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Abstract 

The purpose of this work was to study both the static and dynamic behaviour of 
polymer chains "trapped" within polymeric networks. In recent years there has been a 
large amount of theoretical work dedicated to towards the study of polymer chains in 
concentrated, entangled media and quantitative theories have been advanced describing 
both the mechanism of diffusion of polymer chains within a polymeric network as well as 
the size of the loose chain within the network. There have, however been relatively few 
experimental studies of the properties of such systems, due to considerable the 
difficulties involved in the preparation of suitable samples. 

This work has centred on the preparation of model polymer networks containing a very 
low sol fraction and the trapping of a series of probe chains within these networks to 
determine the properties of the probe chain. A series of well characterised polymer 
networks containing probe chains have been prepared by anionic polymerisation using a 
novel difunctional initiator recently developed in another laboratory. Properties of the 
networks alone have been measured by both SANS and QELS and analysed in terms of 
renormalisation group and mean-field theories. Good agreement has been found with 
theory, though the correlation length of the network has been found not scale as 
predicted and appears to be determined by the synthetic conditions employed in the 
preparation of the network. 

SANS has been used to determine the size of the probe chain in bulk networks, the 
results of which have been found to be different to that predicted by the theories of a 
chain in a "random medium". In solvent swollen networks, the size of the chain has been 
found to be independent of the cross link density, the behaviour being associated with 
that of a semi-dilute solution and the appropriate region of the polymer phase diagram 
has been identified. 

QELS has been used in an attempt to determine the mechanism of diffusion of the 
probe chain within the network and in semi-dilute solutions so as to ascertain any 
differences between the two cases. Analysis centred around deconvolution of the 
autocorrelation function its components (the probe chain and the collective motions of 
the network). However difficulties in the interpretation of the data have prevented a full 
clarification of the experimental situation. 



Acknowledgements 

Firstly the usually understated expressions of thanks go to my supervisor, Randal 
Richards for his continual help, support, guidance and relentless enthusiasm through the 
project, even when it was "only" to teach the famous RTFM lesson. 

Without the efforts of several people, much of the work outlined here would not be 
possible and I thank them gratefully. Tom KifT who prepared many of the initiators, 
provided a great deal of invaluable experience, without which my life would have been 
substantially more difficult. Likewise, Dr. Steve King, instrument scientist at R.A.L., 
proved to be an essential ingredient of all S.A.N.S. experiments. Thanks go to Terry 
Harrison for fixing the computer whenever it decided not to work and to Gordon 
"Trigger" Forrest for providing a S E C. service and for (almost) backing up the data. 
Many thanks are also due to Ray Hart and Gordon Haswell, the Chemistry Department 
glassblowers for producing and repairing equipment with such speed, they have a talent 
that I can only watch in amazement. 

Thanks have to go to the people that made three years in the IRofC pass with such 
ease. Norman Clough, who repeatedly attempted to teach me his eight jokes, Cecilia 
Backson and Ian Hopkinson all managed to keep me at least relatively sane, while Sian 
Davies, Andy Grainger, PD, Mark Taylor, Tall Paul, Steve Edge, John Holland, Stella 
Gissing, Lian Hutchings, Frank Davies (and even Lesley Hamilton . ) all helped to pass 
the time with the odd joke (well not many from Marky T actually). 

Without the efforts of several good friends, Richard (Captain Birdseye) Towns, Brian 
(Roach) Rochford, Ian (Weeman) Reynolds, Nick (Ronnie) Haylett, Simon Tasker, 
Richard McGowan and Steven Snaith I doubt that I'd have consumed as much beer in 
the last three years. Thanks go to them for keeping me straight, (well maybe not). 

Thanks also go to Rorie, Pete and Rob, who put up with me in the three years of living 
at 36 Sutton Street, a household that produced many memorable moments, (not least the 
incident with the bath), it was a truly good place to live. 

Finally thanks go to everyone at Courtaulds who have made working there a reasonably 
enjoyable experience over the last year, even Les Clark, for despite all the verbal abuse 
on a Monday morning he's actually quite a good bloke to work for. 

ii 



Declaration 

All work contained in this thesis is, unless stated otherwise, the sole work of the author 

and has been carried out in the laboratories of the Interdisciplinary Research Centre in 

Polymer Science and Technology (University of Durham) and at the Rutherford 

Appelton Laboratory (Harwell, Oxfordshire) and remains the copyright of the author. 

No quotation from it should be published without the prior written consent of the author 

and information derived from it should be acknowledged. No work contained in this 

thesis has previously been submitted for any other qualification. 

iii 



Contents 

Abstract i-

Acknowledgements ii 

Declaration iii. 

Contents iv. 

Appendices viii 

Chapter 1, General Introduction 

1.1 Background 1 

1.2 The Structure of Polymer Networks 1 

1.3 The Conformation of Polymer Chains 8 

1.3.1 Theoretical Modelling of the Conformation of Polymer Chains 9 

1.3.2 The Excluded Volume Effect 10 

1.3.3 The Conformation of Real Chains in the Bulk and in Dilute Solution 11 

1.3.4 The Conformation of a Chain in a Random Medium 12 

1.3.5 Polymer Concentration Regimes 14 

1.3.6 The Properties of Semi-Dilute Solutions and Polymer Gels 16 

1.3 .6.1 The Correlation Length 19 

1.3.6.2 The Blob Model Of Chain Statistics 21 

1.3.6.3 The Polymer Phase Diagram 23 

1.3.6.4 The c* Theorem 26 

1.4 The Dynamics of Polymer Chains 27 

1.4.1 Models of Hydrodynamic Behaviour in Dilute Solution 28 

1.4.2 Hydrodynamic Behaviour in Semi-Dilute Solution 30 

1.4.3 Models of Hydrodynamic Behaviour in Concentrated Systems 32 

1.4.4 The Reptation Model 33 

1.5 Aims and Objectives 40 

1.5.1 The Choice of System 42 

1.6 References 44 

iv 



Chapter 2, Sample Preparation and Characterisation 

2.1 Introduction 48 

2.2 Anionic Polymerisation 48 

2.2.1 Difunctional Anionic Polymerisation Initiators 51 

2.3 Experimental 53 

2.3 .1 Preparation of Solvent 53 

2.3.1.1 Tetrahydrofuran (THF) 53 

2.3.1.2 Benzene 54 

2.3 .2 Preparation of Monomer 54 

2.3.2.1 Preparation of Deuterated Monomer 55 

2.3 .3 Preparation of Initiator 55 

2.3.3.1 (s) Butyllithium 55 

2.3.3.2 Sodium Napthalene 56 

2.3 .3 .3 Disodium Tetramer of a-Methyl Styrene 56 

2.3.3.4 l,3-Phenylenebis(3-methyl-l-phenylpentylidene)dilithium 57 

2.3 .4 Preparation of Cross linking Agent 59 

2.3.4.1 Triallyloxytriazene (TAT) 59 

2.3.4.2 Divinylbenzene (DVB) 59 

2.3.5 Polymerisation Procedure 62 

2.3.5.1 Preparation of Linear Polystyrene 64 

2 .3 .6 Preparation of Polystyrene Networks 64 

2 .4 Characterisation of Polymers by Size Exclusion Chromatography 68 

2.4.1 Chloroform SEC 68 

2.4.2 Results of SEC Analysis of Linear Polymers 69 

2 .5 Characterisation of Polystyrene Networks 69 

2.5 .1 Characterisation of Precursor Polymer to Blank Networks 69 

2.5.1.1 SEC Analysis of Networks Containing Deuterated Probe Chains 70 

2.5.1.2 SEC Analysis of Networks Containing Hydrogenous Probe Chains 72 

2.5.2 Sol Fraction of Polymer Networks 73 

2.5.2.1 Extraction of the Sol Fraction 73 

v 



2 5.3 Equilibrium Swelling Measurements 75 

2.5.3.1 Determination of the Volume Fraction in Swollen Networks 76 

2.5 .3 .2 Evaluation of Swelling Equilibrium 77 

2.5.3 .3 Results of Swelling Measurements 78 

2.5.3.4 Polymer Molecular Weight From Swelling Measurements 81 

2.6 Conclusions 85 

2.7 References 86 

Chapter 3, Small Angle Neutron Scattering 

3.1 Introduction 87 

3 .2 Theoretical Aspects of Small Angle Neutron Scattering 89 

3.3 Instrumentation 98 

3.3.1 The Small Angle Spectrometer-LoQ 99 

3.3.2 Calibration of the Spectrometer 100 

3.4 Experimental 103 

3 .5 Determination of the Correlation Length of Solvent Swollen Gels 106 

3 .6 Determination of the Radius of Gyration of a Trapped Probe Chain 114 

3.6.1 Initial Experiments on the Probe Chain Size 116 

3.6.2 Probe Chain Size Measured in the Bulk State Using Probe PSD2 117 

3.6.3 Probe Chain Size in Solvent Swollen Networks 124 

3.7 Conclusions 137 

3.8 References 139 

Chapter 4, Quasi-Elastic Light Scattering 

4.1 Introduction 142 

4 .2 Theoretical Aspects of QELS 143 

4 .2 .1 The Origin of the Scattering of Light by Macromolecules 143 

4.2.2 Quasi-Elastic Light Scattering 147 

4.2.3 Homodyne and Heterodyne Correlation Functions 149 

4.2.4 Data Reduction and Analysis 151 

vi 



4.2.4.1 Cumulants 153 

4.2.4.2 The Kohlrausch-Williams-Watts Stretched Exponential Function 154 

4.2.4.3 Inverse Laplace Transformation of QELS Data 155 

4.3 Instrumentation 155 

4.3 .1 Alignment of the Spectrometer 159 

4.3 .2 Calibration of the Spectrometer 160 

4.4 Experimental 165 

4.4.1 Preparation of Solvents and Glassware for QELS Studies 165 

4.4.2 Dilute Solution Measurements of the Tracer Diffusion Coefficient 166 

4.4.3 Preparation of Semi-Dilute Solutions for QELS Study 167 

4.4.4 Preparation of Swollen Gels for QELS Study 168 

4.5 The Probe Chain Tracer Diffusion Coefficient 169 

4.5.1 Tracer Diffusion Coefficients in Cyclohexane Solution 173 

4.6 QELS From Model Polystyrene Networks 178 

4.6.1 General Features of the QELS Spectra 181 

4.6.2 The Co-operative Diffusion Coefficient 184 

4.6.3 The Longitudinal Osmotic Modulus 189 

4.7 The Co-operative Diffusion Coefficient of "Equivalent" Solutions 193 

4.7.1 General Features of the Spectra from Cyclohexane Solutions 193 

4.7 .2 General Features of the Spectra from Toluene Solutions 197 

4.7.3 The Co-operative Diffusion Coefficient 200 

4.8 QELS from Networks and Solutions Containing Probe Chains 205 

4.9 Conclusions 209 

4.10 References 212 

Chapter 5, Conclusions and Suggestions for Future Work 

5.1 General Discussion 216 

5.2 Conclusions 220 

5.3 Suggestions for Future Work 221 

vii 



Appendices 

Appendix A: Glossary of Terms and Symbols Used 

Appendix B: Volumetric Swelling Results 
B1: Swelling Results in Cyclohexane at 308K 
B2: Swelling Results in Cyclohexane at 313K 
B3: Swelling Results in Cyclohexane at 318K 
B4: Swelling Results in Cyclohexane at 323K 
B5: Swelling Results in Toluene at 298K 

Appendix C: Quasi-Elastic Light Scattering Results 
CI : Dilute Solution QELS Results from the Probe 3 Polymer 
C2: Dilute Solution QELS Results from the Probe 4 Polymer 
C3: Dilute Solution QELS Results from the Probe 5 Polymer 
C4: QELS Results from PBMPPD/DVB Networks Swollen in 

Cyclohexane in the Temperature Range 308-323K 
C5: QELS Results from AMS/DVB Networks Swollen in Cyclohexane 

in the Temperature Range 308-318K 
C6: QELS Results from AMS/DVB networks Swollen in Cyclohexane at 

323K, in Toluene at 298K and from PBMPPD/DVB Networks 
Swollen in toluene at 298K 

C7: Longitudinal-Osmotic Modulus Results from AMS/DVB and 
PBMPPD/DVB Series Networks in Cyclohexane in the Temperature 
Range 308-323K 

C8: QELS Results from Equivalent Solutions in Cyclohexane at 308K 
C9: QELS Results from Equivalent Solutions in Cyclohexane at 313K 
CIO: QELS Results from Equivalent Solutions in Cyclohexane at 318K 
CI 1: QELS Results from Equivalent Solutions in Cyclohexane at 323K 
CI2: QELS Results from Equivalent Solutions in Toluene at 298K 

Appendix D: Lectures, Conferences and Courses Attended 

viii 



C H A P T E R 1. 

G E N E R A L INTRODUCTION. 

1. Background. 

It is only in recent years that the theoretical and experimental study of polymer 

molecules at concentrations intermediate between the bulk and dilute solution has 

progressed. One stimulus for these experimental advances has been provided by the 

availability of high flux neutron beams that have allowed the development of small angle 

neutron scattering (SANS) spectrometers1. Over roughly the same time scale, advances 

in digital electronics have allowed the measurement of the line width broadening of 

Rayleigh scattered radiation and the development of photon correlation spectrometry 

(PCS) The development of these two important techniques has allowed the study of 

concentrations above the dilute limit and has tested theoretical predictions of the 

properties of semi-dilute solutions and polymer gels which were advanced at a 

remarkable pace during the 1970's by many researchers but predominantly by several 

French groups culminating in the publication in 1979 of de Gennes' book3 "Scaling 

Concepts in Polymer Physics". 

2. The Structure of Polymer Networks. 

Although many of the remarkable features exhibited by polymer molecules arise 

from the properties of linear polymer chains, many more applications, particularly in the 

rubber, biochemical, adhesives and coatings industries4"6 rely on the joining together of 

large numbers of polymer molecules to form networks of polymeric material. Such 

networks consist of precursor polymer chains that are in essence cross linked to such an 

extent that the resulting three-dimensional network can be envisaged as being a single 

covalently bonded molecule. 

Such molecules, as typified by elastomers, exhibit many remarkable properties. 

Elastomeric networks produce large reversible deformations following the imposition of 

an external stress, behaviour that arises from both the nature of the polymer and the 



presence of the cross links in the network. Two features are the key to the 

understanding of this behaviour. Elastomers consist of long chain macromolecules above 

the polymer glass transition temperature that have a large number of easily accessible 

spatial arrangements, thus allowing the change in conformation of the polymer. 

Secondly, the polymer chains comprise a three dimensional network that extends 

continuously throughout the material, providing permanence to the structure for 

recovery on the removal of the external stress. This is achieved by linking the chains 

together at positions along the chain backbone-cross linking. Changes in the cross link 

density can be brought about by changing the separation of the cross links within the 

network which (by decreasing the chain separation) leads to the formation of a more 

highly cross linked network that is more resistant to imposed stresses as the polymer 

chains are unable to relax fully and adopt as many conformations as less highly cross 

linked networks. 

Production of polymeric networks can be achieved by a number of different 

7 8 

chemical pathways, however all strategies produce networks of two structural types ' 

The most commonly found type of polymeric network is known as a random network 

where the chains of the network are joined together with no regard being paid to the 

homogeneity of the network. Randomly cross linked networks, typified by the case of 

the vulcanised rubber, consist of polymer chains joined to each other by covalent bonds 

distributed randomly along the polymer backbone as shown in figure 1.1. below. 

r 

2? 
D 

Figure 1.1.: In-homogeneous Distribution of Cross links in Random Networks. 

2 



This produces regions having differing cross link homogeneities where the 

molecular weight between cross links and hence the cross link density is not fixed. A 

second feature of randomly cross linked networks concerns the number of chains 

emanating from the cross links-the junction functionality. For randomly cross linked 

networks the functionality is not fixed and only junctions with a functionality greater than 

two act as cross links and are elastically effective. 

Although the functionality of the junctions of the network plays an important part 

in determining the properties of the network, the most important structural characteristic 

is the concentration of the cross links connecting the polymer chains9 1 0 . There are a 

number of ways of expressing the extent of cross linking 1 1 within the network. 

1. The density of cross links, (u.e / V 0 ) where |AE is the number of elastically effective 

cross links within the network and V 0 is the undeformed volume of the dry network. 

2. The concentration of elastic chains, (v e / V 0 ) where v e is the number of chains 

connecting two elastically effective junctions. 

3. The cycle rank density, (£N / V 0 ) , where £ N is the cycle rank of the network , which 

is the number of cuts required to reduce the network to an acyclic structure 

( P ~) 
4. The molecular weight between cross links M c , where Mc = — - — and p is the 

V veIVJ 

density of the polymer network, this is an inverse measure of the degree of cross linking 

of the network. 

Possibly the most important measure of the cross link density is the molecular 

weight between cross links as its measurement is the most simple, however it should be 

noted that relation of experimentally measurable quantities to the cross link density is 

invariably model dependent. 

3 



Characterisation of the structure of a real network requires the consideration of 

imperfections or defects in the network5"9. Any real network will contain terminal or 

pendant chains that do not fully participate in the elastic response of the network-they 

are bound to the network at only one end. A second class of defects within networks 

that provide no contribution to the elasticity of the network is the intramolecular loop 

where two points on a single chain are joined at the same junction. The same effect is 

obtained by the joining of an elastically effective chain to a chain that is unconnected to 

the network. Both types of defects can be seen in figure 1.2. below. 

/ P e n d Pendant / Terminal Chains 

Short Loop Circuits 

• Network Junction 

O End of a Primary Chain 

Figure 1.2.: Schematic Diagram of Defects Present in Randomly Cross linked 

Networks. 

The structural defects present in randomly cross linked networks are however 

eliminated in model networks ' , which by definition are homogeneous and have no 

defects in the network structure. Such networks have formed the basis of many of the 

4 



theoretical studies trying to understand further the elasticity of rubber. Four criteria can 

be applied to model networks. 

1. They should be homogeneous, microsynerisis (local expulsion of solvent) should be 

avoided and both the segment and cross link density be constant throughout the material. 

2. They should consist of elastically effective chains only and hence pendant chains and 

loops should be eliminated. 

3. The elastically effective chains should obey Gaussian statistics and therefore the chains 

should have a known molecular weight with a narrow distribution. 

4. The functionality of the cross links should be known and constant throughout the 

sample, the functionality being the number of elastically effective network chains that are 

attached to one given cross link. 

Several methods have been outlined for the preparation of model networks, 

however all follow the same general two step procedure where firstly a precursor 

polymer chain of known molecular weight and low polydispersity is prepared which is 

subsequently linked to the other polymer chains in a controlled manner, generally this 

being known as an end linking process. Two such methods are anionic block 

copolymerisation and anionic deactivation cross linking . Both methods involve the 

Anionic polymerisation of a suitable monomer as the anionic technique offers a reliable 

method for the generation of the precursor polymer, producing a polymer that not only 

has a known molecular weight and a narrow distribution but is also reactive and 

therefore capable of being cross linked into a network structure. Reaction of the anion 

produced from the first polymerisation step can then be employed in a cross linking 

reaction to produce a network. Anionic block copolymerisation relies on the first stage 

polymerisation of a monomer such as styrene to produce a polymer with carbanionic 

sites at both chain ends. These living anionic chain ends can then be used to initiate the 

5 



polymerisation of a small amount of a bifunctional monomer such as divinylbenzene 

(DVB) the polymerisation of which forms small cross linked nodules, each connected to 

the/chain ends that have participated in the initiation process. Such methods have been 

used to produce various networks with elastic chains having different structures, 

however it should be noted that the method of cross linking employed allows no control 

over the junction functionality of the resulting network. 

Similarly the method of anionic deactivation cross linking relies on an anionic 

polymerisation stage to produce a precursor polymer of known molecular weight with 

living carbanionic chain ends. Cross linking then proceeds in a more controlled manner 

by reaction of the living anions with a plurifunctional electrophilic reagent. As the 

functionality of the cross linking agent is fixed by the number of electrophilic sites in the 

molecule, the junction functionality of the network is in principle fixed. Such methods 

utilising organofunctional silane cross linking molecules have been found to prepare 

networks, however it has been found that some difficulty can arise over the relative 

reactivity of electrophilic sites in the cross linking molecule. 

While swelling experiments have been used to confirm the homogeneous nature 

of "model" networks , the presence of loops and pendant chains cannot be avoided. The 

former are most likely to occur when the polymer concentration of the reaction medium 

is low, the latter when it is very high. Such defects cannot be avoided during the 

preparation of any real network, however their presence can at least be minimised by the 

use of the correct reaction conditions. 

As with any polymeric network, chains not cross linked into a model network can 

be removed from the network by the repeated extraction of this "sol fraction". Such 

material, the portion of polymeric chains not bound into the network during the cross 

linking process, can be extracted by Soxhlet extraction with solvent which swells the 

network. A qualitative link can be drawn to the quality of the produced network and the 

proportion of macromolecular sol extracted from the network. For networks containing 

6 



a high degree of a sol fraction a relatively poor network might be expected to have been 

formed, conversely for a network containing only a small fraction of a macromolecular 

sol, the cross linking reaction can be thought as having proceeded to completion and it 

can be envisaged that the number of pendant chains within the network might have been 

minimised. 

As noted earlier, probably the most commonly expressed quantity measuring the 

degree of cross linking of a network is the molecular weight between cross links, M c . 

One of the most common methods for the measurement of M c relies upon the 

determination of the degree of swelling of the polymer network. Polymer networks 

absorb compatible diluents for essentially the same reasons as an analogous linear 

polymer chains dissolves in solvent to form an ordinary polymer solution. The entropy 

of the system is increased due to the larger volume of the polymer throughout which the 

solvent may spread, this may be either augmented or diminished by the enthalpy of 

dilution of the system. At the same time, the network chains are deformed and an elastic 

retractive force caused by the cross links in the system begins to develop. The 

equilibrium value of the amount of solvent absorbed is determined by the condition that 

under constant thermodynamic conditions, the free energy is at a minimum with respect 

to changes in the composition of the mixed phase (equation 1.1). 

cG 
= M I - M 1 = O 1.1 

where is the change in the Gibbs free energy with respect to the number 

of solvent molecules, 

m is the chemical potential of the solvent in the swollen network, 

and is the chemical potential of the pure solvent. 

The theoretical treatment of the swelling of polymeric networks was developed 

some time ago by Flory and Rehner13 who described the swelling of the network on the 

7 



assumption that the free energy consists of two separable and additive contributions from 

the elementary mixing and elastic retractive forces. In this classical treatment, the mixing 

term was taken from the Flory-Huggins theory 1 5" 1 7 of polymer solutions and the elastic 

term from classical rubber elasticity theory 9 ' 1 8. The Flory-Rehner expression given 

below in equation 1.2., was derived specifically for the case of a network cross linked m 

the bulk state and as such is inapplicable to the case of model networks prepared by the 

end linking of a semi-dilute solution of a polymer. A modification to the Flory-Rehner 

theory has been advanced by Rotstein and Lodge 1 4 who have added a prefactor to the 

classical equation to describe the behaviour of a network prepared in the presence of a 

diluent. Both versions of the Flory-Rehner equation are discussed further in chapter 2, 

where the modified theory has been used to determine the molecular weight between 

cross links of "model" networks. 

Mc=pV^ 
- i r -

ln(l - <£) + </> + x</>2 
1.2. 

where V, is the molecular volume of the solvent molecule, 

<)) is the polymer volume fraction in the swollen gel, 

X is the Flory-Huggins interaction parameter 

and p is the density of the polymer network in the bulk state. 

3. The Conformation of Polymer Chains. 

Possibly the single most significant structural characteristic of a long chain 

macromolecule is its capacity to assume an enormous number of possible conformations 

as a direct consequence of the considerable degree of rotational freedom about single 

main chain bonds. The total number of conformations of the chain increases dramatically 

with increasing numbers of segments on the macromolecule and is amazingly large for 

polymers containing between 100 and 10,000 repeat units. Knowledge of the 

conformation of the chain is therefore of the utmost importance as many physical 

properties (viscosity, diffusion, tensile strength) are found to be dependent on the length 

g 



of the polymer chain. Detailed analysis of the conformation depends particularly on the 

use of molecular modelling, the most simple model of a polymer chain being the freely 

jointed chain. 

3.1. Theoretical Modelling of the Conformation of Macromolecules. 

The freely jointed chain mode l 9 1 9 consists of a polymer chain of x links, each of 

length /, joined in a linear sequence with no restrictions on the angles between successive 

bonds-i.e. only the bond length is fixed. Description of the freely jointed chain model 

involves essentially the same arguments used for a random flight such as that found in the 

Brownian motion of gas molecules. The root mean square end-to-end distance, ^^r^, is 

given by 1.3. 

However, although simplistic the freely jointed chain model does not describe 

accurately the conformation of real macromolecules, as short range steric hindrances 

between monomer units on the polymer chain restrict the angles available for bond 

rotations. Short range steric effects cause an expansion of real polymer chains, the 

degree of which can be estimated from the characteristic ratio9 which is given by 

equation 1.4. and expresses the ratio of the measured mean square end-to-end distance in 

the absence of long range effects to the value that would be found if all interactions (i.e. 

both long and short range) were absent and only the lengths of the bonds fixed. The 

characteristic ratio varies from about 5 to upwards of 10, depending upon the precise 

chemical nature of the polymer6 (side groups on the polymer, "rigid" bonds present in 

the backbone etc.). 

More complicated models of the conformation of macromolecules aim to account 

for short range steric effects by the inclusion of parameters decreasing the local flexibility 

of the polymer chain. In the second most simplistic model, the freely rotating chain 6 , 9, 

9 

1.3. 

r C CO 

rx 
1.4. 



the bond angle 9 is fixed along with the bond length and only the torsion angle § is 

allowed to vary. Although better this model is still not entirely satisfactory and to obtain 

an accurate picture of molecules with hindered internal rotations the Rotational Isomeric 

State theory9 is often invoked. However, although complicated by the effects of short 

range interactions, the statistical properties of real flexible chains will not be different in 

character from the freely jointed chain model and behaviour seen in equation 1.3. (where 

the size of the polymer is proportional to the square root of the number of bonds) is 

frequently seen. 

3.2 The Excluded Volume Effect. 

One problem exists with the random walk description of the polymer chain 

conformation, this is the neglect of interactions between monomer units far apart along 

the contour of the chain, which by the very nature of the chain can be close together in 

space. Briefly, two segments remote from one another along the chain contour cannot 

occupy the same volume element at the same time, repulsive Van der Waals forces act 

between the segments and cause the chain to expand to a size greater than its 
1 f 

unperturbed dimension • Interactions such as these are known as excluded volume 

interactions. The problem now becomes that of a self-avoiding walk, i.e. a random walk 

with certain restrictions that once a volume element has been occupied it cannot be re­

visited9. 

Possibly the most important influence on the excluded volume effect is the 

presence of a solvent medium surrounding the polymer chains. A solvent is said to be 

"good" if the monomer-solvent interactions are favourable compared to the monomer-

monomer interaction. Conversely the solvent is said to be poor if the monomer-solvent 

interactions are weaker than the monomer-monomer interaction. Therefore good 

solvents tend to be favoured by the polymer and cause the polymer chain to become 

expanded. For a chain with excluded volume interactions, the end-to-end distance is 

given by equation 1.5. 

10 



(<•'}=<>'{*) 1.5. 

where n is the mean square end-to-end distance in the perturbed state, 

cc is the linear expansion factor, 

and (r*\ is the mean square end-to-end distance in the unperturbed state. 

From this it can be seen that a condition is predicted (a = 1) where the excluded 

volume effect vanishes and the chain adopts an essentially unperturbed conformation. 

3.3. The Conformation of "Real" Chains in the Bulk and in Dilute Solution. 

In the bulk state, the conformation of amorphous polymers such as polystyrene, 

polymethyl methacrylate and polyvinyl chloride are found to be dependent upon the 

molecular weight of the polymer under study6. Experimentally the conformation is 

studied using small angle neutron and/or small angle X-ray scattering. Techniques such 

as these have produced information on the variation of the radius of gyration of the 

polymer as a function of the molecular weight of the polymer . The radius of 

gyration, the mean square distance from the centre of gravity of the N (where N is the 

degree of polymerisation) scattering points of the polymer, is found to be related to the 

molecular weight of the polymer through equation 1.6. 

where R is the radius of gyration, 

and k is a constant. 

Values of k are found to be dependent upon the system under study and for 

polymer chain described in the freely jointed model is related to the radius of gyration of 

the polymer through equation 1.79. 

R 

M 
1.6. 

polystyrene 2 0 , 2 1 is found to be 0.275 A (mol g*1)0 5 . The end-to-end distance of the 

(r')-6Rl 1.7. 
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The conformation of polymer chains in dilute solution has also been investigated, 

utilising light scattered from the solution to determine the radius of gyration of the 

polymer . In theta solvents , where the chemical potential due to monomer-solvent 

interactions is zero, the radius of gyration is found to be the same as that found in the 

bulk and behaves in a manner given by equation 1.6. Values of k determined for 

polystyrene in cyclohexane at the theta temperature of 308K, are found to be the same as 

for those determined by SANS on the bulk polymer (0.275). These results are not 

surprising when it is considered that the polymer chain in dilute solution at the theta 

point exists in a medium that is thermodynamically equivalent to the bulk state, a 

situation which was described by Flory over twenty years before any experimental 

evidence became available. 

Changing the quality of the solvent, either by increasing or decreasing the 

temperature of the system is changes the dimensions of the polymer molecules. At 

temperatures higher than 308K, solutions of polystyrene in cyclohexane have radii of 

gyration which are greater than the "ideal" dimensions obtained in the bulk. The reason 

for this is lies in the excluded volume interactions described earlier. Increasing the 

temperature increases the relative strength of the monomer-solvent interaction and 

causes the solvent to occupy regions normally favoured by segments of the chain. 

Expulsion of the monomer from those regions causes an expansion of the chain and 

hence an increase in the size of the polymer Measurement of the radius of gyration of 

a polymer in a good solvent using intensity light scattering shows the size of the chain 

not to be dependent upon the square root of the chain length, but instead to be 

proportional to the chain length raised to the power 0.6 1 9, confirming the predictions of 

the self avoiding walk for a chain subject to excluded volume interactions. 

3.4. The Conformation of A Chain in a Random Medium. 

Although much of the theoretical work above was first described over 50 years 

ago, there is one situation which has not been considered by theoreticians until very 

recently and for which no experimental work has been completed. The theoretical 
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discussions above pertain to the case of polymer chains in either the bulk amorphous 

state, in a theta solvent or dilute polymer solutions subjected to excluded volume effects. 

The case of a polymer chain within a random medium has not been considered. A 

random medium is one wherein regions of space are defined by fixed obstacles, examples 

being membranes, chromatography columns and polymer networks in the bulk and when 

swollen with solvent. In the case of a polymer network the fixed obstacles are provided 

by the cross links of the network and the network chains which provide barriers through 

which the polymer chain cannot pass. 

Early computer modelling experiments showed the polymer to have slightly 
Oil 

reduced dimensions in such random media Subsequently to these experiments, the 

magnitude of the contraction of the polymer has been quantified by two groups. 

Edwards found the end-to-end distance of the polymer to be related to the mean 

obstacle density through equation 1.8. 

random medium and the theta state respectively, 

N is the number of segments in the polymer chain 

and p 0 is the mean obstacle density of the network. 

For a polymer network, the mean obstacle density is proportional to the volume 

fraction of polymer in the network and hence the cross link density of the network. A 

similar expression to equation 1.8, though expressed in terms of the correlation length, 

has been derived independently by Vilgis . A further prediction of the Edwards' 

expression relates to the scenario of a "probe" polymer chain within a medium of high 

obstacle density (i.e. high cross link densities). At a critical cross link density, the 

interstitial space defined by the network chains is predicted to become so small that the 

percolation threshold is crossed and the probe chain becomes confined to a region the 

2\ No 0 1-exp 
^ 6.5 ; 

1.8. 

where <r > and <r >q are the mean square end-to-end distance of the polymer in the 
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dimensions of which are given by the correlation length of the network. Consequently, 

no matter how large the probe chain, its dimensions will be approximately that of the 

correlation length, the mesh size of the network. 

3.5. Polymer Concentration Regimes. 

The properties of a polymer solution depend strongly upon the concentration of 

the solution, different regimes being identified with a particular type of behaviour5,6. 

The purpose of this section is to introduce these various regimes and to provide 

quantitative description of their boundaries. 

On increasing the concentration of a polymer solution from the limit of infinite 

dilution, the separation of the coils decreases. Within the concentration region where the 

coils are widely separated the solution is said to be dilute and the solution can be treated 

as a gas of hard spheres. The fundamental length scale applicable to the polymer is the 

end-to-end distance of the chain, the size of the chain (and the radius of the hypothetical 

hard sphere) being determined by the degree of polymerisation and the relative strength 

of the excluded volume effects present with the solvent. 

As the concentration of the polymer is increased the chains (which do not in 

reality behave as hard impenetrable spheres) begin to overlap and the excluded volume 

effects on individual chains become attenuated by the presence of other chains . This 

region of behaviour is known as the semi-dilute region and the characteristic length scale 

pertaining to the polymer is the screening length £ c (defined in section 3.6 ). Finally 

when the polymer concentration becomes so high that each segment is no longer 

surrounded by solvent molecules, the solution is considered to be concentrated and the 
1*7 

fundamental length scale reduces to that of the statistical step length . 

The concentration at which the crossover between dilute solution and semi-dilute 

solution behaviour occurs is known a the critical overlap concentration3 and is denoted 

by the symbol c*. The critical overlap concentration occurs when the concentration of 
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the polymer chains increases to such an extent that the polymer chains just begin to 

overlap and the "hard spheres" of polymers are in close contact. Clearly in real solutions 

c* does not have a specific value, it is instead a region of crossover between the two 

regimes. However, c* is expected to be comparable to the monomer concentration in a 

dilute solution. From this assumption a value of c* can be determined, the value of c* 

being expected to decrease with the size (and hence molecular weight of the polymer) 

and the degree of swelling of the polymer coil. Equation 1.9. below gives a quantitative 

c * 14 27 28 expression for c * ^ ^ ' . i 0 

c = M « 1.9. 
%nNAR] 

where M w is the molecular weight of the polymer, 

and is the Avogadro constant. 

Schematically, the transitions between a dilute and a concentrated solution are 

shown in figure 1.3. parts a-c where the dilute (Part A), c* (Part B) and semi-dilute (Part 

C) solutions can be seen. 

r 

(C): c > c * (A): c < c (B): c = c J 
Figure 1.3.; Crossover Between Dilute, Onset of Overlap and Semi-dilute Regions. 

Therefore from the molecular weight of a given polymer, both the radius of 

gyration and the onset of overlap can be determined allowing the prediction of the 

boundaries of the dilute and semi-dilute solution regimes. 
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3.6. The Properties of Semi-Dilute Solutions and Polymer Gels, 

The properties of polymer gels at swelling equilibrium have been described by de 

Gennes following an intuitive argument relating the properties of the gel to those of 

solutions of weakly overlapping linear chains. This analogy, supported by both SANS 

and QELS experiments, explains both static and dynamic behaviour over a wide range of 

thermodynamic environments. The purpose of this section is to introduce some of these 

concepts and to provide an insight into the scaling properties of semi-dilute solutions 

and polymer gels. 

The classical model of the thermodynamics of polymer solutions, due to Flory 

and Huggins 1 5" 1 7, was based on a lattice model and assumed an average polymer 

segment density constant over the entire lattice. The uniformity of interaction is a mean 

field approach and only truly valid at high polymer concentrations such as those in 

molten polymer blends and concentrated solutions. The expression for the free energy of 

mixing is given as: 

- T - * L = w 1 M , + » 2 M 2 + ;tw!02 1.10. k j 

where T is the absolute temperature, 

k B is the Boltzmann constant, 

A G m j x is the free energy of mixing, 

ni ,n 2 is the number of molecules of solvent and solute, 

4*1 4*2 is t n e volume fraction of solvent and solute respectively 

and % is a dimensionless quantity characterising the interaction per solvent molecule. 

An ideal polymer solution, in which the chain is not subject to excluded volume 

interactions, and hence expansion of its size, is one which has a zero heat of mixing. 

Flory-Huggins theory introduces % to describe the heat of mixing of the solution: 

A / / . , 
X = — 1.11. 

where A H m j x is the heat of mixing. 

16 



By manipulation of equations 1.10 and 1.11. equations relating thermodynamic 

parameters such as the osmotic pressure can be obtained: 

_RT 
n~ V, 

1 4>\ +. 12. 

where % is the osmotic pressure, 

R is the gas constant 

and V, is the molar volume of the solvent. 

By comparison with the virial expansion for the osmotic pressure5,6, % can be 

expressed in terms of the second virial coefficient, equation 1.13. 

v, (1 
1.13. 

where A 2 is the second virial coefficient 

and V2 is the specific volume of the polymer 

From 1.13. it can be seen that the Flory 0 temperature (the point where the 

excess chemical potential due to segment-solvent interactions is zero) occurs at the point 

where % equals 0.5 i.e. A 2 equals zero. The theta point occurs when the enthalpic and 

entropic contributions to % balance. Values of % are possibly the most widely used 

measurement of the interaction between the polymer and solvent, values less than 0.5 

correspond to values of A 2 greater than zero and occur for polymers which are soluble in 

the solvent under consideration. 

It has been realised for some time that the Flory Huggins mixing expression is not 

adequate at low concentrations due to the inherent non uniformity of the polymer 

concentration. Flory and Krigbaum have studied this problem using a smoothed density 

model in which the polymer is considered as a continuous cloud of segments distributed 

with a Gaussian probability over a sphere located about the molecular centre of mass 9 1 9. 

The excluded volume expansion of the chain is described by a uniform potential in a 

mean field approximation, the equilibrium conformation of the chain being determined by 
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equating the osmotic swelling of the coil with the elastic reaction developed by the coil 

trying to restore itself to a less expended conformation. 

The magnitude of the osmotic pressure developed depends upon the difference in 

the energy of the interaction between components in the system, which is directly 

analogous to the macroscopic equilibrium swelling of a network described by the Flory-

Rehner equation. The osmotic term was found using the mean field approach above, 

while the elastic term found following the assumption of an affine deformation of the 

end-to-end chain vector. An expression for the free energy of the coil can then be 

determined and by manipulation an equation relating the end-to-end distance of the chain 

found (equation 1.14). 

where a is a constant dependent on the polymer under study. 

Although this approach leads to the correct exponent relating the coil size to the 

chain length in solution, it does so by a remarkably fortuitous cancellation of two strong 

assumptions . Firstly, the osmotic energy is overestimated by the neglect of the 

correlation between segments within the chain, while the elastic energy is also 

overestimated by the assumption of affine distortion of Gaussian chain statistics. 

During the early 1970's an alternative approach to the problem of polymer chain 

statistics, accounting for correlation's between monomer units within a chain was 

developed by several French research groups based upon a mathematical analogy with 

critical phenomena in magnetic systems ' ' . Some general results were provided by 

the use of re normalisation group theory developed for the study of critical phenomena, 

de Gennes used these results along with scaling arguments and extrapolations to develop 

the laws and to predict new scaling exponents, the results of which are summarised in the 

book Scaling Concepts in Polymer Physics . The purpose of this section is not to 

derive all scaling relationships applicable to the cases of semi-dilute solutions and 

1 1.14. 
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polymer gels, instead it serves identify those areas most important for the work described 

later in this thesis and to provide an insight into the origins of their behaviour. 

When the polymer concentration is increased from the dilute solution, there 

comes a point when the domains of the polymer coil begin to overlap. This threshold, 

described earlier as the critical overlap concentration can also be expressed an a critical 

volume fraction, §*, again comparable to the local segment concentration within a single 

dilute coil. A quantitative expression for c* was given earlier in equation 1.9., here it is 

presented in a different manner showing the scaling nature of the critical overlap 

concentration For a good solvent where the end-to-end distance scales as N° 6 c* is 

given by: 

c * 7 ^ s N 1 1 5 

\ r ) a3N~> 

For a theta solvent where <r > scales as N , c* is given by 

. N N _, - i 
c * 7 7 ^ T*a N 2 1 1 6 

By inspection of equations 1.15. and 1.16., equation 1.17. can be written for the 

general case of a chain in any solvent. 

<'2> 
where v, the excluded volume exponent, is 0.6 for good and 0.5 for theta solvents. 

3.6.1. The Correlation Length. 

As seen schematically in figure 1.3 part c, chains in semi-dilute solution do not 

act as hard spheres, instead the chains interpenetrate one another forming what can be 

viewed as a lattice, which when photographed at a single time will look very similar to a 

polymeric network having a certain mesh size, £-the correlation length of the solution. 
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This is best explained schematically in figure 1.4. below. 

Figure 1.4.: Schematic Diagram of the Correlation Length of 

Semi-Dilute Solutions. 

The importance of the correlation length of the semi-dilute solution will be 

realised in the following discussion. Clearly from figure 1.4. the magnitude of the 

correlation length, the mesh size, is related to the concentration of the polymer chains. 

At the critical overlap concentration, the mesh has its largest size as the polymer chains 

are only just in contact, increasing the concentration reduces the separation of the chains 

and therefore decreases the correlation length. At c* the correlation length can be seen 

to be the size of one coil, <r >. For concentrations above c*, the transient network 

structure will depend only upon the concentration and not upon the molecular weight of 

the polymer, the chains being much longer than the mesh size. From these two 

assumptions, the following scaling relationship can be written for the correlation length 

(assuming good solvent conditions). 

where m is chosen such that powers of N from <r > and c* cancel. 

For good solvent conditions, substituting 1.14 and 1.15 into 1.18. leads to equation 1.19. 

m 

1.18. 

t{c)*c~< 1.19. 
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Similar arguments can be used for the case of a semi-dilute chain in a theta 

solvent, except in this case the chains are ideal and by use of the appropriate scaling 

forms for <r 2 > and c* (114 and 1.16) the correlation length is given by equation 1.20. 

* ) - H w C 
1.20. 

cj 

3.6.2. The "Blob" Model Of Chain Statistics. 

Consider a single chain within a semi-dilute solution of a polymer in a good 

solvent. It is known that the chain in dilute solution has a conformation where the size 

of the chain scales with the degree of polymerisation to the power 3/5. Yet by increasing 

the concentration of the system to the bulk, the size of the chain is found to scale with 

the degree of polymerisation to the power of 1/2. The question therefore arises of what 

happens at concentrations intermediate between the dilute regime and the concentrated 

regime-the semi-dilute region. 

The size of the chain in the semi-dilute region can be understood by using the 

"blob model" first introduced by Daoud in 1976. In the model, the chain is considered 

to consist of a succession of subunits known as blobs, shown schematically by figure 1.5. 

r 

5 
Blob of g Monomers 

Fieure 1.5.: The Excluded Volume "Blob" in Semi-Dilute Solution. 

Within the subunit, the polymer chain does not interact with other chains and is 

swollen by excluded volume effects, while outside the blob radius, the excluded volume 
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interactions between segments of the same chain (but arising from different blobs) are 

screened out by the overlapping chains of the semi-dilute solution. As the excluded 

volume effects are screened out by the overlapping chains of the semi-dilute solution, it 

is natural to take the size of the blob to be the mesh size or correlation length of the 

transient network. The number of monomers per blob, g, is related to the correlation 

length by the law of swollen coils, whereby the size of the blob (the correlation length) is 

obtained by direct analogy to equation 1.14. 
3 

t*agi 1.21. 

where a is the same constant as given in equation 1.14. measuring the chain stiffness. 

Similarly, the size of the blob in a theta solvent is given by equation 1.22. 

%*ag~2 1.22 

By combination of equation 1.19. with equation 1.21, the number of monomers per blob 

can be seen to be dependent upon the concentration of the solution, equation 1.23. 

5 

5 f 3 V 

a 
V J 

* c 4 1.23. 

By taking the excluded volume blob as being the basic units of the semi-dilute 

solution it can be shown that the solution behaves as a close packed system of blobs and 

as such the problem returns to that of the of the ideal chain. In such a case the chains 

can then be considered as being ideal on length scales greater than the blob radius, the 

mean square end-to-end size being estimated from the ideal chain formula for N/g blobs 

of size 

1.24. 

By combination of equations 1.21., 1.22 and 1.24. the end-to-end size of the 

chain can be seen to scale with the polymer concentration. 
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( r 2 ) ( c ) * M r V * 1.25. 

Equation 1.25. was first derived by Daoud and has been experimentally verified 

by SANS studies of semi-dilute solutions of polystyrene in benzene . Clearly for semi-

dilute solutions in a theta solvent where the chains are ideal, the notion of the blob does 

not need to be invoked in order to describe the static properties of the solution. 

3.6.3. The Polymer Phase Diagram. 

The predictions of the scaling theories outlined above have been studied for a 

number of chemical systems in the dilute and semi-dilute regimes, though polystyrene 

systems have been by far the most studied. Transitions between the different modes of 

behaviour are brought about by changes in the solvent quality of the system. Different 

regimes of concentration and solvent quality can be qualitatively associated with different 

types of behaviour following the temperature-concentration phase diagram shown below 

in figure 1.6 3 0 ' 3 5. 

* 0.5 xM 

0.5 «bM 
> 0 

Figure 1.6.: Temperature-Concentration Phase Diagram due to Daoud. 

The phase diagram shown in figure 1.6 is given as a function of two variables, the 

concentration (denoted here by the polymer volume fraction) and the reduced 
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temperature of the system, x, given by equation 1.26. Both quantities have been 

multiplied by the square root of the molecular weight in order to remove any dependence 

on M w . Consequently the point xM° 5 0 corresponds to the theta point of the solution. 

T= 126. 
V T0 J 

Five distinct regions of behaviour have been identified by Daoud 3 0: 

Region 1: The dilute theta region, here the polymer chain has unperturbed dimensions 

over a small range of temperature and concentration due to the finite molecular weight. 

Region 1': The dilute good solvent region, here the polymer chains are widely separated 

and subject to excluded volume effects. 

Region 2: The semi-dilute region of intermediate concentration where molecules overlap 

under good solvent conditions. 

Region 3: The concentrated region where each monomer is in contact with many others 

and the conformation of the chain approaches that of the bulk. 

Region 4: The two phase region below the theta point where the polymer precipitates 

out of solution. 

Daoud and Jannink have obtained expressions for the correlation length and the 

radius of gyration of polymer chains in regions 1' to 3 in terms not only of the polymer 

concentration but also of the reduced temperature x. These predictions are outlined in 

table 1.1. 

Region R„ 2 e 
1 N Not Applicable 

r N6/5 x2/5 Not Applicable 

2 N c - l / 4 T l / 4 c " 3 / V 1 / 2 

3 N c-2 

Table 1.1; Seating Theory Predictions for the Polymer Phase Diagram of Daoud. 
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In addition to the predictions of scaling theory, Edwards and co-workers have 

re-examined mean field theoretical predictions on the semi-dilute regime and have found 

relationships which are effectively identical to those of scaling theory. Perhaps more 

importantly, the relationships obtained were derived from a single formula which can be 

applied from the most dilute solution to the bulk polymer. The various regions of 

behaviour are obtained by setting specific conditions for c and x. From the approach a 

picture emerges where changes between regions occur not as distinct barriers but instead 

as gradual changes. 

The exponents obtained from mean field theory are generally in good agreement 

with those of scaling theory, except in the so-called region 2A, which is not predicted by 

scaling theory where there is a much higher monomer density than in region 2. This 

region, known as the semi-concentrated region has been studied by SANS where some 

evidence for its existence has been found 

A further refinement to the predictions of scaling theory has been made by 

Schaeffer 3 3 , 3 4 in which a departure from the predictions of the scaling laws is attributed 

to restricted flexibility on a local scale of real chains, perturbative corrections in a mean 

field analysis then being considered as appropriate. Although the argument has some 

theoretical justification it presents difficulties in defining the degree of flexibility of real 

chains. The Schaeffer approach makes use of the blob model and predicts a phase 

diagram somewhat more complicated than that due to Daoud. Although there is some 

theoretical justification for the Schaeffer model, experimental evidence remains scarce. 

The scaling theories due variously to de Gennes, Cotton, Daoud etc. have also 

been used to make predictions of other static and dynamic properties, controlled by the 

concentration and degree of excluded volume in the solution. Properties such as the 

osmotic pressure, osmotic modulus as well as the collective diffusion coefficient of the 

polymer chains of either the swollen network or semi-dilute solution are related to the 

polymer concentration, the results of which are presented in table 1.2. below. 
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Experimentally Observable Quantity Polymer Concentration Scaling Exponent 

Good Solvent Theta Solvent ' 

Screening Length, £,c -3/4 -1 : 
Osmotic Pressure, n 9/4 3 

Collective Diffusion Coefficient, D c 3/4 1 

Osmotic Modulus, M o s 9/4 3 ' 

Table 1.2.: Exponents for the Power Law Dependence of Various Quantities on 

Polymer Segment Concentration in the Swollen Gel/Semi-Dilute Regime. 

3.6.4. The c* Theorem. 

Many of the properties of polymer solutions described above are rationalised by 

considering the semi-dilute solution to be a transient network formed by interchain 

contacts between the polymer chains, the unconnected chains being able to disentangle 

over long time scales, while new interchain contacts form over roughly the same time 

scale. Clearly the semi-dilute solution exhibits many structural properties reminiscent of 

a swollen polymer gel. The connection between the polymer gel at swelling equilibrium 

and polymer solutions is stated formally in de Gennes c* theorem . Polymer chains in a 

good solvent repel one another and form a positive osmotic pressure, n. I f the chains are 

attached to one another at their ends then although they would like to separate as much 

as possible they are restricted in doing so by the cross links which impose a permanence 

to the structure. 

The result is a system of closely packed coils analogous to the overlap 

concentration separating the dilute and semi-dilute regions. The gel is predicted to 

maintain automatically a concentration which is proportional to the overlap 

concentration. 
4 3 6 

c * k(f)c * k(f)N~~5v~~5a~5 1.27. 

where k(f) is a constant dependent on the functionality of the junctions of the network 
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Equation 1.27. summarises the Flory theory of gels , increasing the quality of the 

solvent and hence v, causes a decrease in the overlap concentration of the polymer and 

hence causes the network to become more swollen. Macroscopic swelling experiments 

have in the main confirmed the relationship between the degree of polymerisation and the 

concentration of polymer in the swollen network - , an area which is returned to later in 

chapter 2. 

4. The Dynamics of Polymer Chains. 

Many of the industrial applications of polymers are related to their unusual 

rheological and hydrodynamic properties, one method of increasing the viscosity of a 

liquid being to introduce a polymeric additive with its associated long relaxation times 

due to the effects of intramolecular motion of the polymer. However, the processes 

controlling the dynamic properties of polymer solutions are, similarly to the 

conformation of polymers, dependent on the concentration of the polymer in solution. 

The hydrodynamic properties of dilute polymer solutions are relatively well 

understood due to the ease of study by techniques such as dilute solution viscometry and 

concentration gradient diffusion, the data of which is interpreted in terms of the 

theoretical models of Zimm 3 6 and Kirkwood 3 7 . However the understanding of the 

properties of non-dilute polymer solutions and melts is less well understood due to both 

the difficulties in experimental design and theoretical interpretation of the data. 

The recent development of techniques such as quasi elastic light scattering 

(QELS), forced rayleigh scattering and pulsed field gradient NMR techniques have 

alleviated some of these experimental problems and have provided results which have 

been discussed in terms of the scaling theories and the reptation model of polymer 

diffusion in concentrated systems advanced by de Gennes3. 

The purpose of this section is to provide an introduction to the theory of 

macromolecular dynamics in dilute systems as well as concentrated media and to 
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describe the experimental efforts to validate those theories used in such systems. A basic 

introduction to the theories of hydrodynamic behaviour is provided, a more rigorous 

treatment being found in the literature38"4*. 

4.1. Models of Hvdrodynamic Behaviour in Dilute Solution. 

The hydrodynamic properties of dilute solutions are both experimentally and 

theoretically easily studied as the motions of separate chains can be studied 

independently of one another. Essentially the most important microscopic parameter is 

the monomer friction coefficient C,, which describes the motion of a single monomer in 

the solvent. C, depends upon the solvent viscosity no a n c * c a n ^ e r e 'ated to the radius a of 

a hydrodynamic sphere through equation 1.2840. 

G = 6xrj0a 1.28. 

In the simplest model of the hydrodynamic behaviour in solution, the Rouse 

model 4 2, the polymer is considered to act as a coupled harmonic oscillator moving 

through the solution, the (N+l) monomers of the polymer being connected by N linear 

elastic springs. All of the mass of the polymer is contained in the monomers which 

experience a frictional interaction with the solvent. 

The motions of the different monomers are considered to be independent in that 

the frictional force of a given monomer unit depends solely in the velocity of the 

monomer and not on that due to the other monomers. This approach is said to be a free 

draining model and neglects the hydrodynamic interactions due to the different segments 

of the polymer chain. 

The dynamics of the Rouse model have been extensively studied, only the main 

results of which are presented here 

D — - 1 ? Q 
Rms°-{N+i)<; 1 / y 
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[ 7 ] = l i m < B 0 AT 1.30. 

where D R o u s e is the diffusion coefficient of the chain due to the model 

T is the Absolute Temperature 

[r\] is the intrinsic viscosity 

and r| is the shear viscosity. 

However, the predictions of the Rouse model are not found in experimental 

studies of dilute solutions, in particular the behaviour of the polymer chain is found to 

scale with the molecular weight, not with a scaling exponent of 1 as predicted but with 

an exponent of between 0.5 and 0.6 depending on the quality of the solvent. 

The behaviour of polymer chains in dilute solution can however be well 

understood in terms of the non-free draining Zimm model 3 6, where it is considered that 

not all monomers feel the same hydrodynamic friction due to shielding from viscous drag 

interaction by neighbouring monomer units, thus reducing the molecular weight 

dependence of the diffusion coefficient to that of the reciprocal size of the chain. Again 

only the main predictions of the model are described here. 

kBT 
Zimm s~ r-» 1.31. 

6TTTJ0RH 

where D Z i m m is the diffusion coefficient of the chain 

and is the Hydrodynamic radius of the polymer. 

A number of experimental studies on solutions of polystyrene in both good and 

theta solvents have shown the Zimm model to be applicable in the description of the 

hydrodynamic behaviour in dilute solution. Generally for polymer-good solvent systems, 

light scattering, sedimentation and viscometric measurements have shown the scaling 

exponent to be only very slightly smaller than that predicted by the Zimm model 4 3 ' 4 4 . 

Similarly, results obtained from theta systems show the model to be valid for the dilute 

chain in the ideal state 4 5 ' 4 6. 
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However, it should be noted that Zimm treats the polymer in terms of a hard 

sphere model, clearly this is not the case for semi-dilute solutions and discrepancies 

might be expected for more concentrated systems where the polymer chains overlap and 

entangle in the medium. 

4.2. Hydrodynamic Behaviour in Semi-Dilute Solution. 

In dilute solutions only the motions of single chains have been considered and 

dynamic properties are studied in the limit of infinite dilution. However when the 

concentration is non-zero, interactions between other chains both static and 

hydrodynamic in nature must be taken into account. When the concentration is lower 

than the critical overlap threshold these interactions can be classified as perturbations and 

considered to be small. When the concentration of the solution is above c* in the semi-

dilute regime, the motions of the chains become collective and the monomer friction 

coefficient C, becomes concentration dependent. 

In the semi-dilute regime two distinct types of hydrodynamic processes are 

prevalent, collective motions due to the co-operative motions of the solution and single 

chain processes involving the motion of a single labelled chain3. Two diffusion 

coefficients can be defined, a collective (or co-operative) diffusion coefficient D c which 

characterises the relaxation of the concentration fluctuations and the self (or tracer) 

diffusion coefficient (D s or D t ) characterising the motion of the labelled chain. The 

dynamic collective motions of semi-dilute solutions and swollen gels in both good and 

theta solvents can be considered independently from the case of the single chain motion. 

The collective motions of the chain are essentially different from the cases outlined above 

for dilute solution behaviour due to the effects of hydrodynamic interactions and the 

screening of these effects. 

Experimental evidence from dilute solutions reinforces the Zimm approach where 

each moving monomer in the solvent creates a backflow field which decays slowly with 

the distance from the monomer. In the semi-dilute regime, the interference between 
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these fields induces a screening of the solvent backflow field of the monomer, which falls 

off exponentially beyond a characteristic distance, X, the screening length of the 

hydrodynamic interactions40. The theory of the collective motion of semi-dilute 

solutions of ideal Gaussian chains has been proposed by Edwards and Freed4 7. Only the 

main predictions of the model are described here, a full discussion being available in the 

literature. The Edwards' theory relates the hydrodynamic screening length X to the 

effective monomer friction coefficient Q. 

A = 1.32. 

From this expression, de Gennes has used self consistent field arguments to show 

that X is only dependent on the monomer concentration c and that X follows the same 

scaling structure as the correlation length. In a semi-dilute solution of a good polymer-

solvent system, the following scaling form is predicted. 

n * ^ « c ° - 7 S 1.33. 
CO i * 

not 

Experimentally the predictions of the hydrodynamic scaling theory have been 

confirmed, where QELS measurements indicate that the collective diffusion coefficient 

scales with the polymer concentration raised to the power 0 .7 4 8 , 4 9 . However some 

discussion occurs in the literature over the shape of the autocorrelation function obtained 

from the QELS experiment. Some authors claim the autocorrelation function to be 

composed of two relaxation modes 5 0 ' 5 1 while others claim only one 5 2 , 5 3 , the 

concentration of the semi-dilute solution under study being a major source of discussion. 

The area of QELS from semi-dilute solutions is discussed further in chapter 4. 

Scaling theory can also be used to predict a linear dependence of the collective 

diffusion coefficient upon the concentration in theta solutions. However a similar 

situation exists in the experimental study of semi-dilute theta solutions, where 

experimental difficulties are prevalent and two relaxation modes are again 5 4" 5 7 noted in 
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the autocorrelation function of the QELS spectra, the mode with the longest relaxation 

time being thought to be due to the viscoelastic motions of the polymer in solution. 

Again the experimental situation is complicated and is discussed further in chapter 4. 

4.3. Models of Hydrodynamic Behaviour in Concentrated Systems. 

Although it was shown that the Rouse model is a poor model of polymer 

behaviour in dilute solutions where its neglect of hydrodynamic effects leads to incorrect 

predictions, the Rouse model is found to provide a more accurate description of the 

dynamic behaviour of the polymer as the concentration is increased . The reason for this 

can be understood qualitatively. Increasing the density of the chains causes the polymer 

coils to interpenetrate one another which induces a screening of the hydrodynamic 

interactions between the monomer units. This leaves all monomer units equally 

susceptible to hydrodynamic drag effects, due both to the polymer-polymer as well as the 

polymer-solvent drag When the polymer chains are not too long, (below the 

molecular weight at which chains become entangled M c ) , the predictions of the Rouse 

model are experimentally verified 3 9. However above the entanglement molecular 

weight, the dynamics of polymer chains in the melt cannot be described by the Rouse 

model. 

The Rouse model predicts that the shear stress modulus G(t), decays to zero after 

the imposition of the shear strain without any dependency on the molecular weight of the 

polymer41. However, above a critical molecular weight (M c ) a plateau modulus exists 

causing a slowing down of the stress modulus relaxation, similar to the behaviour of 

cross linked polymers. The plateau is due to the entanglement of the polymer chains 

above M c , producing behaviour which can be understood in terms of temporary cross 

links causing the formation of a transient network. Hence above Mc behaviour not 

consistent with the Rouse model is found, which is understood in terms of the 

entanglements of the chains in the melt state58. 
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However, de Gennes in 1971 introduced an alternative explanation of the 

dynamic processes controlling polymer diffusion in concentrated media. Called 

reptation59, the motions of loose polymer chains inside a polymer network are assumed 

to proceed by a snake like motion along the backbone of the "loose" chain. Transverse 

motion of the chain is not possible as the chains surrounding the loose chain form 

obstacle to its path preventing sideways motion, thereby forcing the reptative motion 

along the chain backbone. Understanding of the reptation theory was made somewhat 

more simple by the introduction of the tube model by Edwards60, where polymer chains 

in concentrated media are considered to be confined to a tube formed by the adjacent 

polymer chains. The following sections describe the reptation model in some detail and 

provide an introduction into the experimental controversy surrounding the model as 

applied to many different systems of interest. 

4.4. The Reptation Model. 

In polymer melts or concentrated solutions, the complex topological constraints 

imposed by chain entanglements are in the reptation model considered to restrict each 

chain to motion along its own contour except at the chain ends. This is often referred to 

as the tube model due to Edwards6 0, where excursions of the monomer segments of the 

chain at right angles to the axis of the tube are forbidden by the presence of the chains 

forming the tube. Schematically, this can be seen by figure 1.7. below where 

entanglements of the type shown in figure 1.4. provide the "walls" of the tube. 

r 

• Point of Chain Entanglement 

J 
Figure 1.7.: Schematic Diagram of Entanglements Producing a Confining Tube. 
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Motion of the chain is then expected only to occur in a direction parallel this the 

axis of the tube and proceeds by the motion of a "defect" along the chain backbone 

towards one of the chain ends. The defect is in reality a "stored length" in the backbone 

of the chain which moves by a "snake-like" motion (reptation). Thus as the defect moves 

along the tube, one part of the tube at the trailing end of the chain is destroyed and a 

section of tube of corresponding size is created at the forward end. This can be seen in 

figure 1.8. below. 

r 
Diagram A 

Probe chain 

Section y 
Diagram B 

Section x 

Figure 1.8.: Creation and Destruction of Sections of Tube Due to Chain Reptation. 

In diagram A of figure 1.8., the diffusing "probe" chain can be seen to be 

confined to a tube like region formed by the neighbouring polymer chains around the 

probe chain. In diagram B the diffusing probe chain is shown some time later having 

moved along its own axis. This motion causes several effects. Firstly the leading edge 

of the probe chain "creates" a new section of tube around itself (section z). The trailing 

end of the probe chain moves into the original tube, causing the destruction of part of the 

original tube (section x). Finally the centre portion of the probe correspondingly moves 

along the original tube and is displaced by an amount (equivalent to the amount moved 

by the chain end) relative to its position within the original tube. The section of the 

original tube still occupied by the probe chain is highlighted in bold face (section y). 
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The diffusive motion of the chain can be characterised by a mobility which gives 

the curvilinear velocity under an external force. The mobility, u t is inversely 

proportional to the length of the tube, i.e. the degree of polymerisation of the chain -• 

1.14. 
' N 

where u.n is the microscopic mobility which depends only upon the local friction. 

The Einstein relationship relates u t to the curvilinear diffusion coefficient D t 

D =k:BnT = ^EoL 135 

The reptation time, T r is the time taken for the chain to disentangle itself from the 

tube made up from the local chains. The relaxation (or reptation) time is given by 136. 

Trep*^~r0N> 1.36. 

The constants appearing in equation 1.36. can be chosen such that during one 

relaxation time, the test chain has moved over a distance of the order of its radius of 

gyration (during one relaxation time the chain moves along the tube length L-given by L 

«Na), however in space the tube is contorted and during one relaxation time the probe 

chain moves through a distance given by its radius of gyration). 

\ Uself1rep 

where D s e j f is the self diffusion coefficient 

Rl=D„lfT 1.37. 

By combination of equations 1.36 and 1.37 and recalling the dependence of the radius of 

gyration upon the molecular weight of the polymer, equation 1.38 describing the 

diffusion of the probe chain can be written. 

D ~ M°' ~ 1 38 
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Equation 1.38. forms the basis of de Gennes theory for the diffusion of a chain in a 

concentrated, entangled system. Its M dependence contrasts with the M dependence 

of the Rouse model. Equation 1.38. applies to the case considered by de Gennes of a 

probe chain diffusing through a very concentrated medium such as a polymer network 

(or through the melt state well above the ccritical entanglement weight). Similar chain 

entanglements exist in semi-dilute solutions, however as was shown earlier in section 

3 .6.1. these entanglements are dependent on the concentration of the semi-dilute solution 

and therefore scaling arguments relating the diffusion of the probe to the concentration 

of the semi-dilute matrix can be derived. A semi-dilute solution can be considered to be 

a melt of blobs, size each containing g monomers. The tube diameter in the semi-

dilute solution can be taken as being the size of the blob 3 ' 4 0 . In this case the overall 

contour length of the tube is N^/g, the local mobility u 0 is the blob mobility given by 

equation 1.39. 

1 3 9 

Using the Einstein relationship, the diffusion coefficient and relaxation time of the chain 

can then be determined. 

D,=kBMoT=^- 1.40. 

T = 6 ^ N ^ 141 
kag>T 

Again following the arguments presented in equations 1.37. and 1.38 the self diffusion 

coefficient of the chain can be determined. 

A . y » 2 1.42. 
s e l f e ^ p i 2 
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However, as noted earlier both g and t, scale with the polymer concentration of 

the semi-dilute solution. Therefore for a good solvent equation 1.43 is obtained while 

for a theta solution equation 1.44. is obtained. 

Dse(f * M"V 9 / 4 1.43. 

^ * A Y - V J 1.44. 

The discussions above provide predictions for the dynamic behaviour of polymer 

chains from the reptation model in concentrated systems where chain entanglements 

provide topological constraints upon chain motion. Although derived specifically for the 

case of a chain diffusing through a bulk polymeric network where cross links provide the 

topological constraints to chain motion, there has until recently been very little 

experimental evidence for the dynamic behaviour of a probe chain inside a network. The 

reason for this is primarily due to the difficulties of sample preparation. It is not 

sufficient to simply prepare a network and then allow probe chains to diffuse into the 

network as thermodynamics does not favour diffusion into the network and the kinetics 

of chain diffusion are sufficiently slow to hinder the development of a small 

concentration of probe chain within the network. In reality networks need to be 

prepared around the probe chain, i.e. by either the anionic block copolymerisation or 

deactivation routes incorporating a known fraction of the probe chain into the living 

reaction medium and cross linking around the probe chain. 

Such systems have until recently not been studied and the focus of attention for 

those investigating the reptation mechanism has been in those systems where the cross 

links are replaced by chain entanglements, thus providing the topological constraints for 

reptation. Such cases are typified by polymer melts, where the probe chain is immersed 

inside a melt of chemically identical chains, the molecular weight of which is substantially 

higher than the probe and therefore provides temporary cross links which do not 

disentangle over the time scales of interest. 
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Above the critical entanglement molecular weight, the reptation predictions for 

the viscosity of the polymer melt are broadly speaking, in agreement with the data 

available58. Results indicate the viscosity of the melt to be dependent upon the 

molecular weight of the matrix raised to the power of 3.4, in a manner seemingly 

regardless of the chemical structure of the polymer , samples of polystyrene, 
ex c ̂  

polyethylene, polyisoprene being amongst those studied . Reptation theory predicts 

x]« in the limit of infinite molecular weight as compared with the value from Rouse 
theory which predicts a linear dependence. 

Experiments testing the reptation mechanism in semi-dilute and concentrated 

solutions have been performed on a variety of systems using a number of experimental 

methods, however all have one common feature in that none equivocally prove the 

existence of the mechanism. Leger has studied the polystyrene-benzene system and has 

measured the self diffusion coefficient of the polymer as a function of the matrix polymer 

concentration and molecular weight as well as a function of the probe molecular 

weight 6 6. For the system where the matrix and probe molecular weights are equal, the 

self diffusion coefficient was found to scale as expected with no dependence upon the 

matrix molecular weight. However later studies by the same group found a dependence 

upon the matrix molecular weight when the ratio of the matrix molecular weight to the 

probe molecular weight was less than 5 . 

Ternary solutions have been studied by several groups. Lodge has examined the 

compatible system, of PS/PVME/o-fluorotoluene and found a complex dependence of 

the tracer diffusion coefficient upon the probe molecular weight (M"°' 5-M" 2 3 ) , with a 

small inverse dependence on the matrix molecular weight. However no scaling with the 

polymer concentration was reported. Brown has also studied the homopolymeric ternary 

PIB/PIB/chloroform system , reporting a dependence upon the polymer concentration 

which increased smoothly with the concentration, the predicted dependence being found 

over only a very narrow concentration region. The situation concerning the dynamic 

processes of semi-dilute and concentrated solutions can be seen to be complicated which 
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has prompted several authors to propose modified reptation models. Phillies has 
f A 

advanced an alternative approach to the dynamics of semi-dilute solutions' . The 

"hydrodynamic scaling model" has proved to be quite successful, though cannot explain 

the retardation of the diffusion coefficient that occurs for branched polymers as 

compared to linear polymers of the same molecular weight. 

It is only in recent years that studies of probe chains trapped inside networks 

have progressed with experiments being carried out to examine the reptation mechanism. 

Cohen7 0 has studied the diffusion of polystyrene through model poly(dimethylsiloxane) 

networks and has determined the diffusion coefficient of the probe polymer with QELS, 

utilising THF as the solvent (PDMS being isorefractive in THF) for the gel, however no 

scaling behaviour was reported between the molecular weight of the probe and the tracer 

diffusion coefficient. Haggerty has studied the diffusion of poly(acrylic acid) through 

poly(acrylamide) gels by measuring the rate of diffusion out of the gel, the diffusion 

coefficient of the low molecular weight probe being found to be inversely dependent 

upon the square root of the molecular weight of the probe. QELS has also been used to 

study the behaviour of polystyrene diffusing through PMMA gels by Bansil who 

measured the diffusion coefficient directly from the decay of the autocorrelation 

function, the solvent for the experiment being chosen such that the PMMA was 

isorefractive and thus the relaxation of the gel not seen in the experiment. Behaviour 

consistent with reptation having a scaling exponent of -1.8 was found between the tracer 

diffusion coefficient and the probe molecular weight, the difference between the 

experimentally obtained relationship and that predicted (-2) being attributed to the 

expansion of the probe chain. 

Possibly the most comprehensive study of the behaviour of probe chains inside 

polymer networks has recently been reported by Lodge and Rotstein1 4 They have 

studied the behaviour of polystyrene polymers diffusing through poly(vinylmethylether) 

(PVME) end linked gels by QELS. The tracer diffusion coefficient of the polystyrene 

was obtained from the decay of the autocorrelation function, the solvent for the 
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experiment being toluene which is isorefractive with PVME under the conditions used. 

The diffusion of the probe chain was however found to be somewhat more highly 

dependent upon the probe molecular weight (scaling exponents of -2.7 and-2.8 being 

found for gels of concentration 0.2 and 0 235g/ml respectively) than predicted. The 

diffusion of the probe polymer was also obtained in PVME solutions of the same 

concentration, where it was found that the diffusivity in the gel was in all cases slower 

than or equal to that obtained in free solution. From the entire series of measurements, 

behaviour was found which was not consistent with any model however it should be 

noted that although the polymers are compatible under the conditions used, the reptation 

model was envisaged for the case of a polymer diffusing through a matrix of chains 

identical to itself. 
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5. Aims and Objectives. 
The study of polymeric networks and semi-dilute polymer solutions has in the 

main been concerned with the examination of the theories of rubber elasticity and scalu^ 
relationships respectively. One of the most important theoretical .predictions mads 
during the last twenty or so years has been the reptation mechanism advanced by de 
Gennes for the dynamic behaviour of a polymer in a concentrated entangled medium. 
Although this theory was derived more than twenty years ago and considerable 
experimental effort imparted into the study of systems where reptation might be expected 
to be seen, there has been little experimental evidence in support of the theory in its most 
applicable case, that of a chain moving through a polymer network. 

As noted earlier, the reason for this lack of attention has predominantly been due 
to the difficulty of experimental design. Considerable difficulties exist in the preparation 
of samples suitable for study containing a known fraction of polymer molecules of which 
the molecular weight is known and well defined. Such "loose" polymers must be the 
only chains capable of moving through the network, as resolution of the various motions 
need to be related to the molecular weight of the probe chain. In addition to this, the 
cross link density of the polymeric network through which the loose chain moves must 
be known and carefully controlled, for i f the sample were not homogeneous the probe 
chain might be expected to diffuse at different rates through the network. Therefore, in 
order to study the diffusive processes controlling the motion of probe chains within 
networks, three criteria must be satisfied. 

The probe chains must be monodisperse in order to relate the motion of the 
probe to its molecular weight, the network through which the probe chain moves must 
be homogeneous (i.e. the cross link density controllable) and finally the probe chain 
moving through the network must not be attached to the network and must be the only 
chain moving through the network. Therefore in order to satisfy the final two criteria, 
the network through which the probe chain to be studied is moving must be a model 
network where the chains of the network are cross linked only at the chain end and the 
molecular weight of the network chains easily controlled in order to control the cross 
link density of the network. 

Samples for study must therefore be good quality model networks not containing 
a sol fraction associated with the network. The network must then be doped with a 
known fraction of the monodisperse probe polymer which must be compatible with the 
network in order to prevent expulsion of the probe polymer from the network. Such a 
situation can only truly be realised by the use of a probe polymer having the same 
chemical constituency as the network. In this case, the motions of the probe chain can 
be studied by QELS and the diffusion coefficient of the probe chain extracted from the 
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autocorrelation function by the use of Inverse Laplace Transformation (ILT) methods as 

typified by CONTIN 6 1 . 

Therefore by controlling the cross link density of the network and the molecular 
weight of the probe, the predictions of the reptation theory can be studied for the ideal 
case of a probe chain trapped within a network, which can also be studied as a function 
of the solvent quality of the system by changing the swelling solvent and thermodynamic 
conditions. Extraction of the diffusion coefficient of the probe chain from the QELS 
spectrum with relaxation modes due to both the gel and the probe relies on the ILT 
routine being able to deconvolute the spectrum into its components. This has been 

f t ) 

shown by Brown for ternary semi-dilute solutions of poly(isobutylene) where the 
relaxation of the two constituent polymers (matrix and probe) were resolved and tracer 
diffusion coefficients obtained. 

Theoretical predictions of the conformation of a probe chain within a random 
medium have been advanced in recent years 2 4" 2 6 which suggest that the size of the probe 
chain is dependent upon the number of obstacles in its path. A random medium is one in 
which regions of space are defined by fixed obstacles which are incapable of moving, an 
example of one such system being a polymer network where the obstacles are provided 
by the cross links of the network. For such a network, the obstacle density is 
proportional to the cross link density of the network and as such the size of the probe 
chain is predicted to decrease as the cross link density increases, which for a model 
network is inversely proportional to the molecular weight between cross links. 

Whilst in recent years there have been a number of studies regarding the size of 
polymer chains in semi-dilute solutions, there have been no studies of the size of probe 
chains entrapped within swollen polymer networks of equivalent concentration to the 
semi-dilute solution. In such a case, an argument could be made over the applicability of 
the Edwards predictions as the mean obstacle density of the network decreases 
dramatically as the network becomes swollen with solvent. By changing the quality of 
the solvent by changes in solvent type and temperature it should then be possible to 
examine the effects of solvent quality on the size of the probe chain within the swollen 
network. 

5.1. The Choice of System. 
The system which was chosen to be studied consisted of model polystyrene 

networks cross linked in semi-dilute solution by the end linking of 'living' anionically 
prepared linear polystyrene polymers. For the study of the dynamic processes 
controlling the diffusion of probe chains, it was decided to trap monodisperse 
hydrogenous polystyrene polymers within the network and to then study the diffusive 
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processes of the system using QELS. In the determination of the size of the probe clrafft, 
a monodisperse perdeuterated polystyrene polymer was introduced into the network^ ^ 
as to ̂ provide a contrast for SANS to selectively "pick out" the probe chain. 

Polystyrene was chosen for study for several reasons. Firstly, styrene is relatively 
easily polymerised anionically and there exists a large volume of literature describing fke 
synthesis of linear polystyrene polymers and model polystyrene networks. Secondly, 
both hydrogenous and perdeuterated monomer are commercially available at relatively 
low cost, allowing a cost effective preparation of a range of samples having differed 
characteristics. Finally, there have been several investigations of the properties of 
polystyrene utilising both SANS and QELS and there exists a large amount of data 
within the literature describing the behaviour of the polymer. 

Polystyrene polymers exist at room temperature below the glass transition 
temperature of 393K and therefore polystyrene networks are not elastomeric at ambient 
conditions. However, polystyrene networks can be plastisised by the addition of low 
molecular weight diluents when the network becomes swollen to an equilibrium value 
dependent upon the strength of the polymer solvent interactions. Toluene was used here 
to create a good solvent environment at 298K, whilst cyclohexane has been used to 
provide theta conditions at 308K and to provide weak solvent conditions by increasing 
the temperature of the system above the theta point in the range 313-323K. 

For SANS experiments measuring the size of the probe chain in swollen 
networks, deuterated analogues were found to be commercially available and used to 
produce conditions where only the perdeuterated probe chain was visible to the neutron 
beam. 

43 



6. References. 

1 Willis B.T.M., Chemical Applications of Neutron Scattering, Oxford University 
Press, Oxford, 1973 

2 Berne B.J. and Pecora R., Dynamic Light Scattering, Wiley Interscience, New 

York, 1976 

3 deGennes P.G., Scaling Concepts in Polymer Physics, Cornell University Press, 

Ithaca, N.Y., 1979 

4 Port A.B. in The Chemistry and Physics of Coatings (Ed Marrion A.R.), Royal 

Society of Chemistry, Cambridge, 1994 

5 Cowie J.M.G., Polymers: Chemistry and Physics of Modern Materials, Intertext, 

Aylesbury, 1973 

6 Sperling L.H., Introduction to Physical Polymer Science, Wiley Interscience, 

New York, 1992 

7 Rempp P., Herz J.E. and Borchard W., Adv. Polym. Sci., 26, 105, (1978) 

8 Rempp P. and Herz J.E., Die Angewandte Makromol. Chem., 76/77, 373, (1979) 

9 Flory P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, 

N.Y., 1953 

10 Treloar L.R.G., The Physics of Rubber Elasticity, Clarendon Press, Oxford, 

1975 

11 Mark J.E., Rubber Chem. Technol., 55,762, (1982) 

12 Flory P.J, Macromolecules, 15, 99, (1982) 

13 Flory P.J. and Rehner J., J. Chem. Phys., 11(11). 521, (1943) 

14 Rotstein N.A. and Lodge T P., Macromolecules, 25, 1316, (1992) 

15 Flory P. J., J. Chem. Phys., 10, 51, (1942) 

16 Huggins M l , J. Chem. Phys., 46, 151, (1942) 

17 Huggins. M L . , J. Am. Chem. Soc, 64, 1712, (1942) 

18 Wall FT., J. Chem. Phys., 11, 527, (1943) 

19 Flory P. J., Statistical Mechanics of Chain Molecules, Wiley Interscience, New 

York, 1969 

44 



20 Cotton J.P., Decker D , Benoit H., Farnoux B., Higgins I , Jannink G , Ober R, 

Picot C. and desCloizeaux J., Macromolecules, 7, 863, (1974) 

21 Wignall G.D., Ballard D.G. and Schelten J, Eur Polym. J., jJL.861, (1974) 

22 Kirste R.G., Kruse W.A. and Ibel K., L. Polym. Sci. Polym. Lett., 13, 39, (1975) 

23 Allen G., Proc. R. Soc. Lond. Ser. A., 351, 381, (1976) 

24 Baumgartner A. and Muthukumar M , J. Chem. Phys., 87, 3082, (1987) 

25 Edwars S.F. and Muthukumar M., J. Chem. Phys., 89, 2435, (1988) 

26 Vilgis T., J. Phys. (Paris), 50,3243, (1989) 

27 Cotton IP. , Nierlich M , Boue F., Daoud M., Farnoux B , Jannink G , 

Duplessix R., and Picot C, J. Chem. Phys., 65(3), 1101, (1976) 

28 Brown W., Mortenson K. and Floudas G., Macromolecules, 25, 6904, 1992 

29 Daoud M. , Cotton J.P., Farnoux B., Jannink G , Sarma G , Benoit H., Duplessix 

R., Picot C. and deGennes P.G, Macromolecules, 8, 804, (1975) 

30 Daoud M. and Jannink G., J. PhysXParis),^ 973, (1976) 

31 Edwards S.F. and Jeffers E.F., J. Chem. Soc. (Farad. Trans. II) , 75̂  1020, (1979) 

32 Richards R.W., Maconnachie A. and Allen G , Polymer, 22, 147, (1981) 

33 Schaeffer D.W., Polymer, 25,387, (1984) 

34 Scheaffer D.W., Macromolecules, 13, 1280, (1980) 

35 Farnoux B., Boue F., Cotton J.P., Daoud M. , Jannink G., Nierlich M. and 

deGennes P.G., J. Phys. (Paris). 39, 77, (1978) 

36 Zimm B.H., J. Chem. Phys.,.24,269, 1956 

37 Kirkwood J.G. and Reisman J., J. Chem. Phys.,^6,565, 1948 

38 Lodge T P., Rotstein N. A. and Prager S., in Advances in Chemical Physics, Vol 

79, (Eds. Prigogine I . and Rice S.A.), Wiley Interscience, New York, 1990 

39 Merrill W. and Tirrel M. in Kinetics of Nonhomogeneous Processes (Ed. 

Freeman G.R.) Wiley Interscience, New York, 1987 

40 Joanny J-F. and Candau S.J., in Comprehensive Polymer Science, Volume 2, (Ed. 

Allen G.) Pergamon, Oxford, 1989 

41 Bird B., Hassager O., Curtiss F. and Armstrong H., Dynamics of Polymeric 

Liquids, Wiley Interscience, New York, 1974 

45 



42 Rouse P.E., J. Chem. Phys., 1L 1272, 1953 

43 MeyerhoffG. and Appelt B., Macromolecules, 12, 968, 1979 

44 MeyerhofFG. and Appelt B , Macromolecules, 13, 657, 1980 

45 Nystrom B , Roots J. and Bergman R., Polymer, 20, 157, (1979) 

46 Flory P.J. and Wagner H.L., J. Am. Chem. Soc, 74, 195, (1952) 

47 Edwards S.F. and Freed K.F., J. Chem. Phys., 61^ 1189, 1974 

48 Nystrom B. and Roots J., Macromolecules, 13, 1595, 1980 

49 Adam M., Delsanti M. and Pouyet G., J. Phys. Lett. (Orsay Fr.), 40, 435, 1979 

50 Amis E. and Han C.C., Polymer, 23, 1403, (1982) 

51 Brown W„ Polymer 24^680, (1984) 

52 Munch IP. , Candau S„ Herz J. and Hild G„ J. Phys. (Orsay Fr.), 38,971, (1977) 

53 Munch J.P., Candau S., Herz J. and Lemarchal P., J. Phys. (Orsay Fr.), 38, 

1499, (1977) 

54 Adam M. and Delsanti M. , Macromolecules, 18, 1760, (1985) 

55 Brown W., Macromolecules, 19, 387, (1986) 

56 Hecht A.M., Bohidar H.B. and Geissler E., J. Phys. Lett. (Orsay Fr.), 45, 

121, (1984) 

57 Stepanek P., Konak C. and Jakes J., Polym. Bull. (Berlin), 16, 73, (1986) 

58 Ferry J. D. Viscoelastic Properties of Polymers, Wiley Interscience, New York, 

1981 

59 de Gennes P.G., J. Chem. Phys., 55,572, (1971) 

60 Edwards S.F. and Doi M. , The Theory of Polymer Dynamics, Oxford University 

Press, Oxford, 1986 

61 Provencher S.W., Makromol. Chem., 180,201, (1979) 

62 Brown W. and Zu P., Macromolecules, 22,4031,(1989) 

63 Berry G.C. and Fox T.G., Adv. Polym. Sci., 5,261, (1968) 

64 Nemoto N. , Moriwaki M., Odani H. and Kurata M. , Macromolecules, 4, 

215,(1971) 

65 Rudin A. and Chee K.K., Macromolecules, 6^613, (1973) 

66 Leger L. etal, Macromolecules, 14, 1732, (1981) 

46 



67 Marmonier M , Leger L. etal, Phys. Rev. Lett., 55, 1078, (1985) 

68 Wheeler L.M. and Lodge T P., Macromolecules, 22, 3489, (1989) 

69 Phillies G.D., Macromolecules, 19, 2367, (1986) 

70 Aven M R. and Cohen C, Polymer, 31, 778, (1990) 

71 Haggerty, L., Sugarman J.H. and Prudhomme R.K., Polymer, 29, 1058, (1988) 

72 Bansil R., Pajevic S. and Konak C, Macromolecules, 23,3380, (1990) 

47 



CHAPTER 2 

SAMPLE PREPARATION AND CHARACTERISATION 

1. Introduction 

Methods used to synthesise polymer networks generally provide very little 

control over the structure of the network obtained. Radical and anionic 

copolymerisation as well as polycondensation processes produce networks where cross 

links are distributed randomly throughout the sample, hence the molecular weight 

between cross links (M c ) is an average and the distribution of chain lengths is quite 

broad1. Networks can also be obtained by the cross linking of linear 'precursor' chains 

by both vulcanisation and y-irradiation techniques. In both cases, cross linking occurs 

randomly along the precursor chain backbone and again there is a broad distribution of 

M c within the network. Further to this, the junction functionality of the network is 

unknown and a fraction of the precursor chains will be attached to the network at one 

end only, forming pendant chains within the network. 

'Model' polymer networks have a defined structure where the cross links are 

distributed homogeneously throughout the network. These can be prepared by a two 

stage 'end linking' process where in the first stage a linear precursor chain of known DP 

and narrow polydispersity is prepared having reactive groups at both chain ends. In the 

second stage, a suitably reactive cross linking agent is introduced and the reactive groups 

at the chain ends are 'end linked' together to form the cross links of the network. 

2. Anionic polymerisation 

Polymers unlike small molecules do not have a specific molecular weight, instead 

they consist of a distribution of chain lengths that can be described by various 

averages.2'3 As many of the properties including the size and diffusion of 

macromolecuies are dependent upon the molecular weight of the polymer it would be 

useful to be able to prepare polymers of known molecular weight having a narrow 

molecular weight distribution. For many vinyl monomers capable of sustaining a 
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nucleophilic centre, the technique of anionic polymerisation provides a quick and 

efficient method of preparing polymers of predicable molecular weight, having a narrow 

polydispersity. The reaction is a homogeneous addition polymerisation, which in the 

absence of compounds containing an active hydrogen has no termination step and can be 

said to be a 'living' polymerisation4. 

There are two stages in the living polymerisation. Firstly the initiating species 

adds across the double bond of the monomer to produce an anionic species, which in the 

second propagation step reacts with the monomer until all of the monomer is consumed. 

I f the initiation of the chains occurs over a relatively short interval of time, the chains will 

all have an equal probability of growth and the molecular weight distribution of the 

resulting polymer will be narrow, approaching Poisson statistics5. 

Initiator species for anionic polymerisation are frequently organolithium 

compounds, which are useful as they are soluble in a wide range of organic solvents and 

initiate the polymerisation by direct anionic attack on the monomer to produce the 

propagating species6. In the anionic polymerisation of styrene, (secondary)-butyllithium 

has been found to be highly effective in the production of 'monodisperse' polystyrene 

samples. The initiation step proceeds by nucleophilic attack at the vinyl bond by the (s)-

butyllithium-figure 2.1. The resultant anionic species is stabilised by the electron 

withdrawing effect of the phenyl ring adjacent to the anion. 

r Li Li 
Me 

Me 

FU­ RS Li 

Figure 2.1: Initiation of stvrene with s-butvllithium to form polv(strvllithium) 
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Propagation of the polystyrene chain then proceeds by subsequent addition of 

monomer to the poly(styryllithium) until there is complete consumption of the monomer 

by the growing polymer chain. 

RS Li + S 

(n-2)S 

R S 2 L i 

RS n Li 

The propagating centre of the living polymer will then remain intact in the 

absence of any proton source. Termination of the living chain can then be brought about 

by the addition of a proton source such as methanol. 

RS„ + ChLO Li 

Q 
Figure 2.2.; Termination of living polvfstvrvllithium) with methanol 

'Monofunctional' initiators such as (s)-butyllithium induce the propagation of the 

living anion along the growing chain from the a to the a> position, i.e. from one end to 

the chain to the other producing monofunctional polystyryl anions, the size of these 

polymer chains being related to the ratio of monomer and initiator: 

mols monomer 
DP = 

mols initiator 
2 1. 

Similarly: 

^ _ mass monomer (g) 
n mols initiator 

2.2 
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2.1. Difunctional anionic polymerisation initiators 

In order to prepare model polystyrene networks, it is necessary to prepare a,& 

polystyryl dianions that can be then be cross linked to form a network. This is only 

possible by the use of a difunctional initiator species, where the polymer chain grows 

from the centre outwards to both chain ends, as opposed to the chain growing from one 

end as with a monofunctional initiator. 

Three types of difunctional initiator are available for the preparation of a,co, 

polystyryl dianions: 

1. Sodium napthalene. 

Sodium napthalene exists in polar solvents as a radical anion and initiates a living 

polymerisation by a rapid electron transfer from the napthalene ring to the styrene, 

forming a second radical anion. This styrene radical anion rapidly dimerises to form a 

dianion capable of propagating a poly(styrene) chain• -see figure 2.3. below. 

r 
Na Na 

Na 

Na 

Na 

Figure 2.3.; Initiation mechanism of sodium naphthalene with stvrene 

2. The disodium tetramer of a-methylstyrene. 

The disodium tetramer of a-methylstyrene (figure 2 .4 ), exists in polar solvents as 

a dianionic low molecular weight polymer, which can initiate the living anionic 

polymerisation of styrene4. The polymerisation of a-methylstyrene by sodium in polar 

solvents at room temperature produces a low molecular weight polymer as the low 
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ceiling temperature of poly(a-methylstyrene) prevents the formation of a high molecular 

weight polymer 9 ' 1 0. 

r 
Me Me 

Na Na 
Me Me 

Figure 2.4.: The disodium tetramer of ot-methvlstyrene 

The disodium tetramer formed is particularly effective in the difunctional 

polymerisation of styrene. As the dianionic species is already in solution, there is no 

initiation step and the propagation reaction proceeds instantaneously to produce a living 

polymer with a narrow molecular weight distribution. 

3. Difunctional organolithium initiators. 

Similarly to the butyllithium initiators used for the preparation of monofiinctional 

polystyrene, a series of difunctional dilithium initiators has been prepared which will 

initiate the polymerisation of styrene 1 1 ' 1 2. One of the most commonly used of these 

initiators is l,3-phenylenebis(4-methyl-l-phenylpentylidene)dilithium13'14 which is 

prepared by reacting a divinyl compound, l,3-bis(l-phenylethenyl)benzene with two 

equivalents of s-butyllithium. Self polymerisation of the diolefin is prevented by the large 

steric bulk of the phenyl rings adjacent to the vinyl groups1 3. 

r 
sB (s)Bu 

2 (s)BuU 

V J 

Figure 2.5.: Preparation of the difunctional lithium initiator 1.3-phenvlenebis(4-

methvl-l-phenylpentvlidene)dilithium from 1.3-bis(l-phenvlethenyl)benzene 
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The dilithium initiator, soluble in both polar and non polar solvent initiates the 

styrene polymerisation by direct anionic attack upon the vinyl group of the styrene. 

Propagation then proceeds as described earlier. 

The molecular weight of a polymer prepared using a difunctional initiator follows 

the simple relationship: 

mass monomer (g) 
M n = — 3.3. 

0.5 mols initiator 

3. Experimental 

In order to be able to prepare monodisperse polymers reliably by anionic 

polymerisation, two experimental criteria must be satisfied. Firstly the rate of initiation 

should be comparable or preferably faster than the rate of propagation. This can be 

achieved by a careful choice of initiator and solvent. Secondly the monomers and 

solvents used must be extremely dry and free from polar impurities so as to prevent 

abortion of the polymerisation. This can only be achieved using specially dried 

monomers and solvents and by polymerising them under either an inert atmosphere or 

under high vacuum. 

3.1. Preparation of solvent 

3.1.1. Tetrahvdrofuran (THF> 

'Anhydrous' THF supplied by Mr. B. Hall (Chemistry Department, University of 

Durham) was refluxed over sodium wire and benzophenone for around three hours under 

a dry nitrogen atmosphere until a dark blue-purple colouration dominated, indicative of 

the formation of a complex between the sodium and benzophenone that exists only in the 

absence of water and polar impurities. The dried THF was then distilled under a dry 

atmosphere and separated into 250 cm 3 portions to which a small amount of 

benzophenone was added as well as a slight excess of sodium wire, again a purple 

colouration dominated. The distillate flask was then connected to the vacuum line and 

53 



the THF thoroughly degassed by repeated freeze-thaw cycles until a pressure of 10 

mbar was maintained above the frozen solvent. 

3.1.2. Benzene 

Benzene (Hopkin and Williams) was freed from sulphurous impurities by washing 

with concentrated sulphuric acid. The sulphur free benzene was then washed with 

distilled water until all the acid had been removed and was subsequently dried over 

magnesium sulphate for 24 hours. The benzene was then filtered and distilled under a 

dry nitrogen atmosphere, the fraction boiling at 350K was collected and separated into 

250 cm portions. Freshly ground calcium hydride was then added to the distillate flask 

to dry the benzene further prior to connection of the flask to the high vacuum line. The 

benzene was then degassed by repeated freeze-thaw cycles until a pressure of 10 mbar 

was maintained above the frozen benzene. The benzene was rapidly stirred in between 

freeze-thaw cycles and was degassed immediately before use in a polymerisation. 

3.2. Preparation of monomer 

Styrene (BDH) was firstly freed from inhibitor (~15 ppm di-tert-butyl catechol) 

by a thorough washing with a 10% NaOH solution. The inhibitor free styrene was then 

washed with distilled water until all of the NaOH had been removed and was then dried 

over magnesium sulphate for 24 hours before vacuum distillation at a pressure of 40 

mbar. The fraction boiling at 338 K was collected and was separated into 125 cm 3 

portions. Freshly ground calcium hydride was then added to the distillate flask and the 

flask connected to the high vacuum line. The styrene was then degassed by repeated 

freeze-thaw cycles until a pressure of 10"2 mbar was maintained over the styrene. The 

styrene was stirred vigorously in between freeze-thaw cycles and was kept covered 

between degassing cycles. After some time the styrene became viscous due to the 

formation of small amounts of low molecular weight polymer via photoinitiation. The 

styrene was always degassed immediately prior to use in a polymerisation. 
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3.2.1. Preparation of deuterated monomer 

A different procedure was used to purify the deuterated styrene monomer 

(Aldrich styrene-dg 98+ atom % D) as it was used in considerably smaller quantities and 

contained higher concentrations of impurities than the hydrogenous monomer. The 

monomer was initially dried over calcium hydride and degassed frequently for around 

two days prior to use. Irt order to remove the inhibitor (0.5% di-tert-butyl catechol) the 

deuterated styrene was transferred under vacuum into a pre-polymerisation flask of the 

type shown below in figure 2.6. 

The monomer was introduced into bulb A which contained a small rubber 

septum. The bulb was isolated from the remainder of the apparatus which was 

maintained under vacuum and a volume of n-butyllithium introduced into the bulb. 

When an orange colour, typical of polystyryl anions was noted, the remaining monomer 

was rapidly transferred under vacuum into bulb B. Typically there was a 90% yield of 

purified monomer which was then transferred into the polymerisation flask. 

3.3. Preparation of initiator 

3.3.1 fs)-Butvllithium 

The s-butyllithium initiator (Aldrich, 1.3M solution in cyclohexane) was used as 

received. Required aliquots were withdrawn using gas tight syringes through a self 

sealing membrane from the solution stored under nitrogen. 

r ^ 

B 

Figure 2.6.: Pre-polymerisation Flask 

Used to Remove Inhibitor 

from Deuterated Stvrene 
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3.3.2. Sodium napthalene 

An approximately 2 molar solution of sodium napthalene in THF was prepared by 

adding a 50% excess of sodium to a solution of napthalene (Aldrich 99%) in anhydrous 

THF, freshly distilled from sodium-benzophenone solution. The solution was then 

refluxed under a dry nitrogen atmosphere for around 4 hours until all of the sodium 

appeared to have reacted ' The solution was then transferred into a sealed flask 

(purged with dry nitrogen gas) by cannular wire. Appropriate amounts of initiator were 

then withdrawn by gas tight syringe as required through a rubber septum. 

3.3.3. Disodium tetramer of q-methyl styrene 

An approximately 2 molar solution of the disodium tetramer of a-methyl styrene 

(AMS) was prepared by the reaction of a solution of a methyl styrene in THF with 

sodium wire, a-methyl styrene (Aldrich 99%), previously freed from inhibitor (15 ppm 

of di-tert-butyl catechol), dried and degassed over calcium hydride on a vacuum line was 

transferred under vacuum into a preweighed flask. To this was added an amount of 

anhydrous THF, distilled directly from sodium-benzophenone solution, such that the final 

concentration of a-methyl styrene was approximately 4 Molar. Freshly pressed sodium 

wire was added to a flask of the type shown below in figure 2 .7., which was found to be 

convenient for the preparation and filtration of air sensitive materials. 

Figure 2.7.: Apparatus used for the preparation of initiators under an inert 

atmosphere 
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Briefly, the flask consists of two bulbs connected by a sintered glass disc, which 

allows for the filtration of material between the two bulbs. The flask has two vacuum 

tight PTFE 'Youngs' taps which isolate the flask from the atmosphere and two 'Youngs' 

sliding joints which give a gas tight connection of the flask to the vacuum line Each 

bulb is also equipped with a small hole to accommodate a rubber septum. 

The flask was then purged with dry nitrogen gas and the solution of a-methyl 

styrene-THF introduced into the bulb through the septum via a cannular wire transfer 

under nitrogen pressure. An immediate red colouration was noticed as the disodium a-

methyl styrene tetramer began to form. The reaction was allowed to proceed at 313K 

for around 6 hours before the mixture was filtered to remove any remaining sodium.9 

The concentration of the initiator was then estimated by titration of a small 

portion of the initiator against a 1 molar solution of butanol in toluene, the result of the 

titration was found to give a good correlation with the molecular weight of the polymer 

obtained. It was however noticed that the 'shelf-life' of the initiator was rather short and 

because of this a fresh solution was prepared as required. 

3.3.4 1.3-Phenvlenebis(3-methvI-l-phenvlpentvIidene)dilithium 

1,3 phenylenebis(4-methyl-l-phenylpentylidene)dilithium (PBMPPD) was 

prepared by the reaction of l,3-bis(l-phenylethenyl)benzene (BPEB) with (s)-

butyllithium. BPEB is not commercially available and was prepared by Mr. F. T. Ki f f at 

the I R C. in Polymer Science and Technology, University of Durham. The procedure 

used to prepare BPEB has been outlined in the literature14 and is shown below in figure 

2.8. The starting material, 1,3 diacetylbenzene (Aldrich) is reacted with two equivalents 

of phenyl magnesium bromide in a Grignard reaction to produce T,3-di(l-phenyl-l-

hydroxy ethyl) benzene. This is subsequently dehydrated with p-toluene sulphonic acid 

to prepare BPEB which is then stored under nitrogen to prevent oxidation. 
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n OMgBr OMgBr 

Q PhMe + 2PhMgBr 

H.0 

OH OH 

p-TSA 
H.O 

Figure 2.8.: Synthetic route to l,3-bis(l-phenvlethenYl)benzene 

The addition of s-butyllithium to a solution of BPED produces an intensely red 

coloured compound which is the difunctional initiator PBMPPD. However the addition 

of either too much or too little s-butyl lithium will give rise to the presence of a 

monofunctional initiator in addition to the difunctional product. It is therefore of great 

importance to attain the correct stoichiometric ratio between BPED and s-butyllithium. 

Several methods have been developed to achieve this 1 4, including SEC analysis of the 
1 "\ 

quenched initiator , though the technique used here is dependent upon the low solubility 

of PBMPPD in heptane12. 

Apparatus of the type shown in figure 2.7. above was used in the preparation of 

the PBMPPD. A known amount of the BPEB was weighed into the flask and was 

dissolved in approximately 50 cm of anhydrous heptane transferred into the flask by 

cannular wire having been dried over calcium hydride on the vacuum line. To this 

solution was added exactly twice the equivalent of s-butyllithium, which produced an 

intensely dark red solution immediately. However the reaction was allowed to proceed 

at 333K for 2 hours. 

At this point a dark red precipitate(PBMPPD) was observed and the mother 

liquor removed by filtration. Further heptane was transferred into the flask to wash the 

precipitate and was again filtered off. The PBMPPD was then dissolved in 
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approximately 80 cm of benzene and was then filtered and transferred into a storage 

flask by cannular wire. As with the AMS initiator, the strength of the initiator was 

estimated by titration with a solution of (s)-butanol in toluene. The solubility of 

PBMPPD in benzene is however quite low and the concentration of the initiator is 

around 0.08 Molar. 

3.4. Preparation of cross linking agent 

3.4.1. Triallvloxvtriazine (TAT) 

Triallyloxytriazine (Aldrich, 98+%) was purified by recrystallisation from HPLC 

grade heptane at 300K, followed by drying under vacuum at 323K for 24 hours. An 

approximately 1 molar solution of TAT in anhydrous THF was then prepared by 

distilling THF directly onto TAT from sodium-benzophenone solution. The flask, 

equipped with a rubber septum, was then refilled with dry nitrogen gas and the required 

amounts of TAT solution withdrawn with a gas tight microlitre syringe as necessary. 

3.4.2. Divinvlbenzene (DVB) 

Divinylbenzene, was obtained commercially as a technical grade material (Merck-

Schuchardt, a 60% solution of meta and para isomers in ethylvinylbenzene) and although 

methods are available for the isolation of the DVB component16 these were not used in 

this work; The solution was freed from inhibitor (0.2% di-tert-butyl catechol) by a 

thorough washing with a 10% solution of sodium hydroxide followed by distilled water. 

The DVB was then dried over magnesium sulphate for approximately 2 hours 

before the addition of a quantity of freshly ground calcium hydride to the cross linking 

agent. The flask was then connected to the vacuum line where the DVB was dried and 

degassed for around 24 hours by repeated freeze-thaw cycles before transferring the 

DVB under vacuum to a separate flask equipped with a small self-sealing rubber septum 

which was then refilled with dry nitrogen gas. 
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The composition of the solution prior to and after vacuum transfer was 

determined by Gas Chromatography(GC) and Nuclear Magnetic Resonance(NMR) 

spectroscopy. GC analysis was performed using a Hewlett Packard 5890A machine 

containing a 0.25um SE 30 column and a flame ionisation detector. Nitrogen was used 

as the carrier gas in the analysis. 

*H NMR spectroscopy was carried out using a Varian 'Gemini' 200 spectrometer 

operating at a proton resonance frequency of 200 MHz. Results of the GC analysis are 

shown below in table 2.1., from which it can be seen that there is no change in the 

composition of the liquid mixture on vacuum transfer. 

Before Vacuum Transfer After Vacuum Transfer 

Retention 

Time/min 

% Area Retention 

Time/Min 

% Area 

9.26 0.509 9.26 0.498 

9.36 0.645 9.36 0.664 

9.49 0.280 9.48 0.286 

9.66 0.297 9.66 0306 

9.76 29.559 9.76 28.994 

9.90 8.447 9.89 8.337 

10.25 43.306 10.25 44.926 

10.44 16.140 10.44 15.187 

11.68 0.814 11.73 0.799 

Table 2.10.; G C analysis of DVB solution before and after vacuum transfer. 

The ratios of the major peaks in the GC (9.76 and 9.90 mins to 10.25 and 10.44 

mins) indicate that the DVB content of the solution is 60% as claimed. This is also 

confirmed by the ratio of the peak areas from the proton NMR data in figures 2.9. and 
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2.10. Figure 2.9. shows the NMR spectrum of the DVB solution prior to vacuum 

transfer, while figure 2.10. shows the spectrum after transfer. 

• H I I I I M n 

iiS 

V" « 
V 

CHj 

i J ' J 
1 1 , t i | I 

Figure 2.9.: Proton NMR spectrum of DVB solution before vacuum transfer 

Figure 2.10.: Proton NMR of DVB after vacuum transfer. 

From the ratio of the integrals of the methylene resonance at 2.9 ppm (due to 

ethylvinyl benzene) to the vinylic resonance ( H a in figure 3.11. below) at 7.0 ppm (due to 
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the vinyl groups of both divinyl benzene and ethylvinyl benzene), no change in the 

composition of the solution is observed after vacuum transfer. 

C H = C H 2 

Resonance/ppm Assignment 

1.49 (m) Methyl CH, 

2 85 (q) Methylene CH 7 

5 .5 (m) H v 

6.05 (m) H m 

6.9 (m) H a 

7.5 (m) Benzene ring j 

Figure 2.11.: NMR assignments for DVB/ EVB solution 

Examination of the ratio of the integrals of the methylene to the vinylic resonance 

shows the ratio of DVB to ethylvinyl benzene to be 1.75:1. Theoretically this ratio 

should be 1.5:1, however the NMR spectra support the GC data in showing that no 

depletion of the DVB occurs on purification. 

3.5. Polymerisation procedure 

The procedure used to prepare both linear polymers and model networks 

followed an established technique used in this laboratory for the preparation of polymers 

and copolymers by anionic methods. As noted earlier, one of the main difficulties in 

anionic polymerisation is the need for scrupulously clean equipment and reagents. 

Here, a high vacuum method has been used to prevent abortion of the 

polymerisation by reactive impurities. A pressure of 10 mbar was maintained by the 

use of rotary (Edwards E2) and oil diffusion pumps (Edwards 63/150 'Diffstack') 

operated in series. Flasks of the type shown below in figure 2.12. were used to prepare 

both the polymers and networks. 
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7* 
23 Reaction Flask 

Side Arm 

Polystyryllithium 
"/benzene 

Figure 2.12: Reaction flask of the type used to prepare polymers and networks 

The flask was cleaned thoroughly by washing with permanganic acid to remove 

both organic and inorganic residue, followed by rinsing with a large volume of distilled 

water and methanol. The 'clean' flask was then dried before being attached to one of the 

secondary manifolds of the vacuum line as shown in figure 2 .13. 

Diy Nitrogen in 

>X2I 
Nitrogen out 

O 3 

To Diffusion/ 
Rotary Pump 

O 3 

Figure 2.13.: High vacuum anionic polymerisation line 

The flask was then heated under vacuum so as to remove any atmospheric 

contaminants present upon the surface which would otherwise not have been removed. 

A living solution of poly(styryllithium) in benzene was then introduced into the flask and 

all surfaces of the glassware and vacuum taps were thoroughly washed to remove any 

remaining polar impurities. The poly(styryllithium) solution was then returned to the 

bulb and all traces of the living polymer removed by washing the flask with solvent 
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distilled from the poly(styryllithium) solution. This procedure is particularly important as 

the poly(styryllithium) is capable of initiating the polymerisation of the monomer to be 

introduced into the flask. The reaction flask was degassed finally before the addition of 

solvent and monomer by vacuum transfer prior to polymerisation with the appropriate 

initiator. 

3.5.1. Preparation of linear polystyrene 

Suitable combinations of initiator and solvent for the preparation of linear 

polystyrene samples have been described in the literature. One frequently used method is 

the polymerisation of styrene in benzene using s-butyllithium as the initiator 4 ' 5 , 6 . This 

combination has been shown to produce polymers of predictable molecular weight and 

low polydispersity and for these reasons was chosen to be used here for the synthesis of 

linear polystyrene samples to be used in this project. 

Sufficient solvent was transferred into the clean reaction flask to give as final 

polymer concentration of approximately 5% w/v. A preweighed amount of monomer 

was then introduced into the reaction flask by vacuum transfer and the flask degassed 

prior to bringing the reaction mixture to room temperature, where the polymerisation 

was initiated by addition of the appropriate volume of initiator as given by equation 2.2, 

A characteristic orange colouration indicative of the formation of polystyryl anions was 

observed and the propagation reaction allowed to proceed for upwards of 2 hours before 

termination of the reaction with methanol. 

3.6. Preparation of polystyrene networks 

Several combinations of initiator, solvent and cross linking agents have been 

investigated here for the preparation of model networks, a brief summary of which is 

given here. Initial attempts centred around cross linking with triallyloxytriazine (TAT) of 

a,co polystyryldianions in THF prepared from the sodium napthalene initiator. TAT is a 

trifunctional molecule, its use as a coupling agent in the preparation of star polystyrene 

having been described in the literature15. 
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However attempts here to develop its use as a cross linking agent using sodium 

napthalene as the difunctional initiator proved fruitless. Although high molecular weight 

polymer was produced by the sodium napthalene, on addition of TAT no sign of gelation 

was observed, though SEC analysis of both the parent polymer and the 'cross linked' 

product indicated an increase in molecular weight upon coupling with TAT. Cross 

linking with TAT was also investigated using the disodium tetramer of a-methyl styrene 

(AMS) as the difunctional initiator of polystyrene in THF. Again although a high 

molecular weight polymer was obtained, no cross linking occurred with the introduction 

of the TAT. 

At this point, efforts to obtain cross linking with TAT (which should produce 

networks with a well defined junction functionality of 3) were abandoned in favour of the 

more conventional cross linking agent divinylbenzene (DVB) which produces networks 

from a block copolymerisation reaction in which the DVB polymerises to form 

intermolecular nodules which act as cross links (the functionality of which is varied and 

unknown) for the polystyrene block. The reaction of 3 equivalents of DVB per living 

chain end with polystyryl dianions prepared from sodium napthalene in THF again failed 

to produce a network, though SEC analysis of the polymers indicated a substantial rise in 

the molecular weight had occurred upon the introduction of the DVB. 

The introduction of 3 equivalents of DVB per living anion was found to induce 

the gelation of a solution of polystyryl dianions prepared from either the AMS or 

PBMPPD initiators in benzene solvent. A series of networks were prepared using these 

schemes where the precursor chain molecular weight ranged from 10,000 to 100,000 g 

mol"1. Initially the AMS/DVB combination was investigated for the preparation of 

polystyrene networks, however this method was not entirely satisfactory as the reliability 

of the system was rather poor and the networks obtained were found to be of poor 

quality in that large quantities of material could be extracted from the networks, resulting 

from incomplete incorporation of the precursor polymer into the network (sections 5 .2. 
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and 5 .3 ). The most efficient method of producing polystyrene networks was found to 

be the end linking with DVB of a,co dianionic polystyryl lithium chains, prepared in 

benzene from the PBMPPD initiator. Networks were produced where only a small trace 

of material could be extracted from the network, indicating that all of the precursor 

polymer had been cross linked. 

Although it is not fully understood why the AMS/DVB system produced 

networks sporadically, it seems feasible that the problem with the system lies with the 

AMS initiator used for the polymerisation, a fresh solution of initiator being prepared for 

each polymerisation. It would seem possible that some batches might not be as effective 

in the difunctional initiation of polystyrene as others since a-methyl styrene can also 

react with alkali metals to produce a disodium dimer, which may be present in the 

initiator solution and does not initiate the difunctional polymerisation of styrene4 9 1 0 . 

As the shelf life of the PBMPPD initiator was quite long (stable for upto 3 months at 

273K) the initiator was prepared as required, the same batch being used for repeated 

polymerisation's. Further to this, the synthetic route employed to PBMPPD prevented 

the presence of any monofunctional species in the initiator solution, which contained only 

one difunctional initiator species. 

The AMS and PBMPPD initiators have been used to prepare a series of 

polystyrene networks with M c ranging from 10,000 to 100,000 g mol"1, either containing 

one of a series of probe chains ( M p 30,000 to 1,000,000 g mol"1) or containing no 

trapped chain ('blank networks'). For the AMS/DVB system, the solvent used for the 

polymerisation reaction was anhydrous benzene prepared as in section 3 .1.1. For the 

PBMPPD/DVB system the polymerisation solvent was benzene doped with 1% v/v of 

anhydrous THF to prevent the aggregation of the PBMPPD initiator, which may 

adversely affect the polydispersity of the polymer produced 1 1" 1 4. 
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Two series of polymer networks have been prepared for use in this project: 

1. Synthesis of 'blank' networks. 

A preweighed amount of monomer was distilled into a cleaned reaction flask 

together with sufficient solvent to give a 10% (w/v) concentration of polymer in 

solution. The appropriate volume of initiator was then added and the propagation 

reaction allowed to proceed to completion. Prior to the addition of the cross linking 

agent, a small volume of the polymer solution was withdrawn into a sidearm and 

terminated with methanol to facilitate SEC analysis of the precursor chain molecular 

weight. 

The appropriate volume of cross linking agent was then added to the remainder 

of the precursor polymer solution and gelation allowed to proceed for around 12-14 

hours (overnight). The living gel was then terminated by the addition of methanol and 

was subsequently recovered by cutting the flask open after releasing the vacuum. 

2. Synthesis of networks containing trapped chains. 

A preweighed amount of monomer was transferred under vacuum into a cleaned 

reactor flask. The appropriate quantity of the probe polymer to give a trapped chain 

concentration of 10% (w/w) within the dry network was added to a small flask equipped 

with a rubber septum. A known amount of the polymerisation solvent was then distilled 

into the flask, producing a solution of the probe polymer which was then purged with dry 

nitrogen. Sufficient solvent (accounting for the volume of the probe polymer solution 

and the polymerisation initiator) to give a 10% (w/v) concentration of the network 

polymer was distilled into the reactor flask and the flask then brought to atmospheric 

pressure with dry nitrogen. 

The solution of the probe polymer was then transferred into the reaction flask by 

cannular wire and polymerisation under the inert atmosphere initiated by addition of the 

appropriate volume of initiator. After completion of the propagation reaction, a small 
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volume of the polymer solution was removed from the flask and terminated with 

methanol for SEC analysis of the parent polymer. 

The appropriate volume of the cross linking agent was added to the remaining 

precursor solution and the end linking of the living chains allowed to proceed around the 

probe chains, thus trapping the probe within the network. The 'living' network was 

terminated after around 12 hours by the addition of methanol and was again cut free 

from the reaction flask. 

4. Characterisation of polymers bv Size Exclusion Chromatography 

Size exclusion chromatography (SEC) was used to determine the molecular 

weight characteristics of the linear polystyrene polymers chains prepared in this project. 

SEC analysis was carried out on samples of polymers in chloroform solution. 

4.1. Chloroform S E C 

Samples for SEC analysis were dissolved in filtered and degassed chloroform 

(distilled GPR grade) and made up to a concentration of 0.1% w/v. Sample solutions 

(lOOul) were filtered through 0.2um polypropylene backed PTFE membrane filters to 

remove any dust and particulate matter. 

The solutions, containing a toluene flow rate marker, were pumped to a Waters 

differential refractometer detector (R401) through three polymer laboratories PL gel 

columns (pore size: 102A, 103A and 105A with 5um bead size) by a Waters model 590 

pump operating at 1 cm3/minute. Calibration of the SEC detector system was relative to 

various narrow molecular weight polystyrene standards obtained from Polymer 

Laboratories. 
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4.2. Results of S E C analysis of linear polymers 

Several linear polystyrene samples were prepared to be used in the project, the 

molecular weight characteristics as determined by chloroform SEC are listed below in 

table 2.2. 

Polymer M n M w i vyM n Comment 

PS 11 24,700 61,600 2.49 Not Used 

PS 12 56,900 96,800 1.70 Not Used 

PS 13 63,100 73,700 1.17 H-PS 

PS 14 108,800 113,400 L04 H-PS 

PS 18 21,800 22,000 1.01 H-PS 

PS 19 10,500 10,700 1.01 H-PS 

PSD 1 30,000 30,500 1.02 D-PS 

PSD 2 24,800 26,000 1.05 D-PS 

PROBE 3 118,800 125,000 1.03 See Below 

PROBE 4 316,400 326,600 1.04 See Below 

PROBE 5 1,015,500 1,063,300 1.05 See Below 

Table 2.2.: Chloroform S E C analysis of linear polystyrene polymers 

Samples in bold face were purchased from Polymer Laboratories Ltd, whose own 

SEC analysis of molecular weight is given here. 

5. Characterisation of polystyrene networks 

The molecular weight between cross links of the networks were determined by 

SEC on the precursor chains prior to cross linking, as well as from the equilibrium 

swelling ratio of the solvent swollen network. The degree of uncross linked material was 

also evaluated by quantitatively measuring the sol fraction of the 'blank' networks. 

5.1.1. Characterisation of precursor polymers to 'blank' networks 

The molecular weight characteristics of the precursor polymers obtained from the 

AMS/DVB system are described below in table 2.3., whilst table 2.4. shows the SEC 

analysis of the PBMPPD/DVB system. 

69 



Network M n M w MJMn 

AMS 4 87,800 109,900 1.25 

AMS 5 41,900 48,700 1.16 

AMS 6 8,700 10,400 1.20 1 
AMS 7 17,700 20,100 1.14 

AMS 11 36,300 37,900 1.04 

AMS 16 50,000 53,600 1.07 1 
AMS 19 11,600 12,700 1.10 | 

Table 2.4.: SEC analysis of 

PBMPPD/DVB 'blank' network 

precursor polymers 

Table 2.3.: SEC analysis of precursor 

chains to the AMS/DVB 'blank' 

networks 

Network M n M v v MJM,, 
DLB 1 16,300 17,800 1.09 

DLB2 45,600 53,000 1.16 

DLB 3 81,100 102,800 1.27 

DLB 4 9,000 10,600 1.18 

5.1.2. SEC of precursor chains to networks containing deuterated trapped chains 

Two series of networks containing perdeuterated trapped chains were prepared 

for SANS investigation of the size of the probe chain. Firstly, a series of networks 

containing the PSD 1 polymer as the perdeuterated probe chain were prepared with Mg 

ranging from 10,000 to 50,000 g mol"V SEC data from the precursor polymers are 

shown below in table 2.5., however the presence of the probe chain (10% of the total 

polymer mass) influences the molecular weight distribution of the precursor polymer as 

SEC is unable to resolve the PSD 1 peak ( M n 30,000 g mol"1). 

Network M n M w MJMn 

AMSD 1 8,900 9,800 1.11 

AMSD2 15,600 17,000 1.09 

AMSD 4 25,200 27,000 1.07 

AMSD 5 45,800 46,400 1.01 

Table 2.5.: SEC data from AMS/DVB networks containing the PSD 1 probe chain. 

The second series of networks containing perdeuterated probe chains were 

prepared using the PBMPPD/DVB system, and contained the PSD 2 polymer as the 
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probe chain. Again the SEC analysis of the precursor chain molecular weight was 

influenced by the presence of the probe polymer, figure 2.14 shows the SEC data of 

network TCD 4, where the higher molecular weight probe polymer can be seen to be 

causing an increase in both the molecular weight of the sample as well as broadening the 

polydispersity. 

Network M n M w MJMn 

TCD 1 42,500 53,100 1.25 
TCD 2 26,400 28,300 1.07 

TCD 3 12,500 14,700 1.17 
TCD 4 12,300 14,100 1.15 

TCD 5 18,000 19,800 1.10 

TCD 6 7,900 10,000 1.26 

Table 2.6.: S E C data for PBMPPD/DVB networks containing PSD 2 probe 

As SEC is does not give a true representatic n of the precursor chain molecular 

weight, M c cannot be solely evaluated from SEC data and has also been determined from 

the equilibrium volume fraction of polymer in the solvent swollen network (section 5.3.). 

S 3 3 

s a s 

Figure 2.14.: SEC trace of network T C D 4 
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5.1.3. SEC analysis of networks containing hydrogenous probe chains 

A series of networks containing probe chains of various molecular weights were 

prepared by the PBMPPD/DVB system for a QELS study of the diffusion of the trapped 

chain. Results of the SEC analysis of the precursor chain molecular weight are given in 

table 2.7. Networks TCH 1, 2 and 3 contained probe 5 as the trapped chain whilst TCH 

4, 5 and 6 contained probe 4 and networks TCH 7, 8 and 9 contained probe 3. 

N etwork Precursor Polymer Probe Polymer 

Network M n M w MJMn M n M w MJMn 

TCH 1 8,700 10,100 117 1,268,300 1,389,300 1.09 

TCH 2 38,000 44,500 1.17 1,634,400 1,789,900 1.09 

TCH 3 87,400 112,000 1.28 1,725,300 1,860,700 1.08 

TCH 4 8,500 9,800 1.15 273,400 299,600 1.09 

TCH 5 37,100 44,100 1.19 348,900 367,000 1.05 

TCH 6 111,100 171,700 1.54 

TCH 7 11,800 20,200 1.71 

TCH 8 43,000 56,200 1.31 

TCH 9 94,300 129,000 1.37 

Table 2.7.: SEC analysis of networks containing hydrogenous probe chains 

As the molecular weights of these probe chains are considerably higher than the 

perdeuterated chains, SEC has been able, in many cases to resolve two separate peaks, as 

in figure 2.15 where the less intense peak is due to the probe polymer and the main peak 

due to the network precursor chains. Where possible both peaks have been analysed, the 

results of which are shown in table 2.7., the data in bold type refers to the probe chain 

incorporated into the network. 
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3 3 3 
8 SI 

Figure 2.14.: SRC of T C H 4 network containing prohe 4 as the trannerf chain 

5.2. Sol fraction of polvmer networks 

The amount of uncross linked material in the 'blank' networks was determined by 

the extraction of the sol fraction of the networks. Two separate procedures were used to 

determine the sol fraction. For the AMS/DVB system this relied upon continual 

extraction of the as produced network with cyclohexane, whilst for the PBMPPD/DVB 

networks a Soxhlet extraction was performed after initial drying of the network to 

constant weight 

5.2.1 Extraction of the sol fraction 

After cutting the benzene swollen AMS/DVB network from the reaction flask, 

the network was deswollen by immersion in cyclohexane at ambient temperature for 

several days. The solvent was changed at regular intervals and the excess solvent 

collected at each stage. When the benzene solvent had been completely extracted, the 

network was placed inside a Soxhlet apparatus and extracted with cyclohexane for 

around 7 days until the sol fraction had been completely extracted. 

The gel was slowly dried to constant weight, firstly in air for several days 

followed by drying in a vacuum oven at approximately 350K for 24 hours. The 
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combined washings from the deswelling process and the Soxhlet extraction were 

evaporated to dryness and dried overnight in a vacuum oven at 370K. The weight of the 

dry extracted material was then noted and the sol fraction determined. 

A different procedure was however adopted for the PBMPPD/DVB networks. 

After removal from the reaction flask, the gels were dried in air and under vacuum to 

constant weight. A preweighed sample of the network was then placed into a small 

packet formed from a fine mesh stainless steel sheet. This was then placed inside a 

Soxhlet apparatus and extracted with cyclohexane for 7 days. After complete extraction 

of the sol faction, the network was again dried to constant weight and any change in 

mass noted. Similarly to above the extracted material was collected by evaporation of 

the solvent, followed by drying at 370K. The amount of extracted material was again 

noted and the sol fraction determined. The amount of the sol fraction removed from the 

networks is shown in table 2.8., both methods for the determination of the sol fraction 

are shown. Method A used the amount of collected material while method B measured 

the difference in gel weights before and after extraction. 

Network Sol Fraction 
'A' (%) 

Sol fraction 
'B' (%) 

AMS4 12.1 

AMS 5 16.8 

AMS6 24.9 

AMS 7 21.0 

AMS 11 17.7 

AMS 16 15.5 

AMS 19 23.7 

DLB 1 0.3 0.5 

DLB2 0.7 1.0 

DLB 3 0.5 0,9 

DLB 4 0.4 1.5 

Table 2.8.: Amount of sol fraction extracted from 'blank' networks. 
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As can be seen from the data of table 2.8 ., a large difference in the amount of the 

sol fraction exists for the two series of samples. Whilst nearly no extractable material 

was found for the PBMPPD/DVB system, the AMS/DVB system was found to give rise 

to a considerably larger sol fraction. Measurement of the sol fraction, expressed as a 

percentage of the initial sample weight, was however subject to several sources of error. 

In drying the network to constant weight it was difficult to remove the last traces of 

solvent trapped within the network, whilst in the measurement of the extracted material 

care was needed to avoid loss of any of material, which as the quantities of extracted 

material were generally small was a significant amount of the sol fraction. In all cases 

only a small portion of each gel was evaluated and sample homogeneity was assumed 

throughout. 

5.3. Equilibrium swelling measurements 

The purpose of these experiments was to measure the equilibrium swelling ratio 

so as to correlate other measurements on the gels with the polymer concentration in the 

swollen network. The degree of swelling of the network is generally defined in terms of 

the volumetric swelling ratio, Q which relates the volume of the dry network to the 

volume of the swollen gel. 

V V + v 
q _ B V P ^ V S 

v 0 v 0 2 4 

An alternative measure used is the polymer volume fraction, <J>p which is given by: 

' v P + v s 2 1 

Where V p = v p m j is the swollen volume of polymer 

V s = v s m s is the volume of solvent 

V 0 = v 0

 l s t n e dry volume of polymer 

and v is the partial specific volume and m is the mass. 
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The equilibrium degree of swelling of the network can be related to the cross link 
91 • 

density of the network by the Flory-Rehner model which states that the free energy of 

mixing is zero at swelling equilibrium. Furthermore, the Flory-Rehner model assumes 

that the free energy of mixing arises from a heat of mixing term and two separable and 

additive entropic terms describing the increase in entropy of the polymer chains on 

mixing with solvent and-also the entropic change arising from the decrease in the 

numbers of possible chain conformations on swelling. The first of the two entropic 

terms, the mixing term is taken from the Flory-Huggins theory of polymer solutions, 

while the second entropic term arises from the elastic retractive forces opposing the 

deformation of the polymer chains and is taken from the affine model of rubber elasticity 

(chapter 1). 

At swelling equilibrium the Flory-Rehner equation is given by: 

K=Kp, 

1/3 ^ 

l n ( l - ^ ) + ^ + ^ 2 
2.6. 

Where M c is the effective molecular weight between cross links 

V s is the molar volume of the solvent 

p p is the density of the dry network 

X is the polymer solvent interaction parameter 

and <J) is the polymer volume fraction at swelling equilibrium 

5.3.1. Determination of the polymer volume fraction in solvent swollen networks 

The swelling ratio of each individual network was determined in cyclohexane 

between 308K and 323K and in toluene at 298K. The swelling ratio was evaluated by a 

weighing method where a preweighed portion of the dry network (dried under vacuum 

at approximately 340K for 4 days), was immersed in an excess of solvent and allowed to 
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reach constant weight. The swollen gel was then removed from the excess solvent and 

any adhering surface film of solvent removed before weighing the gel in a sealed bottle. 

The swollen weight of the gel was taken as an average of several weighings so as 

to account for errors arising from solvent evaporation and incomplete removal of the 

surface solvent film. For the calculation of the polymer volume fraction, values of the 

specific volume of polymer in bulk and in solution were obtained from the data of 

Sarazin while values of x used for the determination of were obtained from the 

work of Orwoll 1 9 . It was assumed that the specific volume of the polymer in the swollen 

gel was independent of concentration and polymer molecular weight over the range of 

polymer volume fractions used. 

5.3.2. Evaluation of Swelling Equilibrium 

Some preliminary swelling experiments were performed in order to determine the 

length of time required for networks to reach swelling equilibrium. Figures 2.16. and 

2.17. show the swelling curves for networks TCH 3 and TCD 4 swollen to equilibrium 

(directly from the dry state) in toluene and cyclohexane at 298K respectively. 

TCH 3 n e t w o r k in t o l u e n e 
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Figure 2.16.: Swelling curve for network swollen in toluene at room temperature 
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Figure 2.17.: Swelling curve for T C H 4 network swollen in cyclohexane 

As can be seen from figure 2.16. the TCH 3 sample swollen in toluene was found 

to reach constant weight in approximately 6 days, however since samples of the 

networks varied in both shape and volume, all samples were left for a period of 10 days 

to ensure that swelling equilibrium had been reached. Networks swollen in cyclohexane 

were found to reach swelling equilibrium more rapidly than when swollen in toluene. 

Figure 2.17. shows the swelling curve for a extracted sample of network TCD 4, as can 

be seen constant weight was reached in around 4 days, however samples were left for a 

period of 7 days to again ensure that swelling equilibrium had been attained. Upon 

changing the temperature of networks swollen in cyclohexane, only a few hours were 

needed for the gels to reach the new swelling equilibrium and consequently samples were 

allowed to equilibrate for around 12 hours to ensure constant weight. 

5.3.3. Results of Swelling Measurements 

The equilibrium swelling ratio was measured for all gels at temperatures of 308K, 

313K 318K and 323K in cyclohexane as well as at 298K in toluene. As expected, the 

volumetric swelling ratio of the PBMPPD/DVB networks increased with the precursor 

chain molecular weight. Figures 2.18. and 2.19. respectively show the variation in Q 

with precursor chain M n for networks swollen in toluene and cyclohexane. As can be 

seen in figure 2 19., the swelling ratio increased most dramatically for gels with a low 

cross link density as the quality of the solvent was improved by increasing the 
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temperature of the cyclohexane system, however even when swollen to equilibrium in 

cyclohexane at 323K, the degree of swelling was considerably lower than that in toluene 

at 298K. 
Q Vs M n —PBMPPD N e t w o r k s in T o l u e n e 
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Figure 2.18.: Equilibrium swelling of PBMPPD series networks in toluene at 298K. 

PBMPPD N e t w o r k s in C y c l o h e x a n e 
- i 1 1 1 1 1 — 

1 . 2 + 3 0 8 K 
o 3 1 3 K 

_ A 3 1 8 K 
3 2 3 K 

1 . 0 

a 
o 

0 . 8 

0 . 6 

*• . 
y y 

y y 

y ' y f \ 

y+ ^ -y 

y*>~+ 

4 . 0 4 . 5 5 . 0 

Log ( P r e c u r s o r C h a i n M n ) 

Figure 2.19.: Equilibrium swelling of PBMPPD networks in cvclohexane 

Figures 2 18. and 2.19. have both been plotted in double logarithmic format, 

showing that the equilibrium swelling ratio of the gels follow the scaling arguments of de 

Gennes20, which predicts that Q scales as N° 8 for gels swollen in good solvents. Using 

similar arguments scaling theory predicts that Q is proportional to N 0 5 for a theta 

system. 
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For networks in toluene the following relationship was observed. 

Log(Q) = (-1.95 ± 0.26) + (0.74 + 0.06) Log ( M n ) 

While in cyclohexane: 

308K: Log (Q) = (-0.73 + 0.09) + (0.34+ 0.02) Log ( M n ) 

313K: Log (Q) - (-0.99 + 0.10) + (0.41 ±0.02)Log ( M n ) 

318K: Log (Q) = (-1.28 ±0.15) + (0.48 ±0.03) Log ( M n ) 

323K: Log (Q) = (-1.39 ±0.12) + (0.52 ±0.03) Log ( M n ) 

As can be seen Q was found to scale with the precursor chain M„ for networks 

swollen in cyclohexane over the entire temperature range studied, the magnitude of the 

scaling exponent being found to increase with the solvent quality of the system. The 

determined scaling exponent for gels swollen in cyclohexane at the theta temperature 

was however found to be lower than that predicted by theory. In all cases the scaling 

exponent was considerably lower than that found for gels swollen in toluene, where the 

determined value of the scaling exponent was found to correlate well with that predicted 

by theory. The equilibrium swelling of networks prepared from the AMS/DVB system 

was also investigated in toluene at 298K and in cyclohexane at 308K, 313K, 318K and 

323K. Unlike the results obtained from the PBMPPD/DVB system, the swelling of the 

gels was found not to scale with the precursor chain molecular weight,-see figures 2.20. 

and 2.21. below. 
Q Vs M„—AMS Networks in Toluene 
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Figure 2.20.; Equilibrium Swelling of AMS/DVB networks in toluene at 298K 
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Again, the swelling of networks in cyclohexane was found to increase with the 

solvent quality of the system, though here the degree of swelling was found to be much 

higher than that obtained than that for networks prepared from the PBMPPD/DVB 

system under the same conditions. 

AMS N e t w o r k s in C y c l o h e x a n e a t 3 0 8 K 
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Figure 2.21.: Equilibrium Swelling of AMS/DVB Networks in 

Cyclohexane at 308K 

The higher degree of swelling and the lack of scaling behaviour shown by the 

AMS/DVB series of networks has been attributed to the large amounts of uncross linked 

polymeric material (table 2.8.) which is extracted from the networks prior to the swelling 

measurements. As some of the precursor polymer is not incorporated into the network 

at cross linking, the volume fraction of polymer in the system will be lower and hence the 

volumetric swelling ratio higher. Since the amount of extracted material appears to be 

independent of the precursor chain molecular weight, the swelling behaviour of the 

AMS/DVB networks does not seem to reflect the cross link density in terms of the 

precursor chain molecular weight as might be expected for a model network. 

5.3.4. Determination of Molecular Weight from Swelling Measurements. 

Although the Flory-Rehner model has been used to determine M^. of polystyrene 

networks in cyclohexane and toluene23, it has been found here that the results obtained 
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from the model are highly dependent upon the value of % used as the interaction 

parameter in the model. Figure 2.22. shows a generalised plot of the Flory-Rehner 

model using various values for %. 

Flory—Rehner Model 

2 . 0 x 1 0 5 

1 .5 

1.0 

0 . 0 

- 0 . 5 

- 1 . 0 

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 

Figure 2.22.: General Florv-Rehner function for various r values 

As can be seen, values of % greater than 0.5 produce a function with a 

discontinuity in the region of § p between 0.05 and 0.2. Below the discontinuity, the 

function is invalid and leads to negative values for M c , hence the condition must be 

applied to the function that M c should be positive and therefore the model used for 

sufficiently high values of § p above the discontinuity. Decreasing the value of x can be 

seen to shift the invalid region to lower volume fractions, such that at values of % less 

than 0.49, the invalid region only extends upto <f>p~0.005, which is much below the range 

of volume fractions under consideration here. 

Values of % for polystyrene in cyclohexane as quoted in the li terature 1 9 ' 2 4 ' 2 5 are 

quite limited and are found to very considerably with the source, while literature values 

of x for polystyrene in toluene are consistent and believed to be more reliable 1 9 , 2 4. 

Therefore Mg has only been evaluated here for polystyrene networks swollen to 

equilibrium in toluene where % is substantially lower than 0.5 (0.42). 
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The Flory-Rehner equation as discussed above was originally derived for the case 

of networks cross linked in the bulk state such as vulcanised rubbers and as such is not 

applicable to the case of model networks prepared by end linking in solution since the 

presence of solvent increases the separation of the cross links within the network 

structure and thus the contour length of the chain and M c will be increased by dilution 

prior to cross linking. However, a modified version of the Flory-Rehner equation has 

been derived by Rotstein and Lodge for the generalised case of networks cross linked 

in the presence of low molecular weight solvents and it is this version, equation 2.7. 

which has been used to determine the cross link density from swelling measurements. 

Where V s is the molar volume of solvent 

c„ is the polymer concentration at cross linking 

. V Q is the volume of the system at cross linking 

V d is the volume of the dry network 

and <|> is the equilibrium volume fraction of polymer in the swollen gel 

However, 

c „ = ^ - , A where m^ is the mass of polymer 

1/3 f 
M=Vsc so 

2.6. 

and m 
Pb 

B where pj, is the density of the dry network 

By substituting A and B into equation 2.6., equation 2.7. is obtained. 

Pb 

l n ( l - ^ ) + ^ + ^ 2 
2.7. 
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The cross link densities of both the AMS/DVB and PBMPPD/DVB series of 

networks were determined from the equilibrium swelling ratio of gels swollen in toluene 

at 298K and is shown below in table 2.9 along with the weight average molecular weight 

of the precursor chain. 

Network Precursor 

Chain M w 

Swelling 

Mr. 
DLB 1 17,800 11,100 

DLB2 53,000 45,400 

DLB 3 102,800 51,100 

DLB 4 10,600 8,000 

TCH 1 10,100 9,200 

TCH2 44,500 52,200 

TCH 3 112,00 228,000 

TCH 4 9,800 6,700 

TCH 5 44,100 92,400 

TCH 6 171,700 194,000 

TCH 7 20,200 9,000 

TCH 8 56,200 84,400 

TCH 9 129,000 66,100 

AMS 4 109,900 430,000 

AMS 5 48,700 233,000 

AMS 6 10,400 108,000 
AMS 7 20,100 259,000 

AMS 11 37,900 332,000 

AMS 16 53,600 353,000 

AMS 19 12,700 199,000 

As can be seen in table 2.9 , the large 

degree of swelling exhibited by all of the 

AMS/DVB networks is reflected in the high 

Mc's determined from the Flory-Rehner 

model, from which it can be seen that the 

precursor chain molecular weight does not 

influence the cross link density of the 

network produced. However networks 

prepared from the PBMPPD initiator, which 

after cross linking show only a small amount 

of extractable polymer, have cross link 

densities which are in good agreement with 

the SEC analysis of the precursor chain 

molecular weight. Generally the molecular 

weight obtained from the swelling 

measurements is slightly lower than that 

from the SEC measurements, indicating that 

there are very few chains within the network which do not contribute to the elastic 

properties of the network, i.e. the number of pendant chains within the network is 

limited. Taking these results in conjunction with the sol fraction measurements, it can be 

seen that the PBMPPD/DVB system produces networks which meet the main criteria for 

model networks, in that polymer chains are quantitatively end linked into a network 

structure containing very few defects. 
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6. Conclusions. 

Two series of model polymer networks have been prepared by anionic 

polymerisation of styrene using a difunctional initiator and divinylbenzene as the cross 

linking agent. The series of networks prepared using the PBMPPD initiator have been 

found to contain relatively small amounts of extractable material and the networks 

produced found to swell upon addition of suitable solvent in the manner as predicted by 

scaling arguments. The series of networks produced from the AMS initiator have 

however been found to have relatively poorer properties, due to incomplete 

incorporation of the precursor polymer in the cross linking reaction, where a large 

amount of material has subsequently been washed out of the networks with a consequent 

effect upon the swelling ratio of the network. For these reasons, networks prepared 

from the AMS/DVB system were unsuitable for the study of trapped chain molecules as 

it would be impossible to differentiate between the properties of the sol fraction of the 

network and those chains introduced as trapped chains within the network. 
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CHAPTER 3 

S M A L L A N G L E NEUTRON SCATTERING. 

1. Introduction. 

The scattering of neutrons by condensed matter is broadly analogous to the more 

conventional scattering techniques of X-ray and light scattering in that all three methods 

offer the possibility of probing the structure of matter at the atomic/molecular level. 

However, certain properties of the neutron mean that the scattering of neutrons can 

provide unique information in the study of condensed matter1"4. 

1. The absorption of neutrons is generally low and thus large sample volumes can be 

studied. 

2. The wavelength of thermal neutrons (2-20 A) is appropriate to the study of atomic and 

macrdmolecular dimensions. 

3. The magnetic moment of the neutron may interact with any unpaired electrons to 

provide information on the magnetic structure of matter. 

4. The interaction of the neutron and nucleus does not vary in a systematic manner within 

the periodic table, the interaction is an isotopic property and as such can be dramatically 

changed by isotopic substitution. 

Interaction of the neutron with matter can occur in one of two ways5 

Interaction with any unpaired electrons gives rise to magnetic scattering while most 

importantly, interaction with the nucleus can occur giving rise to nuclear scattering. 

Similarly to the scattering of electromagnetic radiation, energy can be exchanged 

between the sample and the neutron giving rise to inelastic scattering arising from 

transitions between quantised vibrational or rotational energy levels or i f the energy of 

the neutron is unchanged the scattering process is said to be elastic and the static 

structural properties of the sample can be determined. I f there is a small change in the 

energy of the neutron, the scattering is termed quasi-elastic and reflects a broadening of 

the elastically scattered peak and is due to diffusive motion of the scattering centres. 

Although both quasi-elastic and inelastic scattering have been applied to the study of 
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polymeric systems, by far the most frequently applied and useful technique has been due 

to elastic scattering of the neutron. 

There is however one inherent difficulty in all neutron scattering experiments. 

The generation of a suitable flux of neutrons is by no means an easy or cheap task and 

generally requires the use of either a nuclear reactor or a synchrotron spallation source 

for a continuous or pulsed beam of neutrons respectively. These are both extremely 

expensive and require centralised funding, hence the demand for experimental 'beam' time 

is usually high and thus the amount of time allocated to an experiment is limited. 

As with any scattering experiment, the most important variable is the modulus of 

the scattering vector-Q 1" 6, which is defined (equation 3.1.)as the resultant between the 

vector for the incident radiation kj and the scattered radiation k s . 

0 4mi 
0 Sin 3.1. 

Where |Q| is the modulus of the scattering vector, 

X is the neutron wavelength (A), 

n is the refractive index, taken to be 1 in a neutron scattering experiment, 

and 0 is the angle between k{ and k s , as shown below in figure 3 .1 . 

M 5 

1 e 

Figure 3.1.: Vector representation of the scattering geometry. 

The intensity of radiation scattered by systems with large dimensions (such as 

polymers) takes the form of a small peak at low values of Q. Low values of Q are 

generally obtained at small angles in the forward direction and with incident radiation 
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having a long wavelength. This technique for probing long range spatial correlation's is 

known as Small Angle Neutron Scattering. 

Here Small Angle Neutron Scattering has been used to determine the correlation 

length of a series of polymer networks having various cross link densities, as well as 

determining the static properties of a dilute solution of polymer chains trapped within a 

polymer network. 

2. Theoretical Aspects of SANS 

In any neutron scattering experiment (shown schematically in figure 3.2.) an 

incident neutron, wave vector k; is incident upon a target and is scattering by the target 

such that the wave vector of the scattered neutron is k s and the transfer of momentum to 

the target is h Q 

r Neutron Detector 

r ' d Q 

V \ 

i 

Fieure 3.2.: Scattering geometry for a neutron scattering experiment. 

The quantity measured in any scattering experiment is the partial differential 

scattering cross-section, denoted by 3 2., which describes the fraction of neutrons (of 

incident energy E) scattered into a solid angle 6Q. (equal to sin0d0d<j>), with a change in 

energy between E1 and E + dE'. 



For elastic scattering, no energy is transferred between the target and the incident 

neutron and equation 3.2 reduces to the differential scattering cross-section (da/dfi). I f 

the flux of incident neutrons is I 0 then the flux scattered into a detector located at an 

element d£2 is given by: 

/ / *°\dCl 3.3. 
\dCV 

An expression for the differential cross-section can be calculated from quantum 

mechanical arguments. The probability of scattering a neutron of wave vector kj to a 

wave vector k s (both of energy h 2k 2/2m) is given by Fermi's golden rule, 3 .4. 

Where V is the interaction potential associated with the transition 

Tk*n is the Hamiltonian operator associated with the n t h wave, 

and Pr{E) l s t n e density of the final scattering states and is given by 3 .5. 

L\mk 
, c/fi 3.5. 

h2 

Where L 3 is the volume of the target, 

m is the mass of the neutron, 

and k is the magnitude of the wave vector of the neutron 

The flux of incident neutrons is given by the number passing the target per second (the 

velocity) per unit area, given by 3.6. and the cross-section is therefore given by 3.7. 

/ ( ° ) = - ^ 3.6. 

In 

d a = Jup± = _ v—/ 3 ? 

1(0) hk 
ml} 

2 L'mk J r t 

~i7i 
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Using the notation, 

V2nh2J 
3.8. 

Then equation 3.7. can be rewritten as 3.9. 

3.9. 

Scattering depends upon the nature of the neutron-nucleus interaction, the form 

of which is unknown although experimental results show that it is a short range 

interaction . As the interaction is much shorter range (10 m) than the wavelength of 

the incident neutron, the scattering contains only an S-wave component and is therefore 

isotropic and characterised by a single parameter-the scattering length b. The only model 

of the interaction potential which gives rise to isotropic scattering is the Fermi-pseudo 

potential and for the interaction between a neutron and a single nucleus this is given by 

equation 3.10. 

Where R is the position of the nucleus and is usually taken to be the origin (R=0). 

Combining 3.8. and 3 .10. and setting R to zero 

2nh V(r) bS 
m 

3.10. 

3.11. 

Which gives: 

da , ,2 

And hence the total scattering cross-section as 

(j-4n\b\2 
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I f the same potential is applied for a rigidly fixed array of N nuclei the potential has the 

form 

Where Rt is the position of the i t h nucleus of scattering length bj. 

3.12. 

Therefore, substituting 3.12. into 3.8., equation 3.13. is obtained 

( ^ K ) = Z 6 . e x p ( ^ - ^ ) 3.13. 

For elastic scattering from a rigidly bound array of nuclei (with nuclei at positions 

defined by i and j ) , the differential scattering cross-section is given by: 

da 
dQ = 2 « c p [ / * - ( / % - / i y ) ] * ( * A y 

3.14. 

The values of bj and bj depend upon the isotope and its spin at positions i and j and the 

quantity b.. *bj is the average over random nuclear spin orientations and random isotope 

distribution^ 

For i * j b,b, - btb,. = 

For i = j bfij = \bf 

Therefore bjbj = + b\2-\b\2 3.15 

Substituting 3.15. into 3.14. the differential scattering cross-section can be written as the 

sum of two components-equation 3 .16. 

da__(da\ (da) 
dn UOJcoh

+{'dnJina>h 

3.16. 
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Where the coherent scattering cross-section is given by: 

^ 1 =1*1 
dn). coh 

3.17. 

and the incoherent scattering cross-section is given by: 

= N 
incoh 

\bf-\b\ = N\b-b 3.18 

These two contributions to the differential scattering cross-section are greatly 

different3. Incoherent scattering is isotropic, having no phase term and hence no 

dependence upon Q The coherent scattering term contains all the structural information 

about the scattering species, describing the interference effects between waves scattered 

from different nuclei in the target. Both the coherent and the incoherent differential 

scattering cross-sections are dependent upon the scattering lengths of the nuclei present 

in the target, which describe the interaction of the neutron with the sample, tables of 

scattering lengths for many isotopes are available in the literature5. 

The total scattering cross-section a is given by 3.19. 

a - $n\b\ 3.19. 

While the coherent scattering cross-section is given by: 

cr„ = 4/r\b\2 3.20. 

The incoherent cross-section is therefore given by 

o"-cr =cr, 3.21. 

Equations 3.16., 3.17., and 3.18. form the basis of elastic neutron scattering 

theory and when applied to scattering from a pure material, either crystalline or a liquid 

predicts that coherent scattering is only observed when strict geometric conditions are 
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obeyed, thus giving rise to Bragg peaks for crystalline materials and structure factors for 

liquids5. However, in small angle scattering, it is the diffuse scattering around the direct 

beam which is measured. This arises from the variation of the scattering length density 

over distances which exceed the normal inter atomic spacing of condensed matter and as 

such is ideal for the study of small particles, macromolecules and molecular aggregates. 

The coherent scattering from a dilute solution (such that intermolecular 

interference between coherent scattering from particles is absent due to the large 

intermolecular distances) of a macromolecule in a solvent is given by equation 3.17.. 

The sum in equation 3.17. can be separated into contributions arising from the solvent 

and the macromolecule-equation 3.22. 

Where p s is the scattering length density of the solvent (the scattering length 

averaged over the solvent molecular volume), 

and p(fty is the scattering length density of the macromolecule. 

The first term in equation 3.22. is an integral over the entire scattering volume 

and approximates to a 5 function which is zero for all values of Q except zero. 

Therefore equation 3.22. can be rewritten as: 

da 
da ps Jexp(ik R^dR-jexp(ik • itydR + Jexp(ik • R^dR 3.22. 

da \\p{R)-p\zxp{ikR)d R 
dQ. 

v 
3.23. 

Assuming that each segment acts as a point scatterer. , plRj can be averaged over the 

segment volume to give a scattering length density p p , hence 3.23. can be rewritten as 

equation 3 .24. 
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da_ 
3.24. 

This can itself be rewritten as equation 3 .25 

da 
V\PP-P) P{Q) 3.25. 

Where — Jexp(i*- /?) = P(Q) 3.26. 

and (Pp-ps) is the contrast factor. 

P(Q) is referred to as the particle form factor and contains all the structural 

information of the conformation of the scattering particle6'7 8 ' 1 1 . The contrast factor 

simply describes the ability of the neutron radiation to see the scattering species against a 

background. 

The scattering length of a particular segment or molecule is simply the sum of the 

component scattering lengths over the n atoms in the molecule-equation 3.27. 

* = 2 > A 3.27. 
i=l 

The scattering length density is the scattering length of a segment or molecule per 

unit of molecular volume, given by 3 .28. Tables of the scattering length densities for a 

range of polymers and solvents are available in the literature 

N.b 
p = ^= 3.28. 

vM 

Where N a is Avogadro's Number, 

M is the (segment) molecular weight 

and v is the partial specific volume 
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A more general equation for elastic scattering from macromolecules can be 

written so as to account for the possibility not only of intramolecular interference (as 

described by the particle form factor) but also intermolecular interference as would be 

seen in a non-dilute or interacting system. The coherent scattering is then described in 

terms of a structure factor which for an incompressible binary mixture can be written as: 

Where b\ and b 0 are the scattering lengths of species 1 and 0 respectively 

S(Q) is the structure factor (also known as the coherent scattering law) 

describing both the intramolecular and intermolecular interference effects and is given by 

equation 3.30. 

Where N is the number of scattering polymers molecules, 

z is the number of segments in the polymer, 

P(Q) is the particle form factor, 

and Q(Q) is the normalised interference term describing the interaction of the 

scattering molecules and is given by equation 3.31. 

Equation 3.30. is a general equation describing the coherent scattering from any 

macromolecular system. It can be shown that the particle form factor, P(Q) can be 

extracted at any concentration of labelled species when the hydrogenous and deuterated 

components are identical (except for the difference in the scattering length density). 

However this is not generally the case as both the degree of polymerisation and the 

polydispersity of the hydrogenous and deuterated materials are usually different. In this 

case it is possible to extract the particle form factor for a low concentration of labelled 

da 
dil) coh 

3.29. 

S(Q) = Nz2P{Q) + N2z2Q(Q) 3.30. 

1-1 Jl'l 

3.31. 
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species where the concentration is such that the labelled molecules are spread randomly 

throughout the material and are dilute with respect to one another, therefore the 

probability of contacts and correlation's between labelled species is low. In this case 

equation 3.30 can be written as: 

In the case of scattering arising from a single polymer in solution, equation 3.30. 

can be written as equation 3.29. which in the dilute solution limit reduces to the single 

chain scattering law. 

The form of P(Q) is determined by the shape of the scattering particle, and a wide 

variety have been tabulated for particle shapes such as rods, discs, cylinders and 

spheres . In the limit as Q approaches zero, all forms of the particle form factor tend to 

one and within the range 0 <Q <Rg', the scattering from any polymer can be described 

by the Guinier approximation7 given below in equation 3.33. 

Therefore i f a sufficiently small range of Q can be studied, the radius of gyration of the 

polymer can be determined. 

A similar expression also valid in the Guinier Q region is that due to Zimm, more 

frequently seen in intensity light scattering2* which not only allows the determination of 

the radius of gyration but also measurement of the polymer molecular weight given 

below in equation 3.34. 

'do 
IJ =(b,-bkyz>NP(Q) 

coh 

3.32. 

r 2n2\ Q'R da) da 
(Q) exp dn d£V J 0=0 

3.33. 

K*c 1 
1 + + 2/4,c 3.34. 

3 
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The Gaussian coil model of a polymer chain can also be used to determine the 

polymer radius of gyration, following the model developed by Debye15, valid in the so 

called intermediate Q region (R~' < Q < b"1, where b is the statistical segment length) as 

well as the Guinier region, given by equation 3.35. 

do do 
j[M-Q2Rl)+Q2Rl^\ 0 Q2R dQ. d£V 

3.35. 

The coherent scattering law for a semi-dilute solution or a swollen polymer gel 

can be written in terms of a pair correlation function describing the screening or 

correlation length of the semi-dilute solution/polymer gel . For distances less than 

the total pair correlation function is dominated by scattering from the chain containing 

the reference point, while at distances greater than £, the segments of the reference chain 

will be uncorrelated as other polymer chains intervene. For regions where (Q < f ; " 1 ) , the 

scattering can be described in terms of equation 3 .36. 

S(Q) = ^ § T 3 36. 

3. Instrumentation 

As noted earlier, the use of small angle neutron scattering as a technique is reliant 

upon the production of a suitable flux of neutrons to be scattered from the target. There 

are two methods for producing a suitable flux, the most common being the use of a 

nuclear reactor, where neutrons are released by the fission of uranium-235 producing a 

continuous beam of neutrons6. 

A second type of neutron source is the pulsed source where a short burst of 

neutrons is produced as a high energy proton beam impinges upon a target of heavy 

nuclei. Providing the kinetic energy of the proton beam is high enough to overcome the 

intrinsic short range nuclear and electrostatic repulsive forces, the nuclei of the target will 

be "blasted apart" in the spallation process. 
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3.1. The Small-Angle Spectrometer-LoQ. 

Currently the most powerful spallation neutron source in the world is located at 

the ISIS facility at the Rutherford-Appleton Laboratory in Chilton, Oxfordshire. At ISIS 

an 800MeV proton synchrotron operating at 50Hz produces 200uA pulses of protons 

which are directed at a tantalum target where on impact around 25 neutrons per incident 

proton are released which are then passed down the various beam-lines surrounding the 

target station 9 ' 1 0 The small angle spectrometer at ISIS is known as LoQ and it is this 

instrument which has been used for all the SANS work in the study. 

11.1 m 4.3 m 

Figure 3.3.; Schematic Diagram of the LoO spectrometer. 

Figure 3 .3. shows a schematic diagram of the LoQ spectrometer9. The primary 

flight path (the section before the sample stage) contains various devices to collimate the 

incident beam, which initially passes through a liquid hydrogen moderator (M) operating 

at 25K to reduce the velocity distribution of the as produced neutrons. 

Neutrons are then incident upon a Soller bending mirror (S) which removes short 

wavelength (<2A) neutrons and prevents the detector viewing directly the target station 

thus reducing the background intensity, long wavelength neutrons (>12A) are removed 

by a frame overlap mirror (O). The neutron beam is collimated by three apertures (a, b 

and c) which produce a beam at the target with a diameter of 11mm. The disc chopper 

(C) operates at 25 Hz thus selecting alternate pulses from the target station, producing a 

neutron pulse with a wavelength range from 2 to 10A. 
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Both the primary and the secondary flight paths are evacuated so as to reduce 

flux losses due to collisions between neutrons and air molecules. The secondary flight 

path is simply an evacuated vacuum tank (V) 4.3 metres in length placed immediately in 

front of the detector. Both the primary and secondary flight paths are heavily shielded by 

solid steel and borated wax to reduce the background flux of radiation. 

Neutrons scattered by the sample fall into one of the JHe-CF 4 filled 1 cm pixels 

of the two dimensional area detector (D), the active region of which is 64cm by 64 cm. 

Together with the range of wavelengths available from the collimation system, the 

geometry of the instrument permits a Q range from 0.006A"1 to 0.22A"1 to be studied. 

Samples were placed on a nine position, temperature controlled sample holder 

(Z), the temperature of which was measured by a thermocouple mounted at the centre of 

the rack. For the temperatures studied here (308K to 313K), the rack temperature was 

found to vary sinusoidally by ±1K over a period of around 3 minutes. The position of 

the rack was aligned using a laser beam co-linear with the incident neutron beam to 

ensure that the full sample volume was exposed to the flux of neutrons. 

Data was collected in time of flight (ToF) mode, whereby the scattered intensity 

was measured as a function not only of 0 and § but also as a function of X, which as 

described above influences the magnitude of the scattering vector. The raw ToF 

spectrum was corrected for this wavelength dependence and also for effects of 

transmission and sample thickness using the COLETTE program at the Rutherford-

Appleton Laboratory which converts the ToF spectrum into the more conventional 

picture of scattering cross-section in terms of Q. 

3.2. Calibration of the Spectrometer. 

Although the output from COLETTE is nominally in units of absolute intensity, a 

further calibration is required if accurate values of the radius of gyration, correlation 

length and particularly the polymer molecular weight are to be obtained. Calibration of a 
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SANS instrument using a monochromatic beam of neutrons is relatively straightforward 

as a sample of a flat isotropic scatterer is used to normalise the data for detector 

efficiency1 1. The procedure normally used for this is to run a sample of water, however 

on a pulsed source this procedure is not applicable as the scattering cross-section is 

dependent upon the wavelength of the incident neutrons. 

An alternative calibration procedure which can be used on a pulsed source is to 

measure the scattering from a polymer blend. Here the scattering from a 0.47 volume 

fraction blend of d-PS in h-PS was measured and then analysed in terms of de Gennes 

Random Phase Approximation (RPA) . Two samples were run in order to determine 

the normalisation constant, a blend of d-PS and h-PS and also a random copolymer 

having the same composition as the blend which is used to measure the incoherent 

scattering of the blend. The coherent scattering cross-section for a two component blend 

can be given in terms of de Gennes incompressible Random Phase Approximation by 

equation 3.37. 1 4 

Where is the normalisation constant 

b a and bj, are the scattering length's of the respective components 

N a and Nj, are the degree's of polymerisation of both components 

X is the interaction parameter 

v 0 is a reference volume given by equation 3.38. 

and gd(Rg,Q) is the Debye function 1 5 given by equation 3 .39. 

da 
dQ fe) = ^of — -

i f r v v 2* + </>oaNagd(Rga,Q) {\-<t>)vbNbgd(Rgb,Q) J v a 

3.37. 

r 
+ v 

a 

3.38. 

(™v{-Q2Rl) + QlRl-\) 
J 

3.39. 



The scattering of any blend can then be fitted to determine x and the radii of 

gyration of the components. Conversely, from a knowledge of x and polymer molecular 

weight, the normalisation constant can be determined. 

The molecular weights of the polymers used here were determined by S E C. in 

tetrahydrofuran solution and values from these results have been used to determine the 

degree of polymerisation of the blend components. The scattering of the blend (after 

background subtraction) was then fitted to equation 3.37. using the FORTRAN program 

B A N T A M 1 6 , allowing the normalisation constant and the radii of gyration of both the 

hydrogenous and deuterated components to vary, although the constraint Rg.h~Rg.d w a s 

applied. Values of b^ and b j used in the fitting procedure were 2.328x10" cm and 

17 77 ^ 

10.66x10 cm respectively, the reference volume was taken as 1.725x10" cm , the 

average degree of polymerisation (for both h-PS and d-PS) was taken to be 800 and % 

was fixed at zero. Values of the radii of gyration and k n obtained from the fitting routine 

are given below in table 3.1., the value of k n obtained being that which the model data is 

multiplied by in order to fit the data. To correct raw data obtained from COLETTE into 

absolute values of the differential scattering cross-section, the data is simply divided by 

k n . 

Experiment Date k n 

October 1992 67.9 0.8145 

December 1992 68.3 0.841 

November 1993 68.9 0.839 

March 1994 69.2 0.843 

Table 3.1.: Values of the radii of 

gyration and normalisation 

constant fitted from the R.P.A. 

All data was normalised using this procedure, however there are several sources 

of error which may lead to inaccuracies in the normalisation constant. Firstly some error 

may be present in the value of the average segmental volume used in the fitting routine, 

which is calculated from the densities of d-PS and h-PS given by Russell . Values of 

the densities of both deuterated and hydrogenous polystyrene calculated by Davidson1 8 

are in agreement with those quoted in Polymer Handbook19 and have been found to lead 

to a 4% difference in k n . 
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The main source of error in the determination of k n is likely to arise from the 

values used for the degree of polymerisation. As described above, the molecular weights 

of the polymers were evaluated by S E C. in THF solution, the results used to calculate 

the degrees of polymerisation being an average of several measurements. However, data 

was also obtained from S E C. in chloroform solution and was found to lead to 

somewhat lower values of the molecular weight and hence the degree of polymerisation. 

As the THF S E C. apparatus employed a double (both refractive index and viscosity) 

detection system rather than the single refractive index detector used in the chloroform 

machine, data from the THF system was relied upon to give a more accurate value of the 

polymer molecular weight. Data from the chloroform system was found to lead to a 

20% increase in the fitted value of k n . 

The final source of error in the determination of k n arises from the assumption 

that the interaction parameter between the hydrogenous and deuterated components is 

zero. Wignall states that the effect of % on the scattering of low molecular weight 

polymers is negligible, hence x was initially set to zero. However values of % for the d-

PS/h-PS system have been given by Bates (~ 1.6-3.7x10 ) which lead to values of k n 

which are around 10% lower than that calculated where % equalled zero. A detailed 

study of all of these effects has been performed, where it has been shown that the most 

important parameter in the determination of k n is due to the uncertainty in the molecular 

weight of the components, this could of course be improved by determining the absolute 

molecular weight of the components by intensity light scattering. 

4. Experimental 

In all experiments on swollen gels, small samples of polystyrene networks cut 

from the network as prepared in chapter 3 were dried to constant weight, firstly in air for 

around 7 days and secondly under vacuum at 350K for 24 hours. The dried, bulk 

samples were then reswollen in the appropriate solvent. In the measurement of the 

correlation length of the 'blank' networks, the hydrogenous polystyrene networks were 
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reswollen to equilibrium in perdeuterated cyclohexane or toluene solvents obtained from 

Cambridge Isotope Laboratories, (99+% atom d). 

In all measurements on swollen samples, it was assumed that there was no 

difference in the equilibrium swelling ratio of the networks when swollen in 

perdeuterated solvents as compared to the swelling ratios obtained using hydrogenous 

solvents (chapter 2, section 5.3.) Samples in toluene were allowed to reach swelling 

equilibrium over a period of 5 days while those in cyclohexane were allowed to reach 

swelling equilibrium at room temperature for 5 days before being equilibrated at 308K 

for 12 hours prior to study. Unfortunately, due to the lack of experimental time available 

it was not possible to allow 12 hours for equilibration of the gels as in the measurements 

detailed in chapter 2, it was only possible to allow 1 hour for equilibration of the 

cyclohexane swollen samples upon increasing the temperature of the gels. However, 

from the results of the swelling measurements described in chapter 2 it is thought that 

this will not have adversely affected the results of the experiment as in such cases only a 

short time was required to reach equilibrium on changing the temperature. 

All samples were placed between two quartz discs (1mm thick) separated by a 

2mm thick PTFE washer (inner diameter, 14mm) and were contained in a brass holder 

(inner diameter, 14mm). Samples were cut from the swollen gels so as to fit the sample 

volume defined by the inner volume of the spacer and were therefore in intimate contact 

with the quartz windows. The sample holder was then filled with an excess of solvent 

prior to scattering to allow for evaporation of the solvent during scattering runs at 

elevated temperatures. 

Bulk samples of networks containing deuterated probe chains were dried to the 

bulk state as outlined in the above procedure and were then carefully cut to the shape of 

a circular disc around 13 mm diameter with a thickness of approximately 1mm (measured 

accurately with a micrometer). The samples were then placed into the sample cell 

between two quartz windows separated by a 1mm spacer. 
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Solvent swollen samples of networks containing deuterated probe chains were 

prepared by swelling suitable samples of the bulk network dried following the procedure 

outlined above. Samples were swollen in both cyclohexane and toluene for SANS 

experiments and were allowed to equilibrate for a minimum of 5 days before study. It 

was again found that due to the lack of experimental time available, only one hour could 

be allowed for equilibration of the samples between temperature changes. Samples were 

again cut to the appropriate dimensions following the procedure outlined above. 

The isotopic composition of the swelling solvent for the measurement of the 

probe chain size in the swollen gel was chosen such that the mean scattering length 

density of the solvent mixture was equal to the scattering length density of hydrogenous 

polystyrene, therefore no coherent scattering was observed from the network chains and 

coherent scattering was seen only from the deuterated probe chain. The mean scattering 
1 Q 

length density of the solvent mixture is given below in equation 3.40. 

where p s is the mean scattering length density 

p s x is the scattering length density of component x 

and § is the volume fraction of the deuterated component 

In order to contrast match any scattering from the hydrogenous polystyrene of 

the network, a 0.268 mole fraction solution of C^D^ in C 6 H 1 2 was prepared for 

measurements of the deuterated probe chain size in cyclohexane swollen networks, 

whilst any resultant scattering from hydrogenous polystyrene was eliminated by the use 

of a 0.099 mole fraction solution of C7DJ5 in CjH% for networks swollen to equilibrium in 

toluene. 

Polystyrene discs approximately 12 mm diameter and 1mm thick were required 

for use as calibrants for the SANS experiments. A suitable blend of the deuterated and 

hydrogenous polymers was prepared by dissolving the appropriate amounts of the 
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homopolymers in chloroform solution such that a 5% solution of polymer in solution 

resulted. The blend was then precipitated by pouring into a non-solvent, in this case 

chilled methanol and the precipitate filtered before being dried under vacuum at 330K for 

2 days. 

Discs of both the blend and copolymer were prepared by pressing the appropriate 

amounts of polymer in a heated press. The polymer was initially pressed under vacuum 

for a few minutes with an applied load of two tonnes, followed by removal of the 

vacuum and an increase in the die temperature to around 550K, where the temperature 

was held constant under the same applied load for around 1 hour. The die was then 

allowed to cool to ambient temperature (with no increase in the applied load) when the 

discs of polymer were removed from the die. The as prepared samples were found to be 

free from any macroscopic air bubbles and uniform in thickness, the thickness of the 

samples being determined by the average of 5 readings using a micrometer. The discs 

were then placed in the SANS cells described above between two 1mm thick quartz 

windows separated by a 1mm thick spacer. 

5. Determination of the Correlation Length of Solvent Swollen Gels 

In these experiments, information on the characteristic length scale (that where 

excluded volume interactions on a polymer chain are screened out by the presence of 

other polymer chains) the correlation length, of hydrogenous polystyrene networks 

swollen to equilibrium in deuterated solvents was obtained by measuring the coherent 

scattering from the network in the intermediate Q region and then fitting the data to the 

model proposed by Daoud . One of the main difficulties in these experiments was the 

extraction of the coherent scattering from the raw data by removal of the large 

incoherent background arising from the protons of the network. Mixtures of low 

molecular weight hydrogenous molecules in perdeuterated solvents were used to 

estimate this, where the hydrogenous material had a similar structure to the segmental 

units of the polymer chain. For measurements on networks swollen in d-cyclohexane, a 

series of mixtures of h-cyclohexane and d-cyclohexane varying in composition were 
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prepared, whilst for networks swollen in d-toluene mixtures of h-toluene and d-toluene 

were used to estimate the background level. 

Scattering from the mixtures of the hydrogenous and deuterated solvents was 

found to be flat over the range of scattering vector used, the scattering from a 1mm path 

length cell filled with the solvent mixture being measured at 308K for cyclohexane 

solutions and at 298K in toluene. A mean value of the incoherent background was then 

determined from the SANS spectrum using a linear fitting procedure with the 
10 

GENPLOT program. The incoherent background was found to vary in a linear manner 

over the composition range studied. 

A total of five solutions of hydrogenous and deuterated cyclohexane were 

prepared, the relative ratio's of hydrogenous to deuterated components being chosen 

following the swelling measurements described in chapter 2. The solvent mixture with 

the most similar composition to the swollen gel was chosen as the background for the 

sample and was subtracted from the spectrum of the gel while accounting for both 

sample thickness and transmission. The corrected data was then normalised to values of 

absolute scattering following the procedure outlined above. 

Previous SANS studies on swollen polymer networks have also been directed 

upon the determination of the correlation length of the polymer network. Randomly 

cross linked polystyrene networks have been studied by Davidson1 8 who found that the 

correlation length as determined by SANS scaled with the volume fraction of polymer in 

a manner predicted by de Gennes scaling theories . Studies on model networks 

prepared by end linking methods have however proved more difficult. 

Both Bastide 2 6" 2 7 and Mendes28 have studied end linked polystyrene networks 

produced in thermodynamically good solvents and have reported that no measure of the 

correlation length could be made due to anomalous scattering at low values of Q. 

Mendes reports that the scattering from end linked polystyrene networks at swelling 
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equilibrium in toluene is dominated by a shoulder region at intermediate Q values 

followed by a strong increase in the scattered intensity at low Q values around 10"2 A"1. 

Although the polystyrene networks studied here were prepared by a very similar 

method to both those used by Bastide and Mendes, no evidence of any anomalous 

scattering was found in the Small Angle Scattering studied here, though it is noted that 

the Q range explored here using the LoQ instrument (0.01-0.22 A" 1) is somewhat 

different to that probed by both Mendes and Bastide (0.003-0.25A"1) who used the D l l 

and D17 diffractometers at the ILL in Grenoble. 

Corrected data from the measurement of the total correlation function can be 

seen below in figure 3 .4. the errors of which are propagated from those quoted by the 

COLETTE program which arise from Poisson counting statistics. Whilst almost all of 

the gels studied here exhibited an upturn in the scattered intensity at low Q values, these 

data points were neglected as the statistical uncertainty in those data points was rather 

high due to the radial averaging of the scattered intensity (collected on a square detector) 

carried out by the COLETTE program. 

As described earlier, the correlation length is extracted from the coherent 

scattering law in the intermediate Q region, following equation 3.35. t, is determined 

from the ratio of the slope to intercept of a plot of reciprocal intensity versus Q Figure 

3 .5. below shows this plot of the reciprocal scattering intensity against the square of the 

scattering vector, the errors of which have been propagated from the Poisson counting 

statistics produced by COLETTE. 

At high values of the scattering vector a relatively large error in the reciprocal 

intensity is found. This is most probably due to a slight error in the subtraction of the 

large incoherent scattering background from the original plot of scattering intensity 

against Q which although small in the conventional picture of scattering intensity against 

Q is somewhat larger in the Zimm plot. 
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Figure 3.4.: Corrected Scattering from AMS 11 Network 

swollen in d-Cvclohexane at 308K. 

Figure 3 .5. shows one such Zimm plot in the intermediate and high Q region for a 

network swollen to equilibrium in cyclohexane at 308K At higher scattering vectors 

there is a departure from the linear behaviour observed in the intermediate region as the 

scattering vectors probe length scales smaller than the correlation length, where the 

structure of the polymer chain is subject to excluded volume interactions. 
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Figure 3.5.: Zimm Plot of Data and Fit in the Intermediate O Region 
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Values of £ determined from the Zimm plots are given below in table 3.2. along 

with the error in {; arising from the errors in the slope and intercept of the best-fit line to 

the data. Table 3.2. correlates £ with the precursor chain molecular weight, which in 

principle determines the polymer volume fraction of the network to which £, is related 

through a scaling law. 

Correlation length of Swollen Networks ± Error (A) 

Precursor 

Chain M w 

Cyclo 
30! 

lexane 

IK 
Cyclohexane 

313 K 

Cyclo 

31! 

lexane 

IK 
Cyclohexane 

323 K 

Toluene 

298 K 

10,400 23.7 4.3 23.0 5.2 20.8 4.7 15.0 1.4 10.2 1.3 

12,700 27.9 6.3 25.8 4.7 23.6 4.8 20.6 4.0 10.8 0.8 

20,100 17.9 1.8 15.5 2.2 16.6 1.2 16.4 1.4 12.5 0.7 

37,900 15.9 1.4 15.8 1.8 14.9 1.7 14.6 0.8 12.3 1.0 

48,700 26.7 3.3 24.2 2.9 23.2 2.3 22.2 2.2 10.6 0.7 

53,600 22.9 2.7 23.6 1.8 20.5 2.3 19.9 1.7 12.7 1.2 

109,900 20.4 1.0 18.1 0.9 17.3 0.7 16.6 0.7 10.5 0.8 

Table 3.2.: Variation of the Correlation Length of Swollen Gels 

Three features are immediately noticeable from this data. Firstly, under constant 

thermodynamic conditions in either cyclohexane or toluene, the correlation length is 

found to be constant within the margins of error of the experiment, £ is not found to 

scale with either the volume fraction or the precursor chain molecular weight. 

Secondly although under constant thermodynamic conditions the correlation 

length is constant, increasing the solvent quality causes a decrease in the correlation 

length. Increasing the solvent quality causes two opposing effects in a decrease the 

polymer volume fraction and an increase in the degree of excluded volume in the system. 

A decrease in the polymer concentration might be expected to result in an increase in the 

correlation length of the network while increasing the solvent quality would be expected 

to cause a decrease in the correlation length as the chains expand in the better quality 

solvent The net effect observed here is a decrease in the correlation length of the 

network. 

110 



Finally, it can be seen that for networks swollen to equilibrium in toluene, 

corresponding to the limit of excluded volume interactions, the correlation length is 

constant at 11±1 A. This value for the correlation length is quite small and indicates an 

inter chain distance of the order of a few repeat units. 

The results of table 3.2 are shown graphically in figures 3.6 a-e where the 

measured values of £, are again correlated against the precursor chain molecular weight, 

the least squares fit to the data being included as the solid line through the data.. 
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The most noticeable feature of figure 3 .6 is the lack of scaling behaviour obtained 

between the correlation length and the precursor chain molecular weight, similar 

behaviour being found between the correlation length and the polymer volume fraction in 

the swollen network. This is in direct contrast to the results of the measurement of the 

correlation length in randomly cross linked networks where scaling behaviour was 

observed18. Hence the density-density correlation length would appear to only be 

dependent upon the quality of the solvent and hence the degree of excluded volume 

present in the system. 

The lack of any dependence of £, in the precursor chain molecular weight 

becomes clarified when it is recalled that the correlation length of a semi-dilute solution, 

describing temporary inter chain contacts, is dependent only upon the concentration of 

the solution (as the inter chain contacts occur frequently along the chain backbone, not 

on the molecular weight of the chain) and is not influenced by the chain molecular weight 

as the length of the chain is much greater than the separation of the chain contacts13. 

Here, all networks were prepared under essentially the same conditions (i.e. at 

the point of cross linking a 10% w/v solution of polystyrene in benzene). It would seem 

reasonable that the correlation length of the highly expanded chains Qust prior to 

gelation, i.e. a semi-dilute solution) is constant and describes the separation of temporary 

chain entanglements along the polymer backbone. Therefore in the end linking step the 

introduction of the cross linking agent to the solution causes the ends of the polymer 

chains to become tied into the network structure therefore preventing the temporary 

chain entanglements of the former semi-dilute solution from disentangling and thus 

'freezing' the correlation length of the semi-dilute solution into the network structure. 

Changes in the correlation length after cross linking reflect only a change in the 

solvent quality of the system. For a semi-dilute solution at the theta point, such as 

polystyrene in cyclohexane at 308K, the polymer chains are Gaussian in nature with no 

excluded volume present. Upon increasing the temperature of the cyclohexane system, 
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the semi-dilute chains develop excluded volume interactions and expand, causing the 

intermolecular separation of the chains to decrease and therefore the mesh size and £ to 

decrease. 

Evidence for this hypothesis arises from the values of the correlation length for a 

series of semi-dilute solutions determined by other authors. K ing 2 9 has measured the 

correlation length for polystyrene in toluene as a function of concentration in the range 

(0.02< c< 0.22 gml"1). As predicted by scaling theory, £, was found to decrease with the 

polymer concentration in the system, however more importantly, the correlation length 

of a 0.12 gml"1 solution of polystyrene in toluene was reported to be 13.3A. 

Similar results for the correlation length of polystyrene in toluene have been 

reported by Brown 3 0 , who again found that the correlation length of a 0.1 gml"1 solution 

of polystyrene in toluene was 15.1 A at room temperature. The correlation length of 

polystyrene in benzene has also been measured by Cotton 3 1 who found for a 0.08 gml"1 

concentration solution the correlation length was 14A. Since all networks were 

synthesised in benzene solution, both toluene and benzene are thermodynamically good 

solvents for polystyrene and therefore the measured values of the correlation length in 

both solutions should be equal as is indicated by the experimental data available. 

The correlation length of polystyrene in cyclohexane has also been investigated as 

a function of polymer concentration and temperature. For a fixed concentration, the 

correlation length of polystyrene in cyclohexane has been found to decrease with 

increasing temperature as the excluded volume interactions increase in a manner 
1 9 

predicted by scaling theory . 

A comprehensive study of the correlation length of semi-dilute solutions of 

polystyrene in cyclohexane has been carried out by Cotton 3 3 who not only confirms the 
1 9 

results of Davidson , but also shows that £ for polystyrene in cyclohexane is again 

dependent upon the polymer concentration. For a 0.082 gml"1 solution of polymer, £, is 
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reported to be 66A at 308K decreasing to 45A at 323K. These values for £, in solution 

are somewhat higher than those measured for gels here under the same conditions, a 

difference which is attributed to the presence of the cross links in the gel which prevent 

full relaxation of the chains into the structure found in a semi-dilute solution. 

It was noted in chapter 2 (section 5.2.) that a large sol fraction was extracted 

from the AMS/DVB networks prior to the measurement of the correlation length of the 

solvent swollen networks. While in some cases this sol fraction was up to 25% of the 

mass of the network, it seems apparent that the correlation length of the network does 

not proportionately increase with any extracted material. 

This is due in the main to the fact that those chains cross linked into the network 

are end linked in the presence of chains which do not participate in the cross linking 

reaction and therefore the semi-dilute correlation length is still constant and does not 

differentiate between living chains to be cross linked and dead chains which go to form 

the sol fraction. 

After cross linking, the same number of chain entanglements are present upon 

those chains cross linked into the network structure, the process of extracting the sol 

fraction not affecting the number of chain entanglements. Hence after cross linking and 

sol fraction extraction the correlation length is still dependent upon concentration of 

polymer at cross linking. 

6. Determination of the Radius of Gyration of a Trapped Probe Chain. 

In this series of experiments, the size of a polystyrene probe chain immersed 

inside a model polystyrene network was determined in order to ascertain the dependence 

of the probe chain size on the cross link density of the network. To facilitate this, the 

coherent scattering of a perdeuterated polystyrene chain trapped inside a hydrogenous 

network was measured and the radius of gyration of the probe chain analysed in terms of 

equations 3.33., 3.34. and 3.35. 

114 



As described earlier in chapter 1 the size of a probe chain in a random medium is 

given by equation 3.41. 

in the random medium and in the unperturbed (9) state respectively, 

N is the number of segments in the probe chain 

and PQ is the mean obstacle density. 

Equation 3.41. predicts a decrease in the probe chain size with increasing 

obstacle density of the medium. However there is no direct measure of the density of the 

fixed obstacles, though for a network the obstacle density can be replaced by the cross 

link density of the network which itself is inversely proportional to the molecular weight 

between cross links. As the mean square end to end distance of the polymer chain is 

experimentally difficult to quantify and is related to the radius of gyration, it is the 

measurable R g of the polymer chain which is determined and related to the molecular 

weight between cross links of the network. 

Although it was shown in chapter 2 that for PBMPPD/DVB networks the 

swelling M c correlates well with the precursor chain molecular weight from S E C 

measurements, it is the directly determined value of the M c (S E C. ) rather than the 

model dependent value (swelling measurements) that the radii of gyration are correlated 

against. 

The size of the probe chain has been studied in two series of experiments. 

Firstly, the radius of gyration has been determined for networks dried to the bulk state, 

where equation 3 41. is theoretically most applicable. Secondly, the size of the probe 

chain has been measured for networks swollen to equilibrium in cyclohexane and 

1-exp 
'•')„ "A 

3.41. 

Where ( r 2 ) a n d ( r 2 ) 0 are the mean square end to end distances of the polymer chain 
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toluene. In principle, the probe chain experiences the same interactions when the 

network is swollen to the theta point in cyclohexane at 308K. By increasing the 

temperature above the theta temperature, the effects of any excluded volume interactions 

upon the probe chain size can be studied. 

A series of six polymer networks containing the perdeuterated PSD2 polymer as 

the probe chain were prepared in order to determine any size changes of the probe 

polymer, of which only five were studied by SANS. The molecular weights between 

cross links of these networks are given below in table 3 .3 . . 

Network M ^ g m o l ' 1 ) 

TCD 1 42,500 

TCD2 26,400 

TCD 5 18,000 

TCD 4 12,300 

TCD 6 7,900 

Table 3.3.: Molecular Weight Characteristics of 

Networks Containing the PSD2 Probe Polymer 

The molecular weight of the PSD2 probe polymer has also been determined by 

S E C . and M w has been found to be 26,000 gmol"1. Theta dimensions for this sample 

are predicted to be 44A 4 2. 

6.1. Initial Experiments on the Probe Chain Size. 

It was initially intended to study the perdeuterated polystyrene polymer PSD1, 

trapped inside a series of hydrogenous networks prepared from the AMS/DVB system in 

the dry and solvent swollen states. A series of networks were prepared for this study 

(AMSD1-AMSD5) containing 5% by mass of the probe polymer. These were studied by 

SANS and the coherent scattering determined by removal of an incoherent background 

arising from the protons of the hydrogenous material. However, the scattering from the 

probe polymer was found to be particularly weak and the probe chain size was only 

evaluated in the dry state as the probe concentration was too low in the swollen samples 

to allow a determination of the radius of gyration. 

116 



The low degree of scattering from these samples has been attributed to the 

conditions used to prepare the AMS/DVB samples. Networks prepared from the 

AMS/DVB system were deswollen by solvent exchange with cyclohexane. This 

procedure, whilst deswelling the network, was found (rather unexpectedly) to extract not 

only the sol fraction of the network but also to wash the trapped chain out of the 

network. The resulting concentration of the probe polymer was estimated to be 

approximately 1-1.5% in the dried samples from the amount of extracted material and 

the relative peak areas of the probe polymer and the sol fraction from S E C . 

measurements. 

However, an estimation of the probe chain R g for the dried samples was possible 

by fitting the scattering in the intermediate region to the Debye function (equation 3 .35 ), 

the Rg being found to increase with the cross link density of the network as shown below 

in table 3.4. Theta Dimensions for the PSD1 probe polymer are expected to be 52A. 

Network MfVgmor1 R„+Error Ik 

AMSD1 8,900 106 ±25 

AMSD4 25,200 49 ± 14 

AMSD5 45,800 52 + 10 

Table 3.4.: R £ Measurements of the 

Probe PSD1 Trapped in AMS/DVB 

Networks. 

6.2. Probe Chain Size Measured in the 'Bulk' State Using Probe Polymer PSD2. 

The coherent scattering of the perdeuterated probe chain was extracted from the 

scattered intensity by removal of an incoherent background arising from the protons of 

the hydrogenous polystyrene in the network. The concentration of the probe chain was 

determined at synthesis and was set for all networks to be 10% of the total polymer 

mass. 

Hence an incoherent background (corrected for the volume fraction of the 

hydrogenous polymer) was removed before conversion of the corrected data to units of 

absolute scattering as described above. A typical corrected data set is shown below in 
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figure 3 .7., the errors of which again arise from Poisson counting statistics produced by 

the COLETTE program. 
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Figure 3.7.: Corrected Small Angle Scattering from Probe Chains Trapped in 

Polymer Network 

The radius of gyration was determined using three methods. In the Guinier 

region, (where Q< Rg~l) the R g is evaluated from both the Guinier approximation 

(equation 3.33) and the Zimm expression (equation 3.34). The Zimm expression has 

also been used to determine the molecular weight of the probe chain from the scattered 

intensity extrapolated to zero scattering vector. 

In the intermediate Q region ( R g " l < Q< b"1) the scattering of the polymer can be 

modelled as a Gaussian coil and the Debye equation (3.35) can be used to determine the 

radius of gyration of the probe chain. Figure 3 .8 shows a representative data set in the 

Guinier representation used to determine the polymer chain size. In the Guinier 

approximation, R g is determined from the slope of a plot of Ln(Q) versus Q , whilst in 

the Zimm expression the R g is determined from the ratio of the slope to intercept in a 

plot of I _ 1 (Q) versus Q 2 . 
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Figure 3.8.: Guinier Plot used to Determine the Radius of Gyration 

of the Probe Chain 

The Zimm expression has also been used to determine the molecular weight of 

the polymer chain from the intensity at zero scattering vector 3 4 following equations 3.42. 

and 3 .43. 

K'c _ 1 

Where m d is the segment molecular weight of the deuterated polymer 

N a is Avogadro's number 

and Ab = (bd-bh) is the scattering contrast factor between deuterated and 

hydrogenous polymers. 

By substituting 3 .43 into 3 .42 and neglecting the final term in the limit of Q=0 the 

polymer molecular weight can be obtained from equation 3 .44. 

cNAb2 

Hda/ \ A /dCl 
M m 

0=0 

3.44. 

1 + + 2A,c 3.42. 
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For data fitted at a single concentration a correction needs to be used for R g to 

replicate the result of a full Zimm plot where the concentration is extrapolated to zero. 

This correction requires a value for A 2 and is given by equation 3.45. 

( R ) =(R) (l+2AMwc) 3.45. 
V * / T r u e \ */A/ear ^ 2 / 

Since in any scattering experiment, it is the z-average R g that is measured, a 

correction is employed to relate this to the weight average radius of gyration given 

by equation 3 .46. 

R..=R 
(x + 2) 

. (* + !) . 

0.5 

3.46. 

Where x = 
(PD-l) 

The radius of gyration has also been determined by fitting the corrected coherent 

scattering to the Debye function (equation 3.35.) in the Zimm and intermediate Q 

regimes (0 < Q(A _ 1) < 0.12). using the GENPLOT software package38. A typical fit to 

the data is shown below in figure 3.9. 
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Figure 3.9.: Gaussian Fit to Corrected Scattering Data from the Debve Equation in 

the Intermediate O Region. 
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Figure 3.10. shows the Zimm plots determined from the coherent scattering of 

the probe chain from which it can be seen that networks with higher cross link densities 

show an increase in the slope of the Zimm plot, resulting from an increase in the size of 

the probe chain. Values of the probe chain radius of gyration determined from the 

Guinier and Zimm approximations as well as from fitting the scattered intensity to the 

Debye function are shown below in table 3.5. along with the probe chain molecular 

weight determined by extrapolating the fitted Debye function to zero scattering vector. 
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Figure 3.10.: Zimm Plots and Fits to Corrected Data from Dry Networks 

Values of the radii of gyration quoted in table 3 .5 ., determined from all methods 

have been corrected by equation 3 .46. No correction was made for the data fitted from a 

single concentration to the Zimm equation using equation 3.45 as it was assumed, 

following the work of Cotton 3 9 that the second virial coefficient was zero for the 

deuterated probe chain trapped within the hydrogenous matrix. Values of the scattering 

lengths of PS-H and PS-D used to determine the contrast factor and hence the molecular 

weight of the deuterated polymer in equation 3 .44. were taken from reference 11. 
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Polymer 

Network 

Cross link 

Density-Mn 

Probe Chain Size-Rp ± Error /A Molecular 

Weight-Probe 

Polymer 

Network 

Cross link 

Density-Mn Guinier Zimm Debye 

Molecular 

Weight-Probe 
PSD2-PSH18 21,800* 39 + 2 44 + 2 38 ± 1 14,900 ± 300 

TCD 1 61,800 38 ± 3 48 + 1 40 ± 1 13,300 ± 100 

TCD2 30,600 38 + 2 45 ± 2 39 ± 1 15,500+ 100 

TCD 5 21,600 40 + 4 50+1 41 + 1 12,600+ 100 

TCD 4 14,300 46 ± 3 48 ± 3 45 ± 2 18,400 + 300 

TCD 6 9,400 56 + 3 61 + 1 51 + 1 17,000 + 500 

Table 3.5.: Radii of Gyration and Probe Chain Molecular Weight for 

Dry Network Samples Containing PSD2 Probe Polymer. 

*N.B. M c Refers To The Molecular Weight Of The Matrix Polymer 

As seen in table 3.5., the molecular weight of the probe chain trapped within 

networks and in the uncross linked bulk state determined by S A N S, is found to be 

consistent with the molecular weight of the probe polymer determined directly by the 

S E C . measurements detailed in chapter 2. From the result of the PSD2-PSH18 sample 

(probe polymer in an uncross linked matrix-note the term cross link density refers to the 

molecular weight of the matrix polymer), it is seen that the presence of the cross links 

within the networks does not cause any aggregation of the probe chains and the 

measured value of the radius of gyration determined corresponds reasonably well to the 

size of a single probe polymer chain. 

Although table 4.5 shows broad agreement between the determined values of the 

radii of gyration from all three methods of analysis, it is the results from the fit to the 

Debye equation which are given more credence as the number of data points within the 

Guinier region (in the available Q range of the machine) are limited for a probe polymer 

having a radius of gyration around 50A. However there are considerably more data 

points available in the intermediate Q region on the LoQ instrument and therefore results 

from the Debye fit are believed to be more reliable. Results from the Debye fit are 

shown below in figure 4.11. together with the associated errors arising from the fit to the 

data. 
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Figure 3.11.: Values of the Radius of Gyration Determined from the 

Debye Fit to Corrected Data. 

Two distinct regions of behaviour can be seen in figure 3 .11. At low cross link 

densities corresponding to a molecular weight between cross links higher than a critical 

value of M c around 20,000 gmol"1 the size of the probe chain is found to be given by the 

theta dimensions of the polymer-between 39 and 40A. The unperturbed Gaussian chain 

dimensions of the PSD2 probe chain have been measured in the bulk state in sample 

PSD2-PSH18 where the R g of the probe polymer in an uncross linked matrix polymer 

(Mw=22,000) have been found to be 38A by fitting the scattered intensity to the Debye 

equation. Therefore it can be seen that in low cross link density networks the probe 

chains are not aggregated and the dimensions of the bulk probe chains are consistent 

with the assumption that the probe polymers adopt an unperturbed Gaussian 

conformation more frequently seen in the dimensions of polymers in the uncross linked 

bulk state where unperturbed Gaussian conformations have been observed for bulk 

samples of poly(styrene)39, poly(methyl methacrylate)40 and poly(ethylene)41. 

However for networks where the M c is lower than this critical cross link density, 

the radius of gyration of the probe polymer is found to increase with cross link density in 

a manner not predicted by the Edwards/Vilgis theories" which suggest a decrease in 

the probe chain size with decreasing molecular weight between cross links. For the most 

123 



highly cross linked sample investigated here (network TCD 6-M c 9,400 g mol" ) the 

radius of gyration of the trapped chain has been found to be increased by more than 30% 

of the unperturbed dimensions of the probe chain. 

The reason for the increase in the probe chain size is somewhat unclear The 

molecular weight from the S.A.N.S. data indicates that the probe chains are not 

aggregated in any of the networks studied here and therefore the increase in size reflects 

direct increase in the size of the probe chains. Therefore, as the probe chains are not 

aggregated in high cross link density networks, it seems certain that the probe chain 

"expands" under the conditions of high cross link density, in a manner not explained by 

any current theoretical model. No reason for this behaviour can be advanced as none of 

the theoretical models currently available to describe the conformation of the chain 

consider the effect of cross links on the end-to-end distance and hence the radius of 

gyration of the probe chain. Clearly, the Edwards/Vilgis models do not provide an 

explanation of the behaviour of the chain within the polymer network and as such with 

only limited experimental evidence and no theoretical model, only limited conclusions 

regarding the behaviour of the probe chain within the bulk network can be drawn. 

6.3. Probe Chain Size in Solvent Swollen Networks. 

The size of a probe chain has been studied in networks swollen to equilibrium in 

both cyclohexane and toluene. Here the coherent scattering from the probe chain has 

been extracted from the SANS profile by removal of the "flat" background arising from 

the incoherent scattering of both the hydrogenous network polymer and the swelling 

solvent, the isotopic composition of the solvent being chosen such that the scattering 

length density of the solvent exactly matched that of the hydrogenous polystyrene, thus 

eliminating the coherent scattering of the hydrogenous polystyrene chains of the 

network. 

The incoherent background removed from the measured SANS pattern was 

corrected for the volume fraction of the perdeuterated polystyrene probe chain in the 
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swollen network using data obtained from swelling measurements presented in chapter 2, 

section 5.3. A typical corrected data set is shown below in figure 3.12., the errors of 

which again arise from the Poisson counting statistics produced by the COLETTE 

program. 
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Figure 3.12.: Corrected Small Angle Scattering from the PSD 2 Probe Chain 

Trapped inside Network T C P 5 Swollen to Equilibrium in Cvclohexane at 308K 

Examination of figure 3 .12. shows clearly two important features of the coherent 

scattering arising from the trapped probe chains. Firstly the scattering from the trapped 

chains is found to be somewhat more noisy than that found from the bulk samples, and 

secondly the scattering is noted to be considerably weaker from probe chains in swollen 

networks when again compared to the dry samples. 

Both of these features arise from the much lower concentration of the probe 

chain in the swollen networks, in all cases the probe chain concentration has been 

determined empirically from swelling measurements to be less than 2.5% (v/v). The low 

concentration of probe chain results in data of relatively poor quality, obtainable only by 

counting for significantly longer periods of time. Although it was originally intended to 

determine the probe chain size in networks swollen in cyclohexane at 308, 313, 318 and 
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323K, the lack of experimental time available coupled with the long acquisition times 

needed for the collection of data with acceptable signal to noise ratio's prevented the 

measurement of the probe chain size in networks swollen to equilibrium in cyclohexane 

at 323K As noted above, figure 3 12. shows the coherent scattering from probe chains 

in cyclohexane swollen networks to be considerably weaker leading to data of noticeably 

poorer quality as compared to the bulk samples. For networks swollen in toluene this 

situation is accentuated to the point that after subtraction of the appropriate incoherent 

background no measure of coherent scattering could be observed from which to evaluate 

the probe chain size as shown below in figure 3 13. 

The absence of any coherent scattering is again attributed to the low 

concentration of probe polymer in the gel. In toluene swollen networks the volume 

fraction of the probe polymer is in all cases calculated from swelling measurements to be 

less than 0.8% (v/v) and it is therefore assumed that the degree of contrast between the 

perdeuterated probe polymer and the 'hydrogenous' background is not sufficient to 

observe the scattering from such a lov concentration of polymer. 
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Figure 3.13.: Scattering from Networks T C D 1, TCD 4 and TCD 6 After 

Subtraction of the Incoherent Background from the Network and Swelling Solvent. 
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Small angle scattering data from experiments on networks swollen to equilibrium 

in cyclohexane at 308, 313 and 318K were analysed in both the Guinier and intermediate 

regions to determine the radius of gyration of the probe chain. In the intermediate Q 

region the observed coherent scattering was again fitted using equation 3.35. to the 

Debye function-a typical fit to this being shown in figure 3 .14. 
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Figure 3.14.: Gaussian Fit in the Intermediate 0 Region to Corrected Scattering 

Data from Probe Chain PSD 2 in Network TCD 5 Swollen in Cvclohexane at 308K. 

In the Guinier Q region equation 3.34. has again been used to evaluate the probe 

chain size by fitting the data to a Zimm plot of the reciprocal intensity versus Q in the 

range 0 <, Q2(A"2) <> 0.0004. A typical fit to the Zimm expression is shown below in 

figure 3 .15 , the least squares fit to the data shown being obtained from fitting within the 

Guinier region only. 

No use was made here of the Guinier approximation in the measurement of probe 

chain size as the relatively poor statistical quality of the data was found to lead to 

spurious results where the radius of gyration was measured to be of the order 300-800A 

with an inherently large error associated with the fit of approximately ± 50A. 
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Figure 3.15.: Zimm Plot from PSD2 Probe Chain Trapped inside Network TCD 1 

Swollen to Equilibrium in Cvclohexane at 308K 

A similarly large uncertainty exists in the data fitted to the Zimm approximation, 

which although not as magnified as that found with the Guinier approximation highlights 

the noisiness of the data obtained from the swollen networks. These statistical errors are 

further augmented by the relatively few number of data points (within the available Q 

range of the machine) with which to study the Guinier scattering region of the probe 

polymer. 

For polymer chains with an estimated radius of gyration of 50A there are as few 

as five data points lying within the Guinier region, however as the LoQ instrument 

produces around eighty data points within the intermediate region results from fitting to 

the Debye function are given more credence. 

Values of the probe chain size as determined from both the Zimm and Debye 

expressions are shown below in table 3.6. All values of the radii of gyration have been 

converted to a weight average radius of gyration from the measured z-average radius of 

gyration following the correction given by equation 3.46, whilst values determined from 

the Zimm expression have been corrected by equation 3 .45. for the effects of fitting the 
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data at a single concentration. Values of the second virial coefficient used in this 

correction were obtained from The Polymer Handbook1 9 , while values of polymer 

concentration and the polymer molecular weight were taken from the swelling and 

S E C . results presented in chapter 2. 

Polymer 

Network 

R„ ± Error / A (Zimm Model) R„ / A ± Error (Debye Model) Polymer 

Network 308K 313K 318K 308K 313K 318K 
TCD 1 35 ± 4 31 ± 5 42 ± 5 42 ± 1 47 ± 1 46 ± 1 
TCD 5 34 ± 5 3 7 ± 4 39 ± 5 42 ± 1 45 ± 1 48 ± 1 

TCD 4 35 ± 5 43 ± 5 48 ± 6 44 ± 1 51 ± 1 52 ± 1 

TCD 6 38 ± 4 42 ± 5 46 ± 4 45 ± 2 50 ± 2 49 ± 5 

Table 3.6.: Radii of Gyration of the PSD 2 Probe Polymer Trapped in Networks 

Swollen in Cvclohexane Determined from the Zimm Equation and Debye Model. 

The absolute intensity determined by extrapolation to zero scattering vector of 

the fit to the Debye equation has been used in equation 3.44. to determine the molecular 

weight of the probe polymer, the results of which are shown below in table 3 .7. 

Polymer 

Network 

Probe Polymer Molecular Weight + Error / gmol"1 Polymer 

Network 308K 313K 318K 
TCD 1 40,800 ± 1,000 37,600 + 600 42,800 + 700 
TCD 5 20,300 ± 700 19,600 ± 500 30,300 + 800 

TCD 4 37,100 + 300 35,100 + 700 34,300 ± 400 

TCD 6 18,400 ±2,200 29,900 + 8,000 23,400 + 7,300 

Table 3.7.: Probe Chain Molecular Weight Calculated from the Intensity at Zero 

Scattering Measured from the Debye Expression. 

Two important features can be seen from the results of the fit to the Debye 

function presented in table 3.6. For networks swollen to any given temperature in 

cyclohexane the radius of gyration of the probe polymer is found to be independent of 

the cross link density of the network, it is noted that for networks swollen to equilibrium 
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in cyclohexane at 308K, (the theta point), the radius of gyration of the probe chain is 

found to take the value predicted from the ideal chain dimensions. Secondly, on 

increasing the temperature of any given network above the theta point, the size of the 

probe increases as might be expected following an increase in the quality of the solvent in 

the system. 

Table 3.7. shows the molecular weight of the probe chain determined by SANS 

to correspond well to the value obtained from the S E C. measurement of the molecular 

weight. This is found to be in good agreement despite the errors introduced into the 

calculation from the determination of the probe chain concentration (via the swelling 

ratio of the network) and also from the lack of suitable data points in the Guinier region 

which would be expected to influence strongly the extrapolation of the Debye fit to zero 

scattering vector (and hence the molecular weight of the probe polymer). 

These results indicate that the trapped probe chain is behaving in a manner similar 

to that of a flexible chain in a semi-dilute solution without cross links. Conformational 

studies of the behaviour of polymer chains in semi-dilute solutions have been 

undertaken25 3 1 " 3 3 1 1 2 and the results obtained compared to the predictions of both mean-

field and scaling theories • . For semi-dilute solutions of flexible polymers in good 

solvents, scaling theory predicts that the radii of gyration and screening length of the 

polymer chains are dependent on the molecular weight and concentration of the polymer 

and the degree of excluded volume in the system (usually expressed as a function of the 

temperature of the system relative to the theta temperature of the system). For a semi-

dilute solution of polymer in a good solvent (the so-called region 2 of reference 43), 

scaling theory predicts the radius of gyration to be given by equation 3 .47. 

/ ? j * M r " V / 4 3.47. 

Where M is the molecular weight of the polymer, 

c is the polymer concentration (g cm"3), 

and x is the reduced temperature of the system given by equation 3 .48. 
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r-&T 

T = -

where 0 T is the theta temperature of the system. 

3.48. 

These predictions of scaling theory for the effects of polymer molecular weight 

and concentration on the radii of gyration in semi-dilute solution have been confirmed by 

S A N S, studies on solutions of polystyrene in carbon disulphide where Daoud el al 

found the radius of gyration of hydrogenous polystyrene chains decreased with 

concentration with the predicted scaling exponent of -0.25. Cotton et al further 

extended this work to study the temperature dependence of the radius of gyration and 

the screening length for solutions of polystyrene in cyclohexane in the temperature range 

305K to 340K and from this constructed a phase diagram of the cross-overs between 

different regions as a function of polymer concentration and the reduced temperature. 

The radii of gyration of a labelled fraction of perdeuterated polystyrene chains 

dissolved in a solution of hydrogenous polystyrene (total polymer concentration 0.15 
3 3 gem , concentration of PSD 0.01 gem i.e. c - P S D « c*), in hydrogenous cyclohexane 

was measured and it was found that the radius of gyration of the "probe" increased with 

the temperature of the system with the expected dependence upon the reduced 

temperature being observed for solutions between 313K and 340K. However, between 

the theta point (for PSD in cyclohexane @j=303.5 ± 0.5K) and 313K, some deviation in 

behaviour was observed which was attributed to a crossover to a concentrated regime 

(region 3 of reference 43) where the radius of gyration of the polymer is dependent only 

on the molecular weight of the polymer chain. 

In region 3, the so-called semi-dilute 0 region, the radius of gyration is predicted 

to be given by equation 3 .49 where it can be seen that the radii of gyration are not 

expected to be dependent on the polymer concentration or the excluded volume of the 

system. 

RL

X*M 3.49. 
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While scaling theory predicts two semi-dilute regions of behaviour, mean-field 

theory predicts a further region of behaviour44, region 2A-the so called semi-

concentrated region not predicted by the re normalisation group theory approach. In 

region 2 A the radius of gyration is expected to be given by equation 3.50. 

R2

g=Rl0(\ + K r V 2 ) 3.50. 

Evidence for this regime of behaviour has come from the work of Richards et 

al who studied the polystyrene cyclohexane system (again by doping a small fraction of 

the hydrogenous polymer with perdeuterated polymer) in the concentration range 0.5 < c 

(g cm ) < 0.82. at a temperature of 333K, where it was found that the radius of gyration 

was linearly dependent with the reciprocal of the square root of the total polymer 

concentration. Above this concentration range, the radius of gyration was found to be 

given by the unperturbed dimensions of the polymer. 

The predictions of mean-field and re normalisation group theories for the 

behaviour of polymer chains in semi-dilute and concentrated polymer solutions are 

summarised below in table 3.8, showing the relationships between the screening length, 

radius of gyration, molecular weight, concentration and reduced temperature of the 

system. 

Region R2

g / SL Rg / M F £ 2 / S L £ 2 / M F 

2 M c - 1 / 4 x 1 / 4 M c - 1 / 5 x 1 / 5 C -3 /2 T - l / 2 C -6/5 T -4/5 

2A R ^ 0 [ l + k c - l / 2 x 1 / 2 ] 

3 M M c-2 

Table 3.8.: Theoretical Predictions for the Rg and Screening Length of Polymer 

Chains in Semi-Dilute Solutions Following the Phase Diagram of Daoud. 

It might therefore be expected that the swollen gel could fall into any one of 

these three concentration regimes, depending upon the degree of swelling of the network 

and the temperature of the system. As noted earlier in section 5 of this chapter, the 
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correlation length of the networks are thought to be dependent only upon the synthetic 

conditions employed in the preparation of the networks and therefore the predicted 

scaling behaviour of the correlation length is of no use in the determination of the 

position of the swollen networks on the phase diagram. Therefore the variation in the 

radius of gyration of the probe chain with polymer concentration and reduced 

temperature is the only method of determining the position on the polymer phase 

diagram. 

The variation of the radii of gyration of the probe chains with the polymer 

concentration at fixed temperatures are shown below in figures 3.16.a-c. All three 

graphs have been plotted in double logarithmic format so as to determine the scaling 

exponents of the radii of gyration. 
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Figure 3.16. a-c: Variation in Probe Chain Size with Concentration for Fixed 

Temperatures at 308. 313 and 318K. 
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The following scaling relationships can then be deduced from the least-squares fit 

to the data. 

Figure 3.16 a : Log (R g) = (1.67 ± 0.03) + (0.05 ± 0.04) Log (c) 

Figure 3.16 b : Log (R g) = (1.71 ± 0.05) + (0.04 ± 0.07) Log (c) 

Figure 3.16 c: Log (R g) = (1.73 ± 0.03) + (0.06 ± 0.04) Log (c) 

Figures 3.17. parts a-d below show the variation of the radii of gyration of the 

probe chain as a function of the reduced temperature of the system for networks with a 

constant molecular weight between cross links. All figures are again plotted in double 

logarithmic format so as to determine the relative scaling exponents. The value of the 

theta temperature of PSD in cyclohexane was taken from the work of Cotton 3 3 who 

found the theta temperature to be 303 .5 ± 0.5K. 
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Figure 3.17. a-d: Variation in the Radii of Gyration of Probe Chains in Swollen 

Networks as a Function of the Reduced Temperature of the System. 
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The following scaling relationships were obtained from the least-squares fit to the 

data relating the probe chain radii of gyration to the reduced temperature of the system. 

Figure 3.17 a.: Log (R g) = (1.78 ± 0.08) + (0.09 ± 0.05) Log (x) 

Figure 3.17 b : Log (R g) = (1.82 ± 0.02) + (0.11 ± 0.02) Log (t) 

Figure 3.17 c: Log (R g) = (1.92 ± 0.06) + (0.15 ± 0.04) Log (x) 

Figure 3.17 d.: Log (R„) = (1.80 ± 0.07) + (0.08 ± 0.05) Log (x) 

From the scaling exponents derived from figures 3.16. and 3.17. it can be seen 

that the changes in the radii of gyration of the probe chains are consistent with the 

behaviour expected for a flexible polymer in the semi-dilute theta region (region 3) of the 

polymer phase diagram. Figure 3 .16 shows that the size of the probe chain increases by 

a small amount with an increase in the concentration of the polymer in the network. In 

region 2 it would be expected that the R g of the probe would decrease with the 

concentration following a scaling exponent of -1/4. Similarly i f the probe chain were 

within region 2A, the square of the probe radius of gyration should increase with a 

scaling exponent of -1/2. Clearly the behaviour observed shows the size of the probe 

chain to be only slightly dependent on the polymer concentration, with the radius of 

gyration increasing with the volume fraction of polymer in the gel. 

The scaling exponent is found to be zero within the large error associated with 

the fit to the data over the relatively small fitting region, therefore indicating that the 

network is within region 3 of the phase diagram. From figure 3.17. the radius of 

gyration is found to increase with the reduced temperature of the system, though the 

magnitude of the scaling exponent is found to be somewhat less than that expected for 

regions 2 and 2A on the phase diagram. Again within the margins of error associated 

with the fit to the data, the scaling exponents can be seen to be zero, further indicating 

that the probe chain is within the semi-dilute theta region. 
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It is noted however that both the excluded volume and concentration 

dependencies are inextricably linked and cannot be completely separated from each 

other. Thus as the temperature is increased the polymer concentration decreases (due to 

swelling of the network) as well as the increase in the excluded volume. As the 

concentration changes the influence of the excluded volume is changes due to the change 

in the number of intermolecular contacts. Consequently, the agreement with the 

hypothesis of region 3 behaviour arising from the data of figure 3 .16. may be somewhat 

fortuitous, though given the nature of all of the available data, it is still thought that the 

gels behave as if in the semi-dilute theta regime. 
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7. Conclusions. 

Small angle neutron scattering has been used to measure the correlation length of 

a series of end linked polymer networks swollen to equilibrium in cyclohexane in the 

temperature range 308K to 323K and in toluene at 298K. The measured correlation 

length was not found to be dependent upon the polymer concentration of the network as 

expected following the predictions of scaling and mean-field theory. The correlation 

length was found to be dependent only upon the conditions of synthesis employed in the 

preparation of the networks. The synthetic route to the networks reling upon the cross 

linking of a semi-dilute solution of polystyrene in benzene, where the correlation length 

describes the separation of temporary chain entanglements along the chain backbone and 

is fixed by the concentration of the solution. 

In a semi-dilute solution these cross links can disentangle over long time scales as 

chains diffuse through the solution, however following the end linking of the chains into 

a network structure these temporary chain entanglements become frozen into the 

network structure and cannot disentangle due to the presence of the cross links in the 

solution. Variations in the correlation length with the temperature of the system after 

cross linking reflect only changes in the quality of the solvent in the system and follow 

the predictions of scaling theory for the correlation length of semi-dilute solutions. 

Similar behaviour suggesting that the network behaves as a semi-dilute solution 

in region 3 of the polymer phase diagram are found from the determination of the radius 

of gyration of probe chains trapped within networks swollen in cyclohexane in the 

temperature range 308K to 318K. Here the radius of gyration of the probe is found to 

be independent of the cross link density of the network (and hence the volume fraction of 

polymer in the gel) following the predictions of scaling theory for the size of the probe 

chain in a semi-dilute solution at fixed temperature. Measurements of the radii of 

gyration as a function of temperature are somewhat ambiguous as increasing the 

temperature of the system causes a decrease in the polymer concentration of the gel as 

well as an increase in the solvent quality and hence excluded volume interactions in the 
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gel, however the results obtained from this measurement are fortuitously in line with the 

predictions of scaling theory for the semi-dilute theta regime. 

The size of a probe chain trapped within a network has been measured by 

S A N S, as a function of the cross link density of the network to establish the validity of 

the predictions for a chain in a random medium from Edwards and Vilgis. Whilst the 

theory of a chain in a random medium predicts a decrease in the probe chain size with 

increasing obstacle density, the situation found here is markedly different. With an 

increasing cross link density in the network, the radius of gyration of the probe chain has 

been found to be increased above the unperturbed theta dimensions of the network, 

though the molecular weight of the probe chain shows no evidence of phase separation 

and hence probe chain aggregation as the cross link density of the network is increased. 

For low cross link density networks theta dimensions are observed for the probe chain 

whilst for the most highly cross linked networks, radii of gyration approximately 30% 

greater than theta dimensions are found.. Therefore it seems apparent that the predictions 

for a chain in a random medium cannot be applied to the case of a chain trapped within a 

network. 

The reasons for the increase in the probe chain size are however somewhat 

poorly understood, as no current theories adequately describe the behaviour of the probe 

chain within a cross linked network and only a small amount of data was generated from 

the SANS experiments undertaken here. Clearly more work is needed in this area to 

understand fully the effects of cross link density on the conformation of chains trapped 

within model networks. 
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CHAPTER 4 

QUASI-ELASTIC L I G H T SCATTERING. 

1. Introduction. 

The scattering of visible radiation by matter has been used for some time in the 

determination of molecular structure. Interaction between a photon and a molecule can 

take one of a number of forms, ranging from an exchange of energy between the photon 

and the translational, rotational, vibrational or electronic degrees of freedom of the 

molecule to elastic scattering where there is no absorption of the radiation impinging 

upon the molecules in its path, inducing an oscillation in the electron density of the 

molecule, which accelerates the particle causing it to radiate photons in all directions. 

Where there is no absorption of the radiation the scattering is said to be elastic, a 

process which arises from interaction of the photon and the low energy rotational and 

translational degrees of freedom of the scattering molecule-the process being known as 

Rayleigh scattering1. The determination of the peak intensity of the Rayleigh scattered 

radiation has been used to determine static properties such as the molecular weight, size, 

shape and the second virial coefficient of dilute polymer solutions. However, thermal 

motion of the scattering species causes the elastically scattered Rayleigh line to be 

broadened in frequency slightly, giving rise to Quasi-Elastic Light Scattering (QELS) 

from which information on the motion of the solute can be obtained. 

It is only in recent times with the development of coherent light sources such as 

lasers that the study of the small frequency shifts and hence the optical line width has 

become possible, thus leading to the measurement of the dynamic properties of the 

polymer in solution with QELS. In dilute solution it is the translational diffusion 

coefficient which is determined, from which the particle size can be deduced as well as 

the polydispersity of the polymer. However in concentrated solutions, it is the collective 

diffusive motions of polymers that are studied. 
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In this work QELS has been used to study the dynamic behaviour of a series of 

model polymer networks having various cross link densities swollen in cyclohexane in 

the temperature range 308-323K and in toluene at 298K. The dynamic behaviour of a 

series of "equivalent" semi-dilute solutions having the same polymer concentration have 

also been studied under the same conditions and the differences in the dynamic properties 

established. 

Further to this, a series of model polymer networks have been prepared 

containing a known fraction of unattached, "probe chains", which are free to diffuse 

through the network. These networks have been studied when swollen in cyclohexane 

and toluene and an attempt made to extract the diffusion coefficient of the trapped chain 

so as to relate this to the theories describing the dynamic behaviour of a polymer chain 

within a Jietwork. A series of equivalent ternary solutions having the same polymer 

concentration have been prepared and studied so as to ascertain any differences in the 

dynamic behaviour of the probe chain within the gel and the solution of the same 

polymer concentration. 

In order to determine the effects of the polymer matrix (both cross linked and in 

semi-dilute solution) on the diffusion of the dilute probe, QELS has also been used to 

determine the diffusion coefficient of the probe chain in "free" solution in cyclohexane in 

the temperature range 308-323K and in toluene at 298K. 

2. Theoretical Aspects of P E L S . 

In order to properly understand the theories describing QELS some knowledge 

of the origins of light scattering are required, a brief summery of which is given here, a 

more complete explanation being given in the literature 

2.1. The Origin of the Scattering of Light by Macromolecules. 

The first description of the scattering of light by gases was proposed over a 

century ago by Lord Rayleigh using classical electromagnetic theory5. In a simple 
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picture scattering particles with small dimensions (< A/20) compared to the wavelength 

of the incident photons (X) are considered to be optically isotropic and to scatter as 

individual points. When plane polarised light interacts with a particle of polarisability a, 

the sinusiodally oscillating incident electric field (E) impinging on the particle induces an 

electric dipole within the particle4, the dipole moment u being given by equation 4.1. 

H - aE = aE0 Qxp(icot) 4 1. 

The induced electric dipole behaves as a secondary source of radiation and 

radiates a plane polarised wave of exactly the same frequency as the incident beam in all 

directions. At any point P, the intensity of scattered light(I) at an angle 9 to the incident 

beam arising from a unit scattering volume is given by equation 4.2. 

where is Avagadro's constant, 

r is the distance between the scattering particle and the observer, 

X0 is the wavelength of the incident radiation, 

0 is the scattering angle, 

I 0 is the intensity of the incident photon 

M is the molecular weight of the scattering centre 

and dn/dc is the refractive index increment 

The dependence of the scattered intensity on the observation distance (r) and the 

incident intensity can then be removed by expressing the scattering in terms of the 

Rayleigh ratio Rg given by equation 4.3. 

Therefore, equation 4.2. can be rewritten as equation 4.4. 

/ = 
2n2MI0(dti)2 

sin 2 0 4.2. 
r2X\NA \dc) 

In Mc dn 2 sin'0 R 0 4.4. 
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Equation 4.4. has been verified experimentally by a light scattering determination 

of Avagadro's number, therefore from a knowledge of the mechanical and optical 

characteristics of the instrument used, the Rayleigh ratio can be determined for any gas. 

The scattering of light by liquids is somewhat more complicated since the 

molecules are not independent of each other nor distributed at random. This leads to a 

reduction in the scattered intensity due to destructive interference between the scattered 

photons. The thermodynamic treatment of the scattering of light by liquids was 
f 7 o 

developed independently by both Einstein and Smoluchowski . They described the 

scattering in terms of fluctuations in the refractive index increment (dn/dc) arising from 

Brownian motion of molecules in the liquid causing the formation (and destruction) of 

"holes" within the liquid leading to density fluctuations and hence changes in (dn/dc) 

which result in scattering from the liquid. 

The scattering from a dilute solution containing small particles (< A/20) has been 

described by Debye 9 1 0 who showed that when a solute is dissolved in a liquid, the 

scattering from any volume element again arises from liquid inhomogeneities, however 

an additional contribution from fluctuations in the solute concentration is present above 

that from the solvent alone. 

For much larger particles (> A/20), scattering is not observed to be angularly 

symmetrical. This feature, known as Debye scattering takes the form of a decrease in the 

scattered intensity with increasing angle. This reduction of intensity arises from 

intramolecular effects occurring as the bigger particle can no longer be considered as a 

point scatterer, instead it is thought of as a collection of point scattering centres. 

The interference effects can be seen below in figure 4.1. where the radiation 

arriving from the light source is incident simultaneously upon two scattering centres, A 

andB. 
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L A S E R 

O, 

Figure 4.1.: Representation of the Geometry of Debve Scattering. 

By analysing the path length difference between scattered radiation arriving at Oj 

and O2 from the two scattering centres, it can be seen that radiation arriving at O2 will 

have a different phase to that at Oi as the path length difference between waves 

scattered from the two centres increases. The angular distribution of the scattering is 

measured in terms of the particle scattering function P(Q) 1 1 , which corresponds to the 

ratio of the real intensity of scattered radiation in a given direction to the theoretical 

intensity in the same direction measured in the absence of intramolecular interference-as 

defined by equation 4.5. 

fyf,Experimental 4.5. 

As in any scattering experiment, the scattering is dependent on both wavelength and 

scattering angle, the modulus of the scattering vector Q being given by equation 4.6. 

0 47m 
sin 

The form of the P(Q) depends upon the shape of the scattering particle, various 

models having been developed to describe the scattering from particles having different 

shapes For a polymer such as polystyrene, the scattering is described in terms of a 

Gaussian coil model, the scattering function of which is given by equation 4.7. 
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P(Q) = lT(exp(-u) + u-\) 4.7. 

where u = Q2Rg 

and R g is the mean square radius of gyration. 

By studying the angular distribution of the scattered radiation it is therefore 

possible to deduce information on the shape of the scattering particle from the particle 

scattering function while determination of the molecular weight of a polymer is also 

possible by measuring the scattered intensity as a function of the scattering vector and 

concentration. In the limit of low Q, all scattering functions describing the various 

shapes of molecules reduce to the scattering function given in equation 4.8. 

P(Q) = 4.8. 

2.2. Quasi Elastic Light Scattering. 

Similarly to static light scattering, the technique of QELS involves the study of 

the scattering behaviour of polymer solutions. However, in QELS, the dynamic 

component of the scattered intensity is followed so as to determine the diffusive 

behaviour of the polymer chains. To this end, the technique is necessarily more 

technologically intense than static light scattering as the changes of the scattered intensity 

with time need to be considered. An introduction to the technique is given here, a more 

complete explanation of the method being given in the literature 1 4" 1 8. 

On a macroscopic scale a polymer solution (above the theta point) is 

homogeneous as it is thermodynamically unfavourable in the absence of external forces 

for solute to preferentially occupy any one region . However, on a microscopic scale 

homogeneity cannot be assumed. Brownian motion is a thermally induced process which 

cannot be mathematically described and which causes random motion of the solute 

particles within the solution. 
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In a manner similar to the Doppler effect, the scattered light arriving at the photo 

detector is broadened in frequency with a frequency distribution centred upon co 0 

described by the function S(co). The correlation function of the electric field G^x), is 

also a measure of the frequency distribution and is the Fourier transform of the power 

spectrum S(co). As the positions of the radiating charges are constantly changing the 

scattered electric field arriving at the detector changes with time in what would appear at 

first sight to be a noise pattern, figure 4.2. 

I 

0 
At 

*1 l 2 

At 

<I> 

At 

Figure 4.2.: Schematic Diagram of the Spectrum of the Scattered Intensity 

Arriving at the Detector. 

Essentially the fluctuations in the scattered electric field are random, but the value 

at any given instant is mutually related (correlated) to the value at some previous instant. 

The strength of the correlation between the scattered intensity at points t( and t 2 falls off 

as the separation of the measurements (At) increases, until at large times with respect to 

the motion when the values are uncorrelated. It is from the nature of this decay that 

information on the motion giving rise to the fluctuations can be obtained. 

The measure of the temporal correlation in the intensity (related to the square of 

the electric field of the of the scattered radiation) is described mathematically by the 

intensity autocorrelation function G (x) which measures the similarity of the essentially 

random fluctuations in the scattered intensity and is given by equation 4.9. 
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G2{T) = (/(/)/(/ + r)) = lim. J / ( / ) / ( /+ r>// 4.9. 
0 

• 2 Initially at t=0, the autocorrelation function has a value of ( i j - However with 

increasing time, values of I(t) and I(t+x) become uncorrelated and at infinite separation 

the autocorrelation function decays to ( I ) 2 . The relaxation time (x) associated with the 

decay of the correlation function is the characteristic time of the decay and is a function 

of all the relaxation processes contributing to the decay of the autocorrelation function. 

The decay of the autocorrelation function is generally described by either a single or a 

combination of exponential decays, arising from the various decay modes within the 

system. It is from the relaxation rate of the decay that information is obtained on the 

diffusion of the scattering centres and hence the particle size of the molecules. 

The intensity autocorrelation function G (x) is the unnormalised form of the 
7 

second order intensity correlation function g (x) to which it is related by equation 4.10. 

2.3. Homodvne and Heterodyne Correlation Functions 

For convenience two autocorrelation functions can be defined: The first order 

field autocorrelation function G l(x) (which contains information regarding the motion of 

the scattering centres within the solution) measures the correlation between values of the 

scattered electric field and the second order, intensity autocorrelation function G (x) 

which measures the correlation between successive values of the square of the electric 

field of the scattered radiation (the intensity). Since a photo detector does not respond 

to the electric field incident upon it and instead responds to the square of the electric 

field (the intensity), it is the second order correlation function which is determined 

experimentally and no direct information is available in the detector output regarding the 

first order field correlation function. 

GHr) 
8V) 4.10. 
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In a homodyne QELS experiment where only light scattered by the fluctuations 

under consideration impinges on the photo detector, the autocorrelation function is 

simply g (T) of the fluctuations. In this case where the scattering region is composed by 

many statistically independent contributions, the intensity correlation function is itself 

related to the first order field correlation function g\x) (the normalised form of the first 

order autocorrelation function G 1 ^ ) ) by the Siegert equation 1 4 , 1 5 given below in 

equation 4.11. 

Generally, the field impinging on the detector is not of this simple nature but it is 

possible to obtain a direct measurement of the field autocorrelation function in a 

heterodyne measurement. In this experiment, the light scattered from the fluctuations 

under consideration is mixed with unshifted light focused onto the photo detector. 

Experimentally this can be achieved either by careful optical arrangement where a 

portion of light from the laser impinges directly onto the photo detector or where the 

unshifted beam arises from static scattering species present in the illuminated volume. I f 

the amplitude of the reference beam is constant and much greater than that from the field 

arising from the fluctuations then the field and intensity correlation functions are related 

through equation 4 . 1 2 1 4 1 5 . 

where I r is the intensity of the reference beam, 

and I s is the intensity of the scattered radiation from the fluctuations. 

Equation 4.12. assumes that the reference and scattered fields are statistically 

independent and shows the measured second order correlation function to be directly 

related to the first order correlation function. 

g2(T)=\ + \gl(rf 4.11. 

r 2L g\r =1 + 4.12. 

150 



2.4. Data Reduction and Analysis 

Interpretation of the correlation function obtained from an experiment can take 

one of a number of forms, depending upon the nature of the experiment performed and 

the system under study. Probably the most commonly applied QELS experiment 

measures the homodyne correlation function arising from the motion of a dilute solution 

of a scattering species 

The scattering species can be any one of a number of moieties including synthetic 

polymers, bio-organic macromolecules, latex suspensions or dispersions of small 

particles. QELS in this form is routinely used as a tool to determine the size of the 

scattering particle. Diffusion theory relates the field correlation function for a 

monodisperse solution of a polymer1 5 through equation 4.13. 

£ ' ( r ) = exp ( -n) 4 13 

where T is the relaxation rate of the decay of the fluctuations given by 4.14. 

r = 2DQ2 4.14. 

where D is the experimental diffusion coefficient of the polymer chains. 

Substituting equation 4.13. into the Siegert relationship (equation 4.11) gives 

equation 4.15. for the homodyne scattering arising from a mpnodisperse solution of a 

polymer. 

g2(r)= l + exp(-Tr) 4.15. 

However, experimentally the unnormalised correlation function will be of the form: 

g2(T) = A + Be\p(~rr) 4.16. 

where A and B are constants depending upon the instrument used. 

Following the measurement of the diffusion coefficient of the scattering species it 

becomes possible to measure the hydrodynamic radius (R h) of the scattering particle via 

the Stokes-Einstein relationship. 
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where k B is the Boltzmann constant, 

T is the absolute temperature, 

Ho is the viscosity of the solvent, 

and D is the translational diffusion coefficient. 

The hydrodynamic radius gives the radius of a hypothetically impenetrable sphere 

having the same frictional effect in a hydrodynamic field as the polymer chain and as such 

differs in definition and usually in value from the radius of gyration of the polymer. 

Equations 4.16 and 4.17. form the basis of the use of QELS as a standard tool for the 

determination of particle size in such fields as biochemistry, colloid science and 

chemistry. 

It is only in a few rare cases, as with many biological macromolecules that a 

single molecular weight species is present in the solution. Virtually all synthetic polymer 

solutions consist of a distribution of molecular weights and consequently the correlation 

function is made up of a distribution of exponential decays having different relaxation 

rates. The expression for the field correlation function given in equation 4.13 can 

therefore be modified to equation 4.18 1 6 

where G(r) is the distribution of decay rates T. . 

G ( 0 depends upon the distribution of molecular weights and as such can be used 

in the determination of the polydispersity of a polymer sample. Determination of G(T) is 

essentially a problem of inverting the Laplace transform. The transform is known 

mathematically to be ill-conditioned and as such small changes in g ^ t ) such as those 

produced by the random noise fluctuations in the photo detector signal can result in 

dramatically different solutions of G(T). As the result of the sensitivity of the transform 

g 1 ( r ) = jG(r)exp(-rr>r 4.18. 
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to the input data, all methods of performing the inversion place additional constraints on 

the least-squares fitting procedure which may involve assuming a particular shape of the 

distribution or simply excluding all solutions which force G(T) negative or those where 

the distribution changes too rapidly 

2.4.1. Cumulants. 
9 I 99 

The method of cumulants gives the z average diffusion coefficient D 7 , and 

the second moment of G(F), |a2, providing a measure of the polydispersity of the sample. 

In the cumulants method, a polynomial of order two (or even three) is fitted to a plot of 

ln|g' zj against x and values of T and f.i 2 obtained from the first and second coefficients 
of least-squares fit as given by equation 4.19. 

l nk , ( r ) | = - f r + ^ - ^ + . . 4.19. 
1 1 2! 3! 

DC 

Where r = jrG(ryr is the mean relaxation time 
0 

rf! 

and m2 = j ( r - r ) a(r)tfr is the second moment of the distribution. 
0 

A measure of the polydispersity is given by the variance of the distribution which 

for a narrow polydispersity is given below in equation 4.20. 

f 2 4 
M. 

4.20. 

It has been noted that there are limitations associated with this type of analysis in 

the determination of polydispersity by QELS. Even in the absence of intermolecular 

interactions and internal motions the amplitude factor is proportional to M and the 

presence of size ranges beyond the bandwidth limit of the measured correlation function 

will prevent the resolution of the motion of these molecules. Similarly, i f the amplitude 

factors of these motions are buried in the experimental noise, the line width distribution 
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would disregard those size fractions Hence there are practical upper and lower limits in 

the determination of the variance. Normally this range is given by: (0.01 < ju2/r < 2), 

implying a lower limit for almost monodisperse polymers as well as polydisperse 

samples. 

2.4.2. The Kolilrausch-Williams-Watts Stretched Exponential Function. 

Analysis of QELS data using a Kohlrausch-Williams-Watts (KWW) function 

provides a method of analysis similar to that of cumulants, allowing direct measurement 

of the diffusion coefficient and polydispersity of the autocorrelation function. The 

method involves fitting the experimental correlation function to a stretched exponential 

function of the type ; given below in equation 4.21. 

g 2 ( r ) = e x p ( - l V ) 4.21 

where T is the mean relaxation rate 

and P is the variance and takes the value (0 < P < 1). 

The variance arising from the fit to the KWW function gives a measure of the 

polydispersity of the fit. Clearly, when P=l, the KWW function reduces to the more 

conventional single exponential decay given in equation 4.15. A more complex decay 

consisting of many more relaxation rates will therefore have a lower value of P indicating 

a more polydisperse fit. Although the KWW fit is not as widely used in the analysis of 

QELS data as the cumulants method, it has some distinct advantages in the resolution of 

polydisperse correlation functions where two distinct modes can be resolved In such 

cases data can be fitted to a double KWW function of the type given in equation 4.22. 

g1(r) = xl exp(-r>" ' ) + jr2 e x p ( - l V 3 ) 4.22 

where Xj measures the strength of mode i 

The double KWW fit has been extensively used in the determination of the 

relaxation rates of semi-dilute and concentrated solutions of polystyrene in diethyl 
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phthalate where relaxation rates arising from the co-operative and viscoelastic modes 

have been resolved. 

2.4.3. Inverse Laplace Transformation of P E L S Data. 

As noted earlier, it is often necessary to invoke other conditions in addition to the 

least-squares fitting procedures in order to obtain reliable and consistent approximations 

for G(r). Regularisation techniques as typified by the CONTIN program perform 

the mathematically ill conditioned inverse Laplace transformation of QELS data, 

decomposing the correlation function into a distribution of relaxation modes given by 

equation 4.23. 

CONTIN penalises solutions for G(T) that are either negative or change too 

rapidly. This is done since it is thought that although such solutions may be very 

interesting they are physically unlikely and it is therefore better to err on the side of 

caution rather than to account for an artefact that may only be noise. To this end, a term 

is added to the sum of the squares of the deviations between the experimental and fitted 

points, measuring the rate of change of G(r). For CONTIN, this term is proportional to 

the integral of the second derivative of G ( 0 over the distribution. The proportionality 

constant (a ) is called the regularisation parameter and can be varied. Clearly the choice 

of a is crucial and within CONTIN several coarsely spaced values are employed in 

sequence before a finer examination of a smaller range of a. Increasing values of a are 

generally found to lead to broadening of peaks and a removal of fine (and possibly 

spurious detail). Great care must be taken in the use of programs such as CONTIN as 

small changes in input variables can lead to great changes in the output of the program3 3. 

3. Instrumentation. 

QELS measurements were performed using a Malvern 4700 digital photon 

correlation spectrometer as shown schematically in figure 4.4. This spectrometer is a 

commercially available instrument designed to be used primarily for homodyne QELS 

r 
jp(r)exp(^—Jdr s (T) = Z 4 e x P -> 

v 0 

4.23 
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and intensity light scattering measurements. Although a Rill discussion is available in the 

manufacturers literature, a brief summary of its method of operation is given here. 

For descriptive purposes the Malvern 4700 apparatus used can be divided into 

three distinct sections. The light source used, a 50mW Ion Laser Technologies model 

5000 laser operates at a resonance frequency of 488nm. The incident power of the laser 

is monitored by the use of a photo diode power meter mounted at the head of the laser. 

The incident beam from the laser is focused onto the sample cell which is maintained in 

thermostatically controlled glass walled vat filled with xylene. 

The xylene serves two purposes, firstly to provide precise control over the 

temperature of the cell during the duration of the experiment and secondly to "match" 

the refractive index of the fluid around the scattering cell to that of the glass. Xylene 

used within the vat was maintained within a closed system so as to exclude any dust 

which may cause secondary scattering. Dust was removed from the index matching fluid 

by constantly circulating the xylene through a 0.45f.im PTFE filter between experiments. 

Light scattered by the solution was collected by a photo multiplier (PM) tube 

mounted on a goniometer arm with an angular range from 10° to 150°. The scattered 

radiation passed through a 200|itm pinhole before impinging upon the PM tube so as to 

ensure that light scattered by only one coherence area was measured by the detector29. 

The autocorrelation function was computed from the analogue signal using a Malvern 

K7032 8 bit, 128 channel digital correlator. The K7032 correlator was controlled from a 

dedicated PC using Malvern Automeasure version 5.2 software 2 8 

The 128 channel correlator (including a further 4 delay channels used to measure 

the mean base-line) was split into 8 "sub-correlators" each of 16 channels. Each of the 

sub-correlators spanned delay times from x =2 nt to x =2* n + 4 H where n=0,1,2,. . . 7 for sub-

correlators 1,2,3,... 8 respectively. This allows simultaneous measurement of multiples of 
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the sample time t from 1,2,3,4... 16, (sub-correlator 1), 2,4,6...32, (sub-correlator 2), 

through to 128,256,384...2048 for sub-correlator number 8. This has the advantage of 

measuring a wide range of delay times simultaneously and prevents the need for the 

measurement and splicing together of several correlation functions as may be necessary 

with linearly spaced channels. 

In most cases at least 5 data sets were collected from each sample, each of which 

was made up of at least 20 correlograms. These individual correlograms were 

automatically summed by the software and those outside one standard deviation deemed 

unacceptable and rejected. The remaining correlograms were then summed together and 

the data written and saved as an ASCII file. 

In general for dilute solutions the measured and calculated baseline differed by no 

more than 2.5% with signal-to-noise ratios of around 25%. In those cases where the 

samples were of low molecular weight having a low refractive index increment, the 

amount of scattering was found to be very low and collection times were substantially 

longer, in some cases of the order of several hours. In these cases, the data set may be 

that of a single measurement. For semi-dilute solutions and swollen gels, scattering was 

found to be substantially stronger and collection times of around 10-30 seconds were 

satisfactory for the generation of the correlograms. In these cases upwards of 100 

correlograms were summed together. 

Some data analysis was possible using the Malvern software (second-order 

cumulants) however as this was limited in the number options available, data was 

analysed by a specialist program developed for use with data sets generated from the 

Automeasure software3 0. Correlation functions generated by the Automeasure software 

were analysed and the data set then fitted to one of several functions using SIQELS. 

Several fitting options were available for use. 
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A single exponential function was used to fit the data arising from dilute solution 

measurements though a double exponential option was also available. A second order 

cumulants function was available for the analysis of more complex data sets produced by 

semi-dilute solutions and swollen gels, however data from these measurements were 

mostly analysed using either a single or double KWW stretched exponential function. 

The data produced by the software was then converted to a suitable format and 

transferred to a micro VAX computer where it was analysed by CONTIN so as to 

determine a distribution of diffusion coefficients. 

3.1. Alignment of the Spectrometer. 

Although the optical alignment of the spectrometer in QELS mode is not as 

crucial as that when used in intensity measurements, the same method and criteria were 

used in the alignment of the system. Three stages are necessary to correctly align the 

system. Firstly the beam from the laser is aligned through a pinhole at the front of the 

index matching vat and two pinhole attachments mounted on the goniometer arm (set to 

0°). This ensures that the beam is parallel to the optical table and follows the optical axis 

of the instrument. The horizontal alignment of the beam can be confirmed by inserting a 

thin steel wire mounted to one of the scattering cells. I f the optical alignment of the laser 

is central then as the beam strikes the wire a bright diffraction pattern will be seen. 

The second stage of the alignment procedure centres around focusing the laser 

beam onto the centre of the scattering cell to produce a beam with a narrow "waist" 

(approx. 150u,m) at the centre of the scattering cell. This is obtained by inserting a lens 

between the laser head and the index matching cell, the correct position being found by 

inserting an opaque strip of melinex at the centre of the vat which when in focus 

produces a characteristic boiling pattern when moved within the beam. 

The final stage of the alignment procedure centres around the alignment and 

focusing of the photo mulitplier tube and its associated lenses. A strongly scattering 

solution is placed into the vat and the PM tube coarsely focused by moving the housing 
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toward the vat until an image from the scattered beam is in sharp focus. The PM tube 

housing is then locked to the goniometer arm and the correct focus achieved by adjusting 

the position of a pinhole located in front of the PM tube. 

Finally the alignment of the apparatus was verified by measuring the scattered 

intensity of a Rayleigh scattering solution (in this case toluene) over the full range of 0 

available for the instrument The counts at each angle, normalised to those at 90° as in 

equation 4.24 should be (1.0 + 0.05). 

Ihl=^-smd 4.24. 

3.2. Calibration of the Spectrometer. 

Although no calibration was required to extract the relaxation rate and hence 

diffusion coefficient from the decay of the autocorrelation function, it was necessary to 

calibrate the spectrometer in order to extract the longitudinal osmotic modulus from the 

absolute intensity of the autocorrelation function. 

The theory of the scattering of light by swollen gels was first derived by 

Tanaka4*3 who related the spectrum of the scattered light to the kinetics of the 

movements of the polymer lattice within the gel. In the Tanaka model, the lattice is 

considered to be an elastic continuum, the motion of which is stimulated by thermal 

fluctuations with the surrounding solvent. 

The two cases of the network moving against the solvent, taking the form of 

either a longitudinal or a shear wave have been considered separately. The gel is 

characterised by the elastic retractive forces of the polymer network and a friction factor 

relating the velocity of the network relative to the solvent and the resistive force 

provided by the solvent. The field autocorrelation function of the scattered radiation is 

proportional to the autocorrelation function of the lattice displacements which itself is 

dependent upon the thermally induced concentration fluctuations within the gel. 

160 



Solutions were obtained for non propagating waves, corresponding to 

longitudinal and transverse displacements. Longitudinal displacements of the lattice refer 

to polarised scattering and transverse displacements to depolarised scattering. 

However the depolarised spectrum is thought too weak to measure and not 

considered further. The correlation function for the longitudinal displacements is 

predicted to be decay characterised by a single exponential decay of the form given 

above in equation 4.13. though the relaxation rate T is predicted to be related to the co­

operative diffusion coefficient D c through equation 4 25. below. 

For semi-dilute solutions and polymer gels, a correction procedure has been 

outlined by Geissler44 to correct the measured diffusion coefficient for the effects of 

solvent back flow in order to calculate the co-operative diffusion coefficient of the 

polymer. This correction, given in equation 4.26, has been used in all cases of both semi-

dilute solutions and swollen networks described in later in this chapter 

where <j)p is the volume fraction of polymer in the semi-dilute solution/gel. 

Tanaka related the co-operative diffusion coefficient of the polymer network to 

the bulk (K) and shear (G) modulii and the friction coefficient (f), of the gel. 

The intensity, I , of radiation scattered by concentration fluctuations in a volume 

of solution V, at a temperature T in a direction perpendicular to the plane of polarisation 

of the incident beam (intensity I 0 ) measured by a photo detector at a distance d from the 

scattering cell is given by equation 4.28. 

4.25. 

D obs 4.26 

H 4 3 M 
A 4.27. 
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where X is the wavelength of the radiation, 

p is the density of the solution, 

e is the relative dielectric constant, 

5u/5w is the gradient of the chemical potential per gram solvent, 

and kg is the Boltzmann constant. 

From the Tanaka model it is in principle possible to measure the ratio (K+4/3 

G)/f from the decay of the field autocorrelation function and (K+4/3 G) from the intensity 

of at zero delay time. The osmotic modulus appropriate to light scattering from gels is 

that due to plane waves and is given by the longitudinal modulus45 defined below in 

equation 4.29. 

where w is the weight fraction of polymer in the gel, 

p is the density of the gel, 

and M o s is the longitudinal osmotic modulus. 

A procedure for the determination of the osmotic modulus from the intensity of 

the scattered radiation at zero time has been outlined by Geissler and Hecht 4 4 " 4 6 - 4 7 for 

concentrated polymer solutions and polymer gels, where an optically heterodyned signal 

is measured at the photo detector. Such a case arises in solutions and gels which have 

not been filtered to remove dust and other inhomogeneities, which by their very nature 

scatter much more strongly that the thermodynamic fluctuations and act as ideal 

operators for optical heterodyning. In such a case, when the scattering from a reference 

beam is much more intense as compared to the concentration fluctuations, the time 

dependent part of the signal is given by equation 4.30. 

Su 
K+V\G M w p OS 

awJ 
4.29. 
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where c is a constant depending upon the wavelength, optics, detector and correlator, 

N is the number of pulses generated by the reference signal, 

and A is the delay period of the correlator. 

Although it is in principle possible to determine the system constant c, the 

procedure is considered tedious due to the many factors involved and gives rise to large 

errors. An alternative procedure proposed by Geissler is to calibrate the spectrometer 

with a semi-dilute solution for which the factor (p8u / 5w) is known. From this it would 

then be possible to determine the osmotic modulus and co-operative diffusion coefficient 

simultaneously. Here the spectrometer was calibrated using a solution of polystyrene in 

cyclohexane of known concentration (weight fraction 0.0995, M w 145,000 gmol"1) for 

which the osmotic modulus is known from ultra centrifugation measurements For 

such a solution at 318K, the factor (5(.t / 5w) is quoted as 603.4 Nm/Kg, while the 

density of the solution p is predicted to be 778 96 Kg/m 3 from the formula quoted in 

reference 48. 

Therefore for a calibrant solution, c can be determined with more precision than 

by explicit calculation by measurement of the intensity at zero time delay (relative to a 

calibrant solution). The decay of the autocorrelation function with time was analysed by 

fitting a single KWW function to the data, the excess intensity at zero time (Ex ( t = ( )^), was 

determined by extrapolation to zero time delay of the fit to the data and the value of the 

excess intensity normalised for the total number of counts received (N), the incident laser 

beam intensity I 0 and the delay period of the correlator A to give a value of the 

normalised excess intensity 1(0) as given by equation 4.31. 

Excess, 
/(0) = 4.31. 
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From equations 4.30 and 4.31 the scattering of the calibrant solution at zero 

delay time is given by: 

5s 7(0 = C 
(S/i/ ) dw 

r 8e 8n Where 2/; 
Kaw dw 

4.32 

4.33. 

and n is the refractive index of the sample at the wavelength of the incident beam. 

By combination of equations 4.32. and 4.33 ., equation 4 34 is obtained. 

3i 7 1(0) = C 

I Sw] 
dw 

4.34. 

It is assumed in this work that the refractive index of polystyrene gels and 

solutions is the same at any concentration of polymer. Hence using the same 

experimental geometry to measure the scattering from the calibrant, it is possible to 

determine the factor (p5(.i / 5w) for the gel and hence calculate the osmotic modulus of 

the gel from the absolute intensity using equation 4.35. The refractive index variation of 

the solution with polymer concentration has been taken from the literature - " 

2 

W ) \ T e 2(Sh/ Y 
c \ dw)c 

dw 
n 

4.35. 

As the measurement of the osmotic modulus requires the measurement of the 

heterodyne correlation function it was eminently suitable for swollen networks prepared 

using unfiltered solvent where dust could not be excluded, however a heterodyne 

technique was found impractical in the measurement of semi-dilute solutions as dust was 

found to produce QELS spectra with relaxations which interfered with the resolution of 
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the those relaxations arising from the semi-dilute solution (discussed later in this 

chapter), thus making the heterodyne technique unsuitable for semi-dilute solutions. 

4. Experimental. 

Samples for QELS study were prepared by three different procedures, depending 

on the type of sample and the desired experiment to be carried out, though all of the 

methods used followed some similar principles in the preparation of solvent and 

glassware etc. The optical apparatus of the 4700 correlator was itself entirely contained 

on a gas damped optical table housed in a purpose built light scattering laboratory devoid 

of natural light, illuminated by dimmed tungsten filament bulbs so as to reduce the 

background scattering intensity. 

4.1. Preparation of Solvents and Glassware for Q E L S Studies. 

As noted earlier, homodyne QELS experiments rely upon measuring only the 

correlation function arising from the concentration fluctuations of the polymer system. 

Therefore it is essential that particulate matter, particularly small dust moieties are 

excluded from the sample in order not to affect the homodyne experiment. To this end 

solvents used in the measurement of the self diffusion coefficient have been carefully 

prepared to remove impurities. 

Analar grade cyclohexane and toluene solvent (BDH) were refluxed for around 

90 minutes over 3 A molecular sieves in order to remove any residual traces of water. 

The solvent was then doubly distilled into an appropriately sized flask which was 

immediately sealed with a self sealing rubber membrane. Quantities of solvents were 

then extracted from this stock source as required and were removed with a syringe 

equipped with an air tight PTFE plunger. 

Glassware used in QELS experiments were scrupulously cleaned by a two stage 

process which firstly removed all traces of any organic residues by steeping in 

permanganic acid for at least 12 hours. Following the neutralisation of the acid with 
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large amounts of distilled water, all traces of dust were removed from the glassware by 

rinsing with large volumes of acetone (filtered through a 0.2(.im membrane) and then 

sealed with a small covering of aluminium foil before being dried inverted in an oven at 

around 345K for 24 hours. 

4.2. Dilute Solution Measurements of the Tracer Diffusion Coefficient. 

Prior to the preparation of any solutions for QELS study, the "clean" solvent was 
-5 1 

filtered repeatedly (around 5-6 times at rates of approx. lcm min" ) through a 0 2um 

PTFE membrane filter (Millipore) in order to remove any dust present in the solvent. 

The appropriate quantity of polymer was then weighed directly into a "cleaned" 

volumetric flask and approximately 75% of the required solvent directly filtered into the 

flask. It was found that covering the neck of the volumetric flask with a small 

"membrane" of aluminium foil was a useful method of excluding dust from the flask. 

Following 24 hours equilibration of the solution at around 315K the remainder of 

the solvent was added to the flask and the weight of the flask noted accurately. From the 

weights of both polymer and solvent and using the empirical calculation19 outlined below 

for the temperature dependence of the density of the solvent, the concentration of 

polymer in cyclohexane at any temperature in the range 308-323K could be determined. 

p,=\ps + \Q'a{r-Ts) + \Q6p(T-T)2^-9y{T-Ts)^ 4 36. 

where p t is the density of the solvent at temperature T (in degrees Celsius), 

p s is the density of the solvent at the reference temperature of zero Celsius, 

and a =-0.8879, P =-0.972 and y= 155. 

Scattering cells used in the determination of the tracer diffusion coefficient were 

precision circular (10mm diameter) optical cells obtained from Hellma UK which 

allowed the measurement of the correlation function at a range of angles. Solutions for 

scattering were filtered directly into the cleaned cell through an aluminium foil membrane 

which was then immediately replaced by a PTFE stopper which made an intimate contact 
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with the walls of the scattering cell. Prior to scattering, the solution was allowed to 

come to thermal equilibrium within the vat for around 10 minutes, having been held at 

that temperature for at least one hour. 

4.3. Preparation of Semi-Dilute Solutions for P E L S Study. 

In the measurement of the diffusion coefficient of semi-dilute solutions (and also 

those solutions containing a small fraction of probe chain) the scattering solution was 

prepared by weighing both the polymer and the cleaned solvent directly into a cleaned 

scattering cell. The high viscosity of such solutions prevented filtering the solution 

through a membrane filter into the cell. In was also found that the high polymer 

concentration required that the solution took upwards of 21 days to reach equilibrium 

(around 7 days after complete dissolution) which for cyclohexane solutions was 

necessarily performed at 313K. Therefore it was found necessary to seal the solutions 

into the cells so as to avoid solvent loss due to evaporation at elevated temperatures. 

Cells were filled with solution and the stopper placed in position and immediately 

sealed with a rapid araldite adhesive which was designed to remain in place for the 

lifetime of the cell. Following full cure of the adhesive (approximately 24 hours) the 

weight of the cell was noted and the equilibration procedure started, the weight o f the 

cell was then periodically checked so as to ensure that no solvent was lost. It was 

observed that some cells lost weight during this period and these cells were discarded 

and fresh samples prepared. 

Cyclohexane solutions were allowed to equilibrate for around 24 hours at the 

measurement temperature before transfer to the scattering vat. Once placed in the 

instrument, around 30 minutes were allowed to bring the solution to final equilibrium. 

Although sealing the scattering cell with epoxy adhesive was found to prevent solvent 

loss on prolonged heating, it was not thought desirable to seal solutions into precision 

optical cells as those cells were very expensive and recovery of the cell could not be 

guaranteed following completion of the experiment. It was therefore necessary to use a 
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more cost effective method which was found to be the in-house manufacture of suitable 

cells. 

To facilitate this, thick walled quartz glass tubing (10mm inner diameter, wall 

thickness 1 mm) was cut into small sections of a length comparable to the precision cells 

and one end sealed using an acetylene/oxygen flame. Any jagged edges were then 

removed from the second end of the cell and the cell cleaned in the manner described 

above prior to use. For these experiments, where the scattering geometry was fixed at 

90 degrees these cells were found to be entirely suitable for the purpose of the 

experiment. However, for those few experiments requiring multi-angle measurements, 

precision cells were used and carefully recovered after use. 

4.4. Preparation of Swollen Gels for P E L S Study. 

As a result of the large quantities of unfiltered solvents used in the synthesis of 

the polymer networks it was thought to be unlikely that the gels could be studied by 

QELS in the homodyne mode. For this reason it was decided to study the swollen gels 

with heterodyne QELS. Therefore following cleaning of the scattering cells, gel samples 

were carefully inserted into the cell and the cell filled with solvent. No attempt was 

made to filter the solvent as it was advantageous to have dust present to act as a local 

operator for optical heterodyning. The cells used in the study were again precision 

optical cells purchased from Hellma. For these measurements it was chosen to study the 

scattering at 90 degrees and therefore square cells with a path length of 10mm were used 

in the measurements. It was not found to be necessary to seal the lids of the cells with 

adhesive as there was good contact between the cell and the PTFE stopper which 

minimised any solvent losses. Regardless of any solvent loss, the polymer in the gel 

automatically maintained its volume fraction and as the cell was filled with an excess of 

solvent it was only necessary to ensure that an excess was present in the cell. 

Suitable samples of the network, dried to the bulk to remove all residual traces of 

benzene were cut to approximately the size of the scattering cell using a sharp razor 
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blade. The sample was then swollen for around 4 days before carefully cutting the 

swollen sample to the appropriate dimensions. In the case of those networks swollen in 

cyclohexane this procedure was carried out at a temperature of around 308K so as to 

minimise the effects of solvent expulsion occurring below the theta point. Cyclohexane 

swollen samples were then allowed to reach thermal equilibrium at 308K over a 7 day 

period before being transferred to the correlator where at least 30 minutes was allowed 

for final equilibration of the sample. A similar procedure was adopted for those samples 

swollen in toluene, these were allowed to reach equilibrium over a 10 day period at 298K 

before being transferred to the correlator. Again around 30 minutes was allowed for 

equilibration in the vat before beginning the experiment. 

5. The Probe Chain Tracer Diffusion Coefficient. 

In these experiments the tracer diffusion coefficients of those polymer molecules 

used within model networks as trapped probe chains were established in dilute solution. 

Although considerable effort has been focused upon the study of the dilute solution 

properties of both flexible and rigid polymers16- 3 4 - 4 1 , it was important within this work 

to determine the diffusion coefficient of the polymers in dilute solution so as to provide a 

comparison with the behaviour found when the probe chain interacts with the "matrix" of 

polymer chains in the swollen network or the semi-dilute solution. 

Solutions for QELS studies were prepared as outlined in section 4 above and 

data collected in homodyne mode. As the QELS measurements focused upon the 

determination of the diffusion coefficients it was deemed to be unnecessary to study the 

diffusion as a function of scattering angle (dilute solutions of polystyrene in cyciohexane 

and toluene have been extensively studied-6" 3 4 " 4 1 by QELS as a function of scattering 

angle and the results well documented) and therefore all QELS data was collected at a 

scattering angle of 90°. The dilute solution behaviour of five polymers (molecular 

weights 10,000, 52,000, 120,000, 330,000 and 1,008,000 gmol"1) was studied in 

cyclohexane and toluene. Data was collected on the Malvern 4700 correlator utilising an 
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incident laser beam of intensity approximately 35mW (somewhat lower than the 

theoretical maximum power available due predominately to the age of the laser). 

Dilute solutions of the probe polymer in cyclohexane were studied in the 

temperature range 308-333K. The scattering rate was found to be a maximum at the 

theta point and high quality data was collected in experimental times of the order of a 

few minutes. However for solutions at higher temperatures and lower concentrations the 

scattered intensity decreased and it was therefore necessary to increase counting times to 

the order of several hours in order to obtain a suitable correlogram. In such cases the 

data set making up the correlation function may consist of only a single correlogram. 

Dilute solutions of polystyrene in toluene at 298K were prepared and the most 

concentrated solutions investigated by QELS. However it was found that the count rate 

obtained was considerably lower than for cyclohexane solutions of equivalent 

concentration and suitable quality data could not be obtained within reasonable 

experimental times. It was also found that during such long experiments in toluene there 

was a large interference from dust within the solution and satisfactory results could not 

be obtained. The necessity for long experimental times was thought to arise from a 

combination of a low incident laser intensity and a lower refractive index increment for 

the probe polymers in toluene. 

A similar situation was also encountered in the QELS study of the lowest 

molecular weight polymers in cyclohexane solution. Again it was found that the count 

rates obtained from polymers "Probe 1" and "Probe 2" (molecular weights 10,000 and 

52,000 gmol"1 respectively) were very low, even in the most concentrated solutions and 

it was found to be impossible to study effectively the behaviour of these polymers in 

dilute solution Hence it was reasoned that it would also be impossible to study the 

behaviour of those polymers as probe chains within ternary semi-dilute solutions and 

when trapped within networks as it was anticipated that the scattering from the matrix 

would greatly outweigh that from the probe chain and resolution would be impossible. 
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From the results of these preliminary QELS measurements in dilute solution, it was 

decided not to prepare networks containing either probe 1 or probe 2 polymers as the 

trapped chain and the behaviour of these polymers was studied no further. 

The diffusion coefficient measured by QELS, D 0 j , s , is only a measure of the 

tracer (or self-diffusion) coefficient (D, or D s ) in dilute solution where the polymer 

chains do not interact. In more concentrated systems such as semi-dilute solutions, the 

diffusion coefficient determined by QELS is a co-operative diffusion coefficient (D c 0 ) 

measuring the relaxation of interacting particles. In the limit of infinite dilution, the co­

operative and tracer diffusion coefficients become identical, however with increasing 

concentration, D c o becomes substantially larger than D t which becomes vanishingly small 

and approximates to zero in concentrated systems. The tracer diffusion coefficient was 

determined by extrapolation of the observed diffusion coefficient to zero concentration 

following equation 4.37 which relates the tracer diffusion coefficient at any given 

concentration by a polynomial expansion in terms of the polymer concentration. 

Dob,=Dl(\ + kdc + ky+...) 4.37 

In the limit of a dilute solution equation 4.37. reduces to equation 4.38. 

Dobs = Dt(\ + kdc) 4.38 

Clearly the choice of the concentration regime studied is very important in the 

correct determination of the tracer diffusion coefficient. To ensure that only dilute 

solution behaviour was determined, a maximum concentration was chosen for each 

polymer this concentration being substantially below the overlap concentration c* In all 

cases this maximum concentration was chosen to be c*/5. The behaviour of the polymer 

was then determined by studying upto six solutions within the range (c*/20 < c < c*/5) 

prepared by dilution of the c*/5 stock solution. 

Data collected on the spectrometer was analysed by two methods. Firstly data 

was fitted to a single exponential function (given in equation 4.13.) using a least-squares 
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fitting procedure, the criteria for a successful fit being a difference of less than 10" in 

successive values of chi-squared. Secondly data was analysed by directly inverting the 

Laplace transformation using CONTIN to produce a distribution of relaxation times and 

hence diffusion coefficients. Figure 4 4 below shows a typical single exponential fit to 

the QELS data arising from SIQELS, while figure 4.5 parts A and B show a typical fit to 

the normalised correlation function and the distribution of diffusion coefficients 

associated with the fit. 

P r o b e 3 ( 1 . 8 4 7 m g / m l ) a t 3 0 8 K 
0 . 4 I — i — i — i — i — | — i — i — i — i — | — i — i — i — i — | — i — i — i — i — | — i — i — i — i — | — i — i — i — i — | — i — i — i — r 
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i i l l i i i i i i i i 0 . 0 
- 0 . 5 0 . 0 0 . 5 1 .0 1 .5 2 . 0 2 . 5 3 . 0 

L o g ( D e l a y T i m e / / ^ s e c o n d s ) 

Figure 4.4.: Single Exponential Fit to Correlation Function from SIQELS. 
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Figure 4.5.A. CONTIN Fit to data From Probe 4 Solution in Cvclohexane 
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Figure 4.5.B.: Distribution of Diffusion Coefficients Arising from Figure 4.5.A. 

Figure 4.5.B shows a single peak of narrow distribution ( D u / D n = 1.04) in the 

spectrum of diffusion coefficients. This was found to be typical of all solutions 

investigated within the region of 10"8 < D0^s ( c m V 1 ) <10"6. However in certain cases 

peaks of low intensity (approximately 1-2%) having large errors were found at both the 

extreme fast and slow ends of the distribution spectra. 

Such peaks have been found in previous QELS studies1 5"2 5"3 3 and have been 

variously attributed to small amounts of dust (peak at the slow end of the distribution) 

and small amounts of noise present in the spectra. Provencher studied the peak at the 

fast extreme and found that the peak disappeared in simulated data without noise, whilst 

when noise is added to the spectra the small peak frequently appears. The presence of 

this peak does not affect the position or distribution of the main peaks in the spectra. 

5.1. Tracer Diffusion Coefficients in Cvclohexane Solution. 

The tracer diffusion coefficient of the probe polymers were determined in 

cyclohexane solution at temperatures of 308, 313, 318 and 323K. Results arising from 

fitting the data to a single exponential function and by Laplace transformation using 

CONTIN are given in appendices CI-C3 for polymers within the temperature range 308-

323K. 
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Figure 4.6. Parts A-C; Variation of Diffusion Coefficient with Polymer 

Concentration for the Probe Polymers in Cyclohexane Solution. 

D t was determined from the single exponential fits by extrapolation to zero 

concentration of a plot of D 0 j , s against polymer concentration. Typical plots are given in 

figure 4.6, parts A-C, the tracer diffusion coefficient and the normalised slope (kj) being 

determined from the intercept and ratio of the slope to intercept respectively. 

Full results of the QELS experiments are given in appendix C, from which three 

noticeable features can be seen. Firstly in all cases within the molecular weight and 

temperature range studied, the diffusion coefficient of the probe chain decreases with 

increasing polymer concentration. This is clearly reflected in the values of k^ presented 

below in table 4.1 A-C. which show that in all cases regardless of probe chain molecular 

weight or temperature, k̂  is negative leading to a decrease in the diffusion coefficient 

with increasing concentration. 

174 



Table 4.1. A.: Probe 3 QELS Results in Cyclohexane between 308K and 323K 

Temperature / K 308K 313K 318K 323K 

D, /x l0" 7 cmV 1 4.23 ±0.19 4.65 ±0.08 4.91 ±0.06 5.28 ±0.11 

kf\ /ml trig"1 -0.022 ±0.017 -0.019 ±0.011 -0.012 ±0.006 -0.010 ±0.009 

Table 4.1. B.: Probe 4 QELS Results in Cyclohexane between 308K and 323K 

Temperature / K 308K 313K 318K 323K 

D ( / x l O - 7 cmV 1 3.27 ±0.05 3.68 ±0.05 4.23 ±0.03 4.51 ±0.03 

krf/ml mg"1 -0.044 ± 0.006 -0.041 ±0.009 -0.043 ± 0.003 -0.036 ±0.003 

Table 4.1.C: Probe 5 QELS Results in Cyclohexane between 308K and 323K 

Temperature / K 308K 313K 318K 323K 

D,/xlO" 7 cmV 1 1.67 ±0.04 1.80 ±0.05 1.97 ±0.05 2.15 ±0.06 

krf /ml mg"' -0.043 ±0.001 -0.036 ±0.001 -0.034 ±0.001 -0.032 ±0.001 

Table 4.1. A-C : Tracer Diffusion Coefficients of Probe Chains. 

V a r i a t i o n o f k d w i t h T 
0 . 0 0 

- 0 . 0 1 -
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Figure 4.7. Variation of k j with Temperature for Probe Polymers in Cyclohexane. 

Values of k d taken from table 4 1. A-C are plotted against the temperature of the 

system in figure 4.7, where it can be seen that k j for the probe 3 polymer is somewhat 

less negative than those obtained for the higher molecular weight polymers, probes 4 and 

5, indicating that at temperatures higher than those studied here the diffusion coefficient 

may become independent of concentration and eventually increase with concentration as 
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k d initially becomes zero and finally greater than zero at a given temperature. Behaviour 

of this type has been seen by Caroline39 who found that solutions of polystyrene ( M w 

1,260,000 gmol"1) in cyclohexane exhibited no concentration dependence at a 

temperature around 323K Above this temperature, the diffusion coefficient was found 

to increase with concentration The increase in the value of k d with temperature has 

been rationalised by Caroline in terms of the intermolecular repulsion and the degree of 

excluded volume present in the system. 

For a system at the theta point, although the excluded volume is zero, the slope is 

negative as the diffusing molecules occupy a finite volume. Increasing the temperature 

causes an increase in the excluded volume and hence intermolecular repulsion which 

begins to balance this volume effect. 

Figure 4.8 below shows the tracer diffusion coefficient of the probe chain 

increases as the temperature of the system is increased above the theta point. 
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Figure 4.8.: Variation of the Tracer Diffusion Coefficient with Temperature for 

Probe Chains in Cyclohexane Solution 

This increase in D t with increasing temperature has been noted in previous 

studies of the diffusion of polystyrene in cyclohexane"'8"39 Caroline has shown that the 
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hydrodynamic radius of the polymer (determined from the tracer diffusion coefficient 

using the Stokes-Einstein equation), increases in a smooth manner with temperature 

above the theta point Although an increase in the hydrodynamic radius above its 

unperturbed value might be expected to lead to a decrease in the diffusion coefficient, 

both the increase in temperature and decrease in the solvent viscosity outweigh this 

increase in size and cause the increase in the diffusion rate. 

Figure 4.8 also shows the tracer diffusion coefficient at any given temperature to 

be dependent on the molecular weight of the polymer, an increase in the polymer 

molecular weight corresponding to a decrease in the tracer diffusion coefficient. This 

can be more clearly seen below in figure 4.9. which shows the variation of the tracer 

diffusion coefficient with the molecular weight of the probe chain for the theta system at 

308K in cyclohexane. From a least squares fit to the data, the following relationship was 

found between the tracer diffusion coefficient and the polymer molecular weight. 

Log (D t) = (2.88 + 0.55) - (0.44 ± 0.09)Log M w 
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Figure 4.9. : Log-Log Representation of the Variation of the Tracer Diffusion 

Coefficient with Probe Chain Molecular Weight at the Theta Point. 
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This is in strong agreement with previous studies of the variation of D t with M„ 

at the theta point for polystyrene in both cyclohexane which find that the diffusion 

coefficient at the theta point can be given by the following relationship35 which is itself in 

good agreement with theoretical predictions for dilute solution behaviour . 

D t(9) = (1.4 ± 0.2) x 10-4 M w - ( 0 5 0 8 ± 0 0 0 7 ) cmV 1. 

Although considerable effort has previously been expended by several workers on 

the study of the properties of dilute solutions of polystyrene in cyclohexane, the results 

determined here allow the prediction of the probe chain diffusion coefficient at any 

concentration and temperature in dilute solution. This allows a direct comparison with 

the probe chain diffusion coefficient obtained from either the dilute solution of the probe 

trapped within a network or in the ternary semi-dilute solution. 

6. Quasi-Elastic Light Scattering From Model Polystyrene Networks. 

In this series of experiments the co-operative diffusion coefficient and 

longitudinal osmotic modulus of model polystyrene networks were determined as a 

function of the polymer volume fraction in gels swollen to equilibrium in cyclohexane 

and toluene using Quasi-Elastic Light Scattering. Networks suitable for QELS study 

were prepared using the method outlined in section 4 of this chapter. Networks 

synthesised in "clean" unfiltered solvent were thought unsuitable for study by homodyne 

QELS as it was felt that residual traces of dust present in the network (arising from the 

dusty solvent used in the preparation of the experiment) would interfere with the 

scattering from the concentration fluctuations under consideration in the homodyne 

experiment. 

For these reasons it was decided to adopt a heterodyne QELS technique in the 

measurement of the diffusion coefficient as the presence of dust would be advantageous, 

acting as a local operator for optical heterodyning. To this end no effort was made to 

filter the solvent used to swell the network to ensure full heterodyne efficiency. 
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Generally it is not simple to distinguish between heterodyne and homodyne 

detection modes, except at low scattering angles where heterodyne signals are almost 

unavoidable. One test of heterodyne geometry utilises split beam geometry where 

radiation from an external oscillator is mixed with the scattered signal to prove the 

observations are made in heterodyne mode. For results made in heterodyne mode, the 

results should compare with those from the split beam technique. A second possible 

check of the nature of the signal follows the variation of the signal with the scattering 

angle. Where a heterodyne signal is contaminated by a homodyne signal, the ratio of the 

relaxation rate to the square of the scattering vector becomes dependent upon the 

scattering angle. However, it was found difficult to prepare gel samples which were in 

intimate contact with the walls of circular scattering cells to check this assumption. It is 

noted that measurements by other workers using split beam geometry indicate that the 

quasi elastic signal is fully heterodyned by local oscillators4 9"5 1 

To ascertain the heterodyne nature of the signals measured here, a fine steel wire 

was carefully inserted into one of the swollen polymer networks. This wire was placed 

into the scattering volume defined by the intersection of the incident beam and the photo 

multiplier tube and when correctly aligned acted as a local oscillator providing a large 

unshifted beam which mixed with the frequency shifted radiation from the scattering 

particles. Considerable time was taken to achieve the correct positioning of the wire 

which was found when the scattering rate at the photo detector increased significantly as 

compared to the signal received without the inserted wire. 

This procedure was only performed once in a gel sample swollen in cyclohexane 

at 308K to check the nature of the signal as the procedure was found to be time 

consuming. The spectra from both the raw gel and the gel plus wire are shown below in 

figure 4.10. As can be seen the two data sets are very similar, having almost identical 

relaxation rates and normalised scattering excesses, thus indicating that the spectra from 

the dusty, swollen gels are fully optically heterodyned. 
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Figure 4.10.; Comparison of Heterodyne Signal Arising from Local Oscillation 

with Dust Compared to Thin Wire Technique. Data Sets Have Been Vertically 

Offset for Clarity. 

QELS data from solvent swollen networks were generated in two experimental 

series. In the series of experiments performed in February/March 1993, QELS spectra 

were recorded from networks prepared using the AMS/DVB system. The incident laser 

power at the sample was measured as being 35-40mW and networks swollen in 

cyclohexane in the range 308-323K and in toluene at 298K were studied. In the series of 

experiments performed in June/July 1994, QELS spectra were recorded from networks 

prepared from the PBMPPD/DVB system which were again swollen in cyclohexane in 

the range 308-323K and in toluene at 298K. For this series of experiments, the incident 

laser power at the sample was measured to be 10-15mW which led to difficulties in the 

extraction of the relaxation rate of the gel due to the long count times necessary for the 

measurement of the correlation function. 

This difference in the incident laser power was predominantly due to the 

advancing age of the laser at the time of measurement and may have lead to the 

production of spectra of lower quality than might have been attained with a laser of 

higher power. Unfortunately it was not possible to increase the output power of the 
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laser and time constraints prevented re-measurement of the spectra with a more powerful 

laser which subsequently became available. 

Scaling theory has been used by de Gennes to relate the co-operative diffusion 

coefficient and hydrodynamic correlation length (£),), showing the two to be inversely 

related through equation 4.39. 

k T 
£ t = B 4.39. 

where kg is the Boltzmann constant, 

T is the absolute temperature 

and r|() >s t n e solvent viscosity. 

As described in chapter 1, various scaling regimes have been introduced to relate 

the correlation length of the gel to the polymer concentration, different regimes existing 

for different polymer-solvent interactions. For a polymer gel in the theta state, the 

correlation length is predicted to be related to the polymer volume fraction through 

equation 4.40 while for a gel in a good solvent the correlation length is expected to 

depend less strongly on the concentration (equation 4.41.) 

& = . 4.40. 

t>=+?4 4.41. 

Therefore for the polystyrene-cyclohexane system at the theta point D c is 

expected to be related to the polymer concentration by equation 4.40, while 4.41. is 

expected to relate the two in the polystyrene-toluene system. 

6.1. General Features of the P E L S Spectra. 

Perhaps the most noticeable feature of the data collected from both series of 

networks was the relatively low statistical quality of the data obtained from both the 

AMS/DVB and PBMPPD/DVB series of networks compared to those obtained from 

solutions of equivalent concentration. This feature is most noticeably marked for the 
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PBMPPD/DVB series of networks which were studied using a much weaker incident 

laser beam Spectra from these networks were obtained in experimental times of the 

order of 1500 to 1800 seconds which compared to acquisition times of around 60 

seconds necessary for the generation of data from the AMS/DVB system. 

Spectra were analysed by two methods. Firstly the normalised correlation 

functions were fitted to a single Williams-Watts (KWW) stretched exponential function 

using SIQELS. Fitting to the KWW function was found to be preferential over a two 

cumulant fit as the fit to the data was found to be consistently better with a more random 

distribution of the residuals. A typical KWW fit is shown below in figure 4.11. 

Although the theory of Tanaka predicts that the decay of the concentration fluctuations 

is described by a single exponential decay, this was found not to be the case with a 

significant amount of broadening of the decay modes. This is a feature that has also been 

noted by other workers who have studied randomly cross linked polystyrene networks 

-14. 
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Figure 4.11.: Single KWW fit to P E L S Data from Cvclohexane Swollen Network 

Data was also analysed by direct determination of the inverse Laplace transform 

using CONTIN. Similarly to the ILT measurements described earlier this produced a 

distribution of decay times within the region (10 - 9 < D o b s / c m V 1 < 10"5). 
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One feature that was frequently noticed in the KWW fit to the data from 

AMS/DVB gels was a small deviation of the experimental data from the fit at high delay 

times as the experimental correlation function gently sloped into the baseline This 

feature was found present in many spectra (though it did not correlate with any particular 

network cross link density or temperature) and may have indicated the presence of a 

second relaxation mode within the gel, however it was not possible to resolve the mode 

or infer any more information from the KWW fit However within the CONTIN 

distribution of diffusion coefficients, a very large peak was found in nearly all cases at 

around 10 era s as well as the peak arising from the decay of the concentration 

fluctuations at approximately 10" cm s" . From the large magnitude of the slow decay 

in the CONTIN analysis, it is thought that the small kink in the KWW fit was an artefact 

of the peak at 10" cm s" which was a feature of the motion of the dust moieties within 

the gel. 

This peak in the CONTIN spectra was also seen in networks prepared from the 

PBMPPD/DVB system, though in no cases was any deviation in the fit to the KWW 

function observed in SIQELS. A further artefact of the CONTIN spectra was the 

continued presence of a very small peak occurring at 10" cm s As explained in 

section 5 earlier, this is a small peak added by CONTIN to increase the "goodness of fit" 

and is particularly present in noisy spectra. 

In all cases, some departure from the predicted single exponential decay was 

observed from both AMS/DVB and PBMPPD/DVB networks swollen in cyclohexane. 

A measure of the departure from the single exponential behaviour is given by both the 

polydispersity of the measured diffusion coefficient (CONTIN) and the variance of the 

KWW fit (the |3 parameter determined by SIQELS). Values of P and the polydispersity 

are given in appendix C(4-6) for networks swollen in cyclohexane and toluene. No 

correlation could be made for values of P or the polydispersity with either the cross link 

density of the network or the temperature for either the AMS/DVB or PBMPPD/DVB 

systems. In all cases, it was found that P was generally closer to unity for the 
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PBMPPD/DVB networks than for the AMS/DVB gels indicating that the AMS/DVB 

networks had a less exponential behaviour, possibly due to the presence of other decay 

modes in the AMS/DVB series of networks, though it is thought that lower values of P 

are more likely to arise as a result of the relatively poor quality of the AMS/DVB 

networks produced with a more open structure, containing large quantities of pendant 

chains within the network 

The homogeneity of networks produced from the AMS/DVB system, was 

determined by studying the spectrum of light from three independent regions of the gel 

when swollen in cyclohexane in the region 308 to 323K. Little variation was found in 

the values of the co-operative diffusion coefficient obtained from different regions of the 

gel and those values quoted in appendix C4-6 are a direct average of the fifteen 

measurements made at each temperature. Measurements of the longitudinal osmotic 

modulus from any one region of the gel were found to be . very precise, though values 

determined from different regions were found to be somewhat more different. 

Within a series of measurements from any one position within the gel the 

normalised intensity was found to vary by up to 15% and for different positions within 

the gel variations of up to 40% were observed. Values of the osmotic modulii of the 

AMS/DVB networks quoted in appendix C7 are a direct average of the fifteen 

measurements made at each temperature. 

Unfortunately, time constraints prevented repeated QELS measurements of the 

scattered spectra from different regions of PBMPPD/DVB networks and those values 

quoted for D c and M o s in appendix C7 are simply an average of 5 measurements from 

one position within the gel. 

6.2. The Co-operative Diffusion Coefficient. 

The decay constant was extracted from each spectra by fitting the data to the 

KWW model function as described earlier. The heterodyne D o b s was then extracted 
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from the decay constant through equation 4.25 and finally corrected for solvent back 

flow using equation 4.26 to give a value of the co-operative diffusion coefficient. Values 

of D c o were also extracted from CONTIN and a distribution of diffusion coefficients 

obtained. Results from both the AMS/DVB and PBMPPD/DVB series of networks are 

given in appendix C4-6, the results quoted are an arithmetic mean of at least five spectra, 

the error quoted for the data is the standard deviation about the mean which is most 

probably a conservative estimation of the error, the real error probably being larger. 

D, versus (f>D at 308K 

2.0 
to 

E 1.8 

>; 

1 .4 

S 1.2 

I ' ' ' 1 I ' ' 1 1 I 

I' 11 
' i , , , , i 

- 1 . 0 - 0 . 9 - 0 . 8 

Log 

/ersus <f)D at 31 8K 

- 0 . 7 - 0 . 6 

- 1 . 2 - 1 . 0 

Log '(<(,„) 
0 . 8 - 0 . 6 

D c versus <p„ at 31 3K 

0 . 8 - 0 . 6 

Log d>„ 

D c versus 0 „ at 323K 

• 1 . 6 - 1 . 4 - 1 . 2 - 1 . 0 

Log (<*_) 
- 0 . 8 - 0 . 6 

Figure 4.12.; Log-Log Plots of the Co-operative Diffusion Coefficient Against the 

Polymer Volume Fraction in AMS/DVB and PBMPPD/DVB Networks Swollen in 

Cvclohexane in the Temperature Range 308-323K. 

For both series of networks it was found that the diffusion coefficient of the gel 

increased with the temperature of the system when swollen in cyclohexane, as might be 

expected from equation 4.39. where the factor T/r) increases by a factor of nearly 1.5 in 

the temperature range 308-323K53. At constant temperature the diffusion coefficient 
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can also be seen to increase with the polymer volume fraction. Results from SIQELS 

analysis for both series of gels are shown in figure 4.12. in double logarithmic format to 

allow the determination of the various scaling exponents. 

The equations describing the curves shown in figure 4.12. are: 

308K: Log D c (xlO - 8 c m V ) = (2.49 ± 0.17) + (1.23 + 0.16) Log <|)p 

313K: Log D c (xlO"8 c m V 1 ) = (2.46 + 0.12) + (1.02 ± 0.11) Log § p 

3 18K: L o g D c (xlO"8 c m V 1 ) = (2.59 ± 0.14) + (0.92 ± 0.12) Log <j>p 

323K: Log D c (xlO - 8 c m V ) = (2.76 ± 0.10) + (0.94 ± 0.08) Log $ p 

Figure 4 13. below shows the variation of the co-operative diffusion coefficient 

with polymer volume fraction for both series of networks swollen in toluene at 298K. 

From figure 4.13. the scaling relationship in toluene is found to be: 

298K: Log D c (xlO - 7 c m V 1 ) = (3.43 + 0.37) t (1.82 ± 0.23) Log <j>. 
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Figure 4.13.: Variation of Dc with Polymer Volume Fraction 

for PBMPPD/DVB and AMS/DVB Networks Swollen in Toluene at 298K. 

For networks swollen in cyclohexane, it can be seen that the variation of D c with 

the polymer concentration at the theta point is in very good agreement with the 
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behaviour predicted by scaling theory, and upon increasing the temperature and hence 

solvent quality of the system, the dependence of D c upon § p decreases towards the value 

predicted for a polymer in a good solvent. However the results for the polystyrene-

toluene system do not agree with values predicted from scaling theory with a scaling 

exponent of 1.82 being realised for gels in the good solvent compared to the value of 3/4 

predicted by de Gennes Again the relative poor quality of the AMS/DVB series of 

networks is thought to be the predominant reason for these results. 

As can be seen below in tables 4.2. and 4 3., the hydrodynamic correlation length 

of the AMS/DVB networks in toluene is found to be around 15-20 times larger than that 

due to the PBMPPD/DVB series of networks, a feature which is thought to arise due to 

the more open structure associated with the poor quality AMS/DVB network. 

Therefore it can be seen that the co-operative diffusion coefficient associated with the 

AMS/DVB series of networks is correspondingly lower, which causes an increase in the 

magnitude of the scaling exponent in toluene swollen gels. 

The hydrodynamic correlation length is extracted from the co-operative diffusion 

coefficient with equation 4.39. ^ differs from £, (that measured by SANS) the 

correlation length describing the length scale where excluded volume interactions are 

screened out by the effects of neighbouring chains, in that measures the length scale 

where hydrodynamic interactions are screened by polymer chains-i.e. the average 

distance between two nearest junction points. 

Clearly for networks prepared in semi-dilute solution where chain entanglements 

provide excluded volume screening over relatively short distances, it would be expected 

that the hydrodynamic correlation length would be somewhat larger than the static 

correlation length, ^ j , has been determined using values of the solvent viscosity taken 

from Polymer Handbook. 
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Network £ h for Cyclohexane Swollen Networks / A ( ± Error) Toluene 

Mc (S E C.) 308 313K 318K 323K 298K 

10,600 44.6 ±2.1 45.2 ± 1.9 30.0 ±4.2 39.5 ±0 .4 12.7 ±0.9 

17,800 56.2 ±1.1 49.8 ± 1.2 41.4 ± 3.6 34.9 ± 3 .7 20.2 ±4.1 

53,000 66.4 ± 13.6 70.7 ±2.7 56.5 ±3.9 49.2 ±2 .2 19.6 ± 1.6 

102,800 101.8 + 2.7 85.4 ±3.2 82.6± 1.1 50.2 ± 1.5 30.8 ±4.2 

Table 4.2.: Hvdrodvnamic Correlation Length of PBMPPD/DVB Networks. 

Network £h for Cyclohexane Swollen Networks / A ( ± Error) Toluene 

Mc (SEC.) 308 313K 318K 323K 298K 

10,400 184 ± 13 173 ±25 139 ± 17 149 ± 5 178 ± 14 

12,700 193 ± 11 188 + 21 165 ± 16 234 ± 23 446 ± 26 

20,100 170 ± 10 144 ± 11 122 ± 3 203 + 7 399 ± 11 

37,900 308 ± 15 193 ±21 138 ± 6 102 ± 16 249 ± 9 

48,700 269 ± 6 219 ± 12 176 ± 7 124 ± 7 195 ± 8 

53,600 376 ±26 254 ± 15 228 ± 17 139 ± 17 584 ±22 

109,900 305 ± 18 225 ± 4 186 ± 9 150 ± 7 400 ± 7 

Table 4.3.: Hvdrodvnamic Correlation Length of AMS/DVB Networks. 

Clearly the data in tables 4.2. and 4 3. shows the hydrodynamic correlation length 

to be substantially larger than the screening length determined from SANS. Two main 

features can be seen from the data. Firstly, both tables show a decrease of ^ with an 

increase in the solvent quality of the system most particularly marked for the increasing 

temperature of the cyclohexane swollen gels. This is not an unexpected feature as 

increasing temperature causes an increase in the thermal motion within the gel causing a 

decrease in 

Some correlation can also be seen between ^ j , and the polymer concentration in 

table 4.2 for PBMPPD/DVB networks swollen in both cyclohexane and toluene. In a 

manner reminiscent of that seen in the static correlation length, ^ can be seen to 

decrease with the solvent quality of the system and unlike the static correlation length 

can be seen to be dependent upon the cross link density of the network. However at 

fixed temperatures no correlation can be seen between £|, and polymer concentration for 
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the AMS/DVB series of networks. This lack of scaling of the AMS/DVB series of 

networks again seems to be a feature of the poor quality of those gels. It should be 

noted that £ j r measured for the AMS/DVB series of gels is at least four times greater 

than those values from the PBMPPD/DVB gels, indicating a much more open network 

structure in those networks where large quantities of sol fraction were extracted 

6.3. The Longitudinal Osmotic Modulus. 

The relative intensity of the scattered radiation was extracted from each spectrum 

by fitting the data to the KWW model function as described earlier. An average 

normalised value was then determined from the fit to the data using equation 4.30 and 

from these results and those of the calibrant solution, a value of the osmotic modulus 

determined. Values of M o s are given in appendix C7, from which it can be seen that M o s 

generally decreased with increasing temperature in the system and increased with the 

polymer concentration at a given temperature. 

The scaling predictions of de Gennes have been used to relate the osmotic 

modulus to the volume fraction of polymer within the gel for both theta and 

thermodynamically good solvents. For a theta system the osmotic modulus is expected 

to scale with the polymer concentration according to equation 4.42., while under good 

solvent conditions equation 4.43. is predicted to apply. 

Values of the osmotic modulus for both AMS/DVB and PBMPPD/DVB 

networks were determined for gels swollen in cyclohexane in the temperature range 

308K to 323K, those values being correlated against the polymer volume fraction in a 

double logarithmic format in figure 4.14. However it was noted earlier that the 

measurement of the osmotic modulus by QELS was subject to large errors (upwards of 

40%) and some anomalous values were found and the results determined from the 

intensity measurement were not as clear as the diffusion coefficient results from the 

4.42. 
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measurement of the decay constant. The large error in the measurement of the excess 

scattering intensity is reflected in the error associated with the osmotic modulus in the 

scaling relationships below. 
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Figure 4.14.: Variation of the Longitudinal Osmotic Modulus Determined From 

P E L S for Networks Swollen in Cvclohexane between 308K and 323K. 

From the least-squares fit to the data, the following scaling relationships can be 

inferred for the osmotic modulus and polymer volume fraction. 

308K: Log M o s (xlO 5 Nm" 2) = (7.59 ± 0.28) + (3.98 ± 0.27) Log <j>p 

313K: Log M o s (xlO 5 Nm" 2) = (7.44 ± 0.37) + (3.81 ± 0.35) Log <J>p 

318K: Log M o s (xlO 5 Nm" 2) = (7.54 ± 0.47) + (3.52 ± 0.41) Log <J>p 

323K: Log M o s (xlO 5 Nm"2) = (6.31 ± 0.46) + (2.69 ± 0.39) Log <|>p 
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Clearly the data above shows a much stronger dependence of the osmotic 

modulus on the polymer volume fraction for networks swollen in cyclohexane than 

predicted. Under theta conditions where a scaling exponent of 3 is predicted, the 

determined value is found to be somewhat stronger at 3.98, which is found to decrease 

as the temperature and solvent quality is increased. At the highest temperature studied 

323K, a value of 2 69 is found which is intermediate between the value predicted for 

theta and good solvent conditions. 

Values of the scaling exponents at all temperatures are thought to be somewhat 

higher than predicted due to the low values of M o s obtained for the AMS/DVB series of 

networks. M o s is found to be substantially lower for these networks than compared to 

the PBMPPD series networks and values of M o s from AMS/DVB gels are found to vary 

in an essentially random manner at a given temperature and to change little with the 

temperature of the system. 

The low value of the osmotic modulus is again thought to arise from the more 

open network structure of the AMS/DVB networks arising from the relatively poor cross 

linking reactions used to prepare these networks which resulted in a large sol fraction for 

the network and a substantially less well cross linked network containing large amounts 

of pendant chains. 

When results from the PBMPPD/DVB series of networks are considered alone, 

the scaling exponent is found to be somewhat lower (approximately 2 at 308K 

decreasing to 1.2 at 323K) than those obtained from both networks, though it is noted 

that the volume fraction range explored with these networks is rather small and therefore 

measurement of M o s subject to large errors. 

Previous studies on the variation of the osmotic modulii of swollen polymer 

networks have focused on the determination of the modulus in randomly cross linked 
52 51 

networks. Davidson has studied randomly cross linked polystyrene networks 
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swollen to equilibrium in cyclohexane within the temperature range 308K-333K and 

found remarkably little dependence of M o s with the temperature of the network. Data 

from three temperatures measured in the study was reduced to a single plot where a 

scaling exponent of 2 6 was found to describe the variation of the osmotic modulus with 

polymer concentration. 

The osmotic modulus has also been measured in "good" solvent systems by 

Geissler44 who studied poly(acrylamide) gels swollen in water where a scaling exponent 

of 2.35 was found for lightly cross linked gels within the region 0 025-0.12 gem"1 The 

discrepancy between the predicted scaling exponent and that measured using QELS was 

attributed to water not being a truly good solvent for poly(acrylamide) networks. 

Polystyrene networks swollen to equilibrium in benzene have been studied by 

Cahdau54 who found good agreement with the osmotic modulus determined by QELS 

and that determined from mechanical measurements. In both cases, the good solvent 

prediction of 2.25 describing the variation of M o s with polymer concentration was 

observed. However when known fractions of pendant chains were deliberately 

introduced into the polymer network staicture, the osmotic modulus of polystyrene 

network was found to decrease with an increasing content of pendant chains within the 

network. 

When correlated with the results from the AMS/DVB networks provides some 

insight into the larger scaling exponents for M o s determined by QELS. Had the cross 

linking reactions employed in the AMS/DVB networks been more effective, then a 

substantially lower quantity of uncross linked polymer would have been extracted from 

the network and similarly less pendant chains incorporated into the network structure. 

Therefore it would seen reasonable that the osmotic modulus determined from the 

AMS/DVB networks would have been somewhat larger and values of the scaling 

exponent correspondingly lower. 
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7. The Co-operative Diffusion Coefficient of "Equivalent" Solutions. 

In these experiments, the collective motions of a series of polymer solutions were 

studied within the semi-dilute region. The co-operative diffusion coefficient of the semi-

dilute solution was studied as a function of the molecular weight of the polymer matrix, 

the polymer concentration and the quality of the solvent within the system. Four linear 

polystyrene polymers were studied PS 13, PS 14, PS 18, and PS 19, (molecular weights 

and distributions of the polymers are given in chapter 2), within the concentration range 

(0 01 < ij) < 0.4) at temperatures in the range 308-323K in cyclohexane and 298K in 

toluene. These conditions provided a complete examination of the variation of D c with 

molecular weight and solvent quality over the entire semi-dilute concentration region, 

allowing a comparison to be made with the behaviour exhibited by the swollen networks 

under essentially the same conditions. 

Solutions for study were prepared as outlined earlier in the chapter, using filtered 

solvent to prepare the solution, followed rapidly be sealing into scattering cells. 

Solutions were allowed to reach thermodynamic equilibrium over a period of upwards of 

21 days before being held at the measurement temperature for 24 hours prior to QELS 

study. Spectra were recorded in homodyne mode using the Malvern correlator and data 

analysed by fitting the normalised correlation function to either a single or double KWW 

function and by ILT analysis using CONTEST. 

7.1. General Features of the Spectra from Cvclohexane Solutions. 

Perhaps the most evident difference between the spectra of polymer gels and 

semi-dilute solutions of equivalent concentration was the presence (at large decay times) 

of a second relaxation mode. This peak was not present in all spectra, though a 

correlation between its presence and molecular weight and concentration could be made. 

Figure 4.15. parts A and B show typical correlation functions obtained from solutions 

where only a single mode and from those where two modes were present, part A 

showing the spectrum from a low molecular weight matrix (10,000 g/mol) giving rise to 

a single mode, while part B shows the correlation function obtained from a solution of 
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the same concentration but having a matrix molecular weight of 100,000 g/mol which 

gives rise to a second relaxation mode. 

Collective Relaxation Mode Fast and Slow Relaxat ions I lodes 
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Figure 4.15. Parts A and B: Homodvne P E L S Spectra Obtained From A: 10,000 

g/mol at 0.2 g/g in Cvclohexane at 308K. B: 100.000 g/mol at 0.2 g/g in Cvclohexane 

at 308K. 

Previous QELS studies on solutions of polymers within the semi-dilute region 

have shown the presence of at least two decay modes in the relaxation spectrum 5 9 , 6 1. 

The faster of these modes (identified with the collective motions of the polymer chains 

within the overlapping solution) has been found to be dependent upon the square of the 

scattering vector, and has been ' . The slower relaxation mode has been found to be 

independent of the scattering vector, the origin of the mode being the subject of 

considerable discussion, with some authors suggesting that the slow mode arises from 

the self diffusion of the polymer chains within the solution5 6. However it is now widely 

thought that the mode arises from the viscoelastic properties of the transient network5 7" 

, of the entangled solution where chains are able to disentangle over relatively long 

time scales. Such behaviour has not been observed for polymer gels, where the cross 

links within the gel prevent the polymer chains from disentangling63. 

For the lowest molecular weight matrices (10,000 and 20,000 g/mol) there was 

no evidence of the slow relaxation in any solution over the entire concentration region 
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studied, while for the higher molecular weight polymers (60,000 and 100,000 gmof ) 

the relaxation was observed for all but the most dilute solutions. 

Spectra were recorded from all four matrices in the temperature range 3 08-3 23 K 

during August of 1993 using an incident laser power of around 35mW. This 

experimental set-up generally produced data of suitable quality within a few minutes, 

though spectra from polymers of lower molecular weight at the lower concentrations 

were found to take considerably longer, a feature that was noted in the earlier series of 

measurements of the tracer diffusion coefficient in dilute solution. While spectra from 

the more concentrated solutions of polymers of higher molecular weights were acquired 

in relatively short time spans, considerable effort was required to correctly configure the 

correlator to properly measure both the fast and slow decays and in some cases it was 

found that the large magnitude and relaxation time of the slow decay prevented 

measurement of the correlation function of the solution. In such cases where the slow 

decay could not be resolved the correlator was set-up such that only the fast decay mode 

was observed. 

Results from fitting the experimental data to a double KWW fit are given in 

appendix C8-11, from which it can be seen that the relaxation time of the slow mode 

increases with concentration for a given polymer at a fixed temperature. At constant 

temperature and for solutions of equivalent concentration, the relaxation time associated 

with the 50,000 g/mol polymer can be seen to be substantially smaller than those from 

the 100,000 g/mol matrix. Increasing the temperature of the solution can also be seen to 

cause not only a decrease in the relaxation time of the slow decay, but also a decrease in 

the relative magnitude of the slow decay. 

The variation of the relaxation rate of both fast and slow modes with scattering 

vector has been studied for one solution. As seen in figure 4.16., the fast mode 

associated with the 100,000 g/mol matrix at a nominal concentration of 0.2 g/g is found 
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to be linearly dependent upon the square of the scattering vector, while the slow mode is 

seen to be independent of the scattering vector. 
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Figure 4.16. Variation of the Fast and Slow Decay Modes With Scattering Vector 

for a 0.2 g/g Solution of the 100,000 g/mol Matrix Polymer at 308K in Cvclohexane. 

This observation has been noted by other authors " and provides evidence for 

the theories of Brochard and de Gennes63 who have described the influence of 

topological entanglements on the intensity autocorrelation function of the radiation 

scattered by the semi-dilute solution, de Gennes theory predicts the autocorrelation 

function to be a sum of two exponential decays, firstly a fast q dependent mode arising 

from the collective motions of the polymer chains and secondly a slower q independent 

mode related to the disentangling of the entangled polymer chains of the transient 

network. 

From the relaxation rate of the fast decay mode D c can be determined, the results 

of which are given in appendix C8-11 together (where applicable) with the relaxation 

times obtained from the slow decay. Diffusion coefficients of the fast decay mode 

quoted in appendix C are determined from the KWW fit to the normalised correlation 

function as well as from the ILT of the normalised correlation function. Although 

CONTIN produced a distribution of diffusion coefficients which for the fast mode are 
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consistent with the values from the KWW fit, results from the slow mode were 

somewhat less consistent, with differences in some cases greater then 10 being observed 

In all cases CONTIN was found to produce an estimate of the rate of diffusion 

coefficient equivalent of the slow mode somewhat faster than that obtained from the 

KWW fit. 

Theoretical interpretation of the origins of the slow viscoelastic mode is however 

somewhat underdeveloped and with the limited amount of data available from this study, 

little can be said regarding the origins of the slow mode. It is noted that many examples 

of the slow relaxation mode could not be properly resolved as the decay mode often 

spanned times longer than the maximum decay time available with the Malvern K7032 

correlator. This was found to be particularly prevalent for semi-dilute theta solutions 

where the amplitude of the slow decay was greatest and resolution most difficult, 

therefore allowing only a very limited interpretation of the available data. For these 

reasons the slow decay mode is considered no further. 

One final point to note regarding the quality of the data obtained from the semi-

dilute solutions was relative intensity of the normalised correlation function of the semi-

dilute solution compared that from the swollen gel. For the semi-dilute solution, the 

amplitude of the correlation function was found to be much stronger than that arising 

from the gel. This is most probably due to the different data acquisition modes employed 

to record the spectra, as the heterodyne mode used to measure the swollen gels 

introduced a large baseline due to the scattering of the dust particles within the gel. For 

the semi-dilute solutions, dust was excluded from the scattering cell and as such the 

correlation function arose solely from the concentration fluctuations of the polymer 

solution. 

7.2. General Features of the Spectra from Toluene Solutions. 

QELS spectra from solutions of polystyrene in toluene were again recorded for 

solutions of various concentrations (0.01 < W.F. < 0.4) where the matrix molecular 
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weight ranged from 10,000 g/mol to 100,000 g/mol. The same polymers were utilised 

for these experiments, however spectra were not recorded for solutions of the 20,000 

g/mol polymer in toluene as it was found to be impossible to exclude dust from the 

solutions. Spectra were recorded for the 10,000, 50,000 and 100,000 g/mol matrices, 

the results of which are presented in appendix 1. Measurements were again made using 

an incident laser power of around 35mW with experimental times of the order of 60-300 

minutes needed for the generation of suitable data, these duration's being substantially 

longer than those needed for the measurement of solutions of equivalent concentration in 

cyclohexane. This was most evident for the 10,000 g/mol matrix in toluene at a nominal 

concentration of 0.01 g/g, where the data obtained was found to be subject to a large 

error and a large amount of experimental noise. 

As with the semi-dilute solutions in cyclohexane, the most evident difference 

between the spectra of polymer gels and semi-dilute solutions in toluene was the 

presence at long decay times of a second relaxation mode. Although not present in all 

spectra, a correlation between the presence of the peak and the polymer molecular 

weight and concentration was again made. 

Solutions of the lowest molecular weight polymer were found not to exhibit the 

slow relaxation while it was again found to have maximum intensity and relaxation time 

for solutions of the 100,000 g/mol matrix at the highest concentrations. For solutions of 

the two highest molecular weight polymers, the presence of the second exponential 

decay was often found to prevent resolution of the fast mode as the slow mode was 

found to be somewhat more massive than the fast mode. This can be seen graphically in 

figure 4.17. where the normalised correlation function obtained from the 0.4 g/g solution 

of the 50,000 g/mol matrix is shown. 

Simultaneous measurement of both the fast and the slow decay modes was found 

to prevent the resolution of the fast mode due to the large magnitude of the slow mode, 

which was found to be of much larger intensity than the fast mode and as such prevented 

198 



the determination of the fast decay mode. A similar situation arose in the measurement 

of the fast mode in cyclohexane solution, though in those solutions it was found to be 

possible to configure the correlator in such a way so as to exclude the slow mode and 

measure only the relaxation due to the collective motions. This procedure was 

attempted for solutions in toluene, though it was not found to be satisfactory as only a 

very poor correlation function with a very low signal could be extracted from the 

resulting spectra. In these cases (see appendix 1), only relaxation times from the slow 

decay are quoted. 
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Figure 4.17.: Correlation function obtained from a 0.4 g/g solution of 50,000 g/mol 

polystyrene matrix in toluene. 

Figure 4.17. shows only a single decay in the QELS spectra, the relaxation rate of 

the decay being consistent with both the relaxation times of the q-independent slow 

mode obtained from other solutions of polystyrene in toluene and cyclohexane. In a 

manner similar to that observed for solutions in cyclohexane, the relaxation time of the 

slow mode is again found to increase with both the polymer molecular weight and the 

concentration of the solution. 

The presence of the slow decay mode in semi-dilute solutions of polystyrene in 

toluene has been observed by some authors 5 6 , 6 8 ' 6 9 previously though not unanimously 
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by all The spectrum is generally resolved into two decay modes when the 

concentration of the solution is greater than 0.1 g/g. Below this concentration, most 

authors find the data to be adequately described by a single mode. As with the situation 

of the slow decay mode present in cyclohexane solutions, the origins of the slow decay 

mode in toluene solutions is somewhat unclear and taken in conjunction with the limited 

amount of data available here, the slow decay mode is considered no further. 

7.3. The Co-operative Diffusion Coefficient. 

The decay constant was extracted from each spectra by fitting the data to the 

KWW model function as described earlier and was corrected for solvent back flow 

following the procedure outlined earlier. Values of the hydrodynamic correlation length 

were determined from D c using equation 4.39., values for the solvent viscosity being 

taken from the Polymer Handbook. Full results of the QELS experiments are given in 

appendix 1, the results quoted being an arithmetic mean of five spectra, the error quoted 

for the data is the standard deviation about the mean which is most probably a 

conservative estimation of the error, the real error probably being larger. 

Above the polymer critical overlap concentration defined by equation 4.44, D c 

for a given polymer at constant temperature can be seen to increase with the polymer 

concentration. As data in the study of solutions of equivalent concentration to polymer 

gels was collected over the entire semi-dilute region, many spectra from polymers of 

lower molecular weight in cyclohexane under theta conditions were collected on or 

slightly below the chain overlap concentration (c*). Values of the diffusion coefficient 

measured from these solutions are therefore modulated by the self diffusion coefficient 

and can be seen to be substantially higher than those values collected for polymer 

solutions ,of higher matrix molecular weight and of similar concentration. 

Mw 

c = — 4.44. 

4/3*ftX 
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Only the 100,000 g mol"1 polymer was found to produce a series of solutions for 

which all solutions were above the overlap concentration. Figure 4.18 parts a-e show 

the variation of D c with the polymer volume fraction for solutions in cyclohexane in the 

range 308-323K and in toluene at 298K. All data is shown in double logarithmic format 

which allow determination of the scaling exponents relating the collective diffusion 

coefficient to the polymer volume fraction in the solution. 
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Figure 4.18. Parts A-E: Collective Diffusion Coefficient For Semi-Dilute Solutions 

of Matrix Molecular Weight 100,000 g/mol in Cyclohexane and Toluene, 
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From figure 4.18., the following scaling exponents were determined: 

Cyclohexane 308K: Log D c (xlO" 7 c m V 1 ) = (0.85 ± 0.01) + (0.69 ± 0.02) Log <t>p 

Cyclohexane 313K: Log D c (xlO" 7 c m V 1 ) = (0.79 ± 0.12) + (0.57 + 0.13) Log <t>p 

Cyclohexane 318K: Log D c (xlO" 7 c m V 1 ) = (0.70 ± 0.02) + (0.25 ± 0.02) Log <|>p 

Cyclohexane 323K: Log D c (xlO"7 cm2s"') = (0.88 ± 0.03) + (0.26 ± 0.04) Log <j>p 

Toluene 298K: Log D c (xlO" 7 cm2s"') = (1.74 ± 0.09) + (0.49 + 0.09) Log <j)p 

It can be seen that the dependence of D c on the polymer concentration is found 

to be somewhat weaker than predicted by scaling theory, where exponents of 1 in theta 

solvents and 0.75 in good solvents are predicted. Similar results have been obtained by 

other authors who have studied polystyrene-diethyl phthalate solutions and who have 

found scaling exponents lower than predicted (0.62) for solutions in the semi dilute 

region bounded by (c* < c <5c*). 

Tables 4.4-4.8 below show the hydrodynamic correlation length of the semi-

dilute solutions determined from the collective diffusion coefficient for matrix solutions 

in cyclohexane in the temperature range 308-323K and also in toluene at 298K. Data 

presented in bold face arises from those solutions which are above the overlap 

concentration c*. From these results it can be seen that ^ decreases as a function of 

both the concentration of the semi-dilute solution and also the solvent quality of the 

system. 

Comparison of the data presented earlier in table 4.2 (showing £h for 

PBMPPD/DVB gels swollen in cyciohexane) and toluene under the same conditions as 

for those semi-dilute solutions measured here, shows ^ for the solution to be twice the 

magnitude of £h in the cyclohexane swollen gel over the entire temperature range 

studied. A comparison of the results for semi-dilute solutions and gels in toluene at 

298K shows the ratio of the hydrodynamic correlation lengths of the gel and the solution 

to be unity, within the margin of error associated with the measurement. 
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This is in direct contradiction to the results for the ratio of the hydrodynamic 

correlation length of both poly(acrylamide) and poly(vinylacetate) gels and semi-

dilute solutions, where the ratio (gel to solution) in both cases was found to be 2:1. This 

is a feature which the authors have attributed to increased mobility in the semi-dilute 

solution allowing the polymer chains of the solution to adopt more flexible 

conformations, which are prevented when the polymer chains are cross linked. Clearly 

this is not the case for the results determined here. 

Concentration Hydroc ynamic Correlation Length (c^) / A ± Error 

/ g g - 1 10,000 g/mol 20,000 g/mol 50,000 g/mol 100,000 g/mol 

0.4 32.7 ± 1.2 43.7 ± 2.6 120.0 ± 1.5 85.8 ± 4.3 

0.2 40.1 ±0.8 51.4 ±0 .4 163.0 ± 0.8 138.0 ± 4.9 

0.1 25.4 + 0.4 39.7 ±0 .9 260.0 ± 2.7 217.0 ±3 .2 

0.05 23.7 ±1.1 34.1 ± 1.2 125.0 ±0 .4 312.0 ± 1.6 

0.01 13.4 ± 1.1 27.9 ±3.4 37.2 ± 1.2 92.0 ±2.3 

Table 4.4.: Hydrodvnamic Correlation Length in Cvclohexane at 308K. 

Concentration Hydroc ynamic Correlation Length ( ^ ) / A ± Error 

/ g g 1 10,000 g/mol 20,000 g/mol 50,000 g/mol 100,000 g/mol 

0.4 33.4 + 4.1 27.8 + 0.7 95.4 ±2 .1 104.0 ± 2.4 

0.2 37.1 ±2.6 58.0 + 0.5 126.0 ± 1.2 135.0 ± 2.9 
0.1 26.6 ± 1.9 41.9 ± 1.6 161.0 ± 1 . 3 172.0 ± 1.3 

0.05 23.1 ±3.6 35.5 ±0.8 113.0 ± 2.3 312.0 ± 1.6 

0.01 5.5 + 2.5 27.3 ±3.8 35.0 ± 0.3 83 .2 ± 0 . 9 

Table 4.5.: Hvdrodvnamic Correlation Length in Cvclohexane at 313K. 

Concentration Hydroc ynamic Correlation Length (cjh) / A ± Error 

/ g g 1 10,000 g/mol 20,000 g/mol 50,000 g/mol 100,000 g/mol 

0.4 29.4 ± 4.3 27.7 ± 0.7 68.0 ± 4.1 85.9 ± 0.6 
0.2 35.6 ± 3.3 35.9 + 2.8 92.4 ± 1.2 99.3 ± 0.9 
0.1 26.9 £2 .7 38.6 ± 1.9 139.0 ± 2.6 121.0 ±0 .9 

0.05 21.0±3.6 28.5 ±2 .0 86.5 ± 10.5 136.0 ± 4.1 
0.01 No Data No Data 26.8 ±3 .8 78.2 ± 1.1 

Table 4.6.: Hvdrodvnamic Correlation Length in Cvclohexane at 318K. 
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Concentration Hydroc ynamic Correlation Length / A + Error 

10,000 g/mol 20,000 g/mol 50,000 g/mol 100,000 g/mol 

0.4 50.4 ± 5.9 17.6 + 6.7 60.7 ± 5.2 72.6 + 4.5 

0.2 36.9 + 3.9 33.8 + 11.5 89.4 + 2.5 95.4 ± 2.3 
0.1 27.1 +4.2 36.3+0.9 122.0+1.6 109.0 + 3.4 

0.05 18 9 ± 4.8 122+ 1.6 94.9 + 2.7 117.0+1.9 

0.01 No Data No Data 25.1 ±8.9 71.1 ± 1.2 

Table 4.7.: Hvdrodvnamic Correlation Length in Cyclohexane at 323K. 

Concentration Hydrodynamic Correlation Length / A ± Error 

10,000 g/mol 50,000 g/mol 100,000 g/mol 

0.4 No Data No Data 7.8 + 1.8 

0.2 16.3 + 3.5 No Data 15.0 + 1.5 

0.1 17.4 + 1.7 No Data 19.4 + 2.6 

0.05 19.5 + 1.07 21.9 ± 2.9 27.4 + 2.6 

0.01 5.2+1.2 20.6 + 3.3 35.6 + 2.1 

Table 4.8.: Hvdrodvnamic Correlation Length in Toluene at 298K. 

One possible explanation can be advanced for these results. In this series of 

experiments, the correlation length has been measured for polystyrene networks prepared 

in semi-dilute solution and as described earlier the screening length of the gel is found to 

be constant over the entire range of polymer gel concentration studied which is thought 

to be due to the fact that the cross linking reactions are in all cases performed on semi-

dilute solutions of 10% concentration, thus freezing in the screening length associated 

with the semi-dilute solution into the gel structure. As the temporary chain 

entanglements present within the transient network are still present within the cross 

linked gel and control the screening length, it might seem reasonable that chain mobility 

within the gel would be influenced by the presence of these chain entanglements and thus 

the mobility of the gel should be the same as that for the semi-dilute solution of 

equivalent concentration. 
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8. P E L S from Networks and Semi-Dilute Solutions Containing Probe Chains. 

One of the central aims of this work has been the determination of the dynamic 
processes controlling the motion of polymer chains diffusing through polymer networks. 
Evaluation of the diffusion coefficient of the probe polymer and the ability to relate it to 
the probe chain molecular weight, the cross link density of the network and the solvent 
quality, would provide fundamental understanding of the mechanism of diffusion through 
swollen gels. In order to study this, a series of polymer networks having a range of cross 
links densities, have been prepared containing a number of trapped probe chains. These 
trapped chain containing networks, described in chapter 2 contain combinations of 
networks and trapped polymers which provide the molecular weight and cross link 
density range necessary to study the dynamic processes of the trapped chain. 

Networks with cross link densities of 10,000, 50,000 and 100,000 g/mol 

(molecular weight between cross links) containing probes chains with molecular weights 

of 120,000, 330,000 and 1,018,000 g/mol, have been prepared in benzene solution and 

subsequently dried to the bulk before being re swollen in filtered cyclohexane and 

toluene. These networks have then been allowed to reach swelling equilibrium over a 

period of upto 7 days prior to QELS experiments to determine the correlation function 

of the gel, the diffusion of trapped probe chains being studied in cyclohexane within the 

temperature range 308-323K and in toluene at 298K. 

In order to ascertain any differences between the dynamic behaviour of probe 

chains within gels and semi-dilute solutions, a series of ternary semi-dilute solutions were 

also prepared containing matrix polymers of equivalent molecular weight to the polymer 

gels at a nominal matrix concentration of 5c* (defined by equation 4.44.) and a probe 

concentration of c*/5. It was initially intended to study the dynamics of the probe 

polymer in these ternary solutions as a function of both the probe molecular weight, 

matrix molecular weight and concentration by increasing the concentration of the matrix 

to values of circa. 10c* and 15c*, however as will be described later, both pressures of 

time and experimental difficulties prevented these experiments during this work. 
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Determination of the diffusion coefficient of the probe chain from the 

autocorrelation function of the gel centres around the use of the ILT method to separate 

the collective motions of the gel from the self-diffusive motions of the probe chain. In 

principle, for a system containing two polymers of different molecular weights, the 

autocorrelation function of the gel is described by two exponential decays with different 

. relaxation rates. Where these decays are sufficiently separated (as in the previous 

section) these two modes present themselves readily for resolution and analysis, however 

for decays of similar relaxation rates analysis relies upon the use of programs such as 

CONTIN to deconvolute the correlation function into its constituent modes. 

Such procedures have been used by Brown 6 6 who used a modified version of 

CONTIN to deconvolute the QELS spectra of ternary poly(isobutylene) semi-dilute 

solutions into the constituent self diffusive mode of the probe chains and the collective 

mode of the semi-dilute matrix. Analysis of the normalised correlation function using 

SIQELS to fit the data to a KWW exponential function yielded only a single decay 

mode. 
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Log (De lay T ime / TS) 

Figure 4.19. Normalised Correlation Function and Associated Single KWW Fit 

From Network T C H 1 (Mc = 9.000 g/mol. Probe = 1.018.000 g/mol) Swollen in 

Cvclohexane at 318K. 
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Similarly to the data obtained from PBMPPD/DVB networks, the correlation 

function from the gel was found to be well described by a single decay, i.e. the relaxation 

rate of the probe chain is sufficiently similar to the network that a single stretched 

exponential decay mode satisfactorily fitted the autocorrelation function. A typical 

spectrum obtained from a trapped chain network is shown above in figure 4.19. As can 

be seen, the autocorrelation function is described by a single exponential decay, the 

single KWW fit to the data being shown in the figure. However it is noted that the 

variance of the decay (0 in the KWW function) was slightly lower for trapped chain 

containing networks than for 'blank' networks, thus indicating the decay mode was 

slightly broader. It was also noted that the relaxation times of the decay was slightly 

slower than for blank PBMPPD/DVB networks of similar concentration. These features 

are most probably due to the presence of the trapped chain within the network causing a 

broadening of the decay. 

Resolution of the decay spectrum to determine the diffusion coefficient of the 

probe chain therefore relied upon the use of CONTIN to produce a distribution of decay 

time from which the relaxation of the probe chain could be isolated. 

CONTIN Re laxa t i on T ime D i s t r i b u t i o n 
8 x 1 0 * I '—' ' l ' "M 'I i| MI 1—i ' i ' "M 1—i ' i ' ' " | 1—i ' i ' i 

<n c 
CD 

_ j — i i I i 11 i l i l I l l n l • i I 1 1 i l l — X i, i ,1 11111 

1 C T 2 1 0 ~ 1 1 0 ° 1 0 1 1 0 2 

Log ( D o h f i / x 1 0 ~ 7 c m 2 s " 1 ) 

Figure 4.20.: Distribution of Decay Times Arising From CONTIN Analysis of 

Network T C H 1 (Mc = 9,000 g/mol. Probe = 1.018.000 g/mol) Swollen in 

Cvclohexane at 318K. 
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A typical example of the diffusion coefficient distribution obtained is shown 

above in figure 4.20. where it can be seen that the errors associated with the peak are 

quite large. As typified by figure 4.20.^ CONTIN analysis of all QELS spectra obtained, 

(not only those obtained from networks containing probe chains but also from ternary 

semi-dilute solutions containing equivalent amounts of probe chains) was found to 

produce a single peak in the distribution of diffusion coefficients, which ranged from 

(1.0 x e"9 < D 0 b s (cmV 1) < 1.0 x e"6), and had associated with itself a large error. 

This broad peak was found in all cases, regardless of probe chain size, cross link 

density or solvent quality and attempts to modify the input parameters of the program to 

produces a distribution of diffusion coefficients met with no success. Similar behaviour 

was found for ternary semi-dilute solutions over the entire range of matrix polymer 

weight and solvent quality studied. Unfortunately time constraints prevented any further 

re-analysis of the data generated in this study and as such no information regarding the 

diffusion of the probe chain through the network was available. 

It has however been noted by other authors63 that when CONTIN tries to resolve 

multi peak solutions, it cannot resolve peaks where the ratio of the sizes of the two 

species are less than a factor of two apart and instead of providing a solution with two 

discrete peaks will instead smooth the peaks together producing a single broad peak. 

From the co-operative diffusion coefficient data of blank networks prepared from 

the PBMPPD/DVB system given in appendix 1, a value of the hydrodynamic correlation 

length 4h c a n be determined. The ratio of this correlation length has been compared with 

the hydrodynamic radius of the probe measured in dilute solution and has for many of the 

combinations of networks and probes studied here been found to be close to unity. This 

is most prevalent for highly cross linked networks containing "low" molecular weight 

probe polymers and can be seen to rise to approximately 4 for networks containing the 

highest molecular weight probe polymers. 
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Therefore, in many cases CONTIN can be seen to be making an attempt to 

resolve relaxation modes which are directly overlapping and in other cases where the 

molecular weights of the probe polymer and the network are most suited to allow a 

separation of the individual combinations, CONTIN can be seen to be operating on its 

resolution limit and hence it is thought resolution of the decay modes is impractical when 

using CONTIN to resolve the decay modes. 

9. Conclusions. 

QELS has been used to follow the dynamic behaviour of a series of polystyrene 

networks swollen in cyclohexane within the temperature range 308K to 323K and in 

toluene at 298K. Differences between the dynamic behaviour of the polymer chains in 

the cross linked gel and when uncross linked in semi-dilute solution have been followed 

by measuring the QELS spectrum of a series of polystyrene solutions having a 

concentration equivalent to that of the polymer gel. The collective diffusion coefficient 

of the swollen gel has been determined from the relaxation of the QELS spectrum and 

scaling exponents relating the diffusion coefficient to the polymer concentration have 

been determined. 

For polystyrene networks under theta conditions (308K in cyclohexane), good 

agreement has been found between the measured scaling exponent (1.23) and that 

predicted by renormalisation group theory (1). Increasing the solvent quality has been 

found to decrease the scaling exponent towards that predicted for a good solvent (0.75), 

however when measured in toluene at 298K the scaling exponent has been found to be 

considerably greater than that predicted at 1.82. 

The longitudinal osmotic modulus has also been measured by QELS and related 

to the renormalisation group predictions of de Gennes. Under theta conditions where a 

scaling exponent of 3 is predicted, a somewhat larger value of 3.98 has been found. This 

difference has been attributed to the low quality of the AMS/DVB series of networks 

used in part to complete this work. Values of the osmotic modulus determined from 
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these networks are found to be considerably lower than those obtained from 

PBMPPD/DVB networks and are found to change in an essentially random manner, 

changing little with the temperature of the system. These features are thought to be due 

to the open structure of these networks formed during the relatively poor cross linking 

reactions which produced networks containing large fractions of pendant chains. When 

considered alone, the scaling exponents obtained from the PBMPPD/DVB series of 

networks was found to somewhat lower than predicted by renormalisation group theory, 

however the polymer concentration range explored with these networks is noted to be 

rather low and the measurement subject to large errors. Increasing the quality of the 

solvent is found to decrease the scaling exponent towards a value predicted for a 

polymer-good solvent system. 

The collective motions of a series of solutions entangled in the semi-dilute region 

have been studied by QELS and differences established between the solutions and 

polymer gels. In the gels, only a single relaxation mode due to collective motion is 

found, while in semi-dilute solutions a second mode was frequently found. The origins 

of the mode are somewhat unclear however it seems likely that the mode arises form the 

viscoelastic properties of polymer chains in entangled solutions. Unlike the cross linked 

gels, the chains of the solution can disentangle over relatively long time scales, causing 

the second relaxation mode. For semi dilute solutions of a high molecular weight 

polymer, scaling exponents relating the co-operative diffusion coefficient to the polymer 

volume fraction have been determined and found to be somewhat lower than predicted, 

also decreasing with the solvent quality as predicted by renormalisation group theory. 

In toluene based solutions and gels the ratio of the hydrodynamic radii of the gel 

and solution has been measured and has been found to be unity. This is a feature not 

found in previous studies of swollen gels/solutions and is attributed to the method of 

synthesis of the networks. As 10% solutions of polymer were end linked to form a 

network, the temporary chain entanglements along the chain backbone become frozen 

into the network structure. These entanglements have been shown to control the 
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screening length of the network and as such it would seem reasonable that these chain 

entanglements might also influence the chain mobility within the swollen network after 

cross linking. 

QELS has been used in an attempt to extract the tracer diffusion coefficient of a 

series of probe chains trapped within networks swollen to equilibrium in cyclohexane and 

toluene and has also been used to determine the "free" diffusion coefficient in dilute 

solution for comparative purposes with the tracer diffusion coefficient in swollen 

networks. 

Determination of the tracer diffusion coefficient centres on the assumption that 

ILT routines such as CONTIN are able to deconvolute the relaxation spectrum into its 

components. Such an analysis has been performed previously for poly(isobutylene) semi-

dilute solutions. In principle the relaxations of the swollen network and the probe chain 

should be more easily resolved due to the differences in the molecular weights of the 

components. However this has not found to be the case and the relaxation rates of the 

network and probe have not been able to be resolved. This is thought to be due to the 

similarities of the hydrodynamic radii for the probe chain and the chains of the swollen 

network. The ratio of these has been found in many cases to be only slightly larger than 

unity and it has been reported that programs such as CONTIN cannot resolve separate 

decays where this ratio is less than two. 
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CHAPTER 5. 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK. 

The objective of this work was to prepare and characterise the behaviour of 

model polymeric networks containing a known fraction of trapped chains. Studies of the 

behaviour of these trapped chains were focused on the determination of the 

conformation of the probe chain in solvent swollen gels as well as in the bulk networks, 

while studies of the hydrodynamic behaviour of the probe chains were initiated for 

networks swollen to equilibrium under a range of thermodynamic conditions so as to test 

theories describing the diffusion of trapped chains in concentrated media. 

5.1. General Discussion 

To study the behaviour of trapped chains, it was necessary to prepare a series of 

high quality model networks, which contained no macromolecular sol fraction usually 

associated with polymeric networks. Polymeric networks containing no trapped chains 

(so called blank networks) were prepared using a conventional difunctional anionic 

polymerisation initiator (di-sodium tetramer of a-methyl styrene) and contrary to the 

reports published in the literature were unable to be cross linked with a reasonable 

efficiency. Networks produced from the system were found to contain a large 

macromolecular soTfraction andthe crosslink density of the network was not able to be 

predicted with any degree of accuracy. 

However using a novel difunctional organo-lithium initiator system based on 1,3-

bis(l-phenylethenyl)benzene it has been found possible to prepare high quality model 

polymer networks containing only a very small fraction of macromolecular sol. Such 

networks have been prepared efficiently, the cross link densities of which have been 

predicted with great consistency. 

Characterisation of the properties of these networks has been undertaken and the 

properties of the networks examined in terms of the scaling models of de Gennes. The 
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swelling of the network has been examined as a function of the quality of the swelling 

solvent and in the good solvent limit at 298K in toluene. The scaling predictions relating 

the volumetric swelling of the network and the cross link density have been found to be 

consistent with experimental observations. In solvents of relatively poor quality, the 

scaling exponents were found to be somewhat lower than the good solvent value, 

however progressively increasing the solvent quality was found to lead to behaviour 

approaching that of a good solvent. 

The collective motions of the solvent swollen gels have been studied using QELS 

in the good solvent limit in toluene at 298K as well as under theta conditions in 

cyclohexane at 308K. In theta conditions, the scaling exponent relating the co-operative 

diffusion coefficient to the polymer volume fraction was found to be in excellent 

agreement with the predicted value, progressive increases in the solvent quality through 

increasing the temperature of the gel were found to bring about a decrease the scaling 

exponent towards the good solvent value. However in the good solvent limit, the scaling 

exponent was found to be substantially different to that predicted by theory, a difference 

which is thought to be due to the limited range of the data points available from the 

PBMPPD networks. 

The collective motions of a series of semi-dilute solutions of concentrations 

equivalent to that of the solvent swollen networks have also been studied by QELS and 

differences between the two systems quantified. The autocorrelation function from the 

swollen network is in all cases, found to be composed of a single stretched exponential 

decay, while that obtained from the semi-dilute solutions is found to be composed of 

upwards of two decays depending on the concentration of the solution and the molecular 

weight of the polymer. For solutions of high molecular weight and/or high concentration 

a second decay, over three decades longer that due to the collective chain motions has 

been found which has been attributed to the viscoelastic properties of the overlapping 

semi-dilute chains. This relaxation is not present in swollen polymer networks as the 

chains of the network are prevented from dis-entangling over long time scales, unlike the 
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chains of the semi-dilute solution. The collective motions of semi-dilute solutions of the 

100,000 gmol"1 matrix polymer have been found to be dependent on the polymer 

concentration, although the scaling exponents have been found to be somewhat smaller 

than that predicted by theory. Increasing the solvent quality has been found to lead to a 

decrease in the magnitude of the scaling exponent as predicted by scaling theory. 

The longitudinal osmotic modulus of the polymer networks swollen in 

cyclohexane in the temperature range 3 08-3 23 K has also been extracted from the 

autocorrelation function of the QELS spectrum. Again, scaling trends following those 

predicted by de Gennes have been observed, though the magnitudes of the scaling 

exponents differ from those predicted by theory. This is a feature attributed to the 

relative magnitudes of the osmotic modulii obtained from the AMS/DVB and 

PBMPPD/DVB series of networks. Values obtained from the relatively open structured 

AMS/DVB series of networks were found to vary little with either solvent quality or the 

polymer concentration, while results obtained from the PBMPPD/DVB series of 

networks were found to be dependent on both solvent quality and polymer volume 

fraction. Hence as the solvent quality increases and the osmotic modulii of the 

PBMPPD/DVB series decreases, the scaling exponent decreases towards that of the 

good solvent limit. 

While scaling behaviour consistent with theoretical predictions has been found for 

the collective diffusion coefficient and hence the hydrodynamic correlation length, the 

correlation length describing the excluded volume interactions has been measured by 

SANS and has been found to be independent of the polymer concentration, dependent 

only on the solvent quality of the network. The explanation advanced for this behaviour 

centres on the method of preparation of the networks. 

All networks regardless of cross link density were prepared from a 10% solution 

of polystyrene in the good solvent benzene: For such a semi-dilute solution, the 

excluded volume correlation length is dependent only on the polymer concentration and 
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describes the separation of entanglements on the backbone of the polymer chain. Over 

long time scales these entanglements can disentangle, however by the introduction of a 

cross linking agent joining the chain ends, it is postulated that these entanglements 

become "frozen" into the networks structure and therefore the correlation length of the 

network is controlled by that of the semi-dilute solution at the moment of cross linking. 

To investigate the conformation of the probe chains within the networks, a 

perdeuterated polystyrene polymer has been incorporated into the reaction medium prior 

to cross linking the network. This probe polymer has been trapped within networks 

where the cross link density has been tightly controlled between a range between 50,000 

gmol"1 and 10,000 gmol"1. In the bulk state, the hydrogenous network and the 

perdeuterated probe chain have not been found to exist in separate phases, the molecular 

weights of the probe chains indicating that the trapped chains exist as non-aggregated 

particles, regardless of the cross link density of the network. 

However, the cross link density has been found to influence the radius of gyration 

of the probe chain. Theoretical predictions of the probe chain a random medium suggest 

that the probe chain should contract below the unperturbed dimensions as the cross link 

density of the network is increased. However, increasing the cross link density of the 

medium has been found to cause an increase in the radius of gyration of the probe chain. 

No explanation for this behaviour can be advanced at present as only a limited amount of 

data was collected in the short amount of experimental time available. 

The size of the probe chain has also been determined in networks swollen to 

equilibrium in cyclohexane in the temperature range 308-318K. The radius of gyration 

of the probe chain has been found to be independent of the cross link density of the 

network and for networks swollen at the theta point, the radius of gyration of the probe 

chain has been found to be in line with the unperturbed dimensions of the chain. 

Increasing the temperature of the system and hence the solvent quality have been found 

to lead to an increase in the size of the chain. Behaviour of this type has been identified 
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as being similar to that of a semi-dilute chain in a theta solvent (region III of the polymer 

phase diagram), as might be expected following the c* theorem of de Gennes relating the 

behaviour of semi-dilute solutions with that of swollen networks. 

The hydrodynamic properties of the probe chain within the network have been 

studied using the decay of the autocorrelation function from a QELS experiment to 

provide an estimate of the self diffusion coefficient of the probe chain. Previous studies 

of ternary solutions have shown the possibility of deconvoluting the autocorrelation 

function into its components to measure the tracer diffusion coefficient of the dilute 

chain relative to the of the matrix. In principle the two relaxation's of the gel and the 

probe should have been more easily resolved as compared to that of a ternary solution, 

the difference in the molecular weight of the network and the probe being larger than a 

semi-dilute matrix. A series of networks containing a number of different high molecular 

weight probe molecules have been prepared and studied by QELS, however it has not 

been found possible to extract the diffusion coefficient of the probe chain from the QELS 

spectrum as the two relaxation's overlap too closely, the ratio of the hydrodynamic radii 

of probe and gel being close to unity. Hence no information has been obtained regarding 

the applicability of the reptation model for the probe chain diffusing through the cross 

linked network. 

5.2. Conclusions. 

In summary a series of high quality model polystyrene networks have been 

prepared and characterised. The volumetric swelling ratio, co-operative diffusion 

coefficient and longitudinal osmotic modulus of the networks have been examined as a 

function of the solvent quality and polymer concentration. The predictions of scaling 

theory have been confirmed for these networks and in the main scaling exponents in line 

with those predicted have been found for the swollen networks. 

Two series of probe polymer chains have been trapped within these model 

networks. A perdeuterated probe polymer has been incorporated into the networks so as 
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to measure the size of the chain as a function of the cross link density in the bulk 

network and when swollen with solvent. In the bulk, the predictions of the chain in a 

random medium have been found to be inapplicable as the size of the chain increased 

with the cross link density. No evidence for phase separation between the probe polymer 

and the network was found. In the solvent swollen networks, the size of the chain was 

found to be independent ^ f the cross link density of the network, the radius of gyration 

being dependent only on the temperature of the cyclohexane swollen gel. For networks 

swollen at the theta point unperturbed chain dimensions were found, while increasing the 

temperature was found to increase the size of the probe chain. This behaviour has been 

identified with that of a semi-dilute solution at the theta point, the so-called region III of 

the polymer phase diagram. 

A second series of networks containing high molecular weight hydrogenous 

polymers have been prepared in an attempt to study the hydrodynamic properties of 

probe chains in polymer gels and in solutions of equivalent concentration. However, 

deconvolution of the two decays in the QELS spectrum has not been possible as was first 

thought possible and the mechanism of diffusion of the probe chain within the network 

remains unknown. 

5.3 Suggestions for Future Work. 

Clearly, from the results presented above, the properties of the model networks 

prepared have been found to be described well by the scaling predictions of de Gennes 

and as such little further work can be envisaged on this subject. However, the properties 

of polymer chains trapped within these networks remain not well understood. The 

conformation of the one probe chain trapped within the network indicates an increase in 

the size of the chain and as noted earlier no explanation for this increase has as yet been 

advanced. 

Theoretical work to model the size of a polymer in such a situation should help to 

provide some insight into this chain expansion, which could be determined more 
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thoroughly by further SANS studies utilising probe polymers of different molecular 

weight trapped in networks where the cross link density is chosen to be in the critical 

region around 5-20,000 gmol"1. Although no evidence for phase separation was found 

using a low molecular weight perdeuterated probe polymer, this would appear surprising 

and phase separation might be found for probe polymers of higher molecular weight. 

This again is an area that could be studied by SANS. 

Perhaps the most important result which might have been obtained from this 

study was the determination of the mode of diffusion of the probe polymer within the 

network. Although this has not been found possible using QELS, the ability to prepare 

trapped polymer containing networks has been demonstrated and as such the self-

diffusive motions of a suitably tagged polystyrene polymer might be studied by 

techniques such as quasi-elastic neutron scattering, pulsed field gradient NMR or forced 

Rayleigh scattering. Similar experiments to those performed here might help to alleviate 

many of the questions posed surrounding the diffusion of polymer chains within 

concentrated, entangled systems. 
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Appendix A 

Glossary of Terms and Symbols Used 



G l o s s a r y of T e r m s a n d S y m b o l s U s e d . 

Chapter 1. 
A 2 Second Virial Coefficient 
c* Critical Overlap Concentration 
CQO Characteristic Ratio 

D c o Collective Diffusion Coefficient 
D s Self Diffusion Coefficient 
D t Tracer Diffusion Coefficient 
g Number of Monomers per'Blob' 
kg The Boltzmann Constant 
M o s Longitudinal Osmotic Modulus 
M c Molecular Weight Between Cross Links In a Network 
M n Number Average Molecular Weight 
M w Weight Average Molecular Weight 
N Number of Segments in the Polymer Chain 
N ^ Avagadro's Number 
R Universal Gas Constant 
R g The Radius of Gyration of the Polymer 
Rh The Hydrodynamic Radius of the Polymer 

Vr*" Root Mean Square End-to End Distance 
T The Absolute Temperature of the System 
T r Reptation Time 
V 0 Unswollen Undeformed Volume of the Network 

% Molar Volume of Solvent 

a Linear Expansion Factor 
X, Flory-Huggins Interaction Parameter 
r) Shear Viscosity 
r) 0 Solvent Viscosity 
[n] Intrinsic Viscosity 
|.i Chain Mobility 
H e The Number of Elastically Effective Cross Links in the Network 
v Excluded Volume Exponent 
v e Number Of Chains Connecting two Elastically Effective Junctions 
7i Osmotic Pressure 
p The Bulk Density 
p 0 Mean Obstacle Density of a Random Medium 
x Reduced Temperature 
u Specific Volume 
£ Correlation Length 



Monomer Friction Coefficient 

C N Cycle Rank of the Polymer Network 

ChaDter 2. 
co The Concentration of Polymer at the Point of Cross Linking 
DP Degree of Polymerisation 
M n Number Average Molecular Weight 
M w Weight Average Molecular Weight 
Q Equilibrium Volumetric Swelling Ratio 

v d 
Volume of the Dry Network 

v 0 
Volume of the System at the Point of Cross Linking 

\ Molar Volume of Solvent 

<f>p The Polymer Volume Fraction in the Swollen Network 

ChaDter 3. 
b Scattering Length 
I Intensity of Radiation 
k Wave Vector 
m Neutron Mass 
M z Z-Average Molecular Weight 
n Refractive Index 
P(Q) Particle Form Factor 

Q Scattering Vector 

Q(Q) Normalised Interference Term 
S(Q) Structure Factor 
z Number of Segments in the Polymer Chain 
X Wavelength of Radiation 
e Scattering Angle 
p Scattering Length Density 
a Scattering Cross Section 
U 0 Reference Scattering Volume 

Chapter 4. 
Dobs Measured Diffusion Coefficient 

D c o 
Collective Diffusion Coefficient 

D s 
Self Diffusion Coefficient 

D t 
Tracer Diffusion Coefficient 

E 0 
Electric Field of the Radation Incident on a Particle 

f Friction Coefficient of the Swollen Gel 
G Shear Modulus of a Swollen Network 

ii 



Field Autocorrelation Function 
Field Correlation Function 

G2(x) Intensity Autoorrelation Function 
g2(x) Intensity Correlation Function 
K Bulk Modulus of a Swollen Network 
M Molecular Weight of the Scattering Centre 
M o s Longitudinal Osmotic Modulus 
N Number of Pulses Generated by Reference Signal in Heterodyne QELS 
R(6) Rayleigh Ratio 
r Observer Distance in a Light Scattering Experiment 
w Weight Fraction of Polymer in a Swollen Network 
V Volume of the Scattering Region 
A Delay Period of the Correlator 
r Relaxation Rate of the Decay of the Autocorrelation Funciton 
r Mean Relaxation Rate of a Cumulant Distribution 
a Molecular Polarisability 

P Variance 
Induced Dipole Moment 

l-l2 Second Moment of a Cumulant Distribution 
Hydrodynamic Correlation Length 
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Appendix C 

Quasi-Elastic Light Scattering Results 



Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x 10"7 cm2s"1 D n D w 
D 7 

11.423 3.38 ±0.02 4.19 4.27 4.34 

5.714 3.50 ±0.03 3.69 3.81 3.93 

4.319 3.85 ±0.04 5.04 5.25 5.59 

3.862 3.88 ±0.02 3.71 3.85 4.01 

Probe 3 Q E L S Results at 308K 

Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 1 xlO" 7 cmV 1 D n D w 
D 7 

11.352 3.69 ±0.02 4.68 4.78 4.92 

5.679 4.05 ±0.02 4.07 4.28 4.48 

4.292 4.24 ±0.02 4.29 4.35 4.40 

3.838 4.35 ±0.03 4.27 4.36 4.43 

2.901 4.47 ±0.01 4.56 4.72 4.88 

Probe 3 Q E L S Results at 313K 

Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D n D w 
D 7 

11.280 4.26 ±0.01 4.79 4.89 5.02 

5.643 4.54 ±0.02 4.48 4.58 4.66 

4.265 4.62 ±0.03 4.76 4.92 5.08 

3.813 4.73 ± 0.02 5.43 5.61 5.78 

2.883 4.77 ±0.02 5.25 5.29 5.57 

Probe 3 Q E L S Results at 318K 

Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D n D w D 7 

11.208 4.69 ±0.02 5.47 5.67 5.85 

5.607 4.91 ±0.02 5.17 5.29 5.41 

4.238 4.95 ±0.01 4.46 4.56 4.68 

3.789 5.20 ±0.02 6.44 6.56 6.66 

2.864 5.16 ± 0.01 5.21 5.41 5.61 

Probe 3 Q E L S Results at 323K 

Appendix C I ; Dilute Solution P E L S Results from the Probe 3 Polymer. 



Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D w 
D 7 

6.632 2.37 ±0.02 2.49 2.54 2.58 

5.299 2.47 ±0.02 2.22 2.30 2.36 

4.135 2.67 ±0.02 2.35 2.44 2.52 

3.018 2.41 ±0.02 2.96 3.02 3.07 

2.697 3.29 ±0.01 2.90 3.05 3.18 

Probe 4 Q E L S Results at 308K 

Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D„ D w 
D 7 

6.591 2.80 ±0.02 2.54 2.62 2.71 

5.267 2.80 ±0.03 2.57 2.67 2.77 

4.109 3.00 ±0.04 2.62 2.75 2.88 

2.999 2.78 ±0.01 3.06 3.13 3 19 

2.680 3.76 ±0.03 3.11 3.24 3.35 

Probe 4 Q E L S Results at 313K 

Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D n D w D 7 

6.549 3.16±0.04 2.93 3.07 3.21 

5.233 3.18 ±0.01 2.78 2.89 3.00 

4.083 3.42±0.01 2.82 2.97 3.11 

2.980 3.52±0.19 2.98 3.18 3.31 

2 663 3 .99 ± 0.32 3.14 3.26 3.37 

Probe 4 Q E L S Results at 318K 

Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D„ D w D 7 

6.507 3.55 ±0.05 3.04 3.19 3.33 
5.199 3.55 ±0.03 3.08 3.21 3.33 

4.057 3.87 ±0.02 3.09 3.23 3.34 

2.961 3.81 ±0.1 3.12 3.38 3.63 

2.646 4.32 ±0.08 3.91 4.05 4.07 

Probe 4 Q E L S Results at 323K 

Appendix C2: Dilute Solution P E L S Results from the Probe 4 Polymer. 



Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D n D w D 7 

3.753 1.39 ±0.01 1.33 1.36 1.38 

3.032 1 47±0 .01 1.41 1.45 1.49 

2.301 1.53 ±0.01 1.37 1.48 1.53 

1.848 1.49 ±0.01 1.49 1.53 1.56 

0.917 1.62 ±0.02 1.55 1.63 1.70 

Probe 5 Q E L S Results at 308K 

Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D n D w 
D 7 

3.729 1.54 ±0.01 1.57 1.58 1.62 

2.997 1.63 ±0.01 1.44 1.52 1.59 

2.287 1.69 ±0.01 1.47 1.60 1.71 

1.836 1.63 ±0.01 1.56 1.61 1.65 

0.911 1.75 ±0.01 1.72 1.82 1.89 

Probe 5 Q E L S Results at 313K 

Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D„ D w D 7 

3.706 1.73 ±0.02 1.48 1.52 1.55 

2.978 1.78 ±0.01 1.57 1.63 1.67 

2.272 1.86 ±0.02 1.62 1.70 1.77 

1.825 1.79 ±0.02 1.80 1.91 1.89 

0.906 1.94 ±0.01 1.84 1.94 2.04 

Probe 5 Q E L S Results at 318K 

Concentration SIQELS Results CONTIN Results / xlO" 7 cmV 1 

/ gem"3 D 7 / x l 0 " 7 cmV 1 D n D v v D 7 

3.682 1.81 ±0.01 1.54 1.59 1.65 

2.959 1.98 ±0.01 1.60 1.68 1.77 

2.258 2.02 ±0.01 1.77 1.81 1.86 

1.813 1.96 ±0.02 1.87 1.99 2.09 

0.899 2.11 ±0.01 1.95 2.06 2.17 

Probe 5 Q E L S Results at 323K 

Appendix C3: Dilute Solution P E L S Results from the Probe 5 Polymer. 



Volume SIQELS Results CONTES I Results /x lO" 7 c m V 1 

Fraction D 7 /x l0" 7 cm 2 s" 1 Variance D„ D 7 

0.233 6.36 + 0.29 0.877 5.24 + 0.48 5.32 + 0.50 5.40 + 0.54 

0.224 5.16±0.96 0.842 4.86 + 0.26 5.14 + 0.34 5.40 + 0.38 

0.187 4.32 + 0.93 0.907 3.12 + 0.06 3.22 + 0.04 3.50 + 0.16 

0.160 2.84 + 0.83 0.802 3.00 + 0.12 3.12 + 0.14 3.62 + 0.20 

Heterodyne Q E L S from PBMPPD/DVB Networks at 308K 

Volume SIQELS Results CONTEV f Results/xlO"7 c m V 1 

Fraction D 7 /x l0- 7 cm 2 s" 1 Variance D n D w 
D 7 

0.240 6.90 + 0.29 0.896 6.20 + 0.24 6.52 + 0.32 6.78 + 0.34 

0.208 6.80 + 0.15 0.898 5.60 + 0.20 5.80 + 0.14 5.98 + 0.10 

0.164 4.60 + 0 19 0.918 3.86 + 0.14 4.12 + 0.30 4.60 + 0.30 

0.143 3.81 ±0.15 0.829 4.10 + 0.20 4.90 + 0.28 5.60 + 0.32 

Heterodyne Q E L S from PBMPPD/DVB Networks at 313K 

Volume SIQELS Results CONTHS f Results /x lO" 7 c m V 1 

Fraction D 7 /x l0" 7 cm 2 s" 1 Variance D n D w 
D 7 

0.212 12.1 ± 1.71 0.664 7.32 + 0.54 7.56 + 0.53 7.79 + 0.55 

0.193 9.18 + 0.77 0.842 6.86 + 0.18 7.29 + 0.14 7.81 ±0.16 

0.134 7.06 + 0.48 0.797 4.72 + 0.32 5.89 + 1.0 6.88+ 1.5 

0.122 4.5+0.06 0.812 4.57 + 0.06 4.95 + 0.10 5.31 ±0.1 

Heterodyne Q E L S from PBMPPD/DVB Networks at 318K 

Volume SIQELS Results CONTIN Results / xl'O"7 cm2s"L 

Fraction D 7 /x l0" 7 cm 2 s" 1 Variance D n D v v D 7 

0.202 12.5 ±0.14 0.605 9.66 ±0.7 10.57 ±0 .9 11.33 ± 1.1 

0.184 110 ± 0.18 0.518 8.44 + 0.34 9.85 ±0 .3 11.03 ±0.3 

0.115 8.26 ±0.39 0.475 6.78 + 0.24 7.52 ±0.68 8.11 ±0.94 

0.096 7 69 ±0.25 0.381 6.68 + 0.18 8.08 ±0.18 9.22 ±0 .2 

Heterodyne Q E L S from PBMPPD/DVB Networks at 323K 

Appendix C4: P E L S Results from PBMPPD/DVB Networks Swollen 

in Cvclohexane In The Temperature Ran2e 308-323K. 
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Volume SIQELS Results CONTIN Results / xlO" 7 c m V 1 

Fraction D ^ / x l O ^ c m V 1 Variance D„ D w 
D 7 

0.051 0.78 ±0.34 0.661 1.83+0.13 1.88 ±0.13 1.92 ±0.13 

0.063 I 57 ± 0.11 0.684 0.98 ± 0 01 1.65 ±0.62 2.32 + 0.61 

0.064 1.64 ±0.16 0.730 0.93 ±0.05 1.45 ±0.17 1.95 ±0.32 

0.068 0.93 ±0.50 0.695 1.85 ±0.03 1.90 ±0.05 1.98 ±0.02 

0.072 0.96 ±0.09 0.620 2.46 ±0.04 2.56 ±0.04 2.68 + 0.04 

0.081 1.66 ±0.25 0.662 2.79 ±0.1 2.89±0.05 3.04 ±0.04 

0.094 1.08 ±0.60 0.668 4.25 ±0.15 4.41 ±0.14 4.56 ±0.14 

Heterodyne Q E L S from AMS/DVB Networks at 308K 

Volume SIQELS Results CONTnS \ Results /x lO" 7 c m V 1 

Fraction D 7 /x l0" 7 cm 2 s" 1 Variance D n D w 
D 7 

0.047 1.18 ± 0.19 0.681 1.63 ±0.05 1.71+0.04 1.78+0.02 

0.053 1.60 ±0.20 0.747 3.17 + 0.01 3.23 ±0.02 3.31 ±0.03 

0.054 1.72 ±0.11 0.647 1.45 ±0.06 1.49 ±0.07 1.52 ±0.08 

0.056 2.26 ±0.18 0.736 1.26 ±0.67 1.88 ±0.72 2.39 ±0.62 

0.071 1.53 ±0.15 0.721 2.80 ±0.20 2.92 ±0.23 3.04 ±0.25 

0.071 1.89 ±0.29 0.667 2.24 ±0.28 2.38 ±0.35 2.51 ±0.33 

0.074 1.47 ±0.08 0.605 2.45+0.24 2.59 ±0.26 2.72 ±0.27 

Heterodyne Q E L S from AMS/DVB Networks at 313K 

Volume SIQELS Results CONTIN Results / xlO*7 c m V 1 

Fraction D 7 /x l0" 7 cm 2 s" 1 Variance D n D w D 7 

0.036 2.63 + 0.46 0.748 1.74 ±0.63 1.86 ±0.64 1.97 + 0.67 

0.042 1.65 ±0.18 0.662 2.57±0.13 2.65 ±0.10 2.73 ±0.06 

0.045 2.25 ±0.25 0.556 2.09 ±0.12 2.24 ±0.15 2.39±0.18 

0.046 3.16 ±0.33 0.560 2.12 ±0.13 2.15 ± 0 14 2.17 + 0.14 

0.053 2.14 ±0.09 0.721 1.97 + 0.61 2.38 ±0.21 2.67 ±0.05 

0.06 2.65 ±0.28 0.684 1.76 ± 0.17 2.33 ±0.36 2.62 ±0.43 

0.064 2.05 ±0.16 0.657 2.51 ±0.11 2.64 ±0.13 2.75 ±0.15 

Heterodyne Q E L S from AMS/DVB Networks at 318K 

Appendix C5: P E L S Results from AMS/DVB Networks Swollen 

in Cvclohexane In The Temperature Ranee 308-318K. 



Volume SIQELS Results CONTES f Results /x lO" 7 c m V 1 

Fraction D ^ / x l O ^ c m V 1 Variance D n D „ D 7 

0.071 4.49 + 0.65 0.689 3.61 ±0.79 4.75 ±0.97 5.51 ± 1.30 

0.056 2.71 +0.46 0.634 3.21 ±0.15 3.38 ±0.25 3.55 ±0.35 

0.047 2.83+0.29 0.795 2.82 ±0.08 3 .03 ±0.06 3 .24 ± 0.13 

0.042 2.97 + 0.25 0.786 3.60 ±0.28 3.83+0.33 4.05 ±0.37 

0.041 2.10 + 0.15 0.687 3.32 ±0.47 3.44 + 0.48 3.57 ± 0.51 

0.039 2.80 ±0.22 0.895 2.33 ±0.35 2.61 ±0.46 2.92 ±0.39 

0.033 3.06 + 0.66 0.801 4.89 ±0.38 5.22 ±0.49 5.54 + 0.61 

Heterodyne Q E L S from AMS/DVB Networks at 323K 

Volume SIQELS Results CONTEs f Results/xlO"7 c m V 1 

Fraction D 7 / x l0 ' 7 cm 2 s " 1 Variance D n D w D 7 

0.0119 1.08 + 0.19 0.663 1.76 + 0.43 2.38 ±0.97 3 .20 ± 1.84 

0.0134 0.74 + 0.03 0.538 1.32 ±0.54 1.37 ±0.61 1.44 ±0.68 

0.0138 1.74 + 0.60 0.867 2.05 ±0.23 2.26 ±0.26 2.49 ±0.29 

0.0159 1.08 ±0.30 0.461 4.27 ±0.36 4.32 ±0.49 4.38 ±0.55 

0.0169 2.23 ±0.92 0.57 1.76 ±0.29 1.89±0.33 2.03 ±0.36 

0.0186 0.97 ±0.06 0.502 2.91 ±0.49 2.95 ±0.66 2.98 ±0.79 

0.0262 2.43 ±0.19 0.583 2.11 ±0.41 2.45 ±0.56 2.79 ±0.74 

Heterodyne Q E L S from AMS/DVB Networks at 298K in Toluene. 

Volume SIQELS Results CONTIN Results / xlO*6 c m V 1 

Fraction D 7 /x l0- 6 cm 2 s" 1 Variance D n D w D 7 

0.102 3.41 ±0.25 0.63 2.54 ±0.57 2.77 ±0.19 3.01 ±0.27 

0.087 2.14 ±0.04 0.603 1.89 ±0.27 2.04 ±0.16 2.31 ±0.31 

0.042 2.25 ±0.18 0.694 1.69 ±0.39 1.94 ±0.64 2.18±0.45 

0.039 1.57 ± 0.19 0.556 1.49 ± 0.13 1.67 ±0.09 1.76 ±0.29 

Heterodyne Q E L S from PBMPPD/DVB Networks at 298K in Toluene. 

Appendix C6: P E L S Results from AMS/DVB Networks Swollen in Cvclohexane 

at 323K. in Toluene at 298K and from PBMPPD/DVB Networks Swollen in 

Toluene at 298K. 
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Volume Longditudinal Osmotic Modulus Results (M n < ! ) ± Error / Nm" 
Fraction 308K 313K 318K 323K 

0.051 395 ± 66 234 ± 11 261 ± 2 4 8249 ± 1003 

0.063 705 ± 294 544 ± 106 830± 139 62188 ±27826 

0.064 694 ± 234 644 ± 86 941 ±373 32317 ±8229 
0.068 571 ±401 382 ± 8 7 339 ± 18 3758 ±384 
0.072 593 ±215 486 ± 28 568 ± 20 24686±1539 

0.081 1447 ±559 1122± 152 2989 ±2179 7865 ± 1684 

0.094 1266 ±339 940 ± 76 1087 ± 9 8 22176+ 1539 

Longditudinal Osmotic Modulus Results From AMS/DVB Networks. 

Volume Longditudinal Osmotic Modulus Results ( M n s ) ± Error / Nm" 

Fraction 308K 313K 318K 323K 

0.233 160196 ±10350 127269 ±20772 92391 ±2120 24185 ±3394 

0.224 65064 ±7355 43906 ± 6078 63571 ± 5850 51252 + 11155 

0.187 56428 ± 3889 28778 ± 2687 146577 ± 48509 6590 ± 477 

0.160 47331 ±4035 50597 ±8178 22111 ±826 3850±1098 

Longditudinal Osmotic Modulus Results From PBMPPD/DVB Networks. 

Volume Fractions Quoted Are Those Measured In Cyclohexane at 308K. 

Appendix CI: Longditudinal Osmotic Modulus Results from AMS/DVB 

and PBMPPD/DVB Series Networks in Cvclohexane 

in the Temperature Range 308-323K. 
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Polymer Relaxation Time / yi seconds and Variance Z-Average D r 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.37 12.4 ±0.4 0.853 Not Applicable 8.79 ±0.31 

0.186 12.5 ±0.3 0.840 Not Applicable 7.15 ±0.15 

0.103 7.3 ±0.1 0.820 Not Applicable 11.3 ±0.18 

0.056 6.6 ±0.3 0.784 Not Applicable 12.1 ±0.6 

0.013 3.6 ±0.3 0.709 Not Applicable 21.5 ± 1.8 

SIQELS Results from 10,000 g/mol matrix solutions in cyclohexane at 308K 

Polymer Relaxation Time / (.1 seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s_1 

0.409 17.5 ± 1.1 0.590 Not Applicable 6.56 ±0.39 

0.207 16.3 ±0.1 0.699 Not Applicable 5.59 ±0.05 

0.101 11.5 ±0.3 0.546 Not Applicable 7.73 ±0.16 

0.054 9.56 ±0.3 0.667 Not Applicable 8.40 ±0.29 

0.010 7.5 ±0.9 0.682 Not Applicable 10.3 ± 1.2 

SIQELS Results from 20,000 g/mol matrix solutions in cyclohexane at 308K 

Polymer Relaxation Time / \i seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.364 45.1 ±0.6 0.811 Not Resolved 2.40 ±0.03 

0.199 51.2 ± 0.3 0.954 8 .1e 3 ± 1.5e2 0.910 1.76 ± 0.01 

0.106 75.4 ±0.8 0.65 Not Applicable 1.10 ± 0.01 

0.050 34.7 ±0.1 0.597 Not Applicable 2.3 ±0.01 

0.010 10.0 ±0.3 0.699 Not Applicable 7.70 ±0.20 

SIQELS Results from 50,000 g/mol matrix solutions in cyclohexane at 308K 

Polymer Relaxation Time / \i seconds and Variance Z-Average Dc 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.427 35.2 ±0.7 0.715 Not Resolved 3.35 ±0.17 

0.236 44.3+0.2 0.914 1 .9e 4 ±5.1e 2 0.884 2.08 ± 0.07 

0.125 63.8 + 0.9 0.56 Not Resolved 1.32 ±0.02 

0.074 88.1 ±0.5 0.754 Not Resolved 0.92 ±0.05 

0.019 24.9 ±0.1 0.825 Not Applicable 3.12 ±0.01 

SIQELS Results from 100,000 g/mol matrix solutions in cyclohexane at 308K 

Appendix C8: P E L S Results from Equivalent Solutions in Cyclohexane at 308K 



Polymer Relaxation Time / u seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.37 11.2 ± 1.4 0.697 Not Applicable 9.75 ± 1.20 

0.186 10.2 + 0.7 0.599 Not Applicable 8.76 + 0.60 

0.103 6.8 + 0.5 0.565 Not Applicable 12.2 + 0.9 

0.056 5.7 + 0.9 0.469 Not Applicable 14.1 ±2.2 

0.013 1.3 ±0.6 0.403 Not Applicable 59.7 ±27.6 

SIQELS Results from 10,000 g/mol matrix solutions in cyclohexane at 313K 

Polymer Relaxation Time / u seconds and Variance Z-Average D r 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"' 

0.409 9.8 + 0.3 0.497 Not Applicable 11.7 ± 0.3 

0.207 16.3+0.1 0.699 Not Applicable 5.60 ±0.05 

0.101 10.7 + 0.4 0.655 Not Applicable 7.77 ±0.29 

0.054 8.8 + 0.2 0.592 Not Applicable 9.17 ± 0 21 

0.010 6.5 + 0.9 0.492 Not Applicable 11.9+ 1.6 

SIQELS Results from 20,000 g/mol matrix solutions in cyclohexane at 313K 

Polymer Relaxation Time / yi seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.364 31.8 ±0.7 0.808 l . l e 5 ± 7 . 1 e 2 0.906 3.41 ±0.07 

0.199 35.0±0.3 0.882 6.1e3 ± 1.7e2 0.888 2.62 ±0.02 

0.106 41.4 + 0.3 0.755 Not Applicable 2.01 ±0.02 

0.050 27.7 ±0.6 0.677 Not Applicable 2.91 ±0.06 

0.010- 8.4 ±0.8 0.614 Not Applicable 9.22 ± 0 88-

SIQELS Results from 50,000 g/mol matrix solutions in cyclohexane at 313K 

Polymer Relaxation Time / .1 seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.427 37.8 ± 1.1 0.830 9 . 1 e 5 ± 5 . 6 e 5 0.649 3.10 ±0.09 

0.236 38.5 ±0.7 0.842 1 .3e 4 ±6.5e 2 0.919 2.40 ± 0.04 

0.125 44.7 ±0.3 0.802 Not Resolved 1.90 ±0.01 

0.074 80.1 ±0.6 0.798 Not Resolved 1.01 ±0.08 

0.019 19.9 + 0.2 0.684 Not Applicable 3.90 ±0.05 

SIQELS Results from 100,000 g/mol matrix solutions in cyclohexane at 313K 

Appendix C9: P E L S Results from Equivalent Solutions in Cyclohexane at 313K 



Polymer Relaxation Time / u, seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"' 

0.37 9.9 ± 1.5 0.816 Not Applicable 11.1 ± 1.6 

0.186 9.8 + 0.9 0.765 Not Applicable 9 15 ±0.84 

0.103 6.9 + 0.7 0.664 Not Applicable 12.1 ±1.2 

0.056 5.2 + 0.9 0.546 Not Applicable 15.5 ±2.7 

0.013 No Data Obtained No Data Obtained No Data Obtained 

SIQELS Results from 10,000 g/mol matrix solutions in cyclohexane at 318K 

Polymer Relaxation Time / LI seconds and Variance Z-Average Dc 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.409 9.8 ±0.3 0.497 Not Applicable 11.7 ±0.03 

0.207 10.1 ±0.8 0.556 Not Applicable 9.06 ±0.72 

0.101 9.9 ±0.5 0.472 Not Applicable 8.42 ±0.42 

0.054 7.1 ±0.5 0.523 Not Applicable 11.4 ± 0 8 

0.010 No Data Obtained No Data Obtained No Data Obtained 

SIQELS Results from 20,000 g/mol matrix solutions in cyclohexane at 318K 

Polymer Relaxation Time / LI seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.364 22.7 ±0.4 0.886 4.6e4 ± 2.7e4 0.901 4.79 ±0.29 

0.199 25.8 ±0.3 0.946 4.6e3 ± 2 . 5 e 2 0.935 3.52 ±0.05 

0.106 35.9 ±0.7 0.685 Not Applicable 2.33 ±0.04 

0.050 21.3 ±2.6 0.591 Not Applicable 3.76 + 0.05 

0.010 6.4 ±0.9 0.503 Not Applicable L2-2 ± 1.7 

SIQELS Results from 50,000 g/mol matrix solutions in cyclohexane at 318K 

Polymer Relaxation Time / \i seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.427 31.2±0.2 0.902 1.7e 5± 1.9e3 0.653 3.80 ±0.03 

0.236 28.3 ±0.3 0.914 l . l e 4 ± 5 . 2 e 2 0.691 3.30 ±0.03 

0.125 31.6 ±0.3 0.545 Not Resolved 2.70 ±0.02 

0.074 34.1 ± 1.0 0.687 Not Applicable 2.41 ±0.07 

0.019 18.8 ±0.3 0.661 Not Applicable 4.16 ±0.06 

SIQELS Results from 100,000 g/mol matrix solutions in cyclohexane at 318K 

Appendix C10: P E L S Results from Equivalent Solutions in Cvclohexane at 318K 



Polymer Relaxation Time / lii seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cmVl 

0.37 12.7+ 1.5 0.805 Not Applicable 8.66 ± 1.01 

0.186 7.6 + 0.8 0.596 Not Applicable 11.8± 1.3 

0.103 5.2 ±0 .8 0.506 Not Applicable 16.1 ±2.5 

0.056 3.5 ±0 .9 0.495 Not Applicable 23.1 ±5.9 

0.013 No Data Obtained No Data Obtained No Data Obtained 

SIQELS Results from 10,000 g/mol matrix solutions in cyclohexane at 323K 

Polymer Relaxation Time / LI seconds and Variance Z-Average D r 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.409 4.6 ± 1.8 0.579 Not Applicable 24.6 ±9.47 

0.207 7.1 ±2.4 0.699 Not Applicable 12.9 ±4.38 

0.101 9.3 ±0.3 0.546 Not Applicable 8.96 ±0.25 

0.054 6.5 ± 1.3 0.564 Not Applicable 12.5 ±2.5 

0.010 No Data Obtained No Data Obtained No Data Obtained 

SIQELS Results from 20,000 g/mol matrix solutions in cyclohexane at 323K 

Polymer Relaxation Time / yi seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.364 15.2 ± 1.3 0.811 5 .7e 4 ±2 .2e 3 0.679 7.17 ±0.62 

0.199 18.7 ± 0.5 0.802 3.1e3 ±3 .4e 2 0.705 4.88 ±0.14 

0.106 23.5 ±0.3 0.703 Not Applicable 3.58 ±0.05 

0.050 17.5 ±0.5 0.654 Not Applicable 4.60 ±0.13 

0.010 4.5 + 1.6 0.457 Not Applicable 17.3 ±6.2 

SIQELS Results from 50,000 g/mol matrix solutions in cyclohexane at 323K 

Polymer Relaxation Time / LI seconds and Variance Z-Average D r 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.427 19.7 ± 1.2 0.689 6.8e4 + 9.3e3 0.653 6.01 ±0.07 
0.236 20.2 ±0 .5 0.701 l . l e 4 ± 2 . 6 e 3 0 556 4.57 ±0.11 
0.125 21.4 ±0 .6 0.756 1.6e3 ± 3 . 1 e 2 0.601 3.99±0.12 

0.074 22.0 ±0.3 0.803 Not Applicable 3.72 ±0.11 

0.019 12.8 ±0 .2 0.889 Not Applicable 6.13 ±0.10 

SIQELS Results from 100,000 g/mol matrix solutions in cyclohexane at 323K 

Appendix C l l : P E L S Results from Equivalent Solutions in Cvclohexane at 323K 



Polymer Relaxation Time / LI seconds and Variance Z-Average Dr 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.441 Not Resolved 1.9e 4± 1.3e3 0.508 Not Resolved 

0.255 4.9+1.1 0.625 1.2e 4 ±4.2e 3 0.478 20.0 + 4.3 

0.152 4.7 + 0.5 0.572 6.4e3 ± 1.7e3 0.403 18.7+ 1.8 

0.057 4.8 + 2.7 0.505 546 + 51 0.345 16.7 + 9.2 

0.015 1.2 + 0.3 0469 Not Applicable 62.6+ 1.5 

SIQELS Results from 10,000 g/mol matrix solutions in toluene at 298K 

Polymer Relaxation Time / u seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"' 

0.389 Not Resolved 8.2e4 ± 2.9e3 0.906 Not Resolved 

0.199 Not Resolved 3 .8e 3 ±2 .3e 1 0.963 Not Resolved 

0.998 Not Resolved 1 .2e 3 ±7.9e 1 0.772 Not Resolved 

0.049 5.4 + 0.7 0.553 Not Applicable 14.8+ 1.9 

0.010 4.9 + 0.8 0.478 Not Applicable 15.8 + 2.6 

SIQELS Results from 50,000 g/mol matrix solutions in tolueneat 298K 

Polymer Relaxation Time / \i seconds and Variance Z-Average D c 

Mass Fraction Fast Relaxation Slow Relaxation x 10"7cm2s"1 

0.439 3.2 + 0.7 0.715 Not Resolved 39.3+9.2 

0.248 4.5+0.4 0.914 1 .3e 4 ±3.0e 2 0.884 21.7 + 0.7 

0.123 5.1+0.7 0.464 Not Applicable 16.8 + 2.3 

0.049 6.7 + 0.6 0.494 Not Applicable 11.9+ 1.2 

0.01-3 8.5 + 0.6 0.552 Not Applicable 9.14 + 0.5 

SIQELS Results from 100,000 g/mol matrix solutions in toluene at 298K 

Appendix C12: P E L S Results from Equivalent Solutions in Toluene at 298K 
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Appendix D 

Lectures, Conferences and Courses Attended 



University of Durham 
Board of Studies in Chemistry 

Colloquia, Lectures and Seminars Given by Invited Speakers 

1991 
October 17 

October 31 

November 

November 

November 13 

November 20 

November 28 
SCI Lecture 

December 4 

December 

December 11 

Dr. J. A. Salthousc. (University of Manchester) 
Son et Luminere-A Demonstration Lecture 

Dr. R. Keelcy. (Metropolitan Police Forensic Science) 
Modern Forensic Science 

Prof. B.F.G. Johnson, (University of Edinburgh) 
Cluster Surface Analogies 

D. A.R. Butler (University of St. Andrews) 
Traditional Chinese Herbal Drugs: A Different Way of Treating Disease 

Prof. D. Gani (University of St. Andrews) 
The Chemistry of PLP Dependant Enzymes 

Dr. R. More O'Farrall (University College, Dublin) 
Some Acid Catalysed Rearrangements in Organic Chemistry 

Prof. I.M. Ward (IRC in Polymer Science, University of Leeds) 
The Science and Technology of Oriented Polymers 

Prof. R. Grigg (University of Leeds) 
Palladium Catalysed Cyclisation and Ion Capture Processes 

Prof. A.L. Smith (Ex Unilever) 
Soap, Detergents and Black Puddings 

Dr W D. Cooper (Shell Research) 
Colloid Science: Theory and Practice 

1992 
January 22 Dr. K.D.M. Harris (University of St. Andrews) 

Understanding the Properties of Solid Inclusion Compounds 

January 29 Dr. A. Holmes (University of Cambridge) 
Cycloaddition Reactions in the Service of the Synthesis of 
Piperadine and Indolizidine Natural Products 

January 30 Dr. M. Anderson (Shell Research) 
Recent Advances in the Safe and Selective Chemical Control of Insect Pests 

February 12 Prof. D.E. Fenton (University of Sheffield) 
Polynuclear Complexes if Molecular Clefts as Models for Copper Biosites 

February 13 Dr. J. Saunders (Glaxo Group Research) 
Molecular Modelling in Drug Discovery 

February 19 Prof. E.J. Thomas (University of Manchester) 
Applications of Organostannanes to Organic Synthesis 

February 20 Prof. E . Vogel (University of Cologne) 
Musgrave Lecture Porphyrins: Molecules of Interdisciplinary Interest 

i 



February 
Tililen Lecture 

February 

March 

March 

March 

March 

April 

May 

October 

October 

25 

26 

11 

12 

18 

13 

15 

20 

October 22 
Ingolri-Albert Lecture 

October 28 

October 29 

November 

November 

November 11 

November 12 

November 18 

November 25 

Prof. J.F. Nixon (University of Sussex) 
Phosphaalkynes: New Building Blocks in Inorganic and 
Organomelallic Chemistry 

Prof. M L. Hitchman (University of Strathclyde) 
Chemical Vapour Deposition 

Dr. N.C. Billingham (University of Sussex) 
Degradable Plastics-Myth or Magic? 

Dr. S.E. Thomas (Imperial College) 
Recent Advances in Organoiron Chemistry 

Dr. R.A. Hann (ICI Imagedata) 
Electronic Photography-An Image of the Future 

Dr. H. Maskill (University of Newcastle) 
Concerted or Stepwise Fragmentation in a Deamination-lype Reaction 

Prof. D M. Knight (University of Durham) 
Interpreting Experiments: The Beginning of Electrochemistry 

Dr. J.C. Gehert (Ciba Geigy, Basel) 
Some Aspects of Industrial Agrochemical Research 

Dr M . Glazer and Dr. S Tarling (University of Oxford and Birbeck College) 
It Pays to be British! The Chemists Role as an Expert Witness in Patent 
Litigation 

Dr. H E. Bryndza (Du Pont Research) 
Synthesis, Reactions and Themochemistry of Metal(alkyl)cyanide 
Complexes and Their Impact on Olefin hydrocyanation Catalysis 

Prof. A.G. Davies (University College, London) 
The Behaviour of Hydrogen as a Pseudometal 

Dr. J.K. Cockroft (University of Durham) 
Recent Developments In Powder Diffraction 

Dr. J Emsley (Imperial College. London) 
The Shocking History of Phosphorous 

Dr T. Kee (University of Leeds) 
Synthesis and Coordination Chemistry of Silylatcd Phosphites 

Dr. C.J. Ludman (University of Durham) 
Explosions, A Demonstration Lecture 

Prof. D Robins (University of Glasgow) 
Pyrrolizidene Alkaloids: Biological Activity, Biosynthesis and Benefits 

Prof. M.R. Truter (University College, London) 
Luck and Logic in Host Guest Chemistry 

Dr. R.Nix (Queen Mary College, London) 
Characterisation of heterogeneous Catalysts 

Prof. Y. Vallee (University of Caen) 
Reactive Thiocarbonyl Compounds 
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November 

November 

December 

December 

December 
SCI Lecture 

25 Prof. L.D. Quinn (University of Massachusetts, Amherst) 
Fragmentation of Phosphorous Helerocyclcs as a Route to Phosphoryl Species 
with Uncommon Bonding 

26 Dr. D. Humber (Glaxo, Grecnford) 
AIDS-Thc Development Of A Novel Series Of Inhibitors Of HIV 

2 Prof. A.F. Hegarty (University College, Dublin) 
Highly Reactive Enols Stabilised by Steric Protection 

2 Dr. R.A. Ailken (University of St. Andrews) 
The Versatile Cycloaddition Chemistry of Bu 3P.CS 2 

3 Prof. P. Edwards (University of Birmingham) 
What is a Metal? 

December Dr. A.N. Burgess (ICI, Runcorn) 
The Structure of Perfluorinated Ionomer Membranes 

1993 
January 20 Dr. D C. Clary (University of Cambridge) 

Energy Flow in Chemical Reactions 

January 21 Prof. L. Hall (University of Cambridge) 
NMR-A Window to the Human Body 

January 27 Dr. W. Kerr (University of Strathclyde) 
Development of Pauson-Khand Annulation Reaction: 
Organocobalt Mediated Synthesis of Natural and Unnatural Products 

January 28 Prof. J. Mann (University of Reading) 
Murder, Magic and Medicine 

February 3 Prof. S.M. Roberts (University of Exeter) 
Enzymes in Organic Synthesis 

February 10 Dr. D. Gillies (University of Surrey) 
NMR and Molecular Motion in Solution 

February 11 Prof. S. Knox (University of Bristol) 
TUden Lecture Organic Chemistry at Polynuclear Metal Centres 

February 17 Dr. R.W. Kemmitt (University of Leicester) 
Oxatrimethylenemethane Metal Complexes 

February 18 Dr. I . Fraser (ICI Wilton) 
Reactive Processing of Composite Materials 

February 22 Prof. D M . Grant (University of Utah) 
Single Crystals, Molecular Structure and Chemical Shift Anisotropy 

February 24 Prof. C.J.M. Stirling (University of Sheffield) 
Chemistry on the Flat-Reactivity of Ordered Systems 

March 3 Dr. K.J.P. Williams (BP) 
Raman Spectroscopy for Industrial Analysis 

March 10 Dr K.P. Baker (University College of North Wales, Bangor) 
An Investigation of the Chemistry of Highly Versatile 7 Coordinate 
Complexes 
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March 

March 

March 

11 

17 

24 

May 13 
Bovs-Riihiimn Lecture 

Mav 

June 

June 

June 

June 

October 

October 

October 

October 

21 

16 

17 

September 13 

September 14 

September 28 

October 4 

14 

20 

23 

27 

November 10 

Dr. R.A. Jones (University of East Anglia) 
The Chemistry of Wine Making 

Dr. RJ.K. Taylor (University of East Anglia) 
Adventures in Natural Product Synthesis 

Prof. I.O. Sutherland (University of Liverpool) 
Chromogenic Reagents for Chiral Amine Selectors 

Prof. J.A. Poplc (Carnegie Mellon University, Pittsburgh) 
Applications of Molecular Orbital Theory 

Prof. L. Weber (University of Bielfeld) 
Metallo-phospha Alkencs as Synthons in Organometallic Chemistry 

Prof. J.P. Konopelski (University of California. Santa Cruz) 
Synthetic Adventures with Enantimerically Pure Acetals 

Prof. R.S. Stein (University of Massachusetts) 
Scattering Studies of Crystalline and Liquid Crystalline Polymers 

Prof. A.K. Covington (University of Newcastle) 
Use of Ion Selective Electrodes as Detectors in Ion Chromatography 

Prof. O F. Nielson (University of Copenhagen) 
Low Frequency IR and Raman Studies of Hydrogen Bonded Liquids 

Dr. K.J. Wynne (Office of Naval Research Washington) 
Polymer Surface Design for Minimal Adhesion 

Prof. J.M. DeSimone (University of North Carolina) 
Homogeneous and Heterogeneous Polymerisation in Environmentally 
Responsible Carbon Dioxide 

Prof. H. Ila (North Eastern Hi l l University, India) 
Synthetic Strategies for Cyclopentanoids via Oxoketene Dithioacetals 

Prof. F.J. Fehler (University of California, Irvine) 
Bridging the Gap Between Surfaces and Solutions with Sessilquioxanes 

Dr. P. Hubberstey (University of Nottingham) 
Alkali Metals: Alchemist's Nightmare, Biochemist's Puzzle and 
Technologist's Dream 

Dr. P. Quayle (University of Manchester) 
Aspects of aqueous ROMP Chemistry 

Prof. R. Adams (University of South Carolina) 
The Chemistry of Metal Carbonyl Cluster Complexes Containing Platinum 
and Iron, Ruthenium or Osmium and the Development of a Cluster Based 
Alkyne Hydrogenation Catalyst 

Dr. R. A.L Jones (University of Cambridge) 
Perambulating Polymers 

Prof. M.N.R. Ashfold (University of Bristol) 
High Resolution Photofragment Translational Spectroscopy: A New Way to 
Watch Photodissociation 
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November 17 Dr. A. Parker (Rutherford Appelton Laboratory) 
Applications of Time Resolved Resonance Raman Spectroscopy to Chemical 
and Biochemical Problems 

November 24 Dr. P. G. Bruce (University of St. Andrews) 
Synthesis and Applications of Inorganic Materials 

November 25 Dr. R.P. Wayne (University of Oxford) 
The Origin and Evolution of the Atmosphere 

December I Prof. M A. McKcrvy (Queens University, Belfast) 
Functionalised Clixerenes 

December 

December 16 

Prof. O. Meth Cohn (University of Sunderland) 
Friedel's Folly Revisited-A Super Way to Fused Pyridines 

Prof. R.F. Hudson (University of Kent) 
Close Encounters of the Second Kind 

1994 
January 26 Prof. J. Evans (University' of Southampton) 

Shining Light on Catalysts 

February 2 Dr. A. Masters (University of Manchester) 
Modelling Water Without Using Pair Potentials 

February 9 Prof. D. Young (University of Sussex) 
Chemical and Biological Studies of the Coenzyme Tetrahydrofolic Acid 

February 16 Prof. K.H. Theopold (University of Delaware) 
Paramagnetic Chromium Alkyls : Synthesis and Reactivity 

February 23 Prof. P.M. Maitlis (University of Sheffield) 
Across the Border: From Homogeneous to Heterogeneous Catalysis 

March 2 Dr. C. Hunter (University of Sheffield) 
Noncovalent Interactions between Aromatic Molecules 

March 9 Prof. F. Wilkinson (Loughborough University of Technology) 
Nanosecond and Picosecond Laser Flash Photolysis 

March 10 Prof. S. V. Ley (University of Cambridge) 
New Methods for Organic Synthesis 

March 25 Dr. J. Dilworth (University of Essex) 
Technetium and Rhenium Compounds with Applications as Imaging Agents 

April 28 Prof. R.J. Gillespie (McMaster University, Canada) 
The Molecular Structure of some Metal Fluorides and Oxofluorides: Apparent 
Exceptions to the VSEPR Model 

May 12 Prof. D.A. Humphreys (McMaster University, Canada) 
Bringing Knowledge to Life 
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The Following Lectures in the I R C in Polymer Science and Technology 
International Seminar Series have also been Attended. 

1992 
March 17 Prof. Sir S.F. Edwards (University of Cambridge) at Leeds University 

Phase Dynamics and Phase Changes in Polymer Liquid Crystals 

March 25 Prof. H. Chcdron (Hocchst AG) at Durham University 
Structural Concepts and Synthetic Methods in industrial Polymer Science 

May 11 Prof. W. Burchard (University of Freiburg) at Durham University 
Recent Developments in the Understanding of Reversible and Irreversible 
Network Formation 

September 21 Prof. E L. Thomas (MIT. Cambridge, Massachusetts) at Leeds University 
Interface Structures in Copolymer-Homopolymer Blends 

1993 
March 16 Prof. J.M.G. Cowie (Heriot-Watt University) at Bradford University 

High Technology in Chains: The Role of Polymers in Electronic Applications 
and Data Processing 

April 1 Prof. H.W. Speiss (Max-Planck Instilut, Mainz) at Durham University 
Multidimensional NMR Studies of Structure and Dynamics of Polymers 

June 2 Prof. F. Ciardelli (University of Pisa) at Durham University 
Chiral Discrimination in the Stereospecific Polymerisation of a-olefins 

June 8 Prof. B E. Eichinger (BIOSYM Technologies) at Leeds University 
Recent Polymer Modelling Results and a Look into the Future 

July 6 Prof. C.W. Macosko (University of Minnesota) at Bradford University 
Morphology Development in Immiscible Polymer-Polymer Blending 

September 13 Prof. A D. Schluter (Freie Universitat, Berlin) at Durham University 
Synthesis and Characterisation of Molecular Rods and Ribbons 

The Following Conferences and Courses Have Been Attended. 

March 1992: Macro Group (UK) Family Meeting, Durham University 

September 1992: IRC Club Meeting, Leeds University 

January 1993: IRC Polymer Engineering Course, Bradford University 

March 1993: IRC Polymer Physics Course, Leeds University 

April 1993: Macro Group (UK) Family Meeting, Lancaster University 

July 1993: The Polymer Conference Cambridge University 

September 1993: IRC Club Meeting, Durham University 

April 1994: Macro Group (UK) Family Meeting, Birmingham University 

July 1994: MacroAkron '94 IUPAC Meeting, University of Akron, Ohio, USA 


