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Abstract

For a full understanding of QCD and a precise comparison of the theory with experi-
ment, QCD observables must be calculated to next-to-leading order in the strong coupling
constant. This thesis will discuss some of the techniques used for calculating the one-loop
Feynman diagrams which are required for such calculations, and their associated tensor
integrals. In particular, conventional methods introduce Gram determinants. This can
lead to unnecessarily complicated expressions and numerical instabilities in the limit of
vanishing Gram determinant. An alternative method is presented which removes these
problems by gathering together scalar integrals in combinations which are finite as the
Gram determinant vanishes. These combinations are related to the corresponding scalar

integrals in higher dimensions.

This method is applied to the evaluation of the one-loop QCD corrections for the
decay of an off-shell vector boson with vector couplings into two pairs of quarks of equal
or unequal flavours. These matrix elements are required for the next-to-leading order
corrections to four jet production in electron-positron annihilation, the production of a
gauge boson and two jets in hadron-hadron collisions, and three jet production in lepton-
nucleon scattering.
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Chapter 1

Introduction

Particle physics is the study of the interactions of the fundamental particles of nature
at very small distance scales (usually 10~®*m~-10"1"m). At these distances, all matter is
observed to interact via four fundamental forces of nature: the strong and weak nuclear
forces, the electromagnetic force, and gravity. Excluding gravity, these forces, and the
fundamental particles which are influenced by them, are well described by Quantum Field
Theories. The force of gravity is not understood at small distance scales, but it is so weak

that it is usually ignored in the study of particle physics.

The combination of these Quantum field theories, providing a model for all (non-
gravitational) particle interactions at a quantum scale, is known as the Standard Model
of Particle Physics. Within this, the electromagnetic force is described by the theory
of Quantum Electro-Dynamics (QED). This is a gauge theory based on the Abelian
symmetry group U(1), and describes the interactions of particles carrying electromagnetic
charge. This theory and the weak nuclear force have been partially unified to form the
FElectro- Weak Theory, embodying the symmetry group U(1) ® SU(2). This symmetry is
not manifest in the physical world but is broken into the smaller group of QED by the

Higgs Mechanism.

The final pillér of the Standard Model is Quantum Chromo-Dynamics (Qcb),
and it is this theory, and its manifestation in experiment, which will be the main focus

of this thesis. QCD is based on the non-Abelian gauge symmetry group SU(3) and
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describes the interactions of particles carrying the quantum numbers of colour, namely
quarks and gluons. The strong xiuclear force which binds together protons and neutrons to
form atomic nuclei, can be explained through the residual interactions of these coloured
particles. Chapter 2 will provide a brief theoretical overview of QCD, describing some of
the concepts which are essential to an understanding of the subsequent chapters. This
will include discussions of the symmetry group SU(3), the Lagrangian of QCD, and the

renormalization of the strong coupling constant.

Any useful theory must be able to make predictions which can be experimentally
tested. QcD makes such predictions and Chapter 3 will describe how these can be tested in
experiment. In particular, the high energy collisions of electrons and positrons in particle
accelerators result in the production of jets of strongly interacting particles. These jets
are instrumental in forming a link between the theory and experiment of QCD and the

theoretical calculation of jet quantities provides good experimental tests of the interactions

of quarks and gluons.

In order to provide precise theoretical predictions it is necessary to perform QCD cal-
culations to next-to-leading order in the strong coupling constant. These calculations are
notoriously difficult, in part because of the appearance of integrations over the uncon-
strained momentum flowing around closed particle loops. Some of the more conventional
methods for performing these integrals are discussed in Chapter 4. These conventional
methods are plagued by the introduction of Gram determinants, which appear in the
denominators of the expressions for the integrals. This often leads to unnecessarily com-
plicated results. Furthermore, the next-to-leading order matrix elements calculated using
these methods display fake singularities in the regions of phase space where these Gram
determinants vanish. This can lead to instabilities in the numerical programs which must

be constructed before the theoretical predictions can be compared with experiment.

However, since divergences in these limits are unphysical, it must be possible either
to remove the Gram determinants from the denominator of the integral expressions, or
to combine terms together in such a way as to construct functions which are finite as

the Gram determinant vanishes. In addition to removing any problems with numerical
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stability, this procedure combines together dilogarithms and logarithms in a natural, but
non-trivial way, resulting in more compact expressions for QCD matrix elements. The

construction of these finite functions will be described in Chapter 5.

Finally, these methods are applied to the calculation of the one-loop virtual corrections
to v* — ¢gQQ in Chapter 6. This is the first step towards the calculation of the next-
}to-leading order corrections for ete~ — 4 jets. This correction is needed in order to
make a more precise measurement of the QCD colour factors, and will also lead to a
better understanding of the backgrounds to W pair production near threshold at LEP 2. ‘
Furthermore, its use is not restricted to ete™ collisions, but it is also needed for the

next-to-leading order corrections for pp — W/Z + 2 jets and e*p — e* + 3 jets.




Chapter 2

A Theoretical Overview of QCD

2.1 Introduction

By the 1960s a large number of strongly interacting particles, called hadrons, had been
observed in high energy scattering experiments. In 1964, Gell-Mann [1] and Zweig [2]
attempted to explain this proliferation in the number of hadrons by advocating that they
are not fundamental but are composed of point-like spin—,i—, particles called quarks. They

demonstrated that all hadrons could be explained as bound states of either three quarks

* (baryons) or a quark-antiquark pair (mesons).

Then, in 1968, deep inelastic scattering experiments of high energy electrons off a
liquid hydrogen target began at the Stanford Linear Accelerator Center (SLAC) [3]. These
experiments showed that protons are not fundamental but are indeed composed of three

charged, point-like constituents. It did not take long to identify these constituents with

the quarks of Gell-Mann and Zweig.

However, the quark model had several problems. Firstly, the wavefunction of the
A** baryon appeared to be totally symmetric under the exchange of two of its quark
constituents. This contradicts the usual anti-symmetry expected from the exchange of
two fermions, and was known as the spin-statistics problem. Furthermore, the quark
model could not explain why quarks are never seen individually in experiment, nor indeed

in exotic combinations such as ¢q or gqq.
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These problems were solved by the introduction of an extra degree of freedom called
colour!. Quarks exist in three different colour states — red, green or blue. Making the
colour part of the A** wavefunction antisymmetric to quark exchange solves the spin-
statistics problem. In addition, only colourless hadrons (ie. with equal amounts of red,

green and blue) are observed in experiment. Individual quarks cannot be colourless, and

are confined within protons.

The dynamics of these quarks are described by the theory of Quantum Chromo-
Dynamics (QcD). This describes the interactions of the fermionic quarks via the ex-
change of bosonic force mediators, called gluons. Quarks and gluons are collectively
termed partons. It is QcD which binds quarks together to form protons and neutrons

and, in turn, binds these nucleons together to form the atomic nucleus?.

This chapter will briefly discuss the theory of Qcp. The property of colour and its link
to the QcD gauge group SU(3) will be discussed in section (2.2), and the QcD Lagrange
density will be presented in section (2.3). Section (2.4) will discuss the renormalization
of QCD and, in particular, the running of the strong coupling constant. A convenient
method for simplifying the colour algebra of QCD Feynman diagrams will be given in
section (2.5), and finally, in section (2.6), the basics of spinor helicity methods will be

outlined.

2.2 Colour and SU(3)

Quantum Chromo-Dynamics is a gauge theory based upon the non-Abelian group SU(3)¢,
where the subscript C' denotes colour. Formally, quarks are fundamental representations

of SU(3)¢. They are vectors in a three dimensional colour space,

YR
v=| % |- (2.1)
(7:

!This has nothing to do with colour in its more usual sense.
2The lower energy effect of QCD, binding nucleons together, is known as the strong nuclear force and
is mediated by the exchange of pions.
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As with all vectors, 1 is coordinate independent — the above labeling is an arbitrary
coordinate choice. It must be possible to make a rotation of the coordinates in this colour
space, ie. intermix the definitions of red, green and blue, without changing the physics.

This global symmetry can be described by the group SU(3).
SU(N) is the group of symmetry transformations,
v — U, (2.2)
where U are unitary N x N matrices with determinant one.
UlU =1, det|U|=1. (2.3)

U has N? — 1 parameters (since it is an N x N matrix with one constraint) and can be

written,

U = T (2.4)

b

where the repeated index implies summation overa = 1...(N?—1). The N x N hermitian
matrices T are the generatorsof SU(N), and ©, are the parameters of the transformation.
In the case of SU(3), T are known as the colour matrices. They obey the commutation
relation,

[T, 7] = if*Te, (2.5)
where fo¢ are the structure constants of QCD. Also, since,

det [U| = det ieie°Ta| = ¢i0Tr(T"), (2.6)

it follows that 7T* are traceless. They are usually normalised so that,

seb _

Tr(T°T®) = - : (2.7)

Any description of quark interactions must be invariant under an SU(3) symmetry

transformation. A stronger restriction can be made by requiring that this SU(3) symmetry

be local. That is, a colour space rotation, U, can be performed which varies with the
space-time point,

U(z) = @7, (2.8)
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This requirement is reasonable since the rotation parameters cannot be propagated from
one point in space to another arbitrarily quickly. Enforcing the theory of quarks and

their interactions to be locally SU(3) invariant naturally leads to the theory of Quantum

Chromo-Dynamics.

2.3 The QcbD Lagrange }Density

The theory is completely described by the QCD Lagrange density, given by,
EQCD [ija 'Qbf, w,w, A] = LSU(S) + Egauge—fim:ng + AC'ghost- (29)
This is dependent on the quark fields, 9y, of flavour f, the gluon field, A, and the ghost

field, w.

The QcD Dynamics: Lgy(s)

Lsys) describes the dynamics of QCD and is the most interesting part of the QCD La-

grange density. It is given by,
£ s aY] 1 a - By
su@E) = 3 ¥y (iD* 9, — myg) by — ZFqua ~ (2.10)
!

Here the sum is over ny quark flavours and my is the quark mass. D is the covariant

derivative, defined by,
DH = 9" —ig,ALT", . (2.11)

where g, is the coupling strength of quarks to gluons and 7%, i = 1...8, are the SU(3)¢

generators.

Finally, the field stréngth tensor, F* is given by,

F¥ = 01 A — 0 AL + g furc ALAL. (2.12)

Some properties of this Lagrange density are immediately apparent:
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e Asrequired, Lgy(s) is invariant under local SU(3)¢ gauge transformations, eq. (2.8).
Under this transformation the quark fields transform as the fundamental represen-

tation, and gluon fields transform as the adjoint representation of SU(3)c¢,

bile) — U@)y(a), |
AMZ)T® — U(x)Ag(z)Tan(x)+giU(z)aﬂUf(x), (2.13)

where summation over a is assumed.

e The non-Abelian structure of SU (3) leads to glue-glue interactions. This is caused
by the term quadratic in the gluon field in eq. (2.12), which gives three and four
gluon vertices in the term —%Fé‘”F o, of the Lagrange density. In other words, the
gluon carries a colour charge. 1t is this property which is thought to lead to the

confinement of quarks.

Gauge Fixing

Since Lgys) is invariant under SU(3)¢ transformations, field configurations which can be
transformed onto one another are equivalent. In order to prevent over-counting of these
gauge equivalent field configurations, a gauge-fixing term must be added. An arbitrary
choice can be made as to how the gauge should be fixed, and all physical quantities should
be independent of this choice. Throughout this thesis the Feynman Gauge will be used.

This is a covariant gauge with the gauge parameter £ set to unity,

£ 1
: Egauge—fizing = —5 (a“Ag)Z = —'5 (BuAf,‘)z . (214)

Ghost Fields

In a covariant gauge ghost fields are also required to remove unphysical longitudinal

polarizations of the gluon field. The ghost field dynamics are determined by Lgpost,

Eghost = (au“-}a) (au(sa.c - gsfabcAg) We. (215)
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The Perturbative Expansion and The Feynman Rules

The probability of quantum transitions from initial to final states is given by the S matrix.
~ This S matrix can be formally linked to the Lagrange density using Feynman’s Path
Integral formalism (see for example [4]). Furthermore, when the strong coupling constant
is small, a perturbative expansion of the S matrix can be made and the usual QcD
Feynman rules derived. These allow matrix elements, ie. the probability of transition
from one set of particles with definite momenta to another, to be calculated by drawing
all topologically distinct Feynman diagrams (of the appropriate order) linking initial and
final states — these diagrams can then be translated into mathematical formulae using
the Feynman rules. A derivation of the Feynman rules can be found in [5] and will not be

reproduced here. The Feynman rules, in the Feynman gauge, can be found in Appendix D. -

2.4 The Renormalization of QCD

Next-to-leading order matrix elements often include Feynman diagrams containing closed
particle loops. Momentum conservation is insufficient to constrain the momentum flowing
around these loops, and the unconstrained momentum must be integrated over. Unfor-

tunately this integral is frequently divergent.

k+p

Figure 2.1: The inclusion of a fermion loop in the gluon propagator.

For example, consider the inclusion of a fermion loop in the gluon propagator, fig. (2.1).
Using the Feynman rules of Appendix D, this diagram contains an integral over the

loop momentum, k. Naive power counting shows that this integral diverges due to the
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behaviour of the integrand for large k°.

[ i putan 7”) / = | (2.16)

Clearly these divergences must be removed from all physical quantities. They are classified

into two types:

e Ultra-Violet Divergences: These are caused by the divergent behaviour of the
mtegrand as the loop momenta becomes large. The example given above is of this
type. They are removed by a redefinition of the quark-gluon coupling to absorb the

infinity. This process is know as renormalization and will be the explained more

completely below.

e Infra-Red Divergences: These are caused by the divergent behaviour of the in-
tegrand as the loop momenta becomes small. Such divergences have been shown to
cancel at all orders in perturbation theory for all physical quantities {6, 7], and will

be discussed in Chapter 3.

The Effective Quark-Gluon Coupling

Beyond leading order the quark-gluon coupling, gs, is modified by higher order Feynman

diagrams. Fig. (2.2) shows the Feynman diagrams contributing at next-to-leading order.

Most of these diagrams contain ultra-violet divergences which can be regulated by
imposing an upper limit on the momentum. This ultra-violet cut-off, k, will be taken to
infinity at the end of the calculation. The cut-off method is used here only for illustrative

purposes, and other, better methods for regulating these divergences will be discussed in

section (3.5).

The Feynman diagrams of fig. (2.2) give the effective quark-gluon coupling to one loop,

3 )2
6= 9.~ o (108 (%) +¢) + OtaD). 217)
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" Figure 2.2: The effective coupling truncated at next-to-leading order.

where ¢ is a constant, and the first term of the S-function is given by,

Bo = gyc_;_z_n_{ (2.18)

N, is the number of colours (ie. N, = 3 for QCD) and ny is the number of active flavours.

Notice that the coupling now depends on the gluon momentum, Q.

This equation requires some interpretation. The coupling g, (to all orders) is a measur-
able quantity and therefore must be finite. However, the bare coupling g, is unmeasurable
and can be interpreted as being infinite. The ultra-violet divergence (when x — 00) con-
spires with g, to give a finite result for §;. The divergence has been absorbed into the

definition of the coupling. This process is known as renormalization.

The appearance of these divergences is not surprising. They are caused by the be-
haviour of the Feynman diagrams when the loop-momentum approaches infinity — at
these high energies, one would expect that some more fundamental theory, of which Qcp
is an effective lower energy approximation, would control particle dynamics. The ability

to remove ultra-violet divergences consistently via renormalization implies that the dy-
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namics of particles at energy scales appropriate to QCD are little affected by the details

of this fundamental theory at higher energies.

The Running of the Strong Coupling Constant

Eq. (2.17) is more usually written in terms of the strong coupling constant,

gs
a,(Q) = e (2.19)

The equation then becomes, _
2
@) = a, - a7 (108 (%) +¢) + Ota), (2:20)

where o, without an argument is the bare tree-level coupling constant. Of course, this is

true for any arbitrary (perturbative) scale yu and a,(u) is given by,

s (1) .= Qs — 'ﬁ—fr“f (log (i—z) + c) + O(ad). (2.21)

Subtracting these two equations, k can be eliminated and a,(Q) related to the strong

coupling constant at the scale p,

(@ = au(1) ~ 22(s)log (Q2) +O(d). (222)

Since x and «, (bare) have been eliminated from the equation, the cut-off can now be

returned to infinity, K — oo. This expression can then be resummed to give,

_ as (1)
as(Q) = 1+ %as(ﬂ) log (%?z) . (2.23)

This expression allows the strong coupling constant to be written independently of u.

Rearranging gives,

1 Bo 1 Bo
@ w2 e

The left and right hand sides of the above are of identical form and therefore must be

= log p?. (2.24)

independent of both @ and . It is usual to define,

1 ﬁo
Qs (Q)

0gQ? = '3° 4, log A2, (2.25)
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where A is a fundamental QCD parameter. Rearranging gives,

(@) = —=

= . 2.26
fiolog () 0

The strong coupling “constant” runs with energy scale as seen in fig. (2.3).

0.6

0.55 B

o, (Q) 05|
0.45

0.4

0.35

031

0.25

0.2

0.15

0.1 :
1 10 100

Q [GeV]

Figure 2.3: The running of the strong coupling constant with energy scale, in the pertur-
bative region.

Measuring a,(M3z)

Since theoretical predictions of QCD quantities are dependent on the value of a; at the
scale of the hard scattering, it is important to know precisely the value of a, over a broad
range of energies. In principle, this can be done by making experimental measurements
of the QCD parameter A which, in turn, gives a,(Q) via eq. (2.26). Beyond leading order,
the value of A is dependent on the renormalization scheme used, and it is usual to choose

‘the modified minimal subtraction scheme (MS) [8].

In practise, due to the large statistics obtained from e*e™ collisions at the Z peak (ie.

Q = Mz ~ 91.2 GeV), it is better to measure a;(Mz). This can then be used to give a
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at any perturbative scale by use of eq. (2.23). Measurements of o;; have been performed
in ete~ collisions, hadron-hadron collisions, and deep-inelastic lepton-nucleon scattering,
over a broad range of energies (Q? ~ 1-10° GeV'?). Recent results for these measurements

can be seen in fig. (2.4), together with the world average [9],

as(M,) = 0.118 £ 0.005. (2.27)
T 1 . LI 1
e+e—: T decays e
DIS: Bjorken SR —a—
DIS: GLS SR a8 :
DIS: F, 2NMC) —a—
DIS: F, (HERA) ——8—
DIS: F, (SLAC, BCDMS) e
pp: direct ¥ e
IGT: ¥, T e
¥, T decays —a—
DIS: Fp, xFg (CCFR) ———i
DIS: jets —
pp: bb prod. —
et+e— R - —_—
Pp: W+1-jet } - = {
e+e—: event shapes L=
e+e—: fragment. fns. —_a—
e+e—: Z lineshape =
" Average value —a—
1 L . 1 1
0.06 0.08 0.1 0.12 0.14

a,(Mz)

Figure 2.4: Average values of a;(Mz) evolved from measurements of a(Q), where @ is
scale of the appropriate hard interaction. The results are ordered vertically in Q. This

figure is reproduced from [9].

Confinement, Asymptotic Freedom, and the Gluon Self Interaction

The running of the strong coupling constant demonstrates the properties of asymptotic

freedom and confinement.

¢ Confinement: At small energies (Q? ~ A?) the strong coupling constant becomes

large and confines quarks within baryons and mesons. In this region a;(Q) > 1 and
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perturbation theory can no longer be applied.

e Asymptotic Freedom: At high energies (Q? > A?) a,(Q) is small and the quarks
behave increasingly as if they were free. Perturbation theory can be applied with

increasing confidence as Q? increases.

Notice that these properties are dependent on 8y > 0 (which is true for ny < 16). This
is to be (_:ompared with QED where G, = —%, resulting in a behaviour exactly contrary

to QcD: at low energies the electromagnetic coupling is small, and it becomes larger as

energy increases.

This difference in behaviour is entirely due to the different group structures of the two
theories. QCD is a non-Abelian theory. The field strength tensor, eq. (2.12), contains a
term which is quadratic in the gluon field. When inserted into the Lagrange density this
leads to three and four gluon interactions. It is these three and four gluon interactions in
the diagrams of fig. (2.2) v/vhich force the § function to be positive. QED, however, is an
Abelian theory based on the symmetry group U(1). Its field strength tensor lacks a term

quadratic in the photon field, and the photon has no self interaction.

2.5 Colour Algebra

Due to the non-Abelian structure of QcD, its Feynman rules contain colour matrices 7.
Consequently, QcD Feynman diagrams consist of products of colour matrices, multiplying

a kinematical part.

The colour part can be simplified using the following Fierz identity:

1

1 1
2

TiTs = ¥

(61'1(5_7'1; - 6,-,~<5k1) . (228)

Eq. (2.28) holds generally for the generators of SU(N) and is easily proven.
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Proof of the Fierz identity:

Consider an arbitrary vector A given by,
A =0pl+0,T% (2.29)
where summation over a is assumed. Taking the trace of A gives an expression for ay:

Tr(A) = aoN. (2.30)

- Similarly, to find a,, A is first multiplied by T before the trace is taken,

6ab .
Tr(AT*) = aTr(I'T*) = ay—- = "‘7 (2.31)
Then A is given by, ,
A= TCE/A) 1+ 2Tr(AT*)T°. (2.32)

Rearranging this, and making the colour indices explicit gives,
1 1

5 N (5ij5kz) Aji. (2.33)

TeTE Ay = (6,~,6,~k -

However, since Aj; is arbitrary it can be removed and eq. (2.28) follows.

The Diagrammatic Form of the Fierz Identity

UJ

1 1
600t = = —-=
Figure 2.5: A diagrammatic representation of eq. (2.28).

Eq. (2.28) can be represented in the diagrammatic form of fig. (2.5). It should be

stressed that the diagrams of fig. (2.5) are not Feynman diagrams but represent only the
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colour part of the Feynman diagram. This diagrammatic method can be used to sys-
tematically remove all repeated colour indices, ie. internal gluon lines, writing the colour
parts of each Feynman diagram as a sum over standard colour factors. The kinematical
parts of the Feynman diagrams can then be grouped with regard to these colour factors.

Each of these groupings is a gauge invariant set called a partial amplitude.

Note that Feynman diagrams containing the three gluon vertex can also be simplified

in this manner by making the replacement,

ifote = o ([T°, 7% T°). (2.34)

2.6 Spinor Helicity Methods

QcD matrix element calculations are often simplified by the use of spinor helicity methods.
This involves decomposing the matrix elements into different configurations, where the

external particles have fixed helicities. The helicity of a particle is defined by,

h=P5 (2.35)
|91

where p'is the three-momentum of the particle and S is its spin.

Clearly this is only a good quantum number if the particle is massless. If a Lorentz
boost is made to an inertial frame moving faster than the particle, then the particle three-
momentum g, and hence its helicity, will change sign. For a massless particle, travelling
at the speed of light, no such frame exists and helicity is a good quantum number. For
many QCD calculations, the quark mass is small compared to the energy scale of the
interaction and it can be neglected. This will be assumed, and the quark mass neglected,

throughout this thesis.

For most processes the spin of initial and final states is unknown. Traditionally, the
matrix element is calculated without specifying these spins and this general amplitude is

squared. A sum over the different spin states is then made.

However, if the matrix elements are particularly complicated, it is sometimes better
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to calculate them for specific helicities of the external particles. These helicity amplitudes
are individually simpler than the general expression with unspecified helicities. Further-
more, since they do not interfere with one another, the helicity amplitudes can be added

incoherently, ie. they can be squared before adding them together. This is usually done

numerically.

Many alternative approaches have been suggested for calculating these helicity ampli-

tudes [10]. Here the spinor helicity methods of [11] will be discussed.

Let u(p) be a four dimensional spinor of momentum p (p?> = 0) satisfying the massless

Dirac equation.
pu(p) = 0. (2.36)

By projecting this spinor with the helicity projection operator, wy, a spinor, u4(p), with

definite helicity £3 can be defined,

us(p) = weu(p), wi= % (14 ). (2.37)

Notice that wy has the usual properties of a projection operator:

wy +wo = 1,
w;2|: = W4,
wiw_ = 0. (2.38)

The original spinor can be regained by adding its different helicity projections,

u(p) = u-(p) + u4(p). (2.39)

A notation choice for the conjugate spinor must be made®. Here @ is given by,

ux(p) = @(p)ws. (2.40)

3For massless particles there is no need to distinguish between particles and antiparticles. The spinor
of an anti-particle field, v+, is given by vy = ug.
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When matrix elements of unspecified helicities are squared and summed over spin states,

the usual spin sum relation is used, converting the square into a trace over y-matrices,
> u(p)i(p) =P. (2.41)
spins

The analogous form for spinors of definite helicity can be found by projecting eq. (2.41)

with W,
us(p)iz(p) =wz ¥ (2.42)

A spinor representation for the polarization vectors of massless gauge bosons can
also be found. For a polarization vector €5(p), of momentum p and helicity A, this

representation must obey the following conditions.

ex(p)'p=0, ex(p)ex(p)=0,
(ex(p)" =ex(p), ex(p)-es(p) = -1 (2.43)

It is usual to choose L
T "
u( ) u:{:(p)'y u:t( ) (2'44)

T (s (p)”

where k is a reference momentum which can be chosen to simplify the result.

Two relations are useful for manipulating spin lines:

e Line Reversal: This inter-relates different helicity amplitudes, reducing the num-

ber which must be calculated. It is given by,
@, (P1)T U, (P2) = iAoz, (P2) T Fuy, (p1), (2.45)
where I' is an arbitrary string of y-matrices, and ' its reverse.
e The Chisholm Identity: In its usual form, this is given by,
U (p)Y*ur(p2) e = 2 [ua(p2)@r(p1) + u-a(p1)2-x(p2)}- (2.46)
This is a special case of the more useful relation,

Ax(P)T17*Taur(p2) v, = 2 [F2UA(W)aA(p1)F1 + FfU—A(PI)ﬁ—A(PZ)Ff] ,  (2.47)
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where T'; are again arbitrary strings of vy-matrices, with '® their reverse. This
identity should be used to remove repeated indices. Since the second 7y-matrix on
the left-hand-side of eq. (2.47) must always be contained in a spin line, only one of
the terms on the right-hand-side will contribute. Therefore, repeated indices can be
removed without increasing the number of terms in the expression.
Indices which are repeated in the same spin line can also be removed by anti-
commuting? their y-matrices along the line until they are next to each other, and
using,

Vv =4 (2.48)
However, this anti-commutation will generate many terms and it is much more

economical to use the generalized Chisholm identity.

By specifying the helicity of the spinor on the end of a spin line, the projection operator
can be anticommuted along the line and each spinor will adopt a definite helicity. Any
~v-matrix contracted with a massless momentum can be written as a spinor product using
eq. (2.42), and any repeated indices are removed by using the Chisholm identity. In this

way, all helicity amplitudes can be written in terms of the spinor products,

[i5] = @4 (pi)u-(p;s), (2.49)
(i7) = u-(pi)us(p;)-

These spinor products are antisymmetric (seen using the line reversal trick) and are related

to each other by complex conjugation.

5] ==[), (i) = —(59), (2.51)
(13} = [3]". (2.52)

It is clear that these are the only non-zero scalars which are possible since,

@+ (pi)u+(pj) = @(pi)wzwiu(p;) = 0. (2.53)

4The definition 75 = i7071727s gives {7s,7*} = 0.




CHAPTER 2. A THEORETICAL OVERVIEW OF QCD 21

Furthermore, their modulus squared returns twice the dot product of the two momenta.
" = 5 (@) + @)l
1

= 3 T, (Pi)ur, (p5)8r, (P5) v, (p3)
A1,A2
= %TT (#: ¥;)

= 2p;-p;. (2.54)

The following example, where p? = 0, demonstrates some of these techniques.

M = &} (ps) [a (p)V (Bt Bs)v" u(p2)] -G (p3) Vou(pa) (2.55)

Using the definition of eq. (2.44) for the polarization vector, and-eq. (2.42) to write g as

spinors, this becomes,

_ (e ()
M= T (yunr (7s)

The negative helicity spinors in the decomposition of p have been cancelled by helicity

@4 (p1) Y {1+ (1) 84 (P1) + ut(P5) T+ (P5) }7 vt (P2)) Bt (P3) Vot (Pa).-

conservation. The Chisholm identity can be used to remove the repeated indices,

Leau o)z () fu (p1) s (1) + s (55) 0 () () () (p2)

~ V2u_(k)uy (ps) :
Now, the expression is written completely in terms of spinor products and the notation
of egs. (2.49) and (2.50) can be used,
_ [
 V2(k5)

Finally, the reference momentum, &, can be chosen for example to be p,

{(k1)[13] + (k5)[53]}(42).

1
M= 7§[15][53](42). (2.56)

2.7 Summary

This chapter has presented a brief overview of some of the theoretical aspects of Quan-

tum Chromo-Dynamics required for a study of next-to-leading order Qcp calculations.
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In particular, the theory is described by the QcD Lagrange density from which the Feyn-
man rules of Appendix D can be derived. It has been seen that the resulting Feynman
diagrams often contain ultra-violet singularities which can be removed by a process of

renormalization. This leads to a strong coupling constant which runs with energy.

In addition, the SU(3) structure of QCD results in products of colour matrices mul-
tiplying QcD Feynman diagrams. The algebra of these colour matrices and how such

products can be simplified in practice has been demonstrated.

Finally, an overview of spinor helicity methods has been given. This involves the

calculation of matrix elements where the helicities of the external particles are specified.

The following chapter will discuss how QCD is realized in experiment and how a

phenomenological connection between theory and experiment can be made.




Chapter 3

Jet Physics

3.1 QCD in Electron-Positron Annihilation

Figure 3.1: Electron-Positron Annihilation to Jets.

In order to test QCD as the theory of the strong interaction, it must be compared

with experiment. One particularly effective way of doing this is via electron-positron
annihilation. Electrons and positrons are collided together at high energies, producing
a virtual photon or a Z boson, which subsequently decays into a quark-antiquark pair,

see fig. (3.1). However, due to the QCD property of colour confinement, these quarks are

not directly observed in experiment but form jets of colourless hadrons by a process of

hadronization. These jets, and how they can be used to compare the theory of Qcp with

experiment, will be the subject of this chapter.

23
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Electron-positron annihilation has several advantages over other scattering processes

such as hadron-hadron collisions or electron-nucleon scattering.

.e The couplings of quarks and gluons to gauge bosons are point-like and well under-
stood. This is contrary to processes with initial state nucleons where the quarks are
buried deep within the nucleon and their momentum distributions are described by
universal parton density functions. In order to obtain physical results, the interest-

ing small distance interactions must be convoluted with these parton densities.

e The detector sits in the centre of mass frame of the electron-positron pair, and unlike
collisions involving nucleons, there is no target remnant. This allows any missing
energy or momentum in the event to be easily spotted, helping to reduce unwanted

backgrounds.

e Experimental data is available over a very broad range of energy, allowing QCD
to be comprehensively tested. In addition, the presence of the Z boson resonance

provides large cross-sections, and therefore increased statistics.

For these reasons, and because the results of Chapter 6 are most readily applied to
ete™ collisions, this chapter will consider quark and gluon jets from the perspective of
electron-positron annihilation. Of course, jets are present in any process containing quarks
or gluons in the final state and the principles described here can equally well be applied

to hadron-hadron collisions or lepton-nucleon scattering.

3.2 From Partons to Hadrons

The hadrons observed in the detectors of hard scattering experiments are seen to form
collimated jets. A typical example of a three jet event seen in the ALEPH detector of
the LEP collider at CERN, Geneva, is given in fig. (3.2). However, perturbative QCD
calculations give matrix elements where the final states are partons, not hadrons. In order

to use perturbative QCD to make experimental predictions it is necessary to make a link
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of the original partons.

It is remarkable that this assumption works so well. A priori, one might expect that
any correlation between parton and hadron jets would be destroyed by interactions of
the partons after the time scale of the perturbative calculation, and their subsequent

hadronization. However, these coherence and hadronization effects are relatively small

and good agreement with experiment is found.

3.3 The Jet Algorithm

Jets can be defined using two principal forms of jet algorithm: cone algorithms and
clustering algorithms. Cone algorithms are principally used in pp collisions, whereas
clustering algorithms are now used in both e*e™ collisions and e~ p scattering. Any jet

algorithm should conform to the following requirements:

e The algorithm must be insensitive to the emission of soft (low momentum) particles.
Also, a collinear pair of particles should be treated identically to a single particle
with their combined momenta. These requirements ensure the cancellation of the
soft and collinear divergences seen in perturbative QcCD calculations, as will be

outlined in section (3.4).
e The definition should be simple to use both in theory and experiment.

e Particles which have a small angle between them should be grouped into the same

jet.

e The jets should be subject to only small hadronization corrections.

In addition, jets defined in hadron-hadron collisions or nucleon-lepton scattering must
allow factorization of initial state collinear singularities, and minimize contamination from

the underlying event.
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Cone Algorithms

Cone algorithms place cones of a fixed angular size, R, around the jets. These are po-
sitioned so as to maximize the energy flowing through the cone. Although conceptually
simple, these algorithms are somewhat imprecise due to their inflexible jet boundary.
Moving the cone by a small amount can cause particles to fall out of (or into) the cone,
considerably changing the properties of the jet. This results in them being somewhat
sensitive to the emission of soft particles. Furthermore, ambiguities arise when two cones
overlap. It is not clear to which jet particles in the overlap region should be allocated.
These problems have not been fully solved, and some attempts are now being made to

use the more precise clustering algorithms in pp-collisions.

Clustering Algorithms

Clustering algorithms all follow a similar pattern:

e For every pair of hadrons or partons observed in the final state, a resolution pa-

rameter, y;;, is calculated. The definition of y;; is dependent on the jet algorithm

used.

e The smallest value of y;; is then compared to a predefined jet resolution scale, ycy;.
If yi; < Yeut, the two particles are regarded as being unresolved and are placed in
the same jet. For comparison with other particles, they are then recombined to

form a pseudo-particle with energy and momentum which is again dependent on the

algorithm.

e This process is repeated until the resolution parameters, y;;, of all particle or pseudo-

particle pairs are greater than ygy:.

There are many clustering jet algorithms, differing in resolution criteria and methods for
recombining the two particles to form a pseudo-particle. Some of the most commonly

used are detailed in table (3.1).




CHAPTER 3. JET PHYSICS 28

Algorithm Resolution y;; Recombination
. RY
E (p’—tp’)— Pk =DPi + P
. )2 - - —
P lotpy). Pi = Pi + 5
Ey = |pk|
(pit+p;)? < _ Ex(pitp;)
EO s Pk = Tigi4g|
Ex=E,+E;
JADE %(l—gﬂ’—) Pk =Di tDj
in(E7,E2)(1-cos 6;;
DURHAM (ky) | 2220 E)Ameosts) | i+

Table 3.1: Some of the jet algorithms most commonly used in ete™ collisions. The
momenta and energy of the two hadrons are given by p;, p;, E; and Ej, and 6;; is the
angle between them. The recombined pseudo-particle has momenta and energy p; and
FE}. s is the total invariant mass for the event.

Clearly, cluster algorithms are more precisely defined than cone algorithms and have
several advantages. Unlike cone algorithms, the jets of cluster algorithms have flexible
boundaries. The algorithm is most sensitive to the particles in the centre of the jet (as
compared to cone algorithms where all areas are treated equally), making it insensitive to
soft particles at the edge of the cone. This helps reduce hadronization corrections. Also,
the flexible cone size allows higher energy jets to be narrower, which seems physically
sensible. Furthermore, to which jet a particle belongs is now precisely defined. The jets

cannot overlap and there is no ambiguity.

However, pp collisions and e p scattering contain particles from the proton remnant
which should not be combined into jets (since they have not participated in the hard
scattering). This is problematic for clustering algorithms which combine all particles into
jets. To overcome this problem, an extra particle must be added in the direction of the

incoming particle beams [12].
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Table (3.1) demonstrates the large variety in clustering algorithms. In particular, the
first three algorithms shown (ie. E, P, and E0) are modifications of the JADE algorithm
motivated by the conflicting desires for Lorentz invariance and masslessness of the recom-
bined pseudo-particle. In perturbative QCD calculations, quarks and gluons are usually
taken to be massless, and it is desirable for the pseudo-particle to also have zero invariant
mass (p? = 0). However this is not possible while maintaining Lorentz invariance. The
E-scheme maintains Lorentz invariance, whereas the P and EO schemes scale energy and

momentum of the pseudo-particle respectively in order to keep its invariant mass zero.

Unfortunately, the JADE algorithm (and its modifications) tends to group soft particles
separated by large angles into the same jet. This undesirable feature is overcome by the
DURHAM (or kr) algorithm, which groups soft particles together with the hard particle
which is closest in angle. As a consequence, this allows leading and next-to-leading infra-

red logarithms to be resummed.

3.4 Calculating Jet Rates

It has been seen that the partons of perturbative QCD cannot be directly compared with
the hadrons seen in experiment. Instead, partons and hadrons must be organised into jets

using a jet algorithm and these theoretical and experimental jets can then be compared.

As an illustrative example, consider the production of three jets at leading order and
two jets at next-to-leading order. This will demonstrate how partonic matrix elements
must be combined to form jet cross-sections, and outline the appearance and ultimate

cancellation of soft and collinear divergences.

3.4.1 The Tree-Level Three Jet Rate

At tree level everything is particularly straightforward. The tree level three jet rate
has only one contributing process: ete~ — ¢gg, fig. (3.3). However, only the parts of

phase space where all three partons are resolved as separate jets, ie. y,o > Yeur and
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Figure 3.3: The Tree-Level Feynman Diagrams for ete™ — ¢qg.

Yo > Yeut, should be included. These cuts keep the matrix elements well away from the
regions of phase space where the gluon is soft or collinear to the quark or antiquark, and
the resulting cross-section is finite. Each jet is modelled by one parton and there is little

sensitivity to the jet algorithm.

3.4.2 The Two Jet Rate at Next-to-Leading Order

Y,Z N/

(177701

(a) (b)

Figure 3.4: The Feynman diagrams for the process e*e™ — ¢g at, (a) tree-level, O(1) and
(b) one loop, O(a)

In calculating the rate of two jet production in ete” annihilation at leading order,
O(1), only one Feynman diagram, fig. (3.4(a)), contributes. Since momentum must be
conserved, the quark and antiquark are produced back-to-back with the same energy and

are always resolved as separate jets.

At next-to-leading order, g, there will be two contributions to the two jet rate. One

contribution is given by the next-to-leading order two parton process, ete~ — ¢g. This
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is the loop diagram of fig. (3.4(b)), which must be multiplied by tree-level, fig. (3.4(a)),
to give a contribution of O(e;). ! This is called the virtual contribution, because of the

emission and reabsorption of a virtual gluon. Again, the quark and antiquark are always

resolved as separate jets.

In addition, a contribution is given by the tree-level three parton process, ete™ — qqg,
fig. (3.3), where one of the partons is unfesolved, ie. Ygg < Yout and/0r Ygg < Yeus- This

can happen in two ways.

e The gluon is nearly collinear to the quark or antiquark. The nearly collinear pair
are then combined together to form a single jet, with the jet axis and energy defined

by the resulting pseudo-particle of the jet algorithm.

e Alternatively, one of the partons may be soft enough to be undetected. Again, the
details of its combination with the other partons to form jets is dependent on the
algorithm. In the DURHAM algorithm, for example, the soft parton would usually

be combined with the hard parton closest in angle.

This is known as the real contribution, because of the emission of a real gluon. In order

to combine this with the two parton virtual contribution the extra degrees of freedom; ie.

the collinear or soft partons, are integrated out.

Infrared Divergences

It has already been demonstrated that QCD matrix element calculations at one-loop
often exhibit ultra-violet divergences, caused by small distance scale effects. These di-
vergences are cured by renormalization. However, QCD matrix elements also contain soft
and collinear divergences (collectively called infra-red divergences) caused by long distance
scale effects. Indeed, both the virtual and real contributions to ete™ — 2 jets contain

such divergences.

!Diagrams with loops on the quark or antiquark legs would also contribute in general, but are zero
for massless particles.
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Virtual Contribution: The loop diagram of fig. (34(b)) contains an integration

over the unconstrained loop momentum which can be written,

(k + pg)*(k — pg)”
I=[d% g 1 3.1
/ k2(k + pg)?(k — pg)? (3.1)

Naive power counting shows that this integral diverges due to the behaviour as k — 0.

Furthermore, it is also divergent when the virtual gluon is collinear to the quark or

antiquark. It is infra-red divergent.

Real Contribution: The tree-level partonic matrix elements for ete™ — ¢gg also
contain soft and collinear divergences. Using the Feynman rules of Appendix D, and

restricting to e*e~ — v* — ¢gyg for simplicity, the matrix elements are given by,

va [pq py] [ pg]

M = ~ig,eQqi(pe-)vuu(pe+)8(pg) (7T s TP oty e +pg) *| u(pg)es” (py)

The external particles of the above process — the quark, antiquark and gluon final
states — are taken to be on mass-shell?. Then, it is clear that M will diverge when the

gluon is collinear to the quark or antiquark (p,-py ~ 0 or pz-pg ~ 0), or when it is soft
(pg ~ 0).

These partonic matrix elements are not physical on their own but must be combined
to form jet cross sections. When combined, the soft and collinear divergences cancel
between real and virtual contributions. This cancellation of the infrared divergences has

* been shown to hold to all orders in perturbation theory [6, 7).

Notice that these divergences are long distance effects — the matrix elements of
eq. (3.2) diverge as (p, + py)> — 0 or (p; + p,)°> — 0, implying that the quark or an-
tiquark propagates for a long time before emitting the gluon. This is to be compared
with ultra-violet divergences which are of a short distance (high energy) nature. It was

seen that the success of renormalization is due to the insensitivity to physics at energy

2Heisenberg’s uncertainty principle states that the virtuality of a particle is inversely proportional to
its lifetime, and therefore, external particles are taken to be on mass-shell in order to survive beyond the
time of the interaction.
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scales far above that of the interaction. Similarly, one would expect the interaction to be

unaffected by low energy, long distance phenomena, and with hindsight the cancellation

of the infrared divergence is not surprising. .

3.5 Regularization

Clearly some regularization must be performed before the divergent real and virtual con-
tributions are calculated. The most usual way of doing this is via dimensional regular-
ization, where all particle momenta and polarization vectors are analytically continued to
n = 4 — 2¢ space-time dimensions3. The divergences in the real and virtual contributions
are then manifest as poles in € which cancel when the two parts are combined. The limit

€ — 0 can then be safely taken, returning to four dimensions.

Alternatively, a distinction can be made between observed and unobserved particles.
The unobserved particles are the internal particles which form loops in the virtual contri-
bution and the external particles which are soft or collinear in the real contribution. It is
easy to see that it is the continuation of the momenta of these unobserved particles to a
number of space-time dimensions different from four, which regulates the divergences of
the real and virtual contributions. The ¢’ Hooft- Veltman scheme [13] keeps the momenta
and polarization vectors of the observed particles in four dimensions while analytically

continuing the unobserved particles to n = 4 — 2¢ dimensions.

It should be noted the above regularizations are incompatible with the helicity method
described in section (2.6). The chiral projection operators (1 + +5) are not well defined
away from four dimensions. To overcome this, a third regularization scheme, dimensional
reduction [14], is sometimes used. Here only the momenta of the unobserved particles are
continued to n = 4 — 2¢ dimensions. Their polarization vectors are left in four dimensions
allowing s to be used. Howe{rer, this regularization procedure was originally restricted

to dimension n < 4 (¢ > 0) in order to maintain gauge invariance. The vector field

3Whether e is greater or less than zero is unspecified. In fact € > 0 would only regulate ultra-violet
divergences, whereas € < 0 would regulate infrared divergences. By leaving € free to be either, both
divergences are regulated at the same time.
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was decomposed into a n-dimensional vector and (4 — n)-dimensional scalars under gauge
transformations [14, 15). This is useless for regulating infrared divergences which require
the possibility of having € < 0. Never-the-less, dimensional reduction is often used without
enforcing this restriction, and has been explicitly shown to be gauge invariant up to two
loops [15]. This method has been tested by Kunszt, Signer and Trécsanyi [34], by the

diagrammatic evaluation of the one-loop corrections of the helicity amplitudes of all 2 — 2

parton processes.

3.6 Slicing and Subtraction Methods

The example of section (3.4) describes how the soft and collinear divergences associated
with parton level matrix elements cancel when the real and virtual contributions are
" combined to give jet observables. However, in practice this cancellation is very difficult to
perform, since (m + 1)-parton matrix elements must first be projected onto the m-parton

phase space by integrating out the extra degrees of freedom (ie. the soft or collinear

partons).

How should this integration be done? It is impractical to perform it analytically, due
to the complicated structure of the matrix elements. Furthermore, the boundary of the
phase space where one parton is unresolved is dependent on the jet algorithm and the
experimental configuration. Even if the integration could be performed analytically, a
separate calculation would have to be done for every different algorithm or detector setup

used.

Clearly, the integration must be performed numerically. It is then done automatically
for any jet observable required, and the integration boundary can be easily altered to ac-
commodate any jet algorithm or detector configuration. However, recall that the real and
virtual matrix elements are divergent. This divergence cannot be cancelled numerically

since the cancellation of very large numbers would lead to unacceptable errors.

To overcome these problems, methods have been developed where numerical and an-

alytical techniques are combined. The divergence is first canceled analytically, and then
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the integration is performed numerically. This can be done in two ways — slicing and
subtraction. For illustrative purposes, these methods will be described with reference to

a simple toy example [19]. For more complete and detailed descriptions of the slicing and

subtraction methods see [16] and [18].

Consider the following expression:

. ldz 1
I =lim ( | St - ;f<0)) . (3.3)

Here f(z) represents the (m+1)-parton real matrix elements, and z is analogous to the
energy of a soft gluon or the angle between two collinear partons. The integration over the
soft and collinear regions of (m+ 1)-parﬁon phase space are then reduced to an integration
over z. The first term of eq. (3.3), representing the real contribution, is regulated by the
factor z¢ as if by dimensional regularization. However, as ¢ — 0 the integral diverges.
The second term of eq. (3.3) is analogous to the virtual diagrams, and also diverges as

¢ — 0. This divergence cancels between the first and second terms, rendering I finite.

3.6.1 Slicing

One possibility is to introduce an artificial cut, slicing off the very edge of phase space
where the matrix elements diverge. In this small slice at the edge of phase space, approxi-
mations can be made which simplify the matrix elements considerably. Furthermore, they
exhibit soft and collinear factorizations — ie. the matrix elements can be approximated
by the m-parton matrix elements multiplied by a factor containing all the extra (soft or

collinear) degrees of freedom.

In terms of the toy example of eq. (3.3), the integral is divided into two regions:
0<z<dandd <z <1, with d < 1. In the first region f(z) is approximated by f(0).
The integration can then be performed easily, extracting the pole in ¢, which cancels

with the divergence from the virtual matrix elements (represented by the second term of
eq. (3.3)), . '

[ = lim ( / ’ ‘-ifx @) + '/; f‘ifx f(z) - % f(O))

e—0




CHAPTER 3. JET PHYSICS . 36

iy (1) [ G~ 210+ [[ F'sto)

= lim (g—g f(0)+_/6 ;:Ef(“’)

e—0 \ €

Q

= 7(0)log5+ [ 1 ‘i—x f(2). 64

The soft and collinear factorizations of the matrix elements (and phase space) are
universal and this method can be used for any process [16]. However, approximations
have been made and care must be taken to choose a suitable value of the artificial cut 6.
If § is chosen too large, the approximations valid at the edge of phase space will break
down, leading to a large systematic error. However, if 6 is chosen too small, the remaining

numerical integration will approach too close to the divergence and large cancellation

errors will be present.

3.6.2 Subtraction

Alternatively, the divergent part of the (m + 1)-parton matrix elements can be added to

and subtracted from the expression, making the integration manifestly finite,

[ = lim ( / 1 ‘i—%ff(x)- / 1 %x‘f(0)+ / 1 ‘i—”’z‘f(o)—%f(o))

~ lim ( "L [1@) - £+ 10 [ - 1])
= [ Eiw-s0). o

In effect, “fake” matrix elements have been found which are easily integrated analyti-
cally and which have the same divergences as the true (m+ 1)-parton matrix elements. It
should be stressed that this approach is exact — no extra theoretical cuts or approxima-
tions have been imposed. However, until recently, the divergences of the (m + 1)-parton
matrix elements, and therefore the “fake” matrix elements, had to be calculated analyti-
cally for every observable (and sometimes jet algorithm) required. This was first done for

the three jet case by Ellis, Ross and Terrano [20).
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This problem has now been overcome by Catani and Seymour [17, 18], who have
developed new universal dipole factorization formulae. These allow the derivation of
process-independent subtraction matrix elements which can then be integrated once-and-

for-all. Thus, the subtraction method has now been made fully general.

3.7 The Importance of Next-to-Leading Order

The calculation of QCD observables at next-to-leading order is rather involved — much
more so than at tree-level. However, as will be demonstrated in this section, these NLO

corrections are essential for a good theoretical understanding of QCD and a better com-

parison of theory with experiment.

It is clear that NLO calculations substantially improve the accuracy to which QcD
observables can be calculated. The measured value of the strong coupling constant is
around 0.12 at the scale of the Z-boson mass. Therefore one might naively expect that

NLO QcbD predictions might differ from those at tree-level by around 10%.

While the measured value, of any observable is effectively to all orders, it can only be

calculated theoretically on an order by order basis,
A = Ao (p) + A202(p) + O(ad). (3.6)

Truncating this series at O(a,) will clearly give a very different value for o, (x) from that

obtained from truncating at O(a?). Furthermore, a change of the renormalization scale*

from p to u' gives, by eq. (2.22),

A= Ao,(d) + (Az _ Alf—“ log (Z—Z)) (i) + 0(ad). (3.7)

/4

Tree-level results will therefore depend strongly on the choice of renormalization scale
(due to the running of a;). As a result, tree-level QCD calculations tend to be rather
badly normalized. However, at next-to-leading order, the extra logarithm compensates

for the change in o, and the renormalization scale dependence is reduced.

. “In dimensional regularization the renormalization scale is introduced in order to keep the coupling
constant dimensionless in (4 — 2¢)-dimensions, ie. g = gu*.
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In fact, tree-level QCD calculations only produce the general shapes of observables.

This is nicely demonstrated by the thrust of an event. This observable is given by,

b mp [E Iﬂ] .

where p; is the three-mofnentum of the i** particle in the event, and 7 is a unit vector
called the thrust axis. The thrust axis is the direction on to which the projected momenta
of the particles in greatest. The experimental distributions of thrust for events seen in
the OPAL detector, along with the tree-level and next-to-leading order perturbative QCD

predictions are shown in fig. (3.5).
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Figure 3.5: Measured distribution of Thrust, as compared to O(e;) and O(e?) QcD
calculations.

Thrust is modelled at leading order by three parton production®, ie. ete™ — ¢gg.

Notice the large uncertainty in the normalization of this prediction — in order to get

3Since two parton production is always back-to-back, it will trivially give a thrust of one and is not
interesting.
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anywhere near the data, the value o, = 0.2434 must be used (for any choice of p).

Furthermore the prediction breaks down at small and large values of thrust.

For three parton production thrust has a minimum value of % This mimimum is given
when all three partons have the same momenta, are co-planar, and are separated in angle

by 3. Clearly, as the number of final particles increases the minimum will decrease, and

the measured thrust can be much lower.

At high values of thrust, the leading order prediction also breaks down. This is due
to the appearance of log(1 — T) in the next-to-leading order correction — as T — 1,

the higher order corrections become increasingly important and thrust is no longer well

described by only leading order.

Of course, the NLO prediction also suffers from the same deficiencies, but to a much
smaller extent. Allowing more partons (up to four at NLO) allows a smaller value of
thrust, and at higher thrust the inclusion of the large logarithms extends the applicability
of the perturbative expansion to higher values of T. Notice now that the normalization is

much better, requiring a more reasonable value of a,(M3z).

Jets are also badly modelled at leading order, especially for small values of the jet
resolution parameter, y.,;. This is due to the appearance of log(yc:) in the NLO contri-
bution. As ¥y becomes small, the NLO contributions become large and the perturbative
expansion breaks down. Therefore in order to examine jet structures at small values of
Yeuts NLO corrections are required. Furthermore, jets are modelled at leading order by a

single parton. Consequently there is little sensitivity to the jet algorithm.

3.8 Summary.

In this chapter it has been demonstrated how jets can be used to compare parton level
perturbative QCD predictions with the hadronic experimental data. Both hadrons and
partons can be grouped together to form jets, and be compared using the assumption of

Local Parton Hadron Duality. It has been seen that next-to-leading order QCD calcu-
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lations are required for a good comparison between theory and experiment. Such NLO
calculations are seen to be composed of real and virtual contributions. These contributions
are individually infra-red divergent but after suitable regularization can be combined to-
gether using the subtraction or slicing methods to form infra-red safe jet quantities. The

subsequent chapters will focus on the virtual contribution to NLO perturbative QCD cal-

culations.




Chapter 4

Tensor Integrals

The evaluation of one loop Feynman diagrams necessarily involves integration over the
unconstrained momenta flowing around the loop. It is this integration which is the prin-
cipal difficulty of one loop calculations. This chapter will critically discuss some of the

methods used, examining their advantages and disadvantages. In the following discussion

all internal masses will be neglected.

Fig (4.1) shows a generic loop diagram, illustrating the momentum flow around the

loop. The solid lines represent either fermionic or bosonic fields. Note that the arrows

denote momentum flow, not particle flow.

Figure 4.1: Momentum flow in a generic loop diagram with m external particles. Arrows
denote momentum flow, not particle flow.

41
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Such one loop diagrams with m external legs, yield integrals of the form:

d*k [ o
(1N 15 — 41
T / (2m)n (k2 + ig) (kf + ie) (kY +ie) ... (KT o1 + €) (1)

where ki ; =k +p1.j;
Prj=p1+p2+...+pj.

Here, k is the unconstrained momentum flowing around the loop and p; are the mo-

menta of the external particles. Zh!# corresponds to the integral over a loop wivth m
vertices (or sides). Momentum conservation ensures that Z4!** is dependent on only
m — 1 momenta. The factors in the denominator are due to the propagators of the parti-
cles in the loop and the momenta in the numerator can arise from fermionic particles or
three (or four) gluon vertices. All momenta flow outwards. Finally, the ¢ in the denomi-
nator terms is the usual infinitesimal displacement of the propagator pole away from the

real axis (thus keeping the propagator finite in position space), and will be omitted from

future equations.

A notation will be used where T, is replaced by the m®* letter of the alphabet with a

subscript denoting the rank of the tensor, e.g. Z4'*? = C{'*?, etc.

The simplest form of loop integrals are those with no momenta in the numerator, ie.
-scalar integrals. Expressions for the scalar integrals are known up to the scalar five-point
integral &, which has recently been calculated in n = 4 — 2¢ dimensions [21, 22] by
extension to the result of Melrose [23] and independently van Neerven and Vermaseren
[24] in n = 4 dimensions. This extension and the calculation of the other scalar integrals,

can be found in Appendix C.

Several methods exist for evaluating the tensor integrals required in one loop calcu-
lations. The most usual method is to rewrite the tensor integrals as linear combinations
of scalar integrals. This will be discussed in (4.1). Modifications of this method, using
a vector base orthogonal to the external momenta, have been applied in recent loop cal-
culations. Two of these variants will be described in (4.2). The problems and relative
merits of these methods will be compared in (4.3). Alternatively, the tensor integrals can

be obtained from the scalar integrals by using differentiation techniques. Methods of this
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type will be discussed in the following chapter.

4.1 Passarino Veltman Reduction

It has been shown by Brown and Feynman [25] that tensor integrals can be written as
linear combinations of scalar integrals. A general method for performing this reduction
has been developed by Passarino and Veltman [26]. This Passarino Veltman reduction
is the most conceptually simple method for evaluating one loop tensor integrals. Since
the tensor integral can only depend on the momenta of the external particles, it can be
decomposed into its tensor structure with scalar coefficients. The projection of the tensor
integral onto the momenta of the external particles yields a set of simultaneous equations

which can be solved to give these coefficients in terms of scalar integrals.

4.1.1 The Triangle

P2

ky2 k4

ps &~ N\py

Figure 4.2: Momentum flows in a triangle loop diagram.

For illustrative purposes, consider the first rank triangle integral with all external legs

off mass-shell (p?, p3 # 0), as shown in fig. (4.2),
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' "k k*
C{ (p1,p2) z/—_(27r)" T (4.2)

where k; =k +py,
k12 =k + p12,
P12 =1 + Pa.
Notice that the integral depends only on two momenta since momentum conservation
constrains the momentum of the third leg. Since C} depends only on p} and pj, the only

possible rank one tensor structure allowed is given by,

Cf(Pl,Pz) =pia (Pbpz) + pgcz(Pl,Pz)- (4.3)

The scalar functions ¢; (p1,p2), ca(p1,p2) can be found by projecting eq. (4.3) with pf and

ph, giving two simultaneous equations,

p1-Ci(p1,p2) = Piei(pr,p2) + p1-paca(pr, p2), . (44)
pz'cl(Pl,Pz) = D 'chl(Pl,Pz)+P?02(P1,P2)- (4-5)

It is more convenient to cast these in matrix form,
pi-Ci(pupe) \ _ [ P pip2 \ [ a(prpe) (4.6)
p2-Ci(p1, p2) PP D3 c2(p1, p2)

The entries of left hand side of the above are now scalars and easy to calculate by rewriting

the scalar product in the numerator as differences of the loop propagators k?,

1

pik = LK K g, (47)
1

bk = 3k, — K=o +50). (45)

Using this substitution in p;-C;, gives,
d*k k-p1
.C = —_— P
D l(pl,p2) (27[')" kzk%k¥2
_lf o EoR g
T2/ (@@m) K22k,
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&kl 1, &k 1
2 / k2k S 2 / kzk ~ 3k / (2m)" k2k3kZ,
= '2-30(1012) - 530(112) - 510100(:01,:02)- (4.9)

To obtain the second term above the loop momenta has undergone a shift £ — &k — p;.

Although trivial in the current example this would lead to an extra term in a higher rank

tensor.
Similarly,
p2-Ci(p1,p2) /(g:rl)c kfkfli
_ / dnk k3, — K} — piy +p}
k2k2k
= / d k k21k2 2/ s k222 _%(pzf?_pg)/(%:r%k?_kl%k_ﬁ
= 3Bo(p:) - 3Bo(r) - %(pu - R)Colp1, ). (4.10)

The resulting integrals are scalars and are well known (see Appendix C).

Eq. (4.6) can now be inverted to give expressions for ¢; and ¢,
( c1(p1, p2) ) — 1 ( Pg —P1°P2 ) p1-C1(p1,p2) ) (4.11)
ca(p1, p2) Ao(pr,p2) \ —P1p2 Pl p2-Ci(p1,p2) )’
where Ag(p1,p2) is the Gram Determinant,

pl pr- P2

- . 4.12
pipe R = pip} — (p1-p2)” (4.12)

A2(P1,P2) =

Finally, this gives C}'(p1, p2) in terms of scalar integrals:
1
28o(p1,p2) |
[Pﬁ“ ((P%Pl -p2 — P3P + 2(p1-p2)*)Co(p1, p2) + p2-Pr12Bo(pr2) — p3Bo(p2) — 11 'PzBO(Pl))

+p5* (—pfpz-meo(Pl,P'z) — p1-p12Bo(P12) + P2 Bo(p1) + P1 - pQBO(pQ))] (4.13)

Cf(php?) =

Passarino Veltman Reduction has given a reasonably compact expression for C;(p;,ps) in

terms of scalar integrals.
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4.1.2 The Box

Ps P2

ki23} v Ky

Ps P1

Figure 4.3: Momentum flows in a box loop diagram.

In order to demonstrate some of the difficulties inherent in the Passarino Veltman

reduction of tensor integrals of higher rank or more vertices, consider the evaluation of

the second rank box integral, D,,

} &k kR
Dé‘ (p17P27P3) /

(2m)™ k2k2ki ks
= p{pYd1(p1, P2, P3) + PhDsdaz(p1, D2, p3) + PD5d3s(p1, P2, P3)
+ (pi'ps + php¥)dia(p1, 2, p3) + (Pips + p3DY)d13(p1, P2, 3)
+ (phps + p5ps)des(pr, P2, p3)
+

9" doo(p1, P2, P3)- (4.14)

Already, the expression for the tensor structure of D, is much more complicated than
that of C1, eq. (4.3), because D, is a second rank tensor and it is dependent on an extra
momentum,'pg. The scalars d;; can be found by projecting eq. (4.14) with pip; and g*.
This gives a set of simultaneous equations which can be solved to give d;; in terms of D,

and C;. To write D, as sums of scalar integrals another reduction must be made, rewriting

Dl and C1 as Do, Co and Bo.

At first sight it may appear that the extra reduction from D; and C; to scalar integrals

can be trivially performed, since D, and C; are now contracted with momenta, and tricks
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such as eqs. (4.7) and (4.8) can be used. This is true with regard to D; but not necessarily
true for C;. In order to reduce the D, to a C; integral, k-p factors in the numerator of the
expression have been cancelled with propagator terms in the denominator, and thus one
of the propagators is now absent. If C; is contracted with the momentum associated with
this missing propagator then egs. (4.7) and (4.8) are not helpful. For example p;C;(p12, p3)
must be reduced in the normal way since p; is not contained in its arguments. Clearly

this cascade of reduction after reduction will lead to a much more lengthy expression for

d;; than that for ¢;.’

Furthermore, in addition to A, introduced by the reduction of C; to scalar integrals, as
in (4.1.1), the reduction from D, to D; and C; will introduce a 3 x 3 Gram Determinant,
As(p1, p2, p3), in the denominator,

Pl pi'p2 piop3
A3(p1,p2,ps) = | P1'P2 D5 Daeps |- (4.15)
P1°ps P2-D3 P§

This combination of A3 and A, in the denominator of the expression causes practical
calculational difficulties. Often the Gram Determinant is an artifact of the method and
can be cancelled with appropriate factors from the numerator. However, it is not clear
(especially for long expressions) when this cancellation should be done. Indeed, compli-
cated combinations of Gram Determinants can be made which are actually very simple

when the determinants are untangled.

For example, consider factors in the denominator of the form = + y and z + 2. Even
these simple factors can be combined in ways which at first sight appear much more
complicated than they really are,

_ _ 2
it Sl NN Cond') (4.16)
z+z z+y (z+y)(z+2)

Of course, Gram determinants are considerably more complicated than this simple ex-
ample. Such combinations are practically impossible to spot when spread over a large

number of terms.

The large size of the expressions make reduction of the higher rank tensors by hand im-
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practical and must be performed using an algebraic manipulation program such as FORM
[28). This has been used extensively in the calculations found in this thesis. However,
computer algebra is particularly unamenable to cancellation of factors between numerator
and denominator. Packages which can in principle cancel such factors, such as MAPLE,
are not sufficiently robust to handle the large number of terms coming from the reduction.

This makes Passarino Veltman reduction rather impractical.

In summary, Passarino Veltman reduction allows the calculation of tensor loop integral
via a decomposition into its tensor parts with coefficients given in terms of scalar integrals.

However, expressions for tensor integrals evaluated in this way can be rather lengthy and

complicated.

4.2 The Projective Base

Passarino Veltman reduction gives a decomposition of a tensor integral in terms of the
external momenta p* and the metric g*”. Alternatively the tensor integral can be decom-

posed in terms of a base which is orthogonal to the external momenta, [22, 29, 30].

4.2.1 The Naive Projective Base

Again consider a tensor integral with m external legs:

N

Iﬂ'l - i _/ : .
2n)" kzk% R (4.17)

This can be decomposed into its Lorentz structure using a new base defined by vectors,

v;(p1, .. -,Pm—1) and tensor wh(py,...,Pm-1), given by,

51’1 <Pi—1H#Pi41.--Pm—-1

V; (pl; - ,pm—l) = Pl lpi;)llp‘pﬂ-l ppm_ ) (418)
AV yo 9 Pm—1
u OBy
wu (pla see ,Pm—l) = . (419)

(n —-m-+ l)Am—l(pl’ cee 1pm—1)

The notation of egs. (4.18) and (4.19) requires some explanation.
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Firstly, the generalised Kronecker delta has been introduced. In an n-dimensional

vector space, this is defined by:

6#1...#71 — gﬂl--~#ngul".un, (420)

Vi...Vn

where e#1#» is a totally antisymmetric tensor normalised so that g2-n = 1.

When the number of indices is less than the dimension of the vector space, the generalised

Kronecker delta is assumed to have the extra indices repeated over the two corresponding

¢ tensors. That is,
Em...pmam+1...an6
V...

6;1,1...[1."; — Qm41...0n . 421
V1...Vm ) l’\(n - m + 1) ( )

However, for practical purposes these extra indices can be ignored provided one temporar-

ily assumes that the dimension of the vector space is equal to the number of indices. For

example,
p1p203...0
6[11112 — € i n€U1V203...an
nv: T(n—1)
= 8!‘1#26‘,1”2
— M2 a1 2
= ghlglt —ghiglt. (4.22)

In this way, the definition of the generalised Kronecker delta can be extended to a non-

integer number of dimensions.

Secondly, Schoonship notation has been used: an occurrence of a momentum where one
would normally expect an index implies that the tensor is contracted with that momentum

over the index which has been replaced. For example,

Bl i 1PBit 1l — cB1 el 1 hifhig -~an

(4.23)

i

In this notation the Gram determinant is given by,

Am-1(P1y - -y Pm1) = 1B 1 (4.24)




CHAPTER 4. TENSOR INTEGRALS 50

The new base vectors v/ and w*” can be related to the external momenta p; by expanding

the generalised Kronecker delta,

UIp2 o — WIVL SP2M3lhn _ o M1V2 SH2H3. in P1V3 SH2P3fin
61/11/2...1/,, - g 51/21/3...1/" g 61/11/3...11,, + g 6u1u2u4...un ce

' n+1 p1vn SH2p3..p

+(_1) g néuluz...unn_l' : (425)

Note that v/ and w*” have the following properties:

pirv; = 6, (4.26)
w*p;, = 0, (4.27)
w = w, (4.28)
wt = 1. (4.29)

The normalisation of w*”, eq. (4.29), can be seen using eq. (4.25).

Also note that v;-v; is given by,
o 1}))1...5,:-15,:4.1...};’,“_1
D) = (—1)H7 Bofinibiem=? - (4.30)
™ ) ( ) Am—l(pla"'ypm—l)

vi(p1, - - - ’pm—l)'vj(ph ce

This quantity is closely related to the decomposition of the Gram determinant into scalar

products,
Am-1(P1,D2, - - - s Pm—1) = 3 PiDVi(D1, D2, - - -, Pm—1)V5(P1, P2y - - - s Pm-1)- (4.31)

i,J

The tensor integrals are now decomposed in terms of this new basis and the coefficients
of the Lorentz structure are found exactly as in standard Passarino Veltman reduction.
However, the new base of v;(py, . ..,p;) and w*(py,...,p;) are orthogonal to the external
momenta p;, eqs. (4.26) and (4.27), decoupling the system of equations which are obtained
by projection onto the momenta. The corresponding matrix is already diagonal and can

be trivially inverted.

This can be demonstrated in the example of the first rank triangle integral, C; (p;, p2).

Firstly a decomposition in terms of v;(p;, p2) and vo(py, pe) is made,

: d"k k+
C{‘(Pl,pz) = /Wm
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= Ui‘(Pl,Pz)Cl (Pl,Pz) + Ug(Pl,Pz)Cz(Phpz)- (4-32)

Now, Ci(p1, p2) is projected onto p; and p; yielding two uncoupled equations,

! 'C{‘(ph P2) = D1'n (Pl,pz)cl (Phpz) +m 'Uz(Pl, 102)02(101, P2)

= cl(plap2)7 (433)
p2-Cl(p1,p2) = Pz'vl(Phpz)Cl(plapz)+p2'v2(P1,P2)02(P1,Pz)
= c(p1,p2)- (4.34)

Using eqs. (4.9) and (4.10), C{(pi, p2) is given by,

1 1 1
Cf(Pl,Pz) = Ui‘(phpz)(EBo(Pu) - 530(172) e '2‘17%50(111,102))‘

+ (o 22 (3 Bolpr) — 5Balpe) — 50k — PIColprpr)). (439

2 2
The resulting expression for C¥(p;, p2) is quite compact and it would seem at first
sight that the Gram determinant problem has been removed, since no matrix had to be
inverted. This is, of course, not the case. The determinant has been hidden away in the
definition of the new base, eqs. (4.18) and (4.19). Indeed, in order to use the result for the
tensor integral in a calculation of a loop diagram, v{" and w*” must be rewritten in terms
of the external momenta and, once again, the Gram determinant will become explicit (in

fact eq. (4.13) will be reobtained).

For higher rank tensors or integrals over loops with more vertices, all the same prob-
lems will be encountered as in standard Passarino Veltman reduction. In fact, the Gram
determinant problem is ezacerbated. In standard Passarino Veltman reduction the number
of Gram determinants in the final answer will be equal to the number of reductions made.
For example, D5” will have two Gram determinants (one Aj from the reduction of D, to
C; and one A, from the reduction of C; into scalar integrals). However, with the new base
of v and w**, decomposing D4” into its Lorentz structure will provide terms containing
two v}’ and thus two 3 x 3 Gram determinants, Az. The subsequent reduction of €7’ will
provide the 2 x 2 Gram determinants as before. Thus decomposition in terms of the new

base will give three Gram determinants in the denominator instead of the usual two.
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This extra problem can be overcome by using identities to relate products of v to

single v/'s. For example,

Ui‘(Pl,Pz,Pa)Pl “U1 (P2,P3) = Uf(Pz,Ps) - U'f(Pl,pmps)- (4-36)

Hundreds of these Schouten identities can be found, in effect cancelling Gram deter-
minants until, at most, one remains for each level of reduction. However, as with the
cancellation of the Gram determinants in Passarino Veltman reduction, an ambiguity

arises as to how this should be done, and complicated expressions are found.

The only advantage which has been obtained by introducing the new base is that the
algorithm for reducing the tensor integrals to scalar integrals is more easily performed via
computer algebra (since there is no matrix to be inverted). However, the cancellation of
the extra Gram determinants using the various Schouten identities of the form of eq. (4.36)

is very tedious to program due to the very large number of these identities, making this

method impractical.

4.2.2 Decomposition of the Loop Momenta

A more useful application of the projective base of section (4.2.1) has been developed by
van Oldenborgh and Vermaseren [29] to reduce tensor integrals to scalar integrals. As
before, the base is defined by egs. (4.18) and (4.19). However, now the loop momenta

itself is decomposed in terms of this base [31]. This method is most easily understood by

example.

The Triangle

Again consider the first rank triangle integral, eq. (4.2). The loop momenta in the nu-

merator of the integral can themselves be decomposed in terms of v¥ and w*”,

K = k-p1vf (p1, p2) + k-pav§ (pr, p2) + (n — 2)wh(py, p2) k" (4.37)

This is easily seen by expanding v’ and w*” in terms of the external momenta p{' using
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eqs. (4.18), (4.19) and (4.25). For convenience of notation the following definition is made:

P4 = k-p1vf (p1, p2) + k-pavé (p1, p2)- , (4.38)

Now,
K =P + (n — 2)wl(p1, p2)k”. (4.39)

Notice that the last term of eq. (4.37) will vanish when inserted into the loop integral,

since w¥ is orthogorial to the external momenta, eq. (4.27),

d"k k" v v
wf(Pl,Pz)/(—z;)—nm—%k—%; = w,’f(Plypz)(Plcl(Pl,Pz)+P202(P1,P2))
= 0. (4.40)

Thus, single powers of k* and P§ are seen to be equivalent when inserted into a loop

integral. Using the notation  to denote equality under integration,

k" £ P, (4.41)

Using egs. (4.7) and (4.8), P5 (and thus effectively k*) can be written in terms of the

propagators in the denominator,

1 1 1
Py = ok + kot — of) + Shiyk — prpah, (4.42)

where the arguments of v/ have been suppressed.
This allows C; to be written in terms of scalar integrals as described in section (4.1). So far
there is no difference from the naive use of the projective base described in section (4.2.1).

However, the difference between the two methods becomes apparent when higher rank

tensors are examined.

Now consider two powers of the loop momenta in the numerator, i.e. C4(p;,p.). Again,
k* can be decomposed as in eq. (4.37),
kY = PYPY + (n — 2)w)(p1, p2)kPPs + (n — 2)wh(py, p2) kP Py
+ (n—2)*w!(p1, p2)w (p1, po) kK7 (4.43)
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The terms containing w** will simplify considerably when inserted into the loop integral.
This is because the only tensor structure of the tensor integral which can survive projection

onto w*” is the metric g**. For example, consider the second term of eq. (4.43) in the

numerator of the triangle,

wh( )/ﬂﬂ — )(52; 0" + ag0g™)
o \P1, P2 (2n)" k2k2kD, = W,\P1,P2 = ijPi Pj 009
= w;,‘ (p1,P2)a00g”’- (4.44)

where a;; are scalar functions depending on the external momenta.

Also, using eq. (4.25), it is easy to show that,

w” (py, p2) (4.45)

wg(pl y p2)wz (pl s p2)gp‘7 = _;I,T

Thus, the last three terms of eq. (4.43) can only give a tensor structure w*” after integra-

tion. The coefficient of w*” can be trivially found by projection with g*”,

EFEY £ PEPY + (K% — Pw™ (p1, p2)- (4.46)

This identity allows the reduction of C, to scalar integrals, proceeding in a similar
fashion to standard Passarino Veltman reduction. Firstly, Aeq. (4.42) is used to replace
one P; of the first term of eq. (4.46) with propagators, k;_;, and the integral is reduced
to C; and B;. The other P; can be replaced by k, eq. (4.41), and the results for C; and

B, are used to reduce further to scalar integrals.

Note the term containing k% — P2 is most easily reduced by observing that,

K2—P2 = (k*—P*)(k* + P¥)
= (n— 2wtk (k* + P

= (n-2)whbk"k*
5P1p2k

p1p2k
= —. 4.47
Az(p1, p2) (4.47)

This contains only scalar products k-p; which can be trivially reduced using egs. (4.7) and
(4.8).
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An important observation here is that only two Gram determinants have been intro-
duced, one A, and a trivial A; (from the C; reduction). This is the same as standard

Passarino Veltman reduction. However, a naive use of the projective base would have
given two A, and one trivial A;.

Similar arguments can be used to reduce the third rank triangle to scalar integrals. It
is easy to see that k#k“k? must have the following form when inserted into the triangle
integral,

kMkVEP £ PEPYPS + a(w” Pf + w** Py + w”’Py). (4.48)
where a is to be determined. Contracting this with ¢*P4§ and noting that w;P; = 0 and

k-P3 = P3 gives,

kP2 + P; + aP;. (4.49)
This is consistent with,
a=k*- P (4.50)
Putting everything together,
k“k' kP £ PYPYPy + (K — P3)(w P + wP5 + w*Ps). (4.51)

As before, eq. (4.42) can be used to replace one P3 with propagators, reducing the C3 to C;
and B,. Next eq. (4.46) allows the remaining P5P} to be rewritten as k*k”. Previously

derived results for C, and B, are then used to give the final result in terms of scalar

integrals.

The Box

The same procedure can be modified to evaluate box integrals. Again, k* is decomposed

in terms of the projective base,
k* =Py + (n — 3)wl(p1, p2, p3)K", (4.52)
with,

P! = k-pivt(pr,pe, p3) + k-p2vs (1, D2, p3) + k-p3vs (p1, P2, P3)
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1.. 1
= é‘kzvf(pl,p%p&]) + E(kf - pg)(vi‘(plap%p:i) - 'Ug(Phmes))

1
+ E(kfz - sz)(”g(Pl,Pz,Ps) - Ug(Pl,Pz,Ps))

1
+ 5(’“%23 — Pla3) V5 (P1, P2, P3)- (4.53)

Note that v; and w in eq. (4.52) are now dependent on three momenta and consequently
the coefficient of w¥ contains a factor (n — 3) as opposed to (n — 2) in the case of the

triangle.

When integrated, products of the loop momenta can equivalently be written in terms
of Py and w*. For k*, k*k” and kFk“kP, these will be exactly as in the triangle. For
k“kkPk®, eq. (4.57), the tensor structure is easy to see and the coefficients of the tensor

structures can be found by projecting first with g,,g,, and then g,, P4, P40,

o o£ ph (4.54)
kY F PLPY+ (K = PHuw™, (4.55)
KKK F PYPIPL+ (K — Py (W PL +wPy +wPy),  (4.56)
kK“k"k°k” F  PYPYPIPY
+ (K = PY(w"PLP; + wPLP] + w' PiP}
+ wPLP] + wPLPL + w Py Py)
b OEER - P v ). (4ST)

The arguments of w*”(p;, ps, p3) in the above have been omitted for convenience.

These replacements are made in the numerator of the tensor box integral and eq. (4.53)
is used to make the first reduction. Then the remaining P} are converted back into k*,
again using egs. (4.54) to (4.57), and the process is repeated until only scalar integrals

remain. Integrals with only ¥* — P? in the numerator can be integrated directly.
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The Pentagon

Figure 4.4: Momentum flows in a pentagon loop diagram

o7

For the calculations described in this thesis, the only pentagon integrals which are
required are those with at least four on - shell massless external particles. Also, only

integrals of rank four and below are needed. In the following discussion, only such integrals

will be considered, i.e. & to & with p? = p2 = p2 = p? =0, ps = —P1234,

g ,,,_/ Ak kM ke
k2k2k 23k%234 .

In analogy to the box and triangle integrals,

kP =Pl + (n— Huwhk”.

with,
Pt = k-pivf + k-povh + k-pav§ + k-pavy
1 1 1
= —kzvi‘(Pl,Pz,Ps) + "k%(vf —vh) + 5(’“?2 — ply) (vf — vf)
1
+ (k123 Pias) (V5 — vg) + ( 1234 —P:f234)”f1‘ )

where the momentum arguments of v/ and w** have been suppressed.

Recall the definition of w*”, eq. (4.19). Taking m = 5,

(4.58)

(4.59)

(4.60)
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1 JP1P2P3Pak 1 P1P2D3p4l
P1P2P3P4V _ P1p2P3p4V (4 61)

wh(py, P2, P3, Ps) = % ’
(p1, P2, P3, Pa) n — 4 Ay(p1, P2, 3, Ps) 2¢ Ay(p1, P2, P3,Pa)”

where n =4 — 2e.

It appears that w*” diverges in the limit ¢ — 0 (i.e in the limit of four dimensions). This
is not the case because now w*” is dependent on four momenta which will span the four
dimensional space. It is impossible to construct a non-zero totally antisymmetric fifth rank
tensor in four dimensions and consequently, 65:52P3P4% ~ O(¢). Thus w*”(p1, p2, p3, pa) is

in fact of order unity.

The equations relating products of k* to P and w*” will be of exactly the same form

as for the box (except for the factor 2=2 in eq. (4.57) which will become 2=7). However,

when k2 — P2 is inserted into the pentagon integral the result vanishes in four dimensions.

&k k- P2
(2m)™ k2kEk2,kiasktag

~ O(e) (4.62)

Since w*” is of order unity this means that all the terms containing w*” may be neglected.
Notice that this seems reasonable without calculation because of the factor (n—4) in front

of w¥ in eq. (4.59) making this term of O(e).

This makes the equations relating products of k* to PE trivial,

Bo£ PE (4.63)
KR £ PEPY, (4.64)
KRRP £ PLPYPE, C (465)
KRRET £ PLPYPEPY. (4.66)

Reduction of the pentagon integral then follows by analogy to the box and triangle inte-

grals.
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4.3 A Comparison of the Reduction Methods

The usual methods of reducing tensor integrals to scalar integrals via a Passarino Veltman

type reduction have been described in the previous sections. In this section, the problems

inherent in these methods will be discussed and compared.

It has been demonstrated that the principal difficulties inherent in Passarino Veltman

reduction are:

e Large Tensor Structure: Loop integrals with a large number of vertices have are
dependent on a large number of momenta (one less than the number of vertices).
This results in a lengthy tensor decomposition. As the rank of the tensor increases
this problem becomes much worse. However, this is a problem inherent in all tensor
loop integral calculations and Passarino Veltman reduction, while no exception,

cannot be blamed.

e The Cascade: The number of reductions required to reduce a tensor integral
to scalar integrals is equal to the rank of a tensor integral. This reduction after
reduction causes the size of the expression for a tensor integral to quickly become .

unmanageable when tensor integrals of higher rank are evaluated.

e The Gram Determinant: Each reduction introduces a Gram determinant into
the denominator of the expression. Whether or not these determinants should be
cancelled with appropriate factors in the numerator is ambiguous. Furthermore
combinations of two or more Gram determinants can appear very complicated even
when they are in fact rather simple. Such Gram determinants are inevitably present
in all loop calculations. However, Passarino Veltman reduction results in expressions
presented in an unnatural form which is manifestly more complicated than necessary.
It is more desirable to have a method where the expressions, although having Gram
determinants, would emerge already in the simplest form, requiring no cancellations

of Gram determinants between the numerator and denominator.

e Matrix Inversion: In order to find the coefficients of the tensor structure, a set
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of simultaneous equations must be solved, requiring the inversion of a matrix. It is
from this inversion that the Gram determinant appears. Although this can be done

analytically, it is not easy to perform using an algebraic program such as FORM.

The projective base was originally introduced in an attempt to remove the Gram de-
terminant from the reduction procedure. It was thought that this would be accomplished
by the removal of the need to invert the matrix seen in, for example, eq. (4.6). To this
end the projective base, where the base vectors (and the tenéor wh¥) are orthogonal to the

external momenta, was introduced. This resulted in the matrix being diagonal and thus

the inversion is trivial.

However, as seen in section (4.2.1) the Gram determinant is not removed from the
reduction. It is merely hidden away in the definition of the projective base. Indeed, a
naive application of the projective base results in more Gram determinants than in the

usual Passarino Veltman reduction and is impractical.

A more useful application of the projective base is in the decomposition of the loop
momenta itself in terms of v!' and w*”. This leads to a method very similar to Passarino
Veltman reduction, except that the matrix inversion has been trivialized. However, all the

other problems associated with Passarino Veltman reduction remain and little is gained.




Chapter 5

Finite Functions

5.1 Introduction

It has been seen in Chapter 4 that conventional methods for evaluating the tensor in-
tegrals found in one loop calculations often lead to long, complicated expressions. To a
large extent this is caused by the presence of Gram determinants in the denominator.
It is unclear how these determinants should be cancelled with kinematical factors in the

numerator and the resulting ambiguity can make simple results appear very complicated.

Furthermore, the presence of Gram determinants can lead to unphysical singularities.
Conventionally, the tensor integral is broken down into sums over scalar integrals with
kinematical coefficients — as these coefficients often contain Gram determinants in the

denominator, they become singular as the Gram determinant vanishes.

This happens when two of the rows or columns of the determinant are equal. In the

case of the 2 x 2 determinant,

2

p P1:D2
Ao(pr,p) =| P 5.1
2(p1,p2) pipe P (5.1)

Y

this corresponds to two particles becoming collinear. Although at first sight this appears
to be just the usual collinear divergence, it is in fact a completely unphysical artifact of
the calculation. Physical collinear divergences can be regulated by giving the particles a

non-zero mass — this divergence cannot.

61
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This unphysicality of divergences in the A — 0 limit is easier to see in the case of the

3 x 3 determinant,
P PP P1ops
A3(p1,p2,p3) = | p1'P2 D3 D23 |- (5.2)
P1°P3 P2°P3 Pg

Now Ajz = 0 if the three momenta are co-planar, ie. p; = ap; + bp, — a divergence in

this limit is clearly unphysical.

Such divergences as A — 0 are not surprising. In the Passarino-Veltman approach,
described in section (4.1), the integral and its .tensor decomposition are multiplied by
all possible combinations of the external momenta and the metric tensor, resulting in
a set of simultaneous equations which can be solved to give the form-factors. In the

-limit of vanishing Gram determinant, these equations are no longer independent and
the Passarino-Veltman method breaks down. The projective base variant of Passarino-

Veltman reduction is also unsatisfactory in this limit as the base vectors themselves be-

come ill-defined.

Stuart [32] has shown that as the Gram determinant vanishes, the corresponding scalar
integral can be written as a sum over lower point integrals. For example, consider the

massive triangle scalar integral:

d*k 1

Co(p1,p2) = Wm, (5.3)

where k; =k + py,
kio =k + pro,
P12 = p1 + Pa.

The corresponding Gram determinant, Ay (p1, p2), is zero when p; and p, are collinear, ie.

p2 = zp;. In this limit it is possible to write Co(p;, p2) as a sum over bubble integrals,
Co(p1, p2) = aBy(p2) + BBo(p12) + YBo(p1)- (5.4)

Writing the right-hand-side as a single integral this becomes,

&k ak? + Bk? + vk2,
Co(p1,p2) = (2m)" k2kiks, B
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which is clearly only true if it is possible to write,
1 = ak® + Bk? + vk3,, (5.6)

Decomposing, in powers of k gives three equations:

a+fB+v=0, (5.7)
Bk-p1 + vk-p12 = 0, (5.8)
Bp? + vpi, = 1. (5.9)

The second equation can be simplified by writing the loop momenta as,

k

capr+cp2 + ki
= (a +zc)p +ky, (5.10)

where k; is orthogonal to the p;, po-plane. Then,

Bp: + vp1-pr2 = 0. (5.11)
In matrix form this is,
11 1 o 0 .
0 p{ pi-pr2 pl1=10]. ) (5.12)
0 pt b Y 1
Since the determinant of this matrix is non-zero, it can be inverted to give a solution for
a, B and v,
a 1 Pip2pi2 Pi—ph Pip2 0 1 P1°D2
B |= - 0 P2 —PiPr2 0 |= - —PiP12 |-
Y e 0 - i J\1 A

(5.13)
Thus in the limit of vanishing Gram determinant the scalar triangle integral can be

decomposed as:

P12 P1-P12 1
Co(p1,p2) — B - B, - B . 5.14
O e (514

This procedure has been used to remove the Gram determinants for loop corrections

to processes such as quarkonium decay where two heavy quarks are considered to travel
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collinearly [32]. It demonstrates that large cancellations occur between the scalar integrals
when the Gram determinant vanishes. It is clearly better to combine these scalar integrals

together to form functions which are well behaved in this limit. For example, in the above

case one might define a function to be,

1
Aa(pr, p2)

rather than allowing the scalar triangle to be divided by a Gram determinant. From the

DP1:D2 D112
2 By(p2) + ————Bo(p12) +
P%Pz‘pm 0( ) P%Pz'Plz 0( 1) P2:D12

(cuto02) - Bop). (519

discussion above, it is easy to see that this function is finite as the Gram determinant

vanishes.

In fact, as will be demonstrated in this chapter, with a few notable exceptions, the ten-
sor integrals themselves are finite as the Gram determinant vanishes. Therefore, within
individual tensor integral erpressions scalar integrals over Gram determinants can be
combined together to form finite functions. Tensor integrals can then be calculated indi-

vidually and expressed in terms of these new finite functions. This has several advantages:

e Since the kinematical coefficients of the functions no longer contain Gram determi-
nants in the denominator, the matrix elements become numerically stable. The finite
functions can be calculated to an arbitrary precision by making a Taylor expansion

about A = 0.

o The size of the resulting expression is reduced. Scalar integrals have been combined
together to form new, more natural functions, leading to more compact expressions.
For example, in the case discussed above, dilogarithms from the triangle integrals
and the logarithms from the bubble integrals have been combined together in a
natural way. Since final matrix elements must be finite in the limit of vanishing
Gram determinant, these logarithms and dilogarithms must always come in these
combinations when divided by a Gram determinant. Collecting them together into

a single function will then naturally lead to more compact expressions.

e The Gram determinants are collected together in a prescribed fashion — there is no

longer any ambiguity as to whether a Gram determinant should be canceled with
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factors from the numerator or not, and there will be no inter-tangling of different

size determinants.

In principle, the form of these finite functions can be calculated using the methods
of Chapter 4. The tensor integrals can be calculated using the projective base variant of
Passarino-Veltman reduction (section (4.2)) and the scalar integrals (over Gram determi-
nants) can be rewritten in finite combinations. This was done for all the tensor integrals
required for the calculation of v* — ¢@QQ, which will be discussed in Chapter (6). The
finite functions were derived by making a Taylor expansion of the scalar integral about
A = 0. This could then be combined with expansions of lower point scalar integrals in

such a way as to form a finite function when divided by the appropriate number of Gram

determinants.

However, in practice this was rather difficult to do, because the Taylor expansions
were required up to third order in the Gram determinant. Furthermore, the expressions
for the tensor integrals using this method already contain the ambiguities associated with
Gram determinants discussed in Chapter 4, and it is not clear how to combine the scalar
integrals together in a natural way. Extra terms which are trivially finite as the Gram

determinant vanishes can be arbitrarily added into the finite function.

It is perhaps easier to use the “string inspired” methods of Bern, Dixon and Kosower
[21, 27] to derive the form of the tensor integrals and the subsequent finite functions.
Instead of reducing the tensor integrals to sums of scalar integrals, one can differentiate
the scalar integral with respect to the kinematical variables. This introduces Feynman
~ parameters into the numerator of the integral, providing exactly the form required for the
evaluation of the tensor integral. This procedure will be outlined in sections (5.2) and
(5.3). These results will then be used to derive general reduction equations in section (5.4),
which will be used to examine the tensor integrals on a case by case basis, and construct

appropriate finite functions.

This will provide all the finite functions required for the calculation of v* — ¢gQQ
presented in Chapter 6.
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5.2 Reduction by Differentiation

The general tensor integral which is to be evaluated is,

d"k kbi .. kbR :
Iu “HR _/ k2k2 k1 — 3 (5.16)

However, by performing a Feynman parameterization and integrating over the loop mo-

menta it is possible to write Z¥!#® in terms of Feynman parameter integrals given by,

AWE 0(1 - i zi)P{z}
7 ={— m _— d “ e m B 5'17
P} = -V (m 2) /0 T dy (— S0 i Si.. (-1 TiT3)™ 2 (&.47)

where P{z} is a polynomial in the Feynman parameters and s; ; are the generalized

Mandelstam invariants,
Si. pz(z+l) g (pz +piy1t+...F P_—,) . (518)

In order to solve the tensor integrals of eq. (5.16) up to rank R = 4 it is sufficient to
" solve these integrals with up to four Feynman parameters inserted into the numerator.

Relations between Z¥1#% and I%[P{z}] for R < 4 are derived in Appendix B.

Consider the Feynman parameter integral with no parameters in the numerator:

n m n 1 (I-Zimi) .
"] = (=)™ (m— = dz, ...dz,, . 5.19
n[1] = (-1) (m 2)/0 o1t s ey (519)

In principle, integrals with Feynman parameters in the numerator can be obtained by
differentiating I7,[1] with respect to the kinematical variable s;;. While obtaining an even
number of parameters in the numerator is easy, obtaining an odd number is more tricky

- (but could, in principle, be done by using the é-function to replace z; = 1 — ¥;; ;).

It is better to perform a further change of integration variables, suggested by 't Hooft and
Veltman [33],

. QU
I; = ;0 = Ui = 1. (520)
=1 a]uJ .
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Furthermore, the matrix p;; is introduced such that,

1 . .
= | —sig-noieg, 1# 5,

Pij = { 0, i =7 (5.21)
The parameters o; should be considered related to the kinematical variables, while p;; are

(in most cases) indepéndent of them and merely parameterize the transformation. For o

real and positive this gives, |

I*[i] = (-=1)™T (m-—)/ sl = ) (Ha,) (5 ) __%. (5.22)

[Ez Jj=1 pzju'zu]]m

In addition, the integral should be rescaled to remove the product of aj,
It = (H aj> In. (5.23)

With the above definitions it is now easy to obtain the integral with one Feynman

parameter in the numerator by differentiating I™[1] with respect to o,

_3_;’;% = (m-n)(- lmF(m———)/ d™u;0( 1—;& ( = 1aj“j)]m_n/2

Zz J=1 ptjuzuj

(Ej=l a]uJ) e

n\ fl

= (m—-n)(-1)"T (m - 5) /o d"uid(1 — Z:Ui)a - m—nJ2

¢ 1,j=1 pl]uluJ]
= (m- n)f,’,‘l[a,-]. (5.24)
Therefore,
. 1 oIn [1]

In il = ‘

nlo = == (5.29)

‘Repeated differentiations yield integrals with an arbitrary number of Feynman parameters

in the numerator.

5.3 Total Differentiation

" Equations relating m and (m — 1)-point integrals can also be derived using the “string

inspired” methods of Bern, Dixon and Kosower [21, 27]. This involves taking the total
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derivative of the m-point scalar integral in (n + 2) dimensions with respect to one of the

Feynman parameters:

n
2

dIm+2{1] n\ d [ | §(1 - Tizi)
m _ _1mp< _1___)_. dr,...dzy, pross w
dzy (=17 {m 2/ dzy /o ' (= T2 Tjsi S (-1)Ti%5)™

d 1 ‘l—zm_l 1-z1—Z2—...— T -1
= (—1)'"1" ( —-1- —) E—/ dﬂ?m_l/o dx,ﬁ_g - /0 d.’L‘k
k

_ 1 — (5.26)
('— iz Zj)i Si...(j—1)$i$j) 2

where the d-function has been removed in such a way that the integration over zj is the

X

)

Im=1-Z1—...—Tm-1

first which must be done.

This expression can be evaluated in two ways. The derivative with respect to z; can

be taken:

JTn+2 1 . .
dIm [1] — (_l)ml-\ (m _ g) / dz, .. .d.’L‘m sz) ] 1 sk 4-1Tj — Sm...j— lfL'J)2
0

dz =1 2j>i Si.. (- 1)TiT;)"
m

= (8k..j-1 — Sm..j—1)Im[Z;], ‘ (5.27)
j=1

where the second term originates from the derivative of z,y,.

Alternatively, the dzik can be brought inside the integral and the integration over z;
performed, giving the integrand at the two integration limits. At the lower limit, z; = 0,
and an (m—1)-point integral is obtained. This integral is a pinching of the parent integral,

removing the propagator associated with zy, and will be written as I, (k) 1(1],

"(k) ] = (—l)m“1F< -1- —-) /da:l ATk 1dTry . .. dTy0(1 — Zx,
itk

X (‘Z > Si--‘(j—nxixj) , . (5.28)
i£k j>i,#k

At the upper limit z,, = 0 giving the pinched integral "(m)[l] Therefore,
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n+2
QIZ—[” = I - 2% (5.29)
Tk

Converting the right-hand-sides of eqs. (5.27) and (5.29) into hatted quantities, using
eq. (5.21) and equating gives,

R o 4 i N i) |
> (2- Bns) Inlas) = 5 ( - , (5.30)

Q;  Om Om Q;

=1
where the replacement k£ — i has been made.

This equation can be solved to give f,’,‘l[aj] in terms of lower point integrals. However it is
convenient to first introduce some extra notation. A slightly modified (m — 1) x (m — 1)

Gram determinant is introduced. This is defined by,
Am = det|2p;-p;), (5.31)

where p; and p; run over the (m — 1) momenta'. The rescaled Gram determinant will

also be useful,

m 2 m
Am = (H a,-) Am = Z i Q5. (532)
=1

1,5=1

The further definitions are made?:

m m
Y=Y My, %= e = ) oy, (5.33)
j=1 J=1
and,
m 1 .
Nmbij =Y Nikprj, Np= E(det n)71. (5.34)
k=1

It is clear from the above definitions that,

m ~ -~
| ¥iYs ) _
Qi | =—= —N | = 0 535
Sio (-, (5:3)

1This is related to the determinant of the previous sections by A, = 2™~1A,,_;.
2Note that the definition of 4 coincides with v of [21, 27]
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Multiplying eq. (5.30) by (ﬁf’: — nk,-) o; and summing over i will therefore remove the

terms which are not divided by «;. This gives,

i (:YAkl - %) piilnla] === Z <7”’ nk,) 9 1. (5.36)

1,j=1 1,‘—1 A1'71

Using eq. (5.34) and the definition of 4; on the left-hand-side of the above leads to,

£n Nm ” n 1& '3’ '?i n 1
Nl [ax] = 2= PILTAIEEDD ( Ak - ) ® ). (5.37)
m j=1 i=1 m

The second term on the left-hand-side can be simplified further by recalling that the sum

over the Feynman parameters equals one and so,

> aslnlei) = Y- Infes) = I4[1) (5.38)
i=1 j=
This gives,
1 717_1 n(z) 71 n
o lai) = — i 1 i 5.39
fafa) = g 3o (B2 - ) B0 + 2t (539

This equation relates Feynman parameter integrals with one parameter in the numer-
ator (tensor integrals) to integrals with no Feynman parameters in the numerator (scalar

integrals) and is the analogue of the Passarino-Veltman reduction of Chapter 4. Notice

that once again the Gram determinant appears.

5.4 Tensor Integrals in Terms of Finite Functions

The above derivations have lead to two different expressions for the Feynman parameter
integral with one parameter in the numerator, namely egs. (5.25, 5.39). This section will
examine the behaviour of these two equations as the Gram determinant vanishes and

show how the divergent terms can be combined together into finite functions.

If the scalar integral® (ie. I%[1]) is well behaved as A,, — 0 then eq. (5.25) implies

that I” [a;] must also be well behaved, since the act of differentiation cannot provoke any

3The term “scalar integral” will be used interchangeably for Z,, and I7[1].
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singular behaviour. However, eq. (5.39) would appear to diverge in this limit. In fact, it
does not — the appearance of A,, in the denominator is a fake pole. This can be seen

more clearly by considering the m-point integral in (n + 2) dimensions,

' m—n—2
m .
(S, o5u)

. ‘ 2\ rl
"1 = (-1)"r (m _nt ) / d™uib(1 - u;) e
2 0 - m— 24
¢ [211 lpiJuluJ]
1 m o 92In(1]
T (n-m)n-m-1)(m—-1-1%) w{:l P Bida; (5.40)
This can be evaluated using egs. (5.25) and (5.39),
N0 A B 1%
m—-n ijzl P aaiaaj B ”Z:l Pi ™ pey
1 & A n(k) )

= 7] r - 1N 1 + 1

Fd (o E[ o]

i 1 Y% ] dIpI (1] [(Uiﬂk + 7irY;) Ai:)’jAij

= i\ o == = . — g2t}

i,jz=1p] {2Nm (kgl [Am sk aaz A A

) » "i”. . In
b [ g3 gy 5 Olmll]
An A2 A, Ba;

_ li i v ol® el L[m=1), ] 700 + om )N -

2, \io Am i Ba, ooy Am A™

- ;5/] 1 = '71:715 n(k) f) n
+(m—n — — T)i; 1+A In 5.41
m=m) o p3, <2Nmkz1[A "’] g ”) 641

The differentiations of I, [rk) 1 can be done by noting that I, ) 1(1] has no dependence on o,

051

=1, (5.42)
and again using eq. (5.25),
ik
> ()[1] B 8 a1 = ) 76)
;a, B n— IZa, 1a;] = (m—n— lz 1zi] = (m—n—-1)I;71[1],
(5.43)

since the Feynman parameters add to one.
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This gives,
1 & I n, 2Ny, (k)
i -1-=)—— 1)+ I 1 0.44
T X Pogae, = M1 g7 (Al e Dcalll) BCXD
Inserting this into eq. (5.40) gives,
. 1 2N, K
) = . 1 ¥ 5.45
= i 2 (e - S alm), 6
so that eq. (5.39) can be written,
. 1 n
I,?l[ai] = 27 ((m n—1 ’Y,In+2 Z’Ih] (‘7) ) . (5.46)

This equation rewrites integrals with one Feynman parameter in the numerator in terms
of higher dimensional and lower point integrals. It is important to notice that there are no
Gram determinants in this equation. They have all been collected into the scalar integral
of dimension (n + 2). It is clear that this higher dimensional scalar integral cannot be
divergent as A,, — 0 and so I%:[a;] is also finite in this limit. This confirms that the
divergence as A,, — 0 is fake. Furthermore I%*?[1] is an excellent candidate for a finite
fuhction — it is finite as the Gram determinant vanishes and is easily related to the
Feynman parameter integrals. Of course, it may still be divergent as ¢ — 0 and before it

can be used this e-pole must be subtracted out.

Eq. (5.46) can be extended to two or more Feynman parameters in the numerator by

differentiation (using generalizations of eq. (5.25)),

*n 1 6.f,',‘1 (Li]
Inlaia)] = m—n-—1 8(1[‘
5
1 8In+2[qy) . 1™ e
= Ai m L i.I"+2 R L Zom=1ld
1 m
= ((m n = Q%L+ lo5) + n 5711 - E e ‘f%[aj]) . (5.47)

Differentiation has produced no new Gram determinants. By differentiating further it is

easy to produce similar expressions for integrals with an arbitrary number of Feynman



CHAPTER 5. FINITE FUNCTIONS 73

parameters in the numerator. Converting back to the original form of eq. (5.17), ie

unhatted integrals, the expressions for up to four Feynman parameters in the numerator

are given by,

1 k{3 "’7
I:z[xz] = éN— ((m -—n- 1 711 +2[1] anjalaj (J)[l]) (5'48)
m
1
INziz;] = S ((m — n = I z;] + mijeuog IR
m
— z Mkl ’( )[.’II]]> (5.49)
R k=1
1 n n
I,’,‘l[miw,-mk] = —21—\/.— ((m -n— 3)")’1'I::l+2[$j.'l,‘k] + mjaia,-Im’“z[xk] + mkaiaklm”[xj]
m
- Z Nir0i0 I e )[a:,a:k]) (5.50)
1 n
I zzzezy] = SN ((m —n — )y I zzeT) + nijaiajl,',‘l”[xk:c,] + nika,-aklm”[szl]
m
+77,1a,a,I [zJ:ck] Z Niraion I [xjxkxl]) (5.51)

These equations can be solved recursively and related to the tensor integrals, Z/!#® using

egs. (B.22-B.25).

In summary, integrals with Feynman parameters in the numerator can be written as
sums of lower point and higher dimensional scalar integrals which are well behaved in
the limit of vanishing Gram determinant. In the following sections this procedure will
be carried out for the tensor integrals required for the calculation of v* — gdQQ in
Chapter 6. Relations of the form of eqs. (5.48-5.51) can be found for each individual
case. These relations are calculated once-and-for-all, and inserted where required into the

matrix elements.

5.5 Triangle Integrals

The calculation of the virtual corrections to v* — ¢g@QQ@ in Chapter 6 will require triangle

integrals with one, two and three massive legs and up to three loop momenta in the
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numerator. This section will provide expressions for these integrals, presented in terms
of functions which are finite as the Gram determinant vanishes.

The outgoing momenta of the three legs will be taken to be p;, p2 and p3 = —pyo, as

'shown in fig. (5.1).

ol

P2
P1 O3
Olq 04
P12 Ol —»O—'- P12
o3 O3
P2 Olq

P1

0

Ol

Figure 5.1: The diagrammatic form of the triangle integral and the bubbles formed by
pinching. For each pinching i, the internal line corresponding to «; is shrunk to zero
length and the momenta on either end are combined.

After Feynman parameterization and integration over the loop momentum, the Feyn-

man parameter integral is given by, ‘
1 Ty — T — :
2[P{z}] = -T'(3 - g) /0 P Gl Sk k) 1 S Y )

2 D) 3—
(—lelzz — D3x2T3 — 8121131373) 2

5.5.1 The Triangle Integral with Three Massive Legs

When p?, p3, 512 # 0, it is convenient to choose the a; variables to satisfy,
Pt = —1, oazpd = -1, aa3sp = —1. (5.53)
The Gram determinant and rescaled Gram determinant are given by,

3= —pi — p3 — 5%, + 2p3p2 + 2s19p? + 2519p3, (5.54)

>

Az = —a? — a2 — a2 + 20 0 + 20103 + 20903, (5.55)
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and from the bilinear form of eq. (5.32), n, and N,, are seen to be,

-1 1 1 |
n=] 1 -1 1], Ny=1 (5.56)

1 1 -1
The ~; variables can be written,

3 p2(p? + s12 — p3), Z =1,
X 312(])% +p¥ - 312)’ 1= 2a (557)
pH(p3 + 512 — p2), 1=3.

The Scalar Integral

The scalar triangle integral with three massive legs is explicitly derived in Appendix C,
and is finite in four dimensions. It is given by,
+

— Z_) + 2Lig(a®) — 2Li2(a‘)) , (5.58)

I = —— (log(a*a‘)log(

—A,

where Li, is the dilogarithm function defined by eq. (A.15), and the a* are given by,

2 .24 J_A .
PR, et A e ) (5.59)

2312

Notice the presence of the Gram determinant in the denominator. When the scalar
integral is differentiated using eq. (5.25), this will lead to additional Gram determinants
in the tensor integrals, as expected. As previously demonstrated, I3(1] is finite as A3 =0

and reduces to a sum of bubble integrals.

. 2 812 2 512
lim I31]=———1o (—) +—7——=lo (—) . 5.60
A3—0 alll s12+ P — D3 8 3 s12 + pj — 1t 8 i ( )

The Scalar Integral in Dimension n > 4

It has been seen in section (5.4) that scalar integrals in dimensions higher than four provide
combinations of the scalar integrals divided by Gram determinants which are finite as

An — 0. Furtherfnore, the scalar triangle integral is required in (6 — 2¢) dimensions
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for the g coefficient of tensor triangles (eqs. (B.24) and (B.25)) and in (8 — 2¢) and

(10 — 2¢) dimensions for evaluation of the box integrals using the recursive relations of

egs. (5.48-5.51).

These can be obtained by using eq. (5.45). For the triangle in (6 — 2¢) dimensions,

this gives, _ :
fozeqr) = —L L [+ 2 5 ugi2e0p (5.61)
3 €e—1A; 23 - ’

where f§_2‘(i)[1] are the bubble integrals formed by the i** pinching of I37%(1], shown
diagrammatically in fig. (5.1). These bubble integrals are also calculated in Appendix C,

and are given in terms of a; by,

" e—1
jaret) = [0 ) et _ __Or % , 5.62
2 H3=1 Q; 2 6(1 - 26) H?zl Qo ( )

where ér is given by*:

, _T(1-el(l1+e¢)

cr = F(l — 26) (563)

The presence of the bubble integrals in the above make the expression for [$~%[1] divergent
as € — 0. However, a useful function, which is to be used as a building block of matrix
element calculations, must be finite in the limits Az = 0 and ¢ = 0. The e-pole must be
subtracted off before defining a finite function. This can be done by adding,

‘ s = | g2y :
2A3( (H"J) [Aﬁl‘z%az} L7 =0. . (5.64)

i=1
The six dimensional scalar integral is then,

1 1 1
16 26 — el I41 0 1—4 2¢(d) 4 ~2¢(2) 4—-2¢(2) ‘
1= 2 [ 5 e (100 - ) |+
(5.65)
The e-pole structure lies exclusively in the last term. Returning to more conventional

invariants and using the expressions for I '2‘(i)[1] gives,

' I§_2‘[1] = Leys(p1, p2) — %‘“ [(_322) + 3] , (5.66)

4This is related to the cr of eq. (C.9) by: cr = i(4n) 2¢ér
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where,
. 1 4 2 S12
LC1S(P1,I’2) = = 2P1P23121 [1] 101 S12 +P2 pl)log R—

27,
_pg(slg + pl p2) IOg (plz)] . (567)
2

In a similar fashion the e-pole structure can be removed from the triangle scalar integral

in (8 — 2¢) and (10 — 2¢) dimensions, giving two more functions which are finite in the
limits A3 — 0 and € — 0.

- cr [(—s12)”¢ 19
Ig 25[1] = LC2S(p1,p2) - (p% +pg -+ 812)-2—4 [(___%2)_ + E] ,

LO°*[1] = Less(p,p2)

(—-312) 17
—(p} + p3 + 53, + PID; + Pis1a + P3s12) s 360 [——6—— += , (5.68)

where the finite functions are defined by,

1 1 | 312
Less(pryp2) = 1A, [213%:!7%31214015(171,?2) r (P%(Sm +p3 — pi) log (;{)

3
+p§(312 + p1 p3) log (p ) + 2p1p2312)} (5.69)
5
1 1 2 S12
Less(pi,p2) = 6A3 (2p°p3s12Leas(pr, p2) — 60 \P1 $(s12 + p3 — pi) log 71
6 1
+pS(s12 + P2 — pl)log | = | + 2171102312(171 + P + $12)
j23
(5.70)

Tensor Integrals

The triangle integral with three massive legs and one Feynman parameter in the numerator
can be easily written in terms of the triangle scalar integral in (6 — 2¢) dimensions and

bubble scalar integrals using eq. (5.46). In terms of unhatted quantities this gives,

3

€ ~2¢ 1 —2¢(y
L) = | ~(1 = 9l ™(1] - 5 2 myoue Ty P[] (5.71)
j=1
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Immediately a problem is apparent — +; in the coefficient of the scalar integral in (6 — 2¢)
dimensions contains all three invariants in the denominator, eq. (5.57). Although the
divergence as the Gram determinant vanishes has been removed, it has been replaced by
a divergence as the invariants vanish. Problems in this limit are to be expected since
even the scalar integral itself is not finite as p? — 0. Since this limit is “not allowed”,
this decomposition of the Feynman parameter could still be used and is clearly better
than the traditional decomposition of eq. (5.39). However, in this case, I3~2%[z;] itself is

particularly simple and is a better choice for a finite function.

This is most easily found by application of eq. (5.39),

c4_2¢ 1 S (A ~4-2¢(i Yi =
e = 5 3 ( A; - m;-) 2720n) + A—3]§[1] + O(e). (5.72)

i=1

It is only necessary to consider the case where the Feynman parameter z3 is inserted into
the numerator, since the integra.l with z; in the numerator can be trivially obtained by
swapping p, and p,. Also, any appearance of z, can be systematically removed since the
Feynman parameters must add to one. Notice that since the bubble integrals are divergent
as n — 4, it appears at first sight that 7?[a;] diverges in four dimensions. However, since
I7[a;] could also be found by differentiating the scalar integral (using eq. (5.25)), this
cannot be the case. In fact, the e-poles of f§—2€(i) are independent of i and eq. (5.35)

ensures that they cancel. To make this explicit it is convenient to add the following to

f;‘[az]

13 ('A)’i:)’j ) Q; 2n(2)
2]'2::1 A; ') 02"
This gives, '
1 & (4% ) 7 =4 2¢(i cq Y 3
Ia) == «—’- : i (7200 - 1220n)) + A1)+ O), (5.74
=32 (&, ™) Ee (B0 - B0 + L B0+ 06, 674

which simplifies after some algebra to,

7 | S Y2 az «
3lai : (7313 [1] 2 log o + 2log ” + O(e) (5.75)
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Returning to unhatted quantities and writing o4, 7; as invariants gives,

1
I[z3] = Z—a p3(s12 + p3 — p1)13 1] + (p1 + p2 — 812) log (p2 ) — 2p2log (Pl )] . (5.76)

Notice that this is just the form of the finite function suggested by eq. (5.15), multiplied

by a kinematical factor. Integrals with more Feynman parameters in the numerator are

most easily obtained by differentiating I$[as],

n 1 [ o 014[a}]
L[zx}) = — = (Jl;[l aj) ;0 Baaia . (5.77)
This gives,
1
Lzzs] = SA. 2p2(s12 + P2 — p2)Ia[zs] + PE(s12 + P} — p}) I3 [1]
3
—pp3I5[1] — pjlog (p2) +pt+ 0} - 312], (5.78)
1 [ ’ s
Bl = k[t 7 ol U210 - G - 1o (35 ]
(5.79)
Lt
Ij[ziz}] = oA 4p2(s12 + P — p3)I3]z3] + 6p3(s12 + P — P3) I3 [2123]
—3p2pils[zs] + piI3[z] — p3log (p ) +p5— 312], (5.80)
2
1 S
Izd] = ——|5p3(s12 + P2 — pD)I5[23) + 2pi 15 (23] — (s12 — p3) log =) - p|.
3A; n
(5.81)

These integrals have several important properties:

e They are finite in four dimensions.

e They are finite as A; — 0. This property is inevitable since they are derivatives of
I}[z3] which is also finite in this limit. By expanding the integrals as a Taylor series

in A; they can be evaluated with arbitrary precision close to A; =0.
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e They combine together the dilogarithms from the triangle integrals and the loga-

rithms from the bubble integrals in a natural way.

To illustrate the behaviour of these integrals as the Gram determinant vanishes, they
are plotted in fig. (5.2) for the case when s; = 1, p? = 0.2 and pj is varied smoothly
toward 0.135 — this limit corresponds to the vanishing of the Gram determinant. It is
clear that as this limit is approached, the evaluation of the functions becomes unreliable.
The dashed lines show the Taylor expansion about A; = 0, keeping only the constant
term, which is a reliable approximation for up to two orders of magnitude before the

evaluation of the complete function breaks down.

Len(pr.p2)

0 [ L 1 L f
10712101710 10° 10 107 10 10 10 10° 102 107 10°

A/AT>

Figure 5.2: The finite functions for the triangle integral with three massive legs with
s12 =1 and p? = 0.2 as a function of Ag/AT*® where AP** = —(s12 — p7)*. The dashed
lines show the Taylor expansion about Az = 0, keeping only the constant term.

The definitions of the finite functions for the massive triangle (p?, p2 # 0) are,

Leg(pr,p2) = Ig[l], Legn-1(p1,p2) = Ig[xz?], Legn(p1,p2) = Ig[xlxg‘]. (5.82)
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These are related to the finite function derived from the scalar integral in (6 — 2¢) dimen-

sions by, ,
(P?Lcl (P2, 1) + P3Lca (Pl,p2)) . (5.83)

N =

Leys(pa, p2) =

Tensor Integrals in Dimension n > 4

The calculation of the tensor triangle integral with three loop momenta in the numerator,

eq. (B.25), also requires the integral with one Feynman parameter in the numerator in
6—2¢

(6 — 2¢) dimensions, I3 *[z;]. Rather than calculating this by differentiating I3~*¢[1],
which is divergent as € — 0, it can be found more easily using eq. (5.47),

7 7 1 f A 62 76—2¢

Ii[aya:] + I3[aza;] = 3 [(26 = 3) (51 + As) 5~ *[as) + (s + mai) 137 (1]

3
~ 3 (s + mae) I3 Pad)| (5.84)
k=1

However, it is clear from the definition of 7;;, eq. (5.56), that,
Ti + M3i = 202, (5.85)
which simplifies the equation to,
Toaras) + falasas] = (2€ — 3)anfE*[a)) + 6288 2%[1] — [;7>®[ay]. (5.86)

Since the Feynman parameters add to one, the case i = 2 is of little interest. Furthermore,

72Oz = 7P 5] = %F ((—'—Sfi + 2) . (5.87)
Therefore replacing the factors of « for : = 1 or 3 gives,
Iﬂf;fi] + Iﬂf;’:"] = (26 = 3)I-%[x)| — [% O], (5.88)
Finally,
%) = X (—Ig[xlwi] _ Iglxsxi]) 4 L7 zy]
3 o109 Qa0i3 2¢—3
- 3 [pffg[xlx,-] + f3esz] - & (@ + -2-)] L (589)



CHAPTER 5. FINITE FUNCTIONS 82
5.5.2 Triangle Integrals with Massless Legs

Triangle integrals must also be considered where one or more external particles are mass-
less. The scalar triangle integrals with one and two massive legs are calculated in Ap-
pendix C. When only one leg is massive, the Gram determinant becomes trivial and it is

not useful to construct new functions. This case will not be discussed further here.

When two legs are massive, say p?, p%, # 0, then the scalar integral is given in terms

of the o4 variables by,

249erq1 _ Cr [(ona3) — (anap)
L) == 5.90
3 [ ] 62 [ Q3 — O ( )
where ¢; are chosen to satisfy,
oopt = -1,  mazs; = -1 (5.91)

Notice that now there are only two equations constraining the a; since p3 = 0. The Gram

determinant is now given by,

A3 = —(312'—])%)2, (592)
Ay = —(a— ), (5.93)

and the limit A — 0 corresponds to as — a3. Notice that A; now makes no reference to

;. Constructing 7;; from the Gram determinant in this case gives,

0 0 0
n=0 -1 1]. (5.94)
0 1 -1

Therefore N3 = 0 and the method breaks down.

However, formally one can still derive eqs. (5.48 — 5.51) in the case where p2 # 0,
ie. when the triangle has three massive legs, and write out n;;a;; and v; in terms of
invariants and N3 = 1. Then the limit p2 — 0 can be taken and all the remaining
integrals regarded as triangle integrals with p2 = 0. It is important that one does not
take the p2 — 0 limit of the results derived in section (5.5.1) since they have been derived

assuming that the scalar integral is finite in four dimensions. This is obviously not true
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when p2 = 0. Formally, the limits p2 — 0 and € — 0 do not commute. In fact, it is easiest
to bypass egs. (5.48 — 5.51) entirely and derive the tensor integrals by differentiating the
scalar, ie. using eq. (5.25).

Although 747%¢1] is well behaved in the limit of vanishing Gram determinant (a; —
a3) it is divergent as € — 0. As a general rule it is not necessary to tamper with the
e-poles of matrix elements — they must either cancel with the infrared poles of the real
matrix elements or be renormalizable. Therefore they have a prescribed form which has

no Gram determinants, and finite functions are unnecessary.

However, it is possible for the tensor integral to be multiplied by a factor of € in the

Feynman diagram. Expanding
zf =1+ elogz + O(e),

it is easy to see that el;~%([1] is finite as € — 0:

i) = L [(alas) ~ (m0y) J
Q3 —
log (%)

Thus it is necessary to define a finite function,

log (%)

— 5.96
S12 — P% ( )

L™ (py,pa) =

where the superscript, 2m, refers to two massive legs.

The integrals with more Feynman parameters in the numerator are easily found by

differentiation, eq. (5.25), and further finite functions can be defined by,
2m — 13 —2€ -
L™ (pr,pe) = lim (3™ [z57]), n=1...4 (5.97)

In terms of invariants,

p‘f)Lcrzle (p1,p2) = ﬁ
812 — P%

L™ (p1,p2) = — [ J , n=23,4. (5.98)
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These functions, or closely related functions, have already appeared in next-to-leading

order calculations [21, 27, 34, 31].

The corresponding Feynman parameter integrals are given in terms of invariants by,

I;'z‘[l] _ i_lz“((—slz?g: :;%—Pf)—e), | (5.99)
) = 2L ) - el (5:100

I3 %[z?2] = —3L™(p1,p2) + 2(3121_ )~ C (_822)_6 2((3;;—_:;]11’%))2
o= e

) = e + o

e N—e [ 2 4

ol 822) (3(3121_11%) _ 2(312pip%)2 + (slzzilp%)?’) (5.102)
while,

Iz, = 213 %13 = 37 %[z = L™ (p1, pa), (5.103)
I [eyz5) = 31} *[alzs] = §chm(P1,P2), (5.104)
E¥ndd) = L& bup) (5.105)

3

The required integrals in (6 — 2¢) dimensions can be most easily derived by taking the

p3 — 0 limit of the (6 — 2¢) dimensional triangle integrals with three massive legs and are

given by,
L) = % -P?chm(l)l,m) —Cr (
L7%[n] = é -Pchfm(Pl,m) —¢Cr (
L *[zs) = é -Pchgm(Pl,pz) —ér (

The corresponding integrals for the case p? = 0, p3, s12

D1 ¢ Doy

Iy € T3.

E—Szz): + ?;)] , (5.106)
_sf) + 5)] , (5.107)
(o)™ | g)] . (5.108)

# 0 are given by substituting,

(5.109)
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5.6 Box Integrals

For the calculations of Chapter 6 it will be necessary to derive tensor box integrals and
their finite functions in the case of one and two massive legs. The box integral with
two massive legs can be further divided into two cases, where the massive legs are either
opposite or adjacent. Throughout this section the fourth momentum will be eliminated in
favour of the other three and assumed to have non-zero invariant mass, ie. pj = —p2y; =

—8123 # 0. The momentum configuration for the box integral, together with its four

triangle pinchings can be seen in fig. (5.3).

P2 P12
. (v? o
P1 P2 P2 o3 P12 o3
o2 o o3
Ps3 Ps3
a4 O3
' P P
o o4 o
Pi23 Ps P12 oz P12 oz
04 O3
. P23 P2

Figure 5.3: The diagrammatic form of the box integral and the triangles formed by
pinching. For each pinching ¢, the internal line corresponding to o is shrunk to zero
length and the momenta on either end are combined.

5.6.1 The Adjacent Box

Consider first the box integral with adjacent momenta, p;, p123, massive. One can easily

see from fig. (5.3) that the a variables should be defined by,

_ 2 _
o1a48123 = —1, ajagpi = —1,

o1a3812 = —1, oSz = —1. (5.110)
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The Gram determinant is given by,

Ay = 25y [(-3123 — 812)(812 — Pf) - 512323] )
A4 = -2 [(as - a4)(a2 - aS) - 01(13], (5111)
and consequently,
0 0 1 O
0O 0 -1 1 1
= = -, 112
=111 o2 o1 |0 M3 (5.112)
0 1 -1. 0

The kinematical variables v; are then,

—38o3 1=1
4 —
S123 — S12 1= .
% Jl;Il J p%+8123—823—22% 1f=3
p? — 512 i=4

Again, the scalar integral has been calculated in Appendix C, and is given in terms of the

o variables as,

A ¢

I %[1) = 6—1; [(a2aq)® + 2(en3)® — (ana2) — (104)] + 2Ldy(p1, p2, p3) + O(e), (5.114)
where the piece which is finite as € — 0 is given by,

Ldo(p1, P2, ps) = Liz (1 — ) — Liy (1-2)+4log (eggA) log (). (5.115)

Notice that there is no Gram determinant in eq. (5.114), and it would appear that dif-
ferentiation to obtain integrals with more Feynman parameters in the numerator cannot
generate any further Gram determinants. However, application of eq. (5.25) to the box

integrals gives, A
1 8I;7*[1]
2¢ Ba,- '

The prefactor of 1 requires that the scalar integral be known up to O(e) and it is differ-

I %[a)] = (5.116)

entiation of this extra piece which leads to the Gram determinants of the tensor integrals.

This phenomenon is known as the e-barrier.
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The Scalar Integral in Higher Dimensions

The first goal is to find a function which combines together the scalar box integral and
lower point integrals over the Gram determinant in a form which is finite as the deter-

minant vanishes. The scalar box integral in (6 — 2¢) dimensions fits this criterion. From

eq. (5.45), this is given by,
IG 26[ ] 61 A I4 25[1]_*_2 4 26(1) ‘ (5117)

Although this appears divergent as € — 0, it is actually finite. Consider the e-poles of the
above — the pinched integrals are given by (see Appendix C),

. ér (apa
prmp) = 612“( 2a:) , (5.118)
gy = Glaad - tnon)t (5119)
~4—2¢ ‘r (a a3)‘ - (a az)e
i (4)[1] - 3 1 v azl : (5.120)

where the case i = 3 has been omitted because the scalar integral is finite in four dimen-

sions. The pole of eq. (5.117) is therefore,

~

1 ér1l
2¢ — le_gA_4 (200)® + 2(0103)" — (on02)* — (on104)° — z—;(aga‘;)‘
g . 5 ] 6
L (@)~ (00)) + L ((mas) ~ (mag))| . (5121)

From the definition of 4; it is easy to see that this is zero and the adjacent box scalar
integral is finite as ¢ — 0. Since it is clearly finite in the limit of vanishing Gram
determinant (as it is a scalar integral), it is therefore an ideal candidate for a finite

function:

LdlS(pla D2, p3) = If[l]

25125 1 2pts
= - 1132 2 Ldy(p1, p2; p3) + 5 (3123 + P} — 893 — p; 2123) LCO(Pl,st)] (5.122)
4 1

In higher dimensions, this cancellation of the e-pole does not happen and the scalar

integrals in (8 — 2¢), (10 —2¢) and (12 — 2¢) dimensions are ultra-violet divergent as ¢ — 0.
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However, these e-poles do not contain Gram determinants in the denominator and can
be isolated by adding and subtracting lower point integrals. The explicit forms of these

integrals are easily obtained from eq. (5.45).

¢ —s193)7¢ 11
12—26[1] = Ld25(p1,p2,p3) + —61: [(_%3)_ + _Z))—l , (5123)
C ) [(— € 107
I°*1] = Ldss(p1,p2.p3) + oo ¥ 311;; 52 + pi) [( 31:3) ] {5.124)
12-2¢ crP [(—s123)™¢ 129 19
—_— —_— . 5
;%) Ldys(p1, p2, p3) + 9590 [ -t 3| (5.125)

where,

$198
2 2 2 4 2 2 2 12523
P = 82,3 + siy + 533 + P} + S123512 + S123823 + S123P] + S12P1 + S23P) + 5

and the finite parts of the higher dimensional boxes are given by,

Ldys (pl y D2, Pa) =
2p3s123

S12

3 12 523

[812823Ld15(P1,P2,P3) + (-9123 + P8 — 83 — ) Leys(py pas)

4
2
S23 812 123 N 5123
52 1og (22 4 aptog (22 - B 1og (12 )] 1
+2 og o + 512 log 5 5 log 7 (5.126)
Ld3s (Pl » D2, Ps) =

_ 512523 2 2p3sias
$12523Ldas(P1, P2, P3) + | S123 + D7 — S23 — Leas(p1,paa)
5A4 S12

2 2
823 (3123) 512 (8123) S123 S12823
+=2log|— )+ ==log|— 1 + .
24 8 893 12 o8 Slé ) % 12 ’ (5 127)

Ld45(p17P2, p3) =

2
2pisio3
S12

812323

[312823Ldss(p1,172,p3) (3123 +p3 — 593 — ) Lczs(pr, pas)

4
83, S123 812 5123 p1 5123

#0518 (o) a6 108 (5) ~ 5608

360 B\ /) T 180 B\ 5,/ T 360 B\ p2

512523(8123 + S12 + S23 + P?

et 23(S123 72:)2 23 P1)]_ | (5.128)

Again, these functions are finite as A4 = 0, and can be used as building blocks for the

matrix elements. The behaviour of these functions as the Gram determinant vanishes



CHAPTER 5. FINITE FUNCTIONS 89

25
Ldag x 10°

Ldys

Ldns(p1,P2.Pa)

75

_10 1 L 1 L L L " L .l : k!
101290711 1010 10?10 107 10 105 104 10° 102 107 10°

AJATH

Figure 5.4: The finite functions for the box integral with two adjacent massive legs as a

function of A4/AP**, where AT = 2519593(S123 — S12 — S23). Three of the invariants are
fixed, s123 = 1, s12 = 0.4, 593 = 0.08, and p? is varied. The dashed lines show the Taylor

expansion about A4 = 0, keeping only the constant term.

is shown in fig. (5.4) for the case where s;p3 = 1, s;2 = 0.4, s33 = 0.08, and p? is
varied. Although the stability of Ld,s is remarkable, the evaluation of the other functions
becomes unreliable as the limit A, = 0 is approached. The dashed lines show the Taylor
expansion about A4 = 0, keeping only the constant term, which is a good approximation

for Ay < 1074APe,

Tensor Integrals

Integrals with Feynman parameters in the numerator can now be expressed in terms of
these finite functions using egs. (5.48-5.51) iteratively. The integral with one Feynman
parameter in the numerator becomes,

4 .
I %) = —wIf[1] = Y mjouo I 791, (5.129)

i=1
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which is manifestly finite as A4 = 0. Since 3, z; = 1, this need only be calculated for
three of the Feynman parameters — it is best to rewrite z3 = 1~z — o — 24 since
this corresponds to the most complicated column of 7,;. It is easy to use the definitions

of 7;; and «, egs. (5.112, 5.110) to write eq. (5.129) in terms of standard invariants for

1 =1,2,4. For example,
1
I3[z = " [Ld1s(p1, P2, p3) + Leo(py, pas)] - (5.130)

As with the triangle integrals, writing the Feynman parameter integrals in terms of the
scalar integral in higher dimensions introduces an apparent divergence as one of the in-

variants vanishes (in this case s,5). However, I3~%([z;] is actually finite in this limit since,

) . 20259935
3}2‘_’30 Ld;s(p1,p2,p3) = lim chﬂ(Pl,P%) = —Lco(p1, p23)- (5.131)

s12—0 A4

Instead of using Ldis(p1, pe, p3) as a finite function, a new function could be defined by,
Ldl(p11p27p3) = Ii-ze[xl_L (5132)

which is finite in all limits. However, if such a policy is to be implemented for all the
adjacent box Feynman parameter integrals, many new functions would have to be intro-
duced. This is undesirable — it is better to have the tensor integrals written in terms of
the same function to allow cancellations between them. For this reason, the calculation
of Chapter 6 uses the scalar integral in higher dimensions as the building blocks for the
tensor integrals. Any remaining fake poles (there are actually very few) are gathered
together at the end of the calculation. This allows potential cancellations between the

box integrals to happen freely.

Solving eq. (5.48-5.50) iteratively for the adjacent box then gives the Feynman parameter

integrals®,
4 .
IF¥z) = (2e— DyI*[1) - 3 ngesoy I3 0], (5.133)
| Z
4
L o] = (2= 2)(2e = 3yl - (2e — 20w Y mineyendy 1]

k=1

5The integral with four Feynman parameters in the numerator is not required for the calculation of
Chapter 6 and is not reproduced here.
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4
LU EDS mjoacly > Vzj], (5.134)
k=1

IF¥[zzize] = (26— 3)(2e — 4)(2e - 5 vy ve s (1) + (26 — 3)yimjkeion (1]
+(2¢ — 3)mjauavels *[1] + (26 - 3)mixagoy; 15 (1]

4
—(2e = 3)(2e — )1y Y muarauly 1]

I=1
4 4
V 6 —2¢,(1
~ngasy Y mwewendy O] - mwoson Y muaseuls 1]
=1 ’ =1
‘ ; L : 4-2¢(1
—(2¢ = 33 Y. ey > Olai) = 3 masonly > Vlzsmi). (5.135)
I=1 =1

For particular 4, , k these equations can be easily written in terms of the previously defined
finite functions and e-pole pieces. This combines in a non trivial way the dilogarithms,
logarithms and constant pieces emerging from the tensor box integrals, leading to more

compact, numerically stable results.

5.6.2 The Opposite Box

This section will discuss the box integral with two massive legs at opposite edges. In the
notation of fig. (5.3) this corresponds to s23,p2 # 0 and p? = p2 = 0. In this case, the o;

parameters are defined by,

aro4s123 = —A,  ag03p; = —1,
crassie = =1,  opaysyy = —1. (5.136)

Notice the appearance of ) in the first equation — this has been introduced in order to

keep the o; independent. It is given in terms of the usual invariants by,

2
(mas)(osa) - Pysiz (5.137)

A= —a1048123 = — 1
Q03 S12823

The Gram determinant in its normal and scaled forms can be written,

A4 = 2813(5‘12823 - p38123) = 2(1 - /\)812813823, (5138)
Ay = 2(1 - /\)(0!103 — o104 — MO0 + 02(14). (5.139)
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Again, from the bilinear representation of the Gram determinant it is easy to see that the

matrix 7 is now dependent on A,

0 0 1 -1
0 0 -x 1 1 2
=(1-2) 1 -x o ol Ny = 2(1 A (5.140)
-1 1 0 0
Furthermore,
. pg — 893 1=1
1 ) Sim—s12 1=2 '
7= (1= ) H %G G sy i=3 (5.141)

<
|l
—_

2 -
p;—S12 t=4

The Scalar Integral
The scalar integral has been derived in Appendix C — written in terms of o; and X it is,

R 2 é —€
L) == L—l; ((@aas)® + (020)* + (0205)° + (c104)A™) + Ldﬁ””(f’hpm)] ’
(5.142)

where the finite part is given by,

Ldg (p1,p2,p3) = Lip(1—A)—Lip (1 - %ﬂ) — Lis (1 - %)
—Lip (1 - ﬁg) — Lig (1 - g;) — 1log? (%ﬁf) . (5.143)

Clearly, the scalar integral is divergent as A — 1, ie. when the Gram determinant vanishes.

Furthermore, in this limit,

Ldg”l’(Pl,Pz,lps) — Lig(0) — Li, (1 - %3) — Li, (1 _ %)
~Liz (1~ 32) = Lia (1 - 33) - 318" (352)

a; Qs
- B l (—) l <—) ’ )
og - og o (5.144)

where the dilogarithm identity eq. (A.21) has been used. Although this is a rather simple
form, it is unique to the opposite box. In creating finite functions in the previous cases
the scalar integral was combined with lower point scalar integrals to form a function which

was finite as the Gram determinant vanishes. It is easy to see from fig. (5.3) that the
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only scalar integrals which are available by pinching are the triangle integrals with one
and two massive legs. However, these are entirely e-poles and cannot (and should not)
be combined with the opposite box. There is no appropriate function which can generate

the double logarithm of eq. (5.144) as A — 1 and consequently no finite function can be

formed.

Since the matrix elements must be finite in the limit of vanishingGram determinant, all

occurrences of LdgP? divided by the determinant must cancel. This provides an interesting

check of the final matrix elements.

The Scalar Integral in Higher Dimensions

The scalar integrals in higher dimensions can be calculated using eq. (5.45). Since these
integrals must be finite as A — 0, one might expect that they provide finite functions
with which to build well behaved matrix elements. However, since N, is now effectively
a Gram determinant squared (since it contains (1 — A\)?) its presence in the numerator
of eq. (5.45) removes the Gram determinant from the denominator. Consequently, the

scalar integrals in dimension n > 4 are trivially finite in this limit and are not useful as

finite functions.

For example, the scalar integral in (6 — 2¢) dimensions is given by,

4

B = TR - [+

1 2L sa-2e(i)
Aidz (1)
(1- )2 ; 3

?:1 Qa;
2(26 - 1)813

o - [ ] s [ )]

(a1 — Aaw) [ (40 )27 = (a4a2)j + (a2 — ) [(0‘3“2)6 — (0‘3“‘)6] }]  (5.145)

) — /\az Qg —

0, é € € € €\ —€ .
[QLdOPP(Pl,Pz,Ps) + 26—1; ((alas) + (0204)" — (0203) — (104)A )

where the appropriate trfangle pinchings have been inserted remembering that the defi-

nitions of a; now involve A (in particular a1a43123 = —)). Clearly the e-pole cancels and
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the resulting (unhatted) box in six dimensions is given by,

1
L= -aLdgpp(Pl,Pz,Ps). (5.146)

As expected, the Gram determinant has been canceled and there is no new finite func-
tion. For the third rank tensor box integral, the Feynman parameter integral in (6 — 2¢)
dimensions with z; in the numerator is also required (for the coefficient of g,,pf). These

-are given by differentiating I[1], so that, for example,

1 [s10—p2
12_26[3;4] = — | p2Ld8pp(p1,P2aP3)—312L0%m(;012,p3)
2893 S12
s
+p3 L™ (p2, ps) — log (%‘:’)] . (5.147)

Similarly, the scalar integral in (8 — 2¢) dimensions is given by,

1 _ mn?
2] = S12523 — Pp%123 Ld%(p1, pa, ps) — $1210g (3123) — sy log (3123)
6513 813 812 523
2 5123 ér ((—s123)™¢ | 11
—= — — 4+ —. 5.148
+p2log(p%)]+6( c 3 (5148

Tensor Integrals

Although the function Ldg’? cannot be grouped into a finite function, there is no reason
why single logarithm terms (from the eventual bubble integrals at the end of the cascade)
cannot group together in combinations which are finite as A, — 0. Furthermore, when
the tensor integral is multiplied by a factor of € in the Feynman diagram, logarithms
can occur which are divided by the Gram determinant and must be combined into finite

functions. For this reason it is useful to define the functions,

LCdn(pl’pZ)p:i) - ll_r)% 6]2—26[:52]

1 . 4—~2¢ - —2¢ —
= 1 lim (eroals Oz} - eV )
2s
= S (suLe™ (o2 ps) - BLE" (2,13)) - (5.149)
4 “
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Opposite box integrals with one Feynman parameter in the numerator are most easily
derived using eq. (5.48)%. This can then be differentiated to give integrals with more

than one Feynman parameter in the numerator. These derivations are straightforward

but lengthy, and will not be reproduced here.

5.6.3 The One Mass Box

The box integrals with only one massive leg (ie. si23 # 0, p? = p3 = pj = 0) are trivially
obtained from the adjacent box integrals by taking the limit p? — 0. All the integrals are

well behaved in this limit and the resulting finite functions are given by,

2s s
Ldy2(p1,p2,p3) = e 512523Ld15 (p1,P2,P3) + 523 log( ) + s12log ( 23)] ,
6A4 S23 812
(5.150)
2812823 [ m s 5123 s? 5123
Ld3%(p1;,p2,p3) = — 10A, _812823Ld§s (p1,p2,p3) + %log( ) + 1122 lo <312 )
812823
—_ 5.151
+ 12 ] ’ ( )
_ 2519593 (3123> 512 (8123>
L — lo
Ld45 (p1, D2, P3) 14A4 .312823 dss (p1, P2, P3) + 180 5os + == 120 512
$12823(S123 + S12 + S23)
. 5.152
* 720 ] (5.152)

5.7 The Pentagon Integral

In this section the pentagon integrals with one massive leg will be examined. Since
these integrals are not required for the calculation of Chapter 6 (except for the scalar inte-
gral) they are considered here only for completeness. In particular it will be demonstrated

that the integrals do not contain the 4 x 4 determinant, As.

The particle momenta will be taken as in fig. (5.5) where p? = p2 = p3 = p = 0 and

p§ = —5123¢ # 0.

6Taking the derivative of the scalar integral would, as in the case of the adjacent box, require the
scalar integral to order O(e). ,
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P2 P3 P12 P3
04 Oy
oy o5 o3 Os
02 Oy
P234 P4 P1234 P4
P4 P2z Pi1 P2 P1 P2
0y O3 )
[*7] Os ozl - O az 04
o8] 0y Oty
P1234 Ps P123s Pss P Ps3

Figure 5.5: The diagrammatic form of the pentagon integral and the boxes formed by
pinching. For each pinching ¢, the internal line corresponding to «; is shrunk to zero
length and the momenta on either end are combined.

The o; parameters can be defined by,

Q1581234 = —A, 004823 = —1,
oa3s12 = —1,  opasSay = —1, (5.153)
148123 = —1,  azazsy = —1,
where
A= —S1084 (0110'5)(0205) _ 31234323_ (5‘154)
(012(14) 51235234

Notice that this is the same as the \ associated with the third pinching of the pentagon, ie.

the opposite box, and consequently (1— ) can be thought of as a 3 x 3 Gram determinant.

The pentagon Gram determinant and its rescaled equivalent are given by,

2 2 2 2 2 2
S19834 + S13854 + S14553 — 2512534513524 — 2512534514523 — 2813524514523, (5.155)

e
I

Ay = 2 +02+(1-))%3+a2+a? —200as +2(1 — Nayas + 20104 — 20105
—2(1 = Nagos + 2(1 — 20 )y + 20005 — 2(1 — A)agoy + 2(1 — A)azas — 20405.
(5.156)
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With this choice of ¢; the n matrix is,

1 -1 1-2A 1 -1
-1 1 A-1 1-2x 1

n=|1-X2 A=1 (1-X2 A-1 1-2 [, (5.157)
1 1-22 A-1 1 -1
~1 1 1-x -1 1

and the normalization factor is given by,
Ns=1-\ (5.158)

The limit N5 — O therefore corresponds to the vanishing of the opposite box Gram

determinant.

The Scalar Integral

The pentagon scalar integral is derived in Appendix C by extension of the four dimensional
result of Melrose [23], and Vermaseren and van Neerven [24], to (4—2¢) dimensions (22, 27].

Its decomposition into scalar box integrals can be written,
242 1 SN, a-2e(i)
I = - > 4dy 1]+ O(e). (5.159)
5 4=1

This is divergent in the limit N5 — 0. However, it has been demonstrated in section (5.6.2)
that no finite function can be formed from the opposite box scalar integral, and it is this
pinching (i = 3) which causes the divergence as its Gram determinant vanishes. The other

box integrals can be combined together in such as way as to be finite as N5 vanishes.
To make this explicit, the 7 matrix can be decomposed into two parts,
i = Kikj + Nsﬁij, : (5160)

where k;k; includes no opposite box pinchings,

1 1 -10 1 -1
-1 -1 10 -1 1

ki=| 0|, wmki=| 0 00 0 0], (5.161)
1 1 -10 1 -1
-1 -1 10 -1 1
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and 7] is,
0 0 1 0 0
0o 0 -1 2 0
=1 -1 1-x -1 1 (5.162)
o 2 -1 0 O
0 0 1 0 0

Then the pentagon scalar integral can be written,

I = 2N 2N, 2 ols” Ol

J i

The first term on the right-hand side in finite as N5 vanishes and a new finite function

can be defined,

) ;
Ley(p1,p2,P3,01) = A 0
=1

51238
_ 1239234 [Ldo(pl’pZ,p3) — LdO(plap2)p34)

51235234 — 51234523
+Ldo(p12, p3, pa) — Ldo(p2, 3, Ps)] - (5.164)

Although the explicit factor of Ns in the denominator of the second term of eq. (5.163)
has been cancelled, this term is still divergent as N5 — 0 since it contains the opposite
box scalar integral which is itself divergent in this limit. However, since no finite function
can be formed for the opposite box, this divergence must cancel explicitly in any matrix

element calculation.

The scalar pentagon integral is then,

F4—2¢ 1 ~ rd—2¢(i
L) = (Z 'ijaj) Ley(p1,p2,p3,P4) — 3 3 fijeily ) (5.165)
J iJ
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Scalar Integrals in Higher Dimensions

The scalar integral in (6 — 2¢) dimensions is given by eq. (5.45) to be,

. 1N 1 S\, a2 (k)
271 20 + — I, . 5.166
R S L R i (5-166)
Therefore, in order to calculate the pentagon in six dimensions, the scalar integral in

(4 — 2¢) dimensions is needed to O(e). However, Bern, Dixon and Kosower have shown

that J$2¢[1] always drops out of all matrix element calculations [21].

By inserting eq. (5.159) for the scalar integral in (4 — 2¢) dimensions it is at least

possible to see that IS~ 2€[1] in finite as € — 0,

1N, 1
76—2¢ Y5 —2¢(k) 24—2¢(k)
Al 1]+ Yels 1 (@) O(1) (5.167
B =23 2N52 (1] 2NZ 1| +0() =0(1) (5.167)

Similarly, the pentagon scalar integral in eight dimensions is also finite since fg[l] and

I8[1] separately are, but cannot be easily calculated.

Tensor Integrals

Since the integral with one Feynman parameter in the numerator can be obtained by
differentiating, ie. eq. (5.25), it is clear that the first rank pentagon integral can contain
no 4 x 4 Gram determinants. In fact, this can be explicitly seen from eq. (5.46) where
the coefficient of the pentagon integral in six dimensions is O(e),

L] = g5 (267,16[1] zn] I 241)[1])

=1

g 2wl Ol + 00 (5169

As in the scalar integral, this is divergent as N5 — 0 and can be written in terms of the

finite function, Le; by decomposing 7 as in eq. (5.160). Then,

~ 4 1 2 A2l
Ig 2 [ai] = "m Z(K,,'K,j 'f'.]\/:rﬂ]iJ')L;1 2 (J)[l]
13 .
= K,Lel(pl;p2aps,p4 52 I (5.169)
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The Absence of A

For the second rank tensor, the absence of As cannot be easily argued from the stand-

point of differentiation because of the appearance of the e-barrier. The generalization of
eq. (5.25) to the second rank pentagon is,

r4—2¢
1 9l5 "[ai] (5.170)

I4 26[ aia;] = 2¢ 0o

Therefore one must again know the pentagon integral in (4 — 2¢) dimensions to O(e).

However, eq. (5.49) can still be applied. This gives,

s 1 1
e = AR+ g X eI 4 TACLY
2N¢ N5 =
—L}i il 2 ®) g (5.171)
2N5 = n]k 4 1) .
Rearranging the coefficient of /8[1], I¢~%([a;a,] can be written,
o] = ~52a - gamal2l+ e 3w Te
° ? N NZ™ 2N52 !
1 &
26 4—2¢(k)
N o, Milsll — o Zn el lail, (5.172)
where the definition of ¢; is,
b= — [y = 20 (5.173)
J 2N5 iy A5

Now I&[1] in the second term can be written in terms of the pentagon in six dimensions
and boxes using eq. (5.45). This concentrates all occurrences of the Gram determinant

426

into the first term. [a;a;] becomes,

~

c 2 As 5 .
L oog) = — 37 oulsl]+ 5 N2 Z midy — M) I3 (1] — Z Ly a).
(5.174)
Since 8[1] contains two powers of A this integral is divergent as the Gram determinant

vanishes. However, it can be shown that Z¢" is not.
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The external momenta p; span the four dimensional Minkowski space, giving rise to

a Schouten identity which links the p{'p% and g,, terms of Zt”, eq. (B.24). This can be
written as,

5 .
14 1 vV

Z P’f...(i—1)P1...(j-1)Cij = Egﬁ]’ (5.175)

1,j=2

where gfi']’ is the metric tensor in four dimensions, and,

Cij = éija,-aj. ) (5176)

Substituting eq. (5.172) into eq. (B.24) gives,

4 €— v A ]' v
T = i(4n)? (Z pL. (=-1)P1..(i-1) [—‘]\Tzcijfg[l] + bo:z:es] - '2'9” Ig[l])
vJ—2
“ 1 uv 76 A5 8
= i(4m)*” Zzpl (i—1)P1 (- 1)[b09363] - 59 ) - 2 [4]N ~ 15 1]
1,J=

e veen [ y 1, A
= i(4n)*? (Z PL..i-yPL..(j-bozes] — S ¢* [Ig [1] + F:IE? [UD , (5.177)

4,j=2

where the finiteness of IZ[1] as ¢ — 0 ensures that,
(9t g — ol) 1E01] = O(e). (5.178)
Expanding I£[1] using eq. (5.45), the coefficient of g*” becomes,

- [ (~r - e S| = e

The second rank tensor pentagon integral has been written entirely in terms of boxes with
no 4 x 4 Gram determinant. Since the e-barrier has been passed further differentiation
cannot produce any new Gram determinants and therefore Aj is also absent from the

third, fourth and fifth rank tensor integrals.

5.8 Summary

This chapter has presented a general method for calculating tensor loop integrals in terms

of functions which are finite as the Gram determinant vanishes. It has been seen that
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standard approaches produce expressions which contain fake singularities in this limit.
By modifying the “string inspired” approach of Bern, Dixon and Kosower [21, 27, it is
possible to collect together non-trivial combinations of scalar integrals to form these new

finite functions. Not only does this improve the numerical stability of the matrix elements

but also helps make the expressions more compact.

This method has been used to evaluate all the finite functions and tensor integrals

required for the calculation of the virtual matrix elements for the process yv* — 9GQQ

which will be the subject of Chapter 6.




Chapter 6

Four Jet Production
in eTe~ Annihilation

6.1 Introduction

It has been seen in Chapter 3, that e*e~ collisions provide a particularly effective labo-
ratory for investigating the interactions of quarks and gluons. In particular, by use of a
suitable jet algorithm one can compare the experimentally observed jets of hadrons with

theoretical matrix element calculations at the parton level.

Therefore, in order to experimentally test QCD it is necessary to calculate the partonic
matrix elements appropriate to jet production. Such matrix element calculations have
- been performed at lowest order (tree-level) for up to five jet production [35, 36, 37, 38,
39, 40}, and at next-to-leading order for up to three jets [37]. In order to give predictions
for physical observables, numerical programs have been constructed [41, 42, 16, 17] which

combine together the partonic matrix elements to form infra-red safe quantities.

It is clear that the next step is to calculate the NLO radiative corrections for four jet

production. This calculation involves three essential ingredients:

e Virtual Corrections
The partonic matrix elements for ete~ — ¢gQQ and e*e™ — qggg are required

103
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at one loop. The extremely long delay between the NLO 3-jet and 4-jet matrix
element calculations has been caused by the technical difficulties encountered in the

calculation of this virtual contribution. These difficulties have been outlined in the

previous chapters.

e Real Corrections A
The tree-level matrix elements for ete~ — ¢gQQg and e*e™ — ¢gggg are required

when one of the partons is unresolved. These matrix elements are already well

known in four dimensions [40].

e Numerics
A Numerical program must be constructed to add together the real and virtual

contributions over the appropriate phase space by implementing the jet algorithm

and an appropriate method for cancelling the infra-red divergence (see section (3.6)).

This chapter will consider only the virtual corrections to four jet production. In
particular the one loop partonic matrix elements for ete™ — ¢@QQ are calculated using
the techniques discussed in the previous chapters. This provides a first step toward the full
NLO calculation of four jet production in electron-positron annihilation. Of course, the
usefulness of this calculation is not restricted to ete~ collisions — it is also an ingredient of
the next-to-leading order calculations relevant for etp — e* + 3 jets and pp = V +2 jets,
where V is a W or Z boson. The calculation is therefore relevant to processes seen in

experiments at the major accelerators, LEP at CERN, HERA at DESY and the TEVATRON

at FNAL.

In the context of ete™ collisions, the NLO 4-jet rate can be applied to give a more
precise measurement of the QcD colour factor ratios, C4/Cx and Tx/Cx. This will be .
discussed in section (6.2). Furthermore, this process is a background to the threshold

production of W pairs at LEP 2.

Recently, the one-loop corrections for ete~ — ¢gQQ have also been performed by
Bern, Dixon and Kosower [43], providing an interesting check of the results presented

here. In addition, Dixon and Signer have reported the first numerical results for the
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leading colour contribution to the eTe~ — 4 jet rate at next-to-leading order [44)].

6.2 The QCD Colour Factors

An important and interesting test of QCD is the experimental verification of its SU (3)
group structure. By describing QCD as invariant under this symmetry group, the observed
hadrons can be explained in terms of colour singlet bound states of three quarks or ¢¢
pairs. However, this is a purely static argument — it is possible that the dynamics of
QcpD could be described by some other group. For example, the SU (3) symmetry could
be spontaneously broken to a smaller group. By measuring the QCD colour factors the

group structure of QCD can be experimentally tested.

The symmetry group of a gauge theory can be completely specified by ratios of the
quantities Cx, C4 and T, defined by,

Ny

> (T°T%),; = 6iCr, (6.1)
a=1
% fabCfabd — 6cdc 6.2
= A (6.2)
a,b=1
NFr
S TETh = 675, (6.3)

3,j=1
where T are the generators of the group, and Nx and N4 are the dimensions of the

fundamental and adjoint representations respectively. By comparing egs. (6.1) and (6.3),

it is easy to see that Nr and N4 are related by,
NeCr = NsTr. (6.4)
In the case of Qcp these quantities are known as the colour factors, and are given by

application of egs. (2.7), (2.28) and (2.34) to be,

N2 -1 1
Cf= N ’ CA=N, 7}'='2"a (65)

where N is the number of colours (ie. N = Nr).
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Figure 6.1: A pictorial representation of the colour factors.

The colour factors Cx and C4 can be physically interpreted as the squared colour
charges of the quarks and gluons respectively’. In this way they can be identified with
the quark-gluon and gluon-gluon vertices found in Feynman diagrams as seen in fig. (6.1).
By measuring the colour factor ratios C4/Cr and Tx/Cr, it is possible to distinguish

between different group structures. For example, an Abelian gluon model U(1)3 has no

three gluon vertex and therefore has C4 = 0.

Four jet production is the best place to measure these ratios, because the three gluon
vertex is present at leading order, fig. (6.2). This is important for the measurement of

C4. For three jet production this vertex is only present at next-to-leading order and its

effects are suppressed by order o;.

At leading order four jet production is described by the parton processes ete™ — ¢ggg
and ete” — ¢gQQ. For any gauge theory with quarks in the fundamental representa-
. tion and gluons in the adjoint representation of the symmetry group, the corresponding
differential cross-sections will have the form:

1 4 - - asC_y: 2 CA C.A
—dotte 199 — - =£ hiad
aor e = (B2) [mas (1-g2) e 2] 09)

1Tx is really just a normalization choice.
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Figure 6.2: The generic leading order Feynman diagrams for ete” — 4 jets. Notice the
presence of the three gluon vertex.

1 + = =) ascf 2 7} CA
—dg®Te e = ( ) [——nF +(1——)F], 6.7
(ofy) d s C}- =D 2C]: : E ( )
where F, ... Fg are functions of the kinematic variables and independent of the group
structure, n; is the number of active quark flavours, and oo is the leading order cross
section for two jet production. Since the functions Fy4 ... Fg are known, the differential
cross section (or any other variable sensitive to the group structure) can be fitted to the

experimental data to give a measurement of the colour factor ratios.

This analysis has been done by all four LEP experiments {45, 46, 47, 48], giving an
average? result [50],

C
Z4 = 2.221 + 0.225, Tr 0353+ 0.132, (6.8)
. ¥ Cr
which is consistent with SU(3). This result is shown in fig. (6.3) together with the colour

factors of some of the more usual symmetry groups.

2The much less accurate two and three jet analysis has also been included [49].



CHAPTER 6. FOUR JET PRODUCTION IN E*E~ ANNIHILATION 108

w T 1 T T T T T 1
Q 3 & Abelion gluon model .
- : Results from Jet Studies |

« QCD =SU(3) |
# plus light gluino ]
2 b o.s002) e 68% CL region |
P —— 95% CL region .
1 | + U(‘I) "'-...50(3).58 ]
59(4) SL{gz).SP&)
SO(5),Fé'n 3
[]
“es
0 S USRS - fuyepenpey P ]
I | J. 1
0 1 2

Figure 6.3: The measurement of the QCD colour factor ratios at LEP. Confidence level
contours of 68% and 95% are shown, in addition to the effect of including a light gluino.
This figure is reproduced from [50].

Also shown are the expected colour factor ratios for a symmetry group of SU(3) in the
presence of a light gluino. If this supersymmetric fermion were to exist it would contribute
to the four jet cross section via the process ete™ — ¢ggg, and would therefore affect the

measurement of colour factors. A light gluino has not been ruled out by this analysis.

It is clear from fig. (6.3) that the confidence boundaries are still rather large and there
are many candidate symmetry groups which have not been excluded. The accuracy of
the colour factor ratio measurement could be improved by the inclusion of next-to-leading
order four jet production. By including NLO the perturbative expansion remains valid
- for lower values of the jet resolution parameter y.,;, and narrower jets can be used. This

leads to more four jet events being seen and consequently increased statistics. Therefore,
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including the next-to-leading order corrections to four jet production would improve both

systematic theoretical errors and statistical errors

6.3 7" — ¢7QQ

‘This section will discuss the calculation of the one-loop corrections to ete™ — ¢qQQ.
In this process, the electron and positron annihilate to form a gauge boson which subse-
quently decays into four quarks. Since it is the QCD part of the interaction which is of
interest, it is sufficient to consider the decay of the virtual gauge boson into four quarks.
In addition, the gauge boson will be restricted to vector couplings, ie. a virtual photon,
because of the difficulties associated with defining s away from four dimensions. With

these simplifications, the process under consideration is v* — 97QQ.
The momenta of the particles are chosen to be given by,
v (P123s) — q(p1) + 4(p2) + Q(ps) + Q(ps)- (6.9)

Using momentum conservation, the photon momentum can be systematically eliminated
in favour of the massless quark momenta. The cases where the quarks ¢ and @) are of the

same or different flavour are considered, and their colours are denoted by ¢;, 1 =1...4.

Colour Decomposition

By making a colour decomposition as described in section (2.5), the tree-level matrix

elements can be written as,

ree—leve egf 1
Mtree=ievel  _ - {(5615450362 — N(Scmdcm) (A(O)(l,2) + A(O)(3,4))
1
—040 (65 - Némécscz) (AO(1,4) + A, 2))} , (6.10)

where N is the number of colours and d, = 1 if the quarks are of the same flavour and
zero otherwise. The arguments of A refer to the spin line to which the virtual photon is
connected, ie. A(3,j) has contributions from the Feynman diagrams where the photon is

connected to the quark-antiquark pair i,j.
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- Similarly, the colour decomposition of the one-loop matrix elements gives,

egs
~ 3272

of baadon (A2 + AP0+ 22 (470,04 406,

Mone loop

SererBeaca (7{,— [A(1,2) + AP (3,4)] + dge [AT(1,4) + A?’(3,2)])} (6.11)

where Agl) and Agl) can be further decomposed as,
A6 = NAGGH) - [2AS:’<z,J)+A‘”<z ik (6.12)
AV, 5) = N[ADG,5) - AP G, 5)] + [A‘”( N+APGH].  (613)

The functions A{)(3, j), where a = A,B,C, have contributions from the gauge invariant
sets of Feynman diagrams shown in fig. (6.5) where, again, the photon couples to the

quark-antiquark pair ¢, j.

In addition, one would expect contributions from diagrams containing closed fermion
triangles as in fig. (6.4). However, diagrams must be considered where the quark propa-
gates both clockwise and anti-clockwise around the loop. These diagrams are exactly the

same but have the opposite sign and therefore cancel. This is an application of Furry’s

<L <

Figure 6.4: The triangle diagrams which cancel by Furry’s theorem.

theorem.
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Figure 6.5: The classes of Feynman diagrams contributing to the functions A (s, j) for
a = A,B,C. The solid circle shows the possible positions for attachmg the off-shell photon
to the quark-antiquark palr 1,7
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Squared matrix elements

In principle, the matrix elements could be evaluated for external particles of definite
helicity by employing the spinor helicity methods of section (2.6). As has been pointed
out in section (3.5), spinor helicity methods cannot be used away from four dimensions and
are therefore incompatible with dimensional regularization. To overcome this, dimensional
reduction must be used. However, here the “squared” matrix elements are calculated, or
rather the interference of the one-loop matrix elements with the tree-level in order to
give O(c?). This has the advantage of trivially reducing the rank and point of each
loop integration. Since the squared matrix elements have no tensor structure, the tensor
integrals are always saturated with the external momenta. If the saturating momentum

is contained in the denominator of the integrand, it can be rewritten,

k.p; _ lk%...i - kf...(i—x) SR A
R R By 2 KRR R
_1- 1 1 1
2k%;3 ... kf...(i—l)kf...(i-f-l) K] ey 2 k23 ... kf...(i—2)k%--.i ek e
1

2 2
P1.i —Pi.G-1)
- : 6.14
2k2kF .. K i KD o) (614
where, as usual, k. ; = k+p1.; = k+p1 + ...+ pi. In particular, this removes all of
the tensor pentagon integrals. Since helicity amplitudes are not used, the divergences are
regulated using conventional dimensional regularization with the number of dimensions

n=4-—2e.

However, it should be stressed that the methods described in Chapter 5 for writing the
" tensor integrals in terms of finite functions are not dependent on calculating the squared
matrix elements but can also be applied to spinor helicity methods. The squared matrix

elements are only calculated here because of the trivial removal of the tensor pentagon

integrals.

_ The Feynman gauge has been chosen for this calculation, and the corresponding Feyn-
man rules are presented in Appendix D. Since the virtual photon is connected to a

conserved current (the electron-positron pair) its longitudinal polarization is removed
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and the spin sum over its polarization vector may be written,

D ete = —gt. ' (6.15)

spins

The squared matrix elements at leading order have been known for some time [37], and

are of the form,

2.4
Z_lM(O)'2 _¢9s (N2 ~1)
spins 4
. . ) : .
x {(7’(1, 2:1,2) + T(1,2;3, 4)) -+ 8 (7'(1, 2:1,4) + T (1,23, 2))}
+(1 3,2 4) +0,0(2 ¢ 4) +b,0(1 & 3), (6.16)
where,
TG, g5k, 1) = 3 A9, 5) A9 (k, ). (6.17)

spins

Similarly, the interference between the tree-level and one-loop amplitudes is given by,

e*gt raN
5 2MOMO) = S (S (v - 1)

spins ' .
X { [(EC(l, 21, 2)+ Lc(1,2;3, 4))

1
- (25,,(1, 2:1,2) + 2L4(1,23,4) + £5(1,2;1,2) + L5(1,2;3, 4))]
1
+ore| 7 (€412 1,4) + £4(1,23,2) = Lo(1,21,9) — Le(1,2:3,2))
1 V .
b (a(0,20,0 4 £4(1,2:3,2) + £a(1,21,0) + £(0,23.2)
+(1 03,260 4)+6,020 4) +5,0(13), (6.18)

with,

spins

Loiyjik,1) = 3 [ADYG, )AO (,1)]. (6.19)
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Symmetries of the Matrix Elements

Pi | %] Pi | %]
é (111 (1111114
L) X =
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Figure 6.6: Contributions to the functions L£g(1,2;1,2) and Lp(3, 4; 3, 4), which transform
on to one another by swapping p; <> p3 and p; > ps.

The symmetry properties of the above matrix elements are easy to see from the Feyn-
man diagrams. For example, fig. (6.6) shows contributions to the functions L£p(1,2;1,2)

and Lp(3,4;3,4), which transform on to one another by swapping p; < p; and p; < ps.

Using symmetries of this form, it is only necessary to calculate one-loop diagrams
where the virtual photon is attached to the p;, p, spin line. Similarly, when the quarks are
identical, interchanging p; > p, and p3 +> p4 transforms L£4(1,2;3,2) onto L£,(1,2;1,4),
and vice versa. The squared matrix elements are therefore described by nine independent

L. functions.

Furthermore these functions have additional, internal symmetries. For example, it
is clear that the first “squared” diagram of fig. (6.6) is symmetric under interchange of

ps <> psy and the second is symmetric under interchange of p, < p,. These internal
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symmetries of the £, functions are outlined in table (6.1).

Function Symmetry | Anti-symmetry
L£4(1,2;1,2) D14 P2
D3 € P4

L£4(1,2;3,4) | p1 ¢ D2
D3 < Da

LB(1’2a1’2) 41 sz
D3 € D4

Lp(1,2;3,4) 1 D2
P3 € D4

P e P2
Lc(1,2;1,2) and
P3 € Ps

D1 € P2
Lc(1,2;3,4) and
D3 € P4

Table 6.1: The symmetry properties of the L, functions. £¢(1,2;1,2) and L¢(1,2;3,4)
are only symmetric under the interchange of both py <> ps and ps < ps. Lo(1,2;1,4) and
L.(1,2;3,2) map onto each other under the interchange of p; <+ p; and p3 <> ps and have

no internal symmetries.

Calculating £,

The remaining nine L, were calculated and simplified using the algebraic manipulation

package FORM [28]. Performing the algebra by computer has two clear advantages:

e Computer algebra allows the handling of very large expressions and prevents trivial

algebraic errors.
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e Once the manipulation program is complete, the calculation is performed automat-
ically. This allows any changes or corrections to be made to the program, without

having to recalculate the entire matrix elements by hand.

The required individual tensor integrals were calculated separately using the methods
of Chapters 4 and 5. This provides expressions for the tensor integrals which are well
behaved as each Gram determinant vanishes and are written in a natural, simplified
form. These expressions were then included in the manipulation program and could be
inserted into each Feynman diagram where required. Since the “squared” matrix elements
have no remaining tensor structure, the final expressions for £, are written purely as dot

products of the external momenta multiplying the finite functions of Chapter 5.

As previously mentioned, dimensional regularization with dimension n = 4—2¢ is used.
The infra-red and ultra-violet divergences are easily found since they must be proportional

to the tree-level amplitudes. The e-pole structure is given by,

Lazig) = (+o2 - Do Peo Bragig s Tan i, 620

€2 €2 €2
Lozid) = (22 - Do) 7,045) 4 Talt, 2,9, (6.21)
Lol 2ig) = (-t Py 2P PR P 70, 550, 5) + To1,2,006:22)
where, 2\ € 2
Po= (%) Srar -

and 7 are the squared tree-level amplitudes of eq. (6.17) in 4 — 2¢ dimensions.

Of course, these e-poles have a prescribed form. The infra-red poles must cancel with
those from the process v* = ¢§Q@Qg when one of the partons is unresolved, and the ultra-
violet poles must be renormalized. This pole structure provides a check on the answer

and is in agreement with the expectations of [16].

~

Unfortunately, the individual expressions for 7, are rather lengthy and their presenta-

tion here would be unilluminating. Instead they are included in a FORTRAN subroutine
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which calculates the finite one-loop contribution for a given phase space point®. It is
stressed that the 7, have been calculated analytically, and their numerical evaluation is

performed only for the convenience of those wanting to use the results.

6.4 Outlook and Summary

This chapter has discussed the calculation of the next-to-leading order corrections to the
rate ete™ — 4 jets. This calculation is useful for improving the measurement of the
measurement of the QcD colour factor ratios C4/Cx and Tx/Cx, which tests the group
structure of QcD. The partonic matrix elements are also applicable to next-to-leading

order calculations of the rates efp — e* + 3 jets and pp — V + 2 jets, where Vis a W or

Z boson.

In particular, the one-loop corrections to the process v* — ¢dQQ have been presented.
This is a first step towards the full NLO calculation of ete™ — 4 jets. In performing this
calculation, use has been made of colour decomposition and the extensive symmetries of
the matrix elements. Furthermore, the results of Chapter 5 have been used to write the

“squared” matrix elements in terms of functions which are well behaved as the Gram

determinants vanish.

Due to the difficulties in defining 75 away from four dimensions, spinor helicity methods
have not been used. Instead, the interference of the one-loop amplitude with tree-level

has been calculated. This has two disadvantages:

e “Squaring” the matrix elements leads to longer expressions than those found using

spinor helicity methods.

o Since the chiral projection operator is unavailable, the electroweak gauge boson is re-
stricted to vector couplings. In other words, the corrections forete™ — Z — ¢gQQ
have not been included. Clearly, helicity amplitudes provide both vector and axial

vector couplings.

3The finite functions included in the FORTRAN code may differ by factors from those of Chapter 5.
However, since they are evaluated internally, these differences are unimportant.
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The first ob jection is unimportant. Usually it is argued that compact expressions are more
desirable becausevthey are more numerically stable - fake poles cause less problems if there
are few of them and they are cancelled immediately. However, since the squared matrix
elements presented here are well behaved as the Gram determinants vanish, numerical
stability is not an issue. Pragmatically, one is only interested in the final physical cross-
section which is evaluated numerically and the analytic form of the virtual corrections is

unimportant. Whether or not helicity amplitudes are more aesthetically pleasing is open

to debate.

The second objection is more serious. It is clear that the Z boson cannot be neglected
since it is an important channel for four jet production (even off the Z peak at LEP 2). In
previous calculations, the axial contributions have been small. If the Z boson is coupled
to the same spin line in both the one-loop and tree-level amplitudes there is no problem
because the helicity configurations can be added incoherently (ie. they do not interfere).
This leads to the usual (g% + g?) prefactor where g4 and gy are the axial and vector
couplings respectively. However, in the case Z — gdQQ, there are two spin lines and
there will be contributions where the Z boson is coupled to different spin lines in the
one-loop and tree-level amplitudes. It is difficult to know how important these effects are.
In principle, they could be calculated by making a choice of definition of 5 away from
four dimensions and using the methods described above. However, this is equivalent to
using dimensional reduction in the first place, which, with hindsight, may have been the

better option. Again, the choice is somewhat subjective.

In order to make a connection with physical observables it is still necessary to calcu-
late the one-loop corrections to ete™ — qijgg. Already Bern, Dixon and Kosower have
presented the leading colour contribution to this process [51], and the calculation of the re-
maining helicity amplitudes is in progress [52]. Once the virtual corrections are complete,
they must be numerically combined with the real contribution, specifying an appropriate
jet algorithm and detector cuts, etc. This has been done by Dixon and Signer for the
leading colour contribution [44]. Only then can the interesting phenomenology of four jet

production in e*e~ collisions be explored.



Chapter 7

Conclusions and Summary

This thesis has discussed some new techniques for evaluating the one-loop Feynman dia-
grams which are generally required for the calculation of physical observables at next-to-
leading order in the strong coupling constant. This evaluation involves integration over
the unconstrained loop momentum, which, using traditional methods, generates Gram
determinants in the denominator of the expressions. In general, the number of Gram

determinants generated is equal to the rank of the tensor integral.

The appearance of these Gram determinants generates two problems:

e The presentation of the final expressions is ambiguous — complex intertangling of

the Gram determinants can occur which make the expressions much more compli-

cated than they need naturally be.

e The presence of the Gram determinants in thé denominator of the expressions pro-
duces fake singularities in the regions of phase space where these Gram determinants
vanish. This can lead to numerical instabilities in the Monte Carlo programs which
must be constructed to combine the real and virtual contributions to the next-to-

leading order cross section.

Fortunately, the second problem leads to a natural way of solving both problems.

Since the final, physical matrix elements must be free from divergences as the Gram
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determinants vanish, it must be possible to tie together the scalar integrals in such a way
as to construct functions which are finite in this limit. In fact, it has been shown that the
tensor integrals themselves are free from divergences in these limits and can be written in
terms of these ﬁnité functions. The only notable exception is the box integral with two
opposite massive legs where the scalar integral itself is.divergent as the Gram determinant
vanishes. However, as no finite function can be formed from this integral, the determinant

must cancel from all physical matrix elements.

A general method has been presented for finding these finite combinations of scalar
integrals, and writing the tensor integrals in terms of them. This is most easily done by
performing a Feynman parameterization of the tensor integrals, and solving the resulting
integrals with Feynman parameters in the numerator either by differentiation of the scalar
integral or by applying a modification of the “string inspired” total derivative method of
Bern, Dixon and Kosower [21]. The finite functions then turn out to be related to the
scalar integrals in higher dimensions. In addition to removing any problems with numer-
ical stability, this procedure combines together dilogarithms, logarithms and constants

in a natural, but non-trivial way, resulting in more compact expressions for QCD matrix

elements.

This procedure has been applied to all tensor triangle integrals, all tensor box integrals
with up to two massive external legs, and up to second rank tensor pentagon integrals with
one massive external leg. In particular it has been shown that the 4 x 4 pentagon Gram
determinant can always be removed. Although all internal masses have been neglected in

this thesis, these methods are also applicable to the general case.

These methods have been applied to the calculation of the one-loop virtual corrections
to v* — ¢gQQ. This is the first step towards the calculation of the next-to-leading order
corrections for ete~ — 4 jets, which will provide a more precise measurement of the QCD
colour factors and lead to a better understanding of the backgrounds to W pair production
near threshold at LEP 2. In addition, it is needed for the next-to-leading order corrections

for pp — W/Z + 2 jets and etp — e* + 3 jets.

Instead of calculating a helicity decomposition of the matrix elements, the interference
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between tree-level and one-loop, giving O(ca3), has been evaluated directly. By cancelling
dot products of the external momenta in the numerator with the propagators, it is pos-
sible to completely remove all pentagon tensor integrals. Unfortunately, this restricts the
virtual gauge boson to vector couplings with the quarks, and therefore the decay of a Z
boson is not fully included. The results of this calculation, though analytic, are rather

lengthy and have been included in a FORTRAN code which evaluates the matrix elements

for a given phase space point.

Much work is still to be done before the calculation of the next-to-leading order correc-
tions for ete~ — 4 jets is complete. The one-loop matrix elements for the parton process
ete” — gggg, which contributes to the virtual corrections, are still to be calculated.
This can in principle be done using the methods discussed in this thesis. Furthermore,
it still remains to combine the real and virtual corrections together in a numerical pro-
gram evaluating infra-red safe jet quantities. Only then can the results be used for a
phenomenological examination of the interactions of quarks and gluons at very small

distance scales.



Appendix A

Useful Functions

This appendix will outline some of the special functions which are found in this thesis

and some of their most useful properties with respect to one-loop calculations.

A.1 The I'-Function

The I-function is defined for complex z with Rz > 0 by:

['(z) = /Ooo exp~tt*"1dt. (A1)

The restriction Rz > 0 is necessary in order to make the integral convergent.

Integration by parts yields the useful result,

I'(z) = [— exp”* tz"l]zo +(z—-1) /Ooo exp~t t*2dt (A.2)
= (z-1I'(z-1). (A.3)

This provides a very simple result for I'(m) when m is an integer,

I'm) = (m-1)I'(m-1)=(m-1)(m-2)I'(m-2)
= ...=(m-DII'Q)=(m-1) (A.4)
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Often this is used as a definition of the factorial function in order to extend to complex

z with R(z) > 0,
2l = / exp ™~ t*dt. (A.5)
0

For a more comprehensive discussion of the I-function see [53].

A.2 The -Function

The S-function is defined for complex m and n with ®m,n > 0 by:

/2
B(m,n) = 2 / cos?™ 9 5in?! 0. (A.6)
0

The B-function can be usefully written in terms of the I-function, eq. (A.1). Consider
I'(m)T'(n) with ®(m,n) >0,
o0 o0
T'(m)T'(n) =/ du/ dvexp * v u™ "L, (A.7)
0 0
Making the substitution u = 72 cos? 4, v = r?sin®#), ie. transforming to polar coordinates,
gives,

I'(m)I'(n) = /o dr /0 ? dfexp" rAmran=l og2m=1 g gin2n=1¢g

= TI'(m+n)2 /5 df cos®™ ! §sin**1 4. (A.8)
0

The integral in eq. (A.8) above is just the definition of the beta function, eq. (A.6). This

leads to,
_ I(m)l'(n)
B(m,n) = T(m+n) (A.9)
Making the substitutions t = cos?6 and t = Tt respectively gives two more integral
forms of the beta functions which will prove useful.
1
B(m,n) = /0 $m=1(1 — ¢)n-1dt, (A.10)
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A more comprehensive discussion of the S-function can be found in [53].

A.3 The Hypergeometric Function

The hypergeometric function can be defined for Ra > Rb > 0 and |arg(l — 2)| < 7 by,

Fla,bc,2) = __Tl9 /01 271 (1 - )77 Y(1 - zz)%dz. (A.12)

It can be shown that F(a,b,c, z) is symmetric in a and b. A useful relation can be found

using this symmetry and the change of variablesz — y =1 -1z,

I'(c) /1 1 —a-1 —b
— a 1— c—a _
Fla,b,c,z) T(@T(c—a) o (1 -12) (1 —2z)"dr
_ F(C) 0 a—1, c—a—1 -b
= e L A9 T )
() L (e—a)- —(c—a)- yz \7°
— _ b A\ (e—a)-1¢1 _ ,\c—(c—a)-1 _
(1-2) I'(c— a)I‘(a)/o v (1-9) (1 z— 1) da
= (1-2)*F <c —a,b,c, . ) : (A.13)
z—1
Furthermore, a simple form can be found in the case a = b = —¢, ¢ = 1 — ¢, when ¢ is

small, by expanding in powers of e,

_ F(l — 6) ! —1—¢ €
F(—€,—€,1~¢€2) = m/; 7 (1 - z2)%dz

= —¢ /01 zie [1 + elog(l — zz) + 0(62)] dz
= —e[m‘l“]; — ¢ /01 %—e log(1 — zz)dz + O(€?)

1 _
- 1- 62/0 M«zﬂmé)

= 1-€e’Liy(z) + O(%). (A.14)

This expansion is useful in evaluating the scalar box integral with two massive opposite

legs.
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A.4 The Dilogarithm Function

A comprehensive discussion of the dilogarithm function can be found in [54]. Some useful

properties of the dilogarithm will be given here. Liy(z) is defined for 0 < |z| < 1 by,
< log(l —t

Using the substitutions ¢t — é and ¢t — 1 — ¢ respectively, gives two more integral forms

of the dilogarithm,

Liy(z) = - /0 1 lo—g(lt_—xt)dt,
LlQ(.’L‘) = _/11—:: lfg_(tt)dt (Alﬁ)

For |z| < 1, Liz(z) can be written as an infinite sum,

Lh(@) = [ %nﬁ; %dt (A.17)
_ g:l fTZ (A.18)
Other useful dilogarithm identities are:
Lig(—2) + Lig(~1) = -fg - %log2(x), (A.19)
Liy(z) + Lizo(1 —z) = %2 — log(z) log(1 — z), (A.20)
Lip (1- 1) +Lia(l —2) = —%log2(x), (A.21)
Lip (1- &) + Lis(a) = —% log?(1 — ). (A.22)



Appendix B

Feynman Parameterization

One-loop Feynman diagrams contain tensor integrals of the form:

d*k kb .. kMR
Zi o -poen) = | Gy R Ry

where ki_; =k + p1_i,
PrLi=pr+p2+...+Di

These integrals can be more easily calculated after a process of Feynman parameter-
ization. This allows the integration over the loop momenta to be done, rewriting I/
as an integral over new variables called Feynman parameters. Although, this seems to
be just replacing one integration with another, this new Feynman parameterized form is
amenable to the techniques of Chapter 5. Furthermore, this is the form required for the

calculation of the scalar integrals (Appendix C) which are essential even for the reduction

methods of Chapter 4.

This appendix will demonstrate this Feynman parameterization and the subsequent
integration over the loop momentum for tensor integrals with up to four powers of the

loop momentum in the numerator. For a more complete discussion, see, for example [55].
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B.1 Preliminary Integrals

In order to perform the integration over the loop momenta after Feynman parameteriza-
tion, the following integrals will be required for rank R =0...4.

d"k k¥ kMR
H1.--HR —
Jg' " (m) = / (2m)™ (k2 + 2k-g+c)™ (B:2)

where ¢ is an arbitrary momentum, ¢ and o are arbitrary constants.

B.1.1 Rank R=0

Making the substitutions r = k + ¢ and a® = ¢*> — c gives,

d*r 1
Jo(m) = / 2m)" (2 — a2)™ (B.3)

This integral can be written in Euclidean space by making a Wick rotation to a Euclidean
vector 7 such that 7 = 7 and 7° = ér%. This is valid as long as $(a) < 0. The integral can
then be performed in polar co-ordinates,
"7 1
= (=™ /
jO(m) 7’( ) (271') (Fz + 0,2)"1

_ 21))1:"‘,71_ /

r2 +a2)™ (B.4)

where V,_, is the (n — 1)-dimensional volume element. Transforming to a variable u = 72,
the integral becomes a (B-function, eq. (A.11),

i u3-!

i(=)m
Jo(m) = (27r ""2/ “wta)m

(-

(

O e (sim-3) o

The n-dimensional volume element is given by,

Vv, = /O%dﬂlfoﬂdt%sinez.../owdﬂ,,sin"‘lan
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where use has been made of the B-function identities eq. (A.6) and eq. (A.9).

Putting everything together, and writing the S-function of Eq. (B.5) as Gamma functions
(using Eq. (A.9)) gives the following expression for Jp,

2 T(m—1%)

Jo(m) = i(=1)™(4r)"% ) (?—c)F ™ (B.7)

Notice that Jy(m — «) can be related to Jo(m) in (n + 20)-dimensions. Adding a super-

script to denote the dimension,

TP -a) = (-1t im a3

2 c)%—m+a

(¢

F(m - a)
= (campi-yn) BT g - g
= (-7 g, Dy B ). (B3)

B.1.2 Ranks R=1...4

Expressions for J§'"##(m) for R =1...4 can be most easily obtained by differentiating

Fo7HE=1 (m) with respect to gy,

6J£i.i.un_1 (m) B _2m/ dnk k#l .. k#R—lk#R
aq‘m (271»)11 (kZ + 2k.q + c)m+1
= —2mJEER(m 4 1). (B.9)
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Therefore, _— ,
1 bR—1 _
L OJpi (m=1) (B.10)
2(m —1) O0up

Jg' " (m) = -

Repeated use of Eq. (B.10), using Eq. (B.8) to change dimension where necessary, gives,

Jtm) = —¢"F"(m), (B-11)
Fprrm) = ¢qn T (m) = 2mg gy m), (B.12)

Jem(m) = —ghgg gy (m)
+2 (g ghH + gt + ¢ ghe) I (m), (B.13)

Jlsakssa () = g ghegheghe Jo(n) (m)
_27r(q#1 quzgﬂsm + qm qﬂsguzm + qmqmgﬂz#s
Fghaghsghite 4 gheghe ghIHs 4 ghsghia ghrbiz) -.7o(n+2) (m)
+(27r)2(g“‘ b2 gltsm + gm u3 gmm + gmm guzua)JO("“"*) (m) (B.l4)

B.2 Feynman Parameterization

Feynman Parameterization uses the relation!,

1 d(l-z1— ... — Tr)

1
— =T /d .. dzm . B.1
ai...0nm (m) 0 71 o (@121 + ... + apZm)™ (B.15)
Performing this parameterization on X1 #R(p,, ..., pm—1) gives,
1
TE-R(py L pmy) = F(m)/ Az ... dzmd(1 = 21 — ... — Tpn)
0
d*k kbt .. kHR
. (B.16
/ (2m)™ (K2, + K222 + ... + k1 (me1)Tm)™ ( )

The integral over the loop-momentum, &, in the right-hand-side of the above is exactly of

the form J5* & (m) with,

c = ZPL{...(i-l)zi, (B.17)
1=2
~ .
¢ = 2Pl oy (B.18)
=2

1This is easily proven by induction.
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After some algebra, it can be shown that,

c—¢ = Z Z 8i..(j-1)TiTy, (B.19)

=1 j>i

where the generalised Mandelstam invariants have been introduced:

Si(i41).j = P?(i+1)...j =(Pi+pipr+...+ pj)z. (B.20)

The integration over the loop-momentum in Z4!-#® can now be done. It is convenient to

define,

_ ! 6(1 = ¥ z:)P{z:}
Pz = (=1)"Tm -2 [ dz,...dom _. (B2
AP = ()" m = 3) [ don . dom o = P, (B2Y)

where P{z;} is a polynomial in z;. This allows T/ ¥~ to be written in terms of integrals

over only the Feynman parameters,

In = i(4m) 2 I5[1), - (B.22)
I8 = —i(4m)"E Y pl oy Inli, (B.23)
1=2 '
N 1 .
THk: = §(4m)73 Zp‘ll.l..(i—l)pfz.(j—l)‘[:l[xixj]—59“1“2]3:- [1]t, (B.24)
ij=2
" m
Ipers = —i(d4m)~: .;2P‘f.l..(i-l)l’i‘f.(j—1)1"1‘.3..(1:-1)Ir’:z[xiszk]
z’]’ =
1 & 141 L2p3 2 143 3 Hip2y yn+2
—Ezz(pl...(i—l)g +P’1‘...(i-1)g +p‘1‘.--(i—1)g M ]|, (B.25)
1=
" m
Tkt = dm) | Y A nPl-oP e Ple-n Taleizsmel]
1,4,k 1=2

1 & :
) z_?—;2(pllli-(i—1);‘7‘1‘.2..(1'-1)-‘1“3“4 + plll.l..(i—1)p‘l‘f.(]'—1).‘]"2“‘1
-}-plll-l-‘(i—l)p‘llj-(j—1)9”2“3 + pfi.(i—l)pff.(j—l)gﬂlﬂ4
+p’1‘f'(i_l)pff.(j_l)g"“‘3 +pfi(i—l)pfj.(j_l)gﬂm)Ir':;+2[$i-'l?j]

+i(g#1ﬂ2g#3#4 + gﬂlusgﬂzm + g#1u4gu2#3)17r:‘+4[1]_ (B.26)



Appendix C

Scalar Integrals

C.1 Introduction

It has been demonstrated that the largest obstacle to performing one-loop Feynman Di-
agram calculations is the integration of the free, unconstrained momenta flowing around
the loop. In general, this gives rise to tensor integrals. The most important form of these
integrals are the scalar integrals, where there are no momenta in the numerator of the
integrand. Not only do these scalar integrals appear in one-loop calculations in their own
right, but the evaluation of the other, higher rank tensor integrals also requires them, as
demonstrated in Chapters 4 and 5. In this appendix, expressions for the scalar integrals

used in the calculations of Chapter 6 will be derived.

Consider a generic m-point scalar integral in n = 4 — 2¢ dimensions,

d"k 1
Sulprr— o) = | ,
m(PL - o) m)" k22 k? oy
where ki =k +p1.;,
PLj=p+p2+...+D;.
It is demonstrated in Appendix B that this integral can be simplified by a process of

Feynman parameterisation. This introduces new integrals over over the Feynman param-

eters which allow the integration over the loop momentum to be performed. Then all that
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remains to be done are the integrations over these Feynman parameters. These Feynman

parameter integrals take the form,

5(m)(1 - —...— 5L'm) (C2)

bl

n n, !
Sm:i47r'5Fm——/d:v...dxm — —~
(4m) ( 2) 0 ' _ (=X, Lisi Si...(j—l)fl?il?j)

where z; are the Feynman parameters and the generalised Mandelstam invariants are

-2
2

given by,
Si(i+1)..5 = pz?(i+1)...j =@i+pin+...+ pj)2. (C.3)

Derivations of these integrals will be provided in sections (C.2) through (C.6).

C.2 The Tadpole

Although a loop diagram with only one external leg is forbidden by momentum conser-
vation, its corresponding integral appears in the reduction of higher point integrals. This
integral is zero in the case of massless internal particles. Consider the tadpole diagram

where the “particle” in the loop has a mass m which will subsequently be taken to zero,

Ao = [ dh——s _m2 (C.4)

Using eq. (B.7), this gives,

Ay = i(4w)_§f‘(1_g)(_m2)§_1

C.3 The Bubble

The scalar bubble integral, where the loop has two external legs, is given by,

B) = [ kg +p)2 (C6)
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1 6(1 — 14 —
= i(4m)*"2T(e) /0 dmldxg%ﬁ%g)ff—). (C.7)
k+p
P P
k

Figure C.1: Momentum flow in a bubble loop diagram.

In the above, the general result of eq. (C.2) has been used. The delta function may be
used to perform one integration and the S-function identities of eq.(A.9) and eq.(A.10)

to to perform the other,

Bup) = i(4m) () [ dmaar (1 - )

= z'(47r)f‘21“(€)(—1’2)—€11:(é1—_—23
_ (_p2)—e
_ crm’ (C.8)
where, 2
s = °

In the above eq. (A.3) has been used. Note that cr is w in the four dimensional limit
(e = 0).

Also, By(p) will vanish for lightlike p (ie. p?> = 0). This is very fortunate as a reduction
of a tensor integral to scalar integrals as described in Chapter 4 and 5 can result in very

large numbers of scalar bubble integrals.
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C.4 The Triangle

Figure C.2: Momentum flow in a triangle loop diagram.
The scalar triangle integral is given by,

k1 '
Co(p1,p2) :/WW (C.10)

Using the result of eq. (C.2), a Feynman parameterisation can be done and the integration

over the loop momenta performed,

6(1 — X — Tg9 — IE3) (Cll)

Colpn, =i47r“2F1+e/d:rdxdx .
0(p1 p2) ( ) ( ) 1 3(—17%2151-’53 "‘p%xl-'EZ —ngzﬂvs)”‘

Two Massive Legs

Consider the triangle with two massive external legs. For convenience of notation, the
momenta of the external legs will be taken to be p;, pss, and p; = —pia3, and the
momenta p;, with i = 1,2,3, will be taken to be lightlike, p? = 0. This allows all
scalar products of external momenta to be expressed in terms of genefalised Mandelstam
invariants, eq. (C.3). In this notation,

0(1 - zy — z9 — x3)
(8123173 + S23T2T3) 1 e

Co(p1,p23) = i(4m)2T(1 +6)/dz1d$2d:1:3

1 1-x;
= z'(47r)"2F(1 + e)/0 dzl/o (1 -z - xz)‘(“’f)(31233:1323:1:2)‘(”‘),
(C.12)
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This is better expressed in terms of new variables z and y given by,

T = I, (C.13)
Yy = To—1I1. (C.14)

Using these new variables, Cy is now linear in z and can be easily integrated using the

B-function identities of eq.(A.10) and eq.(A.9),

1 y
Co(pr,p23) = z'(47r)“21"(1 + f)/o dy/o dz(1 - 3/)_(1+€)[$(8123 — 593) + y523]'(1+5)

! 1 —€ _ —€
= —i(4m)’T(1+¢) / dy(1 — y)~ 9yl (5123)7¢ — (523)
0 € S123 — S23

s (—8123) "¢ ~ (—s23)~° (C.15)

3

€? S123 — S23

where cr is defined by eq. (C.9).

One Massive Leg

The result derived above for the scalar triangle with two massive external legs can be
easily used to give the scalar triangle with only one massive external leg, by taking the
limit sp3 = 0. With a slight change of notation py3 — p, to conform to the notation choice
described above, this gives,

1 (—.‘312)"6
Co(p1,p2) = CPZET (C.16)

Three Legs Off Mass-Shell.

The scalar triangle with all three external legs off mass-shell is rather difficult to calculate
in n = 4 — 2¢ dimensions. Fortunately, it is finite in four dimensions. Since the only
singularities which occur in loop diagrams as ¢ — 0 come from the tensor or scalar
integrals, Cy is only needed to O(¢°) and the four dimensional result is sufficient,

(5(1—1171—.’1,'2'—.'173)
(53934Z123 + 25,2172 + $3,T073) "1
12347123 T S12T1T2 + 834723

(C.17)

Co(p12,p34) = i(4m)°T(1 +¢) /dxldxzdxg
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The integration over z3 is removed and the following change of variables is made:

C.18
C.19)

—_—
—

T =

—~

T, = y(l-2z)

Usihg this change of variables, Cy becomes linear in z and can be integrated,

Colp ) (4 )_2/1d /ld 1-=z
, = 4m T
o(P12; P34 A = (51231 — (51231 — S12 + 534) + ¥253a) + y(1 — 9) 53]
log( 31234—y|81234—512|)

— i(4’ﬂ')-2 /1 dy y(1-y)sa4 .
0 Y2834 — Y[S1234 — S12 + S34) + S1234

(C.20)

This integral can be done by partial fractioning. Let a* be the roots of the equation:

Y2534 — Y[S1234 — S12 + S34] + 5123 = 0. (C.21) -
That is,
gt = 51234~ S12 F Sas + /\’ (C.22)
2534
and,
/\2 = S¥234 + S%z + S§4 - 281234812 - 281234834 e 2812334. (023)
“The integrand of eq. (C.20) can now be written,
log(y[l —a* —a"]+a*a”) log(y[l —a* —a7]+a*a”) [ 1 1
(y—a*)(y—a) - at —a" y—at y-—a-
(C.24)

This integrand is now in a form amenable to integration using the dilogarithm function,

Li,, eq. (A.15). After some algebra,

- a

C8(p12,p34) = % (log(a+a') log (i ) + 2Lis(a*) — 2Li2(a‘)) , (C.25)

with a* and A defined by Eq: (C.22) and Eq: (C.23) respectively. For a more complete

discussion of this integral see [33].
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C.5 The Box

The general Feynman parameterised form of the scalar box integral in n = 4 — 2¢ dimen-

sions is:

. 1 ’
Do(p1, p2, ps) = i(4m) (2 + 6)/0 dz1dT2dT3dz40(1 — T) — To — T3 — T4)

X (=piz1%2 — PhyT173 — PlysT1T4 — PaTaTs — Pagas — P3T3T) T, (C.26)
Fortunately this simplifies in the cases of interest here.

The Opposite Mass Box

The first case of interest is the scalar box integral with two massive legs on opposite

corners, fig. (C.3).

Pa P23
K123

k1234 ki

Ps=-P1234 P1

Figure C.3: Momentum flows in the opposite mass box.

In this case the box scalar integral simplifies to:

1
Do(pl,p23,p4) = 7:(47T)E—2F(2 + 6)/0 d$1d$2d$3d$4(5(1 — T — T — T3 — .’II4)

—(2
X (—$123%1%3 — $1234T1%4 — S23T2T3 — SaaaTaTy) 219,  (C.27)

This is most easily done using the following change of variables:

I = Ip,
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g = (1- IE)p,

Z3 = (1 - y)O',

Ty = yYo. (C.28)
The d-function then ensures that p = 1—o = z. With this change of variables the integral

the integral over z becomes a S-function, eq. (A.10),
Do(ps, o) = i(4m) T2 +¢) [ dodydafz(1 ~ ] x

| X [51232(1 — y) + s1234y(1 — ) + s93(1 — ) (1 — y) + s12347Y] ™
= i(4m) (2 + e)—'B(%’Ze) /01 dz[2 (51234 — S234 — S123 + S23) + S1234 — 23]

X ([812323 + 523(1 - .’II)]_(H-E) - [3123422 + 5‘234(1 - $)]_(1+€)) . (029)

2+€)

The remaining integrals can be written as hypergeometric functions, eq. (A.12), giving,
1 2

cr—
€2 51234523 — 51235234

Do(p1,po3, pa) =

_ 5123514
€
X [ —(—s5123) .7-'(1, —€,1 —¢, )
51234523 — 51235234
T y— 523514
+(—523) ‘.7:'(1, —€,1—¢, )
51234523 — 51235234
_ 51243514
+(—81234) 6.7'-(1, —€, 1-— €, )

51234523 — 51235234

—(—3234)_67(1, —€1—¢, P340 )] (C.30)

51234523 — 51235234

Further simplification can be made by expansion of the hypergeometric functions in terms
of . Terms of O(¢) can then be discarded. This is done using eq. (A.13), to rewrite the
hypergeometric function in a more readily expandable form, and then eq. (A.14), to made

the expansion. Terms of the form (———se%)— are left unexpanded as this is the form in which

the ;12— poles must cancel. In this form, the % pole vanishes from all box integrals.

Finally, after tidying up the dilogarithms, the result for the opposite mass box is:

2 1 \ —¢€ —e€
D = —{{ - -
o(p1, P23, ps) = cr 51235204 — S1232523) [62 (( 8123) +( 8234)

_( - 523)_€ B ( - 51234) _e) + Ldg™ (p1, a3, ps) + (9(6)] , (C.31)
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with,
S . S . S
Ldg?” (p1,p23,pa) = —Lia (1 - —E) —Lip (1 - —23-> — Lip (1 - —lﬁ)
v S123 S234 5123
1 S
_Li, (1 _ 31234) + Li (1 _ 5233‘23“) — ~log? (—lﬁ) (C.32)
5234 81235234/ . 2 S234
The Adjacent Mass Box
P4 P3
K123
k1234 Y K12
k
Ps="P1234 P12

Figure C.4: Momentum flows in the adjacent mass box.

The integration over the Feynman parameters of the adjacent mass box, where two

adjacent legs are massive, fig. (C.4), is rather more difficult,

1
Do (P12, P3, ps) = 3(47) (2 + e)/O dz1dzodr3dzs(l — 21 — Tp — T3 — 24)

X(—812$1$2 — 51237173 — S51234T1T4 — 334$2$4)_(2+e)~ (C-33)
This can be solved using the same substitutions as for the opposite mass box, eq. (C.28).
Then,
- 1
Do(p12, 3, pa) = 1(47)2T(2 + €) / dzdydzz"'"¢(1 - 2)
0

X{.’I)[8123(1 — Z) — 8122(1 - 17)] + y(l - Z)[—834 + 1?(8123 — S1934 + 812]}_(2+€).(C.34)

As with the opposite mass box, the integral is now linear in y, allowing the y-

integration to be done easily. However, this is where the comparison with the opposite
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mass box ends. In that case, the integration over z was a trivial S-function - here it is

not. In order to perform the z integration, terms of the form A~'"¢ must be expanded in

terms of ¢, ie.
1
ATl = Z(l — elog(A) + O(e?)). (C.35)
The integrations involved are rather messy and unilluminating and will not be detailed
here. Finally, with the repeated help of the dilogarithm identities eq. (A.19 - A.22), one

obtains the following expression for the adjacent mass box,

C
DO(p12,p3,p4) = 3123F334 [ 215((_334)_5 + 2(—8123)_6 - (—812)—e - (—81234)_6)
+2Ldo(p12, P, Ps) + O(€)] (C.36)

with,

Ldy(p12, p3, pa) = Lia (1 - im') — Lig (1 - —312-) + 3 log (-—ﬁz’—) log (ﬁgﬁ;) . (C37)

$1234 S123 51281234

C.6 The Pentagon

The pentagon scalar integral is given by,

1

2 L2
k 123 k 1234

(C.38)

5 ? ) H =/ k
o(P1, P23, p0) = [ &'k T

where ki ; =k +p1.j,
P.j=pP1+D2+...+Dj

A result for this integral is required in n = 4 — 2¢ dimensions. Melrose [23] and
independently van Neerven and Vermaseren [24] have shown that this integral in n = 4
dimensions can be written as a linear combination of scalar box integrals. This result will
be reproduced below. The extension to n = 4 — 2¢ dimensions is then straight fbrward,

[21, 22).
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The Scalar Pentagon Integral in Four Dimensions

Consider the integral,
1

6y = [ dgt———r .
&= [d dodydadsds’ (C39)

where dy = ¢> — m?,

d; =¢ —m?,
and ¢; =q+p;.
This is the scalar pentagon integral in four dimensions where the particles propagating
around the loop have a mass m. For convenience of notation, the usual p; ; have been
replaced with p;. The presence of the mass, m, ensures that &, is free from infrared and

collinear singularities.

In four dimensions, the Schouten identity allows the loop momentum ¢ to be decom-
posed in terms of the projective base,v¥, defined in section (4.2), where the vectors v; are

i

orthogonal to p;,
4
¢ = ) u'pig

S vt (@ — ¢ - pl). | (C.40)

Contracting this equation with ¢*, dividing by dyd,d2d3ds and integrating over g gives,
P

13 di — do — p?
i = = L Pt 0 i
/ W rddds 2 ; / dgvi-g (C.41)

dod,dydady

Consider each of the terms of the right hand side of eq. (C.41) separately. It is easy to
see that the first term vanishes by expressing the tensor integral in terms of its possible
tensor structure. For example, ‘

ds 1
vu/d 4 — u/d 4
3 ) MG T dad, Y3 | O dodads

= V§(P1p01 + P2u02 + Payy)

= 0, (C.42)

where a; are scalar functions dependent on p,, po, ps and m.



APPENDIX C. SCALAR INTEGRALS : 142

Similarly, the second term of the right hand side of eq. (C.41) can be simplified by first
making a shift in the loop momenta, ¢ — ¢—p;, and again making a tensor decomposition

of the integral,

4 z
/d d1d2d3d4
Vi*q — Ui"D1
= dg*
Z/ 7 2)[(g+p2—p1)2 —m[(g+p3s—m)? — m?][(g + ps — p1)? — m?]

— vk V q”'
B Z /dq —m2)[(g + p2 — p1)? — m?|[(g + ps — p1)? — m?[(q + ps — p1)? — M?]

1
/dq —m2][(g +p2 — ;1)? — m?|[(g + ps — p1)? — m?|[(q + ps — P1)? — m?]

1
= gv“[(pz —p1)uB2 + (p3 — P1)uBs + (Pa — P1)uBs] — /dq didydad,

1
= — [dgt——— C.4
/ U G drdads’ | (C.43)

where the orthogonality relation p;-v; = d;; has been used, and f; are scalar functions

dependent on the vectors py — p1, p3 — P1, P4+ — p1 and the mass m.

For the final term, use is once again made of eq. (C.40), decomposing the loop momenta

in terms of the projective base,

Vi+q 4 Vit 'U] Uy
dt—2 / dg
Zp,/ ¥ Godidydsd, E Pi d0d1d2d3d4

ml

—dp— pJ
= Z p; "ﬁ vj / dg* W (C.44)

,J—l

Putting this all together gives the four dimensional, massive, scalar pentagon in terms of

scalar box integrals,

1
/ d'q dodidodnds = ¢pD1234 + €1Do234 + c2Dyp134

1

— 4
dodydydads’ (C.45)

+ ¢3Dpi2s + c4Doraz + csm? / dq

where,

1
Di' = 4 .
jkl / d’q ) (C.46)




APPENDIX C. SCALAR INTEGRALS ' 143

and,

4 2
2'2;’,;’:1 P;viv;

“© = Zjn,n:l pgnp?:”'mvn ?
Zé—l pzvivj .
C; = j=1"3 i = 1 o 4
' Zjﬂ,n:l P%;P%vmvn ! ( )’
e 4 (C.47)

2:7 P2,02VUmun
sm,n=1Fmfatmon

Extension to n = 4 — 2¢ Dimensions.

The extension of the above result to n = 4 — 2¢ dimensions is now straightforward.

Consider the scalar pentagon integral integral:

d*k 1
= 4
80(p1’p27p37p4) / (271')" k2k%k k 23k1234 (C 8)

where ky_j =k + D1y
Pj=pm+p+...+p;

The loop momentum k is an n-dimensional vector, which can be decomposed into four
dimensional and n — 4 dimensional components. That is, K = ¢ + ¢ where ¢ is a four

dimensional vector and ¢ an n — 4 dimensional space-like Euclidean vector. Writing

§? = —m?, the expression for £ becomes,
dtqd™ 4§ 1
Eo(Pr, P2, P3, Pa) = / , 4
o(P1, P2, D3, P4) n) dodsdydads (C.49)
where,
dO = 02 - m2,
i = (g+p.s)*—-m (C.50)

The integration over the trivial angles in the n — 4 dimensional subspace can now be

performed,

2 (1+e)
Eo(p1, P2, P3, Ps) = /dm (m?) / o 4d0d1d2d3d4 (C.51)
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Now eq. (C.45) can be used to rewrite the four dimensional integral over ¢ as a sum of

four dimensional, massive scalar box integrals,

—€ _ ¢ )
Eo(p1, P2, 03, P1) = m/dmz(mz) (1+ )(COD1234 + ¢1Dog34

+¢2Do1a4 + c3Doras + caDo1os + csm? [ d4Q——-dodl,}2d3d4), (C.52)
where, 1
Do = / d* ) C.53
! V4id;dvd, (C.53)
and,
o = 2_2?,1':1 Pl viv) .
0 E?,j:l p%..‘ipf...j”i"j ’
Z;:l pil', J-‘U;“UJ' X
. = =1...4
“ Zf,j:l pi Pl i’ (Z 1 )’
“ 4 (C.54)

- f{jﬂ p?...ip%..jij '
(Notice that p;._; now replaces p;.) -
The integral over the trivial angles in the n—4 dimensional subspace can be reconstructed,

returning the integrals back into n = 4 — 2¢ dimensional integrals,

Eo(p1,p2,p3,P4) = (CODO(Pz,Pa,m) + ¢1Dy(p12, P3, Pa) + €2Do(P1, Po3, Pa)
+ ¢3Do(p1, P2, P3a) + caDo(p1, P2, P3)

€ 1
— [ d 2 2 —e/ 4., - .
BT — )2 / mi ()~ | d qd0d1d2d3d4)’ (C:55)
where ¢;, 1 = 1...5, are given by eq. (C.54).

The last term is O(e) and can be ignored. Eq. (C.55) then gives the scalar pentagon

integral as a linear combination of scalar box integrals.



Appendix D

The QCD Feynman Rules

In this appendix, the Feynman rules of QCD are presented in the Feynman gauge. In the

following, the quark mass is set to zero.

For each external quark or antiquark of momentum p, helicity A and colour i, a dirac

spinor is included:
e Outgoing quark: @;)(p). e Incoming quark: u;)(p).

Similarly, each external gluon of momentum p, helicity A and colour a, must be given a

polarization vector:
e Outgoing gluon: &% (p). ¢ Incoming gluon: £$(p).

The QcCD propagators and vertices are given in fig.(D.1). The letters ¢ and j label
the colour of the quarks, whereas a, b and c are used to denote the colours of the gluons
and ghost fields. For the vertices, all momenta are outgoing. Finally, T* are the colour

matrices, fzs are the SU(3) structure constants, and g, is the coupling strength.

For closed loops, the unconstrained momentum is integrated over and the integral is
divided by (27)" where n is the space-time dimension. Furthermore, for closed quark

loops, a factor of (—1) is included.

145
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Figure D.1: The QCD propagators and vertices.
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