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Alexis Warnes 

Diagnostics in Time Series Analysis 

The portmanteau diagnostic test for goodness of model fit is studied. It is 
found that the true variances of the estimated residual autocorrelation function 
are potentially deflated considerably below their asymptotic level, and exhibit 
high correlations with each other. This suggests a new portmanteau test, ig
noring the first p + q residual autocorrelation terms and hence approximating 
the asymptotic chi-squared distribution more closely. Simulations show that 
this alternative portmanteau test produces greater accuracy in its estimated 
significance levels, especially in small samples. 

Theory and discussions follow, pertaining to both the Dynamic Linear Model 
and the Bayesian method of forecasting. The concept of long-term equivalence 
is defined. 

The difficulties with the discounting approach in the DLM are then illus
trated through an example, before deriving equations for the step-ahead forecast 
distribution which could, instead, be used to estimate the evolution variance ma
trix W j . Non-uniqueness of W in the constant time series DLM is the principal 
drawback with this idea; however, i t is proven that in any class of long-term 
equivalent models only p degrees of freedom can be fixed in W , leading to a 
potentially diagonal form for this matrix. 

The bias in the k*'^ step-ahead forecast error produced by any TSDLM vari
ance (mis)specification is calculated. This yields the variajices and covariances 
of the forecast error distribution; given sample estimates of these, it proves pos
sible to solve equations arising from these calculations both for V and p elements 
of W . Simulations, and a "head-to-head" comparison, for the frequently-applied 
steady model illustrate the accuracy of the predictive calculations, both in the 
convergence properties of the sample (co)variances, and the estimates V and 
W. The method is then applied to a 2-dimensional constant TSDLM. Further 
simulations illustrate the success of the approach in producing accurate on-line 
estimates for the true variance specifications within this widely-used model. 
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Introduction 

"The truth is rarely pure, and never simple" 
Oscar Wilde 

Nearly all non-mathematicians have a fundamental difficulty visualising the 

feasibility of research in a mathematical field - namely the preconception that 

everything must be either right or wrong in a completely black or white man

ner. Hence the only way it is seen to be possible to research with any form of 

originality is through advancing the great boundaries of 'truth'. This requires 

the brilliant application of compellingly innovative ideas, and is a gift which 

only a handful of intellectual geniuses have ever possessed. Luckily for most of 

us, there is another vast ocean of originality on which we can set sail, which 

was so succinctly expressed by Oscar Wilde: the impure waters between truth 

and opinion, fact and assumption. 

It is truly daunting to see the mass of literature written on an area such 

as Box-Jenkins time series analysis, and realise that, unless you are one of the 

extremely rare talents who can reshape both the foundational methodology 

and structural applications of an entire school of thought, you can do Httle 

besides merely applying what you have just read, hopefully solving the quest for 

innovation en route by undertaking the analysis of some 'original' data. But the 

very search for an original data set - moreover, one whose meaningful analysis is 
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feasible to attempt in a three year project - is almost as difficult as developing 

the original approach. Consequently, one soon construes that the way forward is 

through a search of the murkier waters of any statistical method or system, and 

learns to stop reading abruptly at any mention of 'assumption', 'approximately' 

or (even better) 'in our opinion', before attempting either to Hghten or darken 

the shade of grey that exists beneath each of these phrases. And, occasionally, 

one's explorations lead to the discovery of possible improvements, or, more 

gratifyingly (and far more excitingly), into an aJternative approach/solution 

altogether; this latter course led to the production of Chapter 4 in entirety for 

this thesis. 

Contents 

The first opportunity for exploration came when reading about the two aJter

native versions of the portmanteau test statistic: the original proposed by Box 

and Pierce in 1970, with an improvement suggested by Ljung and Box in 1978. 

These diagnostic procedures have a common assumption between them - that 

the residual autocorrelation function terms, for = 1,2,..., are all indepen

dent and Normally distributed, hence allowing us to compare the sum of the 

squares of m of these sample f^s against an appropriate distribution. 

However, by examining the actual means and variances of the residual au

tocorrelations (for various AR(p) processes) in section 1.4, as well as the corre

lations between them at different lags, two conclusions are drawn. Firstly, the 

true variances of the fk terms are deflated considerably below their assumed 



asymptotic values, not only for smaller lags k, which was postulated by Box 

and Pierce, but also for much higher lags, implying that care is required even 

up to k = 10, and not just A; = p, if the absolute size of the sample residual 

acf is to be used as a diagnostic tool. Secondly, it is apparent from deriva

tions in section 1.5 that the first p + q oi these r^ terms are the most removed 

from their assumed asymptotic distribution, and exhibit the highest correlations 

with one another. Given that, when deahng with small sample sizes (n ~ 50), 

the relevant distributions are invariably poor as approximations of the true 

distributions for both existing test statistics - the original Box-Pierce's S and 

Ljung-Box's 5" - it is shown in section 1.6 that by ignoring these first p + q au

tocorrelation function terms we produce a third alternative statistic, 5", which 

fits the appropriate distribution far more closely in these small sample sizes. 

The theoretical calculations of the chapter are then backed up through extensive 

simulations in section 1.7. 

Chapter 2 begins with a brief motivation for the major change in focus that 

occurred shortly after completing work on the portmanteau statistic. This mo

tivation is best summarised here through recollection of my first encounters 

with Box-Jenkins methodology. In 1989, whilst working on my undergraduate 

summer project, there came a moment of great excitement when I took a se

ries of monthly temperatures that had been recorded at my home for several 

years, and could firstly deseasonalise them, then calculate the estimated and 

partial autocorrelation functions of the deseasonalised remainder, decide which 

ARIMA(p, c?, q) process to fit, promptly do so, and hence predict the next year's 

weather over Loughborough (such are the misguided joys for a naive and overea-
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ger practitioner...). My father - and I have never forgotten how ceisually he 

deflated my enthusiasm - simply made two statements: firstly, that he could 

have made my predictions by hand (B.F.E. syndrome again), and secondly that 

he couldn't see what physical interpretation my ARIMA model had with respect 

to this deseasonalised data. A few years on and I can vaguely justify an AR(1) 

model fitting such data (warm months generally follow warm months, although 

this is a gross simplification and misrepresentation of a global warming issue!), 

but I still find i t difficult to argue rudimentarily with the first comment... 

There are many frustrations which underhe this story, all of which are high

lighted further in section 2.1. These frustrations were to remain buried for a 

couple of years after completion of my first project, from which point I will 

forever be indebted to the foresight of my supervisor (and the influences he 

came under), who towards the end of my first year as a postgraduate succeeded 

in prising me away from the comforting black-box methodology of Box-Jenkins 

analysis, and presented me with an untouched version of Bayesian Forecasting 

and Dynamic Models by Mike West and Jeff Harrison. Up until that moment, 

my experience of Bayesian methods had been limited to the simple applied 

probability examples of Bayes theorem. Thus, to be confronted with West ajid 

Harrison's ideas was akin to learning a new language; one which soon revealed 

itself to be much richer, allowing the speaker the freedom that I had been 

starting to feel deprived of under the Box-Jenkins tongue. 

The majority of chapter 2 is hence concerned with building the foundations 

and structure of the Bayesian approach to forecasting, through development 

of the Dynamic Linear Model (DLM) in section 2.2, and introduction of the 
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Kalman Filter (section 2.3). Exponential families and conjugate priors are dis

cussed before moving on to a detailed example of the non-linear DLM in section 

2.5. This advertising awareness example - together with much of chapter 2 -

is taken directly from West and Harrison's book (and related papers), and is 

useful not only as motivation and clarification, but also since it makes use of 

the discounting approach in forming a posterior value for the state vector from 

the given prior (which is the subject of section 2.6); moreover, it is made use of 

again in chapter 3. A specific class of DLM, the Time Series DLM, is defined in 

section 2.7, with the concepts of observability and canonical equivalence defined 

in sections 2.8 and 2.9. Finally, chapter 2 is closed with a definition of long-term 

equivalence (a concept defined by West and Harrison as general equivalence), 

referred to extensively later in the thesis. 

This change of approach (if not direction, since the goals of time series 

analysis must surely remain constant, whichever language you speak) in the 

course of this thesis provided a wealth of not only assumptions, but opinions 

too (indeed, it is difficult to perform a ful l Bayesian analysis without expressing 

a belief of one kind or another...). One of the more salient 'opinions' that must 

be formed in an analysis is on the appropriateness of the discounting method for 

loss of information from posterior to prior, and so the importance of this debate 

is firstly motivated in section 3.1, then the weaknesses of discounting highlighted 

in section 3.2. A more serious flaw, the paradoxical inability of the discounting 

approach to work in the presence of ful l (or very accurate) knowledge of one or 

more of the elements in the state vector, is then illustrated through a simulated 

extension to the earlier advertising awareness example. It is also shown how a 
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more careful choice of an additive form of loss of information - namely through 

defining the state evolution variance matrix Wt - results in a far more accurate 

adaptation of the model to changes in the underlying state. 

After the further discussions of section 3.4, the care evidently required in 

this choice of Wf, and the uncertainty associated with i t , motivates a possible 

method for estimating this variance matrix more accurately, and in an on-line 

manner, which is derived in section 3.5. However, this method utilises the step-

ahead forecast distribution, and although i t appears theoretically possible to 

calculate W j fully from the on-line estimates of this distribution, it is further 

shown in section 3.6 that in the constant TSDLM, W (non-scalar) is always 

overparamatrised with respect to the forecast function ft{k); so much so, in 

fact, that i t is not possible to define W uniquely beyond its diagonal elements. 

I t is then proven in theorem 3.3, via two lemmata, that the class-defining state 

evolution variance matrix, W , of two long-term equivalent models (i.e. which 

have identical forecast functions), is always reducible to a diagonal form (as long 

as the variance matrix form for W is still satisfied). Ultimately in this chapter, 

in section 3.7, the two aforementioned options for modelling the sequential loss 

of information from posterior to prior are compared and contrasted. 

Given that the practitioner is interested in fully or partially specifying the 

variance matrix W - which, together with the scalar observational variance V, is 

all that he need specify once a particular TSDLM is chosen as representing the 

data evolution adequately - it is not sufficient simply to quote the step-ahead , 

forecast distribution as containing all the information that he needs, and leave 

him to extract that information for himself. At the beginning of chapter 4, there 
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is a discussion on the dangers of sub-optimal filtering. This method has been 

employed by all previous authors who have indeed simply cited the forecast 

distribution with a shout of 'Eureka!', and then proceeded to advocate feeding 

back estimates of this distribution directly to the equations arising from the 

Kalman Filter, in an attempt to solve for both the observational variance V, and 

the state evolution variance matrix W . This sub-optimal filtering technique has 

a fundamental flaw - when either y or W (or, more likely, both) are misspecified, 

there are potentially large biases introduced into the estimates of the step-ahead 

variances and covariances within the forecast distribution. By feeding some of 

these estimates directly back into the Kalman Filter, and taking no account of 

the biases therein, large errors are transmitted forward immediately into the 

resultant estimates of the variances, V and W. These biases in the estimated 

forecast distribution - caused by the very misspecifications we are trying to 

correct - can hence easily lead to divergences in V and W . 

These problems with sub-optimal filtering are so intrinsically related to the 

methods themselves that they cannot be paid the lip-service they have received 

in the past. For on-line feedback estimation of the crucial variances V and 

W to be a feasible proposition - one which is reducible to a failsafe black-box 

diagnostic technique that requires the minimum of monitoring - i t is necessary to 

consider fully the biases in the estimates of the forecast distribution, in relation 

to their size and implications on the ensuing feedback estimates V and W . In 

section 4.2, an exact algebraic form for the bias in the k^'^ step-ahead forecast 

error (resulting from misspecification of V and W ) is calculated in theorem 4.3, 

via two lemmata; a result not even addressed by previous authors advocating 
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the use of the forecast distribution in this area. From theorem 4.3, the infiation 

in the variance of the A;*̂  step-ahead forecast error in the first-order polynomial 

(steady) model is calculated, in terms of the true and misspecified signal-to-

noise ratios, TQ = WQ/VQ and r = W/V respectively. Further, the inflation in 

the covariance between the first and second step-ahead forecasts is calculated, 

again in terms of the true and misspecified signal-to-noise ratios. Hence, given 

sample estimates of the variance of the first step-ahead forecast error, and the 

covariance between the first and second step-ahead forecast errors, it is possible 

to solve, very straightforwardly, for both the true observational variance VQ, and 

the true state evolution variance l^o-

Given precise estimates of the step-ahead forecast distribution, therefore, 

the feedback estimates of VQ and WQ would be exact also. Thus the only fur

ther considerations to be made relate to the convergence properties of these 

estimates, which are addressed next in section 4.3, through calculation of the 

variances of the both the aforementioned variance and covariance estimates in 

the steady model. If the specified signal-to-noise ratio r is overestimated (i.e. 

W is too large with respect to V), these variances remain finite and relatively 

small, so convergence of the relevant variance and covariance estimates is fast, 

resulting in rapid convergence of V and W. On the other hand, underestima

tion of r leads to slower convergence of the observational and state evolution 

variances. These results are then supported through extensive simulations, by 

forecasting a simulated steady model with various misspecified values of r which 

illustrate the considerable effectiveness of the entire approach. 

These methods are tested again in a 'head-to-head' comparison with the 
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multi-process, sub-optimal filtering techniques of Cantarelis and Johnston. The 

comparison is made using Cantarelis and Johnston's own choice of illustration 

for their methodology, where they fit eight steady models, all with differing r 

specifications, to a chemical process series taken from Box and Jenkins (who 

themselves fitted an ARIMA(0,1,1) process to this series). The results show 

the rapid convergence of the exact feedback approach compared to Cantarelis 

and Johnston's more laborious and time-consuming method, although we are 

of course no longer able to compare estimates of V and W directly back to the 

'correct' specifications. 

Section 4.4 then progresses onto studying the application of the approach 

to the 2-dimensional TSDLM, a model class which is widely-used but for which 

few authors have previously attempted on-line variance estimation of any kind. 

Similar, but more involved, calculations are made, once again utilising theorem 

4.3, with respect to the biases in the forecast distribution for the variances of the 

first and second step-ahead forecast errors, and the covariances between these 

two forecast errors (three identities are now needed, to solve for V together 

with both diagonal elements Wi and W2 of the 2-dimensional W ) . This leads 

to three simultaneous quadratic equations in three unknowns, each of which is, 

in turn, a function of the three variables V, Wi and W 2 , so that again, if the 

estimates of the required forecast distribution terms were precise, it would be 

possible to solve for the true variances VQ and W Q exactly. 

The convergence properties of the relevant forecast distribution identities 

are too complex to attempt to derive for the 2-dimensional TSDLM, how

ever, and so simulation results are presented directly, in which misspecified 
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2-diniensional TSDLMs are fitted to a simulated series. The results indicate 

both that the preceding calculations are correct, and that further there are 

some complications due to the necessary numerical solution of the three simul

taneous quadratic equations; overall they illustrate the practical applicability of 

the entire methodology even to this more complicated model, leaving the con-

. eluding impression that the problem of variance estimation in the widely-used 

model class of constant TSDLMs has, for the first time, been solved without 

reference to sub-optimal filtering and its associated difficulties. 

Related debate 

In section 2.2, I mention that the Dynamic Linear Model has not been adopted 

as widely as expected in time series analysis after Harrison and Stevens' paper 

on Bayesian Forecasting, an issue first raised in Ameen and Harrison's paper on 

discounting in 1985, but still as poignant today. There are undoubtedly many 

practical reasons for this, some of which have been motivation for most of this 

thesis, but additionally many deep-rooted philosophical issues He behind this 

resistance to change. 

There is no doubting the brilliance of Harrison and Stevens' paper, especially 

its introduction on the ideals and aims of forecasting. I would do that particular 

passage an injustice to summarise it - I have listed the problems of the Box-

Jenkins approach in the light of these forecasting aims already in chapter 2 

- but would certainly wish to second G.J.A. Stern's view (in the discussions 

following the paper) that this section "ought to be set up as a permanent block 
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of type and incorporated in all subsequent papers and books on forecasting... ". 

The clarity of this introduction is in evidence throughout the rest of the paper, 

which goes on to outhne the DLM system, and further illustrate not only how 

all Box-Jenkins processes are contained within the DLM framework, but also 

how all the desirable properties of forecasting listed in that introduction are 

self-evident from following this Bayesian approach. So why, then, the slowness 

to catch on? 

The key to this also lies in the discussions that follow the paper. In these 

comments, O.D. Anderson draws a neat summary of how the Harrison-Stevens' 

(HS) approach must be viewed in order to outstrip Box-Jenkins (BJ) of the 

frontrunner's position in time series analysis: ". . . in the end, it is Jack [you or 

me] who has to be won over, by an approach which works for him...". And 

the problem here is that HS is an undoubtedly difficult system to use, whereas 

BJ is a black-box method that requires little thought - at least within the con

text of one analysis as distinct from another - and can be readily applied upon 

methodically following a set of simple instructions. I use the same distinction 

here between a forecasting method and system as Harrison and Stevens do; the 

former implies exactly such a black-box 'input-output' routine, the latter im

plies interaction between practitioners, forecasts, and resultant decisions. And 

these interactions require careful consideration of all influencing factors on our 

data - not only in which model we choose to represent our data response with 

(how does the series evolve, and how do we parametrise it?), but in the choice 

of initial priors (what is my initial state, ajid how certain am I of this?), choice 

of observational and state evolution variances (to which chapters 3 and 4 are 
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devoted!), and also how and when to intervene in the light of external infor

mation received ( I know that next week is Christmas week, so what is likely 

to happen to the mean level and daily variation of my bread-sales data? (see 

section 2.1)). 

This is, of course, no criticism of the HS system; i t is just the freedom we 

seek, in fact. But it is not only truly daunting for an inexperienced practitioner 

to be left so freely with the reins, it is also expensive (both in terms of training 

time and, potentially, in terms of mistakes made whilst learning) to retrain a 

team to use a new system. "Certainly there will be effectively a step back, before 

two steps forward can again be taken", as Anderson puts i t . Indeed, Harrison 

and Stevens state that the development of their system was only possible due 

to the generously ambitious support of ICI. 

ICI management may not have been actively converted from BJ to HS, 

since the two approaches were developed almost in parallel, but the convertion 

of other Jacks who utilise BJ in the practitioners' world will only tend to follow 

as their financial decisions dictate - if BJ 'fails' for them in a particular crisis, 

the search for an improvement may lead to HS. This motivation is indeed a 

purely financial one. But we must remember that there is another motivation -

that from the academic world. 

When the inexperienced Jack (someone who has not yet been 'won over' 

by any particular approach) is searching for new pastures to solve an original 

forecasting problem, his conditioned reflex is almost always to be moved to seek 

what everyone else would use under the same conditions. This search in turn 

develops via word of mouth, if he is lucky enough to be in contact with a Mr. 
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Jones-next-door who has had a similar trouble, or, more often, via a literature 

review of theoretical and applied statistical publications. And this is where the 

leading lights of this world fail in their communication with Jack at the first 

hurdle. Harrison and Stevens' paper originally contained several examples illus

trating the usage of the DLM, but these were cut from the final paper to reduce 

it to 'conventional length', with the result that a large majority of subsequent 

criticisms in the discussion stemmed from a lack of comprehension of how to 

apply the HS system. Yet it is vital that the application of such a system is 

illustrated, for as already mentioned, each analysis will be dealt with uniquely 

within the context of the problem. Accordingly, we find such remarkable com

ments in the discussion as, from Chatfield: 

"One problem the paper leaves unanswered is the identification problem. The 
authors show that their DLM contains nearly every other forecasting procedure 
but we are not told how to select the appropriate model for a particular case. 
Perhaps their model is too general." 

Here we have the statistical academic world looking for a black-box method 

again, in a system which had been designed especially to leave many of these 

methods behind. I f Jack reads such a misrepresentation (which he surely will , 

being a conscientious sort), he is bound to close the book forever and look 

elsewhere! As it is, Jack will be looking for examples - illustrations of genuine 

hands-on applications - to guide him in his convertion, and lo-and-behold the 

Society axes these as being unimportant... 

This is an exceptionally common issue, and one which restrains the widespread 
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adoption of Bayesian statistics in far more general terms than simply the DLM. 

It is succinctly expressed by WoofF, in his discussion on the opening address by 

Lindley in Bayesian Statistics 4: 

"Firstly, many of us are academics, subject to the market forces operating 
on ivory towers: we must produce streams of papers to survive - quantity is 
essential, quality a welcome bonus. Where we suffer in comparison to frequentist 
statisticians is that we produce hard but meaningful analyses rather than easy, 
but arguably worthless analyses. In short, the easiest way for a Bayesian to 
publish is to publish theory, rather than to go to the trouble of performing and 
reporting Bayesian applications. In this way we dig our own graves: we simply 
cannot convince users of statistical methodologies of the efficacy of the Bayesian 
way without adding meat to our theoretical bones in the way of large numbers 
of successful applications. 

The tilting of the balance towards theory rather than application is com
pounded by a belief that to do the former is somehow smarter. We must avoid 
the folly of the theoretician sneering at the practitioner: we should instead con
demn the minimal stature of the theoretician divorced from reality." 

(Incidentally, this makes Lindley's own discussion of the Harrison and Stevens' 

paper - his criticism of ICI management, for letting two "such able persons 

leave their staflF", and then making the comment that "perhaps academia is the 

only place for creativity" - even more surprising, since it also somehow fails to 

recognise the significance of the two leading pieces to be written on forecasting 

up to that time (by Box and Jenkins, and Harrison and Stevens) having had 

their roots entirely within industry...) 

At the same time, it is equally important that the practitioners do not sneer 

at the theoreticians. This is often motivated by a lack of technical understand

ing, and is the source of that most irritating of comments, said to me up to 

now by taxi cab driver and fellow graduate student alike (and which WoofF 
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comes perilously close to saying too): "wait t i l l you enter the real world" .̂ 

The essence of successful (and I use the word advisedly) research must be that 

theory and practice go hand-in-hand, so that the reader is led from full state

ment of his starting problem (so that he knows he is holding the correct hand), 

through technical justification and resolution of the issues concerned, and then 

into ful l illustration of the solution, and not left stranded at any of these three 

equally important gates. Harrison and Stevens' paper is greatly devalued by 

stranding the reader at the third, illustrative gate, and likewise the sister paper 

of examples will be a hollow piece, having lost the theoretical justification that 

is at its heart. 

And so we return to the motivation behind the contents of this thesis given 

earlier. The best way to convince Jack to hop over the fence into your back 

garden is actually to cross over to him first, and then lead him all the way 

back yourself, before showing him exactly what he has achieved on his journey. 

Throughout what follows, I have always endeavoured to motivate the reader 

through problematic examples, and hence give a ful l statement of the need for 

improvement; this is, in turn, followed by (generally) complete calculations and 

solutions of these problems. However, I have often wished for more original data 

to be available through the course of this research, which would have allowed 

more steps to be taken at the vital third stage without relying so heavily on 

simulations for illustration of methodology. Maybe this is merely a reflection 

on the isolation of the Ph.D. student from the 'real world' after a l l . . . 

^Most irritating, that is, after "lies, damn lies and statistics". 
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Chapter 1 

The Portmanteau Statistic 

1.1 Historical overview of Box-Jenkins time 

series analysis 

Since many of the fundamental aims and principles of time series analysis will 

be covered later, at the beginning of chapter 2, all that remains of relevance to 

be drawn here is a brief picture of the historical development of the first classic 

account in the field - G.E.P. Box and G.M. Jenkins' Time Series Analysis, 

Forecasting and Control [3]. Modelling dependence in time series had at last 

become a feasible possibility around 1960, with the advent of computing power 

capable of dealing with both large data sets and the enormity of calculating 

(for instance) an autocorrelation function (acf) or a partial acf. Many specific 

approaches were developed, such as Holt-Winters' [20] & [38], and Brown's [6], 

exponentially weighted moving averages, but Box-Jenkins developed an entire 

method of analysis, fully defining not only model representation from a well-
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defined family of processes, but identification of the 'best' such process to fit 

the data available thus far, diagnostic checking of the adequacy of this model 

fit, and then forecasting initiation. 

This entire black-box method was truly a classic standardised input-output 

routine for the practitioners' world, and as such has been both widely used and 

adapted since its appearance in 1970, to an extent where there are few improve

ments to be made other than in its major conceptual foundations. However, 

these alter the outlook of the statistician so radically that a whole new approach 

- system, even - is required; one such alternative comes from a Bayesian view

point and is introduced in chapter 2. The only area of the black-box that is 

not firmly set in concrete foundations is the second stage of the analysis, the 

diagnostic procedures during model fitting. 

1.2 The Box-Jenkins family of models 

Before we direct attention to this area, we must establish some notation and 

terminology. It is presumed that the reader will be more than familiar with Box-

Jenkins time series analysis in general; very briefly, the basic class of models 

within the method is the well-known ARMA(p, q) stochastic process of 

(1 - <f>iB - (t>2B^ " . . . - <f>r,B^)Xt = (1 + e^B ^ 2 ^ ' + • • • + e,B')et , 

where {Xt} is the time series sequence of (generally discrete) observations, {ct} 

is a sequence of independent and identically distributed (i.i.d.) J\f{0,a'}) white 

noise, the polynomial ^(-B) is the autoregressive operator of order p, 0{B) is the 
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moving average operator of order q, and B is the backward shift operator (such 

that BXt = Xt-i). There are familiar conditions on these AR(p) and MA{q) 

processes to ensure stationarity, and we can endeavour to induce stationarity on 

the series by differencing i t d times, producing the more general ARIMA(p, d, q) 

( I for Integrated) process. 

Once the appropriate process has been identified, through analysis of the 

acf and partial acf of the data series {-X"t}, we can fit the model to the original 

series and go on to calculate the estimated residuals {e*} of the process. It is the 

distribution of these that we largely study in any subsequent diagnostic check of 

"goodness of fit" of the model; one such diagnostic statistic is the portmanteau 

test, so-called as i t has a standard distribution easily appHcable to any fitted 

model. 

1.3 Background to the portmanteau test 

An important tool for model fitting in any form of time series analysis is the 

residual acf, given by 

for a time series of length n. 

Various diagnostic techniques for the checking of a fitted model involve ex

amining the distribution of the residual acf. Since it is readily shown that 

Var(r*;) = (n — k)/n{n -|- 2) ~ 1/n for ^ small relative to n, and as these rjt's 

are assumed to be independent and asymptotically Normal, we are naturally 
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led into considering one of these potential diagnostics. 

S{r) =n^rl^xl 
k=i 

However, this statistic is of little practical interest, since we only have available 

the estimated residual acf ffc arising from the fitted model, given as 

^ _ Yit=k+i ^th-k 

and it was shown by Durbin [11] in 1970 that, unfortunately, the distribution 

is not applicable to ^ ( f ) . 

Box and Pierce [4] continue the discussion, though, and look at the actual 

variances of the estimated residual acf in relation to the AR(p) process. By a 

linear expansion of f about r, their result is to show that 

v = {I-Q)v (1.1) 

for I equal to the m* m identity matrix, and Q given hy Q = X{X-^X) ^X'^, 

where 

0 \ 

X 

/ 1 0 

^1 1 0 

^2 1 

* 

\ V'm-1 V'm-2^ 

0 

1 

V'l 

0 m - p J 
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(The V'jt's are found by expressing the fitted process as an infinite MA process, 

namely Xt = E!fclo^fc^<-fc5 V'o = ! ) • By taking m large relative to n, so 

that xj^j ~ 0 for j > m, this result leads to the practically applicable and very 

well-known 'portmanteau test' of looking at 

Sir) = nJ2rl^xi-p-g 
k=i 

(for a fitted ARMA(p,q) model). 

This was widely accepted and used until Pierce [33] in 1977 commented 

that the portmanteau test "needs more work", and this seemed to spark off a 

spate of research into its performance. Davies et al. [9] obtained expressions 

for the exact mean and variance of S, by dropping the usual assumption that 

the ffc's are Normally distributed. These calculated means and variances were 

compared with simulation results for fitting an AR(1) model for various sample 

sizes, all of which indicate that the statistic S seriously underestimates the true 

significance levels of lack of fit unless m is small relative to n (typically n > 500 

for m = 20). 

In a parallel report, Ljung and Box [26] also survey the accuracy of S, 

concluding that it gave suspiciously low values for its true distribution of Xm-p-q 

(for a fitted ARMA(p,q) model), and suggesting the use of 

m -2 

S'{r) = n(n + 2) i : ~ X ^ - P - , 

as a logically more accurate alternative test statistic. However, Davies et al. also 
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obtain an exact expression for the variance of S' when fitting an AR(1) model 

to white noise, and this indicates that despite the mean of S' being much closer 

to its asymptotic value of m — 1, its variance for smaller samples could now be 

seriously infiated over the xL-p value of 2(m - 1). Their attempt at numeri

cally demonstrating the weaknesses of S involved the interesting approximation 

of this statistic's distribution by a central axl density. Although exhibiting 

promising accuracy for an AR(1) model with smaller ^ values, there were still 

disturbing inaccuracies for ^ = 0.9, caused by larger-than-expected tails in the 

actual density of S. In addition, this axl approximation immediately renders 

the 'portmanteau' part of the test extremely inappropriate, as the distribution 

of the statistic would now be different for each model fitted! Indeed, the conclu

sion in that paper was that "rather less faith should be put in the portmanteau 

test....". 

It was about now that the statistical world appeared to accept that the 

portmanteau test could never be anything more than just a poor guide for 

goodness-of-fit in diagnostic checking, and decided to avoid its problems by 

looking for alternative tests, notably extensions into multivariate AR models. 

Despite many attempts, alternative statistics were either shown to be equiva

lent to the portmanteau test under certain circumstances (Godfrey, [14], 1979; 

Hosking, [21], 1980 and the Lagrange multiplier test; Poskitt and Tremayne, 

34], 1981 and the 'score test statistic'), or else made gains in areas not related 

to accuracy of performance (Godolphin, [15], 1980)). Throughout all of this, 

i t is poignant to read that most applied statisticians (notably the hydrologists 

and economists) were quite content to continue quoting the portmanteau test 
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as the last word in goodness-of-fit testing. Indeed, some fifteen years on from 

Davies et al.'s work, there are still many areas in which the application of the 

portmanteau test is common. Not least is its use in the statistical package S 

35], which still quotes significance values based upon the use not even of the 

Ljung-Box statistic S', but of Box-Pierce's 5! 

The sparseness of research into why the portmanteau test can give such 

inaccurate results is evident from a comment by Milhoj [32] in 1981, who derived 

a frequency domain analogue of the portmanteau statistic. In this paper, Milhoj 

wrote that 

"m practical use it is often noted that the Box-Pierce portmanteau test, or the 
modified test, is weak, but no theoretical work has been done to explain why". 

Through further calculations of iexact general expressions for the mean and 

variance of 5', we find precisely why this latter quantity is indeed substantially 

inflated when the sample size n is small. There is a real need to improve its 

performance in these cases, since these are the very conditions under which it 

is most commonly practically appHed. 

1.4 Theory pertaining to the distribution of 

S' 

From equation 1.1 we have that 

±rl = r^r.= [I - Qf [I - Q)r 
k-i 

= r^{I — Q)r (since Q is idempotent) . 
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Then from the definition of S we can readily continue to derive exact expressions 

for E[5] and Var[5], which no longer involve the assumption of Normality of 

the ffe's. However, the definition of S' includes the (n — k)~^ scale factor, and 

this rather complicates the picture. Defining an m x m diagonal matrix 

D = 
/ ( n - l ) - i 0 \ 

V 0 (n - m)"^ ^ 

then gives 

S' 
(n(n -f 2)) E 

fc=i 
n — k 

= V ^ { I - Q Y D { I - Q ) V . 

So defining A = D - DQ -QD-{- QDQ gives 

m—1 m 

= r^Ar = E A,,rl + 2 ^ E A.kV.r, > (1-2) 

(for Ajk equal to the ( j , ky^ element of A). 

Hence E[S'] = n{n-\-2) ^kk^rf] ( since E[r j r i ] = 0 for j ^ k) 
k=i 

m 
= Y^Akk{n-k) (fromVar(rfc) = ( n - ^ ) / ( n ( n + 2 ) ) ) , 

k-i 

and so the expected value of the square of equation 1.2 minus the square of 

E[5'] gives 

m m—1 m 

Ya.T{S') = n\n + 2rj:AlYarirl) + 2n\n + 2Yi: ^ A , ,A„Cov( r^ r / ) 
k=l j=l k=j+l 
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m—1 m 

j=i k=j+i 
(1.3) 

The first term alone in this expression would result from the usual asump-

tions of independence and asymptotic Normality of the r^'s. So we are now in 

a position to examine how the actual variance of S' is inflated above its asymp

totic value. For if we consider the AR(1) model, (1 — (j>B)Xt = e<, we easily 

find the ^jt weights (in the definition of X above) to be given as (j)'', enabling 

us to calculate Q, leading to 

{i-Q) = 

( ct>' -<l>+<l>^ -<j>^ + <f>' •••\ 

V 

We then readily proceed to calculating A as defined above. If we repeat 

these calculations for an AR(2) process, (1 — (l>iB — (f>2B'^)Xt = £«, the immedi

ate problem comes in finding an expression for the V'fc weights in the matrix X 

- these are found from the following theorem: 

Theorem 1.1: When the AR(2) model, Xt = <j>iXt-i + <^2^t-2 + e*, is ex

panded as the infinite MA model, Xt = Ylo^ '^k^t-ki {'^o = 1), we have that: 

+ . . . + < 
<i>: 

2! 

for k even 

for k odd 

{k-j)...{k~2j + l) .2jn 
-r, <Pi 92 

, k = 0,l,. 

Proof: Evidently, tpo = 1 = <t)° and IIJI = (f)\, obtained from the first substi-
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tution into the AR(2) model above. Now assume that ij^k has the form given 

for A; = 0 , 1 , . . . , Then Xt = ES° i'k^t-k in the AR(2) model form gives: 

xl^ket-k = (l>iY i^k^t-k-i + 9̂ 2 E '^ktt-k-2 + 

oo oo oo 

^ tpk^t-k = ^1 E V'fcet-fc-l + <?̂2 E 
1 0 0 

Considering coefficients of ei_i_i gives: 

V't>i = <?i'iV'i + 9^2V'i-i • 

Hence from our inductive assumption above, we can consider the RHS of this 

last expression: 

Mi = < ^ i + H ( ^ • - l ) C V 2 
, (^^ - 2){z - 3)^,_3^2 , - m - 4)(^ - 5) 

21 3! 

+ ... + 
l¥'2 , ^ even 

i ^^^?<? i f^ , todd 

and 

-<Pl 92 

+ ... + 

hVi-i = <Pi 'P2 + ( « - 2 j ^ i ?!)2H 

Vr'̂ +v̂ 2 + • • •+<( ( ^ - j ) ( ^ - ; - l ) •. . ( ^ - 2 i + 2) 
a - 1 ) ! 

• ± 1 

, ( « - l ) even 

, ( i - l ) o d d 

32 



Thus 

Ai+i J. v ^ i - U . ^ I -̂ _ ô  ^ ^ ^\ <i«-3^2 RHS = < î+i + e<^rV2 + (̂  - 2) + 

+ f ( 1 ^ 3 ^ - 4 ) ^ ( . - 3 ) ( . - 4 ) ( i - 5 ) N ^,,3^3 
2! 3! 

+ ... + 

+ ... + 

(z - j ) . . . jz - 2j + 1) , { i - j ) . . . { i - 2 j + 2)\ . 

Ml + hMl 

+ 

I even 

( i - 1 ) ! 

RHS = <^l+^+^•?i^V2 + (^•-2) 2! 3 3, 

( z - i ) . . . ( e - 2 j + 2 ) ({i-2j + l) j \ 
+ ••• + — •• + - <Pl 92 

\ J J J 

+ ... + 

ij - 1)! V 

, (̂  + i ) o d d 
2 

2 , (2 + 1) even 

RHS = <?ii+i + i<j>{-'h + 3! 

( ^ - i + l ) ( ^ - i ) • • • ( ^ ^ - 2 i + 2 ) • 
+ . . . + n (Pl 02 + • • • + 

2 ) (̂  + 1) even 

ii±2l0i4 , (i + l ) o d d 

which is of the form given for •0 ,̂ A; = i + 1, in the theorem. This conapletes 

the proof by Induction. 

It is both interesting and of use in subsequent calculations to see these xf^k 

coeflBcients explicitly; here are the first few: 
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00 1 
01 
02 ^? + <̂2 
03 -\-'i<f>l(t>2 

+m<f>2 04 
-\-'i<f>l(t>2 
+m<f>2 + <f>l 

05 
+5(t>t<l>2 

+ 3(̂ 1 <Ai 
06 +5(t>t<l>2 + + <i>l 
07 <f>l +Q<f>l<f>2 +m\<t>i 
08 4>l + 7<f>t<f>2 

Theorem 1.1 can now be used directly to calculate A longhand, but i t is worth 

noting from the definition of X that 

{x^x)-' = 1 

(E0D'-(E0fc0.-ir 
E0I - E 0fc0fc-l 

\ 

E0I - E 0fc0i-l 

Then from expressing the AR(2) model as the infinite MA process, we find 

E[Xn = t > since E[e._,e..,] = { °, \ f ] 
0 K ^ •' 

Hence Var(XO = (TIT.Q i>l. since ^fJ^^t] = 0. But directly from the AR(2) 

model, we get 

Var(XO = 

oo 

0 

( 1 - 4 7 - ^ ^ ( 4 ; + ^^)) 

^.^(1 - 4>l) 

(1 - <f>l) 
(1 - 4>if - mi+^2))^ • 

Similarly, we have 
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(where 71 is the first lag autocovariance), and also (for p\ equal to the first lag 

autocorrelation) 

Hence 

giving us 

71 = P\lo = 
^?(1 - 4>l) 

(7 ,Vi( l + h ) 

{I - <f>i? - {Ml+h)y 

J2 i^ki^k-i = 
Ml + h) 

{ i - ^ l f - { M i + h)y 

1 
(1 - <i>iy - Ml + ^2)' 

Thus 

^Mi + 'f>2) i-<f>l , 

eventually giving us 

I-Q = 

ai/;i + b 1 + a ( l + + 26^'! 

+ bxpi+j-3 l+a(V'?-i+V'?-2) + 2^.-i^/'i-2 • 

(1.4) 

(where a = i(l>2~l) ^^'^ ^ — Ml + ^2))- Calculation of A can now be completed; 

in addition, if we consider again the assumption of asymptotic Normality and 
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independence of f , what we have shown is that under these conditions 

Var(ffc) = ( l + {4>l - l ) ( 0 L i + 0 L 2 ) + 2<?̂ i(l + <^2)0fc-i0fc-2) Var(r,) , (1.5) 

which in particular gives 

and Var(f2) = (((^i(l + h)? + 

(1.6) 

These latter two results are also derived in Box and Pierce; they reconfirm the 

care that must be taken when looking at the size of fk for lower lags A; as a 

diagnostic check, due to the potentially large deflation of their actual variances 

from those of the r^'s. 

However, the general result 1.5, combined with the earlier evaluation of the 

0j 's, enable us to also look at Var(f;t) for higher lags k. For = 1.6, 2̂ = —0.9, 

these results give yar(f3) = 0.840Var(r3), Var(r4) = 0.841Var(r4), and even 

for k as large as 9, Var(f9) = 0.911Var(r9). Hence the return to asymptotic 

behaviour of the f^'s as k increases is not necessarily as rapid as indicated by 

Box and Pierce, and we must remain wary of using simply the size of residual 

acf's as a diagnostic tool even for much higher lags than simply k = p. 

1.5 Evaluation of Var(5') 

Our final evaluations of A lead to the first 6 rows and 5 columns of the matrix 

(remembering its symmetry) being as follows for various AR processes. For 
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n = 50: 

AR(1), <̂  = 0.1, 

A = 

A = 

A = 

/ 2.08x10 -4 -2.06x10- 3 -2.11x10-'' -2.15x10-5 -2.20x10--ex 

-2.06x10 -3 2.06x10" 2 -2.15x10-5 -2.19x10-^ -2.24x10" -7 

-2.11x10 -4 -2.15x10- 5 2.13x10-2 -2.24x10-^ -2.29x10--8 

-2.15x10 -5 -2.19x10- 6 -2.24x10-^ 2.17x10-2 -2.33x10" -9 

-2.20x10 -6 -2.24x10- 7 -2.29x10-8 -2.33x10-9 2.22x10" -2 

\ --2.25x10 -7 -2.29x10- 8 -2.34x10-^ -2.38x10-^° -2.43x10-^^ / 

= 0.9, 

/ 1.68x10" -2 -3.28x10" -3 -3.02x10-^ -2.78x10-3 -2.56x10-
-3.28x10--3 1.78x10" -2 -2.77x10-3 -2.55x10-3 -2.35x10" -3 

-3.02x10--3 -2.77x10" -3 1.87x10-2 -2.35x10-3 -2.16x10" -3 

-2.78x10--3 -2.55x10" -3 -2.35x10-3 1.96x10-2 -1.99x10" -3 

-2.56x10--3 -2.35x10" -3 -2.16x10-3 -1.99x10-3 2.04x10" -2 

v --2.36x10--3 -2.17x10" -3 -1.99x10-3 -1.83x10-3 -1.68x10" 1 
I = 1-6, (f>2 = -0.9 , 

/ 1.66x10--2 -2.92x10" -3 -1.18x10-3 8.02x10-" 2.43x10" 
-2.92x10--3 1.75x10" -2 -2.77x10-3 -1.37x10-3 3.70x10" -4 

-1.18x10--3 -2.77x10" -3 1.79x10-2 -2.98x10-3 -1.67x10" -3 

8.02x10--4 -1.37x10--3 -2.98x10-3 1.81x10-2 -3.07x10" -3 

2.43x10" -3 3.70x10--4 -1.67x10-3 -3.07x10-3 1.88x10" -2 

v 3.22x10--3 1.89x10--3 8.10x10-5 -1.64x10-3 -2.75x10" 

For n = 500: 

AR(1), = 0.1, 

A = 

A = 

2.01x10-5 -1.99x10-" -1.99x10" -5 -2.00x10-^ -2.00x10-^ 
-1.99x10-4 1.99x10-3 -2.00x10" -6 -2.00x10-'^ -2.00x10-8 
-1.99x10-5 -2.00x10-^ 2.01x10" -3 -2.00x10-8 -2.01x10-9 
-2.00x10-^ -2.00x10-^ -2.00x10--8 2.02x10-3 -2.01x10-^° 
-2.00x10-^ -2.00x10-8 -2.01x10" -9 -2.01x10-^° 2.02x10-3 
-2.00x10-8 -2.01x10-9 -2.01x10- 10 -2.02x10-^^ -2.02x10-^2 ) 

, <f)i = 1.6, <f)2 = -0.9, 

/ 1.58x10-3 -3.16x10-" -1.25x10" -4 8.45x10-5 2.49x10-" \ 
-3.16x10-'' 1.65x10-3 -2.93x10 -4 -1.43x10-" 3.46x10-5 
-1.25x10-" -2.93x10"" 1.66x10 -3 -3.06x10"" -1.69x10-" 

8.45x10-5 -1.43x10-" -3.06x10 -4 1.65x10-3 -3.02x10-" 
2.49x10"" 3.46x10-5 -1.69x10 -4 -3.02x10-" 1.69x10-3 

I , 3.22x10-" 1.85x10-" 5.35x10 -6 -1.58x10-" -2.59x10-" ) 
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AR(2), ^r = <t>2 = 0.1, 

2.01x10--5 2.21x10" -5 -1.97x10" -4 -1.75x10" -5 -2.15x10" -5 \ 
2.21x10" -5 4.45x10" -5 -1.95x10" -4 -2.17x10" -4 -4.12x10" -5 

-1.97x10" -4 -1.95x10" -4 1.97x10" -3 -2.35x10" -5 -6.29x10" -6 

-1.75x10" -5 -2.17x10" -4 -2.35x10" -5 1.99x10" -3 -4.77x10" -6 

-2.15x10" -5 -4.12x10" -5 -6.29x10" -6 -4.77x10" -6 2.02x10" -3 

-3.92x10" -6 -2.59x10" -5 -2.99x10" -6 -2.90x10" -6 -5.90x10" -7 / 

To find Cov(r^, r | ) , we require the results 

E[rlr]] = 
{n-j){n-k) + 12{n-k)-8j 

n(n + 2)(n + 4)(n + 6) 
(k > j) 

and E[rl] = Va.T{rl) = {n - k)/n{n + 2) 

Note that the covariance between r | and r | is independent both of the type of 

the model involved, and the parameters of that process. Indeed, we need only 

consider differing lengths of the series under analysis; for n = 50, the first 6 

rows and 10 columns of this covariance matrix are given as (to 3 s.f.) 

Cov(rLr, ' )=:10-

/67.2 2.35 2.29 2.19 2.04 1.84 1.58 2.18 1.81 1.39\ 
2.35 64.5 2.24 2.14 1.99 1.78 1.53 2.13 1.76 2.23 

- 5 w 2.29 2.24 61.9 2.09 1.94 1.73 1.48 2.08 1.71 2.18 
X 2.19 2.14 2.09 59.4 1.89 1.68 1.43 2.03 1.65 2.12 

2.04 1.99 1.94 1.89 56.8 1.63 2.29 1.97 1.60 2.07 
U-84 1.78 1.73 1.68 1.63 54.4 2.24 1.92 1.55 2.01/ 

, the first 6 rows. 10 columns are 

/ 785 3.10 3.09 3.08 3.06 3.04 3.01 3.08 3.04 2.99 \ 
3.10 783 3.09 3.07 3.06 3.03 3.00 3.07 3.03 3.09 
3.09 3.09 780 3.07 3.05 3.02 2.99 3.07 3.02 3.08 

X 3.08 3.07 3.07 776 3.04 3.02 2.99 3.06 3.02 3.07 
3.06 3.06 3.05 3.04 773 3.01 3.09 3.06 3.01 3.07 

\3M 3.03 3.02 3.02 3.01 770 3.09 3.05 3.01 3.06/ 

Cov(r2,r2) = 10-

The diagonal terms in both covariance matrices are found from knowing E[r^], 

given in Davies et al., but in any case they are unnecessary for evaluation of 
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the second and third terms of Var(5') in equation 1.3. 

The efi"ects of these matrices on the inflation of Var(5') can now be studied. 

Firstly, note that in all of the above examples, the diagonal elements of A (the 

Akk terms) actually increase in size, whereas the off-diagonal elements (the Ajk 

terms) decrease exponentially, due to the ^"'"'̂  terms in I — Q. This decay in 

size is therefore very rapid when is small (in the AR(1) process) or \<f)i 

and (021 â re small (for the AR(2)), but is somewhat slower for larger \<f>\, or 0i 

and 02 close to the stationarity boundaries. In either case the diagonal Akk^s 

remain much larger than the ofi'-diagonal AjkS, which renders the third term 

in equation 1.3, 
TO—1 m 

j=i fc=j+i 

negligible in comparison with the second term in 1.3, 

TO-l m 
2n\n + 2)2 ^ ^ AkkA^:Co^{rl r]) . (1.7) 

i=i fc=j+i 

Hence we need only concern ourselves with this latter expression, equation 1.7, 

when considering the source of the inflation of Var(S") above its asymptotic 

value of 2(m — p — q). 

I t is also worthy of note that the diagonal elements of A for n = 50 are 

approximately 10 times larger than the corresponding elements for n = 500. 

This is simply due to the the l/{n — k) factor in the matrix D (it therefore 

also affects the off-diagonal elements of A similarly). If we perform a brief 

order-of-magnitude calculation, then taking the AR(1) model, with 0 = 0.1, we 

have for n = 50 and m = 20 that 2n^{n + 2)M22^33Cov(r|, r | ) = 0.133, and 
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as there are 190 terms in equation 1.7 with m = 20, with Cov(r^,r2) decaying 

in size for increasing k, j, we should find an overall inflation in Var(5'') of 

somewhere around 20. I f we repeat this for n = 500, the net effect of the 

n2(n-l-2)2Cov(r^, rj) product is an increase by a factor of 10 - so when multipHed 

by Akk and Ajj, both of which are decreased tenfold, we should find an overall 

reduction in size in the inflation of Var(5') by a factor of 10, to around 2. This 

pattern is repeated for the other cases. Hence for small n there is apparently a 

quite serious inflation in Var(5') (from 38 to about 58 in any AR(1) process), 

whereas for n = 500 the inflation is reasonably small. 

The exact values for Var(5') are calculated from equation 1.3, and shown 

for several AR(1) and AR(2) models in table 1.1 below, together with E[5']. In 

each case, Var(5'') is confirmed as being worryingly large for n = 50, and quite 

respectable for n = 500; E[S'] is always very close to its asymptotic value. 

Table 1.1: Exact values of E[5'], Var(5') (from 1.3) for various AR processes 

Exact values ^2 values 
p <f> (j)'2 m n E[S'] Var(5') E[5'] Var(5') 
1 0.1 20 50 

500 
0.5 50 

500 
0.9 50 

500 

19 58.807 
19 40.501 
19.0002 58.922 
19 40.514 
19.0094 59.097 
19.0003 40.530 

19 38 

2 0.1 0.1 20 50 
500 

1.0 -0.5 50 
500 

-0.8 0.1 50 
500 

1.6 -0.9 50 
500 

18.0001 54.511 
18 38.231 
18.0016 54.777 
18 38.262 
18.0107 54.812 
18.0008 38.260 
18.0568 55.207 
18.0318 38.294 

18 36 
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1.6 Improvement of S' 

Returning to the evaluation of I — Q for an AR(1) process in section 1.4, and ig

noring the Var(r;t) ~ ^ factor since it is lost in the later correlation calculations, 

we see that for this model 

Cov(fi ,r2) = 0 ^ - 0 . 

From equation 1.4 (the expression for / — Q for an AR(2) process), by substi

tuting the value tpi = 0i we find that 

Cov(f i , f2) = ( 0 2 - l ) 0 i - F 0 i ( l + 02) 

= <l>iMi + '^2) • 

These two equations, together with expressions for Var(f i ) , Var(f2), lead to 

finding the correlation between fi and that follows from the assumption of 

NormaHty of f in equation 1.1; we find 

/'(^^'^2) = 1 ^ - ^ = 1 = 1 = for an AR(1) , 

and p{h,h) = 1"^'^^ ^ "^'^ f o r a n A R ( 2 ) . 

\M^/Mi + My+^2 

In both models these correlations will , in certain cases, be large; either for 0 

small in an AR(1), or for 0i 1, 02 ^ 0 (when pir^ih) —̂  1) and 0i,02 —> 0 

(when p{fi,r2) —> l / \ / 2 ) in an AR(2). I t is also apparent from this Normality 
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of f assumption that |Cov(rj,f;t)| will be largest for i = 1, k = 2, and decrease 

exponentially as j,k increase, for an AR(1). In an AR(2) model, this decay 

in the covariances between the residual autocorrelations is more complicated, 

following a damped sinusoidal variation, but in all such processes the largest 

covariances are those involving f i and r2-

When we come to examining the actual behaviour of 5', however, it is 

Cov(r^, r2) that is of interest. But, as can be seen from the above matrices for 

these covariances, the same patterns are in evidence here. There is a damped 

sinusoidal variation by row or column, and for both n = 50 and n = 500 the 

largest value is Cov(r2,r2), with almost all the larger covariances coming in 

rows 1 and 2 - those involving r\ and r | . 

The original aim of this exploration was to improve the performance of S' for 

small sample sizes. Under these conditions, we have seen that the statistic has 

a marginally inflated mean, but a grossly over-inflated variance. To succeed in 

our aim we must therefore decrease the variance of S' where possible. What we 

have also discovered, through studying their variances (in equation 1.6 earlier) 

and covariances, is that the first residual autocorrelation in an AR(1) model, 

and the first two, r i and r2, in an AR(2) process, mostly have distributions far 

removed from the i.i.d. A/̂ (0, ^~^2)) assumed for the asymptotic distribution 

of S' to hold. Hence the proposed alternative is to neglect the first p terms in 

S' when fitting an AR(p) model: to look at the alternative test statistic 

S" = n{n + 2) J2 
m -2 

, 2 
7 / v m - p 

k=p+l ^ 
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Following the above calculations for 5', we achieve the results 

E[5"] = ^kkin - k) 

m m -1 TO 

and Var(5") = n2(n + 2)2 AlVarirl) + 2n\n+2f Yl E ^fc^A,iCov(r2, r f ) 
k=p+l j=p k=j+l 

TO-l TO 
+ Win + 2 r j : E A%E[ry,]. 

j=p k=j+i 

We can study the behaviour of these quantities for small sample sizes, 

(n = 50), with reference to the above evaluations of the matrices A and 

Cov(r |,r2). w/'ith an AR(1) model, E[5"] is decreased more for larger |0|, 

since Au is greatly increased as |0| increases (this is due to the 0̂  term as the 

first diagonal element of 7 — Q). Var(5") is similarly affected, partly because 

of the increasing An term, but also because we are now ignoring the largest 

covariance terms in the variance inflating expression 1.7 - those involving r j . A 

very similar pattern is observed in relation to the AR(2) process, with An and 

A22 being much smaller than other diagonal elements in A when |0i|, |02| are 

small, but of similar magnitude for 0i, 02 closer to the stationaxity boundaries 

(again due to the exponential decay within the diagonal elements oi I — Q (see 

equation 1.4 earHer)). 

A l l of these results are given below in table 1.2, together with the previous 

values from table 1.1 for S' as comparison. 
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Table 1.2: Exact values for means and variances of 5', S" for various AR 
models 

P (j) ^1 <l>2 W E[5'] E[5"] Var(5') Var(5") 
1 0.1 20 50 

500 
0.5 50 

500 
0.9 50 

500 

19 18.9898. 
19 18.9900 
19.0002 18.7449 
19 18.7495 
19.0094 18.1838 
19.0003 18.1916 

58.807 58.738 
40.501 40.458 
58.922 57.349 
40.514 39.559 
59.097 55.186 
40.530 38.375 

2 0.1 0.1 20 50 
500 

1.0 -0.5 50 
500 

-0.8 0.1 50 
500 

1.6 -0.9 50 
500 

18.0001 17.9668 
18 17.9678 
18.0016 17.2349 
18 17.2485 
18.0107 17.2007 
18.0008 17.2102 
18.0568 16.4056 
18.0318 16.4220 

54.511 54.290 
38.231 38.094 
54.777 50.757 
38.262 35.919 
54.812 51.029 
38.260 36.135 
55.207 47.766 
38.294 34.147 

Note that for n = 500, the means and variances of S' are close enough to the 

asymptotic values to render S" practically redundant - for smaller <j) in an AR(1) 

there is little difference between the two statistics, as is the case for the AR(2) 

model with = 9̂ 2 = 0.1. For <f) = 0.9 in the AR(1), and in the other AR(2) 

models, S" develops a more serious deflation of the mean (and variance, in the 

last model). 

However, in all the n = 50 examples, the inflation in Var(5") is indeed 

reduced as anticipated, with the added advantage that the mean is also deflated, 

to a varying degree. This will result in the improved accuracy of the test statistic 

S" over 5" when drawn from the xL-p distribution, for all fitted models on 

smaller samples. 
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1.7 Simulation results 

Following the work of Box and Pierce [4], who showed the equivalence of the 

residual acf distribution from a correctly identified and fitted ARIMA(p,d,q) 

model with that from an ARIMA(p-f-q,d,0) process, it should be noted that all 

of the theoretical work to date in relation to an AR(p) process applies equally 

well to the behaviour of 5, S' and 5"" when dealing with either MA(q) or 

ARMA(p,q) models. Thus we can generalise our definition of the alternative 

statistic S" to one of looking at 

2̂ 
S" = nin + 2) E - ^ ^ x l . p . , , 

when fitting an ARMA(p,q) (or, of course, an ARIMA(p,d,q)) model. 

The similarities within each statistic's distributions for differing model fits 

of the same order are evident in table 1.3 below, which gives the significance 

levels of 5, S' and S" at the 0.05 level when fitting an ARMA(p,q) model (for 

P+q<2) to a simulated process of the same identity of length n. The signifi

cance levels were calculated by simulating 1000 series for each different process, 

and then for each of the three statistics the total number of these series that 

produced a significant test result was taken as a ratio; (i.e. the first figure under 

the S' column implies that 68 of the 1000 simulated series for the AR(1) model 

Xt — O.lXt-i = tt gave a test value for S' that was significant at the 5% level). 
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Table 1.3: Significance levels (0.05 level) for the three Portmanteau statistics 
S, S' and S", for fitting ARMA(p,q) processes to simulated series of the same 

type 

Significance levels Means Variances 
p q n m 01 02 ^i 02 S S' S" S S' S" S S' S" 
1 0 50 20 0.1 

0.5 
0.9 

0.010 0.068 0.062 
0.019 0.074 0.069 
0.017 0.091 0.072 

13.98 18.55 18.47 
14.24 18.92 18.61 
14.92 19.74 18.86 

27.3 46.5 46.2 
31.9 56.0 55.2 
31.4 54.3 51.1 

500 20 0.1 
0.5 
0.9 

40 0.9 

0.046 0.054 0.054 
0.039 0.049 0.047 
0.042 0.053 0.040 
0.053 0.080 0.070 

18.46 18.95 18.93 
18.29 18.78 18.51 
18.63 19.12 18.32 
37.46 39.24 38.39 

37.2 39.2 39.1 
35.9 38.0 37.1 
37.6 39.6 37.7 
85.9 94.3 93.9 

0 1 50 20 0.1 
0.9 

0.017 0.063 0.060 
0.019 0.093 0.078 

14.08 18.73 18.61 
14.94 19.69 18.86 

30.2 52.9 52.6 
32.4 55.2 51.8 

500 20 0.1 
0.9 

0.048 0.058 0.058 
0.042 0.045 0.039 

18.77 19.27 19.25 
18.78 19.26 18.48 

40.4 42.5 42.5 
35.3 37.2 35.6 

2 0 50 20 0.1 0.1 
500 20 

0.006 0.054 0.047 
0.043 0.051 0.051 

12.61 16.98 16.78 
17.25 17.73 17.68 

22.3 39.2 38.7 
33.4 35.3 35.3 

50 20 1.0 -0.5 
500 20 
500 40 

0.011 0.064 0.057 
0.042 0.052 0.036 
0.025 0.053 0.044 

13.10 17.56 17.25 
17.34 17.81 17.00 
36.32 38.13 37.32 

27.7 48.9 47.5 
36.4 38.4 35.4 
74.5 82.1 80.6 

50 20 -0.8 0.1 
500 20 
500 40 

0.010 0.073 0.066 
0.050 0.055 0.044 
0.034 0.059 0.048 

13.45 18.04 17.19 
17.73 18.22 17.46 
36.08 37.88 37.04 

27.0 48.4 45.8 
36.6 38.6 37.3 
78.5 86.9 85.0 

50 20 1.6 -0.9 
500 20 
500 40 

0.029 0.089 0.065 
0.046 0.052 0.030 
0.047 0.076 0.051 

13.86 18.42 16.81 
17.95 18.42 16.75 
36.43 38.18 36.48 

34.3 59.9 52.3 
33.8 35.5 31.5 
81.0 88.9 84.3 

0 2 50 20 0.1 0.1 
500 

0.008 0.063 0.057 
0.041 0.052 0.052 

12.89 17.38 17.08 
17.39 17.87 17.82 

23.5 42.6 41.6 
35.0 37.0 36.8 

50 20 1.6 -0.9 
500 

0.017 0.065 0.045 
0.057 0.069 0.043 

13.34 17.66 15.96 
17.91 18.38 16.74 

29.3 50.1 42.4 
39.3 41.5 37.4 

1 1 50 20 0.5 0.1 
500 
500 40 

0.006 0.054 0.045 
0.040 0.043 0.040 
0.040 0.069 0.063 

13.29 17.82 17.33 
17.33 17.81 17.48 
36.04 37.82 37.47 

23.1 41.2 40.1 
32.7 34.5 33.6 
76.9 84.8 83.7 

50 20 -0.7 0.9 
500 

0.021 0.098 0.079 
0.037 0.043 0.032 

14.15 18.82 17.67 
17.60 18.08 17.21 

32.7 57.2 52.3 
34.3 36.2 33.8 

It is important to remember that all three statistics have nothing more than 

approximate distributions, and as such even S" will have areas where its 

performance is also substandard. One is undoubtedly in large samples, where 

the inflation in the variance of S' is greatly reduced and so the significance 

levels of S" (which has a yet smaller mean and variance) tend to underestimate 
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model inadequacy. However, i t is interesting to note that as we increase m to 

40 for a sample size of 500, the covariance sum in equation 1.7 above is greatly 

lengthened (from 190 terms to 780 in 5'). Hence by testing up to lag 40 we 

increase the inflation in Var(5'') once more well above its asymptotic value of 

2{m—p — q). In nearly all of these cases, and especially so when the parameters 

of the process are close to the stationarity/invertibility boundaries, ignoring 

the first p + q rk terms then reduces this inflation (and deflates the means 

accordingly) to a level where S" performs decidedly more accurately again. 

The second area of potential concern in S" is in the relative size oi p + q 

compared to the length of sum m. Clearly as p + q increases with respect to m 

we will reach a point, even in small samples, where we are ignoring 'too many' 

terms at the beginning of the sum for the Xm-p-q distribution to be a reasonable 

one still to assume for S". Here, though, we are saved by the generally desirable 

statistical property of parsimony - to quote Box and Jenkins themselves: "In 

practice, it is frequently true that adequate representation of actually occurring 

stationary time series can be obtained with autoregressive, moving average, or 

mixed models, in which p and q are not greater than 2 and often less than 2" 

([3], p. 11). To perform further simulations for the ARMA(2,1), ARMA( 1,2) 

and ARMA(2,2) processes would be not merely tedious, but unnecessary too, 

since it is evident from the n = 50 examples above that 5", whilst evidently 

being an improvement over S and 5", still generally overestimates significances, 

even for p + q = 2 (in smaller sample sizes). Hence it would appear that the 

performance of S" will be improved still further as we go on to consider p+q = 3 

(or even 4, although these models are much less frequently employed) for small 
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sample sizes, given that the statistic is generally used for a summation length 

of at least m = 20. 

1.8 Conclusions 

These simulation results and observations lead us to two conclusions. Firstly 

they reconfirm the often disturbing inaccuracies in the significance levels of S for 

small samples, and confirm the suspicions of Davies et al. [9] that S' performs 

almost as badly in these situations (but now giving over-significant test results); 

for large samples, both statistics improve markedly in their performance. In 

fact, in the n = 500 examples, S' performs generally well enough to be quite 

acceptable. If, however, anyone should ever wish to test model fit up to higher 

lags, then S" becomes more and more reliable as m increases. 

The second and undeniable conclusion is that amongst all frequently fit

ted parsimonious ARMA(p,q) or ARIMA(p,d,q) processes, the test significance 

levels for small sample sizes are consistently improved, sometimes dramatically, 

when we look at S". 

Apart from showing how possible pitfalls can be encountered when study

ing simply the first few residual autocorrelations - unless due consideration is 

paid to their true distribution - clear illustration has also been made of the 

deliberation required throughout our use of the portmanteau test. Not only do 

we need great care in the conclusions that can be drawn from using this test, 

but also in our very choice of statistic, since account must be taken of both 
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the nature and length of the series under question. Accordingly, the portman

teau test should never be relied upon for black-or-white test results; like all 

diagnostic procedures, i t is merely a potentially useful guide for possible model 

inaccuracies. 
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Chapter 2 

Bayesian Dynamic Modelling 

2.1 Introduction 

The Box-Jenkins [3] approach to t ime series analysis was widely adopted and 

applied through the early 1970's. Series were analysed in sales forecasting and 

other econometric areas, hydrological applications, etc., etc. (see Fama & Schw-

ert [12] and Mehta et al. [30], amongst many others, for illustration of t ime 

series analyses in these disciplines), and the applied statisticians of the world 

seemed relieved and grateful that at last they had an ad hoc mathematical 

method of describing their physical t ime series, and forecasting them accord

ingly. This relief, that the B.F.E. method (Bold Freehand Extrapolation, to 

borrow Chatfield and Prothero's [8] T.L.A.-^) of forecasting was finally replaced 

by a black-box method, w i t h concrete guidelines for model identification, ap

plication and goodness-of-fit testing, seemed to shelter practitioners f rom the 

underlying grave philosophical and practical worries wi th the whole approach. 

^Three Letter Abbreviation 
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These are, under broad headings, fourfold: 

(i) Conceptual interpretation of the A R I M A processes. In other words, what 

does the fitted model mean, physically, in the light of the series i t is modelling? 

(i i ) The inabil i ty to cope quickly wi th - i n terms of positive response -

changes in the evolutionary nature of the series. 

( i i i ) The f ra i l ty of the method in applications w i t h l i t t le or no data. Box 

and Jenkins themselves state that "at least 50 or preferably 100 observations 

should be used" to enable 'correct' model identification. 

( iv) The isolation of the practitioner and other sources of external informa

t ion f r o m the model. 

These points are not in any particular order of statistical importance, but 

rather are listed in the order that they became apparent to the author in the 

course of studying t ime series analysis more broadly. During this study, the 

seeds of suspicion and doubt i n the Box-Jenkins approach were slowly sown, 

and i t was only a matter of t ime before sufficient evidence arose wi th respect 

to these worries to finally break the restraints - at least for this inexperienced 

practitioner - created by both stationarity, and the inabihty to express one's 

own knowledge about future events, that Box-Jenkins analysis is confined by. 

The evidence can be as simple as this: suppose that you are interested in 

forecasting daily bread sales at a local bakery, recently opened early on in the 

summer (and so jo l ly keen to anticipate demand accurately), through the rest of 

the calendar year. Once you have enough data, you identify, say, a Box-Jenkins 

ARIMA(0 ,1 ,1 ) process (the parameters of which you update regularly as more 

data is gathered), together w i th a certain weekly seasonality. The model is both 
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in tu i t ive - i t is logically implied f rom a simple dynamic linear model that we 

meet later - and forecasting well. Then comes the middle of December, and 

on the night of Saturday the 17*^ you have just forecasted Monday's demand 

(your baker chooses to stay shut on Sundays, allowing you t ime to consider 

your data), when the (really quite obvious) thought strikes you - the week up 

to Christmas w i l l see much stocking-up for the two extra days of the following 

week that the bakery is shut, and the process w i l l begin imminently. You now 

have an overwhelming feeling that your forecast for Monday is about 25 — 50% 

too small, but as this is your first year of data, how do you adapt this figure? 

A n d as the seasonality for the week to come wi l l almost certainly be altered, 

what do you do w i t h regards to the rest of the week? Your model has become 

as redundant as you might well be by the end of that week! 

In the 1970 version of "Time Series Analysis: Forecasting and Control", 

there is no answer to this problem in Box-Jenkins analysis. (Later in the 1970's, 

as the need for this interaction became more and more evident, methods for 

incorporating some form of intervention into the Box-Jenkins model were de

veloped, but none of these methods were capapable of reflecting one's greatly 

increased uncertainties in the model at and beyond the point of intervention). I t 

is crucial to realise that these are the very circumstances under which you par

ticularly want your model to cope well, since such change points are evidently 

where forecasting performances are affected the most. Our bakery example is 

a perfect example of the points ( i i ) to (iv) made earher. Not only does this 

i l lustrate how we are isolated f r o m a model which, in turn , cannot respond to a 

change-point that we know is occurring, but our example (incidentally, despite 
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the dramatisation of the consultancy, the example does come f rom a 'real' data 

series, and is given as Series 1 in the Appendix) is also a fail ing of the Box-

Jenkins approach in the face of l i t t le or no data. I f we had come into the baker's 

l ifet ime at a point in several years' t ime, we could have not only anticipated 

this seasonal variation - for that is, of course, exactly how one would expect 

fluctuations to occur - but also buil t i t into the Box-Jenkins model. 

I t is hoped that this example has frustrated even the disinterested reader at 

his or her complete helplessness in such a scenario. We are completely isolated 

f r o m acting as an intellectual bridge between physical phenomena occurring in 

the environment that produce our data responses, and the mathematical model 

that we have bui l t . But this bridging is, surely, a crucial role of the statistician! 

Most of these issues were raised as early as 1973, in both Green and Harrison 

16], who cite the absence of a yearly seasonality history of a marketed product 

( in our case, bread) as motivation for a Bayesian approach, and also in Chatfield 

and Prothero's [8] analysis of a carefully selected (as, indeed, the above bakery 

example was) sales series that was about to hit the recession of the next year, 

and so actually did have several years of seasonality to work wi th . Their at times 

wonderfully tongue-in-cheek paper was roundly criticised as not being fair to 

the Box-Jenkins method; however, i t did highlight how careful the statistical 

world was being in only selecting series that were 'nicely behaved' to illustrate 

the powers of the approach. I t is therefore not surprising that, albeit in more-or-

less parallel w i t h the development of Box-Jenkins analysis, the roots of a more 

general class of models were being nurtured in industry; a system capable of 

dealing w i t h the Box-Jenkins shortcomings that were otherwise avoided. These 
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roots are i n a Bayesian analysis, and are the subject of the rest of this thesis. 

2.2 Development of the D L M 

I n 1976, i n the Journal of the Royal Statistical Society, Series B , Professor P.J. 

Harrison and M r . C.F. Stevens, an independent consultant, presented a paper 

simply entitled 'Bayesian Forecasting' [19]. Both men had been involved wi th 

I C I for many years previously, where the major i ty of their methods had been 

developed and applied. This broad wealth of industrial research and experi

ence had produced many radical modelling and forecasting concepts, motivated 

largely by a desire to avoid the last three worries listed earlier - to be able to 

interact, adapt to structural disturbances in the model, and cope in periods of 

l i t t l e or no data. 

This paper was the b i r th - certainly in the statistical world, following their 

l i t t le-ci ted paper of 1971 in the Operational Research Quarterly [18] - of the 

Dynamic Linear Model ( D L M ) as an approach to t ime series analysis. The 

details w i l l be defined later; simply, we can set up a model wi th in the well-

defined D L M class that represents the physical process of our system (making 

conceptual interpretation simple, of course, to return to the first worry of section 

2.1), and then use the Kalman Filter (section 2.3), in the light of a new data 

point, to update a priori beliefs in this model and produce a posteriori beliefs. 

A t each updating, we can easily build in changes in our prior beliefs and hence 

interact w i t h the model; in addition, because of the very fact that we can 

represent our beliefs i n the model, i t can operate wi th l i t t le , or even no, data. 
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The power of the D L M is decidedly beyond question, but i t is curiously 

interesting that nearly two decades later the D L M is not as widely adopted as 

might have been expected, both for philosophical and practical reasons, dwelt 

upon more in the Introduction and later in this chapter. I t has, however, been 

developed and refined, and the next major leap forward came in 1985, in a paper 

by West, Harrison and Migon [37], on Dynamic GeneraHsed Linear Models, 

which - as the t i t le suggests - generalised the D L M to non-Normal models and 

applied them to, amongst others, the same data set as that used by Chatfield 

and Prothero [8] in 1973. The improvement in this forecasting test was evident, 

especially so - and this is the key consideration, of course - as observations 

f r o m that next recessional year were processed. Together wi th several others, 

this paper formed the nucleus of a book, "Bayesian Forecasting and Dynamic 

Modell ing", by West and Harrison [36] in 1989. In what follows, the notation 

of this book is adopted. 

The basic univariate D L M (i t is easy to generalise to multivariate data) 

consists of two defining equations. The first is the observation equation 

Yt = Fjdt + vt, (2.1) 

where Yt is the univariate observation variable, 9^ is the p x 1 state vector, 

consisting of the p parameters of the defined process, Ft is a known pxl vector 

of independent variables, and Vt ~ -A/'(0, Vt) is the observational error. The 
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second equation is for the updating of the state vector, given by 

= Gj0t_i + wt , (2.2) 

and known as the state or system evolution equation, for the known p x p 

evolution transfer mat r ix G j , and W ( ~ A''(0, W^) the state evolution error. 

Both the scalar observational variance T^, and the system evolution variance 

mat r ix W t , are assumed known (although in practice they rarely are - and the 

issues surrounding the ease of their specifications form most of chapters 3 and 

4); additionally, note that we are free to express the evolution of the state vector 

entirely as we wish through equation 2.2. 

Taking a state vector posterior at t ime t — 1 (given all available information, 

A - i , up to t ime ^ - 1) of {6t-i\Dt-i) ~ J\f{mt--i, C t _ i ) , for some known mean 

m.t-1 and pxp variance matr ix Ct-\, we can then calculate a prior for the state 

vector at the next t ime point t f rom equation 2.2 - we know 

E[et\Dt-i] = E [ ( G t « i _ i + W i ) | A - i ] 

= Gtirit-i since E[wt|Df-i] = 0 , 

and also Var(^i |A-i) = Var ( (Gi^t_ i - f W t ) | A - i ) 

= G , C i _ a G f + W i , 

since Var(wt|A-i) = W^, and i t is further assumed that the evolution error 

is independent of the previous state vector. So, wri t ing (^t|A-i) ~ J^{^t,'^t) 

for at = GtUit-i and Rt = GtCt-iGj + Wt , we then have the one step-ahead 
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forecast for Yt, obtainable f rom the observation equation 2.1, of 

E [ F , | A - i ] = E[{Fjet + vt)\Dt.r] 

= Fjat since E [ u t | A - i ] = 0, 

and Var (yi lA - i ) = V a r ( ( F f 0 , - H i ;0 |A- i ) 

= FjRtFt + Vt, 

since Var(i ' t | A - i ) = and this t ime i t is assumed that the observational error 

Vt is independent of the current state vector. We write {Yt\Dt-i) ~ J^ift^Qt), 

where ft = F f a* and Qt = FjRtFt + 

The prior and one step-ahead forecast are then both made use of, upon 

receiving the next data point Yt, to update the state vector. A l l information 

up to t ime t is now available - i.e. we have Dt = {Yt,Dt-i] - and therefore 

we can calculate the updated posterior that constitutes the valuable Kalman 

Filter; this is defined via the posterior equations of 

{dt\Dt)^Ar{mt,Ct), (2.3) 

for mt = at - f AtSt 

Ct = Rt-AtAjQt, 

R-tFt 
where fur ther A j = —r— , the adaptive coefficient vector at t ime t, 

Qt 
and et = Yt - ft , the observed one step - ahead forecast error. 

This posterior is then used to provide the next prior {6t+i\Dt), and so the 
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cycle repeats; at any stage we can subjectively interact w i th our prior to 

produce alterations in the one step-ahead forecast for Yt, in the light of any 

relevant information that may have arisen. The only prerequisite of the sys

tem is that we 'kick-start ' i t by defining ini t ia l priors mo and Co such that 

(^ol-^^o) ~ A''(mo, Co). These are chosen purely on the basis of the in i t ia l avail

able information Do, which may or may not include some data already, and wi l l 

- almost by definition - usually include the subjective opinions of the practi

tioner on the nature of the data evolution. Very often i t is not the choice of 

mo that is the difficulty, but more the expression of uncertainty in this ini t ial 

state, namely Co- This is undoubtedly a conceptually complicated area, and 

one which accordingly has many differing approaches, including the well-known 

option of choosing the rather paradoxically named 'uninformative prior'. This 

is not the place to open such a can of worms, and so i t suffices to dwell merely 

upon two features of the in i t ia l prior specification. Firstly, and not entirely 

facetiously, we are actually choosing ini t ia l posteriors (mo, Co), f r om which the 

first prior {di\Do) ~ A / ' ( G i m o , G i C o G f - I - W i ) is then calculated; secondly, 

once we have established mo and Co we can run a speculative "what-if?" anal

ysis of looking at the A;"' step-ahead forecasts in the light of no data (other than 

Do-, which may or may not be the empty set). 

The first point has been raised simply to emphasise the important conceptual 

difference between priors and posteriors wi th in the D L M ( ' in i t ia l posteriors' was 

never l ikely to be used as the phrase is somewhat oxymoronic!), for in choosing 

(mo, Co) i t is v i ta l to remember that we are not at tempting to forecast the first 

(or next) data point in the t ime series under analysis, but instead are making a 
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statement about our current state. This is particularly relevant when initialising 

an analysis of seasonal data, where i t is crucial to order the seasonal components 

correctly wi th in the state vector mo, remembering that . i f our first data point 

is f r o m , say, January (in monthly data), then the first seasonal component in 

mo must correspond to December. 

The second point, i n relation to running a speculative "what-if?" analysis, is 

an important i l lustration of not only our new-found ability to operate either in 

the absence of any data whatsoever, or wi th merely a few previous observations, 

but also how we can check the suitability of the chosen model to our perceived 

data evolution. The k^^ step-ahead forecast, f rom time t, is given by 

ft-irk,k — E[Ft+fc|A] = F^^Gt+fcGj+fc-i.. . Gt+imt , 

and the evolution of this forecast function (calculating the associated variances 

of each forecast, Qt+k,k, is equally simple) is evidently a potentially useful guide 

to the appropriateness of the model, in the light of prior knowledge of, or 

opinions on, the nature of the data evolution. 

The posterior updating equation set 2.3 can be proven f rom either Bayes' 

theorem - this is done directly, via longhand substitution of the relevant Nor

mal distributions into p{dt\Dt) oc p{0t\Dt-i)p{Yt\6t) - or f rom using standard 

bivariate Normal distribution theory. Either way, we prove a result which is the 

most v i t a l innovation in the D L M framework; the source of its very dynamism, 

giving us the abil i ty to update our prior behefs and interact w i th the model 

(should the need arise) before and after receiving each new data point. A n d so 
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we come to the powerful Kalman Filter. 

2.3 The Kalman Filter 

The Kalman Filter ( K F ) was derived in 1960 in engineering journals by Kalman 

22], and further in 1961 by Kalman and Bucy [23], to be deployed by various 

physical scientists in areas that were largely unknown territory to statisticians. 

Consequently its simplicity and value in t ime series analysis and recursive least 

squares algorithms (Young, 1974, [39]) was underappreciated and misunder

stood, and this fear of the relatively unknown undoubtedly hindered the accep

tance of the D L M following Harrison and Stevens' 1976 paper, which presented 

the K F as the simple statement of a black-box recursive estimation procedure. 

W i t h hindsight, perhaps a more motivational derivation would have assisted 

w i t h both clarity and the comprehension or interpretation of the many sym

bols wi th in the K F updating procedure (Chatfield's criticism in the discussion 

of the Harrison and Stevens' paper was that there were "too many symbols"); 

the need for this simple motivation was emphasised by the appearance of a 

purely expository article on the K F a f u l l seven years later by Meinhold and 

Singpurwalla [27], f r o m which much of this section comes. 

We start w i t h our 'best guess' of 6t given information up to t ime t — 1, 

namely the prior 

(^t |A- i ) ~ (at,Rt) , at = Gtmt_i , 

Rt = G t C t _ i G f - F W t . 
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Having made our one step-ahead forecast of Ft, namely ft = F f at, and then hav

ing observed Ft, we know the error in our prediction, = — f t . From Bayes' 

theorem, wanting the posterior p{6t\Dt) is equivalent to requiringp(l^ |dt , A-i)p(^t| A - i ) , 

and since knowledge of Yt is equivalent to knowledge of et, this can be writ ten 

as 

p{et\Dt) cc p(et|0t, A-i)p(^tlA-i) , (2.4) 

where (et|^t, A - i ) ~ ( F f ( ^ < — G t m t _ i ) , Vt) f rom the observation equation 2.1. 

So finally f rom Bayes' theorem, 

„(g p._p(et|gt,A-i)p(gt|A-i) 
^ ' I^^e,)PM\Dt-r)det' 

which is, of course, exceptionally complicated to calculate! 

I t is possible to simplify the picture, though - firstly in the completely gen

eral case of an arbitrary prior distribution for Yt, by using the appropriate 

conjugate prior analysis (see section 2.4), and secondly even further, by letting 

the prior distribution of 6t be Normal. In this case, taking the bivariate Normal 

distr ibution of 

^ ' ^ - ^ - . 1 : : t ) ) . (2.5) 
22 

we have that the conditional distribution of Xi on X2 is given by 

{Xi\X2 = X2) - Afifii + Ai2A^^{x2 - 112), An - 1̂2̂ 22 ̂ 21) • (2.6) 

Conversely, the bivariate Normal distribution of Xi and X2 holds when X2 
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Af{fi2, and the conditional distribution of on X2 is as in 2.6. So, letting 

the prior {6t A - i ) take a Normal distribution, and identifying Xi = Ct , X2 = 

dt, 2̂ = GtUit-i and A22 = Rt , we have f rom equation 2.6 that 

(etlBt) ~ Afifii + AuRT\0i - Gtmt.i),An - A^RrMj i ) , 

and equating this w i t h the known {et\9t, A - i ) ~ -^{FjiBt — G^mt-i, Vt) gives 

Hi = 0, A12 = FjRt, so that, further, symmetry {A12 = 2̂1) then gives 

A l l = FjRtFt + Vt. Hence our converse relationship, using equations 2.5 and 

2.6, gives the bivariate Normal distribution of 

et 
et 

Dt.i)^Ar(( ° ](nRtFt + Vt FjRt 
I W Gfmt_i / \ RtFt Rt 

Thus, again f r o m 2.5 and 2.6, 

{et\et,Dt-i) = (0t |A) ~ A/'(Gtmt_i + RtFt{FjRtFt + Vy'et, 

Rt - RtFtFjRtiFjRtFt + Vt)-' 

and then we need only identify at = Gtnit-i, At = RtFtQt^ for Qt = F f RtFt-|-

Vt to get the posterior given in the equation set 2.3. 

I t is now evident that what we have done, effectively, is construct the poste

rior mean as a regression function of 9t on the observed forecast error et, taking 

this mean to be the actual forecast plus a weighted proportion of the observed 

error. Additionally, this weighting term of R t F t ( F f R t F t -|- Vt)'' = At is the 

coefficient of least squares regression of Ot on et - in other words, our posterior 
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mean is equal to the one step-ahead forecast w i th a correction term added in 

precise relation to the performance of the forecast. This least squares estima

t ion was the original derivation of the K F ; the above Bayesian interpretation 

adds meaning and motivation to the updating procedure wi thin the D L M . 

Our derivation was solely possible due to the bivariate Normal distribution 

assumed for 0t and et = Yt. The Bayesian updating becomes far more involved 

in non-Normal priors - indeed, to update the posterior via equation 2.4 above 

requires some impressive ' trickery' that we describe next. 

2.4 Exponential families and conjugate priors 

Many data series arise f rom observations that are evidently non-Normal. For 

continuous asymmetric data we can often work wi th transformations to produce 

symmetric distributions which are usefully modelled via Normality. However, 

where this is infeasible, especially in the case of discrete data distributions (as 

in the example that we follow later in the chapter), we must turn instead to the 

class of processes making use of the exponential family. 

We can express most parent distributions for the data series Yt as members 

of the general exponential family density 

p{Yt\r^t,Vt) = 6 ( y t , V t ) e x p { l ( F t 7 / t - a ( 7 / t ) ) } , (2.7) 
Vt 

for some known functions a{r}t) and 6(}t,K); the latter being a normalising 

constant, where Vt is the scale parameter (leading to the precision parameter 

(^t — 1/V^<) of the distribution, and where rjt is the natural parameter of the 
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distr ibution. The meanings of these quantities become more readily understood 

through studying examples; before we do so, note that 

,t = mW.Vt] = ^ = a{m) 

and Y^T{Yt\vt,Vt) = = Vtaivt) , 
d?7t 

which is the motivation behind referring to t̂ = 1/Vt as the precision param

eter - i t is the scaling factor requires to give the variance of the process after 

calculation of a(?7t). 

Additionally, notice that we update to the posterior for rjt via Bayes' theo

rem, w i t h p{T]t\Dt) oc p{r]t\Dt-i)p{Yt\T]t) (dropping the conditioning upon Vt, 

since we assume this to be known). W i t h Normality of Yt and the prior 

p(r)t\Dt-i), this calculation was simple; more generally i t becomes manageable 

when we let the prior for % belong to a conjugate family. This prior density is 

of the fo rm 

p{Tit I A - i ) = c{rt, St)exip{st{xtT]t - a{r]t))} , (2.8) 

for xt = rt/st the location, and St the precision parameter, of the prior, w i th 

c(rf, St) the known normalising constant (note the analogous definitions of 5 t , Xt 

and c (rt ,5t ) w i t h the exponential family 2.7 earlier: Xt = Yt and St = ^t, w i th 

c (r t ,5 t ) = b{Yt,Vt)). This conjugate prior allows us to calculate both the one 

step-ahead forecast distribution f rom Jp{Yt\Tit)p{Tit\Dt~i)d%, namely 

c(rt-|-<^t5^t,5t-|-<^t) 
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and, most conveniently indeed, the updated posterior p{rjt\Dt) - we have 

PiVt\Dt) oc p{i]t\Dt-i)p{Yt\T)t) 

(X exp{rtr]t - Sta{r)t)}exp{(f>t{YtT)t - a{T]t))} 

= exp{{rt + 4>tYt)r]t - {st + < l ) t ) a { r ] t ) } , 

which is of the same form as 2.8 above, with updated to rt + (l>tYt, and St 

updated to St + ( j ) t , yielding a new Normalising constant c{rt + (f>tYt,St + (f>t) 

which then gives the fully defined posterior 

p{Vt\Dt) = c{rt + <f>tYt,St + <f>t)exp{{rt + (̂ (F*)'?* " i^t + (f>t)a{T)t)} . 

This completes the updating for the natural parameter of the model, but 

we generally wish to update fully for the posterior of dt instead. So, note that 

defining g{r)t) = Xt = ^J^t, for some known function g{.), gives 

E[et\Dt] = E [E[^ t |A„A- i ] |A] 

and Var (^ t lA) = Var(E[df|At, A - i ] | A ) + E[Var(^flA*, A - i ) | A ] , 

but that we cannot calculate the conditional moments E[^f |A<, A - i ] and Vaj(^t|Ai, A - i ) 

from the joint prior distribution of ( ( ^* A - i \ since we are no longer as-

suming a bivariate Normal distribution for this prior. Instead, we use a linear 

Bayesian estimation procedure which gives the optimal estimates of these con-
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ditional moments as 

E[0t\Xt,Dt.i] = ait + Rt'Ft{Xt-ft)/qt 

and Y^r{et\\t,Dt-i) = Rt - RtFtFjRt/qt . 

Hence 

E[et\Dt] = ait + RtFt{E[Xt\Dt]-ft)/qt^mt 

and Var (^ , |A) = ^^^^^iYe.v{X,\D,))+ R , - ^ ^ ^ ^ ^ 
qt qt 

qt \ qt 

and we can fully specify both E[At | A ] = E[g{rjt)\Dt] and Var(At l A ) = Var(p(7/j)| A ) 

from the updated conjugate posterior p{r]t\Dt). Thus we have a fully specified 

posterior {9t\Dt) ~ (mt,C() as desired. 

Example. The example by which we choose to illustrate the conjugate prior 

analysis is the binomial case. Take Yt to be binomial, i.e. 

p{Yt\nt,nt) = 
Ur'( i- / .*r-^ ' for y; = o , i , . . . , n , 

0 otherwise , 

where we have probability parameter such that 0 < /it < 1, and tit trials 

such that rit > 0. Then this is of the exponential family form 2.7 above, with 

b(Y,,Vt) = ( ) , yt{Yt) = KtM, m = - f^t)), <f>t = 1 /K = n„ 

and a{'r)t) = l n ( l + e'"). The relation for the natural parameter of the process, 

r]t = ln( / i i / ( l — fit)), is known as the logistic transform of fj,t; notice that since 
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0 < fit < 1 this transformation maps % to the whole of the real line. The 

conjugate prior for the probability parameter fj,t is then a Beta distribution, 

( /z t lA - i ) ~ Beta(rt,5t), namely 

Using the logistic transform of Ht for Tjt then provides the form for the conjugate 

prior family of 2.8, but we can remain in the much simpler fit scale to update 

to a conjugate Beta posterior of 

p{fit\Dt) oc p{nt\Dt-i)p{Yt\fit,nt) 

=^> pint\Dt) ~ Beta(r-i + Yt,St + nt- Yt) . 

This has direct applications in any opinion poll analysis, for example, where 

the discrete data of positive respondents Yt form a binomial sample, and we are 

interested in the underlying true proportion fit of these respondents, such as in 

the advertising awareness example that we look at now. 

2.5 E x a m p l e of the D L M 

This example is taken directly from West and Harrison [36], chapter 14, and 

concerns the case study that appears there on advertising awareness of a partic

ular product. We choose this case study to illustrate the non-Normal DLM and 

use of the conjugate prior analysis for the simple reason that it is the baisis for 
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illustrations of subsequent discussions in chapter 3; it is also particularly useful 

for highlighting the framework and all-round application of the DLM. The ful l 

data set used with respect to this model in chapter 3 appears as Series 2 in the 

Appendix. 

Briefly, a population survey is taken every week, where people are asked a 

standard question in relation to the advertising of a certain product (in this 

case a chocolate bar), and the number of positive respondents, Yt, is recorded. 

During the preceding week the product will have been advertised on TV to a 

varying degree, and this level of advertising is calculated in standardised units 

known as TVR units, Xt (see Broadbent [5]). The DLM is defined here with 

the observation equation of 

g{r}t) = fii = Fjet , 

where g{T}t) is the link function (a transformation 'linking' ijt to the real line), 

and is hence equal here to the inverse logistic transform due to the evidently bi

nomial nature of the data series Y f . Further, fit is interpreted as the underlying 

population response level for the data series Yt - with Yt = ritfit for a population 

survey in week t of size nt - and is the scale we work on. The state vector 6t 

is taken to be a 5-vector, so that 9t = {at,0t,pt,K.t,Et)^, where the parame

ters represent the lower and upper thresholds of awareness, the memory decay 

rate, the penetration (of the advertising) parameter, and the effect of previous 

advertising at time t, respectively. Thus F f = (1,0,0,0,1) in the observation 

equation - i.e. the mean response level fit is taken as the lower threshold plus 
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the current effect of previous advertising. Further, the evolution of the state is 

taken to be non-linear; each parameter is assumed to remain constant (up to 

the addition of the evolutionary noise), except for which evolves according 

to 

Et = (A - "t) - - «t - PtEt-i)e-'''^' . 

Thus for no advertising in week t {Xt = 0), we have Et = ptEt-i (exponential 

decay in the effect of past advertising), whilst we obtain a fraction of the re

maining awareness effect for each increase in Xt, ultimately requiring infinite 

advertising levels to obtain Et = /3t - at (so that, in turn, fit = A) the upper 

threshold level). This model definition, therefore, allows us to 'over-advertise' 

- we reach a point where we get little return in Et for a large increase in Xt. 

So, overall, we take the state equation of 

Ot = gt{St-i) + yft , 

where g{z) = (zi , 22, Z3,24, (22 - zi) - (^2 - - 23^5)e"'''-^')^ 

for any 5-vector z, and Wj ~ (0, W t ) . This non-linear state evolution equation is 

all-well-and-good until we endeavour to evaluate the prior distribution (^t| A - i ) 

- at this point, the state equation must be linearised as a first-order Taylor 

expansion of 

Ot ~ gt{mt-i) - G(mt_i - f GtOt-i + Wj , 
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for the p X p (where 0t is a p-vector) matrix Gt equal to 

namely 

Gt = 

/ 1 
0 
0 
0 

Sgt{et-i) 

^t - i=n i {_ i 

0 
1 
0 
0 

0 
0 
1 
0 

0 
0 
0 
1 

0 \ 
0 
0 
0 

\̂  e - « ' ^ ' - l l - e - " ' ^ ' Et . ie -" '^ ' ^ t ( A - a t - / 9 t ^ t - i ) e - ' " ^ ' pte""'^' ) 

in this example. Thus from a posterior ( ^ t _ i | A - i ) ~ ( n i i - i , C t _ i ) we can 

evaluate the prior 

( 0 t | A - i ) ~ (a t ,R t ) , 

for H i = 5i(mt_i) 

and Rt = G t Q _ i G f + W t . 

The updating is in two stages, as usual - firstly, updating for fit is via 

the conjugate prior analysis outlined in section 2.4; teiking the Beta prior for 

pit of {pLt\Dt-\) ~ Beta(rt,5t), we have that Ef / itlA-i. rt+st ' 
But further, 

E[nt\Dt-i] = ft = Fjsit which is fully known from the posterior of 6t-i, as is 

yax{fit\Dt-i) = qt = FjRtFt, in turn equal to from the Beta distribution 

for (fit\Dt-i). Thus we can solve these two equations for rt and St, yielding 

f f t \ 
rt = / t - ( 1 - / 0 - 1 \Qt J 
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and St = { l - f t ) ( ^ { l - f t ) - l . 
\9* / 

Making use of the conjugate prior analysis, we now know that the posterior 

(/it I A ) is updated to a Beta[rt + Yt,St-\-nt — Yt] distribution. So we can readily 

calculate 

g, = E[flt\Dt]^ ''^^^ 

and pt = Var(//(|A) = 

rt + St + Ut 

gt{i - gt) 
rt + St-\-nt + l 

The second stage of the updating is then for dt\ noticing that in this example, 

^t = fJ't = we can simply make use of the method of section 2.4 and 

evaluate both 

mt = a.t^'R.tFt{E[fit\Dt]-ft)lqt = B.t + B.t¥t{gt-ft)lqt 

9i V It J Qt \ qtj 

2.6 Discounting 

So far in this chapter, we have introduced many concepts around the basic 

structure of the DLM, in order to cope with both non-Normal and non-Hnear 

models. However, one concept which is crucial to each and every one of these 

models arises in the sequential updating of the posterior (dt_i |A-i) to form 

prior values for (0 t |A- i ) -
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To recap, in general the DLM is defined via two main equations; the obser

vation equation 2.1 given by 

Yt = Fj0t + vt , 

for Ft known and Vt ~ N(0, Vt), and the state or system equation 2.2 

6t = Gt6t-\ + wt , 

for Wt ~ N(0 ,Wt) , and uncorrelated with 6t-i, which gives a recurrence for 

the updating of the state vector dt-

This then leads to our one-step ahead forecast for 6t; for if we start with a 

posterior at time ^ — 1, 

( ^ t _ i | A - i ) ~ ( m t _ i , C t _ i ) , 

we now have that the prior for 9t is given, from the state equation and posterior, 

as 

(OtlDt-i) ~ {sit,Rt), 

for at = GtHit- i 

and Rt = G t C t _ i G f - f W t . (2.9) 

However, Ameen and Harrison [2] state that one of the major obstacles 

in the widespread adoption of Bayesian dynamic modelling - an issue raised 
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earlier at the beginning of section 2.2 - has been the difficulty of specifying 

this (not necessarily constant) system variance matrix Wj . Even experienced 

practitioners have little feel for this matrix, as well as for the observational 

variance 14. In addition, problems arise due to the non-uniqueness of W^, 

along with its invariance to the scale on which the independent variables are 

measured. 

Their solution is to introduce the concept of discounting. The approach is 

to define a discount matrix Bj such that 

t i t — t>t ^ t ' - ^ « - l * J t 15« , 

where Gt = d i a g ( G i , G r ) 

and Bt = {6an„....,SrK} , (2-10) 

each block G,- is of ful l rank n,-, 0 < ^, < 1 for all i = l , . . . . , r , and Im is the 

identity matrix of dimension rii. 

This alternative to specifying the system variance matrix Wj possesses two 

desirable properties of forecasting - ease of model application, and conceptual 

parsimony. In addition, Ameen and Harrison state that many forecasters have a 

'natural feel' for the set of discounting factors {6i,^r}- It is also subsequently 

possible to apply established methods for estimation of the observation variance, 

Vt, once the discount factors are chosen. 

However, upon further examination, attempting to specify either W( or a 

discounting matrix Bt can be seen to have certain flaws which lead to prac-

titional difficulties, making the decision of whether to employ a discounting 
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matrix or not very much problem specific, and dependent on the defining equa

tions of the DLM in question. We will develop further theoretical limiting 

results for the DLM in the rest of this chapter, enabHng us to understand where 

both approaches have shortcomings - the subsequent discussion in chapter 3. 

2.7 T i m e series D L M s 

In many DLMs the two defining equations, 2.1 and 2.2, will be concerned with 

constant Ft = F and Gt = G (all polynomial trend models, for instance; see 

chapter 3 for examples). These model specifications are known as Time Series 

DLMs (TSDLM), defined in shorthand by the quadruple { F , G , F t , W t } . Fur

ther, all classical stationary time series can be expressed as constant TSDLMs, 

defined by { F , G , V, W } , as we shall see shortly. Although we have already dis

cussed the restrictiveness of this class of models under the Box-Jenkins method 

of analysis, representing them as constant TSDLMs allows us to combat nearly 

all of the four main restrictions mentioned in section 2.1. We are no longer 

isolated from the model, being instead able to intervene at any stage of the 

analysis and input information pertaining to the data evolution; additionally 

we are able to cope with little or no data, since by simply specifying initial 

priors (mo, Co) (which may or may not be based upon previous information) it 

is possible to run speculative 'what-if?' analyses in the absence of any future 

data. And by looking at these simpler models practitioners gain insight to more 

complicated forecasting systems, obtained by the superposition of two-or-more 

such TSDLMs. 
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2.8 Observability 

As with all statistical analyses, it is desirable to ensure that we specify a par

simonious model. With respect to a TSDLM, overparameterisation can be 

avoided by checking that the defined model is observable. Although in what 

follows we continue to adopt West and Harrison's notation and approach, the 

concept of observability is attributable to Kalman (see, for instance, Kalman et 

al. [24]). 

Defining the mean response function, nt+k — E[yi+fcj^t+fc] = F^^t+fc, and 

the forecast function f t { k ) = E[nt+k\Dt] - F^G^'mt, we can then define the 

p-vector tit - {P't^lJ't+i,- • •iPt+p-i)'^ (remembering that 6t is p-dimensional), 

so that / i t = T^t , where 

T = 
F^G 

V F^GP-1 / 

is a p X p matrix, known as the observability matrix. We now require that fit 

should contain sufficient information to provide exact knowledge of the state 6t 

(given that we also know the state evolution errors Wt+i, i = 0, . . . ,p — 1); i.e. 

it should be possible to calculate 9t = T~^fj,^. Hence Kalman's observability 

criterion is that T must be non-singular, and we say that under this condition 

the TSDLM { F , G , V , W } is observable. 

I t is worth noting that any p-dimensional model, for p > 1, in which G is the 

identity matrix, is evidently not observable - the observability matrix becomes 
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T = and of rank 1. In general, we can reparametrise any unobservable 

model in which T is of rank, say, p — r, via a linear transformation to an 

observable model of dimension exactly p — r. 

However, it is also notable that any standard seasonality model is also un

observable; taking the model 

^ / 1 0^ \ 
{ ( l , E p - i f , 0 P 

where Ep_i = (1 ,0 , . . . , 0)-^ is (p - l)-dimensional, and 

/ 0 1 0 0 
0 0 1 0 

0 0 
V I 0 

o \ 
0 

0 / 

is the (p — 1) X (p— 1) permutation matrix - so that the data series {Yt} is seen 

as an underlying mean level plus a seasonality component, with the seasonality 

having period p - 1 time points - results in P""^ = Ip_ i , the (p - 1) x (p - 1) 

identity matrix. This therefore results in G^"^ = Ip, from whence F^G^"^ = 

and so 

/ 1 1 0 0 . . . 0 \ 
1 0 1 0 . . . 0 

T = 

1 0 0 . . 
V 1 1 0 .. 

1 

Hence T has rank p - 1 and this seasonality model can be reparametrised to 
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a (p — l)-dimensional model (by incorporating the underlying mean level into 

each seasonality term, in effect). What most practitioners will wish to do in 

this DLM, however, is to constrain the seasonality components to having zero 

total sum; i.e. if 6t = {fLt,<f)t)'^, for fit the mean level and 0^ a (p — l)-vector 

of seasonality components, we would want l"^ t̂ = 0 for all t, or equivalently 

( 0 , 1 , 1 , . . . , l)Ot = 0. This leads to the idea of constrained observability - taking 

the unobservable model {F ,G ,F , W}, where further there is the constraint 

Cdt = c for known C and c, the TSDLM is called constrained observable iff 

f T \ 
the extended observability matrix T = is of ful l rank p. 

V C / 

It is now possible to show (West and Harrison [36], pps. 148-150) that any 

such observable constant TSDLM, with V and W both finite, has the hmiting 

form of 
\im{At,Ct,Rt,Qt} = {A,C,R,Q} . 

t-*oo 

The proof of this special case of stationarity is quite complex; in general it is 

impractical to attempt to express the form for the limiting value of Ct^C 

algebraically in terms of the variances V and W . Instead, it is worthy of note 

that from equation set 2.3 the evolution of the uncertainty in the state, C j , is 

independent of the data series {Yt} in all linear DLMs. Here, in the constant 

TSDLM, the convergent value of C is therefore predetermined solely by the 

specification of V and W (and is independent of the initial prior Co), and so 

rather than endeavouring to solve for C from 

r - R A A ^ O - G C r ^ + W (GCG^ + W)FF^(GCG^-HW)^ 
C - R - A A Q - G C G +W FT{QCGr+W)F + V ' 
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we can simply obtain a numerical value for C from iteration of Ct = Rt — 

AtAjQt. 

Having found C, the other limiting values of R, A and Q are obtainable 

from the defining equations of the Kalman Filter (2.3). Then, finally, from this 

limiting form it is always possible to express the constant TSDLM in a general 

model form of 

Ft = E a,Yt-j + et + f 2 / ^ i ^ ^ - i ' (2-11) 
i= i j=i 

where the Q; , 'S are determined from functions of the eigenvalues of G, and 

the — A ' s from the same functions of the eigenvalues of H = ( I — A F ^ ) G = 

CR~^G. If, further, the Ct are ~ jV(0 , (Tg ) , then this model representation is 

evidently an ARIMA(0,p,p) process; however, we do not have to make this 

general assumption about the distribution of the one step-ahead forecast errors 

(and it will not hold initially in any model) to derive this result. Therefore it is 

true to say that through this representation we can describe all general ARIMA 

processes as particular constant TSDLMs, but that the converse is not true, a 

point stressed by Harrison and Akram [17]. This more general model form 2.11 

will be most useful at the start of chapter 4, when we endeavour to solve for 

W . 

2.9 Canonica l equivalence 

Having seen that via a particular linear transformation any unobservable TS

DLM can be reparamaterised as a simpler, observable model of lesser dimension, 

and having seen the convergence properties of such TSDLMs, we will usually 
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only deal with these (sometimes constrained) observable models. However, un

der the broad heading of observability, there are many models which have similar 

properties, and it is useful to group together these TSDLMs into classes linked 

by their similarities. 

The desired property with which we work is the forecast function ft{k) of 

section 2.2. We say that two models M and M i , defined by the quadruples 

{F,G,Vt,Wt} and { F i , G i , Fj i , W n } , with observability matrices T and T i 

respectively, are similar iff G and G i have identical eigenvalues. This then 

leads to identification of a matrix H - and it is readily shown that H = T~^Ti -

such that G = HGiH"-^ and F-^ = F^H"^ , and hence to the reparametrisation 

Oti = H~-^^t, whence 

Yt = F'[H-'et + vti . 

and Ot = HGiH-'Ot-i+Hwti 

from substitution for 6ti in equations 2.1 and 2.2. Therefore 

fti{k) = F f G ^ m n = ( F f H - ^ ) ( H G ^ H - ^ ) ( H m t i ) 

= F ^ G ^ H m „ , 

and fti{k) wil l be equal to ft{k) - i.e. the two models M and M i will have 

identical forecast distributions - iff Vji = Vt, H W t H ^ = W t i , with further 

rrit = H n i t i and Cj = HCtiH-^. This is our definition of equivalence (written 

M = M l ) . 
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If we next define the p x p Jordan block 

Jp(A) 

/ A 1 0 . . . . . . 0 \ 
0 A 1 . . . . . . 0 

0 0 0 . . . . . . 1 
V 0 0 0 . . . ... x ) 

i t is easy to show that any observable TSDLM with system matrix G , having 

a single eigenvalue A of multiplicity p, is similar to the TSDLM with system 

matrix Jp(A). Further, the first element of F must be non-zero for the TSDLM 

to be observable, and so the simplest representation of this particular TSDLM 

is the canonically similar model {Ep, Jp(A), Vt, Wt}, where Ep = (1,0,. . . , 0)-̂  

is a p-vector. 

This result generalises to multiple real eigenvalues: any observable TSDLM 

{ F , G , Vt, Wt} in which G has s distinct real eigenvalues A j , . . . , Aj each with 

multiplicities ri,...,rs respectively, and which has observabiHty matrix T , is 

canonically similar to the model { E , J , 14, Wt} where E = ( E ^ j , . . . , Fr,)^ and 

J = blockdiag[Jri(Ai),..., Jr^(As)], with observability matrix To. If, addition

ally, we have Wti = H W t H ^ for H = T Q ^ T , then the TSDLM as defined is 

canonically equivalent to { E , J , 14, Wfi} . This does, incidentally, generalise yet 

further to multiple complex eigenvalues of G , but we shall concern ourselves 

with just the above case. 

Example. In our earlier general seasonal model with underlying mean level, 

and taking the 3-dimensional model of 
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M = {(1,1,0)^ 
/ 1 0 0 \ 

0 0 1 
V o 1 0 / 

we have that G has eigenvalues -1 and 1, with multipHcities 1 and 2. Thus its 

canonically similar form is 

Ml = {(1,1,0)^ 
/ - 1 0 0 \ 

0 1 1 
V 0 0 1 / 

with observability matrices 

and To -

/ 1 1 0 \ 
1 0 1 

V l 1 0 / 

/ 1 1 0 \ 
- 1 1 1 

[ 1 I 2J 

Note that as model M stands, it is not observable; if we calculate the similarity 

matrix H = T Q between M and Mi we find 

H = 
/ 0 1/2 -1 /2 

1 1/2 1/2 
0 0 0 

which then suggests that the canonically equivalent form for M has Wfi = 

W ' 0 H W . H ^ of the form ( *i " ), where W;, is a 2 x 2 matrix. This in turn 
V 0^ o v 

suggests the possible reparametrisation to a 2-dimensional model, which we 

avoid by adding the constraint (0, l , l )^t = 0 (the zero sum seasonaHty con

straint) so that M is now constrained observable, with observability matrix 
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( ^ ° 
T i = 0 - 1 

[o 1 1 / 

( 1/4 3/4 1/4 \ 
3/4 -3 /4 -1 /4 

^ -1 /2 1/2 1 /2 / 

and thus the canonically equivalent form is 

r / - 1 0 0 \ 
M i = ( l , l , O f , O i l ,V„ H a W . H f , 

V 0 0 1 / 

for Hi defined as above. 

2.10 Long-term equivalence 

The canonical representation defined in section 2.9 is useful for reducing any 

given model to a simple-to-understand, standard form, and saves us replica

tion of effort when analysing two models which appear different at first sight of 

their definitions, but in fact turn out to be canonically equivalent. However, in 

chapter 3 we shall be interested in models which display equivalence of a subtle 

variation on canonical equivalence. This is when two models , not necessarily 

canonically equivalent, still have identical limiting forms of forecast distribution. 

Definition. Defining two models, written in canonically similar form as 

M = { E , J , K , W , } 
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and M' = { E , J , F t , W t + .5Wt} , 

we say that M and M' are long-term equivalent if they have identical convergent 

forecast distributions. 

Note that M and M' are no longer necessarily canonically equivalent, as 

there is no guarantee that we shall be able to write the variance matrix Wi+^W( 

as H i W t H f , in terms of the similarity matrix Hi- Indeed, i t is highly probable 

that the two models M and M' will belong to distinct canonically equivalent 

classes. However, we shall see in chapter 3 that in any constant TSDLM, writ

ten in canonical form, it is always possible to solve partially for the perturbation 

matrix (5W(, leaving this matrix with — 1) degrees of freedom. Hence, once 

we have reduced our model of interest to canonical form, we can find an infi

nite class of long-term equivalent models, not necessarily restricted by having 

the same canonically equivalent class, which is defined instead by a particular 

limiting forecast distribution. This has many fundamental impHcations which 

we explore in depth later in chapter 3, and which motivates all of chapter 4. 

Having developed so much theory, we can now turn attention to the issues 

raised earlier in section 2.6, relating to the discounting debate. 

83 



Chapter 3 

The Discounting Debate 

3.1 Sensitivity of the D L M to choice of Vt and 

When any inexperienced practitioners first attempt an analysis utiHsing a DLM, 

they are very likely to face the majority of their work - even though they may 

not realise it - combatting a seemingly simple task; one which is not in defining 

the model state dt or its evolution matrix Gt, nor the independent variables in 

F(. Instead, it lies in specifying the observational variance Vt and the system 

error variance Wj . And it quickly becomes apparent to the practitioner that 

the resulting performance of the DLM is very sensitive indeed to the choice 

of these variances - specifically, in their choice relative to one another. If one 

chooses elements too large in Wt with respect to Vt, all variations in the data 

series are accounted for as underlying changes in the state vector, and hence the 

forecasts tend to follow the last data point. Conversely, specifying Vt too large 
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with respect to some or all of the elements in Wt results in data perturbations 

being seen as merely natural noise in the time series, and so the forecasts tend 

to ignore the data altogether, following instead an evolution similar to a 'what-

if? ' analysis of considering the forecasts from initial priors alone. West and 

Harrison [36] provide a more detailed discussion of this, specifically in relation 

to the first-order polynomial model and sensitivity with respect to the signal-

to-noise ratio r = WjV. 

However, Ameen and Harrison's [2] introduction of the discounting matrix 

Bt, in equation 2.10, goes a long way towards tackhng this problem. The 

analysis is still slightly sensitive to the choices of the discounting factors 6,-, but 

to a much lesser degree; further, it is easy for a practitioner to realise, from 

following a few analyses that utilise a discounting matrix, that the 8i are almost 

always chosen as being greater than 0.85-or-so, thus effectively self-selecting Bj . 

This 'ease of model application', as Ameen and Harrison put i t , is very luring 

for the unwary. However, just because the practitioner has a 'natural feel' for 

the discount factors (i.e. make them around 0.95, give-or-take), he must not be 

tempted into its indiscriminant use. The advantages are not so clear. 

3.2 Discussion of the discounting approach 

There is undoubtedly a physical need to build in a 'system equation error', 

Wt, in our parameter updating process. This need is easily interpretable and 

understandable, for i t is simply a comment on the non-uniformity of the physical 

laws governing our model. When specifying Wt we are attempting to attach a 
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likely range of values to this system error. 

Let us now turn attention to the interpretation of the discount matrix, Bf. 

Ameen and Harrison state that "a single discount factor 6 describes the rate 

at which information is lost with time so that, if the current information is 

now worth I units, then its worth with respect to a period k steps ahead is 

6''I units". It is then subsequently correctly noted in West and Harrison [36 

that discounting should only be thought of as applicable for one-step ahead 

forecasting - i.e. for ;̂ = 1 - since the evolution of loss of information is evidently 

an additive one from equation 2.9, and not the exponential decay as suggested 

by Ameen and Harrison. Indeed, West and Harrison continue to state that 

when looking at 'what-if ?' scenarios, where practitioners are interested in long-

term forecasting from their present beliefs, we are faced with no choice but to 

revert to constructing a constant matrix W t which we will sequentially add to 

our updating of Tit{k) for all k = 1,2,.... (Rt(A;) is the k^^ step-ahead value 

of Rt). Their solution to our sudden problem is to construct W t using our 

current discount matrix B*; for if 6i is the discount factor associated with the 

i ' ^ diagonal block in G(, then the corresponding z'̂  block component in W j is 

given as 

W. , = G,,C.,,_iG,^(l - S,)/6i , ( i = 1, . . . . , r ) . 

But what price do we pay? If we are discounting the i^^ block by an (arbi

trary) 100(1 — ^ , ) % now, and we wish (as is often the case) to speculate ahead for 

a relatively long period of time (such as for an entire year whilst working with 

weekly data), we are faced with the distinct possibility of either meaninglessly 
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large variances and covariances in Rt(A;) (arising from currently small amounts 

of knowledge and/or arbitrary selection of a relatively small Si), or extremely 

small values in Rt(A;) representing unrealistically accurate beliefs (which would 

occur when current knowledge levels are high, so that 100(1 — 6i)% of R,t is 

extremely small and even 50 sequential additions of i t increaise Rt(fc) values by 

only a small level). We are also faced with the same problems when dealing 

with missing data within a time series, where a possibly long break in data 

collecting could see either extreme occurring in our prior knowledge at the next 

available data point. The former of these scenarios is of particular importance 

where some or all of the parameters of the model are bounded in range (as in the 

later example, where all parameters must lie within (0,1) - infiating variances 

here soon become ridiculously large with respect to this measurement scale); 

the latter of the two scenarios is far more serious where future forecasting per

formance is concerned, for it will take the model a long time to readjust to any 

perturbations in its parameter values that may have occurred during the period 

of no data. 

This brings us to the most worrying problem of the discounting approach. 

More and more information about our state vector is represented by smaller 

and smaller variances (and covariances alike) in Rt, culminating in the very 

important special case oi full knowledge of the state at time i — 1, in which case 

Cf_i = 0 and the discounting approach breaks down completely. (This is just 

as relevant even if we only have ful l knowledge of just one parameter Oi, where 

Ci^t-i is 0). Despite it only being relevant specifically at the initialisation of a 

DLM (when we specify mo and Co), or in any non-linear model, this is still not 
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a negligible problem, for it is most paradoxical that given a situation where we 

should be at our most powerful (i.e. with ful l knowledge about the present), we 

are reduced to a non-functioning level. 

3.3 E x a m p l e 

This most worrying aspect of discounting is best illustrated by reference to 

the non-linear example described earher in section 2.5. To compensate for a 

lack of experience in the field of advertising awareness modelling, the first 75 

data points taken are exactly as those appearing in West and Harrison, as 

is the analysis over this time, which makes use of the discounting approach. 

Hence possible problems arising from naive initial priors and choice of discount 

parameters are avoided. The ful l data sets are given in Table 3.1. 

Table 3.1: Advertising awareness data: Xt and Ht = Yt/ut. 

Xt : TVR units (weekly, by row) 
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Ht : Awareness response proportion, Yt/nt 

(These data sets can also be found in the Appendix as Series 2, and can be seen 

more clearly in Figure 3.1). 

After the initial 75 data points, Xt is then taken as following a hnearly 

increasing and decreasing pattern for 66 further points up to f = 141. Yt is 

simulated from this Xt data using the parameter values obtained after forecast

ing the West and Harrison data (whilst employing discounting); i.e. using the 

posterior 11175. In order for this simulated Yt series to be usefully forecastable, 

we must introduce a random error into the data (or else ft — Yt/rit always). So 

we take 

Yt = TitFfmt 

for mt = g t (n i t_i ) -t-

where Wt ~ J\f{0,Wt) , 

( n f , the sample size, is 66 throughout). Ft, gt(.) are as in the model given 

in section 2.5 and in West and Harrison, and Wt is simulated from the given 
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zero-mean Normal distribution, with variance Wf taken (for convenience of 

simulation) as being diagonal with constant and equal elements (Wf = cr^I). 

Finally, from t = 142 onwards, we take random TVR levels by drawing Xt from 

a uniform distribution on (2,10), and simulate a further 39 data points using the 

posterior m i 4 i , but with the value of /Ci4i shifted slightly from 0.0224 to 0.03. 

At the beginning of this period, t = 142 to 146, we introduce 5 missing data 

points, and then forecast using mi4 i as before. The simulated data over this 

final period is left unchanged in order not to mask the slight shift in behaviour, 

and throughout the analysis a single discount factor 8 = 0.97 is used (the value 

chosen by West and Harrison). 

Before discussing the results of the forecasting, it is worth noting some 

features of the data. Firstly, it must be remembered that although the TVR 

levels used between t = 76 and t — 141 appear rather artificial, the simulated 

data series Yt is nevertheless perfectly realistic and could just as easily have been 

produced by much lower and more random TVR values during a more efficient 

advertising campaign (i.e. one for which Kt was generally higher). There is 

nothing unusual about the Xt values after t = 141; in fact they are quite in 

keeping with TVR patterns and levels seen in a similar analysis from West, 

Harrison and Migon [37]. Secondly, the shift in Kt for this last period of data is 

also very much in keeping with the behaviour of this parameter - changes in the 

nature of advertising campaigns often produce much larger displacements in Kt 

due to changes in the effectiveness of the new campaign. Finally, the missing 

data values are also a feature of this kind of analysis, and there is nothing 

unusual about their coming at the start of a new campaign. (The reader is 
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referred to West, Harrison and Migon for examples of these features). In brief, 

we are dealing with a data set whose nature is reasonably akin to other data 

sets of this kind. 

The ful l forecasting run, together with the Xt values, is shown in figure 3.1. 

The performance is fine up to i = 141 and the missing data; however, after 

t = 146 at all but one point the one-step ahead forecasts ft are below the true 

data value, and seriously so for the first 15 points. There is only a very slow 

improvement in performance through to t = 180. (This is more clearly seen in 

Figure 3.2). 

Figure 3.1: forecasts of positive respondents, Y (*) using discounting (-) and additive (..) approaches 

. 1 1 ! ;! I ! 

50 100 

TVR levels, X, shown on x axis 
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Figure 3.2: forecasts of final 34 Y/n values (*); using discounting (-) and additive (..) approaches 

Clearly, we have a problem. If we look at our uncertainties aX t = 141, we 

can see the source of i t : these uncertainties are given as 

/ 1.68x10-3 4.65x10-^ -8.35x10"" 3.14x10"^ - 1 . 7 4 x l 0 - 3 \ 
4.65x10-" 1.57x10-3 -5.10x10-" -3.55x10"^ 6.09x10"^ 

C i 4 i = -8.35x10-" -5.10x10-" 8.17x10-" -5.68x10-^ 9.07x10-" 
3.14x10-5 -3.55x10-5 -5.68x10-5 1.03x10-^ -6.39x10-^ 

\ - 1 . 7 4 x l 0 - 3 6.09x10-5 9.07x10-" -6.39x10-5 2.10x10-3^ 

Here we see, certainly with respect to the third and fourth parameters, very 

small (relative to their scale of measurement) values on the diagonal of C 1 4 1 . 

In the case of Kt, this value of Ci4i[4,4] places a ±2 s.d. level of uncertainty 

in Ki4i equal to ±0.0064. Since AC141 = 0.0224, this places the 'true' value of 

Ki4i (namely 0.03, which was the shifted value that the subsequent data was 

simulated from) outside this range. What we have here is an example of the 

frailty of the discounting approach, as it has allowed us to express uncertainties 
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in the state vector that are clearly unrealistic. 

Figure 3.3: last 34 residuals from Y/n data; using discounting (-), with intervention (..), and additive (_•_) forecasting 

We can attempt to improve forecasting performance whilst discounting, by 

employing the 'safety belt' notion of intervention. The shift in /C141 represents 

the possible effect of a new advertising campaign, as already mentioned; if we 

were able to anticipate a potential change in the nature of the model such as this, 
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the intervention procedure has us decrease the discounting factor at the relevant 

time point to a much smaller value, hence producing a rnarked increase in our 

uncertainties within Rt and Cf. This "enables the model to adapt rapidly to 

any changes in the parameters .... at these times" (West, Harrison and Migon). 

The results, for the last 34 points, of following this method by setting ^ = 0.1 

at t = 147 is shown in Figure 3.3 above. (Note that this figure, along with 

ensuing discussions, utilises the residuals defined by ft — (Yt/rit) - the forecast 

minus the data point.) 

Despite the obvious improvement in absolute size (the variance is nearly 

halved), the pattern in the residuals remains much the same with predomi

nantly large negative values, which are noticeably more so when Xt suddenly 

increases, indicating a failure of the model to adapt to the increasing 'penetra

tion' effect of the advertising. And this is despite more than due caution at 

t = 147 (remember that the shift in K I 4 I was relatively small in the context of 

the changes that can occur in new advertising campaigns), where intervention 

resulted in a tenfold increase in our uncertainties (an increase of over 200% in 

standard deviation). 

The solution to the slowness of the model to adapt to changes, even with 

intervention, is straightforward. In such a long series, where there is a lot 

of information potentially available in relation to every parameter in the state 

vector, we must resort to an additive form for W j which contains our subjective 

judgements on Yaj{dt\0t-i), the 'lower bound' on the uncertainties in Rt (see 

section 3.4) which are then transferred to Ct. This will avoid the unrealistic 
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values we see in some places on the diagonal of, for instance, C 1 4 1 above. 

The choice of values in W t are, of course, extremely subjective and require 

much thought in relation to the scale of the parameters in the state vector. The 

discussion of the many interpretations involved in this choice of Wt is left to 

the next section; for now, i t suffices to show how the simple conclusions drawn 

by even an inexperienced practitioner, when attempting to assign values to Wt , 

can be far more effective than relying on the limiting choice of a single discount 

factor. 

We consider the diagonal of Var(^tl^t-i) element-wise. From section 3.4 we 

learn that we are trying to assign an uncertainty to a parameter value at time 

t, given its value at time t — 1. The conclusions are these: 

Var(Qt|at_i) = 2.5x10"^ 

Var(AIA-i) = 1x10-^ 

W&T{pt\pt-i) = 5x10-' 

Var(«;t|Kt-i) = 2.5x10'^ 

These variances are based on taking the measurement scales of the given pa

rameters, on which to ba^e beliefs in their one-step ahead variation, as be

ing the same as in the prior mo used by West and Harrison, i.e. mo = 

(0.10,0.85,0.90,0.02,0.30)^. The variance of the fifth parameter, Et, given 

Et-i, is more complicated. This TVR effect is given as Et = (/5t - Oit) - (A -

at — ptEt-i)e~'^'-^'^ and as such its variance given Et-i will depend not only 

upon the above variances for the other parameters, but also upon the very 
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value of Et-i- We can, however, throw light on the problem by considering the 

(important) special case oi Xt = 0 - then Et = ptEt-i, and so conditioning on 

Ot-i gives 

Var(Et|Et_i) = i;t-iVar(/,t|/>t-i) 

= 5x10-5 X El-^ . 

Typically, Et-i is around 0.4; this leads to 

-6 Var(Ef|£t_i) = 8x10 

This is an approximate lower bound for Var(£^t|£'f_i) - and as we are attempting 

to assign lower bounds to Var(^f |0 i_ i ) , it seems sensible to use this as our final 

choice. The analysis is usefully simplified by evaluating the rest of W t (namely 

the covariance terms) through discounting using the same discount factor of 

0.97 as before. Hence we still evaluate W j as ^ ( G t C t _ i G f ) , but importantly 

with the diagonal elements replaced as above. 

The entire data set Yt is then forecasted using Xt exactly as before. It should 

be noted that the shift &t t = 141 in Kt was to the mean value of K^I in m u i 

from the two separate analyses using discounting and the additive form for Wt; 

for reference, these two posteriors are 

m i 4 i = (0.125,0.763,0.902,0.0224,0.487)^ from the discounting method , 

and m i 4 i = (0.0895,0.702,0.915,0.0367,0.548)^ from using the above additive W t 
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Hence taking K141 = 0.030 as the shifted value (the mean of K141 from the two 

approaches, to 3 d.p.) does not 'favour' either method, and, indeed, simulating 

the data using the discounting posterior mi4i results in all the parameters being 

shifted by varying amounts in mi4i from the additive approach, over the whole 

of this final period. 

The results of forecasting using this additive W t are shown in Figures 3.1, 

3.2 and 3.3. The improvement is remarkable. 

Finally, for comparison, the residual means and variances from the last 34 

data points, for all 3 forecasting runs, are given in Table 3.2. 

Table 3.2: Residual means and variances from t = 147 to i = 180. 

Forecasting method Residual mean Residual variance 
Discounting, no intervention 
Discounting, intervention 
Additive Wt 

-0.0166 
-0.00645 
-0.00184 

7.93x10-5 
4.74x10-5 
4.10x10-^ 

3.4 Interpretation and further discussion of 

discounting 

Consider now the following derivation of the prior variance, R j . From the state 

equation, 2.2, 

E[^t|^t_i] = EliGtOt-i + wt)\dt-i] = GtOt-i , 

so Va.T{E[et\dt-i]) = G ( Q _ i G f , 
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and also 

Var(e,|0i_i) = V a r ( ( G , ^ , _ i + w O | ^ t - i ) 

= Var(Gt^f_ i |^t_ i ) + W( (since W j is independent of ^<_i) 

= W , . 

So since 

Var(^^IA-i) = Var(E[0 , |e t - i ] |A-i) + E[Vax(5t |«t_a) |A-i] , 

we have 

Rt = GtCt-iGj + Wt , as in section 2.2. 

Now we have W / expressed in a more readily interpretable form - and one which 

we made use of in the previous section - as the quantity Var(^<|0t_i). The values 

in Var(^t |^f_i) are a reflection of our uncertainty in the state at time when 

we know what our state is at time t — 1. This can be thought of as a 'lower 

limit' of the values in Rt , so that it is impossible to be in the position of having 

more prior information at time t about our state than is realistic within our 

model - something we have already seen in section 3.3, where discounting led 

to negligible absolute values within our state vector uncertainties. 

This natural interpretation of W< helped to negotiate the potentially disas

trous case of small Ct values earlier. The concept of discounting is much harder 

to interpret, however - it arises largely from consideration of the closed, steady 

D L M (see section 4.3). This model type produces a (generally) fast convergence 
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of Ct -> C , and hence Rt ^ R = C^W, Qt ^ Q = R^V, and At A = RjQ. 

Thus 

A - • ' - - i _ A 

R C 
and since C = — V = AV^ R = 

Q' " 1 - A • 

This leads to the conception of the discounting approach, since R = C -^-W im

plies that W = {YZA)C, and then we take 8 = \ — A. However, the methodology 

crucially depends upon the specification of the observational variance Vt, and 

also having scalar F = G = 1 - we cannot derive R = even in the general 

constant T S D L M s of section 2.7 where F , G are not the identity, let alone in 

the above non-linear example where we do not even specify a 14. Indeed, in 

many non-linear models, there is no such specification (variation in the data 

Yt is transferred instead via the conjugate prior analysis) and so discounting 

has no convenient interpretation or derivation. In fact, the general discount

ing statement, that Wt is a fixed percentage of the posterior state variance at 

time t — 1, can arise from the pecuHar position of requiring the uncertainty in 

our state vector at time given the state at time f — 1, to be proportional to 

6t-\d^_i (up to a constant). For if we take Var(0(|0t_i) = A9t-i0j_i + B , for 

A and B matrix constants (A diagonal), we find 

Wt = E[Va.i{et\dt-i)] = A(Var(^t_i) + mt_amf_i) + B ; 
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thus taking B = —Amt_ im^i gives 

which is (effectively) our discounting statement. Thus it is hard to credit an 

inexperienced practitioner with having a 'natural feel' for a concept that is 

not naturally interpretable in many examples of use - this comment by Ameen 

and Harrison is instead, one feels, a reflection of the parallel comment that 

discounting is parsimonious and easy to apply; however, we have just seen what 

practical difficulties this can lead us into without due care. 

Finally, it is wise to examine Ameen and Harrison's statement that "once 

the discount factors are chosen, estabhshed methods for the on-line estima

tion of the observational variance may be applied" a little more closely. The 

'established methods' include specifying a joint Normal/Gamma distribution 

for Yt and </> = 1/V (constant observation variance). By specifying a prior 

Gamma distribution for ^, <̂  ~ T{nt-.i,dt-i), and following a full conjugate 

analysis using p(4>\Dt) a p{Yt\(l>)p{(l>\Dt-i), we are led to expressing a fully de

fined and parameterised posterior for ^, namely (j> ~ r(nt_i + 1/2, dt^i + ^{Yt — 

ftY/Q*), (where ^ = Qt), which allows us to update our on-line estimate of 

V = l/(?^. However, this conjugate prior analysis (and, indeed, other 'established 

methods') has absolutely no reliance on the choice of discount factors - it merely 

requires that we specify a prior mean and variance for 6t (and hence Yt) which 

is passed through the analysis via R j whether we use discounting or an additive 

W j . This issue, as when looking at the motivation behind discounting, is not 
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even relevant in the advertising awareness example, or in any other non-linear 

models, where an observational variance is not specified. (The above conjugate 

prior analysis should be treated with caution anyhow; our hands are tied in be

lief expressions about Yt, since specifying a joint Normal/Gamma distribution 

for Yt and ^ = 1/V no longer allows us to make independent statements about 

the mean and variance of (Yt\(l)) ~ ^{ft,Qt/^))-

3.5 The step-ahead forecast error distribution 

as a method for estimating 

It is all very well to criticise the method of discounting, but we must remember 

that its real strength lies in its ease of application compared with the enormity 

of estimating the matrix W j (as well as the (generally) scalar Vt), which we have 

seen to be crucial specifications in the D L M framework, and whose estimation 

we still have little help with. 

In choosing W i we are still faced with various problems. Firstly, although 

interpreting the matrix as Var(^t|^t_i) assists us in our specification of the 

diagonal elements of Wt , we are not furthered in the search for the off-diagonal, 

covariance terms. These require tackling the awkward questions of how one 

parameter within the state vector is influenced by the perturbations in another, 

and there are some p{p — l ) /2 (where dt is p-dimensional) of these questions 

to answer. Very often we cannot realistically get further than place a sign on 

these covariances. Secondly, even the most experienced of practitioners will still 

be somewhat worried at accepting blindly that their final evaluation of W t will 
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serve them reliably throughout the analysis. 

The potential solution to our worries lies in their very wording - " . . . serve 

them reliably throughout the analysis". If it was possible to have a repeatedly 

updated on-line estimation of Wt , obtained through feedback from each time 

point of the analysis, then most practitioners would be greatly relieved - the 

system evolution variance could be happily left to 'update itself. Here we 

develop a method of looking at covariances of (Yt+j, Yt+k\Dt), for k > j , that at 

each stage produces a simple equation in a linear combination of the unknown 

elements of Wt. 

From the defining equations 2.1 and 2.2, we have that 

Yt+i = Ff^.dt+i + vt+i = Fj^^Gt+iOt + + vt+i ; 

Yt+2 = F j .2 (G<+2^i+ l+Wt+2)+Ut+2 = Ff+2(Gt+2(Gt+iflt + W t + i ) + Wt+2) + Vt+2 

— F^2Gt+2G<+i^i-f F^2Gt+2Wt+i 

+ Ff+2Wt+2 + Vt+2 ; 

and, generally, 

Yt+k = Fj^i,Gt+kGt+k-i • •-Gt+iOt+ Ff^^Gt+k • • •Gt+2'^ti-i + • • • 

+ Fj^kGt+k..-Gt+j+iWt+j + ... + Fj+k'^t+k + vt+k. (3.1) 

Thus, given the posterior {Ot\Dt) ~ (nit, Ct) at time t, we can calculate 

E[Yt+i\Dt] = Fj+,Gt+imt, 
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E[Yt+2 |A] = F^2Gt+2Gf+imt , 

and generally E[Yt+fc|A] = Ff+^Gf+fcGt+fc_i... Gt+init. (3.2) 

(For the rest of the section, all expectations are with reference to time t, and 

so the conditioning upon Dt is to be assumed). Additionally, we have that 

E[Yt+2Yt+a] = E[{Fj^,Gt^2Gt+,et){Fl,Gt+ret)] + E[{Fj^,Gt+,Wt+^){Fl,Wt+r)] 

since all other pairs in the product are independent, with E[wt+i] = E[wt+2] (= 

E[tJt+i] = E[t;t+2]) = 0 (or 0). Now, since each expectation is a scalar, we can 

take transposes of the right-hand half of each to get 

E[Yi+2Yt+i] = F^2Gt+2Gt+iE[0t^f]G^iFf+i -f- F^2Gt+2E[wt+iw^i]Ff+i 

= Ff+2Gt+2(Gt+i(Ct + {mtm'[))Gj^, + Wt+i)Ft+i , 

from noting that Var(et| A ) = Q = E[(^t| A ) (^t |A )^]-(E[^t |A ] ) (E[^t | A] )^ = 

E[9tBj] — (mtmf) , and that Var(wt+i) = E [ w t + i W ^ i ] = Wf+i . Then, after 

denoting the A;*̂  step-ahead forecast 3.2 by ft+k,k , we can evaluate 

E[{Yt+2 — ft+2,2){Yt+l—ft+l)] = E[y^+2it-|-l]~/t-|-2,2E[Ft+i]—/t+iE[l^+2]-|-/t+2,2/f+l ', 

the last two terms cancel and we are left with 

E[(rt+2-/t+2,2)(rt+x-/t+i)] = Ff^.2Gt+2(Gt+i(Ct + mtmf)Gf+i + W t + : ) F m 

- (Ff+2Gt+2Gt+imt)(Ff+iGt+imt) 
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= Fj^.GtMGt+^CtGj^, + W,+i)F,+i , (3.3) 

since the mtmj terms cancel through taking the transpose of (F^^^Gt+imt). 

This elimination of the m t m f term is why, incidentally, it is computationally 

wise to look at the covariances of the step-ahead forecasts, as opposed to simply 

the expectation of their products. (Note that Cov(yt+i, yt+2|A) = E[(it+2 — 

ft+2,2){Yt+l - ft+i)])-

Given that at all time points t we know exactly, what this represents is 

simply a linear combination of the elements of Wj+i , and so is just one equation 

in p(p -f l ) / 2 (potential) unknowns: we need to generate more equations. Be

fore moving further time steps ahead, we should examine the above expectation 

again, only this time replacing /t+2,2 with ft+2,1 (effectively E[l^+2|A-t-i])- Un

fortunately, since E[(y^+i — /t+i)|A] = 0, this quickly reduces to equation 3.3; 

hence we must look farther afield.. .With reference to, equation 3.1 above, we 

find 

Efy^+alf+i] = E[(F^3G4+3Gt4.2Gt+i^i)(F^iG(+i^i) 

-f E[Fj^^Gt+3Gt+2Wt+i){Fj+^^t+i)] , 

(since all other covariances are again 0), 

= Fj^^Gt+3Gt+2{Gt+i{Ct + mtmJ)Gj^, + Wt+i)Ft+, , 

and are led to 

E[{Yt+3 - ft+3,3){yt+l — ft+l)] = E[Yt+3Yt+l] - ft+3,3ft+l 
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— F^3Gt+3Gt+2(Gt+iCfG^j-f Wf+i)Ft+i . 

It is now easy to prove, using induction via the observation and state equa

tions together with 3.2, the more general result of 

E[{Yt+k-ft+k,k){Yt+i-ft+i)] = Fj^^Gt+kGt+k-i • • • Gf+2(Gt+iCtG^j+Wf+i)Ft+i. 

(3.4) 

However, to obtain enough information to solve for p{p+l)/2 unknowns in Wt 

using solely equation 3.4, we would have to wait until at least time (p(p-|-l)/2)-|-l 

into the analysis. For the advertising awareness model with p = 5 this represents 

only a time lag of at most 16 steps; for a more complicated seasonal model 

with monthly seasonality components (depending upon how the practitioner 

views the covariance terms, of course - perturbations in the { j + 6)*^ component 

may well be deemed unlikely to affect the j^^ term) we could be facing a wait 

until more than 50 steps into the analysis. But help is at hand from looking at 

covariances between the j * ^ and k*'^ step-ahead forecast errors, for both j, k > 1. 

For instance, from 3.1 above, the covariance between the 2nd and 3rd steps-

ahead forecast errors is found from 

E[Yt+^t+2] = E[(Ff+3(Gt+3(Gt+2(Gt+i0t+Wt+i) + Wt+2)+Wt+3)) 

(Ff+2(Gt+2(Gt+i^t+Wt+i)-Fwt+2))] 

= E [ ( F ^ 3 Gt+3 Gt+2 Gt+i 6t) ( F ^ 2 Gt+i ^t) 

+ E[(Ff+3Gt+3Gt+2Wt+l)(Ff+2Gt+2Wt+l)] 
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-|- E[(F^3Gf+3Wt+2)(F^2^<-i-2)] (again, all other covariances are zero) 

= Fj+sGt+3{{Gt+2{Gt+i{Ct+mtmJ)Gj+^+Wt+i)Gj+2)+^t+2)Ft+2 • 

Note that this time we have introduced a 'Wt+2 term. In order that we should 

be able to solve this equation for Wt+i we must now assume not only that the 

Wt+j terms are all independent, but that they are identically distributed as well 

- i.e. we are looking for W t = W , a constant. This assumption is nothing more 

than a statement of practitional fact, as once a value of Wf is finalised (or, 

for that matter, once discount parameters are decided) it will be held constant 

until there is some cause for intervention. Moreover, we have seen that constant 

T S D L M s are vital models in many applications. 

Having made the assumption that W t = W is constant, and following our 

previous methodology, we find the covariance term 

E[(yt+3-/t+3,3)(yt-|-2-/t+2,2)] = E[l^+3yi+2]-/t+3,3/t+2,2 

= Ff+3Gt+3((Gt+2(Gt+iCtGf+, - fW)G5.2)+W)Ft+2 • 

Again, it is easy to generalise this from equations 3.1 and 3.2, giving 

F^[{Yt+k—ft+k,k){Yt+j—ft+j,j)] = Fj^i^Gt+k • • • Gt+j+i{Gt+j ... G t + i C f G ^ i . . . G^^-

+ G t + j . . . Gt+2WGl,...Gj^^ + ... 

. . . + Gt+,WGf+;. + W)Ft+,- (for k > j ) . (3.5) 

In theory, therefore, we have some i{i — l ) / 2 equations resulting from looking 
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at all possible covariances between the j ' ^ and k*'^ step-ahead forecast errors, 

for 1 < j < A; < z. But we can also look at these covariances for j = k, or, in 

other words, from Var(Ft+fc| A ) - Now we have, simply, that 

V a r ( r t + i | A ) = = Ff^.,(Gt+iCtGS., + W)Ft+a + V , 

and generally, 

Var ( r t+ fc |A)=Ff+ , (Gt+fc . . . G t + i C t G ^ i . . . G^;i.-f-Gt+fc... Gt+2WG^2G^jfc+ • • • 

. . . + Gt+fcWGf+, + W)Ft+fc + V . (3.6) 

Hence, after i time points, we can generate some i{i -|- l ) /2 equations in the 

p{p -|- l ) / 2 unknowns of W as well as the extra unknown of V. Thus for a 

p-dimensional state vector we need only wait until the [p -\- l)st step in the 

analysis to be able to obtain enough information about W and V to solve for 

them, theoretically, and thus start an on-line updating estimation procedure. 

In practice, however, not all of the z(z -F l ) / 2 equations will be linearly indepen

dent, and we may well be forced to wait until further into the analysis before 

we generate a sufficient set of linearly independent equations (presuming that 

this is feasible at all; section 3.6 deals with the potential non-uniqueness of W ) . 

At this point it should be noted that there is nothing new in wishing to find 

an on-line estimation procedure for Vt and Wt; neither is there anything par

ticularly original in commenting that covariances between step-ahead forecasts 
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will produce equations in the elements of W t . Indeed, the search for identifi

cation methods of the noise variances within the Kalman Filter was underway 

even before Harrison and Stevens' [18] first (1971) paper on the D L M , in two 

papers by Mehra (1970 [28], and then 1972 [29]) in the I E E E Transactions on 

Automatic Control, and one by Godbole [13] which extended Mehra's method 

in 1974 in the same Journal. Mehra proposed various sub-optimal filtering iden

tification methods, from finding maximum likelihood estimates of both Qt and 

the adaptive coefficient A t (which can then be solved to give estimates of both 

Vt and W t through invertion of the relations of the Kalman Filter), to looking 

at the sequence of output correlations within the data series {Yt}. Godbole 

extended the applicability of these methods by noting that they do not rely 

on a priori knowledge of the mean of the noise sequences vt and Wt (a critical 

assumption made by Mehra), and also allowed correlations to exist between the 

two noise sequences. 

However, the major problem with these procedures, together with our pro

posed solution of equations 3.5 and 3.6, is that they all run the not-inconsiderable 

risk of divergence of their on-line estimates, since they all involve some form of 

sub-optimal filtering. This is considered at length at the beginning of chapter 

4. Further to this major practitional obstacle, all the other procedures refer

enced above generate a severely restricted number of equations in the unknown 

elements of W t , and may hence require the practitioner to 'put additional re

strictions' on this matrix, if it is indeed not uniquely determinable from the 

equations available. In fact, the only illustrative example given anywhere of 

the applicability of any of these complex sub-optimal filtering procedures is in 
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Mehra [28], where severe restrictions are placed upon both Vt and Wt due to 

the computational complexity and potential divergence problems of the method 

(a bivariate data series Yt is assumed, giving an observational 2 x 1 noise vector 

V t , with associated 2 x 2 variance matrix Vt) . 

Some of these ideas and associated problems then resurfaced in 1980 in a 

paper by Lee [25], who merely simplifies the unnecessarily intricate calculations 

of Mehra and Godbole by adopting the slightly different approach of construct

ing the minimal polynomial of Gt = G , the constant state evolution matrix, 

and then using this minimal polynomial to define a sequence zt as a Hnear com

bination of the data points Yt,...,Yt-m, where the minimal polynomial is of 

degree m. Calculating covariances of zt, zt-i, 0 < i < m, as opposed to covari

ances between Yt+j and Yt+k, does become simpler computationally - however, 

these covariances in the sequence zt are all 0 beyond lag m, and so the number 

of equations that it is possible to generate from this method is again severely 

limited, this time to m -|- 1. If the number of unknowns in W is greater than 

this, then Lee's advice is also to "put additional restrictions on the form" of 

this matrix - and as Ameen and Harrison [2] state, "tell that to a practitioner 

and he is going to get very upset"! 

Lee's approach may be cunning from a computational viewpoint, but in 

constructing the sequence zt from the minimal polynomial in G he is losing 

much possible information about the state evolution variance W . By looking 

at covariances between the output data points Ft+i directly, we can generate 

more potentially linearly independent equations in the unknown elements of 

W and V. However, our proposed solution method not only also faces the 
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divergence problems afflicting every other similar method - which, cis stated, 

will be dealt with in chapter 4 - but has only apparently generated a set of 

sufficient equations to solve for W and V. What we now have to investigate is 

the non-uniqueness of W . 

3.6 Non-uniqueness of W 

Whilst we have been quick to draw attention to the perils of discounting, we 

must be equally critical of our above method - and, indeed, any method that 

endeavours to solve for W in a constant T S D L M . There is a fundamental re

striction to be appreciated in attempting to define fully an additive system 

variance matrix. 

This section is simply concerned with that deceptively easy-to-use phrase: 

"define fully". In the literature reviews of the previous section there is con

stant reference to authors who were aware that their respective approaches may 

still not have been sufiicient to solve uniquely for the p{p + l)/2 terms of this 

matrix, even having generated a potentially sufficient set of equations. Ameen 

and Harrison, however, were aware of this crucial overparameterisation of W 

with respect to the forecast function ft{k), and it is almost certainly this non-

uniqueness that led to the search for an alternative method of specifying the 

loss of information in the prior variance Rt. 

It is best to motivate the rest of this section via an example that appears in 

both Harrison and Akram [17], and Ameen and Harrison. Consider the model 

110 



^' = {W) ,v ,w'} = {( i .o) . (j ; ) . v ' . w ' = ( ™ "^^)}. 

where a{a — 1) < W1/W2 for W ' to be a valid variance matrix (note that this 

2-dimensional constant T S D L M is already in ceinonical form, with G having 1 

as a repeated eigenvalue of multiplicity 2). Then, suppose we have chosen two 

distinct specifications of W ' from this model class, the first with some particular 

a 0 in M\ the second with a = 0 giving 

M = l ( i o ) M yw = f 0 \ \ 

Given that we are working with the convergent form of both models, it is easy 

to show from Lemma 3.2 (proven later in this section) that in adding SW = 

f aW2 specified W we change the convergent value of C under 
V aW 2̂ 0 ^ 

M ' to C ' = C -I- where 6 C = f ^ 0 V Then under M ' , we have 
V 0 -aW2 / 

var(y4, IA) = = E ^ R ' E 2 - f y 

= E [ j 2 ( l ) C ' J 2 ( l ) ^ E 2 - h E ^ W ' E 2 - f y 

= E j J 2 ( l ) ^ C J 2 ( l ) ^ E 2 + E ^ ^ W E 2 - K a + i 

= E^J2(1)^C J2(1)'^E2 + F.I8WF2 + Var(yt+i I A ) 

= -al^2 + CLW2 + Var(yt+i I A ) 

= V a r ( y t + i | A ) . 
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In general, from equation 3.6 we have that 

Var(y/+fc|A) = Var(yt+fc|A) + Ep2( l ) '<^C(J2( l )^) 'E2 

+ E^J2(1)'=-'(^W(J2(1)^)'=-'E2 + . . . + E^<5WE2 ; 

with J2(l)^ ~ ( 0 1 ) ' ^̂ ^̂  ^̂ ^̂ ^ 

E^J2(1)'5C(J2(1)' ') 'E2 = - P a W 2 

and E p 2 ( l ) W ( J 2 ( l ) ^ ) ^ E 2 = (2;-h l)aW^2 

Hence 

k-i 
X^E^J2(1)^<5W(J2(1)^)^E2 = k^aW2 

^ Var(y /+, |A) = Var(Ft+fc|A) 

It is equally easy to show that Cov{Y^_^_j,Y^^f.\Dt) — Cov(y+j ,y+fc |A) from 

equation 3.5, and this tells us that under M and M' the distribution of the 

forecast function ft{k) is identical for all time points. 

Given our initial intention of solving for W uniquely, this is something of an 

unexpected result. It shows that there are an infinite number of possible choices 

for W which will all give identical long-term or converged forecast distributions -

so trying to solve uniquely for W is, quite simply, infeasible. Whatever approach 

we adopt, we will always be left with one degree of freedom unfixed in W . There 

is a vital interpretation of this example too: whatever W we should decide to 
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choose from the canonical class, we can write as 

, _ ( Wr + aW2 aW2\ _ ( 0 \ ( aW-, aW-i 
i aW-, W2 ] ~ \ ^ Wi] \aW2 0 

= W + <5W 

i.e. we can fully define this long-term equivalent (as in the definition of section 

2.10) family of models by solving for W , which is diagonal (presuming its vari

ance matrix form is still satisfied). I t is only in West and Harrison [36] that the 

hesitant proposition is made, that these ideas "seem to suggest that any speci

fied model can be transformed to one with a particularly simple form, based on 

a diagonal evolution matrix". As they state, this can be done in many cases, 

but they are then distracted by considering the model { ( l , l ) , f ^ ^ y V , W } , 
V O W 

for which we can always choose 

~ I W 3 W2 i I - a a 

= W + 6W 

to give identical forecast distributions. Here we see that W is not diagonal 

- however, note that the TSDLM is not observable, since G = I 2 , and hence 

T = ^ -'̂  0 °^ ^^^^ ^ commented is always the case for G = Ip in 

section 2.8. Whilst we find that it is still not always possible to define a di

agonal W in all constant TSDLMs, by considering just observable models we 

shall now prove the valuable result that it is never feasible to solve uniquely for 

more than p elements of ^W, and hence that it is only ever possible to deter-
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mine p degrees of freedom in W . Therefore, so long as its variance matrix form 

is still satisfied, we can reduce W to a diagonal form in any observable TSDLM. 

Lemma 3.1: We define two observable, constant TSDLMS, which have the 

same canonical form and which, further, exhibit long-term equivalence as de

fined in section 2.10. These two models are given by 

M = { E , J , y , W } 

and M' = { E , J , F , W ' = W + (5W} , 

for E = ( E . „ . . . , E . , f 

Ep = ( l , 0 , . . . , O f , a p-vector , 

and J = blockdiag[Jri(Ai),...,Jr,(As)] 

with Jp(A) a p X p Jordan block, all as defined in section 2.9. From results in 

chapter 2 we know that under M, Cf —> C; At —>• A ; Rf —>• R and Qt Q, 

and hence under Af' , Ct ^ C + 6C; Af A - f <5A; Rt R + 6R and 

Qt ^ Q + ^Q- Then the perturbations in W and C, namely and SC, 

satisfy 

6W = 8C- 38CJ^ . 

Proof: We consider the fc*'' step-ahead forecast equations again. Since the 

models are long-term equivalent, these distributions are identical under both 

M and M ' , and so we have that 

Var(yt+fc|A,M) = Var (F4 , |A ,M' ) 
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=^ E^(J'=C(J^)'=-f J '=- iW(J^)^-H. . .+JWJ^-HW)E = E^(J'=(C-1-(5C)(J^)'= 

+J^-i(W + 5W)(J^)^-^ + . . . + (W <5W))E 

E^iJ'SCiJ^)'' + J''-HW{3^)>'-' + ... + 8W)E = 0 . 

But we must also have 

Var(y,+,_a | A , M) = Var(y4,_i | A, M ' ) 

^ E^iJ'-^SCiJ^)'-^ + J^-2,5W(J^)*-2 + . . . - [ - 8W)E = 0 , 

and so subtracting these two equations gives 

E'^{3''8C{3^)''+ 3''-\8W-8C){jy-'')E = 0 

^ E^J^-^(J5CJ^ + {8W - (5C))(J^)^-^E = 0 . (3.7) 

By looking at the covariances of F/̂ ^̂ -, Y^'^^ from 3.5 we come to a similar equa

tion, namely 

E^3''{38C3^ + {8W - 8C)){3^yE = 0 . 

If we consider first the simpler model definition of J = Jp(A) (one eigenvalue A, 

multiplicity p), so that E = Ep = (1,0,. . . , 0)^, we find that 

J ' = (J ,(A)) ' = ( 4 ) ^ ^ ^ , 
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where 

4 = 0 > i) 

{z = j ) 

4={ / . ) A M i - . ) ( o < ( j - e - ) < f e ) 

((i - 0 > )̂ 

) for A; < p - 1 

(i.e. (Jp(A))'^ has k -\-\ non-zero diagonals of constants, starting on the main 

diagonal of A'̂ , the superdiagonal of k\''~^^ etc.). Hence 

E ^ J ^ = Ej(Jp(A))* = (A^ k\'-''•••'( J ) . • •, ^A, 1,0,..., 0 ) , ^ < p - 1 , 

is a p-vector. 

This leads us to the conclusion that Ej(Jp(A))'^, for A; = 0, . . . ,p — 1, are all 

linearly independent (and so, trivially, are (Jp(A)-^)'^Ep). Therefore equation 3.7 

can hold for A; = 1 , . . . , p iff 

Jp(A)<^C(Jp(A))^ + (^W - ^C) = 0 . 

So, returning to the definitions of M and M ' , by recalling that the general 

Jordan form is J = blockdiag[Jrj(Ai),..., Jr,(A5)] and E = (E^j,.. • , E r J ^ we 

see that this result will hold for each block element of J in turn, due to the 

partitioning of J and E. Hence we must have that 3.7 holds for A; = 1 , . . . ,p if 

and only if 

J 5 C J ^ + ((5W-(5C) = 0 , 
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giving the required result. • 

Lemma 3.1 has achieved two things. Firstly, since ^R = J^CJ-^ -|- ̂ W , it 

shows that ^R = in our long-term equivalent model system. Secondly, it 

allows us to calculate the additional in W given a perturbation of to 

C in M'. Note that the converse calculation is not applicable, since we cannot 

compute from ^ W , given the form of Lemma 3.1 - instead, we must use 

Lemma 3.2. 

Lemma 3.2: With the two long-term equivalent models as before, M and 

M', as long as the models are non-degenerate (so that R E ^ 0 and we can

not express certain elements of 6t in terms of others) the perturbation in the 

convergent form of C in M ' , ^C, satisfies the relation 

E^^C = 0 . 

Proof: From the Kalman Filter recurrence equations 2.3, we have 

C' = R ' - 5 ^ (3.8) 

P ^ c p _ R , (R + 8R)EE^iR - f 8R) 
C + 8C - R + 8R - ^ - ^ 

R E E ^ R (^REE^R + REE^SR + SREE^8R 
= R + <^R-

Q + 8Q Q + 8Q 

However, as M and M' are long-term equivalent, Var(yi'+i|A, M ' ) = Q' = 
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Q-i^8Q = Var(Ft+i|A,M), so that 8Q = 0 and thus 

^ „ R E E ^ R ^„ <5REE2^R + R E E ^ < ^ R < 5 R E E 2 ^ ( 5 R 
C - f oC = R — h oR — 

^8C = (5R-

Q Q 

(^REE^R + REE^(?R + <?REE^gR 

Q 

_ 2REE^^R-h(?REE^^R , . „ , , . . 
= oR — (smce R and oR are symmetric) 

Q8C = g(5R - 2REE^<5R - <5REE^<5R . 

But from Lemma 3.1, ^R = 6C, and so 

2REE^<5C - f <5CEE^(5C = 0 ; 

since 2RE is not necessarily 0 (and, evidently, not necessarily equal to —^CE 

either), we require E-^^C = 0, the desired result. • 

This leads us to the following theorem. 

Theorem 3.3: With the two long-term equivalent models M = { E , J, V, W } 

and M' = { E , J , V, W = W -|- ^ W } , we can only fix at most p degrees of free

dom in W . Hence, as long as its variance matrix form is satisfied, we can express 

the evolution variance matrix W , which defines the long-term equivalence class, 

in a diagonal form. 

The proof follows easily from Lemmas 3.1 and 3.2. E^6C = 0, together 
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with 8C = 8R from Lemma 3.1, gives us that 

8Q = E^8RE = 0 

hence enabling us to reverse the proof of Lemma 3.2 and derive the Kalman 

Filter form 3.8 for C from E-^^C = 0. So Lemma 3.2 produces a set of p 

linearly independent equations in the elements of (where 9t, and hence E, 

is p-dimensional), and it is indeed impossible to determine more than these p 

degrees of freedom in ^C. Further, from Lemma 3.1 and = — J^CJ^, 

we are only able to fix exactly p dimensions in ^ W , and similarly in W . Hence 

we will always be able to write W as W -(- 8'W for W having exactly p non

zero elements, which we can choose to lie entirely on the diagonal as long as 

the variance matrix requirements on W are still satisfied. • 

The potentially diagonal W defines the long-term equivalence class of mod

els which all have a particular forecast function; the matrix ^ W , which is cal

culable from Lemmas 3.1 and 3.2, then spans this entire class with W . 

Example. Again, we consider the canonical model 

M = { ( i , o ) , ( ^ j iyv,w} 

Then Lemma 3.2 implies 

8Ci = 0 = 8C3 
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and so oC = « 
V 0 0 G 2 

the form we took for 8C in the earlier citation of this model. Next, is found 

from Lemma 3.1: 

8W = 8C-38CJ^ = 8C-^^'^' 
8C2 SC2 J 

( -8C2 -8C2 \ 
\ -6C2 0 ) ' 

which is again in the form given earlier. So we can write any evolution matrix 

W in this long-term equivalence class as W - f ^ W , for W equal to ( ^ j 
V 0 

(which is a valid diagonal form for this variance matrix so long as Wi and W2 

are both > 0), and further, for 6W of the form ( \ , the particu-
^ aW2 0 ^ 

lar class is uniquely determined - in other words, the forecast distribution is 

itself determined - by the choice of the (potentially diagonal) evolution vari

ance matrix W . (Note that this diagonalisation is always feasible when, for 

W = ( ^ 1 ^ 3 V we have W' < W' for then = f ^ 3 ) gjid so 

W = r ~ ~ ^ 3 0 y which is a valid variance matrix when 
V 0 W2 = W^^ 

Wi = Wi -W^> 0.) 
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3.7 Comparison of the discounting approach 

with specification of 

When assessing whether or not to model sequential loss of information about 

our state vector by employing the use of a discounting matrix B(, we must 

consider the following two points: 

(i) are we likely to have extreme levels of knowledge of the state, ^t, at any 

stage of the analysis? Having either very precise knowledge or, contrastingly, 

very vague information about dt will lead to, in both instances, a fixed percent

age discount of this information being an unrealistic absolute value to include 

inR, = B;'^'G,C,.,GjB;'/\ 

(ii) Can we assign realistic values to the diagonal matrix Bt that will cover 

the (almost certainly) differing nature of the elements of ̂ t? 

If the answer to (i) is "Yes", then the concepts of the discounting approach 

are not only a poor approximation for the actual processes involved in sequential 

information loss, but are also more than likely to lead us into major practitional 

difficulties. And even if the answer to this question is "No", the conscientious 

practitioner will not be happy with just choosing 8i = 0.95-or-so throughout his 

discounting matrix Bt; when faced with question (ii) he is likely to start feeling 

uncomfortable... "Are all my discount parameters the same? If so, why? Surely 

parameter X has more sequential variation than parameter Y? And is 3% or 

5% a better representation of my loss in initial information? For that matter, 

what is 3% of my initial information, and what will it be at time t? Hmmmm, 

what was question (i) again?... " 
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Once we start analysing question (ii) at length, it soon starts to beg all 

the further questions that, with a different interpretation, are required to be 

answered before we can develop an additive loss of information, in taking 

Rt = GtCt-iGj + Wt. And since the additive W< approach to the prob

lem automatically sidesteps question (i), we are naturally led into discarding 

the possibility of discounting when this issue is of serious contemplation. 

The only conceptual criticism of attempting to specify a matrix lies in its 

non-uniqueness that we have just illustrated. However, now that we have shown 

that we can simphfy the definition of any observable, constant TSDLM to one 

involving a potentially diagonal W , this non-uniqueness has, in fact, become 

an advantage in consideration of these models - in appropriate models we need 

only consider the specification of the easier-to-interpret variances within W , 

and can ignore the covariances. 

In their reply to discussions arising from their paper, Ameen and Harrison 

stress that the Bayesian approach to modelling allows us the freedom to express 

"the way in which we wish to view the data", and that it is "totally undesirable 

to be imprisoned by such concepts as stationarity". The undeniable truth in 

these comments is certainly not in question. The point of this discussion is 

to highlight an area of the Bayesian approach which is undoubtedly a major 

difficulty, and to endeavour to ensure that it is not swept under the carpet 

or left in the hands of a black-box method, just because it is conceptually 

simple. These are the exact types of black-box methods that the Bayesian 

should be endeavouring to free himself from! But for Jack-the-practitioner, 

these conceptual arguments and interpretations are of secondary importance to 
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the pressing question of "which approach do I choose for now?". And it is not 

doubted that there will be many instances where he will conclude, with care, 

that it is desirable to represent the loss of information from one time point to 

the next by a fixed percentage of that information, and hence use a discounting 

matrix. But if he simply chooses to follow this method to side-step the problem 

he is immediately imprisoned yet again, only this time by a concept which has 

been illustrated, in a practical case, to be potentially wholly inappropriate; 

with a little more thought the loss of information can be modelled in a far more 

effective and realistic manner. 

But i f the practitioner should decide that the answer to the first question 

raised above is, after all, "Yes", and hence that discounting is not appropriate, 

by opting to be more certain and thus trying to specify an additive W< he has 

not yet solved his problem in entirety. In the constant TSDLMs which so many 

practitioners do, and always will , use, he must still specify some p diagonal 

elements, and even this is a far from simple task, however he should decide 

to tackle it (specifying the diagonal elements of W< in the earlier advertising 

awareness example actually took much careful consideration, which of course is 

not apparent from the description of the analysis). 

And so we return to the earlier method of looking at step-ahead forecast 

variances and covariances to estimate V and W . To avoid the major pitfall 

of divergence due to sub-optimal filtering, in the next chapter we make several 

calculations in the constant TSDLM relating to the exact effects of model mis-

specification on this forecast distribution, enabling 'our Jack' to estimate the 

true values of V and W whatever initial specifications he should first choose. 
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Chapter 4 

Estimation of V and W in the 

Constant T S D L M 

4.1 Divergence of estimates due to sub-optimal 

filtering 

In the many examples cited in section 3.5 that attempt to estimate V and 

W through the forecast distribution equations 3.5 and 3.6, there is a common 

theme to be found throughout. They all run the not-inconsiderable risk of 

divergence of these on-line variance estimates due to their use of sub-optimal 

filtering techniques. 

We have already discussed, at the end of section 3.1, how the performance 

of the DLM is extremely sensitive to the choices made of and Vt. And as we 

shall see further in section 4.3.3, the effect of underestimating the signal-to-noise 

ratio, r = W/V, for instance (i.e. taking W too small with respect to V), in the 
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steady model, leads to the variance of the k*'^ step-ahead forecast errors tending 

to infinity, along with Cov(yt+i, 5^+21 A)- Hence specifying too small a W leads 

to the LHS of equation 3.5 inflating rapidly, from whence our feedback estimate 

W of calculated directly from 3.5, can be far too large, even assuming that 

we have correctly specified the observational variance Vt originally. This correct 

specification is, of course, extremely unlikely, and we can be led into an even 

more meaningless situation very easily: by overestimating V, we increase the 

limiting value of C = AV (see section 4.3.2), which when subtracted from the 

estimate of Cov(y^+i, y^4.2|A) can give a large negative value for W. 

In the more general DLM specification, underspecifying elements in W j with 

respect to Vt will mean that the data is largely 'ignored' during the analysis, 

since any perturbations in the data are accommodated by the model through 

the relatively large value of Vt, and not an underlying shift in the state vector 

Ot- This particular misspecification of W j , therefore,.results in little change in 

the posterior nif+i with respect to Gf+iint (qualitatively due to Rt being small 

relative to Qt, and so the adaptive coefficient A< is small). Thus the variance of 

the step-ahead forecast function will inflate rapidly under this {Wt,Vt} speci

fication, along with the LHS of equation 3.5. This makes the evolution of the 

on-line feedback estimates { W t } , at best, extremely slow in its convergence; it 

is more likely, in fact, that we will be faced with divergence of these estimates. 

Even following the preferred course of overestimating the elements of W t , so 

that the model 'over-adapts' (due to the large adaptive coefficient At) to per

ceived changes in the data evolution (resulting in F ^ j i r i t + i relatively closer to 

Yt+i than F ^ i G t + i m t = ft+i), does not guarantee us sensible convergence of 
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W , as we shall see again in section 4.3 when studying the steady model: whilst 

keeping the step-ahead forecast error variance function finite, we still introduce 

a (potentially large) bias into the LHS of 3.5. 

We find that the well-behaved limiting properties of the constant TSDLM, 

{ F , G , V , W } , allow us to produce equations that are exactly soluble alge

braically for V and W , irrespective of our initial model definition. 

4.2 Effects of model misspecification 

Suppose that the data evolves through a particular constant TSDLM 

Mo = { F , G , y o , W o } , 

with true variances VQ and WQ ; i t is then our aim to estimate these true values. 

We will presume that the practitioner has correctly identified the evolution of 

the data - i.e. he has defined a model with correct-' F and G - and has made 

initial specifications for the observation and state evolution variances of V and 

W in a model M. Further, we reiterate that the model is presupposed to have 

reached its convergent form. Then recall from section 2.8 that this general 

constant TSDLM of 

M = { F , G , \ / , W } 

^This is, of course, not usually possible, as we are only expressing our views (normally 
quite simplistic for parsimony) on how we would wish to model the data evolution; see, for 
instance, Harrison and Stevens [18], or West and Harrison [36] amongst others for more details 
on this discussion. 
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can be written in its limiting form as equation 2.11 

where 

Yt = '£ajY,.j + e, + ^^jet.j , 
j=i j=i 

p p p 
ai = J2^i 'i "2 = - X ! H ; ••• ! Op = ( - l ) P A i . . . Ap 

i=l i=l k=i+l 

and /?i = - E ^ i ; = E E PiPk ; . . . ; ^p = ( - i ) ^ + V i , 
i=i i=i k=i+i 

for Xi,pi the eigenvalues of G and H = ( I - A F ^ ) G = C R ^G respectively. 

From this model form we have 

E[Yt+i I A ] = arYt + ...-^ apYt+i-p -\-I3iet + ... + /9pet+i_p , 

E[Yt+2\Dt] = aiE[Fi+i|A] + Eaiy;+2-i + E/3iet+2-i 
j=2 3=2 

P 

and so on, to E[yt+p|A] = E Wt+p-jW •\- a^Xt + Pptt • 

We now introduce some notation. Henceforth, we consider these step-ahead 

forecasts under the two different models MQ (the true model) and M separately, 

and so take the expectations conditioned not only upon Dt-, but the relevant 

variance specifications {V, W } or {Vo,Wo}. We also require a distinction be

tween our symbolic notations under M and MQ; where a subscript is not already 

present on a symbol, we will simply make this distinction via the presence or 

otherwise of a subscript '0', and where a subscript is already present, we shall 

use a circumflex ('hat') on all symbols pertaining to the estimated model M 
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(whilst leaving those under MQ as they are). Further, we adapt some Box-

Jenkins notation slightly by denoting the k^^ step-ahead forecast error at time 

t, Yt+k-^Yt+k\Dtl by et{k\Dt,V,W) under M (and so by et{k\Dt,Vo,Wo) un

der Mo); this notation is then abbreviated additionally (and only) for the one 

step-ahead forecast error at time t, where we denote et(l | A , Vo, WQ ) = C t+ i and 

et{l\Dt, V , W ) = C f + i , so that Ct = at and Ct = Ct in relation to the Box-Jenkins 

notation. 

Thus proceeding to define 

X:(a,yt+i_, + M+i-i) = ei 

under M (as opposed to Yl^iiajYt+i-j + ^j^t+i-j) = under Mo), we have 

E[yt+i|A,v,w] = f i , 

E[Yt+2\Dt,V,W] = d i E [ y t + i | A , V , W ] + | " 2 

E [ y t + 3 | A , V , W ] = d i E [ F t + 2 | A , V , W ] - h a 2 E [ F t + i | A , V , W ] - h f 3 

= (d j + d 2 ) f i + aifa + fs , 

E[Yt+k\Dt,V,W] = E A f c - . i - , k = l,...,p, (4.1) 

where 

Ak = j2&Ak-J. forAo = l . (4.2) 
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These observations lead us to the following Lemma: 

Lemma 4.1: The dilference in the expectation of Yt+k under the two models 

M and MQ is given by 

E[y,+,|A,Vo,Wo]-E[r,+,|A,v,w]=5:A,_,- Y: ^ - ^ r - i S f ^ ^ W ^ - j > 
,=1 \ l + E / = i P / B 7 / / 

(4.3) 

for 1 < ^ < and where B is the backward shift operator (so that Bet = 

etc.; note also that the polynomial ratio ^ii^^J-j^^ acts in single combination 

on et+i-j). 

Proof: We remark that the eigenvalues Aj of G under MQ are the same 

as those under M , since we are presuming the practitioner has specified the 

correct system evolution matr ix , whereas the eigenvalues of H = ( I — A F ' ^ ) G 

and Ho = ( I — AoF-^)G are different, as the convergent values of A and AQ 

under M and MQ are influenced by the choice of variances in the model. Thus 

dj = aj for all j and so the Aj are identical under either model (since they are 

both functions of the A,- only) , whereas 0j and /3j are distinct under M and MQ; 

f r o m equation 4.1 this produces 

i=i 

i=i \j=i j=i J 

i=l \i=i ) 

Now, i n their l imi t ing forms we can equate the two models, and so f rom 2.11 
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we have 

j=\ j=i j=l 

P . \ P 

Substitution for et+i-j in the above equation f rom this l imi t ing fo rm then com

pletes the proof.* 

Now notice that 

Yt+k-nYt+k\DuV,W] = Yt+k-E[Y,+,\Dt,Vo,Wo] 

+ E[Y+k\Dt, Vo, Wo] - E[F,+,|A, ^ , W ] 

^ etik\Dt, V, W ) = et{k\Dt, Vo, W o ) + E[Yt^k\Dt, Vo, Wo] - E[Yt+k\Dt, V, W ] . 

(4.4) 

I n the proof of Lemma 4.1 we were only concerned wi th the latter part of this 

equation, E[Yt+k\Dt,Vo,Wo] - E[Yt+k\Dt,V,W]. Now we can return to the 

other half of equation 4.4. We would like to find et{k\Dt,Vo,Wo) in terms of 

et+i's that are independent of 4.3, since this w i l l ease our later calculations of 

yeiT{et{k\Dt, V, W ) ) and Cov{Yt+j,Yt+k\Dt, V, W ) considerably. This wish leads 

to the next Lemma. 
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Lemma 4.2: Under the defining model Mo, 

k ( ( k - i 

e , ( fc |A ,Vo ,Wo) = - E E A A — i 6*+. , 
.=1V Vj=o 

(4.5) 

for /3o — —1 and 1 < ^ < p. 

Proof: Equation 4.1 produces 

e , ( ^ | A , V o , W o ) = F t + f c - X : A , _ . e , 

t - i 
where = Yt+i - tt+i - {ai-jYt+j - 0i-jet+j) 

3=1 

and so 

et{k\Du Vo, W o ) = - j2 Afc-i (Y,+i - t,^i - X : ( a , - , y t+ i - A - i e t + , ) 

i t - i 
I 

-(Q:fc_iFj+,- - Pk-i^t+i) J 

((Afc_i - afc-i)r t+i + {/3k-i - Ak-i)et+i) 

Gathering coefficients of Yt+i gives, hr 1 < i < k - 1, 

(Afc_i - Qk-i - Ak-i-ia-i - Kk-i-20i2 - . . . - A ia f c_ i_ i ) Ff+i 

and since AQ = 1, this means that the coefficient of is - (Afc_,- - E j = i I^k-i-jOtj) i 
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but our definit ion of Ak-i, f r om 4.2, is exactly YljZi ctj^k-i-j- So the coeffi

cient of Yt+i, for 1 < i < A; — 1, is 0. The coefficient of Yt+k-i is given simply 

as ( A i — cti) = —{cxi — a i ) = 0 too, and hence all the coefficients of Yt+i, 

1 < 2 < it - 1, are 0. Thus 

k-l I i-\ 
et{k\Dt, Vo, W o ) = et+k - E i^k-i - Afc_.)et+i + Ak-i E A - j e ^ + j 

i=i \ j=i 

Then the coefficient of et+i, 1 < i < A; - 1, is given by 

-{I3k-i - Ak-i + Ak-i-iPi + Ak-i-2^2 + • • • + A i ^ f c _ . _ i ) 

= Ak-i - h-i - J^k-i-j^i = - E A ^ - . - i / ? i , 

since AQ = 1 and we define /?o = — 1 . Finally, the coefficient of et+fc-i is —(A ~ 

A i ) , w i t h the Cf+fc coefficient equal to 1. Thus we can write et{k\Dt, VQ, W o ) as 

given in 4.5, since this equation gives the required coefficients of et+,-, 1 < z < 

Example. Equation 4.5 in Lemma 4.2 enables us to calculate the theoretical 

step-ahead forecast error under any model. For instance, 

et(l |A, Vo,Wo) = Ao^oet+i = e^+i (4.6) 

(as by definit ion), and 

e<(2|A,Vo,Wo) = Ao^iet+i - Ail3oet+i - Aol3oet+2 

= ( a i - I3i)et+i + et+2 • (4.7) 
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(Note the distinction, therefore, between et{k\Dt,Vo,Wo) and et+k in general.) 

The straightforward addition of the two lemmas above into 4.4 now prove 

our final result of 

Theorem 4.3: We can write the fe"* step-ahead forecast error as 

e i W A , V, W) = e,(*: |A, Vo, W„) + E [ y , + i | A , Vo, Wo] - E [ y ; + i | A , V, w] 

= - t ( f i : A , A - . - , ) e J + i : A . - < ( ± (ft-ft(|±|k|5;))e.„_, 
i= i \ \ j = o / / i=i \j=i\ \ 1 + L ; = i P / B ' / / , 

(4.8) 

Equation 4.8 has allowed us to express the k^'^ step-ahead forecast error un

der the specified model M in terms of the true A;*'' step-ahead forecast error, 

et{k\Dt,Vo,'Wo) (under Mo) , plus an extra term. This additional term of 4.3 

implies that when we specify the varia.nces wi th in a constant T S D L M , we are 

introducing a bias into our forecast distribution, but one for which we can also 

calculate a precise algebraic fo rm. 

Before we do so, i t is worth noting two points in relation to equation 4.8: 

(i) as y -> Vo and W —> W Q , the convergent fo rm of A under M w i l l tend 

to the true value A Q , Hence H ^ Ho and its eigenvalues pi —>• pi] equivalently 

Pi Pi. Thus the extra term in 4.8 becomes zero as we specify the true variance 

value, or i n other words. 

e,(fc |A,V^,W)^e,(fc |A,Vo,Wo) 
Afo 
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which is as we would expect. 

( i i ) I n this second main term in 4.8 (arising f rom 4.3), the expression of the 

polynomial ratio in B , ^ ^ ^ ^ | r ' , w i l l be (evidently) an expression of the 

f o r m 1 + biB + 62B^ - | - . . . . Further, in this term as a whole, the summation over 

is for j = i,.. .,p and so i — j < 0; hence we w i l l always have 

, , A p , ^t+i-j = Ooe« + thet-i + b2et-2 -|-... , 

a linear combination (wi th known constants hi) in the true one step-ahead fore

cast errors at t ime t—j, for j = 0 ,1 , — The first te rm in 4.8, however, (arising 

f r o m 4.5) w i l l be a linear combination of et+,- for z = 1, •. •, k. Thus the two 

main terms in theorem 4.3 are indeed independent (once we have reached the 

l imi t ing f o r m for the constant T S D L M in question), a fact which we make use 

of i n calculating the exact forecast distribution for two example models. 

4.3 Example 1: the first-order polynomial model 

4.3.1 Model definition 

This is the simplest (and st i l l non-trivial) D L M form, that we met briefly in 

section 3.4. I t is a most widely used model that allows a practitioner to express 

the data evolution as being a locally constant underlying mean level, w i th a 

stochastic d r i f t added in to allow longer-term changes in level. 

The D L M is defined by the quadruple { l , l , y , V F } , giving the observation 
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equation 

Yt = fit+ vt for vt ~ M{0, Vt) , 

and the state equation 

fj,t = nt-\ -\- Wt where Wt ~ -V(0, Wt) . 

The term 'first-order polynomial ' comes f rom seeing this latter equation for the 

underlying level of the series, fit, as fi{t -f- 6t) = /x(t) -|- higher order terms - i t 

is the locally linear (or steady) model. The standard updating equations are 

obtained via the Kalman filter; for the posterior {fj,t-i\Dt-i) ~ W ( m t _ i , C f _ i ) 

we have prior 

( / x t l A - i ) ~ Ar{mt.i,Rt) , Rt = Ct-i + Wt , 

w i t h one step-ahead forecast 

(Ftl A - i ) ~ J^ift, Qi) , ft = mt-, and Qt = Rt + Vt, 

(indeed, note that the Ar*'' step-ahead forecast is ft+k-\,k = " ^ t - i for all k > 1), 

and posterior 

{Yt\Dt) ~ Af{mt,Ct) , where 

rut = rut-i + At^t 5 

Ct = AtVt, 
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et = Y t - f t t 5 

and At = Rt/Qt • 

I f , i n addition, the observation and system variances are constant (14 = V and 

Wt = W), the model is known as the constant, closed (as the t ime series receives 

no external information) model. I t is broadly used in sales forecasting and stock 

control, and is the model we study first since its relative simplicity lends great 

insight into the general use of equation 4.8 (and effectiveness of that u t ih ty) i n 

calculating exact feedback estimates of V and W. 

4.3.2 Limiting representation as ARIMA(0,1?1) process 

Figure 4.1:1st-order model, data (-), underlying level (..) 

20 40 60 
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Figure 4.1 illustrates the first 100 points of a generated constant model of length 

1000, with Ho = 10, V = Vo = 1, and W = Wo = 0.5, together with the 

evolution of the underlying level of the series over this time (the first 200 

points of this data set appears as Series 3 in the Appendix). The behaviour 

of the series, with its 'dependence on level', is rather akin to that of the Box-

Jenkins [3] ARIMA(0,1,1) process. There is good cause for this - the Umiting 

form for the constant model is indeed exactly such a non-stationary Box-Jenkins 

process; for it easily shown (see, for instance, West and Harrison [36]) that as 

the closed model updates upon receiving new data, the convergent form for the 

adaptive coefficient At = Rt/Qt is reached monotonically, and often rapidly, 

and is given as 

A = r { y / l + A / r - l ) / 2 , 

where r = W/V is known as the signal-to-noise ratio. Then, from the updating 

equations above, remembering that we are taking constant Vt = V and Wt = W, 

we also have the following convergences: 

Ct^C = AV 

Rt^R = AV/{1-A) 

and Qt^Q = R + V = V/{1-A) . 

So with et = Yt - rrit-i and mj = mt_i -|- AtCt, 

Yt - Yt-i = et + mt-i - i-t-i - mt-2 
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= it - {1 - At-i)et-i 

l i m ( F t - F t _ i ) = et-{l-A)et-i 
t—KXf 

= it — Sit-i where 0 < ^ = 1 — A < 1 , 

and with Var(et l A - i ) = Var(yt|Z)t-i) = Qt converging as above to Q, the 

limiting form is 

Yt = Yt-^+et-Set-^ , et'^Af{0,Q) • 

This is equivalent to the Box-Jenkins ARIMA(0,1,1) model of 

(1 - B)Yt = ( l - f eB)at , 1̂1 < 1, a* ~ 7^(0, cr,̂ ) , 

where, again, B is the backward shift operator such that Bat = Ot-i-

4.3.3 Effects of model misspecification 

Before applying theorem 4.3 to the first-order polynomial model, it is worth 

noting that the aim of the following sections (namely estimation of V and W, 

and, later in the chapter with respect to the second-order model, estimation 

of V and W ) can also be reached through a maximum likelihood estimation 

procedure, although this approach has not been pursued here. Through con

sideration of the first difference of the data series {Yt} in the first-order model, 
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and considering instead the series {zt} (for zt = Yt — Yt-i), we notice that 

zt = fit + vt- Ht-\ - vt-i =wt + vt- vt-i , 

giving a relation solely in terms of the error sequences { u j and {wt}. Hence by 

looking at the covariance structure of the zero-mean {zt} series (which will be 

expressible purely in terms of the variances V and W), we can use a maximum 

likelihood estimation procedure to solve for both V and W. 

To return to the above limiting form for the model, however, we can also 

apply the results of theorem 4.3. We have that Ho = (I — AoF-^)G HQ = 

(1 — Ao), and so the eigenvalue of HQ is simply p = SQ = 1 — AQ, with A = 

1. Thus Qi = 1 and pi = AQ — 1 (giving, incidentally, from equation 2.11 

that Yt = a-iYt-i -\- et + Pitt-i is indeed the same Box-Jenkins ARIMA(0,1,1) 

representation). Then equations 4.6 and 4.8 give us 

. ( l | A , V , > . ) = e „ . ( , . - A ( i ± f g ) ) e , 

= et^i + {Pi-Ml+PiB){l-PiB+P',B'-pfB'+...)) et 

= et+i + {Pr-pi{l + {Pi-^)B + 0',-PiPi)B'HPj',-pf)B^+ ...)) e, 

Thus - noting that the et{l\Dt,Vo,Wo) = et+i term is indeed independent of 

the rest of this equation - we have that 

Var(e,(l|A,V^,M^)) = + Var ( ( ^ - /3a) ( l - ^ i B +/J^^B^ - A ' B ' + . . .)e,) 
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2 Qo 
= Qo + ( / 3 i - A ) ^ ^2 

~ Pi 

So with /?! = —̂ 0 as above, this has produced 

Var(ee(l| A , V, W)) = Qo (l + ^ ^ ^ l ^ ) • (4-9) 

We can extend this to the k^'^ step-ahead forecast error et{k\Dt., V, W). From 

equation 4.2, since ai = ai = 1 and a/t = 0 for A; > 1, we have A^ = 1 for all 

k = 0,1,... and so together with ^o = - 1 , A = and ^k = 0 ior k > 1, this 

gives from equation 4.5 that 

et{k\Dt, Vo, Wo) = -{So - l)et+i - (So - l)et+2 - . . . - (^o - l)et+k-i + et+k 

= et+k + (1 - So)iet+k-i + ... + et+i) . (4.10) 

Then 4.3 yields 

E[Yt+k\Dt,Vo,Wo]-E[Yt+k\Dt,V,W] = 

independent of k. (Both these results are cited in similar forms for the ARIMA(0,1,1) 

process in Box and Jenkins, pps. 267-268.) 

So again noting that equations 4.10 and 4.11 are independent, we can find 
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f r o m 4.8 that 

Y&T{et{k\Dt,V,W)) = Ye,r{et+k + {^-So){et+k-i+...+et+^))+V^T((p-^]et 

= Qo{l + {l-So)'{k-l)) + {S-So)'Ve.T{et-Set-^+S'et-2-...) 

= Qo{l + (1 - So)'{k - 1)) + {S- S o f ^ , . (4.12) 

Equations 4.9 and 4.12 are valuable results. Not only do they confirm that 

as M ^ Mo (so that V VQ, W WO and A ^ AQ, S ^ So), we have the 

in tu i t ive ly required result of V a r ( e i ( l | A , V, W)) ^ Qo = V a r ( e i ( l | A , Vo, Wo)), 
Mo 

and, more generally. 

Var(ei(^| A , V, W)) ^ Var(ee(^| A , Vo, Wo)) , 
Mo 

but we can also see the effects of misspecifying the signal-to-noise ratio r as this 

misspecification becomes more and more severe: 

(i) recalling that A = r ( y ^ l + 4 / r - l ) / 2 , then 

A = (Vr^ + ir - r)/2 

7 0' 

so that ^ = 1 — A —>• 1 asr—>0 

Thus, f r o m equation 4.12 

Ya,i{et{k\Dt,V,W))^oo 
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and so drastically underestimating the ratio r = W/V ( in other words taking W 

too small in relation to V), leads to the data effectively being ignored and, due 

to the 'dependence on level' of the process, which results in large meanderings 

of the data away f r o m po, the variance of the k^'^ step-ahead forecast errors 

tends to infini ty. 

( i i ) Now, noting that y l + 4 / r can be wri t ten a s l - f ^ — ^ - 1 - ^ — . . . , w e 

have 

2 4 
A = ( 2 - - - h ^ - . . . ) / 2 1 as r - > oo r 

^ 6 = 1 - A ^ 0 . 
oo 

So, f r o m equation 4.12, 

Y^Tiet{k\Dt,V,W)) ^ Q,{i + ( i - S o n k - l ) ) + 6lQo 

= Yeir{et{k\Dt,Vo,Wo)) + SoVo . 

This t ime, as we overestimate the signal-to-noise ratio by setting W too large 

w i t h respect to V , the fc"' step-aiead forecast error sequence variance is finite, 

and inflated by a (potentially small) value of SoVo - w i th Vo = 1; WQ = 1/2 this 

value is 1/2. As West and Harrison state, this is a far more desirable situation 

to be i n (even more so for reasons we shall see presently), and so i n cases of 

uncertainty i t is always 'best' ( in terms of forecasting performance, at least) to 

overestimate W w i t h respect to V. 

The f u l l effects of the misspecification of r on the inflation in the l imi t ing 
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value of Var(e4(A;| A , V, W ) ) , for various true values of ro = WO/VQ, are shown 

in Table (4.1) below. 

Table 4.1: effects of r misspecification on Var(et(fe |A, V, W)). 

Inflation in 
Ya,T{et{k\Dt,V,W)) 

Vo ^0 So r s AoQo of (S - S o f ^ SoVo 
1 1/2 1/2. 0.05 0.80 1 0.500 

5x10 -3 0.93 2.827 
5x10-^ 0.98 10.444 

1 0.38 0.033 
10 0.084 0.349 

100 9.8x10-3 0.481 1/2 
2 1/4 0.610 0.05 0.80 1.281 0.330 

5x10 -3 0.93 2.582 
5x10-^ 0.98 10.174 

1 0.38 0.199 
10 0.084 0.913 

100 9.8x10-3 1.180 1.219 

(The AoQo column has been inserted for reference in equation 4.13 below). 

4.3.4 Estimation of V and W 

Now we return to the task in hand of calculating Vo and Wo- From the inde

pendence of equations 4.10 and 4.11, we have 

Coy{Yt+„Yt+k\Dt,V,W) = E[et{j\Dt,V,W)et{k\Dt,V,W)] 

= E [ e , ( i | A , Vo, Wo)et{k\Dt, Vo, Wo)]+Var 
' SQ-S' 

\ + S B 

Specifically, f r o m equations 4.6 and 4.7, 

CoY{Yt+uYt+2\Dt,V,W) = E[et+,{et+2H^-So)tt+r)\Dt,Vo,Wo]+V^x{^^ 
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= ( 1 - W o + (^-<^o) 
2 Qo 

1 - ^ 2 

= AoQo + { S - 6 o f Y ^ • (4.13) 

Again, this is a valuable result. I t confirms the intuit ive Hmiting result 

of Cov{Yt+i,Yt+2\Dt,V,W)^AoQo = Cov{Yt+uYt+2\Dt,Vo,Wo) [iTom equa-
Mo 

t ion 3.5, Cov{Yt+i,Yt+2\Dt,Vo,Wo) = Co + Wo = Ro = AQQO), as well as - far 

more important ly - enabling us to calculate Vo f rom knowledge of Var(et(l | A , V, W)) 

and Cov(Yt+i,Yt+2\Dt,V,W). For, by noticing that the inflations in equa

tions 4.13 and 4.9 are identical, subtracting these two produces 

V a r ( e , ( l | A , V, W)) - Cov (F+i , F+2I A , V, W) = Qo - AoQo = Vo . (4.14) 

So we can estimate VQ by simply calculating the sample one step-ahead fore

cast error variance = S^{et{l\Dt,V, W)), and the sample lag-one covariance 

6*12, and subtracting them. This estimate is not only stable, since now we are 

accounting for any variance misspecification in the model M, but is also highly 

accurate; its precision depends only upon the accuracy of the two sample esti

mates and C12, whose convergence properties we w i l l discuss presently. 

Extending our calculations to estimation of W, substituting C12 in 4.13 

yields 

Ci2 = AoQo + {S-Soy S2 Qo 
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=^Vo6^ + (Vo{6^-26-l)-{l-S^)C^2)8o + Vo = 0 

and Ao = TQ + - l ) /2 gives WQ = ^0(1 - Sof/So, so that 

60W0 = Vo-2Vo6o + Vo6'o 

= Vo- 2V060 + 8o{{l - S^)Ci2 - Vo{S^ -28- 1)) - Vo 

^WQ = (1 - <52)Ci2 - Vo{8 - If . 

This result, from equation 4.14 and by substituting the sample values and 

C12 for Var(et(l | A , V, W)) and Cov(Ft+i, K+2IA, V, W) respectively, then gives 

Wo = 2(7i2(l - 6 ) - S',{6 - 1)2 . (4.15) 

So Theorem 4.3 has indeed been sufficient to produce exact solutions for both VQ 

and Wo, assuming that both the sample estirnates C12 and are accurate. This 

is the 'big i f , of course - how rapidly the sample covariance of ^ E"=2(^-i ~ 

fi-i){Yi — /i,2) converges to its true value of Cn, and how the sample variance 

;rzrEr=i((>1 - f i ) - ^ l ) ^ for h = ^Er=i(>1 - f i ) , converges to its true value 

of Si 

4.3.5 Convergence properties of V and W 

We tackle this issue by further calculation of the variances of both Cu and S f . 

The estimate Cu is calculated by taking samples (Ft+i -'mt){Yt+2-'>nt), of a ran-

145 



dom variable C12, say, which has expected value E[Ci2] = Cov(3^+i, Ft+2| A ; V, W'). 

Then, by noting that 

C^2 = et{m,V,W)etim,V,W) 

S-So 
= (ej+2 + (l-«!)o)ei+i)+ — e< et+i+ -

\ \ l - b B ) ) \ \l SB 

Var(Ci2) = Var êt+2et+i + (1 - So)el^^ + (2 - <̂ o) 1 f l T ^ ) 

Now, (etiA), (et+i|A), (ei+2|A) are air-7^(0,^0) . Thus 

Var(ei+2et+i) = E[el,]E[^t+i] = Ql , (4-17) 

and 

Var(( l - 8o)el,) = (1 - 6o)^(E[e^^,] - Ql) 

in which Efe^^i] is found from the fourth derivative of the moment generating 

function of et+i, m{u) = e*^°V, evaluated at 0 - this gives E[e^^i] = 3Ql, 

whereupon 

Var((l - So)el,) = 2(1 - SofQl . (4.18) 

Further, 

Var((2-<5o) ( p ^ ] etCt+i) = {2-8oY{6-6ofY^r{{et+6et.,+6\.2+...)et+i) 
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whereupon we must deal with the all covariance terms that arise... However, 

all of the E[e(_,et_jej^i] and E[et+-iet-k] are zero due to the independence of all 

the functions of the e's, and so these covariances are all zero too, yielding 

V^T({2-So)(p-^]etet+] = {2-Soy{6-So)\Va.T{etet+i) + S^Va.T{et-iet+i) + ...) 
V \l-dBJ J 

= ( 2 - S o n S - S o r j ^ , . (4.19) 

Similarly, 

^ - ^ 0 \ _ , ,2 Ql Var e,e,+2 = ( ^ - M ' Y 3 ^ , (4.20) 
1-6B^ 

\ \ / f 

but the final variance term of Var(^l^f^) ê ) is rather more compUcated; we 

have 

Var((<5-6o)' ( r^) ' ) " (<5-'^o)'Var((e,+6e,_a + <52e,_2 + ...)') 

= ((5-6o)''Var(et(e«+(5et_i + . . .)+(5ei_i(ef+6et_i + . . . ) 

+ (52et_2(et + (5ei_i + . . . ) + . . . ) . 

But again, all the covariance terms are zero, since none of the ej_, terms are 

repeated - this gives 

V a r ( ( ^ - < 5 o ) ' ( Y ^ ) ) = {8-S,)\2Ql^S''Ql^b'Ql^.. M'Ql + 2S'Ql^^Ql^... 

+ b^Ql + h^'Ql + 2b^Ql + S-'^Ql + ... 
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= ( ^ - W ' O S ( ^ + j ^ j . (4.21) 

So finally, referring back to equation 4.16 above and again remarking that all 

the covariance terms within it are zero, we reach (through summation of equa

tions 4.17, 4.18, 4.19, 4.20 and 4.21) 

Var(Ci2) = Ql^ 2(1 - ^o)'^^ + (2 - 8of{8 - 8of ^° 
1-8^ 

+ i ^ - ^ o f r ^ + { 8 - 8 o r Q l ( - ^ + ^ 

=^ Var(Ci2) = go ( ^ 1 + 2 ( 1 + { 8 - 8 0 } \^ ^ _ 2̂ + 1 _ 4̂ +(1 , 5 2 ) 2 

(This is the theoretical variance of Cov{Yt+i,Yt^2\Dt, V, VF), of course, whereas 

we are interested in the theoretical variance of the sample, Var(Ci2) - this comes 

from the Central Limit Theorem as 

Var(Ci2) = ^ V a r ( C i 2 ) •) 
n — i 

Under the correct model specification of M = MQ, therefore, the convergence 

of C12 to E[Ci2] = Cov{Yt+i,Yt+2\Dt,V,W) is indeed relatively rapid, with 

Var(Ci2) = ^ i W i l - S o f ) ; taking Vo = 1, Wo = 1/2 gives 80 = 1/2, Qo = 2, 

and so Var(C'i2) = 6/(n — 1). Additionally, we can again see the elTects of 

misspecification of r: 

(i) as <5 ^ 0 (r ^ cx>), Var(Ci2) Ql{l + 2{l - 8of + 6l{{2 - 8of + 1 + 28^) 
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= QliS - 48o + 181 - ^81 + Ut) , 

which with Vo = 1, = 1/2 is 9.75. Hence as r o o , V a r ( C i 2 ) 9 . 7 5 / ( n - l ) 

with this model specification; in general, since 0 < 6o < 1, Var(C'i2) will have a 

finite and relatively small upper bound of 5Ql/{n — 1), so convergence of C12 to 

Cov(Ft+i, 1̂ +2| A ; V, W) will always be rapid through overestimating r = W/V. 

However: 

(ii) as ^ —» 1 (r —> 0), Var(Ci2) 00 and so underestimation of r not only 

causes the estimate W to become more and more biassed, but convergence of 

C12 also slows considerably, again showing the value of overestimation of the 

signal-to-noise ratio. 

Now consideration turns to the sample variance of the one step-ahead fore

cast errors, = S\et{l\Dt, V, W)) -^Qo + {8- 80)^^. The rate of conver

gence of this sample variance will depend upon its own variance. If we take 

X = e,{m,V,W) = e , + i - F [ ^ - ^ j e , ~ A r ( 0 , 4 ) , 

where 4 = Qo + - M ^ ^ ^ ' 

then S! = l ^ t x ] r i ^ - x l - ^ 

whence Y^iS',) = ^ ^ ^ ^ ( 4 ) ' 

2 

With 8 = 80^ Var(5i) = ^̂ 2̂̂ (5o5 .̂nd so convergence of 5^ is fast, as is the case 
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when we overestimate r {6 ^ 0), when Var(5'i) —> ^^"^^^Ql{l + SQ^. Again, 

however, by underestimating r {6 1) this variance ultimately tends to infinity 

and convergence of is slowed. 

4.3.6 Simulation results 

We have seen many theoretical results thus far, and these are best understood 

through practical illustration; we firstly take a simulated constant model series 

of length 1000 with VQ = 1, WQ = 1/2, so that AQ = So = 1/2, Qo = 2, and 

show the results of fitting a constant model with correct and various incorrect 

specifications of r = W/V, for both n = 100 and then the full series {n = 1000), 

in Table 4.2: 
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Table 4.2: results for various fitted constant models on simulated series (Series 
3 in the Appendix), up to lengths n = 100 and n = 1000, with 

Vo = l,Wo = 1/2 

C 12 Var(ei(l|A,<^)) Feedback Feedback Var(Ci2) Theor
Sample Theor Sample Theor estimate estimate Sample Theor etical 
value etical value etical ofVô , of Wo, value etical Var(5i2) 

V W s Ci2 value 5? value Si — Ci2 eq. 4.15 value (xn) 
Up to length n= 100 

1.0 0.5 0.5 1.163 1 2.374 2 1.211 0.569 6.291 6 7.92 
1.0 0.05 0.8 1.604 1.5 2.826 2.5 1.222 0.528 9.352 9.555 12.38 
0.1 0.005 0.8 1.595 1.5 2.820 2.5 1.225 0.525 9.376 9.555 12.38 
1.0 0.005 0.932 3.268 3.827 4.402 4.827 1.134 0.426 32.21 32.94 46.13 
1.0 0.0005 0.978 5.484 11.44 6.077 12.44 0.593 0.240 72.63 185.4 306.6 
1.0 1 0.382 1.210 1.033 2.420 2.033 1.210 0.572 6.549 6.214 8.184 
1.0 10 0.084 1.581 1.349 2.800 2.349 1.219 0.546 9.558 8.508 10.93 
10 100 0.084 1.581 1.349 2.800 2.349 1.219 0.546 9.558 8.508 10.93 
1.0 100 0.010 1.733 1.481 2.958 2.481 1.225 0.532 11.08 9.586 12.19 

Up to length n = 1000 
1.0 0.5 0.5 0.921 1 1.954 2 1.033 0.432 5.252 6 7.992 
1.0 0.05 0.8 1.281 1.5 2.320 2.5 1.039 0.420 7.604 9.555 12.49 
0.1 0.005 0.8 1.280 1.5 2.321 2.5 1.041 0.419 7.606 9.555 12.49 
1.0 0.005 0.932 3.155 3.827 4.196 4.827 1.041 0.411 25.83 32.94 46.55 
1.0 0.0005 0.978 7.262 11.44 8.331 12.44 1.070 0.317 119.7 185.4 309.2 
1.0 1 0.382 0.972 1.033 2.003 2.033 1.031 0.437 5.613 6.214 8.258 
1.0 10 0.084 1.309 1.349 2.341 2.349 1.032 0.434 8.226 8.508 11.02 
10 100 0.084 1.309 1.349 2.343 2.349 1.034 0.433 8.226 8.508 11.02 
1.0 100 0.010 1.443 1.481 2.478 2.481 1.034 0.429 9.399 9.586 12.30 

The third and eighth lines in both halves of the table have been put in to illus

trate how it is only the signal-to-noise ratio r = W/V which is of importance 

in the calculations, and so for the remainder of the fitted models V has been 

left at a (computationally) convenient value of 1. There are also several other 

features worthy of special note: 

(i) the convergences of Cu and behave almost exactly as predicted -

they are indeed fairly slow when r is underspecified (more so for n = 100), but 

for r overestimated both of these estimates are remarkably accurate, as is the 

behaviour of the sample variance of Ci2-
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(ii) We can also see how both C12 and are indeed affected in a very sim

ilar manner (remember that the bicis in both of these estimates is theoretically 

identical), and so the overall effect on the calculated estimate of Vo - just the 

difference in the two estimates - is small, (negligible for n = 1000), as is the 

influence on the feedback estimate of WQ. In fact, even for gross misspecifi

cation of r (by factors of 200 and 1000 respectively), the resulting calculated 

estimates for VQ when n — 1000 are out by only 3.4% and 7%, and those for WQ, 

although in error by slightly more, are so far removed from the initial model 

specifications of W that the forecaster would soon be moved into rethinking 

them! (Leading, of course, into a significantly more accurate specification area 

of r, where convergence would then be rapidly achieved). 

(iii) There appears to be some evidence of bieis in the variance estimates, 

nonetheless; it is more apparent in the estimates of at n = 100, and in 

those for WQ at n=1000. This bias is most probably due to the non-Unearity 

of equations 4.9, 4.13 and 4.15 with respect to the these estimates in terms of 

the relevant sample variance and covariance estimates, but is mostly negligible, 

especially in the most severe model misspecifications when compared to the 

scale of error in the original variance specifications. 

4.3.7 Comparison with sub-optimal filtering 

The closest that previous work has come to combatting the problem of diver

gence of estimates, due to sub-optimal filtering in the steady model, has been by 

Cantarelis and Johnston [7] in 1983. They tackle on-line variance estimation in 

this model via a maximum likelihood approach, from looking at the likelihood 
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Lt oc p{Yt\Dt-uV,W) = ^ e ^ 2 « t ( ^ ? ) > , where ct = Yt - /«, the one step-ahead 

forecast error in the usual notation. Taking the limiting form of —»• and 

maximising E * = E[ln(if)] with respect to V and A (since we know the variance 

of Ct) then yields the MLE's of 

V* = {l-A)E[e\] 

r 4 
and A' = - + 

2 \ V f 

As it stands, this is nothing more, of course, than a sub-optimal filtering tech

nique again, since we are merely inverting existing limiting equations from the 

Kalman Filter. Cantarelis and Johnston try and minimise the risk of the po

tential resulting divergence by adopting a multi-process class I approach, where 

it is cLssumed that j alternative models, M^^^ for k = will, between 

them, adequately describe the correct model. Each model has an uncertainty 

p\''^ associated with it at time t, updated via Bayes' theorem, as well as a 

particular variance ratio of r̂ *̂ ). Practically, to provide a black-box method 

for setting up the approach, a total of j = 8 models are generally used, with 

(̂1) ^ 1̂  (̂fc) ^ r(fc-i)/2 for ib = 2 , . . . 8 (so that r(«) = 1/128, a reasonably wide 

r̂ ^̂  range), and uninformative priors p^l'^ = 1/8, CQ''̂  = IOOVQ*'^ (for initial 

V estimate of VQ''^ in the k^^ model). At each variance updating stage (taken 

to be every ten time points), the overall posteriors for Vt, Wt, rrit and Ct are 

calculated using a probability weighting combination of the relevant parameters 

from each model M . 

This multi-process method has two obvious drawbacks. The first is that we 
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may still face divergence of our solutions, due to the chosen set of r̂ '̂ '̂s not 

containing the true value TQ; the second that we evidently face a huge increase 

in computational complexity and time by having to carry so many alternative 

models, updating each one and re-estimating our posteriors at each stage via 

probability weighting. We have no prior knowledge of speed of convergence, 

and may well proceed for some time before it is apparent that either we still 

face divergence, or need more alternative models to increase this convergence 

rate. But of course, by increasing the number of models we not only increase 

probability of convergence, we also increase our computational time too. 

To illustrate, we shall compare approaches using the same series that Cantarelis 

and Johnston apply their multi-process method to - the widely-known series 

from Box and Jenkins [3] relating to concentration readings from a chemical 

process. The full data set is Series 4, given in the Appendix. 

Box and Jenkins fit an ARIMA(0,1,1) process to this series, and estimate 

the autoregressive parameter (f> to be 0.7, giving the equivalent form of a steady 

model with noise variances V = 0.071 and W = 0.0091, so that r = 0.128 (note 

that this does, coincidentally, fall well inside the boundaries of the Cantarelis 

and Johnston range for {r^''^, ensuring reasonable convergence properties of 

their multi-process approach). We choose to fit several starting choices of V and 

W, with V chosen from the range (0.01,0.1,1) and W from (0.0015,0.015,0.15). 

Hence r takes values from (0.0015,0.015,0.15,1.5,15), thus varying by factors of 

100, 10, 0.1 and 0.01 from approximately its a priori 'true' value (according 

to the literature that has so far analysed it, that is!), mo is taken as 17.0 in 

each model, and to avoid biassing the convergence rates of either approach we 
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further take the relatively 'uninformative' prior of Co = 10 (corresponding to 

the Cantarelis and Johnston guideline of lOOVo for Vo = 0.1). Comparisons are 

made by calculating the feedback estimates of V and W every 10 time points, 

using equations 4.14 and 4.15, and sample one step-ahead forecast error variance 

S! = S\e,{m,V,W)) = -^^Y:=r{{Yi-fi)-hyfovl, = i E r = i ( > ^ - / . ) , a n d 

covariance Cu = ^^"=2(^-1 ~ /e-i)(K-2 - fi,2)- The full results, including 

Cantarelis and Johnston's analysis for comparison, are given in Table (4.3): 

Table 4.3: Results of fitting various steady models to chemical process 
readings. Series 4 (see Appendix). 

Time t 
V W Ests. 10 20 30 40 80 120 160 197 

0.01 0.0015 Vt .076 .073 .061 .062 .099 .080 .066 .060 
Wt .0469 .0241 .0212 .0180 .0078 .0102 .0118 .0185 

0.015 Vt .066 .070 .059 .060 .098 .080 .065 .059 
Analysis Wt .0722 .0283 .0264 .0218 .0097 .0114 .0128 .0195 

using 0.15 Vt .059 .066 .057 .058 .097 .079 .065 .058 
equations Wt .0824 .0399 .0342 .0274 .0124 .0132 .0142 .0210 

4.14 0.1 0.0015 Vt .081 .068 .058 .060 .099 .081 .066 .059 
and Wt .0226 .0324 .0258 .0212 .0092 .0111 .0126 .0192 

4.15, 0.015 Vt .076 .073 .061 .062 .099 .081 .066 .060 
together Wt .0469 .0252 .0219 .0185 .0080 .0103 .0119 .0186 

with 0.15 Vt .066 .070 .060 .061 .098 .080 .065 .059 
Wt .0722 .0302 .0275 .0226 .0101 .0116 .0130 .0197 

and 1 0.0015 Vt .083 .066 .057 .059 .099 .081 .066 .059 
C12 Wt .0081 .0283 .0269 .0221 .0096 .0113 .0128 .0194 

0.015 Vt .082 .070 .059 .061 .099 .081 .066 .060 
Wt .0223 .0327 .0260 .0213 .0093 .0111 .0126 .0193 

0.15 Vt .077 .074 .062 .062 .099 .081 .066 .060 
Wt .0467 .0287 .0240 .0200 .0088 .0108 .0123 .0190 

Cantarelis Ct .36 .26 .24 .22 .24 .21 .20 .21 
and Qt .161 .119 .104 .100 .127 .109 .097 .100 

Johnston Vt .121 .088 .074 .071 .100 .083 .069 .071 
analysis Wt .0039 .0046 .0056 .0059 .0039 .0056 .0070 .0077 
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There are several notable conclusions to be drawn here. Firstly, the speed of 

convergence of our exact feedback equations is extremely rapid, irrespective of 

how ill-informed our initial estimates of V and W are. Even after only 10 data 

points have been received, the range of t̂ o is merely (0.059, 0.083) - coming 

from the grossest initial r estimates of 15 and 0.0015 respectively - and for Wio 

the range is (0.0081, 0.0824), again from the most inaccurate initial estimates 

of r. All of the Vio estimates are in extremely close agreement with their 

respective final t̂ g? values, and even those for the (more sensitive) Wio differ 

from their respective W197 estimates by not more than a factor of 4; moving to 

the next time point this factor is inside 2. The corresponding convergences for 

Cantarelis and Johnston's analysis is noticeably poorer for and is no better 

at time ^ = 20 than even our worst misspecification feedback at this point. 

The second, easily overlooked, point to remember here is that the Cantarelis 

and Johnston analysis is not only taking significantly more effort and computer 

time throughout, but the multi-process approach also means that the feedback 

estimates they are producing are, at each stage, their best estimates, calculated 

from a probability weighting of all the available information at that time. This 

is in extremely stark contrast to our exact approach, which yields remarkably 

accurate (relative to the final values) feedback estimates V and W immediately 

and for each individual model. Indeed, were we to perform a similar probability 

weighting analysis with just any two differing initial r specifications from those 

above, we would receive even more accurate feedbacks throughout the analysis. 

Finally, to return to an aside in the previous paragraph, the final estimates 

require some interpretation. Several features must be observed here: the most 

156 



obvious is undoubtedly that the two methods have produced quite different figj 

values. Whereas the various 1̂ 97 estimates are promisingly close, Cantarelis 

and Johnston's estimate of 0.0077 corresponds to f i s j = 0.108, compared 

to Box-Jenkins' r = 0.128, and (assuming V197 — 0.06 and VF197 = 0.019) 

our value of ri97 = 0.317. Further, the patterns in the feedback estimates are 

reassuringly similar, especially so throughout our exact feedback calculations, 

but also across both approaches, with a noticeable 'blip' around t = 80, where 

all the r estimates decrease dramatically due to a large increase in Y to about 

0.1, and a decrease in W of around twofold. There is also something of a 

discernible change around the end of the series, this time due to W apparently 

increasing, and it does appear that the small bias evident in table 4.2 is visible 

here too; perhaps the non-linearity of equation 4.15 is creating a slight inflation 

in the estimates { W } . 

There are few conclusions that we can draw with confidence, therefore -

firstly, both approaches appear to be equally sensitive to changes in the se

ries (there is a relatively large 'wobble' in the data through t — 63,64,65, and 

again through t = 190,191,192,193), and, secondly, the 'true' value PQ is surely 

quite close to 0.07 after all (without trying to place a confidence interval on 

this opinion!). As for VF̂ , even allowing for a certain level of bias, the quite 

remarkable similarity after f = 120 in both value and behaviour of this param

eter, across all the models using the exact analysis, lends huge weight to the 

opinion that the 'true' Wv^-j value is rather larger than certainly the 0.0077 ob

tained by Cantarelis and Johnston, and even the 0.0091 of Box-Jenkins. There 

is further evidence to support this when we see how the former's estimate of 
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W has risen steadily after t = 120. One would like to believe that our exact 

algebraic analyses have all converged to the most accurate estimate possible of 

WiQ7 ~ 0.019, but it must be remembered that there is no issue of "who is 

right", of course, since we are fitting nothing more than an approximate and 

hugely over-simplistic mathematical model to a complicated physical system, 

and one which is evidently dynamic and constantly changing. 

There is one final and undeniable conclusion, however: not only have we 

avoided the complexity of the Cantarelis and Johnston approach, and finally 

shown that there are exact relations to be found in the steady model for es

timating the variances therein, but we have guaranteed rapid convergence to 

these estimates for whatever prior specifications we make, by finally avoiding 

the issue of sub-optimal filtering. 

This entire method of on-line feedback estimation of V and W stemmed 

from equation 4.8 in Theorem 4.3. It is evidently applicable to all constant 

T S D L M s , however, and so we can extend the ideas from the steady model 

analysis to higher-dimensional models. 
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4.4 Example 2: the 2-dimensional T S D L M 

4.4.1 Canonically equivalent forms within the 2-dimensional 

model 

The scalar constant model of the previous section had a forecast function of the 

form ft{k) = ato (= rut), a constant. By extending the model definition to the 

particular 2-dimensional form of 

M={(i,of,[i ; ) , v . w } 

the forecast function becomes ft{k) = ato + ank, a linear function in > 0. This 

2-dimensional model special case is known as a 2nd-order polynomial model; 

note that it is already in canonical form, with a repeated eigenvalue of 1. Writing 

the updating equations under M as 

Yt = fit + v t , vt^ Af{0, V) 

fit = fJ-t-i + A + wn 

Pt = /3t-i + wt2 , wt^Af{0,W) 

shows that it is interpretable as a linear growth model, widely useful in data 

evolution where there is an underlying linear trend. 

The model is a special case of the more general canonical form for the 2nd-

order T S D L M , 

= { E = ( U f , J . = (^„' » ) } , 
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where now the system evolution matrix has 2 distinct eigenvalues Ai and A2. 

We shall consider this general model - much of the following calculation is di

rectly applicable to the 2nd-order polynomial model above, although it must 

be remembered that it is not simply a case of substituting Ai = 1, A2 = 1, 

for additionally we now have E = (1,1)"^ 7̂  E2 = (1,0)-^, with J2 no longer 

diagonal. Hence the precise values within the results are altered, but the prin

ciples applied during their calculation are equally applicable to any model in 

this class. 

Figure 4.2: simulated 2-dim. TSDLIVi, first 100 points 

40 60 
Timet 

80 100 

We consider the above form for M2 with eigenvalues Ai and A2 of J being 

< 1 (else the data evolution explodes exponentially). Figure 4.2 shows the first 

100 data points of a simulated series with Ai = 1, A2 = 0.5, V = VQ = I, W = 
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Wo = f ^'^ ^ (and mo = (1,1)-^), which is the particular model MQ we use 
^ 0 1 ^ 

throughout this example (Series 5, hsted in the Appendix). 

Returning to the more general form M2, then from Lemma 3.2, E ^ ^ C = 0 

implies (^Cn + 6C12, + — 0, and so the perturbation in C is 

SC22 —SC22 
-6C22 6C22 J ' 

giving the same forecast distribution. Hence calculating 6W from Lemma 3.1 

gives 

32SCJ2 

6W = SC-32SCJl = 

/ \ 

Xf6C22 —X1X26C22 

^ —XIX2SC22 X26C22 ^ 

(1 - Xl)8C22 (A1A2 - l)SC22 ' 

^ (A1A2 - 1)SC22 (1 - Xl)SC22 ^ 

and so again, W is only fixed in 2 degrees of freedom, as we can take any two 

model forms 

{ E , J2, V, W } and { E , J2, V, W = W + 6W} 

for 

sw = 
I \ 

{\-X\)aW2 (AiA2-l)aW^2 

^ (AaA2 - \)aW2 (1 - X\)aW2 j 

and their forecast distributions will be identical. Hence we choose W = f ^1 ^ 
V 0 1̂ 2 

as our most convenient representation for the system evolution error variance 
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matrix, further requiring the constant a to satisfy (so that W + 6 W remains 

semi-positive definite) 

a^W2{Xi - X2f - a{Wi{l - XI) + ^2(1 - A )̂) - Ŵ i < 0 . 

Note that this diagonal representation of W will always be feasible in our 

particular choice of model when, taking the original variance matrix W = 

( ^1 ^3 y we have W' > -^W' For then with Ai = 1, A2 = 0.5, the gen-

eral form for becomes equal to ( ^ 0.5aW2 \ ^^^^ aH 2̂ = 
^ -0.5aW2 0.75aW2 ^ 

-2W' and hence 0.75aW 2̂ = - f W ^ - Thus W = f ^1 ° ] = 
^ 0 W^- 0.75aW2 ^ 

^1 ^ ), which is a vahd diagonal form for W when Wo > — IW,'. 
0 ^2' + ! ^ ^ ^ 

Since W2 > 0, this is evidently true whenever the covariance term in W is 

positive. 

4.4.2 Effects of model misspecification 

We will now follow closely the approach of section 4.3 relating to the steady 

model, taking a supposed true model of MQ = { E , J2, VQ, W q } and our estimated 

model M = { E , J2, V , W } ; the main difference being that there are now three 

unknowns that we wish to solve for, VQ, and Wi,W2 in W q . Hence we must 

consider three distinct equations from the forecast distribution equations 3.5 

and 3.6. 
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Firstly, theorem 4.3 with equations 4.6 and 4.7 give 

E [ e t ( l | A , V, W ) e t ( 2 | A , K W ) ] = (a,-/3r)Qo + E (E[Y,+, I A , Vo, Wo]-E[y,+i| A , V, W]) 

. (E[y;+2|A, Vo,Wo]-E[Yt+2\Dt, V,W]) 

with 4.3 yielding the latter half of the RHS of the expression (remembering 

Ao = 1, A i = a i from 4.2) from 

E [ y , + i | A , V ^ „ W o ] - E [ F , + i | A , V , W ] = ^, - / 5 , ^ f̂ ^̂ ^ ^ e,+i_, 
j=i \ \1 + L,i=iPi'^ J J 

(4.22) 

and 

2 / / I J V-2 
E[y,+2l A , 1̂ 0, Wo] - E[y,+2l A , V, w] = a^j: ĵ /?,- - ( ^ 1 ± | M L | | j j e,̂ ,_,. 

\ \ l + E / = i P ; B 7 / 

Denoting ( ^ T ^ ^ ^ ^ ^ j by ^ gives 

E ( E [ y ; + i | A , V o , W o ] - E [ y t + a | A , ^ , W ] ) ( E [ F i + 2 | A , V o , W o ] - E [ F t + 2 | A , V , W ] ) 

= E|((/3a-/3iE)ei+(/?2-/32H)et_i) (a i ((/?i-/3iE)et+(^2+42H)et_i) + (^2-^2^)6*) 

However, noting that the first term in E will be 1 (the coefficient of B°, effec

tively), we have 
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(all other terms are independent, mean 0), and also E[{^iet){02'^et-i)] = 0, etc., 

so that 

E [ ( E [ y t + i | A , V o , W o ] - E [ y , + i | A , V , W ] ) ( E [ y , + 2 | A , V o , W o ] - E [ F , + 2 | A , V , W ] ) 

= {a,/3l + a^Pl - 2ai(/3i;Si + ^2/32) + /3i^2 - l^xh - MQo 

+ {ar^l + a i^^ + 4i^2)Var(E:eO - (2ai^i^2 + ^im^t-i^^t] 

+ {2aAk + /32')E[(Ee,)(Ee,_i)] (4.24) 

(since Var(E;et_i) Var(Set)). Hence 

Cov(r ,+a ,y ,+2 |A, l^ ,W) = E [ e , ( l | A , F , W ) e , ( 2 | A , V , W ) ] 

= (ai - / 3 i )go + 4.24 . (4.25) 

Next, considering V a r ( e i ( l | A , V, W ) ) gives, from 4.22 and 4.6 in 4.8, 

Var (e t ( l |A ,V ,W))=Var(e t ( l |A ,V^ , ,Wo) )+Var(E[F ,+ i |A ,V^o ,Wo] -E[y ,+x |A ,V ,W]) 

= go + Var ((/?! - ^iS)et -f (/Jj - /^2E)e<_i) 

= (1 + - 2^aA + /92 - 2^242)Qo + 01 + /52')Var(Ee,) 

- 2/3i;52E[e,_iEet] + 24i/32E[SetEet_i] . (4.26) 

Finally, our third expression comes from considering the variance of the 2 step-

ahead forecast error, which we find via equations 4.7 and 4.23 in 4.8: 

Var(et (2 |A, V , W ) ) = Var(e<(2|A, V^o,Wo))+Var E[y<+2|A, Vo,Wo]-E[rt+2|A, V , W ] 
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= ( ( Q : - + Wo + Var {a^ ((^i - ^iE)et + (̂ 2 - ^2E)et-i) + (̂ 2 - ^-E.)et) 

= (1 (a i - ^ry + ali^l+^l) - 2al{/3i^,+^2^2)+2ax ^ 2 - ^ ^ - ^ " 2^2/32)Qo 

+ (a^^i^ ^ 2aAh + (1 + a2)/32')Var(EeO - (2a2/3i^2 + 2cxM)ne,.{=e,] 

+ (2a^A^2 + 2a^^pl)E[{Et,){Set.x)\ . (4.27) 

To evaluate the three expressions 4.25, 4.26 and 4.27 we must expajid 

= =fr^^H€l = ( l + A B + /32B^)(l + ^ : B - F ^ 2 B r ' 

= 60 + 61B + 62B2 + . . . 

where ho = I 

bi = ( A - / ? i ) 

62 = 0 l - k - ^ i h + P2) 

and, in general hk = h'^ + ^ib'^-x ^ ^2h'k-2^ k>2, (4.28) 

where, in turn. 

b[ = { - I f (A' - { k - l)/3f-^/32 + \{k - 3){k - 2)Pt'^'2 -

/ , N . . I ( - l ) ^ ( ^ ) A y S 2 ' , it odd 
+ i - i y ( ^ - ' ) ^ r ' ^ i + - - - + \ \ (4.29) 

' ( - l )M2^ k even . 

(Note that the h'^ coefficients are entirely known, being in terms of ^\,^2 alone.) 

Hence 

E[e<_iEef] = E[et_i6iej_i] since all other terms are 0 
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Eh_aEee] = - ^,)Qo ; (4.30) 

Var(Ee,) = E p e O ^ ] = E[6^e^ + 6?e?_, + . . .] 

(again, all other terms are 0) = ^ ) Qo ; (4-31) 
Vfc=0 / 

and E[{Eet)iEet-i)] = J^^kh-i Qo , (4.32) 
\k=i I 

for 6fc defined as above in 4.28. 

It is interesting to show - although being somewhat lengthy it is left to the 

reader - that when ^\ — /3i, $2 = ^21 we have 6A; = 0 for = 1,2,. . . , and so 

these expressions for the various terms in 4.25, 4.26 and 4.27 all reduce the bias 

to zero in each forecast distribution expression when we take M = MQ, which 

leaves the intuitive results in this case of 

Cov{Yt+,,Yt+2\Dt,V,W) ^ Cov(F,+i,y,+2|A,Vo,Wo) 

and Va.v{et{k\Dt,V,W)) 4 Var(et(fc|A, V ,̂, Wo)) . 
Mo 

Now equations 4.28 and 4.29 together give, through substitution into 4.31, 

{ 00 / °° \ / °° \ 

E ( ^ ' J ' + 2 E KK-i + 2 E KK-2 ^ 
k=0 \ k=\ J \ k=2 I 

/ o o \ /oo \ /oo \ 1 
+ 2 E yk-A-2 A^2 + E ( ^ ' . - i ) ' + E(* i t -2) ' ^\ Qo 

\ k=2 J \k=\ I \k=2 I J 

= E(^ l ) ' ( i+^ i+ /?2)+ '^EKK-i W2+^i)+ 2 E i ' . ^ ' U 2̂ Qo, 
U=0 V fc=l / \ k=2 I ) 
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with similarly 

E[{Eet){Eet-i)] = Y.^kbk-i Qo 
\k=\ / 

E(^'fc)' ( A + /̂ 1̂ 2) + E ^'k^'k-^ (1 + .̂ 2 + Pi + Pi) 
\k=0 / \k=\ I 

+ E * : ^ C 2 ( A + /?i/?2)+ E ^ ' A - 3 h 5 2 go 
\fc=2 / \fc=3 / J 

Finally, we denote YX=3^^k){^k-j) by Sj, for i = 0,1,2,3, and then substituting 

these last two expressions, together with 4.30, into equations 4.25, 4.26 and 4.27 

in turn results in 

Cov(y+i , y,+2| A , V, W ) = { [ a i + s^[a^{p\ + P\) + hh) + s^{2aM2 + hi) 

+ [2si(ai(^^ + hi) + hh) - 2ai/3i - 0̂2 - 1 + (̂ o + 52)(2aiA^2 + A')] A 

+ [232(ai(^i' + 4') + /5i/52)-2ai/32-iSi+2ai/3^+A/52+(5i+53)(2ai/3i^2 + A')] î 2 

+ [25I(QI(/5I2 + hi) + /3i;̂ 2) - 2aiA - 2̂ - 1 + (̂ o + S2){2aAh2 + A')] Ai^2 

+ [ai + 5o(ai(/3i' + hi) + ^^2) + sri2ajj2 + hi)] Pi 

+ [a, + 5o(ai(A' + A') + hA) + s,{2aAh2 + A')] /^l} Qo -

So, further defining the entirely known constants 

ci = so{ar{hl + hi) + /5i^2) + + 51(201^^2 + hi) , 

C2 = 2s,{a,{hl + ^2) + ^1^2) - 2ai/3i - 2̂ - 1 + (̂ o + 52)(2aa/3a42 + hi) , 

C3 = 252(ai(/3i' + hi) + hA) - 2aih2 - hi + 2aJl+hih2 + {si + S3){2aJih2+hl) , 
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we reach the quadratic 

Cov(y;+i, yt+2|A, v, w ) = (ci -f C2^i + c^^2 + 02^1^2 + c^^l + c^^l) Qo • 

(4.33) 

Similarly, we can also produce 

Var(et(l | A , V, W ) ) = (C4 + CsA + ce^2 + c^Pi^2 + c^^l + C^PDQO , (4.34) 

for C4 = 5o(/^i'+/S^) + 1 + 25i/?i/32 , 

C5 = 2^i(^i2 + / 3 2 ) - - f 2(50 + 52)/3l^2 

and C6 = 252 (A' + 4') - 2^2 + 2A' + 2(5i + 53)^^2 

and 

Var(e^(2| A , V, W ) ) = (cr + cg/̂ i + 09/̂ 2 + €^^2 + + C7;92)go , (4.35) 

for 

cj = So(ai4' + 2ai4i^2 + (1 + a^)/3|) + \+a\ + 2sr{alM2 + a J l ) , 

C8 = 25i(a?/32 + 2ai/3i/32 + (l+a2)42) + 2 a i ( l - a i A - ^ 2 ) + (5o+52)(a2/9i^2 + ai42) , 

C9 = 2s2{al^l + 2aJr02 + {l + al)^'2) + 2aM^2 - 1) + 20̂ (̂ 2 _ _ 

2(si -f S3){alM2 + aj^) . 
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4.4.3 Solving for Vq, Wi and W2 

Equations 4.33, 4.34 and 4.35 are three simultaneous quadratic equations in 

the only unknown elements present - Qo, /?i and /32 - since the constants c,-, 

i = 1 , . . . , 9, are wholly calculable directly from the b'^ coefficients, which are in 

turn functions of the known /3i and /32 only. 

We proceed by calculating sample estimates S^, S2 and C12 of the one and 

two step-ahead forecast errors, and the lag-one covariance, respectively. Given 

these sample estimates, we can solve numerically for the unknowns Qo, /3i and 

^2 from our set of simultaneous quadratic equations. Then further, we know 

that under the true model MQ = { E , J2,Vo,Wo} the eigenvalues of J2 are Ai 

and A2, and those of Ho = (I2 - AoE^)J2 = ( ~ ^'^'^^ ) axe 
V -A2X1 (1 - A2)X2 ^ 

pi and p2, where the convergent form of the adaptive coefficient AQ is denoted 

by {Ai,A2f. Therefore 

/3i = - ( p i + P2) = -trace(Ho) 

= - ( A i + A2 - AiAi - A2A2) 

and ^2 -- P1P2 = det(Ho) 

= A a A 2 ( l - A i - A 2 ) . 

Solving for AQ yields 

and A2 -

Xl + X,^,+I32 

A i ( A a - A 2 ) 

A2(A2 — Ai) 
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Then 

E ^ R o E = E^Ao(5o = {Ai + A2)Qo 

(X\X2 + A1A2A + X2P2 -X^Xl- AiA2^i - Ai/?2^ 
^ AiA2(Aa — A2) 

^AiA2(Ai - A 2 ) + ^ 2 ( A 2 - A i ) ^ 

AiA2(Ai — A2) / 

= 1 - - r i ~ Q° ' \ MM J 

Qo 

Qo 

and so 

Fo = go - E ^ R o E = ^ . (4.36) 

We can calculate WQ = ( ^1 ) in a similar fashion; observe that 
V 0 W2 y 

R o E 
= Ao 

go 

Ru + R\2 \ = f ^igo ^ f where Ro = f -̂ 12 ^ 
RX2 + R22^ \ A2Q0 J V \ Ri2 i?22 

=^ Ro = ( AiQo - R12 R\2 
R\2 A2Q0 — R\2 

So if Co = f ^12 \, we have from Co = Ro - AoA^go that 
\ G12 C22 ' 

C i i = Aigo - i?i2 - AjQo 

C\2 = -R12 — ^ i^2go 

and C22 = A2go - R12 - AlQo • 
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Further, J 2 C o J ^ = ( A1A2C12 \ WQ = RQ - 32Co3^ to 
AiA2C'i2 X2C22 

be diagonal we must have 

R12 
C12 — 

A1A2 

Substituting this into the three simultaneous equations in C i i , C i 2 and C22 

produces 

^ A ^^ A X1X2A2 
I - A 1 A 2 , 

A1A2Q0 

and C22 = A2Q0 I 1 - A2 -f ^ ^ ^ 
I - A 1 A 2 , 

Then, ultimately, from 

W o E = f ^ 0 = R o E - J 2 C o J ^ E 
W2 

— AoQo — J 2 C o J ^ E 

we have 

Wi = A,Qo ~ ^ ^'^^^ ~ ^ ^'^'^^ ^'^1 (4.37) 
\ 1 — A1A2 J 

and 

V 1 - A1A2 / 
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r . A^ + Al A + P2 

= A . ( A , - A 2 ) 

Xl + X2Px+p2 and A2 = 
A2(A2 — Ai) 

So knowing go, Pi and P2 allows us to calculate VQ, Wi and W2 all relatively 

straightforwardly. The accuracy of these variance estimates again depends solely 

upon the convergence of the sample values S f , 5 | and Cu] if these sample 

estimates were to equal their respective theoretical biassed values, then our 

feedback estimates V, Wi and W2 would all be exact. 

4.4.4 Simulation results 

The model chosen is as at the start of this section, namely 

and the first 100 data points for a simulated series of length 1000 for these 

specifications were shown in Figure 4.2. Various model misspecifications were 

made before forecasting this data set for its last 950 points (the first 50 points of 

each analysis are ignored to let the model reach its limiting state); all of Vo, Wi 

and W2 were varied both individually and in pairs, with each misspecification 

coming from factors of either 10 or 100. 

The feedback estimates V" of VQ, and Wi and ^̂ 2 of Wi and W2, were then 

calculated via equations 4.36, 4.37 and 4.38, having already obtained the sample 

variances Si and 5 | together with the sample lag one covariance (̂ 12, and having 
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solved for the estimates Q, and (3° of Qo, P\ and 132 from equations 4.33, 4.34 

and 4.35. 

The results are shown in full in Table 4.4. Note that under the true model 

Mo, we have Ao = f 0.399 \ 
V 0.284 / 

Ho = ( I , - A o E ) . . = (_0.e01 - 0 . 1 9 9 ) , 

implying that /9i = 0.747 and p2 = 0.213. Thus 

l^x = - ( / ) ! + / J 2 ) = - 0 . 9 6 0 

and ^2 = P\p2 = 0.159 , 

with further Qo = E ^ R Q E + VO = 3.147 . 

As a final point, note that it is vital to draw a distinction between the 4 , ^2 and 

Q values arising from the misspecified model itself, and the feedback estimates 

^ and Q (obtained through solution of 4.33, 4.34 and 4.35) of the true 

values (as under Afo) ^2 and QQ. It is these feedback estimates which are 

given in the table. 
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Table 4.4: results for various fitted models M on simulated Series 5 (see 

Appendix) of length n = 950, with VQ = 1, WQ = ) ~ ( 1 

V W2 Ci2 Si Si Q P'2 V Wi W2 
obtained from from from from 

4.33, 4.34 and 4.35 4.36 4.37 4.38 
1 0.5 1 1.716 3.132 4.078 3.133 -0.952 0.159 1.14x10-5 1.00 0.54 0.94 

5 2.126 3.448 4.608 3.142 -0.948 0.129 1.75x10-5 0.81 0.41 1.34 
50 2.477 3.746 5.024 3.125 -0.948 0.130 1.93x10-5 0.82 0.42 1.32 
0.05 1.953 3.351 4.331 3.112 -0.958 0.111 9.42x10-^ 0.69 0.29 1.61 
0.005 3.065 4.253 5.704 3.112 -0.957 0.091 1.82x10-5 0.57 0.22 1.86 

1 0.5 10 1.754 3.166 4.143 3.114 -0.960 0.112 1.27x10-5 0.70 0.29 1.61 
100 2.383 3.586 5.112 3.119 -0.961 0.096 1.82x10-5 0.60 0.23 1.82 
0.1 1.783 3.191 4.193 3.158 -0.946 0.145 1.10x10-5 0.91 0.50 1.11 
0.01 1.796 3.204 4.204 3.158 -0.946 0.142 1.09x10-5 0.90 0.49 1.15 

0.1 0.5 1 1.822 3.243 4.180 3.147 -0.943 0.156 1.42x10-5 0.98 0.57 0.93 
0.01 1.857 3.284 4.210 3.148 -0.943 0.155 1.48x10-5 0.97 0.57 0.95 
10 1.994 3.526 4.262 3.112 -0.961 0.132 7.82x10-^ 0.82 0.36 1.36 
100 3.234 4.916 5.370 3.095 -0.955 0.091 2.35x10-3 0.56 0.23 1.85 
10 0.5 0.1 2.029 3.597 4.278 3.114 -0.962 0.137 6.57x10-^ 0.85 0.38 1.30 
1 5 10 1.822 3.243 4.180 3.147 -0.943 0.156 1.42x10-5 0.98 0.57 0.93 

4.4.5 Conclusions 

There are a number of things to note in relation to Table 4.4. 

(i) The first line in the table (for correct model specification of V = Vo and 

W = Wo) has produced remarkably precise feedback estimates V and W , and 

so seems to suggest the methodology is accurate, at least! 

(ii) The tenth and fifteenth lines, for V = 0.1, W = Wo = f ^ ) and 
^ 0 1 ^ 

V = Vo = l,'W— respectively, illustrate through their parity how 
V 0 10 ^ 

it is again the ratio of the elements of V and W that influences the behaviour 

of the forecast distribution. 

(iii) There appears to be evidence of correlation between the estimates Wi 

and W2; as W2 is inflated above its true value of 1, so Wi consistently underes-
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timates its true value of 0.5 (and vice-versa). Moreover there is some evidence, 

once more, of bias in our variance estimates, most noticeable in W2; this is 

probably due, again, to the non-linearity throughout equations 4.33 to 4.38. 

(iv) The three simultaneous quadratic equations 4.33, 4.34 and 4.35 are 

rather sensitive to perturbations in the estimates C12, and 5 | . Accordingly, 

exact solutions for Q, and were not generally obtainable (producing com

plex roots), but instead a numerical minimisation method was employed, where 

the sum of the squares 

E ( / , ( Q o , A , ^ 2 ) - £ , ) ' 
j=l 

of each quadratic function fi{Qo,^i,^2) - Ei = 0, for i = 1,2,3 and A = 

S^, E2 = S2, E3 — C\2, is minimised. There are several local minima of 

Y^=\ fiiQo, I3\,^2)-, but convergence was generally rapid to the given minimum. 

(v) This previous point is, of course, a fundamental issue with the success 

of the approach. When minimising YllzziiMQo, ^1, ̂ 2) - EiY, we must feed in 

some starting values for each of Qo, /3i and 02, and it is logical to presume that 

the practitioner will make his initial guess equal to his current estimation of 

these parameters - namely {Q,^i,$2} - arising from his initial mo^ei specifica

tion; a practitioner will not alter his initial beliefs in the variances within the 

model unless he has good cause to, which is, evidently, the aim of this entire 

methodology! Thus the values given in the table for Q, 0° and 0° ^ ê, in fact, 

the estimates that are obtained from minimisation of 12^=i{fi{Qo, /3i, ̂ 2) — EiY 

from this starting value oi {Q,^i,^2] calculated directly from each misspecified 

model M. 
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(vi) Having said this, there is some qualification of this leist remark to be 

made. Occasionally the starting value of {Q,^i,^2} converged to a different 

local minimum, but all of these local minima went on to produce infeasible (i.e. 

negative) values of F or W from equations 4.36, 4.37 and 4.38. It does appear, 

therefore, that our method is robust in so much as it leads to the 'correct' 

solution by a process of elimination... 

. . . (vii) And equations 4.33, 4.34 and 4.35 have, after one takes heed of 

the previous remarks, indeed produced reassuringly accurate estimates Q, 0° 

and Hence the resulting discrepancies in the feedback estimates V and 

W are evidently down to the sensitivity of equations 4.36, 4.37 and 4.38 to 

numerical perturbations in these estimates Q, 0^ and 02- This is merely further 

justification of the previous remark, and if anything is a blessing in disguise, 

for it is this very sensitivity which (seemingly) guarantees only one of the local 

minima (or the global minimum) will produce feasible variance estimates. 

(viii) Penultimately, we should observe that the final on-line variance esti

mates are all quite agreeable. Some are evidently more so than others, but it 

must be noted that the least accurate lines in Table 4.4 are again those involv

ing the worst model misspecifications, such as in the fifth and seventh lines, 

where Wi and W2 are out by factors of 100 respectively. Even here the re

sulting feedback variance estimates are so far removed from the initial variance 

specifications that the practitioner would be rapidly moved to far more precise 

specifications, and whence to even more precise estimates V and W , and so on. 

(ix) 'And so on' leads us to the final simulation. In practice, the practitioner 

attempting to use this method will not have 950 data points to use at his leisure 

176 



whilst waiting for V and W to converge. Even if he has, he will want confirma

tion - or otherwise - that his initial variance specifications are reasonable. Hence 

his adopted practice will be to wait for, say, T time points into the analysis until 

reasonable convergence of S^, 5 | and C12 has been reached, before obtaining 

initial feedback estimates VT and W y up to that time T, which in turn would 

be used in forecasting the next T time points to obtain second estimates t^r 

and W2T, 'and so on'. The length of time T is crucial here - and unfortunately 

it is not particularly easy to obtain the same convergence properties results of 

the previous section (with respect to the steady model) in the 2-dimensional 

case. Hence this 'waiting time' T must be estimated by monitoring the sample 

variances and 5|, and covariance Cu, at each time point, and deciding when 

'reasonable' convergence has indeed been reached. 

The following Table, 4.5, breaks down the previous analysis for two partic

ular models into time intervals of length 50 and 100, and shows the feedback 

estimates Vt and W t that would be obtained through calculating Sf, Si and 

C12 for the entire preceding analysis up to time t. In both examples, the anal

ysis is terminated when the convergence of the sample variances aad lag one 

covariance has become sufficiently accurate to render all future estimates {Vt} 

- and { W i } - very similar. 
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Table 4.5: results for various fitted models M on simulated Series 5, with 

Vo = 1, Wo = ^ W ^ ~ i^^O 1 ) ' '̂ P *° different time points t. 

Time V Wi W2 Ci2 5? SI Q V Wi W2 
t obtained from from from from 

4.33, 4.34 and 4.35 4.36 4.37 4.38 
50 1 0.5 1 1.361 2.621 3.229 2.592 -0.991 0.193 1.00 0.42 0.60 
100 1.372 2.711 3.350 2.690 -1.001 0.175 0.94 0.33 0.89 
150 1.803 3.339 4.218 3.286 -0.974 0.221 1.46 0.81 0.23 
200 1.636 3.281 .4.109 3.256 -1.008 0.153 1.00 0.27 1.41 
250 1.652 3.331 4.166 3.331 -1.003 0.190 1.27 0.47 0.89 
350 1.709 3.367 4.239 3.346 -0.996 0.231 1.54 0.74 0.26 
450 1.664 3.219 4.081 3.213 -0.985 0.158 1.02 0.39 1.19 

1000 1.716 3.132 4.078 3.133 -0.952 0.159 1.00 0.54 0.94 
50 10 0.5 0.1 1.841 2.980 3.560 2.365 -0.964 0.206 0.97 0.55 0.29 
100 1.841 3.050 3.603 2.429 -0.984 0.228 1.11 0.57 0.16 
150 2.317 3.937 4.731 3.235 -0.995 0.229 1.48 0.71 0.27 
200 2.002 3.723 4.397 3.250 -1.011 0.207 1.35 0.50 0.69 
250 1.904 3.698 4.336 3.292 -1.028 0.214 1.41 0.46 0.71 
350 1.931 3.722 4.362 3.292 -1.028 0.220 1.45 0.49 0.63 
450 1.977 3.646 4.306 3.198 -0.992 0.174 1.11 0.42 1.02 

1000 1.994 3.526 4.262 3.112 -0.961 0.132 0.82 0.36 1.36 

The first example was chosen as the true model MQ to allow us to concentrate 

on the behaviour of the sample estimates 5 | and Cu alone. We see that 

their convergence is relatively slow - even though each time point's estimates 

V, Wi and W2 are still reasonably accurate - with a noticeable blip around 

t = 150 which inflates the step-ahead variances and covariances significantly, 

thus affecting the on-line estimates V and W around this time. There is another 

such feature between t = 250 and 350 (but with slightly less effect, as it is further 

into the analysis), and both these blips are similarly in evidence - with the same 

inflating effect on the forecast distribution equations - in the second example. 
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These two perturbations in the data set are apt reminder that even though we 

are dealing with a simulated series, it is still prone to the kind of irregularities 

that occur in genuine data series. 

4.5 Final discussions 

Unlike the Ist-order steady model illustration of the application of Theorem 4.3, 

we evidently have much slower convergence of the sample variances and covari-

ances when dealing with the 2nd-order TSDLM. There is a further compHcation 

in this latter case due to the difficulty of solving the simultaneous quadratic 

equations 4.33, 4.34 and 4.35, and the sensitivity of the resulting calculations 

of V and W from equations 4.36, 4.37 and 4.38. The overall conclusion must 

be that in the 2-dimensional model, we need a series of length around n = 100 

before the stability of the sample variances and 5|, and the lag-one covari

ance (7i2, can be relied upon for genuinely accurate feedback variance estimates 

(and we should remark that even in the more severe model misspecifications, 

our methodology is producing (relatively) exactly that). The convergence of the 

sample forecast distribution would undoubtedly become more of an issue when 

dealing with higher order TSDLMs, as would the method of solution of the 

set of simultaneous equations required for the complete estimation of V and a 

diagonal W (in general we would have a set of p-|-1 equations, each a p"'-order 

polynomial in the terms, when deaUng with a p-dimensional model). 

However, the overwhelming success of the more-than-useful steady model 

application, and the still-notable success of the general 2-dimensional TSDLM 
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example, once an acceptance of the calculational complexity and intricacies has 

been made, leaves the exciting feeling that in the constant TSDLM, the problem 

of variance estimation has finally been overcome. 
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Appendix A 

Time series used in text 

Series 1: Total bakery sales of white and brown bread (daily data, not 
including Sundays, total of 44 weeks - read across); missing values denoted by 

0. Christmas week is indicated by underlining. 

Mon Tues Weds Thur Fri Sat Mon Tues Weds Thur Fri Sat 
1496 1494 2000 2788 3688 2491 1634 1601 2275 3054 4077 2409 

0 2167 2314 2962 3797 2979 1665 1601 1947 3007 3513 2441 
1525 1635 2241 2819 3484 2065 1473 1669 2183 3052 3931 2236 

0 1994 1861 2548 3529 2266 1522 1453 2055 2752 3687 2329 
1495 1506 1937 2719 3594 2241 1215 1444 1827 2723 3607 2358 
1509 1429 2018 2796 3662 2323 1493 1618 1825 2580 3493 2159 
1625 1390 2080 2764 3754 2141 1378 1566 1887 2729 3153 1836 
1437 1370 1877 2577 3220 2137 1516 1468 1703 2408 3092 1642 
1569 1474 1764 2470 3057 1216 1479 1409 1765 2626 3120 1593 
1601 1504 1910 2806 3062 1962 1601 2190 1982 2634 3675 2230 
1625 1522 1975 2945 3718 2178 1658 1536 2011 2890 3671 2562 
1627 1635 1990 2859 3755 1992 1619 1539 2002 3018 3723 2060 
1793 1790 2009 3050 3773 2661 1862 1591 2002 2977 3833 2409 
1831 1718 2169 2976 3784 2657 1835 1762 2237 2973 3677 2649 
1824 1744 1986 2847 3531 2276 1858 1593 2075 2850 3579 2303 
1811 1668 2159 2983 3748 2550 1800 1663 2111 2998 3724 2716 
1876 1556 2087 2844 3720 2548 1739 1598 2116 2743 3564 2589 
1705 1723 2143 2734 3584 2646 2157 2205 3430 4626 3366 2365 

0 0 1289 2085 2869 1922 0 2138 2106 2894 3670 2440 
1877 1679 2149 3068 3771 2589 1941 1753 2151 3037 3807 2452 
1890 1849 2172 2962 3955 3001 1976 1789 2195 3116 3911 2673 
1861 1704 1988 2983 3774 2565 1923 1743 2265 3122 3889 2662 
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Series 2: Advertising awareness data, Xt and fit = Yt/rit. 

Xt : TVR units (weekly, by row) 
0.05 0.00 0.20 7.80 6.10 5.15 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1.50 4.60 3.70 1.45 1.20 2.00 3.40 4.40 3.80 3.90 5.00 0.10 0.60 3.85 3.50 
3.15 3.30 0.35 0.00 2.80 2.90 3.40 2.20 0.50 0.00 0.00 0.10 0.85 4.65 5.10 
5.50 2.30 4.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0 10.0 9.00 8.00 7.00 6.00 
5.00 4.00 3.00 2.00 1.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0 
10.0 9.00 8.00 7.00 6.00 5.00 4.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0 11.0 
12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 20.0 19.0 18.0 17.0 16.0 15.0 
14.0 13.0 12.0 11.0 11.0 12.0 2.90 4.47 2.24 6.71 3.22 7.29 6.66 2.48 3.64 
8.70 7.11 2.30 6.40 3.20 7.11 3.57 7.93 5.13 6.40 3.31 2.68 5.39 7.22 4.40 
6.69 8.69 6.32 5.99 6.94 6.19 7.59 3.59 8.44 8.61 8.08 9.32 9.13 8.39 9.58 

fit : Awareness response proportion, Yt/nt 
0.40 0.41 0.31 0.40 0.45 0.44 0.39 0.50 0.32 0.42 0.33 0.24 0.25 0.32 0.28 
0.25 0.36 0.38 0.36 0.29 0.43 0.34 0.42 0.50 0.43 0.43 0.52 0.45 0.30 0.55 
0.33 0.32 0.39 0.32 0.30 0.44 0.27 0.44 0.30 0.32 0.30 0.00 0.00 0.00 0.33 
0.48 0.40 0.44 0.40 0.34 0.37 0.37 0.23 0.30 0.21 0.23 0.22 0.25 0.23 0.14 
0.21 0.16 0.19 0.07 0.26 0.16 0.21 0.07 0.22 0.10 0.15 0.15 0.22 0.11 0.14 
0.04 0.19 0.19 0.29 0.36 0.40 0.28 0.43 0.57 0.58 0.59 0.67 0.50 0.63 0.66 
0.61 0.48 0.65 0.30 0.50 0.41 0.51 0.36 0.44 0.47 0.39 0.48 0.40 0.50 0.61 
0.58 0.39 0.68 0.47 0.70 0.52 0.45 0.59 0.57 0.49 0.42 0.51 0.59 0.63 0.68 
0.61 0.70 0.63 0.59 0.67 0.66 0.81 0.75 0.51 0.66 0.68 0.55 0.74 0.56 0.65 
0.64 0.66 0.57 0.56 0.62 0.72 0.00 0.00 0.00 0.00 0.00 0.54 0.55 0.53 0.52 
0.54 0.55 0.53 0.54 0.52 0.54 0.52 0.54 0.54 0.55 0.53 0.51 0.52 0.53 0.53 
0.54 0.56 0.56 0.56 0.56 0.56 0.57 0.55 0.56 0.58 0.58 0.59 0.60 0.60 0.61 
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Series 3: Simulated Ist-order TSDLM (steady model) MQ = {1,1,1,0.5}, with 
mo = 10; first 200 points of series, overall length 1000. 

9.97 9.15 9.00 8.04 8.91 6.67 6.95 7.20 7.48 8.94 10.49 11.14 7.38 12.03 
10.52 10.45 12.88 10.94 10.92 11.71 10.97 11.02 9.82 9.80 14.19 11.37 12.00 11.67 
10.38 8.89 8.80 9.30 9.46 7.97 11.58 10.80 12.98 9.75 10.37 11.76 13.62 10.67 
10.63 12.60 13.81 13.77 10.13 11.62 9.82 12.27 9.66 8.13 7.39 7.14 7.84 8.21 
8.44 8.86 6.63 5.04 5.97 5.32 5.21 4.66 2.42 3.19 4.43 3.94 5.93 6.37 
5.10 6.15 4.52 3.44 5.51 7.32 5.99 6.60 2.48 4.82 5.26 2.30 5.04 6.22 
6.37 8.54 5.77 7.33 5.74 8.20 6.98 6.90 5.56 7.22 8.13 6.48 7.08 7.33 
7.93 7.38 5.61 6.40 9.45 7.36 8.25 8.81 9.09 8.27 8.14 7.10 6.84 6.64 
5.73 4.68 2.64 4.02 5.60 5.36 6.06 6.40 6.08 2.39 5.38 4.63 6.09 5.90 
3.77 3.92 1.82 3.40 3.64 2.14 3.40 2.92 3.66 4.60 5.03 5.18 5.21 3.90 
6.10 6.47 7.98 7.38 7.58 4.80 5.73 6.02 7.31 6.02 7.47 4.59 5.16 3.95 
5.94 5.76 7.45 5.44 5.01 7.10 8.43 5.44 7.63 7.43 6.86 8.25 9.80 8.95 
8.72 11.09 10.89 10.45 11.06 9.60 10.97 10.42 9.88 11.99 12.89 13.92 12.17 14.51 
12.36 13.89 15.65 13.67 12.92 12.05 11.83 12.00 12.56 13.45 13.97 12.13 12.90 13.20 
13.40 13.23 12.83 10.87 

Series 4: Concentration readings from a chemical process (as in Box and 
Jenkins, Series A, p.525). 

17.0 16.6 16.3 16.1 17.1 16.9 16.8 17.4 17.1 17.0 16.7 17.4 17.2 17.4 17.4 
17.0 17.3 17.2 17.4 16.8 17.1 17.4 17.4 17.5 17.4 17.6 17.4 17.3 17.0 17.8 
17.5 18.1 17.5 17.4 17.4 17.1 17.6 17.7 17.4 17.8 17.6 17.5 16.5 17.8 17.3 
17.3 17.1 17.4 16.9 17.3 17.6 16.9 16.7 16.8 16.8 17.2 16.8 17.6 17.2 16.6 
17.1 16.9 16.6 18.0 17.2 17.3 17.0 16.9 17.3 16.8 17.3 17.4 17.7 16.8 16.9 
17.0 16.9 17.0 16.6 16.7 16.8 16.7 16.4 16.5 16.4 16.6 16.5 16.7 16.4 16.4 
16.2 16.4 16.3 16.4 17.0 16.9 17.1 17.1 16.7 16.9 16.5 17.2 16.4 17.0 17.0 
16.7 16.2 16.6 16.9 16.5 16.6 16.6 17.0 17.1 17.1 16.7 16.8 16.3 16.6 16.8 
16.9 17.1 16.8 17.0 17.2 17.3 17.2 17.3 17.2 17.2 17.5 16.9 16.9 16.9 17.0 
16.5 16.7 16.8 16.7 16.7 16.6 16.5 17.0 16.7 16.7 16.9 17.4 17.1 17.0 16.8 
17.2 17.2 17.4 17.2 16.9 16.8 17.0 17.4 17.2 17.2 17.1 17.1 17.1 17.4 17.2 
16.9 16.9 17.0 16.7 16.9 17.3 17.8 17.8 17.6 17.5 17.0 16.9 17.1 17.2 17.4 
17.5 17.9 17.0 17.0 17.0 17.2 17.3 17.4 17.4 17.0 18.0 18.2 17.6 17.8 17.7 
17.2 17.4 
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Series 5: Simulated 2-dimensional constant TSDLM, from 

1.55 1.37 2.54 1.94 0.32 -0.20 2.18 0.95 2.18 2.94 2.32 1.53 1.89 0.94 
0.87 -3.10 -1.10 1.54 0.76 3.33 -1.08 -0.47 1.51 3.03 3.97 3.75 4.17 2.59 
1.16 0.38 1.59 1.46 1.50 0.41 0.58 2.89 1.44 4.44 1.17 3.76 2.96 5.98 
5.94 5.57 6.21 5.33 6.20 7.69 5.56 10.61 8.32 4.09 7.85 10.16 10.03 9.38 

10.30 10.11 9.32 9.61 10.29 10.14 9.42 9.67 8.67 6.31 7.74 6.33 8.16 6.79 
6.42 6.52 5.92 8.02 9.37 11.07 8.67 8.86 6.86 9.48 8.88 8.26 8.08 9.77 
8.73 5.66 9.58 5.30 7.91 6.61 9.91 9.20 7.23 6.77 6.72 9.96 9.00 10.55 

13.19 11.85 11.60 10.83 7.26 8.20 9.44 8.51 5.29 5.43 8.26 9.66 7.09 -1.28 
1.88 1.13 3.61 2.96 3.14 2.49 4.91 4.65 3.59 3.49 4.52 1.71 4.53 1.40 
4.63 4.13 5.66 7.50 9.96 7.76 4.81 6.61 6.99 6.18 4.43 6.79 7.35 6.12 
7.31 8.10 7.55 7.84 7.95 6.78 5.96 8.85 3.89 7.45 7.11 7.36 7.06 5.53 
4.56 9.44 7.11 5.93 5.94 6.02 6.87 4.88 5.74 5.05 7.07 6.42 3.46 4.05 
3.21 4.55 4.12 4.39 5.98 6.26 6.48 10.01 9.24 8.22 6.23 8.12 7.20 11.74 
6.22 5.95 8.72 9.31 8.06 6.57 8.28 8.52 8.97 3.71 7.80 6.49 6.15 6.77 
4.06 5.30 5.32 5.25 
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