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Abstract

Dimensional regularisation is formulated without usmg the assumption that
fdPk(k*)" = 0. Alternative definitions of £,),, and 7° are also considered.
In the reformmulated scheme, quadratic divergences are present, in general,
in the scalar and gauge boson self-energies, and remain unregularised. The
possible cancellation of such divergences is investigated. Phenomenological
aspects of unified gauge theories are studied.
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Chapter 1
Dimensional Regularisation

Regularisation is the means by which the divergent integrals occuring in field
theories are controlled. There are many different techniques of regularisation,
although probably the most widely used is dimensional regularisation. In
this scheme the regularisation is achieved by using extended definitions of
integration and vector algebra to define a field theory in a non-integer number
of dimensions. Here the main concern will be with the way of extending the
definition of integration.

Consider the integral of a function f(z) in D dimensional Euclidean space
(D=1,2,3,...) with —co < z; <

I= /dDa:f(x) (1.1)
In polar coordinates this becomes
I= / f(x)rD_ldr sin?20p_1d8p_, sin® 3 0p_odbp_s . ..do (1.2)

where r =| z | and 0 < 6; < 7 except for 0 < 6; < 27.
If the function f(x) is spherically symmetric, then f(z) = f(r) and the rela-
tion (Wallis’ formula)

‘ /” sin™ 0d8 = 7'((1/2) F(%(m + 1))

A T(1(m +2)) (1.3)

. : m2>0
may be used to carry out the angular integrations

b, sTGMD-1) ,TGD-2) T(E)
I= /fr)r drrt r(lD) WF(%(D_I))...TF T(13) x2m (1.4)



which iniplies that

1= [7 fryrPtren(nt P (1D) (15)
1= r?z(;//;)) | £yt (16)
= I = DV(D) /0 F(r)yrPdr (1.7)
D>2(D=234,...)

where <D/
VD)= 5D i Ty (1.8)

is the volume of the D-dimensional unit sphere, for D = 2,3,4,...). The
formula is also correct for D=1. There are no angular integrations here so
the limit D > 2 in (1.8) which comes from m > 0 in (1.3) does not apply.
- The factor V(1) = 2 comes from

[ swar=2 [ pr)ar (19)
_Hence (1.5) and (1.7) hold for D =1,2,3,4,...

An expression for I has now been worked out which is an explicit function of
D, the number of dimensions. Therefore this expression can be used to define
a function, or rather a functional of the function f, which is also a function
of a continuous variable D, and which corresponds to standard integration
when D = 1,2,3,4,... This is how integration in a non-integer number of
dimensions can be defined in this rather limited context. This is not an
analytic continuation in D, as the function was previously only defined at a
set of points D = 1,2,3,4,... and not in an analytic region. Therefore this
definition is not unique. For example, anything of the form

/ dPzf(z) = g(D)DV(D) /0°° fErPTar (110)

where g(D) =1 for D =1,2,3,4, ... would serve equally well. The analytic
properties of

I= / Pz (z) = DV(D) /0 " F(r)rPYdr | (1.11)



will be determined by

/ f(r)yrP-ldr (1.12)
since DV(D) is an analytic function.
Only RD > 0 will be considered here, so as a basic definition

92 (D/?)

10) = 735 / f(r)rD Ly (1.13)

RD >0

In general the following axioms, due to Wilson [4], will define integration in
non-integer dimensions . | <

[a(hi@) + fo(2) = [Pafi@)+ [Pofiz)  (119)

[ dPaf(ua) = uP [ dPaf(z) (1.15)

/def(a:+a)=/def(m) (1.16)

When D is an integer these properties are satisfied. For non-integer D the
basic integral (1.13) automatically satisfies the linearity (1.14) and scaling
(1.15) conditions. If translational invariance (1.16) is imposed on (1.13), then
this can be used to derive other non-spherically symmetric integrals.

A specific function in D = 2w dimensional momentum space will now be

considered, namely
' 1 1

o
f(¥) (2m)2 (k2 + m?)"
where m is a real constant (hence m? > 0), but D is not necessarily integer, or

real, but may be complex. The factor of 1/(27)? is included for convenience.
The integral of this function in 2w dimensions is

(1.17)

d®k 1
I = .
(w’ m) (27!')2“’ (kZ + mZ)n : (1 18)
From the definition (1.13) this is equal to
o 9 2w-1
I(w,m) = — R dk (1.19)

(4m)«T'(w) Jo  (k? + m?2)»

since I(w,m) is spherically symmetric. Making the substitution k? = m?2z
gives
(mZ)w—n oo xw-—l

Ilm = tof@ b @i

(1.20)




From (B.13) the integral in (1.20) is the integral representation of the beta
function provided that Rw > 0 and R(n — w) > 0, so that

I{w,m) = (gg?;(;)ﬁ(w n—w) (1.21)
Rw>0,R(n-—w)>0
Ny (m?)* " I'(n—w) (1.22)

(4m)  T(n)
Ro>0,R(n—-w)>0
The first condition, ¥w > 0 is not a problem, since as in (1.13) only RD > 0
is being considered (and D = 2w), but R(n — w) > 0 is more restrictive. It
is important to realise that for #(n — w) < 0 the integral in (1.20) is not the
integral representation of the beta function, which instead will be given by
an integral of the form of (B.26).
In dimensional regularisation the main concern is with integrals in a dimen-
sion D = 2w close to D = 4. It Wlll be useful to also look at dimensions close
to D = 2. Consider
D=2-em>w=1-¢/2 (1.23)
where € is small and positive i.6. | € |« 1, Re > 0. For this case the integral
I(w, m) will be given by (1.21) for Rn > 1—-R¢/2. Specifically, this is true for
n=1,2,3... For the case D = 4—¢€ (w = 2—¢/2), I(w,m) is given by (1.21)
provided that ®n > 2 — Re/2 and (1.21) will be correct for n = 2,3,4,...,
"but not for n = 1.

For D=2 — ¢ with real n
(m?)* " I'(n-w)

Fwm) = = tm)

(1.24)

0<1-Re/2<n
If n > 1, (1.24) is regular as € — 0 (D — 2 from below). If n = 1, then
(mZ)w -1
(4m)«
has a simple pole at ¢ = 0 (w = 1). This is an ultraviolet logarithmic
divergence, since in 2 dimensions

THw,m)="—"—T(1 -w) (1.25)

M 2k 1

B (1.26)

I}l(l,m) =



1

1 M 2kdk
TamJo (k24 m?)

= L lin(k? + )

1 (M2+m2>
=—In|———

4m m?

and therefore

Liy(l,m)~InM as M — o

For D=4—¢
(m?)* " ['(n - w)

(4m)~  T(n)

I'w,m) =

If n > 2, I"(w,m) is regular as ¢ — 0, and for n =2

(m2)w—2
(4m)*

IFw,m) = I['2-w)

has a simple pole at ¢
logarithmic divergence, which can be compared with

M dif 1

Iy (2,m) = (2m)t (k2 + m2)?

1 /M 2k3 dk
T 1672 Jo (k% 4+ m?2)?

1 I M?* +m?
~ 16%2 o m?2

and as with I},(1,m)

M2
B M2+m2}

IZ(2,m)~1lnM as M — oo

Now consider I'(w,m) for D = 4 — €. In 4 dimensions

M i 1
1 _ .
IM(za m) - (27‘(’)4 (kz + mZ)
1 /M 2k3 dk
~ 1672 Jo (k2 + m?)

(1.27)
(1.28)

(1.29)

(1.30)

(1.31)

0<2—-Re/2<n

(1.32)

0 (w = 2). This again is an ultraviolet (UV)

(1.33)

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)



! {M2 - ;ﬁ21n (M>} (1.39)

- 1672 m?

Now the dominant behaviour of I},(2,m) as M — oo is
I(2,m) ~ M? as M — o0 (1.40)

This is a (UV) qﬁadratic divergence. It is apparent that I3,(2,m) has a log.

divergent part, and also a part that is a ‘pure’ quadratic divergence i.e. which .

is independent of m. The pure quadratic divergence dominates in the large
M limit.
In D =4 — € dimensions

d*k 1
1 —
- I'Yw,m) = ) (R 4 ) (1.41)
I'(w,m) is spherically symmetric, so
_ oo (k2)w—1d(k2)
Hem) = wtty b - g (142)

When 1 < Rw < 2 the integral in (1.42) is not the integral representation of
the beta function. Rearranging the integrand

/ (kZ)w 2(k2 m2 - m2)d(k2)
(4m)*T(w) Jo (k2 + m?)

The integral in the second part of (1.44) is the 1ntegral representation of the
beta function in the domain  (w — 1) > 0 and R (2 — w) > 0, therefore

(1.43)

I(w,m) =

m2 (kZ)w 2 (m

“ @t ) ) = e

) e —1,2-w)  (1.45)

l1<Rw<?2
——(i:;i’);gw) Blw,1 — w) | (1.46)
1<Rw<2



since f(w—1,2 —w) = —f(w,1 —w). (1.46) is logarithmically divergent, and
corresponds to the second part of (1.39). The first part of (1.44) is the ‘pure’

quadratic divergence corresponding to the first part of (1.39).

@r)—“’ll“m /ow(kz)w_zd(k2) ' (1.47)

is divergent, even for w # 2 (e # 0), and therefore remains unregularised.

Strictly, this means that the whole of (1.44) is unregularised, and the regu-

larisation procedure has failed. However, since the second part of (1.44) is
regular for € # 0, it is possible that the scheme will still work if the pure
quadratic terms from different parts of a calculation ultimately cancel each

other out. To determine this, a linear separation of I'(w,m) into two inte-
grals must be carried out.

Ak 1
1 _
I'(w,m) = (2m)2% k2 + m?
a2k 1 d2“’k m? .

em2k? ) (27)2 k2(k? + m?)

[ d®k 1 (m2)~-1 1
/(27r)2w k2 (47T)wp( ),8( 1 - w) (1.48)

l1<Rw<2
The success of this approach depends on the consistent manipulation of such

expressions, even though they contain an unregularised quadratic divergence.
To carry out such manipulations, the use of linearity (1.14) will be the prin- '
cipal tool. In certain circumstances, translational invariance (1.16) may also

be used, as will be shown later. The scaling property (1.15) must be avoided,
however, since e.g. for

1
fk) =3 (1.49)
(1.15) would imply that 7
&k 1, k1
e P e (1.50)




Chapter 2

The Photon Self-Energy

2.1 Feynman Parametrisation

Consider the photon self-energy II,, (p) in QED to 1-loop order. In D =
2w = 4 — € dimensions (see e.g. [5, 6]). '

4 2w
Hw(p)=—ezTr[ T - L ]

(2%)2“7“ }(—m+ie% K+ p—m+ie (2.1)
In Euclidean space, .aftel.' Wick rotation
| Y d%k 1 1
I, (p) = —ie*Tr [/ (27r)2“’7" T -~ T m} (2.2)
_ g [k Tepn (K - m)n (K B~ m)] (2.3)
- (2m)% (k? +m?)((k +p)? + m?) '

10




Evaluating the trace using gamma matrix formulae

d*“k 2kuk, + kupy + puky — 8 (K + k.p + m?)
B R () o B

Carrying out Feynman parametrisation leads to

, d*k (1
I, (p) = —4ie® (27r)2w/0 dr

r-
i

2kuk, 2z(1 - z)[pupy — 6P b (2.5)
(k2 + a2)? (k2 + a?)2 (k2 + a2) -
where .
a® = m? + p’z(1 — ) (2.6)

For spherically symmetric integrals

(27r)2“’f( )= (47) wp( )/ d(k?)(k*)“ 7 f(k?) (2.7

It will also be assume‘d that

e (EE
(27{')2“" (k2 + (12)2 - (27‘(’)2“’ (k2 + a2)2 .
Therefore interchanging integrations in (2.5) gives
ILw(p) = (m / d {Au + Bu + Cu} (2.9)
where
A, =2 17 gy eyt B (2.10)
w="0 s N (k% + a2)? .
o 1
o _ s .2 2y(1.2yw-1
Bu = =221 = )lpup, = 6] [ dRNE) T e 21)
0 1
— _ 2 2\w—1
Chp =~ /0 K (2.12)

For A,, and C,. the integral representation of the beta function (B.26) is
required, with n = 0. In (B.26) n = 0 implies that

Fl/t,z+y)=1— (14 1/t (213)

11




= Blz,y) = [ A1y - o) (214)
R(z+y)>0 -1<Rz <0

Letting t = k?/a?
) = @) [0 | - | @)

R(z+y)>0,-1<Rz <0
For (2.10) ¢ +y = 2 and y — 1 = w are required, implying that z = 1 — w
(-1 <z <0)andso

B(l — w,w +1) = (a®)'¥ /0°° d(k?) {(sz"fi)zz)z - (k2;2—w} (2.16)

This gives
Ay = i‘;—” ((az)“’_lﬂ(l — Q,w +1) +/:° d(k2)(k2,)%) _ (2.17)

Similarly, for (2.12) the appropriafe values are £ + y = 1 and y = w which
again imply z =1 —w (-1 < z < 0) and so

Bl - w,w) = (a?)~ /Ooo d(k?) {(2:];2_):;:) - ékz)lz—w} (2.18)
(2.12) therefore becomes
G = =t (@200 - + [T ) ) (219

For B,, the usual integral representation (B.13) must be used. Making the
substitution v = k?/a? in (B.13)

_ooyy [ g2y (RH)
Blevy) = @) [ dR) gz e (2.20)
Rz>0,Ry>0
For (2.11) 2 + y =2 and z = w and so y = 2 — w and therefore
Ny [ g2y (BB
Blw,2—w) = (@ [ d(k I (2.21)

12




This implies that (2.11) is
B;w = —21}(1 - w)[pﬂpv - 6#'/1)2](&2)(0—2,3(‘0’ 2 — LU)

Using (B.12) and the I'-function recurrence relation

2I(z) =T (2 + 1)

it can be shown that

%ﬂ(l —w,w+1)=p4(1-w,w)

From this it follows that
A;w + C;w =

Bula®) 81 = ) + 22 [ d(E)(2)

- pu(az)w—lﬂ(l — w,w) - 6#1, ‘/(;oo d(k2)(k2)w—2

=6 (2 —1) [ a2y

and so A, + Cy =0forw=1 (D = 2) only.
The regularised photon self-energy is
—4ie?

IL.(p) = @ T (@)

{l%ﬁz ~ pupu}B(w,2 — w) /0 ' dr22(1 — z)(a?)*2

1 ® 12\(1.2 w—2}
(2 - k
48, (2 -1) [T a0
For the case m? = 0, a? = pz(1 — z) and
—4z¢?

Ll?) = (yor)

{[80p” = Pup,1B(w, 2 = )2(p*)* B w, w)
+ 8 (% -1) [7 (k) (k)2

13
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(2.24)

(2.25)

(2.26)

(2.27)




2.2 Expansion of the integrand

The photon self-energy II,,,(p) can be obtained without using translational
invariance on the quadratic divergence. This is possible by using identities
to expand the integrand of the 1-loop I, (p) in (2.4). From the identity

(k+p)? — 2k.p — p? + m? ~
Py =1 (2.28)
it follows that )
(k2 +m2)((k+p)? +m2)
1 _ 2p.k + p? (2.29)
(- m ~ (R m){(h + ) + ) |
and from
(k* + m? — m?)
e =1 . (2.30)
it follows that
2 4
1. _ 1 2m m (2.31)

(k2 +m?2)2 k% k(K2 +m?)? + k*(k? + m?)?
Therefore the photon self-energy II,,(p) can be written as

Pk (2kuk, — 8,k
. (27’(‘)2"" k4

IL.(p) = —4ie?

_ 2m?(2k,k, — 6#,,k2) m*(2k,k, — 6‘,,,162)
k4 (k? + m?)? kt(k2 + m2)2
(2kuk, — 8,,k%)(—p® — 2p.k)
(k2 + m2)2((k + p)? + m?)
_ —m? '
_ k,‘p,{ + puk, — 8 k.p — m?6,, (2.32)
(k2 + m?)((k + p)* + m?)

For m = 0 this becomes
Hl“’ (p ) = H;/tlu + Hfu + HEI/

Ak (2k,k, — 6,,k?
(27!')2“’ k4 '

= —45¢?

14




L (2kaky = 8, k%)(=p” 2p.k)
(¥2)*(k + p)?
kup, +puk, — buk.p
2.33

" k2(k + p)? (2.33)
The first line of (2.32) and in the massless case (2.33) contains the pure
quadratic divergences. These are the dominant UV divergences. All of the
remaining terms are either linearly or logarithmically divergent. After Feyn-
man parametrisation of these remaining terms, only logarithmic divergences

will survive.
Assuming that the pure quadratic terms satisfy (C.8)

Pk 2k, — 6,2 Pk 1
e B “”( -0/ G e (239

these terms will only cancel in 2 dimensions (w = 1). For w # 1 the remain-
ing logarithmic and linear divergences will not be sufficient to cancel this
dominant divergence.

This argument is based on a simple algebraic rearrangement of the integrand,
which does not confuse infrared and ultraviolet divergences (in the domain
1 < w < 2). It can therefore be applied within other regularisation schemes.
This leads to the conclusion that quadratic divergences are present in the
photon self-energy whatever the regularisation scheme, and that the only way
to remove thém is to introduce additional fields which contribute quadratic
divergences that exactly cancel with those of II,,(p).

Returning to the dimensional regularisation of II,,,(p), it should be confirmed
that the remaining logarithmic and linear terms produce the expected result.
For the massless case (m = 0) this means that (2.33) should agree with
(2.27). All of these terms can be evaluated using the standard form of the
B-function (B.2). To demonstrate this the following integrals, which are of
the form (C.29) - (C.31), are required'

/ (‘21:;]:‘0 k2(kki P: (47,)w (") (pu)T(2 - w)B(w,w —1)  (2.35)

1<Rw, 1<§R(w+1),0<§Rw<2 =2 1<Rw<2

(ZJ k4(:”f-"p>2 B (47r)‘” (v")°* [pup T (3 = w)B(w — 1)
+%‘S“"pzr (2 - w)b(w,w - 1)] (2.36)

1<Rw,2<R(w+1),0<Rw<?2 = 1<Rw<?2

15




&k Bk
(2m) k*(k +p)*

1
(4m)«

@*~? [—P;PVPAF(«?‘ —w)f(w+1l,w—1)

1
—5172(5,“/1?)\ + 8Py + 63,0 )T (2 — w) B(w,w) (2.37)

l1<Rw,2<R(w+2),0<Rw<2 = 1<Rw<?2
Using these formulae, which apply strictly for 1 < Rw < 2

f = (bMa(ﬁz)M(%P"’ - 0@ -w)Bww—1)  (238)
Hfu = (—45(621-()}:)2)‘”_2 [(5,,,,])2 - 2pupV)F(3 - w)B(w,w~1)

4386~ 2)T(2 ~ )0~ 1)

(—sie?) (%)
(am)"

— %pzp)\(z + 2w)F(2 - w),B(UJ, w)]

_ (et ()
Ty

2pA6uu ["p2p«\_r(3 - w)ﬂ(w + 1a w—= 1)

4pr [=puppa (3 — w)B(w + 1,w — 1)

) ,
- §P2(5uupx + buxpu + 6x,up)T(2 — w)ﬁ(w,w)] (2.39)

It is important to note that all of these terms are free of infrared divergences.
Collecting similar terms gives

s _ (—4ie®)(p*)“?
I = (4m)~

|(8p® = 2pup )T (3 — w)Bw,w — 1)

'

+%p25py(zw = 2)T(2 - w)(w,w — 1)

(—4ifzzr()32)”_2 (268" + 45,03 — )80 + 1,0~ 1)




~ .

+ (=0wp*2(1 +w) + 2(2pup, + 8 P”))T(2 — w)B(w, )] (2.40)

Using the I'-function recurrence relation 2I'(z) = I'(z + 1) this becomes

b _ (UG
H;w_ (47!’)“’ F(z )ﬂ( ’ )

Gt - )2 - ) 8D 4 g 0 -y 2=

w
+(=26,,p% + 4p,p.)(2 - w)(;_—l) +4p.p, + 5uup2(—2w)} (2.41)

and so ( i 2)( 2)w—2
—41€
ns = (4@11 I(2 - w)B(w,w)
[(%pz’ — 2@%)% — b+ 4pppuJ (2.42)
Similarly

nS, = CHOCI T rg ) a,0) | (5. — 2m,0 y>(2“’ DI (243)
(4m) (w—-1)

- The sum of (2.42) and (2.43) is

e, 4+ 11, = 4 by )B(w,w)

(4m)«
[(%pz — 2p,p,) ((3:__1?;) — P*6, + 4p,‘p.,] (2.44)
= (‘45Ez2r()ﬂ2)w_2r(z — w)B(w,w) [26,p* — 2pup.| (2.45)

Therefore the photon self-energy is

, d*k (2k,k, — 8,,k?
IL(p) = —4ie’ (2rm)2 ( . k4 . )

(—4ie?)(p*)
(4m)<
which agrees with (2.27).
The quadratic term is again present explicitly, and remains unregularised. If
the standard integral representation of the S-function f(z,y) (B.2) is used
for all values of = and y, this leads to the quadratic divergences being ignored.

I'(2 - w)B(w,w)? [§up" — pup.] (2.46)
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2.3 Schwinger Parametrisation

Instead of Feynman parametrisation, it is also possible to use exponential,
or Schwinger parametrisation, whereby

m - / dz exp[—z(k? + m?)] (247)

Using this approach, the photon self-energy can be written

Pk 2k,k, + kup, + puk, — 6, (K2 + k.p +m2)
I (p) = —4ie® (2m)2 (k2 + m2)((k + p)? + m?) (2.48)

= I,.(p) = —426/ d:clf dxzf(;i‘;];w

[2k,,k,, + kupy + puk, — 8., (K* + k.p + m?))

y exp[—z1(k? + m?) — z5((k + p)* + m?)] (2.49)
Changing variables to |
K o=k+ x'lpf"xz —k+p-— xlpfmz (2.50)
I, (p) = —4ie? / d:z:I/ dmz/ (6212«;];'
[2k k, + %(k Py +puk,) —2pupuﬁ:7
b (P B )]
oxp [+ ) - i ba)| ()
Using the Gaussian type integrals
(;lz‘;l;w exp(—zk?® + 2k.pz) = (o) L P exp(zp?) (2.52)
(f‘;fwk exp(~ek? +2kpr) = ! ey ep(ap’) (2.53)
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d>k 1 8
/ ( ————k,k, exp(—zk?® + 2k.pz) = (47m;)‘” (p,,p,, + i) exp(zp?) (2.54)

2m)2w
IL,.(p) = —4ie? /oo dz, /oo dz,
0 0

1 1Ty 2 2
(471-)4‘)(:1:1 + "L'2) exp [ (xl + xz)p m (231 + (1!2)

1L 1—-w 2 1T 2
2 26 v — 2 v ——+56 v - -m
l:( D Oy PuP )(-771 +$2)2 H (.’171 + P (1131 +$2)2 )J

(2.55)
Writing |
L. (p) = I, (p) + 1L, (p) (2.56)
where II7, (p) is proportional to (2p? 6,,,, — 2pupy), then using the identity
oo g\ i+ mg) _
"5 (1 ) =1 (2.57)

117, (p) becomes

. oo oo o g\ T1+¢z
1 = —4je? - - 2
H“V(p) = —41e /0 d:c1/0 dm2/0 3 ) (1 3 )

1 2 L1722 T1Z2 5 2
(471')“" (2}7 6“1/ - 2pupv)m exp [—mp —m (1:1 + Z'g)
(2.58)
_4‘;’;/ day [ dzy [~ drs (1- 212)
T T
(20°6,0 — 2Pupy) /\i > exp [—L/\%pz —-m?A} (2.59)

Letting 2, = Az; and z, = Az,
60— 2up,) [ o [ do) [ ANS(L = (3] + 1)

2,2\ exp [/\(—xllz;p2 - mz)} (2.60)
.Now the integral over X gives a I'-function

H;w(p) - (47‘.)“,

[ a1 expl-A(z 20 +m?)] = T(2 - w)(&zpp? + m?)*?  (2.61)
0

R2-w)>0

19




Therefore after integrating over z,
—4ie?
I (p) =
uy (p) (471')“
0 ’ ! 1 ! /
X /0 dz,z,(1 — z7)[z,(1 — 21)p* + m?“ 2 (2.62)

‘ R2-w)>0
This is equal to the transverse part of (2.26).
Taking part of the longitudinal term, and using the same identity

4 (p) = (4 )w —die’, / dz, / dzy——— (x1+x2)w

(21’2‘5;"/ = 2p,p,)T(2 — w)

2 TiZy g Z1Ty _
(-p ————(xl Py m )exp[ —(m g )p m?(z; +xz)} (2.63)
—4ze
= Tyt / dz, / dz, / aX6 (1= (2 +12))
SN ST NS S
- AT¥(=myz9p” — mP) exp[—A(z; 250" + m®)] (2.64)
"42'62 1, 9 1 7 2\w—1
= Gl =) /0 dz,(p?z,(1 - ) + m?) (2.65)
R(2-w)>0

The remainder of the longitudinal part is given by
2

T2 = Gyt ) [y

(xll ::2) P [- (a:‘f f; )p2 et xz)] (2:69)
;1‘;’; 8, / dz, / dz, / —6 1— (2} +23)
x (1 — WIA™ exp[—A(z; 240 + m?)] (2.67)

For 1 < ®w < 2 the integral over A is divergent, and can be related to the
Cauchy-Saalschutz form (A.13). for n =0 in (A.13)

I(2) = /0 Tt — 1) (2.68)

-1<R2<0
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= T(z) = a* [ - (2.69)

a>0,-1<Rz<0
Therefore (2.67) becomes

42'62

;1 ) Sy w)/ dw1/ d:c2 1 - (5”1 +5‘72))

{(:clxzp +m2) (1 — w) + /0 )\“"d,\} (2.70)
1<Rw<?2

—4i62 . oo r,o 1 w—
= W&,ﬂ, {F(Z — w)/0 dz,(z,(1 — :zzl)p2 + m2) 1

H1-w) I /\‘”dA} ' (2.71)

\ l1<Rw<?2
The complete longitudinal part is (2.71) + (2.65)
—4i¢? o0

Lp)=+—+ — I 72

T () = s (1 =) /0 A~“d) (2.72)

1<Rw<2

This is not quite the same as the longitudinal part of (2.26). II.,(p) in
(2.72) has been scaled by a factor wI‘(w) This happens because of the illegal
interchange of integrations over z,, z,, and k? which occurs when using
exponential parametrisation and the Gaussian formulae. A similar rescaling
can be seen comparing (3.31) with (3.29), although here the scaling factor is
only I'(w). The extra factor of w in (2.72) is presumably associated with the
additional scaling z1,z; — 7, T,

This contrasts with the results obtained using Feynman parametrisation
(2.26) and (2.27). Here it is not actually neccessary to interchange inte-
grations for the pure quadratic term - this remains in (2.26) explicitly as an
integral over k2. Translational invariance of the quadratic term was used to
derive (2.26), although this will be justified to some extent in (3.70).
Scaling such as has arisen in (2.72) can be tolerated, as long as the same
procedure is applied throughout a calculation, and the pure quadratic di-
vergences ultimately cancel between terms. In general, of course, scaling
destroys any consistent cancellation, since with A = X'
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/ ) = v / “aed (2.73)
0 Jo
Therefore, treating the integral as though it were finite, leads to
/ “aedr=0 (2.74)
0

2.4 Pauli-Villars Regularisation

The longitudinal part of the photon self-energy II., (p) can be made to vanish,
if finiteness is assumed a few steps earlier. Taking

‘ —4i82 00 00 1
I (p) = ———§,, / / . —
;w(p) (471‘)“’6” A dz; A T2 (11:1+.’l?2)“’

1—-w 9  T1T2 2 Tilz2 9 2 )}
P Y —m)exp|—————p " —m(z1+ =
(Grey P o™ P |t e
: (2.75)

and rescaling z; = )\:L"l and z, = /\x;

: —4i62 o0 r f° ' 1
L r 1z 2-w
’“’( ) (4m)~ #Jo Yo 2(:1:1 + zy)¥

l-w ) Ty 2 T1%y 200
7 N 7 7 - —A YN
(’\(1'1 + z) P (z1 + 25)? e (z1 + xz)p (et )
sis? 5 ' . (2.76)
_ 1 g co ' R ’ 1-w
- (47!')"" 6#V)‘8A /0 dxl /(; de (:L.’l + x’2)w+1 A
.'E/ .’El . I}
exp |- —X2p? —m?¥(z, +1 )J 2.77
P[ ((x1+:1:2)p 4 (1 2) ( )
and rescaling back again
—4ie? g [ oo 1
L — “ -
H[.ll/(p) (471_)“, 6[‘VA8A ‘/0‘ dxl A d172 (371 +:D2)‘”+1
2 52 T T
X exp [ Grto) 2:2)p m*(z, + .’L'g)] (2.78)
= IIL,(p) =0 (2.79)
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This is exactly the argument used in [10] for D = 2w = 4, to suggest that
II,,(p) is only logarithmically divergent. In [10] Pauli-Villars regularisation
is used [11]. In this regularisation scheme all integrations are 4-dimensional,
and the divergences are regularised by a careful cancellation between similar
terms. In Pauli- Villars the transverse I (p) becomes

426 00 ./ o0 ' ood/\ [ '
Tp) = o (2 b = 2up) [ i [ da /0 T80 - (3 +2)

At Z Ciy Ty €XP [/\(—xllx;pz - mf)] (2.80)

Clearly ¢ = 1, and HT ,(p) is regularised if ¢; = -1, ¢; = 0 (¢ > 1). The
relation

oo e""t —_ e—/-‘t up —_ l/p
/0 Aty — = F— "1~ p) (2.81)
u >0, v >0 p<l1
implies that
o dt —at —bt b }
/0 F(e—e) =1 (2 (2.82)
' a>0, b>0

Using this, IIT, (p) becomes
(P) (4 )w (21)26;“/ 2p;lpu)

(2.83)

| 1 ro ’ xll(l—fl?ll)p2+M2
/0 dzyzy(1 - 2;)1n [m'l(l —z))p? +m?
for large M this is

—4ie? .
12, (p) = Cor (2026, — 20,1,

{mf——/dmu—@mb+—wa—@” (2.84)

The longitudinal part IIZ, (p) is now

_44;:; 5“,,/ da:l/ d:cg/ d)\é 1—( x1+$2))
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x A7 e (-% — zyz,p" — m?) exp[=A(z,z5p” + m?)] (2.85)

With ¢; = —1, ¢; = 0_(¢ > 1), the middle term is regularised in the same
way as II_,(p), but both the —1/X term and the m} term still appear to
be divergent. A double subtraction would be sufficient to regularise both of
these terms, but if the expression (2.72) is used for IIZ, (p) at D = 4 the
two contributions to II%,(p) from the sum in (2.72) will cancel each other
out, and only oné subtraction will be enough. However, to show that Hﬁu (p)
reduces to (2.72) it is neccessary to carry out the integrations in (2.70) and
(2.65). These are divergent at D = 4 so it is not clear that this can be done.
Using both one Pauli-Villars subtraction, and dimensional regularisation

M (5) = T (2) = oo (28 — 2,0 )T - )
. X Z /01 dzz(l — z)[z(1 - z)p* + ml]~? (2.86)

The Pauli-Villars_regtlla,risation has immediately cancelled the quadratic’
part. In the limit w — 2

IIT (p)= _42:62(21)26 _2pp )
py (47!')“’ Hnv Br'v

“(l—2)p + Mz} (2.87)

/0-1 dzz(l - z)ln [:1:(1 ey e

which agrees with (2.83). This implies that one Pauli-Villars subtraction
is sufficient to cancel both quadratic and logarithmic divergences, and fully

regularise I, (p).

A similar treatment applied to the scalar boson self-energy gives

——iGm[ d*k 1 1

G (f+m) (F+ B+ m)

(2.88)
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= -;zzr—?j {/01 dz(z(1 — z)p* + mz)“’_llLF(2 —w)

- W

+w /0 ” /\“”d/\} (2.89)

and clearly now one Pauli-Villars subtraction is not sufficient to fully regu-
larise (2.89). It is also interesting to note that the quadratic divergence does
not now cancel in 2-dimensions (w = 1).
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Chapter 3

Domain of Convergence

3.1 The ’t Hooft-Veltman Conjecture

In ref. [7] 't Hooft and Veltman suggest that the domain of convergence of
integrals in D dimensions may be extended by means of analytic continuation.
Their argument starts with the integral (in the notation of [7])

A1 A2 A
pa pb .. p
I=[d" 3.1
/ P+ r)r +mD=((p + k)2 + m)= . ((p + k)2 + mf )« (3.1

The integral will be convergent if

A > -1, A > -1, Aj > -1
n+/\1+/\2+.../\j—2(a1+a2...+a1)>O (32)
The identity ;
1& 8p,-
- =1 3.3
K =1 6p3 ( )

can be inserted into (3.1) and partial integration performed to give

I=<—/\1—A2—A]+2(C¥1+a2+al)>I_lI, (34)
K K
or
= ~1 r (3.5)
_(n+/\1+)\2+...)\j-—2(al+a2...+oz,)) '
where I’ is

r -/d"ppa
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2a;(m? + k? + p.ky)
((p+ k)2 +mi)a+ ((p + k2)2 + m)e ... ((p + ki)? + mi)

+ 2a3(mi + k2 + p.ks)
((p+ k)2 +mi)r((p + k2)? + mi)rtt . ((p + ki)? + mi)
+ 20i(m? + k2 + p.ky) (36)
((p+ k)2 +m)s((p + k2)? + mi)e2 ... ((p + K1)? + mf )t '
The integral I' converges if
A > -1, Az > —1, A > —1
/s+/\1+/\2+.../\,-—2(a1+a2...+al)>1 (37)

In [7] it is suggested that because this is a larger domain than (3.2) the RHS
of (3.5) is the explicit representation of the analytic continuation of I into
this domain. Then by repeating the process of partial integration (and for
sufficiently large A) an explicit representation can be obtained which is valid
in an arbitrary large domain in the complex D-plane.

Consider the case A,y =Xy =...3; =0, a2... = =0 and k; =0. Then

" 1
I = /d pm (38)

This is identical to the integral (1.18), with oy = n, m? = m?, Kk = 2w and

p =k (plus a factor W) The convergence condition for I (3.7) becomes

| K — 20, <0 | (3.9)
and (3.5) becomes
I= (—ﬂ—__;a—l)l’ (3.10)
with ,
r= /dﬂpw—_z:‘;—g—)ﬁ (3.11)

The convergence condition for I’ is

k—20 <1 (3.12)
Consider the integral (3.8) in the notation of (1.18)

2k 1
I= [ G K2+ ma) (3.13)
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From (1.13)-

1

d(k2)(k2)“"1m (3.14)

=G h

Integrating by parts

i Em { [(m o (k:)wJ )

0

G, 15)

w (k2 4+ m2)ntt

which implies that

1 1 )1 n., n
I= Rp_tp .
(@n)°T(w) [(kZ e TP I (3.16)
where L 2 (2
1 ° 2y M “
_ _ _mRT) 17
| I'= G b G (317
and so
o o-n w 1 1 (k21
= T e @tw [(k2 Ty e |, G
I is convergent if w — n < 0 (3.9) and
I' is convergent if w — n < 1 (3.12), however
. 1 (k2)w .
g, [(k2 +m2)" w ] =0 (w>0)
. 1 (kZ)w
kgl_rgo [(kz T } =0 (n—w>0) (3.19)
Therefore the expression
I=—27p (3.20)

w—n
is only valid for n — w > 0, and so cannot be used to extend the definition

of I into the region n — w > —1. Note that it is the UV divergence that
prevents this. To conclude, as in (1:21)

. L _ (i) w,n—w
I= / (271)20-) (k2 +m2)n - (47T)“’P(w)ﬂ( ) ) (321)

strictly within the domain

Rw>0 Rn—w)>0 (3.22)
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3.2 The Leibbrandt-Capper Analysis

Leibbrandt and Capper [8, 9] also try to justify the use of the formula (3.21)
outside the limits of (3.22), by appealing to the principle of analytic contin-
uation. They begin by stating the basic theorem;

Let an analytic function g;(z) be defined in a region D, and let D, be another
region which has a certain subregion R, but only this one, in common with
D,. Then if a function go(2) exists which is analytic in D, and coincides with
g1(z) in R, there can only be one such function.

This theorem asserts that g»(2) is unique provided R is not the empty set,
R =D1ND; # 0 (R contains infinitely many points). It further implies that
the representations of g1(z) and g2(z) are equal in the subregion R. Outside
R, the functions g; and g, possess, of course, different representations.

~The Euler integral (B.1) is, in the notation of [§]

L ' T(z) = /owdtt’-le-‘  (3.23)

Rz2>0
Weierstrass’ partial fraction expansion is (see (B.5) and (B.6))

Tw(z)= Y (-1)" iz + )] + / di "~ let (3.24)

n=0
which is analytic in the entire z-plane, except at the points z = 0,-1,-2,....
Therefore, the representation I'y is an analytic continuation of I'g, since its
domain of analatycity clearly overlaps that of I'g.
This does not, however, prove that the integral I'p(z) (3. 23) is analytic for
Rz<0, Whlch it clearly is not. In this region the appropriate representation,
or rather, representations, are those of the Cauchy-Saalshutz form (B.13)

T,= / e = 3 (—ty™ /miljdt (3.25)

m=0
—-(n+1)<Rz< -n
In a given region —(ny +1) < Rz < —ny, the Cauchy -Saalschutz integral
I'no(2) is equal to I'y(z). Ty (2) is therefore analytic in this region. The
difference between I',, (2) and I'g(2) in this region

| Tp(2) = Tuy(2) = /om[ijjo (=)™ /ml]="Ydt (3.26)

—(ne+1)<Rz< —ny
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. is clearly not an analytic function. So the integral I'g(z) is not analytic for
any Rz < 0. it is important to distinguish between the integral I'g(z) and
the gamma-function I'(z) in this region.

In [8] it is proposed that integration leads, in the region where the integrals
exist, to [-functions. The analytic continuation is then implemented by using
for the I'-functions the Weierstrass representation.

The response to this is implicit in the statement itself; in regions where the
integrals do not exist, they are not equal to I-functions, no matter what
representation is used.

This is discussed further in [8] in relation to massless integrals. The integral

d*k 1
is evaluated in two ways. Firstly using parametrisation
d®k oo _ i o drx~¥
= [ .
I= [ G (2m)> f o= (am)” (3-28)
1 xl—w 0
= — .29
cHienl) 29
which diverges at £ = 0 for 1 — w < 0. This is equivalent to
d‘Zwk 1 2 2\w-—1
1=/ e (477)“’I‘(w) a0 ) PR

R o e, 6

which diverges at k% = oo for w — 1 > 0.
Secondly (3.27) is expressed as

_ [ 4%k 1 (k—p)
1= G R (3.32)

B /dﬁwk 1, [d%k _ pk
—P ) e Rk - pp O R~y

(3.33)

+/(27r)2“’ k2(k — p)?
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Evaluating the three integrals separately [8] finds
I=(4m){@)*'T(1 - w)[(1 - w)B(w — 1,w — 1)
—2(1 - w)b(w - 1,w) +(1 - w)flw - L,w + 1)}

+ [w(am) ™ (p*)* T (1 - w)B(w,w)] S (339)

In deriving (3.34) it has been assumed that the Euler integral I'g(z2) is valid
- for all z. Using (B.12) and the recurrence relation 2I'(z) = I'(z + 1) (3.34)

reduces to
: I=0 (3.35)

- Leibbrandt [8] notes that (3.35) may not be the case since each of the terms
in the bracket {...} in (3.34) is analytic in the finite strip D; : 1 < Rw < 2,
whereas the last expression involving I'(1 — w)f(w,w) is only defined in the
domain D; : 0 < Rw < 1. Since the domains of definition P; and D, do not
overlap (D; N'D, = B), Leibbrandt comments that cancellations between the
analytic continuations of the corresponding functions in (3.34) may not be
justified.

Actually (3.34) is analytic for all w (except integer values) because the I'-
function and B-function are so defined. The argument of [8] above is entirely
correct, however, when applied to the integrals arising from (3.33).
Leibbrandt attempts to justify (3.35) using a redefinition of integration in D
dimensions. The original definition used in [8] is based on a generalisation
-of the Gaussian integral

/ o )2w exp(~ok + 268) = ¢ 41)w xp( 8 (3.36)

z>0
This reduces to the standard Gaussian formula for 2w = 1,2,3... but for
complex w, the RHS of (3.36) is taken as the definition of the integral on
the LHS. ThlS can be compared to the earlier definition based on spherical
symmetry (C.1)

(3.37)

/ d*k 1 _ (m?)* " T(n - w)
GO (BT mdy (@ T(n)

0<Rw<Rn
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For b = 0 (3.36) becomes

d*k
@ exp(—zk?) =

1

oo (3.38)

z>0
~ The LHS of (3.38) is spherically symmetric, and so

/—(;;‘;l;w exp(—zk?) = m /Ooo d(kz)(kz)“’—l exp(—zk?) (3.39)

_ 1 —w % g2y (n2\w-1,-K?
= T’ /0 d(K?)(k2)* e (3.40)
) :
Rw>0,Rz>0
which agrees with (3.38). Using translational invariance in (3.39) gives
&k \ 1
Gn= exp(—z(k — b/z)?) = (@ro) (3.42)
which implies '
*k L exp(t?/2) (3.43)

e exp(—zk® + 2k.b) = (ams)

Ru>0Rz>0
which agrees with (3.36). Hence the two definitions are equivalent. The
Gaussian approach has the same difficulties. Consider

d*k 1

1 = 3.4
I'(w,m) (2m)% k2 + m? (3.44)
Using an exponential parametrisation
d*k [
1 _ 2 2
I'(w,m) = W/‘J da exp(—a(k® + m*®)) (3.45)
, m? #0
Interchanging integrations, and using (3.38)
. N .
P:/ dae=om" 3.46
o ° (4ma)~ (3.46)
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= I'= ——(m?)* (1 - w) (3.47)

(47r )

RA-w)>0

exactly as in . (1 25). Again I' is only defined for 0 < Rw < 1, and not for
l1<Rw<2.

Ref. [8] attempts to justify (3.35) using a redefinition of the generalised
Gaussian integral. (3.36) is replaced by

/ (;lzj’,jw expl-zk? + 20 = ¢ 47T1z)w exp[b;—xf(w)] (3.48)

x>0

where the function f(w) is called the continuity function, and has the follow-
ing properties;

1. f(w) is a non-zero analytic function of the complex variable w.
2. f(w)=0for 2w =0,%1,42,43,....

3. fl(w) = 0 for 2w = 0,41,+2,43,... and | < I, where I, is finite; [
denotes the number of ordinary derivatives with respect to w.

4. R[f(w)] > 0 for any R(2w) =0,+1,42,43,...

This corresponds to (1.10) with g(2w) = exp[—zf(w)]. Repeating the steps
(3.44) to (3.46) using this definition leads to

= W /oo daa'oe_d(m2+f(‘”)) (349)
«“ Jo

which after rescaling (for real f(w)) becomes

I" (47r)w(m + f(w))* /0 do/ (o) e~ (3.50)
which is equal to
' 1 m2 w w-—1 _‘w
I'= ya(m + F@)* T - ) (351)

. for R(1 —w) >0, (m? + f(w)) >0
just as in (3.47). I' is again only well defined for 0 < ®w < 1, and not for
1 < Rw < 2. The condition R(f(w)) is not sufficient to allow the domain of
analyticity to be extended.
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3.3 The Bjorken-Drell Test

In [10] ,there is a very simple and compelling theorem concerning the photon

self-energy II,, (p). The Ward identity requires that

P'Iu(p) =0 ' (3.52)
After Wick rotating to Euclidean space II,,, (p) is given by (2.1). Contracting

with p#

- d*k - 1
#I,, (p) = —ie*Tx [ : Y ] 3.53
Y (p) - (271')2“’ ¢(k+m)7 (}(+ ¢+ ) ( )
Using the identity ¥ =g+ k+m— ]6 —m and the cyclic property of the trace
‘ d>k 1
11, (p) = —ie®Tr [ + K+m— K—m }

(3 54)

which implies that '

Pt =%\ [ o (o ~ g+ 099

If the integral in (3V.55) were finite, translational invariance could be used

in the second term (k — k — p) to give II,,(p) = 0. With regularisation
procedures such as momentum cut-off, this is obviously not possible because
the cut-off precludes translational invariance. In dimensional regularisation

translational invariance is generally preserved, implying that the ward iden-
tity can be satisfied.

However, explicit calculation of IL,,(p), using dimensional regularisation,
yielded for the case m = 0 ((2.27) and (2.46))

L. (p) = i )wr( )2[5Wp — pup]B(w, 2 = w)B(w, w)(p?)*?

2

—4die 1_ ® 012 2A w—2
+ aer@ (G Y T GG (3.56)
which implies that
—4ie?
PIL,(p) =

Wpy ~1) / d(k?)(k2)~~2 (3.57)
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The unregularised quadratic ‘divergence present in II,,(p) prevents (3.52)
from being satisfied. If (3.57) is true, then the unregularised (even in 2w

dimensions) divergences present in the integrals in (3.55) must forbid the use
of translational invariance.

In deriving (2.27), translational invariance was employed, after Feynman
parametrisation, and before the pure quadratic divergences could be clearly
identified. In the derivation of (2.46), which agrees with (2.27), the pure
quadratic divergences were first separated out using only linearity. This
would appear to support the use of translational invariance in the derivation
of (2.27).

The problem has arisen that using translational invariance to derive (3.57)
leads to one result

—4je?

y Y d 2 2\w—2 58
PILu(p) = ——(4ﬂ)wF(w)p -1 [ ) (3.58)
whereas using translational i invariance in (3.55) gives another

Pl (p) =0 (3.59)

Therefore the issue of translational invariance must be looked at more closely.
From (C.4) it follows that

Kk k
/‘(271')2“" (k2 +l;nZ)n =0 (360)
for0<Rw < R(n-1)

It is tempting to assume that

(;lj;’jwk f(R) = (3.61)

is true for all f(k?). Thisis certainly the case if f(k?) — 0 sufficiently quickly
as k? — oo, but consider the simple example f(k?) = 1. For 2w = 4

dzwk /°° dkl o dky oo dks [ dk4
(2m)2 b = (27) J-oo (27) -0 (27) J-o0 (27)
‘For e.g. 4 =1, the integral over k; is zero, whilst the integrals over ky,k3,k,

diverge. Hence the 4-dimensional integral is not well-defined. In 2w dimen-
sions, if it is assumed that

k, (3.62)

2k

e o)
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then since this is finite, translational invariance must be permitted, implying
that

dz“’k d*k
) Geete= [ Gttt a0 (3.64)
and from (3.63)
d*k d*k
(2n )2w( wt+Pu) = (Zry2ts (3.65)
but this integral is spherically symmetric, so
>k 1 o '
—_ — - - k2 w-1 )
Gt =P T . AR (3.66)

which is divergent. Therefore (3.63) can not be true. Even if (3.63) does

not hold (3.66) implies that (3.64) is not true. It is therefore important to
consider other integrals of the form

d*k
G (f (Bu + pu) — f(KW)) (3.67)
This is done in appendix D, where it is demonstrated that
d*k 1 2k 1
o= ktpr ) @n= ke (3.68)
d2wk k# +p,_4 d2wk k;l
G k)~ J G (o) (369)
r 1 %k 1 |
/ @m)2 (k+p)2  J (2m)> (k)2 (3.70)
and ﬁnally that
d*k k,+p, [ Ak [k, Ps__ 2p-kk, (3.71)
@m (k+p)2? —J @m* (k)2 (k)2 (k) '

To obtain these expressions, linearity is assumed at all times, and transla-
tional invariance is used only for integrals known to be well-defined. It is
also assumed at all times that 2w =4 — ¢ (1 <Rw<2).

For m = 0 (3.55) becomes

PiG) = -ie'te | [ 2o (- G ))] G
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and from (3.71) this is

u o [.d%k (p* (2p.kK*)
P (p) = —ie o (]c_z - W) Tr [v,7.]) (3.73)
which implies that ‘
arr oy —die? 1 O s
PILule) = Gsorytel =D f) dEE) (3.74)

This agrees with (3.57).

The identity used in (3.54) has expressed the quadratically divergent (3.53) as
the difference between two cubic divergences (3.55). As shown by (3.71) this
difference is a non-vanishing unregularised integral, even for 2w # 4. There-
fore translational invariance fails for divergences that are cubic, or higher.
No inconsistencies arise, though, if translational invariance is used in the
quadratically divergent integrals, as shown by (3.70). This provides some
justification for the use of translational invariance in the derivation of (2.27).
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Chapter 4

8!‘.',/\u1/ and Y5

4.1 Dirac y-matrices in D dimensions
In D = 2w dimensions the v matrices satisfy the Clifford algebra

{7*,7"} = 26"1 (4.1)

where 1 is the 2w dimensional unit matrix. The trace opera\tion is defined
such that

Tr[1] = f(2w) (4.2)
In an even integer dimension, the standard representation of the v#’s has
dimension 2P/2, although for most calculations it is usually assumed that
f(2w) = 4.

The trace operation is linear
Tr[aA + bB] = aTr[A] + bTr[B]

(4.3)
and cyclic

Tr[ABC| = Tr[BCA] (4.4)

These properties define the trace of any linear combination of products of
7v’s. For example, from cyclicity (4.4)

Tr[v*v"] = Tr[y"+*]

then anticommutation (4.1)

(4.5)

= Tr[—v*~" + 26#1] (4.6)
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and linearity (4.3)

= —Tr[y*4"] 4+ 26*"Tx[1]
= Tr[y*y"] = 6*Tx[1] (4.7)
Similarly
Te[y" y#9"] = (66" — 646 4 6™ 6M)Tx[1] (48)
Now consider DTr[y?]
DTY[YY] = Trfy*v7']
= —Trly*v*v] + 2Tx[y’]
=Tr[yey"v*] + 2Tx[y’] (4.9)

= (D~1Tr[y") =0 (4.10)

So Tr[y*] = 0 except at D = 1. For the trace of three v matrices the same
treatment leads to

(D = 3)Tx[r*y*v"] = 26* Txly"]

(4.11)
so Tr[y*y#~4*] = 0 except for D =1,3.
In 4 dimensions it is possible to define a fifth matrix v° by
7 =iy (4.12)
or more formally
7= %m,w'r"'y*’y""r" (4.13)
where &, is the totally antisymmetric Levi-Cevita tensor, with
€o123 = +1 (4.14)
With this definition of 7%, it follows that
{71 =0 (4.15)
(¥*)P? =1 (4.16)

Tr[1ecrm = TE[Y° Ve vum] (4.17)
These definitions of both v* and Exauv are unique to 4 dimensions. This is

why difficulties arise when trying to use these objects within the scheme of
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dimensional regularisation. If it is assumed that 4® and v* anticommute for

arbitrary D,
{v*,v}=0 (4.18)
for all D
then starting with Tr[y®] and using the properties (4.1) - (4.4)
: DTr[75] = Tr[fys'y"’y,‘]
= . Tr[y,7°v"]
—Tr[y*v,7"]
- —DTy) (419)
= DTr[y’] =0 (4.20)
So Tr[y°] = 0, except at D = 0. In the first and last lines
1
7#7” = E{fyu,fy“} = (5}’:1 = D1 (4.21)
was used. In a similar fashion |
DTY[Yv*] = Trl*v*v' 7 nl
= Trln7’v*v'7]
= Ty’ wr“r" 7Y
= —26f\‘Tr['75'y’\7"] + 285 Tr[y°v#v"] — DTr['y“r"y"'y"]
= —2Te[y*{7*,7"}] + (4 - D)Tr[y’+*v"] (4.22)
= (2 - D)Tx[y*+*7"] = 26" Tx[y"] (4.23)

which implies that Tr[y*v#+*] = 0, except at D = 0,2. For Tr[y>y*y*y#~”]
the algorithm gives

(8 — 2D)Tr[Y° 7" v#¥"] = 46" Te[y*v*4"] + 46" Te[v* v (4.24)
= Trfy* "y’ y#4"] =0 (4.25)
except at D =0,2,4

Therefore a 4* that anticommutes with all v# is not possible outside D = 4.
The usual way around this problem is to define

1 ~ v |
Y = oYY (4.26)
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with

1 if (kApv) is an even permutation of (0123)
-1 if (kApv) is an odd permutation of (0123) (4.27)

Exdpy =
0 otherwise

This definition is not Lorentz invariant on the full space, but only on the first
four dimensions. The definition implies that

\ {¥,7*} =0 if p =0,1,2,3

[v’,4*] =0 otherwise
(r) =1
()= (4.28)

and so 7% does not anticommute with all v*.

Another possibility is to use (4.13), and take &), outside the expression to
be generalised to non-integer D. However, then neither (4.15) nor (4.17) will
hold.

4.2 Definition of ;s

The definition that will be investigated here is to again take

1
7= e Y (4.29)

but with e,,,, defined to be totally antisymmetric for all (kApv) and
Exaur =1 for K<A<p<v (4.30)

Now +° will, in general, not anticommute with all v*. In D = 4 dimensions
the set of indices (kApv) must be the same as the set (1234), so p will be
equal to one of them, and distinct from the other three. Therefore v* will
be equal to one of the v matrices in (4.29)(and so commute with it) and
will anticommute with the other three. So v will anticommute with 4°. In
D # integer dimensions, the values of the indices (kApv) will no longer be
restricted to 4 integers, and so v* will not anticommute with ~°.

Some properties of 4° will remain unchanged. From (4.8) it follows that

1

T[] = ;¢

o TEY 7]
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= en (878 — 56 4 8 TH{1] (4:31)

= Tr[y’] =0 (4.32)

using the antisymmetry of €.y, .
" In the same way i.e. by successive reduction of the trace of 2n v matrices to
traces of 2n — 2 v matrices, it follows that

, Tely’ 'y’ =0 - (4.33)
and also that |
Tr[75’y"1 ,y-#z,),ﬂa,ym] . 6"”‘2"3"4Tr[1] (4_34)
Note that within this particular trace v* does anticommute with the other
7’s. This can be seen explicitly, since by virtue of (4.1) and (4.33), v** can
be anticommuted to the right
T\I.[,Y5,Yu1 ;Yﬂz 7#37#4] — _.Tr[fys»ym g”sfy‘“ 7#1] (435)
and as the trace is cyclic
Tr[,},5,},#1 'YM ,Ylta,yml — _Tr[,.yul ,),5,7112 7#37#4] (4.36)

This does not mean that v* will anticommute within any other trace, as will
. 3
now be demonstrated. The trace of 4° with 6 v matrices is rather more
v Y
lengthy, and yields '
TI‘[’)’S’Y"I ,.y#z ,7#3 ,},/l-t ,Ylls ,Y#s] —
Tr[1] x
[Euluzuam 6#5#6 _ 6#1112#3115 6#4#6 + 6#1#2#3#6 6#4#5‘
+6#1'#2#4#5 5#3#6 — 5#1#2#4l‘6 6#3#5 + 8#1 H2 45 e 6#3/‘4
—cHIM3BANS G2l | P B3Bate SRBs _ 1 H3ps s SHa b

+&-I‘1 B4 ps e SH2H3 + gh2bsbiais gB1Ks __ gh2H3bsps SHr#s

+E”2 H3bsps S pe ghabaltsis SHiHs + gh3bens e 5#,1 #2] (4‘37)

Using the same method as in (4.35), but with (4.34) instead of (4.33), it is
apparent that
Te[{7®, v pyteytonsntionte]
= 2Tlr[1] (51‘11‘25#3#4#5116 — §M1H3 cHaBaps s

+5M1u4€#2#3u5#6 _ 6#1#55#2u3#4us + 6#1#66#2#3114#5) ) (4.38)
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Clearly now (7°)? # 1, although from (4.34)

T ) = s T (439)
1
= T’y = ;D(D - 1)(D.- 2)(D - 3)Tx[1] (4.40)
It is also important to note that the identity
' Svi. B ’
ghiBapaps V1vavsvs T : ' (4_41)
S#1ve fHava

is only true in 4 dimensions. It is only for D = 4 that the two sets of indices
(M1p2psps) and (P1vavsvs) are both equal to the set (1234). For D # 4,
this is not true for the definition of ,5,, given in (4.30). Hence, in general

(") #1. |
4.3 Anomalies
Consider the axial extension of the QED Lagfaﬁgian

| , 1
L =0(iv"8, —m)p — eJ A" — ¢ J5, AL — %F,,,,_F’“’ - (PP (4.42)

where the vector and axial vector currents are

Jy = J’yl"{ﬁ ' (443)
- ’ =1 :
L=y [Yur 7] ¥ (4.44)
The vector current is conserved
8*J, =0 . | (4.45)

whereas for the axial current, the Dirac eqation gives

M Js, = 2mPyy (4.46)
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and, as expected, Js, is conserved only when m = 0, i.e. when (4.42) is
invariant under axial gauge transformations. The ABJ anomaly arises in the
‘triangle diagram. The amplitude from this diagram

P

ANVVWVIWVVNN

%

and the crossed diagram with p «+ ¢ and p < v is

O (5. 0) = ie?e,’ 2k S R
A \Py 4 (27r)2w k+m7ﬂ k_ F+m z\.'Y s 9{-{-111%"
+(peg pev) « (4.47)

In dimensional regularisation, v° will no longer anticommute with v#’s. Con-
sider p”TS‘),,

o7 = je2e’ d*k 1 1 5 1 ]
3 (2m)2 {Tr[}(+m¢k—¢+m%w k+54+m7"
T [k+m7” = d+m ™ ¥+ g+m 25}} (4.48)

Using the identity
p=(f+m)— (- p+m)=(k+ p+m) - (F+m) (4.49)
in the first and third traces respectively, gives

o d*k
(2m)%

p”T)Ei),, = ie’e

{Tr [7"14— ;+m7§75k+ é+m] _Tr{%kimmsl“ ¢}+m
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1 s 1 1 . 1
+Tr " drm ™ lf+m} Tr [’Yuk_ o™ & ¢+m]}

(4.50)

where the linear and cyclic properties of the trace operation have been used

but v° has not been anticommuted. Now a translation of the third term

k — k + ¢ shows that it cancels identically with the second term, whilst the

translation k¥ — k£ + ¢ — p in the last term implies that it cancels w1th the

first. The result is that

PT, =0 (s
Similarly, it can be shown that
¢'T, =0 (4.52)

in agreement with the Ward identities. In using the identity (4.49) the
linearly divergent terms in (4.48) have been expressed as the difference of
quadratically divergent terms in (4.50). Even though these quadratic diver-
gences remain unregularised by dimensional regularisation, the differences
between them are regular. Therefore, as was argued in chapter 2, transla-
tional invariance can legitimately be used.

The remaining identity should imply that

@+ T, = 2mT,, (4.53)
where
' 2k 1 1 1
T, v = — je? 5 v
=T ] ey [ +m”k—¢+m7k+q+m7}

+(Ppeq pev) (4.54)
However from (4.47) '

(* + q*)T(s) =
2w

. 1
(2m)2 K+m "}( 1?5+ (B+ d)y K+ y{+m%]
t{perg, peov) (4.55)
Using the identity '

(#+ )" = (B+ 4 +m)y’ = (k= g+ m)y’
==V (k+ g+m) ~ (= f+m)° +2m7° + {1°, f+ 4} (4.56)
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(p)‘ + qA)T)(\z)u =2mT,,

o [ Ak 1 1
- 2 5
+26€/W{_Tr[’)/uy_i_m')/uk_ﬁ_,_mv:l

1 1
- {7”k+m7” i d+m}

1 1 5 1
+ﬁ[k+m7"k— prmi oK f”m“’"]}
+peg peov) (4.57)

Using translational invariance

3
@ + )T, = 2mT,,

a0 [ Ak 1 1
+e‘e W {—TI‘ [k+m7# k_ ¢+m{7 771/}:,

‘ 1 1
—Tr [m{’y ,’Yﬂ}m’%{, }

/ d®k 1 1 1
- 2 Tr 5, I V]
tiee (271')2“"{ l:k_*_m’)’#k_ ¢+m{7 y+ ﬁ}k+9{+m7
+(peg peov)} (4.58)
Using the definition of ¥* given in section 4.2 for 2w = D # 4

1 K vV
75 = Esm\;w’y 71\7#7 (459)
it follows that
Tr[y*v] =0 (4.60)

except for 2w =5

Tr[y’y,m) = 0 (4.61)
Tr[y* v v%,) = 0 (4.62)
except for 2w = 5,7

Tel{7°, %1 %] = 0 (4.63)
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Therefore the middle two terms in (4.58) vanish identically, leaving

@ + )T, = 2mT,, + ALY (4.64)
where 4
o[ Ak 1 1 1
ABJ _ 2 5
Auv =tee (27!')2“’ [k+m7uk_ ¢+m{7 s K+ yﬁk+¢(+m%]
+(peog pev) (4.65)
. ] dzwk
= AﬁuBJ = 2626 W
(K-m) (Kk—f-m) (K+ 4 —m) }
o [(k? rm?) k= prrmt) K gy
' +peg peov) (4.66)
and again from (4.60) to (4.63), A%57 reduces to

AABT _ 02, &k Tr[fvu(K= B){7° ¥+ 4K+ d)n)]
- @ @+ w2 (kB w)((k+ o + )

t(peg poy) (4.67)
Using (4.38) for the v matrix trace
AABJ — z'eze’2Tr[1] (6[‘1/‘25"1‘4#1‘6 —~ MY chrbe Bt
pv

BLB4 2V ipe . SP1LE P2V 4 b6 H1U6 2V b
+oHr B € + bHr#se

>k (k+ ) (k + q)*2 kM (k — p)te
(2m)% (k2 + m?)((k — p)* + m2)((k + 9)? + m?)
tpeg peov) (4.68)

Using Feynman parametrisation, the integral becomes

re) [ (f:)lzw /01 dan [ de
(k+ ) (k4 q)2 k™ (k — p)H
[(K)? + m? + ¢2zs — p(21 — 22) — (g1 — p(z1 — 72))?]°
+(p g peov) | (4.69)
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with k = k' — gz + p(z1 — 22). The whole expression simplifies to
A;‘fJ = 2ie?e' 4Tr[1] (1 - —2-) qepHeghrerts
w
(k)
(27{')2"",/ dﬂ,‘l/ dxz [(k )2 a2]3 (470)
a® = m® + ¢’z — pX(z1 — 2) — (23 — p(21 — 25))? (4.71)

and the inital factor of 2 comes from the crossed term. Integra,tmg over k'
gives '

where

! 2
AﬁVBJ = 2i62€ 4’:[‘1'[1] (]__ _) ql‘4p#sgup4pp6
W

Lo (@T2-w)
/del/[; dz,y @ 1) w (4.72)

for0 < Rw < 2

~-

= AABJ, —ie?e 4Tr[1]1(3 — w)

B4 HBe V4 pilig
q'pe

(4)

x | ' dny [ deafaty? (4.73)

2/2

= ALPT = —iele D p—— +0(2 - w) (4.74)

[T

In 2w =4 dimensions it follows that
1
(p)‘ + qA)T§2)11 = 2mT,“, - ieze Ws“"paqppa (475)

which is the standard ABJ anomaly.

48




Chapter 5

General Gauge Theory

5.1 Full Quadratic Term

Consider the Lagrangian

1 1 .
£ = —-ZF:VF”VG + §¢ ’Y‘“(.D#’l,/))2

+ (D) (D)™ ~ ST Wimy — Tmigg™

+ 5T(CVISY — a0 (51
where '
F;, =08,A) — 8,A% — gf* AL AC (5.2)
(Du9)* = 8,9" +ig(04)* Afg’ (5.3)
(D) = 8,0 +ig(TA)7 Ay (5.4)

The scalar fields are taken to be real, and the spinor fields Majorana. The
representation matrices T# and ©“ obey the Lie algebra of the gauge group;

[T4,T®) = ifABeT° (5.5)
[04,05] = if4B°eC (5.6)
The corresponding 1-loop 2-point functions are shown in figs. (5.1), (5.2)
and (5.3). In general both the scalar boson self-energy, and the gange boson
self-energy contain quadratic divergences. Using the usual Feynman rules,

and the same techniques as in chapter 2, or simply by setting masses and
external momenta to zero, the pure quadratic parts can be identified.
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Figure 5.1: Scalar 2-point graphs
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Figure 5.3: Fermion 2-point graphs
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To begin with, consider the scalar self-energy. The fermion loop contribution
is '

d*k i b i i
— 2 (G4 Gb JTy 5.7
o G OV [ ] @)
The pure quadratic part 1s
o ; d*k 1
- SHGY(GY Ty | e (5:8)
The scalar loop contribution is
/; \“
! '
l\ !
\ _ /l
=1 (5.9)
The quadratic part is ,
(5.10)

The gauge boson loop gives'

1. [ d®*k b4

= ——i

‘ k,k,
2 W? <'_6“" +(1-¢ k2 ) 26‘“’ ((eced)ba + (ed@c)b")

(5.11)
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with quadratic part (the whole expression)

dk 1

ig%(2w - (1—¢))(e°e%)k e i (5.12)
and also
| (277)24‘,?2-( /lv ( 5) k2 )(k +p)2
x (—ig)(k* + 2p*)(©°)% (~ig) (k" + 2p")(©°)* . (5.13)
= 2 cae\ba d2wk 1 _ 2 _ (k2 +2p.k)2
—ig (00 [ g (k2 - B
. (5.14)
The quadratic part is
= ig’ 2(0°0°)b(— {)/ (;ij:fw klz (5.15)

Combining (5.8), (5.10), (5.12), and (5.15), the coefficient of the pure
quadratic divergence is

—%mu](ca)iii(c;b)ﬁ F idabee + 182(20 — 1)(0°0°)% (5.16)

Turning now to the gauge boson self-energy, the fermion loop contribution is

1 1
K+m, ¥t p+my

=—-——zg / G )%’I‘r[TaTb]Tr [n (5.17)
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The quadratic part is

1. o rrarb (1' ) d*k 1
_ = Z - Bl 5.18
2’9 Tr[T°T ]Tr[l]lé,,,, w 1 (2m)2 k2 (5.18)
(There is a symmetry factor of ; because the fermion is Majorana.)
‘There are two contributing scalar loops. The first is
{ ‘.
S ]
\ i
\\.\ ”I
~ -
1. dZwk i . 2 anybyee bnya\ce
=5 G ETY Su ((©°0%) + (8°0%)) (5.19)
The quadratic part is
d*k 1
— ig"8, T[] | = 5.20
‘Zg 6# fI\r[ @ ] (27‘_)2@ k2 ( )
The second diagram is
] et
\\ ,’l
| 1. [ d*k L ande
=5t (2% k2 + m} (—19(©*)*)(2k, + py)
i
———(—ig(0%)*)(2k, + p, 5.21
POk ) (5.1
N ‘ b d*k (2k, + pu)(2k, + o)
= Zig?Tr[0*O / : 5.22
2 [ ] (2m)% (k2 + m3)((k + p)? + m3) (5.22)
The quadratic part is _ '
‘ 1 d*k 1
- 2 anb
v— | ———— 5.23
| ig°Tr[0%O ]6,‘ o) Emie (5.23)
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The complete scalar quadratic part is (5.20) plus (5.23)

— ig%6,, T[0°0"] (1 - %)

In a general covariant gauge the ghost loop is

>k ibe.
(27-‘-)240 (k-+ )2( gfcda)(k +p#)(k)2(

gffeb)

- . >k (k# + P#)kv

_ 2
—lg fcdafdcb (27(‘)2“) (k+p)2k2

The quadratic part is

2k 1

- ig’f acdf bcd @R

There are two gauge boson loop diagrams. The first is

z\p+(1—

_ 1 [ @k b
=2 e \©

X (—igz)[fecafebd(éz\u‘spp - 6yu6Ap)
+ febafecd(éw\éup - 6;‘A6up)

fecbfead((sz\yél/p - 61’#6'\[’)]
The quadratic part is '

- i fuatrctn (-1~ 1-8) (1~ 1)) |
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>k 1

(2m)2 k2

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)




The final diagram to consider is

d*k
2 (2 )2wgfﬂd6[ (2k +pp)6pA + (kA p/\)(s,‘p + (2pp + k,,)&,\,,]

' ko k° i Ax (¥ +p)(*° +p°)
X3 < 7 +(1-87 )(k+p)2 <—5 +(1-¢) k+ 1) )

X gfbcd[(ka + zpa)éun + (kn - pn)écu - (2kV +pl/)6'¢0] (530)
The quadratic part is contained in

1
— zg ? fade focd / (zﬂ)zw k2(k + p)?

[4kuk, (20 = 1) + 8, 2k% — 2k,
L
+ (1= O35~ 8wk + Kh,k)

+(1- g)(k—jﬁ(—a,,,k‘* + k?k,,k,)} (5.31)

The quadratic part is therefore

1.2 _A .2 _ (_ L)] k1
229 facdfbcdtéuu [4 20 +2 % + 2(1 f) 1+ 20 (271')2“' k2

’ (5.32)
Combining (5.27), (5.29) and (5.32), the gauge boson loop contribution is

i9? faca foodOpuv [3 — % +(1-¢) (—1 + -1—) .

2w
—Qu-1)+(1-¢) (1 - 510—)) - %] _—(;l:;fw]:—z (5.33)

. 3 o1y @k 1
= Zg2facdfbcd6uu [3 - éz - (zw - 1) - %] (2_71')%’57—2 (5.34)
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. 4
= zngacdfbcdé,‘,, [4 - 2w — %] - (5.35)

= i9” facd focaOu2 (1 - —) (1- w)/ (dzwfw klz (5.36)

The coefficient of the whole thing, combining the quadratic parts of gauge,
fermion and scalar sectors is

. 1
i9® fuci freab2 (1= ) (1 = )
- 2 anyb 1
— ig%,, TY[©°O"] (1 - ;)

- igzéﬂ,,%’I‘r[l]Tr[TaTb] (5 - 1) | (5.37)

— ig%,, (1 - 5) [-z('w — 1) facd frea — TE[0°0"] + %’I&[l]Tr[TaTb]] |
(5.38)
Taking Tr[1] = 4 and 2w = 4, this becomes

- zgi’%a,,, [~2fact froa — TH[OOY] + 2T¥[T*T*]] (5.39)

For the regularised self-energy to satisfy the Ward identity, the quadratic
divergences must cancel, i.e. (5.39) must equal zero. This is rather difficult
to achieve, since the only way to vary (5.39) is by choice of representation.
It is much more restrictive than the corresponding scalar condition (5.16)
which contains 3 distinct dimensionless couplings.

The only obvious solution to(5.39), and the most natural is supersymmetry.
Ina supersymmetnc gauge theory, not only does (5.39) vanish, but (5.16)
also.

5.2 Two-Loop Example

 Consider the two-loop, diagram.
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po Lo dk o dek 11 1
T 6 (2m)2 (27)% k3 k3 (ky + ko + p)?

taking the scalar mass to be zero. Carrying out the k, integration using
Feynman parametrisation leads to

d*k 1 1

(5.40)

—_ 2\w—-2
I= 6 e )wF(2 W)W = Lw=1)((k +p)?)*?  (5.41)
l1<Rw<?2
- Feynman parametrising the k; integral implies that
1 1
6(4W)U,F(2 w)ﬁ(w - 1)(2 —w)w
a0 [ deai ()
/0 d(k3) /0 dzz CF TS s = (5.42)

The integral over k; diverges quadratically. It is not possible to use the simple
identites of section 2.2 to identify the pure quadratic divergence, because the
exponent of the denominator is non-integer, but the identification can be
made using the formula for the beta function worked out in appendix B.
For 1 < ®w < 2 (B.26) implies that

B(3 - 2w,w) = /0 ~ dt ((Tj:t_)%i - tzw-‘*) (5.43)

which implies that

B(3 - 2w,w) = a®>% / dt ( ) (t')2“’“4> (5.44)

(a+41t)3-v

and so
1

1
6(471')“’ F@ - W)l — 1w = 1) rars
/0 ' dzgt {(p2a:(1 — 2))2%6(3 — 2w,w) + /0 * dt'(t')z“"‘*} (5.45)

1

1
EWI‘B —w)f(w-1l,w-1)

=1=

{(pZ)Zw-w(w ~1,2w — 2)8(3 - 2w,w) + ﬁ /0 N d(k“’)(kz)z”“’} (5.46)
I1<Rw<?2
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5.3 Dimensional Reduction

In section (5.1) it was shown that the condition for the cancellation of
quadratic divergences in the gauge boson self-energy is

ig%6 (1= =) [-20 = Duutfres = TH0°0"] + S TITHTT™] = 0
(5.47)
" where a sum over representations is assumed.
Even with an appropriate choice of representations, the cancellation is only
exact for 2o = D = 4 (barring a particularly contrived choice of Tr[1]).
Therefore dimensional regularisation is still not ‘manifestly’ gauge invariant
in 2w dimensions, although if an exact cancellation were to be obtained for
D = 4, the model would be expected to be well behaved, and free of quadratic
divergences when other types of regularisation scheme were used.
It has been established that dimensional regularisation does not manifestly
preserve supersymmetry, and to solve this problem, a modification was pro-
posed by Siegel [12]. In the modified scheme, known as dimensional reduc-
tion, the spacetime dimension D = 2w is non-integer, whilst the dimension
of all fields is fixed at D’ = 4. Symbolically

D'=D@ (D - D) | (5.48)

4-dimensional space is decomposed into a sum of D- and (4~ D)- dimensional
subspaces, and in the (4 — D) = ¢ dimensional subspace all derivatives are
required to vanish.

Consider the pure gauge Lagrangian, including gauge-fixing and ghost terms

. 1 . e 1 a “ “
L= _ZF#VF# - %(aﬂA“ )? + n**6,D* bnb (5.49)
where
Fi, = 8,A; — 8,A5 + gf* AL AT (5.50)

D = 9,6% — gfeoas (5.51)

In dimensional reduction the range of the index p of A4, is splitinto0 < i < D
and D < o < 4 [13], leading to

(L = (LD + (L% (5.52)

where 1. ' 1 :
(£%)7 = —gFGF™" = 5g(BA™) + 00D’ (5.53)
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(£9)° = —5(8:42)" - gf ™ abaz A
_% 2fabcfadeAfA§AidAae
. 1 \ ’
- Zg2‘)¢'al>c‘fadef11;143’J4o'd14¢'r e v (554)

The D-dimensional part (£L%)P is the same as in dimensional regularisation.
The € scalars A% couple to the gauge fields A? as though they were scalar
bosons in the adjoint representation. The gauge transformations are

6A? = O;A* + gf*°AA° (5.55)
§A2 = gfoc AL AC (5.56)
The fermionic lagrangian
1w .
(L5 = S0° (D) (5.57)

becomes (LF)P + (LF)¢ where

(£F)P = %fﬁav"(Dnb)“ (5.58)
(£F) = %ig!b;“.(T")’;“v”Aflﬁb  (559)
The scalar lagrangian
(c%)* - %(DM)‘”(D%)“ (5.60)
becomes (L£%)P + (L£5)¢ where
(£%)P = %(Difﬁ)“*(D‘sb)“ | (5.61)
(£%) = %gz(GBGA)CbA;‘A""gb”qS" ' (5.62)

In deriving the terms of the e-scalar lagrangian it has only been assumed
that a sum over 4-dimensional indices could be separated into a sum over D
and e dimensional indices, i.e.

A,B* = A;B'+ A,B° (5.63)
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It must also be assumed in the gamma matrix algebra that

{¥osm} =0 (5.64)

In the original formulation [12] it was also assumed that the D and e dimen-
sional vectors could be projected out of the 4 dimensional ones.
 In 4 dimensions

S =00 Burbow = br G = 4 (5.65)
In D dimensions '

v = by buobay =84  buyu=D (5.66)
In e dimensions

B =bun b =64 Buu=e (5.67)

If 3,‘,, is regarded as an orthogonal projection operator from 4 dimensional
space onto its D dimensional subspace, then

~

Spabor = by . (5.68)

whilst .

Buy = 6 — by , (5.69)
projects to € dimensions.
In fact, as has been shown [14], these projections can not be carried out
consistently. Siegel first showed that (5.68) is inconsistent when applied to

the 4 dimensional identity

6#1 vi e 6#4111
6#1 B2 43 44 6"1 vavsvy T : '. : (570)
6#1 vg vt 6#4'/4
Projecting to D dimensions gives
3#1 12} 8#4!/1
EppafiapaCininbany = : : (571)
Sl—‘l vy 5#41/4
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€::2: =0 (5.72)

€y frofiafos V1020304
From (5.71)
 Eahedtaied = (D —3)(D=2)(D-1)D (5:73)

= (1-D)(2- D)(3~ D)(4— D) (5.74)

€sbadsbad
It follows that

0= E&l;étieé}_(}i;s&l;étfeéfﬁﬁ = (D - 4)(D - 3)2(D - 2)2(D - 1)2D (5.75)

=D=0,1,2,3,4 (5.76)

which is Siegel’s result. It can be seen that (5.71) is incompatible with the
defiinition of £,44.4 given in chapter 4. '

Another proof of the inconsistency is due to Avdeev and Vladimirov [15].
They note that in 4 dimensions

by busiy
: Fol=0 (5.77)
Spyvs busvs
but using (5.68)
R B -+ Bugin
R P = by B | Lol (578)
Burvs Busws Burvs Busus
. =D(D—1)(D - 2)(D - 3)(D - 4) (5.79)

which again yields (5.76). This proof shows that the inconsistency is due to
the projection itself, and not to the problems of defining ¢4,y in dimensions
other than 4. This lends support to the view taken in chapter 4 that 44,4
can be defined consistently in non-integer dimensions.

The € scalar terms in the Lagrangian were worked out using only (5.63) and
without using 6,, as a projection operator. Any calculation carried out using
dimensional reduction will be consistent as long as the projection

-~

6#0: 6041/ = Syu (580)

is not required.
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5.4 ¢ Scalar Contributions

With dimensional reduction, there will be an additional contribution to the
gauge boson self-energy arising from the € scalar loops..

Pr i
- ::,::: ‘ . e'-.gs::
1.1 &k, ‘ i6,10,6¢d
= 52 (271’)2“’ g (Spu(facefbde + fbcefade)éalaz;k;“ (581)
d*k 1
— i
= —1g face.fbceé;we Wk_z (582)
m"'"""h"vi-‘:
5.:.‘ :':‘;::
% 5
":"7.‘-' LA _\‘s*
1. d%k
= _2_2.~ W(—gfacd(zk# +p#)601o'3)(_gfbfe(2ku +Pu)60402)
Z.50'10'1; 6ce i60'30'4 6df
‘ 5.83
X (k +p)2 k2 ( )
1., d*k (2k, + pu)(2k, + po)
= 519" faca foea€ 2r (k1 p)? (5.84)
The quadratic part is _
| 1 [ d*k 1
=ig’fa b~ | o 5.85
tg fcdfbcd€ © w (27!')2“" 1.2 ( )

Combining (5.82) and (5.85) gives a contribution to the coefficient of the
pure quadratic divergence of

= igztsw,facdfbcd (1 - %) (_—6) (5.86)
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When added to (5.38) the total coefficient becomes
:‘ 1
— ig%5,, (1 - ul—)) [—2 faoa fra = Te[0°0Y] + Tl {T*T"]|  (5.87)
As long as it is assumed that inside the trace
lp=1.=1, (5.88)

then (5.87) can exactly vanish, even for D # 4, with appropriate choices of
representations. - .
The additional contribution to the scalar self-energy is from

“‘.‘J. pRAy %, p‘;
{ 3
% <
P =
‘:'-":-: 955‘\
SR ¥, ,ee
— lz *k (—i 2)((@-ced)ba.+ (@dec)ba)6 ' iéﬂwzécd (5 89)
—2') ertTY 192 1 '
&k 1
— 702 0°O° ba : il .
(@0 [ i (590)

Adding this to (5.14) gives the total coefficient of the quadratic divergence
in the scalar self-energy, which now becomes

- %muD](c;a)iii(Gb)ﬁ + Dabee + 3ig2(0°0°)™ (5.91)

Again this is now independent of e.

As was mentioned in section 2.2, if the standard integral representation of
the (- function ((z,y) is assumed throughout for all values of z and y, then
the ‘pure’ quadratic, divergences are ignored, or effectively set to zero, i.e.
Jd*k (k)1 =0.

However, a function that diverges quadratically in 4 dimensions will also
have a pole at D = 4 — 2/L for an L-loop diagram. Veltman [16] used this
" connection to identify one-loop quadratic divergences by considering D = 2
poles, and effectively suggested that dimensional reduction should be used for
this identification. More recently, this idea has been investigated extensively
by Jack, Jones and Al-Sarhi [17, 18, 19).
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Veltman showed that imposing a cancellation of the quadratic divergences in
the self-energy of the standard model Higgs boson leads to a relation between
Higgs, top and Z-boson masses. In [17], though, it was demonstrated that
the corresponding two-loop condition is not compatible with the Veltman
condition. In fact, the much more general result was obtained that if the one-
loop condition in a general renormalisable gauge theory is renormalisation
scale invariant, then the two-loop condition follows automatically provided
one further condition is met. It was pointed out in [19] that this condition
could be obtained by cancelling the quadratic divergences in the e-scalar
self-energy. This condition also corresponds to the vanishing of (5.87), the
quadratic divergence in the gauge boson self-energy.

The cancellation of quadratic divergences in the scalar self-energy can also
be called a ‘naturalness’ condition. The concept of naturalness is related to
the heirarchy problem in grand unified theories. In such models, the need to
maintain two vastly different scales of symmetry breaking, the electroweak
scale and the grand unification scale, requires extreme fine tuning of the
model parameters, which must be adjusted at each successive order of per-
turbation theory. ' : ,

In supersymmetric theories, quadratic divergences are completely absent (or
at any rate, completely cancel) and although an initial fine tuning of vacuum
expectation values is required in supersymmetric grand unified theories, no
further adjustment is necessary.

By reformulating dimensional regularisation another difficulty has been iden-
tified here. Quadratic divergences appear in the gauge boson self-energy, as
well as in the scalar self-energy. Consequently the regularised gauge boson
self-energy does not satisfy the Ward identity (3.52), and manifest gauge
invariance is lost.

If manifest gauge invariance is not obtained, in general, with dimensional
regularisation (and Pauli-Villars regularisation is difficult to extend to non-
abelian theories) the question arises as to whether it is possible with any
regulator. This is not an anomaly as discussed in section 4.3, since the Ward
identity can still be imposed on the renormalised function, but it does appear
to indicate a shortcoming in the current formulation of (non-supersymmetric)
gauge theories.

It would seem that manifest gauge invariance requires supersymmetry.
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Chapter 6
Unified Gauge Theories

6.1 The Standard Model Couplings at M

The couplings corresponding to the gauge group of the Standard Model,
SU(3) x SU(2) x U(1)y are usually denoted by g,, g and g'. The symmetry
SU(2)r x U(1)y is spontaneously broken to U(1)g; effectively at the scale
of the Z° M. The residual symmetry, the little group U(1)g, is the gauge
group of QED, with associated coupling e. The couplings g and g are related
to e by the electroweak mixing angle sin? §. There are different definitions of
sin? § corresponding to different possible renormalisation schemes. With the
couplings defined in the MS scheme

= = 6.1
T = Cos? b 7= sin? b5is (6.1)

Another possible definition, denoted by sin? 8y, is given in terms of the W

and Z masses

' in? 6y = 1 Myy (6.2)

sin“fy =1 - —=-. ’ .
M3

This corresponds to the ‘on-mass-shell’ scheme. At lowest order My, = %vg',
Mz = %v!/g'z + g2 where v is the vacuum expectation value of the Higgs,
and so sin® @y = sin® fy5. However, this is no longer the case if higher order
effects are included.

The parameter sin® fy can also be determined using the Sirlin relation [20]
TQ

V3G M (1= Ar)’ &9

Sl.lll2 HW =
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where « is the Thompson charge, o = e?(m,)/4n which has the value

a =1/137.0359895(61), (6.4)
Gr is the Fermi constant, given by
Gr = 1.166389(22) x 10~°GeV 2, (6.5)

and Ar is a radiative correction term, which contains all the higher order
effects. Ar can be calculated in terms of the two unknowns M;,, and My, the
top mass and the Higgs mass, assuming no dependence on any non-Standard
‘Model particles. Using a value of sin’fy determined from measurements of
Mw and Mg, this can then be used to constrain M,,, (the dependence on
My is weak).

There is a similar expression for sin’ f55 defined at the scale M [21], namely

sin’ s (Mz) = \/EGFM;"ZZ " Aiw)’ (64)
but now also
sin? frg(My) cos” s (Mz) = \/ic;pztg& &7 (6.7)
with A7 # Afy. In addition |
as(Mz) = l_j‘ZTW. (6.8)

Afw and Af also depend on M,,, and My and can be related to Ar. Simi-
larly, sin? 0555 can be determined from sin?® Gy .

The value of sin® fj has been measured in deep inelastic neutrino scattering.
From the CDHS and CHARM collaborations, [22]

sin? . = 0.2300 + 0.0064, (6.9)

and from measurements of the ratio My /M7 at the UA1l, UA2 and CDF

detectors, [23]
: sin? Gy = 0.2275 + 0.0052. (6.10)

Combining these two values gives

sin? Oy = 0.2285 % 0.0040. (6.11)
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My = 1000 GeV

My =51 GeV average
sin® Ogs(Mz) | 0.2326 £ 0.0008 | 0.2334 £ 0.0010 | 0.2331 + 0.0013
Afy x 1072 6.82 £ 0.16 7.15 £ 0.09 6.96 + 0.29
M., GeV 112 £ 35 144 £ 32 127 £ 50

Table 6.1: Values of sin® fi5(Mz), Afw x 102 and M, for My = 51 Gev,
1000 GeV and the average of the two.

This value can be used, along with the tables in ref.[21], to determine a value
for sin’fyg(Mz) and corresponding values of Afy and M, for different
values of My.

The results for My = 51 GeV and My = 1000 GeV are shown in Table (6.1).
This represents the largest possible range of My. From direct observation
Mpg > 51 GeV and conservatively the upper limit can be taken to be My <
1000 GeV. Also shown in the table are the averages of the two sets. The
average value of sin® fg5( M) is

sin? fg5(Mz) = 0.2331 4 0.0013. (6.12)

From the corresponding value of Ay = (6.96 £ 0.29) x 1072, and eqn.(14)

1

—_ 13
1275+ 0.4 (6.13)

ays(Mz) =

For the strong coupling o, (= g2/4w) the average of the results obtained by
the four LEP experiments, as reported by Hebbeker is used[24]:

a,(Mz) = 0.120 £ 0.007. (6.14)
Generally a = g?/4w, but for the coupling of U(1)y
A 12
59
= = —-— 6.15
M= =T (6.15)

where the factor of 5/3 is to standardise the normalisation of the U(1)y
generator to be the same as that of the other generators (i.e. we rescale g ).
This is necessary if the standard model gauge group is to be embedded in a
larger group. So with

oy = ap = ¢°[4n

a3 = a, = g2[4n (6.16)
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it follows that

a;(Mz) = 0.017045 + 0.000036
az(Mz) = 0.03365 = 0.00022
as(Mz) = 0.120 % 0.007.
(6.17)

With the couplings at M7 determined to this degree of accuracy, the cou-
plings can be evolved to large scales to see if they are consistent with the
unified gauge models.

6.2 Threshold Effects in SU(5)

In Recent years there has been renewed interest in experimental tests of
Grand Unified Theories (GUT’s), stemming from the more accurate deter-
minations of the Standard Model couplings that have been achieved at LEP
and elsewhere. Speculation has centred on the SU(5) model of Georgi and
Glashow [25, 26]. Amaldi et al. [27] (see also refs.[28, 29]) have shown that
the minimal SU(5) model is inconsistent with the values of the couplings
measured at Mz, a;(Mz), but that if supersymmetry is introduced at an in-
termediate scale, then supersymmetric SU(5) is consistent and also satisfies
‘the lower bound on the proton lifetime.

In a unified model, the symmetry of the grand unifying group is broken at
some scale Mx. Above this scale there is a single coupling, below it the dif-
ferent couplings evolve separately. So the theory predicts that the couplings,
if evolved up from M should meet at a single point. Amaldi et al. showed
that this does not happen in minimal SU(5) but that if supersymmetry is
included above Mgysy = 1 TeV then there is a single unification point.
This is consistent with theoretical expectations of the SUSY breaking scale.
Supersymmetric Grand Unified Theories (if softly broken) can be made al-
most entirely free of fine tuning problems. This is related to the cancellation
of quadratic divergences which occurs in these models. This property only
holds as long as M3, ~ aMZ, sy and so Msysy = 1 TeV, in agreement with
the value suggested by the data.

The running of the couplings, i.e. their variation with respect to the renor-
malisation scale, is determined by their S-functions. Up to second order,

aai_ﬁa
“au Y

b
T+ Z 8—7:2a?aj +.o.. (6.18)
j
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This has the approximate solution

1 1 b; U bi; a;(w)
— + —1In (_) + J_In < J 6.19
ai(p)  a(w) 27 \w Ej: 4mb; a;(p) (6.19)
The coeflicients b;, b;; can be calculated perturbatively in a given renor-

malisation scheme. The MS scheme will be assumed throughout. For the
Standard Model, the coefficients are {30]

0 4/3 1/10
b = | —=22/3 | 4+ Npam | 4/3 | + Naigee | 1/6 (6.20)
~11 o\ 43 0

0 0 0 19/15 3/5 44/15
b = (0 ~136/3 0 )+Nf,,,,,( 1/5 49/3 4 )(6.21)
0 0 -102 11/30 3/2 76/3
9/50 9/10 0
+NH,-ggs(3/10 13/6 0);
0 0 0

The first order solution to the renormalisation group equation is

Lok (“—) P (6.22)

a(w) 2m \p) o)
Using this equation with N¢om = 3 and Ngigg, = 1, Amaldi et al. [27] found
that ag misses the meeting point of a; and @, by more than 7 standard
deviations. A value of a3(Mz) = 0.07 is required to force a single meeting
point. '
As it stands, there can only be limited confidence in a first order result. This
uncertainty can easily be removed by carrying out a second order analysis.
However, a full two-loop treatment should include threshold effects around
the unification scale, where the superheavy particles may have a significant
effect. In the MS renormalisation scheme this is achieved by ‘matching func-
tions’ that relate the three effective couplings o;(p) to the unified coupling
‘ag(p) at any scale close to the unification scale. To estimate these effects a4
and a, are used to define the GUT, and then the implied values of Mx and
as(Mz) computed.
In the minimal SU(5) model there are 52 — 1 = 24 gauge bosons. Of these,
12 correspond to the gauge bosons of the standard model. The remaining
12 are the superheavy X and Y vector bosons responsible for proton decay.

69



There is one fundamental representation (5 dimensional) scalar H, and one
adjoint representation (24 dimensional) scalar ®. Of the 24 components of
®, 12 are ‘eaten’ by the X and Y gauge bosons to give them their mass M.
The remaining 12 divide into an SU(3) octet @3, an SU(2) triplet ®; and a
singlet ®;. The masses of g and <I>3 are automatically constrained so that

M§, = Mq)s (6.23)
The H field splits into a colour triplet H3 that becomes superheavy, and a
doublet H, that becomes the usual Higgs of the Standard Model.

Including the effects of these particles, the approximate second order solution
to the renormalisation group equation is [31, 32]

aizﬂ) - QGJWX) + gb;;ln (Ai)‘) + Z ” 1 (X) 4, (Mx) (6.24)

where

0
X;=1+ 21 P (MP)In (Mu ) (6.25)

X; approximates ag(Mx)/o () (ag) and Mg) are the first order values).
The A;(Mx) are the matching functions. For the SU(5) model with the
minimal scalar content discussed above, they are given in the MS scheme by

- )e) e
N(M) = # ( In ( jgi) +1) (6.27)
As(Mx) = Iglﬁ (%ln (ﬁi) +In (1\%) + g) (6.28)

Here My is the mass of the triplet H3, and My is the mass of the triplet ®;.
In eqn.(6.28) $Ms is the mass of the octet @5 (see eqn.(6.23)).

The matching functions evaluated at Mx, A\;(Mx) only depend on the ratios
My /Mx and Mg/Mx and not explicitly on Mx. Therefore, these have been
taken as input parameters, varying in the range 1073 — 103, and then the
difference 1/a; — 1/a; used to calculate Mx (2" order) in terms of these
mass ratios. My, would not be expected to be very different from My, so
1073 — 10? is ‘reasonable’ — anythmg much outside this range would be hard
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MH/MX Ms/MX MX )(].013 GeV 013(Mz)
LO LO 0.7+ 0.2 0.069 £ 0.002
1 1 0.7+ 0.2 0.072 & 0.002
10° 10° 0.6 + 0.2 0.073 £ 0.002
10° 1073 1.1 £ 0.3 0.073 £ 0.002
10—° 10° - 0.5+0.2 0.070 £ 0.002
1073 1073 1.0 £ 0.3 0.070 £+ 0.002

Table 6.2: predicted values of Mx and a3(M3z)

to motivate or understand. Only the case Nggm = 3, Ngigg, = 1 is considered
i.e. three generations of fermions and one Higgs doublet .

The results obtained at the corners of the parameter space for the scale
Mx and for a3(Myz) are shown in Table (6.2). The value of a3(Mjz) is
\strongly correlated to My/Mx whereas Mx depends mainly on Ms/Mx.
The most favourable case is Mg/Mx = 103, Ms/Mx = 1073, Even this
does not predict a value of a3(Mz) that comes near to the measured value
of 0.120 £ 0.007. This is illustrated in fig.(6.1), where the measured as(Mz)
and its evolution are indicated. The proton lifetime 7, depends on (Mx)*.
For this case it is ~ 8 x 10?* years, with the mass splittings contributing only
a factor of 6, as compared to the case when the masses are all equal. This is
incompatible with the experimental lower limit on 7,, which is 7, > 1.9 x 1032
years [33] (assuming a p — e*n® branching ratio of 35% [34]). As stated
above, the range of input values of the mass ratios was so chosen because the
masses My, Mg, and Mx are all assumed to be of comparable magnitude,
so that they can be considered as part of the same threshold, and not split
into two or three separate thresholds. There is a natural upper limit to the
size of any GUT masses set by the Planck mass. In fact the upper limits on
these masses are actually much lower, because if either My /Mx or Ms/Mx
are greater than ~ 10 the model is pushed towards the strongly interacting
regime, where perturbation theory does not apply. However, even with the
limits relaxed to Mpignr and My, there is still no hope of obtaining results
consistent with the measured value of o,(Mz) and the lower limit on 7,.

So it must be concluded that even with superheavy threshold effects, the
values of the Standard Model coupling constants are inconsistent with the
minimal SU(5) model, by at least 6 standard deviations.
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Figure 6.1: (a) Evolution of the couplings for the case Mg/Mx = 103,
Ms/Mx = 1073. The solid lines show the evolution of the couplings that
is required for unification, for the given values of a; (M) and a3(Mz). the
dotted line is the evolution of the corresponding grand unified coupling above
- Mx. The dashed line represents the evolution of the experimental value of
as(Mz). (b) Enlargement of (a) showing the behaviour of the couplmgs in
the threshold region.
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6.3 SO(10) model

It is also possible to embed the Standard Model in a minimal left-right sym-
metric model [35, 36, 37]. The left-right symmetry breaking is characterised
by a scale Mp, and accordingly the running of the couplings is modified above
Mpg. This model can in turn be embedded in SO(10) grand unification, if the
couplings evolve to a single unification point [38].

The symmetry group of the left-right model would be

SU(3) x SU(2)p x SU(2)g x U(1)p_ — SU(3) x SU(2);, x U(1)y (6.29)
and so there is a symmetry breaking
SUQ2)g x U(1)p-r, = U(Q)y (6.30)
which is anélogous to
SU2), xU(l)y — U(1)g. (6.31)

This then implies the introduction of a right-handed neutrino for each gen-
eration. These three neutrino states would have a mass &~ Mp, the scale of
left-right symmetry breaking. In the left-right symmetric model the fermion
content of one generation is simply

(Z)L (d> () () 63

- The large mass differences between left- and right-handed neutrinos can be
accommodated in a natural way through the see-saw mechanism.

There will also be three new gauge bosons associated with the SU(2)p - an
extra W*, W~ and Z that couple to the right handed fermions only. These
too will have a mass ~ Mpg.

The restoration of parity invariance at some higher energy is an appealing
idea in itself, especially as it can be achieved within a relatively simple model
with only a few additional particle states. However, it is tempting to suppose
that this is only a staging post on the way to a grand unified theory.

The possible chain of symmetry breaking is

50(10) SU(4) x SU(2); x SU(2)g

SU(3) x SU(2)p x SU(2)r x U(1)p_g

SU(3) x SU(2) x U()y

SU(3) x U(1)o. (6.33)

1L L
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The only other possible chain involves the already mentioned SU(5) model.
S50(10) — SU(5) x U(1). (6.34)

For simplicity, we will consider the SO(10) model with My, = Mx i.e. with
SO(10) breaking directly to the minimal left-right symmetric extension of
the standard model. Then there is only one scale My between My and M.
Grand unification requires a single gauge coupling above M. If threshold
effects around My -are neglected, this implies that the couplings must be
coincident at Mx. The couplings at Mz are now known to a much greater
degree of accuracy from LEP measurements. Hence it is possible to evolve the
couplings from M, and see if there is an My, for which the couplings do meet
at a single unification point Mx. Furthermore, as the lifetime of the proton
depends on My, the value of My must be high enough to be consistent with
the lower bound on the proton lifetime. For the decay channel p — et + 7°
the limit on the partial lifetime is 7,/B > 5.5 x 1032 years (90% c.l.) [33].
Three scalar fields are needed, corresponding to the three scales of symmetry
breaking. A 210 dimensional scalar ®s;¢ for the first stage at My, where
SO(10) breaks directly to the minimal L-R model. (If this happens in two
stages as in eqn.(5), then a 45 and a 54 can be used respectively.) Then a
five-index antisymmetric ®,5¢ is needed, which contains two triplets Ay and
Ap of SU(2); and SU(2)g. Apg is responsible for the left-right symmetry
breaking at Mg. A ®,9 contains two doublets, one of which is the usual Higgs
doublet of the electroweak model. ’
For the Standard Model, i.e. for Mz < u < Mpg, the B-function coefficients
b;,bi; were given in section 6.2.
For Mp < u < Mx the couplings o; = apy and oy = agr = «af. The
generator of U(1)py must be correctly normalised within the grand unified
model

1 3 1 2 1

ay(MR) 5aR(MR) + SCYBL(MR).
The minimal left-right symmetric model has 2 extra scalar triplets, an extra
doublet, 3 extra (right-handed) neutrinos and 3 extra gauge bosons. The
B-function coeflicients are, taking gr = g1, [36]

0 4/3
b = ( —22/3 ) + Ntom ( 4/3 ) (6.36)
~11 4/3

0 3
+Ny ( 1/3 ) + Na ( 2/3 ) (6.37)
0 0

(6.35)
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0 0 0 7/6 3 4/3
b = (0 ~136/3 0 | +DNpam| 1/2 49/3 4 | (6.38)
0 0 —102 1/6 3 176/3
0 0 0 54 72 0
+Ng| 0 22/3 0 | +Na| 12 56/3 0
0 0 0 0 0 0

where Ny is the number of pairs of scalar doublets and N, is the number of
pairs of triplets. It is assumed that Ny =1 and Ny = 1.

Evolving the couplings from M} it turns out that a single unification point is
obtained for Mp = 101044£0:33 GeV, The unification scale is My = 101520025
GeV. (see figs (6.2) - (6.5)). It might be supposed that the fact that such
a solution exists is rather unremarkable. Given that the evolved couplings
of the minimal Standard Model do not meet at a single point, it might be
thought that the introduction of a further parameter, in this case Mp, is
bound to lead to a single unification point. However, this is not neccessarily
the case. It could happen, for example, that at My the S-functions change
in such a way that the couplings never meet. Even if unification can be
achieved, there are additional constraints on the possible values of both the
unification scale My and the intermediate scale Mp. Mx is constrained on
the one hand by the lower limit on the proton lifetime 7, > 5.5 x 103! years,
corresponding to Mx > 10 GeV, and on the other hand by requiring My
to be less than the Planck mass Mp. So 10'® GeV < Mx < 10'° GeV. The
scale Mg must obviously be in the range Mz < Mz < Mx.

The fact that a physically acceptable solution does exist is noteworthy in
itself, when compared to minimal SU(5) [27] for which this is not the case.
For the SO(10) model considered here, the proton lifetime is given by [34]

Mx

Tp = 2.757 X' (W

) x 103! years. (6.39)

For Mx = 10'520%0.25 GeV this implies that

1, = 10322510 years, (6.40)

This can be compared with the experimental lower bound of 7, > 1.7 x 1032
years [33], assuming a branching ratio for the decay channel p — et + 7% in
SO(10) of 30% [34] i.e.

7, > 10°%% years. (6.41)
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Figure 6.2: Coupling unification in the minimal left-right symmetric model
described in the text. The dot-dash bands correspond to the experimental
errors on the couplings at Mz, as given in eqn.(6.17).
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Figure 6.3: Contours corresponding to 68% and 95% confidence levels in the
Mp - Mx plane.
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Figure 6.4: Dependence of Mg on a,(Mjy), for different sin® f55(Mz). The
dotted line corresponds to the measured value of 0.2331 given in eqn.(6.12),
and the dashed box to the experimental errors on these parameters given in
eqns.(6.12,6:17).
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Figure 6.5: Dependence of Mx (SO(10) model) on o,(Myz), for different
sin’ Og5(Mz). The dotted line corresponds to the measured value of 0.2331
given in eqn.(6.12), and the dashed box to the experimental errors on these

parameters given in eqns.(6.12,6.17).
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6.4 Supersymmetry

If supersymmetry is restored at an intermediate stage rather than left-right
symmetry, <.e. in mimimal SUSY SU(5), the same starting values as used
above imply that Mz < Msysy < 10%? GeV and 10157 GeV < My < 10'64
GeV (see figs.(6.6),(6.7)) and consequently that

7, = 103+ years, (6.42)

a longer lifetime than in the minimal L-R/SO(10) case and safely clear of
the lower bound. The errors-in the two lifetimes are comparable. In contrast
to the large value of Mp, Mgysy is quite small. This has caused much
excitement, since it is potentially within the sights of planned experiments
(at LHC ), and also because it is exactly the range required for the SUSY
breaking scale to allow naturally soft SUSY breaking, i.e. to remove most of
the fine tuning problems associated with GUTS.

However, the error on Mgysy is somewhat larger than that for Mg. More-
over, the assumption is made that all the new (light) supersymmetric par-
ticle states have a common mass Mgsysy. If a more realistic mass spec-
trum is adopted then, in general, predictive power is lost. One exception to
this is if new assumptions are made which are associated with Supergrav-
ity /Superstring derived GUTs. This has recently been studied by Ross and
Roberts {29], who find that this results in an increase by a factor of 3 - 10 in
the effective SUSY scale, as compared to the value Mgygy = 103910 GeV
reported by Amaldi et al. [27].

In contrast to the SUSY SU(5) model, the problems associated with the Min-
imal L-R/SO(10) model are not so much to do with the range of intermediate
masses, but the fact that this pattern of symmetry breaking is not unique
within SO(10). This is ameliorated somewhat by the work of Buccella et
al. [34] who carried out a first order analysis of SO(10) models with differ-
ent intermediate symmetries (assuming only one intermediate scale). They
found that the other models imply lower values of My than the minimal L-R
model. ‘

The value of Mx determined (to 2"¢ order) in the minimal L-R model leads
to a proton lifetime of 7, = 1032-25%1-0 years, which is already rather ¢lose to
the lower bound. This raises the possibility that as the lower bound rises,
it may be possible to rule out a large class of non-supersymmetric SO(10)
models. -

 However, there is a problem -affecting SO(10) models that will confound any
such attempts, namely threshold effects. Because of the high dimensionality
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of the scalar representations of SO(10) which are needed to carry out the
required symmetry breaking, threshold effects at the GUT scale can be quite
large, causing an additional uncertainty in the proton lifetime of up to sev-
eral orders of magnitude (see for example Dixit and Sher [39]). Therefore
SO(10) models are not likely to be within reach of experiment in the near
future. In addition to this, the work of earlier chapters shows the impor-
tance of constructing models that are free from quadratic divergences, and
further implies that this is only possible for a restricted class of models i.e.
supersymmetric gauge theories.
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The dotted line corresponds to the measured value of 0.2331 given in
eqn.(6.12), and the dashed box to the experimental errors on these parame-
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Appendix A

The Gamma Function

The function I'(z) can be defined by one of .the following three expressions
[1, 2];

I(z) = /0 et ldt = /0 ' (log 14yt (A.1)
‘ ' Rez>0
B . nln®
[z) = lim, 2(z+1)...(z+n)

= o 214+ 2)(1+2/2)...(1+ z/n)
S | (CERTDRCRO (42)
1/T(2) = ze"* fjl[(l + z/n)e=*/") (A.3)

where . |

v = nll_rgo(z 1/n —logm) = 0.5772156649 . . . (A.4)

denotes Euler’s or Mascheroni’s constant. The definition (A.1) was used by
Euler, (A.2) (in a different notation) by Gauss, and (A.3) by Weierstrass.
From (A.3) and (A.4) it can be seen that the gamma function is an analytic
function of z, whose only finite singularities are at z = 0, -1, -2, -3,...

From (A.1) it follows that

re) = [ Lot g 4 [[eteta=Pe)+QE) (A5
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Q(z) is an integral function. Expanding e~* in a power series and integrating
term by term gives

P(z) =) (-1)"[n!(z +n)]"* (A.6)
n=0
Hence it follows that (—1)"/n! is the residue of I'(2) at the simple pole 2 = —n
(n=0,1,2,...). |
It can be shown that the expressions (A.1), (A.2) and (A.3) represent the

same function.
For a positive integer n and Rez > 0 repeated integration by parts yields

z

T (A7)
0 n 2(z+1)(24+2)...(2+n)
so that (by Tannery’s theorem)
n t oo
i 1— =)t} t=/ “Hedt A8
Y [ - D= [T (A8)
. and therefore (A.1) is equivalent to (A.2).
oty _ 1 nln?
/o et ,dt—T}Lngoz(z+1)(z+2)...(z+n) (A4.9)
(A.3) can be deduced from (A.2) as follows. By (A.2)
| f% = lim 2(1+2)(1+2/2)...(1+2/n)e~"""  (A10)
or
F(lz) = lim[o(1 + 2)e (1 + 2/2)e /2. (1 4 2/n)e™/")
><ez(l+1/2+1/3...+1/rz—logn) : (All)
which implies that
1 st '
—— = ze"* 14 z/n)e™/"] A.12
w5 = la+2/m) (A12)

If the real part of z is negative, and n+1 > Rez >n (n =0,1,2,...), I'(2)
can be represented by an integral due to Cauchy and Saalschutz [2, 3]

I(z) = /0 - [e-t -y %} 14t (A.13)

m=0

-(n+1)<Rz< -n
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This is to be compared to (A.1)
I(z) = / et~ 1dt (A1)
0 .
. , Rz>0
It should be emphasized here that although I'(z) is an analytic function

except at the points z = 0,—1,—2,... the same is not true of the integral
functions on the RHS of (A.1) and (A.13). The expression

/ et 14 (A.14)
0

is an analytic function only in the domain Rz > 0. Likewise
. .

/ooo {e_t -3 (:,:%} £ dt (A.15)

m=0

- is an analytic function in the domain —(n +1) < Rz < —n.
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Appendix B‘
The Beta Function

B.1 Standard Form

The beta function can be defined by the integral

1 _
Ba,y) = [ #70- 1l (B.1)
0

Rz >0,Ry>0

Substituting t = v/(1 + v), the relation
Bla,y)= [ w711 +0) " vdw (B2)

0
Rz>0,Ry>0
is obtained, and from this
B(z,y) = / T 4 0 )(1 4 9) " (B.3)
0

Rz>0,Ry>0

can be deduced. It follows that 8(z,y) = B(y, z).
B(zx,y) can be expressed in terms of gamma functions. From

I(2) = s* /Oooe‘“tz‘ldt ¢ (B4

Rz > 0, s real and +ve
it follows that

o _ - I'(z+y)
(o)tgety=tgy — 7 "2/ B.5
/0 e i (1 +v)”+y | ( )

" ~ R(z+y)>0
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Multiplying (B.5) by v*~! and integrating with respect to v between 0 and
0o gives

/oo dv /oo—dt e~ (IHo)tgty-1yz-1 /oo dvT(z+y)v" (1 +v)? (B.6)
0 0 , 0 '

Interchanging the order of integration, the LHS becomies

* z+y—1 -t * -vt, z—1 : :
/0 dtt e /0 dve v (B.7)
which is equal to’ :
/ dtt*1¥"le ' T (x) (B.8)
0 A ’
Rz >0
and therefore -~
/ dt#~1e~'I(z) = [(z)[(y) (B.9)
0
Rz>0Ry>0
so that P(2)T ()
*° z~—1 —z—y — L )
/0 v (1) e = e (B.10)
Rz>0,Ry>0
" o T@IE)
T)L\Y
= B.11
Rz >0,Ry >0

In principle the beta function is still only defined for 8z > 0,Ry > 0.

However, as I'(2) is analytic except at z = 0,—1,-2,... (B.11) can be used

to define the analytic continuation of f(z,y) in the domain Rz < 0 and

in Ry < 0. Alternatively (B.11) can be taken as the definiton of the beta

function, and then its integral representations worked out accordmgly Either
approach gives (=)0
T(x)(y

B(z,y) = T+ 4) (B.12)

for all x,y

It is important to note that this does not mean that the integral repre-

sentation of the beta function, the LHS of (B.10) can also be analytically

contmued It is still the case that

B(z,y) =/0 v+ v) "V (B.13)
Rz >0,Ry>0
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B.2 Non-Standard Representation

This can be demonstrated explicitly by considering the case R(z +y) > _
0,Ry >0,—(n+1) <Rz < —n and returning to (B.5)

/oo e~(1+v)ttz+y~1dt — F(IL’ + y)
0 (14 v)=ty

This time multiply both sides by v*"'F(v,z + y) where F(v,z + y) is a
function to be determined. Integrating with respect to v between 0 and oo
gives :
/ dvv* 'F(v,z 4+ y) / dt e=(AH0)tgety=1

0 0

= / " dv vt (v, 2 +)(1 4+ v) Tz + y) (B.14)
. O .
If the function F(v,z + y) is taken such that it satisfies the equation

F(v,z +y) /oo dt e~ (IHo)tgm+y=1 -
0
/ ~ dt g~(IHo)tgety=1(1 _ oot > (~vt)™/ml) (B.15)
0 m=0 v
then the LHS of (B.14) becomes
LHS = / " dvv / T dteHEL(] ot S (—ut)™ /ml)  (B.16)
0 JO m=0

Interchanging the order of integration gives

/0 T dtetty /0 ” dv et (ut)P(1 — e Zo (~vt)™ /ml) (B.17)

- /0 T dtetyt /0 T dvet (w1 — ¢ Z_;O (=v)™ /ml) (B.18)

= / ~ dte~t#1(z) (B.19)
, 4

=T (y)I'(z) (B.20)
Ry>0,-(n+1)<Rz<-n
From (B.20) and (B.14)

I(z)I'(y) =T(z +y) /:o dvv* ' (1 +v) * VF(v,z +y) (B.21)

Ry>0,-(n+1) <Rz < -n
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So that from (B.12)

[(2)T(y) o=y

B(z,y) = Tz +y) / dv v* (1 +v) " VF(v,z +y) (B.22)
, , éRy>0,—(n+1)<§Ex<—n
The function F(v,z + y) is defined by (B.15) :

f(;x’ dt e—(l+v)tt:c+y—l(1 — e¥t ZZ:O(—Ut)m/m'!)

& dre-Trigers (B23)

Fv,z+y) =

1 T4y * . z+y—1 -1 ¢ m
m(l + v) /0 dtt*t¥ 7 le mzz:o(—vt) /m!
(B.24)

)(1+v)z+y Xn: I'(m+z+y)(—v)™/m! (B.25)

m=0

=>Flv,z+y)=1-

' 1
= F(v, =1-
(v,z+y) T +
If in (B.22) the substitution v = 1/t is made, it follows that
I'(z)I'(y) /°° -1 -
= ——<=[. . dtt© " (1+¢)""YF(1/t B.26
Pev) =159 = h I+ ¥F(1/t,e+y)  (B.26)

Ry>0,~(n+1) <Rz <-n
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Appendix C

Integrals in D Dimensions

C.1 Basic Forms

From (1.18) and (1.22)

(C.1)

/ d*k 1 _ (m¥)* " I'(n—w)
(2m)* (k2 +m?)» — (4m)¢  T(n)

for R(n—-w)>0,Rw>0

=0<Rw<Rn

From this other integrals follow.
In the region 0 < Rw < R n, the left hand side of (C.1) is well behaved, and
translational invariance (1.16) can be applied. The translation

k—k+p (C.2)
implies that
d*k 1 _ (m?=p) " I(n-w) (C3)
(2m)2 (k2 + 2p.k + m2)n — (4m)v I'(n) '
O0<Rw<Rn

Differentiating (C.3) with respect to p,, then gives
a2k k, (m? = p?)*~"T(n — w) |
‘ = - 4
(2m)% (k2 + 2p.k + m2)» (47)« I'(n) (=pu) (C4)
' O<Rw<R(n-1)

The differentiation has had the effect of reducing the size of the domain of
the functional equality (C.4) as compared to that of (C.3) in the w plane.
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However, from the analytic properties of the RHS of (C.4) it is expected that
(C.4) W1]l be correct in the larger domain. This will be exammed shortly.
Differentiating with respect to p, again gives
>k kuk,
(2m)% (k2 + 2p.k + m2)"
_ (M =P T(n—1-w)

(4m)* I'(n)
1 2 _ 2
X (Bupu(n— w0 = 1) + 360 (m* %)) (C.5)
| 0<Rw<R(n-2)
For p, =0
W 2\w—n _ —
2k kk,  (m)*"T(n-1-w) 15,1./ (C6)

EEE+my . @me T 2

‘ 0<Rw<R(n-2)

Again, differentiation has caused the domain to shrink in (C.5) and (C.6).
From the form of the RHS of (C.6) it looks like the domain should be 0 <
Rw < N(n — 1) rather than 0 < Rw < R(n — 2). If k,k, ~ k?, then
comparison with (C.1) supports this view. More exactly, since the LHS of

- (C.6) is of the form
d*k

2
o )2wk k, f(k*) (C.7)
The lorentz structure implies that
d>k 9 d*k O K2 (2
| Gtk ) = [ i) (€3)
and hence , 5 1o
2w w 2uv [
d*“k kuk, _ d*k o™ (C.9)

(27-‘-)24.; (k2 + m2)n (27‘-)2;0 (k2 + mZ)n
Using the identity k% = k? + m? — m? in the numerator, this becomes

b f d*k 1 m?
= 9w (2m)2e ((k2 + m2)n-1 - (k2 + m2)n> (C.10)

then from (C.1)

_ b (M) [T(n—1-w) TI(n-w)
=% (@) < Tn=1) _ T(n) ) (C11)

O0<Rw<R(n-1)
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(m2)w—n+l I‘(n —-1-= w)

1
= 30w (4m) I'(n) (G.12)

O<Rw<R(n-1)
A proof can be given for integer n using exponential parametrisation. Start-
ing with the LHS of (C.3)
d>k 1
(27)% (k2 + 2k.p + m2)»

0 0 a2k, '
= /0 dzy .. ./0 dz, f @y exp[—(k® + 2k.p + m?)(z, + ... 2,)]

00 e8] 1 1 9 9
=/0 d:cl.../o d:v,,(47r)w CEEAT exp[—(p° — m*)(z1 + ... z,)]

_ (m*—p")* " T(n-w)
(4m)~ I'(n)

(C.13)

. O<Rw<n
Now multilpying by (—p,)

(—=p,) (m? —p*)*"I(n—w) -

(4m)< I'(n)
00 o0 1 1 2 2
= [ | doy... [ do o o e P el ) +.(.éx1nj)]
but (2.53) is | |
d*k 9 1 2
| Wk,, exp(—zk® — 2k.pz) = W(.—Pp) exp(zp°) (C.15)

and therefore ( ) 2)w_n r( )
_ mé—p n—w
P @ )

oo oo d2“’k 2 9
_/0 d:cl.../o dmn/Wkﬂexp[—(k +2p.k+m*)(z1+...2,)] (C.16)

for0O<Rw<n

Integrating over the x; gives
) (m? — p?)* " T'(n — w) _ d*k k,
(4m)~ I'(n) (2m)% (k% + 2p.k + m?)"
for 0 < Rw < n (n integer)

(C.17)

(—Pu
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C.2 Extended Forms

The technique of Feynman parametrisation is based on

1 T(a+p) 1, z='(1-2)P1

0ot~ T(@)T(B) Jo ““faz + (1 - z)]=+7 (C.18)

Ra>0RE>0
This expression is derived from the integral representation of the beta func-
tion (B.2)

Ble, B) = / "% (1 4 0) Py (C.19)
0
' Ra>0,R6>0
or, after v — 1/v
Blasf) = [ 0" (1 +0)Pdw (C.20)
0
Ra>0,RE>0
letting v = (b/a)u implies
B(a, B) = o /0 ” dun(a + bu) P (C.21)
§Ra§ 0,RB>0
then u = (1 — z)/z gives
~1 a—1 A-1
= q%bP (1 -x)
B(a, B) = ab /0 I = 2 (C.22)
Ra>0,RE>0
Now integrals of the type
2w
d_k . (C.23)

(2m)2 [(k + p)?}m (k2]
can be evaluated. Using (C.18), (C.23) becomes

d*k T'(n+m) [l . ™ 1(1 - z)m1
(2m)2 T(n)[(m) Jo  [(k +p)?z + k2(1 — z)]m+n

for Rm>0,Rn>0

(C.24)
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Interchanging the order of integration, and rearranging the denominator gives

T(n+m) 1 ooy [ A%k 1
T(n)['(m) / dez™ (1 - z) (2m)2 [(k + zp)? + p2a(1 — z)|mtn
(C.25)

for Rm >0,Rn>0
Provided 0 < Rw < R (m + n), the integral over k is well deﬁned and after
the translation ¥ — k — zp, is of the form (C.1)

n + m) / drz™ 1(1 )n 1 (p .'17(1 _ x))w—(m-i-n) P(m tn- LU) (C26)

n)F(m) (4)* T(m +n)
for Rm >0,Rn>0,0<Rw < R(m+n)

_ D(n+m—w) (p?)~-(m+m) s = gt
~ T(mT(m)  (4m)~ - / d ) (C.27)

for Rm>0,Rn>0,0<Rw < R(m+n)
The integral over z is of the form (C.1), therefore provided  (w — m) > 0,
R(w-n)>0

d>k 1 - D(n+m—w) (pt)e-tm

= [ LpP R~ TTm)  @me @ me-m)

(C.28)
for 0 <fm < Rw, 0<%n<§Rw,0<§Rw<§R(m+n)
For w =2 —¢/2 (D = 4 — ¢) the only integer values of m and n which (C.28)

satisfies are m = 1,n = 1.
Using the same prescription as in (C.23) to (C.28), the following formulae

can be obtained;

/ >k Kk,

(2m)* [(k + p)*]™[k*]

_ T(n+ m = w) ()t
I'(n)I'(m) | (4m)~
for 0 <RM<Rw, 0<R<R(w+1),0<Rw <R(m+n)

(=pu)B(w —m,w —n+1) (C.29)
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d*k kuk,
@m)z [(k+p) kI
(p?)4=Cmtm)

" ({dm)*T(n)T(m)

x(%&,,,,sz(m-f-n— l1-w)plw—m+1lw—n+1)
+pupT(m+n—w)f(w—m,w—n+2) (C.30)
for O<RM<RW, 0<R<R(Ww+1),0<Rw<R(m+n-1)

>k kb, ky
@m)2 [(k+p)I k2]
(p?)=(mtn)
" (4m)T(n)T(m)

1
X(—§P2(5pup,\ +6upy + 0ap ) T(m+n -1 -w)flw-—m+1,w—n+2)

—p;,p,;pAF(m+ n—w)f(w—myw—n+3)) (C.31)
for0<RM<RW, 0<RN<R(WH+2),0<Rw<R(Mm+n-1)
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Appendix D

Translations

D.1 Logarithmic Divergence

Consider the logarithmically divergent integral

’ 2k 1
(2m)2 (k +p)*

Using the identity (k + p — p)?/k® = 1 this equals

29k (k+p-p)?
(2m)2 (k +p)*k?

a2k ( 1 (p2+2k.p))

@m)2 \(k+p)?%2  (k+p)*¥
___/‘ d*k (l 3 (p® + 2k p) _ (@ +2k.p))
Grpe B ™ (ke ~ (Rt gy
(h+ D) (I + 1)
Using Feynman 'pa.rametrisa,tion
d*k 1 d*k l1-z
L= @n) (h+ )kt (2%)2“2/ e +§) T2 (1 - . ~E

&k 1 &2k /1 x

=) enetrp® =) @l h “TEr i -oF
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which implies that

- 1 1 2 w—3
L+ = /0 2 e @1 = )G - w) (D.7)
0<Rw<3
after interchanging integrations and using (C.1).
Similarly
d®k ky, d*k (1 —z)(k, — zp,)
b= | G = et Py ©9
\ >k k, =k _ z(k, — zp,)
L= | Gt = Gt Ty 9
imply that
L+ = / day (p (1 - 2))“73T(3 — w)(—zp,) (D.10)
0<Rw<3
Now

Qp“(I2+I4)+p (I1+I3) (p*)“~*T(3- w)/ dr(1—2z)z*3(1—z)* 3

(4 )
(D.11)
. O<Rw<3
The integral over z is antisymmetric and therefore vanishes, so
and >k 1 | >k 1
= | — s (D.13)
@m)2 (k+p3*  J (2m)* (k)
D.2 Linear Divergence
Consider the linearly divergent integral
&k k,+p,
D.14
) (k +p)" (D14
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Using the same identity as before this is equal to

&k (ky +pu)(k+p—p)’
Gr (k+ PR (D-13)
_/ d*k ky _ ku(p® + 2k.p) _ ku(p* + 2k.p)
(2m)2 | (k)4 (k + p)2k* (k + p)tk?

I L

Dy . py(pz + 2'k-p)
YEE R T (R (D16)

I3 I,

Feynman parametrisation and translation give.

| _ 1 d*k 2p.kk, + p’p,z(2z — 1)
h+h=-2[ d | o [k2 o e (D.17)

where (C. 4) has been used to eliminate the linear terms, and it has been
assumed -that the integral

&k kuk, -

(2 [+ i (D19

is translationally invariant for 1 < Rw < 2. The integral I, is

d*k 1
=2 / 1-2) [ 19
da,a(1 - 22 Gy + (i - (D19)
and so
>k 2p.kk, :

11 + I2 + I4 2/ dx/ 271')2“’ [k2 +p21}(1 — :E)]3 (D20)

Using (C.G) with the domain taken to be 0 < Rw < R(n — 1) rather than
0<Rw < R(n—2) (ie. (C.12)) this becomes

— 1 2\w—2 _ 1 _ w—2
Lt bt li= =) @Il ~w) [ ez -2)*  (D21)
The integral I3 is
1 d>k 1
b= |, 4 | G (D-22)
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&Y

= e (®*)*~*(p,)T(2 — w) /0 dr(z(1 — )"

Therefore
Li+(Lh+L+1L)=0

and
d?k k, +p, _ d*k k,

2m)2 (k+p)*  J (27)% (k)*

D.3 Quadratic Divergence

For the quadratically divergent integral

&k 1
(2m)% (k + p)?

rearrangement gives
d*k (k+p—p)*
@m® (k+p)R?

2k. 2
- / (2m)> {(mz (k +p1>)2k2 G +pp>2k2}

From (C.28) and (C.29) paying attention to the limits

et 2 i
/ <2vr>fw {(k ot ikp§2k2}

(r*) T2 - w)blw~1,w—1)

<47r>w

2(p)*7'T(2 ~ w)f(w — 1,w)
=0
since f(w — 1,w) = 18(w — 1,w — 1). Therefore it follows that

- @

/d2“’k 1 _ [k 1
@mpe (k+p)? J (2m) (k)"
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D.4 Cubic Divergence

The integrand of the cubically divergent integral

d*k k,+p,
D.31
) (k + 1) (>3
can be rearranged to give
&k | k, Pu . 2p.kk,
@m> [(k)? © (k) (k)
Alp-k)’ky | 2pkpk, Pk,
‘ - 32
T o T Ak (k4 )R (D-32)
(f) (I2) (Is)
where (D.30) has been used to obtain the second term. Assuming
d®k  k,k,k
/ (2m)2 [k2 + m2]3 0 (D-33)
I<Rw<2

it follows that

_ “k 1 (“2P2P-kku _ (p.k)zpl, - -7;2174?#)
L=4 / o /0 dz2z(1 — z) (D.34)

[P+ a1 - o)

_ &k n (p*p.kk, + z%p*p,)
412 =2 / o /0 da2(1 - 2) e (D.35)
L==] Gme L [+ p22(l - 2) (D.36)

Carrying out the 2w dimensional integration

L =- /01 dz(47lr)wx(1 - z)

x (02 —w)(p?z(1 - x))“‘26p2b” + T (3 —w)(p’z(1 — z))“*4a’p*p,) (D.37)
1o
L = —/0 daz(47r)w (1-z)
x (02— w)(p*z(1 = 2))* Py + T(3 - ) (p*z(1 - 2))**22%p*p,) (D-38)
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(4711')“’ (2- “’)(PZ)“’ "publw,w ~ 1) (D.39)

In (D.39) the « integration has also been done. Integrating over z in I; and
I, gives

Iy =

L+DL=—T(2- W)(pz)“’ P,

(4 )‘“
x{f(w+1,w—-1)(6-42—-w))
+O(w,w —1) (-6 —-14+2(2-w)) + fw - 1,w—1)} (D.40)
— T = D) (B 1) (.41
which implies that
L+L+1;3=0 . (D42)
" and so ‘
&k ky+p. _
(2m)% (k+p)? ~
Pk [ ky  pa 2pkk, -
s et O (D43)

102



Bibliography

[1] Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical
Functions, Dover Publications, Inc. (1964), ch. 6, p255.

[2] A. Erdelyi et al., Higher Transcendental Functions, Vol.1, McGraw-Hill
Book Co., Inc. (1953), ch. 1, pl.

[3] Whittaker - Watson, (1927), p243.
[4] Kenneth G. Wilson, Phys. Rev. D7 no. 10 (1973) 2911.

[5] D. Bailin and A. Love, Introduction to Gauge Field Theory, Adam Hilger
(1986).

[6] Lewis H. Ryder, Quantum Field Theory, Cambridge University Press
(1985).

[7] G. ‘t Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189.
[8] George Leibbrandt, Rev. Mod. Phys. 47 no.4 (1975) 849.
[9] G. Leibbrandt and D. M. Capper, J. Math. Phys. 15 (1974) 82.

[10] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mech.;«mjcs,
McGraw-Hill (1964) p154.

[11] W. Pauli and F. Villars, Rev. Mod. Phys. 21 no. 3 (1949) 434.
[12] Warren Siegel, Phys. Lett. 84B no.2 (1979) 193.

[13] D. M. Capper, D. R. T. Jones and P. van Nieuwenhuizen, Nucl. Phys.
B167 (1980) 479.

[14] Warren Siegel, Phys. Lett. 94B no.1 (1980) 37.
[15] L. V. Avdeev and A. A. Vladimirov, Nucl. Phys. B219 (1983) 262.

103




[16] M. Veltman, Acta Phys. Polon. B12 (1981) 437.
[17] I. Jack and D. R. T. Jones, Phys. Lett. B234 no. 3 (1990) 321.
(18] I. Jack and D. R. T. Jones, Nucl. Phys. B342 (1990) 127.

[19] M. S. Al-Sarhi, I. Jack and D. R. T. Jones, Nucl. Phys. B345 (1990)
431.

[20] A. Sirlin, Phys. Rev. D22 (1980) 971; W. J. Marciano and A. Sirlin, sbid.
22 (1980) 2695.

[21] G. Degrassi, S. Fanchiotti and A. Sirlin, Nucl. Phys. B351 (1991) 49.
[22] H. Plothow-Besch, CERN-PPE/91-206 (1991).

[23] J. Carter, plenary talk given at the joint Lepton-Photon Symposium
and EPS Conference, Geneva (1991).

[24] T. Hebbeker, plenary talk given at the joint Lepton-Photon Symposium
and EPS Conference, Geneva (1991).

[25] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438.

[26] A.J. Buras, J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys.
B135 (1978) 66.

[27] U. Amaldi, W. de Boer, H. Furstenau, Phys. Lett. 260B (1991) 447.

[28] J. Ellis, S. Kelley and D. V. Nanopoulos, Phys. Lett. 249B (1990) 441,
Phys. Lett. 260B (1991) 131, and CERN preprint CERN-TH.6140/91
(1991).

P. Langacker, talk given at the PASCOS ’90 conference, Boston (1990),
Penn. Univ. preprint UPR-0435T (1990).

P. Langacker and M. Luo, Phys. Rev. D44 (1991) 817.

F. Anselmo, L. Cifarelli, A. Peterman, A. Zichichi, preprint CERN-PPE-
91-123 (1991).

A. Giveon, L. J. Hall and U. Sarid, Phys. Lett. 271B (1991) 138.

R. Barbieri and L. J. Hall, Phys. Rev. Lett. 68 (1992) 752.

P. Ramond, Florida Univ. preprint UFIFT-92-4 (1992).

[29] G. G. Ross and R. G. Roberts, RAL preprint RAL-92-005 (1992).
[30] M. B. Einhorn and D. R. T. Jones, Nucl. Phys. B196 (1982) 475.

104




[31] L. Hall, Nucl. Phys. B178 (1981) 75.
[32] S. Weinberg, Phys. Lett. 91B (1980) 51.

[33] IMB-3 Collaboration, R. Becker-Szendy et al., Phys. Rev. D42 (1990)
2974, see also: Review of Particle Properties, Phys. Lett. 239B (1990).

| [34] F. Buccella, G. Miele, L. Rosa, P. Santorellim and T. Tuzi, Phys. Lett.
233B (1989) 178.

[35] T. W. B. Kibble, G. Lazarides, and Q. Shafi, Phys. Rev. D26 (1982)
435.

[36] W. E. Caswell, J. Milutinovic and G. Senjanovic, Phys. Rev. D26 (1982)
161.

[37] T. G. Rizzo and G. Senjanovic, Phys. Rev. D24 (1981) 704; ibid. 25
(1982) 235.

[38] H. Murayama and T. Yanagida, Tohoku Univ. preprint TU-370 (1991).
T. G. Rizzo, Argonne Lab. preprint ANL-HEP-PR-91-92 (1991).
U. Amaldi, W. de Boer, P. H. Frampton, H. Furstenau and J. T. Liu,
UNC preprint IFP-415-UNC (1991).

[39] V. V. Dixit and M. Sher, Phys. Rev. D40 (1989) 3765.




