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Abstract

This thesis examines the relationship between the L-séries of an elliptic curve
evaluated at s = 2 and the image of the regulator map when the curve is defined
over a real quadratic field with narrow class number one, thus providing numerical
evidence for Beilinson’s conjecture. In doing so it provides a practical formula for
calculating the L-series for modular elliptic curves over real quadratic fields, and
in outline for more general totally real fields, and also provides numerical evidence

for the generalization of the Taniyama- Weil-Shimura conjecture to real quadratic

~fields.
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Chapter 1
Introduction

The basis of this thesis is a conjecture first made by Beilinson [2] (though Bloch
was also working along these lines, see for example [5]) relating the value of the
L-function of a smooth projective curve V over Q evaluated at zero to the value
obtained from the determinant of the image of the regulator map r. More precisely
if 1 is the leading coefficient of the Taylor expansion of the L-function of V at zero

then Beilinson conjectured

(1.1) r(K2(V)) is a lattice in HY(V ® C,R(1))*
and detr (Ky(V)) = ldet H(V ® C,Q(1))*
(the notation is explained more fully in Chapter 2).
Computer calculations by Bloch and Grayson [4] on elliptic curves with small

conductor and appropriate torsion points, led them to modify the conjecture

slightly. The corrected conjecture is as follows:

Conjecture 1. Let Eg be the Neron minimal model for an elliptic curve E. Then
the rank of K3(Ez) = 1, and the image of a generator of K;(Ez) under the regulator

map is a non-zero rational multiple of L(E,2).

Note that the important difference is that Bloch and Grayson consider the K-

group of the Neron minimal model, in other words they consider the curve over the

9
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integers rather than over the rationals. They also define their regulator differently,
in terms of Eisenstein-Kronecker-Lerch series, but their definition is equivalent to
Beilinson’s apart from a few factors of 2 and 7, and they use the value of the
L-series at 2, but again this is the same as [ above (at least for modular cﬁrves)
apart from factors of 2 and 7. They also explained the rest of the image of K;(E)
(I cover these matters more fully in chapter 2).

Beilinson extended the conjecture to more general é,lgebraic varieties and more
values of the L-function in a later paper [3].

In some cases, partial proofs of the above conjecture are known. For elliptic
curves over Q with complex multiplication there are two papers which show that
there are elements of K>(Ez) with the correct image under thé regulator map.

Rohrlich [16] gives a proof (building on the work of Bloch) that

Theorem. If E is an elliptic curve over Q with complez multiplication and f, g €
Q(E) have divisors supported on the points of order dividing n (where Q(E) is the
function field of E over Q and n is an integer) then

r(f®g) = asL'(E,0)

where ajq 6 n~'Z and a4 is not zero for some choice of f,g and n.

Note that L'(F,0) means l ), and is another way of writing [ above.
Also Deninger and Wingberg [8] give a proof of a theorem due to Beilinson and
Bloch which states
Theorem. If E is an elliptic curve over Q with complez multiplication and con-
ductor N, then there exists ¥ € Ko(Ez) and ¢ € H'(E ® C,Q(1))* such that

() = 5L(E, )8

Note that the latter theorem does not require the curve to have any torsion

points.

Also Ross in [19] has shown that
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Theorem. For all but finitely many elliptic curves E/Q which are isogenous to
an elliptic curve defined over Q with a rational torsion point of order at least 3,

Ko(E) contains an element of infinite order.

which confirms that K,(E) is usually large enoﬁgh to contain the conjectured
rank 1 image of K2(Ez). He has also proved a similar result for Fermat curves [18]
and as a result constructs an element of K»(F) supported on non-torsion points
for the elliptic curve y2 + y = z®, whose image under the regulator Grayson has
shown to be equal to 4L'( £, 0) to 100 decimal places.

Further calculations have also been made for elliptic curves over Q with non-
torsion points in unpublished work by Grayson and Schappacher [10], and Nekovaf
and improved ubon by Rolshausen [17] in his thesis.

There seem to be two ways of generalizing this problem. One is to consider
higher regulators, related to L(Sym*E, k + 1). Mestre and Schappacher [13] have
verified this numerically for k¥ = 2. The other is to consider larger fields than Q,
and this thesis aims to examine the numerical evidence in this case, when the fields
concerned are real quadratic fields of narrow class number 1. \

To do this I need on the one hand to calculate the L-series, and on the other
to calculate the regulator. Chapter 4 shows how to calculate the L-series for
elliptic curve over real quadratic fields of narrow class number 1. This assumes
the curve is modular but a consequence of my calculations will be to provide
numerical evidence for this assumption. Chapter 2 defines the regulator by means
of Eisenstein-Kronecker-Lerch series, which it also defines, and it starts by defining
enough K-theory to describe the various maps and exact sequences around which
Beilinson’s conjectures are based.

Chapter 3 is concerned with describing the image of the regulator map acting
on Ky(E), and explaining that part of the image which doesn’t come from ele-
ments of Ko(Eo), and then moves on to analyse the results of my extension of

the calculations of Bloch and Grayson, of the relationship between elements in the
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image the regulator map and L(E,2) for rational elliptic curves. These results are
presented in Appendix A.

Chapter 5 examines the results from my calculations of the relationship between
E-K-L series and L(E,2) for eliiptic curves over some real quadratic fields, which
are given in Appendix B, and summarizes the main conclusions of this thesis,
and where the work might be extended. Finally Appendix C lists the two main

programs used in my calculations.



Chapter 2

K-Theory, Regulators and E-K-L

series

The purpose of this chapter is to establish enough background mathematics to
be able to define the regulator map and thus to state Beilinson’s conjecture, and
also to define and establish facts about Eisenstein-Kronecker-Lerch series, which
we will link to the image of the regulator map.

First we go through enough category theory to define the K-theory groups, and
then go through enough K-theory to establish the exact sequences which Beilinson’s
conjecture relies on in the case we are considering. .

Then we switch to defining E-K-L series, and then manipulating them to es-
tablish a functional equation, and linked to that an efficient way of evaluating
the E-K-L series. We conclude this section by bounding above the sum of all
but finitely many terms, and thus establishing the accuracy obtained by adding
together sufficiently many of the larger terms, which is what we will calculate in
practice.

Finally in this chapter we define the regulator map, and process it in order
to link it to the E-K-L series, and in the process connect the various differing

definitions of the regulator map in the literature. We conclude the chapter with a

13
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precise statement of Beilinson’s conjecture in the cases we consider.

2.1 K-Theory

First we briefly run through the Algebraic K-theory necessary to construct two
exact sequences of abelian groups, which will be used to construct and to calculate
the regulator. We start with Quillen’s Q-construction of the K-groups of a small,
exact category. This follows Srinivas’s book [23] (see also articles by Quillen [15]

and Grayson [11]). We start with some definitions from category theory.

Definition. A small category is a category whose objects and morphisms form

sets.

Definition. An additive category is a category satisfying the following:
Given any two objects a and b, the maps a — b form an abelian group hom(a, b),
which is distributive under composition. That is, if f, f’: a = band g,¢': b — ¢

then
(g+g)o(f+f)=gof+gof +gof+gof

The category contains a null object 0. That is, for any object a, there exist unique
maps ¢ — 0 and 0 — a.

There is a biproduct for each pair of objects. That is given any two objects a and
b, there is an object ¢ and maps a ;4_—’1 c ;-‘-_} b such that pyi; = 1, p222 = 1, and
111 + 12p2 = Le. 1

Definition. An abelian category is an additive category that also satisfies:

Every map has a kernel and a co-kernel. That is, given a map a 7, b there exists
a kernel map s LA such that fk = 0 and any map & such that fh = 0 factors

uniquely through %, and a co-kernel map b =5 t such that ¢f = 0 and any map

kh such that hf = 0 factors uniquely through c.
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Every monic map is the kernel of some map, and every epic map is the co-kernel of
some map. (A map a 4, b is monic if whenever there are maps ¢,¢': b — csuch
that gf = ¢'f then g = ¢/, and is epic if whenever there are maps ¢g,¢9': ¢ — a
such that fg = f¢' then g = ¢').

Definition. Given a small category C define BC , the classifying space of C as

follows:

Construct a simplicial set where the n-simplices are the sequences

fi f2 f: fn
Ao“ﬁAl—)Az—i...—)An

where A; € ObC and f; € MorC, the ith face of this simplex is the (n — 1)-simplex

fi fa fi—1 Sigr0fi fit2 fn
Ag— Ay — ... — A y Aigg — ... — A,

and the ith degenerate (n + 1)-simplex is

f f; fi 1 fit1 fn
Ag DAy D DA = A DA,

Then the classifying space is defined by

BC = (H (set of n-simplices with discrete topology) x An) / ~
n>0

where

t; > O,Zt,‘= 1}

1=0

A, = {(to,...,tn) € R*H!

and the equivalence relation is generated by the equivalences:

If G is an n-simplex and F its ¢th face then V(to,...,tn-1) € An_1
(F, (to, e 7tn—l)) ~ (G, (to, . e ,t,’_l, 0, t,‘, ey tn—l))
If G is an n-simplex and D its sth degenerate then V(to,...,t,) € A,

(G, (to, PP ,tn)) ~ (D, (to, e ,ti_l,ti + ti+1,ti+2, .- .,tn))
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Definition. An exact category is an additive category that embeds as a full
subcategory of an abelian category (i.e. if two objects are in the subcategory, all
the maps between them are as well), such that if 0 - a — ¢ — b — 0 is an exact
sequence in the abelian category with a and b in the subcategory, then there exists
an object isomorphic to ¢ in the subcategory. (A sequence - e 4 s exact at ¢
if ker(g) = ker(coker(f)) and a sequence is exact in the subcategory if it is exact

everywhere in the abelian ca,tegbry).

Definition. Given a small exact category C , we define a new category QC where
the objects of QC are the objects of C and a morphism a — b in QC is an iso-

morphism class of diagrams a < ¢ < b such that the following diagrams in C are

exact for some objects d and e in C.
0—chb—d—0

S
0—agec—e—0

. 3 t ] . .. .
(Two diagrams a «c<band a « f < b are isomorphic if there exists an
isomorphism ¢ = f such that the diagram
s 3
a ¢ C ¢ —)

l
t
a « f

o d

b
b

' : o id :
commutes). The identity morphism is clearly a «- a & . Morphisms a «- d — b

3
>

and b « e — ¢ are composed via the following diagram

[ >y C

dxbe <

%
%

where d x; e is the pullback in the abelian category containing C, that is, if f is the

[
‘—) b

biproduct of d and e, then d X, € is the kernel of difference of the maps f — d—b
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and f — e — b, which is defined up to isomorphism. (Note that d x; e — d is epic,
as e - bis and d X, e — e is monic as d — b is). This diagram is @ priori only
defined in the abelian category containing C, but as ker(d x; e — d) = ker(e —»
b) € C then d X3 e € C (up to isomorphism) because C is exact. Moreover the
compositions of d X e < e < ¢ and of d x; e - d — a are part of appropriate

exact sequences in C, so it is valid to define
(b«—eHC)O(a«—dL—)b):a«—dxbef—)c

The other condition to verify to show that QC is a category is the associativity of

morphisms, and this is similarly checked.

We are now in the position to state Quillen’s Q-definition of the K-theory of a

small exact category.

Definition. If C is a small exact category, let 0 be a zero object of C (so {0} €
BQC). Define '

2.1) K;(C) = m:+1(BQC, {0})

where 7; is the ¢th homotopy group.

In fact, we will want to define the category of a scheme X, so we need to

associate a category to it, and in some cases we can do this in two ways.

Definition. If X is a scheme, let P(X) denote the category of locally free sheaves
(of Ox-modules) of finite rank on X. Thus for any sheaf 7 € P(X), X is covered
by open sets U such that Fly & (Ox|y)" for some integer r. Define

If X is a noetherian scheme, let M(X) denote the category of coherent sheaves on

X. Thus for any sheaf 7 € M(X), X is covered by open affine sets U = Spec A
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such that Fly = M, for some finitely -generated A-module M. (1\7 is the Ogpeca-
module arising naturally from M, i.e. M(V) = M ®4 Ospeca(V)). Define

Ki(X) = Ki(M(X))

k)

In fact you can show that if X is a regular scheme, then K;(X) = K}(X). Also,
if X = Spec R for some ring R, then these groups correspond to those obtained
from the “classical” K-theory of R (see [14] for the definition, and [23] shows they
are equivalent).

" For example, if X = Spec F for a field F, then P(X) = M(X) is the category of
finite dimensional F-vector spaces. Using this fact yoﬁ can show that Ko(X) = Z,
which agrees with the result from classical K-theory. Classical K-theory also shows

that K;(X) = F* and K3(X) is the abelian group
F* ®z F*
(f® (1= f))sz0n
by Matsumoto’s theorem (see [14]). We denote by {f, g} the element of K2(X) cor-

Ky (X) =

responding to the coset in F*®z F* containing f ®g. Note that it is a consequence
of the definition that {-,-} is anti-symmetric, i.e. {f,g} = —{g, f}. It is also true
that if F is a number field then K,(F) is a torsion group (this is essentially a result
of Garland [9] drawing on results of Bass and Tate, but his paper does not state
this result. See for example [25] to fill the gap).

We now move on to consider maps between K-groups arising from fﬁnctors

between exact categories, with the aim of establishing the required exact sequences.

Definition. A functor F': C — D between exact categories C and D is exact

e g R . .
if, whenever 0 — a — b — ¢ — 0 is an exact sequence in C, the sequence

F(g) F(r) ) .
0 — F(a) — F(b) — F(c) — 0 is exact in D.

Note that an exact functor between exact categories F': C — D induces a
functor between categories QF : QC — QD, and hence a continuous map between
simplicial complexes B-QF : BQC — BQD, and thus a homomorphism between
K;(C) and K;(D).
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Definition. A Serre subcategory of a small abelian category C is a full, additive
subcategory D where for any exact sequence 0 - a —-b—-¢c—0inC,be ObD
if and only if @ € ObD and ¢ € ObD. In particular any object isomorphic to an

object in D is in D, and D must be abelian as C is.

Definition. Given a small abelian category C with a Serre subcategory D define
the quotient category C/D to be the category whose objects are the objects of C,
and where if a,b € ObC/D then the group of morphisms from a to b is

home/p(a,b) = li_r)nhomc(a', b/b') such that a/d',b' € D

where the partial ordering on the groups is given by setting home(a’,b/b') <
home(a”,b/8") if a” — o' — a and b —» b/b’ — b/b”, and we obtain the map
home(a’,b/b’) — home(a”, b/b") by sending o’ ER b/b to a”" —» d ER b/t —» bJY".
Composing morphisms involves a lot of chasing around diagrams, but essen-
tially relies on the isomorphism (&' U 4")/b' = b"/(¥ X, b"), where & U b” is the
smallest iject such that ¥ — b and b” — b factor through (¥ U ") — b, be-
cause given maps ¢’ — b/d and ¥ — ¢/c/, we can map these under the partial
ordering to maps (a” — b/b) = (a" — (Y Ub")/¥ — b/) and ()" — ¢/c") =
(6" — b"/(b x4 ") — c¢/c"), and define the composition to be the image of the
rﬁap a” — c/c” via the isomorphism. Also note that the natural map C — C/D is

exact, and C/D is an abelian category.
Finally, we can construct an exact sequence of K-groups.

Theorem 2.1. If D is a Serre subcategory of an abelian category C, then the

natural ezxact functors D — C and C — C/D induce the eract sequence of group

homomorphisms

-+ = Ki(D) = Ki(C) = Ki(C/D) = Kioa(D) — ...

Proof. See [23). O

In particular we can use this to deduce the following
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Theorem 2.2. Let X be a noetherian scheme, and Z a closed subscheme with U

its open complement. Then we have the following eract sequence
= Ki(Z) = Ki(X) = K{(U) = Ki_(Z) — ...

Proof. Observe that M(X) is an abelian category, with Serre subcategory M z(X)
(the category of coherent sheaves supported on Z), and that M(U) = My(X) =
M(X)/Mz(X), thus we have an exact sequence

o= Ki(M3z(X)) = Ki(X) = K{(U) = Kicy(Mz(X)) — ...

but for any sheaf F € Mz(X) there is a filtration 0 = Fo C F; C --- C Fy =
F such that each F,/F,—1 is in a category isomorphic to M(Z), and these are
precisely the conditions required to apply the devissage theorem (see [23] again)

and we deduce BQMz(X) is homotopic to BQM(Z), hence the result. [

Also note that if Z’ is another closed subset of X such that Z C Z' and where

U’ is the open complement of Z’ then we have the following commutative diagram

Ki(Z) — Ki(X) — Ki{(U) — Ki,(2)

| | | l

Ki(Z) — Ki(X) — K(U') — Ki_4(Z)
and thus we take the direct limit of such diagrams. In particular let X be the
~ scheme associated to the elliptic curve Fj over number field &, then we may take
the direct limit of sequences given by taking Z to be a finite number of closed
points on Ej to obtain |

= T K(k(P)) — Ki(Be) — Ki(k(B) > [T Kica(B(P)) = ...
P anka P dod

But if F is a number field then K»(F) is a torsion group, and by [12] we know
an explicit expression for the map d: Ky(k(E))g — I pee, k(P)* and so, if we
denote K;(C) ®z Q by K;(C)g we conclude el
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Theorem 2.3. For an elliptic curve E over a number field k, the sequence

(2.2) torsion — Ka(Ey) — Kq(k(E)) LN II &P —...

PeE;
P closed

is exact where 0 is given by

P 5 \ 3 z(f)orip(e) {7

— — (—_1)°" ordp(g)J

PEI Elk P where P({f,9}) =(-1) P
P closed

In particular,

(2.3) Ka(Ei)g = ker | Ky(R(E) 2 [ k(P)
PeFE;
P closed Q
Hence every non-torsion element of Ko( Ex) may be identified with a Q-linear com-

bination of elements of Ko(k(E)).

This Theorem allows us to define the regulator map on the torsion free part of
K, (Ex) by considering it a subgroup of Ky(k(E)).

The second exact sequence we require is obtained by letting X be the scheme
corresponding to a regular model of the elliptic curve E over the ring of 'inte-
gers Oy, of k, denoted Ep, and taking the direct limit over those closed subsets
corresponding to finitely many reduced curves. Thus we have

= I KiE) > Ki(Bo)—Ki(E)— I Kia(B)—...
p prime in k p prime in k

In particular we want the following piece of this sequence

Theorem 2.4. Let Ep be a minimal reqular model for an elliptic curve E over a

number field k. Then the sequence

(2.4) K:(Bo) » Ko(Er) = JI  Ki(Ey)

p prime in k

is ezact at Ko( Ey).

This will allow us to state Beilinson’s conjecture, once we have defined the

regulator.
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2.2 E-K-L series

This section will define Eisenstein-Kronecker-Lerch series, and establish some basic
properties needed elsewhere such as the functional equation. It is based on material
in the book by Weil [27]. Throughout this section A will be a lattice over C

generated by u and v. First we define some quantities that will be used extensively

in what follows.

Definition. Define 7 = év/u, where § = %1 is chosen such that Im(7) > 0. Define

Im(r)uu _ 6(vu — uv)
T B 2m

A=

For zo,w € C, define the character x(w) by

(Tow—wzo)/A

x(w) = x(w;zo) = €

Definition. If a € Zyo, define the Eisenstein-Kronecker-Lerch series for Re(s) >

% +1 as
25) Koo, 0,5) = 3 @Az F o)

wEA |$ + w'

wE—T
This may be continued analytically to the whole of the s-plane as follows. For

Re(s) > £ + 1, we have

I'(s)Ka(z, 20, 8) = /Ooo Or(t,z,zo)t* " dt

where

Oi(t,z,z0) = 3 e"ﬂ”“’12 (w)(z + w)*

wEA
wE—z

Define O, to be the result of extending the sum in the definition of ©} to all w € A.
So

Ox(t,z,z0) + x(—2) fa=0andz €A
@a(ta I, xO) =
O (t,z, zo) otherwise
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Observe that the function x(z)©,.(t,z,zo) is doubly periodic in z, that is if z =
au + Bv then x(z)0.(t, z,zo) has period 1 in o and B. Assume for the moment

that ¢ = 0. We may then use a Fourier Transform to write

X(2)O0(t, z,0) = Y, TN (e, 1)

en€EZ

where
11 .
fle;m) =/ / x(au + Bv)O(t, au + Bu, zo)e~ 28 do g3
o Jo
But if y = §(—ev + nu) € A for integer € and 7, then
2ni(ac + ) = (27 = y3)/A = (= + w)7 ~y(EF®)/4

for any w € A, and as dadB = (dZ A dz)/6(vd — uT) we may combine the sum and

integral to get

—————1 —tzT+z(zo—y)/A~T(z0—y)/A
— ZTT+IT\ZT Yo o d—/\d
1 = 57 =m) /C ) A da
_ L —wo-nGEm/an
At

SO

1 o —
© Oo(t,z,20) = X(_x)ﬂ z o~ (@0—¥)(Zo—y)/A%t .~ (F-¥)/A
-y€A

1
= X(—x)E®O(A"2t—1, Lo, T)

and differentiating both sides a times with respect to z gives
(2.6) O.(t, z, z0) = x(—2)(At)* 0. (A™*7, 20, 7)
Now we use this to get the analytic continuation of K,. For T > 0 let

I(T,a,z,z0,5) = /Too O (t,z, zo)t* 1dt
'y MO ey,

- 2s
oeh |z +wl Tle+uwl?
wE—z
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This is absolutely convergent for all s, and defines a holomorphic function on C.

Thus

I'(s)K.(z,z0,8) — I(T,a,z,z0,8) = —Ax(—2) +/ o(t, T, z0)t° " dt

= —Ax(—z)T? +/0 (A1) 710, (A7, 2o, z)x(—2)t* dt

Ts Ts—a—l X(_z)
= -Ay(—z)— —
x(=2) s u(a — s+ 1)As+1 ~ A==l [y 42

O:(t,zo, z)t*°dt

SO

Theorem 2.5. For K,x and I as above, we have

TS
(2.7) T(s)K.(z,z0,8) = I(T,a,z,%0,5) — Ax(—2)— .
- Temet x(—z) 1
_,u(a_s_*_l)Aa_'_l+A2s_a_l-[(AZT’a7$0,xaa—S+1)
where
1 ifa=0andz €A 1 ifa=0andag€ A
A= and u = ’
0 otherwise 0 otherwise

and since the right hand side of this equation is defined for all s, as is I'(s), this
defines the analytic continuation of the E-K-L series to the whole of the s-plane.

Note that since I'(s) has no zeroes, the only possible poles of the E-K-L series
are simple poles at s =0 ifa =0 and z € A, and at s = 1 if a = 0 and 70 € A.
We will mostly be using equation (2.7) when a=1,z=0,s=2and T = A" to

give a rapidly convergent way of calculating the E-K-L series in this case. Hence

Corollary 2.6.

(28) Kl(O, Zo, 2)
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Also observe that if we set T = A~' then the right hand side of (2.7) is fixed
by multiplying by A%~*~1x(z) and then exchanging z for zo and replacing s by

a+ 1 —s. Thus we get the following functional equation for the E-K-L series

Theorem 2.7.
(2.9) T(s)K.(z,z0,8) = x(—=2)A**'"*T(a +1 — s)Ku(z0, 7,0+ 1 — 5)

This will also be useful later.
Since we will want to evaluate K;(0, zo,2) for various real elliptic curves, when
zo corresponds to various real points, it is useful to have some idea of which terms

. we need to evaluate and which we can ignore to obtain a sufficiently accurate result.
Recall
9) = | (Fow—Tro)/A_L
Kul0,20,2) = weg{o} g ! w?w
Observe that for any A and any zo, K1(0,z0,2) is antisymmetric in zo, so
K;(0,—20,2) = —K1(0,%0,2), and if y € A, K1(0,20 + y,2) = K1(0, z0,2), which
shows that K;(0,z0,2) =0 if zo € 2A, so we know the result exactly in this case.
More generally, if we assume A corresponds to a real elliptic curve and zo is a
real point, we know that A = A, z =7 mod A, and thus K;(0,zo,2) is real. By

equation (2.8) we have

K1(0,$0,2)
= L — +5 2 @Fw)E (=7
wGAX\:{O}( A W a o g
WE—T0

and we use this equation to calculate the E-K-L series when we don’t know the
answer exactly. Clearly the modulus of each term depends only on |w| for the
first sum and |zo + w| for the second, and strictly decreases very rapidly as these

increase. Moreover it is easy to see that if ¢ > 0, Ei(t) < e™*/t, so if we set r = |w|
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in the first case and r = |zo + w| in the second, then in either case the modulus of

~r2/A (L l)
¢ rA + r3

Since this depends only on r, it seems reasonable to calculate those terms in a

the term in w is bounded by

disc, of radius R say, and then bound the remaining terms by summing over annuli
of increasing diameter. In this case all we need to do is to come up with a good
bound on the number of points in an annulus, and to choose how thick to make
the annuli to facilitate this.

Let the generators of the lattice A be u and v, where u is the least positive
real element of A, and Re(v) = 0 or = fu. Consider a fundamental parallelogram
which maximizes the smaller of the distances between the two pairs of parallel
sides, d say. If Re(v) = 0 one such parallelogram has vertices 0,u,u +v and v, and
if Re(v) = 1u then such a parallelogram has vertices 0,7, u and v.

For a circle of radius ' consider the union of the tesselations of the parallelo-
gram which intersect the interior of the circle. The border of this contains all the
extra lattice points within a larger concentric circle of radius r” if r” is sufficiently
close to r', for example if 7" = 7’ + d. There are at most 8[r'/d| lattice points
on the border, because the border has the same length as that of the smallest
parallelogram with sides parallel to the parallelogram above containing the circle.

Thus the sum of the terms of the sum outside a circle of radius R are bounded

in modulus by

(2.10) 23 8(R + (n + 1)d)e~R¥nd’ /4 (( & +lnd) it & +1nd)3)

n=0
(R+d) (&5 + &)
1 _ e-2Rd/A

where d = min(1,Im(7)) if Im(v) = 0, and d = Im(7)/,/1/4 + Im(7)? otherwise.

As the dominant term in this expression is a power of e~F* we should only need

< 16 F*/4

to calculate in the order of 1000 terms to get very good accuracy, hence justifying
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the claim that the series converges very rapidly, and thus we can afford surplus
accuracy at this stage, since other stages of my calculations take considerably

longer (in practice this calculation takes a matter of seconds, but other calculations

take minutes or even hours).

2.3. Regulators

This section will define the regulator, and link it to E-K-L series. On the way,
it will also show that the definition given here is equivalent to various other def-
initions given in the literature. We begin by defining a map r,: Kz(Ex)op —
HY(E,(C),27iR) for each embedding & < C. Recall by Theorem 2.3, that we
may identify K;(Ex)g with the kernel of the map 0 tensored with Q. So

Definition. Let F be an algebraic curve over k, let E, be the curve over C given
by the embedding k <& C and let v be a loop on E,(C) based at a point a. Define
the homomorphism 7, : Ko(Ex)o — H(E,(C),27iR) by defining the image of an

element 3_;{fj,g;} € kerd to be

(2.11)
o Jy1n fisdIn gjo —In(gjo(e)) J, d1n fis
Ty (;{fj,gj}) (7) = 2me ; Re( 5 )

and extending linearly.

Proof (Well Defined). First observe that
1
Re (?[ylnfjadlngja) = [ylnlfjaldarggja +/ya,rgfjadln |9;o]
=/1n|fja|da1‘ggja + [arg fio In |g0 ] —]111 lgio| darg fio
¥ v ¥
and
. .
Re ($10(050(@) | d1n fi) = In o (@) [ang fi] + are(gso()) [n 1fiel]

= [arg fja In Igjal],y
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thus
(212)  ro(Tfa}) 0 = §i Y (nlfio| darg s ~lnlgjo| darg f;,)
7 J
so in particular the definition is independent of choice of a, and r, is anti-symmetric
if we exchange the f; with the g;.

To show that the definition depends only on the homotopy class of «, it is
enough to show that if 7 is a contractible loop then r, (ZJ- {f, gj}) (v) = 0. But
by Cauchy’s Theorem on (2.11), this will equal the sum of the residues at the zeroes
and poles of the f;, and g;, enclosed by v. However the zeroes and poles of the f;,
and g;, are just the images under o of poles and zeroes in k of the f; and g;. Let P
be a pole or zero of one of the f; or g;. Using local co-ordinates about F,, let yp be
a circle with radius r and centre P,, which is small enough so that no pole or zero
of the f;, or g;, other than P, is inside. Write fjo(reie +P,) = (reie)mj fj(rew)
and g;,(re+P,) = (re”) ™ §;(re®®), where f; and §; have neither poles nor zeroes

at r = 0 (i.e. at P,). Then, by using Cauchy’s formula and Cauchy’s theorem, we

have

2 ~
/ In f;odIng;, = [; . (mj Inr+im;0 +In fj) (d(in;0) + dln g;)
YP =

= m;n; (27ri Inr — 27r2) + 2xin;1n £;(0)
2

- / In §; d(im;8) + 0
6=0

= m;n; (27ri Inr — 27r2) + 2min; In F;(0)

27

+ [mj(lnr + :6) 1n§,-]9=0

+ 27im;ln §;(r) — 27im;1n §;(0)

and
A12m
ln(gj(,(a))/ dln f;; = (njlnr 4 In §;(r)) [mj InrT + im;6 +1n fj]9_0
P -

= 27rz'm]-nj Inr + 27rimj In gj(r)
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thus

(U0) ) =2 e i+ (7))
= 97 1n]6p (Xj:{fj,gj})a’ =0

since ¥_;{f;,g;} € ker 8. Thus if v is contractible, 7, (ZJ- {fj,gj}) (v) = 0. Hence
the image of r, is contained in H'(E,(C),2miR).

We still have to show that 7, is a homomorphism, and that the image does not

depend on the choice of the f; and g; in an element 3_;{f;,9;}.

It is clear from the definition that 7, is a homomorphism, so to show that the
image does not depend on the choice of the f; and g; in an element 3;{f;, g;}

we need to show that r, preserves bimultiplicity, and that r,({f,1 — f})(v) =0
Vf#O0Oorl.

The former is straightforward, for example

ro({f,9h})(7) = j{i(ln |fo| darg goho — In |gsho| darg f,)
=}£i(ln|f,|da,rgga —In|g,|darg f,)
+}£z‘(1n|f,|darg ho —In|h,|darg f,)
= r.({f,9))(7) + r-({f, B} (7)
=ro({f,9} + {f,B})(7)

Similarly,

re({fh, g})(v) = ro({f, 9} + {R:9})(7)

To complete the proof we must show that ro({f,1 — f})(7) =0 for any f # 0
and # 1, and any 7. By replacing v by a homotopic path, we may assume that f
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and 1 — f have no poles or zeroes on 7. Now

ro({f,1 = F(7) = —iIm (L In f,dln(l — f,) - In(1 - fg(a))[ydln f,)

thus if v/ = f,(7), and & = f,(«) it is enough to show that

Im ([y/(lna:)dln(l ~2z)— l:n(l - a')[y}llnz) =0

and by considering homotopies of 7/, it is enough to show this when 4 is a small
loop about either z = 0 or z = 1. This is easy at z = 1, since both integrals

are zero in this case, and the z = 0 case follows by anti-symmetry, replacing z by
1—-2z. O

Most of the above follows the ideas of Beilinson’s paper [2]. Note that if o is
a real embedding, and thus o factors o: k — R < C then we can deduce from

the definition of r, that 7o (X;{fi, 9;})(7) = r#(X;{fi,9:})(7), hence the image of

r, is contained in H'(E,(C),27iR)*, which is the +1 eigenspace when complex

conjugation acts simultaneously on E,(C) and on 2miR. H'(E,(C),2mR)* is a
one dimensional real vector space, and thus it may be identified with R if we choose
an element of H!(E,(C),27iR)* to map to 1 € R. The natural choice for such an
element is the element of H'(E,(C), 2miR)* which maps the real period of E,(C)

to zero, and the imaginary period to 27z.

An alternative way of mapping this space to R is by means of differential forms.
By (2.12) we see that r,(Z;{f;,9;}) can be identified with a closed differential 1-

form, thus we can assign a value to it via the bilinear pairing of closed 1-forms

n,w =7ri/ nAw
(n,w) L

Observe that

i(In|f,|darg g, — Inlg.| darg f,)
=In|f,|(dIng, — dlng.]) +lnlg,| (A ], — dln|f,)
=In|g,|dln f; +1n|f;|dIng, — d(In|fs|1n|gs])
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So if w is a closed holomorphic 1-form (for example dz but not dz), we deduce

from (2.12) that
(213) (ro({f59}):w)
J
=71 /E,(C) Ty (;{fj,gj}) Nw = ;m /EU(C) In |gja| dln fio Nw
* which brings us to Rohrlich’s [16] definition of the regulator if we take k = Q and

o: Q — C to be the natural embedding. For a rational elliptic curve E, he defines

the regulator map r: Q(E)* ® Q(E)* — R to be

Jeqnlfldg/g Aw
r(f®g)= .
T fE(R)" w

-

where E(R)° is the connected component of E(R) containing zero, and w is a
holomorphic 1-form. With the above assumption, this r is equivalent to 2r, €
HY(E,(C),2niR)* under the identification of H'(E,(C),2miR)* with R as above.

We return to the general case. The main reason why we introduce the bilinear
pairing (,-) is because if we take w = dz, then we can express (re(Z;{fi»9i}), dz)

only in terms of the poles and zeroes of the fj, and gj,.
Lemma 2.8. If A is the period lattice of E,(C) then

(2.14)
(ro (S )) ) = (RAP Y S ordulfir)ord:(g:0) Kal0, 2 — .2)

J zw€C/A

Proof. First observe that
(ro (S5 0))s o) = i [ nlae T n

‘and the integrals on the right hand side are defined not only for 3;{f;, gj} € kerd
but for any set of f; ® g; € k(E)* ® k(E)*. Thus it is enough to show that

ri /E ol T Ao = (rA) 5 ord £,)ord, (9, )Ki(0,7 —w,2)

z,weC/A
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where f,g € k(E)*.
Observe that In|g,| is periodic with respect to the lattice A (where E,(C) =

C/A). Thus we can again use Fourier Transforms to write

In|go(z)| = 3 eFTE/AG(y)

yEA

where if y # 0

= ~(z7-¥7)/A]
Cw =, ¢ oo ()] S

A\° o, P dz A do
- [ —(z7-y7) /A =_
(—y) /cme 5o (1219 (2)) =5

But in this case, we can write g, in terms of the sigma function, so

go(z) =c J] ord.(gs)o(z—2)  where =z ][] (1 + - ) =a/ Mt (200
z€C/A A

for some constant ¢. Now

? 1
75 (In lga T I = Ordz ga) R}
s el = T ordelar) T o
which gives
A? Y—yT dz A dx
= —— —(ey-y7)/A d _
G(y) yS C/A € ze%Aor Z(gU)K3($ Z, 07 3) 27TZA
A° g—ymya L(1) dz A dz
7 di(gy) [ €I K05 = 2, 1)
7 zgc_;Aor (95) C/Ae A7T(3) 3(0,z — z,1) oy
as K is bounded in any choice of C/A. But if Re(s) > 2
T—1T dZ A dz
—(zy-yT)/A _
jC/Ae K3(0,z — z,) 5mid
N yZ)/A/ Z ((w+y)E—z(wty))/A W dT Ndz
C/A geh lw|* 2miA
w#0
)/ T

= —e
ly|*
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so by analytic continuation, if y # 0

G(y
2 |y|2 z€C/A

Thus we conclude

A
In|go ()| = Lo || + 5 3 ord.(9e)Ko(0,z — 7,1)
z€C/A

where we consider 1/ |y|* as limg1(1/ |y|**). Similarly,

7@ = 22 (alfo(e)) e = — % ord(f) a0z =21

z€C/A

and as for Re(s) > 2

/ Ko(0,21 — z,5)K1(0, 2 — 29,8)dZT A dz
c/A

(::im) —(w+y)T) +(wzl—zlw)+(yzg—zzy))/.4 4 dz A dz

C/A oe A |wy|®
w#0£y
= 2miA Z e(y(22—21 )—(22—21)7)/A y2
yEA Iyl
y#0

so by analytic continuation

m’/E © In|g,|dIn f, Adz = (rA)* D ordy(fs)ord.(g,)K:(0,2 — w,2)

z,w€C/A
as required. [

The above proof is essentially the approach in [8] using the properties of E-K-L
series to make it more explicit. For an alternate approach see [16].

Similarly, as
<r" (Zj:{f"’gf})’df> = zj:” /EU(C) In|f,| dln gjs A dZT
we deduce that

(re(TAf5r933),d8) = (@AY 2 ordu(fio)ord:(gic) Ka(0,2 = w,2)

7 zweC/A
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In particular if ¢ is a real embedding ¥ = R — C, then E, will be a real curve,
thus A = A, also if z is a pole or zero of one of the fj, or gj, then 2 =7 mod A,

and these two conditions imply that if z — w is as in (2.14) then

K0,z —w,2) = K;(0,z — w, 2)

and so
(ro (Z{fj,gj})ad$> = (re(XAf293}), 82)

in this case.
Note that (r,(3;{f;,9;}), dz) depends on the choice of scaling of lattice, namely

it is proportional to the real period of the curve (i.e. [g). dz), so define
P E(R)

<7”a (Zj{fj, g]}) ) d$>
fE(R)° dz

R,(XAfi0s}) =

Thus R, does not depend on the choice of scaling. If we identify H'(E,(C), 2m:R)*
with R as we did above, then R, = 2(n%)?r,. Alternatively, if we consider Te €
H'(E,(C), (ri)"'R)* then R, is the image of r, under the natural identification of
HY(E,(C),(mi)"'R)* to R. If k£ = Q and o is the natural embedding 0: Q — C,
then R, is the same as the regulator map of Bloch and Grayson [4], which they
call M.

We are now able to define the regulator map. As you will by now have gath-
ered, the choice of the constant in front of the regulator map doesn’t seem to be
universally agreed, so I will adopt the constant which most suits the problem in

hand, which generalizes that of Bloch and Grayson.

Definition. For an elliptic curve E over a totally real number field k¥ of dimension

n over Q, define the regulator map R: K3(Fy)g — R™ by

R(XAf505) = (Rﬁ (Z15:95)s - Fon (Z{fj’gj}))
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where 04, ...,0, are all the real embeddings of £ < R — C. We also denote by
R the map Ky(Eo) — R™ obtained by composing the map Ky(Eo) — K2(E%) in
equation (2.4) with R.

Note that we may also extend the definition of R to a map Kz(k(E)) — R™ by

using either the integral expression (2.13) or the E-K-L series expression (2.14) for

each (ro(3;{fi,9i}), dz), since these are defined even if °;{f;,g;} ¢ Ka2(Ex).

Now we can state the version of Beilinson’s conjecture that we will verify.

Conjecture 2. Let E be an elliptic curve over a totally real number field k of
dimension n over Q. Then R(Ko(Ep)) is a rank n lattice in R™, whose volume

det(R(Ko(Ep))) is a rational multiple of L(E,2).



Chapter 3

The image of the regulator and

results 1in the rational case

So far we have constructed the regulator map, and thus been able to state Beilin-
son’s conjecture for the situation we are studying, which relates the image of
K3(Eo) under the regulator map to the L-series. This chapter considers how this
image is contained in the image of K,(E) under the regulator map, and what can
be said about the rest of the image. This provides enough background to analyse
my first set of results which extend the calculations of Bloch and Grayson, and so
this chapter finishes with an analysis of those results. Most of the first two sections
of this chapter is the natural generalization to totally real fields of material stated
in outline in the paper by Bloch and Grayson [4], but may not have been written
down before. Tony Scholl showed me how to prove Theorem 3.3 when we couldn’t

find a good reference.

36
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3.1 E-K-L series and the image of the regulator
map

In this section we will show that there is a Q-vector space in R™ which is generated
by vectors whose components are essentially E—K-L series evaluated at the points
of a finite group T' C E, and which is contained in the image under the regulator
of Ko(FEk)g- This will give us a vector spa,c;e which has a spanning set that is
easy to calculate and which may contain the image undef the regulator of K,(Ep).
If it does then a consequence of Conjecture 2 is that L(E,2) will be a rational
combination of the determinants of n-tuples of the vectors corresponding to points
of T. Thus we may test the conjecture by calculating these quantities.

Let & Be a totally real number field of degree n over Q, let oy,...,0, be the
embeddings £k — C and let E be an elliptic curve over k. Recall we have the
following extract of an exact sequence

torsion — Ka(Ex) — Ko(E(E)) > [ KP) — ...

| P diostd
and the regulator map B: kerd — R", which can be extended to a map R: k(E)*®
k(E)* — R, and equally to a map R: K,(Ex) — R", since R(f® (1~ f)) = 0 for
any f € k(E). Let T be a finite group of torsion points of E defined over k. Let
" O(E \T)* C k(E) denote the set of functions on E over k which only have poles
and zeroes at points of 7.

We start by showing that the image of O(E~T)*QO(E~T)* C k(E)* ®k(E)*
under the regulator map is contained in the image of Ko(E%). This is Bloch’s lemma
(see [5]). ( '

Lemma 3.1. If f,g € O(E \ T)*, and the number of elements in T is N, then
© there exist h; € O(E \ T)*, and ¢; € k* such that

N{f,g} + Z{hj, Cj} € kerd
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Hence the image under the regulator map R of O(E~\T)*®@O(E\T)* is contained
in the image under R of the part of Ko(Ex)q generated by elementsof O(E~T)*®

OENT)"
Proof. If P ¢ T then Op(N{f,g} + X;{hj,c;}) = 1 for any ¢; € k* and any
h; € O(E \ T)*, since none of the functions have any poles or zeroes at P. If

P €T then

ordp(g) N
aP(N{f,g}) — ((al)ordp(f)ordp(g);jl:(?_).(P))

So for ea.ch'point P € T other than the origin, let hp be the function with a zero
of order N at P and a pole of order N at 0. Such a function exists in k(E) because

P is defined over k and the order of P divides N. Put

ordp(g)
—(_ dp(f)ord f
cp = (1) P(g)gord_p(f)

Then dp(N{f, 9} + Zoer<ioy{he,cq}) = 1 for P € T~ {0}, so it only remains to

show that this is true at 0. But then

ordg(g) N
) (N{f,g} > {hQ,cQ}) - ( 11 (—1)°fd@<f>°qu<g>§ordq(f)(Q))

QeT~{0} QeT

and by the calculations in section 2.3 we know that for any embedding & < C,

ordg(g) In f,dln g, — In(g, (e dln f,
In (H(_1)ordo(f>ordo(g>;’ord:‘(f)(Q)) _ (f‘v n fodlng 271:59 (@) fydln f )

QeT

where v is the boundary of any fundamental domain for E,(C) which contains the
images of the points of T' under o in its interior, and « is any point on v. But
the right hand side of this equation is zero because 7 is the union of sides of a
fundamental domain and these cancel. So 9 (N {f,9} + Zoer<orihe, cQ}) = 1.
So the first part of the lemma is proved. The rest is immediate consequence of

the first part when you observe that R({h;,c;}) = O for any ¢; € k* and any
hj € k(E)* O
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Thus we have shown that the image under the regulator of O(E \T)* ® O(E~

T)* is contained in that of K3(Ex)g. Now we establish what this image is in terms
of E-K-L series.
Definition. For each point P € T, define the vector vp € R", by setting its jth

component to be
2 K1 (0, P}, 2 By ()
fEaj (R)° d(t

(ve); = (742,

where K; (0, F,;,2; E(,J:((C)) is the E-K-L series K1(0, P,;,2) on the elliptic curve
E,,(C), and A,; is the constant A defined for the elliptic curve E,;(C) in Section
2.2.
Lemma 3.2. For each P € T, there is an element of O(E\T)*® O(E ~\T)" in
ker  whose image under R is a rational multiple of vp. Hence the image of the
part of K3(E})q generated by elements of O(E \T)*® O(E \T)" is the Q -vector
space in R™ generated by the vectors vp for all P € T.
Proof. First observe that for any elliptic curve, K1(0,z,2) = —K:1(0, —z,2), so for
any P € T, vp = —v_p. Thus vp = 0 if P = 0. Also K;(0,z,2) is fixed under
the addition to z of elements of the lattice of the elliptic curve, and so vp = 0 if
P has order 2. So in these case vp is the image of the identity.

Otherwise, let Ap € O(E ~ T)* be a function with a zero of order N = |T'| at

P and a pole of order N at the origin as in the previous lemma. Then

R(h-p @ hp) = N%(vep — 2vp + Vo)

= NZ(V2P - 2Vp)

So if P € T has odd order m > 1, we can choose u such that 2 =1 mod m, and

then
u—1
R (E 2u—1_'7(h_2jp ® hsz)) = N2 (Vgup - 2uVP)
—rd .

= N2(1 - 2u)Vp
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so if P € T has odd order, there is an element of O(E \T)*® O(E \ T)* whose
image under R is a multiple of vp (note we have already done the case when P

has order 1). If however P € T has order 2“m where m is odd, then

w-—1
R (Z 21 (h_pip ® hziP)) = N?(vup — 2“vp)

=0
and since 2¥P has odd order, we already know that some multiple of vywp is the
image of an element of O(E \ T)*® O(E ~ T)* under R, thus the same is true
of vp. Finally we multiply by N, and apply Lemma 3.1, to find an element in
O(E~T)*®@ O(E~T)* and in ker 0, whose image under R is a multiple of vp for
each PeT.
The second part follows because by the definition of R and equation (2.14), the
jth component of the image under R of an element (T; fi ® ;) € O(E~T)* ®
O(E \T)* is given by

(R(;fi®gi))j

TA,;)*
~ f}i (IR)J dz Z PQZT ordPo'J" (ficj)oronj (9i0,) K1(0, Qo; — Py, 25 B, (C))
o ° H "W E

= (Z > ordp(fi)ordQ(gi)VQ—P)

i PQeT
(3:1) R fiwg)= X (Zordp(f,-)ordp(g,.)) Vo_p
1 PQET \ ¢

and so R(O(E ~T)*® O(E \ T)*) is contained in the space spanned by the vp

for P € T, so the required result follows from the previous lemma. [

Thus the Q -vector space generated by the vp is the image under R of the part
of Ko(Ex)q generated by symbols 3-;{ fi, g:} where f;,g; € O(E \T)*. And if the
image of K2(Eo) in K3(Ejx)q is contained in the part of K»(Ex)q generated by such

symbols, then Beilinson’s conjecture says that L(E,2) is a rational multiple of the
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determinant of a matrix whose columns are rational combinations of the vectors
vp for P € T. Thus to confirm the conjecture, we can look for linear relations over
Q between L(FE,2), and a generating set for the determinants of matrices whose
columns are the vectors vp.

However, we can get better information on when we are likely to get such a
linear relation over Q by considering the exact sequence in equation (2.4), be--
cause this says that the torsion free part of Ky(FEy) is a combination of the image
of Ky(Eo) and elements which are not killed by mapping into the K;(E,). We

consider this map in the next section.

3.2 Split multiplicative reduction and the image
of the regulator

Recall that the sequence

Ky(Eo) = Ko(Ei) »  [I  Ki(E)

. p prime in k
is exact at Kg(Ek).- Denote by 8, the corresponding map K,(Ex) — Kj(E,). We
established in the last section that the image under the regulator map of the part
of Ky(Ex)q generated by elements 3.{ f;,9;} € O(E~T)*@O(E~ T‘)* is the space
generated by vectors related to E-K-L series. In this section we will establish more
information about this part of K;(FEf)g, and in particular when we can expect it
to contain the image of Ky(Eo).

First we need to observe what the groups Kj(E,) actually are. Clearly since we

are only interested in the K-groups up to torsion, it is only the non-torsion part of

K;(Ey) which will interest us. It fact we have the following

Theorem 3.3. The group K} (E,) is torsion unless E has split multiplicative re-

duction at p in which case Ki(E,) is isomorphic to Z upto torsion.
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Proof. By Soulé [22], Ky(E,) = K4(E,) is torsion if E has good reduction at p.
If E has additive reduction at p, we follow [8] which uses the devissage theorem

of Quillen (see [23]) to deduce that K(E,) = K| (E,™), where E," is the same

as E, except all the fibres have multiplicity one. But then E, = X is a simply
connected (or more precisely the corresponding graph is simply connected) union
of copies of P, and we use Theorem 2.2 with U = A'(F) and Z = X \ U to get

the exact sequence
(torsion) = Ko(A'(F)) — Ki(Z) — K{(X) — Kj(A'(F)) = (torsion)

(where F = Oy/p) and thus deduce K;(Z) = Kj(X) up to torsion, and so by
induction K/ (E,) is isomorphic to K} of a point up to torsion and hence K;(E,)

is also torsion.

If E has non-split multiplicative reduction at p, then E, is an M-gon which
can be considered as the disjoint union of Z which is a simply connected union of
copies of P!, and U which is the non-singular fibre of E, (which is a copy of P')
minus a closed point over F which consists of the union of two conjugate points
over the quadratic extension of F. Then by Theorem 2.2 again and by what we

have shown above, we have the exact sequence
(torsion) = K{(Z) — K} (Ep) — Kj(U) = (torsion)

and so Kj(FE,) is again torsion.

Finally if E has split multiplicative reduction at p, we see that E, is an M-gon
which can be considered as the disjoint union of Z which is a simply connected

union of copies of P, and U = G,, which is P! minus two points and so we have

the sequence
(torsion) = K}(Z) — K (Ep) — Ki(Gr) — Ko(Z) — Ko(X)

but K}(Gy,) = K1(Gr) = F[t,t*]* is isomorphic to Z upto torsion, and therefore
so also is Kj(Ep). O
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Moreover, if E has split multiplicative reduction at p we know by [20] precisely
what the map 8, is. Recall (from [21] for example) that at a prime p where Eo
has split multiplicative reduction, the reduced curve E, consists of an M-gon of
copies of PY(Oy/p), where M is the least power of the prime ideal p which contains
the ideal generated by the discriminant of the curve Ep, i.e. M = ordy(A). We
associate the sides of this M-gon to Z/MZ, by associating the non-singular fibre,
i.e. the side which contains the image of the identity ([0 : 1 : 0] in projective
coordinates) with zero, and numbering the sides consecutively from there. Then

by [20],

Lemma 3.4. Let p be a prime where Eo has split multiplicative reduction, let
M be the number of fibres on the reduced curve Ep, and if f € O(E \T)*, let
d,(f) be the sum of the orders of the zeroes minus the orders of the poles of f on
the puth fibre, i.e. du(f) = L per on 0rdp(f). Then if :j{fj,gj} € Ky(Ey) where
fi,9; € O(E \T)*, the map 3y is given by |

(3.2) (Ej:{fj,gj}) = i3—jw— ]%—:1 (Z du(fj)du(gj)) Bs (<V;,Iﬂ>) 5,

py=0 \ Jj

where ®}, is a fixed generator of Ki(Ep)q, (z) is the fractional part of x, (i.e.
0 < (z) < 1and 2 — (z) € Z) and Bs(z) is the third Bernoulli polynomial,
Bs(z) = 2® — 322 + 2.

Note that an immediate consequence of this is that if M = 1 or 2 or all the
points of T are on the Oth or (M/2)th fibres, then the image of 9, is zero, since
B3(0) = B3(1/2) = Bs(1) = 0.

Thus we know that the image of the part of K2 (Ej) generated by the elements of
O(E~T)*®O(E~T)* under the map J, is non-trivial if E has split multiplicative
reduction at p and the points of T map onto at least 3 different fibres. So if we
label the prime ideals with such reduction p;, then we can consider the image of
this part of Kz(Ex)q under the combined map [I; prime Op as a Q -'vector space,

with a basis consisting of the @1, .
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But now observe that because of the similarly between the regulator map as in

equation (3.1) and the map 8,; as in equation (3.2), we deduce that

Lemma 3.5. If v = Y pcrapvp € R* with ap € Q, then there is an element z
in the part of K;(E};)q generated by elements of O(E \ T)* ® O(E ~\ T)* with
R(z) = v and

1 M;-1 u
0p;(2) = £057 ( a)B (—)(Dl_
P( ) 3M] ,; }%; P 3 Mj 1p;

Ponypu

Proof. By Lemma 3.2 there is an element z = ¢Y_;{fi,9:} € Kz2(Ex)g with c€ Q
and f;,g; € O(E \T)*, such that R(z) = v. Thus

ap=cy, (Z OrdQ—P(fi)ordQ(gi))

QET \ ¢

However the coefficient of the term in +33-Bs (ML,) @}, of Gy, (2) is

oS (Santfiie) =X (T ordalf)( T ortale)

v=0 z v=0 1 QeT Q€eT
Qonv—p Qonv
=c Z Z (Z ordQ_p(f,-)ordq(g,-)) = Z ap
PeT QeT \ i PeT
Ponu Ponyu

as required. 0O

In particular, if we take one ap = 1 and all the rest zero, then there is an element
of the part of Ky(E})q generated by elements of O(E \ T)* ® O(E \ T)*, whose

image under the combined map [, prime Op is the vector whose jth component is

1

+
3M,

B(up;/M;)

where P is on the up;th fibre on the M;-gon which is the curve Ep;. And it is
clear that the image of this part of K2(Ex)q under the map [I, yrime Oy is spanned

by these vectors. So
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Theorem 3.6. The dimension of the image of the part of Ko(Ex)g generated by
the elements of O(E N\ T)* ® O(E \ T)* under the map [l ,rime Op 15 the rank of
the matriz whose (¢,7)th entry is B(up;/M;), where P is the ith point of T, and
P is on the up;th fibre on the M;-gon of the curve Ey, .

Proof. This is immediate from the previous discussion because the image is gen-
erated by vectors with components +1/(3M;)B(up;/M;), and all we do is form
a matrix with these columns and cancel the common factor £1/(3M;) from each

row (noting the choice of +/— is consistent). O

Clearly each column of this matrix which corresponds to a point of ;)rder 1or
2 is 0. Also if a point P is mapped onto fibre pon an M-gon, then —P is mapped
onto fibre M —p, and as B3(g/M) = —B3 ((M — p)/M), the column corresponding
to P is —1 times the column corresponding to —P. So we may reduce to the case
where we have one column for each pair of points P,—P where P # —P. Let m
be the number of such pairs of points. It so happens that m is also the maximum
number of different rows obtainable up to sign, and the set of possible rows is
linearly independent. (It is easy to verify this for all the groups T' which occur in
my results, for example if T = C7, then the possible rows for the matrix are up to
multiplication by a constant (5, 5,2), (5, -2, —5) and (2, —5,5), which are linearly
independent. See Table 3.1 for all the relevant Bernoulli numbers).

So if we consider two reductions the same if the}; give rise the the same row up
to sign, then the rank of the matrix is the number of distinct reductions. Let this
number be m/. Note that for the reductions at prime ideals p; and p; to be the
same, it is not necessary that M; = M, ﬁlerely that the number of fibres which
contain points of T for each reduction must be the same, and also we must either
have pp;/M; = pp2/M, for each point P € T, or pp1/My = —pp2/M; for each
point P T. |

So the image of the part of Ky(Ex)q generated by elements of O(E N\ T)* ®
O(E ~ T)* under I, prime 9 has rank m' equal to the number of different split
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multiplicative reductions where the elements of T' map onto at least 3 different
fibres.

But the sequence

upprime6’
Ko(Bo) = Keo(Br) —— I Ki(B)

p prime in k
is exact at K3(E}), thus an element of K3(E}) is the image of an element of K,(Eo)
if it is mapped to 0 by II; prime Op- And thus, by Lemma 3.5, the image in R™ under
the regulator R of elements of the part of K»(Ex) generated by symbols 3-;{ f;, 9:}
where f;,g; € O(E ~ T)* which are the image of elements of K>(Ep), consists of

those elements

M;-1
(3.3) Z apvp € R® such that Z ( Z ap>B3(L> =0 for each j
PeT p=0 PPeT M;
on u

This imposes m’ independent linear conditions on the vp, for elements in the image
of K3(Eo). But since vp = 0 if P has order 1 or 2, and vp = —v_p otherwise,
this means that the dimension of the space spanned by the vp is at most m. Thus
the dimension of the image of Ky(Eo) under the regulator map is at most m —m'.

So in summary we have

Theorem 3.7. If m is the number of pairs of points P,—P € T where P #
—P, and m' is the rank of the matriz in Theorem 3.6, then the dimension of
the image of the regulator of the part of Ko(Eo) corresponding to elements of
O(E~T)*®O(E~T)* in Ko(Eyx) is equal to m—m’ minus the number of additional
linear relations which are independent of the equations (3.3) taken together with

the simple relations on the vp (i.e. vp =0 if P has order 1 or 2and vp = —v_p).

If this dimension is equal to n then this should determine L(E,2) precisely in

terms of determinants consisting of E-K-L series.
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3.3 Analysis of results over the rational numbers

As a warm up for the case of real quadratic fields, I first tested the above theory
on rational curves for all the elliptic curves in Cremona’s tables [7] with sufficient
torsion, extending the results of Bloch and Grayson [4]. Their results essentially
cover the elliptic curves with a single real component and conductor less than 200,
though they don’t cover all such curves with 3 or 4 torsion points, and they only
claim that the linear dependencies are correct to 25 decimal places, whereas my
results are correct to about 70 decimal places. The full tables of such results are
given in Appendix A, but here I will summarize the main features of the tables.
Note that each curve is labelled by Cremona’s system, that is the label for each
curve consists of the conductor, a letter indicating its isogeny class, and another
number to distinguish curves within the isogeny class with the curve 1 being the
strong Weil curve. For curves with conductor less than 200 this is followed by a
letter in brackets indicating the label of the curve in Swinnerton-Dyer’s tables [24]
in the Antwerp proceedings. For example 11A1(B) corresponds to the curve 11B
in those tables, and is the strong Weil curve. Also I have labelled the rational
points by the corresponding point on the natural fundamental domain when the
curve is considered as a quotient C/A with A scaled so that the real period of the
curve is 1. Thus A is generated by 1 and 7, and the rational points are of the form
% or i + %7‘.

The tables tabulate the linear dependencies between the product of the conduc-
tor N and L(E,2), and the vp = (xIm7)?K;(0, P,2) for the rational points P € T,
bearing in mind that vp = —v_p. I consider NL(E, 2) rather than L(E,2) because
I found (as did Bloch and Grayson) that in all cases there is a linear combination
of the vp Which is equal to N times L(E,2) up to a few small factors. Thus I
presented the table to take account of this, and show up more clearly when there

are any extra factors.

My results appear to agree entirely with those of Bloch and Grayson except
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that their table assumes that curve 15A4(F) has 4 torsion points when it actually
has 8. |
The tables also show that in every case, the number of distinct split multiplica-
tive reductions m’ plus the dimension of the part of the image of K;(Ez) in the
space spanned by the vp is equal to the dimension of the space spanned by the vp.
" This shows that there are no elements in K;(Fg) generated by symbols Y ;{f;, 9:}
where f;,gi € O(E \ T)* which map to a non-torsion element under [], pﬂm;a,,
but map to zero (up to torsion) under R. In other words R is injective on the
part of K;(Eg) we considered modulo ker [1, ,ime 9 up to torsion, or alternatively
I, prime Op factors through R (up to torsion) for the part of K;(Eq) we considered.
One can also check that the linear dependencies in the tables satisfy appropri-
ate linear conditions imposed at primes with split multiplicative reduction, that
is they are perpendicular to the appropriate permutation of Bernoulli numbers,
which are given in Table 3.1. I have in fact checked that all the dependencies are
perpendicular to the appropriate number of Bernoulli relations, though not that

these relations are in fact the correct relations.

z L] Z 2 fe[e]¢L
4 | 64
g%21
g$540
e
EE283527’10
—?—1%368740
10 1 500
= 25580 [ 81 [64]35]0
= | == |91 [143 [ 162154 | 125 [ 81 | 28

Table 3.1: Bernoulli numbers Bs(-)/z

Also, in almost every case where there are few enough relations imposed by split
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multiplicative reductions (i.e. m’ < |T'|—1) so that we would expect some relations
between the vp and L(E,2), there is in fact such a reiation. The exceptions are the
curves 27TA3(A), 108A1(A), 225B1, 243A2, 243B1, 441B1, 675C1, 900C1, 972A2,
972B2, 972C1 and 972D1, which each have Ki(0,3,2) = 0 when the curves are
normalized so that the real period is 1. In fact after normalization these curves
are the same and each have 7 = 1/2 +14/(2+/3) (as does 36A1(A), but in that case
the point of order 6 gives an E-K-L series related to the L-series). In particular,
if we put w = 7 + 52@, this means that they all have complex multiplication by
Z[w]. A consequence of this is that for this value of 7, the E-K-L series is zero at
the point % is because it lies on a symmetry of the lattice A, in other words, the
set + + A is fixed when the lattice is rotated by 27 /3 radians. But this rotation
corresponds to multiplying the E-K-L series by ©. By the same sort of argument
we can show that the corresponding elements in K,(Eg) and in Ky(Q(E)) are zero.
For example, if f € Q(E) has a pole of order 3 at zero, and a zero of order 3 at
1/3, and g € Q(E) has a pole of order 2 at zero and zeroes of order 1 at 1 /3 and
2/3, then f(z) ® g(z) = f(wz) ® g(wz) by symmetry. However, from K-theory you
can show that for any functions f,g € Q(E) f(wz) ® g(wz) = wf(z) ® g(z), so the
symbol f(z) ® g(z) = 0. Thus the E-K-L series is zero because the part of K>(Eg)
generated by elements of O(E \ T)* ® O(E \T)" is zero.

Thus the tables of results suggest that R is inj.ective on the part of K;(Eg)
generated by elements of O(E \ T)* ® O(E \ T)* because R is injective on the
part which is not killed by I, prime Op, 2nd also the image of R has the largest
possible dimension, given the restrictions explained above. The only way R might
not be injective in the cases calculated would be if there were some element of
K, (E7z) whose image in K3(Eqg) was not a torsion element, but which was killed
the regulator map, which would incidentally contradict Beilinson’s conjecture. But
it should be possible to check that no such element exists on the part of K;(Eq)

considered by calculating its dimension.
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We have already observed that a linear combination of the E-K-L series seems
to be a rational multiple of the conductor times L(E,2). Now we move on to
consider these linear combinations more closely. It is easy to check that each entry
in the table lies on appropriate planes given by Bernoulli numbers. Also, in almost
all cases, the linear combinations of the E-K-L seriés have a common fa,ctc.)r which
is the number of torsion points |T'| (Bloch and Grayson also observed this). Thus
we have equations of the form

alT| Y. apKi(0,P,2) + o NL(E,2) =0
PeT

where the ap are coprime numbers which satisfy the appropria,te equations with
Bernoulli numbers, and c;, ¢; are coprime integers. Note that when there are linear
dependencies between the E-K-L series, there is some choice over what values the
coefficients ap take and in the tables I have chosen the values which minimize c;
and maximize c;.

The tables show that ¢, = 1 in almost all cases. The exceptions are given in

Table 3.2 following. The tables suggest that the normal value of ¢; is ¢; = 27 if

Curve 50AL(E) | 15A7(D) | 42A4(D) | 63A5(F) | 99B1(H)
Torsion group Cs Cy Cy Cy Cy

Co 5 11 3 7 3
Curve 11A1(B) | 57C1(F) | 14A1(C) | 14A2(D) | 30A4(D)
Torsion group Cs Cs Cs Cs Cs

co 25 3 3 6 3
Curve 30A5(E) | 34A1(A) | 34A2(B) | 90C8(K) | 210E4
Torsion group Cs Cs Cs Cs Cs
Co 5 3 3 3 3
Curve 54B3(B) | 90C3(G) | 15A1(C) | 42A1(B) | 90C6(J)
Torsion group Cs Cra CyxCy | CaxCq | CoexCy
Ca ' 3 3 3 3 3

|T| is a power of 2 (and possibly this case should be extended to include all cases

Table 3.2: Exceptional values of c;
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where |T'| is not a multiple of 3, though the evidence from the tables is less clear),

. and ¢; = 2°37 otherwise. The exceptions to this are given in Table 3.3.

Curve 605B1 | 690K1 | 690K2 | 891F1 | 973B1 | 550K3 | 606F1
Torsion group C4 Cs 04 X Cz C3 C3 05 Cs
o) 243 223 233 22325 | 22315 225 2211

Table 3.3: Exceptiqna,l values of ¢;

The cases where ¢z is not 1, would be explained if the part of K,(Eg) generated
by elements of O(E\T)*®@ O(E \T)* was a subgroup of the full group K>(Eq) of
index ¢,, and thus our method of calculation would be missing elements of K3(Eq)
whose image under R would correspond to L(E,2), and not a multiple of it. So it
is probable that nothing exciting is going on in these cases.

If ¢; is not 1, this suggests that there are elements of the part of K3(Eq) we
are studying which are not in the image of K3(FEz) but some finite multiple of
these elements is. Such elements would map under [I, prime Op to the torsion part
of 11, prime in ¥ K1(Ep), which presumably correspond to primes with additive or
non-split multiplicative reduction. And indeed there seems to be some correlation
between the factors of 2 and 3 in ¢; and such reduction. However it is harder to
explain the bigger factors, particularly since the corresponding curves do not seem
to have any exceptional types of reduction. Any unexplainable factors would be
analogous to the group I in the Birch-Swinnerton Dyer conjecture. It is also
worth noting that‘ exceptional values of c; occur for small values of the conductor,
and exceptional values of ¢; occur for larger values of the conductor.

Before we can repeat these calculations for real quadratic fields, we must work
out how to calculate the L-series of an elliptic curve over a real quadratic field,

and this is the subject of the next chapter.



Chapter 4

Calculating L-series

It seems that the easiest way to calculate the L-series of an elliptic curve over a
real quadratic field effectively is to assume that the curve corresponds to a Hilbert
modular form, use this to calculate the L-series at a particular value, and then
check numerically that the assumption is almost certainly valid.

So the first section will describe what a Hilbert modular form is, define its
L-series, and explain how this might correspond to the the L-series of an elliptic
curve. For simplicity it will assume we are working over a totally real field of
narrow class number one.

The next section will establish practical formulae for .ca.lculating the L-series
of an elliptic curve under the assumption that it corresponds to the L-series of a
Hilbert modular form, and explain how these can be used to verify the assumption
numerically. As these formulae are infinite sums, it will also give a bound for the
error caused by ignoring all sufficiently small terms, and thus show which terms
need to be calculated to achieve a given accuracy.

The final section will explain how to implement these calculations.

But first we establish some notation that will be used frequently in this chapter.
Let k be a totally real number field of degree n over Q. There are n distinct

embeddings k — R which we will denote by i,...,2,. If we are working over a

52
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real quadratic field and if v € k, it will often be convenient to abbreviate ¢;(v) by
vy or even just v, and i3(v) by v, or 7, depending on the circumstances.

Let h = {z € C | Imz > 0} be the upper half plane. We will often be doing
arithrﬁetic with a combination of vectors in R™ or h™ and of elements of k, in which
case we will identify an element v € k with the vector {¢1(v),...,ix(v)}. Moreover
it is convenient to define multiplication and division of such vectors to be the
vectors obtained by multiplying and dividing componentwise. Thus for example if

az+b :
+ to be the vector whose jth component

a,b,c,de kand z € h” then we take
, 1i(a)zi +45(b)
ij(¢)z; +14;(d)
We will also use the standard trace and norm functions interchangeably on

cz +

ideals in & and on vectors in R* and h™ . So for example, Tr(az) = 37—, 7;(a)z;
and N(az) = [T}, #;(a)z; = N((a))N(z). It is also convenient to take N(dy) to

mean dy; . .. dYn.

4.1 Hilbert modular forms

Hilbert modular forms are a natural generalization of modular forms over Q to
totally real number fields, and many of the properties of modular forms generalize
directly to Hilbert modular forms. We start by constructing the space over which
Hilbert modular forms are defined. (Most of this section is stongly based on the

first chapter of the book by van der Geer [26]).
Definition. An element z € k is totally positive (written z > 0) if ¢;(z) > 0
foralll1 <y <n.

Let GL7 (k) denote the group of non-singular 2 by 2 matrices over k with totally
positive determinant, and GL (R) denote the 2 by 2 matrices over R with strictly
positive determinant. Each embedding i; extends in a natural way to an embedding

b i (b
GL} (k) — GL}(R) which we will also call z;, i.e. %;: ¢ — ble) 4(0) .
. c d ij(c) lj(d)
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Now GLJ(R) acts on h by fractional linear transformations, that is, if z € b

b b
and (a ) € GLF(R) then (a ) 2= + b. Hence we can make A € GL3 (k)
c d ¢ d cz + d

act on §™ by letting i;(A) act on the jth coordinate of h™ for each j. That is, if

c c d cz+d
ad — bc > 0. Note that scalar matrices in GL (R) fix b, so scalar matrices in

GL7 (k) fix h*. Thus the action of PGLZ (k) on h™ is the same as that of GLZ (k).

a b a b b
( ) € GLI (k) and z € §, then ( ) zZ = azt and this is in §”* because
d

The reason for such a construction is that discrete subgroups of PGL (),
in particular PSLy(Oy) and related groups, act on h™ properly discontinuously,
thus the resulting quotient will be a manifold (and in fact an algebraic variety in
the cases we will consider), except that a finite number of points corresponding to
points on the boundary of h™ need to be added on, and there are also a finite number
of cosets of points on h™ which are fixed by non-trivial elements of the group, and
these correspond to finitely many branch points on the quotient, so local charts
in neighbourhoods about such points on the quotient need to be replaced for the

quotient to be a manifold. We now focus on such groups.

Definition. Two groups are commensurable if they have a common subgroup,

which has finite index in each group.

Fix a group I" which is a subgroup of PGLj (k) commensurable with PSL2(Ox).
This means that T acts on §™ properly discontinuously. T also acts on P'(k) by

b
letting an element (a ) € T map (e: f) € P(k) to (ae+bf : ce+ df). Observe

c
that an element (e : f) € P!(k) can be identified with the point on the boundary of
h™ given by (24 (?) yeenyln (?) ), with the exception of (1 : 0) which may be identified
with the point given by lim,_.(2y, - - .,2y), and the action of I' is preserved by this
identification in the sense that if a series of points in h™ tend to the point on the
boundary of §™ associated to an element of P!(k), then the image under I of these

points tend to the point on the boundary identified with the image under I of the
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element in P(k).
Definition. The cusps of ' are the orbits of I' when acting on P(k).

The cusps of T' are the points mentioned above on the boundary of §™ which

are missing from the quotient I'\h™.

Now note that any element (e : f) € P!(k) is the image of (1 : 0) when acted

fr

ideal inverse of the ideal generated by e and f). This can be used to deduce which

on by (e ¢ ) € SLy(k), where ef* — fe* =1 and e*, f* € (e, f)7! ((e, f)7! isthe

elements of Pl(k) are equivalent under the action of I, by considering the product
of a matrix of this form with the inverse of a different matrix of this form, and
considering when the matrices can be choosen so that the product gives a matrix
in T. For example, if I' = PSLy(O%), then we deduce that the cusps of I' are in
one to one correspondence with the elements of Cl(k), the class group of k. The
correspondence is given by associating an element (e : f) € P!(k), where e and f
can be assumed to be algebraic integers, with the ideal class containing (e, f).

Also, it is often easier to study the action of I on a cusp, represented by (e : f)

-1
‘ ~ e € e €

say, by looking at the action of ( r on (1:0). This is because
fr fr

0 d
T at the cusp (1 : 0) is essentially determined by the two groups we are about

b a b
€l and
0 a

to define, and which we will refer to later. Define M = {—
For each I', V is a multiplicative group, and since I' is commensurable with

b
if v maps (1 : 0) to itself, then v = (a ), for some a,b,d € k. The action of

i) |

PSLy(O}), V is commensurable with Uy, the totally positive units of O;. But
each element of V must be totally positive, and some finite power of this element

must be a unit, so it is itself a totally positive unit and V C U. Also, M is a free
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7 -module of rank n, commensurable as an additive group with Oy, and acted on
by sums of elements of V. Usually, M will be a fractional k-ideal.

Definition. A Hilbert modular form of weight k = (k,...,k,) € Z" on T
is a holomorphic function f: h* — C, such that flxy = f Vv € I', where for

b
y = ( ) € GL (),
c d

n : e k;jf2
(flk'y (H ]§i :‘72)_7(d)) ) f(’)/Z)

.‘I=1

b
Ify= (a ) then (flxy)(z) = f(z + %), so we can write f as the Fourier
0 a

expansion about (1 :0),

f(Z)= Z aue2m'Tr(uz)

veMY
where MY = {A € k| Tr(\u) € Z VYu € M}. Thus M is related to the Fourier

expansion of f at (1 :0).
If k=(l,...,1), the expression for (f|x7)(z) simplifies to

et ~)1/2
() 0) = (Rl ) £

But iﬁ this case, if v = (Z 3) then (flxv) (z) = f(%z), soife €V, f(ez) = f(z),

and hence a., = a, by equating expansions. (For general k, a,, = ca, for some
positive ¢ depending on € but not v). Thus V is the group of elements of & which
fix f.

If we assume n # 1, a consequence of this action of V is that if v € M" is
not _totally positive and non-zero, then a, = 0. If this were not true, say a, #0
where i;(v) < 0, then we could choose a unit ¢ € V with ¢;(€) > 1 and im(€) <1
for m # j, and then Re (aemuez"iTr(cm”z)) — 00 as m — oo for any z € §”, so the

sum cannot converge because aem, = a, does not depend on m since k = (4,...,D.
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(Note for general k, the change in a, is dominated by the exponential term as m

increases, so the same conclusion holds).

Definition. f is called a cusp form if ao vanishes in the Fourier expansion at
each cusp. (If n = 1 we need the additional condition that a, = 0 for v < 0. The

equivalent condition for n > 2 is always satisfied by the above argument ).

Thus if f is a cusp form, it may be written as

f(Z)'—‘ Z aue27ri'1‘r(uz)

veMVY
v>0

To simplify what follows, we now make various assumptions. First assume &
has narrow class number one. If this is not the case, then to get an L-series we have
to consider cusp forms on a set of different groups I', one for each element of the
narrow class group. The assumption also means that I' will have a simpler form.

Next, we assume that k = (I,...,[), so that the integrals become simpler. Finally,

b
we set I' = I'o(n) which is defined to be I'o(n) = ¢ € PSL2(Ok) [c € ny,
c d

where n is an integral ideal of Oy.
For this I, M = O and V = Ut = U}. If f is a cusp form then
f(Z) = Z aUeZm"Tr(uz)
ves—?
v>0
‘where § is the different. By convention, since any scalar multiple of a cusp form f

is still a cusp form, it is convenient to normalize f by assuming that if v generates
6~ then a, = 1.
Definition. We define the L-series associated to f to be

L(f,s)= >, aNwé)~™

ves—1 /Ut
v>0

for those s € C where the series converges, and by analytic continuation as far as

possible.
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The definition assumes that a, = a, Ve € Ui (hence we are using k = (I,...,])

here), or else the series wouldn’t be well defined. Equivalently, we may write the

series as

L(fys)= D buN(m)™

ideals m
where by = a, if (v) = m§~!. This expression strongly resembles the L-series of

an elliptic curve.

We can get L(f,s) in terms of f as follows. For v € 6~ with v > 0, we have

N(v§)™* = D™ ((ﬁ(” );) ' [T [ e TNy iNGy)

where y € R%, and D, the discriminant, equals N(é). So, for those s where the

L-series converges absolutely, we have

w9 =0(S5) [ HING)IN Gy

where we have changed the region of integration because the sum implicit in f is
over all totally positive v € 61, rather than one for each coset of Ut, as is the
case for the sum in L(f,s). Thus L(f, s) is essentially the Mellin transform of f.
The cusp forms on I' are acted on by various Hecke operators, which arise from
various double cosets of I'g(n) acting on I'o(n)\h”. The L-series of eigenforms of

such operators have additional properties.

Definition. Let f be a cusp form on ['o(n), and v € Oy generate a prime ideal.

If n € (v), define T, by

N(v)-1

ot = oy

f‘T,,=f

If n C (v), define U, and W, by

N(v)-1

U, 2

=0

f

e = ey
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where if m is the biggest power of v such that n C (v™), then ¢ € n, a,d € (v™)

and ad — bc = v™. Finally, define N to be a totally positive generator of n, and
define Wy by

fwy =lis )
noting that Wy is the product of all the different W, since this is true of the

matrices which define these operators upto multiplication by an element of T'g(n).

Lemma 4.1. T, commutes with U,, W, and Ty. U, commutes with U, and with
W, if (¢) # (v). W, commutes with W,. Thus the T, and the W, have common
eigenspaces, as do the T, and the U,.

Also, f = (f]WN) g, and f = ( fiwu) |y, Thus the eigenvalues of the
W, and of Wy are £1. ‘

Proof. Just algebra, or see [1] which generalizes directly to the case under consid-

eration. [

We will soon be considering common eigenforms to all the T,, U, and Wy, and
some of these will correspond to elliptic curves. Any common eigenspace of the T,
which has dimension 1 must also be an eigenspace of the U, and the W, by the
above lemma, and hence consists of common eigenforms to all the T,, U, and W,.
Such spaces may be explicitly determined by decomposihg the space of Hilbert
modular forms of weight 2 on each group I'o(n) into eigenspaces, and looking for
any eigenspace which is common to all the T,,U, and W,. Note that in any
common eigenspace of the T, which has dimension 2 or more, there is nothing
forcing the eigenvectors of the U, and the W, to coincide. We now establish some
properties of eigenforms.

If f is a cusp form which is also an eigenform of Wy, say with eigenvalue w =
+1, then we can express L(f,s) as an integral with better convergence properties.

(Note in the special case where n = O, all cusp forms are eigenforms of the

operator W with eigenvalue 1, since ({ 3') € To(Ok))-
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Choose a fundamental domain for R% /U, and divide it into two subsets, A

and B. Let C = {y e R} (i:(N)yl""’ in(N)yn ) € B}. Define
) A9 = DN () 15,9

and note that N(n) = N(N). Then
A(f,9) = [ FEy)N()*N(y) " N(dy)
But as
5@ = Sy @ = v (7)
we have
[, FayIN®*N(y)'N (d;') L f_(NLy)N(n)s/zN (]—\};)N(dyy)

- /C wf(iy)N(n)=2N(y)0=)-1N(:)'N(dy)
So

(42) A(f,s) = ([, FGy)N®N(y)"N(dy)

+ i [ f(oy)N@w Ny N(dy) )

A sensible choice for the regions A and B is one where A = C, so that the two
integrals are essentially the same. Since we obtain C from B by the map y NLy,

one such choice is to partition A and B by the hypersurface N(y) =N(n)~1/2

Lemma 4.2. Let f be a cusp form on I'o(n), and let A be the intersection of a
fundamental domain for R? /U with the region N(y) > AN(n)~/2 where A € Ry.
Then the integral [, f(iy)N(n)*/?N(y)*"*N(dy) converges absolutely for all s.

N(y) > AN(n)~*/2}. Then

Proof. Let E C R%. be the set E = {y € R}

(4.3)

[ fayN@PNGI NGy = [ 2 ae TN NG INGy)
ves—tjut
v>0
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But for v > 0,if F = {y e R} | N(y) > (27r)"/\N(V)N(n)'1/2}, then by sub-
stituting y for 27vy we get
‘/E |aue—27rTr(uy)N(n)s/ZN(y)s—l' N(dy)

= |a,N(n)**N(v)~*(27) ™"

e ™ON @) N(dy)

But as v > 0, Tr(y) > nN(y)*/", and so we deduce that F' C {y e R} ’ Tr(y)
> 27rn(/\N(1/)N(n)‘1/2)1/”}. Let G = 2rn(AN(v)N(n)~/2)}/" and observe that
if > 2> 1then 0 < [Fet*71dt < e "2". Thus, if Res > 1 then using the

substitution Y = Tr(y)

[ &™) [Tx(y)"| N(dy)

o) n—1
/ _}_/_G-Y yn(Re(s)-1) gy

(+) < |aN(r)*/*N(v)~*(2r) 0"

< auN(n)s/ZN(V)—s(27r)—nsnn(l—s)

¢ (n=1)!
< | NNy (2r) e e rRetd
=7 (n—1)!
— /\Re(s) IaVI n" e—27rn(AN(u)N(n)‘1/2)1/"

(n—1)!
provided 2m(AN(v)N(n)=/2)/» > Res, which is true for all v € §7'/U;" with
sufficiently large norm, that is for all but finitely many cosets of Ut. On the other

hand, if Res < 1 then, again setting ¥ = Tr(y)

e_ Tr(y)

(@r)yAN@)N(m)/2)"

N(dy)

N(n)/*N(v)*(27) ™

(*) < |a

< ARe(-T g, N(n)*N(v) (27 )™ / : _1 e YdY

< AR g, N(n)/*N(v) 7} (27) | e G"

= ARe(S) g, | T 2NN A

(n —1)!
if 27(AN(v)N(n)~/2)/» > 1, which is again true for all v € 671/Uy with suffi-
ciently large norm, so again the bound is valid for all but finitely many cosets of

Ui
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Now, as f is a Hilbert modular form, a, is bounded by a polynomial in N(v)

for given [, as is the number of totally positive v € 671/ U for each fixed norm

N(v), so

Z \Re(s) la, | n o= 2m(N(v)N(n)=2/2)t/»

n
— 1!
Py (n—1)!
v>0

converges, SO

S [ ae T INm)N(y) N (dy)
ves—! /U,:" E
v>0

converges absolutely, and thus we may exchange the - and [ to get the right
hand side of (4.3), hence the left hand side of this equation converges absolutely,

as required. [

Corollary 4.3. If f is a Hilbert modular cusp form on T o{(n) which is an eigenform
of Wy, then (4.2) with the above choice of A and C together with (4.1) defines
A(f,s) and L(f,s) for all s and

(4.4) A(f,s) = imwA(f,1 - s)

Proof. By the abox}e lemma with A = 1, with the above choice of A and C, the
first term of the right hand side of (4.2) converges absolutely for each s and so does
the second term (by replacing s with [ — s). Hence (4.2) defines A(f,s) for all s,
and since (4.1) expresses A(f,s) in terms of L(f,s), this shows L(f,s) is defined
for all s. Also substituting s for [ — s in (4.2) and multiplying by ¢"w fixes this

equation, so we deduce
A(f,s) = i""wA(f,1—s)

a

We can also use the Hecke operators to produce a product expansion for the

L-series of a common eigenform. Let 6~ be generated by {. If f is an eigenform
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of T,,s0 f

T =H f, then looking at the Fourier expansion of f gives that

ax,N(v)-'? if A & (v€)
pay =
an N2+ N@)%ay, if X € (v€)

hence pa; = a,eN(v)'™"/%, but a¢ = 1 by our choice of normalization, so p =
a,eN(v)1~"/2. This means that |
(1N + N S)L(fs) = T o N(us)™
pes~ U}

u>0
ug(v€)

Similarly, if f is an eigenform of U,, so f U, = H f, then looking at the Fourier

expansion of f gives that pa) = ax,N(v)!7"2 50 again g = a,eN(v)}/%, and

(1 - aNE) L5 = Y aNuo)™
uES‘l/U:'
u>0
ué(vé)

thus we have

Theorem 4.4. If f is a common eigenform for all the T, and all the U,, and if

1 ifvédn
c, =X then
0 ¢fren
(4.5) L) = TI (1-aeN@)™ +eN@)-9%)7
A

Note that a consequence of this theorem is that a common eigenspace of all the
T, and all the U, must have dimension 1, since the eigenvalues of these operatoré
determine the fourier series expansion upto multiplication by a constant.

Also if [ = 2, (4.5) is precisely the form of the L-series L(E,s) of an elliptic
curve E over Oy, with conductor n, and with the number of points on the reduced
curve E, over O;/(v) & Fy,) equal to 1 4+ N(v) — aye. This leads us to the

following conjecture.
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Conjecture 3. Let E be a global minimal elliptic curve over O, with conductor n.
Then the coefficients of the L-series L(E, s) are the coefficients of the Fourier series
ezxpansion of a Hilbert modular form f on Lo(n) of weight 2, which is a common

eigenform of the Hecke operators T,, U, and W, as above. (Thus L(E,s) =
L(f,s))-
This is a generalization of the Taniyama-Weil-Shimura conjecture to totally

real number fields. The conjecture has recently been proved in many cases over Q

by Andrew Wiles, Richard Taylor, and Fred Diamond (see [28]).

4.2 Calculating L-Series

We now assume Conjecture 3 to provide an efficient method to calculate the
L-series of an elliptic curve with coefficients in Ok. In fact it will emerge that
this assumption is almost certainly valid, since the methods used provide an easy
way to verify numerically that what we are assuming is a modular form almost
certainly is a modular form with the correct conductor.

Recall the equation (4.2)
A(f,) = ([ FGy)Nm)*N(y)N(dy)
4w [ f(iy)N()O-9/ 2N ()N (dy)
where A and B were 2 partition for a fundamental domain for R} /Uy and C was
the image of B under the map y — le Here | = 2, and we need to choose

A and B so that we can integrate each term of (4.2) over the resulting regions.

This is where our previous choice of A and B runs into trouble. If we set E =
{y e R}
(1) [ 7 N () 2N (y) " N(dy)

N(y) > N(n)~V/ 2}, we have to integrate expressions like

where v € 6~1/Uf and is totally positive. The problem is that I have found no

way to integrate this expression completely, except when n = 2 and s > 0 is
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an integer. Since the case we will be considering requires this expression to be
evaluated for s = 2 and for s = 0 this is insufficient. (You can integrate once to
get an expression in ter£ns of Bessel K functions or Ei functions, and then (at least
for n = 2) integrate numerically, but this is prohibitively slow for even a small
number of decimal places).

The obstruction comes from the curved hyperplane boundary N(y) = N(n)™%/2,
which introduces terms which do not appear to be integrable into the expression
obtained after integrating with respect to one coordin_a,te; So the way around this
problem is to choose A and B so we have a “nice” boundary between them. It
would also be convenient to have A = C, particularly since this means the two
integrals have a similar rate of convergence. My solution is to bound these regions |
by hyperplanes perpendicular to one of the axes, that is, by regions with one of
the y; constant. .

The main advantages of this approach are that the map y — NLy maps hyper-
planes with one coordina.teAﬁxed, to hyperplanes with one coordinate fixed, so we
should be able to find regions with A = C, and that integration is vastly simplified,
since each region will be a union of hypercuboids, and so we can integrate with
respect to each y; separately, which reduces the problem to evaluating the product
of various incomplete Gamma functions.

The slight disadvantage is that the rate of convergence will be slightly worse
since this essentially depends on the coefficient of the exponential in (1) at the
point of the region where this is largest. As the exponential may be bounded
above by —27N(vy)Y" with equality at one point, it means that our previous
choice of region would be optimal if we could integrate over it.

If we restrict to the case where k is a real quadratic field (with narrow class
number one) then we can make this explicit. Since the units of such a field form a
rank 1 Z-module under multiplication with torsion {£1}, there is a unit, u say, with

i1(u) taking the least possible value greater than 1. Then u and —1 generate the
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group of units, and u® generates U/, the group of totally positive units. Identify
u € R with ¢;(u), and write N; for ¢;(/N). Then we can choose our fundamental
region of RZ /U to be {y e R?2 I NP <y < uNl_l/2}. Thus we can take
A=C={yeR: |u N2 <y <uN and NP < g},

Then as Ut A C {y e R? | N(y) > ©v 'N(n) 1/2} by Lemma 4.2 we can rear-

range integrals and sums to get

[ £y)N(m)*N(y) " N(dy)

oo uNy -1/2
= N(n)5/2 Z a, /]‘V_l/2 e—27ru2y2y;—1dy2 /_IN_l/z e—27ru1y1y:_1dyl
v>0 2 u 1
ves~?
= Z N(n )5/2 r (s 27r1/2) [F (s _&TV_I) _Tr (s 27n/1u>]
5 “ENey UV [T W, VN

ves—?
where T'(s,z) = [2° e ¥y°~'dy. Replacing s with 2 — s gives the other integral in
(4.2) so finally we have

Theorem 4.5. Let f be a Hilbert modular cusp form on I'g(n) over a real quadratic
field k with narrow class number one, let u be the least positive real embedding of

a unit of k which is greater than one, and let N € k be a totally positive generator

of n. Then

(4.6)
-y B e SR ) 3)

_afN(m)!-s 21V, 2m, 2ru\ ]
4s—4( ="\ I\ . it 9 — Sindalat T RO o _ il el
o G BR8]
where ['(s,z) = [;° e Vy*~1dy.
This expression is valid for all s, but for our calculations we will want s = 2, so
we can simplify this further using I'(2,z) = (z + 1)e~* and I'(0, z) = Ei(z) where
by definition Ei(z) = f2° e—yiyu. So
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Corollary 4.6. Under the same conditions as the previous theorem

1 or 1 o
. L(f,2) = = N = + = | e72m2/VN:
4N WA =17 X e ((Vz N2+u§)e

v>0
ves—!

27 1Y _omjuyAT VAR T P TN,
[(UVl N1+V12>e VlVN1+V12 i

() 50 (330 = %)

This process can be generalized to real cubic fields (of narrow class number

1) or beyond, but constructing a fundamental domain becomes more and more
complicated, and there is a choice to be made of which domain gives the best
convergence. The best approach seems to be to consider the lattice formed by the
logarithms of the coordinates of the units, ignoring one coordinate to give a lattice
in R*1. Any fundamental domain in this bounded by hyperplanes perpendicular
to an axis will correspond to a fundamental domain in R} bounded by hyperplanes
perpendicular to an axis. I have have used this to construct such a fundamental
domain for the real cubic field case as follows.

Let —1,u and v generate the unit group of Oy where k is a real cubic field
with narrow class number one. So u? and v? generate U}. Let U; = In|u;| and
V; = In|v;|, where j € {1,2}. Assume (by change of basis of the unit group) that
(Uy,U,) is an element of minimal length in the lattice generated by (U1, U,) and
(Wi, V2) in RZ, that Uy > 0 and U V; — ViU, > 0 (by replacing u by % and v by :
if necessary) and that 0 < V; < U; (by multiplying v by a power of u). Note that
means that V5 > 0, since either U, is positive, and then ¥, > 0 is a consequence of
U, Vs — ViU, > 0, or else U, is negative, and so V, > 0 as otherwise (Uy, Uz) is not
minimal.

Then the region R is a fundamental domain for R? modulo the lattice generated
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by 2(Us,Us) and 2(V4, V) where if U; <0

R={(z,9)| (U1 <2 <U) and (-Vs <y < W)}
U{(z,9) | (~Ui S e <2 - Th) and (V5 <y<V-U)}
U{(z.9) | (-2Vi+ U Sz <Th) and (-V; + U3 Sy < -W)f

andif U, 20

R={(z,9)| (Ui <2< U1) and (-V; <y < W)}
—{(@y) | (-lh <z <2V - 1) and (o 2y 2> Vo - Uh)}
~{(@y) | (2R + Ui <2 <Th) and (Vo + Uz 2y > -V5)}

If we consider the equivalent region in R we obtain

Theorem 4.7. Let f be a Hilbert modular cusp form over T'o(n) corresponding to
an elliptic curve over a real cubic field k with narrow class number one, let N € k
be a totally positive generator of n and let u and v be generators with —1 of the
unit éroup of Oy such that |

(1) u has ju1] > 1 and minimizes (In |[u1])? + (In |us])? over the unit group

(11) v is such that In |us|In |vz| > In |v1| Infuz| and 1 < Jui| < |uy]

Then

(48) L(f.s) = ’bs—rl(—s)? ; a, (N(z/)-sgs(l) v(gl (i—) [92 (i—) -0 (Z—Z)}

ves—t

(Do) o i -] 2 b2
e B ) )]
2 it ] 3) 2]

where gj(z) = T'(s, |z|27v;/VN,) and hj(z) = T(2 — s, |z[27v;/VN;).
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In fact, this expression will work for any choice of u and v which generate
the unit group with —1, possibly after swapping u and v so that In |u;|In |v| >
In |v1]1In Jus|, and not just the ones constructed above. This may be seen by showing
that the regions R obtained by fixing one of u and v and varying the other are the
same upto translations of parts of the region by lattice elements. Hence every such
region is a fundamental domain, provided we interpret suitably negative parts of
the region caused when the boundary self-intersects (the region is a fundamental
domain in the sense that in each equivalence class of points (under the action of
the lattice) which has no points on the boundary, there is precisely one more point
in the positive parts of the region than in the negative parts). The formula above
still works even if it corresponds to a region with negative parts.

The choice of u and v given above need not be optimal in terms of convergence,
and exchanging the first and second coordinates may also improve the convergence.
However the above construction gives an explicit way of constructing a “not too
bad” region.

The issue of which fundamental domain to choose is only a matter of rate of
convergence, any choice of fundamental domain will (conjecturally) converge to
the same value. This is because, if € is a totally positive unit then f(z) = f(ez),
so f is periodic modulo totally positive units. The individual exponential terms
however will not in general have this behaviour, so if you evaluate the L-series
for two different fundamental domains and the results are the same to within an
expected error due to approximations in calculation, this provides strong evidence
that f does indeed have the conjectural periodic behaviour. Moreover this will
also confirm that f has expected conductor, since the conductor is involved in the
calculation.

There is a slight modification to the above method, which may improve the rate
of convergence, particularly for those fields which have minirﬁal units with large co-

efficients. Rather than using one integration region for each fundamental domain,
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we can use an integer number of them. This is equivalent to replacing the coeffi-
cients of the units above, by their integer roots. In other words, instead of integrat-
ing over a fundamental domain for R} /U we will be integrating over a fundamen-
tal domain for R% /(UF)!/™ for some positive integer m, and this will work since
m" of the smaller domains together will make a fundamental domain for R% /U .
(By (U#)Y™ we mean the set (UHY™ = {(il(v)llm,. - in(v)Y™) for v € U,;"},
where we take the real positive mth root).

For example, in equations (4.6) and (4.7), we can replace u = %, (u) with u,
where v € Oy is a minimal unit in the sense described above and m is a positive in-
teger, and the sum is over totally positive » € §=2(U;t)/™. Then the generalization

of Corollary 4.6 is

Theorem 4.8. Under the conditions of Theorem 4.5

1 2r 1
4.9 L 2) = —a, - il —21ru2/\/ﬁz—
49 L= L e (( )
: ves— (UF)Hm »
1Y oy (230 1Y o va
T\n/ﬂyl N Vl2 151 N 1/12

(27r)4w) ) (27r1/2) [ ) ( 2wy ) i (27r1/1 '{'/E)]

4 (LR |=2) |Ei|———=]| “Ei|—=—

( N(n) VN2 W\/N] ‘/Nl

where a, € §"HUF)Y™ N 8§71 is defined to be equal to a, for any p € 671 which,

when considered as an element of §-X(UH)Y™, is in the same (UF)Y/™ coset as v.

Note that we already know that a, for v € §~! is constant on cosets of Uz,
thus the final condition of the theorem merely extends the definition of a, to
v € §"YUF)Y™ by insisting it is constant on cosets of (U™, Also we may
generalize Theorems 4.5 and 4.7 in exactly the same way. Equation (4.9) is the
one I use in my program to calculate L(f,2). |

The best choice of m will depend on the relative efficiency of evaluating each
term of the sum and of calculating the coefficients a,. Roughly speaking, to obtain

a given accuracy as m increases, the number of terms you need to evaluate in the
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sum will increase, but the number of different a, you need to evaluate will decrease.

We will return to the question of choosing m later when we have established error

bounds for truncating the series.

By evaluating L(f,2) for two different values of m, we can also verify numer-
ically that f has the predicted periodicity, and this is also more practical (from
the point of view of programming and of convergence) than varying the choice
of fundamental domain. In fact, this is one of the methods I used to check for
programming and calculation errors when I was writing my program.

We finish this section by considering how many terms in equation (4.9) we need
to calculate to obtain a given accuracy.

Proposition 4.9. Let v € (UF)Y/™ be totally positive. If T = 2 (1/1/ “uv/ Ny
+vs/ \/Nz) then the term in v in equation (4.9) is bounded in modulus by

(4.10) ((HT) 1)1(\?( ))21/2<‘f+ u )) N

Proof. Each term of (4.9) consists of a,/D? multiplied by the sum of two more

complicated terms. Since (1 + z)e™® is a decreasing function in z, we deduce for

the first term

0< L - (1 + 27”/2) 6—21”/2/\/1—\,? [( 211 )_6-271"/1/%\/1_‘/?
N(l/) \/Nz \/—\/Nl

27TV1 ’{/’J -2 f{l/—/\/m 1 (27!')2 =T
_ v e < 1 T
(1 UM ) ‘ S\ ept 1 NNy ¢
and for the second term, since Ei(z) < 1e7 (for z > 0) is a decreasing function,
we have

O<

Thus as N(v) > 1/D, the result follows by the following lemma, which gives a

bound for a, which though not optimal, is the most useful in this situation. O

Lemma 4.10. |a,| < DN(v)
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Proof. We use the product expansion of the L-series of an elliptic curve as in
equation (4.5) and following. Using a well known bound on’the number of points
on an elliptic curve over a finite field, we have that if v € 67! is totally positive

and generates a prime ideal then,
jave| < 2N ()2

This gives the required result in this case if N(v) > 4. (Recall £ generates §~' as
a fractional ideal and N(¢) = D!, also that a,, = a, for any totally positive unit
v and any totally positive g € 7). Now if p and v are coprime (totally positive)
algebraic integers, we have a,,¢ = a,¢a,¢ so by induction we need only look at a,:¢

where v generates a prime ideal in Ok. But then
Ayte — Quglyt-1¢ + N(l/)a,,t-zg =0

(except if there is bad reduction at v, but then a,te =0 or 1 so we may ignore

this case). Then solving the recurrence relation, using the facts that a,¢ and N(v)
are integers, and that a; = 1 gives

ON(v) /2 if(a,e)® # 4N(v)

(t+ 1)N(»)"?  if(ae)® = 4N(v)

la,re] <

The second case can only occur when N(v) is a square, hence N(v) > 4 and we
have the required result for ¢ > 2. In the first case N(v) > 2, so this gives the
required result for ¢ > 3, and for ¢ = 2 unless N(v) < 3. We have already covered
‘the case where ¢ = 1 for N(v) > 4, so all that remains when ¢ = 1 or 2 and
N(v) < 3. But, a,¢ is an integer, and the integer part of 2v/2 is 2, and of 23 is
3, so the lemma is true for ¢ = 1. Finally, a,2¢ = (a,¢)* — N(v), so if N(v) = 2,
-2 < a2 < 2 and if N(v) =3, =3 < a,2¢ <6, which covers the remaining

cases. [1

Next we need to estimate how many totally positive v € §~Y(UF)/™ there are

such that T = 27 (1/1 | /Ny + va [/ Ng) lies within narrow limits, and use this
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to deduce a bound in modulus for all the terms of (4.9) where v is such that T is
bigger than a given bound, M say. Here it is easier to consider each §~1 coset of
§~1(UF)V™ in turn. We can write the cosets of 671 as (( §/u)*, ( F/u)~*¢) 6" for
g=0,...,m—1.

Proposition 4.11. Let {g, h} be a Z -basis for 6! so that g is totally positive and
g1hy — goh1 > 0. Let 2 =27 (gl/( ©/u)t*29/ Ny + g2/( W)_%\/M) andlet r >0
be an integer. Then the number of totally positive v € (( §/w)®,( F/u)729) 67}
with M +rz <T < M+ (r + 1)z, where T = 27 (1/1/ u/Ny + Vg/\/]Tg), is at
most '

VD /uN(n)/?z
Gy
Proof. Observe that v € (( "\‘/17)24,( ©/w)~2) 61 if and only if 11 = ( ) *(agp +‘
bhy) and vy = ( §/u)*¥(age+bhy) for somea,b € Z. Lety = 2r (hl/( /u)t2 /Ny +
hy/( %/uw)~% Nz). Then for this v, T = az + by and so we wish to bound the

(4.11) (M+(r+1)z)+1

number of a and b such that M + rz < az + by < M + (r + 1)z and such that v
is totally positive, i.e. ag; + bhy > 0 and ag; + bhe > 0.

But by our choice of bounds, for each value of b, there is precisely one a such
that M +rz < az+by < M+ (r+1)z. So all we need to do is to eliminate a from

the above inequalities, and the required result is the number of b which satisfy the

resulting inequalities.

As ¢ >0, a > —bhy/g1 and a > —bhy/g,. Thus

h h
—bz—2+by< M+ (r+1)z and —bzg—l-l-by<M+(r+1):z:
92 1
Rearranging this gives

21b(h1g2 — hag1) 27b(g1h2 — g2h1)
<M+ (r+1z and
g2 Fu) 2V Ny ( ) 91( F/u)~29/ Ny

but as {g, h} is a Z -basis for 6! and g1hy — gohy > 0, then g1hy — g2hy = 1/\/—D_,

<M+ (r+1)z

and so

(M+(T+1)x 92 1+2q,/ \/—<2,ﬂ-b<(M+(,’.+1 g]_ —2q /Nz\/—
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However 7/uN(n)/%z = 27v/D (gl( v/u) "2/ Np + go( Tu)'+¥ Nl) and so the
number of totally positive v in this coset such that M +rz < T < M +(r + 1)z

is at most

VD /uN(n)/?z
(27)?

(M+(r+1)z)+1

as required. [

Note that the bound above depends only on the value of z, which depends on
g but not A. Thus for the moment we will treat the bounds as functions of z. We

combine the last two propositions to give

Corollary 4.12. If z is as defined in the previous proposition, then the sum of the
terms in (4.9) corresponding to totally positive v € (( /x)*, ( §/u)™27) 8! where
T =27 (Vl/ uy/ Ny + 1/2/\/N2) > M is bounded in modulus by

(4.12)

e z Kiz? zle™®
K Ki——
(2m)2(1 — e=2) ((Kz + M+ - e"”) (l + MKz + 1= e‘“’) + 1(1 — 6_1)2)

where K1 = v/D %/uN(n)/2 and K, =14 (27 )*(5/u + ( w/w)~1)/DN(n)Y/2.
Proof. We see from Proposition 4.11 that we may bound the number of totally
positive v € (( F/u)?,(u) %) 6~ where M +rz < T < M+ (r+ 1)z by
Kyz(2r)~2 (M + (r +1)z) + 1, and by Proposition 4.9 we know that for those
v such that T is in this range, the term in v of (4.9) is bounded by (K, + (M +
(r +1)z))e~M+2), so the sum of the terms in (4.9) with totally positive v in this
coset of §~! with T > M is bounded in modulus by

e~M &
@n)? z_: e (K + M+ (r+1)z) (M + (r + 1)z) K1z + 1) =

e z K,z* 37
GRS ((K2 o) (s e—x) e

as required. O



Chapter 4. Calculating L-series 75

This corollary gives a bound which depends only on z, so the obvious question
is for what value of z is this bound optimal, and since we cannot specify = exactly,
what is the most appropriate choice of range so that we can guarantee to find a
permissible z in this range, and so that the bound is close to optimal for all z in
this range. Now M, K; and K, do not depend on g or z, so very basic analysis
says that the bound is optimal when z is small but z not too small. Our choice of

range is actually determined by the following theorem.

Theorem 4.13. There is a totally positive g € 6~ which satisfies the conditions in
Proposition 4.11 for some h, such that if as before we set x = 27 (gl/( /u)+2, /Ny
+02/( /) "2V/Iy), then 4n/(VD R/uN(m)¥/?) < @ < 2r.

Proof. To show we can find such a g we use various properties of continued frac-

tions. The following lemma establishes the required properties.

Lemma 4.14. Let z = 1"’—2‘@ ifd =1 mod4 and z = V/d otherwise. Define
20 =z, po = 1 and go = 0, and by induction define z, = 1/(2z—1 — |2r<1]). Then
there are coprime integers p, and ¢, so that p, —z¢, = —(pr-1—2¢r-1)/2,. Moreover

if we set y, = p, — 2¢,, and ¢, = (—=1)"N(y;), then 0 < ¢, < VD,

. _VYD+VD—dee _ 2¢,-1
i 2¢, VD - D —4cer

and (—1)"y, | 0 and 7 increases as r — 00. Also {y,,yr41} is a Z -basis for Oy.

Proof. —(po—2¢0)/z1 = —(1)(20 — |20]) = |20] — 2,80 p1 = |20 and g1 = 1. Note
p1go — g1po = —1. Now by induction,

—(pro1 — 2¢r-1) /2 = (Pr-1 — 2¢r-1)(2r-1) — 2r-1)

= (pr_y — 2Gr—1)|2r-1) + (Pr—2 — 2¢r-2)

s0 pr = |2r-1)Pr—1 + Pr-2, & = |2-1]¢r-1 + ¢r—2 and thus prgr—y — ¢Pr1 =

~(Pr-1¢r-2—qr-1Pr-2) = (—1)" so p, and ¢, are coprime integers. c, is positive since
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z, is positive and so by induction (—1)"y, is positive, and since ¢, = (=1)"y,(p, —
Zq-), where (p, — Zg,) is positive.
The next part is mostly algebraic manipulation. Assume d # 1 mod 4 (the

other case is similar). Then

- 7_1—\/(—11-—1(7""\/31‘ 1 T
2= (p (_quz,p a) _ 5o (VD + (-1)2(grg1d — Prpr1))

and 4(¢,g-—1d — p;p,-1)* = D — 4c¢,1, so the only thing to verify is the sign of
the final term. But if z, = (\/5 — /D — 4c,cr-1) /2¢,, then as z, > 1

\/D- > \/1_) — VD =2¢c¢ 2¢,1 2¢,21

>land 1<

<
2¢, 2¢, VD++VD=2¢¢6_, VD

so 2¢, > VD and 2¢,-1 > v/D. But this is impossible because D > 4c,c,—,. Hence

we have the required expressions for z,, and ¢, < VD because 2v/D/2¢, > z > 1.
Thus z, takes only finitely many values as ¢, and ¢,_; do, so 2, > B > 1 for some
B and so by induction 0 < (=1)"y, < B~ — 0 as r — 00, and y, decreases as r
increases because z, > 1. It is clear that 7, increases as r increases, since p, and
g- do and —Z is positive.

Finally as y;41 = |2r)¥r + ¥r-1, it is clear that y, and y,4, generate the same
subgroup as y,_; and y,, and hence by induction as yo = 1 and y; = |z] — z, that

is as 1 and z, but these generate Oy as a Z -basis. O

We apply this immediately as follows:
Lemma 4.15. Suppose w; > wp > 0 and wyw, < 1/D. Then there is a totally
positive y € O with

yw; +Jwy <1

and y’ € Oy such that {y,y’} is a Z -basis for O.

Proof. Consider the y, obtained in the previous lemma. yo = %o = 1 and (=1)"y,

decreases and J; increases as r increases, so there is a greatest even r such that
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yrwy > Grwe. If yrwy + Frwe < 1 taking y = yr and ¢’ = yr41 gives the result, so

assume not. Then

1 < yowr + Grwg < yow
YWy + Y we S Y 1+Dyrw1

so solving the quadratic equation in y,w; gives -

Yrw >\/E+ D—4Cr or y-w <\/E— D_4CT :
rW&i 2\/1—)‘ 1 2\/5

but the latter is impossible because of our choice of y,, since it would imply that

1
yrwy < 5. NOW Yryz = Yr/Try1Zr42 5O

Yot >VD+\/D_4CT(VD_\/D_4CT+ZCT+1)>VD"'\/D—4CT+2
r42W1 -
* 9v/D VD + D — oo 0D

as ¢,41 > 1. But then by choice of y,

< Cri2 < VD + VD —4cr
= Dy,youn 2D

and so combining these two expressions for y,42w; in a quadratic equation gives

Yr2W1 < Yri2W2

— Cri2
Yr42W1 + TrpoWz S YrpoWy1 +
Dy, y2un

<1

so we can take y = yr4s.and ¥’ = yp43. O

The required result is now almost a direct consequence of this lemma. Choose

an integer s so that w2+ /(v/D( /u)'*24\/Ny) > u=21/(v/D( ,{./a"—zq N;). Set
y25+1 u-25-1
N Y S C R
and observe that wyw, = 1/(D $/uN(n)*/?) < 1/D, so there is a totally positive
y € O such that w2y /(v/D( /&) */W) + w219/ (VB /) y/F5) < 1,

and a y’ € Oy such that {y,y’} is a Z -basis for O.

But there is an element ¢t € 67! such that i;(t) = w®+'/v/D and iy(t) =
u=2-1//D. Clearly t is totally positive and generates 6! as a O-module. There-
fore if ¢ = ty, then g € 67! is totally positive, and z = 27 (gl/( /)t /N;
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+g2/( T/u)"% Ng) < 27. Also by the AM-GM inequality, since g is totally posi-

tive, we have

v = 2 (00 /( ) P0y/Ny + 00/ () /o)
N(g) 4

> 4r >

=\ N = VD (@
Finally if A = +ty’ choosing the sign so that gihz — gah1 > 0, then {g,h} is 2 Z
-basis for 671. O |

Finally, we are in a position to bound all terms with T > M.

Theorem 4.16. The sum of all terms in equation (4.9) with totally positive v €
§~HUF)Y™ such that T = 2m (1/1/ uy/ Ny + I/2/\/N2) > M is bounded in modulus
by

(4.13)

e~Mm t/uV/DN(n)1/2 (27)*(F/u + (Fu)!)
n VNP (14 o ) (454 ST ))

Proof. By Corollary 4.12 we know that, for  as in the corollary, the sum of the
terms for v € (( Y/u)™, ( Y/u)~2) 6~ with T > M is bounded in modulus by (4.12),

that is by
eM T K z? z3e~®
M ) MKz +—2 ) 45 25
(=) ((K’”“ T e (” 1“1—e-z)+ 1(1—e-x)2)

where K; = v/D t/aN(n)/? and K, = 1 + (27)*( ¢/u + (/u)™)/DN(n)"/2. Now

observe (for example by comparing derivatives) that

e > (1 —(1+ w)e‘”)w ~ (1 —(1+ 27r)e‘2") I

T 472

for 0 < z < 27 with equality at £ = 27. Thus

eM ((Ko+ M+ 7)1+ MKiz+ 7K z)
= (27)? ( 1—e-2m + 17K,

eM [ 4x2(K, + M + T)(1 + MKz + TK;z)
< +1.7K,
@ P \In(i = (1 + Mo — (1 - (1 4 227

(4.12)
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for 0 < z < 27. But by comparing this with the value at z = 27, this is at most

eM ((Kz + M+ 7)1 420K (M +7))
(2m)? 1—e 2

+2K1)

, 27(1 — e~2")
if ((1 — (1 +2n)e2m)(1 +2n K (M + 7))) Sesin

which is certainly true if 47/K; < z < 27. But by Theorem 4.13 precisely such
an r exists, and hence, combining all the cosets of 6! and simplifying we deduce
that the sum of those terms with T > M is bounded in modulus by

e~Mm /uy/DN(n)/?
2r(1 — e=7)

(1+(M+8) (M+8+

as required. [J

In practice, we will want to know how big to choose M so that this is less
than a given value, L say. But if Mo is a good approximation to M then a good

approximation to M? + AM + B is

(M02 +AM0+B) e(M—Mo)(2M0+A)/(Mo2+AMo+B)

A%’ —4B
(M2 + AM; + B)

2(M2+.AM+B)+(M—M0)2<1+2 )2M2+AM+B

provided 1+ (A2 —4B)/2(M&+ AMo+ B) > 0. In our case this is certainly satisfied
if My > 0. So to determine M set

(4.14)
_ | (M¥/aVDN(n)/? _ (2m)2( P+ (Y/u)™)
Mo =In ( on(l — o)L ) K3 =2Mo +16 + NOLE
Ki=1+(Mo+8) (Mo 44 20) gg;;)g;g/ﬂ)‘ )) M= Mo+ =i _h}g;m

This will give a close approximation to M if M is close to Mo, that is if In Ky
is small compared with My. But this will be the case if L is reasonably small.

Note that the value of M that (4.14) gives turns out in practice to be signifi-
cantly bigger than it need be. This is probably because some of the approximations

used to give a reasonably simple result are fairly loose for some terms. Note also
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that the bound assumes that the individual terms are calculated to sufficient ac-
curacy to make the error from this source negligible.
It is also useful to know the number of terms that 'this bound leaves us to

calculate. But by (4.11) the number of terms required in each coset is
[M/z] 1(M}| (M M
> (re2ev/D YN + 1) = VD VAN 3 2] (2] 1)+ k&

-‘/QE M+2)+ Yy ﬁN(“)m

r=1

< = VuN(m) (M + 1)(

Thus the total number of terms to be calculated is at most
(4.15) %\/ﬁm w/uN(n)V2(M? +4M +2)

This eqﬁation, (4.13), and (4.14) all suggest that the optimal choice of m is
approximately that which minimizes m T/u, that is m ~ Inu. However, the coeffi-
cients a, that need to be calculated will be those where M > T = 27 (1/ ~/u/ Ny +
v2/+/Nz), that is for those v where N(v) < /uN(n)/3(M/4r)?. This bound

for N(v) is roughly proportional to F/uln(m {/u)® and the number of a, will

2 is minimal for

be a monotonicly increasing function of this, and F/uln(m F/u)
m > lnu, so the optimal value of m will be slightly bigger than lnu, though pre-
cisely how much bigger will depend on what proportion of the time is taken by

calculating the a,.

4.3 Implementation

This section will tidy up a few bits and pieces I haven’t mentioned yet, and give
some idea of how I programmed some of the above where I think it needs comment.
One of the things I haven’t mentioned yet is how to determine the sign w of the
operator Wy in (4.2) and following equations. In fact guessing is a reasonable
option, since there are only two choices, and the right one is the one which gives

results consistent with the other calculations, or the one which gives the same
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answer to appropriate precision when m is changed. But if we restrict attention to
semi-stable elliptic curves, we can calculate w directly, assuming the curve comes

from a Hilbert modular form (as we are already doing).

Lemma 4.17. Let f be a Hilbert modular cusp form over I'o(n) corresponding
to an elliptic curve over a real quadratic field k¥ with semi-stable reduction. Then
the eigenvalue w of the operator Wy equals [I(—a.¢), where each v in the product

generates a different prime ideal dividing n.

* Proof. Recall that Wy = [J W, where the product is over a set of v which gen-
erate all the distinct prime ideals (v) dividing (n). But if (n) is the product of
distinct prime ideals (i.e. the conductor of the corresponding curve is squarefree,
so the curve is semi-stable), thén you can show that for any cusp form f on I'o(n),

(7o,

non-trivial common eigenfunction of the W, and the U,, then ( f

W +f> is a cusp form on To(n/(v)) (compare with [1]). So if f is a
W, + f) isa
u,lw, =

The former case is impossible since the matrix in the definition of W, may be

(x9) = £ f, but then by

(x9) we can deduce that
01

U,
scalar multiple of f, and so either f is a cusp form on I'o(n/(v)) or f

written as o (4 9), where a € I'g(n/(v)), hence f‘W =f

comparing the fourier series of f and f

N(v)ay, if A€ (v)
ta) =
0 otherwise

and hence by induction that f = 0.

But the latter implies that w, = —u, where f y, = W f and fIW = w,f.
v v
However u, = a,¢, and w = [[w,, sow = [1(—ave) where the product is over a set

of v which generate the distinct prime ideals dividing n, as required. [J

I haven’t yet found a way of calculating w when the curve is not semi-stable, so
any of my results which are in this case have been calculated by using the ‘guess

and check’ method.
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My programs use routines provided by the PARI package [6]. I decided that
the easiest and most efficient way to implement the calculatioﬂ of the L-series was
first to calculate and store the values of a,¢ for sufficiently many generators v of
powers of prime ideals. This was done by calculating a,¢ for each prime ideal (v),
by counting points on the reduced elliptic curve, often by fairly crude methods,
and then using the recurrence relation given by the product formula in Theorem
4.4 to calculate a,¢ for sufficiently many of those v which generate powers of this
prime ideal. Thus, again by Theorem 4.4, since a.¢ depends only on the ideal (v),
every a,¢ could be calculated by taking a product of stored values.

Next I calculated the terms of the L-series in order of increasing N(v) (that
is N(v) = 1/D,N(v) = 2/D,...) ignoring those which were too small. T did this
because it allowed me to calculate together all the required terms with the same
value of a,¢ by choosing a generator v for each fractional ideal in 6! with the
appropriate norm, and then evaluating all sufficiently large terms corresponding
to v multiplied by roots of units. Thus AI only needed to evalute each value of
a,e once. It was also easy to find each fractional ideal in 6~ with a given norm,
because each such fractional ideal is just ¢ times an ideal of Ok. Thus I considered
in turn all possible ideals of Oy with norm 1,2,3, etc. by considering all possible
products of prime ideals with this norm, and then calculating the corresponding
terms.

I could have calculated w (at least in the semi-stable case) in terms of the a,¢ for
those v where bad reduction occurs. However in this case a,¢ = £1 where the sign
depends on whether the reduction at (v) is split or non-split multiplicative, and
(for primes not above 2) this reduction may also be determined by seeing whether
—cg is a quadratic residue or not with respect to this prime ideal (cg s the usual
function of elliptic curve coefficients, see Silverman [21] for example). Thus w may
be evaluated by evaluating the symbol (—cs/(bad primes not above 2)) which is

the natural generalization of the Legendre and Jacobi symbols to real quadratic
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fields of narrow class number 1.
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Chapter 5

Analysis of Results and

Generalizations

This chapter assesses the results from my calculations of the linear dependencies
between the L-series of a real quadratic elliptic curve at s = 2, and determinants
of pairs of elements in the image of the regulator map, but first it explains how
I obtained the lists of elliptic curves in the first part of Appendix B and how the
information in the second set of tables is laid out. Finally there is a section for

conclusions and suggestions on how this work might be extended.

5.1 Explanation of tables for curves over real
quadratic fields

We now know how to calculate the L-series for an elliptic curve over a real quadratic
field k (or at least conjecturally, and provided k has narrow class number 1). But
first we need some curves. These will have to have a torsion group with order at
least 5, because we are expecting the image of K2(Ep) to have rank 2, and thus
we need at least two independent vectors from the vp to stand a chance of having

this image in the part of the image of the regulator map we are studying. And we
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need at least 5 torsion points because vp = 0 if P has order 2, and vp = —v_p

forany P T.

Fortunately, there are 1-parameter families of elliptic curves with each such
torsion group, provided the group is not too big, so it is easy to find examples.

So for example we have
Lemma 5.1. Every elliptic curve defined over Oy with 5-torsion, may be written
in the form
(5.1) y2 + (r + 8)zy + (rs?)y = 2° + (rs)z?
where (at least for quadratic fields) r,s € O, and this curve is in giobal minimal
form if » and s are coprime.

Proof. Suppose we have an elliptic curve defined over Oy with a point of order 5
(over k). Change co-ordinates so that this point is at the origin and has tangent

y = 0. Thus the curve has equation
y? + a1zy + asy = 7° + aga?
where a1, a2, a3 € k. For any equation of this form we have —(0,0) = (0, —a3) and
—2(0,0) = (—az,0). The line joining these two points is a;y + asz + azas = 0.
This intersects the curve when
0 = ax%a® + a%2? — as’(z + a)? + azaz(a1z + a3)(z + a»)
= z(z + a2) (a22x + az(a;az — a3))
but because (0,0) has order 5, the line is tangent to the curve at z = —as, and so
—a2% + a1a2a3 — a3z’ =0

and thus if we set 7 = a,?/a3 and s = asz/a, we get the above equation. If we
express the usual elliptic curve qualities ¢, and A as homogeneous polynomials in

r and s, we see by polynomial manipulation that as fractional ideals

125 (r,s)® C (A,c43) (r,s)"
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But the original curve was defined over O and so we have A, cs® € Oy as these have
not changed, so 125 (r, s)'> C O, and as (125) is not contained in the twelfth power
of any prime ideal when k is quadratic (or rational), we deduce that r,s € O.
Moreover if r and s are coprime, then (125) € (A,cs®) and thus the curve is in
global minimal form because (125) is not contained in the twelfth power of any

prime ideal and so the curve is minimal for each prime ideal. O

There are similar results giving equations for curves with larger torsion groups,
but we don’t always have the stronger condition that the resulting curve is minimal.
This does not however provide many problems since it will only fail to be minimal
for very small prime ideals and because we assume narrow class number one, it is
still easy to find a global minimal equation.

Observe that if we replace y with =3y and z in equation (5.1), with u=2z, we

get the equation
y? + u(r + 8)zy + u¥(rs?)y = 2° + u*(rs)z’

so we are in effect replacing (r, s) by (ur, us). This transformation does change the
real periods of the two embeddings of the elliptic curve into C (each real period
is divided by the appropriate embedding of u in R) but it does not affect the
normalized lattices for each embedding £ — C. Hence the curves corresponding
to (r,s) and (ur,us) are really the same, and so the curve is parameterized by
the 1-dimensional projective coordinates [r : s]. But note that if v is a unit, the
coordinates (r, s) and (ur, us) give us alternate global minimal forms for the curve,
and it may not be apparent from the equations of these two global minimal forms
that they are in fact the same.

The 5-torsion points of the curve (5.1) are (0,0), (—rs,r%s), (—rs,0), and
(0, —rs?), and if we change co-ordinates in turn so that each each point is mapped
to (0,0) with tangent y = 0 we get the curves corresponding to the projective co-

ordinates [r : s], [s : =7}, [~ : 7] and [—r : —s] respectively, so [r : s] = [-7 : —s]
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and [s: —r] = [—s : r] all give the same curve. Thus only one such curve is listed
in my tables.

It is also fairly easy to see from the form of the torsion points that, assuming
there are no extra torsion points, the primes where there is non-trivial split mul-
tiplicative reduction are precisely those which divide r and s. Moreover (0,0) lies
on the fibres corresponding to :EB3(§) for each prime dividing r, and on the fibres
corresponding to +B3(}) for each prime dividing s. Thus m'is 0 if both r and s
afe units, 1 if only one is a unit, and 2 otherwise.

The tables of 5-torsion points which start Appendix B were obtained by listing
all the curves with 5-torsion with sufficiently small r and s and sorting those
with small enough conductor into isogeny classes (and adding any obvious missing
isogenous curves),' discarding the multiple copies of each curve as described above,
for each of the fields Q(v/5), Q(v2), and Q(v/13). It is followed by tables of 6-
torsion curves and 7-torsion curves for the same fields, the curves being obtained
by using the same sort of methods as above. Note that these tables are by no
means guaranteed to be complete. I do not claim to have found every isogeny and
every conductor in the range considered. |

The entries in each such table indicates the conductor of the curve, a label in
the style of Cremona with a letter indicating the isogeny class of the curve and a
number to distinguish curves (however unlike Cremona’s tables the first curve in

“each isogeny class need not be a strong Weil curve, since it is not clear that such a
concept exists for curves over real quadratic fields, and even if it does, we are only
considering curves with a given torsion subgroup and this may not include any
strong Weil curve in an isogeny class). Note that I haven’t calculated the L-series
corresponding to every curve listed in these tables. This is partly due to lack of
time, and partly because my program started running out of memory space for
curves with larger conductors, for the precision of the L-series I was working at.

After this first set of tables, there are further tables which first list linear depen-



Chapter 5. Analysis of Results and Generalizations 88

dencies amongst the vectors vp which consist of components (7Im(7))2K1(0, P,,2)
for each real embedding o: £ — C, where P, is on the normalized lattice A,. Note
that the columns of this table are indexed by the actual points P unlike the rational
tables. This is because it will often be the case that P embeds at different points
on the normalized lattices, which of course need not be the same anyway. The
second set of columns show linear dependencies between determinants of matrices
consisting of pairs of these vectors vp. The columns are labelled with entries of
the form ‘det;s’ by which I mean the determinant of the matrix whose columns

correspond to the first and second points listed in the first part of the table. For

example,

Curve |[m' | P | 2P | 3P | 4P || detys | détoy | detsg | L
6A1 0 21 -4 -2 1 -9 9
2 1 2 4

indicates that for the curve 6A1 (over Q(+v/5)), if P is the point of order 10
such that 2P=(0,0), then

—2vp +4vep +2vip — lvyp =0 and 2vp + 1vop + 2vap + 4vyp = 0

and also
—5det (Vgp I V4_P) + 9L(E,2) =0

These linear 'dependencies are of course only established numerically, so it is not
proven that such dependencies exist, merely that the linear combinations listed
give a very small result. However in all the cases I checked the dependencies are
correct to at least 50 decimal places, and the error is of the sort of magnitude
explainable by appfoximations made in calculation.

Note that there is only one entry in the results tables for each pair of conjugate
curves, since these are the same except that the real embeddings of £ have been
exchanged, and hence the linear dependencies will be the same, apart from a minus

sign in the determinants. Such pairs of curves will occur when the conductor is
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not rational, and we get one curve corresponding to the conductor, and one to its
conjugate. If the conductor of a curve is rational, or generates an ideal that is
fixed by conjugation, then the conjugate of the curve can either be an isogeny of
the original curve, or the same curve after multiplying by units. For example over
Q(\/g) in the 6-torsion table, x+7Al is the conjugate of -x+8A1, and 4x+8A2 is
the conjugate of 4x+8A3.

Finally a word of caution. Whereas most of my rational results where done
by passing files directly from one computer program to another and have been
fairly carefully checked where this was not true, in the quadratic case more of the
calculations have been done by programs with manually entered data, and the
tables have been manually typed. Thus although I don’t know of any errors, I
would be the first to admit that the probability that there is some minor slip, in

particular an errant minus sign, is probably quite high.

5.2 Analysis of results for real quadratic fields

The first thing to observe is that we do in fact have some results, i.e. there are
linear dependencies (up to expected calculation error) between the determinants
of pairs of elements of the image of the regulator map and the L-series at s = 2 for
various elliptic curves. Thus something along the lines of Beilinson’s conjecture
must be true,'and unless we are the victim of an extraordinary coincidence, all the
elliptic curves where we get such linear dependencies are modular, because of the
way we calculate the L-series.

The clearest aspect of the results is that the dimensions of the various parts that
make up the image of the regulator map are what we would expect from what has
been said so far. Thus when there is some linear dependency between the L-series
and the determinants from elements making up the image of the regulator map,

we find that the dimension over Q of the image of the regulator map (from the
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part of Ky(Ex) we consider) minus m’, the number of distinct split multiplicative
reductions of E is exactly 2, and if there isn’t any linear dependency, the dimension
minus m’ is 1 or zero. Moreover, whenever we would expect from the value of m’
that there might be some linear dependency between the determinants and the L-
series there is such a relation, except when the curve is rational and all the points
over k are in fact over Q. In this latter case, the two real embeddings are identical
so all the vp are real multiples of (1,1)7, but the Q-dimension minus m’ is always
1 or 0 anyway because of what happens in the rational case. These results again
suggests that the regulator map is injective.

Thus as we have stated it, Beilinson’s conjecture holds numerically in the cases
we would expect to be able to verify via this method. But the results still have
something to say on the form of the linear dependency involved.

Having said that, the evidence from the quadratic case is less clear than the ra-
tional case, simply because things are more complica.téd, since linear dependencies
between the vp correspond to quadratic dependencies between the determinants.
Thus for example it is harder to say whether the dependencies do in fact corre-
spond to the conditions which the image of K(Ep) should satisfy because of the
various split multiplicative reductions. The easiest such case to check is where we
have the torsion group C7 (in the cases of Cs and Cs we must have m' =0 to have
any dependency between the L-series and the determinants). Assume we are con-
sidering a curve with torsion group C7, and where P = (0,0) maps onto the fibre
corresponding to +B3(}) under split multiplicative reduction for all primes where |
split multiplicative reduction occurs. Then for an element avp+bvep+cvsp € ImR
to be in the image of Ko(Eo)g we must have 5a + 5b + 2¢ = 0, hence the image of
K2(Eo)g is generated by vp — vop and 2v,p — 5vap. Thus the L-series should be

a rational multiple of
det (VP — Vap I 2V2p - 5V3P) = 2det 12 — 5det 13 + 5det 23

and the other possible split multiplicative reductions should be (up to the sign of
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each term) a permutation of this. This is precisely what does occur in the curves
with torsion group C7.

For larger torsion groups there are more cases to consider as there are more
types of split multiplicative reduction, and there may be linear dependencies be-
tween the vp, and these don’t seem to fit into any pattern from one curve to the
next. Nevertheless, if we just look for linear dependencies of the L-series and the
determinants formed from the minimal number of vp likely to give a result (i.e.
2+ m’' of .them), this makes things as simple as possible, and it is possible to check
that the linear dependencies obtained do correspond to the determinant of a pair
of vectors made up of the vp which satisfy the linear dependencies imposed by the
split multiplicative reductions. |

However there is sometimes a further complication, namely extra linear depen-
dencies between the determinants for some of these larger groups. These seem to
arise when some of the E-K-L series in the two different embeddings £ — C are in
fact the same. This will be the case when the two embeddings give the same nor-
malized lattice, and so the E-K-L series from one embedding will be a permutation
of those from the other, and this quite often leads to pairs of determinants being
equal up to sign, or in the case of curves which are in fact rational curves, to pairs
of parallel vp. For this sort of situation I have only listed the dependencies in the
case where they they do not obviously fit into this pattern (i.e. for the curve 6A2
over Q(v/13)).

There is one more interesting case, namely the curve 6A3 over Q(+/13). In this
case one of the embeddings gives a normalized lattice which has index 4 in the
other normalized lattice, and whereas I haven’t fully explained the dependencies
in this case, I do observe that if we look for linear dependencies between all the
E-K-L series from both embeddings, we do find linear dependencies, and at least
some are explained because they correspond (up to a factor of v2) to E-K-L

series in the lattice between the two under consideration (namely the relations
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2(vp — Vap), = (Vap — Vap); and —2(Vop — V3p), = (VP — Vap),)-

As well as checking that the linear dependencies are consistent with the pre-
dicted form, we can also look at some of the factors involved in any linear depen-
dency between determinants of the vp, and the L-series. Recall in the rational
case we had the equation

C1 |T| Z aPKl(O,'P,Q) + CzNL(E,Q) =0
PeT

where the ap were coprime. From the results I conclude that the corresponding
‘equation in the quadratic case is probably -
(5.2) a TP aijdeti; + N(n)D*L(E,2) =0

2%
where the a;; have no common factors, N(n) is the norm of the conductor, and D
is the discriminant of the quadratic field.

The results are in fact rather ambiguous about the power of |T'| which should
appear in this equation, as you can also argue that |T'[* should replace [T}®. This
would reduce the number of factors in the various values of c;, but introduce extra
factors into various of the values of ¢;. However, if we recall what happened in
the rational case, we saw there that ¢, tended to have stray factors for smaller
conductors, and ¢; tended to have stray factors only for larger values. This is most
consistent with the above choice of power of |T|.

Even if we assume the above equation, the true values of ¢; and ¢, are not as
obvious as they at first might seem, because for simplicity and to save space, I
have only listed linear combinations between the L-series, and the least number
of determinants which could be expected to give a result considering the linear
combinations that exist between the vp. However it is often possible to use these
linear combinations to cancel factors of ¢, and increase ¢;. The true case to con-
sider is when we maximize ¢; and minimize c; because this corresponds to finding
generators for the whole Z-lattice which is the image of Ko(Eo)g in K2(E) (or

more precisely the image of this under the regulator map).
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For example, consider the curve 6A1 over Q(v/5) which has torsion group Cio,

we have
—5det 24 + 9L(E, 2)=0

which suggests that ¢; = 1 and ¢; = 2. However, we can deduce from the linear
dependencies on the vp that 5 det 2a+4det 34 = 0 and 10det 13— 17det 34 = 0 from
which we can deduce that —5det o4 = 120 det 13 — 200 det 34 so in fact we actually

have
120 det 13 — 200 det 34 + 9L(E, 2) =0

so in fact we really have ¢; = 4 and ¢; = 1. Note that we have to ensure that this
does actually correspond to the determinant of appropriate combinations of the

vp. In this case we have
—-120 det 13+ 200 det 34 = 40 det (V3 | 3V1 + 5V4)
On the other hand we could have equally obtained the equation

40det 13 + 80det o4 + 9L(E, 2) = 0

which does not arise as a determinant.

The above example is made easier because m’ = 0. When m’ is not zero, we
must also ensure that all the linear combinations of determinants we obtain arise
from a determinant of combinations of vp which satisfy the conditions imposed by

split multiplicative reduction.

Tables 5.1 to 5.3 give the real values of ¢, and ¢, I obtained in the curves where
a linear relation between determinants and the L-series exists over each field.

Note that ¢; consists only of factors of 2 and also factors of 3 if 3 divides
IT|, though this is partly ensured by the way I choose the power of |T| to put
in equation (5.2). However c; is less well behaved, quite often containing extra

factors from the number of torsion points, or the norm of the conductor, or the
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Curve | ¢ |c||T|]| Curve |c¢ | e ||T] Curve ¢ | e | [T
TA1 16| 5] 5 || 2x+14A1 | 2 | 5 | 10 9A1 21 3|6
I2%x+8A1 |16 | 5| 5 || 2x+14A2 | 4 | 5 | 10 9A3 4 3 6
10B1 611 5 10A1 12125 15 x+7A1 3 2 12
10B2 21115 x+TA2 21116 4x+8A1 3 2 12
2x+10A1 116 | 1 | S x+7A3 6 |11 6 x+6A1 1 1 7
3x+13A1 (16| 5 | 5 x+7A4 | 6 |25| 6 || 2x+10A1 | 8 | 35 | 7
15B1 161 56 x+8A1 21| 6 3x+11A1 {16 [ 133 | 7
22A1 161 5 x+8A2 21146 3x+24A1 | 8 | 21 7
6A1 4 [ 110 4x+8A2 {3 | 4| 6 | 11x+27A1|16| 7 | 7
6A2 11110
Table 5.1: ¢; and ¢, for curves over Q(\/E—))
Curve |c |c ||T] Curve |c | c ||T||| Curve | | |]|T]
4x+11A1 [ 8 [ 1| 5 || 3x+12A2 |1 | 5| 10 TAl 4 111 6
13A1 32115 || 2x+5A1 |2 | 3 | 6 |[2x+6A4| 3 | 2 | 12
3A1 4 [ 1]10 2x+5A2 |4 | 3| 6 [[2x+6A1 | 3 |1 |12
3A2 2 1110 2x+6A2 |6 |11 | 6 || x+10A1| 2 |7 | 7
x+8Al 21510 2x4+6A3 | 3 | 2| 6 (| x+10A2|16 |7 | 7
x+8A2 21510 x+6A1 | 3| 2| 6 |[[x+12A1 | 4 |7 | 7
3x+12A1 |1 | 5] 10 x+6A2 |3 | 4| 6 |[x+16A1 16| 7 | 7

Table 5.2: ¢; and ¢, for curves over Q(\/i)

discriminant of the field. But there are other extra factors, like a factor of 19 in

curve 3x+11A1 over Q(+/5), or 31 in curve 2A1 over Q(v/2). But of course extra

factors in c; are probably just because our method doesn’t consider all of K2 (Ex).

There are no stray factors in ¢; but by analogy with the rational case, I suspect

this is because we have not calculated any curves with big enough conductor.
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Curve | ¢, | e | |T] | Curve |1 | 2 | |T]
2A1 1631 5 || 6A3 |2 |45 10
2A2 | 2|1 ] o 6A2 |1 (10| 20
6A1 | 2|5 |10

Table 5.3: ¢; and ¢, for curves over Q(\/ﬁ)
5.3 Conclusions and areas for further study

In this thesis, I have provided a way of calculating thé L-series of a modular
elliptic curve over a real quadratic field with narrow class number 1, and used it to
confirm numerically aspects of Beilinson’s conjecture, in the process showing that
a number of real quadratic curves are almost certainly modular with the expected
conductor. In particular, I have shown that the image under the regulator map of
K2(Ep) has rank at least 2, and probably exactly 2, for various elliptic curves over
some real quadratic fields, and in these cases shown that this image has a volume
which agrees with a simple rational multiple of the L-series L(E,2) to around 50
decimal places. I have also detailed the linear dependencies involved in this, and
conjectured a formula analogous to the Birch Swinnerton-Dyer conjecture for this
case.

I have also confirmed and extended Bloch and Grayson’s calculations for the
analogous case for curves over the rational numbers, and found curves which may
correspond to a non-trivial group III. Thave also produced a formula for calculating
the L-series of modular elliptic curves over real cubic fields with narrow class
number one, and outlined how to construct this for general curves of narrow class
number one.

There are various obvious areas in which this work can be extended. First it
should be possible to remove the restriction to fields of narrow class number one.
This assumption mainly assures that the modular form associated to the L-series

lies on one connected component of the appropriate space. It should be possible
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to remove this assumption by considering fourier series expansions for some cusp
on each connected component and combining them somehow to get the L-series.
The tricky part may be finding the appropriate functional equation, but I think it
must be along the lines of what I have here.

Second, we can consider the same problem over bigger fields. The real cubic
case is just a matter of implementing the formula I have given, and the only bar

to going higher than that is working out a fundamental domain of the appropriate

sort.

It should also be fairly easy to carry out calculations using a mixture of torsion

and non-torsion points, providing you can find appropriate curves.



Appendix A

Results from Rational

Calculations

This will be a table of results, explanation will be in chapter 3.

These tables indicate linear dependencies (to about 70 d.p.) between values
of E-K-L series and the L-series evaluated at s = 2. N is the conductor of the
curve, and m’ is the number of different split multiplicative reductions as explained
in Chapter 3. The other columns are labelled by a point which corresponds to a
multiple of the E-K-L series evaluated at that point on the curve when normalized

so that the real period is 1. For example

!

NL

Curve m
T9A3(A) [ 0 |1

[N M

indicates that on the curve 19A3(A),
—12 ((vIm(r))*K1(0, 3,2)) + 1(19L(E,2)) = 0

The results of chapter 3 are as follows.
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Appendix A. Results from Rational Calculations

Curve m' || Curve | m' { Curve | m’ || Curve | m’ || Curve | m/
19A1(B) 1 [[234E3 | 1 |[[426C1 | 1 || 585B1 | 1 || 754A1 | 1
%A1(B) | 1 || 246F1 | 1 | 430C1 | 1 || 585D1 | 1 || 756B2 | 1
35A1(B) | 1 || 254A1 | 1 | 43002 | 1 || 590A1 | 1 || 756E2 | 1
37BL(C) | 1 || 254A2 | 1 || 434B1 | 1 || 594H2 | 1 || 762F1 | 1
38A1(D) 1 267A1 | 1 |1434B2 {1 ||612B1 | 1 || 7T714A1 | 1
51A1(A) 1 ||270B1 | 1 | 435A1 | 1 |[614B1 | 1 || 774F1 | 1
B4B1(A) | 1 || 270C2 | 1 || 450B2 | 1 || 618C1 | 1 | 780D1 | 1
77B1(D) 1 ||270D1 | 1 | 450B4 | 1 ||618D1 | 1 || 786F1 | 1
91B2(C) 1 || 278B1 | 1 | 459C2 | 1 |[627B1 | 1 || 794B1 | 1
T0GAL(B) | 1 | 286A1 | 1 | 460C1 | 1 | 635A1 | 1 || 794D1 | 1
106C1(E) | 1 [[294D1| 1 |1 466B1 | 1 [[642B1 | 1 || 794D2 | 1
110B1(A) 1 300B1 | 1 || 470B1 1 || 650L1 1 [[795C1 | 1
1IOCI(E) 1 315A2 | 1 [[470D1 | 1 |[651E1 | 1 [|801C2 | 1
140A1(A) | 1 315A3 | 1 [[485A1 | 1 ||651E2 | 1 || 806E1 | 1
142D1(C) | 1 || 318B1 | 1 | 486D2 | 1 657C2 | 1 (| 806E2 | 1
153B2(B) | 1 [ 326C1 | 1 | 486E2 | 1 || 658C1 | 1 | 807Al | 1
158D1(B) | 1 | 333A2 | 1 [ 486F1 | 1 | 666C2 | 1 | 810A1 | 1
162B1(G) | 1 || 342A2 | 1 490C1 | 1 ||670B1 | 1 || 810B1 | 1
162B3(1) 1 [ 342A3 | 1 |[490E1 | 1 || 682A1 | 1 | 810C1 | 1
162D1(E) | 1 || 350B1 | 1 || 506C1 | 1 | 682A2 | 1 810D1 | 1
170C1(F) | 1 || 354B1 | 1 |[516D1 | 1 693C2 | 1 || 810E1 | 1
T70D1(D) | 1 || 355A1 | 1 | 522C1 | 1 | 693C3 | 1 || 810F1 | 1
T71B2(B) | 1 | 358B1 | 1 || 522H1 | 1 || 702E1 | 1 | 810G1 | 1
174A1(1) 1 || 366F1 | 1 [ 522M2 | 1 || 702H2 | 1 | 810H1 | 1
T78A1(A) | 1 || 370C1 | 1 | 530A1 | 1 | 702N1 | 1 || 813BI | 1
182B1(A) | 1 || 372C1 | 1 537C1 | 1 || 702N3 | 1 || 813B2 | 1
182B2(B) | 1 | 378A1 | 1 [ 540B2 | 1 | 702P1 | 1 | 814Al1 | 1
187AI1(A) | 1 || 378A2 | 1 | 540E2 | 1 702P2 | 1 || 815A1 | 1
189B2(D) | 1 || 378B1 | 1 || 540F1 | 1 | 705C1 | 1 || 819E2 | 1
T89CL(F) | 1 || 378EL | 1 || 546D1 | 1 | 71412 | 1 || 819E3 | 1
T90CT(A) | 1 || 378E3 | 1 | 546D2 | 1 || 715A1 | T || 822C1 | 1
209A1 1 378F2 | 1 || 555B1 1 ([730B1 | 1 | 825C1 | 1
214D1 1 [|396C2 1| 1 {I558B1 | 1 (| 730K1 | 1 (|828D2 | 1
218A1 1 402D1 | 1 | 558F1 1 (| 735D1 | 1 | 830A1 | 1
219B1 1 [1402D2 | 1 | 564B1 | 1 || 738J2 1 || 854B2 | 1
222A1 1 | 405A1 | 1 || 572A1 | 1 || 740B1 | 1 || 858D1 | 1
234E2 1 [|406B1 | 1 || 574F1 | 1 || 753B1 | 1 |/ 858J1 |1

Table A.1: Curves with torsion group C3 and no relations (part 1)
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Appendix A. Results from Rational Calculations

~

Table A.2: Curves with torsion group C3 and no relations (part 2)

Curve | m' || Curve | m' || Curve | m’ || Curve | m’' || Curve | m
862D1 | 1 [1903B2 | 1 }918G1 | 1 |1 938D1 | 1 ||973B2 | 1
866A1 | 1 |1 906C1 | 1 | 91811 1 [|938D2 | 1 |j978H1 | 1
874F1 | 1 |1 906C2 | 1 | 918J1 | 1 [[940C1 | 1 || 986A1 | 1
882F1 | 1 || 906D1 | 1 J921B1 | 1 || 946B1 | 1 || 988D1 | 1
882H2 | 1 [1910B1 | 1 | 924G1 | 1 | 948C1 | 1 | 990F2 | 1
891B1 | 1 || 910E1 | 1 |/ 924H1 | 1 || 954E2 | 1 || 990L2 | 1
894C1 | 1 |} 910E2 | 1 | 93011 1 (|954F2 [ 1 ||994D1 | 1
901C1 | 1 [[918D2 | 1 ([ 934B1 | 1 ([ 954K2 | 1 |[995B1 | 1
902B1 | 1 [[918E2 | 1 ]} 935B1 | 1 [[966K1 | 1 |[996C1 | 1
903B1 | 1 J 918F1 | 1
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Appendix A. Results from Rational Calculations ' 100

Curve m’ 3 | NL || Curve | m’ 5 | NL || Curve | m’ z | NL
19A3(A) 0 -12 1]225B1| 0 1 0| 540D1 | 0 |-324 1
26A3(A) 0| -36 11 236B1| 0 | 216 1| 550D1| 0 |-324 1
27A1(B) 0| -12 1] 242B1 | 0 |-108 1 594C1 | 0 | 162 1
57A3(A) | 0 | 1] O] 243A2] 0| 1] O] 6I2A1| 0 | 324] 1
7A4(C) | 0 | 12] 1] 243B1| 0| 1| 0| 620A1| 0 | 324 1
35A3(A) 0 36 1] 270A1 | 0 | 324 1 650G1| 0 | 324 1
37B3(B) 0 -12 1278B3 | 0 72 11675C1 | O 1 0
38A3(C) | 0] 18| 1| 324A1| 0 |-108] 167601 0 |-216] 1
44A1(A) 0 -27 11324B1| 0 |-216 170001 | 0 |-324 1
50AL(E) | 0 |-108| 5] 324C1| 0 |-108| 1] 70263 | 0 | 108] 1
50A3(G) 0 54 1]324D1| 0 | 216 1] 702H1 | 0 {-108 1
54AI(E) | 0 | 54| 1| 325A1] 0 |-108| 1| 722A1] 0 |-324] 1
54A3(D) 0 36 1(326C3 | 0 | -36 1] 756D1 | 0 |-324 1
77B3(C) 0 36 1] 333A3| 0| -36 1] 756F1 | 0 |-648 1
9IBI(B) | 0| 36| 1] 370C3| 0 | 108| 1[854B1] 0 |-108] 1
92A1(A) 0 |-108 1378B3 | 0 | 108 1] 82A1 | 0 | 324 1
108A1(A) | 0 1 0| 378F1 | 0 | 108 1 81F1 | 0 | 540 1
116B1(A) | 0 | 216 1| 404B1 | 0 |-108 11 892B1 | 0 |-216 1
T94A1(B) | 0 | 108 | 1] 405B1] 0 |-108| 1] 900CL |0 | 1] 0
158D3(A) | 0 -36 1]441B1 | 0 1 0| 900F2 | 0 | 324 1
162A1(K) | 0 | 108 1] 459F1 | 0 | 324 1{916D1 | 0 |-216 1
T63C1(A) | 0 [-108 | 1| 485A3] 0 | 72| 1| 92Az] 0| 1] 0
162C3(D) | 0 o4 1] 486A2 | 0 | 216 1[972B2 | 0 1 0
T71B3(C) | 0 | 36| 1] 486B2| 0 |-108] 1| 972C1 [0 | 1] O
172A1(A) | 0 | 108 1] 486C1 | 0 |-108 1972D1 | 0 1 0
189B1(C) | © -36 1 490A1 | 0 |[-324| 1(973B1| 0 |-180 1
189C3(H) | 0 -36 1] 540A1 | 0 | 324 1] 980A1 | 0 | 648 1
196B1(C) | 0 | -108 1] 540C1 | 0 | 324 1

Table A.3: Curves with torsion group C3 with relations



Appendix A. Results from Rational Calculations

Curve m' || Curve | m' || Curve | m’ | Curve | m’ || Curve | m’
17A1(C) 1 ||210C1 | 1 [|395A1 | 1 | 552D3 | 1 || 720J8 | 1
33A3(D) 1 ||210C4 | 1 ([402B3 | 1 || 552E1 | 1.|[744B3 | 1
39A3(D) 1 || 210E6 | 1 |[410B1 | 1 | 560D4 | 1 || 759B1 | 1
40A4(C) 1 ]/222C4 | 1 | 410B4 | 1 [[561D4 | 1 || 759B4 | 1
55A3(C) 1 [|231A4 ] 1 [[423C4 | 1 || 570E4 | 1 |[ 760E1 | 1
57B3(C) 1 [234D1 ] 1 [[429B1 | 1 | 570Gl | 1 | 770C4 | 1
62AL(A) | 1 || 238CI | 1 | 435C4 | 1 || 57011 | 1 | 770E4 | 1
66B1(E) 1 || 240A6 | 1 | 435D1 | 1 || 570M1 | 1 || 777A4 | 1
70A1(A) 1 [|240D6 | 1 ([ 435D4 | 1 | 582D1 | 1 || 777D1 | 1
75B8(K) 1 [[240D8 | 1 [[438F1 | 1 |[590B4 | 1 || 777E3 | 1
78A4(D) | 1 | 246E1 | 1 | 438F4 | 1 | 609B1 | 1 || 782E1 | 1
80A4(G) | 1 || 254D1| 1 || 440C4 | 1 [[609B4 | L || 791C1 | 1
90C1(E) 1 [1258D1 | 1 [[448B4 | 1 (| 610B4 | 1 || 792E4 | 1
96A4(G) 1 [{264C1 | 1 [[455B4 | 1 || 616E3 | 1 || 79814 | 1
102B4(I) 1 |[[272B4 | 1 || 462F1 | 1 | 624C4 | 1 | 805C1 | 1
105A4(C) | 1 || 282A1 | 1 || 465B3 | 1 | 624F3 | 1 | 816B4 | 1
112B4(C) | 1 |[285C4 | 1 [ 480B3 | 1 || 624F4 | 1 | 816H5 | 1
114C1(G) | 1 ||291B4 | 1 [ 480D4 | 1 | 624H4 | 1 || 816H6 | 1
120A4(G) 1 ([294C1 | 1 || 480F4 | 1 | 62414 1 (| 822E1 | 1
129B3(C) | 1 |[312C1 | 1 [ 480G4 | 1 | 630J1 1 (| 840B1 | 1
130B1(A) | 1 || 312D4 | 1 | 480H3 | 1 | 651D1 | 1 840C1 | 1
130B4(C) | 1 || 330B1 | 1 [[480H4 | 1 [ 663B4 | 1 || 840D3 | 1
138C1(A) | 1 [[330B4 | 1 | 490H1 | 1 | 665B3 | 1 || 840F4 | 1
141C1(A) | 1 [ 330C1 | 1 | 496F4 | 1 | 666F1 | 1 840G4 | 1
150C1(I) 1 [330C4 | 1 [[504G1 | 1 || 672E4 | 1 | 840J1 | 1
150C3(K) | 1 [[330D1 | 1 [[510D1 | 1 | 672F3 | 1 || 858Kl | 1
154B1(E) | 1 || 330E3 | 1 | 510E1 | 1 | 672H3 | 1 || 858H1 | 1
161A3(C) | 1 || 336B4 | 1 | 51084 | 1 || 678E1 | 1 || 870D4 | 1
T68A3(C) | 1 || 336C4 | 1 || 510E6 | 1 || 681B3 | 1 || 870G1 | 1
168B1(E) | 1 |{336D6 | 1 [ 514A1 | 1 [ 690F4 | 1 || 870G4 | 1
182A1(E) | 1 || 336E6 | 1 || 514A4 | 1 | 690G1 | 1 | 830C3 | 1
192B4(C) | 1 [[345D1 | 1 [[522K1 | 1 | 690K4 | 1 |/ 880C4 | 1
192C6(0) | 1 || 366E4 | 1 || 528B4 | 1 | 705F4 | 1 | 88014 1
195A4(C) | 1 ||377A4 | 1 | 528H4 | 1 | T14F1 | 1 885B3 | 1
195A6(F) | 1 | 385A1 | 1 528J4 1 §{714G4 | 1 || 888B1 | 1
205A4 1 [1390B1 ] 1 [[545A4 | 1 || 720E4 | 1 || 888B4 | 1
210B8 1 |[390B4 | 1 |[546C3 | 1 | 720J5 | 1 |[890H1 | 1

Table A.4: Curves with torsion group C, and no relations (part 1)

N
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Appendix A. Results from Rational Calculations

Table A.5: Curves with torsion group Cy and no relations (part 2)

Curve | m' || Curve | m’ || Curve | m' || Curve | m’ || Curve | m
Q00H4 | 1 || 912K4 | 1 [ 960E5 | 1 | 96005 | 1 | 987B3 | 1
807B1 | 1 [[915B4 | 1 [[960E8 | 1 | 96008 | 1 | 990J1 | 1
897C3 | 1 [|93001 | 1 [ 960H4 | 1 | 960P4 | 1 || 990K1 | 1
897TE1 | 1 [[960C4 | 1 |[960K4 [ 1 | 966G1 | 1 || 994F3 | 1
012G4 | 1 [|960D3 | 1 |[ 960N3 | 1 || 96611 1
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Appendix A. Results from Rational Calculations

Table A.6: Curves with torsion group C4 with relations

Curve m' [ 2+ Z|NL| Curve | m’ 21 :+Z|NL
BA7(D) ] 0 | -16 11 [ 288B3 | 0 | -64 T
T5A8(A) [ 0| -16 T1283C3 [ 0 | -64 T
T7A4(A) | 0 8| T 280A1[ 0 | 64 1
5TA4(A) |0 | 8 T[291B3 | 0 3] 1
2%A3(D) | 0| 4 T 312D1 | 0 B4 1
S4A4(A) | 0 | <16 T]/336E5 [ 0 | -32 1
32A1(B) | 0 | -16 T 360D1 | 0 | -256 T
32A4(D) 0 -8 1 363A1 | 0 -64 1
40A3(A) 0 -16 1(387D1 | O -64 1
10A4(D) | 0 | 16 3 392AL | 0 | -198 1
WASE) 0] 8 TT200A3 [ 0 | -64 T
56A1(C) | 0 | 64 1| 408B1 | 0 18| 1
63A5(F) | 0 64| 7 429B4 | 0 | 32 T
64A3(D) | 0 | -16 1 [ 440C1 | 0 B4 1
72A1(A) 0 -32 11 448A4 | 0 -64 1
80A3(H) | 0 6| 1] 455B1] 0 B4 1
96B3(B) | 0 32| 1| 480E3 | 0 4| 1
99BI(H) | 0 | -64 3 [ 480F3 | 0 B4 1
TT7AL(A) | 0 | -64 1 504F1 | 0 198 1
T20AL(E) | 0 | -32 TI507CT [ 0 |-128 T
144B4(H) | 0 32 1] 525A1 | 0 28| 1
147A1(C) [ 0 | 64 117600A1 | 0 128 | 1
T7TAL(D) | 0 64| 1] 600F1 | 0 | -256 T
T92A3(T) | 0 32| 1] 605B1 | 0 |-192 T
192D5(3) | 0 32 1] 663B1 | 0 | -64 T
195A1(A) | 0 -32 1672C3 | 0 |-128 1
200C1(G) | 0 -64 1 680A1 | 0 |-128 1
205A1 0 -32 1] 784C4 | O -128 1
225C1 0 -64 11792D1| 0 -256 1
231A1 0 -32 1| 840F1 | 0 |-128 1
240A5 0 -32 11 840G1| 0 |-128 1
240D7 0 -32 11 840J4 | 0 |-128 1
272B3 0 -32 1(936E3 | O -128 1
275A1 0 |-128 1
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Appendix A. Results from Rational Calculations

Curve m' 2] £[NL | Curve | m’ : £ NL

llAl(B) 1 8| 4 51 302A1 | 1 -60 | 120 1

11A3(A) 0 2 3 0 || 325E1 1 -40 | -20 1
0} 10 11 366B1 | 2

38B1(A) 1 -40 | -20 11(395C1 | 1 -60 | 120 1

50B1(A) 1 20| 40 . 1| 426A1 | 2

50B2(B) | 1 | -20|-10| 1] 537E1 | 1| -80160] 1

57CI(F) | 1 | 40| 20| 3] 550K2 | 2

58B1(B) 1 -40 | -20 1] 550K3 | 1 |-100 | 200 1

75C1(C) | 1 | 40 20| 157431 | 1 |-160] 80| 1

110A1(C) 1 -40 | -20 1 || 606F1 1 |-220 | 440 1

118B1(B) | 1 -40 | 80 11 665D1 | 2

123A1(A) 1 -20 | 40 1] 710D1 | 2

T55AI(D) | 1 | 40| 20| 1| 786M1 ] 2

T58CI(H) | 1 | 40| 20| 1| 806F1 | 1 |-160 320 1

175A2(A) | 1 -20 | 40 1] 834G1 | 2

186B1(B) | 1 |-120 | -60 1| 82E1 | 1 |-160 | 320 1

203A1 1 -40 | -20 1| 874E1 | 2

246B1 2 885D1 | 1 |-120 | -60 1

286D1 2 890G1 | 2

Table A.7: Curves with torsion group Cs
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Appendix A. Results from Rational Calculations

Curve m’ || Curve | m' || Curve | m' || Curve | m' || Curve | m’
90C7(L) 2 [370D2 | 2 || 570F1 | 2 || 660D1 | 2 | 870C1 | 2

114A1(A) [ 2 [/ 390C1 | 2 || 570F2 | 2 | 660D2 | 2 870C2 | 2

114A2(B) | 2 {/390C2 | 2 || 570K1 | 2 | 770F1 | 2 910J3 | 2

126A3(C) | 2 {/390D1 | 2 || 570K2 | 2 || 770F2 | 2 910J4 | 2

126A4(D) | 2 | 390D2 | 2 || 630F7 | 2 TT0G1 | 2 || 930N1 | 2

198B3(G) | 2 [ 414A3 | 2 || 630F8 | 2 || 770G2 | 2 930N2 | 2

198B4(H) | 2 [/ 414A4 | 2 || 630H1 | 2 | 7T98E3 | 2 966F1 | 2

210A1 9 1438A1 | 2 || 630H2 | 2 || 798E4 | 2 | 966F2 | 2

210A5 9 1438A2 | 2 [[ 63013 | 2 || 858B1 | 2 | 990H3 | 2

210B4 2 1462G1 | 2 || 63018 | 2 | 858B2 | 2 | 990H4 | 2
306A3 2 462G2 | 2 [[646E1 | 2 [ 870B1 | 2 |} 994G1 | 2

306A4 2 11510G1 | 2 [[646E2 | 2 | 870B2 | 2 | 994G2 | 2

370D1 2 1 510G2 | 2

Table A.8: Curves with torsion group Cs and no relations
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Curve [m'| ] z|a+7[5+5|NL
14AI(C) | 1| 2| -2 1
14A2(D) | 1 5 4 1
14A4(A) |0 | 2] 5 0
0] 18 1

14A6(B) | 0 8| 7 0
18] -18 1

20A1(B) | 0 | 5]-13 0
36 | 72 1

20A2(A) | 0 11| -16 0
48| 60 1

30A1(A) | 1 |-12]-12 1
30A4(D) | 1 10 8] 1
30A5(E) | 1 |-12 | -12 5
34A1(A) | 1 10 8] 1
34A2(B) | 1 | 4| -4 1
36AL(A) | 0| 0] 1 0
24 0 1

36A2(B) | 0 1] -1 0
12 0 1

66A1(A) | 1 T2 -12 1
66A2(B) | 1 |-48 | 60 1
S4A1(C) | 1 |-24 | -24 1
84A2(D) | 1 60 | 48 1
00AI(M) | 1 |-24 | -24 1
90A2(N) | 1 60| 48 1
90BI(A) | 1 | -48 | 60 1
90B2(B) | 1 12 12 1
90C8(K) | 1 | 8| -8 1
102C1(A) | 1 12| 12 1
102C2(B) | 1 | -48 | 60 I
126A5(E) | 1 |48 | 60 1
126A6(F) | 1 12| 12 1
130AL(E) | 1 12| 12 1
130A2(F) | 1 | 48 | 60 1
138B1(G) | 1 | 48| 60 1
138B2(H) | 1 12| -12 1
156B1(A) | 1 -60 8] 1
156B2(B) | 1 | -24 | -24 1
170B1(H) | 1 12| -12 1
170B2(T) | 1 |48 | 60 T
180A3(C) | 1 94| 24 1

Table A.9: Curves with torsion group Cg with relations (part 1)
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Table A.10: Curves with torsion group Ce with relations (part 2)

Curve m' : T4+ ]£24Z|NL
T80A4(D) | 1 | 96| 120 T
T98CI(M) | 1 60 B 1
T08C2(N) | 1 | 24| 24 1
T98D1(A) | 1 | 24| -24 1
108D2(B) | 1 60 R
210A4 1 -24 | -24 1
210B1 1 -24 | -24 1
220A1 1 -24 | -24 1
220A2 1 -60 48 1
252A3 1 -96 | 120 1
252A4 1 -24 -24 1
306B3 1 24 | -24 1
306B4 1 -60 48 1
310B1 1 -96 | 120 1
310B2 1 -24 -24 1
342C3 1 -24 -24 1
342C4 1 -96 | 120 1
410C1 1 -60 48 1
410C2 1 -24 | -24 1
420C1 1 720 -T2 1
420C2 1 {-288 1] 360 1
438D1 1 -60 48 1
438D2 1 -24 | -24 1
468D3 1 -48 | -48 1
468D4 1 -120 96 1
630A1 1 -72 -72 1
630A2 1 |-288 | 360 1
630F3 1 -48 | -48 1
63017 1 -48 | -48 1
660C1 1 |-288 | 360 1
660C2 1 -72 -72 1
770B1 1 |-144 | 180 1
770B2 1 -36 -36 1
798E1 1 72 -T2 1
798E2 1 -180 144 1
910C1 1 72 -T2 1
910C2 1 -180 144 1
910J1 1 -180 144 1
910J2 1 S72 | -T2 1
990B1 1 -72 -72 1
990B2 1 |-288 | 360 1
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Curve m 2 2 2 | NL
2%B1(D) | 1| 5| 10| 8] 0
0 28 | 28 1
174B1(G) | 2 | -140 | -140 -84 1
258F1 2 |-140 | -140 | -84 1
294B2 2 | -140 84 | 140 1
490K2 2 | -140 | -140 | -84 1
546F1 2 | -140 | -140 | -84 1
57411 2 70| -70 | -42 1
678D1 2 |-280 | 168 | 280 1
762G1 2 | -140 | -140 | -84 1
858K1 3 '

Table A.11: Curves with torsion group Cr

Curve |m/| Z1 7] lg+5ls+3|NL

15A4(F) | 1| -19] 10| 25 0

40 | 24 | -56 1

21A3(C) | 1 4 23] 21| 0

-8 32 32| 1

2AI(A) | 1 1| 5| 5 0

16| 32| 48 1

48AG(E) | 1| 1] 2| 3 0

8 |40 | -40 1

102B1(G) | 2 24 16| -16 | 1

J10E1 2 | -64 | -96 | -64 1

210E4 2 | -64 | -96 | -64 3

336D5 2 | -32 | -48 | -32 1

690K1 5 | -384 | 96 | 384 1

T14G1 2 | -64 | -96 | -64 1
93004 3

966G4 2 ~06 64| 64| 1

Table A.12: Curves with torsion group Cs
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Curve |m' 1 : ¢ | NL

1{ 10} 10 0 O

54B3(B) | 1 0 8 7 -1 0

0| -60 0| 48| 1

71411 3 | -324 | -432 | -468 | -108 1

Table A.13: Curves with torsion group Cy

Curve m' | L 1 ITL4+z] 242124212+ 7NL
66C1(I) | 2 4 1 4 6 0
-20 -10 0 0 1
66C2(J) 21 -2 0 3 4 0
0| -20| -40 | -40 1
150A3(C) | 2 0 1 2 2 0
: -80 0| 120 | 160 1
150A4(D) | 2 3 1 -2 -3 0
-40 -20 0 0 1
570L1 3 |-80 |-120 | -120 | -80 1
570L2 3 -280 -100 160 240 1
87011 3 -280 -100 160 | 240 1
87012 - 3 |-80|-120 | -120 | -80 1

Table A.14: Curves with torsion group Cio

Curve m' ] 2] 3 ] 3 |NL
1 0} -1 1 2 0
00c3(G) | 2 [0 1] 2] 3] 2] 0
0 0| 16| 144 | 144 1
210B5 3 |21 -1 1 4 3 0
0]-24|-48 | -T2 | -48 1

Table A.15: Curves with torsion group Ci2



Appendix A. Results from Rational Calculations 110

Curve m’ % ‘1; + Z | NL || Curve m’ i }Z + 7 | NL
15A1(C) 1 -8 -8 31330C2 | 2
15A3(B) 51 6| 0]336D4] 2

-16 16 1] 336E4 | 1 -32 -32 1
21A1(B) 1 -8 8 1] 390B2 | 2
24A1(B) 0 3 -9 01]429B2 | 1 -32 -32

8 -24 1| 510E2 | 1 | -64 -64

0A2(B) | 1 |-16| -16] 3| 51083 | 2
48A3(C) 1 -8 -8 1609B2 | 1 | -32 -32 1
102B2(H) | 2 663B2 | 1 -64 -64
120A2(F) | 1 |-32 -32 1]690K2 | 1 -96 -96 1
195A2(B) | 1 |-32 -32 1] 714G2 | 2 '
195A3(D) | 2 75982 | 2
210C2 2 816H3 | 1 -64 -64 1
210E3 2 840F2 | 1 |-128 | -128 1
231A2 1 |-32 -32 1{840G2| 1 |-128 | -128 1
240A3 1 1-32 -32 1{840J2 {1 |-128 | -128 1
240D4 2 93002 | 2
240D5 1 1-32 -32 11 966G2 | 2
330B2 2

Table A.16: Curves with torsion group C4 x Cs

Curve m | z 11242242 |NL
2 -3 2 2 0

30A2(B) | 1 0 5} -9 1 0
12 12 -24 24 1

50Ce 12| 2] 3| 2] 2] 0
0 -20 0 16 1

210A2 2 2 -3 2 2 0
0 60 0 -48 1

210B2 2 2 -3 2 2 0
0 -60 0 48 1

630F6 2 2 -3 2 2 0
0(-120 0 96 1

63016 2 2 -3 2 2 0
0|-120 0 96 1

Table A.17: Curves with torsion group Cs x C3



Appendix A. Results from Rational Calculations 111

Curve |m’' | L] IT E[L+2[3+3[5+%|NL
2| 1) -2 2 0 21 0

210E2 | 3 0] -2 -2 3 3 I
-32 | -48 | -32 0 0 0] 1

Table A.18: Curves with torsion group Cs x Cs
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Results from Quadratic

Calculations
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Appendix B. Results from Quadratic Calculations 113

n label aq ag as aq | as | |T| | isogenies
6 Al x+1 X X 0|0 {10 2:2
6 A2 x+5 -X -x+2 0]0¢{10 2:1
7 Al 2 -X 1 00| 5

2x+8 Al 3 1 x+1 0101} 5

-2x+10 | Al 3 1 -x+2 0{0]| 5
10 Al 3 2 2 00|15 3:2
10 A2 7 -8 8 0{0]| 5 3:1
10 B1 x-1 -X X 01015 3:2
10 B2 X+9 -X -5x-3 0{0] 5 3:1

2x+10 | Al 1 -1 -X 0101} 5 ‘

2x+12 | Al 1 -1 x-1 00| 5
11 Al 0 -1 1 010f( 5 5:2
11 A2 10 -11 11 0|10 5 5:1

3x+13 | Al 4 -1 -2x-1 00| 5

-3x+16 | Al 4 -1 2x-3 0|01} 5

2x+14 | Al 4x-5 -5 5x 00|10 2:2

2x+14 | A2 | 2x+3 | 2x-1 5x+5 00|10 2:1

2x+16 | Al | -4x-1 -5 Sx+5 01010 2:2

9x+16 | A2 [-2x+5|-2x+1 | -5x+10 | 0 [ O | 10 2:1
15 Al 2 1 -3 3 0101} 5
15 B1 2x X 1 00} 5

6x+18 | Al x+3 -2x 2 010} 5

6x+18 | Bl |-3x+2 | 3x-3 3x4+3 |00 5

6x+24 | Al | -x+4 | 2x-2 2 0101} 5

-6x+24 | B1 3x-1 -3x 3x 0101 5

8x+18 | Al 3x-4 -4 4x 0101 5

-8x+26 | Al | -3x-1 -4 4x+4 |0} 0| 5
22 Al x+3 X x-1 01015 5:2
22 A2 x+9 S11x | -11x+44 {0 | O 5 5:1

x+22 Al 2x-4 x-3 2x-1 0(0] 5

x+23 | Al | -2x-2 | -x-2 -2x+1 0101 5

8x+22 | Al | -3x+3 -2 2x+2 0{01}] 5

-8x+30 | Al 3x -2 2x+4 | 0| 0| 5
30 Al 1 -12 36 0010 2:2
30 A2 17 18 -18 00|10 2:1

Table B.1: Curves over Q(\/g) with 5-torsion where x=1ﬁ2ZE



Appendix B. Results from Quadratic Calculations

al
[+

n label | a; as as a4 |T| | isogenies
3 Al X -x-1 x+1 0010 2:2
3 A2 x+4 -x-1 1 01010 2:1
x+8 Al x+3 -2 2%-2 0010 2:2
x+8 A2 5x%-1 X 3x+4 [ 0| 0| 10 2:1
-x+8 Al | -x+3 -2 2x+2 [0 (0] 10 2:2
-Xx+8 A2 | -5x-1 -X 3x+4 [0 [ 0|10 2:1
3x+10 | Al 3 X Xx+2 01015
-3x+10 | Al 3 -X x+2 [ 010 5
4x+11 Al 2 -1 -x-1 010 5
-4x+11 | Al 2 -1 x-1 01015
11 Al 0 -1 1 0|01 5 5:2
11 A2 10 -11 11 001 5 5:1
3x+12 | Al x+7 | 4x-2 |-4x+12 | 0 | 0 | 10 2:2
3x+12 | A2 x-9 x-10 x-10 04107110 2:1
B3x+12 | Al | x+7 | 4x2 [ 4x+12 {0 | 0 | 10 2:2
3x+12 | A2 x9 | x10 | -x10 |0 [0 |10 2:1
x+12 Al | 3x+1 | -x-2 2 0104} 5
x+12 | Al |-3x+1| x2 2 0|0] 5
13 Al x+2 x+1 x+1 0101 5
6x+17 | Al 4 2x+1 | 3x+5 |0 |0 |5
-6x+17 | Al 4 Ox+1 | -3x+5 |0 | 0] S
3x+18 | Al |-5%x+3 | 5x4 | 5x+4 [0 {0 | 5
3x+18 | Al | 5x+3 | -5x4 | 5x+4 | 0] 0| S
3x+20 | Al | -x+1 x-2 x+2 0.0} 5
-3x+20 | Al x+1 -x-2 x+2 0|10 5

Table B.2: Curves over Q(v/2) with 5-torsion where x=v2 (part 1)
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Appendix B. Results from Quadratic Calculations

label

n ay as as as | ag | |T| | isogenies
9x+24 Al | 2x+5 | 2x-10 | 24x-28 | 0 | O | 5
9x+24 | Al |-2x+5|-2x-10 |-24x28 | 0 [ O | 5
x+22 Al | -x+1 -X 2 0|0} 5
-X+22 Al x+1 X 2 0[O0} 5
11x+28 | Al | 2x+1 | -2x2 | 2x42 {010 | S
11x+28 | A1l | -2x+1 | 2x2 | -2x+2 | 0| 0 | 5
3x+24 Al 1 X-2 2x4+2 | 0] 0] 5
3x+24 Bl |-4x+3 | 4x4 | 4x+4 | 0| 0 | 5
-3x+24 | Al 1 -x-2 2%+2 0] 0] 5
B3x+24 | Al | 4x+3 | 4x-4 | 4x+4 |00 | 5
13x+30 | Al 5 2x-2 4 0701 5
-13x+30 | Al 5 -2x-2 4 0|0} 5

25 Al | 3x+2 | x+1 1 0[O0 5
19x+38 | Al 1 -2 2 0|10 5
9x+30 Al | 2x+5 | -x-2 X 010] 5
9x+30 Bl | -2x+3| 2x4 | -2x+4 |0} 0 | 5
9x+30 | Al | -2x+5 | x+2 -X 010} 5
9x+30 | Bl | 2x+3 | -2x4 | 2x+4 |0 | O [ 5
13x+34 | Al x+93 -2x 2x+4 |0 [ 0| 5
-13x+34 | Al -x+95 2x 2x+4 0{0] 5

Table B.3: Curves over Q(v/2) with 5-torsion where x=1/2 (part 2)
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Appendix B. Results from Quadratic Calculations
n label aq as as aq | ag | |T| | isogenies
2 Al 3 -1 x-2 00} 5 3:2
2 A2 X -x-1 x+1 10 |[0] 5 3:1,3
2 A3 3 -1 x1 {00 5 3:2
6 Al x+4 | -3x-3 | 3x+6 | 0| 0 | 10 2:2
6 A2 [3x+10| -9x-9 [9x+27 |0 | 0 | 20 [ 2:1,3,4
6 A3 | 3x-17 | 3x-18 | 3x-18 [ 0 | O | 10 2:2
6 A4 | -3x-14 | -3x-15 | -3x-15 | 0 | 0 | 10 2:2
8x+14 Al x-3 | 2x+2 | 4x4 |0 | 0|
-8x+4+22 | Al x4 |-2x+4| 4x-8 |0 |0 | 5
11 Al 0 -1 1 0[0] 5
11 A2 10 -11 11 0(0] 5
2x+13 Al 4 x+1 [-2x+5 0| 0| S
2x+15 | Al 4 X 2x4+3 {00} 5
14 Al x+2 x+1 x+1 [0 [0 5
2x+18 Al X+5 x | x+3 {0 (0] 3
2x+16 | Al | -x+6 x-1 x+2 |0 [0 5
4x+18 Al x-4 -x+3 x-3 0101 5
-4x4+22 | Al -x-3 X+2 x2 [0{0] 5
x+20 Al -2 x-2 | 4x+5 |0 [0 ] S
-x+21 Al -2 x-3 | -4x+9 [0 [0 | 5
14x+28 | Al x+4 -X-9 x+5 0[O0 5
-14x+42 | Al -x+5 x-6 x+6 | 0|01 5
25 Al | 2x46 | -x-1 1 0(0] 5
6x+26 Al 2x-3 2x-4 2x-4 |0 (0| S
6x+32 | Al | -2x1 | -2x2 | -2x2 [0 | O | S
14x+30 | Al x-2 x-3 x-3 010 5
14x+30 | Bl | 4x+1 | 4x-2 | 4x+2 |0 |0 | 5
-14x+44 | Al -x-1 -X-2 -X-2 0101 5
14x+44 | Bl | 4x+5 | 4x-6 | -4x+6 |0 |0 | S
2x+30 Al 3x-1 -2x 4x-6 {0 |0 5
9%x+32 | Al [ -3x+2 | 2x2 | 4x2 |0 ] 0| S
8x+30 Al x-1 -X X 0{04 5
-8x+38 | Al -X x-1 x+1 [0 0] 5

Table B.4: Curves over Q(+/13) with 5-torsion where x=b2le
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Appendix B. Results from Quadratic Calculations

n label a as as as | ag | |T| | isogenies
x+7 Al -3 -x-1 4x+3 00|12 22,34
x+7 A2 2x-1 -X -1 0101 6 2:1
x+7 A3 | -3x+9 2 Tx+17 [0 1 0| 6 2:1
x+7 A4 7x+6 2x 25x+15 | 0 | 0O | 6 2:1
-x+8 Al -3 x-2 Ax+7 | 0| 0 12| 2234
-x+8 A2 | -2x+1 x-1 -1 0|0 6 2:1
-x+8 A3 3x+6 2 7Tx+10 | 0 | 0O | 6 2:1
-X+8 Ad | -Tx+13 | -2x-2 | -25x+40 | 0 | O | 6 2:1
x+8 Al x+4 2x 9x+1 0|0 6 2:2
x+8 A2 -Xx+2 -X 1 00| 6 2:1
-x+9 Al x+5 | -2x+2 | -9x+10 [ 0. | O | 6 2:2
-x+9 A2 x+1 1-x 1 0101 6 2:1
4x+8 Al 0 -2 2 00|12} 2234
4x+8 A2 2x-6 -4x 8x-12 0|01 6 2:1
4x+8 A3 -2x-4 4x-4 -8x-4 00 6 2:1
4x+8 A4 6 4 20 00| 6 2:1

9 Al 5x+2 -2 -9x-6 00| 6 2:3 5:2

9 A2 | -5x+T7 -2 9x-15 010 6 2:4 5:1

9 A3 4x-3 -x+2 6x-9 0101 6 2:1 5:4

9 Ad | -4x+1 x+1 -6x-3 0[]0 6 2:2 5:3
x+9 Al X-2 -1 1 0|01 6 2:2
x+9 A2 5x-4 2 9x-8 00| 6 2:1
-x+10 | Al -x-1 -1 1 00| 6 2:2
-x+10 | A2 | -5x+1 2 9x+1 [ 0] 0| 6 2:1
2x+9 Al 3x-1 x-3 2%x+1 (0] 0|12 2234
2x+9 A2 5x-1 | 10x-10 | 15x+10 { 0 | O | 6 2:1
2x+9 A3 9x-5 2x+6 | 43x-44 010 6 2:1
2x+9 A4 3x-3 -2x+1 4x-7 010] 6 2:1

2x+11 | Al | -3x+42 -x-2 2x-1 00112 2234

Ox+11 | A2 | -5x+4 | -10x |[-15x+25|0 | 0 | 6 2:1

2x+11 | A3 | -9x+4 | 2x+4 43x-1 0|01 6 2:1

2x+11 | A4 -3x 2x-1 -4x-3 0|0} 6 2:1
1+/5

Table B.5: Curves over Q(v/3) with 6-torsion where x=%* (part 1)



Appendix B. Results from Quadratic Calculations

n label aq as as as | as | |T| | isogenies
4x+10 | Al 9x+3 2x 16x+9 00| 6 2:3 3:2
4x+10 | A2 5x+8 | 20x-12 | 132x-82 | 0 | 0 | 6 2:4
4x+10 | A3 3x-2 -x+1 2x-4 0101 6 2:1 3:4
4x+10 | A4 7x-8 |-10x+6 | 60x-98 0|01 6 2:2
4x+14 | Al | -5%x+8 | -2x+2 | -16x+25 { 0 | 0 | 12 | 2:3 3:2
4x+14 | A2 |-5x+13 | -20x+8 | -132x+50 | 0 | O | 6 2:4
-4x+14 | A3 | -3x+1 X -2x-2 00| 6 2:1 3:4
-4x+14 | A4 -Tx-1 10x-4 -60x-38 | 0| 0| 6 2:2
3x+12 | Al | -3x+2 | 6x-12 3x+3 00| 6 2:2
3x+12 | A2 3x-8 -3x+6 30x-51 0|0} 6 2:1
-3x+15 | Al 3x-1 -6x-6 -3x+6 010]| 6 2:2
-3x+15 | A2 -3x-5 3x+3 -30x21 0|0} 6 2:1
4x+12 | Al 2x-2° -2x 2x-2 0101} 6 2:2°
4x+12 | A2 4x+2 4x 20x+16 |0 | 0} 6 2:1
-4x+16 | Al -2x 2x-2 -2x 0[0] 6 2:2
4x+16 | A2 | -4x+6 | -4x+4 | -20x+36 | 0 | 0| 6 2:1
6x+12 | Al 5 -3 -6 0 |0]12] 2234
6x+12 | A2 13 6 75 0|0} 6 2:1
6x+12 | A3 5 3 12 0012 2:1
6x+12 | A4 -5 -18 9 0|10] 6 2:1

14 Al -3 -2 7 0101 6 2:2

14 A2 3 1 2 00| 6 2:1
4x+13 | Al | -3x+4 -2 7x-8 00| 6 2:2
4x+13 | A2 3x-2 1 2x-1 010] 6 2:1
4x+17 1 Al 3x+1 -2 -Tx-1 0|0} 6 2:2
Ax4+17 1 A2 | -3x+1 1 -2x+1 0101 6 2:1
5x+13 Al 4x+1 3x-1 12x+7 00| 6 2:2
B5x+13 | A2 2x-T -6x+2 21x-29 0|0} 6 2:1
B5x+18 | Al | 4x+5 | -3x+2 | -12x+19 {0 | O | 6 2:2
-5x+18 | A2 -2x-5 6x-4 -21x-8 00| 6 2:1
2x+14 | Al 3x+4 6x-2 26x+17 | 0| 0| 6 2:2
2x+14 | A2 3x-4 -3x+1 8x-10 00| 6 2:1
Table B.6: Curves over Q(v/5) with 6-torsion where x:% (part 2)

118



Appendix B. Results from Quadratic Calculations 119
n label a as as a4 | ae | |T| | isogenies
2x+14 B1 -x+9 -2x-4 6x-13 00|12 2234
2x+14 B2 9x-1 10x 80x+65 00 6 2:1
2x+14 B3 9x-18 -6x-2 18x-29 01016 2:1
2x+14 B4 5x-1 x+2 12x+4 0|01 6 2:1
-2x+16 | Al -3x+7 -6x+4 -26x+43 |0 | 0| 6 2:2
-2x4+16 | A2 -3x-1 3x-2 -8x-2 0|0 6 2:1
-2x+16 | Bl x+4 2x-6 -6x-7 00|12 2234
2x+16 | B2 -9x+8 |[-10x+10 | -80x+145 | 0 | O | 6 2:1
-2x+16 | B3 -9x-9 6x-8 -18x-11 0|0 6 2:1
-2x+16 | B4 -5x+4 -x+3 -12x+16 | 0 [0 | 6 2:1
4x+18 Al | -x43 -X -2x 010 6 2:2 3:3
4x+18 A2 -3x+8 2x-2 16x-23 0{01{ 6 2:1 3:4
4x+18 A3 5x-5 -8x+2 22x-34 0|01 6 2:4 3:1
4x+18 A4 Tx+5 16x-4 130x+110 {0 | O | 6 2:3 3:2
-4x+22 Al x+2 x-1 2x-2 00} 6 2:2 3:3
4x+22 | A2 3x+5 -2x -16x-7 0|0 6 | 2134
-4x4+22 | A3 -5x 8x-6 -22x-12 0|01} 6 2:4 3:1
4x+22 | A4 | -Tx+12 | -16x+12 | -130x+240 | 0 | O | 6 2:3 3:2
4x+20 Al 2 -2 -2x-2 0|0 6 2:2
4x+20 A2 6x-4 4 20x-16 0|01 6 2:1
4x+24 | Al 2 -2 2x-4 0[0] 6 2:2
-4x+24 | A2 -6x+2 4 -20x+4 00| 6 2:1
8x+21 Al 1 -x-2 2x-1 0(0] 6 2:2
8x+21 A2 6x-1 2x+4 29x+8 001 6 2:1
-8x+29 | Al 1 x-3 -2x+1 0[0]| 6 2:2
-8x+29 | A2 -6x+5 -2x+6 -29x+37 (00| 6 2:1
10x+26 | Al Tx+2 -x-1 -8x-4 00| 6 2:2 3:3
10x+26 | A2 10x+1 2 18x+5 00| 6 2:1 3:4
10x+26 | A3 -x-3 4x-20 20x-24 0|0} 6 2:4 3:1
10x+26 | A4 x-21 -8x+40 | 164x-744 [0 | O | 6 2:3 3:2
-10x+36 | Al -Tx+9 x-2 8x-12 0|0 6 2:2 3:3
-10x+36 | A2 |-10x+11 2 -18x+23 (0[O0 | 6 2:1 3:4
-10x+36 | A3 x-4 -4x-16 -20x-4 0101 6 2:4 3:1
-10x+36 | A4 -x-20 8x+32 | -164x-580x | 0 | 0 | 6 2:3 3:2
4x+28 Al 2x-4 -4 -12x+16 [ 0] 0| 6 2:2
4x+28 . |. A2. 4x-2 2 6x-2 0|01 6 2:1
4x+432 | Al -2x-2 -4 12x+4 0|0 6 2:2
4x+32 | A2 -4x+2 2 -6x+4 0]l01}] 6 2:1

Table B.7: Curves over Q(v/5) with 6-torsion where leiz‘@ (part 3)



Appendix B. Results from Quadratic Calculations

n label | a1 az as as | ag | |T'| | isogenies
2x+5 Al X -x-2 1 010 6 2:2
2x+95 A2 | 3x+2 x+2 Tx+9 0]10] 6 2:1
2x+5 | Al -X X-2 1 0|0} 6 2:2
2x+5 | A2 | -3x+2 | -x+42 -Tx+9 0101 6 2:1
2x+6 | Al 3x -X x-4 0012 2:2,3,4
2x+-6 A2 | -3x-6 2x -10x-14 [ 0| O [ 6 2:1
2x+6 A3 2x -2x-2 -2 00| 6 2:1
2x+6 A4 5x-4 | -2x+4 26x-34 010112 2:1
-2x+6 | Al -3x X -x-4 00112 2:2,3,4
2x+6 | A2 3x-6 -2x 10x-14 0|01 6 2:1
-2x+6 | A3 -2x 2x-2 -2 0|0| 6 2:1
2x+6 | A4 | -5x-4 | 2x+4 -26x-34 | 0| 0 |12 2:1
x+6 Al | -3x+1 1 -2x 0|0 6 2:2
x+6 A2 | -3x+5 -2 7x-9 010] 6 2:1
-x+6 Al | 3x+1 1 2x 0|01 6 2:2
-x+6 A2 | 3x+35 -2 -7x-9 0]01] 6 2:1

7 Al x+2 X 2x+1 00| 6 2:2

7 A2 | -x+2 -X -2x+1 0|0 6 2:1
5x+12 | Al x+3 x+1 3x+4 00| 6 2:2
Bx+12 | A2 | 4x+5 | -2x+2 | -17x425 | 0 |0 | 6 2:1

5x+12 | Al | -x+3 -x+1 -3x+4 0|0| 6 2:2
S5x+12 | A2 | 4x+5 | 2x42 17x+25 | 0| 0] 6 2:1
Tx+14 | Al -3 -2 7 00112223435
Tx+14 | A2 3 1 2 0|01 6 2:1 3:6
Tx+14 | A3 | 9x-11 | -2x+42 40x-57 0|01} 6 2:1 3.7
Tx+14 | A4 | -9x-11 | 2x+2 40x-57 {0 | 0| 6 2:1 3:8
Tx+14 | A5 3 -14 7 00|12 ]26,7,83:1
Tx+14 | A6 9 7 56 0|01 6 2:5 3:2
Tx+14 | A7 | 4x-13 | -28x-14 | 154x-217 | 0 | O | 6 2:53:3
Tx+14 | A8 | -4x-13 | 28x-14 |-154x-217 | 0 | 0 | 6 2:5 3:4

10 Al 0 -2 2 0|0 6 2:2

10 A2 3x 2 5x 0|01 6 2:1

18 Al 4 2 6 0|10 6 2:2

18 A2 -2 -4 12 01016 2:1

Table B.8: Curves over Q(+/2) with 6-torsion where x=V2
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Appendix B. Results from Quadratic Calculations

n label as az | a4 |ae | |T| | isogenies
x+6 Al 0 -X X 00| 7
-x+7 Al 0 x-1 x+1 |0} 0| 7
2x+10 Al 3 2x {-2x+4 (0|0 7
2x+12 | Al 3 2x-2 | 2x+2 | 0|0 | 7
3x+11 Al 6x4 | -3x-1 | 3x4 |0 |0 | 7
3x+14 | Al [-6x+2| 3x4 | -3x1 |00 | 7
3x+24 Al 6x-2 | 3x+3 | 3x6 | 0|0 | 7
3x+27 | Al [-6x4+4|-3x+6| -3x3 | 0 | O [ 7
26 Al 1 2 -2 010 (7
11x+27 | Al 2x X+2 x-3 00| 7
11x+38 | Al | -2x+2 ) x+3 | x2 |00 | 7

Table B.9: Curves over

Q(+/5) with 7-torsion where x=1+2—‘/"_’

n label a ay as as | as | |T| | isogenies
x+10 Al dx-1 | -2x+4 | 2x+4 | 0 | O | 7 3:2
x+10 A2 1 -X x+2 | 0|0 7 3:1
-x+10 Al | 4x-1 | 2x+4 |-2x+4 | 0 | 0O | 7 3:2
-x+10 A2 1 X x+2 [0 0| 7 3:1
x+12 Al | 4x+41 | 2x2 | 2x+2 |0 {0 | 7
-x+12 Al | 4x+1| -2x2 |-2x+2| 0| 0 | 7
x+16 Al 3 x+2 -X 010 7
-x+16 | Al 3 -x+2 X 0|0 ]| 7

13x+26 | Al 1 2 -2 0(0 ]| 7
9x+30 | Al |{5x+3 | 6x6 | 6x6 [ 0|0 | 7
0x+30 | A2 |-5x+3 1] 6x6 | 6x6 | 0|0 | 7

Table B.10: Curves over Q(\/ﬁ) with 7-torsion where x=v/2
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Appendix B. Results from Quadratic Calculations

Curve m' | (0,0) | 2(0,0) || detyo | L
TAl 0 -16 | 49
2x+8A1 0 4 19
10A2 1

10B1 0 4 3
10B2 0 1] 10
2x+10A1 | 0 20 29
11A1 0 3 -2

11A2 1

3x+13A1| 0 16 | 199
15A1 1

15B1 0 16 | 45
6x+18A1 | 1

6x+18B1 | 1

8x+18A1 | 1

22A1 0 -20 | 121
22A2 2

x+22A1 | 1

8x+22A1 | 1

Table B.11: Curves with torsion group Cs over Q(v/5)

CUI‘VC m' P 2P 3P 1 4P det23 det24 det34 L

6A1 02| 4] -2 1 -9 . 9
21 1] 2} 4

6A2 0 6] 4] 3| -5 -2 81
31 5| 6] -4

2x+14A1 (1 | &6 0| -2} 4 -16 28 -32 | 275

2x+14A2 | 1 | 4] 4| 2] 1 -4 2 21 55

30A1 210 1} 2| 2

30A2 2 (-2 2| -3| 3

Table B.12: Curves

P=£3(0,0)

with torsion
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group Cyo over Q(v/5) where 2P=(0,0) and
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Curve P|[2P | 3P [ 4P | 5P | 6P | 7P | detss | detys L
of 1{ 1f{ 0| 0| 2| 1

10A1 0y 0 2 31 -1 0 81| 1621125
1] of 0o}y 1} 21 0| O
0{ 4(10|12(17| O O
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Table B.13: Curve 10A1 with torsion group Cis over Q(v/5) with P=(2+4x,-12-

20x)

Curve

~

(0,0)

3(0,0)

detu

3x+10Al

4x+11A1

125 | 712

11A1

11A2

x+12A1

13A1

-125 | 338

6x+17A1

3x+18A1

)—l»—t»—ao)—to—loop—as

3x+20A1

Table B.14: Curves with torsion group C5 over Q(ﬂ)
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Curve m P| 2P| 3P | 4P

3A1 0 3| -5 3| 4
3| 4 3| 5

3A2 0 1| 17| -23| -4
01-79 1106 | 15

x+8A1l 1 8| 41 4| 3

x+8A2 1 |-11| 4 8| 13

Ix+12A1 | 2

Ix+12A2 | 2
Curve detlg det13 det14 det23 det24 det34 L
3A1 125 324
3A2 -125 3816
x+8A1 100 | -175 | 200 | 1984
x+8A2 -25 | -50 | -50 | 2728
3x+12A1 -50 | -100 | -100 | -75| -100 | -50 | 1008
3x+12A2 75 0| -150 50 25| 100 | 1008
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Table B.15: Curves with torsion group Cio over Q(\/i) where 2P=(0,0) and

P+£3(0,0)

Table B.16: Curves with torsion group C5 over Q(\/ﬁ)

Curve m' | (0,0) | 2(0,0) || dety, L
2A1 0 -500 | 5239
2A2 0 125 | 338
8x+14A1 | 1

11A1 0 3 -2

11A2 1
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Curve [m' | P | 2P | 3P { 4P || dety, | detys | detyy | detoz | detoy | detay L
6A1 2 100 | 100 0 0] -100 | -100 | 1521
-300 0| 600 | -200 | -100 | -400 | 13689
6A3 2 -5 -1 2 0] -11 5 0
-2 -13 2 3| -18 3 0

Table B.17: Curves with torsion group Cjo over Q(v/13) where 2P=(0,0) and

P+£3(0,0)

Curve [m' [P | 2P | 3P | 4P | P+Q | 2P+Q | 3P+Q | 4P+Q
0} -2 2| 1 0 -2 2 0
6A2 2 11y 1(-3] 1 -3 2 0 0
0y 0f -2} -2 2 3 1 1
21 -1 0} -2 2 0 0 -2

det23 det% det27 det36 det37 det67 L

700 | -900 | -100 | -200 | 600 | -800 | 4563

4 -1 1 -2 6 -4 0

-1 3 ) -4 0 4 0

Table B.18: Curve 6A2 with torsion group Cio X C; over Q(\/ﬁ) where
P=(—9x,54+27x) and Q=(—4+x,2 — 5x)

Curve |m'{(0,0) | 2(0,0) || detis L
x+7A2 | 0 -432 | 1375
x+7A3 | 0 -1296 | 15125
x+7A4 | 0 1296 | 34375
x+8A1 0 -432 | 1775
x+8A2 | 0 -432 | 1775
4x+8A2 | 0 -81 | 1000
4x+8A4 | 0 S -13

9A1 0 -16 | 225
9A3 0 32| 225

Table B.19: Curves with torsion group Cg over Q(\/g)
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Curve | m'|(0,0) | 2(0,0) | (0,0)+P | 2(0,0)+P | dety, L

x+T7A1 0 2 -3 2 -2 4321375
1 29 -2 26

4x+8A1 | O 2 -3 2 -2 -81 | 1000
1 3 -7 7

Table B.20: Curves with torsion group Cg x Cy over Q(\/g) where 2P=0 and
P+#3(0,0)

Curve | m’ | (0,0) | 2(0,0) || detys L
2x+5A1 1 0 9 68
2x+5A2 |1 0 -9 34
2x+6A2 | 0 81 | 1232
2x+6A3 | 0 81 | 448
x+6A1 0 -81 | 544
x+6A2 | 0 -81 | 1088
7TAl 0 271 98

Table B.21: Curves with torsion group Cs over Q(\/§)

Curve m' | P|2P | 3P | 4P | 5P || det3q | detys L
o2%x4+6A4 | 1 |-1| O 2| 4| 3 81 -81 | 280
0 -5 7]20| 7

Table B.22: Curves with torsion group Ciz over Q(+/2) where 2P=(0,0)

Curve | m'|(0,0) | 2(0,0) | (0,0)+P | 2(0,0)+P | detoq | L
2x+6A1 | 0 2 -3 2 -2 -81 | 448
0 6 4 7

Table B.23: Curves with torsion group Cs X C3 over Q(\/i) where 2P=0 and
P+#£3(0,0)
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Curve m’ (0,0) : 2(0,0) 3(0,0) det12 det13 det23 L
x+6A1 0 -16 10 1 343 | 1025
2x+10A1 | 1 -196 | 490 | -490 | 3625
3x+11A1 | 1 -1568 | 3920 | -3920 | 68875
3x+24A1 | 1 784 | -1960 | 1960 | 47925
26A1 1 -10 8 5
11x+27A1 ] 1 1568 | -3920 | 3920 | 22625
Table B.24: Curves with torsion group C7 over Q(v/5)
Curve m' | (0,0) | 2(0,0) | 3(0,0) || det;, | detys | detas L
x+10A1 1 -2 5 -5 64
x+10A2 1 -2 5 -5 8
x+12A1 1 -98 | 245 | -245 | 2272
x+16A1 1 -98 | 245 | -245 | 1016
13x+26A1 | 1 -10 8 )

Table B.25: Curves with torsion group C; over Q(\/i)
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Programs

This is the listing of the basic program I use to calculate the L-series for real
quadratic fields of narrow class number one. I do make minor changes to run it
as a batch job, and also when we have non-semi stable reduction, I modify the
conductor finding routine, and also running keep totals for both possible signs of
the functional equation, so I can find the correct sign by doing a second run with a
different value of m. Unfortunately the the variables do not match the conventions

used in my thesis, although the user interface pretends they do.

/% this version has chamges to improve efficiency, including reordering in main loop
to reduce the number of repiles by calculating the coefficient table first ./

#include <stdio.h>

#include <gempari.h>

#define TRUE 1

#dotine G(a,i) (longs)(»(a+(i)))

#dofine GG(a,i,j) (long®)(#((long#)(x(a+(i)N+(j>))
2detine 166Ca,i,j) (s((long*)(s(a+(i)N+(j)))

long prec;

GEN conductor();
GEN hcf();

int legsyn();
GEN mnorm{):
GEN aterm();
GEN t1Q);

GEN t20);

GEE ppcoett();
GEH ratred();
GEN quadred();
GEN spos();
GEN coadd();
GEN cogenQ);

GEN normC,F,twopi,Lim;
GEN 11a,121a,12ua,l1b,121b,12ud;

main()

{
GEN 4,¢.C,D,¢,f,L,H,n,nf ¥,5,0,v,r00tCt,rootC2,ro0tk;

char s[512);
long 1bot,ltop,dec;
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int i,j,sgn;

/* 'set precision and initialize =/
printt("precision required? ");
scanf("%d”,eprec);
init(1500000,50000);
sotprecr((long) (prec/Ki));
constpi(proc+2);
twopi=gmul(gpi,gdeux);
polx[0)=1lisexpr(“'x");
print£("%d\n",prec);

/* get quadratic field and check it has narrow class number ome */

/» D is the discriminant of m, and nf is the corresponding number field =/
printf(“discriminant of quadratic field? ");
s[0}=0;
while(!s[0]) gots(s);

D=lisexpr(s);

m=quadpoly(D};

printf(“polynomial is; ");

outbeaut(m);

nf=initalg(m,prec);

ltop=avma;

it (gemp1(classno(D))!=TRUE) {
print2(“Class number not 1\n");
oxit(1);
>

v=fundunit(D);

it (gemp.1(gnorm(v))!=TRUE) {
printf(“Narrow class number not 1\n");
oxit(1);
}

/% u is the real embedding >1 of ‘the fundamental unit #/

/* ¢ is a totally positive genmerator of the inverse different (polynomial) =/
c=gdiv(v,gadd(gnul(gdoux,quadgen(D)),trueceets (m,1)));
outbeaunt(c);
cugadd(greal(c),gmul (polx[0],ginag(c))):
u=gadda(greal(r),guul(GG(nz,6,2),gimag(v)));
lbot=avma;
c=geopy(c);
u=gcopy(ul;
dec=lpile(ltop,lbot,0)/4;
co=doc;
u+=dec;

printt(“Hinimal unit is ");
outbeaut(u);

/* got elliptic curve, simplify coefficients e/
print2(*elliptic curve? ");
s[03=0;
while(!s[0]) gets(s);
1top=avma;
o=lisexpr(s);
e=gmodulcplo,m);
e=smallinitell(e);
lbot=avma;
o=geropile(1top,lbot,1itt(e));

/% got conductor C and test for semi-stable reduction =/
C=conductor(e,m,n?,D,c);
normC=mnorm(C,m) ;
1ltop=avma;
rootClagsqrt(gsubst(C,0,66(nt,6,2)) ,proc+2);
rootC2sgsqre(gsubst(C,0 ,G6(nZ,6,1)) ,prec+2);
lbot=avma;
rootCi=gcopy(rootCi);
rootC2=gcopy(rootC2);
doc=lpile(ltop,1bot,0)/4;
rootCl+=dec;
rootC2+=dec;
printt("Conductor is ");
outbeaut(C);

/% F will be the mth root of u squared. The bound on the mth root o1 u should bo about ¢ for optimal preformance */
print2("Upper limit on mth root of vu? (close to e recommended) ");
s[0)=0;
while(!s[0]) gets(s);
ltop=avma;

F=lisexpr(s);

vegeoil(gdiv(glog(u,proc) ,glog(F,prec)));
rootFagpuilu,gdiv(gun,v) ,prec);

/% paive limit on number of terms. H.B. low accuracy permissible »/
Lin=gmul{glog(gdeux,3),st0i(32x(prec-2)));
Lim=gsub(Lim,glog(tuopi,3));
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Limegadd(Lim,glog(gdiv(gmul(v rootF), gsub(gun,goxp(gneg(tuopi),3)),3));
Lim=gadd(Lin,gdiv(glog(gmul(D,norac),3),gdeux));

/% now adjust for polynomial in Lim #/

vagdiv(gmul(gsqr(tuopi) ,gadd(rootF,gdiv(gun,rootF))) ,gmul(D,gsqre(norme,3)));
F=gadd(gun,gmul (gadd(Lin, s20i(8)) ,gadd(gadd(Lin,st0i(8)),¥)));
v=gaiv(gadd(gadd(gmul(gdeux,Lin),st0i(16)),v),F);
Lim=gadd(Lim,gdiv(glog(F,3),gsub(gun,v)));

lbot=avma;

rootFsgcopy(rootF);

Lip=gcopy(Lim);

dec=lpile(ltop,lbot,0)/4;

rootFeadec;

Lim+=dec;

F=gsqr(rootF);

priatt("Fa )

outbeaut(F);

lia=gdiv(gun,rootCl);

1topcavma;

121a=gmul(rootF,rootC2);

lbot=avma;
1212=gerepile(ltop,lbot,gdivigun,121a));
12uasgdiv(rootF ,T00tC2);
11b=gdiv(21a,F);

121b=12ua;

12ubegmul(121b,F);

/+ now get the sign of the functional equation #/
/* this may need to be modified if 2{D and D!=8 &/
/* or if C is mot coprime to 2 &/

/% L is

/* loop

1ltop=avma;
/* tirst remove 2 from conductor as 2 is avkward &/
it (gcmpO(gmod(normC,gdeuz))==TRUE)
vegmod(gdiv(C, het(C,gdoux ,u,66(nt,6,2))).m);
else v=C;
sgn=legsym(gneg{compo(e,11)),v,m);
/% now treat the 2 case (a1!=0 as reduction is not additive) +/
i1 (gempO(gnod(normC, gdoux))==TRUE) {
vegmod(gadd(compo(o,3) ,grullcompo(e,2) .compole,1))),m);
/# 1irst consider the case whore 2 is not split or two #/
/= different primes above 2 are in the conductor %/
it ((geopo(gmod(normC,st01(4)))==TRUE) ||
(gogal(gmod(D,st01(8)),5t0i(5))==TRUE)) {
i1 (gempO(gmod(truecoet?(v, 1), ,gdoux)) !=TRUE) sgn=-sgn;
}

/% otherwise there is only one prime above tuo */
/* reduce v modulo this prime and invert sgn if this »/
/* is not 0 mod 2 #/
olse {
vesimplity(gmod(v ,hc1(C,gdoux,n,66(nt,6,2))));
it (gemp0(gmod(v,gdouz))!=TRUE) sgn=-3gn;
}

}
/+ now multiply this by (-1)"#(prime factors of C) ¥/
it (bigomega(normC)X2!=0) sgne=-1;
/+ but non-split primes have been counted tuwice ./
/= tix this if there is an odd nusber of them »/
vegdiv(normC,content(C));
vegdiv(v,gged(v,D));
/% this next line would fail for 2lv and D=(3 or 7) mod 8 */
sgnsakronecker(D,v); .
printf(“sgna¥d\n",3gn);
lbot=awma;
gerepile(ltop,lbot,0);

the number of terms to be calculated, if this is too high you have a chance to interupt the program hore ®/
ltop=awma;

Legmul(gsqr{gdiv(Lin, gmul(st0i(4),gpi))) ,guul (gmal(D,rootF) ,gmui(rootCl, rootC2)));

lbot=avma;

L=goropile(ltop,lbot,gtloor(l));

printt(“Le ");

outbeaut(L);

printf( okay to ssart?);

s[0]=0;

while(!s{0]) gets(s);

to initialize prime power coefficiont table */
1ltop=avma;
for(j=t;gemp(prime(j) ,L)<=0;j*++);
1botwavma;
A=goropilo(ltop,lbot,cgetg(j,17));
for(is=1;i<j;iv){
1top=avma;
Neprime(i);
1bot=avma;
a[il=(long)gorepile(ltop,lbot, ppcoetf(n.H,0,L));
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/% tirst term »/
1ltop=avma;
S=aterm(nf,gun,s,¢,sgn);
N=gdeux;

while(gemp(l,L)<=0){
/* add on the coefficient ¢/
f=tactor(l);
H=cogen(A i, ,f,m,¢c,L);
for(in1;i<lg([11);i++) {
lbot=avma;
Segadd(S,aterm(nt ,gcoot2(H,i,2),m,gcoeot(H,i,1),3g0));
}

N=gadd(¥,gun);
dec=1pile(ltop,lbot,0)/4;
S+=dec;

H+=doc;

}

/% normalize the result and output it s/
S=gmul(S,gdiv(gpuitwopi,stoi(4),0),gsqrP)));
outbeaut(S);

}

int legsym(p.q,m)

GER p.q,m;
/* calculate natural extension of legendre symbol to quadratic field */
{

GEN o,1,t;

int s;

long 1top,lbot;

ltop=avma;

e=contont(p);

pegdivi(p,e);

f=content(q);

qegdiv(q,f);

s=xronacker(mmorn(p,n),f)*kronecker(e ,znorm(q,m));
t=gmul(truecoett(q,1) ,gsub(gnul(truecoett(q,1) truecoat(p,0)) ,guul(truecoets (p.1),truecoet£(q,00)));
sesskronecker(t,mnorm(q,n));

1botwavma;

gorepile(1ltop,lbot,0);

return(s);

}

GEN conductor(e,m,n?,D,c)

GEH o,m,nt,D,c;
/# This gets the conducter of ¢. At the moment it requires e to be semi-stable ¢/
{

GEN 1,v,C;

long 1ltop,lbot;

int i;

ltop=avma;

if (gempi(het(compole,10) ,compo(e,12),1,66(n?,6,2)))!=TRUE) {
printf(“curve not semi-stable\n");
exit(1);
}

t=factor{mnorm(compo(e,12),m));

v=gun;

i=0;

while(i<1g(z[11)~1) {

i+

vagmul(v,gcoetf(2,i,1));
}

it (gemp1(gged(v,D))!=TRUE)
v=gmod(gdiv(v,hc2(v,gmullc,gdiv(D,gged(D,gdoux))), m,66(nz,6,2))),m);

/% v is the squarefree part over the quadratic field of the */
/* norm of the determinant assuming D=2 or D=1 mod 4%/
C=hct(compo(e,12),v,n,66(nt,6,2));
lbot=avma;
return(geropile(ltop,lbot,gcopy(C)));

}

GE¥ hct(p1,p2,m,r)
GEN p1,p2,m,r;
/* finds highest common factor of t®o algebraic integers */
/+ this assumes class mumber i (pari’s routine is/was unreliable) s/
{
GEN ¢p,.H,p.v.n.2,q1,92,4;
leng ltop,lbot;

ltop=avma;

vacgetg(3,18);

v[1)=(long)truecoe?(p1,0);

v[2)=Qlong)truecoett(p1,1); .
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H=gtomat(¥);
v[1]=(long)truecoet1(p2,0);
v{2]=(long)truecoet1(p2,1);
H=concat(l,v);
p=gmod(gmul(p1,polx[01),m);
v{1]s(long)truecoet(p,0);
v[2])=(1long)truecoet1(p,1);
H=concat(H,v);
p=gmod(gmul(p2,polx[0]),m);
v{1]=Clong)truecoet(p,0);
v[2)=(long)truecoet(p.1);
E=concat(H,v);

lbot=avma;
Hegorepile(ltop,lbot, hnt(H));
n=gcoott(H,1,1);

pegadd(gmul(gcoet2(R,2,2) ,polx[0]),gcoott(H,1,2));

cp=contont(p);
it (gegal(n,cp)==TRUE) {
lbot=avma;

return(gerepile(ltop,lbot,gcopy(n)));
}

cpaguul(cp,n);

v=p;
q=gdiv(p,n);
p2=gzero;
q2=gun;
piegun;
qi=gzero;

while (gegal(cp,mnorm(v,m))!=TRUE) {

a=gtloor(gsubst(q,0,1));
vegadd(gmal(p1,a),p2);
p2°p1;

plev;
vegadd(goul(ql.a),q2);
q2=q1;

qi=v;.

if (gemp(gsubst(v,0.1),g2010)<0) v=gnog(v);

q=gmod(gdiv(gun,gsublq,a)).m);
vegsub(gaul(p.q1) ,gmullpl,n));
}

“lbot=avma;
return(gerepile(1ltop,lbot,gcopy(v)));

}

GEN mnorm(p,m)

/% this
{

}

GEN p.m;
calculates the norm of p */

GEH pO,p1,t0,t1;
long 1top,lbot:

1ltop=avma;
po=truecoetf(p,0);
pietruecoeft(p,1);

tOﬂg‘ml(gsub(po.gnul(tmocooﬁ(n. 1),p1)),p0):

t1=gmul (gsqr(p1) ,truecoet(,0));
lbot=avma;

return(gerepile(ltep,lbot,gadd(t0,t1)));

GEN atorm(nf,a,m,nu,sgn)

/= this

/% o1 and o2 are the exponents 11, 121, and 12u are the limits */

/# change limits to emsure our choices upte units don’t miss the first region

GEHN a,m,nf.nu;
int sgn;

calculates the term in nu with coefficient a /

GEW r,s1,s2,11,121,12u,01,02,71,22,u1,02l,32u;

long dec,ltop,lbot,ltopi,lbotl;
int i;

l1top=avma;
i2(gemp0(a)==TRUE) Teturn(gzere);
r=G(nt,6);

o1=gmul(twopi,gsubst(nu,0 ,6(r,2)));
o2=5npl(tuopi.gsubst(nu,o .6(r,1)));

ltopi=avma;
11clla;
121=121a;
12u=12ua:

ui=gmul(el,l1);
u2l=gnule2,121);
12 (gemp(gadd(ul,u2l),Lin)>0)

while((gemp(u1,u21)<0)er(gemp(gadd(ut u2l),Lin)>0)) {

lboti=avma;
11egmui(1L,F);
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12u=gcopy(121);
121=gdiv(121,F);
dec=lpile(ltopl,1boti,0)/4;
l1+=doc;

12u+=doc;

121+=doc;

ut=gml(e1,11);
u2lsgrul(e2,121);

}

/* now the calculations for the first region »/
s1=gzero;
s2=gzoro;
while (gemp(gadd(ui,u2l),lim)<=0) {
u2u=gmul(e2,120);
/% don’t calculate stray term if it is too small */
if(gemp(gadd(ui ,u2u),Lim)<=0) {
zi=gmul(t1(e1,11) ,gsub(t1(e2,121),%1(e2,12u)));
z2=gpul(t2(ul) ,gsub(t2(u2l),t2(v2u)));
}
olse {
z1=goul(ti(e1,11),%1¢e2,121));
z2=gnul(t2(ul),t2(u2l));
}
1boti=avma;
st=gadd(si,z1);
s2agadd(s2,22);
11=gmul(11.F);
12u=gcopy(121);
121=gaiv(121,F);
dec=lpile(ltop1,lbot1,0)/4;
1t+=dec;
12u+=dec;
122+adec;
si+sdec;
s2+adec;
ui=gml(e1,11);
u2l=gmul(e2,121);
o :

lboti=avma;

stageopy(si);

s2=gcopy(s2);
dec=1pile(ltopl,1bot1,0)/4;
si+adec;

s2+3dec;

/* set limits for the second region »/

1ltopi=avma;

11=11d;

121=121b;

12u=12ub;

/* change limits again if necessary */

ut=gmal(e1,11);

u2lagoul(e2,121);

it(geup(gadd(ut,u2l),Lim)>0)

while((gemp(ul,u21)>0)ee(gemp(gadd(ul,u2l),Lin)>0))

lboti=avma;
11=gdiv(11,F);
121=gcopy(l2u);
12u=goul(12u,F);
dec=lpile(ltopl,lbotl,0)/4;
11+=dec;
121+=doc;
12u+=dec;
uimgmul(el,11);
u2l=gmul(e2,121);
}

~

/* calculations for the second region s/
while (gemp(gadd(ui,u2l),Llim)<=0) {
u2u=gmul(e2,12u);
/% don’t calculate stray torm if it is too small &/
it(gemp(gadd(ul ,u2a),Lim)<=0) {
zlﬂgmul(tl(ol,ll).gsub(tl(oz.lzl).t1(02.12u)>);
z2=goul (t2¢ut) ,gsud(t2(u21), t2¢u2w)));
}
else {
zi=gmil(t1(e1,11),£1(e2,121));
z2egoul(t2(u1),¢2(u2l));
¥
1boti=avma;
singadd(s1,z1);
s2¢gada(s2,22);
11=gdiv(l1,F);
121=gcopy(12u);
12u=gmul(12u,F);
docalpile(ltopl,lbotl,0)/4;
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11+=dec;

121+=dec;

12u+=dec;

si+=dec;

s2+adec;

al=gmul(el,11);

u2legmul(e2,121);

}
it (sgn=s1) si=gadd(s1,gdiv(s2,normC));
else s1sgsub(si,gdiv(s2,normC));
lbot=avma;
return(gerepile(1top,lbot ,gmulla,s1)));

}

/% these noxt two routines ovaluate individual terms. If you want to ovaluate the L-series at s not equal tuo,
these routines are essentially all you meed to change (you might also noed to 1look at what accuracy you got) =/

GEN t1(x,l)

GEN x,1;
{
GER 20,z1;
long 1ltop,ldot;
ltop=avma;
20=gadd(gdiv(1,x) ,gdiv(gun,gsqr(z)));
z1agexp(gnog(gmul(l,x)),prec);
1lbotmavma;
return(gerepile(ltop,ibot,gml(z0,21)));
}
GER t2(x)
GEN x;
{
return(einti(x,proc));
}

GEN ppcoett(m,p,e,Ll)
GEE m.p,e,L:
/= calculate points on oach reduced curve mod primes above p */
/% and corresponding prime power coefficients =/
{
GEN pi.r,s;
long ltop,lbot;
int i;

ltop=avma;
r=cgotg(3,17);
r{11=Clong)p:
pi=lift(factmod(m.p));
i£(1g(p1[11)==3){
/% p is split s/
pi=spos(p,m,p1);
s=cgotg(3,19);
for(i=1;i<e2;i++){

s{il=(long)ratred(e,p,gcoet2(p1,i, 1) ,gcoott(p1,i,2));

s[il=(long)gtrans(coadd(s[i],p,L));
}
rf2]1=(long)gtrans(s);

}
olse if(gogal(gcootf(p1,1,2),gdeux)==TRUE){
/* p is ramified %/
pi=spos(p,m,p1);
soratred(e,p,geoef1(pl,1,1) ,gcoeti(p1,1,2));
r[2)=(long)gtomat(coadd(s,p,L));
}

olse {
/% p is non-split »/
s=quadred(e,p,n,L);
r[2)=Clong)gtomat (coadd(s,gsqr{p),L));
}

lbot=avma;
roturn(gorepile(ltop,lbot,gcopy(r)));
}

GEN ratred(e,p,mi,p1)
GEN o,p,m1,pl;
/% reduced curve is eoquivalent to ome over Q at p, calculate »/
/% number of points and reduction ®/
{
GEN n,s;
long 1ltop,lbot;

ltopm=avma;

eageopy(e);

s0t1g(0,6);
o=simplity(gmod(e ,m1});
e=smallinitellle);
n=apell(e,p);

134
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it (gempO(gmod(compo(e,12),p))==TRUE)
s=concat(pt,concat(gzero,n));
olse s=concat(pl,concat(gun,n));
1bot=avma;
return(gerepile(1top,1bot ,gcopy(s)));
}

GEN quadred(e,p,m,L)

GEN e,p.m,L;
/% calculate reduction and number of points over F_{p~2} »/
{

GEF p2,n.5,X,¥.Z;

leng ltop,lbot,ltopl,lbotl;

int i,j.k,1.q;

1ltop=avma;
p2=gsqr(p);
if(gemp(p2,L)>0){

/% p is too big to matter »/
s=concat(gzoro ,§zer0);
lbot=avma;
s=concat(p,s);

olse if(gegal(p,gdeux)==TRUE){
/* 2 is awkward (naive count of points) »/
e=gcopy(e);
sotlg(e,6);
o=smallinitell(gmodulcp(gmul(e,gmodulcp(gun,p)) .@));
n=gun;
q=gtolong(p);
for (i=0;i<q:i++) {
for (j=0;j<q:j*+) {
x=gmodulcp(gadd(stoi(i),gmulstoily),palx[0])),m);
z=gadd(conpo(o.s),sml(x.gadd(conpo(e.4),gnnl(x.3&dd(conpo(o,2).x)))));
tor (k=0;k<q;k++) { :
for (1=0;1<q;1++) {
y=gmodulcp(gadd(stoik) ,guul(stoi(l),polx[0])),m);
11(gogal(z,gmul(y,gadd(y, ,gadd(gml(compole,1),x) ,compols ,3)))))==TRUE) {
n=gadd(n,gun);
}
H
}
}

}
n=gsub(gadd(p2,gunl,n);
if (gempo(lift(lift(compole,12))))==TRUE)
ssconcat(p,concat(gzero,n));
else s=concat(p,concat(gun,n));
¥
else {
/% default »/
/» p is non-split and not large (get curve in form y-2=1(x)), mark values on
RHS and add those which occur om LHS #/
ltopi=avma;
o=gcopy(e);
setlgle,8);
o=smallinitell(gmodulcp(gmul(e ,gmodulep(gun,p)).n));
x=concu(concat(gun,gzoro).concat(gdiv(compo(o.l).gnog(gdoux)).gdiv(compo(o,s),gnsg(gdoux)))):
lboti=avma;
e=coordch(e,x);
e=goropile(ltopl,lbot1,e);
ltopi=avma;
qegtolong(p);
s=gscalsmat(0,q);

for (i=0;i<q;i++) {

for (j=0:j<q;j*++) {
x=gmodulcp(gmul(gnodulcplgun,p),gadd(stoi(i) ,guullstoi(j),polx[01))).m);
2=gadd(compo(e,5) ,gmul(x,gadd(compole,4) ,gmul(x,gadd(compe(e.2),x)))));
yelite(1ite(z));
k=1+gtolong(truscoet(y,0));
1=1+gtolong(truecoet?(y,1));
166(s,k,1)=(1long) gadd (gan, compo(compo(s ,X),1));
}

lboti=avma;

sagerepile(1tepl,lbotl,geopy(s)):

}

1ltopl=avma;

n=gun;

for (i=0;i<q;i++) {

for (§=0;j<q;j*+) {

x=gmodulcp(gmul(gmodulcp(gun,p) ,gadd(sto0iCi) , gouilstoi(j) ,polx{01))),m);
zogmul(x,X);
y=2ife(lite(z));
x=1+gtolong(truecoe?2(y.0));
1=1+gtolong(truecoet?(y,1));
n=gadd(n, compo(compo(s.k),1));
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lboti=avma;
n=gerepile(ltopl,lboti,geopy(n));
}

n=gsub(gadd(gsqr(p) ,gun).n);

it (gempO(lift(lift(compo(e,12))))==TRUE)
s=concat(p,concat(gzero,n));

else s=concat(p,concat(gun,n));

return(gerepile(ltop,lbot,s));
}

GER spos(p.m,p1)
GEN p,m,pl;
/*= got totally positive generators for ideals over p =/
/% This assumes narrew class numbor one and uses trial and error method =/
{
GEN n,1;
long ltop.lbot;
int i;

ltop=avma;
a=gun;
f=tfactor(gsub(p,m));
uhile(gempt(compo(matsize(),1))==TRUE) {
n=gadd(n,gun);
it(gemp(n,st0i(100))>=0) printf("t");
fstactor(gsub(p,gmul(gsqr(n).m))); .
3
n=gcoetf(f,1,1);
i2Qg(p1l1])==3) {
i1(gcmpO(gmod(subres(geoatt(pt,1,1),n),p))==TRUE) i=0;
olse i=1; .
if(gsigne(truecoett(n,0))>0)
coot(p1,1+i,2)=(longln;
else cootf(pt,1+i;2)=(long)gnegln);
n=geoe1$(£,2,1);
if(gsigne(truecoett(n,0))>0)
coetf(pl,2-i,2)=(long)n;
olse coott(pt,2-i,2)=(long)gneg(n);
}
olse {
it(gsigne(compo(n,1))egsigne(compo(n,2))<0)
n=gcoetf(1,2,1);
if(gsigne(truecoef(n,0))>0)
coet2(p1,1,2)=(longin;
olse coef(p1,1,2)=(long)gneg(n);
}
1bot=avma;
return(gezepile(itop,1bot,gcopy(p1)));
}

GEN coadd(s,q,L)
GEN s,q,L:
/% add coefficients of the prime powers #/
{
GEN c.v;
long 1ltop,lbot;
int i;
1top=avma;
cegsqr(q);
it (gemp(c,LI<=0) {
i=(goxpa(L)+1)/gexpolq);
vacgetg(i+l,17);
i£(gempO{compo(s,2))==TRUE)
for(i=1;gemp(c,L)<=0;is+){
it (i%2==0) v[il=(long)compo(s,3):
olse v[il=(long)gsqr{compo(s,3));
c=gmul(q,c);
¥

olse for(i=1;gemp(c,L)<=0;i++){
it (i==1) v[1]=(long)gsub(gsqricompa(s,3)),q);
olse if (i==2) v[2]=(long)gmul(compe(s,3),gsublcompolv,1),q));
olso v[il=(long)gsub(gmul(compo(s,3),compo(v,i~1)),gmullq,compolv,i-2)));
cogmul(q,¢);
}

sotlg(v,i);
1dot=avma;
v=concat(s,v);
}

else {
lbot=avma;
v=gcopy(s);
}

return(gerspile(ltop,lbot,v));
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GEN cogen(A,H,f,m,c,L)
GEN 4,8,f,m,c,L;
/» gonerate coofficients for a composite number */

GEN H,p,pp.pm,ri.r2,s,s2;
leng ltop.lbot,ltopl,lbotl;
int §,j.x.kK,1;

1ltop=avma;

1=1g(£[11)-1;

Hel;

for(i=1;icsl;is+) {
pegeoeti(t.i,1);
for(jm1;gogal(p,compo(compo(,j),1)) t=TRUE; j++);
ppeGG(A,j,1);
pu=GG(4,3,2);

12(¢(1g(pn[1]) 1=3) ke (gogal(pp.gcoott(pm,1,1))==TRUE)) Hegnul(H,gpuilpp.gcoet?(1,i,2),0));
}

if(gemp(H,L)>0) {
B=concat(gun,gzere);
lbot=avma;
roturn(gorepile(ltop,lbot ,gtomat(E)));

H=gtopat(concat(c,gun));

for(i=1;icel;i++) {
pegeoett(?,1,1);
x=gtolong(gcoet1(?,i,2));
for(j=1;gogal(p,compocompo(d,j), 1)) 1=TRUE; j++);
pp=GGCA,j.1);
pu=G6(A,j,2);
i1Qg(pm[1])==2) {
ri=gnod(gmal(G(H,1) ,gpuilgcoet(pm,1,1) ,gcoott(1,i,2) ,0),m);
r2=gmul (G(H,2) ,gcoots (pm,1,k+2));
}
olse {
ltopi=avma;
lboti=avma;
ri=gtrans(G(pm,1));
while(lg(r1)<(x+2)) {
sngmod(goul(6(r1,1g(ri)-1), geooti(pm,2,1)),m);
riagmod(gaul(r1,gcoet1(pn.1,1)) .m);
lboti=avma;
riscencat(rl,s);
}
if(itop1!mlbotl) ri=gerepile(ltopl,lbotl,ri);
if(x==1) r2egtrans(G(pm,3));
olse {
ltopi=avma;
r2=geoott(pn,1,k+2);
for(xke1;kk<k;kk++)
r2=concat(r2,guul(gcoots (pn,1,k+2-kk) ,gcoot (pn,2,24kk)));
lboti=avma;
r2=geropile(ltopl ,1bot1,concat(r2,gcoett(pm,2,k+2)));

}

s=gmod(gmul(G(H,1),r1) ,m);

s2ogmul(G(H,2),r2);

ri=zcompo(s,1):

r2=compo(s2,1);

for(kx=1;kk<1g(s)-1;kx++) {
ri=concat(r1,G(s kk+1));
r2=concat(r2,6(s2,kk+*1));
}

risgtomat(rt):
lbot=avma;

H=gorepile(ltop,lbot,concat(rl r2));

return(i);
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Now we have my program for calculating Eisenstein-Kronecker-Lerch series for

real elliptic curves.

/% calculates chi(x_0) to specified precision on lattice gemerated by 1 and tau »/

#include <stdio.n>
#include <gempari.h>

#dofine TRUE 1

long prec;
GEE chi();
GEF tm1();
GEH tm2();

main()

GEH &,x,%,t,tau,lim,n,n;
char s[512];
long lbot,ltop.dec;

proc-s;

init(1000000,2);
sotprecr((long) (prec/K1));
constpi(prec);
polx[0]=1lisexpr(* x");

printf(“lattice generator(other tham 1)?');
s[0])=0;

while(!s[0]) gets(s);

tau=lisexpr(s);

if(gemp(gimag(tan) ,gzero)<0) tau=gnog(tan);
print£("x0?");

s[0]=0;

while(!s[0]) gets(s);

x=1lisexpr(s); .

ltop=avma;
x=gsub(x,gmul(gtloor(gdiv(ginag(x),gimag(tan))), tan));
x=gsub(x,g1loor(great(x)));

lbot=avma;

x=gerepile(ltop,lbot.gcopy(x));

1top=avma;

A=gdiv(gimag(tan) ,gpi);
1bot=avma;
A=gorepile(ltep,lbot,gcopy(a));

1limsgsqrt(gmul(gml(glog(gdeux ,prec) ,stoilprecs32)) 4, prec);
t-gzero;
1ltop=avma;
n=gtloor(gdiv(lin,gimag(tau)));
while (gemp_1(n)==0) {
m=gsqrt(gsub(gsqr(lin) .gsqr(gmulin,ginag(tan)))) Jprec);
it (gemp0{n)==0) u=gsub(gmulln,tau),gtloor(gadd(n,goul(n,grealltan)))));
olse w=gun;
while (gemp(m,greal(n))t==1) {
tegadd(t,tm1(v,x,4));
tugadd(t,tn1(greg(u) ,x,4));
wsgadd(v,gun);
}

negsub(n,gun);

lbot=avma;

t=gcopy(t);

n=gcopy(n);
dec=1pile(ltop,lbot,0)/4;
t+adec;

n+s=dec;

}

n=gneg(gtloor(gdiv(gadd(lin,ginag(x)) ,ginag(tau))));
while (gemp(gadd(gmul(a,gizag(tan)) gimag(x)),lin)!=1) {
negsqre(gsub(gsqr(lin) ,gsqr(gadd(gmul(n,ginag(tan)),gimag(x)))) prec);
w=gsub(gnul(n,tau) ,gfloor (gadd(gadd(m,greal(x)) ,guul(n,greal(tanl))));
while (gecmp(m,gadd(greal(w),greal(z)))t=-1) {
togadd(t,tm2(w,x,4));
w=gadd(v,gun);
}

n=gadd(n,gun);
lbot=avma;
tagcopy(t);
negeopy(n);
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dec=1pile(ltop,lbot,0)/4;

teadoc;

n+=doc;

}
t=gmul(gsqr(ginag(tan)),¢);
outbeaut(t);

}
GEN chi(v,x,4)
GEN w,Xx,A4;
{
GEN y.z;
z=ginag(gdiv(guul(gmul(s,geonj(x)) ,gdoux),4));
it (expo(z)<-procs16) yegadd(gun,gmul(z.gi));
else yagexp(gmul(z,gi) ,prec);
roturn(y);
}
GEN tmi(w,x,d)
GEN w.,x,A;
{
GER t,o,nms;
ps=greal(gmul(v,gconj(w)));
o=goxp(gneg(gdivinms,a)) ,prec);
t=gmu1(gnu1(chi(u.x,n).o),gdiv(gadd(gun.gdiv(ms.A)),gnul(w,ns)));
roturn(t); .
}

GEN tm2(w,x,R)
GEH w,x,4;
{

GER t,ms,xaw;

xawsgadd(x,u);

ms=greal(gmul(xaw,gconj(xaw)l);
t-gdiv(gmnl(gconj(xau).ointt(gdiv(ms.a).proc)).gmnl(A,A));
return(t);
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