
Durham E-Theses

Adaptive object management for distributed systems

Woods, Ken

How to cite:

Woods, Ken (1995) Adaptive object management for distributed systems, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5115/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5115/
 http://etheses.dur.ac.uk/5115/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Adaptive Object Management for 
Distributed Systems 

Ken Woods 

The copyright of this thesis rests 
with the author. No quotation 
from it should be published without 
the written consent of the author 
and information derived from it 
should be acknowledged. 

Durham University 

6 OCT 1S97 
1995 



Copyright 1995 by Ken Woods. 

Al l rights reserved. 

ISBN 0-000-000000-0 

1995 



Abstract 
This thesis describes an architecture supporting the management of pluggable 
software components and evaluates it against the requirement for an enterprise in
tegration platform for the manufacturing and petrochemical industries. 

In a distributed environment, we need mechanisms to manage objects and their 
interactions. At the least, we must be able to create objects in different processes 
on different nodes; we must be able to link them together so that they can pass 
messages to each other across the network; and we must deliver their messages 
in a timely and reliable manner. Object based environments which support these 
services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbro-
ker(ACA,1992), lona's Orbix(Orbix,1994) 

Yet such environments provide Umited support for composing appUcations from 
pluggable components. Pluggability is the ability to install and configure a com
ponent into an environment dynamically when the component is used, without 
specifying static dependencies between components when they are produced. 
Pluggability is supported to a degree by dynamic binding. Components may be 
progranmied to import references to other components and to explore their inter
faces at runtime, without using static type dependencies. Yet tins overloads the 
component with the responsibility to explore bindings. What is still generally 
missing is an efficient general-purpose binding model for managing bindings be
tween independently produced components. 

In addition, existing environments provide no clear strategy for deahng with fine
grained objects. The overhead of runtime binding and remote messaging will se
verely reduce performance where there are a lot of objects with complex patterns 
of interaction. We need an adaptive approach to managing configurations of 
pluggable components according to the needs and constraints of the environment. 
Management is made difficult by embedding bindings in component implemen
tations and by relying on strong typing as the only means of verifying and vali
dating bindings. 

To solve these problems we have built a set of configuration tools on top of an 
existing distributed support environment. Specification tools facilitate the con
struction of independent pluggable components. Visual composition tools facili
tate the configuration of components into applications and the verification of 
composite behaviours. A configuration model is constructed which maintains the 
environmental state. Adaptive management is made possible by changing the 
management policy according to this state. Such policy changes affect the loca
tion of objects, their bindings, and the choice of messaging system. 



Table of Contents 
23rd January 1995 

Table of Contents 
Part I Introduction 

Chapter 1 Introduction 17 
1.1 Related Technologies 17 

1.1.1 Graphical Tools for Configuration Programming 17 
1.1.2 Distributed Object Technology 18 
1.1.3 Integrative Standards..... 19 

1.2 OperiBase Architecture Goals 19 

1.3 Research Goals 21 

1.4 Outline of Thesis Structure 22 

1.5 Reading Dependencies 24 

Part I I Survey and Analysis of Techniques 

Chapter 2 Review of the Fundamentals of Object Technology 27 
2.1 Conceptual Frameworks of Object Technology 27 

2.1.1 An Essential Framework of Concepts and Components 29 
2.1.2 A Framework of Specific Mechanisms and Techniques 33 
2.1.3 A Framework of Technical Goals 41 
2.1.4 A Framework of Abstract Principles 43 

2.2 Summary and Conclusions 45 

Chapter 3 Technical Goals in a Distributed Enterprise 47 

3.1 Introduction 47 
3.1.1 What is a distributed system ? 50 
3.1.2 Why distribute? 51 

3.2 Goals of Distributed System Development 53 
3.2.1 Object-Oriented Goals in the Distributed Enterprise 53 
3.2.2 Dependability and Performance Goals 53 
3.2.3 Federation Goals 54 
3.2.4 Groupworking Goals 55 
3.2.5 Enterprise Modelling Goals 56 
3.2.6 Infrastructure Abstraction 57 
3.2.7 Infrastructure Commoditisation 57 
3.2.8 Interworkability Goals 58 
3.2.9 Application Re-engineering 59 
3.2.10 Large-Scale Reuse Goals 60 

3.3 Summary of Chapter 3 61 

Chapter 4 Open Distributed System Development and Tools 63 

4.1 Product Development Method 64 
4.1.1 Life-cycles 65 
4.1.2 Types of Object 72 

4.2 Choice of technology 81 



Table of Contents 6 
23rd January 1995 

4.2.1 Selection Method for Communications Technology 81 
4.2.2 Tools for Large-scale Reuse 89 

i 
4.3 Summary and Conclusions to Chapter 4 J. 98 

Chapter 5 Distributed Programming System Architecture i 101 

5.1 Overview 101 

5.2 Architectural Concepts and Organising Principles 102 
5.2.1 Implementing Process Conmiunication Concepts 102 
5.2.2 Architecture Layering and Interface Design Concepts 109 
5.2.3 Concepts for Defining Program Composition and Structure 114 

5.3 Summary of Chapter 121 

Chapter 6 Analytic Framework 123 
6.1 Overview 123 

6.1.1 The importance of an evaluation framework 125 

6.2 The Problem Space 126 
6.2.1 Motivational Perspective 127 
6.2.2 Constituency Perspective 128 
6.2.3 Capability Perspective • 130 
6.2.4 Cognitive Perspective 133 

6.3 The Solution Space 134 
6.3.1 Motivational perspective 134 
6.3.2 Constituency perspective 135 
6.3.3 Capability perspective 138 
6.3.4 Cognitive perspective 139 

6.4 The Design Space 140 
6.5 Summary of Part n 145 

Part I I I Evaluation of Architecture 

Chapter 7 Overview of Problem and Approach 157 

7.1 Summary of General Problems 157 
7.1.1 Overview of Initial Assumptions 157 
7.1.2 Summary of Shortcomings of Existing Approaches 158 

7.2 Analysis of Specific Problems 162 
7.2.1 Design Space for OpenBase 162 
7.2.2 General Statement of Problem and Approach 168 

7.3 Overview of Conceptual Architecture 175 
7.4 Summary of Chapter 7 180 

Chapter 8 Interpretation Support for Adaptive Management 181 

8.1 S cope of chapter 181 
8.1.1 Interpretation Layer Components 181 
8.1.2 Relationships between interpretation layer and other layers 183 

8.2 Design Choices 184 
8.2.1 Interpretation Choices & Rationale 184 



Table of Contents 7 
23rd January 1995 

8.2.2 Encapsulation Choices and Rationale 186 
8.3 Exploitation of Integrative Standards 187 
8.4 Design of Interpretation Layer 194 

8.4.1 Stub Generation 196 
8.4.2 C-H- Idiom for Application Method Implementation 197 
8.4.3 Naming and Registration 199 
8.4.4 Locating and Binding 201 
8.4.5 Server Activation and Failure Handling 202 
8.4.6 Request Processing 204 

8.5 Summary of Chapter 206 

Chapter 9 Binding Model and Distribution Model 209 

9.1 Scope of chapter 209 
9.1.1 Meta-Model Components 209 
9.1.2 Relationships between Models and Other Layers 211 

9.2 Design Choices 213 
9.2.1 Polymorphism Choices & Rationale 213 
9.2.2 Selective Property Choices & Rationale 215 

9.3 Design of Configuration Model 216 

9.4 Design of Distiibution Model ; 221 

9.5 Conclusions to Chapter 9 224 

Chapter 10 Specification and Modelling Tools 225 

10.1 Scope of chapter 225 
10.1.1 Tools Components 225 
10.1.2 Relationships between Tools and Other Layers 225 
10.1.3 Process Components 226 

10.2 Design Options 227 
10.2.1 Protocol Choices and Rationale 227 
10.2.2 Classification Choices and Rationale 229 
10.2.3 Insulation Choices and Rationale 231 
10.2.4 Substantiation Choices and Rationale 234 

10.3 Requirement for Graphical Tools 235 
10.4 Description of OpenBase Tools 236 

10.5 Conclusions to Chapter 10 241 

Chapter 11 Conclusions 243 

11.1 S ummary of Thesi s 243 

11.2 Summary of Basic Approach 244 

11.3 High Level Architecture Evaluation 245 
11.3.1 Evaluation of Virtual Infrastructure 246 
11.3.2 Evaluation of Component-based Environment 247 
11.3.3 Evaluation against Technical Goals 248 

11.4 Recommendations for further work 250 



Table of Contents 8 
23rd January 1995 

Part rV Appendices 

Appendix A: References 255 

Appendix B: Survey of Integrative Standards - CORBA, DCE and ANSA 263 

B. 1 Introduction 263 
B.2 Stub Generation 275 
B .3 Server Implementation 282 
B.4 Server Naming and Registration 288 
B .5 Locating and Binding 293 
B.6 Activation and Failure Handling 301 
B.7 Synchronisation and Request Processing 308 



Acknowledgements 

This work has been part of a large scile collaborative project. I am grateful to all 
development staff at Prism Technologies, in particular to Steve Osselton, Andy 
Ridout and Keith WiUiams for their contribution to the development of the archi
tecture. I have enjoyed working with them. 

I would also like to thank the directors at Prism Technology for creating the op
portunity for this study, Keith Steele, John Biggerstaff and in particular John Rus-
sel, the keeper of the technical vision for OpenBase.They gave me the freedom 
and drive to address such a challenging project. 

I want to thank John Mellor for the encouragement, patience and guidance he has 
given me in producing the thesis and supervising my study. I am also very grate
ful for the time he has given in managing the extended period of study. 

I must also acknowledge the efforts of the various research consortia whose ideas 
and experience provided a more solid foundation for this project, in particular the 
ANSA consortia, the ITHACA project and the REX consortia. I would like to es
pecially thank those individuals who have taken the time to comment on or dis
cuss the draft papers and reports that I have written, especially Eduardo Casais, 
Dennis Obong Nyong and David Iggulden. 

Finally and most importantiy I must thank my family for their tolerance, includ
ing my two children, Roslyn and Joel, bom during the duration of the study and 
my wife, Janet. I must apologise to my children for having to spend many a night 
sleeping on my lap to the clunk of a keyboard. It is to my family that I must ded
icate this work. 



Preface 11 
23rd January 1995 

Preface - A Change in Perspective on Programming Languages 

I recently read a startling scientific fact - that i f you place a frog in a pan of cold 
water and heat it gentiy , then the frog lets itself be slowly boiled to death. This 
fact illustrates the danger of being too comfortable with continuous change. It is 
important to react appropriately to temperature changes - to jump when things get 
hot. To me, the goals of object technology are hot, yet object oriented program
ming is not enough of a jump. A greater degree of discontinuous change is re
quired. 

My work seeks to support component oriented development of distributed appH-
cations. AppUcations are constructed by composing pre-existing components. I 
find that current object oriented programming languages are not ideal for compo
nent oriented reuse. The main reason for this is the failure of object oriented lan
guages to support the necessary transition in programming culture. Disciplined 
reuse of code components is against the very nature of programmers. To be effec
tive, reuse needs to be made an expliciUy distinct task from the normal construc
tion of components. Many programmers treat programming as a creative and 
intangible craft. A quote from one of Apple's most creative programmers illus
trates this point:" Reusing other peoples work would prove that I don't care about 
my work. I would no more reuse code than Hemingway would have reused other 
author's paragraphs." Furthermore, programs are perceived as being inherentiy 
complex. How can we reuse something that is so intangible and complex? De
spite its support for component composition, object orientation is still a program
ming craft. Components are programmed to reuse other components. 
Consequentiy reusable components compete as untrusted alien produce with the 
fruits of the programmer's own labour. 

A new perspective on programming 

Instead of programming tools, we need real engineering tools based on intuitive 
procedures to assemble tangible components. We must change the very nature of 
programming, from a craft to an engineering discipline. Intuitive environments 
can be built with visual techniques that support limited well-defined assembly ac
tions. The tangibility of components can be improved with specification tools and 
modelling languages. An engineering lathe is of litUe use for cutting components 
without a gauge to ensure that the components produced are within tolerable lim
its to fit together, wherever and whenever they may be used. Likewise the empha
sis in component oriented software must be on plug compatible interfaces. A 
plumber does not need to understand the manufacturing process for his fittings, 
only their engineering specifications. Likewise application engineers should not 
need to be component programmers in order to fit software objects together. 
These engineering goals characterise the product vision behind this project. 



Preface 12 
23rd January 1995 

It would be extremely difficult and commercially impractical to try to turn the 
complete progranmiing task into a more intuitive discipline overnight. There is 
an inherent dichotomy between the desirability of intuitive formalisms that ex
ploit the human capacity to resolve ambiguities and the necessity for precision to 
implement a formalism on a digital machine. I f this was not the case, program
ming languages would be using natural language like English. Likewise intuition 
is at odds with the inherent universality and freedom of computational solutions. 
Other engineering disciplines are constrained by clear physical laws. Computing 
on the other hand is constrained only by the limits of our cognitive processes. To 
define concrete intuitive processes requires us to limit the cognitive freedom of 
the programmer. A program is best engineered using well defined programming 
tasks. 

Consequentiy our system seeks only to turn component assembly and configura
tion into an engineering discipline. Components are stUl programmed, freely and 
to a precise level, in C++. Assemblies on the other hand are scripted together by 
following simple assembly tasks supported by engineering tools layered on top 
of the C-H- environment. 

A new perspective on language design 

Not only does this product vision require a re-evaluation of how we perceive the 
programming process, but the technical vision that characterises the solution is 
also new and requires a re-evaluation of what is a programming language. In par
ticular , the programming language needs to be opened up to integrate the speci
fication tools. 

Despite being targeted at a specific application domain, the required engineering 
system shares a number of fundamental and non-trivial language design problems 
with general-purpose programming systems. Modem programming languages 
live in tension between conflicting demands: 

1) expressivity vs efficiency 

Users need more expressive power to deal with increasingly complex applica
tions. Complexity arises from the introduction of more system power to deal with 
concurrency, persistence and distribution and the introduction of more modelling 
power to attack larger, more dynamic, evolving applications. 

Despite needing more expressivity, commercial users still want the adaptability 
and efficiency which they perceive as only available in low-level languages like 
C and C++. More expressive languages appear inefficient or highly specialised. 

2) compatibility vs extensibility 

Backward compatibility is required in a programming system as languages 
evolve. The commitment to large volumes of existing code restricts language im
provements. Sideways compatibility is required to integrate other tools, and for
ward compatibility as external industry standards mature and new technology 
emerges. 

Despite needing stability, there are times when variations in the programming 
model or extra features are entirely appropriate to satisfy domain specific require
ments, making efficient programs easier to write and maintain. Yet language de
sign and language use are traditionally seen as entirely distinct tasks and 
languages are built to be insular and complete, not open to integration with other 
languages or incremental modification and extension by programmers. 



Preface 
23rd January 1995 

13 

Our system must introduce new features to deal with distributed complexity like 
partial failures, iiideterminate orderings of messages, heterogeneity, or to inte
grate the component programming language into the engineering system to sup
port pluggability. Each new feature must resolve these tensions. The resulting 
friction is generating too much tension for a conventional language. This heat is 
slow-boiling our language frog. 

O partial failures 
O indeterminance 
Q heterogeneity 
Q compositionality 

Figure 1 The slow boiling frog 

A new approach is proposed in order to meet these conflicting demands, in com
bination, across all dimensions and to allow openness. First we rule out conven
tional approaches. 

Conventional approaches to our problem would include : 

(a) designing a high level language that supports the appropriate features. 

(b) adding the features orthogonally to a commercially available language, by 
integrating an API or object library or a pre-processor. 

We rule out a) because a single expressive high level language would prove too 
inefficient or too theoretical or too impractical for commercial users. 

We rule out b) because of the scope of the changes required. I f we added both dis
tribution and pluggability, the programmer encumberment, the overloading of re
sponsibilities on component programmers, and the interference between features 
would quickly make the programming system unmanageable. 



Preface 14 
23rd January 1995 

A more drastic separation of concerns is required to deal with so much complex
ity. Consequentiy we adopt a new approach to language design, that of adding 
meta-object protocols. This approach requires us to represent language featui-es 
at a more fundamental level. i 

Meta-object Protocol for Composition 

I f the language implementation itself is stmctured as an object oriented program, 
then the behaviour of the language can be incrementally modified by modifying 
the language objects (i.e. the meta-objects). This is the basis of the meta-object 
protocol approach. Meta-object protocols provide interfaces to the language ob
jects and allow them to be customised and extended by the prograimner. The 
meta-object protocol approach allows us to satisfy all our goals in combination. 
The protocol may itself be an expressive high level language thus a meta-object 
protocol defines a mechanism for integrating an expressive language for deahng 
with new complexities into a more conventional language. 

We add a meta-object protocol to C++ to integrate our engineering tools. It is the 
composition mechanism that needs an object oriented representation. The engi
neering tools use the meta-object protocol to manipulate the composition mech
anisms to describe the stmcture of the system. 

Modelling the compositional structure of a software configuration is useful to de
fine both the internal architecture, i.e. the runtime support structure to deal with 
distribution, and the application architecture, i.e. defining bindings for pluggable 
components. These tools relieve the component programmers of many complex
ities so that they can focus on the application behaviour of components. Integra
tion between C-n- components and the rest of the engineering system is via stubs 
and fragments generated by a C-H- pre-processor. 

By opening up the composition mechanism at a fundamental level, the design is 
less vulnerable to surface differences between different versions or variants that 
use different specification and composition tools for entirely appropriate reasons. 
The common meta-object representation relates the different specification tools 
that separate programming concerns and simplifies problems of compatibility 
and extensibility as new features and mntime support are integrated. Whereas 
conventional programming systems constitute a single point in language design 
space, this engineering system constitutes a whole region of language design 
space, a region that can be made expressive, efficient, compatible and extensible. 

In summary, a new style of programming technology, namely meta-object proto
cols, is being used to provide a new style of programming, namely visual compo
sition. The heart of the language frog is being replaced with a set of engineering 
levers which can be driven by well defined mechanical processes. 

Significant challenges and risks arise from introducing new and discontinuous 
approaches - technical, methodological and attitudinal. It is not easy to jump out 
of a pan. Proverbs involving fires may come to mind. Yet it is equally unsettling 
to live in a world of slow boiling frogs. 



Part I Introduction 



Chapter 1 - Introduction 17 
23rd January 1995 

Chapter 1 Introduction 
A large-scale, collaborative, industrial research project is underway to implement 
a state-of-the-art distiibuted platform to support the integration of applications 
for the process and manufacturing industiies. This thesis is based on my contri
bution in defining the architecture for the platform and in implementing the ob
ject management system. 

Previous approaches to integration used low level communication facilities to in
terconnect autonomous applications. This project seeks to establish a binding 
model that supports finer-grained integration so that individual objects rather 
than whole applications can be reused in different contexts. The aim is to create 
a graphical programming tool to compose applications from pre-fabricated com
ponent objects. Such an intuitive tool could remove the current overdependence 
of the process industry on system integrators, by allowing plant engineers at the 
process plant to configure appUcations themselves. 

In order to graphically build flexible object oriented applications spanning the en
tire manufacturing enterprise, the project must integrate graphical programming 
technology, object technology and open distributed processing technology. 

1.1 Purpose of Study 

The purpose of this study is to define and evaluate an architectural approach to 
technology integration in order to support the project goal of enterprise-wide ap-
pUcation integration. Technology integration is an important research topic that 
presents a particularly appropriate focus within the context of the broader project, 
for the following reasons: 

• application integration across a distributed enterprise presents a number of 
challenges that demand a broad range of new technologies and techniques 
to overcome them. The key challenges include: 

development of applications spanning different types of machine, 

dealing with the complexities of programming distributed systems, 

• integration of applications that have been developed independenfly 
by different vendors, 

• reuse of application components in different parts of the enterprise. 

taken individually, these challenges are ambitious and demand radical so
lutions to solve the underlying practical problems. Yet focused research ef
forts may fail to integrate without an overall architectural framework. 

taken in combination, the challenges call for a significant paradigm shift 
that demands new types of architecture. In particular to support: 

new development lifecycles to support new partnerships and organi
sations of developers, 

• new binding models for pluggable components. 



Chapter 1 - Introduction 18 
23rd January 1995 

• new ways of managing components to allow them to be adapted to 
different contexts across the enterprise, 

• new standards to coordinate the industry and ensure pluggability. 

• most work to date has been focused on the key application integration chal
lenges within evolutionary or conventional fireworks. Yet this can be 
overly restrictive given the broad range of innovations and techniques 
available. Technology integration deserves to be a research subject in its 
own right in order to explore the foundations required for a more compre
hensive future solution to the combined challenges. 

• the growing computing industry trend away from bespoke point solutions 
and towarcU off-tiie-shelf products goes beyond off-the-shelf applications 
to off-the-shelf infrastracture products. The computing industry is in des
perate need of new approaches to selecting and integrating different tech
nologies. Infrastmcture products are often selected on an ad-hoc basis and 
technologies do not fit togetiier well, for example CORBA on top of DCE. 

technology integration is a difficult problem for two basic reasons: 

• the dissimilar nature of different technologies, such as messaging 
and remote procedure call or inheritence and delegation, 

the inherent difficulty in relating low level programming features to 
high level requirements. 

Further exploratory work is important to the future development of the field 
and to identify practical solutions to these problems. 

because of the different nature of different integration problems, any gen
eralisations derived from research are unlikely to have wider scope than the 
problem at hand. Yet application integration is a broad subject and the fo
cus on integrative architectures has quite wide-spread applicability across 
different market sectors including telecommunications, finance, manufac
turing, government and petrochemical industries. In addition, the basic ap
proach to architecture design may be reapplied to other problems. 

• exploratory research is best driven by the requirements of real industrial 
scenarios. The broader project context provides a real world setting with 
real requirements against which success can be measured. 

1.2 Research Objectives 

The thesis seeks to abstract away from the individual problems and solutions of 
appUcation integration in order to rationalise an approach to technology integra
tion. It explores the key issues and tests out the effectiveness of the approach. 

One key element in the approach is to separate concerns in the architecture. This 
involves breaking the architecture down into a number of related subcomponents 
that deal with different issues and apply different techniques. It takes a purposive 
approach to describe the separation i.e. it describes the purpose and context of 
each architectural component. This identifies clearly the higher level roles and re
lationships between components and contrasts conventional behavioural models 
that describe the behaviour or function of each component. 



Ch^ter 1 - Introduction 19 
23rd January 1995 

A purposive approach (i.e modelling purpose) unifies evaluation and design ac
tivities, making it easier to: 

i 

• relate low level programdMng technology features to higher level program
mer requirements, ; 

• evaluate and select different technology to meet design goals, 

• make orderly comparisons between design options and product options. 

The main position argued by the thesis is that a separation of concerns helps in
tegrate different techniques and can be used to construct a viable architectural 
foundation to meet the broader challenges of application integration. 

In developing this argument, I intend to: 

• identify and survey the practical problems underlying the key challenges of 
application integration in order to vaUdate the hypothesis that more radical 
solutions are required. Individual solutions are not critical to the thesis. 

explore the key aspects that differentiates the approach supported by the 
broader project. These aspects in combination characterise a new paradigm 
for development which I call adaptive graphical objects. I will elaborate on 
the key components including the following: 

a component-based lifecycle, 

a binding model based on visual hierarchical composition, 

• adaptive object management according to the configuration state, 

• distributed object standards and domain framework standards. 

These concepts impact on high level architecture and deserve special atten
tion in testing the hypothesis that a paradigm shift is required to meet the 
combined challenges. 

review any evaluation frameworks that relate technology features to their 
purpose or goals in order to identify a suitable unified framework for eval
uation and purposive modelling. 

• apply the framework to provide a high level rationale for the separation of 
concerns in the proposed architecture. This is in line with the proposed par
adigm. I will evaluate three key hypothesis: 

a purposive approach can result in a suitable separating of concerns. 

• a separation of concerns facilitates the integration of different tech
niques that solve the basic challenges of application integration. It is 
important that the architecture integrates well as a broad range of 
tools and techniques that do not fit together offers little value to users. 

adaptive graphical objects support an appropriate paradigm shift to 
meet the combined challenges of application integration. 

• briefly review the design decisions that were made in the lower level design 
of each component, highlighting issues and requirements for technology in
tegration. This architecture is realised in a demonstrable prototype. 



Chapter 1 - Introduction 20 
23rd January 1995 

• use the concrete requirements of the broader project to evaluate the overall 
architecture. In addition, I wi l l evaluate the hypothesis that the proposed ar
chitecture has value as an integrative architecture in different market sec
tors. 

With the scope being a Master's degree, a number of compromises and limitations 
have been made. The research was liniited to design, demonstration and formu-
lative evaluation (i.e. research determining i f an approach is realised). There was 
no time to collect a substantial amount of data, such as performance modelling 
and monitoring data. Consequentiy there is still a requirement for further experi
mental research. Nor was there time to provide a complete state of tiie art man
agement system. This was seen as superfluous as the emphasis is on the higher 
level modelling of essential management mechanisms. Further development is 
necessary. For example, I limited the prototype to deal only with : object alloca
tion across the network, object binding, and remote messaging. 

1.3 Related Technologies 

The project vision to use graphical tools for application integration mirrors a 
broader trend in software development tiiat wil l come to the fore late in this dec
ade where software development will move from a programming craft to a large 
scale manufacturing and engineering discipline. The move to software compo
nents is driven by the need for high quality software that can be configured to 
meet changing needs with minimal expenditures of time and cost. 

This trend is enabled by the coming together of three key technologies: 

graphical programming tools for component configuration, 

distributed object management technology, 

integrative standards for plug and play components across an enterprise. 

Some of the key issues and related work in each of these areas is summarised be
low to illustrate the ful l potential of an architecture resulting from their integra
tion. This thesis will integrate a subset of the features in each technology. 

1.3.1 Graphical Tools for Configuration Programming 

OpenBase allows configurations of software components to be described graph
ically using a graphical editor. This mirrors the trend to graphical tools in the 
CORBA world such as IBM's VisualAge for DSOM or Oberon's Synchroworks 
for Sun DOE. 

Plant engineers manipulate different aspects of the system in named configura
tion domains, called composites. These are logical groupings of application com
ponents. Configuration composites support commands for ad-hoc changes to the 
structure of an application e.g. instantiate, link, unlink, destroy. 

Figure 2 below illustrates a simple composite that has been constructed by instan
tiating and linking the following classes: I/O point, maths function block, delay, 
alarm, and print driver.The visual metaphor uses drag and drop actions to instan
tiate objects from palettes and point and click actions to invoke attribute and link
age editors. This metaphor is supported by an appropriate binding model for 
visual composition. 



Chapter 1 - Introduction 
23rd January 1995 

21 

Et ^ Conf iqure Chemical Plant 
File Application Draw Edit View H e i p l 

VESSELA 
VALVE POSN 

CHECK 

VESSELA 
VALVE STATUS 

LEVEL 

Configuration 

. P L A N T 
.STORAGE 

.IMIXING 

Figure 2 Example configuration composite 

1.3.2 Distributed Object Technology 

In a distributed environment, we need mechanisms to manage objects and their 
interactions. At the least, we must be able to create objects in different processes 
on different nodes; we must be able to link them together so that they can pass 
messages to each other across the network; and we must deliver their messages 
in a timely and reliable manner. Object based environments which support these 
services are ah^ady commercially available, for example DEC's Objectbroker, 
Zona's Orbix, IBM's DSOM. 

Distributed management for object oriented systems can get complex. Program 
descriptions must be interpreted in a broader context where concurrent objects are 
allocated to disjoint address spaces, where resources partially fail, and where ef
fects take an unpredictable time to propagate. Mechanisms to deal with these is
sues have been demonstrated in the last generation of research systems and are 
now emerging in commercial systems: Chorus/COOL (Rozier et al.,1987), Eden 
(Almes et al., 1985), ISIS (Buman and Joseph, 1991), Argus (Liskov, 1988), Ar-
juna (Shrivastava, 1991), ANSAware (ANSA, 1989) or (Herbert, 1989). 

Support for distributed management can be divided into three areas: object man
agement, resource management, and interaction management Object manage
ment includes transaction control, security, recovery, and replication. Interaction 
management includes naming, binding, remote messaging and error handling. 
Resource management includes storage, checkpointing, allocation, and migra
tion. 



Chapter 1 - Introduction 22 
23rd January 1995 

The potential of distributed objects to increase the performance and dependability 
of applications is great. However the thesis initially looks at only a few of these 
value-adding behaviours. 

1,33 Integrative Standards 

The issues of composition are broader than just the creation of reusable compo
nents that can be assembled into a target application. One needs standards tiiat 
transcend any single component. Software standards are needed at the application 
level and at the system level. Application domain standards apply to modelling 
tools, to the data that can be interchanged between components, and to any broad 
structural patterns that are to be imposed on object interconnectivity. System lev
el standards apply to the architectural interfaces that allow components to inter-
operate. 

Such standards are much like the architectural standards that hardware compo
nent manufacturers establish so that they can plug their components together, for 
example signals for chips (enable, address lines, data lines, interrupt lines) and 
bus standards for boards( VME, Multibus). 

Application Domain Standards 

At the application level, there has been a recent surge of activity in the area of 
object oriented platforms for the integration of manufacturing and process appli
cations. Standards bodies have been formed to represent various industry bodies, 
such as POSC for the petrochemical industries and the National Centre for Man
ufacturing for manufacturing software. They are defining architectural frame
works for application integration. However these bodies do not yet address many 
of the technical problems of distributed management. 

System Standards 

To manage interoperable components across a network, we-need a set of standard 
system interfaces. Various technical standards bodies are satisfying this need in 
general purpose standards for open distributed computing, such as : 

the Object Management Group's (OMG) Object Management Architecture, 
which includes the Object Services Architecture and the Common Object 
Request Broker Architecture (CORBA); 

• the Open Software Foundation's Distributed Computing Environment 
(OSF/DCE); 

the International Standards Organisation's Open Distributed Computing 
Reference Model aSO ODP RM). 

What is currently still generally missing from these system level standard archi
tectures, are application level standards for pluggable components. Such environ
ments provide limited support for composing applications from pluggable 
components. There is not yet an efficient general-purpose binding model for 
managing bindings between independently produced components and standards 
governing the interfaces that these components should support. 



Chapter 1 - Introduction 23 
23rd January 1995 

1.4 Initial Positioning of Technologies 

The graphical programming tools and application level standards unpapt mainly 
at the highest level in design concepts and programming metaphors us^ by pro
grammers. The object management support functionality and system standards 
impact mainly at the lower level in the implementation of a runtime executable. 

This natural separation may be re-enforced by applying intermediate layers of 
representation and interpretation. The resulting architecture may be viewed as a 
layering of graphical programming metaphors and domain standards on top of a 
standards-based support environment for distributed objects. 

The proposed architecture bridges the gap between these top and bottom layers 
with three layers as shown in Figure 3: 

• tools layer - specification tools facilitate the construction of independent 
pluggable components. Visual composition tools facilitate the configura
tion of components into applications and the verification of composite be
haviours; 

meta-model layer - using the tools, plant engineers construct a configura
tion model which tracks objects and system resources. This configuration 
model allows requirements for the system to be described at different levels 
of abstraction independentiy of the underlying support; 

• interpretation layer - die interpretation layer adapts the configuration model 
and instantiates a corresponding runtime representation. TTie ANSAware 
Engineering Model was selected as our underlying management technolo
gy for die prototypes. The interpretation layer provides a stable interface 
that is implemented in ANSAware but can be ported to other platforms. 

The broader project vision of a graphical product integration system provides a 
new development paradigm that impacts on all aspects of software constmction: 

the technical goals of product developers; 

the development process; 

the principles employed to structure software; 

the language abstractions, programming techniques and mechanisms to 
support the principles; 

the architectural components implementing the functionality behind the 
mechanisms. 

It is very difficult to talk about the role of these aspects in isolation without relat
ing them to the whole. Consequently the notion of purpose used to describe ar
chitecture components is expressed in terms of the relationships between 
technical goals, abstract principles, techniques and components. The emphasis on 
relating abstract design principles to both diverse goals and language mecha
nisms is especially appropriate to programming system architecture design and 
helps capture the expansive vision necessary for innovation. 



Chapter 1 - Introduction 
23rd January 1995 

24 

High Level Design and Programming Concepts 

Graphical 
Programming 
Tools i 

Domain Standards 

Bridging 3 Layer Architecture 
Specification and Compositior 1 Tools fdr Capture 

1 

Configuration Meta-Model for Rep resentation 

Interpretation Layer for Ena(!tment 

Distributed 
Management 
Environment 

T System Standards 

Low Level Implementation Support 

Figure 3 Bridging Architecture 

1.5 Outline of Thesis Structure 

The thesis breaks down into three parts. 

Part I , Introduction, consists of the introductory material. 

• Preface, A Change in Perspective on Programming Language, prepares the 
reader to reconsider the fundamentals of programming system design, as 
these wil l be challenged by new paradigms. 

Chapter 1, Introduction, summarises the research objectives and provides 
background information on the project. 

Part I I , Survey and Analysis of Techniques, is an extensive literature survey of 
related technologies and techniques. The survey is summarised by defining a pur
posive evaluation framework that is populated with classification hierarchies for 
technical goals, principles and techniques. Chapter 2 reviews object technology. 
Chapters 3 to 6 extend the work by considering the impact of distribution on ob
ject technology. 

Chapter 2, Review of Fundamentals of Object Technology, reviews object 
technology and introduces an existing evaluation framework. There is an 
emphasis on deriving a broader view of object orientation to include less fa
miliar approaches like hierarchical composition. 



Chapter 1 - Introduction 25 
23rd January 1995 

• Chapter 3, Technical Goals in a Distributed Enterprise, re-evaluates the 
technical goals of object technology by considering new architectural goals 
that dominate in a distributed enterprise. These goals are used as our re
quirements in the evaluation. 

Chapter 4, Open Distributed System Development & Tools, describes tiie 
differing approaches to developing distributed object systems, in particular 
the effect of technology choices, standards and lifecycles. 

• Chapter 5, Distributed Programming System Architecture, reviews princi
ples of programming system design. This review provides an arsenal of 
techniques Uiat can be used to define architecture, l l i e approach synthesis-
es a number of tiiese techniques. 

Chapter 6, Evaluation Framework, consolidates the whole survey by sum
marising die key components in an example fi-amework. This framework is 
used in part I I I to design and evaluate the architecture. 

Part ni. An Evaluation of the Architecture, describes and evaluates the architec
ture from the point of view of the abstract principles employed in its construction. 
This constitutes most of the results from this formulative evaluation. The appli
cation of an analytic framework ensures that most of the rationale behind design 
decisions is implicitiy captured. 

Chapter 7, Overview of Problem and Approach, reviews shortcomings in 
existing approaches and provides the rationale behind the proposed archi
tecture using the evaluation framework as a design framework for model-
hng the purpose of the key architectural components. 

Chapter 8, Interpretation Support for Adaptive Management, reviews the 
design decisions in the interpretation layer that uses distributed object tech
nology services to load and manage configiu-ations of objects, l l i i s inter
prets and adapts the higher level models. 

Chapter 9, Binding Model and Distribution Model, reviews the design de
cisions in the modelling layer that describes meta-object representation and 
processing support for the high level programming models. This includes 
the adaptive Uransformation of partially distributed specifications into fully 
distributed specifications that can be interpreted by the interpretation layer. 

Chapter 10, Specification and Visual Composition Tools, reviews the de
sign decisions in the tools layer, describing the specification tools and illus
trating their potential usage with an example. 

• Chapter 11, Conclusions, reviews the contributions and conclusions of the 
research, summarises the results and makes recommendations for future 
work. 



Chapter 1 - Introduction 
23rd January 1995 

1.5 Reading Dependencies 

This thesis covers a lot of ground in order to illustra^ the impact of the approach 
on all aspects of software research, development andjproductisation. Consequent
ly there are a lot of reading dependencies. It is intended that the thesis is read from 
cover to cover. Figure 4 summarises the most critical dependencies by defining 
alternative reading paths as dotted lines. 

Abstract 
I 

Preface-^1 .Introduction 

V 10. Tools 

.11. Conclusions 

2. Review of 
Objects 

I 
S.Technical 

Goals 

i 
9. Models 

8. Interpreter 

V 
4. Development 

Processes 

I 
5. Programming 

System 
Design 

6. Evaluation 
Framework 

•7. Approach 

Figure 4 Suggested Reading Paths 



Part II Survey and Analysis of Techniques 



Chapter 2 - Fundamentals of Object Technology 27 
23rd January 1995 

Chapter 2 Review of the Fundamentals of Object Technology 

Information systems are getting larger, more complicated and more interconnect
ed, and demand more cooperation between suppliers. What is needed to deal with 
these demands is a conceptual framework sufficiently abstract and powerful to 
represent uniformly and coherently the behaviour and relationships of software 
systems, the processes by which they are developed and distributed within human 
organisations, and the way they are integrated and evolve as products. The object 
oriented paradigm provides a technical basis for such a comprehensive frame
work. This section briefly describes the fundamentals of the object oriented ap
proach and the benefits it can bring to these activities. 

What are objects? 

We are all familiar with things (objects) in our everyday reality. Things have 
measurable properties. Things can be simple or composite (made of other things). 
Composite things can derive hereditary properties from their components, or ob
tain new emergent properties of the whole that are not properties of any compo
nents. 

The view of objects as models of physical things builds on the origins of object 
oriented programming in simulation (Simula, 1967). Software objects are like 're
al' things. They represent information, process and behaviour. They package use
ful abstractions that form the building blocks that can be assembled in a multitude 
of configurations to construct the overall properties of software systems. 

Despite its long history, object oriented programming is still lacking a profound 
theoretical understanding. Whilst logic and fimctional programming languages 
are based on well understood concepts like equations, relations, predicates, etc, 
there is no single agreed mathematical theory or model for object oriented pro
gramming. Instead it is more often defined by specific programming language 
constructs, like inheritance. Attempts have been made to give it a more formal 
theoretical basis, but none have been universally adopted. For example, work on 
the Beta language (Blair, 1991, chapter 12) is founded in a formal theory for 
physical information models that is expressed in terms of phenomena, concepts, 
objects, actions and patterns. (Wegner, 1987) has also worked on more formal 
theories for object oriented programming. 

Recently object oriented ideas have found their way into a diverse range of fields, 
including operating systems, distributed systems, methodologies, formal meth
ods, and databases. This divergence has made it difficult to define precisely what 
constitutes an object oriented system. The rest of this chapter presents a series of 
fundamental views of object technology in order to extract the essence of the 
technology and the benefits it can bring. 

2.1 Conceptual Frameworks of Object Technology 

Several conceptual frameworks based on different themes have been put forward 
to describe the essential concepts, principles and practices that constitute the ob
ject oriented approach. These vary in content, generality, formality, terminology 
and depth. Different frameworks base their definitions on different perspectives: 



Chapter 2 - Fundamentals of Object Technology 28 
23rd January 1995 

• on the components of object models - for example the OMG Core Object 
Model (OMG, 1990); 

• on specific mechanisms or techniques (Wegner, 1987); 

• on the principles behind pure object modelling techniques (Beta, 1987); 

• on the goals and benefits (Blair, 1991); 

• on the nature of the development process (Booch, 1991; Rumbaugh et al., 
1991). 

This section provides a synthesis of definitions from these different perspectives, 
briefly describing the most fundamental and essential aspects of the object model 
from different viewpoints. It serves three main purposes. 

1) Different models overload different words and attach different meanings to the 
same word. It defines a consistent vocabulary that will be used in the thesis. 

2) Different models are limiting in scope or make assumptions about the exact na
ture of mechanisms. It presents an overview of object technology that is suffi
ciently fundamental to challenge the experienced reader to reconsider what is 
essential, and sufficienUy broad to introduce inexperienced readers to less famil
iar aspects of the technology, in particular, aspects relevant to distributed object 
technology. 

3) A fundamental problem to overcome in understanding object oriented systems 
is to be able to relate abstract principles and goals to concrete techniques and 
mechaiusms. This section concludes by presenting a framework to map concepts 
between the different viewpoints such as from principles to mechanisms and this 
approach is used in later chapters to elaborate the design space for our system and 
to present the rationale for decisions. The missing framework is illustrated in Fig
ure 5. The components of the framework will be described in this chapter. This 
sort of framework is based on the work of (Blair et al., 1991) but will be extended 
in later chapters by the author. 



Chapter 2 - Fundamentals of Object Technology 
23rd January 1995 

29 

Goals 

Abstraction 

Sharing 

Evolution 

Correctness 

Framework 
??? 

Components & 
Techniques 

State, Id, Relations 

Methods.Requests 

Classes 

Prototype Objects 

Dynamic binding 

Inheritence 

Delegation 

Hier. Composition 

Figure 5 Missing framework to map between perspectives 

The objective is not to seek a better object oriented paradigm, but rather to syn-
thesise a variant more appropriate to our specific goals. 

2.1.1 An Essential Framework of Concepts and Components 

The object model may be defined in terms of objects. Objects can be character
ised by static properties, such as structure, and dynamic properties, such as be
haviour. This framework describes basic aspects of these properties without 
committing to concrete realisations. 

Static Properties 

Object State 

The state of an object is represented by a number of variables, called instance 
variables or slots, that may change over time. 

It is usually desirable to distinguish the internal representation of the state, from 
the way the state is presented and accessed by users. For example, an object rep
resenting a 2D point might represent its state internally either in Cartesian or Po
lar co-ordinates, but provide an interface for users to access it either way without 
being aware of which representation is actually used. This separation between 
concrete representation and external interface is called data abstraction. 

Object Identity and Name 

Each object has a distinct identity which identifies it uniquely. Two objects with 
the same state, attributes and behaviour might still have different identities. 



Chapter 2 - Fundamentals of Object Technology 30 
23rd January 1995 

Languages often mix the concepts of identity and address, using addresses as 
identity. This causes problems in distributed systems spaiming different address 
spaces. 

The representation of identity is particularly important in a persistent, distributed 
environment, so that objects can reference other objects consistently to access 
their interfaces. References to other objects are held in global variables or in
stance variables. Access is by de-referencing these variables. This may involve 
remote invocation or activation of a passive object from a persistent store. 

Object Relationships and Class Relationships 

Instance variables that hold references provide one way to represent a relation
ship between objects. Objects may participate in many types of relationship, 
some are fundamental to the object model and are not represented by instance 
variables. 

In particular, there are certain relationships concerned with object similarity, 
which can be used to share implementations or interfaces across sets of objects. 

Sets of similar objects are usually grouped together into classes, the objects in this 
set being known as object instances of the class and share the same concrete rep
resentation. Classes themselves can be related to other classes using 'is-kind-of 
relationships and 'whole-part' or aggregation relationships. 

Not all systems base their set concept on classes. Sets of objects may share a com
mon prototypical object. This is the often used to capture weaker for of commo
nality such as 'is-like-a' relationships. The is-like-a relationship is weaker than 
is-kind-of, but is useful to form sets of objects by incremental modification of 
shared prototypical objects. 

Relationships are also important to manage distributed or persistent objects. For 
example, objects may be clustered by an aggregate object to bound : 

the extents of queries. 

the unit of collocation in a shared process. 

the unit of mobility in migrating objects between processes. 

the unit of atomic activation and passivation from persistent store. 

the unit of recovery. 

Clustering semantics can be unified with the semantics of object relationships. 
Object clustering may occur across different relationships - whole-part, is-a , or 
using. Furthermore, not all extents are defined on object boundaries, for example 
transactions are defined on activity boundaries. 

Object Dynamics 

Object behaviour 

There are several categories of behaviour that an object can exhibit: State-related 
behaviour, i.e. accessing and altering the internal state of an object and its parts; 
functional behaviour, i.e.using an object as a machine to calculate a new object; 
and operational behaviour, i.e. managing an object implementation in its operat
ing environment. 



Chapter 2 - Fundamentals of Object Technology 31 
23rd January 1995 

Active objects are autonomous and concurrent with their own threads of activity, 
passive objects simply respond to invocations and are dynamically allocated the 
thread of the caller 

Methods 

Object behaviour is implemented by pieces of code called methods, normally as
sociated with classes. Different kinds of method implement different kinds of be
haviour. There are methods dealing with accessing the state of an object, methods 
implementing algorithms which provide the functional behaviour, methods 
wWch implement operational behaviour such as spawiung processes, and meth
ods which route invocations through a composite structiire. 

Some methods may return a result to the caller while others do not. Some may 
execute sequentially whilst others execute asynchronously to the caller. 

Different kinds of methods may be distinguished by the programming system, for 
example C-H- supports runtime binding selectively for methods declared 'virtual' 
(Stioustrup and Ellis, 1990). Other languages use one kind of method for all pur
poses, for example Smalltalk (Smalltalk, 1983). Pattern based languages even use 
the same kind of abstraction for methods and classes, for example Beta (Blair, 
1991, chapter 12) or (Beta, 1987). 

Methods are structured in different ways. Some methods belong to classes of ob
jects, particularly those implementing state-related behaviour. Other methods be
long to larger units of organisation, particularly those concerned with interactions 
among several classes. Other methods really belong to the programming system, 
particularly those implementing operational behaviour. Many object oriented lan
guages insist on all methods belonging to a single class. Some systems introduce 
meta classes for each class to hold certain class methods and system methods. 

In CLOS (CLOS, 1989), methods do not belong to objects but instead they belong 
to generic functions, which are collections of methods with the same name. 

Method Invocation 

Different languages provide different forms of expression for invoking object be
haviour. The expressions identify one or more objects and the method to be in
voked upon them. Arguments may be passed. For example, Simula, Eiffel, 
Smalltalk and C++ use a postfix invocation form equivalent to o.f(x,y,z) which 
means 'invoke method f in object o with parameters x,y and z'. Hierarchical com
position systems do not name the target object directly but use a local port name 
to denote the target i.e. portl.f(x,y,z)' means ' invoke method f in the object that 
is connected to portl'. 

In a distributed environment, a richer invocation form may be used to reflect ad
ditional failure semantics, for example o.f(x,y,z) abort g(x,y,z) retry (10) timeout 
(200) means 'repeat message ten times with a timeout of 200 milli-seconds before 
aborting and calling function g(x,y,z)'. 

Fundamentals of Runtime Binding 
to 

The method to be invoked is usually determined by the identity of the object or 
objects in the invocation expression at the time the invocation takes place. A sin
gle invocation expression can bind to methods of more than one class and the ex
act message definition to invoke is not known till runtime. This is called runtime 
binding. This is often seen as a precept of the object model. It brings a runtime 
overhead in navigating the class hierarchy to find the appropriate method. 



Chapter 2 - Fundamentals of Object Technology 32 
23rd January 1995 

Runtime binding is sometimes mixed with static binding, by distinguishing runt
ime bound metiiods, called virtual methods in C++, from statically bound metii-
ods or by including the class in the invocation form whenever a vutual method is 
invoked in a known cla^s i.e. 'c::o.f(x,y,z)' means 'invoke method f of class c on 
object o'. 

Note that static type checking does not prevent runtime binding. A static type 
conformance check when assigning objects to typed object identities or referenc
es, does not tell us which subclass the object actually belongs to, only that it con
forms to the type of the reference. Therefore the system must still find the right 
method for the appropriate subclass at runtime. 

Fundamentals of Polymorphism 

Polymorphism is the general ability of a software component to fit into many con
texts. There are several types of polymorphism, distinguished by the detailed 
properties of the type system. In essence, a polymorphic object is one which can 
be referred to by more than one type. A polymorphic function is one which can 
operate on many different argument types. 

Polymorphism and runtime binding give object oriented programming much of 
its flexibility. To understand why this is so, it is useful to think about a system in 
terms of producers and consumers of behaviour. Objects collaborate with other 
objects to implement the system behaviour. This collaboration is expressed by 
objects invoking the methods of other objects. The designer of a new object is the 
consumer, and the objects whose methods he invokes are the producers. The con
sumer makes certain assumptions about the services he requires from other ob
jects, for example that they respond in a certain way. As long as the assumptions 
hold true, any producer object will do. Polymorphism makes it possible to express 
these assumptions efficientiy, to restrict the degree of flexibility appropriately. 
Runtime binding enables the dynamic substitution of new objects without any 
need to inform the consumer. 

Programmers can align themselves as producers and consumers of each others 
product in different ways. New consumer objects may be implemented to use 
services of an existing library of producers. Alternatively producers can be devel
oped in parallel with consumers to implement an entirely new system from 
scratch as a bespoke system. At the other extreme, general purpose producers and 
consumers can both be developed in isolation, and a third external party resolve 
the producer-consumer binding. The last example calls for statements not only 
about the services provided, but also the services required and is not supported by 
mainstream object oriented languages. It also calls for standard sets of services to 
which both parties conform. 

Different mechanisms can be used to express the assumptions a consumer makes 
about a producer. Flexibility is constrained by type conformance along type hier
archies. Flexibility is therefore maximised i f the producer and consumer work 
with highly generalised primitive types. The extreme is when the types map to 
typed tuples for the methods , for example void(int,int,float), yet this carries the 
minimum semantic content. This is fine if an external party is responsible for ver
ification on combining producers and consumers. A tighter specification is safer 
and generalisation-specialisation or is-a hierarchies are popular ways to express 
semantic constraints by choosing types at different levels of abstraction up the hi
erarchy.' Even tighter specifications can be provided by using formal models 
(Stepney et al., 1992) or algebraic/axiomatic methods, including Eiffel style pre 
and post conditions, assertions and invariants (Meyer, 1992, ref [1]). 



Chapter 2 - Fundamentals of Object Technology 33 
23rd January 1995 

Another issue is when the environment can be altered. Runtime binding allows 
object instance substitutions to occur dynamically at runtime whether or not there 
is static type checking. But new types can only be added dynamically i f the sys
tem also supports runtime type checking. Static type checking requires recompi-
lation and re-linking of the type hierarchy for changed classes, and introduces 
strong dependencies between classes which inhibits an incremental, or prototyp
ical style of development. The need for recompilation can be minimised i f the 
type hierarchy is shallow with stable roots, as for standardised sets of primitive 
types. 

Summary of Fundamental Framework 

A fundamental definition of the key components of the object model has been 
given. This is useful to establish the conceptual framework necessary to look at 
specific mechanisms and techniques that characterise object oriented systems. 
The fundamental framework has deliberately been kept broad so as not to restrict 
our definition of an object oriented system. 

2.1.2 A Framework of Specific Mechanisms and Techniques 

The object model can also be characterised by looking at specific techniques and 
mechaiusms that typify object oriented systems. 

Structuring Mechanisms - Classes, Types, Conformance, Inheritance ,Delega-
tion and Hierarchical Composition 

Much of the power of object oriented programming stems from its ability to struc
ture software efficiently and coherently, in particular the derivation mechanisms 
which allow the sharing of abstractions, behaviour and representations between 
components. The exact nature of the derivation mechaiusm varies between sys
tems that use inheritance, conformance, delegation and hierarchical composition. 

Classes 

A class acts as a template to create objects with the same implementation. A set 
of objects which share their implementation are said to be instances of the class. 
In some systems, Eiffel and C++, classes are purely a compile time construct. In 
other systems, such as Smalltalk and CLOS, classes are represented in the run
ning systems as objects. Classes themselves have classes, called meta-classes. 

Types 

A type characterises a set of values, that are said to belong to that type. Values 
include object instances. A single type may characterise instances of more than 
one class. Likewise a single object may be referred to by more than one type, i.e. 
polymorphism. A system of types can be used practically to check method invo
cations at compile time and to optimise code. 

The type of an object is often viewed as a definition of its external behaviour, 
whilst the class describes its external behaviour plus implementation. Clients of 
an object do not need to know eveiy detail of the implementation of a class ; they 
need only know about the kind of abstraction that is implemented. For example 
an abstraction of a stack, can be defined by an interface providing push and pop 
methods, yet it may be implemented using either arrays or lists. In this case, the 
abstract interface a stack object presents to clients is quite different from the array 
or list templates used to create it. 

Conformance 



Chapter 2 - Fundamentals of Object Technology 34 
23rd January 1995 

I f an object presents a certain interface to clients, we say that it conforms to that 
type. The ability of different implementations of objects to share an interface is 
known as conformance or subtyping. This is different to the sharing of both inter
faces and implementations, known as subclassing or inheritance. 

I f we view a type as a predicate, we see that subtyping defines stronger predicates. 

Inheritance 

One class of objects may be somewhat like another, whilst not being identical. In
heritance relationships allow classes to be defined in terms of their differences. I f 
class A inherits from class B, class A can be thought of as an extension of B. In
stances of A automatically possess all the attributes that instances of B possess 
Likewise i f type A is a subtype of type B, A conforms to the interface of B. Sub-
typing and subclassing may be controlled by encapsulation protocols that deter
mine which attributes are visible in the interface of A, which are not inherited in 
the implementation of A, and which can or must be overridden. For example the 
C-H- protocol uses the virtual, public, protected and private keywords (Stroustrup 
and Ellis, 1990) Inheritance facilitates differential, incremental programming and 
code sharing between classes. Most systems, notably C-H- and Eiffel (Meyer, 
1992, ref [1]) do not distinguish types and classes or subtyping and subclassing 
but use classes to identify types. This unification is simpler but forces modifica
tions to generate new subtypes to extend implementations or use multiple inher
itance to express conformance to multiple interfaces. In a distributed system there 
may be merit in providing multiple management interfaces to a single object for 
different distribution mechanisms. 

In the above example, Class B is said to be the superclass of A and class A is said 
to be the subclass of B. Some systems only support a single superclass and are 
said to be single inheritance systems. Other systems can have any number of su
perclasses and are said to be multiple inheritance systems. Multiple inheritance 
may occur naturally in a classification hierarchy. For example, waterfowl would 
normally belong to the class of creatures-that-swim as well as the class of crea
tures-that-fly. Multiple inheritance can also be used to add orthogonal behaviours 
such as distributed mechanism behaviours. Base classes used in this way are often 
called mix-ins. 

Multiple inheritance gives rise to the possibility of ambiguity i f attiibutes share 
names in different superclasses or superclasses themselves share a common su
perclass. Virtual inheritance ensures subclasses never derive more than one copy 
of attributes, even i f multiple paths of inheritance exist. Conflicting names can be 
resolved by imposing an order on the priorities of superclasses or by requiring ex
plicit renaming. 

Delegation 

Delegation is an alternative to inheritance for code-sharing and differential pro
gramming. An object will delegate to another object, acting as a superobject, any 
calls it can't handle itself. Any object may be a superobject, i f it can act as a tem
plate for other objects to delegate to. Delegation extends object behaviour across 
the well understood object messaging interface, rather than relying on new rela
tionships between classes. It's emphasis on objects and independence from any 
notion of class has particular advantages in certain contexts: 

in user-interface contexts, where objects have concrete visual realisation, 



Chapter 2 - Fundamentals of Object Technology 35 
23rd January 1995 

• in runtime typing contexts such as parsers and marshalling code, where the 
type of an object can change over time or where it is not defined til l runt
ime, making a static association of class restrictive, for example a complex 
number may behave as a real number when the imaginary part is zero; 

• in concurrent systems where a protocol must exist to synchronise superob-
jects with subobjects. Clearer concurrency semantics can be defined with a 
simpler model for object composition. 

Hierarchical Composition 

Hierarchical composition is a useful alternative to inheritance especially when an 
external party takes responsibility for specification/verification of relationships 
between objects. Objects can then be developed in isolation and can specify weak 
constraints on plug compatibility. 

The component interface identifies the services required as well as the services 
provided as typed entry and exit ports through which messages are received and 
sent. The types may be primitive, general purpose types, resulting in a shallow 
wide type hierarchy and a high degree of compatibility. An object will typically 
support many port types, often one for each service provided. This maximises the 
contextual independence of components. 

Object are instantiated from component definitions and bound together to form 
composites using commands of a configuration language. The paradigm is hier
archical in the sense that composites can themselves export unbound typed ports 
from nested components and act as component definitions to be instantiated and 
bound in a higher level composite. In this way composite types can be defined 
from instances of base components. The mechanism is primitive. Both internal 
bindings and exported ports must be specified at the method level using the port 
names. These method level relationships contrast with the class level relation
ships of inheritance and the object level relationships of delegation. 

Modularity 

Unfortunately the object-oriented view of modules is often restricted to consider
ing compilation units. This overlooks the coarse granularity that is an important 
design aspect. Closely related objects form cohesive centres of activity and inter
est. Classes are one way to partition and structure an application for reuse. But 
designs may consist of higher level structures than just class instances. Subsys
tems (Wirfs-Brock and Wilkerson, 1989) are groups of classes that collaborate to 
ful f i l a common set of responsibilities. Composite components may play a similar 
role in systems supporting hierarchical composition. Contracts(Wirfs-Brock and 
Wilkerson, 1989; Helm et al., 1990) are higher level groupings of messages. 
Frameworks (Krasner and Pope, 1988; Profock at al., 1989; Nierstrasz and Pap-
athomas, 1990) are abstract patterns of interaction. 

The different ways of structuring code are summarised in Figure 6. 



Chapter 2 - Fundamentals of Object Technology 
23rd January 1995 

36 

Structure 

composition modularj 

abstract 
data 
types 

conformance 

inheritence 

classes 

frameworks 

subsystem 

prototypical 
object 

contract 

composite 

method port 

delegation 
hierarchical 
composition 

Figure 6 Types of structure 

Object Binding 

Direct and Indirect Naming 

With direct naming a client will identify a server object whose methods he wishes 
to call using a name or reference tliat is bound to the server object , e.g. 
'name.method () ' . 

Not all names directly identify an object. It is often useful to introduce a degree 
of indirection, for example to allow different objects to be substituted without af
fecting the client. Configuration languages exploit indirect naming to define the 
interface between the programming language used to program components and 
the configuration language used to bind components together (Kramer et al, 
1992). For example, as well as being typed, input and entry points may be named 
as inports and outports in a component interface, for example declaring 'outport 
outportl (int)'. The component invokes methods in another component using the 
outport names in his own interface, for example 'outport l->methodA(5)'. The tar
get object is identified by binding statements in the configuration language out
side of the component definition, for example a configuration definition for a 
composite may declare a binding such as 'bind component 1.outportl to 
component2.inportr. Outportl is thus an indirect name and it is resolved when 
evaluating the configuration script not when compiling the component definition. 
The client component is unaware of the actual target component nor even its ex
act type, only that it conforms to a method that takes an integer parameter. 

Types of Polymorphism 



Chapter 2 - Fundamentals of Object Technology 
23rd January 1995 

37 

A broad interpretation of polymorphism is the principle of making weaker state
ments about Uie compatibility of objects in any bincUng. This includes bindings 
of object references used in invocations or to access public instance variables. 
Weaker statements gives the binding mechanisms flexibility to substitute differ
ent objects. Type constraints and name matching (direct naming only) restricts 
the degree of flexibility to those objects which include a member with a compat
ible member in their interface. Polymorphism is intimately connected to the type 
system and to the naming scheme. 

(Cardelli and Wegner, 1985) define two general kinds of polymorphism: univer
sal polymorphism which works on an infinite number of types; and ad-hoc poly
morphism which supports flexible bindings to a limited, specified set of types. 
Universal polymorphism includes coercions, explicit mappings between types 
supported by a compiler, and overloading, the ability to provide different defini
tions of an operation using the same name. Ad-hoc polymorphism is more subtle 
and is best defined using set relations. The concept of a set is similar to the con
cept of type in that an item shares a type with other items that are instances of that 
type. I f sets intersect, an element of polymorphism is introduced, i.e. entities can 
have more than one type through set inclusion and be freely substituted over bind
ings of any of those types. This is called inclusion polymorphism.. Blair, in (Blair 
et al., 1989), distinguishes explicit inclusion polymorphism where the sharing is 
explicitly described from implicit inclusion polymorphism where the sharing is a 
direct result from inclusive relationships between types such as inheritance. One 
other type of ad-hoc polymorphism is called parametric polymorphism where be
haviour is defined once but can be interpreted for a number of types, the type be
ing parameterised in the definition. Figure 7 shows a classification hierarchy for 
polymorphism. 

Polymorphism 

Universal Ad-hoc 

Coercions Overloading Inclusion Parametric 

Implicit Explicit 

Member 

Figure 7 Types of Polymorphism 



Chapter 2 - Fundamentals of Object Technology 38 
23rd January 1995 

Implicit inclusive polymorphism exploits the mechanisms used to compose and 
extend interface types, like subtyping and delegation, by allowing the restriction 
to be defined as the minimum extension of an interface . I f this interface includes 
a compatible member, any interfaces that derive this interface by subtyping or 
delegation also include a compatible member. Such a mechanism must resolve 
any conflict between multiple implementations of compatible methods. For ex
ample, C++ virtual methods give precedence to redefinitions of a method in an 
extension of the type. 

Object interfaces may be viewed as sets of typed and named members. Inclusive 
polymorphism is based on the inclusive properties of sets. However the inclusive 
relationship used for subtyping and delegation is stronger than is needed. Subtyp
ing only allows conformance i f there is an intersection across the entire set but all 
that is required for safety is an intersection across the members actually used. The 
minimal inclusive relationship is expressed at the level of individual members. 
We can call this member polymorphism. This is one form of explicit inclusion 
polymorphism. 

Member polymorphism can be supported when bindings are also specified at the 
member level, as with hierarchical composition. Individual invocations and 
method definitions are treated as typed exit and entry points. The type system 
checks exit point types are compatible with entry point types when bindings are 
resolved. Name conflicts are avoided by indirect naming. Classes and object in
stances are effectively untyped composite structures of typed entry and exit 
points. These structures may be extended to create a composite which is the union 
of the entry and exit points of its components, sharing interfaces and implemen
tations of its components. This scheme offers as much flexibility or polymor
phism as untyped object oriented languages and as much safety and efficiency as 
statically typed languages, but makes binding an explicit programming task. Not 
only do object instances need to be identified and substituted by the programmer 
but also methods must be selected or substituted from among compatible imple
mentations, including any shared methods across other relationships. 

binding 

naming polymorphism 

direct indirect 

Figures Types of binding 

Object Creation 

Instantiation from Classes 



Chapter 2 - Fundamentals of Object Technology 39 
23rd January 1995 

Classes normally embody the ability to create new objects, thus behaving as tem
plates for their instances. In C+-f-, classes are not objects but are used by the com
piler to generate constructor functions that create new instances. Constructors 
normally alsojinitialise the instance variables. The programmer may provide his 
own implementations of constructors to initialise the instance variables in differ
ent ways. In Smalltalk and CLOS, the constructors exist at runtime as methods of 
the object representing the meta-class. Meta-class objects can be simulated in 
C-H- environments by generating an extra class with methods which call the com
piler generated constructors. 

In a distributed environment, not only do we need the constructor capability to be 
supported uniformly in different processes but we also need some way to identify 
the node and the process into which the instance will be created and some way to 
notify the initialisation code in that process. This may also involve process crea
tion. 

Cloning from Prototypes 

A new object can be created by making a copy of another object. This is a natural 
way to extend a prototypical object. Prototyping is a valid alternative to classifi
cation and generalisation / specialisation for software reuse and incremental de
velopment. 

Instantiation from Named Composites 

Hierarchical composition can be used to define new composite classes from in
stances of component classes by exporting entry and exit points and renaming 
them as members of the composite class. Like any class, these composites can 
themselves be instantiated and bound as components. 

Configuration languages make the exporting of entry and exit points trivial. 
There are three simple steps to defining a composite interface using the configu
ration language: 

1) declare an exit point in the composite interface, e.g. 'outport export_l (int)' 

2) embed an object of class 'classA' in the composite, e.g. 'inst classA objA' 

3) export its port to the exit point in the enclosing composite, e.g. 'bind ob-
jA.outportl -> export_r. 

With inheritance, the sharing relationships are defined for classes and methods 
are shared automatically. With hierarchical composition, sharing is specified at 
the method level. The entry and exit points need to be explicitiy selected from the 
union of both classes and bound to new exported names in the interface of the-
composite class, i.e step 1 and 3. 

We should clearly distinguish the process of exporting the internal interfaces of 
nested objects to the composite interface from the internal binding of nested ob
jects to each other. Exp;orting of ports may be called class binding since it uses 
a binding model to define a new class, the composite class, with an interface de
fined by the exported ports. Binding of entry ports to exit ports can be called ob
ject binding since it similar to the binding of object instances to references to form 
an aggregate object. 



Chapter 2 - Fundamentals of Object Technology 40 
23rd January 1995 

We can compare class binding to inheritance as a mechanism to specify sharing 
relationships between classes. However there is no runtime overhead in finding 
method implementations because the exact binding is always explicit at some 
higher level in the hierarchy. Hierarchical composition is more primitive, with no 
sophisticated encapsulation protocols or conflict resolution policies across shar
ing relationships. This gives flexibility and simpler semantics at the cost of a 
weaker abstraction of class relationships. 

The primitive nature of the hierarchical composition mechanism makes it an ideal 
canchdate for meta-object representations for composition. It convenientiy unifies 
mechanisms for class sharing and object assembly. In theory multiple mecha
nisms could be mixed. For example, a hybrid system may use multiple notions of 
class compositeclass supporting class binding to define a composite class and in
ternal object binding of nested components to define an aggregate object; compo-
nentclass, supporting both class binding to export its interface to the enclosing 
compositeclass and object binding to resolve its own bindings; and subclass sup
porting binding as for componentclass but also supporting inheritance relation
ship to another subclass to compose interfaces at the class level. 

Exemplars (Blair et al . , 1991) are a hybrid system that mixes object delegation 
and class inheritance. 

Object Destruction 

Storage Management 

Some systems provide automatic storage management. The built-in ability to pe
riodically check to discover which objects are no longer referred to from any
where in the system, and reclaim their storage, is known as garbage collection. 
Schemes vary in efficiency and the degree to which they interrupt the application. 
Techniques include reference counting , periodic stop-mark-sweep or generation 
scavenging (Ungar, 1984). 

Other systems leave it to the programmer to explicitiy deallocate objects when 
they are not needed. C++ provides destructors which are called automatically 
when an object goes out of scope or is explicitly deallocated by the delete func
tion. It is up to the programmer to call delete on all dynamically allocated objects. 
Programmer errors cause memory leaks or attempts to access deallocated objects. 

Configuration languages not only make memory management explicit but make 
object allocation and deallocation a responsibility of the configuration language 
not the programming language. Hybrid solutions may mix hierarchical compo
nents with local dynamic objects. 

Distribution makes garbage collection more difficult. For detailed discussion of 
the issues refer to (D.Tsichritzis, 1989). 

Finalization 

Finalization occurs when an object is destroyed and is normally concerned with 
releasing any resources and recursively deleting any embedded objects that are 
not automatically scoped to that object. It may be carried out by explicit memory 
management code or by providing the garbage collector with a call-back routine 
to use on destruction. 



Chapter 2 - Fundamentals of Object Technology 41 
23rd January 1995 

Summary of Mechanisms Framework 

This section has presented a framework of specific mechanisms. Many of these 
mechanisms represent distinct styles of object system. In order to provide a more 
unified view of object technology, the next perspective presents a framework of 
goals that pervade all systems regardless of mechanism. 

2.1.3 A Framework of Technical Goals 

This section defines the key underlying goals behind object technology, to estab
lish a basis for rationalising what we really mean by object technology. This is 
based on the work of (Blair et al.,1991). 

Abstraction Goals 

The task of understanding can be simplified by partitioning the design and by 
suppressing unnecessary or confusing detail. 

In an object oriented system, abstraction is concerned with both representation 
and stratification. For representation, object orientation focuses on data abstrac
tion. A set of operations collectively define the behaviour of the data entity. A 
user is not necessarily aware of internal representation or implementation. Con
trol over access to an entity facilitates maintenance and testing. For stratification, 
object orientation normally focuses on object aggregation , the whole-part hier
archy, and generalisation/ specialisation, the kind-of hierarchy. (Also a is-like-a 
hierarchy often results from prototyping). Stratification is primarily concerned 
with constructing hierarchies of classes or objects which appropriately structure 
data and function to break up a complex problem and to package components for 
extensibility and reuse. 

Other types of programming system use different forms of abstraction: for exam
ple logic languages use an abstraction for problem solving logic and functional 
languages use abstractions for mathematical functions. It is the particular ap
proach to abstraction that characterises object oriented systems. 

(Blair et al., 1991) differentiates between the use of abstraction to aid understand
ing of complex issues from the use of abstraction to solve complex problems. 

To aid understanding, generalisation has been applied extensively, for example 
to biological phenomena. Detailed classification hierarchies have been worked 
out by a process of observation over a long period of time, for example the animal 
kingdom is understood by using terms like vertebrate, invertebrate, carnivore, 
herbivore to abstract over various attributes and concepts of a given animal. 

To solve complex problems, abstraction has also proven itself invaluable to break 
problems down into subproblems, for example the design of a car can be broken 
down into the design of a fuel system, the design of an ignition, the design of sus
pension and so on. 

In computing, abstraction allows us to solve a problem at a series of levels. Ab
stract requirements are typically mapped to a high level model of the solution. 
These abstractions are then mapped to abstractions provided by tools and lan
guages. These in turn abstract over the technological detail of the underlying 
computing system. 



Chapter 2 - Fundamentals of Object Technology 42 
23rd January 1995 

The notion of abstraction levels sounds simple in theory. Yet there is conflict be
tween the need to provide good general purpose problem solving abstractions and 
the need to map them to machine code that runs efficientiy on a computer system. 
Traditional languages arid tools have been tailored to particular machine architec
tures, in particular procedural languages for von Neuman architectures. Languag
es with higher level prbblem solving capabilities such as logic and functional 
languages suffer from efficiency and from their inappropriateness for certain 
types of application. 

In contrast, the abstractions provided by object oriented languages, i.e. data ab
straction and stratification, support of a wide range of problem solving areas and 
there have been efficient implementations. Stratification and data abstraction al
lows us to structure high level models around real-world and application con
cepts. The direct representation of real-world concepts has significant benefits. A 
close conceptual and structural correspondence with the problem domain leads to 
coherence and involatility in mapping requirements to the model, minimising re
dundancy, facilitating iterative refinement rather than structural transformation, 
and permitting changes without destroying the conceptual clarity of the software. 
Simple modelling of real world entities has been done in the database field and in 
systems analysis for many years, but previous programming languages have not 
been expressive enough to carry the concepts across into implementation. The 
structure clash that traditionally occurs between analysis results and implementa
tion is known as impedance. 

Flexible sharing goals 

An important aspect of the efficiency of expression is the ability to share con
cepts, behaviours and structures. Data abstraction helps us to express the notion 
of behaviour i.e. entities can be defined in terms of their external interface. Strat
ification helps us to express the notion of hierarchical structure i.e. entities can be 
characterised by relationships with other entities. Flexible sharing takes these no
tions further to allow many entities to have the same interface or the same rela
tionships. 

There are two typical approaches to sharing: classification and taxonomies. Enti
ties may be classified according to their common behaviour and thus share this 
conrmion behaviour. For example, a list may be classified as an entity supporting 
add and remove operations. These operations are shared by all instances of the 
list. Taxonomies are a refinement of classification that allows one class to form 
inclusion relationships with another classification. For example an array classifi
cation may be included in the list classification and share the add and remove op
erations. Yet an array may also have additional behaviour such as addAt and 
removeAt operations. 

As has already been discussed, it is possible to have more selective forms of shar
ing which are not based on classification such as delegation and hierarchical com
position. It is also useful to separate the sharing of interface specification, 
subtyping, from the sharing of specification and implementation, subclassing. 
Despite their diversity, all these techniques are based on some notion of set and 
set relationship and all realise the same sharing goal. This goal is important to 
characterise an approach as object oriented. 

Evolution goals 

Object technology supports evolution as a fundamental aspect of the computa
tional model. There are two general types of evolution : 

1. Maintainability and requirements evolution 



Chapter 2 - Fundamentals of Object Technology 43 
23rd January 1995 

I f the structure of the software matches the structure of the problem domain, 
changes in the requirements can be fairly directiy mapped onto simple additions 
to the software, without significant structural changes! Data abstraction isolates 
volatility to individual problem domain components which exist behind standard 
interfaces. The ideal is when the relation between ch^ges in requirements and 
resulting modifications in the software is continuous : small changes necessitat
ing small modifications. In a conventional program, a small change in require
ment, such as a simple representation change in postcode or currency, can ripple 
through a software system and cause potentially unbounded changes. Taxono
mies must support evolution and allows new classifications to be added to reflect 
new requirements. Polymorphism allows these new classes to be substituted 
without affecting bindings between classes. 

2. Solution by evolution 

It is often the case that requirements simply aren't known in advance, possibly 
due to the complexity of raw functionality and implicit non-functional requue-
ments demanded, or due to the impedance mismatch causing misunderstandings 
between technologists and users, or simply because the introduction of the system 
is bound to change requirements anyway. There is a growing trend in applying 
object technology not just to support an existing task but to re-engineer user proc
esses altogether, in particular in designing user interfaces and information dis
semination systems for group working, or sharing objects over networks. The 
only sensible strategy is to prototype, introduce it to users, and to iterate in a de
sign lead manner. Key to this strategy is the ability to extend systems incremen
tally and not to commit to premature decisions. 

The object oriented philosophy is to provide a single approach which encompass
es both aspects of evolution, using techniques like data abstraction, set relations 
and polymorphism to give stability and flexibility in the software architecture. 

Correctness goals 

Traditionally object oriented systems provided little support for developing cor
rect applications. This allowed much of their flexibility. However for general pur
pose programming systems intended for more demanding applications, 
correctness is an important design goal. 

(Blair et al., 1991) defines correctness in object oriented systems as being the 
term used to describe determinant behaviour i.e. whether there is guaranteed to 
be a valid interpretation for a given request. A determinant system will never fail 
due to an inability to respond to an operation. Systems which do not support type 
checking can result in a runtime error when a message is sent to an object that 
does not support the requested operation. They are non-determinant. Even with 
type checking it is difficult to make assertions about what the interpretation might 
be as the interpretation may change over time due to polymorphism. Thus deter-
minance is concerned with abstract levels of specification and is intimately tied 
to the type system, polymorphism and any algebraic or formal techniques. 

2.1.4 A Framework of Abstract Principles 

This section takes the abstract goals and tries to generalise some principles from 
the mechanisms to support these goals. This is also based on Blair's framework 
(Blair etal., 1991). 



Chapter 2 - Fundamentals of Object Technology 44 
23rd January 1995 

Encapsulation 

Encapsulation is used as a general term for techniques which provide data ab
straction. This includes both modularity and information hiding. The designers 
attention can be focused on manageable portions of the program i f data and 
processing are bound together into a single modular entity called an object. Fur
thermore clients should be restricted to accessing the object only through well de
fined, external, operational interfaces. Objects that hide the information structure 
behind explicit behavioural interfaces, have weaker dependencies with other ob
jects. An object may provide many different interfaces: to descendants, to client 
objects and to itself. 

I f enforced, encapsulation can be basis for security by building security into all 
servers. Security is not a difficult problem, it is just that it needs to be done eve
rywhere. 

Classification or Inclusive Sets 

Some form of set abstraction is useful to reason about the behaviour of an object 
based on its inclusion in a group of related objects. This grouping may be a union 
of sets intersecting on a shared behaviour or an inclusive extension of subsets 
sharing all behaviour. Al l entities in the problem domain can be thought of as be
longing to sets that abstract out the common properties and behaviours of the 
members. This implies there is some mechanism for sharing behaviour. It is pos
sible for a single entity to belong to more than one set through intersection or sub
sets. In addition sharing across the group may include either specifications only 
or sharing of both specifications and implementations. 

Polymorphism 

In the broadest sense, polymorphism is the search for greater compositional flex
ibility in languages. It may be used as a general term for techniques that support 
component evolution, in particular techniques that limit the impact of a change in 
one component on other related components. It thus draws on techniques for 
specifying assumptions that components make about other related components. 

More specific practical definitions may be provided such as the ability of func
tions to operate on more than one type. However this may prove limiting. 

Dynamic Interpretation Techniques 

Given the flexible and evolutionary nature of behaviour sharing, it is necessary to 
provide techniques to resolve the precise interpretation of an item of behaviour. 
There are a variety of techniques to do this. The interpretation may even be bro
ken into multiple steps: steps that check that a valid interpretation exists; and 
steps that search for the actual interpretation. Techniques vary in the number of 
steps, the rigour of the checks and the time when the steps execute for example 
compile time, link time, load time, runtime or re-configuration time. The later the 
interpretation, the greater the flexibility. The earlier the interpretation, the more 
efficient and determinant the system. A compile time check and runtime search 
gives the best of both worlds but introduces static type dependencies. 



Chapter 2 - Fundamentals of Object Technology 
23rd January 1995 

45 

2.2 Summary and Conclusions 

This section has presented a series of distinct views of different aspects of object 
technology: the fundamental components; the specific mechanisms; the abstract 
principles; and the underlying goals. Figure 9 shows how a mapping between 
these views can be used to characterise and position different approaches to pro
gramming system design. 

Goals Principles 

Abstraction 

Sharing 

Evolution 

Correctness 

Components & 
Techniques 

Encapsulation 
Classification/Sets 
Polymorphism 
Interpretation 

State, Id, Relations 

Methods,Requests 

Classes 

Prototype Objects 

Dynamic binding 

Inheritence 

Delegation 

Heir. Composition 

Figure 9 Mapping between Frameworks 

By defining profiles of items from this framework, we can discuss the value or 
design implications of any specific item. In particular, a given project may have 
a certain goal profile that drives decisions in other aspects of the framework. Dif
ferent profiles can characterise different styles of object oriented system. 

Object technology is not a Mecca that every community is merging towards, rath
er it is a common vision of a Holy Grail that is inspiring a divergence to satisfy a 
wide range of mixed personal goals. These goals take subtiy different forms in 
the different communities adopting the technology: distributed systems, operat
ing systems, A l , formal methods, software engineering methods, object oriented 
databases. The appropriateness of the object paradigm for many styles of system 
stems from the extreme generality of its constructs and principles and its appro
priateness to overcoming the complexities of modern software construction, that 
characterise what is frequently called the software crisis. Object technology is 
sometimes seen as the panacea to these problems. 



Chapter 2 - Fundamentals of Object Technology 46 
23rd January 1995 

Unfortunately object techniques are not yet well enough understood. Their sim
plicity and unification into simple mechanisms like inheritance gives them much 
of their power. However these simple mechanisms are easily undone, especially 
when dealing with distribution and concurrency. For this reasonfthis section has 
taken a fundamental look at object technology and included related approaches 
like hierarchical composition that would not be included in mainstream object 
technology research. 

The growth of object oriented programming is closely related to the rapidly in
creasing connectivity of computer networks. This introduces rapid technological 
change. The increased sharing and collaboration, coupled with more intuitive 
user interfaces, allows software to play a more central role in business processes 
across an organisation. Often software is changing processes. This in turn in
creases the exploratory nature of application development, and the demand for 
software that can withstand changing requirements. As more and more systems 
become connected, the need for standards and principles of integration and exper
imentation grows. 

The view of object technology presented in this section is essentially one of a sin
gle system. A more sophisticated architectural framework of tools and infrastruc
ture support is needed to prevent an overloading of programming concerns to 
meet the combined goals of distributed systems. The next 4 sections will refine 
the perspective presented here by considering the impact of distribution on our 
framework. Object technology is really part of the larger picture that includes dis
tributed systems. 



Chapter 3 - Technical Goals in the Distributed Entaprise 47 
23rd January 1995 

Chapter 3 Technical Goals in a Dis
tributed Enterprise 

This chapter describes a framework of technical goals that can be used to position 
and evaluate the support offered by different infrastructures. 

3.1 Introduction 

The age of the stand-alone computer system is dying, along with the monolithic 
applications that run on it. The fumre of computing is distributed. Corporations 
are recognising that information is a valuable asset, an asset that must be globally 
accessible across organisations. Distiibuted computing technology provides the 
mformation highway on which a corporation is built and evolves. 

Enterprise-wide information technology solutions are enabled by developments 
in two parallel areas : 

distiibuted object infrastrucmres are breaking down ti-aditional application 
boundaries by taking business systems beyond client/server applications 
into the realm of interchangeable components that can be integrated across 
an enterprise. 

• object oriented modelling is transforming business models from technolo
gy dependent static abstractions to dynamic well-factored simulations that 
in combination present a virtual model of the entire business tiiat can be 
shared across the enterprise. 

Object technology is driving these developments due to it's support for both com-
ponentisation, the ability to view software as assemblies of independent, plugga
ble components and virtualisation, the ability to provide tangible modelling 
formalisms tiiat abstract away from technology concems. 

Componentisation is supported by providing: 

• cleaner encapsulation of business logic and data, 

• greater flexibility to incrementally evolve the model through polymorphic 
bindings between components, 

more uniform integration protocols based on object messaging, 

more tangible visual tools and assembly processes arising from die natural
ness of object models. 

Virtualisation is supported by : 

greater abstraction through classification or set abstractions, 

more declarative control of components through rich interface specifica
tions, 

• correct semantic interpretation through rich object type checking tech
niques. 



Chapter 3 - Technical Goals in the Ettstributed Entaprise 
23rd January 1995 

48 

• greater insulation from technology complexities and other contextual de
pendencies through selective transparency wrappers around objects. 

The next four chapters derive a framework that relates the high level goal of com-
ponentisation to the principles of encapsulation, polymorphism, protocol unifica
tion, and assembly process visualisation; and the high level goal of virtualisation 
to principles of classification, declarative properties, interpretation and insula
tion. Each chapter expands on different parts of this framework. 

This chapter expands on the two high level goals by breaking them down into 
more specific goals that include the object technology goals discussed in chapter 
2 : 

Componentisation covers the following technical goals: 

component abstraction, to suppress detail and focus on manageable por
tions of a design. 

sharing and reuse, to reuse component behaviours, implementations or pat
terns and structures. 

evolution, to evolve or maintain a system incrementally with localised ef
fects from changes. 

platform commoditisation, to integrate or interchange infrastructure com
ponents freely. 

application interworkability, to integrate application components freely so 
tiiat tiiey can talk to each other across a network. 

application re-engineering, to integrate and migrate legacy system compo
nents. 

Virtualisation covers the following goals: 

correctness, to maintain valid, efficient and determinant interpretations of 
high level abstractions. 

dependability, to support properties such as performance, reliabihty, avail
ability etc. in programming abstractions. 

federation, to allow technological diversity by supporting mappings of ab
stractions across different technology domains. 

group working, to support the notion of a team of users working together 
across multiple machines. 

enterprise modelling, to integrate and share information across an enter
prise and efficientiy co-ordinate the scheduling of tasks. 

infrastructure abstraction, to hide the complexities of a diverse, heterogene
ous distributed infrastructure. 

These technical goals are summarised in Figure 10. 



Chapter 3 - Technical Goals in the Distributed Enterprise 
23rd January 1995 

49 

abstract 
technical 
goals 

virtuality goals componentisation goals 

correctness 

dependabilities 

federation 

groups working 

s/w abstraction 

sharing & reuse 

evolution 

infrastructure 
commoditisatio 

enterprise 
modelling 

infrastructure 
abstraction 

applicat 
interwo 

application 
reengineering 

Figure 10 Key technical goals in a distributed enterprise 

This framework of goals are the goals that prevail in a distributed enterprise. Fail
ure to take into account the ful l range of goals limits die applicability of an infra
structure to all the needs of an enterprise. This is true across domains. A software 
integration platform to support computer integrated manufacturing (CIM) shares 
many of the technical goals with a software integration platform to support finan
cial applications. Different domains wil l emphasise different goals to different 
extents. 

This rest of this introduction describes what we mean by a distributed system and 
a distributed enterprise. Section 3.2 provides a more detailed description of each 
goal and discusses their implications on technology development. It does not an
alyse specific business goals in detail. It is envisaged that specific business goals 
can easily be mapped to these technical goals. 

The framework is a synthesis of technology concems from a number of related 
fields that refine the view of object technology: enterprise modelling, group 
working, distributed systems, open systems, object methods, databases. These ar
eas themselves represent a synthesis of disciplines and other technologies that 
aren't covered by this review: A l , HCI, GUI design, ethnology. The emphasis 
here is the technology developers viewpoint and the architectural implications of 
different goals. 



Chapter 3 - Technical Goals in the Distributed Enterprise 50 
23rd January 1995 

3.1.1 What is a distributed system ? 

At the hardware level, there is a spectiiim of types of distributed system, charac
terised by their interconnecting network: vector computers, dataflow / reduction 
machines, multiprocessors, multicomputers, minicomputer networks. 

For our application domain, we are only interested in multiprocessors and mini
computer networks. There is a conceptual similarity anyway between systems 
based on processes, shared memory and messaging concepts. A more useful def
inition of a distributed system is based on the software architecture. 

Distributing a system is a way to organise an application so that parts of the ap
plication can be transparentiy run in separate memory address spaces across a net
work. Conventional client-server applications can be thought of as having three 
basic functions : presentation, application logic and data management, that can be 
separated to different processes. Other applications have less rigid application 
partitionings in a peer-to-peer style. Processes communicate using a common 
communication protocol using such structures as sessions and remote procedure 
calls (RPCs). Types are used to classify data structures to make it easier to iden
tify common operations and characteristics. 

Because we are looking to support pluggable software components, we are inter
ested in object based distributed systems. A low level definition of distributed ob
ject computing is found in the intersection of the definition of the architectural 
concepts that constitute distiibuted systems and object oriented systems. There 
are several overlapping concepts which map the two together. 

• Communication Protocol vs Interface—An object's interface defines the 
protocol required to speak to it. Interfaces can be expressed at both low-
level and application level. 

• Process vs Object—The view of an object as a process is attractive for 
specification. Objects convenientiy tie together data and processing. An ac
tive object with its own thread is equivalent to a miming process. Object-
orientation adds data and function encapsulation and provides a unified 
communication model. This unification overcomes one of the main criti
cisms of distiibuted systems which is tiiat the programmer has to know 
many programming features to get two entities talking. 

• Session vs Message—Messages are high-level users of sessions, RPCs or 
sockets. Using object messaging to control sessions, provides the developer 
with a more transparent view of the network. 

Function vs Method—An object-oriented method is hke a function. In the 
object-oriented world, the method is associated with the data it manipulates 
to create objects. 

Type vs Class— Syntactic and semantic consistency of interfaces is guar
anteed in distributed systems using abstract data types and static type 
checking. Types describe interfaces. Interfaces can be shared by subtyping 
or conformance. Types do not define implementations. Several different 
implementations may have the same type. In contrast, a class is defined by 
the interface and the implementation. Classification results in advanced 
software construction techniques. Implementations as well as interfaces 
can be shared by subclassing or inheritance. 



Chapter 3 - Technical Goals in the Distributed Enterprise 51 
23rd January 1995 

• Clients & servers vs Roles—Most current distributed systems are based 
on client/server models. Concepts such as server and client become roles 
that communicating entities can play. Object models may be any network, 
one of which is client/server. 

The impact of distribution on the object orientation goes beyond specific archi
tectural concepts. A more general definition of distributed object systems it ob
tained by characterising the reason for distributing. 

3.1.2 Why distribute? 

There are usually good reasons for using a distributed system. These reasons 
bring a new emphasis to the goal based framework of object technology. Distri
bution impacts on the technical goals that are important. This makes direct com
parison between a stand alone object implementation and a distributed one a 
rather fruitless activity. Instead we need to understand these new goals and new 
types of application. There are six main reasons for distributing an application : 

1) Speedup 

Parallelism can improve performance. 

2) Fault tolerance 

Availability can increase with the number of machines and their geographical in
dependence. 

3) GUI front-ends 

The lifetime and cost-effectiveness of mainframe applications can be extended by 
front-ending them with new presentation layers that take advantage of user 
friendly workstations or desktops. 

4) Specialisation 

Heterogeneity is often treasured. One problem with large systems is that different 
users have quite different needs and want a degree of autonomy. At the hardware 
level, different tasks often require different technologies: vector processors for 
CPU bound tasks, disk arrays for database server tasks etc. At the system level, 
different users want to use different naming schemes and employ different system 
management policies. At the data management level, federated databases can be 
used to avoid performance bottlenecks on overloaded servers. At the functional 
level, different users may want shared objects and applications to have quite dif
ferent behaviour. At the application level, different users want to have different 
versions of shared software and migrate at different times. 

5) Platform Flexibility/Commercial ViabiUty 

Many users still see hardware as their biggest investment. Network solutions are 
scaleable, reconfigurable and can evolve incrementally with changing user needs. 
This flexibility makes them commercially viable. The extra complexity is often 
overlooked. Users can control the cost of change more easily, taking advantage 
of changing prices, changing suppliers, changing requirements, changing tech
niques and changing business policies such as out-sourcing. Cheap workstations 
are cost effective and open systems are seen to protect the users investment in net
works of workstations. 

6) Inherent distribution 



Chapter 3 - Technical Goals in the Distributed Enterprise 52 
23rd January 1995 

Many businesses are trying to remove vertical interdepartmental barriers as well 
as seeking to get closer to customers. This has lead to growing demand for more 
connectivity in their supporting software systems. Such enterprise wide solutions 
are inherently distributed jvith people and manufactiuing plants. 

i 

What is enterprise integration? 

There are a number of fundamental changes going on in businesses that has lead 
to a reevaluation of IT strategy and goals and resiilted in a synthesis of the above 
reasons that can collectively be called enterprise integration. 

Business process re-engineering is changing the focus away from departmental 
structiu:es to business processes. As companies become flatter in response to 
competitive and economic pressures, the old departmental barriers are breaking 
down. The business is moving towards a collaborative work model with more in
volvement across operating imits in decision making. 

There are three new pressures on IT departments: 

• the business pressure to support more business processes and therefore 
manage their interdependencies and changing practices. This is driven with 
a "more-for-less-sooner" mentality. 

• the technical pressure to integrate products from more vendors, to make 
more inter-departmental systems work together, and to address more com
plex applications. 

• the commercial pressure to reduce IT investment to an ongoing operational 
cost that can be justified at the operational level through the incremental 
purchase of networked workstation technology and off-the-shelf software 
rather than the single strategic investment in bespoke mainframe solutions. 

There are real tensions in mixing the "off the shelf approach with existing legacy 
systems and existing "project-centric" cultures and methodologies. The former 
demands openness the latter encourages monolithic applications. 

These pressures are leading to a re-evaluation of IT goals and processes 

Many key business players are beginning to view IT technology less of a compet
itive weapon than a cost. This is leading to a more open attitude to IT develop
ment and driving the commoditisation of not just applications but whole business 
models. What is technically driving this trend for cost-sharing is the ability of ob
ject models to capmre general business models that have applicability across en
terprises and between companies. POSC for example is a consortium of 
petrochemical companies that are trying to pool costs in defining common mod
els for their industry. Likewise a consortia of Canadian Gas companies are amor
tising the cost of developing their next generation customer information systems. 
Approaches to business modelling are leading to a clearer separation between the 
business model and the applications and often a clear recognition that the real val
ue is in the model, not the applications. 

Instead of demanding monolithic applications that crunch data, business profes
sionals expect business systems to provide a foundation on which the business 
can grow, a foundation that is defined by changing business opportunities, not 
simply a high-tech file cabinet defined by preconceived systems designs. 



Chapter 3 - Technical Goals in the Distributed Enterprise 53 
23rd January 1995 

The rest of this section evaluates and defines different technical goals that may 
be combined into profiles to characterise different strategies for defining a dis
tributed enterprise. In chapter 7, we wil l characterise the profile emphasised by 
OpenBase and use this to evaluate it's limitations as a general purpose enterprise 
wide infi-astructure. 

3.2 Goals of Distributed System Development 

3.2.1 Object-Oriented Goals in the Distributed Enterprise 

Object-oriented goals of abstraction, classification, flexible sharing and evolution 
have been described in chapter 2. They have a particular interpretation in a dis
tributed enterprise. 

Previously, information models were static blueprints of business data and func
tion. Using methods like information engineering, their construction was a long 
drawn out process. During the two-to-three years of modelling effort, the busi
ness had usually changed enough to obsolete the work. Nothing in the approach 
or underlying technology made systems change any easier to manage. For exam
ple there may be a corporate data entity for a customer, yet on a separate hierar
chical decomposition model, one would find the business functions that use 
customer data. Nowhere would a complete.picture of customer be maintained. Al l 
references to the customer would be hard wired to the customer entity. Informa
tion Engineering models can't be constructed piece-wise because representations 
are split across separate modelling paradigms - corporate data models and hierar
chical function models. 

Object models treat the business concepts like customers as active players mak
ing it closer to a simulation than a blueprint. Abstraction and classification help 
organise and structure the business model more appropriately. Flexible sharing 
and evolution support are critical to manage the model through its life-cycle. Be
cause objects can be built incrementally and different representations of objects 
be freely substituted, the simulation can evolve with the changing demands of the 
business. 

3.2.2 Dependability and Performance Goals 

The first two reasons for distribution listed in the last section emphasise two spe
cific dependabiUty goals, reliability and performance (speedup). Dependability 
can be defined more generally as a property of a system that allows reliance to be 
justifiably placed on a service. Distributed systems offer significant new oppor-
unities for dependable service in terms of the seven properties of: 

performance (throughput & responsiveness), 

reliability (correctness in presence of failures), 

availability (readiness), 

integrity (data consistency), 

safety (avoidance of catastrophic events), 

security (no unauthorised disclosures), 

robustness (continuity of service), 



Chapter 3 - Technical Goals in the Distributed Enterprise 54 
23rd January 1995 

There is a requirement to specify and manage these properties to meet non-fimc-
tional requirements such as coping with fluctuating demands, predictable dead
lines, ordering guarantees etc.. Many systems have introduced the concept of 

I quality of service as the basis for specification and management of dependability, 
i This lends itself well to explicit binding models that substitute different imple-
' mentations of a service to make trade-offs since quality of service can form the 

basis of bind time negotiations. Other systems introduce new language constructs 
such as transactions or ISIS process groups that provide all-or-nothing dependa
bility properties. The infrastructure requires new internal mechanisms to support 
these new constructs. 

Whatever syntactic form the programming interface takes, there is a heavy em
phasis on ensuring that the virtual machine supports the right sort of program
ming abstractions. Dependability considerations impact at many levels: new 
concepts are required such as different types of failiu-es, new programming mod
els are required such as transactions, new engineering mechanisms are required 
to support these models such as rollback recovery services and new operating sys
tems such as multithreaded, pre-emptive kernels. 

Ultimately the virtual machine on which a programmer develops an apphcation 
is a combination of the features of the programming language, ttie operating sys
tem and the hardware architecture. 

The distinction between programming language runtime support and operating 
system is frequently blurred. Indeed many language features have been migrated 
successfully into operating systems where global resource management is easier. 
Likewise low level system calls have been replaced by higher level language ab
stractions. What is more important than the form of the interface, is the degree to 
which the programmer is masked from the complexities of distributed computing 
by virtual machine abstractions. 

Dependability considerations inevitably lead to issues of uniformity right across 
an enterprise. It is unlikely that the same level of dependability is needed every
where. Different functionality must be provided for different applications. Thus 
this raises the question of how to integrate heterogeneous islands of different lev
els of dependability, such as real-time or fault-tolerance, into a larger system 
ocean. The problem boils down to how to mix several different virtual systems 
and is related to the federation goal described next. 

3.2,3 Federation Goals 

For greater specialisation/ decentralisation, we require more flexible technology. 
Whilst the trend is to integrate business functions, it is also desirable to protect 
the diversity, to preserve autonomy and adapt technology to best f i t local needs. 
It is important to match the technical style within each part of an enterprise. 

This also applies between organisations. Doing business together should not re
quire a merger. 

The business should drive the system not the other way round. Enterprise bound
aries must be recognised right down to the management engine. This requires the 
infrastructure to support some notion of domains and gateways between domains. 
Gateways convert from one set of protocols or management policies to another. 
Domains may also have hierarchy to provide different levels of unification. These 
architectural constructs are at least as important as infrastructure functionality but 
are often overlooked by developers and authors. 



Chapter 3 - Technical Goals in the Distributed Enteiprise 55 
23rd January 1995 

3.2.4 Groupworking Goals 

Personal access to computers is no longer unusual. Personal computers have pen
etrated large segments of traditional work practices. However most of these sys
tems are too "personal". They have been considered in isolation of other users, or 
groups. Yet most work practices rely on the co-operative activities of groups of 
people. The result of the design philosophy of isolation is that group of users must 
communicate around tiie computer not via the computer. 

The growth of networking technology has enabled the development of a range of 
different co-operative applications or groupware. These applications directly sup
port the work of groups by encouraging and supporting co-operation between us
ers. The computer becomes the window for conmiunication between the group. 
Analysis shifts from supporting individuals working on fragmented tasks to sup
porting teams as complex structures in their own right v^ith distributed knowl
edge, skills and roles. 

Groupware makes the user aware that he is part of a group rather than hiding and 
protecting him from other users. Group awareness has implicit significance in 
work and technology support. A compromise must be achieved between transpar
ency between users for simplicity and awareness to facilitate co-ordination of a 
team. 

The majority of groupware systems build on existing and proven computer tech
nologies. There are two main techniques: systems that support information ex
change such as electronic mail and workflow and systems that support 
information sharing such as electronic white-board and decision support systems. 
These approaches may also be combined to create a more comprehensive co-op
erative system, for example electronic meeting systems which combine informa
tion sharing with informal group interaction. 

Advances in groupware are dependent on the facilities offered by distributed 
technologies. There are a number of technology development principles and de
sign philosophies that must be re-examined in the context of implementing a 
group working application: 

• Protection/Security - Conventional architecmres deliberately control the 
actions of users in order to prevent damage or interference with other users. 
This inhibits collaboration. Servers and resources must be shared by groups 
and access synchronised, rather than servers being instantiated for each 
user and access serialised. 

Synchronisation - same-time sharing requires interactions to be synchro
nised. Interaction using multimedia ^so bring severe timeliness consUraints 
such as the lip-synch problem for video and voice channels. 

Group Interaction Protocols - Group interaction is not point to point but in
volves many to many interactions between multiple users. 

• Decision Making Support - Users don't just share information but they also 
make decisions, hence A l capabilities may be important. Group decision 
making increasingly requires the computer to understand how to compare 
and combine results, not just combine the visual representation on a shared 
whiteboard. 



Chapter 3 - Technical Goals in the Distributed Enterprise 56 
23rd January 1995 

Information Retrieval - The focus is also shifting to specifying information 
requirements and information flows, locating and routing information ef
fectively and presenting it to users and tasks rather than manipulating data 
shared in a common database. 

3.2.5 Enterprise Modelling Goals 

On a broader scale, the flattening of organisational structures and increasing im
portance of product quality, flexibility, time to market and improved customer 
service has lead to the need to share more information across an enterprise and 
coherently schedule tasks to avoid bottlenecks, meet deadlines and allocate re
sources most effectively. This co-ordination of information and tasks between 
distributed agents in an enterprise is an important aspect of enterprise modelling. 
An enterprise is any collaboration between business units whether within or be
tween companies or along a value adding supplier/production chain. 

Most technology developers work in this area has so far been concepmal, prima
rily delivering simple workflow analysis tools, methodologies and descriptive 
standards rather than prescriptive standards or architectural support. 

Perhaps the most important aspect of enterprise modelling is information integra
tion and dissemination across an enterprise. The increasing global availability of 
corporate information is changing the types of applications being supported. In
formation is being recognised as an important asset not only in supporting oper
ational tasks but also for tactical and strategic decision making. There are a 
number of changing technology requirements on the information management in
frastructure: 

• whilst operational tasks typically use internally generated information, tac
tical and strategic managers also require more external information. Infor
mation is becoming more of a commodity that can be bought-in. 

• managers are already overloaded with information hence considerable val
ue can be leveraged by improving selection and presentation facilities. In
formation must be relevant, timely and high quality. Multimedia network 
technology has huge potential for business as well as taking the enterprise 
to the home. 

there is considerable opportunities for intelligent agents to aid information 
dissemination and decision making, hence A I techniques are being com
bined with information retrieval technology (Bock, 1994). 

• to increase the context sensitivity of the information, there is greater focus 
on the semantics of the information requirement - including levels of ab
straction and aggregation. 

• there is a greater need for ad-hoc access to information or for rapid appli
cation development to support rapidly changing decision making require
ments. This is not supported by infrastructures based on static control 
structures like procedure calls. Interactive querying, visual development 
tools and RAD tools are proving useful here. 



Chapter 3 - Technical Goals in the Distributed Enterprise 57 
23rd January 1995 

3.2.6 Infrastructure Abstraction 

L i a distributed enterprise, information technology provides a foundation on 
which the business is built. The term that best describes this foundation is infra
structure. Infrastructure connects together all parts of the business, provides any 
mechanisms for sharing and co-ordination to enable the business to operate as a 
coherent whole despite cross-vendor, cross-administration and cross-culture di
vides. Sharing includes objects (e.g. customers), products (e.g. off the shelf soft
ware) , or management policies (e.g. naming conventions). 

In the past infrastructure to an IT professional meant only technology. It was de
fined in how terms: hierarchical or relational databases; SNA or TCP/IP net
works. The implementation of the infrastructure could not be separated from the 
applications because the interface between them was articulated in terms of how 
computers worked not what services were provided. The technology foundation 
therefore shaped and constrained the system, which in turn defined and con
strained the business by providing support structures that reflect the technology 
not the business itself. Object technology allows a broader definition of infra
structure. The goal is to raise the level of abstraction, redefining technology in
frastructure in terms of what technology services are provided not how the 
services are implemented. The result is a service -oriented architecture that ab
stracts away from the implementation technology and specific procedures. 

The level of abstraction can even be raised to support design and analysis tasks 
by integrating CASE into the infrastrucmre. This breaks down into specification 
goals, llie development of appropriate notations that are expressive, relevant and 
construct models that are efficient to implement, and toolset goals, to provide an 
integrated framework or tool architecture into which support for the specification 
goals can be developed and co-ordinated. 

3.2.7 Infrastructure Conunoditisation 

Previously IT costs were centralised as a strategic once-off corporate investment. 
There is a growing trend for users to make price/performance trade-offs at the 
level of operational units. This is enabled by flexible platform architectures that 
allow different infrastructure products to be freely substimted and integrated. 
This flexibility also allows users to try out innovative immature technologies 
without the degree of risk usually associated with technology choices. Contingen
cy planning is easy i f there are alternative products that can be substituted. This 
allows users to take a shorter term view and evolve the system at their own pace. 

Platform commoditisation support is primarily concerned with standards for port
ability , configurabihty and manageability: 

Portability is important i f software products are to be integrated independ
ently of hardware strategies. 

• Configurabihty is important i f changes are to be made with minimum effort 
and minimum disruption to service. 

Manageability is important since you need to know what's out there and 
who's using it to manage changes effectively and measure success. 

Platform flexibility allows low-risk, rapid, and incremental adoption of new tech
nology and new products. No-one wants to be first, no one can risk being last. 



Chapter 3 - Technical Goals in the Distributed Enterprise 58 
23rd January 1995 

Portability goals currently demand high volume product solutions, since custom 
solutions can not justify the investment to take maximum advantage of each tar
get platform. The introduction of standards such as POSIX, unifying the interface 
to different UNIX systems, SNMP, CMIP, OSF/DME and ISO Managed Objects 
(Kramer, 1993) making it easier to manage networks, and CORBA (OMG, 1991) 
making it easier for applications to tklk to each other irrespective of location or 
operating system, yet these standards have not stabilised sufficiently. 

Unfortunately standards tend to be targeted towards specific IT cultures. For ex
ample, the ODP community behind CORBA have been proving their ideas pri
marily in the UNIX/TCPIP world. ICL have found that there is still some work to 
do to implement ODP architectures in other environments such as OSI, VME etc. 
On DOS machines the size of the nmtime library becomes important. 

The development of portability standards, portable operating systems, and gener
ation tools like CORBA DDL make it easier to develop cross platform products. 

The development of polymorphic object oriented languages, configuration lan
guages and configuration tools, makes it easier to re-configure with minimiun ef
fort and minimum disruption to service. 

The development of system and network management products, hardware de
scription languages, and resource managers makes it easier to manage networks 
to accommodate changes. 

3.2.8 Interworkability Goals 

Interworkability goals are related to the infrastructure commoditisation and group 
working goals. A l l are concerned with collaboration. Group working is about col
laboration between users. Infrastructure commoditisation is about collaboration 
between infrastructure components. Interworkability is about collaboration be
tween applications. Inherently distributed enterprise solutions demand increased 
co-operation, openness and connectivity across technology and application do
main boundaries. Their growth signals the death of the monolithic application in 
a proprietary environment. Standard based distributed objects provide the only 
sensible way forward for improving on the ridiculously low level of communica
tion and co-operation that currently occurs between applications. 

The traditional approach to communication between business appUcations is via 
file formats. However every application defining a format requires every other 
application and every new release of the same application to include code to sup
port it. Each new program needs additional code and old programs can't commu
nicate with new ones. 

Corporations frequently communicate by sharing a common corporate data base. 
However once again there are problems maintaining the data model across the en
terprise and schema or application changes can be costly to manage. 

Another approach to communication between applications is using network com
munication protocols. Like file formats, communication protocols deal with 
standardisation at the wrong level of abstraction for large scale integration. They 
provide very low level services, and do little to standardise application interfaces, 
let alone extensible ones. 



Chapter 3 - Technical Goals in the Distributed Enterprise 59 
23rd January 1995 

The inability of concrete file formats or network protocols or corporate databases 
to cope with evolution has lead standardisation efforts to consider abstract types 
of object instead. It is important to understand the implications of object teclmol-
ogy on the extent to which applications can interwork. With existing technology, 
even something as sknple as a name and address can only be communicated be
tween applications as a lump of text. Once transferred it is treated as a lump of 
text It can't be asked to print itself on an address label, without cutting and past
ing. On the other hand, with object technology, a shared object modelling an ad
dress could be asked to print itself on a label in a remote application simply by 
calling the print label method. Objects allow richer semantic information to be 
communicated. Objects can communicate behaviour as well as state. New objects 
can provide interfaces which conform to old standard types, providing a restricted 
view of the new data. Thus change does not always lead to obsoletion. 

I f shared objects provide the behaviour in this manner, then you might ask where 
is the application. Shared objects free applications to focus on ways of managing 
them, finding them, putting them together into composites. The application is the 
framework in which to co-ordinate the sharing. Future object solutions to inter-
workability goals will make applications appear more like operating systems. The 
boundaries are going to change, as well as what people call them and how they 
understand them. The Penpoint operating system from GO already provides such 
an application-less enviromnent of objects. 

It is important to understand the cultural constraints that inhibit the interworka-
bility of applications. Issues of trust, different concepts and terminology, skills 
mismatches and commercial considerations all inhibit interworkability. There are 
three main application cultures that must be brought together: the data culture, 
managing the corporate information base and its integrity; the control culture, 
providing processing-centric applications using dependable messaging and on
line transaction processing (OLTP); and the PC culture, empowering users with 
document-centric tools. Each has done a good job of defining its own native low 
level standards such as SQL, RPC & OLTP and OLE . However the disparate 
needs of these cultures mean that they are unlikely to grow into each other easily. 
This has already lead to legacy-style problems with new systems. What is needed 
is a generic abstract view of these access interfaces as services that are independ
ent of the technology. RPC and objects won't displace the cultures, abstraction 
might and so interworkability goals share much in common with the goals of in
frastructure abstraction and component abstraction. 

3.2.9 Application Re-engineering 

Application re-engineering is the process of migrating an application onto a new 
architecture. This should not be confused with process re-engineering which is 
about business processes. 

Commoditisation and interworkability can be met in future systems by imposing 
some open architecture on new developments. The goal of meeting portability 
and interworkability in existing systems requires a different approach. Legacy 
systems must be migrated into the new architecture and the new architecture must 
support on-going evolutionary change. 

The monolithic mainframe is a myth. Software engineers have been building 
modular software for over twenty years. The problem is gaining access to the 
modularity. This can be overcome with object wrappers that add future flexibility 
to legacy systems. This sort of flexibility is important to respond to changing sup
plier prices, technologies, customer requirements and management policies - to 
allow control over when and how much of a legacy system will be upgraded at 
any time. 



Chapter 3 - Technical Goals in the Distributed Enterprise 60 
23rd January 1995 

There are a number of different styles of wrapper architecture: data download, re
mote terminal, query server, procedural API etc. These styles of architecture are 
again as important to developers as infrastructure functionality, yet aren't given 
the same emphasise in literature. 

The re-engineering requirement is not a one-off transitional need.Today's new 
systems wi l l be tomorrow's legacy systems. Fumre flexibility should be architect
ed into today's systems. Re-engineering goals will persist and re-engineering 
goals for the last generation of systems wil l remain subtly distinct from the inter
workability and portability goals of the next generation. 

3.2.10 Large-Scale Reuse Goals 

Reusability is widely believed to be a key in improving software development 
productivity and quality. The reuse of software components amplifies the soft
ware developers capabilities. It allows him or her to write fewer total symbols in 
developing a system, and to spend less time in the process of organising those 
symbols. 

However whilst reusability is a strategy of great promise, it is one whose promise 
has largely been unfulfilled. Reuse is often too narrowly defined. For example, 
conventional object technology offers powerful mechanisms for code reuse, yet 
source code induces a high degree of specificity on the reusable components and 
code oriented reuse has so far been limited to small and simple components, such 
as linked lists, GUI objects, and well-understood numerical functions. Small 
components leave a lot of work in building the architectural superstructure that 
binds the components into the whole system. Such narrow views of code reuse 
have not yet met the huge potential of broader reuse strategies. 

Distributed systems bring technical diversity and administrative divisions that 
make reuse more challenging. Not only have we to reuse across platforms but also 
we must reuse across cultures and across application domains where the level of 
trust in reused code may be small. To overcome these barriers we need a more 
expansive view of reuse that goes beyond small scale reuse of code. The expan
sive view is not limited to technology issues. There are other important view
points to reuse, in particular cultural and component management, that are not 
given the attention they deserve. 

Reuse is the re-application of a variety of kinds of knowledge of one system to 
another. This is not just code, but includes artefacts of domain knowledge, devel
opment experience, software architectures, technology constraints, as well as 
analysis results, designs, documentation and so forth. Representations must allow 
a broader range of information to be specified than source code can accomplish. 
This should include requirements, design structures, dependability properties, re
source usage characteristics, behavioural abstractions and roles played by com
ponents. 

Objects provide a common conceptual framework that carries across from analy
sis results to code. One can easily conceive of an integrated development envi
ronment that formalises the representations of design and code and allows large-
scale reuse of designs as well as code. However few tool environments are truly 
that integrated. 

It is unfortunate that despite suggesting that designers should reuse the results of 
other applications in the same domain, most popular object methods (Coad-Your-
don, 1991, Rumbaugh et al., 1992) emphasise construction activities rather than 
adapting existing designs. Some environments that have taken large-scale reuse 
seriously such as ITHACA are discussed later. 



Chapter 3 - Technical Goals in the Distributed Enterprise 
23rd January 1995 

61 

Not all reuse is based on component composition. Chapter 4 also discusses gen
erative tools that reapply transformations instead of reapplying components. 

3.3 Summary of Chapter 3 

This chapter has presented a description of a series of technical goals that in com
bination characterise what has come to be called enterprise integration. Enterprise 
integration is enabled by the growth of workstations and networking technolo
gies. It is driven by the requirement for more collaboration and for more flexibil
ity, to integrate more functions across a business and to evolve the information 
technology foundation of a business to be responsive to rapidly changing de
mands 

Enterprise integration is relevant to OpenBase which seeks to integrate applica
tions across a manufacturing enterprise, including: process control, materials re
quirement planning (MRP), shop-scheduling, CADCAM, simulation. 

These goals may be combined into different profiles. The profile of goals that are 
emphasised in any infrastructure limits its general suitability. In particular failure 
to take into account recent trends in the types of applications being developed, 
such as groupware, could very quickly make an infrastructure obsolete. This 
framework of goals wi l l be used in part HI to evaluate OpenBase. 

Enterprise integration is a broad field. This report provides a technological view 
of enterprise integration only, since it is evaluating an architecture. The more con
ventional view is user-centric. Enterprise integration demands a synthesis of 
many disciplines: business modelling, HCI, A I , organisation design, ethnogra
phy. The framework does not touch on the ful l range of user benefits. Conse
quently the scope of this framework is limited to architectural definition not 
application development. 

This chapter discussed the significant new requirements that these goals place on 
infrastructure architecture. "I^e impact of the goals on the technology is signifi
cant and demands a reconsideration of what we really mean by a distributed sys
tem. It is not enough to merely look at the physical architecture. 

We can characterise a distributed object system according to the relevance of the 
different goals. These include: 

component abstraction 

flexible sharing 

correctness 

software evolution 

dependability 

federation 

group working 

enterprise modelling 

infrastructure abstraction 



Chapter 3 - Technical Goals in the Distributed Enterprise 62 
23rd January 1995 

• infrastructure commoditisation 

application interworking i 

• application re-engineering j 

• large scale reuse 

The next four chapters wil l survey the techniques that can be used to realise these 
goals. 

It should be remembered that distributed usually means multi-vendor, multi
process and multi-user. It is not surprising that the resulting global issues impact 
right across applications, languages and operating systems: 

• the multi-vendor nature results in more co-ordination issues that are best 
dealt with in the application 

• the multi-process nature results in more system and resoiu^ce management 
issues surfacing in languages. 

• the multi-user nature results in more access and sharing issues that are bet
ter dealt with in the operating system. 

In discussing the architectural implications of the above goals, notions of appli
cation, languages and operating system have already been merged and inter
changed. The conventional separation into operating system issues, language 
issues and application development issues is not very useful. This observation has 
affected the structure of the survey. The term programming system is used to de
note both the programming language and the operating system, so as to avoid the 
need to distinguish language feamres from operating system feamres. 

Rather than surveying languages and operating systems, chapters 4,5 and 6 sur
vey the processes and techniques that can be employed in programming system 
design. 



Chapter 4 - Open Distributed System Development and Tools 63 
23rd January 1995 

Chapter 4 Open Distributed System Development and Tools 

How do we develop open distributed systems? 

Large distributed object systems are hard to specify, develop, maintain and some
times to use. These systems are complex to develop using conventional methods 
because they are made up of a large number of interrelated parts and the relation
ships between the parts are implicit. Efforts to control this complexity range from 
life-cycle models and methodologies to high level communication technologies 
and development environments. ITiis chapter elaborates on the discussion of ob
ject oriented development in chapter 2 to reflect some of the approaches taken for 
open distributed object oriented systems. 

Distribution has a considerable impact on the process of software development, 
in particular there are two significant effects: 

• the need to allocate objects to the physical architecture makes it useful to 
distinguish different types of objects that vary in their granularity and in the 
method by which they are identified and related to other objects. This is be
cause the granularity of objects and degree of coupling is critical to alloca
tion decisions; 

• the need to co-ordinate components across a network makes the choice of 
communication technology particularly important. This is made more dif
ficult by the disjoint nature of different communication technologies. 

Openness is interpreted in the broadest sense as meaning that the software archi
tecture consists of substitutable and portable commodity components from differ
ent vendors that are reused in different contexts, across the network and in 
different areas of application. This also has two significant effects: 

• component reuse demands a standards-based component-oriented life cycle 
so that off the shelf components can be selected and fitted together despite 
being developed in isolation of each other. Application standardisation and 
component reuse are not part of the traditional top-down life-cycle models. 

large scale reuse across a heterogeneous network demands the development 
of new integrated tools to select, manage, migrate and customise compo
nents. This results in new tool-based reuse systems. 

This chapter elaborates on the discussion of object oriented development to re
flect some of the approaches taken for distributed systems. This chapter is organ
ised in the following sections that address these four concerns: 

Product development method, this section discusses two key aspects of develop
ment methods: 

Life-cycles, discusses the appropriateness of different life cycle models, in 
particular the impact of rapid innovation in tools, standardisation and reuse 
on the product life cycle. 



Chapter 4 - Open Distributed System Development and Tools 64 
23rd January 1995 

• Types of Object, this defines different notions of an object according to the 
method used to identify and represent the object. This provides a conceptu-

1 al distinction between different styles of distributed object system. The im
maturity of the field is highlighted by the inadequacies of any one approach 
taken in isolation. 

Choice of technology, this section discusses two key choices that need to be 
made: 

• Communication Technology, provides an approach to select the most ap
propriate communications technology. 

• Reuse Tools, describes approaches to develop tools that support large-scale 
reuse across platforms. 

4.1 Product Development Method 

A development method consists of a number of components as described in (Ma-
cLean, 1992): 

concepts, for example the notion of an aggregate classes. 

overall strategy, such as a top-down waterfall life cycle. 

notation, for example OMT's diagrammatic notation for objects (Rum
baugh etal., 1991). 

procedures, for example use X-notation to create model-Y. 

heuristics/metrics, i.e. rules to guide decision making such as when multi
ple inheritance is allowed. 

tactics, i.e. concrete suggestions such as underlining nouns to find objects. 

tools, supporting the method, such as diagrammatic tools. 

The conceptual and strategic components of a method are the most critical. Good 
notation, tactics, tools and heuristics wil l not compensate for a method founded 
on inappropriate concepts or an inappropriate overall strategy. Notations, tactics 
and tools can come after the basic concepts and strategy 

The importance of the concepts and strategy is also true of open distributed sys
tem development. Yet it seems that it is tools that are coming first. Most literature 
talks at the level of specific functionality and communication tools. As a result, 
the conceptual and strategic implications of distribution and reuse are not well un
derstood. 

The confusion over basic concepts and strategies is a symptom of an immature, 
innovative field. Distributed object technology brings a whole new set of con
cepts yet there is relatively littie experience of applying these concepts. The rel
ative immaturity of methods, standards and tools both for distribution and reuse, 
means we can not rely on the level of support and process maturity that we are 
used to in a stand alone environment. 



Chapter 4 - Open Distributed System Development and Tools 65 
23rd January 1995 

This section focuses on strategy and concepts. It first considers the impact of in
novation, standards, tools and reuse on the strategy or life cycle. It then defines 
several variations on the concept of an object that characterise different methods. 
A ful l discussion of methods is outside the scope of this survey. 

4.1.1 Life-cycles 

Life-cycle models define steps in the development of a software system such as 
requirements, design, implementation and maintenance. Life cycle models give 
structure to the software development process, for example by ensuring that re
quirement are defined before the system is built. Sometimes life-cycles are too re
strictive and force project managers to take short-cuts. This is a symptom of the 
need for more practical life-cycles that truly reflect the software development 
process. 

With distributed system we may be interested in different types of life cycle. The 
technology developers that productise infrastructure tools have a different hfe cy
cle from application developers that build system for end users. 

Innovation Life cycle 

Distributed systems are usually innovative in some respect: be it in the commu
nications technology, the software architecture or the way other systems are inte
grated. Distributed object technology represents a significant investment in new 
skills. Skills and experience must be built-up quickly. Users wishing to move to 
distributed systems are required to be innovative in their choice of tools and 
methods. Technology developers and vendors are required to be innovative to 
overcome the complex problems that must be addressed for distributed comput
ing. 

How we manage the innovation process is probably the most important aspect of 
distributed system development. Innovation in software technologies should be 
driven by apphcation users. Application-led solutions need quicker feedback 
from users into the innovative process than fraditional hardware technologies. 

The traditional linear flow from research to technical development to product en
gineering to production and subsequent feedback to research may well be appro
priate to base technologies like semiconductor technology. However this process 
is too slow for soft technologies like middleware that progress at a much faster 
rate. A better structure is to fund early applications. They can proceed in parallel 
with technical development as soon as ideas have been proven in research. Early 
applications provide rapid feedback throughout the whole process of technical 
development, product engineering and production:-



Chapter 4 - Open Distributed System Development and Tools 
23rd January 1995 

66 

early 
feedback 

Research 

Early 
Application 

back V concept proof 
& acceptance 

continuous 
feedback 

Technical 
Development 

I engineering 
skills 

Product 
Engineering 

I start-up 
costs 

Production 

slow 
feedback 

Fig;ure 11 Innovative product life cycle 

Such an innovation process needs: new supplier relationships (early application 
demonstrator), new processes (rapid development and prototyping), new technol
ogies (GUIs to give ideas more visibility), new architectural support (gateways to 
isolate and control the integration of early experiments into an infrastructure), and 
new organisations (collaborative funding structures that involve end users in the 
innovation process, industry structures that achieve early consensus on de-facto 
standards). 

ANSA has been managed as a collaborative research body that promotes these 
goals. It has proven its research in a demonstrable infrastructure ANSAware. This 
may be viewed as a prototyping tool to provide an early application, although at 
version 4.1, it is more mature than the recent surge of Object Managemnet Group 
CORBA compliant products. Gradually ANSA concepts and components can be 
re-implemented as the product matures. 

There are now several products that began their life in this way including ICL's 
DAIS which began in the OASIS project of Scottish Hydro, a utility company. 



Chapter 4 - Open Distributed System Development and Tools 67 
23rd January 1995 

Consortiums and Standardisation Impact on Life-cycles 

To facilitate reuse there must be some agreement as to how the parts that are to 
be reused wil l f i t together. To facilitate distribution across a heterogeneous, sys
tem there needs to be agreement as to how interactions are to be encoded and 
transmitted across the network. There are several standardisation efforts that are 
attempting to establish common models for reuse and interoperability. 

The basic problem is that it is difficult to get agreement between vendors. After 
all they are competitors in one of the fiercest industries. The historical definition 
of a standard has a coincidental relevance to the reality of modem high-tech 
standards. 

definiUon standard n. Battle insignia or tribal totem 

The distributed computing conmiunity has recognised the need to form a body to 
standardise high-level apphcation interworking. This body is called the Object 
Management Group (OMG). 

The OMG is a group of organisations and individuals formed in 1989. Today the 
OMG's members number 330. This includes most i f not all the major industry 
players such as IBM, DEC, HP, Microsoft, Borland as well as end-users and in
dividuals. Al l these people are trying to work together to develop specifications 
to maximise the portability, reusability and interoperability of commercial soft
ware. Obviously it is not an easy job to get consensus between these organisa
tions. 

In October 1991, the OMG announced its adoption of the CORBA 1.1 specifica
tion. This was a major achievement as it headed off a schism within the object 
community between static and dynamic binding, that could have proved as divi
sive as the UNIX wars between UNIX International and OSF. CORBA endorses 
both approaches to binding. 

The OMG are different from other national and international standards bodies in 
that they do not create the standards. The ISO and CCITT (now called ITU-T) 
are working on the de jure standard in open disdibuted processing, the ISO/ITU 
ODP reference model. De jure standards (i.e. official standards approved by rec
ognised bodies) are slow to emerge since they tend to consoUdate experiences. 
The OMG have positioned themselves as the fast-track to open distributed com
puting. De facto standards (i.e. where the market adopts a product) are quicker to 
emerge but slow to achieve consensus. One goal of the OMG is to catch distrib
uted object technology before it becomes entrenched in market politics and cus
tomer preferences. Industry consortia like the OMG provide a balance between 
the de facto and the de jure. They give more control to the customer since end-
users can demand standards from their vendors. 

Different industrial consortia operate in slighUy different ways. The OMG mere
ly organise committees and task-forces to choose specifications. They adopt their 
members ideas and publish these as standards. This has the effect that products 
exist when standards are announced. In contrast, until recentiy the OSF solicited 
technology contributions and centrally stitched it together into vendor distribu
tions. The OSF are now changing the style of funding to external development 
teams (probably due to the growing complexity of products like DCE). UNIX In
ternational, the body behind the distributed architecture called Atlas, was another 
consortia but it no longer exists. 



Chapter 4 - Open Distributed System Development and Tools 68 
23rd January 1995 

The Other type of standards body are user organisations like X/Open that act as 
standard-blessing organisation. X/Open have already adopted OSF/DCE. X/ 
Open may provide CORBA compliancy tests by the end of 94. 

There are a wide range of domain specific standards usually initiated by user con
sortia. In general standardisation efforts in enterprise integration remain descrip
tive and conceptual rather than prescriptive and concrete. 

Standards from other user consortium in specific industries include: 

CIMOSA (Macintosh, 1994), is an ESPRIT fiinded standardisation effort 
for manufacturing. 

POSC, the Petrotechnical Open Software Corporation (POSC, 1992) is a 
consortium of oil and gas companies that are developing a common busi
ness model for exploration and production. The purpose of this effort is to 
amortise the costs of defining a single model for the exploration and pro
duction business. This represents a new pattern of collaboration, between 
competitors that no longer see IT as a competitive weapon, who would fo
cus on core businesses. 

Business integration is key to the petrochemical industry because geolo
gists, drillers and production engineers must work together. They need a 
common model to share information. POSC not only defines infrastructure 
but also database entity models. An object oriented approach was found 
necessary primarily to protect data integrity. The STEP EXPRESS model
ling language was adopted to incorporate object concepts into the data 
model and APIs. POSC invited model submissions and selected the best to 
define a root model and full function API. 

Sample POSC implementations have been built by UniSQL and HP. POSC 
are co-operatively developing the model for their industry so that third par
ty vendors can build plug-and-play applications to the industry-standard 
business model. 

• NCMS, the US National Centre for Manufacturing Sciences is defining 
standard-based architecture for integrating manufacturing applications. 

The Suppliers Working Group SWG provide a conceptual architecture and refer
ence taxonomy covering the three perspectives of capture (enterprise model 
standards), representation (APIs, applications and tool standards) and enactment 
(execution services and platform standards). The SWG Reference Taxonomy can 
be used to position technology and standards (Macintosh, 1994). 

The growing importance of application-level standards has a significant impact 
on software development. The availability of plug-and-play components that 
conform to standards puts more emphasis on component selection and less on tra
ditional analysis and design activities. A balance must be achieved between bot
tom up standards-driven conformance and top-down specification-driven design. 



Chapter 4 - Open Distributed System Development and Tools 69 
23rd January 1995 

Application development life-cycles 

Conventional methods for application development most frequently adopt a var
iant of the waterfall model. The waterfall model (Royce, 1970) is a top-down sin
gle-product life cycle model based on a sequence of steps: requirements analysis, 
design, design module decomposition, coding, integration, maintenance. It deliv
ers documentation at each step that is the input to the next step, thus providing a 
way to track progress and notice when it is off schedule. However constandy 
changing requirements or open ended solutions are not well supported since there 
is no feedback or incremental extension of the model under development. 

Distributed object technology demands radical surgery in project development 
life-cycles. In fact to gain the strategic advantages of speed and flexibility, the 
whole notion of a well-defined life cycle must go. 

There are three forces behind these changes: 

• object technology lends itself well to rapid prototyping and incremental ev
olution, 

• open systems demand a bottom up approach based on reusable commodity 
components, 

rapid technological and business change requires more complex innovative 
solutions. 

Consequently the focus is on proving and refining design concepts, integrating 
commodity products and experimentation. 

These forces impact in different ways: 

• the life cycle may be iterative, involving throw-away and evolutionary pro
totypes. Throw-away prototypes are rapid partial iterations of the develop
ment process designed to give user feedback that modifies the requirement 
specification. Evolutionary prototypes are partial implementations that 
meet known requirements to which additional functionality is slowly added 
by successive iterations in the process. 

• re-use is not top-down. Traditional top-down design decisions are being re
placed by bottom-up engineering trade-offs between existing components. 

• in an innovative environment, there are more unknowns such as capabili
ties, limitations, risks, costs and time-scales that must be explicitly ad
dressed. 

An infrastructure can provide new forms of support for these processes such as 
incremental compilers and debuggers for efficient iteration, trading services for 
commodifisation and general-purpose system description and planning tools to 
manage an innovative environment. This places significant new requirements on 
development tools. 



Chapter 4 - Open Distributed System Development and Tools 
23rd January 1995 

70 

Spiral Life-Cycles 

The spiral model (Boehm, 1988) seeks to break away fi-om the relatively restric
tive conventional waterfall models to allow a more flexible approach that takes 
into account the uncertainties surrounding development. The spiral model is a 
risk-driven evolutionary lifecycle where each cycle begins by identifying the ob
jectives of a particular cycle, the implementation options and the constraints on 
the implementation. The alternatives are evaluated against the constraints and ob
jectives and strategies for reducing risk are proposed. These strategies may in
clude different options: rapid throw away prototyping, incremental development, 
evolving prototypes, top-down subsystem, bottom up components. 

Object-Oriented Life-Cycles 

The object oriented approach provides a consistent view of the system as groups 
of communicating objects between analysis, design, coding and maintenance, 
which lets developers go back and forth in the Ufe cycle, applying a common no
tation at all levels. This supports an iterative, incremental, evolutionary life cycle 
that better reflects the way developers actually work. 

Analysis 

Design 

Evolution 

iModification 

Figure 12 Object oriented lifecycle 

Component-oriented life-cycles 

Complex systems may be built using off-the-shelf, standard source components 
as building blocks. This demands more investment in the development of reusa
ble component sets and in tools to streamline the development activity as much 
as possible. Components are not limited to code but include domain knowledge 
and development experience. Viewing applications as "families" allows for col
lections of component frameworks to be supplied and slightiy modified to pro
duce specific applications. This assumes sufficient domain knowledge has been 
gathered from specific applications to make it possible to abstract and package 
general knowledge. The key characteristic of this life cycle is the two distinct ac
tivities of component development and component configuration, as shown in 
Figure 13: 



Chapter 4 - Open Distributed System Development and Tools 
23rd January 1995 

71 

component development, is the activity of abstracting the domain knowl
edge and encapsulating this knowledge in frameworks of reusable compo
nents. I 

application configuration, is the activity of integrating and customising the 
general component fi-ameworks to construct'a system that meets a particu
lar application requirement. 

Domain 
Knowledge 

Application 
Requirements 

component 
development 

(development 
tools) 

Generic 
Component 
Frameworks 

refinement 
and evolution component 

use 

application configuration 
(configuration tools ) 

Specific 
Apphcation 
Frameworks 

Figure 13 The component-oriented lifecycle 

Component development and application configuration are not necessarily or
thogonal tasks. It is likely that they are concurrent to some degree, with feedback 
from the configuration task into the development task. A single person may even 
perform both roles, but should not combine the tasks. Component development is 
an experts role as it demands both domain knowledge and knowledge of reuse 
mechanisms. 

Hybrid life-cycles 

Another important consideration is the relationship between life-cycles and con
ceptual models. Narrow definitions of object technology have a distinct imple
mentation flavour and are consequently too prescriptive to be universally 
applicable i.e. they enforce a particular approach to the entire life cycle. This may 
be the undoing of object technology. For example, inheritance is essentially 
viewed by developers as a code sharing mechanism and as such is not directiy ap
plicable at more abstract stages of specification. What is applicable is the notion 
of classification taxonomies. (Blair et al., 1991) suggests that there are two com
mon misconceptions about life-cycles that must be revised for distributed objects: 

• that object oriented techniques and mechanisms are equally applicable at all 
stages of development. 



Chapter 4 - Open Distributed System Development and Tools 72 
23rd January 1995 

• that object orientation should have the same interpretation at all stages. 

These issues become clearer at a higher level of abstraction where object technolf 
ogy mechanisms such as inheritance and messaging are seen as vehicles t6 
achieve data abstraction and behaviour sharing. Object mechanisms are not a pan
acea to all problems. Object oriented techniques may be useful in certain phases 
of die life cycle and not in others or in certain applications and not others. Other 
techniques like functional decomposition may be more appropriate to large dis
tributed systems. A more pragmatic approach of mixing techniques may be more 
powerfiil. For distributed systems, object techniques must be mixed with distrib
uted system techniques. Rather than whole-heartedly committing to narrowly de
fined method, it may be more effective to formulate a hybrid approach and 
concentrate on providing traceability between various phases and components. 

In order to manage the complexity of a distributed system, it is usefiil to define 
different perspectives of the system. A broader view of object technology may be 
necessary to accommodate several distinct object models in different perspec
tives. This may be formally defined viewpoints as in ISO ODP(ANSA, 1993) or 
simply a separation of object models: logical from physical and structural from 
behavioural. 

Note that in the iterative style of development, the developer visits all perspec
tives at all levels of abstraction in no fixed, sequence. 

Conclusions to Life-cycles 

A single well defined life cycle model for distributed object technology is a long 
way off. Consequentiy a developer is left with an informal approach that will be 
difficult to manage on large or complex developments. 

The most important aspect is not rigid adherence to object oriented mechanisms 
but rather to concentrate on maintaining consistency and traceability between ap
propriate diverse models and processes that make up a hybrid solution. Tracea
bility is important because it provides lines of accountabiUty between different 
phases or models and can be important in determining the rationale for a particu
lar approach or for analysing the effects of change. Consistency is important for 
valid and verifiable interpretation of the specification. 

4.1.2 Types of Object 

This section defines different notions of an object according to the method used 
to identify and represent the object. This provides a conceptual distinction be
tween different styles of distributed object system. The main implication of these 
differences are on the granularity of objects, resulting in problems of allocation , 
performance and reuse. 

In a conventional system the choice of method is usually determined by the ex
pected major source of complexity: for functional complexity, flowcharts, deci
sions trees, structured design and its derivatives (DeMarco, 1978); for complex 
data, entity-relationships and its derivatives (Chen, 1976) or for complex time se
quencing as in real-time systems, statecharts such as (Harel, 1987). 

Object models mix these views by orienting them around a common conceptual 
framework of objects. However the relationships between these different views 
of the system are still pooriy understood.Furthermore methods currently fail to 
explicitiy address design-with-reuse, focusing more on design-for-reuse. 



Chapter 4 - Open Distributed System Development and Tools 
23rd January 1995 

73 

Distributed systems are often designed in a much less formal, ad-hoc manner, be
ing technology driven, for exiunple using a simple client-server enabler tool. The 
absence of any formality in the development process wil l severly Umit the appli
cability of the technology to solve complex problems. An enterprise integration 
architecture should be built to support the highest level of application complexity 
in the enterprise. 

Object-oriented methods (in-the-small), focusing on reuse, and enterprise inte
gration architectures (in-the-large), fosuing on integration mechanisms, are in
creasingly being applied to solve more and more complex problems and 
frequently must consider several complexities simultaneously. Technically com
plex applications frequently arise in areas like defence, space, telecommunica
tions, investment banking, process control. To address these appHcations, there is 
a need for a method that provides an integrated view of these different perspec
tives of design, including views that focus on fiinctionaUty, data, time sequenc
ing, reuse in-the-small and distributed technology. A taxonomy to characterise 
the different existing approaches and the required integrated approach is outiined 
in Figure 14. 

design-with 
-reuse 

ERDs 

statecharts 

structured 
design 

object 
modelling 

dynamic 
modelling-

functional 
modelling 

distributed 
technology 
driven 
approach 

integrated 
object 
method 

reusable 
object 
method 
(in-the 
-small) /

m( 

\dis t i - i l distributed 
object 

ethod (in-
the-large) 

integrated 
reusable, 
distributed 
method 

evolution towards required method 

Figure 14 Requirements for an integrated method 

A distributed object system will typically have a distinct flavour according to the 
method roots, the developer experience and the relative emphasise placed: on dif
ferent types of formalism; on enabling technologies; and on reuse. These flavours 
of object system will be elaborated in this section by discussing approaches that 
distinguish different branches of the above taxomomy. 



Chapter 4 - Open Distributed System Development and Tools 74 
23rd January 1995 

a) Object Architectures-in-the-Large 

The pure object-oriented enthiusiast may challenge the use of the term object to 
describe a wrapper for a whole application or a group of functions that make up 
a server process in a client server architecture. However the physical structore of 
an enterprise both in terms of users and computers, is inherentiy an architecture-
in-the-large and objects-in-the-large can be very useful to structure this architec
ture. 

Process Objects 

The view of large grained objects as processes is attractive for specification of dy
namic behaviour. Objects convenientiy tie together processing, state and func
tionality. Processes are powerful for modelling asynchronous parallelism, and 
operational requirements naturally arise as constraints on asynclu-onous parallel
ism, between the system and the environment or between system components. 
Process-oriented specification languages are based on this principle. (Zave, 
1986). 

Process-oriented specification languages provide a formalism to describe the 
process architecture, i.e. the allocation of functionality to processes. Less formal, 
simple, static process architectures are described using conventional client-server 
architectures. 

Conventional client-server systems use processes to provide a simple partitioning 
of presentation, application and data management functions There are number of 
different ways functionality can be split between the client and server that lead to 
different styles of system, as shown in Figure 15. Often different styles are re
quired for different parts of a single apphcation, for example a sales order 
processing application may use distributed database for disseminating pricing 
catalogues and remote presentation for warehouse stock enquiries. 



Chapter 4 - Open Distributed System Development and Tools 
23rd January 1995 

75 

distributed 
database 

remote 
data access 

distributed 
function 

remote 
presentation 

distributed 
presentation 

• 

presentation presentation presentation 

application 
logic 

application 
logic 

appUcation 
logic 

presentation 

data access application 
logic 

data access data access 

I 

application 
logic 

data access data access 

I 

presentation 

presentation 

application 
logic 

data access 

Figure 15 Gartner's five segmented models of client-server computing 

Where objects make synchronous calls we need to track nested calls. Complex 
nesting is not normally a problem for coarse-grained systems. Since they tend to 
either use asynchronous calls or have very simple process architectures as in ch-
ent-server systems. 

Application Objects 

A large-grained object architecture can also be driven by wrapping applications 
as objects, for example apphcations may be wrapped as CORBA objects. This is 
usually done to achieve application integration. The application objects may con
sist internally of local component objects. Such an architecture is very much driv
en by the inherent division of users or I/O devices and tasks. 

This view of CORBA objects is one vision of how distributed objects could be 
used for application integration in HP's Distributed Smalltalk. 

Coarse-grained integration is required to integrate current software. Applications 
are moving to finer-grained integration, but current systems, that are coarse
grained, must still be supported while the move takes place. Object-oriented Tool 
Integration Services, abbreviated OOTIS (Harrison et al., 1992), is an approach 
that supports both coarse-grained and fine-grained application integration. 



Chapter 4 - Open Distributed System Development and Tools 76 
23rd January 1995 

Distributed Programming System Objects 

Many distributed programming systems support different notions of object as 
part of the programming language. In surveying different distributed object ori
ented programming systems, (Chin and Chanson, 1991) define four types of ob
ject that are supported in the various programming systems: large-grained, 
medium grained, small grained and fine-grained. 

For example, Argus(Liskov, 1988) supports large grained objects called Guardi
ans that control remote access to small-grained objects that exist within Guardi
ans. 

b) Architectures in-the-small 

The above approaches often result in heterogeneous object models consisting of 
large grained distributed objects and fine-grained non-distributed objects. The 
degree of interaction and sharing is limited by this extra layer of encapsulation 
and modelling. A pure object oriented approach would result in a finer grained 
model with no clear mapping between fine grained objects and processes. This 
pure model is often compromised to achieve meaningfiil finer-grained architec
tures. 

There are six main ways to depart from such primitive coarse-grained models. Al l 
provide richer notations or mechanisms to model object structure at a finer gran
ularity than a process: 

• component-oriented composition that allows configurations of object com
ponents to be organised in a understandable way using hierarchical compo
sition and frameworks. 

structured object-oriented analysis and design methods that effectively pro
vide specification-driven fiinctional decompositions that are structured as 
objects. 

• object-oriented analysis and design methods that focus on identifying and 
structuring applications using classification hierarchies of reusable objects. 

• reactive programming, that builds an object-oriented system prototypically. 

• enterprise modelhng that mix different business modelling formalisms with 
object identification. 

• algorithmic approaches that automate object allocations. 

Each of these approaches are discussed in turn. 

Component-Oriented Objects 

Component-oriented software development (Nierstrasz, 1992) is an approach to 
software development that shifts the emphasis in the software life cycle from the 
development of individual applications to the engineering of reusable frame
works of software components. This implies there are framework builders and 
framework users that perform distinct tasks of component construction and com
ponent usage. Component-oriented objects are objects that have been developed 
as components of such reusable frameworks without a specific user project in 
mind. This includes objects developed for a visual composition tool or configu
ration programming system as defined in section 4.2.2 or in (Kramer, 1990). 



Chapter 4 - Open Distributed System Development and Tools 77 
23rd January 1995 

Component-oriented development does not replace analysis and design but en
courages the results of analysis to be sets of reusable components and design to 
be the! act of organising and specifying these components 

There;' are four fundamental tasks that need to be supported to make component 
oriented methods more productive than conventional bespoke development (see 
section 4.2.2 for a fuller description of the tools that support this): 

• finding components, for example using browsers, query services, selection 
tools, categories and catalogues. 

• understanding components, for example using specification languages, for
mal methods and structured descriptions of knowledge. 

• modifying components, for example using configuration attributes OSF/ 
DCE ACF(Shirley, 1992), specialisation, transformation techniques. 

• composing components, for example using visual composition, configura
tion languages, object-oriented frameworks. 

Structured Objects 

There is a dichotomy between those methods that focus on the whole, and break 
the whole down into parts, and those methods that focus on reusable parts and 
structure them into patterns that satisfy the whole. The former includes conven
tional structured methods like functional decomposition and to an extent the new
er object methods that have their roots in structured design like (HOOD, 1991) 
and (Schlaer and Mellor, 1988). The latter includes purer object methods like 
OMT(Rumbaugh et al., 1991) and (Coad and Yourdon, 1991). 

The use of a decomposition model to identify objects restricts the reusability of 
the resulting parts because they are defined with a particular facihty in mind. 
Coarse facilities are not very reusable between applications. This is particularly 
true i f the decomposition is based on functions. For example, consider a plumber 
fitting water pipes. He does not think "What (functional) steps do I take to make 
pipes to connect this outfiow to this infiow". Rather he thinks " I need a short 
pipe, a spanner, some sealant and some compression joints." It is these small parts 
that are reused in different jobs not the functions of cutting the pipe to length and 
sealing its ends. 

Much of the poor reusability resulting from decompositions can be alleviated by 
viewing a subsystem as an organisation of objects and specifying the subsystem 
in more abstract terms than functions, for example using roles, responsibilities 
and services as in (Wirfs-Brock and Wilkerson, 1989). An essential aspect of 
these concepts is the notion of purpose and context. However note that in these 
approaches the identification of objects is very informal and is not based on a 
strict process of decomposition as in functional decomposition. (Kramer, 1992) 
observes that the identification of reusable components is always ad-hoc and this 
is one of the limitations of process centric approaches like functional decomposi
tion. Note that despite using terms like subsystem, the dichotomy is not brocken, 
because the focus of these approaches is really still on identifying reusable parts. 
Roles and responsibilities can be useful to generalise away from a specific con
text and aid mapping subsystems to reusable objects. There is an added burden of 
identifying and allocating responsibilities and roles. In constrast, the more struc
tured object methods apply a more process-centric decomposition to derive ob
jects, focusing on the subsystems and this inhibits reuse. 



Chapter 4 - Open Distributed System Development and Tools 78 
23rd January 1995 

A decomposition approach has clear benefits in a distributed environment. De
composition results in a coarser partitioning that makes it easier to allocate across 
the network. Structured methods give precise guidance on the partitioning of the 
application to subsystems. This niakes the overall structure manageable at a 
coarse level and results in less coupling between subsystems. 

Purer object methods do not have a clear mapping to subsystems and there tend 
to be strong couplings between objects. A reusable object will typically play a 
role in many facilities. Support for partitioning designs is weak. For example 
Coad introduces components to separate user interface behaviour from problem 
behaviour firom data management behaviour. Yet this separation is not as coarse
grained as it sounds since individual objects are often responsible for displaying 
themselves, for collaborating with other objects to solve problems and for storing 
themselves. 

Mainstream object-oriented objects 

There are a number of object oriented methods that have abandoned the notion of 
functional decomposition all together. They focus on identifying reusable objects 
and provide rich notations to describe classification and messaging hierarchies. 
These methods include OMT (Rumbaugh et al., 1991), (Coad and Yourdon, 
1991), CRC (Wufs-Brock et al., 1990), (Booch, 1991). There are also a second 
generation of methods that mix the best from the above in a single method such 
as Fusion(Jeremaes and Coleman, 1993), Syntropy(Cook and Daniels, 1994). 

The general approach in these methods is to consider three types of model. Class
es of objects are identified and structured into a class model that is a static class 
hierarchy, using generalisation-specialisation and whole-part relationships. The 
dynamic behaviour of objects is captured in a dynamic model using notations like 
state transition diagrams (Harel, 1987), object life-cycle diagrams. The user tasks 
are identified and traced through the objects to define a processing model using 
notations like use cases(Jacobson, 1992), messaging diagrams (Coad and Your
don, 1991). The relative emphasis to place on the different models should depend 
on whether the complexity is in the information structure, the dynamic behaviour 
of objects or the collaborations between objects. However most methods empha
sise the class model and the relationships between the models are generally poor
ly explained. Overall these methods are strong in notation yet weak in process. 
Most are overly dependent on good requirement specification and design without 
detailing the method to be used. 

These methods still generally assume there is a specific user project. Despite fo
cusing on finding reusable objects, actually reusing these objects is still ad-hoc. 
They generally provide no rules or tactics for how reuse should be done and there 
are no formal constiaints that require or enforce reuse. In particular, there is noth
ing that constrains a programmer to use only previously defined interfaces. It is 
easy to extend interfaces through inheritance and define diverse protocols. 

More recentiy some efforts have been addressing the absence of reuse rules and 
interface constraints, including work on frameworks (Deutsch, 1989), behaviour
al contracts (Helm et al., 1990), design by contract (Meyer, 1992, ref [2]), meth
odology heuristics and laws, such as the Law of Demeter (Lieberherr et al., 1989) 
or Law Governed Systems (Minsky et Rozenshtein, 1987). 

The mainstream methods also say little about distributed process architectures. In 
fact they even give littie guidance on providing coarse partitionings of a large de
sign. Efforts to address partitioning shortcomings include CRC subsystems, Coad 
component and subject areas. 



Chapter 4 - Open Distributed System Development and Tools 79 
23rd January 1995 

Reactive objects 

There is a wide range of software systems that build on organisations visions but 
have few concrete requirements that can be precisely defined at the outset or im
plemented without incorporating rapidly changing high-technology solutions. 
Conventional systems analysis which views design and implementation as con
secutive steps, is not able to handle these systems. The requirements of users and 
abUities of technologies are so likely to change that design decisions must be 
made throughout the development. TTie solution is to admit that design and im
plementation are concurrent and iterative activities. Object technology offers a 
flexible and dynamic programming environment that allows models of proposed 
solutions to be built, with small commitment and cost, simply to try out ideas, 
capture the users opinions and articulate concrete design concepts. We call this 
reactive development. Smalltalk offers the most popular reactive programming 
system. 

There are inherent problems in supporting the same degree of responsiveness in 
a distributed programming environment, due to issues of ownership, trust and lo
cality of code that arise when we introduce multiple users and multiple processes. 
This is discussed in (Bennett, 1987; Tonks, 1994). The most obvious constraint 
is that the overhead of navigating distributed class hierarchies at runtime makes 
inheritance across processors impractical unless class definitions migrate or are 
replicated across the network. However replication introduces dependencies. 

Enterprise Objects 

Enterprise modelling formalisms drive a distributed system architecture from 
business concerns. This provides a promising arena for specifying peer-to-peer 
business object architectures that are finer grained than processes or applications. 
However enterprise modelling seems to mean different things to different com
munities and tends to suffer from the legacy of information modelUng techniques 
for relational databases. 

• The A l community are doing considerable work on knowledge representa
tion and knowledge sharing across an enterprise, for example DARPA 
work on specifying domain ontologies (shared vocabulary) as applied by 
(ATOS, 1994). This work may deliver rich modelling semantics and meth
odologies for distributed A l but it does not say much about general purpose 
software architecture used to implement an enterprise wide system. 

The database community are providing information modelling tools that 
can drive a federated distributed database design suitable for enterprise 
wide information services. Most of this work is more appropriate to remote 
data access systems. 

• The object-oriented community are dressing their methodologies up as en
terprise modelling methods. Object-oriented analysis can reduce the im
pedance mismatch of traditional analysis thus their objects seem appealing 
as tangible business objects, however most methods say littie about infra
structure. 

Al l approaches to business enterprise modelling depends on open-systems based 
solutions to dehver a distributed object computing platform on which the busi
ness model will run. 



Chapter 4 - Open Distributed System Development and Tools 80 
23rd January 1995 

Existing enterprise modelling practictionerss tend to adopt a rather ad-hoc prag
matic synthesis of conventional database design and object oriented methods. 
There are three distinct types of approach varying in the mechanism used to find 
objects: 

• build one or more apphcations and bubble up business objects from any 
fundamental business concepts that have general utiUty. The generalisation 
of these concepts into enterprise classes is usually not formalised in this ap
proach. 

• develop an entity-relationship data model and as a totally separate activity 
"objectify" it by passing it to a team of object experts, usually with an ap
plication development focus, who would figure out what metiiods were ap
propriate. This has an application focus in the identification of objects. 

• develop information engineering or entity-relationship data models and dis
cover objects by attaching business processes to entities. This is usually ac
companied by a clear concept of enterprise architecmre and more formahty 
in the discovery and design of business objects. 

One factor is the capabihty of the model to factor application logic from business 
logic so that it can accommodate change. This is an obvious advantage that enter
prise architectures have over conventional chent server architectures. In the 
former it is generally recognised that there is a clear separation of the business 
model from the applications. In the latter, the business logic is often intertwined 
with the presentation layer as in tools like Easel and PowerBuilder. 

In effect the business objects estabUsh a common set of behaviours that are shared 
across the enterprise. This is an extension of the use of entity-relationship data 
models to establish a standard for data sharing across an enterprise. In the distrib
uted A l conununity, ontologies are used in a similar way to establish a standard 
for knowledge sharing. The standardisation of these models across an industry 
sector allows even broader integration. Vendors can develop plug and play com
ponents. 

There are additional interoperability and legacy system problems. Businesses 
simply don't want to rewrite all their applications to use a single corporate data
base model or single ontology or single set of business objects. Wrappers allow 
you to put a new face on an existing apphcation hence giving more leverage in 
environments that are rich in legacy systems. Wrappers are supported by CORBA 
and DCE and intelligent agents technologies. 

CASE tool support is weak for enterprise modelling. CASE vendors and struc
tured method gurus are frustrated because they have no prior experience with ob
ject technology, distributed object computing or business object modelling. 
Advertising varies from misleading to downright lies. The buyer must often be 
his own integrator. 

The ad-hoc nature of the approach masks an implicit problem that is inadaquately 
addressed. It is inherentiy difficult to find enterprise wide objects because differ
ent parts of an enterprise do different things and demand different semantics for 
the same concepts. Furthermore it is often difficult to understand object behav
iour. As the process becomes more formal it must address these practical con
cerns. 



Chapter 4 - Open Distributed System Development and Tools 81 
23rd January 1995 

Conclusions - Types of object 

The critical issue is partitioning an application jat a coarse enough level to make 
it manageable in a distributed environment without compromising the reusabihty 
of its constituent objects. Existing analytic approaches to identify objects taken 
in isolation are inadequate in a distributed system. An integrated method based 
on a hybrid of approaches or richer unifying concepts, like roles, is required to 
solve this dichotomy and support reuse exphcitiy. 

4.2 Choice of technology 

Building a distributed system necessarily requires more technology choices than 
a stand-alone system. Networks of computers are inherentiy more complex and 
developers need supporting technologies to overcome these complexities. This 
requires new skills such as product evaluation and new development methods that 
are oriented around managing infrastructure product procurement and integra
tion. 

This section discusses two key choices that need to be made: 

• the most appropriate choice of communications technology. 

• the choice of tool technology to support large-scale reuse across platforms. 

Despite the importance of infrastructure technology, most user organisations 
have purchased this technology as a secondary feature of a database server or 
mail system or diagrammatic CASE tool or other high level service. Yet infra
structure technology can provide more than the high level service. It can become 
the foundation for a variety of apphcations and the basis of enterprise integration, 
interoperabihty and reuse. As such, an evaluation of middleware should be the fo
cus not an afterthought. 

4.2.1 Selection Method for Communications Technology 

A choice of standard communication architecture to serve an entire enterprise: 
promotes consistency and leverage among applications, focuses developer exper
tise on a smaller set of technologies, and reduces the complexity of the environ
ment, by reducing redundancy and diversity. 

However the choice of technology is a difficult one, in particular due to the lack 
of experience and rapid rate of change in the technology. Architecture is best de
fined in the context of specific projects that provide the proving ground for archi
tectural alternatives. 

This section describes a method for selecting infrastructure technology based on 
work from the Patricia Seybold Group (Seybold, 1994). This is a useful method 
because it can be generally applied and provides a useful introduction to the sort 
of rationale and evaluation frameworks that are employed by practitioners in in
dustry. 

6 Steps towards selection of middleware 

The Seybold Group provide a generic architecture for middleware that consists 
of the following components as shown in Figure 16: 



Chapter 4 - Open Distributed System Development and Tools 
23rd January 1995 

82 

CO 

o 
o 

1— -l-> 
c 

E 
C L 

j O 

> 
Q 

Application Programming Interface 

EnablingServices 

Linkinq 1 DBMS Others 

Core Services 

Dgflnition I I Repository 1 I Security 

Communication 

NetworkTransport 

O o 

d 
E 

(a 

Figure 16 Generic Architecture for all Technologies 

network transport - such as TCP/IP or SNA, usually provided by the oper
ating system. 

communication back-plane - such as SQL, CORBA, e-mail, providing high 
level protocols that use the network transport to support communication be
tween application components. 

definition facility - such as IDL or database schema generators to define 
and name the application entities, so that names and fiinctions of entities 
can be known to other entities. 

repository services - such as directory services and service registries, to 
map the names and service properties of entities to physical locations for 
matching clients requests. 

security services - such as authentication and authorisation to control access 
to servers. 

enabhng services - such as document Unking, object binding, message rout
ing, database management, to provide application level services other than 
point-to-point communication and security. 

programming interfaces - to provide access to the services. 

management tools - to manage, monitor, configure and control the infra
structure. 

development tools - such as browsers, debuggers, modelling and CASE 
tools to provide a complete development environment. 



Chapter 4 - Open Distributed System Development and Tools 83 
23rd January 1995 

Having defined the critical elements of an infrastructure product, the six steps are 
as follows: 

1) Select a transport protocol 

2) Select the most critical class of application and a pilot within that class 

3) Select a type of conmiunication technology for that class of application. 

4) Select a middleware environment that matches that type of technology. 

5) Select application development tools for the environment 

6) Select management tools for the environment 

The network transport protocol will depend on the predominant hardware and 
network technology in the enterprise. IBM shops may tend towards SNA, some 
PC L A N environments may lean towards IPX as used by Novell and most other 
environments , especially the UNIX world will use TCP/IP, Integration between 
these cultures remains extremely difficult, despite the growth of interoperability 
standards. Limiting the environment to one culture will simplify things consider
ably. 

A pilot application should be representative of the most important class of appli
cations that the business will need to develop. It would help i f this application is 
self contained and can be isolated so that global commitments are not enforced 
too prematurely during the proving phase. The pilot is used to generate a set of 
requirements that can be used to evaluate the architecture. 

The following discussion elaborates the Seybold method by defining three key 
classes of distributed application: 

• information dissemination, including mail, text retrieval, data presentation. 

• data processing, including transaction processing systems and workflow 
applications. 

• distributed control, breaks into several subclasses of applications including 
simulation, process control, communications, business intelligence, com
mand and contiol. 

Information Dissemination Architectures 

Where personal access to relatively static global information is important, an in
formation dissemination architecture may be used. Where this is between compa
nies, commoditisation issues like charging may be important. The data structure 
is generally less complex tiian for online corporate data and serial text or binary 
formats may be used. Control flow is also less important. There are five main 
types of information retrieval technology: 

• Text Retrieval - using catalogues and abstracts for searching based on in
dexes. Indexes may be inverted files of key terms such as author, title and 
subjects. 

Hypertext - supporting cross-referencing and browsing between topics typ
ically by clicking on hotspots in the document. 



Chapter 4 - Open Distributed System Development and Tools 84 
23rd January 1995 

Structured Data - supported by DBMS. Other technologies may be repre
sented at too low a level of abstraction for effective personal access. A 
number of even higher level access methods are being researched: for ex
ample corporate information servers that hide the physical and logical 
structure of enterprise data models; A I techniques to allow higher level 
searches; Geographical Information Systems (GIS) systems using novel 
spatial indexing techniques 

• Multimedia - multimedia is used in very user oriented conamunication. The 
emphasis is on data transfer problems such as lip-synch rather than data 
processing. 

• Publish-subscribe - information services may use local or global networks 
to disseminate information - using news-groups etc. 

Data Processing Architectures 

Where data must be manipulated as well as accessed, database management func
tionality is more important. This is usually the case for systems supporting oper
ational tasks such as concurrent updates to customer information. The data is 
usually internal to the company. Conmiodisation issues like charging are gener
ally less important than transactional access, data structuring and data semantics. 
The increased complexity can be managed by structuring the data using a schema 
definition language and accessing it using a data manipulation language. This 
style of application demands structured data technology like a relational database 
or object oriented database. 

Distributed Control Architectures 

Where application functionality as well as data must be distributed or accessed 
remotely, we need to manage both data flow and control flow. Not only do we 
need to define the data structure but also the control structure of the program. The 
extra complexity can be managed by structuring the data and behaviour statically 
using a schema of abstract data types or interfaces. Many definition facilities are 
based on abstract data types with procedural interfaces. Examples of this technol
ogy include distributed functions and distributed objects. 

Management functionality may be built into the computational model and hidden 
by the definition facility. For example CORBAIDL hides object management in
terfaces, see Appendix B:. Such architectures may mix or combine distributed da
tabases with distributed functions and distributed objects. The definition facility 
may be unified with the data definition facility such as a embedded data manipu
lation language or both may be used orthogonally, such as CORBA and ODMG. 

Type of technology 

Having defined three classes of application, we can relate the choice of type of 
client server technology directly to the class of application. 

Client-server architectures are widely applied in distributed systems. In the client 
server model, an active process (the client process) on one node invokes a service 
on the server (process) which may be on a different node. Typically the invoca
tion consists of a request message sent to the server and a result message which 
is returned. The form of request depends on the type of technology. 



Chapter 4 - Open Distributed System Development and Tools 85 
23rd January 1995 

There are six categories of technology that reflect different types of client server 
system. Each type wil l be discussed in turn. These types include the following 
(Note: product literature can be obtained direct from vendors and is not included 
in the references): 

• Distributed File, including PC L A N products (e.g. Novell Netware's File 
Service, Microsoft Window's NT Advanced Server File Service); UNIX 
file services (e.g. Sun NFS, OSF/DCE Distiibuted File Service); and docu
ment management products (e.g. OpenDoc, OLE and products from Verity, 
Saros, Fulcrum). 

• Distributed Display, including terminal services (e.g. Easel Easel, Wall 
Data Rumba) and windows standards (e.g. X-windows) 

• Distributed Database/OLTP, including relational database access products 
(e.g. Information builders EDA/SQL, Sybase OmniSQL), and other prod
uct from the main vendors (e.g. Oracle, Informix, Ingress); distributed re
lational database products (e.g. Oracle*Star, Informix *Star and 
Ingres*Star); on-line transaction processing (OLTP) products (e.g. IBM 
CICS, Transarc Encina, Novell Tuxedo, AT&T Topend); and object orient
ed database (e.g. Object Designers Objectstore, Servio's GemStone). 

• Messaging, including e-mail (e.g. HP OpenMail, Microsoft's Enterprise 
Mail Server), inteUigent agent technologies (e.g. General Magic Telescript, 
IBM Network Communications Manager); and workflow products (e.g. 
Action Technologies Workflow Builder, AT&T GIS's ProcessIT, Fujitsu's 
Regatta). 

• Distributed function, including RPC-based systems (e.g. OSF DCE, Sun 
ONC, Netwise RPC Tool); message-oriented systems that support func
tions (e.g. Message Express, IBM MQ Series, DEC DECmessageQ); and 
stored procedure data access systems (e.g. Oracle's SQL*Net, Sybase 
NetLibrary/DBLibrary and Transact-SQL tools). 

Distributed objects, including CORBA products (e.g. IBM DSOM, lona 
Orbix, DEC Objectbroker, Expersoft's XShell). 

Distributed file systems, support access to files stored on remote processors. Op
erating system calls to the local file system are typically intercepted and redirect
ed to the servers local file system. File servers Uke Novell Netware give visible 
access to remote disks. Distributed file systems like SUN Network File System 
(CoUinson, 1992) give transparent access either using a directory service or using 
broadcasts to redirect access. Enabling services include mounting services, re
mote file transfer services, transaction control for remote file access, file replica
tion and document management e.g. OLE 2.0 (Rymer et al., 1994), which 
includes linking and embedding, version control, and searching. 

Distributed display makes presentation functions of a host available to remote cli
ents. Conventional user interfaces provided by mainframe terminals and terminal 
emulation software, are character based and enforce sequential navigation 
through screens revealing data and commands. Modem GUIs like X-windows 
use graphic displays and event loops that allow more flexible user interaction and 
give more control to the user. Enablers include session and connection manage
ment between a client and a host, format conversions and event loops. 



Chapter 4 - Open Distributed System Development and Tools 86 
23rd January 1995 

Distributed database middleware allows a client to read and update remote data
bases by providing a transport service for data access requests. Distributed data
bases vary in the way management functionality is split between the client and 
the server process and in the data access mechanism. Relational database servers 
generally perform most of the integrity checking, concurrency control, query 
processing , etc. on the server. Access is by queries. This is the traditional data
base server architecture. OLTP (Johnson and Hudson, 1993) extends this model 
so that data access requests can be structured into stored procedures on the server 
that are invoked from the client. Object oriented databases generally support ac
cess that is closely coupled with the object-oriented language. They may be clas
sified database servers, page servers and true object servers. Page servers like 
Object Design Inc.'s ObjectStore (ObjectStore, 1995) pass memory page seg
ments across the network to cache clusters of objects in the clients process. Page 
faults on using pointers results in page activation. Query processing is performed 
on the local cache and locks can even be cached. True object servers like Servio's 
Gemstone allow similar distributions of query processing and concurrency con
trol but at the level of objects. Object-oriented database queries differ from rela
tional queries in that they tend to be based on extents or sets defined by aggregate 
objects or collections whereas relational queries tend to be based on schematic 
knowledge such as tables and key attributes. Enabling services include concur
rency control, transaction control (2-phase for distributed updates, nested trans
actions) and data access (stored procedures, large database). 

Messaging middleware allows messages and task instructions to be transported 
across a network. This includes mail based systems (e.g. Rodden and Sommer-
ville, 1989), intelligent messaging systems (Bock, 1994; Brost and Malone, 
1986), electronic news and interest groups (Moran, 1992), workflow systems 
(Marshak, 1993 ; Marshak, 1994). Messages are more general than other requests 
and may include files, text, graphics and even executables, for example Telescript 
(Seybold, 1994, ref [2]). Enabling services include a store-and-forward facility, 
message filtering services, workflow rules and monitoring. Messaging may be 
built on distributed file or distributed database technology. 

Distributed function allows a client to invoke a function on a remote server. This 
is usually synchronous, i.e. the client blocks until the server has completed the re
quest and returned the reply. The most common form is the remote procedure call 
RFC (Birell and Nelson, 1984) which allows a client to invoke a designated re
mote function by name. Remote procedure call is popular because it uses familiar 
procedural techniques. Among the earliest commercial releases are Sun Open 
Network Computing ONC, Xerox Courier and ApoUo Network Computer Archi
tecture NCA, as described in (Stevens, 1990, chapter 18). Normally the client-
server relationships are known at compile time and support for transporting the 
call and returning the reply is encoded in stubs which are linked into the applica
tion. The makes the model static. Enabling services in this style include binding 
services, transaction control, selection services. Many mesaging middleware 
products also support functions, such as IBM MQ and Message Express (Rymer, 
1992; Kramer, 1994). 

Distributed objects support interactions among objects on different nodes in the 
network, with varying degrees of transparency. This allows flexible distributions 
of behaviour - fat clients or fat servers. This adapts the client server model such 
that the client and server are objects not processes. Furthermore calls can be nest
ed such that another server may be invoked by the first server. Interactions need 
not be to a specific object. The infrastructure may automatically select the object 
best able to complete the task. Enabling services include those of distributed 
functions plus many more to manage objects such as replication, persistence, life 
cycle management, migration, concurrency control. 



Chapter 4 - Open Distributed System Development and Tools 
23rd January 1995 

87 

The relationship between the class of application and the type of technology is 
shown in Figure 17. 

/information 
I. Dissemination 

f Information 
V Processing 

Control 

Distributed 
Display 

Distributed 
File System 

Distributed 
Database 

Messaging 

Distributed 
Function 

Distributed 
Objects 

Figure 17 Mapping between application classes and technology types 

Once the type of technology is decided, the best product in that technology type 
can be selected. This should consider the quality of the repository, definition fa
cilities and other services, in order to give the organisation the scalability, robust
ness, flexibility and platform support that it needs. The relationship between 
technology types and product mechanisms is shown in Figure 18. 



Chapter 4 - Open Distributed System Development and Tools 
23rd January 1995 

88 

Distributed 
Display 

Distributed 
File System 

Distributed 
Database 

Messaging 

Distributed 
Function 

Distributed 
Objects 

har.Termin 

dows Ter 

File Server 

ile System 

emote SQ 

l _ 
OLTP 

E-mai 

Use 
Evaluation 

^Criteria 

Figure 18 Mapping between technology types and products 

The key evaluation criteria need to be defined, such as: 

Platform support, in particular UNIX products may be difficult to port to 
single-tasking desktops or IBM mainframes and gateways to Windows and 
Macs are frequently slow and unreliable. 

• Reliability and performance, in particular an important factor for each is the 
ability to recover from network failures and the ability to process interac
tions in parallel, asynchronously. Performance will also decrease by a fac
tor of the granularity of components and the coupling between them. Also 
the number of translation points such as gateways will reduce performance. 

• Completeness, which may be defined as providing all the components in 
the generic architecture. 

• Scalability, ability to support both small and large scale applications. Fea
tures such as hierarchical name spaces, server groups and flexible applica
tion partitioning, for example fat clients and thin servers, are invaluable. 

• Openness, portability and interoperability. A crucial issue here is under
standing the vendors interpretation and strategy for adopting standards, 
since most standards are partial specifications and continuously evolving. 



Chapter 4 - Open Distributed System Development and Tools 89 
23rd January 1995 

• Cost, especially set-up, familiarisation and configuration costs which can 
be high in a distiibuted environment 

i 

• Development tools, in particular the effort and complexity of the definition 
facility, the integration of the tools with programming environments like 
C++, and the completeness for design, testing and debugging and mainte
nance. 

• Management tools, this requires unification of system management tools 
and network management tools to gather and manage information about the 
environment, ins t^ and re configure the system, administer users and se
curity and provide problem analysis tools. 

Conclusions of Communication Technology Selection 

This section has presented a simple method for selecting infrastructure technolo
gy that involves first evaluating die most critical class of application then the type 
of technology before evaluating products against general evaluation criteria and 
the specific needs of a specific pilot apphcation in the most critical class of appli
cation. This wil l be used to assess the technology choices made by OpenBase. 

There are a diverse number of technologies that can be used in client server sys
tems. The commonest to date are distributed files system using network operating 
systems like Netware and relational database products like SQL*Net. The limit
ing factors in the growth of client server are the ease with which complex distrib
uted applications can be developed and the restrictive scalability and openness of 
the first generation of cHent server systems. 

Standards-based object oriented solutions offer more flexible dynamic partition-
ings of applications for scalability and performance, higher levels of abstraction 
to simplify development to tackle more complex applications and open standards 
for portability and interoperability. 

4.2.2 Tools for Large-scale Reuse 

Large scale reuse demands an up-front capital investment in tools and high qual
ity components. This section provides a taxonomy for the tools that can be ap
plied to large-scale reuse across a distributed enterprise. 

Tools for software development started as progranmiing environments support
ing editing, compiling and versioning at the code level. Next came design tools 
like CASE that support parts of a software development life cycle or methodolo
gy. However these tools were expensive to develop and demanded a high degree 
of customisation. As a result, the concept of "tool-building" tools or meta-CASE 
tools arose. 

Rapid change in higher level progranraiing languages has since blurred the dis
tinction between design tools and programming tools. This has led to the concept 
of integrated-CASE where the design tool is integrated with the programming en
vironment and generates source code. With the growth of object oriented pro
gramming and object oriented development and its ability to carry concepts from 
design to code, both meta-CASE and programming languages are not only inte
grated, but they are now addressing the same reuse problems and applying the 
same object oriented principles and modelling concepts. 



Chapter 4 - Open Distributed System Development and Tools 90 
23rd January 1995 

Even more recently tools are emerging that support new life cycle models that 
lessen the notion of a distinction between design and progranoming steps. This in
cludes application generators, transformational systems, 4GLs, rapid application 
development tools and component assenibly tools. 

The distinctions between tiiese differerit categories of tools are less important 
than the technologies that are applied by the tools and the impact they have on the 
development process. 

The technologies that can be applied to the reusability problem can be divided 
into two major groups depending on the nature of the components being reused. 
New programs can be derived from building blocks by composition technologies. 
New programs can also be derived from patterns of code or transformation pat
terns woven into generation technologies. The former reuse parts of the product 
of software engineering. The latter reuse parts of the process or intermediate re
sults of software engineering. Product centiic reuse and process centric reuse are 
subtiy different in practicality, generality, formality and flexibiUty. 

The first section distinguishes these two basic approaches to software develop
ment. The next two sections look at technologies and tools that support each of 
these distinct approaches. 

Two Basic Approaches to Software Development 

There are two fundamentally different approaches to software development: 

Specification-driven system generation 

Traditionally, software engineering has been process centric. There has been con
siderable work on descriptions of Ae software development process and new and 
powerful tools to support it. These efforts have placed emphasis on the important 
role of formal specification as the key to validation of requirements and the gen
eration of the system. Evolution is not conducted on the system itself but on the 
specification with new versions of the system being re-generated from the modi
fied specification. Reuse is almost entirely process oriented by re-application of 
the generation process. This is the "specification-driven" approach. 

The specification driven approach attempts to formalise the decomposition proc
ess. However it suffers because for non-tiivial systems, no one specification tech
nique seems to be adequate. This leads to a proliferation of views and formalisms 
that are difficult to integrate. Verification and generation has proved extremely 
difficult in practice. Declarative languages, such as functional and logic languag
es, that do have theoretically, sound transformations, fall short as practical spec
ification tools. They are in fact programming languages. 

There is also one inherent flaw in attempts to formalise decomposition. The un
derlying process of component identification remains informal as it requires de
sign information not usually included in specifications. 



Chapter 4 - Open Distributed System Development and Tools 91 
23rd January 1995 

Composition-based Approach 

In contrast, the "constructive approach" views system specification as the com
position of component specifications that may be identified informally but inte
grated formally. The vaUdation process is the construction of the overall system 
specification from component specifications. Evolution is supported by compo
nent addition or replacement. A description of software components and their in
terconnection patterns provides a clear and concise level at which to formalise 
specifications. The system can be generated from such specifications by con
struction tools. A representation of system structure can act as an unifying frame
work upon which to hang and integrate specifications, design, construction, 
evolution and reuse of systems. 

Generation Technologies and Tools 

This section describes the technologies and tools that apply the generation ap
proach to software reuse. 

With generation technologies, reuse is less a matter of composition of compo
nents, but of execution or transformation of components. The programs that result 
from a common generation pattern often bear little resemblance to each other or 
to the patterns that generated them. The effects of processes can be more diffuse 
than the effects of building blocks. 

Reusable patterns take at least two forms: patterns of code that are held in the gen
erator program itself and patterns of transformation rules that are implemented by 
a transformation system. 

• 4th Generation languages, usually integrated with a database and provide 
screen and report generation capabilities. 

• Formal languages, like Z aUow a high level unambiguous specification, 
from which applications can be generated automatically. 

• Application Generators, take a high-level description of the task using 
structured editors, graphical notations or application-oriented language like 
a 4th generation language and produce the application. 

• Meta-level application generators provide customisable application gener
ators , for example Gandalf (Habermann & Notkin, 1986) tries to semi-au-
tomatically generate families of development environments that combine 
notions of programming and development. 

Cross-Platform Generation, can be used to abstract away from diverse ma
chine architectures to provide a unified virtual interface. For example 
CORBA IDL (OMG, 1991) generates the appropriate stub for any platform 
to link to an application object. 

Transformational techniques, can be used to convert a program suitable for 
one architecture into a program suitable for another architecture. 

Composition Technologies and Tools 

This section describes the technologies and tools that apply the compositional ap
proach to reuse. 



Chapter 4 - Open Distributed System Development and Tools 92 
23rd January 1995 

In composition, the building blocks are largely atomic (all-or-nothing), relatively 
immutable (unchanged by reuse), and are passive elements operated upon by an 
external agent. Examples of such items are code templates as in C-H- templates, 
subroutines and objects. 

A few well defined organisational principles can be applied to component com
position. : 

Component Integration Systems 

The issues of component composition include those of component interface de
signs and component integration. Composition systems may be layered on top of 
integration systems. Component integration occurs at two levels: 

Coarse-grained integration occurs between entire applications or tools for exam
ple using UNIX mechanisms like files, I/O redirection, pipes, shell programming 
or Sun's ToolTalk (Julienne and Russell, 1993) for inter-application interaction. 

Fine-grained integration includes efforts like OMG CORBA for communication 
between objects, Microsoft's Object Linking and Embedding (OLE) to allow 
seamless integration of objects with different formats. 

Component Repository Services 

Component repositories should address the problems of finding components, un
derstanding components, and modifying components. Composition systems may 
be layered on different types of repository service. 

Browsers and query services are the conventional way to find components. The 
issues of finding and understanding components are being addressed at a more 
abstract level by repositories that store and select components using requirement 
and design knowledge, for example the ITHACA software information base 
(Belhnzona et al.,1993), and repositories that support catalogues and component 
classification schemes, such as the faceted classification scheme (Prieto-Diaz, 
1991). The issues of modifying components are being addressed by reusability 
systems like the Esprit project REBOOT (Morel & Paget, 1993). 

Generalisation-Specialisation Composition 

Composition based on generalisation-specialisation is powerful since generalisa
tion emphasises techniques that look for similarities (hence finding opportunities 
for reusing tools and models) and specialisation emphasises techniques to accom
modate differences to support wider scale reuse (by specialising tools and models 
that are similar). Generalisation-Specialisation practitioners are not in the busi
ness of building one point solutions. Unfortunately it is a capital-intensive ap
proach demanding an up-front investment in capturing and packaging generic 
models and tools. 

There are problems applying inheritance to reuse across a distributed environ
ment. Widening the domain of sharing has implications on the development de
pendencies and the loss of understanding and trust: 

reactive inheritance, where programmers evolve the inheritance hierarchy 
incrementally, as in the Smalltalk style, is unproductive, since the class hi
erarchy must be rebuilt everywhere to avoid the overhead of navigating dis
tributed inheritance hierarchies at runtime to support runtime binding. The 
alternative is extreme inefficiency. See (Bennet, 1987) for a critical evalu
ation of Distributed Smalltalk. 



Chapter 4 - Open Distributed System Development and Tools 93 
23rd January 1995 

• inheritance introduces strong dependencies between components that will 
only be manageable on large distributed projects i f the classes are suffi
ciently stable and easily understood. This demands a higher up-front invest
ment in development and limits the use df inheritance to well-packaged 
class libraries. 

• inheritance right across an enterprise demands careful management to 
bridge departmental barriers, for example to achieve the necessary pro
gramming skill levels and establish trust between departments. 

• wider reuse leads to broader demands on reused objects. Different domains 
wi l l require different semantics and behaviours from shared classes and it 
wi l l be difficult to aggree conraionality. 

As a result of these problems, generation techniques and object composition tech
niques are more usefiil in a distributed environment than ad-hoc use of inherit
ance. Inheritance is useful to develop quality class hbraries for distribution across 
the enterprise. Inheritance also plays a part in the representation of frameworks 
of collaborating objects. 

Role Modelling & Object Frameworks 

Role modelling is more appropriate to derive frameworks than generalisation-
specialisation. 

The type describes what an object does; the class describes how it does it. 
OORASS (Reenskaug et al., 1992) extends these two aspects of objects by adding 
the notion of purpose. The role of an object describes why it does it, in terms of 
the responsibility of the object within the organised structure of collaborating ob
jects. Role modelling and responsibility-driven design (Wirfs-Brock et al., 1990) 
are two powerful developments in object oriented design . Sharing can occur at 
the role level. An object can play many roles, known as role synthesis. Methods 
that focus on role models, derive abstract patterns of behaviour that can be shared 
across tasks by specialising each role for the task. OORASS provides tool support 
for role modelling and synthesis activities. 

The re-use of whole designs is potentially more powerful than the re-use of indi
vidual classes, yet this is also overlooked. A framework (Wirfs-Brock et al, 1990; 
Deutsch, 1989; Nierstrasz and Papathomas, 1990) is a high level design, consist
ing of a set of collaborating classes that are specifically designed to be refined and 
reused as a group. One of the goals of the ITHACA project is the formalisation 
of frameworks within a programming environment (Profrock et al., 1989). The 
steps taken when developing an ITHACA application are as follows, taken itera-
tively: 

1. Select a generic application framework from the repository, called the soft
ware information base (SIB), using some very general application require
ment such as the required application domain. The generic application 
framework encapsulates domain knowledge, requirements models, generic 
design and generic components in the framework. 

2. Specify the specific requirements guided by the requirements model and re
quirement collection tools of the general framework and find and refine rel
evant generic designs. 

3. Visually compose concrete reusable components according to the generic 
design to form a concrete running application. 



Chapter 4 - Open.Distributed System Development and Tools 94 
23rd January 1995 

4. Verify and modily the application. 

5. Refine the general application framework using knowledge gained. | 

ITHACA provides tool support for: organising and finding components (query
ing and browsing) in the repository; for visually composing applications from 
components; and for requirements and design representation and selection. The 
SIB provides structured descriptions of reusable knowledge and components, or
ganised as a semantic network mixing object relationships and hypertext, with a 
meta-model defining the basic components used in definitions. The requirements 
specification tools extends objects with the notion of role and allows model de
scriptions at different levels of detail with ti-ansformations between levels. Vari
ous requirement mapping strategies are supported for selecting designs. 

Programming in the Large or Configuration Programming 

Structuring a collection of objects to form an integrated system is a different in
tellectual activity from the construction of the individual objects. Configuration-
based approaches to integration describe a system at two separate levels: a pro-
granmiing level and a configuration level. At the programming level, objects pro
viding the program's functionality are constructed using an object oriented 
language such as C-H-. At the configuration level, objects are interconnected and 
encapsulated into composites using a configuration language. Configuration pro-
granrniing combines the efficiency and flexibility of a low level interconnection 
approach with the safety and simplicity of a high level language environment. 
This has been demonsti-ated in a number of systems: CONIC (Magee et al., 1989), 
RCMS (Coatta and Neufeld, 1992), DARWIN (Magee et al., 1992), GEREL(En-
dler and Wei, 1992). This approach has also been called programming in the large 
(DeRemer and Kron, 1976) or processor-memory-switch-level programming. 

Distributed processes communicating by message passing is the underlying mod
el most commonly used to implement distributed systems. Models consisting of 
loosely coupled and communicating, processing components can even be applied 
quite generally to none distributed software systems. Configuration programming 
advocates the use of this underlying interconnected-component model through
out the software process not just implementation. Systems are convenientiy de
scribed and managed in terms of their software structure. 

Structured design methods like Yourdon and Jackson Structured Design base de
signs on descriptions of configuration structure, but fail to carry notions across to 
implementation. Environments based on structured design or specification tend 
to be strong on notation yet weak in generating implementations and in evolution 
and reuse. 

There are four key principles to configuration language design that also apply to 
specification: 

component specifications should specify the visible behaviour at the com
ponent interface. 

• a distinct configuration language is used for structural specification and this 
is separate from the specification language used to specify component be
haviour 

complex specifications should be definable as a composition of component 
specifications using the configuration language. 



Chapter 4 - Open Distributed System Development and Tools 95 
23rd January 1995 

• changes should be expressed as changes of the constituent component spec
ifications or their interactions at the configuration level. 

These specification principles map onto detailed language design principles that 
are described with example code in section 5.2.3 . Conic (Magee at al., 1989) is 
an example of a configuration language and includes facilities for hierarchical 
definition of complex component types, parameterisation, graphical representa
tion of configuration structure and conditional configurations with guards. 

The ideas demonstrated in Conic are being extended to all phases of development 
in the Esprit n project REX on Re-configurable and Extensible Parallel and Dis
tiibuted Systems (Kramer et al., 1992). 

Strucmral specification provides a framework on which to compose specifica
tions and generate and evolve specifications. One can associate optional specifi
cation attributes with actual components to include specifications for aspects 
such as functional behaviour, timing, resource requirements An analysis tool 
could be provided for each type of attribute to verify specifications across com
position and support diverse formalisms for each type of specification. Users can 
select a formalism most appropriate to the requirements. Generally generation 
techniques are weak at system evolution except by re-application of transforms 
and the generation approach could benefit from structural specification. Compo
sition rules can be used to derive composite group behaviour from constituent 
components, to identify where changes can be apphed and to predict the affect of 
change. In addition, there are techniques to support compositional reasoning such 
as (Milner, 1980). 

The process advocated for configuration language systems follows the following 
steps, which is a variant on the component-oriented life cycle: 

• identify component types, identify processing components and produce 
structural description including main dataflows. 

• produce specifications of interfaces, introduce control and interconmiuni-
cation to refine component interfaces and descriptions into a precise 
enough description to permit isolated component design and testing. 

• elaborate components, by hierarchical decomposition of components into 
sub-components or by detailed functional specification to identify further 
component types. 

construct configuration by instantiation and interconnection to form com
posite components at a suitable granularity for distribution and allocate 
these to nodes. 

• evolve and maintain, by component replacement or reconnection. 

In addition the process needs to account for the following: 

need to support distributed development by teams of developers, 

• selective means of viewing different requirements, e.g CORE view-
points(Mullery, 1979) 

• support for duality between graphical and textual configuration descrip
tions 



Chapter 4 - Open Distributed System Development and Tools 96 
23rd January 1995 

• the need to support multi-paradigm interconnection, for example by group
ing and ordering primitive ports into protocol units that map onto different 
protocols for synchronisation in different languages and constrain inter-
paradigm connectivity. 

The key problem with programming in the large is capmring the dynamic struc-
tiiral change. It may be reasonably tiivial to capture the static stiucture of an ap
plication in a configuration language, independentiy of the component 
implementations. However it is not so easy to describe dynamic object lifetimes. 

The simplest approach to dynamic change is to depart from a purely declarative 
configuration language. Pre-planned structural change may be expressed using 
change scripts that may be executed as a method, for example a recovery method 
to explicitiy describe recovery behaviour as object migration and relinking. Typ
ically change scripts wil l destroy objects, instantiate new objects and relink them. 
Methods affecting the dynamic object structure must be separated from other 
method behaviour. The structural change belongs to the configuration language, 
other method behaviour to the object progranraiing language. 

Ad-hoc change is even more tricky and requires that transactional control and 
consistency constraints can be imposed on changes to ensure consistency. 

Configuration programming may use visual composition to present a graphical 
configuration progranuning interface (Kramer et al., 1989). Visual composition 
is described next. 

Visual Composition 

Visual composition assumes that applications are made up of reusable compo
nents that can be composed using a visual metaphor. The visual representation of 
component structure gives an application developer a consistent conceptual mod
el of the application under development. A component is made up of three parts, 
a presentation, a behaviour and a composition interface. The presentation is how 
it looks on the screen. This may be the actual user interface the component will 
have in the final application or some other visualisation. The behaviour is what 
the component has been designed to do. The composition interface binds a com
ponent to a given context. It consists of entry and exit ports that may have names, 
types and properties. 

Components are assembled using a binding model which declares the rules for 
component compatibility and provides the composition paradigm. Responsibility 
for checking that bindings are compatible is divided between the binding model 
and the compositional interface. It would be possible to build a visual tool that 
supported this binding model and allowed visual program composition. 

The UNIX pipe mechanism is a good example of a simple specific binding model. 
Constructing more complex programs out of simpler ones requires the connection 
of one programs output to another programs inputs. Input and output are read se
rially across the pipe. However this is not a visual binding model. 



Chapter 4 - Open Distributed System Development and Tools 97 
23rd January 1995 

Different styles of application wil l require more sophisticated binding models 
than UNIX pipes. In particular bindings will usually be typed and exploit poly
morphic features of the programming system. Dataflow composition models are 
popular such as Fabrik (Ingalls, 1988), which supports composites through gate
ways. Framework-oriented models are also becoming common such as Apple's 
ATG Component Construction Kit (Smith & Susser, 1992) providing a frame
work into which components can be dragged from a palette and plugged. Many 
commercial vendors are now adopting (irag and drop metaphors for application 
development such as I B M VisualAge (VisualAge, 1995) and Servio Geode, 
Oberon Synchroworks and Serius (Rowan, 1992). The design choices for binding 
models are described in more detail for visual scripting languages in section 
5.2.3. 

Visual Programming 

Visual composition is not the same as visual progranmiing, which covers many 
areas ranging from program visualisation to visual languages. A programming 
language defines a set of primitives that are designed with a specific syntax and 
semantics. With visual programming these primitives are visually represented 
and composed. Visual composition uses application components as primitives 
and these can be reused using different syntax and semantics. Visual program
ming systems suffer because tiiey lack constructs to express complex algorithms 
and data structures. Visual composition does not suffer in this respect because it 
does not try to represent language constructs. Instead the component progranmier 
must express data structures and algorithms and the application engineer uses 
composition models to describe complex organisations of those components. 

Most visual languages use a single visual representation. Garden (Reiss, 1987) al
lows the progranraier to work with a variety of graphical and textual languages to 
provide multiple views of the system. A user can define and implement new lan
guages. No one visual language is considered satisfactory for all users, rather the 
optimum system provides a mixture of textual and graphical views of a single 
program. 

Conclusions to Reuse Tools - The Need for a Hybrid Reusability System 

Large scale re-use is not an easy problem to solve and may require a combination 
of multiple generation and composition techniques and tools that reuse different 
development results and knowledge. In particular generation techniques applied 
to components before they are reused by composition can be particularly power
ful . 

One central problem in reusabiUty systems is how to make the component repre
sentations or generation transformations sufficientiy general to allow reuse in a 
broad range of contexts. The application context may affect the software in a 
number of ways: the precise role played by a component; the performance and de
pendability requirements that must be satisfied; the constraints imposed by the 
specific technology used to implement and execute the software. Distributed 
technology in particular imposes significant constraints on software. 

Reuse strategies have been successful in systems where these factors don't vary 
greatiy. However such systems have limited scope. This is typical of application 
generators, which generate software that performs the same role, such as report
ing, on a limited set of target platforms. 



Chapter 4 - Open Distributed System Development and Tools 98 
23rd January 1995 

A more adaptable reusability system is needed where the context does vary, as in 
enterprise integration systems that integrate different types of application. Such 
systems must eliminate some of the specificity introduced into the source code by 
contextual variables. Source code requires a more manipulative representation, so 
that the programmer can incrementally control the way a specific context is ac
commodated, yet at the same time specify precisely the permanent invariant as
pects that are reused. 

Composition techniques are limited by the precision to which executable compo
nents must be defined i f they are to run on a digital machine. Computers do not 
tolerate ambiguous executables. This introduces specificity in the components. 
Generation techniques are limited by the freedom of general-purpose software 
development processes. This makes it difficult to formally capture and automate 
sufficientiy general processes. In combination generation and composition can be 
the antidote for the problems of the other. Generation techniques may be easily 
defined to transform partially specified components and partial specification re
laxes the level of specificity to which reusable components must be represented. 

Partial specification of components could be supported entirely by composition 
systems, for example by specifying an abstract base class whose interface must 
be implemented in all classes that derive it. However the development of a new 
specialisation of a class is a process-centric activity. This is better supported by 
generation techniques. In contrast, the use of the specialised component is a prod
uct-centric activity, that is best supported by composition techniques. 

For reuse across a distributed system, a partial specification may be a virtual spec
ification that abstiacts away from machine dependencies. Generation techniques 
are particularly powerful for migrating software across platforms. 

4.3 Summary and Conclusions to Chapter 4 

This chapter has discussed the appropriateness of different development process
es for open distributed computing. There are four main conclusions that can be 
made. 

Traditional top-down life-cycles do not support component reuse nor do they al
low for application conformance to evolving standards for open distributed com
puting. 

There are different styles of objects and these different styles impact reusability 
and distributability. Some have coarse-granularities, making them easy to distrib
ute but difficult to reuse. Large things introduce a high degree of specificity. 
Those that do identify truly reusable objects, lead to fine-grained architectures 
that are difficult to manage in a distributed environment. In order to solve the di
chotomy, more sophisticated structuring is required either using a hybrid of mul
tiple styles or a compositional approach that explicitly manages the structure of 
the application. This is currenUy being done impliciUy or on an ad-hoc basis for 
simple applications. Very few mainstream methods say much about distributed 
architectures and have no formal constraints that require or enforce reuse. This 
limits the applicability of the technology to more complex problems. 



Chapter 4 - Open Distributed System Development and Tools 99 
23rd January 1995 

There are a number of different technologies that can be used to co-ordinate com
ponents of a distributed application across hard process and machine boundaries, 
for example distributed files systems, remote queries, remote procedure calls. 
The choice of technology is as important as other design decisions. Infrastructure 
conmiercial-off-the-shelf COTS products must be evaluated. This emphasises 
new skills. Development is as much driven by bottom-up COTS selection as top-
down specification-driven design. The need to choose technology has a consid
erable impact on the life cycle. Technology choices also effect choices of stand
ards. 

Choices of CASE and programming tool technologies are also important. Many 
tools have now evolved to be more 5ian design and implementation tools, in par
ticular reusability tools. There are two basic approaches to develop reuse tools, 
generation-based tools and composition-based tools. The development of reuse 
tools in integrated programming environments has resulted in new styles of de
velopment, tool-based development such as RAD, visual composition, program-
ming-in-the-large. 

The large scale reuse problem is not an easy one to solve and may require a hybrid 
reusability system. Systems mixing generation and composition offer the greatest 
flexibility, in particular generative mechanisms to adapt the reusable representa
tion of a component to a specific context before it is reused by composition mech
anisms. This is facilitated by well factored transformations that deal with 
different variables independently. The system becomes more precisely specified 
as it is adapted. The client should have some control over the generality or preci
sion of components at any time. This necessitates representations that support 
partial specification. Partial specification allows the programmer to leave many 
of the smaller decisions uncommitted and accommodate independent variables 
incrementally. Different trade-offs can be made, depending on the current adapt
ed state of the partial specification. 

The next section looks at the techniques that can be employed to design and im
plement a programming system architecture supporting open distributed comput
ing and the integration of different techniques. 



Chapter 4 - Open Distributed System Development and Tools 100 
23rd January 1995 



Chapter 5 - Distributed Programming System Architecture 101 
23rd January 1995 

Chapter 5 Distributed Programming System Architecture 

This chapter reviews some of the techniques and design principles that can be 
used to define a distributed programming system architecture. Detailed runtime 
support functionality is described in Chapter 8 and Appendix B:. 

5.1 Overview 

What is a distributed programming system architecture? 

An architecture is a description or specification of the structural organisation of 
a system. It is only when a system is placed in an environment and used by its 
clients that its structural organisation becomes really important. In this context 
the operating constraints of the environment become important, such as timeli
ness and space limitations. In addition an architecture must be responsive to the 
changing needs of its clients. It must encapsulate appropriate abstractions given 
the problem domain, and maximise the applicability and minimise the volatility 
of these abstractions as the system develops. 

We can view an architecture abstractiy as consisting of a set of discrete model 
components linked by some co-ordination mechanism. The co-ordination mech
anism may be implemented as a simple communication mechanism. Most dy
namically, this may consist of a messaging channel where interpretation of 
messages is up to the receiving component, ensuring maximum flexibility and ex
tensibility in the architecture. More tighfly, it may consist of the invocation of 
procedural or functional abstractions. This increases the predictability and safety 
of the system. Alternatively, the co-ordination mechanism may consist of a sim
ple composition mechanism. Most statically, it may be interpreted as code com
position such as inheritance or included libraries. More abstractiy, it may be 
interpreted as a transformation or process, such as the application of a textual 
processor on a source component to generate/manipulate a target component. A 
programming language is itself a generic architecture in the sense that it can be 
instantiated by compilation or interpretation to provide particular execution struc
tures. 

The term programming system is used to signify both programming language and 
operating system. As discussed in Chapter 3, the distinction between language 
runtime support and operating system is frequently blurred, especially in an ob
ject oriented system. From an architectural viewpoint, a programming system is 
the combination of features of the runtime support of the operating system and 
the runtime support of the programming language. 

In summary, a programming system architecture is both a layered implementa
tion structure and a commitment to a stable organisation of interfaces and runtime 
support services for the benefit of its clients. 

What are the most appropriate architectural concepts? 

Distributed systems are structured by processes at the most basic level, and the 
most appropriate concepts build on process communication channels. 



Chapter 5 - Distributed Programming System Architecture 102 
23rd January 1995 

Portable systems must ensure the system behaves consistently over changes to the 
operating or device environment. This can be achieved by localising such chang
es in back-end components while preserving the abstract behaviour in independ
ent higher-level components. Heterogeneous architectures naturally form layered 
stacks that abstract away from encoding or representation biases up the stack. Ar
chitectural concepts that deal with separation and transformation between layers 
of abstraction are important. 

Open integration systems must ensure the substitutability and interworkability of 
application components. This goes well beyond process communication. Archi
tectures for integration provide a high level rationalisation of the overall design 
of the integrated system in terms of its structure and component applications. T^e 
software architecture defines the glue that binds the components together and 
provides tools to support the procurement, assembly and distribution of compo
nents. Architectural concepts concerned with component compatibility and com
position are important. 

What are the key architectural goals and principles ? 

The basic goal in the design of an architecture is a separation and factoring of con
cerns and the basic organising principles in its construction are standard software 
engineering strategies: modularity, levels of independence, abstraction, extensi
bility and component reuse. 

The rest of this section describes some concepts and techniques that support these 
goals and principles. 

5.2 Architectural Concepts and Organising Principles 

This chapter surveys several organising principles and concepts for architecture 
design. These principles use a variety of mechanisms to co-ordinate components 
of the architecture, including: messaging, invocation, inheritance, pre-processing 
and transformation. There are three sections that map to the most appropriate 
types of concept, identified above: 

• the first sub-section overviews concepts used for process communication. 

the second sub-section describes concepts used to provide abstract layers in 
the programming system design. 

• the third sub-section looks at concepts that aid reasoning about the compo
sition and structure of the software architecture. 

5.2.1 Implementing Process Communication Concepts 

This section describes a number of different communication mechanisms for 
components on different hard processes or on different nodes in the network. De
tailed design alternatives and runtime support functionality are described in 
Chapter 8. 

Unstructured data streams 

Unstructured data streams are useful in a number of situations, for example for 
continuous media in multimedia systems. A complete general-purpose system 
should provide both a stream interface as well as higher level mechanisms such 
as RFC. CORBA 2.0 is investigating stream protocols. 



Chapter 5 - Distributed Programming System Architecture 103 
23rd January 1995 

Stream protocols for multimedia are not trivial. There are classic problems such 
as the lip-synch problem in mixing video and voice. Research is underway to en
hance stream type systems to support quality of service properties for dependable 
data transfer and composite types for mixed mtdia. streams 

Unidirectional Messaging 

One-way message passing gives clients explicit control. In particular, clients are 
free to interleave activities, submit multiple requests in parallel and direct repUes 
to arbitrary addresses. However higher level protocols must be exphcitiy pro-
granmaed. Servers are obliged to keep track of any reply addresses, and cUents 
and servers must co-operate to match requests to rephes. A protocol in which re
quests implicitiy entail replies eliminates this problem. 

Network Programming Channels 

There are a number of network progranmiing interfaces that have widespread 
availability in tiie UNIX world, in particular Berkeley sockets, UNIX pipes, the 
System V Transport Layer Interface and System V Streams (Stevens, 1990). By 
using TCPIP or UDP transport protocols, these interfaces support interoperability 
across UNIX systems. 

These programming interfaces can be used both for unidirectional and bi-direc
tional messaging, both using connection-oriented and connectionless policies. 
They provide system calls to allow network endpoints to be created, bound using 
network addresses, estabUsh connections and accessed to read and write messag
es. Name services are used to map network addresses to textual names and to pass 
addresses across the network. 

Remote Procedure Call 

Remote procedure call systems are now mature with commercial systems includ
ing Netwise RFC, SUN Open Network Computing, Xerox Courier, Apollo Net
work Computing Architecture, OSF/Distributed Computing Environment, DEC 
NIDL. For three examples see (Stevens, 1990, chapter 18). 

With strict RFC the calling thread is blocked until the server accepts the request, 
performs the service and returns the reply. Procedure call semantics make it triv
ial to obtain replies and return results. This makes RPC easier to use than unidi
rectional messaging or network programming interfaces where requests and 
replies are explicitly read and written. However it is not so trivial to interleave 
activities, submit requests in parallel, or re-specily reply addresses. 

RPC systems typically have three levels in their architecture: 

• in the application level, the client makes an RPC call on a remote server and 
the server provides a definition for the procedure called. 

• in the stub level, a clients call to a remote server is intercepted by a stub 
that supports the servers interface. The stub encodes the call and the argu
ments into a message which it passes to the transport layer. At the other end 
the skeleton receives a message from its transport layer and decodes the 
call and arguments and performs the call on the server.The skeleton then re
ceives return values and encodes them into a reply message. The stub re
ceives the reply and decodes the return values and returns control to the 
client. 



Chapter 5 - Distributed Programming System Architecture 
23rd January 1995 

104 

• in the transport level, the source receives request messages from the stubs 
and sends them over the network to the destination. The destination waits 
for incoming requests and forwards them to the appropriate skeletons. Ori 
return the destination receives the reply message from the skeleton and 
transmits it across the network. After transmitting a request message, the 
source waits for a reply message and forwards it to the stub. 

This behavioior is shown in Figure 19. 

foo (...) 

encode decode 
reply 

[ t 
s e n d - ^ wait- receive 

foo(...) 

decode encode 
call reply 

application 
layer 

stub layer 

wait-weceive send transport layer 

Figure 19 Implementing RPC 

The following discussion gives detail that is hidden by the implementation of an 
RPC system and is not usually required by users. However an awareness of the 
underlying mechanisms is necessary for a complete conceptual understanding of 
an RPC system, especially to understand the design of an interface definition lan
guage and to rationalise performance. 

The application layer is programmed in a procedural programming language to 
define the behaviour of the client and the server. 

The stub layer provides the presentation protocol for the remote server. It is type-
specific since specific typed procedure calls are invoked: on stubs, and by skele
tons. Stub/skeleton pairs must be linked with the client and server for each server 
type supported. The stub is responsible for encoding/ decoding arguments, called 
marshalling and is also involved in binding. 

Stubs are involved in managing dynamic binding information.Some systems will 
create a stub and skeleton for each binding between a caller and a callee. In this 
case, the stub encapsulates the binding information and acts as a proxy (i.e. a local 
representation) for the remote object. In other systems stubs may be shared by all 
objects of the type. 



Chapter 5 - Distributed Programming System Architecture 105 
23rd January 1995 

Marshalling may use such techniques as outiined in ASN.l (Steedman, 1990) for 
basic data types to deal with issues like byte order and encodings. When referenc
es to objects are passed as arguments the system must also generate bindings in a 
stub/skeleton pair for the object passed. If the system manages garbage coUection 
then reference counts also need to be incremented or decremented so an object is 
not deleted whilst there are active remote cUents. When complex composite data 
types are passed such as unions and sequences, the stub must also send additional 
metadata for the argument such as an enumerator discriminating the type of the 
value in the union, or a value for the size of a sequence or string. 

The transport level is responsible: 

• for managing connections, for example using tcp sockets or named pipes. 
Some systems write over a single active connection on each change in con
nection, others may set timers to control the lifetime of a connection. The 
binding information, e.g. the name of a named pipe or the socket address, 
will be maintained in the stub or be embedded in the object reference in the 
application, so reconnection or connectionless protocols can also be used 
without making calls to a name service to rebind on each call. 

• for multiplexing and demultiplexing messages between multiple stub/skel
eton pairs or multiple callers/callees pairs when there is more than one call
er or callee in the same process. A single endpoint for a process or a single 
connection between processes is usually shared by all callers and callees in 
a process, i.e. transport layer connections are between processes not ob
jects. The socket address or pipe name is usually used to bind to a remote 
process. An extra identifier needs to be introduced to resolve which stub or 
skeleton the message is intended for. If stubs and skeletons are shared be
tween calls rather than being mstantiated for each call, the identifier also 
needs to identify the caller or callee. The transport layer must maintain 
some form of session table mapping identifiers to memory addresses. These 
identifiers must also be passed in the messages on binding and procedure 
invocation. The session table may also be cleared using timers, requiring 
reallocation of identifiers and remapping of session tables. 

• for request scheduling at the destination and reply scheduhng at the source. 
Requests must be dispatched to server threads. The server may spawn new 
threads or allocate threads from a fixed pool. Likewise a multithreaded cli
ent may carry on processing other activities whilst one activity is blocked 
waiting for a reply. If the interface from the stub to the transport layer has 
separate downcalls for both send (non-blocking) and receive (bloclang), it 
is feasible to depart from synchronous RPC semantics and allow a client to 
carry on processing after issuing send and to later block by explicitiy call
ing receive. Likewise a server could be processing and determine when it 
wants to block to receive messages explicitiy as in a Ada rendezvous using 
accept and it could carry on processing after calling send for the reply. 

• for fragmenting large messages and retransmitting lost packets. Typically 
ordering information must be embedded in each packet. One issue here is 
whether to use flow control or windowing protocols to ensure receivers 
don't get too far behind. 



Chapter 5 - Distributed Programming System Architecture 106 
23rd January 1995 

• for detecting lost or corrupted or out of sequence messages and retransmit
ting them. The protocol can be optimised for normal RPC processing by us
ing replies to acknowledge sends rather than using an enq-ack protocol. 
Probing with an enq-ack protocol after a timeout is used to detect failiu-es 
in the rare case of an exceptionally long service or when communications 
fail. Sequence numbers embedded in each message can be used to detect 
lost messages. 

• for notifying and tidying up abortions on partial failures such as long term 
communication failure or node failure. This can be detected by having a 
limit on the number of retransmits. On aborting a client can leave orphan 
servers processing a request and any orphan processes must be detected and 
terminated. Incarnation numbers can be included with binding information 
passed in the message to ensure that a binding is invahdated if a server is 
restarted. 

Rather than hard coding stubs for each procedure, a stub generator can be used to 
generate the stubs from a higher level description of the procedures. An interface 
definition language is one way that procedures can be described and this has 
been adopted in both CORBA (OMG, 1991) and DCE (Shirley, 1992). The inter
face definition language compiler generates the stubs. This hides the interface be
tween the application and the stubs. The transport layer itself is hidden by the 
stubs. Consequently both DCE and CORBA can be used without any knowledge 
of the stub and transport behaviours described above. An interface definition lan
guage consists of four main parts: a specification of the composition of the inter
face and relationships with other interfaces; data specifications; operation 
specifications; and property specifications, as described in the section on inter
face specification in section 5.2.3. 

RPCs have been found usefiil internally to structure systems architectures. They 
have been used in microkernel operating system design and distributed system 
management and control. 

Remote Method Invocation 

RPC systems tend to have quite a low level binding interface requiring several 
calls to bind server functions and data (contexts). This makes them inappropriate 
for general purpose object invocation. Instead they tend to be used for models 
based on client and server processes where functions are distributed not objects 
and services. 

RPC systems are not object oriented. They generally do not support interface in
heritance or polymorphism. 

A remote method invocation system seeks to make RPC more appropriate for ob
jects. To do this RMI systems extend RPC in a number of ways: 

all introduce object references and higher level binding mechanisms. This 
may be as simple as providing a bind method to return a pointer which can 
then be used in a normal method invocation. 

• others support subtyping (interface sharing) and polymorphism in the bind
ing mechanisms, where a server of a different subtype can be substituted. 
The simplest are statically typed and the client must include the type defi
nitions of the server interfaces it is using. ( Many C++ based systems re
quire a cHent to include the subtype definition even when only using a base 
reference.) 



Chapter 5 - Distributed Programming System Architecture 107 
23rd January 1995 

• Others depart from strict procedure call semantics, for example by allowing 
asynchronous messaging or dynanudc invocation where the client can com
pose an invocation request using enumerated type codes without including 
the static type definition. This increases the contextual independence of cU
ents. Invocations can be constructed on the fly without advance knowledge 
of interface definitions. 

• others also support subclassing (implementation sharing) where an invoca
tion may be directed to a superobject component of an object. In some 
schemes, abstract interface classes are separated from implementation 
classes across inheritance and subclassing requires multiple inheritzince 
from both the interface class and the implementation class 

There are three main approaches to build a remote method invocation system: 

• An object based style can be superimposed on RPC by application devel
opers, for example by parameterising method and object identities. This 
compromises inheritance, polymorphism, interoperability with any exter
nal software that uses a different approach, and access ti-ansparency (where 
local and remote object invocations look the same) 

• A remote method invocation system can be engineered on top of an RPC 
system, hiding the RPC system internally. However failure to support ob
ject references and inheritance is likely to reduce the RPC to being used as 
a generic interprocess transport mechanism only. There are problems in try
ing to layer the two: 

• two IDLs are difficult to unify. 

• extra naming, data marshalling and location services are required for 
managing location-transparent object references. 

• RPCs are static, extra support is required for dynamic invocation. 

• RPCs are synchronous, a thread dispatcher is required for asynchro
nous calls or deferred synchronous calls where the chent issues a re
quest asynchronously and blocks later to collect the results. 

A remote method invocation system may be engineered on top of network 
programming primitives of the operating system, such as sockets. 

RPC and RMI Tools 

RPC and RMI systems may provide a number of tools to deal with user logins, 
security, system start-up and to manage directory services. 

Indirect Interaction 

Not all high level messaging services build on direct point-to-point delivery or re
quests and replies. Store-and-forward capabilities allow a variety of interaction 
policies. These systems vary in the way they name, allocate and access the stor
age units into which messages are added, read or removed by clients. Alternatives 
include: 

a single logical, globally accessible repository, for example a tuple space 
(Gelemter, 1985). 



Chapter 5 - Distributed Programming System Architecture 108 
23rd January 1995 

• a federated network of message servers, for example news servers and in
terest groups (Moran, 1992). 

dedicated message queues that are allocated to and read by individual com
ponents, for example mailboxes and mailtrays (Rodden and Sommerville, 
1989). 

Indirect interaction is inherentiy flexible due to the indirection. Servers need not 
be named, for example they may be identified dynamically by the content of the 
message, content-based routing or on configuring the system. This makes indirect 
interaction powerful for configurable systems. The store-and-forward facility can 
maintain a mapping between messages and servers using different abstractions of 
their properties, for example mappings may be resolved by matching service re
quirements and service properties, news and interests, resource needs and im
posed system loading, group names and group membership. Indirection also 
enables active concurrent recipients and message filtering and scheduling. 

Indirect interaction can be particularly powerful for developing parallel distribut
ed applications, especially when both communication and synchronisation are 
combined into a single interaction primitive. For example, Linda (Carriero and-
Gelertner, 1986) is based on the notion of a tuple space. Programs can throw tu
ples of typed data into the tuple space without knowledge of the recipient using 
the out command that takes a tuple of data as argument. Likewise they can selec
tively consume or copy tuples out of the tuple space using the in or read com
mands respectively. Tuples can be selected by value or type according to the 
argument to in or read. Linda supports parallel programs in many styles: live data 
(e.g. future variables (Yonezawa et al., 1987)); co-operating networks of special
ised workers; or bags of tasks executed by homogeneous workers. Object orient
ed languages using tuple spaces have been designed to research parallelism and 
configurable systems, for example Kitara (Guffick and Blair, 1992). 

The main problem with indirect interaction is the runtime overheads that it intro
duces. Indirect naming and the transparent selection of servers can be supported 
in the component progranuning language without incurring these runtime over
heads, for example by resolving the indirection on configuring the system as in a 
configuration programming approach. 

Triggered Interaction 

Triggered conununication is based on the notions of a call-back address or event 
handler. A server registers the call-back or handler and the client triggers it. This 
basic scheme varies in a number of dimensions: 

in the way signals are named and raised. Options include signalling named 
events, raising exceptions, publishing news items, requesting service de
scriptors or changing a data item that has attached data triggers; 

• in the degree of indirection, for example an independent server may co-or
dinate registration and triggering, alternatively signals may be automatical
ly propagated backwards like exceptions from server to client to outer 
client. 

Publish-subscribe interaction allows a server to register an interest in a subject 
group and be triggered if another component publishes an item of news in that 
group (Moran, 1992). 



Chapter 5 - Distributed Programming System Architecture 109 
23rd January 1995 

5.2.2 Architecture Layering and Interface Design Concepts 

This sectibn describes some techniques that can be used to organise the interfaces 
between layers in the architecmre or to define the relationships between runtime 
support apd higher level programming abstractions. 

Pre-processors and Generation 

Pre-processors may automatically generate low level runtime support structures. 
In this way, the runtime support is hidden from the programmer. This masks the 
programmer from engineering detail and can be the basis of an abstract program
ming interface that supports portability across different mechanisms and trans
parency to the complexities of the runtime support mechanisms. 

For example, the IDL compiler is a valuable gift that the OMG has given the com
puting industry. It is used to describe interfaces and generates the necessary sup
port to hide the complexities of interfacing to the communications system behind 
higher level binding and invocation mechanisms. Specifically, the IDL compiler 
builds the appropriate code to manage proxies for remote objects, dispatch in
coming requests in a server, and manage any underlying object services. 

Generation tools may also generate installation scripts, for example a tools may 
create make files and generate loaders to build and load the software automatical
ly. This helps manage the diverse component based environment by masking 
component programmers from dependencies of the environment and complex 
build dependencies. 

System APIs 

Conventional operating systems provide system libraries of services that can be 
called to access resources and services of the operating system. These Ubraries 
can be selectively included and linked with application software. However they 
tend to support low level services that can be represented procedurally and do not 
mask complexities. 

System Frameworks 

Derivation mechanisms like inheritance provide a more abstract and flexible way 
to standardise messaging interfaces than conventional APIs. A client need only 
know that a component conforms to a given base interface or type, not the com
plete set of types provided by the component nor which implementation of the 
given type is provided. A supertype interface can standardise the interface to a set 
of object implementations. Frameworks use abstract base classes to capture inter
faces between components. 

Libraries of standard component classes usually must make some assumptions 
about other classes with whom they collaborate to provide a behaviour. Frame
works allow these assumptions to be articulated by specifying supertypes and 
messaging patterns between these supertypes. Any number of concrete imple
mentations can be derived from these abstract frameworks. This allows behaviour 
to be selectively composed by choosing different specialisations of the abstract 
component. 

Frameworks are well established in the user interface community, such as 
MacApp (Schumucker, 1986) and the SmalltaIk-80 Model-View-Controller 
(Krasner et al., 1988). They typically provide the building blocks of a user inter
face such as buttons, scroll-bars, windows and so on as well as the protocols and 
conventions by which they work together. 



Chapter 5 - Distributed Progranmiing System Architecture 110 
23rd January 1995 

Object oriented frameworks can also be used to interface to the system to provide 
object management services. This is different from a conventional API in a 
nimiber of ways: I 

• inheritance can be used to mix-in Isystem behaviour to apphcation objects, 
for example a persistence frainework may provide a class called 
Persistent_Object from which any persistent objects derive the persistence 
capability. Such classes are called mi;c-/nj. Mix-ins are base classes that are 
included to support the implementation of a class and are not valid problem 
domain generalisations for the application class. 

• the ability to mix-in behaviour means that the API may easily involve both 
downcalls and upcalls, i.e. don't call the system, the system calls you. 

• shared classes can be built to provide the interface required by a framework 
and reused across a domain, providing default behaviours everywhere they 
are used. To illustrate this consider an example of a data exchange frame
work. Data exchange between objects would usually require either naming 
conventions or naming mappings. On the other hand, a data exchange 
framework may build exchangeability into all primitive classes of the do
main. Classes built from these primitives, through aggregation, inheritance 
etc. , could exchange data automatically without name mappings or con
ventions. An example usage of this framework would be to allow a custom
er business card to be dragged between applications for example from an 
customer account statement onto a customer loan application form. 

• frameworks are extensible and customisable. A framework consist of a pat
tern of messaging between abstract classes. These abstract classes can be 
specialised to implement different custom behaviours. 

The best known examples of system frameworks are Choices (Campbell and Is
lam), Taligent's application , domain and support frameworks , NCR Co-opera
tive Frameworks , IBM's DSOM Persistence, Replication and Emitter 
Frameworks (Rymer, 1993). 

Taligent's support frameworks alone include frameworks for: distributed data ac
cess, store and forward for e-mail and workflow, transport-independent network
ing, portable I/O and microkernel extensions and runtime object services. 

Despite the importance of frameworks there is little support for their construction 
and customisation in programming environments. The ITHACA project (Prof-
rock et al., 1989) seeks to formalise binding models for constructing frameworks 
within a programming environment. There is no one universally applicable pro
tocol for plugging collaborating components together. Nor is there a universally 
accepted model for capturing abstract patterns of interactions as frameworks. In
stead ITHACA seeks a range of binding models for different problem domains 
that each provide different ways of configuring objects as applications or as reus
able frameworks. 

Framework-oriented programming necessarily requires a methodology that em
phasises capturing abstract patterns of behaviour, such as role-modelling tech
niques. 



Chapter 5 - Distributed Programming System Architecture 111 
23rd January 1995 

Proxies 

The sending of messages and the receipt of replies can be delegated to external 
proxy objects. Proxies may act as local representatives for remote objects. Prox
ies work by manipulating the reply address. Proxies introduce indirection in the 
messaging path. This provides a simple means to abandon a strict RPC protocol. 
For example, they can support caching strategies or local call semantics. 

Proxies are sometimes used to disassociate the sending or receiving of messages 
from the current thread of control, in order to add external concurrency to an ob
ject with restrictive internal concurrency. The benefits of simple procedure call 
semantics can be preserved if the proxy provides a blocking request for the orig
inal client to obtain the reply. For example, on asynchronous sends, a proxy may 
provide a token for the client to redeem later when collecting the results. 

Proxies maintain the fiexibility of message passing systems, without the difficul
ty in matching requests to repUes. They may be generated automatically by an 
IDL compiler or stub generator and created and deleted on the fly by object fac
tory services, object constructors and destructors or data marshalling code used 
to pass object references. 

A proxy need not be an object, data arguments can use proxies. A future variable 
(Yonezawa et al., 1987) is a proxy for a live data item that is being computed in 
parallel by another server. Access to a future will cause a user to block until the 
data item has been computed. Futures are similar to the redeemable token except 
that they allow control at the level of individual data arguments. Furthermore fu
tures are not object references and cannot be passed onwards as arguments. 

Meta-object Protocols and Reflective Architectures 

If the language implementation itself is stiuctured as an object oriented program, 
then the behaviour of the language can be incrementally modified by modifying 
the language objects (i.e. the meta-objects). This is the basis of the meta-object 
protocol approach. Meta-object protocols provide interfaces to the language ob
jects and allow them to be customised and extended by the programmer, for ex
ample by specialising a meta-object class. 

Proxies may be viewed as meta-objects for remote references. Meta-classes of 
(Smalhalk, 1983) can be viewed as meta-objects for classes. (CLOS, 1989) sup
ports a much richer set of meta-object protocols as detailed in (Kiczales et al., 
1991), including meta-objects for methods, generic functions, objects and class
es. Meta-object protocol techniques are widely used, for example in C-H- in ad
vanced object management (Bijnens, 1994) and in extensible language design 
(Chiba, 1993). 

By opening up the language mechanisms, the programmer can himself resolve 
the tension between the conflicting general goals of expressivity and efficientiy 
and between extensibility and backward compatibility. Different applications can 
use different versions or variants of the mechanisms for entirely appropriate rea
sons. The conventional distinction between programmer and language designer 
is blurred by meta-object protocols. 

Conventional programming systems constitute a single point in language design 
space. A language supporting meta-object protocol constitutes a whole region of 
language design space, a region that can be made expressive, efficient, compati
ble and extensible. 



Chapter 5 - Distributed Programming System Architecture 112 
23rd January 1995 

Transparencies 

Transparencies is a property of a system such that engineering detail is hidden 
from the user of the system. For a programming system the user is the program
mer. The ANSA architecture (ANSA, 1989) defines seven types of transparency: 

Access tiansparency - call semantics are identical for local and remote calls 

Location transparency - user unaware of physical locations 

Migration transparency - user unaware of object movements 

Concurrency transparency - user unaware of other users 

Replication transparency - effects of multiple copies are hidden 

Failure transparency - problems of partial failure are masked. 

Despite the existence' of ti-ansparencies, there are still two fundamental assump
tions that cannot be overlooked: that effects are not instantaneous, and that the 
right resources are required to do anything. These assumptions manifest them
selves in the interface to the programmer and should not be ignored. For example, 
call semantics must assume remote access and allow for communication latency 
and extra failures. Resources and objects must actually be deployed and allocated 
over the network. Concurrency awareness is important to avoid deadlock or ex
cessive synchronisation delays. Replication policies must be selected according 
to the availability requirements and service semantics. 

Transparency in C++ has been studied in the context of the ARJUNA project 
(Parrington, 1992). It has become apparent that transparencies are most useful if 
they can be applied selectively, i.e. selective transparency, for an example see 
(McCue, 1992). Sometimes a programmer wants explicit control of a property, 
for example for critical systems that must be deterministic. Selective transparen
cy allows him to chose which properties are explicit and which are transparent. 

Viewpoints or Projections 

In the purest object architecture, all components of the architecture are objects. 
Runtime support for high level objects is internally object oriented. This does not 
mean that all co-ordination between programming objects and runtime support 
need be implemented as object oriented relationships such as inheritance and 
messaging. Projections allow us to define different object models at different lev
els of abstraction and explicate the transformations between an object at one level 
of abstraction and the objects at the next level of abstraction that implement it. 

An example of such a transformation may be between a replicated object and the 
several replicas that implement it. A computation view is of a single object, mes
sages are sent to a single object and a single reply is returned. Yet the engineering 
view is of several objects, a message is broadcast between the replicas and replies 
are collated to form a single return. 

The transformation between projections may be viewed as a runtime support re
lationship between the high-level model and the low level model that implements 
it. This relationship may be an object oriented relationship e.g. using frameworks, 
delegation to proxies, meta-objects. Alternatively a model expressed in some ob
ject oriented modelling language may be transformed into a more sophisticated 
concrete object representation by generation using a language processor. 



Chapter 5 - Distributed Programming System Architecture 113 
23rd January 1995 

It is important to separate or distinguish runtime support relationships from other 
model relationships. This separation of concerns provides a layering in the archi
tecture that provides a framework for rationalising language design and applying 
techniques like selective transparencies and transfbrmation. The modelling tool 
at any one level need not deal with all the operational complexities of distributed 
systems, for example persistence, synchronisation, recovery, late binding and 
replication. Projections avoid semantic overload at any one level of abstraction 
by separating concerns and dealing with distributed properties more declaratively 
at higher layers. 

The notion of layers and different views of a system is widely adopted. The ODP 
architecture defines five projections each with its own modelhng language as de
scribed in (ANSA, 1989 and ANSA, 1993): 

• The enterprise projection models what the system is to do and who for. It 
explains the role of the computer system witiiin an organisation 

• The information projection models the information structure, flow, inter
pretation, value, timehness etc. It focuses on the location of information 
and the description of information processes. 

• The computation projection defines the programmers view of IT services 
including languages, APIs, application protocol stacks. 

• The engineering projection describes the execution services for processing, 
memory and conmiunications functions. It enables designers to reason 
about performance & dependabiUty of systems and trade-offs between 
mechanisms. 

• The technology projection defines the physical components in terms of 
hardware and software. 

The notion of projections or viewpoints has more widespread usefulness than lan
guage design. For example, the architectural services department of the Inland 
Revenue have adopted the ANSA projections as an organisational framework for 
analysis, procurement and technical research. This encompasses: the selection of 
techinology products and interfaces; determining the application topology; sys
tems an^ysis; business modelling; and advising on capabilities, cost, risk and 
time-scale. The framework gives them: traceability from requirement to provi
sion to impact; complete and consistent coverage of technical issues; and a com
ponent based approach to architecture design and reuse 

Other frameworks of viewpoints are popular for analytic activities rather than 
language design, especially the framework of (Zachman, 1987) and of CORE 
(MuUery, 1979). The Zachman framework provides a number of different angles 
from which to view the software system and its environment. These angles are 
tied to roles in a development project and to aspects that each role should consid
er: data, function, people, time. These angles are considered at different levels of 
abstraction. The result is a method that describes different aspects of the system 
from different perspectives. Applying such a framework results in a comprehen
sive set of well-bounded and well-integrated models. 



Chapter 5 - Distributed Programming System Architecture 114 
23rd January 1995 

5.2.3 Concepts for Defining Program Composition and Structure 

This section describes some design approaches for programming systems that 
can be used to analyse and define the structure of a distributed program. It beginsj 
with mechanisms that operate on flat structures of components where the overall̂  
structure is implicit in tihe sum of the relationships between individual compo
nents. It then considers approaches that deal with global structure explicitiy. 

Narrowing and Trading 

Two mechanisms that seem to have gamed a degree of consensus and popularity 
are trading and narrowing. 

Narrowing is the process of exploring a component's interface dynamically at 
runtime to find what one can do to it. Narrowing provides a flexible way to select 
servers when the interface required is not known in advance. It is also useful for 
safe casting of a polymorphic reference to a specific subclass. In statically typed 
enviromnents, narrowing may be associated with dynamic invocation mecha
nisms where the client composes an invocation on the fly using enumerated type 
data rather than using statically typed references. This avoids the need to include 
the type definitions for used classes and reduces dependencies between compo
nents. 

Narrowing support requires the enumeration of typing information and the defi
nition of interfaces to access and use this information. The enumeration of typing 
information is especially useful to support generic object management tools for 
browsers, configuration managers, debuggers, routers. Many of these tools can be 
implemented by writing generic narrowing code thus avoiding the need to write 
extra code for each type of object manipulated. A type repository can be used to 
find interfaces and narrowing used to find appropriate methods in these interfac
es. CORBA provides a type repository and type exploration methods to support 
tills (OMG, 1991). 

Trading is a less flexible mechanisms than narrowing, since the interface is nor
mally know in advance. Trading is used to select a server that conforms to a given 
interface. An offer of service is exported to the trader and clients import referenc
es from the trader. An offer may include the type of the server, the server name 
and various properties of the server. A request optionally includes a service name, 
type and properties required of the service. Type conformance and hierarchical 
names can be used to restrict the selection. Protocols are then required to resolve 
conflict between multiple servers. These may use server properties. ANSA pro
vides a query mechanism for matching properties(ANSA, 1989). Conventional 
directory services such as DCE Directory Services (Shirley, 1992) may select 
servers randomly. 

Trading can occur at several levels. In large system there will be many traders, 
optimised to different needs, with different naming and trading policies and inter
connected into a trading federation with context relative naming and interception 
at boundaries. 

Interface Specification and Adaptive Management 

One convenient characteristic of objects is the amount of semantic information 
that can easily be made visible in interface definitions. An adaptive system can 
exploit this information. This facilitates a declarative approach to object manage
ment. The programmer can specify the properties required of objects, using an in
terface definition language. It is up to the programming system to interpret these 
properties correctly. 



Chapter 5 - Distributed I»rogramming System Architecture 115 
23rd January 1995 

Correct interpretation requires us to develop concrete mechanisms for require
ment representation and implementation. Techniques such as meta-object proto
cols, viewpoints, configuration programming, workflow models, all facilitate the 
design of an adaptive system by breaking down the problem with well defined 
boundaries. One simple approach is to reduce interpretation to the level of trading 
where the interpreter is trading for different system services based on the seman
tic information provided in interfaces. 

Such systems are dependent on the amount of information that can be specified 
in an interface. Generically an interface can be thought of as consisting of four 
parts, for an example consider a CORBA DDL interface (OMG, 1991): 

• a specification of the composition of the interface, including interface in
heritance, code dependencies and scoping constructs like contract groups of 
services (Wirfs-Brock et a l . , 1991) and CORBA modules (OMG, 1991). 
An object may have multiple interfaces, for example a management inter
face, an application interface and a customisation interface. Likewise an in-

S terface can have many implementations. 

• a specification of the data, including declarations for attributes, data struc
tures for exceptions, and constructed data types like sequences, nested in
terfaces, unions. Data types may require extra meta-data such as the length 
of a dynamic sequence to allow distributed memory management. 

• a specification of the signatures for the operations or methods provided by 
the interface and optionally for operations required in other interfaces. This 
can be extended with extra contextual and error handling constructs, extra 
qualifiers for properties such as argument direction, operation synchronisa
tion, operation idemnipotency, and timeliness constraints. 

• a specification of object properties, for selecting servers based on semantic 
properties or for verification of suitability to meet requirements. This can 
include quality of services properties or dependability properties of the im
plementation like performance, efficiency, latency, resource usage, availa
bility, robustness, reliability and can be used to analyse requirements or to 
resolve engineering trade-offs between different competing implementa
tions. 

Quality of service management seems to be the most promising approach to adap
tive management. This involves both the specification of quality of service prop
erties and the definition of end-to-end engineering support for managing qualities 
of service and monitoring services levels, for example to avoid overloaded serv
ers. Communication filters have been used to support different quality of service 
properties like latency, bandwidth, throughput, error rates for multimedia traffic 
over broad-band networks. 

Visual Scripting Tools and Languages 

Visual tools and scripting languages are used to support visual composition and 
visual programming as described in section 4.2.2. 



Chapter 5 - Distributed Programming System Architecture 116 
23rd January 1995 

Visual scripting tools have been used extensively in windows development envi
ronments for many years. They are useful to associate windows events with ob
ject messages. For example, in Digitalks Parts a user can click on a source 
window and target window to connect an event in the source window with a mes
sage to the target window. Supported events and methods are listed in dialogues 
and can easily be selected. The links that have been set up in this way are shown 
on the screen so the progranmier can get a better view of the behaviour. Methods 
and events names are shown as labels. NeXT's Interface Builder provides similar 
facilities to connect graphic objects to underlying application objects which have 
been programmed separately. It provides a graphical editor to define the static 
layouts of the interface using standard interface objects. The configuration is 
stored as a file and can then be built and executed. Other systems allow interac
tive editing and dynamic demonstrations of the interface response without requir
ing system builds. 

Digitalk Parts and NeXt's Interface Builder provide examples of specific binding 
models used for interface building. Binding models can be provided for different 
programming tasks other than interface building. Furthermore there are a number 
of ways that a binding model can be supported in an object programming lan
guage. This can impact on the naming model and binding mechanisms: 

• binding capability can be derived through inheritance from scriptable base 
classes. These base classes may support methods and event lists that the 
binding tools use to add events, connect events to methods and lookup the 
appropriate methods. 

• a weaker variant is to derive the interface only from an abstract base class, 
forcing the class programmer to implement the capability. 

• binding capability can be embedded in proxy objects to which messages are 
delegated. Proxies may be RPC stubs, meta-objects or communication 
agents that provide indirection. 

• binding capability can be generated by an interface definition language 
processor or configuration programming language, see below. 

One limitation of event based systems is that event based programming is ex
tremely difficult and therefore inappropriate for general applications. This hmits 
its practical use to areas like GUI development. Different binding models and vis
ual scripting tools can be used more generally to enhance other programming 
styles, including synchonous method calls: 

• Dataflow programming tools use a binding model based on the separation 
of control flows and data flows. DEC's real-time integrator (literature 
available from DEC) uses visual composition to build testing software for 
real time instrumentation. CONDOR (Kass, 1992) is a constraint-based 
data flow programming environment that has a graphical interface in which 
functions are represented as boxes that can be connected along vector or 
scalar inputs and outputs to compose functions 

• Distributed systems may use a binding model that supports transparent dis
tribution of the objects across a network. This masks problems of location 
and protocol from the component programmer. For example, CORBAIDL 
generates the binding support and the association service allows tools to 
keep a handle on bindings. 



Chapter 5 - Distributed Programming System Architecture 117 
23rd January 1995 

• Scripting tools and process description languages are currentiy widely used 
in workflow management and document management systems where the 
processing and synchronisation problems are simplified by a high degreejof 
user control. A more complete survey of these tools is described in (Mac
intosh, 1994, section 7 & 8). \ 

Visual scripting is used in multimedia applications, for example ICL's In-
telliPAD (literature available from ICL) to combine medias and TEMPO 
(Fiume et al., 1987) a temporal scripting tool for animation 

• Visual scripting is used in image processing to interactively build networks 
of modules to do data input, filtering and reformatting, mapping to geome
try and rendering, for example Advanced Visual Systems /Express. 

More sophisticated binding models may be supported: 

• f f the interface to an object not only defines the services provided but also 
the services required using an indirect name, it is possible to separate com
ponent implementations from bindings to other components. In this case 
the visual scripting language may act as a language for programming-in-
the-large or a graphical configuration programming language (Kramer et 
al., 1989), removing all responsibility for binding from the components. 

• integrated language processors like an interface definition language or con
figuration programming language provides a convenient vehicle to extend 
the programming language, for example IDL may specify properties and 
constraints that are used to select components and make engineering trade
offs between different protocols. 

• an visual scripting tool may populate a repository that is accessed by other 
integrated development tools, such as browsers, configuration managers, 
tiraders and design or reuse tools. This faciUtates the design of integrated 
CASE environments. 

Configuration Programming System Design 

Configuration progranMning is defined in section 4.2.2. The key feature in con
figuration progranmiing is to use a distinct language to define program structure 
as explicit bindings between sets of object components. Visual scripting languag
es may be used as graphical configuration languages. Other configuration lan
guages are purely textual. Many configuration programming systems provide 
both textual and visual languages. 

Configuration programming adheres to the following four main principles, de
scribed in (Kramer, 1990). These principles have been outlined briefly in section 
4.2.2 at the design level. A code example, also taken from (Kramer, 1990), is 
used below to illustrate how these principles may be supported at the program
ming level: 

1) Use a Distinct Declarative Configuration Language 

We can abstract away from programming concerns by using a distinct configura
tion language for structural specification. A separation of structural description 
from basic component programming facilitates comprehension, interpretation 
and manipulation of the system in terms of its structure. In order to make such 
specifications more amenable to analysis, interpretation and manipulation, the 
configuration language should be declarative, describing what the structure is, 
not how it is constructed. 



Chapter 5 - Distributed Programming System Architecture 
23rd January 1995 

118 

The example code in Figure 20 uses the CONIC configuration language to define 
a patient module as a composite of two components. It is assumed &at the two 
components, the scanner and the monitor, are defined in the programming lan-
gage. They form part of a patient monitoring system that periodically reads sen
sors attached to a patient and sends alarm messages i f readmgs exceed thresholds. 

scanner 
reading 

monitor bed 
reading 

alami 

patient 

bed 

alarm 

groupmodule patient; 
use monmsg: bedtype, alarmstype ; 
use scanner, monitor ; 

exitport alarm: alarmstype ; 
entryport bed: signal type reply bedtype ; 
create 

scanner; 
monitor; 

link 
scanner.reading to monitor.reading; 
bed to monitor.request; 
monitor.alarm to alarm; 

end. 

Figure 20 Configuration script for a patient 

The configuration language script is interpreted by a configuration manager 
which downloads code and instantiates processes. By being declarative, the actu
al order of interpretation operations is determined by the configuration manager. 

2) Define Context Independent Types using Indirect Naming 

Context independence means that the component makes no direct reference to 
any non-local entities. This requires that components access only local data and 
use locally named ports as indirect names for other components. Ports are bound 
to connected components transparently to the components themselves. 

Defining components as types permits reuse by instantiation in different contexts. 
True context independence would imply that components can be integrated with
out any refinement or recompilation. Component types require well defined in
terfaces describing interaction points sufficiently to permit validation of 
interconnections. 

In the above example, messages are sent via the exitports and received via the en-
tryports. The type definitions are imported from the definition modules by the use 
clause. Internal ports may be linked together as in reading. Alternatively internal 
ports may be linked to external ports as in bed that are resolved at a higher level 
in the composition hierarchy. 



Chapter 5 - Distributed Programming System Architecture 
23rd January 1995 

119 

3) Hierarchical Composition 

j The configuration language should permit complex component types to be de-
i fined as a composition of interconnected instances of more basic types. Such in-
! stance hierarchies expUcate the instance structure, making interpretation and 

distribution clearer and simpler than with other systems based on type hierar
chies. Hierarchical composition is an viable alternative to type extension mecha
nisms like inheritance or subtyping. 

A ward consists of a nurse and a series of patients that are named by their bed 
number. The nurse component is assumed to have been defined as a group mod
ule in a similar way to the patient as above. Figure 21 shows the definition of the 
ward as a higher level composite involving components that are themselves com
posites i.e. patients and nurses. 

bedl bed 

alarm 

bed [1] 

blarm[l] 

bed2 bed 

alarm-

ward 

bed [2] 

alarm [2] 

bed [3] 

alarm [3] 
nurse 

system ward; 
use patient, nurse; 

create 
bedl:patient at nodel ; 
bed2:patient at node2 ; 
nurse:nurse at node3; 

link 
bedl.alarm to nurse.alarm[l]; 
nurse.bed[l] to bedl.bed ; 
bed2.alarm to nurse.alarm[2]; 
nurse.bed[2] to bed2.bed ; 

end. 

Figure 21 Configuration Script for Hierarchical Composite 

The configuration language also describes the physical allocation of group mod
ule components across the network as is illustrated by the at clauses. 



Chapter 5 - Distributed Programming System Architecture 120 
23rd January 1995 

Components at the bottom of the hierarchy like monitor and scanner are sequen
tial tasks, implemented in the progranaming language. In CONIC the program
ming language is Pascal extdided with message passing. A runtime executive is 
allocated to a logical node w)iich is identified as a group module like the patient 
and nurse. Although the indirection across links is removed at runtime and the 
structure is flattened, the logical node still acts as the unit of distribution, failure 
and change and links between logical nodes may incur the overhead of interproc
ess communication. 

Rex (Kramer et al., 1992) is investigating another hierarchical structure called a 
domain which is used to group components to which a management policy is ap
plied. 

4) Programming Change 

Changes should be expressed and managed. Configuration languages allow 
changes to be expressed as structural changes to the component instances and 
their interconnections. Capturing and managing change allows evolution and re
use. Changes can be planned or ad-hoc. 

CONIC allows dynamic changes to a running system to be programmed as an in
cremental edit rather than the tiaditional approach of regenerating the build. For 
example a patient may be added to a ward by the following change script that may 
be invokable at runtime: 

change newbed; 
create 

bed:patient at node2 ; 
Unk 

bed.alarm to nurse.alarm[n]; 
nurse.bed[n] to bed.bed; 

end. 

Figure 22 Change script for adding a patient 

It is important to prevent interference between concurrent changes and ongoing 
interactions. Invocation of change scripts may be restricted to enclosing compos
ites at that level which are responsible for serialising changes. For ad-hoc changes 
we need constraints to prevent interference. Application consistency may be pre
served by change rules to derive boundaries for change transactions and provide 
the ordering and control of changes. Affected parts of the system will need to be 
identified and put into a quiescent state so as not to cause partial effects on inter
rupted activities. Changes that remove components must support finalization ac
tivities to tidy the environment. Changes that add components may need to 
support initialisation activities 

Tools Requirements for Configuration System 

In order to support a configuration system, a minimum set of tools must be pro
vided: for off-line editing, compilation, analysis, verification, and for runtime 
support for constructing, reconfiguration, loading, execution and monitoring. 



Chapter 5 - Distributed Programming System Architecture 121 
23rd January 1995 

In a configuration system, objects, links, interaction entry and exit ports and com
posite aggregates are represented explicitiy. These primitive components offer 
considerable advantages for representing various structural abstractions. In par
ticular, tools could easily be provided to capture abstract frameworks for parti
tioning services between objects; to compose and decompose object designs as 
subsystems; and to expUcitiy define and dynamically manipulate the program 
structure. Requirement capture tools may also structure requirements. 

There are two key approaches to implement these integrated tools: 

• A single repository and representation may be shared by all the tools. 

• Translators and transformation tools may be used to make different repre
sentations available to other tools. 

Workflow Models 

The term workflow comes out of the enterprise modelling conmiunity. Work
flows model the route that any particular piece of work takes to ensure it reaches 
each of the people who must process it in an appropriate order. To make good use 
of a workflow the process and structure of an organisation must be understood. 
Most workflow products provide a process description language PDL and script
ing tools for this purpose. 

Existing work flow tools have limited synchronisation and tool integration capa
bilities. They are usually built on top of e-mail, provide simple client server APIs 
or are combined with Document Image processing DIP systems. This makes 
them most appropriate to people-centric tasks such as a document review and ap
proval. Typically workflow modelling tools manage work routing, queuing and 
alarming to the relevant people. Further information on products can be found in 
(Macintosh, 1994, chapter 8; Marshak, 1993 ; Marshak, 1994). 

Workflow modelling potentially has more general applicability for automation of 
complex processing tasks. Automated workflows could route work to objects that 
performed the processing. This would require a mapping between worlrflow and 
actions or transactions at a design level. For example, workflows may become 
data flows and control flows in the design. Workflow formalisms might also be 
useful in behavioural modelling and in capturing non-functional requirements 
such as dependabilities, perhaps even driving engineering trade-offs between dif
ferent architectural components. Unfortunately this level of integrated support 
and automation is not provided by existing workflow products that focus on user-
level processing rather than complex data processing. 

5.3 Summary of Chapter 

This chapter reviewed some of the techniques and design principles that can be 
used to define a distributed programming system architecture. The term program
ming system is used to signify both programming language and operating system. 
A programming system architecture is concerned with the relationships between 
the runtime support and the programming interfaces and APIs. 



Chapter 5 - Distributed Programming System Architecture 122 
23rd January 1995 

Distributed systems are structured by processes at the most basic level, and proc
ess communication is important. Portable systems must ensure the system be
haves consistentiy over changes to the operating or device environment. 
Interface design and abstraction layers are important to isolate applications from 
backend volatility and encoding biases. Open integration systems must ensure the 
substitutability and interworkability of components. It is therefore important to 
provide a high level rationalisation of the overall design of the integrated system 
and for the glue that binds components together. These important areas of process 
communication; layering and interfacing; and structuring and binding were dis
cussed in detail in three sections: 

The first section described a number of different communication mechanisms for 
components on different hard processes or on different nodes in the network.This 
includes unstructured data streams, unidirectional messaging, network program
ming chaimels, remote procedure call, remote method invocation, indirect inter
action, and triggered interaction. 

The second section described some techniques that can be used to organise the 
interfaces between layers in the architecture or to define the relationships be
tween runtime support and higher level programming abstiactions. This included 
pre-processors and generation, system APIs, system frameworks, proxies, meta-
object protocols and reflective architectures, transparencies, and viewpoints or 
projections. 

The last section described some design approaches that can be applied by pro
gramming systems to analyse and define the structure of a distributed program. It 
began with mechanisms that operate on flat structures of components where the 
overall structure is implicit in the sum of the relationships between individual 
components. This includes narrowing and trading, interface specification and 
adaptive management. It then considered approaches that deal with global struc
ture explicitiy.like visual scripting, configuration programming, workflow mod
elling. 

The next chapter summarises the survey of techniques and concepts and defines 
an evaluation framework to be used to position and evaluate the OpenBase archi
tecture. 



Chapter 6 - Evaluation ftamework 123 
23rd January 1995 

Chapter 6 Analytic Framework 
During the survey of distributed objects, it has become clear that distributed sys
tems techniques and products do not relate to each other as parts of a total system. 
There is not yet any single grand architecture, nor is it likely that there will ever 
be one. Rather there are a number of styles of distributed system tiiat use quite 
distinct techniques and architectures. The scope required of a general purpose an
alytic approach to support all tiiese styles is too large to be unified by a smgle for
malism. Likewise defining a general-purpose architecture design as a set of 
interrelated tools would have limited usefulness to different styles of system. 
Consequentiy it is difficult to rationaUse a choice of style and a choice of archi
tecture for integration across the enterprise. 

The only way to tackle this dichotomy is to present a separation of concerns. A 
set of related frameworks can be defined to portray the architecture from a 
number of distinct abstract perspectives. Such a separation of concerns facilitates 
the orderly comparison of different solutions at different levels of abstraction. 
General purpose frameworks to support development of distributed systems in
clude the ANSA frameworks (ANSA, 1993) and Zachman frameworks (Zach-
man, 1987). This section provides a simpler set of frameworks based loosely on 
the approach of Blair (Blak et al., 1991). 

6.1 Overview 

Distributed object systems differ in many ways. It is possible to compare them in 
a number of different perspectives. One simple way to capture differences, is to 
explicitiy define key variables in each perspective. 

The first part of this section introduces a framework of four significant perspec
tives and defines key variables in these perspectives. This summarises the broad 
survey of distributed systems in a series of classification hierarchies whose ele
ments are the instantiations of the variables. This defines the problem space using 
the elements in Figure 23. 

Perspective n 

Qjan variable rvari variable 

instantiations instantiations 

Figure 23 elements defining the problem space 

The next subsection takes each perspective in turn and defines the feature that is 
most important to optimise to facilitate advanced enterprise wide computing. It 
relates each feature to the key problem or impediment that needs to be overcome 
in order to achieve the optimum solution. The impediments are used to position 
four significant new design principles for enterprise-wide computing. This de
rives an abstract solution space using the elements shown in Figure 24. 



Chapter 6 - Evaluation framework 
23rd January 1995 

124 

variable 

variable 

feature to 
optimise 

Perspective n 

impediment princlple ;̂:̂ : 

Figure 24 elements used to derive the abstract solution space 

The last section merges these new principles with Blair's principles and perspec
tives of object technology, defined in chapter 2. The combined result is summa
rised in a unified classification hierarchy of design principles. This hierarchy is 
related back to the goal framework of chapter 3 to define a generaUsed design 
space for enterprise objects, as shown in Figure 25. This framework maps goals 
to principles to specific instantiations of the design variables and thus captures an 
abstract rationale for making decisions between otherwise disjoint low level so
lutions. 



Chapter 6 - Evaluation framework 
23rd January 1995 

125 

Componentisation Goals 
Goals 

Virtualisation Goals 

Encapsulation 

Principles 

Polymorphism 

principle 1 ? 

Interpretation 

_ rationale? 
perspectives of / ^\ 
enterprise / \ 
objects / \ 

rationale ? 

principle 2 ? 

principle 3 ? 

—I 
principle 4 ? 

/ Ln 

I vanable vanabe 

Specific Instantiations of Techniques 

6.1.1 

Figure 25 generalised design space for enterprise objects 

This unified design space provides an analytic framework for rationalising design 
decisions in OpenBase and is used as an evaluation framework in the rest of the 
thesis. By providing an abstract structure for the design space, it is also found use
ful to structure an overview of the architecture. 

The importance of an evaluation framework 

An evaluation framework is important for the following reasons : 



Chapter 6 - Evaluation framework 126 
23rd January 1995 

• A major problem in understanding object oriented and distributed system 
technologies is to bridge the considerable gap between abstract principles 
and concrete techniques and mechanisms. It is difficult to relate techniques 
back to principles. Because of this difficulty, techniques tend to be evaluat
ed and compared in an ad-hoc manner. 

• Many of the business requirements for an enterprise system are non-fiinc-
tional, for example the requirement for openness or reusabihty. It is also 
difficult to relate these ambiguous requkements to specific principles and 
approaches. Consequentiy relevance and traceability to requirements is dif
ficult to establish. 

• As rr is becoming more commoditised, the rate at which conmiercial-off-
tiie-shelf products (COTS products) are appearing is increasing exponen
tially. This invalidates conventional specification-driven approaches. The 
emphasis must shift from bespoke development to COTS selection and 
from specification to COTS integration. Conventional frameworks of ana
lytic processes must give way to frameworks that support selection and 
technology integration. 

• Distributed object technology is too often defined by specific low level pro
gramming mechanisms like inheritance and RPC. This leads to narrow-
minded definitions of solutions. A fundamental reevaluation of the under
lying principles and goals is required to regain a merit-based, expansive vi
sion that doesn't exclude viable alternatives. 

• These mechanisms represent disjoint technology choices yet they have 
overlapping goals, for example messaging and remote procedure call both 
provide high level interaction across a network. The disjoint yet overlap
ping nature makes it particularly important to be able to rationalise choices. 

Consequentiy something is needed to help elucidate the essential fundamental de
sign principles and to map requirements to these abstract principles and from 
principles to specific techniques, to capture design rationale and support both 
traceability and orderly selections of COTS. 

6.2 The Problem Space 

Perspectives on Distributed System Architecture 

The following perspectives have been defined based on the survey of distributed 
systems: 

the motivational perspective, covering the scope and intent of the system. 
This characterises the system according to typical profiles of technical 
goals, as defined in chapter 2 and 3. 

• the constituency perspective, covering the physical environment, i.e. the 
network architecture: it's technology, scale and proprietaryness, and the au
dience of the system: its various users, developers and owners. This char
acterises a system according to it's inherent physical, application domain 
and cultural diversity, as discussed briefly for OpenBase in chapter 1. 

the capability perspective, covering instrumentation and utility. This per
spective characterises a distributed programming system according to the 
efficacy of it's coordination/communication mechanisms, and the potency 
of it's programming interfaces, as described in chapters 4 and 5. 



Chapter 6 - Evaluation framework 127 
23rd January 1995 

• the cognitive perspective, covering the cognitive processes of system de
velopment and the concepts around which software systems are organised. 
This characterises the approach to specification and the partitioning fcon-
cept used as a building block for large scale systems, as described in chapter 
4. ; 

6.2.1 Motivational Perspective 

The first perspective to consider with respect to positioning third party technolo
gies and tools is the motivational perspective i.e. the business needs and goals that 
the tools are geared to satisfy. This has already been discussed in more detail in 
Chapter 3. We consider three profiles of goals here that summarise the ways goals 
are typically mixed. 

• workstation front-ending - this is essentially concerned with adding a re
mote presentation layer to conventional mainframe applications that ex
ploits the power and user friendliness of workstations. As such it is 
primarily concerned with GUI aspects of abstraction and evolution goals, 
as well as platform conunoditisation, and application reengineering goals. 

• distributed application - some distributed applications seek to exploit the 
extra potential that a distributed solution offers to meet performance and 
dependability goals, such as fault tolerant applications. 

• enterprise model - enterprise modelling support seeks to estabhsh an open 
distributed computing backbone to an entire organisation as the basis for in-
terworking and sharing of results. In addition to interworking and sharing, 
such systennis may also emphasise a range of technical goals: federation, ap
plication re-engineering, group-working, modelling and large-scale reuse 
of business models. 

The breakdown of this perspective into instantiations of key variables is shown 
in Figure 26. 

intent 

PWS front- distributed enterprise 
ending application model 

Figure 26 design variables for motivational perspective 

Distributed development tools can be positioned according to these profiles, de
spite deceptive marketing literature. Failure to take into account the full scope of 
goals, limits the applicability of products that are really targeted at the first two 
strategies. Yet products suitable for enterprise integration are often immature, 
partial solutions from small vendors. 



Chapter 6 - Evaluation framework 128 
23rd January 1995 

The current generation of programmable workstation fi-ont-ending tools includes 
prodticts like Easel and Powerbuilder. With these products it is quick and easy to 
build a user interface. However many tools in this category have grown in a worid 
of outmoded form-based manual business processes and merely allow the design
er to blend existing application logic with better presentation faciUties. Their poor 
business modelling capability results in poor flexibility and maintainability, es
pecially when tools embed proprietary scripts in a user interface screen or hard
wire data items to data values in a relational database. Their scaleability is often 
poor, with limited support for multiple data sources, distributed databases and 
high transaction volumes. 

Distributed application development tools generally build on specific distributed 
programming mechanisms such as distributed transaction monitors like Encina 
and Tuxedo and reliable multicast protocols like ISIS. Whilst these mechanisms 
facilitate fault tolerance, high availability, data integrity, parallelism etc., they are 
often limited in scope and too proprietary for general-purpose use since they are 
based on specific technologies. 

Distributed enterprise modelling tools support a broader range of technologies. 
This includes new areas of application like business process re-engineering and 
co-operative working. They offer improved commercial viability and flexibility 
through open systems, downsizing, distributed objects etc. This category includes 
products supporting integrative standards like CORBA and DCE. 

6.2.2 Constituency Perspective 

The second perspective in which to position technologies and approaches is ac
cording to the constraints imposed by the target enviroimient. This is important 
to any infrastructure development. Two particular aspects of this perspective are 
considered: the physical diversity of the computing network and the development 
cultures that surround them. This perspective must consider legacy system and 
learning curve factors. 

Protocol diversity 

We can classify environments crudely according to the degree of physical diver
sity: 

proprietary environments, based on a single platform type. 

homogeneous network operating system, where a single type of network 
operating system integrates clients and servers on different machines, for 
example OS/2 L A N server or novell. 

• heterogeneous network, with multiple operating systems integrated using 
open systems technology under a single administration. 

• federated heterogeneous network, spanning different technology and ad
ministrative domains that may use different protocols. 

The diversity of a distributed system in terms of platforms, protocols, administra
tive domains is an important constraint. Unification and integration requires high
er levels of infrastructure abstraction to map across representation/encoding 
biases. Capacities, timescales and resource management issues may also affect 
design. 

Objects support both infrastructure abstraction and resource management: 



Chapter 6 - Evaluation framework 
23rd January 1995 

129 

• Objects communicate using an unified mteraction model that hides diversi
ty of mechanism. They also lend themselves to declarative interface defini
tion mechanisms that can define unified encodings across a heterogeneous 
system. 

• Resource management can be integrated with object management proto
cols. Objects not only encapsulate fiinctionality and data but they also en
capsulate what can be managed by the system. Objects can become the unit 
of storage, the unit of mobility, the unit of replication, and the unit of fail
ure. Sfrong resource consfraints favour finer grained object management ar
chitectures to minimise redundancy. 

Developer cultures 

There are three dominant developer cultures: 

• PC or Mac, the desktop world is a world of high volume general purpose 
products, fraditionally personal productivity tools like word processors, 
spreadsheets. The growth of networked desktops has resulted in an explo
sion of new styles of application including file servers, mail and remote 
data acquisition. This culture has established their own de facto standards 
like OLE, ODBC. 

• Database, the impact of relational database technology and 4GL tools has 
led to a specialisation in skills between database experts providing corpo
rate information services and other programmers writing bespoke appHca-
tions. Database applications support operational and decision making 
activities of a business, including enterprise database integration. This cul
ture have estabhshed their own standards like SQL. 

• Control, the control programmers culture is itself divided, mainly between 
the mainframe worid of COBOL, ABACUS etc. and tiie UNIX worid. Ap
plication styles range from fransaction monitors to complex technical appli
cations like defence and telecommunications. This culture have also 
defined their own standards like OSF/DCE. 

cultures 

P C or 
nnac 

database control 

proprietary 

platform 
uniformity 

homogeneous 
network 

heterogeneous 
network 

federated 
heterogeneous 

Figure 27 key variables in the constituency perspectives 



Chapter 6 - Evaluation framework 130 
23rd January 1995 

6.2.3 CapabiUty Perspective 

An important perspective] mfluencing the suitability of technologies is tiie capa
bility required of the prdgranuning system. This includes the efficacy of the 
mechanisms used to coordmate components and the potency of the programming 
interface. 

The type of facility required by applications is important in determining both of 
these requkements. For example, systems tiiat are merely concerned witii dissem
inating information are less complex than those tiiat require information to be up
dated consistentiy and effectively. Their simpUcity means they can use simple 
coordination schemes and less sophisticated management engines. 

Design variables are chosen to reflect different types of facility. This includes : 

• the level of coordination between components 

• the degree of abstraction in the programming interface. 

The level of coordination 

The level of coordination typically increases with both the complexity and the 
predictability of the application. 

AppUcation complexity affects the need for structure. Less complex apphcations 
do not require high levels of coordination between components. The simplest 
schemes share unstructured data such as documents. As the information becomes 
more complex, structured data becomes important. Likewise as the processing 
becomes more complex, control structures become more important. 

UnpredictabiUty limits the usefiilness of rich static typing systems. Synchronous, 
prefabricated RPC-based interfaces provide rich semantics. However it is diff i 
cult to maintain such rich semantics for an unpredictable interaction, such as an 
ad-hoc query on a database entity. Flexibility can be built into a system by devel
oping more sophisticated programming features such as polymorphism, schema 
evolution, dynamic requests, concurrency. A simpler solution is to adopt weaker 
forms of coordination, such as untyped asynchronous messages or interpreted 
queries. 

Asynchronous event driven architectures with multitasking user interfaces effec
tively take confrol away from the programmer and give it to the user. Interactive 
ad-hoc queries on a relational database do likewise. 

The following instantiations of types of facility are intended to reflect increasing 
levels of coordination both structurally and semantically: 

• information dissemination - unstructured serial data, for example mail, text 
retrieval systems. 

• document processing - This includes linked documents and group working 
systems that support workflows. 

data processing - This includes transactional systems with simple flows of 
control between users, the application and the database server to perform 
query requests. 

• data distribution - This includes replicated objects, distributed databases or 
batch transfer programs that download data. 



Chapter 6 - Evaluation framework 131 
23rd January 1995 

• distributed presentation - This includes event-driven windows GUIs. 

• distributed function - Using functional abstraction with remote procedure 
call structures and typed arguments. This includes applications where the 
functionality is separated to presentation layers, logic layers & data man
agement layers that are allocated accordingly. 

• distributed objects (business objects) - uses semantically rich class and ob
ject structures with method invocation or messaging. 

These categories map cleanly onto the technology choices of section 4.2.1, also 
shown in Figure 28, including: 

• distributed file system - For example NFS. 

• document architectures - For example OpenDoc and OLE. 

• remote data acquisition - This typically involves querying using a vendor 
neutral language, for example SQL. Relational queries support interactive 
ad-hoc access and application specific views. They may also support pro
cedural SQL using stored procedures, precompiled SQL, and SQL looping 
and branching constructs. 

distributed database - This includes distributed relational and distributed 
OODBMS. Distributed relational databases are an extension of RDA to 
support distributed transaction processing using transaction monitors and 2 
phase commit protocols. 

• events - This includes X-windows events. Event driven architectures place 
control in the hands of the user or the system. This facilitates scheduling of 
activities to exploit the inherent parallelism of the system more fiiUy. 

• store & forward messaging and queuing - this includes e-mail, asynchro
nous messaging and pubUsh-subscribe interaction protocols. Abstract se
mantics can be defined as standard protocols using formatted messages. 

• remote evaluation - this includes telescript, where a message is interpreted 
and executed at the server. This allows the server to exhibit ad-hoc behav
iour that is encoded in some language as a script in the message. 

• remote procedure call/ remote method invocation (RPC/RMI) - This in
cludes DCE or CORBA. RFC provides more abstract semantics that any 
other type of communication using rich abstract data types. This can give 
better semantic integrity through type specific constraints, more elaborate 
distributions of functionality and data, thus avoiding bottlenecks, and easier 
federation using federated object managers. 



Chapter 6 - Evaluation framework 
23rd January 1995 

132 

level of 
coordination 

documents control 
structure 

structured 
data 

information 
dissemination 

document 
processing 

data 
distribution 

distributed distributed 
presentation function 

data 
processing 

distributed 
objects 

communications 
technology 

shared views 

quenes 

distributed 
file system 

document 
architectures 

remote data 
acquisition 

mes 

windows mail 
events 

remote 
eval. 

R P C or 
RMI 

distributed 
database 

Figure 28 levels of coordination and corresponding technologies 

Level of programming interface abstraction 

The level of abstraction in the programming interface to the system depends on 
the nature of the interface and breaks down into the interface types defined in sec
tion 5.2.2, as follows: 

• orthogonal low level system libraries - a programming interface consisting 
of a system API as for conventional operating systems. This represents a 
low level DIY (do-it-yourself) approach. Example: UNIX sockets (Stevens, 
1990). 



Chapter 6 - Evaluation framework 
23rd January 1995 

133 

orthogonal system class library - a programming interface defined as sys
tem classes that can be called, as for an A P I or inherited. This represents a 
high level D I Y approach. E x ^ p l e : C-H- class libraries for P O S I X . 

reflective customisation - a meta-level programming interface is provided 
by meta-objects that define dr are defined by the computational model of 
the programming language. This represents a meta-level D I Y approach. 
Example: proxy classes, and meta-classes. 

distributed programming model - tying together object management, inter
action management and resource management in the computational model 
itself. This a generative approach. Example: C O R B A I D L . 

viewpoints - as for the programming model, but where there are several dis
tinct but related object models i.e. views of the objects. These integrated 
views deal with management concerns at different levels of abstraction. 
This is a generative/transformational approach. Example: A N S A projec
tions ( A N S A , 1993) or I S O O D P viewpoints. 

system 
library 

Level of 
programming abstraction 

6.2.4 

class 
library 

reflective 
programming 

)uted 
object 
language 

viewpoints 

Figure 29 level of progranuning system abstraction 

Cognitive Perspective 

A development method may be characterised by the cognitive processes em
ployed to develop a system, for example processes of analysis and interpretation 
, synthesis and insight, model generation , hypothesising and making implemen
tation decisions. These cognitive processes in combination constitute the devel
opment process. The development process may be articulated as a methodology. 
This framework is about the method and concepts used to develop a system. 

There are many approaches to building distributed systems. These vary in the 
granularity and type of organisational concepts used as a building block for the 
system and in the way the system is specified and verified. 

The organisational concept varies between methods that focus on function
al subsystems, on processes, on applications, or on fine-grained objects. 

• The specification approach varies according to whether the approach is 
specification-driven or composition-driven, in the relative emphasise 
placed on functional decomposition and composition techniques, and 
whether it is iterative or generated by transformation. 

The breakdown of this perspective into instantiations of key variables is shown 
in Figure 30. 



Chapter 6 - Evaluation framework 
23rd January 1995 

134 

partitioning 
concept 

subsystem processes applications objects functions 

specification 
approach 

decomposition generation or 
transformation 

iterative 
refinement 

assembly 

Figure 30 variables in the cognitive perspective 

6.3 The Solution Space 

Definition of Key Features, Impediments and Design Principles 

6.3.1 Motivational perspective 

The key feature that is emphasised in an enterprise wide system is the degree of 
sharing and reuse across the enterprise. The scope of the system is no longer lim
ited to a single application on a single computing platform. Component reuse 
right across die enterprise demands a greater investment in the components. As 
we adopt higher degrees of distribution we need to move away from monohthic 
proprietary world into a well defined world of standard plug and play compo
nents. 

Conventional approaches to software development, such as structured methods, 
tend to focus on the whole solution. The finer parts are then defined in the context 
of the larger parts, for example by hierarchical decomposition. This necessarily 
results in more contextual dependencies between the parts and the whole which 
limits their reusability. The overall solution is not reusable only components of 
the solution. 

Likewise development that is targeted at a specific platform generally results in 
proprietary solutions that can not be ported across the enterprise. System depend
encies also limit the reusability of the parts. 



Chapter 6 - Evaluation framework 
23rd January 1995 

135 

The key impediment in this perspective is therefore the contextual and system de
pendencies. Source code introduces a high degree of specificity that makes large 
scale reuse unlikely. The general principle that characterises the solution space is 
the principle of component insulation both insulation from contextual dependen
cies between components and insulation from system dependencies. This princi
ple generalises those techniques that achieve contextual independence like 
indirect naming, runtime type exploration, partial specification, transformational 
generators, abstraction layers, virtual interfaces and object wrappers. This is 
shown in Figure 31. 

Motivational Perspective 

intent 
'S^haring 
& reuse 

contextual 
dependancies' 

msulatto 

Figure 31 solution space in motivational perspective 

The basic problem is one of context isolation, context representation and interpre
tation. There are two basic approaches: generation based and composition based. 

• Specification-driven generation techniques build contextual independence 
into the tools and transformations themselves allowing tools to be reused to 
interpret specifications and generate application in different contexts. 

• Composition allows contextually independent components to be config
ured in different patterns in different contexts. Contextually independent 
components have limited knowledge of bindings to other components. This 
is facilitated by indirect naming and various types of polymorphism such as 
subtyping or generics (representations with parameterised contexts). 

6.3.2 Constituency perspective 

The key feature in this perspective is the diversity of the system at three levels: 

• different types of user or developer 

the different types of application 

• different types of technology. 

Whilst it is desirable to support diversity to match the style of the infrastructure 
to the diverse local needs, an enterprise system needs to provide some unified 
control to facilitate overall coordination and seamless integration. 

The main problem is achieving a balance between unification and diversification 
across these levels. The dichotomy between the two can be broken through the 
use of standardised layered protocols. 



Chapter 6 - Evaluation framework 136 
23rd January 1995 

Protocol Standardisation makes the scope of the diversity explicit and managea
ble. Protocol layering allows the diversity in one layer or level to be unified in 
another layer. Traditional communications stacks such as the OSI stack, support 
diversity in lower layers whilst unifying the upper layers. This principle may also 
be applied at the application level. For example, application engineers need a uni
fied protocol for plugging components togedier. A high level of plug compatibil
ity is unlikely unless the components themselves conform to protocols governing 
their interfaces. This does not stop these components from having diverse imple
mentations and behaviour or using diverse mechanisms internally. 

Protocol should govern the application interfaces ( for pluggability), the system 
interfaces ( for portability) and the management interfaces ( for configurabiUty 
and administration). 

The granularity at which we require protocol is rapidly getting smaller as the IT 
world evolves from the vertical proprietary world to the horizontal open systems 
world to the grid-like world that is the real commodity world. We can not expect 
a single open system standard to permeate the entire enterprise for all time, hence 
we need to evolve and adapt standards both horizontally and vertically. This is 
illustrated in Figure 32. Standard protocols are required at every node in the grid. 
Given this granularity, is not surprising that standards are adopting standard ob
ject models at all levels in the architecture. 



Chapter 6 - Evaluation framework 
23rd January 1995 

137 

IBM Sun D E C HP 

venaors 

The old vertical 
proprietory world 

applications 

middleware 

] operating sys 

K \ \ \ \ \ \ \ \ \ \ 3 hardware 

type of 
component 

The horizontal open 
systems world 

applications 

middleware 

operating sys 

hardware 

venaors type of 
vendor 

The real commodity world 
( differentiated horizontally and vertically) 

Figure 32 the evolution of the commodity world 

The principle of standard protocols generalises a number of different techniques 
that can be used to specify or restrict development. This includes communica
tions standards, operating system standards, object frameworks, inheritance mix-
ins, APIs, message formats, interface definition languages, specification languag
es, visual binding models. 



Chapter 6 - Evaluation framework 
23rd January 1995 

138 

platform 

Constituencu Perspective 

^ ^ 

unification 

culture 
diversity 

Figure 33 the solution space in the constituency perspective 

6.3.3 Capability perspective 

The key design variables for infrastructure development introduced in this per
spective are the level of coordination and the level of programming system ab
straction. The level of coordination and the level of abstraction are both 
concerned with the power of the programming system. This is particularly impor
tant in a distributed enterprise to avoid encumbering the programmer with too 
much complexity. 

Distribution brings new complexities such as extra failure modes, indeterminent 
communication, concurrency, insecure communication, costly communication. 
Enterprise systems also bring the added complexity of heterogeneous federated 
systems and the need to map across representational/encoding biases. It is impor
tant to mask as much of this complexity as possible, without compromising on 
efficiency. 

The key feature to optimise is the expressivity of the programming system to al
low the programmer to efficiently coordinate components so that the nett system 
behaviour achieves the required effect. Two interacting components may con
structively cooperate. Two non-interacting components may destructively inter
fere with each other. Coordination is essential and is facilitated by high level 
abstractions: for managing interactions, i.e. control and data flows; for managing 
resources, i.e. scheduling and distributing components; and for composing be
haviours across components. The ultimate progranmiing goal is to support both 
declarative specification, where the programmer describes the required system 
properties without needing to consider actual mechanisms, and compositionality, 
where a composite component derives the properties of its components. 

The main impediment in providing more powerful interfaces is that of efficiency. 
Complexity can be masked by high level abstractions and sophisticated automat
ed management mechanisms. However it is difficult to do this efficiently. Ab
straction usually introduces an extra overhead in the runtime support. This is a 
problem that has plagued 4GLs. Too many management overheads can cause se
rious deterioration of system performance. 

There are usually trade-offs to be made in selecting management mechanisms. 
Therefore, an essential capability is to have control over the management mech
anisms. Different parts of the system will have different dependability require
ments and require different trade-offs. 

The principle that best sums up solutions to these impediments is the principle of 
providing selective properties, where declarative properties can be selectively 
specified at two levels: 



Chapter 6 - Evaluation framework 
23rd January 1995 

139 

• a component can selectively choose the system properties that it requires 

• a composite component can selectively derive the properties of its compo
nents. 

These properties range from low-level service properties of the conmiunication 
system such as security properties of the messaging system to high level depend
ability properties such as fault-tolerance, timeliness, availability. 

The principle of selective property specification generalises three types of tech
nique: 

• techniques that provide declarative properties, such as viewpoints, selective 
transparencies and specification languages, 

• techniques that faciUtate derivation of abstract properties, such as service 
classification taxonomies, delegation and cluster managers, 

• techniques that support customisation, such as system frameworks, meta-
object protocols, protocol negotiation, poUcy parameterisation, stub/proxy 
subtyping. 

Capability Perspective 

coordination 

abstraction 
efficiency 

jorpperiigSi 

Figure 34 solution space in capability perspective 

6.3.4 Cognitive perspective 

An enterprise-wide system must allow the seamless integration of software com
ponents across an enterprise and maintain the flexibility to evolve the system. 
Conventional process-centric software development approaches are not suitable 
because they are geared towards specific problems. This clear project-centric fo
cus leads to bespoke point solutions that are difficult to integrate. There is little 
investment in finding general-purpose solutions that cross application bounda
ries. Consequently these point solutions do not fit together easily nor evolve eas
ily with changing problems. What is required is a product-centric approach that 
focuses on packaging generally useful solutions for reuse across problems. 

The key feature in this perspective is therefore the degree of commoditisation i.e. 
product-orientation as opposed to process-orientation, of the development ap
proach. Necessarily a product must be defined clearly. Commoditisation is the 
market result of the customer being more concerned with the service or function 
(the what) than the implementation (the how). Commoditisation arises when 
competition moves to the quality and cost of implementation and away from de
fining the characteristics of the product itself. A reuse strategy is flawed i f the ef
fort to understand a product is equal to the effort to produce a new one from 
scratch. 



Chapter 6 - Evaluation framework 
23rd January 1995 

140 

In order to allow programmers to organise themselves as producers and consum
ers of each others product, we must increase the tangibihty of the software engi
neering processes and prpducts. At the one extreme, hierarchical decomposition 
leads to very specialised software components and uses a complex process of 
transformation and verification. At the other extreme, systems are emerging that 
use intuitive visual tools to assemble prefabricated components using visual icon-
ified representation. The key impediment is dealing with the inherent intangibil
ity of software. Terms like impedance are frequenfly used to signal the conceptual 
gaps that exist between software models at different levels of abstraction in a 
transformational system. A product centric system must remove this cognitive 
impedance. 

Product oriented approaches typically place more capital up front in production 
tools that facilitate the development, packaging and exploitation of product - to 
reduce latter volume usage expenditures. Capital-intensiveness is related to the 
degree to which solution-construction activities need to be amplified and simpli
fied. 

The principle that best captures the need to make software development more tan
gible and more productive is that of substantiation. We can define this as the prin
ciple of giving software more precise form or substance. This generdises 
techniques like visualisation, visual scripting, iconisation, metaphor-based pro
gramming, modelUng of real-world objects and workflows and formal specifica
tion. 

Cognitive Perspective 

specification 

building-block 

product 
centric 

tangibility Bubstant 
iation 

Figure 35 solution space for cognitive perspective. 

6.4 The Design Space 

A unified framework for distributed object technology 

This section provides a summary of the analytic framework that can be used to 
relate goals to general principles of architecture design to specific techniques and 
implementation decisions. It shows how a problem space can be mapped to a de
sign space by examining the underlying principles being applied and relating 
them to the key problems. 

In chapter 2 we presented a simple framework for evaluating object technology 
principles This consisted of the four principles: 

encapsulation, the binding together of different computational aspects such 
as data and processing, with control over access to data through well-de
fined, operational interfaces. 



Chapter 6 - Evaluation framework 141 
23rd January 1995 

• classification/set, some form of set abstraction that allows reasoning about 
behaviour based on inclusion in a group of related objects. 

• polymorphism, compositional flexibility of a language, facilitating substi
tutions by allowing components to express general assumptions about re
lated components. 

• interpretation, the ability to efficiently and safely resolve the right interpre
tation of an abstract item of behaviour. 

In the last subsection, we presented a simple framework for evaluating distributed 
and reuse technology principles. This consisted of the four principles: 

• selective properties, the capability to select the behavioural properties of 
components, composites of components and the runtime support of the pro
gramming environment without reworking low level mechanisms. 

• universal protocol, an agreement to conform to a finite set of interfaces and 
composition methods at each level in the software architecture. 

• substantiation, giving precise form or substance to software processes & 
products, typically using mathematical formalisms, simulation or visual 
metaphors. 

• component insulation, isolating components from contextual dependencies 
with other components and system dependencies with the infrastructure. 

These eight principles reflect a fairly comprehensive spread of concems and pro
vide a useful vehicle for structuring evaluations of such a diverse field. This is in 
fact a classification hierarchy for principles and techniques. Classification hierar
chies are useful to summarise a range of concepts. Organising the summary as a 
hierarchy helps deal with the mapping between specific problems and solutions 
at an abstract level. By applying these classifications to specific techniques and 
design options we can rationalise our design decisions more clearly. 

We can unify these eight principles at an even higher level of abstraction as eight 
aspects of the two highest level goals which I intioduced in chapter 3 as virtuality 
and componentisation. 

By virtuality we mean the characteristics of a system that Umit the impact of tech
nology artefacts on the presentation of the system to users. A computing system 
is virtual i f it appearance differs from its strict implementation on a digital ma
chine. Virtuality allows developers to reflect application domain or business con
cepts in representation schemes. Classification is important as an organising and 
packaging principle. Interpretation is important to ensure safety and efficientiy in 
mapping to concrete realisations. What is still missing is the ability to ignore all 
the engineering detail and contextual dependencies that source code introduces, 
especially in a distributed system. Selective properties are important to specify 
and manage practical engineering properties and trade-offs that must be made be
tween distributed mechanisms. Insulation is important to allow contextual inde
pendence and system independence and to define manipulable, well factored 
components and tools. 



Chapter 6 - Evaluation framework 142 
23rd January 1995 

virtuality virtuality 

classification \ classification 
or sets \ or sets 

interpretation interprefation 

selective 
properties 

missing 
engineering tradeoffs insulation 

& factoring of concerns 

object distributed 
frameworl< object 

frameworic 

Figure 36 principles of virtualisation 

By componentisation, we mean the capability to build software from components 
that may be integrated across multi-vendor product Unes. On the technical side, 
object technology offers powerfiil techniques for abstraction, separating the how 
from the what, and generalisation-specialisation, allowing technologists to break 
problems down sensibly. Here polymorphism is important to allow components 
to be substituted easily. Encapsulation is important to isolate the interface from 
the internal implementation. What is missing is an agreed binding model for plug
ging components together and specification tools and trading tools to make the 
process of reusing components more efficient and easier than component fabrica
tion from first principles. A comprehensive protocol is important to ensure appli
cation interfaces are widely agreed for plugging multi-vendor components 
together and for managing the configuration process. Techniques to increase the 
tangibility of development processes and products are important to overcome 
some of the cultural barriers to large-scale component reuse. 

Componentisation is the key to giving more programming power to naive users. 
The reuse of prefabricated software systems has the potential to be a simpler task 
than the construction of software from scratch. More ambiguous, intuitive for
malisms can be used when the components are already implemented using a pre
cise programming language. 



Chapter 6 - Evaluation framework 143 
23rd January 1995 

componentisation ; componentisation 

encapsulation encapsulation 

polymorphism polymorphism 

protocol' 

substantiation 
missing 

binding model and 
engineering tools 

object distributed 
frameworic object 

frameworic 

Figure 37 principles of componentisation 

The four-faceted principles of virtuality and componentisation are useful to ap
preciate the real merits of the OpenBase architecture concepts introduced in the 
next chapter. By taking the classification hierarchy down another level to specific 
techniques, we can relate high level goals of virtualisation and componentisation 
to specific choices as shown in Figure 38. This is the basis for rationalising design 
choices between techniques. Typical goals are defined in chapter 3. 



Chapter 6 - Evaluation framework 
23rd January 1995 

144 

Componentisation Goals 
Goals 

Virtualisation Goals 

Principles 
Encapsulation 

Polymorphism 
Interpretation 

Insulation Protoco 

Substantiation Selective Property 

rationale ? 
rationale ? 

/ ( variable ) variabe 

perspectives of 
enterpr 
objects 
enterpnse / \ 

Specific Instantiations of Techniques 

Figure 38 unified design space 



Chapter 6 - Evaluation framework 
23rd January 1995 

145 

6.5 Summary of Part II 

The last five chapters have introduced different goals, principles, processes and 
techniques that can be employed to define a distributed object programming sys
tem. Classification hierarchies have been derived to relate these concepts to each 
other and summarise the results of the survey at different levels of abstraction. 
The terms used to denote the various classes will be used to describe and define 
the OpenBase architecture in part HI of the thesis. To aid the reader's appreciation 
of the text, individual items are defined in the glossary in Appendix C: which re
fers back to the appropriate section where the component is introduced. The com
plete framework is summarised in the following diagrams, Figure 39 to Figure 
48: 

abstract 
principles 

virtuality 

classification 
or sets 

interpretation 

selective 
properties 

componentisation 

/ 
encapsulation 

polymorphism 

protocof 

insulation 
from 
complexity 

substantiation 
of processes & 
products 

Figure 39 top level principles 



Chapter 6 - Evaluation framework 
23rd January 1995 

146 

correctness 

dependability 

federation 

groupware 

abstract 
technical 
goals 

virtuality goals componentisation goals 

s/w abstraction 

sharing & reuse 

evolution 

infrastructure 
commoditisation 

enterprise 
modelling 

infrastructure 
abstraction 

application 
interworking 

application 
reengineering 

Figure 40 top level goals 



Chapter 6 - Evaluation framework 
23rd January 1995 

147 

classification 
or set abstractions 

structure 

abstract 
data 
types 

conformance 

inheritence 

relationships 

classes 

whole-part 

is-like-a 

prototypical 
object 

uses 

composite 

delegation 

exemplars 
hierarchical 
composition 

Figure 41 specific classification techniques 



Chapter 6 - Evaluation framework 
23rd January 1995 

148 

interpretation 

asynch 
one-way 

metho 

deferred 
synch. 

synch, 
twoway 

identification 

indirect 
naming 

object 
ids 

non-deter
minant 

pointers I \ runtime 

keys 

surrogates 

construction 
/ destruction 

garbage 
collection 

cloning explicit 

typing & 
bindin 

deter
minant 

configuration 
time 

static 
methods 

initialisation 
time 

link time 

compile time 

Figure 42 specific interpretation techniques 



Chapter 6 - Evaluation framework 
23rd January 1995 

149 

property 
speci f icat ion 

select ive properties 

components 

c lustermg 

act ivi ty f lows 

composites 

property 
customisation 

system 
properties 
support stub 

subtyping 

protocol 
negotiation low level 

ibrary 

distributed \ metaobject 
language \ protocol 

integrated 
viewpoints se lect ive 

transparencies 
c l a s s API 

ref lect ive IDL 
language Mapping 

frameworks 

Figure 43 specific selective properties 



Chapter 6 - Evaluation framework 
23rd January 1995 

150 

application 
contextual 
independence 

insulation, 

partial 
specification 

system 
abstraction 
layers 

generics transparency 
wrappers 

virtual' 
interfaces 

data 
decouplin 

document 
architectures 

ad-hoc query 
on entity type 

control 
decouplin 

distributed 
presentation 

remote 
evaluation 

predictable 
extensional 
query on sets 

transformational 
generators 

indirect 
messaging 

asynchronous 
messaging 

type / 
exploration 
(narrowing) 

static 
type 
dependency 

Figure 44 specific insulation techniques 



Chapter 6 - Evaluation framework 
23rd January 1995 

151 

encapsulation 

symmetric 
interface 

services 
required 

outports 

superobject 
encapsulation 

services 
provided 

depth of 
uniformity 

implicit 
scope 
rules 

thread 
encapsulation 

messaging 
interface 

object-oriented 
internal 
construction 

wrapper 
interface 
for any 
internals 

active 
objects 

passive 
objects 

explicit 
control 
(protected 
or private 
inheritence) 

pool of 
threads 

dynamic 
threads 

Figure 45 specific encapsulation techniques 



Chapter 6 - Evaluation framework 
23rd January 1995 

152 

Polymorphism 

UniversaT 

Ad-hoc 
Coercions Overloading 

Inclusion Parametric 

assumptions 

Implicit Explicit 

Member 

strong 
assumptions 

weak 
assumptions 

X 
typed 
ports 

model-based 

algebraic/ 
axiomatic 

Figure 46 specinc polymorphism techniques 



Chapter 6 - Evaluation framework 
23rd January 1995 

153 

protocol. 

admin 
standardis 

application 
standards 

system 
standards 

open 
systems 
(OSI, 
POSIX) 

object 
specification 
techniques 

mix-ins 
oDject 
sen/ices 

specification 
languages 

domain 
componentware 

binding 
models 

interface 
types 

plug & play 
components 

abstract 
base 
classes 

framework 

contracts 

extensible 
techniques 

meta 
protocol 

op sys 
personalities 

integrative 
standards 

data 

operating 
system 
framework 

, ODMG) 
document 
processing 
(OpenDocOLE) 

R P C 
(DCE, CORBA) 

protocol 
converters/ 
gateways 

Figure 47 specific protocol techniques 



Chapter 6 - Evaluation framework 
23rd January 1995 

154 

substantiation 

icons 

graphs 

drag&drop 

structuring 
concepts 

functional 
subsystem 

application 

hard 
process 

real-world 
objects 

productjsation 

capital 
intensive 

process 
-centric 

generation 
tool 

assembly 
tool 

transform
ational 

spec-dnven 
method 

specific
ation tool 

visual 
composition 

admin & product 
management 
tools 

configuration traders browsers 
managers 

functions 

Figure 48 specific substantiation techniques 



Part III Evaluation of Architecture 



Chapter 7 - Overview of Problem and Approach 157 
23rd January 1995 

Chapter 7 Overview of Problem and 
Approach 

This chapter summarises some problems in designing the OpenBase program
ming system architecture and overviews the general solution. 

7.1 Summary of General Problems 

7.1.1 Overview of Initial Assumptions 

The OpenBase architecture seeks to provide an enterprise-wide software integra
tion platform supporting the development and integration of applications for the 
process and manufacturing industry. 

Integrated software systems should be built using a methodology that supports 
modular production of software; encourages reuse and integration across lines of 
developers, operating systems and hardware. The object oriented approach to 
software construction is considered to best support these goals. In contrast, con
ventional applications are monolithic, insular and proprietary. Conmion function
ality such as reporting is heavily duplicated in independent applications and 
integration only occurs via low level communication services between whole ap
plications. 

Object oriented development provides a terrific boost to software openness. This 
is partly due to the naturalness of the approach, the emphasis on capturing and 
exploiting commonality, and also to the rigorous requirement for interface spec
ification. This makes it an ideal model for a standards based integration environ
ment. 

The OpenBase integration environment aims to go much further than object tech
nology allows today. It seeks true component oriented development, where the 
emphasis is on the assembly of prefabricated components, rather than component 
programming. Constructing an application by component assembly should be 
like constructing a plumbing system. Plumbers do not need to understand how 
pipes are manufactured. Instead they know how to seal pipes together using span
ners and other tools. Likewise apphcation developers should not need to know 
how to manufacture a component by programming. Instead component manufac
turers should provide them with user specifications which hide the internal con
struction of components. Application developers then use simple tools like 
spanners to design and build an application by plugging these components togeth
er. Component oriented methodologies emphasise the specification and assembly 
activities. 

Mainstream object oriented development is not yet truly component oriented. 
This is because object orientation is still seen as an implementation technology, 
or more specifically a programming technology, rather than a component produc
tion and configuration technology. Object oriented programming is still viewed 
as a labour intensive craft, not a capital intensive engineering discipline; It em
phasises construction of reusable components rather than their assembly. 

Whilst mechanisms to manage objects in a distributed environment are reasona
bly mature, there is concern over the programming abstractions provided by these 
systems. It may be necessary to adapt object orientation considerably in order to 
rationalise an approach to OpenBase's integration goals for distributed applica
tions. 



Chapter 7 - Overview of Problem and Approach 158 
23rd January 1995 

Interacting application objects do not reflect all the operational behaviour neces
sary for distribution. Extra levels of system interaction are required to manage ob
jects - for example to create and bind remote objects, to deal with abnormal 
terminations, to collate replica calls, and to prevent concurrent interference. This 
may be provided by adding source code to provide this behaviour for example us
ing a system library or framework. However such code would be heavily depend
ant on the implementation of mechanisms in the environment and it would 
therefore be difficult to achieve stable standards across mechanisms, to remove 
semantic ambiguity, or to hide system complexity by using generation tech
niques. It is better to deal with distribution using declarative extensions to the lan
guage. These extensions must be abstract enough to map across different 
mechanisms. 

It is much easier to reason in a language designed for distribution with language 
concepts directly supporting the tasks of allocation over a parallel network, syn
chronisation and remote communication, and recovery from partial failures. 
However such object oriented languages are not yet established. Furthermore for
malisms for specifying object allocations over the network, for clustering objects 
, for specifying scheduling and synchronisation policies for multithreaded appli
cations, for partitioning applications into distributed transactions, and for describ
ing abnormal behaviours to deal with failures, are all universally weak or absent 
in established methodologies. 

A solution may be found by developing an integrated set of development tools 
The philosophy is simple. I f integration of distributed languages with object ori
ented languages is difficult, why not separate them? Likewise i f construction and 
assembly tends to confuse the tasks of implementation and composition then why 
not explicitly separate assembly from implementation? An integrated toolset al
lows us to deal with distribution and computation and with assembly and imple
mentation at different levels using different tools. This allows the choice of the 
right tool for the job and can simplify progranmiing semantics for each stage of 
development. 

7.1.2 Summary of Shortcomings of Existing Approaches 

This section lists some key problems with existing technology that are most rel
evant to the design of OpeiiBase. The problems summarise shortcomings men
tioned in the survey of part n and includes problems with the reuse goals, 
problems with methods and tools, and problems with programming system archi
tectures. 

There are a number of problems that mean we must revise existing perceptions of 
reuse - especially for component oriented development of distributed systenis: 

• Reuse demands a capital intensive engineering discipline that provides a 
complete set of intuitive tools to organise and assemble components. Ob
ject-orientation is still perceived as a programming technology. 

Reusability is such a difficult problem that there is unlikely to be one gen
eral purpose reusability approach. Rather there will be specific approaches 
for different domains. Likewise the approach taken to design-for-reuse will 
evolve. Today's reusable components will not use tomorrow's model. 



Chapter 7 - Overview of Problem and Approach 159 
23rd January 1995 

• Software reuse is the reapplication of a variety of kinds of development 
knowledge: domain knowledge, design decisions, architectural structures, 
code and documentation. Even at the code level there are multiple abstract 
forms of knowledge about the code, such as functionality descriptions and 
implementation trade-offs. The types of reuse emphasised by object orient
ed development are at the code level only and emphasis code implementa
tion rather than knowledge representation. 

• Source code introduces a high degree of specificity that inhibits large scale 
reuse. Distributed requirements demand exfracode to support recovery, re
mote binding, RPC, concurrency and other behaviours. This increases the 
specificity of components even more. A component should be reusable be
tween different non-functional requirements. To maximise reusabiUty, dis
tributed components should avoid mixing management behaviour and 
application behaviour, to separate reusable behaviour from contextual de
pendent behaviour. In addition, components should use abstraction to min
imise the assumptions made about other components. 

• The process of selecting and assembhng components is not well re
searched, i.e design-with-reuse. It is certainly very different from the proc
ess of constructing reusable components for which there is ample 
methodological guidance and support, i.e. design-for-reuse. Whilst encap
sulation attempts to remove implementation dependencies between objects 
or between objects and the system support, it is still usually necessary to ex
plore the implementation of a class before reusing it. Reuse is still seen as 
a part of the implementation activity instead of a separate activity. Inherit
ance and invocations to a reused class are "programmed" into a derived 
class. To change this, there needs to be more explicit rules or constraints on 
how reuse is to be managed and encouraged. 

• In practice, inheritance is more often concerned with implementation than 
specification. It is frequently used as a mechanism to compose behaviours. 
A typical example of the way inheritance is being used in the commercial 
world is to create specialisations of a List class such as OrderedList, 
SparseList and indexableListwith different implementations which make 
different performance trade-offs. One specialisation may multiply inherit 
from an array class to use the array as its internal implementation. Clearly 
a user of the list should not be concerned with behaviour sharing relations 
such as this. Ideally specification hierarchies should be provided to capture 
these trade-offs that are orthogonal to the implementation hierarchies used 
for sharing implementations. Inheritance is abused to mix the two. 



Chapter 7 - Overview of Problem and Approach 160 
23rd January 1995 

• Different implementations of a list may make different trade-offs, for ex
ample internally use arrays or linked hsts as above, represent elements as 
generic pointers or buffers of fibted size values, apply different growth j 
rates. There is no means of showing these conmiercially significant differ- | 
ences to potential users without violating encapsulation and looking at the j 
implementation itself. These properties are not fully captured by inherit- ' 
ance relations. Likewise i f we deal with distributed properties like recovery 
behaviour in the implementation of a class then we have no easy way of 
showing our operational ti-ade-offs to potential clients. Nor is tiiere an easy 
way to show the dynamic properties of a class i.e. what it actually does. 
Class names and method names can be insufficient for this when the behav
iour is complex. Progranuners tend to be obsessed with efficiency and are 
very reluctant to reuse something without knowing this sort of information. 
I f we are to avoid looking at implementations, a modeUing interface is re
quired to capture this information for later selection. Modelling interfaces 
may form the basis of the specification hierarchies discussed above. Alter
natively the information may be obtained by exploration of a components 
behaviour through execution or simulation or theorem-proving. 

• Reuse of components in different contexts is made difficult because the in
terface between objects is incomplete. It fails to capture the outgoing inter
face for a client. Consequentiy dependencies between a chent and a server 
can not easily be deferred and resolved by the system integrator. There is 
no clear binding model that allows clients to be mtegrated in different con
texts without violating their encapsulation. The encapsulation of entry 
points and not exit points is in line with a model of reuse based on incre
mental extension by adding custom made chents. The system is reused by 
extending it with new reusable clients and subclasses, i.e. design-for -reuse. 
A complete interface on the other hand supports reuse of botii clients and 
servers in new contexts without any custom development, i.e. design-for-
and-with-reuse. 

There are a number of problems with existing development processes and tools: 

• Existing object-oriented methods are weak on requirements specification. 
The relationships between a requirement model at some level of abstraction 
and an object design is not always clear. Object oriented methods are there
fore imprecise. Specifications risk appearing understood by everyone but 
interpreted differentiy. Requirement models based on mappings between 
roles and objects begin to alleviate some of these problems but are not ma
ture. 

• The imprecision is more general than requirements modelling. Object ori
ented methodologies are generally imprecise, being strong in notation yet 
weak in processes. Likewise existing tool support is for notations and not 
design transformations. Second generation methods like Fusion (Jeremaes 
and Coleman, 1993) are alleviating some of these problems. Another solu
tion is to resolve it in an integrated toolset. 

• Methods usually provide at least two disjoint views, for example class mod
els supporting is-a and consists-of hierarchies and dynamic models describ
ing behaviour. The relationship between class modelling and dynamic 
modelling is poorly explained.Some methods rely exclusively on state 
charts for describing dynamic behaviour of a single object. It is generally 
difficult to understand complex method behaviour or behaviour resulting 
from collaboration between several objects. Developing formal semantics 
to describe behaviour is an active area of research. Notions like roles and 
responsibilities unify the views of class structure and behaviour to a degree. 



Chapter 7 - Overview of Problem and Approach 161 
23rd January 1995 

• Distributed object technology is often defined at the level of mechanisms 
and languages. There is some consensus on the set of techniques and mech
anisms used to construct distributed systems, such as RPC, group multi
casting, atomic actions. Yet none of these mechanisms help in the design 
process. Client server systems rely on simple partitionings of presentation, 
logic and data access fvinctions. This is unsuitable for applications that per
form complex processing on each node such as supervisory control systems 
supervising confrol processes on several nodes. Higher level formalisms 
are required. 

• Operational, i.e. non-functional, requirements such as responsiveness, gen
erally exist at the process level as constraints on asynchronous parallelism 
between system objects and enviromnent objects. Yet there is no clear map
ping between fine-grained objects and processes. Object oriented design as
sumes the entities identified in analysis are simple and can be modelled as 
objects not subsystems. There is no easy way to partition a large design into 
subsystems that can be sensibly distributed. Too little attention is paid to 
task management in methods and this results in over-simplistic policies for 
task scheduling and object allocation to processes, with poor traceabiUty to 
operational requirements. 

• There is a dichotomy between approaches to partition a large application 
which require analysts to focus on the whole and approaches to identify re
usable components which require analysts to focus on the parts. The latter 
results in fine grained architectures with much coupling between compo
nents. The former results in coarse subsystems containing heavily biased 
functional objects that are not reusable between functions. 

There are a number of problems with existing object oriented programming sys
tems: 

• Mechanisms for interaction have achieved a degree of matiuity as refiected 
by their inclusion in commercial distributed system standards from the 
OMG, ANSA and OSF consortia. However these mechanisms merely pro
vide the glue used to compose applications. What is missing is any notion 
of structure. Consequently it is difficult to develop applications exhibiting 
anything more complex than the simplest client-server partitionings. 

• In mainstream object progranrniing systems, there is no explicit definition 
of the dynamic strucmre in terms of instantiations and invocations. Instead 
these imperatives are embedded in the implementation of a class. The im
plicit nature of object dynamics makes reconfiguration and evolution of the 
structure unmanageable. 



Chapter 7 - Overview of Problem and Approach 162 
23rd January 1995 

• Inheritance is a single mechanism unifying the approach to different as
pects of prograinming: type checking, polymorphic binding, and behaviour 

I sharing. This unity is one of the strengths of object oriented languages yet 
it is also a weakness. By separating mechanisms for interface sharing, be
haviour sharing and binding, it is easier to rationaUse an approach to extend 
their semantics to deal with distribution and pluggability. Encapsulation 
problems arise from the failure to distinguish the two kinds of client of a 
class: other instances and subclasses. The use of different forms for these 
two interfaces in mainstream inheritance based languages leads to a duahty 
in tile model tiiat must be accounted for when extending die language. For 
example, adding a management policy for an object inhibits incremental 
modification of that object i f we can't also incrementally modify the pohcy 
across inheritence relations. This can be tricky. Hierarchical composition 
and delegation systems use a messaging interface everywhere and are eas
ier to extend. 

• Methods have found it necessary to inti-oduce new concepts to specify re
usable properties of classes such as roles and behavioural contracts, yet 
these concepts are not directiy supported in mainstream object languages 
like C-H-. Some methods also support concepts that are useful for dealing 
with large systems at several levels of abstraction. This includes frame
works and subsystems. Yet languages provide littie support for any of these 
concepts. These constructs are useful to specify domain standards for large 
control systems but are difficult to explicitly define and enforce without 
progranuning system support. 

7.2 Analysis of Specific Problems 

This section analyses the key problems in the design of OpenBase using the eval
uation framework of chapter 6 and presents an absti-act view of the solution. 

7.2.1 Design Space for OpenBase. 

The first section positions OpenBase by defining an appropriate profile of the 
evaluation framework of Chapter 6. 

Motivational Perspective 

The goal of OpenBase is to provide an enterprise integration infrastructure for the 
petrochemical and manufacturing industry. The increased need for integration 
and supervisory control of plants is driven by the needs for increased plant flexi
bility and performance, less downtime, greater stock diversification and new 
safety standards. This requires tighter management and a global view of the 
whole process. No existing products allow integration on the required scale. 

Three key infrastructure goals that arise from these needs are reuse, evolution and 
interworicability. 

Businesses need to be more responsiveness to changing markets and manufactur
ing process requirements. Reuse is important to be able to build on existing re
sources, rather than redeveloping them time and time again, as business needs 
continue to change. Fine grained reuse of individual facilities within each appli
cation is important to avoid redundant duplication of similar facilities across ap
plications. For example every control application typically provides its own 
implementation of reporting and alarming facilities. 



Chapter 7 - Overview of Problem and Approach 163 
23rd January 1995 

Responsiveness to changing requirements requires rapid development of new ap
plications or the rapid reconfiguration and integration of existing applications. 
New manufacturing opportuniljies may not last for long, and often not as long as 
fraditional development lead tijmes for new applications to support them. FurSier 
a solution should not limit ftuliier changes and advances. Evolution means rapid 
prototyping, reconfiguration aind incremental modification of existing systems. 
This should be supported by the infrastrucmre. 

Interworking is important to supervisory confrol because specialised apphcations 
from different vendors are usually provided for individual stages of the same 
chemical process. This includes specialist confrollers, for example predictive 
confrollers, specialist numerical processors, for example for feedback loops, and 
specialist analytic tools, such as historical data analysis. To provide overall su
pervisory management requires integration across these specialist apphcations 
across heterogeneous platforms and this caii be expensive with conventional low 
level intercormection approaches. 

Cognitive Perspective 

Distributed systems are much more complex than single systems. They are also 
complex to debug and maintain. They require a higher level of absfraction across 
runtime mechanisms to support fransparency, dependable service, efficiency, 
portability and scalabihty. They must deal- with insecure interaction, indetermi
nate interaction, unreliable interaction and costly interaction. At the least, the sys
tem must be able to allocate applications to processes and processes to nodes, 
enable applications to synchronise and communicate, and deal with failures 
gracefully. 

Transparency properties can mask these complexities to an extent but there are 
two fundamental assumptions that cannot be overlooked: that effects take time to 
propagate; and that work can only be done with the right resources. The first 
means a programmer must be aware of conraiunication latency to meet respon
siveness and performance requirements; he must prevent destructive interference 
between concurrent activities for safety and liveness; and he must ensure serial-
isability and atomicity of actions for integrity in the presence of aborting activi
ties. The second means resources must actually be deployed and allocated for 
efficiency; they must be replicated for availability and performance; and the pro-
grarmner must recover from partial resource failures for reliability. High level 
language support should be provided to deal with these complexities. 

Many configuration decisions regarding distributed properties like reliability, 
time criticality, availability, are best made by plant engineers on the manufactur
ing plant. Much time and documentation is currently wasted communicating re
quirements between plant engineers and system integrators. This is because low 
level programming is well beyond the scope of a typical plant engineer. In partic
ular the low level communication facilities used to integrate existing applications 
are often complex to use, provide non-uniform interfaces and can result in pro
grams that are difficult to debug and maintain. 



Chapter 7 - Overview of Problem and Approach 164 
23rd January 1995 

High level configuration tools can bridge this knowledge gap by allowing plant 
engineers to get more involved in integrating applications themselves. Structur
ing a collection of objects into an integrated system is a different intellectual ac
tivity to the construction of individual objects. A integrated tools based approach 
allows different people to describe the system at different levels, applying differ
ent skills and knowledge. Objects can be implemented by control software ven
dors using specification tools and programming languages. The plant engineer 
then would use configuration tools to interconnect objects and encapsulate them 
in larger composites and to describe the overall system. Plant engineers are not 
interested in management policies per se. High level tools may describe semantic 
information that is exploited to automate the choice of management poUcies. This 
combines the flexibility and efficiency of a low level interconnection approach 
with the safety and simplicity of a high level language environment. 

Existmg object oriented methods are not truly component-oriented, i.e. they do 
not separate component development from component reuse. The component ori
ented lifecycle identifies two roles: component programmer and application en
gineers. These roles cleanly map onto the control software vendors role and the 
plant engineers/system integrators role. A component oriented approach is ideal 
in supervisory control because typical manufacturing and chemical processes 
consist of a series of stages that are each satisfied by specialised components that 
need to be connected together. 

The definition of an interface in conventional client server or object oriented ap
plications is incomplete. Existing IDLs and object oriented languages fail to mod
el exit points (i.e. invocations) in the interface. Consequentiy dependencies 
between exit points and other components can not be easily be deferred and re
solved by the application engineer when the component is used. A complete in
terface should also define the outgoing interface of a client. This is necessary for 
integration of clients in different contexts, without breaking their encapsulation. 
The traditional cUent server model is analogous to a domestic electrics manufac
turer that used prefabricated sockets but custom made all his plugŝ  Client server 
approaches tend to assume clients are not reusable and servers are reused by in
cremental addition of new custom-made clients. This is not the component-ori
ented model. For a component oriented system, the exit points or services 
required by a component should also be captured in the interface. 

The above problem may be stated more generally by the preposition that existing 
object oriented binding technology is weak for component oriented development. 
It needs to be enhanced by :-

1) providing distinct tools for component assembly and component construction. 
Graphical assembly tools are more intuitive. Declarative construction tools free 
implementors from the specifics of how services are achieved in every target sys
tem. Tools make the activity of reusing component explicit and enforced. 

2) separating the specification interface from the implementation interface. A 
specification interface should reveal dynamic properties and operational trade
offs not how internals are constructed. This may be descriptive text, pre-defined 
parameterised property values or formal specifications. This provides the infor
mation required to understand and trust a component without violating its encap
sulation. 



Chapter 7 - Overview of Problem and Approach 165 
23rd January 1995 

3) defining pluggability via interface standards and specific binding models for 
the assembly mechanisms. Pluggabihty is unlikely to be achievable unless inter
faces are simple and common across a domain. Framework standards that are de
fined across a domain, identify abstract roles that components can play and 
increase the chances of realising large scale component reuse in that domain. 
Identifying these fi-ameworks demands an up front investment and co-operation 
between vendors selling into the domain. 

CapabUUy perspective 

The programming system must be expressive to allow process control specialists 
to deal with the complexities of distribution without learning new distributed 
computing skills. It must have an efficient implementation to support time critical 
process control. It must be polymorphic to optimise pluggability of components 
from different specialist control vendors. There exists no widely used distributed 
polymorphic language. Any language demands significant compromises. 

A better approach is to have an integrated programming system that allows dif
ferent tools and languages to be mixed and interchanged. 

In mainstream object oriented languages like C-H-, the interface between a super-
object and a subobject is defined purely in terms of how method calls are delegat
ed between them. It says little about how management behaviour is composed 
over the inheritance relationships. For example what happens to a concurrency 
control policy when it is inherited? Object oriented languages have not yet de
fined a way to compose extra semantics for distribution. Attempts to add distrib
uted management policies orthogonally to an object oriented language are 
doomed because distributed properties are not orthogonal and must be them
selves inherited. Care must be taken in the way distribution is added. 

As the interface to objects becomes richer as distributed properties are added, it 
may also be useful to provide different interfaces for different aspects of object 
management, for example the replica management interface used to add a new 
member to the group of replicas should be separated from the messaging interface 
to another application objects. Most existing object oriented languages do not al
low an object to have multiple interfaces thus preventing the clear separation of 
messaging interfaces from the management interfaces with the system. 

Not only is it useful for an object to have multiple interfaces but it is also useful 
to have multiple programming interfaces to describe different properties of the 
object. Inheritance makes the composition model used to define objects complex 
and this makes it difficult to extend object oriented languages with expressive 
features for distributed properties. Expressivity interferes with the composition-
ality. A simpler solution is not to deal with distributed properties in the object it
self but rather deal with them reflectively in meta-level code that wraps the 
objects. This code can be generated from meta-programming interfaces. An inte
grated programming system can provide multiple meta-programming interfaces 
to deal with management behaviours independently from application behaviour. 



Chapter 7 - Overview of Problem and Approach 166 
23rd January 1995 

Constituency perspective 

With the establishment of new trading pMners and mergers to open up new mar
kets, businesses also invariably have a (^versify of systems, including: geograph
ically distributed data; a variety of maihfi-ame and mini-computer platforms and 
operating systems; and different conmiiinications networks. A consistent global 
view of the systems involved is needed to manage the enterprise more effectively. 
This demands a high level of abstraction away from the trappings of a particular 
technology. Existing systems are defined by specific low level interfaces and pro
prietary mechanisms. This means doing business frequently requires a merger 
and unification of IT strategy. 

Consistency in management policy does not mean that the system should not tol
erate diversity. The solution must provide a sufficient level of abstraction to allow 
management policies to be optimised regardless of platform. There are a number 
of important trade-offs that should not be ignored in distributed systems manage
ment, for example between reliability and performance, flexibility and safety, 
communication latency and parallelism. A diversity of mechanisms is needed to 
ensure that each part of the business is making the right trade-offs for each facility 
that is supports. 

The importance of trade-offs increases with the number of objects that need to be 
managed. Supervisory control applications for the process industry typically in
volve large numbers of fine-grained control objects, such as datapoint tags for 1/ 
O points, thresholds, alarms. Therefore performance overheads per object can be 
critical. Solutions require a flexible approach to specifying management behav
iour and making appropriate trade-offs between overheads. 

Existing systems generally provide all-or-nothing management abstractions. 
Hexible management mechanisms are required. Performance can be improved by 
: relaxing reliability guarantees; by using Ughtweight local RPC; by rephcating 
objects across the network; by load balancing; by clustering; and by increasing 
application parallelism. However mechanisms that provide this flexibility also 
encumber developers with the new complexity of selecting and realising different 
policies and demand new language concepts. 

An alternative to solving these issues in the programming technology is to solve 
them in the assembly technology. Management support in a high level configura
tion tool can provide an abstract solution that can be mapped across heterogene
ous platforms. 

Developer complexity can be reduced if the development environment implicitly 
supports adaptive management. One convenient characteristic of objects is the 
amount of semantic information that can easily be made visible in interface defi
nitions. An adaptive system can exploit this information. This facilitates a declar
ative approach to object management. The programmer specifies the properties 
required of objects, using a definition language and composition tools. It is up to 
the environment to interpret requirements correctly across different platforms. 

Correct interpretation requires us to develop concrete mechanisms for property 
representation and implementation. Greater simplicity can be achieved by sepa
rating concerns through multiple levels of program transformation. An integrated 
programming system can control the visibility of these transformations by pro
viding distinct programming languages and editors at each level. Adaptive opti
misations are possible as component classes are compiled, as application 
frameworks are constructed from components, as applications are configured 
from frameworks, and as loaded applications execute at run-time. 



Chapter 7 - Overview of Problem and Approach 167 
23rd January 1995 

The discussion of problems may be summarised using the perspectives of the 
evaluation framework to categorise the different problems. This is shoWn in Fig
ure 49. i 

Constituency Problems - Multiple Users 
specialist system plant engineers 
component integrators 
programmers 

Motivation Problems - Enterprise Integration Goals 

reuse goal interworking goal evolution goal 

Cognitive Problems - Method Shortcomings 
dealing with 
distributed no standard 
complexity component-oriented binding models 

Capabilities Problems - HL Programming System 

expressive overloaded inheritence no integrated 
languages mechanism tools 

Constituency Problems - Heterogeneous Target System 
proprietory inflexible low level 
mechanisms all-or-nothing of abstraction 

properties 

Figure 49 Problem profile for existing systems 



Chapter 7 - Overview of Problem and Approach 168 
23rd January 1995 

7.2.2 General Statement of Problem and Approach 

A single programming technology is insufficient to deal with the multiple con
cerns of: component oriented development, emphasising tangible assembly ac
tivities; open distributed computing, emphasising interoperabihty; and efficient 
fine grained integration, emphasising trade-offs between a wide range of manage
ment options. 

A solution is to separate concerns through an integrated set of tools existing at 
multiple levels: at the programming level, emphasising implementation tech
niques; at the assembly level, emphasising specification and composition tech
niques; and at the system level, emphasising generation techniques. 

The solution space may be characterised using the abstract principles of the eval
uation framework: 

• encapsulation is important in this context to prevent components from hav
ing dependencies on the implementation of other components. Components 
are produced in isolation and should be properly specified so that there is 
no need to look at the implementation. Therefore specifications must in
clude all the properties and information necessary for reuse. This includes 
resources requirements, expected throughputs and latencies and sizing in
formation. 

• classification is important to structure the software around tangible objects 
that are meaningful to the application engineer. Classes capture reusable 
behaviours. Inheritance relationships capture patterns for sharing. 

• insulation is important to isolate what is reusable from what is specific. 
Specific details can be deferred, separated or made refinable. Conventional 
imperative source code demands a high degree of specificity. This increas
es in a distributed environment when we add concurrency, persistence, re-
coverability, mobility etc. A reusable component should be insulated fi-om 
these contextual complexities. 

selective properties are important to allow control over management poli
cies to meet non-functional requirements like reliability, time deadlines, se
curity without having to specify every aspect of management for every 
object. Declarative properties where the programmer describes the proper
ties required of the system in the interface to a component rather than pro
gramming the actual behaviour in the implementation of a component, is 
important to avoid overloading the programmer with responsibilities. 

• protocol at the application level is important to ensure that components fit 
together. Protocol at the system level is important to ensure that compo
nents may be freely distributed across heterogeneous platforms and co-or
dinated in a uniform way. 

• polymorphism is important to maximise the opportunities for plugging 
components together. In a polymorphic system, application protocols may 
be defined at multiple levels of abstraction so a component can minimise 
the assumptions that it makes about another component thus maximising 
pluggability. 



Chapter 7 - Overview of Problem and Approach 
23rd January 1995 

169 

• substantiation of the process is important so the roles of the component pro
grammer and application engineer are clear. Visual progranmiing is impor
tant to allow end users like plant engineers to act as application engineers. 
Substantiation of the components and sensible choices of names and iconic 
representation is important so the plant engineer understands what behav
iour to expect from components. 

• interpretation is important to map the abstract representations of program
ming concepts onto an executable target. This must be done efficiently and 
safely. Interpretation support may build on the runtime support of integra
tive standards to provide a single virtual system across heterogeneous sys
tems. 

The general problem is that these principles in combination would be difficult to 
resolve using a single language. Whilst inheritance mechanisms provide a suffi
ciently powerful mechanism to support encapsulation, classification, polymor
phism and interpretation, the further bundling of open distributed computing 
principles like selective distribution properties, pluggable protocols, substantia
tion and insulation between components, demands variations of the composition 
mechanism that undoes the benefits of using a single simple mechanism like in
heritance everywhere. Inheritance embodies behaviour sharing, interface sharing 
and binding in a single mechanism. 

The bundling of principles on a single language is illustrated in Figure 50. 

classification 
composition 
protocol 

substantiation insulation 

language design 
space overload 

selective 
properties polymorphism 

encapsulation interpretation 

Figure 50 Problem space overload 



Chapter 7 - Overview of Problem and Approach 
23rd January 1995 

170 

The solution is to unbundle overloaded mechanisms like inheritance mechanism 
by opening up the language, to allow the integration of multiple programming in-, 
terfaces that deal with different aspects and variants explicitiy rather than reap-;' 
plying a single formalism in different ways in an uncontrolled manner. This may 
not be as elegant, but the separation of concerns and mechanisms makes the 
whole manageable and extensible with less.-interference between mechanisms. 
This approach provides different mechanisms for behaviour sharing (class sub
classing), interface sharing (port interface subtyping), and binding (hierarchical 
composition) rather than unifying them with inheritance. 

The unbundling of principles is illustrated in Figure 51. 

composition 
classification 

insulation substantiation 

selective 
properties polymorphism 

encapsulation interpretation 

Figure 51 Problem space unbundling 

Unbundling the conventional solution space serves several purposes: 

• it distinguishes the different types of developer and their distinct roles; 

• it separates the different programming interfaces that together provide the 
integrated programming system; 



Chapter 7 - Overview of Problem and Approach 171 
23rd January 1995 

• it isolates complex distributed object management behaviour fi-om apphca-
tion-specific behaviour. 

At a conceptual level, the OpenBase architecture may be viewed as an explosion 
of the language design space both vertically and horizontally. Vertically, it adds 
front-end specification languages and tools to a C-H- enviroiunent (ObjectStore) 
and a distributed object management system (ANSAware). Horizontally, it sepa
rates application engineers from component programmers and distributed object 
management from application object implementations. This unbundling of the 
problem space allows the definition of a simpler solution space. Figure 52 shows 
the pieces of the exploded architecture that make up the solution space. 



Chapter 7 - Overview of Problem and Approach 
23rd January 1995 

172 

Users 

mm 

Bridging Architecture 

Target System T 

Figure 52 Solution Breakdown into Pieces of Architecture 

This architecture provides a suitable separation of concerns that makes it easy to 
rationalise design decisions. In particular these pieces are well factored both in 
terms of the abstract principles that each emphasises and in the technical goals 
supported. The pieces and their key principles and goals include: 



Chapter 7 - Overview of Problem and Approach 173 
23rd January 1995 

• CODM, the component oriented development method provides the guide
lines used by component programmers to develop components in isolation 
of other components. The key principle emphasised here is the use of clas
sification/sets to reason kbout behaviours. The key goal is that of software 
abstraction in organising similar components. 

Domain Models, this piece provides the domain specific support, such as 
domain specific frameworks, standards, customisations of the program
ming interface, domain concepts, and libraries providing domain specific 
fiinctionahty such as alarming for supervisory control. The key principle 
and goal emphasised here is the estabhshment of domain protocols to fa
cilitate interworking goals at the application level and system level. 

• Class definition Language, used by component producers to specify and 
register components. It describes classes and automatically generates sup
port to hide the external system interface from the class implementation. 
The key principle emphasised here is the use of insulation techniques that 
transparently wrap an object with code to provide the required environ
mental support. The key goal is that of infrastructure abstraction to 
present a uniform virtual system across platforms and management mech
anisms. 

• Configuration Languages, used by system integrators and plant engineers 
to configure appUcations and model the process plant. It describes networks 
of configured graphical objects and objects with which the software com
ponents must interface: - operators, PLC's, nodes, resources, libraries. The 
key principle emphasised here is that of substantiation to make the process 
of assembling objects and describing the plant configuration inmitive to the 
application engineer. To do this is must provide a comprehensive set of 
component management tools to find components, understand components, 
modify components and bind components, to support the large scale com
ponent reuse goal. 

• The bindmg meta-model, provides a repository holding definitions of class
es and hierarchical networks of objects. These are read by the configuration 
manager to interpret and load the configuration of runtime objects. It pro
vides browsing, representation and editing facilities to the tools layer and 
querying services to the distribution model. The key principle emphasised 
here is Aat of polymorphism in the definition of classes to allow bindings 
to be flexible yet semantically meaningful. Polymorphism provides mech
anisms that support the flexible sharing of interfaces and component defi
nitions across similar components. Sharing relations allow the assumptions 
that a client makes about a server to be expressed at different levels of ab
straction. 

• the distribution meta-model, models the logic and constraints by which ob
jects are allocated to resources and properties are selected. The distribution 
model provides a property selection mechanism to allocate resources and 
select the most appropriate mixture of management services. Once prefer
ences have been resolved, it uses the configuration managers to load the 
complete application and link in the required runtime support. The key 
principle emphasised here is that of selective properties to allow program
mers control when required but to use default policies when unspecified, in 
order to provide the flexibility to support different dependability goals 
without overcomplicating the programming interface. 



Chapter 7 - Overview of Problem and Approach 174 
23rd January 1995 

• The C-H- idiom, is used to implement appUcation classes that can be instan
tiated to provide the application functionality. An idiom-specific C-H- skel
eton is generated by the class definition language processor, to be filled 
with C++. The C-H^ programming idiom ensures application objects pro
vide a compatible configuration interface to the configuration managers 
and a compatible messaging interface to other components. The key princi
ple emphasised here is that of encapsulation both of incoming and outgo
ing interfaces to other components and to the system. This hides the internal 
implementation of components from potential users, including system 
components, thus isolating volatility in representations and supporting the 
evolution goal and portability goal. 

• The configuration manager, provides configuration and management serv
ices. The configuration manager is built out of system objects which pro
vide configuration services to the modelling layer for configuring a system 
and use protocol management services of the runtime support system to 
manage components. System objects may exist in distinct system processes 
or be linked in-process. The configuration managers also includes the make 
utility which is generated by the configuration languages. The key principle 
emphasised here is that of interpretation techniques to ensure efficient and 
safe execution of an abstract specification on a heterogeneous computing 
network. The key goal is that of correctness. This can be taken to include 
determinance, liveness, fairness and other system properties. 

Chapter 7 summarises the techniques that are appUcable to each principle in the 
evaluation framework. The key principles appropriate for each piece of the archi
tecture are shown in Figure 53. These principles and the corresponding tech
niques are used to characterise the design choices for each piece of the 
architecture, in the next three chapters. 



Chapter 7 - Overview of Problem and Approach 
23rd January 1995 

175 

Users 

• 

Y Classification 

6 - -

o 

^ Pluggable 
T Protocol 

' Insulation from 
Q contextual dependencies 
— ^ =̂  F — j T T a 

Substantiation of 
process & products 

I Polymorphism 

7T 
O Encapsulation 

Selective / 
Properties / 

--Oi 
/Efficient 
'interpretation 

Target System 

7y 
• 

Bmwm 
mmmm urn 

Figure 53 Key Principles Characterising Pieces 

7.3 Overview of Conceptual Architecture 

This section provides a quick tour of the resulting architecture. The architecture 
can be viewed as three main layers: 



Chapter 7 - Overview of Problem and Approach 176 
23rd January 1995 

Interpretation Layer 

The interpretation layer is responsible for evaluating the high level models into 
an executable system. It manages the interface to the target system and appUca
tion code. There are two main components: the C-H- idiom used for the internal 
implementation of components in C++; and the configuration managers which 
provide runtime support for the dynamic loading and Unking of the objects spec
ified in the model layer. The interpretation layer is built on an RPC system which 
includes runtime services for object concurrency, migration, replication, persist
ence, atomicity and recovery. The interface between component implementations 
and tiie underlying system is hidden from component progranmiers by stub and 
wrapper code generated by the tools layer. 

Model Layer 

The model layer provides an underlying database to store abstract representations 
of programs and system pictures. This acts as an intermediate target for represent
ing concepts described in the tools layer. It consists of two main parts: the con
figuration model and the distribution model. Interconnections and instantiations 
of components are represented explicitly in the configuration model. PoUcy is
sues concerning object allocation and management are made in the distribution 
model. The distribution model models the relations between operational require
ments, runtime services and physical components such as nodes, images, devices 
and processes. 

Tools layer 

The tools layer provides two types of high level tool to the users. Specification 
tools describe each component class and populate the model layer with static def
initions of object types and ports. Configuration tools describe applications in 
terms of these component definitions using instantiate and Unk commands as well 
as describing the physical plant layout in terms of its components. This populates 
the configuration model and distribution model respectively. 

The breakdown of the architecture into these components is shown in Figure 54 



Chapter 7 - Overview of Problem and Approach 
23rd January 1995 

177 

Users 

1 1 
Tool Layer 

Specification 
Tools Configuration 

Tools 

Meta-Models Layer 

Configuration Distributioii Jgt 

Model 0 

Interpretation Layer 

Pluggable 
C++ Idiom 

Configuration 
Services 

rot 

Target System 

ipyudg y)lb|®©1t 

Figure 54 Three layers of the architecture 

The C-H- programming environment integrates ObjectStore, an OODBMS that 
includes a C+-I- compiler, Dataviews, a dynamic graphics toolkit, and MotifApp, 
an X-based GUI framework. 

The distributed object management infrastructure layers ANSAware on a con
ventional operating system, currenUy DEC/Ultrix. It provides runtime support for 
process creation, binding, remote interaction and distributed management. 

The three layers of the architecture are described in the next three chapters that 
take each layer in turn. A more detailed architecture diagram is used throughout 
and is based on the expansion of this three layer model into constituent parts. The 
detailed breakdown is shown in Figure 55. The breakdown is as follows: 



Chapter 7 - Overview of Problem and Approach 178 
23rd January 1995 

• The specification tools consist of a class definition language (CDL). The 
configuration tools consist of a visual editor, a textual configuration lan
guage and an environment definition language (EDL). 

• The configuration model consists of a type model as well as a configuration 
model. The distribution model internally consists of three data structures: a 
requirement graph , a reward graph and a load graph. 

• The configuration services consist of configuration managers and UNIX-
make faciUties used to build the system. 

The build cycle is complex. A configuration can be in nine states: 

component construction, where components are being developed. 

• editing, where the visual editor is being used to define a logical view of the 
software as a configuration of component instances. 

• allocating, where the policy manager of the distribution model is evaluating 
the logical configuration against the physical configuration of the system to 
generate a reward graph determining object allocations and choice of serv
ices. 

• allocated, where there is a reward graph describing the allocation of the 
configuration and the configuration is ready to load. 

loading, where the configuration services are interpreting the configuration 
and constructing/reconfiguring the runtime representation of the configura
tion. 

• loaded, where the configuration is loaded and ready to start. Another con
figuration may be loading. 

• starting, where the configuration is being put into a running state. 

running, where the configuration is executing. This may include monitor
ing and changes to the physical configuration model that may result in any 
part of the configuration being stopped and reallocated or reloaded else
where and restarted. 

• stopping, where a configuration is being put in suspended state prior to re-
editing, re-allocating, re-loading and/or re-starting. 



Chapter 7 - Overview of Problem and Approach 
23rd January 1995 

179 

component system plant 
progragimers integrators engyieers 

21 iv®®m 
•is. mm 

T J ( / 

-Model - 1 

k>---

Distribution Model ' 

t t 

Figure 55 Detailed breakdown of architecture 



Chapter 7 - Overview of Problem and Approach 180 
23rd January 1995 

7.4 Summary of Chapter 7 

This chapter has described the high level rationale for separating the program
ming system architecture into a number of distinct parts. It has done this by de
composing the problem space and solution space according to the abstract goals 
and principles identified in the evaluation framework of chapter 6. 

The ability of a configuration language to relate multiple languages allows the 
programming interfaces to be customised to a specific task. This simpUfies and 
clarifies the role of the programming tools. 

Conventional object oriented progranmiing systems use not only a single lan
guage but also a single mechanism, namely inheritance, without any explicit rules 
to constrain and enforce the development style to adopt to deal with reuse, dis
tribution, or late binding. In a distributed component-oriented environment, this 
can lead to a complex system in which a progranmier needs to address many is
sues without much explicit guidance. 

Our system is manageable because there is a separation of concerns in the archi
tecture and this allows us to define clear explicit roles and rules for each architec
ture component. The components are described individually in more detail in the 
next three chapters. 



Chapter 8 - Interpretation Layer 181 
23rd January 1995 

Chapter 8 Interpretation Support for Adaptive Management j 

8.1 Scope of chapter 

This chapter evaluates the design and role of the interpretation layer. The inter
pretation layer is defined by the components and relationships shown in the dark 
shaded box in Figure 56. lliis includes: 

8.1.1 Interpretation Layer Components 

C-H- idiom 

Programming idioms are reusable expressions of programming style and conven
tions. They define how a language is used to solve problems. Whilst syntax 
shapes a programmers thinking, most of what guides the structure of a program 
is the styles and idioms adopted to express design concepts. 

OpenBase severely restricts the way C-H- is used in the overall structure and im
plementation of a design. It enforces a particular idiom that supports indirect 
naming through standards-based ports and hierarchical composition through the 
configuration language and visual scripting tools. This gives a programmer a very 
specific model for problem decomposition and system composition. The goal is 
to allow components to be developed in isolation from each other. 

Managers 

Configuration managers are required to interpret the meta-models and configure 
the infrastructure appropriately. Primarily this rehes on factory services to create 
components and binder services to connect components together. 

Make file 

Make files are needed to describe the way the system should be built. OpenBase 
uses UNIX make supplemented by imake to manage the complex dependencies 
between generated files and the diverse Ubraries that must be linked on different 
machines. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

182 

component system plant 
progragimers integrators engyieers 

\ } 

0] ir®®o© 

Q 

^ ^ ^ ^ ^ ^ ^ ^ 

X 2 

I ^r^Bindi 
l©iia=[fca®(£l©0© 

ng Model,. ^ 

Twiox to 
•istrih jtion Mode 

o 
a: 

t 
Q^^ 0©mpMtmn 

t t 
Figure 56 Interpretation Layer Components and Relationships (shown 

shaded box) 
m 



Qiapter 8 - Interpretation Layer 183 
23rd January 1995 

8.1.2 Relationships between interpretation layer and other layers 
Relationship with Class Definition Language 

C-H- objects are wrapped up in extra stub code which hides the interface to the 
management protocols. Stubs are generated by class definition language (CDL). 
They control the interface to other components and to the operating system. This 
extra code also includes the type-specific element of the configuration services 
used to create objects and link objects together 

C D L also generates skeleton code that further explicates the C++ idiom to be 
used to implement objects. 

Relationship with C++ Compilation System 

The ObjectStore C-front compiler is used to compile the wrapped objects. Inter
faces to C-based infrastructures are linked using extern "C" statements to avoid 
C++ name mangling. 

Relationship with Environment Definition Language 

The Environment Definition Language describes what classes are supported by 
an image and links the object code for the appropriate configuration services ca
pable of creating and binding together all the objects supported by the image. Ob
jects and link representations in the distribution model are transformed into run
time objects using these configuration services. 

Relationships with reward graph in distribution model 

There are operational trade-offs to be made between different runtime support 
services, for example between reliability and performance, availabiUty and cur
rency, dynamism and safety. Management mechanisms carry a runtime overhead. 
Dependability requirements are met by different options for object allocation, in
terconnection and interoperation over the network. 

The allocation of objects to processes and policies for interaction and interopera
tion is modelled by the reward graph. On allocating a logical configuration (the 
requirement graph) to the physical configuration (the load graph) rewards accu
mulate for different options and are represented by the reward graph. This is de
scribed in Chapter 9. The configuration manager objects query the reward graph 
to select the appropriate interpretation. 

Relationship with development environment 

The object configuration services are linked into images and the images executed 
using the development environment of the operating system, i.e. UNIX linker, 
loader, exec. 

Relationship with distributed object infrastructure 

The configuration manager uses factory services of the infrastructure to create 
processes with built-in runtime support for object configuration and remote inter
action. These services are provided by infrastructures like ANSAware and COR-
BA. The configuration manager also uses naming and binding services of the 
infrastructure to bind these processes together. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

184 

8.2 Design Choices 

Design choices can be described as instantiations of the design variables identi
fied in the evaluation framework. These are shown in boxes in Figure 57 and Fig
ure 58 which summarise the two most important principles in the design of the 
interpretation layer, namely interpretation techniques and encapsulation tech
niques. 

8.2.1 Interpretation Choices & Rationale 

interpretation 

ethods 

asyncli 
one-way 

synch, 
twoway 

deferred 
synch. 

identi f icat ion 

indirect 
naming 

^ o i n t e r s | 

construction 
/ destruction 

garbage cloning fe'xplicit 
col lect ion 

typing & 
binding 

non-deter
minant 

deter
minant 

keys 

surrogates 

runtime 
configuration 
time 

ini t ia l isat io 
time 

stat ic 
methods 

link time 

compile time 

Figure 57 Types of interpretation supported (shown in boxes) 



Chapter 8 - Interpretation Layer 185 
23rd January 1995 

The design choices are as follows: 

The RFC system supports the following types of call: synchronous invocations 
where the client blocks waiting for a reply; asynchronous one-way annunciation 
messages, and deferred synchronous two-way calls, where the client issues a re
quest asynchronously then later blocks to collect the results. This allows flexibil
ity in the degree of paralUsm across the network. 

The naming scheme relies on indirect naming for contextual independence. A 
client object makes an invocation on an outport that is locally named in it own 
class definition file. Outports also exist as runtime objects and act as locally 
named reference holders, for runtime references to runtime inports. References 
identify the remote inport. This automatically identifies the host object thus ob
ject identities are not required at runtime. 

Identities in the configuration model are logical identities and avoid encoded 
physical addresses. Processes, objects, and ports all have a logical name that is 
mapped to a runtime ID value and a runtime reference or pointer. The name serv
ice or trader of the infrastructure maps the process name to a runtime reference to 
a RFC server object. The RFC server object is an infrastructure object that is re
sponsible for delegating calls to and from all application objects in its process. 
Each RFC server maps port ID values to pointers to local port objects. The RFC 
server also maps process ID values to references to remote RFC server objects in 
other processes. 

This scheme is optimised for connected protocols since connection patterns are 
known in advance in the configuration model. Binding occurs at initialisation 
time or reconfiguration time, when a configuration is loaded or reloaded respec
tively, as opposed to runtime. Binding information is cached locally to where it 
will be used. Binding between ports therefore incurs no runtime binding over
head, other than that of a normal virtual C-H- call made by an inport on it's host 
object. The underlying RFC service of the infrastructure determines the actual 
form of the runtime connection management policy. For example, an ANSAware 
implementation only maintains a single connection between processes at one 
time and must reuse the binding information to reconnect every time a new server 
process is contacted. 

Type checking occurs at configuration time, for example when a composite is de
fined using the visual editor. The visual editor will not allow incompatible ports 
to be linked together and will not allow the system to be allocated with unbound 
mandatory ports. Thus the system is determinant, i.e. a runtime type error cannot 
occur, provided the type model is kept up to date and is consistent across the sys
tem. The visual editor also checks for cyclic nesting of synchronous calls that can 
cause deadlock. 

Explicit construction/destruction is specified by configuration commands of the 
visual editor to create and destroy objects. Currently these are made by the appli
cation engineer who configures an application using the visual tool or configura
tion language. This implies a static runtime configuration is loaded. 
Reconfiguration currently requires reinterpretation of the configuration model 
and is too expensive for highly dynamic object oriented applications. Reinterpre
tation of a configuration is currenUy intended to support coarse-grained dynamic 
changes such as application evolution or process migration to recover from node 
failures or to relieve highly overloaded nodes. Reconfiguration requires a com
posite to be suspended. 

This does not mean the structure is entirely static. Local C++ objects that are used 
to implement a component, can be created and deleted dynamically. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

186 

Runtime interpretation of configuration conmiands is plaimed for the future. This 
will allow the programmer to write scripts of configuration conunands as a meth
od that dynamically creates and links objects. 

Associated with construction/destruction is initialisation/finalisation. The Class 
Definition Language generates an attribute data editor dialogue for each object 
that can be used by the application engineer to define initial values for the at
tributes of an object defined in the configuration model and these values are read 
by the interpretation layer to initialise objects. 

8.2.2 Encapsulation Choices and Rationale 

encapsulation 

symmetric 
interface 

superobject 
encapsulation 

services services 
required provided 

loutports 

implicit 
scope 

depth of 
uniformity 

thread 
encapsulation 

messaging 
interface 

object-oriented 
internal 
construction 

wrapper 
interface 
for any 
internals 

active 
objects 

pool of 
threads 

passive 
objects 

explicit 
control 
(protected 
or private 
inheritence) 

dynamic 
threads 

Figure 58 Types of encapsulation supported (shown in boxes) 

One design constraint imposed by the sponsors was that the implementation lan
guage should be C-H- based. The absence of C-H- bindings in integrative stand
ards like CORBA, DCE and ANSAware at the time of development and the total 
absence of hierarchical composition support made it difficult for us to exploit 
these infrastructures at a high level. Instead it was decided to provide our own 
IDL, actually called CDL, and our own C-H- mapping that does lend itself to hi
erarchical composition. CDL generates extra code that encapsulates an object im
plementation and maps the C-H- implementation onto the infrastructure support. 

In our CDL a component identifies both the services required by the component 
as well as the services provided. Thus encapsulation is symmetric between the in
coming and outgoing interface to a component. Outports are defined in CDL and 
used in object implementations in place of object references. 



Chapter 8 - Interpretation Layer 187 
23rd January 1995 

Because C++ is used interiiallyi the interhdl construction of a component is ob
ject-oriented. C++ objects may be used intemally in the normal way to allow fur
ther levels of encapsulation!, but they can not be referenced outside their address 
space. 

Objects defined in CDL are passive objects, i.e. they are inactive until invoked 
and threads are allocated by the caller and control returns to the caller when a call 
completes. OpenBase objects do not encapsulate their own threads. 

An object can inherit from another component using C-H- inheritance with the im
plicit scoping rules of C++ being applied. Ports may be viewed as members, 
therefore a subclass includes all the ports of its base class and can access them 
using C++ scoping rules. Virtual functions can be used to (re)implement a meth
od that is associated with an inport defined in a base class. 

An object may also be configured in a composite with another object and this 
composite be saved and instantiated as a class. The composite derives behaviour 
from both its embedded objects by exporting their ports in its interface. If the em
bedded objects are semantically related as generalisation-specialisations, the 
composite can be viewed as consisting of a superobject and a derived object. It 
defines the interface between the derived object and superobject by specifying 
links between them. A messaging interface is used to define the superobject en
capsulation primitively at the level of individual members. 

8.3 Exploitation of Integrative Standards 

An evaluation of different integrative standards was made as part of the MSc re
search. This evaluation explored various design options for a flexible architecture 
design that exploits products that conform to the integrative standards but also 
isolates higher level components from volatility in the choice of product, so that 
dependencies on a particular product are not critical. The evaluation looked at 
OSF/DCE, OMG/COBiBA and ISO/ITU ODP RM (exemplified by ANSAware) 
to compare them as alternatives and to evaluate the potential for having an ap
proach that is portable across these standards. 

The reasons for considering these standards include: 

• One design goal for OpenBase is to be able to integrate and interchange dif
ferent third party architectural components that provide the runtime support 
for objects. This allows the architecture to evolve as new products emerge 
or to make pragmatic trade-offs between existing mechanisms to meet re
quirements for availability, cost, changing requirements or to meet diverse 
application needs. To do this we must understand the standards to which 
third party components conform. 

CORBA and DCE products are now supported by many main vendors and 
there is a fair amount of commitment by the vendors to supporting these 
technologies in the future. Hence it is important to consider them to future-
proof our approach, to demonstrate compatibility with mainstream object 
developments and standards and to be in a position to exploit additional 
runtime support provided by mainstream products. 

Despite the existence of published specifications for CORBA, ISO ODP 
and DCE, there is still a great deal of confusion over how they impact on 
software development. One result of the evaluation has been explaining the 
concepts behind these standards, see Appendix B. 



Chapter 8 - Interpretation Layer 188 
23rd January 1995 

• The integrative standards do not address configuration tools hence Open-
Base must layer our own configuration tool standards on top of them. The 
result of this is that the integrative standards are not .visible to OpenBase us
ers, only the system programmers of the internals,- This means standards-
based applications are not directiy compatible withiOpenBase applications. 
However by including the standards in the internals of the architecture, the 
gap between OpenBase standards and the integrative standards is narrowed, 
making it easier to provide gateways that interface to applications written 
to these standards and simpUfy support for porting OpenBase and for inter
operability of OpenBase across platforms. 

• The integrative standards address many low level problems that are shared 
by OpeiiBase at the implementation level, such as dealing with data type 
encodings. By layering OpenBase on top of a standard, much research and 
development effort may be saved, allowing Frism to focus on higher level 
issues. 

• The alternative to building on existing RFC systems would be to use UNIX 
networking progranraiing services like sockets. Sockets are effective if ef
ficiency is important. Standards-based RFC systems offer higher level 
fiinctionaUty that makes it preferable if productivity is important or if port
ability is important. In the initial prototype, the latter are more important. 
Prism may well re-implement the design in the future using a socket based 
tiansport service. 

The evaluation is written up in Appendix B. It is recommended that the reader 
consider the description of these standards that is presented there before looking 
at the detailed design of the interpretation layer presented in the next section. In 
particular, the reader should be familiar with the use of the following ANSAware 
terms: IDL, factory, node manager, stubs, skeletons, trader, name service. 

Appendix B provides a simple functional framework to describe the standards. 
The programming task is broken down into six steps corresponding to six areas 
of functionality that a programmer must deal with. Each step is illustrated with 
example source code taken from a simple banking scenario. These steps are: 

• Stub Generation, stubs encode/decode request and replies. They are typi
cally generated by providing a description of an objects interface in an In
terface Definition Language. 

• Source Code Implementation, the functions or methods in the interface 
need to be implemented, typically in C or C-H-. 

• Server Registration and Naming, the server needs to register itself with a 
name that is used by clients on binding. This can be initialisation code with
in a server or a command line utility that the configuror uses. 

Locating and Binding, before using a server, the system must find and bind 
the server to the client. A binding service is used by the client. 

Activation and Failure Handling, to use a server it must be actively running. 
This can be a configuration exercise or automatic (re-)activation of inactive 
servers can be built into the system. The system should also notify long 
term server failures. 

Synchronisation and Request Frocessing, the client must issue a request to 
the server. The system will deMver the request and return any reply data. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

189 

The rest of this section describes some conclusions that were made about how 
OpenBase may exploit these standards. 

At the time of evaluation, the standards were too immature to rely exclusively on 
one implementation for runtime support. It was decided that we should minimise 
dependencies on any one standard. Hence the evaluation had to identify what was 
conmion and consider techniques that could be used to achieve portability be
tween the standards. These techniques include layering, virtual interfaces, bridg
es, abstraction, and system or meta-level programming. 

Integration of CORBA with ANSAware or DCE is not trivial. It was decided to 
exploit only the most fundamental conmion subset of their features to ease migra
tion between them. This approach suffers the least-conmion denominator effect. 
Much added functionality needs to be implemented in a proprietary manner. 
However it avoids resolving the differences that were observed between the 
standards and those between the configuration prograimning paradigm and the 
extended client-server paradigm of the standards. As the standards mature and 
evolve into fuller specifications. Prism can commit to one and exploit it at a high
er level. Alternatively Prism may implement the runtime support themselves and 
eliminate dependencies on standards based products entirely. 

The rest of this section provides the rationale for concluding that integration of 
different standards and Wgh level exploitation for configuration progranmiing are 
not trivial. 

The relationship between OSF DCE, OMG CORBA and ISO ODP is not strict 
layering, since CORBA adds entirely new concepts to DCE such as dynamic in
vocation and ISO ODP (as exemplified by ANSAware) adds new concepts to 
CORBA such as viewpoints. The relationship is more one of extension both as an 
abstract layer and in terms of runtime support. This is shown in the following di
agram. 

higher level viewpoints 

ISO ODP 
(ANSA) time 

rpc++ OMGOMA y / ^ 
(CORBA) 

rpc y 

OSF DCE 
secunty 

dynamic invoc. 
object services clusters 

> runtime support 

Figure 59 Non-Layered Architecture Relationships 



Chapter 8 - Interprietation Layer 
23rd January 1995 

190 

ANSAware provides a partial implementation of much of the ISO ODF standard. 
This implementation: is open, i.e. the source is available; is rich in features, for 
example including group interaction protocols, and is relatively maUire, com
pared to DCE and CORBA products. For these reasons, ANSAware was selected 
as the best platform for the first prototype in 1992. However it is expected that 
conunercial releases of OpenBase will want to build on the more commercially 
accepted DCE and CORBA standards. 

It is expected that CORBA implementations will eventually provide the best plat
form to launch the product on. The OMG will evenmally provide a rich set of 
services for managing objects that will overlap the features currentiy supported 
by ANSAware. 

The areas of functionality that CORBA technology may save research and devel
opment effort include: 

activation, starting the server if an instance of it is not available 

request dispatch (and scheduling if multi-threaded) 

parameter encoding, also called marshalling. 

message transfer and delivery, shipping the request from the client to the 
server 

error/exception handling, if the network fails or the server cannot be start
ed, 

internal connection management (hidden behind binding mechanisms) 

synchronisation, between the client and server 

security mechanisms, to prevent unauthorised object manipulation. 

In addition, extra functionaUty will be provided by object services. This includes 
the following, in rough order of likely availability date: 

name services - to get references to objects based on text names 

events - notification of events to interested parties 

object lifecycle - allowing objects to be created, copied, tested for equiva
lence and deleted 

persistence - allowing an object to retain data on stable storage 

relationships^the capability to define relationships between objects to re
tain the object handles of linked objects for graphical tools 

concurrency - concurrent access to one or more objects 

transactions - atomic execution and recovery of one or more operations 

externalise - object externalisation and intemalisation 

time - synchronisation of clocks in a distributed system. 

security - protected access 



Chapter 8 - Interpretation Layer 
23rd January 1995 

191 

licensing - licensing management 

properties - allowing extra dynamic information to be attached to an object 

query - predicate based operations on sets or collections of objects 

trading - matching of provided service to the service needs of a chent object 

change management - identification and consistent evolution of objects in
cluding version and configuration management 

data exchange - exchange of some or all of visible state between one or 
more objects 

repUcation - group interaction among objects 

archive - mapping between archive and backup object stores 

backup/restore - backup and recovery of objects 

installation and activation - mechanisms for distributing, activating and de
activating and relocating managed objects 

operational control - controlUng the dynamic behaviour of objects 

The approximate time profile for CORBA object services is illustrated in Figure 
60. 

Application Objects Common Facilities 

c ) Object Request Broker 

Object Services 

Name 

Persistence 

Lifecycle 

Events 

Time 
Security 
Licensing 

Properties 
Query 

Relations 
Concurrency 
Transactions 
Externalise 

Trading 
Change Mgmt 

Data Exchange 

1993 1994 1995 1996 

Figure 60 Time Profile for Object Services 



Chapter 8 - Interpretation Layer 192 
23rd January 1995 

The rest of this sub-section focuses on comparing CORBA and DCE and evalu
ating the techniques that can be used to integrate CORBA and DCE, in order to 
support the longer term view tiiat CORBA is likely to provide the best infirastiuc-
ture support and CORBA can not be easily integrated with DCE. 

Some people have referred to the relationship between DCE and CORBA as like 
tiiat between C and C-H- (i.e. CORBA has been called RFC++). This is because 
D C E is not object oriented: it has no interface inheritance. An object oriented 
style can be superimposed on DCE in the same way as an object oriented style 
can be superimposed on C. 

As a result of it's lack of an object model, DCE is Umited in what runtime support 
for object management it can provide. The OSF intend to evolve DCE to accom
modate CORBA object services by adding an object model. However this will in
evitably take time 

At a more practical level, the following differences can be observed: 

• CORBA IDL and binding mechanisms are easier to use than DCE's low 
level interface that require several calls to register interfaces. 

• The low level interface means there is much work to be done to support 
fine-grained models. DCE is intended for process-oriented servers. COR-
BA's higher level interface is more productive and can support transparent 
collocation that makes it appropriate for finer grained object models. 

• CORBA IDL is more appropriate to C-H- and may even generate C-H- head
ers. DCE is used in C-H- in die same way as C and doesn't support interface 
inheritance. 

• CORBA libraries can be linked selectively and provide a smaller system in
terface whereas DCE generates a large image from a large interface. DCE 
consists of some 2 million lines of code, mainly C. 

• DCE provides security, threads and directory services. Most ORBs lack 
support for this yet and all lack OMG's blessing. However DCE is not ob
ject oriented and is therefore limited in the long term as to what object man
agement services it can provide. 

As a result of these differences CORBA is reconmiended for the longer term. The 
next few paragraphs look at overlaps, incompatibilities and coverage differences 
that limit the applicability of integration techniques like layering, abstraction, vir
tual interfaces and system progranuning and suggest integration of both CORBA 
and DCE is difficult. 

Some parts of DCE are lower level and can easily be layered on by CORBA im
plementations: 

• DCE RFC, the procedure call subsystem of DCE can be used as the trans
port service for a CORBA implementation. 

• DCE NCS, the data encoding standard. 

In addition, system prograrruning techniques can be used to integrate orthogonal 
functionality that does not overlap. 

• DCE is very low level. It is therefore possible to program at the system level 
easily to customise its behaviour. However this requires a lot of work. 



Chapter 8 - Inteipretation Layer 193 
23rd January 1995 

• CORBA products like Orbix support higher level interfaces for system pro
gramming such as stub subtyping, filters. 

However, there are incompatibiUties in overlapping areas and differences in cov
erage, as described below, that make layering and system programming difficult 
or restrictive. 

Some parts of DCE overlap with CORBA but are incompatible, making abstrac
tion across both difficult, including: 

• both provide an IDL. The IDLs are incompatible. Unification of the two 
distinct IDLs is difficult. 

• both provide a name service and binding services. 

DCE only names and references interfaces for server processes not 
fine-grained objects within a process. DCE names are resolved to the 
physical address of the server process before invocation. Support for 
multiple objects within a process is difficult in DCE. 

CORBA supports location-independent object references that can be 
passed across the network and allows multiple objects per server 
process. 

Layering is possible if object references are implemented in two-parts: the 
server is resolved using a location service and DCE cell directory service to 
establish a direct channel between server processes; the object name within 
a server is resolved using the CORBA name service. 

Some parts of DCE are extensions to CORBA that have not yet been standardised 
as Object Services. Differences in coverage restricts the suitability of layering, 
virtual interfaces and bridges that suffer from the least-common-denominator ef
fect.: 

DCE Threads 

DCE Security 

Some parts of CORBA are extensions to DCE: 

• CORBA Dynamic Invocation Interface, DCE enforces static link-time de
pendencies between a client and a server's stubs, a call-level interface for 
the dynamic interface is difficult to implement using a static compilation 
model such as DCE RPC. DCE has no interface repository holding infor
mation about stubs. This support needs to be added explicitly. 

• Factory and lifecycle services, to activate processes and create objects. 

• CORBA inheritance and object model. DCE does not support interface in
heritance or objects. In this sense CORBA may be viewed as DCE++. 

DCE does not provide a type repository nor trading mechanisms. This in
cludes the Property Service, to associate dynamic properties with objects, 
and the Association Service, to model associations between objects. 



Chapter 8 - Interpretation Layer 194 
23rd January 1995 

• DCE does not support deferred calls where the response is collected later. 
This is supported by the dynamic interface. DCE threads can be used to 
spawn a request handler tlu^ad to make the synchronous DCE call. The 
original caller later blocks on the request handler when collecting results. 

• DCE is not intemally object oriented and has no notion of objects acting as 
intermediaries. 

The rest of this chapter describes how the interpretation layer is designed in an 
early prototype based on ANSAware. The key goal of this prototype is to explore 
and prove design alternatives. This prototype seeks to expoit only the common 
basic functionality provided by all the integrative standards like OMG CORBA, 
OSF/DCE and ISO ODP - to explore tiie feasibility of migrating the architecture 
across the standards and defer commitments until the standards mature. 

8.4 Design of Interpretation Layer 

This section describes the design of the first prototype for the interpretation layer. 
This has a simpler design than the final prototype. The first release is described 
rather than the final prototype design because services are combined in this re
lease and this makes the description more concise and simpler. It is intended to 
illustiate the way the interpretation layer is implemented. The same principles 
were employed in the final prototype. Furthermore the first prototype was a solo 
activity right down to code and testing, whereas other Prism staff were involved 
in the final design. 

The interpretation layer provides the mechanisms to generate the runtime support 
for OpenBase objects. TTiis consists of four key layers: 

• the object layer, application objects are implemented in C-H- using a hier
archical composition idiom that is supported by skeleton code generated by 
the class definition language (CDL) compiler. 

• the stub layer, objects interact by calling methods in outport objects that are 
nested in the client object and being called by inport objects nested in the 
server object. These port objects provide the stubs for encoding and decod
ing C-H- method invocations and are generated by the CDL compiler auto
matically. 

• the configuration layer, connections between stubs are managed by link ob
jects that are provided by the OpenBase runtime library. Link classes may 
be specialised to support different interaction policies, by performing dif
ferent reflective computations on an invocation. The choice of link object 
is determined by specification attributes in the distribution model. Other 
configuration objects are also provided in the runtime library to interpret 
the distribution model. Node configuration objects create and link process
es on a given node. Process configuration objects create and link applica
tion objects within processes. 

the manager layer, the underlying distributed object infrastructure, i.e. AN
SAware, is encapsulated in a portable interface provided by manager ob
jects. These objects map C-H- calls onto C calls of the infrastructure, 
including calls to the RPC service and to any management API. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

195 

The design of the interpretation layer is explained in the next six sections that 
cover the six areas of functionality that have already been used to compare inte
grative standards. This highlights the difference in approach between OpenBase 
and integrative standards - namely that configiu-ation dynamics are determined by 
interpreting a stiuctured high level model rather than tiirough runtime negotiation 
between components. 

In OpenBase, bindings between service providers and service users or process ac
tivation and passivation are resolved in the distribution model. Dynamic config
uration is supported by interpretation conmiands as shown in Figure 61. 
Interpretation queries determine most of the functional steps: linking of stub ob
jects, naming and registration, locating and binding, server activation. 

node manager 
^aemon process 

server 
process 

distribution 
model 

V 
interpretation 
commands 

process object 
configuration 
commands 

rpcmanager^ (^^Tpcservice 

infrastructure 
configuration 
commands 

object layer 

stub layer 

configuration 
layer 

( ^ p c s e n / i c e ^ ^ / managers 
^ / layer 

management 
API of 
infrastructure 

RFC service 
of 
infrastructure 

distributed 
object 
infrastructure 

Figure 61 Dynamic interpretation of high level model 

This contrasts static models like DCE or server-oriented dynamic models like 
trading, narrowing and server repositories. The interpretation of a complete mod
el for the software configuration allows coarser grained management policies that 
take advantage of composite properties and local domain knowledge. 

A configuration can be in eight states: 

• editing, where the visual editor is being used to define a logical view of the 
configuration. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

197 

Address 
Space 1 

y. 

8.4.2 

method call 

- a 

Address 
pace 2 

bject layer 

(̂ outport ^ I (̂ Inport stub layer 

^ encoded message ^ 

(^outlink^^^ (Tnlink 
configuration 
layer 

^ targeted message ^ 

(^^^service^ ^ \ ^ (^Tpcservice^ transport 

genericRPC(...targetlink,message..) 

, layer 

distributed 
object 
infrastructure 

Figure 62 OpenBase layers involved in method invocation 

C++ Idiom for Application Method Implementation 

As well as generating inports and outports, the Class Definition Language also 
generates C-H- code skeletons that have consistent method names and signatures 
with those expected by the inports. These skeleton consist of a class header con
sisting of data declarations, operation declarations and port declarations, as well 
as port implementation files. The component programmer must provide an imple
mentation file to implement each operation (i.e. method) using the OpenBase 
C + + idiom. The relation between the operation/port declarations and the imple
mentation files, is illustrated in Figure 63. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

198 

Members declared in Generated 
Skeleton Class Header 

operation 1 declaration 

operation2 declaration 

inport for operationi 

inport for operation2 

outport for operations 

Operation Irjnplementation File 
for Progranrimer 

class::operation1 (int...) 
{ 

...outport->operation3() 
} 

class: :operation2(f loat...) 
{ 

Port Implementations 
Generated by CDL 

jilassjaortl 
class PQ.rt2 

class ports 
{ 

Figure 63 Implementation of Skeleton Code 

The OpenBase C + + idiom uses AT&T C-H- with the following restrictions on 
method implementation : 

• Any distributed objects must be referenced and invoked via outports de
clared using the Class Definition Language. A dynamic untyped port inter
face is provided as an alternative to using statically typed ports but a full 
discussion of this is outside the scope of this thesis. 

• Local C++ objects may be declared, instantiated and invoked in the normal 
way either on the stack, heap or as a class member, but pointers or referenc
es to these objects can not be passed as arguments to inports or outports. 

• Outports may be passed as arguments to allow dynamic connection. The se
mantics of this are that an outport in the target is dynamically bound to the 
same inport. The marshalling code must create the binding dynamically. 

The ObjectStore C front compiler is used to support persistence. This is in
tegrated with CDL. The CDL compiler generates a metaclass object that 
supports persistence services. A full discussion is Outside the scope of this 
thesis. 



Chapter 8 - Interpretation Layer 199 
23rd January 1995 

• The ObjectStore C front provides no support for exceptions. OpenBase pro
vides its own exception mechanism. A ful l description of this is outside the 
scope of this thesis. 

8.4.3 Naming and Registration 

Server objects are named when object instances are declared using the OpenBase 
configuration language or the visual scripting tools, for example by dragging and 
dropping an instance into a composite. 

Server processes are named when composites of application objects are allocated 
to them using the editor. In reality a unique processED value is usually generated 
rather than a textual name. 

The runtime name of an object consists of these two parts. The process name is 
used to address the rpcservice object and the object name is used to address ob
jects within a process. The mappings between names and physical addresses is 
held in two places: 

• The process configuration object that is embedded in each process to pro
vide configuration services for objects also caches a catalogue mapping be
tween object names and object pointers. 

• The name service of the infrastructure maintains a mapping between proc
ess names and infrastructure references to rpcservice objects. 

Each rpcservice object includes a pointer to its local process configuration object, 
and can be used to find the object pointer on binding. Hence a pointer to an object 
can be obtained from a name in three simple steps: lookup of process name in dis
tribution model; lookup of rpcservice object in name service ; and lookup of ob
ject pointer in local process configuration object. 

A pointer to an object is required for adding new links on configuration. However 
pointers to link objects are sufficient at runtime in order to pass messages via 
ports to objects. The rpcservice generates linklDs when link objects are bound 
and maintains a mapping from linklDs to pointers to local link objects. The bind
ing service passes these linklDs across the network so that a request message can 
address the correct inlink object and a reply message address the appropriate out-
link object. Link objects encapsulate the linkID of the other end of the link. The 
linkID is added to the message body by the link object and read out of the mes
sage by the target rpcservice in order to lookup the correct link object 

The rpcmanager object encapsulates the name service of the infrastructure in a 
portable C++ interface in the same way as the rpcservice object encapsulates the 
generic RPC service. In the prototype, the ANSA trader is used. The rpcmanager 
maps a portable C++-based interface onto the distributed C-based interface of the 
trader. It also provides an ANSA interface to the management API for the rpc
service object. 

For efficient interpretation and simplicity in the prototype, lookup, creation, reg
istration and linking are combined in a single link evaluation action. There is a 
process configuration service for managing creation/bindings to rpcservice ob
jects and an object configuration service for managing creation/bindings to appli
cation objects. The relevant names are cached locally to where the link evaluation 
action takes place. A lookup is performed prior to linking to determine i f the proc
ess or object needs to be created and have it's name registered in the cache or 
whether it is already cached and therefore already exists. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

200 

The creation of objects and the registration of the object name in the process ob
ject is automatic when evaluating an object configuration command for an object 
that does not already exist. The creation of processes and the registration of the 
rpcservice in the name service is automatic when evaluating a process configura
tion command for a process that does not already exist. 

A configuration is interpreted and loaded by visiting all Unks in the distribution 
model and performing navigational queries on the associated objects to find ob
ject names and process names. The distribution model is stored in ObjectStore 
which supports efficient navigational access. By combining evaluation actions, 
fewer queries and messages are needed to access and interpret the model, than i f 
we iteratively created all processes then all objects then all links as this would re
quire revisiting objects for each link. 

In the final prototype of OpenBase distinct services are provided for object crea
tion, object initialisation, object finalisation, object destruction, object Unking 
and object unlinking. These services are designed to be idemnipotent, i.e. can be 
called several times without multiple effects, by combining them with automatic 
lookup and registration/de-registration. This allows navigational interpretation of 
composites in the distribution model without worrying about revisiting elements. 

The registration of a server process is shown in Figure 64. 

node manager 
daemon process 

server 
process 

distribution 
model 8. create 

1. read next 
link 

2. process \ ^STobject 
configuration if \ configuration 

7. lookup 

10. register 

rpcservice 

4. create 
process 

*|^^pcmanag^^ 
3. lookup 

object layer 

stub layer 

configuration 
layer 

rpcservice jmanagers 
layer 

5. register 
rpcservice 

name 
service 

jrocess 
creation & binding 

service 

distributed 
object 
infrastructure 

Figure 64 Registration of process name and object name 



Chapter 8 - Interpretation Layer 201 
23rd January 1995 

In the case of links between nodes, the node object forwards configuration com
mands to the daemon on the required node. The node name for the process can be 
obtained from the distribution model. Daemon processes have a well known 
name that is registered in the name service automatically and can be found fi'om 
anywhere. ObjectStore supports distributed database access and the name service 
of the infrastructure is a distributed name service so both can be accessed from 
anywhere, making interpretation of distributed configurations easy. 

8.4.4 Locating and Binding 

In the prototype, lookup, creation, linking and registration are all combined in a 
single configuration service for objects. This actually consists of two services: a 
linkout service and a linkin service. A linkout message is sent to the client object 
and the client forwards a linkin message to the server object. This is shown in Fig
ure 65. These services pass the linklDs for each end of the link to the other end 
so that the destination link object of a request or reply message can be identified 
to the rpcservice object. 

The client is found by using its process name to lookup the rpcservice in the name 
service, by calling the process configuration service. In the prototype this is called 
bindProcess. This may result in the creation of the client process. 

The client object name is passed in the linkout message together with the server 
object name and server process name. The client uses the server process name to 
call bindProcess for the server prior to calling linkout in the server. 

Where the server is on another node, the distributed name service will still return 
the appropriate rpcservice object reference. I f the process lookup fails, the proc
ess creation and registiration wil l be delegated to the node where the process is to 
be loaded. 

The ipcservice object violates tiie C-H- encapsulation of die ti-ader by the rpcman
ager in order to call an ANSA form of bindProcess without mapping to and from 
C-f-f-.. The rpcservice object controls the way the trader interface is presented to 
RPC service users. The rpcservice objects cache a reference to their local daemon 
for rapid access to the rpcmanager. 

The rpcmanager is designed to encapsulate any enabling management services of 
the infrastructure such as name services, process activation, RPC service binding. 
This facilitates migration of the design across distributed object infrastructures 
and the separation of management interfaces from RPC service interfaces. It pro
vides a portable C-H- interface to the node and a distributed non-portable interface 
to the rpcservice object. The rpcservice is designed to control the way the man
agement interface is presented to RPC service users. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

202 

server node manager 
daemon process 

client 
process 

4.lookup S.lookup distnbution 
/create 
/register 

/create 
/register 

model 
1. read next 
link 

process 7 2. bindprocess 
for die 3.1 mkout 

rpcmanageT^ 

(^Tpcservice 
rpcservice rpcservice 

6. bindprocess 
for server 

name 
ervice 

7. linkout 
RPC 
service 

Figure 65 Binding application objects 

8.4.5 Server Activation and Failure Handling 

Processes are activated automatically by the combined bindProcess service of the 
rpcservice object. This relies on the infrastructure support. In the prototype, it 
uses the ANSA factory and trader to create the rpcservice as a managed object 
and register a reference to it. The reference is also returned to bind the rpcservice 
objects of the daemon to the server. This is shown in Figure 66. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

203 

node manager 
daemon process 

server 
process 

name 
service 

distnbution 
model 

c 
rpcservice rpcmanager rpcservice 

3. bind rpcservice 
& process object 

1. bindProcess 

configuration 
layer 

/ managers 
^ I layer 

4. add binding 
to name service 

'2. create process 
& rpcservice & 
return binding 

distributed 
object 
infrastructure 

Figure 66 Process creation and binding of rpcservice object 

On creating the rpcservice in the server process, a binding to the local rpcmanager 
is cached for rapid access to the management API. The rpcservice object provides 
an ANSA service called RMHnitialise which is called by bindProcess. 

The process also supports a method for putting all its objects into a running state. 
In the final prototype, support was also included for putting all objects in a run
ning process into unloaded states for re-configuration and for deactivating un
loaded processes to destroy them. 

In the prototype, objects are created automatically by the combined linkin and 
linkout services. Object constructors are called indirectiy by calling a generic cre-
ateobjectO method provided by meta-class objects that are generated by the CDL 
compiler. The process object uses the class name to find the appropriate meta
class object. This is supported by the EDL compiler which describes the classes 
supported by each image and generates a make file that links the right metaclasses 
into the process. 

In the final prototype support was also provided for unlinking objects and final
ising and destroying objects. This allows reconfigurations once the process is in 
an unloaded state. 



Chapter 8 - Interpretation Layer 204 
23rd January 1995 

8.4.6 Request Processing 

Ports are generated by the CDL compiler according to the signature defined for 
the invocation. Ports perform the data marshalling and concurrency control. Ports 
support synchronous invocations where the client blocks waiting for a reply, 
asynchronous one-way annunciation messages, and deferred synchronous two-
way calls, where the client issues a request asynchronously then later blocks to 
collect the results. 

Links are specified in the configuration language or visual scripting tools and 
control message and control flows. Link objects are provided by the OpenBase 
runtime library. They maintain pointers to local port objects and linklDs for re
mote links. 

The rpcservice object is actually implemented as two objects: one for incoming 
requests and outgoing replies, mapping linklDs to local inlinks; and one for in
coming repHes and outgoing requests, mapping linklDs to local ouUinks. Each 
message consists o f : 

• the linkID of the destination, 

• binding information for the source, i.e. the process name and linkID, 

the input buffer for requests or output buffer for replies. 

Memory management in the cHent is such that the input buffer is reclaimed by the 
system after the call completes and the output buffer is reclaimed on the next call. 
Memory management in the server is such that both buffers are reclaimed after 
the reply is sent. Any persistent data not passed by value such as strings should 
be copied between calls. 

Port and link objects perform various computations on object invocations to cope 
with various object management behaviours. The final prototype supports con
currency controls through locks that are specified in CDL, multicast calls across 
several links (called fanning-out where a outport is connected to several links), 
request construction by combining successive calls from different sources (called 
fanning-in, where a inport receives requests from several links before calling the 
method), and optimised local calls. 

Future support may be included for sampling of continuous streams of input when 
it is not necessary to process every update and for reversible protocols that change 
from notifying to polling to trade-off required sample rates against measured 
rates of change.. 

The scheme is extensible through port and link subtyping. The choice of subtype 
controls the behaviour and can be made transparent to the programmer by intro
ducing specification attributes in the distribution model and adding further man
agement policies to determine and interpret them. 

An example class hierarchy for links is shown in Figure 67. Not all of this hier
archy was implemented in the prototype. Link behaviour is transparent to the 
ports since the base link class provides polymorphic bi-directional interfaces 
Typically a remote link provides the outgoing link and a inlink provides the in
coming link. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

205 

link 

ouUink inlink 

lightweightlink remotelink 

relocatediink passivereplicalink 

grouplink 

activereplicalink 

faninlink 

fanoutlink 

Figure 67 Example Liiik Class Hierarchy 

In the future, link objects may be chained together to compose different manage
ment behaviours including migration, replication, transactions, load balancing, 
recovery, caching. This may also allow control at different granularities by in
cluding links bounding composites. Composites may either be clusters of objects 
or control flows that run across several objects. Links should also be able to 
change their behaviour, for example providing a become() service to support mi
gration, become (relocationlink) at the old server, cluster splitting, become (grou
plink) at the old server, and replica group changes, become (passivereplicalink) 
or become(activereplicalink) or become (remotelink). 

For fine-grained invocations, performance optimisations are critical to avoid 
marshalling, buffer copying and context switching overheads for local calls. In 
the prototype optimisations can be made at two levels. 

• For invocations between processes on the same node, a lightweightiink can 
be used. This is implemented in the prototype to use named pipes as the pro
tocol in the rpcservice. ANSA supports named pipes. 

• For invocations between objects in the same process, the outport will be 
connected directiy to the inport via a special typed inlined method. Inport 
implementations are generated with this method. This method is called in 
place of the generic RPC upcall and avoids all marshalling overheads. This 
is shown in Figure 68 as a nested call. 



Chapter 8 - Interpretation Layer 
23rd January 1995 

206 

Address 
Space 2 

Address 
pace 1 

method call 

nport ; putport 

encoded message 

outlink inlined 
method call 1 / V T 1 f targeted message I \ 

( ^cserv ice^ 

invoke(...message..) 

Figure 68 Nesting of local call in remote call 

8.5 Summary of Chapter 

This chapter has described the design of the protot5^e of the interpretation layer. 
The prototype was designed, coded and demonsti-ated as part of the MSc research. 

The prototype provides a portable layering on top of ANSAware. This may be mi
grated onto another standard such as a CORBA implementation or the entire in
frastructure may be implemented in a proprietary manner by Prism in later 
conmiercial releases of the software. 

This chapter shows how a configuration of objects can be transformed from a 
meta-level representation in a distributed object oriented database onto an execut
able runtime environment. The design of the meta-data model is described in the 
next chapter and the development tools that can be used to define and manipulate 
the data model are described in Chapter 10. 

The description of the interpretation process provided in this chapter assumes the 
meta-data model is generated by higher level tools and interpreted at build time. 
However this is not always the case. It would be easy to define runtime configu
ration monitors that manipulate the meta-data model at runtime to define new al
locations and initiate re-interpretation to re-configure the system. Such 
configuration monitors may provide the runtime support necessary to implement 
advanced object management policies such as for process migration to deal with 
node failures and/or load balancing. Likewise it would be easy to re-edit an exist
ing configuration to evolve the software incrementally without bringing the 
whole system down and doing a complete re-build. 



Chapter 8 - Interpretation Layer 207 
23rd January 1995 

Migration of a process and evolution of a software configuration are traditionally 
seen as very difficult tasks. Machine dependent information such as network 
communication paths, data structures in memory, running clocks are all inherent
ly immobile. Machine dependent informatibn is minimised with OpenBase ob
jects. Objects encapsulate what can be moved. Link objects isolate and provide 
access to the dependent data structures that need to be changed. 

Transactional support for changes in the configuration state of nodes, processes, 
composites and objects should be supported in the final system to facilitate the 
development of such advanced runtime configuration managers. 

In the proposed design, adaptive management can occur in different ways: 

• by substituting different runtime support components to choose different 
services i.e. reconfiguration of the infrastructure itself. 

• by allocation of the configuration model to the distribution model. 

Both are managed adaptively according to the existing loading and demands on 
the system. Both can occur at runtime or at build time (or re-build time on main
tenance) 

Support for build-time adaptive management is described in the next chapter. 



Chapter 8 - Interpretation Layer 208 
23rd January 1995 



Chapter 9 - Configuration and Distribution Models 209 
23rd January 1995 

Chapter 9 Binding Model and Distribution Model 

9.1 Scope of chapter 

This chapter evaluates the design and role of the meta-model layer. The meta-
model layer is defined by the components and relationships shown in the shaded 
box in Figure 69. This includes: 

9.1.1 Meta-Model Components 

Type model 

The type model is an object oriented database containing related objects that store 
the definition of a component type. This includes class definition objects, port 
definition objects and interface definition objects. 

Definition objects capture common properties shared by sets of conformant in
stances. They contain static semantic information that is specified for all con
formant component instances. These sets may be arranged in type hierarchies by 
having inclusive relations with other definition objects. This allows semantic in
formation to be specified at various abstraction levels up the different type hier
archies. 

Configuration Model 

The configuration model is an object oriented database containing related objects 
that model a program as a configuration of component instances. This includes 
component instance objects, port objects, link objects, composite objects, cluster 
objects and activity flow objects. 

Composite objects, cluster objects and activity flow objects are all set abstrac
tions defining instance hierarchies using inclusive relations to the other objects. 
The ability of composites to contain instances that are nested composites allows 
a hierarchical model to be represented. 

Port objects have connected-by relations with link objects. Nested composite ob
jects may be related to unconnected ports that are exported from internal instanc
es. These ports will be connected by link objects in the outer composite. 

Port objects in turn are related to port definition objects in the type model and in
stance objects are related to class definition objects in the type model. 

The configuration model contains contextual semantic information that is speci
fied for particular instances of a component and can be specified using the various 
set abstractions of the instance hierarchies. Thus set abstractions exist both in 
type hierarchies and instance hierarchies and are useful to structure specifica
tions. 

Requirement graph 

The objects that make up the configuration model and the objects that make up 
the type model include information that affects allocations. These take default 
values unless explicitiy specified by the component programmer or application 
engineer. 



Chapter 9 - Configuration and Distiibution Models 210 
23rd January 1995 

The requirement graph defines views onto the configuration model that are used 
by the policy manager to perform queries in determining resource allocations and 
policy choices. These queries access the relevant information in the type model 
and configuration model. 

Views can be generated in two ways: 

• by automatically iterating down the composite hierarchies recursively 
when the application engineer submits a configuration to be allocated, 

• by explicit definition whenever the application engineer takes expUcit re
sponsibility for the management poUcy of any part of the configuration. 

Views may have different consistencies, depending on the decision or policy be
ing selected. They may be branches in the hierarchy of composites or sets of 
branches defined by cluster objects or sets of link and port objects defined by ac
tivity flow objects or individual instances, ports and Unks. Views provide the unit 
of management. 

Load Graph 

The load graph models the physical configuration as related objects representing 
nodes, images, processes and resources and is queried by the policy manager to 
determine a set of options to be used in allocations. 

The load includes views onto the configuration model for configurations that 
have already been allocated. Hence allocations are sensitive to the imposed load
ing on the system. This also includes resources provided by previously allocated 
objects. 

The configuration model and type model may include resource objects that are 
provided by a component, for example a print driver provides a printer as a re
source. Links that span views identify correspondent objects that are also consid
ered as resources, i.e. service resources. 

The load graph therefore tracks previously-allocated correspondents, resources 
provided by objects, as well as general loadings. Loading information is also 
maintained by runtime monitoring. 

Reward Graph 

The complexity of management decisions means they are often relatively ad-hoc 
in practice. OpenBase attempts to provide a more systematic approach by provid
ing conflict resolution policies that are sensitive to the application requirements. 
In the prototype these policies are algorithmic, and are based on accumulating re
ward values for different options. Rewards accumulate according to the value of 
requirement attributes in the requirement graph and load attributes in the load 
graph. 

The reward graph maintains the reward values for the different options. The re
ward graph also allows several best options to be stored and used later for adap
tive runtime management. For example, a domain of several best location may be 
used by a load balancing manager to migrate configurations off nodes that be
come overloaded without incurring the runtime overhead of determining best lo
cations. 



..^.-ConfigurationandDistributionModels 

;5;naary 1995 

.1.2 Relationships between Models and Other Layers 
Relationship with Class Definition Language I 

The class definition language provides the static semantic information that is xsssM 

to generate and populate the type model. 

Relationship with Visual Editor 

The visual editor or configuration language provide the contextual informatssarB 

that defines a configuration of objects and populates the configuration model. 

Relationship with Environment Definition Language 
The environment definition language defines the physical configuration that is 
used to populate the load graph with an initial description of the available re
sources, nodes, images and processes. 
Relationship between configuration model and distribution model 
The component programmers and application engineers view is of a single worid 
of objects, accessible from any machine without awareness of actual location. 
This view is modelled in the configuration model and is transformed into a phys
ically distributed model by allocation of the configuration model to the physical 
model represented in the load graph. 
Relationship with interpretation layer 
The interpretation layer queries the configuration model and instantiates and im-
tialises runtime objects that correspond to the instance objects in the configura
tion model and instantiates and links runtime communication stiibs tlat 
correspond to the link objects in the configitfation model. The allocation of lust-
ime objects to processes and the choice of runtime policy is determined by spec
ification attributes that are defined for allocated views. 



Chapter 9 - Configuration and Distribution Models 
23rd January 1995 

212 

component system plant 
progragimers integrators engjpeers 

± i 
m 

loraD3QfQ©©or3ofag) ir@®a§ 

' D(o!G@p O - -
- o 

12 

71 

t t 
Emkmmmt 

Figure 69 Meta-Model Components and Relationships (shown in shaded 
box) 



Chapter 9 - Configuration and Distribution Models 
23rd January 1995 

213 

9.2 Design Choices 

Design choices can be described as instantiations of the design variables identi
fied in the evaluation framework. These are shown in Figure 70 and Figure 71 for 
the' most important principles in the design of this layer, namely polymorphism 
techniques to ensure pluggability to allow components to be connected safely and 
selective properties to allow control over the management behaviour. 

9.2.1 Polymorphism Choices & Rationale 

Polymorphism 

Universal 

Ad-hoc 

Coercions I Overloading 

assumpiions 

strong 
assumptions 

Inclusion Parametric 
weak 
assumptions 

algebraic/ 
axiomatic 

Implicit Explicit 
model-based 

Member 

Figure 70 Types of polymorphism supported (shown in boxes) 

OpenBase allows assumptions that a client makes about a server to be expressed 
by specifying typed ports. Ports are typed according to interface definitions. 
These consist of specifications of operation signatures and data types for argu
ments and exceptions. Components that provide inports with conformant inter
face definitions may be substituted across a link from an outport. These 
assumptions are weak. Interface definitions do not currently allow the specifica
tion of pre- and post- conditions or other behavioural specifications that express 
strong assumptions about the behaviour that a client component expects from a 
server component. This is seen as a weakness in the design. 

Substitutions are made by specifying a link between the outport in a client object 
and an inport in a server object. It is individual members, associated to ports, that 
are bound together and must conform rather than objects. Interface definitions are 
distinct from class definitions. This form of member inclusion polymorphism is 
the weakest most flexible form of conformance, as defined in section 2.1.2. 



Chapter 9 - Configuration and Distribution Models 214 
23rd January 1995 

Mainstream object oriented systems support polymorphism across inclusive rela
tionships between classes, i.e. inheritance relations, rather than inclusive relations 
across individual members of classes, i.e. composition relations. They have no 
notion of port type. Class inheritance usmg generalisation-speciaUsation usually 
implies some level of semantic consistency for all derived classes and this is used 
as the constraint. 

Primitive port types say httle about semantics, i.e. the actual behaviour of a meth
od. Semantic consistency is only achieved with port types i f the design method
ology focuses on finding abstractions for the interactions that can occur between 
objects, such as design-by-contract(Meyer, 1992, ref [2]) or framework-based 
methods discussed in section 4.2.2. In this case, the designer identifies different 
types of interaction that are meaningful in the application domain and introduces 
interface types to capture the semantics of those interactions. This is an important 
aspect of tiie OpenBase methodology. 

Note interface types may themselves have inclusive inheritance relations to other 
interface types so that constraints on polymorphism can be expressed at different 
levels of abstraction. Note also that this type hierarchy is orthogonal from the 
class hierarchy for components. There is nothing to stop interface definitions 
from mapping to class definitions with each class having a single inport but this 
is not implicit. 

Coercions are supported by the C-H- compiler between basic types such between 
integers and longs. However this only occurs internally in the implementation of 
a component since port types must be constructed types defined by operation sig
natures and cannot be basic types. 



Chapter 9 - Configuration and Distribution Models 
23rd January 1995 

215 

9.2.2 Selective Property Choices & Rationale 

selective properties 

property 
specification 

property 
customisation 

clustering 

^ctivit^lows 

system 
properties 
support 

/ 
omposites 

btub 
Bubtyping 

low level 
library 

distributed 
language 

protocol 
negotiation 

metaobject 
protocol 

integratea 
viewpoints selective 

ransparencies 

reflective 
language iMapping 

DL 

frameworks 

Figure 71 Types of selective property supported (shown in boxes) 

Various system properties are realised by adopting different management poli
cies. This includes policies for allocating objects to processes across the network 
and choosing runtime protocols for RPC, for replication, for atomicity and recov
ery, etc. 

Selective properties are supported by providing both explicit and implicit mech
anisms for choosing these management policies. Explicit management is some
times necessary to allow control over management policies for efficiency or to 
meet non-functional requirements. Implicit management is important to avoid the 
complexity of specifying a policy for all management behaviours for all compo
nents. 

In order to provide selective properties, OpenBase provides automated conflict 
resolution policies that can be influenced at three levels. In the prototype, the con
figuration model is annotated with requirement attributes and specification at
tributes and the policy manager uses the values of these attributes to determine 
the allocation according to a programmed policy. The three levels of automation 
include: 



Chapter 9 - Configuration and Distribution Models 216 
23rd January 1995 

• Policy may be explicifly controlled by defining dialogues in the visual ed
itor that allow the appUcation engineer to define policy for selected parts of 
the conjfiguration. Parts may be component instances or composites or clus
ters or {activity flows. This overrides automated resolution. 

• Conflicts may be influenced by specifying abstract requirement attributes 
rather than explicit policies using the visual editor as above or using the 
class definition language. Rewards accumulate for different options ac
cording to the value of tiiese attributes. This leaves the final choice of pol
icy to the system but allows sensitivity to the applications needs and 
permits best-efforts choices. 

• Conflict resolution may be entirely transparent by using default require
ment values that are defined in advance for the entire apphcation domain 
without any programmer effort. 

In effect, the visual editor provides a meta-level protocol consisting of dialogues 
that allow the application engineer to define these attributes and modify the pol
icy. 

The distribution model provides a more complex meta-objectprotocol to system 
programmers who can program new policies by subtyping the objects in the dis
tribution model and configuration model to add new attributes and new queries. 

In the prototype, the policy is programmed algorithmically by accumulating re
ward values for different options and selecting the option that has the highest re
ward. In the future it is intended to add a proper rule engine and explore constraint 
based reasoning. 

Runtime support for selective properties is supported by the mterpreter choosing 
different stub subtypes according to the value of the specification attributes. Stub 
subtypes, or more precisely port subtypes and link subtypes, are provided by the 
interpretation layer to deal with optimised RPC, replication, etc. as discussed in 
chapter 8. 

Stubs are supported transparentiy by using an interface definition language, or 
class definition language, to hide the selective runtime interface from the pro-
granuner. Stub generation by a language processor allows the programming sys
tem to support a more declarative view of the different runtime protocols. 

Stub subtypes are implemented using the transparency support akeady provided 
by the infrastructure. ANSA supports a number of selective transparencies, in
cluding location transparency, access transparency, replication transparency. 

9.3 Design of Configuration Model 

Support for graphical programming requires more than editors for graphical no
tations. It is important to develop a notion of evaluation. Graphic objects repre
senting programs must be evaluated to generate executable code. Evaluation 
behaviour may itself be encapsulated in objects and be associated with graphic 
objects that present themselves on a screen. 



Chapter 9 T Configuration and Distribution Models 
23rd January 1995 

217 

In OpenBase graphic objects are used to visualise the program structure as a node 
edge graph where the nodes are components and the edges are relationships be
tween components. These graphic objects have associated with them, persistent 
objects that may be evaluated to instantiate components and connect them togeth
er. These evaluation objects are stored in an^object oriented database that is called 
the configuration model. 

The configuration model provides an underlying repository to store any textual 
and graphical programs. The underlying node edge graph provides a base-level 
framework for hooking other types of graphic primitive or textual script that may 
have richer semantics. 

This configuration model consists of the type model and the configuration model. 

The type model includes the following types of object as shown in Figure 72: 

definition conformance 

provides/ requires 

A 
port 
definition 

is-a 

interface 
definition 

conformance 

Figure 72 Type Model 

Class Definitions - one convenient characteristic of object is the amount of se
mantic information that can be described in interfaces. An interface definition 
language or class definition language can be used to describe rich semantic infor
mation. This information is stored as attributes of objects in the type model rep
resenting class interface definitions. Nodes in the node edge graph are related to 
class definitions by is-a relationships. Class definitions are related to other class 
definitions by conformance relationships. Class definitions are related to port def
initions by requires and provides relations. 

Interface Definitions - semantic information can also be described for interface 
types. These may be orthogonal to class definitions. This information is stored as 
attributes of objects representing interface definitions. Interface types are related 
to ports by is-a relationships. Interface definitions are related to other interface 
definitions by conformance relationships. 



Chapter 9 - Configuration and Disbibution Models 
23rd January 1995 

218 

Port definitions - semantic information regarding inports and outports is stored as 
attributes of objects representing port definitions. Ports have direction, in or out, 
and mode, such as optional, asynchronous, dynamic. Port definitions are related 
to interface definitions. 

The configuration model includes the following types of objects as shown in Fig
ure 73. 

Inport 

Baselnport 

is-a 

source target 

Composite 
Inport 

source 

contains 
Exported 
InLink 

Object 

contains 

Outport 

[contains 

nesting 

contains 
Composite 

contains contains 

ontains 
Exported 
Outport 

target 

source 

contains 

is-a 

BaseOutport 

Composite 
Outport target 

Figure 73 Configuration Model 



Chapter 9 - Configuration and Distribution Models 219 
23rd January 1995 

The Object class provides the meta-model representation or runtime instances of 
classes. This is related to the class definition from which that object is instantiated 
and this relation is navigated to explore any static properties share by all instanc
es of that class. Object instances may be annotated with contextual properties 
only relevant to that instance. They are related to outports and inports and these 
relationships must be consistent witii die relations in the type model between the 
corresponding class definition and port definitions. 

Composite provides the meta-level representation for configurations of objects. 
Composites may act like instances and be nested within higher level composites 
to form a hierarchy. Composites may also be saved and instantiated in several 
places. 

Outport and inport represent the exit and entry points to an object respectively. 
They inherit from a base class. 

Composite outport and composite inport represent the exit and entry points to a 
composite respectively. They also inherit from a base class. 

Exported inport and exported outport represent a Unk that exports a port to the 
composite interface. This means that the port is linked in some outer composite. 
The source relation identifies either an object's port or a nested composite's port. 
A port may therefore be exported up several levels in the hierarchy before being 
linked. The latter is not shown on the diagram to keep it simple. 

Baseinport and baseoutport allow ports from objects and ports exported from 
nested composites to be treated identically so that instances of composites may 
appear like instances of classes. They are related to port definitions. In the case 
of composite ports, this is the port definition of the source port that is exported. 
They derive static properties shared by all instances of the class which owns the 
port. They may also be annotated with contextual information for that instance of 
the class. 

Link objects represent links between inports and outports. They may be annotated 
with contextual information determining the communication policy. 

There are a number of different types of composite that have not been shown in 
Figure 73 and will be discussed in Chapter 10. There are also two objects that may 
be viewed as collections that have nothing to do with the connectivity shown in 
the figure: 

Activity flows are collections of link objects that allow contextual properties that 
apply to activities spanning several objects, to be modelled at a more global level. 

Clusters are collection of objects that allow contextual information that applies 
to structures of objects to be modelled at a global level. Clusters are not restricted 
to structures defined as composites but may be any collection. 

Both the type model and configuration model may be annotated with extra at
tributes and nested objects to be queried and set by the policy manager in the dis
tribution model. This includes : 



Chapter 9 - Configuration and Distribution Models 
23rd January 1995 

220 

Property Specification Objects - the evaluation objects may be annotated with de
tailed specifications whose attributes explicitiy determine the runtime behaviour 
of the system, through different choices of managenibnt policy. The globahty of 
a specification is determmed by which type of evaluation object the specification 
object is attached to. The appUcation engineer bounds the scope of a specification 
for example by selecting individual elements in the hode edge graph or clusters 
of nodes or by selecting flows along multiple edges. Such selections may be 
called management composites as they act as the domain in which management 
poUcy is specified, i.e. tWs can be called management-in the-large, as opposed to 
configuration composites that act as die domain in which objects are configured, 
i.e. called programming-in-the-large. 

Priority Requirement Objects - evaluation objects can be annotated with struc
tured requirement descriptions that are evaluated to property specification objects 
according to priority trade-off rules that are encoded in the distribution model. 
This supports higher level specification of operational (i.e. non-functional) re
quirements like availability, reUability, time criticality. 

Resource Requirement Object - evaluation objects may be annotated with infor
mation about resource requirements and services required such as the require
ment for binding or memory. 

Resource Objects - elements of the graph or definition may be annotated with in
formation about capabilities that a component offers to the system such as re
sources or special services. For example, in process control, a PLC driver object 
provides the PLC resource for tag objects. 

Reward evaluation objects - the distribution model provides primitive evaluation 
objects like priority trade-offs, thresholds, dependencies, sets and consti-aints tiiat 
can be used to program evaluation rules for requirement objects. This are de
scribed more fiiUy in the next subsection. 

The reward evaluation and requirement objects are shown in Figure 74. 

Require
ment 

eward 
Evaluation 

s-a 

esource 
Require-
Iment 

Require
ment 

1 
is-a 

riority 
tTradeoffs 

Constraint Depend 
-ency 

1 
hresliold 

Figure 74 Requirement and Reward Evaluation Objects 



Chapter 9 - Configuration and Distiibution Models 221 
23rd January 1995 

9.4 Design of Distribution Model 

A Framework for Build-time Adaptive Management 

Existing object oriented methodologies offer poor support for implementing 
process/processor architectures. This project completely removes the need to de
sign a process architecture. Programmers generate a logical model which is not 
explieitiy distributed. Instead allocations are based on constraints and require
ments that are described by the programming tools and kept up to date by die dis
tribution model, including the existing system loading and expected resource 
requirements. The transformation of requirements to a process architecture de
sign is entirely automated. 

Evaluation of the configuration model is not limited to allocation of composites 
to locations. There are also protocol choices to be made. 

Both allocations and protocol selections are represented by annotating the meta-
models with requirement attributes and specification attributes or objects. Re
quirement attributes are queried by the policy manager to determine the specifi
cation attributes. Specification attributes are interpreted by the interpretation 
layer to select the right infrastructure service. The policy manager objects con
trols the logic for defining specification attributes based on requirement attributes 
and the physical configuration. 

The policy manager used in the prototype takes a systematic approach to resolve 
specifications, by attempting to quantify requirements with a reward value. The 
system is characterised with three interrelated data structures : a requirement 
structure for the configuration bemg allocated; a reward structure for options and 
an availability or load structure for physical resources and configurations already 
allocated, as shown in Figure 75. The system accumulates a reward value on al
locating services. Expected rewards for different options are based on probabili
ties of meeting requirements. This will depend on knowledge of the apphcation, 
including expected object sizes and throughputs. The reward value also depends 
on requirement priorities, for example to resolve the trade-off between reliability 
and performance. Expected rewards are used to select alternatives. 

Initial physical resource availability is described in EDL. Requirements, priori
ties and application requirements are made available using CDL and the visual 
editor. 

The logic for determining expected rewards is prograrnmed into reward evalua
tion objects, as described previously in Figure 74. This includes: 

• priority trade-offs, expressed as equations in terms of cumulative priority 
variables for different properties, such as reliability, throughput. 

• thresholds, expressed as rewards that accrue when the threshold triggers, 
such as the overload threshold for a CPU. 

dependencies, that are rewards triggered according to allocations of other 
parts of the configuration, such as correspondent objects. 

constraints, less fuzzy predicate objects that exclude options outright, for 
example the constraint that an image must support the class of the object 
being allocated. 



Chapter 9 - Configuration and Distribution Models 
23rd January 1995 

222 

Policy 
Manager 

requirement^ 
graph reward 

graph 
Joad graph 

View Option 

contains 

Object 
Link 
Composite 
etc. 

Protocol I ( , 
Image 

contain: 

Node 

Process 

[tain^A^ 

contains 
contains 

Veri ty 
Tradeoffs 

activated 
from 

contains 

, contains! 

[Constraint Depend 
-ency 

'hreshold 

Require 
ment 

supports 

fClass 
Definition 

provides 

Resource 

external 
cx)rresp-
ondent 

Iriggered-
on 

Object oad 
lowwater 
liighwater 

L 
allocated views 

J 

Figure 75 Example of distribution model classes 

The reward and availability structures are not restricted to load-based resources 
such as memory, storage, CPU. The policy recognises the significance of co-lo
cation decisions in meeting operational requirements such as deadlines, perform
ance targets, reliability and currency goals. The availability structure tracks 
correspondent objects so that rewards can accumulate based on proximities to re
lated external objects that are in a different view and these external links may be 
annotated with requirement priority properties like time-criticality, throughput 
expectations, bandwidth, latency constraints. 



Chapter 9 - Configuration and Distribution Models 223 
23rd January 1995 

Initial allocations use all requirements and store domains of best locations. Any 
runtime policies such as load balancing, repUcation and recovery are designed to 
restrict allocation decisions to this domain and reward fewer requirements. A two 
threshold representation is used for load availability to reduce information dis-
seinination overheads, i.e. state changes in rewards are restricted to underloaded, 
mediumloaded and overloaded states. 

Design of Initial Prototype 

The first prototype provides some very simple policies merely to prove the feasi
bility of automated support. In the fiiture it is expected that l4ism will fiirther re
search this in particular constraint based-reasoning to define automated poHcy 
management rules more rigorously. 

The prototype supports automated allocation of objects based on two threshold 
representations of loading that is maintained as an attribute for each process and 
node object in the distribution model. As well as ensuring objects are allocated to 
underloaded nodes and processes and away from overloaded ones, as a crude way 
to ensure load balancing, this attribute is also used to determine when to create 
new processes from an image and on which node the new process should be cre
ated. The relative size of objects can be determined from the class definition and 
appropriate thresholds be hard-coded by the system configuror. 

The only protocol selection that is supported by the initial prototype is the choice 
of communications policy. The system provides the following communication 
services: a two-way reliable service, a one-way reliable service, a one-way unre
liable service, an optimised service for local calls within a process, and a light
weight service for calls between processes on the same node. The choice of 
communication policy depends on two specification attributes in the distribution 
model: the location attribute and the RPC mode attribute. The distribution model 
wil l defiine these attributes when evaluating a configuration. The choice will be 
determined by a combination of factors each contributing to the net reward for 
different modes. Factors include: the physical constiaints, system loading, serv
ice availability and requirement attributes in the configuration model. 

The model is intended to be extensible with other requirement attributes, corre
sponding specification attributes and protocol selection policies. Future specifi
cation attributes include: replication attributes to define the activeness/ 
passiveness and multiplicity of replication to meet availability and performance 
for relatively static data; timing attributes for hard or soft deadlines; extensions 
to the RPC modes attribute to include time critical conununication services; clus
tering attributes to ensure regular correspondents are collocated; relocation do
main attributes, defining groups of best locations for replicas or migrations. 
Future protocol selections include: replica group interaction; real-time monitor
ing; communication services and scheduling; recovery and load balancing serv
ices that migrate servers. 

The distribution model is designed to be extended in several ways: by adding sets, 
constraints, dependencies and rule evaluation as explicit objects to permit selec
tive iteration through the configuration model; by adding constraint nets for de
pendency driven evaluation of the model; and by adding rule conflict resolution 
mechanisms according to the order of evaluation, the knowledge used, the con
text of the decision, and the specificity of the rule. 



Chapter 9 - Configuration and Distiibution Models 224 
23rd January 1995 

9.5 Conclusions to Chapter 9 

This chapter has described the design of the meta-model that represents compo
nent definitions and configurations of these components. 

The model is queried by the policy manager to select management policies and 
by the interpreter to load and link an executable for the configuration. The main 
benefit of this model is that it opens up the language to allow integration and au
tomated selection of management policies. 

The model is defined with high level tools like the class definition language, en
vironment description language and the visual editors, that will be described in 
the next chapter. 



Chapter 10 - Specification and Modelling Tools 225 
23rd January 1995 

Chapter 10 Specification and Modelling Tools 

10.1 Scope of chapter 

This chapter evaluates the design and role of the tools and process layer. Whilst 
the programming concepts and tool interrelationships were defined by the re
search on which this MSc is based, the detailed design of the tools, die syntax and 
implementation of the language processors and visual editors, was carried out by 
other members of Prism. This chapter does not define the tools in detail, rather it 
defines requirements placed on them and illustrates an example of what they 
might look like, diat was provided by the research as input to die detailed design. 

The tools and process layer is defined by the components and relationships shown 
in the shaded box in Figure 76. This includes: 

10.1.1 Tools Components 

Class definition language 

Component programmers provide definitions of component interfaces, data and 
exception types , operations, both ingoing and outgoing, and service properties, 
both requirements and capabilities. 

Environment definition language 

The system manager describes the plant layout in terms of computer nodes, exe
cutable images available on each node, processes and their associated resources. 

Configuration language 

The application engineer can optionally use a static configuration language to de
fine composite components, which can optionally be saved as composite types. 

Visual editor: 

The apphcation engineer can also use a graphical editor to define composite com
ponents using a visual composition metaphor. This provides commands to 
browse component libraries organised as palettes of icons representing the com
ponents, to select individual components from the palettes, to drag and drop icons 
on the screen to instantiate components, and to click and join icons to link com
ponent inports to outports. 

10.1.2 Relationships between Tools and Other Layers 

The class definition language processor generates extra code to wrap runtime 
C++ objects and populates the type model with class definitions, interface defini
tions and port definitions. 

The visual editor browses the type model and populates the configuration model 
with composite definitions. 

The environment definition language generates make files and populates the dis
tribution model with a definition of the system resources, both physical resources 
(nodes, CPUs, storage etc.) and executables. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

226 

component 
programmers 

system 
integrators 

plant 
engineers 

—^Binding Mod^^y. 

Systdm lcnifmstDry©tiym 

Figure 76 Tool and Process Components and Relationships (shown in shad
ed box) 

10.1.3 Process Components 

Domain Modelling 

Domain modelling provides the domain specific support, such as domain specific 
frameworks, interface standards, domain concepts and facilities such as alarming 
for supervisory control as well as components conforming to the domain model. 
These generic models are then specialised for a specific requirement and the rel
evant components for the domain are integrated using the visual editor. 



Chapter 10 - Specification and Modelling Tools 227 
23rd January 1995 

Component Oriented Software Development Method 

The component oriented development miethod provides the guidelines used by 
component programmers to develop components in isolation of other compo
nents using the standards defined in the domain model. 

10.2 Design Options 

Design choices can be described as instantiations of the design variables identi
fied in the evaluation framework. These are shown in Figure 77 to Figure 81 for 
the most important principles in the design of this layer. 

10.2.1 Protocol Choices and Rationale 

System protocols 

Open distributed computing standards (integrative standards like CORBA, DCE 
and ISO GDP) by themselves do not yet provide the complete solution to users 
goals of interoperability and portability. This is because they are continuously 
evolving immature partial specifications. 

The OpenBase platform provides a virtual, interface that hides and manages mi
gration to these standards. It does this by hiding the standards interface behind 
high level tools and abstraction layers. It defines a higher level protocol. 

Middleware like OpenBase can provide a vital role for companies in managing 
the complexity of dealing with open systems standards across producer-supplier 
channels. Collaboration is the key to open systems. Collaboration in easier when 
focused on a specific domain like process plants. 

The open object-oriented design of OpenBase allows customisation and special
isation at any layer of the architecture to extend the system or migrate it onto new 
platforms. TTie runtime support is represented as objects and is therefore open to 
customisation by meta-object protocols. For example, configuration objects of 
the interpretation layer such as runtime hnk objects that hold binding informa
tion, may be speciaUsed by a system programmer to use a different transport serv
ice. 

The existing design uses standards-based remote procedure call (RPC) mecha
nisms for the transport service to send requests and replies across machines. Re
mote procedure call is a natural choice to support remote method invocation. 
DCE, CORBA and ANSAware all support RPC across a heterogeneous network. 

Domain Protocols 

OpenBase defines a specific binding model based on combined data and control 
flows between typed ports. Ports have a direction according to whether they are 
inports or outports. The binding model does not support conditionals or looping 
constructs in ports as these can be provided by the components behind them. 

Ports are typed by an interface type definition that may support more than one op
eration. This is usually orthogonal to component class definitions. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

228 

pratocol. 

admin 
standards 

appiication 
standards 

system 
standards 

open 
systems 
(OSI. 
POSIX) 

object 
specification 
techniques 

mix-ins 
object 
services 

specification 
languages 

domain 
componentware 

binding 
models 

Iinterface I 

abstract 
base 
classes 

plug & play 
components frameworks 

contracts 

extensible 
techniques 

integrative 
standards 

meta 
protocol 

op sys 
personalities 

operating 
system 
framework 

, ODMG) 
document 
processing 
(OpenDoc.OLE) 

R P C 
(DCE, CORBA) 

protocol 
converters/ 
gateways 

Figure 77 Types of Protocol (shown in boxes) 

The development lifecycle proposed first establishes domain model standards to 
standardise on interface types in each appHcation domain. This optimises oppor
tunities for vendors to implement plug compatible components. Prism have com
mitted to maintain a registry of interface types and co-ordinate the de facto 
adoption of interface standards. 



Chapter 10 - Specification and Modelling Tools 229 
23rd January 1995 

A framework is an abstract pattern of interaction between collaborating objects. 
These patterns define control structures that are reused in different designs. They 
may themselves be organised at different levels of abstraction, for example a con
trol structure for Processing Plants that may be specialised into one for Chemical-
Plants, one for Paper-Plants, one for Food-Processing Plants. Discovering these 
abstract patterns is therefore important to standardise solutions for process con
trol software. 

Frameworks can be identified by identifying abstract types of interface between 
abstract objects. Methods based on role modelling are good for this. These ab
stract interfaces are then published as standards for the domain to which vendors 
provide specialised conformant objects. Frameworks can be specified and saved 
as a composite definition by instantiating and hnking objects and links that use 
the most abstract definitions. These frameworks can then be used by cloning them 
and replacing the abstract objects with more specialised objects. 

Ideally it would be nice to be able to leave a component of the network specified 
only as an abstract deferred class for which any compatible subclass could be 
specified. At present a CDL definition must be used to define the abstract class 
rather than allowing icons to be created on the fly. 

10.2.2 Classification Choices and Rationale 

Ports conform to abstract data types, called interface types, that are defined inde
pendently of classes. This allows abstraction of the relationships or contracts that 
objects make about each other. It also reduces the need to duplicate class code 
across a network in order for a client to access a remote server, only interface type 
definitions need be duplicated. 

In all, there are three notions of type, defined separately: 

• interface types, used to define conformance across links by providing ab
stract data types for port objects at both ends of a link. Interface types are 
defined in CDL in a similar way to classes but using the keyword "inter
face" instead of "class". Interface types are not used to instantiate any ob
jects. Ports are instantiated along with the object in which they are 
embedded and not by explicit instantiation of an interface type. 

• class definitions, allowing classes to share behaviour. This includes sharing 
of embedded port objects. Class definitions are defined in CDL and can be 
instantiated using the configuration languages or factory services of the in
terpretation layer. 

composite types, configuration composites provide an interface by export
ing unbound ports of instances that are defined within the composite. Com
posites are defined using the configuration language or visual editor. They 
can be saved and cloned in several places, thus treating them as a class. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

230 

classification 
or set abstractions 

abstract 
data 
types 

conformance 

structure relationships 

pfl̂ hoî ârT^ 

is-like-a 

prototypical 
object 

inheritence 
composite 

delegation 

exemplars 

n 

hierarc 
compo 

hical 
sition 

Figure 78 Types of Classification or Sets Supported (shown in boxes) 

This separation of interfaces supports three distinct inclusive relations: . 

• subclassing relations between classes to share implementations and embed
ded ports. 

• subtyping relations between interface types to allow abstraction of interfac
es for binding. 

• hierarchical composition of instances and composites within other compos
ites to define any configuration using explicit links between ports. 

Note that subclassing and subtyping relations are specified at the level of types 
whilst hierarchical composition relations are specified at the level of ports. This 
is more primitive and can even be used to simulate inheritance as shown in the 
Figure 79. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

231 

Composite Object 

Base Object 

In Port 

Child Object 

In Port 

Alias 
Unk 

Out Port In Port 

Unk 
Alias 
Link 

Service Partitioning 

In Port 
Subclassing 

In Port 
Subtyping or 
Extension 

Figure 79 Using Hierarchical Composition to Synthesise Inheritance 

Composite types can be synthesised by defining ports for the composite and as
sociating these ports with the ports of embedded objects. Conventional inherit
ance is also supported at the programming level. The classes instantiated as 
objects in a composite can inherit from other classes. Consequently synthesis op
erations occur at many levels. 

10.2.3 Insulation Choices and Rationale 

OpenBase supports partial specification through transparency mechanisms and 
automated support for selecting management policy. 

Transparent properties include locations, access mechanisms, bindings, rephca-
tion, recovery, concurrency. A component programmer does not need to specify 
these properties. The interface between components and the system supports 
transparency in these aspects. Instead these properties are defined either explicit
ly by the application engineer on configuring components or on allocating a con
figuration model to the distribution model. The component programmer and 
application engineer specifies semantic information that is exploited to make a 
sensible choice. In this way management decisions are split between the compo
nent programmer, the application engineer and the system. 

OpenBase also supports partial specification of data initialisations smce the CDL 
compiler generates an editor that can be used at configuration time to specify the 
initial values for attributes and these camn vary between instances. 

There are three times that a partial specification can be fully resolved: during con
figuration using the visual editor, during allocation based on automated manage
ment policies and at runtime using generated code. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

232 

insulation 

application 
contextual 
independence 

partial 
specification 

system 
abstraction 
layers 

generics transparency 
wrappers 

data 
decouplinc 

document 
architectures 

control 
decouplin 

virtual 
interfaces 

ad-hoc query 
on entity type 

distributed 
presentation 

remote 
evaluation 

predictable 
extensional 
query on sets 

Itransformationar 
generators 

indirect 
messaging 

asynchronous 
messaging 

type 
exploration 
(narrowing) 

static 
type 
dependency 

Figure 80 Types of Insulation Supported (shown in boxes) 

Runtime support for resolving partially specified components relies on the auto
mated generation and instantiation of transparency wrappers in the executable 
code. Transparency wrappers apply a layer of code to each component to hide the 
normal complexity of using the runtime support of the underlying technology. 
This includes stub objects and metaobjects and are generated by the CDL proces
sor and configured by the interpretation layer. These hide details such as location, 
operating system usage, persistence mechanisms, bindings to other components, 
data formats and so on. 



Chapter 10 - Specification and Modelling Tools 233 
23rd January 1995 

Through the use of the Class Definition Language to generate wrappers that are 
portable across platforms, OpenBase provides a single virtual interface to the op
erating system services. This includes configuration services and method invoca
tion services as well as conventional operating systems resources and services. 
The OpenBase environment may be viewed as a virtual assembly machine that 
presents to the programmer a world of independent configurable objects that send 
and receive messages through standard interfaces. 
OpenBase supports indirect messaging through typed ports. Bindings are re
solved externally to an object, rather than the component being responsible for 
importing a binding, as in trading systems, or for interrogating interfaces to derive 
a binding at runtime, as m narrowing systems. Outports are implemented as em
bedded typed objects. 

An alternative implementation for typed ports could have merely used pubUc at
tributes that pointed to the destination. These attributes could be externally con
figured because they are public. However this does not make the encapsulation 
model clear nor does it allow special port behaviours such as optional ports, de
ferred synchronous ports, etc. 

OpenBase ports use statically-defined RPC as the general mode of communica
tion. This means a client needs to know the interface of services required in ad
vance and include that interface definition in declaring the outport. The CDL 
description generates the typed outport object to be linked and embedded in the 
object implementation. 

Dynamically-defined RPC, such as the CORBA dynamic invocation interface, 
provides an alternative scheme. By treating type information as enumerated data 
values at runtime, a generic port can be written to interrogate the interface of any 
inport at runtime and compose an appropriate request message on the fly. This 
avoids type dependencies between an object and the interface type of its outports. 
However little advantage is gained unless the implementation is also written to 
explore type information of services used at runtime as in narrowing systems. 

Writing narrowing code would be unbearable for general application program
ming. However a dynamic interface is useful for certain components that manip
ulate many types of objects such as configuration managers, protocol converters 
or debuggers and is therefore supported as a special option. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

234 

10.2.4 Substantiation Choices and Rationale 

substantiation 

visualisation 

icons 

grapns 

rag&drop 

productisation 

capital 
intensive 

process 
-centric 

generation 
tool 

structuring 
concepts 

transform
ational 

functional 
subsystem 

application 

specific
ation tool 

spec-dnven 
method 

assembly 
tool 

visual 
composition 

admin & product 
management 
tools 

hard 
process 

real-world 
objects 

configuration 
managers 

traders browsers 

functions 

Figure 81 Types of Substantiation Supported (shown in boxes) 

OpenBase supports program visualisation using icons for components, and visual 
composition to define graphs by dragging and dropping icons from a library. 

Components are modelled using an object-oriented approach. This produces a 
more natural model than conventional approaches and identifies objects that cor
respond to real-world concepts familiar to end users. 



Chapter 10 - Specification and Modelling Tools 235 
23rd January 1995 

The overall approach is capital intensive, demanding an up front investment in in
frastructure, tools, domam standards and new development skills. The tools layer 
of OpenBase currently provides a limited selection of administration and man-
iagement tools such as browsers, imake and configuration monitors. Much further 
jwork is required to extend the tools to offer complete support for all aspects of 
component development, integration and reuse. 

The configuration management features of OpenBase support system manage
ment. Dynamic reconfiguration of an on-Une system is even possible since only 
the affected processes must be put in a quiescent state. 

OpenBase can also be used as a procurement planning tool. It would be possible 
to buy the icons without the runtime support for components in order to analyse 
and evaluate possible applications of components. New icons may be added to 
model existing applications and describe improvements 

The EDL can be used as a system description language to model and plan changes 
to the physical network configuration. 

10.3 Requirement for Graphical Tools 

Most people think using pictures. Most programmers design their programs using 
a combination of text and pictures. Currentiy they must translate their conceptu
alisations back and forth on development and maintenance. The aim of graphical 
programming systems is to work directiy with conceptualisations using a variety 
of pictures and text which reflect different viewpoints and aspects of the system. 
It seems unlikely that a single programming language can effectively support all 
these views. OpenBase provides a consistent framework that allows languages to 
be combined and related. The adoption of a primitive repository allowing flexi
bility in the representation of graphs, faciUtates the development of a number of 
programming styles and visual metaphors. 

The requirements for a graphical programming system include: 

the programming system should provide multiple views of the same model. 
Different views can be unified by manipulating a common representation 
or by defining translators between representations. Distributed systems are 
often too complex to represent at a single level of abstraction such as code 
views. Different views are needed to deal with different issues in isolation 
at different levels of abstraction. 

• the programming system should provide a complete general environment. 
It should allow the structured description of design knowledge and require
ments as well as source code. 

• the programming system should equally support both textual and graphic 
languages. Textual languages are necessary to express complex data struc
tures and algorithms and can be used by highly skilled component program
mers to implement components. Graphical views are particularly useful for 
presenting large volumes of information to synthesise a collective under
standing of a large program and can be used by application engineers to 
compose systems and navigate the structure. 

• the programming system should be extensible so that new or custom tools 
can be developed, for example by providing a meta-programming interface. 
It should provide facilities to simplify language definition such as represen
tations for common language evaluation mechanisms. 



Chapter 10 - Specification and Modelling Tools 236 
23rd January 1995 

• there should be a consistent support framework that provides general pur
pose primitives for building tools and languages. It should not enforce spe
cific mechanisms. 

10.4 Description of Op^nBase Tools 

This section describes the OpenBase tools. 

In supervisory control systems, the required system knowledge to make manage
ment decisions is frequently divided between the plant engineer who knows re
quirements, the application developer who knows object implementations and the 
system engineer who knows the management mechanisms. The OpenBase devel
opment tools are designed to bridge this division without exposing engineers to 
new complexities. This is possible because issues are clearly separated and dis
tinct programming tools are provided for the application developers and plant en
gineers to express their different knowledge of the application properties. 

The following programming interfaces are provided: 

OpenBase/C++, i.e. standard C++ using a skeleton file generated by a pre
processor. 

the Class Definition Language, a declarative class description and model
ling language. 

the Environment Definition Language, a textual system description lan
guage for describing the physical configuration of the plant. 

The configuration language, a textual configuration programming lan
guage. 

the visual editor, a graphical configuration programming language. 

Flexibility is built-into these languages using: hidden defaults programmed by 
the system programmer, expressions which describe abstract properties, and ex
pressions which are explicit requests. Naive users express their knowledge as 
properties. More advanced users express precise instructions. 

The detailed design of these tools was not part of the thesis research. Rather than 
define the tools as they were implemented by Prism, this section illustrates an ex
ample of what the progranmiing interfaces might look like. This was provided by 
the research as input to the language design to articulate the technical vision sup
ported by the prototype. No responsibility is taken for the final implementation 
of the languages and tools, as described in (OpenBase, 1993). 

The runtime platform presents a flat object model to the applications layered on 
it. Various structures may be imposed on the flat model in order to represent dif
ferent aspects of system behaviour. These structures consist of sets of intercon
nected objects called composites. They contain other composites and thus 
hierarchies may be constructed. A composite is identified by its name and is de
fined by the objects and links it contains and the interface it exports to other com
posites. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

237 

The configuration language and visual editor provide commands to instantiate 
and link objects within a composite. In the visual editor, objects are dragged and 
dropped as icons from palettes and their ports are selected to define links between 
objects using dialogues that are activated on clicking on an icon. Links may also 
be specified between objects and the interface exported as the composite inter
face. In the configuration language there are keywords like inst and link that allow 
objects to be created and ports connected in a similar maimer to CONIC described 
in chapter 5. 

Figure 82 shows an example composite for a storage tank, consisting of instances 
of die classes: PressureTag, Threshold, Alarm, Logger, and PrintQ. The pressure 
I/O point is linked to a threshold which signals an alarm i f the threshold is exceed
ed. This composite can be saved as a simple framework and be mstantiated at 
several points in the hierarchy. The hierarchy is viewed in the lower window. 

)CHElllCAkJ>LANr 
p u w r 

Figure 82 Example Graphical Editor 

Figure 83 illustrates IDL for the PressureTag class and the Threshold class. Ports 
are typed according to the interfaces, Intin and Booleanln. These interfaces can 
contain groups of services or contracts. However the example shows singular 
contracts, providing the services reset and trigger. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

238 

PressureTag 
Reset 

Threshold 
P Value Trigger 

interface Intin { oneway reset (in int)} 
Interface Booleanin { oneway trigger (in Boolean)} 

class Threshold icon Thresholdlcon { 
outport trigger interface Booleanin; 
inport value interface IntIn ; 

1 

class PressureTag icon Taglcon { 
outport reset interface IntIn ; 
require PLCdriver; 
require throughput (high); 
require CPU (finegrained); 

Figure 83 Example Interface Definition Language 

The convenience of interface definitions for describing properties is shown for 
the PressureTag class. This class has a hidden system port for communicating 
with the PLC driver. This is declared by a "require PLCdriver" statement. This 
declaration increases the likelihood of the pressure tag being located near the PLC 
driver. 

The other require statements show the sort of property that may be modelled. This 
was provided merely as input to the design of the languages and still needs to be 
formalised before implementation. Instead expressions with a free format for 
naming and setting any variables were supported i.e. throughput and CPU be
come attributes taking the parenthesised values of high and fine-grained. These 
variables are matched with provides statements that are usually defined in classes 
modelling physical resources. This mechanism needs to be formaUsed to recog
nise and support different categories of constraint such as priority trade-off, 
threshold, dependency, constraint, matching the reward evaluation objects of 
chapter 9. In teh example, the two require statements are intended to reflect the 
following properties: 

• Pressure can change frequently. This could be declared explicitly in a "re
quire throughput(high)" statement. This increases the likeUhood of the 
threshold object being located near the tag. It can also increase the likeli
hood of an optimised RPC scheme being used for communication. 

• I/O tag classes are not CPU intensive. This can also be declared, increasing 
the likelihood of multiple I/O points in a single process. This is important 
i f a loading threshold is based on the number of objects in the process and 
does not take into account actual sizes. 

Devices like Programmable Logic Controllers (PLCs) are associated with I/O 
points using dialogue boxes, as in Figure 84 below. Unlike application objects, 
device drivers for these PLCs are explicitly allocated to a fixed location using 
EDL. The relationship between an I/O point and the device is a strong mobility 
constraint since data-point sampling is best done locally to the device driver. This 
is integrated with the "require PLC statement" in the interface definition above 
and is fully supported in the prototype. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

239 

nie AppMcaBoo Draw Edit View 

C H E W C M ^ P U W r 

I W M I T 

z 
Edit I/O Tag 

Name Type Device 

|TankPres | [integer | [PLCABlJ 

Address 
|N1:25 

I OK I I CANCEL| I TEST I | RESET | 

Figure 84 I/O Driver as mobility constraint 

Implicit control over allocation is supported by capturing these mobility con
straints as properties of the configuration using the languages and visual tools. 

Explicit control over configuration structure and allocation is also supported. 
This is achieved by providing different types of composite. The type may be se
lected by pointing and clicking on the appropriate icon using the visual editor or 
through the use of different keywords for composites that enclose inst and Unk 
conmiands in the configuration language. The different types of composite in
clude: 

Configuration groups - these are logical composites of application components. 
They also define the lifetime or activation policy for objects. A configuration 
group may be: preload, where it is configured at loading time and unloaded at 
reconfiguration time; discardable, where it may be activated and passivated to a 
persistent store to conserve resources when not needed at runtime; or unloadable, 
where it is discardable but using the same initial state on each activation. 

Processor composite - models the allocation of configuration groups to processes 
of the operating system. These may be generated using the automation support in 
the distribution model. The visual tool provides a command to submit configura
tion groups to be allocated to processors. 

Distribution composite - models the allocation of processor composites to nodes. 
This too may be automated i f configuration groups are submitted for automatic 
allocation. 

Other composite types will be added to model atomic actions, replications. These 
may be activity flows across links in a configuration group or clusters of objects 
, orthogonal to the configuration group hierarchy. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

240 

Figure 85 shows how an Environment Definition Language can be used to de
scribe resource availability and physical constraints. Standard templates such as 
the PLCLIB library and the RISC nodetype, simplify the job of mqdelUng the 
plant. Extra resources such as the printer on node A, are added to those provided 
by the templates. Templates are parameterised to allow easy configuration. In the 
example, the location of the PLC driver for PLCAB1 is explicitly nambd as a tem
plate parameter and this introduces the mobility constraint for datapoint objects 
that require a PLC driver. 

Node A 
Alarm 

NodeB 
Control 

Standard Library 

library PLCLIB (PLC){ 
provides: class PressureTag,Threshold,Alami; driver PLCdriver (PLC); 

} 
nodetype RISC (disc, mem) { 

provides: critical CPU; mandatory storage (disc); critical memory (mem); 
} alias DEC5000, DEC5100 

Plant Definition 
#include <standardlibrary> 
system plant { nodes : A, B } 
node A: : DEC5000 (80,16) {provides: printer; images: alarmiogger.printserver} 
node B :: DEC51000 (104,16) {Images: control) 
image control { provides: PLCLIB (PLCAB1)} 
image aiarmlogger { provides: class Logger } 
image printserver {provides: class PrintQ y 

Figure 85 Example Environment Definition Language 

Class specific constraints are described in IDL. Physical constraints are described 
in EDL. Figure 86 shows how a role specific constraint or contextual constraint 
could be described on a activity flow using the graphical editor. For example, i f 
the tank stores dangerous material, then alarm conditions are critical in this con
text. 

The final choice of location and RPC service depend on the combined set of class 
specific, role/context specific and hardware specific constraints. 

Note that OpenBase supports system level and application level functionality that 
is usually hidden in the visual editor. This is added-value functionality provided 
specifically for the process industry. This includes PLC drivers as above and 
alarm viewers. Hidden aspects can be selectively viewed as in shown in the fig
ure. 



Chapter 10 - Specification and Modelling Tools 
23rd January 1995 

241 

Tna Applirailon ifa* fcM "view 

g — U U 
I LEVEL 

4start 

U I r t 
H A U R M I 

CKEIBCAt,_PUUf 
I pUUtT 

•0 

Response 
Critical m [ O K 
Hard Deadline O 
Soft Deadline O P*^^ 

Tinne ' I 

pniWTEff 

Figure 86 Example Control Flow Requirement 

10.5 Conclusions to Chapter 10 

This chapter has described the design choices that were made in the design of the 
OpenBase development tools and illustrated the design with simple examples 
showing one way that the adaptive programming concepts might manifest them
selves in the configuration. Tins was not implemented as part of the MSc research 
and although most of the concepts are supported by the prototype, the interface is 
incomplete. 

Object management mechanisms are now well established. The biggest barrier to 
their conmiercial adoption is the complexity they present to programmers. The 
OpenBase prograimning languages do not encumber the programmer with de
tailed system knowledge. Instead they provide specification languages to de
scribe the environment and the operational requirements as properties. They hide 
many decisions behind defaults appropriate to the process industries and provide 
tailored concepts and notations. This approach bridges the gap between the com
mercially acceptable object oriented languages that do not support distribution 
and the emerging distributed object oriented languages that have not gained ac
ceptability. 

Initial resource availability is described in EDL. Requirements, priorities and ap
plication knowledge are made available using CDL and the graphical editor. 

Existing object oriented methodologies offer poor support for implementing 
process/processor architectures. This project completely removes the need to de
sign a process architecture. Programmers generate a logical model which is not 
explicitiy distributed. Instead constraints and requirements are described. The 
transformation of requirements to a process architecture design is entirely auto
mated. 

The reward and availability structures are not restricted to resources such as 
memory, storage, CPU. The policy recognises the significance of co-location de
cisions in meeting operational requirements such as deadlines, performance tar
gets, reliability and currency goals. Properties may be specified on activity flow 
between objects so that rewards can accumulate based on proximities to related 
services. 



Chapter 10 - Specification and Modelling Tools 242 
23rd January 1995 



Chapter 11 - Conclusions 243 
15th August 1995 

Chapter 11 Conclusions 
This thesis has described a design for an integrative architecture for distributed, multi-vendoi-, 
object-based applications. This chapter describes the key contributions and conclusions of the 
research and makes some recommendations for fiiture work. 

11.1 Contributions of Thesis 

The research efforts in developing this thesis, have made the following contributions: 

surveyed different approaches to programming system design - this re-examined the 
purpose and basic principles of progranuning system design and identified a number of the 
practical problems that need to be overcome to meet the future challenges of application 
integration. 

extended an analytic framework of architecture goals and abstract design principles -
this extended fi-amework can be used informally to evaluate architecture. 

defined an approach to architecture design - this is based on purposive modelling of the 
key architectural components. A purposive approach unifies evaluation/ selection activities 
and modelling/ design activities. This makes it better suited to the emerging world of 
collaborative off-the-shelf infi^tructures where selection and integration issues dominate over 
bespoke development. 

designed an architecture for enterprise-wide integration - in which diverse applications, 
infi-astructure technologies, and system platforms can be integrated into an open distributed 
system. This applied the purposive approach. The end result provides a commercially 
exploitable architecture. Enterprise integration is growing in importance in a number of 
market sectors: telecommunication , banking, manufacturing, utilities, government and the 
petrochemical industry. 

provided solutions to some practical problems of programming system architecture 
design - this mcludes object specification, configuration, object library management, object 
wrapping, object distribution, object messaging, object persistence, and runtime object 
management. The discussion highlighted integration problems for different techniques. 

realised support for a new development paradigm based on adaptive graphical objects -
this paradigm differs from that of conventional programming systems, in particular, in the 
emphasis placed on integration rather than development. This manifests itself in the 
requirement for a complete environment for integrating applications fi-om different vendors 
rather than a universally applicable language for developing them. It is a product management 
system as well as a development environment. 

clarified and provided background information for the paradigm - by elaborating on four 
essential characteristics: component based lifecycles, binding models for visual composition, 
adaptive object management and integrative standards. 

The overall contribution explored the issues and tested-out the limitations of a new design 
approach to integrative architectures. 



Chapter 11 - Conclusions 244 
15th August 1995 

11.2 Conclusions of Thesis 

The key position argued by this thesis is that a separation of concerns in the programming 
system architecture through intermediate layers of representation and interpretation helps to 
integrate a range of techniques that can solve the problems of application integration. 

In order to justify this position, the hypotheses listed in the research objectives of Chapter 1 
have been investigated. In evaluating these hypotheses, the research has sought to find 
answers to the following questions: 

1. What are the key challenges of application integration? 

2. Do the shortcomings of existing solutions require a shift in programming system 
architecture? 

3. What are the characteristics of a more appropriate solution? 

4. What architectural separation of concerns will simplify such a solution? 

5. How does this separation of concerns help integrate techniques? 

6. How valuable is the resulting integrative architecture? 

The following conclusions have been made about each hypothesis: 

hypothesis 1: more radical solutions are required to solve the individual challenges of 
application integration. 

Existing solutions to the key challenges have serious shortcomings : 

development of applications spanning different types of machine 

This is being addressed by open distributed computing standards provided by bodies such as 
the OMG, ISO, OSF. 

dealing with the complexities of programming distributed systems. 

Distributed systems introduce complexity such as new forms of partial failures, network 
latency, indeterminate orderings of messages, heterogeneous representation schemes, 
application partitioning decisions. It is much easier to reason in a language designed to 
address these complexities, that supports clustering and partitioning to allocate objects over a 
network of processors, scheduling and synchronisation policies to deal with concurrency, 
abnormal behaviours to deal with failures. Yet there is no widely used distributed language 
that supports these features directly. These features need to be integrated into existing 
programming systems. 

integration of applications that have been developed independently by different vendors, 

In order to establish a mature cross-vendor development culture, the emphasis in tools must 
shift from process-centric development tools to product-centric component management tools. 
A capital-intensive investment in product management tools and frameworks is required to 
help locate, understand, and assemble independently developed components. 

In order to avoid vendors needing to examine foreign code to collaborate, the emphasis much 
change from implementation to specification of components. Inheritance is promoted as the 
reuse mechanism. In practice today, inheritance more often concerned with implementation 
than specification. Programmer's paranoia about the efficiency of unknown code can only be 
overcome if the properties dictating poor implementation choices are captured abstractly in 



Chapter 11 - Conclusions 245 
15th August 1995 

interfaces. These properties can be complex. For example, the relative efficiency of a 
, collection for different intended access patterns and data types is dependent on its memory 
/ management strategy: taking into account member size, dynamic growth etc.; and its access 
i structure: array for fast direct access; stack for nested accesses; cyclic buffer for iterative. 

retise ofapplication components in different parts of the enterprise. 

Conventional decompositional approaches tend to focus on the whole, with the finer parts 
defined in the context of larger parts making them more contextually dependent and less 
reusable. Likewise development focused at a specific target platform introduces system 
dependencies that inhibits reuse when ported across the enterprise. Reusable component 
developers should work with a compositional model within a virtual environment that isolates 
him fi-om contextual or system specificity. 

Reusability is such a difficult problem that there is unlikely to be a single general purpose 
model. Rather there wi l l be different approaches for different domains and the approach wil l 
evolve. Component developers need to be insulated from the reusability firework itself One 
way to do this is to explicitly separate the reuse mechanism from construction mechanism. 

hypothesis 2: a paradigm shift is required to meet the combined challenges of application 
integration. 

new lifecycles 

The whole notion of traditional system development lifecycles must go in order to gain the 
strategic advantages of development speed, flexibility, reuse and integration across vendors. 
The need to rapidly develop and reconfigure systems introduces incrementality and iteration 
into the lifecycle. The need to overcome cultural impediments to reuse mean that we need to 
distinguish tasks of construction from reuse. The need to support increased collaboration in 
the development splits lifecycles across vendors and users. 

needfor explicit binding model 

Ideally the way components are interconnected should be selected from common models not 
invented for each occurrence. Binding models should be explicit to allow components to be 
developed in isolation. Choosing effective sets of rules for composing independent 
components is not easy. In typical systems today the binding model is not designed but 
encoded within the participating classes. Collaboration is facilitated by agreeing on a specific 
binding model that may limit the universality of the programming environment. 

Client server models for interconnection are too restrictive since the interface between clients 
and servers fail to capture exit points. Hence clients can not be reused in different contexts 
without violating their encapsulation and examining their exit points. More flexible reuse can 
be achieved by publishing exit points in interfaces. 

need for adaptive management 

Objects need to be adaptive to allow for: 

selective control over distributed management policy - to meet different dependability 
requirements. Complexity can be masked by high level abstractions but an all-or-nothing 
policy may result in poor performance i f used everywhere. 

more varied lifecycle and environment - The context and purpose of a component is 
deferred till the component is instantiated in a composite. The runtime environment is 
deferred until the composite is actually allocated to a processor. I f context or environmental 
assumptions are introduced prematurely, the range of usage of a component across the 
enterprise can be overly restricted. Reusable objects are adapted to their context and 
environment by configuration. The behaviour of an object can only be partially resolved at 



Chapter 11 - Conclusions 246 
15th August 1995 

each stage o f its development and different parties contribute: tlie producer, any consumers 

defining another service, the user or application engineer configxiring components and the 

system according to policies. 

direct manipulation using visual/representations - Programmers have had a monopoly over 
users and seek to deskill and distance them. Programmer and user are traditionally two distinct 
roles. The I T industry has been delivering complete insular solutions that hide complexity 
rather than manage it. Little work has been done to present more user-friendly views of 
program complexity. This has resulted less flexible and maintainable programs. The intent of 
the program is hidden in its translation to source code leading to the overhead in tracing from 
requirement to code representation. Visual notions such as symbology, adjacency and 
connectivity can be used to represent the users intent more directly, to allow complexity to be 
adaptively managed by the user. 

application level standards 

Commercial distributed system standards are now gaining widespread acceptance. However to 
date they merely define the glue used to connect heterogeneous applications. There is no 
industry-wide consensus on structure. Application level interface standards are required for 
plug-compatibility. 

With the establishment of new trading partners and mergers to open up new markets, 
businesses invariably have a diversity of systems and networks, policies and users. 
Standardisation is required at higher levels of abstraction to allow higher level integration and 
to unify technology/ mechanism diversity in lower layers. Various protocol defmition 
techniques have been discussed and incorporated into the proposed architecture. 

hypothesis 3: adaptive graphical objects provide an appropriate paradigm shift. 

The proposed solution has the following characteristics that make it appropriate: 

component oriented lifecycle 

A component-oriented lifecycle separates the task of component integration to build ap
plications from the task of component production. This distinction defmes the two roles of 
component developer and the application engineer. This is particularly useful in highly 
specialised collaborative markets where different specialist vendors each contribute part of the 
solution and a third party is responsible for integration. 

binding model through visual configuration programming 

The proposed visual tools realise a graphical configuration programming tool. The premise of 
the configuration programming approach is that a separate, explicit structural description and 
representation of the application structure is essential to support all phases of software 
development, including: abstract system and framework specification as a configuration of 
component specifications; construction of the system as interconnected components by 
construction tools; installation as a physical configuration of processes across a network; 
runtime management as adaptive changes to the configuration; and evolution as user-driven 
changes to the configuration. 

adaptive management 

Adaptive management can occur in many ways, including: 

1. by direct user manipulation of a visual representation, 

2. by refining.a partial specification, throughout its lifecycle, 

3. by generation of specific code from a common declarative specification, 



Chapter 11 - Conclusions 247 
15th August 1995 

4. by substituting different runtime support components such as types of communication 
channels, 

5. by re-allocation of objects to physical resources. 

Each of these approaches is combined in the prototype. 

Visually adaptive tools make programming intuitive thus opening component integration up to 
less technical audiences, removing the users dependency on highly skilled system integrators. 
Most users do not want to deal with complex management issues. It is unportant that they can 
describe their requirements abstractly and leave it to the system to adjust. 

The partial specification approach introduces intermediate abstract representations that hide 
the complexity of mechanisms. The component developer uses declarative interfaces to 
describe requirements and properties rather than mechanisms. The application engineer uses 
graphical tools to annotate the software configuration with context-specific requirements and 
properties. These abstract requirements and properties are represented by the configuration 
model state. The system must interpret this state correctly. 

A generation-based approach makes components specified in a common specification 
language portable. This defmes an absfract assembly machine that can be mapped across 
heterogeneous platforms and management mechanisms. Component programmers need not be 
aware of the context in which the component wi l l be used. Likewise application engineers 
need not be aware of the physical location of the objects. The objects used may actually move 
between machines (migration) or provide local copies (replications) without affecting 
correspondent objects. 

Substitution of infrastructure services is made possible by selecting services according to the 
configuration model state. In the prototype this has been demonstrated for the policies 
governing the location of objects, their bindings and choice of interaction protocol. Selection 
policy may be tuned for specific market sectors, such as using process industry defaults for 
supervisory control. 

Selective control over the allocation of objects to processes is supported by providing 
overridable allocation policies. Allocations can be specified explicitly by the programmer 
when designing a configuration or by allowing the system to distribute the processes 
automatically using built-in rules about the resources available, supplied by the application 
engineer. This means a reasonable system can be generated quickly yet highly optimised 
systems can be allocated by hand. 

domain-specific standards 

Domain standards are important for cross-vendor collaboration. Well targeted integrative 
. architectures setting domain-level standards in their industry sector can provide a vital role in 

stimulating collaboration across producer-supplier channels. Collaboration on a smaller scale 
within a specific industry like the petrochemical industry is easier to achieve than the degree 
of collaboration required for general purpose international open distributed system standards. 
The proposed architecture has been involved in higher-level standardisation efforts in the 
petrochemical industry such as POSC. 

hypothesis 4: a purposive approach can result in a suitable separation of concerns. 

The problem and solution space for the programming system design were composed and 
decomposed according to the abstract goals and principles identified in the evaluation 
framework. 



Chapter 11 - Conclusions 248 
15th August 1995 

There are several observations aboiit this separation of concerns: 

explicit roles makes complex system manageable - Conventional object oriented system 
architectures not only use a single language but also often use a single mechanism, namely 
inheritance, without any explicit rules to constrain or enforce the development style to adopt 
to deal with distribution, reuse or late binding. The programmer must deal with many issues 
without much explicit guidance. In contrast, the separation of concerns in the prototype 
programming system made it's development and usage manageable because there we were 
able to define clear distinct explicit roles and rules for each architecture component and each 
progranmiing task. 

visible rationale - the purposive approach adopted by the thesis resulted in an architecture 
whose high level structure could be rationalised. This rationale gave focus and direction to the 
development of each of the components. The purposive approach helped the architect review 
design decisions and separate concerns. 

difficulty in formalising creative architecture design process - however the generality and 
rigoiu" of this approach should be questioned. Developing an appropriate framework for 
programming system design is a very creative task. The framework did not necessarily help 
identify design options only capture and organise them in refrospect. The creative process of 
architecting is difficult to formalise by imposing some framework. Rather it draws on 
experience and intuition. 

limited generality - as a result of this, the framework adopted here is closely coupled to 
design ideas and may have limited generality in other architecture design problems or as a 
general purpose evaluation framework. 

co-ordination techniques more important - the purposive approach is also insufficient from 
an implementation viewpoint. Its success depends on the architect identifymg appropriate 
unplementation techniques for the relationships between different parts of the architecture. 
The research identified and applied a number of co-ordination techniques that can be used to 
separate concerns: pre-processors, metaobject protocols, generation, projections. Success 
depends on these techniques not exclusively the separation of concerns. 

value of goal driven approach - in spite of the limitations, there is defmite merit in at
tempting to drive creative processes from higher level goals and attempting to define absfract 
principles. Such principles should be recognised as heuristics. Empirical data is needed to 
validate these heuristics, hence this approach is best mixed with prototypical proof-of-concept 
studies. 

hypothesis 5: a separation of concerns facilitates the integration of 
different techniques that solve the basic challenges of enterprise 
integration. 

The separation of programming concerns to an integrated set of tools has a number of 
benefits: 

open language design framework - conventional tensions in language design between 
efficiency and expressivity are resolved by allowing developers to optimise a high level 
language using additional programming interfaces. This may exploit meta-object protocol or 
adaptive techniques. 

developers can use the right tool for the job - the separation of concerns simplifies the 
semantics of each tool and allows developers to select the right tool for the job at hand. An 
enterprise includes a wide range of developers of differing ability, demanding different tools 
to perform different functions. Issues of computation, interoperation, interconnection and 
distribution are clearly separated. This allows developers to use mainsfream object oriented 
language like C++ for defining computations to be performed and still reason about 



Chapter 11 - Conclusions 249 
15th August 1995 

distributed properties using an appropriate language interface. Programming interfaces may be 
customised to each particular task. 

i 
explicit development roles and programmer tasks - As well as supporting each task, the 
separation of tools makes the distinction between programming tasks explicit. This simplifies 
the role and responsibilities of each developer. This can overcome many of the cultural, 
motivational and competency issues in collaborative development. 

separation makes mechanism integration and extension easier - inheritance is an 
overloaded mechanism, dealing with type checking, polymorphic binding, behaviour sharing. 
Inti-oducing additional features such as concurrency mechanisms causes semantic interference 
with the compositionality semantics of inheritance. By separating mechanisms for type 
checking, binding and sharing, it is easier to extend their semantics to deal with distribution 
and pluggability or to integrate other mechanisms/techniques. The price paid is a loss in 
elegance. The overloaded use of inheritance may be perceived as one of the strengths of 
object oriented languages yet it is also limiting in complex environments. 

configuration meta-model sets solid foundation for extensibility - A clear and concise 
structural description of the software in terms of types, instances, connections and composite 
elements provides a powerful extensible foundation for designing additional advanced tools to 
support specification, design, management and evolution. Tools can be developed in isolation 
using these common elements as primitives to build higher level concepts . 

higher level took results in integrated design - Conventional object-oriented approaches are 
limited by the weak process for relating class, dynamic and processing views of the design. 
Integrated design environments provide precise programming interfaces for dealing with 
different modelling aspects. This formalises the techniques used to integrate these views. 

split management policy avoids complexity overload - Flexible management strategies are 
particularly important for fine-grained objects where management overheads can be costly i f 
the wrong policy choice is made. The required knowledge to make policy decisions is usually 
split between the component developer who understands the class semantics, the plant 
engineer who understands the contextual requirements; and the systems engineer who 
imderstands the engineering trade-offs of different choices. Splitting decisions across these 
parties, avoids overloading any one programmer with overall responsibility. Adaptive 
management techniques allows decisions to be deferred and integrated. 

integration of diverse techniques - the proposed architecture provides a synthesis of 
techniques. This includes RPC (synchronous, asynchronous and deferred synchronous), 
indirect naming, explicit construction/ destruction, configuration time type checking, ports, 
passive objects, implicit and explicit superobject encapsulation, property specification at 
different levels of abstraction and different granularity, IDL processors, stub subtyping, 
metaobject protocols, selective transparencies, standardised binding models, distinct interface 
types, domain frameworks, inheritance, hierarchical composition, partial specification, 
indirect messaging, wrappers, virtual interfaces, transformation/generation, object graphs, 
drag-and-drop, visual composition, specification tools, and product management tools. 

realises a cross-platform development strategy - the interpretation layer provides a common 
interface to the runtime support making the architecture ideal where complex applications 
must span a diverse heterogeneous network. The virtual interface hides and manages 
migration to evolving standards. It does this by hiding the standards interface behind high 
level tools and abstraction layers. 

hypothesis 6: the proposed architecture has general value as an 
integrative architecture in different market sectors. 

Using the classification hierarchies of the evaluation framework, we can relate the techniques 
employed in its construction to all eight abstract principles defined in chapter 7: 
encapsulation, set abstractions, polymorphism, interpretation, selective properties, universal 



Chapter 11 - Conclusions 250 
15th August 1995 

protocols, substantiation, component insulation. The architecture provides both a virtual 
infrastructure that masks users from technological complexities, and a compoiient-based de
velopment enviroimient that allows users to freely integrate components developed by 
different vendors. 

We can also relate the principles to the supported basic goals and challenges of chapter 3: 
software and infiBstructure abstraction, flexible sharing, correctness, software and 
infi-astructure evolution, dependability, application interworkability, large scale re-use. This 
profile of goals suggests a flexible infi'astructure that has potential to enable and facilitate 
cost-effective enterprise integration. 

The architecture meets the enterprise integration requirement in its target domain. The key 
technical requirements of the petrochemical industry are for improved reuse, evolution and 
integration to provide increased plant flexibility and performance, less downtime, greater 
stock diversification, and new safety standards. The architecture meets these requirement by 
building on existing resources rather than redeveloping them time and time again, by avoiding 
redundant duplication of fimctions, by flexible management, by allowing rapid application 
reconfiguration, by integrating products from multiple specialised vendors and by providing 
integrated global views of the entire process plant. 

The approach may be overkill for many systems that only require a subset of the goals 
described above. For example UNIX IPC may be sufficient for data sharing where application 
interworking, evolution and reuse are not important. Client server databases may be sufficient 
where data is not distributed. Object oriented databases may be sufficient for appHcations with 
distributed data which do not require visual tools for rapid integration and reconfiguration, 
and where object sharing is sufficient for application interworking where there need be no 
complex messaging patterns. X windows may be sufficient to allow remote users for any 
application. 

Rather dian applications that use distribution as a means to achieve dependability, the 
architecture is intended for use where data, resources and users are inherently physically 
distributed, and there is a significant amount of local processing on each node. It is in these 
situations that simple client-server architectures are inadequate and peer-to-peer networks of 
objects are needed to provide flexible enough application partitionings. In process confrol , 
local processing at the pumps and valves of a chemical plant is essential to ensure rapid 
reaction yet a remote view of the data is essential for overall supervisory management. Similar 
systems include network management and command and control. 

The ability to compose applications quickly makes it appropriate for rapidly changing 
decision support systems such as support systems for the new frend in manufacturing 
processes like just-in-time or small batch. 

There are restrictions on the sort of application that can be addressed: 

dataflow/control flow interconnection model - the choice of binding model implemented in 
the prototype restricts the applicability to application domains that lend themselves to data
flow or control-flow programming such as process control where components act as function-
blocks to manipulate data flows, multimedia where medias are combined, imaging where 
images are transformed. 

systems with complex structure - Like the various forms of bubble-charts used in structured 
design methods, visual composition is most appropriate when there a lot of bubbles with 
complex flows between them. Many applications have the majority of behaviours described 
by two bubbles and do not gain much from such graph-based notations. This makes it most 
appropriate to applications with complex processing. These applications typically arise in 
defence, telecommunications, scientific systems and process control. 



Chapter 11 - Conclusions 251 
15th August 1995 

complex behaviour restriction - in structured design the bubbles themselves are specified 
elsewhere and may be internally complex. Visual composition on the other hand relies on the 
application engineer understanding a component's behaviour from its iconic presentation on 
the screen. This restricts the applicability in domains where the behaviour of components is 
internally complex, for example as arises frequently m financial applications. 

General Lessons 

There are a number of general lessons that can be learned from the experiences gained on this 
project: 

object orientation unifies the approach to achieve several goals: abstraction, sharing, 
evolution, interpretation, interworking and dependability. Objects are useful for both 
graphical display, for runtime components and for unifying intermediate confrol, 
modelling and evaluation abstractions. Object not only encapsulate problem solving 
abstraction but they also encapsulate what can be managed allowing uniform 
management protocols to be defmed. Traditionally difficult tasks like load balancing 
become easy. 

object oriented databases like ObjectStore provide an efficient repository for graph 
based structures of objects that are accessed by navigational queries. This is ideal 
enabling technology for repository based integration of development and configiu^tion 
tools. 

11.3 Limitations of Results 

The goals that remain unaddressed seriously limits the universal applicability of the product 
developed by the research across different domains: 

groupware goal - Failure to support co-operative working or groupware limits its 
appropriateness in business enterprises where groupware is important in some part of the 
business. This is an unfortunate omission as groupware is an ideal candidate for visual 
composition. 

enterprise modelling goal -Failure to incorporate mainsfream enterprise modelling 
approaches like business process re-engineering, workflow models, enterprise database 
modelling distances the product fiirther from the business marketplace. Visual composition is 
an applicable metaphor for workflow specifications. 

re-engineering goal - Failure to address application re-engineering by providing explicit 
support for migration and integration of existing legacy applications, distances the architecture 
from commercial systems even further. The product uses its own programming model that 
even makes it difficult to integrate mainstream object oriented software. 

dependability goal - Dependability support is limited. This makes it inappropriate in the 
following situations: 

• for computationally expensive parallel applications, such as simulation, modelling or 
imaging systems. The extra communication overhead introduced by port and link 
objects may be greater than the time saved by subdividing a computation. Active 
objects and parallel language extensions are unsupported. Parallel extensions are more 
appropriate since they put more of the onus for support on the compiler. 

• for reliable data processing applications such as reservation systems, order processing 
systems due to the current lack of support for transactions. 

• for conventional real-time systems. This is a serious omission in process control. 
Individual components may be designed internally along real-time principles but 



Chapter 11 - Conclusions 252 
15th August 1995 

activity flows across components do not have deterministic bounds unless the 
components are allocated explicitly. Explicit control undermines the underlying 
philosophy of masking complexities. There is a dichotomy between transparent 
adaptive management of systems using a "best efforts' philosophy and the 
predictability demanded by conventional real-time systems that generate inflexible 
designs based around cyclic executives. However the conventional approach is proving 
to be imsuitable for the growing number of large-scale real-time systems. More flexible 
adaptive approaches to the design of real-time software is an area of active research 
(Bums and McDermid, 1994). 

correctness goal - Correctness is supported by static type checking at configuration time and 
by exception handling and exception throwing at runtime. Exception handling puts the onus 
on the programmer to ensure correct behaviour. However this may be inadequate in a 
distributed system due to a whole new set of potential errors. Correctness in the presence of 
partial failures is very difficult to enforce or verify. Debugging is more complex and requires 
distributed monitors and new debugging tools. 

There are a number of general limitations in the approach: 

ambiguity of intuitive tools - visual tools have been adopted for their intuitiveness. 
Intuitiveness is an important requirement for an engineering discipline. However intuitiveness 
introduces conflict with the programming language requirement for precision necessary for a 
program to execute on a digital machine. This conflict is minimised by restricting the use of 
visualisation to programming-in-the-large. However as behaviours become more complex, 
there is a need to frade intuitiveness for formality introducing model-based, algebraic, logical 
or hypergraph formalisms. 

formality needed for validation/maintenance - the weak interpretative semantics of the 
configuration model and visual tools make validation difficult. I f more formal semantics were 
defined it would be possible using a proof system to take semantics and prove properties of 
specifications such as safety, liveness, fairness, or timing properties say in temporal logic. The 
configuration model could even be represented in logic e.g. using prolog. Programs could then 
be generated by deductive synthesis using explicit rules and policies, rather than hiding the 
policy in generation algorithms. 

need for exploratory tool - an alternative to formal validation would be to use the tool in an 
exploratory manner, constructing composite structures and testing assumptions about 
behaviour on the fiy. The view of a composite as an executable specification compensates for 
its lack of formality to some extent. An Exerciser tool could be provided to make exploratory 
development and testing more efficient. 

limited scaleabiiity of repository-based tools - the use of a large central meta-repository 
may lead to a unwieldy and inflexible environment in which to add multiple new tools. The 
use of translators and transformation tools to exchange information between tools would lead 
to a more open extensible tool architecture. 

11.3 Recommendations for further work 

The author needs to gather more empirical data to investigate different trade-offs and 
overheads in the design of different management policies. The research was limited to 
formulating an architecture and evaluating it. No real experimental data was taken. 

The distribution model was designed using rather ad-hoc algorithmic techniques. Different 
logics and A l techniques such as constraint based reasoning should be researched more fully 
and applied to the problem of automated policy management. 



Chapter 11 - Conclusions 253 
15th August 1995 

Researchers need to explore more open language technologies focusmg on feature integration 
and semantic interference. They should define clearer semantics for metaobject protocols, 
frameworks or patterns, and composition using inheritance, hierarchical composition ,!or 
delegation. They should also define semantics for distribution including clustering and 
partitioning, synchronisation and scheduling, adnormal behaviours. | 
Practitioners need to refocus on evaluation and mtegration methods for Component-off-the-
Shelf applications and infi-astructure components. There are a number of open practical issues 
that need to be resolved before component-oriented development can become a reality. For a 
start components need to be organised and retrieved. The question as to what makes a good 
component wi l l persist for some time. How big or small is a component? How generic and 
how adaptable can a component be? How complex can a component be? 

Prism need to instil more discipline in the way they conduct their research and development 
activities. This thesis describes first attempts to formulate a conceptual architecture 
description and programming model to be used to explore design decisions rationally. The 
whole approach of Prism is lacking formality and rigour. For example, the hybrid use of 
inheritance and hierarchical composition is unclear. It is not only theory that is lacking. The 
examples used by Prism are over-simplistic, typically consisting only of a tag, a threshold and 
an alarm. Yet real world scenarios are much more complex. Further research should start with 
more realistic CASE studies, to define the requirements more clearly. 

The architecture is originally targeted at the specific domain of process confrol. The 
infrastiTichu-e and policies should be optimised for this domain before broadening its scope. 

Extra tool support needs to be developed to make the environment complete. This includes 
debugging tools, tools to analyse configuration with respect to deadlock, liveness fairness, 
tools to find and select components, specification tools to aid understanding of components, 
tools to capture and retrieve other forms of design knowledge. 

Additional management behavioxu-s need to be supported at runtime in order to widen the 
scope for exploitation, such as planned dynamic reconfiguration using programmed change 
scripts, transactional confrol and integrity consfraints for unplanned dynamic reconfiguration, 
atomic actions, multimedia sfreams, group interaction. The distribution model needs to be 
extended to define management policies for these behaviours. New dialogues and properties 
need to be added to the visual editor and Class Defmition Language. 



Part IV Appendices 



Appendix A - References 255 
23rd January 1995 

Appendix A: References 
i ACA, 1992, DEC ACA Services, System hitegrator and Programming Guide, 
I Part AA-PQKMA-TE, Digital Equipment Corp., April 1992. 

G. Almes, A.BIack, E.Lazowska, J.Noe, 1985, The Eden System: A Technical 
Review, I E E E Transactions on SAV Engineering SE-11 (1), Jan 1985, p43 

ANSA, 1989, ANSA: An Engineers Introduction to the Architecture, available 
from APM Ltd, Cambridge, UK, Architectural Report TR.03.02. 

ANSA, 1991, A Model for Interface Groups, available from APM Ltd, Cam
bridge, UK, Architectural Report AR.002.00 

ANSA, 1992, ANSA Atomicity Model and Infrastructure, available from APM 
Ltd, Cambridge, UK, Architectural Report AR.004.00 

ANSA, 1993, Architecture and Design Frameworks, available from APM Ltd, 
Cambridge, UK, Architectural Report AR.38.00 

ATOS, 1994, Review of ATOS, AI Watch, Vol 3 No 7, July 1994, p 1-10. 

H. Bal, J.Steiner, A.Tanenbaum, 1989, Programming languages for Distributed 
Computing Systems, ACM Computing Surveys, Vol 21 No 3 Sept 1989 

Beta, 1987, The BETA Programming Language, by B.Kristensen, O.Madsen, 
B.Moller-Pedersen, K.Nygaard, In: (Wegner, 1987). 

R. Bellinzona, M. Fugini, V de May, 1993, Reuse of Specifications and Designs 
in a Development Information System, Proc. M P WG8.1 Working Conference 
on Information System Development Process, Sept 1993, p79-96, also in Visual 
Objects, Report , Ed. D.Tsichritzis, Universite de Geneve, 1993, p.247-264. 

J.Bennett, 1987, The Design and Implementation of Distributed Smalltalk, 
OOPSLA '87 Proceedings, p.318-330, October 1987. 

S.Bijnens, W.Joosen, P Verbaeten, 1994, A reflective invocation scheme to real
ise advanced object management, in Proceedings of the ECOOP 93 Workshop on 
Object Based Distributed Programming, R. Guerraoui, O Nierstrasz, M. Rivell 
(Ed.), LNCS 791, Springer-Veriag, Kaiserslautem, Germany, 1994. 

K.Birman, T.Joseph, 1991, Exploiting Replication in Distributed Systems, Chap
ter 15 in (Mullender, 1989) 

A.Birrell, B.Nelson, 1994, Implementing Remote Procedure Calls, ACM Trans
actions on Computer Systems., Vol 2 No 1, p.39-59, Feb 1984. 

G.Blair, J.Gallagher, J.Malik, 1989, Genericity vs Inheritence vs Delegation vs 
Conformance, JOOP, Sep./Oct. 1989, p. 11-17. 

G.Blair, J.Gallagher, D.Hutchinson, D.Shepherd, 1991, Object Oriented Lan
guages, Systems and Applications, Book, Pitman Publishing, London, 1991. 

G Blair, R.Lea, 1992, The Impact of Distribution on Support for Object-Oriented 
Software Development, SAV Engineering Journal Vol 7 No 2 March 1992 



Appendix A - References 256 
23rd January 1995 

G.Bock, 1994, Examining Agents in the Workplace, Patricia Seybold Group, 
Workgroup Computing Report, Vol 17, No 12 Dec 1994. 

i 
B.W.Boehm, 1988, A SpiralModel of Software Development and Enhancemem-
nt, I E E E Computer, May 1988, p.61-72. 

G.Booch, 1991, Object-Orientated Design with Applications, Benjamin/Cum-
mings Publishing, 1991. 

S.Brost, T.Malone, 1986, Towards InteUigent Message Routing Systems, in 
Computer Message Systems- 85, Ed. R.Uhlig, Proc. of second intemational sym-
posiimi on computer message systems, Amsterdam, Holland. 

A. Bums and J.McDermid, 1994, Real-time, safety-critical systems: analysis and 
synthesis. Software Engineering Journal, Vol 9 No 6, Nov 1994. 

R.Campbell, N.Islam, Choices: A Parallel Object-Oriented Operating System, 
p393-451. 

L.Cardelli, P.Wegner, 1985, On understanding types, Data Abstraction, and Pol
ymorphism, Computiong Surveys, Vol 17 No 1, p477-522. 

Carriero, N.Gelertner, 1986, The Linda S/Net's Kemel, ACM Transactions on 
Comuputer Systems, Vol 4 No 2, May 1986. 

P.Chen, 1976, The entity-relationship model, ACM Transactions on Database 
SystemsNol Vol 1,1976. 

S.Chiba, T.Masuda, 1993, Designing an extensible distributed language with a 
meta-level architecture, in Proceedings of the ECOOP 93, O Nierstrasz (Ed.), 
LNCS 707, Springer-Veriag, Kaiserslautem, Germany, 1993, p483-502. 

R.Chin, S.Chanson, 1991, Distributed Object-Based Programming Systems, 
ACM Computing Surveys, Vol 23 No 1, March 1991. 

CLOS, 1989, Object-oriented programming in common lisp: A programmers 
guide to CLOS, book by S.Keene, Addison-Wesley, MA. 

P.Coad, E.Yourdon, 1991, Object Oriented Analysis and Object-Oriented De
sign, two books. Prentice Hall, 1991. 

T.Coatta, G.Neufeld, 1992, Configuration Management via Constraint Program
ming, Procs. of Intemational Workshop on Configurable Distributed Systems, 
l E E / Imperial College, London, Mar 1992, p.90-101. 

P.CoUinson, 1992, The Network File System, SUNEXPERT Magazine, Nov 
1992, p26-33. 

S.Cook, J.Daniels, 1994, Designing Object Oriented Systems - Object Oriented 
Modelling with Syntropy, Prentice-Hall, New York. 

B. Cox, 1990, Planning the Software Industrial Revolution, IEEE Software, Nov. 
90, p. 25-33. 

T.DeMarco, 1978, Structured Systems Analysis, Yourdon Press, 1978. 

F.DeRemer, H.Kron, 1976, Programming in the large vs Programming in the 
small, IEEE Transactions on SAV Engineering Vol SE-2 (2), June 1976. 



Appendix A - References 257 
23rd January 1995 

L.P. Deutsch, 1989, Design Reuse and Frameworks in the Smalltalk-80 System, 
in Software Reusability, Vol. E , (eds. T.J. Biggerstaff, A.J. PerUs), ACM Press, 
1989, p. 57-71. 

M.Endler, J.Wei, 1992, Programming Generic Dynamic Reconfigurations for 
Distributed Applications, Procs. of International Workshop on Configurable Dis
tributed Systems, l E E / Imperial College, London, March 1992, p.68-79. 

E . Fieume, D. Tsichritzis, L . Dami, 1987, Temporal Scripting Language for Ob
ject-Oriented Animation, Proc. Eurographics'87, North-Holland, 1987. 

D.Gelemter, 1985, Generative Communication in Linda, ACM Transactions on 
Programming Languages and Systems, Vol 7 No 1, p.80-112. 

M.Glykas, P.Wilhelmij, T.Holden, 1993, Object-orientation in enterprise model
ling and information systems design, l E E Colloquium on Object-Oriented Devel
opment, Digest No. 1993/007, Jan 1993. 

I.Guffick, G.Blair, 1992, Building Configurable Distributed Systems using the 
Kitara Object-Oriented Language, Procs. of International Workshop on Config
urable Distributed Systems, l E E / Imperial College, London, Mar 1992, p.60-67. 

A.N. Habermann, D. Notkin, 1986, Gandalf: Software Development Environ
ments, I E E E Transactions on Software Engineeering, vol. SE-12, no. 12, Dec. 
1986, p.l 117-1127. 

D.Harel, 1987, Statecharts, A visual formalism for complex systems. Scientific 
Computing Programming, No 8 , p231-274. 

W. Harrison, H. Ossher, M. Kavianpour, 1992, Integrating Coarse-Grained and 
Fine-Grained Tool Integration, Proc. CASE '92, July 1992. 

R. Helm, I. Holland, D. Gangopadhyay, 1990, Contracts: Specifying Behavioural 
Compositions in Object-Oriented Systems, Proceedings OOPSLA/ECOOP '90, 
ACM SIGPLAN Notices, vol. 25, no. 10, Oct 1990, p 169-180. 

A.Herbert, 1989, The Computational Projection of ANSA, Chapter 19 of (Mul
lender, 1989). 

HOOD, 1991, HOOD Reference manual. Issue 3.1, July 1991, HRM/91-07/ 
V3.1. 

D. Ingalls, 1988, Fabrik: A Visual Programming Environments, SIGPLAN No
tices, vol. 23, no. 11, Nov. 1988, p 176-190. 

I.Jacobson, M.Christerson, P.Jonsson, G.Overgaard, 1992, Object-Oriented Soft
ware Engineering - A Use Case Driven Approach, Addison-Wesley, Woking
ham, England. 

P.Jeremaes, D.Coleman, 1993, FUSION: A second generation object-oriented 
analysis and design method, l E E Colloquium on Object-Oriented Development, 
Digest No. 1993/007, Jan 1993. 

J.Johnson, D.Hudson, 1993, OLTP Monitors, Patricia Seybold Group, Distribut
ed Computing Monitor, Vol 8 No 12, Dec 1993. 



Appendix A - References 258 
23rd January 1995 

E.Jul, H.Levy, N.Hutchinsom, A.Black, 1988, Fine grained mobihty in the Em
erald System^ ACM transactions on Computer Systems, Vol 6 No 1 feb 1988, 
pl09-133. 

A. Julienne, L . Russell, 1993, Why You Need Tool Talk, SunExpert Magazine, 
vol. 4 no. 3, March 1993, p. 51-58. 

G. Kappel, J.Vitek, O.Nierstrasz, S.Gibbs, B.Junod, M.Stadelmann, D.Tsichritz-
is. An Object-Based Visual Scripting Environment, ITHACA Report, pl23-148. 

M. Kass, 1992, CONDOR: Constraint-Based Dataflow, Proc. SIGGRAPG '92, 
p. 321-330. 

G.Kiczales, J.Rivieres, D.Bobrow, 1991, The Art of the Metaobject Protocol, The 
MIT Press, Cambridge, Massachusetts, London. 

S.Klerer, 1988, The OSI Management Architecture: An Overview, I E E E Net
work, Vol 2 No.2 , p.20-29. 

J.Kramer, M.Sloman, 1987, Distributed Systems and Computer Networks, Sec
tion 1-4, Prentice-Hall, 1987. 

J.Kramer, J.Magee, K.Ng, 1989, Graphical configuration programming, I E E E 
Computer, Vol 22 No 10. 

J.Kramer, 1990, Configuration Progranmiing - A Framework for the develop
ment of distributed systems, Proc. Int. Conf. on Computer Systems and Software 
Engmeering, Tel Aviv Israel, May 1990. 

J.Kramer, J.Magee, M.Sloman, N Dulay, 1992, Constructing Object-Based Dis
tributed Systems in REX, SAV Engineering Journal, Vol 7 No 2,1992. 

M.Kramer, 1993, Enterprise System Management, Patricia Seybold Group, Dis
tributed Computing Monitor, Vol 8 No 6, June 1993. 

M.Kramer, 1994, Message-oriented middleware, Patricia Seybold Group, Dis
tributed Computing Monitor, Vol 9 No 6, June 1994. 

G. E . Krasner, S.T. Pope, 1988, A Cookbook for Using the Model-View-Control-
er User Interface Paradigm in Smalltalk 80, Journal of Object-Oriented Program
ming, p.26-49, Aug./Sept. 1988. 

K. Lieberherr, I Holland, 1989, Assuring Good Style for Object-Oriented Pro
grams, I E E E Software, Sept. 89, p. 38-48. 

H. Lieberman, 1986, Using Prototypical Objects to Implement Shared Behaviour 
in Object Oriented Systems, Procs. Conf. on Object-Orientated Programming 
Systems, Languages and Applications (OOPSLA '86), Portland, Oregon. 

B. Liskov, 1988, Distributed Programming in Argus, Comms of the ACM, Vol 
31, No 3, Mar 1988. 

A.Macintosh, 1994, Enterprise Modelling : Review of Existing Work, TIP Re
port, Logica Cambridge. 

R.Maclean, 1991, Object Oriented Analysis and Design - A Critical Review, 
Logica Cambridge Report, Cambridge UK, ASE TR5. 



Appendix A - References 259 
23rd January 1995 

J.Magee, J.Kramer, M.Sloman, 1989, Constructing Distributed Systems in CON
IC, I E E E Transactions on S/W Engineering Vol 15 (6), Jun 1989. 

i 
J.Magee, N.Dulay, J.Kramer, 1992,; Structuring Parallel and Distributed Pro
grams, Procs. of International Workshop on Configurable Distributed Systems, 
l E E / Imperial College, London, Maî  1992, p. 102-117. 

R.Marshak, 1993, Action Technologies Workflow Products, Patricia Seybold 
Group, Workgroup Computing Report, Vol 16, No 5 May 1993. 

R.Marshak, 1994, IBM's FlowMark - Object Oriented Workflow for mission-
critical applications, Patricia Seybold Group, Workgroup Computing Report, Vol 
17, No 5 May 1994. 

D.McCue, 1992, Selective Transparency in Distributed Transaction Processing, 
Ph.D Thesis, Computing Laboratory, University of Newcastie upon Tyne, Eng
land, April 1992. 

B.Meyer, ref [1], 1992, Eiffel: the language. Prentice Hall, 1992. 

B Meyer, ref [2], 1992, Applying 'Design by Contract', I E E E Computer, Oct. 
1992, p. 40-51. 

R.Milner, 1980, A Calculus of Communicating Systems, LNCS Vol. 92, Springer 
veriag, 1980. 

N.H.Minsky, D.Rozenshtein, 1987, A law based Approach to Object-Oriented 
Programming, OOPSLA '87 Proceedings, Oct. 1987, p. 482-493. 

R.Moran, 1992, ISIS News, in ISIS Reliable Distributed Object Manager, Prod
uct Summary , Nov 1992, ISIS Distributed Systems Inc., now owned by Stratus 
Computers, New York. 

J. Morel, J. Faget, 1993, The REBOOT Environment, Proceeding of the Second 
Inter'l Workshop on Software Reusability, March 1993, p 80-88. 

S.Mullender, 1989, (Ed) Disti-ibuted Systems, ACM Press, Addison-Wesley Pub
lishing. 

G.MuUery, 1979, CORE - A Method for Controlled Requirements Analysis and 
Design, Proc. of 8th l E E E E International Conference on Software Engineering, 
Munich, 1979. 

O.Nierstrasz, S.Gibbs, D.Tsichritzis, 1992, Component Oriented Software De
velopment, Communications of the ACM, Vol 35 No 9 Sept 1992, pi 60-165, also 
in Object Frameworks, Report , Ed. D.Tsichritzis, Universite de Geneve, 1992, 
p.1-10. 

O.Nierstrasz, M.Papathomas, 1990, Viewing Objects as Patterns of Communicat
ing Agents, in Object Management, Report , Ed. D.Tsichritzis, Universite de Ge
neve, 1990, p.255 

ObjectStore, 1995, ObjectStore Technical Overview, available from Object De
sign Inc., Swindon, UK (Tel. 44-1793-486111) 

OMG, 1990, The Object Management Architecture Guide, Revision 1, Document 
No. 90-12-1, Object Management Group, Cambridge, MA (now superceeded by 
Revision 2, 92-11-1). 



Appendix A - References 260 
23rd January 1995 

OMG, 1991, The Common Object Request Broker Architecture, version 1.1., 
Document No. 91-12-1, Object Management Group report, Oct 1991, Cam
bridge, MA. 

OpenBase, 1993, OpenBase Technical Overview, available from Prism Technol
ogies Limited, Team Valley, Gateshead, England. 

Orbix, 1994, Orbix Programmer's Guide, version 1.2 feb 94, available from lona 
Technologies, Dublin ,freland. 

G.Parrington, 1992, Programming Distributed Applications Transparentiy in 
C-H-, Myth or Reality, Report available from Computing Laboratory, University 
of Newcastle upon Tyne, England. 

POSC, 1992, Pefrotechnical Open Software Corp - Industiial Sfrength User Pow
er, Software Futures, November 1992, p.6-8 (see also October 1994 p. 10-12) 

R.Prieto-Daiz, 1991, Implementing Faceted Classification for Software Reuse, 
Communictaions of the ACM, Vol 34, No. 5, May 1991, p.89-97. 

A.Profrock, D.Tsichritzis, G.Muller, M.Arder, 1989, ITHACA: An integrated 
toolkit for highly advanced computer applications, in Object-Oriented Develop
ment, Ed. D.Tsichritzis, Universite de Geneve, 1989. 

J.Rambaugh, M.Blaha, W.Premeriani, F.Eddy, W.Sorensen, 1991, Object Ori
ented Modelling and Design, Prentice Hall, 1991. 

T.Reenskaug, E.Andersen, A.Berre, A Hurien, et al., 1992, OORASS: Seamless 
support for the creation and maintenance of object-oriented systems, JOOP, Oct 
1992. 

S.Reiss, 1987, Working in the Garden Environment for Conceptual Program
ming, I E E E Software, Nov. 1987, pi6-27. 

T.Rodden, I.Sommerville, 1989, Building Conversations using Mailtrays, In Pro
ceedings of EC-CSCW, the first European Conference on CSCW, Gatwick-
Hilton, Sept. 1989. 

L.Rowan, 1992, Visual Programming, Patricia Seybold Group, Guide to Work
group Computing Report, Vol 15, No 11 Nov 1992. 

W.W.Royce, 1970, Managing the Development of Large Software Systems: 
Concepts and Techniques, Proceedings Wescon, Aug, 1970. 

M.Rozier, J.Mantis, 1987, The CHORUS distributed operating system: some de
sign issues, in Distributed Operating System Theory and Practice, Springer-Ver
iag, Berlin, Heidelberg, p262. 

J.Rymer, 1992, Message Express, Patricia Seybold Group, Distributed Comput
ing Monitor, Vol 7, No 4 , April 1992. 

J.Rymer, 1993, IBM's System Object Model, Particia Seybold Group, Distribut
ed Computing Monitor, Vol 8 No 3, pi-24. 

J.Rymer, 1994, Middleware Roadmap, Distributed Computing Monitor, Vol 9 
No 5, Patricia Seybold Group. 



Appendix A - References 261 
23rd January 1995 

R.Rymer, M.Guttman, J Mathews, 1994, Microsoft OLE 2.0 and the road to Cai
ro - How object linking and embedding wil l lead to distributed object computing, 
Patricia Seybold Group, Distributed Computing Monitor, Vol 9, No 1, Jan 1994. 

K. Schumucker, 1986, Object-Oriented Programming for the Macintosh, Hayden 
Books, Hasbrouck heights, N.J. 

Seybold, 1994, Guide to Client/server and Distributed Computing Architectures, 
Patricia Seybold Group. 

Seybold, 1994, ref [2], General Majic Hopes to put the Network to Work, Patricia 
Seybold Group, Distributed Computing Monitor, Vol 9, No 3, p.20-25. 

J.Shirley, 1992, Guide to Writing DCE Applications, O'Reilly & Associates, Se-
bastopol, California, 1992. 

S.Shlaer, S.Mellor, Object Oriented Systems Analysis, ModelUng the World in 
Data, Yourdon Press/Prentice Hall, 1988. 

S.Shrivatava, 1991, An Overview of the Arjuna Distributed Programming Sys
tem, IEEE Software, Jan 91, p66. 

S.Shrivastava, G.Nixon, G.Parrington, 1987, Objects and Actions in Reliable 
Distributed Systems, SAV Engineering Journal Vol 2 No 5 Sept 1987. 

SIMULA, 1967 , O.J.Dahl, B.Myhrhaug, K.Nygaard, SIMULA 67 Common 
Base Language, Norwegian Computing Centre, February 1968,1970,1972,1984. 

SMALLTALK, 1983, A.Goldberg, J.Robson, Smalltalk-80: the Language and its 
Implementation, Addison-Wesley, 1983. 

D.C.Smith, J.Susser, 1992, A Component Architecture for Personal Computer 
Software, in Languages for developing User Interfaces, Ed. B.Meyers, Jones and 
Bartlett Publisher, p31-56. 

D.Steedman, 1990, ASN.l The Tutorial and Reference, Technology Appraisals, 
The Camelot Press, Trowbridge, Wiltshire, UK. 

S.Stepney, R.Barden, D.Cooper, 1992, A survey of object-orientation in Z, SAV 
Engineering Journal Vol 7 No 2 1992. 

W.Stevens, UNIX Network Programming, Prentice Hall, New Jersey, 1990. 

B.Stroustrup, M.Elhs, 1990, The Annotated C++ Reference Manual, Addison-
Wesley, Reading, Mass., 1990. 

H.Tonks, 1994, Improving Traditional Object models, Journal: Objects in Eu
rope, Winter 1994. 

D.Tsichritzis, 1989, Ed. Object-Oriented Development, ITHACA Report, 1989. 

D.Unger, 1984, Generation Scavenging: a non-disruptive high performance stor
age reelaimation algorithm, ACM Sigsoft/Sigplan Practical Programming Envi
ronments Conference, pp 157-167, April 1984. 

VisualAge, 1995, Product Literature and Demonstration, available from IBM, US 
Tel 1-800-3-IBM-OS2. 



Appendix A - References 262 
23rd January 1995 

I.Walker, 1992, Requirements of an object-oriented design method, SAV Engi
neering Journal Vol 7 No 2,1992. 

J.Walpole, G.Blair, D.Hutchison, J.Nicol, 1987, Transaction Mechanisms for 
I Distributed Programming Environments, SAV Engineering Journal, Vol 2 No 5, 

Sept 1987. 

P.Wegner, 1987, The object-oriented classification paradigm, in B.Shriver and 
P.Wegner (eds.) , Research Directions in Object-oriented Programming, MIT 
press, 1987 

R.Wirfs-Brock, B.Wilkerson, 1989, Object Oriented Design: A Responsibility 
Driven Approach, Procs. of the OOPSLA'89 Conference, SIGPLAN Not. (ACM) 
24,10, New Orleans Oct 1989. 

R.Wirfs-Brock, B.Wilkerson, L.Wiener, 1990, Designing Object Oriented Soft
ware, Prentice Hall, Englewood Cliffs, New Jersey. 

R.Wirfs-Brock, R.Johnson, 1990, Surveying Current Research in Object Orient
ed Design, Comms of the ACM 33 (9) Sept 1990. 

K.Woods, J.Mellor, J.Russell, 1993, ACUMEN: A configurable,distributed plat
form for object-oriented control systems, BEE Colloquium on Object-Oriented 
Development, Digest No. 1993/007, Jan 1993. 

A.Yonezawa, E.Shibayama, T.Takada, Y.Honda, Modelling and Programming 
in an Object Oriented Concurrent Language ABCL/1, in Object Oriented Concur
rent Programming, ed. M.Tokoro, pp. 129-158, The MIT Press Cambridge, Mas-
sachussetts, 1987. 

J. A.Zachman, 1987, A framework for information system architecture, IBM Sys
tems Journal, Vol 26, No 3,1987 p. 276-292, Reprint order no G321-5298. 

P.Zave, 1986, An Operational Approach to Requirements Specification for Em
bedded Systems, Software Specification Techniques, Addison-Wesley Publish
ing, 1986. 



Appendix B - Tutorial on ANSA,CORBA and D C E 263 
14th April 1995 

Appendix B: Survey of Integrative Standards - CORBA, DCE and ANSA 

B.l Introduction 

This section describes the findings of the survey of integrative standards. This in
cludes OMG CORBA, OSF/DCE and ANSAware. ANSAware provides a partial 
implementation of the ISO/ODP Reference Model standards effort. The purpose 
of this survey is to illustrate the way these integrative standards are used, so that 
we can both position OpenBase and provide background to the underlying tech
nology behind OpenBase. 

The introduction first provides background information on the different stand
ards. It then describes the overall scenario that will be used to illustrate the basic 
concepts using example code. Finally it defines the functional framework used to 
structure the rest of the survey. 

B. 1.1 B asic Mechanisms of Integrative Standards 

The integrative standards are based on remote procedure call mechanisms. This 
section describes this basic mechanism and the behaviours that are common 
across the integrative standards. 

In RPC systems, an appUcation consists of clients and servers. In object-based 
systems clients may themselves be servers for other clients and the term cUent 
and server can be taken to be roles that objects play in a interaction between ob
jects. 

A l l the integrative standards provide an interface definition language that is used 
to generate stub code in the client that acts as a local proxy for remote servers and 
skeleton code in the server that acts as a local surrogate for remote clients. 

The client will make a request to invoke a method or procedure call on a server. 
The system may decide which server is to be used and where that server resides. 
This frees the client of knowledge about the location and activation state of serv
ers. 

When the client wishes to talk to a server, this is what happens: 

The client raises the request possibly with arguments. 

The system intercepts the request and encodes the arguments ready for 
transfer to the server's environment. This is done by what is called the stub. 

The stub sends the request and the server's skeleton receives it. 

The skeleton decodes the arguments and invokes the real server object's 
method or procedure call, passing to the method or procedure call the argu
ments. 

The server processes the request and passes back any result to the skeleton. 

The skeleton encodes the results ready for transporting across the network 
to the client's stub. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14th April 1995 

264 

• The client's stub receives the results and decodes them. 

• The stub returns the results to the client. 

The following diagram illustrates this. 

cl ient server 

o 

stub 

O L-L o 

O 
/ 

Skeleton 

1 
transport se rv ice 

Figure 89 The Stub/Skeleton relationship 

The following code shows an example of binding and invocation using Orbix. In 
Orbix the IDL compiler adds a static jbind method to the C++ class of any server. 
This is used to bind the client and can optionally take a name as parameter. Stubs 
are generated both on importing a reference as in the call to jbind and on passing 
or returning a reference as in the call to method newAccount.in the example. The 
system ensures that after the calls, both obj and acc pointers address the local stub 
for the corresponding remote object. The Orbix example looks like this: 

//C++ 

fooO 

{ 

bank *obj = bank::_bind("Union Bank"); 

account * acc = obj->newAccount("Joe Bloggs"); 

} 

The system usually handles the following: 

• name services, to get references to servers based on text names, like "Union 
Bank". 

• activation, starting the server if an instance of it is not available, 

• request dispatch (and scheduling if multithreaded) 

parameter encoding and decoding, also called marshalling. 



Appendix B - Tutorial on ANSA.CORBA and D C E 265 
14th April 1995 

• message transfer and delivery, shipping the request fi-om the client to the 
server, 

i 
• error/ exception handling, i f the network fails or the server cannot be start-I ed, 

• internal connection management (hidden behind binding mechanisms) 

• synchronisation, between the client and server, 

• security mechanisms, to prevent unauthorised object manipulation. 

Each of these behaviours brings a performance overhead and new requirements 
on the progranmiing interface. Optimisations can be defined by adopting differ
ent approaches to each behaviour. In particular, most behaviours are not neces
sary for calls between collocated objects and local optimisations should be built 
into the system to by-pass the mechanisms. 

B. 1.2 Background to OMG/CORBA 

What is the OMG? 

The Object Management Group (OMG) is. a group of organisations and individ
uals formed in 1989. Today OMG's members number 330. This includes most 
i f not all the major industry players including IBM, DEC, HP, Microsoft, Borland 
as well as end-users . Al l these people are trying to work together to develop 
specifications to maximise the portability, reusability and interoperability of 
commercial software. 

The OMG works by organising committees and task-forces to choose specifica
tions based on their members ideas. Obviously it is not an easy job to get consen
sus between these organisations. One of their key strategic goals is to catch 
distributed object technology before it becomes entrenched in market politics and 
customer preferences. The OMG have positioned themselves as a fast track to 
open distributed systems. 

In November 1990, the OMG published the Object Management Guide outlining 
a conceptual framework in which to position and focus standardisation efforts. In 
October 1991, the OMG announced its adoption of the CORBA 1.1 specification. 
CORBA provides the communications component of the object management ar
chitecture. In 1994, the OMG announced the Common Object Service Specifica
tion which standardised the first group of added-value object services, naming, 
lifecycle and event notification. 

B. 1.3 What is the Object Management Architecture? 

The object management architecture is an architectural framework with support
ing detailed interface specifications, which seeks to drive the industry towards in
teroperable, reusable portable software components. The Object Management 
Architecture provides: 

l)An Object Model, which provides a taxonomy of concepts and common se
mantics that characterise object models in a standard and implementation-inde
pendent way. It describes a core set that any conformant system should provide, 
called the Core Object Model, but also defines compatible extensions, called 
components, and profiles that group pertinent components for given technology 
domains. 



Appendix B - Tutorial on ANSA,CORBA and EKTE 
14th April 1995 

266 

2)A Reference Architecture, which attempts to map out the areas in which tech
nology proposals may position themselves. It identifies and characterises the 
components, interfaces anid protocols that compose the architecture but does not 
itself define them. Figure |90 show the architecture components, including: 

• The ORB componeht enables objects to make and receive requests and re
sponses. 

• The Object Services component is a collection of value-added management 
services with object interfaces that provides basic functions for realising 
and maintaining objects. Examples include transactions, persistence and se
curity. 

• The Conmion Facilities is a collection of classes and objects that provide 
general purpose facilities for many apphcations. Examples include editors, 
widget libraries, device drivers, agents, printing facilities, electronic mail. 

• The Application Objects are collections of particular end-user application 
components that are assumed to be less common and thus will come from 
a single vendor or developer. Application objects may migrate into com
mon facilities by de facto processes as they become popular and widely 
used. 

Application Objects Common Facilities 

) c Object Request Broker 

Object Services 

Figure 90 The Object Management Group Architecture Overview 

B.1.4 WhatisCORBA? 

The Common Object Request Broker Architecture (CORBA) is one component 
of the Object Management Architecture. It allows one process to talk to another 
process in either the same address space or across a network. In object terms, this 
would be a client object requesting the services of a server object. A 'marshal' is 
needed to control the request and give the results back to the client. This 'marshal' 
is the Object Request Broker (ORB). The ORB allows client/server or peer-to-
peer relationships between the communicating objects. 



Appendix B - Tutorial on ANSA.CORBA and D C E 
14th April 1995 

267 

The ORB provides the RPC mechanism for CORBA objects. OMG have a more 
general diagram for describing CORBA than that given in the lat section:-

( Client ^Object Implementation ^ 

Dynamic IDL 
invocation stubs 

ORB 
interface skeleton 

Object Adapter 

C ORB core 3 
Figure 91 Common Object Request Broker Architecture (CORBA) 

Each of the components in this more generalised architecture are described be
low. 

Client 

These are the client application object. 

Object Implementation 

These are the server objects. 

IDL stubs 

IDL is the Interface Definition Language. The interface to a remote server object 
may be described in DDL. The IDL compiler generates the source and header files 
for the proxy and surrogate in the appropriate language. These are then linked 
with the client and server implementations. This interface is simple and easy to 
use, but i f the interface needs to be changed, the client and server require recom-
pilation. 

Dynamic Invocation Interface (DII) 

The dynamic invocation interface (DII) can be used to invoke remote object 
methods dynamically without statically linking to an IDL definition. The client 
must provide metadata at runtime to describe the composition of the request in 
terms of method name and argument types. This is particularly flexible when 
combined with repository services that allow the client to explore interface meta
data. CORBA 2.0 will extend the interface repository into a type repository by 
adding constraints, error messages and other type specific information. This will 
increase the amount of information that can be explored dynamically, making dy
namic invocation more useful. 

ORB Interface 



Appendix B - Tutorial on ANSA,CORBA and D C E 268 
14th April 1995 

This is used to control certain aspects of the ORB, especially on initialisation. 
This includes the client telling the ORB that it wishes to use an ORB object e.g. 
the client wiU bind to an object via the ORB. Also, the main body of the server 
object will tell the ORB that it is ready to start accepting requests once it has fin
ished initialising. This is an example of when the client/server explicitly uses the 
ORB. Clients and servers will also be made aware of the ORB due to network 
failures or protection violation. 

IDL skeleton and Object Adapter 

This is the surrogate, it acts like the IDL stubs in reverse. 

B. 1.5 OSF/DCE Background 

What is the OSF? 

The Open Software Foundation is an industry funded, non-profit making organi
sation sponsored by a number of leading vendors including IBM, HP, Digital, Hi
tachi, Bull, Siemens-Nixdorf. The OSF seeks to define and provide open (vendor 
neutral) software solutions for the computing industry. They adopt a process of 
selection, certification and integration of software technologies. 

Unlike the OMG, the OSF gets involved in centrally stitching technology contri
butions together into vendor distributions. This gives tighter control over the im
plementation of standards. However recentiy the style of funding is being 
changed to external development teams (probably due to the growing complexity 
of distributed computing environments). 

The OSF have adopted the mach kernel and Unix SVR4 interface as the OSF/1 
operating system standard. They have also released the Distributed Computing 
Environment (OSF/DCE) platform to support tiie development of distiibuted ap
plications in a distiibuted environment. The other main area is in application user 
interfaces (OSF/Motif). Work in progress includes the definition of the Distribut
ed Management Environment (OSF^ME). DME is an extensible framework for 
unified management of systems, networks and applications in a multivendor en
vironment and complements other OSF technology. 

The OSF have stated their long term intent to add an object model and evolve die 
DCE standard towards the ISO/ ODP de jure standard. In the shorter term they 
are also looking to evolve DCE towards OMG standards. DME currentiy includes 
a slot for OMG object services in its architecture. 

What is DCE? 

The Distributed Computing Environment (DCE) is an operating and network in
dependent software platform intended for the development of distributed applica
tions in an open environment. The main component subsystems of the DCE 
architecture are shown in the following diagram: 



Appendix B - Tutorial on ANSA.CORBA and D C E 
14th April 1995 

269 

APPLICATIONS 

S 
e 
c 
u 
r 
I 
t 
y 

Diskless Support 
Service 

Other Distributed 
Services (Future) 

Distributed File Service 

Time 
Service 

Directory 
Service 

Other Fundamental 
Services (Future) 

Remote Procedure Call 

M 
a 
n 
a 
g 
e 
m 
e 
n 
t 

Threads 

Operating System and Transport Services 

Figure 92 D C E Architecture 

The DCE model is client server. A DCE client invokes functions in a DCE server. 
It is bundled as a complete environment. Intervendor interoperability is good. For 
scaleability, DCE supports the concept of a cell which is a logical grouping of one 
or more nodes in a network (for example a business may have cells for engineer
ing, sales, finance). The main components are described below: 

Distributed File Service- the DCE file system is extended Carnegie-Mellon An
drew File System (AFS) V4 from Transarc (essentially a robust secure NFS lay
ered on DCE RPC). DFS is interoperable with standard NFS. It supports 
transparent file replication, file sets to move connected files together using the 
name service. 

Directory Service - names resources including printers, RPC servers, clocks, 
maildrops, so users can find them. The name service is a hybrid based on DEC 
DNS Digital Naming Services and X.500. 

Distributed Time Service - provides global network time for global cooperation 
and application synchronisation. It supports delay adjusted network time syn
chronisation and time tracking services. 

Remote Procedure Call - The RPC system is based on network Computing Sys
tem (NCS) from Apollo/HP, enhanced by Digital. It provides IDL. It is maintain
able by configurable logging options 

DCE Security - based on MIT Kerberos, DCE Security provides authentication, 
authorisation and encryption services. 

DCE Threads - allows multithreaded clients and servers so that a server can han
dle multiple clients concurrently or a client can schedule other tasks while waiting 
for a server. 



Appendix B - Tutorial on ANSA,CORBA and D C E 270 
14th April 1995 

B.1.6 ANSAware Background 
What is ANSA? 

The Advanced Network Systems Architecture (ANSA) is an architecture that 
seeks to enable apphcation components to interoperate despite diversity in pro-
grantmiing language, operating system, computer hardware, networks, communi
cations protocols and management and security policies. 

ANSA specifies an architecture consisting of: components, tiiat form the building 
blocks and tools of the architecture; rules, constraining the way components are 
combined; recipes, to obtain certain properties when applying the tools to the 
building blocks; and guidelines, to aid design decisions. The ANSA architecture 
is characterised by the properties of it's components and their composition rules 
and is principally structural though it does not prescribe a fixed architectural 
structure. Nor does it prescribe any particular design process or methodology but 
tolerates a variety of tools and methodologies. 

ANSA is structured as a set of projections representing different viewpoints of 
distributed systems architecture: enterprise, information, computation, engineer
ing, and teclmology. 

The ANSA workprogranmie is a collaborative industry effort to advance distrib
uted systems technology. It originated as an Alvey project, then was further de
veloped as the ISA Esprit project and has recentiy entered a phase of commercial 
exploitation. ANSA has been very influential in the OSF/DCE and the OMG/ 
CORBA. 

Representives of APM are the editors of the ISO/ITU ODP RM standard, the de 
jure integrative standard. The ideas behind ANSA have had a significant impact 
on ISO/ODP and ANSAware provides a partial implementation of these ideas. 
The OMG have very much positioned themselves as the fast track to ODP. 

ANSA also collaborates with TINA-C, producing tools for Telecoms Intelligent 
Networking, submits technology to OSF, and previously to UI Adas. 

The ANSA workprogramme seeks to : 

• contiibute to standards 

• remain vendor neutral 

• prove concepts in advanced technology prototypes 

• provide a technical resource for sponsors 

What is ANSAware? 

The ANSA work programme has developed an infrastructure product in which 
the consortium have proved research ideas. ANSAware is supplied as a suite of 
ANSI-C software programs for building ODP systems, providing a basic technol
ogy independent platform as well as program generators and system management 
applications. It is supported on UNIX, MSDOS and VMS and ported to Chorus. 

ANSAware consists of the following : 

• apphcation objects, an ANSAware object is an encapsulation of applica
tion and data, providing services via interfaces in a client server model. 



Appendix B - Tutorial on ANSA,CORBA and D C E 271 
14th April 1995 

• traders, act as directory and management facility used to advertise services, 
and for matching offers and requests for services, using service names, in
terface types and service properties. 

• system management tools, to manage the environment. 

• factories, provides runtime services to dynamically create capsules (or 
processes) containing object templates and then objects from the templates 
and to destroy objects and capsules. 

• node managers, providing configuration facilities by combined use of trad
ers and factories. They startup and control both static and dynamic services. 
Offers can be registered in the trader from passive objects that are activated 
by the node manager on demand. 

• nucleus, a low level resource manager to provide runtime support. The pro-
granraiing interface to the node manager is provided as a library linked into 
applications. 

• IDL, an interface definition languajge, and stubc, a language processor for 
DDL, to specify the operations available in an interface and generate stub 
routines and header files for inclusion in C programs. 

• DPL, a distributed processing language, and prepc, a preprocessor which 
extracts control commands embedded in C and translates them into calls to 
the stub routines provided by stubc. 

• X I 1 toolkit, to support X I 1 from within ANSA applications. 

The key properties that the architecture seeks to support are: 

• state of the art, the architecture is innovative and up-to-date. 

• portable, the architecture should be portable across a wide range of comput
ers, operating systems, languages and networks. 

• interoperable, the architecture should allow apphcations to operate in muti-
vendor heterogeneous environments. 

• generic, ANSA is suitable to many fields of application including telecom
munications, manufacturing, banking, sales, cooperative working, health 
service. 

• scaleability, the architecture is modular and scaleable, providing interwork-
ing between autonomously managed networks. 

• distribution policies, ANSA supports a wide range of distribution policies 
for different dependabilities like security, fault tolerance etc 

• high level, the focus of ANSA is on application requirements instead of 
technological diversity. 

• tool oriented, programmers state which application properties they, desire 
in programming tools which automatically insert functionality desired to 
achieve the desired properties. 

ANSAware embodies the following basic design assumptions: 



Appendix B - Tutorial on ANSA.CORBA and D C E 272 
14th April 1995 

• remoteness, all components are assumed to be physically remote from each 
other. Corlocation is considered an opportunity for optimisation. 

j 

• indirect data manipulation, local data is viewed as a co-located special case, 
hence all data manipulations must be indirect. 

• unknown data representation, remote data may be on a system of dissimilar 
design, hence data can only be manipulated through defined interfaces (ab
stract data types) 

• any request can fail, since all services are potentially remote, hence design 
must cater for extra types of failure, inlcuding partial network failures. 

• indeterminism, events are assumed to be unordered and non-simultaneous, 
hence i f order is important it needs to be determined expUcitiy. 

• data inconsistencies, cannot be avoided in decentiralised systems with mul
tiple sources, and must be acconmiodated. 

• unambiguous references to entities, are required for smooth cooperation be-
twen members of different communities. The most extensible approach 
without compromising autonomy and scaleability, is to use context relative 
names that require extensions when aiccessed in a wider context. 

• selective transparencies, are provided to compensate for unwanted proper
ties like concurrency, latency, and failures. They are supported by sets of 
mechanisms in the infrastructure that can be influenced by application writ
ers without detailed knowledge of the individual mechanisms. 

• concurrency and synchronisation, mechanisms are not portable, hence pro
grammers are encouraged to indicate potential and required concurrency 
and use tools to map this pseudo-concurrency to the available resources. 

• bindings, are late to allow flexibility to continuous changes in a distributed 
system, yet with early type checking on configuration to reduce the risk of 
unpredictable behaviour. 

B.1.7 Example Scenario 

The comparison of the integrative standards is illustrated by simple code exam
ples that use a banking scenario. A banking scenario is used because it is simple, 
familiar, easily extended and used in vendor examples. The scenario is a simple 
brokerage system that allows an independent broker to create accounts, make 
withdrawals and lodgements and close accounts on any bank in the network.This 
illustrates the way the infrastructure manages dynamic objects, representing ac
counts, that are created, accessed and deleted within objects that represent bank 
branches. Each bank branch has its own process and is used to illustrate registra
tion, naming and activation of process level objects. 



Appendix B - Tutorial on ANSA.CORBA and D C E 
14th April 1995 

273 

The scenario is supported by tiiree implementation files: one for accounts, one for 
branches and one for clients. The client provides a simple dialogue that is present
ed to tiie user to select tiransactions and provide tiransaction data. Figure 93 shows 
the messages that are sent when a broker creates a new account called "Ken in 
the branch called "Ely_High_Sti-eet" on the Ely server. 

Another Host 

Ely Host 

New Account 
banklEiy_Mign_streei 

Ken account 
deposit |E2Dir 

Ely_High_Street 

daemon 

daemon 

exec 

egistered 
Servers 

lookup 

/bind to Ely_High_Street 

ken = Ely_High_Street -> newAccount("ken") 

'ken -> makeDeposit(200) 

^ KEY 

[_) Host node 

c—::> Process 

Q Account Objects 

R Repository 

Figure 93 Scenario to Create a New Account 

The object code generated by compiling the accounts and banks files are linked 
into a server executable. The client code and dialog is linked into a client execut
able. The server executable may be activated as a process several times to repre
sent different branches on different nodes in the network. 

There are three main ways in which a client binds to a server: 

• Passing pointers or references as arguments in a method call, such as refer
ences to account objects may be passed by a lookup method in the bank. 

• Calling a binding service for an object that already exists and has been reg
istered for access by the service, such as using the ANSAware trader or OR
BIX _bind service. 

• Using a factory to create the server, which returns the binding to the caller. 

Associated with binding is the generation of the marshalling stubs and skeletons 
and initialisation of reference counts for memory management. 



Appendix B - Tutorial on ANSA,CORBA and D C E 274 
14th April 1995 

In CORBA, the server is registered in the implementation repositoiy and activat
ed by the ORB when a broker binds to that branch and may use a timeout to ter
minate itself automatically. 

In DCE the server is started manually from unix. 

In ANSAware two schemes are supported. The server is registered in the node 
manager and activated automatically by the node manager when a reference to the 
server is imported from the trader. Alternatively the server may be started by the 
client using the factory service. 

In an object mapping for DCE, dynamic object creation for account objects can 
occur in the server. However the client can only obtain a direct binding to the new 
account object i f a new server process is created for each account. Otherwise ac
counts are only accessible via the bank interface and accounts are not treated as 
distributed objects. 

With all three integrative standards, this scenario can be run across different het
erogeneous networks without any effort to port the example source code. Inter
operability comes for free in these environments. 

The scenario is run in two steps. First the system is configured. This involves reg
istration of servers in various repositories. .In DCE this also involves starting the 
server process which wil l register itself in the name service. Once configured the 
cUent process can be started on any machine to provide the conunand interface to 
the broker. 

B. 1.8 Overview of Functional Framework 

It is difficult to talk about a partial standard without refering to a reference imple
mentation. ANSAware and lona's Orbix are used in this section to exemplify 
ISO/ODP and OMG/CORBA respectively. 

The survey of integrative standards is written up as a comprehensive tutorial on 
CORBA, ANSA and DCE and provides a conceptual guide to implementations 
of all of these standards. There are a number of concepts and areas of functional
ity that are shared by all, hence the report is structured around the common con
cepts and functionality not the products. Furthermore there are actions that must 
be performed to provide this functionality. The survey is written up as a series of 
steps that must be performed to use CORBA, ANSA and DCE. For each step the 
tutorial describes the following: 

Overview 

A brief description of the areas of functionality associated with the 
step and an overview of the goals and the impact of implementation 
decisions. 

ANSAware Concepts 

• A conceptual description of the functionality provided by ANSA
ware. 

ORB Concepts 

A diagram showing which architectural cornponents of CORBA are 
involved in providing the functionality. This relates the behaviour to 
the architectural components identified in section 2. 



Appendix B - Tutorial on ANSA.CORBA and D C E 275 
14th April 1995 

• A conceptual description of the functionality provided by Orbix and 
CORBA. The distinction is made between existing standards, expect
ed future standards and proprietary extensions. i 

DCE Concepts 

• A diagram showing which architectural components of DCE are in
volved in providing the functionality. This relates the behaviour to 
the architectural components of DCE. 

• A conceptual description of the functionaUty provided by DCE. 

• Example 

• A description of how the area of functionality affects the banking sce
nario. 

• Source example for the banking scenario. 

The 6 step guide to DCE, ANSAware or CORBA covers the following functional 
scenarios: 

B.2 Stub Generation 

B.3 Source Code Implementation 

B.4 Server Registration and Naming 

B.5 Locating and Binding 

B.6 Activation and Failure Handling 

B.7 Synchronisation and Request Processing 

B.2 Stub Generation 
Terms: Interface Definition Language, Stubs, Skeletons, Smart Proxies, Interface 
Repository, Dynamic Invocation Interface (DII) 

B.2.1 Overview of Functionality 

The Remote Procedure Call RPC mechanism provides high level support for dis
tributed programming. The chief objective is to elevate distributed programming 
to the level of procedure and function calls, rather than low level message buffer 
handling and transmission. Thus programmers familiar with procedure and func
tion calling from classical programming can easily make the transition to distrib
uted application programming. 

RPC systems typically have three levels in their architecture: 

in the application level, the client makes an RPC call on a remote server and 
the server provides a definition for the procedure called. 



Appendix B - Tutorial on ANSA.CORBA and D C E 
14th April 1995 

276 

• in the stub level, a clients call to a remote server is intercepted by a stub 
that supports the servers interface. The smb encodes the call and die argu
ments into a message which it passes to the transport layer. At the other end 
the skeleton receives a message from its transport layer and decodes the 
call and arguments and perfomiis the call on the server.The skeleton then re
ceives return values and encodes them into a reply message. The stub re
ceives the reply and decodes the return values and returns control to the 
client. 

• in the transport level, the source receives request messages from the stubs 
and sends them over the network to the destination. The destination waits 
for incoming requests and forwards them to the appropriate skeletons. On 
return the destination receives die reply message from die skeleton and 
transmits it across the network. After transmitting a request message, the 
source waits for a reply message and forwards it to the stub. 

This behaviour is shown in Figure 94. 

foo (...) 

encode decode 
reply 

I t 

foo(...) 

s e n d - • w a i t - receive 

decode 
call 

encode 
reply 

t i 
l^wait-^receive send-1 

application 
layer 

stub layer 

transport layer 

Figure 94 Implementing RPC 

The application layer is progranraied in a procedural progranmiing language to 
define the behaviour of the client and the server. 

The stub layer provides the presentation protocol for the remote server. This con
sists of typed procedure calls. 

The transport level is responsible : 

• for managing connections. 

for multiplexing and demultiplexing messages between multiple stub/skel
eton pairs or multiple callers/callees pairs when there is more than one call
er or callee in the same process. 

for request scheduling at the destination and reply scheduling at the source, 
including dispatching requests to server threads and dealing with synchro
nisation. 

for fragmenting large messages and retransmitting lost packets. Typically 
ordering information must be embedded in each packet. 



Appendix B - Tutorial on ANSA,CORBA and D C E 277 
14th April 1995 

• for detecting lost or corrupted or out of sequence messages and retransmit
ting them. "Die protocol can be optimised for normal RPC processing by us-

! ing replies to acknowledge sends rather than using an enq-ack protocol. 

! • for notifying and tidying up abortions on partial failures such as long term 
communication failure or node failure. 

Rather than hard coding stubs for each procedure, a stub generator can be used to 
generate the stubs from a higher level description of the procedures. An interface 
definition language is one way that procedures can be described and this has 
been adopted in both CORBA, ANSA and DCE. The interface definition lan
guage compiler generates the stubs. This hides the interface between the apphca-
tion and the stubs. The transport layer itself is hidden by the stubs. Consequently 
both DCE and CORBA can be used without any knowledge of the stub and trans
port behaviours described above. An interface definition language consists of 
four main parts: 

• a specification of the composition of the interface, this may include inter
face inheritance and scoping constructs Uke modules and class. 

• a specification of data, including declarations for attributes, structures for 
exceptions and composite data types like sequences and unions which sup
port extra metadata for marshalling. 

• a specification of operations, typically extending conventional operation 
signatures in a C style with : qualifiers for arguments to determine whether 
they are input, output or both; extra exception handling features to deal with 
the additional errors that occur in a distributed environment; extra synchro
nisation qualifiers for procedures to indicate they are unidirectional and can 
be invoked asynchronously; qualifiers for idemnipotency to deal with rein
carnations on process restarts; extra context definitions. 

property specifications, not yet incorporated in CORBA and DCE only 
ANSAware. Extra property information is useful to deal with the additional 
complexities of distributed open systems and may be added in the future for 
selecting servers based on other semantic properties that supplement the es
sentially syntactic operation specifications. 

IDL definitions are provided for all distributed objects in much the same way that 
C++ class headers are provided for all C++ classes. 

B.2.2 ANSA Concepts 

ANSAware provide an IDL. The ANSAware IDL compiler, stubc, parses IDL 
definitions and generates stub files for marshalhng and unmarshalhng and header 
files to be included into object implementations to define encodings for any data 
types defined in IDL. The current compiler only supports C stubs and headers. 
IDL defines a common data representation used to communicate data between 
heterogeneous machines. 

B.2.3 ORB/ORBIX Concepts 

The IDL compiler for CORBA generates the stub and skeletons. It also populates 
the type repository with typing information that can be browsed at runtime to ex
plore interfaces. CORBA IDL code looks similar to a C++ class header, supple
mented with extra data type and exception information and omitting support for 
overloading, constructors and destructors, and default or ellipse arguments. The 
output of the IDL compiler is shown in Figure 95. 



Appendix B - Tutorial on ANSA,GORBA and D C E 
14th April 1995 

278 

populate 

Compiler 

Interface 
Repository 

Dll IDL 
stubs 

ORB 
interface 

IDL 
skeleton 

Impl. 
Repository 

Interface 
Repository 

Object Adapter 

Impl. 
Repository 

ORB core 

Figure 95 I D L Compiler output in CORBA 

The IDL compiler populates the type repository with information about serv-
ers.The interface repository effectively maintains enumerated typing information 
in a hierarchical data structure that can be queried using module names, class 
names,operation names and argument names. This data is stored in the file system 
in a nominated directory and itself accessed as an IDL server. CORBA 1.1 spec
ifies the access interface but not the manner in which it is populated. 

The on and interface repository in combination provide a mechanism for by
passing static type dependencies by treating types as enumerated data values in 
the application's call interface. This allows the use of tagged untyped values as 
parameters, where the tag value indicates the type. Clients need not statically link 
to stubs for all servers in advance. The DI I interprets the tag values and marshals 
the request appropriately. 

C-H- stub mappings are not yet standardised. Orbix provides one mapping. 

In Orbix, stubs and skeletons are C-H- classes and can be subtyped to modify their 
behaviour, for example to implement caching strategies for performance sensi
tive servers. Stub subtypes are known as smart proxies. Stub subtyping is not 
specified by CORBA but is part of the ISO ODP standards. 

The CORBA interface definition language has a syntax that is very close to C++ 
except: 

it adds a new scoping entity called module that allows definitions of inter
faces, exceptions, constants and typedefs to be grouped into a hierarchy. 

it does not support private or protected inheritance nor private or protected 
access controls. 

replaces keyword "class" with "interface", 

no constructors or destructors. 

no signed/unsigned qualifier for char and int must be explicitly short or 
long. 

adds composite types for sequences, discriminated unions 



Appendix B - Tutorial on ANSA,CORBA and DGE 279 
14th April 1995 

• restricts "templates" to sequences and strings. 

• no ellipse or default arguments. 

• extended syntax for operations including exceptions, context definitions, 
and directional qualifiers like "oneway" for operations and "in", "out", and 
"inout" for arguments. Refers to section B.6 for more on exceptions and 
section B.7 for contexts and qualifiers. 

B.2.4 DCE Concepts 

DCE IDL is similar to CORBA IDL in that botii generate stubs to marshal re
quests. DCE uses a unique identifier which a client uses to identify an interface. 
This is generated by a utility called uuidgen. The output from DCE DDL is shown 
in Figure 96. 



Appendix B - Tutorial on ANSA,CORBA and DCE 
14th April 1995 

280 

uuidgen 
.text editor 

client APPLICATIONS T 
server server 

file header ' J L ^ - ^ ^ ^ file 

M 
a 
n 
a 
g 
e 
m 
e 
n 
t 

Distributed File Service 

Time 
Service 

Other 
Service 

Directory 
Service 

Remote Procedure Call 

client thread ' \ senieftWrea'd~~^ 

client stub 

rpc runtime 

J ^ server stub 

. rpc runtime I 

S 
e 
c 
u 
r 
i 
t 
y 

; Client ' ^Threads \ Server' 
process 1 \ process J 

endpoint map 
daemon process] 

Client Machine 

Operating System & 
Transport Services 

• endpoint map 
daemon_process^ 

Server Machine 

Figure 96 IDL Output in D C E 

DCE IDL differs from CORBA IDL in that: 

restricted support for pointers - DCE makes an explicit distinction between 
pre-allocated reference pointers that must point to preallocated memory 
and remain immutable and full pointers that can be compared, changed or 
assigned a NULL value. The stubs do more work for full pointers. 

it does not allow references to be passed i.e. binding handles can not be 
passed, only textual names, DCE pass-by-reference and pointer-passing is 
really pass-by-visit semantics, where data is allocated and copied by the 
stubs before or after making the call. After a call the client and server no 
longer point to the same copy of the data - so references cannot be main
tained between calls. 



Appendix B - Tutorial on ANSA,CORBA and D C E 281 
14thAprill995 

• no templates 

• no interface inheritance l 

• no class attributes 

• operations are invoked as free functions not methods with an implicit 'this' 
pointer. Objects state is complex to handle. 

DCE supports pipes for transfering a large volume of variable data. 

B.2.5 Example 

The banking example provides two interfaces: an account interface and a bank in
terface. 

In Orbix the interfaces look like this : 

//bankidl 

interface account { 
readonly attribute float balance; 
void makeLodgement (in float f ) ; 
void makeWithdrawal (in float f ) ; 

}: 

interface current account: account { 
attribute float overdraftlimit ; 

I; 

interface bank { 
exception reject { string reason; }; 
account newAccount (in string name) raises (reject) ; 
account newCurrentAccount (in string name, in float limit) raises (reject) ; 
account get Account (in string name) ; 
void deleteAccount ( in string name ) ; 

}; 

In DCE the interfaces look like this: 

//bankAdl 

[ 
uuid (e49d6bd3-3126-llcd-b624-08002b326291), 
version(l.O) 
] 

typdef struct account_data { 
float overdraftlimit; 
float balance; 
char [50] name; 
accountjdata *next; 

} * head ; 

interface account { . 
void makeLodgement ([[in,string,ptrj char* name, [in] float f ) ; 
void makeWithdrawal ([in,string,ptr] char* name, [in] float f ) ; 



Appendix B - Tutorial on ANSA,CORBA and D C E 282 
14th April 1995 

/; 
interface bank { \ 

void newAccount ([in, string] char [50] name); 
void newCurrentAccount ([in,string] char [50] name, fin] float limit) ; 
account _data *getAccount Data([in,string,ptr] char'*'name) ; 
void deleteAccount ( [in,string,ptr] char* name ); 

}; 

Note that DCE does not support inheritance. In the example, overdraft limits have 
been conveniently inserted in the original definition of an account data and will 
be present for all accounts. However tfiere are other data that may become impor
tant, for example credit ratings or loan expiry dates Account specialisations can 
not add extra data or methods incrementally. 

DCE is a static process level architecture. DCE is also static in the sense that the 
client must link statically to the stubs generated by the IDL compiler on the serv
er, hence there are static build dependencies. There is no DII . 

DCE does allow a server to allocate dynamic memory for a new account and re
turn a pointer to it as in getAccountData. However the data is copied by value 
into allocated memory in the client's stub. DCE does not allow object references 
to be passed. Consequently bindings to accounts cannot be maintained between 
calls to newAccount and makeLodgement. DCE has no notion of fine grained ob
jects within a server and is restrictive when dealing with dynamic data that is ac
cessed across the network. 

B.3 Server Implementation 

Terms: IDL language mappings, interface inheritance, class inheritance, ties 

B. 3.1 Overview of Functionality 

Once an IDL definition has been provided, a definition of each operation must be 
implemented in the same way that procedures or functions must be implemented 
in classical progranraiing. The language mapping and inheritance model severely 
restricts the 0 0 language usage and is an important evaluation criteria. 

The application progranmier must take into account the IDL mapping to the im
plementation language, including: the encoding of IDL data types in the imple
mentation language; mappings for contexts and exceptions; and memory 
management and multithreading policies. 

Another important issue in program construction is the capability to share opera
tion implementations between interfaces that are related by IDL inheritance. In
terfaces can be shared down a hierarchy by interface inheritance in IDL. Many 
distributed systems require that the whole interface is reimplemented for each 
node in the hierarchy, i.e. subtyping or interface inheritance. This is like restrict
ing C++ to only allow virtual methods and insisting that all methods are imple
mented in each class. I f implementations of methods can also be shared, then we 
can say that the implementation language mapping supports class inheritance or 
subclassing. The term class is generally used to signify both an interface and an 
implementation. Class inheritance implies sharing of both interfaces and imple
mentations. 



Appendix B - Tutorial on ANSA,CORBA and D C E 283 
14th April 1995 

Other techniques for code sharing that have been popularised in research but not 
CORBA 1.1. include delegation, enhancement, exemplars, hierarchical composi
tion. 

Neither DCE nor CORBA IDL support sophisticated encapsulation protocols like 
C-i-f- protected and private access controls or protected and private inheritance. 

B.3.2 ANSA Concepts 

ANS Aware describes a distributed system in terms of potentially distributed ob
jects with defined interfaces through which the services are accessed. ANSA sep
arates the type from the templates from which objects are instantiated. An object 
may be a collection of more than one interface. 

ANSA supports subclassing (IDL declaration IMLEMENTATIONIS COMPATI
BLE WITH) as well as subtyping (IDL declaration IS COMPATIBLE WITH). 

Applications must implement the operations of an interface in C. A naming con
vention is used to associate C functions to DDL operation names. 

Object declared as 'managed objects' using the PREPC MANAGED declaration 
support lifecycle services that can be used by factories. Applications must explic-
itiy implement constructors and destructors as C functions for all managed ob
jects. Again a naming convention is used to associate the C functions with object 
names used in the declaration {i.e.Create_<objectname>_Object() and 
Destroy_<objectname>_Object ()). 

In early versions of ANSAware object state is associated with objects using ob-
jectlds with a hash table to lookup state. In later versions, all state is associated 
directiy with interface references. State can be accessed using the interface refer
ence of type Object obtained from the current execution context of a thread exe
cuting an operation in the interface (via thread_getInterfaceState). Alternatively 
state can be obtained using the interface reference, via a call to 
awifref_getInterfaceState for a specified interface. (Object state is implemented 
in C by associating state with the socket used to support the interface.) 

B.3.3 CORBA/ORBIX Concepts 

CORBA 1.1. provides a mapping from IDL data types to C and allows IDL inter
faces to be implemented as C functions. There has been much debate about 
whether C is an appropriate launch point for CORBA technology due to its ab
sence of OO support. 

Orbix provides a mapping for C++. One design goal of Orbix was to make the 
transition to Orbix straight forward for programmers who were already compe
tent in C++. IDL interfaces are implemented by C++ classes. Making a remote 
call on an IDL interface appears as similar as possible as making a local member 
function call on a C - H - class. A C++ mapping will be standardised by the OMG . 

CORBA IDL supports interface inheritance, including multiple inheritance but 
actively avoids any commitments to implementation issues like class inheritance. 
Some language mappings will support class inheritance, most will do this in a re
stricted way, and many will only support interface inheritance. 

Orbix provides restricted forms of class inheritance. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14di April 1995 

284 

server: :foo 
OOL 

defines 

object 
implementation 

uses 

c 

Interface 
Repository 

DII IDL 
stubs 

ORB 
interface 

IDL 
skeleton 

Impl. 
Repository 

Interface 
Repository 

Object Adapter 

Impl. 
Repository 

ORB core 

Figure 97 Implementing ORB Objects 

In Orbix, the DDL compiler allows implementations to be associated with DDL in
terfaces in two ways: 

• an implementation class can derive from the class generated by the IDL 
compiler 

• an implementation class can be associated to the class generated by the IDL 
compiler by instantiating a special typed C++ template, known as a tie. 

Classes generated by IDL only support pure virtual methods. An IDL subtype 
class inherits from its IDL base and adds fiarther pure virtual methods. The imple
mentation class for a base class must derive from the base IDL class and the im
plementation class for the subtype must derive from the IDL subtype class. Hence 
the bases implementation can only be shared by the derived implementation class 
using multiple inheritance. 

interface 
inheritance, 

IDL derived! 

IDL base 

impl_base 

class inheritance 

impLderived 



Appendix B - Tutorial on ANSA,CORBA and D C E 285 
14th April 1995 

Figure 98 Inheritance restriction Mithout ties 

The above figure shows the need for multiple inheritance to share implementa
tions. In fact, in a real implementation, it is even worse than this tiie shared 
methods must be put in a distinct class that is multiply inherited by impl_base and 
impl_derived. 

In turn, the use of virtual multiple inheritance inhibits the casting of pointers. Yet 
pointers are used as object references in the Orbix C-H- mapping. This leads to 
interoperability problems with the C mapping of CORBA 1.1. which uses void * 
pointers. 

A tie template is expanded for each interface-class implementation-class pair. Tie 
objects are instantiated from this expansion to delegate calls between interface 
objects and the implementation objects. Tie objects impose an extia level of indi
rection. They maintain pointers to the associated implementation object. The Or
bix skeleton invokes IDL methods via the tie object. An implementation object 
must be created and deleted by creating and deleting a tie at the same time. Ties 
in effect explicitiy separate the interface hierarchy used as the type hierarchy for 
safe remote access from the implementation hierarchy used for C++ implemen
tations. This allows flexible mappings between C-H- classes and IDL interfaces 
and more flexible patterns of implementation sharing . 

B.3.4 DCE Concepts 

DCE does not support interface inheritance at all so tiie question of how to sup
port class inheritance does not arise. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14th April 1995 

286 

text editor 

client 
file 

APPLICATIONS 

header 

server 
IDL header 

server 
file 

M 
a 
n 
a 
g 
e 
m 
e 
n 
t 

Distributed File Service 

Time 
Service 

Other 
Service 

Directory 
Service 

C Compiler 

Remote Procedure Call 

client thread ^ server thread 

client stub server stub 

-Epc runtime rpc runtime 

r 

s 
e 
c 
u 
r 
i 
t 
y 

C Compiler 

Linker 
Client 
process 

! Threads server 

process . J Linl(er 

endpoint map 
daemon process 

Operating System & 
Transport Services ' endpoint m a p ^ 

•daemon process} 

Figure 99 Server Development in D C E 

The DCE IDL compiler generates a C header file and C stub files for the client 
and the server. An implementation is associated with an IDL interface by includ
ing the C header file generated by the IDL compiler and implementing the proce
dures defined in the interface. Both the client and the server must also compile 
and link the appropriate stub file. 



Appendix B - Tutorial on ANSA.CORBA and D C E 287 
14di April 1995 

DCE only provides C linkajge. Servers must implement their DCE operations as 
C functions, hence i f DCE is used with C++, the server must be implemented as 
free functions within an extern "C" statement to prevent name mangling by the 
C-t-+ compiler. The object may be passed as an object identity value in an argu
ment, the free function being implemented to map ids to pointers and forward the 
call to the relevant object. 

There are other problems using C-H-. DCE provides its own reentiant system l i 
braries and these can be abused easily to use non-reentrant code. 

B.3.5 Example 

In the banking example we must implement the account and bank interfaces de
scribed in section B.2.5. 

In Orbix, tie objects are used as shown in the figure below. A tie for the bankj 
implementation class supporting the bank IDL interface is declared by including 
DEF_TIE(bank,bank_i) in the header file for bankJ.. A tie for the account_i im
plementation class supporting the account DDL interface is declared by including 
DEF_TIE(account,account_i) in the header file. When new bank objects and ac
count objects are created, a tie object must also be created. A code example im
plementing the operation newAccount in the bank interface looks like this: 

account* bank_i:mewAccount (char* name, CORBA:.Environment &pe) 
{ 

//... code to check uniqueness of name ... 
account_i *p _obj= new account_i(0,name) ; 
account *p _tie = new TIE(account,account_i) (p_obj); 
p_obj->p_next =m_head ; 
mjiead = pjie; 
p_tie->_duplicate(); 
return p_tie; 

} 

Note that it is tie objects that are passed as arguments and retum values. An ac
count object must be assigned to the tie object before passing the tie. The tie ob
ject can then be used to access the account remotely, for example to make an 
initial lodgement. 

Note also that memory management policy has implications on the programmer. 
When returning an object reference, the implicit reference count is decremented 
on the assumption that it was incremented when it was passed. Hence to ensure 
that mjiead is still a valid reference after returning, we must first call Orbix func
tion _duplicate to increment the reference count. I f the reference count becomes 
zero, Orbix will delete the tie object automatically and this will recursively delete 
the account object. The Orbix function _release should be used in place of normal 
C-H- delete. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14thApriH995 

288 

Server 
b a n k j ; 
implementation 

account_i 
implementation 

newAccount(char*) 

^ bank tie ^ 

( b a n k * ) ^ 

m h e a d 

makeLodgement(int) 

Bank (account 
urrogate 

newAccount(char*) 

Qaccounttie y 

2r Account 
urrogate 

c ORB 

makeLodgement(int) 

Figure 100 Server Implementation in Orbix using Ties 

In DCE, the interface must be implemented as C functions. 

B.4 Server Naming and Registration 

Terms: name server, cell directory service, implementation repository 

B.4.1 Overview of Functionality 

In order to identify application servers we must be able to name them. A name 
could be a raw network address such as a tcp socket address. Alternatively a name 
service can map text names in any format to network addresses used in binding. 

Where there are many fine-grained object per process, a common transport serv
ice should be shared by multiplexing all calls to object in the process, to avoid 
linking generic transport behaviour into each object. Each object then has a net
work address for the transport service and a local object address for the object, 
normally represented as a pointer from the transport service. 

An object naming service should map text names to network addresses and object 
addresses. The simplest scheme for object addresses would map names to identi
fier values rather than transmitting memory addresses between address spaces. 
The identifier values should be mapped to local memoryaddresses locally by a 
transport layer catalogue within each address space. These identifier values may 
be called plug numbers at the client and socket numbers at the server. The socket 
number is used to identify the server object for client requests. The plug number 
is used to identify the client object for server replies. 



Appendix B - Tutorial on ANSA,CORBA and DCE 289 
14th April 1995 

Some system services have well known addresses that are hard coded into the 
runtime support, for example as environment variable, such as the name service 
itself and any daemon servers used in binding. 

A distributed name service that allows a client to bind to a server without knowl
edge of the locality of a server or network address is said to support location 
tiansparency. Section B.5 wil l discuss other ways of achieving location transpar
ency such as frading. 

A client will bind to a server using the servers name to lookup the address for 
binding in the name service. A name service itself is a distributed application. It 
may be replicated or cenfralised, with or without stand-bys for fault tolerance. 
Caching at the clients end can be used to improve lookup speeds. Forwarding 
pointers at the server end can be used to support migration of servers between 
nodes. 

A complete address for an object includes the host node address, the port of the 
server process and an address for the object within the process. Not all systems 
allow multiple objects per process, eliminating the need for the latter object iden
tifier. The different parts of an identity may be obtained in different ways, in mul
tiple steps. In particular, volatile server port addresses and identifiers for objects 
may not be replicated across a network. 

Names can be arranged into groups or a heirarchical name space, extending 
names with a context or allowing the use of group names to make weaker state
ments about which particular instance is actually referenced. Likewise a name 
space may be federated using different naming schemes in different domains. 

B.4.2 ANSA Concepts 

ANSA objects export their services to a repository of services known as a trader. 
Each server must register in the trader the services it is offering to other objects. 
A command line tool is provided to edit and add registiation entries in the trader. 

An entry in the trader consist of an abstiact data type together with a set of at
tribute values associated with the object. These attributes are called properties. 
Clients import references to servers by specifying an absfract type signature to
gether with property values. This is a yellow pages types service as compared to 
the name service of DCE and implementation repositories of CORBA which are 
white pages. 

B.4.3 ORB/ORBIX Concepts 

The Common Object Service Specification of the OMG's Object Services de
fines a Name Service specification for mapping textual names to network ad
dresses. 

CORBA also defines an implementation repository that maps server names to ex
ecutable images. The implementation repository not only acts as a name service 
but may also activate servers by executing the executable, see section B.6. 

In Orbix, server images are registered in the implementation repository using a 
configuration tool with a simple command line interface that makes the reposi
tory look like a unix file system. Orbix does not yet support the Name Service. 



Appendix B - Tutorial on ANSA.CORBA and D C E 
14th April 1995 

290 

program 
installation 

register 

Interface 
Repository 

c 

DII IDL 
stubs 

ORB 
interface 

IDL 
skeleton! 

Object Adapter 

Impl. 
Repository 

ORB core 3 

Figure 101 Server Naming & Installation 

An executable can be registered with different names, representing different serv
ers that share the same image. An executable can be registered with the same 
name on different nodes, notifying Orbix that a server can be run on a number of 
machines and that Orbix should choose. 

In Orbix, the name refers to the server process. An additional name can be used 
to identify a server object within a process, called an object marker. 

An implementation repository is maintained on each node. The Orbix locator 
service maintains a mapping between server name and host names on which the 
server is available. The host name is used to find the local implementation repos
itory. Hosts can be arranged into groups to allow group names to be used as a 
shorthand for lists of several nodes. 

B.4.4 DCE Concepts 

DCE uses a centralised master name server, called a cell directory server, to map 
textual names to network addresses. The port address of the server is ommited 
from the address returned by the cell directory server. Instead, the mapping from 
names to port addresses, called the endpoint map, is managed by a local daemon 
process running on every node. This means i f endpoints change due to process 
restarts, the cell directory server remains unaffected. 



Appendix B - Tutorial on ANSA,CORBA and DCE 292 
14th April 1995 

B.4.5 Example 

Bank objects need to be named and registered for latter lookup by die broker who 
acts as a client. 

Orbix allows banks to be named in three ways: as a server process name; as a 
server process name and object marker; or automatically named by the IDL inter
face name of the object reference being bound. The following commands show 
these 4options respectively: (The ^h argument is optional and determines the 
physical location of the server. The unix host name merton is used in the exam
ple): 

option 1: putit -hmerton Merton_High_Street server 
option 2 : putit -hmerton -shared NatWest -marker Merton_High_Street server 
option 3: putit -hmerton bank server 
option 4: putit -hmerton bank -method newAccount server 

Usage: putit -hnode [-shared] servemame [-marker markemame] executable 

The nodes represent regional servers for the banks. Here we can think of merton 
as a city. This makes the mapping between physical names and invented names 
simple. The host name can be used by the client to restrict the binder to select a 
server in a specific location. For example, a chent could bind to any bank in the 
locality of merton by by specifying the host name merton. A server may also be 
registered in merton with name Merton_College_Branch and the binder would 
choose randomly between Merton_High_Street and Merton_College_Branch. 
The chent need not specify the host name, i.e.Orbix supports location transparen
cy. In this case the binder would chose a branch on any node. 

Option 1 allows each server process to be named. A client uses the server name 
Merton_High_Street, in binding. Binding is described in more detail in section 
B.4. 

Option 2 introduces a composite name for each object consisting of a server name 
and a marker name. Clients can bind to any Natwest bank by using the server 
name only or to any bank with a Merton_High_Sti-eet branch by using the marker 
only. For example, server may be registered for Midland as well as Natwest in 
Merton_High_Street. The host name could also be used with either part of the 
composite name for example to select any Natwest bank in the locality of merton. 
-shared is necessary to allow multiple objects per process. 

Option 3 allows type specific binding where the client chooses to bind to any 
server supporting the IDL interface of its reference. This option must be used i f 
the client is not going to use names other than the host name. 

Option 4 uses the -method argument that implies a server is activated for each re
quest to the specified method and terminated when the reply has been sent. The 
lifetime ofthe server makes it unsiutable to this example without persistence. 
Also all methods would need to be registered in this way. 

The executable may be run in an X-window using "xferm -e server" in place of 
server above. 

In addition, a server must define markers before any clients try to bind. This is 
usually done in initialisation code in main before executing the ORB call to listen 
for incoming requests. It can be done at any time and names can change. 

void main [ 



Appendix B - Tutorial on ANSA,CORBA and D C E 293 
14th April 1995 

account *acc = new TIE(account,account_i) (new accountj); 
acc->marker ("merton_high_street"); 
//listen for requests.... 

I 

The repository can be queried using Isit. and entries removed using rmit.. 

Serever must also register in orbix.hosts and orbix.host groups files for th erelo-
cation service. 

DCE allows banks to be registered by initialisation code in the servers main body. 
The server must be registered in the local end-point map and in the DCE name
space. This is done in the following source example. Note that the programmer 
must manage network addresses, interface identities and protocols explicitiy us
ing arguments like binding_vector and constants like bank_vl_o_s_ifspec, which 
is generated by the IDL compiler to identify interfaces. This makes the interface 
much lower level than with Orbix where this is hidden from the programmer: 

/* register interface using ifspec handle generated by lDL compiler */ 
rpc_server_register_if(bank_vl_0_s_ifspec, NULL, NULL, &status) ; 

/* select all protocol sequences */ 
rpc_server_use_all_protseqs(rpc_c_protseq_max_reqs_default,&status) ; 

/* get binding information allocated for the server by above registrations */ 
rpc_server_inq_bindings(&binding_vector, Scstatus); 

/* advertise the endpoints in the local endpoint map*/ 
rpc_ep_register( bank_vl_0_s_ifspec, binding_vector,NULL, "mertonjiighjstre 
et"); 

/* advertise the server in the CDS name space */ 
rpc_ns_binding_export(rpc_c_ns_syntax_default, "merton_high_street", bank_v 
lJ)_s_ifspec,bidning_vecfor,NULL, &status); 

This example clearly show the difference between high level tools like the Orbix 
implementation repository and lower level APIs like DCE's binding functions. 
CORBA and DCE environments differ greatiy in the level of complexity in the 
programming interface. 

DCE does provide tools, cdscp and rpccp, in which names can be added to the 
directoty service but this is mainly for administiation and the server must still in
clude the initialisation code to register itself. In Orbix, all this work is done by a 
single command of the implementation repository and initialisation code is only 
needed for naming individual objects within a server should this be required. Ref
erence passing means that finer grained objects can exist as unnamed entities. 

B.5 Locating and Binding 

Terms: network addressses, trading, property service, daemons, collocation, 
lightweight RPC 



Appendix B - Tutorial on ANSA,GORBA and D C E 294 
14th April 1995 

B.5.1 Overview of Functional Scenario 

In order to invoke objects, we must be able to find and bind to them.The transport 
protocol allows network addresses to be used to establish connections or to route 
datagrams between objects.The main problem is how to select servers and how to 
find the complete network address and object address. 

Servers may be selected by name or part-name, by physical location, or by que
rying properties. Competing instances of a server that satisfy the selection criteria 
may be chosen randomly in several ways: on a nearest-first basis, by a load shar
ing algorithm or by imposing an order or priority on servers when they are regis
tered. The server must support the interface expected by the client hence selection 
should also be type specific. In some configurations, type conformance is the only 
criteria for selecting a server. Servers can be collected into groups or heirarchies 
in a heirarchical name space to limit the extent of the selection. 

Servers may also be selected explicitiy by an appUcation engineers in a program
ming in the large tool like OpenBase or configuration programming systems. 

Addresses may be embedded in object references when they are created and 
passed with references. Likewise addresses may be encapsulated in proxy objects 
that are associated with references and new proxies are generated when referenc
es are passed. Alternatively addresses may, be held in catalogues that map identi
fier values to addresses. 

Catalogues and name servers can themselves be accessed by embedding their ad
dress in object references or by using well known addresses such as an environ
ment variable. Some advanced systems support broadcast or multicast protocols 
to find object addresses for remote objects. Others use centralised or ring-based 
topologies with point to point connectivity between name servers and cat^ogues. 
Most allow addresses to be cached and replicated across the network. Local cach
es with fast lookups can be used as an alternative to embedded addresses. 

Another issue is whether optimisations are supported for local calls. This is often 
a bind time decision. 

Interprocess calls on the same node may use a lightweight RPC mechanisms, for 
example using shared memory or named pipes as the transport mechanism. Few 
systems support leightweight RPC properly as advanced techniques are required 
[Berstad]. By managing a call stack in shared memory, buffer copying overheads 
can be removed. It is even possible to by-pass context switching and dispatcher 
overheads using hands-off scheduUng as supported in Mach. Lightweight con
nections are usually established at bind time when the protocol is negociated. 

Calls between objects in the same process can by-pass all RPC overheads. For ex
ample, if the stub/skeleton interface is symmetrical, a client can bind directly to 
the server rather than via the stub and skeleton. Thus a local RPC call can be as 
efficient as a conventional procedure call. This is called collocation and is easier 
to support than lightweight RPC. 



Appendix B - Tutorial on ANS A.CORB A and D C E 295 
14th April 1995 

B.5.2 ANSA Concepts 

ANSA interfaces are identified by a data structure known as an interface refer
ence. Interface references encode the address of the object providing the inter
face. They may also encode the address of a relocation catalogue should an object 
migrate between processes or encode the addresses of a group of objects should 
an object be a member of an interface group such as a replica group. More recent
ly interface references have been extended to encode quality of service parame
ters. 

A client object can obtain an interface reference for a server in three ways: 

• by the process of trading, a client imports the interface reference fi-om the 
trader by specifying an interface type and property attribute values expect
ed of the server. The import service queries offers of service registered in 
the trader, as described in section B.4.2. Type conformance and property 
values constrain the search. 

• by passing interface references as parameters in service invocations. 

• by creating a new server using the factory service, as described in section 
B.6.2. The interface reference of the new server is returned to the caller of 
the factory service. 

The trader allows for the classification of server instances into a type heirarchy. 
This restricts the search space to interfaces whose type conforms to the expected 
type. 

The trader allows the classification of server instances into an administrative hei
rarchy which is similar to a directory structure of UNIX. Each node in the heirar
chy is a context that defines a context space as the branch of the heirachy from 
that node. 

When exporting, a server must specify a server name, a context space into which 
the offer of service should be registered and properties (e.g. traderRef$Ex-
portC'name", "/context/...", property, value)). On importing, cHents may specify 
the context to constrain a search {e.g.traderRef$Import ("name", "context/..")). 

The trader allows two policies with regard to how matching offers are handled: 
random selection of a single offer or return of all offers. 

An offer may be a proxy offer where the proxy itself is used to find the server 
rather than the binding information being including in the trader. For example 
node manager may register proxy offers for passive servers that need to be acti
vated before use, as described in section B.6.2. Proxy offers may also be regis
tered by other traders in a federated trading space consisting of several trading 
domains each managed by a different trader. Likewise a context space within one 
trader may be bound to context name in another trader, for example to bind sev
eral traders to a single trader nominated as the master trader. 

B.5.3 ORB/ORBIX Concepts 

The Object Services Architecture includes Property Services that allows dynamic 
named attributes to be associated with an object. Such properties can be used to 
select objects. The Trading Service provides the mechanisms for matching pro
vided services to services required by a client and may use the property service. 
Both these services are not yet standardised, although a number of ORBs have 
implemented similar services e.g. Sun DOE. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14th April 1995 

296 

The ORB 2 task-force is looking at extending the interface repository into a full 
type repository by including constraints and other properties with interfaces. This 
may form the basis of some selection process in the future but has not yet been 
stand^dised. 

Currehtiy the OMG have standardised the Name Service described in Section 
B.4. 

Locating and 
Binding 

Interface 
Repository 

Dll IDL 
stubs 

ORB 
interface 

IDL 
skeletonl 

Object Adapter 

Imp!. 
Repository 

c ORB core ^ lookup 

Figure 103 Binding in CORBA 

Orbix does not yet support the Name Service. However it does implement an im
plementation repository that maps names to executables and a locator service that 
can be used to find the local implementation repository for a server. 

Orbix has a symmetric stub/skeleton interface and supports optimised colloca
tion, both explicitly when a server itself only uses local nested servers and auto
matically at any time when binding to a local server. Explicit collocation is set 
and unset by calling an Orbix function in the ORB interface and this inhibits re
mote binding for any objects in that process. Orbix does not provide any light
weight RPC for IPC. 

Binding services are supported by the generic transport layer which is linked with 
the apphcation code. Two libraries are provided ITclt and ITsrv. ITsrv supports : 
incoming IDL calls, explicit collocation, and callback functions (an Orbix exten
sion). ITclt is linked into images that only act as clients for remote servers. 

The orbix IDL compiler generates a J)ind method that is supported as a static 
class method in the IDL stub. This makes a downcall to the binding services in 
ITsrv or ITclt. Alternatively binding calls are made from the dynamic invocation 
interface which provides an API as described in section B.7. 

ITclt uses the locator service to find the appropriate node, step 1 in Figure 100. 
ITsrv uses the locator service if the server is not collocated and explicit colloca
tion is not in force. The locator service maintains a mapping between server name 
and host name . The mapping is held locally on each node. Each node also main
tains a pointer to the location service on another node.This is used if the server is 
not cached locally, step 2 in Figure 100. This pointer is configurable, so lookups 
can be configured in any topology such as a ring or a star. The locator can be by
passed if the chent identifies the host as an argument in the call to _bind, i.e. non-
transparent binding. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14th April 1995 

297 

Once the server node is identified, the binding services access the implementation 
repository on that node using a daemon process that runs on every node, step 3 in 
Figure 100. Daemons have well known ports, defined as a variable in the system 
or orbix configuration files. The implementation repository can determine if the 
server is active and activates a server if one is not active already. Server activation 
is described in section B.6. It then returns a port address for the binding services 
of ITsrv that are linked into the server process itself. These services are then used 
to establish a connection to the server object, step 4. Alternatively for connection
less protocols the final binding is deferred till a request is processed. 

If no server name is specified, the _bind method uses the interface name as the 
server name by default. This allows type specific binding without explicit names. 

Client Host 

Locator 

2. forward lookup 

Locator 

l^pplication^ 
Client 

Hookup (TTclt 
host 

4. lookup 
object 

3. lookup 
server 

Next Host 

3etjeman_house 
hosts: merton, lucilla 
groups: BH 

; Server Host 

/ /Applicatiom 
1V Server ) 

(iTsrv ) 

\ ; Server Host 

/ /Applicatiom 
1V Server ) 

(iTsrv ) 

Impl. 
Repository 

^ /T)etjeman_house ^ 
^ exe: Server y 

Figure 104 Binding in Orbix 

B.5.4 DCE Concepts 

DCE provides a Name Server, called a Cell Directory Server, that allows servers 
to be selected by name. It also supports named groups of servers that can be se
lected randomly or by prioritisation within the group. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14th April 1995 

298 

client APPLICATIONS server server 
file IDL file 

M 
a 
n 
a 
g 
e 
m 
e 
n 
t 

Distributed File Service 

2. find server daemon I 
Time 

Service 
Other 

Service 
Directory 
Service 

CDS 
Server 

1. make 
call 

Remote Procedure Call 

client thread server thread \ 

~cl[ent stub 

rpc runtime ' ^ rpc runtime : rpc runtime 

S 
e 
c 
u 
r 
i 
t 
y 

CUent 
process 

Server 
process 

CDS Server 
Process Threads 

endpointmap 
daemon process 

3. find ""endpointmap 
server UssmonpiBB^^^ 

iCIient Machine Server Machine CDS Server Machine 

Operating System & Transport Services 

Figure 105 4 Step Binding in DCE 

The cell directory server architecture is based on a central master server with rep
licated caches on each node. Every time a lookup is performed, the cell directory 
server entry for that name is cached locally on the client machine. 

When a client tries to bind, a lookup is first performed in the local cache,as in step 
1 in Figure 106. If the server is not found, the master cell directory server is then 
queried, step 2. The cell directory server returns the host address and protocol for 
the server or an exception to say that the server is not found. This does not deter
mine the process. The actual end point for the server process is looked up in the 
end point map managed by a daemon process running on each node, step 3. 



Appendix B - Tutorial on ANSA.CORBA and D C E 
14th April 1995 

299 

2. lookup host address. 

Client Host 

i (CDS Client 

CDS 
Server 

/Applications 
cache \_ Client 

lookup 

CDS Server 
Host 

7.. ./wilber_high_street 
<i/fid>=e49d7..,1.0 

^addr> = tcp: 158.234.17.19^ 

access 
3. lookup 

endpoint 

1 Server Host 

/ /Applicatiom 
1 V Server J 

/PorOr 
U044 ) 

^ 
1 Server Host 

/ /Applicatiom 
1 V Server J 

/PorOr 
U044 ) 

RPC 
Endpointi 

—^ /<i/fid> = e49d7"..,1.0^ 
\̂ endpoint> = 1044 y 

Figure 106 Binding to Servers 

B.5.5 Example 

In the banking scenario, the broker client must bind to the appropriate bank serv
er. 

In Orbix, binding is simple. The client must call the Jbind method on a pointer to 
a bank object. Jbind is generated automatically via the DDL preprocessor. There 
are several options for arguments to this method that correspond to the options 
for registering servers in section B.4.5. 

usage: interface *ptr = interface:_bind( "marker: server " [, location]); 

location is the optional hostaame and can be derived from the locator service if 
not provided, marker is the object name, server is the server process name. The 
server defaults to the interface name. The marker: server pair also defaults to die 
interface name if not present and to an object name if the separator ":" is absent. 
The following options illustrate some of the possibilities: 

bank *ptr = bank::_bind(":merton_high_street", "merton") ; 
//binds to server called merton_high_street on host called merton. 

bank *ptr = bank::_bind(":merton_high_street" ) ; 
//binds to server called merton_high_street using location service to find node. 

bank *ptr = bank::_bind("merton_high_street:NatWest", "merton") ; 
//binds to object called merton_high_street in server calledNatWest on merton. 

bank *ptr = bank::_bind("merton_high_street:") ; 
//binds to object called mertonJiigh_street in server called bank on any node. 

bank *ptr = bank::_bind( ":Barclays ", "merton "); < 
//binds to any object in server called Barclays on merton 



Appendix B - Tutorial on ANSA,CORBA and D C E 300 
14th April 1995 

bank *ptr = bank::_bind() ; 
//binds to any object in a server called bank on any node 

The second, fourth and sixth options illustrate how location transparency can be 
provided using a location service. 

The pointer can then be used to invoke methods just like a local C++ pointer. This 
is specific to the lona C++ mapping: 

ptr->newAccount("kevin poulter") ; 

In DCE, there are three ways in which a client can bind to the bank server: 

• automatically, by setting an environment variable, 
RPC_DEFAULT_ENTRY. 

• implicitiy by setting global data that is accessed by the stub 

• explicitiy by passing binding data to the stub as parameters. 

The binding information can be obtained in a number of ways. For example, 
when selecting from a group we need to iterate through all entries until we get a 
valid server using the following code: 

/* get lookup_contextfrom RPC_DEFAULT_ENTRY */ 
rpc_ns_binding_lookup_begin (rpc_c_ns_syntax_default, NULL, 
bank_vl_0_c_ifspec, NULL,1, &lookup_context,&status) ; 

/* get binding_vectorfrom name service */ 
while (binding_vector) 
{ 

rpc_ns_binding_lookup_next(lookup_context, &binding_vector, &status); 

/* get entry for binding from binding vector */ 
while (binding) 
{ 

rpc_ns_binding_select(binding_vector, &binding, &status) ; 

/* resolve binding by asking the RPC Daemon to lookup endpoint */ 
rpc_ep_resolve_binding(binding,bank_vl_0_c_ifspec,&status) ; 

/* test server is alive*/ 
rpc_mgmt_is_server_listening ( <arguments to do >) ; 

The binding can then be passed as the first argument in an RPC call or set to the 
global data , for example : 

newAccount( binding, "Kevin Poulter") ; 

The use of global data is not illustrated here. 

Both examples above exclude any error handling, this is added in the next section. 



Appendix B - Tutorial on ANSA.CORBA and D C E 301 
14th April 1995 

B.6 Activation and Failure Handling 

Terms: exceptions, object adaptor, loader, null proxy 

B. 6.1 Overview of Functional Scenario 

Distributed systems have the potential to remain operational in spite of the fail
ures in individual nodes. Sophisticated systems provide mechanisms to preserve 
consistency of distributed information in the presence of concurrency, partial fail
ures and aborting activities. This includes locks, mutex and condition variables, 
rendezvous, path expressions and monitors for safety ; 2 phase locking, sequenced 
locks, timestamping, transaction ordering and domain relative addressing for se-
rialisabiUty, to prevent aborting activities undoing other activities; rollback logs, 
shadow replicas and 2 phase commit mechanims for atomicity to ensure activities 
either complete or have no effect; and checkpointing and repUcation support for 
robustness. 

In spite of these protection mechanism, the progranmier must also be able to spec
ify the recovery behaviour to execute should a server or communication line fail. 
An exception handling facility is the most common solution to this. Exceptions 
may be thrown by the programmer or by the system. Some RPC systems make 
error handling explicit in the request statement, for example adding parameters to 
specify the number of retries or the timeout period to use before aborting. Others 
attempt to incorporate standard C - H - exceptions. An issue here is how to migrate 
application code from compilers that don't yet support C - H - exceptions to those 
that do. Many systems provide macros. Without real exceptions, a mechanism is 
required to stop latter calls in a sequence of calls from having an effect if an ear
lier call raises an exception. 

One way to characterise an RPC system is by the failure semantics. It is quite 
conunon for RPC systems to guarentee exactiy-once semantics in the absence of 
failures and at-most-once in the presence of failures. Simpler systems support at-
least-once semantics. 

Communication failures such as lost, corrupted or out of order messages are usu
ally determined and recovered by the transport layer. The most common error vis
ible to the application is long term communication failure and server process 
failures. The most useful facilities to define recovery behaviour are facilities to 
manage the allocation of servers across the network. This includes detecting 
failed servers and reincarnations of a failed server; reselecting distributed servers 
from groups; activating server processes from executables or persistent stores; 
and migrating servers to another node. 

The most basic facility is to be able to start and terminate a server process and to 
detect and report process and long term conununication failures. 

B.6.2 ANSA Concepts 

In ANSA a process is maps onto the concept of a capsule. 

ANSA provides the concept of managed interfaces, managed objects and man
aged capsules to allow the writing of generic code to manipulate objects and cap
sules to implement configuration managers. 



Appendix B - Tutorial on ANSA.CORBA and D C E 302 
14th April 1995 

All ANSA interfaces support the Management Interface that allows a set of dif
ferent interfaces to be obtained, including: an interface to "ping" the interface; an 
interface to manipulate the enclosing object; and an interface to manipulate the 
enclosing capsule. 

Managed objects are defined usiug the PREPC MANAGED declaration, which 
takes as arguments a list of object names that a capsule can create. All capsules 
are managed capsules and support the Capsule interface that can be used to call 
an object instantiation service (called Capsule$Instantiate) to create managed ob
jects by name and to call the object finalisation service (called Capsule$Termi-
nate())to destroy managed objects by name. This uses templates defined in the 
application code. Applications must provide constructors and destructors for all 
managed objects, as described in section B.3.2.. 

ANSA provides factories that create objects in two stages. First they create cap
sules containing object templates using the Factory interface and supplying a 
search path and executable for the capsule. Then individual objects are created 
from the templates using the object instantiation and finahsation services of the 
Capsule interface. 

Node managers combine the use of traders and factories to startup and control 
both static and dynamic services. Offers can be registered in the trader for passive 
objects and corresponding executables are registered in the node manager. The 
executables are activated by the node manager on demand when a client imports 
an offer for a server that is not already active. 

Recent versions of ANSA also generate support for migration, activation from 
stable storage and passivation to stable storage. This is achived by using the PRE
PC declaration STORAGE SERVER typename STATE { a IDLa, ...,n IDLn) in tiie 
server and STORAGE CLIENT typename to generate the operations migrate, ac
tivate and passivate. 

ANSA supports exception handling with functions to signal exceptions and re
covery blocks specified in the invocation form of DPL. The action to be taken on 
process exit by the Capsule library can be controlled to exit gracefully, the de
fault, or perform a core dump. 

A relocation service to migrate services to another node, or activate and passivate 
objects on stable storage is also provided. 

B.6.3 ORB/ORBIX Concepts 

The implementation repository of CORBA allows a client to use a server that is 
not active. The implementation repository will activate the server if it is not al
ready active. There are two types of activation: implementation activation, which 
occurs when no implementation for an object is currently available to handle a re
quest, i.e. no active executable or process; and object activation, which occurs 
when no instance of the object is available to handle a request. There are four 
main policies to activate servers and objects : 

shared server - multiple objects of a given implementation share the same 
server process. 

persistent server - as shared server but activated from a persistent store by 
a specialised adaptor, not the basic object adaptor. 

unshared server - a single server process is activated for each object. 



Appendix B - Tutorial on ANSA.CORBA and D C E 
14th April 1995 

303 

• server-per-method - a single server process is activated for each request and 
the server is terminated at the end of each request.. 

J 
The choice of option requires a tradeoff between the popt throughput of a single 
shared server and the latency and excessive resource reqijirement to activate mul
tiple servers. 

Client Object Implementation 

I " request' impljs.ready A ^̂ îvate 

Interface 
Repository 

c 
Dll IDL 

stubs 
ORB 
interface 

i 
IDL 
skeletonl 

Object Adapter 

~ | "lookup' 

Imp!. 
Repository 

ORB core | "pre-process request̂  

Figure 107 Preprocessing a request - activate implementation 

On processing a request, the object adaptor will lookup the activation state of the 
server and object instance in the implementation repository as shown in figure 1. 
If a server is ah-eady active and the shared server pohcy is in force or if the object 
instance is already active and the unshared policy is in force, the adaptor will de
liver requests and object activations to the server. Otherwise, the object adapter 
starts (i.e. "activates") a new server. On activation, the server initializes itself llien 
notifies the adapter that it is ready to receive requests by calling impl_is_ready or 
obj_is_ready respectively for the shared and unshared policies. A server remains 
active and receives requests until it calls deactivate Jmpl or deactivate_obj. 

Orbix allows timeouts to be specified with impl_is_ready or to use event loops 
that accept one request at a time by calling processNextEvent instead of 
impl_is_ready. 

No lookup, activation or notification of readiness is required under the server-per-
method policy as a distinct server is activated for a single known request and de
activated on sending the reply. 

CORBA also defines an exception handling interface. Struct-like data structures 
can be defined for user defined exceptions in IDL. These structures should in
clude an identifier for the exception and any return values. User defined excep
tions are raised by creating an instance of this structure and assigning its data then 
assigning it to the environment variable that is passed as a parameter in all meth
ods. CORBA also specifies some standard runtime exceptions that are raised by 
the ORB for failures such as communication, memory allocation, resource and 
data handhng. 



Appendix B - Tutorial on ANSA,CORBA and D C E 304 
14th April 1995 

Orbix provides macros for C - H - "try" and "catch" statements so that exceptions 
can be freated as C-H- exceptions even if the compiler does not yet support excep
tions. Exceptions are encapsulated in the Environment class which is passed as a 
default trailing argument to all invocations. Orbix also supports the concept of 
null proxies that merely propegate exceptions when requests are issued to them. 
This allows a sequence of invocations to effectively stop if one of them raises an 
exception. For any call, the environment variable argument is examined and if an 
exception is already raised, the request is ignored. Any output data is initialised 
to zero or to a null proxy. Subsequent requests issued to null proxies merely 
propegate the exeception and initidise their return data. 

If a server process fails, any robust implementation of the CORBA specification 
should notify the client through a system exception. It would be easy to restart the 
server but this does not ensure consistency and atomicity. 

Orbix may be integrated with Tuxedo to ensure state changes are made within 
fransactions that can be rolled back consistentiy on failure and commited atomi-
cally using a 2 phase commit protocol. 

B.6.4 D C E Concepts 

D C E does not support process activation. Processes must be started explicitiy to 
configure the system. 

DCE supports exceptions for system and user defined server errors. Exception 
handling code needs to be written in the client to recover or gracefully exit an ac
tion. Macros are provided to simplify the programming of exception handlers. 



Appendix B - Tutorial on ANSA.CORBA and D C E 
14th April 1995 

305 

client 
file 

i 
APPLICATIONS server 

IDL 
server 
file 

M 
a 
n 
a 
g 
e 
m 
e 
n 
t 

Distributed File Service 

exception handlers 
or error values 

Time 
Service 

Other 
Service 

Directory 
Service 

3. -5 . 

Remote Procedure Call 

client thread \ server thread . 

server stub client stub 

rpc runtime 3.&5 rpc runtime 

S 
e 
c 
u 
r 
i 
t 
y 

J L client process j Threads server process 1 

endpoint map 
daemon process' 

Operating System & 
Transport Services 

endpoint map 
daemon process 

Client Machine Server Machine 

Types of Exceptions 
1. System exceptions on client e.g. out of memory 
2. Communication exceptions, e.g. server crash 
3. Application exceptions, e.g. call faulted 
4. Server stub errors, e.g. buffer memory allocation 
5. Server runtime support errors, e.g. 

Figure 108 Types of exceptions in D C E 

An Attribute Configuration File can also be used to simplify error handling by 
adding error status parameters to the operation argument list. If the parameters 
comm_status and fau]t_status are included in the ACF file, errors are communi
cated to the client as data values in these parameters rather than by raising excep
tions. 



Appendix B - Tutorial on ANSA.CORBA and D C E 
14tii April 1995 

306 

DCE provides services to detect failed servers, rpc_mgmtjs_server_listening, 
and to reselect servers from groups, rpc_ns_bindingJookup_next as described in 
section B.5. DCE does not distinguish reincarnations so errors can occur if a proc
ess lis restarted in an unexpected state. 

Client Host 

2. & 6. lookup next 

CDS 
Server 

CDS Chent L&5. 
cache 

lookup 
8.. as 4. 

9. access 
CDS Server 

Host 

/.../bank__group 
/.:/ merton_coUege 
/. :/wilber_high_sfreet 

lookup 
endpoint 

Application 
Client 

4. check 
listening 7. as 3. 

Server Host 

Apphcatio 
Server RPC 

Endpointi 
Failed Host 

ilber_high_street 
port: 1044 A 

RPC 
EndpointsI 

'merton college 
port: 107 r 

Figure 109 Use of Groups to Recover by Selecting Another Server 

DCE also allows failure semantics to be relaxed by qualifying an operation with 
the maybe modifier in DDL. 

B.6.5 Example 

The server in the Orbix example can use any activation pohcy. The policy is de
termined by the choice of arguments when registering servers in the implementa
tion repository as in section B.4.5. The arguments -shared and -method makes the 
choice explicitiy the shared policy and per-method poUcy respectively. Other
wise the unshared policy is assumed when markers are used and the shared policy 
is assumed when markers are not used. 

The main body of the server must be consistent with the choice of policy. In par
ticular any markers must be defined before notifying the object adaptor that the 
server is ready. 

void main { 
//create bank objects and ties using new operator 
//set markers for bank objects using marker(name) 
impl_is_ready( ) 

} 

In the banking scenario, it may be possible for the bank to reject a request for a 
new account. The IDL interface may define an exception called reject. 

II IDL for bank 

interfac ebank { 



Appendix B - Tutorial on ANSA,CORBA and D C E 307 
14th April 1995 

exception reject {...//attributes 
string reason; 

}; 
void newAccount (in string name) raises (reject) ; 

...} 

The implementation of newAccount will raise this exception by creating an ex
ception object and assigning it to the environment variable. 

env — new bank::reject ("Bad debtor"); 

A cUent must then protect his call to newAccount by testing for the user defined 
exception as well as any system exceptions. The T R Y macro introduces the IT_X 
environment that must be passed to every call. The CATCH macros read die 
IT_X variable and execute the recovery code specified.The Orbix Environment 
structure also supports stieam operators to simplify reporting exceptions. Note 
that if an exception is raised, a null proxy is returned and assigned to acc. In this 
case/nakeDeposit does nothing other than propagate the exception. 

TRYf... 
acc = bank->newAccount ("Ken",lT_X); 
acc->makeDeposit(200,IT_X); 

} 
CATCH (CORBA::StExcep::SystemException,s) { 

cout« "System exception : " « s « endl; 
...//try to restart the server on another node 

} 
CATCHANYf 

cout« "Awkward bank" «IT_X « endl ; 
... //retry another bank 

} 

In DCE the processes must be manually started by typing on the relevant node: 

% client 

% server 

Before doing this it may be necessary to login to the DCE system, to create any 
principles and keytab entries used by the security service (using rgy_edit) and to 
set up environment variables such as RPC_DEFAULT_ENTRY if automatic 
binding is used. 

In DCE, the exception macros look like this: 

TRY{... 
newAccount("ken"); 
makeDeposit( "ken ", 200) ; 

} 
FINALLY 
{ 

puts( "Error occurred in transaction ") ; 
.../* retry another bank */ 

I 
ENDTRY 



Appendix B - Tutorial on ANSA.CORBA and D C E 308 
14th April 1995 

If an error occurs in the T R Y section, the code in the FINALLY section is exe
cuted. Alternatively DCE provides CATCH and CATCHALL macros which can 
be used in place of FINALLY in a similar style to Orbix. 

B.7 Synchronisation and Request Processing 

Terms: thread dispatcher, DII, filter 

B.7.1 Overview of Functionality 

A client makes a request. The form of expression used to make invocations may 
be the same as for local calls - this is called access transparency. Alternatively a 
different syntax or even embedded language may be used to allow for the differ
ing failure, concurrency, memory management and argument passing semantics. 
An issue in the former case is how to allow for the extra complexity and latency 
inherent in remote calls. A client must defend against communication failure and 
make allowance for the inherent latency in sending a message across a network ( 
typically more than a 1000 times slower than a local call.) 

An IDL compiler or stub generator is a valuable gift. Stubs hide the complexities 
of interfacing to the communications system behind the higher level binding and 
invocation mechanisms of procedural programming languages. Specifically, the 
IDL compiler builds the appropriate code to manage proxies, dispatch incoming 
requests in a server, and manage any underlying object services. 

However the use of DDL and stub generators restricts the contextual independence 
of the client. The client can only use servers whose interface is known in advance. 
Some applications and tools such as browsers, management tools, assembly tools 
and interactive interfaces do not want to restrict clients to use a specific pre-fab-
ricated interface. A generic API is an alternative to stubs. Here the issue is how 
to deal with typing information. Some simple APIs use unix string formatting to 
deal with type information generically. Utilities such as scanf can be used to for
mat simple data types. However this makes it difficult to pass constructed data 
types like sequences, unions and object references. An alternative is for the RPC 
system to provide an API that enumerates all the supported data types so that a 
client can pass typing information generically as enumerated values. An issue is 
how to get the appropriate type information at runtime since if it is known in ad
vance then a stub interface is simpler to use. Type information may be obtained 
from repositories. 

With the clear departure from typed procedure call, many APIs also offer richer 
functionality to deal with distribution and concurrency. 

Concurrency may be built into the computational model of a RPC system. Re
mote procedure call systems normally include a scheduler which presents the se
mantics of a single thread which is dynamically allocated to passive objects as a 
single logical thread runs through the call stack. Remote calls are inherently be
tween two distinct threads, in distinct processes, and this is hidden by the RPC 
system. The simplest schemes use remote communication points as scheduling 
points with a "run-to-block" policy. Without scheduling or thread support, a com
plete process will block on a single synchronous two-way procedure call, severe
ly reducing the degree of parallelism in a network. 

More sophisticated RPC systems allow asynchronous oneway calls and deferred 
synchronous two way calls where the asynchronous issuing of the request is sep
arated from the synchronous collection of results. 



Appendix B - Tutorial on ANSA.CORBA and D C E 309 
14th April 1995 

For a greater degree of concurrency, a concurrent object oriented language may 
be used; Most adopt an active object model where threads are allocated perma-
nentiy to objects and communication is always between threads. Alternatively an 
orthogonal API may be used to manage threads explicitiy as with POSIX or Sun 
thread libraries. In this case, the progranmier must take care to make the code 
thread safe. 

For availabihty or performance, an object may be replicated and stored locally to 
applications across a network. This brings additional problems in managing in
teractions within groups of replicas. Changes may be propagated peer-to-peer or 
master to slave. Multiple calls must be collated into a single reply. Members of 
the group must be synchronised and groups must be able to recover from member 
failures. 

B.7.2 ANSA Concepts 

ANSAware provides a distributed processing language, DPL, and accompanying 
processor, prepc. DPL was designed as a concrete syntax for writing programs 
that conform to the abstract semantics of the ANSA computational model. DPL 
fragments may be embedded in application programming languages to provide 
facilities relating to binding and invocation. The prepc compiler augments com
putational objects with code that provides the required transparencies. Prepc pro
vides a simple syntax for dealing with exceptions and recovery behaviour. Retries 
can be specified as a parameter. Recovery procedures can be identified explicitly. 

ANSA supports a point to point communication protocol and a group communi
cation protocol to synchronise interactions between replica groups of objects. The 
point to point protocol supports bulk data delivery through fragmentation strate
gies, rate based flow control so as not to overload a server, deferred synchronous 
calls that issue tokens to be redeemed when the client wishes to block on the re
turn values, and asynchronous messages with at most once semantics. The lower 
layers of the conmiunication software use Berkely UNIX socket interface, prin
cipally to the TCP/IP protocol suite 

ANSA uses a declarative notation to impose concurrency control, called path ex
pressions). Many other techniques make specific assumptions about specific con
currency mechanisms that inhibits portability. 

ANSA provides a dispatcher to provide integrated scheduling and conmiunica
tion. This will provide user level threads on systems that are not multithreaded. 
ANSAware has also been ported to run over DCE/POSIX threads and use DCE 
RPC as the underlying transport protocol. 

B.7.3 ORB/ORBIX Concepts 

The most common type of interaction in CORBA is synchronous procedure calls 
using stubs. The client blocks waiting for the return values. IDL allows operations 
without any return values to be qualified as "one-way" in which case it is possible 
for the client to adopt an asynchronous model and to carry on processing after is
suing a request. 

The dynamic invocation interface is more flexible and allows three types of re
quest scheduling: 

• synchronous - this is a normal invocation. The client blocks waiting for the 
reply. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14th April 1995 

310 

deferred synchronous - this is a two way call in which the request is sent 
asynchronously with the client carrying on processing then later synchro
nising by a second blocking statement tp collect the results. 

multiple deferred synchronous - this allows a client to talk to multiple serv
ers in parallel, by issuing multiple requests asynchronously and then block
ing to collect the results one at a time in the order they come back. This 
means the client can be processing the fastest replies in parallel with the 
slowest servers. 

Synchronous 

Client Object Implementation 

obj .create_request 
rqst.invokeO 

Interface 
Repository 

c 

Dll IDL 
stubs 

ORB 
interface 

IDL 
skeleton! 

Object Adapter 

ORB core i 

Impl. 
Repository 

Deferred Synchronous Multiple Deferred Synchronous 

Client Client 

rqst.send(...) rqst.get_response() send_multiple 
_requests() 

get_next_response() 

Interface 
Repository 

Dll IDL 
stubs 

ORB 
l/F Interface 

Repository 

Dll IDL 
stubs 

ORB 
l/F 

ORB core r ORB core 

Figure 110 Issuing a request 

The dynamic invocation interface allows invocations to be constructed at runt
ime by specifying as data values the target object, the operation name and the pa
rameters instead of by linking to a stub generated from the server. Type safety is 
achieved by constructing a list of named values (an NVList) with each value rep
resenting an argument value and including a tag which indicates the type of that 
argument. The ORB at the server end will assert that the NVList conforms to a 
method. The server itself does not care whether the request was dynamic or stat
ic. 



Appendix B - Tutorial on ANSA,CORB A and D C E 311 
14th April 1995 

Clearly the client uses a different binding mechanism to that for stub invocation. 
A C-H- pointer is typed and can't be used in a generic interface. Instead the client 
issues a request by constructing a request object using the generic method Ob
ject: :create_request. This takes the context, the operation name, the parameter list 
and the result. The parameter list can be omitted in which case it should be added 
in a stepwise manner using Request: :add_arg. The request object is then issued 
by calling Request: :invoke or Request: :send/send_multiple_requests and 
get_response/get_next_response as shown in Figure 110. 

The object reference for dynamic invocation can be translated to and from a string 
thus allowing bindings to be treated also as data values and imported at runtime 
from a repository or name server. 

Type information may be imported from the interface repository by browsing, by 
invoking get_interface on any referenced object or by invoking lookupjd on a 
repository object whose repositoryid is known. The interface repository allows 
clients to explore interfaces and compose appropriate NVUsts on the fly. 

In Orbix the C-H- mapping is such that a C-H- pointer is used as the object refer
ence for static invocation and a normal C+-t- invocation is made to issue a remote 
request via the IDL stubs. There is one additional argument, the Environment var
iable. 

Orbix has a cleaner interface to the DII than that standardised. It provides a Re
quest class which hides the interface to the NVList behind stream operators that 
are overloaded for each C-H- type to tag the list with the appropriate type infor
mation automatically. 

Multithreading can be introduced in Orbix by programming a filter that is fired 
every time a request is received by a server. This filter maJces a system call to 
spawn a new thread to handle the request. This is only possible if Orbix is running 
on a multithreaded operating system. Orbix does not implement its own run-to-
block style of scheduler. 

B.7.4 DCE Concepts 

A DCE call appears like a normal C call - but has different semantics for memory 
management of pointers and for constructed data types as discussed in section 
B.3. 

A call request comes in over the network and is placed on the request queue for 
the endpoint. A server can select more than one protocol sequence on which to 
listen and each protocol sequence can have more than one endpoint. The RPC 
runtime library dequeues requests and places them on a single call queue. Re
quests can be processed from this queue concurrently using threads. If a thread is 
available the request is automatically dispatched to it, otherwise the request waits 
on the call queue until a thread is available. If the request queue or call queue be
come lost, the next request is rejected. 

Before passing the request to the stub, the interface specification in the request is 
compared to the interface specification supported by the server and the request is 
rejected if unsupported. 

The components involved in processing requests and replies are shown in Figure 
111. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14th April 1995 

312 

client 
file 

APPLICATIONS server 
IDL 

server 

M 
a 
n 
a 
g 
e 
m 
e 
n 
t 

transmit 

Distributed File Service 

decode 
& return 

encode 
output 

Time 
Service 

Other 
Service 

Directory 
[Service 

Remote Procedure Call 
\ 

1 clie'nnhread' server thread •^ 

client stub server stub 

despatch 
rpc runtime rpc runtime 

• request queue 
•per endpoint request queue |_J Threads 

S 
e 
c 
u 
r 
i 
t 
y 

decode 
& invoke 

put on call queue 

transfer 
request 

transfer reply 

Client Machine Server Machine 
Operating System & Transport Services 

Figure 111 Request and Reply Processing in D C E 

ACFs modify the way the IDL compiler generates stubs and consequently affect 
the request statement. ACFs can add parameters to the operations parameter list 
and exclude operations from the interface to a given client. They also allow con
trol over the size of the stubs and performance by determining whether marshal
ling code is to be inline or out of line. Parameters are added for explicit binding 
to pass the binding handle for a client and for error handling to signal errors by 
passing data values rather than raising exceptions. 



Appendix B - Tutorial on ANSA,CORBA and D C E 
14th April 1995 

313 

uuidgen, I f 

] [ 

-text editor 

i 
server ^ server 

APPLICATIONS IDL 1 ACF 

client J server 
file header •Compiler file 

M 
a 
n 
a 
g 
6 
m 
e 
n 
t 

Distributed File Service 

stuSs^ 

Time 
Service 

Other 
Service 

Directory 
Service 

Remote Procedure Call 

client thread 

. client stub 

rpc runtime 

serverthread 

server stub 

rpc runtime 

i 

S 
e 
c 
u 
r 
i 
t 
y 

Client 
V, process j 

Threads Sefver 
. process 

endpoint map ; 
daemon process, 

Client Machine 

Operating System & 
Transport Services 

endpoint map 
daemon process 

... 

Server Machine 

Figure 112 Use of A C F file to modify IDL compiler output 

DCE provides no DII interface or generic API for making calls. 

The DCE threads subsystem is integrated with DCE RPC to support multithread
ed clients and servers. However DCE does not support deferred synchronous 
calls or asynchronous oneway calls. 

DCE also supports broadcast RPC to all servers by qualifying an operation with 
the broadcast modifier in IDL. 



Appendix B - Tutorial on ANSA.CORBA and D C E 314 
14th April 1995 

^.7.5 Example 

In the banking scenario, the broker program must invoke methods in the bank 
server. 

TRY {...//get the bank and account names and the deposit amount 
Bank *bank = bank::_bind("Ely_High_Street",IT_X); 
Account * acc = bankr>newAccount("Ken",IT_X); 
acc->makeDeposit(200,IT_X); 

} 
CATCHALL { cout« "Exception:" «IT_X « endl; } 

The same methods can be invoked in Orbix using the dynamic invocation inter
face provided by the Request class. This class overloads the stream operators for 
each C++ class: 

An orbix example for dynamic invocation would look something like this : 

fooO 
{ 

... //get the bank and account name and deposit amount 
// bind to name and select the method 
CORBA::Object bank("Ely_High_Street"); 
CORBA::Reference r (&bank, "newAccount"); 
/ insert the argument 
r « "kenw" 
//invoke the operation newAccount 
r.invokeO; 

//extract any results of modify using » 
CORBA: . Object acc ; 
/ r » acc ; 
CORBA::Reference r2 (&acc, "makeDeposit") ; 
r2« 200: 
r2.invoke(); 

Reference passing for the account is not shown here nor exception handling. 


