
Durham E-Theses

The development and application of ambulatory

monitor for measuring weight-bearing during fracture

healing

Aranzulla, Philip John

How to cite:

Aranzulla, Philip John (1995) The development and application of ambulatory monitor for measuring

weight-bearing during fracture healing, Durham theses, Durham University. Available at Durham
E-Theses Online: http://etheses.dur.ac.uk/5132/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5132/
 http://etheses.dur.ac.uk/5132/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The Development and Application of an

Ambulatory Monitor for Measuring

Weight-Bearing during Fracture Healing

Submitted by

Philip John Aranzulla

to the University of Durham

as a thesis for the degree of

Master of Science

in the School of Engineering

September 1995

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

/ certify that all the material in this thesis which is not my own work has been identified and that

material is included for which a degree has previously been conferred upon me.

P. Aranzulla

1 3 NOV 895

List of Contents

List of Contents i
List of Figures v
List of Tables ix

Abstract x
Acknowledgements xii

1. Introduction and Biological Background 1
1.1. Bone Function and Composition 2

1.2. Bone Structure 3
1.2.1. General Structure 3
1.2.2. Molecular Structure 4
1.2.3. Histological Structure 4

1.2.4. Bone Cells 6

1.3. Fracture Healing 9
1.3.1. Inflammatory Phase 9
1.3.2. Cartilaginous Phase 11
1.3.3. Mineralisation Phase 12
1.3.4. Remodelling Phase 13

1.4. Factors Affecting the Speed of Fracture Healing 15

1.4.1. Local Factors : 15
1.4.2. Systemic Factors 15

1.5. Post-trauma Osteoporosis 17
1.6. Fracture Treatment and Technique 19

1.6.1. Bracing and Casts 19
1.6.2. Intramedullary Nailing 20
1.6.3. Plating 20
1.6.4. External Fixation 21

1.7. Measuring Weight-Bearing 22
1.7.1. Weight-Bearing Measurement Methods 23

1.7.1.1. Floor Mounted Systems 23
1.7.1.2. In-Shoe Devices 24

1.8. History of Ambulatory Monitoring 26

Page i

2. The Monitoring System 28
2.1. Hardware of the Ambulatory Monitor 28

2.1.1. Internal Monitor Hardware 28
2.1.2. Supplementary Monitor Hardware 32

2.1.2.1. The LEDs 32

2.1.2.2. The Switches 32
2.1.2.3. The Power Supply 33
2.1.2.4. The Ambulatory Monitor's Box 36

2.1.3. Hardware Interfacing between the Ambulatory Monitor

and the PC 39
2.2. Software of the Ambulatory Monitor 41

2.2.1. General Program Overview 43
2.2.2. Data Storage during Program Execution 45

2.2.2.1. The Events File 46

2.2.2.2. The Data File 47
2.2.2.3. The Results File 48

2.2.3. The Sampling of the ADCs Stage 52
2.2.4. The Calculation of the Results Stage 62

2.3. The PC Analysis Software 67
2.3.1. The Various Files Used 67
2.3.2. General Program Structure 69
2.3.3. Program Initialisation 72
2.3.4. The First Option Menu 73

2.3.4.1. The First Option 73
2.3.4.2. The Second Option 75

2.3.5. The Second Option Menu 76
2.3.6. The Third Option Menu 78
2.3.7. The Fourth Option Menu 80

2.3.7.1. The First Option 81
2.3.7.2. The Second Option 82
2.3.7.3. The Third Option 82

2.3.8. The Fifth Option Menu 84
2.3.8.1. The First Option 85
2.3.8.2. The Second Option 85
2.3.8.3. The Third Option 86

2.3.9. The Sixth Option 86

Page ii

3. Pre-Clinical Trials 87
3.1. The Initial Sensory Equipment Configuration 87
3.2. Results from the Pre-Clinical Trials 92
3.3. The Final Sensory Equipment Configuration 96

4. Clinical Trials 101
4.1. Introduction 101
4.2. Individual Patient Results 107

4.2.1. Patient 1 107
4.2.2. Patient 2 I l l
4.2.3. Patient 3 115
4.2.4. Patient 4 118
4.2.5. Patient 5 121

4.2.6. Patient 6 124
4.2.7. Patient 7 128

4.3. Group Results 131
4.3.1. General Patients' Results 131
4.3.2. Children Patients' Results 133
4.3.3. Adult Patients' Results 134
4.3.4. Elderly Adults' Results 135

5. Discussion and Conclusions 137
5.1. Further Discussion of the Results 137

5.1.1. Step Duration 137
5.1.2. Stride Length 140
5.1.3. Weight-Bearing 142

5.2. Clinical Benefits of using Ambulatory Monitoring for
Measurements > 144
5.3. Possible Future work on the Further Development and
Application of the System 146
5.4. Conclusions 148

6. References 150

Appendices 158
Appendix 1: The Mini-Module PCB Components 158

A1.1. The Micro-Processor 158
A1.2. The Erasable Programmable Read Only Memory
(EPROM) 158
A1.3. The Random Access Memory (RAM) 160
A1.4. The Battery Back-up 161

Page Hi

A1.5. Real Time Clock 162
A 1.6. Digital Input/Output Communications 162
A1.7. Analogue to Digital Converters (ADCs) 164
A1.8.TheRS-485 Port 166
A 1.9. The Watch-Dog 166
ALIO. The Power Fail Detector 167
A l . l l . Other PCB Components 168

Appendix 2 : Ethical Approval and Original Project Protocol 169
Appendix 3 : The Ambulatory Monitor Program Listing 177

Appendix 4 : The PC Analysis Program Listing 212

Page iv

List of Figures

Figure 1.1 - Gross and microscopic structure of bone (White, 1991) 6
Figure 1.2 - Bone cells, with the diagonally shaded areas being bone 8
Figure 1.3 - An approximation of the relative amounts of time devoted to the
inflammation, reparative, and remodelling phases in fracture healing 9

Figure 1.4 - The initial events involved in fracture healing of long bone 10
Figure 1.5 - Early repair 12
Figure 1.6 - The schematic cutting cone is moving from right to left through the bone 14

Figure 1.7 - At a later stage in the repair 14
Figure 2.1 - Various ni-cad battery types with their voltage and capacity 34
Figure 2.2 - Graphs showing typical ni-cad batteries' discharge times versus cell
voltage for different discharge rates (RS Data Library, 1994) 35
Figure 2.3 - A photograph of the ambulatory monitor with the casing opened,

revealing the internal hardware 37
Figure 2.4 - A photograph of the ambulatory monitor being worn 38
Figure 2.5 - The RS-485 to RS-232 converter circuit 39
Figure 2.6 - A photograph of the whole monitoring system, with the ambulatory

monitor connected to the PC 40
Figure 2.7 - A flowchart outlining the monitor program's general flow during execution

43
Figure 2.8 (overleaf) - A flowchart outlining the sampling of the ADCs stage 52
Figure 2.9 - The menu of options for the ambulatory monitor 58
Figure 2.10 (overleaf) - A flowchart outlining the calculation of the results stage 62
Figure 2.11 - A screen display showing the main menu 69
Figure 2.12 - A flowchart giving an overview of the program's general workings 71
Figure 2.13 - A screen display showing the first option menu 73

Figure 2.14 - A screen display showing a monitoring session's 79
Figure 2.15 - A screen display showing the fourth option menu 81
Figure 2.16 - A screen display showing a patient's weight-bearing progress up to date83
Figure 2.17 - A screen display showing the fifth option 84
Figure 3.1 - Calibration graph for each transducer 89
Figure 3.2 - A screen display of the results for the pre-clinical trail using a normal gait
pattern 93
Figure 3.3 - Foot outline, centre of pressure and sagittal plane representation of
ground reaction force vector; right foot of a normal male subject walking in shoes... 94

Page v

Figure 3.4 - A screen display of the results for the pre-clinical trial using a limping gait
pattern 95
Figure 3.5 - 'Butterfly diagram' of the ground reaction force vector at 20 ms intervals,
progression being from left to right (Whittle, 1991) 97
Figure 3.6 - Some examples of the variation seen in the centre of pressure line for
normal subjects (Hutton et al., 1979) 99
Figure 3.7 - Examples of the variation seen in the centre of pressure line for subjects
with pathological gait patterns 99
Figure 3.8 - The final sensory equipment configuration 100
Figure 4.1 - The geometry of the route each patient walked when monitored 103

Figure 4.2 - Graphs showing the mean and standard deviation of the weight-bearing

with time post-fracture for a patient 106
Figure 4.3 - Graph showing the mean step duration with time post-fracture for a

patient 106
Figure 4.4 - Graphs showing the mean and standard deviation of the weight-bearing
with time post-fracture for a Patient 1 109
Figure 4.5 - Graphs showing the step duration with time post-fracture for Patient 1 109
Figure 4.6 - Graph showing the monitoring sessions' duration with time post-fracture

for Patient 1 110
Figure 4.7 - Graph showing the number of events for a session with time post-fracture
for Patient 1 110
Figure 4.8 - Graphs showing the mean and standard deviation of the weight-bearing
with time post-fracture for Patient 2 113
Figure 4.9 - Graphs showing the step duration with time post-fracture for Patient 2 113
Figure 4.10 - Graph showing the monitoring sessions' duration with time post-fracture

for Patient 2 114
Figure 4.11- Graph showing the number of events for a session with time post-
fracture for Patient 2 114
Figure 4.12 - Graphs showing the mean and standard deviation of the weight-bearing
with time post-fracture for Patient 3 116

Figure 4.13 - Graphs showing step duration with time post-fracture for Patient 3... 116
Figure 4.14 - Graph showing the monitoring sessions' duration with time post-fracture
for Patient 3 117
Figure 4.15 - Graph showing the number of events for a session with time post-
fracture for Patient 3 117
Figure 4.16 - Graphs showing the mean and standard deviation of the weight-bearing
with time post-fracture for Patient 4 119

Page vi

Figure 4.17 - Graphs showing the step duration with the time post-fracture for Patient
4 119
Figure 4.18 - Graph showing the monitoring sessions' duration with time post-fracture
for Patient 4 120
Figure 4.19 - Graph showing the number of events for a session with time post-
fracture for Patient 4 120
Figure 4.20 - Graphs showing the mean and standard deviation of the weight-bearing
with time post-fracture for Patient 5 122

Figure 4.21 - Graphs showing the step duration with time post-fracture for Patient 5123
Figure 4.22 - Graph showing the monitoring sessions' duration with time post-fracture
for Patient 5 123
Figure 4.23 - Graph showing the number of events for a session with time post-
fracture for Patient 5 124
Figure 4.24 - Graphs showing the mean and standard deviation of the weight-bearing

with time post-fracture for Patient 6 126
Figure 4.25 - Graphs showing the step duration with time post-fracture for Patient 6126
Figure 4.26 - Graph showing the monitoring sessions' duration with time post-fracture

for Patient 6 127
Figure 4.27 - Graph showing the number of events for a session with time post-
fracture for Patient 6 127
Figure 4.28 - Graphs showing the mean and standard deviation of the weight-bearing
with time post-fracture for Patient 7 129
Figure 4.29 - Graphs showing the step duration with the time post-fracture for Patient

7 129
Figure 4.30 - Graph showing the monitoring sessions' duration with time post-fracture
for Patient 7 130
Figure 4.31 - Graph showing the number of events for a session with time post-
fracture for Patient 7 130
Figure 4.31 - Weight-bearing over time post-fracture for all the patients. The number

of patients indicated at each week is given above the each column 132
Figure 4.32 - Weight-bearing over time post-fracture for the patients 16 years old or
under 133
Figure 4.33 - Weight-bearing over time post-fracture for the patients between 16 and
55 years of age 135
Figure 4.34 - Weight-bearing over time post-fracture for the patients aged 55 years
and over 136

Page vii

List of Tables

Table 5.1 - Table showing the step duration and session duration over time 139
Table 5.2 - Table showing the relative changes in step duration for each patient.... 140
Table 5.3 - Table showing the relative changes in the number of events per sessions for

each patient 141
Table 5.4 - Table showing the relative changes in the stride length for each patient 141

Page viii

Abstract

The aim of this study was to measure the weight-bearing during healing in a series of

patients with tibial fractures, and to examine how this changed with time post-fracture.

Weight-bearing indicates the force through the leg as a percentage of the total body

weight. An ambulatory monitoring system was developed, comprising of the monitor

and analysis software for a PC. The ambulatory monitor measures the force via

pressure transducers attached to the load bearing areas on the underside of the foot to

obtain the weight-bearing through the fractured leg. The software was developed in

the C programming language by using a PC host executing a cross-compiler, the

program then being down-loaded via the serial line to the monitor hardware for

execution and testing. Once a basic monitor was operational, the clinical trials

commenced, these being conducted at fracture clinic sessions at Middlesbrough

General Hospital. Further development work occurred throughout the patient trials

which led to increases in the accuracy and consistency of the results obtained.

Results were obtained from 37 patients with tibial fractures, and these all demonstrated

that there was a non-linear increase in weight-bearing with time post-fracture. An

increase in step duration relative to the step duration of the normal leg also occurred,

indicating a gradual change in the gait pattern adopted, tending towards a normal gait

pattern with time. A similar pattern was found with the stride length, this indicating a

gradual change towards a more normal gait pattern with time. An increase in velocity

of gait was also observed over the healing period, suggesting greater confidence in

walking as healing progressed.

Page ix

Such results lead to the hypothesis that a feedback mechanism operates which controls

the weight-bearing applied to the fracture depending on the stiffness of the fracture.

The clinical relevance of this work is to aid the clinician in fracture healing assessment

enabling the prescription of more applicable treatment methods.

Page x

Acknowledgements

I wish to thank my supervisor, Dr. J.L. Cunningham for his continued support and

encouragement throughout the project, and particularly during the writing of the

thesis.

I also gratefully acknowledge Mr. Muckle and Mr. Pye of Middlesbrough General

Hospital for their help during the patient trials.

Finally I would like to acknowledge SPARKS who have funded this study.

Page xi

Chapter 1

1. Introduction and Biological Background

Fractures require a stable mechanical environment for healing, and so fractures in long

bones are particularly problematic due to the larger moments and forces at the fracture

site. Therefore to permit healing, the fracture is often stabilised by use of a fixation

method.

Tibial fractures are especially prone to non-union or delayed union (Oni et al., 1988),

and so previous clinical practice was to stop the patient weight-bearing on the

fractured leg until the healing process was well advanced. However due to increased

understanding of the healing process, more recent clinical practice has been to

encourage patients to partially weight-bear early to stimulate healing. The aim of this

study was to monitor the weight-bearing over the fracture healing period.

In this chapter is discussed the biological aspects of bones, fracture healing and

treatment, this leading to the various methods possible for weight-bearing

measurement, and concluding with the chosen method.

Page!

Chapter 1

1.1. Bone Function and Composition

Although the main purpose and function of individual bones may vary, in general each

bone has three basic functions. The first is that when in combination to form a

skeleton, the many different bones support the soft tissues and protect the internal

organs from damage. They also provide for muscle, tendon and ligament attachments

and by acting as levers and struts enable movement. Finally each bone stores various

minerals and blood generating cells.

To be able to perform its first and second functions, bones are required to be strong.

To minimise energy expenditure in movement, there is also a requirement for them to

be as light as possible. The molecular and histological structures of bones are such as

to satisfy both these requirements. Therefore the human skeleton, which constitutes

less than 20% of the weight of the entire body, can endure high loads such as five

times body weight on the bones of the knee joint when running. The equivalent

skeletal framework made out of steel would weigh four to five times more than does

the bony skeleton.

Page 2

Chapter 1

1.2. Bone Structure

1.2.1. General Structure

Examining bones at the gross level results in the discerning of two basic material

structures: compact and spongy bone.

Compact bone, otherwise known as cortical bone, is solid, dense bone that is found in

the walls of bone shafts and on external bone surfaces. Spongy, cancellous or

trabecular bone has a more porous and lightweight honeycomb structure. It is found

under protuberances where tendons attach, in vertebral bodies, at the ends of long

bones such as the tibia and fibia, in short bones, and sandwiched between flat bones.

The traberculae are arranged to withstand the stresses to which they are normally

subjected, so that those lying along the lines of force are intersected by others acting as

struts and ties (Gray, 1964). The benefit of spongy bone occurring at specific

locations in a bone is that its weight is reduced due to its greater porosity. Figure 1.1

shows the difference in appearance between both types of bone, the example given

being the proximal end of a tibia.

The porosity of spongy bone is greater than 70% which contrasts with that of cortical

bone at 15% (Le Veau, 1992). As bone strength and stiffness varies inversely with

increasing porosity, the mechanical properties of these two types of bone differ

considerably. However the density and porosity of the bone do not alone dictate its

mechanical characteristics, for these can vary as much as two orders of magnitude

depending on its location and therefore use (Goldstein et ai, 1983). Wolffs law states

that the physical characteristics of bone are matched to the routine structural demands

placed upon it (Wolff, 1892). Therefore mechanical characteristic variations between

bones exist due to a response or remodelling to different loading conditions existing

Page 3

Chapter J

across a bone according to Wolffs law (Mow et al, 1991). This mechanism is

explained in fuller detail later on in this chapter.

During life the outer surface of bones is covered with periosteum, with the inner

surface being covered with endosteum. Both are osteogenic tissues meaning that they

contain bone forming cells which are numerous and active during youth, but reduced in

number and relatively inactive in adulthood. However they can be stimulated to

deposit bone when the periosteum is traumatised due to a fracture.

1.2.2. Molecular Structure

Whatever the type of bone, its molecular structure is the same. Bone tissue is a

composite material, 90% being made up of the large protein molecule collagen. Each

molecule of collagen intertwines with others to form flexible, slightly elastic fibres

which are then stiffened by a dense inorganic filling of hydroxyapatite, which is a form

of calcium phosphate. This mineral gives bone its hardness and rigidity, and when

removed by immersing in acid, the bone becomes a flexible rubber like structure. In

contrast, when the collagen is removed from bone, for example by heating, it becomes

extremely brittle and crumbles easily. Therefore the composition of these two

materials result in a tissue that is strong and rigid.

1.2.3. Histological Structure

Histology is the study of tissues, usually at the microscopic level. Such studies of

mammalian bone results in two distinct histological types, immature and mature bone.

Immature bone, otherwise known as coarsely bundled or woven bone, develops first

and its existence is usually temporary as it is replaced by mature bone. It has a higher

Page 4

Chapter 1

proportion of osteocytes, which are bone cells, and is coarse and fibrous in

microscopic appearance with bundles of collagen fibres arranged in a random pattern.

Mature or lamellar bone tissue on the other hand has an organised structure due to the

repeated addition of uniform lamellae to bone surfaces during appositional growth, this

being apparent at two levels. The first is that the inner and outer bone surfaces are

encircled by the inner and outer circumferential or primary lamellae, as shown by the

second diagram of Figure 1.1. These lamellae's fibres are each oriented in a different

direction as shown, so that the bone's strength is increased by being able to endure

tensile and compressive forces in various directions. There are also the secondary

lamellae which encircle the Haversian canal, each one's fibres again being oriented in a

different direction than the next to increase strength.

Compact bone is too dense to be nourished by diffusion from surface blood vessels,

therefore Haversian systems with their canals and canaliculi are present throughout the

bone, as shown by Figure 1.1. The diagram on the right of this figure shows a cross

section of an osteon or Haversian system, the lamellae indicated being called Haversian

or secondary lamellae. An examination of each reveals a bed of parallel collagen

fibres, with fibres in successive lamellae being oriented in different directions, again

strengthening the structure. Through the Haversian canal there passes blood, nymph,

and nerve fibres. Haversian canals run longitudinally within the bone, and are

connected to each other by Volkmann's canals which are transversely oriented, not

being surrounded by concentric secondary lamellae.

Page 5

Chapter 1

4 Ox

Ox

Haversian Cana s
Blood Vessels

Periosteum

Proximal
Tibia

Lacunae (osleocyles within)

c.

Lamellae

Canaliculi

Osteon or Haversian System

Figure 1.1 - Gross and microscopic structure of bone (White, 1991).

1.2.4. Bone Cells

There are three major types of bone cells involved in forming and maintaining bone

tissue, called osteoblasts, osteocytes, and osteoclasts, as shown in Figure 1.2.

Osteoblasts are bone forming cells which produce many collagen molecules arranged

in a matrix, this being called osteoid. Osteoblasts derive from osteoprogenitor cells

which are present in the periosteum and also the blood vessels of the Haversian

vascular system. A proliferation of these bone forming cells occurs at fracture sites as

osteoprogenitor cells divide frequently in such areas.

Page 6

Chapter 1

Once the collagen is calcified, the osteoblast being surrounded by a bony matrix, it is

called an osteocyte. Osteocytes' function changes from one of bone formation to one

of bone regulation they resorb calcium or phosphate from the surrounding tissues in

response to hormonal signals, this process being called osteolysis. The space where

each is found is called a lacuna, with long dendritic arms, called canaliculae, acting as

communication and nutritional channels.

Osteoclasts have the opposite function to osteoblasts in that they resorb rather than

form bone tissue. These are found in hollow depressions in the bone tissue known as

Howship's lacunae. At the surface of the cell are apatite crystals and collagen

removed, the cell therefore moving through the bony tissue as it is resorbed.

Page 7

Chapter 1

•

14 o
•

• \

km 0 0
i 0 / V

0 QQ Kt

v
<0

Figure 1.2 - Bone cells, with the diagonally shaded areas being bone. Osteoblasts are shown
in the top left diagram. An osteocyte is shown in the top right diagram. Osteoclasts are large
cells with many nuclei, part of one being shown in the bottom diagram. (Shipman et al, 1985).

Page 8

Chapter 1

1.3. Fracture Healing

Fracture healing can be divided into phases, with events described in one phase

persisting into the next. This is shown by Figure 1.3 where the three basic phases

occurring during fracture healing are displayed, with an approximation of the relative

amounts of time for each. There follows explanatory text for each phase, with the

reparative phase being further sub-divided into the cartilaginous phase, and the

mineralisation phase. This phase division clarifies the events occurring during

fracture healing, and have been described over the years in investigative reports and

review articles (Ham, 1974).

INFLAMMATION REPARATIVE REMODELLING
PHASE PHASE PHASE

h-
CO
LfcJ

10% 70%
40%

Figure 1.3 - An approximation of the relative amounts of time devoted to the inflammation,
reparative, and remodelling phases in fracture healing (Rockwood et ai, 1984).

1.3.1. Inflammatory Phase

Figure 1.4 shows that after a fracture the soft tissue envelope is torn and the numerous

blood vessels crossing the fracture line are ruptured. Therefore an accumulation of

hematoma within the medullary canal occurs, this blood rapidly coagulating to form a

Page 9

Chapter I

clot. As the blood supply is damaged, the osteocytes are deprived of oxygen and

nutrients and so die as far back as the junction of collateral channels. Severely

damaged soft tissues may contribute to the necrotic material in the region (Ham,

1974).

The presence of the necrotic material elicits an immediate inflammatory response.

Vasodilation occurs with the blood vessels increasing in diameter and an exudate of

proteins, plasma and white cells escape into the trauma region. A soft tissue cuff

forms around the fracture site which increases both the cross-sectional area and the

moment of inertia of bone, thereby greatly increasing the stiffness of the fracture.

Prostaglandins are also released, these being associated with bone resorption, bone

collagen synthesis and general cleanup of the fracture (Pan et al, 1992).

torn periosteum

haematoma

4..V

dead bone
necrotic marrow intact

periosteum

Figure 1.4 - The initial events involved in fracture healing of long bone. The periosteum is
torn opposite the point of impact, and in many instances is intact on the other side. There is an
accumulation of hematoma beneath the periosteum and between the fracture ends. There is
necrotic marrow and dead bone close to the fracture line.

Page 10

Chapter 1

1.3.2. Cartilaginous Phase

This phase is otherwise known as the proliferative or soft callus phase. At this stage

the microenvironment about the fracture is acidic, and during the repair process the pH

level returns to neutral and then slightly alkaline (Heppenstall, 1980).

Electronegativity is also found in the region, and unlike currents measured in intact

bones, is not generated by stress. This degree of electronegativity slowly diminishes

until the fracture is united (Rockwood et al., 1984). Both these factors are stimuli for

cellular activity aimed at fracture repair.

Repair is indivisibly linked with the ingress of capillary buds into the hematoma

(Rockwood et al., 1984), these first appearing from the periosteal vessels with the

nutrient medullary artery becoming more important later in the process. The

periosteum is usually torn at the fracture site which stimulates its osteogenic layer

(White, 1991) and so many new active bone cells are found in this area during fracture

healing (McKibbin, 1978), having ingress via these capillary buds. These cells

differentiate into fibroblasts, chondroblasts and osteoblasts, depending on the local

requirements (Heppenstall, 1980). The callus tissue shown in Figure 1.5 is formed by

the mesenchymal cells which produce fibrous tissue, cartilage and osteoid. This leads

to a gradual increase in fracture site stability, although not being related to the

radiographic size of callus formed (Panjabi et al., 1985), with medullary callus being

formed later. Bone or cartilage is formed according to the oxygen tension; cartilage

being formed at greater distances from the blood supply where oxygen tensions are

fairly low. This cartilage is eventually resorbed with bone taking its place. Bone

resorption also occurs at the fracture site for the removal of the necrotic bone fracture

ends. These must be removed for new cartilage and bone to form in its place.

Page 11

Chapter 1

organized haematoma gan
(ca m cartilage and bone) •V

As / I - TV

•I: *

®0»

9 IS

i f f
1-0'-, !,

formation
granulation tissue cartilage

Figure 1.5 - Early repair. There is organisation of the hematoma, early primary new bone
formation in subperiosteal regions, and cartilage formation in other areas (Rockwood et al.,
1984).

1.3.3. Mineralisation Phase

This stage is also known as the hard callus and bony phase. It begins at 3 to 4 weeks

post-fracture and continues until new bone unites the bone fragments. This varies in

time according to the type of bone and fracture, but is in the region of 3 to 4 months

post-fracture for long bones in adults. There is an accumulation of calcium

hydroxyapatite crystals which occurs for the mineralisation of the collagen. The

increase in fracture strength and stiffness seems to be related to the amount of new

bone connecting the fracture fragments (Black et al., 1984).

Page 12

Chapter 1

1.3.4. Remodelling Phase

As explained in Section 1.2.4, the function of osteoclasts is to resorb bone. The

remodelling of the bone occurs by cutting cones made up of osteoclasts, these being

followed by osteoblasts which deposit collagen matrix. These filling cones are tapered

and extend a further distance longitudinally than the cutting cones due to the greater

time required for collagen deposition. The cutting cones can advance a distance of 50

to 60 microns every 24 hours (Heppenstall, 1980).

These cones gradually resorb the woven bone of the callus, replacing it with the

Haversian bone that was present prior to the fracture (Figure 1.6). These new struts of

bone are deposited along the lines of force, the control mechanism being thought to be

electrical (Rockwood et ai, 1984). Bone is known to be a piezoelectric material so

that when subjected to stress electropositivity occurs on the convex surface and

electronegativity on the concave surface. Circumstantial evidence indicates that

regions of electropositivity are associated with osteoclastic activity and regions of

electronegativity with osteoblastic activity (Bourne, 1971). Therefore Wolffs Law is

explainable in terms of electrical activity which has a direct effect on cellular behaviour

causing the bone to be altered according to the function demanded of it.

Cortical bone heals more slowly than cancellous bone due to the greater amount of

bony tissue required, its more regular structure which requires more remodelling, and

also because the marrow around the cancellous bone provides a source of osteoblasts

local to the area of bone deposition. With favourable conditions cancellous bone may

be united after just 4 weeks (Radin, 1987). However cortical bone usually requires

about 8 to 12 weeks to heal (Figure 1.7).

Page 13

Chapter 1

/ / / / / / / / / / /

Osteoclasts o O O O O

/

Osteoblasts

Osteocytes

Figure 1.6 - The schematic cutting cone is moving from right to left through the bone. At the
tip osteoclasts resorb bone; osteoblasts deposit new bone, are engulfed by the matrix they form,
and so become osteocytes. New osteoblasts are produced from the capillary walls as the cutting
cone moves through the bone tissue (Radin, 1987).

persistent cartilage

I o p

revascularizing
fiber bone cortical bone

Figure 1.7 - At a later stage in the repair, early immature fibre bone is bridging the fracture
gap. Persistent cartilage is seen at points most distant from ingrowing capillary buds. In many
instances, these are surrounded by young new bone (Rockwood et al., 1984).

Page 14

Chapter 1

1.4. Factors Affecting the Speed of Fracture Healing

Factors which affect the rate of fracture healing can be conveniently sub-divided under

two headings; factors which are local, and others which are systemic.

1.4.1. Local Factors

The degree of immobilisation with the amount of soft tissue trauma are probably of

paramount importance to fracture healing, inadequate immobilisation leading to

delayed union or non-union. This is probably because the initial fibrin scaffolding

which is the first step of fracture repair is disrupted, causing the bony bridge of the

external callus not to form properly. Fractures involving soft tissue trauma show

retarded healing due to a decrease of differentiation of the mesenchymal cells and in

their total number.

Factors which contributed most to delayed or non-union seem to be initial

displacement, comminution, associated soft tissue injury and infection (Nicoll, 1964).

Rockwood indicates that the fracture should be completely immobilised during the

inflammatory stage so that the vascular supply could be reinstated (Rockwood et al.,

1984).

1.4.2. Systemic Factors

Fractures in young people heal more rapidly than those of adults, with the rapid

remodelling that accompanies growth also allowing correction of a greater degree of

deformity in the young. The reasons for this might be given by the results of

experimental work with animals which showed that when young there is a more rapid

differentiation of cells from the mesenchymal pool (Rockwood et al., 1984).

Page 15

Chapter 1

As has been indicated before, electronegativity in bone has been linked with

osteoblastic activity and so bone formation. It has been hypothesised that the

application of electric currents directly to a human fracture or via the use of non­

invasive electromagnets might therefore increase the rate of healing. A double blind

patient trial to study the effect of pulsed electromagnetic fields on 45 tibial fractures

with delayed union was carried out, with the conclusions being that significant

improvements in the healing of patients occurred with active electromagnetic

stimulation (Sharrard, 1990). However some reports believe the result of improved

healing times are inconclusive (McKibbin, 1978).

It has been found that the healing rate can be increased by allowing small movements

of the fracture site to occur. For example cyclic loading producing a small (< 1 mm)

amount of micromovement of a fracture was applied and was found to improve healing

(Panjabi et al., 1977; and Goodship and Kenwright, 1985). It is probable that bone

formation is stimulated by forces acting across the fracture site, as the lack of weight-

bearing has been shown to decrease the amount of woven bone that is formed

(Meadows et al., 1990). This hypothesis is in agreement with Klein-Nulend et al.

(1986), who found that compressive forces at the fracture sites in foetal mice

stimulates rapid mineralisation of uncalcified matrix.

Page 16

Chapter 1

1.5. Post-trauma Osteoporosis

Osteoporosis is where there is a loss of bone, and changes in the cancellous pattern

(Oxnard, 1993), so reducing the bone strength. During many rat experiments

conducted in the 1950s, a rapid increase in bone mineral content following trauma

occurred at the fracture site. However a decrease in the bone mineral quantity was

noticed in the rest of the limb when compared with its opposite counter-part. This

difference seemed to last for a longer period of time than that required for healing

(Ulivieri et al., 1990). This was found to be due to an increased rate of bone

resorption (Wand et al., 1992) as large resorption cavities were visible in the cortical

bone (Young et al., 1983).

Paavolainen and associates studied the healing of experimental fractures in rabbit

tibiofibular bones treated by plates (Paavolainen et al., 1979). During the first 9 weeks

there was a progressive improvement in torsional strength reflecting the advancement

of the union. From 9 to 24 weeks the torque capacity and energy absorption

decreased while the torsional rigidity reached a steady state, concluding that after

healing the continued presence of the implant has an adverse affect on the strength of

cortical bone. This was verified by histological studies where after 9 weeks there was

a rapid excavation and breakdown of the cortical wall, its porosity increasing from 9%

to 37.5%. The same has been seen in human fractures, with loss of bone mineral being

shown to have no correlation with the treatment method (Sarangi et al., 1993). This

effect is of long duration, for Nilsson (1966) found that this difference in porosity

between the limbs took 6 to 7 years in males and 15 years in females to disappear.

Post-traumatic osteoporosis can therefore lead to a weakness of the bone for many

years which gives it a higher probability of refracture (Wand et al., 1992).

A main factor for osteoblastic activity has been shown experimentally to be the amount

of physical activity (Wand et al., 1992). It is therefore thought that the main cause for

Page 17

Chapter 1

post-traumatic osteoporosis is a reduced functional loading of the limb (Le Veau, 1992

and Whalen et al., 1988), with the increased bone resorption in response to fracture

probably being a contributory factor (Sarangi et al., 1993).

Therefore the previous rationale in treating fractures by non weight-bearing until the

healing was far advanced, has been discarded in favour of early partial weight-bearing.

This avoids post-trauma osteoporosis and encourages healing by producing forces

which result with naturally induced micromovement at the fracture site.

Page 18

Chapter 1

1.6. Fracture Treatment and Technique

The main causes for tibial fractures involve direct violent impact such as motorcycle

and car accidents or indirect injuries such as from sport accidents and falls (Rockwood

et al., 1984). Normally a high energy impact results in greater soft tissue damage, skin

loss, bone displacement and comminution, with the fracture often being transverse. In

contrast, a low energy impact usually results in an oblique or spiral fracture.

As an important permissive factor of fracture healing is the degree of immobilisation,

so fixation is required to maintain alignment and give stability during union of the

bone. Various fixation methods are available, with the particular method chosen being

dependant on the extent of damage to the soft tissue and bone, and also to the pre­

disposition of the surgeon preferring one method to another.

1.6.1. Bracing and Casts

As a plaster cast provides good control of angulation but poor control of rotation and

length (Latta et al., 1991), it is normally applied after reduction from the knee to the

ankle for simple low impact fractures. Braces are easily adjustable to compensate for

the changing leg volume so that stability can be maintained, being used for fractures

with minimal initial shortening and soft tissue damage. Forty years ago the routine

treatment for an uncomplicated tibial fracture was a closed reduction followed by a

non-weight bearing long leg cast which was worn for 10 weeks before another cast

was applied allowing partial weight-bearing. Since then however, early weight-bearing

is encouraged starting at between 10 to 16 days post-fracture, as this seems to reduce

muscle atrophy and tissue edema and also shorten the post cast rehabilitation time

(Rockwood et al., 1984). This is probably due to the stimulating of osteoblastic

activity so decreasing of disuse osteoporosis.

Page 19

Chapter 1

1.6.2. Intramedullary Nailing

Internal fixation is the general term for both intramedullary fixation using an

intramedullary nail, and extra-medullary fixation by using plates and screws.

Intramedullary fixation is good for short oblique fractures where a large displacement

has occurred, and is also often used in comminuted fractures (Rockwood et al., 1984).

This is because the use of intramedullary nails results with minimal interfragmentory

movement as the nail takes most of the bending, torsion and compression loads

applied, so that direct healing of the cortical bone by remodelling occurs. However if a

relatively flexible nail is used, some secondary healing may occur with the presence of

external callus. The main disadvantage of this treatment method is that it is surgically

traumatic and has a relatively high probability of infections, non-union and refracture

(Gautier et al., 1992). When the nail requires that the bone be reamed, up to 70% of

the cortical blood supply can be disrupted (Whittle et al., 1992) so slowing the healing

rate. There is also a risk of mechanical failure of either the nail or the fixation screws

due to the high loading they sustain (Latta et ah, 1991).

1.6.3. Plating

Plates are often applied to segmental and intra-articular fractures involving the tibial

shaft and knee or ankle joint (Rockwood et al., 1984). Although the plate is not able

to resist the high bending moments and rotations which can be borne by an

intramedullary nail, it does provide very rigid fixation due to the fracture site being

compressed (Gautier et al., 1992). As with an intramedullary nail, the strength and

rigidity obtained with a plate is sufficient to enable immediate early limb function. The

main problem observed with plate fixation is the devitalisation of adjacent tissue,

Page 20

Chapter 1

subsequent skin breakdown and wound sepsis (Rockwood et al., 1984). Also there is

an immediate alteration of stresses in the bone f rom those to which the bone is

accustomed, leading to possible stress fractures at the junction of the plate wi th the

bone. Temporary osteopenia is caused by having stress protection under the plate, so

that for over 6 months post-fracture the overall bone strength is reduced (Latta et al.,

1991). Care must be taken in weight-bearing shortly after removal of the plate, for

refracture of the tibia may occur because of disuse osteoporosis (Rockwood et al.,

1984).

1.6.4. External Fixation

External fixation seems most useful in instances involving severe soft tissue wounds. I t

reduces the requirement to dissect soft tissue adjacent to the fracture site and may also

be applied rapidly. An external fixator can also be adjusted to satisfy a particular

treatment course, allowing very rigid fixation or more flexible fixation so inducing

micromovement. The normal cyclical mechanical loading and strain in a tibia is

disrupted i f a very rigid fixator is applied, so by introducing micromovement improved

osteogenesis at the fracture site may be observed (Goodship et al., 1985, Egger et ah,

1993). Circular frames, whilst diff icult to apply, have the advantages of resisting

rotary and angulatory deformation whilst still allowing axial deflection which

theoretically improves fracture healing. Problems encountered with external fixators

involve the infection of the pin-tracts which can lead to loosening and decreased

stability (Latta et al., 1991).

Page 21

Chapter 1

1.7. Measuring Weight-Bearing

A l l these treatment methods allow the patient some degree of freedom of movement as

the fracture is given stability and stiffness due to the fixation device used. As noted

previously, the patient being allowed to walk on the fractured limb also has positive

effects on the healing of the fracture, for osteoblastic activity is stimulated by the

amount of physical activity (Wand et al., 1992). I t has also been noted that allowing

micromovement at the fracture site has been shown experimentally to favour healing

(Goodship and Kenwright, 1985). Rather than directly inducing this micromovement

at the fracture site as did Kenwright et al (1991) via pneumatic pump attached to a

sprung external fixator, the patients monitored during this study have been encouraged

to weight-bear early, with the assumption that weight-bearing on fractured l imb w i l l

naturally induce micromovement at the fracture site because the fixation device can

never be infinitely stiff.

The basic feedback mechanism which ensures that the patient does not transmit too

much weight through the fractured limb during fracture healing is pain (Dehne, 1980).

This occurs via pain receptors at the fracture ends, which indicate pain when these

ends move against each other, or more often discomfort when this movement is small.

I f the fracture is in an early stage of healing, its stiffness is less, and so the limb is more

unstable than at a later period in the healing process.

Therefore measuring the amount of weight-bearing of a patient should give an increase

with time as the fracture stiffness increases due to the fracture healing. The lack of

change in weight-bearing over time might indicate complications in the fracture healing

process, or the patient not weight-bearing as requested due to the gait pattern

developed or because of laziness. Both of these are of clinical interest; the former

being verified by a radiograph and perhaps requiring surgical intervention, the latter

Page 22

Chapter 1

being of interest due to the prospect of a longer time for healing and subsequent

rehabilitation i f the patient continues in the same manner.

1.7.1. Weight-Bearing Measurement Methods

To measure weight-bearing in this study, the method of pressure sensing under the foot

has been investigated. Another more limited and less accurate method of assessing

weight-bearing might be to measure the micromovement induced at the fracture site

(via sensors on an external fixator for example, as did Richardson et al., 1992) and by

estimating the combined fracture and fixator stiffness, calculating the weight-bearing.

However estimating the current fracture stiffness is rather inaccurate as the fracture

stiffness increases over time due to healing. Also this method is only feasible using an

external fixator as the treatment method. Therefore for accuracy and flexibil i ty of

treatment, an attempt was made to measure the weight-bearing directly.

Lord et al., (1986) reviewed a number of systems which have been devised in an

attempt to identify high pressure areas underneath the foot which is of particular

interest for conditions where pressure may be excessive, such as diabetic neuropathy

and rheumatoid arthritis. Most foot pressure measurement systems are f loor mounted,

it being more diff icul t to measure pressure beneath the foot inside the shoe.

1.7.1.1. Floor Mounted Systems

Floor mounted systems have the benefit of measuring over the whole area of the foot.

The main disadvantage of their use is that the patient can normally only take one step

on the measuring area. This leads to the patient 'aiming' the foot for the measuring

area when walking up to it, so increasing tension and altering the gait pattern, probably

leading to a reading for weight-bearing on that step being different than that during the

Page 23

Chapter 1

patient's normal gait (Whittle, 1991). A number of floor mounted systems have been

used up to date some of which are detailed below.

Simple systems giving coarse readings of pressure which can be converted to force by

multiplying by the area, include the Harris mat which is made of thin rubber whose

upper surface consist of a series of ridges of different heights. This surface of the mat

is coated with ink, paper is put on top of this mat, and the patient is asked to walk over

the mat. The highest ridges compress under light load, with the lower ones requiring

progressively greater pressures, therefore making the transfer of ink to the paper

greater in areas of highest pressure. Other similar schemes include using pressure

sensitive f i l m instead of the paper and ink. The Pedobarograph uses an elastic mat laid

over an edge-lit glass plate which, when the mat is compressed due to load, loses its

reflectivity so becoming darker, this providing a quantitative measurement when

recorded by a camera. Load cells have also been used which are placed as an array and

walked on. Each measures the vertical force beneath a particular area of the foot, so

when added together result in the weight-bearing. However the most accurate reading

is obtained by using a force platform or force plate which measures the ground

reaction force as a subject walks on it.

1.7.1.2. In-Shoe Devices

The advantage of using an in-shoe measuring system is that measurements can be taken

for each step and so the patient is able to relax into their normal gait pattern, this

resulting in more accurate measurements. Also by recording each step taken,

variations in the gait whilst walking can be quantitatively measured by observing the

changes in the weight-bearing value. However there are difficulties in obtaining

accurate measurements due to the curvature of the surface of the sole of the foot, a

lack of space for transducers, and the requirement for a large number of wires f rom

inside the shoe to the measuring equipment. For these reasons, such systems usually

Page 24

Chapter 1

measure pressure only in selected areas of the foot, contrasting with floor mounted

systems which measure over the whole area of the foot (Whittle, 1991).

This study has sought to develop a weight-bearing measuring system that patients can

use whatever the fixation method used for the fracture. An in-shoe measuring system

has been devised and developed for this purpose, this method being chosen for its

capability of monitoring all steps taken during walking, so that a more accurate

average value can be gained for the weight-bearing with the standard deviation

showing the variability of the gait. For ease of use and accuracy of data, the

equipment had to be portable and small so that the patient would not be encumbered

by i t and so could walk using their normal gait. The aim of using such a system was to

discover whether weight-bearing increased over time and whether any differences were

apparent according to the treatment method employed.

Page 25

Chapter J

1.8. History of Ambulatory Monitoring

The requirement for ambulatory monitoring was first envisaged by Dr. Norman J.

Holter who was concerned with monitoring the heart. Certain heart conditions

occurred for a small period of time with their effects lasting for the rest of the person's

l ife, with these conditions being undetectable in an isolated laboratory (Meldrum,

1992). Holter wrote that more physical freedom was desirable to study the heart under

realistic conditions of daily l i fe (Holter, 1961) and also that significant

electrocardiographic (ECG) changes might occur during the normal active day of a

clinically normal individual (Holter, 1957). Therefore there was a need for ambulatory

monitoring over an extended period of time.

For some time telephone ECG transmission occurred. The patient was confined at

home, and the ambulatory monitor intermittently transmitted data of the patient's heart

to a receiver linked to the telephone which in turn transmitted the data along the

telephone line to the laboratory for analysis (Pratt et al., 1988). Later generations

stored the data in memory so that monitoring could occur at any time and the data

transmitted via the telephone when the line became accessible. Other systems used a

cassette tape to store continuously monitored data which was later analysed at the

laboratory using a computerised scanning system (Pratt et al., 1988).

Wi th the advances in microprocessor technology, recording has moved f rom analogue

to digital recording. The advantages are of speed and ease of data transfer and

evaluation, without requiring an expensive piece of equipment. Also calculations can

be performed during the recording period, such as discarding unessential data points

(Pfister et al., 1989). Using this feature, microprocessor based ambulatory monitors

are able to monitor over extended periods of time without their memory being

exhausted, for only data of interest is stored (Besag et al., 1989). The storage method

for such monitors is normally solid-state R A M technology, which having no

Page 26

Chapter 1

mechanical 'moving parts' means is more robust and smaller, resulting in a monitor

which is more compact and lighter, and so less obtrusive to the patient.

Attempts have been made at real-time automatic ECG recording and processing by the

monitor, with only the results being stored in memory. There have however been

concerns over the sensitivity and specificity of the results in relation to artefacts and

frequencies of ventricular arrhythmias, especially with complex and repetitive forms

(Kennedy et al., 1987). However ambulatory monitors which perform real-time

processing of data offer the ideal solution for applications requiring simpler analysis of

data for the extraction of results.

Since this application requires fairly simple data analysis, which w i l l be explained in the

next Chapter, this can be performed in real-time with the results only being stored in

memory. Therefore due to benefits associated with ready access to the results and

with the solid-state technology involved, this type of ambulatory monitor was selected

for design and development.

Page 27

Chapter 2

2. The Monitoring System

This chapter details the monitoring system, which comprises of the hardware and

software of the ambulatory monitor, its interface for communication with the PC, and

the PC's analysis and f i le manipulation program for the storage and display of the

calculated results.

2.1. Hardware of the Ambulatory Monitor

This section describes the hardware and other components used to make up the

ambulatory monitor. Section 2.1.1 deals with the internal contents of the monitor

which give it its functionality. Sections 2.1.2 describe the extra components which are

necessary to provide its user interface, and also details the monitor's housing. Finally,

Sections 2.1.3 detail the RS-485 to RS-232 interface.

2.1.1. Internal Monitor Hardware

The intelligence or functionality of any computer is derived f rom the micro-processor,

or Central Processing Unit (CPU), as it processes the string of commands which forms

the program being executed. These commands perform very simple tasks and are

represented as numbers in the computer. Many commands manipulate data in some

form, and so a computer program consists of the string of command numbers

interleaved with the required data numbers. This type of program code, which the CPU

can execute directly is called machine code. Although it is theoretically possible for

programmers to write machine code, the likelihood of mistakes is high because the

Page 28

Chapter 2

code is extremely diff icult to read, since it is just a long line of numbers. Therefore i f

there is a requirement for the programmer to have this level of command execution

control, assembly language is used; this uses labels and symbols to represent the

command names, jumps, etc.. This program is then 'assembled' which tokenises the

labels into their corresponding machine code numbers resulting with the machine code

program which can then be executed by the CPU. Assembly language is much more

readable than machine code itself, and therefore the probability of errors is reduced.

Both are called low-level languages because the programmer has control on the exact

commands and the order in which they are executed.

However, most programming occurs in high-level languages. These are more readable

still than assembly language, being closer to logical constructs of the English language

itself. Rather than each command in the high-level language corresponding directly to

a machine code instruction, each command corresponds to a number of them. These

two factors combine to provide a great increase in programmer productivity due to the

greater readability of the code which results in fewer errors and facilitates the finding

of errors that do occur. Also, due to the conciseness of the code that is written since

each command corresponds to a number of machine code instructions there is a smaller

probability of errors being in the code as there is a smaller number of commands. The

translation of the high-level language instructions to machine code instructions can

occur in either of two ways; through interpreting the code written by the programmer,

or by compiling it. Interpreting the code is where the programmer's code is stored in

memory and each statement is translated into its machine code equivalent as the

program is being executed. Compiling the programmer's code involves the computer

first translating the whole program into the machine code equivalent, and then

executing the translated version. Interpreting the code therefore causes the execution

speed of the program to be much slower than the execution speed of the compiled

version. However, the time involved in first compiling the programmer's code into

machine code before i t can be executed must also be considered, and when debugging

Page 29

Chapter 2

a program (trying to f ind the errors and removing them) this causes the productivity of

the programmer to decrease since there w i l l always be a noticeable delay (of

compilation) between each small change in the program implemented. I f however the

code were interpreted, the effect of any code changes would be observed almost

instantaneously, even though the actual program execution would be slower.

The drawbacks of using high-level languages when writing code is that the

programmer does not have f u l l control over the commands executed by the CPU. This

is because there is normally no access to the machine code commands, the compilation

stage translating the programmer's code into a set of machine code instructions rather

than just one. For most applications this is not a concern, but for some (for example

the CPU accessing other parts of the computer like the display drivers) the

programmer needs direct control at a low level (i.e. direct execution control) of the

CPU functionality. This is because the high-level language can never be large enough

in its different commands to be able to have separate commands which translate into

every possible combination of machine code commands. This problem can be

circumvented by the program being written mainly in a high-level language; but with

sections which require the direct CPU command execution control (i.e. i f the

functionality required is not included in the high-level language) written in assembler.

The requirement for this application was to write a program to give the CPU and

surrounding peripherals the functionality of an ambulatory monitor. To facilitate the

writing of the program, a high-level language called 'C was chosen as i t also includes

some low-level functions. However, as w i l l be explained later, not all the monitor

functionality was able to be written in C. Therefore a part of it was written in

assembler.

Having decided upon the programming language requirements, the type of processor

had to be chosen. Rather than decide on a specific processor for which the

Page 30

Chapter 2

programming tools were available and then design the computer system (the CPU with

all the other peripherals needed such as memory and Analogue to Digital converters or

ADCs) a pre-fabricated computer system was chosen. This was obtained f rom P.S.I.

Systems (17-18 Chelmsford Rd. Industrial Estate, Essex CM6 1XG) and is called the

'Mini-Module'. The other major benefit of choosing a complete system was that it was

already interfaced to different programming languages which could therefore be used

to write programs, these being Modula-2, C and assembler. This software interfacing

included the writing of various routines and functions for the controlling of the

peripherals by the high-level language in question, which results in a great deal of time

being saved for the programmer, as little or no interfacing in assembler needs to be

performed oneself.

The Mini-Module Printed Circuit Board (PCB) measures some ten by eight by a half

centimetres in size. It contains a Philips 93C100 CPU (which is Motorola 68000

software compatible), EPROM (Erasable Programmable Read Only Memory) for

program storage, R A M (Random Access Memory) for data storage with a l i thium

battery back-up for when the power is disconnected, a real-time clock, sixteen digital

channels which can be independently configured for output or input, four analogue to

digital converters, one digital to analogue converter, an RS-485 serial interface, a

watch-dog timer, a power fa i l detector, an L C D (Led Crystal Display) adapter, a

keyboard adapter, an expansion bus, and finally a 68000 compatible bus port for

connection to external peripherals. In Appendix 1 are included further details and

purposes for each component of the Mini-Module that was utilised.

Page 31

Chapter 2

2.1.2. Supplementary Monitor Hardware

The extra physical components required for the ambulatory monitor are described

below. These include LEDs, switches, a power supply, and a box to house these and

the Mini-Module.

2.1.2.1. The LEDs

As was mentioned previously, four LEDs are needed to provide the monitor's operator

with its status. Each one is l i t by setting the digital line to 0 so that i t is driven by the

100 uAmp source to 5 Volts. This current is sufficient to light low power LEDs feebly

but visibly, and so adequately. Another way of lighting the LEDs would have been to

have one side connected to the 5 volt battery voltage, and the other to the digital line.

When the line was 1 (meaning that i t was being driven by the FET to 0 Volts) current

would pass f rom the battery to the FET so lighting the LED, a resistor in series

l imit ing this current. The former option was used since this results in a lower power

consumption which is important in this application. Although the LEDs were not l i t as

brightly as they would be by using the latter option, they were still visible.

2.1.2.2. The Switches

Two switches were required; one for the power connection which would determine

whether the monitor is switched on or off , and the other a 'depress on' switch to enable

the operator to access different functions of the monitor program.

For the power supply connection switch, the power supply's ground was permanently

connected to the Mini-Module's ground. The power supply's positive was connected

to one side of the switch, the middle switch connector going to the Mini-Module's +5V

rail. Therefore only when the switch was in one of the two possible positions would

both leads would be connected so that current could f low.

Page 32

Chapter 2

For the other switch, a 'depress on' type was chosen, where the switch is closed only

when the switch is being depressed. A n 'input' digital line is attached to one side of the

switch, and ground being attached to the other. The unset state for a line is logically

zero which corresponds to the 100 uAmps source driving the line at 5 Volts. When

the switch is closed, the line voltage is pulled down to 0 Volts (corresponding to 'on'

when being read by the CPU) and the current is dissipated as heat by the internal

resistance of the batteries and the wire. The CPU can easily access just the one digital

line by applying a mask over the other lines when it is being read. Hence the CPU w i l l

ignore the other lines by comparing the port's value to a number using an A N D

function. This function compares the bit values representing two numbers, resulting in

a 1 or 'on' i f both numbers have a 1 in that position, and a 0 i f not. For example 34

A N D 66 returns 2 because their binary representations of 100010 A N D 1000010 result

in 0000010 for that is the only set bit common to both. So for this application, reading

the port and performing an A N D function with 00000001 w i l l mask out the top seven

bits, the answer returned being the last line value which is connected to one side of the

switch.

2.1.2.3. The Power Supply

As the monitor's main requirement was of portability, a power supply made up of

batteries was required so that the monitor would be freed f rom requiring the mains

electricity supply. The voltage requirement for the monitor was determined by the

Mini-Module; this being a maximum of about 5 Volts and a minimum of 4.75 Volts,

which is where the power fa i l detector begins to operate. I t was also thought

important to use rechargeable batteries so that there would not be an on-going expense

due to disposable batteries having to be replaced when discharged. The other criterion

for the selection of batteries was physical size; to minimise battery size for them being

housed in the same casing of the Mini-Module.

Page 33

Chapter 2

As ni-cad batteries are freely available and relatively inexpensive, this type of re­

chargeable battery was chosen. Battery capacity is in the units of Amp Hour (Ah)

which is equivalent to the sustainable current discharge for one hour. For example a

3 A h battery of output voltage 1.5 Volts could supply 3 Amps at 1.5 Volts (or 4.5

watts) for one hour before being discharged. Figure 2.1 lists the different battery

types, their voltage output, and the maximum capacity that each holds.

Battery Type Voltage Capacity (Ah)

A A A 1.2 V 0.22

A A 1.2 V 0.65

C 1.2 V 1.5

PP3 9 V 0.11

Figure 2.1 - Various ni-cad battery types with their voltage and capacity

A A size batteries were chosen for their volume (including a battery holder) per

capacity was smaller than for any other type.

Although their off icial rating is 1.2 Volts, the voltage output is not static but changes

during discharge. Figure 2.2 shows how the voltage decreases for different discharge

rates, with 'C being the discharge rate to exhaust the battery in one hour. I t can be

seen that the voltage before discharging starts at 1.35 Volts, and reaches 1.2 Volts

only a little before the battery is ful ly discharged. Therefore by using 4 batteries

connected in series, a starting voltage of about 5.4 Volts occurs which decreases to 4.6

Volts just before the batteries are fu l ly discharged. As the power fa i l detector occurs

at about 4.75 Volts, this is a useful indicator to the operator of when the batteries need

Page 34

Chapter 2

re-charging. The Mini-Module still functions correctly at the higher voltage of 5.4

Volts and so four A A size ni-cad batteries in series were chosen for the power supply.

1.40

1.30

o 1 ' 2 ° cn
CO
o 1.10
>

O 1.0

0.90

36
sees

1 Disrharnp 1 2 (5
sc 1 °

(5
sc iharge

5C
e sen arg e

6 12 18 30 1 2 3 5 10
mins minsminsmins hr hrshrs hrs hrs

Time from start of discharge

Figure 2.2 - Graphs showing typical ni-cad batteries' discharge times versus cell voltage for
different discharge rates (RS Data Library, 1994).

The Mini-Module by itself requires almost 200 mA when running and almost 125 mA

when the CPU is in stand-by mode. However the whole monitor consumes much more

than this due to the need to power the signal conditioning units and when connected

the RS-485 to RS-232 converter. When operating with the powering down of the

processor in between samples enabled, the monitor consumes a total of about 225 mA.

When the processor is not powered down, this rises to about 295 mA. When the

Page 35

Chapter 2

converter is attached to the monitor for communication with the PC, an extra 105 m A

is required, with the processor not being powered down in between samples.

As the monitoring sessions comprised of calibrating the transducers for each individual

patient, walking the route with the patient, and finally down-loading the data to the

PC, one can assume that the serial converter was attached to the monitor for about half

the time. This gives an average current consumption of about 315 mA, assuming that

the processor was powered-down in between samples when monitoring. This gives a

discharge ratio of about C/8 with four batteries, with Figure 2.2 showing an estimated

6-7 hours of battery l ife. As another requirement was to have an ambulatory monitor

which could function for a day without re-charging, it was therefore decided to include

a second set of four batteries to be connected in parallel with the first set. The rating

for the new power supply was therefore 5.2 Ah , which gave a discharge ratio of about

C/16 resulting in an estimated battery l ife of 12-14 hours. This was deemed sufficient

for the application's purposes, but for possible future purposes the option of further

increasing battery l i fe by the addition of external battery packs remains.

2.1.2.4. The Ambulatory Monitor's Box

The box's dimensions are 13 cm by 13 cm wide, and 7.5 cm deep. As can be seen in

Figure 2.3, one side holds the switches and LEDs, another the connector for

attachment to the signal conditioning units, and the third side houses the connector for

attachment to the RS-485 to RS-232 converter. The Mini-Module is clearly displayed

in the housing, whilst the eight batteries comprising the power supply can be seen in

the l id .

Figure 2.4 shows the ambulatory monitor being worn by a patient. The patient is not

unduly encumbranced when walking due to its small size and weight.

Page 36

Chapter 2

Figure 2.3 - A photograph of the ambulatory monitor with the casing opened, revealing the
internal hardware

Page 37

Chapter 2

Figure 2,4 - A photograph of the ambulatory monitor being worn

Page 38

Chapter 2

2.1.3. Hardware Interfacing between the Ambulatory Monitor and the
PC

The requirement of PC interfacing was necessary primarily to enable the data collected

by the monitor to be down-loaded onto the PC for storage and analysis. The easiest

means for this was to use the serial connection which is available to both the PC and

the Mini-Module. However a conversion was needed for the Mini-Module^s serial

interface conforms to the RS-485 standard whilst PCs' conforms to the RS-232

standard. The converter's circuit is shown in Figure 2.5.

CONNECTOR OB25

-22.

N/C N/C
* T AO -
* oxo -
* RTS -
* CTS -
VCC N/C
GNO N/C
SERIAL

U3A
EN
A

GNO
2
vcc

EN
A

GNO
74

U3B
V EN

A
GNO vcc
EN
A

GNO

IDT
- L i
JL£-

T 1 0 U T
R1IN
RlOUT
T i IN
T2IN
R3QUT

T i c .

r T T T T

Figure 2.5 - The RS-485 to RS-232 converter circuit

The circuit was housed in a box 8.5 cm by 5.5 cm wide, and 4 cm deep. A photograph

of the monitor connected to the PC via the converter is shown in Figure 2.6.

Page 39

Chapter 2

Figure 2.6 - A photograph of the whole monitoring system, with the ambulatory monitor
connected to the PC.

The converter circuit is fast enough to allow the standard RS-232 serial

communication speed of 9600 baud, which is equivalent in this case to 9600 bits per

second or 1200 bytes per second of data being transmitted.

Page 40

Chapter 2

2.2. Software of the Ambulatory Monitor

As explained in the previous section, the programming language chosen for the

monitor program implementation was C. This gave the necessary low-level

functionality required for every part of the implementation except for the powering

down of the processor to decrease the battery consumption, this being performed using

a mixture of C and assembler.

The Mini-Module has a C compiler available for which the necessary interfacing of

libraries has already been performed by P.S.I. Systems, which was used as the

development package.

The development system consisted of a host PC and program development hardware

for the Mini-Module. The host executed the text editor, the compiler, it having its

own file storage capabilities for storing the C, assembler, and machine code files. By

so doing, the Mini-Module does not require the large amounts of RAM needed to

execute the compiler and store the files. Standard compilers generate machine code

for the same processor type as that which executes the compiler. As the processors in

PCs, being of the Intel '86 family, differ greatly from the Motorola 68000, a cross-

compiler was used which executes on one processor type, generating machine code for

another. During program development, the generated machine code program was

tested by down-loading it from the host to the Mini-Module and then executing it.

When connected to the host the Mini-Module could use the keyboard and screen

directly by the host executing a terminal emulating program so causing it to function as

a terminal to the Mini-Module. This aided testing by being able to view program states

and variables on the screen.

The hardware attachment to the Mini-Module also aided program testing as it

interfaced both the Mini-Module's inputs and outputs to easily controllable and

Page 41

Chapter 2

viewable components. For example the ADCs are connected to potentiometers, the

digital lines to switches and LEDs thus giving the capability of viewing and setting

each one's state, and the DAC to an easily attachable point for a voltmeter or

oscilloscope. It also includes two RS-232 serial ports, facilitating interfacing to the

single or multiple hosts, however this latter option was not used during the application

development. The use of twin hosts is sometimes beneficial as each host can run

separate programs on the same Mini-Module, each being executed simultaneously by

the multi-tasking Minos operating system.

A faster programming cycle was obtained by using a multi-tasking operating system on

the host PC. This occurs because the text editor, compiler, and terminal emulating

program can be simultaneously in the host's memory thus avoiding the time taken to

continually load each program separately in turn during each compile and link cycle.

Also whilst the compiler is compiling and linking, this being the greatest part of the

cycle, other tasks can also be performed such as program editing or testing on the

Mini-Module through the terminal emulating program.

Page 42

Chapter 2

2.2.1. General Program Overview

The following section highlights the main program workings by describing the general

program flow during its execution. The explanation of the C language 'main()' function

of the program is deemed sufficient for this.

Initialise digital lines

Setup values needed for program execution

Setup Data and Results files

\

N

/ \

N /

Setup Data and Results files

/

Sample the A/D converters

Analyse data and store the results

Figure 2.7 - A flowchart outlining the monitor program's general flow during execution

When program execution first commences, a number of initialisation stages are

necessary before the monitoring of the ADCs can occur. First the digital lines are

initialised. As each line can be set to function logically as an input or as an output line,

the former or latter must be specified before usage. Four LEDs were used, and so the

digital line that each was connected to was specified to be an output line by using the

Page 43

Chapter 2

'outch(line no.)' library routine. As the use of a switch for function selection was also

required, another digital line was set to be an input line by using the 'inch(line no.)'

routine. When the switch was depressed, the digital line became connected to ground

so that its state changed from high to low voltage since the normal state for a digital

line is to float high. By monitoring the value of this digital line the program could

therefore determine whether the switch was being depressed.

The data required and generated by the program is stored in RAM in the format of

files. The required data is stored in the 'Events' file, holding values such as the

threshold value for an event to occur. The file is not deleted when the external battery

supply is disconnected because it is designated as battery backed to the operating

system. The program next checks for the existence of an Events file, and i f not a new

one is created with default values which can be subsequently modified by the operator.

The Data file stores the ADCs' sampled values. Any Data file present is next cleared

from the RAM and a new one created. The Results file stores the results of the

analysed data, with each result recorded corresponding to one weight-bearing event

and including various information, for example the time of its occurrence. I f no

Results file already exists, for one could still be present from a previous session, it is

created.

After the various initialisation stages, the program enters an infinite loop composing of

various sections. The first periodically samples the ADCs, storing the data in the Data

file. When the capacity of this file is filled, the program enters the next section where

it is analysed, with any weight-bearing events being stored in the Results file. Finally

the Data file is cleared and the ADCs are again sampled.

This execution loop can be halted to allow the operator to download the results onto a

PC, or do a number of other functions. By connecting the Mini-Module to the PC via

Page 44

Chapter 2

the serial link, and depressing the switch connected to the digital line, the Mini-Module

can use the PC as a terminal i f the PC executes the terminal emulating program. Since

the majority of the loop execution time is spent in the ADCs' sampling stage, it is in

this section that the switch is monitored. I f the switch is depressed whilst loop

execution is in either of the other stages, then there will be a delay of the execution of

these stages being finished before the digital line is read. However, due to the this time

period being in the order of milli-seconds, the delay wil l not be noticeable to the

operator.

The following sections explain in greater detail the program's functionality. Each

section deals with the stages of the general program flow diagram given in Figure 2.6.

Section 2.2.2 elucidates further on the RAM files used for data storage and then-

creation. Section 2.2.3 details the ADCs' sampling stage, with the final section

explaining the analysis of the Data file and the calculation of the results. For each of

these sections, line numbers refer to Appendix 3.

2.2.2. Data Storage during Program Execution

As mentioned previously, the various types of data are stored in RAM as files. Space

in RAM could have been directly allocated by the program by using the C function

'malloc', with the different types of data being stored in separate sections of memory.

However, with this latter method of storage the data cannot be retained when the

battery supply is disconnected as the contents of the RAM are cleared. This is not the

case when using the files for data storage, for by using the 'datamod' library routine to

specify a file, the Minos OS can ensure that its contents remain intact after the power

supply has been disconnected. This is achieved by using the lithium battery back-up

which is mounted onto the PCB and connected to the RAM. The data in RAM which

is not found in a pre-assigned backed-up file is still contained in RAM but is

Page 45

Chapter 2

subsequently overwritten, for the Minos OS only keeps files which have been set to be

backed-up with the 'backup' library routine.

2.2.2.1. The Events File

The Events file is never erased and is always present in RAM since it contains the

values required to control the monitor program operation. These are as follows; the

threshold value above which an event occurs, the power down flag to indicate whether

to power down the processor in between each ADCs' sample, the display flag

indicating whether to display the ADCs' values on the screen, whether one or both legs

are being simultaneously monitored, and the four scaling values used for each of the

four pressure transducers' outputs. The monitor and PC software were under

continuous development throughout the study, with the next addition to its

functionality being the simultaneous monitoring of both legs. Unfortunately there was

insufficient time to complete this, but what was written is included in the program to

aid future development. An example of this redundancy is shown by the value in the

Events file which will currently always be set to 1.

The 'open_event_file()' function of the monitor program performs the Events file

creation (lines 1935 to 1947). A check is performed for whether an Events file already

exists, and i f not a new one is created. The size for this file is indicated at the start of

the program by the label EVENT_SIZE, with DATAJSIZE and RESULTS_SIZE

being used for the Data and Results files respectively. This increases the readability of

the code and eases its modification, this being more important for the Data and

Results files as the sizes for these are used extensively throughout the program, whilst

EVENT_SIZE is only used once at file creation.

Page 46

Chapter 2

2.2.2.2. The Data File

The previous Data file is erased and a new one created after each main loop in the

program, because once its contents are analysed they are no longer required. Rather

than actually deleting the file and creating a new one in its place, the pointer to the file

could have been set to the start of the file once again; with the next set of data from

the sampled ADCs simply overwriting it. The reason for not adopting this functionally

simpler approach is historical. During the initial monitor program development, it was

useful to check the contents stored in the Data file. Therefore an option, which has

now been removed, was to view and download the actual contents of the Data file

when the Mini-Module was connected to the PC. If the contents of the Data file were

to be viewed, then one would not be able to differentiate where the current data ended,

and the previous loop's data began; therefore the former approach was adopted. The

actual C program is not made more complex by using this former method, for to erase

the file takes two lines of code (for example lines 1783 and 1784); whilst as has been

seen before, its creation takes one line. As this is not a speed sensitive application, in

the sense of requiring the greatest speed possible in program execution, the time

overhead to delete and create a new file, rather than simply resetting its pointer to the

start of the file, is not of significance.

To be able to specify the size of the file at its creation, an assessment of the amount of

RAM that would be available was made. RAM is not only used as file storage space

by the Minos OS, but also for the storage of the program's variables and pointers, and

also the OS's own data whose amount varies during any program's execution. Just

taking the OS's RAM use into account means that the overall amount which is usable

by programs and data storage decreases from the 128 KBytes which is mounted on the

PCB to about 100 KBytes. As the information stored in the Data file is transitory, for

after each main program loop the contents are erased, its importance is far less than the

contents of the Results file which are stored until downloaded to the PC. Therefore

the size of the Data file was made much smaller (1 KByte) than that of the Results file

Page 47

Chapter 2

(90 KBytes). Not knowing exactly how much RAM was required by the Minos OS in

file creation and maintenance or by the program's variables and pointer storage,

resulted with not all the 100 KBytes being allocated for information storage in files.

Where two legs to be simultaneously monitored, the file sizes would be halved to

obtain 506 Bytes for each Data file and 45 KBytes for each Results file.

As will be explained in Section 2.2.3, the monitor program requires the time to be

stamped at the start of the data file for the calculation of the inter-sample time. The

time stamp contains the year, month, day of the month, hour, minute and second, and

so is contained in six bytes. The remainder of the file stores the sum of the ADCs'

values, giving a result of between 0 and 255 which can be stored in one byte. The

maximum value of 255 corresponds to 255 kg of mass or 2448 Newtons sensed by the

pressure transducers, and so is more than adequate for every eventuality.

2.2.2.3. The Results File

As explained previously, this file is 90 Kbytes in capacity, and it stores information

about each event calculated during the analysis stage.

Before any event information is stored, the Results file is date stamped as this figure

will be the same for all the events recorded. This occurs in lines 281 to 320, and as

can be seen, the year, month and day of the month is recorded at the beginning of the

file. This information takes up three bytes of storage, but by using a compression

routine that will be detailed in Section 2.2.4, these three bytes of storage are

compressed into two (lines 290 to 296). The next two bytes are set to 255 which

indicates to the program the end of the stored results data. When events occur in the

data file being analysed, these bytes are overwritten by the event information and the

two bytes after that are set to 255. Therefore this end of file (EOF) indication, or

more accurately the end of event information stored, as the Results file is a fixed

Page 48

Chapter 2

length, traverses through the Results file as event information is recorded. This is so

that the monitor displays or downloads only event information and not the whole

Results file therefore saving transmission time. Also i f there were no EOF indication

every byte in the Results file would have to be set to zero at creation as any other

value would be taken as event information.

The data stored for each event is as follows; the time of its occurrence, its peak value,

its duration and the time between samples. The time stamp of its occurrence is the

hours, minutes and seconds of the start of the event. The duration is the number of

samples comprising the event, which is given two bytes of storage, and with the inter-

sample time indicates the actual event duration in time. A future enhancement would

be to store the calculated duration in time, as this would reduce the amount of storage

required for each event. However currently the information stored for each event

comprises seven bytes. These seven bytes of information are compressed into five

bytes and then stored in the Results file, as will be explained in Section 2.2.4.

Therefore the number of events which can be stored in the Results file is 18,431 this

being obtained from the following calculation, there being three bytes required for the

date stamp:

(90x1024)-3
5

Attempting to calculate the amount of time that the ambulatory monitor could function

before all the memory was filled can only give an estimate as the exercise patterns

adopted by subjects will vary. Assuming a worst-case scenario of the patient walking

continuously with crutches at two steps per second (so resulting in one step per second

being taken by the monitored leg) an event will be recorded and stored for every

second of monitoring.

Page 49

Chapter 2

Therefore the Results file will be filled in 5 hours 7 minutes, this being calculated by:

18,431
60x60

This almost gives a working day of monitoring before the results need to be

downloaded onto a PC so that the Results file can be cleared and monitoring can

continue. This is a worst case however, and it is highly improbable that a patient with

crutches would walk continuously for five hours without taking rests. A more realistic

calculation might be to think of a patient trying to exercise as much as possible during

the day, whilst taking frequent rests. Assuming that the patient exercises by walking

for ten minutes, resting for another quarter of an hour and resting for more time when

eating a meal, means that there is enough memory for monitoring of a 24 hour period,

as:

per hour exercising: 24 minutes

3 meals rest: 3 hours

In a 14 hour day: (14 - 3) x 0.4 = 4.4 hours

Therefore the limiting factor for length of unsupervised monitoring is the battery

supply rather than the storage space in RAM.

Page 50

Chapter 2

Page 51

Chapter 2

2.2.3. The Sampling of the ADCs Stage

To aid the explanation of this section of the main program loop, a flowchart is given in

Figure 2.8.

The first part of the sampling stage of the program checks to make sure that the

required Data file exists in RAM. This should always be true, because due to the

sequential nature of the program execution a new one will already have been created.

I f this is not the case, then due to a transitory fault a program error has occurred.

Therefore all the LEDs are extinguished and the 'error' LED lit; an error message is

sent to the serial interface, and the program's execution halted. Normally the

ambulatory monitor would not be connected to the PC, so the error message would

not be seen by the operator. However the LED would inform the operator that a fault

had occurred, and the monitor could then be connected to the PC to view the error

message and so give information on the reason why the program has halted.

The time and date is then stamped at the start of the Data file so that the time of

occurrence for any sample in the file can be calculated, by time stamping the end of the

file and dividing the difference by the number of samples.

Program execution then enters its sampling loop, through which it iterates for the

number of bytes available for data storage in the Data file. This is equal to the

DATA_SIZE label at the beginning of the program, minus the bytes used for the date

and time stamps.

Figure 2.8 (overleaf) - A flowchart outlining the sampling of the ADCs stage

Page 52

Chapter 2

Does the Data file exist?
N

Y \ /

Light error LED and
print error message Halt execution

Time and Date stamp the start of the Data file

Is loop iteration <= (DATA_SIZE-6) ? Finish sampling stage

Sample each A/D converter, scale the value, sum them
and store the result in the Data file

Is the Display flag set? Display the sum

Delay

Is the power-down flag set? Power-down the processor

Is the PC switch depressed?

N /

Is a key pressed on the PC keyboard
before a time-out ?

Display options menu on PC screen

s/

Input option number

Is the input valid? Enter option

A

Page 53

Chapter 2

The ADCs are then sampled, scaled by their respective scaling values in the Event file,

and stored in an 'unsigned char' variable which is one byte in length. As the scaling

values are integers of one byte wide, rather than floats which use a greater number of

bytes for storage, each one is divided by a hundred and then multiplied with the

sampled value. Therefore a scaling range of between 0 and 2.55 is available, in

increments of 0.01. When the summed value was first viewed on the PC screen, it was

found that even though no pressure was being applied to any transducer, a reading

ranging from zero and twenty Newtons was displayed. This was due to the signal

conditioning units giving a minimum voltage reading of between 0 and 0.02 Volts. So

to make the final reading more accurate, each transducer's baseline reading was viewed

and according to the amount of variation an equal amount was taken away from it.

Lines 856 to 860 show this for the second ADC, the first's reading always being at

zero Newtons and therefore requiring no modification. This ADC's reading

corresponded for the majority of the viewed samples to twenty Newtons, so two

decrements occur'from its reading, each occurring only if its value is greater than zero

otherwise the value would be stored as 255 because it is an 'unsigned char' variable. In

the extremely unlikely event of the sum of the ADCs being found to be greater than

255, the sum is modified to 255 so that it can be stored as a byte in the Data file. Once

written to the Data file, the file pointer is incremented so that it points to the next

location of memory for storing the next value (line 912).

I f the display flag in the Event file is set to one, then the sum is printed on the screen of

the PC through the serial link. A delay of 0.01 seconds is needed immediately after

printing so that the Mini-Module has time to send all the information along the serial

line before the subsequent iteration round the loop when the next sampled sum is

displayed. This delay occurs by using the 'delay(no_of_tens_of_milliseconds)' library

routine in line 906. The effects of not having this delay is that after a number of

successive iterations round the loop, the serial buffer will be filled. I f further

Page 54

Chapter 2

information is required to be transmitted, then the whole system hangs with the

display, keyboard and file storage system of the PC also hanging.

Another delay of 0.01 seconds is programmed to occur which slows down the

sampling rate from the kilo Hertz range, to tens of Hertz. I f there were no delay the

Data file would be filled every second and if a step was being taken which lasted two

seconds, then two events would be recorded to have taken place as the Data file will

have been filled twice. The slight decrease in accuracy of the peak value and the

duration of the event by slowing the sampling rate is of negligible importance because

the potential error introduced is of a much smaller order of magnitude being

hundredths of seconds in comparison with the minimum of half a second that the foot

is in contact with the ground when a patient using crutches takes a step.

After this delay has passed, a further delay occurs if the power down flag in the Event

file is set to 'ON' (defined as 1 in line 22). This instructs the program to power down

the processor to stand-by mode for 0.1 of a second, the processor then consuming less

power for that period. When in stand-by mode, certain parts of the processor do not

function, and other parts function at the slower clock speed. Hence all interrupts must

be disabled before setting the processor to stand-by mode, and only a limited number

of its functions are available in this mode which are sufficient to perform checks for

when the condition to power the processor back up occurs. Since the monitor

program is written in C, no interrupts are used during its execution as these are only

generally accessible using assembler routines. However the monitor program runs

under the Minos OS which does use interrupts, for example to enable it to run various

programs simultaneously using multi-tasking, and so the registers' contents had to be

saved before the processor could be powered-down. To perform both these functions,

C could not be used as it does not have the mechanism to access registers or

peripherals directly. A routine was therefore written in assembler by P.S.I. Systems,

using C to perform some initialisation tasks for it, such as the length of time required

Page 55

Chapter 2

for the processor to be powered down. Lines 2024 to 2086 give the C initialisation

functions for the function, which write the length of time which the processor is to be

powered-down in the registers of the real-time clock (line 2031 in the 'writereg'

function). The assembler listing was not available, and so is not listed in the

appendices. However its functionality is as follows; the interrupt and register values

are saved on the stack, and then the processor is powered-down. It waits for the

required length of time, sets the processor to be driven by the faster oscillator, waits

until this oscillator has become stable, and frees the processor so that it can continue

operating.

Having performed all the stages of the ADCs' sampling, the program execution enters

the second half of the pressure input stage loop which deals with the PC

communication. This is effected by using the switch connected to the digital input line,

which when depressed causes the line's value to drop from the 5 Volts to 0 Volts, as

the other side of the switch is connected to ground. Even i f the switch is depressed

during the ADCs' sampling, the operator does not have enough time to release the

switch before its state is read on entry to the second half of the loop. I f the switch is

being depressed, the digital line's value will have dropped from 1 to 0. The test occurs

at line 932, with the switch being connected up to the digital line number 8, having an

alias of 'SWITCH_PC_LINK'.

However, this switch might be accidentally depressed whilst monitoring and so would

not be connected up to the PC. A check is required to ensure the ambulatory monitor

is in fact connected to the PC and the switch was depressed intentionally by the

operator, otherwise monitoring would cease whilst the program continually attempted

to access the PC's screen to display its menu of options. This verification is performed

by the 'link_test()' function of lines 1741 to 1758. The function executes a loop 500

times, each time monitoring the 'stdin' file to see if a key on the PC's keyboard is

Page 56

Chapter 2

pressed by using the 'ready' library routine, and waiting for 0.01 seconds, thus taking a

little over 5 seconds to execute. I f a key on the PC is not depressed within that time

limit, the program goes back to the ADCs' monitoring by commencing another

pressure input stage loop.

I f a key is depressed then its value is not lost from the 'stdin' file. However as the

menu is not yet displayed on the screen, the operator might not remember the various

options available, and each one's key for selection. Therefore the key depression is

used simply to confirm to the monitor that it is in fact connected up to the PC, and its

value is then discarded by using the 'scanf("%c", &input)' command (line 946) to clear

the 'stdin' file buffer. Next the menu options are printed on the PC screen (lines 951 to

961) and another 'scanf reads the operator's input. According to the input, the

program execution enters the option's code. I f the input doesn't correspond to any of

the available options, the program continues sampling by commencing another

pressure input stage loop.

Page 57

Chapter 2

The menu information is shown in Figure 2.9.

P o s s i b l e options a r e :
1 Record r e s u l t s
2 E d i t event l e v e l
3 C a l i b r a t e transducers
4 R e s t a r t R e s u l t s l . d a t module
5 Power down processon ON/OFF
6 L i s t r e s u l t s to date
7 Go to s h e l l program
8 Real time c l o c k
9 D i s p l a y toggle

Please input a number (1 - 9) :

Figure 2.9 - The menu of options for the ambulatory monitor

The various options are clearly shown in this Figure. I f option one is selected, the

results currently stored are downloaded onto the PC. For this to occur, a file name

must be chosen that it will be saved under, and which does not already exist in the

current directory as otherwise the old file will be replaced by this one, its contents

being lost. The choosing of a file name is performed by the 'get_outfile_name' function

in lines 1688 to 1732. This specifies a file name which shows it to be a-results file from

the ambulatory monitor and which contains in the file name the date of the monitoring

session. As the date when downloading the results might be different to that of when

the monitoring session occurred, for example i f the results were downloaded onto a PC

the following day, the date of the Results file is incorporated into the file name. As a

PC filename can have eight characters before t h e a n d three characters after, the

name format chosen is as follows. The first three characters are 'DAT', indicating to

the PC analysis program that the file contains data downloaded from the ambulatory

monitor. The next two characters are the day of the month, the next two the month of

the year, and the eighth is the unit of the year; for example the year being 1994, the

Page 58

Chapter 2

eighth character would be 4. This leaves the last three characters after the '.' unused.

It was initially envisaged that there would be up to five different monitors

simultaneously monitoring different patients. Therefore the last three characters of the

filename were originally set to be from '001' to '005' according to the ambulatory

monitor which was used for the patient. However it was subsequently decided to use

just one monitor as the number of patients which were first envisaged did not

materialise, and so the need for simultaneous monitoring sessions was not required.

This left the last three characters of the file name redundant. Another use for them was

found in that they could indicate a certain patient so that their record could easily be

found by the data and analysis files having the last three characters of the file name set

to the same number, for example '001' or '012' for the first or twelfth patient ever

recorded. However as this patient information is not stored by the monitor, the last

three characters are simply set to '000' and then modified by the PC analysis program

during the analysis of the monitor results data. So for the monitoring session of date

19/04/94, the filename under which the results would be downloaded onto the PC

would be 'DAT19044.000'.

If option two is selected, then the event threshold level can be changed (lines 1063 to

1091). Using a pointer to the RAM location storing the threshold level, this being the

location in the Event file , this location can be directly set to the newly inputted value.

To guard against operator input error, if the inputted value is less than 0 or greater

than 65 kilograms then it is rejected and the operator is requested to key in another

value.

The transducers can be calibrated by selecting the third option (lines 1099 to 1360).

Calibration is required because each transducer has a fixed area, whilst the different

parts of the foot under which each is attached have different areas through which the

weight is transmitted, this being compounded by different feet sizes. Therefore the

parts of greater area require a larger scaling value to ascertain the total weight

Page 59

Chapter 2

transmitted across the area; whilst parts of smaller area require a smaller scaling value.

These reasons are examined in greater detail in Chapter 3. Each scaling value is stored

as an integer of one byte in the Event file and before scaling the sampled input, the

value is divided by one hundred. Therefore the scaling range is from between '0' and

'2.55'. The user can select which transducer's scaling value to change, and before

doing so, the monitor displays fif ty samples of just that transducer's output on the

screen so that the operator can make a better judgement of what the scaling value

should be. In between samples, the processor was powered-down as it was envisaged

that this would normally occur during a monitoring session.

When selected, the fourth option shown in Figure 2.9 erases the contents of the

Results file or files (lines 1372 to 1382). This option was implemented for cases when

the commencement of a monitoring session is required, but the ambulatory monitor

already holds some unwanted test results in memory. By selecting this option these

results can be erased and the current date stamped at the start of the file in readiness

for the monitoring session.

By selecting the f if th option, the operator can set the power down flag in the Event file

(lines 1390 to 1408). By selecting the option so that it is set to 'ON' (defined as 1 in

line 22) the processor is powered down in between samples, thus saving battery power.

The sixth option displays on the PC screen the results currently stored (lines 1417 to

1445). First the LED indicating that the monitor is transmitting information to the PC

is lit. Next two temporary file pointers are set to the start of the Results file. The end

of the stored data is indicated by having two consecutive bytes set to 255, so one of

the temporary file pointers is incremented one byte and the two are then incremented

simultaneously, the monitor displaying the value of each byte being pointed to. When

both read 255, the end of the stored results has been reached and the monitor stops the

incrementation and display of the temporary file pointers.

Page 60

Chapter 2

The seventh option (lines 1456 to 1458) synchronously enters the 'shell()' program

which is distributed by P.S.I. Systems with the Mini-Module. This function (lines 2118

to 2504) is a simple command line interface to the Minos OS and was included for

debugging purposes to verify the size of the RAM files that had been created.

Option eight deals with the time setting of the real-time clock (lines 1466 to 1584).

The stored date and time is initially displayed on the screen, and the user can then

request to change them if either is incorrect. For each value inputted by the operator,

a check is made to validate it, for example in line 1483 a check is made to ensure that

the hour value inputted is between zero and twenty-four. To access the time stored in

the real-time clock, the 'getime(struct tm *time)' (line 1467) library routine is used. To

store the date and time inputted by the operator, the 'setime(struct tm *time)' library

routine is used (line 1579).

Finally, by selecting option nine, the operator can access the display flag in the Events

file. Its setting is initially displayed, and the operator is given the option of changing it.

I f the display flag is set to ON, then the sampled total value for each leg during

monitoring is displayed on the screen. This option is useful for the general verification

that the transducer scaling values are correct, so that during initial monitoring the

operator can confirm that the data values are feasible.

Page 61

Chapter 2

2.2.4. The Calculation of the Results Stage

The flowchart shown in Figure 2.10 highlights the general program execution flow

during this stage.

The calculation of the results is performed by the 'calc_results()' function (lines 475 to

660). Initially a test is performed to verify that the Results file exists, and i f not then a

transient fault or program error has occurred. Al l the LEDs are therefore extinguished

apart from the error LED, and program execution enters into an endless loop,

effectively halting operation (lines 646 to 657).

I f the Results file is present, as should always be the case, the program next obtains the

inter-sample time, this being calculated by the 'time_increment()' function (lines 665 to

724). The start and the end of the Data file was time stamped, and as its size and

therefore the number of samples is known, the sampling rate can be calculated. The

inter-sample time varies according to whether the processor is powered-down in

between samples, assuming that the monitor is not displaying the data on the PC screen

for this incurs extra delays. Currently the inter-sample time is stored for each event in

the Results file, and downloaded for the analysis program on the PC for the calculation

of its duration in time. Possible future development will results with the time duration

for each event being stored, so saving RAM space.

The program therefore obtains the date and time at the start of the Data file and then

enters into the main loop where the Data file will be analysed to obtain the event

information.

Figure 2.10 (overleaf) - A flowchart outlining the calculation of the results stage

Page 62

Chapter 2

Does the Results file exist?
Light error LED and
print error message Halt execution
Light error LED and
print error message

Obtain the sampling time

Get the date and time from the Data file and
increment Data file pointer to start of sampled data

Is loop iteration <= (DATA_SIZE-6) ?

Mark its position in
the Data file

Write an EOF indication
in the Results file

Is this the start of an event? Finish the calculation of
the Results stage

Is this the continuation of an event?
Is this the end

"of the Data file?

S/

Is this the end of an event?

Set event finished flag Increment event length

Is the event flag set?

Return to the start of the event

Find event peak

Calculate its time of occurrance

Compress event information and
store it in the Results file

Increment Data file pointer
to next sample

Page 63

Chapter 2

The following checks (lines 521 to 547) record the start of an event, and calculates the

number of samples which constitutes it. As mentioned before, its time occurrence and

duration can then be calculated.

If the final check shown in Figure 2.10 is true, then the Data file pointer is taken back

to the start of the event and the samples constituting the event are again examined to

calculate the peak value of the event (lines 553 to 563). The time of its occurrence is

then calculated with the date and time being first set to that at the start of the Data file.

Even though the Data file is not large in size, the time of the event's occurrence might

be in the next minute, and the next hour, and the next day, and the next year.

Therefore when the seconds value is incremented by the samples into the Data file

multiplied by the sampling time, thus obtaining the time of the event, a check is

performed for whether it is now greater than 59. I f this is so, the minute value is

incremented, and the seconds value decreased by 60 until the seconds value is less than

60 (lines 575 to 578). As the minute value might be now greater than 59 the same is

performed with relation to hours, next for the hour in relation to the day, the day in

relation to the year, and then for the year itself. Finally the event information

calculated is stored in the Results file.

The seven bytes of information (hour, minute, second of the event, its peak, its

duration in number of samples which takes up two bytes, and the inter-sample time)

are compressed and stored as five bytes of data. The compression methods used are

bit shifting, and decreasing the accuracy of the data.

The first method is concerned with utilising all eight bits which comprise a byte of

information. A l l computers store information as numbers in a binary format. A single

byte can therefore store a number of between 0 and 255. However some of the values

that are required to be stored have maximums less than this. For example the hour can

be between 0 and 23 which in binary is represented as 10111 leaving the top three bits

Page 64

Chapter 2

of the byte unused. By shifting the number up by three bits, the lower three can now

be used for the start of the next number to be stored, and so on.

To elucidate further, the following example is given. Supposing that an event occurs

at the 23rd. hour, at the 59th. minute, at the 59th. second. The binary representation

for each is as follows:

Hour: 23 10111 - leaving 3 bits unused

Minute: 59 111011 - leaving 2 bits unused

Second: 59 111011 - leaving 2 bits unused

The bytes used to store this information would have their bits set as follows:

10 1 1 1 1 1 1 0 1 1 1 1 1 0 1
/

l x x x x x x x

hour minute second

with the third byte having seven unused bits. Calculating the decimal equivalent of

these binary representations, results with 191 for the first byte, and 125 for the second.

The bit shifting operation is facilitated in C by t h e ' » ' a n d ' « ' operators (lines 605 to

614).

By limiting the event maximum to 127 Kg or 1219 Newtons, it can be stored in seven

bits. The duration of an event in counts of samples might be from one to a very large

number i f the patient was standing for a long time without walking. However even if

the duration of an event is long, as the Data file size is 1024 bytes, the longest event

recorded will be 1024 sample counts. By assuming a maximum count duration of 511,

especially as the patients were encouraged to walk during the monitoring session, it

can be stored in 9 bits. However, by utilising the second compression method, that of

decreasing the accuracy of the data, this nine bits of information can be stored in eight,

Page 65

Chapter 2

so reducing the required two bytes to one. The duration value is simply divided by

two, and before it is downloaded onto the PC, is multiplied by two. This means that

even values will be accurate, and odd values will be rounded down to the lower even

value. However, as each count constitutes 0.14 seconds i f the processor is powered

down in between samples, this slight inaccuracy is negligible.

Therefore as can be seen, the seven bytes of information requiring storage is

compressed into four, giving a compression ratio of 33%. An improved Huffman

coding scheme which codes each byte rather than just characters as in the original

paper (Huffman, 1952) was also initially examined as a possible data compression

method, but was discarded for the reason that the data requiring compression would be

variable, with different patients monitored at different times throughout the day giving

different results of weight-bearing, so that such methods that work on repeatability of

data would not be very efficient if the code was previously calculated. In Section 5.3

of Chapter 5, there is explained how improved Huffman coding might be used for

further compression by calculating the code during monitoring.

When the event information has been recorded, an EOF indicator is written to the

Results file afterwards, so that if the monitor is switched off and then back on at a later

time, the data already stored is retained and new results appended.

Page 66

Chapter 2

2.3. The PC Analysis Software

The following section describes the various parts of the program which analyses and

stores the differing data and results files on the PC. As its general purpose and

functionality have been explained in the overview at the start of this chapter, this

section explains the various parts of this program in greater detail. To this end the

various file structures and contents which are used by the program are detailed: these

are then followed by the main menu which is shown in Figure 2.11 below, and then

followed by Figure 2.12 which shows a flowchart of its general workings. The main

body of this section deals with the explanations and screen displays of every option

available to the operator during the program's execution.

2.3.1. The Various Files Used

The program requires and manipulates three different types of file; data, analysis and

patient files. Each of these files is stored in different directories to ease file

maintenance. Data files are generated by the ambulatory monitor, and down-loaded

onto the PC. After having been analysed, they are moved to the '\data' directory of the

hard-disk. Patient files are generated by the analysis program by the user inputting

information on the patient; and are stored in the '\patients' directory. Analysis files are

also generated by the program by analysing the data files, and are stored in the

'\analysis' directory.

The data file name format has been explained in Section 2.2.3. It consists of twelve

characters; eight then a'.' and three more at the end. The first eight indicate the file as

a data file and also include the date of its creation. The first three characters are

'DAT', with the next two being the day, the next two the month, and the final one the

(year - 1990). The final three characters give the number of the patient file which

Page 67

file://'/data'
file://'/patients'
file://'/analysis'

Chapter 2

holds the details for the patient. So for example a data file generated on the 23rc^-

April 1993 for a patient with the patient file number being 030, would have the

following data file name: 'DAT23043.030'. The first integer in the file corresponds to

the number of legs being simultaneously monitored, and the second is the event level

threshold. Next, the events information is stored which forms the bulk of the file.

Each event recorded requires seven integers to store the information of hour, minute,

second, event peak value, the duration of the event held by two integers, and the inter-

sample time multiplied by one hundred. Finally, to indicate the end of the file after all

the stored events, a single integer value '999' is stored.

The patient file name indicates to which patient it corresponds by its extension number

after the '.'. So the thirtieth patient file generated would be given the name

'PATIENT.030'. The file itself contains information about the patient which is inputted

by the operator before the file is created by the program. The information stored in

this file remains unchanged during fracture healing, and so can be abstracted into this

file so that it is not duplicated in all the patient's analysis files. Separated by carriage

returns, the following information is stored; the patient's name, the date of birth, the

hospital number, a 'R' or a 'L' indicating which of the right or the left leg is broken, the

type of fracture, the position of fracture along the tibia, the treatment method, the

patient's mass, and the date the fracture occurred.

The analysis file name takes a similar form to the data file name, except that its letter

prefix is 'AN' rather than 'DAT'. The contents of each file consists of the following

information separated by a carriage return. The patient name, the number of legs being

monitored, the event threshold level, a list of twenty-four numbers indicating the

number of events recorded in each hour of the day, the mean peak value weight for the

events, the weight variance, the weight standard deviation, the mean number of counts

duration of the event, the duration variance, the duration standard deviation, the

Page 68

Chapter 2

number of weeks before the next appointment, and a string containing the notes made
after the monitoring session.

2.3.2. General Program Structure

When execution of the program first begins, the main menu of options is displayed on

the screen to the operator. This is shown in Figure 2.11 below.

Current data f i l e :
Current analysis f i l e :
Current patient name:

1: Change any of above details

2: Analyse data, storing results in

3: Display analysis

4: Examine patient's history

5: Delete a patient's f i les

6: Exit

Please input a number between 1 and 6:

Figure 2.11 - A screen display showing the main menu

As can be seen, there are five main options available to the user. The first option

enables one or more of the current files to be changed (the current files are the ones

currently being used, and are shown above the main menu, there being a data file, its

Page 69

Chapter 2

corresponding analysis file, and the patient file). The second option allows the data file

to be analysed and both the ensuing results and the initial file to be stored in their

corresponding directories of the hard disk. The third option displays the analysis data

on the screen in a graphical format. The fourth option allows the operator to examine

the patient's history, this being both the notes taken for each monitoring session, and a

graphical display of the patient's progress (in terms of weight-bearing on the fractured

limb) over time. Finally, by selecting the fif th option the program is exited, and the

operator is returned to the DOS prompt. Figure 2.12 is a flowchart which gives an

overview of the program's workings, the code listing being given in Appendix 4.

Subsequent line number references in Sections 2.3.* refer to this appendix.

Page 70

Chapter 2

Are required directories present?

Create the required directories

Display main menu options

Get operator's selection

Has the first option been selected?

N

Has the second option been selected?

Has the third option been selected?

N

Has the fourth option been selected?

N

4 Has the fifth option been selected?

N

Display input error message

Display the first
option menu

Perform analysis
operations

Display the third
option menu

Display the fourth
option menu

Exit program

>

>

>

Figure 2.12 - A flowchart giving an overview of the program's general workings. The solid
lines automatically proceed from the previous state, whilst the dashed lines show that the
program will eventually proceed to the next state (after having entered and exited various sub­
menus).

Page 71

Chapter 2

2.3.3. Program Initialisation

As there are a number of different display modes available to PCs, one had to be

explicitly chosen for the displaying of the program's text and graphics. I f the default

option was kept, then older PCs whose display was of lower resolution would not be

able to run the program properly as the display would be corrupted. Therefore the

display was set to be black and white high-resolution CGA mode (line 74), which

nearly all PCs have available, and although of lower resolution than the currently used

VGA (640 by 480 pixels) and SVGA (800 by 600 pixels) standards, is still sufficient at

300 by 200 pixels to display all that is required.

The program then creates the required directories for the subsequent storage of the

various types of file. Therefore the operator does not have to create these directories

manually, when running the program for the first time on a PC.

The program checks to see which directories are present from the root directory, and

only creates the ones missing. This check is performed in lines 90 to 107, using the

'system' command. Line 90 shows this, with a l\Y signifying the root directory. Just

having the single 'V did not function as it is interpreted by the compiler as a control

character. The directory-names are saved in the present directory in a-file called

'temp.dat'. This file is then opened for reading (line 95) and the finding of any of the

three required directories' names in this file precludes these from being created in lines

112 to 117. This method of writing directory and file names to the 'temp.dat' file and

subsequently opening the file for reading to access the information is used throughout

the program for file and directory searching.

Page 72

Chapter 2

23.4. The First Option Menu

On having selected the first option, the program next displays the following menu

(generated by lines 142 to 163).

Current data f i l e :
Current analysis f i l e :
Current patient name:

1: Change data f i l e naMe

2: Change patient nane

3: Return to Main Menu

Please input a nunber between 1 and 3:

Figure 2.13 - A screen display showing the first option menu

The details of the sub-menus accessible from this menu are detailed below, with their

workings and functionality explained.

2.3.4.1. The First Option

Selecting the first option allows the operator, via further sub-menus, to either: input

the new data file name, display the data files on the disk which are currently not yet

analysed, display the analysed data files, or return to the previous menu. The middle

Page 73

Chapter 2

two options have been implemented to aid the operator in the selection of the data file

name.

Lines 238 to 417 are executed when the option to change the file name is selected.

The 'input_file' function is called which calculates the data file name according to the

date inputs from the operator (lines 2231 to 2339). The day of the month is first

requested, next the month of the year, and finally the year itself. Each input is tested

for validation, with the operator being asked to input another value until one is

accepted. From these inputs, a string representation of the file name is built up, the

date representation in the file name having been previously explained. This function

simply returns the date followed by the'.' and a number corresponding to a previously

specified patient name, leaving lines 256 to 260 to add the 'DAT' to the beginning of

the file name indicating it as a data file name. I f a patient name has not been previously

specified (so that a patient file is not currently 'active') then one is requested from the

operator (lines 2286 to 2294) and its validity is tested by lines 2296 to 2314. Al l the

patient files are opened in turn (lines 2297 to 2299) to try and match the inputted

patient name to the name held in one of the patient files. I f a match does not occur,

the patient name is rejected and the operator returned to the first option menu.

Conversely i f a match does occur, the patient file name extension is stored, for the

patient's data and analysis files will have the same number extension.

The program next ascertains whether the specified data file has already been analysed

(lines 278 to 411). I f a data file has not yet been analysed, it does not have a patient

number extension, but '.000', and is to be found in the current directory. Therefore

lines 278 to 290 search the current directory for the data file, and if found, rename it

with the number extension which represents the current patient name (lines 335 to

343). An analysis file name is then generated (lines 366 to 372) and if an analysis file

of the same date and extension is not found on the hard-disk then a message is

displayed for the operator to analyse the data file. This check is performed as a guard

Page 74

Chapter 2

against an already analysed data file being found in the current directory and so

confusing the program into believing that it had not yet been analysed.

The other two options in this menu are performed using the 'system' command in each

case (lines 428 and 439), followed by a 'getch()' function call which waits until a key is

pressed before continuing program execution.

2.3.4.2. The Second Option

Selecting the second option from the first menu allows the operator, via further sub­

menus, to either: change the patient name, display the names of the patients with

information files present on the hard-disk, input details for a new patient, or return to

the previous menu.

Lines 506 to 533 are executed when the option to change the current patient name is

selected. The operator inputs the first and last name of the patient, whose characters

are all converted to lower case apart from the first letter of each word which is set in

upper case. This is performed by the 'case_convert' function (lines 2346 to 2377), and

so ensures that no errors in matching the two name pairs due to case variation occurs.

Once eonvertedrthe inputted name is compared to the patient names of all the patient

files on the hard-disk using the 'get_patient_file' function (lines 2190 to 2223). This

iteratively opens each patient file to read the stored patient name to try and match the

inputted name with the name in the patient file. I f successful, the patient file name is

returned, otherwise the string 'unsuccessful' is returned. Therefore if 'unsuccessful' is

not returned, the patient name and patient file name are stored in global variables (lines

520 to 523) so that the patient's related information can be readily accessed. A new

patient name having been accepted, the current data and analysis file names are

deleted, as they will refer to the previous patient.

Page 75

Chapter 2

Lines 505 to 589 are executed when the option to view the names stored in the patient

files is selected. Each of the patient files are iteratively opened and the patient name

read and displayed on the screen. This displaying is performed by lines 576 to 585

which print the name, displaying three columns of names before inserting a carriage

return.

When the option to input new patient details is selected, lines 602 to 867 are executed.

The operator is asked to input a new patient name which is converted to lower case

apart from the first letter of each name which is in upper case to avoid subsequent

mismatching. This inputted name is next compared to every name stored in the patient

files, to ensure that the operator does not input details for the same patient twice. I f

no match occurs, then the patient file names are iteratively obtained and the last three

characters of each being converted to an integer (lines 657 to 668). By storing the

greatest of these integer numbers, the patient file's number which was last generated is

obtained. Incrementing this and converting it back to a three character string results

with the new patient file name extension. The following inputs are then requested

from the operator, with a validation check being performed when possible; the date of

birth, the hospital number, whether the right or the left leg is fractured, the fracture

type, the position of the fracture, the fracture treatment, the patient's body mass, and

the date of when the fracture occurred. These details which include the patient's name

are written to the newly generated patient file.

2.3.5. The Second Option Menu

This option is selected by the operator to analyse the data file. Before doing so, a

check is performed to ensure that the currently selected data file name is valid, since

this was found to be useful during the debugging stage. This will also guard against

the possibility of the stored data file name not having been specified, or having become

Page 76

Chapter 2

corrupted during program execution. A check is also performed to make sure that a

patient name has been specified, and i f either is invalid the operator is returned to the

main menu.

After having read in the first two values of the file, these being the number of legs

monitored and the event level threshold, the analysis of the events information takes

place. The complete analysis of the data file occurs by a number of read passes

through it, each pass calculating different analysis results. The first pass is performed

by lines 943 to 955, with the number of events in each hour being recorded as well as a

sum of the peak event values and the number of the events. Next the new analysis file

is generated with the patient name, the number of legs monitored, and the event level

threshold being written to it. Twenty-four numbers corresponding to the number of

events for each hour of the day are next printed to the file, each being separated by a

space. The peak value mean is calculated by dividing the sum by the number of the

events, which is then also written to the file. Using the C command 'rewind()', the

data file pointer is taken back to the start of the file and the next pass occurs (lines 974

to 995). This time the event duration is summed and the square deviation of the peak

mass value is calculated in line 985 by using the following formula:

^ [(peak-massMean)2]

When the end of the data file is reached, the mass variance is calculated by dividing the

square deviation by the number of events. The standard deviation is then calculated as

the square root of the variance. Both the variance and the standard deviation are

finally written to the analysis file.

The final pass through the data file occurs at lines 1006 to 1023. The duration

variance and standard deviation is calculated during this pass, with the duration mean,

variance and standard deviation being written to the analysis file. The operator is then

Page 77

Chapter 2

asked to input the number of weeks before the next appointment which is also written

to the file, '0' being inputted if the patient is being discharged. This was to be used by

the program to calculate how many monitoring sessions were to be expected at any

day. Unfortunately there was insufficient time to implement this function, but the data

is still recorded so that the information is present and the file structure is constant were

this to be implemented in the future.

Finally the operator has an opportunity to type in notes and observations taken during

the monitoring session (lines 1052 to 1104), these being printed to the analysis file as a

single string. As each character types is inputted directly into a string, deletes are

recorded as an extra character in the string even though on the screen the previous

character displayed is automatically deleted. Therefore before printing the string to the

file, its characters are iteratively compared to the delete character which has the ASCII

value 8 (lines 1085 to 1104). Two character indices into the string are used, one

which holds the position of the current character being read in, and the other the being

the position of the current character being written to. Each loop iteration then

increments both indices, and replaces the character at the write index with that of the

read index. A copy of the original string is not required as a delete character simply

results in the read index being incremented whilst the write index is decremented so

subsequently deleting the previous character. The conclusion of this operation is the

writing of the newly formatted string to the file, and the moving of the data file from

the current to the '\data' directory (lines 1111 to 1123).

2.3.6. The Third Option Menu

Selecting this option displays the analysis of the data file on the screen in a partly

graphical, partly textual form. A check is performed to ensure that the analysis file

Page 78

file://'/data'

Chapter 2

exists, and if so the program execution proceeds with line 1157 onwards. An example

of the screen display is shown in Figure 2.14 below.

Patient nane!
D.O.B.: 25/11/36
Hospital No.:
Leg Fractured: Left
Fracture Type: Double
Position or Fracture: Tibia
Fracture Treatwent: Nail

Total No, of events -
Tine Mean =2.13
TiHe variance = 1.29
Tine Std. Dev. = 1.14

Date: 06/04/93
404 Body Mass = 72

Height Mean = 13.735
Weight Uariance = 8.239
Weight Std. Dev. = 2.870

Weight Bearing = 19X of Body Mass

300'

200'

N
o

o
f

E
v
e 100 H
n
t
5 0

Events Throughout Day (event level = 10 kg.)

i i i I I i i t i \ i i i i 1 1 1 1 1 1 r~

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of Day

Figure 2.14 - A screen display showing a monitoring session's results. The patient name and
number have been deleted for confidentiality.

The patient name is first read in from the analysis file, and the corresponding patient

file name obtained using the 'get_patient_file' function. This is required to obtain the

following information for the screen display: the date of birth, the hospital number,

which leg is broken, the fracture type, the fracture position, the fracture treatment, and

the body mass (lines 1171 to 1183). From the analysis file name, the date of the

monitoring session is obtained (lines 1185 to 1195). The file is then read to obtain the

following information; the number of legs monitored, the event level threshold, the

number of events in each hour, the peak mass mean, the peak mass variance, the peak

standard deviation, the duration mean, the duration variance, and the duration standard

Page 79

Chapter 2

deviation (lines 1197 to 1206). These are displayed on the screen with the percentage

weight bearing, which is calculated by:

meanMass „ _
xlOO

bodyMass

The Microsoft C presentation graphics library routines are used to display a bar chart

(lines 1289 to 1314), the chart window size being specified by setting the

'env.chartwindow' part of the structure (lines 1310 to 1313), and the chart displayed by

the '_pg_chart' command in line 1314.

2.3.7. The Fourth Option Menu

The patient's history can be examined in various ways by selecting this option. Before

the sub-menu is displayed, a check is made for whether a patient name has been

specified. I f not, then the operator has the option to input one, or return to the menu

(lines 1353 to 1366). The inputted name is compared to the name in the patient files

for validation, the operator being offered the opportunity of inputting another name

until validation occurs. Figure 2.15 below shows the sub-menu which is then

displayed.

Page 80

Chapter 2

Current patient nawe:

For the above patient:

1: List the dates of the recorded Monitoring sessions.

2: Exawine the notes froR the Monitoring sessions.

3: Display a graph of patient's weight-bearing progress up to date.

4: Return to the previous Menu.

Please input a nuMber between i and 4:

Figure 2.15 - A screen display showing the fourth option menu. The patient name has been
deleted for confidentiality.

2.3.7.1. The First Option

When selected this option displays the dates of all the monitoring sessions that have

occurred for the patient. Al l the analysis files for the patient, i.e. all those whose

extension is the same number as the patient file are iteratively obtained, and by using

the 'get_date' function, are converted to a standard date representation and printed on

the screen (lines 1445 to 1467).

The get_date function is listed in lines 2147 to 2182. Its input is a file name, and as

this might be a data or an analysis file a check of the first character is performed to

determine which. This is needed because for a data file the prefix before the date

section is 'DAT' being three characters, whilst with the analysis file it is 'AN' being two.

The date is then extracted from the name, and put character by character into a static

Page 81

Chapter 2

string 'date' in the format 'day/month/year'. A pointer to this is then returned, but as

'date' is defined as a static its contents are not deleted when this function is exited.

2.3.7.2. The Second Option

By selecting this option the notes taken during the monitoring sessions are displayed

on the screen. The initial code is similar to that of the previous option, for all the

analysis files of the patient need to be accessed, as they contain the notes.

The date of each monitoring session is obtained using the 'get_date' function having

given the analysis file name as its input (line 1502). This is printed on the screen

followed by the string containing the patient notes which has been extracted from the

analysis file character by character (lines 1529 to 1540) to circumvent any maximum

string length problems which might occur using the 'fscanf command to obtain the

string in one operation.

2.3.7.3. The Third Option

Selecting this option displays a graph of the patient's weight-bearing progress up to

date. An example screen is shown in Figure 2.16.

Page 82

Chapter 2

Patient nane:
Weight-hearing as a Percentage of Body Height

100

B

» 50
W

1

t
0

40 45 35 25 30 20 10 15 0 5

Weeks froM Fracture

Figure 2.16 - A screen display showing a patient's weight-bearing progress up to date. The
patient name has been deleted for confidentiality.

The initial code is again similar to that of the previous options as each analysis file

requires accessing for the peak mass mean value. With the body mass value which is

gained from the patient file, this is used to calculate the mean percentage weight-

bearing. From this file is also obtained the date of fracture.

For each point to be plotted on the graph, the number of weeks from the fracture and

the mean percentage weight-bearing is required. The number of weeks is calculated by

the 'calc_no_of_weeks' function, which takes as its inputs the year, month, day of

when the fracture occurred, and the current year, month and day. The code for this

function is given in lines 2116 to 2140. The weight-bearing is calculated by the

'calc_weight_bearing' function which is given in lines 2083 to 2104, and takes the

analysis file name and the patient's body mass as its inputs. This then opens the file,

reads the mean peak mass of the session, calculates and returns the weight-bearing

Page 83

Chapter 2

figure. As was the case for the displaying the bar chart, the drawing of this graph uses

some of the Microsoft C presentation graphics library routines.

2.3.8. The Fifth Option Menu

As there are a number of files associated with each patient, a separate option has been

implemented to allow the program to remove all the files, rather than the operator

having to manually remove them. The subsequent patients' files are also renamed so

that the patient file number does not remain unused. I f selected the sub-menu shown

in Figure 2.17 is displayed.

Current patient nane:

1: Delete current patient's records and tidy other files accordingly.

2: List patients on record (nuMber of Monitoring sessions in brackets).

3: Change current patient nane.

4: Return to the previous Menu.

Please input a nunber between 1 and 4;

Figure 2.17' - A screen display showing the fifth option. The patient name has been deleted
for confidentiality.

Page 84

Chapter 2

2.3.8.1. The First Option

This is the main option of the menu, and is selected when the operator requires the

deletion of a patient's data, analysis and patient files. This would not be frequently

selected as old patient details are normally retained, but during the patient trials it was

found that with a couple of patients only one monitoring session took place, the patient

not returning for further monitoring sessions. Therefore it might be useful in the future

to delete all files relating to a patient.

Firstly the number of patient files is counted as this figure will be required later. Next

the suffix of the patient file corresponding to the patient name is obtained (lines 1780

to 1784) and by using the 'system' command all the data, patient, and analysis files

having that same suffix are deleted (lines 1790 to 1803). However, there wil l now

remain a blank patient number allocation in the midst of a block of allocated numbers,

for example i f files for patient 020 have been deleted when there are patient files up to

030. When assigning a number for newly inputted patient details, this free number wil l

not be allocated as 031 will be chosen which is the next free number after the last

generated patient file. To avoid the possibility of exhausting of all the one thousand

possible numbers over time, the next section of the code for this option (lines 1811 to

1921) decrements the patient number extensions of all the files whose numbers are

greater than the deleted one. This therefore ends with the greatest patient number

being one less than previously-for the patient, data, and analysis files.

2.3.8.2. The Second Option

This is an enhanced version of the option available when changing patient details, and

is useful for the operator to check the number of files that will be deleted. When

selected, the names stored in all the patient files are displayed, with a number in

brackets after each one indicating the number of monitoring sessions that have

occurred for that patient.

Page 85

Chapter 2

This latter function is performed by lines 1967 to 1991. Al l the data files for the

patient having the patient file extension are counted, and the patient name and number

of monitoring sessions are then printed on the screen in a single column, there being

three columns displayed across the screen (lines 1973 to 1991).

2.3.8.3. The Third Option

This option was included to enable the operator to immediately change the patient

name after having decided with the aid of option two which required deletion.

The 'get_patient_file' function is used to obtain the patient file name from the patient

name inputted by the operator. Only i f a patient file exists with the same patient name

is the name accepted.

2.3.9. The Sixth Option

The final option available on the main menu is to exit the program. This is included so

that the program can set the display mode back to the default mode (line 2072) which

was being used when program execution first began.

Page 86

Chapter 3

3. Pre°Clinical Trials

3.1. The Initial Sensory Equipment Configuration

To measure weight-bearing, the sensory equipment is required to measure force, for

weight-bearing is the force transmitted through the fractured leg. It was decided to

use pressure transducers for this purpose. Although just measuring pressure and thus

force over a certain area, each pressure transducer output can be calibrated by a

scaling value in the monitor software so that the reading corresponds to the force

across a greater or lesser area. Different calibration values could therefore be used for

the various parts of the underside of the foot for different patients each of which have

differing areas.

Initially the weight-bearing sensory equipment consisted of two pressure transducers

of half an inch in diameter and their respective signal conditioning unit which had

inputs for two transducers. Both of these were purchased from M.I.E. Medical

Instrumentation, Leeds, UK. The pressure transducers work on an electrical resistive

principle, and consist of two sheets of polymer laminated together, one holding a

conducting track, and the other the force sensing resitor polymer area. This makes

them durable, vibration insensitive, temperature and moisture resistant. Also, in

comparing them with conductive rubber, little hysteresis is exhibited. Thus they were

viewed as being very suitable for the in-shoe monitoring function.

The voltage outputs from the signal conditioning unit is read by the ADCs of the

ambulatory monitor, but as the outputs are not linear with respect to the applied

pressure at the transducer, they first had to be calibrated. This was performed on a

Hounsfield testing machine and rather than apply the load directly to the transducer,

Page 87

Chapter 3

the elasticity of the underside of the foot and the insole was modelled by testing the

transducers in between two sheets of resilient foam. This was important as the two

surfaces between the transducers during the patient trials are elastic, which means that

the pressure would not necessarily be linear with the load, since as the load increases

the surface area through which the load was transmitted could also slightly increase.

The area of foam in contact was about 4 cm^, this being an estimate of the minimum

area that each transducer would be required to indicate the force across. The

calibration graph was found to be almost identical for both transducers, and so the

average values of both graphs were stored in the monitor program for calculating the

load. A graph showing the transducer output against the applied load is shown in

Figure 3.1.

Page 88

Chapter 3

Initial Calibration Graph

3 -r

1.5
Q)

1

0 100 200 300 400 500 600 700

Load (N.)

Figure 3.1 - Calibration graph for each transducer

Page 89

Chapter 3

Therefore the first calibration occurs in the monitor program obtaining the load by

calculating the gradient in between the points on the graph, rather than assuming the

graph as linear and storing just one scaling constant to convert the voltage read to load

sensed. However this first calibration is not sufficient to give generically accurate load

readings because the different parts of the underside of the foot vary in area as do the

actual feet sizes. Also the elasticity of the underside of the foot varies between

patients, mostly due to the soft tissues varying with age, the greater the age the less the

elasticity, causing a smaller surface area which can lead to a greater pressure for the

same applied load. Therefore a scaling factor was also used for each of the signal

conditioner's inputs to the monitor, which could be modified separately by the operator

through the monitor software. So in effect, two separate calibrations occur which in

conjunction enable the monitor to store accurate weight-bearing data.

The transducers were attached by double-sided tape to the hospital plaster shoe which

was used for the trials. The signal conditioning unit has inputs for two pressure

transducers and was attached to a leather strap which fitted round the patient's ankle,

as the wires of the transducers were relatively short. A benefit of this arrangement was

that there was only one lead from the ankle to the monitor so reducing the possibility

of it interfering with the patient's natural gait.

One transducer placed under the calcaneous, and the other under the first metatarsal

head. The reason for this positioning of the transducers was suggested by, amongst

others, Duckworth et al. (1982), who measured pressures under the foot and found

that the highest pressure concentrations were under the calcaneous, and under the first

and the second to the fourth metatarsal heads. However as the first metatarsal head

was shown to have its pressure distributed almost directly over the head itself, rather

than over a larger area, as with the other metatarsal heads, the area under the first

metatarsal head was chosen for monitoring.

Page 90

Chapter 3

Before a monitoring session the monitor inputs' scaling values had to be especially

calibrated for that patient. After having attached the equipment, the subject was asked

to stand with the foot of the fractured leg on a set of bathroom scales and the other

foot on the floor. The reading on the scales was therefore the amount of total weight

being transmitted through the fractured leg, and the ambulatory monitor reading was

required to be identical for the monitor's inputs to be correctly calibrated so that the

local weight readings directly under the transducers equalled the total weight. This

was achieved by altering the scaling values of the monitor's inputs. During this

calibration phase, the operator also visually inspected the way in which the subject was

standing on the scales so that an estimate of the weight ratio between the calcaneous

and the metatarsal heads would be gained. This was compared to the individual

monitor's input readings and further modification of the scaling values occurred as

necessary. This calibration now having been performed, the monitoring session could

commence by resetting the monitor and so clearing the data file, and allowing the

subject to walk on a pre-defined route. At the end of the route, the monitor and

sensory equipment was removed from the subject, and the results down-loaded to the

PC for analysis and display of the data. If the subject had not been previously tested,

then their details were inputted into the PC monitoring program first, with analysis

occurring subsequently.

Page 91

Chapter 3

3.2. Results from the Pre-Clinical Trials

A number of subjects with unfractured limbs were monitored initially, with the

expectation that each session's results would indicate an approximately 100% weight-

bearing average. However this was not found to be the case, with variations being

between 70% and 120%. It was thought that a factor affecting the accuracy of the

data was the positioning of the transducers in the plaster shoe. The shoe was affixed

to the foot by means of two pairs of velcro straps, which were thought to be

insufficient to prevent the foot moving from its original position during walking. Even

if this movement was small, due to the pressure concentrations under the foot

occurring only in specific areas (Duckworth et al., 1992) there might be a large

resultant change in pressure and hence the weight-bearing reading. To circumvent this

problem the subject wore an elastic tubigrip sock, and the transducers were affixed

directly to the sock and therefore to the underside of the areas of interest of the foot.

Further trials were performed with this new configuration, and it was found that the

results obtained were more consistent and repeatable, an example being shown in

Figure 3.2. This shows the PC screen when running the PC analysis program and

displaying the monitoring session results. As can be seen, the average percentage

weight-bearing is 105%, the standard deviation being 4.8 and the average number of

samples comprising the event being 4.75, with standard deviation of 0.8. The

occurrence of the percentage weight-bearing reading above 100% of body weight is

expected due to the larger magnitude of the ground reaction force vector at the heel

contact and push off stages. As the gait pattern was normal and unchanging the

standard deviation of the weight-bearing at 46 on an average of 734 Newtons (i.e. 6%)

might be due to some of the peak weight-bearing values occurring in between samples,

for the sampling interval was 0.14 seconds, so that different events have slightly

different weight-bearing peaks.

Page 92

Chapter 3

Patient name: Philip Aranzulla Date: 20/04/93
D.O.B.: 7/04/70 Total No. of events = G4 Body Mass .= 73
Hospital No.: 123 Tine Mean =; 4,75 Weight Mean = 76.547
Leg Fractured: Right Time Variance = 0.G9 Weight Variance = 23.154
Fracture Type: Spiral Time Std. Dev. = 0,83 Weight Std. Dev. = 4.812
Position of Fracture: Middle
Fracture Treatment: Nail Weight Bearing = 185% of Body Mass

100
Events Throughout Day (event level = 30 kg.)

50-

- i — i — i i

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of Day

Figure 3.2 - A screen display of the results for the pre-clinical trail using a normal gait
pattern.

Another trial was performed with the subject being asked to walk with a limp so

entering immediately the flat foot stage on ground contact which was intended to

imitate walking with a fractured tibia. By so doing the force throughout the leg is

reduced, which is shown by the smaller magnitude of the ground reaction force vector

during the mid-stance phases in Figure 3.5 and more clearly in Figure 3.3.

This occurs because the heel contact stage and the start of the flat foot stage is the

weight acceptance stage, where the body decelerates its forward velocity. This

deceleration is mostly due to the rising of the trunk between heel contact and foot flat

as the horizontal kinetic energy is converted to potential energy. Whilst the trunk is

ascending an acceleration upwards greater than gravity occurs, and from Newton's

Third Law of Motion it can be seen that a force acts upwards, which by Newton's

Second Law means that an equal force acts downwards combining with the body

weight to generate a greater magnitude of the ground reaction force vector. This

Page 93

Chapter 3

trunk rising does not occur when the patient places the foot flat at ground contact

because the trunk has not been lowered to its full extent which occurs at heel contact

resulting in less force being transmitted through the leg as the acceleration does not

occur.

Figure 3.3 - Foot outline, centre of pressure and sagittal plane representation of ground
reaction force vector; right foot of a normal male subject walking in shoes. As force is a vector,
its magnitude and direction are indicated by the length of the lines and their orientation (Whittle,
1991).

The stance phase ending at heel off rather than push off also lowers the force through

the leg as shown by the lower force vector magnitudes during the mid-stance phase in

Figure 3.3 and Figure 3.5. The magnitude of the reaction force is greatest at the end

of the heel off stage and at the start of the toe off stage as a large plantarflexing

moment is generated to oppose the large external dorsiflexion moment, this extra force

being transmitted to the ground which compounds with the weight to increase the

magnitude of the reaction force. Therefore by excluding both the heel contact to foot

flat stage and the push off stage, the force transmitted through the leg for the stance

phase is fairly constant at the minimal amount for normal gait.

Page 94

Chapter 3

The results for the pre-clinical trial with limping (Figure 3.4) clearly show the reduced

average weight-bearing at 95%. The standard deviation at 69 from 667 Newtons (i.e.

10%) is slightly higher than before, and probably indicates the variations between steps

due to the subject having to 'imitate' a gait pattern which is not natural to them.

Interestingly the average number of samples per event is similar at 4.7, even though the

average stride time was lower. This indicates that the stance phase for the

unmonitored leg was of longer duration than that of the monitored and limping leg

which is reasonable as the limping mechanism's aim is to reduce the load on the limb.

As the stride time is lower for pathological gaits, the effect of the peak value occurring

in between samples lessens because the weight-bearing curve over time becomes more

smoothed, so in effect the accuracy of the monitor readings will increase. As

satisfactory results were obtained for both pre-clinical trials, the patient trials were

commenced.

Patient name: Philip Aranzulla Date: 21/04/93
D.O.B.: 7/04/70 Total No. of events = 73 Body Mass = 73
Hospital No,: 123 lime Mean = 4.74 Weight Mean = 69.521
Leg Fractured: Right Time Variance = 0.55 Weight Variance = 51.428
Fracture Type: Spiral Time Std. Dev. = 0.74 Weight Std. Dev. = 7.171
Position of Fracture: Middle
Fracture Treatment: Nail Weight Bearing = 95% of Body Mass

Events Throughout Day (event level = 30 kg.)
100

50 -v
e
n
t
s 0 i i i 1 i i i 1 i i 1 i i r i i i r i 1 1 r

01 82 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Hour of Day

Figure 3.4 - A screen display of the results for the pre-clinical trial using a limping gait
pattern.

Page 95

Chapter 3

3.3. The Final Sensory Equipment Configuration

However during the early stages of patient monitoring the results obtained were highly

variable, there being great changes from one monitoring session to the next. The

explanation for this follows, for there was another factor which affected the accuracy

of the data. This was highlighted by Hutton et al. (1979), who studied the distribution

of the load under the normal foot during walking. When the foot makes contact with

the floor, the weight through the leg is transmitted to the floor across various areas of

the underside of the foot, and due to Newton's Second Law equal and opposite ground

reaction forces are produced. As force is a vector, having magnitude, position and

direction, the resolving of all the force vectors results with a single ground reaction

force vector. Hutton et al. used an array of load cells to calculate parts of the ground

reaction force vector, which was plotted over time along the imprint of the foot. The

ground reaction force vector moves from the heel to the ball and toes of the foot

during the stance phase (which is when the foot is in contact with the ground) due to

the weight transmitted moving during the stages between heel contact and toe off.

Therefore the sampling of the ground reaction force at various intervals during the

stance phase results with what is called a 'Butterfly diagram', this being a plot of all the

instances of the ground reaction force vector over time during the stance phase, and an

example is shown in Figure 3.5 which was obtained using a force.plate.

Page 96

Chapter 3

Figure 3.5 - 'Butterfly diagram' of the ground reaction force vector at 20 ms intervals,
progression being from left to right (Whittle, 1991).

By using load cells Hutton et al. was not able to obtain the direction of the ground

reaction force vector but only its position and magnitude. As Figure 3.6 shows, this

information was sufficient however to be able to plot the vector's position with time,

superimposed over the outline of the foot. By doing this for different subjects, it was

discovered that there were quite significant variations in the centre of pressure line,

especially when the gait pattern was affected by pathological factors, as in Figure 3.7.

For example, with a fractured tibia the heel contact stage might be reduced as well as

the toe off stage so that the foot enters the flat foot position immediately on ground

contact, leaving the ground during the heel off stage, and so shortening the ground

reaction force vector line. Therefore these variations between patients and between

monitoring sessions over time for the same patient could result in different weight-

bearing readings for the same weight transmitted due to the centre of pressure line

being closer to or further away from the transducer underneath the first metatarsal

head, since i f it were closer then a higher reading would be registered and vice versa.

Page 97

Chapter 3

Therefore it was thought that two pressure transducers were not sufficient for the

obtaining of accurate weight-bearing data. The monitor program was therefore

modified in order to be able to accept another two transducers, and these were added

with the aid of some simple hardware modifications which included the purchasing of

another signal conditioning unit. Figure 3.8 shows the new sensory equipment

configuration which incorporate both the affixing of the transducers directly to a

tubigrip, and increasing the number of transducers to four.

The trials continued using the new configuration, and the subsequent results data

found to be satisfactory. This confirmed that the equipment which had been developed

is capable of obtaining fairly accurate weight-bearing data.

Page 98

Chapter 3

0 0 0
\

Figure 3.6 - Some examples of the variation seen in the centre of pressure line for normal
subjects (Hutton etai, 1979).

0 0 0

Figure 3.7 - Examples of the variation seen in the centre of pressure line for subjects with
pathological gait patterns. The first two diagrams are from patients with rheumatoid arthritis,
the third being from a patient with dropfoot (Hutton et ai, 1979).

Page 99

Chapter 3

Figure 3.8 - The final sensory equipment configuration.

Page 100

Chapter 4

4. Clinical Trials

4.1. Introduction

The clinical trials took place in Middlesborough General Hospital in parallel with

fracture clinic sessions. Two afternoon fracture clinics were attended each week from

April 1993 to December 1993 and patients with tibial fractures at these clinics were

tested with the ambulatory monitor. Although the fundamentals of the monitoring

system were operational in April, further development of the equipment occurred

throughout the patient monitoring period.

The procedure for the clinical trials was approved by the Hospital Ethics Committee,

as shown in Appendix 2, and was as follows. After having attached the monitoring

equipment, the subject was asked to stand with the foot of the fractured leg on a set of

bathroom scales and the other foot on the floor. As the scales' reading was the amount

of total weight being transmitted through the fractured leg, the scaling values of the

monitor's inputs were adjusted until the monitor's reading was identical. During this

calibration phase, the operator also visually inspected.the way in which the subject was

standing on the scales so that an estimate of the weight ratio between the calcaneous

and the metatarsal heads would be gained. This was compared to the individual

monitor's input readings and further modification of the scaling values occurred as

necessary. This calibration now having been performed, the data file was cleared by

resetting the monitor, and the subject guided to walk a pre-defined route which was

about 250m in length, its geometry being shown by Figure 4.1. At the end of the

route, the monitor and sensory equipment was removed from the subject, and the

results down-loaded to the PC for analysis and display of the data. I f the subject had

Page 101

Chapter 4

not been previously tested, then their details were inputted into the PC monitoring

program first, with analysis occurring subsequently.

In total 37 different patients were monitored during these sessions. The original plan

had been to monitor each patient from the initial weight-bearing period right through

to when they were discharged. Each patient could then be categorised according to

sex, age and fracture treatment method with the effect of differences within each group

and between groups being noted. In practice however, a large number of these

patients did not attend subsequent appointments or changed to another fracture clinic

session and so further monitoring of such patients was not possible. In fact three or

more monitoring sessions were obtained for only 9 of the patients. Seven of these

patients' analysis results are detailed below, with a collation of the results following.

The other two patients' results are not detailed as both suffered from problems during

the development of the instrumentation, due to only two transducers being used.

For each patient there are four graphs plotted; one showing the weight-bearing against

time another the other the step duration, or the time that the foot is in contact with the

ground, against time; another the time taken to walk the prescribed route against time

post-fracture; and the final one the number of events recorded whilst the patient was

walking the prescribed route. The values for the second graph have to be calculated as

the analysis program's output is the average number of samples which comprise an

event. The number of samples was therefore multiplied by the known intersample

period to obtain the average step duration. As the processor power down option on

the ambulatory monitor program was selected for all the monitoring sessions, by

multiplying the value by the known inter-sample period of 0.14 seconds the duration

time is obtained. The values for the third graph are obtained by subtracting the time at

the first event from that of the last for the monitoring session's Data file. Different

patients' third and fourth graphs can be compared with each other because the route

Page 102

Chapter 4

prescribed for the monitoring session was the same on every occasion, and so each

monitoring session's distance is the same.

As
B

32m
Route from A to B = 126m,
so full route was about 250m long.

\ \ 1 21m

21m

20m \
2

< 8m 24.5m

A

Figure 4.1 - The geometry of the route each patient walked when monitored. The patient walked
from A to B, returning to A again.

Page 103

Chapter 4

With both the mean and standard deviation plotted on the first two graphs, a

quantitative representation of the weight-bearing and parts of the gait pattern are

available. The standard deviation of the weight-bearing quantitatively shows the

amount of patient uncertainty and 'testing' of the weight-bearing potential of the

fractured leg. The standard deviation of the step duration also quantitatively indicates

patient uncertainty in walking, with a high value indicating that the patient was

constantly modifying the gait pattern perhaps due to a feeling of instability in the limb.

A high value for the weight-bearing standard deviation would normally, but not

necessarily, be coupled with a high value for the step duration standard deviation. The

monitor therefore provides extra information over visual gait analysis which is valuable

in determining the state of the fractured limb.

Before the full patient results are given, the incorrect results for one patient obtained

using two transducers are given. These highlight the problems encountered with just

using two transducers, which forced the change to monitoring with four described in

the previous chapter.

The following 66 year old female patient of weight 528 Newtons was treated with a

cast. This is a relatively unusual treatment for an adult and especially elderly patient,

but as the patient was very f i t with a history of walking and dancing, it was thought

unnecessary to use a plate, external fixator or intra-medullary nail even though the

fracture was of both the tibia and fibula. The first monitoring session occurred at 14

weeks post-fracture and although a slow pace with a noticeable limp was employed,

the recorded average weight-bearing value was 113% of body weight which seemed

high. At 19 weeks the patient was again tested and an average weight-bearing reading

of 49% of body weight was obtained, this seeming much too low as the patient had by

now returned to dancing four times a week. The final reading of 52% of body weight

at 23 weeks post-fracture again was too low as the patient was walking unaided for at

least a mile each day. The reason why the average weight-bearing and standard

Page 104

Chapter 4

deviation values are incorrect, as explained in the previous chapter, is because only

two transducers were used. Therefore their accurate positioning is vital as even a

slight displacement of a couple of millimetres can result in a large difference in the

pressure sensed and thus the weight-bearing value. Also one expects the patient's gait

pattern to change in some measure over the healing period, this affecting the position

of the centre of pressure line, and therefore altering the pressure sensed by a

transducer in the same position as during a previous measurement. These two factors

combine together to affect the accuracy of the weight-bearing data when just two

pressure transducers are used for monitoring, for ultimately it can only be by chance

that the transducer at the metatarsal heads is positioned correctly. The outcome of

incorrect positioning is shown below, with an almost inverted average weight-bearing

graph, for it should have started at less than 100% of body weight and possibly risen to

that value. However all the step duration readings are correct for these are not

influenced by the weight-bearing value and therefore incorrect transducer positioning

because for all the monitoring sessions an event threshold value of 96 Newtons (ie. 10

kg) was used. The fact that the step duration is greater for week 14 than for the other

weeks tallies with the observation during the monitoring session that the patient was

walking slowly and carefully as the route was further than the patient had walked since

the fracture occurred. As the fracture healed the patient become more confident

adopting a faster pace o f walking which is "shown by the lower step duration.

Page 105

Chapter 4

(Female, Age 66yrs., Body Weight 540N.)

700 j

-f 600 -

^ 5 0 0

| 400 \
a
Bp 300 -

E1 200
a
S 100

Mean Weight-
Bearing

Std. Dev.

5 10 15 20

Weeks post-fracture

25

Figure 4.2 - Graphs showing the mean and standard deviation of the weight-bearing with
time post-fracture for a patient

0.7

0.6

7°" 5 + u
Q) 0.4
w

^>
0) 0.3

_E P 0.2
0.1

0

Step Duration

5 10 15 20

Weeks post-fracture

Mean Step
Duration

Std^Dev.

25

Figure 4.3 - Graph showing the mean step duration with time post-fracture for a patient

Page 106

Chapter 4

4.2. Individual Patient Results

4.2.1. Patient 1

The following patient was a 57 year old male of 72 kg who was treated by an intra­

medullary nail for a segmental mid-shaft right tibial fracture. During the monitoring

period the mean weight-bearing increased from 19% to 100% of body weight.

Radiographs at week 9 indicated that very little callus had formed, so the patient

remained in a non weight-bearing cast. The patient therefore began weight-bearing

relatively late at week 17 which accounts for the low weight-bearing value at week 20.

As can be seen in Figure 4.4, a large increase in mean weight-bearing occurred

between weeks 24 and 29 post-fracture, this being from 30% to 54% of body weight.

The patient was walking with the aid of crutches, and by week 29 the gait pattern was

much more fluid and confident, with no perceptible limp, the stiffness and strength of

the leg obviously having increased so that the patient felt more confident to increase

weight-bearing. This however does not explain the large decrease in step duration

recorded during this monitoring session and shown in Figure 4.5. Examining the data

obtained from the ambulatory monitor indicated that there was a fault with the monitor

software as there was only a small number of events with most being of 1 sample in

duration, so explaining the values for week 29 in Figures 4.6 and 4.7. This fault

occurred due to the changing of the monitor software during its continuous

development and enhancement, so that the previous data was reliable even though the

current was not. The fault was rectified after the monitoring session, so that

subsequent data was again accurate.

Page 107

Chapter 4

By week 36, the patient was using one stick in opposition, with a slight limp being

noticeable. This limp was still apparent at week 40, but the patient confirmed this to

be habitual and was consciously trying to rectify this. A stick in opposition was still

being used, but not in the house. Excluding week 29, Figure 4.5 shows a general trend

towards a longer step duration up to week 40. Examining Figures 4.6 and 4.7 reveals

that the velocity and stride length increased up to week 36 post-fracture for the

distance traversed was the same for all monitoring sessions, with the stride length

increasing still further by week 40. Although the patient was actually using a faster

velocity the increased time that the foot was in contact with the floor and the increased

stride length indicate a more symmetrical gait pattern as both stance phases tend

towards equal length. This must occur as the stride length is increasing due to the

fractured leg being more extended as its stance phase has more normal heel contact

and foot flat stages, this being indicated by the increasing time that the foot is in

contact with the floor. Therefore a perceived increased stability and strength of the leg

by the patient is indicated.

Finally by week 44, the patient was walking much more confidently and with greater

fluidity without the aid of a stick, the limp having been almost totally eradicated. The

velocity was also greater which was shown by the slight decrease in the step duration

in Figure-4.5; and the lower session duration in Figure 4.6. Figures 4.6 and 4.7 show a

general increase in step duration during the healing period.

Page 108

Chapter 4

Patientl (Male, Age 57 yrs., Body Weight
706N.)

700 j

z 600

cn 500 e
k>
CO 400 -
0)
CD 300-

gh
t-

200

W
ei

100

0
10 20 30 40

Weeks post-fracture

50

Mean Weight-
Bearing

Std. Dev.

Figure 4.4 - Graphs showing the mean and standard deviation of the weight-bearing with
time post-fracture for a Patient 1

Patientl : Step Duration

0.7

0.6

">0.5

cu 0.4
0)
a 0.3
E
F 0.2

0.1

0
10 20 30 40

Weeks post-fracture

50

Mean Step
Duration

Std. Dev.

Figure 4.5 - Graphs showing the step duration with time post-fracture for Patient 1

Page 109

Chapter 4

1400 T

1200

1000 +
VI

u
a> 800

w
0) 600
E
P 400

200

0

Patientl : Session Duration

10 20 30

Weeks post-fracture

40 50

Figure 4.6 - Graph showing the monitoring sessions' duration with time post-fracture for
Patient 1

e
>

LU

O
Z

Patientl Number of Events comprising
Session

450 i

400
350_
300
250
200
150
100
50
0

10 20 30

Weeks post-fracture

40 50

Figure 4.7 - Graph showing the number of events for a session with time post-fracture for
Patient 1

Page 110

Chapter 4

4.2.2. Patient 2

This patient was a 61 year old female of 63 kg who was f i t and was treated by an

external fixator for a comminuted proximal tibial fracture of the left leg. Five

monitoring sessions occurred between weeks 37 and 49 post-fracture. The long

healing time for the fracture was probably due to it having been initially treated

conservatively with a non weight-bearing plaster and due to this not providing

satisfactory results, changing the treatment method to an external fixator.

By week 3 post-fracture the X-rays showed that early callus formation was occurring,

and at week 6 the plaster was changed to a walking plaster. However at week 10 the

X-rays indicated that no bony union had taken place, and although X-rays for

subsequent weeks indicated the union as progressing, by week 28 a slight movement at

the fracture site was observable even though the radiographs revealed a bridging of

bone across the fracture site. Therefore at week 33 an external fixator was applied to

provide a more stable and stiffer reduction of the fracture to facilitate its healing.

The monitoring session at week 37 recorded the first time the patient was weight-

bearing since the operation to apply the fixator. This resulted in the higher standard

deviation reading of Figure 4 . 8 ^ thejmtient was unsteady in her steps. It .also,

resulted in a long average step duration and high standard deviation shown in Figure

4.9, indicating that the patient walked with slower steps and again with more

uncertainty and unsteadiness, the relatively small velocity being shown by the long

duration of the standard walking circuit in Figure 4.10.

It is interesting to see the weight-bearing value decreasing from 57% to 48% by week

42. This was due to the patient adopting a three-point swing through gait pattern with

the crutches (Whittle, 1991), which decreases the weight-bearing as the weight is

transmitted through both the legs during the stance phase of the gait cycle, even

Page 111

Chapter 4

though the patient was walking with greater confidence. This is also shown by the

large decrease in step duration, and the low standard deviation value indicating that

this gait pattern had become habitual to the patient. Figure 4.10 shows that the patient

was actually walking with the greatest velocity of all the monitoring sessions that took

place.

By week 45 the average weight-bearing had decreased further to 32% of body weight.

The pin tracts had become infected two weeks previously which caused discomfort

during weight-bearing and also resulted with a limp which had not been noticed

previously. To minimise this discomfort and pain the patient therefore automatically

reduced the weight-bearing, one indication of this being the adopted limping gait

pattern, another being the decreased step duration, as the time when weight-bearing

occurred was decreased. This had the effect of decreasing the velocity, shown by the

increase in time taken in Figure 4.10, and Figure 4.11 shows the stride length being

decreased as more steps were taken to finish the route.

The infection was treated by a course of antibiotics, and the external fixator was

removed the following week and the patient again monitored, the equipment indicating

an average weight-bearing of 34% of body weight. During this session, the patient

walked witfilhe aid of crutches and with a noticeable limp. The removal of the fixator

decreased the total stiffness of the leg and so increased the perceived instability of the

fracture. This is shown in this instance by the higher weight-bearing standard deviation

value, the decreased step duration and the high standard deviation value of the step

duration.

The above statements are supported by the step duration increasing at the last

monitoring session because the fracture had become more rigid as the healing

progressed, the patient herself indicating that the leg felt stronger. Also the weight-

bearing standard deviation value is greatly decreased as the gait pattern adopted

Page 112

Chapter 4

changed to being more uniform. However the most conclusive datum is the average

weight-bearing for week 49, which shows a large increase to 52% of body weight.

Nevertheless this is actually a relatively low weight-bearing value, which was due to

the patient becoming accustomed to using the three-point swing through gait pattern

with the crutches which decreases the weight-bearing.

Patient2 (Female, Age 62 yrs., Body Weight
618N.)

400
J 350
~ 3 0 0
••= 250
§ 200

CQ
«!, 150 +
,5> 100 I 50

0

Mean Weight-
Bearing

Std. Dev.

10 20 30 40

Weeks post-fracture

50

Figure 4.8 - Graphs showing the mean and standard deviation of the weight-bearing with
time post-fracture for Patient 2

0.9
0.8
0.7
0.6

S 0-5
u

cu
E
F

0.4
0.3
0.2
0.1

0

Patient2 : Step Duration

10 20 30 40

Weeks post-fracture
50

Mean Step
Duration

Std. Dev.

Figure 4.9 - Graphs showing the step duration with time post-fracture for Patient 2

Page 113

Chapter 4

Patient2 : Session Duration

900 i

800
^ 700
8 600
g 500
^ 400 -
,1 300 -
h 200-

100
n i i i i i

u
()

! \ \ \

10 20 30 40

Weeks post-fracture

I

50

Figure 4.10 - Graph showing the monitoring sessions' duration with time post-fracture for
Patient 2

400
350

| 300
gj 250

200
° 150 I 100

50
0

Patient2 : Number of Events comprising
Session

10 20 30

Weeks post-fracture

40 50

Figure 4.11 - Graph showing the number of events for a session with time post-fracture for
Patient 2

Page 114

Chapter 4

4.2.3. Patient 3

This 43 year old male patient of mass 83 kg was treated with a buttress plate. The

fracture was a comminuted displaced mid-shaft fracture of the left tibia. The use of a

buttress plate resulted in a fracture which was as stiff or stiffer than other treatment

methods (Mow et ah, 1991). This effect is shown by the greater weight-bearing

recorded at a relatively short time post-fracture. Unfortunately this patient's

monitoring sessions occurred at the start of the monitoring period and so only two

pressure transducers were used. The mean weight-bearing data from these last two

monitoring sessions again illustrate the problems that occur with using only two

pressure transducers.

The monitoring session at 5 weeks post fracture recorded the first time the patient

bore weight since the time of fracture, an average weight-bearing of 20% of body

weight being measured as shown in Figure 4.12. Unlike the other patients, this patient

immediately adopted a regular gait pattern as was indicated by the low weight-bearing

and step duration standard deviation values. By week 8, when the X-rays showed

evidence of fracture union, the patient was walking regularly with the aid of a stick in

opposition, recording a reading of 104% of body weight which seems slightly high

considering the early stage in fracture healing. By week 15 the patient was walking

confidently without the aid of the stick and with a slight limp. The recorded average

weight-bearing reading was 72% of body weight.

The fairly constant weight-bearing standard deviation value might indicate that the

patient started and continued using their normal gait pattern. This is corroborated by

Figure 4.13 which shows that the mean step duration for each monitoring session is

fairly constant, at slightly over 0.5 seconds, with the standard deviation being

comparatively low at about 0.14 seconds. The first session's higher value is

understandable due to it being the patient's first weight-bearing occasion since fracture.

Page 115

Chapter 4

fracture. However the decreases in Figures 4.14 and 4.15 show that a gradual increase

in velocity of gait and stride length occurred with time post-fracture, and i f the same

gait pattern were being used a decrease in the mean step duration should be visible.

Therefore some increase in the step duration relative to the gait cycle time must have

occurred, but in relation to other patients it was relatively small.

Patient3 (Male, Age 43yrs., Body Weight
814N.)

900
£ 800

700
.5 600
fi 500
m 400
£ 300
. ? 200
QJ
5 100

0

Mean Weight-
Bearing

Std. Dev.

5 10

Weeks post-fracture

Figure 4.12 - Graphs showing the mean and standard deviation of the weight-bearing with
time post-fracture for Patient 3

Patient3 : Step Duration

0.6

0.5

? 0 . 4
<D
&0.3
0)

| i 0.2

0.1

0
5 10

Weeks post-fracture
15

Mean Step
Duration

Std. Dev.

Figure 4.13 - Graphs showing step duration with time post-fracture for Patient 3

Page 116

Chapter 4

Patients : Session Duration

600 y

500

g 400
a>

300
a> .1 200
I -

100

0 -I 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16
Weeks post-fracture

Figure 4.14 - Graph showing the monitoring sessions' duration with time post-fracture for
Patient 3

Patient3 : Number of Events comprising
Session

350 T Bk

300 ^ \
e 250
09
> 200
LU

200
«*-o 150
b 100
z 50

0 -I 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16
Weeks post-fracture

Figure 4.15 - Graph showing the number of events for a session with time post-fracture for
Patient 3

Page 117

Chapter 4

4.2.4. Patient 4

This 74 year old male patient of mass 62 kg had a spiral mid-shaft fracture of the left

tibia, and was treated with a compression plate.

By the time of the first monitoring session at week 14, the patient was walking unaided

apart from a stick in opposition. The weight-bearing value of 53% of body weight

recorded for this session as shown in Figure 4.16 therefore seems low. Examining the

actual monitor data reveals that a number of events have a duration of 1 sample. This

occurred due to the same software error as for patient 1 at week 29 as these

monitoring sessions occurred during the same fracture clinic. This explains the high

step duration standard deviation and possibly the low mean step duration in Figure

4.17.

The subsequent monitoring sessions' readings of 95% of body weight at 19 weeks and

90% of body weight at 35 weeks are more reasonable. The decreasing standard

deviation values, from about 10 to 5 indicate that the patient was easing into a more

normal gait pattern over this period of healing. This view is further corroborated by

the average duration for each event increasing over time and the number of events

decreasing in Figure 4.19 for the same session duration shown in Figure 4.18. These

indicate that the patient was gradually using a more symmetrical and normal gait

pattern for the stride length increased by the stance phase of the fractured leg

becoming more normal, therefore causing both stance phases of the gait cycle to

become more equal in duration.

The relatively high step duration standard deviation at week 35 was due to the patient

having to occasionally stop when walking due to obstructing groups of people which

explains the higher session duration and higher number of events as the patient had to

stand still at various times, these of course being recorded as events. By again

Page 118

Chapter 4

examining the actual monitor data, it can be seen that in fact most of the events'

duration is 5 samples or 0.7 seconds, leading to a low standard deviation value i f the

few long duration events are omitted.

Patient4 (Male, Age 74 yrs., Body Weight
608N.)

600

Z 500 I
S i

c 400
hm

S 300
CD
£ 200
at
'5 100

o
10 20 30
Weeks post-fracture

40

Mean Weight-
Bearing

Std. Dev.

Figure 4.16 - Graphs showing the mean and standard deviation of the weight-bearing with
time post-fracture for Patient 4

0.7

0.6

T 0.5
en
u ai 0.4 w
a) 0.3
E
h 0.2

0.1

0

Patient4 : Step Duration

10 20 30
Weeks post-fracture

Mean Step
Duration

Std. Dev.

40

Figure 4.17 - Graphs showing the step duration with the time post-fracture for Patient 4

Page 119

Chapter 4

Patient4 : Session Duration

450 t

g 250
a 200 -
,§ 150
h 100

50
0 - I 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35
Weeks post-fracture

Figure 4.18 - Graph showing the monitoring sessions' duration with time post-fracture for
Patient 4

Patient4 : Number of Events comprising
Session

350 j
300

(0
e 250
0)
>
UJ

200
o 150
6 100
z

50
0

10 15 20 25
Weeks post-fracture

30 35

Figure 4.19 - Graph showing the number of events for a session with time post-fracture for
Patient 4

Page 120

Chapter 4

4.2.5. Patient 5

This 17 year old male patient of mass 75 kg sustained a compound comminuted mid­

shaft fracture of the left tibia, and was treated with an intra-medullary nail.

For the first monitoring session at week 8 post fracture, the patient had stopped using

crutches and sticks, the long leg plaster had just been removed and a brace being worn

instead for this and all the subsequent sessions. A 56% of body weight average

weight-bearing value was recorded for this session as shown in Figure 4.20, this being

the first time the patient was weight-bearing without a plaster. Even though the

patient compensated for this with less weight-bearing, the standard deviation values

are small, signifying that the patient was confident about walking with minimal

unsteadiness in the fractured limb because an unvarying gait pattern was adopted. This

is also shown by the step duration mean in Figure 4.21 being fairly constant

throughout all the monitoring sessions, and the standard deviation being relatively low,

apart from the results at week 24 post-fracture.

However this does not mean that a normal gait patterni was adopted for Figures 4.22

and 4.23 show a decreasing session duration and less number of events for the session.

Therefore an increased stride length and relative step duration occurs implying that the

stance phase is modified but not to the same degree as with the other patients for the

real step duration increases only slightly.

By week 13 the average weight-bearing had increased to 90% of body weight, the

patient walking with a slight limp. The final two sessions at weeks 18 and weeks 24

recording average values of 81% and 83% of body weight respectively which seem

low even though the interlocking screws of the nail had by this time been removed.

The abnormally high step duration standard deviation for week 24 is explained by

examining the monitor data, for this reveals the patient stood still a number of times

Page 121

Chapter 4

during the monitoring session, as indicated by the increased session duration. The
route normally walked was obstructed and so was cut short, explaining the lower
number of events for this session.

The continual increase in step duration, velocity and stride length indicates that as the

fracture healed, the patient adopted a more uniform and regular gait pattern for the leg

could transmit more weight and was stiffer.

Patients (Male, Age 17yrs., Body Weight
735N.)

700 y
Z 600 -•
t* 500
'§ 400
Op 300
| i 200
| 100

0
5 10 15 20
Weeks post-fracture

25

- s — Mean Weight-
Bearing

- » — Std. Dev.

Figure 4.20 - Graphs showing the mean and standard deviation of the weight-bearing with
time post-fracture for Patient 5

Page 122

Chapter 4

0.8
0.7

^ 0.6
8 0.5
0)
.2. 0.4
0)

E 0.3
P 0.2

0.1
0

Patients : Step Duration

a — Mean Step
Duration

^ — Std. Dev.

5 10 15 20
Weeks post-fracture

25

Figure 4.2 J - Graphs showing the step duration with time post-fracture for Patient 5

Patients : Session Duration

600 H

500

« 400
0)
& 300
0)
.§ 200 l_

-

i
100

0
(

i i i > i 0
()

l l l l

5 10 15 20
Weeks post-fracture

f

25

Figure 4.22 - Graph showing the monitoring sessions' duration with time post-fracture for
Patient 5

Page 123

Chapter 4

Patient5 : Number of Events comprising
Session

350 j
300-

co

c 250
03

> 200
o 150
d 100
z

50
0 -I 1 1 1 1 i

0 5 10 15 20 25
Weeks post-fracture

Figure 4.23 - Graph showing the number of events for a session with time post-fracture for
Patient 5

4.2.6. Patient 6

This 27 year old male patient of mass 67 kg sustained a displaced mid-shaft fracture

of the left tibia, and was treated with an external fixator.

For the monitoring session at week 6 the patient was using crutches and was weight-

bearing for the first time. This is perhaps why a low 34% body weight average

weight-bearing in Figure 4.24 and the long average step duration and standard

deviation in Figure 4.25 were measured, as the patient walked slowly and carefully

using the crutches to minimise the weight-bearing on the fractured leg. This is shown

by Figure 4.26, with the carefulness when walking being indicated by the large

number of events in Figure 4.27.

Page 124

Chapter 4

At week 10 post-fracture the fixator was dynamised as radiographs indicated that a

satisfactory amount of callus was present. The monitoring session for that week

recorded an average weight-bearing of 82% of body weight, with the patient walking

more quickly and with greater confidence, whilst still using crutches. This is shown by

the lower mean step duration and greatly decreased session duration and number of

events. Although the patient walked more quickly than Patient 2 on their second

monitoring session, as seen by comparing Figure 4.10 with Figure 4.26, the mean

duration of each step was slightly higher, indicating that this patient was walking with

a more natural and symmetrical gait pattern.

By week 27, the fixator had already been removed a month prior to this session, the

radiographs showed evidence of union. For this session the patient was walking

normally and without crutches. The low weight-bearing and step duration standard

deviations indicate a regular gait pattern, with the relatively long step duration and fast

pace of walking adopted indicating a normal gait pattern. This implies that the leg had

healed to such a degree that it was of sufficient stiffness to permit (almost) normal

loading.

Page 125

Chapter 4

Patient6 (Male, Age 27 yrs., Body Weight
657N.)

900
g- 8oo
~ 700
c 600
«a 500 -
m 400-
£ 300 -
•E 200
5 100

Mean Weight-
Bearing

Std. Dev.

10 20
Weeks post-fracture

30

Figure 4.24 - Graphs showing the mean and standard deviation of the weight-bearing with
time post-fracture for Patient 6

0.8
0.7

~ 0.6
u 0.5
0)
^ 0.4
0)

E 0.3
>~ 0.2

0.1
0

Patient6 : Step Duration

10 20
Weeks post-fracture

30

Mean Step
Duration

Std. Dev.

Figure 4.25 - Graphs showing the step duration with time post-fracture for Patient 6

Page 126

Chapter 4

Patient6 : Session Duration

900 j
800

« 700
S 600
g 500
^ 400
.§ 300
h 200

100
0

10 15 20

Weeks post-fracture
25 30

Figure 4.26 - Graph showing the monitoring sessions' duration with time post-fracture for
Patient 6

Patient6 : Number of Events comprising
Session

400 T

350
| 300
§J 250
W 200
o 150
° 100

50
0 -I 1 1 1 1 1 1

0 5 10 15 20 25 30

Weeks post-fracture

Figure 4.27 - Graph showing the number of events for a session with time post-fracture for
Patient 6

Page 127

Chapter 4

4.2.7. Patient 7

This 60 year old male patient of mass 85 kg was treated with an external fixator for a

non-union of a previous compound comminuted fracture.

For the first monitoring session at 17 weeks post fracture the patient had the external

fixator removed but was still using crutches. This accounted for the low 57% of body

weight weight-bearing average recorded and shown in Figure 4.28. The higher

weight-bearing and step duration standard deviations shown in Figures 4.28 and 4.29

are probably due to the patient not being confident in weight-bearing on the fractured

leg, due to the fixator having been dynamised just before the monitoring session. The

higher session duration in Figure 4.30 and greater number of events for that session in

Figure 4.31 support this.

The crutches were discarded by week 19, with a corresponding increase in the average

weight-bearing to 91% body weight. By week 25, the average weight-bearing was

94% body weight with a corresponding increase in the average duration for each event

as the patient resumed a normal gait pattern, as shown by the higher walking speed and

stride length.

Page 128

Chapter 4

Patient? (Male, Age BOyrs., Body Weight
844N.)

800 j
g 700
B, 600

• I 500
0
0) 400

CO
J 300
o> 200
01
| 100

0

Mean Weight-
Bearing

Std. Dev.

5 10 15
Weeks post-fracture

—i

20 25

Figure 4.28 - Graphs showing the mean and standard deviation of the weight-bearing with
time post-fracture for Patient 7

0.8 T

0.7
~ 0.6
w „ ^ o 0.5
CO

0.4
CO

E 0.3
P 0.2

0.1 +
0

Patient7 : Step Duration

0 5 10 15 20
Weeks post-fracture

25

Mean Step
Duration

Std. Dev.

Figure 4.29 - Graphs showing the step duration with the time post-fracture for Patient 7

Page 129

Chapter 4

450 T

400
^350
8 300
S 250

200
150
100
50
0

Patient? : Session Duration

10 15
Weeks post-fracture

20 25

Figure 4.30 - Graph showing the monitoring sessions'duration with time post-fracture for
Patient 7

Patient? : Number of Events comprising
Session

300 T

« 250
c
0)

200
>
UJ 150
O 100
6 z 50

0
0 5 10 15 20 25

Weeks post-fracture

Figure 4.31 - Graph showing the number of events for a session with time post-fracture for
Patient 7

Page 130

Chapter 4

4.3. Group Results

It was first envisaged that group result bar charts could be constructed for the different

categories of fracture and fracture treatment method, however the lack of patient data

precluded this occurring. Therefore only the general results and the children's, adults',

and elderly adults' results follow. The results are presented as the mean of all the

patients' average weight-bearing value, with the standard deviation of this mean also

being shown.

4.3.1. General Patients' Results

Figure 4.31 below shows the mean weight-bearing results for all the patients regardless

of age, sex, treatment method or type of fracture. Even though these factors which

affect the rate of fracture stiffness over time and so weight-bearing are not considered,

it can be seen that there is a general trend of increased weight-bearing up to week 28

post-fracture.

Keeping in mind the fact that only a small data set was obtained therefore possibly

causing abnormalities in the group results, the following observations from the results

are noted. The increasing weight-bearing over time does not seem to be linear with

time post-fracture. Weeks 4 to 14 post-fracture seems to indicate a linear increase in

weight-bearing. Week 14 to 24 seems to show a fairly constant mean weight-bearing

value, with weeks 24 to 28 showing a large linear increase in mean weight-bearing.

Week 36 onwards show the results for patients with delayed fracture union, with an

increase in mean weight-bearing over time being observable.

Biologically, these times post fracture tie in with certain stages of fracture healing.

Week 14 occurs in the latter half of the mineralisation phase. It seems reasonable that

Page 131

Chapter 4

when the fracture increases in stiffness due to the callus being progressively calcified

that a progressive increase in weight-bearing should occur. Week 14 to 24 is when

the majority of bone remodelling occurs, so a fairly constant weight-bearing value

seems reasonable for a stage where old bone is being resorbed and new Haversian

bone laid instead. Week 24 to 28 is possibly when the Haversian bone along the lines

of force fully unite the fracture ends and so greatly strengthen and stiffen the fracture

site, by this stage the fracture being said to be healed.

All patients

2 3 5 6 2 4 2 4 7 2 4 4 2 1 0 0 3 0 1 1 1 2 0 1
90
80

01
2 70

0 60
50
40

£ 30
• i
5 20

10
0 • •

• Std. D e v .

I M e a n

T - T - T - i - T - c \ i c s j c j (M (M c r) t n (n { , i (n l T T T ' T T i n

Weeks post-fracture

Figure 4.31 - Weight-bearing over time post-fracture for all the patients. The number of
patients indicated at each week is given above the each column.

Page 132

Chapter 4

4.3.2. Children Patients' Results

The data obtained for children up to 16 years is shown below in Figure 4.32. Due to

the small sample set no observations about general trend can readily be made. What

can be observed however is that the fractures healed more quickly than with the adult

patients, even though all the children's fractures were treated conservatively with a

plaster. Even though this provides less support and so causes less overall stiffness at

the fracture site, these young patients also bore significant percentages of body weight

much earlier than the adult patients.

Children (16 yrs. or under)

1 1 1 1
60

n 50

cn 40

30 CD

2

HI
Z 20
0)

10

• Std.Dev.

I Mean

^ • t O O O O O J T C O O O O C V J T L O
i - ^ T - i - i - W W W N

W e e k s post-fracture

Figure 4.32 - Weight-bearing over time post-fracture for the patients 16 years old or under.

Page 133

Chapter 4

43.3. Adult Patients' Results

The mean weight-bearing results over time for the adult patients between 16 and 55

years old are shown in Figure 4.33. As with the general results, it can be observed that

there is an increase in weight-bearing up to week 14, this being similar to a previous

study (Cunningham et al., 1989). A fairly constant mean weight-bearing value occurs

from week 14 to week 24, and a large increase in mean weight-bearing from week 24

to week 28. The similarity in trends between these and the general results might be

expected however, for the bulk of the general results are composed of these adult

ones. This factor is evidenced by the trend described with the general results being

shown more clearly here.

However rather than with there being a linear increase in weight-bearing up to week

14, an increase showing a decreasing positive gradient is noticeable. This is more

reasonable than a linear increase, for whatever the treatment method, initially a greater

increase in rigidity occurs with lesser subsequent increases. This is because the

fixation method will give an initial stiffness at the fracture site, with a slow gradual

increase in stiffness from then on as calcification of the callus occurs. This increase in

stiffness was shown by Richardson et al. (1992) to be exponential with time post-

fracture. Due to the main feedback mechanism limiting the weight-bearing being pain

or discomfort which is governed by the amount of movement at the fracture site, one

might expect there it be a close correlation with fracture stiffness and weight-bearing

over time post-fracture. Although the sample set is too small to make definitive

empirical deductions regarding this hypothesis, one can see from Figure 4.33 that an

exponential increase in weight-bearing after offsetting the weight-bearing possible due

to the fixator stiffness is not at great variance from the recorded results.

Page 134

Chapter 4

The results for weeks 42 onwards are for patients who were treated conservatively

with a plaster the fracture subsequently ending with delayed union and requiring

another fixation method.

cn

cn

cd QJ
CD
J-
j=
(71

'53
3E

90
80
70
60
50
40
30
20
10
0

Adults (between 16 and 55 yrs.)

1 3 3 2 3 1 2 2 1 2 3 1 1 1 1

11
• I I

9Rt 1
P T I 1 • • • •
1 1 \ — 1 — 1 — 1 — 1 — 1 — 1 t - 4 i — j

Std.Dev.

Mean

CM CO O
i— r- CM C-J

CO
CM

CM CO CO
T

W e e k s post-fracture

Figure 4.33 - Weight-bearing over time post-fracture for the patients between 16 and 55 years
of age.

4.3.4. Elderly Adults' Results

The results for the adult patients aged 55 years and over are shown in Figure 4.34. As

with the children's results, there are too few elderly adult results to be able to make

mean weight-bearing trend observations. However what is noticeable is that the

fractures seem to take longer to heal for there is a spread of similar weight-bearing

results throughout all the weeks post-fracture recorded.

Page 135

Chapter 4

80

Elderly adults (age 55 yrs. and over)

1 1 1 1 4 1 2 1 1 1 3 1 1 1

Std. Dev.

Mean

W e e k s post-fracture

Figure 4.34 - Weight-bearing over time post-fracture for the patients aged 55 years and over.

Page 136

Chapter 5

5. Discussion and Conclusions

This chapter is composed of three sections; discussions regarding the global aspects of

the results obtained, the clinical benefits of using ambulatory monitoring for weight-

bearing, and the scope for further development and applications of the monitoring

system.

5.1. Discussion of the Results

The ambulatory monitor software performed as desired, but when the monitor was

operated during the software's development, the data obtained would occasionally be

inaccurate. The inaccuracies have been detailed in the previous chapter.

5.1.1. Step Duration

A patient with a fractured tibia should walk with a pathological gait pattern. This is

because the patient will attempt to minimise the weight-bearing through that leg. As

has been explained in Chapter 3, this in general takes the form of the stance phase for

the fractured leg omitting, or greatly modifying, the normal heel contact, foot flat, and

heel off, toe off stages. Since the ground reaction force magnitude is greater at these

stages, if the patient omits or modifies these stages then the weight-bearing is

consequently reduced. This is because during these stages the centre of gravity of the

trunk rises from its lowest to its highest position, and this raising of the trunk results in

an increased load through the leg. This pathological gait pattern has visible

Page 137

Chapter 5

characteristics, for example the knee flexes upon entering and during the mid-stance

stage to minimise the trunk rising, which is observed as a 'limp'.

As the stance phase for the fractured leg will have some stages omitted, its duration

will be less than with the non-fractured leg's stance phase. During the healing process

the fracture gradually becomes stronger and stiffer, so causing the pathological gait

pattern to change towards a more normal gait pattern, therefore extending the stance

phase time for the fractured leg towards that of the other leg. During the early stages

of fracture healing the patient probably walks carefully and slowly, feeling instabilities

in the fracture leg, but as healing progresses the patient changes to a higher cadence,

so causing the actual step duration to remain constant or possibly decrease. Hence,

during healing, the step duration for the fractured leg increases provided the cadence

does not increase too much during the healing period.

Group step duration column charts have not been included in the previous chapter

because it was felt that due to the large variations of cadence in the normal gait

patterns of different subjects, changes in an individual's step duration could be

obscured by the varying cadences of others. Hence one must look to the individual

patient results to ascertain whether the above hypothesis is empirically justified.

Table 5.1 shows both the step duration and the session duration for the first and last

monitoring session of each patient. Examining only the step duration, it can be seen

that in the majority of instances there is an increase over the fracture healing period.

This is not however true for Patient 2, 3 and 6 where there seems to be a constant or

decrease in the step duration. Therefore one cannot only look at the step duration but

must take into account the gait velocity to assess the step duration relative to the step

duration of the other foot. As it has not been possible to monitor this during the study,

an indication of this relative step duration can be gained by examining the session

duration, since a constant step duration with a decreased session duration means an

Page 138

Chapter 5

increased relative step duration; therefore the session durations have also been

included in Table 5.1.

Patient 1 2 3 4 5 6 7
First Session at Week
post-fracture

20 37 5 14 8 6 17

Step Duration (sees.) 0.3 0.9 0.6 0.28 0.5 0.78 0.63
Session Duration (sees.) 1272 816 562 314 524 852 420
Final Session at Week
post-fracture

44 49 15 35 24(18) 27 25

Step Duration (sees.) 0.6 0.7 0.6 0.7 0.7 (0.65) 0.6 0.8
Session Duration (sees.) 294 428 212 428 526 (242) 240 264

Table 5.1 - Table showing the step duration and session duration over time

It can be seen that in almost every case there is a large decrease in session duration,

with five patients showing at least a halving in the time taken to complete the standard

circuit. As Patient 5 had a non-standard last monitoring session, having to stand a

number of times and walking a shorter route, if the results from the second from last

monitoring session are used instead (as shown in brackets) we find that this figure rises

to six out of the seven patients. To obtain a quantitative measurement for the step

duration change relative to the un-fractured leg's step duration, the following formula

was used:

relativeStepDurationChange
RSD — • relativeSessionDurationChange

relative in the calculation meaning relative to itself, for example:

, . 0 ~ • ™ NewStepDuration
relativeStepDurationChange = -

OldStepDuration

Page 139

Chapter 5

Table 5.2 shows this quantitative figure which combines the effects of both the step

and session duration. This clearly shows that over the fracture healing period there is

an increase in the relative step duration indicating that the shorter stance phase relative

to the normal, non-fractured, leg increases in relative duration, therefore becoming

more like the normal leg's in duration and characteristics. In cases where the

monitoring began when patients were just beginning to weight-bear, as with patients 3,

5, and 6, the relative change over the healing period was a lengthening in relative step

duration of over 2.5 times.

Patient 1 2 3 4 5 6 7
Relative change 8.7 1.5 2.7 1.8 2.8 2.7 2

Table 5.2 - Table showing the relative changes in step duration for each patient

5.1.2. Stride Length

Stride length is linked with the relative step duration, a more normal gait pattern

producing a greater stride length, as including the heel contact and toe off stages

enables the leg to be extended to a greater degree in the swing phase. Therefore it

would seem reasonable that an increased relative step duration should be coupled with

an increased stride length.

During this study stride length was not measured directly. However an indication of

stride length can be gained by examining the number of events recorded for the

monitoring session, this being the number of steps taken by the fractured leg while

completing the standard circuit, and thus the number of gait cycles needed to complete

Page 140

Chapter 5

the circuit. Table 5.3 shows this for each patient. Patients 4 and 5 are indicated in

brackets since the data from the second from last session was used instead of the final

one due to the final one being corrupted by obstructions where the patient had to stand

occasionally in one case, and a shorter route walked in the other. As the number of

events is inversely proportional to the stride length, by inverting the figures in Table

5.3 an indication of the stride length is obtained, these data being shown in Table 5.4.

Table 5.4 shows that for each patient there is an increase in stride length over the

healing period, up to a maximum of a 70% increase. However data is not well

correlated with the step duration data given in Table 5.2.

Patient 1 2 3 4 5 6 7
Relative change 0.7 0.82 0.59 (0.92) (0.59) 0.56 0.67

Table 5.3 - Table showing the relative changes
patient

in the number of events per sessions for each

Patient 1 2 3 4 5 6 7
Relative change 1.43 1.22 1.7 (1.09) (1.7) 1.79 1.49

Table 5.4 - Table showing the relative changes in the stride length for each patient

Whilst it can generally be said that the greater is the increase in step duration the

greater is the increase in stride length, this does not apply to Patient 1. This is

probably due to the effect of using crutches where a swing through gait can be

employed, so causing a greater stride length with a small step duration.

Page 141

Chapter 5

5.1.3. WeigM-Bearing

The main applicationary object of this study was to monitor weight-bearing changes

over the period of fracture healing. It was hypothesised that a gradual increase in

weight-bearing would occur over the period, as the fracture site became stiffer and

stronger as healing progressed.

As the individual and group results show, a gradual increase in the weight-bearing did

occur over the healing period, this increase generally being non-linear. It has been

previously speculated that the reason for this is that the increase in stiffness at the

fracture site is non-linear over time, as was experimentally demonstrated by Richardon

et al. in 1992, who found that, discarding the stiffness of the fixation device, the

stiffness at the fracture site increased exponentially with time post-fracture.

This gradual increase in weight-bearing over time post-fracture leads to the conclusion

that in the absence of pain or discomfort to the patient, there is another feedback

mechanism regulating the amount of weight-bearing through the fractured leg. The

results of this study certainly indicate that another feedback mechanism is active, but

without having obtained measurements local to the fracture site, for example

movement at the fracture site during weight-bearing, these results do not lend direct

support to the above hypothesis. Perhaps this feedback mechanism is linked with the

interfragmentary strain, for if this is too high, then healing cannot progress. This is

often seen by resorption at a small fracture gap to allow granulation tissue and callus

to form in a lower-strain environment (O'Sullivan et al., 1989).

A progression in fracture healing does not however necessarily mean an increase in

weight-bearing, as Figure 4.7 for Patient 2 shows. The mean weight-bearing for the

second monitoring session was lower than that measured previously because the

patient had adopted a three-point swing through gait pattern even though the velocity

Page 142

Chapter 5

of gait was increased as shown by Figure 4.9. Even the decreased step duration shown

in Figure 4.8 was not visible to the observer for the patient walked without a limp or

noticeable discomfort. Three weeks later the monitoring session recorded a mean

weight-bearing even lower, for a pin tract infection had occurred which caused

discomfort to the patient when weight-bearing thus causing the patient to lower

weight-bearing to minimise this discomfort. However when a course of antibiotics had

healed the infection, a much higher weight-bearing average was recorded. Even so,

this was thought to be low because of the gait pattern adopted by the patient.

Removing the crutches and allowing the patient to walk with sticks could have forced

a higher weight-bearing value.

Page 143

Chapter 5

5.2. Clinical Benefits of using Ambulatory Monitoring for Measurements

The measurement of weight-bearing via ambulatory monitoring can aid the clinician in

forming an assessment of the fracture healing by providing further information on limb

function which is not available from radiographs. Although this study's aim was not to

provide a method to assess the stage of fracture healing, the results from the

monitoring of weight-bearing indicate that such data might be useful in such

assessment. However as extensive experience in data interpretation are required to

give advice based on such measurements, X-rays or other investigations will always be

needed for a final decision (Bergmann et al., 1990).

However although some indication of the healing is given, such data really shows the

patient's ability to weight-bear on the fracture, this being a combination of conscious

and sub-conscious awareness. Normally the only information from the patient that can

be gleaned regards pain, discomfort, and unsteadiness. However these are rather

subjective, and with no quantitative data the clinician is often forced to conjecture as

to the state of the fracture with the aid of previous experience of the length of time

normally required for the fracture to heal. Obtaining a quantitative measurement from

the patient allows the clinician to include this to aid his assessment of healing. As

ambulatory monitoring is non-invasive, data can be quickly and easily obtained from

the patient. This data might enable the clinician to provide a more effective course of

mobilisation for the treatment of the fracture, for example with the use of crutches,

sticks or neither. An example of this was shown with the results obtained for Patient

2, who although was walking quicker and with a greater stride length by week 42 post-

fracture, was actually weight-bearing less due to the gait pattern adopted with the

crutches. The lower weight-bearing is contrary to expectations, for an increased

velocity in walking normally results with an increase in weight-bearing (Jahnke et al.,

1992). Therefore the decrease is due to the change in gait pattern, for differing gait

patterns result with differing weight-bearing (Olsson, 1992). However the effect of

Page 144

Chapter 5

this gait pattern was not easily visible to the observer and so in such cases the patient

might be encouraged to continue in the same manner because of the increase in patient

confidence suggested by the higher gait velocity. A more effective treatment however

would be to force the patient to produce a greater weight-bearing by perhaps replacing

the crutches with two sticks.

Using ambulatory monitoring to measure the relative step duration might also aid the

clinician as this also gives an indication of the progress of fracture healing. This is

because with a longer step duration relative to the unfractured leg's step duration, the

patient will have a greater weight-bearing average, so it is in effect an estimate of the

weight-bearing. Ambulatory monitoring of the relative step duration is easier and

more accurate than the weight-bearing directly, for accurate weight-bearing requires a

greater number of transducers which have to be accurately placed at the load bearing

areas of the foot. However changes in relative step duration can only indicate a

change in weight-bearing not its magnitude, and so such data on its own might not be

so helpful to the clinician. Therefore the direct monitoring of weight-bearing and

relative step duration would be the best solution because the relative step duration data

also gives useful indications of the gait pattern.

Page 145

Chapter 5

S.3. Possible Future work on the Further Development and Application of the
System

To increase the accuracy of the weight-bearing data obtained from the monitor, more

pressure transducers are required to be placed at the load bearing areas of the foot so

that the scaling values for all the transducers will tend to one as the total load will tend

towards being the actual load rather than a scaled estimate. This will also results with

less cumbersome monitoring sessions for the personal calibration of the scaling values

for each patient will not be required. Zweifel et al., demonstrated in 1992 a weight-

bearing monitor whose shoe insole had between five and seven pressure transducers

affixed to it during different tests. Although this was not strictly speaking an

ambulatory monitoring system, in that the cables from the transducers trailed across

the floor to a desktop computer, the insole measuring system is relevant to the

equipment developed during this study. By using more transducers and modifying the

program, it might be also possible to obtain data of other aspects of the gait pattern,

such as the areas of greater loading bearing.

Direct monitoring of the step duration of the fractured leg relative to the normal leg

would be of great benefit, for one could then perform more detailed experiments and

monitor how the relative step duration changes over the monitoring session, and

according to the distance walked. By so doing, more informative information might be

obtained from a patient as regarding the fracture condition. Also the correlation

between increased relative step duration and fracture healing might be tested further.

To record this data, both legs are required to be simultaneously recorded. Therefore

the software and hardware of the ambulatory monitor would require modification, as

well as the PC analysis program.

Previous studies, for example Richardson et al. (1992), have shown that fracture

stiffness increases exponentially with time post-fracture. This greater stability should

Page 146

Chapter 5

result with greater weight-bearing being possible. Although the results from this study

are not at variance with this hypothesis, further trials are needed for its confirmation.

Were these trials to be performed in conjunction with fracture stiffness measurements,

then this hypothesis might be quantitatively proved or disproved. Although both

Richardson et al. (1992) and Kenwright et al. (1991) measured fracture stiffness via

the external fixator used during fracture treatment, this would also be possible with

internal fixation by using strain gauge transducers and telemetry (Bergmann et al.,

1990).

Increases in the amount of data recorded would require an improvement in the size of

storage space for the monitor to keep the capability of 24 hour monitoring sessions.

Rather than developing the compression capability further, the first modification that

would be made regards the information stored for each event. As has been explained

previously, by calculating and storing the step duration in time instead of the duration

in samples and the inter-sample time, the amount of storage required for the

information of one event would decrease by one byte.

However the greater increase in storage capability would be obtained by further data

compression, which as has been indicated previously, would occur by using an

improved Huffman compression technique. Traditional implementations of Huffman

compression techniques have calculated and stored the code using sample data, before

the actual data has been recorded. This method is not feasible for this application

because the data differs between patients and also between different monitoring

sessions of the same patient. However if the code were to be calculated when the

Results file became full, then the optimum compression would be obtained for the

stored data. The currently stored data would then be compressed, and using the same

code, subsequent event data from the monitoring session would be compressed in real­

time.

Page 147

Chapter 5

5.4. Conclusions

An ambulatory monitor has been developed which records the weight-bearing,

duration, and time for each step of the fractured leg that occurs during the monitoring

session. By calibrating the transducer scaling values for each individual patient,

reliable data are obtained. A program executing on a PC which analyses, displays and

manipulates the various files has also been written.

This system is able to quantitatively record the patient's weight-bearing and step

duration over the monitoring session, storing and displaying the mean, standard

deviation of each, and the weight-bearing as a percentage of body weight. Also the

weight-bearing progress with time gained from all the monitoring sessions recorded

can be displayed. By comparing the session duration for the standard circuit, an

indication of the change in the velocity of gait can be obtained. Also the change in the

relative stride length over the fracture healing period is gained by the alteration in the

number of events recorded for the standard circuit.

This equipment was used to monitor 37 patients with tibial fractures. After further

modification, the equipment was found to record reliable data, and subsequently

weight-bearing with time was shown to increase non-linearly with time post-fracture.

An increase in step duration relative to the step duration of the normal leg also

occurred, indicating a gradual change in the gait pattern adopted, tending towards a

normal gait pattern with time. The same was found with the stride length, again

indicating a gradual change towards a more normal gait pattern with time. An increase

in velocity of gait was also observed over the healing period, suggesting greater

confidence in walking as healing progressed.

These results are not by themselves sufficient to diagnose the state of the fracture, but

they do give an indication of the progression of the fracture healing. Further trials are

Page 148

Chapter 5

required to quantify the expected weight-bearing over the fracture healing period for

the general case, and were these to be performed in conjunction with fracture stiffness

measurements, a relationship between the two might be derived.

Page 149

6. References

BERGMANN G, GRAICHEN F, ROHLMANN A. Implantable Telemetry in

Orthopaedics. Forschungsvermittlung der FU, Berlin, 1990.

BESAG FMC, MILLS M, WARD ALE F, ANDREW CM, CRAGGS MD. The

validation of a new ambulatory spike and wave monitor. Electroencephalography and

clinical Neurophysiology 1989; 73: 157-161.

BLACK J, PERDIGON P, BROWN N, POLLACK SR. Stiffness and strength of

fracture callus. Relative rates of mechanical maturation as evaluated by a uniaxial

tensile test. Clinical Orthopaedic Related Research 1984; 192: 278-288.

BOURNE GH. The Biochemistry and Physiology of Bone, 2nd Ed. Academic Press,

New York, 1971.

COOK JE. Assessment of tibial fracture healing using Dual Energy X-ray

Absorptiometry. M.Sc. Thesis, 1993.

CUNNINGHAM JL, EVANS M, KENWRIGHT J. Measurement of fracture

movement in patients treated with unilateral external skeletal fixation. Journal of

Biomedical Engineering 1989; 11: 118-122.

DEHNE E. The rationale of early functional loading in the healing of fractures: a

comprehensive gate control concept of repair. Clinical Orthopaedics and Related

Research 1980; 146(Jan.-Feb.): 18-27.

Page 150

DUCKWORTH T, BEETS RP, FRANKS CI, BURKE J. The measurement of

pressures under the foot. Foot & Ankle, 1982; 3: 130-141.

EGGER EL, GOTTSAUNER-WOLFF F, PALMER J, ARO HT, CHAO EYS.

Effects of axial dynamisation on bone healing. The Journal of Trauma 1993; 34(2):

185-192.

GAUTffiR E, PERREN SM, GANZ R. Principles of internal fixation. Current

Orthopaedics 1992; 6: 220-232.

GRAY H. Gray's Anatomy, 33rd Ed. Longman's, UK, 1964.

GOLDSTEIN SA, WILSON DL, SONSTEGARD DA, MATTHEWS LS. The

mechanical properties of human tibial trabercular bone as a function of metaphyseal

location. Journal of Biomechanics 1983; 16(12): 965-969.

GOODSHIP AE, KENWRIGHT J. The influence of induced micromovement upon

the healing of experimental tibial fractures. The Journal of Bone and Joint Surgery

1985; 67-B(4): 650-655.

HAM AW. Histology, 7th Ed. JB Lippincott, Philadelphia, 1974.

HOLTERNJ. New method for heart studies. Science 1961; 134: 1214.

HOLTER NJ. Radioelectrocardiography: a new technique for cardiovascular studies.

Annual New York Academic Science 1957; 65: 913.

HUFFMAN D. A method for the construction of minimum redundancy codes.

Proceedings of the IRE 1952; 40(9): 1098.

Page 151

HUTTON WC, DHANENDIAN M. A study of the load under the normal foot during

walking. International Orthopaedics, 1979; 3: 153-157.

JANKE MT, HESSE S, SCHREINER C, MAURTTZ K. Dependency of ground

reaction forces, loading and unloading rates of gait velocity, stride length, and

constitutional factors in hemiparetic patients. Proceedings of the European

Symposium on Clinical Gait Analysis 1992: 164-167.

KELLEY A, POHL I . A book on C. Benjamin/Cummings Publishing Co., 1990.

KENNEDY HL et al. Ambulatory electrocardiography and computer technology:

practical advantages. American Heart Journal 1987; 113: 186.

KENWRIGHT J, RICHARDSON JB, CUNNINGHAM JL, WHITE SH, GOODSHIP

AE, ADAMS MA, MAGNUSSEN PA, NEWMAN JH. Axial movement and tibial

fractures. The Journal of Bone and Joint Surgery 1991; 73-B: 654-659.

KLEDSf-NULEND J, VELDHUIJZEN JP, BURGER EH. Increased calcification of

growth plate cartilage as a result of compressive force in vitro. Arthritis and

Rheumatism 1986; 29(8): 1002-1009.

LATTA LL, ZYCH GA. The mechanics of fracture fixation. Current Orthopaedics

1991;5:92-98.

LE VEAU BF. Williams and Lissners Biomechanics of Human Motion, 3rd Ed. WB

Saunders Company, USA, 1992: 29-59.

Page 152

LORD M, REYNOLDS DP, HUGHES JR. Foot pressure measurement: a review of

clinical findings. Journal of Biomedical Engineering 1986; 8: 729-736.

McKJUBINB. The biology of fracture and healing in long bones. The Journal of

Bone and Joint Surgery 1978; 60-B(2): 150-162.

MEADOWS TH, BRONK JT, CHAO EYS, KELLY PJ. Effect of weight-bearing on

healing of cortical defects in the canine tibia. Journal of Bone and Joint Surgery 1990;

72-A, 7: 1074-1080.

MELDRUM SJ. Ambulatory monitoring: an evolving concept. Biological

Engineering Soceity, Physiological Monitoring Growp;18m- November 1992.

MICROSOFT. C for yourself. Microsoft Corporation, 1990.

MOW VC, HAYES WC. Basic Orthopaedic Biomechanics. Raven Press, USA, 1991:

93-142.

NICOLL EA. Fractures of the tibial shaft: A survey of 705 cases. The Journal of

Bone and Joint Surgery 1964; 46-B(3): 373-387.

NILSSON BER. Post-traumatic Osteopenia: Quantitative study of the bone mineral

mass in the femur following fracture of the tibia in man using americium-241 as a

photon source. Acta Orthopaedica Scandinavica 1966; 91(37): 14-24.

OLSSON E. Partial weight-bearing ambulation - the unloading effect of assistive

devices and gait patterns. Proceedings of the European Symposium on Clinical Gait

Analysis 1992: 104-106.

Page 153

ONI OOA, HUI A, GREGG PJ. The healing of closed tibial shaft fractures. Journal

of Bone and Joint Surgery 1988; 70-B: 787-790.

O'SULLIVAN ME, CHAO EYS, KELLY PJ. The Effects of Fixation on Fracture-

Healing. Journal of Bone and Joint Surgery 1989; 71-A: 306-310.

OXNARD CE. Bone and bones, architecture and stress, fossils and Osteoporosis.

Journal of Biomechanics 1993; 26: 63-79.

PAAVOLAINEN P, SLATTS P, KARAHARJU E, HOLMSTROM. The healing of

experimental fractures by compression osteosynthesis I Torsional strength. Acta

Orthopaedica Scandinavica 1979; 50: 369-374.

PAAVOLAINEN P, SLATIS P, KARAHARJU E, HOLMSTROM. The healing of

experimental fractures by compression osteosynthesis JJ Morphometric and chemical

analysis. Acta Orthopaedica Scandinavica 1979; 50: 375-383.

PAN WT, EINHORN TA. The Biochemistry of Fracture Healing. Current

Orthopaedics 1992; 6: 207-213.

PANJABI MM, WHITE AA, SOUTHWICK WO. Temporal changes in the physical

properties of healing fractures in rabbits. Journal of Biomechanics 1977; 10: 689-699.

PANJABI MM, WALTER SD, KARUDA M, WHITE AA, LAWSON JP.

Correlations of radiographics analysis of healing fractures with strength: a statistical

analysis of experimental osteotomies. Journal of Orthopaedic Research 1985; 3: 212-

218.

Page 154

PFISTER CJ, HARRISON MA, HAMILTON JW, TOMPKINS WJ, WEBSTER JG.

Development of a three-channel, 24-h ambulatory esophageal pressure monitor. IEEE

Transactions on Biomedical Engineering 1989; 36(4): 487-490.

PRATT CM et al. Ambulatory electrocardiographic recordings: the Holter monitor.

Current Problems in Cardiology 1988; 13(8): 519-586.

PSI SYSTEMS. Mini-Module manual. P.S.I. Systems, 1991.

RADIN EL. Orthopaedics for the Medical Students. JB Lippencott Company,

Philadelphia, 1987: 9-34.

RICHARDSON JB, KENWRIGHT J, CUNNINGHAM JL. Fracture stiffness

measurement in the assessment and management of tibial fractures. Clinical

Biomechanics 1992; 7: 75-79.

ROCKWOOD CA, GREEN DP. Fractures in Adults, 2nd Ed. JB Lippincott

Company, Philadelphia, 1984.

RS Data Library, 1994.

SARANGIPP, WARD AJ, SMITH EJ, STADDON GE, ATKINS RM.

Algodystrophy and osteoporosis after tibial fractures. The Journal of Bone and Joint

Surgery 1993; 75-B: 450-452.

SHARRARD WJW. A double-blind trial of pulsed electromagnetic fields for delayed

union of tibial fractures. The Journal of Bone and Joint Surgery 1990; 72-B(3): 347-

355.

Page 155

SHIPMAN P, WALKER A, BIRCHELL D. The human skeleton. Harvard

University Press, Massachusetts, 1985: 18-63.

ULIVffiRI FM, BOSSIE, AZZONIR, RONZANI C, TREVISAN C, MONTESANO

A, ORTOLANI S. Quantification by Dual Photon Absorptiometry of local bone loss

after fracture. Clinical Orthopaedics 1990; 250: 291-296.

WAND JS, SMITH T, GREEN JR, HESP R, BRADBEER JN, REEVE J. Whole-

body and site specific bone remodelling in patients with previous femoral fractures:

Relationships between reduced physical activity, reduced bone mass and increased

bone resorption. Clinical Science 1992; 83: 665-675.

WHALEN RT, CARTER DR, STEELE CR. Influence of physical activity on the

regulation of bone density. Journal of Biomechanics 1988; 21(10): 825-837.

WHITE TD. Human Osteology. Academic Press, USA, 1991.

WHITTLE AP, RUSSEL TA, TAYLOR CJ, LAVELLE DG. Treatment of open

fractures of the tibial shaft with the use of interlocking nailing without reaming. The

Journal of Bone and Joint Surgery 1992; 74-B(8): 1162-1171.

WHITTLE MW. Gait Analysis: an introduction. Butterworth-Heinemann 1991.

WOLFF J. Das gaetz der transformation. Transformation der knochen. Hirshwald,

Germany, 1892.

YOUNG DR, NIKLOWITZ WJ, STEELE CR. Tibial changes in experimental disuse

osteoporosis in the monkey. Calcified Tissue International 1983; 35: 304-308.

Page 156

ZWEIFEL HJ, KESSELRING J, ARLANCH C, WILLI P, BERNEGGER U, JEHLE

A. Erfahrungen mit p-gait-analysis. Proceedings of the European Symposium on

Clinical Gait Analysis 1992: 260-263.

The copyright of this thesis rests with the author. No quotation from it should be published without
his prior consent and information derived from it should be acknowledged.

Page 157

Appendices

Appendix 1: The Mini-Module PCB Components

The following sections detail the Mini-Module P.C.B. components which are referred

to by the Hardware section of Chapter 2. Where relevant explanations of the necessity

and function of components is also included.

A l . l . The Micro-Processor

The CPU on the Mini-Module is a Motorola 68000 software compatible processor; the

Philips 93C100. The older Motorola 68000 processor has a slower clock-speed, and

needs a number of extra external peripheral interfacing chips to design and build a

computer, which the 93C100 includes on-board the processor chip. These are a clock

or oscillator, external vectored interrupts, memory interfacing chips, and (for the bus

used on the Mini-Module) an I2C bus interface.

Apart from the faster clock speed of 30 MHz (the 68000 having a maximum of 12

MHz) the main functional difference is that the 93C100 also has a second on-board

oscillator which drives-it at the slower speed of 5 MHz; this feature being used for

when the processor is in 'stand-by' mode. When in this state the processor consumes

less power which is important in power sensitive applications such as that of

ambulatory monitoring.

A1.2. The Erasable Programmable Read Only Memory (EPROM)

A computer system needs memory for the purpose of storing the program whilst it is

being executed by the processor, and for storing and manipulating the data that is

produced.

Page 158

Appendix 1

EPROM is 'programmed' (meaning that each memory location's content is set to a

value) by applying different voltages to various pins of the casing. This is done

automatically by an EPROM programmer, which stores the file and transfers it to the

EPROM. Depending upon the size of the program or data being stored, this can take

one or two minutes. The EPROM chips can then be inserted into the sockets provided

on the PCB of the Mini-Module, and their contents read by the processor. To erase

the memory of its contents, the silicon chip is exposed through the clear 'window' in

the casing to ultra violet light for some twenty minutes.

As programming and re-programming of an EPROM is a long process, taking up to

half an hour, this type of memory can not be used for applications which involve

constantly changing values; such as the data generated by a program, or in this case

read in by the monitor. However it can be used for unvarying data such as the

program code itself, and initialising data which does not change and is needed when

commencing program execution. A benefit of using EPROM rather than other types

of memory for program storage is that the contents are not lost when the memory is

disconnected from the power supply, which means that battery power is saved and the

monitor need only be powered for the time period when the data is being gathered,

rather than having to constantly power it in order to keep the program in memory.

The Mini-Module is flexible on the differing sizes of EPROMs that it can use. Either

CMOS or NMOS types can be used. These are based on different technologies and

function differently in operation although performing the same task. CMOS type of

EPROM was chosen for that consumes less power than the equivalent sized NMOS

EPROM. The size of memory of the EPROM can be from 16 KBytes to 256 KBytes

each, giving an overall memory of between 32 KB and 512 KB as two EPROMs are

used. The memory size chosen was of 128 KB each (giving 256 KB in total), to

Page 159

Appendix 1

ensure that there would be ample room in which to store the program code and the

initialising data.

The EPROM speed of operation (when returning a specified memory location's value)

is slower than for other types of memory, and much slower than the CPU operational

speed. To circumvent such problems, the Mini-Module uses an asynchronous bus

interface which means that the speed of each access cycle is controlled by the device

being accessed, and not by the CPU. Therefore the Mini-Module has some external

(to the CPU) timer logic which forces each EPROM read cycle to be at least 350 ns

allowing the use of EPROMs with access times of up to 250 ns. However this

application is not adversely affected by the slower memory speed because for most of

its execution time the program will be periodically monitoring and storing the ADCs'

values. In fact it will have to be slowed down even further in its processing speed in

between taking individual readings from the ADCs, otherwise the sampling rate would

be in the thousands rather than in the tens of hertz range.

A1.3. The Random Access Memory (RAM)

RAM is available in two types; static and dynamic. Each type of is of different

technology and construction; each location in dynamic memory being a capacitor and

resistor, whilst in static memory it is a transistor. Dynamic memory is therefore much

easier and more compact to manufacture on silicon and so costs less than its static

equivalent. However as each location value is stored by the capacitor charge (a zero

value being no charge stored and a one being charge stored) it has to be 'refreshed'

periodically for it to be maintained. This means that dynamic memory has a greater

power consumption than static memory since when a small charge is given to the base

of the transistor (signifying a one for current will now flow from the collector to the

emitter) it remains there until it is changed or the power is switched off. Static RAM is

also much faster in operation than dynamic RAM as the dynamic memory is limited in

Page 160

Appendix I

speed to the capacitor discharge rate. In quantitative terms this gives an access time of

20 ns for static RAM and 80 ns for dynamic RAM.

The Mini-Module is fitted with 128 KB of static RAM which is therefore of benefit

over dynamic RAM in its overall power consumption. Since the program and

initialising data is stored on EPROM, all of this memory area (apart from that required

by the operating system) can be utilised by program generated data. As there is an

interface to the 68000 bus, external memory can be added to form a total of 2 MBytes

(as the address bus has a total of 20 lines) should applications require it. For this

application however, 128 KB of RAM was deemed to be sufficient.

A1.4. The Battery Back-up

The Mini-Module also has a nickel cadmium (ni-cad) battery mounted on the PCB,

which is connected to the static RAM when the external power supply, which in this

case is the set of batteries, is disconnected. This battery can supply enough power for

the RAM to keep its contents for up to about 250 hours, because static RAM

consumes very little power when in an 'idle' state, which is when its contents are not

being accessed or set. As explained previously, the life for this battery would be very

much shorter if dynamic RAM was used, due to the different technology it employs.

The ni-cad battery has a discharge ratio of ten to one. This means that an external

power source must be connected for 10% of the time for the battery to remain

charged. For this application, the Mini-Module would be powered only when it was

being used to monitor a patient, but when the monitoring trial finishes the results are

down-loaded onto a PC for storage. Therefore even if patient trials were infrequent,

so causing the battery-back up to fully discharge, no important data remains in the

RAM after a trial, except some initialising values which can be re-inputted, meaning

that no important data will be lost.

Page 161

Appendix 1

A1.S. Real Time Clock

The real time clock provides a clock facility which counts in l/100ths. of a second. It

also includes a calendar, and a timer which can count for up to 99 days. Also an alarm

facility is included, which can generate an interrupt at a particular date or time of the

clock timer. This clock can give time facilities to the Mini-Module's programs which

has been utilised for this application.

A1.6. Digital Input/Output Communications

Analogue communication consists of a varying voltage signal, the amplitude indicating

the 'number' being transmitted. Digital communication does not have this flexibility of

a varying signal amplitude as the voltage level can be either 'on' or 'off, corresponding

to either 5 Volts or 0 Volts respectively. Representing a one or zero is therefore

straight-forward, and for other values a number of digital lines can be used in parallel,

with the value being encoded in a binary format. It has become standard to have

digital lines in multiples of eight; so that an 8-bit processor would normally

communicate with other peripherals across an eight or sixteen line data bus, so being

able to directly manipulate an eight or sixteen bit number (i.e. between 0 and 255 or 0

and 65535 respectively).

The Mini-Module does not only permit external analogue communications (accepting

inputs via the ADCs, and generating an output through the Digital to Analogue

converter or DAC) but also external digital communication facilities through four eight

bit digital ports, which are basically four sets of eight parallel digital lines. Each port is

quasi bi-directional which means that although physically it is only an output port, it

can also be programmed to be an input port. To understand why this is possible, it is

necessary to examine the digital line more closely.

Page 162

Appendix 1

The high level for each digital line is provided by a 100 uAmps current source with the

low level output being provided by a high current field effect transistor (FET) which

can accommodate an input current of up to 25 mAmps. Therefore each line will read

as high (5 Volts) when not being driven, by having been set by the program to a logical

'off, and it will be read as low (0 Volts) when it is set to 'on', as the FET will then be

'active'. When being driven by an outside source, a high voltage value will cause a

digital line's voltage to remain at 5 Volts, and a low voltage value will drive the line to

0 Volts as the relatively small 100 uAmps will be dissipated by the external equipment

since the current will flow from the Mini-Module to the connected external equipment,

effectively acting as an earth for the digital line.

Each port has a change of state detector which periodically compares the state of the

pins of the port with a copy of the state of the pins when the port was last read. When

a difference is noted, an interrupt is generated. This is then removed by either the port

returning to its original state or it being read by the CPU. Therefore a port can be

used for input purposes by either waiting for the interrupts to occur, as the initial state

is known, or by periodically sampling the port and ignoring the interrupts that will be

generated on each change of state.

For this application there is a requirement to use five digital lines. The first is needed

as a digital input to 'read' the state of a switch, so that when the switch is closed

different program functions can be enabled. The other four are needed to be used as

outputs, to drive four Light Emitting Diodes (LEDs) which display to the operator the

different states of the program executing on the Mini-Module. Both are detailed in the

next part which deals with peripherals required for the monitor which were not found

directly mounted on the PCB.

Page 163

Appendix 1

A1.7. Analogue to Digital Converters (ADCs)

The Mini-Module has four of ADCs which include a sample and hold amplifier. Each

ADC is an 8 bit device (meaning that the range of possible digital outputs is from 0 to

255) and the input range is from 0 to 2.55 Volts. This therefore gives a sensitivity of

10 mV per bit over its input range. The ADCs can be configured for a number of

different input modes, giving four single ended inputs or two differential inputs.

With single ended input mode, the input is connected to the positive input of the ADC,

and the voltage measured between the input and the analogue ground of the Mini-

Module. To make sure that the ground voltage levels are the same for both the Mini-

Module and the external voltage source which is being measured, the external source's

ground can be connected to the analogue ground of the Mini-Module. The use of this

connection method gives the possible utilisation of four ADCs, and it works

satisfactorily using short cables in low noise environments. However if the

environment is noisy (i.e. there is a relatively high amount of electromagnetic radiation

in the area) a voltage will be induced in the cable which will superimpose on the

voltage being measured to give a higher or lower voltage reading at the ADC than that

generated by the external voltage source. This problem is exacerbated the greater the

cable length as a greater voltage can be induced. In low noise environments the use of

a long cable will result in a voltage drop due to its internal resistance, for the longer the

cable the greater the resistance its resistance, so giving a lower voltage reading at the

ADC.

Differential input mode works by connecting the two inputs from an external voltage

source to two separate ADCs, one to its positive input and the other to its negative

input, the voltage reading then being the difference between the two. This method has

the advantage of noise immunity, for if a voltage is induced it will be induced to the

same degree on both inputs because they are normally tied together so there is no

possibility of each one being affected by different electromagnetic radiation sources, as

Page 164

Appendix 1

might happen if the leads were metres apart. However since the voltage in one cable is

different than in the other cable, a voltage can be induced from the higher voltage to

the lower voltage cable by coupling. Therefore shielded cables are used, with the

shields being connected to the analogue grounds of both the Mini-Module and the

external voltage source, so reducing the common mode voltage, and also further

reducing the noise sensitivity. Since two ADCs are required for each voltage source

being measured, using this method means that only two different voltage sources can

be monitored.

The final connection mode possible is the quasi differential mode. Each channel's

negative input is connected to the same negative ADC input, with the positive voltage

source inputs connected to separate ADCs' positive inputs. By using this method of

connection, three different ADCs are available for monitoring use. Also this mode

offers noise immunity for the cables and for voltage drops over long distances, but not

to the same degree as with using differential input mode.

For this application, each pressure transducer was connected to a signal conditioning

unit which returned a separate voltage reading for each transducer to the monitor.

Therefore each transducer's reading, via the signal conditioning unit, would be

monitored by a separate ADC. The environment where the equipment would be in use

is in a hospital's outpatients department, where there would not be any extra-ordinary

levels of electro-magnetic radiation. Also because the cables connecting the signal

conditioning units would be less than a metre in length, for the ambulatory monitor

would be worn on a belt round the waist and the signal conditioning units positioned at

the ankle, no noticeable voltage drop should occur. All these factors, plus the fact that

some measure of immunity to noise is possible by the use of shielded cables, combined

to the decision to use single ended input mode, so that up to four transducers could be

monitored. As shall be seen later on, this was important to be able to obtain accurate

weight-bearing data.

Page 165

Appendix 1

A1.8. The RS-485 Port

The RS-485 serial communication standard provides serial communication using two

differential lines for each channel. This allows the use of simple twisted pair cabling,

and so will provide a high degree of noise immunity when the cable has to traverse

long distances.

An RS-485 port is provided on the Mini-Module as standard, which provides it with

serial communication capability. For this application the serial connection is required

to interface to an I.B.M. compatible Personal Computer (PC). However PCs are

fitted with RS-232 standard serial ports which are not compatible with the RS-485

standard. Therefore an RS-485 to RS-232 converter was built which provided the

necessary conversion so that the PC and Mini-Module could communicate with each

other. This is detailed in a subsequent part of this Chapter.

A1.9. The Watch-Dog

A watch-dog is a timer chip which is reset by a pulse on its trigger line. If a pulse does

not occur within a specified time, the watch-dog generates an interrupt. Using a

watch-dog gives a computer some fault-tolerance capabilities for a program or more

usually for an operating system. This functions in the following manner; a pulse is

regularly transmitted to the watch-dog, but if a fault occurs so that a pulse is not sent

to it, an interrupt is generated which can be specified to jump to a memory location for

the execution of a specific part of the program, which might for example jump back to

the start of the program or function that was being executed, the benefit being that no

data would be lost. This is a feasible scenario because most faults that occur are

transient faults rather than hardware faults; for example connecting or disconnecting a

high current device to the same mains supply as the computer will generate a voltage

spike and possibly a transient fault if the computer power supply is not sufficiently

shielded. If this were to occur, the program counter might become corrupted and so

Page 166

Appendix 1

send the CPU to a different memory location possibly sending the program or

operating system into an infinite loop. Therefore the instruction to send a pulse to the

watch-dog would not be processed and so the pulse would not be sent. An interrupt

would therefore be generated, and the specified code processed could then send the

program counter to restore control to the start of the operating system, so enabling the

computer to overcome the transient fault whilst keeping the majority of its previously

generated data.

A watch-dog timer is present on the PCB, to which if a pulse is not received on its

trigger line by 400 ms, it resets the Mini-Module. When using the multi-tasking Minos

operating system, the individual programs do not have to periodically send a pulse to

the watch-dog as this is done by the operating system. If the watch-dog feature is not

required in an application it can be disabled by removing a link on the Mini-Module.

In this application, the monitor program was executed under the Minos operating

system and so the watch-dog was enabled, as its functionality would be beneficial if the

ambulatory monitor were to be used in an environment where there was relatively high

electro-magnetic radiation that might affect the Mini-Module circuitry. When

executing programs under the Minos OS, a reset is generated if the watch-dog

interrupt occurs. Therefore if a transient fault were to occur and a reset was generated

by the watch-dog timer, the CPU would go to the start of the program but with the

collected data, which had not yet been downloaded onto the PC, still being intact since

it is stored in its own RAM file.

ALIO. The Power Fail Detector

Present on the PCB is also a power fail detector. This is connected to the power

supply and monitors its voltage. If the voltage level drops below about 4.75 Volts, the

power fail detector resets the Mini-Module. This feature is useful in this particular

Page 167

Appendix 1

application because the power supply will be a set of batteries with their general

discharge characteristic being that the voltage decreases as they are used (the battery

characteristics will be detailed in Section 2.1.2.3). Therefore to have the Mini-Module

being reset when the batteries' voltage is low, will indicate to the user that they need

changing. If no reset occurred, the ambulatory monitor would continue to appear to

function normally as the status LEDs would continue to light; but the Mini-Module

would produce some transient faults in program operation since the voltage is not high

enough to drive the transistor transistor logic (TTL) circuitry properly.

A l . l l . Other PCB Components

The PCB holds a number of other components which are not utilised for this

application. There is a DAC, a keyboard port and an LCD port. The keyboard and

LCD ports are not required since through the RS-485 port the PC's keyboard and

screen are utilised when required.

The Mini-Module also has three different bus standards available for external

connection. An 12c bus is used by the 93C100 to interface to other peripherals on the

PCB, and a connector is also provided for external peripherals. A 64 pin expansion

connector is also provided, this bus having three basic modes of operation which

allows access to 68000 memory (for external memory expansion), 68000 peripherals

and 8051 peripherals. Each mode uses the same address and data lines, but a different

set of control lines.

As all the hardware needed for this application was already provided on the Mini-

Module PCB, no external peripherals were needed so that neither of the expansion

connectors were used.

Page168

http://Al.ll

Appendix 2 : Ethical Approval and Original Project Protocol

District Offices
POOLE HOSPITAL

Nunthorpe
Middlesbrough

Cleveland TS7 ONJ
Telephone: Middlesbrough 106421 320000

Fax: (06421 324176

JRCS/DD

7 December 1990

Mr D Muckle
Consultant Orthopaedic Surgeon
Middlesbrough General Hospital
Middlesbrough
Cleveland

Dear David

90/46 - THE INFLUENCE OF THE MAGNITUDE AND DURATION OF WEIGHT BEARING ON
THE HEALING OF TIBIAL AND FEMORAL FRACTURES

Thank you -for' submitting t h i s protocol to the E t h i c s Committee. We do not
see.any e t h i c a l problems, and are happy for you to proceed with the study.

I presume that the microprocessor based data logging device has now been
developed, and you are moving into the stage of t e s t i n g i t in p a t i e n t s with
t i b i a l and femoral f r a c t u r e s , as outlined i n method (c) .

I would remind you that you should obtain informed consent from the p a t i e n t s
who p a r t i c i p a t e i n the study, and we look forward to r e c e i v i n g a report of
your r e s u l t s i n due course.

With kind regards.

Yours s i n c e r e l y
/

J R Cove-Smi;fch
Chairman
E t h i c s Committee

Page 169

Appendix 2

PROJECT PROTOCOL

TITLE: The influence of the magnitude and duration of weight-bearing on the healing of tibial
fractures.

BACKGROUND

Fracture healing is influenced by the prevailing mechanical environment at the fracture site (1-4).
Fractures which have been accurately reduced and in which there is minimal interfragmentary
strain, heal directly by primary means (1,2), whereas fractures which are less rigidly fixed heal by
secondary bone healing with external callus formation, the amount of callus depending on the
rigidity of the fixation (1,3,4).

The rate of increase of fracture stiffness and strength can be influenced by the rigidity of the
fixation system, this being seen in both experimental (3-5) and clinical studies (7). Most
conservatively treated tibial fractures show incomplete reduction and so indirect healing with
external callus formation leads to the most effective and rapid healing of the fracture. The potential
therefore exists to use weight bearing to produce axial loading of conservatively treated tibial
fractures and hence stimulate callus formation.

To encourage fracture healing by secondary means, early weight bearing is prescribed and
encouraged to provide the axial strain at the fracture site necessary to promote callus formation
(6). In a photogrammetric study, Lippert and Hirsch (8) demonstrated that large amounts of
movement at the fracture site (up to 5 mm) are possible during normal activities in fractures treated
by cast. In studies of patients being treated by cast braces for femoral shaft fractures, the loading
of the fractured limb during healing has been measured (9,10) and has been shown to increase
with increasing time post-fracture. More recently, Cunningham et al (11) studied weight bearing
and fracture movement at set intervals during healing in a small group of patients treated with
unilateral external skeletal fixation. Despite being encouraged to weight-bear on their fractured
limb, weight bearing was less than 50% of body weight during the first two months post fracture, ft
is in this early stage of healing that axial strain at the fracture site appears to be most effective in
promoting healing (4). In all of these studies the results represent the weight bearing achieved
during the tests and direct inference cannot be made that such weight bearing was the norm when
the patient was at home.

Page 170

Appendix 2

As healing of the fracture progresses, the ability of the patient to weight bear on the fractured
limb increases, perhaps as a result of a bio-feedback mechanism of biological self-control of
fracture site strain, as suggested by Lazo-Zbikowski et a/(12).

In fractures, the level and frequency of weight bearing will affect fracture healing, and
information on weight bearing during treatment would be invaluable in assessing treatment
methods, (ie casts, internal and external fixation) patient motivation and injury and fracture type on
the ability of the patient to weight bear. By being able to determine favourable influences on
weightbearing, then increased callus formation and more rapid fracture healing could result. The
information obtained from measurements of weight bearing could also be used as an indication of
the extent of fracture repair if correlated with clinical, radiological and mechanical (13)
assessments of union. This technique, when developed, would be potentially applicable to other
orthopaedic treatments where a measure of patient activity either pre- or post-surgery (e.g. total
hip and knee replacement) is required.

METHODS

Microprocessor based data logging devices

Ambulatory monitoring of patients has become a widespread clinical diagnostic technique over
the past 25 years. Probably the best known example is recorded electrocardiography (Holter
monitoring) which was reported as early as 1961 (14) and detected ST segment changes in
patients during symptomatic anginal attacks.

Three distinct recording methods are presently available, these are continuous, intermittent
(patient or time activated) and real time analytical recorders. Continuous, two-channel analogue
Holter tape-recorders are the most widely used in the field. Most are now cassette based and offer
reasonable recording fidelity, but are bulky and thus inconvenient to use. Patient-activated
recorders are limited in their use since they must be activated by the patient in response to
symptoms so large amounts of important data may be missed. An additional drawback is the
limited memory of many of the present systems and the lack of input channels.

- Real-time analysers are recorders with the ability to analyse the incoming signal in real-time,
subsequently storing examples of abnormalities. Unfortunately these real-time analysers have

Page 171

Appendix 2

difficulty in reading through ambient noise, this is a major problem especially when dealing with
ECG signals.

In order to investigate weightbearing achieved during fracture treatment it is proposed to
develop a microprocessor based instrumentation and data acquisition system. This system would
need to be portable, self powered, unobtrusive and be able to monitor patients for long
unsupervised periods, possibly away from the hospital environment. The use of a microprocessor-
based system would enable the device to be "intelligent" - making decisions as to whether data
was useful or erroneous. This would allow data compression to take place allowing an extended
monitoring period. This monitoring period could also be prolonged by the use of real-time analysis
of the data.

Force measurement system

Forces and pressures under the foot have been measured using single and multi-element force
plates and optical methods (15,16), however the use of such systems is restricted to a laboratory
environment,. Sensors have been developed which fit inside the shoe and allow a continuous
measure of activity (17), although not of the magnitude of the loading applied. In this project the
aim is to enable a continuous measurement of limb loading to be made over a period of time. The
distribution of the loading over the foot is not considered to be as important as the magnitude of the
load applied to the limb, and so it is initially intended to develop a force measurement system
based on two miniature pressure transducers, positioned over the area of the fore-foot and the
heel. Alternative methods of measuring pressures under the foot will also be explored, including
the use of piezoelectric polymers, specifically polyvinylidene fluoride (PVDF), although the costings
in this proposal are based on the available technology of a pressure transducer system.

PLAN OF INVESTIGATION

a) Force measurement system

It it proposed to develop a compact force measurement system which will enable continuous
measurements of loading and the duration of loading applied by the foot of the fractured leg.

" This system would consist of a pressure measuring element or elements utilising an array of
small pressure transducers or alternatively could be constructed from a piezo-electric

Page 172

Appendix 2

polymeric material. A suitable power supply and amplification for such a pressure sensitive
element will be developed and incorporated within the data recording equipment.

b) Data logging system

It is proposed to base this system around a commercially available microprocessor system
(15) which uses an industry standard Motorola 68000 compatible microprocessor chip. This
system is based on a small (100 mm x 115 mm) printed circuit board that contains the
microprocessor, 128K of static RAM (random access memory), an interactive programming
language and sufficient input/output for this stand-alone application.

To allow a specific system for the investigation of weightbearing during fracture treatment to be
designed, finance for the development of a system comprising:

IBM compatible PC (386)
Printer
PSI Systems development system (PSI-J100)
Cross Assembler for 68000 cpu or Cross Compiler for 68000 cpu

ROM splitter software
S-Record generator

is requested. In addition, once developed, individual systems would be required to enable
clinical trials to be carried out on fracture patients. This would require finance for

10 off PSI-K100 mini-module controllers and a budget for miscellaneous analogue and
digital electronic components.

c) Clinical testing

Preliminary testing of the force measurement and data logging system will be carried out on a
small series of volunteer subjects to determine the accuracy and reliability of these systems.
Subsequenily, a series of about 20 - 30 patients being treated by cast,, internal and external

- fixation for tibial fractures will be fitted with the measurement and logging system, and
measurements of the amount and duration of fracture loading will be made continuously

- throughout treatment. In addition to the usual clinical and radiological assessment of healing,

Page 173

Appendix 2

mechanical assessments of healing will be made using either ultrasound (16) or a direct
method of measuring fracture stiffness (13,17).

JUSTIFICATION FOR SUPPORT REQUESTED

The support requested will enable a postgraduate research assistant to carry out the investigations
described in detail in Section 4 above. The research assistant would be employed by the
University of Durham, and housed in the Bioengineering Laboratory in the School of Engineering
and Computer Science at that University. The research assistant would be responsible to Dr J L
Cunningham. During the clinical testing, the research assistant would be required to make
frequent visits to Middlesbrough General Hospital, and travel costs associated with these visits
have been included in the application.

REFERENCES

1. McKibben, B. The biology of fracture healing in long bones. J. Bone and Joint Surg. SQB,
152-162,1978.

2. Perren, S.M. Physical and biological aspects of fracture healing with special reference to
internal fixation. Clin. Orthop. Rel. Res. 13J, 175-196,1979.

3. Sarmiento, A., Schaeffer J.F., Beckerman L, Latta LLjindEris, JJE^ Fracture healing in rat
femora as affectecTbyfu¥cfiona(weTghTbearing. J. Bone and Joint Surg. 5JA, 369-375,1977.

4. Goodship A.E. and Kenwright J. The influence of induced micromovement upon the healing
of experimental tibial fractures. J. Bone and Joint Surg. 67B>, 650-655.

5. Woolf J.W., White A.A., Panjabi M.M. and Southwick, W.O. Comparison of cyclic loading
versus constant compression in the treatment of long bone fractures in rabbits. J. Bone and Joint
Surg.£3A 805-810,1981.

6. " Sarmiento, A. Function bracing of tibial fractures. Clin. Orthop. Rel. Res. Jfi§. 202-219,
1974.

Page 174

Appendix 2

7. Kenwright, J., Richardson, J.B., Cunningham, J.L., White, S.H., Goodship, A.E., Adams
M.A., Magnussen, P.A. and Newman J.H. Axial movement and tibial fractures. A controlled
randomised trial of treatment. J. Bone and Joint Surg. 73-B.654-659,1991.

8. Lippet, F.G. and Hirsch, C. The three-dimensional measurement of tibial fracture motion by
photogrammetry. Clin. Orthop. Rel. Res. 105.130-143.1974.

9. Meggit, B.F., Juett, D.A. and Smith, J.D. Cast-bracing for fractures of the femoral shaft. A
biomechanical and clinical study. N. Bone Joint Surg. 63-B.12-23.1981.

10. Wardlaw, D. McLauchlan, J., Pratt, D.J. and Bowker, P. A biomechanical study of cast-

brace treatment of femoral shaft fractures. J. Bone Joint Surg. 63J3,7-11,1981.

11. Cunningham, J.L., Evans M and Kenwright J. Measurement of fracture movement in
patients treated with unilateral external skeletal fixation. J. Biomed. Eng. H , 118-122,1989.

12. Lazo-Zbikowski, J. Aguilar, F., Mozo, F., Gonzales-Buendia, R. and Lazo, J.M.
Biocompression external fixation: sliding external osteosynthesis. Clin. Orthop. Rel. Res. 206,
169-184,1986.

13. Cunningham, J.L., Kenwright, J. and Kershaw, C.J. Biomechanical measurement of fracture
healing. J. Med. Eng. and Technol. 14,92-101,1990.

14. Hotter, N. (1961). New method for heart studies. Science, 134,1214-1220.

15. Hutton, W.C. and Dhanendran, M. A study of the distribution of load under'the normal foot
during walking. Int. Orthop. 3,153-157,1979.

16. Duckworth, T., Betts, R.P., Franks, C.I. and Burke, J. The measurement of pressures under
the foot. Foot & Ankle 3,130-141,1982.

17. Harris, D., Gwillim, J., Cochrane, G. and Hopkins, S. Monitoring performance and activity.
10th Annual Report of the Oxford Orthopaedic Engineering Centre, 80-84,1983.

18. PSI Systems Mini-module Hardware Manual PSI-K100/3.

Page 175

Appendix 2

19. Cunningham, J.L. and Kershaw, C.J. Ultrasonic assessment of fracture healing. Brit. J.
Radiol. 63,393,1989.

20. Shah, K.M., Nicol, A C. and Richardson, J.B. A method of non-invasive fracture stiffness
measurement. Proc. 6th Meeting of the European Society of Biomechanics, C10,1988.

Page 176

Appendix 3 : The Ambulatory Monitor Program Listing

/* T h i s programme i s i n a f i n i s h e d and working s t a t e , a l l o p t i o n s */
/* h a v i n g been f u l l y t e s t e d . However due to i t s e v o l u t i o n */
/* d u r i n g t r i a l s p a r t s of one f e a t u r e , t h a t due to time l i m i t a t i o n s was */
/* not f i n i s h e d , remain i n the code (f o r a i d i n g f u t u r e e x t e n s i o n of the */
/* programme). T h i s f e a t u r e i s the s i m u l t a n e o u s m o n i t o r i n g of 2 l e g s . */
/* T h e r e f o r e c u r r e n t l y o n l y 1 l e g can e v e r be monitored d u r i n g a t r i a l */
/* meaning t h a t 'legs_monitored' i s always 1. */

i n c l u d e <stdio.h>
i n c l u d e <minos.h>
i n c l u d e <moddef.h>
i n c l u d e <i2c.h>
i n c l u d e <time.h>
i n c l u d e <mriext.h>
i n c l u d e < s t r i n g . h >
i n c l u d e <errno.h>
• i n c l u d e < s t d l i b . h >
• i n c l u d e "moddef.h"
• i n c l u d e "procs.h"
• i n c l u d e "minos.h"

• d e f i n e ON 1
• d e f i n e OFF 0
• d e f i n e SUCCESSFUL 1
• d e f i n e UNSUCCESSFUL 0
• d e f i n e DATA_SIZE 212
• d e f i n e RESULTS_SIZE 30000
• d e f i n e EVENT_SIZE 8 /* event s i z e , power down, d i s p l a y ,
l e g s _ m o n i t o r e d , c a l i b r a t e _ v a l u e O , 1, 2, 3 */
• d e f i n e EVENT_LEVEL1 30
• d e f i n e DATA_FILE 1
• d e f i n e RESULTS_FILE 2
• d e f i n e SECONDS 0
• d e f i n e HUNDREDTHS_OF_SECS 1
• d e f i n e RECORDING 6
• d e f i n e PC_LINK 4
• d e f i n e TRANSMITTING 2
• d e f i n e ERROR 0
• d e f i n e MEMORY_FULL 0
• d e f i n e SWITCH_PC_LINK 8

typedef c h a r tname[10];

l o a d (c h a r *) ;
e x t e r n i-nfc _paths-[] ;
v o i d *sysmem(i n t , i n t) ;
c h a r * c l e a r w h i t e (c h a r *) ;
c h a r *getcmd(c h a r *, c h a r *) ;
c h a r * g e t a r g (c h a r *, c h a r *, i n t) ;
v o i d * l i n k (c h a r *) ;
i n t s a v e _ f i l e (F I L E * , i n t) ;
f l o a t t ime_increment(v o i d) ;
v o i d c a l c _ r e s u l t s (v o i d) ;
v o i d p r e s s u r e _ i n p u t (v o i d) ;
i n t o p e n _ d a t a _ f i l e (i n t) ;
i n t o p e n _ r e s u l t s _ f i l e (i n t) ;
i n t open_event_f i l e (v o i d) ,-
v o i d setup_datamods(v o i d) ;
v o i d w r i t e r e g (i n t , i n t) ;
v o i d w r i t e b c d r e g (i n t , i n t) ;
v o i d s l e e p (i n t , i n t) ;
i n t l i n k _ t e s t (v o i d) ;
v o i d s t a m p _ r e s u l t s (i n t) ;
u n s i g n e d c h a r g e t _ a d c (i n t) ;
v o i d s w i t c h _ o n (i n t) ,-
v o i d s w i t c h _ o f f (i n t) ;
u n s i g n e d c h a r i n t e r p o l a t e) i n t , unsigned char, u n signed c h a r , u n s i g n e d c h a r
) ;

Page 177

Appendix 3

v o i d g e t _ o u t f i l e _ n a m e (c h a r *) ;
v o i d e r r o r (v o i d) ;
v o i d s t a r t u p _ e v e n t _ f i l e (v o i d) ;
v o i d s e t u p _ e v e n t _ f i l e (v o i d) ;

/* The f o l l o w i n g s t r u c t u r e s , p o i n t e r s , e t c . a r e d e f i n e d g l o b a l l y f o r */
/* ease of implementation. */

s t r u c t moddef * r e s u l t s l ;
s t r u c t moddef * r e s u l t s 2 ;
s t r u c t moddef *event
s t r u c t moddef * d a t a l
s t r u c t moddef *data2
s t r u c t moddef * t e s t ;
u n s i g n e d c h a r * c u r _ r e s u l t l ;
u n s i g n e d c h a r * c u r _ r e s u l t 2 ;
u n s igned c h a r * c u r _ e v e n t ;
unsigned c h a r *power_down;
unsigned c h a r * d i s p l a y ;
u n s i g n e d c h a r * l e g s _ m o n i t o r e d ;
unsigned c h a r * c a l i b r a t e _ v a l u e O ;
u n s i g n e d c h a r * c a l i b r a t e _ v a l u e l ;
u n s i g n e d c h a r * c a l i b r a t e _ v a l u e 2 ;
u n s i g n e d c h a r * c a l i b r a t e _ v a l u e 3 ;
u n s i g n e d c h a r * c u r _ d a t a l ;
u n s i g n e d c h a r * c u r _ d a t a 2 ;
s t r u c t tm tim;
s t r u c t tm * c u r _ t i m e ;
c h a r o u t f i l e _ n a m e [1 3] ;
c h a r module_name[] =" 0 0 0";

/* Below a r e v a r i a b l e s used by s h e l l () . */

tname t y p e s [] =
{

} ;

"Program",
" D i t " ,
" D r i v e r " ,
"System",
"Modula",
"Data"

c h a r B u f f e r [8 0] ;
F I L E * i n ;
F I L E *out;
i n t coproc;
i n t I n p _ P a t h ;
i n t Out_Path;

/* Holds p a t h to be used f o r i n p u t */
/* Holds pa t h to be used f o r output */
/* F l a g to show c o n c u r r e n t e x e c u t i o n */

/* The f o l l o w i n g r o u t i n e i s c a l l e d a t the i n i t i a l i s a t i o n s t a g e of the
/* program i f t h i s i s the f i r s t time i t i s b e i n g run (i e . t h e r e i s no
/* event f i l e p r e s e n t i n memory w i t h a s s i g n e d f l a g s f o r program
/* o p e r a t i o n and s c a l i n g v a l u e s f o r the t r a n s d u c e r c a l i b r a t i o n .
/* T h e r e f o r e the f l a g s and s c a l i n g v a l u e s a r e s e t to i n i t i a l d e f a u l t s) .

v o i d s t a r t u p _ e v e n t _ f i l e ()

{

c u r _ e v e n t = (unsigned c h a r *) event + event -> s t a r t ;

* c u r _ e v e n t = EVENT_LEVEL1; /* T h r e s h o l d minimum v a l u e f o r the
/* o c c u r r a n c e of an event. */

cur_event++;
* c u r _ e v e n t = ON; /* P r o c e s s o r power down = ON */
power_down = c u r _ e v e n t ; /* The power_down (and subsequent p o i n t e r s) a r e

/* s t r i c t l y n e c e s s a r y , but they a i d i n program */
/* r e a d a b i l i t y and g i v e a s l i g h t speed i n c r e a s e */
/* a t the expense of e x t r a memory usage. */

Page 178

Appendix 3

141
142 c u r event++;
143 * c u r event = OFF; /* D i s p l a y = OFF */
144 d i s p l a y = c u r event;
145
146 cur_event++;
147 * c u r _ e v e n t = 1 ; /* No. of l e g s monitored = 1 */
148 l e g s monitored = c u r event;
149
150 c u r event++;
151 * c u r _ e v e n t = 120; /* C a l i b r a t e _ v a l u e O = 0.90 (Calcaneous */
152 /* t r a n s d u c e r s c a l i n g v a l u e) . */
153 c a l i b r a t e valueO = c u r event;
154
155 cur_event++;
156 * c u r event = 85; /* c a l i b r a t e v a l u e l = 0.75 */
157 c a l i b r a t e v a l u e l = c u r event;
158
159 cur_event++;
160 * c u r event = 120; /* c a l i b r a t e v a l u e 2 = 0.75 */
161 c a l i b r a t e v a l u e 2 = c u r event;
162
163 c u r event++;
164 * c u r event = 120; /* c a l i b r a t e v a l u e 3 = 0.75 */
165 c a l i b r a t e v a l u e 3 = c u r event;
166
167 c u r _ e v e n t = (unsigned c h a r *) event + event -> s t a r t ;
168
169 }
170
171
172 /* The f o l l o w i n g r o u t i n e i s c a l l e d a t the i n i t i a l i s a t i o n s t a g e of the */
173 /* program i f the program was run p r e v i o u s l y and t h e r e f o r e the b a t t e r y */
174 /* backed RAM s t i l l c o n t a i n s the p r e v i o u s e v e n t s f i l e . I t t h e r e f o r e */
175 /* j u s t s e t s the p o i n t e r s to p o i n t to the r e l e v a n t p a r t of the f i l e */
176 /* s t o r i n g t h e i r v a l u e . */
177
178 v o i d setup event f i l e ()
179
180 {
181 c u r event = (unsigned c h a r *) event + event -> s t a r t ;
182
183 c u r event++;
184 power down = c u r event;
185
186 c u r event++;
187 d i s p l a y = c u r _ e v e n t ;
188
189- e u r event++;
190 l e g s monitored = c u r event;
191
192 c u r event++;
193 c a l i b r a t e valueO = c u r event;
194
195 c u r event++;
196 c a l i b r a t e v a l u e l = c u r _ e v e n t ;
197
198 c u r event++;
199 c a l i b r a t e v a l u e 2 = c u r event;
200
201 c u r event++;
202 c a l i b r a t e v a l u e 3 = c u r _ e v e n t ;
203
204 c u r _ e v e n t = (unsigned c h a r *) event + event -> s t a r t ;
205
206 }
207
208
209 main()
210
211 {
212 i n t run=SUCCESSFUL,i, outcome;

Page 179

Appendix 3

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

F I L E * f p t r ;

i n i t i 2 c () ; /* T h i s i n i t i a l i s e s the Mini-module i 2 c bus f o r I/O */

c u r _ t i m e = &tim; /* The l i b r a r y f u n c t i o n s which a c c e s s the */
/* r e a l - t i m e c l o c k r e t u r n to a s t r u c t u r e of t y p e * /
/* tm. T h e r e f o r e tim s t o r e s the v a l u e s , and a */
/* p o i n t e r to i t (c u r _ t i m e) i s used to a c c e s s */
/* them. */

/* The f o l l o w i n g l i n e s s e t the d i g i t a l c h a n n e l s to e i t h e r i n p u t s or */
/* outputs (the i n p u t needed o n l y f o r the c h annel connected to the */
/* s w i t c h which when d e p r e s s e d i n d i c a t e s to the Mini-module to attempt */
/* to a c c e s s the PC v i a the s e r i a l i n t e r f a c e . */

outch(RECORDING) ;
outch(PC_LINK) ;
outch(ERROR) ;
outch(TRANSMITTING) ;
i n c h (SWITCH_PC_LINK) ;

/* The f o l l o w i n g s i m p l y s w i t c h o f f the l e d s . */

s w i t c h _ o f f (RECORDING) ;
s w i t c h _ o f f (PC_LINK) ;
s w i t c h _ o f f (ERROR) ;
s w i t c h _ o f f (TRANSMITTING) ;

outcome = o p e n _ e v e n t _ f i l e () ; /* An attempt i s made to s e t up an */
/* events f i l e which i s o n l y s u c c e s s f u l */
/* i f t h e r e i s none a l r e a d y p r e s e n t . */

i f (outcome==SUCCESSFUL) /* I f f i r s t time round, setup v a r i a b l e s */
/* (p o i n t e r s) . */

s t a r t u p _ e v e n t _ f i l e () ;
e l s e

s e t u p _ e v e n t _ f i l e () ; /* S t a r t e d up w i t h event f i l e a l r e a d y p r e s e n t */

s etup_datamods(); /* T h i s f u n c t i o n d e l e t e s any d a t a f i l e s p r e s e n t */
/* and makes new blank ones. I t a l s o c r e a t e s */
/* new r e s u l t s f i l e (s) i f not a l r e a d y p r e s e n t . */

w h i l e (1) { /* e n d l e s s loop */

setup_datamods()

p r e s s u r e _ i n p u t ()

c a l c _ r e s u l t s ()

/* C l e a r s d a t a f i l e s .

I* T h i s f u n c t i o n samples the A/D
/* c o n v e r t e r s u n t i l the d a t a f i l e (s) a r e * /
/* - f u l l . I n t h i s f u n c t i o n the "sampling */
/* can be i n t e r r u p t e d f o r PC a c c e s s f o r */
/* downloading r e s u l t s e t c . . */

/* T h i s f u n c t i o n a n a l y s e s the d a t a
/* f i l e (s) and s t o r e s the i n f o r m a t i o n */
/* f o r any events t h a t o c c u r . */

/* program e x e c u t i o n s h o u l d never get h e r e */

}

e r r o r () ;

}

/* T h i s r o u t i n e stamps each r e s u l t f i l e w i t h the y e a r , month, and day o f * /
/* month. As t h i s i n f o r m a t i o n i s the same f o r a l l e v e n t s , i t i s o n l y */
/* s t o r e d once a t the s t a r t of each R e s u l t s f i l e . The t r e e items of */
/* i n f o r m a t i o n a r e compressed i n t o two b y t e s by b i t s h i f t i n g . */

v o i d s t a m p _ r e s u l t s (i n t n o _ o f _ l e g s)

{
unsigned c h a r c t i m e l , ctime2; /* These 2 v a r i a b l e s h o l d the compressed*/

Page 180

Appendix 3

285 /* i n f o r m a t i o n . */
286 g e t i m e (c u r _ t i m e) ; /* The c u r time p o i n t e r of type tm s t r u c t u r e */
287 /* p o i n t s to a t i m of type s t r u c t u r e tm which */
288 /* s t o r e s the time i n f o r m a t i o n . */
289
290 c t i m e l = (unsigned char) ((c u r _ t i m e -> tm y e a r) - 1) ;
291 c t i m e l = c t i m e l « 1;
292 c t i m e l += (unsigned c h a r) (c ur time -> tm mon) >> 3;
293 ctime2 = (unsigned char) (c u r _ t i m e -> tm_mon) & 7;
294
295 ctime2 = ctime2 << 5;
296 ctime2 += (unsigned char) (c u r _ t i m e -> tm_mday) & 31;
297
298 i f (n o _ o f _ l e g s == 2) {
299 * c u r r e s u l t 2 = c t i m e l ;
300 c u r r e s u l t 2 + + ;
301 * c u r r e s u l t 2 = ctime2;
302 c u r r e s u l t 2 + + ;
303 * c u r _ r e s u l t 2 = 255; /* Two subsequent 255s i n d i c a t e the end */
304 /* of the r e s u l t s c u r r e n t l y s t o r e d i n */
305 /* the R e s u l t s f i l e . */
306 c u r _ r e s u l t 2 + + ;
307 * c u r r e s u l t 2 = 255;
308 c u r r e s u l t 2 + + ;
309 }
310
311 * c u r r e s u l t l = c t i m e l ;
312 c u r r e s u l t l + + ;
313 * c u r r e s u l t l = ctime2;
314 c u r _ r e s u l t l + + ;
315 * c u r _ r e s u l t l = 255;
316 c u r r e s u l t l + + ;
317 * c u r r e s u l t l = 255;
318 c u r r e s u l t l + + ;
319
320 }
321
322
323 /* The f o l l o w i n g two r o u t i n e s a r e w r i t t e n f o r b e t t e r code r e a d a b i l i t y . */
324 /* When s w i t c h i n g a LED on, the d i g i t a l l i n e i s a c t u a l l y t u r n e d o f f , */
325 /* and v i c e v e r s a . */
326 /* For both, f u n c t i o n i s the d i g i t a l l i n e number (d e f i n e d above a s a */
327 /* ' f u n c t i o n ' eg. TRANSMITTING). */
328
329 v o i d s w i t c h on(i n t f u n c t i o n)
330
331 {
332
333 t u r n o f f (f u n c t i o n) ;
334
335 }
336
337
338 v o i d s w i t c h o f f (i n t f u n c t i o n)
339
340 {
341
342 turnon(f u n c t i o n) ;
343
344 }
345
346
347 /* T h i s f u n c t i o n i s c a l l e d from the p r e s u r e _ i n p u t f u n c t i o n , when the */
348 /* o p e r a t o r s e l e c t s o p t i o n 1 (r e c o r d r e s u l t s) from the o p t i o n s menu. */
349 /* T h i s f u n c t i o n i s then c a l l e d w i t h the ' f u n c t i o n ' v a r i a b l e b e i n g */
350 /* RESULTS_FILE. I n f a c t , DATA_FILE i s never c a l l e d , but was o r i g i n a l l y * /
351 /* used f o r debugging purposes. */
352
353 i n t s a v e _ f i l e (F I L E * f p t r , i n t f u n c t i o n)
354
355 {
356 i n t i , temp_i, outcome=UNSUCCESSFUL, y e a r , month, d_month,

Page 181

Appendix 3

357 hour, min, s e c , temp, max v a l u e , msb;
358 u n s i g n e d c h a r *temporary;
359
360 s w i t c h) f u n c t i o n) {
361 c a s e RESULTS_FILE:
362 outcome = SUCCESSFUL;
363 c u r _ r e s u l t l = (unsigned c h a r *) r e s u l t s l + r e s u l t s l -> s t a r t ;
364 temporary = (unsigned c h a r *) r e s u l t s l + r e s u l t s l -> s t a r t ;
365
366 y e a r = (* c u r _ r e s u l t l >> 1) & 127;
367 month = (*cur r e s u l t l & 1) « 3;
368 c u r r e s u l t l + + ;
369 month += ((* c u r r e s u l t l & 224) » 5) ;
370 d month = * c u r r e s u l t l & 31;
371
372 c u r r e s u l t l + + ;
373 temporary = c u r r e s u l t l ;
374 temporary++;
375
376 f p r i n t f (f p t r , " % d \ r \ n " , * l e g s _ m o n i t o r e d) ;
377 f p r i n t f (f p t r , "%d\r\n", * c u r _ e v e n t) ;
378
379
380 /* The w h i l e loop below c o n t i n u e s u n t i l 255 255 i s r e a c h e d i n */
381 /* the f i l e (which i s the end of f i l e marker. */
382
383 w h i l e ((*cur r e s u l t l ! = 2 5 5) && (*temporary!=255)) {
384 hour = * c u r r e s u l t l >> 3;
385 min = (*cur r e s u l t l & 7) « 3;
386 c u r r e s u l t l + + ;
387 min += (* c u r _ r e s u l t l & 224) » 5;
388 s e c = (* c u r _ r e s u l t l & 31) * 2;
389 i f (sec>59) {
390 s e c = 59;
391 }
392 c u r r e s u l t l + + ;
393
394 f p r i n t f (f p t r , " % d " , h o u r) ;
395 f p r i n t f (f p t r , " % d ",min);
396 f p r i n t f (f p t r , " % d " , s e c) ;
397
398 max v a l u e = (*cur r e s u l t l » 1) & 127;
399 msb = * c u r r e s u l t l & 1;
400
401 f p r i n t f (f p t r , " % d ",max_value);
402 f p r i n t f (f p t r , " % d ",msb);
403 c u r r e s u l t l + + ;
404
405 f o r (temp=0; temp<2; temp++) {
406 f p r i n t f (f p t r , " % d " , * c u r _ r e s u l t l) ;
407 c u r r e s u l t l + + ;
408 }
409
410 f p r i n t f (f p t r , " \ r \ n ") ;
411
412 temporary = c u r _ r e s u l t l ;
413 temporary++;
414
415 }
416
417 f p r i n t f (f p t r , "999") ,- /* T h i s i s the end of f i l e marker f o r */
418 /* the PC d a t a f i l e . */
419
420 b a c k u p (r e s u l t s l , 0) ; /* These l i n e s d e l e t e the R e s u l t s l . d a t */
421 u n f i x (" R e s u l t s l . d a t ") ; /* f i l e , and open a new one (e f f e c t i v e l y * /
422 o p e n _ r e s u l t s _ f i l e (1) ; /* j u s t d e l e t i n g the o l d c o n t e n t s . */
423
424
425 /* Opening a new r e s u l t s f i l e a l s o w r i t e s 255 255 a s the f i r s t */
426 /* 2 unsigned c h a r numbers. T h e r e f o r e the s t a r t f o r new d a t a */
427 /* f o r the r e s u l t s f i l e i s a l r e a d y incremented t w i c e w i t h t h e */
428 /* end of f i l e marker. T h e r e f o r e i t i s decremented t w i c e so */

Page 182

Appendix 3

429 /* t h a t new r e s u l t s d a t a can be w r i t t e n from the s t a r t of the */
430 /* f i l e . */
431
432 c u r _ r e s u l t l - - ;
433 c u r _ r e s u l t l - - ;
434
435 f p r i n t f (f p t r , " % c " , OxOD);
436 f p r i n t f (f p t r , " % c " , OxOA);
437 f p r i n t f (f p t r , " % c " , EOF);
438
439 p r i n t f (" \ r \ n ") ;
440
441 break;
442
443 c a s e DATA_FILE:
444 outcome = SUCCESSFUL;
445 c u r _ d a t a l = (unsigned c h a r *) d a t a l + d a t a l -> s t a r t ;
446
447 f o r (i = 0; i<DATA_SIZE; i++) {
448 i f ((i%20)==0) {
449 f p r i n t f (f p t r , " % c " , OxOD);
450 f p r i n t f (f p t r , " % c " , OxOA);
451 }
452 f p r i n t f (f p t r , " % d " , *cur d a t a l) ;
453 c u r datal++;
454 }
455
456 f p r i n t f (f p t r , " % c " , OxOD);
457 f p r i n t f (f p t r , " % c " , OxOA) ,-
458 f p r i n t f (f p t r , " % c " , EOF);
459 break;
460
461 }
462
463 r e t u r n (outcome) ; /* 'outcome' i s SUCCESSFUL i f e i t h e r of the 2 */
464 /* c a s e branches have been e n t e r e d ; o t h e r w i s e i t * /
465 /* i s UNSUCCESSFUL. */
466
467 }
468
469
470 /* T h i s f u n c t i o n i s c a l l e d from the main() f u n c t i o n , a f t e r the */
471 /* p r e s s u r e _ i n p u t f u n c t i o n has been c a l l e d . T h i s f u n c t i o n a n a l y s e s the */
472 /* d a t a f i l e , s t o r i n g the r e s u l t s f i l e the i n f o r m a t i o n f o r any e v e n t s */
473 /* t h a t o c c u r . */
474
475 v o i d c a l c r e s u l t s ()
476 477 {
478 i n t d a t a counts, i , c, max value=0, counts, s t a r t = - l , f i n i s h = 0 ,
479 y e a r , yday, month, sec_temp, min_temp, hour_temp, day_month,
480 i s d s t , hour, min, s e c ;
481 u n s i g n e d c h a r c t i m e l , ctime2, ctime3;
482 f l o a t t i m e _ i n c ;
483 u n s i g n e d c h a r m_days[]={31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 3 1 } ;
484
485
486 /* F i r s t a t e s t i s performed to ensure t h a t the R e s u l t s f i l e e x i s t s f o r */
487 /* the number of l e g s s p e c i f i e d (c u r r e n t l y t h e r e can o n l y be 1) . */
488
489 i f ((*legs_monitored==l) && ((t e s t = l i n k (" R e s u l t s l . d a t ")) ! = N U L L)) {
490 time i n c = t i m e _ i n c r e m e n t () ; /* The i n t e r - s a m p l e time */
491
492 i f (*display==ON)
493 p r i n t f (" \ r \ n T i m e i n c : % f ", t i m e _ i n c) ;
494
495 c u r d a t a l = (unsigned c h a r *) d a t a l + d a t a l -> s t a r t ;
496
497 y e a r = * c u r _ d a t a l ;
498 c u r _ d a t a l + + ;
499 month = * c u r _ d a t a l ;
500 c u r _ d a t a l + + ;

Page 183

file:///r/nTime

Appendix 3

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

day_month = * c u r _ d a t a l ;
c u r _ d a t a l + + ;
hour = * c u r _ d a t a l ;
c u r _ d a t a l + + ;
min = * c u r _ d a t a l ;
c u r _ d a t a l + + ;
s e c = * c u r _ d a t a l ;
c u r _ d a t a l + + ;

sec_temp = s e c ;
min_temp = min;
hour_temp = hour;
s t a r t = - l ; f i n i s h = 0 ;

d a t a counts DATA_SIZE-12; /* -12 because the f i r s t 6 and */
/* l a s t 6 b y t e s a r e used f o r */
/* the s t a r t and f i n i s h time */
/* stamps. */

f o r (i=0; i < d a t a _ c o u n t s ; i++) {
i f (s t a r t == -1) /* s t a r t = = - l when c u r r e n t */

/* p o s i t i o n i s not i n an event. */
counts=0; /* So c u r r e n t number of samples */

/* c o m p r i s i n g the event i s 0. */

i f ((* c u r _ d a t a l > * c u r _ e v e n t) && (s t a r t = = - l)) {
/* i e the s t a r t of an event */

s t a r t = i ; /* The p o s i t i o n of the s t a r t of */
/* the event i n the f i l e . */

/* C u r r e n t l y event comprises of */
/* 1 samples. */

counts 1;

}
e l s e i f (* c u r _ d a t a l > * c u r _ e v e n t) {
/* i e a l r e a d y i n an event */

i f (i = = d a t a _ c o u n t s - l) /* I f a t the end of the */
/* d a t a f i l e . */

f i n i s h = s t a r t + c o u n t s ;

e l s e /* Otherwise increment the number of */
/* samples c o m p r i s i n g the event. */
counts++;

}
e l s e i f ((* c u r _ d a t a l < * c u r _ e v e n t) && (s t a r t ! = - l))
/* i e the end of an event */

f i n i s h = s t a r t + c o u n t s ;

i f (f i n i s h != 0) {
/* i e an event has j u s t f i n i s h e d */

/* F i r s t rewind p o i n t e r to the s t a r t of the event*/
f o r (c=0; c<counts; c++) {

c u r _ d a t a l - - ;
}

/* Next o b t a i n the peak f o r the event. */
f o r (c=0; c<counts; c++) {

i f (* c u r _ d a t a l > max_value)
max_value = * c u r _ d a t a l ;

c u r _ d a t a l + + ;
}

/* a t
.._temp' has p r e v i o u s l y been s e t to the time*/
*- the s t a r t of the d a t a f i l e . */

/* Now s e t 'sec' to the middle sample of the */
/* event. T h i s might take i t over 60, so a f t e r */
/* 'min', 'hour', 'yday', 'year' a r e incremented*/
/* as r e q u i r e d . */
s e c = s e c _ t e m p + ((f i n i s h - (c o u n t s / 2)) * t i m e _ i n c) ;

Page 184

Appendix 3

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

min = min_temp;
hour = hour_temp;
w h i l e (s e c > 59) {

se c -= 60;
min += 1;
}

w h i l e (min > 59) {
min -= 60;
hour += 1;
}

/* T h i s c a l c u l a t e s the yday. */
yday = 0; c=0;
w h i l e (month != (c+1)) {

yday += m _ d a y s [c] ;
c++;
}

yday += day_month;

w h i l e (hour > 23) {
hour -= 24;
yday++;
}

w h i l e (yday > 365) {
yday -= 365;
year++;
}

/* The time stamp i n f o r m a t i o n i s now compressed */
/* from 3 b y t e s to 2.
c t i m e l = (unsigned c h a r) hour;
c t i m e l = c t i m e l << 3;
c t i m e l += (unsigned char) (min >> 3) & 7;
ctime2 = (unsigned char) min & 7;
ctime2 = ctime2 << 5;
ctime2 += (unsigned char) ((s e c / 2) & 3 1) ;
ctime3 = (max_value & 127) « 1;

/* The top-most b i t of the counts v a l u e i s
/* packed a t the end of the 3rd b y t e .
ctime3 += (counts >> 8) & 1;

'/

* c u r _ r e s u l t l =
c u r _ r e s u l t l + + ;
* c u r _ r e s u l t l =
c u r _ r e s u l t l + + ;
* c u r _ r e s u l t l =
c u r _ r e s u l t l * + ;
* c u r _ r e s u l t l =
c u r _ r e s u l t l + + ;
* c u r _ r e s u l t l =
c u r _ r e s u l t l + + ;

f i n i s h = 0;
s t a r t = -1;
max v a l u e = 0;

c t i m e l ;

ctime2;

ctime3;

counts & OxFF;

(unsigned c h a r)

/* LSB of counts */

(t i m e _ i n c * 1 0 0) ;

/* R e s e t t h e s e v a r i a b l e s to */
/* c o n t i n u e a n a l y s i s n g the d a t a */
/* f i l e f o r more e v e n t s . */

}

c u r _ d a t a l + + ;

}

/* At the end of the c u r r e n t r e s u l t s d a t a i n the r e s u l t s f i l e ,
/* put 255 255 a s the end of f i l e marker.
* c u r _ r e s u l t l = 255;
c u r _ r e s u l t l + + ;
* c u r _ r e s u l t l = 255;
c u r _ r e s u l t l - - ;

}

*/
*/

Page 185

Appendix 3

645
646 e l s e { /* I f the R e s u l t s l . d a t f i l e i s not found, an e r r o r has o c c u r r e d . */
647 s w i t c h _ o f f (RECORDING) ;
648 s w i t c h _ o f f (PC_LINK) ;
649 s w i t c h _ o f f (TRANSMITTING) ;
650 s w i t c h on(ERROR) ;
651
652 i f (*legs_monitored==l)
653 p r i n t f (" \ r \ n ! ! ! ERROR !!! :- R e s u l t s l . d a t not found");
654
655 w h i l e (1) ; /* I n f i n i t e loop, i e . programme h a l t s a t t h i s p o i n t
656 */
657
658 }
659
660
661 }
662
663
664 /* T h i s f u n c t i o n c a l c u l a t e s the i n t e r - s a m p l e time. */
665
666 f l o a t time i n c r e m e n t ()
667
668 {
669 i n t i , s t a r t _ y e a r , s t a rt_month, s t a r t day month, s t a r t i s d s t ,
670 s t a r t _ h o u r , s t a r t _ m i n , s t a r t s e c , f i n i s h y e a r , f i n i s h month,
671 f i n i s h day month, f i n i s h i s d s t , f i n i s h hour,
672 f i n i s h min, f i n i s h s e c , hours, mins, s e e s ;
673 unsigned c h a r * f i l e time;
674 f l o a t time, i n c time;
675
676 f i l e time = (unsigned c h a r *) d a t a l + d a t a l -> s t a r t ;
677
678 s t a r t _ y e a r = * f i l e time;
679 f i l e time++;
680 s t a r t month = * f i l e time;
681 f i l e time++;
682 s t a r t day month = * f i l e time;
683 f i l e time++;
684 s t a r t hour = * f i l e time;
685 f i l e time++;
686 s t a r t min = * f i l e _ t i m e ;
687 f i l e time++;
688 s t a r t s e c = * f i l e time;
689 f i l e . time++;
690
691 f o r (i=0; i<(DATA S I Z E - 1 2) ; i++)
692 f i l e time++;
693 _ .".
694 f i n i s h _ y e a r = * f i l e time;
695 f i l e . time++;
696 f i n i s h month = * f i l e time;
697 f i l e . _time++;
698 f i n i s h day month = * f i l e time;
699 f i l e . time++;
700 f i n i s h hour = * f i l e time;
701 f i l e time++;
702 f i n i s h min = * f i l e time;
703 f i l e time++;
704 f i n i s h s e c = * f i l e time;
705 f i l e . time++;
706
707 /* I f f i n i s h _ h o u r < s t a r t _ h o u r i t means t h a t the s t a r t was b e f o r e */
708 /* midnight w i t h the f i n i s h being a f t e r . T h e r e f o r e add 24 to */
709 /* f i n i s h _ h o u r . */
710 i f (f i n i s h _ h o u r < s t a r t _ h o u r)
711 f i n i s h hour += 24;
712
713 hours = f i n i s h _ h o u r - s t a r t _ h o u r ;
714 mins = f i n i s h _ m i n - s t a r t _ m i n ;
715 s e e s = f i n i s h s e c - s t a r t s e c ;
716

Page 186

Appendix 3

717 time = (hours*60*60) + (mins*60) + s e e s ;
718
719 /* The i n t e r - s a m p l e time i s the time d u r a t i o n f o r a l l the samples of */
720 /* the d a t a f i l e d i v i d e d by the number of samples. */
721 i n c _ t i m e = time/(DATA_SIZE-12);
722
723 r e t u r n (i n c _ t i m e) ;
724
725 }
726
727
728 /* T h i s f u n c t i o n i s c a l l e d from the p r e s s u r e _ i n p u t f u n c t i o n . I t */
729 /* c a l c u l a t e s the mass from the p r e s s u r e t r a n s d u c e r r e a d i n g . T h i s */
730 /* o c c u r s from i t s s t o r e d c a l i b r a t e d p r e s s u r e t r a n s d u c e r v a l u e s f o r */
731 /* masses a p p l i e d i n m u l t i p l e s of 5 kg. I t u s e s the i n t e r p o l a t e */
732 /* f u n c t i o n to i n t e r p o l a t e between t h e s e c a l i b r a t e d v a l u e s to o b t a i n t h e * /
733 /* c o r r e s p o n d i n g mass f o r the inpuuted p r e s s u r e t r a n s d u c e r r e a d i n g . */
734
735 unsigned c h a r get adc(i n t no)
736
737 {
738 unsigned c h a r v a l u e ;
739 unsigned c h a r ad []={0,15,30,55,70,85,105,115,135,150,169 , 182,195 , 255} ;
740 /* These a r e the c a l i b r a t i o n p r e s s u r e t r a n s d u c e r v a l u e s f o r each*/
741 /* m u l t i p l e of 5 kg. */
742
743 i n t flag=0, i ;
744
745 v a l u e = adc(no) ;
746
747
748 /* I f the p r e s s u r e t r a n s d u c e r v a l u e s a r e e i t h e r 0 or 255, then s e t to */
749 /* 1 and 254 r e s p e c t i v e l y so t h a t the c a l i b r a t i o n v a l u e s e i t h e r s i d e of */
750 /* can be o b t a i n e d . */
751
752 i f (value==0) {
753 v a l u e = l ;
754 f l a g = l ;
755 }
756
757 /* I t s h o u l d not be p o s s i b l e to get a v a l u e above 255 but j u s t i n c a s e
758 . . . * /
759 e l s e i f (v a l u e >= 255) {
760 value=254;
761 f l a g = l ;
762 }
763
764
-765- /* The f o i l owing code c a l c u l a t e s which c a l i b r a t i o n v a l u e i s j u s t " above */
766 /* the i n p u t t e d v a l u e from the p r e s s u r e t r a n s d u c e r s . I t then r e - s e t s */
767 /* the i n p u t t e d v a l u e s to 0 or 255 i f r e q u i r e d . */
768
769 f o r (i=0; a d [i] < v a l u e ; i++) ;
770 i f (f l a g = = l) {
771 i f (value==254)
772 value=255;
773 e l s e
774 value=0;
775 }
776
777 v a l u e = i n t e r p o l a t e ! i , v a l u e , a d [i - l] , a d [i]) ;
778
779 r e t u r n (v a l u e) ;
780
781 }
782
783
784 unsigned c h a r i n t e r p o l a t e ! i n t l o w e r _ v a l , unsigned c h a r v a l u e ,
785 unsigned c h a r l o w e r _ c a l i b r a t i o n , unsigned c h a r u p p e r _ c a l i b r a t i o n)
786
787 {
788 i n t i ;

Page 187

Appendix 3

789 f l o a t answer;
790
791 /* During c a l i b r a t i o n i t was found t h a t a s l i g h t p r e s s u r e was r e q u i r e d */
792 /* b e f o r e the r e a d i n g changed from 0. T h i s i s added (0 . 2 7 5) . */
793
794 answer = 0 . 2 7 5 + (5 . 0 * (v a l u e - l o w e r _ c a l i b r a t i o n))
795 / ((f l o a t) u p p e r _ c a l i b r a t i o n - l o w e r _ c a l i b r a t i o n) ;
796 answer += (l o w e r _ v a l - l) * 5 . 0 ;
797
798 r e t u r n ((unsigned c h a r) answer) ;
799
800 }
801
802
803 /* I t i s i n t h i s f u n c t i o n t h a t the programme spends most time d u r i n g */
804 /* e x e c u t i o n . The f u n c t i o n i s c a l l e d by the main() f u n c t i o n a f t e r */
805 /* h a v i n g c l e a r e d the d a t a f i l e s . */
806
807 v o i d p r e s s u r e _ i n p u t ()
808
809 {
810 i n t sum, d a t a counts, i , temp, outcome=UNSUCCESSFUL, count, t e s t , f l a g ,
811 s e t s e c , s e t min, s e t hour, s e t mday, s e t mon,
812 s e t _ y e a r , set_wday, s e t yday. s e t i s d s t ;
813 u n s i g n e d c h a r adcO, a d c l , adc2, adc3;
814 u n s i g n e d c h a r *templ r e s u l t s ;
815 u n s i g n e d c h a r *temp2 r e s u l t s ;
816 c h a r f i l e _ n a m e [1 0] , i n p u t ;
817 u n s i g n e d c h a r m_days[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 3 1 } ;
818 s t a t i c f l o a t c a l i b r a t e value=1.0;
819 F I L E * f p t r ;
820
821 /* F i r s t a t e s t i s performed to ensure t h a t t h e r e i s a d a t a f i l e p r e s e n t .
822 */
823
824 i f ((*legs_monitored==l) && ((d a t a l = l i n k (" D a t a l . d a t ")) ! = N U L L)) {
825 s w i t c h on(RECORDING) ;
826 g e t i m e (c u r t i m e) ;
827
828
829 /* The s t a r t of the d a t a f i l e i s time stamped. */
830
831 c u r d a t a l = (unsigned c h a r *) d a t a l + d a t a l -> s t a r t ;
832 * c u r d a t a l = c u r time -> tm_year;
833 c u r datal++;
834
835
836

_837
838
839
840
841
842
843 c u r datal++;
844
845 d a t a _ c o u n t s = DATA_SIZE-12; /* -12 because t h e r e a r e 2 time */
846 /* stamps (one a t the b e g i n n i n g */
847 /* and the o t h e r a t the end) */
848 /* each t a k i n g 6 b y t e s each. */
849
850 f o r (i=0; i < d a t a counts; i++) {
851 adcO = (unsigned c h a r) ((g e t _ a d c (0)) * (* c a l i b r a t e v a l u e 0) / 1 0 0)
852 a d c l = (unsigned c h a r) ((g e t _ a d c (1)) * (* c a l i b r a t e _ v a l u e l) / 1 0 0)
853
854
855 /* The f o l l o w i n g decrements a r e needed f o r when no l o a d */
856 /* i s a p p l i e d on the t r a n s d u c e r s , a v a l u e of 1 or 2 */
857 /* would be r e a d from the A/D 1. */
858
859 i f (adcl>0)
860 a d c l - - ;

* c u r _ d a t a l = cur_ .time -> tm_mon;
c u r _ d a t a l + + ;
* c u r _ d a t a l = cur_ .time -> tm_mday;
cur^_datal++ ; -- -
* c u r _ d a t a l = cur. .time -> tm_hour;
c u r _ d a t a l + + ;
* c u r _ d a t a l = cur. .time -> tm_min;
c u r _ d a t a l + + ;
* c u r _ d a t a l = cur . .time -> tm_sec;

Page 188

Appendix 3

861 i f (adcl>0)
862 add--;
863
864
865 adc2 = (unsigned c h a r) ((g e t _ a d c (2)) * (* c a l i b r a t e _ v a l u e 2) / 1 0 0)
866 adc3 = (unsigned c h a r) ((g e t _ a d c (3)) * (* c a l i b r a t e v a l u e 3) / 1 0 0)
867
868
869 /* Only one decrement i s r e q u i r e d f o r A/D 2 f o r i t s no */
870 /* l o a d v a l u e would be 0 or 1. */
871
872 i f (adc2>0)
873 adc2 — ;
874
875
876 /* By u s i n g 'sum' which i s an i n t , the summation i s */
877 /* f o r c e d to be an i n t so c a u s i n g t h e r e to be no */
878 /* 'wrap-around' i f the sum was g r e a t e r than 255. */
879
880 sum = adcO;
881 sum = sum + a d c l
882 sum = sum + adc2
883 sum = sum + adc3
884
885
886 /* I f 'sum' i s g r e a t e r than 255, then s e t i t to 255 so */
887 /* i t can be s t o r e d i n 1 by t e . T h i s g i v e s the monitor a*/
888 /* range of up to 255 kg (more than enough)! */
889
890 i f (sum > 255)
891 sum = 255;
892
893 /* The t r a n s d u c e r s ' sum (kg) i s then s t o r e d i n the d a t a */
894 /* f i l e . */
895 * c u r _ d a t a l = sum;
896
897
898 /* I f the d i s p l a y t o g g l e (a c c e s s e d from the o p e r a t o r */
899 /* menu i s ON, then p r i n t 'sum' on the s c r e e n . */
900
901 i f (*display==ON) {
902 p r i n t f (" % d " , * c u r _ d a t a l) ;
903
904 /* A d e l a y i s now r e q u i r e d , o t h e r w i s e t h e r e i s a*/
905 /* danger of the RS-485 b u f f e r o v e r f l o w i n g , */
906 /* r e s u l t i n g w i t h the d i s p l a y , keyboard and f i l e * /
907 /* s t o r a g e system hanging. */
908
909 d e l a y (1) ;
910 }
911
912 /* The d a t a f i l e p o i n t e r i s now incremented so t h a t i t */
913 /* p o i n t s to the next f r e e byte. */
914
915 c u r _ d a t a l + + ;
916
917
918 /* A d e l a y i s s p e c i f i e d to slow the sampling r a t e , or i t * /
919 /* would be i n the k i l o (?) H ertz range. */
920
921 d e l a y (1) ;
922
923
924 /* I f the o p e r a t o r has s p e c i f i e d t h a t the p r o c e s s o r */
925 /* s h o u l d be powered down i n between samples, then do s o * /
926 /* f o r 0.1 seconds (e x c l u d i n g time f o r r e - s t a r t i n g i t . */
927
928 i f (*power_down==ON)
929 s l e e p (10, HUNDREDTHS_OF_SECS) ;
930
931
932 /* T e s t f o r the PC s w i t c h on the monitor h a v i n g been */

Page 189

Appendix 3

933 /* t r i g g e r e d (i e r e q u e s t i n g a PC l i n k) . */
934
935 i f (ch(SWITCH_PC_LINK)==0) {
936 s w i t c h _ o f f (RECORDING) ;
937 s w i t c h _ o n (PC_LINK) ;
938
939 /* I t might have been d e p r e s s e d by a c c i d e n t . */
940 /* T h e r e f o r e check f o r a key b e i n g d e p r e s s e d on */
941 /* the keyboard to c o n f i r m . */
942
943 outcome = l i n k _ t e s t () ;
944 i f (outcome == SUCCESSFUL) {
945
946 /* C l e a r the key d e p r e s s e d from the */
947 /* b u f f e r . */
948
949 s c a n f (" % c " , Scinput) ;
950
951
952 /* P r i n t on the s c r e e n the o p t i o n s menu*/
953
954 p r i n t f (" \ r \ n \ n P o s s i b l e o p t i o n s a r e : ") ;
955 p r i n t f (" \ r \ n 1: Record r e s u l t s ") ;
956 p r i n t f (" \ r \ n 2: E d i t event l e v e l ") ;
957 p r i n t f (" \ r \ n 3: C a l i b r a t e t r a n s d u c e r s ") ;
958 p r i n t f (" \ r \ n 4: R e s t a r t " " R e s u l t s l . d a t " "
959 module");
960 p r i n t f (" \ r \ n 5: Power down p r o c e s s o r ON/OFF");
961 p r i n t f (" \ r \ n 6: L i s t r e s u l t s to d a t e ") ;
962 p r i n t f (" \ r \ n 7: Go to s h e l l program");
963 p r i n t f (" \ r \ n 8: R e a l time c l o c k ") ;
964 p r i n t f (" \ r \ n 9: D i s p l a y t o g g l e ") ;
965 p r i n t f (" \ r \ n \ n P l e a s e i n p u t a number (1 - 9) : ") ;
966
967

*/
*/

968 /* Put a d e l a y to l e t the s e r i a l p o r t
969 /* c a t c h up w i t h the program.
970
971 d e l a y (5 0) ;
972
973
974 /* Get the o p e r a t o r i n p u t . */
975
976 s c a n f (" % c " , &input);
977 p r i n t f (" \ r \ n ") ;
978
979
980 /* I f o p t i o n '1' i s chosen, save the */
981 /* r e s u l t s f i l e onto the PC d i s k . Then */
982 /* c l e a r the r e s u l t s and d a t a f i l e s from*/
983 /* memory and r e s t a r t m o n i t o r i n g . */
984
985 i f (i n p u t = = ' l ') {
986 s w i t c h _ o n (TRANSMITTING) ;
987
988 /* For ease of programmer change*/
989 /* the PC f i l e ' s name i s */
990 /* a b s t r a c t e d i n t o a s e p a r a t e */
991 /* f u n c t i o n (so can e a s i l y be */
992 /* changed f o r the whole */
993 /* programme). */
994
995 g e t _ o u t f i l e _ n a m e (o u t f i l e _ n a m e) ;
996 p r i n t f (" \ r \ n S a v i n g ' R e s u l t s l . d a t ' module
997 as ' % s ' on the h a r d d i s k . \ r \ n \ n " , o u t f i l e _ n a m e) ;
998
999 f p t r = f o p e n (o u t f i l e _ n a m e , " w ") ;

1000 outcome = s a v e _ f i l e (f p t r , RESULTS_FILE)
1001 f c l o s e (f p t r) ;
1002
1003
1004 /* Perform a k i n d of r e s e t . */

Page 190

file:///r/n/n
file:///r/n/n
file:///r/nSaving
file:///r/n/n

Appendix 3

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024 d a t a l -> s t a r t ;
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062 /*
1063 /*
1064 /*
1065 /*
1066
1067 e l
1068
1069 k g . " , * c u r _ e v e n t) ;
1070

k g . " , * c u r _ e v e n t) ;

1071 l e v e l ? (Y/N) ") ;
1072
1073
1074
1075
1076

/* D e l e t e the d a t a and r e s u l t s */
/* f i l e s , and c r e a t e new ones. */
/* A l s o r e s e t the loop v a r i a b l e */
/* and d a t a / r e s u l t s f i l e s */
/* p o i n t e r s a f t e r time stamping.*/

/* F i r s t d e l e t e the d a t a f i l e . */

b a c k u p (d a t a l , 0) ;
u n f i x (" D a t a l . d a t ") ;

/* Next c r e a t e a new one and */
/* time stamp i t . */

o p e n _ d a t a _ f i l e (1) ;

getime (c u r _ t i m e) ;
c u r _ d a t a l = (unsigned c h a r *) d a t a l +

* c u r _ d a t a l = c u r _ t i m e -> tm_year;
c u r _ d a t a l + + ;
* c u r _ d a t a l = c u r _ t i m e -> tm_mon;
cu r _ d a t a l + + ;
* c u r _ d a t a l = c u r _ t i m e -> tm_mday;
cur _ d a t a l + + ;
* c u r _ d a t a l = c u r _ t i m e -> tm_hour;
cu r _ d a t a l + + ;
* c u r _ d a t a l = c u r _ t i m e -> tm_min;
cu r _ d a t a l + + ;
* c u r _ d a t a l = c u r _ t i m e -> tm_sec;
c u r _ d a t a l + + ;

/* Next d e l e t e the r e s u l t s f i l e . */

b a c k u p (r e s u l t s l , 0) ;
u n f i x (" R e s u l t s l . d a t ") ;

/* And c r e a t e a new one. */

o p e n _ r e s u l t s _ f i l e (1) ;

c u r _ r e s u l t l - - ;
c u r _ r e s u l t l - - ;

/* as c r e a t e d w i t h 255 255 */

/* F i n a l l y r e s e t the loop v a r i a b l e */

i=0;

s w i t c h _ o f f (TRANSMITTING) ;

}

p r i n t f (" \ r \ n C u r r e n t event l e v e l s e t a t

p r i n t f (" \ r \ n D o you w i s h to change t h i s

s c a n f (" % c " , & i n p u t) ;
i f ((input=='Y')||(input=='y')) {

p r i n t f (" \ r \ n E n t e r new l e v e l : ") ;
s c a n f (" % d " , f c t e s t) ;
w h i l e ((t e s t > 6 5) | | (t e s t < 0)) {

Page 191

file:///r/nCurrent
file:///r/nDo
file:///r/nEnter

Appendix 3

1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1-125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

kg. P l e a s e t r y a g a i n : ") ;

k g . \ r \ n " , * c u r _ e v e n t) ;

e l s e {

p r i n t f (" \ r \ n R a n g e i s 0 to 65

s c a n f (" % d " , & t e s t) ;
}

* c u r _ e v e n t = (unsigned c h a r) t e s t ;
p r i n t f (" \ r \ n \ n L e v e l s e t a t %d

}
p r i n t f (" \ r \ n ") ;
}

/* A d e l a y i s r e q u i r e d to */
/* ensure t h a t the s e r i a l p o r t */
/* has caught up w i t h the */
/* programme. */

d e l a y (1 0) ;
}

/* I f o p t i o n '3' i s s e l e c t e d , the */
/* o p e r a t o r can view the i n d i v i d u a l */
/* t r a n s d u c e r s ' i n p u t v a l u e and change */
/* each one's s c a l i n g v a l u e . */

e l s e i f (input=='3') {
p r i n t f (" \ r \ n W h i c h t r a n s d u c e r do you w i s h

to c a l i b r a t e : ") ;
p r i n t f (" \ r \ n C a l c a n e u s (1) , F i r s t M e t a t a r s a l

Head (2) , F i f t h M e t a t a r s a l Head (3) , ") ;
p r i n t f (" \ r \ n T h i r d M e t a t a r s a l Head (4) , or

monitor a l l t h r e e a t once (5) : ") ;
s c a n f (" % c " , & i n p u t) ;
p r i n t f (" % c \ r \ n " , i n p u t) ;
f f l u s h (s t d i n) ;

i f (input=='l') {
p r i n t f (" C u r r e n t c a l i b r a t i o n v a l u e i s

% d . \ r \ n " , * c a l i b r a t e _ v a l u e O) ;
d e l a y (5 0) ;
flag=OFF;
count=0;
w h i l e (flag==0FF) {

p r i n t f (" % d " , (u n s i g n e d c h a r)
((g e t _ a d c (0)) * { * c a l i b r a t e _ v a l u e 0) / 1 0 0)) ;

d e l a y (4) ;
s l e e p (10, HUNDREDTHS_OF=J3ECS

) ;
i f (count==50) {

p r i n t f (" \ r \ n l n p u t 1 to
c o n t i n u e , 2 to change c a l i b r a t i o n v a l u e , 3 to end c a l i b r a t i o n : ") ;

s c a n f (" % c " , f c i n p u t) ;
p r i n t f (" % c \ r \ n " , i n p u t) ;
i f (i n p u t = = ' l ')

count=0;
e l s e i f (input=='2')

{
p r i n t f (" \ r \ n S e t

c a l b r a t i o n v a l u e * 100 (c u r r e n t l y %d) to (max 2 5 5) : " , * c a l i b r a t e _ v a l u e O) ;

s c a n f (" % d " , & t e s t) ;

* c a l i b r a t e _ v a l u e O = (unsigned c h a r) t e s t ;
p r i n t f (" \ r \ n C a l i b r a t i o n v a l u e s e t a t

% . 2 f \ r \ n " , (* c a l i b r a t e _ v a l u e 0 / 1 0 0 . 0)) ;

e l s e

count=0;
}

flag=ON;

Page 192

file:///r/nRange
file:///r/n/nLevel
file:///r/nWhich
file:///r/nCalcaneus
file:///r/nThird
file:///r/nlnput
file:///r/nSet
file:///r/nCalibration

Appendix 3

1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

p r i n t f (" \ r \ n ") ;
}

% d . \ r \ n " , * c a l i b r a t e _ v a l u e l) ;

((g e t _ a d c (l)) * (* c a l i b r a t e _ v a l u e l) / 1 0 0) ;

count++;

}

e l s e i f (input=='2') {
p r i n t f (" C u r r e n t c a l i b r a t i o n v a l u e i s

d e l a y (5 0) ;
flag=OFF;
count=0;
w h i l e (flag==OFF) {

adcO = (unsigned c h a r)

) ;

i f (adc0>0)
adcO--;

i f (adcO>0)
adcO--;

p r i n t f (" % d ", adcO);

d e l a y (4) ;
s l e e p (10, HUNDREDTHS_OF_SECS

i f (count==50) {
p r i n t f (" \ r \ n l n p u t 1 to

co n t i n u e , 2 to change c a l i b r a t i o n v a l u e , 3 to end c a l i b r a t i o n : ") ;
s c a n f (" % c " , & i n p u t) ;
p r i n t f (" % c \ r \ n " , i n p u t) ;

{

c a l b r a t i o n v a l u e * 100 (c u r r e n t l y %d) to (max 255)

s c a n f (" % d " , & t e s t) ;

* c a l i b r a t e _ v a l u e l = (unsigned c h a r) t e s t ;

p r i n t f (" \ r \ n C a l i b r a t i o n v a l u e s e t a t
% . 2 f \ r \ n " , (* c a l i b r a t e _ v a l u e l / 1 0 0 . 0)) ;

i f (input== 11')
count=0;

e l s e i f (input=='2')

p r i n t f (" \ r \ n S e t
" , * c a l i b r a t e _ v a l u e l) ;

e l s e

count=0;
}

flag=ON;

p r i n t f (" \ r \ n ") ;
}

% d . \ r \ n " , * c a l i b r a t e _ v a l u e 2) ;

((g e t _ a d c (2)) * (* c a l i b r a t e _ v a l u e 2) / 1 0 0) ;

count++;

}

e l s e i f f input=='3') {
p r i n t f (" C u r r e n t c a l i b r a t i o n v a l u e i s

d e l a y (5 0) ;
f l ag=0FF;
count=0;
w h i l e (flag==OFF) {

adcO = (unsigned c h a r)

Page 193

file:///r/nlnput
file:///r/nCalibration
file:///r/nSet

Appendix 3

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292

) ;

i f f adc0>0)

adcO — ;

p r i n t f (" % d ", adcO);

d e l a y (4) ;
s l e e p (10, HUNDREDTHS_OF_SECS
i f (count==50) {

p r i n t f (" \ r \ n l n p u t 1 to
co n t i n u e , 2 to change c a l i b r a t i o n v a l u e , 3 to end c a l i b r a t i o n : ") ;

s c a n f (" % c " , f c i n p u t) ;
p r i n t f (" % c \ r \ n ") ;

i f (i n p u t = = ' l ')
count=0;

e l s e i f (input=='2')
{

p r i n t f (" \ r \ n S e t

c a l b r a t i o n v a l u e * 100 (c u r r e n t l y %d) to (max 2 5 5) : " , * c a l i b r a t e _ v a l u e 2) ;

s c a n f (" % d " , & t e s t) ;

* c a l i b r a t e _ v a l u e 2 = (unsigned char) t e s t ;
p r i n t f (" \ r \ n C a l i b r a t i o n v a l u e s e t a t

% . 2 f \ r \ n " , (* c a l i b r a t e _ v a l u e 2 / 1 0 0 . 0)) ;

e l s e

count=0;
}

flag=ON;

p r i n t f (" \ r \ n ") ;
}

count++;

}

% d . \ r \ n " , * c a l i b r a t e _ v a l u e 3)

(g e t _ a d c (3)) * (* c a l i b r a t e _ v a l u e 3) / 1 0 0)

e l s e i f (input=='4') {
p r i n t f (" C u r r e n t c a l i b r a t i o n v a l u e i s

d e l a y (5 0) ;
flag=0FF;
count=0;
w h i l e (flag==OFF) {

adcO = (unsigned c h a r)

) ;

p r i n t f (" % d ", adcO);

d e l a y (4) ;
s l e e p (10, HUNDREDTHS_OF_SECS

i f count==50) {
p r i n t f (" \ r \ n l n p u t 1 to

c o n t i n u e , 2 to change c a l i b r a t i o n v a l u e , 3 to end c a l i b r a t i o n : ") ;
s c a n f (" % c " , & i n p u t) ;
p r i n t f (" % c \ r \ n ") ;

i f (i n p u t = = ' l ')
count=0;

e l s e i f (input=='2')
{

p r i n t f (" \ r \ n S e t

c a l b r a t i o n v a l u e * 100 (c u r r e n t l y %d) to (max 2 5 5) : " , * c a l i b r a t e _ v a l u e 3) ;

s c a n f (" % d " , & t e s t) ;

* c a l i b r a t e _ v a l u e 3 = (unsigned c h a r) t e s t ;

Page 194

file:///r/nlnput
file:///r/nSet
file:///r/nCalibration
file:///r/nlnput
file:///r/nSet

Appendix 3

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

p r i n t f (" \ r \ n C a l i b r a t i o n v a l u e s e t a t
% . 2 f \ r \ n " , (* c a l i b r a t e _ v a l u e 3 / 1 0 0 . 0)) ;

e l s e

count=0;
}

flag=ON;

p r i n t f (" \ r \ n ")
}

count++;

}

/* W h i l s t the above o p t i o n s */
/* d e a l w i t h j u s t one t r a n s d u c e r * /
/* v a l u e a t a time, the l a s t */
/* o p t i o n p r i n t s a l l 4 v a l u e s */
/* s i m u l t a n e o u s l y .

) { e l s e i f (input=='5
d e l a y (5 0) ;
flag=OFF;
count=0;
w h i l e (flag==OFF) {

adcO
((g e t _ a d c (0)) * (* c a l i b r a t e _ v a l u e O) / 1 0 0)

((g e t _ a d c (1)) * (* c a l i b r a t e _ v a l u e l) / 1 0 0)

((g e t _ a d c (2)) * (* c a l i b r a t e _ v a l u e 2) / 1 0 0)

((g e t _ a d c (3)) * (* c a l i b r a t e _ v a l u e 3) / 1 0 0)

a dcO,adcl,adc3,adc2);

) ;

co n t i n u e , 2 to end monitoring: ") ;

= (unsigned c h a r)

a d c l = (unsigned c h a r)

adc2 = (unsigned c h a r)

adc3 = (unsigned c h a r)

i f (adcl>0)
a d c l - -

i f (adcl>0)
a d c l - -

i f (adc2>0)
adc2--

p r i n t f (" % d ; % d , % d , %d

d e l a y (4) ;
s l e e p (10, HUNDREDTHS_OF_SECS

i f (count==100) {
p r i n t f (" \ r \ n l n p u t 1 to

s c a n f (" % c " , & i n p u t) ;
p r i n t f (" % c \ r \ n ") ;

i f (i n p u t = = ' l ')
count=0;

e l s e
flag=ON;

}
count++;

}
}

e l s e
p r i n t f (" \ r \ n N o t r a n s d u c e r chosen.")

d e l a y (5 0) ;

}

Page 195

file:///r/nCalibration
file:///r/nlnput
file:///r/nNo

Appendix 3

1365
1366
1367 /* I f o p t i o n '4' i s s e l e c t e d , the o l d */
1368 /* r e s u l t s f i l e i s c l e a r e d and a new one*/
1369 /* s t a r t e d (so t h a t o l d r e s u l t s d a t a i s */
1370 /* e f f e c t i v e l y d e l e t e d) . T h i s i s u s e f u l * /
1371 /* so t h a t the o p e r a t o r can be s u r e t h a t * /
1372 /* when s t a r t i n g a m o n i t o r i n g s e s s i o n */
1373 /* the date of the r e s u l t s f i l e w i l l be */
1374 /* c o r r e c t . */
1375
1376 e l s e i f (input=='4') {
1377 p r i n t f (" \ r \ n S t a r t i n g new ' R e s u l t s l . d a t '
1378 module w i t h today's d a t e . \ r \ n \ n ") ;
1379 b a c k u p (r e s u l t s l , 0) ;
1380 u n f i x C R e s u l t s l . d a t ") ;
1381 o p e n _ r e s u l t s _ f i l e (l) ;
1382 cur r e s u l t l - - ;
1383 c u r _ r e s u l t l - - ;
1384 d e l a y (1 0) ;
1385
1386 }
1387
1388
1389 /* I f o p t i o n '5' i s s e l e c t e d , the */
1390 /* c u r r e n t s e t t i n g f o r the power-down */
1391 /* t o g g l e i s d i s p l a y e d , and the o p e r a t o r * /
1392 /* has the o p t i o n of changing i t . */
1393
1394 e l s e i f (input=='5') {
1395 p r i n t f (" \ r \ n P o w e r down t o g g l e i s c u r r e n t l y
1396 ");
1397 i f (*power_down==ON)
1398 p r i n t f (" O N . ") ;
1399 e l s e
1400 p r i n t f (" O F F . ") ;
1401
1402 p r i n t f (" \ r \ n D o you want to change t h i s
1403 s e t t i n g ? (Y/N) ") ;
1404 s c a n f (" % c " , & i n p u t) ;
1405 i f ((input=='y')||(input=='Y')) {
1406 i f (*power_down==ON)
1407 *power_down=OFF ,-
1408 e l s e
1409 *power_down=ON;
1410 }
1411
1412 }
1413
1414
1415 /* I f o p t i o n '6' i s s e l e c t e d , the d a t a */
1416 /* c u r r e n t l y h e l d i n the r e s u l t s f i l e */
1417 /* i s d i s p l a y e d . T h e r e f o r e a l l b y t e s */
1418 /* a r e d i s p l a y e d up to 255 255 which i s */
1419 /* the end of f i l e marker. */
1420
1421 e l s e i f (input=='6') {
1422 switch_on(TRANSMITTING) ;
1423
1424 p r i n t f (" \ r \ n D a t a i n r e s u l t s l f i l e i s a s
1425 f o l l o w s : \ r \ n \ n ") ;
1426 t e m p l _ r e s u l t s = (unsigned c h a r *) r e s u l t s l
1427 + r e s u l t s l - > s t a r t ;
1428 p r i n t f (" % d " , * t e m p l _ r e s u l t s) ;
1429 t e m p l _ r e s u l t s + + ;
1430 p r i n t f (" % d \ r \ n " , * t e m p l _ r e s u l t s) ;
1431 t e m p l _ r e s u l t s + + ;
1432 t e m p 2 _ r e s u l t s = t e m p l _ r e s u l t s ;
1433 temp2_results++;
1434 temp=0;
1435 w h i l e (
1436 (*templ_results!=255)&&(*temp2_results!=255)) {

Page 196

file:///r/nStarting
file:///r/n/n
file:///r/nPower
file:///r/nDo
file:///r/nData
file:///r/n/n

Appendix 3

1437 p r i n t f (" % d " , * t e m p l _ r e s u l t s) ;
1438 t e m p l _ r e s u l t s + + ;
1439 temp2_results++;
1440 temp++;
1441 i f ((temp%5)==0)
1442 p r i n t f (" \ r \ n ") ;
1443 i f (temp<100)
1444 d e l a y (1) ;
1445 }
1446
1447 d e l a y (5 0) ;
1448 s w i t c h _ o f f (TRANSMITTING) ;
1449 }
1450
1451
1452 /* s e l e c t i n g o p t i o n '7' e n t e r s the */
1453 /* o p e r a t o r i n the s h e l l programme. */
1454 /* T h i s o p t i o n i s u s e f u l f o r debugging */
1455 /* purposes, but was l e f t i n so t h a t i f */
1456 /* needed the o p e r a t o r c o u l d check as t o * /
1457 /* whether the v a r i o u s d a t a f i l e s had */
1458 /* been i n s t a n t i a t e d as r e q u i r e d . */
1459
1460 e l s e i f (input=='7') {
1461 s h e l l () ;
1462 }
1463
1464
1465 /* S e l e c t i n g o p t i o n '8' p r i n t s the */
1466 /* c u r r e n t date and time, w i t h the */
1467 /* o p e r a t o r h a v i n g the o p t i o n to change */
1468 /* i t . */
1469
1470 e l s e i f (input== ,8') {
1471 getime{ c u r _ t i m e) ;
1472 p r i n t f (" \ r \ n \ n C u r r e n t s e t t i n g s a r e : ") ;
1473 p r i n t f (" \ r \ n \ n D a t e : %d/%d/%d",cur_time-
1474 >tm_mday, cur_time->tm_mon, ((c u r _ t i m e - > t m _ y e a r) - 1)) ;
1475 p r i n t f (" \ r \ n T i m e : %d:%d:%d",cur_time-
1476 >tm_hour, cur_time->tm_min, cur_time->tm_sec);
1477 p r i n t f (" \ r \ n \ n D o you want to change the
1478 s e t t i n g s ? (Y / N) ") ;
1479 s c a n f (" % c " , & i n p u t) ;
1480 p r i n t f (" % c \ r \ n " , i n p u t) ;
1481
1482 i f ((i n p u t = = ' V) | | <input=='y')) {
1483 flag=0FF;
1484 w h i l e (flag==0FF) {
1485 p r i n t f " (" \ r \ n l n p u t hour: ") ;
1486 s c a n f (" % d " , & t e s t) ;
1487 i f ((t e s t > - l) && (t e s t < 2 4))
1488 flag=ON;
1489 e l s e
1490 p r i n t f (" \ r \ n O h , r e a l l y
1491 ??!!");
1492 }
1493 s e t _ h o u r = t e s t ;
1494 flag=0FF;
1495 w h i l e (flag==0FF) {
1496 p r i n t f (" \ r \ n l n p u t minute: ") ;
1497 s c a n f (" % d " , & t e s t) ;
1498 i f ((t e s t > - l) && (te s t < 6 0))
1499 flag=0N;
1500 e l s e
1501 p r i n t f (" \ r \ n O h , r e a l l y
1502 ??!!");
1503 }
1504 s e t _ m i n = t e s t ;
1505 s e t _ s e c = 0;
1506 flag=OFF;
1507 w h i l e (flag==OFF) {

Page 197

file:///r/n/nCurrent
file:///r/n/nDate
file:///r/nTime
file:///r/n/nDo
file:///r/nlnput
file:///r/nOh
file:///r/nlnput
file:///r/nOh

Appendix 3

1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579

month: ") ;

? ? ! ! ") ;

t he y e a r (1 - 1 2) : ") ;

1900): ")

? ? ! ! ") ;

(Sunday = 0) : ")

? ? ! ! ") ;

s a v i n g time (0, 1) : ") ;

? ? ! ! ") ;

p r i n t f (" \ r \ n l n p u t day of

s c a n f (" % d " , & t e s t) ;
i f ((t e s t > 0) && (te s t < 3 2))

flag=ON;
e l s e

p r i n t f (" \ r \ n O h , r e a l l y

}
s e t j n d a y = t e s t ;
f lag=0FF;
w h i l e (flag==OFF) {

p r i n t f (" \ r \ n l n p u t month of

s c a n f (" % d " , f c t e s t) ;
i f { (t e s t > 0) && (tes t < 1 3))

flag=0N;
e l s e

p r i n t f (" \ r \ n O h , r e a l l y

}
set_mon = t e s t ;
flag=OFF;
w h i l e (flag==0FF) {

p r i n t f (" \ r \ n l n p u t y e a r (y e a r -

s c a n f (" % d " , & t e s t) ;
i f ((t e s t > - l) && (test<100)

e l s e

}

flag=ON;

p r i n t f (" \ r \ n O h , r e a l l y

s e t _ y e a r = t e s t ;
f lag=0FF;
w h i l e (flag==0FF) {

p r i n t f (" \ r \ n l n p u t day of week

s c a n f (" % d " , f c t e s t) ;
i f ((t e s t > - l) && (t e s t < 8))

flag=ON;
e l s e

p r i n t f (" \ r \ n O h , r e a l l y

}
set_wday = t e s t ;
f l a g = OFF;
w h i l e (flag==0FF) {

p r i n t f (" \ r \ n l n p u t d a y l i g h t

s c a n f (" % d " , & t e s t) ;
i f ((t e s t > - l) && (t e s t < 2))

flag=0N;
e l s e

p r i n t f (" \ r \ n O h , r e a l l y

}
s e t _ i s d s t = t e s t ;
t e s t = 1;
s e t _ y d a y = 0;
w h i l e (t e s t != set_mon) {

s e t _ y d a y += m _ d a y s [t e s t - 1] ;
t e s t + + ;
}

cur_time->tm_sec = s e t _ s e c ;
cur_time->tm_min = s e t _ m i n ;
cur_time->tm_hour = s e t _ h o u r ;
cur_time->tm_mday = set_mday;
cur_time->tm_mon = set_mon;
cur_time->tm_year = s e t _ y e a r ;

Page 198

file:///r/nlnput
file:///r/nOh
file:///r/nlnput
file:///r/nOh
file:///r/nlnput
file:///r/nOh
file:///r/nlnput
file:///r/nOh
file:///r/nlnput
file:///r/nOh

Appendix 3

1580 cur_time->tm_wday = set_wday;
1581 cur_time->tm_yday - s e t _ y d a y ;
1582 c u r _ t i m e - > t m _ i s d s t = s e t _ i s d s t ;
1583
1584 s e t i m e (c u r _ t i m e) ;
1585
1586 }
1587
1588
1589 }
1590
1591
1592 /* F i n a l l y , s e l e c t i n g o p t i o n '9' p r i n t s * /
1593 /* the c u r r e n t power-down s e t t i n g , w i t h */
1594 /* the o p t i o n to change i t . */
1595
1596 e l s e i f (input=='9') {
1597 p r i n t f (" \ r \ n D i s p l a y t o g g l e i s c u r r e n t l y
1598 ") ;
1599 i f (*display==ON)
1600 , p r i n t f ("ON. ") ,-
1601 e l s e
1602 p r i n t f (" O F F . ") ;
1603
1604 p r i n t f (" \ r \ n D o you want to change the
1605 s e t t i n g ? (Y/N) ") ;
1606 f f l u s h (s t d i n) ;
1607 s c a n f ("%c", &input>
1608 i f ((input=='Y')||(input=='y')) {
1609 i f (*display==ON)
1610 *display=OFF;
1611 e l s e
1612 *display=ON;
1613 }
1614 }
1615
1616
1617 >
1618
1619 s w i t c h _ o f f (P C _ L I N K) ;
1620 swi tch_on(RECORDING) ;
1621
1622 }
1623
1624 }
1625 outcome = SUCCESSFUL;
1626
1627
1628 /* F i n a l l y a t the end of the f i l l i n g of the d a t a f i l e , the */
1629 /* c u r r e n t date and time i s a g a i n r e c o r d e d (f o r the c a l c u l a t i n g */
1630 /* of the i n t e r - s a m p l e t i m e) , */
1631
1632 g e t i m e (c u r _ t i m e) ;
1633
1634 * c u r _ d a t a l = c u r _ t i m e -> tm_year;
1635 c u r datal++;
1636 * c u r _ d a t a l = c u r _ t i m e -> tm_mon;
1637 c u r datal++;
1638 * c u r _ d a t a l = c u r _ t i m e -> tm_mday;
1639 c u r _ d a t a l + + ;
1640 * c u r _ d a t a l = c u r _ t i m e -> tm_hour;
1641 c u r _ d a t a l + + ;
1642 * c u r _ d a t a l = c u r _ t i m e -> tm_min;
1643 c u r _ d a t a l + + ;
1644 * c u r _ d a t a l = c u r _ t i m e -> tm_sec;
1645 c u r datal++;
1646
1647
1648 /* I t was thought b e n e f i c i a l to extend the f u n c t i o n a l i t y of */
1649 /* t h i s monitor programme to have the o p t i o n of m o n i t o r i n g 1 o r */
1650 /* 2 l e g s s i m u l t a n e o u s l y (t h e r e f o r e u s i n g 4 or 2 t r a n s d u c e r s f o r * /
1651 /* each f o o t r e s p e c t i v e l y) . Not enough time was found to */

Page 199

file:///r/nDisplay
file:///r/nDo

Appendix 3

* c u r _ d a t a 2 = cur. _time -> tm_mon;
cur_data2++;
*cu r _ d a t a 2 = cur_ .time -> tm_mday;
cur_data2++;
*cur_data2 = cur_ .time -> tm_hour;
cur_data2++;
*cur_data2 = cur. .time -> tm_min;
cur_data2++;
*cur_data2 = cu r . .time -> tm_sec;

1652 /* complete t h i s e x t e n s i o n , but the code t h a t f o r now w i l l n e v e r * /
1653 /* be executed has been l e f t to f a c i l i t a t e f u t u r e work. */
1654
1655 i f (*legs_monitored==2) {
1656 *cu r _ d a t a 2 = c u r time -> tm_year;
1657 cur_data2++;
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667 c u r data2++;
1668 }
1669
1670 }
1671
1672 e l s e {
1673 s w i t c h _ o f f (RECORDING) ;
1674 s w i t c h _ o f f (PC_LINK) ;
1675 s w i t c h o f f (TRANSMITTING) ;
1676 s w i t c h on(ERROR) ;
1677
1678 /* P r i n t s the a p p r o p r i a t e e r r o r message f o r debugging purposes */
1679 /* (as program e x e c u t i o n s h o u l d never a r r i v e a t t h i s p o i n t) . */
1680
1681 p r i n t f (" \ r \ n ! ! ! ERROR !!! :- D a t a l . d a t not found");
1682
1683 w h i l e (1) ; /* I n f i n i t e loop, i e . programme h a l t s a t t h i s p o i n t . * /
1684
1685 }
1686
1687 }
1688
1689
1690 /* T h i s f u n c t i o n b u i l d s up the f i l e name f o r the f i l e which w i l l be */
1691 /* saved to the PC d i s k u s i n g a p r e - d e f i n e d s t u b and the date of the */
1692 /* r e s u l t s f i l e . */
1693
1694 v o i d g et o u t f i l e name(ch a r * f i l e name)
1695 "
1696 {
1697 i n t y e a r , month, d month, i , temp;
1698
1699 /* The r e s u l t s f i l e d ate i s s t o r e d a t the s t a r t of the f i l e . */
1700
1701 c u r r e s u l t l = (unsigned c h a r *) r e s u l t s l + r e s u l t s l - > s t a r t ;
1702
1703
1704 /* Then need to uncompress i t . */
1705
1706 y e a r = (*cur r e s u l t l » 1) & 127;
1707
1708 p r i n t f (" \ r \ n y e a r = % d \ r \ n " , y e a r) ; d e l a y (5) ;
1709
1710 month = (*cur r e s u l t l & 1) « 3;
1711 c u r _ r e s u l t l + + ;
1712 month += ((* c u r r e s u l t l & 224) » 5) ;
1713 d month = * c u r r e s u l t l & 31;
1714
1715
1716 /* F i n a l l y b u i l d up the f i l e name and r e t u r n i t v i a the i n p u t t e d c h a r */
1717 /* p o i n t e r . */
1718
1719 * f i l e name = 'd'
1720 f i l e name++;
1721 * f i l e name = 'a'
1722 f i l e name++ ;
1723 * f i l e _ n a m e = • f

Page 200

Appendix 3

1724 file_name++;
1725 * f i l e name = (d_month/10) + 48;
1726 f i l e . name++;
1727 * f i l e _ n a m e = d_month-((d_month/10)*10) + 48;
1728 f i l e name++;
1729 * f i l e _ n a m e = (month/10) + 48;
1730 f i l e , name++;
1731 * f i l e _ n a m e = month-((month/10)*10) + 48;
1732 f i l e . name++;
1733 * f i l e _ n a m e = y e a r - ((y e a r / 1 0) * 1 0) + 48;
1734 file_name++;
1735 * f i l e _ n a m e = '.';
1736 s t r c a t (f i l e name, module name) ;
1737
1738 }
1739
1740
1741 /* T h i s f u n c t i o n i s c a l l e d from the p r e s s u r e i n p u t f u n c t i o n to check */
1742 /* whether a key on the PC keyboard i s d e p r e s s e d (a f t e r the PC s w i t c h on*/
1743 /* the monitor h a v i n g been t r i g g e r e d) . The r o u t i n e monitors the s t d i n */
1744 /* s t r e a m f o r a s h o r t p e r i o d of time, r e t u r n i n g the SUCCESSFUL i f a key */
1745 /* has been depressed, and UNSUCCESSFUL i f not. */
1746
1747 i n t l i n k t e s t ()
1748
1749 {
1750 i n t i , outcome=UNSUCCESSFUL;
1751 F I L E * i n p u t ;
1752
1753 i n p u t = s t d i n ;
1754
1755 f o r (i=0; i<500; i++) {
1756 i f (r e a d y (f i l e n o (s t d i n)) > 0) {
1757 outcome = SUCCESSFUL;
1758 }
1759
1760 d e l a y (1) ;
1761
1762 }
1763
1764 r e t u r n (outcome) ;
1765
1766 }
1767
1768
1769 /* T h i s f u n c t i o n i s c a l l e d from the main() f u n c t i o n . I t d e l e t e s any */
1770 /* d a t a f i l e s p r e s e n t (c r e a t i n g new ones i n t h e i r p l a c e) and c r e a t e s new*/
1771 /* r e s u l t s f i l e (s) i f none a r e p r e s e n t . */
1772-
1773 v o i d setup datamods()
1774
1775 {
1776 i n t i=0, outcome;
1777 unsigned c h a r * n e x t _ r e s u l t ;
1778
1779 /* I f legs_monitored==2, then t h e r e s h o u l d be 2 d a t a / r e s u l t s f i l e s */
1780 /* p r e s e n t (or 1 i f p r e v i o u s l y o n l y 1 l e g was b e i n g m o n i t o r e d) . */
1781 /* T h e r e f o r e f i r s t c a l l open d a t a f i l e (l) which t r i e s to c r e a t e a new */
1782 /* d a t a f i l e f o r 1 l e g b e i n g monitored (s u c c e s s u l o n l y i f no d a t a f i l e s */
1783 /* a r e p r e s e n t) and then removes the d a t a f i l e f o r l e g 1. */
1784 /* T h e r e f o r e 2 d a t a f i l e s can now be c r e a t e d , and the programme has */
1785 /* s w i t c h e d from h a v i n g 1 d a t a f i l e to 2. */
1786
1787 i f (* l e g s monitored==2) { /* T h i s c l e a r s D a t a l . d a t i f p r e s e n t */
1788 o p e n _ d a t a _ f i l e (1) ;
1789 b a c k u p (d a t a l , 0) ;
1790 u n f i x (" D a t a l . d a t ") ;
1791 }
1792
1793 /* The r e q u i r e d number of d a t a f i l e s (c u r r e n t l y always 1) a r e c r e a t e d . */
1794 /* R e t u r n s SUCCESFUL o n l y i f no data f i l e s a r e p r e s e n t . */
1795

Page 201

Appendix 3

1796 outcome = o p e n _ d a t a _ f i l e (* l e g s _ m o n i t o r e d) ;
1797
1798 i f (outcome==UNSUCCESSFUL) { /* T h e r e f o r e a d a t a f i l e i s p r e s e n t . */
1799 /* I f 2 l e g s a r e b e i n g monitored, d a t a f i l e f o r l e g 1 has */
1800 /* a l r e a d y been d e l e t e d . T h e r e f o r e j u s t d e l e t e the d a t a f i l e */
1801 /* f o r l e g 2. */
1802 i f (*legs_monitored==2) {
1803 b a c k u p (d a t a 2 , 0) ;
1804 u n f i x (" D a t a 2 . d a t ") ;
1805 }
1806
1807 e l s e { /* i e . l e g s monitored=l */
1808 b a c k u p (d a t a l , 0) ;
1809 u n f i x (" D a t a l . d a t ") ;
1810 }
1811
1812
1813 /* Can now s u c c e s s f u l l y c r e a t e the r e q u i r e d number of d a t a f i l e s . * /
1814
1815 open d a t a f i l e (* l e g s monitored);
1816 ~ ~
1817 }
1818
1819
1820 /* S e t up the d a t a f i l e p o i n t e r s to p o i n t to the s t a r t of the f i l e . */
1821
1822 i f (*legs_monitored==2)
1823 c u r _ d a t a 2 = (unsigned c h a r *) data2 + data2 -> s t a r t ;
1824 c u r _ d a t a l = (unsigned c h a r *) d a t a l + d a t a l -> s t a r t ;
1825
1826
1827 /* Now c r e a t e t h e r e s u l t s f i l e s i f none a r e a l r e a d y p r e s e n t . */
1828
1829 outcome = o p e n _ r e s u l t s _ f i l e (* l e g s _ m o n i t o r e d) ;
1830
1831 i f (*legs_monitored==2) {
1832 /* Move t h e r e s u l t s f i l e p o i n t e r to the end of the r e c o r d e d */
1833 /* d a t a by p u t t i n g the f i l e p o i n t e r to the s t a r t of the f i l e and*/
1834 /* s e a r c h i n g through i t u n t i l the end of f i l e marker i s found */
1835 /* (t h i s b e i n g 255 2 5 5) . */
1836
1837 c u r _ r e s u l t 2 = (unsigned c h a r *) r e s u l t s 2 + r e s u l t s 2 -> s t a r t ;
1838 n e x t _ r e s u l t = (unsigned c h a r *) r e s u l t s 2 + r e s u l t s 2 -> s t a r t ;
1839 n e x t _ r e s u l t + + ;
1840 f o r (i=0;
1841 (! ((* c u r _ r e s u l t 2 = = 2 5 5) & & (* n e x t _ r e s u l t = = 2 5 5))) & & (i < (R E S U L T S _ S I Z E / 2)) ; i++) {
1842 c u r r e s u l t 2 + + ;
1843 n e x t _ r e s u l t + + ;
1844 }
1845
1846 /* I f the f i l e memory i s f u l l , then can not s t o r e more r e s u l t s */
1847 /* so s t o p monitoring, l i g h t the memory f u l l LED, and p r i n t a */
1848 /* r e l e v a n t message. I f the monitor i s not connected to the PC,*/
1849 /* the o p e r a t o r w i l l j u s t see the LED i n d i c a t i o n but w i l l be */
1850 /* a l s o a b l e to r e a d the message i n d i c a t i o n by s w i t c h i n g o f f t h e * /
1851 /* monitor, c o n n e c t i n g to the PC and s w i t c h i n g i t back on (as */
1852 /* t h i s r o u t i n e w i l l be onw of the f i r s t e x e c u t e d when the */
1853 /* programme i s r e - s t a r t e d) . */
1854
1855 i f (i == (RESULTS_SIZE/2)) {
1856 printf("\r\nMemory of R e s u l t s 2 . d a t i s f u l l . . . ") ;
1857 s w i t c h _ o n (MEMORY_FULL) ;
1858 w h i l e (1) ;
1859 /* I n f i n i t e loop, i e . programme h a l t s a t t h i s p o i n t */
1860 }
1861
1862 c u r _ r e s u l t l = (unsigned c h a r *) r e s u l t s l + r e s u l t s l -> s t a r t ;
1863 n e x t _ r e s u l t = (unsigned c h a r *) r e s u l t s l + r e s u l t s l -> s t a r t ;
1864 n e x t _ r e s u l t + + ;
1865 f o r (i=0;
1866 (! ((* c u r _ r e s u l t l = = 2 5 5) & & (* n e x t _ r e s u l t = = 2 5 5))) & & (i < (R E S U L T S S I Z E / 2)) ; i++) {
1867 c u r r e s u l t l + + ;

Page 202

file:///r/nMemory

Appendix 3

1868 ne x t r e s u l t + + ;
1869 }
1870
1871 i f (i == (RESULTS_SIZE/2)) {
1872 /* R e s u l t s l . d a t i s f u l l , so s t o p r e c o r d i n g */
1873 printf("\r\nMemory of R e s u l t s l . d a t i s f u l l . . . ") ;
1874 sw i t c h _ o n (MEMORY_FULL) ;
1875 w h i l e (1) ;
1876 /* I n f i n i t e loop, i e . programme h a l t s a t t h i s p o i n t */
1877 }
1878
1879 }
1880
1881 e l s e {
1882 c u r _ r e s u l t l = (unsigned c h a r *) r e s u l t s l + r e s u l t s l -> s t a r t ;
1883 n e x t _ r e s u l t = (unsigned c h a r *) r e s u l t s l + r e s u l t s l -> s t a r t ;
1884 n e x t _ r e s u l t + + ;
1885 f o r (i=0;
1886 (!((*cur_resultl==255)&&(*next result==255)))&&(i<RESULTS S I Z E) ; i++) {
1887 c u r r e s u l t l + + ;
1888 next r e s u l t + + ;
1889)
1890
1891 i f (i == RESULTS S I Z E) {
1892 /* Reco r d i n g f i l e i s f u l l , so s t o p r e c o r d i n g */
1893 printf("\r\nMemory i s f u l l . . . ") ;
1894 Switch_on(MEMORY_FULL) ;
1895 w h i l e (1) ;
1896 /* I n f i n i t e loop, i e . programme h a l t s a t t h i s p o i n t */
1897 }
1898
1899 }
1900
1901 }
1902
1903
1904 /* T h i s f u n c t i o n i s c a l l e d by the setup datamods f u n c t i o n . A c c o r d i n g */
1905 /* to 1 n o _ o f _ l e g s ' , i t c r e a t e s the d a t a f i l e (s) o n l y i f not a l r e a d y */
1906 /* p r e s e n t , r e t u r n i n g SUCCESSFUL or UNSUCCESSFUL. */
1907
1908 i n t open d a t a f i l e (i n t no of l e g s)
1909 " ~ " ~
1910 {
1911
1912 i f (no of l e g s == 2) {
1913 /* When c a l l e d , the d a t a f i l e 1 has a l r e a d y been d e l e t e d . */
1914 /* T h e r e f o r e j u s t check f o r whether d a t a f i l e 2 i s a l r e a d y */
1915 /* p r e s e n t . */
1916 i f rTdaea Z = l i n k (" D a t a 2 . d a t ")) = = N U L L) {
1917 data2 = datamodCData2.dat", (DATA_SIZE/2) , 0) ;
1918 backup(data2, 1) ;
1919 d a t a l = datamod("Datal.dat", (DATA_SIZE/2), 0) ;
1920 b a c k u p (d a t a l , 1) ;
1921 r e t u r n (SUCCESSFUL) ;
1922 }
1923 }
1924
1925 e l s e { /* 1 l e g b e i n g monitored. */
1926 i f ((d a t a l = l i n k (" D a t a l . d a t ")) = = N U L L) {
1927 d a t a l = datamodf"Datal.dat", DATA_SIZE, 0) ;
1928 b a c k u p (d a t a l , 1) ;
1929 r e t u r n (SUCCESSFUL) ;
1930 }
1931 }
1932
1933 r e t u r n (UNSUCCESSFUL) ;
1934
1935 }
1936
1937
1938 /* T h i s f u n c t i o n i s c a l l e d n ear the beg i n n i n g of the main() f u n c t i o n . */
1939 /* I t c r e a t e s an event f i l e i f one does not a l r e a d y e x i s t . */

Page 203

file:///r/nMemory
file:///r/nMemory

Appendix 3

1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

i n t o p e n _ e v e n t _ f i l e ()

{

i f ((e v e n t = l i n k (" E v e n t . d a t ")) = = N U L L) {
event = datamod("Event.dat", EVENT_SIZE, 0) ;
backup(event, 1) ;
r e t u r n (SUCCESSFUL) ;
}

r e t u r n (UNSUCCESSFUL) ;

}

/* T h i s f u n c t i o n i s c a l l e d from a number of p l a c e s , and a c c o r d i n g to */
/* ' n o _ o f _ l e g s ' c r e a t e s the r e s u l t s f i l e (s) and s e t s the r e s u l t s f i l e s */
/* p o i n t e r s to the s t a r t og the f i l e . */

i n t o p e n _ r e s u l t s _ f i l e (i n t n o _ o f _ l e g s)

{
i n t outcome;

i f (n o _ o f _ l e g s == 2) {
i f ((r e s u l t s 2 = l i n k (" R e s u l t s 2 . d a t ")) = = N U L L) {

/* i e . no of l e g s b e i n g monitored has j u s t been changed */
/* from 1 to 2 (or j u s t i n i t i a l i s i n g a t b e g i n n i n g of */
/* e x e c u t i o n . So i f R e s u l t s l . d a t i s p r e s e n t , i t i s */
/* c l e a r e d . */

i f f ! ((r e s u l t s l = l i n k (" R e s u l t s l . d a t ")) = = N U L L)) {
b a c k u p (r e s u l t s 1 , 0) ;
u n f i x C R e s u l t s l . d a t ") ;
}

/* Next the r e s u l t s f i l e s a r e c r e a t e d , w i t h the f i l e */
/* p o i n t e r s b e i n g s e t to the s t a r t of the f i l e s . */

r e s u l t s 2 = datamod("Results2.dat", (RESULTS_SIZE/2), 0) ;
b a c k u p (r e s u l t s 2 , 1) ;
c u r _ r e s u l t 2 = (unsigned c h a r *) r e s u l t s 2 + r e s u l t s 2 -> s t a r t ;

r e s u l t s l = d a t a m o d (" R e s u l t s l . d a t " , (RESULTS_SIZE/2), 0) ;
b a c k u p (r e s u l t s 1 , 1) ;
c u r ^ r e s u l t l = (unsigned c h a r *) r e s u l t s l * r e s u l t s l -> s t a r t ;

/* F i n a l l y the c u r r e n t date i s s t o r e d a t the s t a r t of */
/* the f i l e s . */

s t a m p _ r e s u l t s (2) ;

r e t u r n (SUCCESSFUL) ;

}

}

e l s e { /* i e . o n l y 1 l e g b e i n g monitored so o n l y 1 r e s u l t s f i l e */

i f ((r e s u l t s l = l i n k (" R e s u l t s l . d a t ")) = = N U L L) {

/* T h i s means t h a t e x e c u t i o n i s a t the i n i t i a l i s a t i o n s t a g e .
*/

r e s u l t s l = d a t a m o d (" R e s u l t s l . d a t " , RESULTS_SIZE, 0) ;
b a c k u p (r e s u l t s l , 1) ;

Page 204

Appendix 3

2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083

c u r _ r e s u l t l = (unsigned c h a r *) r e s u l t s l + r e s u l t s l -> s t a r t ;

s t a m p _ r e s u l t s (1) ;

r e t u r n (SUCCESSFUL) ;

}

}

r e t u r n (UNSUCCESSFUL) ;

}

/* T h i s f u n c t i o n i s c a l l e d by the s l e e p and w r i t e b c d f u n c t i o n s , and i s */
/* used when powering down the p r o c e s s o r . I t w r i t e s 'data' i n t o the */
/* s p e c i f i e d 'reg' of the r e a l - t i m e c l o c k . */

v o i d w r i t e r e g (i n t reg, i n t d a t a)

{
c h a r b u f f e r [3] ;

b u f f e r [0] = r e g ;
b u f f e r [1] = d a t a ;
i 2 c (b u f f e r , b u f f e r , 2, 0, 0x50);

}

v o i d w r i t e b c d r e g (i n t reg, i n t d a t a)

{

w r i t e r e g (reg, (data/10)«4+(data%10)) ;

}

/* T h i s f u n c t i o n i s c a l l e d by the p r e s s u r e _ i n p u t f u n c t i o n f o r the */
/* powering down of the p r o c e s s o r i n between samples. C u r r e n t l y o n l y */
/* the HUNDREDTHS_OF_SECONDS o p t i o n i s used, but the SECONDS c a s e has */
/* been i n c l u d e d to f a c i l i t a t e f u t u r e p o s s i b l e f u t u r e e x t e n s i o n of the */
/* programme. The amount of time to l e a v e the p r o c e s s o r i n ' s l e e p ' mode*/
/* i s s t o r e d i n the RAM of the r e a l - t i m e c l o c k , b e f o r e the a s s e m b l e r */
/* r o u t i n e pd() i s c a l l e d which s a v e s the i n t e r r u p t s , d i s a b l e s them, */
/* and then powers down the p r o c e s s o r f o r the s p e c i f i e d p e r i o d of time. */

v o i d s l e e p (i n t time, i n t f u n c t i o n)

{
w r i t e r e g (0, 0 x 0 c) ;

s w i t c h (f u n c t i o n) {
c a s e SECONDS:

i f (time > 3600) {
time = time /3600;
w r i t e r e g (8, 0 x 0 c) ;
}

e l s e i f (time > 60) {
time = time / 60;
w r i t e r e g (8, 0x0b) ;
}

e l s e {
w r i t e r e g (8, OxOa) ;
}

w r i t e b c d r e g (7, 100-time) ;
pd() ;
w r i t e r e g (0, 0x08) ;
break;

Page 205

Appendix 3

2084 c a s e HUNDREDTHS_OF_SECS:
2085 w r i t e r e g (8, 0x09) ;
2086 w r i t e b c d r e g (7, 100-time) ;
2087 p d () ; 2088 w r i t e r e g (0, 0x08) ;
2089 break;
2090
2091 }
2092
2093 }
2094
2095
2096 /* T h i s f u n c t i o n i s c u r r e n t l y j u s t c a l l e d from the main() f u n c t i o n . */
2097 /* I t i s p l a c e d where i t s h o u l d never be executed, so t h a t i f i t i s e v e r * /
2098 /* e n t e r e d then a p o s s i b l e hardware f a u l t (or t r a n s i e n t f a u l t) has */
2099 /* o c c u r r e d . I t was l e f t i n a s a s e p a r a t e f u n c t i o n so t h a t i t would be */
2100 /* a v a i l a b l e f o r use f o r g e n e r a l e r r o r h a n d l i n g d u r i n g f u t u r e e x t e n s i o n . * /
2101
2102 v o i d e r r o r (v o i d)
2103
2104 {
2105
2106 /* The program e x e c u t i o n should never get here */
2107
2108 s w i t c h _ o f f (RECORDING) ;
2109 s w i t c h _ o f f (PC_LINK) ;
2110 s w i t c h _ o f f (TRANSMITTING) ;
2111 s w i t c h on(ERROR) ;
2112
2113 /* H e l p f u l (? !) e r r o r message.... */
2114
2115 p r i n t f (" \ r \ n T h i s i s an i m p o s s i b l e e r r o r (i f t h a t h e l p s a t a l l) ") ;
2116
2117 w h i l e (1) ; /* I n f i n i t e loop, i e . programme h a l t s a t t h i s p o i n t */
2118
2119 }
2120
2121
2122 /* The f o l l o w i n g f u n c t i o n s a r e the code and r e l a t e d f u n c t i o n s used */
2123 /* by the s h e l l () programme a c c e s s e d through the o p t i o n s menu. */
2124
2125 s h e l l ()
2126 {
2127 i n t s t o p f l a g ;
2128 i n t p i d ;
2129 ch a r Cmd[32];
2130 c h a r A r g [3 2] ;
2131 c h a r * p t r ;
2132
2133 s t o p f l a g = 0;
2134 p r i n t f (" P S I Systems 'C S u p p o r t \ n \ n \ r •) ;
2135 f f l u s h (s t d o u t) ;
2136 do
2137 {
2138 do
2139 {
2140 f p u t s (" C > " , s t d o u t) ;
2141 f f l u s h (s t d o u t) ;
2142 r e a d l n (0 , B u f f e r , 8 0) ;
2143 }
2144 w h i l e (B u f f e r [0] == 13) ;
2145
2146 I n p _ P a t h = -1;
2147 Out_Path = -1;
2148 i n = s t d i n ;
2149 out = s t d o u t ;
2150 coproc = 0;
2151
2152 i f (d o a r g s O)
2153 {
2154 p t r = getarg(Buffer,Cmd,0);
2155 i f (!cmpnam("d",Cmd))

Page 206

file:///r/nThis

Appendix 3

2156 {
2157 p t r = c l e a r w h i t e (p t r) ;
2158 i£(* p t r < 32)
2159 * p t r = 0;
2160 debug(p t r) ;
2161 }
2162 e l s e i f f !cmpnam("load",Cmd))
2163 {
2164 p t r = g e t a r g (B u f f e r , A r g , 1) ;
2165 l o a d (A r g) ;
2166 }
2167' e l s e i f (!cmpnam("mdir",Cmd))
2168 {
2169 m d i r O ;
2170 }
2171 e l s e i f (!cmpnam("procs",Cmd))
2172 {
2173 p r o c () ;
2174 }
2175 e l s e i f (!cmpnam("lock",Cmd))
2176 {
2177 p t r = g e t a r g (B u f f e r , A r g , 1) ;
2178 l o c k (A r g) ;
2179 }
2180 e l s e i f (!cmpnam("unlock",Cmd))
2181 {
2182 p t r = g e t a r g (B u f f e r , A r g , 1) ;
2183 u n l o c k (A r g) ;
2184 }
2185 e l s e i f (!cmpnam("unload",Cmd))
2186 {
2187 p t r = g e t a r g (B u f f e r , A r g , 1) ;
2188 i f (u n f i x (A r g))
2189 {
2190 t s t e r r o r (" C a n ' t unload module");
2191 }
2192 }
2193 e l s e i f (!cmpnam("quit",Cmd))
2194 {
2195 s t o p f l a g = 1;
2196 }
2197 e l s e
2198 {
2199 i f ((pid=chain(Cmd,4096,Inp_Path,Out P a t h))
2200 i)
2201 {
2202 t s t e r r o r (" C a n ' t c r e a t e new p r o c e s s ")
2203 }
2204 e l s e ' i f T ! copifoc)
2205 {
2206 death(p i d) ;
2207 w a i t () ;
2208 }
2209 }
2210 }
2211 }
2212 w h i l e (s t o p f l a g != 1) ;
2213 }
2214
2215
2216 /* T h i s r o u t i n e l o c a t e s the named module then s e t s */
2217 /* the b a t t e r y backup marker on i t ' s RAM */
2218 /* */
2219
2220 l o c k (name)
2221 c h a r *name;
2222 {
2223 v o i d * P o i n t e r ;
2224 i f ((P o i n t e r = l i n k (n a m e)) == NULL)
2225 {
2226 t s t e r r o r (" C a n ' t f i n d module");
2227)

Page 207

Appendix 3

2228 e l s e
2229 {
2230 i f (backup(P o i n t e r , 1))
2231 {
2232 t s t e r r o r (" C a n ' t l o c k module");
2233 }
2234 }
2235 }
2236
2237
2238 /* T h i s r o u t i n e l o c a t e s the named module then c l e a r s */
2239 /* the b a t t e r y backup marker on i t ' s RAM. */
2240
2241 u n l o c k (name)
2242 c h a r *name;
2243 {
2244 v o i d * P o i n t e r ;
2245 i f ((P o i n t e r = l i n k (n a m e)) == NULL)
2246 {
2247 t s t e r r o r (" C a n ' t f i n d module");
2248 }
2249 e l s e
2250 {
2251 i f (backup(P o i n t e r , 0))
2252 {
2253 t s t e r r o r (" C a n ' t unlock module");
2254 }
2255 }
2256 }
2257
2258 l o a d (name)
2259 c h a r *name;
2260 {
2261 i n t Path;
2262 i n t S i z e ;
2263 unsigned c h a r * B u f f e r ;
2264
2265 Path = open(name,3);
2266 i f (Path == -1)
2267 {
2268 t s t e r r o r (" C a n ' t open f i l e ") ;
2269 }
2270 e l s e
2271 {
2272 S i z e = f s i z e (P a t h) ;
2273 i f (S i z e == -1)
2274 {
2275 t s t e r r o r (" f i l e s i z e ") ;
2276 return-(O);
2277 }
2278 e l s e
2279 {
2280 i f ((Buffer=sysmem(S i z e , 0)) == NULL)
2281 {
2282 t s t e r r o r (" C a n ' t a l l o c a t e memory");
2283 }
2284 e l s e
2285 {
2286 r e a d (P a t h , B u f f e r , S i z e) ;
2287 i f (fixmod(B u f f e r))
2288 {
2289 t s t e r r o r (" C a n ' t a t t a c h module");
2290 }
2291 e l s e
2292 {
2293 p r i n t f (" l o a d e d a t % x \ n \ r " , B u f f e r)
2294 f f l u s h (s t d o u t) ;
2295 }
2296 }
2297 }
2298 c l o s e (P a t h) ;
2299 }

Page 208

Appendix 3

2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371

t s t e r r o r (s t r i n g)
c h a r * s t r i n g ;

p r i n t f (" % s e r r o r % d \ n \ r " , s t r i n g , e r r n o) ;
f f l u s h (s t d o u t) ;

/* T h i s r o u t i n e checks a l o n g the command l i n e l o o k i n g f o r the */
/* r e - d i r e c t arrows < and > and f o r c o n c u r r e n t p r o c e s s f l a g & */

i n t d o a r g s ()
{

c h a r *name;
c h a r * p t r ;
c h a r a r g [3 2] ;
i n t n;
F I L E * f p ;

n = 1;
w h i l e ((p t r = g e t a r g (B u f f e r , a r g , n + +)) != NULL)
{

s w i t c h (a r g [0])
{

c a s e '&'

ca s e '>'

coproc = 1;
break;

name = &arg [1] ;
fp = fopen(name,"w");
i f (fp == NULL)
{

t s t e r r o r (" C a n ' t r e - d i r e c t o u t p u t ") ;
r e t u r n (0) ;

}
s e t b u f (f p , N U L L) ;
Out_Path = _ p a t h s [f i l e n o (f p)] ;
out = fp;
break;

name = &arg [1] ;
fp = fopen(name,"r");
i f (fp == NULL)
{

t s t e r r o r (" C a n ' t r e - d i r e c t i n p u t ") ;
r e t u r n (0) ;

}
s e t b u f (f p , N U L L) ;
I n p _ P a t h = _ p a t h s [f i l e n o (f p)] ;
i n = fp;
break;

}
r e t u r n (1)

/* T h i s f u n c t i o n e x t r a c t s an argument from a s t r i n g . The a r g s
/* a r e s e p a r a t e d by ta b s or spaces and the i n p u t l i n e can end w i t h
/* 0 or 13. The r e q u i r e d argument i s coppied i n t o the b u f f e r p o i n t e d
/* to by a r g and i s zer o t e r m i n a t e d .

c h a r * g e t a r g (s t r i n g , arg, count)
c h a r * s t r i n g ;
c h a r * a r g ;
i n t count;
{

s t r i n g = c l e a r w h i t e (s t r i n g) ;
w h i l e (count)
{
w h i l e ((* s t r i n g ! = 3 2) & & (* s t r i n g ! = 9) & & (* s t r i n g ! = 1 3) & & (* s t r i n g ! = 0))

s t r i n g + + ;

Page 209

Appendix 3

2372
2373 i f ((*string==13) II (*string==0))
2374 {
2375 r e t u r n (N U L L) ;
2376 }
2377 e l s e
2378 {
2379 s t r i n g = c l e a r w h i t e (s t r i n g) ;
2380 --count;
2381 }
2382 }
2383 w h i l e ((* s t r i n g ! = 3 2) && (*string!=9) && (*string!=13) &&
2384 (* s t r i n g ! = 0))
2385 *arg++ = * s t r i n g + + ;
2386 * a r g = 0;
2387 r e t u r n (s t r i n g) ;
2388 }
2389
2390
2391 c h a r * c l e a r w h i t e (s t r i n g)
2392 c h a r * s t r i n g ;
2393 {
2394 w h i l e ((*string==9) || (*string==32))
2395 s t r i n g + + ;
2396 r e t u r n) s t r i n g) ;
2397 }
2398
2399
2400 /* T h i s r o u t i n e checks t h a t to c h a r a c t e r a r r a y s a r e the */
2401 /* same r e g a r d l e s s of the c a s e of the a l p h a c h a r a c t e r s i n the */
2402 /* two s t r i n g s . */
2403
2404 cmpnam(s i , s2)
2405 c h a r * s i ;
2406 c h a r * s 2 ;
2407 {
2408 r e g i s t e r c h a r c l ;
2409 r e g i s t e r c h a r c2;
2410 do
2411 {
2412 C l = *sl++;
2413 C2 = *s2++;
2414 i f ((c2>='A') && (c2<='Z'))
2415 c2 += (1 a ' - ' A 1) ;
2416 }
2417 w h i l e ((c l != 0) && (c2 != 0) && (c l == c2)) ;
2418 i f ((c l == 0) && (c2 == 0))
2419 r e t u r n (0) ;
2420 e l s e
2421 r e t u r n (- 1) ;
2422 }
2423
2424
2425 m d i r ()
2426 {
2427 s t r u c t md **mdirglob;
2428 s t r u c t md *mdir;
2429
2430 mdirglob = (s t r u c t md **) 0x80408;
2431 mdir = *mdirglob;
2432 f p r i n t f (o u t , " \ r \ n Address | S i z e | Module Name | Type
2433 Memory");
2434 fprintf(out,"\r\n===
2435 =-);
2436 w h i l e (1)
2437 {
2438 ShowPage(mdir);
2439 i f ((mdir=mdir->next) == NULL)
2440 break;
2441 }
2442 f p r i n t f (o u t , " \ r \ n ") ;
2443 f f l u s h (o u t) ;

Page 210

Appendix 3

2444 }
2445
2446 ShowPage(mdir)
2447 s t r u c t md *mdir;
2448 {
2449 i n t n;
2450 s t r u c t moddef *module;
2451 c h a r * s t r i n g ;
2452 for(n=0; n<30; n++)
2453 {
2454 i f ((module = mdir->modules[n].module) != NULL)
2455 {
2456 s t r i n g = (char *) module + module->name;
2457 f p r i n t f (o u t , " \ r \ n %06x | ",module);
2458 f p r i n t f (o u t , " % 6 x | ",module->size);
2459 f p r i n t f (o u t , " % - 1 3 s | " . s t r i n g) ;
2460 f p r i n t f (o u t , " % - 8 s | " , t y p e s [m o d u l e - > t y p e]) ;
2461 module->header = 0;
2462 i f (module->header)
2463 {
2464 f p r i n t f (o u t , " Rom");
2465 }
2466 e l s e
2467 {
2468 module->header = 0x4afc;
2469 f p r i n t f (o u t , " Ram");
2470 }
2471 }
2472 }
2473 }
2474
2475 p r o c ()
2476 {
2477 i n t n;
2478 s t r u c t pd *desc;
2479 pdt *pdt a b l e ;
2480 pdt * * p d t p t r ;
2481 s t r u c t moddef *mod;
2482 p d t p t r = (pdt **)0x80424;
2483 p d t a b l e = *p d t p t r ;
2484 f p r i n t f (o u t , " PID | Module Name | S t a t u s | S i g n a l | S l e e p |
2485 Death \ r \ n ") ;
2486 fprintf(out,"==
2487 ===\r\n»);
2488 f o r (n=0; n<64; n++)
2489 {
2490 i f ((d e s c = (* p d t a b l e) [n]) != NULL)
2491 {
2492 i f ((mod = dese->module) == 0)
2493 f p r i n t f (o u t , "%4d | %-13s|",n," raw c o d e ") ;
2494 e l s e
2495 f p r i n t f (o u t , " % 4 d | % - 1 3 s | " , n , (c h a r *)mod + mod-
2496 >name);
2497 i f (d e s c - > s t a t u s == 1)
2498 f p r i n t f (o u t , " S l e e p i n g | ") ;
2499 e l s e i f (d e s c - > s t a t u s == 2)
2500 f p r i n t f (o u t , " Running | ") ;
2501 e l s e
2502 f p r i n t f (o u t , " W a i t i n g | ") ;
2503 f p r i n t f (o u t , " %7d | %6d | " , d e s c - > s i g n a l , d e s c - > s l e e p) ;
2504 i f (desc->death == O x f f f f)
2505 f p r i n t f (o u t , " n o n e \ r \ n ") ;
2506 e l s e
2507 f p r i n t f (o u t , " % 5 d \ r \ n " , d e s c - > d e a t h) ;
2508 }
2509 }
2510
2511 f f l u s h (o u t) ;
2512
2513 }
2514

Page 211

Appendix 4 ; The PC Analysis Program Listing

i n c l u d e <stdio.h>
ttinclude < s t r i n g . h >
i n c l u d e <graph.h>
i n c l u d e <math.h>
i n c l u d e < s t d l i b . h >
i n c l u d e <pgchart.h>

ttdefine ON 1
d e f i n e OFF 0
d e f i n e SUCCESSFUL 0
ttdefine UNSUCCESSFUL 1
d e f i n e NO_OF_POINTS 50

type d e f enum {FALSE, TRUE} boolean;

c h a r * get_outname(c h a r *) ;
c h a r * get_name(c h a r *) ;
v o i d c a s e _ c o n v e r t (c h a r *) ;
v o i d i n p u t _ f i l e (c h a r *, c h a r *, c h a r *) ;
c h a r * g e t _ p a t i e n t _ f i l e (c h a r *) ;
c h a r * g e t _ d a t e (c h a r *) ;
i n t c a l c _ n o _ o f _ w e e k s (i n t , i n t , i n t , i n t , i n t , i n t) ;
f l o a t c a l c _ w e i g h t _ b e a r i n g (c h a r *, i n t) ;

F I L E * i n f i l e , * o u t f i l e ;

main()
{
c h a r *temp, *innarae, *outname, *name, *temp_outname;
c h a r in_name[13];
c h a r out_name[13] = "";
c h a r pat_name[40] = "";
c h a r * c h a r _ a r r a y _ p o i n t e r ;
c h a r p a t _ f i l e [4 0] = "";
c h a r temp_out_name[13];
c h a r t emp_name1[4 0] ;
c h a r temp_name2[40];
c h a r temp_name3[40];
c h a r temp_name4[40];
c h a r p a t i e n t _ n o t e s [2 0 0 0] ;

i n t h o u r [2 4] , body_mass=0, i , j , k, i n p u t , f l a g l , f l a g 2 , f l a g 3 , f l a g 4 ,
f l a g 5 , l e g s _ m o n i t o r e d , e v e n t _ l e v e l , n, i n p u t _ v a l u e , outcome;
i n t no_of_weeks7 ~year_~end, month_end, day_end, y e a r _ s t a r t T ; ^ m o n t h _ s t a r t ,
d a y _ s t a r t , year_new, y e a r _ c u r , month_new, month_cur, day_new, day_cur;
c h a r i n p u t _ c h a r ;
double sum, sq_dev;
f l o a t weight_mean, w e i g h t _ v a r i a n c e , weight_std_dev, duration_mean,
d u r a t i o n _ v a r i a n c e , d u r a t i o n _ s t d _ d e v ;
i n t c u r _ r e a d , c u r _ w r i t e , day_ob, month_ob, year_ob;
c h a r h o s p i t a l _ n o [2 0] ;
c h a r l e g _ b r o k e n ;
c h a r f r a c t u r e _ t y p e [4 0] , f r a c t u r e _ p o s [4 0] , f r a c t u r e _ t r e a t [4 0] ;
f l o a t h o u r s [2 4] , weight_bearing[NO_OF_POINTS], week_no[NO_OF_POINTS];
f l o a t t e m p _ f l o a t ;
c h a r t e n v env;

c h a r f a r *hour_name[24]
{

"00", "01", "02",
"10", "11", "12",
"20", "21", "22",

};

/* I n i t i a l i s a t i o n */

Page 212

"03", "04", "05", "06", "07", "08", "09",
"13", "14", "15", "16", "17", "18", "19",
"23 "

Appendix 4

6 9 /* Not knowing the type and age of PC which might i n the f u t u r e execute */
7 0 /* t h i s programme, the graphics mode w i t h the lowest common denominator */
7 1 /* has been chosen (CGA). The b l a c k and wh i t e mode was chosen f o r i t s */
7 2 /* increased r e s o l u t i o n over the colou r modes. */
7 3
7 4 setvideomode(HRESBW);
7 5 ~
7 6 inname = "" ;
7 7 outname = "" ;
7 8 name = "" ;
7 9
8 0
8 1 /* This programme uses the f o l l o w i n g d i r e c t o r i e s f o r the storage of i t s */
8 2 /* f i l e s : ' \ p a t i e n t s ' , '\data', ' \ a n a l y s i s ' . The f o l l o w i n g code checks */
8 3 /* f o r whether they are present on the c: d r i v e , and i f not (i e t h i s i s */
8 4 /* the f i r s t time t h a t the programme has been executed on t h i s */
8 5 /* computer), they are created. */
8 6
8 7 /* F i r s t p r i n t the l i s t of d i r e c t o r i e s from the r o o t i n t o the f i l e */
8 8 /* c a l l e d 'temp.dat'. */
8 9
9 0 system(" d i r c:\\ /A:D /B > temp.dat") ;
9 1
9 2 /* Next search through t h i s f i l e comparing each d i r e c t o r y name w i t h */
9 3 /* DATA, ANALYSIS, and PATIENTS, r e c o r d i n g the matches found. */
9 4
9 5 i n f i l e = fopen("temp.dat", " r ") ;
9 6 f l a g l = OFF;
9 7 f l a g 2 = OFF;
9 8 f l a g 3 = OFF;
9 9 w h i l e (f s c a n f (i n f i l e , "%s", temp_namel) != EOF) {

1 0 0 i f (strcmp(temp_namel, "DATA") == 0)
1 0 1 f l a g l = 0 N ;
1 0 2 e l s e i f (strcmp(temp_namel, "ANALYSIS") == 0)
1 0 3 flag2=ON;
1 0 4 e l s e i f (strcmp(temp_namel, "PATIENTS") == 0)
1 0 5 flag3=ON;
1 0 6 }
1 0 7 f c l o s e (i n f i l e) ;
1 0 8
1 0 9
1 1 0 /* F i n a l l y f o r any t h a t a match was not found, create i t . */
1 1 2 i f (f l a g l == OFF)
1 1 3 system) "mkdir c:\\data") ;
1 1 4 i f (f l a g 2 == OFF)
1 1 5 system("mkdir c : W a n a l y s i s ") ;
1 1 6 i f (f l a g 3 == OFF)
1 1 7 system) "mkdir c:\Ypatients") ;
1 1 8
1 1 9
1 2 0 /* Enter the main p a r t of the programme, which as an i n f i n i t e loop w i l l */
1 2 1 /* never be e x i t e d from (except when the programme execut i o n i s */
1 2 2 /* t e r m i n a t e d) . */
1 2 3
1 2 4 w h i l e (1) {
1 2 5 i f (strcmp(outname, "") != 0)
1 2 6 s t r c p y (temp_out_name, outname) ;
1 2 7
1 2 8 e l s e {
1 2 9 i f (strcmp(inname, "") == 0)
1 3 0 s t r c p y (temp_out_name, "") ;
1 3 1 else
1 3 2 s t r c p y (temp out name, get outname(inname)) ;
1 3 3
1 3 4 }
1 3 5
1 3 6 temp_outname = temp_out_name;
1 3 7 outname = temp_out_name;
1 3 8
1 3 9
1 4 0 /* The f o l l o w i n g i s the r o o t or main menu. */

Page 213

file://'/patients'
file://'/data'
file://'/analysis'
file://c:/Ypatients

Appendix 4

1 4 1
1 4 2
1 4 3
1 4 4
1 4 5
1 4 6
1 4 7
1 4 8
1 4 9
1 5 0
1 5 1
1 5 2
1 5 3
1 5 4
1 5 5
1 5 6
1 5 7
1 5 8
1 5 9
1 6 0
1 6 1
1 6 2
1 6 3
1 6 4
1 6 5
1 6 6
1 6 7
1 6 8
1 6 9
1 7 0
1 7 1
1 7 2
1 7 3
1 7 4
1 7 5
1 7 6
1 7 7
1 7 8
1 7 9
1 8 0
1 8 1
1 8 2
1 8 3
1 8 4
1 8 5
1 8 6
1 8 7
1 8 8
1 8 9
1 9 0
1 9 1
1 9 2
1 9 3
1 9 4
1 9 5
1 9 6
1 9 7
1 9 8
1 9 9
2 0 0
2 0 1
2 0 2
2 0 3
2 0 4
2 0 5
2 0 6
2 0 7
2 0 8
2 0 9
2 1 0
2 1 1
2 1 2

_clearscreen(_GCLEARSCREEN);
_ s e t t e x t p o s i t i o n (1 , 5) ;
p r i n t f (" C u r r e n t data f i l e : %s",inname);
_ s e t t e x t p o s i t i o n (2 , 5) ;
p r i n t f (" C u r r e n t a n a l y s i s f i l e : %s",outname);
_ s e t t e x t p o s i t i o n (3 , 5) ;
p r i n t f (" C u r r e n t p a t i e n t name: %s",pat_name);
_ s e t t e x t p o s i t i o n (5 , 2 0) ;
p r i n t f (" 1 : Change any of above d e t a i l s ") ;
_ s e t t e x t p o s i t i o n (7 , 2 0) ;
p r i n t f (" 2 : Analyse data, s t o r i n g r e s u l t s i n %s",temp_outname);
_ s e t t e x t p o s i t i o n (9 , 2 0) ;
p r i n t f (" 3 : D i s p l a y a n a l y s i s ") ;
_ s e t t e x t p o s i t i o n (1 1 , 2 0) ;
p r i n t f (" 4 : Examine p a t i e n t ' s h i s t o r y ") ;
_ s e t t e x t p o s i t i o n (1 3 , 2 0) ;
p r i n t f (" 5 : Delete a p a t i e n t ' s f i l e s ") ;
_ s e t t e x t p o s i t i o n (1 5 , 2 0) ;
p r i n t f (" 6 : E x i t ") ;

_ s e t t e x t p o s i t i o n (2 0 , 2 0) ;
p r i n t f (" P l e a s e i n p u t a number between 1 and 6:
s c a n f (" % d " , & i n p u t) ;

') ;

/* S e l e c t i n g o p t i o n ' 1 ' allows the operator t o change any of t h e * /
/* above name d e t a i l s v i a v a r i o u s sub-menus. */

i f (i n p u t = = l) {
flagl=0FF;
w h i l e (flagl==0FF) {

_clearscreen(_GCLEARSCREEN);
_ s e t t e x t p o s i t i o n (1 , 5) ;
p r i n t f (" C u r r e n t data f i l e : %s",inname);
_ s e t t e x t p o s i t i o n (2 , 5) ;
p r i n t f (" C u r r e n t a n a l y s i s f i l e : %s", outname) ,-
_ s e t t e x t p o s i t i o n (3 , 5) ;
p r i n t f (" C u r r e n t p a t i e n t name: %s",pat_name);
_ s e t t e x t p o s i t i o n (5 , 2 0) ;
p r i n t f (" 1 : Change data f i l e name");
_ s e t t e x t p o s i t i o n (7 , 2 0) ;
p r i n t f (" 2 : Change p a t i e n t name");
_ s e t t e x t p o s i t i o n (9 , 2 0) ;
p r i n t f (" 3 : Return t o main menu");

_ s e t t e x t p o s i t i o n (2 0 , 2 0) ;
p r i n t f (" P l e a s e i n p u t a number between 1 and 3: ") ;
scanf (! L%d" r&input) ;

/* Having s e l e c t e d o p t i o n ' 1 ' , the operator can */

r
/•>
i f

access other options t o a i d i n the s e l e c t i n g */

%s",outname);

%s",pat_name);

of a new data f i l e name. These are t o l i s t */
the data f i l e s not y e t analysed, and/or l i s t */
those already analysed. */

(i n p u t = = l) {
flag2=0FF;
w h i l e (flag2==0FF) {

_clearscreen(_GCLEARSCREEN);
_ s e t t e x t p o s i t i o n (1 , 5) ;
p r i n t f (" C u r r e n t data f i l e : %s",inname);
_ s e t t e x t p o s i t i o n (2 , 5) ;
p r i n t f (" C u r r e n t a n a l y s i s f i l e :

_ s e t t e x t p o s i t i o n (3 , 5) ;
p r i n t f (" C u r r e n t p a t i e n t name:

_ s e t t e x t p o s i t i o n (5 , 2 0) ;
p r i n t f (" 1 : Change data f i l e name");
_ s e t t e x t p o s i t i o n (7 , 2 0) ;

Page 214

Appendix 4

2 1 3 p r i n t f (" 2 : L i s t data f i l e s not analysed");
2 1 4 _ s e t t e x t p o s i t i o n (9 , 2 0) ;
2 1 5 p r i n t f (" 3 : L i s t analysed data f i l e s ") ;
2 1 6 _ s e t t e x t p o s i t i o n (1 1 , 2 0) ;
2 1 7 p r i n t f (" 4 : Return t o the previous menu");
2 1 8
2 1 9 _ s e t t e x t p o s i t i o n (2 0 , 20) ;
2 2 0 p r i n t f (" P l e a s e i n p u t a number between 1
2 2 1 and 4: ") ;
2 2 2 scanf ("%d", Sbinput) ;
2 2 3
2 2 4
2 2 5 /* When s e l e c t i n g the */
2 2 6 /* f o l l o w i n g o p t i o n , the */
2 2 7 /* operator i n p u t s the date of */
2 2 8 /* the m o n i t o r i n g session he */
2 2 9 /* wishes t o access the data o f . * /
2 3 0 /* I f a p a t i e n t name has not y e t * /
2 3 1 /* been s p e c i f i e d the operator */
2 3 2 /* i s a l s o asked t o i n p u t one. */
2 3 3 /* From a l l t h i s i n f o r m a t i o n , */
2 3 4 /* the name of the r e q u i r e d data*/
2 3 5 /* f i l e i s c o n s t r u c t e d and the */
2 3 6 /* accessed. */
2 3 7
2 3 8 i f (i n p u t = = l)
2 3 9 {
2 4 0 /* The f o l l o w i n g f u n c t i o n performs
2 4 1 most */

/* The f o l l o w i n g f u n c t i o n performs

2 4 2 /* of the f i l e name c o n s t r u c t i o n .
2 4 3 */
2 4 4
2 4 5 i n p u t _ f i l e (temp_name2, pat_name,
2 4 6 p a t _ f i l e) ;
2 4 7

p a t _ f i l e) ;

2 4 8
2 4 9 /* •temp_name2' i s OFF o n l y i f the
2 5 0 */

/* •temp_name2' i s OFF o n l y i f the

2 5 1 /* i n p u t t e d p a t i e n t name was not
2 5 2 v a l i d . */
2 5 3
2 5 4 i f (strcmp(temp_name2, "OFF") !=
2 5 5 0) {

i f (strcmp(temp_name2, "OFF") !=

2 5 6 s t r c p y (temp_namel, "DAT") ;
2 5 7 s t r e a t (temp_namel,
2 5 8 temp_name2) ;
2 5 9

temp_name2) ;

2 6 0 s t r c p y (temp_name2,
2 6 1 temp_namel),-
2 6 2 temp_name2[9] = '0';
2 6 3 temp_name2[10] = ' 0' ;
2 6 4 temp_name2[11] = '0' ;
Z O J
2 6 6
2 6 7 /* L i s t the unanalysed data
2 6 8 f i l e * /
2 6 9 /* names i n 'temp.dat', and
2 7 0 then*/
2 7 1 /* check t o see t h a t the data
2 7 2 */
2 7 3 /* f i l e name c o n s t r u c t e d
2 7 4 e x i s t s */
2 7 5 /* among these.
2 7 6 */
2 7 7
2 7 8 system(" d i r d a t * . * /B >
2 7 9 temp.dat") ;
2 8 0

temp.dat") ;

2 8 1 i n f i l e = fopen("temp.dat".
2 8 2 " r ") ;

i n f i l e = fopen("temp.dat".

2 8 3 flag3=OFF;

Page 215

Appendix 4

2 8 4
2 8 5
2 8 6
2 8 7
2 8 8
2 8 9
2 9 0
2 9 1
2 9 2
2 9 3
2 9 4
2 9 5
2 9 6
2 9 7
2 9 8
2 9 9
3 0 0
3 0 1
3 0 2
3 0 3
3 0 4
3 0 5
3 0 6
3 0 7
3 0 8
3 0 9
3 1 0
3 1 1
3 1 2
3 1 3
3 1 4
3 1 5
3 1 6
3 1 7
3 1 8
3 1 9
3 2 0
3 2 1
3 2 2
3 2 3
3 2 4
3 2 5
3 2 6
3 2 7
3 2 8
3 2 9
3 3 0
3 3 1
3 3 2 -
3 3 3
3 3 4
3 3 5
3 3 6
3 3 7
3 3 8
3 3 9
3 4 0
3 4 1
3 4 2
3 4 3
3 4 4
3 4 5
3 4 6
3 4 7
3 4 8
3 4 9
3 5 0
3 5 1
3 5 2
3 5 3
3 5 4

temp_name3) != EOF) {

temp_name2, temp_name3] == 0)

w h i l e (f s c a n f (i n f i l e , "%s",

i f (strcmp(

flag3=ON;
}

the c o n s t r u c t e d */

e x i s t s f o r the

(i e those s t o r e d */

d i r e c t o r y .

f c l o s e (i n f i l e) ;
i f (f l a g 3 == OFF) {

/* Check t o see whether

/* data f i l e name

/* analysed data f i l e s

/* i n the '\data'

system(" d i r

i n f i l e = fopen(

flag4=OFF;

w h i l e (f s c a n f (i n f i l e ,

i f (strcmp(
flag4=ON;

}
f c l o s e (i n f i l e) ;
i f (flag4==OFF)

p r i n t f (" \ n T h e
i n p u t t e d data f i l e '%s' does not e x i s t !! ",temp_namel);

e l s e
goto

The_unmentionable_command;
} /* Although

u s i n g a 'goto', no danger of stack overloading because */
/* the ' i f

statement's opening bracket i s ca n c e l l e d by the 'else' */
els e { /*

statement's c l o s i n g bracket. */

c: WdataWdat* . * /B > temp.dat")

"temp.dat", " r ") ;

"%s", temp_name3) != EOF) {

temp_namel, temp_name3) == 0)

analysed y e t (so has '.000' */

Therefore rename the f i l e */

s u f f i x . */

"rename ") ;

temp_name2) ;

) ;
temp_namel) ;

i s executed f o r whether */

has or has not been */

*/

The_unmentionable_command:
in_name, temp_namel) ;

/* The f i l e i s not

/* as i t s s u f f i x) .

/* the " p a t i e n t number

s t r c p y (temp_name3,

s t r c a t (temp_name3,

s t r c a t (temp_name3, "

s t r c a t (temp_name3,

system(temp_name3) ;

/* The f o l l o w i n g code

/* the data f i l e name

/* analysed.

s t r c p y (
inname = in_name;

Page 216

file:///data'
file:///nThe

Appendix 4

3 5 5
3 5 6
3 5 7
3 5 8
3 5 9
3 6 0
3 6 1
3 6 2
3 6 3
3 6 4
3 6 5
3 6 6
3 6 7
3 6 8
3 6 9
3 7 0
3 7 1
3 7 2
3 7 3
3 7 4
3 7 5
3 7 6
3 7 7
3 7 8
3 7 9
3 8 0
3 8 1
3 8 2
3 8 3
3 8 4
3 8 5
3 8 6
3 8 7
3 8 8
3 8 9
3 9 0
3 9 1
3 9 2
3 9 3
3 9 4
3 9 5
3 9 6
3 9 7
3 9 8
3 9 9
4 0 0
4 0 1
4 0 2
4 0 3
4 0 4
4 0 5
4 0 6
4 0 7
4 0 8
4 0 9
4 1 0
4 1 1
4 1 2
4 1 3
4 1 4
4 1 5
4 1 6
4 1 7
4 1 8
4 1 9
4 2 0
4 2 1
4 2 2
4 2 3
4 2 4
4 2 5
4 2 6

data f i l e '%s' i s accepted.",inname);

a n a l y s i s f i l e name, and */

a n a l y s i s f i l e e x i s t s */

*/

"AN") ;

= temp_namel[i+3];

c: WanalysisWan* . * /B > temp.dat") ;

"temp.dat", " r ") ;

"%s", temp_name4) != EOF) {

temp_name3, temp_name4) == 0)

message t o remind the */

the data f i l e . */

p r i n t f (" \ n T h e i n p u t t e d

/* Now generate the

/* check f o r whether an

/* w i t h the same name.

s t r c p y (temp_name3,

f o r (i = 0 ; i < 9 ; i++)
temp_name3[i+2]

temp_name3[i+2] = 0;

system(" d i r

i n f i l e = fopen(

flag3=0FF;

w h i l e (f s c a n f (i n f i l e ,

i f (strcmp(

flag3=ON;
}

f c l o s e t i n f i l e) ;
/* I f not, then p r i n t a

/* operator t o analyse

i f (flag3==OFF) {
p r i n t f (" \ n T h e

corresponding a n a l y s i s '%s' f i l e does not exist.",temp_name3);
p r i n t f (" \ n T h e

user must analyse the data f i l e f i r s t . ") ;
p r i n t f (" \ n T o do

so, the data f i l e must be i n the c u r r e n t d i r e c t o r y . ") ;
}

s t r c p y (

outhame =

p r i n t f (" \ n T h e r e

e lse {

out_name, temp_name3) ;

out_name;

i s a corresponding a n a l y s i s f i l e , '%s'.",outname);
}

c o n t i n u e . ") ;

}
p r i n t f (" \ n \ n P r e s s a key t o

g e t c h () ;

}

/* L i s t the data f i l e s not y e t */
/* analysed by p r i n t i n g the ones*/
/* on the screen from the */
/* c u r r e n t d i r e c t o r y , as they */
/* haven't been moved t o '\data'*/
/* d i r e c t o r y y e t . */

Page 217

file:///nThe
file:///nThe
file:///nThe
file:///nThere
file:///n/nPress

Appendix 4

All
4 2 8
4 2 9
4 3 0
4 3 1
4 3 2
4 3 3
4 3 4
4 3 5
4 3 6
4 3 7
4 3 8
4 3 9
4 4 0
4 4 1
4 4 2
4 4 3
4 4 4
4 4 5
4 4 6
4 4 7
4 4 8
4 4 9
4 5 0
4 5 1
4 5 2
4 5 3
4 5 4
4 5 5
4 5 6
4 5 7
4 5 8
4 5 9
4 6 0
4 6 1
4 6 2
4 6 3
4 6 4
4 6 5
4 6 6
4 6 7
4 6 8
4 6 9
4 7 0
4 7 1
4 7 2
4 7 3
4 7 4
4 7 5
4 7 6
4 7 7
4 7 8
4 7 9
4 8 0
4 8 1
4 8 2
4 8 3
4 8 4
4 8 5
4 8 6
4 8 7
4 8 8
4 8 9
4 9 0
4 9 1
4 9 2
4 9 3
4 9 4
4 9 5
4 9 6
4 9 7
4 9 8

'\data' d i r e c t o r y , the */

more") ;

e lse i f (input==2) {
system(" d i r d a t * . * /B | more") ;
g e t c h () ;
}

/* By p r i n t i n g the data f i l e s i n the

/* analysed f i l e s are p r i n t e d .

e l se i f (input==3) {
system(" d i r c : WdataWdat* . * /B
g e t c h () ;
}

else i f (input==4)
flag2=ON;

else {

3. Please t r y a g a i n . ") ;
p r i n t f (" \ n l n p u t range i s from 1 t o

g e t c h () ;
}

/* By s e l e c t i n g o p t i o n '2', the operator can */
/* change the p a t i e n t name t o another; l i s t the */
/* names of the p a t i e n t s having been monitored; */
/* i n p u t d e t a i l s of a new p a t i e n t f o r storage. */

e l se i f (input==2) {
f l a g 2 = OFF;
w h i l e (flag2==OFF) {

_clearscreen(_GCLEARSCREEN);
_ s e t t e x t p o s i t i o n (1 , 5) ;

"unsuccessful"))

% s " , g e t _ n a m e (p a t _ f i l e))

specified-. "In­

p a t i e n t ")

i f (s t r c m p (g e t _ n a m e (p a t _ f i l e) ,

p r i n t f (" C u r r e n t p a t i e n t name:

else
p r i n t f (" C u r r e n t p a t i e n t not

_ s e t t e x t p o s i t i o n (3 , 2 0) ;
p r i n t f (" 1 : Change c u r r e n t p a t i e n t name");
_ s e t t e x t p o s i t i o n (5 , 2 0) ;
p r i n t f (" 2 : L i s t p a t i e n t s ") ;
_ s e t t e x t p o s i t i o n (7 , 2 0) ;
p r i n t f (" 3 : I n p u t d e t a i l s of a new

_ s e t t e x t p o s i t i o n (9 , 2 0) ;
p r i n t f (" 4 : Return t o the previous menu");

_ s e t t e x t p o s i t i o n (2 0 , 2 0) ;
p r i n t f (" P l e a s e i n p u t a number from 1 t o 4 ") ;
s c a n f (" % d " , & i n p u t) ;

/* The f i r s t o p t i o n having */
/* been s e l e c t e d , the operator */
/* i s asked t o i n p u t the p a t i e n t * /
/* name, whose l e t t e r s are a l l */
/* converted t o lower case */
/* except the f i r s t f o r each */

Page 218

file://'/data'
file:///nlnput

Appendix 4

4 9 9
5 0 0
5 0 1
5 0 2
5 0 3
5 0 4
5 0 5
5 0 6
5 0 7
5 0 8
5 0 9
5 1 0
5 1 1
5 1 2
5 1 3
5 1 4
5 1 5
5 1 6
5 1 7
5 1 8
5 1 9
5 2 0
5 2 1
5 2 2
5 2 3
5 2 4
5 2 5
5 2 6
5 2 7
5 2 8
5 2 9
5 3 0
5 3 1
5 3 2
5 3 3
5 3 4
5 3 5
5 3 6
5 3 7
5 3 8
5 3 9
5 4 0
5 4 1
5 4 2
5 4 3
5 4 4
5 4 5
5 4 6
5 4 7
5 4 8
5 4 9
5 5 0
5 5 1
5 5 2
5 5 3
5 5 4
5 5 5
5 5 6
5 5 7
5 5 8
5 5 9
5 6 0
5 6 1
5 6 2
5 6 3
5 6 4
5 6 5
5 6 6
5 6 7
5 6 8
5 6 9
5 7 0

name ? : ") ;
temp_name2);

g e t _ p a t i e n t _ f i l e (temp_namel)) ;

"unsuccessful")) {

) ;

) ;
accepted.");

not e x i s t ! ! ") ;

/B > temp.dat") ;

temp_namel) != EOF) {

"c : W p a t i e n t s W ") ;
temp_namel) ;
temp_name2) ;

fopen(temp_namel, " r ") ;

%s",temp_namel,temp_name2) ;

temp_name2) ;

/* word which i s converted t o */
/* upper. The name i s then */
/* compared t o the name s t o r e d */
/* i n every p a t i e n t f i l e and i f */
/* t h e r e i s a match then the */
/* p a t i e n t name i s accepted. */

i f (i n p u t = = l) {
p r i n t f (" \ n W h a t i s the new p a t i e n t ' s

s c a n f (" % s %s", temp_namel,

case_convert(temp_namel)
case_convert(temp_name2)
s t r c a t (temp_namel, " ")
s t r c a t (temp_namel, temp_name2) ;

s t r c p y (temp_name3,

i f (strcmpt temp_name3,

s t r c p y (pat_name, temp_namel

s t r c p y (p a t _ f i l e , temp_name3

p r i n t f (" \ n P a t i e n t name

else

s t r c p y (inname, "") ;
s t r c p y (outname, "") ;
}
p r i n t f (" \ n P a t i e n t name does

/* The second o p t i o n having */
/* been s e l e c t e d , the names of */
/* a l l the p a t i e n t s which have */
/* been monitored are d i s p l a y e d */
/* i n t h r e e columns on the */
/* screen. Each p a t i e n t f i l e i s * /
/* accessed i n t u r n and the */
/* p a t i e n t name di s p l a y e d . */

else i f (input==2) {
system(" d i r c : WpatientsWpatient. *

i n f i l e = fopen("temp.dat","r");

i = 0;

w h i l e (f s c a n f (i n f i l e , "%s",

i++;

s t r c p y (temp_name2,

s t r c a t (temp_name2,

s t r c p y (temp_namel,

o u t f i l e =

f s c a n f (o u t f i l e , "%s

f c l o s e (o u t f i l e) ;
s t r c a t (temp_namel,
s t r c a t (temp_namel,

) ;

Page 219

file:///nWhat
file:///nPatient
file:///nPatient

Appendix 4

5 7 1
5 7 2
5 7 3
5 7 4
5 7 5
5 7 6
5 7 7
5 7 8
5 7 9
5 8 0
5 8 1
5 8 2
5 8 3
5 8 4
5 8 5
5 8 6
5 8 7
5 8 8
5 8 9
5 9 0
5 9 1
5 9 2
5 9 3
5 9 4
5 9 5
5 9 6
5 9 7
5 9 8
5 9 9
6 0 0
6 0 1
6 0 2
6 0 3
6 0 4
6 0 5
6 0 6
6 0 7
6 0 8
6 0 9
6 1 0
6 1 1
6 1 2
6 1 3
6 1 4
6 1 5
6 1 6
6 1 7
6 1 8
6 1 9
6 2 0
6 2 1
6 2 2
6 2 3
6 2 4
6 2 5
6 2 6
6 2 7
6 2 8
6 2 9
6 3 0
6 3 1
6 3 2
6 3 3
6 3 4
6 3 5
6 3 6
6 3 7
6 3 8
6 3 9
6 4 0
6 4 1
6 4 2

p r i n t f (" % 2 5 s " , t e m p _ n a m e l) ;

p r i n t f (" \ r \ n % 2 5 s " , t e m p _ n a m e l) ;

/* The f o l l o w i n g l i n e s */
/* d i s p l a y t h r e e columns*/
/* of names. */

i f ((i%4)==0)
i = l ;

i f (((i % 2) = = 0) || ((i % 3) = = 0)

else

f c l o s e (i n f i l e) ;

/* S e l e c t i n g the t h i r d o p t i o n */
/* allows the operator t o i n p u t */
/* the d e t a i l s of a new p a t i e n t . * /

*/
*/
"I
k/
k/
* I

I * The operator i n p u t s the
/* p a t i e n t name which i s
/* compared t o a l l the p a t i e n t
/* names already s t o r e d and i s
/* o n l y accepted i f no match
/* occurs.

name? : ") ;

temp_name2);

/B > temp.dat") ;

) {

"%s",temp_name2) != EOF) {

"c : W p a t i e n t s W ") ;

temp_name2) ;

temp_name3) ;

fopen(temp_name2,"r");
temp_name3, temp_name4);

") ;
temp_name4);

temp_namel) == 0) {

alre a d y e x i s t s !!", temp_namel)

else i f (input==3) {
_clearscreen(_GCLEARSCREEN);

p r i n t f (" W h a t i s the new p a t i e n t ' s

scanf("%s %s", temp_namel,
case_convert(temp_namel) ;
case_convert(temp_name2) ;
s t r c a t (temp_namel, " ") ;
s t r c a t (temp_namel, temp_name2) ;
system (" d i r c : W p a t i e n t s W p a t i e n t . *

o u t f i l e = fopen("temp.dat","r");
flag3=OFF; flag4=OFF;
w h i l e ((flag3==0FF) && (flag4==0FF)

i f (f s c a n f (o u t f i l e ,

s t r c p y (temp_name3,

s t r c a t (temp_name3,

s t r c p y (temp_name2,

i n f i l e =

f s c a n f (i n f i l e , " % s %s",

f c l o s e (i n f i l e) ;

strcat(temp_name3 , "

strcat(temp_name3,

i f (strcn\p(temp_name3,

p r i n t f (" \ n % s

Page 220

Appendix 4

6 4 3
6 4 4
6 4 5
6 4 6
6 4 7
6 4 8
6 4 9
6 5 0
6 5 1
6 5 2
6 5 3
6 5 4
6 5 5
6 5 6
6 5 7
6 5 8
6 5 9
6 6 0
6 6 1
6 6 2
6 6 3
6 6 4
6 6 5
6 6 6
6 6 7
6 6 8
6 6 9
6 7 0
6 7 1
6 7 2
6 7 3
6 7 4
6 7 5
6 7 6
6 7 7
6 7 8
6 7 9
6 8 0
6 8 1
6 8 2
6 8 3
6 8 4
6 8 5
6 8 6
6 8 7
6 8 8
6 8 9
6 9 0
6 9 1
6 9 2
6 9 3
6 9 4
6 9 5
6 9 6
6 9 7
6 9 8
6 9 9
7 0 0
7 0 1
7 0 2
7 0 3
7 0 4
7 0 5
7 0 6
7 0 7
7 0 8
7 0 9
7 1 0
7 1 1
7 1 2
7 1 3
7 1 4

f l a g 3
}

ON;

else

}
flag4=ON;

i f no match */

temp_name2) != EOF) {

temp_name2[i+9];

/* Execute the f o l l o w i n g l i n e s o n l y

/* has occurred.

i f (flag3!=ON) {
rewind(o u t f i l e) ;
input=0;
w h i l e (f s c a n f (o u t f i l e , "%s",

f o r (i = 0 ; i < 3 ; i++)
temp_name3[i] =

temp_name3[i] = 0;
i = atoi(temp_name3);
i f (i > i n p u t)

i n p u t = i ;

}

i n p u t += 1 ;

temp_name3[0]

temp_name3[1]
(input/100)+48;

((temp_name3[0]-48)*100))/10) + 48;
temp_name3[2]

((temp_name3[0]-48)*100)-((temp_name3[1]-48)*10)) + 48;
temp_name3[3]

" c : \ \ p a t i e n t s \ \ p a t i e n t . ") ;

temp_namel) ;

p a t i e n t ' s date of b i r t h ? \ n ")

(input<32))

range i s from 1 t o 31. Please t r y again.\n")

((i n p u t -

(i n p u t -

0;

s t r c p y (p a t _ f i l e ,

s t r c a t (p a t _ f i l e , temp_name3

s t r c p y (pat_name, temp_namel

i n f i l e = fopen(p a t _ f i l e , "w"

f p r i n t f (i n f i l e , "%s\n",

flag3=OFF;
w h i l e (flag3==OFF) {

p r i n t f (" \ n \ n W h a t i s the

p r i n t f (" D a y : ") ;
s c a n f (" % d " , f c i n p u t) ;
i f ((input>0) &&

else

}

flag3=ON;

p r i n t f (" \ n T h e

f p r i n t f (i n f i l e , "%d i n p u t

(input<13)

flag3=OFF;
w h i l e (flag3==OFF) {

p r i n t f (" M o n t h : ") ;
s c a n f (" % d " , & i n p u t) ;
i f ((input>0) &&

flag3=ON;

Page 221

file:///patient
file:///n/nWhat
file:///nThe

Appendix 4

7 1 5
7 1 6
7 1 7
7 1 8
7 1 9
7 2 0
7 2 1
7 2 2
7 2 3
7 2 4
7 2 5
7 2 6
7 2 7
7 2 8
7 2 9
7 3 0
7 3 1
7 3 2
7 3 3
7 3 4
7 3 5
7 3 6
7 3 7
7 3 8
7 3 9
7 4 0
7 4 1
7 4 2
7 4 3
7 4 4
7 4 5
7 4 6
7 4 7
7 4 8
7 4 9
7 5 0
7 5 1
7 5 2
7 5 3
7 5 4
7 5 5
7 5 6
7 5 7
7 5 8
7 5 9
7 6 0
7 6 1
7 6 2
7 6 3
7 6 4
7 6 5
7 6 6
7 6 7
7 6 8
7 6 9
7 7 0
7 7 1
7 7 2
7 7 3
7 7 4
7 7 5
7 7 6
7 7 7
7 7 8
7 7 9
7 8 0
7 8 1
7 8 2
7 8 3
7 8 4
7 8 5
7 8 6

else
range i s from 1 t o 12. Please t r y again.\n");

p r i n t f (" \ n T h e

) ;

1970) : ") ;

(input<2000))

f p r i n t f (i n f i l e , "%d ", i n p u t

flag3=0FF;
w h i l e (flag3==0FF) {

p r i n t f (" Y e a r (eg.

s c a n f (" % d " , f c i n p u t) ;
i f ((input>1900) &&

else

range i s from 1900 t o 2000. Please t r y again.\n");

flag3=0N;

p r i n t f (" \ n T h e

i n p u t) ;

Number: ") ;

temp_name4) ;

l e g f r a c t u r e d (R/L): ") ;

scanf("%c",&input_char) ;

|| (input_char=='1'))

32; /* put i n t o upper case */

|| (inpu t _ c h a r = = ' L 1))

e i t h e r R o r L. Please t r y again.\n");

i n p u t _ c h a r) ;

") ;

temp_namel) ;

temp_namel) ;

f r a c t u r e : ") ;

temp_namel) ;

f p r i n t f (i n f i l e , "%d\n",

flag3=OFF;
w h i l e (flag3==OFF) {

p r i n t f (" H o s p i t a l

scanf("%s",temp_name4) ,
flag3=0N;
}

f p r i n t f (i n f i l e , "%s\n",

flag3=OFF;
w h i l e (flag3==OFF) {

p r i n t f (" R i g h t or L e f t

f f l u s h (s t d i n) ;

i f ((i n p u t _ c h a r = = ' r ')

i n p u t _ c h a r -=

i f ((input_char=='R')

flag3=ON;
else

p r i n t f (" \ n l n p u t

f p r i n t f (i n f i l e , "%c\n",

flag3=OFF;
w h i l e (flag3==OFF) {

p r i n t f (" F r a c t u r e type:

scanf("%s",temp_namel)
case_convert(

flag3=ON;
}

f p r i n t f (i n f i l e , " % s \ n " ,

flag3=OFF;
w h i l e (flag3==0FF) {

p r i n t f (" P o s i t i o n of

scanf("%s",temp_namel)
case_convert(

Page 222

file:///nThe
file:///nThe
file:///nlnput

Appendix 4

7 8 7 flag3=0N;
7 8 8 }
7 8 9 f p r i n t f (i n f i l e , " % s \ n " ,
7 9 0 temp_namel) ;
7 9 1
7 9 2 flag3=OFF;
7 9 3 w h i l e (flag3==OFF) {
7 9 4 p r i n t f (" F r a c t u r e
7 9 5 treatment: ") ;
7 9 6 scanf("%s",temp_namel);
7 9 7 case_convert(
7 9 8 temp_namel) ;
7 9 9 flag3=ON;
8 0 0 }
8 0 1 f p r i n t f (i n f i l e , "%s\n",
8 0 2 temp nameI) ;
8 0 3
8 0 4 flag3=OFF;
8 0 5 w h i l e (flag3==OFF) {
8 0 6 p r i n t f (" P a t i e n t Body
8 0 7 Mass: ") ;
8 0 8 s c a n f (" % d " , & i n p u t) ;
8 0 9 i f ((input<0) ||
8 1 0 (input>120))
8 1 1 p r i n t f (" I n p u t
8 1 2 range i s from 0 t o 120 kg.. Please t r y again.\n");
8 1 3 else
8 1 4 flag3=0N;
8 1 5 }
8 1 6 f p r i n t f (i n f i l e , "%d\n",
8 1 7 i n p u t) ;
8 1 8
8 1 9 p r i n t f (" \ n l n p u t the date when
8 2 0 f r a c t u r e occurred.\n");
8 2 1 flag3=0FF;
8 2 2 w h i l e (flag3==0FF) {
8 2 3 p r i n t f (" D a y : ") ;
8 2 4 s c a n f (" % d " , & i n p u t) ;
8 2 5 i f (
8 2 6 (i n p u t < l) | | (i n p u t > 3 1))
8 2 7 p r i n t f (" I n p u t
8 2 8 range i s from day 1 t o 31 of the month. Please t r y again.\n");
8 2 9 else
8 3 0 flag3=ON;
8 3 1 }
8 3 2 f p r i n t f t i n f i l e , "%d ", i n p u t
8 3 3) ;
8 3 4
8 3 5 flag3=OFF;
8 3 6 w h i l e (flag3==0FF) {
8 3 7 p r i n t f (" M o n t h (1-12):
8 3 8 ") ;
8 3 9 s c a n f (" % d " , fcinput) ;
8 4 0 i f (
8 4 1 (i n p u t < l) | | (i n p u t > 1 2))
8 4 2 p r i n t f (" I n p u t
8 4 3 range i s from month 1 t o 12 of the year. Please t r y again.\n");
8 4 4 else
8 4 5 flag3=0N;
8 4 6)
8 4 7 f p r i n t f (i n f i l e , "%d ", i n p u t
8 4 8) ;
8 4 9
8 5 0 flag3=OFF;
8 5 1 w h i l e (flag3==0FF) {
8 5 2 p r i n t f (" Y e a r (eg.
8 5 3 1993) : ") ;
8 5 4 s c a n f (" % d " , & i n p u t) ;
8 5 5 i f (
8 5 6 (input<1992)||(input>1994))
8 5 7 p r i n t f (" I n p u t
8 5 8 range i s from 1992 t o 1994. Please t r y again.\n");

Page 223

file:///nlnput

Appendix 4

8 5 9
8 6 0
8 6 1
8 6 2
8 6 3
8 6 4
8 6 5
8 6 6
8 6 7
8 6 8
8 6 9
8 7 0
8 7 1
8 7 2
8 7 3
8 7 4
8 7 5
8 7 6
8 7 7
8 7 8
8 7 9
8 8 0
8 8 1
8 8 2
8 8 3
8 8 4
8 8 5
8 8 6
8 8 7
8 8 8
8 8 9
8 9 0
8 9 1
8 9 2
8 9 3
8 9 4
8 9 5
8 9 6
8 9 7
8 9 8
8 9 9
9 0 0
9 0 1
9 0 2
9 0 3
9 0 4
9 0 5
9 0 6
9 0 7
9 0 8
9 0 9
9 1 0
9 1 1
9 1 2
9 1 3
9 1 4
9 1 5
9 1 6
9 1 7
9 1 8
9 1 9
9 2 0
9 2 1
9 2 2
9 2 3
9 2 4
9 2 5
9 2 6
9 2 7
9 2 8
9 2 9
9 3 0

else

}
flag3=ON;

i n p u t) ;
f p r i n t f (i n f i l e , "%d\n",

}

operator t o */

f c l o s e (i n f i l e) ;
f c l o s e (o u t f i l e)
}

/* S e l e c t i n g the f o u r t h o p t i o n r e t u r n s the

/* the previous menu.

else i f (input==4)
f l a g 2 = ON;

else

4. Please t r y a g a i n . ") ;

continue.")

p r i n t f (" \ n l n p u t range i s from 1 t o

i f (flag2==0FF) {
p r i n t f (" \ n \ n P r e s s a key t o

g e t c h () ;
}

}
}

/* S e l e c t i n g the t h i r d o p t i o n r e t u r n s the operator t o

/* the r o o t or main menu.

else i f (input==3)
f l a g l = 0 N ;

else {

a g a i n . ") ;
p r i n t f (" \ n l n p u t range i s from 1 t o 3. Please t r y

g e t c h () ;
}

/* S e l e c t i n g t h i s o p t i o n analyses the c u r r e n t l y s p e c i f i e d data
/* f i l e . This occurs o n l y i f a data f i l e and p a t i e n t name are
/* s p e c i f i e d . An a n a l y s i s f i l e i s created f o r the storage of
/* the a n a l y s i s r e s u l t s . The operaor also has the o p p o r t u n i t y
/* i n p u t notes of the m o n i t o r i n g session which are al s o s t o r e d
/* i n t h i s f i l e .

e l s e i f (input==2) {
s t r c p y (temp_namel, "c:\\data\\") ;
s t r c a t (temp_namel, inname) ,-
i f f ((infile=fopen(inname,"r"))==NULL) &&

((infile=fopen(temp_namel,"r"))==NULL)) {
p r i n t f (" \ n C u r r e n t i n p u t f i l e does not e x i s t ! ! ") ;
g e t c h () ;
}

else i f (strcmp(pat_name, "") == 0) {
p r i n t f (" \ n N o p a t i e n t name s p e c i f i e d ! ! ") ;
g e t c h () ;

*/
*/
*/
*/
*/
*/

Page 224

file:///nlnput
file:///n/nPress
file:///nlnput
file:///nCurrent

Appendix 4

9 3 1 }
9 3 2 else {
9 3 3 _clearscreen(_GCLEARSCREEN);
9 3 4 p r i n t f (" A n a l y s i n g data f i l e and w r i t i n g r e s u l t s t o
9 3 5 %s\n",outname);
9 3 6 f o r (i= 0 ; i<24; i++)
9 3 7 h o u r [i] = 0 ;
9 3 8 f s c a n f (i n f i l e , " % d " , & l e g s _ m o n i t o r e d) ;
9 3 9 f s c a n f (i n f i l e , " % d " , & e v e n t _ l e v e l) ;
9 4 0 outcome = 0;
9 4 1 input_value=0;
9 4 2 sum = 0;
9 4 3 n = 0;
9 4 4 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ; /* This i s o u t s i d e so
9 4 5 can check i f any data events are i n f i l e (u n l i k e l y but p o s s i b l e) */
9 4 6 w h i l e (i n p u t _ v a l u e != 999) {
9 4 7 h o u r [i n p u t _ v a l u e] += 1;
9 4 8 f o r (i = 0; i< 3 ; i++)
9 4 9 outcome =
9 5 0 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 5 1 sum += i n p u t _ v a l u e ;
9 5 2 n++;
9 5 3 f o r (i=0; i< 3 ; i++)
9 5 4 outcome =
9 5 5 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 5 6
9 5 7 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 5 8 }
9 5 9
9 6 0 s t r c p y (temp_namel, "c: W analysisW") ;
9 6 1 outname = out_name;
9 6 2 outname = get_outname(inname)
9 6 3 s t r c a t (temp_namel, outname) ;
9 6 4 o u t f i l e = fopen(temp_namel,"w")
9 6 5
9 6 6 f p r i n t f (o u t f i l e , " % s \ n " , p a t _ n a m e) ;
9 6 7 f p r i n t f (o u t f i l e , " % d \ n " , l e g s _ m o n i t o r e d) ;
9 6 8 f p r i n t f (o u t f i l e , " % d \ n " , e v e n t _ l e v e l) ;
9 6 9
9 7 0 f o r (i = 0 ; i<24; i++)
9 7 1 f p r i n t f (o u t f i l e , " % d " , h o u r [i]) ;

9 7 2 f p r i n t f (o u t f i l e , " \ n ") ;
9 7 3
9 7 4 weight_mean = sum/n;
9 7 5 f p r i n t f (o u t f i l e , " % f \ n " , w e i g h t _ m e a n) ;
9 7 6
9 7 7 r e w i n d (i n f i l e) ;
9 7 8 i n p u t _ v a l u e = 0;
9 7 9 sq_dev = 0;
9 8 0 duration_mean = 0.0;
9 8 1 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 8 2 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 8 3
9 8 4 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 8 5 w h i l e (i n p u t _ v a l u e != 999) {
9 8 6 f o r (i = 0 ; i < 3 ; i++)
9 8 7 fscanf (i n f i l e , "%d", &input_value) ,-
9 8 8 sq_dev += (input_value-weight_mean)*(input_value-
9 8 9 weight_mean);
9 9 0
9 9 1 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 9 2 duration_mean += input_value*256;
9 9 3 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 9 4 duration_mean += i n p u t _ v a l u e ;
9 9 5
9 9 6 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 9 7 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
9 9 8 }
9 9 9

1 0 0 0 weight_variance = sq dev/n;
1 0 0 1 weight_std_dev = s q r t (w e i g h t _ v a r i a n c e) ;
1 0 0 2

Page 225

Appendix 4

1 0 0 3 f p r i n t f (o u t f i l e , " % f \ n " , w e i g h t _ v a r i a n c e) ;
1 0 0 4 f p r i n t f (o u t f i l e , " % f \ n " , w e i g h t _ s t d _ d e v) ;
1 0 0 5
1 0 0 6 d u r a t i o n _ v a r i a n c e = 0.0;
1 0 0 7 duration_mean /= n; /* mean hour f o r a l l events
1 0 0 8 * /
1 0 0 9
1 0 1 0 r e w i n d (i n f i l e) ;
1 0 1 1 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
1 0 1 2 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
1 0 1 3
1 0 1 4 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
1 0 1 5 w h i l e (i n p u t _ v a l u e != 999) {
1 0 1 6 f o r (i= 0 ; i<4; i++)
1 0 1 7 f s c a n f (i n f i l e , " % d " , & j) ;
1 0 1 8
1 0 1 9 j *= 256;
1 0 2 0 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
1 0 2 1 j += i n p u t _ v a l u e ;
1 0 2 2 d u r a t i o n _ v a r i a n c e += (j - d u r a t i o n _ m e a n) * (j -
1 0 2 3 duration_mean);
1 0 2 4
1 0 2 5 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
1 0 2 6 f s c a n f (i n f i l e , " % d " , & i n p u t _ v a l u e) ;
1 0 2 7 }
1 0 2 8
1 0 2 9 d u r a t i o n _ v a r i a n c e /= n;
1 0 3 0
1 0 3 1 d u r a t i o n _ s t d _ d e v = s q r t (d u r a t i o n _ v a r i a n c e) ;
1 0 3 2
1 0 3 3 f p r i n t f (o u t f i l e , " % f \ n " , d u r a t i o n _ m e a n) ;
1 0 3 4 f p r i n t f (o u t f i l e , " % f \ n " , d u r a t i o n _ v a r i a n c e) ;
1 0 3 5 f p r i n t f (o u t f i l e , " % f \ n " , d u r a t i o n _ s t d _ d e v) ;
1 0 3 6
1 0 3 7 flagl=0FF;
1 0 3 8 w h i l e (flagl==0FF) {
1 0 3 9 p r i n t f (" \ n l n p u t the next appointment date i n
1 0 4 0 weeks from today (or 0 i f discharged) : ") ;
1 0 4 1 s c a n f (" % d " , & i n p u t) ;
1 0 4 2 i f ((input<0) || (input>52))
1 0 4 3 p r i n t f (" \ n T h e i n p u t range i s from between
1 0 4 4 0 and 52 weeks. Please t r y a g a i n . ") ;
1 0 4 5 else
1 0 4 6 f l a g l = 0 N ;
1 0 4 7 }
1 0 4 8 f p r i n t f (o u t f i l e , " % d \ n " , i n p u t) ;
1 0 4 9
1 0 5 0
1 0 5 1 /* The p a t i e n t notes are s t o r e d i n the p a t i e n t notes
1 0 5 2 * /
1 0 5 3 /* a r r a y before being w r i t t e n t o the f i l e .
1 0 5 4 * /
1 0 5 5
1 0 5 6 p r i n t f (" \ n D o you wish t o r e c o r d some notes i n the
1 0 5 7 a n a l y s i s f i l e (Y/N): ") ;
1 0 5 8 f f l u s h (s t d i n) ;
1 0 5 9 s c a n f (" % c " , & i n p u t _ c h a r) ;
1 0 6 0 i f ((input_char=='Y') || (input_char=='y')) {
1 0 6 1 p r i n t f (" \ n T y p e i n the d e t a i l s , then press RETURN
1 0 6 2 t o i n s e r t them i n t o the a n a l y s i s f i l e . \ n ") ;
1 0 6 3 f f l u s h (s t d i n) ;
1 0 6 4 i = 0 ;
1 0 6 5 i n p u t _ c h a r = g e t c h () ;
1 0 6 6 w h i l e) i n p u t _ c h a r != 13) { /* 13 s i g n i f i e s a
1 0 6 7 c a r r i a g e r e t u r n */
1 0 6 8 pu t ch(inpu t _ c h a r) ;
1 0 6 9 p a t i e n t _ n o t e s [i + +] = i n p u t _ c h a r ;
1 0 7 0 i n p u t _ c h a r = g e t c h () ;
1 0 7 1 }
1 0 7 2 p a t i e n t _ n o t e s [i] = 0;
1 0 7 3
1 0 7 4 /* Have t o e d i t the ' p a t i e n t _ n o t e s ' a r r a y f o r */

Page 226

file:///nlnput
file:///nThe
file:///nType

Appendix 4

1 0 7 5 /* de l e t e s . A d e l e t e i s i n d i c a t e d by ASCII 8. */
1 0 7 6 /* Therefore use two i n d i c e s i n t o the */
1 0 7 7 /* p a t i e n t _ n o t e s a r r a y ; one f o r the c u r r e n t read*/
1 0 7 8 /* p o s i t i o n , the other f o r the w r i t e p o s i t i o n . */
1 0 7 9 /* For each i t e r a t i o n through the loop the read */
1 0 8 0 /* p o s i t i o n character i s w r i t t e n t o the w r i t e */
1 0 8 1 /* p o s i t i o n character, t h e r e being no change i n */
1 0 8 2 /* the p a t i e n t _ n o t e s a r r a y when both the read */
1 0 8 3 /* and w r i t e i n d i c e s p o i n t t o the same place. */
1 0 8 4 /* When a d e l e t e i s encountered, the read index */
1 0 8 5 /* i s incremented, and the w r i t e index i s */
1 0 8 6 /* decremeneted so t h a t the previous c h a r a c t e r */
1 0 8 7 /* w i l l be o v e r w r i t t e n so d e l e t e i n g i t . */
1 0 8 8
1 0 8 9 cur_read = 0;
1 0 9 0 c u r _ w r i t e = 0;
1 0 9 1 f o r (cur_read=0; p a t i e n t _ n o t e s [c u r _ r e a d] ! = 0 ;
1 0 9 2 cur_read++) {
1 0 9 3 w h i l e (p a t i e n t _ n o t e s [c u r _ r e a d] = = 8) {
1 0 9 4 cur_read+ +;
1 0 9 5 i f (cur_w r i t e > 0)
1 0 9 6 c u r _ w r i t e — ;
1 0 9 7 }
1 0 9 8
1 0 9 9 p a t i e n t _ n o t e s [c u r _ w r i t e] =
1 1 0 0 p a t i e n t _ n o t e s [c u r _ r e a d] ;
1 1 0 1 c u r _ w r i t e + + ;
1 1 0 2
1 1 0 3)
1 1 0 4
1 1 0 5 p a t i e n t _ n o t e s [c u r _ w r i t e] = 0;
1 1 0 6 f p r i n t f (o u t f i l e , " % s \ n " , p a t i e n t _ n o t e s) ;
1 1 0 7
1 1 0 8 }
1 1 0 9
1 1 1 0 /* F i n a l l y the analysed data f i l e i s moved from the
1 1 1 1 * /
1 1 1 2 /* c u r r e n t d i r e c t o r y t o the '/data' d i r e c t o r y .
1 1 1 3 * /
1 1 1 4
1 1 1 5 f c l o s e (i n f i l e) ;
1 1 1 6 s t r c p y (temp_namel, "copy ") ; /* moving data f i l e i n t o
1 1 1 7 DATA d i r e c t o r y */
1 1 1 8 s t r c a t (temp_namel, inname) ;
1 1 1 9 s t r c a t (temp_namel, " c:\\data") ;
1 1 2 0 system(temp_namel) ;
1 1 2 1 s t r c p y (temp_namel, "del ") ;
1 1 2 2 s t r c a t (temp_namel, inname) ;
1 1 2 3 system(temp name!) ;
1 1 2 4 "
1 1 2 5 f c l o s e (o u t f i l e) ;
1 1 2 6 f f l u s h (s t d i n) ;
1 1 2 7)
1 1 2 8
1 1 2 9 f c l o s e (i n f i l e) ;
1 1 3 0
1 1 3 1 }
1 1 3 2
1 1 3 3
1 1 3 4 /* S e l e c t i n g o p t i o n 3 allows the operator t o view the analyses */
1 1 3 5 /* of the c u r r e n t l y s e l e c t e d a n a l y s i s f i l e . */
1 1 3 6
1 1 3 7 else i f (input==3) {
1 1 3 8 flag2=0FF;
1 1 3 9 w h i l e (flag2==0FF) {
1 1 4 0 _clearscreen(_GCLEARSCREEN);
1 1 4 1 _ s e t t e x t p o s i t i o n (l , 5) ;
1 1 4 2 p r i n t f (" C u r r e n t data f i l e : %s",inname);
1 1 4 3 _ s e t t e x t p o s i t i o n (2 , 5) ;
1 1 4 4 p r i n t f (" C u r r e n t a n a l y s i s f i l e : %s",outname);
1 1 4 5 _ s e t t e x t p o s i t i o n (3 , 5) ;
1 1 4 6 p r i n t f (" C u r r e n t p a t i e n t name: %s",pat_name);

Page 227

Appendix 4

1 1 4 7
1 1 4 8
1 1 4 9
1 1 5 0
1 1 5 1
1 1 5 2
1 1 5 3
1 1 5 4
1 1 5 5
1 1 5 6
1 1 5 7
1 1 5 8
1 1 5 9
1 1 6 0
1 1 6 1
1 1 6 2
1 1 6 3
1 1 6 4
1 1 6 5
1 1 6 6
1 1 6 7
1 1 6 8
1 1 6 9
1 1 7 0
1 1 7 1
1 1 7 2
1 1 7 3
1 1 7 4
1 1 7 5
1 1 7 6
1 1 7 7
1 1 7 8
1 1 7 9
1 1 8 0
1 1 8 1
1 1 8 2
1 1 8 3
1 1 8 4
1 1 8 5
1 1 8 6
1 1 8 7
1 1 8 8
1 1 8 9
1 1 9 0
1 1 9 1
1 1 9 2
1 1 9 3
1 1 9 4
1 1 9 5
1 1 9 6
1 1 9 7
1 1 9 8
1 1 9 9
1 2 0 0
1 2 0 1
1 2 0 2
1 2 0 3
1 2 0 4
1 2 0 5
1 2 0 6
1 2 0 7
1 2 0 8
1 2 0 9
1 2 1 0
1 2 1 1
1 2 1 2
1 2 1 3
1 2 1 4
1 2 1 5
1 2 1 6
1 2 1 7
1 2 1 8

e x i s t ! ! ") ;

_ s e t t e x t p o s i t i o n (5 , 2 0) ;
p r i n t f (" 1 : D i s p l a y analyses f o r '%s' file",outname)
_ s e t t e x t p o s i t i o n (7 , 2 0) ;
p r i n t f (" 2 : Return t o the previous menu");

_ s e t t e x t p o s i t i o n (2 0 , 2 0) ;
p r i n t f (" P l e a s e i n p u t a number from 1 t o 2: ") ;
s c a n f (" % d " , f c i n p u t) ;

i f (i n p u t = = l) {
s t r c p y (temp_namel, "c: W a n a l y s i s W ") ;
s t r c a t (temp_namel, outname) ;
i f ((o u t f i l e = fopen(temp_namel,"r"))==NULL) {

p r i n t f (" \ n C u r r e n t output f i l e does not
g e t c h () ;
}

else {

%s",pat_name,temp_namel);

pat_name)) ;

&month_ob, &year_ob) ;

f s c a n f (o u t f i l e , " % s

s t r c a t (pat_name, " ") ;
s t r c a t (pat_name, temp_namel) ;

s t r c p y (temp_namel, g e t _ p a t i e n t _ f i l e (

s t r c p y (p a t _ f i l e , temp_namel) ;

i n f i l e = fopen(p a t _ f i l e , " r ") ;
f s c a n f (i n f i l e , "%s", temp_namel) ;
f s c a n f (i n f i l e , "%s", temp_namel) ;
f s c a n f (i n f i l e , "%d %d %d", &day_ob,

f s c a n f (i n f i l e , "%s", h o s p i t a l _ n o) ;
f s c a n f (i n f i l e , "%s", temp_namel) ;
leg_broken = temp_namel[0];
f s c a n f (i n f i l e , "%s", f r a c t u r e _ t y p e) ;

"%s
" %s
"%d

f s c a n f (
f s c a n f (
f s c a n f (
f c l o s e (

i n f i l e ,
i n f i l e ,
i n f i l e ,
i n f i l e

f r a c t u r e _ p o s) ;
f r a c t u r e _ t r e a t) ;
&body_mass) ;

s t r c p y (out_name, get_outname(inname))

temp,
temp,
temp,
temp,
temp,
temp,
temp,
temp,
temp.

_name4 [0]
_name4 [1]
_name4 [2]
_name4 [3]
_name4-[4]
_name4 [5]
_name4[6]
_name4 [7]
_name4[8]

out_name[2];
out_name[3];

out_name[4];
out_name[5];
'/' ;
'9' ;
out_name[6];
0;

f s c a n f (o u t f i l e , " % d " , & l e g s _ m o n i t o r e d) ;
f s c a n f (o u t f i l e , " % d " , & e v e n t _ l e v e 1) ;
f o r (i = 0 ; i<24; i++)

f s c a n f (o u t f i l e , " % d " , & h o u r [i]) ;
f s c a n f (o u t f i l e , " % f " , & w e i g h t _ m e a n) ;
f s c a n f (o u t f i l e , " % f " , & w e i g h t _ v a r i a n c e) ;
f s c a n f (o u t f i l e , " % f " , & w e i g h t _ s t d _ d e v) ;
f s c a n f (o u t f i l e , " % f " , & d u r a t i o n _ m e a n) ;
f s c a n f (o u t f i l e , " % f " , & d u r a t i o n _ v a r i a n c e)
f s c a n f (o u t f i l e , " % f " , & d u r a t i o n _ s t d _ d e v) ;
n = 0;
f o r (i = 0 ; i<24; i++)

n += h o u r [i] ;

_clearscreen(_GCLEARSCREEN);

_ s e t t e x t p o s i t i o n (l , 1) ;

Page 228

file:///nCurrent

Appendix 4

1219 p r i n t f (" P a t i e n t name: % s " < p a t name);
1220
1221 _ s e t t e x t p o s i t i o n (1 , 6 0) ;
1222 p r i n t f (" D a t e : %s",temp name4);
1223
1224 _ s e t t e x t p o s i t i o n (2 , 2 5) ;
1225 p r i n t f (" T o t a l No. of ev e n t s = % d " , n) ;
1226
1227 _ s e t t e x t p o s i t i o n (2 , 5 2) ;
1228 p r i n t f (" B o d y Mass = %d",body mass);
1229
1230 _ s e t t e x t p o s i t i o n (3 , 5 0) ;
1231 p r i n t f (" W e i g h t Mean = % . 3 f " , w e i g h t mean);
1232
1233 _ s e t t e x t p o s i t i o n (4 , 5 0) ;
1234 p r i n t f (" W e i g h t V a r i a n c e =
1235 %.3 f",weight v a r i a n c e) ;
1236
1237 _ s e t t e x t p o s i t i o n (5,50) ;
1238 p r i n t f (" W e i g h t S t d . Dev. =
1239 % . 3 f " , w e i g h t _ s t d d e v) ;
1240
1241 _ s e t t e x t p o s i t i o n (7 , 4 0) ;
1242 p r i n t f (" W e i g h t B e a r i n g = % . 0 f % % of Body
1243 Mass",(weight_mean/body_mass*100)) ;
1244
1245 _ s e t t e x t p o s i t i o n (3 , 2 5) ;
1246 p r i n t f (" T i m e Mean = % . 2 f " , d u r a t i o n mean);
1247
1248 s e t t e x t p o s i t i o n (4 , 2 5) ;
1249 p r i n t f (" T i m e V a r i a n c e =
1250 % . 2 f " , d u r a t i o n _ v a r i a n c e) ;
1251
1252 _ s e t t e x t p o s i t i o n (5 , 2 5) ;
1253 p r i n t f (" T i m e S t d . Dev. =
1254 % . 2 f " , d u r a t i o n s t d d e v) ;
1255
1256 _ s e t t e x t p o s i t i o n (2 , 1) ;
1257 p r i n t f (" D . O . B . :
1258 %d/%2d/%d",day_ob,month_ob,(year_ob-1900));
1259 i f ((month_ob/10) == 0) {
1260 i f ((day_ob/10)==0)
1261 _ s e t t e x t p o s i t i o n (2 , (1 + 1 0)) ;
1262 e l s e
1263 s e t t e x t p o s i t i o n (2 , (1 + 1 1)) ;
1264
1265 p r i n t f (" 0 ") ;
1266 }
1267
1268 _ s e t t e x t p o s i t i o n (3 , 1) ;
1269 p r i n t f (" H o s p i t a l No.: % s " , h o s p i t a l no) ;
1270
1271 _ s e t t e x t p o s i t i o n (4 , 1) ;
1272 s t r c p y (temp_namel, "Leg F r a c t u r e d : ") ;
1273 i f (leg_broken=='R 1)
1274 s t r c a t (temp_namel, "Right") ;
1275 e l s e
1276 s t r c a t (temp_namel, " L e f t ") ;
1277 p r i n t f (" % s " , t e m p _ n a m e l) ;
1278
1279 _ s e t t e x t p o s i t i o n (5 , 1) ;
1280 p r i n t f (" F r a c t u r e Type: % s " , f r a c t u r e type)
1281
1282 s e t t e x t p o s i t i o n (6 , 1) ;
1283 p r i n t f (" P o s i t i o n of F r a c t u r e : % s " ,
1284 f r a c t u r e _ p o s) ,-
1285
1286 _ s e t t e x t p o s i t i o n (7 , 1) ;
1287 p r i n t f (" F r a c t u r e Treatment: % s " ,
1288 f r a c t u r e t r e a t) ;
1289
1290 f o r (i=0; i<24; i++)

Page 229

Appendix 4

1291 h o u r s [i] = (f l o a t) h o u r [i] ;
1292
1293 _ p g _ i n i t c h a r t () ,-
1294 _ p g _ d e f a u l t c h a r t (&env, _PG_COLUMNCHART,
1295 PG_PLAINBARS) ;
1296
1297 s t r c p y (temp_name3, "Events Throughout Day
1298 (event l e v e l = ") ;
1299 temp_name2[0] = ((e v e n t _ l e v e l / 1 0) + 4 8) ;
1300 temp name2[l] = 0;
1301 s t r c a t (temp name3, temp name2) ;
1302 temp_name2[0] = (e v e n t _ l e v e 1 -
1303 ((e v e n t _ l e v e l / 1 0) * 1 0) + 4 8) ;
1304 temp name2[l] = 0;
1305 s t r e a t (temp_name3, temp_name2) ;
1306 s t r c a t (temp name3, " kg.) ") ;
1307 s t r c p y (e n v . m a i n t i t l e . t i t l e , temp name3) ;
1308 e n v . m a i n t i t l e . j u s t i f y = _PG_RIGHT;
1309 s t r c p y (e n v . y a x i s . a x i s t i t l e . t i t l e , "No of
1310 E v e n t s ") ;
1311 s t r c p y (e n v . x a x i s . a x i s t i t l e . t i t l e , "Hour
1312 of Day") ;
1313 env.chartwindow.border = TRUE;
1314 env.chartwindow.xl = 0;
1315 env.char twindow.y1 = 60;
1316 env.char twindow.x2 = 63 9;
1317 env.chartwindow.y2 = 199;
1318 _ p g _ c h a r t (&env, hour name, hours, 24) ;
1319
1320 getchO;
1321 f c l o s e (o u t f i l e) ;
1322
1323 }
1324
1325 }
1326
1327
1328 e l s e i f (input==2)
1329 flag2=ON;
1330
1331 e l s e
1332 p r i n t f (" \ n l n p u t range i s from 1 to 2. P l e a s e t r y
1333 a g a i n . ") ;
1334
1335
1336 i f (flag2==OFF) {
1337 p r i n t f (" \ n \ n P r e s s a key to c o n t i n u e . ") ;
1338 getchO;
1339- }
1340
1341 }
1342
1343
1344 }
1345
1346
1347 /* S e l e c t i n g o p t i o n 4 e n a b l e s the op e r a t o r to view the */
1348 /* p a t i e n t ' s h i s t o r y through another sub-menu. I f a p a t i e n t */
1349 /* name i s not s p e c i f i e d when s e l e c t i n g t h i s o p t i o n , then the */
1350 /* o p e r a t o r has the o p t i o n to i n p u t one which i s then v a l i d a t e d , * /
1351 /* or r e t u r n t o the r o o t menu by t y p i n g 'go back'. */
1352
1353 e l s e i f (input==4) {
1354 _clearscreen(_GCLEARSCREEN);
1355 _ s e t t e x t p o s i t i o n (l , 5) ;
1356
1357 i f (strcmp(pat_name, "") == 0) {
1358 p r i n t f (" \ n N o p a t i e n t name has been s p e c i f i e d . ") ;
1359 f l a g l = O F F ;
1360 w h i l e (f l a g l = = 0 F F) {
1361 p r i n t f (" \ n l n p u t the p a t i e n t ' s name, or e n t e r 'go
1362 back' to r e t u r n to the previous\nmenu: ") ;

Page 230

file:///nlnput
file:///n/nPress
file:///nlnput
file:///nmenu

Appendix 4

1363 s c a n f (" % s % s " , temp_namel, temp_name2);
1364 c a s e _ c o n v e r t (temp_namel) ;
1365 c a s e _ c o n v e r t (temp_name2) ;
1366 s t r c a t (temp_namel, " ") ;
1367 s t r c a t (temp_namel, temp_name2) ;
1368
1369 i f (strcmp(temp_namel, "Go Back") == 0)
1370 break;
1371
1372 system) " d i r c : WpatientsWpatient. * /B >
1373 temp.dat") ;
1374 o u t f i l e = fopen("temp.dat", " r ") ;
1375 flag2=OFF;
1376 flag3=OFF;
1377 w h i l e ((flag2==0FF) && (flag3==OFF)) {
1378 i f (f s c a n f (o u t f i l e , " % s " , temp_name2)
1379 != EOF) {
1380 s t r c p y (temp_name3 , "c : WpatientsW "
1381);
1382 s t r c a t (temp_name3, temp_name2) ;
1383 s t r c p y (temp_name2, temp_name3) ;
1384 i n f i l e = fopen(temp_name2, " r ") ;
1385 f s c a n f (i n f i l e , " % s % s " , temp_name3,
1386 temp_name4) ;
1387 f c l o s e (i n f i l e) ;
1388 s t r c a t (temp_name3, " ") ;
1389 s t r c a t (temp_name3, temp_name4) ;
1390 i f (strcmp(temp_name3, temp_namel
1391 > == o) {
1392 s t r c p y (p a t _ f i l e , temp_name2
1393) ;
1394 s t r c p y (pat_name, temp_name3
1395 > ,
1396 flag2=ON;
1397 flagl=ON;
1398 }
1399 }
1400 e l s e {
1401 flag3=0N;
1402 p r i n t f (" \ n \ n T h e i n p u t t e d p a t i e n t
1403 name ' % s ' has not been found.",temp_namel);
1404 }
1405
1406 }
1407
1408 f c l o s e (o u t f i l e) ;
1409
1410 }
1411
1412 }
1413
1414 i f (strcmp(pat_name, "") != 0) {
1415 f l a g l = 0 F F ;
1416 w h i l e (flagl==OFF) {
1417 _ c l e a r s c r e e n (_GCLEARSCREEN) ;
1418 _ s e t t e x t p o s i t i o n (l , 5) ;
1419 p r i n t f (" C u r r e n t p a t i e n t name: %s",pat_name);
1420 _ s e t t e x t p o s i t i o n (4 , 1 0) ;
1421 p r i n t f (" F o r the above p a t i e n t : ") ;
1422 _ s e t t e x t p o s i t i o n (6 , 1 4) ;
1423 p r i n t f (" 1 : L i s t the d a t e s of the r e c o r d e d
1424 m o n i t o r i n g s e s s i o n s . ") ;
1425 _ s e t t e x t p o s i t i o n (8 , 1 4) ;
1426 p r i n t f (" 2 : Examine the notes from the m o n i t o r i n g
1427 s e s s i o n s . ") ;
1428 _ s e t t e x t p o s i t i o n (1 0 , 1 4) ;
1429 p r i n t f (" 3 : D i s p l a y a graph of p a t i e n t ' s w e i g h t -
1430 b e a r i n g p r o g r e s s up to d a t e . ") ;
1431 _ s e t t e x t p o s i t i o n (1 2 , 1 4) ;
1432 p r i n t f (" 4 : R e t u r n to the p r e v i o u s menu.");
1433
1434 _ s e t t e x t p o s i t i o n (2 0 , 1 4) ;

Page 231

file:///n/nThe

Appendix 4

1435 p r i n t f (" P l e a s e i n p u t a number between 1 and 4:
1436 ") ;
1437 scanf(°%d",&input);
1438
1439
1440 /* S e l e c t i n g o p t i o n 1 l i s t s the d a t e s */
1441 /* of the m o n i t o r i n g s e s s i o n a l r e a d y */
1442 /* r e c o r d e d f o r t h i s p a t i e n t . A l l the */
1443 /* a n a l y s i s f i l e names w i t h t h i s p a t i e n t * /
1444 /* number as t h e i r s u f f i x a r e w r i t t e n t o * /
1445 /* 'temp.dat' f i l e and then i t e r a t i v e l y */
1446 /* r e a d and the date e x t r a c t e d from the */
1447 /* f i l e name and then p r i n t e d on the */
1448 /* s c r e e n . */
1449
1450 i f (input==l) {
1451 f o r (i=0; p a t _ f i l e [i] ! = 0 ; i++) ; /*
1452 G e t t i n g the p a t i e n t number by r e a d i n g the p a t i e n t f i l e n a m e */
1453 f o r (j=3; j > - l ; j —) {
1454 temp_name2[j] = p a t _ f i l e [i] ;
1455 i - ;
1456 }
1457
1458 s t r c p y (temp_namel, " d i r
1459 c : \ \ a n a l y s i s \ \ a n * . ") ;
1460 s t r c a t (temp_namel, temp_name2) ;
1461 s t r c a t f temp_namel, " /B > temp.dat") ;
1462
1463 system(temp_namel) ;
1464 o u t f i l e = fopen("temp.dat", " r ") ;
1465 w h i l e (f s c a n f (o u t f i l e , " % s " , temp_namel)
1466 != EOF) {
1467 s t r c p y (temp_name2, g e t _ d a t e (
1468 temp_namel)) ;
1469 p r i n t f (" \ n % s " , t e m p _ n a m e 2) ;
1470 }
1471
1472 }
1473
1474
1475 /* S e l e c t i n g o p t i o n 2 d i s p l a y s the */
1476 /* n o t e s taken a f t e r each m o n i t o r i n g */
1477 /* s e s s i o n of the p a t i e n t . The same */
1478 /* code as f o r o p t i o n 1 i s used, but */
1479 /* t h e r e i s the a d d i t i o n t h a t each */
1480 /* a n a l y s i s f i l e i s a c c e s s e d and the */
1481 /* n o t e s r e a d i n c h a r a c t e r by c h a r a c t e r */
1482 /* i n t o the p a t i e n t _ n o t e s c h a r a r r a y . */
1483 /* When the c h a r a c t e r 32 i s - e n c o u n t e r e d ' */
1484 -/* (which s i g n i f i e s a c a r r i a g e r e t u r n) */
1485 ~ /* then the p a t i e n t _ n o t e s a r r a y i s */
1486 /* d i s p l a y e d on the s c r e e n a s s t r i n g . */
1487
1488 e l s e i f (input==2) {
1489 for< i=0; p a t _ f i l e [i] ! = 0 ; i++) ; /*
1490 G e t t i n g the p a t i e n t number by r e a d i n g the p a t i e n t f i l e n a m e */
1491 f o r (j=3; j > - l ; j —) {
1492 temp_name2[j] = p a t _ f i l e [i] ;
1493 i - ;
1494 }
1495
1496 s t r c p y (temp_namel, " d i r
1497 c : \ \ a n a l y s i s \ \ a n * . ") ;
1498 s t r c a t (temp_namel, temp_name2) ;
1499 s t r c a t (temp_namel, " /B > temp.dat") ;
1500
1501 system(temp_namel) ;
1502 o u t f i l e = fopen("temp.dat", " r ") ;
1503 _clearscreen(_GCLEARSCREEN);
1504
1505 w h i l e (f s c a n f (o u t f i l e , " % s " , temp_namel)
1506 != EOF) {

Page 232

Appendix 4

1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
-1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578

temp_namel)) ;
s t r c p y (temp_name2, g e t _ d a t e (

p rintf("\n\n%s",temp_name2);

s t r c p y (temp_name3, " c : W a n a l y s i s W

s t r c a t (temp_nan\e3, temp_namel) ;

i n f i l e = fopen(temp_name3, " r ") ;

f s c a n f (i n f i l e , " % s % s " , temp_name2,

f o r (i=0; i<26; i++)
f s c a n f (i n f i l e , "%d", &j) ;

f o r (i=0; i<6; i++)
f s c a n f (i n f i l e , " % f " ,

f s c a n f (i n f i l e , "%d", &j) ;

s t r c p y (p a t i e n t _ n o t e s , "") ;

f s c a n f (i n f i l e , " % s " ,
p a t i e n t _ n o t e s) ;

f o r (i=0; p a t i e n t _ n o t e s [i] ! = 0 ; i++
; /* T h i s i s to f i n d out s t a r t i n g p o s i t i o n f o r next word (s t o r e d i n
v a r i a b l e i) */

f s c a n f (i n f i l e , " % c " , &input_char)
w h i l e (i n p u t _ c h a r != 0) {

p a t i e n t _ n o t e s [i] =

temp_name3

&weight_mean) ;

i n p u t _ c h a r ;

&input_char) ;
f s c a n f (i n f i l e , " % c " ,

i++;

i f (i n p u t _ c h a r < 32)
input_char=0;

}
p a t i e n t _ n o t e s [i] = 0;

p r i n t f (" \ n % s " , p a t i e n t _ n o t e s)

f c l o s e (i n f i l e) ;

g e t c h () ;

}

/* By s e l e c t i n g o p t i o n 3 a graph of
/* w e i g h t - b e a r i n g over time
/* p o s t - f r a c t u r e i s d i s p l y e d . E a c h
/* a n a l y s i s f i l e f o r the p a t i e n t i s
/* a g a i n a c c e s s e d and the %age

*/
*/
*/
*/
*/

/* w e i g h t - b e a r i n g v a l u e c a l c u l a t e d u s i n g * /
/ the c a l c _ w e i g h t - b e a r i n g f u n c t i o n .
/* The week no. and c o r r e s p o n d i n g %age
/* w e i g h t - b e a r i n g v a l u e a r e s t o r e d i n
/* week_no and w e i g h t - b e a r i n g a r r a y s .
/* These a r e used t o p r i n t the graph.

*/
*/
*/
*/
*/

pat_name)) ;

e l s e i f (input==3) {

_clearscreen(_GCLEARSCREEN);

s t r c p y (temp_name3, g e t _ p a t i e n t _ f i l e (

s t r c p y (p a t _ f i l e , temp_name3) ;

i n f i l e = fopen(p a t _ f i l e , " r ") ;

Page 233

Appendix 4

1579
1580
1581
1582 &month_ob, &year_ob) ;
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592 i n f i l e = fopen(p a t _ f i l e , " r ") ;
1593 f o r (i=0; i<12; i++)
1594 f s c a n f (i n f i l e , "%s",temp_name2) ;
1595 d a y _ s t a r t = atoi(temp_name2);
1596 f s c a n f (i n f i l e , " % s %s",temp_name2,
1597 temp_name4) ;
1598 f c l o s e (i n f i l e) ;
1599 month_start = atoi(temp_name2);
1600 y e a r _ s t a r t = atoi(temp_name4);
1601 y e a r _ s t a r t -= 1990;
1602
1603 o u t f i l e = fopen(p a t _ f i l e , " r ") ;
1604 f o r (j=0; j < l l ; j++)
1605 f s c a n f (o u t f i l e , " % s " , temp_namel);
1606 body_mass = a t o i (temp_namel) ;
1607 f c l o s e (o u t f i l e) ;
1608
1609 f o r (i=0; p a t _ f i l e [i] ! = 0 ; i++) ;
1610 temp_namel[2] = p a t _ f i l e [- - i] ;
1611 temp_namel[1] = p a t _ f i l e [- - i] ;
1612 temp_namel[0] = p a t _ f i l e [- - i] ;
1613 temp_namel[3] = 0;
1614
1615 s t r c p y (temp_name2, " d i r
1616 c: W a n a l y s i s W a n * . ") ;
1617 s t r c a t (temp_name2, temp_namel) ;
1618 s t r c a t (temp_name2, " /B > temp.dat") ;
1619 system(temp_name2) ;
1620 i n f i l e = fopen("temp.dat","r") ;
1621 i = l ;
1622 week_no[0] = 0.0;
1623 w e i g h t _ b e a r i n g [0] = 0.0;
1624 w h i l e (f s c a n f (i n f i l e , " % s " , t e m p _ n a m e 2) !=
1625 EOF) {
1626 y e a r _ c u r = temp_name2[6]-48;
1627 month-cue = (••(temp_name2 [4~] -
1628" 48)*10) + (temp_name2[5]-48) ;
1629 day_cur = ((temp_name2[2]-
1630 48)*10) +(temp_name2[3]-48) ;
1631 no_of_weeks =
1632 c a l c _ n o _ o f _ w e e k s (y e a r _ s t a r t , m o n t h _ s t a r t , d a y _ s t a r t , y e a r _ c u r , m o n t h _ c u r , d a y _ c u
1633 r) ;
1634
1635 week_no[i] = (f l o a t) no_of_weeks;
1636 w e i g h t _ b e a r i n g [i] =
1637 calc_weight_bearing(temp_name2,body_mass);
1638 i++;
1639 }
1640
1641 f c l o s e (i n f i l e) ;
1642 j = i ;
1643
1644 f o r (; i<NO_OF_POINTS; i++) {
1645 week_no[i] = 99999.9;
1646 w e i g h t _ b e a r i n g [i] = 99999.9;
1647 }
1648
1649 flag3=OFF;
1650 w h i l e (flag3==0FF) {

f s c a n f (x n f i l e , " % s " , temp_name2) ;
f s c a n f (i n f i l e , " % s " , temp_name2) ;
f s c a n f (i n f i l e , "%d %d %d", &day_ob,

f s c a n f (i n f i l e , " % s " , h o s p i t a l _ n o) ;
f s c a n f (i n f i l e , " % s " , temp_name2) ;
leg_br o k e n = temp_name2[0];
f s c a n f (i n f i l e , " % s " , f r a c t u r e _ t y p e) ;
f s c a n f (i n f i l e , " % s " , f r a c t u r e _ p o s) ;
f s c a n f (i n f i l e , " % s " , f r a c t u r e _ t r e a t) ;
f s c a n f (i n f i l e , "%d", &body_mass) ;
f c l o s e (i n f i l e) ;

Page 234

Appendix 4

1651 flag3=0N;
1652 f o r (i=0; i<49; i++)
1653 i f (week_no[i] > w e e k _ n o [i + l]
1654) {
1655 t e m p _ f l o a t =
1656 week n o [i] ;
1657 week_no[i] =
1658 week _ n o [i + 1] ;
1659 week no [i + 1] =
1660 temp_ t l o a t ;
1661
1662 temp f l o a t =
1663 weight b e a r i n g [i] ;
1664 weight b e a r i n g [i] =
1665 weight b e a r i n g [i + 1] ;
1666 weight b e a r i n g [i + 1] =
1667 temp f l o a t ;
1668
1669 flag3=0FF;
1670 }
1671 }
1672
1673
1674 _ p g _ i n i t c h a r t () ;
1675 _ p g _ d e f a u l t c h a r t (&env, _PG_SCATTERCHART,
1676 PG POINTANDLINE) ;
1677
1678 s t r c p y (temp_namel, " P a t i e n t name: ") ;
1679 s t r c a t (temp_namel, pat_name) ;
1680 s t r c p y (e n v . m a i n t i t l e . t i t l e , temp_namel) ;
1681 e n v . m a i n t i t l e . j u s t i f y = _PG RIGHT;
1682
1683 s t r c p y (e n v . s u b t i t l e . t i t l e , "Weight-
1684 b e a r i n g as a Percentage of Body Weight") ;
1685 e n v . s u b t i t l e . j u s t i f y = PG RIGHT;
1686
1687 s t r c p y (e n v . y a x i s . a x i s t i t l e . t i t l e , "%age
1688 Body Weight") ;
1689 s t r c p y (e n v . x a x i s . a x i s t i t l e . t i t l e , "Weeks
1690 from F r a c t u r e ") ;
1691
1692 env.chartwindow.border = TRUE;
1693
1694 _ p g _ c h a r t s c a t t e r (&env, week no,
1695 weight b e a r i n g , i);
1696
1697 g e t c h O ;
1698
1699 }
1700
1701
1702 /* S e l e c t i n g o p t i o n 4 r e t u r n s the o p e r a t o r t o
1703 */
1704 /* the r o o t menu.
1705 */
1706
1707 e l s e i f (input==4)
1708 flagl=ON;
1709
1710
1711 e l s e
1712 p r i n t f (" \ n T h e range i s from 1 to 4.
1713 P l e a s e t r y a g a i n . ") ;
1714
1715
1716 i f (flagl==OFF) {
1717 p r i n t f (" \ n \ n P r e s s a key to c o n t i n u e . ") ;
1718 g e t c h O ;
1719 }
1720
1721 }
1722

Page 235

file:///nThe
file:///n/nPress

Appendix 4

1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

/* S e l e c t i n g o p t i o n 5 e n t e r s the o p e r a t o r i n t o a sub-menu */
/* a l l o w i n g him to d e l e t e a p a t i e n t ' s r e c o r d s from the d i s k (t h e * /
/* p a t i e n t , d a t a and a n a l y s i s f i l e s) . */

e l s e i f (input==5) {
f l a g l = O F F ;
w h i l e (flagl==OFF) {

_clearscreen(_GCLEARSCREEN);
_ s e t t e x t p o s i t i o n (1 , 5) ;
p r i n t f (" C u r r e n t p a t i e n t name: %s",pat_name);
_ s e t t e x t p o s i t i o n (4 , 9) ;
p r i n t f (" 1 : D e l e t e c u r r e n t p a t i e n t ' s r e c o r d s and t i d y

o t h e r f i l e s a c c o r d i n g l y . ") ;
_ s e t t e x t p o s i t i o n (6 , 9) ;
p r i n t f (" 2 : L i s t p a t i e n t s on r e c o r d (number of

m o n i t o r i n g s e s s i o n s i n b r a c k e t s) . ") ;
_ s e t t e x t p o s i t i o n (8 , 9) ;
p r i n t f (" 3 : Change c u r r e n t p a t i e n t name.");
_ s e t t e x t p o s i t i o n (1 0 , 9) ;
p r i n t f (" 4 : Return to the p r e v i o u s menu.");

temp.dat");

EOF)

name (j) * /

number */

_ s e t t e x t p o s i t i o n (2 0 , 1 4) ;

p r i n t f (" P l e a s e i n p u t a number between 1 and 4:

s c a n f (" % d " , f c i n p u t) ;

') ;

/* By s e l e c t i n g the f i r s t o ption, the o p e r a t o r */
/* d e l e t e s a l l the f i l e s a s s o c i a t e d w i t h the */
/* c u r r e n t p a t i e n t name. T h i s i s a dangerous */
/* but important option, f o r doing t h i s manually*/
/* i s too time i n t e n s i v e s i n c e a l l the */
/* subsequent p a t i e n t numbers and t h e i r */
/* a s s o c i a t e d f i l e s have to be decremented so */
/* t h a t the program does not run out of unused */
/* p a t i e n t numbers. */

i f (input==l) {
i f (strcmp(pat_name, "") == 0) {

p r i n t f (" \ n N o p a t i e n t name s p e c i f i e d ! ! ") ;
g e t c h () ;
)

e l s e {
/* Get t o t a l number of p a t i e n t s */

s y s t e m (" d i r c : W p a t i e n t s W p a t i e n t . * /B >

i n f i l e = f o p e n (" t e m p . d a t " , " r ") ;
i=0;

w h i l e (f s c a n f (i n f i l e , " % s " , t e m p _ n a m e l) !=

i++;
f c l o s e (i n f i l e) ,-
i t o a (i , temp_name3, 1 0) ;
/* Get number c o r r e s p o n d i n g to p a t i e n t

f o r (j=0; j<4; j++) /* g e t s p a t i e n t

temp_name3[j] = p a t _ f i l e [j + 2 0] ;

j = a t o i (temp_name3) ;

/* A l l the f i l e s a s s o c i a t e d w i t h * /

Page 236

Appendix 4

1795 /* t h i s p a t i e n t number a r e now */
1796 /* d e l e t e d . */
1797
1798 s t r c p y (temp_namel, " d e l c : W d a t a W d a t * .
1799);
1800 s t r c a t (temp_namel, temp_name3) ;
1801 system(temp_namel) ;
1802
1803 s t r c p y l temp_namel, " d e l
1804 c : W p a t i e n t s W p a t i e n t . ") ;
1805 s t r c a t (temp_namel, temp_name3) ;
1806 system(temp_namel) ;
1807
1808 s t r c p y (temp_namel, " d e l
1809 c: W a n a l y s i s W a n * . ") ;
1810 s t r c a t (temp_namel, temp_name3) ;
1811 system(temp_namel) ;
1812
1813
1814 /* A l l the p a t i e n t nunmbers */
1815 /* h i g h e r than the one d e l e t e d */
1816 /* a r e now i t e r a t i v e l y renamed */
1817 /* w i t h a decremented s u f f i x . */
1818
1819 f o r (k = (j + l) ; k<=i; k++) {
1820 i t o a (k, temp_name3, 10) ;
1821 i f (k<10) {
1822 temp_name4[0] = '0';
1823 temp_name4[1] = '0';
1824 temp_name4[2] = 0;
1825 s t r c a t (temp_name4,
1826 temp_name3) ;
1827 }
1828
1829 e l s e i f (k<100) {
1830 temp_name4[0] = '0';
1831 temp_name4[1] = 0;
1832 s t r c a t (temp_name4,
1833 temp_name3) ;
1834 }
1835 e l s e
1836 s t r c p y (temp_name4,
1837 temp_name3) ;
1838
1839 s t r c p y (temp name3, temp name4) ;
1840
1841 i t o a ((k - 1) , temp_name2, 10) ;
1842 i f ((k - l) < 1 0) {
1843 temp_hame4[0] = ' 0';
1844 temp_name4[1] = '0 ' ;
1845 temp_name4[2] = 0;
1846 s t r c a t (temp_name4,
1847 temp_name2) ;
1848 }
1849
1850 e l s e i f ((k-l)<100) {
1851 temp_name4[0] = '0';
1852 temp_name4[1] = 0;
1853 s t r c a t (temp_name4,
1854 temp name2) ;
1855 }
1856 e l s e
1857 s t r c p y (temp_name4,
1858 temp name2) ;
1859
1860 s t r c p y (temp name2, temp_name4) ;
1861
1862 s t r c p y (temp_namel, "rename
1863 c : W p a t i e n t s W p a t i e n t . ") ;
1864 s t r c a t (temp_namel, temp_name3) ;
1865 s t r c a t (temp_namel, " p a t i e n t . ")
1866 s t r c a t (temp_namel, temp_name2) ;

Page 237

Appendix 4

1867 system(temp_namel) ;
1868
1869 s t r c p y) temp_namel, " d i r
1870 c: W d a t a W d a t * . ") ;
1871 s t r c a t (temp_namel, temp_name3) ;
1872 s t r c a t (temp_namel, " /B > temp.dat
1873) ;
1874 system(temp_namel) ;
1875 i n f i l e = fopen("temp.dat" , " r "),-
1876 w h i l e (f s c a n f (i n f i l e , " % s " ,
1877 temp_name4) != EOF) {
1878 temp_name4[9] = 0;
1879 s t r c p y (temp_namel, "rename
1880 c : \ \ d a t a \ \ ") ;
1881 s t r c a t (temp_namel,
1882 temp_name4) ;
1883 s t r c a t (temp_namel,
1884 temp_name3) ;
1885 s t r c a t (temp_namel, " ") ;
1886 s t r c a t (temp_namel,
1887 temp_name4) ;
1888 s t r c a t (temp_namel,
1889 temp_name2) ;
1890 system(temp_namel) ;
1891 }
1892 f c l o s e (i n f i l e) ;
1893
1894 s t r c p y (temp_namel, " d i r
1895 c: W a n a l y s i s W a n * . ") ;
1896 s t r c a t (temp_namel, temp_name3) ;
1897 s t r c a t (temp_namel, " /B > temp.dat
1898);
1899 system(temp_namel) ;
1900 i n f i l e = fopen("temp.dat", " r ") ;
1901 w h i l e (f s c a n f (i n f i l e , " % s " ,
1902 temp_name4) != EOF) {
1903 temp_name4[8] = 0;
1904 s t r cpy(temp_name1, "rename
1905 c : \ \ a n a l y s i s \ \ ") ;
1906 s t r c a t (temp_namel,
1907 temp_name4) ;
1908 s t r c a t (temp_namel,
1909 temp_name3) ;
1910 s t r c a t (temp_namel, " ") ;
1911 s t r c a t (temp_namel,
1912 temp_name4) ;
1913 s t r c a t (temp_namel,
1914 temp_name2) ;
1915 system(temp_namel) ;
1916 }
1917 f c l o s e (i n f i l e) ;
1918
1919 }
1920
1921 s t r c p y (pat_name, "") ;
1922 s t r c p y (p a t _ f i l e , "") ;
1923 s t r c p y (out_name, "") ;
1924 outname = out_name; /* o t h e r w i s e f o r
1925 some r e a s o n outname p o i n t s to the s t r i n g v a l u e of the t o t a l number of
1926 p a t i e n t s (i e . w e l l done to M i c r o s o f t f o r another bug-free product) */
1927 s t r c p y (in_name, "") ;
1928
1929 }
1930
1931
1932
1933 }
1934
1935
1936 /* S e l e c t i n g o p t i o n 2 d i s p l a y s a l l the p a t i e n t */
1937 /* names c u r r e n t l y on r e c o r d , w i t h the number o f * /
1938 /* m o n i t o r i n g s e s s i o n s which have o c c u r r e d i n */

Page 238

Appendix 4

1939 /* b r a c k e t s a f t e r each name. For t h i s , the */
1940 /* number of data f i l e s f o r each p a t i e n t i s */
1941 /* counted. */
1942
1943 e l s e i f (input==2) {
1944 _clearscreen(_GCLEARSCREEN);
1945 system (" d i r c : W p a t i e n t s W p a t i e n t . * /B >
1946 temp.dat") ;
1947 i n f i l e = f o p e n (" t e m p . d a t " , " r ") ;
1948 i=0;
1949 w h i l e (f s c a n f (i n f i l e , " % s " , temp_namel) != EOF)
1950 {
1951 i + + ;

1952
1953 s t r c p y (temp_name2, " c : W p a t i e n t s W ") ;
1954 s t r c a t (temp_name2, temp_namel) ;
1955 s t r c p y (temp_namel, temp_name2) ;
1956
1957 f o r (j=0; j<4; j++) /* g e t s p a t i e n t
1958 number */
1959 temp_name3(j] = temp_namel[j+20];
1960
1961 o u t f i l e = f open (temp_namel, " r ") ,-
1962 f s c a n f (o u t f i l e , "%s
1963 %s",temp_namel,temp_name2);
1964 f c l o s e (o u t f i l e) ;
1965
1966 s t r c a t (temp_namel, " ") ;
1967 s t r c a t (temp_namel, temp_name2) ;
1968
1969
1970 /* Gets the number of d a t a f i l e s f o r */
1971 /* t h i s p a t i e n t , s t o r i n g r e s u l t i n j . */
1972 /* Assume t h a t t h e r e a r e no u n a n a l y s e d */
1973 /* d a t a f i l e s . */
1974
1975 s t r c p y (temp_name2, " d i r c : W d a t a W d a t * . "
1976);
1977 s t r c a t (temp_name2, temp_name3) ;
1978 s t r c a t (temp_name2, " /B > temp.dat") ;
1979 system(temp_name2) ;
1980 o u t f i l e = fopen("temp.dat", " r ") ;
1981 j=0;
1982 w h i l e (f s c a n f (o u t f i l e , " % s " , t e m p _ n a m e 3) !=
1983 EOF)
1984 j + + ;
1985
1986 f c l o s e (o u t f i l e) ;
1987 i t o a (j , temp_name3, 10)
1988
1989 s t r c a t (temp_namel, " (")
1990 s t r c a t (temp_namel, temp_name3)
1991 s t r c a t (temp_namel, ") ")
1992
1993 i f ((i%4)==o)
1994 i = l ;
1995 i f (((i % 2) = = 0) || ((i % 3) = = 0))
1996 p r i n t f (" % 2 5 s " , t e m p _ n a m e l) ;
1997 e l s e
1998 p r i n t f (" \ r \ n % 2 5 s " , t e m p _ n a m e l) ;
1999
2000 }
2001
2002 f c l o s e (i n f i l e) ;
2003
2004)
2005
2006
2007 /* T h i s o p t i o n was i n c l u d e d to a i d the */
2008 /* operator, f o r i f the p a t i e n t name needed to */
2009 /* be changed to the one to be d e l e t e d then the */
2010 /* o p e r a t o r would o t h e r w i s e have to t r a v e r s e */

Page 239

Appendix 4

2011 /* through many menus to get to the one where */
2012 /* he would be a b l e to change the p a t i e n t name. */
2013
2014 e l s e i f (input==3) {
2015 p r i n t f (" \ n W h a t i s the new p a t i e n t ' s name? : ") ;
2016 s c a n f (" % s % s " , temp_namel, temp__name2);
2017 c a s e _ c o n v e r t (temp_namel) ;
2018 c a s e _ c o n v e r t (temp_name2) ;
2019 s t r c a t (temp_namel, " ") ;
2020 s t r c a t (temp_namel, temp_name2) ;
2021
2022 s t r c p y (temp_name3, g e t _ p a t i e n t _ f i l e (temp_namel
2023)),-
2024 i f (strcmp(temp_name3, " u n s u c c e s s f u l ")) {
2025 s t r c p y (pat_name, temp_namel) ;
2026 s t r c p y (p a t _ f i l e , temp_name3) ;
2027 p r i n t f (" \ n P a t i e n t name a c c e p t e d . ") ;
2028 s t r c p y (inname, "") ;
2029 s t r c p y (outname, "") ;
2030 }
2031 e l s e
2032 p r i n t f (" \ n P a t i e n t name does not e x i s t
2033 ! !") ;
2034
2035 }
2036
2037
2038 /* S e l e c t i n g o p t i o n 4 r e t u r n s the o p e r a t o r to the r o o t
2039 */
2040 /* menu.
2041 */
2042
2043 e l s e i f (input==4)
2044 f l a g l = 0 N ;
2045
2046
2047 e l s e
2048 p r i n t f (" \ n T h e range i s from 1 to 4. P l e a s e t r y
2049 a g a i n . ") ;
2050
2051
2052 i f (flagl==OFF) {
2053 p r i n t f (" \ n \ n P r e s s a key to c o n t i n u e . ") ;
2054 g e t c h () ;
2055 }
2056
2057
2058 }
2059-
2060 }
2061
2062
2063 /* S e l e c t i n g o p t i o n 6 e x i t s the program by b r e a k i n g from t h i s */
2064 /* loop, f o r t h e r e i s no code (except t o r e s e t the v i d e o mode t o * /
2065 /* what had been p r e v i o u s l y s e l e c t e d) i n the main f u n c t i o n */
2066 /* a f t e r w a r d s . */
2067
2068 e l s e i f (input==6) {
2069 break;
2070 }
2071
2072
2073 e l s e {
2074 p r i n t f (" \ n T h e range i s from 1 to 6. P l e a s e t r y a g a i n . ") ;
2075 g e t c h O ;
2076 }
2077
2078
2079 }
2080
2081 setvideomode(_DEFAULTMODE);
2082

Page 240

file:///nWhat
file:///nPatient
file:///nPatient
file:///nThe
file:///n/nPress
file:///nThe

Appendix 4

2083 }
2084
2085
2086 /* T h i s f u n c t i o n i s used to c a l c u l a t e the %age w e i g h t - b e a r i n g from t h e */
2087 /* i n p u t t e d a n a l y s i s f i l e name and p a t i e n t body mass. The a n a l y s i s f i l e * /
2088 /* i s a c c e s s e d and the s e s s i o n ' s average w e i g h t - b e a r i n g v a l u e o b t a i n e d . */
2089 /* T h i s i s d i v i d e d by the i n p u t t e d p a t i e n t ' s mass and m u l t i p l i e d by 100 */
2090 /* to o b t a i n the %age w e i g h t - b e a r i n g . */
2091
2092 f l o a t c a l c _ w e i g h t _ b e a r i n g (c h a r * f i l e name, i n t body mass)
2093
2094 {
2095 f l o a t w e i g h t _ b e a r i n g ;
2096 i n t i ;

2097 c h a r t e m p _ s t r [5 0] ;
2098 F I L E * f p t r ;
2099
2100 s t r c p y (temp s t r , " c : W a n a l y s i s W ") ;
2101 s t r c a t (temp s t r , f i l e name) ;
2102
2103 f p t r = fopen(t e m p _ s t r , " r ") ;
2104 f o r (i=0; i<29; i++)
2105 f s c a n f (f p t r , " % s " , temp_str) ;
2106
2107 weight b e a r i n g = a t o i (temp s t r) ;
2108 w e i g h t _ b e a r i n g /= (f l o a t) body_mass;
2109 weight b e a r i n g *= 100.0;
2110
2111 r e t u r n (weight b e a r i n g) ;
2112
2113 }
2114
2115
2116 /* The f o l l o w i n g f u n c t i o n i s used to c a l c u l a t e the number of weeks */
2117 /* p o s t - f r a c t u r e . The i n p u t s a r e the date of the f r a c t u r e */
2118 /* ('.. s t a r t ') and the date p o s t - f r a c t u r e ('.. end') . The */
2119 /* i n t e r v e n i n g number of weeks i s c a l c u l a t e d by f i r s t c a l c u l a t i n g the */
2120 /* i n t e r v e n i n g number of days, and then c o n v e r t i n g t h i s t o weeks. I f */
2121 /* t h e r e a r e 4 days or over remaining, then t h i s i s rounded up to an */
2122 /* e x t r a week.
2123 */
2124
2125 i n t c a l c no of w e e k s (i n t y e a r s t a r t , i n t month s t a r t , i n t day s t a r t , i n t
2126 y e a r _ e n d , i n t month_end, i n t day_end)
2127
2128 {
2129 i n t no_of_weeks=0,i,day_month_start=0,day_month_end=0;
2130 i n t days_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
2131 _ - -
2132 no of weeks = (y e a r end-year s t a r t) * 5 2 ;
2133 ~ ~ ~
2134 f o r (i=0; i<month s t a r t ; i++)
2135 day month s t a r t += days m o n t h [i] ;
2136 f o r (i=0; i<month end; i++)
2137 day month end += days m o n t h [i] ;
2138 day month end = day month end-day month s t a r t ;
2139 " ~ "
2140 day month end += day end-day s t a r t ;
2141 ~ ~
2142 i f ((day month end%7) > 3)
2143 no_of_weeks++;
2144
2145 no of weeks += day month end/7;
2146 ~ ~
2147 r e t u r n (no of weeks) ;
2148 " "
2149 }
2150
2151
2152 /* T h i s f u n c t i o n i s used to o b t a i n the date from an i n p u t t e d d a t a or */
2153 /* a n a l y s i s f i l e name. The date i s r e t u r n e d i n the s t a n d a r d */
2154 /* day/month/year format. */

Page 241

Appendix 4

2155
2156 c h a r * g e t _ d a t e (c h a r * f i l e _ n a m e)
2157
2158 {
2159 s t a t i c c h a r d a t e [1 0] ;
2160 c h a r t e m p _ s t r [1 5] ;
2161 i n t l ;
2162
2163 s t r c p y (temp_str, f i l e _ n a m e) ;
2164 s t r c p y (date, "") ;
2165
2166 i f (temp_str[0]=='A')
2167 i=2;
2168
2169 e l s e i f (temp_str[0]=='D')
2170 i=3;
2171
2172 e l s e
2173 s t r c p y (date, "ERROR") ;
2174
2175
2176 i f (datetO] != 'E') {
2177 d a t e [0] = t e m p _ s t r [i + +] ;
2178 d a t e [l] = t e m p _ s t r [i + +] ;
2179 d a t e [2] = '/';
2180 d a t e [3] = t e m p _ s t r [i + +] ;
2181 d a t e [4] = t e m p _ s t r [i + +] ;
2182 d a t e [5] = '/';
2183 d a t e [6] = '9';
2184 d a t e [7] = t e m p _ s t r [i + +] ;
2185 d a t e [8] = 0 ;
2186 d a t e [9] = 0 ;
2187 }
2188
2189 r e t u r n) date) ;
2190
2191 }
2192
2193
2194 /* T h i s f u n c t i o n r e t u r n s the p a t i e n t f i l e name c o r r e s p o n d i n g to the */
2195 /* i n p u t t e d p a t i e n t name. Each p a t i e n t f i l e i s opened i n t u r n and the */
2196 /* s t o r e d p a t i e n t name compared to the one i n p u t t e d u n t i l a match i s */
2197 /* found, the f i l e name b e i n g then r e t u r n e d . */
2198
2199 c h a r * g e t _ p a t i e n t _ f i l e (c h a r *patient_name)
2200
2201 {
2202 c h a r s t a t i c p a t i e n t _ f i l e [4 0] ;
2203 c h a r temp_namel[40] , temp_name2[40], temp_name3[40], temp_name4[40];
2204 i n t flag=OFF, i ;
2205 F I L E * f p t r l , * f p t r 2 ;
2206
2207 system(" d i r c : W p a t i e n t s W p a t i e n t . * /B > temp.dat") ;
2208 f p t r l = fopen("temp.dat", " r ") ;
2209 w h i l e (f s c a n f (f p t r l , " % s " , temp namel) != EOF) {
2210 s t r c p y (temp name 2 , "c : W p a t i e n t s W ") ;
2211 s t r c a t { temp_name2, temp_namel) ;
2212 s t r c p y (temp_namel, temp_name2) ;
2213 f p t r 2 = fopen(temp_namel, " r ") ;
2214 f s c a n f (f p t r 2 , "%s % s " , temp_name3, temp_name4) ;
2215 f c l o s e (f p t r 2) ;
2216 s t r c a t (temp name3, " ") ;
2217 s t r c a t (temp name3, temp name4) ;
2218
2219 i f (strcmp(temp name3, p a t i e n t name) == 0) {
2220 s t r c p y (p a t i e n t _ f i l e , temp_name2) ;
2221 flag=ON;
2222 }
2223
2224 }
2225
2226 i f (flag==OFF)

Page 242

Appendix 4

2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298

s t r c p y (p a t i e n t _ f i l e , " u n s u c c e s s f u l ") ;

f c l o s e (f p t r l) ;
r e t u r n (p a t i e n t _ f i l e) ;

}

/* T h i s f u n c t i o n i s c a l l e d when changing the d a t a f i l e b e i n g a c c e s s e d . */
/* The date i s r e q u e s t e d w i t h each v a l u e b e i n g v a l i d a t e d as r e a s o n a b l e . */
/* I f a p a t i e n t name i s not s p e c i f i e d then t h i s i s a l s o r e q u e s t e d and */
/* the d a t a f i l e name c o n s t r u c t e d . */

v o i d i n p u t _ f i l e (c h a r * f i l e _ n a m e , c h a r *pat_name, c h a r * p a t _ f i l e)

{
i n t i , f l a g l , f l a g 2 , f l a g 3 , f l a g 4 , i n p u t ;
s t a t i c c h a r temp_name[40];
c h a r temp_namel[40], temp_name2[40], temp_name3[40];
c h a r temp_name4[40], temp_name5[40], temp_name6[15] ;

s t r c p y (temp_name, "") ;
s t r c p y (f i l e _ n a m e , "") ;
f l a g l = O F F ;
w h i l e (f l a g l = = 0 F F) {

p r i n t f (" \ n l n p u t date of the mo n i t o r i n g s e s s i o n : \ n D a y of month: ") ;
s c a n f (" % d " , & i n p u t) ;
i f ((input>0) && (input<32))

flagl=ON;
e l s e

p r i n t f (" \ n T h e range i s from 1 to 31. P l e a s e t r y a g a i n . \ n ") ;
}

temp_namel[0] = input/10+48;
temp_namel[1] = i n p u t - ((i n p u t / 1 0) * 1 0) + 4 8 ;
temp_namel[2] = 0;
s t r c a t (temp_name, temp_namel) ;

f l a g l = O F F ;
w h i l e (flagl==OFF) {

p r i n t f (" M o n t h : ") ;
s c a n f (" % d " , & i n p u t) ;
i f ((input>0) && (input<13))

flagl=ON;
e l s e

p r i n t f (" \ n T h e range i s from 1 to 12. P l e a s e t r y a g a i n . \ n ") ;
}

temp_namel[0] = input/10+48;
temp_namel[1] = i n p u t - ((i n p u t / 1 0) * 1 0) + 4 8 ;
temp_namel[2] =~~0;
s t r c a t (temp_name, temp_namel) ;

f l a g l = O F F ;
w h i l e (flagl==OFF) {

p r i n t f (" Y e a r (eg. 1993): ") ;
s c a n f (" % d " , & i n p u t) ;
i f (input>1991)

flagl=0N;
e l s e

p r i n t f (" \ n T h e range i s from 1993 onwards. P l e a s e t r y
a g a i n . \ n ") ;

}
temp_namel[0] = in p u t - 1 9 9 0 - ((i n p u t - 1 9 9 0) / 1 0) * 1 0 + 4 8 ;
temp_namel[1] = 0;
s t r c a t (temp_name, temp_namel) ;
s t r c a t (temp_name, ".") ;

s t r c p y (temp_namel, pat_name) ;

i f (temp_namel[0] == 0) { /* i e . temp_namel = "" */
p r i n t f (" \ n l n p u t p a t i e n t name i n the f o l l o w i n g format. ") ;
p r i n t f (" \ n P a t i e n t Name (' f i r s t name' 'second name'): ") ;
s c a n f ("%s % s " , temp_namel, temp_name2) ;

Page 243

file:///nlnput
file:///nDay
file:///nThe
file:///nThe
file:///nThe
file:///nlnput
file:///nPatient

Appendix 4

2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369

c a s e _ c o n v e r t (temp_namel) ;
c a s e _ c o n v e r t (temp_name2) ;
s t r c a t (temp_namel, " ") ;
s t r c a t (temp_namel, temp_name2) ;
}

system(" d i r c : \ \ p a t i e n t s \ \ p a t i e n t . * /B > temp.dat") ;
o u t f i l e = fo p e n (" t e m p . d a t " , " r ") ;
f l a g l = O F F ;
w h i l e ((f s c a n f (o u t f i l e , " % s " , temp_name2) != EOF) && (f l a g l = = 0 F F)) {

s t r c p y (temp_name6, temp_name2) ;
s t r c p y (temp_name3 , "c : W p a t i e n t s W ") ;
s t r c a t (temp_name3, temp_name2) ;
s t r c p y (temp_name2, temp_name3) ;
i n f i l e = fopen(temp_name2,"r");
f s c a n f (i n f i l e , " % s % s " , temp_name3, temp_name4) ;
f c l o s e (i n f i l e) ;
s t r c a t (temp_name3, " ") ;
s t r c a t (temp_name3, temp_name4) ;

i f (strcmp(temp_name3, temp_namel) == 0)
flagl=ON;

}
f c l o s e (o u t f i l e) ;

i f (flagl==ON) {
p r i n t f (" \ n P a t i e n t name a c c e p t e d . ") ;
temp_name2[0] = temp_name6[8];
temp_name2[1] = temp_name6[9];
temp_name2[2] = temp_name6[10];
temp_name2[3] = 0;

s t r c a t (temp_name, temp_name2) ;
s t r c p y (pat_name, temp_namel) ;

s t r c p y (p a t _ f i l e , "C:\\PATIENTS\\PATIENT.") ;
s t r c a t (p a t _ f i l e , temp_name2) ;

}
e l s e {

p r i n t f (" \ n T h e i n p u t t e d p a t i e n t name 1 % s ' does not e x i s t i n the
records.",temp_namel);

s t r c p y (temp_name, "OFF") ;
}

s t r c p y (f i l e _ n a m e , temp_name) ;

}

/* T h i s f u n c t i o n i s c a l l e d a f t e r e v e r y name i n p u t t e d , f o r i t c o n v e r t s */
/* the c a s e of t h a t name. A l l i t s l e t t e r s a r e c o n v e r t e d t o lower c a s e */
/* except the f i r s t which i s c o n v e r t e d to upper c a s e . */

v o i d c a s e _ c o n v e r t (char *name)

{
i n t i ;

w h i l e) *name<65) /* i n c a s e any sp a c e s b e f o r e t e x t i n i n p u t s t r i n g
*/

name++;

i f (*name>90) /* put f i r s t c h a r a c t e r i n upper c a s e */
*name - = 32;

name++;

f o r (i=0; *name!=0; i++) {
i f ((*name<91) && (*name>64))

Page 244

file:///patient
file:///nPatient
file:///PATIENT
file:///nThe

Appendix 4

2370 *name += 32; /* i f any l e t t e r s upper c a s e , put i n lower
2371 c a s e */
2372 e l s e i f (*name==32) {
2373 w h i l e (*name==32) /* i n c a s e 2 or more s p a c e s i n between names
2374 */
2375 name++;
2376 i f (*name>90) /* put f i r s t c h a r a c t e r i n upper c a s e */
2377 *name -= 32;
2378 e l s e i f (*name==0) /* i n c a s e a space a t end of names */
2379 break;
2380 name++;
2381 }
2382 e l s e
2383 name++;
2384
2385 }
2386
2387 }
2388
2389
2390 /* T h i s f u n c t i o n o b t a i n s the p a t i e n t name by a c c e s s i n g the inpuuted */
2391 /* p a t i e n t f i l e name. */
2392
2393 c h a r * get name(c h a r * f i l e name)
2394
2395 {
2396 i n t i ;
2397 F I L E * f i l e ;
2398 s t a t i c c h a r s t r i n g [] = " u n s u c c e s s f u l " ;
2399 s t a t i c c h a r patient_name[40] ;
2400 c h a r tmp[40] ;
2401
2402 i f ((f i l e = f o p e n (f i l e name,"r")) == NULL)
2403 r e t u r n (s t r i n g) ;
2404 e l s e {
2405 f s c a n f (f i l e , " % s " , p a t i e n t _ n a m e) ;
2406 f s c a n f (f i l e , " % s " , t m p) ;
2407 s t r c a t (p a t i e n t name, " ") ;
2408 s t r c a t (patient_name, tmp) ;
2409 f c l o s e (f i l e) ;
2410 r e t u r n (p a t i e n t name);
2411 }
2412
2413 }
2414
2415
2416 /* T h i s f u n c t i o n r e t u r n s the a n a l y s i s f i l e name from the i n p u t t e d f i l e */
2417 /* name s t u b . */
2418
2419 c h a r * get outname(char *inname)
2420
2421 {
2422 F I L E * f i l e ;
2423 f l o a t a=0.1;
2424 c h a r * ou tname;
2425 s t a t i c c h a r t m p s t r [1 3] ;
2426
2427 t m p s t r [0] = 'A';
2428 t m p s t r f l] = 'N' ;
2429 t m p s t r [2] = inname[3];
2430 t m p s t r [3] = inname[4];
2431 tmps tar [4] = inname [53;
2432 t m p s t r [5] = inname[6];
2433 t m p s t r [6] = inname[7];
2434 tmps t r [7] = inname[8];
2435 t m p s t r [8] = inname[9];
2436 t m p s t r [9] = inname[10];
2437 t m p s t r [1 0] = i n n a m e t l l] ;
2438 t m p s t r [l l] = 0;
2439 t m p s t r [1 2] = 0;
2440
2441 outname = tmpstr;

Page 245

Appendix 4

2442
2443 r e t u r n (outname
2444
2445 }
2446
2447
2448

Page 246

