
Durham E-Theses

Numerical investigation of fermion mass generation

in QED

Bloch, Jacques Christophe Rodolphe

How to cite:

Bloch, Jacques Christophe Rodolphe (1995) Numerical investigation of fermion mass generation in

QED, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/5173/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5173/
 http://etheses.dur.ac.uk/5173/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Numerical Investigation 
of 

Fermion Mass Generation in QED 

A thesis submitted for the degree of 

Doctor of Philosophy 

by 

Jacques Christophe Rodolphe Bloch 

The copyright of this thesis rests with the author. 

No quotation from it should be published without 

his prior written consent and information derived 

from it should be acknowledged. 

University of Durham 

Department of Physics 

November 1995 

1 6 JAN 1996 



Abstract 

We investigate the dynamical generation of fermion mass in quantum electrodynamics (QED). 

This non-perturbative study is performed using a truncated set of Schwinger-Dyson equations 

for the fermion and the photon propagator. 

First, we study dynamical fermion mass generation in quenched QED with the Curtis-Pennington 

vertex, which satisfies the Ward-Takahashi identity and moreover ensures the multiplicative 

renormalizability of the fermion propagator. We apply bifurcation analysis to determine the 

critical point for a general covariant gauge. 

In the second part of this work we investigate the dynamical generation of fermion mass in 

full, unquenched QED. We develop a numerical method to solve the system of three coupled 

non-linear equations for the dynamical fermion mass, the fermion wavefunction renormalization 

and the photon renormalization function. Much care is taken to ensure the high accuracy of 

the solutions. Moreover, we discuss in detail the proper numerical cancellation of the quadratic 

divergence in the vacuum polarization integral and the requirement of using smooth approx­

imations to the solutions. To achieve this, we improve the numerical method by introducing 

the Chebyshev expansion method. We apply this method to the bare vertex approximation 

to unquenched QED to determine the critical coupling for a variety of approximations. This 

culminates in the detailed, highly accurate, solution of the Schwinger-Dyson equations for dy­

namical fermion mass generation in QED including both, the photon renormalization function 

and the fermion wavefunction renormalization in a consistent way, in the bare vertex approxi­

mation and, for the first time, using improved vertices. We introduce new improvements to the 

numerical method, to achieve the accuracy necessary to avoid unphysical quadratic divergences 

in the vacuum polarization with the Ball-Chiu vertex. 
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Chapter 1 

Introduction 

The fundamental laws of nature are believed to be described by quantum field theory and 

with the exception of gravity are embodied in the Standard Model (SM) of strong, weak and 

electromagnetic interactions. Despite the enormous success of the model when comparing its 

predictions with experimental data, one can argue about its large number of parameters. One 

of the outstanding problems in particle physics is the origin of mass. Is it just a parameter 

which has to be measured experimentally and then inserted in the theoretical model describing 

the particles and their interactions or is there an underlying mechanism through which these 

particles acquire their mass ? 

For the first possibility to be consistent with the quantum field theory of the Standard Model 

things are not as easy as they may seem at first sight. Merely inserting the experimentally 

determined fermion masses in the Lagrangian of the SM is not allowed because such mass 

terms would break the gauge invariance and hence ruin the renormalizability of the theory. For 

fermions to be massive the concept of spontaneous symmetry breaking has to be introduced. The 

original Lagrangian is SU(2)L X U(l)y symmetric but a new, fundamental scalar, Higgs field is 

introduced which explicitly breaks this symmetry to U(l )EM. The non-zero vacuum expectation 

value of this field is directly responsible for the mass of the W and Z intermediate bosons. To 

generate a mass for the fermions we have to introduce additional Yukawa interaction terms. 

between the fermions and the Higgs boson in the Lagrangian. Then, the vacuum expectation 

value of the Higgs field yields fermion masses which are proportional to the Yukawa coupling. 

Although the Standard Model remains renormalizable after the introduction of the Higgs field, 

the idea is somehow unattractive because of new quadratic mass divergences. Renormalizing 

these requires a very sharp fine tuning to keep the fermion masses to the scales at which they 

1 



CHAPTER 1. INTRODUCTION 2 

are experimentally measured. Without such fine tuning the quantum corrections would raise 

the fermion masses to the scale of new physics which is expected to be between 1015 GeV and 

1019 GeV. 

An attractive alternative to the spontaneous symmetry breaking mechanism engendered by the 

Higgs field is that of fermion mass generation through dynamical symmetry breaking. There, the 

initially massless fermions acquire their mass through a non-perturbative dynamical mechanism 

without the need for any fundamental scalar field with a non-zero vacuum expectation value to 

be introduced. We know from quantum field theory that the mass of a particle receives loop 

corrections because of its interactions with the gauge field. In perturbation theory each term 

in the perturbative expansion of the corrected fermion mass is proportional to its bare mass. 

Hence, if the theory is originally massless, it remains so at each order in perturbation theory. 

Of course this argument is only valid as long as the perturbative series makes sense. One can 

imagine that when the coupling is of order unity, an expansion in powers of the coupling constant 

does not necessarily give us relevant information about the theory. Indeed, it has been shown [1) 

that provided the coupling is larger than some critical value one can generate a non-zero fermion 

mass dynamically, even in a theory without any bare mass in the Lagrangian. 

Furthermore, not only the fermions but also the intermediate gauge bosons can acquire mass 

by the dynamical breaking of chiral symmetry. Unfortunately, in quantum chromodynamics 

(QCD), the only strong interaction in the SM, the running coupling becomes strong at a scale 

which is far too low to account for the measured W and Z masses. Therefore, the mechanism 

of dynamical mass generation can only explain the experimentally measured masses if a new 

interaction, with a higher scale, is introduced, as has been proposed in the Technicolor (TC) [2) 

and Extended Technicolor theories (ETC) [3). One of the major problems encountered by these 

theories is the excess of flavour changing neutral currents(FCNC). A possible solution for this has 

been suggested by Holdom in the Walking Technicolor theory [4). To make realistic predictions 

in these theories, the non-perturbative phenomenon of dynamical fermion mass generation in 

gauge field theories has to be well understood. The research undertaken for this purpose can 

be divided into two main categories: phenomenological studies where the basic concepts of 

dynamical fermion mass generation are applied to realistic models of gauge groups, constructed 

to reproduce the experimental results; and theoretical studies, concerned with the fundamental 

aspects of the dynamical generation of fermion mass, which are needed to provide the correct 

ideas and numbers for phenomenologists to refine their calculations. 
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The research presented in this thesis belongs to these theoretical studies. We will investigate 

the dynamical generation of fermion mass in strong coupling quantum electrodynamics (QED), 

the simplest gauge field theory in nature. There are several motivations for this study. In the 

realm of TC and ETC theories it can serve as a toy model for more complicated gauge theories. 

However, it is also important in its own right, to study the consistency of QED as a quantum 

field theory, as discussed by Landau [5] as early as in 1955. Furthermore, it could be of interest 

considering the possibility of a new phase transition of nature's QED in strong electromagnetic 

fields, as might be suggested by some unexplained narrow peaks in e+e- coincidence spectra in 

heavy ion collision experiments [6, 7]. 

Because of the intrinsically non-perturbative nature of dynamical fermion mass generation, we 

need an appropriate framework to conduct our investigation. The two methods most frequently 

used to study non-perturbative aspects of quantum field theory are the continuum method 

using the Schwinger-Dyson equations and lattice gauge theory, where the field theory is solved 

on a discretized lattice. In these lattice studies one cannot take the bare mass identically to 

zero. Therefore, one has to compute results for various, finite values of this mass, in order 

to extrapolate to the zero-mass situation. This extrapolation procedure can be a source of 

difficulties in the correct interpretation of the lattice results. 

The Schwinger-Dyson (SD) equations are an infinite set of coupled integral equations derived 

from the functional integral formalism, relating all the Green's functions of the quantum field 

theory. If these equations could be solved, all the Green's functions would be known and the 

S-matrix for all physical processes could be calculated exactly. However, because there are an 

infinite number of coupled equations, such solution is not possible and one must truncate the 

system in some way. The most common procedure is to expand the equations in powers of the 

coupling and to truncate the series at a certain order. This method is just perturbation theory. 

However, if we are to investigate the non-perturbative aspects of the theory, this clearly will not 

suffice and we have to devise other ways of truncating the infinite tower of equations. In the 

study of the dynamical generation of fermion mass, one is primarily interested in the behaviour 

of the fermion propagator. The fermion SD equation determines how the fermion propagator is 

altered by the self-energy generated by the interactions. In this equation the fermion propagator 

is related to the photon propagator and the QED-vertex. The photon SD equation describes 

how the vacuum polarization corrects the photon propagator and again relates the fermion and 

photon propagator and the vertex. An infinity of other SD equations relate higher order Green's 
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functions. To study the fermion mass generation we will decouple the first two equations from 

all the others by choosing some suitable vertex Ansatz and investigate the possibility of these 

equations having a non-trivial mass solution in a theory without bare mass. 

Several studies of fermion mass generation in QED have been performed in the rainbow ap­

proximation, where the full photon propagator and the full vertex are replaced by their bare 

quantities. In this approximation, it has been shown that QED does undergo a phase transi­

tion and the originally massless fermions acquire a mass, when the value of the fixed coupling 

is larger than a critical value, which is of order unity in the Landau gauge [8]-[11]. However 

the bare vertex does not satisfy the Ward-Takahashi identity, which is a consequence of gauge 

invariance. Therefore, in the first part of this work, we will study the dynamical generation of 

fermion mass in quenched QED with the Curtis-Pennington vertex Ansatz [12], which satisfies 

the Ward-Takahashi identity and moreover ensures the multiplicative renormalizability of the 

fermion propagator. We will apply bifurcation analysis to determine the critical point for a 

general covariant gauge. 

In the second part of the study we will investigate the dynamical generation of fermion mass in 

full, unquenched QED. All studies performed so far in the Landau gauge have used the bare ver­

tex approximation. Furthermore, various additional approximations were introduced to simplify 

the analytical and numerical calculations [13]-[20]. The most frequently encountered approxima­

tions are: replacing the full photon propagator by its 1-loop perturbative result, removing the 

angular dependence of the vacuum polarization and setting the fermion wavefunction renormal­

ization to one. To avoid these approximations we will develop a numerical method to solve the 

system of coupled, non-linear integral equations for the fermion and the photon propagator, pay­

ing special attention to achieve high degree of accuracy. We will also give a detailed discussion 

about the proper numerical cancellation of the quadratic divergence in the vacuum polarization 

integral. We will apply this method to the bare vertex approximation to unquenched QED to 

determine the critical coupling for a variety of approximations to the system of coupled integral 

equations, and will compare our results with those found in the literature. We will give detailed, 

highly accurate results of dynamical fermion mass generation in QED, including both the pho­

ton renormalization function and the fermion wavefunction renormalization in a consistent way. 

Finally, we will produce the first results of fermion mass generation in unquenched QED using 

improved vertices and will discuss in detail how to avoid unphysical quadratic divergences in 

the vacuum polarization integral, with the Ball-Chin vertex. 
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In Chapter 2 we formulate the Schwinger-Dyson equations for the fermion and photon propa­

gator. We discuss how fermion mass can be generated dynamically from these equations when 

the QED coupling is sufficiently large. We derive three coupled non-linear integral equations 

for the dynamical fermion mass I:, the fermion wavefunction renormalization F and the photon 

renormalization function 9, in the bare vertex approximation to the full vertex and with the 

Curtis-Pennington vertex Ansatz. 

In Chapter 3 we study the dynamical fermion mass generation in quenched QED, where the full 

photon propagator is replaced by the bare one. We determine the critical point in the Curtis­

Pennington approximation using bifurcation analysis. We also derive the Miransky scaling law, 

specific to quenched QED, for the bare vertex approximation and with the Curtis-Pennington 

vertex. 

In Chapter 4 we give a literature survey of the various approximations introduced in the inves­

tigation of dynamical fermion mass generation in unquenched QED. 

In Chapter 5 we develop a numerical method to solve the system of coupled non-linear integral 

equations, describing fermion mass generation in QED, taking special care to achieve high ac­

curacy and convergence rate. This is done by discretizing the unknown functions and solving 

a system of non-linear algebraic equations for the function values at a finite number of points, 

using the natural iterative procedure. After a first attempt to apply the method to the problem 

offermion mass generation in QED, simplified to the solution of a sole non-linear integral equa­

tion for I:, the poor convergence of the procedure will be improved by introducing Newton's 

iterative method. We discuss how the numerical method can only be satisfactory if a suitable 

choice of integration rule is made. The scene being set, we apply the numerical method to the 

I:-equation and show the main results. 

In Chapter 6 we apply this method to the system of coupled integral equations for I: and 9 

(neglecting the corrections to the wavefunction renormalization F). We compare our results with 

those of Kondo et al. [20] and discuss the improper cancellation of the quadratic divergence in the 

vacuum polarization, which generates an unphysical behaviour in the photon renormalization 

function g. We suggest that this could be remedied by introducing smooth approximations to 

the functions I:, F and (;. 

In Chapter 7 we realize this by introducing Chebyshev expansions for the unknown functions 

and modifying the numerical method of Chapter 5 accordingly. 
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In Chapter 8 we apply the Chebyshev expansion method to various approximations to the system 

of coupled non-linear integral equations forE, :F and 0 in the bare vertex approximation. In the 

1-loop approximation to the vacuum polarization we first solve the E-equation with and without 

the LAK-approximation, then we solve the coupled (E, :F)-system. Consequently, we redo the 

calculation of Chapter 6 for the coupled (E, 0)-system, finding that indeed the unphysical 

behaviour of 0 disappears. Finally, we solve the complete (E, :F, 0)-system of integral equations. 

In Chapter 9 we perform the first calculations of fermion mass generation in unquenched QED 

using improved vertices. We solve the coupled (E, :F, 0)-system with various vertex approxi­

mations. The specific structure of the Ball-Chiu vertex leads to accuracy problems to cancel 

the quadratic photon divergence properly. These problems are dealt with in detail, since this is 

crucial for further numerical studies. 

Finally, in Chapter 10 we summarize our results and give some suggestions for future studies. 



Chapter 2 

Schwinger-Dyson equations 

In this chapter we formulate the Schwinger-Dyson equations for the fermion and photon propa­

gator. These equations are just two of the infinite tower of integral equations relating the Green's 

functions of the quantum field theory (21]. We discuss how fermion mass generation can be stud­

ied using these equations and derive three coupled, non-linear algebraic integral equations for 

the dynamical mass ~. the fermion wavefunction renormalization :F and the photon renormal­

ization function (},first using the bare vertex approximation, then with the Curtis-Pennington 

vertex Ansatz. 

2.1 QED Lagrangian 

The Lagrangian for a free Dirac field with bare mass mo is: 

(2.1) 

The fermion field 'ljJ will transform under a local U(1) gauge transformation as: 

7/J--+ 1/J'(x) = e-ie.\(x)'r/J(x). (2.2) 

The Lagrangian of Eq. (2.1) is not invariant under the transformation Eq. (2.2). 

Local U(1) gauge invariance of the Lagrangian can be achieved by introducing a vector field Att, 

called the gauge field, which transforms as: 

(2.3) 

and replacing the ordinary derivative ott in the free Lagrangian of Eq. (2.1) by a covariant 

7 
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derivative D/1-: 

(2.4) 

The new Lagrangian is now given by: 

(2.5) 

To this Lagrangian one has to add a kinetic term for the gauge field All-, which has to be invariant 

under the transformation Eq. (2.3). The full QED Lagrangian for a fermion field 1/J with charge 

e in an electromagnetic field All- is given by: 

(2.6) 

where 

(2.7) 

The quantum field theory defined by this Lagrangian can be derived by applying the functional 

integral method [21, 22, 23] using the following generating functional: 

(2.8) 

where r,, "' and J are the source fields for the fermion, antifermion and gauge boson, and the 

normalization factor N is given by: 

A peculiarity of gauge theories is that there are orbits of gauge fields All- which are just gauge 

transforms of each other. Since the Lagrangian is gauge invariant the functional integral over a 

complete orbit of gauge fields will automatically be infinite. To avoid this we must pick out one 

representative on each orbit and integrate over these representative gauge fields. To do this we 

impose a gauge condition which is only satisfied by one field per orbit. In QED this is done by 

introducing a gauge fixing term in the Lagrangian. A common choice for this is the covariant 

gauge fixing term -1 /2~( 811-Ail- )2 • The full QED Lagrangian then becomes: 

- - - 1 1 2 
£QED= i't/J!Il-811-1/J- e1/J111-A11-1/J- mo't/J't/J- 4F11-,_,F11-"'- 2~(811- A~') . (2.9) 

It can be shown [21] that the generating functional of connected Green's functions, G[r,, 'f/, J~-L] 

can be defined from the generating functional, Eq. (2.8), by: 

Z[r,,,,J] = exp(G[r,,,,J]). (2.10) 
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Let us now define effective fields -J;, ~' A by: 

(2.11) 

Next we define an effective action r[-J;, ~'A], as the Legendre transform of the generating func­

tional of connected Green's functions G[7], 7],J]: 

(2.12) 

One can prove that the effective action r[-J;, ~'A] is the generating functional of the one-particle­

irreducible (1PI) Green's functions (see pp. 289-294 of Ref. [21]) . 

We now define the Green's functions which will be used in the investigation of fermion mass 

generation. The connected 2-point fermion Green's function or fermion propagator iS(x, y) is: 

(2.13) 

We define the connected 2-point photon Green's function or photon propagator iD~-'v(x, y) as: 

(2.14) 

The 1PI 3-points Green's function or vertex ef(x, y; z) is defined by: 

(2.15) 

The Schwinger-Dyson equations can be derived by applying the functional integral formalism to 

the QED Lagrangian (see pp. 475-481 of Ref. (21]). 

2.2 Fermion SD equation 

The Schwinger-Dyson equation for the fermion propagator in coordinate space is given by: 

[s-t] (x, y) = (i-y~-'81-'- m0) b4(x- y)- ie2 j d4x1 d4 x2 1~-'S(x, Xt)fv(xb y; x2)DvJ-L(x2, x). 

(2.16) 

After Fourier transforming the various Green's functions, the Schwinger-Dyson equation for the 

fermion propagator in momentum space is given by: 

(2.17) 
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where the fermion self-energy E J(P) is defined by: 

Here, we simplified the notation with: 

S(p) = S(p, -p) 

D~A"(q) _ D~'-"(q, -q) 

f~'-(k,p) fiA ( k' p; k - p) ' 

10 

(2.18) 

(2.19) 

where in the vertex, f~'-( k, p ), k is the incoming fermion momentum, p is the outgoing fermion 

momentum and the photon momentum is taken outgoing. 

Eq. (2.17) is represented diagrammatically in Fig. 2.1. 

k-p 
+-

- 1 - 1 0 • -+ -+ -+ 
p p k 

Figure 2.1: Schwinger-Dyson equation for the fermion propagator. 

Because of the spinor structure of the fermion propagator S(p), its most general form is: 

(2.20) 

We rewrite this as: 

(2.21) 

where F(p2 ) is called the fermion wavefunction renormalization, L:(p2 ) is the dynamical fermion 

mass and we introduced the notation ~ = PJJ.'Y~'-· 
From Eq. (2.17) we see that the fermion propagator for a. free fermion field or bare fermion 

propagator is given by: 
0 1 s (p) = ~ . 

-mo 
(2.22) 
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2.3 Photon SD equation 

The Schwinger-Dyson equation for the photon propagator in coordinate space is: 

[n-tr\x,y) = [9P-'a2 + (i -1) aPa-'] o4(x- y) 

+iNJe2 J d4xt d4x2 Tr [,p S(x, xt) r,\(Xt, x2; y) S(x2, X)] (2.23) 

To derive this equation in momentum space we Fourier transform the various Green's functions. 

The Schwinger-Dyson equation for the photon propagator in momentum space is: 

where the vacuum polarization tensor II~-'v(q) is defined by: 

This equation is represented diagrammatically in Fig. 2.2. 

- 1 

~ 
q 

- 1 

+ 

k-q 
+-

-+ 

k 
Figure 2.2: Schwinger-Dyson equation for the photon propagator. 

(2.24) 

(2.25) 

The number offermion flavours Nf in the vacuum polarization integral, Eq. (2.25), accounts for 

the number of distinct flavour loops which can occur in the photon propagator. We assume here 

that all fermion flavours couple with the same strength e to the electromagnetic field. Because 

of fermion flavour conservation, there is no factor of Nf multiplying the fermion self-energy 

integral, Eq. (2.18). 

To study further the structure of the photon propagator, we will use the following Ward­

Takahashi identity, which tells us that the vacuum polarization is transverse to the photon 

momentum: 

(2.26) 
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Therefore the vacuum polarization tensor can be written as: 

IIIl"(q) = -q2 [gil"_ q:;"] II(q2). (2.27) 

Substituting Eq. (2.27) in Eq. (2.24) gives: 

[n-t r" (q) = -q2 [(gil"_ q:r) ( 1 + II(q2)) + Z q:;"] (2.28) 

To find the photon propagator we must invert the previous expression. The definition of inverse 

in momentum space (which can be deduced by Fourier transforming the definition for inverse in 

coordinate space) is: 

(2.29) 

Substituting the most general tensor form Dllv(q) = Ag"'" + Bq"'qvfq2 in Eq. (2.29) and using 

Eq. (2.28) we find: 

Dllv(q) =-q12 [o(q2
) (gil"- q;;v) + ~q;;v] , (2.30) 

where we defined the photon renormalization function Q( q2 ) as: 

2 - 1 
Q(q )= 1+II(q2 ) 

(2.31) 

From Eq. (2.30) one finds that the photon propagator in a pure gauge theory or bare photon 

propagator is given by: 

(2.32) 

2.4 Fermion mass generation 

From the Schwinger-Dyson equations we now derive the algebraic integral equations necessary 

for the investigation of dynamical fermion mass generation in QED. 

After inserting the fermion propagator, Eq. (2.21), in the fermion SD equation, Eq. (2.17) we 

can write: 

(2.33) 

This integral equation contains the two unknown propagator functions, F(p2 ) and E(p2 ), and 

the unknown vertex P(k,p). From the spinor equation Eq. (2.33) one can derive two algebraic 

integral equations. Taking the trace of Eq. (2.33) and dividing the equation by ( -4) gives: 

E(p
2

) 1 [ ] 
F(p2 ) = mo + 4Tr EJ(P) . (2.34) 
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A second, independent equation is derived by multiplying Eq. (2.33) with ~' taking the trace 

and dividing by 4p2 : 

(2.35) 

where we recall the fermion self-energy, Eq. (2.18): 

(2.36) 

We will now derive the equation for the photon ·renormalization function Q(q2 ). We have seen 

in Eq. (2.27) that the photon Ward-Takahashi identity requires the vacuum polarization tensor 

to have the following form: 

(2.37) 

It is important to note that unless the vertex P'( k, p) satisfies the fermion Ward-Takahashi 

identity and the regularization of the loop integrals is translation invariant, the vacuum polar­

ization integral, Eq. (2.25), will not have the correct Lorentz structure of Eq. (2.37) with the 

coefficients of gJ.J.v and qJ.J.qv being related to a single function II(q2 ). When these conditions are 

satisfied, we can extract the vacuum polarization function II(q2 ) by contracting Eq. (2.37) with 

the operator PJ.J.v = 9J.J.v- nqJ.J.q,)q2 (with any value of n) : 

(2.38) 

The integral equation for II( q2
) can then be derived by applying the operator P J.J.v to the vacuum 

polarization integral, Eq. (2.25), and equating this to Eq. (2.38). This gives: 

(2.39) 

where we defined the fermion momentum p = k- q. 

From the photon SD equation and the WT-identity we know that the photon renormalization 

function g can be written as (Eq. (2.31)): 

2 - 1 
(}(q ) = 1 + II(q2)" 

(2.40) 

Combining Eqs. (2.39, 2.40) yields the integral equation for (}: 

1 _ iN je
2
P J.J.v J 4 • [ J.J. v( ) ( ] 

Q(q2 ) - 1- 3(21r)4q2 d k Tr 1 S(k) f k,p S p) . (2.41) 
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We want to investigate the dynamical generation of fermion mass with the use of the coupled 

integral equations, Eqs. (2.34, 2.35, 2.41), for I:, F and g when m0 = 0. However, these 

three integral equations still contain the full QED vertex, which is itself coupled to higher order 

Green's functions through other SD equations. To make the problem tractable, we want to 

decouple the three equations for I:, F and g from the rest of the infinite tower of SD equations. 

This can be achieved by introducing an Ansatz for the QED vertex. The choice of vertex 

Ansatz can be dictated by reasons of simplicity or better by physical motivations. In the past, 

many additional approximations have been introduced in the (I:, F, (})-system of equations 

to simplify the search for its solution. The key equation for the study of dynamical fermion 

mass generation is the I:-equation also called gap-equation, Eq. (2.34 ), as this is the one which 

generates the purely non-perturbative solution for the fermion mass when the coupling constant 

is sufficiently large. It is easy to verify that the trivial solution, I: = 0, is always a solution of 

Eq. (2.34), when the bare mass is zero. This is the solution which corresponds with perturbation 

theory. However, it has been demonstrated that a non-trivial solution exists in the quenched 

approximation to QED (NJ = 0), when the coupling constant is sufficiently large [8]. When 

the coupling exceeds a certain critical value, the non-zero mass solution bifurcates away from 

the trivial one. Above this critical point, the generated fermion mass will increase further with 

increasing values of the coupling. In this work we will investigate the dynamical generation of 

fermion mass and determine the value of the critical coupling for quenched QED with the Curtis­

Pennington vertex and in unquenched QED in a variety of approximations. For this purpose we 

will now derive the three coupled integral equations for the bare vertex approximation and with 

the Curtis-Pennington vertex. 

2.5 The bare vertex approximation 

2.5.1 The fermion equations 

In the bare vertex approximation the fermion self-energy, Eq. (2.36), becomes: 

(2.42) 

In this approximation Eqs. (2.34, 2.35) now are: 

(2.43) 
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Substituting the fermion propagator, Eq. (2.21), in Eqs. (2.43, 2.44) yields: 

E(p2) 
F(p2) 

1 
F(p2) 

where the photon momentum is given by q = k- p. 

(2.45) 

(2.46) 

To evaluate the traces in Eqs. (2.45, 2.46) we will need to compute traces of products of gamma 

matrices. The Dirac gamma matrices obey the anticommutation relation: 

{1~-',,!1} = 2gf-'IJ. (2.47) 

From Eq. (2.47) it is easy to prove that in 4 dimensions: 

Tr[I] = 4 

Tr[~p] = 4 k.p (2.48) 

Tr[~ 1~2~3~4 ] = 4 [(k1.k2)(k3.k4)- (k1.k3)(k2.k4) + (k1.k4)(k2.k3)] 

Tr[~ 1 , ... •~nl = 0 , if n is odd. 

Applying those rules to Eqs. {2.45, 2.46) and substituting the photon propagator, Eq. (2.30), 

gives us: 

E(p2) 
= F(p2) 

1 
= F(p2) 

Executing the Lorentz-contractions with the photon propagator and substituting q = k - p 

yields: 

E(p2) 
F(p2) 

1 
F(p2) 

(2.51) 

(2.52) 



CHAPTER 2. SCHWINGER-DYSON EQUATIONS 16 

In order to enable us to compute the 4-dimensional integral we will now perform a change 

of coordinates, called Wick rotation. The transformation consists of ko -+ iko and kj -+ kj, 

j = 1, ... , 3. By doing so, the phase space is transformed from a Minkowski space to a Euclidean 

space as the original metric, which was k2 = k5 - k~ - k~ - k5, has been transformed to 

-k2 = -(k5 + k~ + k~ + k5). The Wick rotation in fact consists of changing from real time to 

imaginary time and then rotating back the integration interval over 90° to integrate over the 

real time axis. One can prove that in most cases the value of the integral remains unchanged 

after a Wick rotation. In Minkowski space the mass of a particle is defined as the pole of its 

propagator. From Eq. (2.21) we see that this pole occurs at the timelike momentum m 2 which 

solves the equation m 2 = ~2 ( m 2 ). After the Wick rotation the mass of the fermion, still defined 

as pole of the propagator, will be given by m2 = -p~ = ~2 ( -p'i;), which will be satisfied by 

some p~ < 0. When solving the integral equation in Euclidean space, one only finds solutions 

for p~ ~ 0. To determine the mass of the particle one has to analytically continue the mass 

function ~(p~) to negative values of p~. In our study we will refrain from doing so and will 

only consider ~(p'i;) for positive values of Euclidean momentum. In the further discussion we 

will omit the subscript E for Euclidean space to simplify the notation. 

After the Wick rotation to Euclidean space , Eqs. (2.51, 2.52) are given by: 

~(p2) 

:F(p2) 

1 
:F(p2) 

Once in Euclidean space we can now change to spherical coordinates: 

k cos 0 
k sin 0 cos¢ 
k sin 0 sin <P cos 1/J 
k sin 0 sin¢ sin 1jJ , 

{2.53) 

(2.54) 

(2.55) 

where k = (k5 + k~ + k~ + k5) 112 and 0 is taken to be the angle between the incoming 

fermion momentum p and the fermion loop momentum k. The volume element d4k now be­

comes k3 sin2 0 sin¢ dk dOd¢ d'lj;. The integration ranges of the new variables are: k E [0, oo], 

0, <P E [0, 1r] and 1jJ E [0, 21r]. 
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The angular integrals over the angles ¢ and 'ljJ can always be separated yielding: 

r r27r 
lo d¢sin¢ lo d'ljJ = 4rr. (2.56) 

If we now define the coupling constant a = e2 / 4rr and introduce the notation x = p2, y = k2 

and z = q2, then Eqs. (2.53, 2.54) in spherical coordinates are given by: 

l:(x) 
F(x) 

1 
F(x) 

Here, the angular integrals of the ~-part can be computed analytically, as shown in Appendix A. 

Substituting Eqs. (A.1, A.2, A.5) in Eqs. (2.57, 2.58) yields: 

l:(x) 3a j d yF(y)l:(y) j d() . 2 () 9(z) = mo + - 2 y l:2( ) sm --F(x) 2rr y + y z 

+a~ j dy F(y)l:(y) [ !o(x- y) + O(y- x )] 
4rr y + l:2(y) x 

(2.59) 

1 
1 _ ~ j dy yF(y) j d() sin2 0Q(z) [2xysin

2
8 _ 3y'y'Xcos8] 

F(x) = 2rr2x y + l:2(y) z2 z 

a~ j F(y) [ y2 l + 4rr dy y + l:2(y) x2 8( x - y) + O(y - x) . 

(2.60) 

2.5.2 The photon equation 

We introduce the bare vertex approximation in Eq. (2.41): 

1 _ iNje
2

P,_.v J 4 • [ ,_. ( ) v ( )] 
Q( q2 ) - 1 - 3(2rr )4q2 d k Tr 1 S k 1 S p . (2.61) 

Substituting the fermion propagator, Eq. (2.21), in Eq. (2.61), gives: 

1 _ iN1e2 j 4 F(k2 )F(p2
) 1w 

Q(q2)- 1 - 3(2rr)4q2 d k (k2 _ l:2(k2))(p2 -l:2(p2)) P,_.vT (2.62) 

where 

(2.63) 
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We now compute the trace, Eq. (2.63), using Eq. {2.48). This gives: 

(2.64) 

To simplify Eq. (2.62) we first work out the Lorentz contraction ofT 11"' with P 11 ,_, = g11,_,-nq11 q,_,fq2 , 

and substitute p = k- q: 

P 11 ,_,T11
"' = 4 [(n- 2)k2 -

2n~/)
2 

+ (n + 2)k.q- (n- 4)L:(k2)L:(p2)] 

Substituting Eq. {2.65) in Eq. (2.62) gives: 

1 
g(q2) 

4iN 1e2 J 4 F( k2)F(p2
) 

= 1 - 3{27r)4q2 d k (k2 _ E2(k2)) (p2 _ L;2(p2)) 

X [(n- 2)k2 -
2n~2.q)

2 

+ (n + 2)k.q- (n- 4)L:(k2)L:(p2)] 

As for the fermion equation we perform a Wick rotation to Euclidean space. We have: 

1 
g(q2) 

4N 1e2 J 4 F( k2)F(p2
) 1 + 3(27r)4q2 d k (k2 + E2(k2))(p2 + E2(p2)) 

X [(n- 2)k2 -
2n~2.q)

2 
+ (n + 2)k.q + (n- 4)E(k2)E(p2)] 

(2.65) 

{2.66) 

(2.67) 

Changing to spherical coordinates, substituting a = e2 /411" and defining x = q2 , y = k2 and 

z = p2 we find: 

1 
g(x) 

1 + 2Nfa j dy yF(y) j d(} sin2 (} F(z) 
311" 2x y + L:2 (y) z + E2(z) 

X [(n- 2)y- 2nycos2 
(} + (n + 2)yY:icosO + (n- 4)L:(y)L:(z)] 

(2.68) 

In general, if we regularize the theory using an ultraviolet cutoff, the vacuum polarization 

integral in Eq. (2.68) contains a quadratic divergence which has to be removed, since such a 

photon mass term is not allowed in more than 2 dimensions. One can show that the q11 q,_,fq2 

term of the vacuum polarization tensor cannot receive any quadratically divergent contribution. 

Consequently, if we choose the operator P11 ,_, of Eq. (2.39) with n = 4, the resulting integral will 

be free of quadratic divergences because the contraction P 11 ,_,g 11"' vanishes. Setting n = 4 in the 

photon equation Eq. (2.68) yields: 

1 4Nfa J yF(y) J . 2 F(z) [ 2 ] 
Q( x) = 1 + 31r 2x dy y + L: 2(y) d(} sm (} z + L: 2 ( z) y(1 - 4 cos 0) + 3y'y"X cos(} . (2.69) 
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2.6 Improving the vertex Ansatz 

In the previous section we have derived the integral equations for the study of dynamical fermion 

mass generation with the bare vertex approximation. This vertex Ansatz has the advantage of 

being very simple and therefore it makes the manipulation of the Schwinger-Dyson equations 

easier. However, this approximation does not satisfy the Ward-Takahashi identity relating the 

QED vertex with the fermion propagator, which is a consequence of the gauge invariance of the 

theory. Therefore, the bare vertex approximation does not ensure that the calculated physical 

quantities are gauge invariant, as they should be. 

In this section we will introduce the Ball-Chiu vertex [24) which is the exact longitudinal part 

of the full QED vertex, uniquely determined by the Ward-Takahashi identity relating the vertex 

with the fermion propagator. However, the transverse part of the vertex is still arbitrary. We 

then consider the Curtis-Pennington vertex [12) in which the transverse part of the vertex is 

constructed by requiring the multiplicative renormalizability of the fermion propagator and the 

reproduction of the perturbative results in the weak coupling limit. 

2.6.1 Ball-Chiu Vertex 

The Ward-Takahashi identity relating the QED vertex and the fermion propagator is: 

(2.70) 

In the limit p----+ k, Eq. (2.70) becomes the Ward identity: 

r ll(k k) = as-l(k) 
' 8k . 

IL 

(2.71) 

In general, the full QED vertex can be written as the sum of a longitudinal and a transverse 

part: 

fll(k,p) = rt(k,p) + ft(k,p). (2.72) 

The longitudinal part, rt(k,p), of the vertex is determined by the Ward-Takahashi identity, 

Eq. (2.70), and the Ward identity, Eq. (2.71 ), as demonstrated by Ball and Chiu [24), and is 

given by: 

rt(k,p) (2.73) 
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The transverse part of the vertex, which has to satisfy the transversality condition 

(k- p) 11 r~(k,p) = o, and r~(p,p) = o, 

is not constrained by the Ward-Takahashi identity. However, other properties of gauge theories 

can be used to restrict its form. These constraints are mainly multiplicative renormalizability, 

reproduction of perturbative results in weak coupling, absence of kinematical singularities and 

gauge invariance of physical observables [12, 25, 26]. 

The most general form for the transverse part of the vertex can be given by [24, 27]: 

8 

r~(k,p) =I: r;(k2,p2,q2)Tf'(k,p), 
i=l 

where the Tf' form a tensor basis in spinor space and are defined as: 

Tf(k,p) 

Tf(k,p) 

Tf(k,p) 

Tf(k,p) 

Tt(k,p) 

Tt(k,p) 

Tf(k,p) 

T/f(k,p) 

pll(k. q)- kll(p. q) 

[pll(k. q)- kll(p. q)] (¥ + ;) 
Q2/J1- q~-'ri 

q2 
(!11(; + ¥)- p~-' - k11 ] + 2(p- k )11 e'p11 a;w 

11-'(k2- p2)- (k + p)~-'(¥- p) 

1 
2(p2- k2) [1~-'(p + ¥)- p~-'- k~-'] + (k + p)ll e•pll O">.v 

-111 k11p>.a11>. + k1tp- p~-'¥ 

2.6.2 Curtis-Pennington vertex 

(2.74) 

(2.75) 

In Ref. [12] Curtis and Pennington have proposed a vertex Ansatz which ensures the multiplica­

tive renormalizability of the fermion propagator, reproduces the perturbative results in the weak 

coupling limit and is free of kinematical singularities in the massive case. As these requirements 

do not constrain the transverse part uniquely, they have chosen a simple form satisfying them 

and which is only composed of Tt: 

(2.76) 
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Substituting Eqs. (2. 73, 2. 76) in Eq. (2. 72) yields the full Curtis-Pennington vertex Ansatz: 

1 [ 1 1 ] 11 1 [ 1 1 ] ( k + p )11 (¥ + ~) 
f~p(k,p) = 2 F(k2) + F(p2) I + 2 F(k2) - F(p2) k2 - p2 (2. 77) 

- [~(k2) - ~(p2)] (k + p)11 
F(k2) F(p2) k2 _ p2 

1 [ 1 1 ] (k2 + p2) (t11(k2 - p2)- (k + p)11(¥- ~)] 
+2 F(k2) - F(p2) (k2 _ p2)2 + (~2(k2) + ~2(p2))2 · 

2. 7 The Curtis-Pennington equations 

2. 7.1 The fermion equations 

We now derive the equations necessary for the study of dynamical mass generation in QED 

with the Curtis-Pennington vertex Ansatz. The fermion self-energy integral, Eq. (2.36), with 

the Curtis-Pennington vertex is: 

(2.78) 

If we substitute the photon propagator, Eq. (2.30), in the self-energy integral, Eq. (2.78), we 

find: 

(2.79) 

where we defined q = k- p. 

Because the CP-vertex satisfies the Ward-Takahashi identity, Eq. (2.70), in the same way as 

the full vertex does, it is useful to substitute this identity in the ~-part of Eq. (2.79), to ensure 

translational invariance. This yields: 

From translational invariance we know: 

(2.81) 

So that Eq. (2.80) becomes: 

E1(p) = - (~:
2

)4 j d4k{ g~f) (9v11 - q~;11 ) ! 11 S(k) f~p(k,p)- :4 ~S(k)S-1 (p)} . (2.82) 
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Substituting Eq. (2.82) in the ~-equation, Eq. (2.34), and introducing a= e2 /47r we find 

~~;:~ = m 0 - 1!:3 j d4k{ 
9~;

2

) (9v~'- q;;~') Tr[1~' S(k) r~p(k,p)]- q~4 Tr[~s(k)S- 1 (p)J}. 
(2.83) 

We now substitute the fermion propagator, Eq. (2.21), in the integral of Eq. (2.83), yielding 

where we defined 

T$ 11 
_ Tr[1 ~' (¥ + ~(k2 )) r~p(k,p)] 

T~ Tr [~ (¥ + ~( k2
) )(p - ~(p2 ))] . 

We first consider the ~-part of the integral in Eq. (2.84), which we call J~: 

in:~ J 4 F(k 2
) 

I~ = 167r3F(p2) d k (k2- P(k2)) q4 T~ . 

We compute the trace, Eq. (2.86), using Eq. (2.48), and substitute q = k- p. This gives: 

Substituting the trace, Eq. (2.88), in the ~-integral, Eq. (2.87), we find: 

in:~ J 4 F(k
2

) 1 [( 2 2 ) 2 2 2 2] Ie = 47r3F(p2) d k k2- ~2(k2) q4 ~(k) + ~(p) k. P- ~(k )p - ~(p) k . 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

Performing a Wick rotation to go from Minkowski to Euclidean space, as explained in Section 2.5, 

gives: 

_ _ a~ J 4 • F( k
2

) 1 [ ('"' .2 2 ) . _ .2 2 _ 2) 2] Ie- 47r3F(p2) d k k2 + ~2(k2) q4 .... (k ) + ~(p) k P ~(k )p ~(p k . (2.90) 

We can now change to spherical coordinates. Two angles can be integrated out straight away 

leaving us with one angle, (}, and a Jacobian which is 21rdy y d(} sin2 (}where we denoted y = k2 • 

If we also define x = p2 and z = q2
, Eq. (2.90) becomes: 

a~ j yF(y) j sin2 (} [( ) ] Ie = - 21r 2F(x) dy y+ ~2 (y) d(}~ ~(y)+~(x) ylyXcosO-~(y)x-~(x)y . (2.91) 

The angular integrals of Eq. (2.91) can be computed analytically as shown in Appendix A. 

Substituting Eqs. (A.2, A.5) in Eq. (2.91) finally gives: 

a~ J F(y) [y~(y) ] 
Ie = 41rF(x) dy y+~2(y) -x-O(x-y)+~(x)O(y-x) . (2.92) 
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We now consider the 9-part of the integral in the :E-equation, Eq. (2.84): 

I = -~ J d4k F(k2) 9(q2) ( - qllq/).) T/).11 

Q - 1671'3 k2- :E2(k2) q2 gil/). q2 Q 
(2.93) 

where we defined Tg 11 in Eq. (2.85) as: 

(2.94) 

In contrast to the ~-part of the :E-equation, the 9-part depends on the specific vertex Ansatz 

used. We recall the CP-vertex, Eq. (2.77): 

r~p(k,p) = A(k2 ,p2)"yll + B(k2 ,p2)(k + p)ll(¥ + p) + C(k2 ,p2)(k + p)ll (2.95) 

+T6 (k2,p2) [t·ll(k2 _ p2) _ (k + p)ll(¥ _ p)] 

where we define: 

(2.96) 

Substituting the CP-vertex, Eq. (2.95), in Eq. (2.94) and computing the traces using Eq. (2.48) 

yields: 

Tr = 4:E(k2) { A(k2 ,p2) g~-' 11 + B(k2 ,p2)(k + p)~-'(k + Pt (2.97) 

+r6 (k2,p2) [(k2 - p2 )g~-'11 - (k- p)~-'(k + Pt]} + 4C(k2,p2)kll(k +Pt. 

We now contract Tg11 with the transverse tensor, gl-' 11 - ql-lq11 fq2, of the photon propagator. This 

gives: 

4 { 3:E(k2) [A(k2,p2) + r6 (k2,p2)(k2 - p2
)] (2.98) 

+2 [2B(k2,p2):E(k2) + C(k2,p2)] [k2p2 ~2(k.p)2]}. 
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Substituting Eq. (2.98) in the integral, Eq. (2.93), we find: 

Io = -::3 j d4k k2 ~~:lk2 ) g~f) { 3E(k2
) [A(k2 ,p2

) + r 6(k\p2 )(k2
- p2

)] (2.99) 

+2 [2B(k2 ,p2 )E(k2
) + C(k\p2

)] [k
2

p
2 ~}k.p)2 ]}. 

We now perform a Wick rotation to Euclidean space. Note, from Eq. (2.96), that A -+ A, 

B-+ -B, C-+ -C and T6-+ -T6. This gives: 

Io = 

Introducing spherical coordinates and defining x = p2
, y = k2

, z = q2 yields: 

Io = a
2 

jdy y:F(1f{) jdo sin2 0 O(z) {3E(y)[A(y,x)+ r6(y,x)(y- x)] (2.101) 
21r y + E y z 

2yx sin2 
(}} + [2B(y, X )E(y) + C(y, X)] z . 

From Eq. (2.96) we check that: 

2B(y, x)E(y) + C(y, x) = --1- [E(y)- E(x )] 
:F(x) y- x 

Substituting Eqs. (2.92, 2.101, 2.102) in the E-equation, Eq. (2.84), yields: 

E(x) 
:F(x) 

a j y:F(y) j . 2 9(z) 
= mo + - 2 dy E2 ( ) d(} sm (} --211" y + y z 

{ 
1 [E(y)-E(x)]2yxsin

2 0} x 3E(y)[A(y,x)+r6(y,x)(y-x)]- :F(x) y-x z 

a~ j :F(y) [yE(y) ] 
+ 41r:F(x) dy y + E2 (y) -x-O(x- y) + E(x)O(y- x) . 

(2.102) 

(2.103) 

Next, we derive the F-equation in a similar way. Substituting the self-energy, Eq. (2.82), in the 

F-equation, Eq. (2.35), and introducing a= e2 /47r we have 

F(~2) = 1+ 16~~11"3 I d4k{ g~f) (9v~ - q;;~) Tr [P ,~ S(k) r~p(k, p)]- q~4 Tr [P ft S(k )S-1(p)l}. 

(2.104) 
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After introducing the fermion propagator, Eq. (2.21), in Eq. (2.104) we find: 

where we defined the traces: 

Ttl/ - Tr[pf'~' (¥ + L:(k2)) r~p(k,p)] 

Tf. Tr[p~ (¥ + L:(k2)) (p- L:(p2))] . 

We first compute the ~-part of the integral in Eq. (2.105), which we call Je: 

We compute the trace, Eq. (2.107), using Eq. (2.48) a.nd substitute q = k- p: 

Substituting this trace in Eq. (2.108) gives: 

After performing a. Wick rotation on Eq. (2.110), we find in Euclidean space: 

a~ j 4 :F(k
2

) [ 2 2 2 (k.p )] Ie = 471'3:F(p2) d k (k2 + L;2(k2)) q4 k - k.p + L:(k )L:(p ) -:p2 - 1 
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(2.105) 

(2.106) 

(2.107) 

(2.108) 

(2.109) 

(2.110) 

(2.111) 

We ca.n now change the integration variables to spherical coordinates, a.ga.in introducing x = p2, 

y = k2 a.nd z = q2. This gives: 

I = a~ j dy y:F(y) 
f. 271'2:F(x) y + L;2(y) J sin

2 
0 [ ( jy )] dO~ y-ffxcosO+L:(y)L:(x) y;cos0-1 . 

(2.112) 

The angular integrals of Eq. (2.112) ca.n be computed a.na.lytica.lly a.nd a.re given in Appendix A. 

Substituting Eqs. (A.2, A.5) in Eq. (2.112) yields: 

I =- a~ jdy :F(y) [yL:(y)L:(x)O(x- y)- O(y- x)] 
f. 411':F(x) y+L:2(y) x 2 (2.113) 

Next, we consider the 9-pa.rt of the integral in Eq. (2.105): 

(2.114) 
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where the trace Tt 11 has been defined in Eq. (2.106) as: 

(2.115) 

Substituting the vertex expression, Eq. (2.95), in Eq. (2.115), and computing the traces using 

Eq. (2.48), gives: 

Tt 11 = 4A(k2,p2)(p11 k11 + p11 k11
- k.pg1111

) + 4B(k2,p2)(k + Pt(p2k11 + k2p11
) (2.116) 

+ 4r6(k2,p2) [(k- p)~'(p2F + k2pv)- (k2- p2)k.pg~'v] + 4C(k2,p2)E(k2)p~'(k +Pt. 

We now contract Tt 11 of Eq. (2.116) with the transverse tensor g1111 - q11 q11 jq2 and substitute 

q = k - p. This gives: 

(g1111 - q;;v) Tt 11 = 4{ A(k2,p2)[2 (k
2
p

2 
~}k.p)

2

)- 3k.p] (2.117) 

+2 [ B( k2' p2)( k2 + p2) + C( k2' p2)E( k2)] ( k2p2 ~2( k.p )2) - 3r6( k2' p2)( k2 - p2) k.p} . 

Substituting Eq. (2.117) in the integral Eq. (2.114) yields: 

lg = ~ J d4k F(k2) 9(q2) {A(k2 2) [2 (k2p2- (k.p)2) - 3k ] (2.118) 
4p2rr3 k2 _ L,2( k2) q2 • P q2 ·P 

+ 2 [n(k2 ,p2)(k2 + p2) + C(k2 ,p2)E(k2)] ( k2p2 ~2(k.p)2) - 3r6(k2 ,p2)(k2- p2) k.p} . 

After a Wick rotation to Euclidean space, Eq. (2.118) becomes: 

lg = __ a_Jd4k F(k2) 9(q2){A(k2,p2)[2 (k2p2- (k.p)2)- 3k.p] (2.119) 
4p2rr3 k2 + L,2( k2) q2 q2 

+ 2 [n(k2 ,p2)(k2 + p2)- C(k2 ,p2)E(k2)] ( k2p2 ~}k.p)2) - 3r6(k2 ,p2)(k2- p2) k.p} . 

Introducing spherical coordinates and defining x = p2, y = k2, z = q2 yields: 

-~Jd yF(y) Jdo . 20 9(z){A( )[2yxsin
2

0 _ r.;;; o] lg = 2 y E2 ( ) sm y,x 3yyxcos 
2xrr y + y z z 

(2.120) . 

+ [B(y, x )(y + x)- C(y, x )E(y)] ( 
2

yx :in
2 0

) - 3r6(y, x )(y- x) .ffx cos 0} . 
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Substituting Eqs. (2.113, 2.120) in the F-equation, Eq. (2.105), finally gives: 

1 

F(x) 
= 1-~ j dy yF(y) j d() sin 2 () Q(z) 

2x1r 2 y+ E2(y) z 

X { A(y, x) [
2

yx ~n2 

() - 3ffx cos()] 

2yx sin2 
() } + [B(y, X )(y +X) - C(y, X )E(y)] z - 3T6(y, X )(y- X) ffx cos() 

- a~ Jdy F(y) [yE(y)E(x)O(x-y)-O(y-x)]. 
47rF(x) y+E2(y) x2 

2.7.2 The photon equation 

27 

(2.121) 

We will now derive the integral equation for the photon renormalization function using the 

Curtis-Pennington vertex Ansatz. We introduce the CP-vertex in the integral equation for 9, 

Eq. (2.41): 

When substituting the fermion propagator, Eq. (2.21), in Eq. (2.122), we find: 

where 

Now, insert the CP-vertex, Eq. (2.95) in Eq. (2.124): 

Til"' = 4{ A( k2, p2) [ k~'p"' + p~' k"' - k.p g~'"' + E( k2)E(p2) g~'"'] 

+ B( k2, p2) [p2 k~' + k2p~' + E( k2)E(p2)( k + p )~'] ( k + p )"' 

+C( k2
, p2

) [ E(p2 )k~' + E( k2 )p~'] (k + p )"' 

+r6(k2,p2)[(k- p)~'(k2pv + p2k"')- (k2- p2)k.pg~'"') 

+E(k2)E(p2)((k2 - p2 )g~'"'- (k- p)~'(k + p)"'] }· 

(2.122) 

(2.123) 

(2.124) 

(2.125) 

When contracting T~'"' with the operator P~'v = g~'"'- nq~'q,_,jq2 and substituting p = k- q, we 
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find: 

= 4{A(k2,p2) [cn-2)k2 +(n+2)k.q-
2
n(:/)

2 
+(4-n)E(k2)E(p2)] 

+B(k2,p2)[ (k2 + p2 + 2E(k2)E(p2)) (2k2 -
2n~2.q)

2 

+ (n -1)k.q) 

+(n- 1)(k2 - p2)(k2 + E(k2)E(p2))] 

+C(k2,p2)[ (E(k2) + E(p2)) (2k2 -
2n(:/? + (n- 1)k.q) 

+(n- 1)(k2 - p2)E(k2)] 

-3r6(k2,p2)(k2 - p2)(k2 - k.q- E(k2)E(p2))}. 

Now, substitute Eq. (2.126) in the 9-equation, Eq. (2.123): 

1 
9(q2) 

4iNJe2 J 4 F(k2 )F(p2
) 

= 1- 3(2rr)4q2 d k (k2- E2(k2))(p2- E2(p2)) 

x{ A(k2 ,p2
) [en- 2)k2 + (n + 2)k.q-

2n~2.q)
2 

+ (4- n)E(k2)E(p2)] 

+B(k2,p2)[(k2 +p2 +2E(k2)E(p2)) (2k2 -
2n~2.q)

2 

+(n-1)k.q) 

+(n- 1)(k2 - p2)(k2 + E(k2)E(p2))] 

+C(k2,p2)[ (E(k2) + E(p2)) (2k2 -
2
n(:;q)

2 

+ (n- 1)k.q) 

+(n- 1)(k2 - p2)E(k2)] 

-3r6(k2,p2)(k2 - p2)(k2 - k.q- E(k2)E(p2))} . 

28 

(2.126) 

(2.127) 



CHAPTER 2. SCHWINGER-DYSON EQUATIONS 29 

After performing a Wick rotation to Euclidean space, Eq. (2.127) becomes: 

1 
y(q2) 

4NJe2 J 4 F(k2)Fep2) 
= 1 + 3e27r)4q2 d k ek2 + I;2(k2))ep2 + I;2(p2)) 

x{Aek2,p2) [en- 2)k2 + (n + 2)k.q-
2n~2.q)

2

- (4- n)r:ek2)I:(p2)] 

+Bek2 ,p2) [ (k2 + p2- 2I:ek2)~(p2)) ( 2k2- 2n~2.q)2 + (n- 1)k.q) 

+(n- 1)ek2 - p2)(k2 - I:(k2 )~(p2 ))] (2.128) 

-cek2,p2)[(~(k2)+I:(p2)) (2k2_2n(:;q)2 +(n-1)k.q) 

+(n- 1)ek2 - p2 )~(k2 )] 

-3r6(k2,p2)(k2- p2)(k2- k.q + ~(k2)r:ep2))} . 

Finally, we introduce spherical coordinates and substitute a = e2 /47r in Eq. e2.128). The 

equation for the photon renormalization function g becomes: 

1 
gex) 

2NJa J yFey) J . 2 Fez) 
= 1 + 37r2x dy y + I;2(y) dO sm () z + ~2ez) 

x { A(y, z) [en- 2)y + (n + 2)# cos()- 2ny cos2 0- ( 4- n)I:(y)I:(z)] 

+Bey,z)[ (y + z- 2~ey)~(z)) (2y- 2nycos2 () + (n -1)ffxcos0) 

+en- l)(y- z)(y- ~(y)r:ez))] (2.129) 

-Cey,z)[ (~ey) + ~ez)) (2y- 2nycos20 +en -l)ffxcosO) 

+(n- l)(y- z)~(y)] 

-3r6ey, z)(y- z) (y- ffx cos()+ ~(y)I:(z))} . 

As discussed in Section 2.5.2, if we take n = 4 in the operator P1w, the vacuum polarization 
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integral should be free of quadratic divergences. Then, Eq. (2.129) becomes: 

1 

9(x) 
2NJa J yF(y) J . 2 F(z) = 1 + - 2- dy 1;2 ( ) d(} Sill (} 1;2 ( ) 3?r X y + y Z + Z 

X { 2A(y,z) [y(1- ycos2 0) + 3y'YXcosO] 

+B(y,z)[ (y + z- 2E(y)E(z)) (2y(1- 4cos2 0) + 3\f'YXcosO) 

+3(y- z)(y- E(y)E(z))] 

-C(y,z)[ (E(y) + E(z)) (2y(1- 4cos2 0) + 3y'YXcosO) + 3(y- z)E(y)] 

-3r6 (y, z)(y- z) (y- y'yX cos(}+ E(y)E(z))} . 

30 

(2.130) 
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2. 7.3 Summary 

The set of coupled integral equations (in Euclidean space) using the Curtis-Pennington vertex 

Ansatz, Eqs. (2.103, 2.121, 2.130) are now summarized: 

E(x) a j d y:F(y) j dB · 2 B Q(z) 
:F(x) = mo + 22" y E2 ( ) sm -7r Y+ Y z 

X { 3E(y)[A(y, x) + T6(Y, x)(y- x )] - :Ftx) [E(y~ = ~(x)] 2yx :in2 0} 

a( J :F(y) [ yE(y) ] 
+ 41r:F(x) dy y + E:l(y) -x-B(x- y) + E(x)B(y- x) 

1 1-~ j dy y:F(y) j dB sin2 B Q(z) 
:F(x) = 2x1r2 y + E2(y) z 

{ [2yxsin
2 

B ] X A(y, x) z - 3.../Yx cosO 

2yx sin
2 B } + [B(y, x)(y + x)- C(y, x)E(y)] z - 3r6(y, x)(y- x) ffx cos B 

- ae J dy :F(y) [yE(y)E(x)B(x-y)-B(y-x)] 
47r:F(x) y + E2(y) x2 

1 1 + 2N1a j dy y:F(y) j dB sin2 B :F(z) 
Q(x) = 37r2x y + E2(y) z + E2(z) 

X { 2A(y, z) [y(l- y cos2 B)+ 3.../Yx cos B] 

+B(y, z) [ (y + z- 2E(y)E(z)) {2y(l- 4 cos2 B)+ 3.../Yx cos B) 

+3(y- z)(y- E(y)E(z))] 

-C(y, z) [ (r:(y) + E(z)) {2y(l- 4cos2 B)+ 3.../Yx cosO)+ 3(y- z)E(y)] 

-3r6(y, z)(y- z) (y- ffx cos B + E(y)E(z))} 

where A(y,x) ~ [:F~y) + :F~x)] 
B(y, x) 

C(y, x) 

ra(y,x) 

2(y ~ x) [:F:y)- :F~x)] 
__ 1_ [B(y) _ B(x)] 

y- x :F(y) :F(x) 

y+x [ 1 1 ] 
2 ((y- x)2 + (E2 (y) + E2 (x))2) :F(y)- :F(x) · 

(2.131) 

(2.132) 

(2.133) 

(2.134) 



Chapter 3 

Fermion mass generation 
quenched QED 

3.1 Introduction 

• 
Ill 

In the previous chapter we derived the system of equations describing the dynamical generation 

offermion mass in QED. To truncate the infinite set of integral equations we introduced a suitable 

vertex Ansatz which reduces the system of equations to three integral equations relating E, :F 

and g. A way to reduce the number of simultaneous equations even more is to consider what is 

called the quenched approximation to QED. In this approximation the full photon propagator 

is replaced by the bare one, neglecting any fermion loops, and the two fermion equations now 

form an independent system of two coupled integral equations for E and :F. 

Formally, this approximation is obtained by setting the number of flavours NJ equal to zero. 

Then, the vacuum polarization contribution to the photon propagator, Eq. (2.24), will vanish 

and the full photon propagator will be identical to the bare one. In this way the photon 

equation is now decoupled from the fermion equation and the photon propagator occurring in 

the fermion self-energy integral, Eq. (2.36), is known. Although it can seem bizarre to put 

NJ = 0 and still consider the behaviour of the fermion propagator and its self-energy, this limit 

is mathematically perfectly sound (in the same way as N1 could be given any non-integer value) 

as N1 is a free parameter, which occurs only in the photon equation, while it is absent from the 

fermion equation. However, one can wonder to what extent the results obtained in the quenched 

approximation will reflect the physical reality of the theory with one or more fermion flavours. 

In this context it is useful to note that in gauge theories, the coupling will run with momentum 

as a consequence of quantum corrections. This, in turn, brings about the need to renormalize 

32 
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the theory. It is exactly this renormalization procedure which introduces a scale in the theory, 

to which the generated fermion mass will be related. An important consequence of quenching 

the theory is that the running of the coupling disappears, the coupling in quenched QED is 

constant and no renormalization is needed. It is therefore not clear what can set the scale of the 

generated fermion mass, other than the ultraviolet cutoff, in quenched QED without bare mass. 

3.2 Bare vertex 

In the simplest calculation in quenched QED, we replace the full vertex f~'{k,p) by the bare 

vertex 7~'. This is called the rainbow approximation, which is obvious if we look at the Feynman 

diagram decomposition ofthe fermion self-energy EJ(P) shown in Fig. 3.1. It is well known from 

the literature that fermion mass is generated dynamically in the Rainbow approximation to 

QED provided that the coupling is larger than a critical value, which is O'c = 1r /3 in the Landau 

gauge [8, 9, 10, 11]. Because the bare vertex violates the Ward-Takahashi identity, the critical 

coupling varies wildly if we go to other gauges as shown in Ref. [28] by Curtis and Pennington. 

They find O'c = 1.69 in the Feynman gauge(~= 1) and O'c = 2.04 in the Yennie gauge{~= 3). 

Because of this strong dependence of O'c on the covariant gauge parameter, we will investigate 

the behaviour of the critical coupling using the Curtis-Pennington vertex Ansatz in the next 

section. 

Figure 3.1: Fermion self-energy in the rainbow approximation. 

Comparing these results with those of numerical lattice studies is not straightforward. In fact 

the study of the SD equations of quenched QED shows that the large anomalous dimension of 

the 1/J'I/J operator makes this operator renormalizable [29]. Therefore a four-fermion interaction 

should in principle be included in the Lagrangian of quenched QED. In Ref. [30] Kondo et al. 

found the critical line, describing the phase transition in quenched QED, in the (a, G)-plane 

where a is the usual QED coupling constant and G is the strength of a four-fermion interaction, 

and in Ref. [31] Bardeen et al. studied the corresponding critical scaling laws. This is important 

for the comparison with lattice studies as the numerical simulation of quenched non-compact 

QED appears to automatically incorporate the four-fermion interaction in the calculation. The 
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lattice calculations also find a phase transition but the critical point is situated somewhere 

on the critical line [32] rather than in the pure QED point (G = 0). Therefore the critical 

coupling found in the lattice calculations is not directly comparable with the value of 1l' /3 found 

in the SD treatment of "pure" quenched QED. This is also true for the scaling law which is of 

Miransky type for the SD treatment of quenched QED while the power-law scaling in the lattice 

calculation coincides with a mixture of QED and four fermion interaction. Moreover, there is an 

additional problem as the chirallimit, m0 --t 0, can only be retrieved through extrapolation in 

lattice studies. Recently Kogut et al. [33] have introduced the momentum space lattice method 

in contrast to the conventional position space formulation. They indicate that the method could 

avoid the contamination of QED by four-fermion interactions and that it would then be possible 

to locate the critical point of pure QED. 

3.3 Curtis-Pennington vertex 

3.3.1 Introduction 

In this section we will discuss the dynamical generation of fermion mass in quenched QED with 

the Curtis-Pennington vertex. This study has been performed independently in Durham and 

in Groningen and the common results obtained, have been merged and published in Critical 

Coupling in Strong QED with Weak Gauge Dependence by D. Atkinson, J.C.R. Bloch, V.P. 

Gusynin, M.R. Pennington and M. Reenders in Ref. [34]. As observed by Dong et al. [35], 

the regularization scheme used in that paper was not translationally invariant and a spurious 

additional term appeared in the equation for the fermion wavefunction renormalization. In this 

section we will use the corrected equations. 

The Curtis-Pennington vertex not only ensures satisfaction of the Ward-Takahashi identity and 

avoids singularities that would imply the existence of a scalar, massless particle, but it also 

respects the requirement of multiplicative renormalizability, a property of exact QED that is 

destroyed by the rainbow approximation. It agrees moreover with perturbative results in the 

weak coupling limit. 

Our study has been motivated by the previous numerical work performed by Curtis and Penning­

ton in Ref. [28] where the system of non-linear equations for E and F was solved numerically 

in the Landau, Feynman and Yennie gauge. They find a critical coupling ac ~ 0.92 which 

is almost exactly gauge independent, in complete contrast to the rainbow approximation. In 
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Ref. [36] Atkinson et al. use bifurcation analysis to determine the critical coupling analytically 

using the Curtis-Pennington vertex Ansatz in the Landau gauge. They introduce various ap­

proximations to simplify the bifurcation equations and find similar results, although with a 

much larger inaccuracy, with a critical coupling ranging from 0.910 to 1.047, depending on the 

approximation. 

We will consider the Schwinger-Dyson equations in a general covariant gauge, with the Curtis­

Pennington Ansatz, and apply bifurcation analysis to them. This involves calculating the func­

tional derivative of the nonlinear mapping of the mass function into itself. Thanks to the 

scale-invariance of the problem, the bifurcation equation can be solved by inspection, in the 

limit that the ultraviolet cutoff is taken to infinity. A solution for the mass function is a power 

of the momentum that has to satisfy a certain transcendental equation. The onset of criticality 

is heralded by the coming together of two solutions of this transcendental equation, for that is 

the indication that oscillatory takes over from non-oscillatory behaviour. 

We find the gauge dependence of the critical coupling to be slight, varying by only a few percent 

over a relatively large range of the gauge parameter. This confirms the previous wholly numerical 

findings of Curtis and Pennington [28], which covered only small changes of gauge. This weak 

gauge dependence is in marked contrast to the rainbow approximation, for which the critical 

coupling changes by 60% between just the Landau and Feynman gauges [28]. 

3.3.2 Gauge independence of fermion mass and critical coupling 

The physical mass of the fermion is defined to be the lowest position at which the denominator 

function in the fermion propagator, 

has a zero, which is therefore a solution, m, of 

On physical grounds, this singularity should be on the real timelike axis of p2 and should be 

gauge-independent. When we work in Euclidean space we can either choose to determine the 

'Euclidean mass', which is the lowest solution of M = ~(M2 ), and is not the same as the physical 

mass m, or one might perhaps take ~(0) as an ersatz effective mass. Both approximations are 

not expected to be exactly gauge-invariant, but one might hope them to be approximately so, on 
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the grounds that they should be close to the physical mass m, which is gauge-invariant, at least 

in exact QED, or in a quenched approximation in which the first two Ward-Takahashi identities 

are respected [37]. 

The value of the wavefunction at an arbitrarily selected renormalization point, J.L, is defined to 

be the wavefunction renormalization constant, which is conventionally dubbed Z2 : 

It is convenient to choose the renormalization point to be Euclidean; the renormalized wave 

function is specified by 

f(x)=Z2 1F(x). (3.1) 

The Curtis-Pennington Ansatz defines a renormalizable scheme, so that in it i(x) has a finite 

limit as the ultraviolet regularization is removed. The renormalized wavefunction contains no 

explicit cutoff, but it is dependent on the renormalization point, and on the gauge parameter. 

Chiral symmetry breaking occurs if the coupling, a, is greater than a certain critical value, ac. 

This critical coupling is potentially a physically measurable quantity, since it signals a change 

of phase, and so it should be gauge invariant. Although this is not exactly true in the Curtis­

Pennington system, it is approximately so. Indeed, the requirement that ac be gauge-invariant 

could perhaps be used to specify further the form of the Ansatz for the vertex function. The 

transverse part of the vertex is not uniquely determined, and the above requirement might with 

profit be used to refine this transverse part of the vertex as discussed in Ref. [25]. 

3.3.3 Bifurcation analysis and critical point 

The basic coupled integral equations for quenched QED with the Curtis-Pennington vertex 

Ansatz are now derived by putting NJ = 0 in Eqs. (2.131, 2.132, 2.133). The photon equation, 

Eq. (2.133), yields Q(x) = 1, so Eqs. (2.131, 2.132)) now become: 

~(x) 

F(x) 
a j d yF(y) j d() sin

2 
() mo+- y --

211'2 y + ~2(y) z 
(3.2) 

{ 
1 [~(y)-~(x)]2yxsin2 0} 

X 3~(y)[A(y,x)+r6(y,x)(y-x)]- F(x) y-x z 

a~ j F(y) {y~(y) } + 41l'F(x) dy y + ~2(y) -x-O(x- y) + ~(x)O(y- x) 
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1 
F(x) 

a J yF(y) J . 2 
1- 211'2x dy y + E2(y) dO sm 0 

X { A(y,x) [2yx;!n
2

0 _ 3~cos0] 

2yx sin2 0 
+[B(y,x)(y+x)-C(y,x)E(y)] 

2 z 

( )( ) 3.JYX cos 0} 
- T6 y,x y- X 

z 

-a~ Jdy F(y) {yE(x)E(y)O(x-y)-O(y-x)} 
411' F(x) y + E2(y) x2 

(3.3) 

The complicated kernels are explicit functions of E and F. In the quenched case the angular 

integrals of the fermion equations, Eqs. (3.2, 3.3), can be computed analytically and are given 

in Appendix A. Substituting Eqs. (A.1, A.3) in Eq. (3.2) and putting the bare mass m0 = 0, 

yields: 

E(x) 
F(x) 

3a j d yF(y) 
811' yy+E2(y) 

x {2[A(y,x)+r6(y,x)(y-x)]E(y) [O(x:y) + O(y;x)] 

__ 1_ E(y)- E(x) [!o(x- y) + :_O(y- x )] } 
F(x) y-x x y 

a~ J F(y) { yE(y) } + 411'F(x) dy y + E2 (y) -x-O(x- y) + E(x)O(y- x) 

(3.4) 

When substituting Eqs. (A.3, A.4) in Eq. (3.3), the A(y, x) term vanishes (which is similar to 

the bare vertex case) and Eq. (3.3) now becomes: 

1 
F(x) 

= 1- 3a j dy yF(y) (3.5) 
81l'X y + E2 (y) 

x { [B(y,x)(y + x)- C(y,x)E(y)- r6(y,x)(y- x)] [~o(x- y) + ~O(y- x)]} 
_ a~ J d F(y) [yE(x )E(y) O( _ ) _ O( _ )] 

411'F(x) yy+E2(y) x2 x Y Y x · 

As can be seen from Eqs. {3.4, 3.5), the complete Curtis-Pennington equations are nonlinear 

and complicated. Clearly E( x) = 0 is always a possible solution; but it is not the one in which 

we are interested. However, the equations simplify at the critical point, where a nontrivial 

solution bifurcates away from the trivial one. To investigate this critical point, we have to 

take the functional derivative of the nonlinear operators with respect to E( x) and evaluate 

it at the trivial 'point', E(x) = 0. This amounts in fact simply to throwing away all terms 



CHAPTER 3. FERMION MASS GENERATION IN QUENCHED QED 38 

that are quadratic or higher in the mass function. It must be emphasized that this is not an 

approximation: it is a precise manner to locate the critical point by applying bifurcation theory. 

We now apply bifurcation analysis to Eqs. (3.4, 3.5). After substitution of the expressions for 

A, B, C and r6 , Eq. (2.134), and neglecting the terms of 0(.~:: 2 ), the F-equation, Eq. (3.5), is 

reduced to 

(3.6) 

where the UV-cutoff A2 has been introduced to regularize the integral. It is important to note 

that now the F-equation is independent of~. After multiplying both sides with F(x) and 

applying the step function, this gives: 

F(x) = 1- a~ 1A2 dy F(y) . 
411' X Y 

(3.7) 

It is easy to check that the unique solution to this equation is: 

(3.8) 

where 
a~ 

v=-. 
411' 

(3.9) 

Next we apply the bifurcation analysis to the ~-equation, Eq. (3.4), neglecting terms of 0(~2 ), 

and find: 

~(x) 

F(x) 
3a [A

2 

dy { ( 1 + F(y) + y + x [1 _ F(y)]) ~(y) [O(x- y) + O(y- x)] 
87r}o F(x) y-x F(x) x y 

_ F(y) ~(y)- ~(x) [!o(x- y) + :_O(y- x)]} (3.10) 
F(x) y-x x y 

a~ 1A2 

dy F(y) { y } +- -- -~(y)O(x- y) + ~(x)O(y- x) . 
411' o y F(x) x 

The second term ofthe ~-part ofEq. (3.10) is identical to the integral in the F-equation, Eq. (3.6), 

and can be replaced by (1/F(x)-1). Then, the left hand side ofEq. (3.10) cancels, the integrals 

are now finite and need not be regularized anymore, as a consequence of the multiplicative 

renormalizability of the fermion propagator in the Curtis-Pennington approximation. However, 

the limit A ---+ oo has to be taken in a proper way to respect the axial current conservation [9, 

28, 38]. If not, one will wrongly find that chiral symmetry breaking occurs for all values of the 

coupling [39]. Therefore the UV-cutoff can only be taken to infinity if the boundary conditions 

imposed by Eq. (3.10) at x = A2 are satisfied, as will be ensured later in this section. After 
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substituting the solution Eq. (3.8) for F(x) and eliminating a using a= 4rrvjt;,, theE-equation, 

Eq. (3.10), becomes: 

The last equation is scaling invariant, and is solved by 

(3.12) 

as will be shown below. 

After substituting Eq. (3.12) in Eq. (3.11) we find: 

x-8 = 3v roo dy { (y-8 + yV-8 + y +X [y-8- yV-8]) [O(x- y) + O(y- x)] (3.13) 
2/;, lo x" y - x x" x y 

(Y) v y-s x-8 [Y X ] } 1oo yv-s 
- - -O(x- y) + -O(y- x) + v dy-O(x- y). 

X y -X X y 0 xv+l 

We now divide Eq. (3.13) by x-s, change variables to t = yjx, and apply the step functions, 

giving: 

1 - dt [cs + tv-s] + ------------3V ll { cs+l + C8 _ 2tV-8+l _ tV-8 + tv+l } 

~ 0 t-1 
(3.14) 

+ - dt cs-l + tv-s-l + -------------3v ],oo { [ ] t-s + t-s-l _ tv-s _ 2tv-s-l + tv-l } 

2/;, 1 t- 1 

+ V fol dttv-s • 

After putting the terms on a common denominator, we get: 

1 = 3v {1 dt { 2C8+1 - tv-s+1 - 2tv-s + t'-'+l } 

2/;, lo t- 1 
(3.15) 

+ 3v roo dt { 2C8 - 3tv-8-1 + tv-1} + V {l dt tv-8 . 
2/;, J1 t- 1 lo 

To solve these integrals we will use Eq. (3.231.5) of Ref. [40], which can be written as: 

1
1 tiL-l _ tv-l 

dt = '1/J(J-L)- '1/J(v) 
0 t- 1 

[Re(J-L) > 0, Re(v) > 0]. (3.16) 

From this integral we also derive the following integral: 

l
oo u-tL- u-v 

du = -'1/J(J-L) + '1/J(v) 
1 u- 1 

[Re(J-L) > 0, Re(v) >OJ. (3.17) 
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To show this, we change variables t = 1/u in Eq. (3.17): 

1oo u-1-'- u-v 10 dt tl-'- t"' 11 tl-'-1 - tv-1 
du = -- =- dt ----

1 u- 1 1 t 2 t-1 - 1 0 t - 1 
(3.18) 

and apply Eq. (3.16) to Eq. (3.18), yielding Eq. (3.17). 

We now substitute the integral evaluations Eqs. {3.16, 3.17) in Eq. (3.15). This gives: 

1 = 3v [ 
2~ 21/J( -s + 2) -1/J(v- s + 2)- 21/J(v- s + 1) + 1/J(v + 2) (3.19) 

- 21/J(s) + 31/J( -v + s + 1) -1/J( -v + 1)] + v 
1 v-s+ 

where the region of the (s, v)-plane for the convergence of the integrals in Eq. (3.15) is specified 

by: 0< 
-2 < 

s 

v 
<2 
< 1 

-1< v-s <1. 

(3.20) 

We note that each of these inequalities has one limit imposed by requiring the integrals to be 

infrared finite, while the other comes from the ultraviolet side. 

We now mention two properties of the 1/J-function(see Eq. (8.365.1, 8.365.8) of Ref. [40]): 

1 
= 1/l(z) +-

z 
1/J(z + 1) 

1jJ(1- z) = 1/J(z) + 1r cot z1r. 

(3.21) 

(3.22) 

Applying Eqs. (3.21, 3.22) to Eq. (3.19) and bringing the term in the left hand side to the right 

gives: 

f(~,v,s) _ ~~ [21rcots1r -1rcotv1r + 37rcot(11- s)1r (3.23) 

+-2- + _1_ +.!.- _3_- 1 ] - 1- s = 0. 
1-s v+1 v 11-s v-s+1 v-s+1 

This means that Eq. (3.12) is a solution to Eq. (3.11) if s satisfies Eq. (3.23) together with the 

convergence conditions Eq. (3.20). 

In a chosen gauge specified by ~' this equation defines roots s for any value of the coupling a. 

Bifurcation occurs when two of these roots (with v and s satisfying Eq. (3.20)) are equal. Then 

a= fie· A necessary condition for equality of two roots is {)j(~,s,v)j{)s = 0, i.e. 

(
c ) _ {)j(~,s,v) 

g "',s,v = as = 
3

v [- 21r2 csc2 s1r + 37r2 csc2(v- s)1r (3.24) 
2~ 

2 3 1 ] v + - - + -o 
(1-s)2 (11-s)2 (v-s+1)2 (v-s+1)2- · 
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To find the critical point we have to solve the coupled system of transcendental equations 

Eqs. (3.23, 3.24) for Vc and sc, together with the convergence conditions Eq. (3.20). The nu­

merical program [41] used to solve this system of equations requires a realistic starting guess in 

order to find the solution. For this purpose, as well as to understand how and when bifurcation 

happens, it is useful to consider first the situation in the Landau gauge, ~ = 0 i.e. v = 0 and 

vf~ = af47r. Then Eq. (3.23) simplifies to: 

3a [ 1 3 ] !(~ = O,v,s) = fo(a,s) =- -1rcots1r + -- +- + 1 -1 = 0, 
87r 1 - s s 

(3.25) 

and the conditions, Eq. {3.20), with v = 0, are reduced to 0 < s < 1. 

From the plot of this function for 0 < s < 1, Fig. 3.2, we see that it has just two real roots in 

this interval when a is small. As a is increased, they approach one another, becoming equal at 

criticality. To find this critical point we take the derivative of Eq. (3.25) with respect to s: 

- 2 2 1 3 
g(~ = O,s,v) = g0 (s) = 1r esc s1r + (

1
- s)2-

82 
= 0. 

10 ~~--~-.,--.--.--.---.--.--.-.~ 
\ <k=0.5 _j 

8 \ (k= 1.5 ------1 

\ 
\ 

6 

4 

\.\., 
'-............. __ .. ____________________ ,.. _______ _ 

2 

0 

-2 .____._ _ _.__.._____. _ __,_ _ _.___._____._ _ _.____. 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

s 

(3.26) 

Figure 3.2: Function f0 (a,s) versus exponents. To satisfy the integral equation Eq. (3.11) in 
the Landau gauge, the exponent s has to satisfy fo( a, s) = 0. 

We plot the function go( s) from Eq. (3.26) in Fig. 3.3. Eq. (3.26) is a single transcendental 

equation which determines the exponent sc in the critical point. The numerical program used 

to solve it, finds sc = 0.470966. Substituting this value for Sc in Eq. (3.25) allows us to compute 
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the value of the critical coupling, which is ac(~ = 0) = 0.933667. The boundary conditions 

imposed by Eq. (3.10) at x = A 2 demand that the behaviour of the mass function be oscillatory, 

and that implies that the roots in Eq. (3.25) are complex. Thus only for a greater than O'c does 

Eq. (3.10) have a non-zero solution for l:{x): only then can chiral symmetry breaking occur. 

,-... 
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-100 
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s 

Figure 3.3: Function g0 ( s) versus exponent s. To determine the critical point of the integral 
equation Eq. (3.11) in the Landau gauge, the exponent Sc has to satisfy go(sc) = 0. 

To find the solutions in other than the Landau gauge we will look for solutions of the system of 

equations, Eqs. (3.23, 3.24), which are continuously connected to the one found in the Landau 

gauge. We will start from values of the gauge close to zero and work our way up and down to 

positive and negative values of~. using the solution at the previous ~-value as starting guess for 

the new calculation. 

The solutions for Vc and Sc are shown in Fig. 3.4. We only find solutions satisfying the conver­

gence conditions, Eq. (3.20), as long as~ > -3. For~ = -3 one can show from Eq. (3.15) that 

the ~-term causes an additional cancellation and the integrals of Eq. (3.11) are still convergent. 

Below this, for ~ < -3, the condition v - s > -1 is not satisfied anymore: the transcendental 

equation, Eq. (3.23), is not equivalent anymore to the integral equation, Eq. (3.11), which be­

comes infrared divergent. For positive values of~' however large, we always find a solution which 

satisfies the conditions, Eq. (3.20), needed for the convergence of the integrals of Eq. (3.11). 

From the solution Vc and Eq. (3.9) we compute ac(O as a function of~- The variation of the 
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Figure 3.4: Solutions Vc and Sc versus covariant gauge parameter~· 

critical coupling with the covariant gauge parameter is shown in Fig. 3.5, where we have plotted 

the critical coupling ac against ~ over the rather large domain -3 ~ ~ ~ 50. The results are in 

agreement with those of Ref. [28] where the system of non-linear coupled equations, Eqs. (3.4, 

3.5), was solved numerically at ~ = 0, 1 and 3. We can compare these results with those 

obtained in the rainbow approximation [28], where the bare vertex is used instead of the Curtis­

Pennington vertex. The values of the critical coupling for~= 0, 1,3 are compared in Table 3.1. 

We note the reassuringly weak gauge dependence of the critical coupling in the CP-case. 
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Figure 3.5: Critical coupling, ac, as a function of the covariant gauge parameter,~. 
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~ CP-vertex Rainbow 
0 0.933667 1.047 
1 0.890712 1.690 
3 0.832927 2.040 

Table 3.1: Critical coupling, ac, for ~ = 0, 1, 3 with the Curtis-Pennington vertex and in the 
rainbow approximation. 

In solving the bifurcation equation, we have at the same time found the exponent s of Eq. (3.12). 

This too is only weakly gauge dependent in a sizeable region of~' as can be seen in Fig. 3.4. For 

instance, in the Landau gauge(~= 0), s = 0.4710, while with~= 5, s = 0.4551. This exponent 

determines the ultraviolet behaviour of the mass-function ~( x) and is consequently related to 

/m, the anomalous dimension of the 1/J'Ij; operator by /m = 2(1- s). Thus in the Landau gauge 

lm = 1.058, close to the value 1 that holds in the rainbow approximation and Holdom claims is 

exactly true in all gauges [ 42]. 

The fact that the variation of the critical coupling is small over a sizeable region of the gauge 

parameter indicates the superiority of the Curtis-Pennington vertex over the bare vertex as well 

as over previous Ansatze for the vertex function [43, 44, 45, 46] made in the past in an attempt 

to improve on the ladder approximation. 

In this section we have determined the critical point, where the generation of fermion mass sets 

in, in quenched QED with the Curtis-Pennington vertex. In the next section we will investigate 

how this generated mass scales when we increase the coupling above its critical value. 

3.4 Scaling law: mass generation versus coupling 

One of the most interesting features in the study of mass generation as a consequence of chiral 

symmetry breaking is the scaling law relating the scale of the generated fermion mass M to the 

coupling a, when this coupling is larger than, but still very close to its critical value ac. It is 

generally thought that this scaling in quenched QED can be described by what is often referred 

to as the Miransky scaling law [11]: 

~ = exp ( A -B) 
M JS!_ -1 

Ole 

(3.27) 

The scaling law is important as it can be related to the triviality of the theory. It is thought 
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that a mean field scaling law indicates that the theory is trivial, while any departure from it 

opens the possibility for the continuum theory to remain interactive. From the Miransky scaling 

law, one can show that the critical coupling O'c can be interpreted as an ultraviolet fixed point 

of the continuum theory. 

We will first prove this formula in the rainbow approximation. Then, we will apply the same 

method to the Curtis-Pennington vertex to show that Eq. (3.27) remains valid and to determine 

the coefficients A and B. 

3.4.1 Bare vertex 

In the rainbow approximation to QED we know that :F( x) = 1 and the mass equation is given 

by: 

~ 30' [11x d y~(y) 1A2 d ~(y) l L..(x)- - - y + y-___;_..,:-,-..,-
- 47r X 0 Y + ~2 (y) x Y + ~2 (y) • 

(3.28) 

We now want to linearize this equation to make it tractable. By doing this Eq. (3.28) becomes 

scale invariant and all information about the scale of the generated mass is lost. This can be 

remedied by introducing an IR-cutoff in the linearized equation. To retain the correct scale of 

the generated mass in the linearized equation, theIR-cutoff K has to satisfy !;(K2) = K. This can 

be understood by noting that below this cutoff the original integral in Eq. (3.28) is negligible 

while the linearized equation would give a big contribution; above the cutoff both integrals will 

be similar. The linearized ~-equation is: 

3a [ 1 1x 1A2 

~(y )] ~(x) =- - dy~(y) + dy-
47r X ,..2 x Y 

(3.29) 

To solve this integral equation it is usual to transform it to a differential equation, through 

successive differentiation, with boundary conditions derived from the integral equation. Differ­

entiating Eq. (3.29) once with respect to x gives: 

3a 1 1x ~'(x) = --2 dy~(y). 
47r X ,..2 

(3.30) 

Multiplying Eq. (3.30) by x 2 and differentiating once more with respect to x gives the following 

differential equation: 
3a 

x2~"(x) + 2x~'(x) + -~(x) = 0. 
47r 

This is a standard differential equation which has solutions of the form: 

~(x) = x-s. 

(3.31) 

(3.32) 
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Substituting the solution (3.32) in Eq. (3.31) gives the following condition for s: 

2 3n 
s -s+-=0. 

411' 

Therefore, the exponent s of the solution Eq. (3.32) has the following values: 

812 =- ±- 1--1 1n 
' 2 2 llc 

with llc = 1l' /3. 

The general solution for I:( x) can thus be written as: 

46 

(3.33) 

(3.34) 

(3.35) 

If the value of the coupling n is larger than the critical value nc this solution can be written as: 

(3.36) 

where T = J.!!.. - 1 is real. 
O<c 

The coefficients C1 and C2 of Eq. (3.36) have to be determined from the boundary conditions 

which are derived from Eqs. (3.29, 3.30). These boundary conditions are: 

(3.37) 

and 

(3.38) 

Substituting the solution, Eq. (3.36), in the UV and IR boundary conditions, Eqs. (3.37, 3.38), 

yields: 

(3.39) 

and 

C ( 
1 ir) -ir C ( 1 ir) ir 

1 -2- 2 K + 2 -2 + 2 K = 0. (3.40) 

Eliminating C1 and C2 from Eqs. (3.39, 3.40) gives: 

(A) 2i-r - ( ~ - i;)2 - r2 exp(-2i0) - . 
- - . - - exp( -4z0) 
K ( ~ + •; )2 r 2 exp(2i0) 

(3.41) 

where r = ~J1 + r 2 and 0 = arctan(r). 
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From Eq. (3.41) we find: 

2r In ( ~) = -4 arctan( T) + 2br . (3.42) 

If o is close to Oc we can expand the arctan in a Taylor series, this yields: 

ln ( ~) = kT1r - 2 . (3.43) 

The ground state of the system is found for k= 1, and so the generated mass is related to the 

coupling as: 

A = exp ( 7r - 2) . ,. J.!!... -1 
Oc 

(3.44) 

The use of a hard IR-cutoff,. in Eq. (3.29) is in fact quite crude, as the low momentum behaviour 

of the mass function, Eq. (3.28), is not approximated very well. A better approximation consists 

in replacing the quadratic term E2(y) in the denominator of Eq. (3.28) by a constant term 

m 2 = E 2(0). This seems more realistic, as the mass term is approximately constant at low 

momentum and is negligible at large momentum: 

E(x) = 3o [.!_ r dy yE(y) + {A2 dy E(y) l 
4rr x lo y + m2 J x y + m2 

(3.45) 

From this integral equation one derives the following differential equation: 

3o x 
x2 E"(x) + 2xE'(x) +-

2
E(x) = 0. 

4rr x + m 
(3.46) 

To find the solutions of this differential equation we introduce the new variable z = -xjm2 and 

find: 

z(1- z)E"(z) + 2(1- z)E'(z)-
30

E(z) = 0. 
47r 

(3.47) 

From Section 9.15 of Ref. [40] we know that the hypergeometric function F(a,b;c;z) satisfies 

the following differential equation: 

[ 
d2 d l z(l- z) dz 2 + [c- (a+ b + 1)z]dz- ab F(a,b;c;z) = 0. (3.48) 

This means that, using the normalization condition E(O) = m, the mass function is given by: 

(
1 1 X ) E(x) = mF - + a - - a· 2·--
2 '2 ' ' m2 

(3.49) 

where a= !J1- ;c. 
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From Eq. (3.46) we derive the UV boundary condition, which is 

[xE(x )]'(A 2 ) = 0. (3.50) 

A property of hypergeometric functions is [47]: 

d 
-[zc-1 F(a b· c· z)] - (c- 1)zc-2 F(a b· c- 1· z) 
dz ' ' ' - ' ' ' · 

(3.51) 

Substituting the solution, Eq. (3.49), in the boundary condition, Eq. (3.50), and applying the 

property, Eq. (3.51), gives: 
1 1 A2 

mF(- +a-- a·1· --) = 0 
2 '2 ' ' m2 · 

(3.52) 

To simplify this last expression we will make use the following equality [47]: 

F(a, b, c; z) 
f(c)f(b- a) -a -1 

= f(b)f(c-a)(-z) F(a,l+a-c;1+a-b;z ) (3.53) 

f(c)f(a- b) -b -1 + f(a)f(c-b)(-z) F(1+b-c,b;1+b-a;z ). 

Applying Eq. (3.53) to the UV boundary condition, Eq. (3.52), when A2 ~ m 2 and keeping the 

leading order terms yields: 

f(-2a) (A2 )-~-cr f(2a) (A2 )-~+cr 
m - +m - -O 

f2(!- a) m 2 f2(! +a) m 2 - · 

When a> etc we write a= ~~ where T = J ::c - 1. Eq. (3.54) then becomes: 

r( -ir)f2 (~ + ~1') 
f(ir)f2 (~-~r) · 

(3.54) 

(3.55) 

Using the equality r(z) = r( z) and defining r( iT) = r1 exp( i(h) and r(! + ~~) = r2 exp( i92) we 

get: 

(A2)n 
m2 = exp( i9) (3.56) 

where 9 = 11'- 291 + 492 and 91 = arg(f(ir)), 82 = arg (r(~ + ~~)). 

We want to approximate 9 for small values of r. Therefore, we Taylor expand the Gamma 

functions: 

f(ir) ~ .;_(1 + injJ(1)) = 'I/J(1)- .!:_ 
tT 1' 

(3.57) 

and 

(3.58) 
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Thus, the argument () from Eq. (3.56) becomes: 

() 1r- 2arg(f(ir)) + 4arg (r (~ + ~T)) 

~ 1r- 2arctan (- r1P
1
(1)) +4arctan (~1P (~)) 

~ 1r - 2 ( i + r1P( 1)) + 2r1P ( ~) 
~ -4rln2 

knowing that 1P(1) = -1 and 1P( ~) = -1 - 2ln 2. 

After substituting Eq. (3.59) in Eq. (3.56) and inverting the exponential, we find: 

ln (~) = 2_( -4Tln 2 + 2k7r) . 
m 2r . 

49 

(3.59) 

(3.60) 

The ground state of the system is found for k= 1, and so the generated mass is related to the 

coupling as: 

A = exp ( 7r - 2ln 2) 
m J.JL- 1 

C>c 

(3.61) 

where we note that 2ln 2 ~ 1.386. 

We see from Eqs. (3.44, 3.61) that both cutoff methods yield a similar scaling law, in agreement 

with Eq. (3.27). The coefficients of the scaling law are A = 1r in both approximations, but B = 2 

in the first case and B = 2ln 2 in the second, more realistic, case. 

3.4.2 Curtis-Pennington vertex 

We now want to make an analogous calculation using the Curtis-Pennington vertex Ansatz. In 

this case, the linearized equation for the fermion mass in an arbitrary covariant gauge is given 

by the bifurcation equation, Eq. (3.11). In the Landau gauge(~= 0), the ~-equation becomes: 

~(x) = 3a 1A2 {2~(y) [O(x- y) + O(y- x)] - ~(y)- ~(x) [!o(x- y) + :_O(y- x)]} 
81r n2 X y y - X X y 

(3.62) 

where we introduced again an infrared cutoff r;,2 , satisfying r;, = ~( r;, 2 ), to retain the scale of 

the generated fermion mass when a is larger, but very close, to the critical coupling etc. We 

know from the discussion of Section 3.3 that in the critical point, where the infrared cutoff r;, 

is zero, the solution of this equation has a power behaviour. Therefore we assume that close to 

the critical point, the solution to Eq. (3.62) is still power behaved: 

(3.63) 
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After substituting this solution in Eq. (3.62) we get: 

- -7rcot7rs+-+--+l x-3a { [ 3 1 ] s 
87r s 1 - s 

(3.64) 

2 (l'i:2)1-s 11<2 y y-s- X-s 2 2 -s 1= X y-s- X-s} --- + dy- --(A ) + dy- . 
1 - S X 0 X y - X S A2 y y - X 

The exponent s has to satisfy the transcendental equation derived by equating the terms in x-s 

in Eq. (3.64) (,.-+ 0 and A-+ oo ): 

1 = - -1r cot 1r s + - + -- + 1 3a [ 3 1 ] 
87r s 1 - s 

(3.65) 

We want to investigate the behaviour of s in the neighbourhood of the critical point. Therefore 

we rewrite Eq. (3.65) as: 

where 

3a 1 
81r = h(s) = f(s) 

3 1 
f( s) = -1r cot 1fS + - + -- + 1. 

s 1- s 

We now make a Taylor expansion of the function h( s) around the critical point: 

(3.66) 

(3.67) 

(3.68) 

From Eq. (3.66) we know that h(sc) = 3ac/87r and in Section 3.3 we have shown that h'(sc) = 0 

in the critical point. Therefore, Eq. (3.68) becomes: 

3a = 3ac _ ~(s _ sc)2f"(sc) . 
81r 81r 2 J2(sc) 

The behaviour of sin the neighbourhood of the critical point is thus given by, 

where 

S} 2 = Sc ± fJcJ1 - Q 
' Ctc 

2f(sc) 
f"(sc) · 

Differentiating Eq. (3.67) twice yields: 

"( ) 3 2 6 2 f s = - 27r esc 1r scot 1r s + 
83 

+ ( 
1 

_ 
8 

) 3 . 

(3.69) 

(3.70) 

(3. 71) 

(3.72) 

Substituting the value sc = 0.4710, found in Section 3.3, in the previous equations, Eqs. (3.67, 

3. 72, 3. 71 ), gives I fie = 0.52461. 
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The general solution of Eq. (3.64), in the neighbourhood of the critical point is: 

(3.73) 

The scale of the generated mass will be determined by the boundary conditions which are derived 

from Eq. (3.64). TheIR boundary condition is found by taking x = K2 in Eq. (3.64) (A---+- oo ): 

c1 [--2-(K2)-S! + r2 dy.J!.... y-81 - (K2)-S!l (3.74) 
1 - S1 lo K2 y - K2 

+C2 [--2-(K2)-s2 + r2 dy.J!.... y-s2 - (K2)-s2] = 0. 
1 - s2 Jo K2 y - K2 

Substituting t = y/K2 in the integral of Eq. (3.74) yields: 

[ 
2 11 cs1+1 t] [ 2 11 rs2+1 tl C1 (K2)-81 --- + dt - + C2 (K2)-82 --- + dt l- = 0 • 

1 - s1 o t - 1 1 - s2 o t -
(3.75) 

The integrals in Eq. (3.75) are given in Eq. (3.16). Substituting these, we find: 

C1 (K2)-81 
[--

2
- + 1/J( -S1 + 2) -1j;(2)] + C2 (K2)-82 [--

2
- + 1/J( -S2 + 2)- 7/J(2)] = 0. 

1- S1 1- S2 
(3. 76) 

(3.77) 

Substituting t = y / K2 in the integral of Eq. (3. 77) yields: 

[ 
2 joo t-s1-1 t-1] [ 2 joo t-s2 -1 t-1] 

C1 (A2)-81 -- + dt ~ + C2 (A2)- 82 
-- + dt ~ = 0. 

s1 1 t- s2 1 t-
(3.78) 

Substituting the integral Eq. (3.17) in Eq. (3.78) yields: 

C1 (A
2)-s1 [- ~ -7/J(s1 + 1) + 7/J(l)] + C2 (A2)-s2 

[-
8

2

2 
-7/J(s2 + 1) + 7j;(1)] = 0. (3.79) 

Now, eliminate c1 and c2 from the boundary conditions, Eqs. (3.76, 3.79), and substitute s1,2 

from Eq. (3.70): 

( ~:)
2if3cr = [-sc+~!1cr -7/J(sc+if3cr+1)+7/J(l)] [- 1-sc!l/icr +7/J(-sc+if3cr+2)-7j;(2)] 

"' [- sc-~f3cr- 7/J(sc- if3cr + 1) + 7/J(1)] [-l-sc~if3cr + 7/J( -Sc- if3cr + 2) -1j;(2)]. 
(3.80) 
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After noting that ,P(z) = ,P(z), we rewrite Eq. (3.80) as: 

(

A 2) 2i/3cT 
-;;:I = exp(iO) = exp (2i(01 + 82)), 

where 

For small values of r, we compute 01 and 82 to O(r): 

We compute 0 by inserting Eqs. (3.84, 3.85) in Maple: 

From Eq. (3.81) we find: 

A ( krr 0 ) - = exp -- + -- , 
/'i, 2f3c T 4f3c T 
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(3.81) 

(3.82) 

(3.83) 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

and substituting Eq. (3.86) for 0 in this equation yields precisely the Miransky scaling law, close 

to the critical point, where r ~ 1 (k=1): 

A= exp ( A - s) 
/'i, J.Q..- 1 

Oc 

(3.88) 

where 

lA = ~ = 0.9531rrl and (3.89) 
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3.4.3 Summary 

The previous results can be compared with the numerical results of Curtis and Pennington (28] 

who solve the non-linear integral equation for various values of a and fit their results to the 

form of Eq. (3.27), in the rainbow approximation and with the Curtis-Pennington vertex. In the 

rainbow approximation they find A = 0.9886 1r, B = 1.4883, while, in Section 3.4.1, we found 

A = 1r and B = 2 or B = 2ln 2 ~ 1.386, depending on theIR treatment of the linearized integral. 

There is good agreement between our analytical and their numerical results. The parameter A 

agrees extremely well and seems independent of the way the IR part of the integral is treated. 

The deviations for the parameter B can be explained as it sets the scale of the generated mass 

and is therefore sensitive to the IR approximation introduced in the linearized equation. 

This is confirmed for the CP-vertex where Curtis and Pennington find A = 0.93267r and B = 
1.2606. Again, the parameter A is in very good agreement with our analytical results, Eq. (3.89), 

while the parameter B deviates from it. It is clear from our discussion in Section 3.4.2 that the 

parameter A is independent of the boundary conditions and the IR treatment of the linearized 

integral, and will therefore have the correct value of the true scaling law for the original non­

linear equation. 



Chapter 4 

Fermion mass generation in 
unquenched QED: a survey 

In the previous chapter we discussed dynamical fermion mass generation in quenched QED. We 

found that, provided the coupling is larger than some critical value, this indeed happens. The 

value of the critical coupling depends on the vertex Ansatz used to truncate the infinite set of 

SD equations. Furthermore, the scale of the generated mass in quenched QED seems to follow 

the Miransky scaling law. 

As the phenomenon of mass generation is thought to be governed by the dynamics at low 

momentum it has long been the question if it also occurs in unquenched QED. Here, the coupling 

runs as a consequence of screening effects due to fermion-antifermion pair productions, such 

that the interaction becomes weak at long distances. It is this opposition between short and 

long distance aspects which makes the study of fermion mass generation in unquenched QED 

essentially different from that in quenched QED. 

We will now give a review of the work accomplished prior to this study. It is not so long ago since 

the first studies about fermion mass generation in unquenched QED, using the Schwinger-Dyson 

equation approach, were published. The integral equations describing the dynamical generation 

of fermion mass, Eqs. (2.34, 2.35, 2.41 ), are given by: 

"E(p2) 
:F(p2) 

1 
:F(p2) 

1 
Q(q2) 

( 4.1) 

(4.2) 

( 4.3) 

54 
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In many studies the full vacuum polarization is replaced by its 1-loop approximation, replacing 

all the full quantities in the integral of Eq. ( 4.3) by bare quantities. The integral can then be 

computed analytically and the 1-loop vacuum polarization function is given by: 

Il(q2) = Nfa [ln A2 + c] 
311' q2 

( 4.4) 

where C a constant dependent on the regularization scheme. As we can write the photon 

renormalization function as 
2 - 1 

9( q ) = 1 + Il( q2) ' 

the full photon propagator itself is then approximated by an infinite sum of bare loops. 

In Ref. [13] Kondo et al. perform an analytical calculation using the 1-loop approximation to the 

vacuum polarization. Furthermore they introduce the so-called LAK-approximation (in analogy 

to Landau, Abrikosov and Khalatnikov [48]): 

(4.5) 

to allow them to compute the angular integrals of the fermion equations analytically. The full 

vertex P' ( k, p) is approximated by the bare vertex -yf-1.. To determine the critical point in the 

Landau gauge they then linearize the mass equation, applying bifurcation analysis. Conse­

quently, they derive a differential equation with boundary conditions, which cannot be solved 

by any known special functions. Therefore they use an asymptotic expansion method which is 

only valid for the number of flavours Nf = 1,2. The main results published in this paper are 

ac(NJ = 1) = 1.99972, ac(NJ = 2) = 2.71482. The generated dynamical mass and the order 

parameter <'1/J'I/J> scale according to the mean field scaling law (in contrast with the Miransky 

scaling in the quenched case): 

mrvJQ -1 
A O:c ' 

(4.6) 

and the anomalous dimension of the composite operator is 'Ym = 0. 

In another analytical paper, Gusynin [14] follows almost the same path as Kondo et al. [13]. 

He introduces the same approximations and hence, finds the same differential equation as they 

do. His treatment differs in the way he solves the differential equation. His solution method is 

only valid when 311'/NJa ~ 1 and is thus limited to Nf = 1. For the critical coupling he finds 

ac(Nj = 1) ~ 1.95. Also, the scale of the generated mass follows the mean field law, Eq. (4.6). 

In Ref. [44], Kondo discusses how to recover the gauge invariance of the critical coupling and 

the scaling law in quenched and unquenched QED by a specific choice of vertex. The vertex 
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is constructed such that the Landau gauge results, in quenched and unquenched QED, remain 

unchanged in any arbitrary gauge. However, it is clear, in the light of the most recent investiga­

tions about the construction of the full QED vertex [24, 25, 35], that Kondo's choice of vertex 

shows unphysical properties. 

As mentioned before, all the analytical studies of unquenched QED required the introduction of 

several approximations to make the problem tractable. Therefore, new, numerical studies were 

undertaken as in Ref. [16) and its preliminary report, Ref. [15), by Kondo et al. They solve the 

integral equations numerically in the Landau gauge. Again, they use the bare vertex approxi­

mation, while the vacuum polarization is still taken at 1-loop, Eq. (4.4). In the first part oftheir 

calculation they introduce the LAK-approximation, Eq. ( 4.5), as in the analytical calculations. 

This is useful to verify the analytical results and to simplify the numerical calculation. In this 

approximation the F-equation decouples, yielding F(x) = 1. The angular integrals of the I.:­

equation can be calculated analytically leaving a one-dimensional non-linear integral equation 

for I:( x) to be solved numerically. They plot the variation of the generated mass and the order 

parameter, <'1/J'I/J>, versus coupling for N1 = 1, 2, 3, 4. According to them, all the scaling laws 

are of the mean field type. The values of the critical couplings are: ac(NJ = 1) = 1.9989, 

ac(NJ = 2) = 2.7517, ac(NJ = 3) = 3.5062, ac(NJ = 4) = 4.3177. The numerical results very 

much agree with the analytical results of Ref. [13). In the second part of Ref. [16) they relax the 

LAK-approximation, keeping the angular dependence of the vacuum polarization. Then, the 

two-dimensional integrals, i.e. radial and angular, in the fermion equations have to be solved 

numerically and the two coupled integral equations for F and E have to be solved simultane­

ously. As an intermediate step they again take F( x) = 1 (as this is a good approximation in 

the Landau gauge) and solve the integral equation for I.:(x). They find ac(NJ = 1) = 2.0728 

and ac(N1 = 2) = 2.8209. Finally, they solve the system of coupled equations for I: and F. 

They do not mention any critical coupling but observe that indeed F( x) :::::; 1. They state that 

the scaling laws remain of the mean field type. However, surprisingly, they only find a phase 

transition for Nf = 1, 2. Their iterative procedure does not converge for Nf ~ 3. The reason 

for this, is that the positivity of the vacuum polarization II( q2 ) is not guaranteed anymore as 

can be seen from Eq. (4.4). If k2 , p2 E [O,A2) then (k- p)2 E [0,4A2). It seems inconsistent 

to use the vacuum polarization for momenta up to 4A 2 when the integrals used to compute the 

vacuum polarization were computed using an UV cutoff A2
• The trouble only occurs for NJ ~ 3 

because then the photon momentum in the integral of the fermion equation becomes larger than 
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the Landau pole. 

In Ref. [17] Oliensis and Johnson derive a non-linear differential equation from the integral 

equations and solve this numerically. They use the bare vertex approximation, but their vacuum 

polarization is slightly different from Eq. ( 4.4 ), being 

2 Nfo: A2 

II( q ) = 3rr In q2 + E2(0) ' (4.7) 

where they incorporated an infrared cutoff through the term E 2 (0), which suppresses the effects 

of the vacuum polarization below this scale. They fix E(O) and solve their differential equation 

for increasing values of A, finding a critical coupling o:c(NJ = 1) = 1.999534163. Furthermore, 

the generated mass follows a mean field scaling law. 

In Ref. [18] Rakow investigates the renormalization group flow in QED using the Schwinger­

Dyson equations. He includes the effect offermionloops in the photon propagator by considering 

the fermion and photon SD equations simultaneously. The full vertex is still approximated by the 

bare one. He solves the coupled set of non-linear integral equations numerically. He determines 

the critical coupling by investigating the dependence of the chiral condensate < '1/J'I/J > on the 

coupling a and the bare mass mo. He finds a second order phase transition for o:c( N f = 1) = 2.25. 

However, we think that this value has not been determined accurately as can be inferred from 

the data of Ref. [18] and we will show in our own calculations later on. He then goes on to show 

that the renormalized coupling is zero at the critical point. We note that Rakow renormalizes 

the coupling at zero momentum. It is clear that the unrenormalized, running coupling goes to 

zero at zero momentum in the critical point, when the fermion mass generation disappears, and 

therefore it seems obvious that his renormalized coupling, defined as O:r = av(O)F2(0), is zero. 

Nevertheless, we do not agree with Rakow's claim that this proves the triviality of QED, as will 

be explained later. 

In Ref. [19] Atkinson et al. solve the coupled integral equations in the Landau gauge. They 

use the bare vertex approximation and assume F( x) = 1. Furthermore they use the LAK­

approximation, Eq. ( 4.5), for the vacuum polarization. They make an analogous approximation 

for the mass function in the vacuum polarization integral to allow the analytic calculation of the 

angular integrals. The integral equations for E and II are transformed into differential equations 

(using some more simplifications) which are then solved numerically. They find o:c(NJ = 1) = 
2.100286 and a mean field type scaling law. 

A more detailed numerical investigation of fermion mass generation can be found in Ref. [20]. 
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There, Kondo et al. start from the coupled system of integral equations for ~' :F and 9. They 

simplify the numerical problem by assuming :F( x) = 1, as this is thought to be a good approxi­

mation. Then the system of two coupled integral equations for ~ and 9 is solved by an iterative 

procedure. Their discussion of the numerical aspect of the calculation is very interesting as this 

is often disregarded in publications. They compare the results obtained for ~(x) and 9(x) in the 

self-consistent treatment and in the 1-loop approximation to the vacuum polarization. The scal­

ing law is consistent with the mean field type scaling, although they very pertinently point out 

that the exact scaling law is very difficult to pin down numerically because the scaling window is 

very narrow, i.e. the scaling law is only valid very close to the critical point. Analytical studies 

seem more appropriate for this purpose. They find a critical coupling ac(NJ = 1) = 2.084. We 

note the peculiar behaviour of the full photon renormalization function compared to its 1-loop 

approximation, as we will discuss later. 

We will end our review with alternative methods to the Schwinger-Dyson approach. In Ref. [49] 

Ukita et al. suggest a gauge invariant way to study the strong coupling phase of QED by applying 

the inversion method to the chiral condensate < 1/J'I/J>. The lowest order inversion method leads 

to the gauge-independent critical point ac = 211" /3 = 2.094395. To the lowest order inversion 

this value is independent of the number of flavours Nf. Although Oc seems reasonably well 

approximated for Nf = 1, it is wrong by a factor two for the quenched case. In Ref. [50] Kondo 

et al. compare the inversion method with their SD approach from Ref. [51]. They show that 

their asymptotic solution to the lowest order is the same as that of the inversion method. They 

then go on showing that including higher orders in the asymptotic solution recovers the known 

result in quenched QED, i.e. Oc = 1r /3, for which the series converges. For Nf = 1 the series 

is asymptotic and they find ac(NJ = 1) = 1.9995. They conclude that therefore the inversion 

method, which is very useful because gauge invariance is guaranteed and no approximations to 

vertex nor vacuum polarization are necessary, has to be computed to higher orders to find a 

critical coupling which depends on the number of flavours. 

Finally we will want to know what lattice studies can tell us about the dynamical generation 

of fermion mass. In Section 3.2 we discussed briefly the lattice calculations in quenched QED. 

There have been quite few lattice investigations of unquenched QED. In Ref. [52] Dagotto et al. 

showed that there is a second order phase transition from a massless to a massive phase. Since 

then, the discussion about the scaling law, which is related to the triviality of the theory, is still 

active (53, 54]. 
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The values of the critical coupling ac for N1=1, 2, determined in the above discussed papers are 

tabulated in Table 4.1. 

Ref. ac(Nj = 1) ac(NJ = 2) 
[13] 1.99972 2.71482 
[14] 1.95 
[16] a) 1.9989 2.7517 
[16] b) 2.0728 2.8209 
[17] 1.999534163 
[18] 2.25 
[19] 2.100286 
[20] 2.084 
[49] 2.094395 
[50] 1.9995 

Table 4.1: Literature survey of critical couplings for N1 = 1 and N1 = 2 in unquenched QED. 

We have seen that various approximations have been introduced, in the analytical as well as in 

the numerical calculations, producing results with varying accuracy. In the next chapters, we will 

develop a numerical method to make a unified, highly accurate numerical study of the various 

approximations to the Schwinger-Dyson equations for dynamical fermion mass generation in 

unquenched QED. The final aim is the solution of the system of three coupled, non-linear 

integral equations for E, F and 9. This will first be achieved with the bare vertex, then, we 

will for the first time take the study of fermion mass generation in unquenched QED beyond 

the bare vertex approximation by introducing improved vertices. 



Chapter 5 

Numerical Solution of 
Schwinger-Dyson Equations 

The aim of this chapter is to set up the formalism needed to solve the integral equations numeri­

cally. We will start by considering a single integral equation determining one unknown function. 

The type of integral equations which are of interest to us are called non-linear Fredholm equations 

of the second kind [55]: 

x(s) = y(s) + ,\ 1b K(s,t,x(s),x(t))dt, (5.1) 

where y( s) is a known function and x( s) is the unknown function we want to determine. 

Unfortunately, the major part of the literature about numerical methods to solve integral equa-

tions is only concerned with linear integral equations. The linear Fredholm equation of the 

second kind is: 

x(s) = y(s) + ,\ 1b K(s, t) x(t) dt. (5.2) 

For these linear equations there exists convergence criteria related to the behaviour of the ker­

nel K(s, t). Moreover several different solution approaches exist: Nystrom method, expansion 

methods as Ritz-Galerkin method, ... Very little can be found in the literature about non-linear 

equations so that the researcher confronted with such an equation has to gather together bits 

and pieces from a number of different areas of numerical analysis to tackle this problem. 

The basic approximation introduced to solve an integral equation numerically resides in the 

numerical method used to evaluate the integrals involved in the problem. 

If one needs to calculate numerically the integral I[/] of some function f( s) given by: 

I[!] = 1b f(s) ds, 

60 

(5.3) 
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one will generally use a quadrature formula to approximate the exact value of the integral. Most 

quadrature formulae approximating the integral value by the value R[/] can be expressed as: 

N 

R[/] = L wd(ti)· (5.4) 
i=l 

The error E[f] introduced by this approximation is: 

E[f] = J[f] - R[f]. (5.5) 

Well-known quadrature formulae are for instance the Newton-Cotes formulae as the midpoint 

rule, the trapezoidal rule, Simpson's rule, ... , or the various Gauss rules of which the Gauss­

Legendre rule is the best-known. Several other quadrature formulae exist which can be used 

depending on the behaviour of the integration kernel. 

5.1 Linear Fredholm equation of the second kind 

5.1.1 Linear Fredholm equation and the Neumann series 

Let us consider a linear Fredholm equation of the second kind: 

x(s) = y(s) + ,\ 1b K(s, t) x(t) dt. (5.6) 

Formally this can also be written in operator form as: 

x = y+..\Kx. (5.7) 

Starting from an initial guess x 0 = y for the function x we will define an iterative procedure: 

(5.8) 

If this procedure converges when n----+- oo, then from Eq. (5.8) this limit can be written as a series 

called the Neumann series. One can show that the Neumann series converges to the solution of 

Eq. (5.7): 
00 

X= lim Xn = "',\if(iy. 
n-+oo ~ 

(5.9) 
i=O 

If the integral Kxn = J: K(s,t)xn(t)dt can be computed analytically, the iterative procedure 

Eq. (5.8) can be used to find a good approximation to the function x by truncating it after n 

iterations and taking x ~ Xn· 
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Can we compute an error bound on the approximate solution ? Let us define the error function 

en on the nth approximation by: 

If we subtract Eq. (5.8) from Eq. (5.7) we find: 

X- Xn+l = ).J((x- Xn) 

or 

However we also find: 

Xn+l - Xn = (Xn+l - x) + (x- Xn) =en- en+l, 

giving 

Taking the norm (using some appropriate function norm) of the previous equation gives: 

If we now substitute Eq. (5.12) in Eq. (5.15), 

After rearranging terms, 

and provided IIA.KII < 1, 

II II < llxn+l - Xnll 
en - 1 - II>..KII . 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

One can show that the condition IIA.KII < 1 is sufficient for the Neumann series to converge to 

the solution ofthe integral equation Eq. (5.7). Furthermore Eq. (5.18) then gives an a posteriori 

error bound which can be computed given two successive iterations Xn and Xn+t· 



CHAPTER 5. NUMERICAL SOLUTION OF SCHWINGER-DYSON EQUATIONS 63 

5.1.2 Numerical solution using the Neumann series 

In the previous section we defined an iterative procedure to solve the integral equation Eq. (5.6) 

assuming that the integrals ]( Xn = J: K( s, t) xn( t) dt could be computed analytically, 

Xn+l(s) = y(s) +A 1b K(s, t) Xn(t) dt. (5.19) 

In most problems this will not be possible and the integrals will have to be evaluated using some 

numerical quadrature formula. If we use the quadrature formula R on the interval [a,b] with 

weights Wi and nodes ti the integral will be written as: 

b N 

I[f] = 1 f(t)dt = ~ wd(ti) + E[f]. (5.20) 

To compute the Neumann series numerically we approximate the integral of Eq. (5.19) by in­

troducing some suitable quadrature formulae and truncating the error term E[f]: 

b N 1 K(s,t)x(t)dt ~ 'LwjK(s,tj)x(tj)· 
a j=l 

(5.21) 

The iterative procedure Eq. (5.19) can now be replaced by: 

N 

Xn+I(s) = y(s) +A 'LwjK(s,tj)Xn(tj)· (5.22) 
j=l 

It is interesting to note from this last equation that if we confine ourselves to values s = tj, 
the nodes of the integration formula, Eq. (5.22) only involves the function values Xn(tj) in the 

successive iteration steps. The notation can then be simplified by introducing vector notation, 

Xn+l = Y + AKXn, (5.23) 

where we define, 

(xn)i Xn(ti) 

Yi y(ti) 

(5.24) 

with i,j = 1, ... ,N. 

One can show that if the iterative procedure Eq. (5.23) converges, it converges to the solution 

of the set of linear algebraic equations 

(I- AK)xR = y, (5.25) 
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where the subscript R shows the explicit dependence of the solutions of Eq. (5.25) on the 

quadrature rule R. 

If we now define an error vector en 

(5.26) 

then, repeating the error analysis from Eqs. (5.10-5.18), on Eqs. (5.25, 5.23) and replacing the 

function norm by some suitable matrix norm gives us an error bound on the truncated solution: 

II II < llxn+l - Xnll 
en - 1 - II A/( II ' (5.27) 

provided IIAKII < 1. This error is the error on the solution XR to the set of linear algebraic 

equations introduced by truncating the iterative procedure and approximating the solution by 

Xn, it is not the error with respect to the exact solution x( s) from the integral equation. 

5.1.3 The Nystrom method 

In the previous section we have shown how to find an approximate solution to the integral 

equation Eq. (5.6) by applying the Neumann series and the corresponding iterative procedure, 

truncating the procedure after n steps and approximating the integrals in each step by a. quadra­

ture ruleR. 

Instead one could approximate the integral equation Eq. (5.6) straight away by replacing the 

integral in Eq. (5.6) by a. quadrature rule R, 

N 

x(s) = y(s) +A L WjK(s, ij)x(tj)· (5.28) 
j=l 

If we only consider Eq. (5.28) in the integration nodes s = ti, Eq. (5.28) becomes a system of N 

linear equations with N unknowns Xi = x(ti) with solution vector XR, 

N 

(xR)i = Yi +A L WjK(ti, tj)(xR)j, (5.29) 
j=l 

which is equivalent to Eq. (5.25). This is called the Nystrom method. 

The iterative procedure from Section 5.1.2 is, if it converges, just one possible numerical method 

which can be used to solve the set of linear algebraic equations Eq. (5.29). As a. matter of fact 

there are several other methods to solve sets of linear algebraic equations and one applies the 

method which suits the problem best. If we denote the approximate numerical solution of the 
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set of linear equations Eq. (5.29) by xs (generalizing the notation Xn of Section 5.1.2 to an 

arbitrary convergent method), then the error estimate es on the solution XR of Eq. (5.29) is 

defined as, 

eg = XR- Xg. (5.30) 

The error es will have to be determined by analysing the specific numerical method used to 

solve the set of linear algebraic equations. 

Of course this error estimate is only part of the error if we want to use the solution xs as an 

approximation to the solution x( s) of the integral equation at the nodes s = ti. For this purpose 

we will also have to investigate the error caused when replacing the integral by a finite sum 

using the quadrature formula R. If we could solve the set oflinear equations Eq. (5.25) exactly, 

then (xR)i are approximations to the function x(s) at the grid points s = ti. Eq. (5.28) then 

defines an approximating function x n( s) to x( s) for all s occurring in the left hand side of the 

equation. Can we find an error estimate on this approximation ? 

We define the error function en(s) as, 

en(s) = x(s)- xn(s). (5.31) 

Using Eq. (5.20) in Eq. (5.28) we see that the function xn(s) satisfies the integral equation 

xn(s) = y(s) + ..\ 1b K(s, t)xn(t)dt- E[..\Kxn](s). 

Subtracting Eq. (5.32) from the original integral equation Eq. (5.6) yields: 

x(s)- xn(s) = ..\ 1b K(s, t) (x(t)- xn(t)) dt + E[..\Kxn](s), 

or 

en(s) = ..\ 1b K(s, t) en(t) dt + E[..\Kxn](s). 

(5.32) 

(5.33) 

( 5.34) 

This means that the error function en( s) introduced by the quadrature rule R also satisfies a 

linear Fredholm integral equation of the second kind. The kernel is the same as in Eq. (5.6) but 

the driving term is now E[..\Kxn](s) instead of y(s). Taking the function norm of Eq. (5.34) 

gives 

thus, 

II II < IIE[..\KxnJII 
en - 1- I..\KII ' 

(5.35) 

(5.36) 
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provided IAKII < 1. 

A more practical error formula can be derived in vector form. We rewrite Eq. (5.6) using 

Eq. (5.20): 
N 

x(s) = y(s) +A L WjK(s, tj)x(tj) + E[AKx](s). 
j=l 

Now subtract Eq. (5.28) for Xft from Eq. (5.37), 

N 

x(s)- XR(s) =A L WjK(s, tj)(x(tj)- XR(tj)) + E[AKx](s), 
j=l 

or 
N 

eR(s) =A L WjK(s, tj)eR(tj) + E[AKx](s). 
j=l 

Evaluating this last equation at the nodes ti gives: 

N 

eR(ti) =A L WjK(ti, tj)eR(tj) + E[AKx](ti), 
j=l 

or in vector notation, 

(I- AK)eR = E[AKx). 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

This set of equation for eR has the same coefficients as Eq. (5.25) for Xft but with a different 

constant vector. The solution to Eq. (5.41) is given by: 

eR =(I- .uq-1 E[AKx]. (5.42) 

After taking the vector and matrix norm, 

(5.43) 

which only requires that we can solve Eq. (5.25) and so is applicable even in the case IIAKII 2: 1. 

Of course this is a formal result where we note that the error term IIE[AKxJII is a function ofthe 

unknown solution x(s). To use this formula in practice one could approximate x(s) by XR(s) to 

evaluate the error term. 

We can now combine the error estimates Eq. (5.31) and Eq. (5.30) (neglecting precision errors) to 

give a total error bound when approximating the solution x(ti) of the original integral equation 

Eq. (5.6) at the grid points by the approximated solution (xs)i of the system of equations derived 

using the quadrature rule R. The error vector e is defined as: 

e = x- xs. (5.44) 
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This can be written as: 

(5.45) 

Taking the norm: 

(5.46) 

where both error terms have been bounded in Eq. (5.43) and Eq. (5.27) (for the iterative pro­

cedure). 

5.2 Non-linear Fredholm equation of the second kind 

We will use the method described in the previous section to build a numerical solution for the 

non-linear Fredholm equation of the second kind. The equation to solve is: 

x(s) = y(s) + >.1b K(s, t, x(s), x(t)) dt. (5.47) 

Applying the Nystrom method developed in the previous section, we again will approximate 

the integral by some quadrature formula R, replacing the integral equation Eq. (5.47) by the 

approximate equation: 

N 

x( s) = y( s) + >. L: wj K( s, tj, x( s ), x( tj) ). (5.48) 
j=l 

If we require that this equation should hold at the points s = ti, Eq. (5.48) becomes a set of 

N non-linear algebraic equations with N unknowns Xi where Xi= x(ti): 

N 

Xi= Yi + >. L WjK(ti, tj, x;, Xj)· 
j=l 

In matrix form this equation can be written as: 

x = y + >.K(t, x). 

(5.49) 

(5.50) 

It is this system of non-linear algebraic equations we want to solve numerically to approximate 

the solution of the integral equation Eq. (5.47). A straightforward way to try to solve such a set 

of non-linear algebraic equations is to start from an initial guess xo and to define the natural 

iterative procedure: 

Xn+l = y + >.K(t,x0 ). (5.51) 
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One can assume that if this procedure converges when n ----> oo, it will converge to one of 

the solutions of Eq. (5.50). The achievement of convergence as well as its rate depend on the 

behaviour of the kernel K( t, x). 

From the previous description one sees that two major numerical approximations are involved 

in solving the original equation. First we have to make a proper choice of numerical quadrature 

formula and second we truncate the iterative procedure Eq. (5.51) after a finite number of steps. 

It is important in order to assess the approximate solution to have a good idea of the size of the 

errors introduced by both approximations. We will return to this in detail in future sections. 

To be able to discuss the size of the errors when solving Eq. ( 5.50) we will first introduce a 

suitable vector norm on our solution space (pp. 2-17 of Ref. [56]). In general the p-norm of a 

vector is defined as, 

(5.52) 

Some of the most frequently used vector norms derived from Eq. (5.52) are: 

llxlh l:lxil, (5.53) 
i 

llxll2 J2t lxil
2
, (5.54) 

llxlloo maxlxil· (5.55) 
t 

The norm llxll2 is called the Euclidean norm, while the norm llxlloo is called the maximum norm. 

To investigate the error on the solution to our problem we will use the maximum norm, defining, 

llxll = llxlloo = m~ lxil· (5.56) 
t 

The maximum norm is quite interesting because it makes sure that no deviation in any point is 

larger than llxlloo· To discuss the error bounds on the solution we also need the matrix norm 

induced by the corresponding vector norm. The matrix norm induced by the maximum norm 

is, 

IIAIIoo = m~x L IAijl, (5.57) 
t . 

J 

i.e., the maximum absolute row sum of the matrix, which is straightforward to compute. 

The matrix norm IIAII 1 is given by the maximum absolute column sum of the matrix: 

(5.58) 
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while the matrix norm induced by the Euclidean norm is, 

(5.59) 

where At is the hermitian conjugate of A and p(M) is the spectral radius of the matrix M 

defined by 

p(M) =max I.Xs(M)i, 
s 

(5.60) 

where A8 (M) denotes the eigenvalues of M. From this it is obvious that the Euclidean norm of a 

matrix is not easily computable and therefore we opt for the maximum norm in our treatment. 

The induced matrix norm ensures that the norm of the vector Ax satisfies: 

IIAxll :S IIAII · llxll · (5.61) 

The error en on the approximate solution Xn to the exact solution xis, 

llenll = llx- Xnll = m?-X lxi- (xn)il· (5.62) 
t 

We will use this vector norm to compute the distance between two successive iterations of 

Eq. (5.51). In practice we will terminate the iterative procedure when a certain criterion is 

fulfilled. Normally we will require that 2 successive iterations are no more distant than a 

tolerance T from each other, 

(5.63) 

We must be careful however if we want to translate llxn+l- x 11 11 to the error lien II on the exact 

solution of the vector equation Eq. (5.50). Can we find a relation between those two quantities? 

In the case of a linear Fredholm equation of the second kind, Eq. (5.27) gave us a bound on the 

error, 

II II < llxn+l - Xnll 
en - 1- II.XKII . (5.64) 

This expression is very useful because it relates the error on the solution to the distance between 

two successive iterations. Can we derive an analogous expression in the non-linear case ? 

We can write: 

en- en+l = (x- Xn)- (x- Xn+l) = Xn+l- Xn, (5.65) 

or 

(5.66) 
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Taking the norm, 

(5.67) 

Let us write the set of non-linear equations as: 

x = g(x), (5.68) 

or 

i = 1, .. . ,N. (5.69) 

The iterative procedure is: 

Xn+l = g(xn)· (5.70) 

Subtracting Eq. (5.70) from Eq. (5.68), we have 

x- Xn+l = g(x)- g(x0 ), (5.71) 

or 

en+l = g(x)- g(xn)· (5.72) 

We now make a Taylor expansion of g(x) around g(x0 ): 

i=1, ... ,N, (5.73) 

or in vector notation: 

og ' 
g(x) = g(xn) + ox (xn).(x- x0 ) + O(x- x0 )

2
• (5.74) 

Thus, 
og 2 

g(x)- g(xn) = ox (x0 ).en + O(en) . (5.75) 

Substitute Eq. (5.75) in Eq. (5.72), 

(5.76) 

After taking the norm, 

llen+III < ~~~;(xn).enll + IIO(en)
2

11 

< ~~~!(xn)ll·llenll + IIO(en)
2

11· (5.77) 
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Substituting Eq. (5.77) in Eq. (5.67), 

(5.78) 

Thus, provided ~~~(xn)ll < 1, 

(5.79) 

This again relates the error lien II to the distance between two successive iterations llxn+l- xnll· 
We can neglect the terms of 0( e0 ) 2 if Xn is sufficiently close to the solution x. 

5.3 Schwinger-Dyson equations 

5.3.1 The 3 coupled equations 

In this section we will formulate the integral equations for which we have to develop the nu­

merical formalism. There are 3 coupled non-linear integral equations describing 3 unknown 

functions: the dynamical fermion mass 2:, the wavefunction renormalization F and the photon 

renormalization function g. 

We recall the integral equations, Eqs. (2.59, 2.60, 2.69), derived in Euclidean space with the 

bare vertex approximation. In the Landau gauge (~ = 0) with zero bare mass (m0 = 0), these 

are: 

I:(x) 
F(x) 

1 

F(x) 

1 
Q(x) 

where z = x + y- 2-jXY cos(), 

(5.80) 

(5.81) 

(5.82) 

If we look at these integral equations, one of the striking features is that the integrals involved are 

2-dimensional integrals, the radial and the angular integrals both involve the unknown functions. 

This is different from quenched QED, where Q(x) = 1 implies that the angular integrals in the 
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F and ~ equations can be performed analytically, leaving 2 coupled !-dimensional integral 

equations to solve. The fact that the problem of unquenched QED involves 2-dimensional 

integrals is a major problem because it is very computer time consuming. 

Symbolically we can write the equations as: 

or 

~(x) 

F(x) 
1 

F(x) 
1 

Q(x) 

~ 

F 
1 
F 
1 
g 

Jt[~,F,Q] 

h[~,F,9] 

h[~,F,9], 

j dy j dO Kt (y, ~(y ), F(y ), 0, z, 9( z)) 

1 + j dy j d()K2(x,y,~(y),F(y),O,z,9(z)) 
1 + j dy j d(} /(3 (x, y, ~(y), F(y),O, z, ~(z), F(z)). 

(5.83) 

(5.84) 

(5.85) 

(5.86) 

A straightforward method is to discretize the problem. This means we will solve the problem 

for a finite number of function values ~i, Fi and 9i. In practice these function values are taken 

at momenta Xi which are the nodes of the quadrature rule used to approximate the integrals. 

Because of the expected behaviour of the unknown functions and the integration kernels we 

choose the grid points on a logarithmic scale in momentum squared. For numerical purposes 

we introduce an infrared cutoff,.., as well as an ultraviolet cutoff A. We define a grid of N + 1 

equidistant points ti, i = 0, ... , N: 

(5.87) 

Discretizing the functions at the integration nodes implies that the function values needed in 

the numerical approximation of the radial integrals are exactly the tabulated function values. 

We are thus looking for the function values ~i, Fi and 9i satisfying, 

L Wj L wk Kt (xj, ~j, Fj, (}k. zk. 9k) (5.88) 
j k 

1 + L Wj L wk K2 (xi, Xj, ~j, Fj, (}kl Zk. Qk) (5.89) 
j k 

1+ LWj l:wkK3(Xi,Xj,~j,Fj,(}k.zk,~k.Fk), (5.90) 
j k 
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Unfortunately the angular integrals of the equations will use function values which are not 

tabulated. In Eqs. (5.88, 5.89) we need the function values for the photon renormalization 

function 9 at the momentum Zk, while analogously in Eq. (5.90) we need the function values of 

~and :Fat the momentum Zk. Whatever numerical quadrature formula one uses for the angular 

integrals, we always need the unknown functions at values which are not tabulated. These 

untabulated function values can be estimated by interpolating the functions ~. :F and 9 between 

two tabulated values. The simplest interpolation scheme will be to use linear interpolation on 

the logarithm of momentum squared: 

f(z) = J(x) + log10 z -log10 x [f(y) _ f(x)]. 
log10 y - log10 X 

5.3.2 Simplified approach: the E equation 

(5.91) 

To develop the numerical program we will first introduce a number of approximations to simplify 

the problem. As we are working in the Landau gauge with the bare vertex we approximate :F 

by :F( x) = 1. This is motivated by the results of quenched QED and can even be found in 

unquenched QED after introducing the LAK(Landau-Abrikhozov-Khalatnikov)-approximation 

9(z) = 9(max(y,x)). In both cases F(x) will be equal to one. A further approximation consists 

in replacing the full vacuum polarization by its 1-loop perturbative value instead of solving the 

photon Schwinger-Dyson equation, 

TI( z) = - 1- ln- + C , N a ( A
2 

) 
31r z 

(5.92) 

where C is a renormalization constant. If we choose C = 0 such that TI(A2) = 0 the photon 

renormalization function 9 becomes, 

9(z) = 1 + __t:ln- , ( 
N A2)-t 

371" z 
(5.93) 

The coupled set of integral equations, Eqs. (5.80, 5.81, 5.82), now simplifies to a single non-linear 

integral equation for the dynamical fermion mass ~: 

~( )- 3a jd y~(y) jdo sin20 
x - 271" 2 y Y+ ~2 (Y) z(1 + ~ln¥). (5.94) 
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To develop the numerical method we could as well start from the I;-equation in quenched QED, 

however in the 1-loop approximation the problem is more realistic because the angular integrals 

cannot be computed analytically as will also be the case in the complete treatment of the coupled 

system of integral equations. 

We now face two problems: firstly how do we choose the quadrature rules to compute the radial 

and angular integrals, secondly how do we find a solution for I;( x) once the quadrature rules 

have been introduced ? 

To make a sensible choice of integration rule we have to study the behaviour of the integration 

kernel using some assumption for the unknown function. From previous studies of quenched 

QED we know that the integration nodes are best chosen on a logarithmic scale in momentum 

squared. Therefore we will change variables in Eq. (5.94): 

t 

dt 

loglo y 

dy 
yln 10 · 

Substituting this in Eq. (5.94), 

I;(x)= 3aln10joo dt y2I;(y) jdo sin2(J ' 
211"2 -oo y + I;2(y) z(1 + Nta In A2) 

3-rr z 

where y = lOt. 

(5.95) 

(5.96) 

(5.97) 

To compute the integrals numerically we will introduce an ultraviolet cutoff A2 and an infrared 

cutoff K 2 on the radial integration. The ultraviolet cutoff is introduced to regularize the integrals 

while the infrared cutoff only serves numerical purposes. When introducing the infrared cutoff 
2 

one has to ensure that either the neglected part of the integrals, i.e. f0K. is negligible, or else one 

must evaluate analytically the contribution of the lower part of the integral and add it to the 

numerical integral. As we will see later we will choose the infrared cutoff K 2 so that the infrared 

part of the integral is negligible and Eq. (5.97) can be replaced by: 

3aln101.logtoA
2 

y2I;(y) J sin20 
I;( X) = 2 dt 2 d(J N 2 • 

211" log10 K2 Y +I; (y) z(l + ~InlL) 
3-rr z 

(5.98) 

We now introduce the quadrature rules to approximate the integrals numerically, Eq. (5.98) is 

replaced by the approximate equation: 

't"' 3aln10EN x]I;(xj) EM 1 sin2 0k .u{ X) - W · W ---......___:_----,~ 
- 211"2 . J X.+ I;2(x ·) k ( 1 + Nta l A2)' 

3=o J J k=O Zk 3-rr n zk 

(5.99) 
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Wj, wk are the weights ofthe quadrature rules Rand R' (which can be different) used respectively 

to compute the radial and angular integrals. The photon momentum is zk = x+x i-2VXXJ cos fh. 

A simple choice of integration rule could be a closed formula with N + 1 equidistant nodes such 

as a composite Newton-Cotes formula [56]. The nodes are then given by: 

2 i ( 2 2) ti = log10 "' + N log10 A - log10 "' , (5.100) 

with corresponding momenta squared, 

(5.101) 

How do we find a solution E(x) of Eq. (5.99)? One possible solution method is the collocation 

method where one only requires the equation Eq. (5.99) to hold at the integration nodes ti, 

I N 2~. M · 2 (} 
E· _ 3a n 10'"' . XiL..IJ '"' , sm k 

1 - 2 2 ~ WJ . ~2 ~ wk N a A2 ' 
1r j=O XJ + L..lj k=O Zk(l + ~lnz;) 

i = 0, .. . ,N, ( 5.102) 

where we denote Ei = I:(xi) and Zk =Xi+ Xj- 2..JXiXjcosOk. 

This set of equations is self-consistent and only involves the function values of E at the integra­

tion points; we do not need any information about E at any other point in momentum space. 

Eq. (5.102) is in fact just the application of the Nystrom method for non-linear Fredholm equa­

tions Eq. (5.49) to the E-equation Eq. (5.98). If we succeed in solving this set of equations, our 

knowledge about the function E( x) will completely reside in the knowledge of the function at a 

finite number of points; E( x) has been discretized. 

Eq. (5.102) is a set of (N + 1) non-linear algebraic equations for the (N + 1) unknowns :Ei. An 

evident method to solve Eq. (5.102) would be to use the natural iterative procedure proposed in 

Eq. (5.51 ). We start from an initial guess (Eo)i, i = 0, ... , N, and define the iterative procedure: 

i = o, ... ,N. (5.103) 

Does this iterative procedure converge ? If it converges, what is the error on the approximate 

solution if we truncate the procedure after n steps ? 

If we use the empirical approach, implementing the iterative procedure in a computer program 

and turning the handle, we observe that for sufficiently large coupling a and for a suitably chosen 

starting guess l.Jo the iterations tend to converge to a non-trivial solution but at an extremely 
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low rate. For example, if we require that IIEn+l - Enll ;:; T, with T = ~(0)/1000, the natural 

iteration scheme requires several thousands iteration steps to reach the convergence criterion. 

Furthermore, it seems very difficult to obtain a reasonable error estimate on the truncated 

solution ::En as an approximate solution to the solution E of Eq. (5.102). To get an idea of the 

accuracy of the approximation En we now decrease the value of the tolerance to T' = T /10 

and continue the iterative procedure till a solution En• has been found which satisfies the new 

tolerance condition. For the iterative method to be reliable we expect the new approximate 

solution En• not to be much more distant from En than T as the approximation En was 

found by imposing the tolerance T. In reality this seems not to be fulfilled, the results of the 

numerical program show that the difference liEn• - Enll is much larger than T. This means 

that we cannot rely on the approximation E 11 to be an approximate solution toE of Eq. (5.102) 

with an accuracy of CJ(T) and that we have no definite error estimate of the solution En. 

To understand this feature we will investigate if the error formula Eq. (5.79) can be used on the 

system of non-linear equations Eq. (5.102). From Eq. (5.102) we can formulate our system of 

non-linear equations in a general form: 

where the kernel can be written as: 

~i = 2::.: J(ij, 
j 

The iterative procedure to solve this will be: 

(5.104) 

(5.105) 

(5.106) 

The error discussion in Section 5.2 led to an error bound Eq. (5.79) on the error en, after 

truncation of the iterative procedure Eq. (5.106), which can be rewritten in the current notation 

as, 

lie II< IIEn+l- Enll + IICJ(en)
2

11 

n - 1 -~~~(::En)ll ' 
(5.107) 

provided ~~~(::En)ll < 1, where J(i = Lj Kij· 

Taking the partial derivative of Eq. (5.105) with respect to ~k' we obtain 

8Kij [ Xj- ~; l 
a~k = Cii (xi+ ~])2 Ojk· 

(5.108) 
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Thus, 

(5.109) (aK) = (aKi) = E (aKik) 
a~ ij m:,3 k a~j 

For Eq. (5.107) to be valid we know that 

(5.110) 

or, ""I [ Xj- (~n)J ll mf'x 7 Cij (xj + (~n)J)2 < 1. 
(5.111) 

From the numerical results we learn that ~~~(~n)ll ~ 3 and thus condition Eq. (5.110) is not 

satisfied by the kernel of the fermion equation and therefore the error bound Eq. (5.107) cannot 

be used in this case. This is the reason why the rate of convergence is so slow and the error 

estimate so unreliable. 

5.4 Newton's iterative method 

Let us now consider an alternative method to improve the convergence rate of the iterative 

procedure (pp. 109-119 of Ref. [56]). Consider a general system of non-linear algebraic equations 

f(x) = 0. (5.112) 

The most natural way to solve this set of equations iteratively consists in rewriting Eq. (5.112) 

as 

x = g(x), (5.113) 

with 

g(x) = x- f(x) (5.114) 

and then to define the iterative procedure 

Xn+l = g(xn) =Xu+ f(xn)· (5.115) 

However, as we saw in the previous section, this iterative procedure does not always converge 

and if it converges the convergence rate can be very slow and the error estimate unreliable. 

In order to define an alternative iterative procedure to Eq. (5.115) we now replace Eq. (5.114) 

by: 

g(x) = x- A(x)f(x), (5.116) 
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where A(x) is a. square matrix of order N + 1. If A(x) is non-singular, Eq. (5.113) a.nd Eq. (5.112) 

will have the same solutions. 

The simplest choice for A(x) is a. constant non-singular matrix, 

Next we define a. matrix J(x) by: 

A(x) =A. 

J(x) = (8/i(x)) 
8xj 

the determinant of which is the Jacobian of the function fi(x). 

We also define a. matrix G(x): 

G(x) = ( 8~i;;)) . 
Substituting Eqs. (5.116, 5.117, 5.118) in Eq. (5.119) gives, 

G(x) = I- AJ(x). 

We now define a.n iterative procedure to solve Eq. (5.113): 

Xn+l = g(x11 ), 

or using Eq. (5.116), 

Xn+l = Xn - A f(xn)· 

(5.117) 

(5.118) 

(5.119) 

(5.120) 

(5.121) 

(5.122) 

One ca.n prove Eq. (5.122) will converge, for xo sufficiently close to a. solution :X of Eq. (5.112), 

if the elements in the matrix G(x) of Eq. (5.120) a.re sufficiently small. This could be realized 

in the case that J(x) is non-singular a.nd taking the constant matrix A to be approximately the 

inverse of J(x). This naturally suggests a. modification where we replace the constant matrix A 

from Eq. (5.117) by the choice 

(5.123) 

The iterative procedure constructed with the matrix of Eq. (5.123) is called Newton's method. 

Substituting Eq. (5.123) in Eq. (5.122) gives the following iterative procedure equation: 

(5.124) 
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Although this suggests that we have to invert a matrix of order N + 1 at each iteration step, we 

can transform the procedure from Eq. (5.124) so that we only have to solve a linear system of 

order N + 1 at each iteration step. Multiply both sides of Eq. (5.124) with J(x11), 

J(xn) (xn- Xn+l) = f(xn)· (5.125) 

If we define 

(5.126) 

then Eq. (5.125) is a linear system of order N + 1 to be solved for the vector An+l• 

(5.127) 

From Xn and the solution An+l of Eq. (5.127) we derive the next approximation Xn+l using 

Eq. (5.126). 

One can generally show that provided 

G(i) = ( lJ~i;:)) = 0, i,j = 0, ... ,N. (5.128) 

there is a radius p for which the iteration procedure Xn+l = g(x11) converges quadratically to 

the solution i of Eq. (5.112) for any starting guess xo satisfying: 

llxo- ill~ p. (5.129) 

We will now show that Newton's method satisfies Eq. (5.128) so that the method converges 

quadratically to a solution i of Eq. (5.112) provided the starting guess x 0 is sufficiently close 

to i. 

From Eqs. (5.116, 5.123) the jth column of G is given by, 

lJg(x) 
lJxj 

(5.130) 

Setting x = i in Eq. (5.130) and recalling that the solution i satisfies f(i) = 0 and J = lJfiflJxi 

we get 

G(i) =I- J-1 (i) J(i)- lJJ-l(x) o = 0, ax (5.131) 
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provided the matrix 8J-1 (x)/8xj in Eq. (5.130) exists. To determine 8J- 1(x)j8xj we compute: 

(5.132) 

but also, 

(5.133) 

This means, 

(5.134) 

Thus, Eq. (5.131) will be satisfied and the Newton method will be quadratically convergent if 

f(x) has two derivatives and J(x) is non-singular at the root x. 

Furthermore one could also show that provided the starting guess xo is close enough to x the 

error on the approximate solution is bound by: 

(5.135) 

Although this bound is hugely overestimated it is very useful for practical purposes as we will 

now explain. Indeed, this bound tells us that the distance between the approximation Xn+l and 

the exact solution cannot exceed the distance between the solutions of the last iteration and 

that of the previous one. 

Let us now apply Newton's method to the system of non-linear equations Eq. (5.102) for the 

dynamically generated fermion mass. The equations can be written symbolically as: 

with kernel 

1.·' C Ei 
.II. ij = ij ' "'2 ' 

XJ + LJj 

i=O, ... ,N, 

i,j = o, ... ,N . 

This can be written in the form of Eq. (5.112) by defining f(l;) as, 

fi(l;) = Ei - L Kii = 0, 
j 

i = o, ... ,N. 

Using Eq. (5.138) we derive the matrix J from Eq. (5.118) 

i,j = o, ... ,N. 

(5.136) 

(5.137) 

(5.138) 

(5.139) 
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The derivative of the kernel Eq. (5.137) with respect to Ek is, 

{)J(ij c Xj - E] 8 
8Ek = ij (xi+ EJ)2 jb 

Substituting Eq. (5.140) in Eq. (5.139) yields, 

i,j, k = 0, ... , N. 

i,j=O, ... ,N. 

Substituting Eqs. (5.138, 5.137, 5.141) in Eq. (5.127) yields: 

(5.140) 

(5.141) 

i = 0, ... , N. (5.142) 

For each iteration we have to solve Eq. (5.142) for An+l· Then from this solution we compute 

a new approximation :En+l with, 

(5.143) 

From the numerical results we can say that the implementation of Newton's method has given 

a tremendous improvement as well in convergence rate (number of iteration steps needed to 

satisfy II:En+l- :Enll ~ T) as in reliability of the error estimate on the approximate solution 

(see Eq. (5.135)). 

The required accuracy is achieved in less than 10 steps. Although each step requires the solution 

of a linea: system of order N + 1 we observe an important decrease of the computer time needed 

to find the approximate solution satisfying the convergence criterion. Another consequence of 

the quadratic convergence is that the distance between two successive iteration decrease very 

rapidly, often as, 

II :E _ :E II"' II:En- :En-1ll n+l n "' lO · (5.144) 

From the numerical results it is clear that terminating the iterative procedure when two succes­

sive iterations are closer than a tolerance T ensures that the exact solution is within T of the 

last iteration and surely even much closer than that. 

A straightforward check of the reliability of Newton's method compared to the natural iterative 

procedure Eq. (5.106) can be performed by varying the starting guess :Eo. The convergence of 

the natural iterative procedure is very sensitive to the starting guess: it only converges (although 

very slowly) if the starting guess is larger than but close to the exact solution; it will diverge if 
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the starting guess is too large, i.e. much larger that the exact solution, and it will converge to 

the trivial solution I: = 0 (which is always a solution to the equation) as soon as the starting 

guess is taken smaller than the exact solution. Even when the method does converge to the non­

trivial solution we observe that for varying I:o the natural iteration scheme gives very different 

approximate solutions I:11 satisfying the convergence criterion Eq. (5.63) for a fixed T. This is 

due to the fact that the error e11 on the approximate solutions in the natural iterative procedure 

is much larger than the required tolerance T between two successive iterations. We could in 

fact use this information to get some better estimate of the error on the approximate solution, 

by comparing the solutions reached from different initial guesses I:o. 

In contrast to this, the Newton method performs exceptionally well. Its convergence is almost 

always guaranteed, independent of the starting guess. Only if the starting guess is chosen very 

far from the exact solution will it just need a couple more iteration steps to reach the solution 

and if the starting guess is chosen too close to zero, the method will converge to the trivial 

solution I: = 0. In the case of convergence to the non-trivial solution the method is completely 

independent of the starting guess I:o: the approximate solutions I:11 satisfying Eq. (5.63) are 

all equal within this tolerance and even much closer than that. 

The iterative procedure Eq. (5.138) can be extended in a straightforward manner to a system 

of two or more coupled equations with two or more unknown functions. As an example we take 

the case of the coupling of the integral equations for the fermion wavefunction F and for the 

dynamical fermion mass :E, 

/I,i(I:, :F) 

h,i(I:, :F) 

0, 

0, 

i = o, ... ,N, 

i = o, ... ,N. 

This system can be written in the form of Eq. (5.112), 

!t,o(x) 

!t,N(x) 
h,o(x) 

h,N(x) 

=0 

(5.145) 

(5.146) 

(5.147) 
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with 
~0 

~N 

Fo 

Eq. (5.147) can be solved using Newton's iterative procedure Eq. (5.127), 

where 

J(x) 

J(xn) ~n+l = f(xn), 

a !t,i(I;, :F) 
a~i 

a h,;(I;, :F) 
a~i 

i,j=0 ... 2N+1 

ah,;(I;,:F) 
a;:i 

ah,;(I;,:F) 
a;:i 

i,j=O, ... ,N. 

(5.148) 

(5.149) 

(5.150) 

(5.151) 

(5.152) 

Every iteration now requires the solution of a system of 2N + 2 linear equations Eq. (5.149) 

for the 2N + 2 unknown components of the vector ~n+l· Successive iterations will yield new 

function approximations for ~0 , ••• , ~N, F 0 , ••• , FN computed from: 

(5.153) 

or, 

(5.154) 

5.5 Numerical integration rules 

In the previous sections we replaced the original integral equation by a system of non-linear alge­

braic equations using some integration rule and derived a method to solve this set of equations. 

If we look at the error e on the approximate solution I;n with respect to the exact solution 

~( x) oft he original integral equation we have to consider two error sources (neglecting precision 

errors): the error eR due to the approximation of the integrals by a finite sum using some 
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quadrature rule R and the error en introduced by solving the system of non-linear equations 

numerically, 

llell ::; lleall + llenll· (5.155) 

As we saw in the previous section the error llenll is well controlled if we use Newton's method, 

because of its quadratic convergence. The only limitation on the accuracy in Newton's method 

seems to come from the numerical precision of the computation and the available computer time. 

Therefore, the major source of error on the solution will be caused by the quadrature rule. It is 

important to note that the situation is very critical when solving integrals as part of an integral 

equation problem because the quadrature error gets amplified quite dramatically in the final 

solution of the integral equation as we will see later. Furthermore the choice of quadrature rule 

is even more important as the integrals to solve are two-dimensional and therefore the potential 

errors even bigger. 

If we use a quadrature formula with N + 1 grid points to approximate the radial integrals we will 

end up with a system of N + 1 non-linear algebraic equations to solve. To reduce the computing 

time we want to get maximum accuracy with a minimum of grid points. 

The best-known quadrature formulae are probably the Newton-Cotes formulae, using equidistant 

grid points. To approximate the integral: 

1b f(x )dx , (5.156) 

the most frequently used Newton-Cotes formulae, with their corresponding error-term are: 

the midpoint rule: 

(5.157) 

the trapezoidal rule: 

1
Xl h h3 

f(x)dx = -(fo +h)--/(2)(0, 
xo 2 12 

Xo < ~ < Xt (5.158) 

Simpson's rule: 

r~ h ~ 
lxo f(x)dx = 3Uo +4ft+ h)- 90 J(4)(~), (5.159) 

3/8-rule: 

{X3 3h 3h5 

lxo f(x)dx = S{fo + 3fi + 3/2 +h)-
80 

/(4)(0, Xo < ~ < X3 (5.160) 
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where we define /j = f(xj) and 

Xj = xo+jh, 

with 

x0 =a, XN = b, 

j=O, ... ,N, 

b- a 
h=~· 

(5.161) 

(5.162) 

To approximate the integral value to a good accuracy it will not be sufficient to use an integration 

rule with 1, 2, 3 or 4 integration points, we will normally need many more grid points. For this 

purpose we could use the corresponding (N +I)-point Newton-Cotes formula. In practice, this 

is not useful because interpolation theory, upon which the Newton-Cotes formulae are based, 

tells us that a very high order polynomial does not in general approximate a function well at 

all. Furthermore for N 2: 8 the weights in the quadrature formula start to have different signs 

so that the numerical precision of the calculation becomes a worry. A much better method to 

increase the number of points is to use composite integration rules. This consists in dividing the 

integration interval [a, b] in m subintervals of size H, 

rewriting the total integral as: 

with 

b-a 
H:=--, 

m 

1b f(x)dx = E 1Yj+! f(x)dx, 
a j=O Yj 

Yi=a+jH, j = o, ... ,m. 

(5.163) 

(5.164) 

(5.165) 

We apply a low order basic Newton-Cotes formula with n + 1 points on each subinterval: 

b m-l n 1 f(x)dx = L L wkf(Yj + kh), 
a j=O k=O 

with the grid spacing h defined as: 

H b- a 
h=-=--. 

n mn 

Substituting Eqs. (5.165, 5.167) in Eq. (5.166) gives, 

b m-l n 1 f(x)dx = L L wkf(xjn+k), 
a j=O k=O 

(5.166) 

(5.167) 

(5.168) 
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defining Xk as: 

Xk =a+ kh, k = o, ... ,mn. 

The composite trapezoidal rule (n = 1) is (using Eq. (5.158)): 

{b m-1 h 
la f(x)dx = .t; "2 (fj + Ji+t), 

where fk = f(xk), such that: 

{b h ( m-
1 

) la f(x)dx=2 fo+2[;Ji+fm 

The error term on this rule is: 

a<~<b. 

For n = 2 we derive the composite Simpson's rule using Eq. (5.159): 

with error term: 

b m-1 h 1 f(x)dx = L 3 (hj + 4hi+1 + hi+2) 
j=O 

h ( m-1 m-1 ) 

3 fo + 2 [; hi + 4 _t; hi+t + hm 

b- a 4 (4) 
Es· = --h f (C) 

amp 180 <, ' a<~<b. 

(5.169) 

(5.170) 

(5.171) 

(5.172) 

(5.173) 

(5.174) 

The composite Simpson's rule requires an odd total number of grid points. If for some reason 

the grid has an even number of points N + 1 we can use the basic 3/8-rule of Eq. (5.160) on the 

four first points: r3 3h 
lxo f(x)dx = S (/o +3ft+ 3/2 +h) , (5.175) 

and use the composite Simpson's rule Eq. (5.173) on the remaining integral which has an odd 

number of points N- 2. From Eqs. (5.159, 5.160) we note that both basic rules are of compa­

rable accuracy so that the global accuracy of this mixed composite rule will be comparable to 

Eq. (5.174) . 

5.6 Implementation of the quadrature rule 

5.6.1 Estimate of computing time 

In this section we are going to apply the quadrature rules mentioned before to the integral 

equation Eq. (5.98) describing the dynamical generation of fermion mass in QED. We will at 



CHAPTER 5. NUMERICAL SOLUTION OF SCHWINGER-DYSON EQUATIONS 87 

first use the trapezoidal rule and roughly study the behaviour of the solution of the integral 

equation and the computing time needed to find this solution using Newton's method from 

Section 5.4 with an increasing number of grid points in the radial integrals (with a fixed number 

of points in the angular integrals). Throughout our study we will take an ultraviolet cutoff 

I A2 = 1e10 1. In Table 5.1 we increase the number of grid panels, N R, from 100 to 1000 and 

tabulate the values of ~(0), because it is representative for the scale of the generated fermion 

mass, and the real time (min:s) needed to compute the angular integrals. The other parameters 

are chosen as a = 2.086 and the infrared cutoff "'2 = 0.1. 

NR ~(0) ~to ~~(0) 

100 112.74 0:04 
200 91.90 0:15 20.84 
300 88.78 0:32 3.12 
400 87.88 0:55 0.90 
500 87.50 1:27 0.38 

1000 87.10 5:16 0.40 

Table 5.1: ~(0) versus number of radial integration panels N R using the trapezoidal rule. ~to 
is the real time (min:s) needed to compute the angular integrals. ~~(0) is the change in ~(0) 
when increasing the number of points. a= 2.086, "'2 = 0.1. 

Changing the number of radial points NR+ 1 to N.R+ 1 produces an increase of [(N.R+ 1)/(NR+ 

1)]2 angular integrations to be computed as there are N R + 1 equations each with N R + 1 radial 

points for which to compute angular integrals. We note from Table 5.1 that indeed the time 

~to increases as [(N.R + 1)/(NR + 1)]2. ~to only gives part of the computer time needed by 

the program. Once the angular integrals have been calculated, we have to solve the system of 

NR + 1 non-linear equations. This will be done using Newton's iterative procedure, Eq. (5.142), 

involving the solution of a system of N R + 1 linear equations at each iteration step. Because 

of the large size of these linear systems they will be solved numerically. The solution time 

of this procedure increases with the increasing number of equations. Although the computing 

time needed to solve the system of linear equations is small compared to ~to for reasonable N R 

( < 500), it becomes quite large for larger N R· For N R = 1000, each iteration step of Newton's 

method takes about 2 minutes. If we start from a good initial guess for :E0 the iterative 

procedure will converge after 5 iterations; the total computing time will then approximately be 

~t(N R = 1000) ~ 5 + (5 x 2) ~ 15 minutes. This is quite long considering the relative simplicity 

ofthe integral equation. From ~~(0) in Table 5.1 we see that ~(0) improves significantly for NR 
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up to 500. The stagnation when N R --+ 1000 probably means that the accuracy of the angular 

integrals only permits a global relative accuracy of about 0.45% for the final solution. 

5.6.2 Influence of infrared cutoff 

In Section 5.3.2 we have mentioned that the introduction of an infrared cutoff "'2 for numerical 

purposes requires that we either have an analytic evaluation of the truncated infrared part of 

the integral or that "'2 should be chosen so that this part is negligible. In this section we will 

look at the influence of the variation of the infrared cutoff "'2 on the numerical results of the 

calculation. If we plot the radial integrand as in Fig. 5.1 we see that this integrand decreases 

rapidly for momenta below the scale of the generated fermion mass (y < "E 2 (0)). 
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Figure 5.1: Radial integrand fR(Y) foro:= 2.086 as a function of y for various values of external 
fermion momentum x = 3.7e-4, 2.5e0, 1.1e5 and 5.0e8. 

Consequently, we do not expect any significant contribution from that part of the integral. This 

means the choice of "'2 is dependent on the generated fermion mass and thus on the coupling 

for which we solve the integral equation. If we fix "'2 at some value, and vary the coupling o: 

we will only get reliable results for couplings down to O:min for which the generated fermion 

mass is larger than "'· In practice we only expect to be able to find accurate solutions down to 

'E(O) ~ 0(1) (taking A2 = 1e10) because of the limitations imposed by the numerical precision 

of the calculation. In Table 5.2 we show 'E(O), varying "'2 from 1e4 to le-5 foro: = 2.086. When 
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changing the value of the infrared cutoff K2 , we accordingly modify the number of integration 

panels N R in order to have the same grid spacing in every case: 

h = log10 A
2 -log10 K

2 1 A2 1 
- N R = N R log to K2 = 30 . (5.176) 

K'J. NR ~(0) D. to 
1e4 180 69.0990 0:11 
1e3 210 87.0883 0:12 
100 240 88.2892 0:19 
10 270 88.3980 0:23 
1 300 88.4083 0:29 

0.1 330 88.4093 0:42 
0.01 360 88.4094 0:46 
1e-5 450 88.4094 1:05 

Table 5.2: ~(0) versus infrared cutoff K2 for a = 2.086 using the trapezoidal rule. The number 
of radial integration panels N R is chosen to have a fixed grid spacing h = 3

1
0 • D. to is the real 

time (min:s) needed to compute the angular integrals. 

From Table 5.2 we see that indeed taking the infrared cutoff K2 < 0( E:Jg>) is sufficient to 

achieve an accuracy of ~ 0.1 %. For a = 2.086 a suitable choice could be K 2 "' 100. If we are 

to investigate smaller values of the coupling, closer to its critical value, we will have to choose a 

smaller value of K2 • 

5.6.3 Influence of grid spacing, kink in the integrand 

Having fixed the infrared cutoff K2 , we will now turn our attention to the influence of the grid 

spacing h, which is inversely proportional to the number of grid panels, N. We performed 

the calculation using the composite trapezoidal rule and the composite Simpson's rule. From 

textbooks it is well known that Simpson's rule generally yields better results than the trapezoidal 

rule because the convergence of the composite Simpson's rule is proportional to 1/ N4, while the 

convergence of the trapezoidal rule is proportional to 1 J N 2 • With convergence of a quadrature 

rule we mean the convergence of the finite sum to the exact integral value when N - oo. The 

results from Table 5.3 were computed for a = 2.086 with K
2 = 100. 

The run with N R = 5000 crashed because of memory allocation problems in solving the linear 

system of equations. From Table 5.3 we see that Simpson's rule gives worse results than the 

trapezoidal rule. This is quite puzzling as it has a higher degree of precision. However, for the 
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NR 1/h ~trap( D) ~Simp( D) D.. to D. titer 
80 10 107.387 172.565 0:03 

120 15 94.640 124.963 0:05 
160 20 90.773 108.192 0:09 
200 25 89.115 100.280 0:13 
240 30 88.289 96.072 0:18 
280 35 87.844 93.555 0:26 
320 40 87.572 91.932 0:34 
360 45 87.397 90.840 0:39 
400 50 87.276 90.056 0:51 
600 75 87.027 88.249 
800 100 86.959 87.642 9:00 

1000 125 86.933 87.367 16:00 
2000 250 86.908 2:35:25 
5000 625 crash 

Table 5.3: ~(0) versus number of radial integration panels N R and grid density 1/ h using the 
trapezoidal rule and Simpson's rule. D..to is the real time (min:s) needed to compute the angular 
integrals, D. titer (h:min:s) is the total real time. a = 2.086, K-2 = 100. 

error formulae to be applicable, the integrand has to be sufficiently smooth. If not, the accuracy 

of Simpson's rule can be just as good or bad as the one from the trapezoidal rule. 

If we look at the radial integrand it becomes clear why this happens. In the quenched case, where 

the angular integrals can be computed analytically, a typical angular integration will yield: 

Io = r dO sin
2

0 = ~ [O(x- y) + O(y- x)] 
lo z 2 x y 

(5.177) 

The various angular integrals all have this characteristic feature: 

Io "'a<(y, x) O(x- y) + a>(y, x) O(y- x). (5.178) 

In the unquenched case the angular integrals are solved numerically because ofthe function O(z) 

appearing in the angular integrals of the fermion equation. Still the shape of Eq. ( 5.178) will 

remain valid and this will cause a kink in the kernel of the radial integral at y = x. This can 

be seen in Figs. 5.1, 5.2 where we plot the radial integrand for a number of values of external 

momentum x. Fig. 5.2 shows enlargements of the radial integrands in the neighbourhood of the 

kink at y = x. Although the kernel is continuous, it is not smooth as its first derivative has a 

discontinuity. This implies that the error formulae on the integration rules, Eqs. (5.157-5.160, 

5.172, 5.174), are not applicable. According to Eq. (5.172) the composite trapezoidal rule has 
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an error decreasing as h2 if it has a continuous 2nd derivative, while from Eq. (5.174) Simpson's 

rule goes as h4 if it has a continuous 4th derivative. Because of the discontinuity in the 1st 

derivative of the integrand, no higher degree rule applied on the interval [a, b] will be able to 

give us a better result than the trapezoidal rule. 
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Figure 5.2: Zoomed views of the kink at y = x in the radial integrand fR(Y) for various values 
of external fermion momentum x = 3. 7e-4, 2.5e0, 1.1e5 and 5.0e8, for a = 2.086 

Even so, we see from Table 5.3 that, for an equal number of grid points, the results of the 

trapezoidal rule are better than those from Simpson's rule. The reason for this is that Simpson's 

rule uses three points on each subinterval, while the trapezoidal rule only uses two. If we consider 

the ith equation from the system, Eq. (5.102), the radial integrand will have a kink at Xj =Xi· If 

Xi is an endpoint of a subinterval the integrands over all the individual subintervals are smooth 

and Simpson's rule should behave according to its error formula Eq. (5.174). In contrast, if Xi 

is a midpoint of a subinterval then the integrand over the subinterval [xi-l, Xi+t] is not smooth, 

unlike over the other subintervals, so that the integration rule will generate a considerable error. 

The trapezoidal rule always has the kink as an endpoint of a subinterval and so its error formula 
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is always applicable. The numerics of this phenomenon have been checked by comparing the 

values of the total integrals for various values of external momentum Xi using the trapezoidal 

rule and Simpson's rule. The integrals with a kink in the middle of a subinterval, i.e. for odd 

i, definitely yield worse values with Simpson's rule than with the trapezoidal rule. Because the 

integrals are the building blocks of the integral equation, the error on each individual integral 

propagates into the final solution of the integral equation. The accuracy of this solution will 

only be as good as the worst integral evaluation. Therefore the trapezoidal rule will yield a 

better solution of the integral equation than Simpson's rule. If we are not satisfied with the 

results computed with the trapezoidal rule (slow convergence when the number of grid points 

NR + 1 is increased) and would like to use a higher degree rule efficiently, we will have to handle 

the kink in the radial integrand in an appropriate way. 

The evident way to take care of the kink in the radial integrand is to split the integration range 

into two separate integrals: 

i = 0, ... ,N, (5.179) 

and approximate each of the integrals by an appropriate integration rule. 

Each of these two subintegrals now has an integrand which is smooth over the integration 

interval. The accuracy of the numerical integration should now respect the theoretical error 

formula. 

When implementing the composite integration rules we have to avoid two pitfalls. Firstly, if 

the total number of panels (number of grid points minus one) is not a multiple of the number 

of panels of the basic rule, we have to combine different basic rules preferably of comparable 

accuracy. Secondly, because of the kink in the radial integrand, the composite rule must have the 

kink as an endpoint of one of its subintervals if we want to achieve the accuracy predicted by the 

theoretical error formula. The importance of avoiding these pitfalls will now be demonstrated 

by considering the numerical integration offunctions behaving in a way similar to Eq. (5.94) but 

for which the exact integral value can be calculated analytically. This will allow us to compare 

the numerical and analytical results. 
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5.6.4 Smooth toy kernel 

To study the construction of the composite formula in the absence of any kink in the integrand, 

we will replace the non-smooth radial integrand by a function behaving in a similar way but 

without any kink: 

The integral of this function, 

My 2 
!R(X, y) = y + M2 y +X . 

A2 A2 M 2 
I(x) = f dy !R(x, y) = f dy Xt 2 • j ,.2 j ,.2 y + y + X 

is readily computed analytically, 

For M = 100, K2 = 100 and A 2 = 1e10, we have I( x = 1e4) = 2563.093, for instance. 

(5.180) 

(5.181) 

(5.182) 

We now apply various composite (n + 1)-point Newton-Cotes rules to this integral for x = 1e4 

and show the results in Table 5.4. 

NR E1 E2 E3 E4 Es E6 E1 
100 4.2e-08 3. 7e-10 1.8e-08 1.7e-ll 7.4e-ll 7.3e-11 3.6e-10 
200 1.1e-08 2.3e-ll 6.4e-11 2. 7e-13 5.8e-13 9.9e-12 2.5e-13 
300 4.7e-09 4.6e-12 l.Oe-11 2.4e-14 5.2e-14 2.2e-16 5.6e-16 
400 2.6e-09 1.5e-12 2.5e-10 4.4e-15 9.4e-15 1.8e-15 2.5e-10 
500 1.7e-09 5.9e-13 1.5e-12 8.9e-16 1.4e-15 9.2e-14 3.2e-13 
600 1.2e-09 2.9e-13 6.4e-13 5.6e-16 l.le-15 2.2e-16 4.4e-16 
700 8. 7e-10 1.6e-13 4.6e-11 0 5.6e-16 0 6. 7e-16 
800 6.6e-10 9.1e-14 2.1e-13 4.4e-16 0 8.4e-15 8.9e-15 
900 5.2e-10 5.7e-14 1.3e-13 3.3e-16 6.7e-16 0 2.2e-16 

1000 4.2e-10 3. 7e-14 1.6e-ll 6. 7e-16 6. 7e-16 4.4e-16 2.2e-16 

Table 5.4: Relative error En = I (Inurn - I exact)/ I exact I from the numerical calculation of I( x) of 
Eq. (5.181) for x = 1e4 using composite (n +I)-point Newton-Cotes formulae with n = 1, ... , 7 
for increasing total number of grid panels N R· 

Comparing the results from Table 5.4 shows that for a fixed total number of grid panels N R, 

the higher degree rules perform significantly better than the lower ones (except for n = 3, 6, 7). 

The degree of precision D of a quadrature rule is defined such that all polynomials of degree 



CHAPTER 5. NUMERICAL SOLUTION OF SCHWINGER-DYSON EQUATIONS 94 

at most equal to the degree of precision are integrated exactly by the quadrature formula. The 

degree of precision of the various rules is given in Table 5.5. 

Table 5.5: Degree of precision D of the ( n + 1 )-point Newton-Cotes formulae with n = 1, ... , 7. 

Using a rule with a higher degree of precision seems to yield significantly improved results for 

the integral evaluation, till the maximum accuracy of about 1e-16 imposed by the use of double 

precision arithmetics has been reached. 

Also from Table 5.4, we see that increasing the total number of grid panels from Nn to Nh, 

using the same basic rule, seems to yield the expected (NR_I N n)(D+l) improvement in accuracy, 

again till the maximum accuracy is reached. This is not true when the number of panels in the 

basic NC-rule is n = 3, 6, 7. To construct a composite formula using a single basic NC-rule, the 

total number of panels in the integration interval must be a multiple of the number of panels of 

the basic NC-rule. For n = 1,2,4,5 all the total number of panels Nn considered in Table 5.4 

are indeed multiples of the number of panels of their basic NC-rule. This is not so for n = 3, 6, 7. 

For n = 3 this will be satisfied for N R = 300, 600, 900. For other values of N R we have to adapt 

the composite rule by taking as many n-panel rules as will fit in Nn panels and use an n'-panel 

rule on the remaining interval as shown in Table 5.6. For example, the n = 3 case with 400 

radial panels will be composed of 133 3-panel or 318-rules and one trapezoidal rule. 

We now look back at the n = 3 results of Table 5.4 using Table 5.6. For N R = 300,600,900, 

the composite rule can be wholly constructed with basic 318-rules. For N R = 200, 500,800, the 

composite 318-rule has to be complemented by one Simpson's rule. Because Simpson's rule and 

the 318-rule have comparable accuracy this does not affect the global accuracy of the composite 

rule. However, for N R = 100,400,700, 1000, the composite 318-rule has to be complemented 

with one trapezoidal rule yielding significantly worse results. From the error term in Eqs. {5.158, 

5.160) one can prove theoretically that this mixed composite rule behaves as 1IN3
, while the 

pure composite trapezoidal rule goes as 1 I N 2 and the pure Simpson's and 3 IS-rule go as 1 I N 4
• 

The results of Table 5.4 for N R = 100, 400, 700, 1000 have indeed a 1 I N 3 convergence rate. We 

see an analogous pattern for n = 6, 7. We can deduce from Tables 5.4, 5.6 that the error on the 

integral evaluation is determined by the least accurate of the subrules used even if it is only used 
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NR n=3 n=6 n=7 
100 33x3+1 16x6+4 14x7+2 
200 66x3+2 33x6+2 28x7+4 
300 100x3 50x6 42x7+6 
400 133x3+1 66x6+4 57x7+1 
500 166x3+2 83x6+2 71x7+3 
600 200x3 100x6 85x7+5 
700 233x3+1 116x6+4 100x7 
800 266x3+2 133x6+2 114x7+2 
900 300x3 150x6 128x7+4 

1000 333x3+1 166x6+4 142x7+6 

Table 5.6: Structure of the composite ( n + 1 )-point NC-rules for n = 3, 6, 7 for a total number 
of grid panels NR, written as m times an n-panel rule complemented by one n'-panel rule. 

once in the total evaluation. Further demonstration of this can be found in Table 5. 7 where we 

alter the total number of grid panels in the cases n = 3, 6, 7 to make it a multiple of the number 

of panels of the basic rules. It is clear that for n = 3 the error formula is now well respected and 

that the error is comparable to that of Simpson's rule ( n = 2) from Table 5.4, as it should be for 

composite rules of equal degree of precision. For n = 6, 7 the improvement of the accuracy with 

increasing total number of grid points seems to respect the error formula although the maximum 

accuracy of 0(1e-16) is reached very rapidly. 

NR £3 NR Es NR E1 
99 8.5e-10 97 2.3e-10 99 l.Oe-09 

198 5.4e-11 193 5.0e-15 197 8.2e-15 
297 1.1e-ll 289 2.2e-16 295 0 
396 3.4e-12 385 6. 7e-16 393 2.2e-16 
495 1.4e-12 481 4.4e-16 491 0 
594 6. 7e-13 577 5.6e-16 589 8.9e-16 
693 3.6e-13 673 4.4e-16 687 3.3e-16 
792 2.1e-13 769 5.6e-16 785 4.4e-16 
891 1.3e-13 865 3.3e-16 883 2.2e-16 
990 8.7e-14 961 8.9e-16 981 2.2e-16 

Table 5.7: Relative error En= IUnum- lexact)/Iexactl from the numerical calculation of I(x) of 
Eq. (5.181) for x = 1e4, adapting the number of panels NR to use pure composite (n + 1)-point 
Newton-Cotes formulae with n = 3, 6, 7 for increasing total number of grid panels N R· 
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5.6.5 Toy kernel with kink 

We will now make an analogous study using a simplified kernel which has a kink in the integration 

region: 
My 1 

fR(x, y) = + M2 ( ) . y max x,y 
(5.183) 

The integration of this function, 

1A
2 

A
2 M 1 

I(x) = dy !R(x,y) = 1 dy + Xr 2 ( ) 
K2 K2 Y max X 1 Y 

(5.184) 

can be performed analytically yielding: 

M K.
2 M 3 

X + M 2 A 2 + M 2 

I( x) = M - -- - -In 2 M 2 + M ln M 2 • 
X X K, + x+ (5.185) 

ForM = 100, K.2 = 100 and A2 = 1e10, we compute I(x = le4) = 1342.917. The numerical 

results computed with the composite NC-formulae are tabulated in Table 5.8. 

NR ~kink Et E2 E3 E4 Es E6 E1 
100 25 1.1e-04 2.1e-04 1.4e-06 2.3e-04 5.3e-09 4.3e-04 7.1e-05 
200 50 2.6e-05 3.7e-08 8.4e-08 1.4e-05 9.8e-ll 1.1e-11 4.6e-05 
300 75 1.2e-05 2.3e-05 1. 7e-08 2.7e-05 8.8e-12 4.8e-05 2.8e-05 
400 100 6.6e-06 2.3e-09 5.5e-09 7.4e-13 1.6e-12 7.1e-15 1.5e-05 
500 125 4.2e-06 8.4e-06 2.1e-09 9.5e-06 4.2e-13 1. 7e-05 7.9e-06 
600 150 2.9e-06 4.6e-10 l.Oe-09 1.6e-06 1.4e-13 2.2e-16 2.0e-06 
700 175 2.1e-06 4.3e-06 6.0e-10 4.9e-06 5.5e-14 8.8e-06 0 
800 200 1.6e-06 1.5e-10 3.3e-10 1.1e-14 2.5e-14 8.4e-15 1.1e-06 
900 225 1.3e-06 2.6e-06 2.0e-10 2.9e-06 1.2e-14 5.3e-06 2.4e-06 

1000 250 1.1e-06 6.0e-ll 1.5e-10 5.6e-07 7 .6e-15 4.4e-16 2.5e-06 

Table 5.8: Relative error En= I(Inum- lexact)/Iexactl from the numerical calculation of I(x) of 
Eq. (5.184) for x = 1e4 using composite (n + 1)-point Newton-Cotes formulae with n = 1, ... , 7 
for increasing total number of grid panels N R· ikink gives the position of the kink within the 
NR + 1 points of the grid, i E [0, NR]· 

From Table 5.8 we see that increasing the total number of integration panels N R in the composite 

trapezoidal rule gives the improvement expected from Eq. (5.172). However, for Simpson's rule 

( n = 2) this is not so. When N R is such that the index of the kink is odd, the integral evaluation 

is clearly worse than when it is even. This reflects the fact that an odd index means that the 

kink is not an endpoint of a basic Simpson's rule. The accuracy, in this case, is comparable to 

the one achieved with the trapezoidal rule. The 3/8-rule ( n = 3) behaves in a better way than 
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Simpson's rule. As we saw in Table 5.6 the composite 3/8-rule is a mixed one. In our exercise 

we use the first n' ( n' < 3) panels to apply one n'-point N C-rule, the remaining points are used 

to apply a pure composite 3/8-rule. One can check that this implies that the kink will always 

be an endpoint of a basic 3/8-rule for any N R of Table 5.8. For n = 5, it is obvious that the 

kink will be an endpoint as the index of the kink is a multiple of 5, which is also the number of 

panels in the basic NC-rule. For n = 4, 6, 7 the kink will only be an endpoint for some values 

of NR, hence the erratic behaviour of the computed integral value. To improve on the previous 

calculation we will now split the integral as suggested in Eq. (5.179). The results are shown in 

Table 5.9. 

NR 'tkink Et E2 E3 E4 Es E6 E1 
100 25 1.1e-04 6.le-07 1.4e-06 2.1e-08 5.3e-09 1.9e-08 1.1e-09 
200 50 2.6e-05 3.7e-08 8.4e-08 5.6e-ll 9.8e-11 1.1e-11 2.1e-09 
300 75 1.2e-05 7.9e-09 1.7e-08 7.1e-12 8.8e-12 4.5e-12 1.3e-12 
400 100 6.6e-06 2.3e-09 5.5e-09 7.4e-13 1.6e-12 7.1e-15 3.0e-13 
500 125 4.2e-06 1.1e-09 2.1e-09 1.3e-10 4.2e-13 1.1e-15 1.1e-15 
600 150 2.9e-06 4.6e-10 1.0e-09 l.Oe-13 1.4e-13 2.2e-16 1.3e-13 
700 175 2.1e-06 2.9e-10 6.0e-10 3.1e-14 5.6e-14 4.5e-11 2.2e-16 
800 200 1.6e-06 1.5e-10 3.3e-10 1.2e-14 2.5e-14 8.2e-15 3.3e-16 
900 225 1.3e-06 l.le-10 2.0e-10 2.1e-11 1.2e-14 1. 7e-14 2.1e-11 

1000 250 1.1e-06 6.0e-11 1.5e-10 7.1e-15 7.1e-15 6.7e-16 3.9e-14 

Table 5.9: Relative error En= I(Inum- lexact)/Iexactl from the numerical calculation of I(x) of 
Eq. (5.184) for x = 1e4, splitting the integral and using composite (n + 1)-point Newton-Cotes 
formulae with n = 1, ... , 7 for increasing total number of grid panels N R· ikink gives the position 
of the kink within the grid with N R + 1 points, i E [0, N R]. 

As expected the results for n = 1, 3, 5 are the same as in Table 5.8. For Simpson's rule ( n = 2) 

the results are now significantly better and comparable to the 3/8-rule for the various values of 

NR. For the other NC-rules, n = 4,6, 7, although the results have improved because the kink is 

an endpoint in every case, the behaviour is not consistent for increasing N R· The explanation 

for this can be found in the composition of the various mixed composite rules, mixing the main 

n-panel rule with one rule of lower degree of precision. 

To improve on those integral evaluations we can modify the number of integration points such 

that, after splitting the integral in two subintegrals at the kink, the number of panels in both 

integrals is a multiple of the number of panels of the basic rule. The new results are shown in 

Table 5.10. The results for n = 1, 5 are not shown as they are the same as in Table 5.9. All the 
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composite rules now have the accuracy predicted by their error formula. 

NR ikink E2 E3 E4 E6 NR ikink E1 
96 24 7.0e-07 1.6e-06 3.4e-09 6.4e-10 85 21 4.7e-09 

192 48 4.4e-08 9.8e-08 5.9e-ll 1.9e-12 169 42 1.2e-ll 
288 72 8.6e-09 1.9e-08 5.3e-12 7.1e-14 253 63 4.5e-13 
384 96 2.7e-09 6.2e-09 9.5e-13 7.5e-15 337 84 4.4e-14 
480 120 1.1e-09 2.5e-09 2.5e-13 4.4e-16 421 105 7.5e-15 
576 144 5.4e-10 1.2e-09 8.5e-14 0 505 126 2.0e-15 
672 168 2.9e-10 6.6e-10 3.3e-14 4.4e-16 589 147 4.4e-16 
768 192 1. 7e-10 3.8e-10 1.5e-14 4.4e-16 673 168 5.6e-16 
864 216 l.le-10 2.4e-10 7 .8e-15 3.3e-16 757 189 2.2e-16 
960 240 7.0e-11 1.6e-10 4.0e-15 1.1e-15 841 210 3.3e-16 

Table 5.10: Relative error En= I(Inum- Iexact)/Iexacti from the numerical calculation of I(x) 
of Eq. (5.184) for x = le4, splitting the integral and adapting the number of panels NR to use 
pure composite (n + 1)-point Newton-Cotes formulae with n = 2,3,4,6, 7 for increasing total 
number of grid panels N R· ikink gives the position of the kink within the grid with N R + 1 
points, i E [0, NR]· 

From the previous discussion it is clear that, even for an integrand with a kink, it is far more 

advantageous to use a quadrature rule with a higher degree of precision, as the 6-panel or 7-panel 

rules, than one of lower degree, for an equal total number of integration points. 

5.6.6 Split Simpson's rule and the integral equation 

Of course the quadrature rules are only building blocks of the integral equation and we must keep 

in mind how these rules are used in the global solution scheme of the integral equations. The 

various tables in the previous discussion were all derived for one value of external momentum, 

x = 1e4. Because this also coincides with the kink in the radial integrand, some conclusions 

drawn from these tables rely specifically on this value or rather on its index in the vector of 

integration points. If we consider the system of non-linear equations, Eq. ( 5.102), instead of just 

an individual integral, we note that the external momentum Xi takes on values corresponding to 

the momenta of the radial integration nodes, i = 0, ... , N R· This means that it may be difficult 

to satisfy the requirements needed to obtain an optimal accuracy, as derived from the previous 

discussion, for all of them at the same time, as we will now clarify. 

When we split the integration interval in two subintervals to avoid the kink in the integrand at 

the value Xi, i = 0, ... , N R, we will have i panels in the lower interval and N R - i panels in the 
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upper interval. We will then apply some composite integration rule to each of these subintegrals. 

Unfortunately, we now encounter a problem due to the use of the collocation method to solve the 

integral equation. In the collocation method, we use the same fixed set of integration points for 

all the radial integrals, independently of the external momentum, as we only know the function 

values l:i and thus the values of the integrands at a fixed number of momenta x;. We are not able 

to choose the number of points in the various integrals according to the external momentum and 

the position of the kink, such that the number of panels is a multiple of that from the basic rules 

as suggested by the results of Table 5.10. The collocation method forces us to use non-optimal 

mixed composite rules. 

Let us show this in the following example. We want to apply the composite Simpson's rule to 

evaluate the integrals. Let us take Nn = 100 and vary the position of the kink corresponding 

to the external momentum in Eq. (5.102). Table 5.11 shows the number of radial integration 

panels NR1, NR2 in each integral after we have split the total integral in two at the kink Xi· 

It also shows the composition of the integration rule if we use the composite Simpson's rule, 

complemented with one 3/8-rule or trapezoidal rule when needed. 

Xi NR1 Nn2 Rule 1 Rule 2 
xo 0 100 - Simpson's 
Xl 1 99 Trapezoidal Simpson's+3/8 
X2 2 98 Simpson's Simpson's 
X3 3 97 Simpson's+3/8 Simpson's+3/8 

X even even even Simpson's Simpson's 

X odd odd odd Simpson's+3/8 Simpson's+3/8 

X97 97 3 Simpson's+3/8 Simpson's+3/8 
Xgs 98 2 Simpson's Simpson's 
Xgg 99 1 Simpson's+3/8 Trapezoidal 

X100 100 0 Simpson's -

Table 5.11: Number of radial integration panels N R1, N R2 and structure of the mixed composite 
Simpson's rule in each integral after splitting the total integral in two at the kink x; (Nn = 100). 

From Table 5.11 we see that varying x; leads to different mixed composite rules to be used. Even 

if we try to combine rules with comparable accuracy, this is never possible for Xi = x1 or XNR-1 

where a trapezoidal rule is always involved. This reduces the accuracy to about the same level 
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as the one achieved with the pure trapezoidal rule. Even using composite rules formed with a 

basic rule of higher degree of precision does not help because, depending on the position of the 

kink, the composite rule will have to be complemented with rules of lower degree of precision. 

There is nothing we can do about this as long as we use the collocation method. In a later 

section, when we will introduce the polynomial expansion of the unknown functions, this will be 

cured in an elegant way. 

We now apply the splitting of the integral to the original kernel of Eq. (5.94) using the split 

Simpson's rule described in Table 5.11. The results are shown in Table 5.12. For comparison 

we also tabulate the results for the pure composite trapezoidal and Simpson's rule (without 

splitting the integral). 

NR 1/h E(O) E(O) E(O) 
Split Simp · trapez Simpson's 

32 4 17.444 246.741 587.681 
64 8 72.730 121.505 219.550 

128 16 83.790 93.557 120.363 
256 32 86.236 88.075 94.905 
512 64 86.768 87.093 88.778 

Table 5.12: E(O) versus number of radial integration panels N R and grid density 1/ h using 
the split Simpson's rule and the pure composite trapezoidal and Simpson's rule for a = 2.086, 
,.,2 = 100. 

For equal values of N R, the result of the split Simpson's rule is better than the results achieved 

with the other methods, given that the correct answer for E(O) ~ 87.009. 

5.6.7 Heuristic improvement of the split Simpson's rule 

We now make an interesting observation starting from the error formulae on the integral eval­

uation. Recall the error formula, Eq. (5.172), for the composite trapezoidal rule with grid 

spacing h, 
- - b- a 2 (2) 

I- h- Etrap- -~h f (0, a<~<b, (5.186) 

where I is the exact integral value and h represents the approximate value of the integral 

computed with a composite trapezoidal rule with grid spacing h. If we perform two indepen­

dent integral evaluations with grid spacings h1 and h2, and divide their respective errors using 
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Eq. (5.186) we get: 
I- hl - hU(2)(6) 
I- h2 - h~J(2)(6) . 

(5.187) 

If the second derivative of f(x) varies slowly we can put f( 2)(6) ~ f(2)(6) and Eq. (5.187) 

becomes, 

(5.188) 

and thus, 

(5.189) 

If we take h1 = h and h2 = 2h, this expression gives, 

(5.190) 

This last equations tells us that we can get an improved integral evaluation, if we know the 

evaluations of the integral with some number of panels and for half this number of panels. If we 

apply this to an integral evaluation using three points, x0 , x1 and x2, this yields, 

I ~ ~ [(4~(Jo +2ft+ h)- h(Jo +h)] 
h 

~ 3Uo +4ft+ h), 

which is exactly Simpson's rule Eq. (5.159). Thus, using the trapezoidal rules with Nand N/2 

panels we can construct some rule with a higher degree of precision, i.e. Simpson's rule. 

From the error formula Eq. (5.186) we can also compute, 

~ 

(h2 -I)- (hl -I) 
( h3 - I) - ( h2 - I) 
h~f( 2>(6)- hU(2>(~I) 

hU(2>(6)- h~f(2>(6) 

h~- h~ 
h§- h~ , 

which allows us to estimate the improvement of the integral evaluation with successive doubling 

of the number of panels. If we take h3 = h/2, h2 = h, h1 = 2h, then, 

h -hh 
-::---~ ~ 4. 
h/2- h 

(5.191) 

Although the previous relations were derived for integral evaluations, we can check if the nu­

merical solution of the integral equation follow some analogous relations. From the trapezoidal 
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results of Table 5.12 for I:(O) we indeed find that, 

I:0 ( trap, h) - I:o( trap, 2h) :::::: 
4 

, 
I:o(trap, h/2)- I:o(trap, h) 

(5.192) 

which means that Eq. (5.191) gets propagated from the integral evaluations to the solution of 

the integral equation. 

For curiosity we can also check if a relation analogous to Eq. (5.190) can be derived from 

Table 5.12, using the final solution of the integral equation rather than the individual integral 

values. We rather surprisingly see that: 

I; ( r h)"' 4I:o(trap, h)- I:o(trap, h/2) 
o sp 1t, "' 

3 
. (5.193) 

This tells us that the results of the split Simpson's rule can be approximated by combining the 

results from the trapezoidal rule for the same number of panels and for half this number of 

panels. Eqs. (5.192, 5.193) seem to be a feature of the h2 accuracy of the composite trapezoidal 

rule. 

In analogy with this, we now study the behaviour of Simpson's rule. Using the error formulae 

Eq. (5.174), 
b- a 4 (4) Es· = --h f (t:) 

'mp 180 <, ' 
(5.194) 

for two different evaluations using grid spacings h1 and h2. If the fourth derivative off varies 

slowly, we can write, 

and thus, 

Using this for h1 = h and h2 = 2hl yields, 

I:::::: 16h- l2h . 

15 

Analogously to Eq. (5.191), we have, 

h2- hi h~- ht 
h3- h2 =:::::: hj- h~ ' 

and for h3 = h/2, h2 = h, h1 = 2h, 

(5.195) 

(5.196) 

(5.197) 

(5.198) 

(5.199) 
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Nevertheless, Table 5.12 shows that the rate of convergence of the split Simpson's rule, when 

NR is increased does not follow Eq. (5.199) but tends to be the same as for the trapezoidal rule, 

I:0 (split, h)- I:o(split, 2h) ~ 
4 

I:o(split, h/2)- I:o(split, h) · 
(5.200) 

This is probably because there are always two trapezoidal rules involved in the calculation using 

the split rules and the error propagation keeps the global degree of precision down to that of 

the trapezoidal rule. 

The previous observations can be used to construct a heuristic method to improve the split 

Simpson's solution on the integral equation. Eqs. (5.192, 5.193, 5.200) suggest the following 

improvement: 
~ (I d 1. h) 4I:o(split, h)- I:o(split, h/2) uo mprove sp tt, ~ 

3 
. (5.201) 

The application of Eq. (5.201) to the results of Table 5.12 are tabulated in Table 5.13. 

NR 1/h I:(O) I:(O) 
Split Simp Improved split Simp 

32 4 17.444 
64 8 72.730 91.159 

128 16 83.790 87.477 
256 32 86.236 87.051 
512 64 86.768 86.945 

Table 5.13: I:(O) versus number of radial integration panels NR and grid density 1/h using the 
split Simpson's rule (from Table 5.12) and the improved split Simpson's rule of Eq. (5.201) for 
a = 2.086, K

2 = 100. 

5. 7 Critical coupling in the 1-loop approximation to IT 

We will now apply the previously discussed method to the integral equation, Eq. (5.94), describ­

ing the dynamical fermion mass generation in QED, in the 1-loop approximation to the vacuum 

polarization. In Fig. 5.3 we plot the 1-loop behaviour of (}(x) used as input in Eq. (5.94). The 

I:-equation is solved for various values of a using the improved split Simpson's rule and Newton's 

iterative method. In Fig. 5.4 we show a typical plot of the dynamical mass function I:( x) for 

a= 2.086, K2 = 0.01 and A2 = 1e10. 

In Fig. 5.5 we plot the evolution of I:(O), which is representative for the scale of the dynamically 

generated fermion mass, versus the coupling strength a. For small a there is no fermion mass 
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Figure 5.3: 1-loop photon renormalization function 9(x) as a function of the photon momentum 
x for a= 2.086. K2 = 0.01, A2 = 1e10. 
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2.086 in the 1-loop approximation tog, K2 = 0.01, A2 = lelO. 
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generation. At a certain value of the coupling, called the critical coupling, o:c, fermion mass 

generation sets in. The generated fermion mass increases further with increasing values of o:. 

To pin down the value of Oc numerically, we start from some large value of the coupling and 

decrease it till the mass generation disappears. From this we find I Oc = 2.084321. 
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Figure 5.5: Dynamically generated mass E(O) versus coupling o in the 1-loop approximation to 
g. K-2 = 0.01, A2 = 1e10. 

In this chapter we have set up the numerical framework to solve non-linear integral equations. 

We have applied this to a single integral equation for the dynamical mass E, corresponding to 

a specific truncation of the Schwinger-Dyson equations describing fermion mass generation in 

QED. In the next chapter we will relax some of the simplifications introduced in this chapter 

and will investigate the behaviour of the coupled set of integral equations for E and g. 



Chapter 6 

Solving the coupled (~, 9)-system: 
first attempt 

6.1 Numerical method to solve the coupled (E, 9)-system 

In this chapter we are going to extend the study started in the previous chapter by including 

the photon equation in our procedure instead of approximating the vacuum polarization by its 

1-loop approximation. 

We recall the integral equations, Eqs. (2.59, 2.60, 2.68), derived with the bare vertex approxi­

mation. In the Landau gauge and with zero bare mass these equations are: 

I:(x) 
F(x) 

1 
F(x) 

1 
Q(x) 

3a j dy yF(y)I:(y) j d(} sin2 (} Q(z) 
211"2 y + I;2(y) z 

1 + ~1dy yF(y) 
21r2x y + I;2(y) 

X j d(} sin20Q(z) (3~cos0 _ 2xy;!n
2
0) 

1 + 2Nfa j dy yF(y) j d(} sin2 (} F(z) 
37r2x y + I: 2 (y) z + I:2(z) 

X [ (n- 2)y- 2ny cos2 (} + ( n + 2)y'XY cos(}+ ( n- 4)I:(y)I:(z)] 

where z = x + y- 2ylxY cos 0. 

(6.1) 

(6.2) 

(6.3) 

Although we will generally set n = 4 in Eq. (6.3) throughout this work to avoid the quadratic 

divergence in the vacuum polarization integral, as explained in Section 2.5, we will use an 

alternative procedure in this chapter, taking n = 0, which corresponds to the operator P,_.v = 9JJ.v 

in Eq. (2.61), in order to investigate the results obtained by Kondo, Mino and Nakatani in 

106 
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Ref. [20]. Setting n = 0 in Eq. (6.3) yields: 

1 4Nfa J yF(y) J . 2 F(z) 
9(x) = 1- 3rr2x dy y + ~2(y) d(} sm (} z + ~2(z) [y- V£Ycos () + 2~(y)~(z)]. (6.4) 

The vacuum polarization integral in Eq. (6.4) contains a quadratic divergence which can be 

removed explicitly by imposing : 

1
, X 
1m -9( ) = 0, 

x-+0 X 

to ensure a massless photon. If we write the photon renormalization function as : 

1 
9(x)=1+ll(x)' 

Eq. (6.5) can be satisfied by defining a renormalized vacuum polarization ll(x) : 

xfi(x) = xll(x)- lim xll(x). 
X-+0 

(6.5) 

(6.6) 

(6.7) 

This is the procedure adopted by Kondo et al. [20]. They solve numerically the coupled set of 

integral equations for the dynamical fermion mass ~( x) and the photon renormalization function 

9( x) in the case of zero bare mass, mo = 0. The calculations are performed in the Landau gauge 

(~ = 0) with the bare vertex approximation, i.e. fi'(k,p) = IJ.t· As a further approximation 

they decouple the F-equation by putting F( x) = 1. While the quadratic divergence in the 

vacuum polarization is removed by imposing Eq. (6. 7), the fact that the Ward-Takahashi identity 

is not satisfied, when dynamical mass is generated, makes the results procedure dependent. 

The main improvement with respect to Section 5.3.2 is that we now determine the photon 

renormalization function 9(x) using the photon Schwinger-Dyson equation instead of using the 

1-loop perturbative result. 

The coupled integral equations for ~ and 9 obtained using these approximations, in Euclidean 

space and introducing an ultraviolet cutoff A 2 on the radial integrals, are given by : 

~(x) = 3a {A2 dy y~(y) r d() sin2 (} 9(z) 
2rr2 Jo y + ~2 (y) lo z 

and, performing the subtraction, Eq. (6.7), on Eq. (6.4): 

1 
9(x) 

4Nfa 1A2 y 11r . 2 
1- - 2- dy ~2 ( ) d()sm () 

3rr x o y + y o 

X {y- ..JXYcos() + 2~(y)~(z) _ y + 2~2(y)} 
z + ~2(z) y + ~2(y) 

(6.8) 

{6.9) 
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Recall that in QED the momentum dependence of the coupling comes wholly from the photon 

renormalization function, so solutions for 9( x) give the running of the coupling. Kondo et al. 

solve this coupled set of non-linear integral equations, Eqs. (6.8, 6.9), for Nf = 1 and find a 

symmetry breaking phase for a greater than some critical coupling ac ~ 2.084. 

We now describe how to solve the coupled set of integral equations Eqs. (6.8, 6.9) for I.:(x) and 

9( x ). As in the previous chapter we will replace the integral equations by a set of non-linear 

algebraic equations (see Section 5.3.2). For the purpose of numerical integration we introduce 

an ultraviolet cutoff A 2 and an infrared cutoff "'2 and change variables to the logarithm of 

momentum squared, t = log10 y. We then evaluate the integrals by some quadrature rule and 

consider the resulting equations only for external momenta equal to the integration nodes, 

3a ln 10 ~ x]I.:i ~ 1 • 2 (} 9(zk) 
2 L.....J Wj . '\"'2 L.....J Wk Sin k --

211' j=O X 3 + L.Jj k=O Zk 
(6.10) 

1 N 2 M 

1 4Nfan10" xj "" 1 • 2(} 
- 2 . L.....J Wj . 2 L.....J Wk Sill k 

311' Xt j=O X 3 + I;j k=O 

1 
(6.11) 

X {Xj- y'xiX]cosOk + 2I.:ji.:(zk) _ Xj + 22:]} 
Zk + 2: 2 (zk) Xj + 2:; ' 

where the equidistant logarithmic nodes are distributed as, 

i = o, ... ,N. (6.12) 

The corresponding momenta squared of the external particle and the radial integration nodes 

are 

i=O, ... ,N. (6.13) 

The angular integration nodes are 

k=O, ... ,M, (6.14) 

such that the momenta squared of the angular integration nodes are given by 

k = o, ... ,M. (6.15) 

The unknowns of the system of non-linear algebraic equations are the function values at the 

radial integration nodes, 

I.:i = I.:( xi) 

9i = 9(xi) 
i=O, ... ,N. (6.16) 
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However, the collocation method cannot yet be applied to Eqs. (6.10, 6.11) as the equations do 

not only refer to the unknown functions at the radial integration nodes Xi. The angular parts of 

Eqs. (6.10, 6.11) contain the function values L;(zk) and 9(zk) where the momentum Zk defined 

in Eq. (6.15) is not one of the quadrature nodes Xi as it also depends on the angle between 

the external momentum and the internal momentum. Therefore L;(zk) and (}(zk) are not one 

of the components L;i, gi of Eq. (6.16) which are the solution vectors of the problem and the 

collocation method cannot be applied directly. To compute the angular parts of Eqs. ( 6.10, 6.11) 

we have to interpolate the values of E(zk) and (}(zk)· A straightforward choice is to perform 

a linear interpolation on the logarithmic scale between the function values at the surrounding 

integration nodes Xi and Xi+t. where Zk E [xi, Xi+I] : 

(6.17) 

After using these interpolation rules for E(zk) and (}(zk) in Eqs. (6.10, 6.11) the system of non­

linear equations now only depends on the function values Ei and gi of Eq. (6.16) so that the 

collocation method can be applied. 

We then have to solve this system of non-linear equations using some appropriate numerical 

technique. From the discussion in the previous chapter it is clear that Newton's iterative proce­

dure is the right choice for this. However the full implementation of this method on the system 

of equations is very tedious and requires a large amount of computing time and memory allo­

cation. A major consumption of computer time will come from the computation of the angular 

integrals in Eqs. (6.10, 6.11). Because the kernels of the angular integrals depend on the un­

known functions, the angular integrals have to be recalculated for each iteration in Newton's 

method using the new approximations forE and(;. Furthermore, Newton's method requires the 

partial derivatives ofthe non-linear equations with respect to the function values Ei and 9i· As 

these are present in the radial and angular integrals, the computation of the derivatives will use 

a huge amount of computer time and memory allocation. Because these resources are limited 

we will settle for some compromise. 

We therefore introduce a hybrid method between Newton's method and the natural iterative 

procedure based on the observation that the kernel of the angular integrals in the E-equation, 
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Eq. (6.10), is a function of 9(z) but is independent of~. while the kernel of the angular integrals 

of the {/-equation, Eq. (6.11), is a function of ~(z) and has no dependency on{}. In this hybrid 

method we apply Newton's method on the ~-equation for a given 9, but the coupling between 

the ~ and g equations is solved using a global natural iterative procedure. We now give more 

details about the program flow of this method shown in Fig. 6.1. 

Let us start from some initial guess :Eo and 9o for the unknown vectors of function values at 

the quadrature points Xi. This could for example be the 1-loop perturbative approximation for 

g and some arbitrary, realistic function for the dynamical mass ~. We now describe how to 

derive new approximations (:En+l• 9n+l) starting from the current approximations (:En, 9n)· 

We first compute the angular integrals (0n)ij, 

(6.18) 

of the ~-equation, Eq. (6.10), using 9n and the interpolation rule Eq. (6.17). 

Then, Eq. (6.10) becomes: 

(
"' )· _ 3aln 10 ~ . x](~n+l)j(0n)ij 
L.Jn+l t 2 2 L...J WJ . ("' )2 = 0, 

7r j=O X J + L-ln+l j 
i = o, ... ,N. (6.19) 

Eq. (6.19) describes a system of non-linear algebraic equations determining the solution vector 

:En+l computed from 9n· This equation is very similar to Eq. (5.102) and can be solved using 

Newton's iterative method. The iterative method starts from an initial guess :En+l,o, for which 

:En seems an obvious but in no way necessary choice. At each iteration step the method requires 

the solution of a linear set of equations, Eq. (5.142), to compute :En+l,m+l from the previous 

solution I:n+l,m· Because we only improve~ in this part of the calculation, the angular integrals 

0 remain unchanged throughout Newton's method. The iterations of the Newton method will 

be repeated till two successive approximations :En+l,m+l and :En+l,m are sufficiently close, this 

approximation will be identified as :En+l . 

Once the Newton method has converged, the function :En+l is used to compute a new approx­

imation to 9n+l using the photon equation, Eq. (6.11), and the interpolation rule, Eq. (6.17). 

Note that the integral in this equation does only depend on ~ and so we need not apply any 

iterative procedure to compute 9n+ll all we have to do is evaluate the double sum in Eq. (6.11), 

corresponding to the two dimensional integrals of Eq. (6.9). This provides the end-point of one 

global iteration where the new approximations (:En+l, 9n+l) has been constructed from the 
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Figure 6.1: Program flow to solve the coupled (I;,Q)-system. 
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previous approximation (En, 9n)· The whole procedure is iterated till the new solutions for l: 

and g satisfy a global convergence criterion. 

As before the part computed using Newton's method is solved very efficiently. The coupling 

of the {}-iteration on the other hand slows down the whole procedure as the angular integrals 

for both equations have to be recalculated for every main iteration. Fortunately the {}-equation 

seems to converge relatively rapidly in this hybrid iteration scheme, i.e. after a few iterations, 

so that the overall computing time remains reasonable. 

In the next section we will show the results obtained with this method and discuss how the 

photon quadratic divergence, which is easily removed theoretically, could effectively be cancelled 

numerically. 

6.2 Numerical cancellation of the photon quadratic divergence 

In this section we apply the previously developed method to determine the critical coupling 

and study the behaviour of the photon renormalization function of the coupled (l:, {})-system. 

A numerical solution to this problem has also been recently presented in Ref. [20) by Kondo, 

Mino and Nakatani. As in Ref. [57), we discuss the peculiar behaviour they find for the photon 

renormalization function g at intermediate low momentum. For N 1 = 1 we find a symmetry 

breaking phase for a greater than some critical coupling ac ~ 2.084. In Figs. 6.2, 6.3 we display 

the results for a value of a = 2.086, close to its critical value. The dynamical mass function, 

l:(x), is illustrated in Fig. 6.2. 

Fig. 6.3 shows the photon renormalization function, {}( x ), found from the solution of the coupled 

(l:, {})-system and this is compared with its 1-loop approximation. To allow the comparison 

with the 1-loop result the vacuum polarization is renormalized such that fi(A2 ) = 0. 

One observes that at high momenta the self-consistent {}(x) follows the 1-loop result very nicely. 

For decreasing momenta the effect of the dynamically generated mass comes into play and the 

value of{}( x ), and hence that of the running coupling, seems to stabilize for a while, as one could 

expect. Then, surprisingly, at some lower momentum there is a sudden fall in {}(x ), which drops 

below the 1-loop value and almost vanishes completely. This is a rather strange behaviour for 

the running coupling at low momenta. This decrease corresponds to the vacuum polarization 

integral of Eq. (6.9) becoming large. We will show that this sharp decrease is an artefact of the 

method used by Kondo et al. [20] to remove the quadratic divergence in the vacuum polarization. 
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Figure 6.2: Dynamical mass function I:(x), as a function of momentum x for NJ 
a= 2.086 as calculated in a self-consistent way as in Ref. [20) {A2 = 1e10). 
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Figure 6.3: Photon renormalization function Q(x), as a function of momentum x for NJ = 1 
and a = 2.086 as calculated in a self-consistent way as in Ref. [20) and in 1-loop approximation 
(A2 = 1e10). 
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We also discuss how this can be avoided in numerical studies of the Schwinger-Dyson equations. 

To solve the problem numerically we have to make additional assumptions about the ultraviolet 

behaviour of I;(x) and O(x). These arise from the need to handle loop momenta beyond the 

ultraviolet (UV) cutoff. If in Eqs. ( 6.8, 6.9) 0 ~ x, y ~ A 2 , then the momentum in the angular 

integration, z = x + y - 2.JEY cos fJ, will lie in the interval 0 ~ z ~ 4A 2 • Therefore, the angular 

integrals need values of I; and 0 at momenta above the UV-cutoff, i.e. outside the physical 

momentum region. Therefore one will have to extrapolate I; and 0 outside this region. In their 

work, Kondo et al. [20] define : 

(6.20) 

(6.21) 

Both dynamical mass and vacuum polarization vanish above the UV-cutoff and the theory then 

behaves as a free theory. Although this assumption seems reasonable, Eq. (6.20) introduces a 

jump discontinuity in the dynamical mass function at x = A2 because I;(A2 ) -=/= 0 for a > ac 

(see Fig. 6.2), while Eq. (6.21) introduces a relatively sharp kink in the photon renormalization 

function at that point (see Fig. 6.3). 

A more detailed investigation shows that the step in the photon renormalization function found 

by Kondo et al. is an artefact of the way they renormalize the quadratic divergence in the 

vacuum polarization integral, Eq. (6.9), combined with the presence of the jump discontinuity 

in the dynamical mass function, Eq. (6.20), as we now explain. 

From the angular integrand of the 0-equation, Eq. (6.9) , we define fe as : 

fe = y- .jXYcosfJ + 2I;(y)I;(z) _ y + 2I;2(y). 
z + I;2(z) y + I;2(y) 

(6.22) 

Both terms in Eq. (6.22) cancel exactly at x = 0 to remove the quadratic singularity. Of 

course the description of the real world has to be such that the approximate cancellation of the 

quadratically divergent terms at low x becomes exact at x = 0 in a continuous way. 

To investigate this, we now look analytically at the behaviour of fe at low x, for some arbitrary 

value of y and fJ. We can write z as: 

z = y + oy (6.23) 

where we define: 

Oy = X - 2vxy COS fJ, (6.24) 
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and we know 6y is small if xis small. Furthermore, we also write I:(z) as: 

E(z) = I:(y) + 6E. (6.25) 

Substituting Eqs. (6.23), (6.25) in the expression for the angular integrand fo, Eq. (6.22), yields: 

"' y- ..JXYcosO + 2E2(y) + 26EE(y) y + 2E2(y) 
fo "' y + E2(y) + 6y + 26EE(y) + 6E2 - y + E2(y) . 

(6.26) 

Performing a. Taylor expansion of the denominator of the first term, we get (neglecting terms of 

0(6y)2,6E2): 

1 [ y- ..jXY cos(}+ 2E2(y)l 
fo ~ y + E2(y) -vxvcosO + 26EE(y)- (6y + 26EE(y)) y + E2(y) 

~ O(x,vxvcos0,6E). (6.27) 

If E(z) is smooth, we can make a Taylor expansion of E(z) around E(y): 

E(z) = E(y) + 6y E'(y) + 0(6y)2
, (6.28) 

and 6E of Eq. (6.25) is, 

61.: = 6y I:'(y) + 0(6y)2
• (6.29) 

In this case, Eq. (6.27) becomes, 

fo ~ O(x, FY cos 0) (6.30) 

and it is clear that the angular integrand fo is continuous for all (} E [0, 1r] and goes to zero in 

a continuous way when x goes to zero. From Eq. (6.27) we see that the same argument holds 

even when E is continuous, but not necessarily smooth, at z = A 2 • 

Now let us look at the angular integrand fo in the approximation of Kondo et al. [20] when x 

is small but y is very large, indeed larger than Yo = (A- ... rx)2. Then, for values of(} greater 

than 00 (y) = arccos((x + y- A2)/2VXfj) we will have z > A2
• If we now use Kondo et al.'s 

extrapolation, Eq. (6.20), then E(z > A2) = 0 and the angular integrand Eq. (6.22), now 

becomes: 

(6.31) 

For small x, and z > A 2 (corresponding to y > y0 and (} > Oo(Y)) we have, 

E2(y) 
fo ~ - 2() +O(x,vxvcosO), 

y+ E y 
(6.32) 
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while for small x and z ~ A2 we still have the expected behaviour of Eq. (6.30), 

fo ~ O(x, y'XY cos 0). (6.33) 

From Eqs. (6.32, 6.33) we see that as soon as x deviates from zero, the angular integrands for 

y > Yo contain a jump discontinuity at (} = 00 (y), and part of the angular integrand will not 

vanish continuously when x ----> 0. In fact the angular integral ! 0 will receive an extra contribution 

Ho when y is larger than y0 = (A- ../X)2 : 

Ho(Y >Yo) = 

(6.34) 

Substituting Eq. (6.34) in Eq. (6.9) we see that the vacuum polarization receives an extra 

contribution Oil( X) ; 

oiT(x) = 4Nfa 1"2 dy y~2(y) (~- Oo(Y) + sin20o(Y)) 
31r 2X yo (y + ~2 (y))2 2 2 4 

(6.35) 

Writing .jfj = A+ ...jX cos '1/J, so that Oo ~ 'ljJ for x ~ A 2 , we have, using the mean value theorem : 

(6.36) 

so that : 

(6.37) 

Because of the 1/../X this change in II(x) would be noticeable at very small values of x. However, 

this analytic calculation does not explain the sharp decrease of(}( x) at intermediate low momenta 

we and Kondo et al. [20] find (see Fig. 6.3). 

To understand why this happens we have to consider how the numerical program computes the 

extra contribution, Eq. (6.35), to the vacuum polarization integral. As shown in Eq. (6.11), the 

integrals of Eq. (6.9) are approximated by a finite sum of integrand values at momenta uniformly 

spread on a logarithmic scale. For small x, the extra contribution is entirely concentrated at 

the uppermost momentum region of the radial integral with y E [yo, A 2]. There the numerical 

integration program will have only one grid point'xi (Eq. (6.13)) situated in the interval [y0 ,A2] 

for any realistic grid distribution. This point will lie at XN = A2 if we use a closed (N+l)-point 
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quadrature formula. Therefore the integral will be approximated by the value of the integrand 

at A2 times a weight factor W(A2) = wA2 (w is 0(1)): 

t5IT(x) ~ 4Nfa W(A2)A2I:2(A2) (~ _ 90 (A2) sin 290 (A2)) 
37r2 x(A2 + I:2(A2))2 2 2 + 4 

(6.38) 

For small x we have 00 (A 2 ) ~ 1r /2 and the extra contribution to the vacuum polarization will 

be: 

(6.39) 

This will effectively add a huge correction to the vacuum polarization at low x. This has 

been extensively checked numerically and shown to be completely responsible for the sudden 

decrease in the photon renormalization function 9( x) at low momenta. To reproduce our pre­

vious analytic result of Eq. (6.37) numerically, the integration grid would have to be tuned 

unnaturally fine to include more points in the region [y0 , A 2]. Without such tuning one has the 

result of Eq. (6.39). Then xiT(x) does not vanish continuously as x ---+ 0. Instead, for x > 0, 

xiT(x) ~ Nfawi:2(A2)/37r and so as soon as x is non-zero the cancellation of the quadratic 

divergence disappears suddenly and not gradually as the physical world requires. Eq. (6.39) 

tells us that the step in 9 (see Fig. 6.3), is due to an unsuccessful numerical cancellation of the 

quadratic divergence in the vacuum polarization integral II( x ). It is significant for the sensitivity 

of the problem that, against all expectations, the high momentum behaviour of I:( x ), where its 

value is quite small, plays such a major role in the behaviour of 9(x) at low x. This will even 

become more apparent in the following discussion. 

It is natural to expect that the function I: from the physical world will be smooth. To improve 

on the discontinuous extrapolation rule Eq. (6.20), we can replace it by the following simple 

extrapolation rule : 

(6.40) 

This will get rid of the jump discontinuity in the dynamical mass function, leaving instead a very 

slight kink. Although I:( x) is not yet smooth at x = A 2 it now is continuous. When solving the 

integral equations using this extrapolation rule, the step in the photon renormalization function 

at intermediate low momenta disappears, only to be replaced by a singularity as can be seen in 

Fig. 6.4. 

However, the new singularity in 9 is not as worrying as it may seem at first sight. If we recall 
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Figure 6.4: Photon renormalization function 9(x), as a function of momentum x for Nf = 1 
and a= 2.086 as calculated in a self-consistent way with a continuous extrapolation for E, with 
the jump discontinuity in E as in Ref. [20] and in 1-loop approximation (A2 = 1e10). 

Eq. (6.6), 
1 

(}(x) = 1 + II(x)' 

we see that the singularity in g corresponds to II( x) -+ -1. A closer numerical investigation 

shows that this is due to the inadequacy of the interpolations, Eq. (6.17), to compute the angular 

integrals in Eq. (6.11). The functions E(x) and 9(x) constructed with these interpolation rules 

are in fact piecewise linear polynomials (on logarithmic scale) with interpolation points Xi· 

Although these functions are continuous, they are not smooth and this leads to cancellation 

mismatches in the angular integrals of the (}-equation and thus to unphysical singularities in 9. 

This points the way to a possible solution of this problem: we want smooth approximations to 

the functions in order to get a realistic, physical answer to the problem. 

To study the validity of this statement without completely modifying the numerical program 

straight away, we just add one more step at the very end of the previous calculation. There we 

used the collocation method to construct the system of non-linear equations, Eqs. (6.10, 6.11), 

enhanced with the interpolation rules, Eq. (6.17), and extrapolation rules, Eqs. (6.40, 6.21). 

This system of equations was then solved to determine the unknown function values Ei and Yi 

at the quadrature nodes of the radial integrals. 
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Starting from this solution vector l:i we now construct a smooth polynomial approximation E( x) 

using, for instance, Chebyshev polynomials to replace the piecewise linear construction achieved 

previously with the interpolation rule Eq. (6.17). The Chebyshev approximation to l:(x) can be 

written as, 
N-1 

E(x) = L ajTj(x). (6.41) 
j=O 

As will be shown in Section 7 .2, the coefficients aj can be easily determined provided we know 

the function values l:(yj) at the N distinct roots Yi of the Chebyshev polynomial TN(x) of 

degree N. The function values l:(yj), needed to determine aj, can be approximated by applying 

the interpolation rule Eq. (6.17) on the solution vector l:i. The polynomial approximation E(x) 

coincides with the interpolated, piecewise linear, dynamical mass function l:(x) at theN points 

j=1, ... ,N. (6.42) 

Note that the interpolation points Yi of the new smoothed function E( x) do not coincide with 

the original collocation points Xi of the collocation method, and thus, E( Xi) -:/:- l:i. 

We now use the smooth function E( x) of Eq. ( 6.41) to compute numerically the integral evalu­

ations in Eq. (6.11), and determine g, As we see in Fig. 6.5, the smoothing of 1: has the desired 

effect on the behaviour of g . The singularity disappears and is replaced by a flat line down into 

the infrared. This agrees with our physical intuition about the behaviour of the running of the 

coupling, when fermion mass is generated. 

In this chapter we have seen that the proper numerical cancellation of the quadratic divergence 

in the vacuum polarization requires the dynamical mass function 1:( x) to be smooth. This 

ensures that the cancellation of the quadratic divergence takes place smoothly as x ~ 0. 

From the previous discussion we conclude that the collocation method, where the unknowns 

of the problem are the function values at the radial integration nodes, has definite drawbacks. 

Because the unknown functions are also present in the angular integrals, we have to comple­

ment the method with some appropriate interpolation and extrapolation rules. The function 1: 

constructed with these rules will not be smooth and therefore g will behave unphysically. Fur­

thermore, as mentioned in the previous chapter, the use of a single fixed set of radial integration 

points in the collocation method, and the kink in the radial integrand forcing us to split the 

integral in two, reduces the accuracy of the integration rules. 
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Figure 6.5: Photon renormalization function 9( x ), as a function of momentum x for N f = 1 and 
a = 2.086 as calculated in a self-consistent way with a smoothened approximation to ~. with 
the jump discontinuity in ~ as in Ref. [20] and in 1-loop approximation (A2 = 1e10). 

To avoid these problems it is therefore preferable to search for smooth solutions for the dy­

namical mass function ~( x ), the fermion wavefunction renormalization F( x) and the photon 

renormalization function 9 ( x). In the next chapter we are going to develop the formalism to 

approximate the unknown functions by a smooth, polynomial expansion instead of discretizing 

the function at the radial integration points. 



Chapter 7 

Chebyshev expansion method 

In the previous chapters we solved the integral equations using the collocation method. This 

method discretizes the unknown functions at the nodes of the quadrature rule used to evaluate 

the integrals. However we gathered enough evidence supporting the need to develop an alter­

native procedure where these functions are smoothly approximated, for example by the use of 

some polynomial expansion. For various reasons one of the favoured polynomial approximations 

of functions is the expansion in Chebyshev polynomials. 

7.1 Chebyshev polynomials 

The Chebyshev polynomial of degree n is denoted Tn(x ), and is given by the explicit formula [41], 

Tn(x) = cos(narccosx). (7.1) 

Although this looks trigonometric at first glance, the use of trigonometric expressions in Eq. (7 .1) 

gives the following polynomial forms, 

To(x) 

T1(x) 

T2(x) 

T3(x) 

T4(x) 

1 

X 

2x 2 - 1 

4x3 - 3x 

8x4 - 8x2 + 1 

In general one can derive the following recursion relation: 

Tn+I(x) = 2xTn(x)- Tn-1(x), 
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(7.2) 

n ~ 1. (7.3) 
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We plot the first few Chebyshev polynomials Tn(x), n=O, ... ,4 in Fig. 7.1. 

X 

Figure 7.1: Chebyshev polynomials Tn(x) for n=O, ... ,4. 

The polynomial Tn(x) has n zeros in the interval [-1,1] at 

X= cos ck- ~~2 )11"). k = 1, ... ,n. 

Tn(x) also has n + 1 extrema in [-1,1]located at 

X= COS (k:), k = o, ... ,n. 

All the minima have a value Tn(x) = -1, while the maxima all have a value Tn(x) = 1. 

The Chebyshev polynomials are orthogonal in the interval [-1, 1] over a weight v'1- x 2 , 

i:f=j 
i=j=/=0 
i=j=O 
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(7.4) 

(7.5) 

(7.6) 

In addition to the continuous orthogonality relation Eq. (7.6), the Chebyshev polynomials also 

satisfy a discrete orthogonality relation. If Xk are the n zeros of Tn(x) given by Eq. (7.4), 

k = 1, ... , n, and if i, j < n, then 

i:f=j 
i=j=/=0 
i=j=O 

(7.7) 
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7.2 Chebyshev approximation 

We now want to determine the coefficients Cj of the polynomial approximation to an arbitrary 

function f(x), 
N-1 N-1 

f(x) ~ L 1CjTj(x) = L CjTj(x)- c;, 
j=O j=O 

(7.8) 

such that the approximation becomes exact at the N zeros of TN( x). 

For these zeros we then have 

N-1 
f(xk) = L 1CjTj(xk), k=1, ... ,N. (7.9) 

j=O 

Multiply both sides with Ti(xk) where i < N and sum over all zeros of TN(x ): 

N N-I N 
L Ti(xk)f(xk) = L 1Cj L Ti(xk)Tj(xk)· (7.10) 
k=1 j=O k=1 

Using the orthogonality relation Eq. (7.7) yields: 

(7.11) 

The coefficients Cj of Eq. (7.8) are 

(7.12) 

If we substitute the expression (7.4) for the zeros of TN(x) this becomes: 

. = :!_ ~ T· [ ((k- 1/2)rr)] f [ ((k- 1/2)rr)] 
CJ N ~ J cos N cos N . 

k=1 
(7.13) 

Substituting the definition Eq. (7.1) for the Chebyshev polynomial Tj(x) the coefficients can be 

computed as 

. = :!_ ~ (j(k- 1/2)rr) f [ ((k- 1/2)rr)] 
CJ N ~ cos N cos N . 

k=l 

(7.14) 

The Chebyshev expansion is often used because the error generated by replacing the function 

by its expansion is smeared out over the complete interval. 
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7.3 Evaluation of Chebyshev approximation 

To evaluate a Chebyshev approximation of a function using a set of Chebyshev coefficients Cj, 

we could use the recurrence relation Eq. (7.3) to evaluate the successive values ofTj(x) and then 

sum up these contributions multiplied by their respective coefficient. However, there is a more 

efficient way to evaluate a sum of polynomials using Glenshaw's recurrence formula. 

Suppose we want to evaluate the polynomial sum 

N 

f(x) = l:::CjFj(x), 
j=O 

where the polynomials Fj(x) obey a recurrence relation of the kind, 

Fn+l(x) = a(n,x)Fn(x) + ,8(n,x)Fn-l(x). 

Define the quantities dj by the following recurrence relation: 

j = N,N -1, ... ,1 

Then Glenshaw's recurrence formula to compute f(x) defined in Eq. (7.15) is 

f( x) = ,8( 1, x )Fo( x )d2 + F1 { x )d1 + Fo( x )co. 

(7.15) 

(7.16) 

(7.17) 

{7.18) 

If we apply Clenshaw's formula to the Chebyshev polynomials obeying the recurrence relation 

Eq. (7.3), the function approximation Eq. (7.8) is given by 

d· J 

f(x) 

2xdj+l - dj+2 + Cj , 

co 
xd1- d2 + 2· 

j=N-1,N-2, ... ,1 

(7.19) 

The Chebyshev polynomials define a polynomial approximation over the interval [-1,1]. To 

approximate a function f(x) over an arbitrary interval [a,b] we introduce a change of variable 

(7.20) 

so that, 

x E [a, b)~---> s E [-1, 1]. (7.21) 
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The Chebyshev approximation will now be 

N-1 

f(x) ~ L 1cjTj(8), (7.22) 
j=O 

where x is mapped into s using Eq. (7.20). 

7.4 Chebyshev expansions for ~' :F and Q. 

For the specific case ofthe numerical solution of the Schwinger-Dyson equations, we have already 

pointed out in the previous chapters that a convenient variable to perform the numerical inte­

grations is t = log10 x. Therefore we will consider I:(x), F(x) and 9(x) as functions oft, defined 

over the interval t E [log10 ~~:2 ,log10 A2). According to Eq. (7.20) the Chebyshev polynomials, 

used to construct the Chebyshev expansions, will be written as function of the new variable s 

defined as 

or 
_ log10(x/ A~~:) 

8 
= log10(A/~~:) · 

We will define the Chebyshev expansions of the unknown functions as: 

where 8 is defined by Eq. (7.24). 

Nr,-1 

I:(x) = L 1ajTj(s) 
j=O 

NF-1 

F(x) = L 1bjTj(s) 
j=O 

Ng-1 

9(x) = L 1cjTj(s), 
j=O 

(7.23) 

(7.24) 

(7.25) 

(7.26) 

(7.27) 

In principle the number of Chebyshev polynomials Nr:., N:.r, No used to approximate the functions 

will be chosen so that the error on the three functions is comparable. 

We now mention some of the advantages of using the Chebyshev expansion to approximate the 

unknown functions. First of all, it guarantees the smoothness of the solutions and in doing 

so it should also ensure the correct cancellation of the quadratical divergence in the vacuum 

polarization integral. Related to this is the fact that the Chebyshev expansions are extremely 

useful to handle the two-dimensional integrals because the function values can be computed at 
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any value of x E (a, b]. There is no need for any complementary interpolation method anymore. 

Furthermore, because we can compute the function values at any point it allows us to use 

whatever quadrature rule we want, we are not bound anymore to use the same set of equidistant 

integration points for all the individual equations in the system of non-linear equations. We can 

now freely choose a different, optimal set of points for each integration. 

7.5 ~-equation and Chebyshev expansion 

We will now use the Chebyshev expansion for E to construct an alternative method for solving 

the integral equation to replace the previously used collocation method. 

Let us recall the E-equation Eq. (5.98), 

_ 3aln 10 l.log1o A
2 

y2 E(y) j sin2 (} 
E( X) - 2 dt 2( ) d(} N 2 ' 

21!" log10 ~>2 y+E Y z(1+~ln.!L) 
311" z 

(7.28) 

where y = lOt and z = x + y - 2..(FY cos 0. 

We will now look for an approximate solution E(x) to Eq. (7.28) which can be written as a 

Chebyshev expansion, 
Nr;-1 

E(x) = L 1ajTj (s(x)) 
j=O 

where x E (,._2 ,A2] and, from Eq. (7.24), 

s(x) = loglO(x/ A"'). 
log10(A/"') 

(7.29) 

(7.30) 

The integral equation Eq. (7.29) contains Nr, unknown Chebyshev coefficients aj. To determine 

these coefficients we need at least Nr, constraints. These constraints are obviously found by 

imposing that Eq. (7.29) should be satisfied at M different values of x (where M >= Nr,). 

3a ln 10 l.log1o A
2 

y2 E(y) J sin2 
(} 

Ei = 2 dt 2( ) d(} N 2 ' 
21!" log10 ~> 2 Y + E Y z(1 + ~ ln .!L) 

311" z 

i = 1, ... ,M, (7.31) 

where Ei = E(xi) using the Chebyshev expansion Eq. (7.29). 

If M = Nr,, Eq. (7.31) is a system of Nr, non-linear equations with Nr, unknowns. If M > Nr, the 

system of equations will be overconstrained and the coefficients can be determined by minimizing 

the error between the right and left hand sides of the complete system of M equations. Such 

a minimization procedure is quite tedious for a non-linear problem and does not have any 

advantage compared to solving the system of equations when M = Nr, [58]. In practice we will 
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choose the NE external momenta to be located at the NE zeros of the Chebyshev polynomial 

(
(i- 1/2)7r) 

Sj =cos N'£ ' i=1, ... ,N'£, (7.32) 

and from Eq. (7.30) the external momenta x; are given by , 

(A) 8
i 

Xj = AK, K (7.33) 

In contrast to the use of the expansion method to solve linear integral equations, the non­

linearity of Eq. (7 .31) does not allow us to take the expansion coefficients aj out ofthe integrals. 

To make further progress in the numerical solution of Eq. (7.31), we have to approximate the 

integrals of Eq. (7.31) by some suitable quadrature rules. The quadrature ruleR;, the number of 

integration nodes and the position of the nodes can vary depending on the external momentum 

x;. The actual choice of the quadrature rule will be discussed in a later section. Eq. (7.31) can 

now be written as: 

1 (NR)i 2 ~ No · 2 (} 
l: 3a n 10 '""' YikLiik '""' 1 sm l 

i = 2 2 L....,; Wik . l:2 L....,; wl N a A2 ' 
7r k=O Y1k + ik l=O zt(1 + ~ ln Z';) 

(7.34) 

where l:;k = l:(Yik ), Yik = lQtik, tik are the ( N R)i + 1 integration nodes and Wik the weights 

corresponding to the integration rule R;. The photon momentum in the angular part is given 

by Z( = Xj + Yik - 2JXiYik cos (}f.. 

The angular part of Eq. (7.34) is independent of the unknown function l:. We define: 

-~ 1 sin2 0t 
0;k = L....,; wl N 2 

l=O Zt(1 + 3~a ln ~t) 
(7.35) 

Substituting Eq. (7.35) in Eq. (7.34) yields: 

3 1 10 (NR)i 2 e ~ 
~ a n '""' Yik • ikLiik 
Llj = 2 2 L....,; Wjk ~2 ' 

1r k=O Yik + Llik 
i=l, ... ,N'£. (7.36) 

Eqs. (7.36, 7.29) form a system of NE non-linear algebraic equations, where the NE Chebyshev 

coefficients are the unknowns. To solve this system of equations, we will again use Newton's 

method, developed in Section 5.4. We apply Eqs. (5.127, 5.126, 5.118) to Eqs. (7.36, 7.29). 

Newton's iterative method will provide successive approximations a 11 to the vector of Chebyshev 

coefficients a solving Eq. (7.36). Each iteration step requires the solution of a linear set of 

equations: 

J(an) ~n+l = f(an)· (7.37) 
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Once the solution ~n+l of Eq. (7.37) has been computed, the new approximation an+l is 

determined from 

(7.38) 

To construct the system of linear equations, Eq. (7.37), we rewrite Eq. (7.36) as 

3 l 10 (NR)i 2 0 '{"' 
! ·( ) = '{"'. _ a n """ . Yik • ik~ik _ 0 ' a - ~~ 2 L...,; w,k 2 - ' 

21!" k=O Yik + ~ik 
i=1, ... ,NE, (7.39) 

where ~i, ~ik are functions of a. The matrix of derivatives J is defined as 

J . ·( ) = 8fi(a) 
'J a - n . 

ua· J 

(7.40) 

(7.41) 

From the Chebyshev expansion Eq. (7.29) and the definition Eq. (7.8) we know that 

8~i 1 -
~ = Tj (si)- -6jo = Tj(si)· 
uaj 2 

(7.42) 

Applying the chain rule and substituting Eq. (7.42) in Eq. (7.41) gives, 

(7.43) 

where Tik maps Yik on the interval [-1,1] using Eq. (7.30). 

After substitution of Eqs. (7.39, 7.43) in Eq. (7.37) the linear system of algebraic equation to 

be solved at each iteration step in Newton's method is 

i=1, ... ,NE. (7.44) 
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7.6 Splitting the integral 

To evaluate the integrals of Eq. (7.31) we have to introduce some appropriate quadrature rule. 

Following the discussion in Section 5.6 we know that in order to preserve the accuracy of rules 

with a high degree of precision, the integrand has to be sufficiently smooth. Because of the kink 

in the radial integrand it is therefore necessary to split the radial integrals in two parts: 

i = 1, ... ,N~, (7.45) 

where the total radial integrand is 

, 3aln10 y2 ~(y) 
R.. (x, y) = 211'2 y + ~2(y) 0(x, y) (7.46) 

and the angular integral 0(x, y) is defined as: 

J sin2 (} 
0(x,y) = dO ~ A2 , 

z(1 + 3 11" In -:z) 
(7.47) 

with z = x + y- 2y'xY cos 0. 

We then choose a suitable quadrature rule to evaluate both integrals in Eq. (7.45). The resulting 

system of non-linear algebraic equations is still given by Eq. (7.36) and will be solved using the 

method described in the previous section. 

7.7 Gaussian quadrature 

The quadrature rule in Eq. (7.34) can again be chosen to be a composite Newton-Cotes rule 

with equidistant points as in Section 5.6, but, because of the polynomial expansion of ~( x) we 

are now free to use other methods. 

In the Newton-Cotes formulae the integration nodes are equidistant and the weights are de­

termined to maximize the degree of precision of the integration rule. In a more general class 

of integration rules, we determine not only the weights of the function values at the different 

integration nodes, but also the location of these nodes such that the degree of precision be­

comes maximal. This allows us to achieve a higher degree of precision than the Newton-Cotes 

rules with an equal number of integration points. Such methods are known as the Gaussian 

integration rules [56, 41]. Then-point Gaussian quadrature evaluates the integral 

b n 1 w(x)f(x)dx = r;wjf(xj)+ En{!}. (7.48) 
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such that its degree of precision is 2n - 1. 

One can show in general that the quadrature formula, Eq. (7.48), has degree of precision at most 

2n- 1. This maximum degree of precision is attained iff then nodes Xj are the zeros of Pn(x), 

the nth orthogonal polynomial with respect to the weight w( x) over [a, b ]. 

Orthogonal polynomials with respect to a specified weight function w(x) over [a,b] obey the 

relation: 

1b w(x)pi(x)pj(x)dx = 0 if i:f:j. (7.49) 

The Gaussian quadrature with weight w(x) = 1 over the interval [-1, 1] is known as the Gauss­

Legendre quadrature rule, which can be written as 

(7.50) 

The orthogonal polynomials with respect to the weight w(x) = 1 over [-1,1] are the Legendre 

polynomials Pn(x). They can be built by imposing the orthogonality relation 

and are normalized by 

1
1 

Pi(x)Pj(x) dx = 0 
-1 

if i :/: j 

11 2 
P:(x) dx = 

2 
. 

-1 n+ 1 

The Legendre polynomials can be computed with the help of Rodrigues' formula: 

( ) 1 dn ( 2 )n Pn X = -
2 1-d X -1 , nn. xn 

or by using the recurrence relation, 

(n + 1)Pn+I(x) = (2n + 1)xPn(x)- nPn-1(x). 

(7.51) 

(7.52) 

(7.53) 

(7.54) 

The abscissas of the quadrature, Eq. (7.50), are the roots of the Legendre polynomial Pn(x). 

The coefficients of the Gauss-Legendre quadrature formula, Eq. (7.50), over the interval [-1,1] 

are given by: 
2 

(7.55) 

One can prove that the coefficients Wj in the Gauss-Legendre quadrature formulae are always 

positive. This is important for the numerical accuracy of the method because roundoff errors 

are not generally magnified in this case. 



CHAPTER 7. CHEBYSHEV EXPANSION METHOD 131 

The error term of the Gauss-Legendre quadrature over [-1,1] is: 

22n+l ( n1)4 ( ) 
En{f} = [ ' ) pf 2n (~), 

(2n + 1) (2n ! 
-1 < ~ < 1. (7.56) 

To compute an integral over an arbitrary interval, the Gauss-Legendre will be adapted as 

1b b - a n ( b + a b - a ) 
a J(y) dy = -

2
-[; Wj J -

2
- + -

2
-xj +En{!}. (7.57) 

where Wj and Xj are the weights and nodes of the Gauss-Legendre quadrature over the interval 

[-1,1], Eq. (7.50). 

The error term is now 

a<~< b. (7.58) 

7.8 Gaussian quadrature and the integral equations 

If we look back at the solution method used to solve the integral equations, we ca.n ask ourselves if 

we could have used the Gaussian quadrature to evaluate the integrals in the collocation method. 

We have indeed tried this method, but the results obtained were much worse than those obtained 

with the Newton-Cotes formula. Indeed, if we use a Gaussian formula. with N nodes Xj, we will 

construct a system of non-linear equations where the unknowns are the function values :Ej at 

the integration nodes, which are now unequally spaced. Although this problem is solvable in the 

same way as before the accuracy obtained is rather poor because the high degree of precision of 

the Gaussian rule requires the integrand to be sufficiently smooth. This condition is obviously 

not satisfied as the integrand has a kink. Although we encountered the same problem when we 

used the composite Newton-Cotes formulae when the degree of precision was higher than that 

of the trapezoidal rule, we were able to improve the accuracy by splitting the integration region 

in two at the kink, so that each of the two integrations has a smooth integrand. Unfortunately 

we cannot apply this method to the Gaussian quadrature because the integration nodes a.re 

unequally spaced. If we want to apply Gaussian quadratures to the equation with external 

momentum Xi, we choose N1 Gaussian nodes in the interval [K2, xi] a.nd N2 Gaussian nodes in 

the interval [xi,A2]. Therefore we will have a set of N1 +N2 integration nodes Yj, being the roots 

of the Legendre polynomials PN1 (x) and PN2 (x). The reason why the collocation method fails 

is that the position of the N 1 + N 2 nodes changes with that of the kink: the integration nodes 

will be different for each external momentum a.nd the collocation method is not applicable. 
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However, when we introduce the Chebyshev expansion for the unknown functions the situation 

is completely different. After splitting the integral at y = x we can use a Gaussian quadrature 

with any number of nodes N 1 , N 2 on the intervals because the integrand can be computed at 

any point in the interval [K2 , A 2]. The integral equation, Eq. (7.45), for I: will be replaced by 

the system of non-linear equations 

(Nl); (N2); 

I:i = L Wtij K(x;, Ytij) + L w2ij K(xi, Y2ij) , i=1, ... ,NE, (7.59) 
j=l j=l 

where the nodes Ytij, Y2ij and the weights Wtij, W2ij are defined according to Eq. (7 .57) and 

K(x, y) is defined in Eq. (7.46). Remember that as before it is the variable t = log10 y, where 

t E [log10 K
2 , log10 A

2], which is mapped on the interval [-1,1] to apply the Gauss-Legendre 

quadrature. 

Concatenating the two arrays of node locations Ytij and Y2ij into one array Yij and the weight 

arrays Wt ij and W2ij into Wij, we can rewrite Eq. ( 7.59) as 

(NR)i 

I:i = L Wij K(xi,Yij), 
j=l 

i = 1, ... ,NE, (7.60) 

The system of equations, Eq. (7.60), is similar to the system, Eq. (7.36), for which Newton's 

method was developed in Section 7.5. Therefore Eq. (7.60) will be solved by Newton's iteration 

method, Eq. (7.44). 

Although we also considered the use of a two-dimensional adaptive integration method, we did 

not retain this method. Its advantage is that it only computes function values at positions 

which depend on the behaviour of the integrand, minimizing the number of function evalu­

ations. Furthermore, the integration routine returns an integral value satisfying a requested 

minimum accuracy. However, the method is not efficient to evaluate integrals as part of an 

integral equation. The variable location of the function values to be evaluated does not allow 

us to compute parts of the integrands beforehand and to store them for multiple, future use. 

Moreover, the main problem resides in the use of Newton's method, which requires the knowl­

edge of the derivatives of the integral with respect to the Chebyshev coefficients. The use of an 

adaptive method makes it extremely hard and inefficient to compute these derivatives. It seems 

therefore that a higher order method with a priori determined integration nodes and weights, as 

in the Gaussian quadrature, is the best choice of integral evaluation for the solution of integral 

equations with the Chebyshev expansion method. 
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In the next chapter we will apply the Chebyshev expansion method to solve the coupled integral 

equations of unquenched QED in the bare vertex approximation for various approximations to 

the (E, F, 9)-system of integral equations. 



Chapter 8 

Numerical results with Chebyshev 
expansion method 

In this chapter we will apply the Chebyshev expansion method to determine the critical coupling 

above which fermion mass is generated dynamically in unquenched QED in the bare vertex 

approximation. We will consider various approximations to the coupled (~, :F, 9)-system. First 

we will decouple the 9 equation by using the 1-loop approximation to the vacuum polarization. 

In a. next section we will revisit the coupled (~, 9)-system which wa.s discussed previously in 

Chapter 6 a.nd wa.s the motivation to introduce the Chebyshev expansion method. Finally we 

will treat the complete system of coupled integral equations for ~. :F a.nd 9. 

8.1 The 1-loop approximation 

We first simplify the (~, :F, 9)-system of coupled integral equations by approximating the 

vacuum polarization by its 1-loop result. The 9-equa.tion then decouples from the coupled 

(~,F)-system describing the dynamical generation offermion mass. We recall Eqs. ( 5.80, 5.81 ), 

~(x) 

:F(x) 
1 

:F(x) 

3o: j dy y:F(y)~(y) j dO sin2 (} 9(z) 
211'2 y + ~2(y) z 

1+~Jdy y:F(y) 
21r2x y + ~2(y) 

X j d(J sin209(z) (3~cos0- 2xy;!n2(J) 

where z = x + y- 2JXYcosO a.nd the 1-loop approximation to 9(z) is given by: 

1 
9(z) = N . 

1 ~1 A2 + 37T n z 

134 

(8.1) 

(8.2) 

(8.3) 
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As discussed in Chapter 4 many other authors have used the same approximation to determine 

the critical coupling of unquenched QED. We will consider the three main variants encountered 

in the literature. Firstly, we consider the LAK-approximation to remove the angular dependence 

of the vacuum polarization; this automatically yields F( x) = 1 and leaves us the ~-equation 

alone to solve. In another approximation we keep the full angular dependence in the vacuum po­

larization but approximate F(x) = 1, which should be reasonable in the Landau gauge, and solve 

the ~-equation. Finally we will solve the coupled (~.F)-system in the 1-loop approximation to 

the vacuum polarization. 

8.1.1 The LAK-approximation 

An often used variant to the 1-loop calculation is often referred to as the LAK-approximation 

(in analogy to Landau, Abrikosov and Khalatnikov [48]) to the vacuum polarization: 

II(z) = II(max(x, y)), (8.4) 

where z = x + y - 2-y'xY cos 0. This approximation has been often introduced to allow the 

angular integrals to be computed analytically [13, 14]. Furthermore, the angular integral of the 

F-equation, Eq. (8.2), vanishes in the Landau gauge when introducing the LAK-approximation 

and F(x) = 1. 

The mass equation, Eq. (8.1), now becomes 

3o: j y~(y) j sin2 
() 

~(x) = - 2 dy ~2 ( )9(max(x,y)) dO--. 
211' y + y z 

(8.5) 

The angular integral can be computed analytically and is given in Appendix A. Substituting 

Eq. (A.1) into Eq. (8.5) gives 

~(x) = 3o: j dy y~(y) 9(max(x, y)). 
411' y + ~2 (y) max(x, y) 

(8.6) 

with 9(z) given by Eq. (8.3). 

Eq. (8.6) will be solved following the solution pattern for the Chebyshev expansion method 

developed in Chapter 7. Change the integration variable from y to t = log10 y. Then, split the 

integral in two at y = x, where the radial integrand obviously has a kink. Consequently, replace 

the integrals by a quadrature formula using a Gauss-Legendre quadrature with (NI)i = (N2)i = 
120 nodes on every radial integral. The resulting system of non-linear equations is: 

~. _ 3o:ln 10 (~; . . Ytj~ij 9(max(xi, Yij)) 
L<,- L....J w,3 2 i = l, ... ,Nr,. 

411' j=l Yij + ~ii max( Xi, Yij) 
(8.7) 
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This system can then be solved with a Newton's method analogous to the one described in 

Section 7.5 to determine the coefficients aj, j = 1, ... , Nr; of the Chebyshev expansion for ~(x). 

In practice we choose Nr; = 50, such that the error due to the approximation of ~( x) by a 

Chebyshev expansion is negligible. 

The numerical results of Eq. (8.7) are summarized in Figs. 8.1 for NJ = 1 and Fig. 8.2 for 

NJ = 2 where we show the evolution of the generated fermion mass with changing coupling a. 

The critical couplings are I ac(NJ = 1) = 1.999531 and I ac(NJ = 2) = 2.752331. 
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Figure 8.1: Generated fermion mass ~(0) versus coupling a for Nf 
approximation to n. 

8.1.2 The :F = 1 approximation 

2.01 

1 in the 1-loop LAK 

In this section we approximate the system of equations, Eqs. (8.1, 8.2), by setting F(x) = 1, 

which is thought to be a good approximation in the Landau gauge, and solve the remaining 

~-equation which is: 

~(x) _ 3a jd y~(y) jdo sin
2

9 
-21!"2 yy+~2(Y) z(1+~~0 ln~2 ) 

(8.8) 

The numerical method to solve this equation has been derived in Chapter 7. We saw in Eq. (7.60) 

that the Chebyshev expansion method requires us to solve the following system of non-linear 
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Figure 8.2: Generated fermion mass E(O) versus coupling a for Nf 
approximation to IT. 

2.76 

2 in the 1-loop LAK 

algebraic equations for the Chebyshev coefficients a of the Chebyshev expansion for E( x ): 

i = 1, ... ,N1;. (8.9) 

with 

J sin2 (J 
0( X, y) = d(J N 2 • 

z(1 + ~ ln .!L) 
31!" z 

(8.10) 

To solve Eq. (8.9), we first choose a set of values (Nt)i, (N2)i, i = 1, ... , N1;, fixing the Gaussian 

quadrature rule to be used on each single radial integral. In practice we opted for (NI)i = 
(N2)i = 120 nodes on each interval [log10 ~2 ,log10 xi] and [log10 xi,log10 A2] for all ito yield 

sufficient accuracy. For each rule we then compute and store the corresponding locations and 

weights of the integration nodes. 

Then, the angular integrals 0(xi, Yij), Eq. (8.10), are computed for i = 1, ... , NL; and j = 
1, ... , (N1)i+(N2)i, using some appropriate quadrature formula. We will use a Gaussian quadra­

ture rule with (No)ij nodes to evaluate the angular integrals. In practice we will choose the same 

number of nodes No for all the angular integrals. The angular integrals are evaluated by 

(8.11) 
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where Zk = Xi+ Yii- 2y'XiYii cos (Jk. The locations (Jk and weights wk of the Gaussian quadrature 

are determined by Eq. (7.57) for a Gaussian quadrature with No points over the interval [0, 1r]. 

In practice we take No = 32 to give us sufficient accuracy. 

After the angular integrals have been computed and stored, we apply Newton's method to 

Eq. (8.9) as described in Section 7.5 to find the solution vector of Chebyshev coefficients aj, 

j = 1, .. . ,Nr, defining the Chebyshev approximation to E(x). As in Section 8.1.1 we will again 

take Nr, =50. 

We now summarize the main results computed from Eq. (8.9) with the above described method. 

The results are quite similar to the ones obtained with the collocation method in Section 5.7. 

We show the evolution of the generated fermion mass with changing coupling a in Fig. 8.3 

for one flavour, N1 = 1. The critical coupling is lac(NJ = 1) = 2.08431j, which is in total 

agreement with the results obtained with the collocation method and the improved Simpson's 

rule. However, the results show that we need much fewer integration nodes using the Gauss­

Legendre quadrature than we do using Simpson's rule to obtain equal accuracy. 
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Figure 8.3: Generated fermion mass E(O) versus coupling a for N1 = 1 in the 1-loop approxi­
mation to IT and F = 1. 

We performed a similar calculation for two flavours, Nf = 2. The evolution of the generated 

fermion mass is shown in Fig. 8.4. The critical coupling is I ac( N 1 = 2) = 2.99142j. 
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Figure 8.4: Generated fermion mass !:(0) versus coupling a for Nf = 2 in the 1-loop approxi­
mation to rr and :F = 1. 

8.1.3 The coupled (E, F)-system 

A further improvement on the calculation in the 1-loop approximation to the vacuum polariza­

tion is to solve the coupled system of fermion equations (8.1, 8.2) for !: and :F. We have seen 

in Section 5.4 how such a coupled system can be solved using Newton's method. 

We are looking for approximate solutions to Eqs. (8.1, 8.2), which can be written as the following 

Chebyshev expansions: 

Nr;-1 

!:(x) = L 1ajTj(s(x)) (8.12) 
j=O 

NF-l 

:F(x) = L 1bjTj(s(x)) (8.13) 
j=O 

where s(x) satisfies Eq. (7.24) and where the sum'£' is defined in Eq. (7.8). 

To solve the problem numerically we will again go through the following steps. Change the 

integration variable from y tot = log10 y. Then, select Nr, external momenta where we impose 

that Eq. (8.1) has to be satisfied and N:F external momenta where Eq. (8.2) has to be satisfied. 

We then split the radial integrals in two at x = y to avoid integrating numerically over the kink. 

Consequently we introduce the quadrature rules to evaluate the integrals. We will again use 

the Gauss-Legendre quadrature to solve the radial and angular integrals. We now evaluate and 
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store the angular integrals, 

(8.14) 

(8.15) 

where Zk =Xi+ Yij- 2.JXiYij cos lh and v(z) is defined by its 1-loop approximation Eq. (8.3). 

By doing so we are left with a system of N'E + N :F non-linear equations to determine the N'E 

Chebyshev coefficients aj, defining the Chebyshev expansion of L:( x), and the N :F Chebyshev 

coefficients bj, defining the Chebyshev expansion of F(x): 

L:(xi) _ 3cdn10 (~; .. Y[jF(Yij)L:(Yii)e ( . ··) _ 
0 h,i = -r( ·) 2 2 L...., W13 .. + L:2 ( . ·) 'E x,, y,3 - , 

.r xt 7r j=t Ya 3 YaJ 
i = 1, ... , N'E (8.16) 

1 o: ln 10 (NR)i YfjF(Yij) 
h,i = T( ·)- 1- 2 2 . L Wij .. + r: 2 ( ··) e:F(xi,Yij) = o, 

.r x1 7r Xa j=l YtJ YtJ 
i=1, ... ,N:F (8.17) 

where (NR)i = (Nt)i + (N2)i is the total number of nodes of the two Gauss-Legendre rules used 

to compute the split radial integrals. This system of non-linear equations will be solved with 

Newton's iterative method. Each iteration step requires the solution of the following system of 

linear equations, 

(8.18) 

which can be written out as: 

N~l 8ft,i(a11 , bn)(6. ) . + N~l 8/t,i(an, bn)(6. ) . 
L...., 8a. a,n+l J L...., 8b. b,n+l J 
j=O J j=O J 

i = 1, ... ,N'£ 

N~l 8h,i(a11 , bn)( A ) . + N~l 8h,i(an, bn)( A ) . f ( b ) 
L...., 8a. ua,n+l J L...., 8b. Ub,n+l J = 2,i an, n , 
J=O J J=O J 

(8.19) 

i=1, ... ,N:F. 

The partial derivatives in Eq. (8.19) are computed from Eqs. (8.16, 8.17) using the expression 

(7.42): 

8/t,i(a, b) 
8aj 

8/t,i(a, b) 
8bj 
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8h,i(a, b) 
8aj 

8h,i(a, b) 
8bj 

(8.21) 

(8.22) 

(8.23) 

We now substitute Eqs. (8.16, 8.17, 8.20-8.23) in the system oflinear equations Eq. (8.19) and 

solve it for (~a.n+l' ~b.n+l). Then, the new approximations to the Chebyshev coefficients are 

computed by: 

(8.24) 

In the program implementing this we choose NE = N:r = 50. The Gauss-Legendre quadratures 

are performed with No = 32 nodes for the angular integrations and (Nl)i = (N2)i = 120 nodes for 

the split radial integrations. The evolution of the generated mass for the coupled (L:, F)-system 

for NJ = 1 is shown in Fig. 8.5. The value of the critical coupling is I ac(NJ = 1) = 1.67280 I· 
Typical plots of the dynamical mass function L:( x) and the fermion wavefunction renormalization 

F( x) are shown in Fig. 8.6 and Fig. 8. 7 for a = 1.678, 1.676, 1.67 4. 

Fig. 8.8 shows the generated fermion mass versus coupling for N f = 2. The value of the critical 

coupling is I ac(NJ = 2) = 2.020251. 
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Figure 8.5: Generated fermion mass E(O) versus coupling a for the coupled (E, F)-system, for 
N1 = 1 in the 1-loop approximation to II. 
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Figure 8.6: Dynamical fermion mass E(x) versus momentum squared x for the coupled (E, F)­
system, for NJ = 1 in the 1-loop approximation to II, for a= 1.678, 1.676, 1.674. 
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Figure 8.7: Fermion wavefunction renormalization F(x) versus momentum squared x for the 
coupled (~,F)-system, for NJ = 1 in the 1-loop approximation to II, for a = 1.678, 1.676, 1.674. 
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Figure 8.8: Generated fermion mass ~(0) versus coupling a for the coupled (~,F)-system, for 
NJ = 2 in the 1-loop approximation to II. 
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8.1.4 Summary 

In Table 8.1 we compare the various results obtained for the critical coupling ac in the 1-loop 

approximation to the vacuum polarization in the Landau gauge. It is clear that the inclusion 

of the F-equation affects the value of the critical coupling. We note a decrease of ac by about 

20% for N 1 = 1 and by more than 30% for N 1 = 2. 

Approximation ac(Nj = 1) ac(NJ = 2) 
LAK 1.99953 2.75233 
F=1 2.08431 2.99142 
(~,F) 1.67280 2.02025 

Table 8.1: Critical coupling ac for Nf = 1 and NJ = 2 for various approximations to the 
(~, F)-system in the 1-loop approximation to the vacuum polarization. 

In Table 8.2 we compare our results with those found in the literature as discussed in Chapter 4 

for the LAK-approximation and in the F = 1 approximation. From Table 8.2.A we see that in 

the LAK-approximation all the analytical and numerical calculations agree extremely well. The 

largest deviation for Nf = 1 is found in the analytical calculation Ref. [14] and is only about 2%. 

For the F = 1 approximation only numerical work has been done as the angular integrals cannot 

be computed analytically. The deviation between previously published work and our calculation 

is at most 0.5% for N1 = 1 and almost 6% for Nf = 2 as can be seen in Table 8.2.B. For the 

coupled (~, F)-system no evaluation of the critical coupling has been found in the literature. 

There is only a qualitative assessment in Ref. [16] to verify that the approximation F = 1 is 

justified. However, as we noted above, we found in our numerical calculation that the critical 

coupling does change considerably by including the corrections to F in the calculation. 

(A) Ref. ac(NJ = 1) ac(NJ = 2) 
JCRB 1.99953 2.75233 

(B) Ref. ac(NJ = 1) ac(NJ = 2) 
JCRB 2.08431 2.99142 

[13] 1.99972 2.71482 [16] 2.0728 2.8209 
[14] 1.95 [20] 2.084 
[16] 1.9989 2.7517 
[17] 1.999534163 
[50] 1.9995 

Table 8.2: Comparison of our numerical results (JCRB) with those found in the literature for 
the critical coupling in the 1-loop approximation to the vacuum polarization, for Nf = 1, 2: (A) 
in the LAK-approximation, (B) in the F = !-approximation. 



CHAPTER 8. NUMERICAL RESULTS WITH CHEBYSHEV EXPANSION METHOD 145 

8.2 Coupled (E, 9)-system: revisited 

We now take a new look at the solution of the coupled (E, y)-system which was discussed 

previously in Chapter 6. There we solved this system of equations using the collocation method 

and found that we encountered difficulties cancelling the photon quadratic divergence properly. 

It was then suggested that with some smooth approximations to the functions E and g we could 

prevent these problems. In this section we are going to investigate how the approximation of E 

and g by Chebyshev expansions affects the numerical cancellation of the quadratic divergence. 

In contrast to Chapter 6, we now use the conventional operator PJ-Lv = 9p.v- 4qJ-Lqvfq2 to derive 

the photon equation, as motivated in Section 2.5.2. Although the vacuum polarization is then 

theoretically free of quadratic divergences, this does not ensure that it will be automatically so 

numerically. Setting F = 1, the coupled system of integral equations, Eqs. (2.59, 2.69), in the 

Landau gauge and with zero bare mass, becomes: 

E(x) 

1 

y(x) 

3a j dy yE(y) j dO sin2 0 O(z) 
21r 2 y+E2(y) z 

(8.25) 

4Nfa j d y j dn . 2 n y(1- 4 cos2 
0) + 3-jXY cos(} 

1 + -- y u Sill u . 
37r2x y + E2(y) z + E2(z) 

(8.26) 

In analogy to Eqs. (6.10, 6.11), after having changed variables with t = log10 y, we replace 

the integral equations by a system of non-linear equations by introducing quadrature rules to 

evaluate the integrals numerically: 

where 

1 

O(xi) 

and Zk = Xi+ Yii - 2yiXJJiJ cos Ok. 

(8.29) 

(8.30) 

The unknowns of the system of equations are the coefficients aj and Cj of the Chebyshev expan-
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sions for E(x) and 9(x ): 

Nr,-1 

E(x) = L 1ajTj(s(x)) 
j=O 

Ng-1 

9(x) = L 1cjTj(s(x)), 
j=O 

where s(x) is defined by Eq. (7.24). 

(8.31) 

(8.32) 

Instead of being equidistant as in Chapter 6 the logarithms of the external momenta in Eqs. (8.27, 

8.28), mapped to the interval [-1, 1], now correspond to the roots of the Chebyshev polynomials 

TNr.(x) and TN0 (x) as shown in Eqs. (7.32, 7.33). 

The evaluation of the kernels in the radial and angular integrals is straightforward as the func­

tions E( x) and 9( x) can be computed at any point in the interval [log10 ~
2 , log10 A 2]. 

In analogy with the discussion in Chapter 6, the coupled system of non-linear algebraic equations 

will be solved by the method described by the program flow, Fig. 8.9 which is similar to Fig. 6.1. 

We start from an initial guess ao and co to the Chebyshev coefficients. To derive the approxi­

mation an+b Cn+l from a 0 , c0 we apply the following procedure. Keeping the coefficients c0 

fixed, we compute the angular integrals, Eq. (8.29), of the E-equation using the Chebyshev ex­

pansion, Eq. (8.32), for 9. After substituting the values of these angular integrals in Eq. (8.27), 

this equation will represent a set of non-linear algebraic equations for the unknown an+l, which 

is analogous to Eq. (7.36). This set of equations can be solved by applying Newton's iterative 

procedure to the Chebyshev expansion method as described in Section 7 .5. This will involve 

successive solutions of linear systems of equations. 

We then compute the angular integrals, Eq. (8.30), of the 9-equation using the Chebyshev 

expansion for E( x) with coefficients an+l· Then, these angular integrals are substituted into the 

9-equation, Eq. (8.28). Taking the reciprocal of this equation and substituting the Chebyshev 

expansion, Eq. (8.32), for 9(x) yields: 

Ng-1 

L 1cjTj(s(xi)) = i=1, ... ,Ng. 
j=O 

(8.33) 

This is a system of Ng linear equations for the Ng Chebyshev coefficients Cj with known right 

hand sides which can easily be solved numerically. In this way we have constructed a new set 

of Chebyshev coefficients an+b Cn+l· We repeat the whole procedure till convergence has been 
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Compute angular integrals for ~-equation 

Initialize Newton's method for ~-equation 
Set: an+l,O = an 

Newton's method 
for ~-equation 

Solve linear equations to compute an+l,m+l = ft(an+l,m, en) 

Convergence 

llan+l,m+l - Rn+l,m 
< T? 
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no 

Solve linear system, Eq. (8.33), for Cn+l 

Convergence 
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OK 

no 

Increment m 

Increment n 

Figure 8.9: Program flow to solve the coupled (~, Q)-system using the Chebyshev expansion 
method. 



CHAPTER 8. NUMERICAL RESULTS WITH CHEBYSHEV EXPANSION METHOD 148 

reached. 

We now show the main results obtained with this method. As before the numbers of Chebyshev 

polynomials in the expansions are NE = Ng = 50, while the number of radial integration nodes 

for the Gauss-Legendre rule are taken to be (NR)i = (Nt)i + (N2)i with (N1 )i = (N2)i = 120 

and for the angular integrals No = 32. 

The evolution of the generated fermion mass I:(O) versus the coupling a is shown in Fig. 8.10. 

The critical coupling is found to be ac(NJ = 1) = 2.55523. Although this could seem in 
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Figure 8.10: Generated fermion mass I:(O) versus coupling a for the coupled (I:, 9)-system, for 
Nt = 1. 

contradiction with the results of Chapter 6 where ac(NJ = 1) ~ 2.084, this is only apparently 

so. In Chapter 6 we followed the treatment of Kondo et al. [20] and renormalized the coupling 

such that a( A 2 ) = a. As the renormalization was not performed consistently on all the quantities 

under consideration we will leave the coupling unrenormalized in the current method. However, 

it is clear from the study of dynamical fermion mass generation in quenched QED that the 

scale of the generated mass depends on the strength of the coupling, which is constant in that 

case. As we mentioned previously the running of the coupling in unquenched QED is completely 

determined by the photon renormalization function 9, and the running coupling can be written 

as a(x) = a9(x). It is obvious from the I:-equation, Eq. (8.25), that in unquenched QED . 
the scale of the generated fermion mass will depend on the size and behaviour of the running 
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coupling. In the 1-loop approximation to (}, Section 8.1, the generated mass scale is related 

to the value of a, which is also equal to a(A2 ) as the 1-loop corrected 9 is there chosen to be 

9(A2 ) = 1. In order to compare the new calculations with those of Chapter 6 and Section 8.1.2 

(where F = 1), we plot E(O) versus a(A2 ) = a 9(A2) using the Chebyshev expansion method 

for the coupled (E, 9)-system and in the 1-loop approximation tog in Fig. 8.11. Here we see 
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Figure 8.11: Generated fermion mass E(O) versus running coupling a(A2 ) for the coupled (E, 9)­
system and in the 1-loop approximation to g, for N f = 1. 

that the critical coupling at the UV-cutoff for the (E, 9)-system is I ac(A 2 , NJ = 1) = 2.084311, 

which is consistent with the calculation of Chapter 6 and the results of Kondo et al. [20] and 

moreover is identical to the value found previously in the 1-loop approximation with F = 1 in 

Section 8.1.2. From Fig. 8.11 we see that the generation of fermion mass starts at the same 

value a( A 2 ) = 2.08431 for both approximations, but this mass evolves differently for increasing 

coupling. This is easy to explain as the (}-equation, Eq. (8.26), derived for F = 1, can be 

solved analytically at the critical point, where E(x) = 0. (J(x) is then identical to its 1-loop 

approximation, hence the same value of the critical coupling. For larger couplings the generated 

mass function will alter the behaviour of 9( x) and so the evolution of the generated mass scale 

will differ between the (E, 9)-system and the 1-loop approximation. In another study of the 

coupled (E, 9)-system with F = 1, Atkinson et al. [19] introduce the LAK-approximation on 

the vacuum polarization and on the mass function to compute the angular integrals analytically, 
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and simplify some of the remaining integrals to derive a differential equation which is then solved 

numerically. With these approximations they find O'c = 2.100286, which only deviates about 

0.8% from our, more accurate, solution. 

Typical plots of the dynamical fermion mass E( x) for various values of the bare coupling a are 

shown in Fig. 8.12. The corresponding running couplings, a(x) = aQ(x), are shown in Fig. 8.13. 
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Figure 8.12: Dynamical fermion mass E(x) versus momentum squared x for the coupled (E,Q)­
system, for N1 = 1 and a = 2.556, 2.558, 2.56. 

As expected from the discussion of Chapter 6, we indeed see that any unphysical behaviour 

in the running coupling has now been removed: the quadratic divergence has been cancelled 

properly. 

The results of fermion mass generation for two flavours (NJ = 2) are shown in Fig. 8.14. Here 

we show the evolution of E(O) versus the value of the running coupling at the UV-cutoff, a(A2 ) 

for the coupled (1:, 9)-system and in the 1-loop approximation to g. The critical coupling at 

the UV-cutoff is I ac(A 2 , Nf = 2) = 2.99142,. 

If we consider the number of flavours NJ in the Schwinger-Dyson equations as an arbitrary 

parameter, its values do not necessarily need to be integer but can take non-integer values. We 

compute the critical coupling for various number of flavours, 0 < N 1 ::; 2, and plot the results in 

Fig. 8.15. It is reassuring to see the smooth evolution of the critical coupling from O'c = rr/3 for 

quenched QED (NJ = 0) to the above mentioned values for unquenched QED with Nf = 1, 2. 
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Figure 8.13: Running coupling a(x) versus momentum squared x for the coupled (I:, 9)-system, 
for NJ = 1 and a= 2.556, 2.558, 2.56. 
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Figure 8.14: Generated fermion mass I:(O) versus running coupling a( A 2 ) for the coupled (I:, 9)­
system and in the 1-loop approximation to 9, for NJ = 2. 
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Figure 8.15: Critical coupling ac(A2 ) versus number of flavours Nf for the coupled (E, 9)-system. 

There is one more remark which has to be made. When we compare the current method with that 

from Chapter 6, we note that the interpolation problems have completely disappeared thanks to 

the use of the Chebyshev expansions of E and g. Nevertheless, one could argue that the need to 

extrapolate remains. It is known that a polynomial expansion built on a certain interval, here 

[K2 , A 2], can only be used reliably for values of the argument in that interval. However we can 

check that for values, which only lie slightly o,utside the interval, the function approximations 

remain realistic. If not, one could always introduce some continuous extrapolation as proposed 

in Eq. (6.40). Furthermore, the use of the Gaussian quadrature formulae, in contrast to that of 

Newton and Cotes, has eliminated any problem produced by the extrapolation method. Because 

the Gaussian rules are open rules, the endpoints of the integration interval are not integration 

nodes and no extrapolation needs to be made for small values of the external photon momentum, 

where the mismatch in the cancellation of the quadratic divergence appeared in Chapter 6, and 

thus, this problem will not occur with the current procedure. 

In this section we have shown how the use of the Chebyshev expansion method has enabled 

us to cancel the quadratic divergence of the vacuum polarization integral properly. We have 

consistently solved the coupled system of equations for the dynamical fermion mass E and the 

photon renormalization function g and determined the critical coupling Clc above which fermion 

mass is generated dynamically. 
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In the next section we will relax the condition on the fermion wavefunction renormalization, 

F = 1, to improve the study further and will consider the system of three coupled equations for 

:E, F and g, still in the bare vertex approximation. 

8.3 Coupled (:E, F, 9)-system 

As a logical extension of the study presented in the previous section we now consider the solution 

of the system of three coupled non-linear integral equations for :E, F and g. To solve this problem 

we will use ideas developed in Sections 8.2 and 8.1.3. 

We recall the three integral equations describing :E, F and (}, Eqs. (2.59, 2.60, 2.69), in the 

Landau gauge and with zero bare mass: 

:E(x) 
F(x) 

1 
F(x) 

1 
(}(x) 

where z = x + y- 2-JXY cos(), 

(8.34) 

(8.35) 

(8.36) 

As previously, we derive a system of non-linear algebraic equations in the following way. In­

troduce an ultraviolet cutoff, A 2 , and an infrared cutoff, K2 and change variables from y to 

t = log10 y. Then, consider the integral equations at respectively, Nr,, N;: and Ng external 

momenta Xi, which are chosen to be the roots of the Chebyshev polynomial of corresponding 

degree. Finally, replace the integrals by Gauss-Legendre quadrature rules. This yields: 

i=1, ... ,Nr, (8.37) 

i = 1, ... , N;: (8.38) 

i=1, ... ,Ng (8.39) 
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with 

~ 1 • 2() 9(zk) 
~wk Sill k--
k=1 Zk 

(8.40) 

~ 1 • 2 () (;( ) (3~ cos Ok 2XiYij sin
2 fh) 

~ Wk Sill k Zk - 2 
~1 ~ ~ 

(8.41) 

~ 1 • 2 () F(zk) [ ( 2 ) ] ~ wk Sill k ~2 ( ) Yij 1 - 4 cos Ok + 3-JXiYij cos fh 
k=1 Zk + LJ Zk 

(8.42) 

where zk = Xi +Yij -2-JXiYij cos ()k· The unknowns of the system of equations are the Chebyshev 

coefficients aj, bj and Cj of the following expansions: 

where s is defined by 

Nr,-1 

E(x) = L 1ajTj(s(x)) 
j=O 

N:r-1 

F(x) = L 1bjTj(s(x)) 
j=O 

Ng-1 

Q(x) = L 1cjTj(s(x)) 
i=O 

(8.43) 

(8.44) 

(8.45) 

(8.46) 

According to Section 5.4 the convergence rate of the numerical method used to solve this system 

of equations will be quadratic if we use Newton's method. However, as mentioned in Section 6.1, 

it is not convenient to implement Newton's method on the complete system of equations. New­

ton's method is an iterative procedure where at each step a system of linear equations has to be 

solved to derive new approximations (an+b bn+b Cn+l) from (an, bn, en)· This means that the 

angular integrals, Eqs. (8.40, 8.41, 8.42), have to be recalculated at each iteration step. However, 

the main objection to this method is that Newton's method requires the derivatives of the left 

hand sides of Eqs. (8.37, 8.38, 8.39) to be taken with respect of the Chebyshev coefficients aj, bj 

and Cj. The implementation of this method would use a very large amount of memory space and 

running the program would consume much computing time. Therefore, this procedure has not 

been implemented here, although it remains an important objective for future work, in order to 

enhance the consistency and accuracy of the method, if some more powerful computer infras­

tructure is available. In the meantime we will use a hybrid method with the aim of retaining 

the advantages of the quadratic convergence rate of Newton's method, while keeping the needs 

for memory storage and computing time reasonably small. The program flow of this method, 

which we explain in more detail below, is shown in Fig. 8.16. 
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Figure 8.16: Program flow to solve the coupled (1:, F, g)-system using the Chebyshev expansion 
method. 



CHAPTER 8. NUMERICAL RESULTS WITH CHEBYSHEV EXPANSION METHOD 156 

To start the program we introduce an initial guess for the Chebyshev coefficients. These initial 

guesses can be the results of a previous calculation or be derived from some reasonable choice 

for the unknown functions (e.g. F(x) = 1, one-loop approximation for 9(x)). Starting from 

these values we apply the following iterative procedure till convergence is reached. We describe 

the ( n + 1 )th iteration step, supposing we know the nth approximations an, bn, Cn. From 

Eqs. (8.40, 8.41) we compute the angular integrals for theE- and F-equations, using the Cheby­

shev coefficients en to compute the necessary 9-values with Eq. (8.45). Now, Eqs. (8.37, 8.38) 

form an independent system of non-linear equations determining the new approximations an+l, 

bn+l· This system of equations can be very efficiently solved using Newton's iterative method, 

as shown in Section 8.1.3. Starting from some initial values, which can be chosen to be an, 

bn, each iteration determines an+l,m+ll bn+l,m+l from an+l,m, bn+l,m by solving a system 

of linear equations till convergence is reached. The final iterate gives the new approximations 

an+ll bn+l· We now substitute those Chebyshev coefficients in the expansions Eqs. (8.43, 8.44) 

to compute the angular integrals Eq. (8.42). To determine the new values Cn+b we will take 

the reciprocal of Eq. (8.39) and substitute the expansion Eq. (8.45), yielding: 

i=l, ... ,Ng, 

(8.47) 

with E and F defined by the expansions Eqs. (8.43, 8.44) using the coefficients an+b bn+l· 

Eq. (8.47) represents a linear system for the Chebyshev coefficients Cn+b which can easily be 

solved by standard numerical techniques. In this way we have determined the new sets of 

Chebyshev coefficients an+b bn+l and Cn+l from an, bn and c11 • The whole procedure is 

iterated till the convergence criterion is satisfied. The final iterates are approximate solutions 

a, b and c to the non-linear system, Eqs. (8.37, 8.38, 8.39) within the required accuracy. 

The results of the program are achieved by requesting a final relative accuracy of 0.001. For 

the Chebyshev expansions, we take Nr:. = N:r = Ng =50. The Gauss-Legendre integrations are 

performed with (Nn)i = (Nl)i + (N2)i, where (Nt)i = (N2)i = 120, radial integration points 

and No = 32 angular integration points, which is sufficient to obtain the above mentioned 

accuracy. The program needs between 3 and 8 global [(E, F), 9]-iterations to converge, while 

each individual Newton's method to solve a (E, F)-system requires between 2 and 8 iterations. 

The major part of the computing time involves the recalculation of the angular integrals at each 

global iteration. 
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The evolution of the generated fermion mass E(O), is plotted versus a(A2 ), the value of the 

running coupling at the ultraviolet cutoff, in Fig. 8.17. The critical coupling for the (E, :F, Q)­

system is lac(A2 ,NJ = 1) = 1.74102,. 
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Figure 8.17: Generated fermion mass E(O) versus running coupling a(A2 ) for the coupled 
(E,:F,Q)-system, for NJ = 1. 

Typical plots ofE(x), :F(x) and a(x) = aQ(x) are shown in Fig. 8.18, Fig. 8.19 and Fig. 8.20. 

For two flavours, NJ = 2, the generated fermion mass E(O) versus the running coupling a(A2
) 

is plotted in Fig. 8.21. The critical coupling is lac(A 2 ,NJ = 2) = 2.22948,. 

If we compare the results of the coupled (E,:F,Q)-system with those of the coupled (E,:F)­

system in the 1-loop approximation to g of Section 8.1.3, we note that the critical coupling 

increases by approximately 4% for NJ = 1 and 10% for NJ = 2 when we include the Q-equation, 

Eq. (8.36), in the treatment instead of its 1-loop approximation, Eq. (8.3). On the other hand, if 

we compare these results with those computed for the (E, Q)-system with :F = 1 in Section 8.2, 

we note that the consistent treatment of the :F-equation decreases ac by 16% for NJ = 1 and 

25% for NJ = 2. 

The only other calculation found in the literature treating the three equations simultaneously 

is that of Rakow [18]. He finds a critical coupling ac = 2.25 for N1 = 1, which is quite different 

from our result with a deviation of almost 30%. Unfortunately the lack of details in that paper 
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Figure 8.18: Dynamical fermion mass E( x) versus momentum squared x for the coupled 
(E, :F, 0)-system, for NJ = 1 and a = 2.084, 2.088, 2.092. 
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Figure 8.19: Fermion wavefunction renormalization :F(x) versus momentum squared x for the 
coupled (E, :F,v)-system, for NJ = 1 and a= 2.084, 2.088, 2.092. 
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Figure 8.20: Running coupling a(x) versus momentum squared x for the coupled {:E,.F,O)­
system, for N1 = 1 and a= 2.084, 2.088, 2.092. 
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Figure 8.21: Generated fermion mass :E(O) versus running coupling a(A2 ) for the coupled 
(2:, .F, 9)-system, for N 1 = 2. 
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does not allow us to deduce where the difference comes from. As explained previously we take 

the relevant critical coupling to be ac(A2 ) = ac9(A2 ). We believe that only then, calculations 

with different regularization procedures can be compared. We are very confident about the 

accuracy of our calculation and we can only guess that Rakow's result should be interpreted in 

some different way to find agreement. Furthermore, his main result is that the renormalized 

coupling ar - 0 in the critical point which, as he claims, would prove that the renormalized 

theory is trivial. However, the renormalized coupling is strangely defined in the zero momentum 

point as ar = aQ(O)F2(0). From plots analogous to Fig. 8.20 we see that for the critical point 

we have ac(O) = ac9(0)- 0, as is the case in the massless 1-loop approximation to Q, so that 

obviously ar - 0. However, we do not believe that the infrared behaviour of QED can explain 

its triviality, but rather it is its ultraviolet behaviour which could, because of the Landau pole. 

We do not think that Rakow's observation about his renormalized coupling proves the triviality 

of QED. Intuitively we could say that renormalizing the theory relates the overall evolution 

of the coupling to the scales of the theory (bare mass and renormalization scale); choosing to 

renormalize at zero momentum (J.L 2 = 0) in the critical point (where ~(x) = 0) and taking the 

continuum limit (A - oo) is in contradiction with this as there are no finite scales available. 

This will be different if we renormalize at some finite scale and only then will we be able to 

discuss the triviality of the theory. 

8.4 Summary 

In this chapter we have seen that dynamical fermion mass generation does occur in unquenched 

QED with bare vertex approximation for N1 = 1 and N1 = 2. In Table 8.3 we summarize 

the various results obtained for the critical coupling for N1 = 1 and Nf = 2 from the previous 

sections. 

For the 1-loop approximation we compared our results with those found in the literature in 

Section 8.1.4. We concluded that the various results in the LAK-approximation and the F = 1 

approximation agree with each other within good accuracy and that our results are totally in 

line with the most accurate ones. Furthermore we produced the first critical coupling results for 

the coupled (~, F)-system. The inclusion of self-energy corrections in F causes a decrease of ac 

by 20% for NJ = 1 and 30% for NJ = 2. 

For the (~, 9)-system with F = 1 we found the same critical coupling as Kondo et al. [20]. 
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System 9 :F O:c(NJ = 1) O:c(NJ = 2) 
E 1-loop, LAK :F=1 1.99953 2. 75233 
E 1-loop :F==.1 2.08431 2.99142 

(E, :F) 1-loop SD 1.67280 2.02025 
(E,9) SD :F = 1 2.08431 2.99142 

(E, :F,9) SD SD 1.74102 2.22948 

Table 8.3: Critical coupling O:c for NJ = 1 and N1 = 2 for various approximations to the 
(E, :F, 9)-system in the bare vertex approximation. (Column "System" states which coupled system 
of equations was effectively solved. Columns "9" and ":F'' tell which approximations were used for these 
functions, "SD" means that the function is determined self-consistently by the coupled SD-equations in 
"System", "LAK" is the Landau-Abrikosov-Khalatnikov approximation of Section 8.1.1.) 

However, their erroneous behaviour of 9( x) at intermediate low energy has been corrected thanks 

to the use of Chebyshev expansions for E and (}. The results of Atkinson et al. [19], although 

less accurate because of additional approximations, still agree very well with our calculation. 

We also give the first results for Nf = 2. 

Finally, we have given a detailed description of the consistent and accurate treatment of the com­

plete (E, :F, 9)-system in the bare vertex approximation. From Table 8.3 we see that replacing 

the 1-loop approximation to g by the consistent SD-treatment of the (}-equation introduces an 

increase of O:c by 4% for Nf = 1 and 10% for Nf = 2. On the other hand, if we consistently add 

the :!'-equation in the (E, 9)-system we note a decrease of O:c by 16% for Nf = 1 and 25% for 

Nf = 2. We have been unable to make a useful quantitative comparison with Rakow's work [18] 

as explained in Section 8.3. 

Until now all the calculations have been made in the bare vertex approximation. However, we 

know that the bare vertex violates the Ward-Takahashi identity relating the QED vertex to the 

fermion propagator, which is a direct consequence of the gauge in variance of the theory. In the 

next chapter we will examine the possibility of improving the vertex Ansatz. This is the first 

time that the study of fermion mass generation in unquenched QED will be taken beyond the 

bare vertex approximation. 



Chapter 9 

Improving the vertex Ansatz 

In this chapter we are going to investigate the influence of the vertex Ansatz on the dynamical 

generation of fermion mass. In the previous chapters we have used the bare vertex approxima­

tion, ft'(k,p) = '"(~-'. This vertex Ansatz has the advantage of being very simple and therefore 

it makes the manipulation of the Schwinger-Dyson equations easier. However, this approxima­

tion does not satisfy the Ward-Takahashi identity relating the QED vertex with the fermion 

propagator, which is a consequence of the gauge invariance of the theory. Therefore, the bare 

vertex approximation does not ensure that the physical quantities computed with it are gauge 

invariant as they should be. The Ward-Takahashi identity relating the QED vertex with the 

fermion propagator determines uniquely the longitudinal part of the vertex [24], called Ball-Chiu 

vertex. However, the transverse part of the vertex is still arbitrary. Constraints on that part of 

the vertex can be imposed by requiring the multiplicative renormalizability of the fermion and 

photon propagator, the absence of kinematical singularities, the reproduction of the perturba­

tive results in the weak coupling limit, gauge invariance of critical coupling, ... [12, 25, 26]. In 

the next sections we will investigate the generation of fermion mass using improved vertices and 

highlight the problems which occur when doing so. 

162 
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9.1 1/ F-corrected vertex 

To investigate the influence of the vertex improvement on the dynamical generation of fermion 

mass we will first introduce a 1/:F-corrected vertex defined as: 

fl'(k,p) = ~ [:F(~2) + :F(~2)] "fll, (9.1) 

which is just the first term of the Ball-Chiu vertex, Eq. (2. 73). The motivation for this vertex 

Ansatz is that it introduces a wavefunction renormalization dependence in the vertex. However, 

it avoids the numerical difficulties which can occur with the complete Ball-Chiu vertex because 

of the difference terms 

The coupled integral equations with this vertex Ansatz are easily derived from Eqs. (2.59, 2.60, 

2.69) for the bare vertex, as the 1/:F-vertex, Eq. (9.1), has the same Dirac structure as the bare 

vertex and merely introduces a multiplicative factor in each integral where the full vertex is 

replaced by the vertex Ansatz. The equations, with mo = 0 and in the Landau gauge, are: 

E(x) 
:F(x) 

1 
:F(x) 

1 

O(x) 

3a jdy yA(y,x):F(y)E(y) jdosin2 (} O(z) 
271'2 y + E2 (y) z 

(9.2) 

1 _ ~jdy yA(y,x):F(y) jdo sin20Q(z) [2yxsin
2

0 _ 3.JYXcosO] 
271'2x y + E2(y) z2 z 

(9.3) 

= 1 + -- dy d(} sm2 (} y(1 - 4 cos2 0) + 3y'YX cos(} 4Nfa j y:F(y) j . A(y, z):F(z) [ ] 
311' 2x y + E2 (y) z + E2(z) 

(9.4) 
1 [ 1 1 ] where A(y,x) = 2 :F(y) + :F(x) 

We now solve this system of coupled integral equations using the same method as in Section 8.3. 

In Fig. 9.1 we show the evolution of the generated fermion mass versus the running coupling at 

the UV-cutoff, a(A2), for Nf = 1. The critical coupling is I ac(A2, Nf = 1) = 1.90911 ~ 

Typical plots of E(x), :F(x) and a(x) = aO(x) are shown in Fig. 9.2, Fig. 9.3 and Fig. 9.4. 

In Fig. 9.5 we plot the generated fermion mass E(O) versus the running coupling a(A2) for 

NJ = 2. The critical coupling is lac(A2 ,NJ = 2) = 2.59578~ 

If we compare these results with those obtained with the bare vertex approximation in Section 8.3 

we note an increase ofthe critical coupling, ac(A2) by about 10% for Nf = 1 and 16% for Nf = 2. 
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Figure 9.1: Generated fermion mass ~(0) versus running coupling a(A2 ) for the coupled 
(~, :F, g)-system with the 1/ :F-vertex Ansatz, for NJ = 1. 
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Figure 9.2: Dynamical fermion mass ~(x) versus momentum squared x for the coupled(~, :F,g)­
system with the 1/ :F-vertex Ansatz, for NJ = 1 and a= 2.314, 2.316, 2.318. 
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Figure 9.3: Fermion wavefunction renormalization F( x) versus momentum squared x for the 
coupled (~, F,O)-system with the 1/ F-vertex Ansatz, for N1 = 1 and a= 2.314, 2.316, 2.318. 
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Figure 9.4: Running coupling a(x) versus momentum squared x for the coupled(~, F,O)-system 
with the 1/ F-vertex Ansatz, for NJ = 1 and a= 2.314, 2.316, 2.318. 
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Figure 9.5: Generated fermion mass E{O) versus running coupling a(A2) for the coupled 
{E,F,g)-system with the 1/F-vertex Ansatz, for NJ = 2. 

9.2 Ball-Chiu vertex 

Next we will derive the results using the longitudinal or Ball-Chiu vertex, which satisfies the 

Ward-Takahashi identity. The Ball-Chiu vertex has been introduced in Eq. (2. 73) and is given 

by: 
{9.5) 

The coupled integral equations are easily derived from Eqs. (2.131, 2.132, 2.133) for the Curtis­

Pennington vertex, by setting r6 (y, x) = 0 to remove the transverse part of the vertex. The 

equations, with m 0 = 0 and in the Landau gauge, are: 

E(x) 
F(x) 

= ~jdy yF(y) jdosin2 0g(z) 
211"2 y + E2(y) 

X {3A(y,x)E(y) _ E(y)- E(x)2yxsin20} 
z F(x)(y-x) z 2 

(9.6) 

F~x) = 1- 2;x j dy y ~iifly) j dO sin
2 

(J g(z) {9.7) 

{ [
2yx sin2 

(J 3y'YX cos 0] 2yx sin2 (J} 
X A(y,x) z2 - z +[B(y,x)(y+x)-C(y,x)E(y)] z2 
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1 

9(x) 
= 1 + 2Nfa j dy yF(y) j dO sin2 8 F(z) (9.8) 

311' 2x y + :E2(y) z + :E2(z) 

where 

X { 2A(y, z) [y(1 - 4 cos2 8) + 3ffx coso] 

+B(y, z) [ (y + z- 2:E(y):E(z)) (2y(1- 4 cos2 8) + 3# coso) 

+3(y- z)(y- :E(y):E(z))] 

-C(y, z) [ ( :E(y) + :E(z)) ( 2y(1 - 4 cos2 8) + 3ffx coso) + 3(y- z):E(y)]} 

A(y,x) 1 [ 1 1 ] 
2 F(y) + F(x) 

B(y,x) 1 [ 1 1 ] 
2(y-x) F(y) F(x) 

C(y, x) 1 [:E(y) :E(x)] 
- y- x F(y)- F(x) · 

9.2.1 Improper cancellation of quadratic divergences 

(9.9) 

When solving this system of coupled integral equations with the method described in Chapter 8.3 

we encounter some serious new problems. Although the solution of Eqs. (9.6, 9. 7) does not seem 

to suffer by the introduction of the Ball-Chiu vertex, the behaviour of the photon equation, 

Eq. (9.8), however, is somehow erratic. This can be seen in Fig. 9.6 where we plotted the 

behaviour of 9( x) for a = 1.921 with realistic input functions :E( x ), F( x ). 

To investigate the numerical cancellation of the quadratic divergence we plot the vacuum po­

larization function IT(x) of Eq. (9.8) in Fig. 9.7. From the 1-loop perturbative results for the 

vacuum polarization we expect the vacuum polarization to be roughly of the order of: 

N1a A2 

IT(O) ~ ~ ln :E 2(0) ~ 2.8 (9.10) 

for a = 1.921, A = 1e5 and :E(O) = 100. The very large values of the vacuum polarization at 

small values of x, in Fig. 9.7, clearly show that the quadratic divergence has not been cancelled 

correctly. There seems to be a residual linear divergence in the numerical solution. To examine 

this in more detail, we will investigate the radial integrand, KR(x, y), of IT(x) for small values 

of x. We can write the vacuum polarization integral of Eq. (9.8) as: 

IT(x) = j dt KR(x,y) (9.11) 
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Figure 9.6: Photon renormalization function 9( x) versus momentum squared x from the 9-
equation with Ball-Chin vertex, for a = 1.921 and Nf = 1. 
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Figure 9. 7: Vacuum polarization IT( x) versus momentum squared x from the 9-equation with 
Ball-Chin vertex, for a = 1.921 and NJ = 1. 
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where t = log10 y and the radial integrand Kn(x, y) is defined by: 

Kn(x, y) = j do Ko(x, y, 0). (9.12) 

In Eq. (9.12), the angular integrand Ko(x, y, 0) is given by: 

Ko(x, y, 0) = p(x, y)fo(x, y, 0). (9.13) 

where the multiplicative factor p(x, y), independent from 0, is: 

(
x ) _ 2NJcdn 10 y2 F(y) 

P 'Y - 37r2x y + ~2(y) (9.14) 

and the angular function fo from is defined as: 

fe(x, y, B) = sin2 B z :~z}(z) { 2A(y, z) [y(l - 4 cos2 B)+ 3ffx cos B] (
9

·
1
5) 

+B(y, z) [ (y + z- 2E(y)E(z)) ( 2y(l- 4 cos2 B)+ 3ffx cos B) + 3(y- z) (y- E(y)E(z))] 

-C(y, z) [ (E(y) + E(z)) ( 2y(l- 4 cos2 B)+ 3ffx cos B) + 3(y- z)E(y)]} 

with z = y + x - 2../Yx cos B . 

In Fig. 9.8 we plot the radial integrand Kn(x0 , y), where x0 = 1.00856e-05 is the smallest 

external momentum value used in the numerical solution of Eqs. (9.6, 9.7, 9.8). There, the 

integral value is IT(xo) = 16471.3. This much too large value seems to be caused by the chaotic 

behaviour of the radial integrand for large values of momentum. We will, therefore, investigate 

where this behaviour originates from and examine Kn(x0 , y) in more detail for large values of 

radial momentum y. For YN = 9.96568e+09, which is the largest radial integration point for the 

external momentum x0 , the radial integrand Kn(xo,YN) = -1.82932e+06. 

We now look at the behaviour of the angular integrand [( o( x0 , YN, 0) where x0 = 1.00856e-05 

and YN = 9.96568e+09. We note from Eqs. (9.13, 9.14) that, for such small values of x and 

large values of y, accuracy problems in the angular function fo are magnified enormously, here 

by a factor p(xo,YN)::::::; 3e+14. We plot the angular integrand Ko(xo,YN,O) versus 0 in Fig. 9.9. 

For the quadratic divergence to cancel, the vacuum polarization integral must satisfy: 

lim xii(x) = 0. 
x-+0 

(9.16) 

The cancellation of the quadratic divergence occurs if the terms proportional to 1/x in the 

angular integrand, Eq. (9.13), vanish as a result of the angular integrals being equal to zero 
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Figure 9.8: Radial integrand KR(xo, y), where x0 = 1.00856e-05, versus radial momentum 
squared y from the 9-equation with Ball-Chiu vertex, for a= 1.921 and N1 = 1. 
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when x ---+ 0 . To investigate if this is achieved numerically, we rewrite the angular function Jo, 
Eq. (9.15), as a sum of angular functions which all give individual contributions to the vacuum 

polarization that are theoretically free of quadratic divergences: 

(9.17) 

where 

lA(x, y, 0) 2A(y, z)yF(z) (1 _ 4 2 O) 
z + I,;2(z) cos 

JA(x,y,O) = 
6A(y, z)F(z) ;-;;;;; 

0 z+L:2(z) yYXCOS 

lB(x,y,O) 
2Y:~~zJ(ziz) (y + z- 2I.:(y)I.:(z))(l- 4 cos2 0) (9.18) 

JB(x,y,O) = 
3~~·~~fz\z) [ (y + z- 2L:(y)I.:(z))-ffxcos0 + (y- z)(y- I.:(y)L:(z))] 

Ic(x, y, 0) = 

Jc(x, y, 0) = 

- 2yC(y, z)F(z) (I.:(y) + I.:(z))(l- 4 cos2 0) 
z + I.: 2(z) 

- Cz(~~~;;) [ (I.:(y) + I.:(z))3-ffxcos0 + 3(y- z)L:(y)]. 

We define the angular integrands Ko,i, i = 1, ... , 6, as: 

Ko,t(x,y,O) p(x, y)sin2 0 IA(x, y, 0) 

Ko,2(x, y, 0) p(x, y)sin2 0 JA(x, y, 0) 

Ko,3(x, y, 0) p(x, y)sin2 0 lB(x, y, 0) 

Ko,4(x, y, 0) = p(x, y)sin2 0 JB(x, y, 0) 

Ko,s(x, y, 0) p(x, y)sin2 
() Ic(x, y, 0) 

Ko,6(x, y, 0) = p(x, y)sin2 0 Jc(x, y, 0) 

and the radial integrands Kn,i, after angular integration of Eq. (9.19), as: 

Kn,i(x, y) = j dO Ko,i(x, y, 0) , i = 1, ... '6. 

The total radial kernel Kn is given by: 

Kn = Kn,1 + Kn,2 + Kn,3 + Kn,4 + Kn,s + Kn,6. 

(9.19) 

(9.20) 

(9.21) 

Although the analytical cancellation of the quadratic divergence for x ---+ 0 is obvious, this is 

not ensured to happen numerically. We tabulate the computed values of the individual radial 
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Kn,t 4.61709e+OO 
Kn,2 1.44340e+OO 
Kn,3 -1.82932e+06 
Kn,4 7.64 711e-02 
Kn,s -2.35535e-02 
Kn,s -3.40508e-09 

Table 9.1: Radial kernels Kn,i(xo,YN), fori 
9.96568e+09. 

1, ... ,6,withxo 

172 

1.00856e-05 and YN 

kernels, Kn,i(xo,YN), with xo = 1.00856e-05 and YN = 9.96568e+09 in Table 9.1. The main 

contribution to the radial integrand comes from Kn,3 • 

Plots of the various angular integrands Ko,i(xo, YN, 0), Eq. (9.19), are shown in Fig. 9.10. From 

this figure nothing suspicious can be detected. This is understandable, from Table 9.1, as the 

main contribution to the radial integrand comes from Kn,3 and is of 0(1e6), while the angular 

integrand Ko,3 has a magnitude of 0(1e13). The problem seems to be hidden as an undiscernible 

noise in the much larger smooth envelope of the angular integrand. 

9.2.2 Small-x expansion of angular functions 

To investigate the cancellation of quadratic and linear divergences we need the terms of Ko,i 

which are proportional to 1/x and 1/y'X. Because of Eq. (9.19) and the 1/x-proportionality of 

p(x, y), this corresponds to expanding the angular functions, Eq. (9.18), up to constant terms for 

the quadratic divergent contributions and to y'X for the linear divergent contributions. Therefore 

we look how the various angular functions, Eq. (9.18), depend on x or (z- y) = x- 2~cos () 

for small x. 

To Taylor expand the angular functions, Eq. (9.18), we first Taylor expand their various com­

ponents up to O(z- y): 

F(z) F(y) + (z- y) F'(y) + O(z- y)2 (9.22) 

~(z) ~(y) + (z- y) ~'(y) + O(z- y)2 (9.23) 

1 [1 + 2~(y)~'(y)] 2 
y + ~2(y) - (z- y) (y + ~2(y))2 + O(z- y) 

1 
(9.24) 

z + ~2(z) 

A(y,z) 1 [ 1 1 ] 
2 .F(z) + F(y) 
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Figure 9.10: Angular integrands Ko,i(Xo,YN,(}), fori= 1, ... ,6, with xo = 1.00856e-05, YN = 
9.96568e+09, versus angle (} from the 9-equation with Ball-Chiu vertex, for a = 1.921 and 

NJ = 1. 
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= ~ { .r~y) + (z- y) [.r~y)]' + ocz- y)2 + .r~y)} 
= .r~y) + z; y [.r~y)]' + ocz- y)2 (9.25) 

B(y, z) = 1 [ 1 1 ] 
2(z- y) F(z) F(y) 

1 { 1 [ 1 ] I ( Z - Y )
2 

[ 1 ] II 3 1 } 
= 2(z- y) F(y) + (z- y) F(y) + 2 F(y) + O(z- y) - F(y) 

1[ 1 ]
1 

(z-y)[ 1 ]
11 

2 = 2 F(y) + 4 F(y) + O(z- y) (9.26) 

C(y, z) = 1 [ ~(z) ~(y)] 
- z- y F(z) - F(y) 

= __ 1_ { ~(y) + (z- y) [~(y)]l + (z- y)2 [~(y)]ll + O(z- y)3- ~(y)} 
z- y F(y) F(y) 2 F(y) F(y) 

= - [~~~~]'- z; y [~~~~]" + O(z- Y? . (9.27) 

Substituting Eqs. (9.22-9.27) in the angular functions, Eq. (9.18), and gathering together terms 

of equal power in ( z - y) yields: 

lA(x, y,O) 

IB(x,y,O) 

Ic(x, y, 0) 

2y 2 
= y + ~2(y) (1- 4 cos 0) (9.28) 

2 { 1 F'(y) 1 1 + 2~(y)~1(y)} 2 
+ 2y(z- y)(1- 4 cos 0) 2 F(y) y + ~2 (y) - (y + ~2 (y))2 + O(z- y) 

= 2y(y - ~2(y) )F(y) [-1-] I ( 1 - 4 cos2 0) 
y + ~2(y) F(y) 

2 { 1 (y- ~2(y))F(y) [ 1 ] II + 2y(z- y)(1- 4 cos 0) 2 y + ~2 (y) F(y) 

+ (y- ~2(y))FI(y) [-1-] I 
y + ~2(y) F(y) 

_ [F(y)(y- ~2 (y))(1 + 2~(y)~1(y))l [-1-]
1 

(y + ~2(y))2 F(y) 

~ F(y)(1- 2 ~(y)~1(y)) [-1-]
1

} O( _ )2 
+2 y+~2(y) F(y) + z y 

= 4yF(y)~(y) [~(y)]
1 

(1-4cos20) 
y + ~2(y) F(y) 

+ 2 (z- )(1- 4cos2 0) { F(y)~(y) [L:(y)]" + 2F'(y)~(y) [L:(y)]' 
y y y + ~2(y) F(y) y + ~2(y) F(y) 

(9.29) 

(9.30) 
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_ 2F(y)E(y)(1 + 2E(y)E'(y)) [E(y)]' + F(y)E'(y) [E(y)]'} + O(z _ y)2. 
y + E2(y) F(y) y + E2(y) F(y) 

Because ofthe structure of the integrands JA, JB, Jc, these have no potentially quadratic diver­

gent terms. However there can be some remnant linear divergent bits, which are proportional 

to JX. To separate these, we only need the first term in the Taylor expansions of the various 

components. This gives: 

6..fi!X cos 0 ( ) 
JA(x, y, 0) y + E2(y) + 0 x (9.31) 

3 [ 1 ] I F(y) 2 
JB(x,y,O) 2 F(y) y+E2(y)(4ffxcos0-x)(y-E(y))+O(x) (9.32) 

[
E(y)]' 3F(y) [ ] 

Jc(x,y,O) = F(y) y + E2 (y) 2E(y)ffxcos0 + (y- z)E(y) + O(x). (9.33) 

It is enlightening to study the behaviour of Ko,3(xo,YN,O) in more detail. In Fig. 9.10 we see 

the nice trigonometric behaviour of the angular kernel as predicted from Eqs. (9.19, 9.29). We 

now show another plot in Fig. 9.11, where we divide Kn,3 (x0 , YN, 0) by its trigonometric factor 

sin2 0(1 - 4 cos2 0). As expected from the first term of the Taylor expansion of IB, Eq. (9.29), 

the leading order term of the plotted function is now constant in 0. Furthermore, because the 

integral over 0 of the trigonometric part of the leading order term of Kn,3 ( x 0 , YN) vanishes, 

there is no quadratic divergent contribution to it. 

9.2.3 Subtracting the leading order term 

To verify that the quadratic divergence is cancelled correctly numerically and that the remaining 

result is meaningful we now subtract explicitly the value of the angular integrand when x -+ 0, 

i.e. when z-+ y. We define: 

ko(x, y, 0) = .!_ [xi<o(x, y, 0)- lim xKo(x, y, 0)]. 
X x-+0 

(9.34) 

Formally this should not change the value of the angular integral, 

KR(x, y) = j dO Ko(x, y, 0) = j dO ko(x, y, 0) (9.35) 

as we can show analytically that: 

J dO [!~ xi<o(x, y, o)] = 0. (9.36) 
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Figure 9.11: Angular integrand Ko,3 (xo, YN, 0) for xo = 1.00856e-05, YN = 9.96568e+09, versus 
angle 0 from the 9-equation with Ball-Chiu vertex, for a = 1.921 and N1 = 1 after removing 
the trigonometric factor sin2 0(1 - 4 cos2 0). 

Because of the 1/x factor in p(x, y), Eq. (9.34) corresponds to the subtraction of the terms 

without any x-dependency in the angular functions IA,IB,lc, JA, JB, Jc. These are exactly the 

leading order terms of IA, IB and Ic in Eqs. (9.28, 9.29, 9.30), which we will respectively call 

I~,~. Ig and are given by: 

I~(x,y,O) 

I~(x, y, 0) 

Jg(x,y,O) 

2y 2 
y + E2(y) (1- 4cos 0) 

2y(y- E2(y))F(y) [-1-] I (1- 4 cos2 0) 
y + E2(y) F(y) 

4y.F(y)E(y) [ E(y)] 
1 

(1 - 4 cos2 0). 
y + E2(y) F(y) 

(9.37) 

{9.38) 

(9.39) 

By subtracting the leading order term, which should vanish anyway after angular integration, 

we want to explore what happens to the next order in the small-x expansions of IA, IB and Ic, 

Eqs. {9.28, 9.29, 9.30). As there are no potentially quadratic divergences in JA, JB, Jc, we do 

not subtract any contribution from these kernels. 

To compute I~ and Ig numerically, we need to take the derivatives of the functions F and E, 

which are defined as Chebyshev expansions. Consider the Chebyshev expansion of a function 
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f(x): 
N-1 
"" co f(x) = L.....t CjTj(X)- 2 , 
j=O 

(9.40) 

then, its derivative with respect to x is again a Chebyshev expansion: 

N-1 I 

J'(x) = L cjTj(x)- ; , 
j=O 

(9.41) 

where the coefficients cj are defined by: 

j=N-1, ... ,1, (9.42) 

with c~ = c~_ 1 = 0. 

As we expand the functions :E(x), F(x) and Q'(x) in Chebyshev polynomials of s(x), Eq. (7.30), 

instead of x, the expansion Eq. (9.40) now becomes: 

N-1 
"" co g(x) = f(s(x)) = L.....t CjTj(s(x))--
. 0 2 
J= 

(9.43) 

where: 

(9.44) 

and the derivative is now: 

g'(x) = dg(x) = ds(x) df(s(x)) = f'(s) 
dx dx ds xln10log10(A/x;) 

{9.45) 

where f'(s) is defined by Eqs. (9.41, 9.42). 

Explicitly cancelling these lowest order terms in Eq. (9.19) will yield the following angular 

kernels: 

Ko,1(x,y,O) p(x, y)sin2 0 (IA- I~) 

Ko,2(x, y, 0) p(x, y)sin2 0 JA 

Ko,3(x, y, 0) p(x, y)sin 2 0 (IB- I~) 

Ko,4(x, y, 0) p(x, y)sin2 0 JB 

Ko,s(x, y, 0) = p(x, y)sin2 0 (Ic- I&) 

Ko,6(x, y, 0) = p(x, y)sin2 0 Jc . 
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Kn,t -9.45396e-01 
Kn.2 1.44340e+OO 
Kn,3 -1.82932e+06 
Kn,4 7.64711e-02 
Kn,s -2.35535e-02 
Kn,6 -3.40508e-09 

Table 9.2: Radial kernels Kn,;(xo,YN), fori= 1, ... ,6, with x0 

9.96568e+09 with explicit cancellation of the quadratic divergence. 

178 

1.00856e-05 and YN 

After this cancellation we see that the total radial kernel [( n( x 0 , YN), after angular integration is 

still Kn( xo, YN) = -1.82932e+06 and the individual radial kernels Kn,i( x0 , YN ), fori = 1, ... , 6, 

are given in Table 9.2. 

Although the value of the radial integrands, Kn,;(xo, YN ), shown in Table 9.2 have not changed 

much compared to those of Table 9.1, the magnitude of the angular integrands, has been reduced 

as can be seen in Fig. 9.12 for the total angular integrand Ko(x0 , YN, 0) and in Fig. 9.13 for the 

partial ones, Ko,;(xo,YN,O). However the expected reduction factor of the O(A/.jXo) has not 

been achieved for Ko,3 and Ko,s· 
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Figure 9.12: Angular integrand [( o( x0 , YN, B) for x0 = 1.00856e-05, YN = 9.96568e+09, versus 
angle () from the y-equation with Ball-Chiu vertex, for a = 1.921 and N 1 = 1 with the explicit 
cancellation of the quadratic divergence. 
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From Fig. 9.10 we saw that, to leading order in x, the angular kernels had the correct trigonomet­

ric behaviour. However, from Fig. 9.13, it seems that, although Ko,1 seems fine, Ko,3 and K 0,5 

do not have the right next-to-leading order behaviour predicted by the expansions, Eqs. (9.29, 

9.30), which should be proportional to sin2 0(1 - 4 cos2 0) cos 0. To emphasize this we show in 

Fig. 9.14 the behaviour of Ko,3(x, y, 0) when we remove the sin2 0(1 - 4 cos2 0) trigonometric 

part. Then, we expect the next-to-leading order term to behave as cos 0. From Fig. 9.14 it is 

clear that this is not so and that this part of the angular kernel is varying erratically between 

-5.95e+08 and -5. 7e+08. 
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Figure 9.14: Angular integrand Ko,3 (xo, YN, 0) for xo = 1.00856e-05, YN = 9.96568e+09, versus 
angle 0 from the Q'-equation with Ball-Chiu vertex, for a = 1.921 and NJ = 1 after removing 
the trigonometric factor sin2 0(1 - 4 cos2 0). 

These results indicate that, for some reason as yet unknown, the numerical accuracy of the 

JX-term in Is is not very good. However we need to get this right because these terms will 

generate a linear divergence in the vacuum polarization, unless their angular integrals vanish to 

a high degree of precision. From the derivation of the Taylor expansion of Is, Eq. (9.29), we 

see that the next-to-leading order term of Is is achieved by combining the next-to-leading order 

terms of its various components with the leading order terms, except for B(y, z), for which we 

need the next-to-next-to-leading order term of the 1/F(z) expansion as shown in Eq. (9.26). Of 
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course in the numerical program B(y, z) will be computed from: 

1 [ 1 1 ] 
B(y, z) = 2(z- y) F(z) - F(y) · (9.46) 

Let us write the Taylor expansion of 1IF(z): 

1 _ 1 [ 1 ] I ( Z - Y )
2 

[ 1 ] II 3 
F(z) - F(y) + (z- y) F(y) + 2 F(y) + O(z- y) . (9.47) 

Because of the (z- y) denominator of B(y, z), the third term in 1/ F(z) will also contribute to 

the (z- y)-term in the expansion of B(y, z). However, for small values of x, subsequent terms 

in the Taylor expansion will decrease by a factor of 0( .JXTY), which in our case is of 0(3e7). 

As double precision arithmetic is accurate to about 16 digits, this means that the (z - y) 2 

contribution of Eq. (9.47) will not be accurate in the numerical evaluation of 1/ F(z), and thus, 

the next-to-leading order (z- y)-term of B(y, z) from Eq. (9.26) will not behave as it should 

do. The problem is similar for C(y, z). 

We will now construct a method to get B(y, z) and C(y, z) with sufficient accuracy by directly 

evaluating these quantities and cancelling the leading constant term 1 I F(y) and L..(y) I F(y) of 

their expansions explicitly . 

9.2.4 Recurrence formula for difference of Chebyshev expansions 

Assume that f(y) is a Chebyshev expansion and we want to compute the difference 

t!.f = f(z)- f(y) 

[E
1 

CjTj(z)- ~]- [E1 

CjTj(Y)- c;] 
J=O J=O 

N-l 

L Cj [Tj(z)- Tj(y)] 
j=O 

From Glenshaw's formula, Eq. (7.19), to compute the value of a Chebyshev expansion, we now 

derive another, original, recurrence formula for the difference of two Chebyshev expansions. 

Subtracting Eq. (7.19) at two arbitrary points, yields: 

f(z)- f(y) 

and 

[zd1(z)- d2(z) + c;] - [ydi(Y)- d2(y) + c;] 
zdt(z)- yd1(y)- (d2(z)- d2(y)) (9.48) 
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[2zdj+I(z)- dj+2(z) + Cj]- [2ydj+t(Y)- dj+2(Y) + Cj] 

2(zdj+t(z)- ydj+t(Y))- (dj+2(z)- dj+2(Y)). 

From Eq. {9.49) it seems logical to look for a recurrence formula for: 

[2z2dj+t(z)- zdj+2(z) + zcj]- [2y2dj+t(Y)- ydj+2(Y) + yci] 

2(z2dj+I(z)- y2dj+t(Y))- (zdj+2(Y)- ydj+2(Y)) + (z- y)cj 

2[(z + y)(zdj+t(z)- ydj+t(Y))- zy(dj+t(z)- dj+t(Y))] 

182 

(9.49) 

-(zdj+2(z)- ydj+2(Y)) + (z- y)cj. (9.50) 

We now define aj(z, y) and /3j(z, y) as: 

= dj(z)- dj(Y) 
z-y 

zdj(Z)- ydj(Y) 
z-y 

such that Eqs. (9.48, 9.49, 9.50) can be written as the following recurrence relation: 

t::.j f(z)- f(y) = (z- y) (!3t(z, y)- a2(z, y)) 

aj(z, y) 

/3j(z, y) 

2/3j+t(z, y)- ai+2(z, y) 

Cj + 2(z + y)f3j+t(z, y)- 2zyai+t(z, y)- /3j+2(z, y) 

and j = N- 1, ... , 1, f3N+l = f3N = aN+t =aN= 0. 

(9.51) 

(9.52) 

This recurrence formula ensures that the leading order term of t::.j goes as (z- y); the leading 

order, constant, terms of f(z) and f(y) are automatically cancelled. 

Implementing this in our numerical program, to improve the accuracy of the computation of 

B(y, z) and C(y, z), requires these functions to be written as a difference of Chebyshev expan­

sions. Therefore we will first construct the Chebyshev expansion of the functions 1/ F( x) and 

L.(x)f:F(x) which can easily be done using the known expansions for L.(x) and :F(x). The results 

achieved with this method are discussed below. 

In Fig. 9.15 we compare the new behaviour of the photon renormalization function 9( x) with 

that of Fig. 9.6. Although we see that for 104 < x < 107 and 10-2 < x < 1 the new calculation 

for 9( x) is much more stable, the smallest x-values still seem to be problematic. As before we 
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Figure 9.15: Photon renormalization function 9(x) versus momentum squared x from the 9-
equation with Ball-Chiu vertex, for a = 1.921 and Nf = 1 using the Chebyshev subtraction 
scheme (new) and without it (old). 

will look at the various radial and angular integrals to find a clue where the inaccuracy comes 

from. 

The radial kernel KR(xo, y), for xo = 1.00856e-05, is shown in Fig. 9.16. Comparing this 

with Fig. 9.8 we see that the new improvement has decreased the magnitude of the radial 

kernel. The value of the radial integrand at x0 = 1.00856e-05 and YN = 9.96568e+09 is 

KR(xo,YN) = -834.459. This value is the integral of the angular kernel, Ko(xo,YN,O), shown 

in Fig. 9.17. 

If we again split the total radial integrand into six parts, KR,i, for i = 1, ... , 6, their individual 

values can be found in Table 9.3. The angular kernels from which these integral values are 

computed are shown in Fig. 9.18. 

From Fig. 9.19 we see that the angular kernel Ko,3 after removal of the trigonometric factor 

sin2 0(1 - 4 cos2 0) tends to the correct cos 0-shape. However, the remaining inaccuracy is still 

responsible for unacceptable instabilities in 9(x) for small x. Next we will introduce the final 

step to improve this. 
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Figure 9.16: Radial integrand KR(x0 , y) for x 0 = 1.00856e-05 versus radial momentum squared 
y from the 9-equation with Ball-Chiu vertex, for a = 1.921 and NJ = 1 using the Chebyshev 
subtraction scheme. 

KR,t -9.45396e-01 
KR,2 1.44340e+OO 
KR,3 -8.34999e+02 
KR,4 4.23751e-02 

KR,5 2.43633e-05 
KR,6 -1.61445e-09 

Table 9.3: Radial kernels KR,i(xo,YN), fori= 1, ... ,6, with xo 
9.96568e+09 using the Chebyshev subtraction scheme. 

1.00856e-05 and YN 
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Figure 9.17: Angular integrand Ko(xo,YN,O) for xo = 1.00856e-05, YN = 9.96568e+09, versus 
angle (} from the 9-equation with Ball-Chiu vertex, for a = 1.921 and NJ = 1 using the 
Chebyshev subtraction scheme. 

9.2.5 Alternative logarithm calculation 

Using the Chebyshev subtraction scheme Eq. (9.52) we have ensured that the difference of two 

Chebyshev expansions, f(z)- f(y), has a leading term which will be proportional to (z- y). 

However, the functions :E(x), F(x) and 9(x) are expanded in Chebyshev polynomials of s(x) 

rather than x. Therefore, the Chebyshev subtraction scheme will ensure that the leading term 

of the differences f(s(z))- f(s(y)) will be proportional to s(z)- s(y). Of course, analytically, 

s(z)- s(y) itself will be proportional to ( z- y) in leading order. However, this is again a possible 

source of numerical inaccuracy. Remember the definition of s( x ): 

Then, 

From Figs. 9.18, 9.19 we see that the problem resides around (} = 1r /2. We can write, 

Z X - 2..;xfj COS(} - = 1 + __ ,___ __ 
y y 

(9.53) 

(9.54) 
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Figure 9.18: Angular integrands Ko,i(xo,YN,O), fori= 1, ... ,6, with xo = 1.00856e-05, YN = 
9.96568e+09, versus angle 0 from the 9-equation with Ball-Chiu vertex, for a = 1.921 and 
Nf = 1 using the Chebyshev subtraction scheme. 
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Figure 9.19: Angular integrand Ko,3 (xo,YN,O) for xo = 1.00856e-05, YN = 9.96568e+09, versus 
angle 0 from the Q-equation with Ball-Chiu vertex, for a = 1.921 and NJ = 1 after removing 
the trigonometric factor sin2 0(1 - 4 cos2 0) using the Chebyshev subtraction scheme. 

and if x is very small and 0 ~ 1r /2, the second term in this last expression will be much 

smaller than one and its accuracy can be completely lost. However it is exactly this bit of the 

expression which determines completely the answer of log10(z/y) and therefore its inaccuracy 

will be responsible for the incorrect cancellation in the angular integrals. To improve on this 

we cannot anymore use the logarithm function of the standard mathematical library of the 

computer; instead we will implement our own routine for values of z very close to y. We will 

use the following Taylor series (59]: 

1 1 + u u3 u5 u7 

-ln-- = u+- +- +- + .. ·, 
2 1-u 3 5 7 

z-y 
If we define u = -- then, 

z+y 
z 
y 

1+u 
1-u 

-1 < u < 1. (9.55) 

(9.56) 

Eq. (9.55) ensures that the leading term of log10(z/y) will be proportional to (z- y). We 

implement the Taylor series up to u7-terms and use it when lui < 10-3 , otherwise we use the 

standard logarithm routine. 

In the following figures we will show the various results after this improvement has been imple­

mented. The angular integral Ko,3 / sin2 0(1- 4 cos2 0), after removal of the trigonometric part 
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is shown in Fig. 9.20 and has the expected cos 0 behaviour. The influence on the angular inte-
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Figure 9.20: Angular integrand Ko,3 (x 0 , YN, 0) for x0 = 1.00856e-05, YN = 9.96568e+09, versus 
angle 0 from the 9-equation with Ball-Chiu vertex, for a = 1.921 and Nf = 1 after removing 
the trigonometric factor sin2 0(1 - 4 cos2 0) using the alternative logarithm calculation. 

grands with their complete trigonometric behaviour can be seen in Fig. 9.21. The values ofthese 

six angular integrals are given in Table 9.4. The total angular integrand is shown in Fig. 9.22 

and the integral value is Kn( xo, YN) = 0.524575 for xo = 1.00856e-05 and YN = 9.96568e+09. 

Kn,1 -9.45396e-01 
J( R,2 1.44340e+OO 
J( R,3 -1.30249e-02 
Kn,4 3.95985e-02 
Kn,s 2.63095e-09 
/( R,6 -1.53344e-09 

Table 9.4: Radial kernels Kn,i(xo,YN), fori= 1, ... ,6, with xo 
9.96568e+09 using the alternative logarithm calculation. 

1.00856e-05 and YN 

The radial integrand for x0 = 1.00856e-05 is shown in Fig. 9.23. We see that there is only a 

very light wriggle left for very large y-values and this does not alter the fundamental behaviour 

of the vacuum polarization function. The vacuum polarization at xo = 1.00856e-05 is II(xo) = 

3.11466. After performing the radial integrals, the evolution of the vacuum polarization integral 

II( x) with momentum is shown in Fig. 9.24. 
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Figure 9.22: Angular integrand Ko(xo, YN, 0) for xo = 1.00856e-05, YN = 9.96568e+09, versus 
angle (} from the 0-equation with Ball-Chiu vertex, for a = 1.921 and NJ = 1 using the 
alternative logarithm calculation. 
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Figure 9.23: Radial integrand Kn(xo, y) for Xo = 1.00856e-05 versus radial momentum squared 
y from the 0-equation from the 0-equation with Ball-Chiu vertex, for a = 1.921 and Nf = 1 
using the alternative logarithm calculation. 
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Figure 9.24: Vacuum polarization II( x) versus momentum squared x from the 9-equation with 
Ball-Chiu vertex, for a= 1.921 and Nj = 1 using the alternative logarithm calculation. 

From the vacuum polarization II( x ), we now compute the photon renormalization function 9( x) 

and plot the result in Fig. 9.25. We see that 9( x) behaves perfectly well now; the unphysicalities 

due to numerical inaccuracies have been worked away, down to photon momenta of the order 

9.2.6 Numerical results 

Having done this, we can now apply the iterative procedure to solve the (~, :F, 9)-system and 

determine the critical coupling in unquenched QED with Ball-Chiu vertex. The evolution of the 

generated fermion mass, ~(0), versus the running coupling at the UV-cutoff, a(A2 ) is shown in 

Fig. 9.26. The critical coupling is I ac(A2
, N1 = 1) = 1.632181. We remark that the program only 

converges if the starting guesses for the unknown functions are close to the solutions. The logical 

choice for this is always the solutions of the system of equations for another value of the coupling, 

which is a little bit larger than the current one. The more difficult it is to achieve convergence, 

the closer we have to choose the subsequent couplings for which we compute the generated 

fermion mass. The reason for this convergence problem lies in the global iterative procedure 

connecting the coupled (~, .F)-system to the 9-equation. It is very likely that convergence would 

be achieved more consistently and we could reach the critical point with fewer computations if 
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Figure 9.25: Photon renormalization function 9( x) versus momentum squared x from the 9-
equation with Ball-Chiu vertex, for a = 1.921 and NJ = 1 using the alternative logarithm 
calculation. 

the complete (~, F, 9)-system were treated with Newton's method in a unified way. 

Typical plots of ~(x), F(x) and a(x) = a9(x) are shown in Fig. 9.27, Fig. 9.28 and Fig. 9.29. 

From Fig. 9.28 we see that the wavefunction renormalization tends to have a peculiar behaviour 

with the Ball-Chiu vertex when the coupling is close to its critical value. 

For NJ = 2 the situation is even more delicate as the procedure initially does not converge for 

any value of the coupling. To make it converge it is important to start from a realistic set of 

functions. This can be achieved by using the functions ~(x), F(x) and 9(x) obtained with the 

bare vertex approximation for a = 5 and using these as starting values to find the results for the 

Ball-Chiu vertex for the same coupling. We then slowly work our way down to smaller values 

of the coupling. Unfortunately the program does not converge anymore for ~(0) < 0(500) (for 

A = 1e5) and further investigation would be needed to understand if this is because of numerical 

or physical reasons. 



CHAPTER 9. IMPROVING THE VERTEX ANSATZ 193 

600 

500 

400 

- 300 0 
i:::f 

200 

100 

0 
1.63 1.64 1.645 1.65 

a(A2
) 

Figure 9.26: Generated fermion mass :E(O) versus running coupling a( A 2 ) for the coupled 
(:E, F, 0)-system with the Ball-Chiu vertex, for NJ = 1. 
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Figure 9.27: Dynamical fermion mass :E( x) versus momentum squared x for the coupled 
(:E, F, 0)-system with the Ball-Chiu vertex, for NJ = 1 and a = 1.919, 1.921, 1.923. 
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Figure 9.28: Fermion wavefunction renormalization F( x) versus momentum squared x for the 
coupled(~, F,9)-system with the Ball-Chiu vertex, for NJ = 1 and a= 1.919, 1.921, 1.923. 
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Figure 9.29: Running coupling a(x) versus momentum squared x for the coupled (~,F,9)­
system with the Ball-Chiu vertex, for NJ = 1 and a= 1.919, 1.921, 1.923. 
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9.3 Curtis-Pennington vertex 

We recall the Curtis-Pennington vertex Ansatz as introduced in Section 2.6.2: 

1 [ 1 1 ] I' 1 [ 1 1 ] (k + p)~'(¥ + p) 
f6p(k,p) = 2 F(k2) + F(p2) I + 2 F(k2) - F(p2) k2 - p2 (9.57) 

_ [E{k2) _ E(p2)] (k + p)~' 
F( k2) F(p2) k2 _ p2 

1 [ 1 1 ] (k2 +p2 )(t~'(k2 -p2 )-(k+p)~'(¥-p)] 
+2 F(k2) - F(p2) (k2 _ p2)2 + (E2(k2) + E2(p2)? . 

This vertex Ansatz has been used in Section 3.3 and in Ref. [60, 39, 28, 36, 34] to study the 

behaviour of the fermion propagator and the dynamical generation of fermion mass in quenched 

QED. 

We now want to investigate the possibility of dynamical fermion mass generation in unquenched 

QED with the Curtis-Pennington vertex. We recall the set of coupled integral equations (in 

Euclidean space), Eqs. (2.131, 2.132, 2.133) with mo = 0 and in the Landau gauge: 

E(x) 
F(x) 

1 
F(x) 

1 

9(x) 

a J yF(y) J . 2 = 21r2 dy y + E2(y) dO sill 09(z) {9.58) 

{[A( ) ( )( _ )]3E(y)_E(y)-E(x)2yxsin20} 
X y, X + T6 y, X y X F( )( ) 2 z x y-x z 

a J yF(y) J . 2 ( ) = 1 - -2- dy 2( ) dO Sill (} g z 
21r X y + E y 

(9.59) 

{ ( ) [
2yx sin2 0 _ 3..jYX cos 0] 

X A y,x 2 z z 

[ ] 
2yx sin2 0 3VfjX cos(}} + B(y,x)(y+x)-C(y,x)E(y) z2 -T6(y,x)(y-x) z 

2Nta J d yF(y) J dO . 2 O F(z) = 1 + -- y Sill 
31r 2x y + E2 (y) z + E2(z) 

(9.60) 

X { 2A(y, z) [y(1- 4 cos2 0) + 3..jYX coso] 

+B(y, z) [ (y + z- 2E(y)E(z)) ( 2y(1- 4 cos2 0) + 3..jYX coso) 

+3(y- z)(y- E(y)E(z))] 

-C(y,z)[ (E(y) + E(z)) (2y(l- 4cos2 0) + 3..jYXcoso) + 3(y- z)E(y)] 

-3r6(Y, z)(y- z) (y- ..jYX cos(}+ E(y)E(z))} 
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where 

A(y, x) 1 [ 1 1 ] 
2 F(y) + F(x) 

B(y, x) 1 [ 1 1 ] 
2(y-x) F(y) F(x) 

1 [E(y) E(x)] --- -----
y- x F(y) F(x) 

C(y,x) 

y+x [ 1 1 ] 
2 [(y- x)2 + (E2(y) + E2(x))2] F(y)- F(x) 

If we now implement the system of coupled integral equations with the Curtis-Pennington vertex, 

Eqs. (9.58, 9.59, 9.60), the numerical program does not seem to converge. A check of the vacuum 

polarization integral calculated from realistic input functions is shown in Fig. 9.30. 
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Figure 9.30: Vacuum polarization II( x) versus momentum squared x from the 9-equation with 
Curtis-Pennington vertex, for a= 1.921 and Nf = 1. 

The huge negative value of the vacuum polarization for decreasing value of momenta is unphysi­

cal. It is clear that the CP-vertex gives rise to a quadratic divergence in the vacuum polarization 

in the massless case. In the case where mass is generated dynamically the situation is more com­

plicated, but Fig. 9.30 shows that the CP-vertex does not give physical results for unquenched 

QED. 
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9.4 Hybrid method 

In the previous section we have seen that the Curtis-Pennington vertex did not yield physical 

results when applied to the photon equation. Nevertheless it is useful to use the CP-vertex for the 

fermion equations as it ensures that the fermion propagator is multiplicatively renormalizable 

in the quenched case. Therefore we will now introduce a hybrid method where we use the 

CP-vertex in the fermion equations, yielding Eqs. (9.58, 9.59), and the Ball-Chiu vertex in 

the photon equation, giving Eq. (9.8), in order to avoid quadratic divergences in the vacuum 

polarization. 

The evolution of the generated fermion mass, ~(0), versus the running coupling, ac(A2 ), is shown 

in Fig. 9.31. The value of the critical coupling at the UV-cutoffis lac(A2 ,NJ = 1) = 1.61988,. 

Plots of ~(x), F(x) and a(x) = a9(x) are shown in Fig. 9.32, Fig. 9.33 and Fig. 9.34. 
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Figure 9.31: Generated fermion mass ~(0) versus running coupling a(A2 ) for the coupled 
(~,.F,Q)-system with the hybrid method, for NJ = 1. 

For N 1 = 2 the generated fermion mass is plotted against the coupling in Fig.9.35. The critical 

coupling is lac(A2 ,NJ = 2) = 2.14429,. 

Although for NJ = 1, the critical coupling only changes with less than 1% between the Ball-Chiu 

vertex and the hybrid method, the latter definitely improves the convergence of the numerical 

method. This is especially true for NJ = 2 where we could not locate the critical point with the 

Ball-Chiu vertex, while it is easily done with the hybrid method. 
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Figure 9.32: Dynamical fermion mass ~( x) versus momentum squared x for the coupled 
(~, F, 0)-system with the hybrid method, for N 1 = 1 and a = 1.900, 1.902, 1.904. 
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Figure 9.33: Fermion wavefunction renormalization F( x) versus momentum squared x for the 
coupled (~, F,O)-system with the hybrid method, for NJ = 1 and a= 1.900, 1.902, 1.904. 
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Figure 9.34: Running coupling a(x) versus momentum squared x for the coupled (~,F,O)­
system with the hybrid method, for Nj = 1 and a= 1.900, 1.902, 1.904. 
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Figure 9.35: Generated fermion mass ~(0) versus running coupling a( A 2 ) for the coupled 
(~, F, 0)-system with the hybrid method, for NJ = 2. 
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9.5 About the renormalization of the SD equations 

In this study we have always used the bare Schwinger-Dyson equations, regularized by an UV­

cutoff A. From the plots of the running coupling a( x) versus x in the previous result sections, 

we understand that in the critical point we will be able to define a running critical coupling 

ac(x) which depends only on the relative position of x with respect to A2, i.e. we have a fixed 

line ac( xI A 2 ). This is shown in Fig. 9.36 where we plot the running coupling ac( xI A 2 ) for a 

close to the critical point (E(O)I A:::::: le-5). Note that if we could go even closer to the critical 

point we would see that ac(xiA2)- 0 when x - 0, as the flat low momentum behaviour of 

Fig. 9.36 is entirely due to the small generated fermion mass. 

1.8 

1.6 

1.4 

1.2 
,........ ... 
~ 0.8 '8' supercritical 

0.6 

0.4 

0.2 subcritical 

0 
10-15 w-w 

Figure 9.36: Running coupling a(xiA2 ) versus momentum squared xiA2 for the coupled 
p:;, F, g)-system, for NJ = 1 for a= 2.0825. 

We now try to relate this intuitively with the physical world, which is described by the renormal­

ized theory. Suppose we fix the value of the coupling at a certain renormalization scale, aR(J-L2). 

If we now look at the generation of fermion mass, the following scenario happens depending on 

the values of A. If we take A such that an(J-L2 ) lies below the critical line in Fig. 9.36, no mass 

will be generated. When we increase A, J-L 2 I A2 decreases, and as we are traveling from right to 

left on a horizontal line in Fig. 9.36, ac(J-L2 I A 2 ) decreases such that the renormalized coupling 

aR(J-L2) which started subcritical becomes critical for some critical UV-cutoff Ac. If we increase 
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A further we enter the supercritical phase where fermion mass is generated. However there is 

a serious problem related to the Landau pole. When we shift the renormalized coupling from 

right to left with respect to the critical line in Fig. 9.36, corresponding to increasing A, it is 

the whole running renormalized coupling which is displaced. If the Landau pole of the running 

renormalized coupling moves into the integration region (O,A], the SD equations are not solvable 

anymore. Therefore, A cannot be taken to infinity and the existence of the Landau pole does 

not allow us to make a consistent discussion of fermion mass generation in renormalized QED. 

However, if another theory would take over at some scale n, we could compare this scale with 

Ac and fermion mass generation could then be possible in a consistent way. A more detailed 

numerical analysis of the above described scenario could reveal more about this. 
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9.6 Summary 

From the results of this chapter we can conclude that dynamical fermion mass generation does 

occur in unquenched QED, for N1 = 1 and NJ = 2. The exact value of the critical coupling is 

dependent on the vertex Ansatz. 

In Table 9.5 we compare the various values obtained for the critical coupling for N1 = 1 and 

Nf = 2 in the p::, F, 9)-system with different vertex approximations in the previous sections 

and in Section 8.3. The critical coupling varies at most 18% for NJ = 1 and 21% for N1 = 2. 

vertex ac(NJ = 1) ac(NJ = 2) 
bare 1.74102 2.22948 

1/ F-vertex 1.90911 2.59578 
Ball-Chiu 1.63218 -

hybrid 1.61988 2.14429 

Table 9.5: Critical coupling ac for N1 = 1 and N1 = 2 for the (E, F, 9)-system with various 
vertex approximations. 

The study in this chapter has been the very first attempt to introduce an improved vertex in 

the study of dynamical fermion mass generation in unquenched QED. More work has to be done 

to construct a vertex Ansatz which ensures the multiplicative renormalizability of the photon 

propagator in addition to that of the fermion propagator [26]. However, although the vertex 

approximations used in this work were not designed specifically for unquenched QED, the nu­

merical method developed here will prove very helpful when such vertices will be available. 

Having achieved the proper numerical cancellation of the quadratic divergence in the vacuum 

polarization integral with the Ball-Chiu vertex is important as this vertex is the uniquely deter­

mined longitudinal part of the QED-vertex, and as such will have to be present in any realistic 

improvement of the vertex in unquenched QED. 
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Conclusions 

We have investigated the dynamical generation of fermion mass in QED, using the Schwinger­

Dyson equations to approach this non-perturbative phenomenon of quantum field theory. This 

infinite set of equations was then truncated by introducing various approximations. 

Bifurcation analysis was applied to determine the critical point in the Curtis-Pennington ap­

proximation to quenched QED. We computed the critical coupling, above which fermion mass is 

generated dynamically, for a large range of the covariant gauge parameter and concluded that 

the critical coupling has a much smaller dependence on the gauge parameter than in the bare 

vertex approximation. The critical coupling in the Landau gauge, which is ac = 1r /3 in the bare 

vertex approximation, becomes ac = 0.933667 with the CP-vertex. Furthermore we have shown 

that the generated fermion mass follows the Miransky-scaling law in the neighbourhood of the 

critical point, with the bare vertex as well as with the Curtis-Pennington vertex. 

We went on to discuss dynamical fermion mass generation in unquenched QED and developed 

a sophisticated computer program to investigate this numerically. We derived the formalism 

to solve the coupled system of non-linear integral equations by approximating the integrals by 

suitable quadrature formulae, paying special attention to the kink in the radial integrand, and 

solving the resulting system of coupled non-linear algebraic equations with an iteration method. 

Using Newton's iterative procedure ensured the quadratic convergence of the method. 

When applying this method to the coupled equations for the dynamical mass :E and the photon 

renormalization function g, we observed that 9( x) had an unphysical behaviour for intermediate 

small values of x. A detailed analysis exposed a problem in the numerical cancellation of 

the quadratic divergence in the vacuum polarization integral. It was suggested that smooth 
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approximations to E, :F and g would be preferable in contrast to the discretized approach used 

so far. 

Motivated by this observation, we introduced Chebyshev expansions forE, :F and g and adapted 

the previously developed method to solve the integral equations in the most advantageous way. 

The introduction of the Chebyshev expansion method proved to be very powerful as the smooth­

ness of the functions is automatically guaranteed, which avoids all interpolation problems. Fur­

thermore higher order numerical quadrature formulae can now be used, enhancing the accuracy 

and speeding up the calculations. 

We went on applying the Chebyshev solution method to various approximations to unquenched 

QED in the bare vertex approximation. We computed the value of the critical coupling for one 

and two flavours and compared these with the results found in the literature. First in the 1-loop 

approximation to g using three variants: the LAK-approximation, the :F = 1 approximation 

and the coupled (E, F)-system. Then we solved the coupled (E, Q)-system for :F = 1 and 

finally we computed the solution to the full (E, :F, Q)-system. Where the calculations had been 

performed previously we found very good agreement with these results, supporting our claim to 

have implemented a highly accurate method of solution. Furthermore, it is the first time that 

values for the critical coupling are produced in a system where the self-energy corrections to the 

wavefunction renormalization :F are taken into account in a consistent way. 

Since the previous calculations have all been performed in the bare vertex approximation, we 

decided it was important to explore the influence of improved vertices on the dynamical genera­

tion of fermion mass in unquenched QED. A first, simple extension to the bare vertex consisted 

to include a 1/ :F-fermion wavefunction dependence in the vertex. We observed chiral symme­

try breaking and computed the critical coupling for one and two flavours. Then the Ball-Chiu 

vertex was implemented as this is the correct, non-perturbative, longitudinal part of the QED 

vertex, uniquely determined by requiring the satisfaction of the Ward-Takahashi identity. Al­

though formally this vertex ensures that the quadratic divergences in the vacuum polarization 

integral vanish, the precise form of the Ball-Chin vertex is a source for many numerical accuracy 

problems affecting the correct numerical cancellation of the quadratic divergence. In a detailed 

numerical investigation of the kernels of the angular integrals we were able to locate the vari­

ous sources of inaccuracies in successive steps and to recover the accuracy necessary to cancel 

the quadratic divergence correctly. Then fermion mass generation was found and the critical 
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coupling was determined. For the Curtis-Pennington vertex we could not find solutions to the 

integral equations because the transverse part of the vertex intrinsically leads to a quadratic 

divergence in the vacuum polarization. Therefore we considered a hybrid method where the 

Curtis-Pennington vertex is used in the fermion equations and the Ball-Chiu vertex is used on 

the photon equation to avoid unphysical quadratic divergences. We found dynamical fermion 

mass generation and determined the value of the critical coupling. 

We now give some considerations about future studies. An extension to our investigation would 

be to implement more sophisticated vertices, which not only satisfy the Ward-Takahashi identi­

ties but, also ensure the multiplicative renormalizability of the fermion and photon propagators. 

This could be done by merging the work performed by A. Ktztlersii [26] on the QED-vertex 

with the numerical program developed here. This is especially wanted if we are to study the 

fermion mass generation with the renormalized Schwinger-Dyson equations, as these are de­

rived by making explicit use of the multiplicative renormalizability of the fermion and photon 

propagators. 

An important improvement to the numerical program would be to implement Newton's iteration 

method to solve the complete system of non-linear equations for ~. :F and Q. As we explained 

before, limitations on memory and computing time forced us to implement a hybrid method, 

using Newton's iteration method on the coupled(~, F)-system, while the much slower, natural 

iterative procedure is used to couple this system to the Q-equation. The use of a single Newton's 

method on the whole system would surely improve the convergence rate and the accuracy of the 

solutions, especially if we use more complicated vertices. 

All the present results tend to show that the generation of fermion mass sets in, if the QED 

coupling is sufficiently strong. Although QED with a strong coupling seems fictitious, the ex­

perimental situation in heavy ion collisions, where the normal weak coupling QED is submerged 

in a very strong, rapidly varying background field, could approximate it quite well. An ex­

tensive numerical investigation of this situation could teach us more about the possibility of a 

new phase transition which might already have been discovered experimentally [6, 7]. For this 

purpose we could start with the same computer program developed here. The major task would 

be to reformulate the Schwinger-Dyson formalism in the presence of realistic background fields. 

Interestingly, Gusynin et al. have recently shown in an analytic study [61] that chiral symmetry 

is spontaneously broken by a constant magnetic field in QED. 
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Furthermore, there is no reason to restrict the use of the numerical method to the study of 

QED. For instance, we could add a four-fermion interaction in the original QED Lagrangian. 

This is motivated by quenched QED, where the four-fermion operator becomes renormalizable 

because of its large anomalous dimension and should therefore be included in the theory [29]. It 

could also be used to study the propagators in non-Abelian theories as QCD. There we could, 

for instance, study the interplay between the infrared behaviour of the QCD-coupling and the 

dynamical generated fermion mass to enhance our understanding of confinement. 

Finally, we conclude from our study of the coupled Schwinger-Dyson equations for the fermion 

and photon propagator that fermion mass is generated dynamically in quenched QED and in 

unquenched QED with one or two flavours, provided the coupling is larger than a critical value 

which depends on the approximations introduced. We developed a powerful, very accurate 

numerical method which avoids the many pitfalls encountered in solving the complicated system 

of non-linear coupled integral equations describing the mass generation. We are convinced that 

our numerical method will be very valuable for future investigations. 



Appendix A 

Angular integrals 

In this Appendix we derive the following angular integrals: 

ltr d(} sin
2 

(} = ~ [O(x- y) + O(y- x)] 
0 Z 2 X y 

(A.1) 

11r d(}sin
2

8 = ~ [O(x-y) + O(y-x)] 
o z2 2 x(x-y) y(y-x) 

(A.2) 

la1r d(} sin
4 

(} = 3rr [O(x- y) + O(y- x )] 
o z2 8 x2 y2 

(A.3) 

11r dO sin2 (}cos(} = _rr_ [ !o( x - Y) + :.o(y - x) J 
0 Z 4..fijX X y 

(A.4) 

11r d(} sin
2

8cos8 = _rr_ [yO(x-y) + xO(y-x)]. 
0 z2 2..,jXY X X - y y y - X 

(A.5) 

To evaluate these angular integrals we will make use of the integral, Eq. (3.665.2) of Ref. [40]: 

1
1r sin 2r (} ( 1 1) 

d(}( (} 2 ) =B r+-,- F(n,n-r;r+1;a2
), 

o 1 + 2a cos + a n 2 2 
(A.6) 

where Re(r) > -1/2, lal < 1. 

The beta function can be written as: 

B( ) 
_ f(m)f(n) 

m,n - f(m+ n)' (A.7) 
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while the hypergeometric function F( a, (3; -y; z) is given by Eq. (9.100) of Ref. (40]: 

= 1 + a(3 z +a( a+ 1)(3((3 + 1) z2 +a( a+ 1)(a + 2)(3((3 + 1)((3 + 2) z3 + ... 
-y.1 1'(1' + 1).1.2 1'(1' + 1)(1' + 2).1.2.3 

f(-y) f f(a + n)f((3 + n) zn. 
f( Q )f((3) n=O f( ')' + n) n! 

= 

If either a or (3 is negative the series terminates after a finite number of terms. 

We compute the following integral: 

lo
JT sin2 (} 
dO-- = 11T sin2 0 

d0------
0 X + y - 2 JXY COS 0 0 z 

O(x- y) 11T d(} sin
2 

(} ( ) = +y+-+x. 
X 0 1 - 2 JYTi cos (} + y I X 

Applying Eq. (A.6) with r = 1 and n = 1 to Eq. (A.9) yields: 

r sin
2

0 (3 1) [O(x- y) ( y) ] Jo dO-z- = B 2,2 x F 1,0;2;; + (y +-+ x) . 

Note from Eq. (A.7): 

B (~ ~) = r (~) r (~) = ~ 
2'2 f(2) 2 

because r (!) = yli. From Eq. (A.8) we find: 

F(1,0;2;z) = 1. 

Substituting Eqs. (A.ll, A.12) in Eq. (A.10) finally yields Eq. (A.1): 

r dO sin
2 

0 = ~ [O(x- y) + O(y- x)] . 
lo z 2 x y 

Next we compute: 

11T sin2 0 
d0--

0 z2 11T sin20 
= d(} -:-----=--=---::-:-;:-

0 (x + y- 2JXY cos 0)2 

= O(x- y) r dO sin
2 

0 + (y +-+ x). 
x 2 lo (1-2.Jii/xcos0+yfx) 2 

We now apply Eq. (A.6) with r = 1 and n = 2 to Eq. (A.13). This gives: 

11Td(} sin2()- B (~ ~) [O(x- y) F (2 1·2·!) ( )] 
2 - 2' 2 2 ' ' ' + y +-+X . 0 Z X X 

(A.8) 

(A.9) 

(A.10) 

(A.ll) 

(A.12) 

(A.13) 

(A.14) 
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From Eq. (A.8) we compute: 

2 3 1 F(2,1;2;z)=1+z+z +z + .. ·=--. 
1-z 

Substituting Eqs. (A.ll, A.15) in Eq. (A.14) yields Eq. (A.2): 

r dO sin
2 

0 = ~ [O(x- y) + O(y- x)] 
lo z2 2 x(x-y) y(y-x) 

Next we compute: 

i?r sin4 0 
dO-- = 

o z2 i ?r sin4 (} 
dO------~ 

o (x + y- 2..JXYcos0)2 

O(x- y) l?r l(J sin
4 

0 ( ) = c. +y<-+x. 
X 

2 
0 ( 1 - 2 ViiTX cos (} + y I X )2 

Applying Eq. (A.6) with r = 2 and n = 2 yields: 

111" dO sin40- B (~ ~) [F (2 0·3·!) O(x- y) ( )] 
2 - 2' 2 ' ' ' 2 + y <-+X 0 Z X X 

We know that: 

B (~ ~) = r( ~ )r( ~) = 3rr 
2' 2 f(3) 8 

and 

F(2,0;3;z) = 1, 

such that Eq. (A.17) becomes Eq. (A.3): 

r dO sin4 (} = 311" [O(x- y) + O(y- X)] 
Jo z2 8 x2 y2 

We now compute: 

r dO sin 2 0 cos 0 
lo z 

= _1_ r dO sin
2

0(x + y- z) 
2..JXY lo z 

= _ 1_ [(x + y) r dO sin
2 

O- r dO sin2 o] 
2..JXY lo z lo 

where we used z = x + y- 2y'xY cos 0. 

From Eq. (14.347) of Ref. [59] we know that: 

r dO sin2 0 = ~. 
lo 2 
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(A.15) 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 
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Substituting Eqs. (A.1, A.21) in Eq. (A.20) yields: 

r d(J sin
2 

(}cos(} = _rr_ {(x + y) [O(x- y) + O(y- X)] - 1}' 
lo z 4ylxY x y 

(A.22) 

which proves Eq. (A.4): 

r dO sin
2

0cos0 = _rr_ [Y..o(x-y)+:_O(y-x)] 
lo z 4Vifi x y 

In an analogous way we compute: 

r d(J sin
2 

(}cos (J = 
lo z2 

_1_ r dO sin2 O(x + y- z) 
2ylxY lo z2 

= _1_ [(x + y) r d(} sin2 (} - r d(} sin2 (}] 
2.,JXY lo z2 lo z (A.23) 

We substitute Eqs. (A.2, A.1) in Eq. (A.23), proving Eq. (A.S): 

r dO sin
2 0 cosO= _rr_ [~ O(x- y) + :_ O(y- x)] 

lo z2 2JXY X X - y y y - X 
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