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The Topological Renormalisation 

of the 0(3) Sigma Model 

by 

Richard George Costambeys. 

A b s t r a c t 

Like other field theories of physical interest, the moduli-space integrals of the non-linear 

two-dimensional 0 (3 ) sigma model diverge. We show that in the one-instanton sector the 

imposition of a cut-off in the moduli-space leads to an unacceptable dependence of the 

Green's funct ion on the way that the field is split into the quantum piece and the classical 

background. This dependence may be isolated in a term which may be interpreted as an 

anomaly to the Ward Identity of the theory. 

The moduli-space divergence is associated with degeneration of the field configurations to 

those of another topological sector. Hence i t is possible that by modifying the Green's 

funct ion in , say, the zero-instanton sector w i l l be able to cancel the divergence in the one-

instanton sector. We show that the Ward Identity anomaly in the one-instanton sector 

may be wr i t t en in the zero-instanton sector at next to leading order in powers of ?i, and 

hence we explicit ly calculate the Green's funct ion modification. We have called the process 

of applying this modification "Topological Renormalisation". 

A central piece of the modification term is the instanton contribution to the Green's func­

tion of the model. This is obtained by using two new methods of calculating the determi­

nant of the fluctuation operator. 

The application of Topological Renormalisation to other theories is also investigated. 
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Throughout their history field theories and other models of subatomic particle interactions 
have had problems with unwanted infinities. I t has often been the case that integrals 
have diverged instead of remaining fini te in the calculation of Feynman scattering ampli­
tudes, and clever procedures have had to be devised to somehow resolve these problems. 
The process of cancelling these infinities, or making sure they don't occur, is known as 
renorm ali s at i on. 

I n certain held theories of physical interest perturbative expansion is often clone as an 

expansion about classical solutions to the equations of motion. These solutions have moduli 

which must also be integrated out to get a final Green's Function. However these integrals 

over modul i space are often divergent and so some form of renormalisation needs to be 

devised to return the relevant model to a finite form. More explicitly, the field is split 

into a classical piece that solves the Euler-Lagrange equations, and a quantum piece. The 

classical solutions are classified into topological sectors which are parametrised by moduli . 

When the integral over the quantum piece is calculated in each topological sector, there 

remains an integral over the moduli . Typically, these integrals w i l l diverge, and i t is the 

purpose of this thesis to demonstrate a method of coping w i t h this divergence. 

For instance, let us consider the two dimensional non-linear 0 (3 ) sigma model. Here the 

classical action is periodic and at the minima the solutions to the equations of motion are 

known as instantons, which in their most general form are given by [1] 

The z = z(x,y) are complex functions, a, b, and c are also complex and are the instanton 

moduli , q is known as the topological charge and is equal to the number of poles of the 

instanton. To introduce a quantum element into this model the fields are defined to be 

w = v + cj) where (f> is a quantum fluctuation about the the instanton solution continuously 

deformable to zero. W i t h the fields in this form the Green's Function reduces to a functional 
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integral over the <b and an integral in the moduli space. Integrating out the fields leaves 
us wi th the instanton contribution to the Green's Function [2] 

m = (A) = £ / A(«, b, c) ^ e - M « » ^ ^ c | 2 . 2 n ^ a , ( H 3 ( , -2) 

where Kq is dependent on the coupling constant and 

9 <? <i 
hq(a, b) = - ] T In \at - a3\2 - £ In \bt - b3\2 + J2 l n k ~ b

3\2
 (1.3) 

So we see that the problem in this case is that this is divergent as a,- —> bj. We could simply 

apply a cut-off in the moduli space, for instance by setting |« — b\ = r and then later taking 

the l i m i t r —> 0. To apply the cut-off the Green's Function needs to be wr i t ten explici t ly 

as an integral over the moduli prior to the fields being integrated out. In performing 

this separation the theory develops a dependence on how the field is split between the 

quantum piece and the classical background, i.e. i t depends on our choice of co-ordinates 

in configuration space. 

A straightforward and flexible method of separating the integral over the moduli f r o m the 

integral over the fields is to use the Faddeev-Popov trick. This approach is useful as i t does 

not make any assumptions about the size of the quantum fluctuations. However we wi l l 

have to introduce an arbitrary set of constraints on the fields, corresponding to a choice 

of co-ordinates in configuration space. I t is essential that the final version of the G!reen's 

Function for the model does not depend on our choice of these constraints. To isolate any 

dependence we may take a variation of the Green's Function wi th respect to the constraints. 

This results in an identi ty which expresses the change in the moduli-space density of an 

arbitrary Green's Function under a change in the constraint as a total derivative wi th 

respect to the moduli . I f this identity is non-zero then the classical symmetry of the model 

may possibly be broken and something must be done to restore i t . 

However note that i f the cut-ofF is used in the instanton solution ( 1.1), lor instance by 
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setting cii — />,- = ?', then in the l imi t r —> 0 there is a degeneracy f r o m the ^-instanton 
solution to the (q — l )- instanton solution. This suggests the possibility of modifying the 
action in the sector w i th lower instanton number in such a way that the symmetry is 
restored and the dependence on an arbitrary choice of quantisation procedure is removed. 

In this thesis, we shall show that such a procedure is possible. We shall propose that for 

the 0 (3 ) sigma model the symmetry may be restored by the addition of terms into the 

action. For instance we shall show that divergences in the one-instanton sector may be 

regulated by the addition of a term to the zero-instanton sector action. These new terms 

are a relic of the one-instanton moduli-space jacobian. 

This modification is analogous to perturbative renormalisation in that pathologies at a 

certain order in the expansion are cancelled by a modification of the action at a lower 

order. However, in perturbative renormalisation the modification is absorbed into the 

coupling constants to leave the Green's Functions finite. Here the modification may not be 

connected w i t h the coupling constant as they have very different forms. Nevertheless, due 

to the nature of the regularisation procedure presented here, we shall call i t "Topological 

Renormalisation". 

This thesis is constructed as follows. In Chapter 2 we define the non-linear two dimensional 

0 (3 ) sigma model and look at its topology. The instanton solutions are derived and we 

see how they are split into homotopy classes labelled by the topological charge. This 

is entirely a review chapter. In Chapter 3 we present in detail the calculation of the 

instanton contribution to the Green's function for the model ( 1.2). This w i l l laxgely 

follow [2] although Section 3.4 is entirely original work. Chapter 4 contains a study of why 

topological renormalisation is necessary for gauge field theories and the sigma model. We 

also look at the modul i divergences in terms of anomalies in the Ward Identities for the 

theories. In Chapter 5 the anomalous term for the 0 (3 ) sigma model in the one-instanton 
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sector is calculated. I t is shown explicit ly that this te rm may be wr i t t en in terms of the 
zero-instanton sector fields. This chapter is entirely original work, the results of which 
are presented in [3]. Chapter 6 contains a review of topological renormalisation applied to 
other important theories [4]. Section 6.2 on the CFP"-1 model is original work. 



Chapter 2 

The 0(3) Sigma Model 

6 
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2.1 General Formula t ion 
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Non-linear 0(N) sigma models are an example of the class of field theories known as Chiral 

Models. In such models the existence of interaction between the fields is due solely to the 

geometry of the manifolds, unlike other field theories where the interaction is added into 

the Lagrangian by hand. In the case of the 0 (3 ) sigma model the interactions are a result 

of the curvature of the manifolds. 

Reasons for studying Chiral Models are two-fold. First ly they are analogous to Non-

Abelian gauge theories, wi th which they share such features as asymptotic freedom, non-

t r iv ia l topological structure, the existence of instantons [5], [6], conformal invariance [7] 

and the presence of hidden symmetry giving, in the two dimensional case, an infini te 

number of conservation laws. This is an important point which we shall return to later. 

Secondly, in the cases where the manifolds are Kahler or hyper-Kahler, these models have 

supersymmetric structures in the N = 2 and N = 4 cases. This leads to the construction 

of superstring theories. 

The general structure of the Chiral Models [8], [9] involves a scalar field taking values in 

an A^-dimensional Riemann manifold M f r om a (c/+ l)-dimensional Minkowski spacetime. 

The action is 

S=V-jgl3{<t>)d^ d»V ddxdt (2.1) 

where 4>l(i = 1 , N ) are the co-ordinates on M. and </,:7(</>) is its metric. The Greek indices 

label the spacetime co-ordinates. The field equations follow from the usual condition of 

finding the extremes of the action: SS = 0 

c W + V',•/),'•'•' cr<f>k = 0 (2.2) 

where r* - f c a.re the Christoffel symbols associated wi th gij. Note that these field equations 

are generalisations of the geodesic equation. 
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The 0(N) sigma model is a specific case of this where the space is two-dimensional and 

parametrised by the variables xi and x2 given on IR 2. Fields </>' are invariant under global 

O(N) transformations 

ft -> f ' = Ol'lcj)1 (2.3) 

This can be seen as a generalisation of the 0 (4 ) sigma model developed to describe pion 

interactions by Gell-Mann and Levy [10]. The N = 3 case that we are interested in is 

useful as a model for the isotropic ferromagnet [11] [1] [12]. Also i t is equivalent to the 

C f P 1 model ([13] and many others), this equivalence wil l be investigated in fur ther detail 

later as i t leads to an extension of the scope of Topological Renormalisation. 

So in the 0 (3 ) sigma model we define the field aa on the two-dimensional Euclidean plane 

IR2 

o~a = aa (xi, x2) X \, x2 G IR2 a = 1,2,3 (2.4) 

This switch to Euclidean space is done for convenience in analysing the tunneling processes 

that the instantons describe. Thus the action becomes 

S = \ [ <9M<7re d"aa d 2 x (2.5) 

where <9At = ^ r , /it = 1,2, a = 1,2,3 and summation over both sets of indices is assumed. 

This action can also be arrived at by considering the simplest 0(3)-invariant functional 

wi th action determined by the 0(3)-invariant metric ds2 = da • da. 

I f the <r's are defined as taking values on S2, (M — S2), then they are subject to the 

constraint 

aaaa = 1 (2.6) 

which can be imposed by means of a Lagrange multiplier A(rc, (/), so 

S = j d2x \ ^ d , a a cTaa + X(x,y) (aaaa - 1) (2.7) 
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The field equations are then 

d2a - (aad2<7a) a = 0 (2.8) 

The most interesting field configurations are the finite energy solutions to the field equa­

tions, i.e. soliton solutions and instantons. These configurations must approach the same 

l im i t in all directions in physical space. Thus the physical space may be compactified onto 

a sphere which we shall call S 2

h y s . Also we shall now call the space of fields the inter­

nal space S f n t . This natural compactification is the origin of the model's non-linearity. 

Mappings f rom sphere to sphere may be classified into homotopy classes. We shall now 

investigate how this comes about. 

2,2 Topology of the Sigma M o d e l 

The remainder of this chapter consists of a review of the topology of the 0 (3 ) sigrna model 

and how the solutions to the model may be classed into sectors labelled by a topological 

index. Studies of these ideas may also be found in [14], [15], [16], [17]. Also see [8]. 

First we consider the group structure of the physical and target manifolds. This leads to 

a classification of the mappings and thus to homotopy classes. Suppose that the field <f> is 

constrained to take values on a homogeneous manifold M.. The boundary conditions are 

that as we approach spatial inf in i ty in any direction then <f> tends to some l i m i t (f)^ 6 M. 

Then by adding a point at inf in i ty to d-dimensional physical space IRrf i t can be compactified 

to a sphere Sd. The fields may now be thought of as the map 

<t> : Sd ^ M (2.9) 

Let us suppose that M is acted on transitively by a group of symmetries G. This means 

that for any two points on yVl, say yo and y j , there exists g £ G such that yx = g(yo). Thus 

by using yo as a fixed base point and considering g(yo) we may obtain the whole of M. as 
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g ranges over G. In general we ma}' obtain i t many times, otherwise we could ident ify M 

wi th G. However i t may be shown that M. may be identified w i t h a coset space. Using 

these ideas, two elements </i,(/2 G G w i l l give the same point in M. i f and only if their 

action at yo is the same 

<7i(fo) =02(yo) (2.10) 

this implies that 

# 2 ~ V ( y o ) = yo (2.11) 

Thus </2 _ 1 #i is a r i element of the subgroup of G that leaves y0 unchanged, known as the 

l i t t l e group II of yo. So 

H={h£G:h(y0) = ya} (2.12) 

Hence g1 and #2 w i l l give the same point in Ad i f and only i f gi = g^h for some h <E 

A left coset of G' wi th respect to H, wri t ten <///, is the set of elements where </ is fixed 

but h varies over H 

gli = {gh : h £ / / } (2.13) 

(Similarly right cosets IIg may be defined). Thus g\ and </2 w i l l give the same point in M. 

i f and only if they belong to the same left coset of G w i th respect to 

We shall here simply state the elementary theorem that G may be partit ioned into disjoint 

cosets such that every element of G belongs to one and only one left coset of G w i t h respect 

to H. Also t ransi t ivi ty implies that any point of M may be obtained f rom the action of 

some left coset of G on yo. Thus we can identify M w i th the space of left cosets G/H 

M = G/H = {gll :geG} (2.14) 

In general G/H is not a group unless II is a normal subgroup (when the left and right 

cosets are identical). I t is easy to show that G/H is independent of the choice of base 

point y0 [14]. 
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For the O(N) sigma model, ^ is a real unit vector in A r-dimensional space. As <p is subject to 

the constraint = 1 then M is a sphere 5 / v _ 1 . Now G can be taken to be the connected 

group of rotations in VV-dimensional space, SO(N). The rotations that leave <f> invariant 

are about the direction of <f>, so the l i t t le group is the rotations in (N — l)-dimensional 

space, i.e. H = 5 0 ( n — 1). Thus 

G^ SO(N) v _ x 

H S ( N - l ) [ 3 

so for N = 3 

--2 5 0 ( 3 ) 
5 0 ( 2 ) 

>.16) 

2.3 H o m o t o p y 

I t is important that the mappings (f> : Sn —> M, are topologically stable against continuous 

deformations. In other words they cannot be deformed into a constant map. I f this were not 

the case then fundamental symmetries of the physical system, such as gauge symmetries 

and invariance under t ime evolution, could be lost. Thus the division of the maps into 

equivalence classes is essential. 

Let us formal ly define homotopy and continuous deformations. Let / and g be two con­

tinuous maps between the spaces X and Y such that X —• Y for both maps. Then f and 

g are said to be homotopic if there exists a continuous map F(x, t), 0 < t < 1 such that 

F : X x / —> Y where / is the unit interval [0,1] and 

F(x,0) = f ( x ) , F(x,l) = g(x) (2.17) 

Homotopy is an equivalence relation, symmetry, reflexivity and transi t ivi ty are all obeyed. 

Thus we can part i t ion the set of maps X —> Y into disjoint classes of mutually homotopic 

maps - the homotopy classes. 
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We are interested in the maps Sn —* M , and shall denote the set of homotopy classes 
for these maps by Trn(M). I f M is also a sphere Sn then two maps f , g : 5'" —> 5'?l are 
nomotopic if and only i f f ( x ) and g(x) cover Sn the same number of times that x covers it 
once. Then we can identify nn(A4) wi th Z and say that the homotopy classes are labelled 
by integer winding numbers. irn(A4) must have more than one number for topologically 
stable structures. 

I t s t i l l remains for us to show that irn(A4) has the form of a group. For any two maps 

/ , g : Sn —> M. a th i rd continuous map may be defined 

f ( 2 x u x 2 , - - - , x n ) 0 < x, < \ 
h(x1,x2, • • • , xn) = 

which may be wr i t ten 

(2.18) 
^ g(2xi - 1, x' 2, • • • , xn) \ < x'i < 1 

h = f + g (2.19) 

Each of these maps are members of their own homotopy class : [h], [ /] and [g], where 

[^]>[/]>[#] ^ nn(M.). However, i f / is varied wi th in [ /] and g is varied wi th in [g] then 

[/ + 9] w i n remain unchanged, so 

[/ + 9} = I f ] + [9} (2-20) 

This binary operation means that 7rn(M) takes on a group structure. The identity element 

of the group is the homotopy class of the constant map. For n > 2, n n ( M ) is always 

Abelian. 

The physical significance of 7r ? l(A^) having a group structure is that two solutions may 

be combined, by performing the group operation on their homotopy classes, to a. single 

solution. I n our case of S2 —> S2 then 

7r 2 (S' 2 ) = Z (2.21) 
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In the previous section we saw how two homeomorphic mappings are members of the same 

homotopy class. In this section we shall show that two mappings wi th the same topological 

charge or winding number are homeomorphic and thus their homotopy class may be labelled 

by the said topological charge. We follow ideas given in [9] and [8] references therein. 

There are several different ways of approaching an analysis of topological charge. The 

problem is to connect the separate strands together. We shall omit completely some of 

the angles of approach, such as Chern class and Pontryagin index, as they are irrelevant in 

the context of this work. The first approach that we shall choose is a fair ly topologically 

rigorous one. In i t ia l ly we shall make some remarks about Kahler models. 

If the target manifold M. admits a Kahler metric then the model is Kahler. This is true 

for M. = S2 as the metric g((/>, <f>) = (1 + <p(f>)~2 may be writ ten in the form g{6,(()) = 

-^-^g'((f),4>) where g' — l n ( l + </></>) is the Kahler metric density. Now suppose that M. 

is an n-dimensional complex manifold parametrised by co-ordinates ua and their complex 

conjugates u a , w i t h a = 1, ,n. Then the sigma model action may be wri t ten 

where d is the dimension of spacetime. The model is said to be Kahler i f the two-form 

is closed, i.e. duo — 0. This condition greatly simplifies the equation of motion. I t also 

provides a l ink w i th cohomology. 

Let us now briefly define cohomology classes. I f r\ is a p-form, and ( a (p — l ) - f o r m , 

on a manifold M. then r/ is closed if di] = 0 and exact if ?/ = d(. I f rj is exact then i t 

automatically follows that i t is closed as d2 = 0. However closed forms are only exact if 

J ddx gap(u) dpii01 d S U 4 
(2.22) 

lo = gap dua X du13 (2.23) 
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j\4 is contractible. Actually the closed p-forms may be classified, two p-forms being in the 
same class if and only i f they differ by an exact form. These classes are called cohomology 
classes. 

I f the set of all closed p-forms is denoted by ZP(M) and the set of all exact p-forms by 

BP(A4), then the set of cohomology classes is defined as 

HP{M) = ZP(M)/BP{M) (2.24) 

The elements of HP(M) obey the rules of group operation, so HP(M) is called the pth 

cohomology group of M. 

The next step is given by the Hurewicz Theorem. In a simple fo rm i t may be stated thus 

If A4 is an (?? — l)-connected space wi th n > 2 then there is a one-to-one 

correspondence between the homotopy classes of the maps / : Sn —> M. and 

the elements of the singular homology group Hn(A4). 

The proof of this theorem is outside the scope of this work, however i t may be found in [18]. 

A n equivalent statement of the Hurewicz Theorem may be made for cohomology groups, 

which means that we may make the identification 

tcp(M) = H"{M) (2.25) 

which provides the l ink between homotopy groups and cohomology groups. 

Thus we have shown that as to is a closed two-form then i t is a member of H2(A4) and 

thus 7r 2 (vM), and we can label the classes in each of these groups by an integer. Another 

quick digression is now needed to introduce the notion of pullback mapping. 

For a manifold A4 there is a tangent space at a point p denoted TPM. Linear functions 

u given by UJ : TVM —> IR fo rm a cotangent space of M at p, denoted T*M. Elements of 
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T*M are known as one-forms, the simplest example being the differential df where / is a 
smooth function on A4. 

The action of a vector v on / is 

V [ f ] = ^ 6 ' R ( 2 " 2 6 ) 

Then the action of df € T*M on v € TPM, df : TPM —» IR is defined as the inner product 

( # , » ) = • »[/]IR (2.27) 

The map / naturally induces a map between tangent spaces called the differential map /* 

/» : TPM T m N (2.28) 

the action of which is defined as 

(f*v)[g] = v[gf] • (2.29) 

where g is a smooth function on N. Similarly / induces the reverse mapping known as the 

pullback 

r : TjwN -> T;M (2.30) 

If h G Tf(p)N then the pullback of h by / * is defined by 

(f*h,v) = (h,rv) (2.31) 

If k G Qr(N) where Vtr(N) is the space of smooth r-forms on N then 

d(f*k) = f*(dk) (2.32) 

Thus / * maps closed forms to closed forms and exact forms to exact forms. So we may 

define a pullback between cohomology groups 

/* : HT(N) -> Hr(M) (2.33) 
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by 

/ * M = [ / • " ] (2-34) 

where [w] € /T(JV) . 

The relevance of pullback becomes clear when we note that if two maps f\ and J\ are 

homotopic then their pullback maps of the cohomology groups are identical. Thus each 

homotopy class may be assigned a pullback mapping and the topological charge may be 

defined as 

Q = c" 1 / f*[u>] (2.35) 
JN 

where c is some normalisation factor which makes Q an integer. I t makes sense to ident i fy 

Q w i th the integer that labels the homotopy group associated wi th the pullback in Q. In 

our case of course we can take w in Q to be the Kahler two-form given above. 

We have got to the stage where we can label homotopy classes by integers known as the 

topological charge. However i t would be convenient to be able to write Q in terms of the 

fields of the model. To do this consider Q as the integral of the zero component of the 

topological current Ja = (Jo,JM). 

Q = c" 1 J Jo d2x (2.36) 

In the case of the 0 ( 3 ) model 

Jo = e^tcfr <f>a 9J" d u f (2.37) 

where t,w and e a /? 7 are the total ly antisymmetric tensors in 2 and 3 dimensions respectively. 

Let us now approach topological charge f rom a different angle and look at i t in terms of 

winding number. Consider the integration over the surface of the space of the fields <f>, S f n t . 

The winding number is the number of times a map f rom this space covers the target space 

Sphys- S° the the surface area of S f n t may be identified wi th the product of the winding 
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number and the surface area of S2

hys. So 

L dS<t> = L ds^j(x^) (2-38) 
int phy$ 

where J(x,4>) is the Jacobian of the transformation between S f n t and 5 ^ ^ . To calculate 

this Jacobian consider a small area element swept out by the vector (p on S f n t . The area 

of this element is the vector product 8\(p A 82<f) where the differential <?>i = 8/8x\. Hence 

J(x,4>) is 

J(x,<i>) = <p-8l<pA82<f> (2.39) 

The area of a unit sphere in the physical space is Arc. Thus the winding number is given 

by 

Q = 1-Jd2x(p- 8x<p A 82(p (2.40) 

The products may be written using the anti-symmetric tensor e. This creates some double 

counting in the space-time co-ordinates which is compensated for. Thus 

Q = ^ f d 2 x e^e^ r drf dv<jP (2.41) 

as above. Also we have found the value of the normalising constant c. 

Topological charge is a topological invariant, i.e. it does not change under homeomor-

phisms. In this way it is a conserved quantity. Similarly with the topological""current. 

The topological charge labels the static solutions of the model and provides a lower bound 

to the action. We shall now show this for the 0(3) sigma model. Using the fields a from 

( 2.5) the topological charge for the sigma model may be written as 

Q = J d2x cr[^cr, dua] (2.42) 

Now consider the inequality 

(dlla±el^[a,dl/a])2>0 (2.43) 
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It follows from this and ( 2.5) that 

S > iir\Q\ (2.44) 

so the magnitude of Q is the lower bound of the action. The equality holds when 

d^a = ±e<i„[<7,d„er] (2.45) 

these are called the duality conditions. It can be shown that any solution of these conditions 

is also a solution of the equations of motion. The solutions to the duality equations are 

the instanton solutions and were first derived in the form which we shall use by Belavin 

and Polyakov [1]. The field a takes values on S2 

a = (cos 0, sin 0 cos <p, sin 9 sin ip) (2.46) 

If we stereographically project from the sphere onto a plane the number of components of 

the field can be reduced to two. If w is the field on this plane then 

w(z) = toi + iw2 = = cot -e^ (2.47) 
1 — <T3 2 
Q 

w\ = cot - cos ip (2.48) 
Li 

6 . . 
u>2 = cot - sin (p (2.49) 

where z = X\ + ix2 are the physical co-ordinates. The antisymmetry of the duality condi-

tiohs means that "tlley Teduce to -

d\Wi = d2w2 , diw2 = —d2wi (2.50) 

which are just the Cauchy-Riemann conditions. The general solution of these may be 

expressed as any analytical function of z. This solution must be a continuous function 

within each homotopy class. Poles occur at the boundaries of topological sectors. The 

topological charge labels each topological sector. Thus the solutions have the form 

- = e S N ( 2 - 5 1 ) 
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which are the instanton solutions ( 1.1). The parameters aj, bj and c define the size of the 
instanton. 

Under the stereographic projection the action takes the fo rm 

4 f ,9 dzwd*w + d*wd, 
b = " ~ ~ 

and the topological charge 

S = - J d x

 ( 1 + H 2 ) 2 ^ 

7r J ( l + \w\£y 

Thus we can write the action in terms of the static solutions 

This form of the action is minimised i f dzw = 0, which are just the Cauchy-Riemann 

equations again. 
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3.1. Fluctuation Operator 

3.1 Fluctuation Operator 

21 

A vital component of the renormalisation calculation which is our main aim in this thesis, 

is the instanton contribution to the Green's Function for the 0(3) a-model given in ( 1.2) 

and ( 1.3). This was first discovered by Fateev, Frolov and Schwarz [2], [19] and is re­

examined in depth in [13]. Here we shall follow their calculation in detail, but we shall also 

demonstrate two new methods of calculating the determinant of the fluctuation operator. 

As already noted, the 0(3) cr-model action may be written in terms of the topological 

charge q, fields w(z, z) and coupling constant k as 

4 T T £ 8 r 2 dzwdzw 
k k J (1 + \w\2] 

so the action is at its minimal values S = when dsw = 0. This is satisfied by 

s = ir + kJdxirTwW {3A) 

» W - ^ (3-2) 

where PQ(Z) and P\(z) are polynomials. This is an instanton solution where the topological 

charge of the instanton is equal to the maximal degree of the polynomial. Thus it is possible 

to write the ^-instanton solution as 

To calculate the instanton contribution to the Green's Function we shall use the steepest 

descent method. Suppose that w differs from v by some quantum correction <p(z, z), then 

w = v + i f . As ip is small we shall approximate the action so that we only have the terms 

that are of the lowest order in tp. So we expand out the denominator of the second term 

of the action, and as dsv = 0 then to this approximation 

4 T T ? 8 r 2 ds(pds(p ( , 
s = l ^ + kJdx—pr- (3"4) 
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where p — 1 + \v\2. However if we consider dz((pp~2dzip) then i t is easy to see that 

/ d 2 x ^ ^ = j d\dz&p-2d-zv) - J d\?dzP-2d^ (3.5) 

but the first term w i l l disappear at the boundary when i t is integrated. I f we define the 

inner product of two complex functions (/> and x i n this space as 

( 0 , X ) = / d2x Jgp-24>x (3.6) 

where g is the determinant of the metric on the sphere, then the action may be wr i t t en in 

a similar fo rm 

(ip,&<p) = -Jd2x<pdzP-2dzip = J S x y f i p~2 (p { - ^ d z P - 2 d ^ j ^ (3.7) 

So 

A = --^dzp-2r% (3.8) 

is the f luctuation operator. This is different to the f luctuation operator used in [2], but 

this is just because the variables in the second term of the action are defined differently in 

each case. I t is easy to show that the fluctuation operators are equivalent. So 

4-7TO 8 . . , / , , 
So = ~ T + k ^ A ( p ) ( 3 ' 9 ) 

The subscript indicates that this is just the leading order approximation of the action. The 

metric on the sphere of radius JR is 

'x2 + y'r 

i + (3.10) 
AR2 

to return to the Euclidean metric we take R —• 0. The variables may be redefined as 

x = 2Rx', y — 2Ry' so that the. radius R can be factored out of the metric. I f the instanton 

parameters are also rescaled then the Green's funct ion is unchanged and the primes can 

be ignored. Thus 

M M ) = M l + l * l 2 ) ~ 2 (3-11) 
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the determinant of which is 

detg,v = (1 + \z\2)~4 (3.12) 

3o2 Ins tan ton M a n i f o l d Measure 

Let the instanton contribution to the Green's funct ion be 

IM=iM (ri3) 

where 

JM = Jv(v) e" S d/io dtp (3.14) 

df.iQ is the measure on the manifold of instantons induced by the metric on this manifold. 

I t is the purpose of the rest of this chapter to calculate /(?/). Let us denote the instanton 

parameters a, b and c by {ta} = (a,b,c) and {ta} = (a,b,c). Thus the metric on the 

manifold of instantons can be wri t ten as 

5 ( I A ^ ^ ^ = § ( w w ) s t ^ = (3-15) 

where map can be interpreted as the metric tensor on the manifold of instantons. We note 

here that this can be wr i t ten in the form 

in °*= ir-wK{zrz)' K [ z r z ) = J ( f x ^ [ n p ( 3 - 1 6 ) 

thus map has the fo rm of a Kahler metric tensor. 

The measure on the manifold of instantons dfi0 is therefore 

duo = (g\)-2 d e t m dta dt$ (3.17) 

The factor (r/!)~ 2 is to avoid double counting. To calculate det m note that ^ r T } = i ( 2 — bj)2 

can be represented by Ylk=o^akZk. Thus if we define 

Nkj = J d2xy/7j p~2 Y[\z - bi\-4zkzj (3.18) 
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then m = IJ\ NU, the matr ix U is just dependent on the moduli a, b and c. Now d e t m 

det./V| d e t f / | 2 , and det U can be found to be 

detU = c2"J[(ak - a3){bk - bj) Wa, - bm) 

SO 

det m = \c\4('H\ak - a3\\bk - b3\ J J | a , - bm\2 det TV 

(3.19) 

(3.20) 

3,3 Regularisat ion 

The expression J(/(?/) needs to be regularised as 

J q ( v ) = k~2q J V(v) e - ^ - K V . ^ ) d,i0 dip 

= k~2qe-^ J 7](v) d e H ( A ) d/.t0 

so that 

T(\ J-?( 7/) 1-2, - i f g / ^ o *7fo) d e t 

7 , 0 ? ) = w = k e 5 

(3.21) 

(3.22) 

(3.23) 
/ r f 2 c d e t _ ? ( A 0 ) 

and the determinants are divergent as the}' have an infinite number of dimensions. The 

regularisation is clone by means of a proper t ime cut-off. Let us define the determinant to 

be 

In det A = T r l n A , = — l imY^ 
°° dt 

e t 
• A < t + In e 

where the A, are the non-zero eigenvalues of A . Now let us define 

IndetgA = - £ ) h In e 
t 

;:3.24) 

(3.25) 

A has p zero modes, where p = 4<y + 2. The second term in ( 3.25) is cancelled by a similar 

term f r o m the denominator of Iq(i]). However although A has p zero modes, A 0 has 2, 

hence there wi l l be an over-cancellation of (p — 2) lne. Also 

X > - A < 1 = T r c i A - p (3.26) 
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so 

In det e A - In det e A 0 = - (p - 2) In e - / - (Tr e~*A - p) + / — (Tr e 
J e t J e t 

r°°dt -tAo 2) (3.27) 

For i —> 0 the asymptotic expansion of Tr e A t can be calculated to be for R = 1 

Tr e~ i A = 

Thus in the limit e —• 0 

In det e A = 

- + 2q + 0 ( f ) 

- - 2q\nt 

(3.28) 

dt 
T 

(3.29) 

(3.30) 

We may separate the divergent part from the rest. So if - > e but - is still small then 

In det e A - 2qIn t 

1 

+ - - 2qlnt 
t 

H h 2q In e\i + - - 2q\ut 
t H 

(3.31) 

(3.32) 

Thus the divergent terms of the determinant as e — > 0 are the e dependent pieces. Now 

from ( 3.23) 

Iq(rj) = k^e---' '\' ^ f \ , c , * '-LL (3.33) 
f d p 0 Tj(v) exp - | ( ^ - i + 2 ? l n e / « ) j 

fd2c exp [ - § (/i - | ) 

so the linearly divergent pieces cancel and the logarithmic divergence can be absorbed into 

a renormalised coupling constant 

k~2q 

k~2q f 
I dp0 Tj(v) 

exp 

exp 
Airq 

(3.34) 

(3.35) 

where V = 4TTR2 is the area of the sphere. The renormalised coupling constant k(p) given 

k(p) ~ I ~tii m e M c a n ^ e u s e ( l t ° n n d the /3-function of the model. The /3-function is 

defined by 

m = p dk(n) 
dp 

(3.36) 
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Thus 

= £ | ; l o s M <3-37' 
1 dk(fj.) 1 

-/* , n 2 a = ~r 3.38 

so 

/*(*) = (3-39) 

and we have obtained the negative /^-function of an asymptotically free theory. We shall 

use this later. 

The renormalised determinant is thus given by subtracting the linearly and logarithmically 

divergent parts from the unrenormalised determinant, i.e. if the renormalised determinant 

is det'A then 

In det'A = l im ( inde t e A - ^ - 2q In ej (3.40) 

3.4 Calculation of det'A 

The determinant may be calculated by means of methods developed in [1], [2] and [20] 

and also used in [19]. First the variation of the determinant with respect to the instanton 

parameters is found. This has the effect of removing the last two terms from ( 3.40), 

— | — 2q In e, as they are independent of those parameters. If the expression found this way 

is then integrated, the character of the dependence of the determinant on the instanton 

parameters may be found. 

As we are using Tr A it is irrelevant how the terms in A are ordered as long as correct 

permutations are used. It is convenient to use the form of A given in [2] 

M = -^=jpdz[p-2d-z{pf)\ (3.41) 
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From ( 3.27) and ( 3.40) it follows that 

roo 
8\n det'A = / (Tr 8Ae-tA)dt 

Jo 
(3.42) 

where 

8 A = 2p~16pA - 2p2dzP-36pdz (3.43) 

Using the properties of the trace, we may reorder A and 8A. So (neglecting g for the 

moment) 

Tr 6Ae~tA = 2Ti (p'18pAe~tA) - 2Tv (p2dzp~38p dze~tA) (3.44) 

= 2Tr {p-x8pAe-tA) - 2Tr (p'Hp p-ldzp2dzp-le-tA) (3.45) 

Now if we write A in the form A = r t r where 

T^ = - ^ - p d z p - 1 , T = p~ldzp 

we may define the conjugate operator by A = r r t , hence 

Af = -p~xdz 

V9 

(3.46) 

(3.47) 

so 

T f 8Ae-tA = 2Tr (p-16pAe~tOL) - 2Tr (p~l8p Ac~ta) -1 r A - f A -tA_\ (3.48) 

but Ap2dzp 1 = p dzp A so TrA = TrA thus we may replace A by A above and 

Tr 8Ae~tA = 2Tr {p~l 8pAe~tiX - p~l8p Ae~m) - l £ „ A „ - « A - l c , X -tA\ (3.49) 

so 

roo -
8 In det'A = 2 / Tr (p~l6pAe'** - p~l6p Ae~tA)dt 

Jo 
roo f j 

= - 2 / 0 §-Trp-l8p(e-lA-e-tA)dt 

(3.50) 

(3.51) 
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Therefore we have to study the behaviour of the integrand for large t and for small t. The 
asymptotics for t —• oo are governed by the zero modes of the operator A (the operator A 
does not have any zero modes). Let 

A</>a = 0 a = 0,...,4? + l (3.52) 

Due to the way that ( 3.51) has been constructed, all that needs to be calculated for the 

case t —• 0 is (z | e - t A | 2 ) and (z |e _ t A | z ) . Various methods may be used to calculate these, 

however we shall concentrate on two very different angles of approach to this problem. The 

first involves the use of A as an operator in the Heat Equation ([21], [22], [13]) 

AQ(x, y; t) = — (3.53) 

where the kernel Q satisfies Q{x, y; 0) = 6(x — y) and Q ~ e" ~ t A thus (z\e~tA\z) ~ G(x,x;t). 

Here x and y are complex numbers This method may be used to calculate the zeta function 

for the operator A 
1 f°° 

C a ( s ) = f^)7o ^ T v g ^ d t ( 3 - 5 4 ) 

which raises the question of whether det A could be found directly from 

d(A(s) 
ds 

= - In det A (3.55) 
s=0 

However this is not possible even in the small s l imit as A is too complex a function. 

The heat kernel may be represented by its asymptotic expansion for small t 

G(x,y;t)= ^ e x p ( - ^ " ^ f > » ( * . v ) * B ( 3 - 5 6 ) 

where ao(x, x) = 1, so for small t we need only calculate the first two or three terms of this 

expansion. 

The other method we may employ to calculate the expectation values is to use a semi-

classical expansion. Here the fluctuation operator A may be interpreted as the Hamilto-

nian of a quantum mechanical system corresponding to a classical Hamiltonian Ti, so the 



8.4- Calculation o/det'A 29 

expectation value is written as a quantum mechanical functional integral 

(z\e-tA\z) = J V(x,y,p)exV(- J dt £{x,y,p?) (3.57) 

where £ = xpx + ypy — 7i 

It is necessary in both of these methods for A and A to be written in terms of real variables. 

We shall set y/g = 1 for the moment as it turns out that for the calculation involving A , 

the value of the metric has no effect on the final result. However this is not true for the 

calculation using A and so we must be ready to replace the metric when it is needed. Also 

it turns out that there are no important differences between the calculations for the two 

operators in either method, therefore we shall only describe the calculation for A in detail. 

So if f(x,y) is an arbitrary function 

A / = < W - 2p-2{dzPd-zP)f + p-\dzd-zP)f + p-'d.pdj - p-ldzPd-zf (3.58) 

Now 

8Z = \{dX - idy) , d, = l~{dX + idy) , dZd~Z = l~{dX

2 + dy2) = ^ (3.59) 

where V is the Laplacian operator. Thus 

A / = Qv 2 + \ {{dy\np)dx - {dx\np)dy) - \ {{dx\np)2 + (dy\np)2) + ^ V 3 , ) / 

(3.60) 

or 

&=\v2 + ^{{dy\np)dx-(dx\np)dy) + R(x,y) (3.61) 

where 

R(x, y) = \P-1V2P ~ \ ((dx In pf + (dy In p)2) (3.62) 

It is convenient now to see that as 

V 2 In p = p - ^ p - {{dx In p)2 + {dy In p f ) (3.63) 
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then 

R(x,y) = ivinp - \ ((dxlnp)2 + (dvlnp)2) 

3 0 

(3.64) 

3.4.1 Heat Equation Method 

We are only interested in the first couple of terms in the expansion of Q(x, x; t) (i.e. when 

n = 0 and n — 1). As already stated, by definition a0(x, x) = 1 so all we really need to find 

is ai(x,x). Using ( 3.53), ( 3.56) and ( 3.61) simultaneous equations may be constructed 

by equating powers of t and thus a i (x ,x) found. 

As x and y are complex numbers, then (x — y) will be treated as a vector with components 

along the space-time axes. Thus if the space-time co-ordinates are p and q then 

(x-y)-d = ( x - y)pdp + {x - y)qdq (3.65) 

So we need to calculate the components of 

\ V 2 + \ ((dy In p)dx - (dx In p)dy) + R(x, y) 
dQ 
dt 

(3.66) 

These are 

1 

and 

V'Q = - e x p -
( x - y f 

L n=0 
f > X ^ - (x - y) • ^ d a X ' 1 

n=0 
OO 1 o o 

+(x - y ) ^ a n r - " +-^'d2antn 

n-0 cn=0 
(3.67) 

(d2\np)d1 - (di lnp)d2 

1 / ( x - y r 
exp -Ant t 

-2 {(d2 In p)(x - y)a - ( f t log p)(x - y)2) ^ a / ' 1 

n=0 

+{d2\np)J2diantn - {d1\np)J2d2antn 

n=0 n=0 

dQ 
dt -—— = exp 
^ Airt H 

( x - y f 

n=0 n=0 n=0 

(3.68) 

(3.69) 
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where the subscripts 1 and 2 are used to indicate direction in space-time. ( 3.66) now 
becomes 

1 oo 
Y,nantn~' = - ( x - y ) . J 2 d a n t n - 1 + -J2d2antn 

n=0 n=0 '*n=0 
oo 

- i ((d2lnp)(x - y)\ - ( f t \np)(x - y)2) ^ a ^ 1 

71=0 

OO \ 
^\Ud2\nP)Y^dlantn-(dl\nP)YJd2antn\^R{x,y)Y,ant\'i.lQ) 

^ V 71=0 71=0 / 71=0 

As each summation is independent we are free to reclassify them as we wish. Thus in all 

terms where the first term in the summation is a t° term, we make a shift n —• n — 1. Now 

all the terms have t~l as their first term and so this may be factored out of the equation 

and the summations removed leaving 

nan = -(x ~ y) • dan-\-^d2an^ - i((d2\np)(x - y)i - (di\np)(x - y)2)an 

+ -((d2\np)d1an_1 -(di\np)d2an_1) +Ran-i (3.71) 

a_i is zero by definition, and so for the case n = 0 

- (x - y) • da0 - i((d2\np)(x - j / ) a - (d1\np)(x - y)2)a0 = 0 (3.72) 

or 

{(x - y^dtao + (x - y)2d2a0) = i {(d2 In pXx -y)i - (d! In p){x - y)2)_a0 (3.73) 

equating coefficients gives 

-(x-y^d^o = i(d2\np)(x - j / ) i a 0 (3-74) 

{x-y)2d2a0 = i(di\np)(x - y)2aQ (3.75) 

which we must differentiate again, with respect to the space-time co-ordinates, for use later 

-di2a0 = i(did2 In p)a0 + (d2 In p)2a0 (3.76) 

d2

2a0 — i(d2di\np)a0 - (di\np)2a0 (3.77) 



3-4- Calculation o/det'A 3 2 

Here the (x — y)\ and (x — y)2 have been cancelled but only after the differentiation. Next 
we look at the case of n = 1 in ( 3.71). This gives the equations 

-(x - y) • dax + ^d2a0 - i ((d2\np)(x - y)x - {di\np)(x - y)2)ai 

+ -((d2\np)d1a0 - (d1\np)d2a0) + R(x,y)a0 = ax (3.78) 

Terms containing differentials of a0 may be substituted using ( 3.74), ( 3.75), ( 3.76) and 

( 3.77). A lot of the terms disappear when the trace is taken leaving us with 

ai(x,x) = ^d2\np (3.79) 

Thus 

g(x,x;t) = -^- + -^d2lnp + --- (3.80) 
47TI 107T 

An equivalent calculation may be done for A. If the heat kernel for A is Q then 

g { x , x . , t ) = ^ - t - ^ - d 2 l n p + ... (3.81) 

which is in agreement with the results found in [2]. 

3.4.2 Quantum Mechanical Method 

We stated above that it is possible for the expectation value we are trying to calculate 

to be written as a functional integral with a lagrangian expressed in terms of quantum 

mechanical operators. Also we have said that the fluctuation operator A may be identified 

as a quantum version of a classical hamiltonian 7i, hence the lagrangian may be found in 

the usual way 

C = xpx + ypy-H (3.82) 

where the p,'s are the momenta. The standard quantum mechanical expressions of the 

momentum operators px = —idx and py = —idy (where % = 1) may be used to write A in 
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terms of these momenta 

A = - \ { P x

2 + P y

2 ) -\({dy\np)Px - (dx\np)py) + R(x,y) (3.83) 

where V 2 = - ( p j + py

2). Thus 

£ = \(P*2+Py2)+ (* + \(dykip))px+ (y+ ^{dxln p f ) P y - R { x , y ) (3.84) 

Let us represent the expectation value we need to find as a partition function 

Z = JV{x,y,p)exp(- J dt C(x,y,pf) (3.85) 

The momenta may be integrated out by using a standard quadratic integral, e.g. for the 

integration of P x 

1 , / . 1 J Vpx exp [ - J dt (^-px

2 + (x + -(dy \npfj px - R(x, y)^j (3.86) 

we use 

J dx exp [—ax2 + bx + cj = ^—^ exp + c^j (3.87) 

However care is needed as the functional measure actually represents an infinite number 

of measures, one for each degree of freedom of the particle 

n 
Vpx = l im TT (3-88) 

n—*oo 
t'=l 

the cumulative effect of the integrals gives a coefficient of (47r)^, which is infinite as n —• oo. 

So some form of regularisation must be used. A common method of regulating infinite 

dimensional spaces is the zeta function method [21],[22]. Briefly this states that for a 

matrix operator M. with eigenvalues A„ and eigenfunctions ipn then the ^-function is given 

by 

C M ( * ) = £ A « " S ( 3 - 8 9 ) 

file:///npfj
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and the regularized determinant of the matrix is given by 

det M = e CM (3.90) 

where ('(s) = f ( ( s ) - A l s o 

we can find the regularized dimension of the space U in which 
M. is acting by 

dimW = C>((0) 3.91 

This means that we need to construct the zeta function for the fluctuation operator oc-

curing in the semi-classical expansion ( 3.85). Looking at ( 3.94) below we can see that 

this operator is essentially J^-. The zeta function calculation for is relatively straight­

forward (see the Appendix at the end of the chapter) and so we may this result in the 

regularisation of ( 3.88). Denoting the regularised dimension of momentum space by D, 

the total coefficient, including the contribution from the py integral, is ( 47r ) 2 D . As D = — | 

then, having done the py integral, 

So we are left with the integral over the position variables which we shall solve by means 

of the saddle-point method. This involves defining the classical path of the particle. As 

we are only looking at the case of t —> 0, then the time integral may cut off at a certain 

time T. Thus our boundary conditions "are that the particle travels from (xf, ?/i) at t — 0 

to (^2,2/2) at t = T. Using R(x,y) from above the functional integral may be written 

J V(x,y) exp j dt f - ( * + \idv l o § P)) ~(y + \(9x log />)) + R(x, y)\ 
1 

Z 
47T 

(3.92) 

(̂ 2,3/2) 1 / V(x,y)exp(-S) 
47T JixiM) 

(3.93) 

where now the action is 

t1 

S= dt x2 + y2 + x(dy log p) + y(dx log p) - -d2 log p (3.94) 
^0 

For simplicity we define 

f(x,y) = dy\ogp , h(x,y) = dx\ogp , k(x,y) = -d2logp (3.95) 
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Considering only small t enables us to make a change of variables which will leave a clearly 
dominant term in the action. If we set t = TT where r goes from 0 to 1, then J7 = 
and the limits of the integration change as r — 0 when t = 0 and r = 1 when t = T.So 

S = £ dr ( i ( * ' 2 + y'2) + x'f(x, y) + y'h(x, y) - Tk(x, y) ) (3.96) 

where x' = The action is now dominated by the first term for small T. As the first term 

is quadratic in the "velocity" of the particle then the classical paths may be approximated 

by 

x = xi + T(X2 - + xVT (3.97) 

y = yi + T(y2 - yi) + yVf (3.98) 

where x and y are constructed to obey the above boundary conditions. The variables x 

and y, which become the integration variables, are perturbations about the classical path 

and are continuously deformable to zero. For simplicity we will use 

X = X(T) + XVT (3.99) 

y = <f>(r) + yVT (3.100) 

and 

x' = xc + x'VT (3.101) 

y' = yc + y'Vr (3 .102) 

where xc = x2 — x-i and j / c = 2/2 — 2/i - The Jacobian of the change of variables x —> x is 

found by looking at the change in the functional measure V(x,y). By defining x to be 

xn = X ) i a ™ u t where the u t- are the eigenfunctions of the action, and so dxn = Y^ido^Ui-, the 

measure becomes 

V(x) = ]Jdxn = Hda^det(ui,Uj) (3.103) 



3-4- Calculation o/det'A 3 6 

where the inner product is defined by 

(ui,Uj) = f T u2dt (3.104) 
Jo 

under the change of variables U{ —> Ui\/T and t = TT then (u;, u, ) = T 2 /o1 u2dr and thus 

£>(x) = IJ da^det (T*(uhuj)) = TDV(x) (3.105) 
n 

where D is defined as above. Repeating the process for y we get the new functional measure 

to be 

T2DV(x,y) = T-1V(x,y) (3.106) 

In order to write the action as an expansion in powers of T each term may be expanded 

in a Taylor Series, e.g.: 

/ ( X ( r ) + xVT, <f>(r) + yVT) (xc + x'Vf) 

= f x c \ x = x y z = < j > + VT(xcxdxf + xcydyf + x ' f ) x = X t y = < f i 

+ T (^-(x2d2J + f d 2

y f + xydxdyf) + xx'OJ + yx'dyf) + • • (3.107) 

\ Z / x=x,y=4> 

All terms of order higher than T will be neglected. Also we can neglect x, y and xy terms 

in the action as these are meaningless when we come to calculate the expectation values. 

Writing 

F(x,y)\x=x>y=<j> = xcf(x,y)\x=Xty=^ + ych(x,y)\x=x^ = F ( X ^ ) (3.108) 

gives 

S = f Q dr ( i ( x c

2 + y2) + ((x1)2 + (y')2) + F(X, + V T A + T £ 2 ) (3.109) 

where 

Cx = (xdxF + ydyF + x'f + y'h)x=xy^ (3.110) 

£2 = (Lx2d2

xF + f d 2 F ) + xx'dxf + yy'dyh-k) (3.111) 
\2 / x=x,y=(j> 
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Thus the functional integral is now 

z = z ^ f i 2 5 ( 5 ' y ) e x p [• i d r ( f { x c 2 + y ° 2 ) + + ( ^ , ) 2 + ^ ~ ̂  • t s 2 ) 

(3.112) 

The parts of the functional integral independent of x and y we will call 

1 
Zc(x,<t>) = e x P (3.113) - f ( x c 2 + yc

2)- I drF(X,<f>) 

The terms of order y/T and T in the action may be expanded as an exponential 

exp [-(VfSx + TS2)] = 1 - VTS, + T Q& 2 - S 2 ) (3.114) 

where again we have only gone up to order T. As C\ is only linear in x and y then the \JT 

term may be neglected. Also we have defined S i 2 as 

S i 2 = Sl (7i )Si (T 2 ) = I* dndTz&W&fa) 
JO 

= [ dr1dr2 (x1x2dxF1dxF2 + xix'2dxFxf2 + yxy'2dyFxh2 + yxy2dyFxdyF2 Jo 

+x'xx2dxF2f1 + x ' x x 2 f 2 f x + yxy2dyF2hx + y'1y2h2h1)(3.115) 

where, for convenience, we have written x'x = X{T\) and have only included terms which 

will be non-zero on contraction. Also we make the change 

' dx d ( dx~ d2 

dr ) dr \ dr ) dr2 
(3.116) 

where the first term disappears as a boundary term on integration. Therefore the dominant 

terms in the functional integral are 

Z - 4TTT J V(x, y) exp Qf * dr (xx" + yy")) [ l + T Qs x

2 - S; Zx + Z2 (3.117) 

The first term is simply solved by using the standard integral 

J da; exp (-^(x,Ax)j = V2 (detA)~* (3.118) 
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but again there is the problem of an infinite coefficient lim„_ + 0 0 2 n as there are an infinite 
number of integrals and two variables. However, using the same regularisation method as 
before we find 

d 2 ^ ~ l 

r- det I - 2 — ) (3.119) 

Note that now the operator is as stated earlier. The value of the regularized determinant 

may also be found using the (-function method. The detailed zeta function calculation is 

given in the Appendix at the end of this chapter. We find that 

d e t ( - 2 f l = 75 ( 3 1 2 0 ) 

Remember that we need to find only the diagonal elements of the expectation value. This 

is equivalent to requiring that xc = yc = 0 making Zc = 1. Thus 

z ' = ( 3 - 1 2 1 ' 

This is the same as in the Heat Equation method. 

Now to calculate Z2 we haye 

[2" Jo d T l d T 2 fa*idxFid*F* + vix'2dxFif2 + y1^2dyF1h2 + yxy2dyFxdyF2 

-\-x'1x2dxF2fi + x[x'2f2fi + y'1y2dyF2h1 + y ' ^ h ^ ) 

- £ dr (^(x2d2

xF + y2d2F) + xx'dj + yy'dyh - fc)] (3.122) 

This can be solved term by term. Note that the first term in ( 3.122) may be written as 

(neglecting constants for the moment) 

£ drxdr2 dxFxdxF2 J V(x, y) exp Qf dr (xx" + y f ) ) xxx2 (3.123) 

and that the Green's Function G ( T X , T 2 ) of is 

/ V(x, y) exp ( / J dr {xx" + yy"f) xxx2 

G ( T X , T 2 ) = < X i X 2 > = 

J V(x,y) exp ( / J dr (xx" + yy")) 
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j V(x, y) exp Q( dr (xx" + yy")j xxx2 

(3.124) 

To calculate G ( r i , r 2 ) we solve 

d2 

j ^ G ( n , T 2 ) = 8(T2 - n ) (3.125) 

It is easy to see that the solution must have the general form 

G(n,T2) = | n - r 2 | + M r 2 + B(T2 + r x ) + C (3.126) 

where A, B and C are constants. The boundary conditions on G ( T 1 , T 2 ) are the same as 

those for x and y, so G(n , r 2 ) = 0 when n = 0, n = 1 and r 2 = 1. C can be chosen to be 

zero and we find 

1 (3.127) G { T U T 2 ) = - [|n - r 2 | + 2 n r 2 - (r 2 + n ) ] 

Comparing ( 3.123) and ( 3.124) gives the first term in Z2 to be 

Jo 
dTidr2 dxFidxF2 det W2 G ( n , r 2 ) (3.128) 

We can perform similar calculations for all the other terms in ( 3.122). However if we again 

look at only diagonal elements then F = 0 and / , h and k become independent of r . This 

leaves us with 

1 
det 

''dr2 £ fQ dndr2 ( / 2 / x + h2hx) ^ ^ " G ( n , r 2 ) 

- £ d r (dxf + dyh)^-G(r,T) + k (3.129) 

The first and second terms turn out to be zero. Using results given above we are left with 

(using ( 3.95)) 

Z2 = 
k 1 

-d2 log p (3.130) 
47T 167T 

Thus we can see that, for the first couple of terms in the expansion, Z agrees with the 

result obtained by solving the heat equation directly. 
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3.5 Assembling the Instanton Contribution 

4 0 

Now W6 clX6 Bit 3. stfli ge were we can return to ( 3.51) and find a solution for the determinant 

of the fluctuation operator. Using this and ( 3.20) and ( 3.17) we can find the instanton 

contribution by means of ( 3.23). 

In the previous sections we found that the log det of the fluctuation operator, given by 

( 3.51), depends upon the evaluation of the expectation values (z | e - i A | z ) and (z\e~~tA\z) 

for large and small t. For t —> 0 it is found, by two methods, that 

Using the same methods, the contribution from the other expectation value in this case is 

found to be 

<*""w = i i + ^ ( 1 < > g ' ' - i l 0 » ) + -" P-132» 
Omitted terms tend to zero as t —> 0 in both cases. Now, with these results, and the 

representation of the zero modes of the fluctuation operator given in ( 3.52), ( 3.51) becomes 

/•oo r Q 1 "1 roo 
Sin det'A = - 2 / d2x 8lnp — dHogp - —— 82 logg - 2 / d2x 8 In p V(x) (3.133) 

JO L1D7T 327T2 J Jo 

where V(x) = J2i''Pi{x)'ll)i(x) is the zero mode projection operator assuming (ifriipj) = 8ij. 

The first term may be put into a form in which it may be calculated. To do this note that 

d^lnpd^lnp)) = d^lnpdll(8lnp) + lnpdM8lnp) (3.134) 

<9M (8lnp dfAnp) = dfl(8lnp)dlllnp + Slnp d^lnp (3.135) 

8 ( Inp d^d^lnp) = 8lnp d^d^lnp + Inp d-^d^Slnp) (3.136) 

so that 

8lnp d^lnp= ^ [8 (Inp d^lnp) + d» {8lnp d^lnp) - d^lnp d^Slnp))] (3.137) 
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By using Stokes' Theorem the second and third terms of ( 3.137) may be turned into 
surface integrals. Therefore ( 3.133) may be split into four integrals 

8 In det'A = A1 + A2 + A3 + A4 (3.138) 

where 

A , = 

Ax = —8 ePxlnpdpdJnp (3.139) 
107T JO 

A2 = - J - ida^Slnpd^np-lnpd^Slnp)) (3.140) 
1D7T J 

poo 
/ a?x 8\npd2\ogg (3.141) 

Jo 

3 roo 3 r f°° 
Ai = —-6 / d2x In p0 d^djnp + T ^ ^ Y ] / d2x In\z - bk\2 d^d^np 

l07T JO lD7T 

16TT2. 
/•oo 

A4 = - 2 / d2x 8\npV(x) (3.142) 
Jo 

Now, for the remainder of these calculations we shall redefine p to be p = (l + \v\2)Ylk\z ~ h\2 

as used in [2]. This makes no difference to the final contributions to 8 In det' A . Note that 

now po = (1 + \v\2). Consequently, using these redefinitions, we are able to split A\ 

r k 

+ j f ^ E / ^ - ((a>/>)ln
 \* ~h?-\np a„ In \z - h\2) (3.143) 

The first term in A\ vanishes as it is just the variation of the topological number as 

+ (3,44, 

The factor of q arises because in general the z plane has q inverse images in the v plane due 

to the nature of the instanton solution we are using. By putting v into polar co-ordinates 

it is easily seen that the integral on the right-hand side of this equation is a constant. 

The second integral in ( 3.143) is found by taking into account the fact that d2 ln (x — a)2 = 

4ir8(x — a). Hence 

Q roo , , 'A roo 
T|-<$£/ d2x (d2\n\z-bk\2)\np = ^ d2x8(z-bk)\n(l + \v\2) 
lo7T k J o V ' 4 ^ J a 



3.5. Assembling the Instanton Contribution 4 2 

= ! * £ l n n ( | c | 2 | ^ - a ; | 2 ) (3-145) 
* k i 

The third integral in ( 3.143) may be calculated over an infinitely large circle. However, 

when the contribution from Ai is calculated it is found to be exactly that of the third 

integral in A\ up to a minus sign. Hence these cancel against each other so that the only 

remaining contribution to £ lnde t 'A from A\ is ( 3.145) and there is no overall contribution 

from A2. 

As g^ = 8^ (1 + (x2 + y2)/4:R2y2 then A3 may be calculated for the limit R —> 0. This 

gives a flat space and so 

A3 = - j - * l n ( l + M 2 ) (3.146) 
1D7T 

Consequently 

Ar + Ai + As = 4 < 5 1 n n ( M 2 | 6 f c - a / i 2 ) + 4 < 5 1 n ( l + |c| 2) 
kl 

= 4 < 5 1 n n ( l ^ - « / | 2 ) + 4 < 5 1 n ( | c | 2 9 ( l + | C | 2 ) ) (3.147) 
kl 

Now to calculate A4. Let us choose the standard basis of the zero modes of A to be of the 

form: Xk — p~xzi if k is even, and Xk = p ^ z ^ if k is odd. This system of zero modes 

is not orthonormal, therefore A4 needs to contain some form of normalisation. Wi th the 

inner product defined as (<*,/?) = / <Px yfg p~2afl then 

A4 = - 2 (M f c j - )~ 1 J d2x Jg p~28\np X ] X k = - 2 ( M f c j - ) _ 1 / d2x y/g p'Hp X j X k (3.148) 

where 

M k j = J d 2 x ^ p - 2

X j X k (3.149) 

but 

8Mk) = -2 J d2x V? p~36p XjXk (3.150) 

Thus 

A4 = Tr M~l8M = 6 T r l n M = S lnde tM (3.151) 
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However, if we refer back to ( 3.18) then i t is easy to see that det M — (det iV) 2 and so we 
finally obtain 

8 In det' A = 4 ^ lnJJ (|6 fc - a,| 2) + 4 <51n ( | c | 2 9 ( l + |c| 2)) - f 2(5 In det TV 
ki 

= 2 61n^|c| 4 < ' (l + | c | 2 ) 2 n ( | ^ - « / | 4 ) d e t i V ^ (3.152) 

So 

(det'A)* = | c | 4 ' ( l + | c | 2 ) 2 n (\bk - a,| 4) det N (3.153) 
kl 

and, from ( 3.22), ( 3.17) and ( 3.20), the instanton contribution to the Green's Function 

becomes 

Jq(n) = A ^ ) " 2 ^ - ^ ! ) - 2 / V ( v ) H\ak - a3\\bk - b}\Y[\a, - b m \ ~ 2 - ^ — J [ d 2 a, d \ 
J k>j l,m V 1 + l c l ) i 

(3.154) 

(In [23] i t was noted that an identical result is obtained for the anisotropic version of the 

model). This may be re-expressed as an exponential. The function n(v) now only depends 

on the instanton moduli a, b and c, hence we make the change n(v) = A(a, b, c). The factors 

dependent on the coupling constant may be contained in a single factor Kq [24] which will 

represent the coupling. Now Jq(A) is the same as 1(A) up to some normalisation condition, 

so the instanton contribution to the Green's function for the 0(3) sigma model is 

K* _L {„ L\ d2C 
/ (A) = (A) = £ / A(«, 6, c) ^ e-M-M y ( 1 + [ c | 3 ) a W \ d2b3 (3.155) 

where 

hq(a, b) = - £ In \a{ - a3\2 - £ In 16.- - b3\2 + £ In |o,- - b3\2 (3.156) 
« < i i<j i,3 

which are ( 1.2) and ( 1.3). In the one instanton sector (q = 1) this becomes simply 

= J A(a,b,c)(1(a,b,c)d2cd2ad2b (3.157) 
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where K1 = 26e'f-2-4^k^\ 7 = 0.5772 is the Euler number. The integrand (i(a,b,c) is 
divergent as a —> b, i.e. as we approach the zero instanton sector from the one instanton 
sector. 

Also when q = 0 
A c 

(A>„ = / 7T(1 + |c | 2 ) 2 
(3.158) 
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3.6 Appendix: Zeta-Function Regularisation 

The role of the zeta function in the evaluation of the properties of operators is described in 

detail in [21],[22]. Here we shall just give a basic outline of the ideas that we use, and the 

zeta-function calculation for the operator d2/dr2. More information about the properties 

of the zeta function may be found in [25], [26] and other works. 

Thus, given a matrix operator M. of arbitrary size with eigenvalues A n and eigenfunctions 

ipn then the (-function is given by 

n 

which we shall write in the form 

1 f°° 
(M(S) = Y(^J0 P-1 KM ' (3-160) 

where IC(fi) is a kernel which is to be determined, and the Gamma Function takes its 

standard form 

r(s) = / t'-1 e~* dt (3.161) 
Jo 

To differentiate ( 3.159), each term in the summation must be differentiated separately 

and then the differentials summed. Thus if z n — Xn~s so that Cj\^(s) = J2n

 zn then 

= - l n A B (3.162) 
dzn 

ds s=0 

hence 

ds 
= - ] T > A n (3.163) 

s=0 n 

However, as 

I n d e t X = l n J j A n = £ m A n (3.164) 
n n 

Then the value of the determinant of M is given by 

detM = exp (-Clvf(O)) (3-165) 
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where ('(s) = j-s({s). Also we can find the regularized dimension of the space U in which 
M. is acting by 

dimU = ( M ( 0 ) (3.166) 

In the calculation outlined above we have 

M = - 2 (3.167) 

so 
52 - 2 0 > „ ( T ) = A„V„(r) (3.168) 

where d% = The boundary conditions on tjjn are the same as those on G(r, r ) , i.e. that 

l4>n{T) = 0 at T = 1 and 0. We are thus free to choose ij)n as long as it is consistent with 

these conditions, so we shall simply choose T / > „ ( T ) = v4sin(27rnr), where A is just some 

arbitrary constant. So as <92*/>„(r) = —(27rn) 20„(r) then A„ = 2(27rn)2 — 8ir2n2. So from 

( 3.159) 

(Mi*) = E ( 8 ^ 2 ) - s (3.169) 
n 

= ( 8 7 r T S £ r a " P (3.170) 

where p = 2s, so our problem is now to find the new C-function 

c(p) = 5>~ p ( 3- 1 7 1) 
n 

which is actually the original form of the ^-function defined by Riemann. Comparing this 

with the integral form of the ^-function ( 3.160) 

^ n _ P = I > ) i , ^ E ^ d f i (3.172) 

The kernel has been written as a summation simply to facilitate the calculation. This 

condition is satisfied if K n ( f i ) = exp(—n/x). To see this, for a particular n make a change 
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of variables t — n\i where t is the integration variable of T(p). Now simply by summing it 
as a geometric series we find 

oo 

SO 

= 7 ; r — i (3.173) 

™ = W)l d*£=i (3'174) 

We can integrate this without going into the complex plane if we let 

m = ^TZl (3-175) 

so 

A P ) = Z Y ( p ) J o d ^ P ~ 2 ^ ( 3 - 1 7 6 ) 

The behaviour of at the integration limits is that /?(/«) —>a constant as \l —> 0 and 

(3({i) —> 0 as pL —* oo, also f}'(n) —» 0 as // —> oo, so we may integrate by parts. Note 

however that the integration ( 3.176) is only valid for p > 2, we shall analytically continue 

to the region where ((p) is valid for p > 0. Integrating by parts twice gives 

c w = f M ^ f ( 3 ' m ) 

where the primes indicate differentiation with respect to [i. The dominant terms in ( 3.177) 

are those where p is small. In this case we may make the standard approximation Q(p) —• ^, 

so 
1 r°° 

Thus 
/•oo 

C(0) = - / dii /3'V) = -[/* W (3-179) Jo 

and as /?'(//) —» — | as / i —> 0, and /?'(/^) —> 0 as pL —> oo, then 

C(0) = dimW = - i (3.180) 
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However, to calculate ('(0) we must integrate ( 3.174) in the complex plane. In section 

2.4 of [25] i t is shown that a zeta-function of the form of ( 3.174) may be written in a 

functional form 

C(p) = 2 V - 1 sin (̂ ) r ( l - p) C(l - p) (3.181) 

and thus that 

C'CP) 
OP) 

log 2ir (3.182) 
p=0 

For details of this calculation the reader is refered to [25]. Now, from above we know that 

C M ( * ) = C(P) (3.183) 

and as p = 2s then ^ = 2 ^ and differentiating gives 

CVf (*) = -(87r2)-slog(87r2)C(p) + 2(87r2)-sC'(p) (3.184) 

so if we divide by Cj\4(s) w e g e^ 

C.A/f(s) s = 0 

- log(87r2) + 2 C'(p) 

. O S © 

C(p) p=0 

(3.185) 

thus 

and 

det M : exp (— log \/2^ == 

(3.186) 

(3.187) 
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4-1. Introduction 

4.1 Introduction 

5 0 

In the previous section we saw that the instanton contribution to the Green's function 

for the 0(3) sigma model is divergent at the boundaries of the instantons. Whether the 

divergence occurs or not is due purely to the nature of the instanton moduli. Hence, 

any mechanism we may devise to regulate these divergences will involve applying some 

sort of cut-off in the space of the instanton moduli. To do this we need to write the 

Greens Function as an integral over the instanton moduli to all orders in the semi-classical 

expansion of the functional integral. In this chapter a mechanism for doing this shall be 

proposed. However the act of cutting off the integral over the moduli space brings its own 

problems. 

Separating the moduli space integral from the rest of the field variables may be done by 

imposing some form of constraint on the fields and the moduli. A convenient method 

of imposing this constraint and of generating the integral over the moduli is to use the 

Faddeev-Popov trick [27]. 

There are distinct advantages in using the Faddeev-Popov trick to introduce the integral 

over the moduli into the Green's Function. Firstly, in theories where we have to worry about 

gauge groups, such as Yang-Mills Theory, the Faddeev-Popov procedure is the accepted 

method of dealing with the problem of the extra multiplicative infinity arising from the 

integration over the gauge group measure. It does this by constraining the fields on to 

a gauge orbit using a delta function, the gauge group integration comes in as we have to 

integrate over all gauge orbits. To compensate for this, extra terms are added to the action 

written in terms of Grassmanian variables known as "ghost" fields and the constraints. 

There is nothing stopping us including the integral over the moduli in this procedure and 

then adding to the number of ghost fields to compensate. New fields introduced in this way 
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wil l , however, not really be ghost fields, we shall thus call them "quasi-ghosts". In theories 

where gauge groups are not a concern, such as the 0(3) sigma model, the Faddeev-Popov 

trick as such is not needed to factor out a divergence, however the pattern of the procedure 

may still be used to factor out the integral over the instanton moduli, resulting in the 

inclusion of quasi-ghosts and constraints in the action corresponding to the separation of 

the field into a quantum fluctuation and a moduli dependent background. 

Another advantage of the Faddeev-Popov approach is that it makes the dependence on the 

instanton moduli explicit without making any assumptions about the size of the fluctua­

tions about the instanton solutions, and so it is efficient to all orders of the loop expansion. 

However a disadvantage of this procedure is that the constraints used remain in the action. 

I t is important that the final theory must not have any dependence on these constraints. 

First let us look in general terms at how the cut-off in moduli space my be imposed by 

using Stokes' Theorem [4]. 

Suppose that we have an (ill-defined) divergent integral over a domain M' parametrised 

by n variables t 

I d n t f ( t ) (4.1) 
JM' 

the simplest way to regulate this is to introduce a cut-off which restricts the range of the 

variables. Say that only one of the variables, t\, is restricted. Then the integration is now 

being taken over a domain M with boundary dM on which t\ takes its cut-off values. So 

J m dnt f ( t ) is now well defined but i t depends strongly on the cut-off. 

However, if we were to make a reparametrisation of the variables t A —• t A = t A + eA(t) then 

the cut-off changes and thus so does the value of the integral. The change in the integral 

is 

/ „ " a-j^m+Lrt = L * * w ( £ < ( , ) / ( , ) ) (4-2» 
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may be expressed using Stokes' Theorem 

So that now the integral is taken over the boundary of M. Now, if J dnt f ( t ) is an 

amplitude, it is unacceptable for it to depend on the choice of parametrisation. Thus we 

wish ( 4.3) to be zero, if it is not then some way of cancelling it must be found. 

4.2 Formalism for Gauge Field Theories 

We shall now show how these ideas may be set out in terms of a field theory with instantons 

[4]. Such a theory may be expressed as a sum of partition functions, each partition function 

being integrated over a separate homotopy class Cq of the field configurations </>. The 

partition function Z may then be written 

Z = X > % , Zq= L v t e - 3 ^ (4.4) 

where K9 is some function of the topological coupling constant. The Greens Functions are 

thus also sums over the topological sectors 

gq = | c ^ e - ^ A W (4.5) 

G = (4-6) 

We will assume that the action has a gauge invariance, i.e. under the transformation 

4> —» 4>9 we assume that S[<f>] —• S[<j)9] — S[<f>]. These symmetries will form a closed algebra. 

If g is close to the identity such that g = 1 + u>, where u> has components ua, then the 

variation of <f> with respect to g is 8u>(j) = ua8a<f> which forms an algebra [8a,8^<f> = flb8c<f). 

In each topological sector Cq there is a general family of solutions <j>0 to the classical 

equations of motion given by S^S = 0. Let these solutions be parametrised by moduli 
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{tA} so that 
8S 
8<j> 

= 0 for all t A (4.7) 

8<f>8(j) 

d<f>0 

(4.8) 

Differentiating with respect to t A shows that ^p- is a zero mode of the fluctuation operator 

82S 

<7Mo 

which is simply the second non-vanishing term from an expansion of the action in powers of 

<f>. Similarly the gauge variations of <f>, <5u;<A, will be zero-modes of the fluctuation operator. 

We need to consider what form of constraint may be imposed on the fields to separate 

out the moduli space integrals and to gauge fix the gauge symmetry. In general terms we 

could consider the condition that an infinite number of arbitrary functions Fj(<f),t) could 

be chosen such that 

i ^ V ) = 0 (4.9) 

The g are group elements parametrising the gauge transformations of the fields which leave 

the action unchanged. 

More specifically, let <f> = </>0(t) + £ where £ is some quantum fluctuation about </>0 which is 

continuously deformable to zero. As a constraint we could then impose the condition that 

£ is orthogonal to the zero modes. For instance in Yang-Mills Theory we would consider 

£YM = — Afi{i) where is the instanton solution to the classical equations of motion 

and denotes the gauge potential. Thus the condition that £YM be orthogonal to the 

zero modes may be expressed, on IR4, as 

/ ^ t r ( ^ £ ™ ) = 0 (4.10) 

for the zero-modes which came from differentiating ( 4.7) with respect to the moduli, and 

for those which came from taking the variation of <j> 

[dll + Atl{tUYM] = 0 (4-11) 
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The second constraint is just the background gauge condition. These constraints could be 

imposed by using the Faddeev-Popov construction [27], an integral over the moduli space 

is then naturally introduced. Using the general form of the constraints, Fj(<f)g,t) = 0, we 

define a functional A[(f>, t] such that 

J Vg dt A[<M I[S[Fj(<ptt)] = 1 (4.12) 

where T>g is the Haar measure on the group of gauge transformations. Suppose that for 

<t> = <t> the constraints have a solution g = g, t = t, then Fj((f> ,t) = 0. Expanding about 

this solution, where g = (1 + ui)g and t — t + t, gives 

, 1 
dtA 

g=g,t=t 
6cf> + 

g=g,t=t 

g=g,t=t 
+ 

g=g,t=t 

{su + ^ ^ j F j ^ t ) (4.13) 
<f)=(j> ,t=i 

The Haar measure is invariant under multiplication by a group element g, thus A [ ^ s , i ] 

A[<j), t] which allows A to be factored out of the integral and 

A " 1 = J Vg dt ]p [Fj(<f>g,t)} = JVu dt\{8 Su + V 1 1 
dtA 

Fji^t) 
] 3 

To calculate the first integral / VUJ Y\j6 {8uFj{(f>,t)) remember that 

WWHw^U^,* ) 

<j)=(j)&\t=i 
(4.14) 

(4.15) 

Now let /*(</>, t) be the eigenfunctions of 8aFj and A' be the eigenvalues, so (6aFj)fl = \ l f \ 

If we expand ua in terms of the eigenfunctions, so u>a = u j l f ' a , then ua8aFj — u l f t a X \ so 

now we have / Vu> Y\j8 ( w ' f A j . To make the integration easier we can write that delta 

function and the measure in terms of a single variable. Thus let ua = ux/,aA* and so 

(hi1 Vu (4.16) 
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To calculate the Jacobian note that |?4 = A ! / '° thus dU> 

dua 

nA7m
 = ( d e t ( ^ ) ) | r | (4.17) 

and so 

J Vu YlStfwFjifat)) = jVu (det (SaFj)y1 6(u) = (det ( ^F , - ) ) - 1 (4.18) 
i 

The second integral in ( 4.14) may be calculated in a similar manner so that 

/ dt\{S (P^LFM,^ = ( d e t ( c ^ ) r 1 (4.19) 

Consequently 

A = d e t ( ^ ( ^ < ) , ^ ( ^ < ) ) | . (4.20) 
<p=<p ,t=t 

It is more convenient for this determinant to be written as part of the action. This may be 

done by using Grassmann variables in the form of ghost fields. We shall use the following 

notation. There is a ghost ca for each transformation parameter uja, an anti-ghost V for 

each constraint Fj and a quasi-ghost TA for each modulus t A . Now with ( 4.12) included 

in the partition function for the qth. sector 

Z, = jVgdt J c V<j) e~s^ A[<M n * [ W , 0 ] (4-21) 

However we know that under the transformation <f> —• (f>9, S[(j>] and A are invariant. I f we 

also assume that T>(j) = T><f)9 then the Haar measure may be factored out and the partition 

function may be redefined to be 

Jdtz(t) (4.22) 

z{t) = [ V t e - ^ A l ^ n S l F ^ S ) } (4.23) 
q j 

In terms of the ghost fields 

A = J V(b, c) dr exp [ - [ca8a + r A d A ) (VFj)] (4.24) 
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and as an integral the delta function is 

m = J UdV e>yF> (4.25) 
j 

Thus 

z(t) = I V(<t>,c\b>,\3) dT e-Stot (4.26) 

Stot = S[<j>) + (ca8a + T A d A ) { V F 3 ) - i \ 3 F j (4.27) 

This can be written more economically by using a BRST transformation [28]. The trans­

formation is parametrised by a Grassmann number n such that 8v<f) — rj<;<f> and <r operates 

on the fields 

<;</> = ca8a<f> , <;ca = l-cbccftc , & = i \ j , = 0 , qrA = 0 (4.28) 

7} does not act on the moduli t and <̂  is nilpotent, q2 = 0, by construction. Using these we 

can write 

S M = S[<j>) + + r A d A ) (VFj) (4.29) 

Now {S,Ta8A} = 0 and (Ta3A)2 = 0 as the r A anti-commute but the 3A commute. So 

+ r ^ ^ j = 0, and as S[(/>] is gauge invariant and independent of the moduli then 

+ r A d A ) Stot = (? + r ^ ) + (? + r ^ ) 2 = 0 (4.30) 

Which means that Stot, the gauge fixed action, is not BRST invariant but sStot = ~TAdAStot 

It can be seen from ( 4.22) and ( 4.23) that we have succeeded in our task of separating 

the integral over the moduli from the rest of the functional integrals. At the same time the 

necessary gauge fixing has been performed at the expense of introducing the constraints. 

The moduli space integral may now be cut off using the process described in the introduc­

tion to this chapter: restricting the integration over M to its boundary 3M by means of 

Stokes' Theorem. However we need to know whether this procedure is dependent on the 
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choice of constraint. If it is then this is unacceptable as the arbitrariness of the choice of 
constraint is destroyed, and some method must be found to restore i t . 

Thus to discern whether the Partition Function is dependent on the constraints, we make 

an arbitrary variation of the constraints such that Fj —> Fj + SFj then 

SStot= (<; + r A d A ) (V8Fj) (4.31) 

and so 

6e~Stot = -{<; + r A d A ) {V SFj) e~Stot = - (? + Ta8a) (b> 8 F j e - S t o t ) (4.32) 

giving 

8z{t) = - [ T>V {q + r A d A ) (V 8Fje-s"") (4.33) 

where $ denotes the variables </>, ca, fr7', X3 and r . 

The expression ( 4.33) may be simplified. Consider 

j V 8Fje~Stat (4.34) 

This is zero as it is Grassmann odd. If there is a variation of the integration variables with 

respect to the BRST parameter, > $ + 8^ = $ + rjsty then the change in the integral 

( 4.34) is 

J n c , (b> 8Fje-s'°>) (4.35) 

which is also zero as the value of the integral does not change under a change of the 

integration variables. This is true for all 77, thus the first term in ( 4.33) is zero and 

8z(t) = - d A f TAV 8Fje-s'ot (4.36) 

This is the change in the moduli space density which has been generated by the constraints 

we have introduced. If this is non-zero then the Partition Function has gained a dependence 
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on the constraints, which is unacceptable and some method must be found to deal w i t h the 
problem. One solution is to simply cancel this anomaly w i t h a "counter-term". A separate 
"counter-term" would have to be used for each topological sector and for each order in the 
coupling constant. 

Now we are in a position to use our cut-off procedure. So applying ( 4.3) to ( 4.36) gives 

8 I dt z(t) = - [ dZA [VV TA{tj6F3)e-Stot (4.37) 
JM JdM J 

4.3 Formalism for Sigma Models 

The difference between the Yang-Mills formulation of the problem and that of the sigma 

model is simply that for the sigma model we do not have to take the gauge transformations 

into consideration. This means that the Haar measure and any variations w i t h respect to 

the gauge group never appear in the sigma model case. However, despite the fact that 

there is no need of gauge f ix ing, the Faddeev-Popov trick, or at least a simpler version of 

i t , is s t i l l the most convenient way of separating the integrals over the modul i f r o m the 

integrals over the fields. 

So i n this case let us consider fields w such that in the Green's Functions 

Qq = f Vw e - s H A H (4.38) 

G = (4-39) 

S[w] is the sigma model action. In Section 2 i t was found that in each topological sector 

there is i n general a fami ly of solutions, v, to the classical equations of mot ion which are 

parametrized by moduli {tA}. Thus the fields may be split into classical and quantum 

pieces such that w = v + <j), where ^ is a quantum fluctuation continuously deformable 

to zero. Our set of arbitrary constraints may thus be defined as Fj(w,t) — 0 which are 
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introduced by mul t ip ly ing the Green's Function by 

J dt A[w, t ] ] j 6 (Fj{w, t)) = 1 (4.40) 
3 

Suppose that the constraints have a solution w = w and t = t, then expanding the 

constraint about t = t + t 

Fj{wtt) = F^wJ) + t A d A F 3 ( w , t ) \ w = ^ t = i + ••• (4.41) 

where 8A = g f j - So 

/ d t A[w,t] J] S ( ^ ^ - K O I ^ ^ f ) = 1 (4.42) 
j 

and we may factor out the operator A . Integrating out the delta funct ion leaves the 

Jacobian, thus 

A = det(dAFj(w,t)\w=^t=i) (4.43) 

Representing this determinant using Grassmann numbers we have a quasi-anti-ghost £ J for 

each constraint Fj, and a quasi-ghost TA for each parameter t A . Then 

A = J Z>(0exp \ - r A d A (t3F3{w,t))] (4.44) 

Also, i f we wri te 

J] 8 (Fj(w, <)) = J d\ e~iX'F> (4.45) 
3 

then we get 

Qq = j dt VW e~Stot A(u>) (4.46) 

where 

Stot = S[w] + r A d A ((BFB(w,t)) + MFj (4.47) 

and W denotes ru,^,A. The equation equivalent to this one in the Gauge Field Formalism 

was simplified by means of a BRST transformation. Here we can go through a similar 
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procedure as we are free to define a transformation operator as we wish. Hence we shall 
define a BRST-type transformation which is parametrised by a Grassmann number 77, 
and acts on w,£,\ but not the modul i , then i t may be wr i t t en as 6vw = rjqw. The 
transformation operator <̂  is thus defined by 

^ B = i \ B , <jA = 0 , <;T = 0 , <;w = 0 , <r2 = 0 (4.48) 

So we have 

S t o t = S[w] + ( c + TAdA)(?F3{w,t)) (4.49) 

Now {<r, Ta8A} = 0 because 8A acts only on the moduli whereas <r does not. Also {rAdA

sj = 

0 as derivatives w i t h respect to the moduli commute w i t h each other. Thus <; + Ta8A is 

also nilpotent. Giveri~that S[w] is independent of the moduli we thus have 

k + TAdA)Stot = 0 (4.50) 

So the action is not invariant under the action of the operator <; but sStot — —TAdASt0t-

Again we have now achieved our purpose of being able to explici t ly write the Green's 

Function as an integral over the moduli 

g n = j d t g(t) , g(t) = f v W e-s«* A(w) (4.51) 

I f these integrals diverge then they may be regulated by a cut-off procedure. However we 

need to f ind out i f the choice of constraint has any effect on this. I f i t does then this is 

obviously unsatisfactory and we must do something to compensate. Making an arbitrary 

variation of the moduli density w i t h respect to the constraint gives 

Sg(t) = - J VW e~Stot{<; + TA8A)UJSFj) A(u>) 

= - JVW{<; + T a 8 a ) e _ 5 t o t {Z'SFj) A(w) (4.52) 

because of ( 4.50). We shall now show that the first term vanishes. Note that 

J VW e-St°< ( t ' S F j ) A{w) (4.53) 
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is Grassmann odd, and under a perturbation about the f ield w —> w + rjqw the integration 
measure VW doesn't change but 

j VW e~Stoi (£>6Fj) A(w) -+ j v W (e~SM (t'SFj) + ^e~Stot {t]8Fj)) A(w) (4.54) 

However the value of the integral does not change under a change of the integration vari­

ables, hence 

J VW rjqe-Stot (t'SFj) A(w) = 0 (4.55) 

Thus 

Sg(t) = - d A J VW e-s>°'TA(tJ8Fj) A(w) (4.56) 

I f the integration region of the parameters t is M which has boundary dM then we may 

calculate the variation in the Part i t ion Function by using Stokes' Theorem in the f o r m 

So 

8gq = 6[ dt g{t) = - ( dEA f v W TA{^8F})e-Stot A{w) (4.58) 
JM JdM J 

I f this is non-zero then the Green's Function has acqired a dependence on the arbi trary 

choice F. This is unacceptable and we must find some way to cure this problem. Typical ly 

the divergences are associated w i t h a classical configuration degenerating to one of lower 

topology. This is true in this case as can be seen by the nature of the divergence of the 

instanton contribution to the Green's Function ( 1.2). So configurations on the boundary 

dM may be approximated by configurations in a different topological sector. Thus ( 4.58) 

may possibly be cancelled by a counterterm f r o m another topological sector. We shall see 

that this k ind of 'topological renormalisation' can be done in the case of the 0 ( 3 ) tr-model, 

at least for the simplest k ind of divergences. 
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The existence of the anomalous term found in the previous sections means that we must 

reconsider the construction of the Ward Identities of the models that are being considered. 

This argument is also given in [4] for the case of gauge field theories. However i t is directly 

analogous to the symmetry considerations for the 0 (3 ) sigma model in [3]. 

For a Grassmann operator A(ty), where \P represents all the fields i n Stot, the Ward Iden­

tities are given by 

)) = 0 (4.59) 

This condition is crucial to the perturbative renormalisation of Yang-Mills Theory [29] and 

to the decoupling of spurious states in String Theory. One approach to the analysis of 

( 4.59) is to look at the effect of the BRST operator c on the expectation value of the 

operator A(*f>). Consider the contribution to the expectation value of the operator A(\P) 

f r o m a particular topological sector Cq 

J d t j c A ( * ) e~Stot (4.60) 

Under the transformation # —> $ fi^ = $ + r j ^ , the invariance of the measure T>^ is 

dependent on the Jacobian of the transformation being unitary. So under VP —• $ + T/^^f 

J d t j c X>\fr e~Stot -* j d t j c Pvf e-Stot + j dt V^l rjq ( A ( # ) e~Stot) (4.61) 

but the value of the integral does not change under a change of integration variable, so 

t d t f W ! w e - 5 t o t ) = 0 (4.62) 

The action of the operator q on e~Stot is the same as its action on Stoti i.e. ?c t o t — 

- T A d A e - S t o t . Thus 

J d t j c M ( * ) ) e- S t o 1 + J d t j c A{V) TAdAe-St°< = 0 (4.63) 
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Hence the contribution of Cq to the expectation value of sA(ty) is 

e - s t o t 

-g Stot = / d t f w A ( t f ) r A f 

= - / dS^ / Ta A(V) e~Stot (4.64) 
J 3 M JCq 

As <j is the BRST operator in gauge theories, then this may be thought of as a BRST 

anomaly and must be cancelled by a counter-term i f we are to retain the properties of 

BRST invariance. 

For the 0 (3 ) sigma model we could construct an analogous argument to the one just given 

using the BRST-like operator used in the previous section. However i t is easier i n this 

model to consider an infinitesimal transformation w —» w + Ssw which leaves the classical 

action S[w] and the integration element Vw unchanged. Using this transformation to 

define a change of integration variables i n ( 4.51) 

j VW e - S t ° ' [ w ' t ' X ] A{w) = J VW e - s < ° . k + W . A ] + S s W ) ( 4 - 6 5 ) 

expanding to first order i n 6sw 

0 = - J VW (? + T A d A ) e~Stot {i'6,Fj) A(w) + JVW e ^ ' - K ^ l 8sA(w) (4.66) 

Integrating over the moduli ' space and applying the cut-off gives 

(<SSAH) = j dt [ VW e ~ s ^ i M 8sA(w) = f d X A f VW TA(^SsFj)e-s"" A(w) 
JM J JdM J 

(4.67) 

I f the right-hand side of the expression were zero, then this would represent a Ward Ident i ty 

for the model expressing the effect of the symmetry of the classical action on the Green's 

Function. I f i t is non-zero then the symmetry has been broken by the cut-off, which would 

imply an unacceptable loss of classical symmetry. 
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This section is a short review of Appendix C of [3]. Note that i t is possible to f ind our 

basic result for the 0 ( 3 ) sigma model ( 4.58) without using ghosts. Mul t ip ly ing the basic 

Green's funct ion ( 4.38) by the Faddeev-Popov-type factor ( 4.40), and then taking the 

variation w i t h respect to the constraint gives 

6Qq = 6 I dt I Vw e~s[w] det(m) 8 (Fj(w, t)) A (4.68) 
JM J K 

Here m A j = dAFj. Now i f the ghosts are integrated out of ( 4.58) then we f ind 

8Qq = ! dEA [ Vw e~s[w] det(m) mAj 8F3- ]J 8 (F3(w, t)) A (4.69) 
J dM J ^ 

Of course ( 4.68) and ( 4.69) must be identical for our result to be valid. To prove this 

identi ty we need to show that 

8 (det(m) ]J 8(Fk(w,t)^j = 8A (det(m) mAj 8F3 ~[[ 8 (Fk(w,t))^J (4.70) 

There is a well known formula for the variation of a determinant in terms of the variation 

of each element mul t ipl ied by its co-factor, which gives 

8 (det(m) n < 5 ( F j ( u ; , 0 ) j 

= det(m) m A j - x 8mAj JJ S (Fk(w, <)) + det(m) 8 [ U 8 (Fk(w, t))) (4.71) 
k \ k J 

As 8mAj = dA8Fj then the first term on the right-hand side may be wr i t ten as a divergence 

in moduli-space (which is the right-hand side of ( 4.70)) w i t h a correction term. This 

correction term and the second term on the right-hand side of ( 4.71) may be shown to 

cancel and hence ( 4.70) is proved. 

This version of the calculation is actually longer than the version using ghosts as the 

proof that the unwanted terms cancel is not t r iv ia l . Also, when we come to calculate the 
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modification te rm (Section 5) the ghosts supply a straightforward method of calculation 
where we don't have to use determinants. Hence the ghost version is used. 



Chapter 5 

The Anomalous Ward Identity 

66 
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5.1 Calculation of the Modification Term 

We shall now calculate the 'anomaly' given in ( 4.58) for the case of the 0 (3 ) cr-model. As 

the region of the modul i space that we are interested in is where a —> b then the instanton 

solution may be wr i t t en i n a more convenient fo rm. I f we set a — b = r the one instanton 

solution becomes 

" = c (' ~ 7^l) M 

then as \r\ approaches zero, v tends to the zero instanton sector v = c, so we w i l l introduce 

a moduli-space cut-off by taking |r | > e. We take r , b and c as the complex instanton 

parameters, defining them collectively as {ta} = (r, b, c) and {ta} = ( f , 6, c). Note that w 

is independent of {ta}. Now suppose that w differs f r o m v by some quantum correction 

ip(z,z), then w = v + <p. The quantum correction is constrained to be orthogonal to a set 

of arbitrari ly chosen functions [ip] 

F 5 = (V>a, i f ) = 0 = ( 0 a , q>) = Fa (5.2) 

The inner product is defined as 

(ipa, ip) = J d2x y/g p~2 ^ </? = p~2 i> o , p=l + \v\2 (5.3) 

where g^v is the metric on S 2

h y s given by ( 3.11). Also g = d e t g ^ . The functionals FA 

are the constraints which enter into the action in the manner outlined in the Section 4. 

Therefore the tota l action ( 4.49) is 

Stot^Soi^ + ^ + r ^ A ^ F , ) (5.4) 

where So[<p] is given above in ( 3.9), and the 'anomaly' ( 4.58) 

8Q1 = - I d Z A I V § e - ^ ' T ^ S F j ) A(v) (5.5) 
JdM J 
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where $ denotes al l the fields. Looking to integrate out the ghosts we expand out the 
action using the properties of the operator <̂  given in ( 4.48) 

Stot =S0[<p] + XAFA - T a ^ m a 0 - T s ^ m 5 0 

+raeda(p-2^) o (p + r a f d a ( p - 2 ^ ) o ip 

+Tst'3ds(p-2il>p) o ip + r s ^ d s { p - 2 ^ 0 ) o <p (5.6) 

The ghost field propagators are the inverses of the matrices 

map = (^p,dav) , map = (dav,ipp) (5.7) 

The last four terms of ( 5.6) are the interaction terms between the ghost fields and (p. Now 

let S = SQ + \ A F A — T a ( f m a f j — Ta£Pfhai3 and expand the rest of the action in a power 

series in <p. So i f Stot = § + S then 

e-s = 1 - [ t T ^ " V > ^ + ^ ( p " V > V 

+ T ^ f d ^ p - 2 ^ ) o v + T^daip-2^) o<p]+... (5.8) 

The unwri t ten terms, of higher order in (p w i l l be neglected. The first te rm in the expansion 

disappears under contraction wi th the rest of Q\ as i t is linear in ip. Thus we need to find 

which are the non-zero terms in 

6Qx = - I dZA [ Z>$ e-§ TA(Zj6Fj) 
JdM J 

x [ r T ^ ( ^ ) o ip + T ^ d a i p - 2 ^ ) o <p 

+ r r ^ ( p - j ^ ) o <p+T*edz{p-2$B) o <p\ A(«) 

= - J a M d S a J V® e"* (ra^S(p-2M o ip + r ^ S ( p - 2 ^ ) o ip) 

x {rTd»(p-2^) o <p + T^Cdnip-2^) o <f 

+ r T ^ ( p - 2 ^ ) O ip + r ^ f d ^ p - 2 ^ ) o ip) A(v) 

- J 9 M d X s J V® e~§ {Ts^6(p-2fp0) o Cp + Ts^6(p-2^p) o ^ ) 
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(5.9) 

Simply by studying the action we see that to this order the non-zero terms are 

- j d£s J V § e ' § [ ( T S ^ S ( P - 2 ^ ) O <p) ( r T d . i p - 2 ^ ) o v ) A(t>)](5.10) 

In order to do the integration over the fields, the ghosts i n the first t e rm must be re­

ordered. The ghosts are Grassmannian so they anti-commute, and due to the fact that 

three commutation operations need to be performed, an extra minus sign is produced in 

the first term. Hence 

6Qi = J d M d X a (Ci(t)fh^(S(p-2rpp) o <p)m-l(d»(p-2tD) o <p) A(«)) 

- j^dZt (Ci(t)m^(S(p-2^) o ^m-Kd.ip-2^) o <p) A(vj) 

= I dY,aya
 A(v) - [ A(v) (5.11) 

JdM JdM 

Thus 

= C i ^ m ^ ^ - V ^ o ^ ^ ^ - ^ ^ o ^ ) (5.12) 

^ = Ci(0m5(*(p"V/j)ov)"»^(5|.(/»"Vp)ov) (5-13) 

Where (i(t) is the one-loop part i t ion funct ion given above ( 3.157) and the boldface type 

indicates that the field cp is contracted w i t h its conjugate field i n the same term. This 

expression ( 5.11) is the lowest order contribution to 8Q\ f r om the semi-classical expansion 

in powers of Planck's constant. The one-loop contribution is zero as S(i(t) = 0. Our 

expression is one order beyond the one-loop result. 

We w i l l now show that *$>a and *$>a can themselves be expressed as variations. This enables 

us to both s impl i fy their evaluations and find counterterms which w i l l cancel 8 f M d t g{t). 
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To do this we see that the fields ip contract to introduce a two-point Green's funct ion. The 
Green's funct ion of the two-point fluctuation operator is found in Appendix A to be 

I(x,y) = < ip(x) (p{y) >= (p(x)tp(y) (5.14) 

= - \ I d 2 z (1 - pU) — p \ z ) J — { \ - oP) (5.15) 
7T J x — z z — y 

here we have used a notation equivalent to the inner product, i.e. 

p t ( y , x - ) o — = [ d2x' P^y,x') ^ — p - 2 ( x ' ) (5.16) 
x — z J x' — z 

where the operators P are projection operators which "project out" the zero modes of A 

P(x, y) = (p-2rl>a(*j) ™£Zp(y) (5-17) 

P t ( y , x ) = Zp{y)mpl (p~2Mx)) (5-18) 

and Z(x) is a zero mode of A . Above we showed that the zero modes of the fluctuation 

operator are dAv, therefore f r o m ( 5.7) we see that 

map = (-2s, ̂ ) , fhap = (Zoijfp) (5.19) 

We also find i n Appendix A that 

I(x,y) = (1 - P t 0 ) l 0 ( x , y ) (1 - oP) x (1 + 0(e)) (5.20) 

where T0(x,y) is the zero instanton sector Green's Function. Thus to leading order we can 

use this relationship and the projection operators to evaluate $ a and on the boundary 

dM. To do this, in vP" and \P° we may replace <p w i th (1 — p t o ) i p Q and (p by <p0(l — oP). 

Hence the one instanton sector Green's Function ( 5.14) may now be approximately wr i t t en 

as 

r(x)v(y) « ( i - ^ t o ) y 0 v 0 ( i - °P) (5-21) 

and the inner products contained in VP" and tya becomes 

(<p, Sfo) = J d2x yjg- p~2 <p8iP0 = <po {p-28^p) « £ 0 ( 1 - oP) o (p-28xf>p) (5.22) 
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Now let us consider both tya and as the product of two terms, each containing an inner 

product w i t h a ghost field propagator as a coefficient. The fields i n these terms may be 

replaced in the manner described above, for the moment we shall consider each of these 

acting on an arbitrary funct ion / which is independent of ip. Hence for fh^(8(p~2il>0) o (p) 

™H [ ( / ( I -oP))oS (p-2i>p)\ = m-J f o 8 ( p ~ 2 ^ ) - rh-J f o ( p ' 2 ^ ) rh-JZ-K o 8 ( p ~ 2 ^ ) 

(5.23) 

where we have used ( 5.17). Now Zno8 (p~2ipp) = 8fhf-p which can easily be seen by taking 

the variation w i t h respect to ip of the second equation in ( 5.19). So 

m M3 ( / ( l - oP)) o 8 (p-2rpp)\ = full f o 8 (p-2tpp) - r h ^ f o (p~2^T) f h ^ S f h ^ 

= 8 ( f o ( p - 2 ^ ) r h - j ) (5.24) 

For the second term in tya we may make an approximation similar to ( 5.22) 

d ^ p - 2 ^ ) o ip « d f i { p - 2 ^ ) o (1 - pU)<p0 (5.25) 

and thus 

'dp(p-2j,,) o (1 - P t 0 ) / ] = m - » [ ^ ( ( / | - 2 ^ ) o ( l - p t o ) / ) 

- ( p - ^ o f ^ l - P t o ) ) / (5.26) 

However, one of the properties of f t is that 

(5.27) 

therefore the first t e rm on the right hand side of ( 5.26) is zero leaving us w i t h 

d f i ( p - 2 ^ ) o (1 - P t o ) / ] = m-l(p-2j>D) o 9 p p t o / (5.28) 
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Now as the zero modes are meromorphic in the moduli we have dp,Z$ = 0 and so using 

( 5.18) we have 

m a l ( p Z9dp{m0lp 2 0«(z) ) O / = da(ma\p 2^-K(x)) o f (5.29) 

where we have used ( 5.19). We have also assumed that ru'lmev = 8a$. This is certainly 

true for the choice of constraint which we w i l l be presenting later in this chapter, but 

i t is not necessarily true for all choices and care must be taken in each case. A similar 

procedure may be used on the second term in however this t ime there is an important 

modification. The derivatives of the zero modes w i t h respect to the modul i contribute as 

d^Ze ± 0 

d , ( / r 2 ^ ) o ( i - p t 0 ) / m 
map(p ^ v ) ° d l l ( Z B m g k p 1pR(x))of 

+ rn-Up'2^) o (d^Ze)(m^p-2Mx)) o /(5 .30) 

Now re-arranging $ a and * 5 using ( 5.24), ( 5.29) and ( 5.30) gives 

V a = Ci(<)* \m^(p-2tp0 o <p0)] dn(mllp-2i>R o <pQ) (5.31) 

and as 8(i(t) = 0 and dp.(m^p~2xl)R o tp0) are independent of xp then the variation may be 

put outside the whole expression. (Note that we are treating ip and ?/> as being independent 

of one another. 

V a = 8 [Ci(t)rh^(p-2^ o tPoWtim^p-2^ o <p0)] (5.32) 

Similarly 

* a = Ci(0*h5(^"V/»o^ 0)](aM(mSp- a^(*)) 

+™ic{p~2$u) o (df.Ze^m^p'2^-^))) o ip0 

= 6 [&(<) ^ ( P " 2 ^ ° ^ o ) (^(m-^p~2Mx)) 

+™^(P~24>?) ° (d»Ze)(m£p~2ii>a(x)j) o <p0 
(5.33) 
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Thus we have succeeded in wr i t ing tya and \ & a on dM as variations, given in terms of the 
zero instanton sector Green's Function. Consequently the variation of the Green's Function 

is 

6QX = I d E Q 6 [ C i ( t ) m T V ^ o £ 0 ^ 
JdM L 

+m-l{p-2^) o {d»Z0)(m£p-*$-K{x)j) o <pQ] A(c) (5.34) 

These integrals have been restricted to a surface dM i n the moduli space M. The one 

instanton modul i are b, c and r = a — b and we are free to define the surface i n terms 

of these in any manner we choose. However as the one instanton Green's Function is 

divergent in the region r —> 0 i t is prudent to put the cut-off on r . Hence let us say that 

the magnitude of r is held fixed on dM such that \r\ = e and so r = eetB. Thus the 

integration measures on dM are 

{dXA) = (<ffir, tffi f) = (ee~iede d2b d2c , eei9d0 d2b d2c) (5.35) 

and as 

C M = W (5-36) 

then we can use ( 5.35) and ( 5.36) in ( 5.34) to give 

6gx = 8<f>d6 d2b d2c E "' G

7 R E ( 1 ^ 1 | C | 2 ) 2^( / 9 " 2 ^ 0 <P0)dfi(rn-Jp-2ip~-K o <p0) A(c) 

- S f d 6 d2b d2c e * _ j J £ ^ m^ip-^p o cp0) 

x ( 0 M K * V 2 & ( * ) ) + ™-l(p-2^) o ( ^ ( m ^ V ^ M * ) ) ) o <p0 A(c$5.37) 

In the zero instanton sector the instanton solution is just a single complex number c, thus 

the two-point funct ion in this sector is 

d^ 
JV$ e - s « - <p0(x)ip0(y) = J <p0(x)*>o(y) ^ + | c | 2 ) 2 ( 5 - 3 8 ) 
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hence 

6GX = Sjm e " s - f d6 d2b e - i d K \ - l f h l } { p - 2 ^ o ^ 0 ) ^ ( " » « r V ~ ¥ « ° ¥>o) A(c) 

- tfjfp* e- S f o 1 ^ d 0 d2b e ^ t f V 1 rh^(p-2^ o £ 0 ) 

x ( ^ K s V ^ O * ) ) + m-Hp-^v) o {d»Ze)(m£p-2i>-K(x)j) o <p0 A(c)(5.39) 

= 5 e- S ( o t J A(c) (5.40) 
Jo 

where 

J = / d 2 & fdd K'e-1 [e-iefh-^(p-2^ o t p M m ^ p - ^ o y>0) - e ^ m ^ / T ^ o £ 0 ) 

x ( ^ K * V ¥ s ( z ) ) + m^(p~2^) o ( ^ ^ ) ( m ^ V ~ ¥ « ( ^ ) ) ) ° Vo] (5-41) 

Therefore we have succeeded in writing the variation of the one instanton sector contribu­

tion as the variation of a term in the zero instanton sector. If ( 5.41) is not zero then the 

Green's Functions have gained a dependence on the arbitrary function ip. It is important 

that this dependence does not occur, otherwise the Green's Functions would depend on 

the choice of configuration space co-ordinates, and the symmetries that enable us to renor-

malise may be affected. Hence we shall propose a modification of the Green's Functions 

designed to subtract any if> dependent terms from the Green's Function in each instanton 

sector. We will thus modify ( 4.39) by denning 

~g = W K<gq (5.42) 

where 

Go = JVw e - s [ w ] ~ K j A{w) (5.43) 

Z0 = fVw e~s[w]-Kj (5.44) 

Qi = Qx , Zx = Zx (5.45) 

so that to the order that we are working 

b+Q = 0 (5.46) 
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The modification in each sector is performed by a term from a sector of order lower by one. 

The leading order term is unaffected as the modification is proportional to the coupling K. 

Clearly to higher orders there are further modifications. 

Although this modification may be termed renormalisation, it differs from standard renor-

malisation in some important aspects. This is not a simple renormalisation of the action as 

the fields and associated constants may not be redefined to take account of the divergences. 

This is because the modification is not local, however, by the introduction of new fields, 

the modification may be localised. Note that the Faddeev-Popov procedure which enables 

us to extract the integration over the instanton moduli gives a non-local interaction when 

the ghosts are integrated out, and our modification is a new aspect of this, made necessary 

by the need to maintain independence of configuration space co-ordinates and internal 

symmetries. 

The calculation of J may be narrowed down to the evaluation of four separate components; 

the inner product (p~2il)p o (p0) and its conjugate, and the matrix and its conjugate. 

However, before that we need to decide what constraint we are going to impose on the 

fields, i.e. we need to choose ip. A natural choice is to say that the quantum fluctuations 

<j) are orthogonal to the zero modes of the fluctuation operator. Thus tp = In this case 

the propagators of the ghost fields ( 5.7) become the Kahler metric which is the metric 

tensor on the manifold of the instantons, parametrized by the {ta}. 

(pav.dpv) = J d2x ^Jg(x) p 2 dav d$v m OC0 

(dav,d/3v) = J d2x \Jg{x) p daV OnV 

(5.47) 

(5.48) 

map is Kahler as it can be written in the form [13],[15], 

~ dt" dtP 
J d2x Jgjx) l n ( l + \v\2) (5.49) 
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where IC is the Kahler Potential. The inverse of the metric is found in Appendix B to be 

( r - i C 2A 2 1 
- l /C -b/(c\) \ 

1/C l n j r | 2 / C 2 cb/(\() 
\-b/(c\) bc/(\C) l n | r | 2 / A 2 / 

(5.50) 

in the limit r —> 0, where £ = 1 + |c|2 and A = 1 + |6|2 when space-time is S 2

h y s and A = 1 

when space-time is the plane. 

Now for the instanton solution v = c(l — we find 

fa = 
dv dv 

db 

\ — I 
\ dc / 

I \ 
' z-b » 

{z-by (5.51) 

and we can consider calculating the inner product 

(Vo» ̂ p) = (P~2*!>P 0<fo)=z j d2z^/g p~2 %j)p ipQ(z, z) 

Earlier we defined 

(5.52) 

P - 2 = 
1 

(1 + M 2 ) 2 (\z - b\2 + \c\2\z - b - r\2)2 

(for r —> 0 note that p —> 1 + |c| 2) and the square root of the metric on S 2

h y s is 

y/9 = 

(5.53) 

(5.54) 
(1 + k l 2 ) 2 

However, as the expression for (i from [2] that we have used is defined on the plane, this 

metric will presently be replaced by the flat space metric. In the units that we are using 

here, the flat space metric is simply 1. 

Thus 

\z-b\A 

(l + \z\2)2(\z-b\2 + \c\2\z-b-r\2)2 (z-bY 

z—o 

(p0(z,z) (5.55) 
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For r / 0 all these integrals exist despite the singularities in if)p at z ~ b. This is due to 
the heavy damping factor \z — b\4. Now for small r we shall look at each term individually. 
So for & = b 

~ - ( i r i ^ y ^ ( i - n . m , - ^ ^ ^ ( 5 - 5 6 ) 

The logarithmic divergence from the integral is regulated by the factor of r so that effec­

tively as r —• 0 this component becomes zero, i.e. (y>Q,i>b) ~ 0. 

The /3 = c component has two terms. The second of these terms is heavily damped by 

the factor of r and so tends to zero as r —*• 0. The first term, in flat space and for r —> 0, 

becomes 

as (pQ is orthogonal to the constant zero mode of A . 

Finally for (3 = r 

(<p0M = - J <?z ( i + ] z m i z _ ^ ~ ^ _ b _ _ b ) q , 0 ( z , z) 

~ - ( T H ^ / ^ ( i + K | 2 ) 2 ( , _ 6 ) ^ ^ - ) (5-58) 

which is finite and is thus the dominant term in (ip0, typ) as i t is the only non-zero component 

in the l imit r —• 0. Similarly for {jPai^f)) the non-zero component is (</?0,?/>f) 

We may now compute the first two terms in J ( 5.41). The first term is 

™w(p~2,tl>P ° ^o)^ ( m RrV~ 2 0s o <p0) (5.59) 

As seen above, the only non-zero components in the inner products to leading order come 

from R = f and /3 = r. As this is the case, the leading order term will be when ji = f and 

the derivative acts on the inverse matrix only. So as 

dr- (In I r f ) - 1 = - ( r ) _ 1 ( l n | r | 2 ) - 2 (5.60) 
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then the dominant contribution from ( 5.59) is 

f ( 2 \ 2 \ 2 1 

(5.61) 

The second term in is 

™al(p~2*l>P ° ¥>o)Mm^P~2^R 0 Vo) ( 5 - 6 2 ) 

Again the dominant terms from the inner products are when R = r and /3 = r, leaving dT 

to act on m j , 1 

fh^{p-2ll>r O (pQ)dr{m^){p-2ipr Oip0) ( ^ — _ ' |ox3 ( ^ ~ V r 0 £ o ) v > ~ V f ° Vo) 
C ! ^ y i _ 
T T | C | 2 ; r ( ln | r | 2 ) 3 ' 

(5.63) 

Now ( 5.61) and ( 5.63) are identical, thus the first two terms in J cancel against each 

other and we are left with 

J = Jd2b | J / f ' r ' e ^ m : ^ - 2 ^ o V o l ^ f ^ ^ ) " ( ^ } ) ) m ^ ( ^ ^ o % ) (5.64) 

Our first task is to remove the zero mode Zg from the second inner product. Remember 

that as m^p = (p~2tp^ o T/> P ) = {p^Z^ o tp~p) then p~2^p o d^Zg = p~2^p o d^g. The 

dominant terms of this inner product may now be calculated 

P~2^ o d^g = / d2z ( | , _ 6 | 2 J j c N

6 J _ 6 _ r | 2 ) 2 ^ ^ ( 5 - 6 5 ) 

d^ipe is a symmetric matrix 

i / 0 ~c/(z -b) - 1 \ 
(dM = 7 ~c/(z - b) -2cr/(z - b)2 -r/(z - b) 

6 4 - 1 - r / { z - b ) 0 ) 
(5.66) 

The term in of highest order in (2 — 6 ) _ 1 is xpi = —cr/(z — b)2. Thus for r ^ 0 all terms 

in Tppd^ipg which have singularities as z ~ b have their divergences cancelled by the \z — b\4 

from p~2. However for r —> 0, ^> - 2 becomes a constant and the singularities take over. 
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Taking into account the explicit factors of r in \\> we conclude that p~2^v o d^ipg is of order 
l / | r | for f , fi, 6 equal to r or b and is otherwise of lower order. Hence the dominant 
contribution from m~lp~2i^>p o d^ipg will also be of order l / | r | (as this has a higher rate of 
divergence than l / | r | In \r\). Since we have already restricted p. and v to be either r or i 
then in this case the dominant contribution from the matrix ( 5.50) is the a = b, /3 = b 
term, and the leading order contribution from ( 5.65) is 

H mblP 2^b 0 dbipe = ~P 2^b 0 ^ 8 
n L n l 

(5.67) 
8=r,b 6=r,b 

The dominant contributions from the first and third inner products in ( 5.64) may be 

found by using the same considerations with which we found ( 5.61) and ( 5.63). Thus 

these contributions occur when /? = K — r. Collating all three inner products gives 

J 2 m f r ( p 2TprOip0)mbJ(p 2i>-hodbil>e)m^(p 2^r(x) o ip0) 
9=r,b 

A / C2A 2 \ 2 \ 2 

7r \7r|c|2 In | r | 2 P ^b°db 
\c\2 ' 

Vv —-£-ipb (p VVO<£>0)(/> lf>r(x)°<Po) 

(5.68) 

The inner product (j) 2ipb- o db [ipr — MVCV'f)]) i s infra-red finite and so may be computed 

on the plane. Using ( 5.51) 

\z-b\4 

- I dlz 
\z - b\2 + \c\2\z - b - r | 2 ) 2 (z - b)2 ° I z - b ( z - b)2 ( 

cr c rc |c| 
Ob T + 

= c 
12 I d2z b\4 

(\z - b\2 + \c\2\z - b - r\2)2 (z-b)2 

2r\c\ 
[(z-b)2 ( z - 6 ) 3 C . 

d2z 1 
2r\c\ 

(z - b)( 
(5.69) 

(\z - b\2 + \c\2\z - b - r\2)2 

This integral may be simplified by making a translation of z through b and then scaling 

by r, i.e. we define z' = (z — b)/r, substitute this into ( 5.69) and then drop the primes, 
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leaving 
| C | 2 / f j 2

z

 1 ( , 2|<f \ _ He) ? m 

The integral 1(c) is just a function of c. Consider the limiting behaviour of 1(c) for small 

c, in this case 2\c\2/(z will be dominated by the 1, leaving 1(c) as a finite integral. 1(c) 

may also be evaluated for fixed values of c. 

The leading order term in J is now, using ( 5.64), ( 5.68) and ( 5.70), and remember that 

r = eeie 

J = jd2b / M tfVV^i^ 

= U<\M4ln\r\>y / ( C ) / d H ° ^)(P-2M-) o (5-71) 

This diverges as r —• 0. So this is our proposed modification to the Green's function in the 

zero-instanton sector which will cancel the divergence in the one-instanton sector. In this 

form ( 5.71) is non-local, but it can be generated by a local action if we include additional 

fields [3]. 

( 5.71) will be completely defined on the plane if we take A = 1. However if we wish to 

work on the sphere then the high index of A could cause a problem. First, though, we 

must compactify the rest of the terms in J onto the sphere as ( i was derived on the plane 

and we specifically removed the S2 metric from the inner products. The compactification 

may be done by means of a conformal transformation, we shall show that this leads to a 

damping factor which suppresses the infra-red divergence from A 6. 

5.2 Conformal Invariance 

We have the problem that there is initially an infra-red divergence in the modification term 

( 5.71) when it is applied to a sphere. This divergence is due to the high index on the 
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modulus |6|. However the remainder of the terms in J are defined on the plane and need to 
be compactified onto the sphere. As in the analogous problem in Yang-Mills Theory [4], the 
compactification will be done by performing a Weyl transformation on the metric. Thus 
the metric on the plane ds2 = dzdz and on the sphere, ds2 = Ct2dzdz with 0 = 1 + zz/h2, 
where h is the radius of the sphere, are related by a Weyl transformation, g^v —+ eP^g^v 
with p = Intl2. This can be built out of infinitesimal transformations Spg^ = pg^v The 
field w and quasi-ghost £ are independent of the metric, and the classical action S[w] is 
Weyl invariant. Thus the Green's Function moduli density ( 4.51) 

g(t) = JvW e - ^ M + K + T ^ U ' f i ) ) A ( t y ) ( 5 _ ? 2 ) 

changes under the transformation 8P such that 

8pg(t) = J VW e~s"* [ ( | pM - (< + TAdA)(? SpFj)j A(w) + SpA(w) (5.73) 

where the first term is from the action of 8P on the volume element and M. is the Weyl 

anomaly density. The last term can be removed provided 6PA(w) — 0 and as (<r + 

Ta8A)A(W) = 0 (<; doesn't act on w and w is independent of the t) then 

6pg(t) = J VW e-STATA{w) J p M - JVW {<; + TAdA)e~Stot{(] SpFj)K{w) (5.74) 

However, the second term does not contribute at the one loop level. To see this, first note 

that as / VW e ' S i o t ((jSpFj) A(w) is Grassmann odd, then 

J VW q e-s<°< (Z'SFj) A{w) = 0 (5.75) 

Also, to first order in the expansion of e _ S t o t , the remaining piece in the second term is 

linear in </?, giving an expectation value of zero. Hence terms in ( 5.73) from the constraint 

piece in the action do not contribute at the one loop level and we can write 8pg{i) as 

8 p j VW e~s[w] = JVW e~s[w] J pM (5.76) 
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Thus the behaviour of the Green's Function on the sphere is governed, to one loop, by the 
Weyl anomaly. 

The calculation of the partition function involves the calculation of det A . However A has 

dimensions of mass so it is necessary to introduce an arbitrary parameter // which also has 

dimensions of mass. To compensate for introducing p, the coupling constant becomes a 

function of k —> k(p). This means that the classical scale invariance of the coupling has 

been broken. Now an infinitesimal global scaling of the metric g^ —• + Xg^, can be 

compensated by a shift in the mass-scale 8\p = — \Xp and 8\ = 8\p ~ = — |A/u Thus 

the action S(w) is no longer scale invariant either, since it contains the coupling. Using 

S(w) from ( 2.52) so that now S(w) = f d2xS(w) then 

Here we have neglected moduli independent curvature terms which would be a relic of 

moving the fluctuation operator determinant from the plane to the sphere. The renormal-

isation group /^-function for the 0(3) Sigma Model is given by /? = and has been 

found ( 3.39) to be /? = Considering a variation of the Green's Function with respect 

to this scaling 

8X J VW e " 5 M = - JVW e ' s ^ 8xS[w] = J VW e~sM J \M (5.78) 

yields 

J XM - - 2 p / ? J d2xS(w) (5.79) 

Hence 

M = ~2p(w) = ±-§{w) (5.80) 

up to total derivatives. As we now know M, the Green's Function can be evaluated on 

the sphere using the position dependent scaling p. 
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If gh(t) is the Green's Function moduli density and T>hW the functional integral volume 

element when the sigma model has as its space-time a sphere of radius h, then the Green's 

Function on that sphere in a particular topological sector is 

Gl = Jdt gh{t) = Jdt VhW e-St°<A(w) 

as p = InO 2 then 6p = 6h l n f i 2 and to one loop (from ( 5.76)) 

6p J dt gh(t) = J dt VhW e~Stot SpM^j A(w) 

= jdt VhW e-St°< i^J 6h I n f t 2 j M^j A(w) 

(5.81) 

(5.82) 

so 
_d_ 
dh J dt gh(t) = Jdt VhW e- 5 t o t ( j ( ^ I n 0 2 j JWj A(w) (5.83) 

Integrating with respect to h from h to infinity we obtain 

J dt gh(t) = J dtj^dh VhW exp ( - S t o t + j d2x\n ( y J M j A(W) 

= Jdt V^W exp (-Stot + J d2x\n M A(w) (5.84) 

The extra term involving the Weyl anomaly suppresses the divergence due to the integral 

over b in ( 5.71). Evaluating M. at the classical solution w = v gives S(w) = q' (see ( 3.1)) 

where q' is the topological charge density. For small a — b the charge becomes concentrated 

at z — b so that q' is approximately a delta-function. To see this remember that from 

( 2.53) the classical form for q' on the sphere is 

. dzvdzV — dsvdzv 
H 7r(l + | v | 2 ) 2 

The second part of this expression for q' can be expressed as a delta function as 

(5.85) 

d2v = cdz ^ - — ^ ~ dsdln(z — b) oc S(z — b) (5.86) 
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However this is insufficient as there is still a term in q' left over. Instead we introduce a 
delta function regulator n such that 

z — b 1 , 
l im — = (5.87 
u-»o \ z - b\2 + rf- z - b y ' 

Now with 

q' may be calculated 
I | 2 I 12 

l im q' = : r—f (5.89) 

where a — b = e and e is very small, but, to start with, finite. For the case of z ^ b we find 

that q' —> T—j-0,lej—nr tends to zero as we take e to zero. But if z = b then q' —• , , 2 L I 2 

which tends to infinity as e —> 0. Thus 9' oc 6(z — 6). Hence the additional contribution to 

the action due to the Weyl anomaly is 

2 

J d2x In ( f t 2 ) q' = j d2x In 8 { z ~ b) 

which, for large 6, will supply a strong damping factor for the 6-integration of Green's 

Functions and solves the problem of the infra-red 6-integration in ( 5.71). 
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5.3 Appendix A: Fluctuation operator and Green's 
Function 

A vital component in the calculation of the topological counter-term is the nature of the 

Green's Function of the fluctuation operator ( 3.8). In this Appendix we shall show how 

this Green's Function and the projection operators are constructed. 

It will be useful to write the fluctuation operator 

Af=--j=pdz\p-2ds(pf)} (5.91) 

in the form A = T ' T , where r t is the adjoint of T with respect to our inner product 

( 3.6). T and are fairly arbitrary, but a convenient construction is T = \dz and 

r t = - - L p2dzg*p 2 . The Green's Function of A is the two-point Green's Function for y>, 

and satisfies 

AX(z, y) = S2(x - y) - p2P(x, y) (5.92) 
y/9 

where P(x,y) is a projection operator. The form of P(x,y) may be deduced by looking 

at the action of specific operators on ( 5.92). If Z(x) is a zero mode of T (and again we 

use a dot notation to indicate an inner product as in ( 5.16)), then (Z, A J ) = (p~2Z)(x) o 

AT(x,y) = (TZ, Tl(x, y)) = 0 so Z(x) o P(x,y) = Z(y). Also, ip is constrained by our 

choice of F ( 5.2) to be orthogonal to So the two point function of (p and (p.xp must 

vanish, hence I(x,y) o (p~2i>)(y) = 0 which leads us to P(x,y) o {p~2i>)(y) — (p~2ip)(x). 

Consequently, as = Zp o (p~2ipa)(x), we can deduce that 

P(x, y) = {p-2i>a){x)m-plZ-p{y) (5.93) 

We shall show that the one instanton sector Green's Function is 

I(x,y) = - - \ f d 2 z ( l - p U ) — p 2 ( z ) ^ — ( l - o P ) (5.94) 
7T J x — z z — y 
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with P(x,y) as above, and P^(x,y) = Z/3(x)mpl:(p~2ipdl)(y). The dot notation, as above 
indicates an inner product. So writing this out explicitly gives 

- / r f V p t ( x , ^ _ l _ , 2 ( , ) _ l _ 

- \ W — p 2 ( z ) ^ ^ P ( y ' , y ) 
J x — z z — y' 

- / d2x' d2y' P\x,x')y/g - ^ — p 2 ( z ) ^ ^ P(y\y) 

The derivatives in A act only on the x variable, and as 

d 1 

and 

then 

and so 

dxx — z 
= 7T 8 (x — z) 

d_ 
dx 

I(x,y) - I * 
7T J 

82(x - z)p2(z)-
1 

z - y 

fd2y' 8 2 { x - z ) p 2 ( z ) ~ ^ P { y \ y ) 
j z - y 

VI 
v _l£!M + I / A V ( x ) ^ P ( y ' , y ) 

7r x — y IT J x — y' 

-82(x - y) 

+ Jd2y> 82(x-y')^P(y',y) 

- 8 2 ( x - y ) + ^g-p(x,y) 

(5.95) 

(5.96) 

(5.97) 

(5.98) 

thus 

(5.99) 
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Hence ( 5.94) is true. 

In the zero instanton sector the nature of the projection operators changes completely. The 

Green's Function becomes 

Io(x,y) = ~ \ I d2z (1 - n to )— p 2

0 ( z ) ^ ( l - on) (5.100) 
7T J x — z z — y 

where n is the zero mode projector in the zero instanton sector 

u f = p°2Tvf ' ^0 = 1 + |c|2 (5-101) 

n and P both project constant functions onto themselves since these are zero-modes in 

both sectors. Hence I I o P = I I . As the divergent effects we are concerned with occur at 

the boundary between the one instanton sector and the zero instanton sector, we need to 

find the relationship between Ta(x,y) and T(x,y). First notice that 

(1 - P t 0 ) I0(x,y) (1 - oP) = - 1 / d2z (1 - p t o ) - J _ ^ ( * ) - ! — ( l - oP) (5.102) 
~KI J x — z z — y 

Then for e small 

p = P o + O{e) (5.103) 

so 

l(x,y) = (1 - P t 0 ) I 0 ( x , y ) (1 - oP) x (1 + 0(e)) (5.104) 
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5.4 Appendix B: Kahler Metric 

88 

Here we give a review of the calculation to find the matrix map = (daV, dpv^j and its 

inverse, as given in the calculation to find the modification term at ( 5.49) and ( 5.50). I t 

is shown that the matrix may be written in the form of a Kahler metric ([13],[15]), and 

then the Kahler potential is calculated for the case where v is the one instanton solution 

v = c ( l - J ^ l ) (5.105) 

and r is small. 

Given our definition of the inner product, the matrix may be written as 

f ,o 1 (dv dv\ 
= ( 5 ' 1 0 6 ) 

where we define {t01} = {r,b,c} and {ta} = { f , b, c}. To show that this may be written in 

the form of a Kahler metric 

m ° * = d % W K ( 5 J 0 7 ) 

where K, is the Kahler potential, we exploit the fact that v is meromorphic in the moduli. 

Thus daV = 0 except when a = b in which case dj,v — cnr8(z — b). Therefore, for a, ft = r,c 

^ i / A ^ i „ ( i + |„P) = I S x ^ ((T^Wfw) 
( dv dv /Mi^hd^ <"«> dtPdta) (l + \v\>y 

as above. Now as the metric g^v for the sphere S2

hys is 

<^ = <V(l + M 2) 2 (5.109) 

so that 
, - 2 

V9= (l + M 2) (5-110) 
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thus 

K = j d2x ( l + | z | 2 ) " 2 l n ( l + \v\2) (5.111) 

which for the one instanton solution 

» = c ( i ^ ) (5.112) 

becomes 

K = J dxdy{\ + \z\2)~2 [ln(\z - b\2 + \c\2\z - a\2) - ln(\z - b\2)] (5.113) 

If this form of the potential is used in ( 5.107) then the second logarithm will generate a 

delta function. This is because v is not annihilated by &i and thus 

^ H \ z - b \ * ) = \ p { z - b ) (5.114) 

However, this problem can be solved by noticing that as 

1 d v d d \ c \ 2 \ z ~ a \ 2 9 d ( 2 2 2 v , K 1 1 K x 

then the second logarithm is not needed for the calculation of ( 5.106) and it can simply 

be discarded leaving us with. 

fC = jdxdy(l + \z\2y2 [ln(\z - b\2 + \c\2\z - a\2)] (5.116) 

The act of discarding the second logarithm has the effect of making the potential analytic 

in the moduli space. 

In order to solve ( 5.116) we start by using two tricks to put the integrand into an expo­

nential form 

j H da a exp ( - a ( l + |*|2)) = (1 + \z\2)'2 (5.117) 

and 

ln(m)= [°°- (e-^-e-1) (5.118) 
Jo t v ' 
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giving 

fC = J da dt dx d y j [exp ( - ( x 2 + y2)(a + At) + 2xtB + 2ytC - Dt - a) 

— exp (-a(x2 + y2) - a - * ) J s . l l9 ) 

where the complex numbers have been split into their real and imaginary parts such that 

\z-b\2 + \c\2\z-a\2 = A(x2 + y2) + 2Bx + 2Cy + D (5.120) 

so 

A = (1 + | c | 2 ) , B = h + a i |c | 2 , C = 6 2 + a2\c\\ D = \b\2 + \a\2\c\2 

The integrals over x and y can be done as simple Gaussians as 

(5.121) 

KmJ 
(5.122) 

giving 

da dt — 
t 

IT 
a + At 

7T 
exp(—a — t) 

a 
(5.123) 

To progress a change of variables is needed. Let a = Xt so da = t dX, this change w i l l have 

no effect on the l imi ts of the integration. However the integral over t becomes very simple 

K = J dX dt 7r 

= JdX 7T 

A 
X + A 

exp t 
(B2 + C2) 

X + A 
(D + X) - e x p ( - t ( A + 1)) 

A 
A 2 + (A + D)X + AD - (B2 + C2) A + l 

The first t e rm is just a standard integral of the fo rm 

(5.124) 

/„ o C + 7 ? T + ^ r 2 
dr = l / n ( C + V T + Or2) 

26(TJ2 - 4(9)^ \i] + 20T + (T]2 - 4(6)3 
—In (5.125) 



5.4- Appendix B: Kahler Metric 91 

so 

K, = 7T In (A2 + (A + D)X + AD- (B2 + C2)) - In (A + 1) 

1 / A + Z) + 2 A - ( A + J D ) ( 1 - 4 J F 2 ) = 
i m 

where we have set 

2 ( 1 - 4 F 2 ) * \ A + D + 2A + (A + D) (1 - 4 F 2 ) 5 

AD — B2 - C2 

(5.126) 

(5.127) 
(/4 + D ) 2 

The behaviour of /C for the A —> oo solution is not immediately clear. In order to study 

this behaviour the logarithms must be expanded for large A. A simple piece of algebraic 

manipulation gives 

1 

2(1 - 4 F 2 ) * 
In 1 + 

(A + D ) [ l - (1-4F2)* 

~2A 

- I n 
' {A + D)(l + (1-4:F2)1A\ 

l + — 4 A 
V / ) 

So for A —• oo we may use the logarithm series expansion. To first order this is just 

l n ( l + x) ~ x for \x\ < 1, so the result is that to this order 

IC ~ 7T AD - (B2
 + c 2 ) i , , „ : 0 (5.128) 

Hence we are left w i t h the A = 0 term in ( 5.126) which may be wri t ten as 

l 
- In 

1 - ( 1 - 4 F 2 ) ^ 
\n(AD - B 2 - C2) (5.129) 

( l - 4 F 2 ) f \ l + ( l - 4 J F 2 ) f / 

Now let us consider what happens to this Kahler Potential as the zero instanton sector is 

approached f r o m the one instanton sector. Again the change of variables a — b = r is made 

(see ( 5.1)), where we are interested i n the l i m i t r —> 0. As AD — B2 — C2 = \c\2\a — b\2 = 
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\c\2\r\\ thus F2 = \c\2\r\2/(A + D)2 is small and the approximation ln(l - F2) ~ F2 is 
valid. Terms of order | r | 4 can be dropped and 

K = 
7T 

l n F 2 + 2 F 2 l n | r | 2 - l n | c | 2 | r | 2 ] (5.130) 

We shall t ry to isolate terms of order r ° and r 1 . The second te rm in ( 5.130) has been kept 

as i t converges more weakly than the other terms in | r | 2 . Combining the first and t h i r d 

terms in ( 5.130) gives 

7T - 2 1 n ( A + £>) + 2 F 2 In | r | (5.131) 

But A + D = CA + \c\2{bf + br + \r\2) where A = (1 + |6 | 2 ) , C = (1 + k| 2)- So 

K 7T - I n C A - l n 1 + 
\c\2(bf + br+ \r\2Y 

+ F2 \n\r\ (5.132) 

Now the second te rm is expanded and the \r\2 t e rm dropped, leaving an expression for /C 

w i t h the two terms of lowest order in r. 

K, — 7T l n ( A - H 2 ( ^ + H + F 2 l n | H 2 

S 
(5.133) 

This can now be differentiated to f ind map. Remember that we are now working wi th 

coordinates {ta} = { r , fe, c} and {t^3} = {f,b,c}. As we are working to leading order, only 

terms divergent or constant in the l im i t r —> 0 w i l l be kept. I t is thus found that 

7T 
| c | 2 l n | ? f Ck|2 Xcb\ 

, 2 A M C M 2 e 
^ A V \bc 

0 
0 A 2 / 

The inverse of this is found simply by using the cofactor method 

C 2 A 2 

(5.134) 

(map) 1 

7r In | r | 2 

/ \c\'2 - 1 / C -b/(c\) 
- 1 / C l n | r | 2 / C 2 c6/(A() 

\-b/(cX) bc/(\Q \n\r\2/X2 

(5.135) 

file:///n/r/
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6.1 Introduction 

In this chapter we shall consider how the ideas of topological renormalisation may be 

applied to other models and theories. Naturally, first consideration is given to those theories 

which share their properties w i t h the 0 (3 ) sigma model, such as Yang-Mills Theory and 

Bosonic String Theory. For these theories the gauge-field version of the basic topological 

renormalisation theory applies (see Section 4.2). These calculations are done in [4] and we 

shall present a review of the results later in this chapter. 

As the 0 ( 3 ) sigma model is also the C f P 1 model then another natural extension of topolog­

ical renormalisation is to apply i t to the C I P n _ 1 models. For these models the formulat ion 

of the derivation of the anomalous symmetry breaking term is identical to that for the 

0 (3 ) sigma model as i t is independent of the nature of the action. I t is also required that 

the instanton contribution to the Green's Function for the ( E I P n _ 1 models diverge at the 

instanton boundaries. We would expect this to be true as the instanton contribution given 

in ( 1.2) and ( 1.3) would have to be a special case of the <LFP r a _ 1 contribution, and the 

divergence displayed in the C FP1 case would have to be a feature of the more general case. 

However, i f the exact f o r m of the anomaly is to be calculated, then an explicit version of 

the C ( P n _ 1 contribution which diverges at the instanton boundaries must be found. The 

instanton contribution to the Green's Function for the C f P n _ 1 models is calculated in [20], 

[30] and [31]. The version of this calculation we shall concentrate on is the one given in 

[20] as i t follows a similar pattern to the calculation of the instanton contribution for the 

sigma model by the same authors [2], which was reviewed in Section 3. Also the solution 

given i n [20] is the most complete. 

First, we need to show that the instanton contribution does diverge when the instanton 

solutions degenerate. I n the £ F P n _ 1 models the most general solutions which minimise the 
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action are 

Uk = Ck]J(z - a f ) , & = l , . . . . , n (6.1) 
a=l 

where q is the topological charge. The C f l 0 ™ - 1 space is defined as the space of non-zero 

complex vectors u = ( « i , , u„ ) where ]Cfc|'l<A:|2 7̂  0. Vectors that differ by a complex 

factor are identified w i t h each other, i.e. i f u' — Xu where A is an arbitrary non-zero 

complex number, then u and u' may be identified. To see how these solutions degenerate, 

let us look at the two-instanton (q = 2) 

uk = ck(z - a\)(z - a2

k) (6.2) 

For the 0 ( 3 ) sigma model we saw that the instanton degenerated when two of the modul i 

became equal. Here we consider what happens when the parameters a\ are identified w i t h 

a single complex number b, so a\ — b. In this case 

uk = (z - b)ck(z - a\) (6.3) 

but we have already stated that solutions that differ by a complex factor may be identified, 

hence the (z — b) factor may be dropped and Uk has become the one-instanton solution. 

In [20] i t is found that the instanton contribution to the Green's funct ion, in the one-

instanton sector, for the £ F P n _ 1 model is 

h = A J * (c , a ) 6 (^2\Cj\2 - l j ^ > , | 2 M 2 K - a*| 2 j ' U l ^ ^ i ( 6 - 4 ) 

so i f all the a*. = b then the \a,j — a,k\n te rm gives a strong divergence. 

Now we shall look at how this fits into the basic formalism of the C P n _ 1 Models. 

6.2 CPn~l Models 

Originally devised by Eichenherr [32] and Golo and Perelomov [33], these models are special 

class of sigma models as they have an SU(n) symmetry. D 'Adda et al [34] showed that 
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they gave a particle model which has many similarities w i t h Yang-Mills theory. 

Summaries of the connection between I [ p n _ 1 models and 0 ( 3 ) sigma models on the plane 

and on the sphere are given in [13] and [20]. The C f P " - 1 models are a class of two-

dimensional field theories where the target space is given by the Grassmann manifold 

G<"> = U W "uln - 1) < 6 ' 5 > 

which is equivalent to complex projective space (C [ P " _ 1 . This space consists of n-component 

complex column vectors ( = (£[, , £„) which are orthonormal: ( t ( k = 6,7., and ( = ((x) 

where x = (xi,x2) € IR 2. The action is given by 

S = j d 2 x ^{D^D.C (6.6) 

D.C^d.C-CA, A ^ C ^ C (6-7) 

We shall use the formalism given in [20] where the action is expressed as 

2 / 

S = — J d'x Hjkd^Ujdf.Uk (6.8) 

where / is the coupling and u is an n-component complex vector u = (u\, , un). The 

metric is 

H3k = (El«<l2) - (EM 2 ) (6-9) 
The action in this fo rm is at its minima when 

= ckl[(z-al) (6.10) 
a=l 

for a topological charge q. Hence we may define the inhomogeneous co-ordinates 

Wk = — k = 1, ,n — 1 (6.11) 

then ( 6.8) and ( 6.9) may be rewrit ten in terms of w 

2 [ 

S = - J d2x Hjkd^Wjd^Wk (6.12) 

H3k = (i + £ k f ) | ^ - f i + E H 2 ) * w (6-13) 
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Despite the obvious similarities between ( 6.13) and ( 2.5), there is only a direct equivalence 

between a C f P " - 1 model and an 0(n + 1) sigma model when n = 2. I n this case there is 

only a single field 

w = «x = ° i n u ( * - « f ) ( e u 4 ) 

f r o m which ( 1.1) follows, and the action ( 6.13) reduces to ( 2.52). For the original C f P " - 1 

action ( 6.6), this equivalence can be seen simply by setting 

aa = z ^ a z (6.15) 

where /3a are the Pauli matrices. 

Now the moduli-space integral ( 6.4) needs to be regulated, and in i t ia l ly the procedure is 

identical to that of the 0 (3 ) sigma model, i.e. introduce a cut-off which creates a boundary 

dM in the moduli-space M. The divergent term resulting f rom taking the variation of the 

Green's funct ion is (cf ( 4.58)) 

Sgq = - f dY,A fVU T A (£ i S J F J - )e - 5 t o « A(«) , (6.16) 
JdM J 

where U — u, A,£, and r and £ are the quasi-ghost and quasi-anti-ghost respectively. The 

action is (cf ( 4.49)) 

Stot = S[u] + (<; + TAdA){(]F3(u,t)) (6.17) 

9A = d / d t A where the t a in the one-instanton sector are the moduli Ck and a^, and the t a 

are their conjugates. A quantum fluctuation about the classical solution may be defined 

such that the field is now Wk — Uk + <f>k a n d the action is 

S[4>] = Y - + J ( ^ ^ ) (6.18) 

The inner product is defined as 

(X, *P) =52 J d2x HjkXjipk = ^ H j k X j o i>k (6.19) 
i,k j,k 
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w i t h the fluctuation operator 

Ak, = -^~r,2dgHklds (6.20) 
yd 

and 7]2 = J2i\ui\2- We must now choose our constraint Fj. In [20] i t states that the quantum 

fluctuations may be fixed by imposing the condition 

E«*^ = ° (6-21) 
k 

This is a gauge condition designed to gauge fix the freedom we have to mul t ip ly all the 

fields Uk by the same funct ion. In addition we require that the <j>k are orthogonal to the 

zero modes of the fluctuation operator. The zero modes of Aki are duj/dtA for the same 

reasons as outlined w i t h ( 4.7) and ( 4.8). We shall impose this orthogonality condition in 

the f o r m 

ft=(IM=o=(6-22) 

The calculation of the modification term ( 6.16) to find the leading order t e rm follows the 

same pattern as the 0 (3 ) sigma model calculation. Af te r expanding the exponential in 

powers of Planck's constant and integrating out the ghosts and the quantum fluctuation 

we get 

8QX = [ d £ a (Ci(t)fh^(6(Hijdi3Ui) o y^m^d^HkidvUk) ° f f i i ) A(v) ) 
JdM 

- / c E s U\{t)fhll(6{HijdpUi) o ip^m-^d^HkidpUk) o <pt) A(v)) 
JdM ' 

(6.23) 

Again the boldface type indicates contraction between those fields. (i(t) is the one-loop 

par t i t ion funct ion and is the integrand of ( 6.4) without the arbitrary funct ion $(c, a). The 

matrices ma0 are given by 

m

a p = (9auh dpuk) = HkldpUk o daui (6.24) 

We need to find out i f the correction in the one-instanton sector w i l l again come f r o m the 

zero-instanton sector. To do this we may consider a similar procedure to that outlined 
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in Appendix A of Chapter 5. Thus we define a Green's funct ion lki(x,y) — <pkfi of the 

operator Aki such that 

A k t I k l { x , y) = ^ U 2 82{x - y ) - v2P(x,y) (6.25) 
\9 

The fo rm of P(x,y) needs to be found. Spli t t ing Aki into the f o r m Aki = (T^T)ki may be 

done by 

Tki = g-* (6kl - r j - 2 u k U l ) d, , = - g - t y d ^ g 1 * (6.26) 

Hence, i f Zj(x) is a zero mode of T, then (Z, Al) = 0 implies that Zj(x)oP(x, y) — Zj(y). 

Also <f>k is orthogonal to 8AUJ SO the two-point funct ion of <j>k and (j)k • &AUj must vanish. 

Thus l j k ( x , y ) o HkidAUj(y) = 0 which means that P(x,y) o HkidAUj(y) = HkidAUj(x) so 

P(x, y) = {Hkldpuk) (x) mr jZfca (6.27) 

Due to the similarities between this case and that of the 0(3) sigma model an obvious 

choice for Iki(x, y) is 

l k l ( x , y ) = - ^ f d2z (1 - p t 0 ) _ J L . # w - i ( 3 ) _ L _ ( i _ 0 p ) ( 6 .28) 
ir J x — z z — y 

I t can be shown that this satisfies ( 6.25). Now we need to find the relationship between 

2ki(x,y) and the Green's funct ion in the zero-instanton sector T^^x^y). I n this sector 

wk = ck so 

H°kl = (EN 2 ) ' ^ - ( W ) \ c k 

= Vo2 - Vo2ckCk) (6.29) 

thus 

^ v ) = ~ l d 2 z ( i - n t 0 ) - l - ( K ) - 1 ( ^ ) ^ - r ( i - o n ) (6.30) 

where I I is the zero mode projector in the zero instanton sector 
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and IT o P = I I as before. The one instanton ( 6.10) degenerates when ak = b + t k so for 

small 6k 

HM w H°kl x (1 + ek) (6.32) 

which means that 

I u ( x , y ) = (1 - P t 0 ) X ^ z , ? / ) (1 - oP) x (1 + 0(e)) (6.33) 

and so ( 6.23) may be expressed in the zero instanton sector. 

There is a lot more work to be done in this calculation and i t is probable that an answer 

as concise as that for the 0 (3 ) sigma model may be found. The transfer of ( 6.23) to the 

zero-instanton sector may be studied and the matrices ( 6.24) should be calculable. There 

is a lot of scope for further work here. 

6.3 Bosonic String Theory 

We shall use a formulat ion of String Theory where the fields gab and x^ are functions 

of the world-sheet co-ordinates £ a , and are the co-ordinates of a surface embedded in D-

dimensional space-time w i t h metric n^. The Part i t ion Function for closed strings is given 

by a sum of functional integrals over closed Riemann surfaces of genus h weighted by a 

power of the coupling /c [35] 

oo . 

Z = k2~2H / V9ab Vx» e - 5 ^ . * " ] (6.34) 

where the action is 

%a6 , t"] = \ j d2i V9 9abdaedb(u (6.35) 

where da = d/d£a. Af te r integrating out the fields the one string loop par t i t ion funct ion 

becomes an integral over the complex modulus r 

Z i = 4 / d2r ( I m r ) ~ 2 ( - I m r ) e 4 , r I m r J] ( l - e 2 n 7 r i T ) 
^F \2 J „=i 

-48 
(6.36) 
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the domain F is taken to be: — | < Re r < | , I m r > 0, | r | > 1. This integral diverges as 
I m r —> oo, and this divergence is interpreted as being infra-red. I n string theory i t is these 
divergences which we are t ry ing to regulate. However i n this case i t is more convenient to 
look at the divergences i n terms of the Ward Identities. I f we define the operator A to be 

A = J d2( brsdrx»dsx" l^eik°-x ( j [ J d2( A)J tabcacBAN (6.37) 

then after a lot of calculation we get the result that to one-string-loop order 

((A)) = K ^ ( A ( 1 - K6A))0 + KN(A)i (6.38) 

where A is interpreted as a counter-term and can be seen as a modification of the action 

as St0t —• Stot — ft6A. W i t h ((A)) now constructed to be ((A)) = 0. The topological 

renormalisation of String Theory is thus analogous to the sigma model i n the way that the 

expectation values are corrected by counter-terms at each order in the expansion. 

6.4 Yang-Mills Theory 

Let us now look at the problem of moduli space divergences in Yang-Mills Theory. The 

par t i t ion funct ion in Euclidean space-time wi th metric is 

Z= Yl e ' z n 8 / V A e ~ S v M (6-39) 
n = - o o 

SYM = - 4 ^ / d * x ^g^g^MF^Fp*) (6-40) 

where n is the topological charge, the field strength is F^v = [d^ + A^, du + A„]. We shall 

take the gauge potential to be an element of the Lie algebra su(N), such that A = AaTa, 

Ta = — T a , [Ta,Tb] = fabTc and tr(TaTb) = — 6ab- The theta angle plays the role of a 

coupling [6]. Introducing a mass scale into the quantisation of the theory breaks the 

conformal invariance of the classical equations of motion and produces a Weyl anomaly. 

This means that the measure T>A is not conformally invariant. 
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The one instanton solution is [5] 

A^ = < ^ x

2 - y y y ) + P ^ M x ^ p ) ( 6 - 4 1 ) 

(x — y)2 = (x^ — y>1)(x'1 — and the T / ^ , a = 1,2,3 fo rm a basis for anti-self-dual tensors. 

In a flat space-time, and w i t h the constraints ( 4.10) and ( 4.11), to one-loop the par t i t ion 

funct ion becomes [36] 
„ r d4y dp UN 

Zx = e S 2 ( M ) J -M—Lp— (6.42) 

which diverges for large y11 and />. This divergence due to the instanton modulus implies 

that the Ward Ident i ty anomaly ( 4.67) applies in this case and thus the BRST invariance 

is broken. However, instead of calculating the anomaly, let us see what happens when the 

space-time is compactified to S4. 

For a spherical space-time of radius a the metric is given by 

4 
9nu = ~, —2<$^ (6-43) 

However for short distances R4 and S4 look the same, thus for small y11 and p the integrand 

of the par t i t ion funct ion on the sphere is approximately the same as that on the plane. Now 

on the sphere there is an invariance of the metric corresponding to inversion through the 

centre of the sphere followed by a parity transformation to reinstate the original orientation. 

As a co-ordinate transformation this may be represented as 

^ _ £ M = °Ll^l ( 6 .44) 

where m — d i ag ( l , — 1 , — 1 , —1) and 

1 
x , -d£ 2 = r^dx2 (6.45) 

(1 + 5) (1 + 5) 
Now this is a conformal transformation, and as the classical equations of motion of this 

theory are conformally covariant, thus all the classical solutions are linked by conformal 
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transformations. Hence this transformation applied to the instanton solution w i l l have the 
effect of changing the modul i 

Afl(x;y,p)dxfi = All(x;y,p)dx'1 , p= ^ P , y" = °' ™vl' (6.46) 
y2 + p2 y2 + p2 

The par t i t ion funct ion is invariant under a simple change of co-ordinates. Thus, as argued 

above, for small y^ and p we may use 

_ . | i L f dry dp ..UN 
_ 

Furthermore the measure d4y dp/p5 of conformal transformations on the modul i . Thus 

d4y dp/p5 = d4y dp/p5 and so 

_ s i L f d 4 y d d u N 
Z1 = e *w J - ^ ~ ^ p ~ (6.47) 

_ 4 * L r dry dp „uu _ - | E L r dry dp ( a2p \ 3 

which, being true for small y M and p, is true for large y^ and /9. Consequently, when we are 

working on the sphere, the moduli space integration converges i n the one instanton sector 

and there is no BRST anomaly. 

So there is no moduli-space divergence in Yang-Mills theory in the one-instanton sector. 

However we do not know whether this is a special case or whether i t is true to all orders 

of the expansion. Let us look at the two-instanton contribution to the par t i t ion funct ion. 

In this sector the instanton solutions are 

_ ig*-2 ( in \ 8 

Z2 = e ^ ) 

W = z3X1X2 , z2 

1 + A x

2 + A 2

2 

NA = * 2 ( A 2

2 ( 2 / 0 - yif + A 0

2 ( y i - y 2 ) 2 + Ai 2 (i /2 - 2/0) 2) 

Ns = W 2 { y 0 - y l ) 2 { y 1 - y 2 ) 2 ( y 2 - y Q ) 2 

r = r ( ( y 0 - 2 / i ) 2 , ( 2 / i - 2 / 2 ) 2 , ( 2 / 2 - y o ) 2 ) 

r(a ,6 ,c) = 2(a& + 6c + ca) - a2 - b2 - c2 
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There is a degeneracy to configurations of lower instanton number when (yi — y j ) 2 —> 0 
and the integrand does diverge in this l i m i t . For instance as y2 —• y\ i t behaves as 

((2/1 — D?)2)'*- Also i n this case the integrals are now taken over y0 — yi and yo + J/i/2, 
and the integration over the latter gives an infini te volume factor. However we s t i l l need 
to see what effect compactifying the theory onto S4 has. 

We may compactify the theory onto a sphere by means of a Weyl transformation, as we 

did for the sigma model in Section 5.2. The classical action S[<f>] is Weyl invariant but the 

regulated volume element VA is not. Hence when making the Weyl transformation of the 

par t i t ion funct ion there is a Weyl anomaly f rom the measure as well as the term due to 

the symmetry breaking given in ( 4.37). So under the transformation Spg^ — Spg^ the 

par t i t ion funct ion becomes 

SPJ dt z(t) = J dt J Vty d 4 x p W ( x f ) e-St°<- J dEA j T > $ TA(CJ6pF3)e-s^ (6.50) 

To one loop the second term does not contribute as our choice of Fj (given in ( 4.10) and 

( 4.11)) is linear in £YM = A^ — A^(t), which means that this term contributes at higher 

order i n the expansion in powers of Planck's constant. Let za(t) and T>a^ denote the 

par t i t ion funct ion moduli density and the volume element on a sphere of radius a. Now 

taking Sp = 6a ^ l n f i 2 , where Q = 2/(1 - f x2/a2), gives to one loop 

&rJMdt za(t) = J M d t j VaV (^J d4x ^ I n f t 2 VVj e~Stot = j^jM<lt za(t) (6.51) 

Integrating w i t h respect to a f r o m 0 0 to a gives 

J dt za(t) = J ^ d t J e - s < ° t + f d i x b l ( " 2 / 4 ) ^ (6.52) 

The anomaly density W should contain a contribution f r o m the Euler density for the 

sphere. We shall ignore this as i t is independent of the moduli . A t this stage we need to 

evaluate W. To this order i t turns out to be analogous to the sigma model case ( 5.80), 
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i.e. i t is a product of the beta-function and the Lagrangian density of the theory 

W = ?]j!p- J d*x In ^ tv{F^F.v) (6.53) 

where the one-loop beta-function is 

d „ , o 4117V 

For the two-instanton solution 

t r ( i ^ i ^ ) = 2d2d2ln<7 (6.55) 

a = (A 2(a: - yx)\x - y2)2X2

1(x - y2)2(x - y0)2X2

2(x - </ 0) 2(z - 2/i) 2) (6.56) 

where d 2 is the flat four-dimensional Laplacian. The case that we are interested in is when 

the two-instanton sector solution degenerates, i.e. when y2 — y\. I n this case the funct ion 

a develops an overall factor of (x — yi)2, but 5 2 <9 2 ln (a: — y\)2 = —167r26(a; — yi) so 

/ f x In (?pj W = ^ f j d*x In (?p) 8{x - yx) 

The presence of this factor in the part i t ion funct ion density za{t) makes the integral over 

(yo + yi ) /2 converge. Thus in Yang-Mills theory we can say that the moduli-space diver­

gences are removed by compactifying the theory onto S4. I n this way Yang-Mills theory is 

very different f r o m the sigma model and Bosonic String Theory. 



Chapter 7 

Conclusions 
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In order to perform the semi-classical expansion in certain important field theories, the 
field is split into a quantum piece and a classical piece. The classical piece is a solution 
of the Euler-Lagrange equations and is parametrised by moduli. The functional integral 
over the quantum fluctuation reduces to an integral over the moduli which, typically, will 
diverge. To regulate this divergence we could introduce a cut-off in moduli-space. However 
this has the effect of breaking the rotational symmetry of the action and making the model 
dependent on the configuration space co-ordinates. In order to apply the cut-off, the 
integral over the moduli needs to be separated out from the rest of the functional integral. 
We do this by means of the Faddeev-Popov trick, which also involves the introduction into 
the action of an arbitrary constraint on the quantum fluctuation. We use this constraint 
to set the configuration space co-ordinates. However it is essential that the final Green's 
Function is independent of this choice. 

For the case of the 0(3) sigma model we see that the problem is that the instanton 

contribution to the Green's function is divergent at the instanton boundaries, but applying 

a cut-off introduces an unacceptable constraint on the fields. 

To solve this problem we make two observations. Firstly that the divergence and the 

constraint may be isolated in an anomaly to the Ward Identities of the model. Secondly 

that the divergence is associated with a degeneracy from a particular instanton sector to 

one of lower order. This suggests the possibility that the anomaly in the one-instanton 

sector may be cancelled by adding a term, written in terms of the zero-instanton sector 

fields, into the action. 

We show that the Ward Identity anomaly for the 0(3) sigma model in the one-instanton 

sector, may be written in terms of the zero-instanton sector fields. We also show how 

this term may be used to cancel the moduli-space integral divergences. This term is then 

calculated explicitly for a natural choice of the constraint. 
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A start has been made in looking at how Topological Renormalisation affects other im­
portant models. However, there is scope for much more work, even within sigma models 
themselves. The C P " - 1 calculation looks like it will yield a positive result, but it would be 
interesting to study the effect Topological Renormalisation has on theories with fermions, 
with WZW terms or supersymmetric theories. 
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