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A B S T R A C T 

Non-equilibiium plasma modification of polymer surfaces in an oxygen 

atmosphere provides a highly efficient, solventless method of raising the surface 

energy. The chemical and physical effects of non-equiiibritim plasma treatment on 

polymer surfaces have been investigated. 

Oxygen glow discharge and silent dischai'ge treatment of several polymers 

(polypropylene, polystyrene, polyphenylene oxide and polycarbonate) has been shown 

to cause both surface oxidation and chain scission at the polymer surface. Tliis 

generates low molecular weight oxidised material on the polymer stirtace which 

conglomerates into globular features due to the difference iji surface energy between 

the oxidised material and the untreated polymer. These features can be removed by 

solvent washing. Generally silent discharge treatment generates more low molecular 

weight oxidised material whereas oxygen glow discharge treatment generates more 

non-soluble oxidised material. 

Ciystalline polymers react at a slower rate than amoiphous material. Din-ing 

the treatment of a model crystaUine polymer (hexatriacontane) the plasma attacks the 

edges of the crystal, rather than the suiface, due to the greater chain mobility at the 

edge. 

Non-equilibiium plasma treatment of both irdscible and immiscible polymer 

blends were investigated. The size and distribution of the globular features foimed 

were found to be dependent on the blend composition. For the itiirnicible polymer 

blend, non-equilibiium plasma treatment reveals the blend morphology mising from the 

difference in reaction rates of the parent polymers. 
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C H A P T E R 1: 

I N T R O D U C T I O N T O P O L Y M E R S U R F A C E S , NON -

E Q U I L I B R I U M PLASMAS AND C H A R A C T E R I S A T I O N 

T E C H N I Q U E S . 

It was not until the third decade of this century that the science of polymers 

began to emerge. Since then of course, the science and technology of polymers has 

grown into a vast area and world wide industiial production now runs to billions of 

tonnes per year.' In spite of this many aspects of polymer .science are not yet fully 

understood. One of these aspects is polymer surfaces. Indeed fundamental questions of 

polymer surface science, such as 'what do polymer surfaces look like?' and 'how do they 

behave?' have yet to be completely answered. It is the aim of this thesis to investigate 

both the chemical and physical properties of polymers and polymer composites both 

before treatment and following oxidative treatment using non-equilibrium plasmas. Tliis 

chapter wil l introduce polymer surfaces, why they need to be modified and other 

methods of modifying polymer surfaces, before going on to describe non-equilibrium 

plasmas. 

1.1 T H E S U R F A C E P R O P E R T I E S O F P O L Y M E R S . 

The properties at the surface are very different from those in the bulk,' where 

the molecules are subject to a different environment. The suiface molecules will be 

subject to intemiolecular forces from one side only, meaning that the packing at least will 

differ f rom the bulk.'* In addition there may be both chemical and physical changes at the 

polymer surface. The orientation of polymer chains is almost always different f iom that 

of the bulk." The polymer chains may be lying flat, orientated in the suiface plane or, if 

some special group is attached, the orientation may be normal to the plane of the suiface. 

The suiface region is generally thought to be 50-100 A thick,*^ but the depth of interest 

depends on the nature of what is being studied and the limitations of the instrument being 

used. 



1.1.1 The Surface Energy 

An important property of a surface is surface energy. This is also called the 

suiface tension and is usually given the symbol y. The surface energy is defined as the 

energy required to generate a unit area of a polymer surface' "̂  and is usually measured in 

dyns cm ' or mJ m ". The usual method for detennining the surface energy is to measure 

the contact angle between a liquid, of known surface energy, and the surface to be 

analysed, as shown in figure 1. The suiface energy can then be detennined using the 

following equation:'' 

YLS - Ys + Y L ( C O S 6) = 0 (1.1) 

Where Ys is the surface energy of the polymer, YL is the suiface energy of the liquid, Yi.s is 

the suiface energy of the liquid surface interface and 9 is the contact angle. YLS can be 

described in tenn of YL ^nd YS be the following equation:'' 

YLS = YS + Y L - 2 ( Y S Y L ) ' " (1.2) 

Combining equations (1.1) and (1.2) gives: 

YL(l-cose) - 2 ( Y S Y L ) ' " = 0 (1.3) 

The suiface energy of the polymer suiface can be determined by knowing both 6 and YL-

There are vm'ious inethods for detennining the contact angle. The simplest is the sessile 

drop method' which measures the angle between a drop of liquid and the stnface directly. 

However more advanced methods exist, such as the WUliemly plate method^ which can 

give the accuracy of a contact angle to 0.1°, compared to 2° for the sessile drop method. 

Table I shows typical suiface energy measurements for some common polymers and 

Figure 2 compares the surface energy of polymers with those of other materials. 

Typically polymers have a low suiface energy. We shall see that the surface energy 

dictates many propenies of a surface, such as adliesion and composition. 



Figure 1: Showing the suiface energies acting on a drop of liquid on a polymer surface. 
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Table I : Examples of Surface energies. 

Material Surface Energy 

/ dyn cm"̂  

Reference 

Polypropylene 29 9 

Polyethylene 31 4 

PET 43 4 



Figure 2: The Surface Energy of Materials. 
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1.1.2 Polymer Surface Dynamics 

The dynamic properties of polymers have been known since 1938"' and have 

been widely r epo r t ed . ^ 'Th i s behaviour aiises from the large size and molecular weight 

of polymers which cause the polymer surface to rai-ely be in equlibrium,'" due to 

molecular entanglements. The diiving force of polymer dynamics is suiface energy. A 

system wDl always try and match its surface energy with its environment, minimising the 

inteifacial energy. This means that the suiface properties of polymers are dependant on 

time, temperature and envii-onment as the suiface moves towards a more equilibrated 

state. A good example of this is when a polymer contains highly polar phases, blocks, 

segments or side chains. When in contact with a low energy envuonment. such as air or 

a vacuum, the polar components orient themselves towards the bulk, minimising the 

suiface energy. Whereas, when the sample is in contact with a high energy environment, 

4 



such as water, the polar groups le-orient themselves towards the siiiface. reducing the 
.14 . inteifacial energy.' 

1.1.3 The Adhesion Properties of Polymers 

Adhesion is of critical importance for industrial applications of polymers. 

Adhesion controls the coating, printing and bonding of a polymer surface""'" '"^ Generally 

the adhesion properties are controlled by the surface energy of the polymer substrate. 

Consider a polymer substrate of suiface energy ysand an adhesive of siuface energy yi,, 

then the work of adhesion WL, can be defined as the energy required to separate a unit 

area of a liquid and a solid: 

W L = Ys + yL-YsL (1.4) 

Rewriting equation (1.1) gives: 

ysL=ys -yL ( cose ) ( i .5) 

Combining equations (1.4) and (1.5) gives: 

W L = y L ( l + c o s e ) (1.6) 

This argument also represents two surfaces meeting together. For good adhesive 

properties one needs a high work of adhesion and for this you need a low contact angle. 

Wliich means that you need the suiface energy of the two substrates to be a close as 

possible. It has been mentioned previously that polymers tend to have a low suiface 

energy, which means that polymers bond well to low suiface energy materials. However 

vulually all metals (>100 mJ m"'), solvents (for printing and coating applications) and 

resins for adhesives''^ (40 - 100 mJ m"') tend to have higher suiface energies compared 

to polymers. For metallisation," " coating" or printing'" of polymers and polymer films 

it is necessaiy to suiface treat them in order to raise their suiface energies. 

1.2 S U R F A C E M O D I F I C A T I O N O F P O L Y M E R S 

1.2.1 Physical Abrasion 

One of the simplest methods of modifying a polymer suiface is by physically 

roughening the siuface. Wenzel'" first noticed that roughing a polymer suiface decreases 

the contact angle and promotes adhesion. This aiises from the increased polymer surface 



area for contact."' However an alternative theory states ^that surface roughing also 

breaks chemical bonds which creates radicals on the suiface which then react with 

molecular oxygen or water in the atmosphere to ci-eate a polar surface, which incieases 

the suiface energy.''' Physical abrasion is easy to perform however it is a non-specific 

technique. 

1.2.2 Additives 

Additives are often used to modify the friction, adhesion and electrical propenies 

of polymer surfaces."^ Introduction of an additive that will increa.se the surface 

roughness of the polymer suiface will improve its adhesion properties.Alternatively 

introducing compatible polar additives (containing carboxyhc acid, amine or urethane 

groups) can raise the surface energy. However, these polar addidves need to have a high 

diffusibility and be able to readily migi'ate to the surface and not remain in the bulk. 

They should also be easily defoiTnable, to promote bonding and have a low 

confomiational energy to allow the polar gi-oups to align with the surface. This suggests 

that low molecular weight additives are prefeixed. These can, however, form a weak 

boundary layer at the suiface which wil l have a low bond strength with the polymer.'' 

Other disadvantages m using additives is that they may require large quantities to be 

effective, the suiface effects may be non-specific and they inight alter the bulk propenies 

of the polymer. 

1.2.3 Wet Chemical Treatment. 

This technique involves altering the chemical composition of the polymer surface 

via the chemical reaction with a given solution. Tlie most common method of improving 

the adhesive properties of a polymer suiface is to either react with an oxidising solution 

or to hydrolysese the surface. The most common solvents for oxidising polymer surfaces 

are chromic acid solurions.'*^ A good example of this is the treatment of ABS (a rubber 

modified two phase plastic made from aciylonitrile, butadiene and styrene) with sulphuric 

acid saturated with chroirdum trioxide"'^ "'̂  to produce a highly adhesive suiface, which is 

widely used in the electroplating industiy. However treatment with chromic acid 

sokuions also causes physical as well as chemical changes at the suiface. In the case of 

ABS, the suiface becomes veiy rough after treatment, caused by preferential attack of 



the rubber phase and m the case of treatment of polypropylene the stiiface also becomes 

veiy rough due to the amoiphous polymer reacting much more readily than the 

spherulitic crystallites of the polymer."^''' Reaction with chromic acid solution also 

causes etching of the polymer."'* Hydrolysis of a polymer surface involves attack of a 

nucleophilic agent, such as a base, on electron deficient carbon atoms. The most widely 

used applicadon of hydrolysis is the reacuon of PET by hot sodium hydroxide. Again 

the increase in the surface energy of the polymer is caused by the introduction of polar 

groups at the surface and increasing the surface roughness.'** 

There are many disadvantages in using wet chemical treatments. The depth of 

modification is very large, usually 300 A." ' Care must be taken that the solvent does not 

penetrate into the bulk to cause bulk modification. The solvents are usually polymei-

specific making the process inflexible. Finally wet chemical treatment usually requires 

lai'ge quantities of toxic solvents, which aî e envu'onmentally damaging and the cost of 

solvent disposal or re-piuification makes wet chemical modification very unattractive for 

industiial applications. 

1.2.4 Surface Grafting 

In surface grafdng the modification is achieved by the covalent bonding of new 

macromolecules onto the surface. The fundamental step in surface gi-afting is the 

creation of reactive sites on the substrate suiface. This is achieved by either wet 

chemistry or by irradiation with ionising radiation or UV light. These reactive sites are 

coupled to preformed macromolecular chains, or more common, the activated sites are 

placed in contact with a suitable monomer so that chains start to grow from the activated 

site."* This is a highly specific method for modifying the suiface properties. An example 

of this is the UV iiradiation of polyethylene through a solution of 2 hyciroxyethyl 

methaci7late (and benzophenone in acetone) resulting in a surface with poly (2 

hydroxyethymethacrylate) grafted upon it. This results in an increase in the surface 

energy."" 



1.2.5 Ultra-Violet Irradiation 

Polymer surface modification initiated by ultra-violet (UV) irradiation has been 

performed using either a standard UV source or a laser. The type of modification 

depends on the UV source and the presence of reactive species.'^ Bombardment with 

U V photons leads to the breaking of C-C and C-H bonds via a free radical mechanism. 

In a vacuum or in the absence of oxygen this can led to chain scission, crosslinking or the 

fonnation of unsaturated units.''* However when UV irradiation occurs in a oxygen rich 

envii'onment it can led to the generation of oxygen containing carbon moieties, such as 

alcohol, hydroperoxide, ketone and acid groups.'' This is called photo-oxidation. Tliis 

has been exploited to enhance wettability and adliesion properties of polymers. ''' Photo-

oxidation is limited by the range of surface modification that can be achieved and vacuum 

systems sometimes have to be employed to optiiTuse the treatment. 

1.2.6 Flame Treatments 

Flame treatment involves burning a air and methane mixture in a controlled 

manner so that die lichness of the flame is kept constant. The polymer is then positioned 

a fixed distance from the flame."'^ The active species produced by the tlame include 

radicals, ions and molecules in excited states, which produce a plethora of reactive 

products at the surface. Analysis of flame treated polyethylene" shows tliat flame 

treatment causes the generation of oxygen containing cai'bon groups at the surface. 

Flame treatments are simple to perform at atmospheric pressure, and are now widely 

used to improve the adhesive properties of polymers."^ However flajiie treatment is a 

vei7 harsh ti-eatment and it is difficult to control the depth of modification.'' For veiy 

rough surfaces inaccessible nooks and crannies may not get D'eated. '"' 

1.3 PLASMAS 

The ternn 'plasma' was fii'st used by Langmuii-"" in 1929 in order to describe the 

ionised gases he was studying. Plasmas are often refeired to as the fourth state of 

matter"*'consisting of electrons, ions and neuffals, with the number of electrons roughly 

equal to the number of ions so that the system has overall neutrality."*" This criterion can 



only be satisfied if the Debye length, A.D. the distance over which a charge imbalance can 

exist, is small compared with the physical dimensions of the p lasma."" 'The Debye 

length is defined by equation (1.7). 

^D=(£okT, /ne ' ) " - (1.7) 

Where So is the pennittivity of free space, k is the Boltzman constant, T,. is the election 

temperature, n is the electron density and e is the charge on an electron. 

1.3.1 Types of Plasma 

There are two main types of plasma. The first are equilibrium plasmas, whei'e the 

gas temperature and the electron temperature are approximately equal.'*' Examples of 

such plasmas are plasma arcs and plasma Jets."*̂  However the very high gas temperatures 

required for such plasmas (up to 30 000 K) make equilibrium plasmas extremely 

impractical for polymer modification. Therefore equilibrium plasmas will not be 

considered further. 

The second type of plasma are non-equUibiium plasmas or cold plasmas. Here 

the electron temperature is very much greater than the gas temperature."'"^ '*' Typically in 

non-equilibrium plasmas the electron temperature reaches 10*- 10' K (1-10 eV) whist the 

gas temperature can be as low as room temperature.'*^ Two types of non-equilibrium 

plasma wi l l be covered in this thesis; the glow discharge and the silent dischai-ge. 

1.3.2 The Glow Discharge 

1.3.2.1 The Origin of a Glow Dischaige 

A glow discharge plasma is produced by applying a elecnic field to a gas at low 

pressure. A small amount of free electrons aj-e always present in such a gas as a result of 

ionisation f rom naturally occinring radioactivity or cosmic rays. Free electrons can also 

be produced by photoionisation or field emmission.'*' These electrons are accelerated by 

the elecU'ic field and gain kinetic energy. The electrons lose kinetic energy by 

bombai-ding gas atoms or molecules. If the kinetic energy of the electrons is too low to 

excite or ionise the atoms and/or molecules then the coUisions will be elastic, with the 



atoms or molecules gaining kinetic energy and the electrons losing it. The fraction of 

kinetic energy lost by the electrons during a elastic collision is given by: 

AE/E = -2M, /M (1.8) 

Where M is the mass of the target atom and Me is the mass of the electron. For an 

electron only a small amount of its kinetic energy is lost (approximately 10"'') during an 

elastic collision. The electron will continue to gain kinetic energy between collisions, 

until it attains enough kinetic energy to ionise or excite the target atom or molecule. In 

the fonner case this leads to the generation of more free electrons, which in turn are 

accelerated by the electric field and ionise further atoms or molecules."*"'"*' An electron 

multiplication process then takes place. 

The number of free electrons will depend on the applied voltage of the electric 

field, V, and can be followed by measuring the dischai-ge cunent. I . A typical DC glow 

discharge I -V curve is shown in Figure 3.^' For a low voltage the number of free 

electrons is small. Increasing the voltage increases the number of charged species 

generated by the plasma. At a critical voltage there is an abrupt rise in the current, which 

is known as the breakdown voltage, Vb. At this voltage the number of fiee electrons 

generated is sufficient to replace the electi-ons lost to recombination, diffusion, di-ift to 

the boundary suiTounding the plasma or attachment to neutrals to form negative ions. At 

this point the plasma is self-sustaining,"* and the glow discharge is established. 

Witl i in the bulk of the glow dischai-ge the electron temperature, T,.. is much 

greater than the ion temperature, Ti. This arises from the vast difference in the mass of 

the electi-on compared to that of the ions, and then can attain much more kinetic energy 

f rom the applied field. This is shown by equation (1.9):""' 

Work Done by Electric Field = Eed = (Eet)-/2Me (1.9) 

Where E is the electric field, d is the distance ttavelled and t is the time of travel. All 

other symbols ai-e as described previously. 
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Figure 3: The 1-V characteristics of a DC dow dischiusie 
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The characteristic glow of a glow discharge arises from relaxation of excited 

species. The range of electromagnetic radiation einitted by a glow disciimge plasma 

ranges f rom the infra-red through the visible and ultra-violet through to the vacuum 

ultra-violet! 

1.3.2.2 Radio Frequency Glow Discharges 

The simplest fonn of a glow dischai-ge is a dkect current (DC) glow discharge."''' 

which requires the electrodes generating the elecaic field to be in contact with the 

plasma. This suffers from degradation of the electi'odes by the plasma, especially when 

using a organic material which can be ionised by the plasma and deposited on the 

electrodes."* This can cause the glow discharge to be short lived. 

In order to overcome this problem Anderson"^ '̂ proposed using a radio frequency 

(R.F.) potential to power the plasma. Rapidly changing the elecuic field means that the 

electrodes can now be placed remote from the plasma."* Although a R.F. glow discharge 

plasma can be inn at any frequency from 1 megahertz to the gigahertz range it is usual to 

mn at 13.56 MHz in order to comply with the government communication regulations. 

It is common practice to inductively or capactivity couple the R.F. generator to the 
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plasma via a matching unit. The purpose of this unit is to match the impedance of ilie 

plasma to the output impedance of the R.F. generator, so that the power dissipation in 

the discharge is maxiniLsed and to protect the generator.'*' R.F. generatetl glow 

discharges are very homogenous as the wavelength of the R.F. is much greater than the 

diniensions of the plasma reactor. 

1.3.2.3 Plasma Potential 

It has been previously mentioned that the kinetic energy, and hence the velocity 

of electrons, is much greater than that of the ions. The electrons will escape from the 

plasma at a higher rate than the ions and end up at the reactor walls, causing the plasma 

wil l build up a net positive charge relative to the reactor walls. This positive charge will 

then attract the electrons towards the plasma, making it more difficult for the electrons to 

escape. Eventually a steady sate situation will arise where the loss of electrons equal 

those of the ions. When this occurs the plasma potential is roughly several volts more 

positive than the reactor wall potential. 

1.3.2.4 Floating Potential 

Consider a electrically isolated substrate placed into a plasma. This substrate will 

rapidly gain a negative charge because of the greater flux of electrons relative to ions."*'' 

'*''' Eventually the substrate will be stifflciently negative to repel the electrons so that 

there is a equal flux of electrons and ions. The potential on the substrate surface is called 

the floating potential and is typically negative of the plasma potential. 

1.3.2.5 Plasma Sheath. 

A dark space or sheath is usually observed adjacent to all surfaces in contact witli 

the glow discharge.'*'̂  It has been mentioned above that a surface in contact with a 

plasma will be at a more negative potential than the plasma. The plasma howevei- is a 

region of uniform potential. The voltage change from the plasma to the surface occurs in 

the sheath. The sheath has a negative voltage compared to the plasma, so electrons are 

repelled away from the sheath region. This lack of electrons results in low levels of 
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excitation of the gas species, so that the region appears dark. Positive ions leaving the 

plasma ai-e accelerated by the sheath as they bombai'd the surface. 

1.3.2.6 Plasma Chemistry 

A very broad spectrum of chemical reactions are observed to occur within a 

plasma. These include reactions between electrons and molecules, ions and molecules 

and electrons and ions."'' The chemisti"y of the glow discharge is controlled by the 

electron energy distribution. In a glow dischai-ge plasma it is best described by the 

Druyvesteyn distribution."" " ' The major characteristics of this distribution function are 

shown in Figure 4, namely that the distribution function peaks at around 1 to 2 eV and 

has a high energy tail, with electron energy reaching up to 25 eV and beyond."* Tliis 

high energy tail has a significant impact on the overall plasma chemistry. In this section 

the major processes occurring within a glow discharge plasma are described."' "' 

1.3.2.6.1 Electron - Molecule Reactions 

The bombai-dment of molecules with electrons of sufficient kinetic energy leads to a 

transfer of energy between the electrons to the molecules. This causes many I'eactions 

summaiised below: 

Excitation: Production of an excited vibrational, rotational or elecu-onic state of the 

molecule. 

e -f- A e -I- A * 

e + AT t + A : * 

e -I- A B ^ e -I- A B * 

These excited states very quickly decay back to ground states emitting electromagnetic 

radiation. Excited species tend to decay so quickly that they do not participate in 

cheinical reactions. 

Dissociative Attachment or Dissociative Capture: I f a highly electronegative gas is used 

then a low energy electron (< 1 eV) can attach itself to a molecule. 

e + A B - > A + B" 

13 



Figure 4: Example of a Druyvesteyn distribution. 
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Dissociative loiiisation or Ion Pair Formation: This occurs with electrons of much 

higher energy (> 20 eV), in order to generate a positive ion. 

e + A B A ^ + B ' +e 

Dissociation: A inelastic collision between a elecu-on and a molecule leading to 

dissociation without the fonnation of ions. 

e + A B - > e + A-HB 

Most dissociation reactions involve slow electrons exciting a molecule above a threshold 

electronic level (usual several eV). This decays to a lower energy state involving 

dissociation of the excited molecule into neutral fi-agment, or radicals. This occurs much 

faster than (10"" s) than radiative decay (10"^ to 10"** s). It is much more probable that 

dissociation occurs and not radiative decay. 47 

lonisation: Electron impact leading to the production of positive, negative, atomic or 

molecular ions. 

e -I- A : ^ A:" 

e + AB ^ e -(- A V B" 

This requires electrons in the 10 - 30 eV range, which occur in the high energy tail of the 

electron distribution. 
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Recombination: Leading to the emission of electromagnetic radiation. 

e + A"" -> A -H hu 

Alternatively the energy released can lead to a dissociative recombination reaction. 

A B ' + e ^ A B * ^ A " + B 

1.3.2.6.2 Ion - Ion Reactions 

When two ions collide several possible reactions can occur 

Recombination: 

Neutralisation: 

A V B " ^ A* + B*4-hD 

Recombination via a three body collision, which occurs at pressures above 0.1 mtoir: 

M + A ^ + B - ^ A B + M 

1.3.2.6.3 Ion - Molecule Reactions 

The following reactions can occur during a collision between a ion and a neutral particle. 

Charge Transfer: 

A ^ + B C ^ A + B C ^ 

Charge Transfer leading to dissociation: 

A ^ + B C ^ A + B ^ + C 

Formation of new species: 

A ^ B C ^ A B ^ + C 

^ A B -H C " 

Associative detachment: 

A + B C ^ A B C + e 

1.3.2.6.4 Radical - Molecule Reactions 

Radicals can be single atoms or multi-atomic. They are unstable and very 

reactive. Radical reactions are summaiised below. 
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Electron Transfer: 

A + B A^-^ B" 

lonisation: 

A + B -> A V B + e 

Attachment of Atoms: 

A + BC + M ^ ABC + M 

Disproportionation: 

A + BC^ AB + C 

Recombination via clisproportionation: 

2 A ^ B + C 

Recombination via combination: 

2 A ^ A-A 

1.3.2.6.5 Summary 

The reactions occurring in a plasma ai-e summaiised in Figure 5. The three major 

reactive species produced are electromagnetic radiation, free radicals and ions. Typically 

in a glow dischai-ge plasma the free radical concentration can estimated to be lO''* cm"\ 

This compares with a ion and electron concentration of lO'"* to l O " cm' \ 

1.3.2.7 Plasma - Polymer Surface Interactions in the Glow Discharge 

Many species are generated in a plasma. These can then bombard any siiiface in 

contact with the plasma, as summaiised in Figure 6. Electi^ons and negative ions tend to 

be repelled by the plasma sheath away from the suiface. Generally, energy is transferred 

to a sohd suiface by electromagnetic radiation, radical bombardment and ionic particle 

bombardment .Al though infra-red. visible and ultra-violet radiation is produced by the 

plasma. Infra-red radiation is absorbed by the polymer surface but is quickly dissipated 

through thermal reactions and visible radiation is not strongly absorbed. Only UV and 

V U V radiation is strongly absorbed and is able to react with the surface creating free 

radical sites on the surface. 
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Free radical bombardment modifies the polymer surt'ace by absu-action or 

addition reactions. Ionic bombardment leads to the production of free radicals at the 

surface and the removal of material by sputtering."' However the concentration of ions 

is much smaller than that of free radicals. For polymer modification by plasmas the 

major reactive species generated by the plasma ai-e free radicals and UV and VUV 

photons 

1.3.3 The Silent Discharge 

1.3.3.1 The Origins of the Silent Discharge 

Like the glow discharge the silent dischai'ge is a non-equilibrium plasma. 

However unlike the glow discharge the silent dischai'ge can be operated at pressures up 

to and beyond atmospheric pressure. The silent discharge was fiist proposed by 

Siemen" in 1857 in order to generate ozone. Although silent dischm-ge reactors can 

have many possible configurations, they have the same basic component, namely a set of 

pai-allel electrodes and a dielectric barrier layer between the dischai-ge gap and at least 

one of the electrodes. As with the glow discharge, a silent discharge is generated by 

producing an elecuic field between the electrode plates. When the electric tleld exceeds 

the electric breakdown field of the discharge gas, a large number of distributed 

irticrodischai-ges ai'e generated between the plates.^" "'* The characteristics of these 

microdischarges are that they ai-e short lived (typical lifetime of 100 ns), consisting of a 

cylindiical plasma channel (typical radius of 100 |J.m) which spreads into a larger surface 

discharge at the dielectric suiface. Reducing the pressure of the silent discharge causes 

the radius of the microdischarge to increase, until a homogenous glow discharge, as 

described above, is produced. The major differences between a silent and a glow 

discharge ai'e that a silent dischai-ge is run at atmospheric pressure and the presence of a 

dielectric. 
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Figure 5: Schematic diagram of reactions occuning in a plasma reactor. 
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Understanding the microdischarges is the key to understanding the silent 

discharge. The microdischarges are caused by electrons being emitted from the cathode. 

These electrons bombard the gas molecules between the discharge gap causing ionisation 

and excitation. An electron avalanche is formed which moves towards the anode. Tiiis 

generates a local field enhancement in the region of the avalanche. When this elecuon 

avalanche reaches the opposite electrode this field enhancement, which travels much 

faster than the drift velocity of the electrons, is reflected back towards the cathode 

ionising atoms and molecules in its way. This leads to, within 1 ns. the formation of an 

extremely thin conductive channe l " " " "o r microdischarge. This channel spreads out 

when it hits the dielectric surface. This conductive channel has many of the properties of 

a glow discharge plasma. Electrons and ions are fonned within the microdi.scharge with 

a typical electron density of 10'"to lO'"' cm"".'''' UV radiation is also produced within the 

silent discharge, caused by the relaxation of excited molecules and atoms.'" Current flow 

throiigh the microdischarge has to also flow through the dielectric via charge 

displacement. Therefore, by its nature, the silent discharge has to be an AC plasma witii 

a frequency ranging f rom the Hz to the MHz region. 

• Immediately after the current flow of the inicrodischarge is initiated, charge will 

start to accumulate in the area where the microdischarge hits the dielectric. This reduces 

the electric field in the area of the microdischarge. Approximately 100 ns after the 

microdischarge is initiated this build up of charge will choke the current flow and 

extinguish the inicrodischarge. Because the lifetime of the microdischarge is so shoi t. 

the microdischarge wil l see a constant electric field, although the electric tiekl is 

oscillating with time. I f the external voltage is still increasing then other microdischarges 

can fonn where there is no charge build up on the dielectric. The dielectric has a two

fold puipose; to Umit the charge and energy of any single microdischarge and to 

distribute the microdischarges over the entire discharge gap. 

1.3.3.2 The Chemistry of the Silent Discharge 

In order to describe the chemistiy of the silent dischai-ge one must flrst consitlei-

the nature of the microdischarge. Most of the reactions that occur within the glow 

discharge (see section 1.3.2.6) also occur within the microdischarge."' This generates 

electrons, ions, neutral radicals and UV radiation. However once the microtlischarge is 

19 



extinguished the vast majority of the charged species (i.e. ions and electrons) decay 

before they have time react.""* Therefore the chemistry of the silent discharge is 

dominated by neua-al species like atoms, excited molecules and molecular fragments. 

Dissociation of molecules to produce radicals is the inajor source of reactive 

species in a microdischarge. Indeed the efficiency of the dissociation process in a silent 

discharge can be up to 80 %. After the microdischai-ge in extinguished these free 

radicals can then react with gas molecules to fonn new chemical species, that are not 

nomially formed under ambient conditions. The spatial generation of these species 

radiates out from the initial microdischarge position, as shown in Figure 6. 

A good example of this is the action of the silent discharge on air. Figure 7 

shows the action of a single iTiicrodischarge in air.''* As with the glow dischiuge the 

microdischarge creates positive ions, negative ions, electrons and free radials. Once the 

iTiicrodischarges is extinguished the electrons and ions decay away very qtiickly. Tliis 

generates free radical atomic oxygen and nitrogen. These free radicals can then react 

with the nitrogen and oxygen gas molecules creatuig ozone and nitrous oxides. 

O + O2 + M ^ O3* + M O3 + M 

N + O2 NO + O 

NO + O3 ^ NO: + O2 

Where M is a third collision partner. 

1.3.3.3 Plasma - Polymer Surface Interactions in the Silent Discharge 

Energy ti-ansfer from the silent dischai-ge to a sohd suiface placed between the 

discharge gap occurs by several different processes. Electromagnetic radiation is 

generated in the inicrodischai'ges, as with the glow dischai-ge. However the VUV 

component is removed by the discharge gap, leaving primarily UV as the surface 

activating component of the electromagnetic radiation (see section 1.3.2.7). Radical and 

ion concentrations in the silent discharge tend to remain small, due to their fast reaction 

rates. The new reactive species (such as ozone in air) play a more signiflcant role in the 

modification of polymer surfaces, with bombardment on the polymer suiface causing 

addition and absu-action reactions. I f the solid sample fonns part of the dielectric then 
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electron bombardment wil l occur, aiising from the surt'ace discharge at the dielectric 

suiface. 

Figure 6: The generation of new species in a glow discharge. t| initiation of the 

microdischarge with the creation of electrons, t: the electrons cause the production of 

excited species (A*), t:, after the microdischarge has been extinguished, when the excited 

species reacts to fomn new species (B). With ti < t: < U. 
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Figiu-e 7: Chemical species generated by a microdischai-ge in air. 
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1.3.4 Summary 

The suiface properties of polymers play an important role in detennining the end 

uses of a polymer. We have seen that in order to fully exploit the properties of polymers 

the surface energy of the polymer needs to be modified. 

Although many methods exist for modifying the suiface energy, most methods 

are very crude in their application. They are usually difficult to control, lead to non

specific results and can easily cause bulk modification. Non-equilibiitim plasma 

treatment of polymers and polymer composites have gained great scientific and industrial 

interest in modifying polymer surfaces.^'' The great advantage of using plasma are that 

they produce reactive species that can be used to modify a polymer suiface and which 

are not normally present at ambient conditions. 

It is the aim of this thesis to show and investigate how these new reactive species, 

generated by non-equihbrium plasmas, can be used to modify the suiface properties of a 

variety of polymer systems. The effects of two non-equihbriiim plasmas will be 

investigated; the glow discharge (operated under oxygen) and the silent discharge 

(operated in air). Both the chemical and physical effects of plasma treatment have been 

investigated. The characterisation techniques that have been used are X-ray 

photoelectron spectroscopy, atomic force microscopy, nuclear magnetic resonance and 

static secondary ion mass spectrometiy. 
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1.4 A N A L Y T I C A L T E C H N I Q U E S 

1.4.1 X-ray Photoelectron Spectroscopy 

The basic technique of x-ray photoelecn-on spectroscopy (XPS ) is very simple. It 

involves ir-radiating a surface with high energy photons and measuring tiie energy of tlie 

emitted electrons/'' Electrons are emitted from the surface via the piiotoelectron 

effect,*'" which is shown in Figure S.^ A photon, with energy hv, interacts with a core 

electron energy level of an atom causing the emission of a photoelectron with kinetic 

energy given by/ ' ' 

EK[; = 1 I V - E I , - ^ - S (1.10) 

Where Ei, is the binding energy of the photoelectron, (j) is the work function of the surface 

and S is a temi to account for surface charging. Nonnally S is ignored and included with 

(]). Therefore by knowing both hv and EKE the binding energy can be detemiined, which 

is unique for a given element, (j) is normally detennined by referencing the experimentally 

determined Eb with the known Eb for a given element. Any photon source with energy 

greater than (j) can be used for XPS. This excludes ultra-violet and longer wavelength 

radiation. The most common source of radiation are narrow wavelength x-ray sources." 

The surface sensitivity of XPS aiises not from the penetration depth of the x-rays 

but f rom the escape depth of the photoelectrons. The variation in escape depth with 

electron kinetic energy is shown in Figure 9. An electron in a solid can lose eneigy by 

three main processes.Excitation of lattice vibrations (phonons), excitation of collective 

density fluctuations in the electron gas (plasmons) and excitation of piu ticles. For low 

electron energies the electron is unable to cause any of the above excitations and the 

escape depth is large.^'' For higher kinetic energies the cross-section of exciting these 

transitions is low and the escape depths are again large. Therefore the escape depth goes 

through a minimum of 1 nm near 100 eV. The kinetic energy of photoelectrons emitted 

using a x-ray source is in the range 100 eV to 1000 eV, which corresponds with 

electrons having an escape depth ranging from 1 nm to 3 nm. 
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Figure 8: The process of photoionisation. 
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1.4.1.1 Instrumentation 

XPS requires a UHV system (better than 10'*̂  torr).^" Tlie typically layout of a 

XPS spectrometer is shown in Figure lO.*""̂  The three basic components are a x-ray 

source, an electron energy analyser and an electron detector. One of two x-ray sources 

are nomnally used; Mg K a source (1253.6 eV) and A l K a source (1486.6 eV).''- A very 

thin aluiTiinium window is usually placed after the x-ray source m order to eliminate the 

bremsstrahlung or background radiation. Tlie emitted electrons from the suiface are 

collected by the electron lens array, in front of the electron detector, and slowed down 

before they enter the analyser in order to reduce the size of the analyser.'" The most 

common electron analyser in use with XPS spectrometers is the concentric hemispherical 

analyser (CHA). The CHA consists of two heinispheres that are positioned concenu'icity 

and the voltage between the hemispheres is set so that only electrons of a known energy 

can pass through the analyser and reach the detector.^^ The XPS spectrometer can be 

operated in two modes. The first is to scan by varying the voltage on the analyser, 

keeping the voltages on the lenses constant (called fixed retard ratio or FRR mode) or 

keeping the voltage on the analyser constant and vaiying the voltage on the lens airay 

(fixed analyser transmission or FAT mode).'''^ 

1.4.1.2 Spectral Interpretation 

XPS spectra are displayed as a function of electron counts per second versus 

electron binding energy. The intensity of the photoelecu'on peaks from an atom's core 

energy level indicates the abundance of that element. Care must be taken when 

comparing the intensity from different element due to their different ionisation cross 

sections. Experimentally detennined sensitivity factors can be used to relate the intensity 

f rom one element with another.*̂ ** 
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Figure 1 0 : Schematic representation of an x-ray photoelectron spectrometer. 
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XPS spectra show that non-equivalent atoms of the same element have different 

binding energies. This effect is called the chemical shift. '̂'* '" The binding energy of an 

electron is detennined by the shielding of the nucleus by the outer electrons. If an atom 

is surrounded by highly electronegative atoms this wil l cause the outer electron density to 

drop, reducing the shielding of the nucleus. Causing the electrons binding energy to 
62.69.70 

mcrease. 

Interpretation of the XPS spectrum is complicated by several effects. The x-ray 

emission from A l and Mg x-ray sources not only consists of a Ka,.: doublet, associated 

with 2Pi/2 to IS and 2P.v2 to IS ttansitions but also of the doubly ionised (Ka-..^) 

transition. This leads to a photoelectron peak at about 8 % of the main intensity at 

approximately 10 eV lower binding energy. This peak is called a x-ray satellite. 

Another complication is shake-up. '̂̂  This occurs when the kinetic energy of an emitted 

photoelectron is reduced by the excitation of an valence electron. This results in satellite 

peaks a fev/ eV higher in binding energy than the main photoelectron peak. In organic 

compounds the presence of shake-up peaks is indicative of aromatic species (n to n 

transitions). 

1.4.2 Atomic Force Microscopy 

The atomic force inicroscope (AFM) was invented in 1986 by Binning.' ' At the 

heart of the. A F M is a very sharp tip which is attached to a cantilever. The AFM 

measures the forces between the tip and a surface. The forces curve that exists between 

the tip and a surface as shown in Figure 11, can be described by a Lennard-Jones 

potential:^'' 

U(r) -Uo[(ro/z)'-- (ro/z)'] ( l . l l ) 

When the tip and the surface ai-e far apart, long range (Van der Waals) forces dominate 

and the net force between the tip and the surface is attractive. As the tip is moved closer 

to the surface the outennost atoms of the probing tip begin to come into contact with the 

surface atoms. The electron-electron interactions leads to strong repulsive forces 

between the tip and the sample.^' '̂ ^ Measurement of the forces between the tip and the 

sample reveals information about the surface, such as topography" and magnetic domain 

structure.^^ 
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Figure 11; Typical force curve for AFiM experiments in air. The dip just befoie the 

contact portion is caused by the tip being sucked down to the suiface. usually clue lo ihe 

suiface tension of the water layer. As the tip retracts, the tip continues to stick [u the 

surface until it is pulled clear. 
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Figure 12: A schematic of the atomic force microscope. 
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A schematic of the AFM is shown iji Figure 12. The AFiVl can be operated in 

various modes in order to measure the suiface forces. The two most common operating 

modes, contact inode and tapping mode, used to detemiine topograph)' aie described 

below. 

1.4.2.1 Contact Mode A F M 

In contact inode AFM^''' the tip is held very close to the sample so that the 

force between the tip and the sainple is repulsive. When the tip is subjected to a force it 

wi l l move in response to the force. This causes the cantilever to bend which sets up an 

opposing bending moment. The bending of the cantilever, dz, which is much smaller 

than the cantilever length (usually 100 | i m or 200 | im) can be obtained f rom: ' ' 

EI(x)d-z/dx-= M(x) (1.12) 

Where E is the modulus of elasticity, I(x) is the moment of inertia and M(x) is the 

bending moment. This describes the equilibiium case where the external force is 

balanced by the internal bending moment of the cantilever. Practically M(x) is given by: 

M(x) = F,(x - le) (1.13) 

where is the external force and Ic is the cantilever length. By detenniiiing the 

deflection of the cantilever the forces between the tip and the suiface can be detennined. 

The most common method of determining cantilever deflection is to use a laser 

diode focused onto the back of the cantilever,*' as shown in Figure 12. The position of 

the reflected laser beam is detennined using a two or four segmented photodiode. The 

difference in intensity between the top half and bottom half of the photodiode, divided by 

the total intensity of the light hitting the photodiode gives the position of the reflected 

laser beam and hence the deflection of the cantilever. 

Scanning the sample beneath the tip and studying the deflection of the cantilever 

as the repulsive forces between the tip and the suiface change, as a result of changes in 

topography, builds up an image of the suiface. Nomially a feedback loop is employed 

vai-ying the height of the sample so that the deflection of the cantilever is kept 

constant.*' This ensures a constant tip to suiface force. The image of the suiface is 

obtained by recording the height of the sample with tip position. In order to minimise 

the possibility of defoimation at the suiface by the tip, the cantilever must have a very 
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small spring constant. Commercial cantilevers tend to have spring constants in the range 

0.06 to 0.2 Nm ' which leads to forces between the tip and the sample in the region of 

10"" to 10 ' N . 

Contact mode suffers from several severe limitations, which arise from the fact 

that it is often difficult to limit the surface-tip forces. Surfaces in air are typically 

covered with a layer of water containing unknown containinants. When a tip covered 

with a layer of contaminants comes near a sample that is also covered then there is an 

adliesion force (of the order 10'̂  N) that drives the tip toward the sample.'"'"' Performing 

contact mode A F M in UHV^^ and in a liquid^' have been proposed in oiciei" to overcome 

this problem. The sample in contact mode A F M will also experience shear forces fiom 

the tip due to the scanning motion which could lead to defomiation of the surface and 

poor resolution due to stick-slip motions of the tip.^'^ 

1.4.2.2 Tapping Mode A F M 

Tapping mode A F M ' * ^ was invented to overcome the limitations of contact 

mode A F M . The set-up is the same as for contact mode A F M as shown in Figure 12. In 

tapping mode the cantilever is vibrated close to its resonance frequency''" (approximately 

300 kHz) with an oscillation ainplitude ranging from, typically, 20 to 100 nm. The tip is 

made to strike the surface on each oscillation, at the downward apex of each cycle. Due 

to the lai-ge oscillations of the cantilever, the tip is able to overcome the stickiness of the 

absorbed water layer. The oscillation amplitude is measured as a RMS value of the 

deflection detector signal. Again a feedback system is employed to keep the RMS 

amplitude of the cantilever constant, with the topography detennined by recording the 

variation of the height of the sample with tip position. The tip striking the surface at the 

downwai-d apex of a cycle means that the force imparted to the surface is very small. 10" 

to lO"''' N,*'* generally lower than for contact mode AFM. In addition since the tip is no 

longer di-agged along the suiface there aî e virtually no shear forces and this technique 

can achieve very high resolution since the tip strikes the surface many times before it is 

displaced laterally by a tip diameter. 
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1.4.2.2.1 Phase fnuv^iiig AFM 

Phase imaging is a very recent variadon on tapping mode AFVI."'" '"' Tap()ing 

mode AFM changes in the oscillation amplitude of the cantilever are recorded to 

detemiine topography. For phase imaging AFM the phase of the oscillation is recorded 

with respect to the piezoelectric driving oscillations of the cantilever. The phase shift is 

very sensitive to variations in material properties, such as adhesion and vi.scoelasticity, 

and change when the tip encounters suiface regions of different compositions. 

1.4.3 Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance (NMR) spectroscopy was invented over 40 years 

ago and is now routinely used to determine moleculai- structure and stereochemistry of 

organic molecules.'^' The fundamental property that is studied is the nuclear spin (1) of 

the atomic nucleus'''" which can have values of 0, ' /2, 1, I'A etc. in units of h/27t. Here 

we shall consider the simplest case when 1= 'A- The nuclear magnetic moment (u) of a 

nucleus is directly proportional to the nuclear- spin:'̂ " 

|i=Ylh/27i (1.14) 

Where y is the magnetogyric ratio. When a magnetic field is applied the magnetic 

moments orient themselves with only certain allowed orientations. For a spin 1 - '/: 

there aî e two possible orientations of the nucleai" spin, mi = ± '/2- both with different 

energies as shown in Figure 13. The energy between the energy levels is given by: 

AE=yBh/2n (1.15) 

or V=YB /27: (1.16) 

Where B is the strength of the magnetic field and v is the resonant frequency. NMR 

works by the detection of this transidon energy. It should be noted that the transition 

energy is dependent on the applied magnetic field. The gi'eater the strength of the field 

the bigger the transition energy. With magnetic field currently avaihible in the laboratory 

(1 - 15 T) the resonant frequency of most atoms is in the radio frequency of the 

electromagnetic spectiiim. 
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Figure 13: Energy levels for a nucleus 1 = '/:• 
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1.4.3.1 The Chemical Shift 

The resonant frequency of a given nucleus is dependant, to a very small but 

measurable extent, on the chemical environment. The field at the nucleus is not equal to 

the applied field. The elecU'ons in the molecule shielding the nucleus from the external 

applied field by setting up opposing magnetic fields.'^' Any change in the electron 

density wi l l change the magnetic field at the nucleus and the resonant fiequency. Foi-

example in the substituted methane's CHjX. as X becomes more electronegative the 

electron density around the protons decreases and the y resonate at lower fields. ' ' 

The chemical shift, 5, is defined as the nuclear shielding divided by the applied 

freld.'"*' The chemical shift is a function of the nucleus and its enviionment. It is nonnally 

measured from a suitable reference compound (nonnally tetra methyl silane (Si(CH;,j4) 

which can either be external or internal. The chemical shift is determined from the 

following equation: 

5 = (Vsarapie" Vrefeiencc) / OsclUator frequeucy X 10̂ ' (1.17) 

The chemical shift (in units of ppm) is dependent on the sample and not the 

spectrometer. 
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1.4.3.2 Conunuous Wave Versus Fourier Transform NMR Spectroscopy 

NMR spectrometers can be operated in two modes. Continuous wave involves 

scanning across either the resonant frequency or the magnetic field strength.''"^ This is 

very ume consuining with the spectra having a low signal to noise ratio. In order to 

overcome this pulsed Fourier u-ansform (PFT) NMR was developed. This involves 

hitting the sample, with the magnetic field applied, with a short high intensity radio 

frequency pulse. This then excites the nuclei to the higher energy state. These nuclei 

wi l l then relax back to the thermal distribution at a rate that depends on the magnetic 

field at the nucleus. Measiuing the free-inductive decay (FID) for the nucleus gives the 

dme domain N M R spectrum which is converted into the frequency domain by Fourier 

transform of the FID.'''"^ Since the R.F. pulse need only be very short (region of |is) many 

spectra can recorded of the same sample in a short space of time. Combination of these 

spectra give an overall spectrum with a very low signal to noise ratio. Today virtually all 

N M R spectrometers using PFT-NMR. 

1.4.4 Static Secondary Ion Mass Spectrometry 

The basic process involved with static secondary ion mass spectrometry (SSIiVIS) 

is the bombardment of a suiface with low energy and low density ions giving rise to the 

eiTiission of secondaiy ions.'"*'' This is caused by sputtering from the suiface. The general 

outline of this process is widely accepted. The primaiy paiticle impacts with the surface 

atoms transfening energy to the suiface and causing collision sequences between atoms 

in the near* suiface region. Some energy wi l l be dissipated into the bulk of the solid whist 

some collision sequences or cascades return to the suiface causing the emission of 

secondaiy ions or a t o m s . I n general tliis emitted particle will be released at a point 

remote f rom the initial impact. The extension of the model after this point is the subject 

of considerable debate'̂ ^ and wi l l not be considered further. 

The great advantage of is that fi-agment or cluster ions are emitted from the 

suiface. A l l the chemical characterisation facilities associated with organic mass 

spectrometry should enable the deteiTninadon of the chemical structure of the fragment, 

which gives information of the chemical structure at the suiface. 
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1.4.4.1 Instrumentation 

Like XPS, SSIMS has to be performed under UHV.'^'^ There are two main 

components to the experiment; the primaiy particle beam and the mass spectrometer.'"" 

In order to prevent extensive surface damage of the sample low ion beam currents (10"'" 

to 10"** A cm"') nonnally have to be used.'"" Most SSIMS systems use electron 

bombardment of gaseous molecules (usually ai'gon or xenon) to produce the ion beam 

which is then accelerated to energies between 0.5 and 4 KeV before they bombard the 

suiface. Particle bombardment dways leads to the emission of vast , numbers of 

secondary electrons as well as ions-. Hence positive charging of the surface nearly always 

occurs. In order to overcome this an electron gun is used in order to flood the surface 

with electrons. Most modern SSIMS spectrometers use one of two mass spectrometers; 

the quaditipole mass spectrometer or the more advanced time of flight mass 

spectrometer. 

1.4.4.2 Spectral Interpretation 

SSIMS spectra ai-e displaced as a function of signal counts vei'sus the mass / 

charge ratio. In common with conventional mass specuometry, SSIMS spectra can be 

'inteipreted' in two ways. Either by matching spectra with fingerprint spectra of 

standard samples or by logical deteimination of structure from the fonn of the 

fragmentation pattern and a knowledge of the fragmentation pathways.'"' '" ' A unique 

moleculai- fomiula can often be derived from a sufficiently accurate mass measurement 

alone, as the atomic masses are not integers,'"' the molecular structure can then be 

detennined by considering factors such as the parent structure or the degree of 

unsaturation. 

In addidon once a fragment has been identified the spatial distribution of that 

fragment can be detennined by focusing the ion beam and rastering the beam across the 

sample whist only detecting for that fragment.'"' The spatial resolution of this technique 

is now better than 1 | im. 
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C H A P T E R 2: 

O X Y G E N G L O W D I S C H A R G E PLASMA T R E A T M E N T O F 

B I A X I A L L Y O R I E N T E D P O L Y P R O P Y L E N E . 

2.1 I N T R O D U C T I O N 

Non-equilibrium plasmas are widely used to modify the suiface properties of 

polymers, plastics and rubbers. For instance, noble gas plasmas are effective at etching 

polymer surfaces,' CF4 plasmas can lead to surface fluorination.' ' and oxygen plasma 

treatment can enhance polymer wettability and adhesion via surface oxidation.'* Both 

the chemical and physical changes taking place at the electrical dischai-ge / substrate 

inteif ace can influence the perfonnance of the resulting surface. 

The chemical nature of plasma treated polymers has been extensively examined 

by suiface sensitive analytical techniques, these include: X-ray photoelectron 

spectroscopy (XPS),'''* secondary ion mass spectrometry (SIMS).'' and contact angle 

measurements.'" Investigation of the physical changes imparted during plasma 

treatment has in the past been mainly restricted to scanning electron microscopy (SEM) 

studies." ' ' One of the major drawbacks of SEM is that it usually requires insulaiing 

samples to be coated with a conductive layer which can lead to the deformation of soft 

samples (e.g. polymers), this can also mask any plasma induced surface modification. 

Furthermore, SEM probes the specimen with a high energy electron beam, which can 

damage the polymer suiface during analysis. The relatively recent invention of atomic 

force inicroscopy (AFM) overcomes the aforementioned limitations of SEM.' ' AFM 

works by scanning a very sharp tip attached to a lightly sprung cantilever, across the 

sample suiface whilst keeping the repulsive force between the probe and surface 

constant. Nanometer resolution of non-conducting substrates can routinely be achie\ ed 

using A F M without the need for any additional sample preparation. Altiiougii the 

morphology of untreated polymer samples has been widely studied by AFM.'"" '̂ ' not 

much attention-has been paid to the topography of plasma treated polymers.''"'" 
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2.1.1 Review ot Oxygen Glow Discharge Treatment of Polypropylene. 

2.1.1.1 Species Generated by an Oxvgen Plasma 

Previous studies have shown that many chemical reactions occur within a 

oxygen glow discharge plasma.'" Electrons colliding with molecules of oxygen lead to 

the transfer of energy, which causes the molecule to be excited to a higher elecuoiiic 

state, many of which dissociate into ground state atoms. Other reactions that can occur 

within the plasma include dissociation with the production of both negative (O") and 

positive (OO ions. Both atomic oxygen and ionic oxygen can lead to the production of 

ozone and molecular ions (such as O:'. Ox etc.). Also produced are laige amouius of 

vacuum ultra-violet (VUV) radiation.'' Oxygen atoms and VUV are generally 

regarded as begin the primai^ reactive species involved with surface activation.''^'" 

2.1.1.2 Surface Oxidation by an Oxygen Plasma 

The rate detennining step for plasma oxidation is the initiation step. Which 

occurs via several mechanisms, all of which are free radical based reactions, such a 

mechanism is an oxygen abstraction: 

A 

CH CH + 0 . • CH CH + 0 H 

CH3 CH3 

H 

• CH CH + C H , O. 

The other mechanisms are dissociation reactions driven either by the dissociation energ\' 

of molecular oxygen or by the absorption of VUV radiation causing C-H bond 

rupture.'" leading to the production of carbon radicals and possibly causing chain 

scission. 
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These newly created radical sites can then either react with atomic or molecular oxygen 

to create jiydi-operoxide and hydroxyl radicals, which combine witli hydrogen radicals or 

abstract hydrogen from the same or a nearby polymer chain, creating another carbon 

radical in doing so this is called 'auto oxidation',''' to fonn their respective groups. 

These groups can then undergo further oxidation to fonn the inore highly oxidized 

carbon species, such as acid gi-oups. Alternatively the carbon radicals can deconipose 

leading to chain scission. This occurs by two main reactions. (3-scission''^ and a 

disportionation reaction.''' Molecular orbital analysis has shown that addition of 

oxygen onto the backbone of a hydrogen cai-bon polymer severely weakens the 

adjacent cai-bon-cai-bon bond, which wil l increase the rate of chain scission occurring.' ' 

It is possible that oxygen plasma treatment can cause cross-linking however the extent 

of cross-Unking is negligible due to the high rate of oxidation occtu-ring.'*^ 
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2.1.1.3 Ion Sputtering 

Although atomic oxygen is the primary force for suiface modification in a 

oxygen plasma,"'' the role of ion bombardment has to be considered. Negative 

molecular oxygen ions are held within the plasma by the plasma sheath, whereas 

positive molecular oxygen ions ai'e accelerated by the sheath then bombard the surface 

with up to 2 eV of energy.'" This energy is sufficient to cause sputtering from the 

suiface and suiface activation." Mayoux' '" ' ' bombarded a polymer suiface with ions, 

in an. oxygen environment, and detected the generation of alcohol and ketone groups 

fol lowing bombardment with inert gas ions as well as positive oxygen ions. 

2.1.1.4 Abladon from the Polymer Surface. 

Hansen"* presented the fii'st mass loss rate data of polymers exposed to an 

oxygen plasma. He found a lineai- mass loss rate with time for all of the polymers he 

tested and the process started viitually immediately with treatment. This mass loss is 

due to ablation of material from the polymer suiface and is caused by two effects. The 

fu-st is sputtering caused by ion bombardment and the second is chemical reactions of 

the polymer with the atomic oxygen producing volatile material which then ablates from 

the surface.''"'"' Various techniques have been used to investigate the nature of the 

gaseous products ablated from the plasma exposed polymers. Hansen^ examined the 

spectra f rom the emitted light for oxygen plasma containing polymer samples and found 

bands coiresponding to cai-bon dioxide and OH groups. MacCallum"'* performed mass 

spectrometry of the volatile products to reveal cai'bon dioxide and water vapor. 

Whitaker'^ performed residual gas analysis of the gaseous products evolved from the 

polymer sample and found evidence for water vapour, caibon dioxide and carbon 

monoxide being produced. 

2.2 E X P E R I M E N T A L 

2.2.1 Sample Preparation 

An industrially produced sample of tubular blown bitixially oriented 

polypropylene ( ICI D509) was obtained. Small strips of which were washed in a 50/50 
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mixture of isopropyl alcohol (BDH) / cyclohexane (BDH) prior to treatmeiit for 5 

seconds. 

2.2.2 Oxygen Glow Discharge Plasma Treatment 

A l l oxygen plasma treatments were cairied out in a electrodeless cylindrical 

glass reactor (5 cm diameter, 25 cm long), which was enclosed in a Faraday cage. The 

reactor had a base pressure of 5 x 10 "̂  torr and a leak rate of better than 10~* torr I s"'. 

The reactor was fitted with a needle value (Edwards FCVIOK), a pirani pressure gauge 

(Edwards PRlO-k) and a Fomblin oil , two stage rotary pump (Edwards E2M2) attached 

to a liquid nitrogen cold trap. A home made L-C matching network was used to 

inductively couple a copper coil (4 mm diameter copper with 11 coils wrapped around 

the reactor) to a 13.56 MHz radio frequency source. The matching network matched 

the output impedance of the frequency source to that of the partially ionized gas load by 

minuTiizing the standing wave ratio (SWR). A schematic diagram of the setup used Ls 

shown in Figure 1. A typical experimental run comprised of initially scrubbing the 

reactor with detergent, rinsing in isopropyl alcohol, then oven drying. The i-eactor was 

then cleaned with a 40 W ah- plasma for at least 30 minutes, after which the reactor was 

opened and the polymer sample was inserted into the reactor. A small strip of the 

polymer was placed in the centre of the reactor, which is also at the center of the copper 

coils. The reactor was closed and pumped down to its base pressure. Oxygen was then 

introduced into the reactor to a pressure of 2 x 10"' torr. The reactor was purged for 

600 s, after which the glow discharge plasma was ignited at 10 W. After treatment the 

sample was purged for 120 s. Each sample was characterized immediately after 

treatment. 

2.2.3 Sample Analysis 

A Ki-atos ES300 electron spectrometer equipped with a M g K a X-ray source 

(1253.6 eV) and a concentric hemispherical analyser was used for XPS analysis. 

Photoemitted electrons were collected at a take-off angle of 30° from the substrate 

normal, with electron detection in the fixed retard ratio (FRR, 22:1) mode. XPS 

spectra were accumulated on an interfaced I B M PC computer. Instaimentally 
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determined sensitivity factors for unit stoicliionietry of C(ls) ; 0 ( l s ) were taken as 

equaling 1.00 : 0.62. 

A Digital Instruments Nanoscope III atomic force microscope was used lo 

examine the topographical nature of the polypropylene suiface prior to anil immediaicly 

after electrical dischm-ge exposure. All of the AFM images were acquired in air using 

the Tapping mode.''' and are presented as unfilteied data. 

Figure 1: A schematic of the plasma reactor .set-up. 
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2.3 R E S U L T S 

2.3.1 X-ray Photoelectron Spectroscopy Results 

XPS was used to detennine the surface composition of the treated polymer. 

Only oxygen and carbon were detected. The XPS experiinentally detemiined oxygen to 

carbon (0/C) ratios for oxygen plasma treated polymers, using a variety of treatment 

times, are shown in Figure 2(a). From the 0/C ratios it can be seen that the maximum 

rate of oxidation of the suiface by the plasma occurs within the fii-st 30 seconds of 

treatment. After which the rate of oxidation rapidly di-ops and the 0/C ratio saturates 

out after 2 ininutes of treatment. C(ls) XPS spectra were fitted with Gaussian peaks of 

equal fu l l width at half maximum (FWHM),"" using a Marquai-dt minimisation computer 

program. Energies distinctive of different types of oxidised carbon moieties'** were 

referenced to the hydrocarbon peak (-CxHy-) at 285.0 eV: carbon adjacent to a 

cai-boxylate group (>C-C02-) at 285.7 eV, carbon singly bonded to one oxygen atom 

(>C-0-) at 286.6 eV, carbon singly bonded to two oxygen atoms or carbon doubly 

bonded to one oxygen atom (-0-C-0- / >C=0) at 287.9 eV, cai-boxylate groups (-0-

C=0) at 289.0 eV, and carbonate carbons (-0-C0-0-) at 290.4 eV. Untreated polymer 

exhibits a single C(ls) peak which coiTesponds to CxHy functionalities (i.e. -CH. -CH2. 

and -CH3 groups). Peak fitted C(ls) XPS spectra of untreated and oxygen plasma 

treated polypropylene surfaces are shown in Figure 2(b). The untreated polypropylene 

C(ls ) spectrum shows a single peak coiresponding to carbon bonded to hydrogen. 

Oxygen plasma treatment of the polypropylene suiface introduces -C-0, 0-C-O, C=0, 

and -CO-0 groups onto the suiface. A plot of the relative intensities of the oxidized 

cai-bon peaks with respect to the total intensity of the oxidized carbon peaks is shown in 

Figure 2(c). The relative intensity of the -C-0 peak is seen to peak at 30s treatment and 

then to decrease with treatment time, which corresponds to -C-0 groups undergoing 

further oxidation with treatment. 

Washing of the oxygen plasma modified, suiface causes the XPS 0/C ratio to 

drop f rom 0.27 to 0.12, which indicates that the majority of the plasma modified 

material is removed on washing. From the peak fitted C(ls) XPS spectrum of the 

washed modified suiface, shown in Figure 3, the relative intensities of the oxidized 
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carbon peaks were detemiined and compared to the relative intensities of the unwashed 

oxygen plasma treated polypropylene, as shown in Table 1. From which it can be seen 

that the more highly oxidized species ai'e preferentially removed on washing. 

Table 1: Relative concentradons of oxidized cai-bon moiedes for oxygen plasma treated 

and oxygen plasma treated then washed polypropylene. 

0-C o-c-o/c=o CO-0 
Unwashed 0.47 0.26 0.27 . 

washed 0.55 0.28 0.17 
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Figure 2(a): 

Influence of oxygen plasma treatment time on 0/C ratio. 
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Figure 2(b): 

Influence of oxygen plasma treatment time on C(ls.) spectra. 
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Figure 2(c): 

Influence o f oxygen plasma treatment time on relative concentration of oxidized carhon 

moieties ( I = 100 % ) . 
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Figure 3: 

C ( l s ) XPS spectra o f polypropylene: (a) untreated; (b) 60 s oxygen plasma treated: and 

(c j oxygen plasma treated fo l lowed by washing. 
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2.3,2 Atomic Force Microscopy Results 

The untreated biaxially oriented polypropylene and oxygen plasma treated 

polypropylene were scanned using A F M at two different resolutions. A low resolution 

10 | i m wide scan (Figure 4(a)) and a higher resolution 2 jiim wide scan (Figure 4(b)). 

A F M analysis of untreated polymer shows evidence of two topographical features. The 

first ai-e micro-fibrils of the polymer, which are more clearly seen in the 2 | im wide scan. 

These micro-fibrils of the polymer are formed during the film's manufacture. In the 

production of blown polypropylene f i lm the biaxial orientation is achieved by first 

drawing the f i l m into a tube. The fibrils are generally formed at this stage.''^ The film is 

then re-heated and then blown outward, causing the fi lm to be oriented along tiie 

diameter of the bubble.'* '̂ The fibrils are predominately oriented in the parallel to the 

drawing direction of the f i lm, in which direction they are fii'st fomied. The fibrils are 

then seen to be pulled apai-t by the formation of the bubble. Polypropylene films 

prepai-ed by this method tend to be highly ciystalline,'*' however the AFM micrographs 

do not reveal any spherulitic structure (Figure 4); this suggests that the ciystalline 

spherulites are situated beneath the surface of the polymer film, as reported 

previously.'*''''"' Large scale features are seen which fomis a curve aci"oss tiie scan 

approximately 0.25 | i m high. This is in fact part of a much larger ring type structure on 

the surface of the polymer,'*'* called 'haze rings', so called because in extreme cases they 

can make the fibn appear hazy or cloudy. These haze rings are caused by (3-crystallites 

of polypropylene."*"^ These P- crystallites are formed in the initial di-awing process, and 

melt at a much lower temperature than a-ciystallites. During the re-heating and 

orientation of the film, when the f i lm is blown into a bubble causing the biaxial 

orientation of the f i l in , the filin's temperature is between the melting temperature of the 

a-ciystallites and the P-ciystallites, the (3-crystalIites melt and collapse fonning the 

crater like features seen. 

A F M analysis of the oxygen glow discharge plasma treated surface shows, at 10 

| i m wide scan (Figure 5(a)). that the lai'ger topographical features on the sample 

surface, such as haze rings, remain intact after plasma treatment. The 10 \xm wide scan 

also shows the presence of small cii-cular features on the surface. The 2 |am wide scan 

(Figure 5(b)), however, shows that the plasma treatment effectively destroys the fine 

fibrillai- sti-ucture seen on unti-eated polypropylene. This is contraiy to previous elecn-on 
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microscopy studies.'' The original structure is replaced by small globular features, 

hundreds of nanometers in diameter. 

A F M images of washed oxygen plasma treated polypropylene are shown in 

Figures 6(a) and 6(b). Washing reveals 30 roughly circular features, approximately 0.25 

| i m high, the tops of which are just visible iji the images of unwashed oxygen plasma 

treated polypropylene, which are obviously obscured by the plasma modified polymer. 

Removal of the plasma modified material by washing reveals these insoluble particles. 

A curved ridge of these particles is seen at the bottom right of the image. The shape of 

this ridge indicates that it is likely to originate from a haze ring. The 2 um wide scan 

reveals the smtill globular morphology seen with the unwashed sample. The globular 

size has slightly decreased on washing. 
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2.4 DISCUSSION 

A oxygen plasma produces a large quantity of reactive species which can 

interact with a polymer surface. These include atomic oxygen, ions and VUV ladiation. 

as discussed previously. These cause three main effects at the polymei" surface; 

oxidation, chain scission and ablation. The almost complete saturation of surface 

oxidation by the plasma after 30 seconds of treatment indicates that an equilibrium is 

soon reached between the ablation from the surface of volatile material and the 

generation of new oxidized material. The dual effect of surface oxidation and chain 

scission generates a large amount of low molecular weight oxidized material 

(LMWOM),'*' ' which can then be removed from the surface by washing." Due to the 

high amount of oxygen incorporated into the L M W O M , it tends to have a much higher 

surface energy than the untreated polymer. Tlie L M W O M then will tend to 

conglomerate together into globules, rather than interacting with the untreated polymer, 

which is energetically unfavorable. 

Washing of oxygen plasma treated polypropylene shows the presence of small 

globular featiu'es and not the original biaxial orientation. This indicates that a significant 

proportion of plasma modified material remains on the surface, as also shown by XPS 

analysis. This material is either oxidized material that is of too high molecular weight to 

be soluble or material that has been lightly oxidized, but its molecular weight has been 

modified by V U V component of the electiical glow discharge, since it is known that 

V U V radiation can penetrate into the sub-surface of polymers to cause chain scission 

and cross-linking.'*"''*^ Polypropylene is known to fonn spherulitic crystallites beneath 

the surface.'*" Ciystallites of polymer are known to react at a lower rate than 

amorphous polymer,"* Ciystalline polymers are known to be more closely packed tlian 

amoiphous polymer,'*''' so that less material is exposed to the plasma. Washing of the 

plasma treated polymer reveals the core of the spheruhtic crystallites, which remain 

unoxidised. Therefore the insoluble lumps seen with plasma treatment are Ukely to 

consist of the untreated core of spheruHtic crystaUites of the polymer. 
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2.5 C O N C L U S I O N S 

Here we have examined both the chemical and physical effects of oxygen plasma 

treatment on the surface of polypropylene. It has been shown that oxygen plasma 

treatment causes surface oxidation and chain scission, producing low molecular weight 

oxidized material. This material conglomerates into small globular features on the 

surface and can be removed by washing. Ciystallites of polypropylene react at a slower 

rate than amorphous polypropylene and core residues of crystalline polypropylene ai'e 

seen after plasma treatment. 
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CHAPTER 3: 

ATMOSPHERIC SILENT DISCHARGE TREATiMENT OF 

B I A X I A L L Y ORIENTED POLYPROPYLENE 

3.1 I N T R O D U C T I O N 

Although oxygen glow discharge treatment of polymers is growing as an 

industrial method of modifing polymer surfaces, it requires a low pressiue system. Tliis 

is very expensive and unattractive for industrial mass production applications.' An 

alternative to low pressure plasma treatment is to use an atmospheric non-equlbrium 

plasma, such as the dielectric barrier (silent) dischai-ge and the corona discharge.' The 

cheinical and physical properties of silent dischai-ge treated polypropylene, analogous to 

chapter 2, wi l l be studied to compai^e atomspheric and low pressure plasma neatment. 

The chemical nature of plasma treated polymers has been extensively examined 

by surface sensitive analytical techniques (XPS, SSIMS, etc.). However, plasma 

modification can peneti^ate to several microns below the polymer surface, ' and therefore 

the sampling depth of such surface sensitive techniques (which is typically of the order of 

nanometers)'* may not necessarily be representative of the whole plasma modified layer. 

Here we combine XPS, SSIMS and solution state NMR analysis in order to attain a 

better insight into the chemical composifion of the ti'eated surface layer produced during 

atmospheric dielectric banier (silent) discharge modification of biaxially oriented 

polypropylene. 

The chemical effects of plasma a-eatment have long been known to be time 

dependant with the plasma effect diminishing with time after t r ea tment .^The physical 

effects of ageing wi l l also be studied here. 

3.1.1 Background to the Modification of Polypropylene using the Silent Discharge. 

The silent discharge reactor was invented over a hundi-ed years ago^ and both the 

physics and chemistry of the discharge have been widely studied. It has long been known 

that a silent dischai-ge reactor operating in au- will produce a large quantity of reactive 
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species including ozone, atomic oxygen, ulti'a violet radiation and electrons.'"' " Ozone 

and ultra-voilet radiation are generated throughout the reactor, whilst electrons are 

restricted to microdischarges and a thin layer close to the dielectric polymers surface.'^ 

A l l of these species, when bombarding a polymer surface in air, led to surface activation 

and modification. 

3.1.1.1 Surface Oxidation 

The rate deteirnining step for the oxidation of polymers is usually the initiation 

step. For ozone, ultra-violet radiation or electron activation this occurs by a free radical 

reaction. In the case of ozone bombardment activation occurs via a hydrogen abstraction 

reaction: 
10 

C H + O , C*+ •OH +0, 

Elecu-on and ulu-a-violet radiation both act in a similai- way in cleaving either C-H or C-C 

bonds" leading to the formation of carbon radicals and chain scission. 

• c — c -
uv 

•H U V 
H 

The generated carbon radicals on the surface can then either react with molecular oxygen 

or ozone or decompose leading to chain scission. Reaction of carbon radicals with 

molecular oxygen then leads to the fonnation of a hydroperoxide group, which is 

unstable and either decomposes or reacts with another hydi^ocai^bon group forming, in 

both cases, an alcohol radical: 

C — o « 

Reaction with ozone again leads to the fonnation of an alcohol radical and oxygen. The 

alcohol radical can either abstract a hydj'ogen from a neaity polymer chain or decompose 
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fomiing a ketone group and chain scission, via |3-scission.'"' In botli cases more carLx)n 

radicals are created which can react with molecular oxygen or ozone continuing the 

reaction Cauto-oxidation'). The generated alcohol and ketone groups can undergo 

further oxidation, by ozone or molecular oxygen, to fomi the more Iiighly oxidised 

carbon species. Although atomic oxygen is generated within the silent discharge it very 

quickly recombines and reacts with oxygen to fonn ozone and does not significantly 

affect the modification of polymers. 

3.1.1.2 Molecular Weight Changes 

Electron and ultra-violet radiation bombardment can lead to chain scission 

directly along the polymer backbone.''*'""' However the fonnation of carbon radicals at 

the suiface can also lead to chain scission along the polymer backbone. If the generated 

carbon radicals cannot combine with a molecule of oxygen or ozone then the radical will 

disproportionate forming a carbon-carbon double bond and a chain end radical:"" 

CH2 C CH2 C H >- C H = C H + ' C H 2 C H + H-

This chain end radical wi l l undergo oxidation, abstract a hydi'ogen or decompose to form 

a carbon-cai-bon double and lose a hydrogen radical. However carbon-carbon double 

bonds ai;e chemically active sites and chromphoric. The generation of these carbon-

carbon double bonds will then increase the rate of activation and oxidation of the 

polymer." I f two carbon radicals are fornied on different polymer chains but in the same 

region of space then the radicals can combine to form a cross-linking bond." However it 

is much more probable that the carbon radical wil l react with oxygen or disportionartre 

before the second radical is formed." 

3.1.1.3 Low Molecular Weight Oxidised Material 

There are two effects caused by the silent discharge plasma on the polymer 

suiface. The fii'st is the generation of oxygen containing carbon moieties, such as alcohol 

and ketone groups. The second is chain scission, leading to the decrease in the average 

molecular weight of the polymer at the surface. This dual effect leads to the fomiation of 

low molecular weiaht oxidised material (LMWOM) at the surface.'**. ''' The high oxygen 
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content of LMWONicombined with its low molecular weight causes it to be. unlike the 

original polymer, soluble in most common solvents. 

3.2 E X P E R I M E N T A L 

3.2.1 Dielectric Barrier Discharge Treatments 

Atmospheric silent discharge treatments were caixied out using a home built 

parallel plate dielectric barrier discharge reactor operating at 3 kHz, 11 kV, with an 

electrode gap of 3.00 ± 0.05 mm, as shown in Figure 1. Small strips of biaxially oriented 

polypropylene fi lm (ICI) were washed in a 50/50 mixture of isopropyl alcohol and 

cyclohexane and dried in air prior to electrical discharge treatment for times ranging from 

1 to 300 s. 

3.2.2 Sample Analysis 

A Ki-atos ES300 electron specu'ometer equipped with a M g K a X-ray source 

(1253.6 eV) and a concentric hemisplieiical analyser was used for XPS analysis, as 

described m chapter 2. Instrumentally detennined sensitivity factors for unit 

stoichiometry of C ( l s ) : 0 ( l s ) were taken as equalling 1.00 : 0.62. 

Solution state ' H N M R spectroscopy was used to characterise the soluble 

component of the plasma modified polymer smface. Approximately 120 cm- of 

polypropylene fihn was exposed to the dielectric barrier discharge for 120 s in order to 

generate sufficient soluble material for N M R analysis. Next, the treated layer was 

extracted from the polypropylene substrate by washing iti chloroform solution for a 

duration of 30 s. Then the chloroform solvent was allowed to evaporate and replenished 

with deuterated chloroform prior to analysis by solution state proton N M R spectroscopy 

on a Varian VXR-400s spectrometer. 

TOFSIMS analysis was cairied out with a Physical Electronics 7200 

instrument.'" The piimary ion beam (8 keV Cs"") with a spot size of ~ 50 [ inr was 

rastered over an area of 100 x 100 jam keeping the total dose well under lO' ' ions cm ' 
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(static conditions). In addition to studying the treated film for comparison with XPS 

data, the material washed from the suiface of a few cm" of this film was also studied, by 

deposition onto a substrate, for comparison with NMR data. The chloroform extract 

was sufficiently concentrated to deposit several monolayers onto silicon wafer (spin 

coating) or a submonolayer on nitric acid - etched silver foil in order to generate Ag+ 

cationized secondary ions. 

A Digital Instruments Nanoscope I I I atomic force microscope was used to 

examine the topographical nature of the polypropylene suiface prior to and after 

electrical discharge exposure. A l l of the AFM images were acquired in air using the 

Tapping mode, and are presented as unfiltered data. 

Figure 1: Apparatus used for atmospheric silent discharge treatment of polymer films. 
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3.3 R E S U L T S 

3.3.1 X-ray Photoelectron Spectroscopy 

XPS was used to follow the rise in 0/C ratio at tiie polymer surface with 

increasing silent discharge treatment duration. Figure 2(a). A gradual levelling off was 

evident after 120 s plasma exposure. C(ls) XPS spectra were fitted with Gaussian peaks 

of equal ful l width at half maximum (FWHM) as described in chapter 2. Figure 2(b.). 

Untreated polymer exhibits a single C(ls) peak which corresponds to CxHy 

functionalities (i.e. -CH, -CH2, and -CH3 groups). Silent discharge modification led to 

the appearance of a shoulder at higher binding energies which was taken as being 

indicative of the build-up of oxygenated carbon centres, this is consistent with the 

observed variation in 0/C ratio. The relative concentration of the >C-0- coinponent 

passes through a maximum following 30 s treatment, Figure 2(c); the subsequent fall in 

intensity can be attributed to >C-0- groups undergoing further oxidation following the 

initial stages of reaction to form the more highly oxidised species."' 

Washing a 30 s silent discharge treated polypropylene sample foi- 5 s in a 50/50 

mixture of isopropyl alcohol / cyclohexane resulted in a drop in the 0/C ratio from 0.31 

± 0.03 to 0.09 ± 0.01, Figure 3, thereby showing that a large proportion of the modified 

polymer is weakly bound to the surface. However, it is interesting to note that the 

relative distiibution amongst the oxidised moieties does not differ significantly between 

the washed and unwashed plasma treated samples. Table 1. 

Ageing studies showed that the oxidised layer gi'adually disappears with time. 

This is evident from the fall in 0/C ratio and the coiTesponding attenuation of the high 

binding energy shoulder in the C(ls) envelope with ageing time. Figure 4. Carbonate 

species are lost f rom the suiface at a much faster rate in comparison to the other types of 

oxidised carbon functionalities. 
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Figure 2(a): 

Influence of silent discharge treatment time upon 0/C ratio of polvpropvlene. 
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Figure 2(b.): 

Influence of silent di.scharge treatment time upon C(ls) spectra for polypropylene. 
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Figure 2(c): 

Influence of silent discahrge treatment time upon the relative concentration of oxidiseil 

carbon moieties ( I = 100 %) 
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Figure 3: 

C(ls) XPS spectra of polypropylene: (a) untreated; (b) 30 s silent discharge treatment: 

and (c) silent discharge treatment followed by solvent washing. 
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Figure 4(a): 

Influence of ageing time upon 0/C ratio of polypropylene. 
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Figure 4(b): 

Influence of ageing time upon C(ls) spectra for polypropylene. 
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Figure 4(c): 

Influence of ageing time upon the relative concentration of oxidised cai bon moieties ( I 

100 % ) . 

C-0 
o-c-o/c=o 

• CO-0 
A 0-CO-O O 60 -

O 20 

0 5 10 15 20 25 30 35 40 45 

AGEING TIME/hrs 

81 



Table-1: The relative peak intensities of the oxidi,sed carbon peaks ( I = lOOV) for 

unwashed and washed 30 s silent discharge treated polypropylene. 

Sample C - 0 0 - C - O / c=o C O - 0 -o-co-o-
Unwashed 48 ± 3 26 ± 2 1 8 ± 2 8 ± 1 

Washed 53 ± 3 26 ± 2 . 1 5 ± 2 6 ± I 

3.3.2 Solution State 'H NMR 

Solution state ' H N M R spectra were taken of the species washed off with 

chloroform from both untreated and silent discharge treated polypropylene, Figure 5. A 

small amount of residual non-deuterated chloroform is evident in the i-ecorded spectra at 

7.3 ppm, this being typical of commercially available deuterated chloroform solvent." 

The N M R spectrum of the washed off species from untreated polypropylene 

consists of two sets of peaks. The first group covers a broad range from 0.8 ppm to 1.3 

ppm and coiTesponds to protons attached to -CH3, -CH2, and -CH groups primarily 

f rom washed out atactic polypropylene.'"^ This is not too surprising, since during the 

industrial manufacture of biaxially oriented blown polypropylene film, the majority of 

polymer is present in the isotactic state with a small amount in the atactic form (98 % 

isotactie, 2% atactic for the polymer used). Atactic polypropylene produced in this way 

tends to have a lower molecular weight and does not crystallise (i.e. it is located in the 

amorphous (more mobile) regions of the film), hence it is much more soluble compared 

to its isotactic counterpart, i.e. the former can be washed out with chloroform despite 

being present in very low concentrations. The shaip peak at 1.6 ppm is characteristic of 

water residue present in the chloroform solvent. The second set of ' H N M R peaks 

comprises two weak groupings at 6.7 and 7.1 ppm which correspond to protons bonded 

to vinylic or aromatic carbons.'" These are most likely to originate from trace amounts 

of antioxidants added to the polypropylene film during manufacture.'' The intensity of 

the antioxidant features is small compared to those from the atactic polypropylene, 

thereby suggesring that the majoiity of the washed out species must be atactic 

polypropylene. 
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Solution state ' H iS'.MR analysis of the chloroform wash taken fixmi silent 

discharge treated polypropylene shows that the distribution of peaks in the 0.6 to 1.3 

ppm region has changed, this is most likely due to some isotactic polymer containing 

species also being removed,"'' which leads to an overlap with the previously observed 

atactic features. The water peak at 1.6 ppm has become much broader as a result of 

hydrogen bonding between the water and washed off low molecular weight oxidised 

material ( L M W O M ) . In addition, a broad feature is discernible between 1.8 ppm to 2.4 

ppm, this can be attributed to H atoms bonded to an sp' carbon centre adjaceni to an 

oxygen atom (i.e. alcohols, ethers, esters, etc.). 
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Figure 5: 

Solution state proton NMR spectra of: (a) washed species from untreated polypropylene: 

and (b) washed species from 120 s silent discharge treated polypropylene. 
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3.3.3 TOF-SIiVIS 

The positive ion survey .scan of the treated fi lm. Figure 6. is at fiisi sight 

relatively unchanged with respect to that expected from the untreated polypropylene."' 

However, closer inspection of the peaks at any nominal mass reveiils oxygenated 

fragments in addition to the original hydrocarbon (CxHy") only peaks. Some examples 

are shown in Figure 7. The peak at m/z 113 is not a feature of the polypropylene 

spectrum, consistent with all the components being dtie to oxygen containing fragment 

ions. The peak assignments are from exact mass measurement and are within ~ 20 ppm 

of the calculated masses. 

An even more striking change is .seen in the negative ion spectrinii. Figure 8. The 

untreated surface gives only C f and Cj" clusters (m/z 12-14 and 24-26 respectively). 

The expected atomic peaks due to OVOH" (m/z 16, 17) are accompanied by NO:' and 

NO3' (m/z 46, 62) and an extensive series of fragment clusters extending up to nearly m/z 

500. These are all ions with the general structure C^HyOz". Some examples are given in 

Figure 9 for the mass range m/z < 100. At higher masses the pattern of peaks in the 

clusters repeating every 14 amu (CH2) is very similar. Figure 8(b). One repiesentative 

set is shown in Figure 10. Within this set there are fragments with the generic formulae 

CcOjH,,", C7O4H,,', CsOjH,," and possibly CsOcH,,' and Cy02H„" (weaker components). 

Because of the greater degree of components overlapping at higher mass the assignment 

of the weaker components becomes increasingly uncertain. Overall, the SIMS spectra 

f rom the treated suiface confimi the very high 0 /C ratio seen in XPS. It is interesting to 

note that the negative ion spectrum contains unambiguous contributions from CO3' and 

HCO.V (m/z 60, 61). This helps to confimi the assignment of the higher binding energy 

C(ls) component. 

A l l the prominent peaks in the spectra from the extract deposited on silicon 

coiTesponded to those from polypropylene the antioxidant Irganox 1076.'' In contrast 

to the spectra f rom the treated polymer suiface. CHyO:" peaks were very weak. 

For the submonolayer of the extract on silver, three sets of peaks were observeil: 

those chiu-acteristic of the etched silver substrate; those due to cationized Irganox 1076: 
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and an envelope of peaks between ~m/z 500-1400, Figure 11. Again each clustei' pattern 

repeats at intei-vals of mass equal to that of C H 2 and the two most prominent 

components are separated by a mass equal to '"'^Ag - '"^Ag. These peaks can be assigned 

the generic fomuila (CH2)nOAg* on the basis of accurate mass measurement (the 

presence of the antioxidant [M+Ag]"" peaks at m/z 637, 639 was helpful in this respect). 

The envelope may therefore be due to funcuonalised low molecular weight material 

resulting from oxidative chain scission of the polypropylene backbone. The highest mass 

clusters observed correspond to chains involving up to 100 carbon atoms. Such long 

hydrocarbon chains functionalised with one oxygen atom are consistent with the 

observations made by XPS and NMR analysis. 

3.3.4 Atomic Force Microscopy 

There is a clear difference in topographical appearance between the untreated and 

silent discharge treated polypropylene surfaces. The fibrillar structure of biaxially 

oriented polypropylene is lost and replaced by large globular type features (0.5 - I.O urn 

in diameter), these increase in size with longer treatment times, Figure 12. Washing the 

silent discharge treated polypropylene film in a 50/50 mixture of isopropyl alcohol and 

cyclohexane causes the disappearance of the globular features, which is consistent with 

the droplets being soluble. However, the washed sainples do not display the biaxial 

features seen previously for the untreated polymer; instead much smaller globular 

features are evident with diameters of just a few hundred nanometers. 

Ageing studies of the dielectric barrier treated polypropylene siiifaces showed a 

gradual slninking of the globular material with time, Figure 13. 
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Figure 6: 

Positive TOFSIMS of polypropylene silent discharge treated tor 30 s. 
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Figure 7: 

Resolved components of selected peaks from Figure 6. 
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Figure S(a): 

Negative TOFSIMS of polypropylene silent discharge ti-eated for 30 s; ni/z 10-200 

ranue. 
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Figure S(b): 

Negative TOFSIMS of polypropylene silent discharge treated for 3():m/z l()()-45() range. 
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Figure 9: 

Resolved components of selected peaks from Figure 8(a) 
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Figure 10(a): 

Representative details of cluster composition in Figure 8(b); intensity pattern with the 

cluster centred on m/z 157. 
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400 

Figure 10(b): 

Representative details of cluster composition in Figure 8(b): resolved components at 

each nominal mass. 
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Figure 11(a): 

Partial positive TOFSIMS of chlorofonn extract deposited as a sub-monlayer on etched 

silver foi l showing the cationized oligomer distribution between m/z 500-1400 (the peak 

at ~ m/z 1160 has not been assigned). 
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Figure I 1(h): 

Detail of repi'esentative clusters shown in figure 11(a). 
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Figure 13(b): 

Variation in average globule size for 30 s silent discharge treated polyprop\ lenc a.s a 

finiction of ageing period 

1000 

900 

h -

DC 
< 

800 -

700 -

g 600 -

500 

400 
0 10 20 30 40 50 

AGEING TIME / hrs 

101 



3.4 DISCUSSION 

Silent dischai-ge treatment is known to initiate polymer oxidation via chain 

scission, hydi'ogen abstraction, and oxygen attachment processes, leading to the 

fonnation of low molecular weight oxidised material ( L M W O M ) . ' ' ^ w h i c h can be 

removed by solvent extract ion." ' ' 'The small amounts of Nox species detected by TOF

SIMS have also been identified on discharge treated surfaces by MIRS" and XPS.'̂ '̂  

The globular features observed by AFM can be attributed to the agglomeration of the 

L M W O M caused by the difference in suiface energies between the L M W O M and the 

untreated polymer, since it is energetically unfavourable for high suiface energy 

substances to interact with low surface energy olefinic polymers."'" It is important to 

note that despite a gradual levelling off in the chemical composition of the plasma treated 

layer, the L M W O M globules continue to expand in size with exposure time. Figures 2 

and 6 respectively. These observations can help to rationalise the reported vaiiability in 

perfonnance of plasma treated polymers for adhesive applications, since over-treatment 

can lead to excessive L M W O M and the fonnation of a weak inteifacial layer despite the 

treated surface exhibiting good wettability chai^acteristics. 

A vaiiety of explanations have been put forward to account for the ageing of 

plasma treated polymers, these include: migration of mobile species out of the polymer 

bulk,''' reanangement of the modified polymer,"'* and desoiption of the more volatile 

constituents f rom the suiface. Some or all of these mechanisms may be responsible for 

the ageing behaviour seen in the suiface topography and 0/C ratio. Furthermore, 

suiface ageing helps to explain why there can often exist a discrepancy in the measured 

adhesive sa^ength of a plasma treated suiface; clearly the time between plasma treatment 

and bonding wi l l be critical. 

3.5 CONCLUSIONS 

Atmospheric dielectric banier treatment of biaxially oriented polypropylene in air 

leads to the fonnation of globular low molecular weight oxidised material (LMWOM). 

The formation of such globular- features can be accounted for in temis of the difference in 

suiface energies between L M W O M and the underlying olefinic polymer substrate. This 
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LMVVOiVl is seen to giaclually tlisappear with time away fmii i ihe ti'eaied poKnicr 

surface. 
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C H A P T E R 4: 

S T R U C T U R E AND O X I D A T I V E PLASMA D E G R A D A T I O N O F 

H E X A T R I A C O N T A N E C R Y S T A L S 

4 . 1 I N T R 0 D U C T I 0 N 

In the previous two chapters it has been shown that plasma treatment can be 

used to alter the chemical and physical properties of polymer substrates. However an 

understanding at the molecular level of these processes is currently lacking. One of the 

main reasons for this is that the substrates tend to be poorly defined.' An easy way of 

overcoming this di-awback is to use a model polymer surface.' For instance, 

hexatriacontane (C36H74) is a straight chain paraffinic molecule which packs into a 

highly crystalline fonn' , hence it can serve as a good model for high density 

polyethylene.""*'"' Furthermore, its electronic valance structure'' and ultraviolet 

absoiption chai-acteiistics'' ai-e found to be virtually identical to those of high den.sity 

polyethylene. 

The aim of this chapter is to describe the non-equilibrium oxidative plasma 

modification of hexatiiacontane surfaces. XPS and solution state NiVIR have been used 

to follow the chemical changes taking place, whilst atomic force microscopy provides 

an insight at the molecular' level into the extent of heterogeneous degradation across the 

substrate surface. 

4.2. E X P E R I M E N T A L 

4.2.1 Sample Preparation 

Hexatriacontane (Aldrich, 98 %) ciystals were deposited directly onto a glass slide 

during re-crystallisation from toluene solution."' Optical microscopy showed that the 

crystals were platelets (20 to 50 | i m long), and tended to lie flat on the glass substrate. 
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4.2.2 Silent Discharge Treatment 

Atmospheric pressure air silent discharge treatments were Ciuried out using ;i 

home built parallel plate dielectric barrier discharge reactor operating at 3 kHz. 11 kV, 

with an electrode gap of 3.00 ± 0.05 mm. Silent discharge treatment times were kept 

short (5 s and 60 s for AFM arid XPS / NMR respectively) in order to follow the early 

stages of oxidative attack at the hexatriacontane crystal surfaces. 

4.2.3 Sample Analysis 

A Digital Instruments Nanoscope I I I atomic force microscope was used to 

examine the topographical nature of the hexatiiacontane crystal surfaces prior to and 

immediately after electiical discharge exposure. Molecular resolution images of the 

crystal structure were obtained using contact mode AFM. Whilst tiipping mode AFM 

was used to image larger scan areas. 

A Kratos ES300 electron spectrometer equipped with a MgKa X-ray source 

(1253.6 eV) and a concentric hemispherical analyser was used for XPS analysis. 

Photoemitted electrons were collected at a take-off angle of 30° from the substrate 

nomial, with elecQ-on detection in the fixed retard ratio (ERR, 22:1) mode. 

Solution state 'H NMR spectroscopy was also used to follow the chemical 

changes taking place during atmospheric dielectric bariier treatment of hexatriacontane. 

Both the unmodified and modified crystals were dissolved in deuterated chloroform and 

analysed using a Vaiian VXR-400s NMR specti-ometer. 
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4.3 R E S U L T S 

4.3.1 Atomic Force Microscopy 

A F M analysis of untreated hexatriacontane crystals shows rhombic platelets with an 

acute angle of 80 ± 5°; this morphology is typical of paraffinic crystals" '̂  "'" " . Figure 1. 

Molecular resolution A F M image of hexatriacontane is shown in Figure 2(a). 

2-D Fourier analysis is a well known method of image analysis.'" '"' If an image 

contains a repeating function with wavelength X at an angle 9 then the 2-D Fourier 

transform spectrum will display this function as a single point l/A distance from the 

oiigin and at the angle O.'"* By peiforming an inverse 2-D Fourier transform of Just 

these periodic functions then a filtered image containing just the functions can be 

obtained. 

2-D Fourier transfonn analysis of Figure 2(a). Shown in Figure 2(b), shows that 

these crystals possess a crystal structure with' lattice spacings of 0.63 ± 0.05 nm and 

0.78 + 0.05 nm with a lattice angle of 92 ± 5°. These lattice parameters compare well 

with the values of 0.56 nm and 0.74 nm and an oithorhombic crystal structure obtained 

by X-ray diffraction for the bulk crystal." '̂  '^ The Fourier filter image of Figure 2(a) is 

shown in Figure 2(c). An edge dislocation is also discernible in Figures 2(a) and 2(c). 

where an extra plane of molecules has produced a distortion in the lattice packing.'' 

Oxidative attack is concentrated ai-ound the crystal edges duiing silent discharge 

treatment of the hexatriacontane crystals to produce a jagged appearance with angles of 

80 ± 5°, and 100 ± 5°, Figure 3. Small globulai- features are also evident. 
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4.3.2 X-ray Photoelectron Spectroscopy 

The C(ls) spectrum of the untreated hexatriacontane crystals displayed a main 

peak at 285.0 eV, which con-esponds to CxHy (i.e. -CH2, and -CH3 groups). Figure 4. 

Silent dischar-ge treatment resulted in the appearance of vaiious types of oxidised 

carbon moieties, as desciibed in chapter 2. 

4.3.3 NMR Spectroscopy 

The proton NMR spectrum of hexatiiacontane ciystals dissolved in deuterated 

chloroform shows four peaks. Figure 5 ( a ) : 7 . 5 ppm (non-deuterated chlorofonn 

impurity), 1.5 ppm (absorbed water), 1.2 ppm (-CH2 groups along the alkyl chain 

backbone), and 0.9 ppm (-CH3 groups at the chain ends). The chain length was 

calculated f rom the peak area ratios to be 40 ± 4 carbon atoms. 

Silent discharge tteatment gave rise to three effects in the NMR spectrum, 

Figure 5(b). Firstly, a general broadening of the CH2 and CH3 peaks was evident, this is 

consistent with an increasing number of different chemical envii-onments. Also average 

chain length was found to have been shortened to approximately 20 + 4 carbon atoms. 

Finally, three new peaks appeai'ed: 5.1 ppm (vinylic car'bon - carbon double bonds). 2.0 

ppm (CH2 groups adjacent to carbon-carbon double bonds, and ether groups), and 1.7 

ppm (hydrogen atom bonded to a carbon centre which is either adjacent to an ether 

group or two cai^bon atoms away from a carbon-carbon double bond). These 

assignments were confirtned by COSY NMR expeiiments. 
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Figure 4: 

C(ls) spectra of hexatiiacontane crystals: (a) untreated; and (b) following 60 s silent 

dischai-ge n-eatment. 
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Figure 5: 

Solution state proton NMR spectra of hexatriacontane crystals: (a) untreated: and (b) 

following 60 s silent discharge treatment. 
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Figure 6: 

COSY proton NMR specaaim of hexatriacontane crystals following 60 s silent 

discharge a-eatment. 

F 2 
;ppm]-

3- -

4 -

5 -

7 -

- , - | - , - , - . - T - f -

7 6 
-p-r- "1—r- T — r " i — — r 

ri vppm) 

r—J—1—t 1-I—I—I - T - " ! — r y 

2 1 

118 



4.4 DISCUSSION 

Atomic force microscopy has shown that the surface of hexatiiacontane crystals 

consists of an orthorhombic structure containing lattice spacings of 0.63 nm and ().7H 

nm. This coiTesponds to the (001) surface of hexatriacontane crystals." and therefore 

means that the hexatriacontane chains are all aligned peipendicular to the crystal 

surface, with the edges of each crystal exposing alkyl chain backbones. 

A variety of species are known to be produced within an atmospheric pressure 

ah" dielectric barrier dischai-ge,''^'" these include: electrons, oxygen atoms, ozone, and 

ultraviolet radiation. Such a reactive medium can initiate polymer oxidation via chain 

scission, hydrogen abstraction, and oxygen attachment processes. It has previously 

been reported that H 2 O , CO, C O 2 and H 2 gases are eliminated from the surface during 

low pressure oxygen plasma treatment of hexatiiacontane"^ ' ' . In the present study, 

A F M analysis has shown that silent discharge treatment leads to a greater rate of 

degradation around the edges of the hexatiiacontane ciystals, rather than at the surface. 

This can be attributed to there being a greater rate of oxidative reaction along the 

backbone of hexatriacontane molecules than at the methyl end groups which are present 

on the (001) crystal surfaces. Distinct jagged edges are evident which have a tip angle of 

comparable magnitude to that associated with the bulk packing of hexatriacontane 

molecules.'' Such jagged degradation features are most likely to nucleate from around 

edge dislocation centres, since these regions already possess a considerable level of 

lattice instability, Figure 7. 

XPS and N M R analysis have shown that hexatriacontane molecules undergo 

chain oxidation and chain scission''' during silent dischiarge treatment. This leads to 

the formation of carbon-carbon double bonds and a variety of oxygenated carbon 

centres. Hexatriacontane molecules wil l react with atomic oxygen, ozone, electi-on 

streamers, and U V photons from the silent discharge to produce free radical centres 

along the alkyl backbone. These can subsequently undergo further reaction to fomi 

oxidised carbon moieties, or lead to the formation of carbon-carbon double bonds via 

the disportionation of secondai7 radical centres'", or hydrogen abstraction from a free 

radical chain end.'''. 
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4.5 C O N C L U S I O N S 

Hexatriacontane crystals have been employed as a model system for high density 

polyethylene. Atmospheric silent dischiirge treatment in air is toimd to lead to localised 

oxidative degradation afound the edges of hexatriacontane crystals and the formation of 

oxygenated and unsaturated cafbon species. 

Figure 7: Jagged edge formation during silent discharge treatment of hexatriacontane 

crystals (where to < ti < t2 < t.^. 

120 



R E F E R E N C E S 

1 . Andi-ade, J. D. In Polymer Surface Dynamics: Andi-ade, J. D. Ed.; Plenum: New 

York; 1988, Chapter I . 

2 . Pomlin-Epaillard, F.; Pomepui, B.; Brosse, J.-C; / . Polym. 5c/., Polym. Chem. Ed. 

1993, J7, 2671. 

3 . Simon, B.; Grassi. A.; Boistelle, R. J. Ciyst. Growth. 1974, 26, 77. 

4 . Rei Vilar, M . ; Schott, M . ; Pfluger, P. J. Chem. Phys. 92, 1990, 5722. 

5 . Clouet, F.; Shi, M . K. J. Appl. Polym. Sci. 1992, 46, 1955. 

6 . Pireaus, J. J.; Caudano, R. Phys. Rev. B 1977, 75, 2242. 

7 . George, R. A.; Maitin, D. H.; Wilson, E. G. / . Phys. C 1972. 5. 871. 

8 . Carter, P. W.; Ward, M . D. / . Am. Chem. Soc. 1993,115, 11521. 

9 . Matsushige, K.; Hamano, T.; Horiuchi, T. J. Ciyst. Growth 1995, J46, 641. 

10 . Tengi-otenhuis, E.; Vandereerden, J. P.; Hoogesteger, F. J.; Jenneskens. L. W. Chem. 

Phys. Lett. 1196,250, 549. 

11 . Boistelle, R.; Simon, B.; Pepe, G. Acta Ciyst. B 1976, 32, 1240. 

12 . Bramble, S. K.; Jackson, G. R. / . Forensic Sci. 1994, 39, 920. 

13 . Watson, S. K. Geophysics 1993,58, 835. 

14 ; Brigham, E. O. The Fast Fourier Transform and its applications; Prentice-Hall: 

New Jeresy, 1988; Chpater 11. 

121 



15 . Stocker, W.; Bar, G.; Kunz, M . ; Moller, M. ; Ma sinov, S. N.: Cantow. H. .1. Polvni. 

B LI lie till 1991,26,215. 

16 . Wang, Q. G.; Annis, B.; Wunderiich. B. J. Polym. Sci.. Polyiii. Pliys. Ed. 1994..)':, 

2653. 

17 . Zemlin, P.; Reuber, E.; Beckmann, E.; Zeitler, E.; Dorest. D. L. Science 1985. 229. 

461. 

18 . Derome, A. E. Modern NMR Techniques for Chemistry Research; Pergamon: 

Oxford, 1987. 

19 . Eliasson, B.; Hirth, M . ; Kogelschatz, U. J. Phys. D: Appl. Phys. 1987, 20. 1421. 

20 . Eliasson, B.; Kogelschatz, U. IEEE Trans. Plasma Sci. 1991, 79, 309. 

21 . Shi, M . K.; Clouet, F. / . Appl. Polym. Sci. 1992, 46. 2063. 

22 . Shi, M . K.; Christoud, J.; HoU, Y.; Clouet, F.,/. Macromolecular Sci - Pure Appl 

Chem. 1992, ASO, 219. 

23 . Strobel, M . ; Dunatov, C ; Strobel, J. M . ; Lyons, C. S.; Perron. S. J.; Morgon. .M C. 

/ . Adhesion Sci. Technol. 1989, 3, 321. 

.24 . Gerenser, L . J. J. Adhesion Sci. Technol. 1987, / , 303. 

25 . Ranby, B.; Rabek, J. F. Photodegradation, Photo-o.xidation and Photostahilization 

of Polymers; Wiley: London; 1975. 

26 . Adam, J. H. : Goodrich, J. E. / . Polym. Sci., Polym. Phys. Ed. 1979, 13. 333. 

122 



C H A P T E R 5: 

N O N - E Q U I L I B R I U M PLASMA T R E A T M E N T O F M I S C I B L E 

P O L Y S T Y R E N E / P O L Y P H E N Y L E N E O X I D E BLENDS 

5.1 I N T R O D U C T I O N 

Economically it is much cheaper to just mix together two or more existing 

polymers, rather than having to develop a polymer for each new application. This 

process is not new.' "' For instance, the well known polystyrene / poly(2.6-dimethyI-

1,4-phenylene oxide) miscible blend system finds widespread commercial use in the 

themioplastics indusuy. '^The suiface characteristics of such polymer blend mixtures 

need not necessarily be a straightforward weighted average of the values known for the 

respective components. Indeed, this can offer scope for the tailoring of important 

suiface properties, e.g. thermal behaviour, adhesion, gas bairier, electrical conductivity, 

etc. In this study, the suiface chemisny and topography of polystyrene / polyphenylene 

oxide miscible blend inixtures is investigated following low pressure glow dischai ge and 

atmospheric pressure dielectric barrier discharge non-equilibrium plasma modification. 

In paiticulcU', the issue of whether oxidative plasma treatment.of this miscible blend 

system results in just a sa-aightforward average of the changes seen for the respective 

pai-ent polymers, or i f there exists some unusual physicocheinical behaviour at the suiface 

is addi'essed. 

Polystyrene (PS) Poly (2,6-dimethyl 1,4-phenylene 
oxide (PPO) 
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5.1.1 Factors affecting Polymer - Polymer Miscibility 

One of the major di-awbacks of blending is the relatively few polymers that can 

fonn miscible blends with each other. Miscible polymers are polymers that when blended 

together fonn a single phase. 

The qualitative thermodynamic argument which limits the miscibility of polymers 

derives f rom the contribution of the entropy of inixing (AS,„i,0 to the free energy of 

mixing expression.^ 

AG,„i, = AH,„i, - TAS,„i, (5.1) 

Where AG„,ix is the free energy of mixing and AH,„ix is the heat of mixing. Generally A 

Hn.ix is positive and although ASmix is also generally positive, the entropy contribution is 

small due to the large molecular weights of the polymers.*^ This means that AG,„i, tends 

to be positive hence the polymers remain immiscible. Even when AG,„ix is negative, the 

mixing of the polymers will only occur if the free energy of mixing is lower than the free 

energy of the individual polymer components.^ Generally two polymers will remain 

iminisible unless there is a driving force to lower the free energy of mixing. 

In order to lower the free energy of mixing AH,„ix has to be reduced. In most 

cases this is done by specific interactions between the two po ly ine r s , ' so that AH,„ix 

now has two contriburions: 

AHn,ix = A H n J " ' - ^ ' + NAH„, ix"P' (5.2) 

where AHmix"''*' represents the dispersive forces between the two polymers (generally 

positive) and AHmix'*" relates to the energy of interaction between the two polymers 

(generally negative) and N is the number of interactions between the two polymers. 

Increasing the interacnons wil l reduce the free energy and the miscibility of the polymers 

wi l l be enhanced. These interacdons range from relative week interactions (such as 

dipole - dipole interactions) to very sti-ong interactions (hydrogen bonding). 
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5.1.2 Review of the Surface Studies into Polymer Blends 

Surface studies of polymer blends originated in the 1980\s. In the study of the 

surface properties of polymer blends often uses conventional surface sensitive 

techniques, such as XPS, SSIMS and ATR-IR, can be to detennine the surface 

characteristics of polymer blends. 

X-ray Photoelectron Spectroscopy (XPS) has been used to detemiine the surface 

composition of both iinmiscible'" " and miscible'' polymer blends produced from both 

solvent cast̂ " and injection moulded''* methods. Studies of ijnmiscible polymer blends, 

such as polystyrene / poly (ethylene oxide)'" and polycarbonate / poly (dimethyl 

siloxane)" blends, have shown that surface eniichment occurs of one component of the 

polymer blend. This can be accounted for by considering the surface energy of the 

individual polymers. Any system will act to lower its surface energy. This means, in the 

case of polymer blends, that surface enrichment of the component with the lowest 

suiface energy wil l occur, so that the system has an overall lower surface energy. For 

example, polystyrene segregates in the case of polystyrene / poly (ethylene oxide) blends 

and poly (dimethyl siloxane) segregates in the case of polycarbonate / poly (dimethyl 

siloxane) blends. For blends that are in their 'equUibiium' state then the surface should 

be exclusively occupied by the constituent of lowest surface energy.'" However rarely is 

the equilibiium state reached, due to the molecular reaiTangements this would entail. 

XPS studies have also been performed on miscible polymer blends, such as polystyrene / 

poly (vinyl methyl etlier)' ' blends. Again surface enrichment is seen from the component 

with the lowest suiface energy. 

However there are limitations in using XPS to study the surface compositions of 

polymer blends. In order for XPS to be effective there must be an elemental or at least a 

functional gi-oup difference between the two components of the polymer blend. Also the 

sample depth of XPS is in the order of several nanometers and the surface composinon 

obtain f rom XPS is an average of the blend composiuon in this region, and not 

necessaiily just at the surface. 

Static secondaiy ion mass spectrometry (SSIMS) is used in the study of polymer 

blends.'^ The main advantage of using SSIMS over XPS is that the SSIMS sample 
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depth is much smaller than for XPS (approximately I nm) and can detei-mine the surface 

composition without an elemental difference between the components of the blend. For 

example SSIMS has successfully been used to detennine the suiface composition of PS / 

deuterated-PS blends by detecting CiHi* and C7D7ions. '^ ' However SSIMS cannot be 

used directly to detennine the suiface composition because the intensity of a SSIMS 

peak is dependant, to several orders of magnitude, on several factors. There are three 

main factors in contributing to the SSIMS peak intensity.'^ The first is the chemical 

bonding and envu-onment that a ion-fragment originates from and the second is 

instalment specific artefacts. The SSIMS spectrometer is usually tuned before a sample 

can be analysed, which nonnally involves maxiinising a specific peak and there is no 

guai-antee that the maximised signal is the global maximum. The finial problem involves 

sample charging, which is usually overcome by flooding the sample with electrons. 

However, different components of a blend may have different levels of charging. The 

second and third contributions can be overcome by using a time of flight spectrometer 

(TOF) and a self compensating sample charge, respectively. The first problem, is more 

difficult to solve. A common way of overcoming this problem is to use relative peak 

intensities (RPI). Recendy the suiface compositions of polycarbonate/polystyrene 

(PC/PS) blends were investigated using both XPS and TOF-SSIMS using the RPI 

method and the results were found to be compai-able.''' SSIMS can also give spatial 

infomiation on polymer blends. Imaging SSIMS gives the spatial infomiation from a 
I g 

specific ion, and can be used to obtain the suiface blend moiphology . 

Another technique that is often used in the suiface studies of polymers is 

attenuated total reflectance Fourier Q-ansform infra red spectroscopy (ATR-FTIR). 

However ATR-FTIR has had a limited role in the study of the suiface composition of 

polymer blends. ATR-FTIR effectiveness is limited by its rather large sample depth (of 

the order several f im) and that the intensity of the peaks and the sample depth are both 

dependant on the wavelength of the peak. It is then difficult to obtain definite 

quantitative information from ATR-FTIR. 
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5.2 E X P E R I M E N T A L 

5.2.1 Sample Preparation 

Thin films of polystyrene (Aldrich; Mw = 280,000) / polyphenylene oxide (Aldrich; Vlu = 

244,000) polymer blends were prepared by spin coating from a 5% w/v chloiofoim 

solution onto glass slides. A l l blend compositions are quoted in terms of percentage 

weight: Visual examination indicated that the films were completely transparent, with no 

clouding, irrespective of the blend composition; this can be taken as being consistent 

with a single phase polymer blend, since any phase sepai-ation should lead to light 

scattering.''^ 

5.2.2 Non-equilibrium Plasma Treatment 

Low pressure oxygen glow discharge modification of the polymer blend films 

was carried out in a cylindrical electrodeless reactor, as described in chapter 2. The 

experimental procedure is the same as chapter 2 and wUl not be repeated here. Plasma 

treatments were carried out at 10 W power for 60 s in all cases. This was found to lesiilt 

in a limiting level of surface modification. 

Atmospheric silent discharge ak plasma treatments were carried out for a 

duration of 120 s using a home built parallel plate dielecuic barrier discharge reactor 

operating at 3 kHz, 11 kV, with an electrode gap of 3.00 ± 0.05 mm as described in 

chapter 3. 

Subsequent washing experiments of both types of plasma treated blend films were 

carried out using a 50 / 50 isopropanol / cyclohexane polar / non-polar solvent mixture 

(neither polystyrene nor polyphenylene oxide ai'e soluble in either of these solvents at 

room temperature).'" 

5.2.3 Sample Analysis 

A Kratos ES300 electron spectrometer equipped with a M g K a source (1253.6 

eV) and a concentric hemispherical analyser was used for XPS surface analysis of the 
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polymer blend surfaces before and following plasma treatment. The ES 3()() electron 

spectroscope is described in chapter 2. 

A Digital Instruments Nanoscope I I I atomic force microscope was useil to 

examine the topographical nature of the polymer blend surfaces pi-ior to and immediaiely 

following electrical dischai-ge exposure. Al l of the AFM images were acquired in air 

using the Tapping mode, and are presented as unfiltered data. RMS roughness values 

were obtained from unfiltered images. 

5.3 R E S U L T S 

5.3,1 X-ray Photoelectron Spectroscopy 

Only carbon and oxygen XPS hnes were evident for untreated, low pressure 

oxygen plasma treated, and atmospheric silent discharge treated polymer blends. The 

C(ls) XPS spectrum for each blend mixture was peak fitted as described in chapter 2. 

Except that an additional peak at 291.6 eV with a different FWHM, was fitted. This 

peak corresponded to the n - n'" shake-up satellite associated with phenyl ring centres.'' 

Clean polystyrene exhibited a main peak at a C(ls) binding energy of 285.0 eV along 

with a 71 - Tt'"" transition satellite. The 0/C ratio for untreated polyphenylene oxide was 

measured to be 0.14 ± 0.02, this in good agreement with the theoretical value of 0.13 

expected fi-om the parent polymer repeat unit. A lineai- variation in 0/C ratio was found 

for the blend mixaires with increasing polyphenylene oxide concentration, Figuie 1. Tliis 

was accompanied by a coiresponding change in shape of the C(ls) envelope. Figure 2. 

Low pressure oxygen plasma treatment of all the polymer blend mixtures resulted 

in oxygen incorporation at the surface. Figure 1. I f one takes into account the oxygen 

present beforehand due to polyphenylene oxide, then both of the parent polymers appear 

to be oxidised to a similar extent. The 0/C ratio varies in approximately a linear fashion 

with increasing polyphenylene oxide concentration, this is indicative of no preferential 

oxidation or etching of either blend component. C(ls) peak fitted XPS spectra of plasma 

treated blend inixtures ai-e shown in Figure 3(a). Washing of these glow discharge 

modified polystyrene / polyphenylene oxide blends in a cyclohexane / isopropanol solvent 

mixture resulted in a decrease in the amount of oxygen present at the surface. Figures I 
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and 3(b). This suggests that low pressure oxygen plasma treatment generates lou 

molecular weight oxidised material (LMWOM) which can be washed off. Interestingly, 

the trend seen in the 0/C ratio during low pressure oxygen plasma treatment is reversed 

on solvent washing, with polystyrene retaining a greater proportion of its incorporated 

oxygen species compared to polyphenylene oxide. 

Atmospheric silent discharge treatment of the miscible blend mixtures also 

exhibits a linear rise in the 0/C ratio with increasing polyphenylene oxide concentration. 

However the rate of change with blend composition is markedly greater compared to the 

untreated and low pressure oxygen plasma treated polymer blends. Figure I . C( I si |-»eak 

fitted XPS spectra for silent discharge treated polymer blend mixtures retlect this linear 

variation. Figure 4(a). Solvent washing of the silent dischai'ge treated polystyrene / 

polyphenylene oxide blends removed a significant amount of modified polymeric 

material. Figures 1 and 4(b). In this case the trend in 0/C ratio did follow the behaviour 

for the unwashed case, although it is clearly evident that modified polyphenylene oxide 

material is more readily removed in comparison to oxygenated polystyrene. Contrary to 

low pressure oxygen plasma treatment, washing of atmospheric dielectric harrier 

di.sch;u'ge treated blend surfaces did not completely remove the oxidi.sed polyphenylene 

oxide species. 
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Figure 1: 

Variation in the 0/C XPS ratio for the various treatments (the unshaded symbols 

correspond to solvent washing). 
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Figure 2: 

C(ls) peak fitted spectra for untreated polystyrene / polyphenylene oxide blend mixtures 

with increasing polyphenylene oxide content. 
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Figure 3(a): 

C(ls) XPS peak fitted spectra for low pressure oxygen plasma treated PS/PPO polyinei' 

blends with increasing polyphenylene oxide content. 
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Figure 3(b): 

C(ls) XPS peak fitted spectra for low pressure oxygen plasma treated PS/PPO polymei-

blends followed by solvent washing, with increasing polyphenylene oxide content. 

C / ) 
I -

O o 

100 % 

280 284 288 292 296 

BINDING ENERGY /eV 

133 



Figure 4(a): 

C(ls) XPS peak fitted spectra for atmospheric pressure silent discharge treated PS/PPO 

polymer blends with increasing polyphenylene oxide content. 
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Figure 4(b): 

C(ls) XPS peak fitted spectra for atmospheric pressure silent discharge treated PS/PPO 

polymer blends followed by solvent washing, with increasing polyphenylene oxide 

content. 
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5.3.2 Atomic Force Microscopy 

Polystyrene exhibits a fine granular siiiface strticture. whilst polyphenylene oxide 

appears to be coarser in texture. Figure 5 and Table 1. Therefore t!ie surface 

morphology of spin coated trims is influenced by the polymer itself as well as by the 

preparation technique. AFM micrographs of the polystyrene / polyphenylene oxide 

blends taken on a 10 mm scale showed no evidence of any phase separation occurring at 

the surface. Increasing the polyphenylene oxide concentration in the blend mixtures 

leads to the gradual collapse of the fine granular polystyrene morphology. 

Low pressure oxygen plasma treatment resulted in the formation of globular 

features which increased in size with polyphenylene oxide content. Figure 6. This was 

accompanied by a loss o f the original blend suiface texture. Table 1. Solvent washing of 

the low pressure plasma treated polymer blend surfaces resulted in an increase in surface 

roughness Figure 6 and Table 1. Atmospheiic silent discharge treatment of 

polyphenylene oxide and polystyrene also produced globular features. Figure 7. The 

average globular feature size being much greater for polyphenylene oxide than for 

polystyrene. Washing of the silent discharge treated polymer blend sinfaces removed the 

large globular features to leave behind a smoother suiface (this is contrary to what was 

observed during low pressure oxygen glow discharge modification), Figure 7 and Table 

1. 

Table 1: Summary of RMS suiface roughness measurements. 

Composition 

/ % PPO 

Unu'eated / 

nm 

Low Pressure Plasma 

Treated / nm 

Atmospheric Silent 

Discharge Treated / nm 

Unwashed Washed Unwashed Washed 

0 0.26 0.56 0.74 3.2 2.9 

25 0.22 0.35 0.51 5.2 0.81 

50 0.21 • 0.32 0.71 5.0 1.1 

75 0.20 0.37 0.87 5.2 0.76 

100 0.34 0.61 0.20 14.3 0.51 
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5.4 DISCUSSION 

Miscibility over the entire composition range for polystyrene / polyphenylcnc 

oxide blends has been known for a long time and widely investigated using a variety of 

techniques (e.g. glass transition temperature," neutron scattering studies.'"). Infrared""' 

and ultraviolet""" spectroscopic studies have shown that this high miscibility arises from 

sti'ong interactions between the phenyl rings contained in polyphenylene oxide and 

polystyrene. Pure polystyrene or blends with a high polystyrene content tend to be 

brittle. However blends with a polyphenylene oxide content of greater than are 

ductile glasses."'" This variation in mechanical properties has been attributed to the 

intermolecular disruption of stacks of polystyrene polymer chains by polyphens lene 

oxide."' These interactions can be u.sed to account for the observed disappearance of 

the parent polystyrene granular suiface morphology upon blending with polyphenylene 

oxide. 

Typically, for a polymer blend one would expect suiface enrichment of the 

component with the lowest suiface energy.'*' Polystyrene and polyphenylene oxide have 

suiface energies of 33 dynes cm"^ and 41 dynes cm"' respectively"'' '"". Therefore 

suiface enrichment of polystyrene would be expected in the case of polystyrene / 

polyphenylene oxide blend mixtures. The observed linear variation in polyphenx'lene 

oxide content at the suiface with blend composition suggests that no suiface segiegation 

of either component of the polymer blend is occuiTiiig within the XPS sampling depth (2 

nm). The lack of suiface enrichment might be due to phenyl ring interactions iietueen 

the two polymer constituents hindering the migration of polystyrene towards the 

surface'"'' combined with molecular entanglements."' Alternatively, fast evaporation of 

the chloroform solvent during spin coating may be preventing the blend from reaching 

themiodynamic equilibrium.'* 

For both parent polymers, electrical dischaige treatment results in the fomiation 

of C-0, 0-C-O, C=0 , 0 -C=0 , and 0-CO-O functionalities at the suiface and chain 

scission as discussed in chapter 2 and 3. Attenuation of the n-n" shake-up satellite 

during plasma modification is indicative of the phenyl centres being attacked during 

treatment."'' " "̂  Solvent washing experiments have shown that theie is a greater loss of 

oxygenated material from electrical dischai-ge treated polyphenylene oxide - rich blend 
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mixtures. This can be attributed to polyphenylene oxide being more su.sceptible towards 

chain scission as a consequence of its phenyl ring being located within the polymer 

backbone rather than being' pendant (as is the case for polystyrene): iu-omatic pendant 

groups promote stability of the polymer backbone by enhancing radiationless 

deactivation.-^^ Also the polar C-0 bond along the polyphenylene oxide backbone will 

be susceptible to nucleophilic attack by plasma generated oxygen species. In the case of 

atmospheric silent discharge treatment, UV radiadon of lower energy is generated. This 

can lead to less chain scission within the subsuiface region, and helps to explain why 

some of the oxygenated functionalities remain iti tact during solvent washing of the silent 

discharge treated, polyphenylene oxide - rich blends but not for the oxygen plasma 

treated blends which is contrary to the normal polymeric behaviour. In the case of 

solvent rinsing of low pressure oxygen plasma modified polystyrene - rich inixtures, the 

low moleculai- weight polyphenylene oxide fraction is preferentially lemoved. 

The greater oxygen content present in the low molecular weight oxidised material 

makes it incompatible with the underiying untreated polymer due to a large difference in 

dieir respecdve surface energies; this leads to the foirnation of globules at the 

s u i f a c e . I t can be seen from the A F M micrographs, that even a small amount of 

polystyrene attenuates the amount of low molecular weight oxidised material being 

produced. Although silent dischai-ge modification causes a greater perturbation of the 

suiface topogi-aphy,-** this is not found to be the case following solvent washing of the 

respective treated surfaces, Table 1; an increase in roughness is found for low pressure 

plasma modification of the polymer blend surfaces, whilst the converse was noted for 

silent dischai'ge treatment. 

5.5 C O N C L U S I O N S 

No significant surface enrichment within the XPS samphng depth is found for 

either pai-ent component of polystyrene / polyphenylene oxide blends. The surface 

topography belonging to each pai'ent polymer is destroyed upon mixing due to the 

disruption of phenyl ring stacks present in polystyrene by inteipenetrating polyphenylene 

oxide chains. Atmospheiic dielectric banier treatment of the polymer blends leads to a 

lai-ger amount of low moleculai* weight oxidised globular material being produced in 

comparison to low pressure oxygen plasma modification. These oxidised moieties can be 
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partially washed off by a solvent, which leads to a change in both the chemical 

composition and topography at the suiface. From the point of view of incorporating 

oxygen into the suiface (which is not associated with low molecular weight oxidi.sed 

material), low pressure oxygen plasrna treatment is better suited for polystyrene - rich 

compositions, whereas silent discharge modification is moie appropriate for 

polyphenylene oxide - rich blends. 
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CHAPTER 6: 

O X Y G E N GLOW DISCHARGE AND SILENT DISCHARGE 

TREATMENT OF IMMISCIBLE POLYSTYRENE / 

POLYCARBONATE POLYMER BLEND SURFACES 

6.1 INTRODUCTION 

Many different types of immiscible polymer blend are used in industry.' In such 

systems, phase separation occurs within the bulk of the blends, whilst the surface can be 

enriched by one of the constituent polymers (for a review of the surface studies into 

polymer blends see chapter 5). Quite often polymer blend surfaces require plasma 

activation prior to bonding.' Understanding the phase morphology is of critical 

importance in the study of immiscible polymer blends. Both the mechanical"'̂  and 

thennal^'' properties of a polymer blend depend on its phase morphology. It its then 

important to study both the suiface chemical properties and phase moiphology at the 

surface for both unti-eated and treated polymer blends. 

This chapter desciibes how XPS and AFM were used to study the surfaces of 

immiscible polystyrene / polycarbonate blend inixtures'̂  before and after low pressure 

oxygen plasma and atmospheric silent discharge treatment. XPS is used to track tiie 

variation in surface chemical composition, whilst AFM has helped to identify the 

respective constituent phases. 

Polystyrene (PS) 

• O — C — I 

o 

Bisphenol-A Polycarbonate (PC), 
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6.1.1 Morphological Studies of Polymer Blends 

The major techniques that have been used in order to elucidate the phase 

moiphology of iminiscible polymer blends are optical microscopy, election microscopy 

and scanning probe microscopy. 

Optical microscopy has been used to investigate polymer blends,'̂  but is limited 

by its poor resolution, and the need for a large refractive index between the phases of the 

polymer blend in order to obtain phase contrast. In the case of polymer blends that 

transmit visible light, optical microscopy becomes a bulk technique. 

Electron microscopic techniques such as scanning electron inicroscopy (SEM) 

and transmission electron microscopy (TEM) have been widely used to detennine a 

polymer blends moiphology.'^ TEM is not often used iii polymer blend work due to the 

difficulties in obtaining a thin enough sample in order to perform the analysis. SEM is 

the most widely used technique in the study of polymer blends. However SEM cannot 

be used directly in order to determine the phase morphology due to the fact that the yield 

of secondary electrons used to obtain the image are independent of surface composition, 

and phase contrast is not achieved. The are several ways of obtaining contrast between 

phases using SEM. One of the most common is the selective etching of a specific 

component of a polymer b l end .Th i s can be achieved by selective oxidation, electron 

beam UTadiation or by using a solvent.'' However this technique suffers from the need 

to find a suitable etching agent which-can easily introduce artefacts at the suiface, 

modifying the phase morphology. Another method that is commonly used is the 

selective staining of the blend surface.'' If one phase of a polymei- blend is stained 

with a heavy metal compound, then the phase morphology can be detemiined by imaging 

with the primary or backscattered electrons einitted from the surface. The yield of 

primaiy elecU'ons emitted from a surface is detennined by the average atomic number of 

the sample area being scanned. Staining a sample changes its chemistry, which again 

may modify its phase moiphology, such as causing phase separation.'^ Backscattered 

electrons are emitted from deeper within a sample than secondary electrons, causing 

imases obtained from backscattered electrons to have a lower resolution. 
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The invention in 1986 of the Atomic Force Micro.scope (AFM) by Binning'-^ has 

presented a completely new technique for the investigation of the moiphology of 

polymer blends.'^'"* The AFM, although insensitive to variations in surface composition 

is veiy sensitive to any topographical variations, much more so than the SEM. AFM can 

be used directly to detemiine the phase morphology if there is any height variation. 

Alternatively variations in the AFM technique can be used to detennine the phase 

moiphology such as frictional force microscopy (FFM),''^ force modulation AFM,-" 

Chemical sensing AFM,-' and phase modulation A F M . " 

6.2 E X P E R I M E N T A L 

6.2.1 Sample Preparation 

Thin films of polystyrene (Aldrich, Mw = 280 000) / polybisphenolcaibonate 

(General Electric, Mw = 40 000) blends were prepared by spin coating from a 5% w/v 

chloroform solution onto glass slides. Blend compositions are given as bulk weight 

percent. Lnmiscible blends generally tend to be cloudy due to the presence of phase 

boundaiies which scatter light,""' however the polystyrene / polycarbonate blend mixtures 

were almost a-ansparent in appearance because of the constituent polymers having almost 

identical refractive indices.'"* 

6.2.2 Non-equilibrium Plasma Treatment 

Low pressure oxygen glow discharge treatments were carried out in a cylindrical 

electi-odeless reactor. The reactor and experimental procedure is described in chaptei- 2. 

Plasma a-eatments were carried out at 10 W for 60 s ui all cases. This was found to 

result in a limiting level of surface modification. 

Atmospheiic silent dischai-ge au- plasma tteatments were canied out for a 

duration of 120 s using a home built parallel plate dielectric barrier discharge reactor 

operating at 3 kHz, 11 kV, with an electrode gap of 3.00 ± 0.05 mm, as de.scribed in 

chapter 3. 
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Subsequent washing experiments of the treated blend fihiis were can ied out using 

a 50 / 50 isopropanol / cyclohexane polar / non-polar solvent mixture (neither 

polystyrene nor polycarbonate ai-e soluble in either of these solvents at room 

temperature).""' 

6.2.3 Sample Analysis 

A Kj-atos ES300 electron spectrometer equipped with a MgKa source (1253.6 

eV) and a concentric hemispherical analyser was used for XPS suiface analysis of tiie 

polymer blend surfaces before and following plasma ffeatment, as described in chapter 2. 

A Digital Instruments Nanoscope III atomic force microscope was used to 

examine the topographical nature of the polymer blend surfaces prior to and immediately 

following electrical discharge expostu-e. All of the AFM images were acquired in air. and 

are presented as unfiltered data. Topographical analysis comprised a combination of 

tapping mode AFM and phase modulation AFM, both of which are described in chapter 

1. 

6.3 R E S U L T S 

6.3.1 X-ray Photoelectron Spectroscopy 

XPS wide-scan spectra were taken to check for the absence of any suiface-active 

inorganic additives. C(ls) spectra of each blend mixture was peakfitted as described in 

chapter 2 and 5. The C(ls) envelope for untreated polystyrene can be assigned to a 

hydi-ocarbon component, -CxHy- at 285.0 eV, and a T I - J I * shake-up satellite feature at 

291.7 ± 0.1 eV, which accounts for approximately 5.3 ± 0.2 % of the total C(ls) peak 

area, Figure 1. The experimentally measured 0/C ratio for polycar bonate was found to 

be 0.21 ± 0.02, which is consistent with the theoretically expected value of 0.19; -CxHy 

(285.0 eV), C-0 (286.6 eV), and 0-CO-O (290.4 eV ) envii-onments were evident in the 

C(ls) region together with a 7t-7i* shake-up satellite at 291.8 eV. 

The variation.in the measured 0/C ratio with polymer blend composition was 

found to be non-Unear, Figure 2. Virtually no 0(ls) signal was detected from the surface 
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up to a concentration of approximately 50% polycmbonate: beyond this vakie. the 0/C 

ratio increased rapidly prior to eventually plateauing off at the value associated with pure 

polycarbonate. Tlie C(ls) spectra show a corresponding rise in intensity of the C-0 

(286.6 eV) and 0-CO-O (290.4 eV ) peaks with increasing bulk polycarbonate content. 

Figure 1. 

Both polystyrene and polycarbonate appear to undergo similar levels of oxidation 

for both oxygen plasma and silent discharge, with the polycarbonate being oxidised to a 

sHghtly greater extent. Figure 1. Silent discharge treatment produces more of the highly 

oxidised material than oxygen plasma treatment. Figure 1 and Table 1. The variation in 

0/C ratio with blend composition followed the same trend as seen previously for the 

untreated polymer blend n">ixtures. Figure 2. Solvent washing of these oxygen plasma 

and silent discharge treated polyst>'rene / polycarbonate blend surfaces showed a 

reduction in the 0/C ratio. From these results it can be concluded that soluble low 

molecular weight oxidised material- (LMWOM) is generated during plasma 

treatment.''' '^ Silent discharge produces significantly more LMWOM as washing of 

silent dischm'ge treated surfaces removes more oxidised material than washing of plasma 

treated surfaces. Table 1. 
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Table 1: 0/C ratios and relative peak intensities of the oxidised carbon peaks ( I = 100 

%) for untreated and treated 75./ 25 polycarbonate / polystyrene blend. 

0/C ratio Relative oxidised peak intensity. 

C-0 C=0/ 

0-C-O 
CO-0 o-co-o 

Untreated 0.18 ±0.02 71 ± 5 0 0 29 ± 3 

Plasma ti'eated 0.52 ± 0.03 38 ± 3 27 ± 3 I 5 ± 2 20 ± 2 

Plasma treated 

washed 

0.30 ± 0.03 54 ± 4 21 ± 2 7 ± 1 19±2 

Silent discharge 

treated 

0.51 ±0.03 34 ± 3 20 ± 2 15 ± 2 31 ± 3 

Silent discharge 

treated washed. 

0.18 ±0.02 67 ± 5 8 ± 1 5 ± 1 20 ± 2 
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Figure 1(a): 

C(ls) peak fitted spectra of untreated polystyrene / polycarbonate blend surfaces as a 

function of polycarbonate loading. 
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Figure 1(b): 

C(ls) peak fitted spectra of oxygen plasma treated polystyrene / polycarbonate blend 

surfaces as a function of polycarbonate loading. 
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Figure 1(c): 

C(ls) peak fitted spectra of 25/75 polystyrene / polycarbonate polymer blend (i) 

untreated; (ii) oxygen plasma treated; (iii) oxygen plasma treated polystyrene / 

polycarbonate blend surfaces followed by solvent washing. 
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Figure 1(d): 

C(ls) peak fitted spectra of silent discharge treated polystyrene / polycarbonate bleiul 

surfaces as a function of polycarbonate loading. 
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Figure 1(e): 

C(ls) peak fitted spectra of oxygen plasma treated polystyrene / polycarbonate blend 

surfaces followed by solvent washing as a function of polycarbonate loading. 
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Figure 2: 

Variation in the 0/C ratios for the polystyrene / polycarbonate blend surfaces: untreaietl: 

silent dischiu-ge treated; and silent discharge treatment followed by solvent washing 

(unshaded squares). 
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6.3.2 Atomic Force Microscopy 

AFM was used in both tapping and phase modulation modes. Tapping mode 

AFM analysis of the untreated polymer blend surfaces revealed a two phase system. 

Figure 3. The different constituents of the blend were shown up more clemly by using 

Phase Modulation AFM, Figures 3-4; two types of feature are evident: a localised 

continuous phase (polycarbonate) containing submicron ckcular nodules (polystyrene), 

and an extended continuous phase (polystyrene),'* The latter component completely 

swamps the stuface at polystyrene loadings of greater than 40%, Figure 4. 

Oxygen plasma treatment of the parent polymers had negligible effect on the 

suiface topography on the 10 |im scale. Figure 5. Oxygen plasma modified blend 

surfaces show evidence of raised ai-eas on the locahsed continuous polycarbonate / 

polystyrene region, ranging m width from 2 |im to lOOnm. Indentations are seen on the 

extended polystyrene phase after washing. This coiTesponds to an inherent difference in 

etching rates between the two constituent polymers.'''' Washing of the plasma treated 

surface in a 50/50 isopropanol / cyclohexane polar / non-polar solvent mixtiue does not 

significandy affect the surface topography. Figure 6. 

Silent discharge treatment of pure polystyrene fdm produced smaller globular 

features compared to polycarbonate, Figure 7. These differences were also evident for 

the silent dischai-ge modified blend surfaces (thereby aiding in the assignment of the 

respective blend components). Washing these plasma treated surfaces removed the low 

molecular weight oxidised material to leave behind teiraces at different heights. Figure 8. 

This topography is similar- to the oxygen plasma ti'eated surface's which again is caused 

by an inherent difference in etching rates between the parent polymers. 
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6.4 DISCUSSION 

XPS samples over a large area, and therefore effectively yields an average 

compositional value of the siiiface. XPS analysis of the polystyrene / polycarbonate 

polymer blend mixtures exhibits the classicaJ behaviour of an immiscible blend system; a 

non-linear variation in the 0/C ratio with blend composition is observed, which can be 

attributed to suiface enrichment by polystyrene as a result of its lower surface energy (33 

dyn cm'')'" compared to polycarbonate(45 dyn cm"')/' 

Tapping mode and phase modulation AFM analysis of the untreated polymer 

blend surfaces showed that polystyrene tends to fonn a layer on top of the blend at low 

concentrations of polycarbonate. The underlying blend mixture consists of small circular 

polystyrene phases embedded within a continuous polycarbonate phase.'* ''̂  The polymer 

blend constituent with the higher suiface energy is nomially expected to be raised to a 

higher topography.'' This is consistent with the host polycaitonate mauix appearing 

higher within the localised blend mixture regions, Figure 3. 

Oxygen glow discharge and silent discharge plasmas produce a variety of reactive 

species which bombard an underlying polymer substrate and lead to the fomiation of low 

molecular weight oxidised material (LMWOM), which exists as globules on the surface 

(see chapters 2 and 3). A difference in wetting behaviour between the LMWOM and the 

underlying polystyrene / polycarbonate regions helps to identify the respective blend 

phases. Such oxidative plasma treatment of polymer blend surfaces can lead to 

preferential etching of one constituent"' as well as cheinical modification." The mass 

rate loss of polycai'bonate is twice that of polystyrene during oxidative elecDucal 

discharge treatment.'''* This can clearly be seen by AFM analysis of the oxygen plasma 

treated and the solvent washed silent discharge treated polymer blend surfaces, Figures 5 

and 8. The fact silent dischai-ge treated surfaces have to be washed to reveal the phase 

morphology shows that more LMWOM is generated for silent discharge treated surfaces 

and that the LMWOM is mobile during its fonnation. This mobiUty arises from either 

the difference in the surface energy or local melting effects occumng on the polymer 

surface during the silent discharge treatment.̂ ^ 
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6.5 CONCLUSIONS 

Surface enrichment of the polystyrene phase is found to occur for polystyrene / 

polycarbonate blend mixtures. This is accompanied by polycarbonate fonning a 

continuous bulk phase containing embedded regions of polystyrene. Oxygen plasma and 

silent discharge treatment of these polymer blend surfaces produces low molecular 

weight oxidised material, which can be washed off by solvent, to leave behind the 

polystyrene component raised at a higher topography as a result of polycarbonate having 

undergone a greater level of degradation during plasma treatment. 
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C H A P T E R ? : 

A T O M I C F O R C E M I C R O S C O P Y I N V E S T I G A T I O N INTO 

S I N G L E C R Y S T A L S O F P O L Y ( D I M E T H Y L S I L A N E ) . 

7.1 INTRODUCTION 

Polymer single crystals have been known to be grown from dilute solutions since 

1953.' They all have the same general appeai'ance of thin lamellae with the lateral 

dimensions of microns and a thickness of the order of nanometers.' "' In the crystal the 

polymer chains are almost vertical to the lamellor surface. Since the end to end distance 

of a fully extended polymer chain is several hundred nanometers long^ then'the only way 

the polymer chain can be incorporated into the. polymer ciystal is by chain folding."*"̂  

There ai'e two main models for chain folding; a random (switch board) model and a 

regular- adjacent folding model.^ Experimental evidence from neuu-on scattering^ and 

infra-red* spectroscopies has shown that chain folding occurs in a polynier single crystal 

via the latter model, as shown in Figure 1. There is a considerable body of evidence'' 

that points to the existence of an "amorphous layer" associated with the chain folds of 

the polymer, • physically absorbed polymer material,''' Oj- surface defects.' 10 

The morphology of single ciystals has been extensively studied using electron 

microscopy" ''" and atomic force microscopy."'''"'''" Recently there has been a great 

interest in molecular resolution of highly ci^stalline polymers.'"^ ""* Molecular resolution 

of single crystals has been hampered by the small size of the carbon atoms and the 

presence of the amorphous layer. Here we investigate the moiphology and crystal 

structure of poly (dimethyl silane) grown from solution, using atomic force microscopy. 

Poly (dimethyl silane) is a highly crystalline polymer which adopts an all-trans 

aiTangement in the solid''^ which crystallises with lai-ge lattice parameters due to silicon's 

large size compared to carbon's. 
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Figure 1: Chain folds in a polymer single crystal 

Polymer Chains 

7.2 E X P E R I M E N T A L 

7.2.1 Preparation of Poly (dimethyl silane) Single Crystals 

A very dilute (0.001 % w/v) solution of poly (dimethyl silane) (ABCR) in toluene 

was prepared. This solution was heated to 100 °C for 30 minutes and then allowed to 

slowly cool to room temperature. Drops of the suspension were deposited onto freshly 

cleaved mica and the solvent was allowed to evaporated before AFM analysis. 

7.2.2 Atomic Force Microscopy 

All AFM images were taken using the contact mode of a Digital Instruments 

Nanoscope I I I microscope. Cantilevers and tips were fabricated from silicon nitride. 

200 |Lim long cantilevers were used with a spring constant of 0.06 Nm '. Micron .scale 

images were obtained by using the 100 |im J-scanner and molecular resolution images 

were obtained with the 1 | im A-scanner. 
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7.3 R E S U L T S AND DISCUSSION 

A 2 micron wide scan of a of a crystal of poly (dimethyl silane). Figure 2, shows 

a orthorhombic platelet sttucture. The thickness of the crystallite is of the order of 5 nm. 

This agrees with previous thickness measurements of single crystal poly (dimethyl silane) 

studied using electron microscopy.'" Molecular scale resolution images of poly 

(dimethyl silane). Figure 3, shows rows of rod likes species. The length of the Si-Si 

bonds iJi the polymer backbone of poly (dimethyl silane) is 0.4 nm.''̂  The separation of 

the rod like features seen in in figure 3 is of the order of a micron and do not coirespond 

to the polymer repeat units. It is more hkely that these rod-like features correspond to 

chain folds at the single crystal surface. Figure 1. If this is so then this would coirespond 

to a monoclinic crystal structure with lattice parameters of 0.80 ± 0.05 nm and 1.24 ± 

0.05 nm with a lattice angle of 95° ± 5° (shown in Figure 3). This is consistent with the 

monoclinic unit cell having a = 1.218 nm, b = 0.800 nm, c = 0.388 nm and y = 91° with 

interchain lattice spacings of 0.608 nm as determined by x-ray diffraction.'''' 
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7.4 C O N C L U S I O N S 

Atontic force microscopy has been used to detemiiiie the morphology of polymer 

(poly (dimethyl silane)) single crystals and to visualise the chain folding occurring at the 

surface of a single crystal. 
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C H A P T E R 8: 

CONCLUSIONS 

This thesis has studied both the chemical and physical effects of non-equilibrium 

plasma treatment on the surface properties of polymers and polymei- composites. The 

effects of two non-equilibrium plasmas have been studied. A low pressure oxygen glow 

discharge plasma and an atmospheric silent discharge plasma. 

Both oxygen plasma and silent discharge plasma treatments of selected polymers 

(polypropylene, polystyrene, polyphenylene oxide and polycarbonate) produce low 

molecular weight oxidised material (LMWOM) at the surface. This L M W O M tends to 

conglomerate into globular features at the surface due to the lai-ge difference in surface 

energies between the L M W O M and the polymer. The globular features generated are 

ten times larger for silent discharge treatment than for oxygen plasma treatment. Tliis 

effect is probably caused by ablation from the plasma treated surface or local melting 

effects at the silent discharge treated suiface. It hase been found that care must be taken 

not to over treat the polymer surface as this will produce a layer of oxidized material 

which w i l l not adhere well to the untreated polymer beneath it. 

Plasma treatment of a model polymer suiface (hexatriacontane) has shown that 

plasma attacks the side of a polymer crystal rather than the top, which is more directly 

exposed to the plasma. Plasma attack also appears to be initiated at defect sites in the 

ciystal. This effect is accounted for by the greater mobility and the lower lattice energy 

of polymer chains at the edge of the ciystal and at defect sites. Chemical compositional 

analysis of silent discharge ti'eated hexatriacontane shows the fomiation, as well as 

L M W O M , of caiton-carbon double bonds during silent discharge u-eatment. 

Suiface analysis of a iniscible (polystyrene / polyphenylene oxide) blend shows 

that significant inteipeneti'ation of the polymers occurs leading to molecular 

entanglements which destroy the original suiface structure of the parent polymers. 

Oxygen plasma treatment produces significantly more L M W O M on poly phenylene 

oxide treatment than for polystyrene treatment, however the level of oxidation is the 

same. For silent discharge tteatment the level of oxidation and the amount of L M W O M 
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are directly related to each other, for both polymers. For the oxidation of blend surfaces 

then oxygen plasma treatment is better suited for polystyrene rich surfaces and silent 

discharge treatment is more appropriate for poly phenylene oxide rich surfaces. 

The phase moiphology of an immisible polymer (polystyrene / polycarbonate) 

blend was detennined using the recendy invented phase imaging - atomic force 

iTiicroscopy. Oxygen plasma treatment of the blend surfaces leveals the phase 

morphology from the different etching rates of the parent polymers. Silent discharge 

treatment produces a layer of L M W O M , which has to be washed off to reveal the phase 

moiphology. 

In summaiy this thesis has shown that for the oxidative modification of polymers 

by non-equilibiium plasmas, the reaction conditions have to be inatched to the polymer 

system. I f the oxidative conditions are too weak then the oxidation will not significantly 

affect the polymer surface properties. I f the oxidative conditions are too strong then this 

wi l l lead to a oxidised surface layer that is weakly bound to the polymer. Control of 

reaction pathways by using selective plasma conditions has been demonstrated. Oxygen 

plasma ti^eatment of poly phenylene oxide causes rapid chain scission of the polymer, 

whilst silent discharge treatment causes excessive oxidation. 
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APPENDIX: 

U N I V E R S I T Y O F DURHAM - BOARD O F STUDIES IN 

C H E M I S T R Y C O L L O Q U I A , L E C T U R E S AND SEMINARS 

F R O M I N V I T E D S P E A K E R S 

1993 

October 4 Prof. F.J. Feher, University of California 

Bridging the Gap Between Surfaces and Solution with 

Sessilquioxanes 

October 27 Dr. R.A.L. Jones, Cavendish Laboratory 

Perambulating Polymers 

November 10 Prof. M.N.R. As.hfold, University of Bristol 

High Resolution Photofragment Translational Spectroscopy: A 

New Way to Watch Photodissociation 

November 17 Dr. A. Parker, Rutherford Appleton Laboratory 

Applications of Time Resolved Resonance Raman Spectroscopy to 

Chemical and Biochemical Problems 

1994 

Januaiy 26 Prof. J. Evans, University of Southampton 

Shining Light on Catalysts 

February 2 Dr. A. Masters, University of Manchester 

Modelling Water Without Using Paii- Potentials 

Febiiiaiy 16 Prof. K.H. Theobald, University of Delaware 
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Paramagnetic Chromium ALkyls: Synthesis and Reactivity 

Febmaiy 23 Prof. P.M. Maitlis, University of Sheffield 

Across the Border: From Homogeneous to Heterogeneous 

Catalysis 

October 19 Prof. N. Baitlett, University of Califomia 

Some Aspects of Ag(II) and Ag(IlI) Cheniisti-y 

November 23 Dr. J.M. Williams, University of Loughborough 

New Approaches to Asymmetric Catalysis 

December 7 Prof. D. Briggs, ICI and University of Durham 

Surface Mass Spectrometry 

1995 

Januaiy 18 Dr. G. Rumbles, Imperial College 

Real or Imaginaiy Thu^d Order Non-Linear Optical Materials 

March 1 Dr. M . Rosseinsky, Oxford University 

Fullerene Intercalation Chemistiy 

Apri l 26 Dr. M . Schroder, University of Edinbui-gh 

Redox-active Macrocyclic Complexes: Rings, Stacks and Liquid 

Ciystals 

May 3 Prof. E.W. Randall, Queen Maiy and Westfield College 

New Perspectives in NMR Imaging 

October 11 Prof. P. Lugai', University of Berlin 

Low Temperature Ciystallography 
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November 17 Prof. D. Bergbreiter, Texas A & M 

Design of Smart Catalysts, Substrates and Surfaces from Simple 

Polymers 

November 22 Prof. I . Soutar, Lancaster University 

A Water of Glass? Lumine.scence Studies of Water Soluble 

Polymers 

1996 

January 10 . Dr. B. Henderson, Waikato University 

Electrospray Mass Specti-ometry-A New Sporting Technique 

January 17 Prof. J.W. Emsley, Southampton University 

Liquid Crystals: More Than Meets the Eye 

January 31 Dr. G. Penfold, ? 

Soft Soap and Suifaces 

March 6 Dr. R. Whitby, University of Southampton 

New Approaches to Chii-al Catalysts: Induction of Planar and 

Metal CenQ-ed Asymmetry 

March 12 Prof. V. Balzani, University of Bologna 

Supramolecular Photochemistry 

Conference Attended 

August 20th - 25th 1995 12*̂  International Symposium on Plasma Chemistry. 

University of Minnesota, USA. 
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Examined Lecture Courses 

General Laboratory Techniques (Dr. Hampshire) 

Spectroscopies (Dr. Halliday) 

Electron Microscopy (Dr. Durose) 

The Physical Chemistry of Polymer Science (Prof. R. W. Richards) 
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