
Durham E-Theses

Identifying reusable abstract data types in code

Tortorella, Maria

How to cite:

Tortorella, Maria (1994) Identifying reusable abstract data types in code, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5092/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5092/
 http://etheses.dur.ac.uk/5092/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

University of Durham

Department of Computer Science

Identifying Reusable Abstract Data
Types in Code

Maria Tortorella

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

M.Sc.

1994

Abstract

The basic aim of this thesis is to analyse the state of the art in the field of the software reuse

Software reuse is widely regarded as offering the opportunity for improving the software

production process. I t is expected that a massive increase in software reuse is the most

promising way of overcoming the software crisis. I t can lead to substantial increases in

productivity and also to software systems which are more robust and more reliable.

A Reuse Re-engineering process together with techniques from reverse engineering represent

a method to achieve software reuse. A reference paradigm is established to implement the

Reuse Re-engineering process. The reference paradigm is composed of five sequential phases,

each characterised by the object it produces. This thesis deals mainly with the first phase

of the reference paradigm. This phase is called Candidature and i t is concerned with the

analysis of the source code for the identification of sets of software components that can be

candidate to make up a reusable component. Various methods involved in this phase exist

in the literature. Each of them has different characteristic and different qualities. One of

these approaches is analysed and i t is extended in the new method to give a. more precise set

of reusable abstract data types. In this thesis the new method is presented. A formalisation

followed by implementation of it and an evaluation of its quality through quality attributes

is given.

1

Acknowledgments

I would like to thank my supervisor from the University of Durham, Mr. Malcolm Munro,

who helped me in the development of the ideas reported in this thesis and supported me

throughout their drafting. I am also grateful to him for his intervention in_the corrections

of this thesis.

I would like to thank Professor Aniello Cimitile from the University of Naples, who helped

me to come to Durham, and all the members of the software engineering research group of

the Department of Informatica e Sistemistica at the University of Naples for the discussions

that gave origin to the research idea.

Finally, I would like to thank Professor Keith Bennett and all the members of the Centre

for Softwai'e Maintenance of the University of Durham for all the facilities provided.

Contents

1 Introduction 1

1.1 Introduction 1

1.2 Criteria for Success 5

1.3 Plan of Thesis 6

2 Existing Reuse Methods 7

2.1 Introduction 7

2.2 Existing Methods 11

2.2.1 Dominance Call-graph Methods 12

2.2.2 Global Variable Properties Methods 14

2.2.3 User Types as Formal Parameters Properties Methods 18

2.2.4 Logic Methods 21

2.2.5 Program Slicing Methods 22

2.2.6 Testing Methods 26

2.2.7 Similarity Measure Methods and cluster analysis 28

2.2.8 Measurement of Data Binding between Modules Method 31

2.3 Summary 33

i i i

3 New Method 35

3.1 Introduction 35

3.2 The New Method 37

3.3 Formalization of the New Method . 42

3.3.1 Abstract Data Types . 43

3.3.2 Dominance Tree 44

3.3.3 Formalization 45

3.4 Summary 53

4 Implementation 55

4.1 Introduction 55

4.2 ADT Method Implementation 56

4.3 New Method Implementation 59

4.4 Summary 63

5 Case Studies 66

5.1 Introduction 66

5.2 Editor.pas 67

5.3 ExamMarker.pas 75

5.4 Minicalc.pas 81

5.5 Format.pas 87

5.6 Evaluation and Conclusion 91

6 Conclusion 93

6.1 Introduction 93

I V

6.2 Evaluation of the Criteria for Success 94

6.3 Further Work 96

v

Chapter 1

Introduction

1.1 Introduction

The last two decades have seen the promotion of software development as an engineering

activity, encouraging the use of more rigorously defined software development methods based

on sound engineering principles. Such methods have often emerged in response to new ideas

about how to cope with the increasing complexity of software systems. The first need to

discipline the activities involved in a process of software system development arose in the

1960s with the introduction of third generation computers. These machines were orders of

magnitude more powerful than second generation machines and their power made possible

the realization of applications that until then were infeasible.

Initial experience in building la.rge sofware systems showed that existing methods of software

development were inadequate, not well defined and very often not applicable. There was an

urgent need for new tecniques and methods which allowed the complexity inherent in large

software systems to be controlled. In those years the term Software Engineering was first

introduced.

Software Engineering is defined differently by different people. However, the common idea

is that Software Engineering is concerned with software systems which are built by teams

rather than individual programmers, uses engineering principles in the development of these

systems, and is made up of both technical and non-technical aspects [1]. As well as a

complete knowledge of computing technique, the sofware engineer should: appreciate the

problems that the user has in interacting with the software and should understand the project

1

management problems associated with software production. Moreover, the term 'software'

does not simply indicate the computer program associated with some aplications or product,

but it includes all the documentation which is necessary to install, use, develop and maintain

these programs. In line with this concept, a definitions of Software Engineering suggested by

Boehm [2] is: "Software Engineering involves the practical application of scientific knowledge

to the design and the construction of computers programs and the associated documentation

required to develop, operate and maintain them."

The idea that software development is an engineering discipline led to the view that the

process of software development is like the process which has evolved in other engineering

process. Thus, a model of software development was derived from other engineering activities

and most research into Software Engineering has focused mainly on the development phases

of software life-cycle. The initial model was the waterfall model proposed by Royce [3].

This model underwent various variations t i l l an interative and more complete models, that

identify the following five phases [4]:

Requirent analysis and definition is the period in which the requirements, the system's

services, constraint and goals are established by consultation with system user;

System and Software Design is the process of representing the functions of the software

system, identified in the requirements definitions, in a manner which may readily be

transformed to one or more computer program;

Implementa t ion and U n i t Testing is the period during which the software design is re­

alized as a set of programs or program unit which are written in some executable

programming language. Unit testing involves verifying that each unit meets its speci­

fication;

Validation, In tegra t ion and System Testing identified the period in which the individ­

ual program units or programs are integrated and tested as a complete system to ensure

that the software requirements have been met. After testing, the software system is

released to the customer;

Operat ion and Maintenance involves correcting errors which were not discovered in the

earlier stages of the life-cycle, improving the implementation of the system units and

enhancing the system's service as new requirements are perceived.

In particular, the maintenance phase is one of the most important within the development of

2

software, also if it has traditionally been seen as the most poor activities compared with the

'more creative' activities of software development, and it has always been assigned to junior

programmers as their first task. Next, i t has been recognised that maintenance is not just

'bug fixing', but rather a complex amalgamation of activities often having much in common

with development. The growth of organization such as the Centre for Software Maintenance

of the University of Durham and the increasing number of industrial/academic seminars

on the subject indicate that Software Maintenance is becoming a recognized academic and

commercial discipline.

Software Maintenance has been defined [5] as: "The modification of a software product

after delivery to correct faults, to improve performance or other attributes, or to adapt the

product to a changed enviroment".

Software Maintenance activities can be classified into four categories [6]:

Perspective Maintenance enhances the software system by altering and encreasing its

functionalities, by responding to user-defined changes;

Adaptive Maintenance is concerned with changements of the software system to adapt

it to a change in the data enviroment (system input and output formats), or in the

processing enviroment (either hardware of support software);

Corrective Maintenace involves diagnosis and corrections of errors discovered in the sys­

tem which cause incorrect output or abnormal termination of the software system;

Preventive Maintenance is concerned in the updating the software system to anticipate

future problems; this entails improving the quality of the software and documentation,

or other software quality factors.

It is estimated that 60% to 70% of the total life-cycle costs are spent on maintenance [7]. In

order to make changes, i t is necessary first to understand the software and this could involve

around 47% to 60% of the maintenace effort. This means that some 30 — 35% of the total life-

cycle costs are consumed in trying to understand software after it has been delivered in order

to make changes. A particular branch of Software Engineering that assists the activities of

Software Maintenance in the understanding of software systems is the Reverse Engineering.

A definition of Reverse Engineering is [8]: "Reverse Engineering is the process to support

the analysis and the understanding of data and processing in existing computerized system.

3

It aims to extract the contents, structure, and flow af data and processes contained within

existing software systems in a form that can be enquired and analysed."

Having reverse engineered a software system it may be appropriate to tidy i t up, restructuring

it to meet current standard, or even re-implementing it in a newer version of programming

language, or some other language, and possible on new hardware and operating systems. This

complete cycle of Reverse Engineering followed by re-implentation is called Re-engineering.

Reverse Enginering and Re-engineering are two aspects that can help the Software Mainte­

nance.

A way to reduce the time employed from the processes of Software Maintenance can be to

produce modularized systems, in which the intervening of maintenance can be localized on

single modules instead of on the ful l system, and to use sofware modules already existing

to produce new software systems. In fact, the opportunity to use components already used

before and, thus, already tested and maintened should reduce the quantity of time employed

in the various .activities of the processes of Software Maintenance.

For these reason and for the pursuit of the two objectives of reduction of development costs

and the improvement of software reliability Software Reuse is now considered a fundamental

aspect of Software Engineering. In fact the adoption of methods for Software Reuse permits

both an efficient development of new applications with a raised degree of quality thanks

to the availability of checked and tested components, and the re-engineering of existing

applications by means of a greater modularity of the software architecture.

In general terms Reuse is defined as "Re-application of source code". Biggerstaff [9] said:

"Software Reuse is the re-application of various type of knowledge about a certain system

with the aim of reducing the burden of development and maintenance. The reusable ele­

ments consist of domain knowledge, development experiences, project choices, architectural

structures, specifications, code, documentation and so on".

Reusability is now being taken into account not only during the production of software but in

every phases of the development of applications. This incentive to reuse derives from the firm

belief that wide use of reusable components is a measure of the industrial maturity of a sector

because it shows how much it is possible to keep of an application in successive developments

and new realizations. In this way a repository of reusable components constitutes the store

that keeps the know-how of the software developer. I t can not be said that similar efforts

have been carried out in the field of extraction of reusable components from existing systems.

4

In fact, according to the above, i t is a widespread opinion that the reusable components must

be planned and not discovered. I t is thus reasonable to assume that a significant sub-set of

the existing millions of the lines of code must be reusable with little or no modifications.

Then it is obvious to think that the identification of reusable components in existing software

systems gives considerable benefits especially when the extracted components are really

useful and when the costs for their research and extraction prove less than those for their

possible reconstruction. Nevertheless, i t is very difficult to quantify those costs since both

the real usefulness and validity of the components and the cost for their search are not

available in advance.

Many researchers from both the academic and industrial environments are interested in Re­

verse Engineering and Re-engineering activities for the definition and implementation of

processes to populate repositories with reusable software components extracted from exist­

ing systems. Such processes are called Reuse Re-engineering processes.

1.2 Criteria for Success

The work presented in this thesis will explore one aspect of the Reuse Re-engineering process,

that of the identification and the extraction of reusable components. The criteria for success,

to be judged in the final chapter, are as follows:

• description and evaluation of existing methods for the identification and extraction of

reusable abstract data types;

• development of a more precise method for the identification and extraction of reusable

abstract data types;

• formulazation of the new method;

• prototype implementation of the new method to show that it is automable;

• establish a criterion for measuring the effectiveness of the new method.

5

1.3 Plan of Thesis

The remainder of this thesis is organized as follows.

Chapter 2 deals with some results achieved in the sector of the Software Reuse. In particular,

the first section proposes a reference paradigm to set up reuse re-engineering processes. This

paradigm, jointly developed within the RE 2 project by the the DIS (Dep. of Informatica e

Sistemistica) of the University of Naples and the CSM (Centre for Software Maintenance) of

the University of Durham, analyse the relations existing between the Reverse Engineering,

Re-engineering and Reuse Re-engineering processes. The second section presents a set of

different methods looking for reusable assets in existing code. Each of them utilize a different

approach, based on the different kinds of abstractions that are looked for in the existing

system, system. The presentation of each method is followed by some discussion to assess

the strength and identify the major limitation of the method. The third section proposes a

method for the evaluation of the set of modules extracted from an existing system. A set of

metrics are proposed for the achievement of that aim.

Chapter 3 proposes a new method looking for extraction of Abstract Data Types in existing

code. The first section deals with the starting point of the research and the introduction of

a set of quality attributes useful for the evaluation of the quality both of methods for the

extraction of reusable modules from code and of the modules. The second section presents

the motivations, through the quality attributes, that suggested the extension of an existing

method to the new method, and an informal discussion of the new proposition. A rigorously

formal presentation of the method is presented in the third section, where all the notions

introduced in the previous section are proposed like relations.

The relations introduced in Chapter 3 are trasformed into a Prolog implementation presented

in Chapter 4. A presentation of the existing implementation of the starting method is

presented. This is followed by the discussion about the new implementation supplying all

the information useful for the re-engineering process of the identified reusable components.

Chapter 5 shows the validity of the proposed method through the presentation of four case

studies. The first section gives a short introduction to the case studies as applied to method

that has been used as the starting point of this work. In the following four sections a

description for each case studies follows. Finally the last section shows the evaluation of the

quality attributes on the case studies, and discusses the opportunity to use the proposed

method as an instrument useful for the comprehension of software systems.

6

Chapter 2

Existing Reuse Methods

2.1 Introduction

Various paradigms have been proposed to guide all the activities that are concerned with

the detection of components that can be reusable, the comprehension and the re-engineering

of them according defined standards. A particular paradigm to set up reuse re-engineering

processes, that is processes to populate repositories with reusable software components ex­

tracted from existing systems, is the RE 2 project [10]. I t is an on going research project

jointly developed by the DIS (Dep. of Informatica e Sistemistica) of the University of Naples

and the CSM (Centre for Software Maintenance) of the University of Durham. The aims

of this project are concerned with the exploitation of reverse engineering and re-engineering

techniques to facilitate reuse re-engineering processes. In particular it aims to identify the

reverse engineering knowledge useful to reuse re-engineering while classifying the theoretical

and/or technological open problems for which a basic research effort is required.

Figure 1.1 shows the Reuse Re-engineering reference paradigm developed in the RE 2 project.

In a reuse re-engineering process this paradigm distinguishes the following five sequential

phases:

Candidature is concerned with the analysis of the source code for the identification of sets

of software components, each of which is a candidate to make up a reusable component.

In the next phases, the sets of reusable components identified, to be reusable, have to

be de-coupled, re-engineered and generalized. The candidature phase comprehends a

7

• L • • Candidature Election • • •
Qualification

e •
Search Classification and and Display Storage

Figure 2.1: The RE 2 reference paradigm

set of activities groupable in three successive steps:

• Candidature Criterion in which a criterion to be applied to produce a first ap­

proximation of the set of the reuse candidate modules is defined. This definition,

produced by a reverse engineering process, also entails the definition of the model

to which to apply the criterion and the information needed to make up an instance

of the model. The model instance related to a set of components extracted from

code should highlight the kind of these components, that is if they are procedures,

functions, slices, data types and so on, and the relations existing among them,

that is calls, nestings, declarations, data flow and so on;

• Reverse Engineering in which a reverse engineering process to extract a set of

software components from code and make up an instance of the model, defined

in the previous step, is defined;

• Criterion Application consists of the application of the candidature criterion to

the particular model instance to produce the set of the modules that can be

candidate for reuse. Each module consists of software components of the system

analysed. In this phase, clearly, they do not yet constitute a reusable module, but

they are not yet changed, that is they have not been de-coupled, re-engineered,

etc..

Elect ion is concerned with the activities of the analysis of the sets of software components

8

identified in the previous phase and produces a set of reusable modules. The final set

of reusable modules is in reality a subset of the set of modules initially located. In fact,

not all the candidate sets will be included in the reusable modules. During that phase

some of them will be discarded either because they are too simple to be interesting, or

because they are too complex and too expansive in terms of re-engineering operations

needed to de-couple and cluster them. The groups of activities that can be identified

in this phase are the following:

• Template Definition gives the definition of a module template to re-engineer the

reuse-candidate modules. A l l the software components composing the sets pro­

duced in the candidature phase are to be clustered according to this template.

The definition of the template have to implement information hiding and intercon­

nection standards. I t has to let the module's exportable resources visible to the

external world, while encapsulating and making inaccessible the local resources.

I t has to take into account the characteristic of the source language as regard the

primitives for the definition of the modules. I t is clear that the definition of the

template is simpler in languages that offer syntactic and semantic primitives to

define modules, their interfaces and the implementation bodies, like, for example

Ada [11] and Modula-2 [12];

• Decoupling entails the definition and the setting-up of a re-engineering process

for de-coupling the components from the external environment, i.e. from the

components of the subject software system that are not a part of the same module

candidate for reuse. The information and the model produced by the reverse

engineering step in the candidature phase may help in the definition of the process

above, in fact, the setting up of the re-engineering process involves the knowledge

of the control and data links existing both among the software components of

each candidate module and among them and the components of the old software

system. This information is typically produced in the candidature phase to set

up the instances of the model;

• Clustering involves the definition and the setting-up of a re-engineering process,

but this time, for the clustering of the software components in the template, that

is for producing the reusable module.

Qualif icat ion is involved in the activities that produce the specifications of each one of

the reusable modules obtained in the election phase. Both the functional and the

9

interface specifications are produced in this phase. Also in this case, the activities can

be organized in three steps:

• Specification Model, i t is involved in the definition of a specification formalism

to express the functionality of a reusable module and how it should be used.

That definition is very important in this phase, because the complexity in the

following steps depends on i t . The effort to produce a descriptive specification

and to produce an operational specification is different, and moreover, the effort

in producing informal, semi-formal or formal specification is also different;

• Functional Reverse Engineering entails the definition and the setting up of a re­

verse engineering process to produce the functional and interface specification of

the module from the code and to express i t according the formalism defined. This

process aims firstly to set up low level design document (to understand the func­

tions the module implements) [13] and, secondly, to reach the specification level

by means of successive abstractions. The information produced by reverse engi­

neering in the candidature phase, and the document of the old software system,

if any, can partially help to reverse engineer to produce the specifications of the

reusable modules;

• Testing and Specification Fixing consists of testing and fixing the specifications

produced to ensure their correctness and consistency with the code. In this pro­

cess, even if the test cases of the old system can be helpfully reused, the develop­

ment of a new testing plan and new test cases is necessary.

Classification and Storage is concerned with the activities that classify the reusable mod­

ules and the related specifications according to a reference taxonomy. The aim is to

define a repository system and to populate it with the reusable modules produced.

Search and Display is involved in the activities that set up a front end user interface to

interact with the repository system. The intention is to make finding the modules the

user needs as simple as possible, for example giving them visual support to navigate

trough the repository system.

The RE 2 process is mainly concerned with the first three phases in the paradigm, and

does not address the last two. These later two phases are related to the setting up of the

enviroments to support the reuse of modules rather than to the extraction of these modules

from old systems.

10

2.2 Existing Methods

Various different methods looking for reusable assets in code exist. Each of them has its own
peculiarity based on the different kind of abstraction to be looked for. Both the principle on
which they are based and the instrument that they use to reach that aim are different for
each approach. In spite of this a common feature that can be identified is that each of them
produces a set S of candidate modules, and every element s belonging to S may implement
a solution of a certain problem. If this problem presents itself with a high frequency in the
application domain the module must be reengineered and qualified, transforming it into a
reusable module and enclosing it into the set R of reusable modules.

Starting from the set S, it is possible to obtain the set R by following two steps:

• Producing a sub-set S' Q S containing only the candidates elected for reuse

S' = sel(S)

• Re-engineering and defining a qualification process p to produce the following set R

R={r\r = p(s) Vs (E 5'}

The function sel(S) is fundamentally a Concept Assignment Process. I t requires the inter­
vention of a software engineer with the peculiarity that the major the quality of the adopted
method, the less the effort of the software engineer to assign a concept to the candidate
modules.

The quality of a candidature criterion is measurable by means of quality attributes. In the
next chapter some quality attributes will be introduced and they will be used to evaluate
the quality of the approach proposed in this thesis.

In this chapter various examples of candidature criteria are presented. The aim is to provide
a panorama, as exhaustive as possible, of structural methods proposed for the process of
Reuse Re-engineering. Each subsection will examine a different approach. The proposed
methods are based on the following:

• dominance call-graph;

11

• global variables;

• user types of formal parameters in procedures;

• structural model of a software system based on logic;

• program slicing;

• testing;

• similarity measure methods and cluster analysis;

• measurement of data binding between modules.

In the process of software reuse the phase of Candidature comprehends a phase of evaluation
of the identified reusable components. In the next chapter some quality attributes to the
evaluation both of the methods and the components identified will be introduced.

2.2.1 Dominance Call-graph Methods

Cimitile and Visaggio [14] propose a candidature criterion, that searches for functional ab­
straction in existing system. The method uses the call-graph and its transformation into
the dominance tree and then it carries out an analysis of these structures. This criterion is
articulated in four different candidature rules.

Before setting out these rules it is necessary to give some definitions:

The call-directed-graph of a program is defined as a graph CDG = (N, E) where jV =
{s} U PP is the set of the main program s and of the set PP of all procedures and functions,
and E is the Call Relation {{s} U PP) x PP.

The call-directed-acyclic-graph, denoted as CDAG, is obtained from CDG by collapsing every
strongly connected subgraph into one node.

According to Hetch [16] in a CDAG a node px dominates a node py if and only if every path
from the initial node .s of the graph to py spans px.

In a CDAG a node px directly dominates a node py if and only if all the nodes that dominate
py dominate px.

12

In a CDAG there is a relation of strong direct dominance between the nodes px and py if
and only if pa; directly dominates and it is the only node that calls py.

The reflexive and transitive dominance relation of CDAG is a tree, called Direct Dominance
Tree.

The Strong Direct Dominance Tree, denoted by SDDT, can be obtained from the Direct
Dominance Tree by marking all the edges that connect two nodes that are in a relation of
strong direct dominance.

The set S of all subtrees of a SDDT is composed of the set MET of all subtrees having only
marked edges, and the set UMET of all subtrees having both marked and unmarked edges.

The Reduction of the Strong Direct Dominance Tree is a tree and it is denoted by RSDDT.
It can be obtained from the SDDT by collapsing all the subtrees MET to a unique node.

Given these definitions the four rules can be enunciated:

Rule 1: by examining the CDG it can be determined if there are strongly connected sub­
graphs. The program units associated with the nodes of each subgraph are extracted
to constitute a candidate module for reuse.

Rule 2: by examining the SDDT it can be determined if there is some subtree MET. In
this case the program units associated with the nodes of each subtree are extracted to
constitute a candidate module for reuse.

Rule 3: by examining the SDDT it can be determined if there is some subtree UMET. In
this case the program units associated with the nodes linked to the subtree root by a
marked edge can be extracted to constitute a candidate module for reuse in a relation
of "USES" with the program units associated with the nodes linked to the root by an
unmarked edge.

Rule 4: by examining the RSDDT a marked edge constitutes a "COMPOSED OF" relation
between the modules associated to the nodes that the edge links, while an unmarked
edge represents a "USES" relation.

A method to search for functional abstractions in a software system and based on the dom­
inance tree can be applied to software systems coded in procedural languages and designed
according to the principles of the modular programming and functional decomposition.

13

Therefore such a criterion applied to software with different characteristics (for example
with object-oriented structure) would not succeed in proposing significant reusable modules.
Experiments using the dominance criterion, performed on a software system that satisfies the
above requirements confirmed the relevance of this method [15]. The criterion was verified
with a sample of approximately 15,000 lines of Pascal code extracted from a total of 300,000
lines of an existing system. The sample consisted of 25 programs with 424 procedures and
functions. From this set of program units, 169 candidate modules were identified. The re­
sults showed that the criterion aggregates program units involved in the implementation of
functional abstractions with an Adequacy of almost 35%. The real reusability of the software
was almost 50%. A large number of the modules (almost 43.8%) were discarded because they
were composed of only one procedure or function. It was seen that these program units were
not aggregated because they were procedures and functions involved in abstractions different
from functional abstraction (such as, for example, data abstraction). This result shows the
importance of the choice of a candidature criterion in relation to the characteristics of the
analysed software system. If these modules were not taken into account, then the percentage
of successes increases considerably.

It is possible to complete the criterion with an analysis on the data coupling between pro­
cedures and functions and to use the results of this analysis to propose a more complete
measure of the reengineering effort to isolate the selected components and encapsulate them
in a module for reuse.

2.2.2 Global Variable Properties Methods

In [17], a criterion that searches for candidate objects for reuse is presented by Liu and
Wilde. The authors say that an object is characterized by a tuple O — (F, T, D) where F is
the set of all program units, T the set of the data types and D is set of data items. Any of
these sets can be empty.

The proposed method provides candidate objects composed of global variables and program
units that use them. In particular the approach is articulated in three steps:

Step 1: for each global variable x, P(x) indicates the set of program units which use it;

Step 2: supposing that each P(x) corresponds with a node in a graph, a graph G = (V, E)
can be constructed such that:

14

V = {P(x) | x is shared by at least two routines}
E = P(x2)) | P (X l) n P(x2) ± 0}

Step 3: looking at the graph G, it can be verified if strongly connected subgraphs exist,
and in this case the program units associated with the nodes of each subgraph can
be extracted to form a candidate object for reuse and composed of those units and
relative global variables. If C = (Vc, Ec) indicates a strongly connected component the
object extracted from it can be represented as a tuple (F,T,D), where:

T = 0

D = Up(*)evc{z}

This criterion was experimented with by using some programs written with conventional
programming languages such as C, Ada, Cobol and Fortran and significant results were
obtained. In this case, it was necessary for the software engineer's intervention to resolve
conflicts and provide knowledge about the application domain. This point will be discussed
below.

In [18], Dunn and Knight propose an expert system to locate potential reusable modules.
The knowledge base of the system is based on four forms of knowledge: knowledge about
the application domain and design of the software that must be examined, knowledge about
the domain in which the extracted modules have to be reused, metric definitions and reengi-
neering knowledge. The system is based essentially on three functional elements:

• a C parser, that generates the abstract syntax tree from C source code;

• a Prolog interpreter, that identifies the candidate components for reuse;

• an interactive interface, that allows the communication with the system.

The Prolog interpreter searches for reusable components in three different ways:

• by identifying, by the analysis of the call-graph, the program units that are invoked
more than once;

15

• by identifying the program units that are strongly connected by analysing the various
types of couplings. The types of coupling used by Dunn and Knight are data coupling,
when the program units share simple data as formal parameter; common coupling,
when the program units share global data; external coupling, when the program units
share data with the external world; control coupling, when the program units share
data used for control. The program units that are loosely bound are easier to remove
and use in other contexts than those that depend heavily on other functions or non
local data. After this the various kinds of couplings between the components of the
system are recognized and the program units that are not connected can be candidate
for reuse. The study of this last point is not completed and the work is continuing to
determinate how the restriction of the above coupling characteristics can be relaxed
so that sets of program units with varying coupling degrees can be identified and be
candidate for possible reuse.

• by identifying program units and global variables that can be grouped together to
form abstract data types. The program is represented as a bipartite direct graph in
which the nodes are the names of program units or the names of global variables, and
the edges are directed from nodes representing program units to nodes representing
global variables specifying a "USES" relationship. The criterion operates by using a
depth-first visit of the graph to find the strongly connected subgraphs. Each of these
subgraphs can represent a candidate module for reuse.

This expert system was tested with 5 public-domain software systems, written in the C
language. Some evaluations were done on the base of criteria like practicality (how useful a
part would be in an application either in the same problem domain or in other domains),
reusability (how much effort is necessary to reengineer a part in order for it to be reasonable
to propose it for reuse) and understandability (how difficult it is to comprehend what a
reusable candidate part does). In all cases the obtained results were satisfactory.

The two algorithms described above produce fundamentally the same results. These results
are satisfactory when the system to analyse has a fully object-oriented structure for which
it is possible to identify all the objects constituting the system. The situation is different
when object-like components are mixed with functional-oriented components.

Livadas and Roy propose in [19] another criterion based on the properties of the global

16

variables that brought a greater level of granularity. The method in question is known as
rboi (receiver based object identification) and is founded on the operation of definition of
a same global variables from a number of program units, where a program unit defines a
global variable if there exists at least one execution path in it where the variable is modified.
The receiver is defined as triple (F,T,rboi) where F is the set of the program units that
define variables of type T. In reality, in this case, also the pass-by-reference parameters are
indicated with the words 'global parameter'.

Essentially the criterion consists of the clustering of the types of the global variables with all
the program units that define them to form some candidate components for reuse. It is clear
that the program units that only use the variables without modifying them are not present
in a cluster that is constituted as above.

This method has been tested with small programs and showed good results, but the problem
remains for medium and large programs. In fact, no help is provided to distinguish the
program units that implement methods of the same object from the program units that
access data items belonging to different objects, and so the algorithms produce results of
low quality and different objects are clustered in a unique candidate module. The problem
is to identify these undesired links and remove them.

Two types of undesired links exist: coincidental connections and spurious connections. Co­
incidental connections are due to program units that implements more than one function,
each belonging to a different object. This kind of connections can be removed by slicing
each interested program unit and obtaining one program unit for each elaborated function.
Spurious connections are due to program units that implement one specific operation by
accessing to the structure data of more than one object. Such kinds of connections can be
removed by deleting the program unit.

A suggestion to solve the problem of the undesired links is proposed by Canfora, Cimitile,
Munro and Taylor in [24]. Their approach is based on a graph called variable-reference graph,
that is essentially the same graph adopted by Dunn and Knight, and on the definition of
internally connected subgraph.

A internally connected subgraph of a graph G is a graph g (Z G such that the number of
edges that connect couples of nodes belonging to g is higher than the number of edges linking
nodes in G — g. The internal connectivity of a sub-graph g is measured by an index ICg:

17

#of edges that link couples of nodes in g
9 #0/ the edges that have at least one vertex in g

If the number of the individual links is sufficiently low, internally connected subgraphs can
be identified in the graph and each of these subgraphs can correspond to a candidate object.

The proposed algorithm tries to identify reusable objects through an iterative process. The
first step is to associate each program unit / with an index ICj that measures the internal
connectivity of the subgraph generated by clustering together all the data items referenced
and all the program units that access only these data items. ICj is the ratio between the
cardinalities of the set of edges that have either vertexes in the subgraph, and that of the set
of edges with at least one vertex in the subgraph. It is evident that if / generates a strongly
connected subgraph the value of IC/ is equal to one.

Using the value of ICj the value of AIC/ can be calculated as the difference between the
internal connectivity of the subgraph generated by / and the sum of the internal connectivity
of the subgraphs generated by the other program units in the above subgraph. The program
units with a sufficiently high value of A / C j can be used to generate clusters. If some program
unit exists that links together two subgraphs with high internal connectivity, it corresponds
to a coincidental or spurious connection and so it can be sliced or deleted.

With the new situation the process restarts and continues until a graph with all isolated
subgraphs is obtained.

2.2.3 User Types as Formal Parameters Properties Methods

In the sphere of the methods based on data abstraction the second criterion proposed by
Liu and Wilde in [17] is included. The reusable candidate objects produced are composed
of program units and user denned data types.

The five steps which articulate this criterion are the following:

Step 1: a topological order of all types in the program is defined so that the user defined
data type ti is a sub-type of t% if * i is used to define t2l in the same way <2

 l s a super-type
of ti;

18

Step 2: a relationship matrix R(F, T) is constructed. In this matrix the rows are associated
with the program units and the columns are associated with the user defined data types.
The generic elements R (f , t) is set to 1 if the type t is a sub-type of one of the formal
parameter or of a return value of the program unit / . All the other elements are set
to 0;

Step 3: for each row / the element R (f , h), set to 1 in the first step, is set to 0 if an element
R (f , t-i) marked as 1 and with t2 super-type of t\ exists;

Step 4: all the program units sharing the same type are collected in a same group. Specif­
ically the two program units fa and fa are grouped together if a type t exists so that
R(fut) = R(fa,t) = 1;

Step 5: a reusable candidate object with the program units and the involved user types is
constructed from each group. Exactly one candidate object O = (F, T, D) is formed
from each group where:

F = { / | the program units / is a member of the group }
T = {t \ R(f,t) = 1 for some / in F}
D = 0

This criterion was experimented with for programs written in Ada, Cobol, C and Fortran
languages. The results often showed a candidate object that was too big for the grouping
caused by some type improperly used in several program units. Again, in this case the
intervention of a software engineer proves useful to isolate that type and reorganize the
object in more objects of smaller size.

Another method operating with analogous presupposition is presented in [10] by Canfora,
Cimitile and Munro. This method consists of a set of direct relations obtained from the
static analysis of the code and it involves the construction of a directed graph that shows
the relation existing between the program units and the user defined data types that are
used to declare the formal parameters. In the construction of this graph the definition of
topological order introduced in [17] is used.

The graph G = (N, E) is such that N is the set of the nodes associated either with a program
unit or a user defined data type, and E is the set of the couples (c, t) such that c is a node
associated with a program unit and t is a node associated with a user defined data type

19

and used from c to declare a formal parameter. In the next step this graph is simplified by
eliminating all the edges (c, t) for which a type ti that is super-type of t and is such that
the edge (c, ti) of the graph exists. Finally in the obtained graph each subgraph represents
a candidate component for reuse.

The experimentation on software systems written in Pascal showed results that can be com­
pared with those obtained in the above method by Liu and Wilde. In both the cases the
large use of global variables, limiting the use of formal parameters to change information
between the program units, induced the creation of modules that were too simple or not
very significant. It can be useful to think of methods that consider both of these aspects, the
global variables and the formal parameters. In other cases it can verify that the large use of
some user defined data types causes the grouping of more modules, and the intervention of
a software engineer becomes very important.

This method will be analysed more deeply in the next chapter and the results, obtained by
the application of it to some case studies, will be discussed, and a solution to obtain better
results will be proposed.

Haughton and Lano in [20] illustrate a process for the normalization of objects obtainable
from existing code written with an imperative language. In particular this approach can be
included in the other section on the object orientation and in the identification of abstract
data types.

The method uses the notation Z++ [21], and it can be synthesized as follows:

Step 1: to identify all abstract data types and all their corresponding operations.

This process is not completely automatic since it is necessary to have the knowledge
of the application domain. However it can be eased by making use of heuristics in the
identification of data types. This involves the determination of the data structures that
are present in an application and that are not primitive but are composed of primitive
entities. This determination leads to the identification of the operations that work on
those data structures;

Step 2: to group all segments of code that have been identified because they perform some
operations on a specific data type.

20

This step is useful to make clear the data type and all the operations that take effect
on it and perform a partial restructuring of the original code in various segments of the
code. This restructuring is only partial because the code is only changed and permuted
taking no account of the syntactical and semantic bond.

Step 3: to describe the objects that are present in the code using the ZH—|— notation;

Step 4: the objects identified in the previous steps are normalized.

2.2.4 Logic Methods

In [22] Canfora, Cimitile and Munro present an approach based on logic for the definition of
candidature criteria for the search of abstract data types.

This method is synthesized as follows

If STYP is the set of the couples (c, t) such that c represents a program unit and t represents
an user defined data type used to define a formal parameter and such that c does not use a
super-type of t, the following relations are defined:

ABTYP = {trans(STYP)STYP)"

CCTYP = (trans(STYP)STYPytrans(STYP)

where trans(R) and R* indicate the transpose and the reflexive transitive closure of the
relation R.

The relation ABTYP defines the supporting structure of the abstract data type, that is the
user defined data types that contribute to the the constitution of the candidate module for
reuse. The relation CCTYP defines the operators of the candidate abstract data type, that
is the program units that have to be included in the candidate module.

For the logic nature of the criterion a logic programming language like Prolog has been used
to implement a prototype tool. This tool showed itself to be particularly flexible and easy to
develop, and these are very important characteristics for the evolving nature of a prototype
tool operating in the field of reuse re-engineering whose knowledge and technologies are not
stable but continuously changing.

21

The tool, operating on systems written in Pascal, achieved satisfactory results [23] that can
be compared with those obtained with the abstract data type methods. Also in this case
human knowledge and heuristics were necessary to identify the coincidental and spurious
connections possibly existing among the components of a candidate abstract data type, thus
improving its quality.

2.2.5 Program Slicing Methods

Ning, Engberts and Kozaczynsky propose in [25] various methods based on the technique
of program slicing supporting the recovery of reusable components from existing code. The
segmentation of the program is reached in two steps: focusing and factoring.

The operations of focusing have the aim to identify the portions of reusable code. In partic­
ular, there are five methods to select the segments:

• Select Statements, with which, without particular bonds, the user can include state­
ments in a segment in an arbitrary way. A powerful syntax-directed browser guarantees
the syntax validity of the choices, giving the possibility to select only complete state­
ment objects;

• PERFORMed Statement, based on the consideration that a call hierarchy reflects a
functional decomposition of a program. If the user chooses a 'procedure call' statement,
all the code relative to the called program unit is automatically included in the segment.
If there are any 'procedure call' statements in the new portion of code the process starts
again and continues til l the complete 'explosion' of all this kind of statements;

• Condition-base Slice, founded on the consideration that many functions in a business
field are structured along conditional tests and can be potentially useful to identify
areas of a program reachable under a globally specified condition. The user specifies
a logical expression and a 'slicing range' (in terms of where to start and end slicing in
the program) and automatically all the reachable statements along a control flow path
for which the given expression is true are included in a segment.;

• Forward Slice, based on the search of areas of code depending on values of the
variables given in input to the analysing program. Given a variable and a 'slicing
range' all the statements that can be potentially affected by this variable are inserted
in a segment. A variable affects a statement or as data flow if the statement uses the

22

value of the variable, or as control-dependence if the execution of the statement depends
on the value of the variable (in this case the variable is a part of a logic expression in a
conditional statement). The process is recursive because when a statement is included
in a segment all the variables that it contains are in turn used as slicing variables.

• Backward Slice, comes from the observation that it is interesting to look for areas of
code that contribute to the production of the output of the analysed program. Given a
variable and a 'slicing range' all the statements that can potentially affect the value of
the variable are inserted in a segment. In the same way as the forward slice, a statement
can affect a variable either in terms of data-flow or in terms of control-dependence. In
this case too it is possible to proceed in a recursive way by using the new variables
that are present in the new statements.

The factoring step is used to extract the segment of code and cluster them in reusable
modules. Besides the statements identified are provided of a set of information that are
essential for the completeness and the independence of the module. This information includes
the variables referenced in the sections of code selected with the respective Data Divisions
that are extracted and attached to the module, a new Identification Division, a new possible
Linkage Division if the module created will be a subprogram, and other information.

The methods synthesized above led to the realization of a tool useful to extract reusable
components from large legacy software systems written in Cobol. In particular this tool has
been used for the transformation of these systems from an obsolete hardware platform to
new client-server architectures. The authors have not, however, given the results on the real
reusability of the code so extracted.

The slicing techniques allow the extraction of functionalities implemented in the code. The
slicing is useful especially with code written using languages that do not have explicit pro­
cedural syntactic mechanisms by means of which it is possible to encapsulate functionalities
(the Cobol language is one of these languages).

One of the focusing techniques proposed by Ning, Engberts and Kozaczynsky comes from
the supposition that a 'perform' statement can be logically made equal to a procedure call
statement of a structured programming language, like C or Pascal. Consequently every block
of instructions composing the body of a 'perform' is proposed as a reusable module that
implements a functional abstraction. So the supposition of this technique is that a hierarchy

23

of calls understands a functional decomposition of the software system, therefore the software
components (statements and relative data) involved in a hierarchy of call relations can be
joined in reusable modules.

A weak point of the criterion shows itself when a 'perform1 is activated in several points of
the program. In this case the statements and relative data correspondingr±o this perform
will be joined in different modules, with the consequence that parts of code candidate for
reuse are in different modules.

Another slicing approach is that of Cutillo, Fiore and Visaggio [26]. In particular, the study
presented addresses the problem of the identification and the extraction of "domain indepen­
dent" components from large programs having an incomplete project documentation. The
search is based on the differentiation between two fundamental classes of components, those
depending on the program domain and those depending on the implementation technolog­
ical platform. The distinction between these two kinds of components is useful for various
reasons such as the major maintenance caused by the isolation of the code subject to the
technological changes; the major readability of the code since the parts that relate to the
application domain and to the interface are more evident and the increased possibility of
software migration between the different platforms.

The components that are independent of the application domain, called also structural com­
ponents, often depend on typical decisions taken in the design phase. These decisions often
disappear from the programs and existing documentation following modifications of the sys­
tem during its life cycle caused by poor updating of the documentation. The structural
components are often scattered inside the program among the code lines of functional com­
ponents and normally the modifications to one class have reasons and approaches different,
and in the same time not independent, from those of the other class. So it is very important
for the identification of the structural components, and the authors emphasize the impor­
tance of the techniques of slicing for the extraction of reusable components. They assert that
the application of the slicing has to be led from the data of the system and propose an ap­
proach founded on Direct Slicing, a software decomposition technique broadly documented
in [27]. This slicing technique, by considering the results of a preliminary phase of data
recovery, is applied to an opportune subset of the input and/or output data of the program.

The method to extract the above mentioned components can be so synthesized:

step 1: extraction of a direct slice with a suitable criterion for each instruction handling a

24

structure (File, etc.);

step 2: analysis of each slice obtained to establish its validity as a reusable module;

step 3: refinement of each slice if the resulting module is too complex;

step 4: constitution of a module combining the slices obtained in the previous steps;

step 5: determination of the complement of the extracted slices with respect to the program;

step 6: composition of the structure chart with the modules obtained in step 4 and the
MAIN resulting from the step 5;

step 7: repetition of the previous steps on MAIN, after having identified another extraction
point and corresponding criterion.

The parts of the program that can be isolated after step 5 remain in the MAIN program
until they are eliminated, or until they are not considerated in the subsequent iterations.
However, afterwards, the candidate modules have to be analysed by a software engineer who
will have to purge from the code those parts that are useless for reuse.

The objection that can be made of this method is that it is not always possible to start a
data recovery process on a software system before the application of the slicing, in fact in the
large part of the cases the slicing technique is used just as tool to identify the functionalities
implemented in a system.

The method was tested with various Cobol programs with a monolithic structure that used
broadly conditioned and unconditioned jumps. Although the obtained results were positive,
it is opportune to observe that this method can lead to slices that are too complex to be
easily understood or too simple. In these cases it is possible to iterate the slicing process
until the various sub-functionalities aggregated in the initial slice are identified, or, on the
contrary when the slice extracted is too simple to encapsulate the slice obtained in another
slice that uses it. In any case the intervention of the software engineers is important to solve
the ambiguity.

Points for future development of this method can be identified. In particular the extension
of the experiment to other kinds of software, a major definition of the reverse engineers' task
in sight of a full automation of the process and a major effort for the real reuse of the extract
components.

25

2.2.6 Testing Methods

In [28] Wilde and Gomez describe a method founded on the extraction of user functionalities
from existing code. In particular this method intends to identify the code implementing a
functionality through the use of test cases.

The problem of functionality identification can be seen, fundamentally, as the identification
of the relation existing between the way in which the program is seen by the user and the way
in which it is seen by the programmer. The user sees the program as a set of functionalities:

FUNCS={flJ2,...Jn}

wheras the programmer sees it as a set of software components:

COMP = {cl,c2l...,cm)

So the problem is the identification of a relation IMPL on COMPxFUNCS that enumer­
ates the sets of components that implement a certain functionality. This relation can be
detected by means of the application of test cases: a test case T{ exhibits a set of function­
alities F(T{) = {fi,i,fi,2, •••} and, at the same time, it effects the testing on a certain set of
components C(T,) = {c,,i, c l i 2 , . . . } .

By starting from these suppositions two different approaches to obtain the correspondence
between the components and the functionalities can be formulated: probabilistic and deter­
ministic. The former, by starting from a sample of test cases extracted from a population
composed of every possible test sequences for the program, tries to identify the best indi­
cators of a given functionality. If p/ i C indicates the conditional probability that a test case
used to test the component c displays also the functionality / , it can be written:

Pj,c = P(f\c) = P(f,c)/P(c)

Clearly the best indicators components of a certain functionality are those for which the
value of p/iC approaches 1, since if c is performed then a major probability that / is present
exists.

Supposed that 7 i , T?,are a random sample of test cases, an approximation of the pjiC can
be obtained from:

26

Pf,c = Freq(f,c)/Freq(c)

Finally the relation IMPL can be constructed as:

IMPLz = {c : COM PS; f : FUNCS \ pf,c > z}

where z is a threshold value with 0 < z < 1.

In the second approach the relation IMPL can be constructed, for a certain functionality / ,

by collecting all those components that exhibit it when they are tested and rejecting all the

other components that do not exhibit it. In practice for some test case T can be written:

IMPL'(c, /) c € C(T) and / 6 F(T)

and there would be no T' such that

IMPL'(c,f) =>ce C(T) and NOT(f € F (T '))

The relation IMPL' is a limiting case of IMPLZ, in fact it can be demonstrated that:

IMPLlja(c.f) IMPL'(c,f)

Therefore the deterministic approach is weaker than the probabilistic one.

The method was experimented by using a program written in the C language and containing

about 15,000 code lines in 360 functions. The program was several years old and had been

modified a number of times, and so it can represent the typical program that a real world

maintainer might approach. The first difficulty was to define the kind of components. Each

program unit can be associated with a component, but in this case a program unit is a too

gross a level of detail to locate a specified functionality from test execution data. A different

definition can be a program statement, but here a functionality can be implemented from

an execution path and not from a single program statement. After these considerations it

27

was decided to use each decision point, that is each result from an if or while predicate and

each possible result from a switch statement, as a component.

The Probabilistic approach achieved slightly better results than the Deterministic one, iden­

tifying at least the same components of the latter together with other components.

2.2.7 Similarity Measure Methods and cluster analysis

In [29] Schwanke illustrates a model to obtain the modularization of the existing code for

improving its quality.

In particular, they define a heuristic design similarity measure, based on Parnas' information

hiding principle1 [30]. Two approaches are identified. One approach, the clustering, permits

the identification of sets of procedures that share a sufficient number of design information

in order to place all the procedures of each set in the same module. The other approach, the

maverick analysis, is useful for the identification of single procedures that have been selected

in a wrong module, sharing more information with procedures present in other modules than

with those included in their own module.

Supposed that A,B,C,... are objects described by sets of features a,b,c,... respectively, the

design similarity measure defined is based on the following:

a U 6 is the set of features that are common to A and B\

a — 6,6 — a is the set of features that are in A and not in B and

wai is the weight of the single feature ctj of a;

W{a) = Y,ai£a w (a i) is t n e weight of the set of features a;

= / 1 i f

\ 0 oth

. -. A calls B or B calls A
Ltnked(A, B) = t

' " otherwise.

1 In 1971, Parnas wrote of the information distribution aspects of software design "The connection between

modules are the assumption which the modules make about each other". Next, he formulated the information

hiding criterion advocating that "a module should be characterized by a design decision which is hidden

to all others, and its interface or definition should be chosen to reveal as little as possible about its inner

working".

28

The similarity function is defined as follows:

Slm(A,B)= W(aUb) + k*Linked(A,B)
n + W(a Ub) + d* (W(a - b) + W(b - a))

In this function it can be noted that:

• all coefficients are non-negative;

0 only the shared and distinctive features are important. The constant d checks the

relative importance of the shared and distinctive features;

• similarity increases with the shared features and decreases with those distinctive;

0 similarity is zero if there are no shared features and no procedure calls to other modules;

• the constant n checks the normalization;

• Sim(A, B) = Sim(B, A).

The values to assign to k, n and d are selected on the basis of empirical choices by trial and

error. In a future evolution of the methods, these constants will be defined in an automatic

way.

On the basis of this definition, the clustering algorithm, called hierarchical, agglomerative

clustering proceeds as follows:

Place each procedure in a group by itself

Repeat

Identify the two most similar groups

Combine them

until

the existing groups are satisfactory

The groups obtained in the end of the process are used to define the components of the

module.

The algorithm presents three variations:

batch c luster ing does not take into account the intervention of the software engineer.

Binary trees representing the results of combine operations are created, and from them,

in a heuristic way, the branches considered useless are eliminated. With this variation,

the results obtained are often very different from those the software engineer would

like;

interact ive , radical c lustering considers that the results of a combine operation are sub­

mitted to the software engineer. The acceptance or the rejection of a combination

influences the choices that are adopted in the next step in the algorithm;

interact ive reclustering uses a previous classification to guide the clustering. It starts by

noting the original module in which each procedure is located. Successively, as two

groups are selected to be combined it is checked to see if their members were all in the

same module. In this case, they are combined without requesting the confirmation of

the software engineer; otherwise, the engineer can accept or reject the combination, or

can set aside one or both the groups for a future classification.

In the clustering process, the procedure are classified as:

• Subject: a procedure that is being compared with a number of other procedures for

clustering or classification;

• Neighbour, a neighbour of a subject is a procedure with which it has at least one

common feature;

• Good Neighbour, the good neighbours of a subject are those neighbours that belong to

the same module of the subject;

• Bad Neighbour, the bad neighbours of a subject are those neighbours that do not

belong to the same module of the subject.

The approach of maverick analysis is useful to identify potential mavericks, that is procedures

located incorrectly. The potential mavericks are identified by searching the most similar

neighbours of each procedure and noting the modules they belong to. In a formal way, it

is possible to say that a maverick is a procedure for which the large part of its k nearest

neighbours are bad neighbours.

Finally, both the approaches present the software engineer with a list of suggestions useful

for the modularization of the code.

30

The method has been realized in a tool called A r c h . It has been used in experiments on 5

different software systems and it has been demonstrated that it can provide good support

for the software engineer in real cases.

2.2.8 Measurement of Data Binding between Modules Method

The method proposed by Hutchens, Delis and Balisi [31, 32] is based on the measurement of

the data and type bindings between modules and components. The data bindings provide

a measure of the interaction existing between either components or modules. In particular,

they provide the "proximity" of a system components, and this measure of "closeness" is

input to a method of analysis of mathematical taxonomy suitable for the construction of a

simple tree diagram of the involved elements. This diagram, called a dendrogram, expresses

the similarities and the dissimilarities between the elements.

The data binding methods are an example in the category of visibility data methods. The

definition of the data bindings is the following:

Let a and /? two program segments and 7 a variable global to a and /?. If 7 is

defined from the segment a and used from the segment /?, then there exists a

data binding between these two program segments, and it is indicated from the

triplet (a , 7, /?) .

The triplet describes the flow of information between the first segment and the second. It is

possible that the reverse binding exists if a global variable 7' exists from which the triplet

(/?,7' ,a) exists.

Several families of data binding exist. The previous definition is referred to the actual

data binding. Other kinds of data binding are: the potential data binding that expresses

the possibility that two segments communicate through a variable that is located in their

lexical scope; the use data binding that indicates that two segments use, either in reference

or assignment, a variable included in their scope; the control data binding that expresses

a requirement of an extra condition on the basis of which the control can pass from the

segment a over the segment /?.

By. exploiting the data binding concept, it is possible to use a mathematical taxonomy to

group similar objects. The similarity existing between two objects is based on the properties

31

of the objects. Supposed to have n objects, a dissimilarity matrix for them may be computed

from the binding matrix. This is a matrix with dimension nxn as follows:

01.1 01.2 01,n

02,1 02,2 02,n

M =
0i.l 0i.i 0«,n

\ 0n,l 0n,2 0i.n

Element fiij indicates the number of control flow data bindings existing between the objects

i and j of the form (i , x,j) or (j , x, i) for some variable x.

By starting from matrix M the dissimilarities matrix N of dimension nxn, also called 'dis-

determinates the 'objects' dendrogram'.

The computation of the matrix N exploits the notion that if a component of the system is

entirely connected to just one other component, that connection should be computed as a

lower dissimilarity than any connection that is not complete. More specifically, the matrix TV

expresses the percentage of the data bindings that connect to either of the two components

and are shared by the two components. The matrix M is symmetric and the element N{j of

TV is determinated from the following formula:

tance matrix', can be constructed. This matrix is passed to an iterative algorithm that

N;
E/k0..fc + Ejt0fe.i - 0 . j

The value Nij indicates the distance between the object t and the object j . Since:

22^.k + z2fik,i - 0
k k

is the number of data bindings in which either i or j occur and

k k

32

is the number of data bindings in which either i or j occur but not both, Nij is the probability

that a random data binding chosen from the union of all bindings associated with i or j is

not in intersection of all bindings associated with i and j . If the objects i and j have no

external connections then

it k

and Nij = 0. Moreover, if i and j share no common data then mj = 0 and Nij = 1.

At this point, the clusterization process proceeds in a bottom-up fashion. In each iteration,

a series of successive fusions of the n objects into clusters is made to progressively reduce

the dimension of the distance matrix. The objects that are first grouped are those with a

smaller distance, and, through the clusterization, they form a new object that includes all of

them. In the next iteration of the process, the set of objects to consider is the previous set

with the substitution of the clusterized objects with their clusters. The distance between a

cluster object and an object is calculated by choosing the minimum distance between each

object in the cluster and the object. The iterative process terminates when it is not possible

to clusterize other objects.

Based on the concept of the data binding, a tool for Ada source reusability has been con­

structed. One recognised limit of the method is that the cluster analysis is based on a limited

knowledge of the object and not based on very sound probability models.

2.3 Summary

In this chapter the R E 2 reference paradigm has been presented. It has been developed within

the R E 2 project, an on going project jointly developed by the DIS (Dep. of Informatica e

Sistemistica) of the University of Naples and the C S M (Centre for Software Maintenance)

of the University of Durham.

The reference paradigm proposes a systematic approach to analyse an existing software

system for the identification of reusable components. It divides a reuse re-engineering process

into five sequential phases. Each phase is characterized by the object it produces. The

first three phases are related to the identification, extraction and re-engineering of reusable

components from existing software system, while the latter two phases are related to the

33

setting up of environments to support the reuse of the components considered in the previous

phase. The R E 2 project does not aim to produce new software systems by reusing software

components, but to produce reusable components from existing systems. For this reason,

the phases emphasised the most in the paradigm are the first three.

Various candidature criteria looking for reusable assets in code have been described. Each

of them has its own peculiarity based on the different kind of abstraction to be looked for,

and each of them takes advantage of particular tools and structures to reach this aim. Tools

based on the study of the dominance tree, the global variables, the user types of formal

parameters in procedures, program slicing, testing and so on have been described.

Also the success of a candidature criteria depends also on the kind of software system it is

applied. The quality of it can be measured on the basis of the number and the quality of the

reusable software components identified. That quality is measurable by the use of quality

attributes. Some quality attributes will be presented in the next chapter.

34

Chapter 3

New Method

3.1 Introduction

In the previous chapter a number of different methods looking for the extraction of reusable

abstraction in existing software system have been investigated. Each of them follows different

guide-lines and concepts to reach that aim. For the different characteristics of the methods

the results that they provide, when applied to case studies, are quite different and categorize

each of them as applicable to a particular kind of software system.

The study presented in this thesis has been centered particularly on the behaviour of two

of the methods already introduced. The first is that denned by Canfora et. al. [22, 23] and

based on the relationships existing between the user-defined data types and the procedure­

like components (procedure or functions) that use them in their headings as formal parame­

ters and/or a return type of functions. This method is called the A D T method. The second

is that proposed by Cimitile et. al. [14] and based on the call graph and the dominance

tree of the subject software system. The two methods have been presented as looking for

two different kinds of abstractions. The A D T method looks for data abstraction, precisely

abstract data types (ADTs) ; on the contrary, the dominance tree method looks for functional

abstractions.

In reality, the new method can be interpreted as an extension of the A D T method motivated

by the fact that the results that it supplied could be improved. In fact, the validity of a

method for the extraction of valid modules that can be reusable depends on the quality of

the method adopted. Five attributes can be used to define the quality of a method looking

35

for the identification of reusable modules from an existing system:

© Adequacy, measuring the capacity of the method to select those pieces of code that

implement an abstraction;

o Method Completeness, measuring the property of the method to select all the pieces of

code implementing an abstraction;

o Purity, measuring the capacity of the method not to include, in the selected pieces of

code, data items and statements not belonging to the abstraction implemented;

® Module Completeness, expressing the property of the method to include, in the selected

pieces of code, all the data items and the statements needed to implement the relative

abstraction;

9 Identifiability, indicating the ease of associating each piece of code selected with a

concept within the application domain, that is with the abstraction it implements.

The first four attributes can be evaluated by using values like the size of the subject software

system in terms of L O C s or number of software components (user-defined data types and

procedure-like components), and the set of the candidate modules and their dimension in

terms of L O C s or software components selected in each module.

Let S be the set of candidate modules extracted from the subject software system and

S', a sub-set of S, the set containing only those candidate modules identified as reusable.

The adequacy can be calculated, as the percentage of the number of the reusable candidate

modules in relation to the number of those extracted by the following formula:

Adequacy = (# 5 ' / # 5) * 100,

where #S indicates the cardinality of the set S. Clearly, the major is the value of the

adequacy the better adequate is the method to extract valid reusable modules.

Analogously, the method completeness can be measured as the percentage of the number of

selected candidate modules with respect to the number of all the modules existing in the

subject software system that can be proposed for reuse. The Purity can be obtained by the

percentage of L O C in the candidate module that are copied into the final re-engineered mod­

ule. The module completeness can be measured as the percentage of the pieces of code, either

36

as groups of lines of code or as software components, selected by an extracting-component

method as implementing an abstraction with respect to the number of them necessary to

implement that abstraction.

The identifiability attribute can be obtained as a percentage of values obtained in a particular

case study. The value that is obtained does not depend just on the method used but it is

influenced by how the application domain is complicated and elaborated.

In the next section the values of these quality attributes for the A D T method, and, the new

method will be shown. A formal definition of the new method will be given in the successive

paragraph.

3.2 The New Method

The starting point of the new method is the A D T method. This method has been used in

experiments on four Pascal programs and the results obtained were quite satisfying. In fact,

all the analysed programs were divided into sets of user-defined data type and procedure-like

components, each of which could have implemented an abstract data type [23]. Problems

arose in some case studies where there were both modules that were quite easy to understand

and give meaning and semantics to, and modules that were quite large and very difficult to

associate with an A D T . The evaluation of the quality attributes, introduced above, gave the

following results:

Method

Completeness

Adequacy Purity Module

Completeness

50%-60% 40%-80% 50% - 100% 40%-70%

The attribute of identifiability has not been shown because its value is strictly associated with

each case study. In the results shown above, a range of percentage for each attribute is given,

showing the worst and the best results obtained. The lower values are justified by the fact

that, in many cases, low quality groups of software components were produced, or even more

than one group of software components were clusterized within the same candidate module.

The first aspect influenced the lower limit in the estimate of the module completeness; whilst

37

the second aspect caused the lower values of all the other attributes. In fact, a big module

clusterizing simpler modules, hid modules that could be candidate and associated to reusable

ADTs , causing low values in the attribute of method completeness. On the other hand, it

represented module not associable to reusable A D T s , influencing the adequacy. Sometimes

it was possible to identify the A D T that could be implemented, this result was obtained

by discarding some of software components selected, giving a low value for the attribute of

purity.

Indeed, the observation of the experimental results and the modules candidate obtained re­

vealed that the use of user-defined data types from numerous procedure-like components,

belonging to different potential candidate A D T s , created a link between the subgraphs cor­

responding to each module thus causing more than one potential A D T s to be identified as

a unique one. The result was modules that were quite large and very difficult to associate

with A D T s .

The experimental results obtained demonstrated that the problem was usually caused by the

user-defined data types that were sub-range or enumeration types and that were used, for

example, to codify the possible states at the end of a number of different operations, or to

define the definition range of indexes to arrays. The general semantic of that type motivated

the massive use of them in a large number of procedure-like components. It appears that

in the first case the information about the system loses meaning when the system is split

into more than one sub-system; in the other cases, the definition ranges of the indexes can

be codified using simple data types that are not considered in the identification of reusable

abstract data types. The isolation of these kinds of types when they are selected to form

the structure of an A D T together with more than one user-defined data types often leads

to the splitting of a complex module into different modules that are simpler and for which

it is possible to understand the meaning, and to associate a semantic and assume a re-

engineering process. With the identification of more simpler modules this process brings to

better values for the quality attributes of adequacy and method completeness. Clearly, in

the re-engineering process it is necessary to take into consideration the isolated types, and

it can be opportune to define one or more modules that define and export them, or to define

them in the A D T s that use them.

Another peculiarity of the method above causing low value in the attribute of module

completeness is that the candidate module is formed on the basis of the references of the

procedure-like components to the user-defined data types. At the same time, this is a limita­

tion of the method since the procedure-like components selected can call other procedure-like

38

components that do not reference the same user-defined data types, and that, for this rea­

son, cannot be selected in some module. This causes a low value for the percentage of the

number of the software components selected as implementing an A D T in respect to the

number of them necessary to implement it and require human intervention to locate and

add them to the set of software components that have been selected. To overcome this

problem, as illustrated in [35], the use of the dominance tree and of the S D D T can help

in the selection of these procedure-like components and in the identification of the relations

existing both between them and the procedure-like components belonging to some modules

and between the various modules. The starting point for this analysis is that, in the S D D T ,

the procedure-like components that do not belong to some candidate module and that are

strongly dominated from the M A I N program are called only from the M A I N program, and

they cannot be called from other procedure-like components belonging to some other mod­

ule. By deleting them in the call graph it is possible to construct a new call graph that

will no longer represent the original program but will still contain all the procedure-like

components belonging to the modules and at least all the procedure-like components they

call. By repeating the above process it is possible to eliminate from the call graph, and

then from the S D D T , all the procedure-like components that in no way contribute to the

implementation of an operation for some module. It is the last S D D T , so obtained, that

is constituted exclusively by procedure-like components 'interesting' to define the reusable

A D T s and to reveal the resources that they use for their implementation.

Another reason that brought to an improvement in results was that, for the rising complexity

of the next phase of re-engineering, the A D T method was experimented with by considering

only the procedure-like components declared in the M A I N program . In the next step the

criterion was applied to the software components declared in some of the procedure-like com­

ponent selected as one of the operation of a candidate abstract data type in order to obtain

reusable modules that implemented abstract data types at different levels of abstraction. In

the new method all the procedure-like components will be considered and the level of nesting

will not be considered.

All these observations led to the definition of an algorithm whose starting point is the appli­

cation of the A D T method for a first definition of the potential A D T s and their operators,

and, next, by using the S D D T , continues with an iterative process using the S D D T to the

identify all the procedure-like components not useful. The algorithm, articulated in seven

steps, follows:

39

Step 1.

Apply the method for the extraction of the A D T .

If there exists some modules that are quite large and difficult to assign a meaning to and

their supporting structures include subrange or enumeration types, then isolate them and

reapply the criterion.

Label the obtained candidate modules

Step 2.

Construct the C D G of the program and apply the first rule of the method based on domi­

nance tree to the identification of strongly connected subgraphs. Extract these subgraphs and

transform the C D G to a C D A G . If the extracted subgraphs contain some nodes representing

some procedure-like components belonging to some modules then the set of procedure-like

components associated with the subgraph contribute to implement one or more functionali­

ties of the associated A D T s

Step 3.

Construct the D D T and the S D D T of the C D A G and, for each of the above obtained modules,

label with its own label all the nodes representing procedure-like components belonging to

it

Step 4.

Delete in the C D A G all the procedure-like components that do not belong to any candidate

module and that are associated in the S D D T with nodes that are directly and strongly

dominated from the node M A I N , that is, from nodes that are connected with node M A I N

by a marked edge

Step 5.

In the C D A G assume the existence of a connection between the M A I N program and all the

procedure-like components that, after the deletion, have no arc coming in because they are

called only from the deleted procedure-like components

Step 6.

Reconstruct the S D D T of the partial C D A G obtained above, and repeat from Step 4 until a

S D D T without nodes directly and strongly dominated from the node M A I N and associated

with procedure-like components not belonging to any candidate module is obtained.

Step 7.

Mark each node, not directly and strongly dominated, with the label of the candidate mod-

40

ules containing procedure-like components, calling the procedure-like component that the

node represents, or, if it is called from procedure-like components not belonging to any

module, with their name.

The last S D D T obtained contains all the information for the identification of all the procedure­

like components that participate, together with those already selected, to the implementation

of the various functionalities of the candidate modules.

Before giving some basic rules that guide the extraction of this information it is opportune

to specify that in the rest of this chapter and in the next chapter the formalism is adopted

that a module candidate to represent an Abstract Data Type distinguishes the interface

specification from the implementation. The interface specification sets out the name of the

types involved and the operations that act on those types, that is all the information that

the module exports. The implementation defines the representation of the type, the local

resources and the implementation of the operations on the types, that is, all the information

that the module hides. Later in the thesis E X P O R T indicates the first part and B O D Y the

second.

The basic rules for extraction are as follow:

R u l e 1 Each M E T subtree having only nodes representing procedure-like components from

one candidate module implements a functionality of that module. In the implementa­

tion of this functionality the subtree can show the declarative structure of the involved

procedure-like components [33]. In this case only the main functionality will be ex­

ported, but, if it is required to export some sub-functionalities, the procedure-like

components implementing them can be declared in the same level of the main one.

R u l e 2 If a procedure-like component (a set of procedure-like components) not belonging to

any candidate module is represented by a node (a M E T subtree) directly and strongly

dominated from a procedure-like component included in a candidate module, it will

belong to this module and will be nested in the dominating procedure-like component.

If it is a subtree M E T , as above, it can show the declarative structure of the involved

procedure-like components.

R u l e 3 If a procedure-like component belonging to a module directly and strongly dom­

inates a procedure-like component belonging to a different module there will be a

relation of U S E S from the first to the second module. The called procedure-like com­

ponent cannot be nested in other procedure-like components and it will be exported.

41

R u l e 4 If a procedure-like component belonging to a module is not strongly and directly

dominated, being called from more than one procedure-like component, and these

procedure-like components belong to the same module, it will be declared before the

calling procedure-like component.

R u l e 5 If a procedure-like component belonging to a module is not strongly and directly

dominated, being called from more than one procedure-like component, and these

procedure-like components belong to one or more different modules, there will be a rela­

tion of U S E from the calling 'modules' to the called 'module'. The called procedure-like

component cannot be nested in other procedure-like components and will be exported.

R u l e 6 If a procedure-like component not belonging to a module is not strongly and directly

dominated and is called from more than one procedure-like component belonging to

one or more modules, it can be declared in each referencing module. The declaration

of the procedure-like component will be repeated as many times as the number of the

referencing modules, and if, in a module, only one procedure-like component calling it

exists, it will be nested in the last one, otherwise its declaration will be in the same

level of nesting and it will precede those of the calling procedure-like components.

R u l e 7 If a procedure-like component not belonging to a module is called from one or more

procedure-like components not selected to belong to a module but declared in some

module on the basis of the R u l e 6, then it will be declared in the same module.

R u l e 8 If a procedure-like component belonging to a module is called from one or more

procedure-like components not selected to belong to a module but declared in a module

on the basis of the R u l e s 6 and 7, a relation of U S E from the module to which the

first procedure-like component belongs and the modules to which the last procedure­

like components belong.

The above rules are general rules and if some case is not included in them they can be

combined to cater for this case.

3.3 Formalization of the New Method

To permit automation of the new method it is necessary to provide a formal analysis of it.

This can be achieved by expressing the algorithm and the set of rules introduced above by

42

the construction of a set of sets and relations. The notation adopted to express the sets and

the relations are given in appendix A.

3.3.1 Abstract Data Types

Given a software system, if PP is the set of procedure-like components, and T T the set of

user defined data types, then the following two relations can be denned:

• used.to-define expresses the use relation existing between the user defined data types.

I t is made up from TTxTT and is defined as:

used Jtojde fine = {£,-, tj : TT\the user data type ti is used to define tj • (<t, tj)};

• proc.usejype connects procedure-like components to the user defined data types that

they use in the interface to define a formal parameter and/or a return type. I t is made

up from PPxTT and is defined as:

procjuseJLype = {pi : PP,tj : TT | p,- uses tj in its heading • (p , - , t j) } .

A type-procedure-connection graph (TPCG) is represented by the couple (TV, E), where:

N = PPUTT
E — usedJtojdefine U proc.useJype,

and expresses all the use relations existing between all the software components, and obtained

from a static analysis of the software system. These relations constitute a subset of the

set of direct relations of the system, that is those relations that summarise the meaningful

reletionships existing among the software components. The set of direct relations constitutes

the model to apply the candidature criterion. The latter consists on a set of summary

relations obtained by combining the direct relations in expressions.

Starting from the TPCG a subgraph can be obtained that represents a first important step

in the process of identification of abstract data types. Indicate with /z(n t, n ,) , with and

n j two nodes of TPCG, a path 1 in TPCG, and with p(TPCG) all the paths in TPCG, then

the subgraph, indicated with TPCG' = (AT', E') expresses a subset of the summary relations

and can be obtained by the following construction:

'A path of a graph G — (E,N) is a sequence of nodes ni,n 2 l . . . ,nt, belonging to N, such that every

couple (r»,,nj + i) belongs to E.

43

N' = N
E' = E - { P i : PPjj : TT \ 3 tk : TT • (proc.useJype{a, t k) A

3 M<ii<*) e P{TPCG)) • (p,,*,)} - {«,-,*> : T T | usedJoJiefineiti,^) • (*,,*;)}

Practically, in the subgraph so obtained, the only connections existing are between the

procedure-like components and user defined data types, on the basis of the following property:

a procedure-like components is connected to a user defined data type only i f the former does

not use as formal parameter a user defined data type using the latter for its definition.

Each isolated sub-graph2 in TPCG can represent the basis for the construction of abstract

data types.

3.3.2 Dominance Tree

The call directed graph (CDG) defining a software system can be defined as the triple

(s, PP,EE), in which s is the M A I N program, PP is the set of all the procedure-like com­

ponents of the subject software system, then {s} U PP is the set of nodes, and EE, made

up from {s} U PP x PP and defined by:

EE = call = {x : {s} U PP, y : PP \ the component x calls the component y}

represents the call relations existing between the procedure-like components of the program.

The call relation is another kind of direct relation.

The CDG of a program can be generated automatically from the code and from this can be

derived the call directed acyclic graph (CDAG) by collapsing every strongly connected

subgraph3 into one node [16]. The CDAG is defined by the triple (s,PP',EE'), where each

procedure-like component in PP' is an element of PP or a collapsed subgraph of CDG,

and EE' is defined by the same call relation of EE, with the difference that this time the

involved procedure-like components are those of PP'.

Supposed that the CDG is reduced to its CDAG, then the triple (s, PP, EE) will be used

to represent the CDAG; moreover by representing with p(x,y) a path connecting x and y in

the CDAG, the following can be defined:

• the dominance relation is a relation on {s} U PP x PP, defined by:

2 An isolated sub-graph of a graph G is a graph g such that: g C G A g £ 0 A 3~>g C G • ^

0 A gf\->g — 9 A gU-*g — G), where the symbol 0 denotes the empty graph and ->g indicates the subgraph

complement of the subgraph g respect the graph G. This definition is due to Calliss [34].
3 A strongly connected subgraph, belonging to the graph C D G , is defined as the couple (PPi, EEi) such

that: PPi C PP A EEi CEEA(Vp,q: PPi 3 p{p, q) A p(q, p))

44

dom = {x: {s}uPP,y: PP \ V fi(s,y) m i e / i (s , j) i (i , y) } ,

then dom(x, y), that is x dominates y, i f and only i f every path from the initial node

of the graph to y span x;

• direct dominance relation is a relation on {s} U PP x PP, defined by:

dir.dom - {x : {s}uPP,y : PP \ dom(x,y) A (V2 : PP • (z f x) A (z f y) A

dom(z, y) dom(z, x)) • (x, y)},

then dir.dom(x, y), that is x directly dominates y,i{ and only if x dominates y and each

node, different from x and different from y, that dominates y dominates x; in other

words x is the nearest node to y between all the nodes that dominate y;

• strongly direct dominance relation is a relation on {s} U PP x PP, defined by:

str.dir.dom = {x : {s} U PP,y : PP \ dirjiom(x,y) A call{x,y) A

QzzPP • { z ^ x) A call(z,y))»(x,y)},

then str.dir.dom(x,y), that is x strongly direct dominates y, i f and only if x directly

dominates y and is the only node that calls y;

• the direct dominance tree (DDT) of CDAG is a tree defined as a triple (s, PP, ED),

where ED = dirJiom;

• the strongly direct dominance tree (SDDT) of CDAG can be obtained from the

DDT by marking all the edge corresponding to the procedure-like components of the

relation strjdir-dom. The set of all subtrees of a SDDT is composed of:

— the set MET of all subtrees having only marked edges, and

- the set UMET of all subtrees having both marked and unmarked edges.

3.3.3 Formalization

The application of the ADT method gives a first approximation of the modules that can

be proposed for reuse, and a first identification of the set of software components that

will constituted each module. Indicate with MOD the set of candidate modules obtained,

then two relations of ''module composition' between the identified modules and the software

components can be identified. The first relation, mod.proc-comp, is defined on MODxPP,

and expresses for each module the procedure-like components that i t includes:

45

http://str.dir.dom

rnod-proc-comp = {m : MOD,c : PP \ the procedure — like component c

belongs to the module m • (m,c)};

the second, mod-type-comp , is defined on MODxTT, and for each module identifies the

user-defined data types that contribute to i t :

modJype-comp = { m : MOD,t : TT \ the user —defined data type t

belongs to the module m # (m, t)}.

The relation will be enriched during the process as other new procedure-like components

belonging to the modules are discovered. Once the first classification is established then

the observation of the CDG offers initial information about the relations existing between

procedure-like components both belonging and not belonging to the modules, and also about

the relations between modules. In fact, the existence of strongly connected subgraphs in the

CDG indicates a cooperation between the procedure-like components associated with the

nodes of each subgraph for the implementation of one or more functionalities. These func­

tionalities are associable to the modules candidate including the procedure-like components.

If the modules involved are more than one the strongly connected subgraphs indicate also a

cooperation between these modules, and, then, a USE relation existing between them.

The process continues with the construction of the CDAG and with the identification of the

relations dom, dir-dom and strjiirudom.

The survey of all the potential reusable procedure-like components can be carried out using

the following iterative process. Starting with the labelling of all the elements (sets, relations,

and so on) known at this stage with the number 0, the notation adopted marks all the

analogous elements obtained in each iteration with a progressive subscript. Moreover, callc,

dirjdomG and strAirjdomG indicate respectively the call connections between nodes, the

direct dominance and the strongly direct dominance relations referred to the particular graph

G. Indicate with CDAGQ = (s, PPQ,EEQ) the call directed acyclic graph with the relative

sets of nodes and arcs, the iterative process will finish when the following position is reached:

3n : N*Pn+i = {c : PPN \ strjiirjdomcDAGn{s^c)/\fm : MOD mmod.proc.comp(m,c)} — 0.

Pn+i represents the set of the nodes of a reduced call directed acyclic graph, CDAGN,

that can be reached with the characteristic that i f some procedure-like components strongly

direct dominated from the M A I N program exist, then they belong to some modules. The

graph CDAGN contains all the interesting procedure-like components, that is, only those

46

participating in the implementation of the modules and in no other.

The following exemplify the iterative process that leads to the attainment of the position

above:

evaluate Vfc : l . . .n CDAGk = (s,PPk,EEk) where:

Pk = {c : PPk-i | strjdir-domcDAGk-i (s, c) A ̂ m : MOD • modjproc.comp{m, c) • c}

PP* = P f t_x - ft,

and:

= EEk-x - {c : ft • (a,c)} - {c : ft,<* : PP f e_! | callCDAGk_x(c,rf) • (c,<*)}

= callcDAGk = EkU{c:PPk\ldePPk» (d,c) <EEf {s,c)},

that is the set of nodes PPk of CDAGk is obtained from the set of nodes PPk-\ of CDAGk-\

by deleting in the latter the set Pk of the nodes corresponding to procedure-like components

strongly direct dominated from the M A I N program and for which modules containing them

do not exist. The definition of EEk can be achieved in two steps: deletion from EEk_i

of all the couple of procedure-like components representing arcs coming in and coming out

from the deleted nodes; addition to the set Ek obtained above of couples of procedure-like

components representing assumed call connections between the M A I N program and all the

nodes representing procedure-like components that, after the deletion, have no arc com­

ing in because the associated procedure-like components were called only from the deleted

procedure-like components.

After the construction of the CDAGk, determine dir^domcDAGk and strjdirjdomcDAGk-

At the end of the iterative process the set PPn contains all the procedure-like components

that are essential for the implementation of the ADTs identified by the A D T method. The

procedure-like components that are strongly direct dominated are called only from the dom­

inating procedure-like components; on the contrary, the call relations are more complex for

the procedure-like components not strongly direct dominated. This set can be defined by

the following:

DDC = PPn - {c : PPn | 3d : {s} U PPn • strJir_domCDAGn(d,c) • c} .

It shows all the procedure-like components that are directly dominated but not strongly direct

47

dominated.

The relation, calling direct dominated procedure-like component (calljdir-doni-comp) defined

on (MOD U PPn) x DDC, expresses for each procedure-like component in DDC if i t is

called from procedure-like components belonging to some modules, including, in this case,

the couple that has as first element the label of the module and as second element the

subject procedure-like component, or if i t is called from a procedure-like component whose

membership to some module is not yet established. In the last case, the couples enriching

the relation are composed from the calling procedure-like component as first element and

the subject procedure-like component as second element. The formal definition is as follows:

call Airjdomjcomp = {m : MOD, c : DDC \ 3d : PPn • mod proc_cornp(m, d)f\

callCDAGn(d,c) • (m,c)}U

{d : PPn,c : DDC \ callcDAGn(d,c)A m : MOD»mod-proc-comp(m,d)*(d,c)}

The relation obtained together with strjlirjdomcDAGn and callcDAGn contains all the in­

formation for the identification of the relations and the belongings to modules of all the

procedure-like components, whose membership to modules have not been established by the

ADT method and that participate, together with those already selected, to the implemen­

tation of the various functionalities of the candidate modules.

Other useful relations that will be considered to define the re-engineering process for the

survey of the relation cited above, are defined as:

• module defines procedure-like components {modjdef-proc), defined on MOD x PPn,

indicates for each module all the procedure-like components i t defines:

modjdef jproc — {m : MOD,c : PPn | module m defines the component c • (m,c)};

• module exports procedure-like components (mod-.exp-proc), defined on MOD x PPn,
indicates for each module all the components i t exports:

mod.exp-proc = { (m, c) : mod-proc-cornp | module m exports component c • (m, c)},

this definition is justified from the fact that each module will export at most the

procedure-like components that belong to some module as defined in the relation

mod-proc-comp , and i t is revealed in the application of the method based on the use

of user-defined data types in the interface. In fact, that method is useful to identify

the operators of the candidate ADTs, that is, those procedure-like components using

48

in their interface the user-defined data types on which the structures of the ADTs are

constructed;

» procedure-like component declares procedure-like component (proc.dec.proc), defined on

PPnxPPn, indicates the nesting of procedure-like components:

proc.dec.proc = {c, d : PPn |3 m : MOD # mod.deJ.proc(m, c)A

mod.de f jtroc(m, d) A d is nested in cm (c , d) } ,

then procdec.proc(c, d) is true if and only i f the procedure-like components c and d

belong to the same module m and the former procedure-like component declares the

latter;

• module USES module (mod.uses), defined on MOD x MOD, indicates the relation of

USE between modules:

modjuses = {l,m : MOD | (3 c : PPn • mod.def.proc(l,c))A

(3 d : PPn • mod.exp.proc(m, d)) A callcDAGn(c, d) • (/, m)},

that is modjuses(l,m) is true if and only if a procedure-like components belonging to

module / exists and i t calls a procedure-like component belonging and exported from

module m.

The relation mod.def-.proc initially coincides with the relation mod.proc.comp because the

membership established in the first step by the A D T method continues to be valid. Wi th

an iterative process its structure is enriched until one couple exists for each element in PPn.

To define the process the new relation module calls procedure-like component (mod.call.proc)

obtained by restricting the domain of the relation call.dir.dom.comp to MOD, is proposed:

mod.call-proc = MOD <1 calljiir.dom.comp.

Then, established the initial condition in the following:

mod.de j'.proc = mod.proc.comp,

and supposed that the final condition of the iterative process is:

rng(mod.def.proc) — PPn,

that is the membership for all the procedure-like components are established, the enrichment

process can be exemplified in the following steps:

49

http://proc.dec.proc
http://proc.dec.proc
http://mod.de
http://mod.de
http://mod.def-.proc
http://mod.proc.comp
http://mod.call.proc
http://call.dir.dom.comp
http://calljiir.dom.comp
http://mod.de
http://mod.proc.comp

mod-def .proc' = modjdefjproc U {m : MOD, c : PPa |
^ / : MOD ® mod-proc-comp(l, <

(modjcalljproc(m,c)V(3d : PPn 9 modjief -proc(m,d) f\strjdirjdomcDAGn{d,c)))

mod-def-proc = mod-def-proc''.

mod-calLproc = {m : MOD,c : DDC \ 3d : PPn o mod-def-proc(m,d)A

caMcD/ i c^e) © (m,

The first step of the iterative process adds new terms to the mod-def-pvoc relatic

procedure-like components not belonging to any module. For each new term, tl

element is the name of the processed procedure-like component, while the first

bel of the module that contains a procedure-like component that, with referen

CDAGn, strongly direct dominates or simply calls the subject procedure-like co

The last information is revealed from the mod-calLproc that is updated as new mt

of calling procedure-like components is established. In fact, as the number of p

like components belonging to modules increases i t is possible to define the calli

direct dominated procedure-like components in terms of modules and no longer ir

procedure-like components without belonging to modules. Clearly, in each itera

the relation mod-defjproc is also updated.

The definition of the relation mod-exp-proc follows from the next consideration. Eac

MET (a subtree such that its edges express exclusively strongly direct dominan<

SDDT indicates a functionality implemented in the program [14]. Because the p

like components belong to a module the functionality identified from a MET, in rt

functionality of the module to which the procedure-like component associated witl

of the MET subtree belongs. Since i t is a functionality of a module and being used f

modules it has to be exported from the module to which i t belongs. From these ob&

and considering that the procedure-like components that can be exported from

are only those whose membership to that module has been established by the a]

of the ADT method the relation mod-exp-proc, defined on MOD x PPn, is sp

the following, where i t is used the relation modjproc-call, defined by the applicati

iterative process illustrated above:

mod-expjproc — {m : MOD,c : PPn \ mod-proc-call(m,c) A

^ d : PPn • [mod-def.proc(m, d) A sir jdir-dom(d, c)) • (;

50

The above relation expresses that, in each MET subtree, only the procedure-like components

belonging to some module and associated with nodes of the subtree that are not strongly di­

rect dominated from procedure-like components belonging to the same module are exported,

that is declared in the interface specification of the module. Al l the procedure-like com­

ponents associated with nodes that are strongly direct dominated from nodes representing

procedure-like components belonging to the same module are used only from procedure-like

components from the same module and not from procedure-like components from different

modules, and, thus are considered subfunctionalities of a main functionality of the module

and declared in the implementation of the module. I t can happen that some of those sub-

functionalities associated with some of the internal node in the subtree whose procedure-like

component associated is not exportable from the rule given above are interesting to complete

the set of operations that a module can export and to be declared in the interface specifica­

tion of the module. This choice can be evaluated by the software engineer, and the relation

mod.exp.proc can include other couples.

Once the membership of the modules is defined for all the procedure-like components and

it is established which of them are exported from the various modules the next step is to

define how the procedure-like components can be nested in the implementation section of the

modules. That is, to define the proc.dec.proc relation. Clearly, i f a procedure-like component

is exported from a module it cannot be nested in some other procedure-like component. For

the purpose of defining the nesting the call and strongly direct dominance relations are very

important. In fact, if two procedure-like components belong to the same module and a

strongly direct dominance relation exists between them then the dominating procedure-like

component is the only one to call the other. For this reason if the latter procedure-like

component is not chosen to be exported if can be declared in the former. Analogously, i f a

procedure-like component whose membership of a module has not been established on the

basis of the use of user-defined data types in the interface but, in the next definition of the

mod-def-proc, is called from only one procedure-like component of the module i t belongs

to it can be nested in the calling procedure-like component. The translation of the above

assertions in the formal notation adopted brings to the definition of the relation proc.dec.proc

that follows:

proc.dec.proc = {c, d : PPn \ 3 m : MOD • modjdef.proc(m,c) A modjdef jproc{m,d) A

^mod-exp-proc(m,d)/\(str.dirjdomcDAGn(c,d) V ((3/ : M O Dmmod.de f jcomp(l,d)) A

(3! e : PPn • modjdef-proc{m,e)hcallcDAGn{e,d) A e = c)) • (c,d)}

The final step is to define how the identified modules use each other. In fact, the procedure-

51

http://proc.dec.proc
http://proc.dec.proc
http://Dmmod.de

like components belonging to a module call or strongly direct dominated procedure-like com­

ponents belonging to other modules. These call and dominance relations establish a USE

relation between the modules. If a module includes a procedure-like component that strongly

direct dominates a procedure-like component belonging to another module then the former

module USEs the latter. Obviously, the same USE relation is established between a module

containing procedure-like components calling other procedure-like components included in

other modules. The relation mod.uses is defined as follows:

modjuses = {/, m : MOD | (3c : PPn • mod.expj>roc(m,c)) A (mod.call^proc(l,c)\/

(3d : PPn • mod.def.proc(l,d)) A str-dirudomcDAGn{d,c)) • (l,m)}.

Until now, the structure of the modules has been discussed exclusively in terms of procedure­

like components while the user-defined data types have been neglected. I t is now opportune

to consider them because they constitute the supporting structure of the candidate ADT.

The relation usedJo.define connects couples of user-defined data types according to i f a

user-defined data type is used to define another user-defined data type. On the contrary,

the relation mod.type.comp connects modules to the user-defined data types contained in

them. The last relation has been introduced after the presentation of the method based

on the use of user-defined data types in the interfaces of the procedure-like components.

The information obtained by using that method are only partial because the membership of

modules is not defined for some of the types and precisely for some of the sub-types4 of the

types already selected.

A process analogous to that illustrated above for the procedure-like components can be

used for the identification of the interesting user-defined data types and their membership

to modules. Also, the relations module defines type (mod.dej.type) over MODxTT indi­

cating which user-defined data types are defined in each module, and module exports type

(mod.exp.type) over MODxTT indicating which user-defined data types are exported from

each modules, are defined. In reality, the second relation, mod.exp.type, coincides with the

relation mod.type.comp. In fact, all the user-defined data types identified in the first step

of the entire process are exportable from the modules because they are referenced from the

the procedure-like components exported from the modules. The relation mod.def.type can

be identified by using an iterative process similar to that used for the construction of the

relation mod.def. The starting point for the iterative process is:
4 Liu and Wilde say that the user-defined data type t\ is a subtype of the user-defined data type J 2 if a

path exists that connects t\ and <2- In that case <2 is a super-type of t\

52

http://usedJo.de
http://mod.type.comp
http://mod.dej.type
http://mod.exp.type
http://mod.exp.type
http://mod.type.comp
http://mod.def.type

mod-def-type = modJype-comp,

since the relation mod-type-comp is the initial part of the searched relation. The iterative

process adds couples from MODxTT to the relation according to if a type belonging to some

module uses, for its definition, other types that are not already defined in the same module

or exported from other modules. Thus established the iterative process stops when types

that are not defined in the same module of the types that use them for their definition and

not exported from other modules do not exists. Formally translated, the final condition is:

{t: TT | 3 r : TT • usedJo.define(t,r) A 3 m : MOD • mod.def Jype(m,r) A

-*modjdef JLype(m,t) A ^ / : MOD • modjexpJype(l,t)} = 0,

the iterative process is exemplified in the following:

mod-def Jtype' = modjdef -type U { m : MOD,t;TT \

j8 / : MOD • mod-expJype(l,t) A

3 r : TT • usedJLo-define(t, r) A mod-def Jtype(m, r) • (m, f)}.

mod-def Jype = modjde f Jtype'

Clearly, the relation mod-uses is enriched according to how some user-defined data types

exported from some modules are used to define user-defined data types belonging to other

modules. On the basis of that the relation mod-uses is completed according to the following

rules:

mod-uses' = mod-uses U {/, m : MOD \ 3t: TT • mod-expJype(m, t) A

3 r : TT • modjdef J.ype(l,r) A usedJ,ojdefine(t,r) • (/,m)}

mod-uses = mod-uses'.

3.4 Summary

In this chapter by using an discursive approach is proposed a method to improve the reusabil­

ity of ADTs extracted from code. The same method has been presented by using a formal

definition of all the relations existing between the various components identified. The for­

malization makes easier to automate the proposed method.

53

http://mod.de

The identification of ADTs is based on the relation of use existing both between user-defined

data types, and between procedure-like components and user-defined data types. A very

large and complex module can be split into more than one simple module by isolating a

particular kind of user-defined data type.

The method to restructure each ADT is based on the Dominance Tree and the Strong Direct

Dominance Tree both obtained from the call graph of the system. By observing the SDDT

all the procedure-like components that are not called from the procedure-like components

belonging to some ADT are identified and, by reiterating the algorithm presented, the com­

plete set of all software components used to implement some operation in some ADT is

obtained.

Clearly the intervention of a software engineer continues to be of fundamental importance

to assign a meaning to the obtained modules.

54

Chapter 4

Implement at ion

4.1 Introduction

In the third chapter the new method proposed was formulated as a set of sets and relations.

This kind of representation has the added advantage of a direct way to implementation by

using a logic programming language, for example Prolog. Then, in order easily to perform

experiments to evaluate the approach proposed, a prototype tool that implements the method

proposed has been developed.

The prototype is intended to be used in order to evaluate the case studies and not for

commercial reasons. Therefore, issues like time/space performance and user-friendliness

have not been taken into account. The tool takes into account two aspects that are very

important for a tool that fits into a research environment, the aspects of flexibility and of

easy to evolve. The importance of these two peculiarities derives from the high probability

that the methods and the experimental environment can change. In addition, the prototype

tool has to ofFer the possibility of defining new summary relations to be able to choose the

level of abstractions to be looked for and the characteristics of the results expected. I f the

methods and the tools are versatile and easily tailorable they are easy to evolve on the basis

of the new knowledge developed both in the environment in which they are used and in the

research community.

The implementation of the approach requires three fundamental components:

a reposi tory to store the direct relations;

55

a language to define the summary relations;

a query fac i l i ty to specify the type of abstraction to be looked for.

Prolog puts at disposal all the instruments to supply those components. In fact a Prolog

dictionary can be used to record the direct relations and the production rules can be used

to define the summary relations, while Prolog queries can be used to express the abstraction

to be looked for. Besides, the Prolog language offers the versatility cited above; in fact in a

Prolog implementation it is possible to easily define new summary relations.

The expansion of the set of the summary relations is exactly what has happened with

the prototype tool implementing the approach proposed. Starting from the prototype tool

implementing the ADT method it has been possible to define all the new relations defined

in the third chapter.

In the next section a description of the prototype tool implementing the ADT method is

given, followed by the description of the expanded method.

4.2 A D T Method Implementation

One of the components of that implementation is a static code analyser written using Yacc

[39], a standard Unix facilities for the implementation of a parser. The current version

analyses Pascal program written according to the ISO standard and the main disadvantage

is that the programs to be analysed have to be written in a unique compilable file. The

analyser is used for automatically producing the program dictionary recording the direct

relations. The program dictionary is composed as follows:

• facts of arity 1, define each software components involved in the candidature criterion

and state their type. In each fact, the argument indicates the name of the subject

software component, while the name of the fact states its type, that is if it is procedure,

function or user-defined data type:

proc(procedure_name)

func(funct ion.name)

user.def_type(type_name)

56

o facts of arity 2, indicating the kind of relation involved between a couple of software

components. In each of these facts, the arguments indicate the names of two software

components involved while the name of the fact states the type of relation between the

cited components:

proc_use_type_in_interface(procedure_naiae,type_name)

func_use_tvpe_in_interface(procedure_name,type_name)

us ed_to_def ine(type_name_1,type_name_2)

proc.func_dec(procedure_name_l,procedure_name_2)

proc_func_call(procedure_name_l,procedure_name_2)

The first two facts state that procedure_name is a procedure/function that uses in

its interface type_name to declare a formal parameter, The third fact indicates that

type_name_l is used in the definition of type_name_2, the fourth that the proce­

dure/function procedure_naine_l declares the procedure/function procedure.name_2

and the last that the procedure/function procedure_name_l calls procedure/function

procedure_narae_2. And a fact exists for each couple of software components between

which one of the relations defined above exists.

Once that the program dictionary has been produced the summary relations implement­

ing the candidature criterion can be easily computed. Production rules computing them

have been implemented as well as programs to simplify the interrogation of the system. In

particular the programs have been written to answer to the following query:

• adt_strut t (T,T_set) , that gives the set T_set of user-defined data types that belong

to a cobweb of formal parameters declaration around the type T. Al l this user-defined

data types are candidate to implement the supporting data structure of a candidate

ADT;

• adt_op(T,P_set), that returns the set P_set of the procedure-like components that

use at least one of the user-defined data type belonging to the set T_set, that is to

the coweb of user-defined data types constructed around T. This set of procedure-like

components will define the operations of the candidate ADT whose data structure has

been defined by the coweb of user-defined data types constructed around T.

These two queries are combined in the unique query adt(T,T_set,P_set) that gives both

T_set and P_set that is the supporting structure and the operations of the candidate ADT

constructed around the user-defined data type T.

57

vega(sun4):dcs3mt[30]: s s i p l
Welcome to SHI-Prolog (Version 1.8.6 December 1993)
Copyright (c) 1993, University of Amsterdam, i l l r i g h t s reserved.

1 ?- ['STARTUP'] .

STARTUP compiled, 0.02 sec, 636 bytes.

Yes

2 ?- load.
adtabstractor.prolog compiled, 0.03 sec , 3,136 bytes,
commonjiefinitions.prolog coapiled, 0.03 sec , 3,276 bytes,
u t i l i t y . p r o l o g compiled, 0.02 sec, 660 bytes,
adt .database, prolog compiled, 0.1S sec, 14,124 bytes.
Yes

3 ?- project_prograra_dictionary(nain).

Yes
4 ?- adt(tracestring,T-set,P-set).
p_set = [etrace]
T_set = [t r a c e s t r i n g]

Yes
5 ?- adt(lineptr,T.set ,P_set).

P-set = [alloline,freeline,getind,getneH,getpak,gettxt,linkup]
T-set = [l i n e p t r]

Yes
6 ?- adt(argstringstring,T_set,Pjset).
P-set = [amatch,catsnb,dumppat.getccl,getrhs,locate,«akpat,«aksnb,Batch, o«atch,patsiz,stclos,subst]
T_set = [argstring.patternstring]

7 ?- adt(filenaraestring,T-set,P_set).

P_set = [assignf ile.doread.dowrit ,getfn,open]
T_set » [filenamestring]

Yes
8 ?- adt(lineptr,Tj3et,P_set).

P-set = [addset,ctoi,esc,filset,inject,readcmd,readline,readterm]
T-set = [l i n e s t r i n g]

Yes

9 ?- adt(linelength,T-set ,P_set) .

Bo 10 ?- h a l t .

Table 4.1: Unix script for query ADT

58

Table 4.1 shows an execution of the prototype tool experimented with one of the case studies

that will be presented in the next chapter.

For each query adt (T,T_set ,P_set) the program answer 'Yes' with a result for T_se£ and

Pset if the user-defined data type T can generate a candidate ADT otherwise it answers

'No' like for the user-defined data type linelength.

4.3 New Method Implementation

The implementation of the ADT method presented above has been extended to the produc­

tion of all the summary relations introduced in the formal definition of the method. A l l the

Prolog production rules have been grouped in different Prolog files on the basis of the kind

of relations that they produce and of the algorithm that they implement.

A description of all the files with the facts that they produce follows.

pm_comp.prolog - by using the results from the implementation of the ADT method, pro­

duces the facts of arity 2 indicating the user-defined data types and the procedure-like

components that constitute the supporting data structure and the set of operations for

each module implementing a candidate ADT. Assigned an index to each module the

facts produced are:

raod_type_comp(num_module,type.name)

mod_proc_comp(num.module,procedure.name)

They indicate that the user-defined data type typejaane and the procedure-like com­

ponent procedure-name have been established from the A D T method belonging to the

candidate module nun-module;

pm_dom_proc. prolog - calculates the direct dominance relations existing between the procedure-

like components. The algorithm used is an iterative one. In each iteration it calculates

the path with length progressively increasing starting from the path of length one. For

each procedure-like component its dominating procedure-like component is found if a

length of path is achieved such that all the paths of this length reaching the subject

procedure-like component has one node in common. The procedure-like component

corresponding to that node is the direct dominating component.

59

Consider a call direct acyclic graph CD AG = (s, PP, EE), by using the the nota­

tion introduced in the Appendix A and indicating with dir-dom the relation defined

{s} U PP x PP and expressing the direct dominance the algorithm implemented in

pm_dom_proc .prolog appears as follows:

Established that the initial conditions are:

dir-dom = 0 k = 1

and supposed that the final condition of the iterative process is:

rng{dir.dom) = PP V k =

that is a direct dominating procedure-like component has been found for each procedure­

like component or k is equal to the number of the procedure-like components, the

iterative process is exemplified as:

dir.dom' = dirJom U {x : {s} U PP,y : PP \

(V/i(*,y) € p(CDAG) • l{ii{z,y)) = k A x (E fi{z,y) * (x ,y)}

dirjdom = dirjdom'

k = k + 1

The program produces a database of prolog facts of arity three as follows:

dom_proc (procedure _name_l, len_path, procedure _name_2).

The first argument of the fact indicates the direct dominating procedure-like com­

ponent, the third the direct dominated procedure-like component and the second the

length of the longer path in the CDAG that connect the two procedure-like components.

Clearly i f len_path is equal to one the relation existing between the two procedure-like

components is a relation of strongly direct dominance;

pm_algo_raod_proc_comp. prolog - implements the iterative process looking for the fu l l set of

procedure-like components that cooperate to the implementation of ADTs extractable

from the software system. The iterative process has been illustrated in the Section

3.3, and i t performs a deletion of the procedure-like components not interesting in

the implementation of the ADTs identified. This deletion involves a change in the

database of the direct relations by deleting of the facts regarding the not interesting

procedure-like components and adding new facts proc_func_call (procedurejname.l,

60

procedure_narae_2). When executed the program gives information like:

nb_iteration_mod_proc_comp(number_iteration)

change(pra_algo_mod_proc_comp,proc_func_call)

indicating the number of iteration performed and the information that the dc

of facts proc_f unc^call (procedurejaame_l ,procedurejiame_2) is changed;

pm_dirjdom_comp.prolog - identifies the set of procedure-like components, chosen b>

those considered interesting for the implementation of the ADTs, and that are

dominated but not strongly direct dominated, that is i t identifies the set DDC c

in Chapter 3. I t produces fact of arity 1:

dir_dora_comp(procedure_name)

indicating that the procedure-like component procedure_narae is not strongly

dominated;

pm_calljdirjdom_corap. pro log and pra_mod-.call.proc. p ro log - implement the re

calLdir.dom-comp recognizing for all the procedure-like components not strongly

dominated identified with the previous program i f they are called from procedui

components not belonging to modules or procedure-like components belonging to

ules. The first produces facts of arity 2 as:

c a l l jdir_dom_comp (procedure_name_l, procedure jiame_2)

indicating that the first procedure-like component calls the second that is a not stn

direct dominated procedure-like component. The second produces the following

of facts of arity 2:

mod_call_proc (numjnodule, procedure _narae)

indicating that the module numjnodule contains a procedure-like component ca
procedure Jiame.

Those facts are used in the next program to identify the membership to module

the procedure-like components whose membership to modules is not yet identified

pnunod_def _proc. prolog and pmjaod_def _type .p ro log- calculate the relations mod-dej

and mod.dej-type respectively, that is the membership to modules of the software o

61

http://pra_mod-.call.proc

ponents for which it has not yet been defined, by implementing the two iterative

processes illustrated in Section 3.3. They produce two sets of facts of arity 2 of the

kind that follows:

mod_def_proc(num.module,procedure_na»e)

mod.def.type(num.raodule,type_name)

The first kind, produced from the first program, indicates that the module num_module

contains the component procedure_narae, while the second produced from the second

program identifies the type type-name as belonging to the module num_module. The

first program produces information like:

nb_ i t e r a t i on_mod_def _proc(number. i terat ion)

change(pm_mod_def_proc,mod_call_proc)

indicating the number of iterations performed and that the database of facts

mod.calLproc has been changed. The second program produces information like:

nb . i te ra t ion .mod.def . type(number_i te ra t ion)

change(pm_mod_def_type,mod_uses)

indicating the number of iteration executed and that the database modjuses indicating

the USE relation between the modules is changed;

pm_mod_exp_proc. prolog and pm_mod_exp_type.prolog - define the relations modjtrpjproc

and mod.exp.type respectively, expressing software components exported from each

modules, that is the interface specifications. The facts they produce are of arity 2 and

are of the following type:

mod.exp.proc(num.module,procedure.name)

mod.exp.type(num.module,type.name)

The first kind of fact is produced by the former program while the second by the

latter. They express that the module num_module exports the software components

procedure-name and typejiame respectively.

62

pm_proc_dec_proc. prolog - implements the relation proc.dec.proc indicating the nesting of

procedures and produces facts of arity 2 as follows:

proc_dec_proc (procedure-nameJL ,procedure_name_2)

expressing that the procedure-like component procedure-n ame_2 is nested in procedure Jiame_l

pra_raod_uses.prolog - defines the relation of use existing between modules and the facts

are of arity 2 as:

mod.uses (num_module_l ,nunuaodule_2)

where num_raodule_l uses nununodule.2.

A l l the programs illustrated above can be executed either automatically all in the same

time or one at a time. Because the definition of some kinds of facts depends on the defi­

nition of other kind of facts, a dependency exists between the programs. The execution of

some programs has to follow the execution of other programs and, if it has been decided

to evaluate one program at a time, i t is possible to query the system to find out which

programs has to be executed first. To obtain this information i t possible to use the query

pm_F ACT .dependency (t rue) where pm_FACT indicates one of the program introduced.

Table 4.2 shows a use of dependency query for the predicate pm.mod-def-proc. The execution

of this predicate depends on the definition of modjproc-comp produced by pm.comp, on

the execution of pm.algo-mod-proc.comp that depends on the definition of mod.proc.comp

and dom.proc, and on the definition of other predicates as the Unix script indicates. The

execution of the predicate pm.comp, pm.dom.proc and pm.algo.mod.proc.comp reduces the

dependencies of pm.mod.def.proc from other definitions.

The set of facts produced by one the program denned can be saved in a file by using the

predicate pm_FACT_save('f i l e j i a m e ') , where pm.FACT indicates one of the programs and

file.name the name of the file in which i t is wished to save.

4.4 Summary

The chapter presented the prototype tool implementing the approach proposed in this thesis.

The Prolog language has been used for the implementation because the characteristic of

63

http://proc.dec.proc
http://pm.algo-mod-proc.comp
http://mod.proc.comp
http://pm.algo.mod.proc.comp
http://pm.mod.def.proc

versatility and ease of expansion. The existing tools, implementing the ADT method, has

been illustrated. This tool has been extended to produce all the facts expressing the structure

of the modules identified in an existing system to be reusable. The extension has been

presented with the complete set of programs of which i t is composed and all the facts that

it produces.

In Appendix B all the database produced by the execution of the prototype tool with the

program Editor.pas, one of the case studies that will be presented in the next section.

64

2 ?- pmjaodjdef _proc_dependency(true) .
needs (paunodjdef-proc, mod-proc-conp)
needs(pra_algo_mod-procjCO[np, mod-procconp)
needs(pmjilgoj&od-proc-coap, do«_proc)
needa_call(pm_proc_pn, ident j i sefn l .proc_co«p, pw^&lgo jsod_proc_co»p)
needs(pmjaodjdef_proc, procpn)
needs(pm-algo_mod-procjco«p, nod-proc_co*p)
needstpm-algojaod-proc-coap, do«_proc)
needs-calKptuprocpn, ident-iisefol-proc-coap, psualgo_i»od.proc_jco«p)
needsCpnudirjdoia.comp, procpn)
naeds(pmjiirjdoM.comp, doauproc)
needa(pmjM>djdef.proc, dirjloaucoap)
needs (pra_algoj>od-proc-coap, aod-proccoap)
needs (pm_algoj»od_procjco»p, doa_proc)
needs.call(pa.proc.pn, identjosefal-proc_coap, p*~algo-Bod-procjco«p)
needsCpnuiirjdoaucomp, procpn)
neadaCpnulirjdom.comp, doa_proc)
needsCpmj&odjcall-proc, dirjdosuco*p)
needs (pm-al go_nod_proc_co«p, «K>d_proc.co«p)
needs(pn_algojiod-proc-coitp, dom_proc)
needsjcalMpuproc-pn, ' identjusefnl-proccoap, pm_Algajw>d-pro<;^:o«ip)
needs(pnj»od_call-proc, procpn)
needs (pmjwd.c&ll-proc, SMMLproccoap)
needs (pm_ntodjdef-proc, «od_call_proc)

Yes
2 ? - pffljCOBip.

Yes
3 ?- pmjdoBuproc.

Yes
4 ?- pra_algo jiod_proc_co«p.
nb.iteration.aod.proc.coap (7)
change (pm-algojaod-procjcoap, proc jfuncx: a l l)

Yes
5 ? - pm-mod-def-procdependency(tnie).
needs(pmjnad-def_proc, procpn)
needsCpmjlirjdom.comp, proc_pn)
needs(pm_mod_def.proc, dir_dom_corap)
needs(pmjdirjdom_comp, procpn)
needs(pm_raod_call-proc, dir-domjcomp)
needs(pra_niod.call.proc, procpn)
needs(pmjBodjdef.proc, uodjcall-proc)

Yes

Table 4.2: Unix script for query dependency

65

http://nb.iteration.aod.proc.coap

Chapter 5

Case Studies

5.1 Introduction

To show the validity of the method proposed in the previous chapters a set of Pascal programs

are used in a series of experiments. These programs were analysed by Canfora et.al. [23] to

test the strength of the ADT method and the results obtained have been used to evaluate,

through the values of the quality attributes, the quality of that method. I t will be shown

how improved results are obtained with the new process. Moreover, it will be shown how the

new method facilitates the splitting of a software system, no matter how complex, into more

than one module. For each of the new modules obtained, a re-engineered ADT, proposable

for reuse, will be provided.

The data for the experiments consist of four Pascal programs developed in different periods

and by different people. Clearly, for the different expertise of the developers the programs

present different characteristics but the results obtained are comparable.

Al l the programs analysed have a size between 1000 and 2000 LOC. A brief description and

the relative analysis for each program follows. For each program the structure of the identified

modules are presented. The notation adopted here uses EXPORT to indicate the interface

specification, that is all the information, the names of the types involved and the operations

that act on those types, that the module exports; and uses BODY for the implementation,

that is the representation of the type, the local resources and the implementation of the

operations on the types, that is, all the information that the module hides.

66

The final section will show the study carried out for the evaluation of the quality of the new

method. The four quality attributes, adequacy, method completeness, purity and module

completeness, wil l be calculated on the basis of the results obtained from the experiments.

The values that will be obtained will show the improvements achieved with the introduction

of the extended method.

5.2 Editor.pas

This is a version of the Unix text editor from the Software Tools book [38]. The program

is augmented with functions that have been written for a particular environment to carry

out operations such as opening files and detecting interrupts from the user. The size of the

program is just under 2000 LOC .

The application of the first step of the algorithm, that is the application of the method for

the extraction of the candidate modules criterion gave the following results:

Module 1

STRUCTURE:
OPERATIONS:
Module 2

STRUCTURE:
OPERATIONS:

t r a c e s t r i n g
etrace

l i n e p t r
a l 1o1ine, f r e e l i ne,get ind,getnew,getpak,gettxt,1inkup

STRUCTURE: argstring,filenamestring,linestring,patternstring,statusrange
OPERATIONS: addset,amatch,append,assignf ile , c a t s u b , c k p , c t o i , d e f a l t , d e l e t e ,

dolist.doprnt,doread,dowrit.durappat,esc,filset.getccl,getfn,
getnum,get one,getrhs,inject,injpak,locat e,makpat,raaksub,mat ch,
move,oraatch,open,patsiz,ptscan,readcmd,readline,readterm,
s t c l o s , s u b s t

The first two modules obtained are well-formed; in fact, i t is possible to assign a meaning to

them: the first module TraceString appears very simple with a debugging routine as the only

operator; the second module implements the type Lines as a pointer to a list of lines. Each

node in the list contains information about a text line, that is the content of the line, its

length, a field to indicate its logical deletion and two pointers to the next and the previous

67

lines. The module contains the operations to manage two lists of lines, the list of the used

lines (the ones that currently contain text) and the list of the free lines.

The last module appears as a large pot pourri module consisting of five user-defined data

types and thirty seven procedure-like components. The analysis of the code revealed that

the main cause of this clusterization was the use of the user-defined data type statusRange

that is shared by numerous procedure-like components. This type codifies the states at the

end of a number of different operations. Since statusRange is an enumeration type and, by

proceeding according to Step 1 above, i t is possible to isolate it and to re-apply the criterion

without taking into account this variable.

Carrying out this step leads to the splitting of this module in the following way:

Module 3

STRUCTURE: filenamestring
QPERATIQNS: as s ignf ile,doread,dovrit,getfn,open
Module 4

STRUCTURE: l i n e s t r i n g
OPERATIONS: addset,ctoi,esc,filset,inject,readcad,readline,readterm
Module 5
STRUCTURE: arg s t r i n g . p a t t e r n s t r i n g
OPERATIONS: araatch,catsub,dumppat,getccl.getrhs,locate,makpat,maksub,match,

oraatch,patsiz,stclos,subst

The candidate ADTs thus obtained, implemented as packed arrays, are: Files with all the

primitives to manage a file; LineStrings, with the operators for reading a line from either

the terminal or a file buffer, modifying a piece of text and inserting an escape character; and

PatternMatcher with the operators for searching and substituting strings, and of pattern

matching.

Figure 5.1 shows the CDG of the program Editor.pas. This graph does not contain strongly

connected subgraphs.

Here the CD AG coincides with the CDG.

Figure 5.2 shows the SDDT of the program.

In the figure, the solid lines represent relation of strong direct dominance, and the dashed

68

..I.

T

Figure 5.1: Call Graph of Editor.pas

n n ifYTOtdumppw]

•

2 7 2 lot •tor efcflfo J

L J

l J

fllMl

Figure 5.2: Strongly Direct Dominance Tree of Editor.pas

69

lines the relation of direct, but not strong, dominance. According to Step 3 of the informal

algorithm, all the nodes representing components belonging to some module are labelled.

On the contrary, the nodes not labelled are those not belonging to any module. The labels

of the modules are progressively numbered corresponding to the order of their presentation

above (TraceString is labelled 1, Lines is labelled 2, and so on).

By observing the SDDT in Figure 5.2, it can be noticed that three procedure-like components

(doglob, ckglob and initialize), not belonging to some module, are strongly dominated from

the M A I N program. According to Step 4 the nodes corresponding to these components can

be deleted. The obtained CDAG is not showed, but the new SDDT is showed in the Figure

5.3.

tin

•ant I

e
TV

r I I nloelMoptn! I tomatch

locate)

Figure 5.3: SDDT of Editor.pas after first iteration

In this new SDDT the procedure-like components prevln and docmd are strongly dominated

from the M A I N program. Reiterating Step 4, the nodes representing them can be deleted

from the previous CDAG. In a next reiteration, the nodes representing the components defalt,

ckp, move, injpak, dolist and doprnt will be deleted because they are strongly dominated, and,

then, called only from docmd and, because they do not belong to some candidate module. As

indicated in Step 5, the above deletion brings to the creation of assumed arcs between the

node M A I N and the nodes that, in the new situation, have no incoming arcs, because they

previously connected only from deleted nodes. Examples of these nodes are gethrs, getone,

getfn, dowrit, and so on.

70

Figure 5.4 and Figure 5.5 show the SDDTs obtained respectively after the above process and

after a new iteration of Steps 4, 5 and 6.

umppatl

olloUno OMUI laUoUl

1
i

[patsiz| [omnI s.r~—s 4 lead term] lhntact] [rMdllrar fradina fexlgnaajf caMUilpntactl [|*rtlM[makaubl

(locate

¥"3 fvJ^ ^
ikpat] [nesUnl Ifma [makpait] [nexUn] Ifratch]

"3 •tclos]

Figure 5.4: SDDT of Editor.pas after third iteration

main

[du Jumppal

Inku w t l MID asc

TV
«5JnLdol 11 n).<MI

I T l -LU
T i r t i r r n

frMdllna|niaIuub fallal aUaanajraaaigniUaj 1 (rMdtwml

A

fllaetl locata] locate]

Figure 5.5: SDDT of Editor.pas after last iteration

In particular, some of the nodes in the last SDDT bring additional labels. In fact, following

Step 7, all the procedure-like components represented from nodes that are not strongly

71

dominated are called from more than one procedure-like component, and for each of these

nodes the additional label indicates either the index of the modules which contain the calling

components, or the name of the calling components if i t does not belong to some module.

In Figure 5.5, the final SDDT obtained shows all the relations of call existing between the

procedure-like components belonging to the modules and between these and other compo­

nents not belonging to any module. For example, i t appears that the component esc belongs

to the 4th module, that is LineString, and i t is called from components of the 4th module and

the 5th module, that is PatternMatcher. On the basis of Rule 5, the last assertion settles

that the 5th module will USE the 4th. Analogously, the procedure-like component injpak

does not belong to some module but i t is called from components of the 3rd (Files) and the

4th modules, then, from Rule 6, its declaration can be placed in both of the modules. In

particular injpak is called only from one component inside each module and, for this reason

the component will be nested in the calling components.

To complete all the process, the next step is to analyse the final SDDT. Separate consider­

ations for each module will be given.

The SDDT shows that the only component in module J, TraceString, does not call any other

components, but it is called from components of the 3rd and 5th modules. So, from Rule 5,

there will be a relation of USE from the 3rd and 5th modules to the 1st. This module

appears quite simple:

module MODI
EXPORT

type traceString;

procedure etrace(traceName : traceString);
BODY

type traceString = Packed array [l . .6] of char;
procedure etrace(traceName: traceString);

begin ... end;

The procedure-like components of module 2 (lineptr), do not call other procedure-like com­

ponents with the exception of components of the same module. Thus, the 2nd module does

not use any other modules. The subtree formed from alloline and Getnew is a MET subtree

and, according to Rule 1, the second component can be nested in the first. But, careful

analysis of the code reveals that i t is important to export both of the components. Moreover,

the component getind is called from getpak and this from gettext. This fact will justify the

order of their declaration (Rule 4). The module obtained is the following:

72

module MOD3
USES MODl,MOD2,MOD4
type nleNameString;statusRange; EXPORT

function open(fileName:fueNameString;dir:integer):integer;
function dowTit(fromLine,toLine:integer^UeName:nleNameString)statusRange;
function doread(line:integer;fileNamerfileNameString):statusRange;
function getfh(var fileName : fileNameString) : statusRange;

BODY
const
type fileNameString = Packed array [1..MAXNAME] of char;

statusRange = (NOSTATUS, OKSTATUS, ERRSTATUS, EOFSTATUS, INTSTATUS);
function open(fileName:fUeNameString;dir:integer) integer;

function aasignFile(var FILEX:text;var strname:fileNameString;
dir:integer) :integer;

function intrpt(var x : integer) : boolean;
function dowrit(fromLine,toLine:integer;fileName:nleNameString):statusRange;
function doread(line:integer;fileName.-fUeNarneString):statusRaDge;

function injpak(var sts : statusRange) : statusRange;
function getfn(var fileName : fileNameString) : statusRange;

procedure slripbl;

Considerations analogous to those above give the structure for module 4- An additional

consideration is that module 4 USES module 2, because the component injpak, called from

module 4 and calling two components of module 2, will belong module 4 from Rule 6. Module

4 is:

module MOD4
USES MOD2
type lineString; EXPORT

function addset(c:char, var strrlineString; var j:integer;
maxsiz:integer) :boolean;

function ctoi(lin:lineString; var i:integer)integer;
function esc(str:lineString; var i:integer):char;
procedure readline(var FILEX'.text; var un-.lineString; var lineLen:integer);
procedure iilset(delim:char; lin:lineString; var i-.integer; var strdineStrmg;

var j:integer; maxstr:integer);
function readcmd(var lin :lineString; promptCh :char) :booiean;
function inject(lin : lineString) : integer;

BODY
const
type lineString = Packed array [1 ..MAXLINE) of char;

function addset(c:char; var str:lineStrrag; var j:integer;
maxsiz :i nteger) :boolean;

function ctoi(lin:lineString; var i:integer):integer;
function esc(str:lineString; var i:integer):char;
procedure readline(var FILEXitext; var lin.lineString; var lineLen:integer);
procedure filset(delim:char; limlineString; var i:integer; var sirJineString;

var j:integer; maxstr:integer);
function readcmd(var lin:lineString; promptCh:char):boolean;

type
promptString = Packed array [I..MAXPROMPT] of char;
promptRec = record

len : integer;
str : promptString;

end;
function readterm(var lin:lineString; var len:integer;

var prompt:promptRec; var readlen:integer):integer;
function inject(lin : lineString) : integer;

type statusRange = (NOSTATUS, OKSTATUS, ERRSTATUS, EOFSTATUS, INTSTATUS);
function injpak(var sts ; statusRange) : statusRange;

Finally module 5 appears more complex: it USES modules I, 2 and 4 , includes components

like delete and prevl that, in the structure of the module, will be nested in subst, and it

74

contains more complex functionalities composed of sub-functionalities belonging to the same

module like amatch that implements the sub-functionalities implemented by omatch, patsiz

and locate that can be nested in the dominant component. By continuing to apply the rules

as above the structure of this ADT becomes:

module MOD5
USES MODl,MOD2,MOD4

EXPORT
type

argString; patternString;
function amatch(Iin:argString; from:integer; var pat:pattemString):int«ger;
function makpat(arg:argString; from:integer; debm.char;

var pat:patternString):integer;
function match(lin:argString; var pat :patternString) :boolean;
function subst(sub:patternString; gflag:boolean)integer;
function getrhs(var subtpatternString; var gflag:boolean):integer;
procedure dumppat(pat: patternString; j : integer);

BODY
const
type

argString = lineString;
patternString = lineString;

function amatch(lin:argString; from:integer, var pat:patternString):mteger;
function omatch(lindineString; var i:integer; pat:pattemString;

j : integer) : boolean;
function locate(c;char; pat:pattemString; offset:integer):bootean;

function patsiz(pat:patternString; n:integer):integer;
function makpat(arg:argString; from:integer; delim:char;

var pat:patternString):integer;
function getccl(arg:argString; var i: integer; var pat patternString;

var j:integer):boolean;
function stclos(var pat:patternString; var j,lastj,lastcl:integer)anteger;

function match(lin:argString; var pat:patternString):boolean;
function subst(sub:patternString; gflag:boolean):integer;

type statusRange = (NOSTATUS, OKSTATUS, ERRSTATUS, EOFSTATUS, INTSTATUS);
function delete(fromLine,toLine:integer):statusRange;

function prevln(line:integer):integer;
procedure catsub(lindineString; f,t:integer; subtpatternString;

var stnlineString; var k:integer; maxnew.-integer);
function getrhs(var sub:patternString; var gflag:boolean)unteger;

function maksub(arg:argString; f:integer; delim:char; var sub:patternString)
:integer;

procedure dumppat(pat: patternString; j : integer);

5.3 ExamMarker.pas

The program implements a system for the evaluation of multiple choice examinations. It

is particularly suitable for Universities that adopt a college organization like that of the

University of Durham. The program inputs the number of questions, with the alternative

answers and the exact answers, and the information about the students, with their answers,

and produces the resulting marks in various orders.

The first application of the ADT method, bring to the identification of the following six

75

modules:

Module 1
STRUCTURE:
OPERATIONS:
Module 2
STRUCTURE:
OPERATIONS:
Module 3
STRUCTURE:
OPERATIONS:
Module 4
STRUCTURE:
OPERATIONS:

Module 5
STRUCTURE:
OPERATIONS:

s t r i n g s
r e a d s t r i n g

colleges

newco11ege,readcoliege,vritecollege

li s t e l e m e n t s

alphaprecede,collegeprecede,highermark,swap

candidates,lines,papers

checkavailablealternatives,checkcandidate,checkextradata,
readandcheckanswers,writeparticulars
listsizes,markfudge.markschemes,questnos.titles
g e t p r e l i r a i n a r i e s , r e a d t i t l e , w r i t e t i t l e

STRUCTURE:
OPERATIONS:

exams,lists,posint,seeds
analyse,dice,dumptofile,getpart iculars,getrandomnuraber,hi stogram,
1i stbycollege,1istbymark,1istbyname,1istforstudents,
listsortedresults,mark,permute,quicksort.summarise,validate

It is possible to recognize a meaning in the first five modules. Strings implements the type

string as a packed array of char. It has the only operator ReadString to read a string to

a maximun length from a file. Colleges implements the type college as an enumeration

type and it has the operators to read and write the college and the code in a source file.

ListElements clusters the type ListElements with the operators to compare students records

on the basis of alphabetical order of their name, their marks or the college which they belong.

CandidatePapers contains the operators for reading and checking the data of the students

and their answers and printing out the resulting mark. Script implements the type Title

with the operators to read and to write a title, and contains also the operators to read all

the information related to the exam like the title of an exam, the total number of questions,

the marking scheme, and to produce the input echo-printed into a file.

76

Also in this case, a quite large module is obtained. The analisys of its code does not permit

the association of this module to an A D T . The existence of two subrange types, seeds and

posint, suggests the cause of the clusterization of more one modules in a unique one. Those

two types are used to randomly rearrange the members of a class when writing into a file the

marks obtained for each question in the examination, thus enforcing the anonymity of data,

and they can be declared locally in the unique procedure-like component that refer them,

DumpToFile. The isolation of those two types and the re-application of the A D T method

split the last module in the following:

Module 6
STRUCTURE:
OPERATIONS:

Module 7
STRUCTURE:
OPERATIONS:

l i s t s
h i stogram,1i stbycollege,1i stbymark,1istbyname,1istforstudents,
permute.quicksort

exams
analyse,dumptofile,getparticulars,listsortedresults.mark,
summarise.validate

The two modules above implement, respectively, the A D T Lists, and the A D T Exams. The

structure of the first is implemented as a record containing the list of all the candidates and

the respective answer to the tests, and it contains all the operators to list the results of an

exam in different orders on the basis of the college, the mark, the name, and the students.

To do all that it includes the operators quicksort to order in different ways and permute to

exchange two elements. The operator to draw the histogram of the results, selected by the

method, will not be considered here because the program does not contain the implemen­

tation of the functionality. The second A D T is composed of a structure implemented as a

record containing all the information necessary for an exam: the title, the questions with

the correct answers, the list of the candidate and so on, and all the operators to manage an

exams.

Figure 5.6 presents the C D G and C D A G of the program Exammaker.pas, while Figure 5.7

shows the final S D D T .

Only the final S D D T is shown. In the operation of deletion of components not belonging

to modules, only one component, initialise, has been deleted. The procedure initialise is

77

mam
ceUo

validate If"***"!

eol c o l l

Is
[gotproflml vaJiab

rtl
calls

ca

i i .
calif

[re*.

5 ^

Figure 5.6: Call Graph of ExamMaker.pas

msin

leu 1 ntttattUa] (a d
! 7 • V**"*1} fi"""W I

r

St W I™,

] v a l t e b l M l
•mteooUalMi Mb Iterated

I 5 ?
(rsadtHlal
I /

I

(randorrknurnl (kxrari umbeil

Figure 5.7: Final Strongly Direct Dominance Tree of ExamMaker.pas

78

a component, called from M A I N , executing the necessary initialisation at the start of the

program.

Module 1 present a quite easy structure, and as it can be observed in the final S D D T it does

not use any other module, and it is used only from the module 4-

Module 2, implementing the type Colleges, as well as the components already discovered in­

cludes also the components lower and capital with the first nested in the operator readcollege

because strongly direct dominated from it. The structure of module 2 is the following:

module MOD2
EXPORT

type colleges;

PROCEDURE ReadCollege (VAR college:colleges;VAR unknown:boolean;VAR source.echofile: text);
PROCEDURE WriteCollege (college:colleges;VARoutlile:text);
PROCEDURE NewCollege (college:colleges;VAR la8tcoUege:coueges;VARoutfile:text); -.

BODY
type colleges = (grey,collingwood,marys,trevs,iruldert,aidansJvatfield,

chads Johns,cuths,castle,hildandbede);

FUNCTION capital (ch: char): char;
PROCEDURE ReadCollege (VAR college:colleges;VAR unknown:boolean;VAR source.echofile: text);

FUNCTION lower (ch:char):char;
PROCEDURE WriteCollege (college:colleges;VARoutfue:text);
PROCEDURE NewCollege (college:colleges;VAR Ustcollege:coUeges;VAR outfile:text);

Module 3, implementing the type ListElements, gives an easy structure. It defines and

exports all the procedure-like components surveyed by the ADt method, in fact each of

them is used from other modules. This module does not use any other module but it is used

from module 6 and module 7.

As it is revealed in Figure 5.7 from the number 4 under the name of the component writecol-

lege, module 4 uses module 2. Besides, it includes in its implementation the declaration

of the components seekchar and checkterminator, whose declaration will be added also in

module 7; in fact, the A D T method does not include these procedure-like components in any

module but they are used from procedure-like components of module 4, wilst the definition

of checkterminator will be included also in module 7. The structure of this module is the

following:

79

module MOD4 '
EXPORT

type candidates.tines, papers;

PROCEDURE CheckAvailableAltematives (VAR paper:papers;VAR errime:lines;VAR valid:boolean;
VAR source,echofile:text);

PROCEDURE CheckCandidate (VAR candidate:candidates; papenpapers;VAR valid:boolean;
VAR echofile: text);

PROCEDURE CheckExtraData (VAR errline:lines;VAR present:boo)ean;VAR source,echofUe:text);
PROCEDURE PROCEDURE ReadAndCheckAnswers (VAR script-.scripts;paper:papers-,VAR valid:boolean;

VAR source, echofile: text);
PROCEDURE WriteParticulars (candidate:candidates;coUegerequired,markrequired:boolean;

percentrequi red .attemptsrequired :boolean; VAR ontfile:text);
BODY

type lines = PACKED ARRAY [linepos] OF char;
papers = RECORD

END {papers};
candidates = RECORD

END {candidates};

PROCEDURE SeekChar (VAR requiredchar:cnar;firstchar,lastchar: char;
VAR inrange:boolean;VAR source,echofile:text);

PROCEDURE CheckAvailableAlternatives (VAR paper:papers;VAR errlino:lines;VAR valid:boolean;
VAR source,echofue:text);

PROCEDURE CheckCandidate (VAR candidate:candidates; paper.papera;VAR valid:boolean;
VAR echoflle: text);

PROCEDURE PROCEDURE ReadAndCheckAnswers (VAR script:scripts;paper:papers;VAR valid:boolean;
VAR source, echofile: text);

PROCEDURE Check Terminator (VAR source,«Jiofilc:teKt;termiivator:crLar;
VAR correct iboolean);

PROCEDURE CheckExtraData (VAR errline:lines;VAR present:boolean;VAR source,echofUe:text);
PROCEDURE WriteParticulars (randidate:candidatcs;coUegerequired,markre<iuired:booleaii;

percentrequi red,attemptsrequired:boolean; VAR outfile:text);

Module 5 does not use other modules but it is used form module 7. It does not include other

procedure-like components different from those selected by the A D T method.

Module 6, implementing the type Lists, includes the declaration of the two subrange types

isolated to split the last module obtained by the first application of the A D T method and

the procedure-like components, dice, and getrandomnumber, that have been discarded in

consequence of that isolation; they are nested in permute. For its implementation the module

uses modules 2 and 3.

80

module MOD6
USES MOD2.MOD3

EXPORT
type lists;

PROCEDURE ListByName(class:li3ts;VAR outfile:text);
PROCEDURE ListForStudents (class:lists;VAR outfile: text);
PROCEDURE ListByCollege (class:lists;VAR outffle:text);
PROCEDURE ListByMark (class:Uste;niaxposstminposs:marks;VAR outfile:text);
PROCEDURE Permute (VAR list-.lists; ndistpos);
PROCEDURE Quicksort (VAR Ust:lists;leRend,rightend:listpos;

FUNCTION precede (elementl,elemeiit2:listelements):boolean);
BODY

const
type listpos = L.tnaxcand;
m listsizes = Cmaxcand;

listelements = candidates;
lists = RECORD

contents: ARRAY [listpos] OF listelements;
size:listsizes;

END lists;

PROCEDURE ListByName(class:lists;VAR outfile:text);
PROCEDURE ListForStudents (classdists;VAR outfile: text);
PROCEDURE ListByCollege (dass:lists;VAR outfile:text);
PROCEDURE ListByMark (class:Usts;maxposs,niinposs:inarfcs;VAR outfile:text);
PROCEDURE Permute (VAR list:lists; n:listpos);

P R O C E D U R E Dice (n:posint;VAR result:integer;VAR aeedtseeds);
const
type posint = l..maxint;

seeds - 0..maxseed;
PROCEDURE GetRandomNumber (VAR random: real; VAR seed: seeds);

PROCEDURE Quicksort (VAR list:lists;leftend,rightend;listpos;
FUNCTION precede (elementl,eleinent2:listelements):boolean);

The final module, 7, is the fundamental module. By using all the other modules, with

the exception of module 1, it implements the type exams. It manages the whole exam,

with operator to use module 5 to input the information about the exam, module 2 to input

information about the colleges, module 4 to input information about the candidates and

their answers, module 3 to verify the validity of the information acquired, module 5 to list

the candidates and their answers in different way, and the operator to analyse the exam,

assign values and validate the legality of all the terms.

5.4 Minicalc.pas

This program implements a simple spreadsheet and has been taken from a text book [40]. It

is provided with a simple portable interactive user interface, and shows the display divided

into cells, labelled A to H vertically and 1 to 5 horizontally. The system takes as input

the user commands that can be either commands for the management of the spreadsheet or

information to input into the cells.

The analysis of this program [23], gave interesting results, but they were not complete in

81

terms of operations presented for each module. In fact, the A D T method was applied to

only the procedure-like components declared in M A I N , and it did not take into consideration

operations that are fundamental for some A D T s but are implemented by components nested

in others. Different results have been obtained by not considering the nesting between

components in the first stage of the analysis. When compared with the previous results, the

new results appear richer in terms of operations for each module.

The first results obtained are the following:

Module 1
STRUCTURE:
OPERATIONS:
Module 2
STRUCTURE:
OPERATIONS:

usermsgs
writeuser,errorhandler

commands
getcommand

STRUCTURE: cellid,colindex,counter,inputtype,nodeptr,rowindex,token
OPERATIONS: addtodependlist,alphabetic,checkexprtree.docellchange,

docellexpr,docelllabel,evaluate,expression,factor,getcell,
getchar,getexpression,getinp,gettoken,getuserinput,makenode,
movetocell,numeric,parseexpression,postlabel,postvalue,skipblanks
subexpr,term,ungetchar,writeexpression,writeuserinput

The first two modules are very simple, but the last clusters together software components

not in a really definite way and is a huge module. The isolation of the subrange types and the

re-application of the A D T method brought simpler modules, but equally complex, composed

of the set of all the components that appear in the last three modules. Human intervention

has been necessary to reach better results and the splitting of the module can be obtained

by analysing the call relations between the procedure-like components and those existing

between them and the user-defined data types. The clusterization is due to components,

makenode, checkexprtree and parseexpression that implement the characteristic functionali­

ties to manage and to evaluate algebraic expressions and are strongly dominated from other

components that have the same purpose, but use in the interface the types inputtype,token

and cellid, that are referred from other procedure-like components implementing a different

kind of functionality. The deletion of the links existing between the last procedure-like com­

ponents and those implementing functionalities in algebraic expressions led to the splitting

82

of the module into the following three modules:

Module 3

STRUCTURE: inputtype,token

OPERATIONS: wr i t euser input ,ge tce l l , ge t token ,a lphabe t i c , s k i p b l a n k

Module 4
STRUCTURE: nodeptr

OPERATIONS: checkexpr tree , eva lua te , expres s ion . fac tor ,ge texpres s ion ,

makenode,paxseexpress ion , subexpr , t erra,writeexpress i on

Module 5
STRUCTURE: c e l l i d

OPERATIONS: d o c e l l e x p r , d o c e l l l a b e l , d o c e l l c h a n g e

Figure 5.8 shows the C D G of Minicalc.pas.

^nndzaros);

Figure 5.8: Call Directed Graph of Minicalc.pas

By observing the C D G it is possible to identify the strongly connected subgraph formed by

the procedure-like components expression, subexpr, term and factor. All these procedure-like

components belong to module 4 implenting a functionality of this module. Figure 5.9 shows

the C D A G . Here, the node E X P R E S S I O N substitutes the strongly connected subgraph; its

83

call

docollloboU

Is 10 calls

i calls

ft CBllO cello

[chechasprtrea fwrl i

1 no

AWVWVWV
[odcttcaependllotl

CQllO Is

tolphalwttc

aksBWo*afd

gate 41):

Figure 5.9: Call Directed Acyclic Graph of Minicalc.pas

label indicates that the collapsed subgraph implements a functionality of the A D T Expression

that will be later analysed.

Finally, Figure 5.10 shows the final S D D T obtained after the deletion of uninteresting com­

ponents. From the first S D D T , only three components used to initialise the system, were

discarded.

As can be seen the components in module 1 do not call other components but are used from

other modules. Module 1 is very simple, it implements the type User.Messa.ges managing

the messages to the user.

The second module, User-Commands, contains the operator to read and to interpret the

user commands, and uses module 1 and operations of module 3.

Module 3 implements the type Input with the operators to manage all the different kinds

of inputs, that is commands, or information to store in the cells of the spreadsheet. This

information can be a label, or numeric values, or references to other cells. The module

contains operations to verify the correctness of the information by analysing eventual links

between cells. The final S D D T reveals that some components (alphabetic, getcell, numeric,

etc.) implement sub-functionalities of another component (gettoken), and that they can be

nested in the latter. Also, the component simpletoken can be nested here since it is strongly

84

http://User.Messa.ges

I M H I

K - k a n l [•WpbUntC") I n MKri) S B IwrttauMffnpul dooat O a M gatchar wrltoUMrl

... S ! S e lmpMokan l I 0VMIM

I 2 »

1-
1

I

1

I

Figure 5.10: Final Strongly Direct Dominance Tree of Minicalc.pas

dominated from gettoken. This was not apparent from the first analysis and was thus not

added to the module, The routine movetocell called from postlabel will also be inserted in this

module. It appears that the subject module uses module 1. These and other observations

that can spring from Figure 5.10 give the final structure of the module as:

85

module MOD3
type InputType.Token; EXPORT

function Getlnp(var UserInp:InputType):boolean;
function SkipBIanks(var UserInp:InputType):boolean;
procedure GetChar(var UserInp:InputType;var Ch:char);
procedure GetToken(var UserInp:InputType;var NextToken:Token;

var Num:real;var FieldtCellld);
procedure WriteUserInput(UserInp:InputType);
function GetUserInput(var UserInp:InputType):boolean;
procedure PostLabel(CellRow:Integer;CellCol:integer;AVahie:InputType);

BODY
const
type Token=(SinF\mc,CosFunc,ExpFuncJinFunc,SqrtFunc,lJMinns.Plus,Minus,

Times,Divide,CeULabel,LeftParen,RightParen,Numbar,
NoMore,Unknown ,ACellName,BadCell);

InputType = record
Line : LineType;
Length.last: Counter;

end;

function Getlnp(var UserInp:InputType):bootean;
function SkipBlanks(var UserInp:InputType):boolean;
procedure GetChar(var Userlnp:InputType;var Ch:char);
procedure GetToken(var UserInp:InputType;var NextToken:Token;

var Num:real;var Field:CellId);
procedure UnGetChar(var UserInp:InputType;var Ch:char);
function Alphabetic (var Ch:char;var UserInp:InputType; var Field-.Cellld)-.Token ;

function GetCell(var Ch:char;var UserInp:InputType;var FieM:CeUId):boolean;
function Numeric(var Ch:char;var U8erInp:InputType):real;
procedure SimpleToken(Ch:char);

procedure WriteUBerInput(UserInp:InputType);
function GetUserInput(var UserInp:InputType):boolean;
procedure PostLabel(CelIRow:integeT;CellColunteger;AVahie:InputType);

procedure MoveToCell(CellRow:integer;CeUColanteger);

Module 4 is interesting in that it implements the A D T Expression with the operators to read

into the spreadsheet, to write, to check the correctness of and to evaluate an expression. In

particular, the operation to read an expression is implemented by the components expres­

sion, subexpr, term and factor that constitute the strongly connected subgraph in the C D G

collapsed in the node called EXPRESSION. It will be nested in parseexpression that will be

nested in getexpression. The module will include also the component addtodependlist nested

in checkexprtree. Module 4 uses module 1 and module 3. In the module the type counter is

also defined; this type is used from some components to consider the depth in the represen­

tation of the managed expression like binary tree. The above information is synthesized in

the following schema:

86

module MOD4
USES MODI, M O D 3

type nodeptrjcounter; EXPORT

procedure WriteExpression(Expr:NodePtr;LeveI:Couiiter);
function GetExpression:NodePtr;
function Evaluate(Expr:NodePtr;var Denned:boolean):real;
function CheckExprTree(ExprTree:NodePtr;var Count:Counter):boolean;

BODY
const
type Counter = Cmaxint;

LineType = array [l..MAXLINE]of char;
InputType = record

Line : LineTypej
Length : Counter;
Last : Counter;

end;
procedure WriteExpression(Expr:NodePtr;Level:Counter);
function GetExpression:NodePtr;

function Par8eExpression(UserInp:InputType):NodePtr;
function MakeNode(NodeValue.-real;Left, Right:NodePtr):NodePtr;
function Expression:NodePtr;

function Term : NodePtr;
function Factor : NodePtr;

function SubExpr: NodePtr;
function Evaluate(Expr:NodePtr;var Defined:boolean):real;
function CheckExprTree(ExprTree:NodePtr;var Count:Counter) : boolean;

procedure AddToDependList(var Count : Counter);

Finally, the last module implements the A D T Cells. This module, by using all the other

modules, manages the spreadsheet with all the operators for the acquisition and the checking

of labels, cell addresses and numeric expressions. In particular, for the last task, the com­

ponent docellexpr declares the components evaluatecells, buildgraph, sortcells and findzeroes,

whose names express the kinds of implemented operations. Also in this case, a real partition

of the software components in more than one hierarchic module is obtained.

5.5 Format .pas

This is an ancient public domain pretty printer program for Pascal that has been changed

and added to by a number of different people.

The previous application of the method based on A D T s to the Format program produced

very poor results. Three modules were obtained with a very simple structure.

87

This time, the first incomplete modules obtained are the following:

Module 1
STRUCTURE:
OPERATIONS:
Module 2
STRUCTURE:
OPERATIONS:
Module 3
STRUCTURE:
OPERATIONS:
Module 4
STRUCTURE:
OPERATIONS:
Module 5
STRUCTURE:
OPERATIONS:
Module 6
STRUCTURE:
OPERATIONS:

alpha,symbols
checkfor.dostmtlist,insertsymbol

commenttext,width
doblock,dostatment

margins
changemarginto

symbolset
dodeclarationuntil, d o f i e l d l i s t u n t i l

optionsize
bunch

params
readin

Figure 5.11 shows tha C D G of format.pas. The study of the call graph reveals the existence

of the following four strongly connected subgraphes:

SCC1: doblock, deprocedures
SCC2: dostatement, dostmlist
SCC3: dorecord, d o f i e l d l i s t u n t i l , dovariantrecord
SCC4: readsymbol, skipcomment, docomment

Figure 5.12 shows the S D D T and final S D D T of the Format.pas program.

From the original S D D T only the initialization procedure-like components have been dis­

carded; all the other components cooperate together to the implementation of the function­

alities expressed in the identified modules. The six modules obtained look very simple but,

in reality, are very complex. It appears that they cannot be re-engineered to be reusable

88

mam

calls

col

ceso cd s

Ait lo

I t
do

la

o

recMves

f [fluaftu

Figure 5.11: Call Directed Graph of Format.pas

[fluohurmrlnonbufter] lorlbxil [writosynibalj [rcodacharoctorj: otartnetvunoandlnrfontl 1 ̂ ,fluahunvwfttcofaMWoT.rfrMlm f m actor 3CC4 1.SCC4 ttofdt rectivao,writosymbat,ot»f1nawltno«ndln<10Til ! roadacharaclor ; 8CC4 Qoform^ttofoti •oofofffnattsnltrec BCC1 •weeter OOP

Iroettvps [doformaltofdlraatl 1 I IBCC21

A
SCC3

r
jeca tecoiwmo^t froadln]

i. 3
s : 1 [bunch) (wri

Figure 5.12: Final Strongly Direct Dominance Tree of Format.pas

89

A D T s because they are lacking in operations, and, moreover, the large use of global variables

would make this task very difficult. However, they can offer an useful trace of the complexity

of the code. They can be considered as main functionalities which are composed of the set of

functionalities offered from the whole program. By using each other these modules cooperate

in obtaining the goal of the program.

The existence of the strongly connected subgraphs is the main cause of the recursion between

the modules. In fact, SCC2 is composed of a procedure-like component belonging to module

I and another one belonging to module 2. Since there are two components that are mutually

recursive it should be expected that the two modules to be mutually recursive. On the other

hand, SCC4 does not contain components belonging to some module but is used by module

1,2 and 4i and uses some of this module, then its components cause the mutual recursion

between module l}2a.nA 4-

The other strongly connected subgraphs are SCCl and SCC3. The former, having a procedure­

like component, doblock, belonging to module 2 and the other one, doprocedures, to no mod­

ule will implement a sub-functionality of module 2 that will include both the procedure-like

components. The subgraph SCC3, will belong to module 4 because it contains one procedure­

like component, dolistfielduntil, belonging to this module and the others to no other module.

Analogously, the last two components will be included in module 4 to enrich its structure.

Another cross use between modules, and between components, can be seen in the final S D D T .

The only modules that are not involved in the recursions and not used from other modules

are module 3, 5 and 6. The names of the procedure-like components belonging to these mod­

ules are eloquent enough to indicate the kind of functionalities implemented. For example,

module 3 is responsible for implementing one of the layout parameterizations, namely the

width of the indentation. It is quite difficult to identify the way in which these functionalities

are implemented. This is probably caused by the number of authors responsible for writing

the program and the unavailability of the original program design.

Format is an important experiment even though poor results were achieved. This is because

a partition of the program into simpler modules was obtained, and because it shows the

importance of program design and that the loss of documentation is very often the main

cause for not understanding a system.

90

5.6 Evaluation and Conclusion

The new method has been tested on the case studies showed above. The results obtained

are more satisfying than those with the experiments on the A D T method, and for which the

values for the quality attributes have already been shown. An improvement in the values of

the quality attributes has been reached confirming the assertion given above. The values of

the quality attributes obtained follow:

Method

Completeness

Adequacy Purity Module

Completeness

90%-100% 90%-100% 90% - 100% 95% - 100%

To demonstrate the validity of these results the case study Editor.pas will be again examined

with a comparison with the results for it obtained by the only application of the A D T method.

By using the A D T method for that program only two candidate modules were identified;

a set of five user-defined data types and thirty six procedure-like components composed a

third module, not directly proposed for reuse. On the contrary, with the application of the

new method five modules have been identified. The set of procedure-like components not

included in any module cannot constitute a new module, then any other module cannot

be identified, and the five identified A D T s represent the complete set of A D T s identifiable

in the program. This result provides high value in the attribute of method completeness.

The equally high value of adequacy is justified from the fact that a semantic has been

recognized in all the modules identified. Finally, in the first phase of application of the A D T

method and isolation of sub-range and enumeration typoes for each extractable A D T all the

operators are recognized, and, in a next step, are localized only and all those procedure­

like components used for the implementation of those operators. Each module so obtained

contain all the software components necessary for its implementation, that is it represents

a complete module, and it does not contain extraneous software components. This justify

high value of the attribute of purity.

Analogous considerations can be made for the other case studies.

That some poor results were obtained, like for example for Format.pas, is justified from

the fact that choices of project and of structure adopted to construct the original sofware

91

system, do not always fit with the requests that the method can satisfy. Very often the

absence of the program's specification and the design and the lack of knowledge about the

way in which the system has been implemented make difficult the analysis of some of the

modules obtained and the rejection of them.

The method, presented in the chapter offers also a useful instrument for the: comprehension

of the code [37]. In fact, i t operates, for the large part of the case studies a real division of the

software system thus making the subject programs easier to understand. Then, by dividing

the subject program into more than one module, each of which implements an abstract data

type or a group of functionalities, the method can be used for the comprehension of the

code. At the end of the application of the method the program appears as a collection of

simpler systems that, for their dimensions, are easier to comprehend than the ful l program.

Also the interactions existing between the obtained modules to the pursuing of the program

goal are identified.

92

Chapter 6

Conclusion

6.1 Introduction

The basic premise of this thesis to analyse the state of the art in the field of the Software

Reuse

Software reuse is widely regarded as offering the opportunity for improving the software

production process. It is expected that a massive increase in software reuse is the most

promising way of overcoming the software crisis. I t can lead to substantial increases in

productivity and also to software system which are more robust and more reliable. Also

if it widespread opinion that the reusable components have to be produced, i t is possible

to assume that a key method to obtain reusable components consists on extracting and

re-engineering them from existing systems. Al l that entails the definition and setting up

of Reverse Engineering and Re-engineering processes. The first kind of processes aims to

identify potentially reusable components, while the second kind of processes aim to conform

the reusable components to the quality standard, component templates and component

interconnection standards established.

Different paradigm for the extraction of reusable components from code have been proposed.

This thesis shows the Reuse Re-engineering reference paradigm developed within the RE 2

project. The reference paradigm shows a systematic approach to search the existing software

systems for reusable component. Its phases have been presented and, in particular, the

candidature phase has been faced. This phase is concerned with the analysis of the source

code for the identification of sets of software components that can be candidate to make up

93

a reusable component. Various methods involved in this phases have been presented, and

the analysis of these method has brought to the developement of a more precise method.

The formularization, the implementation and the evaluation of the new method have been

presented. In the next section a discussion of the criteria for success stated in the introduction

is presented and in them it is possible to ensue the validity of the new method.

6.2 Evaluation of the Criteria for Success

Chapter 1 presented a list of the criteria against which this thesis can be evaluated. Each

of the criteria are now addressed.

• Description and evaluation of existing methods for the identification and ex­

traction of reusable abstract data types.

Several approaches for the identification of reusable assets in code have been proposed in the

literature. Each of them looks in the existing code for a particular kind of abstractions in

code and the choice of the principle on which they are based is depended on the choice of the

kind of abstractions to be looked for. This notion is compatible with the idea that, in the

process of development of a method for the identification of reusable assets, i t is important

to decide before what is wanted to be looked for in code and next to tailor a method in order

to identify in the code the kind of abstraction required.

The set of approaches proposed can be grouped in two main families. The first family

is composed of the methods based on the global variables, on the user types of formal

parameters in procedures, on the data bounding and so on. A l l these methods are looking

for data abstraction. In the second family the approaches are based on the dominance

relations, on the slicing, on testing and so on. Al l these methods are looking for functional

abstractions. In the course of the description of each method some reflections on the way they

work of it has been presented and, in some cases, experimental results have been presented.

The description of the methods has been completed with one approach based on metrics

that is useful for the evaluation of the quality of the components extracted and proposed for

reuse. Because the quality of the modules depends on the quality of the method adopted,

then good quality of the modules imply good quality of the method in extracting abstractions

of the same kind of the modules extracted. Therefore, also if not explicitely proposed, the

method based on matrics can be used to evaluate the quality of a method for a specific kind

94

of abstraction.

• Development of a more precise method for the identification and extraction of

reusable abstract data types

By analysing one of the existing methods for the extraction of reusable assets from exist­

ing code and based on the relationship existing between user-defined data types and the

proceduer-like components that use them in the interface, some limitations of i t were iden­

tified and it was realized that more satisfactory results could be obtained.

The analysis of the results obtained led to the development of a more precise method for the

identification and the extraction of Abstract Data Types. For the kind of modules extracted

the new method looks for data abstractions, but i t uses some principles based on functional

absrarctions to complete and re-organize the results obtained. In fact, the starting point of

the new method is the cited method based on the USE relations between user-defined data

types and procedure-like components. I t looks for ADTs and manages in identifying the

supporting structure and the operations of the extractable ADTs, but i t does not identify

all the procedure-like components necessary for the implementation of the operations. The

new method overcomes this problem by using the call, direct dominance and strongly direct

dominance relations. Through them i t locates all the procedure-like components for the im­

plementation of the operations of the ADTs and identify the USE relations existing between

the modules. In the last phases i t identifies the functional abstractions implemented in each

ADT. Therefore, by looking both for data abstractions and for functional abstractions the

new method givees more precise results than other approaches looking for abstractions of

one kind.

• Formularization of the new method

The new method proposed has been formularized in a set of sets and relations by using the

predicate calculus. This kind of formularization can synthetize all the summary relations

existing between the software components and shows all the dependency relations existing

between the summary relations. Moreover it offers an representation of the new method that

can be translated easily in software code.

• Prototype implementation of the new method to show that it is automable

The ease to translate in software code the formal representation of the new method brought

to the implementation of it by using a logical programming language like the Prolog. The

95

prototype tool available comprehends the tool implemented for the ADT method. By static

analysis of the source code, this tool gives a collection of facts of arity 1 and arity 2 repre­

senting the direct relations of the software system. By combining the direct relations it is

possible to obtain the information about the first structure of the identified ADTs. The new

method tool queries the database of all those facts and combines them for the implementation

of the relations formalized in the formal representation of the method and elaborates facts

expressing the final structure of the identified ADTs and all the relations existing between

the software components.

Appendix B shows the complete database of Prolog fact obtained by the execution of the

tool with the program Editor.pas.

• Establish a criterion for measuring the effectiveness of the new method

In Chapter 5 it has been amply discussed the quality of the new method. The four quality

attributes of method completeness, adequacy, Purity and module completeness have been

evaluated. It was shown how better results have been obtained with reference to the results

obtained on the same set of case studies experimented with the ADT method. I t was

discussed also that the new method can be assumed like a good instrument for the problem

of the software comprehension. In fact it manages in dividing the ful l software system in

more than one modules that, for their dimensions, are easier to understand than the initial

software system. Then the comprehension of a software system can happen through the

comprehension of the single modules and the study of their interactions.

6.3 Further Work

Following on from the work showed in this thesis, there are a number of additional researches

that can be interesting to investigate.

One of them arises from the consideration that the starting point of the new approach is a

method based on the relations existing between the user-defined data type and the procedure­

like components that use them in the interface to declare formal parameters and/or return

value in the function. It does not take into account the case in which the exchange of

information between procedure-like components happens not through formal parameters but

through global variables. This is the case of the program Format.pas. When compared with

the other programs it gave poor results. It was splitted in modules of smaller dimensions

96

but they appeared quite complex and not certainly implementing Abstract Data Types. The

program does a big use of global variables and i t is supposed that by considering them it is

possible to obtain better results. Then the next studies will be involved with the analysis of

the behaviour of the global variables when the procedure-like component are grouped and

considered like in the new method. To reach that aim the relations existing between user-

defined data types and global variables will be considered and dominance and use relations

between variables will be also considered.

Another field of study will be represented by the experimentation of the new method with

programming languages different from Pascal. I t is supposed that the new method gives good

results also with the ' C programming language, but real case studies are not available in

this moment for the difficulties met in finding ' C software of suitable dimension using user-

defined data types. I t will be interesting to analyse the behaviour of the new method with

programming language like Cobol in which i t is not possible to define software components

of the kind procedure-like.

97

Appendix A

Notation Adopted

The notation adopted for the formulation of the new method is in the form of sets and

relations and derives from Ince [41]. In this notation, the way of defining a set is known as a

comprehensive specification, and i t enables a set to be suceintly and unambiguously defined.

Its general form is:

{< signature > \ < predicate > • < term >}.

where signature consists of a series of identifiers together with the set to which they belong.

An example of a signature is 'x : A ' that establish that x is an element of the set A. The

predicate part defines the properties of the members of the set to define; it is expressed

by following the rules of predicate calculus by using logic and relational joperators and the

existential and universal quantifiers. The term part defines the form of the member of the

set. Examples of sets are:

{n : N | n > 20 A n < 100 • n) {x,y : N \ x + y = b • x2 + y2}

The first specifies the set of natural numbers which satisfy the condition n > 20 A n < 100;

the second is the set of natural numbers of the form x2 • + y2 where x + y equals 5, that is

the set {13,17,25}.

This kind of notation can also be used to represent a relation. A relation is used to express

the fact that there is a connection between the elements, belonging to some sets, that make

up an ordered pair. In the constructive specification of a relation it is the predicate which

defines this connection, while the term part appears like a couple of elements. For example,

the writing

98

{a : A,b: B | p{a, b) • (a, b)}

expresses a relation whose elements are the couples (a, 6), with a belonging to A and b

belonging to B , defined from the predicate p(a, 6).

When the ordered pairs that makeup a relation are obtained from two sets A and B it is usual

to refer to the relation as defined on Ax.B. The fact that an ordered pair (a, b) is contained

in a relation R can be written as (a, b) G R or R(a, b). The reference to a particular element

of a relation will be written in one of these two ways.

A number of operators are defined for relations. Two of them are the domain operator

dom and the range operator rng. The first operator defines the set whose members are the

left-hand elements of the pairs in a relation, and, given a relation R over TixT 2 , it is defined

as:

domM = {h : Ti | 3 t2 : T2 • R(tut2)}.

The second operator is similar to dom. I t returns the set of the right-hand elements in a

relation. Its definition for the relation R is the following:

rng-R = {t2 : T2 | 3 <, : 7\ • R(h,t2)}.

Other interesting operators are the operators of restriction of the domain and range of a

relation. The operator to restrict the domain, identified by the symbol <J, has two operands:

the first is a set; the second is a relation. It forms a subset of of the second operand which

only contains pairs whose first elements are contained in the first operand. Given a relation

R over TixT2, and a subset Si of Ti, the relation restricted of R on Si is defined as follows:

St < R = { f i :Tut2:T2 \h <=Sf(tut2)}.

In a similar way the operator, > , a restriction of the range is defined. Given a relation R

over TixT2, and a subset 52 of T2, the relation restricted of R on S2 is defined as:

R > S2 = { h : T u t 2 : T 2 \ t 2 eS2»(tut2)}.

99

Appendix B

In the following the complete collections of direct and summary relations obtained by the

application of the tool on the program Editor.pas is shown. The facts expressing the direct

relations are produced by a static analyser written in Lex and Yacc. They are followed by

the collection of the summary relations obtained by applying the prototype tool written in

Prolog and presented in Chapter 4. In this chapter the semantic of each fact was introduced

also. It is referred to it for each explanation.

Direct Relations

user.def.typeClinestring).
user_daf_type(argstring).
usar.daf _ t y p e d inelength) .
U 8 e r_def_type(filenaraestring).
user.def_type(patternstring).
user_def_type(tracestring).
user.def_typa(lineptr).
user_def_type(linerec).
user.def_type(promptstring).
user_def_type(promptrec>.

proc(getneo).
proc(etrace).
proc(readline).
proc(qrymem).
p r o c (f i l s e t) .
proc(dumppat).
proc(catsub).
proc(linkup).
p r o c (f r e e l i n e) .
p r o c (c l r b u f) .
procCsetbuf).
p r o c (s k i p b l) .
proc(optpat).
p r o c (g e t l a t) .
proc(docmd).
proc(ckglob).
proc(doglob).

100

p r o c (i n i t i a l i z e) .

f u n c (i n t r p t) .
func(readcrad).
func(readterm).
f u n c (a s s i g n f i l e) .
func(open).
f u n c (c t o i) .
func(addset).
f u n c (e s c) .
f u n c (p a t s i z) .
f u n c (l o c a t e) .
func(oraatch).
func(amatch).
func(natch).
f u n c (s t c l o s) .
f u n c (g e t c c l) .
func(makpat).
func(maksub).
func(nextIn).
func(prevln).
f u n c (a l l o l i n e) .
func(getind).
func(getpak).
f u n c (g e t t x t) .
f u n c (i n j p a k) .
f u n c (i n j e c t) .
func(append).
f u n c (d e l e t e) .
func(ckp).
f u n c (d e f a l t) .
func(getfn).
func(ptscan).
func(getnum).
func(getone).
func(getrhs).
f u n c (d o l i s t) .
func(doprnt).
func(doread).
f u n c (d o o r i t) .
func(move).
func(subst).

proc.func_dec(nain,getnan).
proc_func_dec(main,etrace).
proc.func_dec(main,readline).
proc_func_dec(maln,intrpt).
proc.func_dec(main,qrymem).
proc.func_dec(main.readcmd).
proc_func_dec(readcmd,readterm).
proc.func.dec(main,ass ignf i l e) .
proc.func_dec(aain.open).
proc_func_dec(main,ctoi).
proc_func_dec(main,addset).

proc _func_dec(main ,esc).
proc _func_dec(main , f i l s e t) .
proc _func_dec(main ,dumppat).
proc _func_dac(main , p a t s i z) .
proc _func_dec(main .locate) .
proc _func_dec(main .oraatch).
proc _func.dec(main ,araatch) .
proc _f uncdec(main .match).
proc _func_dec(raain . s t c l o s) .
proc _func_dec(main .getccl) .
proc .func_dec(main .makpat) .
proc _func_dec(main , catsub).
proc _func_dec(main .raaksub).
proc _func_dec(main .nextln).
proc .func_dec(main .prevln).
proc _func_dec(main .linkup).
proc _func_dec(raain . a l l o l i n a) .
proc _func_dec(raain , f r e e l i n e) .
proc _func_dec(main .getind).
proc _func_dec(main .getpak).
proc .func_dec(main .gettxt).
proc. _func.dec(main ,injpak).
proc. .func.dec(main . i n j e c t) .
proc. .func_dec(main .append).
proc_func_dec(main .delete).
proc. .func_dec(main c l r b u f) .
proc. _func_dec(main .setbuf).
proc. _funcdec(main ,ckp).
proc. .func.dec(main , d e f a l t) .
proc. _func_dec(main .skipbl).
proc. .func_dec(main ,getfn).
proc. .func_dec(main ptscan).
proc. _func_dec(main optpat).
proc. „func.dec(main getnum).
proc. _func_dec(main getone).
proc. .func.dac(main g e t l s t) .
proc. _func_dec(main getrhs).
proc. .func_dec(main d o l i s t) .
proc. .func_dec(main doprnt).
proc. .func_dec(main doread).
proc. .func_dac(main d o s r i t) .
proc. ,func.dec(main move).
proc. .func_dac(main subst).
proc. .func_dec(main docmd).
proc. .func_dec(main ckglob).
proc. .func_dec(main doglob).
proc. .func_dec(main i n i t i a l i z e) .

proc_use_type_in_interface(gatnew,lineptr).
proc_use_type_in.interface(etrace,tracestring).
proc_use_typfl_in.interface(readline.linestring).
p r o c _ u s e _ t y p e _ i n _ i n t e r f a c e (f i l s e t , l i n e s t r i n g) .
proc_use_type_in_interface(dumppat.patternstring).
proc_use_type_in_interface(catsub,linestring).

proc_use_type_in_interface(catsub,patternstring).
proc_use_type_in_interface(linkup,lineptr).
p r o c _ u s e _ t y p e . i n . i n t e r f a c a (f r e e l i n e . l i n e p t r) .

func_use_type_in_interface(readcmd.linestring).
func_use_type_in.interface(readtern,1inestring).
func_use_type_ in _ interface(readtern,prompt r e c) .
f u n c _ u s e _ t y p e _ i n _ i n t e r f a c e (a a s i g n f i l e , f i l e n a n e s t r i n g) .
func_use_type_in.interface(open,filenamestring).
f u n c _ u s e _ t y p e _ i n _ i n t e r f a c e (c t o i . l i n e s t r i n g) .
func_use_type_in_i nterface(addset,1inestring).
func_use_type_in_interfaca(esc,linestring).
func_use_type.in_interface(patsiz,patternstring).
func_use_type_in_interface(locate,patternstring).
func_use_type_in_interface(onatch,linestring).
func_use_type_in_interface(onatch,patternstring).
func_use_type_in_interface(amatch,linestring).
func_use_type_in_interface(amatch,patternstring).
func_use_type_in_interface(natch.linestring).
func_use_type_in_interface(«atch,patternstring).
func_use_type_in_interface(stclos,patternstring).
func_use_type_in_interface(getccl,argstring).
func_use_type_in_interface(getccl.patternstring).
func_nse_type_in_interface(nakpat,argstring).
func_use_type_in_interface(nakpat.patternstring).
func_use_type_in_interface(naksab,argstring).
func_use_type_iit_interface(maksub,patternstring).
f u n c _ u s e _ t y p e _ i n _ i n t e r f a c e (a l l o l i n e , l i n e p t r) .
func_use_type_in_interface(getind,lineptr).
f unc_use_type_in_interface(getpak,lineptr).
func_use_type_in_interface(gettxt,lineptr).
f u n c _ u s e _ t y p e _ i n _ i n t e r f a c e (i n j e c t . l i n e s t r i n g) .
func_use_type_in_interface(gatfn,filenanestring).
func_use_type_in_interface(getrhs,patternstring).
func_use_type_in_interface(doread.filenamestring).
func_use_type_in_interface(doorit,filenamestring).
func_use_type_in_interface(subst.patternstring).

used_to_define(linestring,argstring).
used_to_define(linestring,patternstring).
u s e d _ t o _ d e f i n e (l i n e p t r , l i n e r e c) .
used.to.define(linelength.linerec).
used.to.def i n e G i n e s t r i n g , l i n e r e c) .
used.to.define(promptstring,promptrec).

proc_func_call(readcnd,raadterra).
proc.func_call(open,assignfile).
p r o c _ f u n c _ c a l l (f i l s e t , a d d s e t) .
p r o c . f u n c _ c a l l (f i l s e t . e s c) .
proc.func_call(omatch,locate).
proc_func_call(amatch,onatch).
proc_func_call(araatch,patsiz).
proc_func_call(natch, amatch).
proc_func_call(stclos,addset).

103

proc_func_call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call
proc.func.call 1

proc.func.call
proc.f u n c . c a l l 1

proc.func.call
proc.func.call
proc.func.call
proc.func.call 1

proc.func.call 1

proc.func.call
proc.func.call 1

proc.func.call'
proc.func.call 1

proc.func.call'
proc.func.call 1

proc.func.call'
proc.func.call 1

proc.func.call 1

proc.func.call 1

proc.func.call'
proc.func.call 1

proc.func.call 1

proc.func.call 1

proc.func.call 1

proc.func.call 1

proc.func.call 1

proc.func.call 1

proc.func.call 1

proc.func.calli
proc.func.call 1

proc.func.call 1

proc.func.call<
proc.func.call 1

proc.func.call<
proc.func.call 1

[getccl.addset).
[g e t c c l . f i l s e t) .
[makpat,addaet).
[makpat,gated) .
[makpat,stclos).
[makpat,esc).
[catsub.addset).
[raaksub.addset).
[maksub.esc).
[alloline.getnee)
[getpak.getind).
[gettxt,getpak).
[injpak.getind).
[i n j p a k , a l l o l i n e)
[injpak,linkup).
[i n j e c t , i n j p a k) .
[append,etrace).
[append,reademd).
[append,inject).
[delete.prevln).
[delete,getind) .
[delete,intrpt) .
[delete,linkup).
[delete,freeline)
[setbuf,alloline)
[setbuf.delete).
[ckp.etrace).
[defalt.etrace).
[getfn,etrace).
[getfn,skipbl).
[ptscan,etrace).
[ptscan, i n t r p t) .
[ptscan.nextln).
[ptscan,prevIn).
[ptscan .gettxt).
[ptscan,natch).
[optpat,etraca).
[optpat .makpat).
[getnun,etrace).
[getnum,ctoi).
[getnum,optpat).
[getnum,ptscan) .
[getone,etrace).
[getone,skipbl).
[getone,getnum).
[g e t l s t , e t r a c e) .
[getlst,getone).
[getrhs.etrace).
[getrhs.makaub).
[d o l i s t , i n t r p t) .
[dolist .gettxt).
[doprnt,intrpt).
[doprnt,gettxt) .
[doread,open).

proc_func_call
proc.func.call
proc_func_call
proc_func_call
proc.func.call
proc_func_call
proc_func.call
proc.func.call
proc_func_call
proc_func_call
proc.func.call
proc_func.call
proc.func.call
proc_func.call
proc.func.call
proc_func.call
proc_func.call
proc_func.call
proc_func.call
proc.func.call •
proc.func.call 1

proc.func.call<
proc.func.call 1

proc.func.call'
proc.func.call i

proc.func.call i

proc.func.call i

proc.func.call 1

proc.func.call 1

proc.func.call<
proc.func.call i

proc.func.call i

proc.func.call<
proc.func.call*
proc.func.call i

proc.func.call (
proc.func.call 1

proc.func.call i

proc.func.call(
proc.func.call(
proc.func.call(
proc.func.call I

p r o c . f u n c . c a l l I

proc.func.callI
proc.func.call<
proc.func.callI
proc.func.calll
proc.func.call (
proc.func.call(
proc.func.call<
proc.func.call (
proc.func.callI
proc.func.call(
proc.func.call(

(doread,intrpt).
(doread,readline).
(doread,injpak).
Cdosrit,open).
(d o u r i t , i n t r p t) .
(dourit,getpafc) .
(move,gatind).
(move,prevln).
(move,nextln).
(move,linkup).
(subst.etrace).
(subst,intrpt).
(subst.gettxt).
(subst,amatch).
(subst.catsub).
(subst,addset).
(subst.delete).
(s u b s t , i n j e c t) .
(docod,etrace).
(docmd,append).
[docmd,def a l t) .
(docmd.delete).
(docmd,prevln).
(docmd,ckp).
(docmd.nextln).
[docmd .getone).
[docmd,move).
(docmd.optpat).
[docmd,getrhs).
[docmd,subst).
[docmd,getfn).
[docmd,clrbuf).
[docmd,setbuf).
[docmd .doread).
[docmd,dosrit).
[docmd,doprnt).
[docmd.dolist) .
[docmd .skipbl).
[ckglob,etrace).
[ckglob,optpat).
[ckglob,defalt).
[ckglob,intrpt).
[ckglob,gettxt).
[ckglob,match).
[ckglob,nextln) .
[ckglob,getind).
[doglob,etrace).
[dog lob, get ind) .
[doglob, i n t r p t) .
[doglob,getlst) .
[doglob,docmd).
[doglob,nextln).
[i n i t i a l i z e , i n t r p t) .
[m a i n , i n i t i a l i z e) .

proc.func_call(aain,setbuf).
proc.func_call(main,readcmd)
proc _func_call(main,et r a c e) .
proc_func_call(main,getlst).
proc_func_call(main,ckglob).
proc_func_call(oain,doglob>.
proc_func_call(main,dociad) .
proc.func.call(main,clrbuf).

Summary Relations

mod_type_comp(4, l i n e s t r i n g)
mod_type_comp(5, arg s t r i n g)
mod_type_comp(3, filenamestring)
mod_type_comp(5, patternstring)
mod_type_comp(l, t r a c e s t r i n g)
aod_type_comp(2, l i n e p t r)

mod.proc.
mod.proc.
mod.proc.
mod_proc.
mod.proc.
raod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
raod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.
mod.proc.

.comp(4

.comp(4

.comp(4
comp(4
.comp(4
.comp(4
,comp(4
,comp(4
,comp(3
,comp(3
,comp(3
,corap(3
,comp(3
,comp(5
,comp(5
,comp(5
comp(5
,comp(5
,comp(S
,comp(S
,comp(5
corap(S
,comp(S
comp(5
comp(5
comp(5
corapO
comp(2
comp(2
corap(2
comp(2

addset)
c t o i)
esc)
f i l s e t)
i n j e c t)
readcmd)
readline)
readterm)
a s s i g n f i l e)
doread)
d o v r i t)
getfn)
open)
amatch)
catsub)
dumppat)
g e t c c l)
getrhs)
lo c a t e)
raakpat)
maksub)
match)
omatch)
p a t s i z)
s t c l o s)
subst)
etrace)
a l l o l i n e)
f r e e l i n e)
getind)
getneo)

dir_dora_corap(main)
dir_dom_comp(open)

call_dir_dom_comp(4, addset)
call_dir_dom_comp(4, esc)
call_dir_dom_comp(4, injpak)
call_dir_dom_comp(5, addset)
call_dir_dom_corap(6, amatch)
call_dir_dom_comp(5, esc)
call_dir_dom_comp(5, etrace)
call_dir_dom_comp(5, i n t r p t)
call_dir_dom_comp(3, etrace)
call_dir_dom_comp(3, getpak)
call_dir_dom_comp(3, injpak)
call_dir_dom_comp(3, i n t r p t)
call_dir_dom_comp(3, open)
call_dir_dom_comp(2, addset)
call_dir_dom_comp(2, amatch)
call_dir_dom_comp(2, esc)
call_dir_dom_comp(2, etrace)
call_dir_dom_comp(2, i n t r p t)
call_dir_dom_comp(l, getind)
call_dir_dom_comp(l, getpak)
call_dir_dom_comp(2, getind)
call_dir_dom_comp(2, getpak)
call_dir_dom_comp(delete, getind)
call_dir_dom_conp(delete, i n t r p t)
call_dir_dom_comp(delete, linkup)
call_dir_dom_comp<injpak, getind)
call_dir_dom_comp<injpak, linkup)
call_dir_dom_comp(main, etrace)

mod_call_proc(4, addset)
mod_call_proc(4, esc)
Dod_call_proc<4, getind)
mod_call_proc(4, injpak)
mod_call_proc(4, linkup)
mod_call_proc(5, addset)
mod_call_proc(S, amatch)
mod_call_proc(5, esc)
mod_call_proc(S, etrace)
mod_call_proc(S, getind)
mod_call_proc(S, i n t r p t)
mod_call_proc(S, linkup)
mod_call_proc(3, etrace)
mod_call_proc(3, getind)
mod_call_proc(3, getpak)
mod_call_proc(3, injpak)
mod_call_proc(3, i n t r p t)
mod_call_proc(3, linkup)
mod_call_proc(3, open)
nod_call_proc(2, addset)

raod_proc_comp(2, getpak)
mod_proc_comp(2, g e t t x t)
Bod_proc_comp(2, linkup)

dora_proc(injpak, 1, a l l o l i n a)
don_proc(open, 1, assignfile)
dom_proc(subst, 1, catsub)
dom.procdnain, 1, c t o i)
dora_proc(subst, 1, delete)
dom_proc(raain, 1, doread)
dom_proc(main, 1, doorit)
dom_proc(getccl, 1, f i l s e t)
dora_proc(delete, 1, freel i n e)
dom_proc(uakpat, 1, getccl)
dom_proc(raain, 1, getfn)
dom_proc(alloline, 1, getnes)
don_proc(nain, 1, getrha)
dom_proc(subst, 1, gettxt)
dom_proc(subat, 1, i n j e c t)
dom_proc(oraatch, 1, locate)
dom_proc(main, 1, raakpat)
dom_proc(getrhs, 1, maksub)
don_proc(main, 1, match)
dom_proc(amatch, 1, omatch)
don_proc(amatch, 1, patsiz)
dom_proc(delete, 1, prevln)
dom_proc(main, 1, readcud)
dom_proc(doread, 1, readline)
dom.procCreadcmd, 1, readterm)
dom_proc(getfn, 1, skipbl)
dom_proc(nakpat, 1, stclos)
don_proc(main, 1, subst)
dom_proc(main, 2, araatch)
dom_proc(main, 2, etrace)
dom_proc(main, 2, open)
dom_proc(main, 3, getpak)
dom_proc(main, 3, injpak)
dom_proc(main, 3, i n t r p t)
dom_proc(main, 4, addset)
dom_proc(main, 4, esc)
dom_proc(main, 4, getind)
doD_proc(main, 4, linkup)

dir_dom_corap(addset)
dir_dom_comp(amatch)
d ir_dom_comp(esc)
dir_dora_corap(etrace)
dir_don_comp(getind)
d i r_dom_comp(getpak)
dir_dom_conp(injpak)
dir_dom_conp(intrpt)
dir_dom_conp(linkup)

mod_call_proc(2, amatch)
mod_call_proc(2, esc)
mod_call_proc(2, etraca)
ood_call_proc(2, getind)
mod_call_proc(2, i n t r p t)
mod_call_proc(2, linkup)
mod.call.procG, getind)
mod.call.procd, getpak)
ood_call_proc(2, getpak)

mod.def,
mod.def.
mod.def.
mod.def.
mod.def.
mod.def,
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
aod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod^def.
mod.def.
mod.def.
raod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
mod.def.
raod.def.
mod.def.

_proc(4
_proc(4
.proc(4
_proc(4
_proc(4
.proc(4
_proc(4
.proc(4
.proc<3
.proc(3
,proc<3
.proc (3
.proc(3
.proc (5
.proc(S
.proc(S
.proc (5
.proc (5
,proc<5
.proc (5
.proc (5
.proc (5
.proc (5
.proc (5
.procO
.proc<2
.proc(2
.proc (2
.proc (2
.proc (2
.proc (2
.proc (2
.proc (5
.proc (5
.proc (4
.proc (5
.proc(B
.proc (3
.proc (3
.proc (3
,proc(S

addset)
c t o i)
esc)
f i l s e t)
i n j e c t)
readcmd)
readline)
readterm)
assignfile)
do read)
dosr i t)
getfn)
open)
amatch)
catsub)
dumppat)
locate)
makpat)
maksub)
match)
omatch)
patsiz)
atclos)
subst)
etrace)
a l l o l i n e)
f r e e l i n e)
getind)
getnes)
getpak)
gettxt)
linkup)
getccl)
getrhs)
injpak)
delete)
i n t r p t)
injpak)
i n t r p t)
skipbl)
prevln)

mod.def_type(2, l i n e s t r i n g)
mod_def_type(5, argstring)
mod_def_type(3, filenamestring)
nod.def_type(5, patternstring)
mod.def_typa(l, tracestring)
mod.def_type(2, l i n e p t r)
nod.def_type(2, linelenght)
mod.def_type<2, l i n e s t r i n g)
nod.def_type(4, l i n e s t r i n g)
mod_def_type(2, linerec)

mod_exp_proc(l, etrace)
nod_exp_proc(2, a l l o l i n e)
mod_exp_proc(2, getind)
mod_exp_proc(2, getpak)
mod_exp_proc(2, g e t t x t)
mod_exp_proc(2, linkup)
mod_exp_proc(2, a l l o l i n e)
nod_exp_proc(2, f r e e l i n e)
raod_exp_proc(3, doread)
mod_exp_proc(3, d o s r i t)
nod_exp_proc(3, getfn)
uod_exp_proc(3, open)
mod_exp_proc(4, addset)
mod_exp_proc(4, c t o i)
mod_exp_proc(4, esc)
mod_exp_proc(4, f i l s e t)
mod_exp_proc(4, i n j e c t)
mod_exp_proc(4, readcmd)
mod_exp_proc(4, readline)
mod_exp_proc(S, araatch)
mod_exp_proc(5, getrhs)
mod_exp_proc(5, makpat)
mod_exp_proc(5, natch)
ood_exp_proc(S, subst)
taod_exp_proc(5, dunppat)

mod_axp_typed , tracestring)
mod_exp_type(2, l i n e p t r)
mod_exp_type(3, filenamestring)
nod_exp_type(3, statusrange)
mod_exp_type(4, l i n e s t r i n g)
mod_exp_type(5, argstring)
mod_exp_type(S, patternstring)

proc_dec_proc(open, assignfile)
proc_dec_proc(doread, injpak)
proc_dec_proc(getfn,skipl)
proc_dec_proc(readcmd, readterm)
proc_dec_proc(inject, injpak)
proc_dec_proc(anatch, onatch)

proc_dec_proc(araatch, patsiz)
proc_dec_proc<oraatch, locate)
proc_dec_proc(makpat, getccl)
proc_dec_procCmakpat, stclos)
proc_dec_proc(subst, delete)
proc_dec_proc(subst, catsub)
proc_dec_proc(getrhs, maksub)

mod_uses(3, 1)
raod_uses(3, 2)
mod_uses(3, 4)
mod_uses(4, 2)
mod_uses(5, 1)
mod_uses(5, 2)
mod_uses(5, 4)

Bibliography

[1] Software Engineering, S o m m e r v i l l e I . , Addison-Wesley Publishing Company, 1989

[2] Software Engineering, B o e h m B . W . , IEEE Transactions on Computer, 25(2), 1976,

pp. 1226-1241

[3] Royce W.W., Managing the development of large software systems, Proc.

WESTCOM San Francisco CA, 1970

[4] -, Software Eng ineer ing S t a n d a r d , ANSI/IEEE std729, 1983

[5] -, A n A m e r i c a n Nat iona l S t a n d a r d and I E E E S t a n d a r d glossary of Soft­

ware Eng ineer ing Terminology , IEEE Standard Boards and ANSI Standard Insti­

tute ANSI/IEEE Std610.12, 1990

[6] Lientz B.P. and Swanson E . B . , Software Maintenance Management , Addison-

Wesley Reading MA, 1980

[7] Hall P.A.V-, Software reuse, reverse engineering, a n d re-engineering, Software

Reuse and Reverse Engineering in Practice, UNICOM, Applied Information Technology

12, 1992, pp.3-31

[8] Jones R. , Bus iness Software R e v i e w , jan/feb 1988,

[9] BiggerstafF T . , and Perlis A. , Software Reusab i l i ty , ACM Press, 1989

[10] Canfora, G. , Cimitile, A. , and Munro, M. , R E 2 : R e v e r s e Eng ineer ing and R e u s e

R e - E n g i n e e r i n g , Journal of Software Maintenance, Research and Practice, Wiley,

1994

[11] -, Reference M a n u a l for the A d a P r o g r a m m i n g Language , US Dep. Defence,

MIL STD 1815A, 1983

112

[12] Wirth, N., P r o g r a m m i n g in Modula -2 , Springer-Verlag, New York, Third corrected

edition, 1985

[13] Antonini, P., Benedusi, P., Cantone, G . , and Cimitile, A. , Maintenance and Reverse

Engineer ing: L o w L e v e l Des ign D o c u m e n t s P r o d u c t i o n and Improvement ,

Proc. of Conference on Software Maintenance, Austin, Texas, IEEE Comp. Soc. Press,

1987, pp.91-100

[14] Cimitile, A., and Visaggio, G . , Software Salvaging a n d the D o m i n a n c e T r e e ,

Journal of Systems and Software, vol.2 no. I, Feb. 1995

[15] Cimitile, A. , Fasolino, A .R . , and Maresca, P., R e u s e Reengineer ing and Val idat ion

v i a Concept Ass ignment , Proc. of Conference on Software Maintenance, Montreal,

Canada, IEEE Comp. Soc. Press, 1993, Oct. 1993, pp.216-225

[16] Hetch M.S., F l o w A n a l y s i s of C o m p u t e r P r o g r a m s , Elsevier North-Holland, 1977

[17] Liu S.S., and Wilde N., Ident i fy ing Objec t s in a Convent ional P r o c e d u r a l L a n ­

guage: A n E x a m p l e of D a t a Des ign Recovery , Proc. of Conference on Software

Maintenance, San Diego, California, USA, IEEE Comp. Soc. Press, Nov. 26-29 1990,

pp.266-271

[18] Dunn M . F . , and Knight J . C . , A u t o m a t i n g the Detec t ion of Reusab le P a r t s in

E x i s t i n g Software, Proc. of International Conference on Software Engineering, Bal­

timore, Maryland, IEEE Comp. Soc. Press, 1993, pp.381-390

[19] Livadas P . E . , and Roy P .K. , P r o g r a m Dependence Ana lys i s , Proc. of IEEE Con­

ference on Softwaw Maintenance, Orlando, Florida, IEEE Comp. Soc. Press, Nov. 9-12

1992

[20] Haughton H.P., and Lano K . , O b j e c t R e v i s i t e d , Proc. of Conference on Software

Maintenance CSM'91, IEEE Comp. Soc. Press, 1991

[21] Lano K . , A Semantics for an O b j e c t Or iented Specif icat ion Language, 2487-

TN-PRG-1045 Oct., 1990

[22] Canfora, G . , Cimitile, A. , and Munro, M., A R e v e r s e E n g i n e e r i n g M e t h o d for

Ident i fy ing Reusab le A b s t r a c t D a t a T y p e s , Proc. of Working Conference on Re­

verse Engineering, Maryland, IEEE Comp. Soc. Press, May 1993, pp.73-82

113

[23] Canfora, G . , Cimitile, A. , Munro, M. , and Tortorella, M. , E x p e r i m e n t s in Ident i fy­

ing Reusable A b s t r a c t D a t a T y p e s in P r o g r a m C o d e , Proc. of 2-nd Workshop

on Program Comprehension, Capri, Italy, IEEE Comp. Soc. Press, 1993, pp.36-45

[24] Canfora, G . , Cimitile, A. , Munro, M. , and Taylor, C . J . , E x t r a c t i n g A b s t r a c t D a t a

T y p e s from C Programs: A C a s e S tudy , Proc. of Conference on Software Main­

tenance, Montreal, Canada, IEEE Comp. Soc. Press, Oct. 1993, pp. 200-209

[25] Ning J .Q. , Engberts A. , and Kozaczynsky W. , Recover ing Reusable Components

from Legacy Sys tems by P r o g r a m Segmentat ion, Proc. of Working Conference

on Reverse Engineering, Maryland, IEEE Comp. Soc. Press, May 1993, pp.64-72

[26] Cutillo F . , Fiore P., and Visaggio G . , Ident i f icat ion and E x t r a c t i o n of " D o m a i n

Independent" Components in L a r g e P r o g r a m , Proc. of Working Conference on

Reverse Engineering, Maryland, IEEE Comp. Soc. Press, May 1993, pp.83-91

[27] Weiser M., P r o g r a m Sl ic ing, IEEE Trans, on Software Engineering, vol. 10, n. 4 july

1984, 1984

[28] Wilde N., Gomez J . A . , Gust T . , and Strasburg D. , L o c a t i n g U s e r Funct ional i ty in

O l d Code , IEEE, pp.200-205, 1993

[29] Schwanke R . W . , A n Intel l igent Too l F o r Re-eng ineer ing Software M o d u l a r i t y ,

Proc. of 13th Int. Conf. on Software Engineering, 1991, pp.83-92

[30] Parnas D . L . , In format ion Di s t r ibut ion A s p e c t s of Des ign Methology, Informa­

tion Processing 71, North-Holland Publishing Company, 1972

[31] Hutchens D.H. . , Basili V . R . , S y s t e m S t r u c t u r e A n a l y s i s : C l u s t e r i n g w i t h D a t a

B i n d i n g , IEEE Trans, on Software Engineering, vol. SE-11, n. 8 august 1985, pp.

749-757, 1985

[32] Delis A., and Basili V . R . , D a t a B i n d i n g T o o l : a Tool for Measurement B a s e d on

D a t a and T y p e B i n d i n g , PhD Thesis, University of Mariland, 1990

[33] De Lucia, A. , Di Lucca, G.A. , and Fasolino A . R . , Towards the E v a l u a t i o n of

Reengineering Ef for t to R e u s e E x i s t i n g Software, International Conference on

Achieving Quality in Software, 1993

[34] Calliss, F . W . , In ter -module C o d e Ana lys i s Techniques for Software Main te ­

nance, PhD Thesis, University of Durham, 1989

114

[35] Canfora, G . , Cimitile, A. , Munro, M. , and Tortorella, M . , A Prec i se M e t h o d for

Ident i fy ing Re usab l e A b s t r a c t D a t a T y p e s i n C o d e , Proc. of International Con­

ference on Software Maintenance, Victoria, Canada, IEEE Comp. Soc. Press, 19-23

Sept. 1994, pp.404-413

[36] Canfora, G . , Cimitile, A. , and Visaggio, G . , Assess ing modular isat ion and code

scavenging techniques, to appear on the Journal of Software Maintenance, Research

and Practice, Wiley, 1994

[37] Cimitile, A. , Munro, M. , and Tortorella, M. , P r o g r a m Comprehens ion T h r o u g h

the Identi f icat ion of A b s t r a c t D a t a T y p e s , Proc. of 3-rd Workshop on Program

Comprehension, Washington, U.S.A., IEEE Comp. Soc. Press, 14-15 Nov. 1994

[38] Kernighan B . , and Plauger P .J . , Software Tools i n Pasca l , Addison Wesley Publishing

Company, Reading, Massachusetts, 1981

[39] Kernighan B . , and Pike R. , T h e U n i x P r o g r a m m i n g E n v i r o n m e n t , Prentice Hall,

Inc., Englewood Cliffs, New Jersey, 1984

[40] Miller L . H . , A d v a n c e d P r o g r a m m i n g : Des ign and S t r u c t u r e U s i n g Pasca l ,

Addison Wesley Publishing Company, Reading, Massachusetts, 1986

[41] Ince, D . C . , A n In troduct ion to Di scre te M a t h e m a t i c s and F o r m a l S y s t e m

Specif ication, Clarendon Press - Oxford, 1988

115

