of magma into the fissure swarm to form dykes, and very little lava was erupted onto 

the surface. Inverse modelling of geodetic data collected 1975-1980 encompassing 

~14 dyke emplacement events indicated depths to the dyke top in the range 1.25-

1.5 km [Rubin, 1992]. Although surface Assuring accompanied all the events, this 

evidence suggests that the dykes may not all have extended to the surface. 

Compared with a dyke that reaches the surface, one that terminates at a depth of 

1 km has little effect on the predicted displacements further than 50 km from the 

rif t (Figure 8.6). Within ~5 km of the r i f t , however, contraction of the network is 

predicted for all epochs. At intermediate distances expansion is predicted, but with 

a significantly smaller amplitude than that observed, and less than that predicted 

for a dyke that reaches the surface. The predictions for the 1990-1992 epoch are 

particularly poor. 

The data thus favour a dyke complex that extends to the surface. This conclusion 

is supported by the fact that after 1980 surface lava flows accompanied most of 

the dyke injections and smaller amounts of rift-widening were observed than in the 

earlier events [Tryggvason, 1984]. An explanation for the results of Rubin [1992] 

may be that some early, individual member dykes of the complex may not have 

reached the surface, but that later dykes took up proportionally more motion at 

the surface. 
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Figure 8.6: Same as Figure 8.1 for H = 10 km, except for a dyke with its top at 1 km depth and 

a downdip width of 9 km (dashed curves). The solid curves indicate the predicted displacements 

for the same dyke extending to the surface. 
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Dyke Length, AL 

A total length of 82 km was assumed for the Krafla dyke complex, consistent with 

the best estimates for the length of the activated fissure swarm of 80-90 km, as 

indicated by seismicity and opening of new ground fissures [Tryggvason, 1984]. 

Example calculations show that decreasing AL by 50% decreases the displacement 

amplitudes by about a third (Figure 6.9). The error arising from an uncertainty of 

about 10% is thus relatively small, but would have most effect on the form of the 

deformation field near the ends of the dykes. 

Dyke Dip, 0 

A vertical dyke was assumed in this analysis. However, dyke dips are observed in 

the field to vary by ~5° [Gudmundsson, 1984] and the possible effect of such a dip 

on the Krafla dyke complex was explored. Extreme end-member cases of dykes 

dipping at 80° to the east and 80° to the west (-80°) are shown in Figure 8.7. The 

dominant effect of altering the dyke dip by such a small amount is to shift the 

predicted displacement profile up or down. No improvement in the fit is obtained 

over a vertical dyke, and the asymmetry in the observed displacement field cannot 

be explained by this means. 

Dyke Thickness, U 

The best set of dyke-thickness estimates for the Krafla spreading episode were 

presented by Tryggvason [1984] (Figure 2.8). These were based on observations of 

widening between benchmarks on either side of the fissure zone, crudely corrected 

for contraction of the flanks by assuming an average contraction of 200 mm/km 

between the fissures, perpendicular to the strike of the fissure swarm. Because of 

this latter approach, the estimates of Tryggvason [1984] may be considered to be 

upper-bound thicknesses. 

Distance measurements from prior to the start of the dyking episode were only 

available in the region between 13 km north and 12 km south of the centre of the 

Krafla caldera. Outside this zone distance measurements were made infrequently, 

and only after the episode had started, thus, "high" and "low" estimates are pre­

sented for the width of surface opening in this region (Figure 2.8) [ Tryggvason, 

1984]. From 18-5 km south of the caldera a net thickness, averaged over its length, 

of ~4.5 m was estimated. From 5 km south to 20 km north a thickness of ~7.5 m 
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Figure 8.7: Same as Figure 8.1 for H = 10 km, except for a dyke dipping at 80° to the east (short-

dashed curves) and 80° to the west (-80°) (long-dashed curves). The vertical case is included for 

comparison (solid curves). 
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was similarly obtained. Further north high and low estimates are given. These are 

5 m and 7 m respectively from 20-35 km north of the caldera, and 3 m and 5 m 

from 35-64 km (Figure 2.8). 

The dyke thickness is likely to vary with depth, for example, an elliptical shape 

may more accurately reflect the true shape of the injected dykes [A. Rubin, pers. 

comm., 1995]. In addition, if the dykes did not extend to the surface then surface 

widening is expected to be less than the maximum dyke thickness [A. Rubin, pers. 

comm., 1995] which would lead to an underestimate of dyke thickness. However, 

the modelling described above suggests that this is not the case so the extreme, 

possible thicknesses for the intruded dykes are not likely to exceed the published 

estimates of Tryggvason [1984]. 

The best-fit dyke thicknesses found in this analysis were 4.5 m, 5.0 m, 4.5 m and 

3.0 m from 18-5 km south, 5 km south to 20 km north, 20-35 km north and 35-

64 km north of the caldera centre respectively. These are consistent with the lower 

end of the estimates of Tryggvason [1984]. Trade-offs between the dyke thicknesses 

and other model parameters do occur, for example, between H and rj. If the elastic 

layer were thicker, or the viscosity smaller, then larger dyke thicknesses are required 

to compensate for the effect of these variations on the predicted displacement fields. 

Variations in the model dyke thicknesses of up to ~30%, and corresponding varia­

tion of other model parameters are possible before serious degradation of the fit to 

the data occurs. 

Viscosity, n 

A summary of the existing estimates for the viscosity beneath Iceland is given in 

Table 8.1. These were obtained from glacio-isostatic modelling [Sigmundsson, 1991; 

Sigmundsson and Einarsson, 1992], and from one- and two-dimensional elastic-

viscous modelling of the deformation field in north Iceland [Foulger et ai, 1992; 

Heki et ai, 1993]. The range in these estimates is 0.3-50 x 10 1 8 Pa s. 

Spatial variations in the viscosity are expected, for example, locally beneath Krafla, 

and within and outside of the rif t zone. This was highlighted by the analysis of the 

1987-1990 displacement field using the elastic-viscous model (Section 2.3.4) and 

the modelling of the localised t i l t in the neighbourhood of Krafla (Section 7.4.3.2) 

A maximum viscosity of 1.2 x 10 1 8 Pa s is consistent with plausible dyke thicknesses 
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Figure 8.8: Same as Figure 8.1 for H = W — 10 km, except for a suite of different viscosities, xl 

is 3.2, 2.0, and 4.2 when TJ=0.98 X 1 0 1 8 P a s, and 5.5, 1.3, and 5.6 when r/=1.2 x 1 0 1 8 P a s for 

the 1987-1990, 1990-1992, and 1987-1992 epochs respectively. 
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Table 8.1: Viscosity estimates beneath Iceland, inferred from previous geophysical studies. 

Viscosity estimate (x 10 1 8 Pa s) Reference 

1-50 
10 Sigmundsson [1991] 

Sigmundsson and Einarsson [1992] 

0.3-2 
3-20 

Foulger et al. [1992] 
Heki et al. [1992] 
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Figure 8.9: Same as Figure 8.8, except for the 1987-1992 vertical deformation field, xl is 4.5 and 

4.3 when f?=0.98 x 10 1 8 P a s and 1.2 x 1 0 1 8 P a s respectively. 

(Figure 8.8). If higher values are assumed then displacements are significantly 

overestimated. A minimum viscosity of 0.98 x 10 1 8 Pa s is possible, and a viscosity 

of 0.95 x 10 1 8 Pa s produces contraction within ~30 km of the dyke, at odds with 

the observations. The best-fit viscosity was 1.1 x 10 1 8 Pa s together with the 

best-fit dyke thicknesses given above. Radically different viscosities, for example, 

90 x 10 1 8 Pa s fi t poorly the displacements at large distances (Figure 8.8) and in the 

vertical (Figure 8.9). Varying the dyke thicknesses between the extreme values of 

Tryggvason [1984] was found to require viscosities in the range 1.0 ± 0.1 x 10 1 8 Pa s. 

Asthenosphere viscosity estimates using data from postglacial rebound studies in 

Canada and Fennoscandia are in the range 10 1 9-10 2 1 Pa s [e.g., Peltier, 1986; Of­

ficer et al., 1988]. Evidence was also found for a zone of relatively-low viscosity 

(4 x 10 1 9 Pa s) in the upper asthenosphere [Cathles, 1975]. The viscosity predicted 

beneath Iceland is exceptionally low on a global scale and is probably a consequence 

of the Icelandic hotspot and the mid-ocean ridge [Sigmundsson, 1991]. Hot mantle 
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material beneath Iceland would cause low viscosity, a property which may charac­

terise all mid-ocean ridges and hotspots. The contributions of the hotspot and the 

ridge are not separable, but the two would be expected to reinforce one-another. 

Hotspots and plate boundaries are probably major contributors to lateral viscosity 

variations in the Earth. 

8.2.3.2.3 Dyking Extending Partially Through the Elastic Layer 

If the dykes did not rupture entirely to the base of the elastic layer, then there is 

a shortfall of motion predicted at large distances, and an additional process must 

be invoked to account for that motion. It has been proposed that large events 

in the upper lithosphere induce elevated stress levels in the lower lithosphere and 

asthenosphere, inducing postevent continuation of motion in the same sense as the 

coevent motion, along with relaxation in the asthenosphere. Such a process has 

been used to model motion in thrust zones, where coseismic faulting may be con­

fined to the upper part of the elastic plate only. This causes the load supported 

by the lower part of the lithospheric plate boundary to be gradually transferred 

back to the shallow, locked segment of the boundary, effecting the strain buildup 

for a subsequent event [Thatcher and Rundle, 1979]. Such a model is a combina­

tion of the viscoelastic and "continued slip" approaches. The equivalent process 

for a spreading plate boundary is continuous dyking, in which rifting episodes only 

rupture the shallow part of the elastic layer. Continuous, steady dyking is ques­

tionable physically. However, it may occur as short, frequent dyke intrusions at 

depth, rather than "continuous" dyking. 

This process was modelled using the approach of Savage and Prescott [1978]. I t 

has previously been applied to strike-slip regimes [e.g., Thatcher, 1983], and the 

extension to dyking is an easy one. The ful l displacement solution is given by the 

sum of the steady and transient components. The steady motion is considered 

to result from the long-term forces that drive the plates (making no assumptions 

about their origins), and the transient motion from repeated events that partially 

rif t the lithosphere all along the plate boundary. 

The total motion between dyking events (the interdyking motion) is given by the 

summation of: (1) uniform block motion (of the two plates), (2) the response 

of the elastic layer to steady, shallow "backslip" (i.e., "locking" the boundary at 

the location of the impending event), (3) the viscous response to (2), and (4) the 
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(a) uniform block motion (b) "backslip" response 
(elastic) 

(c) viscous response 
to "backslip" 

a E 
=5 g 

0 
distance normal to dyke 

Figure 8.10: Schematic representation of the three components that comprise the steady motion 

representing the long-term forces that drive the plates, (a) uniform block motion, (b) the response 

of the elastic layer to steady, shallow "backslip", and (c) the viscous response to (b). 

viscoelastic response to past, periodic dyke injections [e.g., Thatcher, 1983]. The 

first three components supply a steady, uniform component of motion, and the 

fourth a transient, time-dependent part. Once the transient motion has damped 

out, all that remains is the steady contribution. 

(1) is modelled as a simple step function, and represents the motion of two plates 

freely diverging at a constant rate (Figure 8.10a). Component (2) (Figure 8.10b) 

is included in order to "lock" the two plates together down to some (prescribed) 

depth, and is easily modelled using, for example, the formulae of Okada [1985] 

(Section 6.2). The sum of contributions (1) and (2) is the elastic response to con­

tinuous, steady dyking below some depth, and is identical to the process modelled 

in Section 7.2. Component (3) is added to account for the behaviour of a viscoelas­

tic halfspace at depth. This is computed using a previous result of Thatcher [1983] 

who determined that the steady-state, viscoelastic response to fault slip occurring 

at a uniform rate is identical to the t = oo response to a step offset at t = 0 

[Thatcher, 1983]. Applying this result to dyking, the t = oo response of the elastic-

viscoelastic model is required to compute component (3) (Figure 8.10c). If dyking 

does not extend all the way through the elastic layer, and crustal spreading occurs 

slowly and "continuously" in the lower part of the lithosphere, this method is a 

consistent approach to modelling plate separation. When W/H — 1 the t = oo re­

sponse is identical in magnitude but opposite in sign to the codyking response, and 

thus, in this case all that remains is contribution (4). This result only applies to 

infinitely-long dykes. An identical result is found for the strike-slip case [Thatcher, 

1983]. 
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As highlighted above, the horizontal displacement field in north Iceland is insen­

sitive to either this kind of model or one of the two end-member models. The 

vertical field, however, although suffering from considerably greater noise than the 

horizontal field, does appear to definitely indicate uplift over the dyke. Al l models 

involving continuous dyking, whether partial or complete, would cause subsidence 

in the r i f t zone. Future surveys that improve the accuracy of the vertical field will 

be able to convincingly distinguish between these two processes, which has never 

before been done. 

8.2.3.3 Explanation for the Residual Field 

8.2.3.3.1 Isostatic Uplift of Vatnajokull 

Although significant, unexplained vertical motion is observed around Vatnajokull 

1987-1992, i t fits very poorly a model of isostatic uplift centred on the present 

icecap (Section 7.4.4.2). The general pattern of vertical motion is one of systematic 

regional t i l t up towards the north-northeast. Observational evidence for glacio-

isostatic uplift around Vatnajokull comes from two sources. First, the strandlines of 

Lake Langisjor (Figure 4.3) indicate ti l t upwards towards Vatnajokull [Sigmundsson 

and Einarsson, 1992]. Second, uplift close to Vatnajokull was suspected from 

recent shallowing of the harbour at Hofn [P. Einarsson, pers. comm., 1991]. It 

is interesting to note that both of these effects are confirmed by the GPS results, 

which also agree with the estimates of rate of motion to within a factor of about 

2. However, the overall spatial pattern of motion is highly inconsistent with the 

model. 

The 1987-1992 vertical displacement field obtained using the GEONAP software 

[Wubbena, 1989] reveals a very similar deformation pattern to that obtained using 

the Bernese results (compare Figures 7.28a and 8.11). This confirms that the 

vertical motions calculated are not an artifact of the Bernese processing method. 

The variation of vertical velocity with distance from the proposed model icecap 

centre is shown in Figure 8.12a. Points further than 90 km from the centre are 

not included in the figure. The la errors are at the 0.5 cm/yr level, and very little 

similarity to the predicted glacio-isostatic uplift fields for the three different upper-

mantle viscosities shown is evident (Figure 8.12b). Future remeasurement of the 
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Figure 8.11: The observed vertical field for the epoch 1987-1992 obtained from the G E O N A P 

results. ( G E O N A P data kindly provided by C.-H. John and C. Volksen, University of Hannover). 

GPS points in this area to improve the accuracy of the vertical velocity field will 

be important in confirming or otherwise these findings and clarifying the vertical 

deformation field further. 

Errors of ~ 1 cm were obtained for the vertical component of the 1991 GPS re* 

suits. Assuming similar errors will characterise a future survey of that network, a 

combined vertical positional error of about \ / l 2 + l 2 = 1.4 cm will result for the 

interim displacement field. The deformation rate predicted by the isostatic uplift 

model across the network is ~ 1 cm/yr. In order for such deformation, significant 

at the 3cr level, to be detected, remeasurement of the 1991 network should be con­

ducted ~5 years after the first epoch (in 1996). Observations at points 158 and 

159 (Figure 7.1) for the period 1987-1992 suggest up to ~2.5 cm/yr of differential 

motion across the 1991 network. In that case, significant deformation at the 3<r 

level might be detected after only ~2 years, and the points in the 1991 network 

would gainfully be included in the forthcoming 1995 GPS survey of north Iceland. 
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8.2.3.3.2 Modelling of Other, Minor Events 

Candidate intrusions in Grimsvotn, the Askja and Kverkfjoll volcanic systems and 

the Oraefajokull-Snrefell flank zone were modelled in an attempt to explain the 

residual field. None of these models were completely successful, and the latter two 

are unsupported by any observations of seismic or volcanic activity. Activity in the 

Oraefajokull-Snaefell zone can explain the orientations of the residual vectors, and 

2 m of widening at a depth of 2-10 km in 1983 can match the amplitude of the 

residuals. Deeper dykes at this location would produce the required orientations, 

but then larger dyke thicknesses would be required. Later dyking would reduce 

the required dyke thickness. Such a model, however, predicts displacements of a 

comparable magnitude both southeast and north of Vatnajokull, but these latter 

are not observed. 

An intrusion on this scale and at this shallow depth is unlikely to have gone unde­

tected and a deeper intrusion may be more likely. There is evidence that magmas 

erupted in this region come from 10-15 km depth [V. Hards, pers. comm., 1995], 

suggesting the absence of a shallow crustal magma chamber similar to the one 

beneath the Krafla volcanic system. Lateral dyking may thus not occur in this 

zone, in keeping with the lack of extensional features. A deep intrusion may also 

represent slow processes in the viscoelastic layer such as magma rising from large 

depths to replenish material in the subcrustal layer of partial melt. 

8.2.3.3.3 Other Factors 

The addition of the better-constrained 1987-1992 epoch has highlighted an ap­

parent asymmetry in the displacement field, easily seen in the profile view. The 

displacement of the furthest points is ~6 cm less than the peak displacement east 

of the r i f t , but only ~2 cm less than the peak on the west (see, for example, Fig­

ure 5.16c). This is also evident in the 1987-1990 displacement field, when more 

points closer to the rif t were occupied. This asymmetry in the displacement field 

may indicate asymmetry of the crustal structure, since the variation of other factors, 

for example, downdip dyke width and dip, cannot produce the required asymmetry 

in the deformation pattern. 

Lateral variations in the viscosity clearly occur, and this could also provide an 

explanation for the observed asymmetry, and the residual vectors. Modelling of 

the ti l t data in the vicinity of the Krafla caldera suggested a lower viscosity in this 
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region, and may indicate lower viscosities in general beneath the spreading plate 

boundary. 

Inversion for best-fit parameters is not possible since the software is only set up for 

forward modelling. With the currently-available data set inversion might not be 

able to resolve the parameters of interest very well anyway, since different models 

can produce similar effects, e.g. elastic layer thickness and viscosity. 

8.2.3.4 Spreading in North Iceland 

The predictions of the viscoelastic model (Figure 6.13) reveal a somewhat surpris­

ing result, that is that the direction of motion reverses, possibly more than once, 

following a large event. This could result in very different processes occurring 

throughout the rifting cycle, perhaps even compressional tectonic events at certain 

times. This result is illustrated by the model predictions for the historical events in 

the NVZ and TFZ. Predicted displacements following the 1618 Theistareykir and 

the 1724-1729 Myvatn fires episodes indicate contractions of the GPS network for 

the period 1987-1992, whilst the more recent 1874 Askja episode is contributing 

a network expansion. In the light of these findings, the terrestrial surveying re­

sults of 1965-1971 across the Krafla fissure swarm, which indicated up to 50 cm of 

contraction (Section 2.3.2), seem less unlikely than was previously thought. The 

amplitudes of these motions, however, are not well modelled, and localised mag-

matic activity (e.g., predyking inflation of the Krafia magma chamber) or surveying 

errors remain more likely explanations. 

A relaxation time of ~1.7 years is indicated for north Iceland by the best-fit model. 

An episode recurrence time of 100-150 years [Bjornsson, 1985] thus implies that the 

predictions of Figure 6.16 can be used to approximate spreading in north Iceland. 

The true picture is more complex than Figure 6.16 indicates, as real dykes are 

not infinite and deformation resulting from en echelon, finite dykes will interfere. 

However, some general deductions may be drawn. 

Near the boundary variable deformation rates occur, and alternate periods of areal 

expansion and contraction occur before a relatively stable era begins and continues 

until the onset of the next episode. Accelerated deformation is expected to last 

~46 years (27r a) following an episode. Far from the boundary episodic motion is 



still detectable, with high deformation rates expected for ~24 years (14T„) after 

the event, after which little deformation occurs. Continuous, steady motion is not 

observed within 210 km of the plate boundary. 

If continuous plate motion is to occur within about 200 km of the plate boundary 

then the recurrence time must be of the order of 15T„ (Figure 6.13). In north Iceland 

this implies a recurrence time of ~15 x 1.7 years, i.e., ~25 years, much shorter than 

the actual recurrence interval. To achieve a recurrence time within the accepted 

range, a relaxation time of 6.7-10 years is required, corresponding to a viscosity 

of 4.3 x 1018-6.5 x 10 1 8 Pa s. If the viscosity beneath Iceland is 1.1 x 10 1 8 Pa s, 

as determined for the best-fit model here, then the "plate boundary zone", i.e., 

the zone within which motion is significantly episodic, must be considerably more 

than 350 km wide - the maximum extent of land that flanks the plate boundary in 

Iceland. This implies that "continuous plate motion" as predicted by models such 

as the NUVEL-1A model, may not be observable in Iceland. 

Evidence for continuous motion is available from trans-Atlantic V L B I measure­

ments over the last 10 years [Carter and Robertson, 1989]. The variations in length 

of those lines is very smooth, as would be expected for lines several thousand 

kilometres long between the plate interiors, and there is no evidence for irregular 

plate movements [Heki et ah, 1993]. Such distances are out of range for prediction 

using the elastic-viscoelastic model, since the assumptions, boundary conditions, 

and mathematical methodology inherent in the model cause increasing inaccuracies 

with distance. 

8.2.3.5 Tectonic Implications 

8.2.3.5.1 Deformation in the Krafla Caldera 

Postdyking stress redistribution appears to be able to explain t i l t in the Krafla area 

since 1988/1989. The t i l t measurements were previously interpreted as continued 

activity in the Krafla magma chamber, or in some deeper chamber [Tryggvason, 

1994]. The current analysis indicates that the magma chamber may have become 

inactive in 1988/1989. A few centimetres of uplift near to Krafla may thus have 

occurred between the 1987 GPS survey and 1988/1989 and should be taken into 

account in future modelling. 
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Stress redistribution following a large volcano-tectonic event may lead volcanolo-

gists to believe that volcanic hazard is greater than it really is. This is because 

transient viscoelastic motion may cause surface deformations that resemble, and 

are mistakenly interpreted as, indicating magma-chamber activity. In future, after 

volcanic activity, this stress redistribution should be taken into account before con­

cluding that a volcano continues to be active long after eruptive/intrusive activity 

is over. This work may be applied, for example, to Long Valley caldera, California, 

Mount St. Helens, Oregon, and the Phlegrean Fields, Italy. 

8.2.3.5.2 Deformation in the Askja Volcanic System 

An analysis of a subset of fifteen of the GPS points occupied 1987-1990 in the Askja 

region was used by Camitz et al. [1995] to infer the existence of a 30-45 km-wide 

plate boundary zone in the Askja volcanic system, beyond which points move at 

the ful l spreading rate. This work however, shows that all of the displacement in 

the region (at better than the 2a level) can be explained as viscoelastic relaxation 

following the recent Krafla rifting episode (Figure 8.13). 
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Figure 8.13: Observed and predicted displacements of points within the A s k j a region 1987-

1990 in the direction N 1 0 6 ° E (the N U V E L - 1 spreading direction) against distance. The effects 

of the processes dealt with in Sections 7.4.2.2-7.4.2.6 have been subtracted from the observed 

displacements, la error bars are shown. T h e shaded region highlights the width of the plate 

boundary zone and the solid, straight line represents the plate rate inferred by Camitz et al. 

[1995] using the same G P S results. 
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These two interpretations of the motion around Askja represent physical and kine­

matic modelling approaches. The kinematic approach is purely a method of describ­

ing many velocity observations in greatly summarised form and has been shown 

by geological studies to be appropriate for motion over very long (geologic) times, 

and by V L B I and SLR measurements to describe well the relative motion between 

the distant plate interiors. The work of this thesis shows that such an approach 

is inappropriate to closely-spaced points in plate boundary zones, in as much as it 

may fi t the deformation field poorly and has no predictive powers. The results from 

the Askja system 1987-1990 demonstrate that motion that coincidentally agrees 

with the average plate rates may be observed at certain places and times in the 

spreading cycle. The results from the Krafla system demonstrate that motion may 

deviate radically from these rates. 

8.2.3.5.3 Implications for Deformation Elsewhere in Iceland 

The best-fit model of the Krafla rifting episode was used to predict motion from 

this source in the TFZ, EVZ, WVZ, and SISZ 1987-1992 (Figure 8.14). The dis­

placements in each region are shown relative to an arbitrary point approximately 

in the centre of the simulated area. Profiles normal to the plate boundaries in these 

areas are shown in Figure 8.15. The TFZ was affected most by the recent rift ing 

episode since it is closest. However, substantial displacements also occurred in the 

EVZ. The WVZ and the SISZ were also affected but to a much lesser degree than 

the EVZ. Very little motion is predicted in the Reykjanes Peninsula. 

Approximately 1 cm/yr of motion is predicted across the TFZ 1987-1992 (Fig­

ure 8.15a). In the EVZ ~0.24 cm/yr of motion is predicted (Figure 8.15b), de­

creasing to ~0.12 cm/yr across the WVZ (Figure 8.15c) and about 0.1 cm/yr is 

predicted in the direction N105°E, parallel to the SISZ as a whole (Figure 8.15d). 

However, the major strike-slip faults in the SISZ are orientated north-south and 

only about 0.01 cm/yr is predicted in this direction (Figure 8.16). 

GPS surveying across the SISZ 1986-1992 revealed 8.1 cm of displacement in the di­

rection N104°E, i.e., much larger than that predicted from the recent Krafla rifting 

episode. A series of magnitude 6.5 to 7.5 earthquakes occurred in this zone between 

1896 and 1912 and residual motion from these events may account for most of the 

motion. Sigmundsson et al. [1995] interpreted the measurements as indicating the 

accumulation of left-lateral shear strain across the SISZ, a result of relative motion 
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Figure 8.14: Predicted displacements 1987-1992 in Askja , the T F Z , E V Z , W V Z , SISZ and on 

the Reykjanes Peninsula as a result of the recent Kraf la rifting episode. Model parameters are 

identical to those used in the best-fit model of the Kraf la episode. The Krafla dyke is shown 

shaded and outlined in black, with the caldera positioned at x = y = 0. The outer boundary 

of the neovolcanic zone is shown by the dashed line. The zones used to calculate the profile 

velocities shown in Figure 8.15 are shaded. The zone used to calculate the profile velocities 

shown in Figure 8.16 are shaded and outlined in black. These zones were chosen to cross the 

plate boundary locally at right angles at each location. The scale vector lower right gives the 

displacement in centimetres. 
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Figure 8.16: Same as Figure 8.15, except for the points within a zone normal to the SISZ. 

of the Eurasian and American plates at an estimated velocity of 2.1 ± 0.4 cm/yr 

in direction N117±11°E. These authors concluded that historical seismicity in the 

SISZ can be attributed to this accumulation, and that 85 ± 15% of the relative 

plate motion has been accommodated by the SISZ for the last 1000 years. The 

current work suggests that modelling the motion as stress redistribution follow­

ing recent, large events in the neighbourhood would be a more physically realistic 

interpretative approach. 

It was suggested shortly after the Krafla dyking episode that this had loaded the 

SISZ towards failure. This reasoning was influential in accelerating the seismic 

hazard monitoring in this zone. However, this analysis shows that very little shear 

stress was added to the major faults in the SISZ since they are oriented north-

south. This may explain why the anticipated events were not triggered by the 

Krafla episode. 

Recent GPS surveying results across the EVZ reveal about ~1.0 ± 0.3 cm/yr of 

rift-normal expansion for the period 1986-1994 [5. Jonsson, pers. comm., 1995]. 

The model predictions show that the effects of the recent Krafla rifting episode 

are significant and should be taken into account before modelling the displacement 

field in this region. However, the effects of older dyking in the EVZ and closer 

events, e.g., recent activity in the volcano Hekla, may account for most of the 

current motion there. 
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Sparse data are consistent with ~1.5 ± 0.3 cm/yr of relative plate motion across 

the southern tip of the WVZ [Sigmundsson et a/., 1995]. The WVZ is affected in 

a similar manner as the SISZ by the recent Krafla rifting episode, since it is far 

from the rifted zone. Local events must be modelled in the region to account for 

the observed motion. 

8.2.3.5.4 Forward Predictions for the North Iceland GPS Network 
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Figure 8.17: Predicted horizontal displacements of the points within the profile zones shown in 

Figure 7.1 for the epochs (a) 1992-1995, and (b) 1987-1995 as a result of the recent Krafla r if t ing 

episode. The best-fit parameters of the elastic-viscoelastic model (Section 7.4.3.1) were used. 

Forward predictions for the north Iceland GPS network as a result of the recent 

Krafla rifting episode are made. Contraction of up to ~6 cm of the points within the 

profile zone shown in Figure 7.1 is predicted for the epoch 1992-1995 (Figure 8.17a), 

with the maximum displacements occurring ~20 km from the dyke. The magnitude 

of the displacements decreases with distance, and no motion of the furthest points 

is predicted for this epoch. Network expansion of up to 21 cm is thus predicted 

232 



I I ' • I 1 I — I — I ! 100 1 — I 

1992-1995 

50 

I 
50 

| -100 

150 

200 
5 cm 

1 i - r - m 1 I 1 1 ' 

-150 -100 -50 0 50 100 150 200 
Rift-normal distance (km) 

Figure 8.18: Same as Figure 8.17, except the predicted displacements 1992-1995 are shown in 

plan. 

in : ; 1 I 

co 
CD 

58 

20 

in 
16 

CD 
12 

8 
CO 8 

I D 

m S 
0 

s 
8 

CO 
CD 

I 

14.0 17.0 16.0 15.0 20.0 19.0 18.0 12 
Longitude 
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1987-1995 (Figure 8.17b), decreasing to ~13 cm further away. The maximum 

displacements occur ~40 km from the dyke. 

The network contraction predicted 1992-1995 is shown in plan view in Figure 8.18. 

Only points up to ~50 km either side of the dyke undergo significant motion as a 

result of the Krafla episode. All other points are unaffected. 

Network uplift is predicted 1987-1995 relative to a point in the west of the network 

(Figure 8.19). A maximum of 16 cm is predicted in the vicinity of the dyke. Uplift 

of the farthest points of up to ~4 cm is predicted. In the far south of the network 

relative uplift of up to 4 cm is predicted to occur 1987-1995. Additional vertical 

motion of this kind will substantially improve the signahnoise ratio of the measured 

vertical deformation field. 

8.2.3.6 The Shortcomings of the Viscoelastic Model 

Although a major improvement in the stress-diffusion model, which simulated a 

sub-lithospheric viscous layer, the viscoelastic model has substantial limitations. 

The several simplifying assumptions inherent in the model include an infinitely-

thick viscoelastic region, with a simplified linear rheology. A large volume of work 

exists indicating that actual Earth structure is considerably more complex [e.g., 

Meissner and Strehlau, 1982], involving several layers with contrasting rheologies, 

and lateral variations. In particular, the incorporation of a mid-crustal ductile 

layer may be an important improvement over halfspace models. 

Laboratory measurements show that actual rock rheology is represented better by 

a power law rather than a linear viscoelastic relationship [e.g., Kirby, 1983]. An 

important area for future research is to estimate the effects of this on the model 

results, and to explore whether GPS measurements could distinguish between the 

two. 

The model is unable to model lateral variations in structure and viscosity. The 

results of the present analysis indicate a possible variation of viscosity with distance 

from the spreading axis, and also locally beneath the Krafla spreading system. An 

asymmetric crustal structure is also indicated by the GPS measurements and by 

the model analysis. 
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Mathematical simplifications are inherent in the modelling program, for example, 

the "reduced" problem is presented (Section 6.4.1), and an approximation tech­

nique is applied to perform the Laplace inversion. Rundle [1981, 1982] found these 

to produce minimal differences in the predicted displacement fields, but further 

exploration of their effects in the case of the Krafla model should be done. 

8.3 Summary of the Main Conclusions 

1. The 1991 and 1992 survey results are of sufficiently high accuracy to be com­

pared to previous and future GPS surveying results in order to determine crustal 

deformation in Iceland. 

2. Significant vertical deformation results may be expected from remeasurement 

of the 1991 network after ~2-5 years. The results from the 1992 survey are in­

terpreted here as indicating mostly postdyking stress redistribution following the 

Krafla rifting episode. 

3. The continuous dyking-at-depth model can fit the 1987-1992 deformation field 

using an 80 km-long, 1000 km-high dyke at a depth of 5 km beneath the Krafla 

volcanic system with an opening of 35 cm. 

4. The stress diffusion model is inadequate to model the 1987-1992 north Ice­

land displacement field, and thus can be eliminated from the possible geophysical 

models. 

5. The elastic-viscoelastic model predicts a best-fit viscosity of 1.1 x 101 8 Pa s 

to model the 1987-1990, 1990-1992 and 1987-1992 displacement fields, using an 

elastic layer thickness of 10 km. 

6. The Krafla dyke injection episode ruptured the entire elastic layer, with the lower 

part of the dyke complex being fed from below, in accordance with the model of 

Bjornsson [1985]. 

7. The effects of previous events in the survey region should be taken into account 

when modelling the displacement field. However, in the case of the north Iceland 

displacement field this was of minor importance. 
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8. The data are not diagnostic of different geophysical models, for example, contin­

uous dyking at depth, viscoelastic relaxation, or a combination of the two. Many 

different physical models can explain the data. In order to resolve this problem 

independent data are required, and as realistic a model as possible. However, this 

is particularly problematic in this kind of crustal deformation work. 

9. Crustal asymmetry may exist beneath north Iceland, with a thicker elastic layer 

to the east of the rift zone. 

10. A spatial variation in viscosity exists beneath north Iceland, with values of 

~0.8 x 101 8 Pa s locally beneath Krafla and 0.98-1.2 x 10 1 8 Pa s beneath the rift 

axis. The viscosity beneath Iceland as a whole would have to be substantially 

higher than these values if a "plate boundary zone" is to occur on land. 

11. GPS results confirm the relative uplift of points close to the southern edge of 

Vatnajokull. However, the overall spatial pattern of motion is highly inconsistent 

with the model of glacio-uplift as proposed by Sigmundsson and Einarsson [1992]. 

12. Hitherto unreported magmatic or tectonic activity may have occurred in east 

Iceland recently, most likely in the Oragfajokull-Snaefell flank zone. 

13. The Krafla volcano became inactive in 1988/1989. 

14. Contrary to early expectations, the Krafla rifting episode has had a minimal 

effect on bringing the major faults of the SISZ towards failure. 

15. Surprisingly, substantial network contraction is predicted for the epoch 1992-

1995, along with additional substantial uplift. A resurvey of the 1992 GPS network 

in 1995 will be powerful to test the results of the modelling presented in this thesis 

and will improve the definition of the observed displacement field, especially in the 

vertical. 

8.4 Recommendations for Future Work 

• Resurvey of the 1991 GPS network, either specifically or by incorporating it into 

a larger survey, e.g., the forthcoming 1995 resurvey of the north Iceland network. 

• Add more GPS points in the far south, southeast and southwest of the 1987-1992 
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network to constrain better vertical movements around Vatnajokull, and also to 

study possible tectonic processes in the region of the Oraefajokull-Snaefell flank 

zone. 

• Survey GPS points as far as possible from the rift zone to test the hypothesis 

that Iceland is wider than the plate boundary zone. 

• Model the Krafla dyke intrusion using elliptical dykes rather than square dykes 

and incorporate an elastic layer that thickens with distance from the rift zone. 

These two may be achieved using finite element techniques. 

• Investigate methods of inverting the data for model parameters instead of using 

only forward modelling. 

• Extend the model to other areas of Iceland, e.g., the EVZ where work is currently 

at the investigative stage [S. Jonsson, pers. comm., 1995] and to the SISZ. 

• Investigate the strain fields produced as a result of dyke intrusions, and study 

the capabilities of the model for predicting the sequence of events in Iceland and 

inter-segment relationships. 

• Investigate the model of continuous dyking at depth in an elastic/viscoelastic 

medium. 

• Extend the model to other volcanoes, e.g., Long Valley, California. 

• Investigate whether evidence exists for "opposite" tectonics, e.g., compressive fea­

tures in Iceland, extensional features in compression zones, and strike-slip faulting 

in the "wrong" sense in transform zones. 
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Appendix A 

Readme Text Accompanying Programs 
N F L T G R H and N F L T G R V 

A . l Introduction 

N F L T G R H and N F L T G R V compute the horizontal and vertical displacements 
at the surface of an elastic layer overlying a viscoelastic halfspace due to dyke 
emplacement along a finite or infinite plane. 

Gravity acts in both the layer and half space. 

Gravitational effects can be "turned off". 

The displacement is calculated at specified (X, Y) coordinates where the .^-coordi­
nate is the distance parallel to the fault (relative to the fault centre) and the in­
coordinate is the distance perpendicular to the fault. 

The fault dips in the positive Y direction. 

Postseismic displacements at specified times are calculated, along with the coseis-
mic displacements. 

To compile : make nfltgrh or make nfltgrv. 

Usage : nfltgrh or nfltgrv. 

(The directory must contain the four input files). 

Output files : output. 
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A.2 Input Files 

A.2.1 File input 

There are four required input files for N F L T G R H and N F L T G R V . The first of 
these is file input, which is a collection of the input parameters. 

An example input file is: 

Table A . l : Example input file for programs N F L T G R H and N F L T G R V . 

Data input file for NFLTGRH and NFLTGRV 
Name Value Comment 
H 30.d0 layer thickness (units km) 
HMIN O.dO minimum vertical depth ie depth to top of dyke (units km) 
W 30.d0 dyke width down dip (units km) 
AL 200.d0 dyke semilength ie dyke is twice this length (units km) 

- for infinitely long dyke use l.e5 < AL < l.e8 
THETA 90.d0 dip angle in degrees 
U 200.d0 amount of dislocation (units determine units of output) 
ALAM 3.0d0 lame constant for top layer (units 10 1 1 dyne/cm2) 
ALAMl 3.0d0 lame constant for halfspace (units 10 1 1 dyne/cm2) 
AMU 3.0d0 lame constant for top layer (units 10 1 1 dyne/cm2) 
AMUl 3.0d0 lame constant for halfspace (units 10 1 1 dyne/cm2) 
YSTART O.ldO start value for y coordinate (perpendicular to strike) 
DYOBS lO.OdO step increase in y 
NNY 50 number of y coordinate values 
XSTART O.OdO start value for x coordinate (parallel to strike) 
DXOBS lO.dO step increase in x 
NNX 1 number of x coordinate-values 
INDIC 0 if INDIC is > than 0, then the value of INDIC should 

correspond to the no. of coord pairs entered in inputc 
ie in this case user specified points are used (YSTART.XSTART, 
DYOBS,DXOBS,NNY,NNX not used when INDIC > 0) 

TSTART O.dO time after event when computation starts 
D E L T lO.dO time value increments - in units of relaxation time 
NTIME 6 number of time value increments (must be <100) 

(if INTIME=1 then NTIME=no. of values given in time file) 
(TSTART.DELT not used when INTIME=1) 

NMTERM 6 number of exponential terms in prony series - actual 
coefficients (timepoles) written in poles file 

INTIME 0 if INTIME=1,individual times read in using time file 
NREL 1 if NREL is 1, you get asthenospheric relaxation 

if NREL is 2, you get lithospheric relaxation 
if NREL is 3, you get poroelastic relaxation 

RHOL 3.0d0 density of layer (units g/cm3) 
RHOH 3.0d0 density of halfspace (units g/cm3) 
RHOFCT l.dO density factor. RHOFCT means density acts. To minimise 

gravitational effects, set RHOFCT to 0.1 
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Layer 

H 

Halfspace 

density: rhol 
elastic moduli: 

amu, alam 

density: rhoh 
elastic moduli: 

amul, alaml 

Figure A . l : Geometry of fault plane, and schematic illustration of model parameters. 

The fault plane geometry and a schematic illustration of the input parameters are 
shown in Figure A . l . 

Notes: 

(a) W : the fault must not extend into the halfspace : choose W carefully. 

(b) AL : if AL > 1 x 105 < 1 x 106 then an infinitely-long fault is used. 

(c) THETA : a minimum of 5° for the dip angle is advisable. 

(d) The postseismic times are normalised by the relaxation time r , where r = 
2T/ /G, 7} is the Maxwell viscosity, and G is the elastic modulus of the Maxwell fluid. 

(e) NREL : three relaxation models are possible: 

If NREL=1 then AMU1 relaxes. 

If NREL=2 then A M U , A L A M relax, Poisson's ratio in halfspace is constant. 

If NREL=3 then AMU1, A L A M l relax, BULK MODULUS in halfspace is constant. 

NB: Only NREL=1 case has been investigated for the dyke emplacement model. 

(f) NNY * NNX : the maximum number of points (NNX * NNY) is 50. 

(g) NTIME : the maximum number of times (NTIME) is 100. 

(h) INDIC, INTIME : file input in this form calculates the observation points and 
postseismic times implicitly. To specify (A', Y), INDIC must be set to a value > 0 
that corresponds to the number of coordinate pairs written in file inputc. To use 
specific postseismic times, INTIME should be set to 1 and NTIME should have a 
value corresponding to the number of times in the inputt file. 
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A.2.2 File inputp 

This specifies the time poles for the Prony series. 

An example inputp file is: 

Table A.2: Example inputp file for programs N F L T G R H and N F L T G R V . 

inputp: coefficients for the Prony series (usually 
set to 6 as given by NMTERM 
000.5d0 

001 .OdO 

005.OdO 

OlO.OdO 

050.0d0 

lOO.OdO 

Note: 

These values are picked arbitrarily and should not require changing. Small dif­
ferences result when a more rigourous method is used to determine these values 
[Rundle, 1982]. 

A.2.3 File inputc 

This is used to specify explicit points if these are required. Otherwise benchmarks 
are calculated according to the parameters given in the input file. 

An example inputc file is: 

Table A.3: Example inputc file for programs N F L T G R H and N F L T G R V . 

inputc: contains (X,Y) coords for Ux, Uy calculation 
* * * * * * * * * * * * * * * * * * * * * * * * * * 

0.0 -250.0 

0.0 -200.0 

0.0 -150.0 

0.0 -100.0 

Note: 

The maximum number of benchmarks allowed is 50. 
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A.2.4 File inputt 

This specifies the post event observation times, else these times are calculated 
according to parameters given in the input file. 

An example inputt file is: 

Table A.4: Example inputt file for programs N F L T G R H and N F L T G R V . 

inputt file: postseismic observation times (in units of relaxation time) 
(no. of entered values must = ntime used in input file). 
» * * * * * . * * * * * * 

1. dO 
2. dO 
3. d0 
4. d0 
l.d2 
l.d4 

Note: 

The maximum number of postseismic times is 100. 

A.3 Output File 

A sample part of an output file is: 

Source is dyke 

layer thickness: h = 30.00 km 
minimun vertical depth: hmin = 0.00 km 
fault length down dip: w = 30.00 km 
fault semi length: al = 200.00 km 
dip angle: theta = 90.00 degrees 
dislocation: u = 200.00 

lame constants, layer: 
amu = 

alam = 
halfspace: 

amul = 
alaml = 

3.000 dyne*cm**-2 
3.000 

3.000 
3.000 

finite rectangular fault 

amul relaxes 

densities. layer: 
rhol = 3.000 g*cm**-3 

halfspace: 
rhoh = 3.000 
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nb : x step size may be too small, 

time poles are: 
0.50000000 
1.0000000 
5.0000000 
10.000000 
50.000000 
100.00000 

x= 0. y= 0.10000000 

dx: 
dy: 

elastic part= 
elastic parts 

0. additional part= 0.25817049E-18 
99.997942 additional part= 0.43396450E-04 

t= 1.0000000 poslseismic ux= -0.15133188E-14 uy= 0.70882470E-02 

t= 2.0000000 postseismic ux= -0.20530625E-14 uy= 0.17253509E-02 

t= 5.0000000 postseismic ux= -0.13242152E-14 uy= -0.91460038E-02 

t= 8.0000000 postseismic ux= -0.15262305E-14 uy= -0.13466648E-01 

t= 50.000000 postseismic ux= -0.64118795E-15 uy= -0.17743058E-01 

t= 10000.000 postseismic ux= -0.15469885E-13 uy= -0.16473004E-01 

x= 0. y= 10.100000 

dx: 
dy: 

elastic part= 
elastic part= 

0. additional part= 0.31585733E-18 
98.369010 additional part= 0.40338216E-02 

t= 1.0000000 postseismic ux= -0.11157197E-14 uy= 1.3148527 

t= 2.0000000 postseismic ux= -0.16048470E-14 uy= 1.1288247 

t= 5.0000000 postseismic ux= -0.18636778E-14 uy= 0.39594900 

t= 8.0000000 postseismic ux= -0.21738786E-14 uy= 0.52912991E-01 

t= 50.000000 postseismic ux= -0.95047216E-15 uy= -0.38422324 

t= 10000.000 postseismic ux= -0.78461255E-14 uy= -0.30919481 

x= 0. y= 20.100000 

dx: 
dy: 

elastic part= 
elastic part= 

0. additional part= 0.21609786E-18 
91.444037 additional part= 0.66224332E-02 

t= 1.0000000 postseismic ux= -0.10023248E-14 uy= 4.7176122 

t= 2.0000000 postseismic ux= -0.15596520E-14 uy= 5.6698285 

t= 5.0000000 postseismic ux= -0.30424390E-14 uy= 5.6405331 

t= 8.0000000 postseismic ux= -0.30115304E-14 uy= 5.3482901 

t= 50.000000 postseismic ux= -0.16070378E-14 uy= 4.4857321 

t= 10000.000 posLseismic ux= 0.94439504E-15 uy= 4.4228503 

E T C . 
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A.4 Run Times 

For program N F L T G R H the displacements at 50 benchmarks using 6 Prony series 
coefficients takes ~6 hours on a SUN 4 (~2.5 hours on a Sparc 10). 

For program N F L T G R V the displacements at 50 benchmarks using 6 Prony series 
coefficients takes ~2 hours on a Sparc 10. 

A.5 Useful References 

Rundle, J. B., Viscoelastic crustal deformation by finite, quasistatic sources, J. 
Geophys. Res., 83, 5937-5945, 1978. 

Rundle, J. B., Static-elastic gravitational deformation of a layered half space by 
point couple sources, J. Geophys. Res., 85, 5355-5363, 1980. 

Rundle, J. B., Viscoelastic-gravitational deformation by a rectangular thrust fault 
in a layered earth, J. Geophys. Res., 87, 7787-7796, 1982. 

Hofton, M . A., Rundle, J. B., and G. R. Foulger, Surface deformation due to dyke 
emplacement in an elastic-gravitational layer overlying a viscoelastic- gravitational 
half-space, in press, Journal of Geophysical Research, 1995. 



To appear in the Journal of Geopkysical Research, 1995. 

Horizontal surface deformation due to dike emplacement in an 
elastic-gravitational layer overlying a viscoelastk>gravitational 
half-space 
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Abstract 

We extend a technique previously used to model surface displacements resulting from thrust 
faulting in an elastic-gravitational layer over a viscoelastic-gravitational half-space to the case of 
dike emplacement. The method involves the calculation of the Green's functions for a dike point 
source contained in an elastic-gravitational layer over an elastic-gravitational half-space. The 
correspondence principle is then applied to introduce time dependence. The resultant Green's 
functions are integrated over the source region to obtain the near-field displacements. Several 
example" calculations are presented involving 90°, 60°, and 30° dipping dikes, extending 
completely and partially through the elastic layer. We also illustrate the time dependent 
deformation due to buried dikes. Dikes extending completely through the elastic layer produce a 
larger-amplitude long-wavelength component than those extending partially through the elastic 
layer. Inflexion points are seen in the dike-normal horizontal deformation profiles when the base 
of the dike intersects the top of the half-space, providing a means of differentiating between 
vertical surface dikes extending completely and partially through the elastic layer. Al l results 
show that the use of a viscoelastic half-space underlying an elastic layer introduces a 
long-wavelength component into the deformation field that cannot be predicted by elastic 
half-space models. 
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Introduction 

An important goal of modern crustal deforma­
tion studies is to understand the transient postevent 
ground deformation sometimes seen following large 
earthquakes and dike emplacement events. Stress 
relaxation in a nonelastic region situated below the 
surface elastic zone is one possible mechanism for 
transient strain [e.g., Thatcher and Rundle, 1979; 
Thatcher et ai, 1980; Cohen, 1984]. A second pos­
sible explanation is continued slip at depth on the 
fault or dike plane. 

Elastic models involving dislocation sources in a 
homogeneous half-space [e.g., Chinnery, 1961; Okada, 
1985] or in a layered half-space [e.g., Jovanovich et 
al., 1974] cannot explain time dependent transient 
behavior. One method of introducing time depen­
dence is by including a viscoelastic half-space. Nur 
and Mavko [1974], Rundle and Jackson [1977], Spence 
and Turcotte [1979], Rundle [1978, 1980], Savage and 
Prescott [1978], Matsu'ura and Tanimoto [1980], and 
others have studied the time dependent behavior with 
thrust or strike-slip sources. Authors dealing with di-
latational sources include Roth [1993], who found a 
solution for an opening crack contained in a layered 
elastic half-space that could be extended to simulate 
a system of dikes, and Heki et al. [1993], who pro­
posed a viscous diffusion model for postdiking stress 
relaxation at divergent plate boundaries. 

We extend the work of Rundle [1980, 1981] to 
include the case of dike opening in an elastic layer 
overlying a viscoelastic half-space, the application of 
which'will be especially useful in^predicting transient 
deformation in areas of active tectonic r if t ing and 
at mid-ocean ridges. We l imit the choice of mate­
rials in the viscoelastic region to those whose Theo­
logical properties have linear constitutive laws since 
even though the deformations are large, the strains 
are small as these depend on the small differences be­
tween time dependent displacements and the steady 
plate velocity. Because the strains are small, we can 
use a linear model; the nonlinear terms wil l all be 
negligible compared to the magnitude of the linear 
terms. A Maxwell rheology is also assumed which 
implies the inelastic region behaves as an elastic solid 
over short time periods and as a Newtonian fluid over 
long timescales. This is considered by the authors to 
be the most appropriate linear rheology for long-term 
deformation processes within the Earth. 

We include gravitational effects in our calculations. 
For deformation at the surface of an elastic half-space, 

gravitational effects become significant over wavelen­
gths greater than 1000 km [Rundle, 1980] but have 
lit t le relevance to deformation near the source region. 
In viscoelastic structures, stresses in some regions of 
the Earth decrease as flow occurs: the initial elas­
tic stresses induce flow in the medium, generating a 
change in the displacements and gravitational stresses 
as a result. Equilibrium is eventually attained be­
tween the gravitational and elastic stresses in the flow­
ing region. However over short time intervals gravita­
tional effects are small [Rundle, 1981], and the inclu­
sion of gravitational effects is significant only when 
the event is assumed to reoccur, producing a cyclic 
distribution of events. 

In this paper, surface displacements following dike 
emplacement are modeled using Green's functions. 
The solutions for the elastic-gravitational problem 
are first computed. Then the correspondence princi­
ple which relates the elastic-gravitational solution to 
the Laplace-transformed viscoelastic-gravitational so­
lution is applied. Finally, the resultant Green's func­
tions are integrated over the finite source region to 
obtain the time dependent, near-field displacements. 
A brief review of the method developed by Rundle 
[1980, 1981] is given here. 

Solution to the Infinite Space Problem 

Rundle [1981] found that for displacements re­
sulting f rom a dip-slip event in a layered elastic-
gravitational medium, self-gravitation effects arising 
from the nonzero value of Go, the gravitational con­
stant, were generally much smaller than gravitational 
effects relating to the surface acceleration, g. Making 
use of this, Rundle [1981] considered the governing 
equations [Love, 1911] 

V 2 « + - A T - W • u+ ^ V ( « • e 2) 1 — 2(7 n 

V 0 e * V - u = 0, (1) 

V2<j> = -47r/> 0 G 0 V • u, (2) 

where u is the perturbed displacement vector in the 
deformed cylindrical coordinate system (r, 9, z), <f> is 
the gravitational potential in this coordinate system, 
e"r, eg, and ez are the unit vectors, a is Poisson's ratio, 
po is the density and n is the rigidity. As z —> oo, all 
perturbed quantities are presumed to tend to zero, so 
setting Go = 0 implies <f> is constant. In this case we 
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may write 

V 2 u + — i — - V V • u + ^ V(u • e,) - ^-ez V • u = 0. 
1 — 2(7 fx y. 

(3) 
Using the vector base 

Prrt = Jm(kr)e e J i 

'dJm(kr) „ . J m ( fc r ) 
i>m = I —— e r + i m — ; eg 

C „ im 

dkr kr 

Jm 

(kr) dJm(kr) \ i m $ kr -e, - dkr 

(4) 

) e i m ,

1 (5) 

e * V m * , (6) 

where Jm(kr) are cylindrical Bessel functions, i = 
y/—\, and k corresponds to the wave number in 
dynamical problems [cf. Ben Menahem and Singh, 
1968], we can expand u in terms of equations (4) to (6) 
as 

OO - c o 

U=Y, t d t [ i v m w r i ; + £ f n ( z ) f l ; + v m ( z ) c ; ] . 
mr:0 J0 

(7) 
The solution given by V m ( z ) is not considered as i t is 
found to be identical to the solution in the nongrav-
itating case. Um(z) and W M ( 2 ) are given by Rvndle 
[1981] as 

( v2(z) ) = ( P t \ k ) )e°lZ + ( PT(k) )e~"lZ 

+ ' ( r f ( * ) ) e " " + * ( f t - 1 ( * ) ) e " " ' W 

where 

± o i = ±(k2 + kr1s/C)1'2, 

± o 2 = ±(k2 - krjy/C)1'2, 
1 -2a 

(9) 

(10) 

(11) 

and 

Po9 
V = = Pff< 

P = 
Po 

(13) 

(14) 

The gravitational wave number kg, found by setting 
a 2 (&) = 0, is defined as 

(15) 

For k < kg, a 2 is purely imaginary, and for k > kg, 
02 is real. 

Solution to the Layered Half-Space Prob­
lem 

Rundle [1980] used a polar coordinate system (r, 6, z) 
with unit vectors e'r,eg, and e"z, and with the z axis 
oriented down into the medium at the surface of a 
layered, elastic-gravitational half-space. The elastic 
moduli in the nth layer are denoted by A n and //„, 
and the density by p„. The solution in the nth layer 
is given by 

r° 

m=0 J o 

kdk •SI 

where is given by 

(16) 

(17) — m + Vm^m + Z ^ C m , 

and the kernel functions x^, j/J}, and z^ are 

+kptea"D+n, (18) 

+ c « " 5 + „ + ke-"D-n + ke°**D+n, (19) 

(20) z m — e o m „ -t- e o m n . 

Here ±a\ and ±02 are defined by equations (9) 
and (10). The same formulation is applied to the 
stresses across the layer boundaries to obtain similar 
expressions for the normal tractions across a plane. 

As can -be seen-from equations (18)-to (20), the 
problem can be divided into two separate parts, the 
"R" problem (that includes the and yJJ, terms) 
and the " L " problem (that includes the zJJ, terms). 
The solutions to these problems are given by Rundle 
[1980, (equations 88-96)]. 

Source Functions 

The source functions [Dm] for the six elementary 
displacement dislocation sources have been derived by 
Ben Menakem and Singh [1968]. In the notation of 
Singh [1970], ( j k ) refers both to the direction of the 
force system and the normal to the plane across which 
i t is applied. For a dike inclined at an angle to the 
horizontal 

( j k ) = (3,3) cos2 i> + (2,2) sin 2 V - (2,3) sin 2$, (21) 

with each component given by 
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Uk) = (2 ,2 ) : (AOi = 2 7 (36 -

( A > ) 4 = M7 (75 - l ) / ( « + l ) , 

= P7, 
= -2^7*, (22) 

m = (3 ,3 ) : (A>)i = 27, 

( i * ) = (2 ,3 ) : P i ) 2 
= - 2 T i , 

P f ) i = - 2 T . 

Here 7 = AUd^/in, where Ai7 is the relative dis­
placement across the crack, dS is an element of area 
on the crack, and £=1/(3-4<T). 

Hence we have three different source function con­
tributions to the diking problem, one describing open­
ing in the vertical direction (m = 0), a second describ­
ing opening in the horizontal direction (m = 2) and 
a shearing component (m = 1). Using equations (16) 
and (17) and summing these three contributions, the 
displacement at the surface may be written as 

4 ( 3 3 ) ( 0 ) P o + ^ ( 3 3 ) ( 0 ) S 0 
cos tp 

xl(0)Po + yl(0)BQ + x\{0)P3 + y\{0)B2 

+4(0)6 

+*i(0)C r i 

sin 2 ip — 

sin 2^1 • 

*i(o)A + »i(o)Bi 

(23) 

The superscript (33) distinguishes the kernel func­
tions of the (jk) = (3,3) component f rom the (jk) = 
(2,2) component. Substituting equations (4) to (6) 
for Pm, B~m and Cm, replacing e'm9 and ieimB by 
cos mO and — sin mO, respectively, to obtain the real 
part, and splitting the displacement vector into its 
three components, we obtain 

ur = -J^ fcrffc|i/i(33)(0)Ji(A:r)cos2V 

+ (yo(0)/i(tr) »J(0) 

- ) 4 ( Q ) ( M k r ) +

2

M k r ) 

Ji(kr) - J3(kr) 

cos 26 ) s in 2 rp 

u i ( 0 / * » ( * r ) + -M* r) sin 6 sin 2ip \, (24) 

tie = f k d k { U ( o ) f M k r ) - M k r ) 

-1/2(0) 

+ 

Jt(kr) + J3(kr) 
sin 20 sin ip 

l y i ( 0 ) p f l N + ^ ( t f ) 

+ 4(0) J o ( H - HkrY ̂  cos0sin2V>j, (25) 

= jf Jb rffc|a;J(33)(0) / 0(*r) cos2 V> 

+:cJ(0)Jo(fcr) sin 2 V + x\(Q)J2(kr) cos 20 sin ip 

+ ^x\(0)J1(kr)sm9 sin2V>j. (26) 

Equations (24) to (26) give the solution to the elastic-
gravitational problem of a point nucleus of dilation in 
an elastic-gravitational layer over an elastic-gravitational 
half-space. 

Introduction of Viscoelasticity 

As the first step, the correspondence principle of 
linear viscoelasticity is applied [Lee, 1955]. This re­
quires that the elastic quantities A and fi in each 
component of the elastic solution be replaced by 
their Laplace transformed quantities sX(s) and sp.(s) 
to obtain w(s) where the bar signifies the Laplace-
transformed quantity and s is the parameter conju­
gate to time. Then u(s) is inverted to give uv(t), the 
solution to the viscoelastic problem. The technique 
used .to. perform the inversionjnvolves the Prony ser 

ries where the function uv(t) is approximated by a 
function u*(t) composed of a series of decaying expo­
nentials. Following Schapery [1961] and Cost [1964] 
we set 

N 

uv(t) 2 J^Ain(l - e - t / T ' ) = < ( * ) , (27) 
ij 

where = means "approximately equal to in the least 
squares sense" and where { r , j } is a set of TV relax­
ation times. In this problem we set 

{ T i j } = {0 .5r a , ra, 5 r a , 10r a , 50r a , 100r a }, 

where r a , the characteristic relaxation time, is de­
fined by To = 2w/nh in which n is the viscosity of the 
Maxwell fluid and ///, is the elastic modulus of the 
half-space. The A{ are then a set of unknown con­
stants to be determined. This approximation method 
has the advantage of smooth time domain results in 
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the time interval required and involves as few func­
tion evaluations as possible. T h e error obtained using 
the numerical method is thus minimized. Then u*(t) 
can be integrated over the source region to obtain the 
required solution. 

Results 

Post-diking horizontal deformation is predicted over 
timescales of 0 to 50r a . Effects due to the inclusion of 
gravity and from the variation of the fault parameters 
Hh, D, W, and ip (Figure 1) are studied. Note that 
the figures (Figures 2 to 4, 6, 8 to 10) illustrating 
postdiking displacements where gravitational effects 
are not included show nondimensional horizontal mo­
tion perpendicular to the dike plane, i.e., in the y 
direction, over an area scaled in terms of H. The fig­
ures (Figures 5 and 7) which include gravitational ef­
fects do not have their horizontal motion and lengths 
scaled in a similar manner. In the gravitational prob­
lem several independent length scales now exist: H, 
the layer thickness, and kg and k^, the gravitational 
wave numbers for the layer and half-space. A nondi-
mensionalizing of the kernel functions for the gravi­
tational case results in a ratio of gravitational effects 
to elasticity effects, e.g., pgH/n [Rundle, 1982]. 

T h e case of a vertical dike extending completely 
through the elastic layer (W/H — 1) is shown in Fig­
ure 2. The predicted codiking deformation is large 
close to the source and decreases as the distance from 
the source increases. T h e postdiking response be­
haves in the opposite sense with little deformation 
predicted" in the near-source "region and substantial 
deformation at distances several dike widths from the 
source. Rebound of the nonelastic region in response 
to the rapid outward movement from the diking leads 
to the formation of an inflexion in the displacement 
field close to the source. The amplitude of the post-
diking deformation field is increased as a result of in­
creasing Hh (compare Figures 2 and 3). Thi s also 
leads to the formation of a more pronounced peak in 
the field several dike widths away from the source. 
In addition, increasing increases the magnitude 
of the completion time of the postdiking deforma­
tion. Viscosity is directly proportional to rigidity; 
hence increasing fit, implies that the viscoelastic re­
gion has become less "fluid" and responds more slowly 
to postdiking stress changes but with a larger magni­
tude response. Decreasing the downdip width of the 
dike such that it extends halfway through the elastic 
layer from the surface produces minimal differences 

in the codiking deformation field, (compare Figures 3 
and 4). However, the postdiking deformation field 
now has a more pronounced peak related to the thick­
ness of the elastic layer, and it has no inflexion in the 
near-source region. The presence of this inflexion in 
the displacement field is a direct consequence of the 
base of the dike touching the top of the half-space. 
Decreasing the downdip width of the surface dike by 
a small fraction removes the presence of the inflex­
ion from the postdiking deformation fields. Hence 
the case of a dike extending completely through the 
elastic layer can be distinguished from the case of a 
surface dike which extends partially through the elas­
tic layer by inspection of the postdiking deformation 
fields. T h e inclusion of gravitational effects produces 
no significant differences in the horizontal deforma­
tion field over all time intervals for the dike of downdip 
width H, but decreasing the downdip width of the 
dike results in a significant attenuation of the long 
time interval postdiking deformation fields (compare 
Figures 4 and 5). 

Burying the dike has a profound effect on the pre­
dicted postdiking deformation field. The codiking re­
sponse has a smaller amplitude than that predicted 
using the surface dike sources, with the maximum dis­
placement occurring at a greater distance from the 
source. T h e inflexion seen in the near-source region 
of the postdiking deformation field (Figure 6) is of 
a larger amplitude and covers a greater area than 
that predicted for a surface dike of twice the downdip 
width. T h e inclusion of gravitational effects results 
in an^attenuation of the deformation field (compare 
Figures 6 and 7); however, when compared to the sur­
face diking case these effects become apparent over a 
much shorter timescale. Thi s difference in time scales 
is due to the closeness of the dike end to the halfspace. 
The stresses die off from the fault ends like 1/r, so 
for the case of a buried dike extending to the base of 
the elastic layer the halfspace will experience shorter 
wavelength stresses and faster stress relaxation than 
if the dike extended from the surface to the midpoint 
of the elastic layer [Rundle, 1982]. 

The dominant effect of altering the dip of the dike 
is the formation of an asymmetrical deformation field 
in both the codiking and postdiking response (com­
pare Figures 4 and 8 and Figures 6 and 9). Other fea­
tures are similar to those observed in the correspond­
ing vertical dike cases with the asymmetric features 
being introduced by the dip of the dike. Increasing 
the dip of the dike increases the scale of the asymmet­
rical effect (compare Figures 8 and 10). The inclusion 
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of gravitational effects into these cases results in the 
same effects as those observed for the vertical dike 
case. T h a t is, for the surface dike no apparent differ­
ences are observed until longer time periods, and for 
the buried dike these differences occur within shorter 
timescales. 

Regions of uplift and subsidence can be associated 
with areal strain compression and expansion patterns 
[Bilham and King, 1989]. T h e horizontal strain field 
is given by the derivative of the horizontal deforma­
tion curves; hence regions of uplift and subsidence can 
be inferred. A dike extending completely through the 
elastic layer produces uplift above the dyke, no ap­
preciable motion either side of the dike, i.e., in the 
flank zones, and uplift further away. No appreciable 
motion is predicted in the far field. T h i s pattern is 
repeated for a buried dike extending to the base of 
the elastic layer, except the flank zones now undergo 
subsidence. A surface dike extending halfway through 
the layer produces uplift of the flank zones with sub­
sidence elsewhere and no appreciable motion in the 
far field. 

Summary and Discussion 

A previous method is extended in order to calcu­
late the horizontal postdiking surface displacements 
as a result of a dike emplacement in an elastic layer 
above a viscoelastic half-space. T h e effects of gravity 
can be included in both the layer and the half-space 
but are found to produce minimal differences in the 
displacement fields until longer time intervals are con­
sidered. In additionTTesults indicate that it is possi­
ble to determine whether a dike extends completely 
or partially through the elastic layer by an inspection 
of the postdiking deformation fields. 

The boundary conditions contained in the present 
version of the model, however, do not account for data 
that are affected by repeated events. T h e method ap­
propriate to these circumstances is outlined by Sav­
age and Prescoit [1978], and the application of this 
will form a particularly valuable tool for interpreting 
observed geodetic horizontal surface deformation in 
areas of active tectonic rifting and for forward mod­
eling at mid-ocean ridges. One region in which the 
model is currently applicable is in northeast Iceland 
where a major rifting episode commenced in 1975. In 
the following decade up to 8 m of crustal widening 
occurred along an 80 km-long-section of the accre-
tionary plate boundary [Bjornsson, 1985]. Repeated 
geodetic surveying results in this area using Global 

Positioning System ( G P S ) satellite surveying [Heki et 
al., 1993; Jahn et al, 1994] have revealed a horizontal 
deformation field that shows a clear postdiking tran­
sient signal that may be attributable to viscoelastic 
asthenospheric relaxation. 

Furthermore, this model predicts the presence of a 
long-wavelength component in the postdiking defor­
mation field following a single event, a result also ob­
tainable by modeling continued diking at depth in an 
elastic half-space. One possible distinction between 
these two models lies in the analysis of the distri­
bution of observed deformation with time. Here we 
demonstrate a nonlinear spatial variation of displace­
ment with time. For a similar distribution of displace­
ments to occur using the continued diking at depth 
in an elastic half-space hypothesis, a dike continually 
evolving in depth, downdip width, and length would 
have to be incorporated into the model. Data sets of 
a sufficiently high quality, for example, the northeast 
Iceland G P S data set [Heki et al., 1993; Jahn et al., 
1994], are now becoming available, enabling the pos­
sibility of distinguishing between these two methods. 
If a difference can be detected, then this will lead to 
a better understanding of the physical processes re­
sponsible for plate boundary processes. 

A c k n o w l e d g m e n t s The authors wish to thank J . 
C . Savage, R . S. Stein, S. C . Cohen and A . Donellan 
for their careful reviews. 
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F i g u r e 1. Geometry and coordinate system for a rectangular, dipping dike in an elastic-
gravitational layer over a viscoelastic-gravitational half-space. H is the thickness of the layer, D 
is the depth of the dike, 2L is the along strike length, W is the downdip width, and ip is the dip. 

F i g u r e 2. Nondimensional surface horizontal deformation against distance normal to a dike 
extending completely through the elastic layer. Model parameters are H = 30 km, 2L = 20H/3, 
p, = ph = 3.0 g / c m 3 , m = A, = A h = 3 x l 0 1 0 P a , f i h = 3 x l 0 9 Pa , D/H = 0, W/H = 1, and 
V1 = 90° . The codiking response is calculated using the formulae of Okada [1985] for a dike in an 
elastic half-space where / i = A = 3 x l 0 1 0 Pa . T h e shaded area represents the elastic-gravitational 
layer, the horizontal dashed line is the layer half-space boundary, and the heavy solid line shows 
the dike geometry. The solid curve is the initial elastic (codiking) response, and the dashed 
curves represent the deformation due to viscoelastic stress relaxation after 2 r 0 , 5 t 0 , and 5 0 r a . 
Each displacement profile has been evaluated at the midpoint of the fault plane. 

F i g u r e 3 . Same as Figure 2 except / j h = 3 x l 0 1 0 Pa . 

F i g u r e 4. Same as Figure 2 except D/H = 0, W/H = 0.5, and p,h = 3 x l 0 1 0 Pa . 

F i g u r e 5. Same as Figure 4 except gravitational effects are included in the model. Surface 
deformation is now in centimeters per meter of opening. 

F i g u r e 6. Same as Figure 2 except D/H = 0.5, W/H = 0.5, and / i h = 3 x l 0 1 0 Pa . 

F i g u r e 7. Same as Figure 6 except gravitational effects are included in the model. Surface 
deformation is now in centimeters per meter of opening. 

F i g u r e 8. Same as Figure 2 except xp = 6 0 ° , D/H = 0, W/H = 0.5, and p,h = 3 x l 0 1 0 Pa . 

F i g u r e 9. Same as Figure 2 except ip = 6 0 ° , D/H = 0.5, W/H = 0.5, and nh = 3 x l 0 1 0 Pa . 

F i g u r e 10. Same as Figure 2 except V = 3 0 ° , D/H = 0, W/H = 0.5, and / i h = 3 x l 0 1 0 Pa . 
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Abstract 

A massive dike-intrusion episode between 1975 and 1980 in the Krafla volcanic system in northeastern Iceland has been fol­
lowed by years of regional deformation that were first detected by comparing the results of GPS surveys made in 1987 and 
1990 (Foulger et al„ 1992; Heki et al., 1993; Jahn, 1992). Data from a third survey in 1992 show that the region continues to 
expand, although at a reduced rate. Comparing the 1987 and 1992 results greatly improves the accuracy with which the de­
formation field is determined. The field is roughly symmetrical about the plate boundary, with velocities that increase with 
distance from the plate boundary, but are fairly constant at large distances. Velocities of several times the time-averaged 
plate rate persist at least to distances of 120 km from the plate boundary. Candidate geophysical models include regional 
stress relaxation and continued, deep, aseismic dike intrusion. The deformation field cannot discriminate between these two 
physical models, which both f i t the data well for suitable parameter values. Structural information suggests, however, that the 
surface brittle layer is thin in Iceland and that the model of stress relaxation in a viscoelastic Earth is more plausible. 

1. Introduction 
The regional-scale anelastic deformation that follows major tec­

tonic episades-such_as.great earthquakes is the main source of in ­
formation on the rheology of the Earth on decade time scales. 
Such deformation is, however, relatively small, and distributed 
over laterally extensive regions. Because of the rarity of great 
earthquakes in areas previously accurately surveyed, and because 
terrestrial surveying techniques, which have been used exclusively 
up until quite recently, cannot easily detect small strains distri­
buted over large regions, good geodetic measurements of this phe­
nomenon are rare. 

We describe GPS measurements of the regional deformation that 
occurred around the spreading plate boundary in northeastern Ice­
land in the interval from 8 to 13 years after a major dike -intru­
sion episode along the plate boundary resulted in several meters of 
surface extension. This is one of the best-constrained observations 
of post-tectonic regional deformation so far reported. 

2 . Iceland and the tectonics of Northeast 
Iceland 

Excessive volcanism at a ridge-centered hotspot in the north 
Atlantic has constructed a thick pile of basaltic material that pro­
jects above sea-level to form the 100,000 km 2 island of Iceland. 

More than 600 km of spreading plate boundary occur on land in 
Iceland, the largest subaerial exposure of this kind of plate bound­
ary in the world. In northeastern Iceland the neovolcanic zone 
(where post-glacial lavas occur) is 40 km wide and contains 5 en-

- ec/te/ot-spreading-segments (Figure 1), Each-consists of a 50 to 
100 km wide swarm of normal faults, open and eruptive fissures, a 
central volcano, and a high-temperature geothermal area. 

Spreading along the plate boundary occurs as occasional, intense 
tectonic episodes in the spreading segments. During these epi­
sodes, volcanism, seismicity and intrusion of dikes of the order of 
meters thick occur along the fissure swarms. It is thought that 
each spreading segment in northeast Iceland becomes active at in­
tervals of a few centuries and that generally only one segment is 
active at a time. A number of such episodes are documented his­
torically {e.g. Bjornsson et al., 1979) and a well-monitored episode 
in the Krafla segment (Figure 1), began in 1975. In December of 
that year, a magma chamber beneath the Krafla central volcano de­
flated and magma was intruded along the fissure swarm forming a 
dike about 60 km long and causing up to 2 m of surface crustal 
widening. Magma chamber inflation continued at a high rate for 
the next 10 years. Deflations accompanied by dike injections 
occurred every few months, totaling about 9 dikes in the first 4 
years, after which time magma escaping from the magma chamber 
was erupted onto the surface from fissures. Up to 8 m of crustal 
widening occurred in total along the Krafla fissure swarm 
(Bjornsson, 1985). 
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Erdmessung, Univ. Hannover, Germany, and Dept. Geological Sci­
ences, Univ. Durham, U. K. Seven Ashtech dual-frequency P-
code receivers were used and observations were made at intervals 
of 30 s over a single daytime window of about 5 hours, to minimise 
noise from ionospheric turbulence. About 18 satellites were re­
corded during these sessions. Anti~spoofing was in effect on 
weekends and no observations were made at those times. 

6 . Processing of the 1992 data 
As with 1987 and 1990 surveys, the data were processed both at 

Univ. Hannover using GEONAP software, and at Univ. Durham us­
ing the Bernese v. 3 software and the cycle-slip editor TurboEdit 
(Blewitt, 1990). The results of processing using the Bernese soft­
ware are briefly described below. 

Ionospheric disturbances were much less severe in 1992 than in 
1990, and high-quality results similar to those from 1987 were 
obtained. L I and L2 ambiguities were determined reliably for 
91% of the data. A standard Saastamoinen tropospheric model 
and a satellite elevation cut-off angle of 15° were used, in keeping 
with previous experience of processing GPS data from Iceland. 
Broadcast orbits were used to calculate l"day standard orbital 
arcs, and these were used throughout the processing. The calcu­
lated point coordinates were combined in a network adjustment to 
produce a final set of coordinates and corresponding covariance 
matrix (Heki, 1992). Point coordinate repeatability (WRMS) for 
the whole network was 1.4 cm. The results from the Bernese 
software agree well with those calculated using GEONAP at Univ. 
Hannover. 

7 . Results of the 1992 survey 
Comparing the results of the 1990 and 1992 surveys indicates 

deformation exceeding the 1-<t uncertainty level for the most of the 
points in the central part of the network (Figure 3). This de­
formation is similar in style to that for the period 1987 — 1990, i. e. 
an east-west expansion, but is smaller in magnitude (up to a max­
imum of about 8 cm compared with 18 cm for 1987 — 1990). A 
maximum expansion rate of about 6 cm a"', significant at the 3-0 
level, was therefore detected for the period 1987 —1990, but this 
decreased to 4 cm a"1 during the period 1990 —1992. The best-
defined deformation field is obtained by comparing the 1987 and 
1992 results, which not only provide the largest deformation signal 
but also give the smallest uncertainties, because ionospheric dis­
turbances were weaker during these two surveys than in 1990 
(Figures 2 and 3). A clearly significant east-west expansion of, 
the network is detected with a considerably improved signal-to-
noise ratio over the 1987 —1990 results, and a better defined de­
formation field shape. The maximum spreading rate for the 
period 1987 — 1992 was about 4.5 cm a - 1. The vertical displace­
ment field shows considerable scatter, but uplift of the central part 
of the network is significant at the 2-<r level. 

The new 1992 survey results show that the crustal extension 
rate decreased with time between 1987 and 1992. The improved 
definition of the deformation field shows that the relative veloci­
ties of points remain significant throughout our network, which is 
approximately 250 km wide from east to west. In addition, 
although the deformation field is fairly symmetrical about the 
Krafla spreading segment, thought to be the center of expansion, 
the rate of motion is variable, with low velocities close to the 
spreading segment and higher velocities farther away. 
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Fig. 2. Map of northeast Iceland showing point displacements for the period 1987 — 1992. Ellipses at each arrowhead indicate l~o errors. Arrow 
at lower left gives scale. The zone of points used to construct the profiles shown in Figure 3 is enclosed by a box. 
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In the two-dimensional analysis the finite length of the dike and 
the additional effect of minor magma chamber inflation were also 
taken into account assuming that the chamber could be approxi­
mated to a point source of inflation (Mogi, 1958). 

This model explains the 1987 — 1990 observations to first order, 
but several unrealistic simplifying assumptions are inherent in it. 
For example, Newtonian behaviour of the viscous layer would not 
allow any immediate response at the time of dike intrusion, which 
is known to have occurred, and would result in unrealistically 
large motions at later times (Savage and Prescott, 1978). The 
assumption of an infinite length for the dike, used for the 
1-dimensional model, would result in overestimation of the 
far-field motion, but ignoring earlier events would tend to under­
estimate the true motion at distance. Inflation of the Krafla mag­
ma chamber would tend to increase the amplitude of movements 
close to the dike. The improved definition of the deformation 
field provided by the 1992 results clearly shows that this simple 
model cannot account for second-order features in the data, in par­
ticular the shapes of the velocity fields on each flank (Figure. 4). 
Including older dike-intrusion episodes can improve the fit , but re­
quires unrealistically large dike widths (over 10m) for the older 
episodes. We conclude that a more realistic geophysical model is 
necessary to adequately model our improved data. 

8 . 2 . Stress relaxation in an elastic/ vis-
coelastic earth model 

To remedy the defects in the simple elastic/viscous model de­
scribed above, we consider a geometrically and Theologically more 
realistic model, consisting of an elastic layer overlying a Maxwel-
lian viscoelastic half space, including the effects of gravity. We 
use the method of Rundle (1980), which applies the correspond­
ence principal (e. g. Cathles, 1975) to the problem of a layered 
elastic half space, in effect allowing the elastic moduli to be com­
plex. We extend the method to tensile (dike-opening) sources. 

It is again assumed that a dike is instantaneously intruded into 
the elastic layer. Both the elastic layer and the underlying vis­
coelastic half space react elastically initially, after which time 
stress in the half space is released slowly by viscous creep. De­
formation occurs within and at the surface of the elastic layer as a 
result of traction at the interface between the two materials. This 
work is currently at the investigative stage, but initial results 
show that this model can f i t the observed deformation better than 
stress relaxation in an elastic/viscous structure. In particular, pre­
dicted velocities at distances a few tens of kilometers away from 
the dike fall off much more slowly with distance than for the sim­
ple elastic/viscous model. 
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Best fit line using all points. Diffusivity = 3.08 +/- 0.68 mtys 
Best fit tine not including points > 60 km from rift zone. Diffusivity = 0.83 +/- 0.14 mJ/s 
Best fit line using diffusivity of 10 mVs (from Heki et al., 1993). 
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Fig. 4. Horizontal displacements observed between 1987 and 1992, as a function of distance from the plate boundary, compared with theoretical 
curves for three models of stress diffusion in a thin elastic layer overlying a thin viscous layer. The one-dimensional formulation was 
used to compute these curves, which incorporates the simplifying assumptions of an infinite dike length, zero "background" movements 
and no other sources of deformation. 
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Geothermal gradients predict that temperatures exceed 1,000^ at 
these depths. Such material must necessarily behave viscoelastical-
ly. In the presence of such evidence, and because it is intrinsical­
ly the simpler physical model, we favor the model of stress relaxa­
tion in a viscoelastic model over that of continued dike intrusion at 
depth in an elastic half-space. 
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