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Abstract.

On the Galois module structure of units

in metacyclic extensions - Karen Y. McGaul

Let I' be a metacyclic group of order pg with p and ¢ prime. We shall show that the

[-cohomology and character of a I-lattice determine its genus.

Let N/L be a Galois extension with group I', then Uy, the torsion-free units of N, is
a I-lattice and the isomorphism Q ® Uy = Q ® AS, gives its character. In certain
cases we can determine its cohomology and thus its genus; in particular, when Ay = 1

and L = Q we show that the genus of Uy depends only on the number of non-split,

ramified primes in N/L.

We shall also investigate Uy in the factorizability defect Grothendieck group.
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CHAPTER 1

Introduction.

Let N and L be algebraic number fields and N a Galois extension of L with group I
Let Ex be the group of multiplicative units of the algebraic integers of N and uy its
torsion subgroup. Then there exists a finitely-generated ZI-lattice, Uy, defined by

the exact sequence
O—>,uN‘—)gN—>UN—)O.

Un will be referred to as the torsion-free units of N. In this thesis we are particularly
interested in the Galois module structure of Uy in the case when I' is a non-abelian

metacyclic group of order pg where p and ¢ are prime.

Many results on the Galois module structure of units concentrate on determining
whether or not Uy has a Minkowski unit (see [Du], [Ma2] for some non-cyclic examples
and [Mal], [Mol], [Mo2] for specifically metacyclic examples or section 1.2). We will
discuss the metacyclic case in section 1.2. There are also general results on local units
(see [GW1], [GW2] for general results or [Ja2], [Ja3] for local metacyclic extensions)
discussed in Chapter 3 and on S-units (see for example [GW1]) which we discuss in

Chapter 4.

A finite group I has finite representation type if and only if all its p-Sylow subgroups
have order 1, p or p? ([CR1], theorem 33.6). This means there is only a finite number
of indecomposable [-lattices and it seems logical to describe Uy as a direct sum of

these.

In general however, though there are still a finite number of indecomposable lattices
of each Z-rank, it would be difficult to describe the possible genera of Uy for a general

extension N/L.



When T is abelian then there are many techniques available which make it possible
to get more complete descriptions of the Galois module structure of Uy, or at least
to say when Uy is in the same genus as a module of which the structure is known.
We shall discuss the results of [Bu] and [Fr] on real abelian extensions in the next

section.

When T is metacyclic of order pg with p and ¢ prime then there are finitely many
indecomposable I'-lattices and an example of a lattice from each genus is given in
section 1.2. Since Uy ® Q = AS, ® Q we know the characters of Uy which gives

finitely many possibilities for its genus.

This idea is used in the papers by Moser ([Mol] and [Mo2]) to find invariants deter-
mining the genus of Uy. The invariants found are in terms of indices between unit

groups (see section 1.2).

We shall show that the characters and cohomology of a I'-lattice (where T is pq-
metacyclic) determine its genus (theorem 2.6). This will enable us to find the genus
of Uy (and other I'-lattices) in certain cases. In particular, when Ay, the class number
of N, is trivial and L = Q we find Uy is determined completely by the number of
non-split, ramified primes in N/Q (theorem 6.6).

We shall also apply these results to local units and S-units. Finally, in Chapter 7
we shall use a different technique and show that working in the factorizability defect

Grothendieck group can give some interesting results on the Galois structure of Uy.

1.1. Abelian extensions.

Here we recount the work of [Fr] and [Bu] on abelian extensions. For any abelian
group I, let Tr = .y be the trace element of the integral group ring ZT'. Let Ar
be the semi-simple Q-algebra QI'/QTr. Then there is a Z-order Ar of Ar defined by

the exact sequence

0 =2ZTr > ZI' - Ar — 0.
8



Let L possess a unique infinite place, which is the same as L being either the field of
rationals, Q, or an imaginary quadratic field. If ' is the Galois group of N/L then
there is a natural action of Ar on Uy. Let Ay be the associated order of Uy in Ar,
i.e. identifying Uy with Uy ®Z C Un ® Q, An is the full set of elements of Ar which
induce endomorphisms of Uy. Clearly Ar C Ay.

The problem studied in [Bu] is to determine the conditions under which Uy is locally

free as an Ap-lattice. Equivalently, when do Uy and Ay lie in the same Ap-genus?
Before giving some answers to this question we need a few definitions.

Definitions. Let I'* be the group of complex multiplicative characters of I' and let
P(T*) be the set of subgroups of ['*. For a subgroup Q of I', G(Q) € P(I™*) is the
set of characters which act trivially on 2. Two characters of I' belong to the same
division if and only if the generate the same cyclic subgroup of I'*. Thus to a division

D there corresponds a cyclic subgroup D of I'™.

Let f € Map(P(I'*),Qs0) then f can be extended to each division D of I'* using the

Moébius p-function

f(D) = H f(C)u(IDI/ICI),

c<D

and we get a rational number ffrom f called the factor derivative defined by
F=(]] sy,
Dcre

where the product is over all divisions D of T'*.

~ ]
\71" - (Hpjp)r",
Y4

Jp = no. of non-trivial divisions of I';,



Define Ay, € Map(P(I'*),N) to be
hyr 2 G(2) = hef(hya, |T).
.where hya is the class number of N©.
Define the map wyy, € Map(P(I'*),N) to be
wnyz : G(2) = hef(wye, |T)).
where wya is the cardinality of the torsion units of N®.
A subgroup @ of I' is cocyclic if '/ is cyclic, and write <. I'.

Theorem 1.1. ([Bu|, theorem 8) Let L possess a unique infinite place (so L is either
Q or an imaginary quadratic field). Let N/L be an abelian extension which is unram-
ified at infinity. Then UnV Ar if and only if both %N/L = &)'N/Ljp and H*(Q,Uy) =0
for all cocyclic subgroups <. I'. I

Note that H° means Tate cohomology.

More specifically, when L = Q and [N : Q)] is a power of a prime we have

Theorem 1.2. ([Fr], theorem 5) Let N be a real abelian extension of Q. Let [N : Q)
be a power of a prime [. If

(i) T is cyclic, there is exactly one ramified prime and this prime ramifies totally,
(ii) there are exactly two primes which ramify in N and each is inert in its inertia

field. Also l is odd,

then Un is a locally-free Ar-module. 0O

In general it is difficult to calculate ZN/L and hence to find the structure of the units.
However, for a prime [, when the Hilbert [-class field of N is abelian over L it is

possible to find the local structure.
10



This is certainly true if N is contained in F' which is an abelian [-extension of L and

[t hp. F is then called a genus field extension of L.

Definitions. The place v € Sp/g, the set of non-archimedean places of L which
ramify in F'/L, is associated to the prime Oy, ideal P,. If P, has order A, in CIy, then
choose 7, € L such that

Ph = 1,0y
Ip/1, = inertia group of v in Gal(F/L).
Dgy1,, = decomposition group of v in Gal(F/L).

If v is coprime to [, fix an element , € O,, the valuation ring of L,, which generates

the multiplicative group of R, := O,/P,O,, for each element z € OF define [v,z] €
Zl/(#R'u)Zl by

z=z"! mod P,0,.

If v|l and Ipyyp is cyclic then choose a place w of F' lying above v and fix a generator
z, € O} of the quotient group O} /Normp, /k,(O;,). For z € O define [v, 2| € Z,/e,Z,
by

z =zl mod Normg, /x,(O%).

Theorem 1.3. ([Bu], theorem 6) Let F be a genus field extension of L of degree 3
and Sryr, = {v1,v2,v3} such that

—[ve, To,]  —[vs, 7y, ] 0
[vla 7!'1,2] 0 —[’03, 7r,,2] € GLg(]FI)

0 [Ul, ”vs] [’02, 7'-‘03]
If C < Gal(F/L) is a subgroup of order | satisfying
(i) CNIpjpw; =1 for each1=1,2,3,

(ii) C N (N:Z3DFyr) = 1,
1



then with K = FC one has

Uk V Ag. O

1.2. Metacyclic extensions.

N is a Galois extension of L over Q. Let I' = Gal(N/L) be a metacyclic group of

order pq. .
I'=(o,rlo?P=7"=1,7077! =0")

where p and q are distinct primes, p odd and ¢|(p — 1). The integer r is a primitive

gth root of unity modulo p. When g = 2 then T is dihedral.

It is well known that I has finite representation type. There are 2942971 +q+2 genera
of indecomposable ZI'-1attices, but a general lattice need not decompose uniquely into
a product of indecomposable lattices. These results come from Pu, [Pu] and in the

dihedral case, originally in Lee, [Le].

Listed below is an example of a lattice from each genus, using the notation of [CR1].

Lattice Description No. of Character
genera
(i) kA P = (1-§)Z[¢,] where q X

(0<i<g—1) o actsas mult. by &,
and 7 acts as the

automorphism &, — &,".
P.= P'and P, = R=ZI[£).

(ii) Z o and 7 act trivially. 1 X

(iii) S = Z[¢,] 0 acts trivially, 1 X~

T acts as mult. by &,.

(iv) Z[Cy) o acts trivially, 1 xt+x

12



T acts as mult. by 7.

(v) Xr The non-split extension 207 -1 |TIx+x~

O—)LT—>XT—>S—~)O,

(vi) Yr The non-split extension 2 1 IT|x + xt +x~
0— Ly - Yr - Z[C] — 0.

(vil) vV The non-split extension 1 x+ xt
0PV Z—0.

where T is a non-empty subset of {0,1,...,9 — 1}, Ly = I;erP.. (excluding in the
X7 case t = 1, which must split.) char(ZI') = x* + x~ + gx and for a rational prime

r, & is a primitive rth root of unity.

x* is the trivial character, ™ = xi +-- -4 Xx,_, is the sum of irreducible characters of
dimension 1 corresponding to the conjugacy classes of o*, and x = x; + -+ + X(p-1/q)

is the sum of characters of dimension gq.
Remark Yrmax where 7™ = {0,1,...,¢ — 1} is in the same genus as ZI.

In the dihedral case we shall use a slightly different notation, again from [CR1]. Let
[' be a dihedral group of order 2p. Then there are 10 indecomposable I-lattices; Z
where [' acts trivially, Z~ where 7 acts as multiplication by —1 and o acts trivially,
ZC, where o acts trivially, R = Z[§,], P = (1 — §,) R where o acts as multiplication
by &, and 7 as complex conjugation, V, X, Yy, Y1,Y2 are respectively the non-split

extensions of Z by P, Z by R, ZC, by R, ZC, by P, and ZC, by R & P.

Let N/Q be a real, metacyclic extension of order pg with p and ¢ odd primes, g
divides p — 1. Let C, = (¢) and C, = (7). Let K = N® and k = NC.
13



Let ' be the Galois group of N/Q and let X{1} be the character of ' induced from
the trivial character of {1} and xr is the trivial character of I. Then the character
of Uy is X{1y — XT- From section 1.4 of [Mo2], all ZI'-modules of this character are

isomorphic to one of the following list:

) @g-zlpejaj DS,
o ()1 Pa;,8) @}, Paj,

where 0 < e; < ¢—1 and the a; are ideal classes of A; = Q(&,)¥ NZ[£,] where 1 is the

element of order ¢ of the cyclic group Gal(Q(¢,)/Q) and (&!_,P%a;,S) represents a

non-split extension of S by 6}3;-:1 Péaq,.

Let u € Z be defined to be 0 if Uy is isomorphic to @{_, P%a; & S, and the num-
ber of distinct exponents e; otherwise. We can define an invariant b of Uy to be

[Uk : Nn/kUn] and theorem 2.3 of [Mo2] gives

b= [UK : NN/KUN] = pq-—l—u. (11)

Keep u as above and let
Uy = EB;’l=11:)1€jaj =@, PYNA
then according to theorem 2.4 of [Mo2] there is a second invariant, a, of Uy given by

a = [UN U Ugo . .. deq—l UK] = ng=1(q€‘_ei)+u. (1.2)

Together a and b will not necessarily determine the genus of Uyn except in the case
where [' is dihedral. Now let N/Q be a dihedral extension of order 2p with Galois
group I'. It is clear from the characters of Uy that there are two possibilities for the
genus of Uy when N is complex, namely R and P, and five when N is real, namely

Z-®R®R,Z-®R®P,Z- PP, X®R,and X & P.

Proposition 1.4. ([Mol], II1.3 and II1.5) Let N be a real dihedral extension of order
2p of Q.

14



(1) If N is complez and

a = [Un : UpUys]),

then the invariant a determines the genus of Uy in the following way:

UN a
R 1
P p

(it) If N is real and
a = [UN . UkUkoU[(]
b= [UK . NN/KUN]

where Ny/k is the norm map, then the invariants a and b determine the genus of Uy

in the following way:

Type Un a b
o« Z SRR I »p
B Z OROP p p
vy Z ®P®P p* p
é XOR p 1
€ XeP p? 1

To make it easier to calculate the invariant @ we have the following proposition.

Proposition 1.5. ([Mol] IV.1) Let N/Q be dihedral of order 2p, p an odd prime,
then
a hz hK

hy = 1.3
N " (1.3)

where r =1 ¢f N is complex and 2 if N is real. O
15



In the final section of [Mol] examples are calculated in the case when p = 3 for all
cases of Uy except type o. In section 9.1 we shall give an example of this missing

case.

Definition. Let N be a Galois extension of L with Galois group I', then we say N

has a Minkowski unit if Uy is a cyclic ZI-module.

This is equivalent to Uy being Ap-isomorphic to Ar.

Proposition 1.6. ([Mal], theorem 1) Let N be a real, metacyclic extension of Q of
degree pm where p is a prime and m|(p — 1). If N has a Minkowski unit then

hKh;gn :pthN’
witht>m—-1. O

Proposition 1.7. ([Mal], theorem 2) Let N be a real, metacyclic extension of degree

pq over Q, where p and q are odd primes.

(i) If N has a Minkowski unit, then there exists an ideal a < A; and

(a,) UN &~ XTmaz &) Pa;
where T = {0,2,3,...,q—1},

(b) 2tk = po

hn ’

(¢) Nnyx(Un) = Uk,
(d) the field K has a Minkowski unit.
(ii) Conditions (b) and (c) are necessary and sufficient for Uy to be in the same genus

as LU | ZTy.
16



(it1) If the class number of Ay is 1, then (b),(c) and (d) are necessary and sufficient
for K to have a Minkowski unit. Note that we can drop condition (d) if ¢ <19. O

1.3. Notation.

N is a Galois extension of Q and L a subfield of N. Let I' = Gal(N/L) be a metacyclic
group of order pq.

P={(o,rle?=7"=1,701"! = 0o")
where p and. ¢ are distinct primes, p odd and ¢|(p — 1). 7 is a primitive qth root
of unity modulo p. Whenever we use the words “pg-metacyclic group” we shall be
referring to a group with this structure (i.e. not a pg-cyclic group.) When ¢ = 2 then
' is dihedral.

In general we shall try to use the notation I' for a pg-metacyclic or dihedral group

and G when we are referring to a general group.

Let C, = (o) and C; = (7). Let K be the subfield of N fixed by C, and k the subfield
fixed by C,.

Let S be a [-invariant set of primes of N including

(i) all ramified primes,
(ii) all infinite primes and

(iii) enough primes so that the S-class group is cohomologically trivial.
Sometimes it may be necessary to add a fourth condition

(iv) S contains enough primes so that the S-class group of all intermediate fields

between N and L is trivial.

Let S be the set of infinite primes of N and Sy be the set of finite primes in S. AS
is the kernel of the augmentation map ZS — Z, for any set S and S is the set of

primes in L under those of S.
17



Let Ex be the units of N, and ux the roots of unity in N, and Uy be the torsion free
units of N, i.e. Uy = En/un. Es are the S-units, and Us = Es/pn.

Let Cly be the class group of N and hy = |Cly| is the class number.

In general it is assumed that p does not divide the order of py.

18



CHAPTER 2

Invariants for the genus of pg-metacyclic lattices.
Introduction.

The aim of this chapter is to find invariants determining the genus of a pg-metacyclic
lattice in terms of other invariants which may be easier to calculate. In section 1.2
of the previous chapter we gave a list of genus representatives of the indecomposable
pg-lattices. Now we would like to find a way to write a ZI-lattice as a direct sum
of these, in particular we would like to do this for the torsion-free units, Uy, of a

pg-metacyclic extension, V.

In section 2.4 are some exact sequences which include the units. These give informa-
tion on the cohomology of Uy. For a general group the cohomology of a lattice will
give some information about the decomposition of that lattice. In the case when the
group is pg-metacyclic the cohomology gives even more information about the genus.
We shall show in section 2.3, theorem 2.6 that two lattices are in the same genus if

and only if they have the same characters and cohomology.

Before this in section 2.1 is a list of some well known results on cohomology which
will be used in this and later chapters. Then in section 2.2 we find the cohomology
of pg-metacyclic lattices. In section 2.3 we calculate the invariants we will be using
in later chapters to find the Galois module structure of the local units, S-units and
global units. Finally we give some exact sequences including the cohomology of the

units.

2.1. Cohomological results.

The results listed here for convenience are all either well known or simple corollaries

to well known results.

19



2.1.1. Relations with Sylow p-subgroups.

Lemma 2.1. Let I' be any finite group, and let A be a I'-module, then
HH(F,A) =5 Hn(r’ A)(P)7 (21)

where H*(T', A) () is the p-primary component of H*(I', A), and p ranges over all the
primes dividing |T|.

Proof. H™(T', A) is an Abelian group which is annihilated by [['|. O

Definition. An inclusion Q < I' and a [module A induces a map
resy : H*(I', A) = H™(, A),
called the restriction map.

There is also a map between cohomology groups induced by conjugation. Let  C I'.
Suppose ¢(7y) : 8 = ¥Qy~! for v € T, then there is a map

c(y)" s H*(vQy™, A) = H™(Q, A),
where A is a ['-module.
Definition. If z € H*(Q2, A) then define

vz = (c(7))7(2) € H* (v, A).

Definition. If @ C I' and A is a Imodule then an element z € H™(Q, A) is
[-invariant if

Q -1
resgryny-1(2) = resge a1 (12)

for all y € I'.

Theorem 2.2. ([Br], p84, theorem 10.3) Let T' be a finite group and I'p) a Sylow

p-subgroup of I
20



(i) For any I'-module A and any n > 0, H*(I', A)(,) is isomorphic to the set of
[-invariant elements of H" ('), A).

(zz) If F(p) < T then H"(F, A)(p) > H"(F(p),A)F/F(P), 0

2.1.2. Cohomology of Hom(A, B).

Lemma 2.3. ([Br], p61, proposition 2.2) Let T be a finite group. If M is a ZI'-lattice,
then

Ext?(M, A) 2 H(T, Hom(M, A))

for any I'-module A, where I acts diagonally on Hom(M, A). 0O

Lemma 2.4. ([Br], p153, ezercise 2) If A is a ['-lattice and cohomologically trivial,
then Hom(A, B) is cohomologically trivial for any T'-module B.

2.2. The cohomology of metacyclic groups.

2.2.1. Projective resolutions of Z for metacyclic groups.

Now let ' = (o, 7|o? = 77 = 1,707~! = 0") where r is a primitive gth root of unity
modulo p. In this section we shall find a projective resolution of Z for I' of length
2g. It can be shown that I' has periodic cohomology of period 2g, (see [Br], p155,
example 3 for a proof using the fact that I' has a 2¢-fixed-point-free representation)

and so no shorter resolution is possible.

From lemma, 2.1, for any [-module A

H"(T',A) = H"(T', A)p) @ H*(T, A)(g)- (2.2)

Let C, = (¢) and C; = (7). C, < T so by theorem 2.2(ii),

Hn(ra A)(P) = Hn(cp’ A)cq
21



and by theorem 2.2(i), H™(T', A)(,) is isomorphic to the I-invariant elements of
H™(C,, A).

Firstly we show that all elements of H"(C,, A) are I-invariant. Now y7y~! ¢ C, for
vy €T'\C,. SoC,NyCy~! ={0}. ‘

Thus both restriction maps are zero maps and hence are identical.

= res(y, : H*(C,, A) » H*({0}, 4) =0,

Caq
I‘es(fq NyCqy~1!

-1 -1
reszqc;chw_l = reszg;W : H*(vCy~t, A) — H™({0}, A) = 0.
-1
Therefore resg:maﬂ_1 (2)=0= resZ:r‘%Cq ,-1(72), for all v € T and 2 € H"(C,, A).

From the definition of I-invariance, since the restriction maps are the same,

Hn(F> A)(Q) = Hn(cq’A)' (2'3)

To calculate the I'-cohomology groups it is necessary to find C, and C,-projective

I'-exact resolutions of Z. This is particularly easy in the C,-case.

Let D=1—-7and N=147+---+ 7971, then a C,-resolution of Z is

0 2Z&2C, 220,870, 2 ..

So that
. o N % when n is even,
H (PaA)(Q):H (Cq,A): Na= A
{al—aD‘.?q"’—e-l when n is odd,

and the g-part of the cohomology has period 2.

The p-part of the cohomology is more complicated because the ‘normal’ resolution of

Z for a cyclic group, like the one used above, is not naturally a I-sequence. However,
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there are 2¢q short exact sequences

P>V >Z, Z -V > P, (2.4)

B — XTmax - X imax, XTimax — XTmax — H_l,

where ¢ # 1, T™* = {0, 2, 3;4, .ooyq—1} and Xgmax = T™2*\ {s}. These concatenate

to give a long exact sequence of 2¢g 4 2 terms

Z—>V—+XTmax—>"'—)XTmax—)V—)Z, (25)

which concatenates with itself to give a ZC)-projective, ZI'-resolution of Z with period

2q.

2.2.2. Cohomology with indecomposable lattice coefficients.

It is now possible to calculate the cohomology groups of metacyclic groups when the

coeflicients are indecomposable I'-lattices.

Firstly the cohomology is calculated with Z as a coefficient. After some calculations

we get

F,("? n even,
H"(C,,Z) =
0 n odd,
where Fp(;‘) is cyclic of order p, and 7 : F,(®) — F,(®) by 7 : f > rof for f € F,(®) and
r is a primitive gth root of 1 modulo p . Therefore, writing F, and F, for the cyclic
groups of order p and ¢ respectively,
I, n=0 mod (29) F, n even

H'(T,Z)y) = HYT[,Z)q) =
0 otherwise 0 nodd

The short exact sequence P — V — Z and the fact V is C,-projective give

H"(C,, P) = H"7'(C,, Z).
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The short exact sequence P; — Xrmax — Xgmax and the fact Xpmax is C,-projective

give

H(C,,P,) = H"(C,,P,_y) fori#1.

We could continue in this way, finding isomorphisms between cohomology groups, to

get the full cohomology of all the indecomposable lattices, listed below.

4
F, n=2—1 mod (2¢)
H"(F,R')(p) = H"(F,Pg)(q) >0 for all n
0 otherwise
’
F, neven,n#0 mod (29) 0 neven
H"(I,S)@m =S H™(T,S)q =
0 otherwise F, nodd
4
F, neven
H™,ZC,)(p) = H"(T,ZCy)q) =0 foralln
0 nodd
F, n=2(t—-1),t¢T,t#1 0 neven
H™T, X1)@p) = S H™(T, X1)() =
0 otherwise F, nodd
F, n=2(t-1),t¢T
Hn(F, YT)(p) = ¢ H"(F, YT)(q) =0 for all n
0 otherwise ‘

F, neven

1%

H™(T, V)(,,) >~ for all n H™(T, V)(q) 0 ”
n o

where all congruences are modulo 2q.

2.3. Invariants for the genus of metacyclic-lattices.

Let I" be a pg-metacyclic group. Whilst the cohomology of any individual indecom-
posable I'-lattice is unique to the lattices in that genus it is clear that direct sums
of I'-lattices can be arranged to have the same cohomology, even when they do not

obviously lie in the same genus. It is also true that a lattice may not decompose
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uniquely into a direct sum of indecomposable lattices, however, we shall show in this
section that these decompositions will still have the same cohomology. We shall in
fact show that two I'-lattices are in the same genus if and only if they have the same

cohomology and characters.

Two I'-lattices lie in the same genus if they have the same p-adic and ¢-adic com-
pletions. We shall show that the p-adic completion depends only on the cohomology
and characters in proposition 2.5. This is done separately because we shall need this

result when we look at extensions of local fields in chapter 3.

Proposition 2.5. Let ' be a metacyclic group of order pq. Let M be a I'-lattice.
Then the characters and p-part of the cohomology of M determine ./T/l\, the p-adic
completion of M.

Note that in Chapter 7 we have used the notation M, for p-adic completion.

Proof. Write M as a product of indecomposable ['-modules

mv{¥rieziesezcio{f x;" o {E e vy
There are 3¢ indecomposable ZI-lattices, namely (in the notation of [CR1]) P.7Z;
and ﬁi for:=1,...,q, and thus M is written as a product of these
M={9PrYely o{eilZ)" o {6} o

(@108, 25 )0 o Zo) 0} { R 1(0&, Z0)) @ (2, o)™} O Ty
(2.6)

Note that Z' comes from the non-split extension:
0/_rightar7°owl3,- — ﬁi — 2,- — 0.

The number of times these indecomposable ZTlattices occur in M gives the following

invariants of M:
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20) 81 + [+ 21¢T2 v, = Qp,
Zi) S2 + l + Zi+1¢T1 urn + Zi-{-lqéTz vy, = aivi 75 Oa

Zr‘o) 21€T2 v, tw = /BOa
Zri) Ez’+1€T1 uT, + Ei+1€T2 v, = ﬁiai 5& 0,
P) ri =ri

It is possible to write the invariants in terms of the cohomology and characters of M

as claimed:

No. of x* in char(M) = ag + B,
No. of x™ in char(M) = o; + £;,
logp[H%(F,M)(p)] = q;,

log, [H* (', M) )] = s,

for0<:<¢g—-1. O

If two lattices have the same cohomology and characters all that is now required to
show they are in the same genus is show that they have the same g-adic completions
(see [Pu]). However it is easier to follow the method in [CR1] and show that the
lattices are the same when they are localized without completion at g rather than

g-adically completed. This is the method used to prove the following theorem.

Theorem 2.6. Let M be a I'-lattice where I' is a pg-metacyclic group. Then the

characters and cohomology of M determine its genus.

Proof. Write M as a product of indecomposable I'-modules

Mv{?Plezrasmezcio{f X e {f v e v
q 1 2

From [CR1] §34E, the genus of M is determined by the indecomposable modules of
My and M, where the subscript (q¢) denotes localisation without completion and

M is the p-adic completion of M.
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It has already been shown in proposition 2.5 that the characters and cohomology of

M are enough to determine M.

As for M), there are four indecomposable Z,I-lattices, namely R(y), Z(y), S(), and

Z(yCq and when M is localized at ¢ without completion it becomes

i s 52 T |w u
My ={ T B3} 028087 0 ZuCi 0 { 7 (Ry"™ 5())} &

|T2)v v w
{2 (RO @ 20y} @ {Rip) ® Zio)}*.

The number of times these four indecomposable Z ) I-lattices occur in My give four

invariants of M:

Rg) Siri+ Y Tilur + Yo, [Talon, +w =7,

L)) sitw =4,
Sy) Sy + z:Tl.uT1 =g,
Z(q)cq) [+ ET2 v, =¢.

It is now possible write the invariants determining M) in terms of the cohomology

and characters of M:

No. of x* in char(M) = § + ¢,
No. of x in char(M) = v,
log H¥(T, M) g = 4,
q

log H2i_1(F,M)(q) =e. 0O

q

For any finite group G it is possible in a similar way to tell when Z is a direct summand

of a ZG-lattice:

Theorem 2.7. ([Sy|, theorem 1.1) Let G be any finite group and let M be a ZG-
lattice. Then H°(G, M) contains an element of order |G| if and only if M contains

the trivial ZG-lattice, Z, as a direct summand. [
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For any finite group G, theorem 2.6 generally does not hold, but with a stronger
condition on the isomorphisms between cohomology groups we can get a condition

for two lattices M and N to be in the same genus.

Proposition 2.8. Let M and N be G-lattices and
fM=oN
be a G-homomorphism so that
ffH(H,M)= H*H,N), Vne€Z,HCG,

and also Q@M 2 QQN, then MV N.

Definition. Let f,¢g € Homg(M,N), then f is homotopic to g if f — g factors

through a projective ZG-module and we write f ~ g.

Definition. f: M — A is a homotopy equivalence if there exists g : N/ = M
such that fg ~ idy and gf ~ idp. We write M ~ N,

Lemma 2.9. ([GW1],(10.1)) M~ N and Q@ M X QQ N implies MV N. [

Lemma 2.10. ([GW1], (1.6)) The following statements about f : M — N are equiv-

alent:
(i) f is a homotopy equivalence,

(ii) there exists ZG-projective modules P and Q and an isomorphism o : M@ P 5
N @ Q so that f is the composite

M-S MOP-NdQ -5 N,

where 1 is the natural injection and 7 is the natural projection. [J

Proof of proposition 2.8. Let f satisfy the conditions of proposition 2.8. By lemma
2.9 we will have proved the proposition if we show f is a homotopy equivalence. In

fact, we shall show f satisfies condition (ii) of lemma 2.10.
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Firstly, choose a projective presentation of N, 7 : P - A and form the short exact

sequence
05Q—MaPLIN 0 (2.7)

then @ C M @ P and both P and M are lattices so Q) is too.

Take the cohomology of H C G to get the exact sequence

e HMH,Q) — H'(H,M & P) S HrH N) = ... (2.8)

f* A
H"(H M@ P)= H"(H, M)~ H*(H,N). So H*(H,Q) = 0, thus Q is cohomologi-

cally trivial.

By [Br], p152 theorem (8.10) a cohomologically trivial lattice is projective. Therefore
Extg (N, Q) = 0 and extension (2.7) splits.

Let v: N — M & P be a splitting, then
o MBP=Qdv(N)—=QaN,

and this gives a factorisation of f as required. O

2.4. Exact sequences for units.

Let Uy be the torsion-free units of the field N over L with Galois group I'. The
character of Uy is known, so from theorem 2.6 a knowledge of the cohomology of Uy
would determine its genus. Throughout use H"(2, —) to denote Tate cohomology,
where (2 is a subgroup of I'. The aim of this section is to derive an exact sequence to

help calculate H*(, Un).

Firstly, we get an exact sequence including H™(f2, Ex) where Ey are the units of N.

Let S be a I'-invariant set of primes in N. There is a short exact sequence

O—>5N—>gs—->7-75—)0, (2.9)
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where Ps denotes the principal fractional ideals of N supported on the places in Sy

and & are the S-units. Fixing under () gives a long exact sequence

0— &N = E¢ = PT— H(Q,En) - HY(Q,Es) = ... (2.10)

Next calculate H™(f2, Es) to substitute in (2.10). From [Tal, p.54, for S sufficiently

large there is an exact sequence

0— & — A3 » Bs -+ AS =0, (2.11)

with As and Bs cohomologically trivial. Thus

H™(Q,AS) = H*"*(Q, &s). (2.12)

There exists another exact sequence including H"(2,Ps). Fixing the short exact

sequence

O%PS—)ZS.{—)CIN—)O, (2.13)

under ) gives an exact sequence

0— P - ZS} - Clfy — HY(Q,Ps) = 0 = H'(Q, Cly) = HX(Q,Ps) = ...

(2.14)
since H'(Q,ZSy) = 0.
The short exact sequence
0—puv —=Ev—Unv—0, (2.15)
gives a long exact sequence including H*(2, Un).
In particular, if p{ |un| for some rational prime p then
H™(Q,E8) ) = HY(Q, Un)(p)- (2.16)
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Simplifications.

Note that if we assume H"(, Cly)(p) = 0, (e.g. if p does not divide the class number)

then clearly

H”(Q,'Pg)(p) = Hn(Q,ZSf)(p). (2.17)

We can add another condition to those on page 17, (iv) S contains enough primes so

that the S-class number of all intermediate fields between N and L is 1, then

H'(0,E) =0. (2.18)

(This comes from the exact sequences
0 = Esya — (N = Igya = Clgya  — 0
I I l { (by Hilbert 90)
0 = &y — (N - I¢y — H' (VEsn) — HY(QLN")=0
where Zg are the ideals prime to S and the second subscript indicates which field the

modules come from.)
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CHAPTER 3

Principal units of metacyclic extensions of local fields.
Introduction.

Before looking at the global units we shall in this chapter study the simpler local case.
Firstly we give some previous results on units of local extensions in the general case
(see [GW1], [GW2]) and for metacyclic extensions (see [Ja2], [Ja3]). Then we shall
use the results we found in the last chapter to look at some cases that these papers

do not cover.

3.1. Previous work on units of local extensions.

Let N/L be a Galois extension of local fields with Galois group G and residue field
of characteristic p. Let U be the units of N, and U, be the principal units. [GW1]
give conditions determining the isomorphism class of ;. Before writing this result

(theorem 3.1) it is necessary to define a I-module, W, and give some notation.

Definition. Let 8 be the maximal ideal of N. The principal units, i/, is the

multiplicative group of units congruent to 1 modulo B.

The exact sequence which defines the units ¢ of N is
0oU = N*5Z 0, (3.1)

where v is the normalized valuation.

As explained in [GW1] there exists an exact sequence

0>N*=V—AG—=0,
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with V' cohomologically trivial, this comes from the Tate sequence for local units

0 >N A>3 B—>Z—0.

Form the pushout along v:

Thus we get

02UV W0 (3.2)
with V' cobomologically trivial ([GW1], §12.)

By [GW1], theorem (12.3), W is given by the pullback square
W —— AG

ZG —— AG
F-1
where — is the canonical map G — G to the Galois group of the residue extension
field and F in G is the Frobenius automorphism.

The elements of W are pairs (z,y) € AG @ ZG such that T = (F — 1)y. Let

W‘—‘i@zw

The split exact sequence
0—>U = U N* =0, (3.3)

where N is the residue field of N, implies 2, is a finitely generated ZG-module and

U, is the p-completion of .
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Taking the p-completion of (3.2) gives
0th -V W0
of finitely generated ZG-modules. V is cohomologically trivial.

Theorem 3.1. ([GW1], theorem 18.3) The ZG-module U, is determined up to iso-

morphism by the following invariants

(i) the degree [L : Q),
(ii) the G-module un(p) of p-power roots of unity in N,
(iil) the kernel of the map

HY(G, Hom(W, un(p)) — H'(G, Hom(W,Us))

induced by the inclusion uy(p) = U;. O

Definition. Let M be a 2G—module, if M = M’ @ C where C is cohomologically
trivial and M’ has no cohomologically trivial summand, then M’ is called the strict

core of M. It is unique up to isomorphism (by the Krull-Schmidt theorem.)
Theorem 3.2. ([GW2], theorem 6.1) The strict core of U is

(a) zero if p does not divide the ramification indez, e,
(b) non-zero and indecomposable if p divides e provided we are not in the excep-
tional case when p does not divide f, the inertial degree of N/L, and at least

one of the maps

HY(G,Hom(Z, un(p))) ~ HY(G,Hom(Z,U,)),

H(G,Hom(AG, pn(p))) = H'(G,Hom(AG, 1)),

induced by the inclusion un(p) — Uy, is zero,

(c) the direct sum of two non-zero indecomposable modules in the exceptional case.

g
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Moving on to the metacyclic case. Let N/Q, be a metacyclic extension of local fields
with Galois group I'. Let I’ be metacyclic of order pm where m is a non-trivial divisor

of p — 1, not necessarily prime.

It has been necessary in other chapters to make m a prime because otherwise it is
possible for ' to have infinite representation type, however, in the local case we are
looking at ZI-lattices and there are still 3m indecomposable genera of these whether

or not m is a prime.

In [Jal], Jaulent calculates the indecomposable ZD-lattices and their cohomology
groups. These calculations agree with those in Chapter 2 and it is clear that we can

re-write proposition 2.5 to include the cases when m is not prime:

Proposition 3.3. Let I' be a metacyclic group of order pm. If.M\ is a ZD-lattice

and

M= D@ o @) & (P)

=0

(see the proof of proposition 2.5 for a definition of these lattices) then we can find
a;,B; and r; from the characters and p-part of the cohomology of M in ezactly the

same way as in the proof of proposition 2.5.

a; = log,[H*(T, M))],
ri = logp[Hzi_l(RM)(p)]’
ag+ fo = No. of xT in charM,

a; + B; = No. of x~ m charM, i #0,

for0<i<m-1. 0O
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One way of indexing the 3m indecomposable ZT-lattices is by the irreducible p-adic

characters of C,,, call these ¢,,...¢d,,_;. Then the lattices are as follows:

Z/E.‘ = 2[61)]'605;

Py, = Ty VL,

2;{ = @,/GZ/F,
where ey, is the idempotent ey, = 1/m Y . #(77")Tand v = 1404+ -+0P7". Let x
be the primitive p-adic character of C,, defined by 77~ = (") for all 7 € C,n, 7 € Cp,
then § =1/mY . x{(r7})oX("),

Let B be the maximal ideal of N. For all integers k& > 1 let Uy be the multiplicative

group of principal units congruent to 1 modulo B*.

In [Ja3], Jaulent finds all & where % is free over the algebra A = 2[{ 0Cnl, (&

is defined below) and finds the ZT-module structure of ; in these cases.

Let e be the ramification index of p in K = N® and let ¢t be the jump of wild

ep
< |
‘[p—l]

Let £ be a principal unit of ¢ that is in ; but not in Uy, .

ramification, which satisfies

Theorem 3.4. ([Ja3], theorem 3) Let K = N contain no pth roots of unity, then
Ur/Nnyx(Us) is free over A if and only if the cohomology groups of Uy relative to C,

have the same character ®; this happens ezxactly in the following cases:

(i) in tame ramification - for all values of k,
(ii) in wild ramification - for all k of the form r+ pN where r € [1, p] which satisfies

r=1 mod (e),

and in these cases Uy is written as the direct sum
~r @ B oaa b T
Uy = { bil® (P¢>.- @ Z¢.‘)} ® { $if® Zg,-}' u
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Theorem 3.5. ([Ja3], theorem 4) Let K contain pth roots of unity, then Nzuv’;f/:zzk) is

free over A for k =1,...,p if and only if the cohomology groups of Uy /un relative to

C, have the same character Q; this happens ezactly in the following cases:

() k=p-1,
(i) k=1,

and in these cases Uy /un 1s written as the direct sum

I/{k/ﬂN = { ¢.G|BQ (qu.' D Z;')} 69{ 45:6?0 Zg.} O

In the next section we shall find the decomposition of #; when N is a metacyclic
extension of L for any local field L. Note that ¢, is always free over A and so the
case L = Q, has already been done, but we shall look at general L and find that the
genus of #; depends only on whether or not N contains pth power roots of unity. We

shall also look at Uy for larger k.

3.2. The Galois module structure of local 1_1nits.

Let N be a metacyclic extension of local fields of degree pg over L with Galois group

['. Both p and g are prime. Let L be of degree d over @

Proposition 3.6. Let U be the units of N, then
F, n=1,2 mod (29),
HY I, U)p) =

0 otherwise.

Proof. There is a short exact sequence

0> N>V Al -0, (3.4)

with V' cohomologically trivial (see [GW1], theorem 11.3.)

Thus the cohomology of N* is determined by

H"(T,AT) = H™(T, N*).
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The short exact sequence (3.1) gives a long exact sequence

.- = HYT,U) — H"(T,N*) = H*(T,Z) > ... (3.5)

Now the cohomoiogy of N* is clear because

n X\ ~ n—1 ~ n—1 ~ IFp lfn =2 mOd (zq),
Hey (T, N™) = Hey (T, AT) = Hy (T, Xroox © P1) = .
0 otherwise.

This and the cohomology of Z put into the sequence (3.5) give the required result. 0

Theorem 3.7. Let N be a pg-metacyclic extension of local fields over L and L is of
degree d over @ Let U, be the principal units of N.

(1) Suppose N contains no pth roots of unity. Then
UWVP &L (Zh) " e P ) (3.6)
i#1,i=0
(ii) If L contains pth roots of unity then

u ~ o~ o~ oA —~ —~ -z
—VRBoOPL Lok @) o@ ) e (P 2N (37)
MN(p) 1#£1,:=0"

Proof. We know that Q ® Uy = N = Q ® Z(I'). So

char(24;) = d(charl) = d(x* + x~ + qx)-

(1) Suppose now that N contains no pth root of unity. Then it is clear that the
characters of U; and the cohomology of U; are the same as those of &/ by sequence

(3.3). Since U, is torsion-free it is a Z,I-lattice and we can now determine its genus.

(ii) f N contains pth roots of unity, then L also contains these units.
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Thus pn(p) is fixed under I'. un(p) is cyclic of order p” with trivial [-action. So the

cohomology is

F, ifn=0,2¢—1 mod (29),
H"(T,un(p) 24 °
0 otherwise.

We have a long exact sequence

s BT, pn(p)) — H(T,U) = B (O U p(p) = ...

So for p # 3 we have

F, n=1,2,2¢—1,2¢9—2 mod (2q),
B (DU un(p)) = { " (3.8)

0 otherwise.

Thus we know the cohomology and characters of the p-adic lattice U /un(p) and we

know its genus. O

Higher order local units.

Let B be the maximal ideal of N and let U, be the multiplicative group of principal

units congruent to 1 modulo LB

We have short exact sequences for all &£ > 1

0 = Upyy — Up — P*/PE 0. (3.9)

Lemma 3.8. Let N be a local extension of L with galois group ' then

F, n=2ka-1,2ka mod (2q)
H (D, 9 gy = £ 7

0 otherwise.

for some 0 <a<qg-—1.

IfTo=C, then a = 0.
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Proof. Let I'; be the first ramification group and I'y 2 C, which acts trivially on
PB* /P*+1. There is a non-trivial action of Ty/T; = C, on PF/Pr+!.

Write 8 = 7Oy, then
T:7T = rerT.

where r is a primitive gth root of 1 mod (p) (r comes from the definition of I' in

section 1.3.)
Thus P/ P2 = F® for some a and so
k k ~ mka
PBr/PAH 2 R,

(see section 2.2.2 for a definition of IFf,a) .) This gives the cohomology given. [J

Proposition 3.9. Let N be a pg-metacyclic extension of L of local fields and let L
have degree d over @ Let Uy be the multiplicative group of principal units congruent
to 1 modulo P2. If N contains no pth roots of unity and the inertia group of p is C,

then Uy is isomorphic to:

Zo® Z® P, 0 (2D @ (2D o @ZF

1=2

Proof. If we now suppose that N contains no pth roots of unity then we know the
cohomology of U, (proposition 3.6) and P!/PB? (lemma 3.8). so we can get an exact

sequence from (3.9)
0 — HYT',Uy) » F, - F, - H'(T,U) = F, - F, - H},Uy) =0
and

HY(T,Us) =0 i#0,1,3 mod (2g).

Thus there is are the only one possibility for the cohomology groups:
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HO(T, 1) = H¥(T,Uy)F, and H'(T,Us) = F, & F,,

which gives respectively the decomposition given in the proposition, of ¢, as a product

of indecomposable ZI-lattices. O
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CHAPTER 4
The S-units.

Introduction.

The Tate sequence, equation (2.11), gives the cohomology of the S-units, £, and
thus it is easy to give possibilities for the cohomology of the torsion-free S-units, Us.
We also know the character of Us and this means we can apply theorem 2.6 to find
its genus (see section 4.3). We also need to calculate the cohomology of £ in order

to find the cohomology of the units.

Before doing this we look at (GW1] where Gruenberg and Weiss give an invariant,
U which can be used to determine when two modules are in the same genus. For
pg-metacyclic groups we find the cases when there is only one choice for & and these

turn out to be the cases in the final section where we can calculate Us exactly.

4.1. An invariant for S-units.

Let N/L be any finite extension of number fields with Galois group G, where G is any
finite group. Let S be a G-invariant set of primes containing the infinite and ramified
primes and let £s be the S-units of N. Us = Es/un where uy are the torsion units

of &s.
Define U to be the kernel of the map

H*(G,Hom(AS, un)) = H*(G,Hom(AS, £s))
induced by uny — &s.

Gruenberg and Weiss, [GW1] give a way of determining when a I-module £’ is in the

same genus as £s.
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Theorem 4.1. ([GW1}, (10.2)) Let &' be a ZG-module satisfying the following con-

ditions:

(i) Q® & = QR AS as QG-modules;
(ii) &' has Z-torsion submodule G-isomorphic to py;

(iii) there exists an ezact sequence of ZG-modules
0+&8—>C =P = AS—0,

where C' is cohomologically trivial and P’ is projective;

(iv) U =U', where U’ is the kernel of
H*(G,Hom(AS, un)) — H*(G, Hom(AS, £"))
induced by uy — &'.

Then £ and Es are in the same genus. [

4.2. The Module H*(G,Hom(AS, un)).

It is of interest to determine the invariant ¢ of the S-units. In particular, when

H*(G,Hom(AS, un)) = 0 then there is only one choice for /.

From the short exact sequence

0 +>AS +ZS5—-Z—0, (4.1)

we get a long exact sequence for H?(G, Hom(AS, un))

... & H*(G,Hom(Z,un)) = H*(G,Hom(ZS, un)) —

H*(G, Hom(AS, un)) — H3(G, Hom(Z, un)) — ... (4.2)

Now ZS gfgg Z[G/L,] where L, is the decomposition group of I, for 7-€ §,I in N

lying above 7 in L.

H"(G, Hom(Z5, un)) =, H (Lo, w).
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Let g be any rational prime such that ¢ divides |un|. £, = decomposition group of

II lying above 7 € S.
The three possible cases are:
Case 1. ¢4 |L,|,Vr € §
Proposition 4.2. If gt |L.|,V7 € § then
H*(G,Hom(AS, un))(q) = H*(G, un) o), (4.3)

where the subscript (q) means g-primary component. [

This follows from the long exact sequence (4.2),

Corollary 1. Therefore, if ¢t |Lx|, for all primes © € S and for all rational primes
q dividing |G|, then

H*(G,Hom(AS, un)) & H3(G,pun). O (4.4)
Corollary 2. Ifgcd(|G|,|un]) =1, then

H*(G,Hom(AS,uy)) 0. O (4.5)

Case 2. S; C L,; for some 7; € S', Sy a g-Sylow subgroup of G.
Proposition 4.3. If S, C L,; for some m; € S, Sy a q-Sylow subgroup of G then

H2(G, Hom(AS, 1in))@) ZreRn; H(Lrs )0 (4.6)

Proof.
Hn(Ga ,U'N)(q) = Hn(‘cwj» /"N)(Q)a

by [Se], p119, proposition and the result follows using the long exact sequence (4.2).

g
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Corollary 1. If L,; = G for some 7 € S then
H*(G, Hom(AS, in)) ZneRn; HA(Lnypn). O (4.7)
Corollary 2. So if Lr; = G for some 7; € S , ged(|L,], |un]) = 1,V € S\ 7; then
H?*(G,Hom(AS,un)) 0. O (4.8)
Case 3. q||L,;]| for some 7; € S, but S,  L,,Vmr € S.

In this case it is difficult to say anything about H?*(Hom(AS,uy)) and since it does

not occur when G is dihedral we shall not study it.

Example 1. |G| = ¢:1¢2...q,, distinct primes.

Case 3 never occurs and all q-Sylow subgroups are cyclic. Suppose ¢; divides |L,;]
for some m; € Sfor1 <i<kand gt|L]forallre Sfork+1<i<m. ie we
order the primes so that the first k& divide |£,| for some 7 € S and the remainder do

not.
Then simply putting together the results of Cases 1 and 2
Hz(G7 HOIH(AS, ll‘N)) =

{k+1_<_‘i$§,‘n’€5\ﬂ’j H2(‘Cm ,L‘N)(q;)}} ® {Qi1k+§9§i$m {HS(G’ F’N)(qu')}}7

where the g; range over all the rational primes dividing |G]|.

Example 2. Metacyclic groups.

Let G = C, x C, be a metacyclic group of order pqg.

If gcd(|G), Jun|) = 1 then H*(G,Hom(AS, un)) = 0 and thus & = 0.

If ged(|G|, |un]) = ¢ and ¢ divides | L] for some prime 7 then we are in Case 2.

So q||Lj| for some 7; € S, implying H?(G,Hom(AS, un)) %’Weg,ﬁ H*(L,,pun). and

#{r € 5§\ m;lq divides ||} = #{L, =C,or Glm € §} -1 = B.
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So H*(G,Hom(AS, un)) = FF.

Finally, if gcd(|G|, |un]) = ¢ and ¢ did not divide £, for any prime 7 then we are in
Case 1. Thus

H?*(G,Hom(AS, un)) = H3(G, un) 2 F,.

Note. Thus there are two cases where the invariant / is guaranteed to be 0:

(i) ged(IG], lunl) = 1,
(ii) ged(|Gl, lunf) = g and #{r € 8|£, 2 C, or G} = 1.

In these two cases, given uy there is only one possibility for the genus of £s, and

hence Us. We shall calculate Us in these two cases in proposition 4.6.

4.3. Cohomology with S-unit coefficients.

4.3.1. Galois module structure of S-units.

Let N/L be a Galois extension with Galois group I" where I' is a metacyclic group of
order pq. S is a set of [-invariant primes containing the ramified and infinite primes

as before.

Lemma 4.4. Let S be a set of primes fized under I', and let L, be the decomposition
group of ™ € S, then

252, 2D,
and if Lr; C Ly, for some m; # 7; € S then
AS = Z[L,\T] @ AS,

for §'= S\ m.
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Proof. Let € be the class of the identity of I in £, \I'. Then (& — €;) = L\l as

a [-module and is also in the kernel of the augmentation map: ZS - Z. 0O

Let S have m,; primes with decomposition group {0}, mg with C,, ms with C, and

my with I'. Then

Z5=2ZT™ @ Z[C\T™ @ ZIC, \ TT™ @ 2™

and we have the following isomorphisms of [-modules:
ZH{1I\T] 2 Yimes (4.9)
ZICA\T]=V  AlC,\T] =P
ZIc,\T|=2ZC, AlC,\T]~S
ZIO\T|=Z  A[C,\T,C,\T] = Yy

where Y{;; means T = 1 in the notation given in section 1.2.

Recall that S is the set of finite primes of S, so

75, = Yt evm g ZCr @ Zm™1 if N is totally real or complex over complex,
= ‘
Y. @ V™ @ ZCl @ Zm™s 1 if N is complex over real.

It is now possible to calculate the cohomology of ZSy to substitute into equation
(2.14) |
IB"('J"Q"'(_GI)‘W4 @Fs*t™ n=0 mod (29),
H™(T,ZSj) = { Fp2+Atme g s neven,n %0 mod (29),
0 otherwise,

where d is subtracted when N is complex and not if N is real.

i

As for the cohomology of the S-units, equation (2.12) says H*(Q, AS) & H"2(Q, £s).

Case A. When m3 = my =0,

ASY @ V™l P,
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and so the cohomology of AS is

et n even,
H*(T,AS) = {F, n=1 mod (2¢),
0 otherwise.

Case B. When m3 + my > 1,

Agm | YT OV OLC O ™, ome 21,

Y@ Vmel g ZC Tl @ Yy, my =0,
and so the cohomology of AS is

Eln2+m4—1 @ IE;ns+m4"l n=>0 mod (2(]),

H™"(T',AS) = Fratmi—l g s neven,n 0 mod (2q),

0 otherwise.

which gives us the cohomology of €5 by equation (2.13).

(4.10)

(4.11)

Proposition 4.5. Let N be a pg-metacyclic extension of L with Galois group I' and

S a I'-invariant set of primes of N as before.

Let S be the primes of L below those in S and let S have ms primes with decomposition

group C, and my with T'. Then clearly the number of primes ramifying in N over N¢r

is less than or equal to m3 + my. Let Ug be the torsion-free S-units.

ms + myg = 0 implies US V Pg @ (YT2maz)m1 @ sz“l

or Pz @ (YT2maz)ml_1 GB XTlmaz EB sz

ms + my > 1 implz'es US V chns P (YTmaI)ml—m4+1 D YT{n“\{?}m.;—l ® Vm2+m4—1

or ZC;TL:; @ _XTlmaJ: @ (YT2maz)ml —m4 @ YT2ﬂlaI\{2}m4_l @ Vm2+ﬂ‘l4

where T = {0,2,3,...,¢g— 1} and Tf = {0,1,2,...,q— 1}
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Proof. We have a short exact sequence
OHMN—)gs—)Us—)O,
which gives a long exact sequence

R Hn(F,/LN) - Hn([‘,gs) — Hn(F,Us) - ...

As usual ged(p, |un|) = 1 so HYT,Us)) = HY(T,Es)p) = H* (T, AS)() and

clearly we get different values depending on whether m3 + my is zero or not.

The torsion units, uy, form a cyclic I-module which means that H™(T, BN)@g) =0
if ged(q, |pn|) = 1, or if ged(q, Jun]) = ¢ and the action of I on the g-part is non-
trivial (i.e. if and only if L contains a primitive gth root of 1). Otherwise we have
H™(T,pun) ) = F,y (clearly this is always the case if ¢ = 2). we just calculated gives
two possible values for the cohomology of Us. when H™(T',un)) = F,. The long

exact sequence above becomes
0— H*™ YT, Us)q = F, = 13’;"”’"4“1 — H™(T,Us)() = F, = 0
So, either

. 0 n odd
H"(T,Us)(q) &

72 tmsa—1l  p even

or

. N F, n odd
Fre M4 even

Recall that the g-part of the cohomology is periodic of period 2, so this cohomology

applies for all n.

Since AS®Q = Us ® Q we also know that char(Us) = (m1 +mz+ma+my—1)xt +
(mq 4+ m3)x™ + (gm1 + my)x and thus by theorem 2.6 know the genus of Us. O

Proposition 4.6. When U = 0 there is only one possible genus for Us (as discussed

in the previous section), thus
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(1) If ged(q, [unl) = 1 then
m3 + mq = 0 implies Us V P, @ (Yrmas, )™ @ V™71

mg +my > 1 implies Us V ZC7® @ (Yymas,)™ "™ @ Yiol ) @ V724meh,

(ii) If ged(q, lun|) = ¢ and ma + my =1 then

m3 + mq = 0 implies Us V Py @ (Yrmar, )™ ™' @ Xrmas, @V

m3 +my > 1 implies Us V ZC® @ Xpmas, @ (Yrmes,)™ ™ @ qu‘?rfa::\{z} oV

Proof. (i)gcd(g, |un|) = 1 implies that ged(T, |un|) = 1, since we always assume
ged(p, |un|) = 1. So we get H™(T',Es) = H™(T', Us).

(ii) mg + my = 1 implies H*(T', £s)(y) = 0 for all n. So
H™(I,Us)(q) = H™(T', un)(q) = F, as py is a trivial, cyclic [-module. [

4.3.2. Exact sequences.

Lemma 4.7. The S-class group can be made cohomologically trivial by adding com-

pletely split primes to S.

Hence it is possible to choose a set of primes S satisfying coditions (i) to (iii) of

section 1.3 containing only the ramified, infinite and completely split primes.

Proof. From the Tchebotarev density theorem each ideal class of the class group has
Dirichlet density 1/hx, so each ideal class contains infinitely many completely split

primes. [J

Note. If the set of primes S is chosen to satisfy condition (iv) given in Chapter 1 (and
thus HY(Q,Es) = H™1(,AS) = 0 for all n) then m3z+my4 > 1. This is clear from the
cohomology of the lattices in AS. Condition (iv) implies that H*(C,,Es) = 0. Now
HY(C,,&s) = H™Y(C,,AS) and H™'(C,, AS) = 0 if and only if mg + m4 # 0. Thus it

may be necessary to add non-ramified primes with decomposition group C, to S.
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Knowing the cohomology of ZS; (see (4.10) and (4.11)) means we can write down

more information on the exact sequence (2.14)

10— Ps = LS — Cly = H'(T, Ps) = 0, (4.12)

0— HZn—l(F, ClN) N H2n(F,PS) N IF';TL2+(—d)+'m4 @]F';"3+m4

— H*™(T, Cly) —» H™Y T, Ps) -0, n=0 mod(g), (4.13)

0 — H* (T, Cly) — H*™(T, Ps) — Fra+{-d+ms gyfms
— H*™T, Cly) = H™MI,Ps) -0 n#0 mod (q). (4.14)

With this new information on the value of the cohomology groups the exact sequence

(2.10) becomes

0= &y = E = PL - HY(T,En) = 0. (4.15)

Case A. When m3z =m4 =0

0 — H*Y(T,Ps) - H*™{T,Ey) —» B2t
— H*™T,Ps) » H™([,En) =0, n#1,2 mod(q), (4.16)

0 — H*Y(T,Ps) = H™T,Ey) = F2
— H™T, Ps) — H™\(T,&x) = F, - H™ (T, Pg) - H™(T, £y) — F™~!

— H™(I,Ps) » H"™([,6x) 0, n=1 mod (q). (417)

Case B. When m3 +my > 1

0— H2n_1(F,Ps) N Hz"’(F,SN) N ]F';n2+m4—1 @E‘;’m+m4—1
— H*™T,Ps) - H™Y(,En) -0, n=1 mod(q), (4.18)
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0 — H* YT, Ps) - H™,Ex) = Fp2t™ i g Fre

— H*™(T,Ps) - H*(I,En) -0, n#1 mod(q). (4.19)
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CHAPTER 5

Cly and ramified primes with decomposition group C,.
Introduction.

In Chapter 6 we shall study the Galois module structure of the units when the p-part
of the class group is trivial, i.e. (Cly)) = 0. We shall show that in this case there
are no ramified primes with decomposition group C, (see theorem 5.5). This will
simplify the calculations required to find the genus of Uy, but first we shall give a

list in proposition 5.3 of the possible decompositions of a prime ideal in V.

5.1. Decomposition of primes in metacyclic extensions.

Let I' = Gal(N/L) be a metacyclic group of order pq. Let
L. = {y € T|5(I;) = U;,1I an ideal of N above = of L},

be the decomposition group of the prime 7 in N/L. Let N; = N/Il; = Nand L = L/,
which are finite fields. The following two lemmas are proved in [Ri], Chapter 11, for

example.

Lemma 5.1. There is a homomorphism L, — Gal(N/L) with kernel T,, the inertial

group of ™ and |T,| = e, the ramification index of .

So T is a normal subgroup of L,.. 0O

Lemma 5.2. (i) Let V; be the first ramification group of m in N/L, then V; is a
normal subgroup of T, and T, [V is cyclic.

(i) The order of V; is a power of the rational prime s where s=7NZ. O
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Proposition 5.3. (i) There are 7 possible decompositions of a prime ideal 7 € L as

a product of prime ideals in N, namely,

(r) = 10179, (m) =1I,...10,,
(m) = 1IP, (r) =1, ...10,,
(m)=1L7...1I7, (m)=1L...10,,
(r) =1I,7... 1LY,

(1t) If (n) = II?? then m lies over p.

Proof. (i) There are eight possible cases where 7,L, C I, but the case £, = I' and
T = {e} does not occur because that would imply by lemma 5.1, ' C Gal(N/L), and
Gal(N/L) is Abelian, so this is impossible.

(ii) Let 7 = ' and £, = I'. By lemma 5.2 (i), 7:/V; is cyclic so Vi # {e}. Thus
Vi = C, but the order of V; is a power of s = m N Z by lemma 5.2 (ii),sop=s. O

5.2. Cly and ramified primes with decomposition group C,.

Lemma 5.4. ([Ge], p{87, lemma 2) Let Gal(N/Q) be the dihedral group of order 6.
If m is a rational prime which ramifies in N with decomposition group Cs then 3|hy,

where hy 1s the class number of N.

From this lemma we see there is a relationship between the class group and the
ramified primes with decomposition group C, when p = 3 and ¢ = 2. We now
generalise this in theorem 5.5 for pg-metacyclic extensions over Q and also write
down a specific formula for mj, the number of primes with ramification group C,, in

terms of [-cohomology groups of the class group.

Theorem 5.5. Let N be a metacyclic extension of Q with pg-metacyclic Galois group

[, then

my _ [Clvl) X [H(T, Cln)|p)
|HO(T, Clw)lw)
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Thus, if at least one prime in Q ramifies in N with decomposition group C, then p

divides the class number hy.

Proof. Let S satisfy conditions (i) to (iii) of section 1.3. It is assumed that at least
one prime ramifies over N/ K, i.e. mz+my4 > 1. All the groups in the exact sequences
(4.18) and (4.13) are finite and so we can use (4.13) with n = 0 to calculate the order
of H'(2,Ps)

[H°(Q2, Ps)| x |H°(9, Cln)|

TH-1(@, Cl)| x |, 2.5, (52

IHI(Q’PS)I =

and use (4.19) with n = 0 to substitute for [H%(Q2, Ps)| in the above equation. Thus
one equation giving the order of H'(Q, Ps) is

(0, Pg)| = LI EW X LH(S, Cl)| X [H) (2, Ps)] x |HO(, E5)
| [H=1(@, )] x [HO(Q, En)] X [H(%,Z5))]

(5.3)

Alternatively |H*(2, Ps)| can be calculated by using the exact sequence (2.14). Since
HY(Q,ZS;) =0 for all @ C T we could re-write (2.14) as
0 — ZS}/PE — CIy — H'(Q,Ps) — 0,
and thus
|CIy|

|H1(Q,Ps)| = m (54)

Since H'(Q,Es) = 0 for all & C I’ we can arrange (2.10) to say
0— E¢/EN — P§ — H'(2,En) — 0,
and thus

|H'(Q, En)| = [P§ : £5/EX]- (5.5)

Also there is an exact sequence in N®

0= Ena = Es yo = ZS;na = Clya — 0, (5.6)
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where the second subscript shows which field we are working in and we get

ICINQI = [ZSf’NQ . SS,NQ/SNQ]- (57)

Now £F = Esya and EY = Ena so substituting (5.7) and (5.5) into (5.4) gives a
second way of calculating the order of H(Q,Ps)

CIS| x |HY (9, En)|
HY(Q,Ps)| = |Cly ’ . 5.8
| ( S)I lCanl X [ZSfQ : ZS_/,NQ] ( )

Remark. Equation (5.8) does not depend on msz + m4 = 0, unlike equation (5.3).

The inclusion Z S yo < ZS;% is given by 7 > eqtrq(m) where e, is the ramification

index of 7 in the extension N/N® and trq(7) = 2 ILIL € ZS5.

As before we write Sz, as S, let @ = I' and look at the p-part of equation (5.8).
Then [ZS;" : Z§ flwy = pP™+™ | where mj is the number of ramified primes with
decomposition group C, and m} is the number of ramified primes with decomposition
group [. (Note that m} = my4 because from proposition 5.3 all the primes with

decomposition group I' ramify to at least the power p).

Equating the p-parts of (5.3) and (5.8), noting that
P X [HO(T, Es)l) = [H(T, ZS) ),

from the cohomolo y of 55 and ZS given in the previous chapter and rearranging,
g f
gives

. |Clyle) x [HX(T, Cln)|@) X [H(T, Ps)|s)

g — 5 — - . (59)
|Cli|p) x [HY(T, Cln)|p) X [HY(T, EN)|n)

If L = Q then Clp = {0} and H(T,EN)(») = 0 which implies from (4.18) that
H'(T,Ps)p=0. O

Corollary . If L = Q and m} > 1 then p divides |ClY|.
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Proof. This corollory follows from equation (5.1) and the fact that

Clv )

i _
AL O = 15 ) Ol

a
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CHAPTER 6

Torsion-free units of metacyclic extensions.

Introduction.

We now use the invariants we have found for lattices of pg-metacyclic groups to find

the genus of the units in a metacyclic extension in certain cases.

Firstly we give the characters of the units and then we use these in sections 6.2 and

6.3 to find the possibilities for the units in two cases:

e when N is a totally real, metacyclic extension of Q,

e when N is a complex, dihedral extension of a real field L,

and give their cohomologies.

Then we look at the case when the p-part of the class group is fixed under C,. to give

a relationship between the ramified primes and genus of Uy in this case.

Finally we study the dihedral case, i.e. when q = 2.

6.1. The character of Uy.

Let N be a pg-metacyclic extension of L and Uy be the torsion-free units of N. Let

Seo be the set of infinite primes of N, then

It is clear that

character of Uy = character of AS,, = character of ZS,, —x*.
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"Let d — 1 be the Z-rank of the units in L. When N is a complex extension of a real
field I then ZS., = V% and the character of Uy is

(d—1)xt +dx.
When N is totally real, then d is the degree of L over Q, ZSy, = (ZI')? & Y. where
T™ax = {0,1,...,9 — 1} and the character of Uy is

(d—1)x* +dx~ +qdx.

6.2. Torsion-free units of a totally real, metacyclic extension of Q.

Now assume that L = Q, i.e. d =1 and N is a pg-metacyclic extension of ). When
N is totally real, char(Un) = x™ + gqx-

Based on the characters the possible genera of Uy are

Un V (qé P}“"’) ® Xr, (6.1)

1=0

where a; €N, [T|+ao+ -+ aq-1 = g and if T = () then X7 =S. The p-part of the

cohomology of Uy determines its genus. Let the decomposition of Uy be as above,

then
Fim n=2m—1 mod (2q9),
H™"(T,Un)p) = (T, =2m mod (2¢),m+1¢T,m#0,0<m<gqg-—1,
0 otherwise.
(6.2)
Note that H(T, Uy) = 0 in all cases.
. N 0 n even,
H"(T, UN)(Q) = (6.3)
F, nodd.
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The fact that the g-parts of the cohomology are identical also follows from the fol-

lowing lemma.

Lemma 6.1. ([Mc|, p.854, corollary 10.3) Let G be a finite group. If H is a normal
subgroup of G such that gcd(|H|,[G : H]) = 1 then for each G-module A and each

n > 1 there is a split exact sequence
0— H"(G/H, A"y - H"(G,A) —= H"(H, A)° - 0,
which thus gives an isomorphism

H™"(G,A) = H™(G/H,A"y@ H"(H,A)°. O

So H*(T',Un)(g) = H“(Cq,U]Cv") and when L = Q we have Uy? V S for all genera of
Un.

Proposition 6.2. Let N be a real, metacyclic extension of Q of degree pq. Then the
mazimum number of genera for Uy is
: qg—1\/g+n-1
D =7
~\g—n qg—1

Proof. Let Uy be as in equation (6.1). Suppose |T| = ¢ — n. The number of ways
of choosing T is (3:1).

n

Ways of choosing the a; are equivalent to writing ag O’s and then an X followed by
a1 O’s and an X, etc. The total number of X’s and O’s is ¢ + n — 1. So the number

of ways of choosing the a; corresponds to the positions of the ¢ — 1 X’s, which gives

("3o)-

Summing from n = 1 to g gives the total number of possible genera. [J
Note 1. v could also be thought of as the coeflicient of z? in ﬁl('l"—fa;L;l

Note 2. In the case when pg = 6 this maximum is attained. (There is an example

of each in Chapter 9, section 9.1).
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6.3. Torsion-free units of a complex, metacyclic extension

Let N be a complex, dihedral extension of a real field L and let the rank of the units
in L be d—1. Then we have already shown that the character of Uy = (d—1)x* +dx.

Thus the possible genera of Uy are

Uy V P @ P(*) g yi-e g 7o, (6.4)

where a; € N,1 <a=ag+a; <d.
The cohomology of Uy is thus

F¥  n=2—1 mod (2q),
H*(T,UN)p) E {F*' n=0 mod (29), (6.5)

p

0 otherwise.

. Fi~1 n even,
H (F,UN)(q) =

0 n odd.

6.4. Torsion-free units when the p-part of the class group is fixed under

the action of C,.

6.4.1. Cohomology with groups fixed under the action of C,.

Let " be a pg-metacyclic group and recall that C, is a p-Sylow subgroup of I generated
by o.

Lemma 6.3. Let M be a C;-module of order a power of p and fized under the action
of C,, then M is a product of Z-cyclic C,-modules. (In particular, if M is ZI'-module
with p-primary part fized under the actions of C, then the p-part is a product of Z-

cyclic ZT-modules.)
61



Proof. M is an abelian Z,C,-module. Since g|p — 1, Z, contains all the gth roots
of unity and 1/¢, so Z,C, contains a full set of idempotents, e,, corresponding to the

1-dimensional representations, x, of C, over Q, so

Ly = @ ZLex:-

All Z,, (and therefore all Z,e, ) modules are sums of cyclic modules. Thus Me, is a
sum of cyclic (hence Z-cyclic) Z,e, modules. Hence, since the action of Z,C, factors

through the projection of Z,C, on Z,e, it is a sum of Z-cyclic Z,C,-modules. O

Theorem 6.4. Let T be a finite module and let the p-primary part of T be abelian
and fized under the action of C, then

H2n(P,T)(p) = Hzn—l(F,T)(p). (66)

Proof. The p-primary part of 7' can be written (by lemma 6.3) as
Ty 2 C®Cr & &C,,

where the C; are Z-cyclic I-modules. Then H™(T',T)(,y = H™*(T',C1)®---@H™(T', C;).
Therefore without loss of generality we can assume that T is a Z-cyclic -module of

order a power of p. Let |T'| = p™ for some positive integer m, and use induction on

m.

When m =1, T = F,® for some 0 < 7 < g — 1 (see section 2.2.2 for a definition of
]F',(Di)) and
F, fn=2-1,2¢ mod (2q),

H™(T,F,") =
' 0 otherwise.

So the proposition is true when m = 1.

Now assume true for m = k. Let [T| = p**! and let G be a submodule of T of order
p. Then G and T/G = H are cyclic p-groups with order less than or equal to p*.

Also G = IF,,(") for some 0 <1 < g—1.
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Take the cohomology of the short exact sequence G 5 T 5 H by the group C, C T
to get

o= H"(Cp, G) B HMC, T) 5 HMC,, H) B H™(Cp @) ... (6.7)

Claim: Let C be a Z-cyclic I-module of order a power of p, on which C, acts trivially,
then |H™(C,,C)| = p. Proof: From [Br], p148, theorem (8.1) we know that the fixed
part of C under C, must be non-trivial, i.e. C # {0}. So H°(C,,C) = C/pCCr.
Thus the results follows using the Herbrand quotient and the periodicity of cyclic

cohomology.

If the groups in the exact sequence (6.7) are all of prime order p then the maps are
alternating isomorphisms and zero maps. Clearly there are two positions which we
could place these in the exact sequence (6.7) corresponding to whether n is odd or

even in the sequence below
... 3 H"(C,,G) > H"(C,,T) S H"(C,, H) > H™'(C,,G) S ... (6.8)
We shall now show that n must be even by considering the map
H°(C,,G) = H°(C,, T), (6.9)
and showing this is a zero map.
Firstly, H°(C,,G) = G/pG = G. Thus the map (6.9) becomes
G — TS |pTC>, (6.10)

where G maps into T = T by inclusion. If T = () then t*" is a generator of G.
Either G C pT°? or T = G which is the case we have already proved.

Replacing C, by I' in (6.8) gives another exact sequence by theorem 2.2 (ii) and

because C, is a normal p-Sylow subgroup of I'.
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Let n be an even number. We have the following sequence of maps

HYT,T) % B™(T, H) = H™\(I, H) "=5'
H™(T,G) = H\(T,G) 3" H™ (T, T)-
All these maps are isomorpliisms and we have proved the theorem in the case where

|H*(Cp,C)| =pforalln. O

Remark. For example theorem 6.4 will be true of the class group when p? { hy.

Corollary . Let N be a metacyclic extension of order pq over Q and let the p-part
of Cly be a direct sum of Z-cyclic T-modules fized under the action of C,. Let mj

primes in Q have decomposition group C, then

p™ = |Cliy|p)-

Proof. From theorem 6.4 |[HO(T, Cly)|(p) = |H™Y(T, Cly)|@). Substituting this into
equation (5.1) of theorem 5.5 gives the result. O

6.4.2. Torsion-free units when no primes have decomposition group C,.

Theorem 6.5. Let N be a totally real, metacyclic extension of Q with p-part of
the class group a product of Z-cyclic D-modules fizred under C, (for ezample, this
occurs when p? 1 hy,) and no ramified primes have decomposition group C,. Let

IH2n_2(F, ClN)I(p) = pHn then

9-1 ,

me=0 = UvVXroPo(@P"), i+1eTeu=0,
i=0
g—-1

mi=1 = UvVXr@oP @ (PP, i+1eT e =0,
1=0

g-1
mi=2 = UnVXreoPoPao(@P), i+leTe =0,

1=0
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In the first two cases |T|+po+- - ++pq-1 = ¢—1. In the third case |T|+po+- - - +pg—1 =
q—2.

There are two possibilities for Uy when my = 0 because p) = p; fort # 2, and pb, = po

or pg — 1.
Let N be a complex, dihedral extension of a real field L, then

mi=0 = UyVP®Z @ Vim-]

my>1 = UyVP@Pt™evinlgzm

Proof. We have shown in the previous sections that the only remaining invariant
needed to determine the genus of Uy in these cases is the p-cohomology of Uy, i.e.

H™(T,Un)p)-

We know that mj, the number of ramified primes with decomposition group C, is
zero. We can choose a set of primes S such that m3 = 0, i.e. no primes in S have

decomposition group C, by lemma 4.7.

Note that

my =0 => |C’l§:,|(p) =0, by the corollary to theorem‘ 6.4,
- HO(F, CIN)(p) =0,

= H!(T, CIn) ) = 0, by theorem 6.4.

Case A. m4 = 0 (no non-split prime ideals in )
From the exact sequences (4.13) and (4.14) it is clear that
HH(F,PS)(,,) = n—l(F, CIN)(,,). (6.11)

From the exact sequence (4.16) and (4.17)

H™(T, UN)(p) = H”“I(I‘,PS)(,,) for n # 3,4 mod (2q).
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Combining the last two equations gives
H™(T,Un)p) = H* (T, ClIn)(p) for n # 3,4 mod (2q).
and thus H**(I',Un)p) = H* }(T', Un)(p) for n # 2.
Substituting for H™(T', Ps)(,) using equation (6.11) in exact sequence (4.17) gives
0 - HY(T, Clw)) — H3(T,Un)@) = B, & HA(T, Cly) gy — HA(T,Un) sy — 0.

In the real case this gives two possibilities for the cohomology depending on whether
f is zero or injective. In the non-dihedral complex case H*(T', Un) = 0 and so there is
only one possibility for H*(T', Un)(y), since H(T', Cln)) = H*(T, Cln)(p) this must
be F,.

Thus we have found the cohomology of Uy when m4 = 0.

Case B. my > 1 (at least one prime does not split)

From the exact sequence (4.14)
H™(T,Ps) = H*'(T, Cln)p) for n #0,1 mod (g).

Since HO(T, Cly) = 0 we get the following from exact sequence (4.13)

HYT,Ps)p =0
and

H(T, Ps)(p) = By & H7(T, Clw)p)-
Substituting the above into exact sequence (4.18) gives
H*(T,Un)gy 2 B+

and

H3T,Un)p = 0.
Substituting into exact sequence (4.19) at n = 0 gives

HO(P, UN)(p) = H—Z(F, CIN)(p)
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and
H(T,Un)» = 7 & H™'(T, Clw)p)- = B}
Finally, looking at exact sequence (4.19) for all n # 0,1 mod (2q) gives

H™(T,Un)gy & H™(T, Cly)p) for n £ 1,2,3 mod (2g).

Thus we have the p-cohomology for Uy when my > 1.

Now the torsion-free lattices in the theorem have the correct cohomology and char-
acters. Thus by theorem 2.6, they lie in the genus of Uy. This completes the proof
of theorem 6.5. [

6.4.3. Torsion-free units when the p-part of the class group is trivial.

In this section assume that p { Ax. So H™(, Cly)) = 0 for all n, implying by
the exact sequence (2.13), H"(Q,Ps)) = H"(Q,ZSs) ) for all subgroups Q C T.
In theorem 6.6 we show that when N is real m4, the number of ramified, non-split
primes determines the p-part of the cohomology of Uy, and, hence, when.N is a
metacyclic extension of QQ, determines the genus of Uy. We find that when N is a

complex metacyclic extension of L then m,4 determines Uy exactly.

From theorem 5.5, if p { hy then m% = 0, i.e. no ramified primes have decomposition

group C,. So the following theorem is can be obtained as a corollary to theorem 6.5.

Theorem 6.6. (i) Let N be a totally real, metacyclic extension of L of degree pq
with pt hy, then my, the number of non-split, ramified primes determines the p-part
of the cohomology of Un. (Thus, the additional information needed to determine the

genus is the g-part of the cohomology which is given by H™(C,, UI‘\:,”) = H*(C,,Uk). )
67



If N is a metacyclic extension of Q then my determines the genus of the torsion-free

units and my < 2.
my=0 = UnVXroP, T={2,3,...,q},
m4:1 — UNVXT@P], T:{2,3,...,q},

m4=2 == UNVXT@Pl@Pl, T={3,4,,q}

(it) Let N be a complez, dihedral extension of a real field I with pt hy and let d — 1
be the Z-rank of the units in L. Then my < 1 and

my=0 = UyVPoV!

my =1 = UNVPl@Vd_l O

Corollary . Let N be a real, metacyclic extension of Q of degree pm, then
m4 =0 = (7]; = @ng};l 5] /P;’
my = 1 = ﬁ]\V = @Z=2Z£_1 @ E)

me=2 = UnOL,Zl 0P oP.

Proof. Using proposition 2.5 we-could replace ¢ by a non-prime m dividing p — 1

and replace the units by their p-adic completions. O

Note. This would also.be possible for proposition 4.5 and theorem 6.5.

6.5. Torsion-free units of dihedral extensions.

Let N be a dihedral extension of L of degree 2p with Galois group I'. Then there are 10
indecomposable I'-lattices as we have discussed in Chapter 1; Z,Z~,ZC,, R, P,V, X,

Y0,Y: and Ye.
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When N is real, for a general field L it can be difficult to say anything about the
structure of the units, but in section 6.5.1 looking at the simplest case (when m3 =

m4 = 0 and the class group is trivial) we can get some results. (See proposition 6.7.)
In the following two sections we consider the case L = Q) when N is real and complex.
Finally, when N is a complex, dihedral extension of a quadratic field the results are

very similar to those when N is a real, dihedral extension of Q.

6.5.1. Uny when ms = my =0.

Proposition 6.7. Let N be a totally real extension of L, L a Galois extension of
degree d over Q, mz = my = 0 and hy = 1 then there are at most 5 — log,[(hr) )]

possibilities for the genus of Uy as a ['-module, ndmely

Uy VXTI @RV @ Y,4 12,
for m, — log, (hr)w] — 4 < & < m,
Remark. It is clear from the characters and cohomology of Y> that ZI'V Y;. So

when my, is large Uy is not a product of X @ R and a free module (Uy V X @ R when
d=1.)

Proof. The class group of N is trivial im;;lies that
ZSs = Ps.
From the exact sequences (4.16) and (4.17) we know
HY(L,Un)@) = HY(T,Un)gy = H(T, Un)p) = 0
and

H—I(F, UN)(p) & ]Fp.
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So Z=,P,ZH,Y; and Y; are not direct summands of Uy, and exactly one direct

summand is in the genus of R.

H°(T,Un)@ C HUT,Us)zy C Fo™. Let H(T',Un)(2) = F»*, then this and the

characters give the result.

If H(T,Un)(2) = @aF, then using theorem 2.6
UNVX P oReV @Yy,

All that remains to be proved is that

my — logy(hr)@) —4 < a < ma.

Sequence (4.17) and the fact that H(T',ZS)@) & H°(T, Ps)2) = 0 give
HO(T, Un)@) € H(T, Us)a)-
Now, H(T, Es)(2) 2 F5 ™" and H'(T,u)g) = F, imply that the largest HO(T, Us)(y)

can be (and thus an upper bound for H(T',Un))) is F;'2. Since we can choose

mq = mjy we have a < m),.

Now, equation (5.8) still applies when mg3 4 m4 = 0, take the 2-part with Q = T, then

[Clnl@) x |HY(T, En)l2)
ICILI(Z) X [ZS}: : ZSf’L](Q),

|H'(T, Ps)l2) =

_ 1 x IHI(F,SN)|(2)
(hr)e x 2m2

implying

IHI(F, gN)|(2) = (hL)(Q) X 2m§.

Sequence 2.10 with H™Y(T', Pg)(2) = HI(F,PS)(z) =0 and HO(F,PS)(Q) = ;% gives

0— HO(F, UN)(z) — HO(F,Us)(2) - 2 = HI(F,UN)(2) — HI(F,Us)(z) — 0.
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So, the smallest possible value of |H°(T', Un)|(2) occurs when

|H(T', Us)|(2) is smallest and

|HO(T, Us)|y > 2™,
|HY(T', Un)|(2) is smallest and
H (D, U > 2o,
|HY(T, Us)|(2) is largest and
|H' (T, Us)|2) < 2,

Combining these gives

IHO(F, UN)I(2) > 2m2—2+m§+logz(h1,)(z)—1/2m2+1 — omy+loga(hi)2)—4

Hence a > m}, + logz(hr)(2) — 4 as required. [

6.5.2. Totally real dihedral extensions of Q.

Let L = Q, then based on the characters there are five possibilities for Uy. The
possible structures for Uy as a direct sum of indecomposable modules are Z~® RO R,
Z-®R®P,Z - dPd P, X® R, and X @ P, and each of these represents a distinct

genus.

Proposition 6.8. Let N be a totally real, pg-metacyclic extension of Q.
Case A. If N/Q has no decomposition groups I' or Cp, i.e. mz=my =0, then
UvVZ RO R or X®R.

Case B. If m3 + my > 1 then given the cohomology of the class group and my there

are up to three possibilities for the genus of Un:
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mg — ps + fa HI(F,'PS)(,,) Genus of Uy
.2 0 Z-oPoP
1 0 X@P
0 Z-oRoP
F, Z- PP
0 0 XOR
0 Z-®oROR
F, Z-®dRoP
~1 F, Z-®R®R

where |H"(T, Cln)|p) = p*.

Proof. If we write p*» = |H™(I', Un)|(), then any two of vy, v, and v3 determine Uy.

U Vi, Vy V3 Uy
Z-®ReR 0 1 2 0
Z-@R®P 1 1 1 0
Z- PP 2 1 0 0

XOR 0 0 1 0
X@P 1 0 0 O

Case A. If mz = my4 = 0 then
|Clgl(p)
(X er 7) Clnl)

|H' (T, Ps)|(p) = |H(T, Cln)lp) = (6.12)

(5.8) is true when mz = my = 0 and in this case [ZS/" : Z5/],) = 1. Because L = Q,
Clp = 0.

Equating the p-parts of (5.8) and (6.12) we have
1

|H' (T, Un)l) = (X er 1) Clnl)

(6.13)

Implying that |[HY(T, Un)|) = 1 and therefore

UvVZ - dR®dRor XOR.
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Case B. If m3 + my4 > 1 then H%(T', Uy) = 0 implies H~}(T, Ps) = 0 (from (4.18)).

Using the exact sequences (4.18) and (4.13) it is seen that
[H' (T, UN)lpy = [H' (T, Ps)|(p) x pm¥#7, (6.14)

where |H™(T, Cly)|) = p*~ and we know that H'(T,Ps)y) C H*(T,Un)(p) from
(4.15).

So, given the class group and my there are up to three possibilities for the genus of

Unv. 0O

Corollary . When the p-part of Cly is abelian and fized under the action of C, then
by proposition 6.4 we know that uz = pe. So my is at most 2. U 4

6.5.3. Complex dihedral extensions of Q.

Now there are only two possibilities for Uy, namely R or P. In a similar way to

subsection 6.5.2 we get:

Proposition 6.9. Let N be a complex, pg-metacyclic extension of Q.
Case A. When m3z = my = 0 then

UnV R.
Case B. When ms +m4 > 1 then
ms = —pty + pig implies Uy V R,

mg = —p1 + o + 1 implies Uy V P. O

Now applying proposition 6.4.
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Corollary . If the p-part of Cly is abelian and fized under the action of C, then my

determines the genus of Un.
mg = 0 implies Uy V R,

myq =1 implies Uy VP. O

6.5.4. Complex, dihedral extensions of quadratic fields.

When L is a totally real quadratic extension of @ and N is a complex extension of
L we get results parallel to those of the totally real case. The character of Uy is
Xt +2(x1+ ... xr) and this gives five possibilities for Uy, which are Z® R® R,Z &
R PZoPOPVHRand V@ P.

When ma=my=0wefind UvVZBE R Ror V@R.

When mg3 +m4 > 1 we can find possibilities for the genus of Uy given the class group

and my.
my HY (T, Ps)(z) Un

3 — p1 + po 0 ZORDR

2 — py + po 0 VOR

0 ZORDP

F, ZOROR

1 — py + po 0 Ve P

0 ZoRo P

‘ F, LePOP

—H1 + o F, ZoPoP

When Cly is a product of Z-cyclic I'- modules invariant under the action of C, then

H1 = f2.
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CHAPTER 7

Unit invariants in the factorizability defect group.
Introduction.

If we try to study the torsion-free units of a pg-metacyclic extension of Q in Go(ZT),
the Grothendieck group of Imodules with respect to exact sequences, we find that
[Un] = [ASy] for all torsion-free units Uy. We need to work in a larger group to

distinguish between units of different genera.

In section 7.1 the factorizability defect Grothendieck group is defined and it is shown
that in this group [F;] # [P;] when ¢ # 7 mod (g). Thus we can determine between
the genus of some I'-lattices working in this group. Unfortunately it is also shown
that [X7] = [Xr\i] + [Pi=1] and thus it will not always be possible to distinguish

between all the possible cases for the genus of the units.

We will then find some equations including the units in the factorizability defect

group and use these to get some results on the genus of the units.

In this section M, means p-adic completion of M (although in other chapters we

have used M )-

7.1. The factorizability defect Grothendieck group.

Definition. Let I' be a finite group. From [HW1] and [HW2], define the factor-
izability defect Grothendieck group, Q’({ d(ZF) generated by isomorphism classes
of I-modules and elements of the factorizability defect group (defined below) with

relations given by short exact sequences. Given a short exact sequence of I-modules

E: 0-M M- M -0,
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then in GJ%(ZT') there is a relation

[M'] — [M] + [M"] = [fd(E)]sa, (7.1)

where fd(E) is called the factorizability defect of the exact sequence E which is

defined below and we write

E: 0--M->-M->M -0 [fd(E))sa- (7.2)

Let W = | Jo['/Q, the disjoint union over all subgroups, €, of I' and let HE(—) be

the Hecke cohomology group obtained from the derived functors of
— Qzr Homz(Z[W],Z) and Homzr(Z[W],-),

in the same way as the Tate cohomology groups are obtained from the homology and

cohomology groups (see [Ho).)
Then fd(E) = [coker(a® : HX(M) — HR(M"))] € Gi(Endzr(ZW)).

We shall write Endzp(ZW) as A.

Theorem 7.1. Let T' be the metacyclic group of order pq, then [P # [P;] in the
factorizability defect group ggd(z,,r) whenever ¢ Z j mod (q).

Proof. There is a surjection, Z,I' —» }/3;5,,, where I/%—;C/q is a twisted group ring and
BCo = LIS (P
Therefore

Go(R,Cp) = Ko(RyCo) = ([(Po)ol, [(PL)p)s - - - [(Pa=)sl)-

If there exists a homomorphism from G{%(Z,T') to QO(EE) which maps P; to P;, then
the P; must be distinct in GJ*(Z,I).

Define a functor F' : Mod(Z,I') — Mod(f/{;c/q) by F : M — M/MC for any I-

module M, then F' maps P; to P;. For F to induce a homomorphism from g({d(z,,l“)
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to QO(I/%:C:), it is also necessary to define F' on the factorizability defects such that

for any exact sequence (7.2),

[F(M)] = [F(M)] + [F(M")] = [F(fd(E))] in Go(R,C,)-

Let €2 be a subgroup of I. There exists an idempotent fo € End(Z[W]) which gives
a projection from Z[W] onto Z[2\ T'], so that

ZIW).fo = Z[O\ T].

Then Homgzr(Z[W], M) is defined to be M", and

Homgzr(Z[W], M). fa = Homzr(Z[Q\ T, M) = M®.

fa : Mod(A) — Mod(Z(Np(2)/9)),

where Nr is the normalizer. So .fg indices a map G§(A,). fo into G§(Z,[Nr(Q)/9]).
We write fd(E).fq as fdo(FE). Given an exact sequence (7.2) we can fix this by W.

As fq is an idempotent, the corresponding functor . fq is exact and we get

0 — (M)W — (M)W — (M)W —— fd(E) —— 0

lam | e B | s

0 — (M) —— (M) —— (M")® —— fdg(E) —— 0

Let M2 be the kernel of the map (M”)® — fdo(E). Then by the snake lemma we

have a diagram of short exact sequences.

(M) —— (M) —— M9
[ | |

M — M — M"

l l l
M /(M) —— M/(M)® — M"/M2?



Which implies

[M')(M')%] = [M/(M)] + [M"[M®] = 0,
in Go(R,C,)-
The short exact sequence

(M")?/M® — M"[M® — M"[(M")?,

and the fact fdg(E) 2 (M")®/ M2 give

[fda(E)) - [M"/M®] + [M"/(M")?] = 0.
Thus

[M (M)~ [M/(M)?] + [M"/(M")?] = —[fda(E)].

Let = C,, then G&(Z,[N(Q)/Q]) = GL(Z,C,). If torsion modules T, T € Gi(Z,C,)
and 7" C T then [T] = [T"]+[T/T"], so the generators of G}(Z,C,) are simple modules.

Every Z,C,-module is a F,C;-module and there are ¢ simple F,C,-modules, namely

F, = P/P_;.

Let T be a defect with Fz(oi) occurring n; > 0 times in its Jordan-Holder decomposition.
Define the functor F'to first send a defect [T] € G&(Z,I') to —[T] = — .20 n;Fp®
in G&(Z,C,) = gé(l/%;a’;). The exact sequence

= K1 (K,Cy) = GYR,Cy) B Ko(R,Cy) — Ko(K,Cy) (7.3)

gives a map ¢ defined by

¢:F,0) = [P/Pi] = [P] ~ [Piei],
which completes the homomorphism

Go(ZoT) — Ko(RoCy) = Go(R,Cy),

as required. Thus the P; are distinct in the factorizability defect group. O
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Proposition 7.2. In G{4(ZT) -

[Xr\] = [X7] + [Pia] =0 fori # 1. (7.4)
Proof. It is clear from [CR1], §34E that there is a short exact sequence Xr\; —
Xr = P_1forieT C{0,2,3,...,9g— 1} and Xj defined as S.

The defect is zero because HR(Pi—;) = 0 and the cokernel of HA(X1\;) — HR(X7)

lies in there. So we have
0— XT\z’ - Xr—= P,'_l —0 [O]fd (75)

which gives the required result. [

7.2. Two equations in the factorizability defect group.
Using some equations in G{*(ZT") from [Ho] we derive two equations, (7.9) and (7.13),
which give information about the genus of Uy.

Since the P; are distinct in G{%(ZI") we should be able to get some information about

Uy working in this Grothendieck group. Equation (3.15) of [Ho] states
[En] = [ASeo] = Q3 + [Cln] = [(CIn)*]a + [Clyw]ja — [HR(ASw)l e, (7:6)

in G{%ZT), where Q3 is Chinburg’s invariant.

Localise equation (7.6) with respect to p to get an equation in G{*(Z,I") with Q3 = 0
because Chinburg’s invariant is the difference of two locally free modules. Also [En] =

[Un] because p 1 |un]- Use the functor F' defined above to map this into QO(EC/Q)

giving
[F(Un)] = [F(ASw)] = [Cln/(Cln)?] + [(Clw)] = [Clx] + [ He, (BSw)].  (7.7)

where K is the subfield of N fixed by C,.
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All modules on the right hand side of the equation are torsion modules so we pull this
equation back into gg(ﬁ;c/q) through ¢. Now, gé(ﬁ;C/q) & GHZC,) since the simple

modules in each case are the F,(¥).
Note that
g—1 g—1
¢: > F, =Y ([P]—[Piy]) =0.
=0 =0

So ?;é Fp(i) generates the kernel of ¢ and we may factor out by this and thus we

have an equation in G¥(Z,C,)/(X % F,™).
- Write G(Z,C,) /(315 F» ) as Gr.
The short exact sequence
0 — (Cly)’r — Cly = Cln/(Cln)%? =0, (7.8)
gives the relationship
[Cl/(Cla)7] = [Cl] — [(Cl),
in G3(Z,C,).

So finally we have the following equation in Gr

¢~ ([F(Un)] = [F(ASx)]) = [CIn] — [Clk] + [He, (BSe)] | (7.9)

Proposition 7.3. Let N/K be a cyclic Galois extension of prime degree p. If N/K

is ramified then

[Clk] € [CIN].

meaning that if we decompose [Cly] as a sum of simple modules, [IFff)], with positive
coefficients and minimal in number, they will be contained inside the same decompo-
sition of [Clk]. (i.e. The Jordan-Holder decomposition of Clk is contained inside

that of Cly.)
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Proof.
Let F be the conductor of the extension, C F'(K') be the F-ray class group of K and
Ir(N) be the fractional ideals of N not involving primes dividing F'

By class field theory, there exists an exact sequence

Ir(N) 5 CF(K) S Gal(N/K) — 1,
where n(I) = [Nn/kx(I)] and « is the Artin map.
Let X be the kernel of the projection

r: CF(K)— Clk.

By class field theory, since N/K is ramified, a must be non-trivial on X. Since

Gal(N/K) has no non-trivial subgroups

a(X) = Gal(N/K).

So we have a diagram:

n

Cly - Cl,

Choose y € Clg. Take z € CF(K) such that r(z) = y, and take z € X such that

a(z) = a(z).
Then a(z/z) =1 and so z/z = n(I) for some ideal [ in N. But then

r(n(l)) =r(z/z) = r(z) = y.
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Soron = fis surjective. As 3 factors through Cly it must be true that + is surjective.

So there is a short exact sequence
0 — Ker(y) = Cly 5 Clg = 0,

and hence

[CIn] = [Clk] + [Ker(y)]. O

If we now turn our attention to the cohomology group of the units then these provide

the extra invariants needed to distinguish between units in Gr, because even though

[X7] = [X7i ® Pio1),
the cohomology gives

[H;,(Xr)] = 0 and [Hg (X\ @ Piey)] = F™)

So we shall map a cohomology group of the units into Gr.
Equation (3.5) of [Ho] says

[HE(Ps)ga = [CIN 152 — I8 n/Isnwlsa — [Clyw]sa + [HEEN) 1as

where Jg y are the fractional ideals of N supported on the places in S;.

And from equation (3.13) of [Ho] (using (3.7))

[HR(Z.S))) 1 = [3§ n/Tsvw]sa-

Thus adding (7.10) to (7.11) and rearranging gives

[HE(EN)) 10 = [HX(Ps)sa — [CIN ) 7a + [Clyw]sa + [HRZS))] 14,

(7.10)

(7.11)

(7.12)

which remains the same with I and W replaced by C, as all the parts are factorizability

defects. Also, since p { |un| we have [H? (En)] = [H} (Uy)]. Thus we have the
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following equation in Gr

[HE (Un)) = [H(Ps)] — [CIZ] + [Clk] + [H,(2S)] | (7.13)

7.3. Totally real, metacyclic extensions of Q.

Let L = Q and let N be a totally real pg-metacyclic extension of Q.

Knowledge of the characters of Uy mean that (equation (6.1)

Un v (@1 ™) @ X,
=0

where a; €N, [T|+ap+ -+ a,—1 = gand if T =0 then X7 =S.
Write

1 i+1¢T,

a; =

0 1+1€T,

where 0 € T' is the same as ¢ € T. Let

1
Ciy1 — E ok + ag,
k=0

and ¢ = 0.

Now, if we know the ¢; this would give us more information about the genus of the

torsion-free units. The following proposition should give the ¢;.

Proposition 7.4. Let ¢; be as above then

civ1—1 ¢

qi oY - Y] = [Clv] - [Clx], (7.14)

=1 j=¢; n=j+1

in Gr. The innermost sum is over n such that j+1 <n <11 7+1<1 and overn

such that 7 +1 < n <1+ q otherwise.
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Proof. Using equation (7.4) in G{*(ZT)
[ASe] = [S]+2[P] + [Pe] + ... [Py-1,

= 81+ R+ YA

[UN] = 8]+ D ailP] + 3 _[P-i),

= 814+ Y (e + )P

Subtracting (7.15) from (7.16) gives

g=—1

[Un] = [ASx] = Z(ai + ;i — 1)[P] + [Ro] - [P1],

g—1 cit1—1

=Y Y (PI-1P)+IRI- (AL

=0 j=¢;

Map this into QO(I/(;Eq) using F' and then into G{(Z,C,) using ¢ 1.

Now, [P] - [Pi_1] € G{*(ZT) maps to F)) e Gi(Z,C,) and so

[P] - [Piea] “57 Z [ES)].

n=t-a+41

Hence
i

[P]-[P]m Y [F]egr. O

n=j+1
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Example: Dihedral extensions of Q.

Let N be a dihedral extension of Q. As there are only two I'-modules of order p we
shall write B} for IF,(,O) (the module with trivial C;-action) and F; for ]F,(,l) (non-trivial

C,-action.)

Genus of Un g ¢ ¢z [CIy]—[Clk]

Z-9R®R 0 2 2  2[F]

Z-®ROP 0 1 2 lixg

Z- PP 0 0 2 0
XG®R 0o 1 2 [FF]
XOP 0 0 2 0

Notes.

1. The case where UNVZ™ @ R® R is of particular interest as this is the one case
for which an ezample was not calculated in [Mol]. A
If N/K s ramified then [Clk] C [Cly] by proposition 7.8 (i). It is clear
that when Uy VZ~ @ R® R, since [Cly] — [Clk] = 2[IF;] then

hn/hy > p*.
Combining this with proposition 1.5 (from [Mol]) we see that
hv/hx = hi/p* > p*.

So we must have hy > p?.

The ezamples we find in section 9.1 (for dihedral groups of order 6) have

hy = by = 9, b = 1.
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2. As [CIn] - [Clk] is taken modulo [Ff |+ [F], if we write by /hy = p" then
rodd == UvVZ ®RO P,
or X ®R,
T even = UNAVZ—GBREBR,
orZ-@® P& P,

or X P

Now using the second equation we found in section 7.2 we get:

Proposition 7.5. Let N be a totally real dihedral extension of Q. The genus of Un

is exactly determined by

o [CIF] - [Clx] — ma[FY]
o [H; (Ps)]

as follows:
Genus of Uy
(1] - (O] — malBf | | [HE,(Ps)] = 0 [HE,(Ps)) = [Ff]
3[Ft] — Z-DROR
2[Ff] Z-dROR —
[FF] XOR Z-®@PoR
0 Z-®PoR —
~[F}] XoP Z-oPoP
—2[F}] Z-@oPOP —

Proof. Equation (7.13) gives

[He,(Un)] = [HE,(Ps)] = [CI] + [Clyes] + [HE,(Z5))].

If N is a dihedral extension then
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[He, (Z55)] = ma[F}]

and when N s real then
HI(C,,,PS) < Hz(cp’gN) = F;,

by equation (4.18), and thus H'(Cp, Ps) = 0 or Ff .
Map equation (7.18) into Gr and we get the result. [

Proposition 7.6. Let N be a complez estension of Q. Then H*(C,,Ps) = 0 by
equation (4.18) and so we get

[C5) — [Clic] — malE!] | Genus of Uy
Ft R

P

_]F;' P
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CHAPTER &

Addition of torsion units.

Let N be a metacyclic extension of Q of order pq with units Ex. In this chapter we
investigate when the short ezact sequence 0 — uy — Ey — Uy — 0 splits. When
the order of the Galois group and the torsion units are coprime then the short ezxact
sequence will always split (corollary to theorem 8.1), for ezample when N is a real,

metacyclic extension, but not dihedral.

When N is complez, then using theorem 8.2 it can be shown that the sequence will

also always split (lemma 8.3 and theorem 8.5(11)).

The real dihedral case is the most complicated but in theorem 8.5(i) it is shown that the
two possibilities for En depend on the 2-part of the cohomology of Ex and proposition
8.6 shows that this depends on m},, the number of primes with ramification group Cs,

and how the rational prime p ramifies.

Firstly we prove a proposition that shows Ey splits in real, non-dihedral extensions.

Theorem 8.1. Let 0 - M’ - M — M"” — 0 be an ezact sequence of I'-modules
q

with M" a lattice. If M’ is cohomologically trivial then the sequence splits.

Proof. The sequence 0 - M' - M — M" — 0 splits if
Extr!(M”,M") = H (T, Hom(M", M")) = 0.
M’ is cohomologically trivial implies there exists an ezact sequence

00— Bi—-By—>M =0
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with By and B; projective lattices. Thus we get an exact sequence

..« = HY(T',Hom(M", By)) — H (T, Hom(M", M')) — H*(T', Hom(M", B,)) — . ..

by lemma 2.4

H'(T',Hom(M", B;)) = 0.
So we get

HY(T',Hom(M", M")) = 0,

as required. O]

Corollary . If gcd(|T|,un) = 1 then the sequence uy — En — Un splits. O

We now give another condition to get a split short exact sequence.

Theorem 8.2. If H*(C,, M") = 0 and H"(C,, M') = 0 for all n, then the sequence
0> M — M — M"— 0 splits.

Proof. As in proposition 8.1, if M' is cohomologically trivial as a C,-module so is

Hom(M", M") and, H'(C,, Hom(M", M")) = 0.

From lemma 2.4, as M" is cohomologically trivial as a C;-module so is Hom(M", M'),

and H'(C,, Hom(M", M")) = 0.

Since H*(C,, Hom(M", M")) = 0 and H*(C,, Hom(M", M")) = 0 we know by theorem
2.2 that

HY(T,Hom(M",M'))=0. O

Corollary . All extensions of P; by un split. 0O
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Combining the previous propositions now shows that En splits whenever N is a non-

dihedral, metacyclic extension.

Lemma 8.3. Let N be a metacyclic extension of Q of order pq, with p and ¢ odd,
then Eny =2 Uy @ un.

Proof. If N is real, then ged(|T), |un|) = 1 and H*(T,un) = 0 for all n. So by
proposition 8.1, the sequehce 0 — un = En = Unv — 0 splits.

There are no complex extensions with p and ¢ odd. O

We now consider the slightly more complicated dihedral case.

Lemma 8.4. Let I be a dihedral group of order 2p and un be the torsion units in a

real extension, i.e. £1. There are exactly two I'- extensions of Z~ by uny and of X

by pwN-.

Proof. We want

Extr!(Z~, ux) = BYT,Hom(Z ™, un)) & Fs,
and

Extr!(X, un) = BT, Hom(X, pun)) & Fs.

Clearly, Homp(Z~, un) = pYy = un and HY (T, uy) = Ty, so the first part is proved.

Now, X is the non-split extension of Z~ by R, i.e. we have a short exact sequence

0 R—>X—>SZ —0.

R is cohomologically trivial under C,, thus by lemma 2.4 Hom(R, i) is also cohomo-
logically trivial and H*(Cz, Hom(R,p) =0 for all n
Therefore

HI(CQ,HOI'H(X, NN)) = HI(CQ,HOIH(Z_,MN)) = ]F2,
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X is cohomologically trivial as a Cy,-module, so by lemma 2.4,

H™(Cp, Hom(X, uy)) = 0.

By theorem 2.2 and since H"(C,, Hom(X, un)) = 0 we have

H"(I',Hom(X, pun)) = H*(Cz, Hom(X, pn)).

Thus H*(T',Hom(X, un)) & H(C2, Hom(X, un)) 2 Fy as required. O

Theorem 8.5. Let N be a dihedral extension of Q.
(1) If N is real there are exactly two I'-extensions of Uy by pun. Let Ex be the units
of N, then
H?™(T, En)) = (F2)®
where a = 1 if the extension splits and 0 if not. (Also, H*"*/(T',En)(p) = (F2)*+!)

(it))If N is complez then Ex = Uy @ pn.

Proof. (i) Write Uy VU, @ U, where Uy =Z~ or X.

EXtI[‘(UN,/J,N) = HI(F, Hom(UN,/LN)) =
HY(T,Hom(Uy, un)) @ HY(L, Hom(U,, un)) = HY(T, Hom(Us, puy)) = Fy,

because U; contains only R’s and P’s which have trivial extensions by un from the

corollary to proposition 8.2. Thus there are exactly two extensions of Uy by un.
Let Ey = Uy B E where 0 — uy = & — Uy — 0 1s an exact sequence.

If the extension splits then H*(T',Ex) @) = H*"(T, un) )@ H*™(T, Uy) 9@ H*" (T, U2) ).
Calculating this gives a = 1.

We shall find the structure of the non-split extension. Write € = {(m,u)|m € un,u €

Uz} and m(m,u) = (m',u'). Now E/un = U,, so (m,u) = (m’',7(u)).
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If m'" = m then we will get the split extension. The only other possibility is that

m' = —m, and T(m,u) = (—m, 7(u)).

It is clear that EF = 0 implying H([,E) = 0. So H™T,Ex) = H™(,U,) &
H™T,E)=0anda=0.

(1t) Since Uy is either R or P this is just the corollary to proposition 8.2. ]

Proposition 8.6. Let N be a real dihedral extension of Q of order 2p. If 2 { hy
then Ex = Un @ un if and only if (i) p ramifies totally (i.e. (p) = P* in N) and at
least one prime ramifies with decomposition group Cz or (ii) two primes ramify with

decomposition group C,.

Proof. |H*(T',Un)|2) =1 so by equation (4.18), |H (T, Ps)|@) = 1.

From the 2-part of equation (5.8) (with ! = I' and rearranging) we can actually get

a stronger result than the one stated in the lemma
25/ : 28

HY(T, Ex)|a) =
T Enley |Clnl2)

(8.1)

Looking at the case when 2t hy then
|H' (T, €n)l2) = [ZS/" : 28] 5y = 227,

which is 2™ if p does not ramify totally, and 2™2t! if it does. O
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CHAPTER 9

Ezxamples and discussion.

9.1. Examples of dihedral extensions of order 6.

The following examples are for dihedral extensions N of Q of degree 6 (with Galois
group ' = C3 x C3) generated by the roots of the cubic equations listed.

K = N© is a quadratic extension of Q and k = N is a non-Galois, cubic extension.
mg,m3 and my are the number of ramified primes with decomposition groups I',Cs

and Cqy respectively.

The structure of the class groups is written as [ny, . ..,n;| which means it is a product

of cyclic groups of order n;.

Frample Cly Clg Clp myq ms mq FEquation Genus of Uy
1] 3 [ 0 0 1 2P-4r+l XaR
2 1] [8] [1] 0 0 2 2®-3z2—-17z-2 XOR
3 17 [ [1] 1 0 1 z3+3z*—9z+2 XeP
4 [ [ [1] 1 0 1 z*+43z*-18z-2 XeP
5 9 [o [1] 1 0 2 2£—18z-20 XeP
6 [ [ [ 2 0 1 2*-9*+152-3 Z QP@P
v o] [2 [1] 0 0 1 2*—13z+1 X®R
8 [38 [ [§ 3 0 1 «*—60z—20 Z-®P®P
9 [6] [2] [3] 0 1 2 zP—-12z+1 X®R
0 3 [ [3 1 1 1 +152+120-15 Z-®ROP
11 /8 [1] [8 1 1 1 z*-272*-9z+6 Z @®ReP
12 [38 [1] [33 0 2 1 2*+15°—9c-8 Z @QROR
13 [88 [1] [33] 0 2 2 2*+362*—-30z-29 Z - ®ROR

o
w



Note. Using lemma 8.6 we see that in ezample 13 En splits into Uy @ p and in

ezample 12 it does not.

9.2. Examples of Siegel units.

Let M be a positive integer and (M) = {a = (* 3)[ a=(§ modM}.

Definition. A modular function of level M is a function h(z;) of two complez
variables such that

MF1L. h (M%) = M#A(%), AecC

for some fized k € Z (called its weight.)

MF2. h(a(%)) = k(%) for all a € T(M).

MF3. For r € 9, the upper-half plane, the function h(;) is meromorphic at infinity.

Let Far be the modular function field of modular functions of level M over Q. j = j(L)

is the classical modular function
j=2°8°63/9; — 243, (9.1)
where go =603 cp w4, g5 = 140 E%L,w‘e for a lattice L, L' is L without zero.

Theorem 9.1. ([La], p.66, theorem 3) The Galois group of Far/Q(5) is

GLy(Z/MZ)/+1. O

We are interested in the case when M is 2 because then the Galois group is dihedral

of order 6.

Let a = (r/M,s/M) where r and s are integers not both divisible by M. If this is the

smallest such M then we say a has precise denominator M.
Definition. Let 7 € §). Define the Siegel functions by

Go(7) = & (T)A(r)V12, (9.2)

94



where

o A(7)Y1? is the square of the Dedekind eta function

o0

n(r)? =2mig/ [J(1 - &),
n=1
21ri'r.

where £, = e

o &(7) are Klein forms,
¢(r) = e="=D/26 (5 L).

where L 1s the lattice [1,1] and z =r/MT + s/M.

o 0(z,L) is the Weierstrass sigma function
o(z, L) = z2llep (1 — z/w)ez/“’+1/2(z/“’)2,
where L' is L without zero.

Then g, is a modular function and the . -ezpansion of g}*M is given by

grrestetMetr g ™ — DM TTIA - €7 ME) 01 - gHMEN™M - (9.3)

n=1

27T 2mi/M

where £, = € and €y = €

Theorem 9.2. ([KL], p.37, theorem 2.2) Let a have precise denominator M, then
(i) If M is composite, then g}*M is a unit over Z.

(i) If M = p" is a prime power, then g**™ is a unit in Rp[1/p], (Ra is the integral
closure of Z[j] in Fu.)

(iii) If c € Z,c# 0 is prime to M, then (gea/9.)**M is a unit over Z. [

Theorem 9.3. ([KL], p.41, theorem 3.1) The rank of the group generated by the
Siegel functions modulo constants g, for a € 1/MZ*Z* mod £ 1 is equal to
le(M)/ £1| -1 where GLy(M) = ¢(M)Go(M), and Goo(M) is the isotropy group of

(- O

Combining theorems 9.2 and 9.3 we see in the case when M is 2 and j € Z the Siegel

functions generate a subgroup of the units of Z-rank 2.
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Theorem 9.4. ([La], p263, theorem 2) The Siegel functions g*™ (a € Q*,a ¢ Z%,a
has precise denominator M) lie in Far and generate Fup over Q(7). They are integral

over Z[j] and are roots of the following polynomial in Z[j][z]

[I - g22), (9.4)

where the product is over all a mod (Z?) with precise denominator M. [

We now calculate polynomial (9.4) for M = 2. It is clearly cubic (there are three

distinct a with precise denominator 2 mod (Z?)) and the £, -expansion of j is

j=1/& + 744 + 196, 884¢, + 21,493, 76062 + . .. (9.5)

Fquating the coefficients of £, we get the polynomial

23+ (25 + 2% - 3)2? + (52 — 2735 + 2% - )z + 2*4. (9.6)

Substitute 3’ = 27185 and X = 278z in polynomial (9.6) to get

X34 (25 +3)X2+ (% — 65 +3)X +1| (9.7)

Then Q(5) = Q(j’) and the extension Fy formed by adding the roots of (9.6) is the
same as that for (9.7). When j € Z the roots of (9.7)(which are g2*/28) are units

over Z in Fy, call these sy, s2, 83.

We shall calculate some ezamples of these and find the torsion part of
Un/{s1,82,83). It is clear from the action of the Galois group on the roots and the

fact that s3 = 1/s155 that (s1,s2,83) V R.

Real examples
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Ezample 7' my4y ms mo Cly Torsion Genus of Uy

14 1 2 o0 1 [1 12 Z @PoP
5 111 0 1 1] 12 XoP
6 12 2 0 1 [1] 12 Z @PoP
7 17t 0 1 [ 12 XoP
18 29 1 0 1 [4 12 XoP
19 3% o0 1 1 [3 12 Z ®ROP

Complex examples

Ezample 3' my ms my Cly Torsion Genus of Uy

20 -3 1 0 1 [ 12 P
o1 1 0 0 1 [1] 3 R
22 4 1 0 1 [1] 48 P

In all the real ezamples (s1, 82, 83) is contained inside P. Since it is in the same genus
as R we know that & must divide the torsion. 4 also divides the torsion in all these

examples, and the following proposition proves this is always true.

Proposition 9.5. If sy, 33,83 are the roots of the equation
224 (25 +3)z* + (- 65 +3)z +1 =0,

and Gal(Q(s1, $2, 83)/Q) = D3 then i\/s1,1./32,./33 are all contained in Q(sy, s2,53).

Proof. +i,/s1, %1/, £1,/33 are roots of the equation
y* = (27 +3)y* + (5 - 67 +3)y* ~ 1,

i

and this factorizes as
(v =3+ B =4y -1 +3y" -3 —J )y +1). (98)

Then Q(s1, 82, 83) is contained in the extension generated by the roots of one of these
cubics. The Galois group 1s D3 so the two extensions are the same. [
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9.3. Discussion.

In all the examples calculated, examples with the same values of mq, m3 and my have
the same genus (but these calculations only include class groups of order 9 or less).
It s doubtful this is true in general, but perhaps a combination of the class group and
mz, m3, my could uniquely determine the genus? It is also interesting to note that all
the possible genera which could occur given that Uy @ Q = AS, ® Q do occur. In

general, does the number of genera of units reach the limit given in proposition 6.2%

It would be of interest to know for which other groups the characters and cohomology

determine the genus of a lattice.
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