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Determination of Aquifer Properties from 
Tidal Influences on Pore Pressures 

Rachel Elizabeth Carrington 

Abstract 
This project involved investigation of the tidal analysis technique, defined by 

Ferris (1951), for determining the aquifer properties of permeability, storage and 

leakage. The approach included laboratory experimental work using a physical 

model of a semi-confined aquifer. In addition, field work was undertaken to record 

groundwater levels in a coastal aquifer. 

The laboratory work concluded with results of amplitude decay and time lag. 

Numerical analysis illustrated the significant effects of reflection and leakage on the 

results of amplitude decay and time lag. Therefore, Ferris' theory was advanced to 

incorporate both reflection from an impermeable boundary and leakage. This theory 

was applied to the laboratory results, to conclude an estimate for the coefficient of 

permeability of 8 x 10"3 m/s. In addition, a range of values for the leakage coefficient 

were evaluated: 0 to 4 x 10~5 s'1. These values compared well with earlier work 

using the Durham Model Aquifer where similar results were obtained. 

Ferris' theory was applied to the field data for instances where tidal influence on 

groundwater behaviour was observed. Estimates for aquifer properties based on the 

tidal technique compared well with those based on soil grading methods. 

The analytical theory, developed within this programme of work, incorporated three 

unknown parameters, transmissivity, storage and leakage. The value of one of these 

parameters must be assumed in order to then compute estimates for the remaining 

two aquifer properties. When a semi-confined aquifer is under investigation, 

application of this theory provides increased accuracy for the estimates of aquifer 

properties when compared with results based on Ferris' equations. 

Tidal analysis incorporates the heterogeneity of the aquifer over a wider area than 

alternative methods available for determining aquifer properties. The method may be 

used to supplement and verify estimates of aquifer properties derived from alternative 

techniques. 
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Chapter 1 

Introduction 

1.1. Determination of Aquifer Properties 
Determination of aquifer properties is important for construction, environmental 

management and water resources planning. In summary, knowledge of aquifer 

properties is necessary for predictive analyses of: 

• Groundwater resources available 

• Temporary Effects of Construction on Groundwater Behaviour - Water Flow 

into Excavations 

• Migration of Contamination 

• Groundwater Level Variations due to Tidal Fluctuations 

• Permanent Effects of Construction on Groundwater Behaviour 

• Water Table Lowering Inducing Settlement 

1.1.1. Groundwater Resources Available 

The term groundwater is usually used to denote subsurface water that occurs beneath 

the water table in the pores of saturated soils and rock formations, existing at 

pressures greater than or equal to atmospheric pressure. 

Groundwater is especially important as a resource in arid regions e.g. the Hararghe 

Region of Ethiopia, where surface resources are limited due to minimal precipitation 

and rapid evaporation. In other cooler climatic areas, such as the U.K., groundwater 

has become important since surface resources are often polluted and insufficient to 

meet high demands. In the U.K. in the past, heavy industry warranted use of large 

quantities of fresh water which was often exploited from river resources. With the 

recent reduction of heavy industry and cessation of water extraction, river levels and 

water tables have risen dramatically, sometimes resulting in problems of extensive 

and damaging flooding. This was experienced in the Tees estuary as well as in the 



Thames vicinity and was in part, reason for the construction of barrages across the 

respective rivers coupled with the desire to limit surface water pollution. 

Groundwater is an important source of fresh water. In England and Wales 

approximately one-third of fresh water comes from groundwater sources. As 

groundwater development intensifies to meet the high demands for fresh water made 

by an increasing world population, aquifers and their response to heavy pumping 

become vital in detailing the availability of water for a specific area. 

1.1.2. Water Flow into Excavations 

Engineers faced with construction projects beneath the water table (e.g. tunnels, 

excavations) require details of aquifer properties to predict induced water flow into 

excavated areas. Once sufficiently accurate volumetric flowrates are calculated, 

suitable drainage procedures can be designed and incorporated. 

1.1.3. Migration of Contamination 

Induced water flow can also cause migration of contamination. Alteration of water 

tables (due to commencement or cessation of water extraction) causes variations in 

groundwater flow. If a contaminant source exists within the zone of influence, 

migration of contamination will commence or change as groundwater flow varies and 

originally fresh water resources may become polluted. An example illustrating this 

problem is in the Czech Republic where a hydraulic barrier was created to prevent 

groundwater flow from an area containing a radioactive contaminant source. 

Maintaining this hydraulic barrier (which consists of several pumps introducing water 

and reversing the hydraulic gradient) is proving expensive. Predictive analyses of 

contaminant migration following cessation of pumping is in progress. These analyses 

are wholly dependent on aquifer and aquitard properties and require accurately 

determined values (particularly with regard to permeability) so that the necessary 

precautions can be taken in an attempt to contain the pollution. 

Another case of migration of contamination exists here in the U.K. The recent 

cessation of many of the deep coal mining activities has resulted in the switching off of 
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drainage pumps and groundwater recovery has been allowed to occur. Groundwater 

flow has transported contaminants from the mine workings polluting both groundwater 

and surface water. 

1.1.4. Groundwater Level Variations due to Tidal 
Fluctuations 

In coastal areas, the tide influences groundwater behaviour. The effects of tidal 

fluctuation are dependent on the properties of the aquifer of interest and whether it is 

confined or unconfined. An aquifer is confined if the pore water completely fills the 

aquifer formation (saturation) which is overlain by an impervious confining bed. An 

aquifer is unconfined where the water only partially fills the aquifer formation and the 

water table can rise and fall within the stratum. 

For the case of the unconfined aquifer, tidal fluctuations may cause a cyclic rise and 

fall of the water table, and at depth changes in pore water pressure will be 

experienced. 

The tidal effects on a confined aquifer will be to induce variations in pore water 

pressure, with consequential changes in soil strength (illustrated by eqtn 1.1 below): 

cr'= cr r - uw > eqtiiW) (Terzaghi 1923) 

where a' = effective stress experienced by the soil - an indication of soil strength 

aj = total stress placed on the formation 

uw = pore water pressure 

1.1.5. Construction Effects on Groundwater Behaviour 

In addition to confined and unconfined aquifers (described in section 1.1.4), there also 

exist semi-confined aquifers. An aquifer is semi-confined (leaky) when it can lose or 

gain water through an overlying or underlying semi-pervious formation. 

Construction can result in substitution of the semi-impervious formation with a 

relatively impermeable layer (e.g. concrete), thus preventing leakage from or into the 

semi-confined aquifer (reducing the vertical permeability). The effect of this is to alter 

3 



groundwater flow. Predictive analyses are necessary to prevent problems by 

implementing suitable design procedures. 

1.1.6. Water Table Lowering Inducing Settlement 

When a load is applied to saturated soil material, it is supported by both the pore 

water and soil matrix. When the water table is lowered the pore water is drained from 

the soil material and hence any applied load now has to be carried by the soil matrix 

alone. If the effective strength of the soil, as defined by Terzaghi and quoted above in 

eqtn (1.1), is insufficient to cope with the extra load, the soil will deform and settlement 

will occur. Lowering of the water table can be the result of groundwater resource 

exploitation, construction dewatering or natural drought. In September 1995, following 

one of the driest summers on record, there were several reports of building 

subsidence following natural drought. 

Accurate determination of aquifer properties is necessary to try to avoid settlement by 

predicting the extent of water table lowering due to these effects. A recharging 

process can then be outlined if applicable. This procedure was adopted for 

excavation for the Tower Latino Americana in Mexico City, in order to avoid serious 

settlement of neighbouring streets and buildings. 

1.2. Definition of Aquifer Properties 
The hydraulic properties of any aquifer are dependent on its geological characteristics 

which can be subdivided into four sections: 

1. Geological evolution of the ground, e.g. due to sedimentation or volcanic 

behaviour. 

2. Progressive geological events, such as plate tectonics resulting in folding 

fissures and faults. 

3. Chemical processes, especially in limestones. 

4. The grading analyses of the soil i.e. constituent materials. 
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Particular Properties of interest are: 

e Coefficient of Permeability1 

• Coefficient of Specific Storage 

• Coefficient of Leakage 

1.2.1. Coefficient of Permeability 

Darcy found specific discharge (flowrate per cross-sectional area) to be proportional to 

the hydraulic gradient. The constant of proportionality, the coefficient of permeability, 

is a property both of the porous medium and of the water flowing through that 

medium, and details the rare at which water flows through the formation. Darcy's 

equation is given in eqtn (1.2) below. 

W = -Ki >eqtn{\-2) 

where W = Darcy velocity [UT] 

K = coefficient of permeability [UT] 

i = hydraulic gradient [non-dimensional] 

The grading of the soil material governs permeability. The effective size, D-IQ (sieve 

size through which 10% of the soil material passes) can be used to provide an 

estimate for this aquifer property. In addition to the soil material itself, the coefficient 

of permeability of an aquifer is largely influenced by fissures in the soil strata. 

Throughout this report, the 'coefficient of permeability' may be abbreviated to the term 

'permeability', which has the meaning as described above. 

Transmissivity (also referred to as transmissibility) represents the flow per unit width 

of the aquifer, and is defined as: 

T= Kb >eqtn(\-3) 

where T = transmissivity [L2/T] 

K = coefficient of permeability [UT] 

b = thickness of saturated aquifer [L] 

1 The coefficient of permeability is also known as the hydraulic conductivity. 
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1.2.2. Coefficient of Specific Storage 

This parameter details the amount of water that can be released from a unit volume of 

the aquifer for a unit change of head. Specific storage is dependent on both the 

compressibility of the soil skeleton and that of the pore water, and applies to confined 

aquifers. A similar parameter, specific yield, is used for unconfined aquifers to detail 

the amount of water available by pumping exploitation of the formation. 

The storage coefficient is related to specific storage by the relationship below: 

S = SJ> >eqtn(\-4) 

where S = storage coefficient [non-dimensional] 

S s = specific storage [L~1] 

b = thickness of saturated aquifer [L] 

1.2.3. Coefficient of Leakage 

The coefficient of leakage details the rate at which groundwater flows into or out of an 

aquifer system and frequently occurs due to precipitation percolating the soil overlying 

the aquifer formation. Coefficient of leakage is dependent on both the permeability of 

the confining layer and its corresponding thickness. It is also dependent on the head 

difference over the confining layer. These relationships are indicated below in 

equation (1.5). 

where p = coefficient of leakage [T" 1 ] 

K' = coefficient of permeability of confining layer (aquitard) [L/T] 

b' = thickness of aquitard [L] 

q = leakage flowrate [L/T] 

h = piezometric level in aquifer [L] 

h* = fixed hydraulic head in aquitard [L] 
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1.3. Methods Available to Determine Aquifer 
Properties 

Aquifer tests encompass all the effects of the geological characteristics described in 

section 1.2, and provide average estimates for aquifer properties over a region. The 

impact of geological irregularities is reduced. 

Deviations between analytical methods and field results will occur due to: 

1. The heterogeneity of the ground, e.g. impermeable lenses, sudden variations 

in local permeability. 

2. Problems due to measurement devices and instrumentation errors. 

3. The effects of geological structures, e.g. well design and interference, 

hydraulic boundaries 

Various tests are available for determining aquifer properties. The tests provide 

estimates for aquifer characteristics to relative degrees of accuracy depending largely 

on the cost of performing the test and analysing the results. Typical test methods in 

practice are: 

• Pump Tests 

• Slug Tests 

• Falling Head Tests 

• Soil Sampling 

• Tracer Tests 

• Monitoring of cyclic changes in groundwater due to influence of a periodically 

changing water surface, e.g. tidal effects on groundwater behaviour 

The method chosen to determine aquifer properties depends both on the options 

available at the site and also on the reason for determining aquifer properties. 

Pump tests are the most common and rigorous methods for determination of aquifer 

properties. A single pump test provides a range of values for permeability as the test 

progresses. Estimates founded on information recorded at the start of the test (with 

minimal drawdown) can be used for determination of pollution migration, when no 

drawdown is anticipated. Estimates based on measurements much later in the test, 

when a steady state condition of drawdown is observed, provide much more 
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satisfactory values for an aquifer which is to be exploited for water resources (when 

drawdown conditions are the norm). 

Pump tests rely on information from surrounding observation piezometers in addition 

to borehole information and so provide an estimate of aquifer properties over a large 

region of the aquifer. Semi-pervious layers, impermeable lenses and barrier effects 

are averaged out. 

Falling head and slug tests provide estimates for aquifer properties that are fairly 

localised to the observation borehole. 

Soil sampling tests, unlike others mentioned, are not performed in situ and therefore 

do not provide such accurate estimates of aquifer properties when compared to 

alternative methods. 

1.4. Analyses of Cyclic Fluctuations in 
Groundwater Level for Determination of 
Aquifer Properties - Ferris" Technique. 

Ferris' technique for determining aquifer properties is summarised below. This 

summary is based on the paper by Ferris (1951), entitled "Cyclic Fluctuations of Water 

Level as a Basis for Determining Aquifer Transmissibility". 

1.4.1. Introduction 

A technique for determining aquifer diffusivity (transmissivity/storage coefficient) was 

developed by Ferris (1951) who investigated cyclic fluctuations of groundwater level. 

This technique has applications to a stream, lake or sea that undergoes periodic 

changes in stage, generally sinusoidal fluctuations. A continuous data record of 

groundwater head changes and corresponding variations in stage of the surface-water 

source can be used to estimate diffusivity of the aquifer. Ferris assimilated the 

dependence of groundwater head on the source stage with Angstrom's work 

(documented by Carslaw in 1945) to determine the thermal conductivity of various 
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solids. Two formulae were concluded which incorporate, respectively, time lag and 

attenuation differences between the source stage and groundwater head at various 

distances from the boundary. Diffusivity can be calculated from these equations, 

which can then assist in providing estimates for coefficients of permeability and 

storage. 

1.4.2. Assumptions 

The theory presented by Ferris assumes an ideal homogeneous aquifer of uniform 

thickness, extending an infinite distance from the hydraulic source. This theory is 

based upon the governing equations of one-dimensional transient groundwater flow in 

a confined and saturated porous medium as developed by Theiss (1935). This 

equation is as follows: 

where T = Transmissivity 

S = Storage coefficient 

This equation has been used widely in practice and is based on two key concepts:-

1. Conservation of mass within a compressible porous medium 

The work by Ferris (1951) was to solve the above equation subject to the external 

conditions of a sinusoidal hydraulic head boundary condition. The application of this 

equation to such cyclic conditions was validated against field conditions. Ferris 

assumed that the aquifer was fully hydraulically connected to the linear surface-water 

source propagating cyclic fluctuating waves. For the cases where the aquifer is not 

fully connected to the surface-water source, tidal analyses will provide useful 

estimates of aquifer properties, provided the aquifer is unaffected by vertical 

components of flow. 

eh 
T eqtn(1.6) 

2. Darcy's law that the average seepage velocity is proportional to the head 

gradient. 
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Limitations to Ferris Theory 

Previous analytical solutions of groundwater behaviour under harmonic conditions 

have been limited to solving the equation governing transient groundwater flow in a 

non-leaky confined aquifer. This is not, however, the case in most aquifers where, as 

the pressure rises, a proportion of the water will leak out of the upper or lower 

confining layers. Similarly, when water pressure falls, this will induce water from 

outside into the aquifer. Based on the assumption that the inflow and outflow to the 

aquifer is proportional to the head fall or rise, Jacob (1946) developed the governing 

equation for flow in such a leaky aquifer as> 

where fi = Leakage coefficient 

The solution to this equation under the condition of a fixed pumping rate was further 

developed by Hantush and Jacob (1955) with regard to understanding the transient 

behaviour of a leaky aquifer when subjected to a period of pumping at constant rate. 

The work by Hantush and Jacob on leaky aquifers was further developed to 

incorporate well storage and non-linear leakage. However, no analytical solution has 

been produced to solve the leaky aquifer equation (eqtn 1.7 above). Such a solution 

has been developed as part of this project thesis and is included in chapter 5. 

Model Verification 

Although no analytical solution has been developed to solve eqtn(1.7) above, for 

sinusoidal boundary conditions, the numerical model CVM (Thomas et. al, 1994) 

solves this equation using a finite element numerical technique. This CVM model has 

been well documented with various other analytical and numerical solutions under 

transient and leaky aquifer conditions. 

Since the CVM model is based on the equation of Jacob (1946), any analytical 

solution developed in this thesis to solve eqtn(1.7) above has therefore the capability 

of being verified by application of the CVM model. 

S—+/5h 
a 

eqtn(1.7) 
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1.4.3. Theoretical Equations for Tidal Analyses Derived 
by Ferris 

The governing equation for flow in a one-dimensional, homogeneous, confined aquifer 

is 

J r - J r i e q , n ( 1 ' 8 ) 

where h = rise of piezometric level with reference to mean level 

S = Storage coefficient of the aquifer 

t = time 

T = Transmissivity of the aquifer 

t = time _ 

x = distance 

Ferris derived a solution to eqtn(1.8), designating the amplitude of the tide as hg, and 

applying the following boundary conditions 

h = ITQ sin<2# at x = 0 and h = 0 at x = oo 

where angular velocity = co = — and tg = period of tidal oscillation. 

Ferris solved the governing eqtn(1.8) applying the above boundary conditions to give 

h = h0 exp j -x^ f lSV t j ) s i n ^ T " - xJnS I t j ^ eqtn(1.9) 

The solution in eqtn(1.6) illustrates that tidal pressure waves remain sinusoidal as they 

travel through the aquifer from the sea with a time lag and an exponential decrease in 

amplitude with distance from the sea. This is illustrated in Figure 1.1. The 

magnitudes of the time lag, t|_and amplitude variations, h x , are 

t, = x A P 4 e q t n ( 1 . 1 0 ) 

.eqtn(1.11) 

Eqtn(1.11) can be rearranged thus: 

0 ^ 
l n | - i =-xJ— eqtn(1.12) 
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This theory is documented in several textbooks including Todd (1980). 

1.4.4. Validation of Theory 

Ferris validated the formulae to a certain extent with specific examples. Field data 

was presented for three riverside observation wells at the Ashland station, City of 

Lincoln, Nebr. Groundwater levels were studied at three observation wells at 

distances of 42, 106 and 252 feet from the River Platte. The ratio of groundwater 

fluctuation to river stage was computed for the rising and falling limb of each cycle. 

Data was recorded for the duration of a week and the period of the river fluctuation 

was found to average 24 hours. 

A semi-logarithmic plot of (In h x/hn) versus horizontal distance from the observation 

well, x, was drawn up from the results. A line of best-fit was drawn through the results 

and diffusivity was then calculated from the gradient of this line using eqtn(1.12) 

above. Ferris stated that reasonable estimates of storage coefficient, S, can be 

determined if it is known whether the aquifer is locally confined or unconfined based 

on observation of water level records. Hence, a range of appropriate values of 

storage coefficient for unconfined conditions for the Nebr. aquifer were assumed. A 

range of transmissivity values were then calculated. It was concluded that the results 

were affected by: 

1. Pumping from municipal wells, the rate and distribution of which varied slightly 

during the weekly period of testing. 

2. Variations in the screen resistance of each observation well. 

Time lag versus distance from the observation well was also plotted. From the 

gradient of this plot, a second value for diffusivity was determined. Several values of 

transmissivity were then calculated by substituting in the selected range of storage 

coefficients. 

A significant difference between estimates of transmissivity based on time lag 

methods and amplitude methods was observed. This was attributed to the effects of 

local pumping, and Ferris recommended that future field work should be in an area not 

subject to heavy pumping. 
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Ferris concluded by suggesting that use of the theory could also be made for the 

response of aquifers to a single flood crest in a hydraulically connected stream. 

1.5. Literature Review Detailing Application and 
Verification of Ferris 1 Technique 

Since Ferris' technique is not common practice, a detailed literature review was 

executed to outline its application and evaluate its relative merits over standard pump 

tests procedures. 

Application and validation of Ferris theory has been discussed by a range of authors. 

These include Carr and Van Der Kamp (1969), Erskine (1991), Pandit et al (1991), 

Crowe (1994) and White and Roberts (1994). _ 

1.5.1. Carr and Van Der Kamp (1969) 

1.5.1.1. Summary 

Specific storage and coefficient of permeability were determined from fluctuating 

groundwater levels. Tidal efficiency was calculated and used to compute an estimate 

of specific storage by considering porosity of the rock and compressibility of the 

aquifer and water (Jacob, 1950). Application of Ferris' theory then led to an estimate 

for the coefficient of permeability. The approach was verified by field work in Prince 

Edward Island, Canada. Results from tidal analyses compared well with those based 

on pump test methods. 

1.5.1.2. Tidal Eff ic iency 

In a confined subsea aquifer, change in load on the aquifer due to tidal variations is 

carried by both the soil skeleton and the pore water. Therefore, the amplitudes of tidal 

fluctuation will be smaller in the subsea aquifer than in the ocean. The true tidal 

efficiency is defined as the ratio of amplitudes of groundwater fluctuation, in a subsea 

portion of an aquifer, to tidal fluctuation. It was possible to obtain apparent tidal 

efficiency which is the ratio of groundwater fluctuation in the aquifer inland compared 

to tidal fluctuation. The pressure wave has progressed inland and become damped by 

13 



movement through the aquifer. True tidal efficiency is the special case of apparent 

tidal efficiency at the boundary of the sea. Tidal efficiency can therefore be 

incorporated into Ferris amplitude decay equation as shown below: 

1.5.1.3. Field Work 

Prince Edward Island is underlain by sandstone and siltstone sediments with small 

amounts of clay and conglomerate. The strata are thin and groundwater was known 

to flow mainly through fractures rather than pores in soil material. Pump test data 

showed the aquifer to be semi-confined. 

Measurements of groundwater level fluctuations were obtained for eleven piezometers 

covering a range of distances from the sea from 180 feet to 527 feet. Tidal efficiency 

was calculated by comparing the observed rise or fall in groundwater level with the 

respective rise or fall in sea level. Time lag was determined by comparing times 

between maximum and minimum groundwater levels and corresponding high and low 

tides. Average values of tidal efficiency and time lag for each borehole were then 

computed. The effects of lag due to the observation hole and time taken for 

surrounding groundwater changes to affect piezometric head were considered and 

Hvorslev's theory (1951) applied to results. This was found to have significant effect 

on observed time lags, which were then adjusted accordingly. The damping effect of 

the piezometer was also calculated (Hvorslev 1951) and found to have a small effect 

on results. Specific storage was calculated by considering compressibility of water 

and mean value of porosity determined from forty rock samples. The coefficient of 

permeability was then calculated from Ferris theory. 

Pump test methods were used for comparison since they provide estimates of 

permeability for a large portion of the aquifer, similar to tidal analyses methods. It was 

not possible to perform pump tests at any of the peizometers used for tidal tests, 

however pump test data were available from investigations on local, similar soil 

nS 
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material. Mean values of specific storage obtained were in good agreement. 

Coefficients of permeability based on pump tests compared reasonably well with those 

from tidal analyses methods. 

Errors in estimates based on tidal analyses were thought to occur due to 

discontinuities in the strata, reflection effects and inaccuracies in measurements. 

Applications of Ferris' theory were thought to be limited because a straight shoreline is 

assumed with little or no vertical leakage. Inaccuracies due to approximations of tidal 

period were also outlined. 

1.5.2. Erskine (1991) 

1.5.2.1. Summary 

Tidal fluctuations affected groundwater in the coastal aquifer around Sizewell 'B' 

Nuclear Power Station, East Anglia, U.K. Construction of the new power station 

warranted extensive dewatering during construction. Detailed monitoring of 

groundwater was made to avoid disturbing effects on the existing and operating 

Sizewell 'A' Power Station. Tidal effects were eliminated so that the effects of 

dewatering could be carefully monitored. 

1.5.2.2. Field Work and Tidal Analysis of Results. 

The geology of the site consisted of high permeability sand overlying clay bedrock. 

Piezometers were located in the highly permeable unconfined aquifer at various 

distances of between 50 and 400 metres from the sea. Data of groundwater levels 

was collected from 39 piezometers over a 24 hour period. A standard deviation 

method was applied to determine the amplitude decay from results. The time lag was 

measured from results using the least squares fit method. The data was filtered to 

compensate for tidal effects. It was stated that atmospheric pressure and 

meteorological changes will affect both the aquifer and tides. At small values of 

amplitude decay, the accuracy of both time lag and amplitude decay was significantly 

reduced. At distances from the sea exceeding 350 metres, efficiencies were down to 

4% or less. Scattering of results was attributed to variations in geology of the area 
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and design of piezometers. Erskine stated that results illustrated a clear tendency for 

deeper piezometers to have smaller lags and larger tidal efficiencies. He attributed 

this to the unconfining nature of the aquifer close to the phreatic surface. Pressure 

waves tended to be damped in this area because the storage coefficient used was 

unconfined, whereas at depth confined storage governs pressure changes. Erskine 

performed regression analysis on data points to get best fit lines. 

Time lags observed appeared to be larger than expected. The time taken for the 

piezometer to respond to changes in groundwater pressure was calculated from 

Hvorslev's theory, and found to be negligible. Application of Ferris' theory was 

questioned since the aquifer may not come into contact with the sea until a 

considerable distance from the beach. Furthermore, if this was the case, 

characteristics of the sea bed may interfere with transmission of oscillations from sea 

water to aquifer. 

Erskine assumed a value for transmissivity based on pump test results, and hence 

derived estimates for storage coefficient from both time lag and amplitude decay 

formulae. He found these estimates to lie between the confined and unconfined 

storage of the aquifer as estimated from the pump test. He concluded that this 

illustrated that the aquifer was not acting as a confined or unconfined aquifer, but 

exhibiting a combination of the two. Erskine also discussed Ferris' assumption that 

variations in transmissivity resulting from fluctuations in the level of the phreatic 

surface were negligible. Erskine concluded that his results would not correspond 

exactly because of unconfined aquifer behaviour. The damping effect of the phreatic 

surface was suggested to have more effect on the amplitude decay of tidal oscillations 

than time lags. Erskine mentioned the work of Reynolds (1987) who found that by 

matching time lag rather than amplitude decay, his simulated diffusivity tended to 

correspond with parameters for confined aquifers. 

1.5.3. Pandit, El-Khazen and Sivaramapillai (1991) 

The main objective of their work was to determine the ratio of the vertical to horizontal 

components of the coefficient of permeability of an aquifer using a finite element 
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model. In addition to this, the horizontal component of coefficient of permeability was 

estimated by studying tidal effects on groundwater in a coastal aquifer at Port St. 

Lucie, Florida. 

The aquifer was in the most part unconfined, however confined conditions were 

recorded where discontinuous clay lenses acted as confining units. 

Groundwater levels were monitored hourly on two separate days. It was found that 

groundwater levels were fluctuating in response to tidal variations in the Indian River 

Lagoon, as opposed to the sea itself. Ferris theory was applied to data from one 

observation well. It was found that significant changes in specific yield had little effect 

on groundwater levels, however a value of storage coefficient was assumed that 

predicted groundwater levels close to those measured. From this, a value for the 

coefficient of permeability was estimated. This value was found to be in good 

agreement with a range of values obtained from alternative methods. 

1.5.4. Crowe (1994) 

1.5.4.1. Summary 

Crowe investigated the tidal method for determining aquifer properties. Information 

was gathered from a site in Humberside, U.K., and comparisons made between 

estimates of aquifer properties determined by a variety of techniques. Computer 

models were used to simulate observed behaviour of groundwater in response to tidal 

fluctuations. 

1.5.4.2. Geology 

The geology of the site consisted of alluvial material and made ground overlying 

glacial deposits, including till; sand and gravels; glacial lake deposits. Underlying the 

region was Cretaceous chalk. 

There were two aquifers in the area. The upper aquifer, was in the granular alluvial 

and glacial deposits. The lower aquifer, lay in the chalk. 
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1.5.4.3. Analysis of Earlier Site Investigation Results 

Earlier site investigation results, including packer permeability tests, were available 

and Crowe analysed this data. He found that permeability estimates depended largely 

on test method, with results spanning four orders of magnitude. Significant 

discrepancies were found between estimates from pump in and pump out tests. It 

was suggested that this was due to the washing out of fines contained in fissures, 

implying that most groundwater flow occurred through such fissures. 

1.5.4.4. Field Work - Manual Recording of Data 

At the Humberside site, Crowe manually recorded measurements of groundwater level 

from nine boreholes over a period of six hours. 

Amplitude results were plotted on a graph of ln(hx/hfj) versus horizontal distance, x. 

From the plot, the distance from the riverside to the submarine outcrop was estimated 

at 160 metres. The gradient of the best-fit line was measured and hence diffusivity 

was estimated to be 9 x 10 5 m2/day (applying Ferris' theory). It was assumed that 

pump tests and tidal analyses resulted in an estimate of the same mean permeability. 

Substitution of the mean value of permeability obtained from packer tests into the 

diffusivity result, provided an estimate for specific storage. Using this value, Crowe 

calculated the mean permeability for each of his data points. 

The range of permeability estimates obtained from packer tests was compared with 

those from tidal analyses. It was noted that the packer test data, based on pump-out 

tests, ignored variations in permeability with depth. Crowe found that the range of 

results for permeability from the tidal analyses method was much smaller than that 

from pump test analyses. Figure 1.2 illustrates Crowe's results from this comparison. 

Crowe also estimated time lag from the data. It was anticipated (as predicted from 

Ferris' theory) that a time lag versus distance plot should produce a straight line. The 

results were extremely scattered and there was no indication of a straight line pattern. 

Diffusivity could not be estimated from the manual time lag results. 

On close analysis of the manual data, Crowe found periodic variation in the wave. 

18 



Crowe suggested several reasons for discrepancies in estimates of permeability 

based on the manual data and tidal analysis. These included: 

1. Effect of flood waves and weather conditions in the Humber catchment. 

2. Atmospheric variations. It was thought that this effect could cause variations in 

sea level of ±0.25 metres. 

3. Associated British Ports pump water into the docks to maintain water levels for 

three hours either side of high tide. It was thought that this would artificially 

influence the period and time lag without significantly affecting amplitudes. 

4. Variations in groundwater flows due to weather conditions. 

1.5.4.5. Field Work - Data Loggers 

Pressure transducers and data loggers were installed in three boreholes to record 

groundwater levels. Measurements were taken every five minutes for 14 days. 

Amplitude results were plotted on a graph of ln(hx/hn) versus horizontal distance, x. A 

best-fit line was drawn through the points. The gradient of the line was measured and 

diffusivity calculated to be 5 x 10 5 m2/day. This compared well with the estimate from 

data gathered manually . 

Time lag was calculated and plotted versus horizontal distance. A best-fit line was 

drawn through points on the graph and from the gradient of the line, diffusivity was 

calculated to be 6 x 10 6 m2/day (applying Ferris' theory). 

There was clear discrepancy in the estimate of diffusivity (an order of magnitude) 

between amplitude and time lag techniques. Crowe suggested that this may be due to 

leakage, instigated by removal of some of the confining material when the dock 

foundations were constructed. He concluded that leakage would have the effect of 

damping oscillations, whilst time lags remained unchanged. 

No variation in period was observed in the data logger results. 

1.5.4.6. Fourier Analysis 

Fourier analysis was carried on tidal data to establish predominant wave forms. 

These were concluded to sine waves of periods 1 and 14 days. 
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1.5.4.7. Atmospheric Pressure 

Results from atmospheric monitoring were considered inconclusive particularly 

because of the effects of heating of the metal casing. The mean value of the data 

from one borehole varied by around 150mm which may have been the result of 

atmospheric effects. This value was greater than the amplitude of oscillations in that 

hole. 

1.5.4.8. Computer Models 

Two different software programmes were used to model the situation at Humberside. 

Results from both models were consistent with amplitude results given by Ferris' 

theory, and with data from the earlier site investigation. Crowe investigated the effects 

of leakage on amplitude decay using one of the computer models. Whilst other 

aquifer properties are kept constant, Crowe found leakage had significant effect on 

amplitude decay. It was not possible to measure time lags accurately using the 

computer models. 

1.5.4.9. Conclusions 

Crowe concluded that tidal analyses methods produced results of permeability with 

less scatter than those obtained by pump tests. He also suggested that it may be 

possible to obtain an estimate of leakage from the aquifer by comparing amplitude and 

time lag methods. It was recommended that both amplitude and time lag methods be 

used to estimate diffusivity since the presence of leakage may reduce apparent 

diffusivity as calculated form the amplitude method, leading to incorrect conclusions. 

1.5.5. White and Roberts (1994) 

The causes and transmission mechanisms of tidal influences were discussed and 

estimates of aquifer properties based on tidal analyses compared with those expected 

at a variety of sites around the United Kingdom. White and Roberts questioned the 

viability of Ferris' theory, particularly since the effective location of the source could be 
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significantly further than the distance as measured from the observation borehole. 

This could be the case for two reasons: 

1. If a narrow zone of lower permeability material sealed the source from the 

aquifer, this would have the effect of reducing the fluctuation at all positions by 

a factor. It was suggested that to avoid this type of confusion, a minimum of 

two observations of groundwater level should be made at different locations 

and the results compared, before analyses with tidal fluctuations was 

performed. 

2. A confined aquifer may not be directly connected to the source. This would 

affect tidal efficiency, as the full tidal loading would not be transmitted to 

underlying pore pressure response. It was concluded that Ferris' theory 

discounts overlying strata hence reducing tidal efficiency. 

Analysis of results from the six case studies produced a variety of conclusions. 

Site 1. Estimates of diffusivity from pump test data at Port Solent were in good 

agreement with estimates based on tidal analyses. 

Site 2. Data collected from a single piezometer located in an unconfined aquifer at a 

site near Folkestone was used to compute an estimate of diffusivity and permeability. 

The results compared reasonably well with particle size distribution data. 

Site 3. Estimates of aquifer properties at a site at Blackwall were based on borehole 

investigations and particle size distribution data. Tidal analyses estimates were found 

to be unexpectedly low. This was thought to be due to differences between effective 

distances and actual distances. 

Site 4. Estimated parameters based on soil material at the Medway site were 

significantly different to those obtained from tidal analyses methods. It was suggested 

that the aquifer was partially confined and effective distances much greater than 

actual distances. 

Site 5. Comparisons of confined aquifer properties at Limehouse from both site 

investigation and tidal analyses compared well. 
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Site 6. Diffusivity estimated from tidal analyses at the Conwy site was larger than 

expected. The reason for this was attributed to the anisotropic nature of Lake 

deposits which have a higher horizontal permeability. 

Underestimates of tidal response induced by the 19mm diameter piezometer were 

suggested to be as large as 25% for permeabilities of 10" 6 m/s. 

White and Roberts concluded that tidal response data could not be used to determine 

aquifer properties such as permeability with any useful accuracy. It was suggested 

that it could provide a useful supplement to a site investigation but would never rival 

rigorous methods such as pump tests in accuracy of determining aquifer properties. 

1.6. Literature Review Detailing Groundwater 
Behaviour and Determination of Aquifer 
Properties from Tidal Efficiencies 

Studies of groundwater behaviour and determination of aquifer properties with regard 

to tidal efficiencies have been discussed by Gregg (1966) and Money (1986). 

1.6.1. Gregg (1966) 

1.6.1.1. Summary 

The formulae to determine tidal and barometric efficiencies when both are changing 

simultaneously were derived. Gregg also discussed changes in tidal efficiency with 

depth and distance from the sea. Coefficient of storage was calculated from tidal 

efficiency measured at a site in Glynn County, Georgia, U.S.A. 

1.6.1.2. Details 

Tidal efficiency is defined as: 

,. well water level change 
Tidal efficiency = ———;—— >eqtn 1 • 14 

tidal level change 
This is analogous with amplitude decay as described by Ferris (1951). 
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Discrepancies in tidal efficiencies were thought to occur due to variations in thickness 

of sedimentary materials overlying the aquifer. Conditions of greater thickness would 

reduce the effect of damping of tidal waves. Larger coefficients of storage were 

suggested to cause higher tidal efficiency. Tidal efficiencies of wells at the site were 

found to decrease with depth and also with distance from the influencing tidal body. 

Decrease in tidal efficiency with depth was attributed to heterogeneity of materials and 

increase in the number of hard, dense beds with depth. It was suggested that tidal 

efficiency increased during spring tides due to an increase in the total load on the 

aquifer. 

Tidal efficiency was used to determine the bulk modulus of elasticity and compression 

and the coefficient of storage of the aquifer (Jacob, 1950). The estimate of storage 

coefficient obtained by this method compared well with those based on alternative 

techniques. 

1.6.2. Money (1986) 

Type curves were constructed from Ferris theory to predict piezometric response. A 

field site in the Tees estuary was selected for validation of the theoretical plots. 

Discrepancy was found between field results and predicted theory. This was 

attributed to the net coastward flow of groundwater. 

1.7. Discussion of Ferris Technique for 
Determination of Aquifer Properties 

It can be concluded from field work analysed to verify Ferris' theory (referenced and 

detailed above) that the method provides an approximate estimate of aquifer 

properties. The technique does not appear to provide such reliable estimates as 

pump test methods. It is limited to a certain extent by the assumptions made by 

Ferris, particularly with regard to negligible vertical flow. Difficulty in measurement of 

distance from the observation well to the sub-sea outcrop also leads to significant 
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discrepancies in results. Further problems have been noted due to coastward flow of 

groundwater. 

Ferris' technique incorporates the heterogeneity of the aquifer formation and therefore 

gives more accurate representation of a wider area than alternative methods. Semi-

pervious layers, impermeable lenses and barrier effects are incorporated to provide 

average estimates for aquifer properties over a wide coastal area. 

1„8= The Importance of Determining Aquifer 
Properties in Coastal Areas 

Nearly two thirds of the world's population now inhabit coastal areas and numbers are 

growing (United Nations Environment Programme). Consequently, there is demand 

for fresh water resources and construction services and in addition, problems of 

pollution are inherent. Therefore, determination of aquifer properties, as outlined in 

section 1.1, is important for predictive analyses in meeting people's needs whilst 

avoiding environmental problems. 

Particular problems occur due to high demand for fresh water resources. Rivers in 

coastal areas are frequently polluted and groundwater has become an important 

source of fresh water supply. Excessive pumping of coastal aquifers can lead to 

saline intrusion and pollution of the source. This then incurs the expense of 

desalination if the groundwater resource is to continue to be exploited. In order to 

avoid this unnecessary expense, coastal aquifer properties require to be accurately 

determined so that the effects of heavy pumping can be predicted. 

1.9. Physical Modelling of Coastal Aquifers to 
Improve Methods for Accurately 
Determining Aquifer Properties 

Accurate determination of aquifer properties in coastal area is therefore essential. 

Ferris' method is particularly suitable for estimates of coaslal aquifer properties, 
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however, as explained in section 1.7. above, the theory is somewhat limited, and 

requires further validation. 

Investigation and development of engineering techniques to estimate aquifer 

properties includes field work, numerical modelling, physical modelling or 

mathematical development of existing theory. The validity of any technique in the long 

term is greatly enhanced by research covering the full repertoire of these activities. 

There are few examples in geotechnical engineering that involve physical modelling as 

a means of research and development. Subsurface features are often too large and 

influenced by a number of external factors which are difficult and impractical to 

simulate in the laboratory. 

The objective of this research project was to further investigate the application of 

Ferris' technique. This involved field work in addition to physical modelling of a 

coastal aquifer constructed in the laboratory at Durham University. 
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Chapter 2 

The Durham Model Aquifer 

2.1. Introduction 
As part of an undergraduate project, Carrington (1994) constructed a basic laboratory 

model of a coastal aquifer. The objective of this work was to further investigate Ferris' 

theory for the estimation of aquifer properties in coastal areas. The viability of the 

physical model was determined from experimental work. This was essential before tidal 

tests could be performed. Analysis of these results concluded estimates of values for 

aquifer properties. 

Within the current programme of work, which formed the post-graduate research project, 

the tidal system for the Durham Model Aquifer was installed. Two preliminary tests were 

performed under steady state conditions followed by sixteen series of tidal tests. 

This chapter describes concepts leading to construction of the Durham Model Aquifer 

and describes the equipment. A summary of results from undergraduate experimental 

work (Carrington, 1994) is also included. 

Details are then given regarding installation of the tidal system as part of the post

graduate research. 

2.2. Model Concepts 
The conceptual requirements for the physical model were as follows: 

• Permeable soil material, submerged in water - the aquifer, with specific storage 

and permeability. 

• Horizontal flow of water within the soil material - groundwater flow. 
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° A periodical wave applied at one boundary - simulated tide. 

• An overburden - simulating weight of overlying strata. 

« Accurate Instrumentation to measure pore pressures in order to determine time 

lag variations and amplitude decay of the applied wave at a number of horizontal 

distances from the harmonically varying boundary. 

The size of the model required to be such as to provide realistic estimates of aquifer 

properties. Small data values were thought to be significantly affected by experimental 

errors, and yet size of the model was obviously limited due to physical constraints and 

expense. A balance had to be obtained. 

Figure 2.1 provides an indication of the size of the influential zone of existing aquifer 

tests when compared with the field. 

2 . 3 . Modal Size 

triaxial 

oedometer hydro-geological 

10 -3 10 -2 10 10 10 
1 

1 0 2 1 0 3 1 0 4 

Logarithmic Scale (metres) 

Figure 2.1. Indication of Influential Zone of Existing Aquifer Tests 
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From Figure 2.1, it can be seen that aquifer testing in the past has been limited to small 

soil samples (of the order of centimetres) or to much larger areas with application of field 

methods such as pump tests (of the order of tens of metres). Little experimental work 

has been performed covering regions of the order of metres. 

Investigation into determining aquifer properties for influential regions of between one 

and ten metres could improve available techniques for accurately measuring aquifer 

properties, such as permeability, specific storage and leakage. 

2.4. Model Overview 
This section describes the equipment constructed in an undergraduate project by 

Carrington (1994). 

The Durham Model Aquifer was designed and constructed from consideration of the 

required concepts and size as outlined above. A schematic diagram of the constructed 

model is shown in Figure 2.2. 

A descriptive overview of the physical model is outlined below. 

The model consisted of a container (4.8m long, 0.25m wide and 0.25m deep), filled with 

sand submerged in water. The head was varied in a water tank, linked to the laboratory 

aquifer at one end, whilst pore water pressure measurements were recorded at various 

positions along the base of the aquifer container, the density of measurements being 

greatest nearer the water tank where larger pressure variations were anticipated. 

A detailed diagram of the Durham Model Aquifer together with a photograph of the 

equipment before the tidal system was installed are presented in Figures 2.3 and 2.4 

(Photograph A). The aquifer container was constructed from wood in a double layer to 

help prevent leakage and to give strength. Variations of head within the water tank 

resulted in flow into the semi-confined model aquifer. The water tank was linked to the 

model aquifer by a length of pipe. At the end of this pipe a perspex plate secluded a grid 
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of holes and series of grooves between these holes. Water was filtered along the 

grooves because the plate was fixed flush with a solid lamina. After passing along some 

of these grooves, water flowed through the holes to porous material (Dupont typar®) 

attached to the other face of the perspex plate which prevented sand from the aquifer 

entering the water tank. The water filtered through this material into the sandy aquifer 

bed where it became 'pore water*. Water remained in this bed under pressure from an 

overburden of compressed air (equivalent to 1.20m head of water) within a rubber bag. 

The rubber bag was constrained from rising by a series of metal bars bridged by a 

wooden support above the air bag. Water leakage from the aquifer occurred along the 

sides of the container, between the rubber bag and wooden panels. This free water 

surface was maintained at constant head using a drain positioned above the rubber bag 

at the far end of the aquifer container. 

The water level in the tank was altered as testing proceeded. Pore water pressure was 

measured at twelve different positions in the system, eleven in the base of the aquifer 

container and one in the base of the water tank (these twelve positions were individually 

connected with piping to a brass manifold). The locations of each of the pore water 

measurement positions are outlined in table 2.1. below. 
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Pore Water Distance from Tidal 

Measurement Position Aquifer Boundary (m) 

1 N/A Base of Tidal Tank 

2 0.05 

3 0.145 

4 0.420 

5 0.780 

6 1.210 

7 1.720 

8 2.280 

9 2.810 

10 3.425 

11 4.095 

12 4.795 

Table 2 .1 . Locations of Pore Water Measurement Positions from Aquifer Boundary 

Nearest Tidal Tank. 

At each of these twelve positions, porous discs in brass tappings prevented larger sand 

particles migrating from the aquifer and blocking peripheral equipment. Twelve solenoid 

switches, located at the entrances to the manifold, were controlled by computer to open 

sequentially. The opening of each of these switches linked water at the corresponding 

position in the base of the aquifer model with that in the manifold. A transducer, 

connected to the manifold, was programmed by computer to measure water pressure 

eighty seconds subsequent to switch-opening, after which time the pressure within the 

manifold was anticipated to have reached equilibrium with that in the base of the Durham 

Model Aquifer. This pressure measurement was recorded together with the 

corresponding position in the aquifer. To minimise external influences, such as 

atmospheric effects, on pore water pressure measurements, a single transducer was 

used, and therefore variations in pore water pressure were comparable for each of the 

twelve positions. The accuracy of the transducer was found to be ± 1 mbar. 
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It was necessary to ensure minimal air in the Durham Model Aquifer system because this 

would distort pore water pressure measurements. The system was therefore regularly 

flushed through with water. Leakage also continually occurred from the upper surface of 

the aquifer aiding the reduction of trapped air in the system. 

2.5. Soil Material Details 
Sherbum Quarry Sand was used to form a homogeneous aquifer of suitable 

permeability. The properties of local Sherbum Quarry Sand, listed below in Table 2.2, 

were determined by particle size analysis, applying sedimentation by pipette analysis for 

differentiation of fines. 

Coefficient of Curvature (C 7 ) 1.11 

Coefficient of Uniformity (C,,) 4.44 

Effective Size (Dm) 90 x l O ^ m m 

Table 2.2. Properties of Sherbum Quarry Sand 

The grading curve for the sample is shown in Figure 2.5. 

2.6. Estimates of Aquifer Properties from Previous 
Experimental Work 

Experimental work was performed as part of the undergraduate project, Carrington 

(1994), using the Durham Model Aquifer. This work concluded with estimates for the 

coefficients of permeability and leakage. 

In summary, the coefficient of permeability of the Durham Model Aquifer was estimated 

to be 3 x 10" 3 m/s. This result is within a range of estimates of permeability for sand 
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material (Freeze and Cherry, 1979). The leakage coefficient was estimated to be 

7 x 1 0 - 6 s - 1 . 

In addition to the above tests, Carrington (1994) performed experimental work to 

determine the specific storage of the Durham Model Aquifer. Results from Carrington's 

work were analysed by Lourenco (1994) who concluded values for storage and leakage 

coefficient of 0.1 and 8 x 10" 6 s" 1 respectively. This estimate for the storage coefficient 

was higher than anticipated. This was attributed to the fact that the definition of storage 

coefficient is based on compressibility of the soil and pore water, and ignores the 

presence of any air within the system. The significant amount of air present in the 

Durham Model Aquifer system was therefore thought to be the reason for an unusually 

large estimate for this aquifer property. 

The results are summarised in table 2.3 below. 

Aquifer Property Estimated Value 

Coefficient of Permeability 3 x 1 0 ' 3 m/s 

Coefficient of Leakage 7.5 x 10- 6 s" 1 

Storage Coefficient 0.1 

Table 2.3. Summary of Estimates for Aquifer Properties from Preliminary tests. 

2.7. Repair and Modification of Equipment 
The Durham Model Aquifer was not used for seven months prior to commencement of 

the MSc post-graduate research project. Before further testing was possible, certain 

repairs and improvements had to be made to the equipment. These repairs formed part 

of the current programme of work and are outlined below. 

1. It was anticipated that sand material constituting the model aquifer had become dry 

during the seven month period and therefore had to be re-saturated with water. This 
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involved repeatedly filling the tidal tank with water and allowing time for this water to 

dissipate into the model aquifer. Leakage from the upper surface of the aquifer 

ensured that the system was flushed through with fresh water. 

2. Air had entered the system over the seven month period. Therefore, as much air had 

to be expelled as was physically possible. Filling the tidal tank as described in 1. 

above aided this process, eliminating some entrapped air. In addition to this method, 

water was also injected into the base of aquifer through three of the brass tappings 

(located for pore water pressure measurement). Water was injected for lengths of 

time not exceeding one hour. 

3. Leaks had occurred at seals in the aquifer container and these had to be repaired by 

sealing with silicone sealant. 

4. Silt material had become trapped in the piping linking the solenoid switches to the 

base of the aquifer. This had to be removed along with any air bubbles that had 

become trapped in the pipe work. This was done by two methods. Firstly, detaching 

pipework from solenoids and enabling water to flow (due to head difference) from the 

aquifer. If this was insufficient to clear the pipe, the second method of water 

injection (similar to that described in 2. above) was used. This forced silt and air 

back into the aquifer. It was hoped that most of this air would be cleared as the 

aquifer was repeatedly flushed through with water. 

5. Silt material had also become trapped in the plastic pipe linking the tidal tank and 

model aquifer and had to be cleared out. 

5. A new air regulator had to be bought and installed to more accurately control the air 

pressure within the rubber bag overlying the model aquifer. 

6. The existing computer programme designed to control the solenoid switches and 

record transducer measurements had to be improved. Time between readings had 

to be as short as possible and data had to be stored in a more convenient form for 

subsequent analyses. The required time between pore water pressure 

measurements was found to be at least 100 seconds. This allowed the necessary 
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time for the water pressure in the manifold to reach steady state. This 100 second 

time interval was required due to silting in pipes and around pore water pressure 

measurement areas. The transducer also took time to adjust to new pressures in the 

manifold. 

7. The rubber bag had to be re-filled with air. 

8. Existing overlying wood had become rotten due to continuous saturation in water. 

New suitably-sized wood had to be obtained to replace the existing wood overlying 

the rubber bag. 

9. The rubber bag had to be constrained from rising so that the overburden pressure 

was exerted down onto the model aquifer. 

10. The electronic system for opening and closing the solenoids (controlled by the 

computer programme) required improvement. On switching on the computer system, 

all the switches were automatically opened. This was changed so that all the 

switches remained closed when the computer was turned on. As a consequence of 

this work some of the commands within the computer programme had to be negated. 

Once all the above work was completed, work began to install the tidal system. 

2.8. Installation of Tidal System 
The tidal system was a method of producing a harmonically varying water head in the 

tidal tank, the period of which could be controlled. This system was designed and 

constructed as part of the current research project. 

The design included a control system regulating two central heating pumps: one 

pumping water into the tidal tank, the other pumping water from the tidal tank. Central 

heating pumps were used as they were relatively inexpensive and easily obtainable. 

Figure 2.6 below presents a schematic diagram of the tidal arrangement. 
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Figure 2.6. Tidal Arrangement. 

Water was pumped from the water storage tank into the tidal tank by use of pump P1 , 

until the level reached switch A. Pumping was then paused for a controlled length of 

time, after which pump P2 pumped water from the tidal tank back to the water storage 

tank, until the level reached switch B. Once more, pumping was paused for a controlled 

length of time, after which pump P1 again began pumping water from the storage tank to 

the tidal tank as before. This cycle was repeated for durations of up to four days. 

The electrical control mechanism included a programmable Timer Base which enabled 

the period of the cycle to be altered by specifying the pausing times between the action 

of pumps P1 and P2. Details of the programmable timer base are given in Appendix 2 .1 . 

In addition to this, the central heating pumps had three speed settings, and thus the rate 

of water flow into and out of the tidal tank could also be adjusted. The period range 

available was 20 to 45 minutes. The detailed electrical design of the control system was 

outwith the scope of this project. 

The arrangement selected for the system, as illustrated in Figure 2.6, ensured that non

return valves were not required. Piping was arranged so that the head ensured that 
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water flowed only when the pumps were in operation (with the exception of minimal flow 

into the model aquifer due to aquifer leakage effects). Therefore when pump P1 

stopped, water flow also stopped since the pipe outlet was higher than the water level in 

the storage tank. This was also the case for pump P2. Once pump P2 stopped and the 

water level in the tidal tank was at switch B, the height of the outlet of the pipe was 

higher than the water level in the tidal tank thus water flow also stopped. 

Installation of the tidal system required the following: 

1. Design of supports for the central heating pumps and a board so that they could 

be conveniently attached to the wall, adjacent to the tidal tank. 

2. Obtaining suitable fittings so that 8mm diameter piping could be attached to the 

central heating pumps. These components were then connected with care taken 

to seal joints. 

3. Ordering a suitable polythene water storage tank, and provision of a platform to 

support the weight of this water tank when full. 

4. Drilling a hole in the water storage tank for the 8mm pipe connection to the 

central heating pump. 

5. Obtaining suitable screws and rawl plugs and attaching the central heating 

pumps on their mounts to the wall. 

6. Obtaining and installing a replacement for switch B in the tidal tank. The existing 

switch B (installed when the tidal tank was constructed in November 1994), did 

not have a switching mechanism suitable for the control system. 

The entire tidal system was controlled electrically. Due to the fact that there was a small 

amount of water flow into the model aquifer, a continuous water flowrate was applied to 

the water storage tank from an external source to compensate for this loss. This flowrate 

was determined by monitoring flowrate from the drain overlying the model aquifer. 

A diagram illustrating the tidal arrangement in relation to the rest of the Durham Model 

Aquifer Equipment is shown in Figure 2.7. A photograph of the equipment is shown in 

Figure 2.4 (photograph B). This shows the central heating pumps attached to the wall 
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and the black plastic water storage tank situated above the model aquifer. The white 

electrical control box can also be seen in this photograph, situated on the wall to the right 

of the tidal tank. 

The tidal system was set to run whilst water pressure measurements were recorded from 

the base of the tidal tank. The graph showing this harmonic variation is given in Figure 

2.8. It can be seen that the waveform is largely representative of a sawtooth wave. Fast 

Fourier Transform analysis of this wave established two major sinusoidal constituents. 

These are illustrated graphically in Figure 2.9. 

In order to establish the viability of the tidal system, it was set to run whilst 

measurements of pore water pressure were recorded from the twelve different positions: 

eleven in the base of the aquifer, one in the base of the tidal tank (indicating simulated 

tidal variations). Analyses of the data illustrated that the harmonic pressure wave was 

transmitted through the aquifer with an observed amplitude decay and increase in time 

lag as horizontal distance from the tidal boundary also increased. 

Following this preliminary investigation, more detailed laboratory tests were performed 

using the Durham Model Aquifer. Experimental methods and results from these tests are 

outlined in chapter 3. 
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Chapter 3 

Laboratory Experimental Work 

3=1. Introduction 
All work outlined in this chapter formed part of the current programme of post

graduate research. 

The purpose of the laboratory work was to investigate tidal effects on the Durham 

Model Aquifer. However, before tidal testing began, two preliminary tests at steady 

state were performed using the model. Analyses of results from these tests 

concluded with estimates for aquifer properties: coefficients of permeability and 

leakage. 

A single tidal test was then carried out on the Durham Model Aquifer whilst controlling 

the water level in the tidal tank manually. Continual series of pore water pressure 

measurements were obtained from five different positions in the base of the aquifer 

container. Recorded data from this test were arranged into graphical form illustrating 

amplitude decay of the tidal wave with horizontal distance. 

Following installation of the tidal system, four tidal tests were performed with the 

water level in the tidal tank controlled electrically using the system outlined in 

chapter 2. The period of the simulated tidal cycle was varied slightly between tests. 

Continual series of pore pressure measurements were obtained from all twelve 

positions in the base of the aquifer container and tidal tank. 

At this point in the testing schedule, essential repairs had to be carried out on the 

Durham Model Aquifer before further experimental work could be performed. The 

reason for these repairs and details of their nature is outlined in this chapter. 

Once repair work was complete, eleven further tidal tests were carried out. Once 

again, the period of the simulated tidal cycle was varied slightly between tests. 
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Continual series of pore pressure measurements were obtained from eleven positions 

in the base of the aquifer container and tidal tank. 

Recorded data from all fifteen electrically-controlled tidal tests were arranged into 

graphical result form. These graphs illustrate the amplitude decay and time lag of the 

harmonic wave (initiated in the tidal tank) as it penetrated through the model aquifer. 

This chapter outlines all experimental work and intervening repairs performed on the 

Durham Model Aquifer. In addition, a summary of laboratory work results is 

presented. 

3.2. Preliminary Experiments 

3.2,1. Introduction 
Leakage from the model aquifer was in practice not uniform, but tended to occur 

through weak points or zones of high permeability in the overlying confining bed. It 

was beneficial to obtain a mean parameter for the leakage coefficient which could 

initially be used within a mathematical model to validate the Durham Model Aquifer, 

and then later as a comparison with results obtained by tidal analyses. This being the 

case, a test was designed to obtain the average value of permeability and leakage 

coefficient over the entire length of the model aquifer. The test required applying a 

flow rate to the water tank (in later tests known as the 'tidal' tank) at a constant rate. 

Pore water pressure was measured along the length of the model aquifer once 

steady state conditions were achieved. Results from two such tests are outlined in 

section 2.6 above and, further to these, as part of the MSc research, two additional 

tests were performed since the equipment had been out of use for seven months. 

Any significant changes in model aquifer parameters over the intervening period 

could therefore be determined. Since these experiments were performed under 

steady state conditions, when the water pressure did not vary with time, the value of 

specific storage was irrelevant. 
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3.2.2. Test One - Constant Flowrate 0.675 litres/min. 
3.2 .2 .1 . M e t h o d 

The computer programme recorded pore water pressure at specified positions in the 

base of the aquifer model whilst a constant flowrate of 0.675 litres/min was applied to 

the water tank. A steady state condition was observed once the flowrate into the 

water tank equalled the leakage rate from the aquifer. 

3.2.2.2. Resu l t s 

Results were arranged in graphical form (pressure head above datum versus 

horizontal distance from the water tank). This graph is shown in Figure 3.1. 

3.2.2.3. A n a l y s i s o f Resu l t s 

Average head (h') was calculated from the results shown in Figure 3.1 using the 

mathematical trapezoidal rule and found to be 0.40 metres. A pressure head change 

was observed between the base of the aquifer and the free water surface above the 

rubber bag. This was assumed to have occurred solely between the lower and upper 

surfaces of the rubber membrane. Application of this assumption resulted in an 

estimate for the leakage coefficient, p (theory detailed in appendix 3A). 

Area of leakage surface, A s = width of aquifer x length. 

As = (0-25x4.8)= 1-2 m 2 

, , O l - l x l O - 5 m 3 / s . 
leakage flowrate per unit area = q, - = ; = 9x10 m / s 

As 1 • 2 m" 

where Q = input flowrate applied to the water tank. At steady state, this is equal to 

the leakage from the upper surface of the model aquifer. 
„ Q 9x10^ 
P =f - = = 2xl0" 5 s-1 

H h' 0-40 
The leakage coefficient was estimated to be 2 x 10"5 s" 1 . 

Theory detailed in appendix 3B was applied for the steady state condition, using the 

following results: 

= 0.475 metres 
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h, = 0.375 metres 

These values were substituted into equations (3.17) and (3.18) in Appendix 3B. Four 

reflective waves were considered, since effects further to this were found to be 

negligible. An iterative process was applied to obtain two distinct relationships 

between the leakage coefficient and the coefficient of permeability. 

The finite element computer model, Curved Valley Model (CVM), was also used to 

obtain a distinct value for leakage coefficient and permeability for corresponding flow 

rates and heads, }\ and . Head l\ was fixed as also was p, based on the earlier 

estimate. The coefficient of permeability was then varied until a value for k, was 

produced which compared well with the experimental result. 

The relationship between permeability and leakage obtained from the analytical 

theory and numerical modelling is shown graphically in Figure 3.2. The leakage 

coefficient resulting from the K analytical solution falls to zero sharply once the 

coefficient of leakage reaches a 2.2 x 10" 5 s" 1 as illustrated by Figure 3.2. If the 

coefficient of leakage exceeds this value all the input water leaks from the upper 

surface of the aquifer before reaching the far end, thus resulting in a value of zero for 

K. 

The intersection of the two lines produced from analytical solutions for }\ and \ \ 

provided a unique value for the coefficient of permeability of the model aquifer. For 

this particular test, the unique value for coefficient of permeability was 3 x 10~3 m/s. 

The unique value for permeability obtained from CVM numerical modelling was 

5 x 10" 3 m/s, together with a leakage coefficient of 2 x 10* 5 s" 1 . This estimate of 

leakage coefficient compared well with the earlier estimate. Errors between estimates 

for the coefficient of permeability were attributed to the sharp fall in the analytical 

solution for . This effect resulted in a wide range of possible values for permeability 

within a significantly small leakage range. 

Study of Figure 3.2 once more, concluded an estimate for leakage coefficient 

(intersection of the two analytical solutions) of 2 x 1 0 - 5 s ' 1 . 
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3.2.2.4. C o n c l u s i o n s 

For an input flow rate of 0.675 litres/min, the analytical and numerical solutions 

correlate to give a unique value for the coefficient of permeability for the Durham 

Model Aquifer of 4 x 1 0 - 3 m/s; and a unique value for the leakage coefficient of 

2 x 1 0 ' 5 s - 1 . 

3.23. Test Two - Constant Flowrate 0,5 litres/min. 
3.2 .3 .1 . M e t h o d 

This test was performed in a similar manner to test one outlined above, however a 

lower flowrate of 0.5 litres/min was applied to the water tank. 

3.2.3.2. Resu l t s 

Results from this second test were dealt with in a similar manner to the first test. A 

graph of head above the datum versus distance from the water tank was plotted and 

this is shown in Figure 3.3. 

3.2.3.3. A n a l y s i s o f Resu l ts 

The average head, h', was calculated from Figure 3.3 by applying the mathematical 

trapezoidal rule, 

h' = 0.31 metres 

Once more, following the same procedures as above, the leakage coefficient was 

estimated to be 2 x 10" 5 s _ 1 . 

Theory outlined in appendix 3B, particularly equations (3.14) and (3.15), were applied 

for the steady state condition using the following values of and /z,: 

\ = 0.43 metres 

= 0.30 metres 

The iterative process was repeated to determine a relationship between coefficient of 

permeability and leakage. This is shown graphically in Figure 3.4. The numerical 

modelling approach was applied to obtain a distinct value for the coefficient of 
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permeability corresponding with the experimental results for /z, and h, and the earlier 

estimate of leakage coefficient. 

Figure 3.4 illustrates that the leakage coefficient resulting from the h, analytical 

solution falls to zero sharply once the coefficient of leakage reaches a specific value 

suggested to correspond with all input water leaking from the upper surface of the 

aquifer before reaching the second boundary. 

3.2.3.4. C o n c l u s i o n s 

For an input flow rate of 0.5 litres/min. the analytical and numerical solutions correlate 

to give a unique value for the coefficient of permeability for the Durham Model Aquifer 

of 4 x 1 0 - 3 m/s; and a unique value for the leakage coefficient of 2 x 10* 5 s" 1 . 

3*2.4. Summary of Results 
Table 3.1 below summarises the data and results from the analysis procedure for the 

two preliminary experiments. 
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Test No. 1 2 

Flowrate 0.675 litres/min 

1.1 x 1 0 r 5 m 3 / s 

0.5 litres/min 

8 . 3 x 1 0 ^ 3 / 5 

Average Head (m) 0.40 0.31 

Estimated Leakage 

Coefficient (s _ 1 ) 

2 x10-5 2 x 1 0 - 5 

Head at Water Tank 

h i (m) 

0.475 0.43 

Head at Aquifer end 

Boundary h? (m) 

0.375 0.30 

Coefficient of Permeability 

(ms ' 1 ) 

4 x 1 0 - 3 4 x 1 0 - 3 

Coefficient of Leakage 

(s-1) 

2 x 1 0 - 5 2x10 -5 

Table 3 .1 . Summary of Data and Results from Two Preliminary Tests Under Steady 

State Conditions. 

3.2.5. Conclusions 
Analysis of the results concluded estimates for the coefficients of permeability and 

leakage as follows: 

Coefficient of permeability: 4 x 1 0 ' 3 m/s 

Coefficient of leakage: 2 x 10" 5 s ' 1 

3.2.6. Discussion 
Earlier work, summarised in chapter 2.6, concluded with estimates for the coefficients 

of permeability and leakage of 3 x 10" 3 m/s and 7 x 10* 6 s" 1 respectively. The 

coefficient of permeability based on the later experimental work was of the same 

order of magnitude as that documented from analysis of earlier tests, although slightly 
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increased. It was concluded that this small increase was negligible and insignificant. 

The range of values of permeability for a given soil material is large. Values for this 

property can vary by several orders of magnitude. Therefore, the two estimates of 

permeability from these tests can be concluded to compare very well. The 

experimental work indicated that the leakage coefficient had increased over the 

seven month period. This significant increase was attributed to the likelihood that, 

with time, further weak points and zones of high permeability had occurred in the 

overlying confining bed. This enabled water to leak more easily from the upper 

surface of the model aquifer. 

In summary, it was concluded that the coefficient of permeability of the Durham Model 

Aquifer had not changed significantly over the seven month period of disuse, whilst 

the leakage coefficient was slightly increased due to a higher number of weak points 

in the overlying confining bed, enabling water to flow more easily from the model 

aquifer. 

3.3. Manual Tidal Simulation Experiment 

3.3.1. Introduction 
The electrical tidal simulation system, described in chapter 2.8, took considerable 

time to set up. This delay was partly due to time taken for specific components to 

arrive. Whilst awaiting arrival of necessary equipment, it was decided to use the time 

constructively by performing a single tidal test on the Durham Model Aquifer whilst 

controlling the water level in the tidal tank manually. 

The form of the input wave in the tidal tank was designed such that it was closely 

analogous to a sinusoidal waveform in an attempt to simulate tidal waves as 

accurately as was physically possible. With this in mind, a suitable input wave was 

selected following experimental work investigating ease and relative accuracy of 

manually filling the tidal tank. The period of the wave was dependent on the above 
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experimental work and also chosen to correlate with the range of periods obtainable 

using the timer base designed for the electrical tidal system. The input wave selected 

is compared with a sine wave of corresponding period 24.5 minutes in Figure 3.5. 

Five of the eleven positions for pore water pressure measurement, located in the 

base of the aquifer, were selected for the manual tidal simulation experiment. These 

were positions 3, 5, 8, 10 and 12. The exact locations of these pore water 

measurement positions is indicated in Table 2.3 in chapter 2 and are recalled below 

in Table 3.2. 

Position Distance from Position 3 (m) 

3 0 

5 0.635 

8 2.135 

10 3.280 

12 4.650 

Table 3.2. Locations for Pore Water Pressure Measurement for Manual Tidal 

Simulation Experiment. 

3.3.2, Method 
The entire series of tidal tests obtained by manual tidal simulation comprised five sub

tests, one for each of the respective pore water pressure measurement positions. 

The first sub-test performed was at position 3. The computer was set to continually 

record measurements of pore water pressure every 100 seconds together with the 

corresponding time of measurement. Meanwhile, the water level in the tidal tank was 

controlled manually to closely follow the pattern outlined in Figure 3.5. The water 

level in the tank was recorded every time a manual alteration was made to the tidal 

system, together with the corresponding time of that alteration. The test was 

continued for approximately four tidal cycles which inferred a sub-test duration 

equivalent to four periods (approximately 100 minutes). 
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The experimental procedure was repeated four times, whilst measurements of pore 

water pressure were recorded from each of positions 5, 8, 10 and 12 respectively. 

3.3.3. Results 
The pressure head was plotted versus time and compared with the head variation of 

the input wave in the tidal tank. Results from these five sub-tests are shown in 

Figures 3.6, 3.7, 3.8, 3.9 and 3.10 corresponding to positions 3, 5, 8, 10 and 12 

respectively. 

3.3.4. Analysis of Results - Part One 
The objective of this first part of the analysis procedure was to arrange the recorded 

data into a form suitable for subsequent tidal analyses. This would enable 

determination of aquifer properties considering analytical theory (the second part of 

the analysis procedure). As suggested from tidal analyses work by previous authors, 

results were arranged to illustrate amplitude decay of the simulated tidal (input) wave 

with horizontal distance. This comprised the first part of the analysis procedure. The 

time lag was not calculated from this manual test because it was anticipated that 

measurement errors would be so significant as to render the results meaningless. 

In order to accurately determine the amplitude decay of the simulated tidal wave (or 

input wave), it was necessary to split the wave into its sinusoidal constituents. 

Therefore, Fast Fourier Transform Analysis, using WAVETRAN 1 . was carried out, 

both of the simulated tidal wave and also of the pressure waves it initiated. 

Figures 3.6 to 3.10 illustrate that there was a time delay before the pore water 

responded to the input wave with a regular pattern (i.e. fluctuated about a constant 

mean value). Results before a steady tidal pattern was observed were ignored. 

Subsequent results were extrapolated to provide sufficient data (four periods) for fast 

fourier transform (FFT) analysis. 

1 WAVETRAN - software designed by Dr. Stephen Thomas for Fast Fourier Transform 

Analysis. 
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Appendix 3C illustrates the wave spectra produced as a result of the analyses. 

From the wave spectra, the amplitude and period of the governing, primary sinusoidal 

component of the wave was established. Secondary sinusoidal constituents of the 

waveform were unclear. 

Table 3.3 below summarises the amplitude and period of the governing sinusoidal 

component of the input wave and of the wave observed at each of the pore water 

pressure measurement locations. 

Location of Pore 

Water Pressure 

Measurement 

Amplitude of Governing 

Sine Wave Constituent 

(mbar) 

Period of Governing Sine 

Wave Constituent 

(mins) 

Position 3:- 0.3 m 15.752 26.7 

Position 5:- 1.08 m 11.479 26.7 

Position 8:- 2.58 m 12.058 22.9 

Position 10:- 3.725 m 15.968 26.7 

Position 12:- 5.095 m 7.089 26.7 

Table 3.3. Summary of Fast Fourier Transform Analyses of Results from Manual 

Tidal Simulation Tests. 

From Table 3.3, it can be seen that period of the governing waveform at position 8 is 

lower than those at other positions. The amount of data available implied that FFT 

analysis allowed distinction between periods of 2133s, 1600s and 1280s indicating 

that the accuracy to which the period of a governing waveform could be detected was 

limited. Therefore a discrepancy between the period at position 8 and those at 

alternative positions is insignificant, considering the accuracy of the analyses method. 

Similarly, from the wave spectra in Appendix 3C, the period of the governing sine 

wave and that at the corresponding pore pressure measurement location appears to 

vary slightly. This suggests a possible change in the period of the wave as it is 

transmitted through the pore water of the model aquifer. However, with the minimal 
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amount of data available for analyses, the results will inevitably show inaccuracies. It 

should also be remembered that the manual system of controlling the tidal wave 

implied that the input wave was not particularly regular due to human response times 

and variation in tap pressures. 

The results of Table 3.3. were summarised to form a decay curve. Due to the 

unknown permeability of the silt within the plastic pipe linking the tidal tank and model 

aquifer, results were considered with respect to position 3. It was assumed that the 

aquifer soil material beyond position 3 was homogenous. Material close to the tidal 

boundary was likely to be affected by the simulated tide causing silting and 

heterogeneities making the permeability of the aquifer significantly different to that 

further from the tidal boundary. The amplitude decay curve is shown in Figure 3.11. 

These results will be discussed further in chapter 6 of the thesis. 

3.4. Four Tidal Experiments Using Electrical 
Tidal Arrangement 

3.4.1. Introduction 
Once the electrical tidal system was completely established following the work 

outlined in chapter 2.8, electrically simulated tidal tests were performed. The long-

term objective of these tests was to investigate the tidal analysis method for 

determining aquifer properties. In order to make this possible, the amplitude decay 

and time lag of a simulated tidal wave were determined at various horizontal positions 

from a tidal boundary. The experimental procedure and arrangement of data to 

determine amplitude decay and time lag for the first four electrical tidal tests is 

outlined below. 
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•3.4.2. Method 
The following experimental method was carried out for each of the four series of 

tests. The period of the simulated tidal cycle was varied slightly between the four 

tests and was set using the timer base. This equipment proved difficult to calibrate 

and it was found that alterations of the fine scale for period adjustment were not 

always significant. Therefore, the exact period of a specific tidal test was established 

from the recorded data once a test was complete. 

The water tank was. emptied and filled repeatedly under the control of the electrical 

tidal system. The equipment was left to run for four hours, during which time it was 

anticipated that effects of the simulated tide would be fully realised within the model 

aquifer. After this time, pore water pressure was measured and recorded from each 

of the twelve positions in both the base of the aquifer model and tidal tank. The time 

of each measurement was also recorded. Measurements were recorded at each 

position at approximately 100 second intervals, for periods of 5.3 hours, after which 

point the designed computer software switched the system to measuring pore water 

pressure from the next consecutive position in the base of the model aquifer. Earlier 

experimental work showed that a time interval of 100 seconds between readings was 

required for the water pressure in the brass manifold to reach equilibrium with that in 

the pipe linked to the aquifer model. A total of 192 pore water pressure 

measurements were recorded for each of the individual positions. 

The above procedure was repeated for three further series of tests whilst the period 

of the tidal cycle was varied slightly between series of tests. 

3.4.3. Results 
Results of pore water pressure and their corresponding time were plotted for each of 

the twelve different measurement locations. These results were arranged graphically 

for series 1 and 2 and are contained within Appendix 3D of the report. Results for 

series 3 and 4 are presented in slightly less detail in Appendix 3E. 

58 



The results for position 10 did not illustrate tidal behaviour, but a very gradual 

decrease in pore water pressure. To investigate the reason for this, solenoid 10 was 

tested and operation was found to be temperamental. After each of the test series, 

attempts were made to solve this problem whilst avoiding significant amounts of air 

becoming entrapped within the system. Once the switch was thought to be repaired, 

a further series of tests would be performed. Results illustrated that the switch was 

still not functioning correctly. It was thought that silt from the model aquifer was 

preventing correct operation of the switch. Apart from this fault at position 10, the 

equipment seemed to be running well. Solving the fault at position 10 would take 

considerable time and would inevitably result in further air entrapment in the system. 

Results from other measurement positions were deemed satisfactory, and therefore it 

was decided to continue the test programme without the use of solenoid 10 and 

measurements of pore water pressure from this position. 

Results from series 3 and 4 indicated a lower amplitude of wave at position 2 than 

those at later positions in the aquifer (up to position 11). It was thought that this was 

due to lower permeability silt material in the vicinity, brought about by the nearness of 

position 2 to the boundary with the tidal tank. 

3.4.4. Analysis of Results - Part One 
As was the case with the manual tidal simulation experiment, the objective of this first 

part of the analysis procedure was to arrange the recorded data into a form suitable 

for subsequent tidal analyses. Results were arranged to illustrate amplitude decay 

and time lag of the simulated tidal wave with horizontal distance. This comprised the 

first part of the analysis procedure. 

3 .4 .4 .1 . A m p l i t u d e Decay 

Fast Fourier Transform (FFT) Analysis, using WAVETRAN, was carried out, both of 

the simulated tidal wave and also of the pressure waves it initiated. This analysis 

concluded the amplitude and period of the governing sinusoidal components of each 

'tidal' wave in series 1 ,2 ,3 and 4. 
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It was found that 194 data points were required for detailed fourier transform analysis 

and therefore results were extrapolated to provide sufficient data. Appendix 3F 

illustrates the wave spectra produced for series 1. 2, 3, and 4 as a result of the 

analyses. 

From the wave spectra, the amplitude and period of the primary sinusoidal 

component of the wave was established. The amount of data available implied that 

FFT analysis allowed distinction between periods of 2743s. 2400s, 2133s, 1920s, 

1745s and 1600s. This was significantly more detailed than analysis of manual tidal 

data. The FFT analysis also indicated a clear secondary sinusoidal component of the 

'tidal' wave with a smaller period and amplitude than the primary constituent. Thus, 

from a single test series, amplitude decay of primary and secondary components 

could be concluded. 

Due to results of low amplitude at position 2, thought to be the result of low 

permeability material in that area, and the silted pipe between the tidal tank and 

aquifer, amplitude decay of the 'tidal' wave was calculated with respect to position 3. 

At and beyond this location, the effects of the tidal boundary where thought to be 

negligible. 

Details of the horizontal distances of measurement positions with respect to position 3 

are detailed in Table 3.4 below. 
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Position Horizontal Distance from 

Position 3 (m) 

3 0 

4 0.275 

5 0.635 

6 1.065 

7 1.575 

8 2.135 

9 2.665 

10 3.280 

11 3.950 

12 4.65 

Table 3.4. Relative Locations of Measurement Positions with Reference to Position 3. 

The periods of the primary and secondary constituents of series 1, 2, 3 and 4 are 

outlined below in table 3.5. 

Series 1 Series 2 Series 3 Series 4 

Primary Period (s) 1920 2133 2133 2400 

Secondary Period (s) 960 1010 1067 1200 

Table 3.5. Periods of Primary and Secondary Constituents for Series 1, 2, 3, and 4. 

The graphs of amplitude decay with horizontal distance for the primary constituent are 

indicated for series 1, 2, 3 and 4 in Figures 3.12, 3.13, 3.14 and 3.15 respectively. 

Graphs illustrating amplitude decay of the secondary component for series 1, 2, 3 and 

4 are in Figures 3.16, 3.17, 3.18 and 3.19 respectively. 
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3.4.4.2. T i m e Lag 

The objective was to determine time lag of the pressure wave at various horizontal 

distances with respect to position 3. The reason that position 3 was selected as the 

reference position was outlined in section 3.4.4.1 above. 

Several alternative methods were investigated for determining the time lag. These 

included: 

1. Approximating a sine wave of suitable period and amplitude to the pore water 

pressure variation pattern at position 3. This was then extrapolated to overlie 

pore water pressure variation patterns for later positions. The mean pore 

pressure about which the data varied was established, as was the mean of the 

superimposed sine wave. Intersections of the data pattern and sine wave with the 

corresponding mean pressure were compared. From this, the time lag between 

the sine wave and data variation was ascertained. This approach proved to be 

long-winded and over-detailed in comparison to the accuracy to which the time lag 

could be established. 

2. Investigating the use of WAVETRAN software to determine time lag. The 

software only proved useful if results were recorded simultaneously. This was not 

the case for the tidal results. Altering the programme to suit would be difficult and 

therefore this approach was considered unsatisfactory. 

3. Writing a new programme to determine time lag. Input data for the programme 

included (a) times for four peaks of the reference pressure wave i.e. position 3, (b) 

two data values for all consecutive positions which represented peaks in the 

harmonic wave. Errors in this approach were large due to the small amount of 

input data. Lack of useful results for position 10 also posed a problem. 

4. A similar approach to 1. above, but less detailed. This involved relating pressure 

variations to those at a previous position. A graph was produced which illustrated, 

in detail, the link between consecutive positions (e.g. positions 3 and 4). The 

mean pore pressure about which the data varied at both positions was 

established. The average period of the wave at the earlier position was 

calculated by physically measuring the distances between points where the data 
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crossed that mean, and relating this to the scale on the x-axis. Points of 

intersection were then projected for late time. The time of these projected points 

was compared with times of mean-intersection, based on data from the next 

consecutive measurement position. From this the time lag was established. It 

was appreciated that this method induced large errors in the computation of time 

lag. However, it was thought that the effect of these errors would be averaged 

out when considering several series of results. 

Approach 4. was deemed the most suitable and convenient. It was the easiest 

method and incorporated a suitable amount of data points. 

The time lag for position 1 was not established since the measurement of pore 

pressures was paused mid-way through the series. The reason for this momentary 

pause was to download data to monitor whether this, the first electrically simulated 

tidal test, was proceeding correctly. 

Appendix 3G provides detailed graphs illustrating the method of calculation for time 

lag for series 2 results. This same method was used for results from series 3 and 4. 

Figures 3.20, 3.21 and 3.22 illustrate time lag with respect to position 3 for series 2, 3 

and 4 respectively. 

3.5. Essential Repair Work of the Durham Model 
Aquifer 

During the Christmas and New Year period, the equipment was left unattended. 

Following the break, operation of the equipment was observed to cause large 

vigorous air bubbling in the plastic pipe linking the tidal tank and model aquifer. This 

effect was particularly strong when the water level in the tidal tank was low. It caused 

significant waves in the tidal tank resulting in incorrect operation of switch B. Air 

bubbles were also observed in the water overlying the model aquifer. It was 

concluded that a significant quantity of air was leaking from the rubber bag, possibly 

in a number of places. The air pressure in the rubber bag was reduced to a minimum 
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considering that it had to at least balance the effect of water head in the tidal tank. 

This reduced bubbling in the tidal tank, however it was not eliminated and it was 

probable that air was also leaking into the model aquifer itself. It was anticipated that 

this would significantly affect pore water pressure measurements thus distorting 

results. 

Therefore, it was necessary to dismantle the upper part of the model aquifer to 

investigate the source of the problem. Water that had leaked from the aquifer was 

overlying the wood to the level of the drain. As much water as possible was siphoned 

off before the dismantling process began. A water and solids vacuum cleaner was 

also used to remove water and silts that had reached the upper surface of the aquifer 

in the leaked water. The wooden panels overlying the rubber bag were removed and 

upper side panels illustrated in Figure 3.23 were unscrewed. Once again water and 

silts were removed before the air bag was lifted out of place. The 5 metre long rubber 

bag was filled with air and tested for leaks in a large water filled tank. Two significant 

leaks were observed and their locations marked. It was decided to repair these leaks 

by covering them with small rubber patches. The rubber bag was removed from the 

tank and dried thoroughly. Patches were constructed from thin rubber material. 

Wire-tack adhesive was used to stick these patches over the marked holes. Once 

the adhesive was set, the rubber bag was further tested for air leaks following the 

same procedure described earlier. All observed air leaks were carefully repaired. On 

completion of this work, the model aquifer was able to be reconstructed. 

It was decided to modify the method of attachment of the upper side panels. Whilst 

leakage from around the edges of the rubber bag was required, it was anticipated 

that existing holes may incur more leakage than had earlier been recorded due to 

wear and tear during the renovation work. In an attempt to avoid this foreseen 

problem, the former method of brass attachment screws was replaced by zinc coated 

bolts which passed right through the walls of the wooden container. These would be 

easier to tighten than the screws, and a better seal could be obtained. Holes were 

drilled into the sides of the wooden container in the locations of the existing screw 

holes. The model aquifer was then reconstructed using bolts. 
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Following this repair work, the tidal system was set to run for three days to verify that 

the model was functioning correctly. 

3.6. Eleven Further Tidal Experiments Using 
Electrical Tidal Arrangement 

3.6.1. Introduction 
Following the repair work, eleven further tidal tests were performed. Fast fourier 

transform analysis of the results concluded graphs illustrating primary and secondary 

amplitude decay of the 'tidal' wave with horizontal distance. The time lag of the 

pressure wave as it penetrated through the model aquifer was also determined for 

each of the eleven series of results. 

3.6.2. Method 
The computer programme was altered to record 195 pore water pressure 

measurements from each position. This avoided the need to extrapolate results for 

fast fourier transform analysis. 

Apart from this minor alteration, the experimental method for each of the eleven 

series exactly followed the procedure outlined in section 3.4.2 above. 

3.6.3. Results 
Results were dealt with in a exactly the same manner to that outlined in section 3.4.3 

above. 

3.6.3.1. Amplitude Decay 

Fast fourier transform analysis using software, WAVETRAN, allowed results of 

amplitude decay to be determined. Figures 3.24 to Figure 3.34 illustrate primary 
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amplitude decay for series 5 to 15 inclusive. Secondary amplitude decay is illustrated 

in Figures 3.35 to 3.45 for series 5 to 15 inclusive. 

3.6.3.2. Time Lag 

The time lag of the tidal waves for series 5 to 15 was determined by the same method 

as that outlined in section 3.4.4.2 above. Time lag of the tidal waves with horizontal 

distance is illustrated in Figures 3.46 to 3.56 for series 5 to 15 inclusive. 

3.7. Discussion of Results from Tidal 
Experiments 

The primary and secondary amplitude decay graphs from all tidal experiments were 

compared. Time Lag graphs were also compared. It was realised, however, that the 

variety in periods meant that direct comparison was unhelpful, and therefore merely 

general trends were noted. 

Ferris' theory detailed a straight line relationship between time lag and horizontal 

distance. Time lag graphical results suggested the possibility of such a relationship. 

Time lag was deduced to an accuracy of ± 50s. Points on the graph close to the tidal 

boundary would therefore incorporate a larger percentage error than those toward the 

far end of the aquifer. 

Ferris' theory outlined an exponential relationship between amplitude decay and 

horizontal distance. Study of the decay graphs suggested the possibility of such a 

relationship. Amplitude decay appeared less rapid in the region close to the tidal 

tank. This region was possibly significantly affected by water flow into the aquifer 

from the tidal tank and therefore soil material may be finer and less permeable. In 

addition, the aquifer is likely to have suffered invasion of bacterial growth. This may 

have affected some regions of the aquifer more than others, thus leakage from the 

aquifer was unlikely to have been uniform over the entire length. The seal around the 
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upper surface and confining bag was also non-uniform, resulting in varying leakage 

over the length of the aquifer. 

In a few cases the amplitude decay exceeded 100% at considerable distance from 

the tidal tank. Also, the amplitude decay appeared to rise as distance from the tidal 

boundary increased. These irregularities were attributed to air trapped in soil pores 

and pipework, and impermeable lenses bounding pore pressure measurement 

locations. 

In addition to the problems outlined above, errors in measurements will occur due to 

the occasional irregularities in the behaviour of the tidal system. This was observed 

in data for series 2, position 6 (Appendix 3D-18), and caused a deviation in the 

harmonic pattern. 

The fourier transform analysis would also induce errors since the sensitivity of 

procedure was such that periods were detected to the nearest 2 minutes. These 

errors were not considered significant. 

The percentage error in the large amplitude of the primary sinusoidal waveform is 

likely to be considerably less than the percentage error in the smaller amplitude of the 

secondary constituent. Therefore, primary amplitude decay results were thought to 

be more accurate than the secondary decay results. 

In conclusion, the general pattern of graphical results was similar for all tidal test 

series. 

3.8. Summary of Tidal Test Results 
The test schedule is summarised in Tables 3.6 and 3.7 overleaf. In addition, the 

periods of the primary and secondary constituents of the tidal wave for each of the 

tests is outlined. 

Primary and Secondary amplitude decay in addition to timelag graphs were obtained 

from results. 

Graphical results of similar period are compared and discussed in detail in chapter 6. 
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Figure 3.12. Series 1. Primary Amplitude Decay Curve. 
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Figure 3.13. Series 2. Primary Amplitude Decay Curve. 
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Figure 3.14. Series 3. Primary Amplitude Decay Curve. 
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Figure 3.15. Series 4. Primary Amplitude Decay Curve. 
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Figure 3.16. Series 1. Secondary Amplitude Decay Curve. 
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Figure 3.17. Series 2. Secondary Amplitude Decay Curve. 
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Figure 3.18. Series 3. Secondary Amplitude Decay Curve. 
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Figure 3.19. Series 4. Secondary Amplitude Decay Curve. 
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Figure 3.20. 
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Figure 3.22. 
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Figure 3.25. Series 6. Primary Amplitude Decay Curve. 

500 1000 1500 2000 2500 3000 3500 

horizontal distance from position 3 (mml 

4000 4 5 0 0 5000 



Figure 3.26. Series 7 . Primary Amplitude Decay Curve. 
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Figure 3.28. Series 9. Primary Amplitude Decay Curve. 
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Figure 3.29. Series 10. Primary Amplitude Decay Curve. 
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Figure 3.30. Series 11. Primary Amplitude Decay Curve. 
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Figure 3.31. Series 12. Primary Amplitude Decay Curve. 
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Figure 3.32. Series 13. Primary Amplitude Decay Curve. 
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Figure 3.34. Series 15. Primary Amplitude Decay Curve. 
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Figure 3.35. Series 5. Secondary Amplitude Decay Curve. 
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Figure 3.37. Series 7. Secondary Amplitude Decay Curve. 
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Figure 3.38. Series 8. Secondary Amplitude Decay Curve. 
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Figure 3.40. Series 10. Secondary Amplitude Decay Curve. 
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Figure 3.46. Series 5 . Timelag 
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Chapter 4 

Numerical Modelling 

4.1. Introduction 
The Laboratory experimental work outlined in chapter 3 concluded with graphs 

representing primary and secondary amplitude decay and time lag. The objective of 

this project was to apply these results to determine the model aquifer properties:-

coefficients of permeability, leakage and storage. 

Ferris developed two equations which incorporate time lag and attenuation 

differences between source stage and groundwater head at various distances from 

the tidal boundary. These formulae can be applied to results from which diffusivity 

(transmissivity/storage coefficient) can be determined. Ferris' assumptions in 

developing the theory are outlined in detail in section 1.4.2. Two of these 

assumptions were: 

1. The aquifer extends an infinite distance shoreward from the harmonically 

varying source. 

2. Vertical flow considered negligible, i.e. leakage from or into the aquifer is 

insignificant. 

This chapter outlines the model concepts and details numerical modelling with a view 

to whether Ferris theory, which incorporates the above assumptions, can be applied 

to results obtained from the Durham Model Aquifer. In addition, the effects on results 

of amplitude decay and time lag due to variation of the tidal period were ascertained. 

4.2. Conceptual Model 
The design concepts for the model were outlined in section 2.2 of the thesis and a 

schematic diagram of the constructed model was presented in Figure 2.2. 
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In addition to the design concepts, the model aquifer was semi-confined (thus 

allowing vertical leakage) and also constrained by a finite length. The consequences 

of these effects were: 

(a) Leakage from the upper surface of the aquifer. 

(b) Reflection from the end of the aquifer - an impermeable boundary. 

This is illustrated in Figure 4.1 below. 

Tidal 
Tank 

_SZ_ 
Lei cage 

Free Water Surface 
~7K 7K 7fT 

Aquifer 

~^ Dict ion ofT^al Wave^ ~~^ — / 

Impermeable 
Boundary 

Reflection 
of tidal wave 

4.8 metres 

Figure 4.1. Schematic Diagram Illustrating Finite Length and Semi-confined Nature 

of the Durham Model Aquifer. 

The leakage effect was quantified in preliminary work when an estimate for the 

leakage coefficient of 2 x 10"5 s _ 1 was concluded. The effects of leakage on 

amplitude decay and time lag of the tidal wave were uncertain. 

The effects of the impermeable boundary and reflection of the tidal wave were also 

uncertain. 

Due to the above two characteristics, it was not known whether Ferris' assumptions 

could be reasonably applied to represent the case of the Durham Model Aquifer 

Therefore, it was decided to investigate the extent the influence of these 

characteristics on (a) amplitude decay and (b) time lag. 
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From this investigation, it could be concluded whether the effects were significant and 

therefore whether application of Ferris' theory to the tidal test results on the Durham 

Model Aquifer was justified. 

4.3. Programme of Numerical Analyses 
The purpose of the numerical modelling work was to investigate the effects of 

leakage, reflection and period variation on amplitude decay and time lag of the tidal 

wave. Amplitude decay and time lag were the results from the experimental work on 

the physical model. 

The software, CVM (OGI, 1994) was applied for this work. 

The structure of the investigation is outlined below: 

Case Study A. Confined Aquifer of Infinite Length. 

The concepts of leakage and reflection were not incorporated in the numerical 

model for case study A. 

1. Ferris' theory. Graphical results of time lag and amplitude decay. 

2. Numerical modelling. Application of CVM software concluded graphical 

results of time lag and amplitude decay. 

3. Comparison of Ferris and CVM results. 

4. Examination of effects of different periods on amplitude decay and time 

lag. Normalisation of period influence, so that results of varying periods 

can be compared. 

Case Study B. Confined Aquifer of Finite Length. 

Reflection was incorporated in the numerical model whilst the concept of 

leakage was ignored. Three periods were selected for investigation. 

1. Amplitude decay and time lag were deduced from numerical modelling, 

applying CVM. 

2. Results from application of CVM were compared with solutions derived 

from Ferris' theory. 
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3. Image Well Theory was described to aid explanation of reflective effects. 

Case Study C. Semi-confined Aquifer of Infinite Length. 

The concept of leakage was incorporated in the numerical model whilst reflection 

was ignored. 

The CVM solution was then compared with Ferris' solution. 

Case Study D. Semi-confined Aquifer of Finite Length. 

The concepts of leakage and reflection were both incorporated in the numerical 

model. 

1. Amplitude decay and time lag from application of CVM were compared 

with solutions derived using Ferris' theory. 

2. Attempts were made to normalise results so that different periods could be 

compared. 

These Case Studies together with graphical results are outlined in more detail below. 

4.4. Design of the Numerical Model 
The Curved Valley Model (CVM) software was prepared by Oxford Geotechnica 

International, and was modified by Crowe (1994) to incorporate a harmonic boundary. 

Conclusive results from numerical modelling were derived by running the CVM 

software three times: 

Run 1. This involved establishing a decay envelope to minimise the number of 

time steps required before a regular harmonic pattern was observed. The 

software is designed to iterate results until they fall within a specified 

tolerance. The number of iterations is reduced if input heads are relatively 

close to expected results. The aquifer was designed with a fixed head at 

one boundary. The programme was then run for steady state conditions, 

producing results illustrating exponential head decay with distance. These 

results were later returned to the input file for future restart. Running the 
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software with an input file designed for steady state conditions, produced 

an exponential decay curve. This curve was the decay envelope for 

harmonic variations of head. These head values were inserted into the file 

for Run 2. 

Run 2. As yet harmonic parameters cannot be incorporated in the visual basic 

part of the CVM programme. Run 2 is therefore required to define a 

transient situation. In addition, the heads from Run 1. are incorporated as 

a starting point for head calculations. 

Run 3. The input file from Run 2. was edited to incorporate tidal wave 

parameters. The modified version of CVM (CVMWAVE) was then run to 

conclude harmonic head variations with time. 

Details of the design of the numerical model are provided below. 

4.4.1. Aquifer Modelling 

A finite element model was designed to represent the physical Durham Model 

Aquifer. This involved setting boundary conditions and defining aquifer properties. 

For numerical analyses purposes, the aquifer properties were assumed values 

estimated from preliminary laboratory work with the Durham Aquifer. These 

properties are listed below. 

Coefficient of permeability 4 x 1 0 * 3 m / s 

Coefficient of leakage 2 x 1 0 " 5 s " 1 

Coefficient of storage 0.1 

In addition to the aquifer properties, the size of the model had to be prescribed. The 

CVM software was designed with no-flow boundaries at either end of the aquifer. 

The length of the aquifer was defined as the distance from position 3 to the boundary 

farthest from the tidal tank i.e. 4.7 metres. This was to comply with the experimental 

results of amplitude decay and time lag which were calculated with reference to this 

position. The no-flow boundary farthest from the tidal tank constituted an 
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impermeable boundary. Therefore definition of an aquifer length of 4.7 metres would 

include the concept of reflection. 

A schematic diagram for explanatory purposes is presented below in Figure 4.2. 

Tidal 
Tank Tidal 

Durham Model Aquifer 
4.7 metre 
Boundary Boundary 

Central 
Aquifer 
Region 

Pore Water 
Pressure 4.7 metres i 

Measurement Position 3 

Figure 4.2. Schematic Diagram of Durham Model Aquifer Indicating Regions A and B 

in addition to the Central Aquifer Region. 

For purpose of analysis of the aquifer without the reflective property, an aquifer 

length of 15 metres was defined, and observations of amplitude decay and time lag 

made over the first 4.7 metres of the model. It was assumed that this design would 

result in negligible reflective effects within the region of interest. 

The dimensions of the numerical model aquifer were as follows: 

Thickness of aquifer 0.25 metres 

Width of aquifer 0.25 metres 

Length 4.7 metres (incorporating reflective property) 

The finite element model consisted of a specified number and arrangement of 

elements connected by nodes. The finer the mesh (i.e. larger number of elements), 

the more detailed the result, however the cost of this is run-time. It is useful to design 

the elemental mesh such that nodes fall close to physical positions of interest. The 

CVM software allows observation of results at six specified locations. It was decided 

that observation nodes, which are best equally spaced, should correspond to 

15 metres (simulating no reflection) 
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positions 3, 4, 6, 9, 11 and 12 in the Durham Aquifer. The number of elements 

designed for the numerical model length of 4.7 metres was 94, whilst for the 15 

metres long model, 150 elements were prescribed. 

The software allows different materials types to be selected. This enables modelling 

of groundwater behaviour in areas comprising a variety of different soil materials with 

different aquifer properties. A numerical model of the physical Durham Aquifer was 

designed by Lourenco (1994) using CVM software and comprised two material types. 

These were prescribed as the tidal tank and the sand aquifer itself. 

For the current analyses procedure, one material type was selected. This constituted 

the sand aquifer between position 3 and the boundary farthest from the tidal tank. It 

was assumed that aquifer properties remained constant within this region. 

4.4.2. Tidal modelling 

Tidal modelling was also designed to represent the tidal system used in conjunction 

the physical model aquifer. 

The tidal boundary was corresponded with position 3 as was outlined in section 4.4.1. 

Although amplitude decay is independent of the original tidal amplitude, for purpose 

of analysis, a suitable amplitude had to be selected. The amplitude of the harmonic 

wave was specified based on laboratory results and wave spectra, in particular the 

primary constituent of the wave. The amplitude of the primary constituent of the 

wave at position 3 was used for numerical modelling purposes. Although the 

amplitude of the source wave varied slightly between laboratory results, an 

approximated value of 0.2 metres was concluded. 

Several wave periods were considered for analysis. These are outlined in detail for 

each of the case studies. 

The number of time steps was limited to 200 and linear time steps were chosen for 

easy analysis of output. The length of each time step was specified as 50 seconds. 

This was based on the amount of time the software required before a regular 

harmonic pattern was observed. An illustration of the output from running the tidal 

programme is illustrated in Figure 4.3. It was possible to view the data files 
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corresponding to these graphical results. From these files, amplitudes of the wave at 

each of the observation nodes could be calculated. In addition, the time lag of the 

wave at each observation node, with respect to the first, could be estimated. This 

could not be determined to any great degree of accuracy because the time steps 

were limited to 50 seconds. This resulted in errors in time lag estimates from the 

CVM model of approximately ± 25 seconds. Small values of time lag therefore 

incorporated a large percentage error. 

4.5. Case Study A. Confined (Non-Leaky) 
Aquifer of Infinite Length. 

Concepts of leakage and reflection were not included within the design of this 

particular numerical model. 

4.5.1. Ferris Theory 
Ferris' theory was outlined in section 1.4. of the thesis. The formulae Ferris 

developed for time lag and amplitude variation were applied for the case of the 

physical model, using estimates for parameters as explained in section 4.4. These 

are summarised below: 

Coefficient of permeability, K = 4 x 10" 3 m/s 

Thickness of the aquifer, b = 0.25 metres 

Width of Aquifer, w = 0.25 metres 

Transmissivity, T = Kb = 1 x 10" 3 m2/s 

Coefficient of storage, S = 0.1 

The period of tidal wave selected for analyses was 1920 seconds. This period value 

was the most common from the laboratory work, and lay approximately in the middle 

of the range of other primary wave periods. 

Equations 1.8 and 1.9 in chapter 1 were applied using the above parameters. 

Results of amplitude decay, hx/hg and time lag, t|_, were calculated for various 
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horizontal distances from the tidal boundary. Hence, graphs were produced 

illustrating analytical results of amplitude decay and time lag of the tidal wave with 

horizontal distance. These are illustrated in Figures 4.4. and 4.5. respectively. 

4.5.2. C V M solution 

The model was designed as described in section 4.4. For this case study, the aquifer 

length was prescribed to be 15 metres. A wave period of 1920 seconds was selected 

for analysis, to comply with Ferris' method. 

The software CVM was applied to the numerical model as described in section 5.2. 

Results of amplitude decay and time lag were calculated from the output data file. 

These results are illustrated in Figures 4.6. and 4.7. respectively. 

4.5.3. Comparison of Results from C V M with Ferris 
Theory 

The results from section 4.5.1 and application of Ferris theory were compared with 

CVM results from section 4.5.2. The comparisons of amplitude decay and time lag 

are shown in Figures 4.8. and 4.9. respectively. 

It can be seen that results of amplitude decay from analytical theory compare well 

with the numerical solution. Figure 4.9. does not illustrate such a good comparison 

for the time lag results. This discrepancy is probably due to the inaccuracy in 

estimating time lag from the output files produced by CVM. 

This work illustrated the suitability of applying the CVM model, and accuracy of the 

results it produced. It was concluded that amplitude decay results were highly 

accurate, whereas slight incorrections were inherent in determining time lag. 

4.5.4. The Effects of Period Variation on Results 

The effect of period variation on results of amplitude decay and time lag was 

investigated by application of Ferris theory. Three different tidal periods were 

considered and results of amplitude decay and time lag were deduced for each. The 

test periods were selected to correspond with the range of periods from the 
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experimental work, and were 1746s, 1920s and 2743s. Figures 4.10. and 4.11. 

illustrate the results. These Figures show that period has significant effect on 

amplitude decay and time lag. The extent of this effect decreases as period 

decreases. 

The objective of this work, was to normalise data of amplitude decay and time lag so 

that results of different periods could be compared. 

Results of work of other researchers were examined. Amplitude decay data of waves 

within the sea-bed has been plotted versus depth/wavelength (Thomas, 1990). 

Bearing this in mind, a corresponding graph of amplitude decay versus 

distance/wavelength was produced by applying Ferris theory to the Durham Model 

Aquifer. 

The wavelength for the tidal period of 1920 seconds was calculated as follows: 

, . total length 4.7 , 
celenty = — — — = — = 8-lxlO"3 m/s 

total tune lag 581 

wavelength = celerity x wave period = 8 • 1 x 10'3 x 1920 = 15-5 metres 

The wavelengths corresponding with the two other periods, 1746s and 2743s, were 

calculated following the same procedure, and found to be 14.8m and 18.6m 

respectively. 

The data of amplitude decay for the three periods tested was found to converge. 

This is illustrated in Figure 4.12. 

Time lag data was plotted versus distance/celerity. The celerity of the wave with 

period 1746s was 8.48 x 10' 3 m/s, whilst that for period 2743s was 6.77 x 10"3 m/s. 

Figure 4.13 illustrates the convergence of the data for the three periods under 

investigation. 

From Figures 4.12 and 4.13, it can be concluded that it is easily possible to normalise 

the wave period in a confined aquifer of infinite length. 

For investigatory purposes, two graphs of amplitude decay and time lag versus 

distance/period were plotted. Results from different periods were not found to 
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converge. The parameters of distance/wavelength and distance/celerity were found 

to be unique for period normalisation of amplitude decay and time lag respectively. 

4.6. Case Study B. Confined Aquifer of Finite 
Length 

This section describes how the effects of reflection on amplitude decay and time lag 

were investigated. The CVM model was used to produce results incorporating the 

reflective boundary. 

4.6.1. C V M Solution 

As was explained in section 4.4. above, reflection was incorporated in the numerical 

model by the presence of a no-flow boundary at a distance of 4.7 metres from the 

tidal boundary. Leakage was not incorporated in the numerical model at this stage. 

The results from the numerical modelling for the three periods, 1746s, 1920s and 

2743s are illustrated in Figures 4.14. and 4.15. 

4.6.2. Comparison of Results from C V M with Ferris 
Theory 

CVM results were then compared with results from Ferris work, to investigate the 

extent of the effect of reflection on amplitude decay and time lag. Figures 4.16 

through to and including 4.21 illustrate this comparison. These figures clarify the 

extent of reflective effects and are discussed below. 

4.6.3. Discussion of Reflection Effects 

There will be several reflected waves due to the concept of Image Well theory. The 

real wave will be reflected from the 4.7 metre boundary. This primary reflected wave 

will be then reflected from the boundary where the tidal wave is initiated, to form a 

second reflected wave. This secondary reflected wave will then be reflected from the 
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aquifer boundary furthest from the tidal tank. This reflective process will continue ad 

infinitum. Decay of the waves as they are reflected will, however, mean that after a 

finite number of reflections their effects on water-level response will be negligible. 

Image well theory can be applied to predict reflective effects. Image well theory was 

developed by Ferris et al (1962) and is documented in several textbooks including 

Freeze and Cherry (1979). This theory applies to a confined aquifer bounded at one 

end by a hydro-geologic boundary, across which no flow can occur. The drawdown 

as a result of pumping, will be greater near this boundary. In order to predict these 

drawdowns, the method of images; a technique which is widely used in heat-flow 

theory, has been adapted to groundwater situations (Ferris et al., 1962). For purpose 

of analysis, boundaries are considered to be either recharge or barrier boundaries. 

Application of this theory to the Durham Model Aquifer is illustrated in Figure 4.22. 

Infinite images are considered for six reflections. In this diagram, hf signifies the 

fixed amplitude of the tidal wave. 
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Figure 4.22. Image Well Theory Applied to the Durham Model Aquifer. 

H1 represents the initial source of the real wave, with tidal amplitude, hf. H2 

represents an image tidal source, which causes the effect of the primary reflected 

wave in the region of interest (0 to 4.7 metres). The image tidal source produces 

waves also of amplitude, hf, at a distance of twice the aquifer length (2L) from the 

real source. The effects of the third reflected wave can be represented by a second 

image source also 2L away, but in the opposite direction to real wave movement. 

This second image source produces a wave of amplitude -hf. This negative 
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amplitude is brought about by the need to balance the overall system. Addition of the 

first image wave source with tidal amplitude, hf, left the system out of balance. This 

effect therefore had to be compensated by a negative wave amplitude produced by 

the second image source. Further reflected waves were represented by image 

sources in the same manner to that described above. 

The numerical magnitudes of the real wave from source H1 and the reflected waves 

from each of the sources H2 and H3 illustrated above were calculated. This 

computation was based on Ferris theory using the properties estimated initially for the 

Durham Model Aquifer. The result of this is shown in Figure 4.23. Superposition of 

each of these waves within the 0 to 4.7 metre range will produce an approximation of 

the actual wave. Superposition must incorporate the relative phases of the waves so 

that constructive and destructive interference effects are considered. Therefore, the 

magnitudes of the computed amplitude decays cannot simply be added together. 

Figure 4.23. does illustrate the reflected waves which significantly affect the resultant 

waveform. It can be clearly seen that the reflected wave from the H2 boundary is by 

far the most significant, with the wave from the H3 boundary also having a much 

smaller effect. The effects of further reflected waves appear negligible. 

4.6.3.1. Ampl i tude decay 

It may be useful to refer to Figure 4.2. throughout this section which discusses 

Figures 4.16. to 4.21. 

Reflective effects are particularly significant in aquifer region B. In this region, these 

effects approximately double the amplitude decay anticipated from Ferris theory due 

to the reflected wave from the H2 boundary. 

From figures 4.16. to 4.21, it can be observed that some CVM values are lower than 

corresponding results from Ferris theory. There are two reasons for this 

phenomenon. Firstly, superposition of real and reflected waves results in 

constructive and destructive interference due to differences in phase. The effects of 

phase differences mean that some amplitude values are subtracted from the original 

wave, producing a lower value than might otherwise be anticipated. Secondly, 
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reflection from boundary H3 is equivalent to applying a negative fixed amplitude at a 

distance of 9.4 metres (twice the aquifer length) away from the tidal boundary, H1. 

The is the principle of image well theory which was illustrated in Figure 4.22. 

4.6.3.2. T ime L a g 

The wavelengths of the tidal waves of periods 1746s, 1920s and 2743s were 

calculated in section 4.5.4. above. The corresponding periods of all of these waves 

was at least three times the length of the aquifer. This implied that real and reflected 

waves would be notably out of phase with each other. 

The time lag (or phase difference) of the superposed wave is significantly greater 

than Ferris solution in the central region of the aquifer. Values at the boundaries of 

the aquifer fall very close to those based on Ferris theory. Neglecting the small 

effects of reflection from boundary, H3, the reasons for similarities and discrepancies 

between the two solutions can be accounted for as follows. 

Phase differences between the real and governing reflected wave (from the H2 

boundary) will increase as the reflected wave progresses towards the tidal boundary, 

H1. In addition, the magnitude of the effect of the reflected wave decreases as the 

wave progresses towards the tidal boundary. Therefore in aquifer region B, farthest 

from the tidal tank, the phase difference between the real and reflected waves is 

minimal, resulting in little difference between CVM and Ferris solutions. In the central 

region of the aquifer, the phase difference between the real and governing reflected 

waves is greater, and therefore a large discrepancy between CVM and Ferris 

solutions is observed. In aquifer region A, the phase difference between real and 

reflected waves is highest, however, the reflected wave has decayed significantly by 

this time. This implies that the effect of the governing reflected wave on the real 

wave is marginal. Values from CVM and Ferris are therefore similar in the region of 

the aquifer close to the tidal tank. 
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4.6.3.3. C o n c l u s i o n 

This work illustrated that reflective effects significantly influence amplitude decay and 

time lag. Therefore, it was concluded that application of Ferris theory to laboratory 

results from the Durham Model Aquifer would have the consequence of large 

inaccuracies in estimates of aquifer properties. These would occur due to the finite 

length of the Durham Model Aquifer. 

4.7. Case Study C. Semi-confined Aquifer of 
Infinite Length. 

This section describes how the effects of leakage on amplitude decay and time lag 

were investigated. The CVM software was used to produce results for a semi-

confined model aquifer. 

4.7.1. Comparison of Results from CVM with Ferris 
Theory 

Initially, one tidal period of 1920 seconds was investigated. The numerical model 

was adjusted to incorporate leakage. For purpose of analyses, the value of leakage 

used was 2 x 10~5 s~1. The reason for this prescribed value is outlined in section 

5.2.1 above. Results from application of the CVM software were compared with 

results derived from Ferris theory. Figures 4.24. and 4.25. illustrate amplitude decay 

and time lag comparisons from these two approaches. 

4.7.2. Discussion of Leakage Effects 
Figures 4.24. and 4.25. illustrate that the prescribed leakage has little effect on 

results of amplitude decay and time lag. The numerical solution for amplitude decay 

is slightly lower than that derived from Ferris' analytical theory. This is to be expected 

since the leaked water will result in more rapid amplitude decay. There is a slight 
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discrepancy between the time lag results, although this may simply be due to the 

difficulty in determining time lag accurately from the CVM results. There is an error in 

each of the numerical values of approximately ± 25 seconds. Further numerical 

modelling with tidal waves of different periods was not performed since these results 

illustrated such small leakage effects. 

In conclusion, the prescribed leakage has a very small effect on results of amplitude 

decay and time lag. 

4.8. Case Study D. Semi-confined Aquifer of 
Finite Length. 

This section describes how the effects of both reflection and leakage on amplitude 

decay and time lag were investigated. The CVM model was used to produce results 

incorporating both these concepts. 

4.8.1. Comparison of Results from CVM with Ferris 
Theory 

The numerical model data was modified to incorporate both leakage and reflection. 

Results of amplitude decay and time lag were computed for three periods, 1746s, 

1920s and 2743s, based on application of CVM. These results were then compared 

with Ferris' theory. Figures 4.26. to 4.31. illustrate this comparison. 

These figures illustrate a significant difference between numerical and analytical 

solutions, due to the combined effects of reflection and leakage. 

4*8.2. Period Normalisation 
From section 4.5.4, it was concluded that results of amplitude decay and time lag of 

varying periods could be easily normalised. This would enable easy comparison of 

results of different tidal period. The parameters determined for period normalisation 

of the analytical Ferris' theory were computed for numerical model results 
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incorporating leakage and reflection. This was done to observe the extent of any 

convergence. The normalisation parameters applicable to Ferris theory were, for 

time lag, distance/celerity (X/c), and for amplitude decay, distance/wavelength, (X/L). 

The wave properties were calculated in a similar manner to that outlined in section 

4.5.4. These values of the wave properties did not differ significantly from those 

calculated earlier and based on Ferris theory, and the total time lag. Reflection and 

leakage do not significantly affect total time lag. These wave properties are 

summarised in table 4.1 below. 

Period (s) 1746 1920 2743 

Wavelength (m) 14.8 m 15.5 m 18.6 m 

Celerity / 

Wave speed (m/s) 

8 .5x10 - 3 8.1 x10" 3 6 . 8 x 1 0 - 3 

Table 4.1. Summary of Wave Properties. 

Time lag was plotted versus distance/celerity, as is shown in Figures 4.32. Amplitude 

decay was plotted versus distance/wavelength as illustrated in Figure 4.33. 

From these figures, the data points are observed to be fairly scattered with no clear 

convergence of results from different periods. Therefore, the parameters, X/L, and 

X/c are not useful in providing results normalised for period effects. In order to 

determine the normalisation parameters for amplitude decay and time lag with 

leakage and reflection, analytical theory must be considered. 

4.9. Conclusion 
The numerical modelling illustrated that concepts of both leakage and reflection 

affected results of amplitude and time lag. Significant discrepancies were observed 

between numerical results and those based on Ferris' analytical theory. Reflection 

was found to influence amplitude decay and time lag results to a greater extent than 
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leakage. It was found possible to normalise data from Ferris theory so that results of 

different periods could be easily compared. Results from numerical modelling 

incorporating leakage and reflection were not normalised. It was concluded that 

analytical theory must be developed in order to investigate appropriate normalisation 

parameters. 

In conclusion, Ferris theory cannot be directly applied to laboratory results to 

determine aquifer properties. New analytical theory must be developed to include 

these characteristics, from which aquifer properties may then be calculated. 
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Figure 4.21. Time Lag. Comparison of CVM, 
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Figure 4.26. Amplitude Decay. Comparison 
of CVM, Incorporating Leakage & Reflection, 
with Ferris Theory. 
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Figure 4.27. Time Lag. Comparison of CVM, 
Incorporating Leakage & Reflection, with 
Ferris Theory. 
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Figure 4.28. Amplitude Decay. Comparison 
of CVM, Incorporating Leakage & Reflection, 
with Ferris Theory. 
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Figure 4.30. Amplitude Decay. Comparison 
of CVM, Incorporating Leakage & Reflection, 
with Ferris Theory. 
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Chapter 5 

Development of Analytical Theory 

5.1. Introduction 
Following the numerical modelling simulating the Durham Model Aquifer and outlined 

in chapter 4, K was concluded that Ferris' theory was inapplicable to results from the 

Durham Model Aquifer. This was because two of the assumptions upon which the 

theory was based, were not valid for the Durham Model Aquifer. These assumptions 

were: 

1. The aquifer is of infinite length/distance from the tidal boundary. 

2. The aquifer is confined and therefore vertical flow is negligible. 

The numerical model, CVM, illustrated the effects of reflection and leakage on results 

of amplitude decay and time lag. These effects were found to be significant for the 

case of the Durham Model Aquifer. Therefore, using Ferris theory to estimate aquifer 

properties would result in inaccuracies. In addition, the leakage coefficient cannot be 

determined by this method. 

It was therefore decided to advance the theory developed by Ferris to include 

concepts of leakage and reflection. This chapter outlines the development of such 

analytical theory to describe the behaviour of groundwater in coastal areas. Three 

separate cases are considered. Firstly, Ferris' theory is developed to incorporate 

reflection from an impermeable boundary. Secondly, the concept of leakage is 

included in the theory, and finally, both leakage and reflection effects are 

incorporated in analytical theory. In summary, analytical theory is developed from 

Ferris theory to describe: 

A. Groundwater behaviour in a confined coastal aquifer of finite length (i.e. 

incorporating reflective effects). 
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B. Groundwater behaviour in a semi-confined (leaky) coastal aquifer of infinite 

length. 

C. Groundwater behaviour in a leaky coastal aquifer of finite length. 

Analytical solutions were verified by comparison with numerical solutions produced 

using CVM. 

5.2* Development of Ferris Theory to Incorporate 
Reflection 

5.2.1. Concepts 
The objective was to develop analytical theory for groundwater behaviour in a 

confined aquifer with 

« Horizontal flow 

• Periodic wave applied at one boundary 

• Finite length, i.e. reflection from an impermeable boundary 

5.2.2. Application of Image Well Theory 
Image well theory was detailed in chapter 4.6.3. The primary reflected wave has a 

highly significant effect on water-level response. Therefore, initially only 

superposition of this primary reflected wave was considered. This was then 

compared with a numerical solution for a specific case. 

5.2.2.1. Theory Incorporating One Reflective Boundary 

Figure 5.1. below details the theoretical image source causing the effect of the 

primary reflective wave. This image source is located at a distance of twice the 

aquifer length (2L) from the real source. The amplitude of waves produced by the 

real source is denoted by h x , whilst that produced as a result of the image source is 

n2L-x- Amplitude is dependent on distance, x. This is illustrated in Figure 5.1. The 
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time lag as a result of the real wave affects a phase difference, phaseO, with 

reference to the real source. The primary reflected wave incurs a time lag and phase 

difference, phase 1, with reference to the image source. Again, this is illustrated in 

Figure 5.1 below. 

Real Source 

Amplitude 
Decay 

X-

Image Source 

Reflective 
Boundary 

Reflective 
Boundary 

phaseO^-^' •>^phase1 

-X- -X 

Figure 5.1. Image Well Theory, Considering Primary Reflective Effects. 

For any point at a distance, x from the real source, the head, H(x,t), is given by: 

H = h{x) sin(crt + (f>a) + h(2L_x) sm(cot + <f>l) > eqtn{5 • 1) 

where t = time 

co = angular velocity 

<j>o = phaseO 

$1 = phasel 
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It is assumed that the aquifer material is homogeneous for all values of x, and 

therefore the wavelength of both real and reflective waves is the same and constant. 

This implies that other wave parameters, wavelength and period, are also constant. 

It is assumed that o < x < X where X is the wavelength, and that: 

co = — >eqtn(5 • 2) 

where to, is the wave period. 

The phase differences phaseO, <t>o, and phasel , fa, are given by eqtns (5.3) and (5.4) 

respectively. 
iTtX 

<Po ~ ~T~ >eqtn(5 • 3) X 
2n(2L-x) 

•+eqtn(5-4) 

Substituting eqtns (5.2), (5.3) and (5.4) into eqtn (5.1) gives: 

H = h, sin 
Wo 

u -(2> 
2nt 2n(2L-xf 

+ : + eqtn(5-5) 

Expanding eqtn(5.5) 

H = h 

\2L-x) 

2nt 2nx 
sin cos 

^ h *• J 

N ( 2/rf . 2nx" 
cos sin—— + 

J 

. 2itt 27r(2L-x) 
sin cos ; 

V t0 * 

^ ( 2nt . 2n{2L-xjs 

+ cos sin-
V h 

->eqtn{5-6) 

This can be simplified to 

H= A(x)smo)t+ B(x)cosa)t >eqtn(5-l) 

Where 

A(x) = hx cos-^ + h^^ c o s — ^ - y — ~ >eqtn{5 -8) 
2m 

X 
~ x . . 2«x , . 2K(2L-X) / R N. B(x) = hx sm~Y+h{1L_x) s i n — x — >eqtn(5-9) 
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Figure 5.2. below illustrates the variation of the periodic wave with time, at distance x 

from the tidal source. 

Amplitude 
(m) 

Distance x from Tidal Source 

..Maximum 

A A A 71 

Ref( 
Tir 

V V V « 
Minimum 

values 

srence 
ne 

Figure 5.2. Harmonic Variation of Propagated Tidal Wave at Distance x from Source. 

The objective was to determine the amplitude and time lag of the wave at various 

horizontal distances from the tidal source. The time of the occurrence of maximum or 

minimum value of the wave may be found by considering that, for a peak value: 

dt 

Therefore, in order to determine the time of occurrence of maximum/minimum values, 

the total head, H given by eqtn (5.7), was differentiated with respect to time, t. This is 

shown in eqtn (5.10) below. 
dH 
— = Aco cos cot - Basin at >eqtn(5\0) 

For a maximum or minimum value: 
dH 

Applying this to eqtn (5.15), implies that 
Ao)cosa)t = Bco sin cot >eqtn{5-\\) 

A 
=> tmcot = — > eqtn(5 • 12) 

B 

/A 
=>at = t a n j + n K >eqtn{5 • 13) 

where n=0,1,2,3.... 
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This incorporates the harmonic pattern of the wave with peaks/troughs at various late 

times with respect to a chosen reference time. This was illustrated in Figure 5.2 

above. 

The time of the occurrence of the first maximum/minimum value of the wave is given 

by eqtn (5.14) below. 

—>eqtn(5-l4) t = — tan-1[4 
The amplitude of the wave at a specified horizontal position from the tidal source 

does not change with time. Therefore eqtn (5.14) can be substituted into eqtn(5.7) to 

provide an equation for the amplitude of the superposed wave, H a m p . 

sin^tan" 
B 

+ 5(x)cos^tan" ! — ] >eqtn(5-15) 
Amplitude Decay 

where A(x) and B(x) are defined in eqtns (5.8) and (5.9) above. 

From Ferris Theory (1951), the wavelength and amplitude of the wave are defined as 

follows: 
~~f 

-+eqtn(5\6) 

K = K exp 

Therefore 

KL-, = ho e x P 

]t0Tj 
-±eqtn{5-\l) 

- ( 2 1 - x ) , ->e?to(5 18) 

The time lag of the wave, with reference to the phase of the real source, at various 

horizontal distances was determined. 

The time of occurrence of the first maximum/minimum value of the wave was defined 

in equation (5.14). The time lag was found by computing the times, with reference to 

the phase of the real source, at which this occurred for various values of x. The 

equation for time lag is therefore given by eqtn (5.19) below: 

tL = mod 
0 

tan 1 —1 + time lagx=0 ->eqtn(5-l9) 
Time Lag 
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5.2.2.2. C o m p a r i s o n of Analytical and Numerical (CVM) Solut ions for 

a C a s e Study. One Reflect ion. 

In order to verify the developed analytical theory of chapter 5.2.2., a specific case 

study was defined and the analytical solution compared with a numerical solution 

produced using the software, CVM. 

5.2.2.2.1. Outline of Case Study 

The following parameter values were chosen (similar orders of magnitude to the 

laboratory aquifer): 

Length of Aquifer, L = 4.7m 

Transmissibility, T = 0.001 m2/s 

Storage coefficient, S = 0.1 

Period, to = 1920s 

Amplitude of harmonic wave at boundary (x=0), hO = 0.2m 

5.2.2.2.2. Analytical Solution 

The analytical solutions for amplitude decay and time lag were produced with the 

mathematical and graphical assistance of the software, MATLAB''. 

A printout of the MATLAB file for this solution is provided in Appendix 5.1. 

5.2.2.2.3. Comparison of Solutions 

The graphs illustrating the comparison of the analytical and numerical solutions to this 

example are shown in Figures 5.3. and 5.4. for amplitude decay and time lag 

respectively. 

For both amplitude decay and time lag, the analytical solution compares well with the 

numerical solution. There is discrepancy between numerical and analytical time lag 

1 MATLAB - A computer software package designed to solve complex mathematical formulae 

using matrix methods. 
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results. This was attributed to the errors in time lag data obtained from the numerical 

modelling approach. As was explained in chapter 4, accuracy of time lag results from 

CVM output files is only possible to the nearest ±25 seconds. 

There is a discrepancy in values of amplitude decay at x=0. This may be because 

the analytical solution considers only one reflection. 

5.2.2.3. Theory incorporating T w o Ref lect ions 

Two reflections were considered to investigate whether this analytical theory matched 

the numerical solution more closely. 

Figure 5.5. below illustrates how two reflections were incorporated in the theory. The 

concept of image well theory was applied. This was explained in detail in chapter 

4.6.3. 

Impermeable 
Boundary 

Image Source 2 Real Source Image Source 1 

Figure 5.5. Image Well Theory, Considering Two Reflections. 

Development of this analytical theory followed the same approach as for 

development of the theory with one reflection. 

For any point at a distance, x from the real source, the head, H(x,t), is given by: 
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H = h{x) srin(arf + fa) + h(2L_x) sin(fi* + fa)- h(2L+x) sin(ey/ + fa) >eqtn(5• 20) 

where <j>2 = phase2, the phase difference of the second reflected wave. 

This phase difference is given by eqtn (5.21). 
2n(2L + x) 

fa = — K — L >eqtn{5 -21) 

Incorporating this second reflective effect into eqtn (5.20) 

. 2nt 2nx\ 
sin cos—— + 

< tn X J 

C 2nt . 2nx^ 
cos sin——-

K t0 X 
+ 

h (21-*) 

. 2nt 2n(2L-x) 
sin — cos ; 

LA 
2nt 27r(2L + x)} 

sin cos : |+ 
t0 X 

2nt . 2K(2L-X)\ 
cos sin 

^ ' o * J. 

' 2nt 2TT(2L + X)> 

cos sin 
^ ' o * / J 

-±eqtn(5-22) 

This can be simplified to 

H = A(x)smcot + B(x)cosat >eqtn{5-23) 

Where 
2nx 

A(x) = hx c o s — + h{2L_x) cos 
2TT(2L-X) 

'(21+*) 

2nx 
B(x ) = / i , s i n - — + / j ( 2 £ _ , ) S i n 

2n(2L-x) 
-h (2i+*) 

2n(2L + x) 
c o s — — >eqtn{5 • 24) 

. 2n(2L + x) 
sin — — > eqtn{5 • 25) 

The approach described in section 5.2.2A was followed to determine the amplitude 

and time lag. The time for maximum and minimum values to occur was calculated. 

The total head, H given by eqtn (5.23) was differentiated with respect to t. For a 

maximum/minimum 
dH 

1 F = 0 

Therefore: 

cot = tan - i 
fA 

+ nn > eqm(5 • 26) 

The first maximum/minimum value occurs at the time given by eqtn (5.27) below: 
1 / A \ 

*eqtn{5-21) t = — tan 
CO KB 
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Substituting eqtn (5.27) into eqtn(5.23) to determine the amplitude of the superposed 

wave, H a m p 

Hmp = A{x) s u l t a n - 1 j j + B(x) cos^tan - 1 - | ) >eqtn{5 -28) 
Amplitude Decay 

where A(x) and B(x) are defined in eqtns (5.24) and (5.25) above, 

where 

-(2L + x\ -±eqtn(5-29) 

The time lag of the wave, with reference to the phase of the real source, at various 

horizontal distances was determined. 

The time of occurrence of the maximum/minimum value of the wave at various 

horizontal distances was defined in equation (5.27). The equation for time lag is 

hence: 

tL = mod 
1 

—tan 
\0) 

- i •+eqtn(5-30) 
Time Lag 

5.2.2.4. C o m p a r i s o n of Analytical and Numerical (CVM) Solut ions for 

a C a s e Study. T w o Ref lect ions. 

In order to verify the developed analytical theory of chapter 5.2.2.3, the case study 

defined in section 5.2.3.1 was applied. The analytical solution incorporating two 

reflections was compared with the numerical solution produced using the software, 

CVM. 

5.2.2.4.1. Analytical Solution 

The printout of the MATLAB file for this solution is provided in Appendix 5.2. 
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5.2.2.4.2. Comparison of Solutions 

The graphs illustrating the comparison of the analytical and numerical solutions to this 

example are shown in Figures 5.6. and 5.7. for amplitude decay and time lag 

respectively. 

The analytical solution for amplitude decay compares very well with the numerical 

solution. There is discrepancy between values of time lag obtained from the 

numerical and analytical approaches. This was attributed to the accuracy of the CVM 

numerical solution, which was limited to ±25 seconds. 

Incorporation of this second reflection in the analytical theory resulted in a closer 

match of numerical and analytical solutions for amplitude decay than was possible 

with theory incorporating one reflection. The theory was developed to include a third 

reflected wave and its effect on water-level response was also investigated for the 

above case study. Inclusion of the third reflected wave was found to have a 

negligible effect. 

5.2.3. Conclusion 
Analytical was developed to describe water-level response in a coastal aquifer of 

finite length. Ferris' theory was developed to incorporate the effects of two reflective 

waves. Further reflected waves were found to have negligible effect on water-level 

response. The analytical solution was verified by computing results of amplitude 

decay and time lag for a specific case study. This was then compared with the 

numerical solution, produced by application of CVM software. Taking into account 

the errors in the numerical results, it was concluded that the analytical and numerical 

solutions compared very well. 

Therefore, to summarise, the equations for amplitude decay and time lag in a 

confined, coastal aquifer of finite length are 

HamP = A(x) sinJ tan" 1 — + 5 ( x ) cod tan" 1 — > eqtn{5 • 28) 
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J 1
 u 

t, = m o q —tan — + timelagx=Q •+eqtn(5-30) 

where 
2nx 2x(2L-x) 2n(2L + x) 

A(x) = hx c o s — + \ 2 L _ X ) cos 

, . 2nx . 27r(2L-x) , . 2n(2L + x) 
B(x) = hx s i n — - + h(2L_x) s i n — H - - h„ r ^ sin - * 

•*eqtn(5-24) 

•+eqtn(5-25) 

and 

A, = h0 exp 
'tnT. 

KL-* = K exp 

f 

-(2L-x) 

[OS* 
= K exp -(2L + x) — 

K \ t 0

J ; 

>eqtn{5\l) 

-+eqtn(5-lS) 

->eqtn(5-29) 
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Figure 5.3 Amplitude Decay. Comparison of 
Analytical Solution (Incorporating One 
Reflections) with Numerical Solution for a 
Confined Aquifer of Length 4.7 metres. 
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Figure 5.6. Amplitude Decay. Comparison of 
Analytical Solution (Incorporating Two 
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5.3. Application of Angstrom Theory (Heat 
Conduction) to Groundwater Flow in a Leaky 
Aquifer System. 

5.3.1. Concepts 
The objective was to develop analytical theory for groundwater behaviour in a 

semi-confined aquifer with 

• Horizontal flow 

• Vertical flow (Leakage) 

• Periodic wave applied at one boundary 

• Infinite length 

5.3.2. Heat Conduction Theory 
Ferris based his theory on the heat conduction solution employed by Angstrom for 

the problem of potential distribution within a semi-infinite solid subjected to periodic 

variations of potential. This theory is documented in Carslaw (1945). 

As part of this current programme of work, it was decided to investigate heat 

conduction theory further to see if a solution could be found to the problem of water-

level response in a leaky, coastal aquifer. 

5.3.3. Governing Groundwater Flow Equation 
The governing equation describing flow in a one-dimension leaky aquifer system can 

be written in the form (Bear 1979): 

Sf = T ' 0 " ^ / ' " / ' * ) >eqtn(5-3^ 

where h = Hydraulic head above datum, [L] 

h* = Fixed hydraulic head in aquitard, [L] 

S = Storage coefficient (bS s +S y ) , [-] 

S s = Specific storage, [ML] 

S y = Specific yield, [-] 
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T = Aquifer Transmissibility, [ L 2 fT] 

x = Horizontal spacial co-ordinate, [L] 

P = Leakage coefficient - this positive for water that passes through the 

aquitard (K7b'), [1/T] 

Equation(5.31) is known as the diffusion type equation and is derived by combining 

the mass conservation (water balance) and the effective momentum conservation 

(Darcy's Law) equations. 

The following boundary conditions were applied to solve this equation: 

• at x=0, the head varies periodically (h=Acoswt+Bsinwt) 

Equation (5.31) can be rewritten as : 
oh T o^h B 

-a'sa?-f«-^<5-™> 
where a = (h-h*) 

5.3.4. Application of Heat Conduction Theory 
The current programme of work involved research into heat conduction theory to 

investigate if a problem similar to the above had been solved for heat flow. 

Angstrom's method for conductivity experiments upon bars under variable 

temperature was encountered. Angstrom employed long bars of small cross-section. 

The bar end, x=0, was subjected to periodic changes in temperature. After some 

time, the temperature within the bar will settle down to a periodic state. Angstrom 

investigated this periodic state. The bar is allowed to radiate into a medium at 

constant temperature, taken as the zero of the experiment. The length of the bar is 

such that the far end remains unaffected by alterations at x=0, so mathematical 

treatment assumes a bar of infinite length. 

This theory is described in detail in Carslaw (1921). The equation for temperature is 

given by Carslaw (1921) as: 

= K - A v > e # n ( 5 1 3 2 ) 
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The heat conduction problem together with the governing equation (5.32) can be 

assimilated to groundwater-response in leaky coastal aquifers and equation (5.31b) 

above. 

5 3 . 5 . Development of Theory. 
The solution derived by Angstrom and documented in Carslaw (1921) was applied to 

the governing equation (5.31b). This section explains development of analytical 

theory to solve equation (5.31b) in line with Angstrom's solution. 

The head at x=0 varies periodically, thus the solution will be periodic with the same 

period, to, as that of the head at x=0, and will be of the form: 

h = Pcosoot + Qsmcot + h' > eqfn(5 • 33) 

In 
where co = — and given that 0 < x < X 

*o 

where A. = Wavelength of the pressure wave, [L] 

P and Q are functions of x. 

Differentiating eqtn(5.33): 

#h o*P 6*0 
^ T = ^ T C 0 S < y ^ + " T T s ' n f i ^ >eqtn(5-3A) 
of. of. of 
— = -Pco sin cot + Qco cos oA > eqtn{5 • 35) 
a 

Substituting eqtns (5.34) and (5.35) into eqtn(5.31b) 

-Pcosin cot + Qco cos cot = 
rcfP o*Q . } 
—Y cos cot + —Y sin cot 

\Of OX ) 
- ^AP cos cot + Q sin cot) > eqtn(5 • 36) 

o 
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By equating the coefficients of sincot and cosed to zero in eqtn(5.36), this results 

quantities for P and Q which satisfy: 

^ _ | P = ^ Q _ ^ e q ( n ( 5 . 3 7 ) 

£ 0 _ 2 o _ _ ^ P _ > « | t l ( 5 . M ) 
d!r T T 

Thus we have 

- a 
J 

P + b 4 P = 0 »eqfn(5-39) 

where a1 =~ and b2 =^$-

Therefore 

P = A exp _ 8 X cos(g' x - s) + /A' exp _ s x cos(g' x - ) > eqtn(5 • 40) 

where g = 
a' + - a ' + 

and A, A', s and s' are arbitrary constants. 

Since P vanishes when x=oo , it follows that A - 0 , and our equation becomes: 

P = Aexp"" cos(g'x - e) >eqtn{5 -41) 

from which we obtain 

Q = Aexp - 8 * sinfg'x - s) • eqtn{5 • 42) 

Thus the solution to the governing eqtn(5.31b) is 

h = Aexp _ 9 X cos(g'x - e) cos cot + A exp ~m sin(g'x - e) sin cot + h' > eqtn{5 • 43) 
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Differentiating the above eqtn (5.43) with respect to time, to find the amplitude of the 

wave at various distances from the end, x=0, subjected to periodic changes in 

temperature. 

oh 
— = -A<yexp _ s* cos(g'x -e)m<ot + Acoexp~9X sin(g'x -e) cos cot >eqtn{5 -44) 
a 

r w 
— = 0 for a peak. 
a 

This implies 

cos(g'x - e) sin cot = sin(g'x - s) cos cot > eqnt(5 • 45) 

cot = g'x- s > eqtn[5 • 46) 

Substituting eqtn(5.46) back into eqtn(5.43): 

hma = / \ exp - 9 X cos 2(g'x -s) + Aexp" 8* sin 2(g'x -e) + h' > eqtn(5 • 47) 

This can be simplified to 

hm« = *exp + t i > eqtn(5 • 48) 

The amplitude of the periodic wave with relation to the horizontal distance, x, can be 

found be eliminating h* , and is therefore given by: 

/ » _ = / \ e x p - " r >egfo(5-49) 

Applying boundary conditions to eqtn (5.49), to find a value for arbitrary constant, A. 

At x=0, the amplitude of the wave is equal to h 0 (amplitude of the applied periodic 

wave). Therefore: 

maxam/7 

Thus the solution to the governing equation for groundwater flow in a one-dimension 

leaky aquifer system with a periodic wave of amplitude h 0 applied at the boundary 

x=0 is 

Amplitude Decay / U = / > o exp"9* >eqtn(5-50) 

where g = 
(/3IT) + J(p2IT2)+(co2S*IT2) 
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The time lag can be determined from eqtn (5.46) above 

-»egfn(5-51) 

Applying boundary conditions to find constant, s: 

at x=0, h = hQ cos cot + h * > eqtn{5 • 52) 

Substituting this into eqtn(5.43) 
h0 cos cot + h* = A[cos(-£r) cos cot+sm[-s) sin cot] + h * 

/}„ cos cot = A[cos{cot - e)] > eqtn{5 • 54) 

This implies that £-=0 

Therefore: 

t =—(g'x) = f, >eqtn{5 -55) 
CO 

Time Lag 

->egfa(5-53) 

where g'= 
-{BIT) + yl(j32IT2)+[co2S2IT2) 

Eqtn (5.55) gives the time for a peak to occur at various horizontal distances from 

x=0, and therefore provides an indication of the time lag, t L . The equation illustrates 

that the time lag varies linearly with horizontal distance as expected from Ferris 

theory and illustrated in chapter 4, Figure 4.11. 

53.6. Comparison of Analytical and Numerical 
Solutions for a Specific Case. 

In order to verify the developed analytical theory of chapter 5.3.5, an approach similar 

to that outlined in chapter 5.2.2.2 was followed. A specific case was studied and the 

analytical solution compared with a numerical solution produced using the software, 

CVM. 

5.3.6.1. Outline of Speci f ic C a s e 

The following parameter values were chosen (similar orders of magnitude to the 

laboratory aquifer): 
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Length of Aquifer, L = 4.7m 

Transmissibility, T = 0.001 m 2/s 

Storage coefficient, S = 0.1 

Period, to = 1920s 

Amplitude of harmonic wave at boundary (x=0), hO = 0.2m 

The leakage coefficient of the Durham Model Aquifer was estimated to be 

2 x 10" 5 s - 1 . The value of this parameter chosen for this case study was 6 x 10" 5 s~1. 

This larger coefficient would have a more significant effect on results of amplitude 

decay and time lag. Hence the theory could be more clearly verified by comparison 

with CVM. 

5.3.6.2. Analytical Solution 

The printout of the MATLAB file for this solution is provided in Appendix 5.3. 

5.3.6.3. Compar ison of Solut ions 

A comparison of the numerical and analytical solutions for the amplitude decay and 

time lag for this case study are illustrated graphically in Figures 5.8. and 5.9. 

The analytical solution for amplitude decay compares very well with the numerical 

solution. Once again, there is discrepancy between values of time lag determined by 

the analytical and numerical methods. The numerical solution produces results with 

an error of ±25 seconds. Allowing for this error in the numerical solution, the 

analytical and numerical approaches compare well. 

5.3.7. Conclusion 
Analytical theory was developed for water-level response in a semi-confined coastal 

aquifer. This theory was applied to solve a specific case. Results of amplitude decay 

and time lag for this case were compared with a numerical solution to the problem. 

Analytical and numerical solutions compared well taking into consideration the errors 

in the results for time lag determined from the numerical solution. The analytical 

theory was hence verified. 
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Therefore, to summarise, the equations for amplitude decay and time lag of water-

level response in a leaky coastal aquifer of infinite length are 

hmp=h0exp-9X >eqtn(5-50) 

f = - ( g ' x ) = f, >eqtn{5-55) 
0) 

where g = 
(/3IT) + J(/32IT2) + (co2S2IT2) 

and g'=. 
t 

-<J3IT) + J(J32IT2) + (co2S2IT2) 
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5.4. Analytical Theory Describing Groundwater 
Behaviour with Leakage and Reflection 

5.4.1. Concepts 
The objective w a s to obtain two distinct equations incorporating aquifer parameters 

leakage, permeability and storage coefficient, together with terms describing the 

wave motion. T h e first equation would relate amplitude decay of the wave with 

horizontal distance, x. The second equation would provide an indication of the time 

lag of the wave, with respect to that at x=0, at various horizontal distances from this 

boundary. 

Two mathematical approaches were investigated to achieve this objective. Firstly, 

analytical theory w a s derived combining the approaches of chapters 5.2 and 5.3. 

Secondly, a solution w a s derived using complex numbers. T h e s e two approaches 

resulted in the s a m e solution. This section details this theory development and 

verification of concluded equations. 

5.4.2. Combination Approach - Applying Theory of 
Chapters 5-2 and 5-3 

T h e amplitude of the periodic wave at various horizontal distances, x, is given by 

eqtn(5.50) in chapter 5.3 and is recalled to be: 

h m p = K ^ - ^ >eqtn{5.56) 

T h e equation of the wave is therefore: 

H = hQexp'** sm(o)i + <f>) > eqtn{5 • 57) 

where § is the phase angle of the wave. 

To incorporate reflection, image well theory was applied. The approach was similar 

to that described in chapter 5.2, the c a s e for reflection without leakage. 
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Considering the main wave and two dominant reflections (described in 

chapter 5.2.2.3), the equation describing the resultant head is: 

HT = h0 exp(-gx) sin(crf + ax) + hQ exp(-g(2L - x)) sin(<2)f + a(2L - x)) -

h0 exp(-g(2L + x)) sin(a>t + a(2L + x)) > eqtn(5 • 5 8) 

where the wave number, a is defined a s : 
In 

a = —— >eqtn{5 • 59) 

Considering eqtn (5.55), the wavelength, X can be defined a s 
cotn 

X= - j - >eqtn(5-60) 
s 

From chapter 5.3 where 

andg'= J -
-(/3IT) + J(/32IT2)+(co2S2IT2) 

Expanding eqtn(5.58) 

HT = h0 exp(-gx){smcot cosax + cosot sin ax} + 

h0 exp(-g(2L - x)){ana)t cosa(2Z - x) + coscot sina(2Z- - x)} -

\ exp(-g(2Z + x)){sincot cosa(2Z, + x) + coscot sina(2L + x)} >eqtn(5 • 61) 

Eqtn(5.61) c a n be simplified to 

HT = C(x)smcot + D(x)cosat >eqtn(5-62) 

where 

C(x) = h0 exp(-gx) cos(ax) + h0 cxp(-g(2L - x)) cos(a(2Z, - x)) -

h0 exp(-g(2L + x)) cos(a(2I + x)) >eqtn(5 • 63) 

D(x) = hQ exp(-gx) sin(ax) + h0 exp(-g(2L - x)) sin(a(2L - x)) -

h0 exp(-g(2L + x)) sin(a(2Z + x)) >eqtn{5 • 64) 

Differentiating H T [eqtn(5.62)] with respect to time, t, to find the amplitudes of the 

wave at various positions, x, from the sinusoidally varying boundary. 
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dHT 

dt 
dHT 

dt 

Applying this condition to eqtn (5.65) gives: 

Ceo coscot = Deo sincrf >eqtn(5 • 66) 

= Ceocoseot - Dcosmcot >eqtn(5 • 65) 

= 0 for a maximum / minimum 

cot = tan" 
D) 

+ nn > eqtn(5 • 67) 

The time at which the first maximum/minimum value occurs for various horizontal 

distances is given by 

->egfn(5-68) t = — tan 1 — 
eo \DJ 

The amplitude decay of the wave is given by substituting eqtn(5.67) into eqtn(5.62): 

#<»,P = C(x)sinitan "(D)} + £>(;C){tall"(f), > e q H 5'6 9 ) 

Amplitude Decay 

where C(x) and D(x) are given by eqtns(5.63) and (5.64) above. 

T h e time lag of the wave at various horizontal positions with respect to x=0 is given 

by the modulus of equation (5.68) 

timelag,^ = modf ̂  t a n " 1 ^ j - timelag^ J >eqtn(5 • 70) 
Time Lag 

where 0 < i < 0.1 

This eqtn cannot be solved for x=0 because this results in a division by zero. 

5.43. Complex Numerical Approach 
A slightly different approach to the problem was taken in order to verify the solution 

given in chapter 5.4.1. 

A complex numerical solution was investigated a s a means of incorporating phase 

and time lag. 
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T h e amplitude of the periodic wave at various horizontal distances, x, is given by 

eqtn(5.50) in chapter 5.3 and is recalled to be: 

h m p = K exp"** — > eqtn(5 • 50) 

T h e equation of the wave is therefore 

HA(x,t) = ha e x p " ^ [costa^ +/ 'sin(U^] >eqtn(5 • 71) 

But 
x A 

c = — = — >eqtn(5 • 72) 
' 0̂ 

Therefore 

t = ^r- >eqtn{5-12>) 

I n xtn ITVX. 
and cot = — * ~ = —— = ax >eqtn(5-74) 

/ Q A A 

Substituting this into eqtn(5.71) gives 

HA (x, t) = hQ exp ~g*A [ cosar^ + / sin axA ] > eqtn(5 • 75) 

Now, incorporating reflection, the equation of the first dominant reflective wave is 

HB{x,t) = h0 exp - *** [cosaccB + / s i n a x B ] >eqtn{5 • 76) 

where 

xB = 2L- xA >eqtn(5 • 77) 

T h e equation for the second dominant reflective wave is 

Hc(xJ) = h0 Qxp~SXB[cosaxc + / s i n a x c ] >eqtn(5-7S) 

where 

xc=2L + xA > eqtn(5 • 79) 

The total head, Hj by principal of superposition is therefore 

HT = HA + HB + Hc > eqtn(5 • 80) 

HT = h0 e x p ^ g x ^ ^cosax:^ + / s i n a x / 1 ] + 

h0 e x p ( - g x B ) [ c o s a x g + / sin ax g ] -

h0 e x p ( - g x c ) [ c o s a x c + / ' s inax c ] >eqtn(5-8l) 
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Collecting real and imaginary terms: 

KQ(HT) = h0 exp(-gxA )[cosoxj + 

h0exp(-gxB)[cosaxB]-

^exp(-^x c)[cosax c] — ->e#/n(5-82) 

+ Im(#r) = h0 Qxp(-gxA)[ sin ax J 

/i 0exp(-gx B)[sinax B]-

^ 0exp(-gx c)[sinax c]- ->eato(5-83) 

The absolute value of the complex numerical solution is the amplitude of the wave. 

This is given by 

= V[Re(# r ) f + [ M # r ) f >eqtn(5-M) Amplitude Decay 

T h e phase lag can be calculated from the argument of the complex solution. This is 

given by 

Phase = tan 
llm(77 r)j 

->eqtn(5%5) 

The time lag, t^ is related to the phase the following equation: 

t L = ~ * Phase >eqtn{5 • 86) 

The time lag of the sum of these waves for any value of x, with respect to the phase 

lag at x=0, is given by 

t0 

timelag = — * tan 
2n 

Re( / / r ) 
\m{HT)) 

- timelagJ=0 >eqtn(5 • 87) 
Time Lag 
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5.4.4. Comparison of Analytical and Numerical 
Solutions for a Specific Case 

In order to verify the analytical theory, an approach similar to that in chapters 5.2.2.2 

and 5.3.6 w a s followed. A specific c a s e was investigated and results of amplitude 

decay and time lag computed from application of analytical theory and numerical 

modelling. 

5.4.4.1. Outline of Specific Case 

The c a s e chosen for investigation was that outlined in section 5.3.6.1. The values for 

the parameters were a s follows: 

Length of Aquifer, L = 4.7m 

Transmissibility, T = 0.001 m 2 /s 

Storage coefficient, S = 0.1 

Period, tO = 1920s 

Amplitude of harmonic wave at boundary (x=0), hO = 0.2m 

The leakage coefficient of the Durham Model Aquifer w a s estimated a s 2 x 10" 5 s " 1 . 

The value of this parameter chosen for this c a s e study was 6 x 10" 5 s ; 1 . This larger 

coefficient would have a more significant effect on results of amplitude decay and 

time lag. Hence the theory could be more clearly verified by comparison with CVM. 

5.4.4.2. Analytical Solutions 

Analytical solutions to the above problem were computed for both mathematical 

approaches. 

The printouts of these two MATLAB files are provided in Appendices 5.4. and 5.5. 

Analytical solutions for one, two and three reflections were compared with numerical 

solutions. T h e s e comparisons are illustrated in Appendix 6.6. 
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5.4.4.3. Comparison of Solutions 

The two analytical solutions for amplitude decay and time lag derived from the two 

mathematical approaches were compared. Graphs illustrating this comparison are 

shown in Figures 5.10. and 5.11. T h e s e graphs shown that the solutions from the 

two approaches exactly overlie. 

A comparison of the numerical and analytical solutions for the amplitude decay and 

time lag for this c a s e study are illustrated graphically in Figures 5.12 and 5.13. 

The analytical solution for amplitude decay compares very well with the numerical 

solution. Once again, there is discrepancy between values of time lag determined by 

the analytical and numerical methods. The numerical solution produces results with 

an error of ±25 seconds . Allowing for this error in the numerical solution, the 

analytical and numerical approaches compare well. 

5.4.5. Conclusion 
Analytical theory w a s developed for water-level response in a semi-confined coastal 

aquifer of finite length. This theory was applied to solve a specific c a s e . Results of 

amplitude decay and time lag for this c a s e were compared with a numerical solution 

to the problem. Analytical and numerical solutions compared well, taking into 

consideration the errors in the results for time lag determined from the numerical 

solution. The analytical theory w a s hence verified. 

Therefore, to summarise, the equations for amplitude decay and time lag of water-

level response in a leaky coastal aquifer of finite length are 

= C ( x ) s u i | t a n - 1 ^ ) | + D ( x ) | t a n - , ^ ] | >eqtn(5-69) 

timelag= mod ->eqtn(5-70) 
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where 

C(x) = h0 exp(-gx) cos(ax) + h0 exp(-g(2L - x)) cos(a(2Z, - x)) 

K exp(-g(2I. + x)) cos(a(2Z, + x)) > eqtn{S • 63) 

D(x) = /20 exp(-^x) sin(ax) + h0 exp(-g(2L - x)) sin(a(2Z, - x)) 

h0 exp(-g(2L + x)) sin(a(2I + x)) >eqtn(5 • 64) 
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Chapter 6 

Application of Analytical Theory to 
Laboratory Results 

6.1. Introduction 
Chapter 5 concluded with two analytical equations for amplitude decay and time lag 

in a semi-confined aquifer of finite length. T h e s e formulae incorporate three aquifer 

properties, storage coefficient, transmissivrty and coefficient of leakage. 

The objective w a s to apply this newly developed theory to the results from 

experimental work performed using the Durham Model Aquifer. Aquifer properties for 

the laboratory model were determined from results of amplitude decay and time lag 

applying the theory of chapter 5.4. T h e s e values were then compared with 

estimates from preliminary experimental work. 

6.2. Period Normalisation and Period Ranges -
Investigation by Applying Analytical Theory. 

In order to analyse the laboratory results of amplitude decay and time lag, it was 

necessary to normalise the data to eliminate variations due to differences in period 

between test ser ies. A s was discussed in chapter 4.8.2, period normalisation 

depended on the analytical theory. After much study of the equations outlined in 

chapter 5.4., it was concluded that period normalisation was complicated by the 

parameter, g (which incorporates all three aquifer properties). 

The effects of period variation on amplitude decay and time lag were more closely 

investigated. Recalling tables 3.6 and 3.7, the primary periods ranged from 1600 

seconds to 2743 seconds . The secondary periods ranged from 533 seconds to 1371 
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seconds . It was decided to prescribe period ranges, and investigate variations in 

results of amplitude decay and time lag based on analytical theory. 

The first primary period range investigated was 1820 seconds to 2020 seconds. This 

range w a s selected since it contained a large number of experimental results. Once 

again, a specific c a s e w a s outlined. Values for aquifer properties were based on 

earlier experimental work. T h e s e are summarised below. 

Length of Aquifer, L = 4.7m 

Transmissibility, T = 0.001 m 2 /s 

Storage coefficient, S = 0.1 

Leakage coefficient, p = 2 x 1 0 - 5 s - 1 

Amplitude of harmonic wave at boundary (x=0), hg = 0.2m 

Three different periods were investigated within this range: 1820s, 1920s and 2020s. 

The analytical theory of chapter 5.4. was then applied and solutions of amplitude 

decay and time lag computed for the three periods under investigation. T h e s e are 

shown graphically in Figures 6.1 and 6.2. T h e s e figures illustrate that the greater the 

period, the larger the time lag and also the slower the rate of amplitude decay. The 

maximum difference in amplitude decay between period 1920s and the limits of the 

range w a s 3%, whilst that for time lag was 15s. A s a percentage of the amplitude 

decay solution for a period of 1920s, this difference constituted 5%. The 

corresponding time lag difference constituted 3 % of the time lag for the 1920s wave. 

T h e s e effects on amplitude decay and time lag were considered small, and it was 

therefore decided to group all laboratory results within this period range together. 

This included results from test Ser ies 1, 9, 10, 12, 13, 14, 15. For purpose of 

analysis, these results were compared with theory of period 1920s, the central period 

within the range. 

Following this work, three secondary periods were investigated, 620s, 790s and 

960s. The reason for the selection of this period range, 620s to 960s, was to include 

secondary results which corresponded with primary results in the range 1820s to 

2020s . Time lag w a s not investigated for variations in secondary periods because 

laboratory results for time lag were based on the period of the sawtooth waveform 
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(before fast fourier transform analysis). This was approximately equal to the period 

of the governing constituent waveform (the primary wave). Hence laboratory results 

for time lag were compared solely with time lag theory based on the primary period. 

The analytical solutions for secondary amplitude decay for each of the three periods 

were computed using the aquifer properties summarised above. Figure 6.3 illustrates 

these analytical solutions. The maximum difference in amplitude decay between the 

central period and limits of the range w a s calculated to be 3%. This constituted a 

maximum difference in amplitude decay of 20%. This percentage difference is large 

but this is because the values themselves are small. 

Laboratory results from other test series were also grouped into period ranges. The 

size of the period ranges varied slightly due to the laboratory results available. In 

certain c a s e s , period ranges encompassed only one series of laboratory results. This 

w a s because there w a s no other experimental data recorded for periods close to this 

value. This applied to series 6 and 8. Analytical solutions of amplitude decay, and 

for the c a s e s of primary periods, time lag, were plotted graphically. The period 

ranges and their corresponding graphs are detailed in tables 6.1 and 6.2 below. 

Primary Period Range Laboratory Results Figure 

Period Range Numbers of 

Number Graphs 

(Analytical 

Solutions) 

1 1820 s to 2020 s Ser ies 1, 9, 10, 12, 13, 14, 15. 6.1 &6 .2 

2 2050 s to 2400 s Ser ies 2, 3, 4, 5, 7. 6.4 & 6.5 

3 1600 s to 1800 s Ser ies manual, 8, 11. 6.6 & 6.7 

4 2743s Series 6. 6.8 & 6.9 

Table 6.1. Primary Period Ranges . Analytical Solutions. 
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Secondary Period Range Laboratory Results Figure 

Period Range Numbers of 

Numbers Graphs 

(Analytical 

Solutions) 

5 533s Ser ies 8. 6.10 

6 620s to 960 s Ser ies 1, 9, 10, 11, 12, 13, 14, 

15. 

6.3 

7 1000 s to 1200s Ser ies 2, 3, 4, 5, 7. 6.11 

8 1370 s Ser ies 6. 6.12 

Table 6.2. Secondary Period Ranges . Analytical Solutions. 

Thus , the variations in amplitude decay and time lag due to period differences were 

investigated by applying the analytical theory derived in chapter 5.4. 

It w a s concluded that, for analyses purposes, laboratory results would be classified 

into the period ranges outlined above. 

6.3. Laboratory Results Classified Within Period 
Ranges 

The laboratory results of amplitude decay and time lag were arranged into graphical 

form according to the period ranges concluded following investigation of analytical 

solutions. T h e s e period ranges were defined in section 6.2 above. Results for each 

period range were plotted together on a single graph. Tables 6.3 and 6.4 below 

outline the period ranges and corresponding figures illustrating the spread of 

laboratory results within these ranges. 
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Primary Period Range Laboratory Results Figure 

Period Range Numbers of 

Number Graphs 

(Laboratory 

Results) 

1 1820 s to 2020 s Series 1, 9, 10, 12, 13, 14, 15. 6.13 & 6.14 

2 2050 s to 2400 s Series 2, 3, 4, 5, 7. 6.15 & 6.16 

3 1600 s to 1800 s Series manual, 8, 11. 6.17 & 6.18 

4 2743s Series 6. 6.19 & 6.20 

Table 6.3. Primary Period Ranges. Laboratory Results. 

Secondary Period Range Laboratory Results Figure 

Period Range Numbers of 

Numbers Graphs 

(Laboratory 

Results) 

5 533s Series 8. 6.21 

6 620s to 960 s Series 1, 9, 10, 11. 12, 13, 14, 6.22 

15. 

7 1000 s to 1200s Series 2, 3, 4, 5, 7. 6.23 

8 1370 s Series 6. 6.24 

Table 6.4. Secondary Period Ranges. Laboratory Results. 

From observation of Figures 6.13 to 6.14, it can be seen that, for a number of period 

ranges, there is considerable amount of scatter of data. In particular, results from 

series 1, 9 and 10 appear to be quite different from others within the range. This is 

illustrated in Figures 6.13, 6.14 and 6.22. These differences may be attributed to 

variations in the amount of air within the system. Position 3 was selected as the 
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reference position (for reasons outlined in chapter 3). If air or silt becomes entrapped 

in the pore water pressure measurement system for this position, all the results of 

amplitude decay and time lag for that series will be affected. This is likely to be the 

reason why some of the results from measurement positions distant from the tidal 

tank exceed 100%. 

These figures do, however, illustrate a general pattern of results of amplitude decay 

and time lag. 

6.4. Analyses Procedure 

6.4.1. Objective 
A procedure had to be established to link analytical theory with experimental results. 

The analytical theory incorporated the parameter, g - a variable combining all three 

aquifer properties and the wave period. 

\-{p l f ) + l p 2 I T 2 ) + (G>2S2 I T 2 ) 
g = ^ >eqtn{6-\) 

One procedure that was considered involved determining, from analytical theory, a 

value for g which would lead to analytical solutions for amplitude decay and time lag 

similar to the experimental results. This procedure, however, would not lead to 

conclusions of individual aquifer properties, coefficients of leakage (P), storage (S) 

and permeability (K = T/aquifer width). 

A procedure had to be established which separated out the three individual 

properties of interest. 

6.4.2. Linking Pairs of Aquifer Properties to Aid 
Analysis. 

The possibility of linking pairs of variables together was investigated with the 

objective of aiding the analysis procedure, and providing a clearer indication of 
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trends. The governing equation for flow in a one-dimensional leaky aquifer system is 

stated in eqtn (5.31) in chapter 5, and is recalled below: 

Dividing eqtn(6.1) by the storage coefficient, S: 
oh T d2h p . . , x 

- ^{h -h *) >eqtn(6 • 3) 
a S a? S 

From eqtn (6.3), it was thought that T/S and p/S may be linked pairs. The third linked 

pair would be T/p. 

The parameter, g, defined in eqtn (6.1) comprises two unknowns, p/T and S/T, in 

addition to the angular velocity of the wave, c o . This equation provided an indication 

of linked pairs of aquifer properties. 

Therefore, the analytical theory was applied to investigate whether solutions of 

amplitude decay and time lag for constant values of these variables assimilated, 

independent of the individual values of T, S and p themselves. 

Appendices 6.1 and 6.2 show printouts of the MATLAB files for two case studies, the 

parameters of which are outlined below in Table 6.5. 

Case 1 - Appendix 7.1 Case 2 - Appendix 7.2 

T = 0.001 m 2 / s T = 0.02 m 2 / s 

S = 0.05 S = 0.1 

p = 0.00001 s " 1 P = 0.00002 s " 1 

T/S = 0.02 m 2 / s 

T/p = 100 m 2 

L= 4.7 m 

t n = 1920 s 

h n = 0.2 m 

Table 6.5. Variables for Two Case Studies. 
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T/S and T/p were constant for both cases, although individual properties varied 

between the two. The solutions of amplitude decay and time lag for these two case 

studies are illustrated in Figures 6.25 and 6.26. These graphs illustrate that the two 

solutions for amplitude decay and time lag assimilate. 

Two further case studies were prescribed. This time, T/S was constant, whilst T/p 

varied. Neither time lag nor amplitude decay solutions assimilated. The investigation 

is outlined in detail in Appendix 6.3. 

For the final two case studies, T/p was constant, whilst T/S varied. Again, neither 

time lag nor amplitude decay solutions assimilated. This investigation is outlined in 

detail in Appendix 6.4. 

Therefore, it was concluded that values of T/S and p/S had to be the constant for 

solutions of amplitude decay and time lag from separate case studies to assimilate. 

The fact that T/S and p/S were constant, implied that T/p was also constant. 

6.4.3. Varying Linked Pairs of Aquifer Properties, T/S 
and T/p 

It was concluded that for different case studies constant values of variables, T/S and 

T/p, provided unique solutions for amplitude decay and time lag. It was then decided 

to maintain one of these variables as a constant whilst varying the value of the other, 

and observe patterns in analytical solutions of amplitude decay and time lag. It was 

decided to maintain the variable T/S as a constant value, since the range of values of 

storage coefficient is small for a specified soil material. Leakage and permeability 

coefficients, can vary to a more significant extent for a single soil material. 

Therefore T/S was maintained as a constant whilst T/p was varied. This essentially 

involved varying the leakage coefficient, p. The solution for the following case study 

was determined from application of the analytical theory. 

T/S = 0.01 m 2 /s 

to = 1920 s 

h 0 = 0.2 m 
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The leakage coefficient was varied. In order to indicate the solution for amplitude 

decay and time lag with no leakage, the inverse parameter p/T was selected. The 

leakage coefficient was altered to produce values of p/T of 0, 0.01m"2, 0.02m"2 and 

0.1m - 2 for a constant value of T/S of 0.01 m 2 /s . This implied that, assuming a value 

for transmissivity, T, of 0.001 m 2 /s , the leakage coefficient, p varied between 0 and 

10"4 s~1. Figures 6.27 and 6.28 illustrate solutions of amplitude decay and time lag. 

It was found that the curves tended to an upper limit of T/p. This upper limit 

corresponded to the solution for a confined aquifer without leakage. The analytical 

theory of section 5.3 for a confined aquifer of finite length was applied to the above 

case study. Solutions of amplitude decay and time lag were compared with those 

from application of theory for a leaky aquifer of finite length with a leakage coefficient 

prescribed as zero ( p = 0). These results are illustrated in Appendix 6.5. This work 

verified the two analytical theories. 

It was observed that, as the leakage coefficient decreased (p/T-»0), solutions of 

amplitude decay and time lag became increasingly similar. 

Similar case studies to those outlined above were prescribed. The range of values of 

storage coefficient within a particular soil material is much smaller than the possible 

range of values of transmissibility. For this reason, transmissibility was varied, whilst 

the storage coefficient was maintained at a constant value of 0.1. The two case 

studies were prescribed values of T/S of 0.02m 2/s and 0.03m 2/s. Values of leakage 

coefficient were varied to produce solutions for amplitude decay and time lag for 

values of p/T of 0, 0.01 m"2, 0.02 m"2 and 0.1 n r 2 . These solutions are shown in 

Figures 6.29 and 6.32. 

6.4*4. General trends 
From observation of Figures 6.27 and 6.32, general trends were noted. These are 

summarised in Figure 6.33 below. 
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Figure 6.33. General Trends in Solutions of Amplitude Decay and Time Lag as 

Variables T/S and p/T are Altered. 

It was noted that an increase in T/S of 0.01 m 2 /s lead to significantly less amplitude 

decay and, in addition, a significant reduction in the time lag. It was concluded that 

the theory was very sensitive to changes transmissivity. 

This theory was not as sensitive to changes in leakage coefficient. For values of p/T 

in the order of 10" 2m" 2 the variation in solutions of amplitude decay and time lag was 

small. Assuming a value for T of the order of 10 _ 2 m 2 /s , this implies that when p is of 

the order of 10" 4 s - 1 , the leakage has little effect on solutions of amplitude decay and 

time lag. For values of p/T in the order of 10" 1m" 2 the variation in solutions of 

amplitude decay and time lag was considerable. Assuming a value for T of the order 

of 10"2 m 2 /s , this implies that when p is of the order of 10" 3 s " 1 , the leakage has 

significant effect on solutions of amplitude decay and time lag. Therefore, it was 

concluded that it would be difficult to determine accurately values of leakage 

coefficient less than 10"3 s _ 1 . 

It was noted that solutions of amplitude decay and time lag were more affected by 

the leakage coefficient as distance from the tidal boundary increased. This can be 

explained by the fact water leaks continually from the upper surface of the aquifer, 
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and therefore an increasing amount of water is lost by leakage as distance from the 

tidal boundary increases. 

6.5. Laboratory Results 
This section discusses the assumptions made and arrangement of laboratory results 

in preparation for application of analytical theory. 

6.5.1. Assumptions 
In order to apply the analytical theory to the laboratory results, certain assumptions 

had to be made. These included establishing a region of study. Aquifer properties 

had to be assumed values as a starting point for analyses. Once again, the aquifer 

properties were assumed values based on the earlier experimental work performed 

on the Durham Model Aquifer under steady state conditions. These are summarised 

once more below: 

Transmissibility, T = 0.001 m 2/s 

Storage coefficient, S = 0.1 

Leakage coefficient, p = 2 x 10"5 s " 1 

The Durham Model Aquifer had been repaired following test series 4, before further 

tests were performed. This may have affected the leakage coefficient, however 

water leakage was not observed to have changed significantly as a result of these 

repairs. Comparison of results of amplitude decay and time lag from series 1 to 4 

with those from later tests did not suggest greater leakage as a result of the repair 

work. In addition to this, from the application of the analytical theory in chapter 6.4.3. 

it was concluded that values of leakage coefficient of less than 1 0 - 4 s _ 1 would be 

difficult to determine accurately. Although this appeared unfortunate, since it was 

anticipated that p was of the order of 10"5 s " 1 from earlier work, conversely it implied 

that variations in leakage coefficient during the experimental programme would not 

have significant affect on results of amplitude decay and time lag. 
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The leakage coefficient was therefore assumed to have remained constant 

throughout the duration of all the laboratory experiments. 

For analyses purposes the aquifer was assumed to have a length of 4.7 metres. The 

analytical theory incorporated reflection from the boundaries at x=0 and x=4.7 

metres. This was not strictly the case for the Durham Model aquifer1. 

It was decided to analyse results from primary period range 1 and secondary period 

range 6. These primary results corresponded exactly with the secondary results from 

range 6, however it was noted that series 11 was an addition to the secondary range. 

This additional information to the secondary series provided more accurate mean 

results. In addition, period ranges 1 and 6 encompassed the largest number of test 

series. 

6.5.2. Arranging the Laboratory Results 
The results were re-arranged for comparison with analytical theory. It was decided to 

calculate the mean value and also indicate maximum and minimum values. The 

mean values would provided average decay and time lag curves which could be 

easily compared with analytical theory. The maximum and minimum values would 

indicate spread. 

Therefore, the mean value of results for amplitude decay and time lag for primary 

period range 1820s to 2020s was computed. These mean values were then plotted 

versus the horizontal distance from position 3. In addition, the maximum and 

minimum values of the results were also plotted on the graph to provide an indication 

of spread of the data. Figures 6.34 and 6.35 are graphs of amplitude decay and time 

lag indicating the mean values and spread of the data. The same statistical analysis 

procedure was also followed for secondary period range 620s to 960s. Figure 6.36 

1 The impermeable boundary was actually located at x=-0.145 metres. This distance was 

small, and therefore it was considered reasonable to assume an impermeable boundary at x=0 

for analytical purposes. 
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illustrates the mean values and spread of amplitude decay results for this secondary 

period range. 

There were three separate pieces of information available: primary amplitude decay, 

secondary amplitude decay and time lag. It was hoped that these pieces of 

information were sufficient to obtain distinct values of the three unknown aquifer 

properties, coefficients of leakage, storage and permeability. 

6.6. Application of Analytical Theory to 
Laboratory Results 

Laboratory results and analytical solutions were plotted simultaneously. As a starting 

point, the values of aquifer properties concluded from the earlier work were assumed. 

The objective was to conclude a suitable range of values of T/S and corresponding 

p/T values by application of analytical theory to results of primary amplitude decay, 

secondary amplitude decay and time lag. As explained above, primary period range 

1 and corresponding secondary period range 6 were considered. Laboratory results 

were compared with the analytical solution of time lag computed for the primary 

period. 

6.6.1. Primary Period Range 1 
Three separate cases were studied. These are outlined below. 

6.6.1.1. Case Study A 

Firstly, a value of T /S from earlier work was considered. The earlier work concluded 

the following estimates for transmissivity and storage coefficient. 

T = 0.001 m 2 / s 

S=0.1 

Therefore, for application of analytical theory, an initial value of T/S of 0.01 m 2 / s was 

assumed. This provided a region of study. The period, tQ, was selected as 1920s for 
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application of analytical theory. This was the centre of the experimental results range 

1820s to 2020s. 

The tidal amplitude, hg, was selected as 0.20 metres, based on the amplitude of the 

primary waveform determined by FFT analysis of laboratory results. This value of 

amplitude did vary slightly between tests. These variations occurred because the 

reference amplitude for calculation of amplitude decay results was position 3. The 

amplitude of the wave at position 1 was prescribed whilst the wave at position 3 was 

not, and was dependent on the prescribed wave. Variations may have occurred in 

the measured amplitude of the transmitted wave due to differences in the amount of 

air in the system. In addition, the fast fourier transform analyses concluded with 

constituent sinusoidal waveforms which varied slightly in amplitude. For comparison 

with analytical theory, a value of hg of 0.2 metres was assumed. 

Analytical solutions of amplitude decay and time lag for four different values of p/T 

were computed. These were as follows: 

p/T = 0 

p/T=0.01 m- 2 

p/T=0.02 n r 2 

p/T=0.1 m-2 

The analytical solutions of amplitude decay and time lag were plotted on a graph, 

together with the laboratory results (mean, and maximum and minimum values). 

These graphs are shown in Figures 6.37 and 6.38. From observation of Figure 6.36, 

it was concluded that the theoretical solution for amplitude decay with this T/S value 

was too low when compared with the laboratory results. Figure 6.38 illustrated that 

the theoretical solution for time lag for the value of T/S of 0.01 m 2 / s compared well 

with laboratory results. It was concluded that theoretical solutions for values of p/T 

ranging from 0.02m"2 to 0.1 m~2 provided a satisfactory match with laboratory results. 
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6.6.1.2. Case Study B 

The first case study concluded that application of theory for T/S of 0.01 m 2 / s provided 

results of amplitude decay which were generally lower than laboratory results. Earlier 

work investigating trends in the analytical solutions suggested that increasing the 

value of T /S reduced the rate of amplitude decay. Therefore, a value of T/S = 

0.02m 2 /s was substituted into the analytical theory for case study B. The same 

values of p/T were applied as for case study A. 

Once again, the analytical solutions were plotted on a graph, together with the 

laboratory results. These graphs are shown in Figures 6.39 and 6.40. From 

observation of Figure 6.39, it was concluded that the theoretical solution for 

amplitude decay with this T/S value compared more closely with the laboratory 

results than in the previous case. For T/S of 0.02m 2/s, it was concluded that an 

appropriate range of values for p/T, which matched the laboratory results of 

amplitude decay, was 0 to 0.02m"2. In addition, it was concluded that theoretical 

solutions of time lag for values of p/T ranging from 0 to 0 .1m - 2 provided a 

satisfactory match with laboratory results. 

6.6.1.3. Case Study C 

Finally, theoretical solutions for a value of T/S of 0.03m 2/s were computed. Once 

again, these solutions were plotted on a graph, together with the laboratory results. 

These graphs are shown in Figures 6.41 and 6.42. From observation of Figure 6.41, 

it was concluded that an appropriate range of values for p/T, which matched the 

laboratory results of amplitude decay, was 0.1 to 0.01 m~2. In addition, it was 

concluded that the theoretical solution for time lag for values of p/T close to zero 

provided a satisfactory match with laboratory results. 

6.6.2. Secondary Period Range 6 
Similar cases to those outlined for primary period range 1 were studied. The wave 

period selected for investigation was 790s. This was the centre of the experimental 
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results range 620s to 960s. A tidal amplitude, h 0 i of 0.03 was prescribed for purpose 

of analysis. This again was based on conclusions from F F T analysis of laboratory 

results. The case studies are outlined below. 

6.6.2.1. Case Study A 

For this case, a value of T/S of 0.01 m^/s was prescribed as before. Theoretical 

solutions of amplitude decay for four selected values of p/T were computed, and 

plotted graphically together with experimental results. These are shown in Figure 

6.43. It was concluded that the theoretical solutions for amplitude decay were lower 

than experimental results. 

6.6.2.2. Case Study B 

Theoretical solutions for this case incorporated a value of T /S of 0.02m2/s. 

Theoretical solutions of amplitude decay for four selected values of p/T were 

computed, and plotted graphically together with experimental results. These are 

shown in Figure 6.44. It was concluded that theoretical solutions of time lag for 

values of p/T ranging from 0 to 0.02m~2 provided a satisfactory match with laboratory 

results. 

6.6.2.3. Case Study C 

For this case, a value of T/S of 0.03m2/s was prescribed. Theoretical solutions of 

amplitude decay for four selected values of p/T were computed, and plotted 

graphically together with experimental results. These are shown in Figure 6.45. It 

was concluded that theoretical solutions of time lag for values of pfi" ranging from 0 

to 0.02m"2 provided a satisfactory match with laboratory results. 
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6.7. Conclusions 
From observation of Figures 6.27 to 6.45, ranges of values of p/T which contained 

the experimental results were concluded. The ranges of p/T for corresponding 

values of T /S from each of the three types of laboratory results are summarised in 

tables 6.6 to 6.8 below. 

Primary Amplitude Decay 

T/S (m 2 /s) p/T (m- 2) 

0.01 NONE 

0.02 0 -> 0.02 

0.03 0.01 -» 0.1 

Table 6.6. Primary Amplitude Decay. Range of Values of p/T for corresponding 

values of T /S . 

Time Lag 

T/S (m 2 /s) P/T (m"2) 

0.01 0.02-> 0.1 

0.02 0-+0.1 

0.03 0 

Table 6.7. Time Lag. Range of Values of p/T for corresponding values of T/S. 

Secondary Amp rtude Decay 

T/S (m 2 /s) p/T (n r 2 ) 

0.01 NONE 

0.02 0 -> 0.02 

0.03 0 -> 0.02 

Table 6.8. Secondary Amplitude Decay. Range of Values of p/T for corresponding 

values of T /S. 
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The results of tables 6.6 to 6.8 are illustrated graphically in Figure 6.46. 

The area of overlap of the results from the analysis of primary amplitude decay, time 

lag and secondary amplitude decay was concluded to be: 

T/S =0.02 m 2 / s 

p/T range = 0 -» 0 .02m - 2 

The individual aquifer properties of T, S and p could not be determined solely from 

the above two conclusions. The range of values of storage coefficient is small 

compared to the range of values of the other aquifer properties, transmissivity and 

leakage coefficient. Therefore the storage coefficient, S, was assumed the value 

obtained from earlier work, S = 0.1. It was appreciated that this value was unusually 

high for sandy soil material, however this was attributed to the fact that the storage 

coefficient incorporates the compressibility of the water and soil matrix, and discounts 

the presence of any air within the soil strata. A significant amount of air bubbles were 

anticipated to be present in the Durham Model Aquifer, and this accounted for the 

unusually high estimate of storage coefficient of 0.1. 

Therefore an assumption of storage coefficient, S=0.1 resulted in concluding the 

following estimates of aquifer properties: 

Transmissivity, T = 2 x 1 0 " 3 m 2 / s 

Coefficient of permeability, K = T / thickness of aquifer = 8 x 1 0 ~ 3 m / s 

Leakage Coefficient, p ranging from 0 -» 4 x 10~5 s _ 1 

6.8. Discussion 
The analysis procedure was applied to laboratory results from period ranges 1 and 6 

i.e. test series 1, 9, 10, 11, 12, 13, 14 and 15. 

An initial region of study was selected based on estimates of aquifer properties 

concluded from earlier experimental work using the Durham Model Aquifer. A region 
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of study had to be selected and assumptions for aquifer properties made before 

amplitude decay and time lag could be determined theoretically. 

Based on the assumption that the storage coefficient was 0.1, tidal analyses 

concluded with an estimate for the coefficient of permeability of 8 x 10~3 m/s. In 

addition, the coefficient of leakage was estimated to lie in the range, 0-» 4 x 10~5 s"^. 

Aquifer properties for the Durham Model Aquifer determined by preliminary work 

following alternative methods to tidal analysis, concluded with estimates for the 

coefficients of permeability and leakage of 4 x 10" 3 m/s and 2 x 1 0 - 5 s " 1 respectively. 

Estimates of aquifer properties determined by these alternative methods compared 

well with estimates based on tidal analyses. Estimates for the coefficient of 

permeability were of the same order of magnitude, which for such a wide-ranging 

parameter, illustrated a good comparison. 

It could be argued, however, that since the region of study for tidal analyses was 

determined by the estimates of permeability based on the earlier work, that it was 

inevitable that results would compare well. This is partly true, but strictly speaking, 

theoretical solutions of amplitude decay and time lag verified the previous estimates 

of aquifer properties. The leakage coefficient was assumed to lie within the range 0 

to 10" 4 s _ 1 . A conclusive range for the leakage coefficient of 0-> 4 x 10~5 s"1 was of 

sufficient accuracy considering that the analyses procedure allowed detailed 

prediction of this parameter for values above 10" 5 . 

Assuming a value for the storage coefficient, S , is reasonable since this parameter 

has a smaller range of values than transmissivity (permeability). It is therefore more 

easily determined and to a higher degree of accuracy than transmissivity. Field tests 

may be used to provide an estimate of storage coefficient, S. Following this, tidal 

analyses may be applied to determine T/S and p/T and hence transmissivity and 

leakage coefficient can be estimated. 

In summary, it was concluded that the results of the tidal analyses verified the earlier 

estimates of aquifer properties, permeability and leakage, for the case of the Durham 

Model Aquifer. 
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Chapter 7 

Field Work 

7.1. Introduction 
The objectives of the field work were as follows: 

• To measure and record changes in groundwater head / pore water pressure from 

a coastal aquifer at regular intervals for minimum periods of 24 hours. 

• To investigate whether measurements illustrate tidal influences on groundwater 

behaviour. 

9 To determine aquifer properties (diffusivity, permeability, storage) from these 

results using the tidal analysis method where appropriate. 

• To compare estimates of these properties based on alternative techniques with 

estimates formed as a result of tidal analysis. 

• From this work, to discuss and conclude the viability of the tidal analysis 

technique for determining aquifer properties. 

7.2. The Quayside, Newcastle-upon-Tyne 
The site of the field work was on the Quayside of the tidally influenced River Tyne in 

Newcastle. Measurements of head changes with time were recorded from two 

boreholes (314 and 915) initially over a 24 hour period. Results from earlier 

monitoring of groundwater levels in Borehole 211 were also available for analysis. A 

schematic diagram illustrating the position of the boreholes with respect to each other 

and the River Tyne is given in Figure 7.1 below. 
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Figure 1. Schematic Diagram Illustrating Relevant Dimensions and Positions of 

Boreholes 314 and 915. 

A more detailed scaled drawing showing positions of Boreholes 211, 911, and 915 is 

given in Figure 7.2. 

7.2.1. Equipment and Instrumentation 
The remote logging device used at the Quayside comprised a Druck pressure 

transducer (PDCR 800 series) linked to a Technolog digital logger. Two such 

systems were installed, one in each of boreholes 314 and 915. The Druck 

transducer/logging system provided a resolution of approximately 2mm. Information 

describing the logging equipment is presented in Appendix 7.1. 
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7.2.2. Borehole 314 

7.2.2.1. Locat ion of Piezometer 

The piezometer tube was of diameter 19mm and was located in a clay soil at a 

distance of 73m from the River Tyne and at a depth of 19.50m. 

7.2.2.2. Detailed Soi l Description 

Figure 7.3. below is a schematic diagram summarising the borehole records. 

Depth BH314 
m 

4.00 

7.50 

20.00 

Figure 7.3. Schematic Diagram Illustrating Geological Strata Summarised from 

Borehole Records. 

At a depth of 19.50m, the borehole record indicates a very stiff, dark grey brown, silty 

sandy CLAY, with gravels, occasional cobbles and rare boulders and with occasional 

sand lenses. The material is described as Pleistocene, glacial till. 
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7.2.2.3. Grading ana lys is 

The particle size distribution of soil material found in borehole 314 at depth 20.50 

metres is shown in Figure 7.4. below. 

G r a d i n g Ana lys i s o f B o r e h o l e 3 1 4 a t d e p t h 
2 0 . 5 0 m e t r e s 

100 

80 0) 
e 1 oi o E 60 

40 
03 

20 

0 
0.001 0.01 0.1 

Particle Size (mm) 

Figure 7.4. Particle Size Distribution of Soil Material in Borehole 314 at depth 20.50 

metres. 

7.2.2.4. Method 

A suitable location for the logging box was found and a laptop computer was used to 

commence measurement and recording of data. Measurements of head were 

recorded every 15 minutes. 

7.2.2.5. Resu l ts 

A graphical illustration of the results is given in Figure 7.5. below. 
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Boreho le 314. Head vs T i m e . 

4.8 -

4.7 
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time (hrs) on 28th and 29th June 1995 
16:48 

Figure 7.5. Graph of Groundwater Head vs.Time for Borehole 314. 

7.2.2.6. D i s c u s s i o n of Resu l ts 

The presence of the pressure transducer and cable in borehole 314 appears to have 

caused a significant volume change and hence an increase in water level which then 

gradually dropped during the short time the logger was in place. The soil material (a 

high permeability clay) will ensure that a rise in head will take time to dissipate. 

Fast Fourier Transform Analysis was performed using the data, however no major 

sinusoidal waveforms were observed. The groundwater behaviour appears to be 

governed by the falling head. 

7.2.2.7. Ana lys is of Resul ts 

The results were therefore analysed as a slug test. A slug test is used to determine 

in situ hydraulic conductivity using data from a single piezometer. The test is initiated 

by causing an instantaneous change in the water level in a piezometer tube by the 

sudden introduction of a known volume of water. It is also possible to create the 

same effect by introducing a cylinder of known volume (which in this case was the 

transducer and cable). The recovery of water level with time is then observed. 
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Hvorslev's method of analysis was used to interpret the results (Freeze and Cherry, 

1979). 

Figure 7.6 below is the graph of log(H-h/H-H 0) versus time which was plotted to 

determined T 0 . The data was extrapolated to determine the value of T 0 when 

log(H-h/H-H 0)=0.37. 

log(H-h/H-H0) 

0.1 

Boreho le 314. S lug Tes t ana lyses (Hvors lev) 

*- - ! I o =1 BOO 

500 1000 
time (mins) 

1500 2000 

Figure 7.6. Graph of log(H-h/H-Hfj) versus time to determine permeability using 

Hvorslev's technique. 

From Figure 7.6. and the extrapolated data: 

log(H-h/H-H 0)=0.37 corresponds to a value of T 0 = 1800 minutes 

Applying Hvorslev's equation: 

where K = coefficient of permeability [L/T] 

r = radius of piezometer tube [L] 

R = radius of piezometer intake [L] 

L = length of piezometer intake [L] 

Tq = basic time lag fTJ 
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Therefore: 

r , (0.008)2 ln(0.2 / 0.008) 7 „ 
K = -—— 51 - = 2.86xl0~7 m/min = 4.8xlO"9 m/s 

(2 x 0.2 x 1800) 

7.2.2.8. Conc lus ion and D i s c u s s i o n 

The groundwater in borehole 314 was observed not to be influenced by tidal 

behaviour. The slug test method was used to analyse results. From this method, the 

coefficient of permeability of the material surrounding the piezometer in borehole 314 

was estimated to be 4.8 x 10~9 m/s. This value of permeability suggests a glacial till 

or silt material (Freeze and Cherry, 1979), which agrees with borehole records and 

grading analysis results shown in Figure 7.4. 

7-2.3. Borehole 915 

7.2.3.1. Locat ion of Piezometer 

The piezometer tube was of diameter 19mm and was located in a gravel soil at a 

distance of approximately 30m from the River Tyne and at a depth of 17.90m. 

7.2.3.2. Detailed Soil Description 

Figure 7.7. below is a schematic diagram summarising the borehole records. 
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Depth 
(m) BH915 

21 .4 

16.4 

6.05 
Made Ground 

Sandstone 
22 .00 

Figure 7. Schematic Diagram illustrating Geological Strata Summarised from 

Borehole Records. 

At a depth of 17.00m, the borehole record indicates a very dense brownish grey 

clayey fine to coarse sandy fine to coarse GRAVEL with some cobbles. The gravel 

and cobbles are described as rounded to angular comprising sandstone, sittstone, 

quartzite, quartz and some limestone. The soil becomes less clayey with depth. 

A dark soft clay of high plasticity overlies the gravel layer. 

7.2.3.3. G r a d i n g Ana lyses 

The particle size distribution of soil material found in borehole 915 at depth 16.60 

metres is shown in Figure 7.8 below. 
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G r a d i n g Analysis of Borehole 915 at depth 
16.60 metres 
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Figure 7.8. Particle Size Distribution of Soil Material in Borehole 915 at depth 16.60 

metres. 

The particle size distribution of soil material found in borehole 915 at depth 19.00 

metres is shown in Figure 7.9. below. 

G r a d i n g A n a l y s e s of Boreho le 9 1 5 at 
depth 19 .00 m e t r e s . 
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Figure 7.9. Particle Size Distribution of Soil Material in Borehole 915 at depth 19.00 

metres. 

The grading analyses show that the soil becomes less clayey with depth. 
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7.2.3.4. Method 

Once again, a suitable location for the logging box was found and a laptop computer 

was used to commence measurement and recording of data. An initial test, which 

lasted a period of 24 hours, illustrated tidal influence on groundwater in this area, 

however insufficient data was available for conclusive analysis. Therefore the test 

was repeated and data collected at 15 minute intervals for the period of a week. 

7.2.3.5. Water Level Variation During T e s t 

The water level was measured before and after the test. The results are shown in 

Table 7.1. below. 

Date Water Level Beneath 

Ground Surface 

25/7/95 3.55m 

1/8/95 4.36m 

Table 7.1. Water Level Variation in Borehole 915. 

The results show that the piezometric level in BH915 fell by 0.81m during the test. 

This could be explained by the hot, dry weather during the test period. The 

catchment area of the aquifer may be significantly large, since it is near the coast (at 

the end of the groundwater journey) and therefore a large variance in groundwater 

level would be anticipated. 

7.2.3.6. R e s u l t s 

A graphic representation of the results from the borehole is illustrated in Figure 7.10. 

below. Times of high and low water for the area were available and are also plotted 

below. It was recognised that tidal tables discount effects of wind and atmospheric 

pressure on sea-water levels. 

230 



Boreho le 915. 25/7/95 to 1/8/95 
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BH915 • tidal 

Figure 7.10. Borehole 915. Graph of Groundwater Head vs. Time Illustrating Tidal 

Data and Groundwater Fluctuations. 

The graph illustrates the water changes in borehole 915 which are seen to vary 

harmonically with time, with a period of approximately 12 hours (suggesting tidal 

influence). 

The data rises sharply approximately 70 hours after the test commenced. The 

reason for this sudden rise is unknown, however several possibilities are discussed 

below: 

1. Sudden addition of water to the borehole. This could have been as a result of 

clearing the site (human interference) or a heavy rain storm. Close analysis of 

the data showed that this sudden rise took place over a 15 minute period 

between 10:30am and 10:45am on Friday 28/7/95. A heavy rainfall was not 

recorded in Newcastle during this period. 

2. Sudden addition of water to another borehole in the vicinity. This could have 

occurred as work culminated on the active site. 

3. Alteration of the depth of the instrumentation within borehole 915. 

Whatever the reason for this sharp rise in water level, it was a unique event during 

the testing period and data prior to and after this time follows a distinct harmonic 
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pattern. The data was therefore split into 'early data' (prior to the sudden water level 

rise) and 'late data' (that recorded after the event). 

Fast Fourier Transform (FFT) Analyses were performed on early and late data to 

investigate the major influencing sinusoidal waveforms. Figure 7.11 below provides a 

graphical illustration of the results of these analyses. 

Wave Spec t ra . Borehole 915. T e s t 25/7/95 to 
1/8/95 

6.00E-01 
5.00E-01 
4.00E-01 

amplitude (m) 3.00E-01 
2.00E-01 
1.00E-01 

0.00E -HDO 

late data 

early data 

1.00E + 2.00E + 3.00E + 4.00E + 
00 00 00 00 

log period (mins) 

Figure 7.11. Wave Spectra following FFT analysis of early and late data. 

The graph illustrates the three dominant waves which constitute the harmonic 

behaviour. Table 7.2. below summarises these three major constituents. 

Early Data Late Data 

Period Amplitude (m) Period Amplitude (m) 

Primary 12hrs 0.539 12 hrs 0.587 

Secondary 6 hrs 0.069 6 hrs 0.080 

Tertiary 45mins 0.034 45 mins 0.032 

Table 7.2. Major constituents of harmonic waveform recorded in Borehole 915. 

The primary wave, and certainly the main constituent of the harmonic waveform, is 

characterised by a twelve hour period, the tidal period. It is interesting to note that 
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the primary, secondary and tertiary waves for both early and late data have 

approximately the same amplitude. This confirms that they are not caused by a 

random event, such as a thunderstorm. 

7.2.3.7. Ana lys is of the Tidal Cyc le 

Fast Fourier Transform analyses have been performed on tidal waveforms to 

establish the major tidal constituents (Crowe, 1994). His results identified that 

waveforms of periods of V*x 1 and 14 days were dominant and he proposed that, 

when considering a time scale of a week, it may be possible to ignore the 14 day 

cycle. Fourier analysis showed that the Vi day cycle was predominantly composed of 

a single sine wave. 

Hence in the Tyneside area, it would be reasonable to model the tide as a single sine 

wave for the duration of a week. 

7.2.3.8. Atmospher ic P r e s s u r e Influences 

Atmospheric pressure was measured and recorded during the test. Results are 

shown in Figure 7.12 below. 

Atmospher ic Pressure from 25/7/95 to 1/8/95 

10.37 
10.36 • 
10.35 • • 
10.34 -

CO 10.33 • B • 

CD 10.32 • 
5 10.31 • • 
o 10.3 
*n 
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10.29 
O 

J C 10.28 • 
10.27 
1(12fi • B 

7/25/95 7/26/95 7/27/95 7/28/95 7/29/95 7/30/95 7/31/95 8/1/95 8/2/95 
0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 

Date and Time 

Figure 7.12. Atmospheric Pressure During Test Period. 
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It can be seen that the maximum change corresponds to approximately 100mm head 

of water. This compares well with a variation of 150mm recorded by Crowe (1994), 

from work in the Humberside area. The extent of the effect of atmospheric pressure 

on the results obtained from borehole 915 is questionable. Borehole records suggest 

the presence of a confining clay layer overlying the gravel aquifer, and atmospheric 

pressure is unlikely to have a significant effect on a confined aquifer, particularly 

compared with tidal effects. Also, if atmospheric changes did have a significant 

effect, the mean water level of the data would vary to a similar extent as the 

atmospheric pressure, however this was not observed. 

7.2.3.9. Tidal A n a l y s e s of Data for Borehole 915 

Ferris' theory does not incorporate leakage from or into the aquifer or reflection of the 

wave from a local impermeable boundary. As a separate part of my research work 

here at Durham University I have developed theory to incorporate effects of these 

two influences. The location of the piezometer in borehole 915 does not warrant 

application of the newly developed theory to the results. This is because: 

1. The aquifer is overlain by a clay layer, a material of sufficiently low permeability to 

induce negligible leakage. 

2. There are no clear impermeable boundaries within the vicinity of the borehole. 

The path of the groundwater flow to the River Tyne is most likely to be beneath 

the quayside wall. 

From Ferris (1951): 

tL = xjtaSI4KT >eqtti(7-2) 

K = K expi-XyjxS / t0T >eqm(7 • 3) 

where t\_ = the time lag of groundwater fluctuation compared with tidal fluctuation [T] 

x = horizontal distance from tidal boundary [L] 

to = period of wave [T] 

S = storage coefficient [non-dimensional] 
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T= transmissibility [ L ^ T 1 ] 

ho = amplitude of tidal wave [L] 

h x = amplitude of groundwater wave at distance x inland [L] 

Respective differences between times of maximum and minimum groundwater levels 

and times of high and low tide were calculated. An average value for the time lag 

was then estimated. 

Amplitudes of groundwater levels were calculated from differences in groundwater 

level between maximum and minimum values. An average value of amplitude was 

then computed from this set of results. The amplitude of the tidal cycle was 

calculated in a similar manner. 

Ferris' theory applies to two dimensional problems, the observation well located at a 

linear distance from the tidal boundary. Borehole 915 was located on a peninsula as 

can be seen in Figure 7.1. Groundwater flow is therefore complex and not a simple 

two dimensional situation. It was assumed, however, for purpose of analysis to 

resemble a two dimensional situation. The horizontal distance, x, was therefore 

computed as being the average of the two horizontal distances perpendicular to the 

shoreline, as shown in Figure 7.1. 

Assuming the tidal period to be approximately 12 hours and applying this theory to 

the results which are summarised below: 

hx = 0.563 m 
h0 =L901m 
tL = 165 mins 

x = 30 m 

7.2.3.9.1. Timelag 

tL = (165 x 60) = 30 x 7(12 x 3600) x S14xT seconds 

Therefore 
T 

Diffusivity = — = 3 • 2 x 10"2 m 2 / s 
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7.2.3.9.2. Amplitude Decay 
K 0-563 
h0 1-901 

= exp(-30 x yjrtS I (12 x 3600)1) 

Therefore 
T 

Diffasivity = — = 4 -4x 10"2m2 / s 

7.2.3.10. Es t imates of Aquifer Propert ies b a s e d on Alternative 

T e c h n i q u e s 

Alternative techniques used to estimate aquifer properties are outlined below: 

1. Hazen's Theory to estimate coefficient of permeability using Grading Analyses. 

2. The Trilinear Diagram to estimate coefficient of permeability using Grading 

Analyses. 

3. Estimate of Storage for Gravel Material. 

7.2.3.10.1. Hazen's Theory 

Hazen's Theory was developed for single-size filter sands and gives a very 

approximate value for the coefficient of permeability. The sand is graded by particle 

size distribution tests in accordance with BS 1377. Further details regarding this 

theory are given by Somerville (1986). 

Hazen's Formula: 

K = j ^ ( D w ) 2 m/s >eqtn(7-4) 

where: K = coefficient of permeability (m/s) 

D-io = the sieve size through which 10% of the material passes (mm) 

C = constant which varies from about 70 to 170 but for single-sized material, 

and for a first approximation of permeability, C is usually taken as equal to 

100. 

Applying this theory to results illustrated by the grading analyses for BH915: 
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Borehole 915. Depth 16.60 metres. 

D 1 0 = 0.012 mm 

C = 100 

100 
K = j^-(0.012)2 = 1-4x10-* m/s 

Borehole 915. Depth 19.00 metres. 

D 1 0 =1 .2 mm 

C = 100 

K = ^-(l-2)2 = l - 4 x l 0 - 2 m/s 

7.2.3.10.2. Triiinear Diagram 

The trilinear diagram (Summers and Weber, 1994) can be used to estimate 

permeability. Figure 7.13. shows the Trilinear Diagram, with isopleths of maximum 

value of permeability (m/day), for a variety of particle size distributions. 

Table 7.3. below summarises the results of the grading analyses for borehole 915 at 

depths of 16.60 and 19.00 metres. The table also includes the corresponding ranges 

of permeability as determined by the trilinear diagram 

16.60 metres 19.00 metres 

% Silt 2 0 % 2.5 % 

% Sand 1 5 % 1 0 % 

% Gravel 65 % 87.5 % 

Permeability (m/s) 1 x 1 0 " 3 to 5 x 1 0 - 3 5 x 1 0 - 3 to 1 x 1 0 " 2 

Table 7.3. Summary of Grading Analyses and Permeability for Borehole 915 from 

Trilinear Diagram. 
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7.2.3.10.3. Estimate of Storage for Gravel Material 

For gravel material, values of specific storage, S s are expected to range from: 

S s =1 x 10" 4 to 5 x10" 5 /m (Domenico, 1972) 

Borehole records indicate an aquifer thickness, b, of 4.95 metres. An estimate of the 

range of values of storage, S, is: 

Srang. = = 5 X HP* ~» 2 X 10~* 

An average value of Storage of 3.5 x 10" 4 can be concluded. 

7.2.3.11. Summary of Est imates of Aquifer Propert ies 

Table 7.4. below summarises the results of aquifer properties determined by the 

various methods outlined above. 

Storage 

Coefficient 

Permeability 

(m/s) 

Diffusivity 

(m 2 /s) 

Tidal Analysis of BH915: 

Timelag 

Amplitude decay 

N/A N/A 

3 . 2 x 1 0 - 2 

4 . 4 x 1 0 - 2 

Estimate of Storage 

Coefficient 

3 . 5 X 1 0 - 4 N/A N/A 

Hazen's Theory 

BH915 depth 16.6m 

BH915 depth 19m 

N/A 

1.4x10-6 

1 .4x10 - 2 

N/A 

Trilinear Diagram 

BH915 depth 16.6 m 

BH915 depth 19.0 m 

N/A 

2.5 x 10" 3 

7 . 5 x 1 0 - 3 

N/A 

Table 7.4. Summary of Results of Aquifer Properties Determined Using Variety of 

Methods. 
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Knowledge of soil material provides estimates for storage within a small range, as 

was illustrated above. This is unlike permeability which can vary much more 

significantly even for a specific soil material. 

Therefore, the estimated value of storage coefficient was substituted into tidal 

analyses results of diffusivity (from timelag and amplitude decay) from borehole 915. 

This provided estimates of transmissivity and hence permeability, as shown below. 

S = 3 .5x1 ( K 

7.2.3.11.1. Timelag 

T = 1 . 1 x 1 0 - 5 m 2 /s 
T 

X = — = 4xl0-5 m / s 
b 

7.2.3.11.2. Amplitude Decay 

T = 1 . 5 5 x 1 0 - 5 m 2 /s 
T 

. K = — = 6 x l ( T 5 m / s 
b 

7.2.3.12. S u m m a r y of Est imates of Permeability 

Table 7.5. below summarises estimates of permeability considering the value of 

storage stated above. 

Permeability (m/s) 

Tidal Analysis of BH915: 

Timelag 4 x 1 0 " 5 

Amplitude decay 6 x 10- 5 

Hazen's Theory 

BH915 depth 16.6m 1.4X10- 6 

BH915 depth 19m 1 .4x10- 2 

Trilinear Diagram 

BH915 depth 16.6 m 2 . 5 x 1 0 - 3 

BH915 depth 19.0 m 7 . 5 x 1 0 - 3 

Table 7.5. Summary of Estimates of Permeability. 
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7.2.3.13. D i s c u s s i o n 

The two estimates of permeability based on tidal analyses are of the same order of 

magnitude, yet are quite low for gravel soil. Although the borehole record indicates a 

largely gravel soil, it also details the presence of clay and sandy fines. This would 

have the effect of reducing permeability. Reasons for differences in estimates based 

on Ferris technique and alternatives could be due to a narrow zone of lower 

permeability material between the river and borehole. Ferris' technique would 

average out the effects of such material whereas alternative methods applied as 

above are localised to the borehole area. At a permeability of lO^m/s a 19mm 

diameter piezometer tube will tend to lead to an underestimate of tidal response by 

about 25% (White & Roberts 1994). This would lead to lower values of permeability 

than may otherwise be expected. 

The coefficient of permeability is seen to vary significantly with depth. From 

application of Hazen's theory, it can be concluded that the coefficient of permeability 

around the piezometer (17.90 metres) lies within the range 10" 2 m/s (16.60 metres) 

and 1 0 - 6 m/s (19.00 metres). The soil material at a depth of 16.60 metres is 

described as largely gravel, yet borders the clay layer. The soil material at a depth of 

19.00 metres is well within the gravel layer. The borehole records and grading 

analyses indicated that, within the gravel layer, the soil became less clayey with 

depth. Therefore, it would be expected that permeability would increase with depth. 

Estimates of permeability from Hazen's theory increased with depth significantly, by 

four orders of magnitude. Estimates of permeability from tidal analyses were within 

the range of those calculated using Hazen's theory. From this it may concluded that 

Ferris' technique provided an estimate for permeability that compared well with those 

obtained from Hazen's theory. 

Results from the trilinear diagram were higher than anticipated. The trilinear diagram 

provides a very approximate result for permeability. Estimates of permeability over 

the same range of depth as Hazen's theory were much less varied. The accuracy of 

the trilinear diagram was questioned. Both Hazen's theory and the trilinear diagram 
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were based on results from grading analyses. The larger variation in permeability 

found by Hazen's theory was thought to be more representative of the differences in 

soil material with depth than estimates from the trilinear diagram. It was therefore 

difficult to conclude the viability of the tidal technique when compared with such a 

general method. 

Both Hazen's theory and the trilinear diagram provide a localised, rough estimate of 

permeability and are by no means rigorous methods, unlike pump tests (data of 

which was unavailable). It was found that Ferris technique compared well with 

estimates based on Hazen's theory, yet not so well with those based on the trilinear 

diagram approach. Therefore it was concluded that Ferris' technique provided an 

estimate of permeability that compared reasonably well with those obtained from 

alternative techniques. 

7.2.4. Borehole 211 

Results of groundwater variations with head were provided for borehole 211, 

therefore comparisons of aquifer properties from a variety of techniques were not as 

rigorous as for the case of borehole 915. The close proximity of BH915 to BH211 

and general similarity of soil material, as illustrated by the grading analyses, will imply 

similar aquifer properties. 

7 . 2 . 4 . 1 . Locat ion of Piezometer 

The piezometer in borehole 211 was located in gravel soil at a distance of 17.5 

metres from the River Tyne and at a depth of 21 metres. 

7 . 2 . 4 . 2 . Particle Size Distribution 

The particle size distribution for borehole 211 for a sample depth of 21.50 to 21.60 

metres is shown below in Figure 7.14. 
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Grading Analyses for Borehole 211 at depth 21.15 to 21.60 metres. 
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Figure 7.14. Particle Size Distribution of Soil Material in Borehole 211 at Depth 21.15 

to 21.60 metres. 

At a depth of 21 metres, the borehole record indicates a dense, dark brown/grey, 

sandy GRAVEL and cobble with occasional boulders. The material becomes more 

sandy (coarse) below 20.20 metres. 

7 . 2 . 4 . 3 . R e s u l t s 

Results of groundwater changes in borehole 211 over a eight hour period were 

available. These results were recorded on 5th April 1989. The times of high and low 

water on this day were also available, however the actual tidal heights could not be 

obtained and therefore these were estimated based on tidal heights of 5th April 1995. 

A summary of the results is shown below. 

h, = 1-46 m 

h0 = 1 • 62 m 

t L = 34 (±10) mins 

x = 1 7 - 5 m 
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7 . 2 . 4 . 4 . T idal A n a l y s e s of Data for Borehole 211 

7 . 2 . 4 . 4 . 1 . Timelag 

t L = (34 x 60) = 17.5 x 7(12 x 3600) x S14nT 

Therefore 
T 

DifEusivity = — = 0-253 m 2 Is 

7 . 2 . 4 . 4 . 2 . Amplitude Decay 

•^- = ^ - = e x p ( - 1 7 - 5 x ^ / ( 1 2 x 3 6 0 0 ) 7 ) 

Therefore 
T 

Diflfusivity = — = 2 m 2 / s 

7 . 2 . 4 . 5 . Es t imates of Aquifer Properties b a s e d on Alternative 

T e c h n i q u e s 

Once again, Hazen's theory was used to estimate the coefficient of permeability. 

Applying this theory to results illustrated by the grading analyses for BH211: 

D-io - 0.5 mm 

C = 100 

100 
K = —T(0-5)2 = 2 - 5 x l 0 " 3 m / s 

10 4 

The permeability is concluded to be 2.5 x 10~3 m/s. 

7 . 2 . 4 . 6 . Summary of Est imates of Aquifer Propert ies 

Table 7.6. below summarises the results of aquifer properties determined above. 
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Storage 

Coefficient 

Permeability 

(m/s) 

Diffusivity 

(m 2 /s) 

Tidal Analysis of BH211: 

Timelag 

Amplitude decay 

N/A 

3.95 

0.50 

Hazen's Theory 

BH211 

N/A 

2 . 5 x 1 0 - 3 

N/A 

Table 7.6. Summary of Results of Aquifer Properties Determined Using Variety of 

Methods. 

Assuming an estimate of storage coefficient = 3.5 x 1 0 - 4 as determined for similar 

soil material in borehole 915, and substituting this value into tidal analyses results of 

diffusivity (from timelag and amplitude decay), estimates of transmissivity and hence 

permeability can be determined. These calculations are shown below. 

S = 3.5x10-4 

7.2.4.6.1. Timelag 

T = 8.9 x 10- 5 m 2 /s 
T 

£ = - = 4x10- * m / s 
b 

7.2.4.6.2. Amplitude Decay 

T = 7 x 1 0 - 4 m 2 / s 
T 

K = - = 3 x l 0 - 3 m / s 
b 

7 . 2 . 4 . 7 . Summary of Es t imates of Permeability 

Table 7.7 below summarises estimates of permeability considering the value of 

storage stated above. 

244 



Permeability (m/s) 

Tidal Analysis of BH211: 

Timelag 4 X 1 0 - 4 

Amplitude decay 3 x 10" 3 

Hazen's Theory 

BH211 2.5x10-3 

Table 7.7. Summary of Estimates of Permeability. 

7 .2 .4 .8 . D i s c u s s i o n 

The two estimates of permeability based on tidal analyses are of similar orders of 

magnitude, and are satisfactory for gravel soils. Differences between time lag and 

amplitude decay methods may be due to leakage from the aquifer. It was thought 

that this may affect the amplitude result more significantly than those based on time 

lag. Leakage from the aquifer would cause more rapid decay in amplitude of the 

wave than if the aquifer were fully confined. The phase differences between tidal 

and groundwater fluctuations were thought to be largely unaffected by leakage 

effects. However, it was remembered that tidal times used in the analyses were not 

actual times but approximations based on more recent tidal tables. This is more likely 

to be the cause for discrepancy than leakage from the aquifer. A clay layer overlies 

the gravel in which the piezometer is situated. This was thought to have minimal 

permeability confining the aquifer and resulting in minimal leakage. It was therefore 

suggested that the estimate based on amplitude decay was more accurate. 

Both estimates comply well with those based on Hazen's theory. The estimate based 

on amplitude decay is closer to that obtained by Hazen's theory than that based on 

time lag. The tidal analysis method provides an estimate of permeability 

incorporating ground conditions between the borehole and coast. 
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Hazen's theory provides an approximate and general, site-specific estimate of 

permeability. This method incorporates only the soil material in the immediate vicinity 

of the borehole. In addition to this, Hazen's formula includes a constant, the value of 

which may vary between 70 and 170. An approximation for this constant will also 

inherently lead to an approximate result for permeability. 

Results from the tidal method will be affected by the piezometer. The time taken for 

the water level within the piezometer to respond to groundwater changes was not 

considered, nor was the damping effect of the piezometer on amplitude changes. 

These effects were outlined by Hvorslev (1951), and would lead to slight 

underestimates of permeability. Estimates of permeability based on Ferns' technique 

could be considered to be slightly lower than those based on Hazen's theory. 

It was concluded that Ferris technique provided estimates of permeability that 

compared well with the estimate based on Hazen's theory. It was accepted however, 

that a comparison with a single general result was by no means definitively 

conclusive. 

7.3. Conclusion 
Data of groundwater levels in borehole 314 did not illustrate tidal behaviour, however 

the results were analysed using the slug test method. Application of this method 

concluded with an estimate for the coefficient of permeability of 4.8 x 10~9 m/s. This 

estimate was considered reasonable considering the glacial till and silt material 

detailed in borehole records. 

Groundwater levels in boreholes 915 and 211 did illustrate tidal behaviour and 

therefore it was possible to analyse the data using Ferris' technique. Tidal analyses 

of borehole 915 provided an estimate for permeability of 5 x 10" 5 m/s whilst from 

results for borehole 211, an estimate of 3 x 10" 3 m/s was concluded. These values 

were based on an estimate for storage coefficient of 3.5 x 10" 4 . For both boreholes 
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915 and 211, the estimates for permeability from tidal analyses were found to 

compare well with alternative and more localised methods. 

Ferris' technique provides an average estimate of permeability of ground between the 

borehole and shoreline. It therefore provides a clearer indication of how groundwater 

flow may be affected over a wider area than localised tests using soil material 

information. 
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Figure 7.2. 
Positions of Boreholes 211 and 915 - Quayside Site 
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Figure 7.13. Trilinear Diagram. 
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Chapter 8 

Discussion 

8.1. The Importance of Determining Aquifer 
Properties 

Determination of aquifer properties is important for evaluation of groundwater 

resources available, prediction of groundwater flow incurring migration of 

contamination and construction work below the water table. These aquifer properties 

include coefficients of permeability, leakage and storage. Accurate determination of 

each of these properties enables detailed predictive analysis of the effects on 

groundwater and the environment following human development. It is vital that this 

fresh-water resource is maintained as an investment for the future. In addition, 

induced alteration of water flowrates in surface and subsurface rivers alters the 

existing water table. The effects of this can be realised over hundreds of kilometres 

and can include settlement of soil, contaminant transport, flooding or conversely, 

drought. Detailed predictive analyses are required to avoid such disasters and this 

requires accurate estimation of aquifer properties. 

Coastal regions are of particular concern since these areas are frequently densely 

populated. Two thirds of the world's population now inhabit coastal regions. 

Therefore even a small change in groundwater behaviour can have disastrous and 

expensive consequences by affecting thousands of people. In addition, the demand 

for fresh-water in such densely populated areas is high. Rivers are frequently polluted 

and therefore groundwater has become an important source of fresh-water supply. 

Excessive pumping can lead to drawdown and saline intrusion of the source. This 

then incurs the expense of desalination if the resource is to be further exploited. To 

avoid this expense, the effects of heavy pumping need to be predicted and this 

involves accurate determination of coastal aquifer properties. 
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8.2. Methods Available for Determining Aquifer 
Properties. 

There are several methods available for determining aquifer properties. These 

include in situ tests such as pump tests, slug tests and tracer tests or soil sampling 

tests. The selection of a method depends on the accuracy required, options available 

at the site and the reason for determining aquifer properties. Pump tests are the most 

common and rigorous method. Analyses of these tests includes information from 

surrounding observation piezometers in addition to pumping details from the well. 

Therefore a large area of the aquifer is considered, however input information is 

localised. 

An alternative method for determining aquifer properties in coastal areas was 

developed by Ferris (1951). This method considers fluctuations in groundwater levels 

due to tidal influence. Amplitude decay and time lag of the tidal wave as it propagates 

inland is used to determine diffusivity. Within a specified area, the range of values of 

aquifer properties obtained by analyses of tidal effects is much smaller than that 

obtained from several pump tests. Average estimates of aquifer properties are 

determined over a large region, between the coast and any number of observation 

wells. The impact of geological irregularities is therefore reduced. 

Ferris method assumes an aquifer of finite length with negligible vertical flow. Work 

by past researchers has questioned the viability of these assumptions, and the 

reliability of results based on this technique. 

8.3. Project Objective 
The objective of this project was to further investigate the tidal analyses technique for 

determining aquifer properties. The approach included laboratory experimental work 

using the Durham Model Aquifer and field work at a site in Newcastle-upon-Tyne. 
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Tidal analyses were used to determine aquifer properties and these estimates were 

compared with those derived from alternative methods. 

8.4. Achievements 
Achievement of the project objective involved several distinct areas of work. These 

are summarised below. 

8.4.1. Physical Modelling 

Laboratory experimental work was performed using the Durham Model Aquifer. 

Preliminary work under steady state conditions, before application of the tidal system, 

concluded with the following estimates for aquifer properties: 

Coefficient of permeability: 4 x 10"3 m/s 

Coefficient of leakage: 2 x 10"5 s"1 

These estimates compared well with those concluded from results of a previous 

project. These previous results included an estimate for the storage coefficient of 0.1. 

Sixteen series of tidal tests were then performed using the Durham Model Aquifer. 

The tide was simulated by varying the head of water in a tank linked to the model 

aquifer by a length of pipe. Pore water pressure was measured and recorded from 

the base of the model aquifer at various horizontal distances from the tidal boundary. 

Fast fourier transform analyses were performed to determine the sinusoidal 

components of the simulated tidal wave. Two governing waveforms were concluded 

which constituted the tidal wave, primary and secondary. Results were arranged into 

graphs illustrating primary amplitude decay, secondary amplitude decay and time lag 

of the wave with respect to a selected reference position. 
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8.4.2. Numerical Modelling 
Numerical modelling of the Durham Model Aquifer was carried out, applying the 

software CVM with the harmonic boundary modification. The reasons for the 

numerical modelling were to determine the suitability of applying Ferris theory, limited 

by assumptions of an aquifer of finite length with negligible vertical flow. In addition, 

the sixteen experimental tests were affected by simulated tides of varying periods, and 

the effect of period variation on results had to be investigated. Firstly, the objective 

was to investigate the reflection from the end of the aquifer farthest from the tidal 

boundary. The numerical solutions of amplitude decay and time lag, which 

incorporated reflection, were compared with solutions derived from Ferris' theory. 

Reflection was found to have a significant influence on results. The reflective effects 

increased as distance from the tidal boundary increased. The second objective was 

to determine the effects of leakage from the upper surface of the aquifer on results of 

amplitude decay and time lag. Again solutions of amplitude decay and time lag were 

compared with those derived from Ferris' theory. Leakage, at the rate specified, was 

found to have a small effect on results of amplitude decay and time lag. Finally, the 

effects of period variation were investigated. The numerical modelling work illustrated 

a marked difference in results of amplitude decay and time lag due to varying tidal 

periods. 

From this work, it was anticipated that application of Ferris theory to laboratory results 

would imply significant inaccuracies in estimates of aquifer properties. Therefore it 

was concluded that Ferris' theory was unsuitable. Analytical theory would have to be 

developed which incorporated reflective and leakage effects. 

It was also concluded that laboratory results from different periods could not be 

directly compared. 

8.4.3. Development of Analytical Theory 

The theory developed by Ferris theory was advanced to incorporate reflection by 

applying image well theory. Two principle reflective waves were considered. The 
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analytical theory was verified for a specific case study by comparing analytical and 

numerical solutions. The case study was prescribed based on parameters of the 

Durham Model Aquifer including previously estimated values for aquifer properties. 

Heat conduction theory, Carslaw (1921), was related to groundwater behaviour. The 

solution employed by Angstrom for conductivity of bars, allowed to radiate into a 

medium under variable temperature, was assimilated to the problem of groundwater 

flow in a leaky aquifer. Hence, analytical theory was derived for an aquifer under tidal 

influence with leakage, otherwise known as vertical flow. Two equations were 

concluded for amplitude decay and time lag which incorporate the three aquifer 

properties, transmissivity (related to permeability), storage and leakage coefficients. 

This theory was verified by deriving solutions for a case study, and comparing these 

with numerical solutions. 

Finally, analytical theory was derived which incorporated both reflection and leakage. 

This combined the theories of the earlier two derivations. The combined theory was 

verified by comparing analytical and numerical solutions for a specific case study. 

8.4.4. Analysis of Results 

The objective was to determine aquifer properties by applying the analytical theory, 

incorporating leakage and reflection, to the laboratory results of primary and 

secondary amplitude decay in addition to time lag. Numerical analysis had concluded 

that there was a marked difference in amplitude decay and time lag results due to 

period variation of the tidal wave. Therefore, experimental results were arranged into 

suitable period ranges for analyses purposes. 

The analytical theory incorporated three unknown parameters, transmissivity, storage 

and leakage coefficients. These parameters were linked to form pairs to aid analyses 

by providing a clearer indication of trends. A region of study was established. This 

was based on estimates of aquifer properties from earlier work. Primary amplitude 

decay experimental results from one period range were considered together with the 

corresponding secondary period range. This encompassed results from eight series 

of tidal tests. The mean and spread of laboratory results for primary amplitude decay, 
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secondary amplitude decay and time lag were compared with analytical solutions. 

Aquifer properties were varied to produce a variety analytical solutions and hence a 

range of values of T/S 1 and p/T2 were concluded which provided satisfactory matches 

with laboratory results. 

The ranges of results from the three separate pieces of information (primary amplitude 

decay, secondary amplitude decay and time lag) were combined. The overlap of the 

ranges of T/S and p/T was concluded to be: 

T/S = 0.02 m 2 / s 

p/T = 0 -> 0.02 r r r 2 

Assuming a value for the storage coefficient derived from previous work of 0.1, the 

following estimates of aquifer properties for the Durham Model Aquifer were 

concluded: 

Transmissivity, T = 2 x 10~2 m^/s 

Coefficient of permeability = 8 x 10~3 m^/s 

Leakage coefficient, p ranging from 0 -> 4 x 10"5 s~1 

These results compared reasonably well with those from earlier experimental work 

under steady state conditions, however, the region of study for tidal analyses was 

determined by the results from earlier experimental work. Therefore, it was concluded 

that the tidal analyses technique verified the results obtained from the earlier 

experimental work. 

8.4.5. Field Work 

The objective was to supplement the laboratory research and improve knowledge of 

the tidal analyses technique by application in the field. 

The field work was performed at a site in Newcastle-upon-Tyne. Groundwater levels 

were monitored in two boreholes (BH915 and BH314) for periods of up to a week. 

Results from BH915 illustrated tidal influence on groundwater behaviour. 

1 Transmissivity / (Storage coefficient) 

2 (Leakage coefficient) / transmissivity 
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Groundwater levels were therefore monitored at this borehole for the duration of a 

week. The gravel aquifer layer was overlain by a confining clay layer and therefore 

negligible vertical flow was assumed. It was also deemed reasonable to assume the 

aquifer of infinite length since there were no clear, local impermeable boundaries. 

Therefore, Ferris theory was applied and values for diffusivity concluded for each of 

time lag and amplitude decay. The storage coefficient was assumed to be 3.5 x 10" 4 

based on the soil grading analyses. Therefore average values of transmissivity, and 

hence permeability were determined from the tidal analyses technique. 

Transmissivity, T = 1.25 x 10~5 m^/s 

Coefficient of permeability, K = 5 x 10"5 m/s 

These compared reasonably well with estimates based on application of Hazen's 

theory and the Trilinear diagram. It was difficult to definitively conclude the viability of 

the tidal technique compared to such general alternative methods. 

Results from groundwater level monitoring in a clay layer at BH314, did not illustrate 

tidal behaviour. The groundwater level appeared to fall continually during the 24 hour 

test period. This was attributed to the additional volume of the transducer and cable in 

the piezometer tube, which caused a rise in head. This then dissipated during the 

course of the test. Considerable time was taken for a steady water level to be 

attained due to the fact that the piezometer was located in a relatively impermeable 

clay layer. These results were analysed as a slug test. A permeability of 4.8 x 10~9 

m/s was concluded. This was deemed a reasonable estimate considering the soil 

material detailed in the borehole records in addition to grading analysis results. 

Finally, results of groundwater levels at a third borehole, BH211, were also available. 

These results illustrated tidal influence. Ferris theory was applied and values for 

diffusivity concluded for each of time lag and amplitude decay. The storage coefficient 

was again assumed to be 3.5 x 10~4 since the location of this borehole was close to 

BH915 and in similar soil material. Therefore values of transmissivity, and hence 

permeability were determined from the tidal analyses technique. The values varied 

significantly between amplitude decay and time lag methods. The coefficients of 

permeability were as follows: 
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Amplitude Decay: 3 x 10~3 m/s 

Time Lag: 4 x 10~ 4 m/s 

The reason for the discrepancy was attributed to the fact that high and low tides were 

estimated. A variation of an order of magnitude may be considered to be reasonable 

for the coefficient of permeability which is known to be a very wide-ranging parameter. 

Estimates of permeability based on Hazen's theory were of the order of 10~3 m/s, 

comparing well with tidal analyses estimates. 

8.5. Discussion of Achievements and Application 
of The Tidal Analyses Technique 

8.5.1. Laboratory Experimental Work and Analyses of 
These Results 

Analytical theory was derived which incorporated the effects of reflection and leakage 

from a coastal aquifer. This theory was verified by comparison with numerical 

solutions for a specific case study. Before analytical theory could be applied to 

laboratory results of amplitude decay and time lag, a region of study had to be 

established. This involved making assumptions of aquifer properties as an initial 

starting point for analysis. From this work, it was concluded that the tidal analyses 

technique supplemented and verified estimates of aquifer properties based on 

alternative methods. This agreed with the conclusion of White and Roberts (1994), 

who suggested that the tidal analyses technique could provide a useful supplement to 

a site investigation. Since the analyses procedure, defined within this programme of 

work, requires values of aquifer properties as a starting point for analyses, the 

technique could only be used to verify existing estimates. 

The sensitivity of the solutions to changes in aquifer properties was noted. For the 

case of the primary period range, increasing the value of T/S from 0.01 m^/s to 0.02 

rri2/s reduced the rate of amplitude decay. The value of amplitude decay at the end of 
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the aquifer farthest from the tidal boundary rose from approximately 40% to 60%. 

Amplitude decay was therefore concluded to be highly sensitivity to changes in T/S. 

For a highly permeable material, it was anticipated that amplitude decay would be 

minimal. 

Varying the value of p/T by an order of magnitude (0.1 m" 2 to 0.01 m~2) led to 

differences in amplitude decay. Variations in amplitude decay curves due to altering p 

U were larger as T/S increased. For a value of T/S of 0.01 m 2 /s , the amplitude decay 

varied by approximately 10% between values of p/T of 0.1 nrr 2 and 0.01 m" 2 . 

However, for a value of T/S of 0.03m 2/s, the amplitude decay varied by approximately 

40% between values of p/T of 0.1m" 2 and 0.01m" 2 . 

Time lag also varied significantly due to variations in T/S. Varying this parameter from 

0.01 m 2 /s to 0.02 m 2 / s for a period of 1920s, resulted in a decrease in the time lag by 

as much as 200s. Varying p/T by an order of magnitude resulted in a variation of 

time lag by approximately 100s. It was therefore concluded that time lag was highly 

sensitive to variations in T/S, whilst less sensitive to changes in the parameter, p/T. 

The sensitivity of time lag and amplitude decay solutions to changes in parameters, 

T/S and p/T, implied that the values for aquifer properties were concluded to a high 

degree of accuracy. 

Due to time constraints, results from only eight series of tidal tests were compared 

with analytical solutions. Further analyses incorporating the other experimental 

results is likely to have further verified the earlier estimates of aquifer properties. 

Errors were inherent in the experimental results, particularly due to the following: 

1. Leakage from the upper surface of the Durham Model Aquifer was unlikely to 

be uniform over the entire aquifer length. 

2. Air entrapped within the aquifer and pipework systems. 

Attempts were made to control and limit these effects as much as was physically 

possible. 
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8.5.2. Field Work 

Tidal analyses of field work data concluded with estimates for the coefficient of 

permeability which compared well with estimates based on soil grading analyses. Soil 

grading analyses techniques for determining aquifer properties are not particularly 

accurate due to the fact that testing is not performed in situ. Material is disturbed 

during removal from the ground. In addition, Hazen's theory incorporates a constant, 

the exact value of which is uncertain. Comparison of estimates of aquifer properties 

from tidal analyses methods with pump test results would have provided a better 

indication of the accuracy of the tidal technique. Unfortunately, such information was 

unavailable. 

Based on comparison with estimates for aquifer properties derived from soil grading 

analyses, the tidal analyses technique was considered to provide a viable indication of 

aquifer properties. 

8.6. Comparison of this Research with Earlier 
Work Investigating the Tidal Analyses 
Technique 

Two conclusions were drawn from this programme of research: 

1. Newly-developed analytical theory, incorporating leakage and reflective 

effects, may be used to supplement a site investigation by verifying 

estimates of aquifer properties derived from alternative methods. 

2. Application of Ferris' theory to field work data concluded estimates for 

aquifer properties that compared well with those derived from soil grading 

analyses. 

Work of past researchers suggested that the tidal analyses technique did not provide 

such reliable estimates of aquifer properties as pump test methods. Erskine (1991) 
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and Crowe (1994) suggested that the application of the tidal technique may result in 

inaccuracies because of the assumption of a confined aquifer with negligible vertical 

flow. Crowe also suggested that the leakage may reduce apparent diffusivity as 

calculated by the amplitude method. Development of analytical theory which 

incorporates leakage, as derived in this programme of work, may improve the 

accuracy of estimates for aquifer properties based on tidal analyses. 

Crowe also suggested, based on part of his work, that the period of the tidal wave 

may change as the wave progresses inland. This was not found to be the case for the 

Durham Model Aquifer. Fast fourier transform analysis illustrated that the period of 

the primary and secondary waves generally remained constant over the entire length 

of the Durham Model Aquifer. 

It is interesting to note a similarity between Ferris' theory and the advanced theory 

outlined within this programme of work. Ferris' work concluded with two equations for 

time lag and amplitude decay incorporating two unknown parameters, transmissivity 

and storage coefficient. In order to apply this theory, an estimate for one of the 

properties had to be made by an alternative technique before the other property could 

be determined using the tidal analysis method. Similarly, the newly developed 

analytical theory, described within this thesis, incorporated three unknown 

parameters, transmissivity, coefficient of storage and leakage coefficient. The value 

of one of these properties had to be assumed in order to estimate values for the 

remaining properties using the tidal analysis technique. Assuming a value for the 

storage coefficient, S, based on an alternative method is most suitable since this 

parameter is not as wide-ranging as transmissivity and leakage coefficient, and is 

therefore more easily determined accurately. 

8.7. Limitations 
The analytical solution for the behaviour of semi-confined aquifers subject to a 

sinusoidal head boundary condition has been based on the equations developed by 
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Jacob (1946). Three assumptions were made when developing this analytical 

solution. These are as follows: 

1. Leakage rate into or out of the aquifer is directly and instantaneously 

proportional to the fall or rise in hydraulic head. 

2. The aquifer remains fully saturated. 

3. The governing aquifer parameters of transmissivity and storage coefficient 

remain constant both with time and distance. 

Furthermore, if the analytical solution is to be applied in practice, then in order to 

simulate natural tidal conditions, the principle of superpositions would need to be used 

to represent the appropriate non-sinusoidal boundary condition. Applying 

superposition, however, requires linear conditions. If this is not the case then a non-

sinusoidal boundary conditions needs to be simulated which greatly adds to the 

complexity of the solution. 

J 

Despite these limitations, the governing equations for the groundwater flow in a semi-

confined leaky aquifer are widely known in practice. In particular, the corresponding 

assumptions and limitations have nevertheless been incorporated and accepted in the 

development of numerous groundwater models such as USGS2D model (Trescott et 

al., 1976) or the VTT model (Reisenauer, 1979). 

In terms of the validation of the solution developed in this thesis, this has been partly 

undertaken with the simulation of the results of the experimental aquifer. Whilst some 

simulation of field conditions has been attempted, it is recommended that a further 

study be undertaken to monitor tide induced hydraulic head response and to validate 

a number of equations and solutions against the observed responses. 
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8.8. Prospects for Further Work 
The analytical theory, developed as part of this programme of work, has been verified 

by comparing results of amplitude decay and time lag with numerical solutions. In 

addition, theory was also compared with laboratory results, from physical modelling of 

a coastal aquifer. 

The validity of the analytical theory would be further enhanced by field work. In 

particular, estimates based on pump tests may be compared with those based on 

application of this theory. The theory may then be applied to supplement site 

investigations by verifying estimates of aquifer properties derived from alternative 

techniques. 
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Chapter 9 

Conclusions 

Aquifer properties need to be determined accurately for predictive analysis of 

groundwater resources and behaviour. Particular properties of interest are the 

coefficient of permeability, the coefficient of storage, and the leakage coefficient. 

Various methods are available to estimate these properties. Pump testing is the most 

common and rigorous method. Results from these tests are localised to the borehole 

and subsequent observation wells. These site-specific tests do not incorporate the 

heterogeneity of the ground over a large aerial extent. 

An alternative technique involves monitoring groundwater response to tidal behaviour. 

This tidal technique was developed by Ferris (1951) and provides a more accurate 

representation over a wider area than conventional methods. Ferris' theory is limited 

because it assumes an aquifer of finite length with negligible vertical flow. 

The objective of this project was to further investigate the tidal method for determining 

aquifer properties. The approach included laboratory experimental work and 

development of analytical theory in addition to field work at a site in Newcastle-upon-

Tyne. 

The laboratory experimental work was performed using the Durham Model Aquifer. 

This five metre long physical model represented a semi-confined aquifer. Preliminary 

work under steady-state conditions concluded with the following estimates for aquifer 

properties: 

Coefficient of permeability: 4 x 10"3 m/s 

Leakage coefficient: 2 x 10"5 s"^ 

Sixteen tidal experiments were performed. This work concluded with results of 

amplitude decay and time lag with respect to the simulated tidal boundary. Numerical 
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modelling was applied using software, CVM, to investigate the effects of leakage and 

reflection in addition to period variation of the tidal wave. This work proved that Ferris' 

theory was unsuitable for application to laboratory results. Therefore analytical theory, 

which incorporated reflection and leakage, was derived from Ferris' theory. This 

theory was validated by comparing solutions with numerical results. A region of study 

was prescribed based on estimates of aquifer properties from earlier work. The 

newly-developed theory was applied and solutions of amplitude decay and time lag 

compared with laboratory results. This work concluded with the following estimates 

for aquifer properties: 

Coefficient of permeability: 8 x 10~3 m/s 

Leakage coefficient range: 0 - » 4 x s"^ 

It was concluded that estimates from tidal analyses verified those based on the 

preliminary work. The analytical theory, developed within this programme of work, 

incorporates three unknown parameters, permeability, leakage and storage. The 

value of one of these parameters must be assumed before the remaining two aquifer 

properties can be estimated. 

The field work involved monitoring groundwater levels from two boreholes located 

adjacent to the tidally-influenced River Tyne. Groundwater in one of these boreholes 

was found to be influenced by the tide. Ferris theory was applied and a diffusivity of 

3.7 x 10"2 m2/s was concluded. A value for the storage coefficient of 3.5 x 10*4 was 

estimated from the grading analysis. Therefore, the coefficient of permeability was 

computed to be 5 x 10"5 m/s. This estimate was slightly lower than anticipated, but 

was within the range of values calculated using Hazen's theory. It was thought that 

the reason for this may be due to a narrow zone of lower permeability between the 

river and the borehole. 

Records of groundwater level from previous monitoring were also available for another 

borehole. These were analysed by applying Ferris' theory. Assuming a value for the 

storage coefficient of 3.5 x 10"5 the range of values for the coefficient of permeability 

concluded was 3 x 10~3 m/s to 4 x 10"^m/s. Although this range spanned an order of 
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magnitude, it was realised that the coefficient of permeability is a very wide-ranging 

parameter, even within a specific soil material. Therefore estimates were considered 

of useful accuracy for site investigation purposes. The range of values for 

permeability based on tidal analyses compared well with an estimate from grading 

analysis. 

Results from the third borehole did not illustrate tidal behaviour and were analysed as 

a slug test. An estimate for the coefficient of permeability of 4.8 x 10~9 m/s was 

concluded. This value compared well with grading analysis results. 

This programme of work illustrated that estimates of aquifer properties from tidal 

analyses compared well with those from alternative methods. The tidal technique 

incorporates the heterogeneity of the ground between the observation boreholes and 

the coast. When a semi-confined aquifer is under investigation, application of the 

theory developed within this programme of work, rather than using the traditional 

Ferris' equations, leads to increased accuracy of aquifer properties. It was concluded 

that this method could be applied to supplement and verify estimates of aquifer 

properties derived from more rigorous techniques such as pump test methods. 
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Appendix 2.1. 

Programmable Timer Bases 
Typel Stock No. 345- 375 
Type 2 Stock No. 345 - 369 

i/1ounting 

"hese t imers should be mounted in one of three ways:— 
) C l ip the base onto a 3 5 m m D I N rail to E N 5 0 0 2 2 - removal is achieved by use of the spring release tab. 
i) Sur face mount the unit using the supplied hardware as fol lows: — 

a) Use tne nut , sc rew, washer combinat ion to replace the existing screw fitted through the central hole in the socket . 
b) F i t the pan head screw into the M3 threaded bush in the underside of the unit . 

he chosen plug in relay will be held in place by the relay retention cl ip suppl ied, 

ermi nations 

v11 terminat ions are onto the twelve screw clamp terminals — six at each end of the base moulding. Connect ions should be 
lade as fo l lows: 

User fitted 8-pin relay 

M T V 
7 8 9 10 11 12 

1 2 3 4 5 6 

W A R N I N G 
(TYPE 1 ) 

UHEN USED WITH A.C. SAINS, 
TERMINALS 1 4 5 ARE ST ft 

HIGH POTENTIAL UITH RESPECT 
TO EARTH, A UOLT-FREE 

CONTACT RUST BE 
PROUIDEO FOR REMOTE 

INITIATION 

L N 

Supply 

Total current of 
* r t "i external load and 

Remote , external ] p | u g ged- in load, 
, o a a • if used, 200mA initiation!. 

maximum. 

T y p e 1 

h — 

J 

- ) 

7 8 9 10 11 12 

I 

1 2 3 4 5 6 

User fitted 11-pin relay 

I 

L N 
+ — 

Supply 

Total current of 
r — L - - -i external load and 
' External i pluged-in load. 
Moad • if used. 200mA 

r " " maximum. 

T y p e 2 

mensions 
dimensions are in m m . 

8-pin socket 
on Type 1 
11-pin socket 
on Type 2 
Time range 

101.5 and function 
programming 
switches 

16 616 016 61 

b o|0 plo 0 

O 0 0 0 0 © 

- 54 • 

Alternative 
surface 
mounting point 
using screw 

-supplied with 
timer (replaces 
existing screw) 

- L E D 
indicator 
Set 

" time 

— 30.85 

Mounting suitable 
for standard 
35mm OIN rail 

Plug-in relay 
not supplied 

M3 bush for 
surface 
mounting with 
M3 pan head 
screw (supplied 
with timer) 
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Specifications 

Supply voltage : 

Contact rating : 
(Limited by the timer terminations) 
Max. total load : 
Time repeatability : 
Reset time : 
Terminations : 
Indicator : 
Ambient temperature range : 

12V to 120V d.c. N.B. ensure relay coil used is compatible with chosen supply, 
or 20V to 250V a.c. 

8A. 250V a.c./30V d.c. 
if used with IR5| relays. 
200mA (relay coil requirement plus any external load). 
1% 
50ms (the supply must be removed for this time to achieve a timer reset). 
Screw clamp terminals. 
A red L.E.D. is 'ON' when the relay (or external load) is energised. 
- 2 0 ° C to 50°C. 

Time Setting 

Four different time range settings are available on Type 1 timer (345—375) and seven on Type 2 (345—369). These are 
selected by using switches 3 and 4 on Type 1 and switches 3, 4 and 5 on Type 2. To obtain the required range use the switches 
in the positions as detailed below. Note that these time range top limits are guaranteed minimums — typically longer times 
may be achieved. 

Type 1 Time Ranges 

t SW. 3 SW.4 

5 sec. A B 

20 sec. B A 

2.5 min. B B 

20 min. A A 

Type 2 Time Ranges 

t 

1 sec. 

SW. 3 

A 

SW.4 

8 

SW. 5 

A 

4 sec. B A A 

30 sec. B B A 

1 min. A B B 

4 min. A A A 

4 min. B A B 

30 min. B B B 

4 hr. A A B 

Adjustment of the time within these ranges can be made by using the potentiometer to the right of the switches. 

Timing Modes 

The modes of operation of these timer bases are determined by what combination of switch positions (A or B) have been 
selected. In the case of Type 2 only two switches (1 and 2) are used, with three switches (1,2 and 5) being used for Type 1. 
Switch 5 on Type 1 selects remote control options. 
Note : In all cases it is important to take into account the effect of the position of each of these switches to ensure that the 

desired operating mode has been selected. 

The timing operations of these units are as follows : 

Type 1 and Type 2 

Switch Position 

1A PULSE — Immediately the supply is connected the relay will energise. The relay will de-energise after the set time 
and remain de-energised. Except when the cyclic (2A) mode has been selected (or the Type 1 timer is being used 
under remote control initiation) disconnection from the supply is necessary to reset the electronic circuit for the next 
operation. 

3r IB D E L A Y — Immediately the supply is connected a delay time as set will elapse, after which the relay will energise. 
Except when the cyclic (2A) mode has been selected (or the Type 1 timer is being used under remote control 
initiation) the relay will remain energised until the supply is disconnected. If the supply is disconnected before the set 
time has elaped the timing circuit will be reset without the relay energising. On subsequent reconnection of the 
supply timing will start again from zero. 
(N.B. On the Type 1 timer, selection of the remote control initiation (5A) can be used to provide a type of 
" D E L A Y O F F " function (supply permanently connected), i.e. delay initiated when remote control contacts are 
opened). 



Appendix 2.1. 
and 2A C Y C L I C — When selected, this mode will provide a continuous relay energised / relay de-energised timing cyci 

(total time 2t) with an equal mark/space ratio. When used with the P U L S E mode (1A) the cycle will start with the 
relay energised and with D E L A Y mode (IB) with the relay de-energised. 

or 2B S I N G L E OPERATION - With the switch in this position the timer operation is determined solely by the position of 
switch 1 (and also switch 5 when using the Type 1). 

and for Type 1 only 

5 REMOTE INITIATION — Using standard supply initiation of the timer, an open contact on the remote contol inputs 
will allow manual operation, as selected by switches 1 and 2 i.e. operation controlled by connection and dis
connection of the supply. With the supply permanently connected, the following remote initiations are obtained. 

5A SUSTAINED — Closing the contacts resets the timing circuit , which is the same as removal of the supply. Re-opening 
of the contacts initiates a new timing cycle, which is the same as connection of the supply. 

or 58 MOMENTARY — Closing the contacts resets the timing circuit momentarily and allows the next timing cycle to 
commence immediately, which is the same as briefly disconnecting the supply. Once timing has started the contacts 
can be re-opened without affecting operation. 

Relay 

These timer bases are designed to be used with standard octal, 2-pole (for Type 1) or 11-pin, 3-pole (for Type 2) plug in relays. 
For suitable [R5| relays refer to the Relay Section in the current iflg| catalogue (use octal types 348-756 (12V d.c.) etc. 

and 11-pin types 348-807 (12V d.c.) etc.). 
It is very important to ensure the relay coil voltage used is the same as the supply to the timer. The wide operating voltage 
range available on the timer base enables operation from most supply rails, as long as a suitable relay is available. The chosen 
relay will be held in place by the relay retention clip provided. 

Note : The terminations used on the base limit the relay contacts maximum load to 8A, 250V a.c./30V d.c. (resistive). 

External Load 
An external load requiring a maximum current of 200mA (resistive) at the supply voltage used, may be connected across 
terminals 1 (supply L or +) and 6. This load is usually in place of a plug in relay, although, if care is taken to ensure that 
the total load (external plus relay coil requirement) does not exceed 200mA, both may be used simultaneously. 
Note : There is no short circuit or over-current protection when using these external load connections. 

RS Components Issued July 1986 6725 



Appendix 3A Estimation of Leakage Coefficient 

Theory described in this section led to estimation of the leakage coefficient, p of the 

Durham Model Aquifer. 

The leakage coefficient, p = — 
b 

where: K=hydraulic conductivity. 

b=aquifer thickness. 

The leakage coefficient can be determined from the following: 

Q 

where: Q = flowrate (m 3 / s) 
A, = area of leakage surface 

where: h' = the level of the free water surface 
h= the piezometric level 



Appendix 3B Leaky Aquifer Theory 

Theory to describe leaky aquifer behaviour incorporating reflection was derived by 

Carrington and Thomas in May 1994 and is outlined in Carrington (1994). The 

derivation is as follows. 

Figure 3B.1 illustrates the conceptual model of the Durham Model Aquifer. Analytical 

theory was derived to describe pressure head variations with horizontal distance, x. 

This incorporated dimensions of the aquifer and properties leakage and permeability. 

The governing equation describing groundwater flow in such a one-dimensional leaky 

aquifer is given by Bear (1979) as follows: 

T 
dx2 

= ph eqtn (3B.1) 

where T = transmissivity 

h = head of water 

x = horizontal distance 

R = leakage coefficient 

In an attempt to solve equation 3B.1, a solution of the form shown below was tried 

h = yexp(ccc) e q t n ( 3 B < 2 ) 

where y and a are arbitrary constants. 

Differentiating eqtn (3B.2) with respect to x: 
dh 
— = ya exp(ca) 
dx eqtn (3B.3) 
d2h . 
—j = ya exp(ax) 
dx eqtn (3B.4) 

Substituting eqtns (3B.4) and (3B.2) into the governing equation (3B.1): 

T{ya2 exp(ar)) = fi(y exp(ar)) e q t n ( 3 B 5 ) 

Therefore 

eqtn(3B.6) 

and 



« = 4 t 
V T eqin (3B.7) 

This was substituted back into eqtn (3B.2). 

h = y exp 
v ' * J eqtn (3B.8) 

It was noted that the following solution for a was correct considering pressure head, h 

to be positive. 

Applying the following boundary conditions 

x = 0 and h = hB = head of water in water tank 

This results in h B = y which when substituted into eqtn (3B.8) gives the following: 

eqtn(3B.9) h = hg exp -x 

Also, boundary conditions at x = 0, W = -K 

where W = Darcy velocity 

K = hydraulic conductivity 

dx 

Differentiating eqtn (3B.9) 

dh 0 
.eqtn (3B.10) 

Applying boundary conditions to eqtn (3B.10) provides: 

eqtn (3B.11) 

Recalling eqtn (1.3) which relates transmissivity to permeability, K. 

T=Kb eqtn (1.3) recalled 

Also, the darcy velocity is defined as the flowrate of groundwater per unit area into 

the aquifer face. 

W=Q/A = Q/bw eqtn (3B.12) 

where Q = flowrate 

A = area of aquifer face 



w = width of the aquifer 

Substitution of the above information into eqtn (3B.11) gives the following: 

eqtn(3B.13) h=W exp KB J 

Eqtn (3.13) provides the relationship between pressure head and horizontal distance 

a specific aquifer with given properties, permeability and leakage. 

In order to apply this equation to the Durham Model Aquifer, the effects of a single 

reflection from the end of the aquifer were considered. This is illustrated in Figure 

3B.2. where Q-j and Q 2 represent the two finite volumetric flow rates into the system, 

whilst h^ and h 2 represent the resulting heads. 

Considering an aquifer of finite length, L, the effects of two finite flow rates applied at 

opposite ends of an aquifer of length 2L were combined using image well theory to 

incorporate reflection. 

Applying the principal of superposition, adding eqtn(3B.14) and eqtn(3B.15), and 

designating hg as the sum of the two heads, h^ and h£ 

There are several reflections similar to those described above extending an infinite 

distance from the aquifer in both directions. The actual theoretical value of volumetric 

flow rate at each point must be thereofore be 2Q. This is illustrated in Figure 3B.3. 

At the boundary where the flow rate is applied, the total head realised is the sum of 

all waves produced from boundaries distances 2L, 4L, 61 away, together with the 

x where x = 0; exp 1 

x where x = 2/. exp 

r 
exp -2JrrL 

T \ 
eqtn(3B.15) 

,eqtn(3B.14) 

\ 
1+exp -2J^L s eqtn(3B.16) 



head induced by the applied flow rate. Obviously, these boundaries will occur in both 

directions from the position under question, and therefore a multiplication of two will 

be involved. 

Recalling eqtn (3B.16) above, and arranging this to incorporate the above reflections 

0 b 
A\Kp 

!l+2exp -2L + 2exp -AQf |+2exd, - 6 L + 2exp -iL^y J...eqtn(3B.17) 

where is the head of water above the datum (defined as the phreatic surface of 

leaked water overlying the aquifer) at the position where volumetric flow rate, Q, is 

applied. 

Similarly, the theory can also be applied to head of water, h, above datum at the end 

of the aquifer as shown by the dashed line in Figure 3B.3. At this boundary, the total 

head realised will be the sum of volumetric flow rates produced at boundaries of 

distances L, 3L, 51 away. A flow rate is not applied at this boundary and therefore 

consideration need only be given to reflected effects. 

2Q b 
A \Kp\ 

e x P | -Qj 
\ 
+exp +exp -5L +exp -7L +-. } eqtn(3B.18) 

This analytical solution was verified using the computer finite element model, Curved 

Valley Model (CVM), and found to be correct. Details of this verification are given in 

Carrington (1994). 
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Appendix 3D 
Pore Water Pressure Results from Electrical 

Tidal Simulation 

Appendix 3D-1 Series 1. Position 1. 

Appendix 3D-2 Series 1. Position 2. 

Appendix 3D-3 Series 1. Position 3. 

Appendix 3D-4 Series 1. Position 4. 

Appendix 3D-5 Series 1. Position 5. 

Appendix 3D-6 Series 1. Position 6. 

Appendix 3D-7 Series 1. Position 7. 

Appendix 3D-8 Series 1. Position 8. 

Appendix 3D-9 Series 1. Position 9. 

Appendix 3D-10 Series 1. Position 10. 

Appendix 3D-11 Series 1. Position 11. 

Appendix 3D-12 Series 1. Position 12. 

Appendix 3D-13 Series 2. Position 1. 

Appendix 3D-14 Series 2. Position 2. 

Appendix 3D-15 Series 2. Position 3. 

Appendix 3D-16 Series 2. Position 4. 

Appendix 3D-17 Series 2. Position 5. 

Appendix 3D-18 Series 2. Position 6. 

Appendix 3D-19 Series 2. Position 7. 

Appendix 3D-20 Series 2. Position 8. 

Appendix 3D-21 Series 2. Position 9. 

Appendix 3D-22 Series 2. Position 10. 

Appendix 3D-23 Series 2. Position 11. 

Appendix 3D-24 Series 2. Position 12. 
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A p p e n d i x 6.3. 
Two further investigatory case studies were prescribed to investigate solutions of 

amplitude decay and time lag for constant values of T/S but varying values of T$. 

The parameters of these two case studies are outlined below: 

Case 7.3a Case 7.3b 

T = 0.002 m 2/s T = 0.002 m 2/s 

S = 0.1 S = 0.1 

3 = 0.00001 s" 1 3 = 0.00002 s- 1 

T/p = 200 m 2 T/p = 100 m 2 

T/S = 0.02 m 2/s 

L= 4.7 m 

to = 1920 s 

h n = 0.2 m 

The solutions for amplitude decay and time lag for these two case studies are shown 

overleaf. 
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Appendix 6.3 
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Appendix6. 3.1. Amplitude Decay. 
T/S Constant, whilst T/p Varied for Two Cases. 
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Appendix6. 3.2. Time Lag. 
T/S Constant, whilst T/p Varied for Two Cases*, 



Appendix 6.4. 
Two further investigatory case studies were prescribed to investigate solutions of 

amplitude decay and time lag for constant values of T/p but varying values of T/S. 

The parameters of these two case studies are outlined below: 

Case 7.4a Case 7.4b 

T = 0.001 m 2/s T = 0.002 m 2/s 

S = 0.1 S = 0.1 

p = 0.00001 s" 1 p = 0.00002 s" 1 

T/S = 0.01 m 2/s T/S = 0.02 m 2/s 

T/p = 100 m 2 

L= 4.7 m 

t n = 1920 s 

h n = 0.2 m 

The solutions for amplitude decay and time lag for these two case studies are shown 

overleaf. 
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Appendix6. 4.1. Amplitude Decay. 
T/S Constant, whilst T /p Varied for Two Cases. 
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Appendix 6.4.2. Time Lag. 
T/S Constant, whilst T/p Varied for Two Cases. 
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Figure6.5.1. Amplitude Decay. Comparison 
of Solutions from Theory with Leakage (P=0) 
and Theory without Leakage. 
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Figure 6.5.2. Time Lag. Comparison 
of Solutions from Theory with Leakage (P=0) 
and Theory without Leakage. 



Appendix 7.1. 

D r u c k 

P D C R 800 S E R I E S 

General Purpose 
Pressure Transducers 

• Exce l lent l inearity and hys te res is 

±0.1% B.S.L. for ranges to 60 bar 

• High over load capabi l i ty 

• Rat ional ized outputs 

• Good thermal stabi l i ty 
± 7.5% total error band -2CP to +8CPC 

• Parameter se lec t ion avai lable 


