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Abstract. 

Extension Maps and the Moduli Spaces of 

Rank 2 Vector Bundles over an Algebraic Curve 

Michael Justin Gronow 

Let <5Wc(2,A) be the moduli space of rank 2 vector bundles with determinant A 

on an algebraic curve C. This thesis investigates the properties of a rational map 

^Ud,A SUc(2, A) where FUd,A is a projective bundle of extensions over the Jacobian 

J'^{C). In doing so the degree of the moduli space SUc{^, Oc) is calculated for non-

hyperelliptic curves of genus four (3.4.2). Information about trisecants to the Kummer 

variety JC C SUc{'^,Oc) is obtained in sections 4.3 and 4.4. These sections describe 

the varieties swept out by these trisecants in the fibres of IPJ7i,0c ~^ ^^i^) curves 

of genus 3, 4 and 5. The fibres of over E G <S^c(2, A) are then studied. For 

certain values of d these correspond to the family of maximal line subbundles of E. 

These are either zero or one dimensional and a complete description of when these 

famihes are smooth is given (5.4.9), (5.4.10). In the one dimensional case its genus 

is also calculated (if connected) (5.5.5). Finally a correspondence on the curve fibres 

is shown to exist (5.6.2) and its degree is calculated (5.6.5). This in turn gives some 

information about multisecants to projective curves (5.7.4), (5.7.7). 
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CHAPTER 1 

Introduction 

This thesis studies the moduli spaces of rank 2 bundles with fixed determinant bundle 

A from the viewpoint of extensions or short exact sequences. In particular there exists 

a projective bundle of extensions FUd,A over the Jacobian of degree d line bundles on 

C and a rational map to the moduli space: 

It is this map that will be the main object of study throughout and the thesis is 

structured in the following way: 

The rest of this chapter gives an introduction to moduh spaces of vector bundles and 

reviews some well known results. The projective bundle of extensions and the map 

are then formally defined and in the last section the rational cohomology of SUc{2, A) 

and the Verlinde formulae for rank 2 bundles is discussed. 

Chapter 2 looks at restricted to a single fibre of VUd,A —̂  J'^{C) and reviews work 

of Bertram [Be] and Thaddeus [Th] done in this area. The final part of the chapter 

shows how Thaddeus' "flips" construction is equivalent, in the genus 2 case, to a 

classical construction showing the rationality of the quadratic line complex (2.2.6), 

(2.2.7) and (2.2.8). 

Chapters 3 and 4 study ta over the whole of TUd,A but restricts to the special case 
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1. INTRODUCTION 

d = 1, A = Oc- 1̂ then has the particularly nice property that it is linear and injective 

on the fibres of PC/i,Oc J^iQ with respect to a line bundle C on <S /̂c(2, Oc) (2.0.4). 

This then allows one to calculate the degree of the image of ti (3.2.9) (with respect 

to £ ) and, in the case when g = 4:, the degree of the moduli space itself (3.4.2). It has 

also been shown [OPP] that the trisecants to the Kummer variety /C C SUc{2, Oc) are 

also trisecants to the curve C in some fibre of fUi^Oc ~^ J^i^)- Chapter 4 describes 

the variety of trisecants in each of these fibres for curves of genus 3, 4 and 5. 

The final chapter is concerned with the fibres of ej, over a bundle E € SUc{2,A). 

For certain values of d these correspond to the maximal hne subbundles of E and 

are either zero or one dimensional. (5.4.9) and (5.4.10) describes exactly when these 

fibres are smooth. In the smooth one dimensional case the degree of its canonical 

line bundle is calculated (5.5.3) (and hence its genus if the fibre is connected.) A 

correspondence is then shown to exist (5.6.2) on the curve fibres and its degree is 

calculated (5.6.5). It will then be shown how this can lead to information about 

certain multisecants to projective curves (5.7.4), (5.7.7). Finally a list of sufficient 

conditions (5.8.1) for the one dimensional fibres to be connected is given. 

Unless otherwise stated the following notation will be used throughout: 

C - a non-hyperelliptic compact Riemann surface of genus g > 2. 

S^C - the z'-th symmetric power of C. 

E,F - rank two holomorphic vector bundles on C. ' 

A - determinant line bundle. In particular A = Oc or Oc{p) (for some p G C) 

depending on the degree of the rank 2 bundle. 

J'^{C) or Pic'^C - abehan variety of hne bundles on C with first Chern class d. 

0 - the theta divisor on J^-^(C). 

K - the canonical line bundle on C. 



1. INTRODUCTION 

V - a. Poincare line bundle of degree d on C x J'^{C). 

<SZ ĉ(2, A) - the moduli space of rank two bundles with determinant A. 

/C - the Kummer variety of Sl(c{2, A). 

C - the ample generator of the Picard group of SUc{2, A). 

1.1. Moduli spaces of vector bundles 

A holomorphic vector bundle jE on C is said to be stable (resp. semistable) if for all 

proper subbundles L C E: 

degL degE ( degX deg£; \ 
rankX rank£^ \ ' rankL ~ rankjE ^ • 

Any semistable vector bundle E admits a filtration: 

E = EQD E^D ••• Er = Q 

such that is a stable vector bundle and: 

degEj- i _ degE 
rank£j_i rankE 

for a lH = 1 , . . . , r. The graded bundle: 

def / T \ - ^ i - i 

i=i ^« 

is well-defined up to isomorphism and two semistable bundles are said to be S-

equivalent if their graded bundles are isomorphic. 

Clearly if E and E' are both stable then E is S-equivalent to E' if and only if they 

are isomorphic. 

Restricting to this special class of vector bundles eliminates any unstable bundles 

having "bad" properties. In particular a Hausdorff moduli space of such bundles can 

be constructed. 
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L INTRODUCTION 

Theorem 1.1.1. There exists a normal, irreducible, projective variety lie {r^n) 
parametrising the set of S-equivalence classes of semistahle bundles of rank r and 
degree n on C. The dimension ofUc{r,n) is r^[g — 1) -|- 1. 

For a proof of this theorem see [Mul . 

Remark 1.1.2. Uc{f,n) is a coarse moduli space i.e. for all families X ^ C x 5 of 

vector bundles of rank r and degree n on C, where 5" is some algebraic variety, the 

map: 

S Uc{r,n) 

s I—> X 
C X { 5 } 

is a morphism of algebraic varieties. 

Moreover if r and n are coprime then Uc{r^n) is a fine moduh space i.e. there is a 

family of vector bundles U ^ C x V(c{r, n) such that for all families of vector bundles 

as above: 

( I c X fYU^X®q*L 

where g : C x 5 —5" is projection and L is a line bundle on S. In particular if 5 a 

point this says that: 

U = E 
Cx{E} 

for all E eUc{r,n). 

Tensoring E G Uc{r,n) by any line bundle of degree n' preserves semistability. This 

induces an isomorphism: 

Ucir,n)^Uc{r.,n + rn'). 

Thus there exist r distinct moduh spaces Uc{r^n)^ 0 < n < r — 1. 

10 



1. INTRODUCTION 

The moduh spaces Uc{r,n) are locally factorial and admit Cartier divisors 0 r , n [DN] 
such that the Picard group of Uc{r,n) is given by: 

FicUcir,n)^Picr{C)®Z{er,n}. 

More precisely the Cartier divisor constructed in [DN] is contained in the moduH 

space Uc'ir, r(g — 1)) where it is shown to be supported on the closure of the set: 

{Vemr,rig-l))\h'iV) = h\V)^0}. 

If r I then the divisor 0^,^ is obtained by the puUback of Qr,r{g-i) via the map: 

where M is some line bundle on C of suitable degree. In fact [DN] generalises this to 

show the existence of a Cartier divisor 0 r , „ for the case r \ n. Of course 0 r , n depends 

on the Hue bundle M but Drezet and Narasimham showed that its restriction to the 

fibre of the determinant map: 

l(c{r,n) ^ J'^iC) 

is independent of M. 

The remainder of this thesis will concentrate on the subvarieties SV(c{2, A) C Wc(2, A) 

of rank 2 vector bundles having fixed determinant A i.e. the fibres of the determinant 

map. 

The two moduli spaces in the rank two case will be denoted by: 

SUc{2)=SUc{2,Oc) 

SUc{2,l)=SUc(2,Ocip)) 

for some p G C. These moduH spaces have dimension 3g — 3. 

Remark 1.1.3. The notation SUc{r) is standard following a result of Narasimhan 

and Seshadri [NS] showing that the points of Sllc{r) are in one to one correspondence 
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1. INTRODUCTION 

with isomorphism classes of representations of the fundamental group of C by the 
group SU{r). 

The line bundles associated to the restriction of the divisors 02,o and 02,i to SUc{2) 

and SUc{2,1) respectively will both be denoted by C. The restricted divisors 0^: are 

called the generalised theta divisors of SUc{2^ A). 

The moduli space SUc{2,1) is smooth for all genus whereas for 51 > 3 the singular 

locus of SUc{2) is precisely the semistable boundary or the Kummer variety K. C 

SUc{2) [NRl , Thm 1] : 

J ° SUc{2) 

M®M-\ 

YoY g ^ 2 SUc{2) is smooth and isomorphic to [NRl, Thm 2] . Let be the 

natural map: 

SUc{2)-^rH\SUc{2),C)*. 

The linear system \C\ has no base points [R] so (f)c is defined everywhere. If one 

defines a map SUc{2) |20| by: 

E^{LeJ'-\C)\h%C,L®E)>l} 

then there is an isomorphism [B] : 

H°{Sl{c{2),Cy ^ H\J'-\C),2Q) 

and the following diagram is commutative: 

SUc{2) 

<t>/ 

|20| \C\* 
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1. INTRODUCTION 

Hence the dimension of the linear system \C\ is 2̂  — 1. The map ^ restricts to the 
embedding: 

J 7 ± ^ |20| 

M ^—> 0 M + 0M-1 

on the Kummer variety, where QM is the translate of 0 C J^~^{C) by M. 

Note that Wirtinger duality gives the isomorphism: 

H°{J'-\C),2e) ^ i J ° ( J ° (C) ,20c)* 

where 20c is in the linear equivalence class of 0^- i +QK—^L for some L 6 J^~^{C) (the 

linear equivalence class being independent of L.) The corresponding isomorphism: 

H\SUc{2),C)^ H''{j\C),2Qc) 

is also given by restricting the sections of £ , or non-abelian theta functions on SUc{2)^ 

to the Kummer variety J ° / ± --^ SUc{2) [B . 

Remark 1.1.4. Tensoring by a fixed theta characteristic K on C gives an isomor­

phism of SUc{2) with SUc{2, K). SUc{2, K) maps into the dual space |20|* ^ |20c| 

via: 

E ^ {M ^j\C)\h\C,M®E)>l] 

and again restricts to the corresponding embedding on the Kummer variety J^~^/^, 

where i corresponds to the involution sending L to KL~^. 

1.2. Stratification of the moduli space 

Associated to any vector bundle E of rank 2 is its Segre invariant: 

s{E) = Ci{E)-2iTL<D^c^{L) 

where the maximum is taken over all Hne subbundles L C E. 

13 



1. INTRODUCTION 

By the definition of semistability of E it is clear that: 

E is stable (resp. semistable) <̂ => s(E) > 0 (resp. s(E) > 0). 

As a function on the moduli space of vector bundles of fixed degree the Segre invariant 

is lower semicontinuous and hence gives a stratification of ZYc(2, n) into locally closed 

subsets. Define 

U^i2, n) = {Ee Uc{2, n) \ s{E) < m} 

then [LN, Prop 3.1.] says: 

Proposition 1.2.1. For 1 < m < g and m = n (mod 2), l(Q{2,n) is an irreducible 

algebraic variety of dimension 3g + m — 2 (resp. Ag — 3) if m < g — 2 (resp. m = 

g — 1 or m = g). 

Since the Segre invariant is lower semicontinuous and dimWc(2, n) = 4^ — 3 it follows 

from (1.2.1) that s{E) < g for all rank 2 vector bundles on C. 

1.3. Extension maps 

A Poincare line bundle of degree d for C is a Hne bundle on C x J''(C) whose restriction 

to C X {L} is isomorphic to L for all L € J'^{C). For a fixed po € C there exists 

a unique degree d Poincare line bundle whose restriction to { p o } x J^{C) is trivial. 

Denote this line bundle by V and let a : C x J^{C) C, TT : C x J'^{C) J'^(C) be 

projections onto the first and second factors respectively. Consider the higher direct 

image: 

on J' '(C). For d > I this is a vector bundle of rank 2d + n + g - 1 and the fibre of 

FUd,A can be identified with FH^{C,L~'^/i~^) i.e. isomorphism classes of non-trivial 

14 



1. INTRODUCTION 

extensions of the form: 

0 L - ^ E L \ - ^ 0 (e) 

A rational map: 

rUd,A^SUci2,A) 

can then be defined by mapping this extension to the rank two bundle E. To be more 

precise, if i/ : fUd,A Pic'^C is projection then there exists [L] a universal extension 

on C7 X FUd,A--

0 (Ic X lyyV-' (g) Op[7,,(l) ^ £ ^ (Ic X i^YiV-' ® cr*A) 0 (1) 

with the property that (1) restricted to C x {(e)} = (e) for all extensions (e) £ FUd,A-

The universal property of the coarse moduH space SUc{2, A) now implies that there 

exists a morphism: 

FUl^^SUci2,A) 

where FU^^ C FUd,A is some open, dense subset. 

1.4. Cohomology and the Verlinde formulae 

There are two questions that naturally arise from studying the moduli spaces 

SUc(2,A) and their embeddings: 

1. What are the dimensions of the spaces of A;-th order non-abelian theta functions 

if°(<SZYc(2,A),£'=)? 

2. Can one describe the rational cohomology ring H*{SUc{2, A),Q)'! 

If one restricts to the fine, odd degree moduli space SV(c{2,1) then the second question 

has been answered. In particular if one decomposes, the second Chern class of End U 

15 



1. INTRODUCTION 

(where U is the Poincare bundle on SUc{2,1) x C) into its Kiinneth components: 

2a ^ H\SUc{2,l),Z) 

i^i e H%SUci2,l),Z) 

-/3 e H\SUc{2,l),Z) 

then it has been shown [Ne2] that H*{Sl(c{2,1),Q) is generated over Q by a, ^ and 

{z/'i}. Furthermore it is known that C i ( £ ) = a and also what relations the generators 

of i f* (5^ /c (2 , l ) ,Z ) satisfy. 

The dimension of H°{SUc{2,l), C'') may then be calculated using the Hirzebruch-

Riemann-Roch formula: 

Y,{-iyh\C'') = ch{C'').td{SUc{2, k))[SUc{2, A)] (2) 
i 

The right hand side is now relatively easy to calculate and the higher cohomology 

on the left hand side vanishes by the Kodaira vanishing theorem (since C is ample 

and the canonical bundle of <SWc(2,1) is negative.) Thus (2) gives a formula for 

/ i°(5Wc(2,1),£ ' ' ) hence answering question (1): 

d i m / / ° ( 5 ^ / c ( 2 , l ) , £ ^ ) = ( f c + l ) - ^ E ,}J_.,^_r 
i=\ (.sill 2A;+2 I 

A general formula (the Verlinde formula) for the dimension of H°(SUc{r, A),£^") was 

conjectured by mathematical physicists working on conformal field theory. I t has 

subsequently been proved by numerous mathematicians including Thaddeus [Th] . 

In the rank 2 even degree case it simplifies to: 

d t a i / 0 ( 5 « c ( 2 ) . Z ; ^ ) = ( - + l ) E ( - ^ . 

Putting k = 1 in this formula gives the number 2̂  as expected. 

Calculating the rational cohomology and relations of any generators for the even 

degree moduli space seems somewhat harder. In particular it would be nice to know 
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1. INTRODUCTION 

the degree of the moduli space SUc{2) i.e. Ci(£)^^~^. On the bright side there is a 

conjecture due to Witten and Szenes [Sz, Conj 4.2] giving a formula for the intersection 

numbers of moduli spaces of principal G-bundles over a curve C. Taking G — SL2 

this formula can be simplified to give: 

Conjecture 1.4.1. The degree of SUc{^) C |20| is given by: 

degSUc{2) = (3^-3)12^-1 ReSz=o ( .-̂ "̂ ^ ^dz 2fl-2 

Calculating this residue gives the following degrees: 

Genus 2 3 4 5 6 

Degree 1 4 96 6336 873600 

agreeing with the degree of 5Wc(2) for = 2 and 3 [NRl], [NR2]. In Chapter 3 a 

new geometric proof of the degree of SUc{2) in the genus 4 case will be given, again 

agreeing with the calculation above. 
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CHAPTER 2 

The fibrewise extension map 

Let the fibre of the extension bundle VUd,/, J\C) (identified with FH\C, L'^A-^)) 

be denoted by P L for L G J ' ^ (C) . C maps naturally into FL via the Hnear system 

This chapter will look at the extension map restricted to the fibres PL- This 

approach was taken by Newstead [Ne3] , Bertram [Be] and Thaddeus [Th] to prove 

various results concerning SUc{r,K). The following gives a review of their work and 

the final part of the chapter shows how Thaddeus' flips construction reduces in genus 

2 case to a classical construction showing the rationality of the quadratic line complex. 

If n = deg A then by Riemann-Roch: 

~ p3+2d+ra-2 

Thus if deg A = 2^ — 1 then P L and SUc{2, A) have the same dimension. Newstead 

Ne3] , [Ne4] showed that if deg A is odd then the map P L SUc{2, A) is a birational 

morphism. The fact that <SZ ĉ(2, A) was rational for deg A odd was known earlier than 

Ne3] and follows from a result of Tjurin [Tj]. When deg A is even it is not generally 

known whether <SWc(2,A) is rational or not, although for = 2 Narasimhan and 

18 



2. T H E FIBREWISE EXTENSION MAP 

Ramanan [NRl] have shown that: 

SUc{2) -^FHy\C),2e) 

is an isomorphism. 

Remark 2.0.2. The rational map fails to be defined when an extension of FUd,A 

corresponds to an unstable bundle. To see when this occurs suppose A = Oc, D C 

FH\L-^) ^ fH\KP)* is the span of some divisor D and (e) € rH\C,L-^) is the 

extension: 

0 —^ L-^ —> E —> L —> 0. 

Then (e) G if and only if (e) G ^(kerTr;^) where 7r^ is given by: 

TT-^ : H°{KLy H\KL\-D)y. 

Thus the image extension: 

Q — ^ L - ^ — ^ F ^ L{-D) 0 

splits. One checks that F is given by the fibred product E XL L(—D) SO that there 

exists a non-zero homomorphism L{—D) —> E. Thus E has a Hne subbundle M with 

deg M > deg L — deg D and the Segre invariant of E satisfies: 

s(E) < Ci{E)-2degM 

<c,{E)-2{degL-degD\. 

Since deg£^ = 0 then degZ> < degL impHes that s{E) < 0 i.e. E is not stable. It 

can be concluded that if E corresponds to an extension (e) € Seĉ Ĉ C P L then E is 

not stable. 

Remark 2.0.3. The argument given in (2.0.2) can be generahsed to give a stratifi­

cation of FL in terms of the Segre invariant. More precisely: 

s{E) >s ^ (e)^ Seci(2,+„+,_2)C 
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2. T H E FIBREWISE EXTENSION MAP 

See [LN, Prop 1.1] for details. 

A more precise description of when fails to be defined is given by Bertram [Be, 

Thm 1] in which he shows that tj, may be resolved by a sequence of blow-ups of secant 

varieties of C —> PL- Moreover he also shows that there exists an isomorphism: 

where 3c is the ideal sheaf of C PL- This says that via the composition: 

FUd,Oc ^ SUcil) ^ |20| 

the puUback of any hyperplane is a hypersurface of degree d vanishing to order d—\ 

along the curve C PL- TO see why this should be the case let HM denote the 

hyperplane in |20| given by a generic hne bundle M G J^7^{C) (cf (1.1.4)) and 

suppose d = degL > 2. By generic we shall mean a line bundle M G J^~^{C) such 

that: 

/ i°(Z-iM(p)) = 0 and h"{KL-^M-\p)) = h\LM{-p)) = 0 

for all p e C'. In particular h^L'^M) = h\LM) = 0. 

The map SUci2) ^ |20| is defined by: 

E ^ D E = {Me J'~\C) I /i°(M ®E)>1}, 

so the puUback of a hyperplane is given by: 

{<f>c.ed)-\HM) = { ( e ) e P L | h%M ® E) > 1} 

where (e) G P L corresponds to the non-spHt extension 0 —»• —> E —*• L —> 0. 

Tensoring by M gives: 

0 ^ L-^M ^ M ® E L M — ^ 0 (1) 

and taking the long exact cohomology sequence gives: 

• 0 -> H\L-^M) i?°(M ® E ) ^ H\LM) ^ H\L-^M) ^ . . . . (2) 

20 



2. T H E FIBREWISE EXTENSION MAP 

where (5(e) is the non-zero coboundary map given by (e) G H^{L~'^). As M was 

chosen generically such that h°{L~^M) = 0 = h^{LM) then by Riemann-Roch both 

H^{LM) and H^[L~^M) are d dimensional vector spaces and there exists a linear 

map: 

H\L-'^) —> Eom{H°(LM),H\L-^M)) 

(e) ^ 6{e) 

Thus ^(e) has non-zero kernel when the d x d matrix representing 6(e) has zero 

. determinant i.e. {(f>c-^d)~^iHM) is a hypersurface of degree d. If (e) corresponds to 

a point p G C —> then E sits in the extension 0 —>• L~^(p) —> i? —> L{—p) —»• 0. 

Tensoring by M and taking the cohomology sequence we can deduce that: 

h°{M ®E)< hPiML-^p)) -H h°{ML{-p)) 

= h\ML{-p)) 

= d - l 

(if M was chosen generically as above.) Bertram shows that equality must hold above 

i.e. rank^(e) = 1 on the curve C —> P L and {(f>c-^d)~^{HM) vanishes to order d — 1 

along the curve. 

Remark 2.0.4. If A = Oc and d = 1 then Ci is linear on P ,̂ with respect to C. It is 

injective on each fibre too: by (2.0.2) every extension of P̂ r, {L G J^{C)) corresponds 

to a semistable bundle E G SUc{2) with points on the curve C —> P i mapping 

injectively to the semistable boundary K- via: 

p^ L-^{p)®L{-p). 

Points-not on C ^ P L correspond to bundles with Segre invariant 2 and the fact that 

these map injectively into SUc{2) follows from (5.3.2). 
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2.1. Moduli spaces of pairs 

This section will give a review of some work done by Thaddeus [Th] on pairs {E, ( f ) 

where E is a rank 2 vector bundle over a curve C with fixed determinant F and 

' 4> G H°{C,E) is a non-zero section of the bundle. These pairs admit a semistabihty 

condition depending on some parameter cr G Q and Thaddeus has constructed moduli 

spaces A4{a,r) of these pairs. Furthermore as a varies these moduli spaces undergo 

a sequence of "flips". The next section will show that in the specific case when C is 

a curve of genus 2 and F has odd degree then this sequence of "flips" will correspond 

exactly to the construction given after (2.2.6). 

Definition 2.1.1. The pair {E,(f>) is a-semistahle if for all line subbundles L C E: 

(1) . degL<^degE-a if </> e {C, L) 

(2) . degL<l-degE + a if (/> ^ H°{C, L). 

If the inequalities are both strict then (E, 4') is said to be a-stable. 

Theorem 2.1.2. There exists a projective moduli space Ai{a, F) of u-semistable pairs 

{E,(j)) which is non-empty if and only if a < ^, where d — degF. 

It is easy to see that a-semistabihty of a pair {E, (j)) will remain unchanged over certain 

intervals of the real line. In fact a pair remains a-stable for any a G (max(0, f — « — 

1 ) , | — z), with i G Z and 0 < z < ^ i.e. the moduh space M{(T,T) remains 

unchanged as a varies in the interval above. Thus write Mi for the moduli space 

A^(cr, F) with a G (max(0, | — z — 1), | — z). Since i is bounded as above there exists 

uj such moduli spaces where uj = d-i 

Proposition 2.1.3. There exists an isomorphism: 

M o = F H \ C , T - ^ ) . 
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2. T H E FIBREWISE EXTENSION MAP 

P R O O F . Suppose {E, </)) G MQ. If i = 0 then a G (max(0, f - 1), f ) . Thus the first 

semistability condition of (2.1.1) implies that for all line subbundles L C E, deg L < 0 

if (/> G H°{L). Hence equality must hold, L = Oc and E occurs in the extension: 

0 —^ Oc ^ r ^ 0 (3) 

with (f) G H°{Oc) the constant section. The result now follows if (3) is non-spHt. 

, This follows from the second semistabihty condition which says that E has no line 

subbundles of degree > d. • 

Definition 2.1.4. Let pi : C x S'C C and p2 : C x S'C S'C he projections 

and A C C X S^C the universal divisor. Define: 

Wt = {R'p2)*0c^s'c{pir-' ® 0{2A)). 

W~ and Wi' are vector bundles on S^C of rank i and d + g — 1 — 2i respectively. 

Proposition 2.1.5. Fori < ^ there is a family over FW~ (resp. FW^') 

parametrising exactly those pairs which are represented in Mi-\ but not Mi (resp. 

M-i hut not Aii^i). 

Theorem 2.1.6. The moduli space Aii is obtained from Mi-i by a blow-up followed 

by a blow-down in another direction. More precisely, if Mf blow-up of Mi along 

FWi' and Ml is the blow-up of Mi-i along FW~ then there exists an isomorphism: 

M t ^ M j . 

""^- i i then Proposition 2.1.7. If M^ is the last moduli space of pairs, where uj 

there is a natural map Mu, —> SU{2,T) with fibre FH°{C,E) over a stable bundle 

EeSUc{2,T). 
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2. T H E FIBREWISE EXTENSION MAP 

P R O O F . If Z = then a G (0, | ) or cr G (0,1) (if d is odd or even respectively). With 

these constraints then it is clear that cr-semistability of a pair {E^ cj)) implies ordinary 

semistability of the bundle E. So there is a well defined map —> SU{2,T). 

Conversely if -E is a stable bundle i.e. degL < | for all Hne subbundles L C E then 

{E, (f>) is a-stable for any (/) G H°{C, E) and since (E, (f)) ~ (E, c<j)) for any c G C the 

fibre of the map Mu. SUc{2, F) over a stable bundle E is FH%C, E). • 

(2.1.6) and (2.1.7) are summarised in the following diagram: 

M2 M3 Mcj 

/ \ / \ / \ 
Ml M2 M3---Mu,-i M^ 

i i 

Mo Sl(c{2,r) 

where Mi is the blow-up of Mi-i along FW~. Note that VKf is a hne bundle i.e. 

FW{' = C so after blowing up PVKf it cannot be blown down in another direction. 

Bertram's blow-ups of the secant varieties Seĉ C in the extension space P L are closely 

related to Thaddeus' flips construction (the first moduH space of pairs MQ is isomor­

phic to the extension space FH^{C, L~'^A~^) for some hne bundle L.) Bertram's blow­

ups are all equivalent to Thaddeus'. However Thaddeus also constructs a sequence 

of blow-downs and ends with the morphism M^j —>• SUc{2,T). Bertram continues to 

blow-up his secant varieties until he obtains a morphism P L —>• Sl{c{2,A) agreeing 

with the extension map away from the proper transforms of the blow-ups. 

24 



2. T H E FIBREWISE EXTENSION MAP 

2.2. The genus 2, odd degree moduli space 

The following will give a brief overview of some of the geometry of SUc{2,1) for C a 

curve of genus two. 

By definition there exists a unique double cover: 

c ^ p i 

branched at 6 points A i , . . . , Ae. The corresponding pencil of quadrics in P^, modulo 

FGUiC), is given by: 

Qx : - = 0 e P^ 
2 = 1 

Moreover this construction is invertible i.e. every smooth quadric Q\ contains two ir­

reducible 3-dimensional families of 2-planes. Thus there is a natural 2:1 map branched 

at the 6 singular quadrics Q\^. The main result of this section due to Newstead [Nel 

is; 

Theorem 2.2.1. SUG{2,\.) is isomorphic to the intersection of the pencil of quadric 

hypersurfaces {Qx}xeFi-

Given a point / in the intersection of the pencil of quadric hypersurfaces, a rank 2 vec­

tor bundle is constructed by choosing a quadric Q\ and an irreducible 3-dimensional 

family of 2-planes contained in i t . One shows that for each x G C there exists a P^ 

of these two-planes passing through / (denoted by P^.) Then 

UK 
xec 

is shown to be a P^-bundle over C and hence isomorphic to F{F) for some rank two 

bundle i ^ . F then has the required properties that it is stable and of odd degree. 

If / C SUc{2,1) is a line through / then for each x eC there is a unique two-plane of 

P^ containing I . This defines a section of P(i^) which corresponds to a line subbundle 
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2. T H E FIBREWISE EXTENSION MAP 

M C F of degree zero (necessarily of maximal degree by the stability of F.) 

Proposition 2.2.2. The variety of lines on SUc{2,1) is parametrised by the Jacobian 

J°{C). Moreover suppose IM is a line on SUc{2,1) given by M ^ J^{C) then: 

/ G / M ^^=^ M C F is a line subbundle of maximal degree. 

For details of the proof of this proposition see [Nel, Prop 4] and [0]. 

Remark 2.2.3. Note that the tangent plane at a point / G Sl(c{2,l) C P^ wiU 

cut out a pencil of quadric cones in P^ with vertex / . Thus their intersection will 

generically be four fines and so (2.2.2) says that a generic F G SUc{2,1) has four 

maximal line subbundles. 

Remark 2.2.4. By taking one quadric of the pencil {Qx} to be the Pliicker embed­

ding of the Grassmanian (^(2,4) the intersection given in (2.2.1) corresponds to a 

family of lines in P^, namely the quadratic line complex (see [GH] for a discussion of 

this hne complex.) 

It can be shown that the normal bundle Â ; of a line / C SUc{2,1) has trivial first 

Chern class. Thus by the classification theorem of vector bundles on P^: 

Ni = O p i ( - n ) e O p i ( n ) 

for some n G Z. Generically n = 0 and Ni will be trivial but for some fines it can 

occur that n = 1. A line / C SUc{2,1) is said to be special if its normal bundle Ni 

jumps. 

Definition 2.2.5. Let Xi be the closure of the set {V C SUc{2,1) | / ^ / C /' / 0} 

i.e. the set of lines in <SWc(2,1) meeting a given fixed line I. 

If / is special then it can be shown that / G X / . 
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2. T H E FIBREWISE EXTENSION MAP 

Proposition 2.2.6. [GH, p796] There exists a birational map fi : 5ZYc(2,1)-/ P^ 

and the image of Xi C SUc{2,l) is a quintic curve. 

P R O O F . Regarding SUc{2,1) as the intersection of a pencil of quadrics in P^ the map 

// : SUc{2,1) — / —> P^ is just projection away from the line / onto a complementary 3-

plane. The map / ; is easily seen to be one to one away from the locus of lines meeting 

/ (and hence a birational map): if any 2-plane through / contains two distinct points 

p, q of SUc{2,1) then the Hne pq also meets /. So pq meets SUc{2,1) in three points 

and so lies on each quadric Q\. Hence pq lies on SUc{2,1). 

Let X be the image of Xi. To see that X has degree 5 note that the points of 

intersection of X with a generic 2-plane V2 correspond to lines meeting / and lying in 

the hyperplane spanned by / and V2. But for generic V2 the intersection Sl{c{2, l)r\lV2 

will be a smooth intersection of a pencil of quadrics in P .̂ This variety contains 16 

lines [GH, p550] all of which meet exactly five other lines. Hence X is a quintic. • 

If TT/ : Ml —> SUc{2,1) is the blow-up of Sl(c{2,1) along /, then // can be extended 

to a holomorphic map: 

f r . M , ^ p3_ 

If / is not special then // is one to one away from the proper transforms of the lines 

meeting /. // maps each of these lines onto the corresponding point of the quintic X. 

Thus there is a diagram: 

Ml 

f i / 

F' SUc{2,l) 

where / ; is the blow-up of the quintic curve X C P .̂ 

We now return to Thaddeus' construction in the last section and restrict attention to 
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genus 2 curves with F having degree o? = 3. Then OJ = ^ = 1 so there exist two 

moduU spaces of pairs Mo = P^ (by (2 .1 .3) and Riemann-Roch) and Mi. Thus the 

flips diagram in the last section reduces to: 

Ml 

/ \ 
Mo SUci2,T) 

The claim is that this corresponds exactly with the construction given after the proof 

of (2 .2 .6 ) . (2 .1 .6) says that the map Mi Mo is given by the blow-up of FW{- ^ 

C C Mo- This can explicitly be seen in the following: 

Proposition 2.2.7. Mi Mo is the blow-up of C ^ F^ embedded as a quintic via 

the linear system \KT . 

P R O O F . By (2 .1 .3) all pairs (E, <f)) G Mo are such that E hes in the extension: 

0 —^ Oc ^ E —^ F ^ 0 (4) 

and (j) G i f ° (C , Oc)- To find pairs that are in MQ but not in Mi apply the second 

(T-semistabihty condition of (2 .1 .1) . For z = 0, cr G ( | , | ) so take cr = 1, for z = 1, 

a G (0, | ) so take cr = \- Then for any hne subbundle M ( 2 . 1 . 1 ) says: 

Mo: d e g M < | ii cj) ^ H°{C, M) 

Ml-. d e g M < ^ if<j)^H%C,M) 

Thus (E, <!>) G Mo \ Ml i f E occurs in the extension: 

0 ^ M —-> E ^ M-^F 0 (5) 

with degM = 2 and (j) ^ H°{C,M). From the induced long exact cohomology 

sequence of (5 ) there exists a non-zero section 4>' G H°{C, M~^V) namely the image 
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of <̂  G H°{C, F). Thus M - ^ r = Oc{x) for some x G C and (5) becomes: 

0 —y T{-x) F ^ Oc{x) —> 0 

Thus pairs {F,4>) G Mo \ Mi correspond to those extensions s G FH^{C,T~^) such 

that the map r{-x) T lifts to F. 

Now twisting (4) by T~^{x) and taking the long exact cohomology sequence yields: 

0 H\F ® T-\x)) —. H\Oc{x)) H\V-\x)) ... 

Thus given 7̂  : r ( -a ; ) ^ F i.e. 7̂  G H°{Oc{x)), then it lifts to a map r(-a;) -> F 

if and only if 7̂ ; 0 5 = 0. Alternatively s G H^{C,r~^) is in the kernel of the map: 

: H\T-') ^ H\T-\x)) 

or, by Serre duality, the map: 

7, : H'^iKVy H°{KT{-x)y. (6) 

This is dual to the injection H°{Kr{-x)) •—>• H°{KT) and so jj; is surjective. By 

Riemann-Roch dimker72; = h^{Kr{-x)) - h^(KT) = 1 i.e. given any x e C there 

exists a unique s G FH^{r-^) such that 7̂  ® 5 = 0. Now s G FH^{T-'^) corresponds 

to (l)\Kr\{x) where (j)\Kr\ is the embedding of C via \KT\: recall that 5 is in the kernel 

of (6) where s is thought of as a linear functional on -ff°(C, KT). But evaluation at x 

is clearly a linear functional in the kernel of and so by uniqueness must be equal 

to s. • 

Proposition 2.2.8. I f T ^ K{~x) for any x ^ C then the map Mi SU{2,T) is 

given by the blow-up of the line /pA'-i C SV({2,r). 

P R O O F . By (2 .2 .2) G SU{2,T) lies on a Hne IM if and only if M C F is a Hne 

subbundle of maximal degree. By the semistability of a maximal Hne subbundle 

must have degree 1. Thus the natural choice is to take M - TK~^. By (2 .1 .7) 
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the fibre of the map Mi SU{2,T) is FH'^{C,F). Thus the problem reduces to 

calculating h°{C,F) on and off the line /pA'-i C SU{2,T). Now: 

E lies on the line IrK-^ *^=^ there exists an extension 0 TK'^ F ^ K 0 

^ h°{C,K®F*)^0 

<=^ h\C,F)^0 

< ^ / i ° ( C , E ) > 2 (by Riemann-Roch) 

Thus if E does not he on the line /pA'-i then /i°(C, E) < 1, but by Riemann-Roch 

h°(C,F) > 1 and so equality holds. 

If E lies on /pA'-i then there exists the exact sequence: 

0 -> H'^iTK-^) H\F) H\K) ^ H\TK-^) ^ ... 

with degF/\~^ — 1. Now, by hypothesis, F was chosen so that h^{TK~^) = 0 = 

h\VK-^) so H%C,F) ^ H°{C,K) i.e. h%F) = 2. • 
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CHAPTER 3 

The g-plane ruling 

The last chapter concentrated on the extension map: 

PC/,,A^<SWc(2,A) 

when restricted to a single fibre of FUd,h J'^{C). Now consider the extension 

map over the whole of the projective bundle but restrict to the case when d = \ and 

A = Oc- Then FUi = PC/i,Oc is a bundle of ^-planes over P{C) and each fibre P L 

{L G J^{C)) maps hnearly and injectively into SUc{2) C FH%SUc{2),Cy by (2.0.4). 

Furthermore the curve C C P L (mapped via the linear system \KL'^\) is mapped to 

the Kummer variety IC = J ° / ± by: 

p i — ^ L-^{p)®L{-p). 

The image of: 

FUi % SUc{2) 

clearly parametrises those bundles with Segre invariant < 2 and by (1.2.1) this is an 

irreducible algebraic subvariety V C SUc{2) of codimension g — Z. 

Looking at this extension map and its image was the approach taken by Narasimhan 

and Ramanan [NR2] to prove that for C a non-hypereUiptic curve of genus 3 the 

moduh space SUc{2) C P^ is isomorphic to a quartic hypersurface. This chapter 

gives a brief account of the methods of Narasimhan and Ramanan. These ideas are 
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then extended to calculate the degree of SUc{2) C P̂ ^ for C a non-hyperelliptic curve 

of genus 4 (cf (1.4.1)). In particular V, the image of FUi SUc{2), is a Cartier 

divisor. The degree of V is computed and using a spectral curve construction its 

fundamental class is calculated. The degree of SUc{2) C P^̂  is then easily deduced. 

3.1. The genus 3, even degree moduli space 

The main result of [NR2] says: 

Theorem 3.1.1. If C is non-hyperelliptic of genus 3 then Shlc{2) is isomorphic to 

a quartic hypersurface in F'^. 

For g = 3 not only can the fibre of FUi be identified with FH^{C,L~'^) so defining 

a surjective map FUi SUc{2) but it can also be identified with the subspace of 

H^{J^{C),2Q) consisting of those sections which vanish on Wi{C) + L C J^(C). This 

defines a map FUi FH°{J^{C),2Q). In fact the bundle Vi on J\C) with fibre 

given by the subspace above sits in the short exact sequence: 

0 ^ Vi —> i ^ ° ( J ' ( C ) , 2 0 ) ®Oji ^ Q i ^ O 

and Ui is isomorphic to Vi up to a twist by some Hne bundle N on J^(C) (cf (3.2.8).) 

Narasimhan and Ramanan then showed that there exists a commutative diagram: 

SUci2) 

ei / \ ^£ 

FUi FH\J\C),2Q) 

from which they deduced the injectivity of (l)c and moreover that (f)c was an embed­

ding. The degree of SUc{2) C P^ is calculated by showing that: 

ci(r)]^ = 32 
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where T —> ¥Ui is the tautological line bundle. The result then follows from the fact 

that ei is generically 8:1 (cf (5.5.6).) 

3.2. Degree of g-plane ruling 

The following will calculate the degree of the ^ -̂plane ruling (or the subvariety V C 

SUc(2) of bundles with Segre invariant < 2): 

as a subvariety of rH%SUc{2), C)* = P'""'-

While ei was generically 8:1 in the genus 3 case, a result due to Lange and Narasimhan 

LN, Prop 3.3.] shows that: 

Proposition 3.2.1. If g > A then ei is injective on an open dense subset of¥U\. 

Proposition 3.2.2. The Chern character of Uj, —> J''(C) is given by: 

ch{Ud) = {2d + g-l)+Ae 

where 6 G H^{J^,'Ii) is the class of a translate of the theta divisor 0 C J^~^{C). 

P R O O F . Recall from section (1.3) that if "P is a Poincare Hne bundle of degree d on 

C X J' '(C) then Ud is defined as the first direct image bundle: 

where TT : C x J'^{C) J'^{C) is projection onto the second factor. Grothendieck-

Riemann-Roch gives: 

ch{7r,V-') • td{j\C)) = TT^chiV-') • td{C X J'^(C))) (1) 

Let ^ be the puUback of the class of a point on C, <; the class of ĉ '̂  € H^{C,Z) ® 

H\J\C),Z) and e the pullback to C x J\C) of the class 6 € H\J\C),Z). Then, 
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following the argument in Arbarello et al [ACGH, pages 334-336] : 

td{C X J\C)) = l + {l-g)^ , C i ( p - 2 ) = -2d^ - 2q 

and the following relations hold: 

e = -2^0. 

Thus: 

ch{V-') = exp(c , (p- ) ) = f 
fc=o 

= l-2di-2c;- ACe. 

Substituting into (1): 

ch{-Ud) = 7r4(l - 2d( -2c;- At6){l + (1 - g)i)] 

= - 2d^ - 2<; + {I - g)i - m 

= {l-g-2d)- ie. • 

Corollary 3.2.3. The Chern classes of Uj, are given by: 

P R O O F . Following the argument in [ACGH, p336] let the Chern polynomial of Ud be 

given by: 

2d+g-l 

then the Chern character is defined as: 

i 
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Thus by (3.2.2) the k-th homogenous term is: 

49, i f k = l; 

0, if A; > 1. 
(2) 

Now 

Q(f/ ,) = exp(log(n(l + Kt))) 

= e x p ( ^ l o g ( l + A,0) 

— e x p ( ^ Xit) (expanding logs and using (2)) 

= exp(4^i). 

The result now follows.from the expansion of this polynomial. • 

The Chern classes of Ud satisfy the following simple relation: 

Lemma 3.2.4. Write Ck for Ck{Ud)- Then for k > 2: 

' E ( - i r w . + ( - i ) ' - ^ c , = cfc. 

P R O O F . If k is odd then there is nothing to prove since all terms of the sum on the 

left hand side cancel except {—l)'^~^Ck. Now suppose that k is even. From (3.2.3): 

k-i 
E ( - l ) c,c,_, + ( - l ) c. = ^ ^ ^ - ^ ^ ^ + . - . + ( - l ) — 

f 1 1 1 \ 
"^^^^ V1!(A;-1)! ~ 2\{k-2)\ 

The expression in the brackets is obtained by expanding out 1 — (1 — and putting 

x = l. Thus: 
k-i 

B - i r + ( - 1 ) ^ - ^ . = ^ = c. 
i-1 

as asserted. • 
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Let T —> fU\ be the tautological line bundle. In particular T ^ = Op^(—1). 

Lemma 3.2.5. Let rj = ci{T). Then: 

P R O O F . By [ G H , p606] rj satisfies the following relation: 

^.+1 = cir;^ - C2n'-' + •••- {-iy^'c,^x (3) 

Use this and induction to prove that the coefficient of r]^ in 77̂ +'' is Ck. First note that 

by (3) this statement is trivially true for ^ = 1. Now assume true for all n < ^ — 1. 

Then: 

Now using the induction hypothesis it is clear that the coefficient of 77̂  in 7/̂ +*̂  is 

given by: 

CiCfc_i - C2Ck-2 + ••• + ( - l ) '=~^Cfc_iCi + {-if'^Ck 

which by (3.2.4) is equal to c .̂ The proof of the lemma follows easily from this, (3.2.4) 

again and the fact that Ck+jO^~'' = 0 for all j > 1: 

^9+k09-k ^ (ciJ^^+fc-l - C27/^+'- ' + • • • + {-lf-'ckV')e'-'' 

- (C1C,_1 - C2Ck-2 + ••• + i-lf-'ckyO'-' 

= CkTj'9'-'' 

as asserted. • 

Remark 3.2.6. By changing variables (3.2.5) is equivalent to: 
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L e m m a 3.2.7. Let fi denote the composition: 

^ SUci2) ^ FH\SUc{2),Cy. 

Then: 

/*Op..- . ( i ) = r - i ® f / * o ( 2 0 p j , 

luhere v : FUi —> J^{C) is projection and O(20p(,) is the puUback o/O(20c) by the 

translation —^ J". 

PROOF. The lemma is equivalent to proving that: 

elC = T~'^iy*0{2Qp,). 

The Picard group of VUi is given by: 

PicPt/i = j/*Pic j ^ ( C ) (8) z { r - ^ } 

and by (2.0.4) elC = Opi(l)- Thus: 

e\C = T-^ ® v*Ji 

for some line bundle Ji J^{C). I t just remains to show that 3Nf = O(20pg). To see 

this consider the following commutative diagram: 

rui ^ suc{2) 

s]lv t Kum 

j i , !ẑ o JO 

where 5 is a section of ¥Ui J^{C) given by associating to each L G J^{C) the point 

po e P L (where C is mapped to the fibre P L via the Hnear system \KL'^\.) By 
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commutativity: 

But: 

s*elC = r p^Kum*£ 

= t%^0A2Qc) 

= 0 j i ( 2 e p j . 

s*e\C = s*{T-' ® 

Thus the proof is complete i f it can be shown that s*T~^ is the trivial line bundle 

on J^(C). The section 5 above corresponds to some line subbundle AA C Ui and 

s*T~^ = M. Now 5 was defined by fixing po in each fibre and allowing L € J^{C) 

to vary i.e. po corresponds to the one-dimensional kernel of: 

H\L-') H\L-\p,)). 

This comes from the exact sequence: 

0 
PO 

(4) 

r 
0 

Q ̂  ^ L-\po) ^ L-\po) 

i.e. the one-dimensional kernel is given by H°(L~'^(po) ). Globalising (4) to an exact 
Po 

sequence on C x J^{C) gives: 

0 ^ p-2 ^ p-^r) —^ v-^r) 

where F is the product divisor {po} x J^{C) and V is. a Poincare line bundle on 

C X J^{C) restricting to the trivial line bundle on F. Then by construction M. = 

7r*p-2(r)|^ where TT : C x J^{C) J\C) is projection. Now F\^ = 7Vr/CxJ» = 

OcxJi and by the definition of V: 

r 

as required. • 
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Remark 3.2,8. Analogous to the discussion in section 3.1 Ui is in fact isomorphic 

to Vg-2 (E) Oji(20p) where Vg-2 is a bundle on J^{C) sitting in the exact sequence: 

0 H\J'-\C), 20) <8) Oji Qg-2 0 

the fibre of Vg-2 over L € J^(C) being given by the sections of H°{J3-^{C),2Q) 

vanishing on Wg-2{C) + Lc J'-\C). See [OP] for details. 

Proposition 3.2.9. Let g > 4. Then the subvariety V C SUc(2) of bundles with 

Segre invariant < 2 has degree: 

a e , v = M , . t ( - i ) ' | ( : ) ( t ) 
k=0 ^ \^/ J 

P R O O F . The image (f>c{'^) represents a homology class in H4g{F'^^~^,Z) so the degree 

of (/)c{'^) is given by: 

= {-hf^ • vv 

where h is the class of a hyperplane in P^^-i and T / V is the fundamental class of <t)c{^). 

By (3.2.1) and the puUback map: 

iJ*(p2 ' - i ,Z)—> i?*(P[/a,Z) 

this is equivalent to calculating f H - h f ^ . By (3.2.7) and the fact that vanishes 

for all J > -h 1 we have: 

St(-hf' = ( , - 2#)^» 

k 

9 /Or.\ (5) 

k=0 

By (3.2.3), (3.2.6) and using the fact that 6^ = g\ in H^'^{J\Z) ^ Z (see [ACGH, 
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p21] for example) and rj^ = ( - ! )» in H^s{rUi,Z) ^ Z we have: 

(g-ky.^ ^ 

= (-1)^4^- '=^;!^. 

Substituting this into (5) gives the required result. • 

By (1.2.1) and the locally factorial property of SUc{2) [DN] the variety V C SUc{2) 

is a Cartier divisor for g = ^. Since the Picard group of SUc{2) is infinite cyclic and 

generated by £ , V will be in the linear equivalence class ImG^I for some m G Z and 

so given by the complete intersection of SUc{2) with some hypersurface of degree m 

in P^ ' -^ The degree of SUc{2) is then given by Section (3.4) calculates the 

integer m. 

3.3. Spectral Curves 

This section will review some background material needed for the computations of the 

class of V given in the next section. This is the work done by Beauville, Narasimhan, 

and Ramanan [BNR] providing a way of transferring calculations from the non-abelian 

moduli space SUC{T) to the abelian Jacobian of some curve B. More precisely this 

so-called spectral curve B comes equipped with a natural r-sheeted covering of C. A 

generic vector bundle on C of rank r is then the direct image of some Hne bundle on 

B. 

While their results have been proved for arbitrary rank r, and degree n bundles, the 

following will restrict to the case r = 2, n = 0. The main result of [BNR] is: 
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Theorem 3.3.1. For C a smooth, irreducible, projective curve of genus g >2 there 

exists a 2 : 1 covering: 

q:B—^C 

branched in 4^ — 4 points, with B smooth and irreducible, such that the direct image 

map: 

q.:Jl'-'-^Uc{2,0) 

is dominant. Here Jg'^s denotes the set of line bundles N G JB^~^ for which q^N is 

semistable. 

Remark 3.3.2. To construct B explicitly consider the projective bundle: 

on C and let si € H^{K), S2 6 H°{K^) be generic sections. The bundles q*K®Op{l) 

and Op(l) have canonical sections x and y respectively. More explicitly y is given by 

the puUback of the canonical section of: 

?.Op(l) = Oc(S 

i.e. the constant section of 0^. Similarly x is given by the puUback of the canonical 

section of: 

q.{q*K®0r{l))=K®0c. 

Now define B C P(Oc ® K) to be the zero-scheme of the section: 

x^ + q*six.y + q*S2y' € H\r,q*K^ ® Op(2)). 

Clearly q restricted to is 2:1. Furthermore Op(l) ̂  = 0^, thus: 
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Note that by Riemann-Roch the genus of B is given by: 

l-g{B) = x{B,IOB) 

= X{CA*{OB)) 

= X{0c) ^ X{K-') 

= {-g + l) + {-2g + 2-g + l) 

i.e. g{B) = 4^ — 3 which is the dimension of ZYc(2,0). 

In order to calculate the class of V C SUc{2) one needs to restrict to bundles ^•A'̂  

with trivial determinant. I f Nm : J^~^ J(f~^ is the norm map associated to q 

then: 

det q^N = NmA^ ® det ^ ,0^ 

= NmA^ ® K-^ 

and so the subvariety one needs to restrict to is: 

P = ^m-^K 

i.e. the Prym variety associated to the double cover B C. 

Proposition 3.3.3. The direct image map of ('i.'i.l) induces a dominant rational 

map P -> SUc{2). 

Now the induced map q* : Jc ^ JB is injective [BNR, Remark 3.10] so the following 

result [BNR, Prop 2.6] can be applied to the double cover B C above: 

Proposition 3.3.4. Let q : B C be a finite morphism of projective, nonsingular 

curves such that the induced map q* : Jc ^ JB is injective. If A is the ramification 

divisor and P = A^m"^(det 9,0(A)), then there exists a line bundle T P such that: 

H\Jff-\0{2Qc)) ^ H\P,Ty. 
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Remark 3.3.5. The proposition above is proved by considering the addition map: 

ag-, : P X — JB'~' 

and showing that that puUback fine bundle Q:*_JO(0B) is isomorphic to p^T(8)p2(20c) 

where pi, p2 are projections of P x q*Jc~^ onto the first and second factors respectively 

and T is some line bundle on P. The pullback of the natural section of O(0s) 

then gives rise to a non-degenerate element of H°{P, r ) (g) H°{JQ~^ ,(D{2Qc)) and the 

isomorphism of (3.3.4) follows. Moreover T is the pullback of the line bundle 0(0^:) 

on SUc{2) via the direct image map P —> SUc{2) (see [BNR, 5.5].) 

3.4. The class of the g-plane ruling 

Assume that the genus of C is even. By (1.2.1) the subvariety D = SU^r^ C SUc{2) 

of bundles with Segre invariant < g — 2 has dimension equal to 3^ — 4 i.e. D is a 

Cartier divisor on SUc{2). li g = 4 then clearly the divisors D and the image of the 

^-plane ruling V coincide. The following calculates the class of D: 

Proposition 3,4.1. The divisor V = SUc~^{2) C SUc{2) of bundles with Segre 

invariant < g — 2 is a member of the linear system |2^0£|. 

P R O O F . Let q : B C be the double cover of the last section. By (3.3.5) calculating 

the class of D C SUc{2) with respect to Qc is equivalent to calculating the class of 

the pre-image in P with respect to the Hne bundle T ^ P. 

Suppose E € SUc{2) is in the image of the dominant rational map P SUc{2). 

Then E = ^ r some C ̂  P and the condition for G D is given by: 

i?°(C, L ® qX) + 0 for some L G J ^ ( C ) 

which, by the projection formula, is equivalent to: 

^ ° ( 5 , q*L 0 C) / 0 for some q*L G q^j'^iC). 
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Consider the addition map: 

5 * J ^ ( C ) X P ^ J^^-\B) 

{q*L,C)^q*L®C 

then H°{B,q*L (g) C) 7̂  0 if and only if q*L ® ( e W3g-4{B). Hence the class of 

{q^)-^{T>) is given by: 

{p2U*[Ws,.,iB)] 

where p2 : q*J^{C) x P P is projection onto the second factor. By the standard 

formula [ACGH, p212]: 
og+i 

[W3g-.{B)]= 

By (3.3.5): 

{pl2ec + p*2C,{T)y+' 
a*[Ws,-4{B)] = 

(^ + 1)! 

^ ipl{2ecy+' + {g + l)pli29cyp;cr{T) + • • •+p;4^\r)) 
{g + ^y 

G l f ' ^ + ' ( 9 * J ^ ( C ) X P,Z). 

The second term is the only one which will contribute anything under the Gysin 

homomorphism: 

(P2)* : H*{q*j'^{C) X P,Z) ^ H*-'^{P,Z) 

and since {p2)*Pl{20cy — 2^-g\ we have: 

(P2).a11^3.-4(B)] = 

= 2^ca(r). 

By (3.3.5) this implies that D G |250£|. • 

As predicted by (1.4.1): 
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Proposition 3,4,2, / / C is a non-hyperelliptic curve of genus 4, then the moduli 

space SUc{2) C P^̂  has degree 96. 

P R O O F . By (3.4.1) D G |160£| andsodeg!D = 16deg5i/c(2), but by (3.2.9) degD = 

1536. Thus: 

deg<S^Yc(2) = ^ = 96. • 
lb 
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CHAPTER 4 

Trisecants to the Kummer variety 

This chapter considers the trisecants to the Kummer variety fC C SUc{2). Oxbury, 

Pauly and Previato [OPP] have recently studied the Brill-Noether loci of SUc{2,K) 

and in doing so have shown that these so-called Fay trisecants are all contained in 

the g-pla,ne ruling FUi SUc{2) as trisecants to the curve C —>• P L for some L ^ J^. 

This chapter is concerned with what varieties these trisecants sweep out in each fibre 

FL for curves of genus 3, 4 and 5. 

4,1. Fay trisecants 

The Kummer variety IC = <7°/ib ^ |20| admits a four dimensional family of trisecants 

and the existence of such a family characterises Jacobians of algebraic curves among 

all principally polarised abelian varieties. More precisely this family of trisecants is 

given by the fibred product: 

5 > S^C 

Abel—Jacobi 

J\C) J\C) 

i.e. pairs ( M , D) G J^{C) x S^C such that = OciD). l{D = p + q + r + s then 

it can be shown [Mu2] that: 

cf>{M{-p-q)) = m { - r - s ) ) 
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<l>{M(-p-r))==cf>{M{-q-s)) 

ct>{M{-q-r)) = (j>{M{-p-s)) 

are 3 coUinear points of /C C P^^~^. 

The following gives a brief account of why each of these trisecants is also a trisecant 

of C —> P L for some L G J^{C). More importantly (4 .1 .2) gives a condition for a 

divisor of degree 3 to correspond to such a trisecant. See [ O P P ] for details. 

First recall the Hecke correspondence between SUc{2) and <S^/c(2, Oc(p)): any bundle 

F G SUc{2, Oc{p)) occurs in an extension of the form: 

0—> E ^ F 

where Cp is the skyscraper sheaf supported at p. There exists a of these extensions 

and it can be shown that the kernel E is semistable. Hence this defines a Hecke line 

IF C SUC{2) (cf (2 .2 .4) . ) 

Proposition 4.1.1. [ O P P , Thm 1.4] Let Ip C SUc{2) he a Hecke line. Then: 

1. There exists a bijection between points of intersection of Ip H IC, counted with 

multiplicity, and line bundles N C F with degN = 0. 

2, IF r\ JC ̂  d if and only if Ip is contained in a g-plane FL for some L G J^{C). 

Moreover if C is non-hyperelliptic and Ip Cl IC has cardinality k then the number of 

fk\ 
such g-planes is 1 -(- (2j • 

Lemma 4.1.2. [ O P P , Thm 2 . 1 ] The Fay trisecants are precisely the Hecke lines trise­

cant to the Kummer variety. In particular if p,q,r G C then pqf is a trisecant of 

C FL if and only if: 

L\s) = Oc{p + q + r) 

for some 5 G C . 
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This result is used extensively throughout the chapter and we give the proof for the 

readers convenience: 

P R O O F . Let h C <5Wc(2) be any Hecke Hne, with detF = Oc{p). We look for the 

condition for IF to be a trisecant of IC. If IF intersects the Kummer variety then there 

is an exact sequence: 

0 —> E —> F — y C p —>0 

where E is in the S-equivalence class of NBN~^ for some line bundle N of degree zero. 

So either A'̂  or is a line subbundle of F (necessarily maximal by the stability 

of F.) Suppose A'' is a hne subbundle of F then by (4.1.1) IF is trisecant to fC if 

and only if F has two further maximal line subbundles. Now a result of Lange and 

Narasimhan [LN] shows that there exists a bijection between maximal line subbundles 

of a rank 2 bundle and certain secant Hne bundles (cf (5.2.1).) In the present case 

the maximal line subbundles of F (other than N) correspond to points of C mapped 

to the extension class of: 

0 ^ N ^ F —> N-\p) 0 

under C —> FH°{C,KN~'^{p))*. Thus IF is a trisecant to /C if and only if the image 

of C has a node. This occurs if and only if: 

h\KN-\p -q-r))> h\KN-^{p)) - 1 

= ^ - 1 

for somep,g,r G C, i.e. h°{N^{-p +q^r)) > 1 or N^{-p + q + r) = ldc{s) for some 

5 G C. By taking L = N~^(p) one sees that Ip is a trisecant pqr oi C ^ FL if and 

only if L'^{s) — Oc{p + q + r). Now taking M — L{s) it is easy to see that the points 

of intersection of IF with the Kummer variety are given by M{—p — q), M{—p — r) 

a n d A f ( - g - r ) . • 
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Remark 4.1.3. Suppose C is non-hypex-elliptic and L^{s) = Oc{p + 9 + 5) so that 

C ^ P L has a double point at (I)L{V) — (f>L{q)- Then taking L = N~'^{s) gives: 

N\-s + p + q) = (Dc{s) (1) 

i.e. FH°{KN~'^{s))* has a node. By the bijection of Lange and Nai-asimhan (5.2.1) 

this node corresponds to two maximal line subbundles of some rank 2 bundle F. 

Explicitly these line subbundles are given as: 

N i ^ N - \ s - p ) and = N'^s-q). 

But by (1) Ni = Â 2~̂  ^iid so by (4.1.1) the trisecant corresponding to L'^{s) is 

tangential to the Kummer variety at A î ® iVf ^ = A''2 ® 

Corollary 4.1.4. [OPP, Cor 2.2] 1. If C is non-hyperelliptic then no Fay trisecant 

can have more than 3 intersection points with IC. 

2. If C is hypereUiptic then every Fay trisecant is in fact a quadrisecant. 

Remark 4.1.5. If C is hypereUiptic then, with the same notation as in (4.1.2), the 

quadrisecants to C are given by the divisors p + q + r + i{s) where L is the hypereUiptic 

involution. 

The following result [OPP, Prop 1.2] will also be useful in determining the degree of 

the variety of Fay trisecants in the moduU space SKc{2) itself: 

Proposition 4.1.6. For L, M G J^iC) the intersection FLDFM (in the moduli space 

SUc{2)) is given by: 

1. the secant line pq of the curve (in either P^, or FM) if LM = Oc{p + q) 

2. the point L{-p) ® L-\p) e IC ifh\C,LM) = 0 and LM'^ = Oc{p - q) 

3. empty otherwise. 
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4.2. Ruled Surfaces 

Most of the new results in this chapter concern ruled surfaces over an algebraic curve. 

This section will fix the notation used and also review some of the results needed. Al l 

these results on ruled surfaces can be found in either [H] or [GH]. 

Any ruled surface on C can be written as the projectivization of some rank two bundle 

V ^ C i.e. the points in the fibre {^V)x {x G C) correspond to the one-dimensional 

linear subspaces of the two-dimensional vector space Vx- Moreover the Picard group 

and the group of numerical equivalence classes of divisors are given by: 

PicFV = 1{Co]®V*P^cC 

NumfV =1®!. 

where Co C P V is some section. Thus if / is a fibre of p and b is a divisor of C write 

aCo -|- b / for a divisor on and aCo + hf for a numerical divisor. 

The bundle V is said to be normalised if iJ°(C, V) ^ ^ and L O 7) = 0 for all 

line bundles L on C with degL < 0. If V is normalised then there exists a section 

Co C fV such that Opv(Co) = Opv(l). Moreover numerically CQ.CO = -degV and 

there exists the following isomorphisms: 

H°iFV, Opy(l) ® p*M) = H\C, V* ® M) 

where M is any line bundle on C. 

Now restrict to rational ruled surfaces. A classical result due to Grothendieck says 

that any vector bundle on P^ is decomposable. Thus write: 

5„ =^P(Opi(n)©OpO f o r n > 0 . 
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Denote by EQ C Sn the zero section of Sn i-e. the section corresponding to the section 

(0,1) of Opi(n) ® Opi. Note that EO-EQ = n. Let E^o C Sn be the closure of the 

curve given by the section (cr, 0) of Opi(n) ® Opi (i.e. ((7,0) gives a curve away from 

the zeros of a.) It can be shown that EQQ.EOO = —n. 

Let (j)k,n be the map Sn -> f'H°{Sn,Eo + kf)* given by the linear system \Eo + k f \ 

[k G Z) , and denote the image by Sk,n- Then these are the rational ruled scrolls, 

which are the surfaces of minimal degree: 

{Eo + kf).{Eo + k f ) = Eo.Eo + 2Eo.f 

=:n + 2k 

in IP"+2'=+i 

Let Do and Doo be the images <j)k,n{Eo) and ^fc,„(Eoo) respectively. Doo is referred to 

as the directrix of the rational ruled scroll and is unique if n > 0; 

Remark 4.2.1. The scrolls Sk,n can be described more geometrically as the union of 

straight lines joining points on the rational normal curve Do C K-t-fc with correspond­

ing points on the directrix D^o C Vk, where K + A : and 14 are disjoint linear subspaces 

of P"+2'̂ -+l. 

4.3. Quadrisecants to hyperelliptic Kummers 

The results of the next two sections can be summarised in the two tables at the end 

of this chapter. 

As stated in (4.1.4) hyperelliptic curves are special in the sense that trisecants to the 

Kummer are in fact quadrisecants. This section describes the variety of quadrisecants 

in each Pi, for hyperelliptic curves of any genus. Throughout this section let i : C C 
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be the hyperelliptic involution and H a hyperelliptic divisor on C. 

Proposition 4.3.1. Suppose C is hypereUiptic' of genus 3 and h°{L'^) = 0. Then the 

variety of quadrisecants to C —>• FII°{C,KL^)* is a smooth quadric surface. 

PROOF. This follows from a result in [ACGH, p221, Ex C-3], namely that if a curve 

C —> P^ is hyperelliptic and linearly normal then the Unear series cut out on C by 

quadrics has vector space dimension < 9 i.e. the restriction map: 

Sym^H%KL') H^K^L") ^ 

has a kernel and hence C lies on a quadric. Clearly every quadrisecant of C must lie 

on this quadric too. To see that the quadric is smooth note that no two quadrisecants 

can meet. Otherwise the two lines would span a two-plane containing seven or eight 

points of the curve (depending on whether the quadrisecants meet at the curve or 

not.) This is a contradiction since the curve has degree six. • 

For a more direct proof of this result see (4.4.5). 

Proposition 4.3.2. Let C he any curve of genus 4 and h^{L^) = 0. Then the variety 

of trisecants to C ^ FH°{C, KL'^)* = F'^ is a finite number of lines. In particular if 

C is hyperelliptic then it has a unique quadrisecant. 

P R O O F . By (4.1.2) trisecants to C —> P L are given by effective divisors of the form 

L\s) for some s € C. Now h°{L^) = 0 so L\s) ^ W^{C) for any 5 € C. Also note 

that L'^{s) is not contained in WslC) for all s e C otherwise the set equaUty [ACGH, 

p266] : 

W2{C)= f]{W3iC)-uis)) 
sec 

would imply that /I°(JL^) = 1. Now varying s gives a copy of C C J^{C), namely 

+ Wi{C), which will intersect the theta divisor a finite,number of times away 
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from the singular locus. The actual number in general can be calculated using their 

respective cohomology classes i.e. 

These four trisecants correspond to one quadrisecant if C is hyperelliptic: note that 

by (4.1.5) quadrisecants are given by divisors of the form L'^{s -\- c{s)) = Oc{D). 

Suppose L'^{t + L(t)) = Oc{D') corresponds to another quadrisecant (5 ^ t). Then 

they either: 

1. Span a hyperplane of rH°{KL^)* ^ P" i.e. are skew; 

2. Meet at a point of the curve C C P"*; or 

3. Meet away from the curve. 

(1) cannot occur otherwise ^ ^ ( 5 + ^(5)) + i'i(^t + i,{t)) ~ KL'^ i.e. = ff_ 

(2) cannot occur otherwise hP{KL"^{—D")) = 2 where D" is a divisor of degree seven. 

(3) cannot occur otherwise h%KL\-D - D')) = h°{HL-^) = 2. 

Hence C ^ P i has a unique quadrisecant. • 

See (4.4.10) and (4.4.11) for a discussion of these trisecants for non-hyperelliptic 

curves of genus 4. 

Proposition 4.3.3. Let C be any curve of genus g > 5 and suppose that hP{L'^) = 0. 

Then C —> FH°(C, KL^)* admits a finite number of trisecants if and only if E 

^3(0) — Wi{C). Furthermore ifWl{C) is empty then it has a unique trisecant. 

P R O O F . By (4.1.2) L^(s) corresponds to a trisecant if and only if ^ ^ ( 5 ) E W3{C) for 

some s €. C i.e. G W3{C) — H^i(C). If this is the case then by the argument in the 

proof of (4.3.2) (L^ -|- Wi{C)) f l W3{C) is a proper intersection missing the singular 

locus of •W3(C). Thus C —>• f i has a finite number of trisecants. 
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If L\s) = Oc{D) G Ws{C) and L^t) = O c ( A ) 6 W^iC) for some t ^ s then: 

D + t^Di+s 

i.e. L^s + t) G W2(C). • 

Remark 4.3.4. I f^ ' > 7 then the Brill-Noether number ;o(c?, r) = g — (r + l){g — d+r) 

of 14̂4 is negative. Thus a generic curve of genus g > 7 will have a unique trisecant 

in each P^ when /^^(i^) = 0 and G W^iC) - W^{C). 

Example 4.3.5. If C is hyperelliptic of genus g >b and /i°(L^) = 0 with ^ ^ ( 5 ) = 

Oc{p -\- q-\- r) € W3(C) for some 5 G C then pqr t{s) is the unique quadrisecant to 

C —> PL: by the proof of (4.3.3) it has more than one trisecant if: 

p + q + r + t-^Di + s 

for some t ^ s. Since C is hyperelliptic a g] is obtained by adding 2 base points to 

the g]. Thus p + q + r + teglif and only if t = i(p), i{q), or i(r) (Note p-\- q ^ g\ 

for example, otherwise L'^{s) = H + r e W3 (C*) i.e. /i°(L^) = 1.) So, for example: 

L^{s + t{p)) ^ p + q + r + i{p) ~ 5 + g + r + t{s) 

and L'^{L{P)) ~ 5 + r + 4(5) corresponds to a trisecant of C. But qr L(S) = pqr L{S) 

and so the original quadrisecant is recovered. 

See (4.4.13) for a discussion of the number of trisecants to non-hyperelliptic curves 

of genus 5. 

Proposition 4.3.6. Let C be a hyperelliptic curve of genus g >Z and suppose that 

h°{L^) > 1. Then the variety of quadrisecants to C ^ FH%C,KL'^)* is: 

1. A cone over a rational normal curve in F^~^ with vertex at the double point of 

CcF'ifh°{L^) = l. 

2. Sec2C ifh%L^)=^2. 
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P R O O F . If h°{L^) = 1 then = Ocix + y) for some x,y e C. C clearly has a double 

point at (j)L{x) = (f)L{y) and by (4.1.2) the quadrisecants correspond to fines through 

this double point intersecting the curve again in the points 5 and t{s). Projection 

of the curve away from the double point is clearly the hyperelliptic cover and the 

quadrisecants sweep out a cone over the rational normal curve C —> FH°{K)*. 

If h^(L'^) = 2 then = H and the map (f>L is hypereUiptic mapping C two to one 

onto a rational normal curve of degree g. By (4.1.2) all quadrisecants come from the 

linear system \2H\. These correspond to bisecants of the curve <^L(C'). • 

Remark 4.3.7. Note that for genus 3 Sec2C actually sweeps out the whole of Px,, 

otherwise projecting from a point not on Sec2C would give a planar curve of genus 

three and degree six with no singularities, contradicting the degree-genus formula. 

4.4. Trisecants to non-hyperelliptic Kummers 

This section fills in the gaps in the tables at the end of this chapter that weren't 

covered in the last section, namely the description of the variety of trisecants in 

P i for non-hyperelliptic curves of genus 3, 4, and 5. The' first result requires two 

preliminary lemmas: 

Lemma 4.4.1. Let pi and p2 be the two projections ofCxC onto the first and second 

factors respectively and A the diagonal of C x C. Then: 

( i?Vi)*Ocxc(^) = iVc/j i 

where Nc/ji is the normal bundle of C ^ J^{C)-

PROOF. Taking the exact higher direct image of the sequence: 

0 Oocc Ocxc(/^) 0^{A) 0 
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yields: 

0 ^ {pi)*Oc^c ^ {pi)*Ocxc{A) ^ (/9i).0^(Z\) A (i?Vi)*Ocxc 

^ ( i?Vi)*Ocxc(^) -> 0 

By [ACGH, pl71] there are isomorphisms: 

{R'pi)*Oc.c=Tj.l ; ip,)^0^{A)^Tc. 

Thus in the present case a is injective and 

T 1 
iR'pi).OcM^) = ^ = Nc/j^- • 

Lemma 4.4.2. Lei C be a curve of genus 3 and L a line bundle of degree one on C 

with h°(L'^{s)) = 1 for all 5 G C. Then with the same notation as the last lemma the 

line bundle: 

N'^{{prUplL'®Oc.c{A))r 

has degree two. 

P R O O F . Let ̂  be the puUback of the class of a point on C (via P2), x the puUback 

of the class of a point on C (via pi) and 7 the (1,1) part of the class of the diagonal 

A. We apply the Grothendieck-Riemann-Roch formula to the line bundle M ^ 

P;L^®OCXC{^) i.e. 

ch{{pi)iM).td{C) = {pi)4ch{M).td{C X C)]. (2) 

i 

In the present case td{C) = 1 - 2 ^ and ch{M) = 1 + Ci(M) = 1 + 3^ + 7 + a; (cf 

ACGH, p338].) Since h\L\s)) = 0 for all s e C (2) reduces to: 

chN*=^{prU{l + 3^ + ̂  + x){l-20] 

= 1 - 2x. 

Thus A'̂  is a line bundle of degree two. • 
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4.4.1. Genus 3. 

Proposition 4.4.3. Let C be non-hyperelliptic of genus 3 and suppose that h°{L'^) = 

0 . Then the variety of trisecants to C FH^{C,KL^)* is a ruled surface of degree 

8, triple along the curve. 

P R O O F . By (4 .1 .2) pgr is a trisecant of C ^ P L if and only if: 

L\s) = Ocip + q + r) 

for some 5 G C i.e. pqf is given by the projectivization of the kernel of the surjective 

map: 

i f ° ( C , KL'Y ^ i f ° ( C , K{-s)y ^ H\C, Oc{s)) 

where cr is given by a non-zero element of H°{L'^{s))* = C. So varying s G C gives a 

ruled surface of trisecants FV where V is a rank two vector bundle given by the short 

exact sequence: 

0 ^ y ^ H^iKL^y ® 0 c ^ {R^piyo{A) ®N ^ o , ( 3 ) 

and N = {{p^)^{plL'^ ® Ocxc(^)))*- By Lemmas ( 4 . 4 . 1 ) and (4 .4 .2) we see that: 

deg y = - deg(A^c/ji ® N) 

= - 8 . 

So we have defined a map: 

, FV FH\KL^y 

given by some sublinear system of |Opy(l)|. Thus the degree of the image of ^ 

satisfies: 

(deg^).(degim/?) = Opv(l).Opy(l) 

= - deg y 

= 8. 
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Now degf3 = 1 since the trisecants of C ^ P L are parametrised by the curve L^ + 

Wi{C) ^ C and L\s) = L\t) if and only if s ^ t. Thus degim^ = 8. 

The surface is triple along C '-^ FH°{C, KL"^)* since there exist 3 trisecants through 

every point p G C i.e. project the curve away from p G C to obtain a planax curve 

of degree 5 and genus 3. The trisecants through p then correspond to the double 

points of this curve which is given by the standard degree-genus formula. Also note 

that this is the only singular locus of the ruled surface since its intersection with a 

generic two-plane is a planar curve of degree 8 and genus 3 having 6 triple points 

(corresponding to the points of intersection of C P^ with the two plane) which, by 

the degree-genus formula, are its only singular points. • 

Remark 4.4.4. Let 7 C SUc{2) be the reduced variety of Fay trisecants io K, C. 

SUc{2) C P^. Then (4.4.3) can be used to calculate the degree of T i.e. (4.4.3) says 

that T cuts out a ruled surface of degree 8 in the generic fibre P^ of FUi —>• J^{C) 

(recall that FUi SUc(2) is a linear map on the fibres of FU\ —> J^{C)) with some 

possible extra components coming from the Fay trisecants not contained in Fi. But 

each Fay trisecant is contained in some FM M G ̂ ^(C"), SO any extra components are 

given by (4.1.6). Suppose these extra components have degree n in P^ then provided 

each P L C SUc{2) is not tangent to T it may be deduced that deg T = 8 -f- n. 

Remark 4.4.5. Note that (4.3.1) may also be proved in a similar vein to that of 

(4.4.3). The fibres of the bundle FV correspond to trisecants of the curve but for 

hyperelliptic curves we have seen that the fibres in fact map to quadrisecants. Thus 

each quadrisecant corresponds to 4 trisecants and the map of the projective bundle 

into P^ is 4:1. Thus the image is a quadric surface which is smooth by the same 

argument as that in the proof of (4.3.1). 

Remark 4.4.6. The quadric above can be constructed expUcitly: by (4.1.5) the 

quadrisecants are given by divisors from the linear system \IIL'^\ on the curve C C 
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FH°{KL^y. More explicitly each quadrisecant is given by P(ker6) = P̂  where 6 is 

given by: 

H\KL^y H\Hy 0 

8 is induced by a divisor from \HL'^ \ = P .̂ The linear system \HL'^ \ has no base points 

and so varying the divisors in this linear system sweeps out the smooth quadric: 

P(ker<5) X HL' ^ p i ^ p i 

in FH^{KL'^y. If h°{L'^) = 1 then \HL'^\ has two base points corresponding to the 

double point of C —>̂  FH°{KL'^y. The quadric is then singular with vertex at this 

double point (cf (4.3.6).) 

Proposition 4.4.7. Suppose C is non-hyperelliptic of genus 3 and h°{L'^) = 1. Then 

the variety of trisecants to C ^ FH°{C,KL^y is either: 

1. The union of a cone over the canonical curve and a quadric cone if L^ = K[—2u) 

for some u E C. 

2. The union of a cone over the canonical curve and a smooth quadric if L^ ^ K[—2u) 

for any u G C. 

P R O O F . First note that since h°{L'^) = 1 then - Oc{x -\- y) for some x,y e C 

and C —> P^ will have a double point at <j>L{x) = (j>L{y)- Thus xys corresponds to 

a trisecant for all 5 G C. Projection away from (i)L{x) = ^L(?/) maps C onto the 

canonical curve. 

1. (see [LN, Prop 5.4] ) If = K{~2u) for some u G C then by (4.1.2) trisecants of 

C C P L correspond to divisors in the complete linear system |i/^(ti) | = |/i'(—u)| = P .̂ 

Consider the map given by this complete linear system: 

/ : C ^ p l . 
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Pull ing back Opi(2) gives an injection: 

H\F\0{2)) ^ H°{CJ<\-2u)) = H\C,KL^) 

and i J ° ( P \ 0 ( 2 ) ) is of codimension one in H°{CJ<L'^) so defines a point (e) G PL-

Projection f r o m this point makes the following diagram commute: 

|A-L2 . 
C -! > P L 

proj 

and it is clear that the trisecants to C C P L given by |/i'(—u)| sweep out a cone over 

p l p 2 with vertex (e). 

2. Again a trisecant to C —> P^ is given by the condition L'^{s) = Ocip + q + r). If 

L^ = K{—u — v), u ^ V, then there exists two families of such trisecants, namely those 

corresponding to divisors in the Hnear systems \K{—u)\ = F^ and \K(—v)\ = P \ 

Let Pi + qi -|- G |A'(—u)] and U the corresponding trisecant then: 

(a) li meets no other trisecant from \K{—u)\: firstly k and Ij don't meet at any point 

of C since C is non-hyperelliptic. Now suppose k n / 0 then Ulj = P^ and so: 

Pz + qz + Vi + pj + qj + r, - KL^ K^{-2u) ~ KL^ 

=J> ~ K{-2u) (Contradiction) 

( b ) li meets every trisecant coming from \K[—v)\: \ix-\-y-\-'z G | / \ (—u) | corresponds 

to some trisecant /' then pi-\-qi + ri-Yx-\-y-\-z^ K'^{—u — u) ~ KL"^. Hence k and 

/' span a hyperplane and so meet. 

Thus the surface swept out by trisecants from |/'r(—w)| and |/i'(—?;)| is isomorphic to 

P^ X P^ i.e. a smooth quadric surface. • 

Remark 4.4.8. Conversely if C —> P L lies on a quadric cone then projecting from 

the vertex gives a 3:1 map / : C P^. Since C has genus 3 then every pencil 
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of degree 3 is of the form K{—u) for some u G C i.e. /*Opi(l) = K{—u). Then 

/*0pi(2) = KL^ = K^{-2u) i.e. L^ - K{-2u). 

4.4.2. Genus 4. 

Proposition 4.4.9. Let C be a non-hyperelliptic curve of genus 4 o-nd suppose that 

h^(^L^) = 0. Then C G P L admits 4 trisecants (in general). 

P R O O F . Exactly the same as (4.3.2). • 

Remark 4.4.10. As one might expect none of the four trisecants from (4.4.9) meet 

in a generic ^-plane PL: if L'^{s) = Oc{D) and L'^{t) = Oc{D') correspond to two 

distinct trisecants meeting at a point away from C C FH°{KL'^y then they span a 

two-plane and so: 

h\KL\-D - D')) = h\KL-\-s - t)) 

= 2. 

Since deg/i'-L~^(—5 — t) = 2 this implies that C is hyperelliptic. Two trisecants 

cannot meet at a point of C in a generic ^-plane either: suppose two such trisecants 

exist (and meet at a point r G C) i.e. 

L\s) = Oc{p^-q + r) and t^it) = Oc(r + u ^ v). 

Then the condition on L for this to occur is given by: 

p-\-q-\-r-\-t'-^u-\-v-\-r-{-s ^^==^ p-\- q-\-1 ^ u-\-v-\- s 

L \ s ^ t - r ) G Wl{C) 

L\s + t)eWl{C) + Wy{C) 

L' E{{Wl + W,)-W,)~W{). 
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Now 14̂ 3 (C) is zero-dimensional for C non-hyperelliptic so two trisecants meet at a 

point of C C P L if and only if L'^ lies in the 3-dimensional subset {{W^ -\-W\) — W-i) — 

Wi) c J\C). 

Remark 4.4.11. There exists < 3 trisecants of C C P L if either the tangent space 

to L^ + Wi{C) C P{C) at L'^{s) is contained in the tangent space to Wz{C) C J^{C) 

at L'^{s), or L^ + Wi{C) passes through a singular point of W3(C). The latter case 

is ruled out since h°{L'^) = 0. To see when the former case occurs note that if 

L'^{s) = Ocip + q + 'T') is a point of W3{C) (necessarily smooth) then by the Riemann-

Kempf singularity theorem: 

FTL2^,)WS{C) = MPir) C FH^K)* - P^ 

and: 

FTsWi{C) = M ^ ) ^Cc FH\Ky. 

Thus Z'L2(S)(X^ -f Wi{C)) C T]j2(^s)^z{C) i f and only i f pqfs spans a 2-plane on the 

canonical curve i.e. h°{K{—p — q — r — s)) = I. By Riemann-Roch this is the case if 

and only i f L^{2s) G W^(C). Thus C C P L has < 3 trisecants i f and only if: 

L'e [j{Wl{C)-u{2s))\W2{C) 
sec 

= [j{Ki-2s)-W2iC))\W2iC). 
sec 

If X and y are the two residual points cut out by pqrs on the canonical curve then: 

L\x) = Oc{p + q + r - s + x) = K{-2s - y) 

L\y) = Oc{p + q + r - s + y) = K(-2s - x) 

correspond to the two other trisecants of C C PL-

Proposition 4.4.12. Let C be non-hyperelliptic of genus 4- Then the variety of 

trisecants to (pL : C FII%C,KL'^y = P'* is given by: 
1. A cone over the canonical curve if h^[L'^) — 1 and L'^{s) ^ W^{C) for any 5 G C. 
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2. The cone from case (1) and the rational normal scroll S\^\ if L^(s) G ^HC) for 

some 5 G C. 

P R O O F . AS before trisecants pqr of C C FH°{C,KL'^y are given by the condition 

that L'^{s) = Oc{p + q + r) for some s G C. 

1. Exactly the same proof as the beginning of (4.4.7). 

2. I f L\s) G Wi{C) for some s G C then h%L^) = 1 {L^ = Oc{x - j - y)) and we 

obtain the cone over the canonical curve as in case (1). As well as this sextic cone 

the divisors coming from the pencil |-^^(5)| = P̂  all correspond to trisecants too. 

Note that if L'^{s) G W^{C) then there exists no other point of C, t ^ s, with the 

same property. If this were the case then xys and xyt would correspond to the same 

ruling on the quadric containing the canonical curve C C P ,̂ which imphes that 

h^{K{—x — y — s — t)) = 2 i.e. C is hypereUiptic. Denote the surface swept out by 

the pencil of trisecants coming from the complete hnear system | i^^(5)| by 5". To see 

what this pencil of trisecants sweeps out first note that if L'^{s) = (Dc{p + q + 'r) then 

pqr is also a trisecant of C ^ FH°{C,KL'^{s)y = P^ since: 

h'{KL'{s)i-p-q-r)) = h'{K) = ^. 

So the pencil |X^(5)| also sweeps out some rational ruled surface S' C P .̂ S is then 

obtained by the projection of 5*' away from 5 G C —> FH°{KL'^{s)y. Secondly note 

that S is mapped, via projection away from the double point (I)L{X) = 4'L{y), to 

the unique quadric Q containing the canonical curve C C FH°{C,Ky = F^ (the 

pencil of trisecants being mapped to a ruling of this quadric.) In short there exists a 

commutative diagram: 

5" C FHy<L^s)y 

S C FH%KL^y ^ FH°{Ky D Q 
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where ir^^ys is projection away from the trisecant xys C P .̂ If C has no vanishing 

theta null then the quadric Q is smooth and is given (in the usual notation of section 

4-2) by: 

FV = P(Opi ® Opi) FH\FV, Eo + / ) * ^ FH^K)*. 

Since TVxys is projection away from a fibre / of 5"' the commutative diagram above 

may be rewritten as: 

S' cFH%FV,Eo + 2 f y 

T^s y \ T^xys 

S C FW* ^ FH\FV, Eo + / ) * D g 

where W C i f°(PV, Eg 4- 2/) is some sublinear system. Hence it can be concluded 

that S is the projection away from 5 G C C P^ of the rational normal scroll: 

If C has a vanishing theta null then Q is singular and so given by: 

FV = P(0pi(2) ® Opi) H FH°{FV', E'^y ^ FH\Ky. 

Thus by the same argument S is given by projection away from 5 G C C P^ of the 

rational normal scroll: 

p(Opi(2)®OpO p ^ 

The rational normal scrolls in these two cases are isomorphic to 52,0 and 5'i,2 respec­

tively. In the first case the directrix of the scroll is not unique and so, by a standard 

computation, projection from a point on ^2,0 gives the rational normal scroll ^ i , ! C P^ 

(see [GH, p520] for details.) In the second case if s G C does not lie on the directrix of 

the scroll then by a similar calculation projection from s will give the scroll ^ i ^ i C P'* 

again. If 5 G C lies on the directrix then projection from s gives the rational ruled 
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surface S'0,3 i.e. the image of the map: 

P ( 0 p i ( 3 ) ® 0 p i ) t ^ P " . 

This is a cone and every trisecant passes through the vertex. Thus any two trisecants 

span a two-plane and so: 

h°{KL^^L-\-s)®L-'{-s)) = 2. 

This implies that C is hypereUiptic. A contradiction. • 

4.3.3. Genus 5. 

As was seen in (4.3.3) if h°{L'^) — 0 then a curve C P L of genus g > 5 has a trisecant 

if and only if G WsiC) - Wi{C). It is unique if Wl{C) is empty. If Wl{C) is 

non-empty and € Wl{C) - Wi{C) then trisecants other than L^{s) = Oc{D) 

are given by divisors of the type L'^{t) where: 

for some divisor D' of degree 3. 

Example 4.4.13. If C is non-hyperelhptic of genus 5 then W^{C) is non-empty and 

a gl is cut out by a ruling of two planes on a quadric of rank 3 or 4 containing the 

canonical curve C C P'' (see [ACGH, p208] .) In fact if the quadric has rank 4 then 

there exists another ruling cutting out a residual gl (if the quadric is of rank 3 the g] 

is autoresidual.) 

Suppose L'^{s) = Oc{D) and D +1 G g] for some i € C. Then D + t spans a two-

plane on the canonical curve and this two-plane lies on a quadric containing the curve. 

There exists a unique two plane of this ruling passing through s and so D + t ^ s + D' 

for some divisor D' of degree 3. Hence there exist 2 trisecants to C P i namely 

those given by L^{s) and L^{t). 

There are more than 2 trisecants ii D +1 =^ D +1 +1' for some t' / t. This is the 
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case if and only ii h'^{K{—D — t — t')) = 2 i.e. C contains a g\. We look at the 

case when C is a non-hyperelliptic trigonal curve separately. In this case Wl{C) is 

isomorphic to two copies of C. One copy is cut out by lines through a fixed point 

on C given as a plane quintic with one double point (denote this curve by Vc) (cf 

ACGH, p208] ) and the other copy is given by hnear systems of the form g\ + c, 

c G C i.e. cut out by a base point c and the pencil of lines through the double point 

of Tc- Then there are two ways iov D -\-t = p +q-\-r-\-t iohe'm a, g\ for some t e C. 

Either pqr is coUinear on Tc, or one of pq., pf, qr passes through the double point of 

Fc- Suppose L'^{s) = Oc{p + q + r) is collinear on Tc, cutting out two residual points 

t and t' (neither equal to s.) Then: 

p + q + r + tr^Di + s 

p + q + r + t'^D2 + s 

for some divisors Di, D2 of degree 3. Thus: 

L\s) = Oc{D) , L\t) - Oc{D,) , L\t') = OciD^) 

correspond to 3 distinct trisecants of C —> VH°{KL^)*. 

Now suppose L^{s) = Oc{p + q + r) and pq passes through the double point of Tc-

Then p + q + t e gl for some t e C {t ̂  s.) Thus: 

L^{s + t) r^p + q + r + t 

^a+b+s+r 

for some a, 6 G C where abs passes through the double point of Tc; i.e. L'^{s) and 

L^[t) ^ Oc{a + b + r) correspond to 2 distinct trisecants of C ^ FH°{KL'^y. lit = s 

then i t is clear that L'^{s) is the unique trisecant of the curve. 

Proposition 4.4.14. Suppose C is a non-trigonal curve of genus 5 and h^{L^) = 1. 

Then the variety of trisecants to C ^ FH°{C, KL'^)* = is a cone over the canonical 
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curve. 

P R O O F . If h°{L^) = 1 then the image of C ^ r°{KL'^)* is a curve of degree 10 with 

a double point (f>L{x) = </̂ L(2/) (where = Oc{x + y).) As before the only trisecants 

to this curve are those Unes through this double point hitting the curve again i.e. a 

cone over the canonical curve. • 

Proposition 4.4.15. Suppose C is a non-hyperelliptic, trigonal curve of genus 5 

and = Oc{x + y) for some G C. Then the variety of trisecants to C ^ 

FH^iCKL^y is: 

1. A cone over the canonical curve if L'^{s) ^ Wl{C) for any 5 G C. 

2. A cone over the canonical curve and the rational ruled surface 82,0 if L^{s) € 

Wl{C) for some seC. 

P R O O F . The proof of case (1) is exactly the same as in (4.4.14). Now consider case 

(2): i f C is trigonal then it is well known that it has a unique g] and that the Serre 

dual of this gl maps C onto a plane quintic with one double point i.e. 

c ^ rH°{c, KL~\-s)y = r \ 

If ^^(a) =̂  <^̂ (&) corresponds to the double point then the ^r] is cut out by the pencil 

of lines through this double point. In terms of rational ruled surfaces a pencil of lines 

such as this is given by the map: 

Now if L'^{s) = gl then, as in the proof of (4.4.12), each divisor of \L^{s)\ also 

corresponds to a trisecant of FH%C, KL"^{s)y = P .̂ Thus there exists the following 

commutative diagram: 
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S' C FH^'iKL^s))* 

TTs / \ TTi 

S C FH%KL^)* ^ FH%KL-\-s)y D FV 

where TTI is given by projection away from the span of two trisecants (one of which 

is xys.) This maps each trisecant onto a line through the double point of C 

FH°{KL~'^{—s))*. is given by projection away from the span of a trisecant and 

the double point (f>L{x) = <i>L{y)-, and TT̂  is projection away from 3 G C. Identifying 

FH\KL-^{-s))* with FH\Eo)* the map TTI can be rewritten as: 

S' C FH\FV, Eo + 2 f y ^ FH%FV, EoT. 

The rational ruled surface: 

s' = rv F^ 

in terms of the notation of section 4.2 is S'2,1. Now S is obtained by projection of this 

surface away from s. If s does not He on the directrix then the surface obtained is 52,0, 

i f 5 lies on the directrix then 51,2 is obtained. To see which surface actually describes 

the surface of trisecants we use (4.2.1): this says that 52,0 is the union of straight 

lines joining points on'Do C V2 with corresponding points on the directrix Doo C V^, 

whilst 5i,2 is the union of straight lines joining points on Do C V3 with corresponding 

points on the directrix Deo = Vi- Now consider the two-plane spanned by the hne ab 

and the double point 4']:,{x) = 4>L{y) of C —> Ft- Every trisecant pqr C P L coming 

from the linear system | i ^ ( 5 ) | intersects this two-plane since: 

h \ K L \ - a - b - x - y - p - q - r ) ) = h\KL-\~a - b - s)) 

= 2 

(recall </''jr,(a) = (/>'L{b) is the double point of C —> P^.) This pencil of trisecants will 

either sweep out a conic or a line in this two-plane. Now the line ab meets the two 

trisecants of |iv^(5)| passing through a and b (corresponding to the two divisors cut out 
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by the two tangent lines to the node of C —> P^) but not every trisecant meets the line 

ab otherwise we would have h°{KL'^{—p — q — r — a — 6)) = 3 i.e. h°{K{~-a — b — s)) = 

3. By Riemann-Roch this is the case if and only if h°{Oc(a + b + s)) = 2 i.e. 

Oc{a + 6-f 3) = L'^{s) (since the gl is unique), but this implies that x •+ y '-^ a + b i.e. 

C is hyperelliptic. Hence it can be concluded that the pencil of trisecants sweeps out 

a conic in the two-plane abxy and the rational ruled surface S2fl in P^. • 

Remark 4.4.16. Suppose C is a generic curve of genus 6 i.e. it has 5 tetragonal 

pencils. If h°{L'^) = 0 then by (4.3.3) C ^ P i admits a trisecant if and only if 

L^s) G WsiC) for some s G C. Moreover if L^{s + t)e Wi(C) for some t / 5 then 

it has 2 distinct trisecants. To see this note that C may be embedded as a planar 

curve of degree 6 with 4 nodes (no 3 of which are coUinear.) The 5 tetragonal pencils 

are then cut out by the pencils of lines through each double point and the pencil of 

conies through all 4 double points. If L'^{s) = Oc{p + q + r) and p,q,r lie on such a 

line (or conic) then it cuts out one residual point i on C and there exists a unique 

line (or conic) from this pencil passing through s. By the proof of (4.3.3) this implies 

that C ^ FL has two trisecants given by L'^{s) and L'^{t). 
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4. TRISECANTS T O T H E K U M M E R VARIETY 

Genus Type of h%L^) Description of Corresponding 

curve trisecants to C —>̂  P L Results 

.0 Degree 8 surface triple 

along the curve 

(4.4.3) 

Union of a cone over the 

canonical curve and a singular 

3 Non-hyper 1 quadric ii L'^ = K{—2u) (4.4.7) 

Union of a cone over the 

canonical curve and a smooth 

quadric if ^ K{-2u) 

0 Smooth quadric surface (4.3.1) 

Hyper 1 Quadric cone (4.3.6) 

2 All of FL 

0 < 4 lines (4.4.9) 

Cone over canonical curve if 

L\s) i Wl{C) 

Non-hyper 1 Union of a cone over the 

canonical curve and the 

(4.4.12) 

4 rational ruled surface 5i , i 

\iL\s)^Wl{C) 

0 A unique line (4.3.2) 

Hyper 1 Cone over a rational 

normal curve in P^ (4.3.6) 

2 Sec2C 
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4. TRISECANTS T O T H E K U M M E R VARIETY 

Genus Type of h°{L^) Description of Corresponding 

curve trisecants to C —> P L Results 

A finite number of lines 

Non-trig 0 if G W3{C) - Wr{C), 

empty otherwise 

(4.3.3), (4.4.13) 

1 Cone over canonical curve (4.4.14) 

A finite number of lines 

0 if G W3iC) - W^{C), 

empty otherwise 

(4.3.3), (4.4.13) 

5 Trig Cone over canonical curve 

•dL\s)tW^{C) 

1 Union of cone over canonical 

curve and the rational ruled 

surface ^2,0 if L\s) G Wi{C) 

(4.4.15) 

A unique line 

0 if G W^iC) - M/i(C), (4.3.3) 

Hyper empty otherwise 

1 Cone over a rational 

normal curve in P'' (4.3.6) 

2 Sec2C 

A finite number of lines 

6 Generic 0 if G W3{C)-W^{C) , 

empty otherwise 

(4.3.3), (4.4.16) 

A unique line if 

> 7 Generic 0 

empty otherwise 

(4.3.4) 
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CHAPTER 5 

Maximal line subbundles 

The last two chapters considered the images of the extension maps: 

FUa,K-^SUc{2,K) 

in order to obtain information about subvarieties of SUc{2,h) whether i t was the g-

plane ruling, the variety of trisecants to the Kummer or the moduH space itself. This 

chapter however will concentrate on the fibres of ej,- For certain values of d the fibre 

e2^{E) over E G SUc{2, A) will correspond to the set of maximal line subbundles of 

E, denoted by WE- These turn out to be either zero or one dimensional and have a 

determinantal structure. By using the notion of a very stable vector bundle a complete 

description of whether these fibres are smooth or not is given (5.4.9), (5.4.10). The 

existence of a correspondence on WE will then be shown and a calculation of its degree 

will be given (5.6.2), (5.6.5). This in turn leads to information about multisecants to 

certain projective curves (5.7.4), (5.7.7). The final part of this chapter discusses the 

connectedness of the curve WE-

Before describing the sets WE scheme theoretically this chapter will start with a brief 

review of the theory of determinantal varieties and some results already known about 

maximal subbundles. 
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5. M A X I M A L L I N E SUBBUNDLES 

5.1. Determinantal Varieties 

Let 

h:V 

be a homomorphism of holomorphic vector bundles of rank n and m respectively over 

an analytic space X. 

The A:-th determinantal variety associated to h is supported on the set: 

Xk{h) = {p G X i rank h^ < k] 

= { p G X I A'=+ /̂ip = 0}. 

By choosing local trivializations for V and W one can formally define Xk{h) as the 

preimage of the set of m x n matrices with rank at most k under the map: 

f -.U —> M{m,n) 

for some open set U C X., in which case it can be seen that: 

codimXk{h) < {m — k){n — k). 

To calculate the class of the determinantal variety define: 

^P,q{at) = det 

( 

\«p-g+l 

\ 
«p+5-l 

where 

at= ^kt'" 
k= — oo 

is any formal series. Then: 

Proposition 5.1.1 (Porteous' formula). If Xk{h) is empty or has expected dimen­

sion the class of Xk{h) is given by: 

Xk^^m-k,n-k{ct{W-V)). 
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5. M A X I M A L L I N E SUBBUNDLES 

5.2. Preliminary results on maximal subbundles 

One of the most useful results concerning maximal line subbundles and one which 

will be used frequently throughout this chapter is a result by Lange and Narasimhan 

[LN, Prop 2.4] giving a bijection between between maximal line subbundles of a rank 

2 bundle and certain secant line bundles to the curve C. More precisely, = Oc{D) 

is a c/-secant line bundle with respect to the map (f)L : C Pi7°(C,/ \ L^A)* if the 

span of the effective, degree d divisor D has dimension d—1. li D = p + qis a, node or 

a cusp of <j>L{C) then the dimension of D is considered to be zero dimensional. Then: 

Proposition 5.2.1. Given a point (e) G FH^{C,KL'^S)* i.e. an extension 0 

—> i? —> Lk —> 0 with s(E) = Ci(iy^A) = d > 1, there is a canonical bijection 

between: 

1. Maximal subbundles of E different from . 

2. d-secant line bundles N = Oc{D) of C FH%C,KL^Ay such that (e) G D C 

FH%KL^Ay. 

The bijection can be seen expHcitly as follows: i f ^ is a maximal line 

subbundle of E then the composition ^ E —> LA is non-zero i.e. MLA = Oc{D) 

for some D G S'^C. It is easily checked that this is the same secant line bundle as in 

(5.2.1) and hence that M'^ = LA{-D), see [LN, Lem 2.3.] 

(5.7.1) will give an improvement of this result for bundles E with maximal Segre 

invariant. 

The following results describe how the dimension of the set of maximal hne subbundles 

WE C J^{C) varies as the Segre invariant s{E) is varied. First a result due to 

Maruyama [M] says that: 
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Proposition 5.2.2. 1. If E G SUc{2,h.) has Segre invariant g then diraWE = 1 

2. If E E <SZYc(2,A) has Segre invariant g — I then there is an open, dense subset 

of SUc(2, A) such that every vector bundle in this subset has only a finite number of 

maximal line subbundles. 

If 1 < s{E) <g-2 then [LN, Prop 3.3] gives: 

Proposition 5.2.3. Suppose 1 < m < g — 2 and deg A = m (mod 2). Then there is 

an open, dense subset of SU^{2, A) such that every vector bundle in this subset has 

exactly one maximal line subbundle. 

It should be noted that there are examples of bundles E for which WE does not have 

the expected dimension: 

Example 5.2.4. Let C be non-hyperelliptic of genus 3. Suppose E G SUc{2) has 

a maximal hne subbundle C E of degree -1 i.e. s{E) = 2 (thus we are in the 

situation of (5.2.2).) The following finds a J2(C')-orbit of 64 such bundles of SUG{2) 

which have a one dimensional family of maximal hne subbundles parametrised by C. 

By (5.2.1) maximal line subbundles of E (other than L~^) correspond to 2-secant hne 

bundles of C C Pz, ^ P^ passing through (e). If E is generic then projecting away 

from (e) maps C birationally onto a plane sextic. The 2-secant line bundles (which are 

distinct since C is non-hyperelliptic) then correspond to nodes of this curve, of which 

there are 7. Thus E has a finite number of maximal line subbundles as expected (8 

to be precise.) However, it can occur that C does not map birationally as above but 

that for some E it maps either: 

1. 2:1 onto a plane cubic; or 

2. 3:1 onto a conic. 

In which case E has a one dimensional family of maximal hne subbundles. 
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5. M A X I M A L L I N E SUBBUNDLES 

Suppose now that C is non-bielHptic so that the first case cannot occur. Now C C Pz, 

will map 3:1 onto a conic if and only if it lies on a quadric cone, thus L"^ = K{—2u) 

for some u G C by (4.4.8). By the argument above the bundles E G SUc{2) with a 

one dimensional family of maximal line subbundles clearly correspond to the vertices 

of these cones. Now consider the exact sequence: 

0 — ^ X - ^ — > E ^ L — ^ { ) . (1) 

This extension corresponds to some point in P^. The following gives the condition 

that (1) is the vertex of the quadric cone above. Twist (1) by a theta characteristic 

K, to obtain: 

0 — > O c { u ) — > K ® E — > K { - u ) — ^ 0 (2) 

By Serre duality the coboundary map H^[K[—u)) H^{Oc{u)) is an element of 

S'^H^{Oc{u)). The claim is that if (1) is the vertex of a cone then rank 6{E) = 0. 

To see this consider the map C —>• P̂  given by the complete hnear system |JC(—u)|. 

Pulling back sections of Opi(2) gives: 

H%F\0ri{2)) ^ H\CJ{\-2u)) ^ H%C,KL'). 

Thus taking the dual gives a surjection: 

H'iCKLy S^H''{F\Or^{l)y = S^H\C,Oc{u)). 

Thus S{E) can be identified (up to scalar) with the image of (1) under the map 

S. If (1) is the vertex of the cone then by definition 6 vanishes on (1) and hence 

rank 6{E) = 0. From (2): 

/i°(« ® J5) =/j°(w) + / j ° (A ' ( -« ) ) 

= 3. 

Now there exists a unique stable bundle W with canonical determinant and h°{W) = 3 

[La] i.e. the normal bundle of the curve C ^ J^{C). Thus there exists 64 stable 
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5. M A X I M A L L I N E SUBBUNDLES 

bundles E G SUc{2) such that WE has dimension one, namely the bundles: 

{E = K-^ ® W],^^(c) 

5.3. Fibres of the extension map 

In light of (5.2.3) where an almost complete description of maximal line subbundles of 

a bundle E with Segre invariant satisfying 1 < s{E) < g — 2 is given, the remainder 

of this chapter will concentrate on the Zariski open set SUQ^^{2,A) C Shlc{2,K) 

consisting of those bundles with maximal Segre invariant. By (1.2.1) this subvariety 

is dense in SUc{2, A). 

There are four cases to consider: 

s{E) 
g, if C i ( E ) + ^ = 0 (mod2); 

g-1, ifcr{E)+g = l (mod 2). 

The degree of the maximal Une subbundles are given hy -d where: 

^_s{E)-c,{E) 

In the four cases being considered this reduces to: 

d=i 

a if E G SUG{2) and g is even; 

fl-i 
2 ' if E G SUc{2) and g is odd; 

3-2 
2 ' if E G SUc{2,\) and g is even; 

2 ' if E G SUc(2,\) and g is odd. 

(3) 

Assume for the remainder of this chapter (unless otherwise stated) that d has been 

chosen (as above) such that the fibres of correspond to maximal line subbundles. 
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The extension map ed is clearly surjective onto SU^^^{2, A) and by Riemann-Roch: 

dimFUdA = 
3g - 2, if ci{E) +g^0 (mod 2); 

[3g-3, i{ci{E)+g = l (mod 2). 

Since dim<SWc(2) = dimSUc{2,1) = 35̂  — 3 the dimension of the generic fibre is given 

by: 

r 
1, i{ci{E)+g = 0 (mod 2); 

dimH^£; = < (4) 
0, if ci(E) + g = l (mod 2). 

Remark 5.3.1. li L ^ C E is a maximal hne subbundle then h'^{L ® E) = 1. This 

follows from the following result of Lange and Narasimhan [LN, Lem 2.1]: 

Lemma 5.3.2. Let E G <SZYc(2, A) be stable. Then the projection of the fibre ed^{E) 

into the Jacobian J'^[C) is injective. 

Thus the fibre e^\E) maps bijectively, via projection, onto its image WE C J'^{C). 

The following describes the sets WE scheme-theoretically i.e. as the zero locus of 

some section of a vector bundle on J'^{C): 

Proposition 5.3.3. Let k = ci{E) + g (mod 2). Then WE is the (3g - 3 - k)-th 

determinantal variety associated to the bundle map £ —^ 3" where: 

e, = Tr,{V ® a*{K ® E)) ; J = w.{{V ® a*{K ® E))\^ 

TT : C X J'^(C) J'^{C), cr : C X J'^{C) —> C are projections and T is the product 

divisor D x J'^iC) for some smooth divisor D G \K\. 

P R O O F . Set theoretically WE is given by: 

WE = {L^j\C)\h\C,L®E)^{)} (5) 
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Consider the following exact sequence on C: 

0 — > E — > K®E —> K®E ^ —^0. 

Twisting this exact sequence by a line bundle L G J^{C) and globahsing over J''(C) 

gives: 

0 (6) 0 — > V ® a * E — ^ V ® a*{K ® E) —> (V ® a*{K ® E)) 

Taking the exact higher direct image of (6) with respect to TT yields: 

0 7r , (P ® a*E) ^ £ ^ 3̂  ^ R^T,{V ® a*E) ^ 0. 

This exact sequence is functorial with respect to base change. For example let S be 

a point parametrising a line bundle L G J^(C'), v : S ^ J'^{C) the inclusion map, 

C x ^ ^ S ' a n d C x ^ ^ C projections. Then: 

{ic X vyv = L 

and the kernel and cokernel of v*8 v*J are isomorphic to (gi)*(i/ ® ^2-^) and 

(R'^qi)^(L®q;E) respectively (cf [ACGH, pl78] .) In particular v*R^K^{V®a*E) i.e. 

the restriction of R^ir^iV ® (T*E) to E G J'^(C) can be identified with H^{C, L ® E). 

Now rank J = h°{KL ® E ^) = ig - A and by Riemann-Roch and (3): 

rank £ = h°{KL ® E) = 2{2g - 2 + d) + ci(E) - 2{g - 1) 

r 

3g - 2, if ci{E) + g = 0 (mod 2); 

3^ - 3, if ci(E) + g = l (mod 2). 

Thus if A: = Ci (E) + g (mod 2) then: 

WE = {LeJ''iC)\h''(L®E) = l} 

= {Le J\C) \ h\L®E)^g-\ + k] 

= { L G J'^(C) I rank 7L < 4y - 4 - (^ - 1 + A;) = 3̂? - 3 - A;} 

i.e. WE is the (Ŝ f - 3 - A:)-th determinantal variety associated to 7. • 
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Remark 5.3.4. Note that the lower bound on the dimension of this determinantal 

variety is given by: 

dimiy^; >g- (rank£ - (3^ - 3 - fc))(rankJ -{3g-3- k)) 

1, iik = ci{E)+g = (} (mod 2); 

0, iikjCi{E)^-g = \ (mod 2). 

5.4. Smoothness of the fibres 

The main result of this section (5.4.9) shows that i f E is very stable then the space of 

its maximal hne subbundles WE is smooth. A sketch proof of this is given by Laumon 

Laul] . The following fills in the details of that proof and in the last part of this 

section a new result (5.4.10) concerning the smoothness of fibres over bundles that 

are not very stable is given. 

Definition 5.4.1. A stable vector bundle E G SUc{2,A) is said to be very stable 

if the space of sections H°{C,K (g) EndE) has no nilpotent elements i.e. if a €. 

H^{C,K ® EndE) then: 

a" = 0 < ^ a = 0 for all n G Z. 

Remark 5.4.2. The existence of such bundles was shown by Laumon [Lau2] in which 

he also shows that they form an open, dense subset of SUc{2,A). 

Proposition 5.4.3. E G SUc{2,A) is not very stable if and only if there exists a 

line subbundle L''^ C E with h^{C, KL''^A'^) ^ 0. 

P R O O F . (<==) Suppose there exists a line bundle L as above i.e. E hes in the extension 

0 -> LA ^ 0 and y3 G H°{KL-^A-^) - 0 is given by a non-zero 

homomorphism LA ^ KL~^. Let a be the composition E -» LA KL~^ '—^K®E 
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5. MAXIMAL LINE SUBBUNDLES 

i.e. a € H°(K ® EndE). Then it is clear from the following diagram: 

0 — ^ L " ^ —> E —> LA — ^ 0 

0 ^ KLA ^ K®E ^ KL-^ ^ 0 

0 K^L-^ K^®E^ K^LA ^ 0 

that a'̂  = 0 i.e. the composition KL~^ K ® E KLA is zero by definition. 

Hence E is not very stable. 

(=^) Conversely suppose that a G H°{C,K (g) EndE) - 0 with 0-̂  = 0 i.e. the 

composition E K ® E ^ ® E \s zero (where a' is induced by a.) Then there 

exists a line subbundle L~^ C E such that the image of E under a is contained in 

KL~^ and a' is zero on KL~^. From the exact sequence: 

0 —> KL-^ —>K®E^ KLA 0 

this implies that a' factors through KLA K^L'^ i.e. hP{KL-^A-'^) 7̂  0. • 

Definition 5.4.4. A first-order deformation of a line bundle L is a family of line 

bundles T -> C x Sp&c€[t\l{t'^) such that 1^7 = L, where i^: C C x Sptc<C[t]l{t^) 

is the inclusion map sending a point p G C to p x (t). 

The set of equivalence classes of first-order deformations of L is in one to one corre­

spondence with the tangent space TL{J'^{C)) after the identification: 

TL{J\C)) = Hom{S,{J\G\L)) 

writing SpecC[t\l{t'^) as S. 

The following describes the tangent space TL{WE) to WE C J '^(C) at the point L: 
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5. MAXIMAL LINE SUBBUNDLES 

Lemma 5.4.5. Let s e H°{C,L <^ E) be a section of L ® E. The set of tangent 

vectors G TL{J'^{C)) = i /^(C, Oc) such that s can be extended to a section s £ 

H°(C X 5", T ® E), (where T is the first-order deformation of L corresponding to ip) 

is given by: 

TL{WE) = H\C, Oc) \ f . s = 0 in H\C, L®E)}. 

P R O O F . Let {Ua] be an open cover for C, {gap} transition functions for L, {hap} 

transition functions for E, {sa} holomorphic functions on {Ua} representing s, and 

{'Pa/s} holomorphic functions representing the cocycle ip. Then transition functions 

for 7 are given by: 

ga0 = 5a/3(l + e(Pap) 

defined on (Ua 0 Ufi) x S. An extension of 5 to 5 is given locally by: 

satisfying Sa = gaphafjSp i.e substituting in for SQ., gap-, and comparing coefficients we 

have: 

s'a = Qaphap^apSp + gaphaps'p 

I.e. 

^apSa = s'^- Qaphaps'p 

where ipap^a is a cocycle representing the cup-product ip • s G H^{L ® E), and s'^ 

gaphaps'i) is the coboundary 8s'. • 

Lemma 5.4.6 (Hopf). Let A,B,C be complex vector spaces and let: 
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5. MAXIMAL LINE SUBBUNDLES 

be a linear map, infective on each factor separately. Then: 

dimu{A®B) > dim A + dim 5 - 1. 

Proposition 5.4.7. Suppose WE has codimension g — I + k. Then WE is smooth at 

L E WE if and only if the Petri map: 

fiL : L®E)® H°{C, KL-' ® E*) —^ H\C, K) 

is infective on each factor. 

P R O O F . (<(=) From the proof of (5.3.3) WE was described as the (3̂ ^ - 3 - k)-

th determinantal variety of a homomorphism of vector bundles t ^ J where k = 

c\{E) + g (mod 2) and £ and "J are vector bundles of rank 3g — 2 — k and 4^ — 4 

respectively over the Jacobian of C. For any L G WE we have: 

codimTLWE < codimW^ ;̂ = g — 1 + k. 

By (5.4.5) TLWE consists of those tangent vectors <p G H^{C,Oc) such that ip.s = 0 

for every s G i?°(C, L ® E). Denote the Serre-duahty pairing by ( , ) then: 

^.s = 0 ^ {(p.s, t) = 0 for all t G H'^{KL~'^ ® E*l 

{<p, s.t) = 0 for all t G H°(KL-^ ® E*) 

{ip, HL{S ®t)) = 0 for all t G H°{KL-^ ® E*). 

Thus TIWE — (Image PLL)^- Since ^XL is injective then by (5.4.6): 

codimTiW^^; = rank I^L > h°{L 0 E) + h^'iKL'^ ® E*) - 1 

= l + ig-l + k ) - l 

= g-l + k. 

Thus: 

g — 1 + k < codimTjr,W£; < codimH^E = p — 1 + fc. 
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5. MAXIMAL LINE SUBBUNDLES 

Hence equality holds throughout and WE is smooth at L. 

(=>) Now suppose WE is smooth at Z G WE then: 

codimTiW^s = codiniH-^i; = g — I -\- k 

i.e. the rank of the Petri map: 

fiL : H'^iC L®E)® H\C, KL-' 0 E*) — > H°{C, K) 

is equal to g-\+k. Since L^WE then h°{L®E) = 1 (cf (5.3.1)) and h^{KL-^®E*) = 

g — 1 -\- k so HL must be injective on each factor. • 

Lemma 5.4.8. Let E be very stable and L G WE- Then the Petri map: 

fiL : H\C, L®E)® H°{C, KL-' ® E*) H\C, K) 

is injective on each factor. 

P R O O F . Regard s G H°{C, L®E)aiidtE H°{C, KL'^ ® E*) as homomorphisms: 

L-^ ^ E • E^ KL-' 

and consider the composition: 

a : E - U KL-' '-^ K ® E. 

Suppose ®t) = 0 i.e. L~^ —> £' KL~^ is the zero homomorphism, then: 

a':E—^ KL-^ '-^ K ® E ^ K'L'^ ^ K^ ® E 

is zero. Since E is very stable this implies that a = 0. 

Now suppose that t is non-zero. Then the image of E is the hne bundle KL~^{—D), 

where D is the divisor given by the zero locus of t. Since a = 0 this means 5 = 0. 

Now suppose s G H^{C, L® E) is non-zero. Since KL~^ "-^ K ® E is an injection, i t 

must be the case that ^ = 0 if the composition a is to be zero. • 
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Corollary 5.4.9. I f E G <SW""'̂ (2, A) is very stable and WE has codimension g — l + k 

then WE is smooth. 

P R O O F . Follows immediately from (5.4.7) and (5.4.8). • 

The rest of this section will be concerned with whether the converse of (5.4.9) is true 

or not. 

Proposition 5.4.10. Suppose E G <SW"''̂ (2, A) is not very stable and WE has codi­

mension g ~ 1 -i- k. Then WE is not smooth if and only if there exists L E WE 

with: 

h°{C,KL~^A-^)j^O. 

P R O O F . {<=) Since L G WE there exists an extension: 

0 — , L-^ —> E —> LA — ^ 0. 

Twisting this by KL~^A~^ and taking the long exact cohomology sequence gives: 

0 _ H\KL-^A-^) H^iKL-^ ® E*) H^iK) ^ . . . (7) 

where the last map is given by some non-zero section s G H°{C,L ® E). Since 

h°{KL-^A-^) / 0 then it follows from (7) that: 

{s} ® H^'iKL-^ ® E*) H%K) 

is not injective i.e. the Petri map is not injective on each factor. Thus by (5.4.7) WE 

is singular at L. 

( ^ ) Now suppose that for all L G WE, h°{KL-^A-^) = 0 then from (7): 

{s} ® H\KL-^ ® E*) —^ H\K) 
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is injective i.e. {s,t) 7̂  0 for all t G H°{KL-^ ® E*) - 0. Furthermore: 

(s,i) ^ 0 V non-zero t < ^ {cs,t) 7̂  0 V non-zero t and Vc G C 

(5', t)i^Q V non-zero t and \^ s' e H\L ® E) - Q 

since i7°(iy ® E) = Chy (5.3.1) i.e. the Petri map HL is injective on each factor for 

all L G WE and hence is smooth by (5.4.7). • 

Remark 5.4.11. Note that by (5.4.3) E is not very stable if and only if there exists 

some line subbundle M'^ C E with h^iKM-^K'^) ^ 0. (5.4.10) says that WE is not 

smooth if and only if the line bundle is maximal. 

Example 5.4.12. Suppose C has genus 2 and consider the 4:1 map fUo SUc{2,1) 

(cf (2.2.3).) By (5.4.3) F G SUc{2,1) is not very stable if and only if h^KL-^A'^) 4^ 

0 for some line subbundle L"^ C F i.e. degL = 0 and L^A = Qc(x) for some a; G C. 

The corresponding fibre of PI/Q - > J ° ( C ) maps to a line of not very stable bundles 

of SUci^-,')^)- Varying a; G C gives the locus of not very stable bundles as a ruled 

surface and this ruled surface is precisely the ruled surface of special lines of SUG{2, 1) 

or the locus of bundles which have < 3 maximal line subbundles. See [0] for more 

details. 

Now consider the extension map fUi SUc{2) for a curve C of genus 2. The 

cohomological condition of (5.4.3) gives that E is not very stable i f and only i f 

is a line subbundle of E for some theta characteristic K. Again the branch locus is 

precisely the locus of not very stable bundles and the 16 fibres P „ map via ti to the 

classical (16)$ configuration of the Kummer surface K, C SUc{2) = P^. See [0] for 

more details. 

Example 5.4.13. Consider the case of the 8:1 map PC/j ^ SUc{2) iov g ^ 2> (cf 

(5.2.4)). Suppose that E G SUc{2) is not very stable and that there exists L G J^{C) 
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satisfying the condition of (5.4.10). The following shows explicitly that ei is branched 

at such an E. Now L G WE and: 

h°{KL-^) ^ 0 ^ h%L^) + 0. 

Thus the copy of the curve in the fibre P L , (given by the complete linear system 

iTX^I), has a double point. By (5.2.1) maximal subbundles of E other than L~^ 

correspond to 2-secant line bundles of this curve passing through (e). By projecting 

C C IPL from (e) onto a planar curve and counting double points i t is seen that there 

are seven such line bundles (cf (5.2.4)), but this includes the original double point of 

the curve (which does not correspond to a maximal line subbundle.) Thus in total 

(after counting L~^) E has seven maximal line subbundles. 

I f Cx{E) - f ̂  = 0 (mod 2) and L G WE then by Riemann-Roch the cohomological 

condition of (5.4.10) holds i f and only i f X^A G VFj(C). 

Similarly if C\(E) -\- g = \ (mod 2) and L G WE then it holds if and only if L^A G 

I ^ , - i ( C ) ^ 0 . 

So if A; = Ci(E) + g (mod 2) then the branch locus of Pf/^ ^ SU^^\1, A) is an open, 

dense subset of the image of the subvariety: 

w"'=^'UiPic:Pf/d , L^AEW]-_1{C). 
L 

Example 5.4.14. In the case = 3, A = Oc the degree of the branch locus fUi 

SUc{2) can be calculated easily. Since ei is 8:1 the degree is given by: 

dege,{W) = ^CrielCf.u*sq*{0) 

where J^{C) ^ P{C) is the square map and u is the projection PJ/j —> J^{C). By 

(3.2.7): 

dege:(W) = ^(2a-7/)^40 

87 



5. MAXIMAL LINE SUBBUNDLES 

Using (3.2.3), 77̂  = - 1 and the identity: 

V' = c,{U^)rJ^ - C2{Ury + Cs{U,)ij - c,{U,) 

this reduces to: 

degei(W) = i ( 2 ^ - r / ) ^ 4 ^ 
o 

= l{-v' + 5v\2e)-lOr]^{2ef).i0 
o 

= ^ [ ( c ^ - C 2 ) - 1 0 ^ C i -f40^'].4^ 
8 

= 4̂ 3 

= 24. 

Remark 5.4.15. Unlike the genus 2 case (5.4.12), where the branch locus is precisely 

the locus of not very stable bundles, the calculation above shows that this is not the 

case for genus 3'. While the branch locus above corresponds to not very stable bundles, 

E G SUc{2) is also not very stable i f it occurs as an extension: 

^ E 

for any theta characteristic K. The locus of such bundles is the 64 translates (by 

the 64 theta characteristics) of the generahsed theta divisor ©2,4 C SUc{2,K), i.e. 

hyperplane sections of SUc{2) C P^, all of which have degree 4. 

5.5. Degree of canonical line bundle on curve fibres 

This section calculates the degree of the canonical line bundle Kw^ for the smooth 

curve of maximal fine subbundles of E ^ SUc{2, A) and so its genus if i t is connected. 

First we shall need to calculate the Chern character of the bundle £ defined in (5.3.3): 

Lemma 5.5.1. Let E be a vector bundle of rank r on C, x and a the projections 

C X J'^(C) ^ J'^iC), C X J^{C) C. Then the Chern classes of the bundle £ = 
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7r,('P ® a*(K ® E))' are given by: . 

c.(^) = ( - l ) ' • ^ f 

P R O O F . The following is a sketch proof as it is very similar to the calculation done 

in (3.2.2). Let £ = 7r*jP and suppose that deg{K ® E) = m. Then by Grothendieck-

Riemann-Roch and using the same notation as in (3.2.2): 

ch{E) = ch{mF) = Tr4ch{F).td{C X J\C))\ 

= 7r4ch{V).ch{a*{K ® E)).td{C x J\C))] 

= 7r4(l + + ^ - m r + mi).{l + (1 - g)i)] 

—'K*[{r-\-m - rg-\-dr)(r-\-<;r - r^6\ 

= [rd -\-m — r{g — 1)) — r9 

Note that rd m - r(g - 1) = h°{KL ® E) is the rank of £ where L G J'^{C). The 

result then follows from a calculation similar to that in (3.2.3). • 

Lemma 5.5.2. Let W ^ X be a vector bundle on a complex manifold X ' with s G 

H^{X, W) a non-zero section. Suppose (s) — Y C X is the smooth zero locus of s 

with codimxY = rank W. Then: 

• NY/X = W 

P R O O F . Let {gap} be transition functions for W and holomorphic sections 

representing s G H°{X, W) such that: 

Sa = gaps p. 

Then: 

dsa = dgapsp + gapdsp 
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and this is everywhere non-zero since Y is smooth. Thus along Y we have dsa = 

gapdsp and so {dSa} corresponds to a non-zero section ds G H°{Y, {Tx ® W) ^ ) i.e. 

a non-zero homomorphism: 

ds : Tx W 

Now ker ds = Ty so we have the- exact sequence: 

T y ^ T x W 
Y Y 

and since Tx y/Ty = Ny/x we have the injection: 

Ny/x ^ W 

The result then follows from the fact that rankNy/x =^ codim^F and codimA'F = 

rankPK by hypothesis. • 

Proposition 5.5.3. Suppose WE is smooth. Then the degree of the canonical line 

bundle of WE is given by: 

degKw,=2^+\g~l). 

P R O O F . Recall from the proof of (5.3.3) that (for Ci{E) + g = 0 (mod 2)) WE is the 

(3̂ ^ — 3)-rd determinantal variety associated to the homomorphism of vector bundles: 

i.e. the zero locus of a section of the bundle ^ £* (8> A^^ ^ 9̂ - We wish to use 

(5.5.2) but i t cannot be used directly since: 

Instead, let T P(£) be the tautological line bundle on P(£) and consider the 

following diagram: 
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T-^®p*J £*®3^ 

i i 

WE C P ( £ ) ^ AC) D WE 

w here: 

WE = {(L, I) G P ( £ ) \LeWE,lC kevjL} 

= { i L j ) e m \ n L J ) ) = o} 

and 7 G i r ° ( P ( £ ) , T-^®p*J). Note that 1^^ S VF^j since I^i? is smooth and h°{C, L® 

E) = 1 for all L^WE (5.3.1.) 

The codimension of WE and the rank of T~^ ® p*7 now coincide. By (5.5.2) the 

normal bundle of WE C P(£) is given by: 

^w,m)- Hom (r , / :r) WE 
4|f ^ 

WE 

The. degree of JCVFE is obtained from the exact sequence: 

-WE WE 

I.e. 

where x]^^ is the cohomology class of WE C P ( £ ) . Since 

ci(rp£) = Ci(iJom(r,/7*£/T)) 

then: 

ci(Tp(£)) = c i ( r - i ) • rank(/.*£/r) + Cj (/.*£/T) • rankT-^ 

= (3^ -3 )A + p * c i ( £ ) - c i ( r ) 

= ( 3 ^ - 2 ) A + A i ( £ ) 

where A = ci{T~^). Since 5" is a trivial bundle of rank 4^ — 4 over J'^(C) then: 

c i (^) = ca(r-^®/>*J) = (4^ -4 )A 
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and: 

c i ( r ^ j = ( ( 2 - 5 ) A + A i ( £ ) ) - v ^ ^ (8) 

The class of WE is calculated using Porteous' formula (5.1.1): 

r,^^=Am-k,n-k{ctip*3'-T)) 

= A 4 , - 4 , l ( Q ( / 9 * J - r ) ) 

= A i , 4 , - 4 ( Q ( r - p*^)) (9) 

= A i , 4 5 - 4 ( - A i ) 

where m = rank />*3", n = rankT, and k = 0. Via the Gysin homomorphism: 

p. : i7*(P(£), Z) H*-^'+\j\C), Z) r = rank £ 

/ j ,A3f-3+ ' = Q ( - £ ) (cf [ A C G H , p318] ) and so applying p^ to (8) we obtain: 

c^{Tw,) =̂  P.iciiTi^J) = (2 - g)p*^''-' + cr{E)pX'-' 

= ( 2 - i r ) c , ( - £ ) - f c , _ i ( - £ ) . c i ( £ ) 

= ( 2 - ^ ) ^ + P ^ ( - 2 ^ ) (by (5.5.1)) 

= ( 2 - ^ ) 2 ^ - 2 ^ ^ 

= 2^+^(1-^). 

Thus deg KWE = 2^+^^' - 1) as asserted. • 

Remark 5.5.4. By (9) the class of WE is given by: 

•4 

( ^ - 1 ) ! 

(This is also proved in [Laul].) 
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Remark 5.5.5. I f WE is connected then (5.5.3) immediately gives the genus of WE 

as: 

^(1^^;) = 1 + 2^ (^ -1 ) . 

When WE is finite the above calculation can be used to give its degree. This is well 

known and has been calculated in [G] for example. 

Proposition 5.5.6. If E is very stable and ci{E) -\- g = 1 (mod 2) then E has 2̂  

distinct maximal subbundles. 

P R O O F . Since E is very stable then by (5.4.9) WE is smooth. Following the method 

of the proof of (5.5.3) the class of WE just needs to be calculated. By Porteous' 

formula: 

r]WE = Am-k,n-k{ct{p*3' - T)) 

= X^a-i 

where m = xankp*^' = 4̂ ^ — 4, n = rankT = 1, and k = 0. This time the Gysin 

homomorphism gives: 

P*^"^-''-' = c , ( -£ ) 

Thus by (5.5.1), /j^A^s-i = c,{-t) = M = 2^. • 

Example 5.5.7. It has already been seen (2.2.3) that for 5 = 2 and general E G 

SUc{2,1) the fibre of VUo <SWc(2,1) consists of 2^ = 4 points. For ^ = 3 and E G 

SUG{2) a general point (i.e. a very stable vector bundle) the fibre of fUi —> SUc{2) 

consists of 2^ = 8 points (cf (5.2.4)). 

Now consider the curve fibre of P f / i —> SUc{2) for genus two curves. In this case 

WE ^ {L E J\C) I h°{L ® E) ^ 0} is a 20 divisor. If it is smooth (which it is if 

E is very stable) then the degree of its canonical bundle is given by the adjunction 
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formula: 

KWE = {Kj ® [20]) 

i.e. degKwE = 40^ = 8 as expected from (5.5.3). 

5.6. Correspondence on curve fibres 

The motivation for this section comes from the theory of Prym-Tyurin varieties; 

namely that i f X is a smooth, projective curve and G : X X a. symmetric corre­

spondence on X (inducing a symmetric endomorphism i on J(X)) satisfying: 

+ (m - 2)e - (m - 1) = 0 

for some m G Z then im (̂  — 1) is a Prym-Tyurin variety of J(X) (see [LB] for more 

details.) 

The following shows that there is such a correspondence on the curve of maximal 

subbundles of i? G SUc{2) when the genus of C is 2. The correspondence is then 

shown to exist for higher genus and its degree is calculated. Unfortunately it has 

not been possible to find a polynomial identity as for the genus 2 case. However the 

correspondence does have a nice geometrical interpretation in terms of multisecants 

to projective curves. 

First consider the smooth projective curve of maximal line subbundles of a very 

stable vector bundle E over a curve of genus 2. This curve is supported on the set 

WE^{Le J\C) I / i ° ( I 0 ^ ) 7̂  0) so by Riemann-Roch: 

L^ WE ^ KL-^ G WE. 

This defines a symmetric correspondence of degree one on WE explicitly given by: ' 

Q : W E ^ WE 

L ^ KL~\ 
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C satisfies the polynomial identity — 1 = 0 and if WE C J^{C) lies away from 

the 16 theta characteristics of C then the involution Q defines a 2:1 unbranched map 

WE — X onto a curve of genus 3 (corresponding to the 2:1 map onto a smooth planar 

quartic in the Kummer surface.) If i is the induced involution on the Jacobian J (WE) 

then P =^im (z — 1) is the Prym variety of the double cover WE ^ X. 

The question arises whether the correspondence C can be generalised for curves C of 

higher genus. Let E be very stable, ci{E) -j-g = 0 (mod 2) and WE the smooth curve 

of maximal line subbundles of E. Consider the following subset of WE X WE'. 

^ = {(L,M)eWExWE\ h\C, LMA) > 1} , LMA G J'{C) 

= {(L,M) eWsxWsl h°{C,KL-^M-^A-^) > 1} 

i.e. 2) is given by the intersection of Wg-2{C) with the image of WE X WE under the 

composition: 

W E X W E ^ J'{C) —^ J ' - \ C ) 
(10) 

{L,M) h-^ LMA ^ KL-^M-^A-^ 

This construction is easily seen to reduce to the correspondence described earlier for 

g = 2. 

Remark 5.6.1. We assume for the remainder of this and the next section that E G 

SUc{2, A) is generic in the sense that the image of WE X WE under the composition 

(10) does not intersect Wg_2{C). To see that a generic bundle has this property we 

count dimensions: first suppose that A = ,0c (a similar calculation holds if A = 

Oc{p)-) Fixing L G J^^'^{C) there exists (for generic C) a {g — 6)-dimensional variety 

W C J^/'(C) such that for every M G we have KL-^M'^ G Wl_2{C). The 

bundles (or extensions) in the fibre of the projective bundle Pt4/2 —> J^^^{C) over L 

(denoted by P ^ = P^ff-^) which do not satisfy the assumption are those that occur 

in the extension space P M - By (5.2.1) each of these extensions lies in the linear span 
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D CFM for some D G \LM\. Since D = P^-^ and h°{LM) = 3 the locus of such 

extensions is {g -\- l)-dimensional. Now varying L G J^^'^iC) we see that the locus of 

bundles of SUc{2) satisfying the assumption has dimension (̂ r -|- 1) -|- (^ — 6) + = 

3^ - 5 < dimSt(c{2). 

Now: 

dimH^£; X WE = codimj(c)W5-2-

Hence D has expected dimension zero. In fact: 

Proposition 5.6.2. Suppose E is very stable. Then the subset D C WE X WE has 

codimension one. 

Lemma 5.6.3. If E is very stable and L G WE then KL~'^A~^ ^ Oc{D) for any 

D G S'-^C. 

P R O O F . This is just (5.4.3) restated. • 

P R O O F O F (5.6.2). If the image of {L,M) G WE X WE under the composition (10) 

lies on Wg-2{C) then KL~^M~^A~^ = Oc(-D) for some divisor of degree ^ - 2 on C 

Thus by fixing L G WE the problem may be re-formulated by asking: 

Do there exist divisors D G S^'^C for which M = KL-^A-^{-D) is an element of 

WEI 

i.e. divisors D G S^'^C for which h%C, KL'^ A - \ - D ) ® E) / 0? 

Let pi-.Cx S^-^C and p2:C X S^-^C ^ S^'^C be projections onto the first 

and second factors and consider the exact sequence: 

0 —> p*{KL-^A-^ ®E)® —^PUKL-'A-' ® E) 
(11) 

—^ p\{KL-^A-^ ®E) 
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where A C C x S^~'^C is a universal divisor. Now take the exact higher direct image 

sequence of (11) with respect to p2 to obtain: 

0 ^ {p2Upli^<L-'A-^ (g) ® A - ^ ) ^ A - ^ - B 

Note that: 

h°{KL-^A-^ ® E ) - h\KL-^k-^ ®E) = g - 2 

but h\KL-^A-^ ® E) = h%LA ® E*) = h°{L ® E) = 1 since L € WE- Thus 
A = {P2UPI{KL-'A-'®E)) 

is a vector bundle on S^~^C of rank g — I-

'B = (P2UPI{KL-'A-'®E)\J 

is a vector bundle of rank 2g — 4 on S^~'^C, its fibre over D £ S^~'^C being identified 

with the vector space H^{F/F{-D)) where F = KL'^A-^ ® E. As in (5.3.3) this 

construction is functorial with respect to base change and: 

YL = {D e S'-^C I h\KL-^A-\-D) ® E ) ^ l ] 

={D e S'-^C I h\KL-^A-\-D) ® E ) = g - l } 

= {D G S'-'^C I rank<^o = ^ - 2} 

= {D e S'-'C I rank7,, = ^2g - i) - {g - 2) = g - 2} 

i.e. YL is the {g — 2)-nd determinantal variety associated to A !B. If YL is 

non-empty then the codimension of YL satisfies the inequality: 

codims9-2c>L < [{2g - 4) - (5 - 2)][{g - 1) - (g - 2)] = g - 2 

and X) 

dim 2) 

^ is given by the image of YL under the Abel-Jacobi map so 

{L}XWE 
> 0. Equality holds if 2) 7^ {L} x WE- Since YL is closed this 

{L}XWE 

is the case if there exists a single point of {L} x WE whose image via (10) does not 
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lie on Wg-2{C). By (5.6.3) this point is given by (L,L). It just remains to show that 

YL is non-empty. This follows from the following result (5.6.5) calculating the class y 

on which YL is supported. • 

Remark 5.6.4. I t follows from (5.6.1) and the fact that dimD 

dim YL = 0 when YL is non-empty. 

= 0 that 
{L}XWE 

Again let the correspondence given above be denoted by C where: 

e-.WE—^WE 

{M eWE\ h\C,LM^) > 1} 

Proposition 5.6.5. The degree of the correspondence G is given by: 

dege = l + 2'-'(g-2). 

P R O O F . Fix L G WE- The cohomology class of YL C S^~'^C defined in the proof of 

(5.6.2) gives the number of divisors D € S^~'^C such that: 

M = KL-^A-\-D) e WE (12) 

whereas the degree of C is given by the number of line bundles M. By the assumption 

in (5.6.1) these numbers are equal. 

Now YL- is empty or has expected dimension (5.6.4) and so its class is given by 

Porteous' formula (5.1.1) i.e. 

2/ = A , _ 2 , i ( Q ( S - y i ) ) . 

Now A is trivial of rank g — I and to calculate the Chern polynomial of: 

use the Grothendieck-Riemann-Roch formula: 

c/i((/92)!S' |^) • td{S'-''C) = {p2).{ch{'S>'\^) • td{C X S'-^C)) (13) 
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The calculation of this Chern character is similar to [ACGH, p340, Lemma 2.5.] From 

the exact sequence: 

and the fact that deg KL'^A'^ 0 E = 3g - 4: 

chCB'l^) = chCB') - ch{'B') • ch{-A) 

= {2 + {3g - 4)0(1 - e-') 

where ( is the class of the puUback of a point, and 6 is the class of the universal 

divisor A C C X S'-^C . By [ACGH, p 338] : 

S = {g-2)C + c;-{-x 

where q is the class of the diagonal in C x C, and x is the class oi Cq = q + Cg-z C 

S^'^C , q e C. The following relations hold: 

,' = -2^9 , ^-^^^ = ^ = 0 

where 9 is the puUback of the class 9 e H^{JiC),Z) to S^-^C. Thus: 

ch{3'\j = [2 + (3^ - 4)e][l - e-(^-^)«—1 

= [(2 + (3^ - 4)e][l - (1 - (5 - 2)0(1 - C - ^9)e-^] 

= 2 + (3^ - 4)e - (2 + ^0 (1 - ? -

Substituting into (13) (and canceUing td{S^~'^C) terms) gives: 

chCB) = (,92)4(2 + (3^ - 4)e - (2 + ^0 (1 - ? - me-n • (1 + (1 " 9)0] 

= {p2).[2 + {g- 2)e + ( -2 + {g- 2)C + 2<i + 2^9)e-^] 

= {g-2) + [{g-2) + 29]e~'^. 

Now (g — 2) + 29 is the Chern character of a vector bundle G of rank g — 2 having 

Chern polynomial ê *̂ . So [[g — 2) -|- 29]e~^ is the Chern character of the tensor 
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product of such a bundle with a line bundle having first Chern class —x. If 

c,{G)=e'''=n ( 1 + m 
i=l 

then: 

c m J f i i i - {x - m 
i=\ 

(i-xty-'U 1 + 

l - x t j 

Now y - A5_2,i(ci(S - A)) = coefficient of t^-^ in Ci(S). 

cCB) = (1 - x t y - ' + {2te){i -xty-' + ••• + ^ ^ - ^ ( i - ^ t ) + j^-z^ + ••• 

Thus: 

coefficient of t^-' = {-iy-'x^-^+{-iy-\2e)x^-^ + ... 

{29y-' {2ey-'_ ^^^^ 
• • • " • " / _ .->M I "T ( 5 - 3 ) ! ^ ' ( 5 - 2 ) ! 

If u : S^-'^C J^~^(C) is the Abel-Jacobi map then u^x = [Wg^s] = § and more 

generally: 

u,x' = [Wg_2-i] = j ^ ^ ^ for I > 0. 

Thus applying u* to (14) gives: 

( 5 - 1 ) ! " (5-3)!3! (5-2)!2! 
S-2 

= ( - i r ^ E ( - 2 ) 
A:=0 

kl9 

= ( - l ) - ^ [ ( l - 2 ) ^ - i ^ ^ ^ - ( - 2 ) ^ ] 

= 1 + 2^-^g - 2' 

= l + 2^-'ig-2) 

as asserted. • 
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5.7. Multisecants to projective curves 

We start this section with an improvement of the bijection of Lange and Narasimhan 

(5.2.1) for rank 2 bundles with maximal Segre invariant: 

Proposition 5.7.1. Given a point (e) 6 FH'^{KL'^A)* corresponding to a generic 

bundle E of maximal Segre invariant, i.e. s{E) = c\[L^A) = d = g or g — 1, there is 

a canonical bijection between: 

1. Maximal line subbundles C E (different from .) 

2. Divisors D G S'^C such that (e) eD C FH%KL^A)*. 

P R O O F . Since E has maximal Segre invariant then generically it will have more than 

one maximal line subbundle (cf (5.2.2), (5.5.6).) Suppose C E is such a line 

subbundle then by (5.2.1) this corresponds to the Hne bundle LMA and (e) E D C 

FH°(KL'^A)* for some D G \LMA\. We show that D is the unique divisor from this 

linear system with this property. First tensor the extension (e) by M: 

0 ML-'^ —^M®E^ LMA —> 0. 

Since M ^ L taking the long exact cohomology sequence gives: 

0 —^ H\M ® E ) ^ H\LMA) ^ H\ML-^) ^ ... 

where the coboundary map is induced by the element (e) G H^{L~'^A~^). By (5.3.1) 

h^[M ® E) = \ so the coboundary map 6{e) has one-dimensional kernel. This means 

that (e) is in the kernel of the map: 

PH^KL^A)* PH\KL^A(-D))* ^ FH\ML-^) 

for a unique D G \LMA\ i.e. (e) G :D C FH\KL''A)*. • 

Definition 5.7.2. By a d-secant C ^ P" we shall mean an effective divisor of 

degree d on C spanning a (d — 2)-plane. 
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Lemma 5.7.3. Let C rH^KNf ^ f2g-2-k ^ ^^^^g ^^^^^ g > 3 and 

degree 3g — 2 — k (k = 0,1) and suppose that N ^ WgI^{C). Then the number of 

(g — k)-secants to C is 1 — k. 

P R O O F . C FH°{KNy = r^9-2-k ^ _ ^^.gecant given by a divisor D if and 

only if: 

h°(I<N{-D)) = (2g - k - l ) - { g - k - l ) 

= 9 

i.e. Oc{D) = iV. By hypothesis ^ Wlzt{C) so if it = 1 then C ^ FH°{KNy has 

no (g — l)-secants and if A; = 0 then i t has a unique g-sec&at. • 

Proposition 5.7.4. Let C FH°{KNy = F^^'^ be a curve of genus g > 3 and 

degree 3g — 3 with N € J^~^{C) a generic point (in particular N ^ Wg-\{C).) Then 

the projection of C from a generic point (e) € P^ "̂̂  gives a curve C p25-4 ̂ -̂̂ ^ 

exactly 2^ — 1 (g — Ij-secants. 

P R O O F . By (5.7.3) the curve C FH°(KNy has no (g - l)-secants. So all (g-l)-

secants to C —>• P^̂ '"̂  come from divisors D of degree g — 1 spanning a (5 — 2)-plane 

in FH°{KNy and passing through (e). We now identify FH°{KNy with the space 

of extensions P^^(Z,~^A~^) by choosing L and A appropriately i.e. A = Oc{p) for 

any p G C and L^ = N{—p) if g is even; and A = Oc and L'^ = N ii g is odd. By 

a generic A'" G J^~^{C) we shall mean an Â  such that the locus of not very stable 

bundles in the extension space FH'^(N~^) = P^s-s ĵ ĝ g codimension one or more. If 

this were not the case for generic A'' then via the finite to one extension map: 

FUd^SUc{2,A) 

( d — ^-y^ where i = degA) one sees that the locus of not very stable bundles in 
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SUc{2,A) has dimension [2g — 2>)-{- g = dim<SWc(2, A), contradicting (5.4.2). In 

particular N ^ Wg-i{C) otherwise every extension of FH^{N~^) would correspond 

to a not very stable bundle (cf (5.4.3).) Now (e) G ¥H^{L~'^A~^) is chosen generically 

such that the corresponding bundle is very stable, has maximal Segre invariant — 1 

i.e. (e) ^ SeCg^2C (cf (2.0.3)) and has a finite number of maximal Hne subbundles (cf 

(5.2.2).) Then by (5.7.1) divisors D of the type above are in one to one correspondence 

with maximal line subbundles of E (other than L~^). By (5.5.6) there are 2̂  — 1 of 

these. • 

Example 5.7.5. If C has genus 3 then using (5.7.4) we recover the fact that the 

projection of C FH°{KN)* = away from a generic point of gives a planar 

curve of degree 6 with 7 nodes. 

If C has genus 4 then (5.7.4) says that the projection of C FH%KN)* = F^ away 

from a generic point of F^ gives a curve C —> of degree 9 with exactly 15 trisecants. 

This is backed up by a classical result of Berzolari [LeB] which says that a curve in 

P^ of genus g and degree d has: 

V 3 / 

trisecants. 

The correspondence C on the curve of maximal line subbundles given in section 5.6 

has a nice geometric interpretation in terms of -̂-secants to projective curves. By 

(5.7.1) every maximal line subbundle of E (other than L'^) is given by a divisor D 

such that deg I > = ^ and D = P^-^ passes through (e) G PL- If M , G WE then the 

corresponding divisors satisfy: 

LMA = OciD) and LNA = OciD'). (15) 
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Proposition 5.7.6. M,N ^ WE are in correspondence with each other if and only 

if D + D' CFL spans a hyperplane. 

P R O O F . By (10) and (5.6.1) Â  G G{M) if and only if h°{KM-^N'^A'^) = 1. 

Substituting in (15) this is equivalent to: 

h\KL''A{~D - D')) = 1 

i.e. D-\-D' spans a hyperplane in FH\KL'^Ay = P^. • 

Proposition 5.7.7. Let C FH\KNy = P^^-^ ^ ^.^^^^ of genus g > 3 and 

degree 3g — 2 with N G J^{C) a generic point (in particular N ^ Wg(C).) Then 

projection of C from a generic point (e) G P̂ ~̂̂  gives a curve C —> P^^"^ with a 

one dimensional family of g-secants. If this curve of g-secants is connected then it 

has genus 5' = 1 + 29[g — 1). Moreover if C is generic then a generic g-secant meets 

exactly 1 + 2^''^{g — 2) other g-secants away from the curve. 

P R O O F . Again identify FH°{KNy with the space of extensions FH\L-^A-'^) taking 

A = Oc{p) for any p G C and L^ = N(-p) if g is odd; and A = Oc and L^ = N if 

g is even. By a generic N G J^(C) we shall mean an N such that the locus of not 

very stable bundles in the extension space FH^{N~^) = P^^-^ codimension one 

or more. I f this were not the case for generic iV then via the extension map (which 

generically has one-dimensional fibre): 

FUd^SUc{2,A) 

[d = ^ where i = degA) one see that the locus of not very stable bundles in 

SUc{2,A) has dimension (2^ - 2) + 5 - 1 = dim<SZYc(2, A) contradicting (5.4.2). In 

particular A'̂  ^ ^gi^) otherwise every extension of FH^{N~^) would correspond to a 

not very stable bundle (cf (5.4.3).) By a generic point (e) G FH^{L~'^A~^) we mean an 

extension corresponding to a very stable bundle E with Segre invariant g. By (5.7.1) 
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and (5.7.3) there is a one to one correspondence between ^f-secants to C —»̂  jp29-3 ^^^ j 

maximal hne subbundles of E. By (5.5.5) this is a curve of genus 1 -|- 2^(g — 1) (if 

connected.) 

We now wish to apply the correspondence G to this curve of 5̂ -secants so suppose also 

that C and E satisfy the conditions of (5.6.1). By (5.7.6) two maximal hne subbundles 

,N~^ of E are in correspondence with each other i f and only \i D + D' spans 

a hyperplane in FL- Projecting from (e) shows the corresponding ^-secants of IP^ -̂s 

meet. Either they meet away from C which will be the case generically or D and D' 

share a common point p i.e. the hyperplane D + D' cuts the curve C —> FH^(L~'^A~^) 

with multiplicity 2 at p. Thus by (5.6.5) the number of ^-secants meeting a generic 

^f-secant away from the curve is given by the degree of the correspondence C i.e. 

l + 23-\g-2). • 

Example 5.7.8. If = 3 and E G <SZYa(2,1) then the one dimensional family of 

maximal line subbundles of E gives a one dimensional family of trisecants to a curve 

of degree 7 in P^. (5.5.5) says that if connected this curve of trisecants has genus 17. 

This is backed up by a result of Gruson and Peskine [GP, Thm 3.6] which says that 

for a smooth space curve of genus g and degree d the curve of trisecants to it has 

geometric genus: 

g' ^ ^-{d - 4){d - 5)(2^^ -3) + | ( d^ -9d + 2A~ 2g). 

Moreover a generic trisecant of C —> P^ meets 5 other trisecants away from the 

curve. By projecting away from a point on the curve and counting double points it 

is seen that there are 7 trisecants through every point of C. Thus in total there are 

6-|-6-|-6-|-5 = 23 trisecants meeting a generic trisecant. 

105 



5. M A X I M A L L I N E S U B B U N D L E S 

5.8. Connectedness of fibres 

Section 5.4 described exactly when the fibres of the extension map : FUd —> 

SUc{2,A) were smooth and section 5.5 calculated the degree of its canonical fine 

bundle in the curve fibre case, which in turn gives the genus of WE if it is connected. 

This section gives a list of conditions that are sufficient for these curves to be con­

nected. First note that in the genus 2 case WE is clearly connected since it is a 

20 divisor. For higher genus we describe WE in a slightly different way to that in 

(5.3.3) but keep the same notation. If L~^ C E is a. maximal line subbundle then by 

Riemann-Roch: 

/i°(L (g) E) = 1 < ^ h\KL-^A-^ ®E) = g - l . 

Taking the exact higher direct image of the sequence: 

0 p - i (g) a*{KA-^ ® E ) ^ V-^ ® a*{K^A-' ® E) 

^ {V-'®a*{K^A-'®E)) 

as in (6) gives a homomorphism £i 5"!, where rank £i =55 — 6, rank 5"! = 4^ —4 

and WE is given as the (Ag — 5)-th determinantal variety associated to 71. The reason 

for this construction is so that e = rank£i > rankS^i = / and we may write down the 

complex (16) below. Now: 

Proposition 5.8.1. WE is connected if either of the following hold: 

1. E.\ is ample, 

2. H\J'^{C),^^^~^^'tl) = 0 for all i with l<i<g-l. 

Proposition 5.8.2. / / C is a curve of genus 3 then WE is connected if any of the 

following hold: 

1. Z.\ is ample, 
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2. H\J\C),E^®det-'E^) = 0, 

3. Op£j(10) is nef and big. 

The condition that is ample follows immediately from the connectedness theorem 

of Fulton and Lazarsfeld [ACGH, p311] (recall that J i is a trivial vector bundle.) 

The second condition of (5.8.1) comes from the Eagon-Northcott complex [EN] : 

0 ^ K'-^ -> > ^ K " " 0 (16) 

where is the ideal sheaf of WE C J'^(C) and 

/ r = ' 5 ' J t ® d e t 9 ^ t ® A-^+'£i. 

Now WE is connected if H^{J'^{C),'3WE) = 0- From (16) this is equivalent to showing: 

H\IC-^) = 0 for all i. 

Or more explicitly, since is trivial, that: 

H\S'-^3'l®A^'-^^'Ei) = 0 l<i<g-l 

but this is the case if and only if: 

H'{A^'-^-^'Ei) = 0 l<i<g-l. 

In the genus 3 case this last condition reduces to: 

H^{det £ i ) = H^det-^Ei) = 0 and H^Ei 0 d e t - ' £ i ) = 0. 

By a Grothendieck-Riemann-Roch calculation the class of det""̂  £i is given as 29. 

Thus F ' ( d e t - i £ i ) = 0 for all i > 1. 

The third condition of (5.8.2) comes from the isomorphism: 

H\J\C), £i ® det-^£i) ^ ^ ' ( P £ i , Qrz,{l) ® 7rMet-^£i) 

^iy2(P£a,/ i 'p£,®Op£,(10)) . 
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A theorem of Kawamata-Viehweg [SS] says that this vanishes if Op£j(10) is nef and 

big-

Remark 5.8.3. By the discussion in the last section the maximal line subbundles of 

E G SlAc{2-i 1 ) for a curve C of genus 3 correspond to trisecants to a space curve of 

degree 7. It is therefore interesting to see if the scheme of trisecants to such a curve is 

connected. The answer to this question is yes and follows from a theorem of Ballico 

Ba] which says that the scheme of trisecants to a smooth, connected space curve with 

non-special hyperplane sections is connected. It should be noted that this result does 

not imply the connectedness of WE in the genus 3 case since the scheme of trisecants 

above is obtained hy projecting the 3-secants to C ^ P L (which correspond to the 

maximal line subbundles of E) from a point (e) G P/,. However irreducibihty of the 

scheme of trisecants would imply the connectedness of WE-
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