
Durham E-Theses

An interaction paradigm for impact analysis

Bodhuin, Thierry

How to cite:

Bodhuin, Thierry (1995) An interaction paradigm for impact analysis, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5172/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5172/
 http://etheses.dur.ac.uk/5172/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

University
of Durham

Department of Computer Science
Centre for Software Maintenance

An Interaction Paradigm
for Impact Analysis

M.Sc. by thesis

Thierry BODHUIN

1 2 SEP 1995

Abstract

The Aerospace industry is concerned with huge software projects. Software

development is an evolving process resulting in larger and larger software sys­

tems. As systems grow in size, they become more complex and hence harder to

maintain. Thus it appears that the maintenance of software systems is the most

expensive part of the software life-cycle, often consuming 50-90% of a project

total budget.Yet while there has been much research carried out on the prob­

lems of program and system development very little work has been done on the

problem of maintaining developed programs. Thus it will be essential to

improve the software maintenance process and the environment for mainte­

nance.

Historically, the term Software Maintenance has been applied to the process

of modifying a software program after it has been delivered and during its life

time. The high cost of software during its life cycle can be attributed largely to

software maintenance activities, and a major part of these activities is to deal

with the modifications of the software. These modifications may involve

changes at any level of abstraction of a software system (i.e design, specifica­

tion, code, ...). Software Maintenance has to deal with modifications which can

have severe Ripple Effects at other points in the software system. Impact Anal­

ysis addresses the problem and attempts to localize these Ripple Effects.

In this thesis the Software Maintenance process and more specifically the

Impact Analysis process is examined. The different parts of the implementation

for the Impact Analysis System are explained. The main results of the thesis

are the dependencies generation and the graph tool used to visualize these

dependencies as well as the impacts on general dependency graph for impact

analysis purpose.

To Mariella and my parents

Acknowledgements

This work was supported by the Department of Advanced Software Engi­

neering of Matra Marconi Space France (MMS-F).

I am grateful to my supervisors Mr. Jean Pierre QUEILLE (MMS-F) and

Mr. Malcolm MUNRO for their guidance throughout this study. I would like to

thank the Software Maintenance team in the Department in which I have

worked in MMS-F for their support, advice and collaboration during this work.

I would also like to thank Professor Keith H. BENNETT for the facilities

provided, and all the members of the Centre of Software Maintenance for

invaluable discussions during this research.

Contents

1.. 0 In trod uctiODooooeooooooGOOOOOOOOOGOOOO 00000 0000 0000000 0 000000000 oo 0000000000 00 11
1.1. Purpose of the Research .. 11
1.2. Objectives of the Research .. 11

1.3. Criteria for Success ... 12
1.4. Organisation of Thesis .. 12

2o Software Maintenance OOOOCIOO 13
2.1. Introduction ... 13

2.2. Software Engineering Context .. 13
2.2.1. Software Engineering ... 13
2.2.2. Software Engineering Processes 15

2.3. Types of Software Maintenance ... 20
2.4. Software Maintenance Process ... 22
2.5. Software Maintenance Problems and Costs 24
2.6. Software Maintenance Tools .. 25
2.7. Ripple Effects and Impact Analysis 26
2.8. Summary ... 26

3. Impact Analysis .. 27

3.1. Introduction ... 27
3.2. Impact Analysis Concepts ... 28
3.3. Impact Analysis Process ... 31

3.3.1. Decomposition and Representation of the System 31
3.3.2. Specifying Changes and Defining a Change Set 34
3.3.3. Propagating Change Set, Obtaining Impact Set.. 34
3.3.4. Understanding and Analysing the Impact Set.. 35

3.4. Summary ... 35

4. Graph Theory and Representation 36

4.1. Introduction ... 36
4.2. Graph Theory .. 36

4.2.1. The Notion of Graph .. 36
4.2.2. Basic Terminology ... 38

4.3. Graph Representation .. 43
4.3.1. Introduction .. 43

4.3.2. Graph Drawing ... 43
4.3.3. Categorization of Graph Drawing Algorithm 47

page 7

4.3.4. Trees ... 51

4.3.5. General Graphs .. 51

4.3.6. Planar Graphs ... 52
4.3.7. Directed Graphs ... 53

4.4. Graph Algorithm Implementation and Visualization 54

4.4.1. Visualization and Editing of a graph 56

4.4.2. Algorithm for automatic positioning for nodes and arcs.
57

4.5. Interacting with the graph ... 58

4.6. Summary ... 58

5. Impact Analysis System,,,•••••••o•••••••oo••••oa••••••• 59

5.1. Introduction ... 59
5.2. Architecture ... 59

5.3. Models ... 62

5.3.1. Description of the Dependency Model 66
5.3.2. Description of the Propagation Model.. 66

5.4. Dependencies Generation ... 67
5.4.1. Parser. ... 67
5.4.2. Inference .. 68

5.4.3. Description of the Dependencies 68
5.5. Propagation Engine ... 69
5.6. Interface .. 74
5.7. Summary ... 77

6. Case Studies .. 78

6.1. Simple Example .. 78
6.2. Larger Example ... 89

6.2.1. The Graph Tool System ... 89

6.2.2. Generation of Dependencies .. 89
6.2.3. Structure Visualisation of the Graph Tool 90

6.3. Summary ... 90

7. Conclusion .. 92

7.1. Summary ... 92
7.2. Achievement of the Research ... 92

7.3. Further Research ... 93

8. Glossary .. 94

9. Bibliography ... 100

page 8

List of Figures

Figure 1 :The waterfall model of software development.. 15

Figure 2 :The software life-cycle ... 17

Figure 3 :Spiral model of the software process ([BOEHM_88]) 19

Figure 4 : Maintenance effort distribution.. 21

Figure 5 : A maintenance process model.. 22

Figure 6 : The ESF/Epsom project maintenance process model 23

Figure 7 : Escalating maintenance costs ([PFLEEGER_87],
[PRESSMAN_85]) ... 25

Figure 8 : Decomposition and General representation. 31

Figure 9: Possible dependencies for C program 33

Figure 10 :Hardware integer division algorithm 36

Figure 11 : Flow-chart of the function shown in Figure 10 37

Figure 12: Control-Flow of the function shown in Figure 10 38

Figure 13 : Example of graph... 38

Figure 14: A labelled graph with two nodes 39

Figure 15 :Polyline drawing ... 44

Figure 16: Straight-line drawing .. 44

Figure 17 : Orthogonal drawing .. 44

Figure 18: Example of graph representation 46

Figure 19: A taxonomy of aesthetics ... 49

Figure 20 : A taxonomy of constraints 50

Figure 21 : Directed graph with 5 vertices and 10 edges.................. 53

Figure 22 : A graph displayed with the implemented widget........... 54

Figure 23 : Reducing crossings of edges. 57

Figure 24 : Architecture impact Analysis System 59

Figure 25 : A Dependency model (Graph Representation) 62

Figure 26 : A Dependency model (Textual Representation) 63

Figure 27 : A Propagation model (Graph Representation)............... 64

Figure 28 : A Propagation model (Textual Representation)............. 65

Figure 29 : Output of the C-parser for the program
"Hardware integer division algorithm" (Figure 10) 67

page 9

Figure 30 : Dependencies for the C-code of Figure 10
(Hardware integer division algorithm) .. 68

Figure 31 : How the propagation rule works? 70

Figure 32 : Propagation algorithm, level 1. 71

Figure 33 : Propagation algorithm, level 2. 72

Figure 34 : Propagation algorithm, level 3. 73

Figure 35: Definition of a new modification 74

Figure 36: Main Window of the lAS First version 75

Figure 37 : The edition window for the Dependency model of the lAS.
76

Figure 38 : First step of the propagation ... 79

Figure 39 : Second step of the propagation 80

Figure 40 : Third step of the propagation 82

Figure 41 : Fourth step of the propagation.. 83

Figure 42 : Fifth step of the propagation 84

Figure 43 : Sixth step of the propagation .. 85

Figure 44 : Seventh step of the propagation 86

Figure 45 : Eighth step of the propagation.. 87

Figure 46. : Ninth step of the propagation 88

Figure 47 : Sub-set of Dependencies for "gtest" 89

Figure 48: Sub-graph of the Dependencies for "gtest" 90

page 10

Introduction

l.Introduction

1.1. Purpose of the Research

The Aerospace industry is concerned with huge software projects, Software

development is an evolving field resulting in larger and larger software system.

As systems grow in size, they become more complex and hence harder to

maintain. Thus it appears that the maintenance of software systems is the most

expensive part of the software life-cycle [UEN1Z_80], often consuming 50-

90% of a project's total budget. Yet, while there has been much research carried

out on the problems of program and system development, very little work has

been done on the problem of maintaining developed programs.

It is impossible to produce systems of any size which do not need to be

maintained. Over the lifetime of a system, its original requirements may be

modified to reflect changing needs; the working environment may change and

errors may appear. Because maintenance is unavoidable, systems should be

designed and implemented so that maintenance problems are minimized.Soft­

ware Maintenance has to deal with modifications which can have severe Ripple

Effects at other points in the software system from those of these modifications.

Impact Analysis addresses the problem and attempts to localize these Ripple

Effects. The study of the Ripple Effects is a major factor in the Software Main­

tenance process because of their effects of the utilisation of the system.

The purpose of this research is to create an environment for Software Engi­

neering [BOEHM_76] and more particularly for Software Maintenance in

order to visualize the usually unexpected Ripple Effects from a set of modified

object (Documentation component, function, test cases, design objects, ...).

1.2. Objectives of the Research

The main objective of the research addressed is:

• how can the impacts of a change be detected and visualized at the

earliest possible stage of the maintenance process ?

page 11

Introduction

Different aspects of this problem have been considered to perform this task:

• how to model the system on which the impact analysis has to be per­

formed?

• how to propagate the information that an object has been modified

through the system and to determine the possible impacts of this

change?

• how to visualize the system and the impacts of a set of changes on it ?

1.3. Criteria for Success

1. Description of a model for Software Maintenance process focused on
Impact Analysis.

2. An Impact Analysis visualization system that will visually:

a. represent the connectivity between objects,

b. show the different impacts and their importances.

3. Evaluation of the Impact Analysis system.

1.4. Organisation of Thesis

The second chapter describes software maintenance in terms of its different

activities, the different types of maintenance activities and the different kind of

tools available to handle with the maintenance problem.

The third chapter focuses on the impact analysis in general.

The fourth chapter discusses graph theory and the need for displaying the

dependencies with the representation of graphs and it also describes algorithms

for the automatic placement of nodes and arcs in a graph.

The fifth chapter shows the results of impact analysis with the implementa­

tion of an impact analysis system.

Finally the sixth chapter includes the conclusion and further research.

page 12

--------- --- --

Software Maintenance

2. Software Maintenance

2.1. Introduction

In this chapter the subject of software maintenance is placed in the Software

Engineering context.

The notion of software process and software maintenance process are dis­

cussed. The main maintenance problems and the cost of Software Maintenance

itself are identified.

2.2. Software Engineering Context

2.2.1. Software Engineering

The term Software Engineering was first introduced in the late 1960s at a

NATO conference held to discuss what was then called the "software crisis"

([SOMMERVIUE_92]). This crisis arose with the introduction of third gener­

ation computer hardware because of their capacity and power meant that the

applications which could not be built before were now feasible.

But the existing methods for building large software were not well enough

defined and techniques applicable for small systems could not be scaled up.

Many software projects were being delivered far behind the planned schedule,

cost much more than originally expected, were unreliable, expensive and diffi­

cult to maintain and performed poorly. Software development was in crisis.

Now more than 20 years later, the software crisis still exists and has not

been solved. Although many improvements have been made in Software man­

agement, engineering methods and techniques in tools for system develop­

ments and in the skills of development staff, the demand for software is

increasing faster than improvements in software productivity.

The techniques of software engineering have been introduced in an attempt

to reduce the cost of software system in the computer industry.

Software Engineering [BOEHM_76] is defined as:

"Software engineering involves the practical application of scientific

knowledge to the design and construction of computers programs and

page 13

or

Software Maintenance

the associated documentation required to develop, operate and main­

tain them"

Software Engineering [IEEE_90] is defined as:

"The systematic approach to the development, operation maintenance

and retirement of software.".

Both of these definitions suggest that methods, procedures rules and princi­

ples are used in software engineering.

page 14

Software Maintenance

2.2.2. Software Engineering Processes

The identification of the "software crisis" in the late 1960s and the notion

that software development is an engineering discipline led to the view that the

process of software development is like other engineering processes

[SOMMERVIUE_92]. Thus, a model of the software development process

was derived from other engineering activities [ROYCE_70]. Because of the

cascade from one phase to another, this model is known as the "waterfall"

model (Figure 1).

Requirements
analysis and

definition

::.

,
System and

software design ~' .•. ,____ __,

Implementation ~

,.,anmdm~mnimt teastmm. mg~~ ·~
r-------t---...,

Integration and
system testing

Figure 1 : The waterfall model of software development

However this development model soon appear only appropriate for some

classes of software system and other development models have been created

for satisfying other kinds of development:

• Exploratory programming: This approach involves developing a

working system, as quickly as possible, and then modifying that sys­

tem until it performs in an adequate way. This approach is usually used

page 15

J

Software Maintenance

in artificial intelligence (AI) systems development where users cannot

formulate a detailed requirements specification and where adequacy

rather than correctness is the aim of the system designers.

• Proto typing: This approach is similar to Exploratory programming in

that the first phase of development involves developing a program for

user experiment. However, the objective of the development is to

establish the system requirements. This is followed by a re-implemen­

tation of the software to produce a production-quality system.

• Formal transformation: This approach involves developing a formal

specification of the software system and transforming this specification

using correctness-preserving transformations, to a program.

• System assembly from reusable components: This technique assumes

that systems are mostly made up of components which already exist.

The system development process becomes one of assembly rather than

creation.

There are numerous variation of the simple process model of Figure 1,

Figure 2 shows an iterative and more complete one.

Development life-cycle [IEEE_83]: It is the period of time that begins with

the decision to develop a software product and ends when the product is deliv­

ered. The development cycle typically includes a requirement phase, design

phase, implementation/testing phase and integration/testing phase.

The Software life-cycle [IEEE_83]1t is the period of time that starts when a

software product is conceived and ends when the product is no longer available

for use. The software life-cycle typically includes the development life-cycle

and the operation and maintenance phase.

page 16

Requirements
analysis and
definition

System and
software design

Implementation
and unit testing

Software Maintenance

Validation/
Integration and
system testing

maintenance

Figure 2 : The software life-cycle

• The requirement phase [IEEE_83 1 is the period during which the

requirement for a software product, such as the functional and per­

formance capabilities are defined and documented.

• The design phase [IEEE_83 1 is the period of time during which the

designs for architecture, software components, interfaces, and data are

created, documented, and verified to satisfy requirements.

• The implementation/testing phase [IEEE_83 1 is the period of time

during which a software product is created from design documentation

and debugged. Design must be translated into a machine executable

form. The coding step accomplishes this translation through the use of

page 17

Software Maintenance

conventional programming languages (i.e., C, Ada, Fortran, Cobol,

Pascal, ...) or so-called Fourth generation languages.

• The validation/integration/testing phase [IEEE_83 1 is the period of

time during which the components of a software product are validated

and integrated. The software product is validated to determine whether

or not requirements have been satisfied. Testing is a multi-step activity

that serves to verify that each software component properly performs

its required functionality with respect to the specifications and vali­

dates that the system as a whole meets overall customer requirements.

The integration has the purpose to install the different components of

the system in a same environment, the testing ensures that it performs

as required.

• The operation and maintenance phase [IEEE_83 1 is the period of

time during which a software product is employed in its operational

environment, monitored for satisfactory performance, and modified as

necessary to correct problems or to respond to changed requirements.

The Spiral model of the software process ([BOEHM_88]) (Figure 3) has

been evolving for several years, based on experience with various refinements

of the waterfall model as applied to large government software projects. The

Spiral Model has as its major distinguishing feature the fact that it creates a

risk-driven approach to the software process rather than a primarily document­

driven or code-driven process. The Spiral Model can accommodate most previ­

ous models as special cases and further provide guidance as to which combina­

tion of previous models best fits a given software situation.It incorporates

many of the strengths of other models and resolves many of their difficulties.

page 18

Commitment
Review partition

Determine objectives,
alternatives,
constraints

Cumulative
cost

Progress
through steps

Software Maintenance

Evaluate alternatives
identify, resolve risks

Figure 3: Spiral model of the software process ([BOEHM_88])

Once the system has been released the maintenance process begins.

page 19

Software Maintenance

2.3. Types of Software Maintenance

Software Maintenance [IEEE_90] has been defined as:

"The modification of a software product after delivery to correct faults,

to improve performance or other attributes, or to adapt the product to

a changed environment.".

Software Maintenance has become established as a sub-discipline within the

general field of Software Engineering. This has not always been the case, with

software maintenance being given very low status by the software engineering

community.Software Maintenance is a complex and serious problem, serious

because of the costs, and complex because of the wide range of activities

involved (i.e. requirement analysis, program comprehension, impact analysis,

test, ...).Over-the life of software the Software Maintenance effort has been esti­

mated to be frequently more than 50% of the life-cycle costs [UENTZ_80].

Software maintenance has been divided into four categories [UENTZ_80]:

Perfective maintenance, Adaptive maintenance, Corrective maintenance and

Preventive maintenance. These terms have been widely adopted in industry

and form a useful distinction in classifying types of software maintenance.

* Perfective maintenance It means changes which improve the system in

some way without changing its functionality. It includes all changes, insertions,

deletions, modifications, extensions, and enhancements which are made to the

system to meet the evolving and/or expanding needs of the users. As a simple

example, a tax program may need to be modified to reflect new tax laws but,

usually, modifications are much more substantial.

* Adaptive maintenance It is the maintenance which is required because of

changes in the environment of the software system. New versions of the oper­

ating system, new or different hardware are for instance modifications in the

environment which necessitates Adaptive maintenance.

* Corrective maintenance It is the correction of previously undiscovered

page 20

Software Maintenance

system etTors. It refers to changes necessitated by actual e1Tors in a system.

Under management pressure, emergency repairs may be undertaken ('patch­

ing') which often cause considerable problems later.

* Preventive maintenance It includes the activities designed to make the

code, design and documentation easier to understand and to work with, such as

restructuring or documentation up-dates. This type of maintenance usually

improves the maintainability of the system. This type of maintenance is only

refe!Ted by some authors ([LIEN1Z_80}, [ARNOLD_82}, [PRESSMAN_85}).

The result of a survey [LIEN1Z_80} discovered that about 50% of mainte­

nance was perfective, 25% adaptive, 21% col1'ective and 4% preventive

(Figure 4).

Adaptive
Maintenance
(25%)

CmTective
Maintenance
(21%)

Preventtve
Maintenance
(4%)

Petfective
Maintenance
(50%)

Figure 4 : Maintenance effort distribution

Coding modifications (CotTective) are usually relatively cheap to do; design

modifications (Adaptive) are more expensive as they may involve the rewriting

of several program components. Requirements modifications (Perfective) are

the most expensive because of the redesign which is usually involved.

page 21

Software Maintenance

2.4. Software Maintenance Process

Sommerville [SOMMERVILLE_92] (with preventive maintenance added)

describes a maintenance process as shown in Figure 5. The maintenance proc­

ess is triggered by a set of change requests from system users or management.

The costs and impact of these changes are assessed and, assuming it is decided

to accept the proposed changes, a new release of the system is planned. This

release will usually involve elements of perfective, adaptive, corrective and

maybe preventive.

requests
Impact
analysis

Perfective
maintenance

Adaptive ~
maintenance -~1

Corrective
maintenance

Figure 5 : A maintenance process model

Preventive
maintenance

System
release

The process model of Figure 5 emphasizes the different types of Software

Maintenance (i.e. perfective, adaptive, corrective and preventive maintenance).

First a Change request arrived, a study of the Ripple Effects by Impact Anal­

ysis has to be done to evaluate the cost of this change. If this change is

accepted, a planning of the implementation is done and the change is made

according to the type of maintenance, the system is then released to the users

after the implementation.

page 22

Trigger

Problem
understanding

Solution
analysis

Impact
analysis

Regression
testing

Transversal activities

Re-insertion

Acceptance ,
testing

Software Maintenance

testing

Figure 6 : The ESF/Epsom project maintenance process model

Another software maintenance process model has been defined by Harjani

[HARJAN/_92] shown in Figure 6. which emphasizes the understanding of the

problem and the different solutions together with an estimation of the cost of

the change (Solution Analysis and Impact Analysis).The process model of the

Figure 6 focuses particularly on the first phase of the change: Understanding

the change that has to be made (What and Where the change has to be done),

and choosing the solution which requires the lowest cost in terms of time,

money, etc. by using Impact Analysis techniques.

page 23

Software Maintenance

2.5. Software Maintenance Problems and Costs

Traditionally, Software Maintenance has not been part of the software life­

cycle in the same sense as the earlier stages of the life-cycle, but rather occu­

pies a detached position and is considered as a post-delivery activity. The word

'maintenance' carries connotations of less intellectual activity than 'design'

because:

* A large number of people consider maintenance as just correction of

errors resident in the software after a release of the system,

* Many people consider money spent in Software Maintenance as wasted

because they do not think that the system will be changed/enhanced later and

do not consider spending money for a proper understanding/documentation/

design of the system,

*Maintenance is always under budgetary pressures as this activity usually

comes at the end of the project and with the end of the budget.

There is no process model of the software maintenance which is completely

accepted by the software engineering community, this implies [SIMON_91]:

* A lack of management of software maintenance,

* A lack of understanding of how to maintain a software system,

* A lack of historical data on maintenance and error histories,

* Difficulties in estimating the cost of modifications.

The implementation and documentation of the software system can cause

problems because:

• several programming languages in a software system means problems

of communication between them,

• poor software design can mean inadequacy of the implementation,

• poorly coded software (few comments, poorly structured programs,

use of non-standard language features of the compiler, ...) is difficult to

understand.

• no documentation or inadequacy of the documentation with the soft­

ware code.

page 24

Software Maintenance

All these problems (and many others) are the cause of the high cost of the

Software Maintenance and therefore there is a need to use more methods and

tools to reduce these increasing costs, the trend has been for the cost of Soft­

ware Maintenance to increase (Figure 7).

%of the 1970s 1980s 1990s software budget

Development 60-65% 40-60% 20-30%

Maintenance 35-40% 40-60% 70-80%

Figure 7: Escalating maintenance costs ([PFLEEGER_87], [PRESSMAN_85]).

2.6. Software Maintenance Tools

One way to overcome some of the costs of Software Maintenance is to pro­

vide tools to help the software maintainers. A classification of Software Main­

tenance tools has been detailed by Simon [SIMON_91]:

• Tools for Program Comprehension: static code analysers, code visual-

isation, cross referencers, source code comparisons, debuggers.

• Tools for Reverse Engineering: restructurers, reformatters, re-engi­

neering, reverse engineering.

• Tools for Testing: regression testing, test coverage monitor.

• Tools for Software Management: software configuration management,

product management.

This classification corresponds in fact to the different phases of the software

maintenance process. Because a system exists before any maintenance is per­

formed it has to be understood and analysed, the tools for this purpose are Pro­

gram Comprehension and Reverse-Engineering tools. As a change on the

system is done, tools for testing are required to know about the possible errors

which are the cause of this change. The tools of Software Management are the

final stage of the maintenance activity, they are used to keep the system under

control after delivery to the users.

page 25

Software Maintenance

2.7. Ripple Effects and Impact Analysis

Ripple Effects are the phenomena by which changes to one program have

tendencies to be felt in other program areas.

Impact Analysis is

The task of assessing the effects of making a set of changes to a soft-

ware system.

The study of the Ripple Effects is a very important phase in the Software

Maintenance process as it is used to determine several attributes of the change

requested: areas affected (or potentially affected) by the initial change and by

using these the cost of the change can be computed in term of number of peo­

ple to work and money.

The next chapter is focused on the Impact Analysis process and explains all

the activities involved.

2.8. Summary

Software Maintenance has been defined in terms of categorisation of tasks

and different categories of maintenance (i.e. perfective, corrective, adaptive

and preventive) have been explained. At the time, the traditional software life­

cycle model was established, software maintenance had not assumed the great

importance it has today, and so the model was oriented almost exclusively to

the development of software. Consequently software maintenance has found its

niche within the model by default. The Software life-cycle is product-based

and the process that has created the product is not mentioned with all manage­

ment activities. Therefore, there is an important area of research on the model­

ling of all activities involved in the software development and maintenance

process.

page26

Impact Analysis

3. Impact Analysis

3.1. Introduction

Once software systems have been installed they are often changed to reflect

changes in other sub-systems with which they are connected. One of the rea­

sons why software maintenance is so difficult is that changes made at one point

in a software system may have severe Ripple Effects [YAU_78] at other points.

It is generally accepted that maintainers need to analyse the impacts of any pro­

posed change to establish its correctness. However the tenn Impact Analysis

seems to be used in many different ways so there is no clear consensus as to

when and how Impact Analysis should be carried out, when it is complete, or

even exactly what the objectives of impact analysis should be [WIWE_94].

Impact Analysis [WIWE_94] is:

"The task of assessing the effects of making a set of changes to a soft-

ware system".

Because these effects are not limited to the code, Impact Analysis must con­

sider impacts on design and specification as well as on code. As a consequence

of the wide area of infonnation (components) and primitive automatic produc­

tion of relationships (dependencies) between the components, Impact Analysis

is a difficult task and requires inputs from the user concerning the model of the

system.

Impact Analysis is viewed as a necessarily approximate technique which

must focus on the cost-effective minimization of unwanted side-effects.

page27

Impact Analysis

3.2. Impact Analysis Concepts

The scope of Impact Analysis is the software and all related documentation,

including graphics, of a system. It thus encompasses the following:

• Source code,

• Generation and installation procedures,

• Data files which may be required to execute properly the software,

• Usage documentation and operational procedures,

• Development documentation or maintenance documentation,

• Test cases,

•

The goals of the impact analysis are [ARNOW_93]:

• To understand rapidly the consequences of changes and avoid errors,

• Develop more effective test cases,

• Give change impact information to managers,

• Warn that a modification may be dangerous, so that

• a simpler solution should be found

• extensive testing undertaken

• Provide a quick check on the impacts of a change ("scope out" a prob­

lem)

Software change is the biggest part of Software Maintenance, and Impact

Analysis is usually required for making software changes, so Impact Analysis

is extremely important.Impact Analysis requires there to be a model of the sys­

tem on which this analysis can be done.

This model is constructed from the life-cycle documents requirements,

design, code, test cases, etc. and can be represented as dependencies between

the different components of the system. The construction of this model is usu­

ally done from the static description of the system and requires static documen­

tation/code analysers.

page 28

Impact Analysis

Static impact analysis analyse the impacts on the static structure of a pro­

gram and Dynamic impact analysis analyse the impacts on the objects accessed

during program execution.

The model of the system has to be created before the task of impact analy­

sis, then a set of changes on the object has to be defined and modelled. The

maintainers use their knowledge of the system to assess the change set,

attempting to demonstrate that the change has been correctly bounded and that

all the components that need to be changed have been identified. Once the

change set and the model of the system have been defined, Impact Analysis

(usually the maintainer apply some propagation rules (even if unconscious of

it) for the impacts) has to perform the propagation of these initial modifications

through the dependencies of the system and produces the resulting impacts.

Note that it is probably not feasible to foresee all the impacts of a change

[WIWE_94].

First, because the complexities of real programming language structures

such as pointers, virtual functions and so on make the collection of a complete

representation of the system at the code level very difficult.

Second, some kinds of relationships such as timing interactions, may be

data dependent, while others may depend on the intricacies of particular com­

pilers, operating systems or subroutine libraries. It is probably impractical to

expect tools to have complete knowledge of all the possible problems.

Impact Analysis may be performed "a posteriori" (i.e. after the change has

been implemented) or predictively (before the implementation of the change).

The first case is often called "regression analysis", and that kind of analysis is

generally performed through "regression testing", the objective of which being

to check that parts of the system that have not been intentionally changed are

still performing. The use of "Impact Analysis" will be reserved for the case

where the analysis is performed before the actual implementation of the

change, with the objective of gathering information on the impacts of the

planned change, precisely in order to take the decision whether to implement

the change or to choose between several proposed implementations of the

change. Another difference between "a priori" Impact Analysis and "a posteri­

ori" regression analysis is the degree of definition of the change under study,

this one still being in process of elaboration in the first case, while it is already

page 29

Impact Analysis

implemented (and thus presumably perfectly defined and known) in the second

case [QUEILLE_93].

Impact Analysis is an analysis which begins before the real implementation

of the set of changes and will only give a sub-part of the possible impacts. Its

principal goal is to reduce the cost of post-implementation discovered side

effects of a change.

page 30

Impact Analysis

3.3. Impact Analysis Process

3.3.1. Decomposition and Representation of the System

Impact Analysis requires the constitution of a representation of the system

on which the analysis has to be carried out. This activity is called Decomposi­

tion [ARNOLD_93]. The inputs to this decomposition process can be source

code, documentation, as well as the knowledge of the maintainer/developer on

the system. Figure 8 shows how the representation of a system/part of a system

can be produced from different sources of information. A single formalism to

represent all types of Components and all types of dependencies between them

is important in order to be able to do Impact Analysis on all the parts of the sys­

tem at the same time (code, documentation, ...) and through the dependencies

between these different parts.

Documentation

Documentation
Representation

Maintainer/
Developer's
Knowledge

Developer
Knowledge

Transformers

Maintainer/
Developer
Knowledge

Representation

Source code:
C, Ada, ...

Source code:
C,Ada, ...
Analysers

Source code:
C,Ada, ...

Representation

Merger/Linker of different representations

General
representation

Figure 8 : Decomposition and General representation.

page 31

Impact Analysis

However Impact Analysis can be applied on some parts of the system and

does not require that all the system is modelled during the task, but in this case

the impacts will be characterized only on the parts of the system on which the

task is performed.

The system can be modelled as a network of objects and links. In this net­

work, objects represent the different Components of the system, at various

granularity levels and they are typed according to the nature of the components

they represent. Links represent dependency relationships between the compo­

nents corresponding to the objects they connect; they typed according to the

nature of the dependency relationship they represent. For instance, the depend­

ency relationship between a source code module and the unit tests which test it

may be represented by "test/is-tested-by" links between the object which repre­

sents this module and the objects which represent the corresponding unit tests.

Various approaches have been taken by different researches in primarily

modelling source code ([GOPAL_89] and [MOSER_90] for Ada,

[WILDE_89],[WILDE_87] for C, [NARAYANASWAMY_88] for Common

Lisp, [COLBROOK_89], [GALLAGHER_91},

[CALLISS_90],[CALUSS_89],[CALUSS_88],[CANFORA_93],[JIANG_91},{

LYLE_89] using Program Slicing for Control or Data flow or Abstract Data

types from C programs).

One of the few works at the documentation level [TURVER_93c] models

the interconnections between documentation entities for the purpose of "Early

Ripple Propagation".

Here are some examples of objects and links generally exhibited at the code

level (Wilde [WILDE_87}):

• Data flow dependencies, between two objects, occur when the value

of one object is used to compute the value of another object.

• Definition dependencies occur when one program entity is used to

define another one.

• Calling dependencies occur when one function calls another one.

• Functional dependencies occur when a global data object is created or

updated by a module.

page 32

Impact Analysis

Many other kinds of dependencies at the source level have been defined by

Wilde [WIWE_87], only a few are presented here.

Dependencies are often represented by graphs. For instance Figure 9 shows

a dependency graph for a small C program.

file: teste

int global,r;

int funcl(int dl, int d2)

{

int local;

global=d2;

local=func3(global,dl);

retum(local);

-e.: contains

~: is-affected-by

Figure 9 : Possible dependencies for C program.

Figure 9 shows the dependencies between the different objects of the small

C program. For instance: the file (teste) contains (-C->: is linked with the type

page 33

Impact Analysis

of link "contains") three objects (variables "global" and "r" and function

"funcl") and these objects are linked also to the object "int" (which symbolises

the type integer) because of their type or their return value type. The variable

"local" is-affected-by (-A->) the result of the function "func3" which uses (-U­

>) the variables "global" and "d 1 ".

3.3.2. Specifying Changes and Defining a Change Set

Changes are generally proposed by a variety of sources [ARNOW_93]:

users, managers, programmers, analysts, contractors, customers, market condi­

tions, computer conferences, legal changes. All the proposed changes are

stored and are reviewed before being permitted to continue. In the next step the

importance of changes is considered in terms of cost, usefulness, etc. The last

step will be the certification of the change.

Related changes have to be grouped together and dependent changes can be

ordered so that more independent changes are performed first.

Change proposals are usually described in natural language description and

a process of transfer of this description to change set (modifications on the

dependency graph) has to be done. This task could be performed semi-auto­

matically if the language used in the change proposals is close enough to the

impact analysis' change model. However this task is usually completed only

by the maintainer.

The change set is a set of couples of the form (object, modification type),

specifying the type modification to be applied to an object.

3.3.3. Propagating Change Set, Obtaining Impact Set

From a change set and the assessment of these changes, it is necessary to

find out what other objects are affected. This task is performed automatically

by the impact analysis tool from a model of the system, a model of propagation

(The model of propagation is composed of Propagation rules) and a change

set.

Impact Analysis gives the maintainer an idea which parts of the system are

affected by the proposed changes and allows him to evaluate the consequence,

in terms of objects to modify, of the requested changes.

page 34

Impact Analysis

3.3.4. Understanding and Analysing the Impact Set

The Impact Analysis tool should allow the user to understand why an object

needs to be modify, that is to say from which previous change and from which

Propagation rule this object has been affected. This feature is required because

of the propagation system may respond "maybe this object has to be modified"

and in this case the maintainer has to validate or invalidate the "potential"

impact proposed by the Impact Analysis tool.

3.4. Summary

The Impact Analysis in this chapter has been described considering all the

activities involved in it. :Uat is to say, the modelling of the system and the gen­

eration of a object/link model of the system, the modelling of the change

request, the propagation of the change and finally the visualization of the

result. In the next chapters, the visualization aspects of the Impact Analysis tool

will be explained in details: graph representation and interaction with the

model of the system.

page 35

Graph Theory and Representation

4. Graph Theory and Representation

4.1. Introduction

Many areas of Computer Science involve the drawing of a graph on a 2-

dimensional surface. These include design, diagrams for information systems,

algorithm animation, circuit schematics and network presentation, etc In

this chapter the principal notions of the graph theory and some algorithms for

automatic placement of nodes and links in a network for the purpose of visual­

ization will be presented.

4.2. Graph Theory

4.2.1. The Notion of Graph

A graph G=(N, A) consists of [CARRE_91]:

• A finite set N={n1,n2, ... ,nn}, the elements of which are called nodes.

• A subset A of the Cartesian product N x N, the elements of which are

called arcs.

A graph can be depicted as a diagram in which nodes are represented by

points in the plane, and each arc (ni,nj) is indicated by the arrow drawn from

the point representing ni to the point representing nj.

Example 1 : Aowcharts and control-flow Graphs. A hardware integer
division procedure is shown in Figure 10 and a familiar flow-chart rep­
resentation of this function is shown in Figure 11, the control-flow
graph of the function is shown in Figure 12.

void division(int x, int y, int *q, int *r)
!* pre: x>O ; y>O ; post: x=(*q)*y+(*r) ; O<=(*r)<y *!
(

int w;
*r=x; *q=O; w=y;
while (w<=x) (w*=2;)
while (w!=y) (

q=2(*q);
w=w>>l; /* logical shift right , division by 2 *!
if (W<=(*r)) (

*r=*r-w; *q=*q+l;

Figure 10: Hardware integer division algorithm

page 36

Graph Theory and Representation

1
Start

..
2

*r=x

• 3
*q=O

• 4
w=y

.:t

True h False

6
w*=2

I

7
True

w!=y
False

8 13
q=2(*q) Stop

..
9

W=W>>1

True h w<=(*r)
False

11
*r=*r-w

• 12
*q=*q+1

I
T

Figure 11 : Flow-chart of the function shown in Figure 10.

page 37

Graph Theory and Representation

Figure 12 : Control-Flow of the function shown in Figure 10.

4.2.2. Basic Terminology

Figure 13 : Example of graph

• Head and tail:

In text, it is customary to represent an arc (u, v) as u->v. We call v

page 38

Graph Theory and Representation

the head of the arc and u the tail with the notion that v is at the head

of the arrow and u at its tail.

For example, 1->2 is an arc of Figure 13; its head is node 2 and its

tail is node 1. Another arc is 1-> 1; such an arc from a node to itself

is called a loop. For this arc, both the head and the tail are node 1.

• Predecessors and Successors:

When u->v is an arc, we can also say that u is a predecessor of v, and

that v is a successor of u. Thus, the arc 1->2 tells us that 1 is a pred­

ecessor of 2 and that 2 is a successor of 1. The arc 1-> 1 tells us that

node 1 is both a predecessor and a successor of itself.

• Labels:

It is permissible to attach a label to each node. Labels will be drawn

near their node. Similarly, we can label arcs by placing the label

near the middle of the arc. Any type can be used as a node label or

an arc label.

For instance, Figure 14 shows a node named 1, with a label "dog", a

node named 2, labelled "cat", and an arc 1->2 labelled "bites".

Figure 14 : A labelled graph with two nodes.

We should not confuse the name of a node with its label. Node names must

be unique in a graph, but two or more nodes can have the same label.

• Paths and Length of a path

A path in a directed graph is a list of nodes (v 1, v 2, ... vk) such that

there is an arc from each node to the next, that is, vi->vi+1 for i=1,

k-1. The length of the path is k-1, the number of arcs along the path.

For example (1,2,4) is a path of length two in Figure 13. The trivial

case k= 1 is permitted. That is, any node v by itself is a path of

page 39

Graph Theory and Representation

length zero from v to v. This path has no arcs.

e Cyclic and Acyclic Graphs

A cycle in a directed graph is a path of length 1 or more that begins

and ends at the same node. The length of the cycle is the length of

the path. Note that a trivial path of length 0 is not a cycle, even

though it "begins and ends at the same node". However, a path con­

sisting of a single arc v->v is a cycle of length 1.

Example: Consider the graph of Figure 13. There is a cycle (1,1) of

length 1 because of the loop 1-> 1. There is a cycle 2 because of the

arcs 1->3 and 3->1. Similarly, (2,4,3,2) is a cycle of length 3, and

(2,4,3,5,2) is a cycle of length 4. Note that a cycle can be written to

start and end at any of its nodes. That is, the cycle (v1,v2, ... vk, v1)

could also be written as (v2, ... vk, v1, v2) or as (v2, ... vk, v1,v2,v3)

and so on. For example, the cycle (2,4,3,5,2) could also be written

as (3,5,2,4,3).

On every cycle, the first and last nodes are the same. We say that a

cycle (v1, ... vk,v1) is SIMPLE if no node appears more than once

among v1, ... vk; that is, the only repetition in a simple cycle occurs

at the final node.

• Cyclic Graph

If a graph has one or more cycles, we say that the graph is cyclic. If

there are no cycles, the graph is said to be acyclic. By the arguments

used above about a simple cycle, a graph is cyclic if and only if it

has a simple cycle, because if it has any cycles at all, it will have a

simple cycle.

• Undirected graphs

Sometimes it makes sense to connect nodes by lines that have no

direction, called edges. Formally, an edge is a set of two nodes. The

edge { u, v} says that nodes u and v are connected in both directions.

If { u, v} is an edge, then nodes u and v are said to be adjacent or to

be neighbours.A graph with a symmetric arc relation, is called an

page40

Graph Theory and Representation

undirected graph.

• Paths and cycles in Undirected Graphs

A path in an undirected graph is a list of nodes (v1, ... vk) such that

each node and the next are connected by an edge. That is, {vi,vi+d

is an edge for i=l, ... k-1. Note that edges being sets, do not have

their elements in any particular order. Thus, the edge { vi,vi+1}

could just as well appear as {vi+ 1, vi}. The length of the path

(v1, ... ,vk) is k-1. As with directed graphs, a node by itself is a path

of length 0. Defining cycles in undirected graphs is a little tricky.

The problem is that we do not want to consider a path such as (u, v,

u) which exists whenever there is an edge { u, v}, to be a cycle. Sim­

ilarly, if (v1, ... ,vk) is a path, we can traverse it forward and back­

ward, but we do not want to call the path (v1, ... vk_ 1,vk,vk_1, ... ,v1) a

cycle.

• Simple cycle

Perhaps the easiest approach is to define a simple cycle in an undi­

rected graph to be a path of length three or more that begins and

ends at the same node, and with the exception of the last node does

not repeat any node. The notion of a non-simple cycle in an undi­

rected graph is not generally useful, and we shall not pursue this

concept.

• Initial and terminal end-points of an arc:

For an arc (ni,nj), the node ni is the initial end-point and the node nj

is the terminal end-point.

• Arcs incident to and from a node:

If an arc A has a node ni as its initial end-point, we say that the arc is

incident from ni; whereas if an arc A has node nj as its terminal end­

point we say that arc A is incident to nj. The number of arcs inci­

dent from a node ni is called the out-degree of ni and it is denoted

by p+(ni); while the number of arcs incident to nj is called the in­

degree of nj and is denoted p-(nj).

page 41

Graph Theory and Representation

• Partial graphs:

If we remove from a graph G=(N,A) a subset of its arcs, we are left

with a graph of the form: (H = (N, A')), where (A' c A)

which is called a partial graph of N.

• Sub-graphs:

If we remove from a graph G=(N,A) a subset of its nodes, together

with all the arcs incident to or from those nodes, we are left with a

graph of the form:

(H = (N', A')), where (N' c N) ,A' = A n (N' x N')

which is called a sub-graph of N. We may describe H more pre­

cisely, as the sub-graph of G generated by N' .·

See also [CARRE_91}, [DE0_74].

page42

Graph Theory and Representation

4.3. Graph Representation

4.3.1. Introduction

Various algorithms have been proposed for producing graph drawings that

are aesthetically pleasing (depending on the structure of the graph: Tree,

Directed Graph, etc.).

In this section we present some of these algorithms and their results are pre­

sented. These algorithms are designed to produce aesthetically pleasing draw­

ings of graphs. A graph drawing algorithm reads as input a combinatorial

description of a graph G, and produces as output a drawing of G according to a

given graphic standard.

4.3.2. Graph Drawing

A graph is composed of nodes and arcs between these nodes. Various

graphic standards have been proposed for the representation of graphs in the

plane. Usually nodes are represented by symbols such as circles or boxes, and

each arc (ni,nj) is represented by a simple open curve between the symbols

associated with the nodes ni and nj [BAITISTA_93].

A drawing such that each edge is represented by a polygonal chain is a

polyline drawing (Figure 15). There are two common special cases of this

standard. A straight-line drawing maps each arc into a straight-line segment

(Figure 16). This standard is commonly adopted in graph theory text.

An orthogonal drawing maps each arc into a chain of horizontal and vertical

segments (Figure 17). Entity relationship graphs in database design are usually

drawn according to this standard. The polyline drawing can be modified to use

a curved representation of the arcs.

page43

Graph Theory and Representation

Figure 15: Polyline drawing

Figure 16 : Straight-line drawing

Figure 17 : Orthogonal drawing

Each node and arc have attributes which may have a graphical representa­

tion depending on the value of this attribute and of its type.

page44

Graph Theory and Representation

For instance the type of a node may be represented by the form of the graph­

ical object (Square, Circle, Drawing, ...).

Some of the possible graphical attributes are:

* Forms (Square, Circle, Drawing, ...),

*Size,

*Colours,

* Type of drawing of lines (Solid, Dashed, Arrows, ...),

* Text and Position of this text.

A matching between internal attributes of node/arc and graphical object/link

has to be done in order to display part of the information contained in the graph

with graphical aspects. Figure 18 shows a possible representation of graph

with colours, style of line, text to display attributes of nodes/arcs of a graph.

Figure 18 represents the modelling of a software system with several func­

tion ("main", "F', "0", "H'', "F1", "F.c f11" (C "static" function), "F2", "F21",

"F22", "01", "011", "0111", "0112", "O.c g13" (C "static" function) "H1",

"H2", "H21", "H22", "H221") and with several variable (""V1", "V2", "V3",

"V4", "V5", "O.c v" (C "static" (local) variable), "H.c v" (C "static" (local)

variable)). In this figure the triggers on the objects ("main", "F', "F2", "F.c

f11", "F 11 ", "H", "V 1", "V2" , ...) represent modification applied on these

objects and the colours of the objects represent the level of impact of the modi­

fications applied on these objects. So the graph of this figure shows several

types of information: structure of the system (structural dependencies), call­

graph, modifications, impact and impact level of these modifications on the

other part of the system.

page 45

Graph Theory and Representation

Figure 18 : Example of graph representation

page 46

Graph Theory and Representation

4.3.3. Categorization of Graph Drawing Algorithm

Graph drawing algorithms can be categorized with respect to the following

parameters [TAMASSIA_88]:

e Class of graphs:

Each algorithm is usually targeted to a specific class of graphs,i.e.,

trees, planar graphs, directed or undirected graphs.

e Graphic standard:

The simplest way to draw a graph in the plane consists of placing

first the nodes, and then drawing the arcs as straight-line segments.

This is called the straight-line standard (Figure 16). Another widely

used graphic standard, called grid standard, consists of embedding

the graph in a rectangular grid so that the nodes are placed at grid

crossing, and the arcs follow the horizontal and vertical tracks of

the grid (Figure 17).

• Computational Complexity:

With regard to complexity issues, the running time of the drawing

algorithm is critical in interactive applications. However, it can be

noted that many natural aesthetic correspond to NP-hard optimiza­

tion problems (for example CROSS and AREA). This explains why

most implemented algorithms are heuristic.

• Aesthetics:

The term aesthetics, is used to denote the criteria that concern

graphic aspects of readability. A well-admitted aesthetic, valid

independently from the graphic standard, is the minimization of

crossings between arcs. Also, to avoid unnecessary waste of space,

it is usual to keep the area occupied by the drawing reasonably

small. Drawings that are optimal with respect to a specific aesthetic

are generally not optimal with respect to another one. An ideal

algorithm should be able to take into account variable weights for

the different aesthetics.

• Constraints:

page47

Graph Theory and Representation

Aesthetics characterize a tidy drawing from the graphical point of

view. However, they cannot deal with features that require knowl­

edge about the meaning of the drawing. Semantic features can be

expressed by means of constraints on the drawing, which must be

explicitly provided to the algorithm as additional input. Examples of

constraints are, positioning a group of nodes close to one another,

and placing specific nodes on the external boundary of the drawing.

The following taxonomy can be applied to both aesthetics and constraints

and is useful to understand their interaction. An aesthetic or constraint may be:

LocaVGlobal: when it refers only to a part of the drawing, global

otherwise.

Hierarchic/Flat: hierarchic when it concerns the relative position of

a set of symbols, flat otherwise.

Batini {BATIN/_84] gives an analysis of the literature in order to determine

the aesthetics most commonly adopted in several graph systems. Figure 19

presents a synthesis of this work where the aesthetics are classified according

to the previous paragraph (L: Local, G: Global, H: Hierarchic, F: Flat),

Figure 20 give a similar classification for several types of constraints.

In many documentation applications a sequence of drawings is produced by

means of successive updates. An example can be found in top-down methods

for software development, where new graphs are created by expanding sym­

bols into more complex structures. It could be expected that two successively

generated graph representations to differ only locally, dynamic aesthetics and

constraints can be considered that minimize the sum of the "distances"

between all consecutive drawings of the sequence, where the distance between

two drawings is suitably defined.

page 48

Graph Theory and Representation

Acronym Aesthetic Category

AREA minimization of the area occupied by the G/F
drawing

BALAN balance of the graph with the respect to GIH
the vertical axis or horizontal axis

BENDS minimization of the number of bends G/F
along the arcs

CONVEX maximization of the number of faces G/F
drawn as convex polygon

CROSS minimization of crossings between arcs G/F

DEGREE nodes with high degree in the centre of the L/F
drawing

DIM minimization of differences among nodes G/F
dimensions

LENGTH minimization of the global length of arcs G/F

MAX CON minimization of the length of the longest G/F
arc

SYMM symmetry of sons in hierarchies UH

UNIDEN uniform density of nodes in the drawing G/F

VERT verticality of hierarchic structures UH

Figure 19 : A taxonomy of aesthetics

page49

Graph Theory and Representation

Acronym Constraint Category

CENTER place a set of given nodes in the centre of the L/F
drawing

DIMENS assign the dimension of the symbols represent- LIF
ing specified nodes

EXTERN place specified nodes on the external boundary L/F
of the drawing

NEIGH place close together a group of nodes UH

SHAPE draw a sub-graph with the specified shape UH

STREAM place a sequence of nodes along a straight line UH

Figure 20 : A taxonomy of constraints

In the next sections, the different kind of algorithms will be referred to,

according to the taxonomies defined in Figure 19 and Figure 20.

page 50

Graph Theory and Representation

4.3.4. Trees

Trees are extremely common data structures and various algorithms have

been proposed for producing automatic drawings of trees

[REINGOW_81],{MOEN_90],[WETHERELL_79],{BLOESCH_93].

These algorithms adopt the straight-line standard and the aesthetics CROSS,

VERT, SYMM and AREA. Reingold [REINGOW_81] observed a drawback

common to most of the algorithms: the drawing of a subtree is influenced by

the positioning of nodes outside that subtree, so that a symmetric tree may be

drawn asymmetrically. The authors introduced the aesthetic ISO to guarantee

that a symmetric tree is drawn symmetrically.

Moen [MOEN_90] has considered the drawing of trees with the dynamic

aspect and various size of nodes: a tree is not completely redrawn and reposi­

tioned if a subtree is inserted or deleted.

4.3.5. General Graphs

The main aesthetics that are usually adopted for these kind of graphs are:

SYMM, CROSS, BENDS, LENGTHIMAXCON and UNIDEN. In general the

optimization problems associated with these aesthetics are · NP-hard

([GAREY_79], [MORET_91]). Besides time complexity limitations, these aes­

thetics are also "competitive" in that the optimality of one often prevents the

optimality of others. Because of such difficulties, general approaches to graph

drawing are usually heuristic and because of the wealth of techniques available

for drawing Planar graphs the usual strategy is to planarize the graph and then

apply a planar graph drawing algorithm.

page 51

Graph Theory and Representation

4.3.6. Planar Graphs

The tenn planarization is used for several related problems. In general,

planarization seeks to transfonn a non-planar graph into a planar graph with a

small number of well defined operations ([07AWA_80]).

Clearly, planar drawings are aesthetically highly desirable because they

improve the readability of the edges by avoiding the crossings/overlapping of

them.

The most common planarization operation is edge deletion: one must find a

small number of edges whose deletion yields a planar graph. This is equivalent

to find a planar sub-graph with a large number of edges.Finding a planar sub­

graph with a maximum number of edges is NP-hard ([07AWA_80]).

Another planarization technique is to find a drawing with the minimum

number of crossings. Again, this problem is NP-hard ([GAREY_79]).

Most planar graph drawing methods proceed as follows:

Step 1: Test planarity ({BA1TISTA_88]).

Step 2: (If the graph is planar), Construct a Planar representation.

Step 3: Use the Planar representation to draw the graph according to

some graphic ~tandards.

page 52

Graph Theory and Representation

4.3.7. Directed Graphs

Directed graphs (Digraph) are a very important class of graphs in which all

the edges between nodes are directed (i.e. a source and a destination of the

edge). A Digraph G consists of a set of vertices v = {vi' v2, ... } , a set of edges

E = {e1,e2, ... } and a mapping 'I' that maps every edge onto some ordered pair

of vertices (vi, v) . As in the case of undirected graphs, a vertex is represented

by a point and an edge by a line segment between vi and vi with an arrow

directed from vi to vi. For instance Figure 21 shows a digraph with five verti­

ces and ten edges. A digraph is also referred to as an oriented graph.

Figure 21 :Directed graph with 5 vertices and 10 edges

The acyclic Digraph is widely used to display hierarchical structures.

Examples include PERT diagrams and various dependency graphs. It is cus­

tomary to represent these graphs so that the edges all flow in the same direc­

tion, i.e., from top to bottom, or from left to right.

A great deal of work has been done in drawing algorithms to produce draw­

ing of directed graphs because of the needs to represent hierarchies or depend­

encies.

In [SUGIYAMA_81},[CARPAN0_80],[GANSNER_88}, [REGG/AN/_88]

and [BAT/1STA_88] several algorithms for directed graph drawings are pre­

sented.

page 53

Graph Theory and Representation

4.4. Graph Algorithm Implementation and Visualiza­
tion

In this research, a tool has been developed to display/edit a graph (and inter­

act with it) with an automatic placement of the graph (nodes) using the envi­

ronment system X!Windows and Motif on Unix platform.

Figure 22 : A graph displayed with the implemented widget

page 54

Graph Theory and Representation

The graph tool implemented is based on the "Motif-- OSF X User Environ­

ment Widget Set" (Copyright 1989 by Hewlett-Packard Company). It was

debugged and enhanced in many ways (Automatic positioning for nodes and

links, triggers on nodes, zoom/reduction, ...).

The result of this work is a set of functionalities (X!Windows/Motif widget)

which allows a user to display/edit a graph and interact with it in term of

actions on the graph that the user can do. The Figure 22 shows a graph dis­

played with the graph widget implemented and is planned to be used in the

Impact Analysis System.

The basic requirements for the graph display tool are:

• To visualize vertices and edges as nodes and arcs on a two dimen­

sional area with a representation in accordance with the connections

between the vertices and with some pre-defined aesthetics (like reduc­

ing edge crossing, etc.). The nodes and arcs must have some graphical

attributes (colour, text, shape, line style, etc.) which can be set to visu­

alize an internal state of the vertices/edges,

• To be able to edit the graph: moving a node or an arc, adding or delet­

ing a node/arc,

• To allow the visualization of triggers on nodes (in order to visualize

for impact analysis the modifications applied to a component (node)),

• To have immediate feed-back on the characteristics of nodes or arcs

on which the mouse pointer is: to display for instance the state of the

object we are on.

• To offer a zoomed/reduced view of the graph to facilitate the under­

standing of a big graph which can be displayed on a single screen,

• To allow an automatic positioning of nodes and arcs in the graph and

possibly manually move the nodes/arcs,

• To be able to interact with the graph: clicking on a node or arc to visu­

alize the semantic of it (opening a document for instance by clicking

on the representation of the document (icon)),

page 55

Graph Theory and Representation

4.4.1. Visualization and Editing of a graph

The graph tool has been implemented using the C programming language

and with the Xll, Xt and Xm (Motif) libraries. It can be used in any Unix envi­

ronment with X-Windows server. The nodes in the graph can be any widget or

gadget of any X-Windows ToolKit (Xt, Motif, Athena, ...).

The graph tool can be controlled directly with the mouse to move or edit

nodes and arcs. Every attributes of the graph, nodes and arcs (text, colour, posi­

tion, ...) can be controlled with Application Programmer Interface (API) deliv­

ered with the graph tool (Set of functions).

The triggers on nodes have been implemented to allow representation of

modifications applied on objects (nodes). A trigger is represented as broken

lines ending on the node and it can have a text attached to it.

The functionalities for providing support about the mouse position (on

nodes, arcs, zoom or graph) in the graph have been implemented and used for

testing purposes. So in the "gtest" program developed, if a user moves the

mouse pointer on to a node, it will change to represent a "0" (Object) or on to

an arc it will represent an arrow. This can be used to define the mouse pointer

representation according to the type of nodes or arcs on which the mouse

pointer is located (function, variable, document, ... , call links, inheritance

link, ...).

A zoom or reduction view of the graph has been implemented in order to

facilitate the visualization of graph and to help the user to know where in the

graph the visible portion of it is. This zoom/reduction view is useful in order to

have a synthesised view of the complete graph and of its shape.

page 56

Graph Theory and Representation

4.4.2. Algorithm for automatic positioning for nodes and arcs.

The algorithm used to position the nodes and the arcs in the graph is the one

described by Sugiyama [SUGIYAMA_81]. It allows the drawing of any kind

of graph because all the graphs are described as directed but all the arcs can be

"directed", "not directed", "reverse directed" or "bidirected" according to the

description of the directed graph.

Basically the algorithm used in the graph widget for the automatic place­

ment of nodes is:

• Step 1:

A "proper" hierarchy is formed from a graph. If the digraph gener­

ated has cycles, it is transformed (by changing the direction of some

arcs) and we obtain a multi-level digraph or a hierarchy (Each node

has now a level in the graph). Then, if the-hierarchy has long span

edges (difference of level between two connected nodes superior to

1), it is converted into a proper hierarchy by adding dummy vertices

and edges.

• Step 2:

The number of crossings of edges in the proper hierarchy is reduced

by permuting orders of vertices in each level().

Figure 23 : Reducing crossings of edges.

• Step 3:

Horizontal positions of vertices are determined by considering:

Close" layout of vertices connected to each other (weighted by the

number of connections between them). It is desirable that paths are

short.

page 57

Graph Theory and Representation

• Step 4 (Possible but not implemented):

A two-dimensional picture of the hierarchy is automatically drawn

where the dummy vertices and edges are deleted and the corre­

sponding long span edges are regenerated.

4.5. Interacting with the graph

The graph tool developed is not to be just used to represent graphs, it must

also be used interactively. Each node and arc in the graph has to be reached

with a mouse click. For instance, a mouse click on a node allows a user to open

a visualizer/editor for the type of node on which the notification has been done.

Callbacks on each node and arc can be attached to actions carried out on them.

4.6. Summary

In this chapter, basic terminology and concepts required for the graph repre­

sentation and visualization have been treated. A tool (Widget) has been elabo­

rated in order to visualize the information which has to be represented for

Impact Analysis purpose. The next chapter will present the system which have

been developed to do the whole process of Impact Analysis.

page 58

Impact Analysis System

5. Impact Analysis System

5.1. Introduction

The Impact Analysis System constructed is an environment to study the

effects of a change on a system, that is impact analysis. For this purpose, a

Dependency model and Propagation model is required together with the

dependencies corresponding to a model of a software system. These dependen­

cies will be used to understand the system by browsing through the dependen­

cies, to design the modifications we want to apply on the system and to apply

the Impact Analysis on them. Several steps will have to be done (Models gen­

eration, Dependencies generation, Modifications modelling, Propagation) to

perform the task of Impact Analysis.

The Impact Analysis System described in this chapter was developed as part

of the ESP/EPSOM project and has been continued in the ESPRIT/ AMES

project. The work for this thesis is mainly concerned with viewing dependency

graphs.

5.2. Architecture

p I
R N
0 F
p B
A R
G B
A N
T C
I B
0
N

Dependency
Model

Propagation
Model

Figure 24 : Architecture impact Analysis System

page 59

•.c
*.b
•.doc
etc ...

Impact Analysis System

This architecture of the system corresponds in fact to the process involved

to create the model of the system, to visualize the system and its status by

views and to apply modifications and Impact Analysis in order to understand

the effects of these modifications on the other parts of the system.

The first step of Impact Analysis (PARSER) is to extract the information

contained in the system in order to work on it in a more abstract way. For this

purpose several tools have been developed, for example: parser of source code,

parser of documentation. The purpose of these tools is to extract all the infor­

mation of a software system. A C-code parser has been reused

([BUNTER_93]) to construct the C-code representation in Prolog facts. A tool

([HTML_ANAL'YZER_94}) to extract links in HTML (HyperText Mark-up

Language) has been reused and modified for generating graph representation.

The second step of Impact Analysis (INFERENCE) is to infer a model of

the system at a certain level of granularity of information required for the visu­

alization/propagation. This step will for example create a model of source code

in terms of function and variable and the dependencies between them instead

of files. I have written several Translators in Prolog to extract dependencies

from the output of the C-code parser.

The third step of Impact Analys~s is (PROPAGATION) is (after having cre­

ated a model of propagation for the model of dependencies generated by the

second step) to apply the modifications on the model of the system and to prop­

agate them to obtain all the impacts provoked by the initial set of modifications

that the maintainers wanted to apply on the system. The propagation engine is

currently in development in Matra Marconi Space (ESP/EPSOM and ESPRIT/

AMES projects). I have according to the propagation model outlined in

Description of the Dependency Model page 66, developed, with the graph visu­

alization tool, for demonstration purpose a hard-coded propagation with visual

effects on the "Hardware integer division algorithm page 36".

The visualization in the last step (VISUALIZATION) of Impact Analysis is

an important part because it is required to understand the system on which the

maintainers have to work, to model the modifications that they want to apply

on the system and to obtain/visualize the effects on these modifications on the

rest of the system. The graph tool that I have partly reused (The base of this

tool comes from "Motif-- OSF X User Environment Widget Set, Copyright

page60

Impact Analysis System

1989 by Hewlett-Packard Company") and largely debugged and enhanced in

many ways (Automatic positioning for nodes and links, triggers on nodes,

zoom/reduction, ...).

page 61

Impact Analysis System

5.3. Models

A Dependency model is composed of types of objects and links that can

allow a representation of the system to be created. Dependencies of a software

system are an instantiation of a dependency model. Dependencies are used to

represent a particular system at a cettain level of granulatity. For instance a

Dependency model represented with a graph could be the one in Figure 25, the

same with a text representation is shown in Figure 26.

There ru·e three object types and eleven link types between these object

types. For instance an object of type "module" may contain (link type "con­

tains" between the object type "module" and the object type "function")

another object of type ·'function", an object of type ·'function" may call another

object of type ·'function" (link type "calls" between object type "function" and

itself).

Figure 25 : A Dependency model (Graph Representation)

page 62

object_type(module).
object_type(function).
object_type(resource).
link_type(uses_module).
link_type(uses_function).
link_type(uses_resource).
link_type(uses_other).
link_type(contains).
valid_link(module, contains, module).
valid_link(module, contains, function).
valid_link(module, contains, resource).
valiQ_link(module, uses_module, module).
valid_link(module, uses_other, function).
valid_link(module, uses_other, resource).
valid_link(function, contains, function).
valid_link(function, contains, resource).
valid_link(function, uses_function, function).
valid_link(function, uses_other, module).
valid_link(function, uses_other, resource).
valiQ_link(resource, contains, resource).
valid_link(resource, uses_resource, resource).
valid_link(resource, uses_other, module).
valid_link(resource, uses_other, function).

Impact Analysis System

Figure 26 : A Dependency model (Textual Representation)

page63

Impact Analysis System

A Propagation model is applied to a Dependency model by consideration of

the types of modifications to be made and the Propagation mles that are appli­

cable to the types of objects and links of the Dependency model. For instance,

Figure 27 shows a Propagation model based on the Dependency model of the

Figure 25 (Figure 28 is the textual representation). The modification types

applicable on the different object type are shown with the impact uiggers in the

graph (Figure 27). However the type of propagation of these modification type

(Propagation rule) is not shown on this graph and requires another graph to

visualize it. An example of a propagation mle is a modification type

"public_change" on the object type "function" which is propagated through the

link type ·'calls" (between two objects of type "function") to all the objects of

type "function" with the modification type "private_change" ("automatic"

which means that the modification is sure and not "potential") applied on them.

Figure 27 : A Propagation model (Graph Representation)

page 64

modif_type(public_change).
modif_type(private_change).
valid_modif(module, public_change).
valid_modif(module, private_change).
valid_modif(function, public_change).
valid_modif(function, private_change).
valid_modif(resource, public_change).
valid_modif(resource, private_change).

Impact Analysis System

I* impact(function,public-change,*-is_used-by,*) ->private-change (automatic) *I
propagation_rule(module,public_change,uses-module,module, private_change,yes).
propagation_rule(module,public_change,uses-other,function, private_change,yes).
propagation_rule(module,public_change,uses_other,resource, private_change,yes).

I* impact(function,public-change, *-is_used-by, *) -> private-change (automatic) *I
propagation_rule(function,public_change,uses_function,function, private_change,yes).
propagation_rule(function,public_change,uses_other,module, private_change,yes).
propagation_rule(function,public_change,uses_other,resource, private_change,yes).

I* impact(resource,public-change, *-is_used-by, *) -> private-change (automatic) *I
propagation_rule(resource,public_change,uses_resource,resource, private_change,yes).
propagation_rule(resource,public_change,uses_other,module, private_change,yes).
propagation_rule(resource,public_change,uses_other,function, private_change,yes).

I* impact(*,private-change, self, *) ->public-change (potential) *I
propagation_rule(module, private_change, reflexive, module, public_change, no).
propagation_rule(function, private_change, reflexive, function, public_change, no).
propagation_rule(resource, private_change, reflexive, resource, public_change, no).

I* impact(*,public-change, seLf, *) ->private-change (automatic) *I
propagation_rule(module, public_change, reflexive, module, private_change, yes).
propagation_rule(function, public_change, reflexive, function, private_change, yes)
propagation_rule(resource, public_change, reflexive, resource, private_change, yes).

I* impact(*,private-change, contains, *) ->public-change (potential) *I
propagation_rule(module, private_change, is_contained_in, module, public_change, no).
propagation_rule(module, private_change, is_contained_in, function, public_change, no).
propagation_rule(module, private_change, is_contained_in, resource, public_change, no).
propagation_rule(function, private_change, is_contained_in, function, public_change, no).
propagation_rule(function, private_change, is_contained_in, resource, public_change, no).
propagation_rule(resource, private_change, is_contained_in, resource, public_change, no).

I* impact(*,public-change, is-contained-in, *) ->private-change (automatic) *I
propagation_rule(module, public_change, contains, module, private_change, yes).
propagation_rule(function, public_change, contains, module, private_change, yes).
propagation_rule(resource, public_change, contains, module, private_change, yes).
propagation_rule(function, public_change, contains, function, private_change, yes).
propagation_rule(resource, public_change, contains, function, private_change, yes).
propagation_rule(resource, public_change, contains, resource, private_change, yes).

I* create_object => impact(*,created, self, *) *!
I* Defined automatically in the engine : creation */
I* impact(*,created, self, *) -> public-change (automatic) *I
propagation_rule(module, creation, reflexive, module, public_change, yes).
propagation_rule(function, creation, reflexive, function, public_change, yes).
propagation_rule(resource, creation, reflexive, resource, public_change, yes).

/* create(uses-*,*,*) -> {private-change,none) (automatique) */
/*Link creation not yet defined!!!!! */

/* create(contains,*,*) -> {private-change,none) (automatique) */
!*Link creation not yet defined! !I!! */

/* impact(*,deleted, contains, *) -> father-deleted (automatic) */
propagation_rule(module, suppression, is_contained_in, module, father_deleted, yes).
propagation_rule(module, suppression, is_contained_in, function, father_deleted, yes).
propagation_rule(module, suppression, is_contained_in, resource, father_deleted, yes).
propagation_rule(function, suppression, is_contained_in, function, father_deleted, yes)
propagation_rule(function, suppression, is_contained_in, resource, father_deleted, yes).
propagation_rule(resource, suppression, is_contained_in, resource, father_deleted, yes).

Figure 28 : A Propagation model (Textual Representation)

page65

Impact Analysis System

5.3.1. Description of the Dependency Model

object_type(type).

It declares a type of object.
For instance: object_type(function).

link_ type (type) •

It declares a type of link.
For instance: link_type(calls).

valid_link(obj1_type, lk_type, obj2_type).

It declares a valid link of type "lk_type", which must been defined with:
link_type ("lk_type").

between two objects, the first object (source of the link) of type
"obj l_type" and the second (destination of the link) of type "obj2_type".
For instance: valid_link(function, calls, function).

5.3.2. Description of the Propagation Model

modif_type(type).

It declares a type of modification.
For instance: modif_type (public_cha.nge).

valid_modif(obj_type,mod_type).

It declares a valid modification of type "mod_type" on object of type
"obj_type".
For instance: valid_modif(function, public_change).

propagation_rule(trigger_obj_type, trigger_mod_type, lk_type,
imp_obj_type, imp_mod_type, auto).

It declares a propagation rule for which a modification of type
"trigger_mod_type" on an object of type "trigger_obj_type" linked to
another object of type "imp_obj_type" by a link of type "lk_type" will be
propagated on the second object (impacted) by applying a modification of
type "imp_mod_type" on it. The potentiality level of the modification on
the impacted object will depend on the potentiality level of the trigger
modification and on the automaticity "auto" (Normally if auto==yes then
the same potentiality level for both else the second will be higher of one).
For instance: propagation_rule(function, public_change,

calls, function, private_change, yes).

page66

5.4. Dependencies Generation

5.4.1. Parser

edge(O, 'division', 0, 1).
edge(O, 'division', 1, 2).
edge(O, 'division', 10, 11).
edge(O, 'division', 11, 6).
edge(O, 'division', 2, 3).
edge(O, 'division', 3, 4).
edge(O, 'division', 4, 5).
edge(O, 'division', 4, 6).
edge(O, 'division', 5, 4).
edge(O, 'division', 6, 7).
edge(O, 'division', 6, end).
edge(O, 'division', 7, 8).
edge(O, 'division', 8, 9).
edge(O, 'division', 9, 10).
edge(O, 'division', 9, 6).

Impact Analysis System

expression(O, 'division', 1, expr(assign, expr(def, 'r', ['@pointer']), expr(ref, 'x', []))) .
expression(O, 'division', 10, expr(assign, expr(def, 'r', ['@pointer' J), expr(connect, expr(ref,

'r', ['@pointer']), expr(ref, 'w', [])))).
expression(O, 'division', 11, expr(assign, expr(def, 'q', ['@pointer']), expr(ref, 'q',

['@pointer']))) .
expression(O,
expression(O,
expression(O,
expression(O,
expression(O,
expression(O,

['@pointer' J))) •

'division', 2,
'division', 3,
'division', 4,
'division', 5,
'division', 6,

'division',

expr(def, 'q', ['@pointer'])).
expr(assign, expr(def, 'w', []), expr(ref, 'y', []))).
expr(connect, expr(ref. 'w', []-), expr(ref, 'x', []))).
expr(def_anQ_ref, 'w', [])) .
expr(connect, expr(ref, 'w', []), expr(ref, 'y', [])]).
7, expr(assign, expr(def, 'q', ['@pointer']), expr(ref,

expression(O, 'division', 8, expr(assign, expr(def, 'w', []), expr(ref, 'w', []))).
expression(O, 'division', 9, expr(connect, expr(ref, 'w', []), expr(ref, 'r', ['@pointer']))).
file('Hardware.c', 0).
object(O, '@external', sc([J. '@'),void, 'division', ['@fun']).
object(O, 'division', sc([1], '@'), int, 'w', []).
object(O, 'division', sc([J. '@'), int, 'q', ['@pointer']).
object(O, 'division', sc([J. '@'), int, 'r', ['@pointer']).
object(O, 'division', sc([], '@'), int, 'x', []).
object(O, 'division', sc([J. '@'), int, 'y', []).
parameter(O, 'division', ['x', 'y', 'q', 'r']).
statement(O, 'division', [1,1]. 5, [expr]).
statement(0, 'division', [1, 2, 1], 10, [expr]) .
statement(O, 'division', [1,2,1], 11, [expr]).
statement(O, 'division', [1,2], 7, [expr]).
statement(O, 'division', [1,21. 8, [expr]].
statement(O, 'division', [1,2], 9, [sele, if]).
statement(O, 'division', [1], 1, [expr]).
statement(O, 'division', [1], 2, [expr]).
statement(O, 'division', [1], 3, [expr]).
statement(O, 'division', [1], 4, [iter, while] J.
statement(O, 'division', [1], 6, [iter, while]).

Figure 29 : Output of the C-parser for the program

"Hardware integer division algorithm" (Figure 1 0)

Figure 29 shows the output of the C-parser for the Hardware integer divi­
sion algorithm, the representation used could also have been used for program­
ming languages other than C. The semantic of the output of the C source code
parser (Perplex) is explained in [BUNTER_93]. The purpose of the parser is to
create an output of information about a system or a part of it (i.e. source code,
documentation, design, ...). Normally the parser extracts all the information that
it can from the input and another tool has to select from this source the infor­
mation required.

page67

'q',

Impact Analysis System

5.4.2. Inference

The dependencies are represented by objects and links. As Prolog is used to

propagate the modifications through the dependencies, "Prolog facts" are used

to represent these objects and links. An identifier is given to each object of the

dependencies and information is added to each object with another "Prolog

fact": id_object which will collect all the information not needed by the propa­

gation engine. For instance, Figure 30 shows the dependencies generated from

the program of the Hardware integer division algorithm and after inference

from Output of the C-parser for the program "Hardware integer division algo­

rithm" (Figure 10).

iQ_object([O,O), ['HardwareDivision.c' ,none,none,none,none)).
iQ_object ([1, OJ, ['@external', sa ([), @),void, division, ['@fun' II) .
iQ_object([2,0), [division,sc([1], @) ,int,w, [])).
iQ_object([3,0), [division, sa([), @) ,int,q, ['@pointer' II).
iQ_object([4, OJ, [division, sa ([I, @), int,r, ['@pointer' II).
id_object([5, OJ, [division, sa ([I, @), int,x, [II).
id_object([6, OJ, [division, sa ([I, @), int,y, [II).
link([O,O),contains, [1,0)].
link([1,0),contains, [2,0)).
link ([1, 0 I , contains, [3, 0 II .
link([1,0),contains, [4,0)].
link([1,0),contains, [5,0)).
link([1,0),contains, [6,0]).
link([2,0),uses(resource, resource), [2,0)).
link([2,0],uses(resource, resource), [6,0]).
link([3,0),uses(resource, resource), [3,0]).
link([4,0),uses(resource, resource), [2,0)).
link([4,0),uses(resource, resource), [4,0)).
link([4,0),uses(resource, resource), [5,0)).
object([O,O),module).
object([1,0),function).
object([2,0),resource).
object([3,0),resource].
object([4,0),resource].
object([5,0],resource).
object([6, OJ, resource).

Figure 30 : Dependencies for the C-code of Figure 10

(Hardware integer division algorithm)

5.4.3. Description of the Dependencies

object(obj_id, obj_type).

It declares an object of identifier "obj_id" (which must be unique in the
dependencies) and of type "obj_type".

For instance: object([l,O], function).

link(obj_source_id, lk_type, obj_dest_id).

It declares a link of type "lk_type" from the object of identifier
"obj_source_id" to the object of identifier "obj_dest_id".
For instance: link([l,O], calls, [1,0]).

page68

Impact Analysis System

5.5. Propagation Engine

The propagation engine is used to propagate modifications along depend­

ency links. It expects as input a dependency model, propagation model, a

model of the system based on the dependency model and a set of modifications

that the user (maintainer) will want to apply on the system. The propagation

engine uses this information to do the propagation and gives the set of

impacted objects with information about the types of impacts on the system

that it has computed.

The propagation engine is currently written in Prolog as this language is

particularly suitable for prototyping. The propagation can be controlled step by

step in order to understand the effects of a particular modification. The user

(maintainer) may create modification on the system and obtain the effects of

this modification on the rest of the system

The propagation engine is able to deal with modification of the model of the

system (modification of the structure of the system) during the propagation.

For instance in order to "create" a call between two objects "function" as the

modification of the system.

The approach that has been taken in the implementation ([BARROS_94])

allows the interactive application of typed modifications to a graph of objects

and links, and to propagate these modifications through the graph, following

previously defined propagation rules, in order to exhibit impacts of the pro­

posed modifications. These impacts are themselves modifications, which can

then be recursively propagated in order to obtain the complete set of impacts of

the proposed modifications. The Figure 31 shows how the modifications are

propagated through links with the control a a propagation rule (The "Typed

modification#!" on an object of type ''Typed object# I" is propagated through a

link of type ''Typed link#l" in "Typed modification#2" on objects of type

"Typed object#2").

page69

Typed modification #1

\
Typed modification

propagation controlled through
a propagation rule

Figure 31 :How the propagation rule works?

Impact Analysis System

The propagation engine has a very simple iterative algorithm displayed in

Figure 32.

As presented in Figure 32, the propagation process can be resumed in two

main loops:

• the first one, which runs over all the new (and so not yet propagated)

modifications found by the engine at one step, aims at propagating

them,

• the other loop runs over all the steps needed to achieve the propaga­

tion.

While the main loop over the propagation step is not finished, the engine is

in an unstable state and cannot be stopped. But the steps are recorded, to allow

the user to display later on the way the propagation was performed from modi­

fication to modification, at each step.

Within the one step propagation loop, all the modifications defined at the

previous step are propagated, using the process displayed in Figure 33.

page 70

Impact Analysis System

Propagate_on_one_slep(modificallon)

Figure 32 : Propagation algorithm, level 1.

page 71

Propagale_on_one_step(modiflcallon)

Make the list of the propagation rules using
this triggermodification type and this source

object type

Propagate_on_one_step(modification,
propagation rule)

Figure 33 : Propagation algorithm, level 2.

Impact Analysis System

To perform the propagation of a modification, as defined above by a couple

[object identifier, modification type], the engine first gets the list of propagation

rules modelling the propagation of this modification type on the type of the

object.

page 72

Impact Analysis System

Propagate_on_one_step(modlfication,
pro pagall on rule l

e the list of the objects of the targettype
connected to the source object through

links of the righttype

Propagate_on_one_step(modlflcation,
propagation rule, target object, link}

Figure 34 : Propagation algorithm, level 3.

Then, the process loops over all the selected propagation rules to check the

impacts of the trigger modification on the neighbourhood of the modified

object, as described in Figure 34.

Within this procedure, the propagation engine selects all the objects con­

nected to the modified one with the right link type (given by the propagation

rule) and impacts them.

During this, the new modifications are defined and the impacts from the

trigger modification to the new target ones are stored, to be later displayed to

the user if he wants to understand why and how a side effect modification

occurs, and from which initial modification it depends. This mechanism is di

splayed on Figure 35.

page 73

Propagate_on_one_step(modification,
propagation rule, terget object, link)

Deline amodllication of terget type
on the terget object

Store the impact of the trigger
m o dilicati on on the I erg et one

through the usedlinl:

Figure 35 : Definition of a new modification

Impact Analysis System

After the definition of the new modification (Figure 35), all the previous

loops are executed until no more impacts appear.

5.6. Interface

A fundamental part of the interface has been completed, "the graph Widget"

which will graphically show views on the dependencies of a system as well as

the state of the propagation on it (colours, triggers (graphical representations of

the modifications on objects), etc.).

The interface for Impact Analysis has to display several types of informa­

tion concerning the system and to allow the user to select the types of informa­

tion that he needs. The system is represented as a graph which corresponds to

the dependencies between the different parts of the system. The parts of the

system (Objects) depend (or are linked) to other parts by Links. The objects

may have different attributes to qualify the information they contain or their

status, also the user must have the possibility to select the information on the

page 74

Impact Analysis System

node that he wants to have. Each object must have a pop-up menu attached to it

to call a specific method or general method of the object (For instance: open,

add a modification on the object, ...). The object may have attached to them

modifications represented as triggers for their graphical representation. The

status of these modifications may be visualized by colours, shapes or labels on

the triggers.

The system usually cannot be visualized completely at the beginning as it

could be enmmous, so the intetface has to allow the user to select which part of

the system has to be visualized or not (by query or just by non-aggregation of

parts of the graph dependencies).

Figure 36 : Main Window of the lAS First version

page 75

Impact Analysis System

The Figure 36 shows the main window of the lAS (Impact Analysis Sys­

tem). This window shows the different parts of the impact analysis: The man­

agement of dependency models (The Figure 37 shows the editing window for

the dependency model) and propagation models (first and second hmizontal

parts of this window) and the management of the propagation itself in the third

part of the window.

Figure 37 :The edition window for the Dependency model of the lAS.

page 76

Impact Analysis System

5.7. Summary

The Impact Analysis System has been partly implemented (Dependencies

Generation, Propagation Engine, Widget graph), the remaining tasks (Interface

for Impact Analysis (Navigation & Display as well as editing the dependencies

and/or the modifications on the dependencies), Communication between Prop­

agation Engine and Interface) will have to be performed to obtain a complete

tool for Impact Analysis. However each part of this system could be used inde­

pendently each other and also for other purpose than impact analysis, the

dependencies generation are useful for understanding the system and the

Widget graph could be used for many applications that require the display of

dependencies (network, documentation structure, etc.).

page 77

Case Studies

6. Case Studies

6.1. Simple Example

The system on which we will show graphically the impact analysis will be

the program of Figure 10 (Hardware integer division algorithm). The initial

modification will be a "private_change" on the variable "resource: y of type

int" (On a call to the function "division", the internal value of the formal

parameter is changed). However this visualization of the propagation of such a

modification has been done manually. Without a tool to propagate automati­

cally, because the communication between the graphical tool and the propaga­

tion engine has not been yet completely realized. The model used to represent

the system is very important because the granularity of the result depends on

the granularity of the model. We will not know what are the functions affected

by the modification of another one if we do not model the functions but just the

modules and their dependencies between them. So the dependency model and

the propagation model of the system have to be in coherence with the goal that

the maintainer needs to reach for the impact analysis.

page 78

Case Studies

Figure 38 : First step of the propagation

Figure 38 shows the dependencies for the Hardtvare integer division algo­

rithm and a user modification on the system ("private_change" on the variable

"y").

page 79

Case Studies

r es_

··~

Figure 39 : Second step of the propagation

The modification "private_change" on the object ·'y" is propagated through

the link "reflexive" on the same object:

propagation_rule(resource,private_ change,reflexive,resource,
public_change, no)

which means that a modification of type "private_change" on object of type

page 80

Case Studies

"resource" like "y" is propagated through a link of type "reflexive" to an object

of type "resource" with a modification of type "public_change" and this modi­

fication is potential compared to the previous one (As the previous one was

User Defined (Impact Level=O) this one will be Propagated (Impact

Level=O+ 1=1)).

The propagation through the link can be graphically animated as shown in

Figure 39 as a two coloured line on which the colour (colour which represents

the level of impact) of the impacted path moves as the propagation takes place.

Figure 40 shows the propagation through the links ("contains" and

"res_uses_res") of the impact "public_change" on the object "resource: y of

type int":

propagation_rule{resource,public_change,contains,
function,private_change, yes)

and

propagation_rule{resource,public_change,
res_uses_res,resource, private_change, yes).

page 81

put· 1 1 ,, _ ·:h.•m<::;.; L .. ,
--; .

conta ins

ins

~-~----

~uses_ s
.... ---

:~-----~-

Figure 40 : Third step of the propagation

page 82

Case Studies

r·e~ive

(.(!t 1t .~ tn ·~ · __

· ~ . ,. :fl'it~1n~
. ~ ~ ~pr1va e_cnange

..' F'' 1 \. 3 r .. P: .. 1. • ~~n~3t?
)

' ,
' .. c;~nt .5in::

... n~ :) J rr~ ..

Figure 41 : Fourth step of the propagation

Case Studies

1 ~ ' _ ... -··

~

'1\ ..J .

,·~

Figure 41 shows the two impacts on ·'function: division" and on "resource:

w of type int" which are themselves propagated through the links ·•contains"

and "reflexive" to others objects (Figure 42).

The colours of the objects conesponds to the level of impact of the modifi-

page 83

Case Studies

cations which are applied to the objects. For instance the red colour means that

a real modification has been done on an object, green no impact and orange is

the first level of potential impact after red. An orange impact means that this

modification has to be checked by the maintainer in order to validate or invali­

date the fact that it is real or not.

ns

·

reflp\tvt>) priva e~b~Mse
I <..__ .

public_changt:' ~~ f . if'" ·

· ..

Figure 42 : Fifth step of lhe propagation

page 84

t'ef7\ive

• ~ .. ! r·ut:~ t•. ·
. . . - ~ ,. .

~~, : ~ ~ t
'I(-·

...

Case Studies

The next steps will not be desclibed as the description is always the same as

previously.

. _; P•.<b i h .. c i"<<l!i~~ ,...

"f-... , I
· · ·-·-PJ-!t!_:*:ShK~H\'!fc<' t:' . · pr 1 >".eJte ... ch.'lt~ge

·-·- .. ___ -···-- ' :··~ ~,.,,.,,...,.. ... _,). ~.:

y·ontai.r;:.

Figure 43 : Sixth step of the propagation

page 85

pi l.,.
1'-.~J---~

,- ! p;, i!)! •(
~

Case Studies

·

' I .. .,.,lr..-Jv~
__ ,.)r"d~.~ir~~.. ._ , ,1 \f

pr [•.;~t €,_._han•_ e' 1· ·· ~'\f

Figure 44 : Seventh step of the propagation

page 86

... ~ F·ubllc

., 3 f.·u t• I t r: _,j .anc ·
~ ·

.·' P\<bl i ,; . • :h;;,l~:,e
\·

~ubl i.:.

·.,

Figure 45 : Eighth step of the propagation

page 87

Case Studies

,. e F 1,,~\: 1 \.'e

i
.!

I I
I I

I
~~

1 ptlbj i~~
~-:·

/1'<.'·'-·'.l ·- ~::._rt: .c·.

~uti\ 1 c _ •·har.3e ,
~

Case Studies

•·ef l,r-(-l • .. ·~
I \

'pr ll'~if'J.J..'Il'~·h.;;,,qe 1·-. I I .' f'•il·l · ..
. . ··~ - • I ~ :

·.'Ot,t .. ~tll$ ··:j~=~

. .
l ··-eil.e;<.(-· .:
.•.•nt .:ll!l.. i \1

j
H 1 ~r e .h ,,,.~-:- ~!0 I_

1
l ~-; puh [1 ·~ .. -::lt.:tr.-: .

"e': _ll3t:-~_,·e~.
• ef b\ 1.·e

·e) . .., >l'lt L! lr,
~ pn va{.e_crtange

...

. ,

,.,

~:::.:· .. : -..... __ ..

Figure 46 : Ninth step of the propagation

On the last step of the propagation, it can be seen (Figure 46) that all the

system is potentially impacted by the initial modification. However the potenti­

ality level of the different impacts (tliggers) indicates which patts of the system

seem to be really affected by the initial modification.

page 88

Case Studies

6.2. Larger Example

6.2.1. The Graph Tool System

The Graph Tool System is aX/Motif Library (for the Widget XmGraph) and
several programs which test or use this library. The Graph Tool System will be

considered here like the library and the test program: "gtest".

It is composed of 5 ".c" files and 4 ".h" files: gtest.c, libXmGraph.a
(XmGraph.c, XmArc.c, XmGraphUtil.c, XmGraphPrint.c) and XmGraphP.h,
XmGraph.h, XmArcP.h, XmArc.h. The extension "P.h" is for a private usage

of the private components of the library as the extension ".h" is for end user
usage. The length of the ".c" and ".h" files is: 26000 lines and 700 Ko of C
source code.

6.2.2. Generation of Dependencies

A sub-set of dependencies for "gtest" are is shown in Figure 47. For the sys­
tem these are 4420 objects and 3323 links.
id_object((0,0], ['XmArc.c' ,none,none,none,none]).
id_object([0,1], ['XmGraph.c' ,none,none,none,none]).
id_object([0,2], ['XmGraphPrint.c',none,none,none,none]).
id_object([0,3], ['XmGraphUtil.c',none,none,none,none]).
id_object([0,4], ('gtest.c' ,none,none,none,none]).
id_object([1,0], ['@external' ,sc([], @),'Boolean', 'ArcVisibleinGraph', ['@fun']]).
id_object([1,1], ['@external' ,sc([J, @),'Boolean', 'ExistAnStructuralLinkBetween', ['@fun'))).
id_object([1,2), ['@external' ,sc([), @) ,hrtime_t,gethrtime, ['@fun'))).

id_object([995,0), ['@external' ,sc([), extern),void, 'XmAddTabGroup', ['@fun'])).
id_object([997,0], ['@external' ,sc([), extern),void, 'XrnChangeColor', ['@fun'))).
id_object([998,0], ['@external' ,sc([), extern) ,void, 'XrnCvtStringToUnitType', ['@fun'! J).
id_object([999,0), ['@external' ,sc([), extern) ,void, 'XmFontListEntryFree', ['@fun'])).
object([O,O],module).
object([0,1] ,module).
object([0,2) ,module).
object([0,3) ,module).
object([0,4) ,module).
object([1,0) ,function).
object ([1,11, function).
object([1,2) ,function).
object([1,3) ,function).
object ([1, 4], function) .
object([10,0],function).
link([0,0) ,contains, [1,0)).
link([O,O) ,contains, [10,0] I.
link([O,OJ ,contains, [11,0] 1.
link([O,O) ,contains, [12,01 I.
link([O,O] ,contains, [13,0] 1.

link([98,4) ,contains, [1946,4)).
link([98,4), fun_uses_fun, [1111,0)).
link ([98,41, fun_uses_fun, [612, 0)) .
link ([98, 4 J , fun_uses_fun, [63 7, 0 II .
link([99,4) ,contains, [1947,4)).
link([99,4] ,contains, [1948,411.
link([99,4] ,contains, [1949,4]).
link ([99,41 , fun_uses_fun, [45,3 J I .

Figure 47: Sub-set of Dependencies for "gtest".

page 89

Case Studies

6.2.3. Structure Visualisation of the Graph Tool

A part of the dependency graph for "gtest" is shown in Figure 48.

Figure 48 : Sub-graph of the Dependencies for "gtest".

The graph in Figure 48 is very large because every code object (function,

variable) has been represented as a node in the graph. In order to reduce the

size of the graph but still represent these dependencies, we need to structure the

system into modules and even in functional levels. So each level of the struc­

ture could be a graph which can be obtained by opening the node in the upper

level of the structure.

6.3. Summary

As the model of the propagation will be finer the description of the impacts

will be also more precise. However, the maintainer will have to validate the

impacts on the system by his knowledge of the system and by looking at the

page 90

Case Studies

system (at the position of the impact). This feedback that the maintainer will

have to give to the propagation engine is necessary as the information

(Dependencies) given to this tool would have been generally produced by auto­

matic dependencies generation. This can lead to an incomplete representation

of the dependencies of the system because of the complexity of such a task.

The drawback of visualisation of large systems is that the graph becomes very

large and thus needs to be structured in some way.

page 91

Conclusion

7. Conclusion

7 .1. Summary

The results of this master are the dependencies generation for C code and a

tool to visualize, as a graph, the dependencies and the impacts on them of some

modifications. Some studies (Graph theory, Software Maintenance Tools and

Interaction paradigms) have been achieved in order to obtain these results.

7 .2. Achievement of the Research

This research has achieved the different proposed goals:

• How to model the system on which the impact analysis has to be per­

formed?

The system can be modelled as a set of objects and links as shown in

5.4. Dependencies Generation and 5.4.2. Inference for a particular

granularity of the system.

• How to propagate the information that an object has been modified

through the system and to determine the possible impacts of this

change?

The system is supposed to be modelled in terms of objects and links

And a propagation model is modelled according to the dependency

model used to represent the system. The propagation engine (5.5.

Propagation Engine) together with the initial set of modifications

that the maintainer want to apply on the system will give as result

the set of impacted objects of the system.

• How to visualize the system and the impacts of a set of changes on it ?

The graph tool developed during this master allows the maintainer

to see the system as a graph, representing the dependencies between

the different entities of the system, and as the impact analysis is per­

formed to see the impacts (triggers on the objects of the system) on

the system.

page92

Conclusion

As criteria for success (1.3. Criteria for Success):

• Description of a model for Software Maintenance process focuses on

Impact Analysis.

Figure 5 and Figure 5 show a Software Maintenance process which

include and focus on the Impact Analysis task.

• An Impact Analysis System that will visually represent the connectiv­

ity between objects and show the different impacts and their impor­

tances:

The graph tool which has been developed allows the Impact Analy­

sis system which will be done to do these two requirements.

• Evaluation of the Impact Analysis System:

An evaluation of the Impact Analysis System has been done for the

graph tool and the propagation engine with the models (Depend­

ency and Propagation) in 6. Case Studies even if the evaluation has

been done without the complete and integrated Impact Analysis sys­

tem.

7 .3. Further Research

Several areas of this research would have to be followed:

• The dependency generation is of great interest because it is needed for

testing purpose for the impact analysis on real system.

• The graph tool needs still a lot of improvements concerning the auto­

matic placement of nodes and links in the graph (for instance the aes­

thetics could be chosen by the user).

• The graph tool could be improved as a navigation and browser tool

(which has been already partially done with the integration with

mosaic (The graphical World Wide Web browser for Unix/X/Windows

platform)).

• The impact analysis tool together with the navigation and browser

tool will have to be completed as an extension of the graph tool.

• The graph tool need to address the issue of displaying large graphs

using some structuring of the subject system.

page 93

Glossary

8. Glossary

Adaptive maintenance
It is the maintenance which is required because of changes in the environ­
ment of the software system.

Arcs incident to and from a node
See Arcs incident to and from a node [CARRE_91].

Arcs incident to and from a node [CARRE_91]
If an arc A has a node ni as its initial end-point, we say that the arc is inci­
dent from ni; whereas if an arc A has node nj as its terminal end-point we
say that arc A is incident to nj. The number of arcs incident from a node ni
is called the out-degree of ni and it is denoted by p+(ni); while the number
of arcs incident to ni is called the in-degree of ni and is denoted p-(ni).

Centre of Software Maintenance

Change modelling
See Change modelling [ARNOW_93].

Change modelling [ARNOW _93]
Using objects and relationships to characterize a change.

Component
See Component [QUEILLE_93].

Component [QUEILLE_93]
A software system comprises the following elements (list not extensive):
* source code,
* generation and installation procedures, with associated generation and
installation tools,
* data files which may be required to execute properly the software,
* usage documentation and operational procedures, with associated tools,
* development documentation (requirement specifications, design specifi­
cations, ...), if this documentation is maintained, and/or maintenance docu­
mentation, with associated tools,
* test cases, with associated tools,
The word "component" will be used to designate any of these elements at
any different granularity levels.

page94

Glossary

Corrective maintenance
It is the correction of previously undiscovered system errors.

Decomposition [ARNOLD_93]
A representation of one document that features new, parsed information
not explicitly parsed in the original document, is a decomposition.
Example:
Non-decomposed: "Bob saw the ... "
Decomposed: {(Bob subject) (saw verb) (the article-for-object) ... }

Dependency model
It is a representation in terms of types of objects/links, types of link that
are allowed between two types of objects that can allow the representation
of a software system by instantiation of this model on the system to ana­
lyse.

Development life-cycle [IEEE_83]
It is the period of time that begins with the decision to develop a software
product and ends when the product is delivered. The development cycle
typically includes a requirement phase, design phase, implementation/test­
ing phase and integration/testing phase.

Digraph
is a directed graph, all the arcs (edges) between nodes are directed: they
have a source and a destination node.

Exploratory programming
See Exploratory programming [SOMMERVILLE_92].

Exploratory programming [SOMMERVILLE_92]
This approach involves developing a working system, as quickly as possi­
ble, and then modifying that system until it performs in an adequate way.
This approach is usually used in artificial intelligence (AI) systems devel­
opment where users cannot formulate a detailed requirements specification
and where adequacy rather than correctness is the aim of the system
designers.

Formal transformation
See Formal transformation [SOMMERVILLE_92].

Formal transformation [SOMMERVILLE_!.J2]

page95

Glossary

This approach involves developing a formal specification of the software
system and transforming this specification using correctness-preserving
transformations, to a program.

Impact Analysis
See Impact Analysis [WIWE_94].

Impact Analysis [WIWE_94]
The task of assessing the effects of making a set of changes to a software
system.

Initial and terminal end-points of an arc
See Initial and terminal end-points of an arc [CARRE_91].

Initial and terminal end-points of an arc [CARRE_91]
For an arc (ni,nj), the node ni is the initial end-point and the node nj is the
terminal end-point.

Matra Marconi Space France
French-English company specialized in Aerospace domain. This company
has supported my work and my MSc in Durham university.

Partial graphs
See Partial graphs [CARRE_91].

Partial graphs [CARRE_91]
If we remove from a graph G=(N,A) a subset of its arcs, we are left with a
graphoftheform: (H= (N,A')),where(A'cA)
which is called a partial graph of N.

Paths and cycles
See Paths and cycles [CARRE_91].

Paths and cycles [CARRE_91]
A path is a finite sequence of arcs of the form:

J.l = (n·, n.)• (n·, n.)• ... , (n· , n.) 'o 11 11 12 1r-l 1r

i.e. a finite sequence of arcs in which the terminal node of each arc coin­
cides with the initial node of the following arc; the number of arc 'r' of
arcs in the sequence is called the order of the path. The initial end-point of
the first arc and the terminal end-point of the last arc of a path are called
respectively the initial and terminal end-point of the path. A path whose
end-points are distinct is said open, whereas a path whose end-points are

page 96

Glossary

coincide is called a closed path, or cycle. A path is elementary if it does
not traverse any node more than once, i.e. if all the initial end-points (or all
the terminal end-points) of its arcs are distinct. It is evident that a path is
completely determined by the sequence of nodes nio' n;1• • •• ,n;, which it vis­
its; we shall sometimes find it convenient to specify a path by listing this
node sequence rather than the arc sequence.

Planar
A drawing (of a graph) is planar if no two arcs intersect.

Planar representation
A planar representation is a data structure representing the combinatorial
adjacencies between the faces of a planar drawing.

Perfective maintenance
It means changes which improve the system in some way without chang­
ing its functionality.

Preventive maintenance
It includes the activities designed to make the code, design and documen­
tation easier to understand and to work with, such as restructuring or docu­
mentation up-dates. This type of maintenance usually improves the
maintainability of the system.

Propagation model
It is a representation in terms of types of modifications allowed on objects/
links and propagation rules of modifications on the Dependency model. It
depends on the dependency model on which it is based.

Propagation rule
It is a representation of modification on the state of a system from a set of
changes on the system to another set of changes on the same system.

Proto typing
See Prototyping [SOMMERVILLE_92].

Prototyping [SOMMERVILLE__92]
This approach is similar to Exploratory programming in that the first
phase of development involves developing a program for user experiment.
However, the objective of the development is to establish the system
requirements. This is followed by a re-implementation of the software to
produce a production-quality system.

page97

Software Engineering
See Software Engineering [BOEHM_76],Software Engineering
[IEEE_90].

Software Engineering [BOEHM_76]

Glossary

Software engineering involves the practical application of scientific
knowledge to the design and construction of computers programs and the
associated documentation required to develop, operate and maintain them.

Software Engineering [IEEE_90]
The systematic approach to the development, operation maintenance and
retirement of software.

Software life-cycle [IEEE_83]
It is the period of time that starts when a software product is conceived and
ends when the product is no longer available for use. The software life­
cycle typically includes the development life-cycle and the operation and
maintenance phase.

Software Maintenance
See Software Maintenance [IEEE_90].

Software Maintenance [IEEE_90]
The modification of a software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the product to a
changed environment.

Sub-graphs
See Sub-graphs [CARRE_91].

Sub-graphs [CARRE_91]
If we remove from a graph G=(N,A) a subset of its nodes, together with all
the arcs incident to or from those nodes, we are left with a graph of the
form:

(H = (N', A')), where (N' c N) ,A' = An (N' x N')

which is called a sub-graph of N. We may describe H more precisely, as
the sub-graph of G generated by N'.

System assembly from reusable components

page98

Glossary

See System assembly from reusable components [SOMMERVILLE_92].

System assembly from reusable components [SOMMERVILLE_92]
This technique assumes that systems are mostly made up of components
which already exist. The system development process becomes one of
assembly rather than creation.

Traceability
See Traceability [ARNOLD_93].

Traceability [ARNOLD_!)3]
Finding the objects and relationships affected by a change.

Ripple Effects
See Ripple Effects [YAU_78].

Ripple Effects [YAU _78]

They are the phenomena by which changes to one program area have ten-

dencies to be felt in other program areas.

University Of Durham
The University Of Durham is the third oldest in England and was founded
in 1832. It consists of eleven Colleges and two Societies, each of which
controls its own undergraduate admissions and accommodations. Post­
graduate admissions and accommodations are controlled centrally through
the Postgraduate Admission Office. This Office will also assist in finding
appropriate accommodation.

page99

9. Bibliography

[ARNOLD_82]
"The dimensions of healthy maintenance"
R.S. ARNOLD and D.A. PARKER

Bibliography

Proceedings of the 6th International Conference Software Engineering
pp 10-27
1982

[ARNOLD_93]
"Software Impact Analysis"
R.S. ARNOLD
Conference on Software maintenance (A One Day Seminar)
1993

[BATINI_84]
"What is a good diagram ? A pragmatic approach"
C. BATINI, L. FURLAN! and E. NARDELLI
Proceedings 4th International Conference on Entity Relationship
Approach
Chicago, IL
1985

[BARROS_94]
"Specification of a Propagation Engine for Impact Analysis"
S. BARROS/ MA1RA MARCONI SPACE
AMES Deliverable D3.4.2, version 1.0,
1994.

[BATTISTA_88]
"Hierarchies and Planarity Theory"
G. Di BATTISTA and E. NARDELI
IEEE Transactions on Systems, Man and Cybernetics, 18 (6)
pp 1035-1046
November/ December 1988

[BATTISTA_93]
"Algorithms for Drawing Graphs: An Annotated Bibliography"
G. DIBATTISTA, P. EADES, R. TAMASSIA and I.G. TOLLIS
1993

page 100

[BENNETT_91]
"Software maintenance"
K. BENNETT, B. CORNELIUS, M. MUNRO, D. ROBSON
Software Engineer's Reference Book
Chapter 20
J.A. McDermid, Oxford: Butterworth-Heinemann
1991

[BIRJANDI_89]
"Code Analysis and Maintenability"
A. BIRJANDI

Bibliography

IEEE Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences, II()
pp 477-478
1989

[BLOESCH_93]
~'Aesthetic Layout of Generalized Trees"
A. BLOESCH
Software-Practice and Experience, 23(8)
pp 817-827
August 1993

[BOEHM_75]
"The high cost of software"
B.W.BOEHM
Practical Strategies for Developing Large Software Systems (Horowitz E.,
ed.)
Reading MA: Addison-Wesley
1975

[BOEHM_76]
"Software Engineering"
B.W. BOEHM
IEEE Transactions on Computers, 25(12)
pp 1226-1241
1976

[BOEHM_88]
"A Spiral Model of Software Development and Enhancement"
B.W.BOEHM
Computer, IEEE Computer Society
pp 61-72
May 1988

page 101

[BOLLOBAS_78]
"Extremal Graph Theory"
B. BOLLOBAS
1978

[BUNTER_93]

Bibliography

"PERPLEX: An Extensible Tool Architecture for C Source Code"
T.A. BUNTER
Computer Science Technical Report
University of Durham
June 93

[BURNS_88]
"A Graphical Entity-Relationship Database Browser"
L.M. BURNS, J.L. ARCHIBALD and A MALHOTRA
IEEE Proceedings of the Twenty-First Annual Hawaii International Con­
ference on System Sciences, II ()
pp 694-704
1988

[CALLISS_88]
"Dynamic Data Flow Analysis of C Programs"
F.W. CALLISS and B.J. CORNELIUS
IEEE Proceedings of the Twenty-First Annual Hawaii International Con­
ference on System Sciences, II()
pp 518-523
1988

[CALLISS_89]
"Two Module Factoring Techniques"
F. W. CALLISS and B. J. CORNELIUS
Software Maintenance: Research and Practice, I()
pp 81-89
1989

[CALLISS_90]
"Potpourri Module Detection"
F.W. CALLISS, B.J. CORNELIUS
Proceedings Conference on Software Maintenance (San Diego), IEEE
Computer Society Press
pp 46-51
1990

[CANFORA_93]

page 102

Bibliography

"Extracting Abstract Data Types from C Programs: A Case Study"
G. CANFORA, A. CIMffiLE, M. MUNRO, C.J. TAYLOR
1993

[CARPAN0_80]
"Automatic Display of Hierarchized Graphs for Computed-Aided Deci­
sion Analysis"
M.J. CARPANO
IEEE Transactions on Systems, Man, and Cybernetics, SMC-10(11)
pp 705-715
November 1980

[CARRE_91]
"Graph Theory"
B. CARRE
Software Engineer's Reference Book
Chapter4
J.A. McDermid, Oxford: Butterworth-Heinemann
1991

[COLBROOK_89]
"The Retrospective Introduction of Abstraction into Software"
A COLBROOK and C. SMYTH
Conference on Software Maintenance, Miami, IEEE
pp 166-173
1989

[COOPER_88]
"Interprocedural Side-Effect Analysis in Linear Time"
K. D. COOPER and K. KENNED
Proceedings of the SIGPLAN'88
Page 57-66
1988

[CORBI_88]
"Code Analysis and Maintenability"
T. A. CORBI
IEEE Proceedings of the Twenty-First Annual Hawaii International Con­
ference on System Sciences, II()
pp 490-491
1988

[CORDY_90]

page 103

Bibliography

"TuringTool: A User Interface to Aid in the Software Maintenance Task"
J. R. CORDY, N. L. ELIOT and M. G. ROBERTSON
IEEE Transactions on Software Engineering, 16(3)
pp 294-301
March 1990

[DANNENBERG_90]
"A Structure for Efficient Update, Incremental Redisplay, and Undo in
Graphical Editors"
R. B. DANNENBERG
Software Practice and Experience, 20(2)
pp 110-132
February 1990

[DE0_74]
"Graph theory with applications to Engineering and Computer Science"
N.DEO
Prentice-Hall series in Automatic Computation
1974

[DING_90]
"A Framework for the Automated Drawing of Data Structure Diagrams"
C. DING and P. MATETI
IEEE Transactions on Software Engineering, 16(5)
pp 543-557 .
May 1990

[DUNLAVEY_93]
"Differential Evaluation: a Cache-based Technique for Incremental
Update of Graphical Displays of Structures"
M. R. DUNLAVEY
Software- Practice and Experience, 23(8)
pp 871-893
August 1993

[GALLAGHER_91]
"Using Program Slicing in Software Maintenance"
K. B. GALLAGHER and J. R. LYLE
IEEE Transactions on Software Maintenance
1991

[GANSNER_88]
"DAG, A Program that Draws Directed Graphs"
E.R. GANSNER, S.C. NORTH and K.P. VO

page 104

Software Practice and Experience, 18(11)
pp 1047-1062
November 1988

[GAREY_79]

Bibliography

"Computers and Intractability: A guide to the theory of NP-Completeness"
M.R. GAREY,D. S. JOHNSON
1979

[GOPAL_89]
"Using Automatic Program Decomposition Techniques in Software Main­
tenance Tools"
R. GOPAL and S.R. SCHACH
IEEE
pp 132-141
1989

[GOLUMBIC_80]
"Algorithmic Graph Theory and Perfect Graphs"
M.C. GOLUMBIC
1980

[HARJANI_92]
"Maintenance in a software factory- Towards an integrated maintenance
support environment" ·
D.R. HARJANI, J.P. QUEILLE, J.F. VOIDROT
Proceedings of the ESF Seminar, Berlin, Germany
pp 1-12
1992

[HENNINGER_89]
"A Knowledge-based Design Environment for Graphical NetWork Edi-
tors"
S. HENNINGER, A. IGNATOWSKI, C. RATHKE, D. REDMILES
IEEE Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences, II()
pp 881-891
1989

[HILL_93]
"History-Enriched Source Code"
W.C. HILL and J.D. HOLLAN
ACM Annual Symposium on User Interface Software and Technology
Conference (UIST'93)

page 105

1993

[HOFFMAN_88]
"Trace Specification: Methodology and Models"
D. HOFFMAN and R. SNODGRAS
IEEE Transactions On Software Engineering, 14(9)
pp 1243-1252
September 1988

[HTML_ANALYZER_94]

Bibliography

Tool to analyse and extract links from HTML documents. The "HTML
analyzer" has been developed by James E. Pitkow
(pitk:ow@cc.gatech.edu). Development of this software was funded by the
NASA Earth Observing System Project under NASA contract NAS5-
32392.

[HUGH_90]
"Algorithmic Graph Theory"
J. A. McHugh
Englewood Cliffs: Prentice Hall
1990

[IEEE_83]
"Software Engineering Standards"
ANSI/IEEE Std729,
1983

[IEEE_90]
"An American National Standard and IEEE Standard Glossary of Soft­
ware Engineering Terminology"
IEEE Standards Board and ANSI Standards Institute
ANSI/IEEE Std610.12,
1990

[JABLONOWSKI_89]
"GMB: A Tool for Manipulating and Animating Graph Data Structures"
D. JABLONOWSKI and V. A. GUARNA, JR.
Software Practice and Experience,19(3)
pp 283-301
March 1989

[JIANG_91]
"Program Slicing For C - The Problems In Implementation"
J. llANG, X. ZHOU, D. J. ROBSON

page 106

IEEE
pp 182-190
1991

[KELLER_93]
"Abstraction Refinement: A Model of Software Evolution"
B. J. KELLER and R. E. NANCE
Software Maintenance: Research and Practice, 5()
pp 123-145
1993

[KRAMER_89]
"Workstation Environments for Graphical Programming"
B. KRAMER

Bibliography

IEEE Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences, n()
pp 848-849
1989

[LEUNG_89]
"Insights into Regression Testing"
H. K. N. LEUNG and L.WHITE
IEEE
pp 60-69
1989

[LIENTZ_SO]
"Software Maintenance Management"
B.P. LIENTZ and E,B, SWANSON
Addison-Wesley
Reading MA,
1980

[LYLE_89]
"A Program Decomposition Scheme with Applications to Software Modi­
fication and Testing"
J.R. LYLE and K.B. GALLAGHER
IEEE Proceedings of the Twenty-Second Annual Hawaii International
Conference on System Sciences, no
pp 479-485
1989

[MADHAVJI_92]
"Environment Evolution: The Prism Model of Changes"
N.H. MADHAVll

page 107

IEEE Transactions on Software Engineering, 18(5)
pp 380-392
May 1992

[MOEN_90]
"Drawing Dynamic Trees"
S. SMOEN
IEEE Software,
pp 21-28
1990

[MORET_91]
"Algorithms from P to NP"
B.M.E. MORET, H.D. SHAPIRO
Design & Efficiency, I()
1991

[MOSER_90]
"Data Dependency Graphs for Ada Programs"
L. E. MOSER, Member IEEE
IEEE Transactions on Software Engineering, 16(5)
pp 498-509
May 1990

[NARAYANASWAMY_88]

Bibliography

"Static Analysis: An Aid to Program Maintenance and Development"
K.NARAYANASVV~

IEEE Proceedings of the Twenty-First Annual Hawaii International Con­
ference on System Sciences, II()
pp 492-499
1988

[OZAWA_80]
"A graph-p1anarization algorithm and its application to random graphs"
T. OZAVVA and H. TAKAHASHI
Lectures Notes in Computer Science (108)
Edited by G. GOOS and J. HARTMANIS
Graph Theory and Algorithms
Sendai, Japan, October 1980, Proceedings
Edited by N. SAITO and T. NISHIZEKI
Springier-Verlag
October 1980

[PAULISCH_88]

page 108

"EDGE: An Extendible Graph Editor''
F.N. PAULISCH and W. F. TICHY
Software Practice and Experience, 20(S1)
pp 63-88
June 1988

[PFLEEGER_87]
"Software Engineering: the production of quality software"
S.L. PFLEEGER
Macmillan Publishing
1987

[PFLEEGER_90]
"A Framework for Software Maintenance Metrics"
S.L. PFLEEGER and S. A. BOHNER
IEEE Conference on Software Maintenance
pp 320-327
1990

[PRESSMAN_85]
"Software Engineering: A Practitioner's Approach"
R.S. PRESSMAN.
McGraw Hill, NY, USA
1985

[QUEILLE_93]
"Impact Analysis - Position Paper''
J.P. QUEILLE
Matra Marconi Space France
September 1993

[RAJLICH_90]
"VIFOR: A Tool for Software Maintenance"

Bibliography

V. RAJLICH, N. DAMASKINOS, P. LINOS and W. KHORSHID
Software Practice and Experience, 20(1)
pp 67-77
January 1990

[RAMAMOORTHY_90]
"The Evolution Support Environment System"
C.V. RAMAMOORTHY
IEEE Transactions On Software Engineering, 16(11)
pp 1225-1234

page 109

November 1990

[REINGOLD_81]
"Tidier Drawings of Trees"
E. M. REINGOLD and J. S. TILFORD
IEEE Transactions on Software Engineering, SE-7(2)
pp 223-228
March 1981

[REGGIANI_88]
"A Proposed Method for Representing Hierarchies"
M. G. REGGIANI and F. E. MARCHETTI
IEEE Transactions on Systems, Man and Cybernetics, 18(1)
pp 2-8
January/February 1988

[ROYCE_70]
"Managing the development of large software systems"
W.W.ROYCE
Proceedings WESTCON San Francisco CA
1970

[SIMON_91]

Bibliography

"Requirements for a Software Maintenance Support Environment"
A. SIMON .
MSc by thesis, University of Durham
1991

[SNEED_89]
"The Myth of ''Top-Down" Software Development and its Consequences
for Software Maintenance"
H.M. SNEED
Conference on Software Maintenance, Miami, IEEE
pp 22-29
1989

[SOMMERVILLE_92]
"Software Engineering" (Fourth Edition)
I. SOMMERVILLE
Addison-Wesley
1992

[SUGIYAMA_81]

page 110

Bibliography

"Methods for Visual Understanding of Hierarchical System Structures"
K. SUGIYAMA, S. TAGAWA and M. TODA
IEEE Transactions on Systems, Man and Cybernetics, SMC-11(2)
pp 109-125
February 1981

[TAMASSIA_88]
"Automatic Graph Drawing and Readability of Diagrams"
R. TAMASSIA, G. Di BATTISTA and C. BATINI
IEEE Transactions on Systems, Man and Cybernetics, 18(1)
pp 61-79
January/February 1988

[TURVER_89]
"Software Maintenance: Generating Front Ends for Cross Reference
Tools"
R.J. TURVER
M.Sc Thesis, University of Durham, Dept. Computer Science
1989

[TURVER_93a]
"A Decision Based Model of the Software Maintenance Process"
R. J. TURVER and M. MUNRO
University of Durham, Dept. Computer Science
1993

[TURVER_93b]
"An Early Impact Analysis Technique for Software Maintenance"
R. J. TURVER and M. MUNRO
Software Maintenance: Research and Practice, Vol. 6, 35-52
1994

[TURVER_93c]
"Early Detection of Ripple Propagation In Evolving Software Systems"
R. J. TURVER
University of Durham, Dept. Computer Science
1993

[WARD_89]
"The Maintainer's Assistant"
M. WARD, F.W. CALLISS and M. MUNRO
Conference on Software Maintenance, Miami, IEEE
pp 307-315

page 111

1989

[WETHERELL_79]
"Tidy Drawings of Trees"
C. WETHERELL and A. SHANNON
IEEE Transactions on Software Engineering, SE5(5)
pp 514-520
September 1979

[WILDE_87]
"Dependency Analysis: An Aid for Software Maintenance"
N. WILDE and B. NEJMEH
SERC TR-13-F
Software Engineering Research Center,
University of Florida/Purdue University
September 1987

[WILDE_89]

Bibliography

"Dependency Analysis Tools: Reusable Components for Software Mainte-
nance"
N. WILDE, R. HUITT and S. HUITT
Conference on Software Maintenance, Miami, IEEE
pp 126-131
1989

[WILDE_92]
"Locating User Functionality in Old Code"
N. WILDE, J.A. GOMEZ, T. GUST and D. STRASBURG
ICSM-92(Intemational Conference for Software Maintenance).
1992

[WILDE_94]
"The Impact Analysis Task in Software Maintenance: A Model and a Case
Study"
N. WILDE, J.P. QUEILLE, J.F. VOIDROT, M. MUNRO.
ICSM 94 (International Conference for Software Maintenance).
1994

[XANTHAKIS_93]
"Une algebre du flot des donnees pour !'analyse statique d'un programme"
S. XANTHAKIS & C. SKOURLAS
Internal report, OPL, Departement Recherche, UNICITE, 10 Rue Alfred
Kasler, 14000 CAEN, FRANCE.

page 112

1993

[YAU_78]
"Ripple Effect Analysis of Software Maintenance"
S.S. YAU, J. S. COLLOFELLO and T. MACGREGOR
Proceedings IEEE COMPSAC
pp 60-65
1978

[YAU_80]
"Some Stability Measures for Software Maintenance"
S.S. YAU, and J. S. COLLOFELLO
IEEE Transactions on Software Engineering, SE-6(6)
pp 545-552
November 1980

[YAU_85]
"Design Stability Measures for Software Maintenance"
S.S. YAU, and J. S. COLLOFELLO
IEEE Transactions on Software Engineering, SE-ll (9)
pp 849-856
September 1985

page 113

c

Bibliography

Bibliography

page 114

Bibliography

page 115

Bibliography

page 116

