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Abstract

The problem area addressed in this thesis is extraction of a data design
from existing data intensive program code. The purpose of this is to help a
software maintainer to understand a software system more easily because a view
of a software system at a high abstraction level can be obtained.

Acquiring a data design from existing data intensive program code is an
important part of reverse engineering in software maintenance. A large proportion
of software systems currently needing maintenance is data intensive. The research
results in this thesis can be directly used in a reverse engineering tool.

A method has been developed for acquiring data designs from existing data
intensive programs, COBOL programs in particular. Program transformation is -
used as the main tool. Abstraction techniques and the method of crossing levels
of abstraction are also studied for acquiring data designs.

A prototype system has been implemented based on the method developed.
This involved implementing a number of program transformations for data ab-
straction, and thus contributing to the production of a tool. Several case studies,
including one case study using a real program with 7000 lines of source code, are
presented. The experiment results show that the Entity-Relationship Attribute
Diagrams derived from the prototype can represent the data designs of the original
data intensive programs.

The original contribution of the thesis is that the approach presented in
this thesis can identify and extract data relationships from the existing code by
combining analysis of data with analysis of code. The approach is believed to be
able to provide better capabilities than other work in the field.

The method has indicated that acquiring a data design from existing data
intensive program code by program transformation with human assistance is an
effective method in software maintenance. Future work is suggested at the end of

the thesis including extending the method to build an industrial strength tool.
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Chapter 1

Introduction

1.1 Purpose of the Research and Overview of
Problem

The research described in this thesis was motivated by the increasing industrial
demand to carry out software maintenance more efficiently, because software main-
tenance has become the most costly stage of the software lifecycle [21,22]. Study
shows that reverse engineering is the first step in understanding the software to
be maintained. Reverse engineering consists of two main activities - redocumen-
tation and design recovery, and design recovery is the more challenging subset of
reverse engineering [25,52]. Data design recovery of software is an important part
of general design recovery. The purpose of the research is to establish the feasibil-
ity of using data abstraction techniques within a transformational programming
approach by acquiring data designs from existing legacy programs.

In the typical waterfall software life cycle, the stage of design exists after the
stage of requirements analysis and before the stage of implementation. Require-
ments analysis establishes what the system should do and under what circum-
stances it is to be done, whereas design establishes how it is to be done. Data
design establishes what data should be held by the software system and how that
data should be organised and used.

Data design recovery is the process in reverse. It should produce the in-
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1960 1961 1992
Evolution
# _—’- ........ -—’.
Data Design | — |Data Design | —> = 00 — | Data Design
l l Modifications l
Code + Data| — | Code + Data| —> = = = — | Code + Data

Figure 1.1: Evolution of Data Design and Code

formation required for a software maintainer to understand what software does,
how it does it and why it does it, and so forth, via the data which the software
uses. Usually, data design recovery recreates data abstractions from a combina-
tion of code, existing design documentation (if available), personal experience,
and general knowledge about problem and application domains. .

In practice, most software is heavily modified. The actual data design exist-
ing now will typically be very different from the original data design. Therefore,
it may be thought very difficult and meaningless to extract the original data de-
sign. But data usually models the real world which we understand. There may
be an opportunity to extract the current data design from the current version of
the code, as the current data design should represent the reality. For example,
a banking system might have been in use since (say) 1960. As the real banking
world changes, the data/code of the banking system has to be modified. By 1992,
it is probably not necessary to recover the data design of the system for 1960.
Nevertheless, it is possible to recover the data design for 1992 from the code and

the general knowledge of the banking world of 1992 (Figure 1.1). This suggests
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fnajor understanding of data and/or code will be needed along the way.

Data plays a significant role in software. A good understanding of data
used in a software system will assist a software maintainer in understanding the
software system, 50 as to improve the maintenance activity.

The terms used in the chapter, such as software maintenance, reverse engi-

neering, etc., will be defined in the following chapters.

1.2 Scope of the Thesis and Original
Contribution

The primary goal of reverse engineering a software system is to increase the overall
comprehensibility of the system in the software maintenance process. Five key ob-
jectives encompassed by the goal of software understanding are identified by [52]:
to cope with complexity, to generate a,ltern.ate views, to recover lost information,
to detect side effects and to synthesise higher abstractions. According to these
five general objectives, five concrete objectives were identified correspondingly for

the research in this thesis:

1. Building A Tool — A key to tackling the complexity and volume of software
i1s automated support. In reverse engineering an effective method is only
commercially viable when it is backed up by tools. So a prototype system

should be build as a demonstrator of this research.

2. Generating Entity-Relationship Attribute Diagrams — Graphical represen-
tations are good aids to understanding. Entity-Relational Attribute Dia-
grams have long been used as representations for data design. To derive
data designs presented as Entity-Relational Attribute Diagrams is another

objective of this research.

3. Recovering Lost Information — Information useful to software maintainers
may be lost in the process of software evolution, in particular that software
being heavily maintained. For example, modifications are often not recorded

in the documenta,tiAon, especially at a level higher than the code itself. Data
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design recovery can assist us to salvage from the existing code potentially

useful information.

4. Detecting Possible Faults — Mistakes could have been made when a software
was first built or when a modification was carried out in the software’s
history. Data design recovery can be directly helpful in detecting faults in
the software, because the obtained data design can show the true structure

of the code and it is easier to spot faults in data design than in code.

5. Viewing Software at a Higher Abstraction Level — Software can be viewed at
different abstraction levels. In particular, data, which is the main component
of software, can be viewed at the code level and conceptual level (to be
discussed in detail in later chapters). Obtaining data designs which belong
to a conceptual data level makes it possible to view software at a higher

abstraction level.
The scope of the thesis includes:

e Development of a data design recovery method: a method is established for
discovering possible data designs from existing data-intensive programs for

the purpose of reverse engineering.

e Implementation of a prototype system: a system is constructed for demon-

strating the success of the above method.

e Experimentation with example programs: a number of programs are used
for experiments with the prototype system and common problems in the

programs, such foreign keys, are examined.

The original contribution of the thesis is to combine formal methods, trans-
formational programming, data abstraction techniques and crossing levels of ab-
straction techniques for acquiring data designs from the existing programs. A
method is proposed in the thesis and the result of applying the method shows
that data relationships which exist only in the code can be identified and ex-

tracted. A prototype is built to demonstrate the research results.
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The literature survey in Chapter 2 and 3 shows that there are no reverse
engineering tools currently existing which are able to acquire an Entity-Relational
Attribute Diagram directly from program code in this way.

Proving the correctness of tra,ﬁsformations is not a focus of this thesis because
it has been addressed in other research spch as in [155]. Tt is also not intended to
build an industrial-strength tool but it is pointed out that future research can be

fruitful if carried out along the direction which is lproposed in this thesis.

1.3 Criteria for Success

The success of the research described in this thesis is determined by the following

criteria:

o If we start with old, heavily modified code which has never been developed
using a formal or informal method, how viable is it to extract a program

data design or specification from the code?

o If it is possible under certain restrictions, what are these restrictions? What

exactly does the user need to supply?

e What is the method for extracting data design from the existing data inten-

sive code?

o Obviously the process involves crossing levels of abstraction. How do we

cope with this in order to obtain a data design from existing data intensive

code?
¢ Can we build a tool to demonstrate the approach developed in this thesis?

e What is the metric to measure the resultant code (or data design) which

has been reverse engineered by this method?
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1.4 Thesis Structure

The structure of the thesis is as follows:

Chapter 2 provides an overview of the software engineering i)rocess and shows
how reverse engineeéring fits into the process.

Chapter 3 gives an overview of related research in reverse engineering and
current research in the area of reverse engineering.

The remaining chapters describe the research undertaken within the project.

Chapter 4 introduces data abstraction techniques, data abstraction levels
and data design representations used in forward engineering and discusses the
way in which they are used in reverse engineering. It also describes the problems
of acquiring data designs from existing data-intensive programs.

Chapter 5 introduces the environment in which the prototype components
of the Maintainer’s Assistant for acquiring data designs from existing code are to
be developed, and proposes a design recovery method.

Chapter 6 gives the reason why and how the existing WSL has to be ex-
tended and how the approach of transformational programming is used in the
Maintainer’s Assistant.

Chapter 7 discusses the use of crossing levels of abstraction to acquire data
designs.

Chapter 8 describes the i)rototype components of Maintainer’s Assistant
which apply the result of the research in this thesis and the implementation of the
prototype components.

Chapter 9 describes the details of experimenting with real program examples
with the prototype, and shows the results obtained from the use of the prototype.

Chapter 10 summarises the thesis, assessing the research carried out in this

- thesis against the proposed criteria and suggesting areas for future research.

Statement: Although this research has been carried out in a collaborative
project, REFORM, all work in this thesis is by the author (an original member
of the REFORM project), except where explicitly stated.



Chapter 2

Software Engineering

2.1 Software and Software Engineering

2.1.1 Computer System Evolution

Although the technological revolution of computing is just a few decades old, a
number of significant subrevolutions have taken place. During this time, software
development has been closely coupled to computer system evolution.

Computer system evolution can be divided into four eras [132]. The first era
was from the late 1940s to the mid-1960s. During this period, hardware underwent
continual change and software development was largely unmanaged. Also batch
orientation was used for most systems; software was customer designed for each
application, often implemented by a single person and seen as a “craft”, and had

a relatively limited distribution.

The second era of computer system evolution spanned the decade from the
mid-1960s to the late 1970s. Multiprogramming and multi-user systems intro-
duced new concepts of human-machine interaction. Real-time systems could col-
lect, analyse, and transform data from multiple sources, thereby controlling pro-
cesses and producing output in milliseconds rather than minutes. Advances in
on-line storage devices led to the first generation of data base management sys-
tems. At the same time, people started to use product software and software was

developed for widespread distribution in a multidisciplinary market. Software



Chapter 2. Software Engineering 8

3

purchased from outside the organisation was extended by the addition of new
program statements to meet new needs. All of these software products had to
be corrected when faults were detected, modified as user requirements changed,
or adapted to new hardware. These activities were collectively called software
maintenance. Efforts spent on software maintenance began to absorb resources
at an alarming rate, and the personalised nature of programs made them very
difficult to maintain. A software crisis had begun.

The third era of computer system evolution began in the mid-1970s. Dis-
tributed systems greatly increased the size complexity of computer-based systems.
Global and local area networks, high band-width digital communications and in-
creasing demands for data access put heavy demands on software developers.
Microprocessors and personal computers were widely used. The personal com-
puter has been the catalyst for the growth of many software companies. While
the software companies of the second era sold hundreds or thousands of copies of
their programs, the software companies of the third era sell tens and even hun-
dreds of thousands of copies. Personal computer hardware is rapidly becoming
a commodity, with software providing the differentiating characteristics. Many
people in industry and at home spent more money on software than they did to
purchase the computer on which the software runs.

The fourth era in software is just beginning. Fourth generation techniques
(4GT) for software development are changing the manner in which some segments
of the software community build computer programs. Object-oriented technolo-
gies are rapidly displacing more conventional software development approaches in
many application ares. Expert systems and artificial intelligence software have fi-
nally moved from laboratory into practical application for wide-ranging problems
in the real world. Artificial neural network software has opened exciting possibil-
ities for pattern recognition and human-like information processing abilities. As
we move into the fourth era, the software crisis continues to intensify.

The software crisis alludes to a set of problemé encountered in the develop-
ment of computer software. The problems are not lixﬁited to software that “does

not function properly” according to required criteria. Rather, the software crisis
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encompasses problems associated with how we develop software, how we maintain
a growing volume of existing software, and how we can expect to keep pace with
a growing demand for more software.

' Problems associated with the software crisis have been caused by the char-
acter of software itself. Software is a logical rather than physical system element;
therefore, success is measured by the standard of a single entity rather than many
manufactured entities. Software does not wear out. If faults are encountered,
there is a high probability that each was inadvertently introduced during devel-
opment and went undetected during testing. We replace “defective parts” during
software maintenance, but we have few, if any, spare parts; i.e., maintenance often
includes correction or modification to design.

Recognising problems and their causes is the first step towards finding so-
lutions. Then the solutions themselves must provide practical assistance to the
software developer, improve software quality, and allow the “software world” to
keep pace with the hardware world.

. There is no single best approach to a solution for the software crisis. How-
ever, by combining comprehensive methods for all phases in software development:
better tools for automating these methods; more powerful building blocks for soft-
ware implementations; better techniques for software quality assurance; and an
overriding philosophy for coordination, control, and management, we can achieve

a discipline for software development — a discipline called software engineering.

2.1.2 Software Engineering and its Paradigms

Use of the term “software engineering” can be traced back at least as far as a 1968
NATO conference held in Garmisch, West Germany and the follow-up conference
held near Rome, Italy, in 1969. The following definition is from Naur [125)].

Software engineering is the establishment and use of sound engineering
principles in order to obtain economically software that is reliable and works effi-
ciently on real machines.

This was partly prompted by the problems encounted in developing the Op-
erating System OS360 for the IBM-360 computer.
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Software engineering encompasses a set of three key elements — methods,
tools, and processes. Software engineering methods provide the techniques for
building software. Methods encompass a broad array of tasks that include: de-
sign of data structures, program architecture, and algorithmic procedure; coding;
testing; and maintenance. Software engineering tools provide automated or semi-
automated support for methods. Tools exist to support each of the methods noted
above. Software engineering processes are the glue that holds the methods and
tools together and enables rational and timely development of computer software.
Processes define the sequence in which methods would be applied, the deliverables
(documents,'reports, forms, etc.) that are required, the controls that help assure
quality and coordinate change, and the milestones that enable software managers
to assess progress. .

The above three components of software engineering are often referred to
as software engineering paradigms. A paradigm for software engineering is
chosen based on the nature of the project and application, the methods and tools
to be used, and the controls and deliverables that are required. Three paradigms
have been widely discussed and debated [132]. They are “the classic life cycle”,
“prototyping” and “fourth generation techniques”.

The classic life cycle paradigm is sometimes called the “waterfall model”,
because there is no iteration in the process from the beginning to the end of a
project. It demands a systematic sequential approach to software development.

The life cycle paradigm encompasses the following activities:
e software requirements analysis,
o design,
e coding,
e testing, and
e maintenance.

Prototyping is a process that enables the developer to create a model of the

software to be built and this process allows problems and requirements to be seen
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quickly [46]. Prototyping begins with requirements gathering. Developer and
customer meet and define the overall objects for the software, identify whatever
requirements are known, and outline areas where further definition is mandatory.
A “quick design” then occurs. The quick design focuses on a representation of
those aspects of the_softwé,re visible to the user. The quick design leads to the
construction of a prototype. The prototype is evaluated by the customer/user
and is used to refine requirements for the software to be developed. A process of
iteration occurs as the prototype is “tuned” to satisfy the need of the customer,
while at the same time enabling the developer to understand better what needs
to be done.

Fourth generation techniques encompasses a broad array of software tools
that have one thing in common: each enables the software developer to specify
some characteristic of software at a high level [71]. The tool then automatically
generates source code based on the developer’s specification. The 4GT paradigm
for software engineering focuses on the ability to specify software to a machine at
a level that is close to natural language or in a notation that imparts significant
function, but it tends to be used in a single, well defined application domain. Also

the 4GT reuses existing packages, databases etc. rather than reinvents them.

2.1.3 Advantages and Disadvantages of Three Software
Engineering Paradigms

The classic life cycle is the oldest and the most widely used paradigm for software
engineering, and has a definite and important place in software engineering work.
It prow}ides a template into which methods for analysis, design, coding, testing,
and maintenance can be placed. It has weaknesses as well: real projects rarely
follow the sequential flow that the model proposes, i.e., iteration always occurs
and creates problems in the application of the program; it is often difficult'in the
beginning for the customer to state all requirements explicitly, while the classic life
cycle requires this and has difficulty accommodating the natural uncertainty that
exists at the beginning of many projects; and the customer must be patient — a

working version of the program(s) will not be available until late in the project
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time span [132].

Prototyping is an effective'para,digm for software engineering. The key is to
define the rules of the game at the beginning; that is, the customer and developer
must both agree that the prototype is built to serve as a mechanism for defining
requirements. It is to be discarded (at least in part), and the actual software
engineered with an eye towards quality and maintainability. The problems with
this paradigm are: the customer sees what appears to be a working version of
the software, unaware that in the rush to get it working overall software qual-
ity or long term maintainability have not been considered; the developer often
makes implementation compromises (e.g., using inappropriate operating system
or programming language, and inefficient algorithms) in order to get a prototype
working quickly; etc.

Though it has been claimed that the fourth generation techniques are likely
to become an increasingly important part of software development during the
next decade because of the dramatic reductions in software development time and
greatly improved productivity for people who build software, current 4GT tools
are not much easier to use than programming languages because the source code
produced by such tools is “inefficient” and the maintainability of large software
systems developed using 4GT is open to question. Problems existing are: imple-
mentation using a 4GT enables the software developer to describe desired results
which are translated automatically into source code to produce those results, but
a data structure with relevant information must exist and be readily accessible
by the 4GT; to transform a 4GT implementation into a product, the developer
must conduct thorough testing, develop meaningful documentation, and perform
all other “transition activities” required in other software engineering paradigms;

the 4GT developed software must be built in a manner that enablés maintenance

to be performed expeditiously.

2.1.4 A Generic View of Software Engineering

A generic view of software engineering can be obtained by examining the process

of software development [132]. The software development process contains three
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generic phases regardless of the software engineering paradigm chosen. The three
phases, definition, development, and maintenance, are encountered in all software
development, regardless of application area, project size, or complexity.

The definition phase focuses on what. That is, during definition, the software
developer attempts to identify what information is to be processed, what function
and performance are desired‘, what interfaces are to be established, what design
constraints exist, and what validation criteria are required to define a successful
system. Thus, the key requirements of the system and the software are identified.
Three specific subprocesses occur in this phase:

System analysis defines the role of each element in a computer-based system,
ultimately allocating the role software will play.

Software project planning allocates resources, estimates costs, defines work
tasks and schedules, and sets quality plans (and identifies risks).

Requirements analysis defines a more detailed information domain and soft-
ware function before work can begin.

The development phase focuses on how. That is, during development, the
software developer attempts to describe how data structure and software archi-
tecture are to be designed, how procedural details are to be implemented, how
the design will be translated into a programming language, and how testing will
be performed. Three specific steps also occur in this phase:

Software destgn. Design translates the requirements for the software into
a set of representations (some graphical, other tabular or language based) that
describe data structure, architecture, and algorithmic procedure.

Coding. Design representations must be tr.ansla,ted into an artificial language
that results in instructions executable by the computer. The coding step performs
this translation.

Software testing. Once the software is implemented in machine-executable
form, it must be tested to uncover defects in function, in logic, and in implemen-
tation.

The maintenance phase focuses on change that is associated with error cor-

rection, adaptations required as the software’s environment evolves, and modifi-
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cations due to enhancements brought about by changing customer requirements.
The maintenance phase reapplies the steps of the definition and development
phases, but does so in the context of existing software. Three types of change are
encountered during the maintenance phase:

Correction. Even with the best quality assurance activities, it is likely that
the customer will discover defects in the software.

Adaptation. Over time the original environment (e.g., CPU, operating sys-
tem, peripherals) for which the software was developed is likely to change.

Enhancement. As software is used, the customer/user will recognise addi-

tional functions that would provide benefit.

2.1.5 Software Quality and Software Quality Assurance

Software engineering works toward a single goal: to produce high-quality software.
It is therefore useful to clarify the terms “quality” and “software quality assur-
ance” (SQA).

Software quality is defined as: conformance to explicitly stated functional
and performance fequirements, explicitly documented development standards, im-
plicit characteristics that are expected of all professionally developed software
[132].

Software quality factors include [117]: correctness (the extent to which a
program satisfies its specification and fulfills the customer’s mission objectives),
reliability (the extent to which a program can be expected to perform its intended
function with the required precision), efficiency (the amount of computing re-
sources and code required by a program to perform its function), integrity (the
extent to which access to software or data by unauthorised persons can be con-
trolled), usability (the effort require to learn, operate, prepare input, and interpret
the output of a program), maintainability (the effort required to locate and fix
an error or other change in a program) (the maintainability of a software will be
.addressed later), flezibility (the effort required to modify an operational program),
testability (the effort required to test a program to ensure that it performs its in-

tended function), portability (the effort required to transfer the program from one
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hardware and/or software system environment to another), reusability (the extent
to which a program can (or part of a program) be reused in other applications),
and interoperability (the effort required to couple one system to another).
Software quality assurance is an activity that is applied at each step in the
software engineering process. Software quality assurance encompasses procedures
for the effective application of methods and tools, formal technical reviews, testing
strategies and techniques, procedures for change control, procedures for assuring

compliance to standards, and measurement and reporting mechanisms.

2.1.6 Current State of Software Engineering

An important consideration in the development of a software system is the entire
development environment. In its most general sense, the development environ-
ment includes the technical methods, the management procedures, the computing
equipment, the mode of computer use (batch or interactive, centralised or dis-
tributed), the automated tools to support development, the software development
staff, and the physical work space. An ideal development environment should en-
hance the productivity of the information system developers and provide a set of
tools (both manual and automated) that simplifies the process of software produc-
tion. The environment should contain facilities both for the individual member
of a development group and for the overall management of the project [157].
Now, software engineering has become a well defined, constantly evolving
discipline. Software production is much different now from that prior to the year
1968 when the concept of software engineering was first introduced. The state of
the art of software production then can be seen by the problem being discussed
when the two NATO conferences on software engineering of 1968 and 1969 were

held. For example, questions were [133,134]:

e problems of scale,
¢ in what orders to do things,

e strategies and techniques to use,
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e how to specify software systems,
e projects planning and control,
e proliferation of unreliable software, etc.

Though some of these are still problems today, areas where progress has

especially been made are :
e Modelling: requirements, systems.

e Formalisation: specification, verification.

e Computer science: languages, software concepts such as modularity and

abstract data types.

e Method/design paradigm: structured programming, object oriented design,

etc.
e Support: database, tool, software development environments.

e Human factors: user participation, project management, human-computer

interface.
e Metrics: quality, reliability, costing.

Nevertheless, despite such advances, there are still many problems unsolved

in the following areas:

e Formal methods: further development of specification and verification and
their scaling up to cope with large ‘real-life’ problems, particularly with tool

support.

e Metrics: improved methods for assessing and predicting cost, and software

(iuality and reliability, maintainability, and other quality attributes.

o Reuse: software reusability will potentially represent a major way of effecting
desperately needed increases in productivity, if software practice is going to

have any chance of coping with the demand for software products.
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Maintenance: improved and new methods to reduce the cost and to increase

the maintainability.

¢ Management: more reliable, more effective techniques for managing the life

cycle in all aspects.
e Coping with ezisting systems (that were written using old technology).

e Tool support: increased provision of automated software tools for supporting
all activities of software engineering, both on an individual basis and as

integrated support environment.

e Applied technologies: application of other techniques, e.g., Al to the general

enhancement of software enginering .

It can be seen from the above analysis that software maintenance is a very
important part in software engineering. Further issues of software maintenance

will be reviewed in the next section.

2.2 Software Maintenance

In the early days of computing (1950s and early 1960s), software maintenance
comprised a very small part of the software lifecycle. In the late 1960s and the
1970s, as more and more softwére was produced, people began to realise that
old software does not simply die, and at that point software maintenance started
to be recognised as a major activity. By the late 1970s, industry was suffering
major problems with the applications backlog, and software maintenance was now
taking more effort than initial development in some sectors. In the 1980s, it was
becoming evident that old architectures were severely constraining new design
[21]. All of these were placing demands that the changes to the software were
performed. Changes include, for instance, fixing errors, adding enhancements and
making optimisations. Besides the problems whose solutions required the changes

in the first place, the implementation of the changes themselves create additional

- problems.
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One of the five Lehman’s laws of the evolution of a software system directly
addresses the modification of software. It states that “a program that is used
in a real world environment must change or become less and less useful in that
environment” [105]. So mechanisms must be developed for evaluating, controlling,
and making changes.

Software Maintenance is defined as the modification of a software product
after delivery to correct faults, to improve performance or other attributes, or to
adapt the product to a changed environment [2].

Software maintenance is required to meet the needs of three principal “change”
types described in the previous section. So maintenance activities can be di-
vided into these categories correspondingly [149].

The first category is called corrective maintenance. There may be a fault
in the software, so that its behaviour does not conform to its specification. This
fault may contradict the specification, or it may demonstrate that the specification
is incomplete (or possibly inconsistent), s;o that the user’s assumed specification
is not sustained. Corrective maintenance involves removing these faults.

Even if a software system is fault-free, the environment in which it operates
will often be subject to change, e.g., the upgrade of computer hardware or mov-
ing a system from a mainframe to a PC. Modifications performed as a result of
changes to the external environment are categorised as adaptive maintenance,
e.g., the manufacturer may introduce new versions of the operating system, or
remove support for existing facilities, and the software may be ported to a new
environment, or to different hardware.

The third category of maintenance is call perfective maintenance. This
is undertaken as a consequence of a change in user requirements of the software.
For example, a payroll suite may need to be ‘a,ltered to reflect new taxation laws;
a real-time power station control system may need upgrading to meet new safety
standards.

Finally, preventive maintenance may be undertaken on a system in or-
der to anticipate future problems and make subsequent maintenance easier [20].

For example, a particular part of a large suite may have been found to require
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sustained corrective maintenance over a period of time. It could be sensible to
re-implement this part, using modern software engineering technology, in the ex-
pectation that subsequent errors will be much reduced. -

The large cost associated with software maintenance is the result of the
fact that software has proved difficult to maintain. Early systems tended to be
unstructured and ad hoc. This makes it hard to understand their underlying logic.
System documentation is often incomplete, or out of date. With current methods
it is often difficult to retest or verify a system after a change has been made.
Successful software will inevitably evolve, but the process of evolution will lead to
degraded structure and increasing complexity [23,69,105].

Now it is well established that software maintenance is the most costly stage
of the software lifecycle for most projects. In 1970s, 30 - 40 % of the budget
was used on software maintenance, and 40 -60 % in 1980s. Now the budget for
software maintenance is up to 70 - 80 % [29,106,128,132,173].

Software maintenance has its own life cycle and its own features. Over the
years, several software task models have been proposed, while the model by Ben-
nett [21] is used here. Software maintenance can occur due to changing user needs,
to errors which must be fixed, and to a changing environment. Although these
types are different at the detailed level, at a high level they can be described by

an iterative three stage process:

1. request control: the information about the request is collected; the change
1s analysed using impact analysis to assess cost/benefit; and a priority is

assigned to each request.

2. change control: the next request is taken from the top of the priority list;
the problem is reproduced (if there is one); the code (and design and the
specifications if available) are analysed; the changes are designed and docu-
mented and tests produced; the code modifications are written; and quality

assurance is implemented.

3. release control: the new release is determined; the release is built; confidence

testing is undertaken; the release is distributed; and acceptance testing by
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the customer takes place.

Currently, these three steps are almost always undertaken in terms of source
code. Design information and even adequate documentation often do not exist.
Thus software maintenance is thought of predominantly as a source code activity.
Understanding the functions and behaviour of a system from the code is hence a
vital part of the maintenance programmer’s task [136]. Approaches to program
comprehension will be described in later chapters.

Most of the effort for software maintenance research has focused upon the
methods, techniques and tools which support the maintenance process.

When maintenance activities are carried out, an essential characteristic of
all software — maintainability — must be considered. Maintainability is a key
goal that guides the steps of a software maintenance method, as well as software
engineering method. Software maintainability is the ease with which software
can be understood, corrected, adapted, and/or enhanced [132].

The maintainability of software is affected by many factors. It is difficult to
quantify the software maintainability (no adequate, widely accepted, quantitative
definition exists). However, many efforts have been made to tackle this problem
from different angles. Here are three of them.

Kopetz [98] defined a number of factors that are related to the develop-
ment environment: availability of qualified software staff, understandable system
structure, ease of system handling, use of standardised programming languages,
use of standardised operating systems, standardised structure of documentation,
availability of test cases, built-in debugging facilities and availability of a proper
computer to conduct maintenance.

Gilb [76] provided the maintainability metrics by measuring the effort ex-
pended during maintenance in terms problem recognition time, administrative
time, maintenance tools collection time, problem analysis time, change specifica-
tion time, active correction time, local testing time, global testing time, mainte-
nance review time and total recovery time.

Sneed [143] measured the maintainability in terms of the original develop-

ment expenditure. The smaller the expenditure on maintaining the system —
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relative to the expenditure on development — the greater the maintainability.

The expenditure includes:

e modularity — an operating measure of the extent to which a system can be

broken down into small independent building blocks;

o flezibility — an operating measure of a software system’s independence from

any specific application;

e portability — an operating measure of a software system’s independence

from its technical environment;

o complezity — an operating measure of a software system’s aggregation and

distribution of components/complexes [62].

Attributes of software can be divided into two types, internal and ezternal.
Internal attributes are a property of the software itself, e.g., complexity, size,
data structure, coupling, cohesion, quality, reliability, etc. External attributes
are a property of the environment, e.g., availability of debugging tools, skill and
training, repository, management, etc.

Possibly the most important factor that affects maintainability is planning
for maintainability. If software is viewed as a system element that will inevitably
undergo change, the changes that maintainable software will be produced are
likely to increase substantially [132]. However, maintainability is also dependent
on the process as well as the software itself [98]. A major problem with main-
tenance is changes which were not even conceived of when the software was first
designed and this cannot be planned for. Nevertheless, because maintainability
is an essential characteristic of software, at each stage of the software engineeriﬁg
process, maintainability must be considered. For example, during the require-
ments stage, areas of future enhancement and potential revision should be noted,
software portability issues discussed, and system interfaces that might impact
software maintenance considered; during design stage, data design, architecture
design, and procedural design should be evaluated for ease of modification, mod-

ularity, and functional independence; during the coding stage, style and internal
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documentation, two factors that have an influence on maintainability should be
stressed; etc.

Also, maintenance activities should be carried in a careful way, because mod-
ification of software is dangerous in the sense that errors and other undesirable
behaviours may occur as the result of software modification. The term side effects
are used to refer these errors or undesirable behaviours [132]. Software mainte-
nance side effects include coding side effects, data side effects and documentation
side effects. Coding side effects are caused by the change of code. Data side ef-
fects occur when data changes in the software design may no longer fit the data,
and when modifications are made to software information structures. Documen-
tation side effects occur when changes to source code are not reflected in design
documentation or user-oriented manuals.

Although progress in software maintenance research has been achieved re-
cently, there are still‘many problems to be solved. One of the research topics
identified by [21] for software maintenance is Reverse Engineering, which is the

topic the thesis will address.

2.3 Reverse Engineering

Reverse Engineering is the process of enalysing a subject system to identify the
system’s components and their inter relationships, and to create representations
of the system in another form or at a higher level of abstraction [48].

Reverse engineering involves the identification or “recovery” of program re-
quirements and/or design specifications that can aid in understanding and modi-
fying the program. The main objective is to discover the underlying features of a
software system including requirements, specification, design and implementation.

In other words, it is to recover and record high level information about the system

including:

e the system structure in terms of its components and their interrelationships

expressed by interface,

e functionality in terms of what operations are performed on what compo-
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nents,

e the dynamic behaviour of the system in understanding how input is trans-

formed to output,

e rationale — design involves deciding between a number of alternatives at

each design step,
e construction — modules, documentation, test suites etc.

There are several purposes for undertaking reverse engineering listed in [21].
They can be separated into the quality issues (e.g., to simplify complex software,
to improve the quality of software which contains errors, to remove side effects
from software, etc.), management issues (e.g., to enforce a programming standard,
to enable better software maintenance management techniques, etc.) and technical
issues (e.g., to allow major changes in a software to be implemented, to discover
and record the design of the system, and to discover and represent the underlying
business model implicit in the software, etc.).

It is seen that reverse engineering is an activity which neither changes the
subject system, nor creates a new system based on the reversed engineered subject
system. It is a process of examination and understanding of the object system,
and of recording the results of that examination and understanding. On the other
hand, reverse engineering is a key to the rest of theAprocess of software mainte-
nance, because it enables us to take an existing software system which is being
maintained (e.g., in terms of its source code), and recover an abstract representa-
tion which can be used for subsequent maintenance or even reimplementation.

Because the techniques and methods of reverse engineering are still imma-
ture, the following precautions must be considered when reverse engineering is

carried out:

1. the code may be specific, and not generic, so that few advantages are gained

when the system is reengineered,

2. the code may have errors and it is not clear if it is useful to reverse engineer

error filled code,



Chapter 2. Software Engineering 24

3.

5.

6.

reverse engineering itself may introduce errors, and revalidation will be es-

sential in the project plan,

reverse engineering can be very expensive and the returns are not clear and

a cost benefit analysis will be needed,
there are no standards or standard methods for reverse engineering,
there are no well established measures of maintainability.

In most cases, reverse engineering is the first step of software maintenance.

The analysis of the object software is crucially important to accomplish the request

control stage of software maintenance.

One typical reverse engineering objective is to extract the program design

or specification from the program code. There are two reasons for this. The first

reason is that in order to achieve major productivity gains, software maintenance

must be undertaken at a higher abstraction level than code, i.e., at the design

level or specification level, because [21]:

The representation of a system at higher levels of abstraction is more com-

pact than at lower levels, so the system is easier to understand as a whole.

The objects which represent the system at high levels of abstraction (e.g.,
modules, requirements, specifications etc.) are structures which encourage
highly maintainable systems. Furthermore, they are closer to the application

domain in terms of which many changes are expressed.

The documentation for systems maintained in this way can be clearly spec-

ified.

Modification can be better controlled leading to less structural degradation.

Modern software engineering techniques become available to the software

engineer, leading to high quality in the software maintenance phase.

The high abstraction level objects are appropriate vehicles in which to ex-

press the testing plan.
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From another point of vieW,, software expressed at a higher level of abstraction
is more maintai.nable than at a lower level of abstraction.

The second reason is that the need is often encountered in software main-
tenance projects. Firstly, the documents and relevant reference materials are
not complete, and the personnel who may have relevant knowledge have already
forgotten about it or have left. Secondly, there might be even some documents
available, but the software may not be implemented consistently the documents.
Thirdly, the original documents and reference materials were not written in a
modern specification language and they can not be used in a modern software
maintenance environment, not even be machine readable.

This means that the extraction of the program design or specification of
an old program code is a vital step éspecia,lly when the program is the only
available documentation or is the only source on which to rely. The purpose of
this kind of reverse engineering is (a) to reimplement the system or (b) to help
understand the existing software. Someone may challenge by asking “Why do not
you simply reimplement the software instead of carrying out reverse engineering of
the old software even with no documentation?”. It is because that there has been
considerable investment in existing software, and 1t is often not cost effective to
throw away existing software and rewrite it with the latest development technique.
The significance of reverse engineering can be seen by the setting up many reverse

engineering projects, for example [7,9,41,63,144].

2.4 Summary

Due to the rapid development of computer hardware and- software, the demands
and costs of software maintenance are increasing continuously. Software mainte-
nance now comprises a major part in the software engineering lifecycle costs. The
first step for conducting software maintenance is to understand the software to
be maintained and the abstraction of the program design and specification from
the existing source code is one of the methods which helps us to understand soft-

ware systems. Reverse engineering is to carry out this task. Reverse engineering
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is particularly important when the source code is the only source with which to
work. That is why the REFORM project was set up (more details on the RE-
FORM project will be provided later). The final aim of the REFORM project is
to discover designs and eventually speéiﬁcations given only source program code.
The REFORM project is based on a transformation approach and its aim is to
find out the formal relation between program code and its design and eventually
specification. There is not an existing method completed yet to be used in the
project for acquiring a program design or specification from program code. This
problem is tackled in this thesis.

Related research results are reviewed in the next chapter.



Chapter 3

Work Related to Reverse

Engineering

3.1 Introduction

In the second chapter, the principles of each step in the software engineering lifecy-
cle were described. This chapter will describe some exist'ing software development
approaches which are relevant to the thesis, together with several existing reverse
engineering projects. This will help to clarify the research problem to be solved
in this thesis.

In this context, it is necessary to restrict the scope so as to avoid discussion
of a great many approaches. Although some of the ideas discussed below could be
applied to the hardware development and the development of concurrent or real-
time systems, they are out of the scope of this thesis. In this sense, a specification
only refers to the functional specification, which describes the effect of software
on its external environment, not to performance specification, which describes
constraints on the speed and resource utilisation of the software, etc.

Let us start with the software system development. The most widely used
method is to derive the final program from a specification. We use SP to represent
a specification of requirement which the software system is expected to fulfill,
expressed in some specification language SL (if any); and P to represent the

ultimate object program which satisfies the specification in SP, written in some

27
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given programming language PL.

The usual way to proceed is to construct P by whatever means are available,
making informal reference to SP in the progress, and then verify in some way
that P does indeed satisfy SP. The only practical verification method available at
present is to test P, checking that in certain selected cases that the input/output
relation it computes satisfies the constraints imposed by SP. This has the obvious
disadvantage that (except for trivial programs) correctness of P is never guaran-
teed by this process, even if the correct output is produced in all test cases. An
alternative to testing is a formal proof that the program P is correct with respect
to specification SP.

Most recent work in this area has focused on methods for developing pro-
grams from specification in such a way that the resulting program is guaranteed
to be correct by construction. The main idea is to develop P from SP via a se-
ries of small refinement steps, inspired by the programming discipline of stepwise
refinement [163]. Each refinement step captures a single design decision, for in-
stance a choice between several algorithms which implement the same function
or between several ways of efficiently representing a given data type. This yields
the following diagram (Figure 3.1) (SP, represents the initial specification; those
steps in between SP, and P are represented by SP;, SP,, and etc.).

Let SL represent the corresponding specification language for the specifica-
tion and PL the programming language. Thus, languages needed for software

development are shown in Figure 3.2.

SPy—SP,—SP;— ...—P

Figure 3.1: Stages of Program Development

If each individual refinement step ( SPo—s SP;, SPy— SP, and so on) can
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SL0—>SL1—)SL2—) ...—PL

Figure 3.2: Languages for Software Development

be proved correct, the P itself is guaranteed to be correct. Each of these proofs is
orders of magnitude easier than a proof that P itself is correct since each refinement
step 1s small. |

As described above, we are interested in answers to questions such as “How
to represent the process?”; “What does refinement mean and under what cir-
cumstances is a refinement step correct?” and “What methods are available for
proving the correctness of refinement steps?”. In the remaining parts of the chap-
ter, formal specification, program transformation and program verification tools
are reviewed in the context of the above questions. We then address the relevance
of these approaches to reverse engineering. Finally, several software maintenance

projects involving reverse engineering will be introduced.

3.2 Formal Specification

3.2.1 Specifications

A specification of a software system may serve different purposes [90]

e Specifications are used for program documentation.

e Specifications serve as a mechanism for generating questions. The construc-
tion of specifications forces the designers to think about the requirements
definition and the intrinsic properties and functionalities of the software

system to be designed.

o A specification can be considered as a kind of contract between the design-
ers of a program and its customers (in the commercial world, vendors and

customers).
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e Specifications are a powerful tool in the development of a program during
its software life cycle. The presence of a good specification helps not only

designers, but also implementors and maintainers.

e With regard to program validation, specifications may be very helpful to

collect test cases to form a validation suite for the software system.

Important properties of a specification are:

e completeness — the specification must cover the functionality of the require-

ment, and

o consistent — the specification does not contain internal contradiction. A
specification which is to be implemented must not be inconsistent (or else

it cannot be implemented).

Any specification must be expressed in some specification language. Usually
language sheds considerable light on a system’s abilities. Although some systems
are conceptually independent of a particular language, each implementation is in
the end tied to a particular language.

There are compilers for low-level languages (e.g., assembly language) and
high-level languages (e.g., C, BASIC, PASCAL, LISP, etc.) [120]. They allow
us to write components of “programs”, which suggest how the desired result is
to be computed [75]. This is contrasted with a specification language which is a
description giving details of what is required and no more. A specification language
is mainly used to write the specification of the requirements of the software system.

Specification languages may be classified into two major classes: formal spec-
ification languages and informal specification languages [17,72,86,87,127).

Formal specifications have a mathematical (usually formal logic) basis and
employ a formal notation to model system requirements.

The advantages of using formal specification [146] are as follows:

e The development of a formal specification provides insights into and under-

standing of the software requirements and the software design.
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’

o Given a formal system specification and a complete formal programming
language definition, it may be possible to prove that a program conforms to
its specification. Thus, the absence of certain classes of system error may

be demonstrated.

e Formal specifications may be automatically processed. Software tools can

be built to assist with their development, understanding and debugging.

e Depending on the formal specification language used, it may be possible to

animate a formal system specification to provide a prototype system.

e Formal software specifications are mathematical entities and may be studied
‘and analysed using mathematical ‘methods. In particular, can the system

even be implemented adequately.

e Formal specification may be used as a guide to the tester of a component in

identifying appropriate test cases.

Informal specification langudges, on the other hand, use a combination of
graphics and semiformal textual grammars to describe and specify system re-
quirements. Given the graphical and “English-like” nature of these languages,
they provide a vehicle for eliciting user requirements and communicating the an-
alyst’s understanding of the requirements back to the user for verification.

The two approaches have complementary strengths and weaknesses. Whereas
informal specifications have advantages for requirements elicitation, ease of learn-
ing and communication, formal languages provide conciseness, clarity and preci-
sion, and are more suitable for analysis and verification. Therefore, formal and
informal specifications must not be regarded as competitive but rather as com-
plementary. .

However, the use of formal specifications is the most distinguishing feature of
a formal method. The term formal methodsis used to cover the use of mathematics

in software development. The main activities are [84,95]:

e writing a formal specification,
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e proving properties about the specification, e.g., its consistency,

e constructing a program by mathematically manipulating the specification,

and

e verifying a program by mathematical argument.

In fact, formal methods are all about specifications. Formal methods are
used in the thesis for undertaking reverse engineering, so that the key issue of
using formal methods — formal specification languages — will be reviewed in the

next section.

3.2.2 Algebraic Specification Languages

There exist three basic families of specification approaches:. the algebraic, the
state-machine, and the abstract model [24,108].

The approach of algebraic specification languages is based on the concept of
abstract data type (ADT) [85,90]. The idea (originated by Guttag [82]) is that
for specification purposes a functional program can be modelled as a many-sorted
algebra, i.e., as a number of sets of data values (one set of values for each data type)
together with a number of operations on those sets corresponding to the functions
in the program. The many-sorted algebra is needed because many interesting
operations in computing involve more than one sort, e.g., equals: Int X Int
— Boolean. An abstract data type is a class of many;sorted algebras with
same signature and same specified common properties. An algebraic data type
is a definition of an abstract data type by a signature and some axioms. This
abstracts away from the algorithms used to compute the functions and how those
algorithms are expressed in a given programming language, focusing instead on the
representation of data and the input/output behaviour of functions. It is possible
to extend this paradigm to handle imperative programs as well by modelling
imperative programs as functional programs or else by using a different notion of
algebra [137]. The original motivation for this work was to provide a formal basis

for the use of data abstraction in program development.




Chapter 3. Work Related to Reverse Engineering 33

In this approach, é, specification consists of a signature — a set of sorts (data
type names) and a set of function names with their types — together with a set
of equational axioms expressing constraints which the functions must satisfy. For
example [24], Figure 3.3 is an algebraic specification of a bounded stack with a
bounded size of three.

The sort part lists the abstract data types being described. In this example
there is only one type, namely Stack. The operators part lists the services avail-
able on instances of the type Stack and syntactically describes how they have to
be called. These parts are called the signature of the algebraic specification. The
azioms part formally describes the semantic properties of the algebraic specifica-
tion.

The basic idea of algebras is to write down a set of key properties of the ADT
in terms of equations (equational logic). We want a minimum set of such properties
(no duplication etc.). These are the axioms, and this allows an aziomatisation of
the theory. From the azioms and rules of inference we can generate any valid
formula.

There are two basic approaches to semantics, initial algebra (e.g., OBJ) and
loose algebra (e.g., CIP-L).

Algebraic specification techniques can also be used in a wide-spectrum lan-
guage [18,90,137,139], which is viewed as a specification language when used to
write software specifications. A wide-spectrum language incorporates a variety
of constructs, from high-level specification constructs down to low-level machine-
oriented ones, to permit expression of broad range of the stages in the development
of a program. Furthermore, in the intermediate steps of transformation, which
is done incrementally, it is natural for specification constructs to be mixed freely
with programming constructs because of the way that high-level specification are
gradually refined to programs. This also avoids various problems which arise when
separate specification and programming languages are used: there is no essential
difference between refinement of programs and refinement of specifications; the
same modularisation constructs can be used to construct specification as well as

programs; there is no sudden leap from one notation to another but rather a
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1. obj Stack { basic object in OBJ, which corresponds to an abstract data type.

}
2. sort Stack/integer, boolean; { new type definition, old type used following the
“/” .}
3. ok-ops
4. push: Stack, integer -> Stack; { “underline sign” denotes a key word of the
language or a known type.}
5 pop: Stack -> Stack;
- 6. top: Stack -> integer;
7. empty: Stack -> boolean;
8
9

newstack: -> stack;
depth:stack -> integer; hidden; { hidden function is not accessible to an
abstract program.}
10. error-ops
11.  underflow -> stack;
12.  no_more -> integer;
13.  overflow -> Stack;
14. ok-eqn’s  {these are axioms.}
15.  pop(push(s, item)) = item;
16.  top(push(s, item)) = item;
17.  empty(newstack) = true;
18.  empty(push(s, n)) = false;
19.  depth(newstack) = 0;
20.  depth(push(s, item)) = 1 + depth(s);
21. error-eqn’s
22. pop(newstack) = underflow;
23.  top(newstack) = no_more;
24.  push (s, item) = overflow if depth(s) > 2;
25. jbo '

Figure 3.3: A Stack Specification in an Algebraic Specification Language (OBJ)
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gradual transition from high-level specification to efficient program.

A brief review of the main existing algebraic specification languages is now

given:

CLEAR The specification language CLEAR [40,137] provides a small num-
ber of specification-building operations which allow large and complicated speci-
fications to be built in a structured way from small, understandable and reusable
pieces. The operations provide ways of combining two specifications, of enriching
a specification by some new sorts, function and axioms, of renaming and/or for-
getting some of the sorts and functions of a specification, and of constructing and
applying parameterised specifications.

The semantics of CLEAR allows it to be used with different kinds of axioms
(not just equations) to specify different kinds of algebras. This allows appropri-

ate treatment of exceptions, non-terminating functions and imperative programs,

among other things.

CIP-L CIP-L [18] is the language on which the CIP project was based.
CIP-L is a wide-spectrum language which includes constructs for writing high-
level specifications, functional programs, imperative programs and unstructured
programs with gotos.

The language provides constructs for the specification and implementation
6f data structures as well as constructs for the specification and implementation
of control structures. Algebraic (data) types provide a means for giving the alge-
braic specification of data. They can be implemented by computation structures
éombining data and algorithms. Modes are described by specific types for which
computation structures can be provided automatically. Based on algebraic types
and/or computation structures, prograx;l can be specified using predicate logic,

description, comprehensive choice, and fully typed set operations.

Larch The Larch [83,137] family of specification languages was developed
at MIT and Xerox PARC to support the productive use of formal specifications in '

programming. Each Larch language is composed of two components: the interface
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language which is specific to the particular pfogra,mming language under consid-
eration and the shared langua,gé which is common to all programming languages.
The interface language is used to specify program modules using predicate logic
with equality and constructs to deal with side effects, exception handling and
other aspects of the given programming language. The shared language is an
algebraic specification language used to describe programming-language indepen-
dent abstractions using equational axioms which may be referred to by interface
language specifications. The role of a specification in the shared language is to

define the concepts in terms of which program modules may be specified.

Other algebraic specification languages [90,137,138] are ACT ONE, OBJ fam-
ily [78], HOPE, etc.

To summarise, the strengths of the ;'ngebraic approach are:
e theory now well established,
e structuring techniques_for large systems introduced, e.g., parameterisation,
e seemingly promising for transformation systems, refinement and reuse,
e some tools becoming also available,
e some theorem provers also available;
and the weaknesses:
e still at laboratory stage,
e needing considerable mathematical ability,
e not accessible to practitioner, and

o difficult to scale.

3.2.3 State-Machine Specification Languages

A state-machine specification defines a set of functions that specify transforma-

tions on inputs. The set of functions may be viewed (depending on the particular
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1. module Stack;
2. declarations integer index, item; boolean; flag
3. functions

4, vfun h_depth -> index;

5. hidden;

6. initially index = 0;

7. vfun h_set_of_items (index) -> item;

8. hidden;

9. initially item = 7; { “?” means “undefined”. }
10. ofun push (item);

11. exceptions h_depth > 2;

12. effects 'h_set_of_items (h_depth) = item;

13. 'h_depth = h_depth + 1;

14.  ofun pop;

15. exceptions h_depth < 0;

16. effects 'h_depth = h_depth - 1;

17.  vfun top () -> item;

18. exceptions h_depth < 0;

19. derivation item = h_set_of items (h_depth - 1);
20. vfun empty () -> flag;

21. derivation flag = (h_depth = 0);

22. end module;

Figure 3.4: A Stack Specification in a State-machine Specification Language

specification) as defining the nature of an abstract data type or describing the
behaviour of an abstract machine. A state-machine specification is given in terms
of states and transitions. Its functions are divided into two classes: V-functions
allow an element of the state to be observed but do not define any aspect of
transitions; O-functions define transitions by means of effects. The effect of an
O-function is to change the state, which is done by denoting a V-function and
altering the value it will return. Specification languages based on this approach

include SPECIAL and INA JO [24]. The example in Figure 3.4 is in SPECIAL.

3.2.4 Abstract Model Specification Languages

The model based approach describes the key objects in terms of foundational
objects which we assume exist (are given). We use the foundational objects plus

construction operations to build compound objects which model our system. A
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model (hére) is a mathematical theory expressing the aspects of the system we
wish to describe and analyse. A model will often be at quite a high level of
abstraction, ignoring much of the unnecessary detail.

A model (for specification) comprises:
1. a state space
2. operations, functions on this space
3. state invariant — defines valid states.

The basic types are typically sets, cartesian products, sequences, schemas (in
Z), etc. We should (like any mathematical theory) be able to deduce interesting
theorems about the system. The abstract model technique [24,108] differs in both
syntax and semantics from the techniques of previous two method. For syntax it
uses the basic precondition/postcondition format. It defines its function in terms
of an underlying abstraction that is selected by the specifier. The specifier can use
any abstraction (sets, lists, arrays, and so on) about which it is possible to reason
formally. The usefulness of a given abstract model specification depends greatly
upon the appropriateness of the selected underlying abstraction to the functions
being specified. In order to illustrate the relationship between an abstract model
specification and the underlying abstraction, a bounded integer stack is specified
in terms of arrays (Figure 3.5 and Figure 3.6).

Two widely used specification languages, VDM and Z, belong to this ap-

proach.

VDM VDM (93] (the Vienna Development Method) is a method for rig-
orous (not formal) program development, and also a modelling notation. The
objective is to produce programs by a process similar to the procedure in which
the individual refinement steps are shown to be correct using arguments which
are formalisable rather than formal, thus approximating the level of rigour used in
mathematics. This is supposed to yield most of the advantages of formal program
development by ensuring that sloppiness is avoided without the foundational and

notational overhead of full formality.
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1. obj iarray

2. sort iarray/integer;

3. ok-ops

4. new: -> larray;

5. assign: integer, iarray, integer -> iarray;

6 read: iarray, integer -> integer;

7. error-ops

8 empty -> integer;

9. ok-eqn’s

10. read (assign (val, array, index 1), index 2)
if index 1 = index 2

11. then val

12. else read (array, index 2);

13. error-eqn’s

14.  read (new, index) = empty;

15. jbo

Figure 3.5: An Array Specification in an Algebraic Specification Language

1. type stack;
2. stack is modeled as iarray and (depth: integer);
3. invariant 0 < depth < 2;
4. initially stack = new and depth = 0;
5. functions
6.  push (item: integer)
7. pre 0 < 2;
8. post stack” = assign (item, stack, depth) and depth’ — depth + 1;
9. pop :
10. pre stack # new;
11. post depth” = depth - 1;
12.  top returns (item: integer)
13. pre stack # new;
14. . post item = read (stack, depth — 1);
15.  empty returns (flag: boolean)
16. post flag = (stack = new);
© 22. end;

Figure 3.6: A Stack Specification in an Abstract Model Specification Language

(based on pre- and post-conditions)
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VDM uses a model-oriented approach to describing data types. Models are
‘built using functions, relations and sets. A simple example is the following speci-

fication of dates:
Date :: Year : Nat MONTH: {Jan, Feb, ..., Dec} DAY: { 1:31 }

This models dates as triples, but does not require that dates be represented
as triples in the final program. Not all of the values of type Date are valid; the
legal ones are characterised by the following data type tnvariant:

inv-date (< y, m, d >) = 4
(m € {Jan, Mar, May, Jul, Aug, Oct,Dec } = 1 <d<31)A
(m € {Apr, Jun, Sep, Nov} =1 <d <30)A
(m = Feb A - is-leap-year (y) = 1-§ d<28)A
(m = Feb A is-leap-year (y) = 1 < d <29 )

Problems with VDM are that it is easy to overspecify a system and that it

may bring side effects when pre- and post-conditions are used to specify procedures

[126].

Z 7 [119,147,148] is a specification language based on the principle that
program and data can be described using set theory just as all of mathematics
can be built on a set theoretic basis. Thus, Z is no more that a formal notation for
ordinary naive set theory. The first version of Z used a rather clumsy and verbose
notation but the current version adopts a more concise and elegant notation based
on the idea of a schema which generalises the sort of thing behind mathematical
notations.

Schemas are used to describe a system by both static aspects (the states it
can occupy; and the invariant relationships that are maintained as the system
moves from state to state) and dynamic aspects (the operations'th;at are possible;
the relationship between their inputs and outputs; and the changes of state that
happen) [148].

- A simple example of Z specification, A Birthday Book, is cited here. It is a

system for recording people’s birthdays, and is able to issue a reminder when the
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day comes. A schema is used to describe the state space of the system.

BirthdayBook
Known : P NAME
birthday : NAME - DATE

Known = dom birthday

One of the operations on the system, adding ¢ new birthday, is described by

another schema.

__AddBirthday
A BirthdayBook
n?: NAME
d?: DATE

n? ¢ known

birthday' = birthday U {n? — d7}

Z has been used with success in UK industry to specify real systems. The
main problems are, for example, that the Z language is hard to be used for the

purpose of theorem proving and program refinement.

3.2.5 A Comparison of the Approaches

The similarities among the three approaches are that they are all nonprocedural
and use-sets of function definitions to specify the effect of operations in terms
of known mathematical objects [24]. Each approach also has its own feature.
For instance, in an algebraic approach, it is difficult to get the equations right
for complex systems; and in the modelling approach, basic and well understood
concepts (e.g., sets) are used so that it is more natural to specify objects in terms
of such well understood mathematical objects.

State-machine and abstract model techniques, which both rely on explicit
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state descriptions, can be transformed into each other; a set of functions defined
algebraically (and therefore side-effect-free) can always be transformed one-for-one
into functions in either of the other two that permit side effects, but a function
with side effects may have to be split into several visible and hidden functions
when the algebraic approach is taken.

It was interesting that at the Refinement conference in January 1992 [54],

almost all the papers were on the modelling approach, while none was on the

algebraic approach. -

3.3 Program Transformation Systems

3.3.1 Refinement and Transformational Programming

The term refinement has been referred earlier in this thesis. We now discuss
more details of refinement. We describe refinement as a technique to produce
corréct implementations from specifications [161,163]. From this, we know that
specification and implementation are two essential elements in the refinement
process.

For most approaches of program development (whether formal or informal),
a design stage is involved. Refinement takes the notion of a rigorous treatment
of design a stage further. Each time a design decision is taken, a new version of
the specification, incorporating this new information, is produced. We can now
check that the new specification is acceptable with respect to the previous one, or
more formally, that it “satisfies” it. Additionally, this new specification provides
the basis for further refinement, so we can also ensure that our separate decision
interact correctly. This notion of refinement also gives us a framework in which to
consider the enhancement of the functional constraints discussed in requirements
document. As we make decisions we can then check that this new information
is consistent with satisfying the constraints, and finally we can check that the
implementation does indeed satisfy them.

Refinement can be carried out informally or formally. Figure 3.1 presented

a general picture of formal program development in which programs were evolved




Chapter.3. Work Related to Reverse Engineering 43

from specifications in a gradual fashion via a series of refinement steps. Proba-
bly the most useful potential application of formal specifications is to the formal
development of programs by gradual refinement from a high-level specification to
a low-level “program” or “executable specification” [70,94,140]. Actually, some
refinement steps are more or less routine. Such refinement steps can typically be
described schematically as transformational rules. The process of changing a pro-
gram (specification) to a different program (specification) with the same semantics
as the original program (specification) is called program transformation.

Any refinement obtained by instantiating a transformation rule will be cor-
rect. Rather than proving correctness separately for each instantiation, the rule
itself can be proved correct and then applied as desired without further proof.
Sometimes such a rule will be correct only provided certain conditions are met
by the program fragments matching the schematic variables or by the context in
which the rule is applied; in this case the proof obligation is reduced to checking
that these conditions are satisfied.

This led to a method of program construction — transformational pro-
gramming, i.e., to construct program by successive application of transformation
rules. Usually this process starts with a formal specification and ends with an ex-
ecutable program.

Much recent work has been focused on the program transformation as one
kind of programming paradigm in which the development from specification to
implementation is a formal, mechanically supported process. Research on pro-
gram transformation aims at developing appropriate formalisms and notations,
building computer-based systems for handling the bookkeeping involved in ap-
plying transformation rules, compiling libraries of useful transformation rules,
developing strategies for conducting the transformation process automatically or
semi-automatically. The long range objective of this paradigm is dramatically to
improve the construction, reliability, maintenance, and extensibility of software.

An implemented system for supporting transformational programming is
called a program transformation system. Those languages designed with

some of the techniques used in expressing transformations and developments are
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called transformation support languages. Researchers have built a number

" of systems for transformational programming.

3.3.2 Features of Transformation Systems

To compare the various systems [67,129,130], we consider the following aspects:

e Purpose

Generally speaking, transformation systems are built to experiment with

the mechanically assisted development of a broad range of programs.

A first goal of program transformation is program synthesis: the generation
of an equivalent, executable, and efficient program from a (formal) descrip-
tion of the problem. Program synthesis may start from specifications in
(restricted) natural language, or from mathematical specification. It is cor-

rect with respect to the specification.

The second goal is general support for program modification. This includes:
opfimisation of control structures, efficient implementation of data struc-
tures, and the adaptation of data structures and given programs to particu-

lar styles of programming (e.g., applicative, procedural, machine oriented).
A third goal is that of program adaptation to particular environments. For

example, a program written in one language may need to be adapted to a

related language with different primitives.

e Functions

1. Transformation data base

The system consists of a facility for keeping the (predefined) collection

of transformations for use by the end user.
2. User Guidance
Nearly all transformation systems are interactive. Even the “fully auto-

. matic” ones require an initial user input and rely (interactively) on the

user to resolve unexpected events. The system’s reaction to input may
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include automatic checks on the “reasonableness” of given commands
)

as well as incremental interactive parsing using correction mechanisms.

3. History recording
Most systems also have some facility for documenting the development
process — one of the promising aspects of the transformational ap-
proach. These facilities include internal preservation of the source
program, of final output, and of all intermediate versions. The doc-
umentation itself ranges from a simple sequential log of the terminal

session (bookkeeping) to rather sophisticated database mechanisms.

4. Assessment of Programs
Assessment of programs can be supported in qualitatively different
ways: the system may incorporate some execution facility, such as an
interpreter or a compiler to some target level, or it may utilise aids for
“testing”, such as symbolic evaluators. Occasionally the system will
also have tools for program analysis, either for aiding in the selection
of transformation rules or simply for “rheasuring” the effect of some

transformation.

¢ Working Mode

1. A “manual” system makes the user responsible for selecting and apply-
ing every single transformation step. It is the simplest implementation
and the system must provide some means for building up compact and

powerful transformation rules. System checks application of use.

2. A fully automatic system enables the selection and appropriate rules
to be determined completely by the system using built-in heuristics,
“machine evaluation of different possibilities, or other strategic consid-

eration.

3. A semi-automatic system works both autonomously for predefined sub-

tasks and manually for unsolvable problems.

o Type of transformation
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Basically, there are two different methods for keeping transformations in the

system: the catalogue approach and the generative set approach.

A catalogue of rules is a linearly or hierarchically structured collection of
transformation rules relevant for a particular aspect of development process.
~ Catalogues may contain, for example, rules about programming knowledge,
optimisations based on language features, or rules reflecting data domain
knowledge. A user can select certain transformation rules from the catalogue

and apply the selected transformation.

By a generative set we mean a small set of powerful elementary transforma-
tions to be used as a basis for constructing new rules. A user can decide

what transformation rules are to be constructed from the generative set.

To judge whether a transformation system is good eventually depends on the
extent to which it can fulfill the goal — transforming a specification to a running
program. However, it is not the only purpose of this review, and a more important

aspect is to learn what can be used in undertaking reverse engineering.

3.3.3 Program Transformation Systems

In this section, the features of transformation system listed in last section are
used to comment on existing transformation systems used in forward engineering
according to available information. Other information may include, e.g., the year
that a work was done, the specification and programming languages used, the

result, etc.

Optimising Compilers Program transformation techniques have been used
for many years in optimising compilers, because inefficient programs can be trans-
formed into efficient programs (e.g., loop induction, strength reduction, expression

reordering, symbolic evaluation, constant propagation, loop jamming).

Burstall and Darlington’s Work The work on program transformation by

Burstall and Darlington was done in the mid-1970’s [39,130]. Their system was
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based on schema-driven method for transforming applicative recursive program
into imperative ones with improving efficiency as the ultimate goal. The system
worked largely automatically, according to a set of built-in rules, with only a small
amount of user control. The rule set contained only seven simple rules and the

system could only work on simple programs.

Balzer’s Work Balzer built an implementation system for program transfor-
mation [14,15,16]. This system was designed mechanically to transform formal
program specifications into eflicient implementations under interactive user con-
trol. He expressed the problem by a formal specification language GIST, which
was operational (i.e., having an executable semantics). He used this system to
solve a small (but nontrivial) example, the “eight queens” problem. The result
was that the optimisation and the conversion of the program into conventional
form remained incomplete. His system depended too ml_mh on user guidance, and

the specification was also not at a high level.

ZAP Feather's ZAP system [68] is based on the Burstall/Darlington system
with a special emphasis on software development by supporting large-program
transformation. The input/target language of the system is NPL (an applicative
language for first-order recursion equations). The system provides the user with
a means for expressing guidance. An overall transformation strategy is hand-
expanded by the user into a set of transformation tactics such as combining,
tupling, generalisation.

It is claimed that ZAP system can deal with example programs ranging
from “toy” to small but realistic ones. Unfortunately, the system has to operate

partially informally and even entirely by hand.

DEDALUS System The DEDALUS system (DEDuctive Algorithm
Ur-Synthesiser) by Manna and Waldinger was implemented in QLISP [111]. Its
goal was to derive LISP programs automatically and deductively from high-level
input-output specifications in a LISP-like representation of mathematical-logical

notation.
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The system incorporates an automatic theorem prover and includes a number
of strategies designed to direct it away from rule applications unlikely to lead
success. The system is considered by its designers to be a laboratory tool rather
a practical tool. The examples being treated by DEDALUS system were toy

examples, like the greatest common divisor of two numbers.

The DRACO System The DRACO System [130] is a general mechanism for
software construction based on the paradigm of “reusable software”. “Reusable”
here means that the analysis and design of some library program can be reused,
but not its code. DRACO is an interactive system that enables a user to refine a
problem, stated in a high level problem domain specific language, into an efficient
LISP program. The DRACO ideas have been implemented in a prototype system
running under TOPS-10 on a DEC PDP-10 computer. Results show that only
small programs (tens of lines) can be created using this prototype. The main

reason of this considered by the designer was restricted by memory size.

CIP-S CIP-S is the approach of the Project CIP (computer-aided, intuition-
guided programming) [19], which is to develop along the idea of transformational
programming within an integrated environment, including methodology, language,
and system for the construction of “correct” software. The system uses a wide-
spectrum language, CIP-L (introduced in section 3.2.2).

A prototype system has been impiemented. The system is interactive and the
development process is guided by the programmer who has to choose appropriate
transformation rules. The system is language-independent aﬁd is based on the
algebraic view of language definition; any algebraically defined language is suited
for manipulation, provided respective facilities for translating between external
and internal representations are available.

It is claimed that the system not only allows the treatment of concrete pro-
grams, but also the formal derivation of new, complex rules within the system.
The CIP project has developed several theories for program transformation, such
as well-founded theories of nondeterminism, abstract data type, algebraic lan-

guage definition, and correctness of transformation rules and the CIP-L language
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turnéd out to be successful both as an educational vehicle in teaching beginners,
and as a tool in developing software. It is also noted that the prototype served
as the éssential software tool in developing CIP-S itself. However, the prototype
system can only deal with programs of a small scale and the proposed system
(CIP-S) itself is under construction.

Other transformation-related system include the “SETL System” [59], the
“TAMPR System” [32], the “FOCUS System” [135], and Morgan’s work on the
Refinement Calculus [121,122], the “Programmer’s Apprentice” [158], etc.

3.3.4 Summary

There islwidespread demand for safe, verified, and reliable software. This de-
mand arises from economic considerations, ethical reasons, safety requirements,
and strategic demands. Transformational programming can clearly make a valu-
able contribution toward this goal. It already covers several phases of the classic
software engineering lifecycle and shows promise of covering the remaining ones.
But, after near twenty year’s research, existing transformation systems are still
experimental and the problems they are capable of coping with are still more or
less toy problems. To make practical use of transformation systems is no doubt

the key problem to be solved in transformational programming.

3.4 Program Verification

Program verification is used when the program already exists and has been de-
veloped by informal development methods. It is contrasted with the correctness
of software developed by transformational programming, which is guaranteed by

the process itself (assuming that the transformations are correct).

3.4.1 Concept of Proof (Program Proving)

The concept of “correctness” is a relative notion. When we refer to a program
being correct we mean relative to some given specification. Generally, the spec-

ification of a programming problem consists of a precondition describing the
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properties of the supplied data and a postcondition describing the desired effect
of the computation. There may also be a state invariant defining valid states.

A proof of conditional or partial correctness assumes that the execution of a
process terminates and concentrates on establishing that its specification is met.
A complete proof also includes a proof of termination, e.g., by showing that some
variable decrements on each loop down to a test on zero.

When the word “proof;’ is used it can genera,liy be understood in two different
ways. An informal proof, the sort most commonly used by mathematicians,
consists of an outline of, or a strategy for constructing, a formal proof. A formal
proof 18 a sequenée of statements, each of which is a well-established theorem
or which follows friom earlier statements by a process (an inference or axiom).
A formal proof is conducted in an artificial (or “formal”) language consisting
entirely of signs and symbols; a mathematician’s proof, on the other hand, will
make significant use of natural language (such as English) as well as sign and
symbols where they are considered appropriate. Both types of proof have their
own characteristic type of complexity.

There are two basic approaches to program verification, one using inference
rules originally developed by C.A.R. Hoare [88] and the other using so-called
“predicate transformers” developed by E.W. Dijkstra [60]. The two approaches
are related, although different.

Proofs are a central part of the program development method. One property
of a formal specification is that proofs can be written which clarify its conse-
quences. In order for proofs to be useful, they must possess a number of proper-
ties. One of these rfequirements is that the proofs should be natural and that they
should ensure certainty.

It is difficult to be precise about what constitutes a natural proof. The
concept of informal proof is to indicate how a proof could be constructed: the
major steps are given in the knowledge that further details can be provided if
these major steps are in doubt.

Another aspect of what constitutes a natural proof concerns the crucial dis-

tinction between thie discovery and presentation of a proof. A proof is often found
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by working back from the goal; sub-goals are created and discharged until the
sub-goals correspond to known facts. In order to show how the steps relate, it is
normal to present an argument working forwards from the known facts towards
the goal. This forward presentation is more natural to read. But when readers
become writers, they must learn to discover proofs one way and present their steps
in a different order.

It should be clear that the claim that something has been proved must elim-
inate doubt. Unfortunately, informal arguments cannot create certainty. In order
to achieve the same level of certainty with a proof, it is necessary to reduce proof
construction to a “game with symbols”: each proof step must depend only on
known (i.e., proven) theorems or axioms and be justified by one of a fixed set of
inference rules. The inference rules themselves must require only the mechaqica.l
rearrangement of symbols. Such proofs a,ré called formal proofs.

A formal proof uses formal semantics of a programming language. The formal
semantics of a programming language maps every syntactically correct language
construct into a metalanguage that is based on a well-understood mathematical
notation. Consequently, formal semantics can be specified as a set of translation
rules from the domain of language constructs to the range of well-formed formulas
~ of the formalism.

The most important benefit of formal seniantics is that it produces the basis
for correctness proof of implementation and basis for pfogra.m correctness proofs.
The formal semantics has the potential of providing mechanical support to cor-
rectness proofs. The only way for a computer to aid in verification of a language
implementation or the correctness of a program is to start from a precise, formal
language definition.

There are two kinds of formal semantics: axiomatic semantics and denota-
tional semantics. Axiomatic semantics describes the meaning of each syntactically
correct program by associating it to properties of variables (in terms of predicate
calculus) that hold before execution starts and after the program halts. Axiomatic
semantics is based on mathematical logic. In the axiomatic semantics approach

[24] of program verification, the metalanguage used is a logic language, such as
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predicate calculus. Please refer to the example in VDM section (Section 3.2.4).

Denotational semantics [4,10,80] defines the meaning of a program written
in a language £ by a mapping from the syntax of £ to functions denoted. De-
notational semantics of programming constructs of a programming language are
defined by so-called semantics valuation functions. Semantics valuation functions
map programming constructs to values (numbers, truth values, functions, and so
on) that they denote. These valuation functions are usually defined recursively:
the value denoted By a construct is given in terms of the values of its constituent
parts, and an emphasis on the value denoted by the constituent parts gives the
approach its name. In the denotational semantics of program verification, the
metalanguage used is that of functional calculus (i.e., lambda calculus). For ex-
ample, the following is the denotational sem;mtics of decimal numbers of a simple
language:

Syntax:

<number> ::= <number><digit>|<digit>

<digit> ::= 0|1]|2|3|4|5|6|78]9

We now define a valuation function V from the syntax to the functions de-
noted. We do this for each syntax rule:

V: Num ~> Integer (Number is the language defined by the syntax above)
So

V[<number><digit>] = 10 * V[<number>] + V[<digit>]

V[0] = 0
V[1] = 1
V[9] = 9

For each sentence in this simple language, the above valuation defines the
meaning. For instance, the number is 724:
V[724] = V[<number><4>]
= 10 * V[<number>] + V[<4>]
=10 * (10 = V[7] + V[<2>]) + V[4]
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=10 (10%x7+2)+4
=724
which gives us the answer we expect.

Formal verification is the application of reasoning expressed in a mathemat-
ical formalism, i.e., a formal system such as first order predicate logic. Because
formal reasoning programs involves a large amount of tedious symbol manipu-
lation which is a perfect job for a machine; tools, such as theorem provers and

program verifiers, have been built for this purpose.

3.4.2 Examples of Existing Program Verification Tools

Program verification tools give rise to a variety of different approaches to formal
reasoning about a variéty of different t@sks, especially the programs. It is difficult
to compare'program verification systems directly [107], because the problems they
have been designed to tackle are often quite different. The important properties of

existing systems are listed below and attention is drawn to the following aspects.

e Object language — The logical language in which propositions are expressed
and reasoned about will be called the object language of the system. The
class of object languages supported is usually a major factor in determining

the usefulness of a program verification tool to formal reasoning tasks.

e Theories — When using a theorem prover systematically and over a long
period of time, it is important to be able to build up “theories”, going from
simple properties of data structures to deeper and stronger results about

their relationship.

A “theory” of a program verification tool is the fundamental principle on
which the tool is based. A theory is specified by giving its “signature”, a set
- of axioms and rules of inference. Usually, the basic specification of a theory
module consists of: its name, the modules on which it is built, the new sorts
it will use, the new operators it will use, a collection of axioms and derived

facts (theorems, lemmas, etc.). Taking the Boyer-Moore theorem prover as
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an example, the theory of it is to prove theorems by induction, mainly in

the style of proofs in elementary number theory.

o Automated deduction and user interaction — Once the object language and
a theory are fixed and a conjecture is stated, the search for a proof begins.
If a machine can be programmed to recognise the truth (i.e., provability)
of certain conjectures, it is needed to set a test which, when applied to
a conjecture, returns one of the following answers: “established”, “open”
or “contradictory”. The test should be consistent with the object theory.
There are two types of systems: automated and interactive. In an automated
system, the test is generated by the system; in an interactive system, on the
other hand, the test is usually generated with user involvement. Eventually,
it is known that in principle there can be no way of determining whether or
not a conjecture is provable. It will be up to the user, with the machine’s

help, to discover a proof.

A number of program verification tools are listed below as examples:

The Stanford Pascal Verifier The Stanford Pascal Verifier (SPV) [107,118], is
a program which basically checks the correctness of the proof of a Pascal program.
It was written in a version of LISP for use on the PDP 10 range of computers.
The SPV basically attempts to automate the inductive assertions method. The
first action of the verifier is to generate sets of verification conditions which have
to be satisfied. In the second phase the verifier employs a theorem prover which
takes as input the verification conditions which have to be established and also a
set of rules which can be used by the theorem prover. The SPV system is basically
interactive. .

Unless some precautions are taken the system will eventually run into the
problem of being unable fo decide on the equivalence of two equivalent arithmetic

expressions (this problem is in general undecidable).

Verifier’s Assistant The Designer/Verifier’s Assistant is a system that parses

programs and specifications and generates and proves verification conditions. In
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addition it can provide an understanding of the kinds of structures that can be
changed and added and the ways in which these interact [123]. To do this the
verifier employs the use of the wide spectrum language Gypsy [79] in connection
with knowledge-based techniques. This system pays more attention to reasoning
about changes at the implementation level in terms of pre and post assertions
on program modules, rather than addressing the maintenance of specifications
and development histories. It is by concentrating on these latter aspects that we
might gain a better insight into the consequences of maintaining both changes to

documentation (expressed as a specification) and implementation.

LCF (Logic for Computable Functions) There are several version of LCF
[107] (at Stanford, Edinburgh, Cambridge, etc.) and the Edinburgh version is
probably the best-known and most used of them all. The fundamental principle
of LCF is that new theorems can only be formed by applying inference rules to
axioms and already-formed theorems. LCF is implemented as a cluster of abstract
data types in the ML language: ‘term’ and ‘form’ for terms and formulae of the
object language. Edinburgh LCF has virtually no proof management facilities:
proof trees are not built; validations must be done by hand; and partial proofs

are not stored. Multiple proof attempts are possible, but no help is given for

organising them.

The Gypsy Verification Environment (GVE) GVE [107] is a highly in-
tegrated specification and verification environment, originally targeted at com-
munications processing systems of 1000-2000 lines of code. It is one of the few
development systems that can handle concurrency (which it does by message pass-
ing), and it is perhaps the only one that maintains dependencies between proof,
(parts of) specifications and (parts of) programs. A particularly strong point is
the high degree of unification of specification and programming constructs in the
Gypsy language. The user can invoke a proof strategy which will apply rules
automatik:ally according to built-in heuristics. Very simple proofs can be finished
without user intervention. This facility is a particularly heavy user of resources,

and suffers from most of the problems of fully automatic theorem provers, without
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being particularly strong.

The Boyer-Moore Theorem Prover The Boyer-Moore Theorem Prover
(BMTP) [30,31] takes programs written in pure LISP. Properties of these programs
are also stated as expression which themselves are expressed in LISP. The theorem
prover then attempts to show that the program possesses the desired properties.
It does this by applying simple heuristics and also structural induction - LISP
programs tend to be heavily recursive. The theorem prover could be used as a
verification tool to establish properties of programs about as complex as a sorting
procedure but not much more.

Though the Boyer-Moore Theorem Prover is viewed as one of the successful
systems for mechanical program verification, there are still some problems. The
user supplies a conjecture with which BMTP tries to prove from axioms and
already-proven results, but without direct assistance from the user. The object
language is very expressive, but its type structure is very limiting and probably
not suited to many applicatiohs. It incorporates some very effective heuristics for
inductive proofs; unfortunately they seem to be inextricably bound up with the
object language, and it would probably be quite difficult to use them directly.
The Boyer-Moore Theorem Prover is a heavy user of resources, e.g., memory and
CPU time.

The Boyer-Moore Theorem Prover has been used in the REFORM Project
[167] (see Chapter 8).

Other program verification tools include [96,107], the “Interactive Proof Ed-
itor”, “AFFIRM”, “Interactive Proof Editor”, “NuPRL”, “B Tool [5,115]”, etc.

3.4.3 Summary

Generally speaking, the following points are weaknesses: for the languages, a
wide range of symbols (especially mathematical symbols) should be available,
and mixed operators should be allowed, so that programs at higher level of ab-

straction (specifications) can be taken into the verification process; to the theories,
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they should also include many other things such as tactics, decision procedures,
simplification methods, normal forms, and so on, but none of above systems have
done this; to other aspects, the nature of finding proofs is to experiment, therefore,
speed of response, help fa.cilities, comprehensibility (especially for a novice) and
so on are also crucial factors to be stressed. This is also the problem of writing

correct mechanical theorem provers.

3.5 An Overview of the Main Existing Reverse
Engineering Approaches Used in
Software Maintenance Projects

The review in the previous section addressed obtaining programs from specifica-
tions. At present, there is increasing interest in the reverse direction — obtain-
ing specifications from programs (i.e., reverse engineering).. Reverse engineering
is often one early part of a software maintenance project. This area is being
researched in many projects in seeking a good method to achieve the goal —
obtaining specifications from programs. This section will review severa,llexisting
reverse engineering approaches in software maintenance projects. This will help
to determine the advantages as well as disadvdntages of these approaches and will .
help the further development of the REFORM project. The REFORM project is
introduced very briefly in this section and will be described in detail in a later
section.

Reverse engineering techniques are of two kinds: a maintainer-driven de-
sign recovery and a knowledge-based design recovery. In the first approach, the
maintainer is facing a set of tools without any assistant guidance; in the second
approach, tools rely only on syntactic level code analysis. Two kinds of assis-
tance are provided: (1) assistance in determining the functional intent behind a
piece of code (automatic meaning recovery), (2) assistance in maintenance process

guidance. In both techniques, the tools can be integrated or not integrated.
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3.5.1 MACS

MACS (Maintenance Assistance Capability for Software) has as its objective the
definition and implementation of a software maintenance assistance system [57,
73]. The basic premise of MACS is “maintenance through understanding”. The
main design objective of MACS is to aid the acquiring, ordering and exploring a
structure representing facts and assumptions about the application to be main-

tained. In particular, MACS offers aid in the following areas:

e comprehension of the application design and development process: the WHY

of the application,

e understanding and capture of the existent: the WHAT of the application,

and

e assistance in maintenance actions: the HOW of maintenance actions in the

context. of the application.

The MACS project is developing an integrated tool-set which is built on
a common repository. The “What” tool consists of two major parts called the
Change Management World (managing the changes during the maintenance pro-
cess) and the Abstraction Recovery World (providing filtered or abstracted views
of the code using Dimensional Design). The “Why” tool is called the Reasoning
World (for understanding the domain and design decisions) with a Domain Knowl-
edge Base as its main component. Another major part of the tool-set is called the
Interconnection World (for understanding inter-world relations and code semantic
understanding).’

According to available literature [58], the major achievements of the first
two yearé (by January 1992) have been the design of the MACS architecture, the
complete realisation of the Change Management system, the Reasoning World
and the “syntactical” Abstraction Recovery World. The MACS project still uses
informal analysis, though the need for merging informal and formal approaches is
identified as a long-term plan.

MACS uses a conventional Change Management System for configuration

management. Its representation for abstraction is a diagrammatic representation
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called “Dimensional Design”. This is an enhanced flow chart on which sequencing
is represented vertically, the components of loops and conditions horizontally, and
procedural abstraction at 45°. A similar notation is used for data structures.
Therefore, the abstract representation is at a relatively low level.

Of more interested is the representation of the “Reasoning World”. This
amounts to-a very flexible data base in which the user can add information incre-
mentally. For example; consider the situation occurs in which an error is found.
Once the module is located, the user can, via a graphical WIMP interface, add
an extra node giving free text information about the error, and then link it to
the module. A new version of the module can also be created, and linked via the
CMS.

Note that a great deal is left up to the user to enter information. The
attraction of MACS lies in the power of the links; the user can navigate from a
module to its source, to its dimensional design, to its version records etc. This is
the integration mechanism. The tools on their own provide very little semantic
interpretation — that is left to the user.

MACS is built on the IPSYS ECLIPSE system, which provides the repository

mechanism and common front end user interface.

3.5.2 Reverse Engineering in REDO

REDO (Restructuring, Maintenance, Validation, and Documentation of Software
Systems) is an ESPRIT II project, which started in 1989, and is concerned with
“rejuvenating” existing applications into more maintainable forms by improving
documentation, by restructuring code, and by validating the code against the
original intentions. As one part of REDO project, reverse engineering (reverse-
engineering COBOL programs into Z specifications) was carried out at Oxford

University [33,34,35,100,101,102,103]. There are three stages in their process:

o clean — Translation to the intermediate language UNIFORM, eliminating
redundant language constructs (for restricting the original language to a
small subset of permissible constructs, because UNIFORM is more compact

and COBOL semantics are woolly).
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o specify — Using data-flow diagrams for guidance, associated variables are
grouped together to create prototype objects, but as yet containing no list
- of associated operators. The code is also split into phases at this point.
Equational descriptions of the functionality associated with these phases
are obtained automatically and transcribed into the intermediate functional
language, simplifying transforms being autoinatiqally applied in order to

reduce the equational presentation to a normal form.

o simplify — The abstracted functional descriptions are incorporated into the
outline objects as descriptions of their operations, thus filling in the seman-
tics of the prototype objects identified at the first stage. A full specification
(in the language Z or Z**) is then printed out using the object-orientated

abstraction as a basis, along with associated textual documentation.

The project was to develop a set of tools to serve as a useful aid in the
comprehension of raw code, and also to transform it into a concise mathematical
representation which can support further development work.

The strategy here is to perform abstraction first, and then perform trans-
formation on the high level language. This will no doubt increase the degree of
difficulty in the second stage, because the original code might not be structured
and hence understandable at all. So far, only a few toy examples have been done
by hand (about 40% of the COBOL language has been treated [102]) and have
been presented by this project, and support for providing automated tools for pro-
gram comprehension and the generation of technical documentation from software

systems as parf of maintenance still need to be done.

3;5.3 Sneed’s Work

Sneed and Jandrasics use automated tools to support the retranslation of software
code in COBOL back into an application specification by the process of reverse
engineering [144]. Two steps are needed, to recover a program design from the
source code and to recover a program specification from the program design.

In the first step, the code of COBOL programs is translated into an interme-
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Figure 3.7: Inverse Transformation of Software from Code to Specification

diate design schema based on a set of normalised relational tables for the modules,
data capsules, and interfaces extracted from the source programs (see Figure 3.7).

Secondly, two activities are carried out jointly in this step, i.e., data design
recovery and program design recovefy. The data design part contains five design
elements: database structure designA, file design, data communication design, data
capsule design, and data constant design. The program design part also contains
five parts: process structure design, component design, data flow design, module
interface design, and module design.

A set of transformation rules for mapping COBOL source code back into
the design schema is obtained by inverting those rules used to generate COBOL
programs from the design. The programs are modularised and restructured as a
by-product of the reverse transformation process.

In the second step, the intermediate design representation is retransformed
into a specification schema based on the entity/relationship model. The detail of

how the authors did this is not available.
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Though the authors claimed “it is not only possible to retranslate programs
into a program design but that it is also possible to retranslate a set of program
designs into a system specification”, the experiments that they carried out were
mainly limited to a low level of abstraction and there is.still work to do to reach
high level of abstraction. It seems the authors did most of work by hand and have

not developed a full system in accomplishing their ideas.

3.5.4 A CASE Tool for Reverse Engineering

Bachman introduced a CASE tool, DOCMAN, for reverse engineering COBOL
programs [12]. The Re-Engineering Cycle chart (Figure 3.8) provides an architec-
tural view of this CASE tool, which features both forward and reverse engineering.
Particularly, reverse engineering begins at the bottom left with the definition of
existing applications and raises the applications to successively higher levels of
abstraction. At the top, the design objecfs created by the reverse engineering
steps are enhanced and validated to become the revised design objects used in the
forward engineering process. At the bottom, a new applications system becomes
an existing applications system at the moﬁlent that it goes into production.

The following points are stressed by this philosophy:

e reverse engineering enables the CASE tool to extract business rules from

old applications and use them as the basis for refurbishing and maintaining

those applications,

e reverse engineering also involves the removal of optimisation mechanisms

and implementation artifacts that were introduced in an earlier implemen-

tation of the application,

e it is impossible to reverse engineer a file, database definition, or program
automatically, because some of the information essential to the task is not

present in existing COBOL programs, and

® a reverse engineering product built as an expert system can work interac-

tively with the professional user and identify the missing information, de-
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Figure 3.8: Re-Engineering Cycle

termine its nature, propose alternatives, and insert the user’s choice where

required to complete the process.

Because the CASE tool is commercial, which is not available at Durham,

several questions about the usability of the tool remain unknown.

3.5.5 TMM

A method was proposed in [9] for recovering abstractions and design decisions

that were made during implementation. This method is called Transformation-

based Maintenance Model (TMM). The purpose of this system is to reimplement

a system in order to adapt it to a new environment through reuse. The abstrac-

tions and design decisions of software must be recovered first before the software

is reimplemented. The recovery work in TMM paradigm is done by maintenance

by abstraction (MBA). Apart from working on the assumption that the documen-
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tation of the program exists, the TMM will also work assuming that the specifi-
cation and refinement history of the program are not available, but a systematic
approach must be used to recapture implementation knowledge before the TMM
can be applied. Unfortunately the abstraction recovery was carried out manually
and human experience plays a vital role. Tools need to be developed to aid this

approach.

3.5.6 A Concept Recognition-Based Program

Transformation System

This is an approach that applies a transformation paradigm to automate soft-
ware maintenance activities [63]. The characteristic of this approach is its use
of concept recognition, the understanding and abstraction of high-level program-
ming and domain entities in programs, as the basis for transformations. Four
understanding levels are defined: the text level, the syntactic level, the semantic
level, and the concept level. The program transformation system depends on its
program understanding capabilities up to the concept level. The key component
is a concept library which contains the knowledge about programming and ap-
plication domain concepts, and the knowledge about how these concepts are to
be transformed. Concept recognition is done by pattern matching. This work is
based on program plans (please also see Section 7.2.2). A program transformation
tool has been developed to support the migration of a large manufacturing control
system written in COBOL. A

At present, the maintainer has to write correct and complete transforma-
tions. In the experiment, the system only contains 60 concept recognition and
transformation rules. The result shows that the speed of the system need to be
improved. Another problem is that the system does not provide a facility for the
maintainer to guide the transformation, but this is necessary because complete
automation of maintenance modifications is not always possible. It is also found

out that the system still needs a browser to support the high-level editing.
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3.5.7 REFORM

REFORM - Reverse Engineering using FORmal Methods - is a joint project be-
tween University of Durham, CSM Ltd. and IBM (UK) to develop a tool called
the Maintainer’s Assistant. The main objective of the tool is to develop a formal
specification from old code. It will also reduce the costs of maintenance by the
application of new technology and increase quality so pr~oducing improved cus-
tomer satisfaction. The old.code in this project is the IBM CICS. The aims of the
Maintainer’s Assistant are to provide a tool to assist the human maintainer, han-
dling assembler and Z in an easy to use way. The Maintainer’s Assistant system
will be discussed in detail in later chapters.

Other systems may be seen in [162].

3.6 Summary

The purpose of the chapter is to discuss the state of the art in the area of ac-
quiring a design/specification from program code in two aspects: the experience
of forward engineering which is useful for reverse engineering (because acquiring
a specification from an existing program covers many stages of software develop-

ment), and the latest developments in reverse engineering.

Problems and lessons learned from forward engineering In the specifi-
cation phase, formal specifications can be found in many applications and they
have shown many advantages over informal specification languages. Some of the
languages in previous section have been relatively widely used, such as VDM and
Z, but they still have same problems. For example, they cannot meet the needs of
representing all levels of abstraction in acquiring a specification from the program
code; the specifications written in them cannot be easily verified formally, be-
cause it is not easy to integrate them with program verification tools. Probably, a
wide spectrum language is better than other types of language when undertaking
reverse engineering.

In the development phase, existing transformation systems have shown their
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potential power. These systems suffer from various problems. For instance, the
CIP is one of the most representative projects of transformation system. It started
in 1975. By 1989 when [19] was published, the conclusion is still “.. experiences

strengthened our belief that transformational programming will become an
important factor in software engineering.” This implies that it will take a long
time for the paradigm of transformational programming to become practical. In
a general sense, the reviewed systems in the previous section almost all fall into at
least one of the following categories: theoretical problems to be solved; only “toy”
or comparatively simple example programs being experimented; and operations
being carried out informally or even entirely by hand.

In the verification phase, we can identify a number of verification systems,
but they are not built for the purpose of reverse engineering. The author has
carried out experiments with the Boyer-Moore Theorem Prover [167] for building
a s:upporting tool of a program transformer for the REFORM project. Experi-
ences show that the Boyer-Moore Theorem Prover is a powerful verification tool.
The disadvantages can also be seen: a user has to spend time trying to find the
right intermediate lemmas for the prover; and the prover is a major consumer of
resources. One idea is to use one of the program tools for reverse engineering at
some stage of the research.

This suggests that the research of the thesis be carried out by using a for-
mal or rigorous method, particularly using a formal language to represent both
specification and program; developing a transformation system to transform spec-
ifications (or programs) into equivalent specifications (or programs), and using
progra;m verification tools to obtain transformation rules (including transforma-

tions for crossing levels of abstraction).

Problems and lessons learned from reverse engineering From the re-
- viewed systems, we know that a great effort is still needed to put the paradigm
of reverse engineering into practical use. It is particularly a hard job to reverse
an existing program back to its design or specification. For instance, one of the

problems with reviewed systems is that the availability and accuracy of the design
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information are both assumed. Actually, such information is typically obsolete or
lacking in systems which have gone through years of maintenance. For such sys-
tems, source code is the only reliable source of information. Another problem is
that there is not a method for coping crossing levels of abstraction covering all
abstraction levels in these systems.

The state of the art in reverse eﬁgineering may be summarised as follows.
Most existing commercial tools are basically restructurers, and these operate at
the same level of abstraction.. Even module recovery tools, such as those in MACS
or Sneed’s work, operate at the syntactical level, e.g., grouping variables and
operations on them. Where genuine crossing of levels of abstraction occurs, this is
done manually, e.g., in Sneed’s system for COBOL, or in redocumentation systems
such as DOCMAN. The recent Refinement conference [54] is also a reference of
the state of the art.

The most relevant work to this thesis is that of Breuer and Lano, and Bach-
man. Work is also being done on the business use of reverse engineering but this
is only indirectly of relevance to this thesis.

It should pointed out that reverse engineering is still an activity of high risk
and high cost from the management’s point of view. It has been argued that
for large systems deriving formally correct designs or specifications from existing
source code is impracticable [36], because the importance of a design or specifica-
tion as a model of the application domain is ignored, as well as a description of
the code itself. This argument claimed that the reasons for unsuccessful reverse
engineering include that the original design or specification might not exist at all
and that the implementer of the software did not observe the design or specifica-
~ tion (if existed). Nevertheless, these problems had been addressed by the project
before the paper [36] was published. The aim of the project also includes finding
out the possibility of dealing with large scaled software.

The author of this thesis would see acquiring designs and specifications for
data-intensive programs as redesigning the original programs rather than seeking

the (possible) original designs.
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As we have seen in previous chapters, acquiring a program design or specification
from program code is important and significant in reverse engineering. The thesis
takes this topic as its subject.

After studying the subject, problems which are related to this issue are iden-
tified in this chapter. The general area chosen is that of crossing levels of data
abstraction to extract data design from existing code. The thesis focuses on data
design recovery for data intensive programs — those whose computational com-
plexity is low, but whose data complexity is high. Many COBOL programs are of
this type.

Program design often starts with data and there are many data intensive
programs existing now in the form of COBOL programs. The Entity-Relationship
Attribute Diagram is one of the good forms of data design for a data intensive
program; for example, Entity-Relationship Attribute Diagrams are used as the
tool for representing data designs in Structured Systems Analysis and Design
Method (SSADM).

The aim of the research is to tackle not just “toy” program code, but also
real program code, including heavily maintained industry scale program code. The
code is of modest scale, e.g., a few hundred lines or even up to a few thousand
lines. Coping with a large scale program also needs further research, which has to
be studied in the next step and is beyond the scope of the thesis. Real-time and

concurrent programs are not considered, because the theoretical and foundation

68
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work is still in progress.

The features of data-intensive programs are first introduced in this chapter.

4.1 Features of Data-Intensive Programs

Design processes (SSADM in particular) in forward engineering are briefly re-
viewed in this section in order to understand the reverse direction and to under-

stand features of data-intensive programs.

4.1.1 Software Design Process

Design is the process of applying various techniques and principles for the purpose
of defining a device, a process or a system in sufficient detail to permit its physical
realisation. It is the first step in the development phase for any engineering
product or system [132].

Usually the design phase starts once software requirements have been estab-
lished, regardless of the software engineering paradigm applied. From the technical
point of view, design comprises three activities: data design, architectural design
and procedural design. A

The main goal of data design is to select logical representations of data objects
(data structures) identified during the requirements definition phase. Data design
is the most important design activity for some program classes among the three
design activities, because well-designed data can lead to better program structure,
modularity, and reduced procedural complexity, no matter which design techniéue
was used.

The main goal of architectural design is to develop a modular program struc-
ture and represent the control relationship between modules. Furthermore, archi-
tectural design melds program structure and data structure and defines interfaces
enabling data to flow throughout the program. The main goal of procedural de-
sign is to define algorithmic details after data and program structure have been
established.

Effective software design is best accomplished by using a consistent design



Chapter 4. Proposed Research Problem ‘ 70

method. There have been a vast number of design methods developed and used in
different application during last four decades. Essentially, most of these method-

ologies can be grouped into one of three categories [132,146):

o Data structure-oriented design. This method is to transform a representation
of data structure.(information structure) into a representation of software.
The idea behind it is that input data, internally stored information and out-
put data may each have a unique structure and these structﬁres can be used
as a foundation for the development of software. In addition there is an inti-
mate relationship between software and data — the original concept behind
the stored program computer is that programs could be viewed as data and
‘data interpreted as programs. It has been shown that data structure has an
important impact on the complexity and efficiency of algorithms designed
to process information. The approach may be successfully applied in appli-
cations that have a well-defined, hierarchical structure of information, e.g.,

business information systemé applications and systems applications.

o Data flow-oriented design. This method is to provide a systematic approach
for the derivation of program structure. The idea behind it is that infor-
mation may be represented as a continuous flow that undergoes a series of
processes as it evolves from input to output. The data flow diagram is used
as a graphical tool to depict information flow. The approach is pa.rticuia.rly
useful when information is processed sequentially and no formal hierarchical

data structure exists.

o Object-oriented design. This method is to create a representation of the real-
world problem domain and map it into a solution domain that is software. It
results in a design that interconnects data objects and processing operations
in a way that modularises in formation and processing rather than processing

alone. This approach has been developed more recently than the other

design methods.

Compared with the data flow-oriented design, data structure-oriented de-

sign is more suitable for data-intensive programs, because data structure-oriented
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design is more powerful in coping with more complicated data structures. Data-
intensive programs currently in need of maintenance were usually developed before
the object-oriented design method existed. In summary quite a number of data-
intensive programs to be maintained today were developed by the data structure-
oriented design method.

In the next section, a widely used data structure-oriented design method is

described.

4.1.2 Structured Systems Analysis and Design Method

Structured Systems Analysis and Design Method (SSADM) [11,53,61] is one of
family of systems development methods which has led the methods field in Britain
during the 1980s. The method was accepted by the UK government’s Central
Computer and Telecommunications Agency (CCTA) and became mandatory for
systems analysis and design in the UK in January 1983. It is constantly being
updated, and version 3 was released in July 1986.

The importance of software design is to help producing “quality” software.
It explains why SSADM is one of the most mature and widely used structured
methods in the UK though it requires a significant investment in training — it
provides good quality to software product which was developed by SSADM.

SSADM prescribes how a systems development effort should be conducted.
The prescription is adjusted to suit individual needs. It breaks down a project into
phases which are then divided into stages. Each stage is subdivided into steps.
Each step has a list of tasks, inputs and outputs. SSADM provides structural and
procedural standards.

SSADM consists of three phases: feasibility, analysis and design. The fea-
sibility phase is optional. The analysis and design phases are divided into three
stages each. The three analysis stages of the analysis phase and the three stages

of the design phases are:

1. Analysis of system operations and current problems: to investigate the cur-

rent system
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2. Specification of requirements: to redraw the current system view built up
in stage 1 to extract what system does without any indication of how this
is achieved; to complete Business System Operations; and to build up and

check a detailed specification of the required system.

3. Selection of technical options: to cost out the purchase of new computer
equipment, etc., if required and to weigh the benefits against the costs to
give the user some help in choosing the final solution, e.g., selecting the final

system hardware.

4. Detailed data design: to build up the logical data design so that all the

required data will be included.

5. Detailed process design: to expand the definition developed in stage 2 to a
very high level of detail so that the constructor can be given all the detail

necessary to build the system.

6. Physical design control: to convert the complete logical design — both data

and processing — into a design that will run on the target environment.

SSADM is a data driven approach. Within SSADM several different views
of data are employed. The analysis and design of processes is a part of SSAMD,
but the context within which these are done is determined by the data. SSADM

takes three basic views of an information system:

e Logical Data Structures — showing what information is stored and how it

is interrelated;
e Data Flow Diagrams — showing how information is passed around;

e Entity Life Histories — showing how information is changed during its life-

time.

The first view of the data structure is developed as a model of the organisa-

tion’s information base using the logical data structuring technique (LDST). This
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technique tries to capture a picture of the underlying and stable information on
which the organisation and its information system and based.

The method of data modelling is based on an entity relationship model [47].
The model recognises two different classes of relations, entity relation and rela-
tionship relation. An entity relation has data on all entities of the same type,
and has one tuple per entity, including a key to identify the particular entity. All
other fields should be functionally dependent on this key. A relationship relation
links the keys of two or more entity relations. It may also have attributes that are
functionally dependent on this relationship [81]. The major, real world entities in
which the organisation is interested are represented on a diagram. The relation-
ships between entities are examined to ensure that all, and only the useful ones
are included in the model. The nature of the relationships are also explored and
details included.

This technique is a top-down approach to data modelling and relies upon
the modeller’s perception of the information being modelled. It is quite simple,
and moderate-sized diagrams can be quickly produced. These can be intelligible
to users, who may thereby contribute their understanding to the development
process.

A second view of the data is represented by dataflow diagrams (DFDs).
These show the data which flow into, out of, and around an information system,
as well as the processes which transform it, the entities which are external to the
system but which communicate with it, and the stores of data within a system.

A third view of the data is represented by the use of entity life histories
(ELHs) and their associated ELH metrics. LDST takes a static view of the data,
DFDs look at the movement of data and the dependency of processes upon certain
flows. ELHs complement these perspectives by looking at how entities change over
time.

Each of these views is developed through system analysis (stage 1-3) and
logical design (stage 4 and 5) before conversion to an executable physical design.
In each part of SSADM all three of these views are used and interrelated. There

are several steps in one stage. The task belonging to each of the three views can
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be done in one or more steps in a stage, or even does not appear in one stage. The
convention of naming a step is to use a 3-digit number, first number indicating
the stage where the step is in. For instance, step 110 is in stage 1 and step 260 1s
in.stage 2.

The first view of data is corresponding to one of the three design activities
— data design. Since data design is the emphasis of the research, only those
steps relating to the first view (Logical Data Structures) are discussed here. Steps
directly related to Logical Data Structures at the logical design phase are step
125, step 245, step 410 and 420.

In step 125, Investigating system data structure, the Logical Data Structure
Diagram and its supporting documentation are produced. Development of Log-
ical Data Structure involves identifying entities, identifying direct relationships
between entities, creating a diagram representing the entities and their relation-
ships, producing supporting documentation to the diagram, validating against the
processing requirements and validating with the user.

In step 240, Creating required system data structure, the Current System
Logical Data Structure and supporting documentation are expanded to define the
required system data structure. This involves defining new requirements which the
Logical Data Structure must support by the chosen Business System Option and
the Problems/Requirements List, amending the Problems/Requirements List to
describe any solutions adopted, and validating the Required System Logical Data
Structure against the required system processing and extending the Entity/Data
Store Cross Reference.

In step 410, Relational data Aa,nalysis, a set of normalised relations which
minimise redundancy of data and avoid consistency problems are produced.

In step 420,. Composite Logical Data Design, the Logical Data Structure,
and the relations derived from relational data analysis are combined to form the
Composite Logical Data Design. This involves representing the relations as a data
structure diagram to aid comparison with the Logical Data Structure, merging two
diagrams and resolving differences with reference to the processing requirements

and to the user, extending the Entity Description to show the full data content
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defined by the relations, completing any remaining documentation of the system

data and consolidating all volumetric information on the data.

4.1.3 Features of Data-Intensive Programs

Data-intensive programs and computation-intensive programs are comparative no-
tions. There is no clear distinction between these two sorts of programs. Data-
intensive programs mean programs which are written in data-intensive program-
ming languages that provide complex data structuring mechanisms and high-
level composite operations to manipulate them. Computational-intensive pro-
grams mean programs which are written in computational-intensive languages
that provide ways to express cozhputations using relatively simple operations on
elementary objects [74]. COBOL is a typical data-intensive programming lan-
guage.

Since examples of data-intensive program are needed in the research, COBOL
has been selected as the data-intensive language. The features of COBOL pro-
grams are studied as an example of data-intensive program in general. In this
text, all examples of data-intensive program are in COBOL. It is believed that
the generality of the research will not be limited by this assumption. On the other
hand, there are claimed to be 800 billion lines of COBOL programs existing in
the world [104] and the result of the research can be easily applied to maintain
COBOL software.

The COBOL language was first developed in 1959. The CODASYL commit-
tee (Conference on Data Systems Languages) produced the initial specification
of COBOL in 1960, and a revised version appeared in 1961. The first ANSI
(American National Standard Institute) specification of the COBOL language
was published in 1968. Later standards were the ANSI 1974 and the ANSI 1985
Standard. COBOL offers the following advantages within the standard language

[92], which are related to the research:

1. Uniform treatment of all data as records.

2. Extensive capabilities for defining and handling files.
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3. Incorporation of many functions which in other contexts would be regarded

as the province of system utilities.

4. The ability to construct large programs from independently compiled mod-
ules which communicate with each other by passing parameters or by using

common files.

The COBOL language used in this research not only is unrestricted to any
dialect of COBOL but also covers features written in ANSI COBOL Standard
1985. More importantly, this research will be not only of benefit to COBOL
programs but also to other data intensive programs written in other languages.
However, programs (such as those written in COBOL) with built-in calls to data
base management packages will not be addressed in this thesis and this surely is
a good area for future res.ea,rch.

Programs written in COBOL have characteristics which are different to those

of typical computation-intensive programs, and these are important constraints

in reverse engineering such systems, e.g.:

e Important data is represented in the form of records and operations on data

are therefore heavily record based.

e COBOL programs are often designed using Entity-Relationship Attribute

Diagrams, rather than process based design methods.

e COBOL allows the programmer to specify that two different records (with
different structures) may share the same memory location. This is known

as the aliasing problem and is found in many COBOL programs.

e COBOL programs usually have external calls to the operating system and

database management system.

e COBOL programs may use many foreign keys to represent complex data

structures which in other languages would use pointers.
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4.2 Representing Data  Designs Using
Entity-Relationship Attribute Diagrams

It can be seen that the SSADM’s first view of data, i.e., Logic Data Structures,
may be used in reverse engineering, i.e., to represent data design by Logical Data
Structures when extracting a data design from existing code. How Logical Data

Structures can be used is a problem to be solved in the thesis.

4.2.1 Entity Models

Entity models provide a system view of the data structures and data relationships
within the system [47,53,55,114]. All systems possess an underlying generic entity
model which remains .fa.irly static in time. The entity model reflects the logic of
the system data, not the physical implementation.

Entity models provide an excellent graphical representation of the generic
data structures and relationships. They provide a clear view of the logical struc-
ture of data within the boundary of interest and allow the analyst to model the
data without considering its physical form. Entity modelling provides a system
view independent of current processing; it is a system-wide view not a functionally
decomposed view.

An entity is something, real or abstract, about which we store data [114].
The name of each type entity type should be a noun, sometimes with a modifier
word. An entity type may be thought of as having the properties of a noun. An
entity has various attributes that we wish to record. An entity type is a named
class of entities that have the same set of attribute types. An entity instance is
one specific occurrence of an entity type.

We can describe data in terms of entity types and attributes by using Entity-
Relationship Attribute Diagrams. On an Entity-Relationship Attribute Diagram
the boxes are interconnected by links that represent associations between entity
types. In Figure 4.2 there are four entities: CUSTOMER, PART, CONTRACT,
and CONTRACT-ITEM. This diagram shows that a customer can have multiple

contracts. A contract is for one customer and can be for more than one contract
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CUSTOMER
CONTRACT BN - \ PART
CONTRACT-
ITEM
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One A is associated with one B: A f B
One A 1s associated with one or more B’s: A B
One A is associated with zero or one B: A O—t B
One A is associated with zero or one or more B’s: A O B

Figure 4.2: An Entity-Relationship Attribute Diagram

item. There are zero, one, or many contracts for each part. A contract item

relates to one contract and zero or one part.

4.2.2 Entity-Relationship Attribute Diagrams in SSADM

Entity models are sometimes called logical data structures, as before we use
SSADM as our examples. Entity-Relationship Attribute Diagrams used in SSADM

are revised versions of generally used Entity-Relationship Attribute Diagrams

shown in Figure 4.2.
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Entities, Data Items and Identifiers

An entity is something of significance to the system about which information is
held [11]. An entity type répresents a number of entity occurrences. According to
convention, entity is always used to refer to the entity type and entity occurrence

1s always used to refer to a specific entity occurrence.

A data item is the smallest discrete component of the system information
that is meanful (in other approaches a data item defined here is usually called an

attribute).
Each entity is made up of a number of data items.

A data item which can be used to identify uniquely each entity occurrence

is called the primary key.

An entity is represented as a box in a Logical Data Structure Diagram.

Relations

A relation is a group of non-repeating data items identified by a unique key [11].
Mathematically a relation is defined as a set of tuples and that this set is a subset

of the cartesian product of a fixed number of domains [81].

Relationships

A relationship is a logical association between two entities on a data structure

that is important to the system. Relationships are normally described as verbs.

The degree of relationships Between two entities A and B there are four

possible degrees of relationships:

1. One A can be related to many B'’s.
2. Many A’s can be related to one B.
‘3. Many A’s can be related to many B’s

4. One A can be related to one B.
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1 and 2 are examples of one-to-many relationships. It is assumed that both
one-to-one and many-to-many relationships rarely exist. So only one-to-many

relationships are drawn on Logical Data Structure Diagrams.

Exclusive relationships This is when the existence of one relationship pre-

cludes the existence of another (see Case B in Figure 4.3).

Recursive relationships This is when entity occurrences have direct relation-

ships with other entity occurrences of the same type (see Case C in Figure 4.3).

Logical Data Structure Diagrams

Case A in Figure 4.3 shows a one-to-many relationship. The line with the crow’s
foot describes the relationship. The crow’s foot is always shown at the ‘many’ end.
The entity at the one end is often referred as the master entity and the entity at
the ‘many’ end referred to as the detailed entity.

The components of the Logical Data Structure are entities and relationships.
The Logical Data Structure deals with entity and relationship types only rather
than their occurrences. Relationships relate one entity to another and indicate ac-
cess from one entity occurrence to all the related ones. The Logical Data Structure
Diagram is supported by entity descriptions and sometimes relationship descrip-

tions.

4.3 Reverse Engineering Through Data

Abstraction

4.3.1 Abstraction Techniques in Programming

Abstraction techniques are widely used in “forward engineering” [49,51,56,109).
There are two advantages by using abstraction: firstly, the abstractions allow large
systems to be broken into smaller parts with logical interfaces based upon the data

being handled. These interfaces stand alone as the specification of the system with
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Figure 4.3: Relationships in Entity-Relationship Attribute Diagrams

the actual implementation being hidden and flexible; secondly, the abstractions
can be defined in a rigorous mathematical fashion, which means that the data
type itself is a well defined mathematical system. A systematic development of a
body of knowledge is thus made possible.

Abstraction is the process of ignoring certain details in order to simplify the
problem and so facilitates the specification, design and implementation of a system
to proceed in a step-wise fashion.

There are three stages in this process. The first requirement in designing
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a program in forward engineering is to concentrate on relevant features of the
system, and to ignore factors which are believed irrelevant. The next stage in
program design is the decision of the manner in which the abstracted information
is to be represented in the compﬁter. Finally there comes the task of programming
the computer to get it to carry out these manipulations at the representation of
the data that corresponds to the manipulations in the real world in which we are
interested. |

Three basic abstractions have been used in programming [109,110,141]:

Procedural abstraction combines the methods of abstraction by parame-
terisation and specification in a way that allows us to abstract a single operation
or event. A procedure provides a mapping from input arguments to output ar-
guments. In another words, it is a mapping from a set of input arguments to a
set of output results. Desirable properties of a procedure include simplicity and
generality.

Data abstraction allows us to extend the base type level with new types
of data. Data abstraction is the most important method in program design.
Choosing the right data structures is crucial to achieve an efficient program. In
the absence of data abstraction, data structures must be defined too early , i.e.,
they must be specified before the implementations of modules which use them can
be designed.

Iteration abstraction, or iterator for short, is a generalisation of the
iteration methods available in most programming languages. They permit users
to iterate over arbitrary types of data in a convenient and efficient way. In other
words, iterators are a mechanism that solve the problem in the adequacy of data

types that are collections of objects.

4.3.2 Data Abstraction

Data is essential to programming. One of the most impértant objectives of pro-
gramming is to process data or to achieve certain goal through processing data.
The program development process can be described in terms of data. Data ab-

straction has following important aspects [50]:
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e Data abstractions separate the use of a data type from the implementation

of a data type.
e Data abstractions simplify issues of correctness.

e Data abstractions permit the exchange of (correct) implementations. Per-

formance is ideally the only criterion for choosing an implementation.

o Data abstraction is a software design technique that promotes modularity
and independent development of data abstraction implementation and the

application program.

4.3.3 Data Type

A data type defines a set of valid values and the operations on these values. An-
other way to state this is that a data type is a language mechanism to enforce
authentication and security [28,124]. A summary of some of the important points

data type was given by C. A. R. Hoare [89]:

1. A type determines the set of values which may be assumed by a value or

expression.
2. Every value belongs to one type only.

3. The type of a value denoted by any constant, variable, or expression may
be deduced from its form or context, without any knowledge of its value as

computed at run-time.

4. Each operator expects operands of fixed type, and delivers a result of some
fixed type. Where the same symbol is applied to several different types, this
symbol may be regarded as ambiguous, denoting several different actual
operators. The resolution of such systematic ambiguity can always be made

at compile-time.

5. The properties of the values of a type and of the primitive operations defined

over them are specified by means of a set of axioms.




Chapter 4. Proposed Research Problem 85

6. Type information is used in a high-level language both to prevent or detect

meaningless construction in a program, and to determine the method of

representing and manipulating data on a computer.

7. Types can be constructed from a number of primitive types, i.e., by con-
structors. These include Cartesian products, discriminated unions, sets,

functions, sequences and recursive structures.

Each type has a range of basic operations associated with it. Usually these
are the operations provided by the basic hardware of the computer system and
they will apply directly to the basic types [151]. Further operations will be defined

in terms of this basic set. More generally, the operations associated with a type

are:

e Assignment and test for equality will be required for both primitive and

structured types.

e Transfer or conversion functions are required to convert values of one type

to another.

Constructors are necessary to donate the construction of a new type from

component types.

e Selectors are required to access the component values of a structured type.

All types are constructed from further types, which ultimately must be either
primitive (probably supported directly by the computer’s hardware) or are defined
by the programmer by using type constructors. The constructors (fundamental

data types) for types are as follows [89,151]:

e Unstructured data types — All structured data must be built up from un-
structured components, belonging to a primitive or unstructured type. Some
of these unstructured types (for example, reals and integers) may be taken
as given by a programming language. Although these primitive types are

theoretically adequate for all purpose, there are strong practical reasons for
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encouraging a programmer to define his or her own unstructured types. This
can be done by an enumeration, i.e., indicating the set of values that can
be taken by an unstructured type. For instance, type Day is defined as
{MON, TUE, WED, THU, FRI, SAT, SUN}. Other examples include the
boolean type (with only two values, false and true) and the char type (with
all characters in the ASCII table, ranging from ASCII value 32 to 126).

e The Cartesian Product — The Cartesian Product is a data structuring
method which gives the space of possible values of a composite type. Such
structures usually have a fixed size and are called records or structures in

programming languages, where their components can be named, e.g.:

type DATE 1is

record
D: DAYS;
M: MONTHS;
Y: YEARS;

end record;

It must be possible to refer to the individual components of a Cartesian

product.

e The Discriminated Union — A discriminated union is a type which is the
union of two or more sets of values, each of which may have components in
common. It is usually specified by listing the components that the sets have

in common, followed by the components which differ.

type PERSON is
record
NAME: STRINGS;
SEX: (M or F);
IDENTIFICATION:
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case: STUDENT: STUDENT CARD NUMBER;
EMPLOYED: NI NUMBER
end case;

end record;

e The Array — It is available in almost every language. Viewing abstractly

it i1s a mapping between the subscript values and the elements of the array.

o The Power Set — The powerset of a given set is defined as the set of all
subsets of that set; and a powerset type is a type whose values are sets of

values selected from some other type known as the base of the powerset.

e The Sequence — The cardinality of a sequence cannot be decided at com-
pile time, because a sequence of values may be indefinitely long and, more
practically, may vary as the program executes. A sequence can be regarded
as an arbitrary number of items of given type placed in a particular order.
Such sequences include strings, stacks, queues and so on. The sequence is

the abstraction notion and there are various representations of this abstract

notion.

e Sparse Data Structures — If the set potentially contains a very large number
of elements or if the range of possible subscript values is very large, then the
data type is said to be sparse if only a small proportion of possible values
are present. A particular example is an array which represents a dictionary
and is indexed by character strings corresponding to words. This array can

be declared as:
type DICTIONARY = sparse array WORD of DEFINITION.
Sparse data structures can be represented by keeping tables to map the index

values into either main store addresses or positions in a file. Sparse data

structures, in general sense, are not recognised in programming languages.

e Pointers — A pointer can be thought of as the name of the place where an

object is kept; usually it will be implemented as an address. Pointers are




Chapter 4. Proposed Research Problem 88

usually used to build data structures whose size is, in general, unknown at

compile time.

4.3.4 Abstract Data Types

The major conceptual idea of abstract data types is to separate the use of a type
from the representation and implementation of a type. The use of a type should
depend only on the set of values and operations. It should not depend on either
its representation or its implementation.

Data abstraction allows the description of abstract data types. Usually, a
data abstraction consists of “objects” and “operations”. To implement the data
abstraction, we implement the operations in terms of the chosen representation,
and we must reimplement the operations if we change the representation. How-
ever, we do not need to reimplement the program by using this abstraction, be-
cause the program depends only on the operations and not on the representation.

It is important to understand this. For example, a stack can be viewed as an
abstracted data type. A stack is defined in terms of a representation (such as an
array) and several operations (such as NEW, PUSH, POP, READ and EMPTY).

If these operations are met in a program, they can be abstracted to a “stack”.

4.3.5 Abstraction Levels of Data and Software

The ANSI-SPARC Standard has established three distinct abstraction levels in

viewing data. These are the physical level, logical level and conceptual level [1].

Data at the physical level At the physical level, data is viewed as a set of
records connected through pointer arrays, inverted lists, etc., depending on the
type of physical implementation, e.g., hierarchical, network, or relational. The

forms of data are:

e raw data — consisting of bits, bytes and words.

e scalar types — such as natural numbers, integers, reals, characters and

boolean variables together with pointer variables (representing memory ad-
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dresses).”

e data structures — referring to compound structures which are directly sup-
ported by programming languages such as arrays, heterogeneous structures
(e.g., the record in COBOL), sets, lists, simple user definable types and per-
sistent structures such as files (random, sequential, etc‘.). Associated with

the data structures are the operations used to manipulate them.

Data at the logical level At the logical level, data is viewed as tables of nor-
malised relations or tuples 6f data elements linked by keys, which are independent
of any particular physical implementation, e.g., the data manipulation language.

The basic form of data here is data items. Data items of an abstract class,
as opposed to values of an abstract data type, encapsulate the definition of an
internal state and are associated with a set of accessing operations, which may
update and/or query the object state. The assumption is that the classes of
abstract items will be initiated as independent subsystems in different contexts.
The item classes include stack, queue, sets, bags, etc. An abstract data type is at

this level.

Data at the conceptual level At the conceptual level, data is viewed as a
network of entities with attributes and relationships among one another, e.g., the
entity/relationship model. At this level, data is existing in the form of application

objects and it is more close to the concept of real world rather than to the software.

Abstraction levels of software In principal, the three data levels also apply

to software [51,144,174]. At the physical level software exists as a set of discrete

“units of code of various types — modules, maps, data descriptions, access paths,

and command procedures — link editors and loaders of the operating system. At
the logical level, software exists in the form of a meta language, which describes
processing units — modules, data capsules, and interfaces of any particular imple-
menté,tion language. At the conceptual level, software, like data , can be viewed

as a set of abstract entities, such as data objects, data elements, processes and
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relationships among one another. At the conceptual software models some real

world application.

The software at the physical and logical level is typically executable and
hence it can be referred as that the software is at the code level. Whilst the
software at the conceptual level is typically not executable and can be viewed

as the design and specification.

4.4 Definition of Proposed Research Problem

In seeking solutions to the problems described in Chapter 1 (Section 1.3), Chap-
ter 2 and Chapter 3 reviewed the work (done in software engineering and in
reverse engineering in’particular) related to this thesis, and the previous sections
in this_cha.pter addressed features of data intensive programs, Entity-Relationship
Attribute Diagrams and data abstraction techniques. This enables the research

problems proposed in Section 1.3 to be defined more precisely as follows:

e Can data intensive programs be reverse engineered to Entity-Relationship

Attribute Diagrams? What are the difficulties? How do we use code and

data structure in the sources?
e How do we cope with source code techniques such as

1. foreign keys
2. aliasing
3. input/output

4. abstract data type, and

e Is it possible to reverse engineer data intensive programs which have been

heavily maintained and hence whose structure has become heavily degraded?

e What is the method to extract prdgra.m data designs (represented in Entity-

Relationship Attribute Diagrams) from the existing data intensive code?

e With what size of code can this method cope?
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e What information do we throw away when crossing abstraction levels?
e What can be automated and what can be done by humans?

e Suppose that this method is demonstrated by extending the Maintainer’s
Assistant. What changes have to be made to WSL? What extension has to
be made to the transformation library? What other supporting components

should be implemented?

e How do we know what we have done is correct? How do we measure our

success?

It is claimed that answers to the above questions are making a contribution
to research in computer science.

Because this research aims at developing a method (and a tool) to extract
program data designs from the existing data intensive code, it should be pointed
out that the method should only be used under certain circumstances where, for
example, maintenance to a relative self-contained module needs carrying out. This
means that the method would not be very helpful when a minor change (e.g., a
change to one line of code) is needed. The reason is that an Entity-Relationship
Attribute Diagram can only be extracted from a block of code (containing both

control and data structures) rather than just one or two lines of code.




Chapter 5

Working Environment and

Design Recovery Method

As the research described in this thesis is part of the REFORM project, the
background of REFORM and the working environment are introduced in this

chapter.

5.1 Working Environment

The REFORM project started in July 1989 [44,156]. As mentioned in Chapter 3,
the aim of the project is to build a prototype tool — the Maintainer’s Assistant
— which will take existing software written in low-level procedural language (in
particular, IBM CICS code written in IBM-370 assembler), through a process of
successive transformation, turn it into an equivaleﬁt high-level abstract specifi-
cation expressed in terms of non-procedural abstract speci-ﬁcation language (in
particular, Z). The theoretical foundation for the project was established by the
work carried out at Oxford and Durham by M. Ward [155]. Naturally, as the
process of applying program transformations cannot be totally automated, the

Maintainer’s Assistant is an interactive tool including an interactive interface.

92
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5.1.1 Ward’s Work and its Application in the REFORM
Project

The REFORM Project has its roots in Ward’s work [155], in which he developed
methods of proving refinements and transformations of programs. Although he
used the popular approach of defining a core “kernel” language with denotational
semantics, and permitting definitional extensions in terms of the basic constructs,
he did not use a purely applicative kernel; instead, the concept of states is in-
cluded, using a specification statement which also allows specification expressed in
first order logic as part of the language (thus providing a genuine wide spectrum
language).

In contrast to other work, Ward used infinitary first order logic (an exten-
sion of first order logic which allows infinitely long formulae) both to express the
weakest preconditions of programs [60] and to define assertions and guards in
the kernel language. Engeler [64] was the first to use infinitary logic to describe
properties of programs and Back [13] used such a logic to express the weakest pre-
condition of a program as a logic formula but his kernel language was limited to
simple iterative programs. Ward used a different kernel language which includes
recursion and guards, and he showed that the introduction of infinitary logic as
part of the language (rather than just the metalanguage of weakest preconditions),
together with a combination of proof methods using both denotational semantics
and weakest precondition, is a powerful theoretical tool which allows some general
transformations and representations theorems to be proved.

In Ward’s approach [155], it is possible to prove that two versions of a pro-
gram are equivalent. Programs are defined to be equivalent if they have the
same semantic function. Hence equivalent programs are identical in terms of their
input-output behaviour, although they may have different running times and use
different internal data structures. A refinement of a program, or specification,
is another program which will terminate on each initial state for which the first
program terminates, and will terminate in one of the possible final states for the
first program. In other words a refinement of a specification is é,n acceptable im-

plementation of the specification and a refinement of a program is an acceptable
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substitute for the program.

Here is a very brief look at Ward’s approach to proving the equivalence of
two programs in terms of Dijkstra’s weakest precondition. For a given program
S and on the final state R the weakest precondition WP(S, R) is the weakest
condition on the initial state such that the program will terminate in a state
satisfying condition R. It is possible to express the weakest pfecondition of any
program or specification as a single formula in infinitary logic. The value of
weakest preconditions lies in the fact that two programs are equivalent if and only
if they have equivalent weakest preconditions [152,153,154,155].

Ward’s work can be used not only in the program development but also in
the software maintenance which has been overlooked traditionally by the people
who were building transformation systems. The aim of the REFORM project is
to develop a computer-based, semi-automated transformation system, founded on

Ward’s approach, for use in software maintenance and especially reverse engineer-

ing.

5.1.2 The Wide Spectrum Language

In the process (within the REFORM project) of acquiring a specification from the
program code, a notation (or a language) is needed to represent the program and
specification at all intermediate steps, especially as objects (program or specifica-
tion) are changed from one form to another. As we have seen, a wide spectrum
language is a suitable language for this, so that a wide spectrum language named
WSL has been defined by Ward, which incorporates a variety of constructs, from
low-level machine-oriented constructs up to high-level specification ones.

The WSL [37,155] consists of two types of construct: WSL constructs and
Meta-WSL constructs. WSL constructs include statements, functions, expres-
sions, logic and arithmetic operator and test, etc., for representing both program
code and program specification; Meta-WSL constructs include Meta-WSL state-
ments, Meta-WSL function, Meta-WSL pattern, Meta-WSL condition and etc.,

for representing program transformations. Both types of WSL constructs were

originated from the kernel language.
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The syntax and semantics of expressions and formulae are discussed here
first and they are used to define the kernel WSL and the first level WSL in this
chapter, and will be used to extend WSL and prove program transformations later

in this thesis.

Syntax of Expressions

Numeric operators: e; + e;, e; — €2, e1/e2, €2, erx*ey, e, mod e, €
div ey, frac(er), abs(er), sgn(er), maz(ey, e, ...), min(e, ez, ...), with the usual
meanings.

Sequences: s = ( a1, a, ..., @, ) is a sequence, the ith element q; is denoted
s[4, s[¢ .. j] is the subsequence ( s[1], s[i + 1], ..., s[j] ), where s[¢ .. j] = () (the
empty sequence) if s > j. The length of sequence s is denoted £(s), so s[¢(s)] is the
last element of s. s[i..] is used as an abbreviation for s[z .. £(s)]. reverse(s) = (
Gn, Gn-1, ..., G2, 01 ), head(s) is the same as s[1], taills) is s[2 ..], last(s) is s[{(s)]
and butlast(s) is s[1 .. s[{(s)]- 1]. '

Sequence Concatenation: s; H s; = (s1[1], ..., s1[4(s1)], s2[1], ..., s2[£(52)])-
The append function, append(s, sz, ..., $,), is the same as s; H s; H ... +H s,.

Subsequences: The assignment s[i.. j] := ¢[k .. ] where j— ¢ = [~ k assigns
s the value ( s[1], ..., s[i - 1], ¢k, ..., {[]], s[5 + 1], ..., s[£(s)] )-

Stacks: Seqﬁences are also used to implement stacks, for this purpose the
following notation is used: For a sequence s and variable z: z &% s means z :=
s[1]; s := s[ 2..] which pops an element of the stack into variable z. To push the
value of the expression e onto stack s: s 2% ¢ is used to represent: s := (e) ++ s.

Sets: The usual set operations U (union), N (intersection), - (set differencé),
C (subset), € (element) and P (powerset) are used. { z € A | P(z)} is the set of
ail elements in A which satisfy predicate P. For the sequence s, set(s) is the set of
elements of the sequence, i.e., set(s) = { s[1] | a< ¢ < {(s)}.

Relations and Functions: A relation is a (finite or infinite) set of pairs, a
subset of Ax B where A is the domain and B the range. A relation fis a function
if Ve, y1, vo.(((2, y1) € fA (2, ¥2) € f) = yy = y,). In this case fz) = yis written
when (z, y) € f. '
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Map: The map operator * returns the sequence obtained by applying a given
function to each element of a given sequence: (f *( a1, az, ..., @, )) = (fa1), @),
..., f{ax)). The map operation can also be applied to set in the same way [26,27].

Reduce: The reduce operator / applies an associative binary operator to a
list and returns the resulting value: (®)/(a1, a2, ..., @n)) = a1 ® a2 & ... D an.
So for example, if s is a list of integers then +/s is the sum of all the integers in

the list.

Syntax of Formulae

In the following, Q, Q;, Q, etc. represent arbitrary formulae and e;, es, etc.
arbitrary expressions:
" Relations: ¢, = €2, €1 F €3, €1 < €2, €1 < €2, €1 > €3, €1 > e, even?(er),
odd?(e;); | -
Logical Operators: -Q, not Q, Q; V Q2, Q1 A @y;
Quantifiers: Vv.Q, Iv.Q.

Syntax of Statements

The kernel language in the REFORM approach has two primitive statements: the
atomic specification and the guard statement. The atomic specification [155] is
written x/y.Q, where Q is a formula of first order logic and x and y are sequences
of variables. Its effect is to add the variables in x to the state space, assign new
values to them such that Q is satisfied, remove the variables in y from the state
and terminate. If there is no assignment to the variables in x which satisfies Q
then the atomic specification does not terminate. The guard statement is written
[P], where P is a formula of first order logic. The statement [P] always terminates;
it enforces P to be true at this point in the program; it has the effect of restricting
previous nondeterminism to those cases which leave P true at this point. If this
cannot be ensured then the set of possible final states is empty, and therefore, all
possible final states will satisfy any desired condition.

The kernel language is constructed from these two primitive statements, a

set of statement variables (these are symbols which will be used to represent the
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recursive calls of recursive statements) and the following three compounds:
1. Sequential Composition: (S;; S;) — First S; is executed and then Ss.
2. Choice: (S;MS;2) — One of the statements S; or S; is chosen for execution.

3. Recursive Procedure: (pX.S;) — Within the body of S;, occurrences of

the statement variable X’ represent recursive calls to the procedure.

Semantics of Kernel WSL

In order to interpret statements as programs, the in'itia,l and final state spaces
of the statements (i.e., the initial set of variables (input variables), and the final
set of variables (output variables)) need to be known. These must be related
properly according to the syntax of the statement. For a statement S and a finite
non-empty set of variables V and W, it is defined that the relation S: V — W to

be true when V and W are suitable input and output state spaces for S. Thus:

1. x/y.Q:V - W iff W= (VU x) -y (where % is the set of variables in

sequence x),
2. [Pl: V= W iff V=W and V contains all the variables in P,
3. (S1;8:): VoW iff 3V (S1: V=V’ A Sy Vs W),
4. (S1MS))V—-W iff S;: V> WandS;: V- W,
5. (UX.S)V =W iff V=WandS;: V— V.

For example, three fundamental statements can be defined immediately:

abort =pr ()/().false null =pr [false] skip =pr ()/().true
For any finite, non-empty set V of variables: abort: ¥V — V, null: ¥ — V and
skip: V — V.

A weakest precondition (WP) for kernel language statements is defined as a
formula of infinitary logic. WP is a function which takes a statement (a syntactic
object) and a formula from £ (another syntactic object) and returns another

formula in £. The WPs for those five statements in the kernel language are

defined as follows:
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1. WP(x/y.Q, R) =pr (3x.Q AVx.(Q = R))
2. WP([P], R) =pr P => R
3. WP(Ss; Sz, R) =pr WP(S;, WP(S;, R))
4. WP(S; 1S3, R) =pr WP(Sy, R) A WP(S,, R)
5. WP((uX.S), R) =pr Vnco WP((uX.S)", R)

For the three fundamental statements in the previous example, their WPs

are: WP(abort, R) = false, WP(skip, R) = R and WP(null, R) = true.

The First Level Language

The kernel language just described is particularly elegant and tractable but is
too primitive to form a useful wide spectrum language for the transformational
development of programs. For this purpose the language needs to be extended
by defining new constructs in terms of the existing ones using “definitional trans-
formations”. A series of new “language levels” is built up, with the language at
each level being defined in terms of the previous level; the kernel language is the
“level zero” language which forms the foundation for c;Lll the others. Each new
language level automatically inherits the transformations proved at previous level
and these form the basis of a new transformation catalogue. Transformations of
new language construct are proved by appealing to the definitional transformation
of the construct and carrying out the ‘actual manipulation in the previous level
language. This technique has proved extremely powerful in the development of a
practical transformation system such as the Maintainer’s Assistant.

The first set of language extensions are as follows.

1. Sequential composition: The sequencing operator is associative so the brack-

ets can be eliminated:
S1; S2; S35 ... ;8. =pr (...((S1; S2); S3); ... ; Sa)

2. Deterministic Choice: Guards can be used to turn a nondeterministic choice

into a deterministic choice:
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if B then S, else S; fi =pr (([B]; S1) M ([-B]; S2))

3. Assertion: An assertion is a partial skip statement; it aborts if the condition
is false but does nothing if the condition is true. It can be defined using an

atomic specification which changes no variables:
{B} =or ()/()-B

4. Assignment: A general assignment can be expressed using a pair of atomic

specifications:
x:=x".Q =pr x'/().Q; x/x".(x=x")

5. Simple Assignment: If Q is of the form x” =t where t is a list of terms and

x”" 1s a list of new variables, then:
xi=t =pr x7/().(x=1t); x"/x".(x" =x")

6. Deterministic Iteration: A while loop is defined using a new recursive pro-
cedure A which does not occur free in S:

while Bdo S od =pr (pX.(([B];S; &) M [-B]))

7. Initialised Local Variables:

var x:=t: S end =pr x/().(x=t); S; ()/x.true

8. Counted Iteration:

fori:=btofstepsdoS od =pr vari:=bh:
while 1 < fde
S;1:=1+4 s od end

9. Procedure Call:

proc X =8S. =pp (pX.S)

10. Block with local procedure:

begin S; where proc X = S,. end =pr S; [proc X = S,./X]

11. Comments:

comment: “any text string” =pr skip
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These go to make up the “first level” language. Subsequent extensions will
be defined in terms of the first level language. For the purposes of this thesis only

a subset of the first level language is described.

Meta-WSL

In order to express program transformations (i.e., in contrast to programs), a
language is needed. In the Maintainer’s Assistant, extending WSL to include
suitable statements and expressions for writing transformations is chosen rather
than writing a completely new language for this purpose. This language is called
Meta-WSL [37,38], reflecting the fact that it is both an extension of WSL, and
designed to manipulate WSL. This contrasts with the CIP project which uses
several languages [18] for formulating program schemes, transformation algorithms
and applicability tests.

It 1s assumed that the current program being transformed is stored as a tree
in some global variable, so that all that a transformation needs to do is to modify
the contents of this variable. In fact, WSL is a general language so it can be
used to write transformations, since WSL can be used to operate on the variable
which holds the program tree. The term “program tree” here refers to the internal
representation of WSL programs in LISP. The main reason for désigning Meta-
WSL is because the pure WSL lacks statements and expressions for manipulating
the program tree efficiently whereas Meta-WSL allows writing transformations
easily and efficiently. |

In addition to incorporating WSL, Meta-WSL includes the following main

extensions to WSL:

Program Editing Statements These include “(@ Del)” (to delete current item),
(@Change_To Thing) (to change the current item to “Thing” which is the

new item to replace the old item), etc.

Pattern Matching and Template Filling This includes a function which
matches a section of a WSL program tree against a given pattern and returns

the result in a table, and a function which takes a pattern and a table and
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replaces the tokens in the pattern with values from the table. For example,
“([_Match_] Type Pattern Table)” (to match the pattern with the current
item when its generic type is “Type” and put the results in the “Table”),
([[Fill.In_] Type Pattern Table) (to fill in the current item with the contents
in the Table when the pattern matched), etc.

Movement Statements These includes statements for moving to different parts
of the program tree. Though the section of code on which the transformation
is to be performed is first selected, it may be necessary for the transformation
temporarily to select another section of the program in order to perform a
transformation. For instance, “(@Up)” (to move to the father node in the
tree), “(@Down)” (to move down to the first branch node of the tree),
“(@<<)” (to move to the left-hand node of the tree), “(@>>)" (to move to

the right-hand node of the tree), etc.

Movement Applicability Testing Functions These are functions which test
the applicability of a particular form of movement within a program tree
since a specific movement within a tree is not always possible. Examples
of these functions include: “([_Up?])” (to move to the father node in the
tree), “([.Down?_])” (to move down to the first branch node of the tree),
“(.<<?])” (to move to the left-hand node of the tree), “([_L>>7])" (to
move to the right-hand node of the tree), etc.

Repetition Statements It is often necessary within a transformation to test a
condition or perform some operation at every subnode of the program tree,
subsubnode and so on within the selected program item. The repetition
statements allow this to be done easily, such as “(@Exit_ When)” (to exit
the current loop when some condition meets) and “(@No_Deeper)” (to go

no deep than the current node when some condition meets).

Other Statements and Functions These include:

e statements for setting state flags — “(@Pass)” and “(@Fail)”, etc.;

e a statement for calling other transformations — “(Trans Name”);

SO
Y/
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e Function for other code checking — “([_S_Type?])”, “([_P_Type?])”,

etc. ;

e A function for testing applicability — “([_Trans?_] Name)”; and etc.

5.1.3 Advantages of Using Program Transformation and

WSL

The REFORM approach used program transformation and a wide spectrum lan-
guage because there are a number of benefits from using them. The benefits of

using program transformations are:

e Increased reliability: bugs and inconsistencies are easier to spot.
e Formal links between specification and code can be maintained.
e Maintenance can be carried out at the specification level.

o Large restructuring changes can be made to the program with the confidence

that the functionality is unchanged.

e Programs can be incrementally improved — instead of being incrementally

degraded.

e Data structures and the implementation of abstract data types can be

changed easily.

Apart from the general advantages of a wide spectrum language, the benefits

of using a wide spectrum language in the Maintainer’s Assistant are:

o There is flexibility for extending the system to build a wide set of transforma-
tions. The WSL can be extended by applying definitional transformations.
This is particularly useful when new WSL constructs are needed to writing

new program transformations.

o The WSL is an intermediate language. The advantage of using an inter-

mediate language is that the system of acquiring the specification from the
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program code needs.only being developed once. Programs written in any
language can be translated into the WSL as long as the WSL translator for
that particular language has been built.

5.1.4 The Ofiginal Design of the Maintainer’s Assistant

In the original design of the Maintainer’s Assistant, the system supports the trans-
formation of an existing source code to a specification in three phases [156,164].

.In phase 1, a “Source-to-WSL” tfanslator takes the assembler (or other lan-
guage) and translate it into its equivalent WSL. The maintainer undertakes all
operations through the Browser. The Browser then checks the program and uses
the Program Slicer [6,43',160] to chop the program into smaller programs which
are in manageable size. The maintainer may conduct the process more than once
until satisfied that (s)he has split the code in such a way that it is ready for trans-
formation. Eventually, this code is saved to the database in order to assemble
specifications of those code modules (refer to Figure 5.1).

In the second phase, the maintainer will take one piece of code out from
the database with which to work. The Browser allows the maintainer to look
at and alter the code under strict conditions and the maintainer can also select
transformations to apply to the code. The program transformer works in an
interactive mode. It presents WSL on screen in pretty printed form format and
searches a catalogue of proven transformations to find applicable transformations
for any selected piece of code. These are displayed in the user interface’s window
system. When the Program Transformer is working, it also depends on the General
Simplifier, the Program Structure Database and the Knowledge Base System (not
yet implemented) [142] by sending them requests. The maintainer can apply these
transformations or get help from the Knowledge Base as to which transformation
are applicable. Once a transformation is selected it is automatically applied.
These transformations can be used to simplify code and expose errors. Finally,
the code is transformed to a form at higher level of abstraction, which can be

translated into specifications in Z, and the code is saved back to the DataBase

(Figure 5.2).
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Figure 5.1: From Source Code to a Program in Low-Level WSL

The third phase comes when all the source code in the DataBase has been
transformed. A Program Integrator is called to assemble the code or specifications
into a single program in high-level WSL. A WSL to Z translator will translate this
highly abstracted specification in WSL into specification in Z (Figure 5.3).

5.1.5 The State of the Maintainer’s ASsistant by 1991
By the summer of 1991, the Maintainer’s Assistant! consists of:

e an Assembler to WSL translator,

e a History/Future Database

e a Structure Editor

e a Browser,

1The Program Structure Database and the General Simplifier were investigated by the author,
and other components of the Maintainer’s Assistant were studied by other three members of the
REFORM research team.
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‘e a Front End,
e a Program Structure Database,
e a General Simplifier, and

¢ a Program Transformer and a library of over 400 transformations.

IBM-Assembler-to-WSL Translator An IBM-assembler to WSL translator

was implemented. This translation process use existing compiler writing technol-

ogy.

History/Future Database This is included to allow the maintainer to go
back to an older version of the program (s)he has transformed. It is usual for
the maintainer to move forwards and backwards several times through a sequence
of transformations in order to reach an optimal version of the program. Two
commands “Undo”.'and “Redo” are provided. “Undo” is used to retrieve the
previous version of the program, before the last program editing or transforming

operation. The “Redo” command undoes the last “Undo” command.

Structure Editor The Structure Editor is usually used as a last resort to re-
move errors (in the code) found by the maintainer. The maintainer can select an
edit command from the Front End (Figure 5.4). For example, if the “Change”
button is clicked, the change menu is displayed. It allows the maintainer to change
the currently selected item in the program with an item (s)he specifies or a default

item of the same generic type.

Browser and X-Window Front End The Browser and the X-Window Front
End are implemented together as a graphical user interface to the other subsystems
of the Maintainer’s Assistant using the X-Windows System. It provides all the
commands necessary to use other Maintainer’s Assistant programs via buttons and
pop-up menus and uses several windows to display the output from the system
and to receive text input from the user. In particular it provides a browser to

display the program being transformed by the Transformer, and has facilities not
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provided by the transformer such as pretty printing the program and a mechanism
to fold or unfold sections of code. It displays a frame made up of three windows
(Figure 5.4). The first window is a box containing several buttons and labels.
By clicking these buttons the user can invoke various commands, change options,
and pop-up other windows. The second window (the application window) is an
interface to the transformer command driven user interface and the third window
(the display window) is used to display the program being transformed by the

user. A manual page for the front end is available for the novice user.

Program Structure Database The Program Transformer often needs to know
the properties of current program item to be transformed. These properties may
be used several times during the transformation process. The Program Structure
Database facility can figure out the properties of the program i‘tem and save them
in the database in case these 'properties need to be calculated several times.

The Program Structure Database is a dynamic database mainly serving the
Program Transformer. The Program Transformer accesses the Database via the
Database Manager. When the Program Transformer is transforming a section
of program code, queries about the program are sent to the Database Manager.
When a query is made for the first time, the Database Manager will go through
the program structure and calculate the answer to that query. For instance, the
Program Transformer may ask that “which variables are used in this section of
the program?”. The result will both be sent to the Program Transformer and
saved in the database. Any extra information produced by the calculation, which
may be used to answer other queries, will also be recorded in the database. When
the question is asked again, the database manager will check the database and
simply return the result.

When the Program Transformer changes the old program into a new version
of the program it is necessary to create a new version of the database. The old data
corresponding to the previous program is saved in the History/Future Database.

Furthermore, the Program Transformer may have also modified (or edited)

the data (questions and answers) in the Database, since it performed the last
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transformation, and the data related to the changed program will not be suitable

for answering the same questions a second time. Thus, the database manager

needs to manage the alteration in the database. LISP makes this easy to do.
The database manager will also serve the Knowledge Base System when this

is implemented.

General Simplifier The Program Transformer often needs to carry out sym-
bolic calculations in mathematics and logic. This is implemented by sending
queries to the General Simplifier. It can help the Transformer by calculating the

conditional statement in the program.

The Program Transformer and the Transformation Library The pro-
gram transformer [37] works in an interactive mode. It goes through a piece of
given code in WSL and prompts a catalogue of applicable transformations about
the piece of code. These are displayed in the user interface’s window system.
The maintainer can instruct the system by clicking the mouse on a chosen WSL
construct, and then clicking on a transformation class.

Proven transformations are stored in a library. Once a transformation is
selected it is automatically applied. These transformations can be used to simplify

code and expose errors. There are about 400 transformations in the library.

5.2 Review of the Maintainer’s Assistant

The prototype of the Maintainer’s Assistant (described in 5.1.5) is a team ef-
fort. The author contributed to the design of the Maintainer’s Assistant, the
implementation of the Program Structure Database and the General Simplifier.
Experiments were carried out with a number of program examples using the Main-
tainer’s Assistant. Up to the summer of 1991 (two years into the project), the

following points were noticed by the author:

e Almost all program transformations in the transformation library based on

Ward’s work were mainly for dealing with functional abstraction (or control
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abstraction) — most transformations operated on control structures of a
program while few transformations on data structures. In another words,
the system was only suitable to operate on computation-intensive programs,
not data-intensive programs. The program transformer can only deal with

the construction of well-structured code.

e To obtain a specification expressed in Z is a long term goal for the REFORM
project. Most of the program transformations can only be used for restruc-
turing programs at the code level, i.e., both programs before and after the

transformation being applied are in the same abstraction level.

e Most of the program transformations that currently are implemented can

only be used for restructuring programs at relatively low levels of abstrac-

tion.

e No representations of types, complex data structures and data design yet

exist in WSL.

e A new application area of the tool was identified as acquiring data de-
sign from data-intensive programs written in e.g. COBOL. After seeing
the demonstration of the prototype of the Maintainer’s Assistant, many in-
dustrialists were disappointed with the tool for being unable to deal with
COBOL programs though they confirmed the potential capability of the

Maintainer’s Assistant.

These facts urged a new research direction to be set up within the REFORM
project, i.e., acquiring data designs from data-intensive programs. In particular,
the new research direction started with data-intensive programs, employing pro-
gram transformation technique emphasising data abstraction and to end up with
data designs. It was decided by the project leaders to start this research while

the original research direction was still going on.
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5.3 Recovering Data Desi.gns

The identification of the new research direction raises a number of questions to
solve, such as the method to tackle this problem, the theory of a new approach

and a new tool to implement the method developed.

5.3.1 Combining Code Analysis with Data Abstraction

The motivation for acquiring a data design from data-intensive code is the same
as that of obtaining a Z specification form assembler code — software can be best
understood, altered and enhanced at the conceptual level rather than at the code
level where the maintainers’s view is often obstructed by implementation details.
This means that crossing levels of data abstraction is needed to move from code
to a data design.

One of the characteristics of data intensive third generation languages is that
high level data designs often translate at the implementation level to constructs
in both the code and data. For example, a reference in the data design between
two data structures is typically implemented in COBOL by a foreign key, i.e., an
integer index from one to the other. The relation between the two data structures
can only be discovered by examination of the data and the code, not the data
alone. Existing reverse engineering techniques have difficulty handling this. It
seemed to us that formal transformation offered potential to solve this problem.

Data abstraction is widely used in forward engineering. - The use of data
abstraction in reverse engineering is in a primary stage. It is proposed in this thesis
that the data abstraction process be carried out with the help of code analysis,

because code analysis can collect information needed for data abstraction.

5.3.2 Using Program Transformations and WSL

It is considered that the approach using program transformations is also a suitable
method for acquiring data designs, because performing data abstraction opera-
tions also needs the properties of program transformations, such as the preserva-

tion of semantics and suitability for tools, etc.
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Although a transformational system for acquiring data designs has to cope
with a different kinds of abstraction from both the systems for forward engineering
and the transformation system in REFORM by then, all the program transforma-
tion systems have one thing in common, i.e., that program transformation changes
the syntax but not the semantics of programs both in software development and
maintenance. Therefore, a wide spectrum language is also used to build a pro-
gram transformation system for acquiring data designs just as a wide spectrum
language was used by some of the forward engineering transformational system

(e.g., CIP project [18]) and by the Maintainer’s Assistant.

5.3.3 Analysis of the Problems with Data-Intensive
Programs

WSL currently has declarations which introduce the name of an identifier without
its type. Therefore, variables are not typed, but all values in WSL have a type
which belongs to a distinct set of values. This means that a WSL variable can
at different times hold values of different types. Adding type is essential to avoid
losing important attributes of the source program, such as logical connections
between data. Therefore, data structuring such as records are needed. COBOL
is built on a low level model of storage, involving the explicit layout of data in
memory, the size of data in characters, etc. A challenging problem for reverse en-
gineering is the use of aliasing to use memory for several purposes. Since COBOL
treats all significant data as records, defining “records” in WSL for modelling
COBOL records is a clear requirement.

The external calls to the underlining operating system and the embedded
database can be modelled as external prbcedure calls and external functions. WSL
already has mechanisms for dealing with external calls. The foreign key problem
can be dealt with by program transformations. These transformations analyse the
code with foreign keys and relations between modules using foreign keys could be
found. An example will be presented in section 7.8.

Entity-Relat'ionship Attribute Diagrams are based on entity models (47,53,

55,114]. Entity models provide a system view of the data structures and data
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relationships within the system. All systems possess an underlying generic entity
model which remains fairly static in time. The entity model reflects the logic
of the system data, not the physical implementation. Entity models provide an
excellent graphical representation of the generic data structures and relationships.
Therefore, Entity-Relationship Attribute Diagrams are suitable forms for repre-
senting data designs for data-intensive programs and WSL needed to be extended

to include Entity-Relationship Attribute Diagrams.

5.3.4 A Design Recovery Method

A method for data design recovery is proposed in this section, which is illustrated

in Figure 5.5. The method consists of following major steps:

1. Translating a data-intensive program (in COBOL in this case) into an in-
termediate language (a wide spectrum language called WSL in this case)

(automatically).

2. Applying program transformation(s) to the program in the intermediate
language at the code level to obtain entities and relationships also in the
same intermediate language but at the conceptual level under control of

human.

3. Interpreting the entities and relationships in the intermediate language into
the entities and relationships in some language dedicated to a tool for dis-

playing or printing an Entity-Relationship Attribute Diagram.

It is stressed that the main reason for using a wide spectrum language (WSL
in this project) is that the language can represent both COBOL programs and
| Entity-Relationship Attribute Diagrams. Program transformations change pro-
grams in WSL to programs in WSL as well and also program transformations
themselves are written in the language, and therefore, program transformations
need just building once no matter what language in which the source code was

written.
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Figure 5.5: A Data Design Recovery Method

5.3.5 Enhancement Design of the Maintainer’s Assistant
for Acquiring Data Designs from Data-intensive

Programs

To implement a tool applying the above method, the problems to be solved can

clearly be summarised:

e Design and implementation of the representation for data-intensive pro-
grams: after assessing the features of data-intensive programs, the aim is to
design and implement the representational form of the programs in an inter-
mediate language on which the programs can be operated by tools. COBOL

programs are used and discussed as typical data-intensive programs.

. Deéign and implementation of the representation for Entity-Relationship
Attribute Diagrams: after assessing the features of Entity-Relationship At-
tribute Diagrams, the aim is to design and implement the representational
form of Entity-Relationship Attribute Diagrams in an intermediate language

on which they can be operated by tools.
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e Development of techniques for crossing levels of data abstraction: the ap-
plication of data abstraction techniques in reverse engineering is explored
“even though data abstraction has been widely used in forward engineering;
and to develop the techniques of crossing levels of data abstraction which is

extremely important to obtaining data designs from the programs.

e Design and implementation of program transformations for data design re-
covery: the aim is to invent and implement program transformations for
manipulating both data-intensive programs (represented in an intermediate
language) and Entity-Relationship Attribute Diagrams (represented in the

same intermediate language).

After the working environment has been examined, it is found out that the
Maintainer’s Assistant needs enhancing substantially. The enhancement includes

three main parts:

1. Extension of WSL

WSL constructs are needed at both the code level and the conceptual level,
e.g., constructs for representing COBOL programs at the code level and

Entity-Relationship Attribute Diagrams at the conceptual level.

2. Extension of Program Transformation Library

Program transformations are also needed to manipulate code and data at

all levels, particularly for crossing levels of data abstraction.

3. Extension of Structure Database and Design of Metrics Facility

New database queries are required by code analysis and transformation im-

plementation.

The objectives of using metrics in REFORM are to help the user to select
transformations (to help develop heuristics), to measure the progress made
in optimising the program code and to measure the resulting quality of the

program being transformed.
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Existing WSL constructs and program transformations can be directly used
in conjunction with newly defined WSL constructs and newly developed transfor-

mations.




Chapter 6
Extending and Using WSL

Wide spectrum languages and program transformation techniques in general were
discussed in detail in previous chapters. However, when a real program transfor-
mation system is built (as will be described in Chapter 8), ma.n); practical decisions
have to be made. Therefore, the extension and use of WSL, the wide spectrum
language used in REFORM, are introduced in this chapter; the definition of pro-

gram transformations needed for the extension of the Maintainer’s Assistant will

be introduced in the next chapter.

6.1 Introduction to the WSL Extension

WSL has as its theoretical foundation a kernel language with five statements.
Any other WSL constructs are either extensions to the kernel language, or to
existing WSL constructs which themselves are initially derived from the kernel.
. This principle is observed in the research in order that proofs are not invalidated.
For example, the first level language was developed observing this principle (Fig-
ure 6.1). The first level WSL is used for representing programs (which are not
data-intensive) and the first level Meta-WSL is used for implementing program
transformations.

The second level language needs designing and this will be discussed in detail
later in this chapter. The second level WSL is needed for providing more features,

which are mainly needed for representing data-intensive programs. The second

117
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“WSL

Program-Specification WSL Meta-WSL
Second Level Second Level
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First Level First Level
Language Meta-WSL

The Kernel

Figure 6.1: WSL Language Levels and Their Usage

level Meta-WSL is needed for implementing supporting tools, such as the Program
Structure Database, the General Simplifier and the Metric Facility.

In extending WSL precisely, completely and unambiguously for represent-
ing data-intensive programs and data designs, it is essential that the syntax and
semantics of such an extension should be well defined.

The specification of the semantics uses the existing WSL kernel and first
level language in line with the aforementioned. The specification of the syntax
is achieved with a contezt-free grammar (so called because the well-formedness of

each phrase is independent of its context), using BNF notation *.

! A formal definition of the syntax of a programming language is usually called a grammar. A
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Apart from the formal specification of syntax and semantics, an informal
semantics specification, possible operations on a newly defined WSL construct

and an internal format are also defined, i.e., five jobs need carrying out:

1. Formal specification of syntax — this is written in BNF notation. This is

also the format in PASCAL-like form to be displayed in the tool interface.

2. Informal semantics specification — this is written in English and can be
used as a comment on the newly defined component by the implementer

and the user of the language.

3. Formal semantics specification — this is written in existing WSL whose

semantics is denotational semantics.

4. Operations — these are written both in English and WSL to describe avail-

able operations on the newly defined construct.

5. Internal format (LISP format) — this is the same LISP form in which WSL

is represented and is used for writing program transformations.

6.2 Extension of WSL

As introduced in section 4.3.3, fundamental data types in programming languages
include unstructured data type, Cartesian product, discriminated union, array, set,
sequence, sparse data structure and pointer. We shall extend WSL to have all these
types to meet the needs of dealing with data-intensive programs. However, it must
be ensured that adding a type does not invalidate existing proofs of equivalence

and transformations.

grammar consists of a set of definitions (termed rules or productions) which specify the sequences
of characters (or lexical items) that form allowable programs in the language being defined. A
formal grammar is just a grammar specified using a strictly defined notation and the best-
known notation is BNF [8,131,159)]. In the original version of BNF, nonterminal symbols were
written with angle brackets to distinguish them clearly from terminal symbols. In this thesis, a
distinctive font, such as Programm, is used for this purpose. In addition, the EBNF, or Extended
Backus-Naur Form [159], is also used in this thesis.
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WSL uses the concept of most fundamental data types to define its kernel
but most of these data types were not supported by WSL language. WSL provides
only unstructured datae type and arrayfor representing programs to be manipulated
in the first level language. More data types, such as sequence, and its operations
should be added to the language. Also, though set was already defined in the first
level language, more operations such as “insert” are needed. Since COBOL does
not support sparse data structures, recursive data structures and pointer types
(COBOL programs do have these data types but programmers get round them by
using foreign keys, etc.), these data types are not considered for acquiring data
designs in this thesis.

COBOL records and “redefine” structures can be viewed as Cartesian prod-
ucts and discriminated unions respectively. They will be defined first in this
section together with “file” structure. Then WSL components for supporting
data types set and sequence will be defined, together with two other commonly
used data types, stack and queue. A structure for user-defined abstract data
types will also be defined. At the end of this section structures for representing

Entity-Relationship Attribute Diagrams will be introduced into WSL.

6.2.1 Representing Records and Files

Records

As discussed earlier in this thesis, COBOL (and also Assembler) is built on a low
level model of storage, which includes how data is laid out in memory, size of data
in characters, etc.

The particular problem of aliasing, at memory level, means that to solve this
problem, low level data information needs to be kept in the WSL translation of
COBOL (there is a similar problem in FORTRAN with Common and Equivalence
statements).

Since COBOL treats all signiﬁéant data as records, defining “records” in
WSL for modelling COBOL records will receive close attention.

Unless the WSL is extended (WSL has only untyped variables), the only way
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to model COBOL records is to use simple variables in existing WSL, i.e., COBOL
records are translated into simple variables. It would be very difficult to derive
Entity-Relationship Attribute Diagrams from these simple variables, because use-
ful information contained in the COBOL records would be lost when these records
are first translated into WSL simple variables. For example, the definition of a
COBOL record includes the type of the record (character, integer, etc.), the length
of the record (number of bytes in the memory) and the relationship between the
record and its parent record. This information which is not represented by sim-
ple WSL variables is vital for deriving Entity-Relationship Attribute Diagrams
and should not be thrown away (or at least not at this early stage of reverse
engineering).

Therefore, extending the existing WSL to represent COBOL recods is nec-
essary. The new construct in WSL is also called a record.

The five-step process for defining “records” in WSL in this section is illus-
trated in detail. Owing to the length limitation of the thesis, other new WSL
components will not be presented individually in the main text. The full spec-
ification of the syntax of the WSL extension developed in this research can be
referred to in Appendix A and the full semantics specification in Appendix B.

A WSL record is defined in:

1. Formal specification of syntax

Record-Def
::= record Rec-Identifier | Integer-Literal of Type-Char-Literal | end;
| record Rec-Identifier with Records-Def end;
Records-Def
n= Record-Def- | Record-Def Records-Def
Rec-Identifier ::= Identifier

Type-Char-Literal ::= char | int

Note: please see Appendix A for the definitions of Identifier and Integer-
Literal.
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2. Informal specification of semantics

" This is the WSL declaration for a record variable whose components are
variables capable of selective updating. A record can be declared either with
type and length in terms of sequence of bytes in memory or with other records
(“subrecord”) as its components. A record has its own name (identifier).
The type of such a record is associated with the Cartesian product of the
domains with which the component records (“subrecords”v) are associated.
For example, expression recl.rec2 may then be type checked by requiring
that the type of recl be a record type having rec2 as a record name. Then
the type of the whole expression is the corresponding type of the lowest level

record, i.e., rec2 in this case. A record can be recursively defined.

3. Semantics specification

A record is defined in terms of sequence in the kernel language, e.g.:

record z with

record 1 [6 of int]
record j [6 of int]
record k [6 of char]
end;
=prz€{(t,j,k)i€INjeJNk €K}
=prz€IlXJxK

where “6.of int” means an integer of 6 digit position and “6 of char” means
a string of 6 characters; I, J, K are sets of values, i.e., I, J € { 0 ... 999999
}Yand K € { (A, ..,’2, 3", .., 2" ) ('A’, ..,’Z",’d, .., 2" ) (A, )2,
a’, ., 20 ) (A L2 L ) (A, LD L ) (A LD
2 ) T

If another record is declared as:

record y with

record ! [6 of int]
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record m [6 of int]
record n [6 of char]

end;
the semantics of z := y is defined as:

T:=y
= zi:=yl ANzj:=ymAzk:=yn

DF

= r (5,7,k) :==(l,m,n)

4. Operations of records

Two types of operations are available on records. When two records have
an identical structure, one record can be assigned to another, e.g., as shown
in the above semantics definition. Secondly, an expression can be assigned

to a record whose type should be the same as that of the expression.

5. Internal format
For example, if the display format of a record is:
record Rec-Identifier [ Integer-Literal of Type-Char-Literal | end;

the internal format will be:
(record rec-identifier length-literal type-char-literal)

When a record is deﬁne;d in WSL it can be used to represent a COBOL

record. For instance, the WSL record

record student-info with
record student-id-no 8 of int]
record name with
record first-name [9 of char]

record last-name [11 of char]
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end

record address with ,
record street [15 of char]
record city [10 of char]
record county [15 of char]
record postal-code [8 of char]
end

record phone [10 of ini]

end;

represents a segment of COBOL prdgra,m:

01 STUDENT-INFO.

05 STUDENT-ID-NO PIC
05 NAME.
10 FIRST-NAME PIC
10 LAST-NAME PIC
05 ADDRESS.
10 STREET PIC
10 CITY PIC
10 COUNTY PIC
10 POSTAL-CODE PIC
05 PHONE PIC

Aliased Records

9(8).

XQ9).

X(11).

X(15).
X(10).
X(15).

X(8).

9(10).

Another reason that simple WSL variables cannot cope with representing “struc-

tures” such as COBOL records and “record” has to be defined in WSL is the

aliasing problem. There are two purposes in using aliases. The first purpose is

to share storage space. In the early days of computing when memories were very

expensive, it was a “skill” that several variables used the same piece of storage

at separate times. The second purpose was to control storage scope. In early

la,nguages;, which did not have block structure, there was no way to use scope
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control storage allocation so the only “skill” was to use aliasing, where an alias is
used to write a value of one type and read out as a value of another type. This
“skill” brought enormous difficulties to reverse engineering today.

For example, the following is a COBOL program with aliased records:

01 X.
03 FOO : PIC X(6).
03 BAR PIC X(6).

01 Y REDEFINES X.

03 TOP PIC X(4).
03 MIDDLE PIC X(4).
03 BOTTOM " PIC X(4).

When the value of x.foo is changed, the values of both y.too and y.middle

are also changed.

Aliasing is surely something to be removed in reverse engineering. There
might be many solutions but one method is proposed in this research. To get
rid of aliasing, the fitst step may still have to include representing the aliased
records in WSL. Apart from defining “records” in WSL, a WSL construct called
“redefine” is also needed for representing the aliased COBOL records (in the terms
of mathematics, records aliasing can be viewed as a discriminated union) and its

WSL external format is:
redefine record-namel with record-name2,

Then the above COBOL program with aliased records can be translated

into?:

2Whether variables are aliased in COBOL can be detected by the COBOL keyword “RE-
DEFINES”. However, the detection of aliased variables in other data-intensive programming
languages such as pointers in C may need some further study.
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record z with
record foo [6 of char]|

record bar [6 of char]
end;

record y with

record top [{ of char]

record middle [4 of char]

record bottom [{ of char]
end;

redefine z with y;

In terms of the WSL kernel language, = occupies a sequence of twelve bytes of
memory, i.e., (1, T3, T3, L4, Ts, Te, Tr, s, To, L10, T11, T12), Where z; € {0..255}. This
means z.foo X z.bar = (@1, 22, 3, T4, T5, T6) X (@7, T8, To, T10, T11, T12)-

Similarly, we have y = (41, Y2, Y3, Y1, Us, Ys» Y7, Uss Yo, Y10, Y11, Y12), and y.top X
y.middle x y.bottom = (y1, Yo, Y3, Ya) X (s, Ys, L7, Ts) X (o, T10, Z11, Z12)-

However, the “redefine” statement specifies that the record z and the record y
use the same segment of the underlying memory, i.e., (1, 2, 3, 24, Z5, Z6, 7, Ts, To,
T10, T11, $12> and (111, Y2, Y3, Ya, Ys, Ye, Y7, Y8, Yo, Y10, Y11, ylz) represent the same mem-
ory. If a new sequence m is given to represent this memory, we have:

z =y = (m,my, m3,. M4, M5, Mg, M7, Mg, Mg, M10, M11, M12); &.foo X z.bar
= (my, ma, ma, Mg, Mg, M) X (M7, Mg, Mg, M10, M11, M12); and y.top X y.middle X
y.bottom = (my, mg, ma, ma) X (ms, me, Mz, Mmg) X (Mg, M10, M11, M12) (Figure 6.2).

There are two issues to address in solving the aliasing problem: it is necessary
to determine which records are aliased; and, more challenging, it is necessary to
determine a mapping between the different records, based on the memory used by
each component of the record. The former can usually be determined by the dec-
larations and the latter can be done by defining a function (or procedure) which
maps from a record to a sequence of bytes (the representation of that record in
memory), and from a sequence of bytes to a record. These functions (or proce-
dures) need to know the structure of the record in terms of the number of bytes

occupied by each component. Thus a “write” to aliased memory is described by
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b4 foo ‘ bar

destruct l I struct

memory m m m m m m m m m, m, m,

destruct I l struct

y top middle bottom

Figure 6.2: Storage Model

a function (or procedure) which maps the COBOL data structure to low level
memory; a “read” is represented by a function (or procedure) which describes the
mapping in the reverse direction. In our system, these functions (or procedures)
are explicitly inserted, in preparation for later simplification using transforma-
tions. Because the use of these functions (or procedures) involves accessing the
underlying storage (which can be viewed as a hidden state), the concept of an
abstract data type is employed here.

If the following statement occurs in the procedure division of the original

COBOL program shown previously in this section,
MOVE “PASSED” TO FOO.

we will translate it into five WSL statements (last four statements are added in

to address the aliasing problem):

z.foo := “passed”;

redefine-write(z.foo, “passed”);
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y.top := redefine-read(y.top);
y.middle := redefine-read(y.middle);
y.bottom := redefine-read(y.bottom);

where;

proc redefine-write(rec, rec-value) =

adt_proc_call redefine-record. destruct (rec, rec-value, state-variable)

funct redefine-read(rec) =

adt_funct_call redefine-record.struct (rec, state-variable).

and

adt redefine-record (state-variable)(parameters) =pr
proc destruct(rec, rec-value, state-variable)
var (sub-state-variable) :
sub-state-variable := truncate(rec, state-variable);
sub-state-val'r‘iable :=1if  int-type?(rec) — byte(rec-value)
O char-type?(rec) — ascii * (break(rec-value))

fi end;

funct struct(rec, state-variable) =pr
if  int-type?(rec) — integer(truncate(rec, state-variable))
O char-type?(rec) — chr(truncate(rec, state-variable)) fi
tda.

The procedure redefine-write and function redefine-read will call the
corresponding “abstract data type” procedures, redefine-record.destruct and
function redefine-record.struct, and the variable state-variable is the hidden state
in the abstract data type.

The procedure destruct maps a record to a sequence of n bytes (where n is

length of the record). The function struct takes a record and a sequence of bytes
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qnd updates the record so that its destructured representation is the sequence of
bytes®.

In the definition of the abstraction data type, truncate(rec) returns the seg-
ment of underlying state which corresponds to the record rec and the length of
the segment is the number of bytes of the record rec; int-type?(rec) returns true
when rec has a type of “integer”; char-type?(rec) returns true when rec has a
type of “char”; byte(rec) returns a sequence of n integers giving the n-byte rep-
resentation of rec (n is the length of rec); break(s) returns all components of rec;
ascii(s) returns the ASCII value of character of s; integer(rec) returns an integer
assembled from the individual memory bytes; chr(rec) returns a character string
converted from the individual memory bytes*.

In the above example, |
redefine-write (x.foo, “passed”);

= adt_proc_callredefine-record.destruct (z.foo, “passed”, m)

= sub-state-variable := truncate (z.foo, m);
= sub-state-variable := (my, my, ms, myg, ms, Mg);
= (my, mg, ma, mg, ms, mg) := ascii * (break( “passed” ));
b (N} B S B T R { e ) )

= (ml,mZ,m& m4am5,'m'6> := ascii *(<“P , &, 8, 8, € ,“d”));

= (m1, ma, ma, ma, ms, mg) := (112,97,115,115,101,100);

y.top := redefine-read(y.top);
= y.top := adt_funct_call redefine-record.struct (y.top, m);

= y.top := chr(truncate (y.top, m ));
= y.top := chr({m, mq, ma, my));

= y.top := chr((112,97,115,115));
= y.top := “pass”;

3The procedure destruct and the function séruct here have only dealt with integer and char-
acter types; 1t would be necessary to extend the definitions of the procedure and the function
when additional types such as reals (as found in C or FORTRAN) are introduced to WSL.

41t should be recognised that aliasing has to take account the underlying machine represen-
tation of the data. The definitions of the functions in this paragraph are all based on that the
“byte” of the underlying memory is represented in ASCII code. Different function definitions
would be needed with other types of representation for underlying memory model.
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y.middle can be worked out in a similar way. Since y.bottom is not affected
by the change of z.foo, the statement

y.bottom := read-rec(y.bottom);
will be made redundant by transformations.

The above example showed the way in which how an alias used for the first
purpose (storage sharing) was dealt with. In fact, the variable usage was disjoint,
and although very complicated WSL was generated from the alias and much of
the WSL can be removed as it was redundant (i.e., aliased variables can be treated
separately). It was only needed when aliasing was used for the second purpose
(storage allocation control), which is a more difficult use to handle (an example

of this case will be addressed in one of the case studies in a later chapter).

Files

A file is defined as a sequence of records, and its external WSL format is:
File-def ::= file File-Identifier with Records end;
Records ::= Record-Def | Record-Def Records

The operations of files will be discussed in a later section.

6.2.2 Representing Basic Data Types and User-Defined
Abstract Data Types

Basic Data Types

The main concern in defining the new components described in this section is
still to prevent loss of information at an early stage of reverse engineering. For
instance, sequence, queue and stack types can be modelled in theory by array,
which exists in WSL. But if data in these types in data intensive programs (written
in programming languages other than COBOL) are all translated directly to data
in array type, the properties of the original data may be lost immediately. The

idea used in this thesis is to define new WSL constructs supporting types such as
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sequence, queue and stack first and then build program transformations to handle
data abstraction. More new components defined will be listed in the following
subsections, where it is implicit that the reason is to prevent information loss.

New components for supporting basic data types, set, sequence, queue and
stack are defined for the second level WSL with their usual meanings. Detailed
definitions can be seen in Appendix A. In this section, only how new components
are supporting a queue data type is defined.

A WSL queue and operations on queue are defined as: -

e Formal specification of syntax

Command
::= 1nit-q Q-Variable;
| g-append Q-Variable Expression;

Expression
::= q-concat(Q-Variablel Q-Variable2)
| g-rem-first(Q-Variable)
| g-length(Q-Variable)

e Informal specification of semantics

A queue is a sequence in which component selection and deletion are re-
stricted to one end and insertion is restricted to the other end. The con-

catenation of one queue to another will form a third queue.

e Semantics specification

Suppose s, s; and s, are sequences, p, p; and p, variables, e an expression,

and z and y also variables:

initqp = ,, pi=s
g-append p e = . p:=(s[l],s[2],...,s[n],e)
z := q_concat(p, p2) = [, = := (s1[1], s1[2],..., s1[n], s2[1], 52[2], ..., 82[n])
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z := q_rem_first(p) - or & :=S[1] A p:=(s[2],s[3],...s[n])
y := q_length(p) = .. {(s)

e Internal format

the internal formats of the above five constructs will be:

(Init-Q P)

(Q_Append P E)

(Assign (X (Q_Concat P1 P2)))
(Assign (X (Q_Rem_First P)))
(Assign (Y (Q-Length P)))

User-Defined Abstract Data Type

As introduced earlier, an abstract data type consists of “objects” and “opera-
tions”. Objects are usually implemented as variables and operations are imple-
mented as procedures and functions. In reverse engineering, an abstract data
type may be formed by looking for a closure of a group of variables and a group
of procedures (or functions). No matter whether a closure was originally used for
an abstract data type, if an abstract data type is obtained from this closure in the
code, it is helpful in viewing the code at a higher abstraction level. To cross levels
of data abstraction by looking for user-defined data types is a novel contribution
of this thesis.

The way of implementing this idea is to provide a structure first in WSL.
Five constructs are defined for the definition of a user-defined data type, user-
defined data type procedure call and user-defined data type function call. The

key words for these constructs are: user-adt, user-adt-funct, user-adt-proc,

user-adt-funct-call and user-adt-proc-call (refer to Appendix A for details).

The application of these constructs will be described in the following chapters.
A few previous projects have addressed recognising user-defined abstract

data types and Canfora’s work [45] is a typical example. The method proposed
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in [45] is based on user defined data types and exploits the relationships existing
between these types and the procedure-like components that use them in their
headings (i.e., declared formal parameters and/or return values). [45] also pro-
posed a logic based approach to the definition of both the candidature criterion
and the model to apply it. According to such an approach the model to apply
the candidature criteria consists of a set of direct relations which summarise and
describe the meaningful relationships among the components of a software sys-
tem. A candidature criterion consists of summary relations obtained by combining
direct relations in expressions. The application of a logic-based candidature crite-
rion requires (i) a repository to collect the direct relations produced by the static
code analysis; (ii) a query language to express the abstractions to be looked for
and (iii) a formalism to link the direct relations to form the summary relations
which will enable the above queries to be answered. Canfora’s algorithm is much
more complex than the one proposed in this thesis and therefore, his algorithm

has not been implemented in the thesis (however, this could be easily included if

necessary).

6.2.3 Representing Entity-Relationship Attribute
Diagrams

Entities and their relationships are objects at high abstraction levels. To cross
levels of abstraction and to represent Entity-Relationship Attribute Diagrams,
entities and their relationships have to be defined in WSL. Statements representing
entities and their relationships are called specification statements because they
represent program designs, which indicate what programs do without saying how
they do it.

Specification statements cannot be executed and therefore, there are usu-
ally no operations on them within the language. Their semantics can usually be
defined as pairs, triples, quadruples, etc. However, they can be operated on by
program transformations. For example, many of the simple statements may be
interchanged directly with these specification statements. Also, the specification

statement can be mixed freely with other statements because of the wide spectrum
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nature of WSL. Three specification statements aré defined in this research.

A Construct for Relating Two Data Objects

In the process of abstraction, some data objects may be in conceptual form and
others may be still in code form. If these two kinds of data objects need to occur
in the same program statement, a WSL construct for relating these data objects
is needed. This construct is defined as relate. The semantics of the construct is
a pair. For example, the following WSL statement represents that the first record
(or entity) is related to the second record (or entity).

Relate-Def
::=relate Rec-Identifier] /Ent-Identifier]l to Rec-Identifier2/Ent-Identifier2;

In the term of WSL kernel, this means that these two objects form a pair.

Definitions of Entity and Relationship

Entities and entity relationships are defined as:
Entity-def
::= entity Ent-Identifier end;
| entity Ent-Identifier with Attributes end;

Attributes
::= attr Attribute-Identifier
| Attributes attr Attribute-Identifier

Relationship-Def
::= relationship entity Ent-Identifierl

has Relation-Degreel Relationship-Name

relation with Relation-Degree2 entity Ent-Identifier2;
=pr ( ( Ent-Identifierl, Relation-Degreel ), '
( Ent-Identifier2, Relation-Degree2 ) ) € Relationship-Name
i.e., a relationship is a mathematical “relation” of two sequence in which the first

element of the sequence is the object and the second element is the number of
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times it appears.

The corresponding dié,gra,ms are shown in Figure 6.3 for the following exam-

ples of Entity-Relationship Attribute diagrams in WSL display format:

(A)

entity B1 with
attr A1
attr A2
attr A3
attr A4

end;

(B)

entity F2 end;

()

paragraph
entity 3 end;
entity 4 end;
relationship entity E3 has one RI relation with many entity E/;

end;

(D)

paragraph
entity 5 end;
entity 6 end;
relationship entity E5 has one R2 relation with one entity E6;

end;

(E)

paragraph
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entity E7 with
attr A5
attr A6
end;

relationship entity E7 has one R3 relation with one entity E7,

end;

(F)

paragraph -
entity £§ end;
entity EJ end;

entity F10 end;
relationship entity E8 has one R/ relation with

{many entity E9} or {many entity E10};

end;

6.3 Extension of Meta-WSL

As introduced in the previous chapter, the Maintainer’s Assistant consists of sev-
eral supporting tools. When the new research direction — recovering data designs
— was decided, the way of implementing those supporting tools was also reviewed.
Because the Program Structure Database, the General Simplifier and the Metric
Facility are most relevant to data abstraction, they are discussed in the thesis. It is
found necessary that each single service provided by the supporting tools, such as
a database query or a metric measure, should be a Meta-WSL procedure or func-
tion. This is because each Meta;WSL construct can be defined by existing WSL
- constructs and this approach will make the prototype and future extension of the
prototype theoretically well-founded. Therefore, the services provided by these
three supporting tools are defined in terms of Meta-WSL. Detailed Meta-WSL
extension for the three supporting tools are systematically defined in Appendix
C. According to the definition, the design and the implementation of these three
tools will be discussed in detail in Chapter 8.
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Figure 6.3: Entities and Relationships in WSL
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6.4 Embedding WSL in COMMON LISP

One of the advantages of formally defining the semantics of a language (using de-
notational semantics) is that the effect of a-program written in the language can
be obtained by analysing the semantics of the program rather than actually exe-
cuting the program. This suggests that the language used to represent programs
to be transformed in a transformation system can have some non-executable state-
ments. The WSL used in the Maintainer’s Assistant is such a language, which
can have non-executable statements for representing objects at a high abstraction
level, such as Entity-Relationship Attribute Diagrams.

In essence, the effect of applying program transformations on the programs
represented in WSL is to change the syntax of those programs in WSL. It is crucial
to understand how the WSL is represented in the Maintainer’s Assistant.

WSL is embedded in COMMON LISP. WSL ha,s_ two forms, external form and
internal form. The external form uses familiar notations which are commonly used
in programming language such as ALGOL and PASCAL. The internal form uses
syntax trees on which transformations are easily performed. The external form
is more user-friendly than the internal form. The interface of the Maintainer’s
Assistant converts between the external and the internal forms.

In a syntax tree, each node (and its corresponding subtree) represents a single
syntactic object. The branches of that node are the components of the object.
For instance, a portion of the tree for an assign statement is shown in Figure 6.4.
In fact, the syntax tree shown-in the diagram is a simplified internal form. An
internal form of WSL also includes the database tables, embedded comments, and
some information relating to the type of each item.

The figure shows an “Assign” statement represented as a tree. The “Assign”
statement has as its component one “Assignment”, which has as its component a
variable which will be assigned to an expression. This piece of code would itself
be part of a largé structure. At the top level, a program is a single “Statements”
object; that is, it consists of a sequence of statements.

In order to enable the LISP program to work on these trees they are repre-

sented internally as nested lists, so that the code above would be stored as
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A Sequence of Statements

(Assign (X (+ A B)))

(X (+AB))

X (+AB)

Figure 6.4: Diagrammatic Form of a WSL Syntax Tree

(Assign (X (+ A B))).

The main advantages of adopting the tree-based approach include:

e It is relatively easy to construct an interpreter to execute most WSL code

within LISP;

o We can then “move” through the program (left, right, up and down) in order
to select the piece of code, that is a leaf or branch of the tree, that we wish

to transform;

o The transformations work mostly on syntactic objects, and these can be

easily manipulated as branches or leaves within the tree structure.

From the representation of WSL programs, it can been seen that applying
a program transformation to a part of a program is equivalent to replacing that
part with something which is syntactically different but semantically the same. .
In particular, the core activity is to search a node in the syntax tree which meets
certain conditions, and replace this node with another node according to the rule

defined in the transformation.
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6.5 Translating Data Intensive Programs

to WSL

Although the discussion in this section employs COBOL as the data-intensive
programming language, the results of the discussion should be applicable to other

data-intensive programming languages.

6.5.1 Consideration and Decision

As a COBOL to WSL translator is not yet available, translating COBOL programs
to WSL has been done manually in the research described in this thesis.

A set of general rules of translation was first established based on the features
of the two languages, including a mapping table between some COBOL constructs
and their equivalent WSL constructs. For instance, translating a COBOL verb
MOVE to a WSL assignment statement is one such rule.

Translation is carried out entirely according to the semantics of the programs.
For example, a COBOL record can be initialised in its declaration by a VALUE

construct:

01 YEAR PIC X(4) VALUE “1994”.

Since WSL records cannot be initialised in a similar way, the above COBOL

statement will be translated into two WSL statements:

record year [4 of char] end;

year := “1994”;

As manual translation is an informal process, it is impossible to prove that
the translation is correct. Therefore, the approach used in the research is to make
the translation rules as simple as possible, taking pains to capture all the effects
of each COBOL statement. Once these are captured in WSL (a formal language),
program transformation can be used to eliminate any redundancies which this
simple approach to translation may have introduced.

Accurate translation of every COBOL construct may not be practical or even
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desirable: getting the last few percent of the language to translate accurately may
increase the amount of effort by an order of magnitude. In this research the
occurrences of those constructs which are rarely used are treated as special cases,

e.g., the COBOL verb ALTER.
A typical COBOL program has four divisions[3,91,92]:

1. Identification Division. This division identifies a program and its origin.

2. Environment Division. This division may contain a Configuration section
that defines the computer environment and an Input-Output section that

defines the input/output devices.

3. Data Division. This division contains sections that define data and areas

that a program references.

4. Procedure Division. This division contains all the executable statements

that perform the program’s logic and processing.

The Identification Division and the Environment Division are not directly
translated into WSL, but the information in these two divisions might be used
in translating the other two divisions. The Data division and Procedure Division

are directly reflected in the WSL programs.

6.5.2 An Example of Translating A COBOL Program
into WSL

The example program used in this section was taken from a COBOL text book

[92] and its COBOL source code is as follows:
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3 3 e 3k ok 3 e 3k ok 3k 3 3k 3k ok ok s ke 3k 3 ke s e e s e ke 3k 3 3k e e e 3 e e ke ke ok 3k o e ok 3k e ke s ke 3k ok k3 ke ok ok kok ok ok

THIS PROGRAM SEQUENTIALLY ACCESSES TO TWO SEQUENTIAL
FILES, ONE IN INPUT MODE AND ONE IN OUTPUT MODE.

* X * K *
* X K ¥ *

3k 3 3k 3k sk 3 3 3 ok 3 2 3k 2k 3k e 3k 3k 3 3 3 vk 3 e e ke e e e s 3k e sk e e e 3 e ke 3k 3 e ok 3k e 3k ok ek 3k e ok e ke e ok ek ok ok

IDENTIFICATION DIVISION.
PROGRAM-ID. COPY-CUSTOMER-LIST.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CUSTOMER-LIST ASSIGN TO XYZ
ORGANISATION SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.
SELECT CUSTOMER-LIST-BACK ASSIGN TO WXY
ORGANISATION SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD CUSTOMER-LIST.
01 CUSTOMER-RECORD.

02 NAME PIC X(20).
02 ADDRESS PIC X(50).
02 PHONENUM PIC X(20).

FD CUSTOMER-LIST-BACKUP.
01 BACKUP-RECORD.

02 B-NAME PIC X(20).
02 B-ADDRESS PIC X(50).
02 B-PHONENUM PIC X(20).

WORKING-STORAGE SECTION.
01 EOF PIC X.

PROCEDURE DIVISION.
MAIN.
OPEN INPUT CUSTOMER-LIST
OUTPUT CUSTOMER-LIST-BACKUP
PERFORM, WITH TEST AFTER, UNTIL EQOF = "T"
READ CUSTOMER-LIST NEXT;
AT END
MOVE "T" TO EOF
NOT AT END
MOVE "F" TO EOF
MOVE CUSTOMER-RECORD TO BACKUP-RECORD
WRITE BACKUP-RECORD;
END-PERFORM
* THE STOP RUN STATEMENT CLOSES THE FILES
STOP RUN.
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Organisation Sequential

Access Metho Operation I 0] I/0 | EX
Read X X
Read Next X X
Sequential i
Write X X
Rewrite X

( X indicates where an operation is available.)

Figure 6.5: COBOL Sequential Files

The identification division is translated into a comment statement. Infor-
mation in the environment division will be used when data division and procedure
division are translated, i.e., the files in the code are sequential files.

In the data division, COBOL records and files are translated into WSL
records and files. COBOL files sequentially organised and sequentially accessed
(see Figure 6.5) are used to illustrate the method developed in this thesis. The
same principle can be applied to COBOL indexed and random access files by
modelling them using arrays which are available in WSL.

The following file operations are translated into WSL as external procedures
(denoted by !p which is the WSL function existing in the first level language to
call an external procedure for which it is known definitely which variables will
be changed) or external functions (denoted by !f which the the WSL function

existing in the first level language to call a named external function):




Chapter 6. Extending and Using WSL 144

COBOL Constructs | WSL Constructs
OPEN 'p open_file
CLOSE !'p close_file
READ 'p read_file
READNEXT !p readnext
WRITE 'p write_file
REWRITE !p rewrite

EOF? 'f eof?

In the procedure division, a PERFORM statement is translated into a while
statement in WSL, the IF statement into if statement in WSL, an OPEN state-
ment into !p open-file and a MOVE into an assignment. Therefore, this program

1s translated into:

segment
comment : “program-id: copy-customer-list”;
file customer-list with |
record customer-record with
record name [20 of char]
record address [50 of char]
record phonenum [20 of char]
end;
end;
file customer-list-backup with
record backup-record with
record b-name [20 of char]
record b-address [50 of char|

record b-phonenum [20 of char]
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end;
end;
m eof [1 of char] end;
!p open._file (i var customer-list);
!p open_file (o var customer-list-backup);
while (eof # “T") do
if non_empty? (If eof? (customer-list))
then eof:= “T”
else eof := “F”;
Ip read_file (customer-record var mailing-list);
backup-record := customer-record,

Ip write_file (backup-record var customer-list-backup);

od;

end;

It is worth noting that in some languages such as in PASCAL variables can
be declared in two ways:
(1) type & = record
X, y: int
end

var i, j: I.

(2) var i: record
X, y: int
end
. var j: record
X, y: int
end.
and these two declarations are equivalent. However, WSL does not support the
first approach. If this case occurs, the second approach is used to translate the

source code into WSL.
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6.6 Program Transformation Writing

Transformations are all written in Meta-WSL (which contains WSL). A new trans-
formation is added into the Transformation Library by a function called “ADD-
TRANS” (also in Meta-WSL). The “ADD-TRANS” function takes eleven param-

eters. For exarhple, if a transformation is needed to swap positions between two

records, i.e., from

record name [20 ofchar] end;

record address [50 of char] end;

to

record address [50 of chdr] end;

record name [20 ofchar] end;

the transformation is as follows:

(Add_trans
’Record
’Any
’Swap-with-next-record
’Global
’Always
’ (Rewrite)

Nil
> ((Cond ((And ([_S_Type?_] Record)
([_>>7_1))
(@>>)
(Cond (([_S_Type?.] Record) (@Pass))
((Else) (@QFail))))
((Else) (QFail))))

» ((@Del) (QUndel_after))
)




Chapter 6. Extending and Using WSL 147

The eleven parameters include:

1. the general type on which the transformation operates (in this case, “Record”);

2. the specific type on which the transformation operates (in this case, “Record”);

3. the name of the transformation (in this case, “Swap-with-next-record”);

4. the scope of the transformation, either “Global” or “Local” (in this case,

“Global”);

5. an indicator which determines when the transformation would appear on a

menu (in this case, “Always”);
6. the list of menus on which the transformation appears (in this case “Rewrite”);
7. the documentation for the transformation;

8. the prompt for any information which may need to be entered by the user

(in this case, (“”);

9. the type of any information which may need to be entered by the user, (in

this case, “Nil”);

10. the code in “Meta-WSL” for testing for the transformation’s applicability;

and

11. the code in “Meta-WSL” to perform the changes required to effect the trans-

formation.

The last two parameters are the most important because they require the
writing of some “Meta-WSL” code.
The 10th parameter,

> ((Cond ((And ([_S_Type?_1 Record)
C([>>2.1))
(@>>)
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(Cond (([_S_Type?_] Record) (Q@Pass))
((Else) (@Fail))))
((Else) (QFail)))),

means: if the currently selected item is a “Record” and after this item there is
another item (the current item is not the last item of a sequence of items), follow-
on tests are carried out; otherwise the transformation is not applicable to the item.
In the follow-on testing steps, the next item is selected by moving forward one step
(i.e., (@>>)). If the newly selected item is also a “Record”, the applicability of
. the transformation is confirmed by the “(@Pass)” statement. If the newly selected
item is not a “Record”, the applicability of the transformation is denied by the
“(@Fail)” statement.
The 11th parameter,

’((@Del) (@Undel_after)),

means: delete the current item (actually the next item becomes the current item)

and undelete it after the current item (i.e., the deleted item becomes next item),

so that two records are swapped.



Chapter 7

Program Transformations and

Data Abstraction

In this chapter, the use of program transformations and data abstraction tech-

niques, and the definition of new program transformations are explained.

7.1 Introduction

This chapter starts addressing the addition of program transformations for data
abstraction into the prototype system by discussing a number of questions that

may concern reverse engineerers. These questions include:

e Which process should be used for crossing level of data abstraction, top-

down or bottom-up?
o What role does human knowledge play?

e What types of abstraction are needed for data abstraction?

When should back-tracking be used?

e How can program transformations be defined formally?

How to prove program transformations?

149
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Answers to the above questions would certainly be contributions to the re-
search field, but the application of the answers to handling data-intensive pro-
grams is more important. Perhaps the main novel contribution of this research is -
in abstracting from both the low level code and data constructs; exploring what
information should be thrown away in moving from code and data to higher level
abstractions represented especially in Entity-Relationship Attribute Diagrams;
and handling commonly encountered problems, such as foreign keys and alias-
ing. These are implemented by program transformations for manipulating data-
intensive programs.

There are classes of low level to high level data abstractions: from a record
to an entity; from a segment of unstructured code to a user-defined data type;
from code and data to high level data; from aliased memory to separate variables;
etc. Each category may consist of a number of transformations. Transformations
developed in this research are introduced under these categories.

Transformations from different categories may be used to solve one problem
in one data-intensive program. For example, there may a foreign key in one
segment of code. The solution is to combine the analysis of code and data. It
may need a number of transformations from the class, “from record to entity 7, a
number of transformations “from code and data to high level data”, etc.

The organisation of the program transformations developed in thesis, and
the addition of newly defined transformations to the prototype will be introduced

in the next chapter.

7.2 Influence of Forward Engineering on

Reverse Engineering

7.2.1 Crossing Levels of Data Abstraction

As well as their use in forward engineering, abstraction techniques are of impor-
tance in reverse engineering. In reverse engineering, abstraction is the process of

identifying the important qualities or properties of the phenomenon being mod-
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elled. They abstract from irrelevant details, describing only those details that are
relevant to the problem at hand, e.g., understanding the design.

Usually, prolgraml code and its design are not at the same level of abstrac-
tion — the design is more abstract than the code. It is necessary to reduce the
amount of complexity that must be considered at any one time, so that certain
number of abstraction levels may exist during the specification extraction process.
Each “layer” can be considered as a program in a language provided by a virtual
computer, implemented by the layer below.” At the lowest layer, we have a real
machine. _

The process of acquiring a program design or specification from program code
has three different ways to cross levels of abstraction. The first way is to refine
a high level hypothesis of program design which the program code might have
heading to the code (see case (A) in Figure 7.1) ( P4 stands for program at the
code level, PD.onceptuar for program design at the conceptual level and Py, Ps, ...,
P, stand for intermediate forms in between P, and PD ,nceptuat). The advantage
of this is that the.technique of refining specifications is relatively well developed,
but the disadvantage is that it is very difficult to guide the refinement towards the
given program code. When program code is obtained from the program design, it
is hard to prove the obtained program is equivalent to the originally given program
code and in general it is an undecidable problem.

The second way is to move from the program code towards the specification
(see case (B) in Figure 7.1). We do not need to prove the equivalence of the
obtained program design and the suspected program design, but attention must
be paid to strategic direction because the obtained design may not be the best
one. In general, there are an indefinite number of designs which a given piece
of code satisfies. Also, because the reverse steps are usually difficult, necessary
guidance must be provided by the user to keep the process in the correct direction.

The third way is to move from both ends — to abstract the program and to
refine the design — to meet in the middle. This also has the same problems as
the first and the second method (refer to case (C) in Figure 7.1).

However, it seems clear that satisfactory abstraction cannot be obtained
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without a user who is an expert both in software engineering and in the application
domain. For example, we may wish to reverse engineer a compiler from its source
code. Writing down the program design of the compiler, and working top down,
has all the difficulties of verifying an existing program. In contrast, an expert
compiler writer, starting from the source code, will look for the lexical and syntax
analysis, access to the symbol table etc., and use domain knowledge informally but
effectively in guiding the process. Therefore, instead of using the third method
(viz. both ends towards the middle) it may be appropriate to use the second
method.

Peose—Py <—P2‘—----<—Pn‘—PDconceptual
(A) Reﬁngment from a Program Design Towards a Program Code
Peose—P1—Py—...— P,— PDconceptual
(B) Stepwise Abstraction of Program Towards Program Design
P.pge—Py—...— Pje—...—P,——PD.onceptual

(C) Meeting of Program Abstraction and Program Design Refinement

Figure 7.1: Three Ways of Crossing Levels of Abstraction

The “bottom-up” process is used in this thesis. The aim of the process is
the acquisition of the design of the source code. The design derived may not
be equivalent to the program design which was originally used even if it existed.

Furthermore, the original program design no longer exists after heavy modifica-
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tion. Our research will pay attention to these points. In any case, the derived
design will be both helpful to software maintenance (maintenance carried out at
the conceptual level) and to software reuse (components of the software at the

conceptual level can be potentially used in another context).

7.2.2 Role of Human Knowledge

To obtain a model of acquiring a program design or specification from program
code, program understanding techniques, cognitive models and personal experi-

ence are decisive factors.

Approaches to program comprehension are summarised by [136], in which

three program comprehension problems are discussed.
e Theories of program comprehension:

1. examining of the entire program and working out the interactions be-

tween various modules,
2. understanding the program by syntactic and semantic knowledge,

3. setting a hypothesis of a mapping between the problem domain and

the programming domain,

4. using both top-down and bottom-up strategies at the same time.

o Code reading: The crudest method of understanding program is code read-

ing. Factors affecting code reading are:

1. the design method employed in the implementation of the program,

2. the style of writing the program, for example, using meaningful variable

names, indentations, comments, etc.

e Program analysis: Static and dynamic analysis — to obtain useful infor-
mation, such as cross reference listings, call graphs, slicing, and symbolic

execution, etc.
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Soloway and Eirlich claim [145] that expert programmérs have and use two
types of programming knowledge: programming plans, which are generic pro-
gram fragments that represent stereotypic action sequences in programming, and
rules of programming discourse, which capture the conventions in program-
ming and govern the composition of the plans into programs.

The personal experience (of more than ten years) of the author in program-
ming supports the above arguments, i.e., that programs are composed from pro-
gramming pléms that have been modified to fit the needs of the specific problem
and that the composition of those plans are governed by rules of programming
discourse. Programming knowledge will also play a powerful role in program
comprehension [77]. Usually, advanced programmers have strong expectations
of what programs should look like and programming knowledge is the base of a
programmer’s expectation.

Human knowledge plays an important role throughout the whole process of
acquiring a data design from code. This fact is both crucial to the researcher (tool
builder) and maintainer (tool user). To the reverse engineer, human knowledge

assists in the following aspects:

1. Modularisation of source code. The first step in dealing with real software
is to modularise the software into manageable sized modules which ought
to be functionally independent. This is done by program reading, i.e., the
maintainer reads the source code and divides it into smaller modules accord-
ing to the information found in the source code, e.g., the division identifiers

in COBOL.

2. Searching for and naming abstract data types. An abstract data type is an
important concept of data abstraction. An important method of crossing

| levels of data abstraction in this thesis is to gather information in the source
code and to form an abstract data type. It is the maintainer who guides
the Maintainer’s Assistant in searching for an abstract data type and names
the obta.iﬁed abstract data type. The name of an abstract data type ought
to be given according to the information gathered from the code. Also the

name of an abstract data type affects further abstraction from the abstract
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data type. Though tools can help in this casé, e.g., work of Sneed [144], the

role of human is decisive.

3. Searching and naming entity relationships. In extracting relationships of
entities from code, it is again the maintainer who directs the search for
relationships between entities. This includes questions of where to look for,

and how to name, relationships.

4. Selecting other transformations. Apart from aiding the selection of trans-
formations for abstract data types and entity relationships, the maintainer’s
knowledge assists selecting all other transformations. Selecting transforma-

tions relies on a combination of the following:

e any potentially useful information visible in the code, e.g., meaningful
variable names, comments, indentation, procedure and function names,

etc.

e program syntax components, e.g., controlled variable of a loop, assign-

ment statement, etc.

e user’s hypothesis made according to software engineering knowledge
and domain knowledge. The user’s hypothesis can be continuously
updated all the time as the process of applying transformations is going

on.

e help information from the Maintainer’s Assistant. There is a built-
in manual facility for all the transformations in the library. Also the
help information will be prompted by the program transformer when

necessary.

Examples of the above four points will be illustrated later in this thesis.

To the reverse engineering researcher, the problem of how to accommodate
the use of human knowledge in the tool (the Maintainer’s Assistant in this re-
search) has to be solved. In fact, the use of a program transformer covers the
aspect of static program analysis. Other aspects, such as presenting useful in-

formation (e.g., comments in a program), providing the user with a facility for
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naming entity relationships, etc., will be discussed in the section 8.1, “Design of

the Prototype”.

7.3 Acquiring Data Designs from Program

Code Using Program Transformation

7.3.1 Different Types of Transformation and Abstraction
Levels

To understand the process of acquiring a data design from code, it is necessary
to define clearly three types of program transformation and their relations with
program abstraction levels (Figure 7.2).

In simplifying the illustration, it is assumed that only one presentation of the
program design or program exists in each abstraction level, 1.e., Program I may
have more than one semantically equivalent form but only one form is presented
in the diagram.

There are three types of transformation: equivalence transformation, refine-
ment transformation and abstraction transformation. When an equivalence trans-
formation is applied to a program (e.g., Program I) the program derived (Program
IT) has the same semantics as the original. The equivalence transformation is
represented by <. Usually, at the code level, programs are represented by a con-
crete programming language with defined syntax and the semantics so that these
programs can be analysed by the program transformer. Therefore, in the Main-
tainer’s Assistant, the program transformations in the transformation library are
all equivalence transforrﬁations, and are applicable only to programs at the code
level. At the conceptual level, “programs” (in fact, program specifications or pro-
gram designs) are represented in a conceptual form, such as, Entity-Relationship
Attribute Diagrams. At this level, equivalence transformations may also exist and
can be used to transform a program design from one form to another equivalent

form.

Since the aim of the research is to acquire a data design from program code,
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Program Equivalence Transformation Program
Conceptual Level Design I <L /I) Design II
Refinement Transformation Abstraction Transfo: tion
A 4
_ Equivalence Transformation
Code Level Program I q ,|) Program II

Figure 7.2: Three Types of Program Transformation

the concerned representation of a “program” at the conceptual level is restricted
to program designs. A refinement transformation is used to transform a program
design (Program-Design I, in this case) into a program (Program I, in this case).
This type of transformation is only unidirectional — from an object at the con-
ceptual level to an object at the code level. It means that after a refinement
transformation is applied the program derived is the semantic refinement of the
program design, but not necessarily vice versa.

An abstraction transformation is used to transform a program (Program II,
in this case) back to program design (Program-Design II, in this case). This
type of transformation also can only be applied to a program. In another words,
though Program-Design II is obtained by applying an abstract transformation to
Program II, there does not have to be a transformation available to transform
Program-Design II into Program II.

Although three types of transformation are all needed in acquiring program
designs (the need for refinement transformations is discussed in the next section
“Back Tracking”) most attention has been paid to abstraction transformations

and equivalent transformations. Refinement transformations have been studied
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by Ward [155] and therefore, are not a focus in this thesis; for the same reason,
equivalent transformations discussed in this thesis are mainly on data abstraction

and are supplementary to Ward’s work.

7.3.2 “Back Tracking”

The diagram illustrated in Figure 7.2 also supports one argument proposed earlier
in this thesis that the program design extracted from a source program can be
different from the original program design of the source program. This is because
extra information was added by the implementor when the source code was first
implemented according t-o the original program design, and information can be
lost when the program design is abstracted out from the source program. The
use of a program transformation approach can best preserve information when
the source is mianipulated, since equivalence transformations will not change the
semantics of the source program. For example, Program I and Program II have
the same semantics, so this approach keep the information loss to a minimum.

It should be noticed that the scenario described in Figure 7.2 is an ideal
case. In practice, there may be several choices at each stage of the transforma-
tion process. Some of these choices may not lead in the right direction and the
maintainer may need to retreat to some previous stage and start again. Here the -
“back tracking” technique has to be employed (Figure 7.3).

Figure 7.3 shows that it takes a number of steps to transform Program I
into Program Design I. In this figure, circle 1 represents Program I and circle 13
program Design I; other circles represent the intermediate programs; and lines
with arrows represent the application of transformations. For some intermediate
programs, there is more than one transformation available, e.g., the program
represented by circle 2. Assuming the route 2-3-4-5 is selected, the user will soon
find out that no suitable transformation is available at 5 to reach 13. The user has
to undo a few transformations to go back to 2. The whole diagram indicates all
the steps possibly done by a maintainer, 1.e., 1-2-3-4-5-4-3-2-6-7-8-7-9-10-11-10-
12-13. Though the best known route is 1-2-6-7-9-10-12-13, this route can seldom

be found immediately. Program understanding approaches can aid this process.
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5

Transformation

11

10 / 13
O
Program I \ / /l:rogram
6 O\ /g o/ o Design I
: 12

Figure 7.3: “Back Tracking”

7.3.3 Formal Definition of Three Types of

Transformation

Three types of program transformation are defined in this subsection®.

Meanings of Program
A program S is a piece of formal text, i.e., a sequence of formal symbols. There

are two ways in which the meaning of these texts can be given [155]:

1. Given a structure 2 M for the logical language £ from which the programs

are constructed, and an initial state space (from which a suitable final state

1The “refinement” part of the subsection is based on Ward [155] and the “abstraction” part

was extended by the author.
2A structure for a logical language £ consists of a'set of values, plus a mapping between
constant symbols, function symbols and relation symbols of £ and elements, functions and

relations on the set of values.
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space can be constructed), the program can be interpreted as a function f(a
state transformation) which maps each initial state s to the set of possible
final states for s. Therefore, a program can be interpreted as a function from

structures to state transformations;

2. Given any formula R (which represents a condition on the final state), a
formula WP(S,R) can be constructed. This formula is usually called the
weakest precondition of S on R and is the weakest condition on the initial
state such that the program S is guaranteed to terminate in a state satisfying

R only if it started in a state satisfying WP(S,R).

Because of these two ways of interpreting programs, two corresponding re-
finement methods were generated: semantic refinement and proof-theoretic refine-

ment.

Semantic Refinement

A state is a collection of variables (the state space) with values assigned to them;
thus a state is a function which maps from a (finite, non-empty) set V of variables
to a set H of values. There is a special extra state L which is used to represent
nontermination or error conditions. A state transformation f maps each initial
state s in one state space, to the set of possible final states f{s), which may be in
a different state si)ace. For convenience, if L is in f{s) then so is every other state
and f{L) is also required to be the set of all state (including L ). However, the set
of final states is not required to be empty.

Semantic refinement is defined in terms of these state transformations. A
state transformation fis a refinement of a state transformation g if they have the
same initial and final state spaces and f{s) C ¢(s) for every initial state s. Note
that if L € g(s) for some s, then f(s) can be anything at all, i.e., an “undefined”
‘program can be correctly refined to do anything. If fis a refinement of g (i.e., g is
refined by f), it is denoted by g < f. If the interpretation of statement S; under
the structure M is refined by the interpretation of statement S; under the same

structure, then this is: S; <pr S;. If this is true for every structure which 1s a
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model 2 for a set A of sentences of £ theﬁ this is written A E S; < S,.

Proof-Theoretic Refinement

Given two statements Sl and S,, and formula R, two formulae WP(S;, R) and
WP(S;, R) can be constructed. If there exists a proof of the formula WP(S;,
R) = WP(S;, R) using the set A as assumptions, then this is représented as
A F WP(S,, R) = WP(S;, R). For S; to be a refinement of S;, this result
has to hold for every postcondition R. To avoid the need for qualification over
formulae, and remain in first order logic, the language £ can be extended by
adding a new relation symbol G(w) where w is a list of all the free variables in
S; and S,. If it can be proved that A + WP(S;, G(w)) = WP(S2, G(w)) in
the extended language £’ then the proof makes no assumption about G(w) and
therefore remains valid when G(w) is replaced by any other formula. In this case
this is written: A F S; < 8S,.

A fundamental result, proved in [155], is that these two notions of refinement

are equivalent:

AES <S < AFS<S,

Semantic Abstraction

If F(s)eVy and GeVy' are state transformations where VCV’ and
Vs €V.F(s)=G(s) (i-e., F and G have the same values on variables in V) then it
is said that F(s) is more abstract than G(s) (or G(s) is more concrete than F(s)),
and it is written G J F(s), i.e., F is an abstraction of G (F abstracts G, or G is
abstracted by F). If the interpretation of statement S; under the structure M is
abstracted by .the interpretation of statement S; under the same structure, then

this is written S; Jdur S..

3 A model for a set of sentences (formulae with no free variables) is a structure for the language
such that each of the sentences is interpreted as true.
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Refinement, Equivalence and Abstraction Transformations

'If Sy is refined by S,, there is a program transformation from S; to S,. This is

written:
S; £S5,

and the program transformation is defined as a refinement transformation.
I S; refines S; and also S, refines S;, there is a program transformation

from S; to S, and vice versa. This is written:
S1 =4 Sz

and the program transformation is defined as a equivalence transformation. .
If S; is abstracted by Sj, there is a program transformation from S; to S,.

This is written:
5,385,

and the program transformation is defined as a abstraction transformation. This

means that any specification which S, satisfies is guaranteed to be satisfied by S;.

7.4 Issues on Inventing and Proving Program
Transformations

In this thesis, program transformations have been invented, based on the research

result of data abstraction, to best serve the need of acquiring data designs from

programs.

It is crucial to ensure that all program transformations and and abstractions
preserve the correctness of program semantics. Since proving program refinements
and transformations is not the subject of this thesis (please refer to [155] for more
details), one example demonstrates here how a transformation is proved.

The example chosen addresses two programs:
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PUSH (S z); .
y := Pop (95).

and

Yy = &
Suppose that one program transformation called “Merge-Push-Pop” is valid
to transform the first program into the second one. Two methods are presented

to prove the validity.

Method 1: To use the weakest preconditions. This is to compare the weakest
pre-conditions of the two programs. If their weakest pre-conditions are same,
these two programs are equivalent.
WP(PUSH (x,S); y := POP (S), R)
& WP(S := (x )+ S; y := HD(S); S := TL(S), R)
& RITL(S)/S] [HD(S)/y] [( x )+ S/S]
& RITL(( x )4+ S/S] [HD({ x )+ S)/]
& R[S/8][x/y]
+ Rlx/y]
< WP (y :==x,R)

Method 2: To use the existing WSL constructs and their properties.
PUSH (x,5); y := POP (S)

& S[2...]:=8[1..];8[1] :=x; y := S[1]; S[1 ...] := S[2 ...];
& S2.]:=81.])y:=x;51..]:=8[2..];
Sy:=x;52..]:=8[1..];S1..]:=852..;

&S y:=x;S[1..]:=95[1..]
& ¥V =X,

In essence, the second method is same as the first one, because the exising
WSL constructs were derived at earlier stages via definitional transformations

which were proven by using weakest preconditions.
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7.5 Program Transformations of Data
Abstraction

Transformations developed in this thesis for data abstraction are divided into
seven categories. Each category will be discussed in one subsection in this section.
Because it will not be appropriate to explain every transformation, one or a few
examples are usually given in each category. ‘

The approach proposed in the research is shown in Figure 7.4. Lines with
arrows in the figure represent where transformations are applied. Data Designs
represented in Entity-Relationship Attribute Diagrams are mainly derived from
combining entities whose source is data, and relations whose source is code.

It can be seen easily that program transformations fall into the following
categories: (1) Data not in the form of records are transformed into records; (2)
Records are abstracted to entities or even entities plus relationships; (3) In the
code part, statements representing operations on data are abstracted to relations
between entities. A typical example is that operations on files are transformed
to operations on basic data types first, and then from operations on basic data
types to relations between data objects; (4) Control statements and statements
representing operations on data together are abstracted to relations or to user-
defined abstract data types; (5) User-defined abstract data types are abstracted
to both entities and relations; And (6) Entities and their relations are abstracted
to form Entity-Relationship Attribute Diagrams.

The seventh category consists of a number of supporting transformations for

data abstraction.

7.5.1 Transformations for Deriving Records

Transformations in this category are used to transform data, e.g., in the form
of files and variables, which are not in the form of record, into records. For the
sake of convenience in the research, the only form of data at the code level which
will be abstracted to the data at the conceptual level (i.e., entities) is the record.

Section 7.5.3 will address transforming the operations on files to the operations
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Code Level : _ Conceptual Level
File : — Record -
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Variable .
Entity-Relationship
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: Operation on Data/ /
(E.g.:File Op ADT Op ” Relation)

Figure 7.4: Approach of Deriving Entity-relationship Attribute Diagrams

of records.

As discussed earlier in the thesis, simple variables are unable to represent
records but fortunately records can represent simple variables properly because
a simple variable can be modelled by a record without losing any information.
When a simple variable is transformed into a record, the type information of the
variable is also recorded in the WSL record. For example, the following is a piece

of code in WSL, where local variables ¢ and b are declared and used.

var (a:=0,b:=“"):
a := 100;
b := “ok”;
end;

This program can be transformed into the program shown below. The local
variable environment (denoted by var) is changed to local record environment
(denoted by segment). The Program Transformer checks the whole segment of

the code, and decides the types for each record (in this case, the type for a is
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int and b char) and gives the length of each record depending on the longest
constant assigned to that record (in this case, 3 for @ and 2 for 4). Note that,
the display form for a variable and a record variable are the same though their

internal formats are different.

segment
record a [3 of int];

record b [2 of char];

a := 100;
b := “ok”;
end;

7.5.2 From Records to Data at the Conceptual Level

From Record to Entity

In forward engineering, a “01 level” COBOL record is usually used to implement
Can entity in an Entity-Relationship Attribute Diagram. Therefore, in reverse
engineering, a record without any field can be abstracted to an entity without
any attribute; and a record with just fields can be abstracted to an entity with
attributes. For example, a record and an entity abstracted from the record are
illustrated below. When the record is transformed into the entity, information
such as length and type of each field is thrown away, because the information was

not usually in the original data design and was added in by the implementor.

record F1 with - entity El with
record Al [n of char] attr A!
record A2 [n of char| | attr A2
m A3 [n of char] » attr A3
record A4 [n of char] attr A4

end; end;
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Acquiring a Relationship from a Record with Subrecords

When a subrecord of a record can be abstracted into an entity and the record can
be abstracted into an entity as well, there exists a relationship between the entity
derived from the record and the entity derived from the subrecord. For example,

in the given record author:

record author with
record name [40 of char]
record address [50 of char]
record book with
record title [50 of char]
record ISBN [20 of char]

end

end;

the subrecord dook can be abstracted into an entity while the record author can be
extracted into an entity author, according to the knowledge in forward engineer-
ing. At the same time, a relationship “write” is put in by user from the logical

connection between the record and the subrecord, i.e.:

paragraph
entity author with
attr name
attr address
end;
entity book with
attr title
attr ISBN
end;

relationship entity author has one write relation with many entity book;

end;
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Author
one
one

Book

Figure 7.5: Deriving a Relationship from a Record with Subrecord

Note that information on the implementation details is also thrown away in
the process of abstraction. An Entity-Relationship Attribute Diagram for this

example is shown in Figure 7.5.

7.5.3 From Code Level Data Operations to Data

Relations
Transformations for Modelling Sequential Files

File input/output is a central problem in most data-intensive programs. File
operations in a programming language usually involve access to external storage.
In COBOL, a serial file is a sequence of records, i.e., a record is the unit with
which a physical file can be accessed. Though COBOL file operations can be

translated into WSL as external procedures and external functions (Section 6.5.2),




Chapter 7. Pro.gram Transformations and Data Abstraction 169

more suitable forms of data presentations are required to replace these external
procedures and functions in order to examine file operations at a high abstraction
level. _

A queue data type is proposed to model COBOL sequential files and opera-
tions on these files, in order that files (external storage objects) can be transformed
into queues (internal mathematical objects).

Assuming a file has n records, Ri, Ra, ... , Ri, Rit1, Riy2, ... , Rac1, Ra,
sequential file operations can be modelled by operations on two queues (Head-

Queue and Tail-Queue) of records, and one record variable V,:

Open-file = Head-Queue := {};
Tail-Queue := Ry ++Ry ++ ... ++R,. (++ is concatenation)

Read-file = V, := head (Tail-Queue);
Tail-Queue := tail ( Tail-Queue);
Head-Queue := Head-Queue ++ V,.

Write-file = Head-Queue := Head-Queue ++ V,;
Tail-Queue := tail( Tail-Queue).

Close-file = Tail-Queue := Head-Queue ++ Tail-Queue;
Head-Queue := {}.

eof? = empty?( Tail-Queue).
Accordingly, five transformations with the above meaning can be invented:

e Model-OpenFile-by-QueueOP

definition:



Chapter 7. Program Transformations and Data Abstraction

170
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Status of a File Head-Queue Tail-Queue
(A) Just opened :'"_____ﬂ:
. Empty . R; | Ry R,o1 R,
(B) After the ith rl R R R R R
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record being Ry R Rp.q Ryp ! Empty !
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Figure 7.6: Modelling a Sequentié,l File by Two Queues
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!p open_file DATAFILE; <
init_q DATAFILE-head,
DATAFILE-tail := q_concat(DATAFILE-head, DATAFILE—tazl)

. Model-ReadFiIe—by—QueueOP

definition:

Ip read_file (DATARECORD, DATAFILE); &
DATARFECORD := q_rem_first( DATAFILE-tail);
DATAFILE-head := q_concat(DATAFILE-head, DATARECORD);

e Model-WriteFile-by-QueueOP

definition:

!p write_file (DATARECORD, DATAFILE);, <
DATAFILE-head := q_concat(DATAFILE-head, DATARECORD);
DATARECORD := q_rem_{first( DATAFILE-tail);

o Model-Eof?-by-QueueOP

definition:

!p eof! (DATAFILE); &
empty? (DATAFILE-tail)

e Model-CloseFile-by-QueueOP

definition:
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!p close_file DATAFILE; <«
init_q DATAFILE-head,
DATAFILE-tail := q_concat(DATAFILE-head, DATAFILE-tail);

Transformations on Basic Data Types

Transformations in this class deal with simplifying data objects in basic data
types according to the properties of the data type. The data types that the
transformations in this class can deal with include stack, set, sequence and queue.

For example, the transformation,

push(S, x); pop(y, §) & y:=x
is based on the properties of a stack. Another two examples are:
g_append p e 2 relate p toe;

and

z := q_rem_first(p)
&z := head(p); p := tail(p);

3 relate z to p; relate p to p;

Handling Aliased Records

Suppose we have a COBOL program as below:

01 X PIC X(8).

01 Y REDEFINES X. PIC X(8).
01 Z : PIC X(8).
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MOVE Z TO X.

It will be translated into WSL:

record z [8 of char);
record y [8 of charl;

redefine z with y;

record z [8 of char;

y := read-red(z, y);
The second statement in the above program can be simpliﬁed by transformations,

l.e.:

y := read-red(z, y);
& Yi=2z;

7.5.4 Abstraction from Code

A number of examples are given in this subsection to illustrate how code is ab-

stracted towards data design.

Abstracting from Assignment Statement

An assignment statement is a simple but straightforward measure to implement
a relation between two data objects, which, at the data design level, may be two

entities. Therefore, an assignment can be usually abstracted to a relation, e.g.,
T =y | relate z to y;

This simply means that z relates to y. How this relation will be used to obtain

Entity-Relationship Attribute Diagrams will be discussed later in this section.
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Abstracting from Branching Structure

A branching statement, such as if .. then .. else .. if, is used as a control
structure in implementing programs. But the structure itself did not appear in the
original data design and neither did the condition part of the branching structure;
Therefore, these parts will not contribute to the Entity-Relationship Attribute
Diagram. Information appearing in both arms of an if .. then .. else .. fi
statement may exist in the Entity-Relationship Attribute Diagram. Therefore, an
if .. then .. else .. fi statement can be abstracted to a sequence of two groups
of statement (each group comes from each arm of the if .. then .. else .. fi

statement). For instance,

ifz>0
then z :=y

else 7 :=2

is abstracted to

relate z to y;

relate z to z;

Looping Statement

Looping statements, such as while and for, are also used as a control structure in
implementing programs but do not appear in the original data design. A looping
statement can be treated as enumerating the same operation on every instance of
entities. The condition part of the loop also does not contribute to the Entity-
Relationship Attribute Diagram. So a while loop can be removed just leaving

the body of the loop. For example,

1:=0;

while ¢ < 10 do



)
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z[d] := y[i];
ii=1+1;
od;

is equivalent to

for : =0to9stepl
begin
z(i] := yli];

end;

and they both can be abstracted to:

relate z to y;

The example shows that, at the code level, the elements of the array z are assigned
with the elements of the array y and this can be abstracted to that, at the data

design level, entity = has a relation with entity y.

Transformations for Forming Abstract Data Type

Transformations in this class address looking for a user-defined abstract data type.

An example is given below:

var set := 0, rest := 0', z:=0,y:=0,m:=0,n:=0,

wntl :=0,int2:= 0, reall := 0, real2:=0:
begin

iinsert (intl);

idelete (int2);

rinsert (reall);

rdelete (real2);
where

proc iinsert (z) == iset := iset V {z};
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proc idelete (y) == iset — {y};
proc rinsert (m) == rset := rset V {m};

proc rdelete (n) == rset — {n}.

Here we assume that the variables z and y are not used in (...) parts (this
can l;e easily confirmed in Meta-WSL). If we start with variable z which is used
by procedure definition éinsert, it is found that variable iset is also used by the
same procedure definition. There is no other procedure definitions using z, but
the procedure definition idelete uses variable iset and y. Following the same steps,
a closure can at last be recognised which contains three variables (z, y , iset)
and two procedures (insert, idelete). Hence an abstract data type is formed (and

named intset). The above program can be transformed into the following:

var rest:=0,m:=0,n:=0,intl :=0,nt2:=0,
reall := 0, real2:=0:
begin

user-adt-proc-call intset.insert (intl);

user-adt-proc-call intset.idelete (int2);

rinsert (reall);

rdelete (real?);
where
user-adt intset (iset:=0,z:= 0,y := 0) (nil)

user-adt-proc tinsert (z) == iset := iset V {z}:

user-adt-proc idelete (y) == iset — {y}:

proc rinsert (m) == rset := rset V {m} :

proc rdelete (n) == rset — {n}.

Note that in the original program any procedure call which is involved in the
newly formed abstract data type is transformed into adt-proc-call. The search for

a closure can be started with a procedure definition (or function definition) as well
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as a variable, and the resulf is the same. For example, if we start with procedure
definition iinsert, we will first get variable z and iset involved; then search for
procedure definitions using these two variables; and finally get the same closure
as we start with the variable z.

Program transformations for searching and forming an abstract data type
only involve presentational changes to programs so that their correctness can be
easily proven.

It should be pointed out that the above method of identifying a user-defined
abstract data type can be implemented satisfactorily in the program transforma-
tion approach because the program transformer is a p(;werful analyser in searching
for a closure. Other methods of identifying an abstract data type, such as using
retrieve function, though they have been considered, still need further study before

they can be implemented in the tool.

7.5.5 From User-Defined Data Types to Data Design

Transformations in this category deal with transforming data objects, such as
records and abstract data types, into entities.

For example, an abstract data type usually involves a data object and a
number of operations on this object. The operations are implemented in terms
of procedures and functions, which take parameters. At the data design level,
the data object can be viewed as an entity; each parameter can be viewed as a
different entity; and the operations can be viewed as relations between the data
object and other data objects that are represented by the parameters.

Therefore, a user-defined abstract data type can be abstracted to an entity
while all statements accessing this abstract data type have to be changed accord-
ingly and “ADT->Entity” is such a transformation. By applying this transfor-

mation, the following program will be abstracted from
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user-adt-proc-call intset.insert (intl);

user-adt-proc-call intset.idelete (int2);

where

user-adt intset (iset := 0,z := 0,y := 0) (nil)

user-adt-proc nsert (z) == iset := iset V {z};
user-adt-proc idelete (y) == iset — {y}; ' .
to
paragraph

entity intl
entity int2
entity intset

relate int! to intset; comment : insert intl to intset,

relate int2 to intset; comment : delete int! from intset;

In this process, the abstract data type intset becomes an entity, and so do the
two parameters involved. Two procedure call statements become two relations. In
order to abstract the program further, useful information is recorded by comment

statements.

7.5.6 Deriving Data Designs from Data and Code

Transformations in this category deal with deriving entity relationships.

Handling Relations

When a relate statement relates two entities there must by definition be a re-

lationship between these two entities. So a relationship can be derived from the
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statement and the name of the relationship is provided by the user according
to the information in the program. When a relate statement relates one or no
entities, i.e., one or two of the components of the relate statement are neither
entities nor records which may be transformed into entities, it means that this re-
late statement does not represent a relationship of any entity and can be deleted.
For example, the following statement can be abstracted to a skip because “3” is
a.constant and was usually not part of the data design but was just used for the

purpose of control in the implementation.

relate z to 3; . skip;

Acquiring Relationship from Abstract Data Type

Let us carry on with the example in Section 7.5.5. A relate statement has two
components of which one is an entity derived from an abstract data type. Then
the other component is a variable or a record without any subrecord (these two
are equivalent and there are transformations available in the prototype for trans-
forming one into the other), this relate statement can be transformed into a
relationship. The name of the relationship has to be provided by the user accord-
ing to the information existing in the code. The program can be transformed into

the following WSL form and its Entity-Relationship Attribute Diagram is shown
in Figure 7.7.

paragraph
entity intset;
entity intl;
entity int2;

relationship entity int! has one is-member-of relation with one entity intset;

relationship entity int2 has one is-not-member-of relation with one entity intset;
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Int1 Int2

one one
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Figure 7.7: Deriving a Relationship from an Abstract Data Type

Acquiring a Relationship from a Foreign Key

One example is given here for Acquiring Relationship from Foreign Key. A rela-
tionship can exist between two entities that both have the same attribute (known
as a foreign key). Suppose two entities have been derived already from source code
(e.g., record definitions) and two relations between two pairs of entity attributes

(e.g., assignment statements):

paragraph

entity employee
attr nhs-number
@ name |
attr department

attr vehicle-num-plate
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Figure 7.8: Deriving a Relationship from a Foreign Key

end;
entity car
attr reg-number
attr manufacturer
attr model
attr driver
end;
relate employee.vehicle-num-plate to car.rej—number,
comment : one employee.vehicle-num-plate relates to many car.reg-number;
relate car.driver to employee.nhs-number;

comment :. one car.driver relates to many employee.nhs-number;

end;




Chapter 7. Program Transformations and Data Abstraction 182

Program transformations analyse code as well as data. For example, before
these entities and relations were obtained, employee was a record variable and
employee.vehicle-num-plate a field variable. The first relate statement records
the fact that the variable employee.vehicle-num-plate (“one” variable) was as-
signed to by an expression typed car.reg-number for more than once (“many”
times); and this statement is used by a user in asserting a relationship later. By
this stage, as shown above, it can be identified that the first entity has a foreign
key, employee.vehicle-num-plate and the second entity has an entity car.driver.
If we start with the entity employee, a one-to-many relationship is derived, i.e.,
that a person can drive more than one car. When we start with the entity car,
a one-to-many relationship is also asserted by the user, i.e., that one car can be
driven by more than one person. Therefore, the WSL presentation and the Entity-

Relationship Attribute Diagram is shown below and in Figure 7.8 respectively.
/

paragraph

entity employee
attr nhs-number
attr name

department

vehicle-num-plate

&+ e+
==

®
=

entity car
attr reg-number
attr manufacturer
attr model

attr driver

®
2

n

relationship entity employee has one drive relation with

many entity car;

relationship entity car has one driven-by relation with

many entity employee end;

end;
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7.5.7 Transformations for Manipulating Program Items

Transformations in this category deal with manipulating program items for the
preparation of data abstraction. Examples of these transformations are, “Join-
Records” (when more than one record can be joined together in order to form
an entity), “Split-Record-Into-Subrecords” (when a record needs to be split up in
order to form more than one entity), “Swap-With-Next-Record” (when a record
can be moved a position where is closer to another record and they may be joined

together to form an entity), etc.:




Chapter 8
Design and Implementation

This chapter describes the prototype system’s design and implementation in terms
of those major components of the Maintainer’s Assistant built by the author: an
extension to the WSL language (Chapter 6), and extension to the Transformation
Library (Chapter 7), the Program Structure Data.ba.se,vthe General Simplifier and
the Metric Facility. Although the prototype is still not an industrial-strength tool,
all components are aimed to be fully operational and to be able to demonstrate the
feasibility of the method developed in this thesis. Case studies will be described
in the next chapter. In this thesis, unless otherwise stated, the interface software
is running on a SUN 3/50 workstation and the rest of the prototype is running in

COMMON LISP on an IBM RS6000 workstation.

8.1 Design of the Prototype

The components of the prototype needing design and implementation/enhancement
_ includes the Representation of WSL, the Transformation Library, the Prbgram
Structure Database, the General Simplifier and the Metric Facility (Figure 8.1) .

8.1.1 Transformations for Data Design Recovery

Transformations for acquiring data design will be the extension of the transforma-

tion library and these transformations will be divided into the following categories:

184
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Figure 8.1: Design of the Prototype
1. deriving records,
2. from records to data in design level,
3. from code level data operation to data relations,
4. abstraction from code,
5. from user-defined data type to data design,
6. deriving data design from data and code, and

7. manipulating prografn i1tems.

The program transformations to be implemented in the prototype is listed

in Appendix D.

8.1.2 Program Structure Database

Examples of the database query definitions (in English) are listed in Figure 8.2,

and the specification of all the database queries is in Appendix C which was



Chapter 8. Design and Implementation 186

originally defined in [154,165].

8.1.3 (General Simplifier

Basically, the General Simplifier is able to simplify a mathematical or logical
expression, or to prove the equivalence of two expressions.

Mathematical and logical operations defined in the system are: +, -, *, /, **,
Min, Max, Div, Mod, =, >, <, <>, Not, And, Or, etc. !; and three commands

defined are:
o [Simplify] Fzpression
o [Equivalent?] (E:iﬁression, FEzpression)
o [Implies?] (Ezpression, Ezpression)

In the first command, the “Expression” can be any symbolic algebraic ex-
pression. When receiving this query from the Program Transformer, the Ceneral
Simplifier returns the expression in its simplest form. See the following for exam-

ples:
o [Simplify] (2 + 3) ===
o [Simplify] (A + B) / (A + B)) ===1
o [Simplify] (A ** (B ** 0)) ===
o [Simplify] (B * B * B * B) === (B ** 4).

When receiving the second or the third query from the Program Transformer,

the General Simplifier returns T or Nil accordingly. See the following for exam-

ples:

. [Equiv.a,lent?] ((And AB)or (And A C),(Aand (OrB(C)))===T

1These definitions are in normal mathematical and logical sense and subject to normal limi-
tations, e.g., zero cannot be divided by other expressions.
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Queries

Description

[Trans?]

Returns “T” or “Nil” depending on whether the named
transformation is applicable.

[Variables] [Used] [Assigned)-
[Used-only] [Assigned-only]

Returns lists of variables in the currently selected program
item according to whether variables are assigned
to, referenced, both, or neither.

[Depth]

Returns the depth which is defined as the number of
enclosing unbounded (do...od) loops.

[Primitive?]

Returns “T” or “Nil’ depending on whether the statement
given is primitive. A primitive statement is defined
to be neither an unbounded loop nor conditional statement.

[Terminal-Value]

Returns the terminal value of the given statement. The
terminal value is the capacity of a statement for jumping out
loops.

[Terminal?]

Returns “T” or “Nil” depending on whether the
statement given is terminal, 1.e., whether the statement
is in a terminal position or causes termination of

a loop which is in a terminal position.

[Proper?]

Returns “T” or “Nil” depending on whether the statement
is proper. The statement S is a proper sequence
if every terminal statement of S has terminal value zero.

[Regular?]

Returns “T” or “Nil” depending on whether the
program item is regular, e.g., an item is regular if
every execution of that item leads to an action call.

[Reducible?)

Returns “T” or “Nil” depending on whether

a statement is reducible. The statement S is
reducible if replacing any terminal statement EXIT(k),
which has terminal value one, by EXIT(k-1) gives a
terminal statement of S.

[Improper?]

Returns “T” if all the terminal statements of S have a
terminal value greater than zero.

[Dummy?]

Returns “T” if the statement S is both reducible and all
terminal statements of S have a terminal value greater than
zero.

[Calls]

Returns all the action call names and how many times
they are called in the given program item.

[Statements]

Returns all the statement names in the given program item.

Figure 8.2:

Program Structure Database Queries
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o [Implies?]. (X>Y,(Max X Y) = X) ===
o [Equivalent?] (A+B)*(A-B), (A * A) - (B * B)) ===

o [Equivalent?] (A 4+ B)* (A + B),(A*A)-(B*B))===Nil.

8.1.4 Metric Facility

The objectives of using metrics in REFORM are to help the user to select transfor-
mations (to help develop heuristics), to measure the progress made in optimising
the program code and to measure the resulting quality of the program being
transformed.

The question with which a user is mainly concerned is how to make the pro-
gram “better” (easier to understand). This is an optimising process which includes
removing redundant code, removing unreachable nodes, detecting and removing
bugs in the program, restructuring the program and reducing data complexity.

Therefore, the measures needed initially in REFORM are “code” measures.
They must reflect the complexity of the code and include control flow complexity
(connections between nodes, branches and loops), structural complexity, data flow
complexity and the size of the program.

Six metrics were defined for WSL programs in the prototype of the Main-
tainer’s Assistant.

A button named “Metrics” in the X-Windows interface of the Maintainer’s
Assistant is needed. By clicking this button, a user can calculate any one or all -
the metrics, applied either to the current program item on which he or she is
working or to the whole program.

During the process of transforming a program, the metrics at each stage can
be recorded and the results can be plotted as and when required.

The six metrics defined (to be implemented) in the prototype are:

o McCabe Complexity (MCCABE) — the number of linearly independent
circuits in a program flowgraph [116]. It is calculated as the number of

predicates plus one.
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e Structural (STRUCT) — the sum of the weights of every construct in the
program. The weight of each WSL construct is defined subjectively accord-
ing to experience gained by REFORM researchers and users. A looﬁ, for
example, is more difficult to understand than an assignment statement, so

a loop statement is given a bigger weight than an assignment statement.
o Lines Of Code(I) (LOC) — the number of statements.

e Lines Of Code(II) (LOC2) — the number of nodes in the abstract syntax

. tree. This reflects the overall size of the program.

e Control-Flow and Data-Flow Complexity (CFDF) — the number of edges
in the flowgraph plus the number of times that variables are used (defined

and referred). It is a modification of the measure defined by Oviedo [175].

o Branch-Loop Complexity (BL) — the number of non-loop predicates plus
the number of loops. It is a modification of the measure defined by Moawad

and Hassan [175]. The measure is sensitive both to branches and to loops.

The implementation details of program transformations and components of

the prototype designed in this section will be described in the following sections.

8.2 Extension of WSL

The WSL is embedded in LISP which means that executable WSL is represented
in a LISP form so that it can be executed by a LISP interpreter simply by pro-
viding suitable macro and function definitions and non-executable WSL is also
represented in a LISP form so that a LISP interpreter can check the correctness
of the syntax. The interpreter checks the syntax of WSL by looking up a syntax
table in which every WSL component is defined in terms of its name, type, etc.
When new WSL components are needed, their definitions are added to the table.
The table has to be loaded before the system' can interpret any WSL components.

The implementation of expanding the WSL only involves defining entries of
the WSL Syntax Table. The table in Figure 8.3 shows examples of the newly de-
fined entries, for representing data abstraction and Entity-Relationship Attribute



Chapter 8. Design and Implementation ‘ 190

Diagrams. Some of the new WSL components are defined in terms of existing
WSL components (please see Appendix A and Appendix B for their syntax and

semantics). In the table there are the following entries:

Number This is the number of the type number that is passed to the pretty-
printer as a more efficient alternative to passing the actual type of the object.
This both reduces the amount of information which needs to be passed, and
also speeds up the process of finding the form of the pretty-printed version.

The newly defined entries start with 400.
Name This is the name of the item.

Generic Type This is the “parent” type of the given type. For example, “Relate”

is a type of statement and “Depth” is a type of expression.

Leading Token This is either “yes” or “no” if and only if the type of the item
is the first part of the printed form. For example, an “Relate” statement

begins with the word “Relate”.

Minimum Size This is the least number of components that the type can have.
Example are an “Relate” statement which must have at least two (in fact only
two) components and a “Record” which must have at least five components,

whereas a list of records can have any number.

Component Types This holds the types of components of the given type (if
there are any). For example, the components of an “Insert” are an assigned
variable and an expression. If there is an unlimited nﬁmber of components
for a given item, any additional components must have the same type as the
last component. For example, a “Segment” must have a section of files, a

section of records, and it can have any number of statements in it.

8.3 Transformations

Program transformations defined in the previous chapter using WSL are imple-

mented in Meta-WSL (about 4000 lines of source code). A general process of
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Num | Name Generic Leading | Min | Component
Type Token Size | Types
401 | A _Def Thing Yes 4 Name Number Name Expression
402 | E_Def Thing No 2 Name A==
403 | F_Def Thing No 0 —
404 | R Def Thing No 0 —
405 | Segment Statement Yes 3 Files Records Statement ...
406 | Records A List No 0 Record ...
407 | Record R_Def Yes 5 Name Expression Name Expression
Records
408 | Rec Variable Yes 1 Variable ...
409 | Redefine R_Def Yes 2 Record Record
410 | File F_Def Yes 2 Name Records ...
411 | Files A_List No 0 File ...
412 | Paragraph Statement Yes 2 E==S Statement ...
413 | Ent Variable Yes 1 Variable ...
414 == E_Def Yes 2 Name A==
415 | E==S A_List No 0 E_Def ...
416 == A_Def Yes 4 Name Number Name Expression
417 | A==S A_List .No 0 A _Def ...
418 | Relationship Statement Yes 5 Name Expression Name Expression
Name
419 | And_Relationship Statement Yes 7 Name Expression Name Expression
Name Expression Name
420 | Or_Relationship Statement Yes 7 Name Expression Name Expression
Name expression Name .
421 | Adt Definition Yes 4 Name Assignments Records Definition
422 | Adt_Proc_Call Statement Yes 4 Name Name Expressions Variables
423 | Adt_Funct_Call Expression Yes 3 Name Name Expressions
424 | Create Statement Yes 1 Assd Var
425 | Insert Statement Yes 2 Expression Assd_Var
426 | Del Element Statement Yes 2 Expression Assd_Var
427 | Dis_Union Expression Yes 1 Expression
428 | Dis_Intersection Expression Yes 1 Expression
429 | Init_Q Statement Yes 1 Assd_Var
430 | Q-Append Statement Yes 2 Assd_Var Expression
431 | Q_Concat Expression Yes 2 Expression Expression
432 | Q_Rem_First Expression Yes 1 Assd_Var
433 | Relate Statement Yes 2 . | Expression Expression
434 | And_Relate Statement Yes 3 Expression Expression Expression
435 | Or_Relate Statement Yes 3 Expression Expression Expression
436 | Seq_Concat Expression Yes 2 Expression ...
437 | Seq_Remove Statement Yes 2 Expression Assd_Var
438 | Sub_Seq Expression Yes 3 Expression Number Number
439 | Sub_Seq? Condition Yes 2 Expression Expression
440 | Make_Seq Statement Yes 1 Assd_Var
441 | Seq.Append Statement Yes 2 Assd_Var Expression
442 | Init_Stack Statement Yes 1 Assd_Var
443 | Top Expression Yes 1 Expression
444 | Depth Expression Yes 1 Expression

Figure 8.3: WSL Syntax Table
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writing a program transformation consists of the following steps:

1. Study the definition of a transformation and design the implementation in

pseudo code.

2. ‘Write the transformation according to the design. This includes:

e checking the applicability of the transformation to the selected program
item — pattern matching the selected item with the defined pattern

and collectiﬁg information from the given item; and

e editing the given item to what is defined by the transformation defini-

tion.
3. Test the implemented transformation. This is done using path analysis.

In illustrating these steps, a previously used example is presented again. If

the following two statements appear adjacent in the program, where S is a stack:

PUSH (S z);
y = Pop (S).

they can be merged into one statement:

Yy =

This transformation is named as “Merge-Push-Pop”. It is designed that
this transformation can be applied by either selecting the “Push” statement or
the “Assignment” statement with a “Pop” function as the expression to assign.

Firstly the design is written in pseudo code which is like:
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Transformation: Merge-Push-Pop
(a) Applicability

if (current-statement = “Push”) A
(current-statement # last-statement)
then current-statement := next-statement fi.
if (current-statement # “Pop”)
then flag = “Fail”
else buffer! := stack-name-in-pop;
current-statement := previous-statement
if (current-statement = “Push”) A
(stack-name-in-push = bufferl)
then flag = “Pass”
else flag = “Fail”

fi

=

(b) Transforming

if (current-statement = “Push”)
then current-statement := next-statement fi.
buffer! := variable-name-in-pop;
current-statement := previous-statement;
delete nezt-statement,;
buffer2 := variable-name-in-push;
(insert a “Assignment” statement) A (buffer! := buffer2);

delete nezt-statement.

Secondly, the transformation itself is written in Meta-WSL:
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(Add_trans
’Statement
’Any
’Merge_Push_Pop
’Global
’Always
’ (Rewrite)

Transformation to merge a PUSH statement and a statement using
POP function.

Nil
>((Var ((Table Empty))
(Cond ((And ([_S_Type?_] Push) ([_>>7_1)) (@>>)))
(Assign (Table ([_Match_] Statement
(Assign ((™>?7 V)
(Pop (">7~ S))))
Table)))
(Cond ((Empty? Table) (@Fail))
((Else)
(Cond ((Not ([_<<?_1)) (QFail))
((Else)

(e<<)
(Assign (Table ([_Match_] Statement
(Push ("<?~ S)
. (*>? E))
Table)))
(Cond ((Empty? Table) (@Fail))
((Else) (@Pass)))))))))
’((Var ((Table Empty))
(Cond (([_S_Type?_] Push) (@>>)))
(Assign (Table ([_Match_] Statement
(Assign ((7>77 V)
(Pop (">7~ 5))))
_ Table)))
(@del_back)
(Assign (Table ([_Match_] Statement
(Push (7<?~ S) (">?7 E))
~ Table)))
(@Change_To ([_Fill_in_] Statement
(Assign (("<?~ V) ("<77 E)))
Table)))))
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Finally, this transformation is tested with the path analysis method.

This example is still a simple transformation, just for showing how a transfor-
mation is implemented. Most transformations written for the research described
in this thesis is far more complicated -than this transformation (up to several
hundred lines of Meta-WSL).

Most of the 60 transformations implemented are “rewrite” transformations
because these transformations deal with alterations to the structure of the selected
program items. . These transformations will therefore appear in the “Rewrite”
menu in the interface and the other transformations, such as “Swap-with-next-

record”, will appear in other menus, such as “(Re)Move” menu.

8.4 Program Structure Database

The Program Structure Database is implemented in COMMON LISP and it con-
sists of a total of around 3000 lines of source code. The features of the implemen-

tation are summarised in the following sections.

8.4.1 Use of Recursion Programming Techniques

In the Program Structure Database, a database query is usually implemented by
one database query function (LISP function) which may call subsidiary functions.
The Database Manager is implemented as a group of LISP functions. To collect
adequate information about a given program, a database query function usually
needs to examine all the components of the program. For example, to answer
the query “which variables are used in the program”, the database query function
“[Variables]” should check every place in the program where a variable can possibly
occur. This can be very complicated and requires some operations to be carried
out repeatedly. Recursive functions are therefore useful weapons to deal with such
operations. LISP provides a powerful recursion feature and this is fully used by

the database query functions.



Chapter 8. Design and Implementation 196

8.4.2 Dealing with All Kinds of WSL Construct

The result of some database queries entirely depend on the structure of the given
program, e.g., whether or not the program consists of a conditional statement, a
loop, etc., so that the corresponding database functions must be able to calculate
the answers according to different program structures. For instance, whether a
given program item is “regular” dépends on:

e when the item is a sequence of statements, whether every statement is “reg-

ular”;
e when the item is a “if...then...else” statement, whether both clauses of the

statement are “regular”;

e when the item is an “action”, whether every execution of the action leads
to an action call;

e when the item is an “action system”, whether every action in the system is
“regular”.

Generally, this type of database query functions was organised with a branch-

ing section as the following:

if prog-item = “sequence” then sequence-subfunction

else_if prog-item = “if-then-else” then if-then-else-subfunction

else_if prog-item = “do-od” then do-od-subfunction
else_if prog-item = “action” then action-subfunction
else_if prog-item = “exit” then ezit-subfunction

else other-subfunction fi.

8.4.3 Deriving Database Query Functions from Their
Specifications

The specifications of database query may directly provide clues for implementing

corresponding database query functions. Examples of the clues include:
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e an “if-then-else” can be implemented as a “cond” statement in LISP;

Size(ttem)
e an “ U " operation can be implemented as a “while” loop with a
i=1
condition of “1 < i < size(item) ”;
e a “function” together with a “map” operation (f * ) can usually be imple-

mented as applying a recursive function to a sequence of components (an

example can be seen in the next section);

o logical operations “A”, “V” and “not” can be implemented by corresponding

LISP functions;

e set operations “€”, “U”, “N” and “\” can be directly implemented by cor-

responding LISP functions; etc.

8.4.4 An Example of Implementing a Database Query
Function

The example chosen is a database query “[Statements]” whose definition is

funct [Statements| (item) =
Specific-type * {P € Posns(item)|[Gen-type]( Get-n(item, P)) = Statement}.

This definition means that the query function must return all the statement
names in the given program item. Firstly, since the function needs to check every
component (including leaf node because a statement can be a leaf node in the
syntax tree) and a “map” operation “#” appears in the definition, a recursive
function may be réquired. Secondly, the result is a set of statement names, a
union operation may be needed. Thirdly, the function needs to check the data
table to see whether the same query has been made before, and to return the
result directly if it was in the datatable or to calculate (and save) the result. So

a database query function is developed like this:
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(Defun [Statements] (Item)
(If (Leaf_Item? Item)
(And (Eq (Gen_Type Item) ’Statement)
(List (Specific_Type Item)))
(Let ((S (Get_From_Table Item ’Statements)))
(If s
(Cdr s)
(Add_To_Table!
Item
’Statements
(Let ((Args (Args Item))
(Result (And (Eq (Gen_Type Item) ’Statement)
(List (Specific_Type Item)))))
(Dolist (X Args Result)
(Setq Result (Union Result ([Statements] X)))))))))).

In this program, “Leaf_Item?” is a function that identifies whether the cur-
rent item is a leaf node; “Get_From_Table” is a function that retrieves inforrnation-
in the data table indexed by 'Statement; and “Add_To_Table!” is a function that
saves the result of thfs query into the data table.

8.5 General Simplifier (Symbolic Executor)

The prototype of the General Simplifier makes use of two public domain soft-
ware packages, Maxima and the Boyer-Moore Theorem Prover. The “Simplify”
command is mainly based on the Maxima, and the “Prove” command on the
Boyer-Moore Theorem Prover. In order to be used by the General Simplifier, the
input and output programs of these two packages have been changed.

The Boyer-Moore Theorem Prover is a pr;)gram developed by Boyer and
Moore based on a “computational logic” (the logic) described in their book A
Computational Logic [30] published in 1979. The logic is both oriented towards
discussion of computation and mechanised, so that proofs can be checked by com-
putation; and the logic is quantifier-free logic. Its axioms and rules of inference
are obtained from the propositional calculus with equality and function symbols
by adding (1) axioms characterising certain basic function symbols, (2) two “ex-

tension principles”, with which one can add new axioms to the logic to introduce
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Figure 8.4: Organisation of Boyer-Moore Theorem Prover

“new” inductively defined “data types” and recursive functions, and (3) mathe-
matical induction as a rule of inference.

The Boyer-Moore Theorem Prover is based on the generalised principle of
induction and the majority of its heuristics (proof techniqués) are oriented towards
induction proofs. Any proof using structural induction can be converted into a
proof with the given formal system. One advantage of using derived rules of
inference is that they permit the formal logic to be relatively primitive while
allowing the production of sophisticated proofs. for example, a well-known and
very useful rule of inference that the Boyer-Moore Theorem Prover uses is the
tautology theorem: a formula of propositional calculus has a proof if and only if it
is valid under a truth table. More complicated derived rules are those that justify
the use of equality decision procedures and certain arithmetic decision procedure.
The Boyer-Moore Theorem Prover uses a variety of such high-level derived rules

of inference to discover and describe its proofs. In particular it uses the following

six proof techniques:
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1. Simplification This involves the use of axioms (including definitions and

shell axioms) and previously proved lemmas to simplify the conjecture.

2. Destructor Elimination This involves the trading of “bad” terms for
“good” by choosing an appropriate representation for the objects being ma-
nipulated. For example, operations such as / and — might be traded for

operations such as * and +.

3. Cross-fertilisation When the conjecture being proved has an equality as
one of its hypotheses, the equality is sometimes used to substitute one of its
operands for the other in the remainder of the conjecture and then removed

from the conjecture.

4. Generalisation This involves the adoption of a more general goal obtained
by replacing terms in the given goal by new variables. The generalisation
is designed to help prepare a conjecture for induction. Conjectures must
frequently be generalised before they can be proved because without gen-
eralisation the induction hypothesis may not be sufficiently strong to prove

the theorem.

5. Elimination of Irrelevance This involves the discarding of apparently

unimportant hypothesis.

6. Induction Inductions are formulated from information collected when def-
initions are added to the system and from information available at the time

of induction.

As implemented, each of these proof techniques is a computer program that
takes a formula as input and yields a set of formulas as output; the input formula
is provable if each of the output formulas is. Each of these si)'c programs is called a
“process”. Not every process is applicable to every formula. For instance, it may
not be possible further to simplify a formula. When a process recognises that its
input is a theorem, it produces an empty set as the output set.

The Boyer-Moore Theorem Prover is organised around a “pool” of goal for-

mulae [31]. Initially the user places an input conjecture into the pool. Formulas
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are drawn out of the pool one at each time for consideration. Each formula is
passed in turn to the six processes in the order shown in Figure 8.4 until some
process is applicable. When an applicable procesé produces a new set of subgoals,
each is added to the pool. The consideration of goals in the pool continues until
either the pool is empty and no ne.w subgoals are produced — in which case the
system has “won” — or one of several termination conditions is met — in which
case the system has “lost”. The system may “run forever” until the host system
resources are exhausted.

~When the system wins — i.e., the pool is finally empty — the trace of the
theorem prover is a proof of the input conjecture, provided each of the six processes
is considered a derived rule of inference. When system loses, the user should infer
nothing about the validity of the original conjecture; the initial broblem may or
may not be a theorem.

In certain applications the theorem prover resembles a sophisticated proof
checker more than an automatic theorem prover. This is because the theorem
prover’s behaviour on a given problem is determined by a data base of rules.
The rules are derived by the system from the axioms, definitions, and theorems
summited by the user. Three of those six processes mentioned earlier, namely
simplification, destructor elimination and generalisation, can be heavily influenced
by these rules. Each time a new theorem is proved it is converted into rule form
and stored in the data base. When new theorems are submitted the currently
“enable” rules determine how certain parts of 