
Durham E-Theses

On the Galois module structure of units in met

acyclic extensions

McGaul, Karen Yvonne

How to cite:

McGaul, Karen Yvonne (1996) On the Galois module structure of units in met acyclic extensions,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5186/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5186/
 http://etheses.dur.ac.uk/5186/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


On the Galois module structure of units 

in metacyclic extensions 

by 

Karen Yvonne McGaul 

A thesis presented for 

for the degree of Doctor of Philosophy 

August 1996 

Department of Mathematical Sciences, 

University of Durham, 

The copyright of this thesis rests 
with the author. No quotation 
from it should be published without 
the written consent of the author 
and information derived from it 
should be acknowledged. 

South Road, Durham, 

DHl 3LE, England 

... 3 JUl1997 



Abstract. 

On the Galois module structure of units 

in met acyclic extensions - Karen Y. McGaul 

Let r be a metacyclic group of order pq with p and q prime. We shall show that the 

r-cohomology and character of a r-lattice determine its genus. 

Let N/ L be a Galois extension with group r, then UN, the torsion-free units of N, is 

a f-lattice and the isomorphism Q 0 UN ~ Q 0 ~Soo gives its character. In certain 

cases we can determine its cohomology and thus its genus; in particular, when hN = 1 

and L = Q we show that the genus of UN depends only on the number of non-split, 

ramified primes in N / L. 

We shall also investigate UN in the factorizability defect Grothendieck group. 
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CHAPTER 1 

Introduction. 

Let Nand L be algebraic number fields and N a Galois extension of L with group r. 

Let EN be the group of multiplicative units of the algebraic integers of N and JlN its 

torsion subgroup. Then there exists a finitely-generated zr-lattice, UN, defined by 

the exact sequence 

UN will be referred to as the torsion-free units of N. In this thesis we are particularly 

interested in the Galois modul~ structure of UN in the case when r is a non-abelian 

metacyclic group of order pq where p and q are prime. 

Many results on the Galois module structure of units concentrate on detyrmining 

whether or not UN has a Minkowski unit (see [Du], [Ma2) for some non-cyclic examples 

and [Mal], [Mol], [Mo2) for specifically metacyclic examples or section 1.2). We will 

discuss the metacyclic case in section 1.2. There are also general results on local units 

(see [GWl), [GW2) for general results or [Ja2), [Ja3) for local metacyclic extensions) 

discussed in Chapter 3 and on S-units (see for example [GWl]) which we discuss in 

Chapter 4. 

A finite group r has finite representation type if and only if all its p-Sylow subgroups 

have order 1, p or p2 ([CRl], theorem 33.6). This means there is only a finite number 

of indecomposable f-lattices and it seems logical to describe UN as a direct sum of 

these. 

In general however, though there are still a finite number of indecomposable lattices 

of each Z-rank, it would be difficult to describe the possible genera of UN for a general 

extension N / L. 
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When r is abelian then there are many techniques available which make it possible 

to get more complete descriptions of the Galois module structure of UN, or at least 

to say when UN is in the same genus as a module of which the structure is known, 

We shall discuss the results of [Bu] and [Fr] on real abelian extensions in the next 

section. 

When r is metacyclic of order pq with p and q prime then there are finitely many 

indecomposable f-lattices and an example of a lattice from each genus is given in 

section 1.2. Since UN 0 Q 9::' /j.Soo 0 Q we know the characters of UN which gives 

finitely many possibilities for its genus. 

This idea is used in the papers by Moser ([Mol] and [Mo2]) to find invariants deter

mining the genus of UN. The invariants found are in terms of indices between unit 

groups (see section 1.2). 

We shall show that the characters and cohomology of a f-lattice (where r is pq

m~tacyclic) determine its genus (theorem 2.6). This will enable us to find the genus 

of UN (and other f-lattices) in certain cases. In particular, when hN, the class number 

of N, is trivial and L = Q we find UN is determined completely by the number of 

non-split, ramified primes in N jQ (theorem 6.6). 

We shall also apply these results to local units and S-units. Finally, in Chapter 7 

we shall use a different technique and show that working in the factorizability defect 

Grothendieck group can give some interesting results on the Galois structure of UN. 

1.1. Abelian extensions. 

Here we recount the work of [Fr] and [Bu] on abelian extensions. For any abelian 

group r, let Tr = 2:::-rEr 1 be the trace element of the integral group ring Zf. Let Ar 

be the semi-simple Q-algebra Qr jQTr. Then there is a Z-order Ar of Ar defined by 

the exact sequence 

0---+ ZTr---+ zr---+ Ar---+ 0. 
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Let L possess a unique infinite place, which is the same as L being either the field of 

rationals, Q, or an imaginary quadratic field. If r is the Galois group of Nj L then 

there is a natural action of Ar on UN. Let AN be the associated order of UN in Ar, 

i.e. identifying UN with UN 0 Z C UN 0 Q, AN is the full set of elements of Ar which 

induce endomorphisms of UN. Clearly Ar C AN. 

The problem studied in [Bu] is to determine the conditions under which UN is locally 

free as an AN-lattice. Equivalently, when do UN and AN lie in the same Ar-genus? 

Before giving some answers to this question we need a few definitions. 

Definitions. Let f* be the group of complex multiplicative characters of r and let 

P(f*) be the set of subgroups off*. For a subgroup n of r, 9(0) E P(f*) is the 

set of characters which act trivially on n. Two characters of r belong to the same 

division if and only if the generate the same cyclic subgroup off*. Thus to a division 

D there corresponds a cyclic subgroup lJ off*. 

Let f E Map(P(f*), Q>o) then f can be extended to each division Doff* using the 

Mobius p;-function 

f( D) = II f( C)~t(IDI/101)' 
C~D 

and we get a rational number f from f called the factor derivative defined by 

1 = (II f(D))J(r*t 1
, 

Dcr-

where the product is over all divisions D off*. 

~ II J 1 .Jr = ( p p)jff, 
p 

Jp = no. of non-trivial divisions of r;, 
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Define hN/L E Map(P(f*), N) to be 

. where hNn is the dass number of Nn. 

Define the map WNfL E Map(P(f*), N) to be 

where wNn is the ~ardinality of the torsion units of Nn. 

A subgroup D of r is cocyclic if r /Dis cyclic, and write D <cr. 

Theorem 1.1. ([BuL theorem 3) Let L possess a unique infinite place (soL is either 

Q or an imaginary quadratic field). Let N / L be an abelian extension which is unram

ified at infinity. Then UN V Ar if and only if both hN/L = WNfLJr and H 0 (D, UN) = 0 

for all cocyclic subgroups n <c r. 0 

Note that H 0 means Tate cohomology. 

More specifically, when L = Q and [ N : Q] is a power of a prime we have 

Theorem 1.2. ([FrL theorem 5) Let N be a real abelian extension ofQ. Let [N: Q] 

be a power of a prime l. If 

(i) r is cyclic; there is exactly one ramified prime and this prime ramifies totally) 

(ii) there are exactly two primes which ramify in N and each is inert in its inertia 

field. Also l is odd) 

then UN is a locally-free Ar-module. 0 

In general it is difficult to calculate hN/L and hence to find the structure of the units. 

However, for a prime l, when the Hilbert !-class field of N is abelian over L it is 

possible to find the local structure. 
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This is certainly true if N is contained in F which is an abelian [-extension of L and 

l f hp. F is then called a genus field extension of L. 

Definitions. The place v E SF;L, the set of non-archimedean places of L which 

ramify in F / L, is associated to the prime Ch ideal Pv. If Pv has order hv in GiL then 

choose 11 v E L such that 

-nhv _ 0 
rv -11v L· 

IF/L,v =inertia group of v in Gal(F /1). 

DF/L,v = decomposition group of v in Gal(F /1). 

If v is coprime to l, fix an element Xv E Ov, the valuation ring of Lv, which generates 

the multiplicative group of Rv := Ov/PvOv, for each element z E 0~ define [v, z] E 

Zt/(#Rv)Zz by 

If vll and IF/Lis cyclic then choose a place w ofF lying above v and fix a generator 

Xv E 0~ of the quotient group 0~/NormFw/Kv(O~). For z E 0~ define [v, z] E ZtfevZz 

by 

Theorem 1.3. ~Bu], theorem 6) Let F be a genus field extension of L" of degree f3 

and SF/L = { v1 , v2 , v3 } such that 

-[v2, 11v2 ] -[v3, 11v1 ] 0 

[vb 11v2 ] 0 -[v3, 11 v2 ] E G L3(1Fi). 

0 

If C :S Gal(F /1) is a subgroup of order l satisfying 

(i) C n fF/L,v; = 1 for each i = 1, 2, 3, 

(ii) c n (n~~r DFtL,vJ = 1, 
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then with K =Fe one has 

· 1.2. Metacyclic extensions. 

N is a Galois extension of L over Q. Let r = Gal(N /L) be a metacyclic group of 

order pq. 

f = (a-, rJo-P = 'Tq = 1, 'TO"T-l =o-r) 

where p and q are distinct primes, p odd and qJ(p- 1). The integer r is a primitive 

qth root of unity modulo p. When q = 2 then r is dihedral. 

It is well known that r has finite representation type. There are 2q +2q-l +q+2 genera 

of indecomposable zr-lattices, but a general lattice need not decompose uniquely into 

a product of indecomposable lattices. These results come from Pu, [Pu) and in the 

dihedral case, originally in Lee, [Le). 

Listed below is an example of a lattice from each genus, using the notation of [CR1]. 

Lattice Description 

(0::::; i::::; q- 1) 0" acts as mult. by ep, 

and r acts as the 

automorphism ep t--+ epr. 

P; = pi and Po = R = Z[ep]· 

(ii) z a- and r act trivially. 

a- acts trivially, 

'T acts as mult. by eq· 

a- acts trivially, 

12 

No. of Character 

genera 

q X 

1 

1 X 

1 



T acts as mult. by T. 

(v) XT The non-split extension 2q-l - 1 ITix+ x-
0 ---t LT ---t X T ---t § ---t 0' 

(vi) YT The non-split extension 2q- 1 ITix+ x+ + x-
0 ---t LT ---t YT ---t z [Cq] ---t 0. 

(vii) V The non-split extension 1 x+x+ 
0 ---t p ---t v ---t z ---t 0. 

where Tis a non-empty subset of {O,l, ... ,q-I},LT = lltETPt. (excluding in the 

XT case t = 1, which must split.) char(Zf) = x+ + x- + qx and for a rational prime 

r, ~r is a primitive rth root of unity. 

x+ is the trivial character, x- = x1 + ... + x;-1 is the sum of irreducible characters of 

dimension 1 corresponding to the conjugacy classes of cri, and x = x1 + · · · + X(p-l/q) 

is the sum of characters of dimension q. 

Remark YTmax where rmax = {0, 1, ... 'q- 1} is in the same genus as zr. 

In the dihedral case we shall use a slightly different notation, again from [CRI). Let 

r be a dihedral group of order 2p. Then there are 10 indecomposable f-lattices; Z 

where r acts trivially, Z- where T acts as multiplication by -1 and cr acts trivially, 

ZC2 where cr acts trivially, R = Z[~P], P = (I - ~p)R where cr acts as multiplication 

by ~P and T as complex conjugation, V,X, Yo, Yi, 12 are respectively the non-split 

extensions of Z by P, Z by R, ZCq by R, ZCq by P, and ZCq by R E9 P. 

Let N ji.Q be a real, metacyclic extension of order pq with p and q odd primes, q 

divides p- 1. Let Cp = (cr) and Cq = (r). Let /{ = NcP and k = Ncq. 
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Let r be the Galois group of N jQ and let X{l} be the character of r induced from 

the trivial character of {1} and xr is the trivial character of r. Then the character 

of u N is x{l} - Xr· From section 1.4 of [Mo2], all zr-modules of this character are 

isomorphic to one of the following list: 

where 0 ~ ej ~ q-1 and the Oj are ideal classes of A1 = Q(ep)..P n z[ep] where 'lj; is the 

element of order q of the cyclic group Gal(Q(ep)/Q) and (EB;=1Peiaj,§) represents a 

non-split extension of § by E8;=1 pei Oj. 

Let u E Z be defined to be 0 if UN is isomorphic to EE!]=1 Peiaj E8 §,and the num

ber of distinct exponents ej otherwise. We can define an invariant b of UN to be 

[UK: NN;KUN] and theorem 2.3 of [Mo2] gives 

(1.1) 

Keep u as above and let 

U ,....., q pei q pe. n A 
k = ffij=1 1 Oj = ffij=1 

1 
1 

then according to theorem 2.4 of [Mo2] there is a second invariant, a, of UN given by 

(1.2) 

Together a and b will not necessarily determine the genus of UN except in the case 

where r is dihedral. Now let N jQ be a dihedral extension of order 2p with Galois 

group f. It is clear from the characters of UN that there are two possibilities for the 

genus of UN when N is complex, namely Rand P, and five when N is real, namely 

Proposition 1.4. {[MolL II/.3 and III.5) Let N be a real dihedral extension of order 

2p ofQ. 

14 



(i) If N is complex and 

then the invariant a determines the genus of UN in the following way: 

(ii) If N is real and 

R 1 

p p 

a= [UN : UkUk"UK] 

b =[UK : NN/KUN] 

where NN/K is the norm map) then the invariants a and b determine the genus of UN 

in the following way: 

Type UN a b 

a z-ffiRffiR 1 p 

(J z-ffiRffiP p p 

I z-ffiPffiP p2 p 

6 XtBR p 1 

t XffiP p2 1 

D 

To make it easier to calculate the invariant a we have the following proposition. 

Proposition 1.5. ~Mol] IV.1) Let N/!fJ be dihedral of order 2p) p an odd prime) 

then 

where r = 1 if N is complex and 2 if N is real. D 

15 



In the final section of [Mol] examples are calculated in the case when p = 3 for all 

cases of UN except type a. In section 9.1 we shall give an example of this missing 

case. 

Definition. Let N be a Galois extension of L with Galois group r, then we say N 

has a Minkowski unit if UN is a cyclic Zf-module. 

This is equivalent to UN being Ar-isomorphic to Ar. 

Proposition 1.6. ([MalL theorem 1} Let N be a real) metacyclic extension ofQ of 

degree pm where p is a prime and m I (p - 1). If N has a Minkowski unit then 

with t > m - 1. 0 

Proposition 1. 7. ([Mal], theorem 2) Let N be a real} metacyclic extension of degree 

pq over Q} where p and q are odd primes. 

(i) If N has a Minkowski unit} then there exists an ideal a <l A1 and 

(a) UN~ XTmax EB PaJ 

where T = {0,2,3, ... ,q -1}} 

(b) h}(h% - q-1 
hN -p J 

(d) the field I< has a Minkowski unit. 

(ii) Conditions (b) and (c) are necessary and sufficient for UN to be in the same genus 

as Zf/ZTr. 
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(iii) If the class number of A1 is 1, then (b),(c) and (d) are necessary and sufficient 

forK to have a Minkowski unit. Note that we can drop condition (d) if q ~ 19. 0 

1.3. Notation. 

N is a Galois extension of Q and La subfield of N. Let r = Gal(N /L) be a metacyclic 

group of order pq. 

f = (a, TiaP = Tq = 1, TaT-! = ar) 

where p and. q are distinct primes, p odd and qi(P- 1). r is a primitive qth root 

of unity modulo p. Whenever we use the words "pq-metacyclic group" we shall be 

referring to a group with this structure (i.e. not a pq-cyclic group.) When q = 2 then 

r is dihedral. 

In general we shall try to use the notation r for a pq-metacyclic or dihedral group 

and G when we are referring to a general group. 

Let Cp = (a) and Cq = (T). Let K be the subfield of N fixed by Cp and k the subfield 

fixed by Cq· 

Let S be a f-invariant set of primes of N including 

(i) all ramified primes, 

(ii) all infinite primes and 

(iii) enough primes so that the S-class group is cohomologically trivial. 

Sometimes it may be necessary to add a fourth condition 

(iv) S contains enough primes so that the S-class group of all intermediate fields 

between N and L is trivial. 

Let Boo be the set of infinite primes of N and S1 be the set of finite primes in S. 6.S 

is the kernel of the augmentation map ZS --+ Z, for any set S and S is the set of 

primes in L under those of S. 
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Let £N be the units of N, and fLN the roots of unity inN, and UN be the torsion free 

units of N, i.e. UN~ £N/ILN· £s are the 5-units, and Us= Es/1-LN· 

Let GIN be the class group of Nand hN = IC!NI is the class number. 

In general it is assumed that p does not divide the order of fLN· 
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CHAPTER 2 

Invariants for the genus of pq-metacyclic lattices. 

Introduction. 

The aim of this chapter is to find invariants determining the genus of a pq-metacyclic 

lattice in terms of other invariants which may be easier to calculate. In section 1.2 

of the previous chapter we gave a list of genus representatives of the indecomposable 

pq-lattices. Now we would like to find a way to write a Zf-lattice as a direct sum 

of these, in particular we would like to do this for the torsion-free units, UN, of a 

pq-metacyclic extension, N. 

In section 2.4 are some exact sequences which include the units. These give informa

tion on the cohomology of UN. For a general group the cohomology of a lattice will 

give some information about the decomposition of that lattice. In the case when the 

group is pq-metacyclic the cohomology gives even more information about the genus. 

We shall show in section 2.3, theorem 2.6 that two lattices are in the same genus if 

and only if they have the same characters and cohomology. 

Before this in section 2.1 is a list of some well known results on cohomology which 

will be used in this and later chapters. Then in section 2.2 we find the cohomology 

of pq-metacyclic lattices. In section 2.3 we calculate the invariants we will be using 

in later chapters to find the Galois module structure of the local units, S-units and 

global units. Finally we give some exact sequences including the cohomology of the 

units. 

2.1. Cohomological results. 

The results listed here for convenience are all either well known or simple corollaries 

to well known results. 
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2.1.1. Relations with Sylow p-subgroups. 

Lemma 2.1. Let r be any finite group1 and let A be a r -module1 then 

(2.1) 

where Hn(r, A)(p) is the p-primary component of Hn(r, A) 1 and p ranges over all the 

primes dividing /fl. 

Proof. Hn(r,A) is an Abelian group which is annihilated by jfj. 0 

Definition. An inclusion !1 <-t rand a f-module A induces a map 

called the restriction map. 

There is also a map between cohomology groups induced by conjugation. Let !1 ~ r. 
Suppose c(l') : !1-+ ,n,-1 for 1 E r, then there is a map 

where A is a f-module. 

Definition. If z E Hn(n, A) then define 

Definition. If !1 C r and A is a f-module then an element z E Hn(n, A) is 

r-invariant if 

for all/ E f. 

Theorem 2.2. ([BrL p841 theorem 10.3} Let r be a finite group and r(p) a Sylow 

p-subgroup of r. 
20 



(i) For any r -module A and. any n > 0, Hn(r, A)(p) is isomorphic to the set of 

f-invariant elements of Hn(r(p),A). 

2.1.2. Cohomology of Hom(A, B). 

Lemma 2.3. ~Br], p61, proposition 2.2) Let r be a finite group. If M is a zr -lattice, 

then 

Extr(M, A) e:! Hn(r, Hom(M, A)) 

for any f-module A, where r acts diagonally on Hom(M,A). D 

Lemma 2.4. ~Br], p153, exercise 2) If A is a f-lattice and cohomologically trivial, 

then Hom( A, B) is co homologically trivial for any r -module B. 

2.2. The cohomology of metacyclic groups. 

2.2.1. Projective resolutions of Z for metacyclic groups. 

Now let r = (a, riaP = rq = 1, rar-1 = ar) where r is a primitive qth root of unity 

modulo p. In this section we shall find a projective resolution of Z for r of length 

2q. It can be shown that r has periodic cohomolo~;y of period 2q, (see [Br], p155, 

example 3 for a proof using the fact that r has a 2q-:fixed-point-free representation) 

and so no shorter resolution is possible. 

From lemma 2.1, for any f-module A 

Let Cp = (a) and Cq = (r). Cp <l r so by theorem 2.2{ii), 

Hn(r, A)(p) ~ Hn(Cv, Afq 

21 
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and by theorem 2.2(i), Hn(r, A)(q) 1s isomorphic to the f-invariant elements of 

Hn(Cq, A). 

Firstly we show that all elements of Hn(Cq, A) are f-invariant. Now 171-1 r/:. Cq for 

1 E r \ Cq. So Cq n 1cq1 - 1 = {0}. 

Thus both restriction maps are zero maps and hence are identical. 

res~:n-yCq,-1 = res~~} : Hn(Cq, A)---+ Hn( {0}, A)= 0, 

res~~~~~:-y- 1 = res{gf-
1

: Hn(rCqr- 1 ,A)---+ Hn({O},A) = 0. 

Therefore resccqn c -1(z) = 0 = resc-yCnq'Yc-
1 

_1 (rz), for all1 E f and z E Hn(Cq,A). q 1' q1' q 1' q)' 

From the definition of f-invariance, since the restriction maps are the same, 

(2.3) 

To calculate the f-cohomology groups it is necessary to find CP and Cq-projective 

r -exact resolutions of Z. This is particularly easy in the Cq-case. 

Let D = 1 - T and N = 1 + T + · · · + Tq-l, then a Cq-resolution of Z is 

So that 

when n is even, 

when n is odd, 

and the q-part of the cohomology has period 2. 

The p-part of the cohomology is more complicated because the 'normal' resolution of 

Z for a cyclic group, like the one used above, is not naturally a f-sequence. However, 
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there are 2q short exact sequences 

Z--+ V--+ Po, (2.4) 

where i -I- 1, rmax = {0, 2, 3, 4, ... 'q -1} and XTma.x = rmax \ { i}. These concatenate 
• 

to give a long exact sequence of 2q + 2 terms 

Z--+ V--+ XTma.x--+ • • •--+ XTma.x--+ V--+ Z, (2.5) 

which concatenates with itselfto give a ZCp-projective, zr-resolution of Z with period 

2q. 

2.2.2. Cohomology with indecomposable lattice coefficients. 

It is now possible to calculate the cohomology groups of metacyclic groups when the 

coefficients are indecomposable r-lattices. 

Firstly the cohomology is calculated with Z as a coefficient. After some calculations 

we get 

{ 

lF (n/2) n even 
Hn(Cp, Z) ~ P ' 

0 n odd, 

where IFP (a) is cyclic of order p, and T : IFP (a) --+ IFP (a) by T : f t---+ ra f for f E IFP (a) and 

r is a primitive qth root of 1 modulo p . Therefore, writing IFp and lFq for the cyclic 

groups of order p and q respectively, 

n = 0 mod (2q) n even 

otherwise n odd 

The short exact sequence P--+ V--+ Z and the fact Vis Cp-projective give 
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The short exact sequence Pi -+ Xrmax -+ Xr;ma.x and the fact Xrmax is Cp-projective 

giVe 

for i f. 1. 

We could continue in this way, finding isomorphisms between cohomology groups, to 

get the full cohomology of all the indecomposable lattices, listed below. 

1Fp n 2i -1 mod (2q) 
Hn(r, Pi)(P) ~ Hn(r, Pi)(q) ~0 for all n 

0 otherwise 

1Fp n even, n f=. 0 mod (2q) ~ { :. n even 
Hn(r, §)(p) ~ Hn(r, §)(q) 

0 otherwise n odd 

{ :· n even 
Hn(r, ZCq)(p) ~ Hn(r, ZCq)(q) ~ 0 for all n 

n odd 

~ { :· n _ 2(t- 1), tiT, t f. 1 ~ { :. n even 
Hn(r, Xr )(p) Hn(r, Xr )(q) 

otherwise n odd 

Hn(r, Yr )(p) ~ { :· n- 2(t- 1), t iT 
Hn(r, Yr )(q) ~0 for all n 

otherwise 

~ { :· n even 
Hn(r, V)(p) ~o for all n Hn(r, V)(q) 

n odd 

where all congruences are modulo 2q. 

2.3. Invariants for the genus of metacyclic-lattices. 

Let r be a pq-metacyclic group. Whilst the cohomology of any individual indecom

posable r-lattice is unique to the lattices in that genus it is clear that direct sums 

of r-lattices can be arranged to have the same cohomology, even when they do not 

obviously lie in the same genus. It is also true that a lattice may not decompose 
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uniquely into a direct sum of indecomposable lattices, however, we shall show in this 

section that these decompositions will still have the same cohomology. We shall in 

fact show that two f-lattices are in the same genus if and only if they have the same 

cohomology and characters. 

Two f-lattices lie in the same genus if they have the same p-adic and q-adic com

pletions. We shall show that the p-adic completion depends only on the cohomology 

and characters in proposition 2.5. This is done separately because we shall need this 

result when we look at extensions of local fields in chapter 3. 

Proposition 2.5. Let r be a metacyclic group of order pq. Let M be a r -lattice . 
......... 

Then the characters and p-part of the cohomology of M determine M, the p-adic 

completion of M. 

Note that in Chapter 7 we have used the notation MP for p-adic completion. 

Proof. Write M as a product of indecomposable f-modules 

M v { EP P[i} EB Z81 EB § 82 EB ZC! EB { ~ x;;l} EB { ~ v;2T2} EB vw. 

There are 3q indecomposable Zf-lattices, namely (in the notation of [CRl]) A, zi 
and V\ fori= 1, ... , q, and thus M is written as a product of these 

M = { EP .P;i} EB z~~ EB { EBJ::fzi}82 EB { EBJ::~ziy EB 

{ ~ [( t31 Zrt-dEB( t~T~t# Zt-d]UTt}EB{ ~ [( t32 Zrt-l)EB( t2f2 Zt-l)tT2 }EBZr;. 

(2.6) 

Note that zr comes from the non-split extension: 

~ ......... 
The number of times these indecomposable Zf-lattices occur in M gives the following 

invariants of M: 
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Zo) s1 + l + 2: 1 ~T2 VT2 = ao, 

Zi) s2 + l + I:i+l~T1 UT1 + I:iti~T2 VT2 = ai, i =f. 0, 
.........._ 

zro) I:lET2 VT2 + W -= f3o, 
.........._ 

zri) l:i+lETl UTl + l:i+tET2 VT2 = (3i, i =f. 0, 

Pi) ri = ri. 

It is possible to write the invariants in terms of the cohomology and characters of M 

as claimed: 

for 0 :::; i :::; q - 1. 0 

No. of x+ in char(M) = ao + (30 , 

No. of x- in char(M) = ai + f3i, 

logp[H2i(r, M)(P)] = ai, 

logp[H2
i-

1 (r, M)(p)] = ri, 

If two lattices have the same cohomology and characters all that is now required to 

show they are in the same genus is show that they have the same q-adic completions 

(see [Pu]). However it is easier to follow the method in [CRI] and show that the 

lattices are the same when they are localized without completion at q rather than 

q-adically completed. This is the method used to prove the following theorem. 

Theorem 2.6. Let M be a r -lattice where_ r is a pq-metacyclic group. Then the 

characters and cohomology of M determine its genus. 

Proof. Write M as a product of indecomposable r-modules 

M V { ~ P[;} EB Z 81 EB § 82 EB ZC! E9 { .W x;~1 
} E9 { ~ Y;

2
T

2 
} E9 vw. 

From [CRI] §34E, the genus of M is determined by the indecomposable modules of 

M(q) and M, where the subscript (q) denotes localisation without completion and 
.........._ 

M is the p-adic completion of M. 
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It has already been shown in proposition 2.5 that the characters and cohomology of 

---M are enough to determine M. 

As for M(q), there are four indecomposable Z(q)f-lattices, namely R(q), Z(q), S(q), and 

Z(q)Cq and when M is localized at q without completion it becomes 

The number of times these four indecomposable Z(q)f-lattices occur in M(q) give four 

invariants of M: 

R(q)) l:i ri + l:T1 IT1iuTt + l:T2 IT2IvT2 + w =/, 

Z(q)) s1 + w =0, 

Sq) S2 + l:Tt UT1 = c:, 

Z(q)Cq) [ + l:T2 VT2 = 4Y· 

It is now possible write the invariants determining M(q) in terms of the cohomology 

and characters of M: 

No. of x+ in char(M) = J + 4Y, 

No. of x in char(M) = /, 

log H 2i(r, M)(q) = J, 
q 

log H 2i-1(r, M)(q) = c:. o 
q 

For any finite group G it is possible in a similar way to tell when Z is a direct summand 

of a ZG-lattice: 

Theorem 2.7. ([Sy], theorem 1.1) Let G be any finite group and let M be a ZG

lattice. Then H 0 (G, M) contains an element of order IGI if and only if M contains 

the trivial ZG-lattice, Z, as a direct summand. 0 
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For any finite group G, theorem 2.6 generally does not hold, but with a stronger 

condition on the isomorphisms between cohomology groups we can get a condition 

for two lattices M and N to be in the same genus. 

Proposition 2.8. Let M and N be G-lattices and 

I:M-+N 

be a G-homomorphism so that 

and also Q ® M ~ Q ® N) then M V N. 

Definition. Let l,g E Homa(M,N), then I is homotopic tog if I- g factors 

through a projective ZG-module and we write I "' g. 

Definition. I : M -+ N is a homotopy equivalence if there exists g : N -+ M 

such that lg"' idN and gl "'idM. We write M "'N. 

Lemma 2.9. {[GWl]JlO.l)) M "'N and Q ® M ~ Q ® N implies M v N. D 

Lemma 2.10. {[GWlL (1.6)) The following statements about f: M-+ N are equiv

alent: 

(i) f is a homotopy equivalence) 

(ii) there exists ZG-projective modules P and Q and an isomorphism a : M EB P -.:t 
N EB Q so that f is the composite 

where i is the natural injection and 1r is the natural projection. D 

Proof of proposition 2.8. Let I satisfy the conditions of proposition 2.8. By lemma 

2.9 we will have proved the proposition if we show I is a homotopy equivalence. In 

fact, we shall show f satisfies condition (ii) of lemma 2.10. 
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Firstly, choose a projective presentation of N, 7r : P -Nand form the short exact 

sequence 

0 ---+ Q -t M EB P (f,1r~ N ---+ 0, (2.7) 

then Q ~ M EB P and both P and M are lattices so Q is too. 

Take the cohomology of H ~ G to get the exact sequence 

f* . 
Hn(H, M EB P) ~ Hn(H, M) ~ Hn(H,N). So Hn(H, Q) = 0, thus Q is cohomologi-

cally trivial. 

By [Br], pl52 theorem (8.10) a cohomologically trivial lattice is projective. Therefore 

Exth(N, Q) = 0 and extension (2.7) splits. 

Let v: N---+ M EB P be a splitting, then 

a : M EB P = Q EB v(N) ~ Q EB N, 

and this gives a factorisation off as required. D 

2.4. Exact sequences for units. 

Let UN be the torsion-free units of the field N over L with Galois group r. The 

character of UN is known, so from theorem 2.6 a knowledge of the cohomology of UN 

would determine its genus. Throughout use Hn(n,-) to denote Tate cohomology, 

where n is a subgroup of r. The aim of this section is to derive an exact sequence to 

help calculate Hn(n, UN). 

Firstly, we get an exact sequence including Hn(n, EN) where EN are the units of N. 

Let S be a f-invariant set of primes in N. There is a short exact sequence 

0 ---+ EN ---+ Es ---+ Ps ---+ 0, (2.9) 
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where Ps denotes the principal fractional ideals of N supported on the places in 51 

and Es are the 5-units. Fixing under n gives a long exact sequence 

Next calculate Hn(n, Es) to substitute in (2.10). From [Ta], p.54, for S sufficiently 

large there is an exact sequence 

(2.11) 

with A3 and B3 cohomologically trivial. Thus 

(2.12) 

There exists another exact sequence including Hn(n, P8 ). Fixing the short exact 

sequence 

(2.13) 

under n gives an exact sequence 

0-+ P~-+ ZS7-+ Cl~-+ H 1(f1, Ps)-+ 0-+ H 1(f1, ClN)-+ H 2(f1, Ps)-+ ... 

(2.14) 

The short exact sequence 

(2.15) 

gives a long exact sequence including Hn(n, UN). 

In particular, if p f IJ.LNI for some rational prime p then 

(2.16) 
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Simplifications. 

Note that if we assume Hn(n, ClN )(p) = 0, (e.g. if p does not divide the class number) 

then clearly 

(2.17) 

We can add another condition to those on page 17, (iv) S contains enough primes so 

that the S-class number of all intermediate fields between Nand Lis 1, then 

(2.18) 

(This comes from the exact sequences 

0 ---+ &sNn ---+ (Nn)* ---+ IsNn "'--+ Cls,Nn ---+ 0 
' ' 

II II + + (by Hilbert 90) 

0 ---+ £~N ---+ (N*)n ---+ I~N ---+ H 1(f!, £s,N) ---+ H 1(f!,N*) = 0 
' 

where Is are the ideals prime to S and the second subscript indicates which field the 

modules come from.) 
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CHAPTER 3 

Principal units of nietacyclic extensions of local fields. 

Introduction. 

Before looking at the global units we shall in this chapter study the simpler local case. 

Firstly we give some previous results on units of local extensions in the general case 

(see [GWl], [GW2]) and for metacyclic extensions (see [Ja2], [Ja3]). Then we shall 

use the results we found in the last chapter to look at some cases that these papers 

do not cover. 

3.1. Previous work on units of local extensions. 

Let N / L be a Galois extension of local fields with Galois group G and residue field 

of characteristic p. Let U be the units of N, and U1 be the principal units. [GW1] 

give conditions determining the isomorphism class of U1 . Before writing this result 

(theorem 3.1) it is necessary to define a r-~odule, W, and give some notation. 

Definition. Let ~ be the maximal ideal of N. The principal units, U1 is the 

multiplicative group of units congruent to 1 modulo ~· 

The exact sequence which defines the units U of N is 

where v is the normalized valuation. 

As explained in [GW1] there exists an exact sequence 

0 -+ Nx -+ V -+ D..G -+ 0, 
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with V cohomologically trivial, this comes from the Tate sequence for local units 

0 --+ Nx --+ A --+ B --+ Z --+ 0. 

Form the pushout along v: 

u u 

l l 
NX --t v --t /),.Q 

lv l l= 
z --t w --t /),.Q 

Thus we get 

0 ---tU--+ V--+ W--+ 0 

with V cohomologically trivial ([GW1], §12.) 

By [GW1), theorem (12.3), W is given by the pullback square 

w --t /),.Q 

l l-
ZG --t f:),Q 

F-1 

(3.2) 

where - is the canonical map G --+ G to the Galois group of the residue extension 

field and F in G is the Frobenius automorphism. 

The elements of Ware pairs (x, y) E /),.Q EB ZG such that x = (F- 1)y. Let 

---W=Z@zW. 

The split exact sequence 

0 --+ Ut --+ u --+ NX --+ 0, (3.3) 

where N is the residue field of N, implies U1 is a finitely generated ZG-module and 

U1 is the p-completion of U. 
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Taking the p-completion of (3.2) gives 

of finitely generated ZG-modules. V is cohomologically trivial. 

~ 

Theorem 3.1. (IGWl), theorem 13.3) The ZG-module U1 is determined up to iso-

morphism by the following invariants 

(i) the degree [L : Q], 
(ii) the G-module J-lN(P) of p-power roots of unity in N, 

(iii) the kernel of the map 

indv,ced by the inclusion J-lN(P) <-+ U1. 0 

~ 

Defi_nition. Let M be a ZG-module, if M = M' EB C where C is cohomologically 

trivial and M' has no cohomologically trivial summand, then M' is called the strict 

core of M. It is unique up to isomorphism (by the Krull-Schmidt theorem.) 

Theorem 3.2. (IGW2], theorem 6.1) The strict core ofU is 

(a) zero if p does not divide the ramification index, e, 

(b) non-zero and indecomposable if p divides e provided we are not in the excep

tional case when p does not divide f, the inertial degree of N / L, and at least 

one of the maps 

1 ~ 1 ...... 
H (G,Hom(Z,J-LN(P))) -t H (G,Hom(Z,U1)), 

induced by the inclusion J-lN(P) <-+ U1, is zero, 

(c) the direct sum of two non-zero indecomposable modules in the exceptional case. 

0 
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Moving on to the metacyclic case. Let N jQP be a metacyclic extension of local fields 

with Galois group r. Let r be metacyclic of order pm where m is a non-trivial divisor 

of p - 1, not necessarily prime. 

It has been necessary in other chapters to make m a prime because otherwise it is 

possible for r to have infinite representation type, however, in the local case we are 

looking at zr-lattices and there are still 3m indecomposable genera of these whether 

or not m is a prime. 

In [Ja1], Jaulent calculates the indecomposable zr-lattices and their cohomology 

groups. These calculations agree with those in Chapter 2 and it is clear that we can 

re-write proposition 2.5 to include the cases when m is not prime: 

Proposition 3.3. Let r be a metacyclic group of order pm. If M is a zr -lattice 

and 

m-1 

;:;r = EB((zJ~· E9 (V\)~' E9 (Ar•), 
i::::O 

(see the proof of proposition 2.5 for a definition of these lattices} then we can find 

ai, f3i and ri from the characters and p-part of the cohomology of M in exactly the 

same way as in the proof of proposition 2.5. 

ai = logP[H2i(r, M)(p)], 

ri = logp[H2
i-

1(r, M)(p)], 

ao + f3o = No. of x+ in charM, 

ai + f3i = No. of x- in charM, i =/: 0, 

for 0 ::; i ::; m - 1. D 

35 



One way of indexing the 3m indecomposable Zf-lattices is by the irreducible p-adic 

characters of Cm, call these <Po, ... <Pm- 1 . Then the lattices are as follows: 

it= Z[Cp].e¢; 

~ =~jvz1 

~=~/()~; 

where eq~; is the idempotent eq~; = 1/m l:::rECm <Pi( T-
1 )rand v = 1+a+ · ·+aP-1. Let X 

be the primitive p-adic character of Cm defined by T'f]T- 1 = 'f]x(r) for all T E Cm, 7] E Cp, 

tqen () = 1/m l:::rECm x(r-1)ax(r). 

Let s.p be the maximal ideal of N. For all integers k 2:: 1 let Uk be the multiplicative 

group of principal units congruent to 1 modulo s.pk. 

U/ ~ 
In [Ja3], Jaulent finds all k where NN;;(~k) is free over the algebra A= Z[e o Cm], (e 

is defined below) and finds the zr-module structure of uk in these cases. 

Let e be the ramification index of p in K = NcP and let t be the jump of wild 

ramification, which satisfies 

t ~ [p ~ 1] 
Let e be a principal unit of U that is in Ut but not in Ut+l· 

Theorem 3.4. ([Ja3], theorem 3} Let K == NcP contain no pth roots of unity, then 

uk INN I K (Uk) is free over A if and only if the cohomology groups 0 f uk relative to Cp 

have the same character ci>; this happens exactly in the following cases: 

(i) in tame ramification -for all values of k, 

(ii) in wild ramification -for all k of the form r + pN where r E [1, p] which satisfies 

r == 1 mod (e), 

and in these cases Uk is written as the direct sum 
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Theorem 3.5. {[Ja3], theorem 4) Let K contain pth roots of unity, then N~;~~k) is 

free over A fork = 1, ... , p if and only if the cohomology groups ofUk/ f-lN relative to 

Cp have the same character !1; this happens exactly in the following cases: 

(i) k = p- 1, 

(ii) k = 1, 

and in these cases Uk/ f-lN is written as the direct sum 

In the next section we shall find the decomposition of U1 when N is a metacyclic 

extension of L for any local field L. Note that U1 is always free over A and so the 

case L = Qp has already been done, but we shall look at general L and find that the 

genus of U1 depends only on whether or not N contains pth power roots of unity. We 

shall also look at uk for larger k. 

3.2. The Galois module structure of local units. 

Let N be a metacyclic extension of local fields of degree pq over L with Galois group 

r. Both p and q are prime. Let L be of degree d over Q. 

Proposition 3.6. Let U be the units of N, then 

H"(r, u)<•> "" { :· 
n 1, 2 mod (2q), 

otherwise. 

Proof. There is a short exact sequence 

0 ---+ Nx ---+ V ---+ ~r ---+ 0, (3.4) 

with V cohomologically triviftl (see [GW1], theorem 11.3.) 

Thus the cohomology of Nx is determined by 
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The short exact sequence (3.1) gives a long exact sequence 

(3.5) 

Now th_e cohomology of Nx is clear because 

if n = 2 mod (2q), 

otherwise. 

This and the cohomology of Z put into the sequence (3.5) give the required result. 0 

Theorem 3. 7. Let N be a pq-.metacyclic extension of local fields over L and L is of 
_..... 

degree d over Q. Let U1 be the principal units of N. 

(i) Suppose N contains no pth roots of unity. Then 

q-l 

ul v P; EB zl EB (Zr\)d-l EB ( EB Zr\)d (3.6) 
i:;H,i=O 

(ii) If L contains pth roots of unity then 

(3.7) 

Proof. We know that ij 0 ul ~ N ~ ij 0 Z(rd). So 

char(UI) = d( charr) = d(x+ + x- + qx). 

(i) Suppose now that N contains no pth root of unity. Then it is clear that the 

characters of ul and the cohomology of ul are the same as those of u by sequence 

(3.3). Since U1 is torsion-free it is a Zpr-lattice and we can now determine its genus. 

(ii) If N contains pth roots of unity, then L also contains these units. 
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Thus J.LN(P) is fixed under r. f.LN(P) is cyclic of order pr with trivial f-action. So the 

cohomology is 

We have a long exact sequence 

So for p =/= 3 we have 

H"(f,U/p.N(P)) 9'! { :• 

if n = 0, 2q - 1 mod (2q), 

otherwise. 

n -1,2,2q -1,2q- 2 mod (2q), 
(3.8) 

otherwise. 

Thus we know the cohomology and characters of the p-adic lattice Utf J.LN(P) and we 

know its genus. 0 

Higher order local units. 

Let ~ be the maximal ideal of N and let Uk be the multiplicative group of principal 

units congruent to 1 modu}o ~k. 

We have short exact sequences for all k :2: 1 

Lemma 3.8. Let N be a local extension of L with galois group r then 

H"(r, 'll' /'ll'+I) "' { :· 

for some 0 ~ a ~ q - 1. 

lffo = Cp then a= 0. 

n = 2ka- 1, 2ka mod (2q) 

otherwise. 
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Proof. Let r 1 be the first ramification group and r 1 ~ Cp which acts trivially on 

~k /~k+l. There is a non-trivial action of r 0/r 1 ~ Cq on ~k j~k+I. 

Write~= rrON, then 

where r is a primitive qth root of 1 mod (p) (r comes from the definition of r in 

section 1.3.) 

Thus ~/~2 ~~a) for some a and so 

(see section 2.2.2 for a definition of ~a).) This gives the cohomology given. 0 

Proposition 3.9. Let N be a pq-metacyclic extension of L of local fields and let L 
~ 

have degree d over Q. Let U2 be the multiplicative group of principal units congruent 

to 1 modulo ~2 • If N contains no pth roots of unity and the inertia group of p is CP 

then u2 is isomorphic to: 

q-1 

Zo EB z; EB Ji;2 
EB (z~)d-1 EB (i[)d-1 EB (E)J Zf)d 

i=2 

Proof. If we now suppose that N contains no pth roots of unity then we know the 

cohomology of U1 (proposition 3.6) and ~1 /~2 (lemma 3.8) so we can get an exact 

sequence from (3.9) 

and 

Thus there is are the only one possibility for the cohomology groups: 
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which gives respectively the decomposition given in the proposition, of u2 as a product 

of indecomposable zr-lattices. D 
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CHAPTER 4 

The S-units. 

Introduction. 

The Tate sequence, equation (2.11), gives the cohomology of the S-units, £s, and 

thus it is easy to give possibilities for the cohomology of the torsion-free S-units, Us. 

We also know the character of Us and this means we can apply theorem 2.6 to find 

its genus (see section 4.3). We also need to calculate the cohomology of £s in order 

to find the cohomology of the units. 

Before doing this we look at (GWl] where Gruenberg and Weiss give an invariant, 

U which can be used to determine when two modules are in the same genus. For 

pq-metacyclic groups we find the cases when there is only one choice for U and these 

turn out to be the cases in the final section where we can calculate Us exactly. 

4.1. An invariant for S-units. 

Let N / L be any finite extension of number fields with Galois group G, where G is any 

finite group. Let S be a G-invariant set of primes containing the infinite and ramified 

primes and let £s be the S-units of N. Us= £s//-lN where /-lN are the torsion units 

of £s. 

Define U to be the kernel of the map 

induced by JlN Y £s. 

Gruenberg and Weiss, (GWl] give a way of determining when a r-module £'is in the 

same genus as £s. 
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Theorem 4.1. ([GWl], (10.2)) Let£' be a ZG-module satisfying the following con

ditions: 

(i) Q @ £' ~ Q @ !:iS as QG-modules; 

(ii) £' has "£-torsion submodule G-isomorphic to /lN; 

(iii) there exists an exact sequence of ZG-modules 

0 ----t £' ----t c I ----t P' ----t !:is ----t 0' 

where C' is cohomologically trivial and P' is projective; 

(iv) U = U' 1 where U' is the kernel of 

induced by /lN Y £'. 

Then £1 and £s are in the same genus. 0 

4.2. The Module H2 (G, Hom( !:iS, JlN)). 

It is of interest to determine the invariant U of the S-units. In particular, when 

H 2(G,Hom(!:iS,JlN)) = 0 then there is only one choice for U. 

From the short exact sequence 

0 ----t !:is ----t z s ----t z ----t 0 ' 

we get a long exact sequence for H 2 (G,Hom(!:iS,J1N)) 

••. ----t H 2(G,Hom(Z,JlN)) ----t H 2(G,Hom(ZS,J1N)) ----t 

(4.1) 

H 2
( G, Hom( !:iS, /lN)) ----t H3

( G, Hom(Z, /lN)) ----t ••• ( 4.2) 

Now ZS ~1f"!s Z[G/ £71"] where £71" is the decomposition group of II, for rr ·E S, II inN 

lying above rr in L. 

Hn(G,Hom(ZS,JlN)) ~1f"!s Hn(C1f",JlN)· 
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Let q be any rational prime such that q divides l~tNI· L1r = decomposition group of 

IT lying above 7r E S. 

The three possible cases are: 

Case 1. q f l£7rl, V1r E S 

Proposition 4.2. If q f 1£7rl, V1r E S then 

(4.3) 

where the subscript ( q) meq,ns q-primary component. 0 

This follows from the long exact sequence ( 4.2): 

Corollary 1. Therefore, if q f l£1rl, for all primes 1r E S and for all rational primes 

q dividing IGJ, then 

(4.4) 

Corollary 2. If gcd(JGJ, l~tNI) = 1 , then 

(4.5) 

Case 2. Sq ~ L1rj for some 7rj E S, Sq a q-Sylow subgroup of G. 

Proposition 4.3. If Sq ~ L1rj for some 1l"j E S, Sq a q-Sylow subgroup of G then 

(4.6) 

Proof. 

by [Se), p119, proposition and the result follows using the long exact sequence (4.2). 

0 
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Corollary 1. If .C'Ir j ~ G for some 7r E S then 

(4.7) 

Corollary 2. So if .C1rj ~ G for some 7l'j E S ! gcd(I.C7rl, IJ.1NI) = 1, Vrr E S \ 7l'j then 

(4.8) 

Case 3. qii.C1ril for some 7l'j E S, but 59 ~ .C1r, V1r E S. 

In this case it is diffic\llt to say anything about H 2(Hom( ~S, J.lN)) and since it does 

not occur when G is dihedral we shall not study it. 

Case 3 never occurs and all q-Sylow subgroups are cyclic. Suppose qi divides I.C1rjl 

for some 7l'j E S for 1 :S i :::; k and qi f I.C1r I for all 7r E S for k + 1 :::; i :::; m. i.e. we 

order the primes so that the first k divide I.C1r I for some 7r E S and the remainder do 

not. 

Then simply putting together the results of Cases 1 and 2 

H2(G,Hom(~S,J.1N)) ~ 

{k+l'$i~~,1rES\1rj H 2 (£7r, f.lN )(q;)}} ffi {q;,k+~i~m { H 3
( G, J.lN )(q;)}}, 

where the qi range over all the rational primes dividing IGI. 

Example 2. Metacyclic groups. 

Let G = Cp ~ C9 be a metacyclic group of order pq. 

If gcd(IGI, IJ.1NI) = 1 then Hn(G, Hom(~S, J.lN )) = 0 and thus U = 0. 

If gcd(IGI, IJ.1NI) = q and q divides I.C1rl for some prime 7r then we are in Case 2. 

So qii.C1rjl for some 7l'j E S, implying H 2
( G, Hom(~S, J.lN )) ~1rE~1ri H 2(.C7r, J.lN ). and 

#{7r E S \ 7l'jlq divides I.C1r!} = #{.C7r ~ C9 or Gl1r E S} -1 = j3. 
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Finally, if gcd(IGI, l,uNi) = q and q did not divide L1r for any prime 1r then we are in 

Case 1. Thus 

Note. Thus there are two cases where the invariant U is guaranteed to be 0: 

(i) gcd(IGI, l,uNI) = 1, 

(ii) gcd(IGI, l,uNI) = q and #{7r E Sl£7r ~ Cq or G} = 1. 

In these two cases, given ,UN there is only one possibility for the genus of £s, and 

hence Us. We shall calculate Us in these two cases in proposition 4.6. 

4.3. Cohomology with S-unit coefficients. 

4.3.1. Galois module structure of S-units. 

Let NIL be a Galois extension with Galois group r where r is a metacyclic group of 

order pq. Sis a set of t'-invariant primes containing the ramified and infinite primes 

as before. 

Lemma 4.4. LetS be a set of primes fixed under r! and let £1r be the decomposition 

group of 1r E S! then 

and if L1r; ~ £1rj for some 1ri =f. 7rj E S then 

for S' = S \ 7ri. 
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Proof. Let ek be the class of the identity of r in £7rk \f. Then (ei- ei) ~ .C1r; \f as 

a r-module and is also in the kernel of the augmentation map: zs-+ z. 0 

Let S have m 1 primes with decomposition group {0}, m 2 with Cq, m3 with Cv and 

m4 with r. Then 

and we have the following isomorphisms of r -modules: 

Z[{1} \f) ~ YTmax 

Z[Cq \ r] ~ V 

Z[Cv \ r] ~ ZCq 

z[r\ r] ~ z 

~[Cq \ r] ~ P 

~[Cv \ r] ~ s 

~[Cq \ r,cp \ r) ~ Y{1} 

where }{1} means T = 1 in the notation given in section 1.2. 

Recall that Sf is the set of finite primes of S, so 

( 4.9) 

{ 

Y;r1a-;;d EEl Vm2 EEl ZC~3 EB zm4-
1 

ZS1~ · 
if N is totally real or complex over complex, 

Y;r1ax EEl Vm2 -d EEl ZC~3 EB zmrl if N is complex over real. 

It is now possible to calculate the cohomology of zsf to substitute into equation 

(2.14) 

~2 +( -d)+m4 ffi ~3 
q \J) p n even, n '/= 0 mod (2q), 

0 otherwise, 

where dis subtracted when N is complex and not if N is real. 

As for the c.ohomology of the S-units, equation (2.12) says Hn(n, ~S) ~ Hn+2(n, £8 ). 

Case A. When m3 = m4 = 0, 

~S ~ Yr 1 EEl Vm2 -
1 EB P, 
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and so the cohomology of D..S is 

n even, 

n = 1 mod (2q), (4.10) 

0 otherwise. 

Case B. When m3 + m4 ~ 1, 

and so the cohomology of D..S is 

n = 0 mod (2q), 

n even, n "I= 0 mod (2q), ( 4.11) 

0 otherwise. 

which gives us the cohomology of Es by equation (2.13). 

Proposition 4.5. Let N be a pq-metacyclic extension of L with Galois group r and 

S a r -invariant set of primes of N as before. 

Let S be the primes of L below those in S and let S have m3 primes with decomposition 

group Cp and m 4 with r. Then clearly the number of primes ramifying in N over NcP 

is less than or equal to m 3 + m 4 • Let Us be the torsion-free S -units. 

m3 + m4 = 0 implies Us V P2 EB (YT2ma.x )m 1 EB Vm2
-

1 

or p2 EB (YT2ma.x )mt-l EB XTrax EB vm2 

where T1max = {0, 2, 3, ... , q- 1} and T[ = {0, 1, 2, ... , q- 1} 
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Proof. We have a short exact sequence 

0 -+ f-lN -+ £s -+ Us -+ 0, 

which gives a long exact sequence 

As usual gcd(p, lt-tNI) = 1 so Hn(r,Us)(v) ~ Hn(r,£s)(v) ~ Hn-2 (r,~S)(v) and 

clearly we get different values depending on whether m3 + m4 is zero or not. 

The torsion units, /-lN, form a cyclic r-module which means that Hn(r, /-lN )(q) ~ 0 

if gcd(q, lt-tNI) = 1, or if gcd(q, lt-tNI) = q and the action of ron the q-part is non

trivial (i.e. if and only if L contains a primitive qth root of 1). Otherwise we have 

Hn(r,f-tN)(q) ~ lFq (clearly this is always the case if q = 2). we just calculated gives 

two possible values for the cohomology of us. when Hn ( r' f-l N) ( q) ~ lFq . The long 

exact sequence above becomes 

So, either 

n odd 

n even 

or 

n odd 

n even 

Recall that the q-part of the cohomology is periodic of period 2, so this cohomology 

applies for all n. 

Since ~S®Q ~ Us®Q we also know that char(Us) = (m1 +m2 +m3 +m4 -1)x+ + 

(m1 + m3)X- + (qm1 + m2)X .and thus by theorem 2.6 know the genus of Us. 0 

Proposition 4.6. When U = 0 there is only one possible genus for Us (as discussed 

in the previous section), thus 
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(i) If gcd(q, IJ.LNI) = 1 then 

m3 + m4 = 0 implies Us V P2 EB (Yrmax2 )m1 EB Vm2
-

1 

> 1 . l' U v 'llcms CD (V )m1-m4+l CD "\/ffi4-1 ffi vm2+m4-l m3 + m4 - zmp zes s lli q \1) LTmax2 w L rmax\{2} \17 • 

(ii) If gcd(q, IJ.LNI) = q and m2 + m4 = 1 then 

Proof. (i)gcd(q, iJ.LNi) = 1 implies that gcd(f, IJ.LNI) = 1, since we always assume 

gcd(p, IJ.LNI) = 1. So we get Hn(r, £s) ~ Hn(r, Us). 

(ii) m2 + m4 = 1 implies Hn(r, £s)(q) = 0 for all n. So 

Hn(f,Us)(q) ~ Hn(r,J.lN)(q) ~ Irq as J.lN is~ trivial, cyclic f-module. D 

4.3.2. Exact sequences. 

Lemma 4. 7. The S -class group can be made cohomologically trivial by adding com

pletely split primes to S. 

Hence it is possible to choose a set of primes S satisfying coditions (i) to (iii) of 

section 1. 3 containing only the ramified, infinite and completely split primes. 

Proof. From the Tchebotarev density theorem each ideal class of the class group has 

Dirichlet density 1/ hN, so each ideal class contains infinitely many completely split 

pnmes. D 

Note. If the set of primes S is chosen to satisfy condition (iv) given in Chapter 1 (and 

thus H 1 ( n, £s) ~ H-1 ( n, D.S) = 0 for all n) then m3 + m4 2: 1. This is clear from the 

cohomology of the lattices in D.S. Conditipn (iv) implies that H1(Cp, £s) = 0. Now 

H 1(Cp,£s) ~ H- 1(Cp,D.S) and H- 1(Cp,D.S) = 0 if and only ifm3 +m4 =f. 0. Thus it 

may be necessary to add non-ramified primes with decomposition group Cp to S. 
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Knowing the cohomology of ZS1 (see (4.10) and (4.11)) means we can write down 

more information on the exact sequence (2.14) 

( 4.12) 

With this new information on the value of the cohomology groups the exact sequence 

(2.10) becomes 

(4.15) 

Case A. When m 3 = m4 = 0 

0-+ H2n-1(r, Ps) -+ H2n(r, £N) -+ W:2 -1 

-+ H 2n(r, Ps)-+ H 2n+1(f,£N)-+ 0, n 1= 1,2 mod (q), (4.16) 

0-+ H2n-1(r, Ps)-+ H2n(r,£N)-+ w;z-1 

-+ H2n(r, Ps)-+ H2n+l(f,£N)-+ lFP-+ H2n+l(f, Ps)-+ H2n+2(f,£N)-+ w;z-1 

-+ H 2n+2(f, Ps)-+ H2n+3(f,£N)-+ 0, n = 1 mod (q). (4.17) 

Case B. When m3 + m4 ~ 1 
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CHAPTER 5 

ClN and ramified primes with decomposition group Cp. 

Introduction. 

In Chapter 6 we shall study the Galois module structure of the units when the p-part 

of the class group is trivial, i.e. ( ClN )(p) = 0. We shall show that in this case there 

are no ramified primes with decomposition group Cp (see theorem 5.5). This will 

simplify the calculations required to find the genus of UN, but first we shall give a 

list in proposition 5.3 of the possible decompositions of a prime ideal in N. 

5.1. Decomposition of primes in metacyclic extensions. 

Let r = Gal(N/L) be a metacyclic group of order pq. Let 

£7r = { 1 E r11(I1i) = lli, IT an ideal of N above 1r of L}, 

be the decomposition group of the prime 1r in N / L. Let Ni = N /ITi = Nand L = L / 1r, 

which are finite fields. The following two lemmas are proved in [Ri], Chapter 11, for 

example. 

Lemma 5.1. There is a homomorphism £7r--+ Gal(N/L) with kernel Trr, the inertial 

group of 1r and iT,;. I = e'Tr, the ramification index of 1r. 

So Trr is a normal subgroup of £7r. 0 

Lemma 5.2. (i) Let vl be the first ramification group of 7r in NIL, then vl zs a 

normal subgroup of Trr and Trr /V1 is cyclic. 

(ii) The order of V1 is a power of the rational prime s where s = 1r h Z. 0 
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Proposition 5.3. (i) There are 7 possible decompositions of a prime ideal 1r E L as 

a product of prime ideals inN, namely, 

( 7r) = ITpq' 

( 7r) = ITP, 

(7r) = ITlP ... IT/, 

( 1r) = IT 1 q ... ITp \ 

(ii) If ( 1r) = ITPq then 1r lies over p. 

(1r) = IT1 .. . ITpq, 

(1r) = IT1 ... ITq, 

( 1r) = IT1 ... ITp, 

Proof. (i) There are eight possible cases where ~C1r c r, but the case C'lr = r and 

~ = { e} does not occur because that would imply by lemma 5.1, r C Gal(N /L), and 

Gal(N /L) is Abelian, so this is impossible. 

(ii) Let ~ = r and £7r = r. By lemma 5.2 (i), ~/V1 is cyclic so V1 f:- { e }. Thus 

V1 = Cp but the order of V1 is a power of s = 1r n Z by lemma 5.2 (ii), sop= s. D 

5.2. ClN and ramified primes with decomposition group CP. 

Lemma 5.4. ({Ge], p487, lemma 2) Let Gal(N/Q) be the dihedral group of order 6. 

If 1r is a rational prime which ramifies in N with decomposition group C3 then 3lhN, 

where hN is the class number of N. 

From this lemma w~ see there is a relationship between the class group and the 

ramified primes with decomposition group Cp when p = 3 and q = 2. We now 

generalise this in theorem 5.5 for pq-metacyclic extensions over Q and also write 

down a specific formula form~, the number of primes with ramification group Cp, in 

terms of r-cohomology groups of the class group. 

Theorem 5.5. Let N be a metacyclic extension ofQ with pq-metacyclic Galois group 

r, then 

(5.1) 
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Thus1 if at least one prime in Q ramifies in N with decomposition group Cp then p 

divides the class number hN. 

Proof. Let S satisfy conditions (i) to (iii) of section 1.3. It is assumed that at least 

one prime ramifies over N / K, i.e. m3 + m 4 2: 1. All the groups in the exact sequences 

(4.18) and (4.13) are finite and so we can use (4.13) with n = 0 to calculate the order 

of H 1(fl, Ps) 

(5.2) 

and use ( 4.19) with n = 0 to substitute for jH0 (fl, Ps)i in the above equation. Thus 

one equation giving the order of H 1(fl, Ps) is 

Alternatively jH1(fl, Ps)i can be calculated by using the exact sequence (2.14). Since 

H 1(fl, ZS1) = 0 for all ncr we could re-write (2.14) as 

and thus 

1 )I ICI~I IH (n, Ps = [zsp: P~)" (5.4) 

Since H 1(fl,£8 ) = 0 for all ncr we can arrange (2.10) to say 

and thus 

(5.5) 

Also there is an exact sequence in Nn 

(5.6) 
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where the second subscript shows which field we are working in and we get 

(5.7) 

Now £~ = Es,Nn and £fJ = £Nn so substituting (5.7) and (5.5) into (5.4) gives a 

second way of calculating the order of H 1(D, Ps) 

IHl(n, Ps)l = ICl~l x 1Hl~n,£N)I . 
IClNnl X [ZSJ : ZSJ,Nn] 

(5.8) 

Remark. Equation (5.8) does not depend on m3 + m4 = 0, unlike equation (5.3). 

The inclusion ZS J,Nn Y ZS/" is given by 1r I-t e1Ttrn( 7r) where e7T is the ramification 

index of 1r in the extension N / Nn and trn( 1r) = I:n17r II, II E ZS f· 

As before we write SL as s, let n = r and look at the p-part of equation (5.8). 

Then [ZS/ : ZSJ](p) = pm~+m~ , where m~ is the number of ramified primes with 

decomposition group Cp and m~ is the number of ramified primes with decomposition 

group r. (Note that m~ = m4 because from proposition 5.3 all the primes with 

decomposition group r ramify to at least the power p). 

Equating the p-parts of (5.3) and (5.8), noting that 

(from the cohomology of £8 and ZS1 given in the previous chapter) and rearranging, 

giVes 

If L = Q then ClL = {0} and H 0 (f, EN )(p) = 0 which implies from ( 4.18) that 

H-1(f, Ps)(p) = 0. D 

Corollary . If L = Q and m~ 2: 1 then p divides I Cl~ I-
56 
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Proof. This corollory follows from equation (5.1) and the fact that 

0 ( ) Cl~(p) 
H f, Cl N (P) = (I: ) Cl . D 

-rEr I N(p) 
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CHAPTER 6 

Torsion-free units of metacyclic extensions. 

Introduction. 

We now use the invariants we have found for lattices of pq-metacyclic groups to find 

the genus of the units in a metacyclic extension in certain cases. 

Firstly we give the characters of the units and then we use these in sections 6.2 and 

6.3 to find the possibilities for the units in two cases: 

• when N is a totally real, metacyclic extension of Q, 

• when N is a complex, dihedral extension of a real field L, 

and give their cohomologies. 

Then we look at the case when the p-part of the class group is fixed under Cp· to give 

a relationship between the ramified primes and genus of UN in this case. 

Finally we study the dihedral case, i.e. when q = 2. 

6.1. The character of UN. 

Let N be a pq-metacyclic extension of L and UN be the torsion-free units of N. Let 

Soo be the set of infinite primes of N, then 

It is clear that 

character of UN =character of !:l.S00 =character of ZS00 -x+. 
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· Let d- 1 be the Z-rank of the units in L. When N is a complex extension of a real 

field L then ZSoo ~ vd and the character of UN is 

(d- 1)x+ + dx. 

When N is totally real, then dis the degree of Lover Q, ZS00 ~ (Zf)d ~ Y,Pmax where 

Tmax = {0, 1, ... , q- 1} and the character of UN is 

(d -1)x+ + dx_- + qdx. 

6.2. Torsion-free units of a totally real, metacyclic extension of Q. 

Now assume that L = Q, i.e. d = 1 and N is a pq-metacyclic extension of Q. When 

N is totally real, char( UN) =X-+ qx. 

Based on the characters the possible genera of UN are 

q-1 

UN V ( E9 P}a;)) E9 Xr, (6.1) 
i=O 

where ai EN, IT!+ a 0 + · · · + aq-1 = q and if T = 0 then Xr = §. The p-part of the 

cohomology of UN determines its genus. Let the decomposition of UN be as above, 

then 

JF<;m n _ 2m - 1 mod (2q), 

Hn(r, UN)(p) ~ JFP n _2m mod (2q),m + 1 fl. T,m =1- 0,0:::; m:::; q -1, 

0 otherwise. 

(6.2) 

Note that H0(f, UN)= 0 in all cases. 

n even, 
(6.3) 

n odd. 
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The fact that the q-parts of the cohomology are identical also follows from the fol

lowing lemma. 

Lemma 6.1. {[Me], p.3541 corollary 10.3) Let G be a finite group. If His a normal 

subgroup of G such that gcd(jHj, [G : H]) = 1 then for each G-module A and each 

n 2: 1 there is a split exact sequence 

which thus gives an isomorphism 

So Hn(r, UN )(q) ~ Hn(Cq, rf/.r) and when L = Q we have rf/.r V §for all genera of 

UN. 

Proposition 6.2. Let N be a real1 metacyclic extension of Q of degree pq. Then the 

maximum number of genera for UN is 

~ (q- 1) (q + n -1) =I· 
L..t q-n q-1 
n=l 

Proof. Let UN be as in equation (6.1). Suppose ITI = q- n. The number of ways 

of choosing Tis (q-1
). , q-n 

Ways of choosing the ai are equivalent to writing a0 O's and then an X followed by 

a1 O's and an X, etc. The total number of X's and O's is q + n- 1. So the number 

of ways of choosing the ai corresponds to the positions of the q- 1 X's, which gives 

(q+n-1). 
q-1 

Summing from n = 1 to q gives the total number of possible genera. 0 

Note 1. 1 could also be thought of as the coefficient of xq in (~1'~~~:
1 

Note 2. In the case when pq = 6 this maximum is attained. (There is an example 

of each in Chapter 9, section 9.1). 
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6.3. Torsion-free units of a complex, metacyclic extension 

Let N be a complex, dihedral extension of a real field L and let the rank of the units 

in L be d-1. Then we have already shown that the character of UN= (d-1)x+ +dx. 

Thus the possible genera of UN are 

(6.4) 

where ai E N, 1 ~ a = a0 + a 1 ~ d. 

The' cohomology of UN is thus 

~; n = 2i- 1 mod (2q), 

Hn(r, UN)(p) ~ ~-1 n- 0 mod (2q), (6.5) 

0 otherwise. 

n even, 

n odd. 

6.4. Torsion-free units when the p-part of the class group is fixed under 

the action of CP. 

6.4.1. Cohomology with groups fixed under the action of CP. 

Let r be a pq-metacyclic group and recall that Cp is a p-Sylow subgroup of r generated 

by 0". 

Lemma 6.3. Let M be a Cq-module of order a power of p and fixed under the action 

ofCp, then M is a product ofZ-cyclic Cq-modules. (In particular, if M is Zf-module 

with p-primary part fixed under the actions of Cq then the p-part is a product of Z

cyclic zr -modules.) 
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Proof. M is an abelian ZpCq-module. Since qlp- 1, Zp contains all the qth roots 

of unity and 1/ q, so ZpCq contains a full set of idempotents, ex, corresponding to the 

!-dimensional representations, x, of Cq over Qp so 

All Zp (and therefore all Zpex) modules are sums of cyclic modules. Thus Mex is a 

sum of cyclic (hence Z-cyclic) Zpex modules. Hence, since the action of ZpCq factors 

through the projection of ZpCq on Zpex it is a sum of Z-cyclic ZpCq-modules. 0 

Theorem 6.4. Let T be a finite module and let the p-primary part ofT be abelian 

and fixed under the action of Cp then 

(6.6) 

Proof. The p-primary part ofT can be written (by lemma 6.3) as 

where the Ci are Z-cyclic f-modules. Then Hn(r, T)(p) ~ Hn(r, CI)EB· · ·EBHn(r, Cs)· 

Therefore without loss of generality we can assume that Tis a Z-cyclic f-module of 

order a power of p. Let ITI = pm for some positive integer m, and use induction on 

m. 

When m = 1, T ~ JFP (i) for some 0 ~ i ~ q- 1 (see section 2.2.2 for a definition of 

lli}i)) and 

if n _ 2i- 1, 2i mod (2q), 

otherwise. 

So the proposition is true when m = 1. 

Now assume true form= k. Let ITI = pk+1 and let G be a submodule ofT of order 

p. Then G and T / G = H are cyclic p-groups with order less than or equal to pk. 

Also G ~ JFP(i) for some 0 ~ i ~ q -1. 
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Take the cohomology of the short exact sequence G ..!4 T _;. H by the group Cv c r 
to get 

Claim: Let C be a Z-cyclic f-module of order a power of p, on which Cp acts trivially, 

then IHn(Cp,C)I = p. Proof: From [Br], pl48, theorem (8.1) we know that the fixed 

part of c under Cp must be non-trivial, i.e. cep =I {0}. So H0(Cp,C) 3:' cep;peeP. 

Thus the results follows using the Herbrand quotient and the periodicity of cyclic 

cohomology. 

If the groups in the exact sequence (6.7) are all of prime order p then the maps are 

alternating isomorph~sms and zero maps. Clearly there are two positions which we 

could place these in the exact sequence (6. 7) corresponding to whether n is odd or 

even in the sequence below 

We shall now show that n must be even by considering the map 

(6.9) 

and showing this is a zero map. 

Firstly, H 0 (Cp, G) 3:' GfpG =G. Thus the map (6.9) becomes 

(6.10) 

where G maps into Tep = T by inclusion. If T = (t) then tPk is a generator of G. 

Either G c pTeP or rep = G which is the case we have already proved. 

Replacing CP by r in (6.8) gives another exact sequence by theorem 2.2 (ii) and 

because Cp is a normal p-Sylow subgroup of r. 
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Let n be an even number. We have the following sequence of maps 

Hn(r, T) ~ Hn(r, H) 9:! Hn-1(r, H) 7r~1 

Hn(r, G) ~ Hn-1(r, G) 9~1 Hn- 1(r, T)· 

All these maps are isomorpliisms and we have proved the theorem in the case where 

Remark. For example theorem 6.4 will be true of the class group when pq f hN. 

Corollary . Let N be a metacyclic extension of order pq over Q and let the p-part 

of ClN be a direct sum of Z-cyclic r -modules fixed under the action of CP. Let m; 
primes in Q have decomposition group Cp then 

Proof. From theorem 6.4 jH0(r, ClN )l(P) ~ IH-1(r, ClN )l(p)· Substituting this into 

equation (5.1) of theorem 5.5 gives the result. D 

6.4.2. Torsion-free units when no primes have decomposition group CP. 

Theorem 6.5. Let N be a totally real, metacyclic extension of Q with p-part of 

the class group a product of Z-cyclic P-modules fixed under CP (for example, this 

occurs when p 2 f hn) and no ramified primes have decomposition group Cp. Let 

jH2
n-

2 (f, ClN)I(P) = p11m then 

q-1 

m4 = 0 '==* UN V Xr EB Pz EB (EB P(:), i + 1 E T {::> p~ = 0, 
i=O 

q-1 

m4 = 1 '==* UN V Xr EB P1 EB (EB Pf'), i + 1 E T {::> J-li = 0, 
i=O 

q-1 

m 4 = 2 '==* UN V Xr EB P1 EB P1 EB (EB Pf'), i + 1 E T {::> J-li = 0, 
i=O 
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In the first two cases ITI+~-to+ · ·+J.tq-1 = q-1. In the third case ITI+~-to+ · ·+J.tq-1 = 

q- 2. 

There are two possibilities for UN when m4 = 0 because ~-t: = J.ti for i =I 2, and J.t; = J.t2 

or J.t2 - 1. 

Let N be a complex, dihedral extension of a real field L, then 

m4 = 0 ==} UN v Po EB ZJJt EB vd-JJt-1 

m4 2: 1 ==} u N v P/:1 EB Pl+J.It EB vd-JJt - 1 EEl zJ.It 

Proof. We have shown in the previous sections that the only remaining invariant 

needed to determine the genus of UN in these cases is the JrCohomology of UN, i.e. 

Hn(r, UN )(p)· 

We know that m;, the number of ramified primes with decomposition group Cp is 

zero. We can choose a set of primes S such that m3 = 0, i.e. no primes iil S have 

decomposition group Cp by lemma 4.7. 

Note that 

m; = 0 ==} IGl~l(p) = 0, by the corollary to theorem' 6.4, 

==} H 0 (f, GIN )(p) = o, 

==} H-1(f, GIN )(P) = 0, by theorem 6.4. 

Case A. m4 = 0 (no non-split prime ideals in S) 

From the exact sequences (4.13) and (4,14) it is clear that 

From the exact sequence ( 4.16) and ( 4.17) 

Hn(r, UN )(p) ~ Hn-1(f, Ps)(P) for n "t 3, 4 mod (2q). 
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Combining the last two equations gives 

Substituting for Hn(r, Ps)(P) using equation (6.11) in exact sequence (4.17) gives 

In the real case this gives two possibilities for the cohomology depending on whether 

f is zero or injective. In the non-dihedral complex case H4 (f, UN)= 0 and so there is 

only one possibility for H 3 (f, UN )(p), since H 1(f, GIN )(p) 3:! H 2(f, GIN )(p) this must 

be 1Fp. 

Thus we have found the cohomology of UN when m4 = 0. 

Case B. m4 2: 1 (at least one prime does not split) 

From the exact sequence ( 4.14) 

Since H 0 (f, GlN) = 0 we get the following from exact sequence ( 4.13) 

and 

Substituting the above into exact sequence ( 4.18) gives 

and 

Substituting into exact sequence ( 4.19) at n = 0 gives 

H 0(r, UN )(p) 3:! H-2(r, GlN )(p) 
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and 

Finally, looking at exact sequence ( 4.19) for all n ¢=. 0, 1 mod (2q) gives 

Thus we have the p-cohomology for UN when m4 2: 1. 

Now the torsion-free lattices in the theorem have the correct cohomology and char

acters. Thus by theorem 2.6, they lie in the genus of UN. This completes the proof 

of theorem 6.5. 0 

6.4.3. Torsion-free units when the p-part of the class group is trivial. 

In this section assume that p f hN. So Hn(rt, ClN )(P) = 0 for all n, implying by 

the exact sequence (2.13), Hn(rt, Ps)(p) ~ Hn(rt, ZS1)(p) for all subgroups n c r. 
In theorem 6.6 we show that when N is real m4 , the number of ramified, non-split 

primes determines the p-part of the cohomology of UN, and, hence, when N is a 

met acyclic extension of Q, determines the genus of UN. We find that when N is a 

complex met acyclic extension of L then m4 determines UN exactly. 

From theorem 5.5, if p f hN then m; = 0, i.e. no ramified primes have decomposition 

group Cp. So the following theorem is can be obtained as a corollary to theorem 6.5. 

Theorem 6.6. (i) Let N be a totally real, metacyclic extension of L of degree pq 

with p f hN, then m4 , the number of non-split, ramified primes determines the p-part 

of the cohomology of UN. (Thus, the additional information needed to determine the 

genus is the q-part of the cohomology which is given by Hn(Cq,uc;.!) = Hn(Cq,UK)·) 
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If N is a meta cyclic extension of Q then m 4 determines the genus of the torsion-free 

units and m 4 ::::; 2. 

m4=0 ==? UNVXrffiP2, T={2,3, ... ,q}, 

m4 = 1 ==? UN V Xr E8 P1, T = {2,3, ... ,q}, 

m4 = 2 ==? UN V Xr E8 P1 E8 P1, T= {3,4, ... ,q}. 

(ii) Let N be a complex, dihedral extension of a real field L with p f hN and let d- 1 

be the 71..-rank of the units in L. Then m 4 ::::; 1 and 

m4=0 ==} UNVP2ffivd-l 

m4 :::::':: 1 ==} UN V pl ffi vd-l 0 

Corollary . Let N be a real, metacyclic extension of Q of degree pm, then 

m4 = 0 ==? fJ; ~ EBi=2i[""l E8 P;, 

m4 = 1 ==? fJ; ~ EBi=2i[""l E8 A, 
m4 = 2 ==? fJ; ~ EBL3i[""l E8 A E8 P;. 

Proof. Using proposition 2.5 we·could replace q by a non-prime m dividing p- 1 

and replace the units by their p-adic completions. 0 

Note. This would also be possible for proposition 4.5 and theorem 6.5. 

6.5. Torsion-free units of dihedral extensions. 

Let N be a dihedral extension of L of degree 2p with Galois group r. Then there are 10 

indecomposable f-lattices as we have discussed in Chapter 1; Z, z-, ZCq, R, P, V, X, 

Yo, Yi and }2. 
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When N is real, for a general field L it can be difficult to say anything about the 

structure of the units, but in section 6.5.1 looking at the simplest case (when m3 = 

m 4 = 0 and the class group is trivial) we can get some results. (See proposition 6.7.) 

In the following two sections we consider the case L = Q when N is real and complex. 

Finally, when N is a complex, dihedral extension of a quadratic field the results are 

very similar to those when N is a real, dihedral extension of Q. 

6.5.1. UN when m 3 = m 4 = 0. 

Proposition 6. 7. Let N be a totally real extension of L, L a Galois extension of 

degree d over Q, m 3 = m4 = 0 and hN = 1 then there are at most 5- log2 [(hL)(2)] 

possibilities for the genus of UN as a r -module, namely 

Remark. It is clear from the characters and cohomology of 12 that zr V }2. So 

when m~ is large UN is not a product of X ED Rand a free module (UN V X EB R when 

d = 1.) 

Proof. The class group of N is trivial implies that 

From the exact sequences ( 4.16) and ( 4.17) we know 

and 

H-1(r, uN )(p) ~ IFp. 
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So Z-, P, Z H, Yo and }1 are not direct summands of UN, and exactly one direct 

summand is in the genus of R. 

H 0 (f,UN)(2) C H 0 (f,Us)(2) C lF2m2
• Let H0 (f,UN)(2) ~ lF2a, then this and the 

characters give the result. 

All that remains to be proved is that 

Sequence (4.17) and the fact that H 0 (f,ZS1)(2) ~ H 0(r, Ps)(2) = 0 give 

Now, H0 (f,fs)(2) ~ ~2 -1 and H1 (f,f.1)(2) ~ lF2 imply that the largest H0 (f,Us)(2) 

can be (and thus an upper bound for H 0 (f,UN)(2)) is ~2 • Since we can choose 

m2 = m~ we have a:::; m~. 

Now, equation (5.8) still applies when m3 + m4 = 0, take the 2-part with n = r, then 

implying 

Sequence 2.10 with H-1(f, Ps)(2) = H1(f, Ps)(2) = 0 and H0 (f, Ps)(2) = ~2 gives 

0 --7 H0 (f, UN )(2)-+ H0 (f, Us)(2)-+ ~2 -+ H1(f, UN )(2)-+ H1(f, Us)(2)-+ 0. 
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So, the smallest possible value of IH0 (r, UN )1(2) occurs when 

IH0(r, Us)l(2) is smallest and 

IH1(r, Us)l(2) is largest and 

Combining these gives 

Hence a 2:: m~ + log2(hL)(2) - 4 as required. 0 

6.5.2. Totally real dihedral extensions of Q. 

Let L = Q, then based on the characters there are five possibilities for UN. The 

possible structures for UN as a direct sum of indecomposable modules are Z- EB REB R, 

Z- EB R EB P, Z- EB P EB P, X EB R, and X EB P, and each of these represents a distinct 

genus. 

Proposition 6.8. Let N be a totally real1 pq-metacyclic extension of Q. 

Case A. If NjQ has no decomposition groups r orCp1 i.e. m 3 = m 4 = 01 then 

UN V z- EB REB R or X EB R. 

Case B. If m 3 + m 4 2:: 1 then given the cohomology of the class group and m 4 there 

are up to three possibilities for the genus of UN: 
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m4 - /l3 + /-l4 H 1(f, Ps)(p) Genus of UN 

2 0 71..- ffi p ffi p 

1 0 XffiP 

0 71..- ffi R ffi P 

IFp 71..- ffi p ffi p 

0 0 XffiR 

0 71..- ffi R ffi R 

IFp z- ffi R ffi P 

-1 IFP 71..- ffi R ffi R 

UXJ Vt v2 v3 v4 

71..- ffi R ffi R 0 1 2 0 

71..- ffi R ffi P 1 1 1 0 

71..- ffi p ffi p 2 1 0 0 

XffiR 0 0 1 0 

XffiP 1 0 0 0 

Case A. If m3 = m4 = 0 then 

]H1(r, Pslli•l ~ ]H"{r, CIN)II•l = [(L ]Cij;.i~ 
1 7Er I N (P) 

(6.12) 

(5.8) is true when m3 = m4 = 0 and in this case (ZS/ : 'll.SJ](p) = 1. Because L = Q, 

GIL= 0. 

Equating the p-parts of (5.8) and (6.12) we have 

JH
1
(f,UN)J(P) = ((L \ct ) . 

-rEr I N (P) 

Implying that JH1(f, UN )J(P) = 1 and therefore 

UN V z- ffi R ffi R or X ffi R. 
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Case B. If m3 + m4 2 1 then H 0 (f, UN)= 0 implies H-1(f, Ps) = 0 (from (4.18)). 

Using the exact sequences (4.18) and (4.13) it is seen that 

(6.14) 

where JHn(r, GIN )i(P) = pJ.Ln and we know that H1 (f, Ps)(p) C H2(f, UN )(p) from 

( 4.15). 

So, given the class group and m4 there are up to three possibilities for the genus of 

UN. 0 

Corollary . When the p-part of GIN is abelian and fixed under the action of Cp then 

by proposition 6.4 we know that J-L3 = J-L4 . So m4 is at most 2. 0 

6.5.3. Complex dihedral extensions of Q. 

Now there are only two possibilities for UN, namely R or P. In a similar way to 

subsection 6.5.2 we get: 

Proposition 6.9. Let N be a complex1 pq-metacyclic extension of Q. 

Case A. When m 3 = m 4 = 0 then 

Case B. When m3 + m 4 2 1 then 

m4 = - /-ll + /-l2 implies u N v R, 

m 4 = -J-L1 + /-l2 + 1 implies UN V P. 0 

Now applying proposition 6.4. 
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Corollary . If the p-part of ClN is abelian and fixed under the action of Cp then m 4 

determines the genus of UN. 

m4 == 0 implies UN V R, 

m 4 == 1 implies UN V P. 0 

6.5.4. Complex, dihedral e;xtensions of quadratic fields. 

When L is a totally real quadratic extension of ij and N is a complex extension of 

L we get results parallel to those of the totally real case. The character of UN is 

x+ + 2(Xl + ... Xr) and this gives five possibilities for u N' which ar~ z EB REB R, z EB 

R ffi P, Z ffi P EB P, V ffi R and V ffi P. 

When m3 == m4 == 0 we find UN V Z ffi R ffi R or V ffi R. 

When m3 + m4 ~ 1 we can find possibilities for the genus of UN given the class group 

and m4 . 

m4 H 1(f, Ps)(p) UN 

3 - /-ll + /-l2 0 ZffiRffiR 

2 - /-ll + /-l2 0 VffiR 

0 ZffiREBP 

1Fp ZffiRffiR 

1 - fl + /-l2 0 VffiP 

0 ZEBRffiP 

1Fp ZEBPffiP 

- /-ll + J-£2 1Fp ZEBPffiP 

When ClN is a product of Z-cyclic f- modules invariant under the action of Cp then 

/-ll == /-l2. 
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CHAPTER 7 

Unit invariants in the factorizability defect group. 

Introduction. 

If we try to study the torsion-free units of a pq-metacyclic extension of Q in 9o(Zf), 

the Grothendieck group off-modules with respect to exact sequences, we find that 

[UN] = [~Boo] for all torsion-free units UN. We need to work in a larger group to 

distinguish between units of different genera. 

In section 7.1 the factorizability defect Grothendieck group is defined and it is shown 

that in this group [Pi] =f. [Pi] when i 1=- j mod (q). Thus we can determine between 

the genus of some f-lattices working in this group. Unfortunately it is also shown 

that [XT] = [XT\i] + [Pi-d and thus it will not always be possible to distinguish 

between all the possible cases for the genus of the units. 

We will then find some equations including the units in the factorizability defect 

group and use these to get some results on the genus of the units. 

In this section Mp means p-adic completion of M (although in other chapters we 

have used M). 

7.1. The factorizability defect Grothendieck group. 

Definition. Let r be a finite group. From [HWl] and [HW2], define the factor

izability defect Grothendieck group, g6d(Zf) generated by isomorphism classes 

of r -modules and elements of the factorizability defect group (defined below) with 

relations given by short exact sequences. Given a short exact sequence off-modules 

E: 0 ---+ M' ---+ M ---+ M" ---+ 0 
' 
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then in 96d(Zr) there is a relation 

[M']- [M] + [M"] = [fd(E)]Jd, (7.1) 

where fd(E) is called the factorizability defect of the exact sequence E which is 

defined below and we write 

E : 0 --+ M' --+ M --+ M" --+ 0 [fd(E)]Jd· (7.2) 

Let w = Un r ;n, the disjoint union over all subgroups, n, of r and let Hr(-) be 

the Heeke cohomology group obtained from the derived functors of 

- ®zrHomz(Z[W],Z) and Homzr(Z[W],-), 

in the same way as the Tate cohomology groups are obtained from the homology and 

cohomology groups (see [Ho].) 

Then fd(E) = [coker( a:~ : H~(M) --+ H~(M"))] E 96(Endzr(ZW)). 

We shall write Endzr(Z W) as A. 

Theorem 7.1. Let r be the metacyclic group of order pq1 then [Pi] =f [Pi] in the 

factorizability defect group gtd(zpr) whenever i "I= j mod (q) . 

...........___ 
Proof. There is a surjection, Zpr - RpCq, where RpCq is a twisted group ring and 

~ ~ lJf,:~(Pi)p· 

Therefore 

If there exists a homomorphism from 96d(zpr) to 90(~) which maps Pi to Pi, then 

the Pi must be distinct in g6d(zpr). 

...........___ 
Define a functor F : Mod(Zpr) --+ Mod(RpCq) by F : M t---+ M I MCp for any r-

module M, then F maps Pi to Pi. For F to induce a homomorphism from gtd(zpr) 
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to 9o(~), it is also necessary to define F on the factorizability defects such that 

for any exact sequence (7.2), 

[F(M')]- [F(M)] + [F(M")] = [F(fd(E))] in 90(~). 

Let 0 be a subgroup of r. There exists an idempotent fn E End(Z[W]) which gives 

a projection from Z[W] onto Z[O \ r), so that 

Z[W].fn ~ Z[O \ r). 

Then Homzr(Z[W), M) is defined to be Mw, and 

Homzr(Z[W],M).fn ~ Homzr(Z[O\ r),M) ~ Mn . 

. fn : Mod(A)-+ Mod(Z(Nr(0)/0)), 

where Nr is the normalizer. So .fn induces a map 96(Ap).fn into 96(Zp[Nr(O)/O]). 

We write fd(E).fn as fdn(E). Given an exact sequence (7.2) we can fix this by W. 

As fn is an idempotent, the corresponding functor .fn is exact and we get 

0--+ (M')w--+ 

l·fn 
0--+ (M')n --+ 

(M)w --+ (M")w ---+ fd(E) ---+ 0 

l·fn l·fn l·fn 
( M)n --+ ( M")n ---+ f dn (E) ---+ 0 

Let Mn be the kernel of the map ( M")n -+ f dn (E). Then by the snake lemma we 

have a diagram of short exact sequences. 

(M')n --+ (M)n --+ Mn 

l l l 
M' --+ M --+ M" 

l l l 
M'/(M')n --+ M/(M)n --+ M"/Mn 
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Which implies 

in 9o(~). 

The short exact sequence 

and the fact fdil(E) ~ (M")il /Mil give 

[fdil(E)]- [M" /Mil]+ [M" /(M")il] = 0. 

Thus 

Let n = Cp, then 96(Zp[N(O)j0]) ~ 96(ZpCq)· If torsion modules T, T' E 96(ZpCq) 

and T' C T then [T] = [T'] + [T /T1, so the generators of 96(ZpCq) are simple modules. 

Every ZpCq-module is a lFpCq-module and there are q simple lFpCq-modules, namely 

1U' (i) ~ D.; D. l 
Jrp - r~ r~- . 

Let T be a defect with JB}i) occurring ni ~ 0 times in its Jordan-Holder decomposition. 

Define the functor F·to first send a defect [T] E 96(Zpr) to -[T] = - L:f,:~ niJFP(i) 

in 96(ZpCq) ~ 96(~). The exact sequence 

gives a map c/J defined by 

which completes the homomorphism 

as required. Thus the Pi are distinct in the factorizability defect group. D 
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Proposition 7.2. In gtd(zr) . 

[XT\i]- [Xr] + [Pi-1] = 0 fori =j:. 1. (7.4) 

Proof. It is clear from [ CR1], §34E that there is a short exact sequence X T\i -t 

Xr -t Pi-1 fori ETC {0, 2, 3, ... , q- 1} and X0 defined as§. 

The defect is zero because H~(Pi-d = 0 and the cokernel of H~(Xr\i) -t H~(Xr) 

lies in there. So we have 

0 -t Xr\i -t Xr -t Pi-1 -t 0 [O]Jd (7.5) 

which gives the required result. 0 

7.2. Two equations in the factorizability defect group. 

Using some equations in 96d(zr) from [Ho] we derive two equations, (7.9) and (7.13), 

which give information about the genus of UN. 

Since the Pi are distinct in 96d(zr) we should be able to get some information about 

UN working in this Grothendieck group. Equation (3.15) of [Ho] states 

in 96d(zr), where n3 is Chinburg's invariant. 

Localise equation (7.6) with respect top to get an equation in gtd(zvr) with n3 = 0 

because Chinburg's invariant is the difference of two locally free modules. Also [EN] = 

[UN] because p f IPNI· Use the functor F defined above to map this into 90(~) 
giving 

where K is the subfield of N fixed by Cv· 
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All modules on the right hand side of the equation are torsion modules so we pull this 

equation back into 96(ii;c:) through </J. Now, 96(R;Cq) ~ 96(ZpCq) since the simple 

modules in each case are the IFP (i). 

Note that 

q-1 q-1 

<P: L IFp (i) t-+ L([Pi]- (Pi-1]) = 0. 
i=O i=O 

So l:f,:; IFp (i) generates the kernel of <P and we may factor out by this and thus we 

have an equation in 9b(ZpCq)l (2:~,:-~ IFp(i)). 

The short exact sequence 

(7.8) 

gives the relationship 

So finally we have the following equation in 9r 

Proposition 7 .3. Let N I K be a cyclic Galois extension of prime degree p. IfNI K 

is ramified then 

meaning that if we decompose [GIN] as a sum of simple ~odules) [JB}i)L with positive 

coefficients and minimal in number) they will be contained inside the same decompo

sition of [ClK]. (i.e. The Jordan-Holder decomposition of ClK is contained inside 

that of Clk.) 
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Proof. 

Let F be the conductor of the extension, CF(K) be the F-ray class group of K and 

iF( N) be the fractional ideals of N not involving primes dividing F. 

By class field theory, there exists an exact sequence 

IF(N) ~ CF(K) -=t Gal(N/K) -t 1, 

where n(I) = [NN;K(/)] and a is the Artin map. 

Let X be the kernel of the projection 

r: CF(K) -t ClK. 

By class field theory, since N / K is ramified, a must be non-trivial on X. Since 

Gal(N /K) has no non-trivial subgroups 

a(X) = Gal(N/K). 

So we have a diagram: 

X 

~ 
n a IJN)---- CF(K) -- CP 

~ 
r 

CIN -'--' ---=------

Choosey E ClK. Take z E CF(K) such that r(z) = y, and take x EX such that 
., 

a(x) = a(z}. 

Then a(zjx) = 1 and so zjx = n(I) for some ideal I inN. But then 

r(n(I)) = r(zjx) = r(z) = y. 
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So ron = f3 is surjective. As f3 factors through ClN it must be true that 1 is surjective. 

So there is a short exact sequence 

and hence 

[ClN] = [ClK] + [Ker(t)). 0 

If We now turn our attention to the cohomology group of the units then these provide 

the extra invariants needed to distinguish between units in 9r, because even though 

the cohomology gives 

So we shall map a cohomology group of the units into 9r. 

Equation (3.5) of [Ho) says 

where Js,N are the fractional ideals of N supported on the places in Sf. 

And from equation (3.13) of [Ho) (using (3.7)) 

(7.11) 

Thus adding (7.10) to (7.11) and rearranging gives 

which remains the same with r and W replaced by Cp as all the parts are factorizability 

defects. Also, since p f IJ.LNI we have [HJP(t'N)] = [HJP(UN)]. Thus we have the 
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following equation in 9r 

7 .3. Totally real, metacyclic extensions of Q. 

Let L = Q and let N be a totally real pq-metacyclic extension of Q. 

Knowledge of the characters of UN mean that (equation (6.1) 

q-1 

UN V ( EB P/ai)) EB XT, 
i=O 

where ai E N, ITI + ao + · · · + ag-1 = q and if T = 0 then XT = §. 

Write 

a;= { ~ i + 1 f/:. T, 

i + 1 E T, 

where 0 E Tis the same as q E T. Let 

and c0 = 0. 

t 

Ci+1 = Lak +ak, 
k=O 

(7.13) 

Now, if we know the ci this would give us more information about the genus of the 

torsion-free units. The following proposition should give the q. 

Proposition 7 .4. Let Ci be as above then 

q-1 Ci+!-1 i 

L L L [l~~n)]- [~1)] =[GIN]- [C/K], (7.14) 
i=l j=c; n:=j+l 

in 9r. The innermost sum is over n such that j + 1 ~ n ~ i if j + 1 ~ i and over n 

such that j + 1 ~ n ~ i + q otherwise. 
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Proof. Using equation (1.4) in 96d(Zf) 

(7.15) 

q-I 

=[§]+[PI]+ L[Pi]· 
i=I 

q-I 

[UN] = [§] + L ai[Pi] + L[Pi-I], (7.16) 
i=O iET 

q-I 

= [§] + L(ai + ai)[Pi]· 
i=O 

Subtracting (1.15) from (1.16} gives 

q-I 

[UN]- [~Soo) = L(ai + ai -1)[Pi] +[Po]- [PI], (7.17) 
i=O 

q-I Ci+l-I 

= L L ([Pi]- [Pj]) +[Po]- [PI)· (7.18) 
i=O j=c; 

Map this into 9o(K;];) using F and then into 96(ZpCq) using <P-I. 

n=i-a+I 

Hence 

t 

[Pi]- [Pj] M L rr;)] E Yr· 0 
n:=j+l 
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Example: Dihedral extensions of Q. 

Let N be a dihedral extension of Q. As there are only two r -modules of order p we 

shall write JF;t for IFio) (the module with trivial Cq -action) and JF; for IFil) (non-trivial 

Cq-action.) 

Genus of UN Co Ct c2 [ClN]- [ClK] 

z- ffi Rffi R 0 2 2 2[JF;t l 
z- ffi R ffi P 0 1 2 [JF;t l 
z- ffi P ffi P 0 0 2 0 

XffiR 0 1 2 [JFt l 
XffiP 0 0 2 0 

Notes. 

1. The case where UN V z- ffi Rffi R is of particular interest as this is the one case 

for which an example was not calculated in [Mol]. 

If N / K is ramified then [ Cl K] ~ [ Cl N] by proposition 7. 3 (i). It is clear 

that when UN v z- ffi R ffi R, since [ ClN]- [ ClK] = 2[JFt] then 

Combining this with proposition 1. 5 (from [Mol]) we see that 

So we must have hk 2: p2
. 

The examples we find in section 9.1 (for dihedral groups of order 6) have 
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2. As [ClN]- [ClK] is taken modulo [JF;t] + [JF;L if we write hN/hk = pr then 

r odd =? UN V Z- EEl R EEl P, 

or X EEl R, 

r even =} UN v z- EEl REEl R, 

or z- EEl P EB P, 

or X EEl P. 

Now using the second equation we found in section 7.2 we get: 

Proposition 7.5. Let N be a totally real dihedral extension ofQ. The genus of UN 

is exactly determined by 

• [ Cl~] - [ ClK] - m4[JF;t] 

• [HJ (Ps)] 
p 

as follows: 

Genus of UN 

[Cl~]- [ClK]- m4[JF;t] [HJ/Ps)] = 0 [HJP(Ps)] = [JFt] 

3[JF;t] . z- EB REB R 

2[JF;t] 

[JF;t] 

0 

-[JF;t] 

-2[JF;t] 

Proof. Equation (7.13) gives 

If N is a dihedral extension then 

z- EEl REEl R 

XEBR 

z-EBPEBR 

XEBP 

z- EB P EB P 
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and when N is real then 

by equation (4.18) 1 and thus H1(Cp, Ps) ~ 0 or JFt. 

Map equation (1.13) into 9r and we get the result. 0 

Proposition 7.6. Let N be a complex extension of Q. Then H1 (Cp, Ps) = 0 by 

equation (4.18) and so we get 

0 

1Ft 
-IF:!" p 
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CHAPTER 8 

Addition of torsion units. 

Let N be a metacyclic extension of Q of order pq with units £N. In this chapter we 

investigate when the short exact sequence 0 ---+ f.lN ---+ £N ---+ UN ---+ 0 splits. VJ!hen 

the order of the Galois group and the torsion units are coprime then the short exact 

sequence will always split (corollary to theorem 8.1), for example when N is a real, 

metacyclic extension, but not dihedral. 

VJ!hen N is complex, then using theorem 8.2 it can be shown that the sequence will 

also always split (lemma 8.3 and theorem 8.5{ii)). 

The real dihedral case is the most complicated but in theorem 8.5(i) it is shown that the 

two possibilities for £N depend on the 2-part of the cohomology of £N and proposition 

8.6 shows that this depends on m~, the number of primes with ramification group c2, 
and how the rational prime p ramifies. 

Firstly we prove a proposition that shows £N splits in real, non-dihedral extensions. 

Theorem 8.1. Let 0 ---+ M' ---+ M ---+ M" ---+ 0 be an exact sequence of f -modules 

with M" a lattice. If M' is cohomologically trivial then the sequence splits. 

Proof. The sequence 0 ---+ M' ---+ M ---+ M" ---+ 0 splits if 

Extr 1(M", M') = H1(f, Hom(M", M')) = 0. 

M' is cohomologically trivial implies there exists an exact sequence 

0 ---+ B1 ---+ B0 ---+ M' ---+ 0 
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with B0 and B1 projective lattices. Thus we get an exact sequence 

· · ·---+ H1(f, Hom(M", B0 ))---+ H1(f, Hom(M", M'))---+ H2(r, Hom(M", Bt))---+ ... 

by lemma 2.4 

So we get 

H 1(r, Hom(M", M')) = 0, 

as required. D 

Corollary . If gcd(lfl, J.lN) = 1 then the sequence J.LN---+ EN ---+UN splits. D 

We now give another condition to get a split short exact sequence. 

Theorem 8.2. If Hn(Cq, M") = 0 and Hn(Cp, M') = 0 for all n, then the sequence 

0 ---+ M' ---+ M ---+ M" ---+ 0 splits. 

Proof. As in proposition 8.1, if M' is cohomologically trivial as a Cp-module so is 

Hom(M", M') and, H 1(Cp, Hom(M", M')) = 0. 

From lemma 2.4, as M" is cohomologically trivial as a Cq-module so is Hom(M", M'), 

and H 1(Cq, Hom(M", M')) = 0. 

Since H 1(CP, Hom(M", M')) = 0 and H 1(Cq, Hom(M", M')) = 0 we know by theorem 

2.2 that 

H 1(f,Hom(M", M')) = 0. D 

Corollary . All extensions of Pi by J.LN split. D 

89 



Combining the previous propositions now shows that £N splits whenever N is a non

dihedral, metacyclic extension. 

Lemma 8.3. Let N be a metacyclic extension of Q of order pq, with p and q odd, 

then £N ~UN EB f-lN. 

Proof. If N is real, then gcd(jrj, lf-lNI) = 1 and Hn(r, f-lN) = 0 for all n. So by 

proposition 8.1, the sequence 0--+ f-lN --+ £N--+ UN--+ 0 splits. 

There are no complex extensions with p and q odd. D 

We now consider the slightly more complicated dihedral case. 

Lemma 8.4. Let f be a dihedral group of order 2p and f-lN be the torsion units in a 

real extension, i.e. ±1. There are exactly two r- extensions of z- by /-lN and of X 

by /-lN. 

Proof. We want 

and 

Now, X is the non-split extension of z- by R, i.e. we have a short exact sequence 

0--+ R--+ X --+ z---+ 0. 

R is cohomologically trivial under C2 , thus by lemma 2.4 Hom(R, f-l) is also cohomo

logically trivial and H 2 ( C2 , Hom( R, f-l) = 0 for all n 

Therefore 

H 1 (C2, Hom( X, f-lN )) ~ H 1(C2, Hom(z-, /-lN )) ~ lF2. 
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X is cohomologically trivial as a Cp-module, so by lemma 2.4, 

By theorem 2.2 and since Hn(Cp,Hom(X,J.tN)) = 0 we have 

Theorem 8.5. Let N be a dihedral extension of ij. 

(i) If N is real there are exactly two r -extensions of UN by J.lN. Let EN be the units 

of N, then 

H2n(r, EN )(2) ~ (IF2)a 

where a = 1 if the extension splits and 0 if not. (Also, H 2n+l (r, EN )(2) ~ (IF2 )a+I) 

(ii)If N is complex then EN~ UN ffi J.lN· 

Proof. (i) Write UN v ul ffi u2 where u2 = z- or X. 

Extlr(UN,J.lN) ~ H1(r,Hom(UN,J.lN)) ~ 

H 1(r,Hom(Ul,J.lN)) ffi H 1(r,Hom(U2,J.lN)) ~ H 1(r,Hom(U2,J.lN)) ~ lF2, 

because ul contains only R 's and p 's which have trivial extensions by J.lN from the 

corollary to proposition 8.2. Thus there are exactly two extensions of UN by J.lN. 

Let EN = ul ffi E where 0 --1- J.lN --1- E --1- u2 --1- 0 is an exact sequence. 

If the extension splits then H 2n(r, EN )(2) = H 2n(r, J.lN )(2)ffiH2n(r, U1 )(2)ffiH2n(r, U2)(2). 

Calculating this gives a = 1. 

We shall find the structure of the non-split extension. Write E = { ( m, u) lm E J.lN, u E 

U2 } and r(m,u) = (m',u'). Now E/J.tN ~ U2 , so r(m,u) = (m',r(u)). 

91 



If m' = m then we will get the split extension. The only other possibility is that 

m' = -m 1 and r(m,u) = (-m,r(u)). 

It is clear that £r = 0 implying H 0(f, £) 

H 2n(r, £) = 0 and a= 0. 

{ii) Since UN is either R or P this is just the corollary to proposition 8.2. D 

Proposition 8.6. Let N be a real dihedral extension of Q of order 2p. If 2 f hN 

then £N ~UN EB flN if and only if {i) p ramifies totally {i.e. (p) = P 2
P inN) and at 

least one prime ramifies with decomposition group C2 or {ii) two primes ramify with 

decomposition group c2. 

From the 2-part of equation (5.8) {with n = r and rearranging) we can actually get 

a stronger result than the one stated in the lemma 
r A 

1 [ZS 1 : ZS](2) 

IH (r, £N )1(2) = I CINI(2) . (8.1) 

Looking at the case when 2 f hN then 

which is 2m~ if p does not ramify totally, and 2m~ +I if it does. D 
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CHAPTER 9 

Examples and discussion. 

9.1. Examples of dihedral extensions of order 6. 

The following examples are for dihedral extensions N of Q of degree 6 (with Galois 

group r = C3 ><l C 2) generated by the roots of the cubic equations listed. 

K = Nc3 is a quadratic extension ofQ and k = Nc2 is a non-Galois, cubic extension. 

m4, m3 and m2 are the number of ramified primes with decomposition groups r, c3 

and c2 respectively. 

The structure of the class groups is written as [n1 , ... , ni] which means it is a product 

of cyclic groups of order ni. 

Example ClN ClK Clk m4 m3 m2 Equation Genus of UN 

1 [1} [3} [1} 0 0 1 x3
- 4x + 1 XtBR 

2 [1} [3} [1} 0 0 2 x3 - 3x2 - 17 x - 2 XtBR 

3 [1} [1} [1} 1 0 1 x3 + 3x2 
- 9x + 2 XtBP 

4 [1} [1} [1} 1 0 1 x3 + 3x2 
- 18x - 2 XtBP 

5 [2} [2} [1} 1 0 2 x3 -18x- 20 XffiP 

6 [1} [1} [1} 2 0 1 x3 - 9x2 + 15x - 3 z- ffi P tB P 

7 [9} [27} [1} 0 0 1 x3
- 13x + 1 XtBR 

8 [3,3} [1} [3} 3 0 1 x3 - 60x- 20 z-tBPffiP 

9 [6} [2} [3} 0 1 2 x3
- 12x + 1 XtBR 

10 [3} [1} [3] 1 1 1 x3 + 15x2 + 12x - 15 z- tB RtB P 

11 [3} [1} [3} 1 1 1 x3 
- 27 x2 

- 9x + 6 z- tB R tB P 

12 [3,3} [1} [3,3} 0 2 1 x3 + 15x2 
- 9x - 8 z-tBRtBR 

13 [3,3} [1} [3,3} 0 2 2 x3 + 36x2
- 30x- 29 z-tBRtBR 
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Note. Using lemma 8.6 we see that in example 13 EN splits into UN EB 1-" and in 

example 12 it does not. 

9.2. Examples of Siegel units. 

Let M be a positive integer and f(M) = {a= e ~)I a= (~ ~)modM}. 

Definition. A modular function of level M is a function h(:~) of two complex 

variables such that 

MFl. h (A(:~)) = Akh(:~), A E C* 
for some fixed k E Z (called its weight.) 

MF2. h (a(:~)) = h(:~) for all a E f(M). 

MF3. For r E f), the upper-half plane, the function hG) is meromorphic at infinity. 

Let FM be the modular function field of modular functions of level M overQ. j = j(L) 

is the classical modular function 

(9.1) 

Theorem 9.1. {[La], p.66, theorem 3) The Galois group of FMIQ(j) is 

We are interested in the case when M is 2 because then the Galois group is dihedral 

of order 6. 

Let a = (tIM, s I M) where r and s are integers not both divisible by M. If this is the 

smallest such M then we say a has precise denominator M. 

Definition. Let r E f). Define the Siegel functions by 

(9.2) 
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where 

• A( r )1112 is the square of the Dedekind eta function 

00 

17( r )2 = 27rie/12 II (1 - e; )2, 
n=l 

• e( r) are Klein forms1 

e(r) = e-.,(z,L)z12a(z, L). 

where L is the lattice [r, 1] and z = r/Mr + sjM. 

• a( z, L) is the Weierstrass sigma function 

a(z, L) = zllwEL'(l- zjw)ez/w+l/2(z/w)
2

, 

where L' is L without zero. 

Then 9a is a modular function and the eT-expansion of g!2M is given by 

00 

e~+6s+6s2 /MeAJrs(e'Me;s/M -l)t2MII[(l-C-s/Me'M)(I-e;+s/MeAJ)P2M (9.3) 
n=l 

Theorem 9.2. ~KLL p.371 theorem 2.2) Let a have precise denominator M, then 

(i) If M is composite, then g!2M is a unit over Z. 

(ii) If M = pr is a prime power, then g!2M is a unit in RM[lfpL (RM is the integral 

closure ofZ[j] in FM.) 

(iii) If c E Z, c =/= 0 is prime to M 1 then (9ca / 9a) 12M is a unit over Z. D 

Theorem 9.3. ~KLL p.41, theorem 3.1) The rank of the group generated by the 

Siegel functions modulo constants 9a for a E 1/MZ2/Z 2 mod± 1 is equal to 

ic(M)/ ±II- 1 where GL2(M) = c(M)Goo(M), and Goo(M) is the isotropy group of 

(~). D 

Combining theorems 9.2 and 9.3 we see in the case when M is 2 and j E Z the Siegel 

functions generate a subgroup of the units of Z-rank 2. 
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Theorem 9.4. ~LaL p263, theorem 2) The Siege/functions g~2M (a E Q2 ,a fl. Z 2,a 

has precise denominator M) lie in FM and generate FM over Q(j). They are integral 

over Z[j] and are roots of the following polynomial in Z[j][x] 

where the product is over all a mod (Z 2
) with precise denominator M. D 

We now calculate polynomial (9.4) for M = 2. It is clearly cubic (there are three 

distinct a with precise denominator 2 mod (Z 2
)) and the e7 -expansion of j is 

j = 11eT + 744 + 196,ss4eT + 21,493, 76oe + ... (9.5) 

Equating the coefficients of eT we get the polynomial 

(9.6) 

Substitute j' = 2-18j and X= 2-8 x in polynomial (9.6) to get 

I X 3 + (2/ + 3)X2 + (j'
2

- 6/ + 3)X + 1j. (9.7) 

Then Q(j) = Q(j') and the extension F2 formed by adding the roots of (9.6) is the 

same as that for (9. 7). When j E Z the roots of (9. 7) (which are g~4 /28
) are units 

over Z in F2, call these s1, s2, s3. 

We shall calculate some examples of these and find the torsion part of 

UN/ ( s1, s2, s3). It is clear from the action of the Galois group on the roots and the 

fact that s3 = 1/ s1s2 that (s1, s2, s3) V R. 

Real examples 
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Example j' m4 m3 m2 ClN Torsion Genus of UN 

14 10 2 0 1 {1} 12 z-mPmP 

15 11 1 0 1 {1} 12 XtiJP 

16 12 2 0 1 [1} 12 z-mPmP 

17 17 1 0 1 {1} 12 XtiJP 

18 29 1 0 1 [4} 12 XtiJP 

19 31 0 1 1 {3} 12 z- m R m P 

Complex examples 

Example j' m4 m3 m2 ClN Torsion Genus of UN 

20 -3 1 0 1 [4} 12 p 

21 1 0 0 1 {1} 36 R 

22 4 1 0 1 {1} 48 p 

In all the real examples (s1 , s 2 , s3 ) is contained inside P. Since it is in the same genus 

as R we know that 3 must divide the torsion. 4 also divides the torsion in all these 

examples, and the following proposition proves this is always true. 

Proposition 9.5. If s1 , s2 , s3 are the roots of the equation 

x 3 + (2j' + 3)x2 + (j'2 
- 6j' + 3)x + 1 = 0, 

Proof. ±iy'sl, ±i-Js2, ±iy83 are roots of the equation 

y6 
- (2j' + 3)y4 + (j'2

- 6j' + 3)y2 
- 1, 

and this factorizes as 

(y3
- 3y2 + (3- j')y- 1)(y3 + 3y2

- (3- j')y + 1). (9.8) 

Then Q( s1, s 2 , s3 ) is contained in the extension generated by the roots of one of these 

cubics. The Galois group is D3 so the two extensions are the same. 0 
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9.3. Discussion. 

In all the examples calculated1 examples with the same values of m 2 , m 3 and m 4 have 

the same genus (but these calculations only include class groups of order 9 or less). 

It is doubtful this is true in general1 but perhaps a combination of the class group and 

m 2, m 3 , m 4 could uniquely determine the genus? It is also interesting to note that all 

the possible genera which could occur given that UN ® Q1 ~ ~Soo ® Q1 do occur. In 

general1 does the number of genera of units reach the limit given in proposition 6.2? 

It would be of interest to know for which other groups the characters and cohomology 

determine the genus of a lattice. 
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