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Abstreict'

Solitons in Low-Dimensional Sigma Models

Jens Gladikowski

‘The aim of this thesis is to study topological soliton solutions in classical field theories, called

sigma models, on a three-dimensional space.

In chapter 1 we review the general field-theoretical framework of classical soliton solutions and
exemplify it on the main features of the.10(3) o-model and thé Abelian Higgs model in (2+1)
" dimensions. |

In chapter 2 a U(1)-gauged O(3 )o model is discussed, where the behaviour .of the gauge field
is determined by a Chern-Simons term in the action. We find numerical solutions for radla.lly
symmetnc ﬁelds and discuss those of degree one and two. They carry a non-vanishing angular

momentum and can be 1nterpreted as classical anyons.

A similar model is studied in chapter 3. Here the potential is of Higgs-type and chosen to
produée a Bogomol’'nyi model where the energy is bounded from below by a linear combination
of the topélogical degree of the matter fields and the local U(1)-charge. Depending on internal
parameters, the solutions are solitons or vortices. We study them numericall); and prove for a

certain range of the matter field’s vacuum value that there cannot be a 1-soliton.

In chapter 4 we discuss a modified O(3) o-model in (3+0) dimensions. The topological stability
of the solitons is here implied by the degree of the map S® = S2, which provides a lower bound
on the potential energy of the configuration. Numerical solutions are obtained for conﬁgurations

of azimuthal symmetry and the spectrum of slowly rotating solitons is approximated.

Chapter 5 deals with a theory where the fields are maps [R2*! — @P?. The Lagrangian includes
a potential and a fourth-order term in the field-gradient. We find a family of static analytic
solutions of degree one and study the 2-soliton configuration numerically by using a gradient-flow

“equation on the moduli space of solutions.

We conclude this thesis with' a brief summary and give an outlook to open questions.
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Chapter 1
A Review of Topological Solitons

1.1 Solitons in- Clasvsical Field Theories

The general aim of this thesis is to explore classical solutions to certain non-linear field theories,
called sigma models. If these solutions are non-singular, of finite energy and localised in space they
will be called solitons. Solitons as such are abstractions of inherently non-linear wave phenomena
whose description is related to several branches of pure mathematics and_connects them to both
physical theorieé and observations, the latter being exemplified by non-linear water waves, shock

waves in a plasma medium, ATP-transport in muscles and non-linear electric pulses.

-The theory of solitons is thus a prime example of a general tendency in contemporary theoretical
physics, namely the increasing interchange of ideas and concepts between pure mathematics and
physics. The wofk on the border between these two areas has been proven fruitful and inspiring
for both sides. To mention just two relevant examples, many notions of Algebraic Topology and
Differential Geometry, such as homotopy and (co-) homology groups or index theorems, are crucial
for the physicisfs_’ understanding of soliton theory, while on the mathematics side the discovery of
the inverse scattering transform — one of the main analytic tools in soliton theory — was inspired
by a physical question that resulted in the initial value problem for the KdV equation [3). It isin this
spirit that the work presented in this thesis is motivated partly by the pure mathematical interest
of finding solutions to a well-defined analytical problem irrespective of its physical applications

and partly by the experimental evidence of non-linear waves in the broadest sense.

With the definition given above, solitons characteristically possess particle-like features and

quite naturally physicists became intrigued by solitons in field theories and their applications to
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- particle physics. A prominent example of this is the Skyrme model. Being somewhat inspired
" by Kelvin’s idea of a classical continuum theory of matter, Skyrme constructed, beginning in
1961, the first non-linear field theory for the description of baryOnic‘matter, or more precisely, for
fermions as solitons in a mesonic background field 4, 5]. Although being somehow overshadowed
by the dramatic success of Qu}mtum Chromodynamics (QCD) in the 1970’s, Skyrme’s model was
revived in the early 1980’s by Witten, who proposedivit to be a good candidate for an effective
theory in the low-energy range of QCD, which is beyond perturbation theory [6]. Witten’s seminal
proposal has inspired many subsequeént investigations of the Skyrrne and related models at both the
classical and quantum mechanical level (see [7] for a comprehensive review). In a sense, some of the
work presented in this thesis can be seen as spm-off of research performed on the Skyrme-model,
although we are not directly interested in apphcatlons to nuclear physics. The Skyrme model is
an example of a (modified) non-linear sigma model, the rain objects of study of this thesis and
its investigation has revealed many connections to other fundamental theories such as Yang-Mills
and Yang-Mills-Higgs theory in (4+0) and (3+1) dimensions respectively. Below we will introduce A
‘two lower-dimensional relatives of these theories, the' O(3) o-model and the Abelian Higgs model,

but first we lay out the general field-theoretical framework for their description.

Solitons can be divided into two, almost disjoint, classes, corresponding to the origin of their
stability. In one class, whlch is historically older, the solutions are called integrable and the
governlng equation(s) have an infinite number of quantities that are dynamlca.lly conserved. By
definition, for the model to be integrable, these conserved quantltles have to be in involution.
Examples of integrable theorles are the KdV-equation and the non-linear Schrédinger equation.
Solitons in an mtegrable model cannot be r1ch in'their dynamlcs for two colliding solitons anything
_ more than a shift of their phase is prohibited by the conservation laws. This makes solitons in
. integreble models less interesting from the particle physics point of view, where one is interested in
non-trivial scattering, vibrations, radiation and the like, but there are many other areas in science
where these solitons provide a fertile ground for various applications: hydrodynamics, plasma-
physics and-mathemati'cal biology are just some of them. Generally speaking, integrable models
are rare, especially if additional conditions (such as Lorentz-inva_riance) are 'imposed and most
of them are confined to (1+1) dimensions. Integrability usually implies certajn restrictions on
the paramet;ers of the model and one can say that the set of integrable models is of “measure
zero” in the space of theories. Nevertheless these models carry important conceptual weight: the
sohton solutions (if they can be found) can often be studied in analytical depth, and in a quantum'

theory — which, however, has to be defined for solitons — they offer, at least in principle, a
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non-perturbative description which contrasts the perturbative approaches that are common in

Quéntum Field Theories.

. For the other class of solitons, it is the topology of the theories’ configuration space that can
s guarante‘e the solitons’ stability. Tb'be more precise, consider a classical field ¢, which is defined
as a smooth map from the physiéal space-time X = {x,t} into the field-manifold ®, where x and
t denote the space- and time-coordinates respectivély; ¢ : X = &. The (classical) configuration
space C is the infinite-dimensional space of all fields ¢ at a fixed time ¢. Consistently, we will
frequently call a time-independent map a configuration. One defines a functional V[d)] on the
configuration space which is called the potential energy and maps C — IR. Its finiteness is essential
to allow for a meamngful physical mterpretatlon of a field theory and we will henceforth impose
this condition. For the theories considered in this the51s an important consequence of V[¢] < oo

is that C decomposes into disjoint subsets CN, with integer NV, whlch are separated by an infinite
potential barrier:
. _ _ .
U e S (1.1)
N=-~o00 : : '
Elements of C; are usually called 1-solitons, or simply solitons, and fields in the sector Co are by
definition topologically equivalent to the vacuum. The index N occurs under various names in
the literature, such as degree of the map or topological charge. For the-theories studied here it

provides a lower bound on the potential energy V[¢].’

The topology of the configuration épace is canonically described in terms of homotopy groups [8].
Consider two maps ¢;(x) and ¢(x) between two manifolds M and A , ¢1,2 : M= N. They
are called homotopic if there exists a continuous m;ip ¢ : MxI— N, I =1/0,1], such that
$1(x) = ¢(x,0) and @2(x) = @(x,1). The map ¢(x,&),& € (0,1] is called the homotopy. A set of
- homotopic maps f(_)rms an equivalence class which is an element of the corresponding homotopy
group. These are usually den'oted Ta(N) and they are composed of equivalence classes of maps
S*"— N. Forn=0,1 thgre is a simple geometrical interpretation of the homotopy group. The
relation 7r{; W)y=0 impli.es the arcwise connectedness of A/, while 7; (V) = 0 means, that loops on

N can be contracted to a point (trivialised), in this case A is called simply connected.

Homotopy i8 also the concept by which a time-evolution of the fields is incorporated. Let
&1, 92 € Cy, then a continuous change of ¢ from 0 to 1 defines a trajectory in Cy, described by the
" homotopy ¢(x, £), which leads from ¢; to ¢. The parameter £ can be interpreted as physical time

so that the homotopy is a “time-dependent” field.
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Finiteness of V[¢] makes it necessary to impose certain boundary conditions on the
fields, such that @¢(x) = ¢ as |x| — 00. Here ¢o, lies in the vacuum manifold defined as
®,..={¢: x| - 00, V[#] < oo}. Any smooth change into another topological sector of the con-
figuration space would have to change the field at the boundary smoothly from one vacuum sector
into a different one and by doing so the configuration would have to overcome an infinite potential
barrier, which is prohibited by assumption. Therefore fields that belong to a certain Cy cannot be
deformed smoofhly into a different Cy, which in particular implies their stability against deforma-
© tion into a configuration of arbitrary low energy, because of the above mentioned bound. This is

the field-theoretical analogue to particle conservation in classical mechanics.

Topological solitons can be divided further into two different species, according to their topolog-
ical classification. In the first category, the finiteness df the potential energy implies that the field at
the bbundary of the physical space (at a fixed time) is in an equivalence class which is a non-trivial
eiement of the homotopy group that describes the map into ®.,.. Denote the boundary of X at an
arbitrary but fixed time t as X, the_n the field at infinity ¢°; :0X, — ®,,. where for the theories
of intérest to us X, = IR? and hence 8X, = S9!, the sphere at infinity, while &, _ is homeémor-
phic to ™. Then theA topology of the configuration is described by mq_;(®...) = 74_1(S™), which
equals zero for d— 1 < m and Z for d— 1 = m. Examples for latter theories are Yang-Mills theory
for d = 4 (which has instantons as solutions), Yang-Mills-Higgs theory for d = 3 (monopoles) and
the Abelian Higgs model for d = 2 (vortices). These theories can have solutions, for a specific
choicé of their parameters, where the potential energy is proportional to the magnitude of the

corresponding homotopy index N.

Alternatively, ®,,. might consist just of a single point ¢o. This means, all of 8X, gefs mapped
t0 ¢oo and X, can be one-point compactified to S¢. The fields fall into equivalence classes which
are elements of ﬁd(é) and the topology is due to the interior of X,. Such configurations are
generally referred to as “textures”, a name that stems from extended solitonic structures in solid
st.éte physics. | '

To describe textures topologically and can employ a useful theorem which relates the homotopy

group of the configuration space C to the homotopy group of the field space ®. In d space-

- dimensions ! :

(€)= Mrra(®) . ' 12

1Str’ictly, this formula is true only for base-point preser\_/ing maps ¢. All of the fields that are of interest to us

are of this type.
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Thus, if k¥ = 0, the topology of the texture is related to the disconnectedness of the configuration
space. Examples are the Skyrme model for d = 3 and the O(3) o-model for d = 2. The homotopy

index again provides a bound on the energy, which is, however, not saturated in the case of the

-Skyrme model.

" Because of their conceptual relevance for the theories discussed in this thesis we will introduce

below one model from each of the two classes for d = 2, namely the O(3) o-model and the Abelian

Higgs model.

1.2 The O(3)o-model and its Relatives

Much of the work presented in this thesis is based on the non-linear 0(3)-a-mode1 and its modifica-
tions. Therefore we introduce it here in greater detail, but it also provideé an excellent pedagogical
example of a field theory which supports topological soliton solutions. The concepts discussed here
are of relevance in various other theories, however, the O(3) o-model in (2+0) dimensions is special
in the sense that it belongs to the few theories with topological solitons where the solutions to the
Euler-Lagrange equations are analytically known. For the purpose of a well-composed introduction

we first give some general background on o-models before we proceed to the O(3) o-model.

The original work on ¢-models goes back to Gell-Mann and Lévy, who introduced them in
nuclear physics to describe the decay of the pion [9]. However, the soliton solutions which the
model yields did not play a role in these theories, where interactions are described in terms of
current algebras. Only later the soliton contents was discovered to be of great interest, partly as
toy-models for higher-dimensional theories which seemed hard to tackle directly and partly in their

own right as models in condensed matter physics and string theory, see the reviews in [10, 11].

The non-linear o-models are real, scalar, non-linear field theories where the fields are maps

o X, _ (1.3)

Here X is the (d + 1)-dimensional space-time with metric 7 and & the field-space which is a

Riemannian manifold with metric g. The following action defines the non-linear o-model:
1 .
5= / ddt gus0ad®Opdtn®®, (1.4)

where we denote d, = J/0z*. Here and throughout this thesis we assume the usual summation

convention for repeated indices. We are interested in theories where X is a three-dimensional real
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manifold, which has eithef a Euclidean or Minkowskian metric. Therefore 7 is flat and its signature
is implied by the choice of space-time indices. We denote space indices in Euclidean space by latin
characters i, j, k... (running from 1 to d) and those in Minkowski space by greek indices «, ﬂ,'y'...
(from 0 to d). Indices in target space are a,‘b, c.... The equations of motion derived from the

variation of (1.4) are

0a0%¢® + T2.0,¢°0%¢° =0, (1.5)

where I’y is the Christoffel symbol, defined in the usual way [12]. For a flat target manifold I'2, = 0
and the ec-luationsof motion are the wave-equation for every component @,. Solutions to (1.5) are

known in the mathematical literature as harmonic maps.

An alternative way to describe the curvature of the target space is by imposing a constraint
to the fields ¢ and thinking of the target space as being embedded in Euclidean space. This
leads to non—linear equations of motion despite g being flat. We discuss this procedure on the
O(3) o-model in (2+1) dimensions, where X = IR**! and & = S2. Thus, the physical space is of
signature (+, —, —) such that the Lagrangian L = T — V, where T is the kinetic energy functional,
defined on the tangenf bundle of C and V is the potential energy functional as above. The field
¢ : IR®™! 5 82 is a three-component vector constrained to unit-length, ¢.¢* = 1, (a = 1,2,3).

To shorten the notation, we use ¢ =.(¢1, ¢2, ¢3). Then the Lagrange-function L becomes
1 2 - t 1 2 i
L=T—V=§ dz8t¢-6¢—§ d°z0;¢ -3¢, (1.6)

where the dot-product is taken in field-space. This model is the relativistic extension of the contin-
uum version of the Heisenberg ferromagnet. It is called the O(3) o-model because the Lagrangian
(1.6) and the constraint are invariant under global O(3)-rotations of the fields. Fro-m the sym-
metries point of view, the field-manifold is described by the action of a space-dependent matrix
. R € SO(3) on a constant unit vector, say n, where all the fields obtained by those SO(2)-rotations
which are orthogonal to n are identified. Thus the field-manifold @ is described by the coset space

S0(3)/S0(2). To describe the topology of this coset space one can employ a useful formula from

homotopy theory, namely

w;(%):m(H), it m(©)=0, (1.7)

where G is a Lie-group and H is a closed subgroup. For the O(3)gs-model one can use the

universal covering group of SO(3) which is SU(2), and deduce =2 (SU(2)/U(1)) = m(U(1)) = Z.
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This discussion might seem a bit artificial — after all m3(8?) = Z — but it serves nicely to
illustrate (1.7), which is why we give it here.

In the Lagrang_ian formulation of the theory one must take care of the constraint by including
a term ~ A(¢ - ¢ — 1), where A is the Lagrange multiplier. This leads to the following equations
of mo_tioh o

9 (0% x ¢) =0, (1.8)

where the cross-product is taken in field-space. Note that (1.8) is a conservation law for the current

3% x .

Topological Degfee

As mentioned earlier, finiteness of the action induces the model’s topology \;vhich is for the
O(3) o-model characterized by 72(S%) = Z. For a given class of homotopically equivalent maps

¢ : 5% S2, the homotopy index can be computed using a simple formula from Differential Ge- |
.ometry (13). This formula is valid for any maps f: S" — S™, n > 0 and we give therefore in
generality. Let w be the invariant volume form on target S™, then the degree N = deg[f] equals

the normalized integral of the pullback of w by f*, integrated over base S™, the compactified

&:/f*w// w A_ (1.9)

This formula nicely illustrates the interpretation of N as the multiplicity of coverings of the target

physical space:

S™. In this thesis we mostly work in the coordinate representation of all quantities and give the

- abstract versions for completeness only.

Therefore, in coordinates, the topoiogica,l charge-density of the O(3)o-model is given by
f*w:qb*w:e,-jqb-a,-d) X 8J¢ and, A

-N = %/d%: ¢ 31¢ X 82¢, ' ’ (1.10)

where 1,2 indicate cartesian coordinates z,,z, on IR%. Solutions with N = 1 are called solitons,

those with V = —1 anti-solitons.

Bogomol’nyi Trick and Soliton _Solﬁtions

The equations.of motion (1.8) are second-order partial differential equations. However, there is a

procedure to find fields that describe absolute minima of V[¢] within a certain Cy — and therefore
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solutions to the variational equations — by solving first-order differential equations. The argument
goes back to Bogomol’'nyi-[14] and uses (8,¢ + ¢ x 82¢)2 > 0. If this inequality is expanded and

integrated over IR?, one obtains:

%/dzz 610)° + (B20)> > ?/d2z¢'31¢ x%¢ = (1.11)

Vgl > 4r|N].

where the sign ambiguity has been absorbed into the magnitude of N. The equality is clearly

satisfied if and only if

¢ =F¢ x 0ah, ' (1.12)

which defines the points of (anti-) self-duality. Self-duality is an important concept in many theories
and we shall come back to it and explain it further in chapter 3. The solutions of (1.12) have a
potential energy-density which equals the topological charge-density. To find these solutions, it is
“convenient to introduce a complex valued field, W, which is obtained by stereographlc prOJectlon '
of 52 from (for deﬁmteness) the north pole:
W = qsllj—;f? . | (13

The W'’s are ca.lled inhomogeneous éoofdinates on CPIT the one-dimensional complex projective
space. This space consists of eqﬁivalence classes of points z € €2, with the equivalence relation
z ~ Az, A being complex. The W’s have two real degrees of freedom, therefore they are not -
subject to any constraint. This alternative descriptioﬁ of the O(3) o-model is possible because of
the exceptional property of S2 = @P', which implies that S2 admi;ts a complex structure. The
self-dual equations (1.12) for W take a remarkably simple form if written in terms of a complex
coordinate T4+ = ; & 1iz3 on fhe physical space. Let 0, 8,_ denote the derivatives with respect

to 4, z—; it then holds from (1.12):

8, W =0. _ (1.14)

From this if is clear that W is an (anti-) holomorphic function [15]. Thus W can be expressed as
a rational function of degree, say, n and fdrmula (1.10), in terms of W, yields a topological degree
. of N = n. A rational function of degree n has in general (4n + 2) real parameters which determine
the soliton’s size, shépe, position, orientation.and various internal degrees of freedom. However,

not all of those parameters lead to physically distinct solutions in the sense that they describe
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configurations which differ only by certain (globgl) symmetries. To identify these symmetries is an
important problem which is well-known from gauge theories such as Yang-Mills theory in (4+0)
dimensions and Yang-Mills-Higgs theory in (3+1) dimensions. Here the Lagrange function (1.6)
is invariant under global ‘0(3)'-rotations which removes three real parameters. Thus the “true”
parameter space for mirﬁmum energy solitons is 4n — 1-dimensional. Hence the holomorphic one-

soliton solution has three real parameters and can be written as

W(zy) = —£ - (1.15)

Ty -1

where z¢ is complex and aeﬁnes -a pole of W, such that it can be identified with the soliton’s
position in the- particle physics sense; p i;s real and a measure for the decay of the energy density -
afound T, hence it is a criterion thg size of the soliton.

The 4n — 1 paraﬁxeter family of solutions spans a submanifold within the corresponding C,,
namely the surface where tHe potential energy is minimal. Following an idea by Manton (16], this
surface, called moduli-space, is used to describe the low-energy dynamics of solitons, where their
time—evo'lution‘ is approximated by a geodesic motion on the moduli space. The corresponding
metric is induced by the kinetic energy functional. We will introduce this method more detailed
in chapter 5 in the context of CP%-models.

The O(3) o-model is relativistically invariant and thus moving solutions can be obtained from static
ones by Lorentz-boosting them into a moving frame. Again, the topology remains untouched by

this procedure and provides a conserved quantity, the degree.

The Hobart-Derrick Theorem'

The Hobart-Derrick theorem is a very useful general argument which rules out that static solutions

in certain theories are non-singular and non-trivial configurations [17, 18]. The input of the theorem b
is simply the Lagrangian that,deﬁnes the theory and the argument itself is fairly straightforward,
based on behaviour of the potential energy under scahng of the space coordinate. Its proof is
rather short but also very instructive. We demonstrate 1t on the example of a theory whose fields
are real vectors.@q, (@ = 1...N). The O(3) o-model is a special case for N = 3, |¢| = 1. Consider

the following ﬁotential energy functional V(¢] in d space-dimensions:
Vel = [ ds [0:6a09" + U(@)] = Vale) + Ulg), (1.16)

(¢ = 1...d), where U[g] is an arbitrary potential (a positive definite functional which does not

include derivatives of ¢). V[¢] can be thought of defining a surface in the theory’s configuration
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space where_extfema of this surface are solutions to the Euler-Lagrange equations derived from

(1.16):
u

o (1.17)

0;0'¢, =

Let ¢ be such a solutlon For those theories whose configuration space C decomposes into disjoint
subspaces CN in the way described above, one has to think of b as being an extrema of V|[¢] within
a certain Cy. In other words, ¢ carries an index N. Now consider a generallzatlon of ¢> to a one-
parameter family of fields with parameter A, such that @ (x) = ¢(Ax). Under this transformation

one finds

Vil = X" Va[] + AU (d). (118)

V[qE] is now a function of A and for solutions to (1.17) it takes an extremum with respect to A,

which is by assumption realised for A = 1. This implies:
ovig] _ , .
OA |x= - . (1.19)
= (2~ d)Va[g] - dU[4].

Because Va[d] an_d U[#] are both positive definite functionals, it depends on the space-dimension
d whether the equation above can be satisfied. This leads to the following cases:

1. d = 1. One obtains immediately
Va[d] = U[4], A (1.20)

which means that in one space-dimension the potential U [#] is necessary for non-trivial

solutions, because without its presence the field (3 had to ‘be constant ev'erywhere to yield

Va[g] = 0.

2.d =2 Thls case is particularly mterestmg form our viewpoint, because it includes the
0(3) o- model in (2+1) dimensions. Equatlon (1. 19) gives

Ul¢] =0. » (1.21)

In two dimensions Vz[¢] is conformally invariant which in particular implies that it is invariant
under a scaling transformation x — Ax. Therefore a change of A is a zero-mode of the .energy '

and the solution ¢ does not correspond to a configuration of a definite size: the soliton is in
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a neutrally stable ',state. If z;. potential U is added, the fields which are in one of the minima
of U are energeticélly favoured (we call them ¢,,.) and the minimum of the potential energy
is where <13 = ¢V;c everywhere, unless some other cpnserved quantity like a topological charge
prevents this. In this case, the conﬁguratiqn becomes singular. It is interesting to study the
dynamical beha{riour of solutions to Va[¢]. For the O(3) o-model the evolution of its solutions
have been studied numerically and analytically with the result that under perturbations the
solitons shrink at a rate ~ 1/t to a singular configuration 2 (19]. In order to allow stable,
finite-sized solutions to the O(3) g-model and various other theories, several modifications

. are possible; they will be mentioned below.

3. d > 3. Because V;[¢] and U[4] are positive definite, one reads off (1.19):
Valg) = U[g] = 0. | (1.22)

Therefore in d > 3 dimensions, the only solutions are the vacuum fields. This can be redeemed
by the inclusion of higher derivative terms into V[#], which scale as (d —n), where n is the
number of the derivatives. Especially interesting is the case d = 3,n = 4, because this is the

modification of the o-models that corresponds to the Skyrme-model. We will come back to

this in chapter 4.

Modified O(3) o-models

In this subsection we present some proposals to overcome the dilemma of uristable solutions by
modifying sigma models. For definiteness we again refer to the O(3) o-model, but the concepts

laid out here are applicable to most O(N) o- or P! models.

From the Hobart-Derrick theorem above it follows, that ind=2 space-dlmensmns there are no
.stable statlc non-singular solutions to the pure O(3) o-model. The questions therefore i is, whether
there are modifications to this model which preserve Lorentz-invariance, but break the scale in-
variance of the Lagrangian’ (1.6), so that the COﬁﬁguration can be stable and lead to interesting
dynamics. It seems, that there are at least three different ways of re_solving the problem, each of

- which is worth studying in its own right.

e One can adapt the idea of Skyrme, who used thdtind = 3 a quadratic and a quartic term in

the field-gradient have opposite scaling behaviour, see point 3) above. In d = 2 dimensions, a

2By this we mean that the peak of the energy density ~ 1/(¢t — t.)2, where t. is some critical blow-up time.




1.2 The O(3) o-model and its Relatives 14

higher-order term in the ﬁeld-gradieht breaks the conformal invariance of the O(3) o-model,
_ but energeticaliy favours small scales (A — 0 in the notation above), in other words the
solution will spread out in space. To counter-balance this effect, a potential U [¢] can be
added to the Lagrange function. Because one usually is interested in low-energy dynamics
where the ﬁeld-gradients are small on a relativistic scale, the next to leading order, which
is posmve definite, is a term V4[¢] (8;¢)%, by which we mean any combinations of four
derivatives. The same energy considerations as above then result in a definite scale for the

solution ¢ and for minimal energy solutions one obtains the Virial-theorem:
Vi) = U[g]. (1.23)

The choices for Vi[¢] and U[g] are not unique a priori. With réspéct to Vy[¢], however,
one usually wants to preserve the model’s global O(3)-invariance. Also, in a relativistic
extension of the theory, the kinetic energy T should not include terms higher than quadratic’
ih its time-derivatives, in order to aﬂow for a Hamiltonian interpretation of the equations of

motion. -

This excludes all fourth-order terms except FogF*? = > 0p(0a® x 93¢ - ¢)?, which we
will call Skyrme-term, in analogy to its (3+1)-dimensional counterpart. It is composed of a
tensor F,g, the dual of which B, = 48, Fp,/2 is trivila.lly conserved (0,B* = 0), due to the
antisymmetry of F. The éero—component of B is the topological charge density A, integraxid
of (1.10), with the geometrical 1nterpretat10n glven above. There is an interesting geometrical
interpretation of the Skyrme energy functlonal due to Manton [16], which one can adapt to
two dimensions and which we will give in chapter 5. In chapters 4 and 5 we investigate models
in (3+0) and (2+1) d1mens1ons respectively, which are modified by additional fourth-order
terms. It is obvious that the addition of any positive deﬁmte term such as a potential or
the Skyrme term will increase the potential energy and the Bogomol’nyi bound will not be

saturated any longer.

e Unstable static solutions can possibly be stable dyhamica.lly. This would imply a fine bal-
ance between the forces that act on' the soliton and favoﬁr its shrinkage and the forces of
inertia such as a centrifugal force, that try to deform the solution in the opposite way: One
can achieve this by including a potential term in the action (which favours a shrinking),
and a time-dependent phése to the fields, which, however, leaves the energy density time-

independent. This is véry much in the spirit of Coleman’s Q-balls in (3+1) dimensions, where
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the stability of the solution is guaranteed by a global conserved charge and the rotation of

the fields takes place in the corresponding symmetry direction.

e The model’s scale invariance can in principle be broken by the introduction of a new field that
is coupled to the O(3)-field. This can be a gauge field with the obvious physical motivation of
coupling electrodynamics or non-Abelian gauge-dynamics to the model. Of course, the fact
that the scale invariance is broken does not automatically imply the stability of the solution.
However, usually the gauge field’s dynamics is subject to some constraint such as Gauss’ law
wHich might imply stability. Alteruatively, global quantities like the electric .cha.rge or flux
can form a bound on the energy, thus also indicating stability. This is what we investigate
in chapters 2 and 3. The Abelian Higgs model, to be descnbed below is an example of such

a theory, although its solutions are not “textures”.

Unfortunately, all these modifications suffer from an essential setback, namely that they usually
destroy the integrability of the O(3) o-model, alfhough in some cases analytic static solutions to
modified models are known. For almost none of the models discussed in this thesis even static
solutions are analytically known. It is therefore necessary to approximate the solutions, especially
if one is interested iu time—depehdent solutions. This can be done by an exclusively numerical
procedure to solve the variational equations, which are given by a set of coupled PDE’s. For
radially or otherwise symmetrical solutlons the static system can often effectlvely be reduced
to a lower dimensional problem and sometimes to solving an ODE. For general time-dependent
solutions, where no such reduction is possible, a popular method is to discretize the equations of
. motious on a spatial grid while the time-evolution is described by an ordinary differential equation
for each gridpoint; It is interesting to ask, how the topological features of the model behave under
this discretization. A priori there is 'uo topology on a grid, by definition. -Also, the choice of a
lattice theory whose continuum limit is 'known, is not unique. However, it has been possible to
construct theories on a grid Whicu preserve the topological features of the O(3) o-model and the

O(3) baby-Skyrme model, in particular the topological bound on the energy [20, 21).

' As mentioned above, another method to approximate time-dependence is by employing a moduli
space -approximation for those models whose analytic solutions can be found. The time-evolution
is then uescribed by an initial value problem for ordinary differential equations in terms of the
solutions uarameter. This corresponds to a geodesic ruotion along a trajectory in the space of

solutions with minimal potential energy.
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1.3 The Abelian Higgs model

The Abelian Higgs model in (241) dimensions is a field theory which. involves a complex scalar
field and a U (1)-va1ued gauge field. It has soliton solutions called vortices which find an application
in the theory of superconductors. These solutions can also be seen as orthogonai projections of
their three-dimensional counterparts, the static solutions to the (3+1)-dimensional Abelian Higgs
model, which are a simple model for a cosmic string. Although we are not presenting any research

on the Abelian Higgs model in this thesis, it is a useful theory to introduce some fundamental

concepts of which we will make much use in later chapters. These concepts are:

o The gauge principle. The theory is invariant under local U(1)-transformations of the fields.

Due to Noether’s theorem this implies a conserved (electric) charge.
: g

e The spontaneous breakdown of a local symmetry and the Higgs mechanism. It is employed

. to generate massive gauge fields without destroying the model’s gauge invariance.

® The Bogomol'nyi limit which yields self-dual equations, the solutions of which minimize the

potential energy.
o The stability of configurations due to a topologically conserved quantity (the flux).

e The existence of multi-soliton solutions.

A phase tfa.nsition in the theory’s parameter space, i.e. a transition between qualitatively
p q

different behaviour of the soliton solutions.

~ The purpose of this section is thus to set out these notions in more detail on a concrete example.
The physical space X = IR>*!, the Higgs field ¢ isamap ¢ : X — € and the gauge field A, € U(1).
As before, the space-time metric is of signature (+, —, —). The relativistic version of the Abelian

Higgs model is defined by the action:
, N S 1 e A a2
S=T-V = [ dadt 5(Dad) (D6) - FapF™ = T (4 = a7)’, (1.29)

where the covariant derivative Do; = 0, + iA,. The bar denotes complex conjugation. The
electromagnetic coupling has been put to unity and the parameters a and A are real. The field-

strength F,g is given by

Fop=—1 [DaaDﬁ] = 8o Ap — OpAa (1.25)
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The magnetic field B corresponds to the only spatial component Fy,. If the plane of motion is
embedded into IR?, B it can be thought of pointing perpendicular out of it. The Lagrangian £,

the integrand of (1.24), is invariant under

6 o eixlxig,
' (1.26)

Aq = Ay - Oux(x,t),

where x(x,t) is a smooth, differentiable function, mapping IR**! s IR. Under these gauge trans-

formations, the field-strength F,z is unchanged and the covariant derivative
Dy, (eX¢) = eXDq (¢) , : : (1.27)

such that the £ remains invariant. The gauge degree of freedom can be removed by fixing the
gauge. A popular choice is the temporal gauge Ay = 0, which does not, however, imply that the
Euler-Lagrange equation for Ag vanishes. This equation, called Gauss’ law, has to be imposed as

a constraint on the solutions:
1 o
0;0;A; + 5(6t¢¢ —Oi¢9) =0. (1.28)

Note that Gauss’ law is automatically satisfied for static fields 8, 4; = 6@5 =0.

For finite energy solutions the Higgs potential I/ ~ (|¢l2 - a2)2 has to vanish at spatial infinity.
Hence the Higgs field at infinity ¢ = ag, where gis a pure phase, i.e. ¢ € U(1). In the same

liniit, the covariant derivétive -D,-¢ must appfoach zero. This implies for the gauge field A;:
, _ 1 '
Ai(x) = ig~ 8,9+ O 2 ) as |x] = 0. (1.29)

g maps S} — 51 and can'be represented as exp(i27h(6)), where 8 is the angular coordinate on IR2.
Single valuedness of g requires h(0) = h(2r) + n, where n € Z. In other words, ®..., the vacuum
manifold of the theory is a circle of radius |a so that the Higgs field at infinity is homotopic to
lm ¢ : Sho Sl | - (1.30)
|x|—=00 . .

Such maps can be classified by the homotopy group = (S') = Z. ‘Thus the configuration space

consists of disjoint sectors which are labeled by the winding number of the Higgs field at infinity.
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Elements of the se.ctor with Wihding number n = 1 are called vortices, those with n = —1 anti-
vortices. The model is relativistic, hence vortices and anti—vorticesv are expected to show the same
physical characteristics. More concretely, there is a (discrete) symmetry of £, namely a reflection
" of the space-vector x on, say, the ml-axis, which transforms vortices into anti-vortices and vice

versa.

As mentioned earlier in this introduction, the vortices of the Abelian Higgs model are topo-
logically of the same type as instantons (d = 4) or monopoles (d = 3). By this we mean that
the topdlog); of the theory is determined by fields which are maps from the boundary 8X, of the
physical space X, into the field-vacuum. For SU(2) rﬁonopoles in IR**! the boundary is a two-

_ sphe're S? which is mapped into the vacuum manifold of the Higgé—triplet. The Higgs vector lies
on a two-sphere of radius v, where v is the equivalent of a above. Hence monopoles are classi-
fied by 72(S2) = Z where the integer is the monopole number. This is to be contrasted to the

O(N) o-model, where the topology arises from the interior of the physical space.

Higgs mechanism -

The Higgs mechanism is applied in gauge theories where the Lagrangian shows a symmetry which
is broken in the ground state of the theory. The aim is to create massive gauge bosons without
destroying the model’s gauge symmetry. This mterpretatlon in terms of particle physics is quantum
mechanical in the sense that one talks about fluctuations around the classical ground state, but
spontaneous symmetry breakdowns occur in many classicél systems as well. In the model defined
above, thé Higgs field at infinity ¢o = ag, such that there is a circle of energetically degenerate
ground states. The explicit choice of the vacuum field breaks this symmetry spontaneously. This
gives a mass Ato the Higgs field which is due to ﬂuctuations orthogonal to the symmetry direction.
Near the vacuum one approximates ¢ = a+ x+if which leads in the noﬁation above to a mass m, =
IAllal. According'to the Goldstone theorem, the spontaneous bréakdown of a continuous symmetry
also leads to a massless (zero—energy) mode, corresponding to ﬁuctuatlons in the symmetry direction
| (descnbed by E) However, thxs degree of freedom can be re-mterpreted by performing a local gauge
transformation. Such a transformation removes the massless mode from the particle spectrum and
replaces it with what corresponds to the longitudinal direction of polarisation of the gauge field,

thus giving the gauge field the correct (three) degrees of freedom. This procedure is called the

-Higgs mechanism.

Another implication, due to the brokep gauge syrﬁmetry is that the magnetic flux ¢ is quantized
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and the winding number obtains a direct physical interpretation, namely the number of flux-quanta,

the solution carries. The only non-zero component of A; at infinity is Ay = dh/rdf, which leads

to: -

. ; 2T
¢n:/d2xB= dl-A=27r?{' doh' () =2mn = n=<—°2, (1.31)
st 0 2

where we used (1.29). Note that the flux-quantisation here is a purely classical process. Also note

that by continuity the Higgs field must vanish somewhere on the plane of motion.

Bogomol’'ny bound

Similar to the O(3) o-model, it is possible to establish an algebraic relation between the static

energy of the fields and the topological degree. The self-dual limit is A = 1, such that

‘ 2
Ve, Al = %/ d’z [(DIQS + il?2¢) (D1¢ £iDy¢) + (B + % (,¢|2 - aZ)) J+%2¢n+ bound. terms.

(1.32)

The boundary terms vanish for the bbundary conditions which were imposed above on ¢ and A4;.
Since the integrand is clearly positive definite and the magnetic flux ¢, is fixed by (1.31) for a
given topologiéal sector of the configuration space, it follows that V is minimized if the square

brackets vanish. This is the case if and only if
N 1 : -
Dig = FiDe$, B =% (l¢f - a?)® . (1.33)

The solutions to these equations, being minima of V¢, 4;], also satisfy the second-order Euler-
Lagrange equations derived from (1.24). Moreover, it has been shown by Taubes [22] that all

solutions of the static Euler-Lagrange equations are also solutions of (1.33).

From (1.32) we immediately read off a lower_bound on the potential energy

a2

Va2 o[04 ' (1.34)

with the equality holding only for solutions of the Bogomol’nyi equations. Note that .the Bogo-
mol’nyi equations correspond to the point A = 1 in parameter space. It has been shown numerically
that vortices repel each other for A > 1 while they mutually attract for A\ < 1. At the point of
self-duality A = 1 the vortices are free. In terms of the potential energy V it can be shown,
that V,(A) > nVi(1) for A > 1 and V() > A%V, (1) for A < 1 (23]. Both these inequalities are

strict [24].
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The absence of any potential between static solutions is a typical feature of self-dual solutions
which is also present for SU(2)-monopoles in the BPS-limit and can be understood quantum
mechanically [25]. Due to the Higgs mechanism, both the gauge field 4, a‘nd the scalar ¢ are
massive fields. At_ the self-dual point A = 1, the attractive forces of the scalar field balance the
repulsive force of the gauge field.- Therefore the vortices are forée-free, the space of minimal energy
‘solutions, the moduli space, has no potential. In other words, for A = 1 the energy has zero-modes
which stem from the tranélationél degrees of freedom, because energetically it is irrelevant where

the vortices are positioned relative to each other.

It has been established, that the zeros of the Higgs field are the only zero-modes of the solution
and thus they are natural coordinates on the moduli space. - The potential energy of a vortex
peakes around these zeros which m#kes them an obvious choice to describe the vortex’ position.
Taubes proved that for every n-tuple of positions {x1,%3,...,%n}, x; € IR%, i = 1,...,n there
is a solution to (1.33). Whefe ¢(x;) are the zeros of ¢ on the plane 3. The moduli space is thus
2n-dimensional. In the case where two. or more of the x; comc1de, the zeros of the nggs have to
be counted with multiplicity, the physical picture being that the vortices sit on top of each other.
Let m be the multiplicity of a zero at x;, then by encircling the point x; on an arbitrarily small
circle, the Higgs field will acquire a phase of 2rm. Strictly speaking, the notion of a “position” of
a vortex is only Well-deﬁhed for sufficiently separated vortices which do not overlap. However, the
Higgs field is massive and therefore falls off exponentially from the zero of.the Higgs, such that the
interpretation of separated vortices as independent “particles” is incorrect only by an exponential
factor. Note that the exponential decay also implies a size for the vortex, which is a measure for
the rapidity of the fall-off. This is to be contré.sted to the O(3) o-model, the underlying diﬂ'e’rénce

being that (1.32) is not scale invariant.

It has not been possible to find analytic solutions to the Bogomol'nyi- equations (1.33), in
contrast to its (3+1)-dimensional counterpart, Yang-Mills-HiggsA .theory, where monopole solutions
cén be constructed. Therefore the act.ua.l vortex soiutions have to be obtained numerically. For
fadially symmetric solutions, the following ansatz in polar coordinates (r,8) is used

6=9f(r), Ag=nb(r), A, =0. (1.35)

This leads to the boundary conditions b(0) = £(0) =0 and b(oo) =1, f(o0) =

3This choice of coordinates leads to conical singularities in the moduli space. See [26] how this problem can be

resolved.
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Interestingly, if the model is put on a hyperbolfc spacé, the equations of motion are equivalent
to the Liouville equation whose solutions are well known [27].

As indicated earlier, the applications of planag vortices are mainl_y due to non-relativistic theo-
ries in condensed matter physics, more precisely superconductivity. The potential energy V (1.32)
is formally equivalent to the free energy of a Ginzburg;Landau theory. The Higgs field is there
mterpreted as a mlcroscoplc order-parameter and the two phases A < 1 and A > 1 correspond
to type-I and type-11 superconductivity respectlvely This shows why the dynamics of vortices is
important in their applications. In the self-dual limit numerical results have been obtained in a
geodesic approximation by Samols (28], who found an approximation for the metric on the modﬁli
space, and by Speight [23]. The scattering of vortices in a perturbation theory near the self-dual
limit was studied by Shah [29]. There the moduli space has a potential and the true ground state
of the ‘energy is given by configurations that coalesce or, on a compact space, form a lattice, de-
pending on the phase their are in. Another interesting results that has been obtained is that no
. mixed vortex-antivortex solutions exist. Dynamically, a vortex-antivortex pair annihilates, unless
théy have a non-zero relative angular momentum, in which case they can form a bound state by

rotating around each other.

The rest of this thesis is laid out as follows. In chapter 2 we investigate a gauged O(3) o-model
where the behaviour of the gaugé field is determined by a Chern-Simons term. We find the static
solutions to the model which carry a non-vanishing angular momentum. The potential in this
model is chosen such that the solitons can be thought of being coupled to a constant external
magnetic field. In chaptei 3 we investigate é similar model which has self-dual solutions. In this
case, the Bogomol’nyl bound is given by a linear combination of the topological O(3) o-bound and .
the local U(1)-charge. We d1scuss radially symmetrlc solutions which we computed numerlca.lly
Chapter 4 is concerned with an O(3) o-model in three space-dimensions. Such a model can have
topological stable solitons because the third homotopy group of 32 is isomorphic to the group of
integers and this integer provides a lower bound on the static energy. We find minimal energy
solutions numerically for topological charge one and two'and discuss their shapes and energies.
We also approximate the angular momentum of a slowly rotating soliton. In chapter 5 we study a
generalisation of the (P! model, the CP? baby Skyrmé—model; We find a family of analytic solutions
for the one-soliton and sfudy the two-soliton configuration using a gradient flow equation on the
" moduli space. The thesis ends with a short chapter presenting further conclusions and outlining

some open questions. .




Chapter 2

Topological_ Chern-Simons Solitons

in the ‘10(3) o-model

2.1 Introduction

In (2+1)-dimensioﬁal space-time there is an alternative way to the Maxwell term of introducing
dynamics to a gaugé theory. This alternative expression is the Chern;Simons (CS-) term, which is
a topological term that is not invariant under under discrete symmetry operations like parity and
* time reflection. For an Abelian gauge field A; € U(1), the CS-Lagrangian is given by

K

‘Cés = 2€aﬁ7Aa6/3A'7, _ (2.1)

while for a non-Abelian A2 which takes values in the algebra of a Lie-group G

K

2

LNA
‘Ccs"“

eV A%Op A+ 3 arce AL AP A, (22)

(a is the group index), where f,;. are the structure constants of G and summation over repeated
indices is assumed, as usual. Pure CS-theories are examples of topological field theories which
means that they do not depend on the.local properties of the underlying space-time metric. Let
this metric bé gap, then the invariant \%olume element ‘carries a factor ~ V/|det g| while the an-
tisymmetric tensor €44, transforms as y/[det g| -l, hence both factors cancel in the action and
consequently CS—actions depend only on global properties. -
Chern-Simons terms were originally introduced in Differential Geometry to describe the topol-

.ogy of vector-bundles. A well-known exampie relevant to physics is the instanton number of four-
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dimensional Yang-Mills theory, which is given by the second Chern-number [12]. The connection to
the th;ee-dimensional CS-term 'is.made by writing the topological charge-density of the instanton
number as a total divergence of a Eﬁclidean'four-current. The zero-component (or rather, fourth
" component) of this current is equivalent to the CS-term. '

As an aside we remark that non-Abelian CS-theories are used to describe invariants of knots [30)],

(2+1)-dimensional gravity [31] and integrable models [32).

We will concentrate on the Abelian version and henceforth drop the indices (NA/A) that
distinguish it from the non-Abelian theory. The Abelian CS-action is invariant under small gauge
transformations while the Lagrange density is not. Under Ay, — Aq + 8aX, X = Xx(X,t) being a

real, non-singular, differentiable function on IR**!, £ transforms as
Los = Los +%978, (x0sAy) . (2.3)

The term created by the gauge transformation is a surface term and vanishes for a small gauge

transfbrmation, i.e. if the function x goes smoothly to a constant at infinity.

From the general field-theoretical point of view it is interesting to observe, that a CS-term in

combination with a Maxwell term gives rise to a massive gauge theory [33]. In detail, consider the

Lagréngian
1 o | K apy :
L‘ = —EFaﬁ + 16 AaagA., . o (24)
Its Euler-Lagrange equations are given by
1 ' :
—6—26QF°“’ + ke*F1F,, = 0. , (2.5)

where the field-strength is defined in the usual way F,g = 8,45 — 8pA,. Using this and defining
the dual field-strength F* = é"ﬂ‘YFm /2, one can easily see that §,F° = 0,- which is the Bianchi-
identity. If one inserts the dual field-strength into (2.5) and employs 0, F* = 0, after taking a
derivative Oq, ' ‘

—gizaaaﬂ*F7 + k0, F*" =0 o (2.6)

is obtained. If the equatioh of motion (2.5) is substituted for the second term and the definition

~of the dual field-strength is inserted, one finds

(8a0% + €*k?) F7 =0. ' (2.7)
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This is the massive Klein-Gordon equation for the dual field F 7, describing a boson of rest-mass

e?k. In the limit of x — 0 (vanishing CS-term) one is, of course, left with the usual wave equation

of electrodynamics.

However, most of the recent interest in theories which include CS-terms originates in their
ability to create fractional statistics (that is quantum statistics that is neither fermi nor bose). To
explain this in more detail, consider a theory with a conserved current Ja (that can be Noether or

topological), coupled to a CS—gauge field A,,
L=—-Ay® + geqﬁ”'AaagA.,, i (2.8)
from Which the following equations of motion aré derived
—j% = ke*P7954,, . . ' : (2.9)

After fixing the gauge one can solve this relatlon for A in terms of 7*. This shows that A, is.
just a convenient abbrewatlon to describe a self-interaction of the current j*. In other words,
the CS-term does not introduce independent dynamics for the gauge field A", it really defines a
constraint. If in (2.9) the @ = 0 component of j* is integrated over d2z, one obtains an important

relation between the conserved charge associated with Jo, denoted @; and the flux ®.¢ that stems

from the CS-gauge field:

Q; = —kbcs. _ : (2.10)

This is the CS-version of Gauss’ law. Because of this relation partiéles in a theory (2.8) are
sometimes called charge-flux cémposites.' In a quantum mechanical description, the term Aqj*
generates an Aharonov-Bohm phase on the wave function of a particle which-w:mds around a flux-
tube of strength ®s. This phase is proportional to the CS-coupling which is not quantized or
otherwise restricted ! and therefore can generate an a,rbitra,ry. phase, labeled by the flux which is
encircled. The particles which are subject to such a non-standard phase are called anyons (see [34] '

for a review of fractional statistics and its physical implications).

To introduce the notion of fractional statistics from a geometrical point of view, consider the
trajectory of two identical particles winding around each other. In space-dimensions d > 3 the

winding angle (by which we mean the number of interchanges counted in multiples of ) is defined

IThis is true only for Abelian CS-theories. In the non-Abelian (quantum mechanical) version x has to be

quantized to make exp(iS..) gauge invariant.
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mod 27 and thus allowi.ng only for fermi or bose statistics. In two dimensions, however, this aﬁgle
-can be summed up as the particles continue to move around each other. By defining a map of this
angle to the interval [0, 2] one obtains wave-functions with any phase, hence the term anyons.
Now consider a set of two identical, point-like particles on IR**1 described by the centre of
mass vector R with respect to the origin and their relative position r. The statistics of the two
partlcles is entirely described by the time evolutlon of r, which can take values on all of IR? except
r = 0, to consistently allow for phases other than zero. The two identical particles cannot be
distinguished and therefore one also has to identify their permutation, Z,. Hence the two-particle

configuration space C, is

Co = 2_2{0} (2.11)

This space is multiple-connected, since
m(C2) = Z, . (2.12)

which means that there are sets of trajectories (consisting of two particle trajectories), which have
the same initial and final positions in spacé—time but are not homotopic to each other and thus they
cannot be smoothly transformed into one another, see Fig. 2.1. One can think of these trajectories
as being knots embedded in a three-dimensional space-time. In the path-integral formulation a

-different weight is given to every horhotopically different path in the configuration space and this

weight is the anyonic phase.

\

x2 i /
. . . xl
fig. 2.1: Two topologically distinct trajectories in IR?*!. In IR3t! similar paths could be deformed

into each other.

For an n-particle conﬁguratlon, it is straightforward to generalize (2.11). Let {0;} denote the

set of pos1t10ns where any 4 particles coincide (and thus their relative vectors are identically zero)
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and P, is the group of all permutations of the n-particle set. Then C, = (R?" — >.:{0:})/P, and
m1(Cr) is given by the braid group B,. Consequéntly, the statistics of the configuration is in the
n-particle case described by the (one—dimensibnal) representations of B,,, which is a generalization

of the permutation group P, whose representations describe fermi/bose statistics in d > 3.

One of fhé most important physical applications of particles with fractional statistics is the
Fractional Quantum Hall Effect (FQHE). It occurs in special semiconducting devices which are
exposed to high magnetic fields and low temperatur_es. At a heterojunction between two layers
the sample is effectively reduced to a two—dimeﬂsional system of electrons. Theoretically, the
FQHE can be described as a hierarchy of quasiparticlés, where the quasiparticles are local density
ﬂuctuatio_ns in an otherwise homogeneoué band-structure of electrons. A universal parameter to
'label the FQHE is the filling fraction and the quasiparticles carry charges proportional to it. By
describing an adiabatical motion in a closed loop the quasiparticle obtain a Berry-phase on their
wa.ve-fun‘ctidn. This phase is proportional to the quasiparticles’ charge of, due to (2.10), to its flux

and thus fractional.

Here we investigate a CS-theory which is based on the gauged non;linear O(3) o-model. The
interest in gauged sigma models goes back 'to early work by Faddeev [35]. His idea was revived
" later for the description of charged baryons in the Skyrme model {36). 'It was first proposed by
Dzyaloshinskii et.al. to use a CS-action in order to stabilise solitons in a Heisenberg antiferromag-
net [37]. The greater computational power that became available during recent years lead to a
reexamination of gauged sigma models and their .soliton solutions. Much work has been done on
this since the original proposals, especially on the O(3) ¢/CP'-model, starting with the -work by
Nardelli and later Aitchinson et. al. [38, 39]. This lead to a stream of papers, many of which are
concerned with self-dual models in (2+0) and (1+1) dimensions. These self-dual models play &

very important role on general physical grounds and will be discussed in the next chapter.

In this chapter we consider a static cla.ssical CS—mbdel, whose potential term preserves the gauge
symmetry and is chosen to produce eﬁcponentially localized configurations. They cairy fractional
-angular momentum and have a lower topological bound on the energy which is, however, not
saturated. We solve the equations of motion numerically for radially symmetric fields and study
the depéndence of the solutions on the coupling strength to the gauge field. We also look at two
solitons on ‘top of eaéh other énd on their mutual attraction dependent on their coupling. The

asymptotic behaviour of the fields is studied a.nalyticélly and conclusions about intersoliton forces

are drawn.
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Recently, static solitops'were found in a gauged @P'-model which includes a CS-term and a
potential term equivalent to the one considered here [40]. In its ungauged version the CP'-model
represents merely a different choice of fields to the O(3) o-model. In [40], however, the gauged
symmetry is the internal U(1) symmetry of the two-component complex @P' vector which lies
-on S3. Therefore we expect our solutions to be different to the ones presented in [40], but it is

nevertheless instructive to compare them.

2.2 The Chern-Simons O(3) o-model

We consider the following Lagrangian of a gauged O(3) o-model, defined on X = IR**!. It contains

~ a potential term and the behaviour of the Abelian gauge field A, is governed by a'CS-term
" '
£ =3 (Dag)’ - gso‘ﬂ'yaaAgA., —p2(1-n-¢). S (213)

The fields ¢ are three-component real vectors and subject to the constraint @ - ¢ =1, hence they
take values on the twofsphére Sg. We have suppiressed‘the Lagrangian multiplier i'n (2.13) and the
metric is flat, as before, and of signature diag(+,—, —). We chose units in which the velocity of
light ¢ = 1. « and u are real coefficients of dimension length and 1/length respectively and for
dimensional reasoﬁs the Lagrange density should be thought of as being multiplied by an overall
factor of dimension energy. Wé fix our mass scale by puttiﬁg this factor to one. We borrow from
the notation of nﬁclear physics and refer frequently to Sg as iso-space and to ¢ as matter fields (in
distinction to the gauge fields). The potential term in (2.13) reduces the symmetry of the model
| to O(2),,., i.€. to rotations and reflections perpendicular tb the vector n. It is this symmetry that
is to be gauged and by choosing n = (0,0,1) we select the SO(2);,; subgroup which consists of

unimodular rotations about the z-axis. Its generator A can be written as

0 -1 0
A=[1 0 o]l. S (2.14)
0 0 0

Note that A¢ = n x ¢. Consider a real, non-singular, differentiable function x(x,t) on [R2*!. The

gauge transformation under which the quadratic and the potential term are invariant, are

—vA A .
¢ =9, (2.15)

Ay — Ay +0ax.
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Do is the covariant derivative and given by:
Do =000 + Au(n x ¢), (2.16)

such that D, (e‘x’\qﬁ) = e XAD,¢, as required. The ungauged Lagrangian shows symmetry under

combined reflections in space and iso-space:
P: (z1,22) & (~z1,22)  and C: (¢1,62) = (—¢1,42), (2.17)

which can be thought‘ of as a parity operation and chargelconjug“ation. The CS-term breaks
the parity symmetry explicit}y by changing its sign undgr P. 1t also breaks the time-reflection
symmetry which corresponds to Aq(t) = Ag(~t) and A(t) — —A(-t). However, the Lagrangian
is still symmetric under CPT.

The potential term can be thought of physically as an analbgue to a Zeeman term which couples
the spin fields ¢ to an external, constant magnetic field of strength ;P in n-direction. Such terms

can occur in the description of the Quantum Hall Effect.

Finite energy requires that_ the potential term and the covariant derivative vanish at spatial infinity.

Hence we impose:

lim ¢(x) =n. ' , (2.18)

x| =00

This boundary condition allows to one-pdint compactify IR? such that fields ¢ are effectively maps:

¢ : 5283 o ) (2.19)

As mentioned above, these maps are elements of homotopy classes which form a group isomorphic

to the group of integers. This integer can be written as the integral over the zero-component of a

topologically conserved current

le = gcam® - (76 x 379), | (2.20)

such that the degree N'is obtained from

JV=/ﬁ%h, : _ (2.21)
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where the range of integration is IR?, see formula (1. 10) The current (2. 20) is the topological
current of the fields in the ungauged O(3) o-model and obviously not gauge invariant. We will

therefore address this question in detail below.

The equations of motion derived from (2.13) can be written in terms of the matter current J,

and the electrbmagnetic current j,
Jo =Dy x @, Ja=n-Jg. (2.22)

The Euler-Lagrange equations are

DJ*= 2(nx¢), ‘ (2.23)

Ja = —KEagy,0PAT. (2.24)

. Note that by equation (2.24) the gauge fields are completely determined by first-order equations
which illustrates our earlier remark that they do not have own dynaxmcs in the strict sense. Equa-,

tion (2.24) for a = 0 is Gauss’ law
Dogp- (n x'¢) = kB, ' (2.25)

where we have used B = e0;;0° A7, taking €02 = 1. Note that, since —1 < n-¢ < 1it follows that
|Ag| > [nBI| for static fields. The equation of motion (2.24) implies for non-sing-ulaf A, that the
electromagnetic current j, is conserved (9,5 = 0). It can be written conveniently as j, = (p,j),
where p is the charge density of the soliton while j denotes its eiectric current. By inserting (2.22),

the Lagrangian k2.13) can be expressed in terms of j,:
1,. . .4 1 . 1 ... :
L= 3 (Cap - 0%®) — 5140] - §AaA (1= (n-¢)? ) (1 -n: ¢) (2.26)

This shows explicitly that the gauge fields A, are coupled to the electromagnetic current j* which
is to be contrasted to the gauged Chern-Simons system considered by Wilczek and Zee [41], where
an U(1) gauge field was coupied to the topological current.

The electric field E and the magnetic field B are related to j, as follows:

__° N
B= Pl E,—e,]m. ‘ (2.27)

The first equation leads to the relation (2.10) between the magnetic flux ¢ and the electric charge

Q of the conﬁguration
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1 | | ‘
¢=/d2:z:B=—;/d2zp=—%. (2.28)

The theory’s energy-momentum tensor is obtained by the variation of the Lagrangian with respect

to the space-time metric s
Top = (Dad;) (Dp@) = 1ap ( (Dy¢) - (D"¢) - p*(1—n- ¢)> : (2.29)
i‘he integral over the component Tyg. is the sum of kinetic and potential energy of the soliton:
Besld | = [ 23 (Dug)* + 3 (D + 451 -n-9). (2.30)

Note that the Chern-Simons term does not contribute directly to the energy because of its metric

independence. The rotational symmetry of the Lagrangian leads to a conserved angular momentum

M of the soliton

M :./d% (x Ap), ' (2.31)

where the wedge-product stands for z;p; — p1z2. If the plane of motion is embedded into IR? one

can think of M as a vector pointing perpendicular out of it. The components of the momentum

density p are given by

pi=Toi = Do -Di¢p. . (2.32)

Due to the gauge field the momentum is noxi-vanishing even for static fields and so is the angular

momentum.

2.3 Bdgomol’nyi Bound in the Gauged Model

* Next we give a proof that E;s, the energy of the configurations, is bounded from below by a
topblogically conserved quantity. This is not oBvious, because the gauged pure O(3) g-model does
not have a lower bound oﬁ the energy; unlike its ungauged counterpart where the solutions saturate
the Bogomol’nyi limit. In our argument we adapt a proof by Schroers for the Maxwell-gauged self-
dual O(3) o-model [42]. Because we wish this section to be self-contained, we repeat below parts
of the analysis given in thls reference. We employ an aux1ha.ry energy functional E,,,[¢, 4] Wthh
is of Bogomol nyi type. First, we show that the energy gap between Eqs and E,,, is positive and

then complete the argument by demonstrating that E,,, > 47|N|.
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E,.. reads as:

E..[¢,A] = %/d% B? + (Di¢)’ +(1—n-¢)2. - (2.33)

In order to be consistent in the notation of dimensioﬁs, both the potential term and the magnetic
_field must be thought of as being multiplied by a parameter of dimension 1/length squared and
length respectively. For the above model to be self-dual, these couplings are algebraically related

and can consistently be put to one.

To relate Egs to-E,.,, one first observes that for Ecs, A2 > k?B?, due t'_o Gauss’ law (2.25).
Now we carry out a rescaling of x in Ecs, namely x — &x, which transforms B = B/x? and
d(x) = ¢(rkx). The poténtial term then transforms into x?u?(1 — n- @) and is greater than
1- n @) if K > 1/p. Let us consider this case first, while we deal with x < 1/u below.
To verify that E,., is smaller than Eqs we use that since 0 < (1 — n - ¢) < 2, it follows that

(1-n-¢) > 1(1—n-¢)? and one sees that for E,,, holds
 Eos > En, if &2 1/p. - (2.34)

In the case k < 1/u we assess an energy bound by multiplication of each individual term in the

energy density with x2u2. This gives

Ecs > K*’E,,, if k<1/p. (2.35)

This a.lfeady proves the bound for Ecs, but it is instructive to see in detail that the functional E,,,

defines a Bogomol'nyi model. To demonstrate this, we rewrite E,;,,‘ as
BurlBo#] = 5 [ o (D16 %6 x D29 +(BF(1-n-9))" & [#sm. @)

Ly is composite of the cross-terms and can be interpreted as the zero-component of the solitons
gauge invariant, conserved topological current:

L= %Em (¢-(DPp x D'¢)+ P4 (1-n-¢)) . | (2.37)

- Up to a surface term, this current is equivaient to I, the topological current of the ungauged
O(3) o-model (2.20). If the solutions are required to have finite energy, then ¢ must tend to zero

faster than 1/r as r goes to infinity, hence it follows by Stokes’ theorem that the corresponding
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surface term integrates to zero. In order to saturate the Bogomol’nyi bound, both squares in (2.36)

have to vanish, such that the following two (anti-) self-dual equations are read off
Di¢p=F¢xDyp, B==x(1-n-¢). (2.38)

" These equations were discussed in [42] for é special choice of the fields in the context of a Maxwell-
baby Skyrme model. There it was shown that they yield a one-parameter family of solutions which
are degenerate in their energy but differ in their magnetic flux.

By using the sign ambiguity in front of the integral over Lo in (2.36), we can restrict our
discussion to the case B > 0 and the upper sigﬁ without a loss of generality. Equation (2.36) then
implies A ‘

E..> / d*z Lo = 47|N|. (2.39)

" The equality holds for self-dual solutions.

2.4  Static Fields of Radial Symmetry

To find soliton solitions in our model we exploit the symmetries of (2.30) with the aim to- reduce
the two—dimens_ioné.l static problem to a 6ne-dimensional system, which is governed by ordinary
differential equations.

Accofding to the “principle of symmetric criticality”, sbmetimés also called “Coleman-Palais”
ﬁheorem, given a functional with a certain (global) symmetry, solutions of that symmetry can be
found by variation of the functional of fields invariant under this symmetry. These solutions will
also be stationary points of the energy funétional of “non-restricted” (i.e. non-invariant) fields

[43]. In abstract terms this corresponds to finding equivariant fields, that is. maps which satisfy-
$(x) = Rp(g™'x), | - (2.40)

where g € G, the group under which the functional is invariant and R is an operator in a certain
representation of G.

The energy functional (2.30) is symmetric under global O(2)-rotations in space and iso-space
Separately, however, fields of such a symmetry are necessarily of degree zero. The maximal compact

symmetry group with non-vanishing degree for the fields ¢ is given by

G = diag[0(2), ® 0(2)4] (2.41)
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Fields of that symmetry which are invariant under combined rotation in space and iso-space are
called hedgehog fields, in analogy to the diag[O(3) ® O(3)] invariant Polyakov-’t Hooft ansatz for
SU(2)-monopoles. Hedgehog configurations are also used in the Skyrme-model in (3+1) dimen-

. sions [44, 45, 46], where they are the appropriate ansatz for the solution of topological charge one.

In (2+1) dimensions, symmetry under G implies that one of the two angles which parametrize
the target S;‘; is identified with @, the polar angle on IR? (up to a multiplicative constant). Due to

our choice of the gauged z,/zs-plane, we can write
R }

sin f(r) cosnd
&(r,60) = | sin f(r) sinnf | - (2.42)
cos f(r) ' '

For this field, the topological charge density, the integrand of (2.21), equals
o= " f sin f | 243)
° 4nr ’ ‘ ' (2.43)

By integration one easily sees that n = —N. We will refer to finite energy solutions of degree one
simply as CS-solitons. Note that the t,agrangian (2.13) is invariant under n — —n hence solitons
and anti-solitons will exhibit the same physical features, as expected in a relativistic model. We
~ therefore do not strictly distinguish between them and adopt a somewhat sloppy notation.

The next step is to find a suitable ansatz for the gauge field A,. We use the most general

ansatz which can lead to radially symmetric and static electromagnetic fields:

Ao=mo(r), Ag=na(r), A, =h(r)t, (249

where ¢ denotes the time and the factor n is introduced for convenience. We fix our gauge by

putting A, =0 and obtain the equétions

K T

. v = — 1 (_a_-l-_l)_ sin? f.. . (2.46)
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Gauss’ law (2.25) reads in terms of a and v:

’

1
4 =-——rv sin? f. (2.47)

Finite energy requires that Ds(¢) — 0 as 7 — oo. To guarantee this and the regularity of the

fields at the origin, we impose the following boundary conditions

a(0)=0, f(0)=m, v(0)=uo, (2.48)

lim f(r) =0, lm a(r) = ae, lim v(r) = vec,

where vg, U and aq, are constants. With these boundary cohditions it is cleér that constant fields
a and v are not a solution of (2.46) and (2.47), which can be shown by contradiction. If a were a
constant it would have to be zero everywhere in which case (2.46) implies that v is not a constant
which in turn, via (2.47) leads to a non—constant a. A similar argument applies for the case of v,
being constlant. Hence the e_ciuations of motion will not lead to vanishihg flux and charge. .

The energy Ecs is given as the integral over the energy density e, which reads in terms of the

fields f,a and v (2.30)

12 2 2
e= G+ 5 ()t e0-p. g

For the angular momentum (2.31) we obtain.
M = —7mkNac (e + 2N). o (2.50)

Hence we see that the angular momentum of the soliton is fractional (bec_atfse it depends on &
and ac) and in that sense the solitons are anyons. The electromagnetic fields (2.27) are radially

-symmetric by construction and in terms of the gauge field can be written as

’

B= N“7 ,  E.=Nv. | (2.51)

The electric charge and magnetic flux are not topologically quantized (unlike in the Abelian Higgs

model, for instance) and depend on the model’s parameters.

d=N / rdrd«‘)“7 = —2rNag = -‘%. . (252)
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2.5 Asymptotic Behaviour of the Fields

The boundary conditions (2.48) allow to derive asymptotic solutions to the equations of motion

(2.45). By approximating sin f & f and cos f ~ 1 for large r, the equation for f (r) simplifies to

"o ' a + 1 2
f +f7=n2 ((—°°T2—)—+k2)f, (2.53)
where -
k> =p—n%l . : (2.54)

The asymptotic values of f depend on the value k takes. There are three possible cases.

1) |p| > |nveol, k real.

The solutions to (2.53) for real k ‘are given by modified Bessel functions f(r) ~ Kp(kr),
m = n(a},o + 1), with the asymptotic behaviour ' ’

frpe (2.55)

This shows that k can be interpreted as the effective mass of the matter fields ¢, being a measure
of the inverse decay-length of the profile function. A
The a.symptotiés of the field are determined by the potential term which defines the theory’s vacuum

structure. Therefore it is not a surprise that the soliton’s matter field looks asymptotically like the

baby Skyrmion investigated in [47], where the same potential term was used.

2.) 1 < |nveo], k imaginary.

This case leads to oscillating fields with an amplitude that falls off proportional to 1//7 in leading
order. The substitution k = ik in (2.55) verifies this instantly and shows that k is proportional to
the inverse wavelength of the oscillations. The energy density of these solutions is asymptotically
proportional to 1/r in leading order and hence thé energy of these solitons is infinite. This, of

course, is not a physically relevant solution so that we impose the following constraint on the

solutions:

lul > nveo). - (2.56)
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3.) 1= [nve|, k = 0.

* The critical case involves a vanishing exponential such that the profile function f ~ 1/r. The energy
of these solutions is also infinite, because the leading term in the energy density is proportional to
vZ, f2. Numerically we find that all these solutions occur but restrict our discussion to the case 1),

which has solutions of finite energy.

For the electric and the magnetic field we find in the asymptotic limit of large r, using expression

(2.55)

1 ‘ 1
E. ~ ;6"2'", B~ ;e-?’". (2.57)

This shows that the electromagnetic fields fall off much faster than the matter field f. Therefore
the electromagnetic interactions are expected to be negligible in the context of long-range forces
between the solitons. The electric field is a vector lying in the plane of motipn while the magnetic
field B is a pseudoscalar and can be thought of as pointing perpendicular out of the plane of motion
(again, if it is thought of embedded into IR®). The asymptotic behaviour of B is similar to the
magnetic field of Skyrme-Maxwell solitons as discussed in (48], where it was argued that such a

magnetic field resembles a magnetic dipole in two-dimensional electrodynamics.

For small r, the fields can be approximated by power series

frrterll, vy +dri™, gagriinlt? (2.58)
- where c and v are free parémefers while d and g are given as functions of n, &, ¢ and vy. Note that
' for finite energy solutions ¢ and v are not completely ihdependent on each other. Finite energy
solutions define a subset of solutions which satisfy specific boundary conditions (2.48) on the fields. -

These boundary conditions limit the parameter range not only separately for each field but also

— as a result of the coupled équations of motion — mutually.

For the Skyrme-Maxwell solitons [48] it was found that the electromagnetic short-range inter-
action decreases the energy per soliton and leads, in particular, to stronger bound 2-soliton states.
Here, having a non-zero electrical charge distribution we expect this effect to be weakened by the

inner repulsion of the soliton’s electric field.

Interestingly, the asymptotic behaviour of the fields (2.58) implies that both the electric and
the magnetic field vanish at the origin. For the energy density e not to be divergent at the origin,

B and E have to approach zero faster than /"l for small 7.



2.6 Numerical Methods 36

2.6 Numerical Methods

We solved the set of equati.ons (2.45) numerically by using a shooting method and a relaxation
method.

The shooting method is a systematic trial-and-error method for the numerical integr_at.ioh of
boundary-value problems, in which the free parameters of the integration are adjusted until the
required boundary conditions are met. To illustrate this procedure, consider a family of functions
g(r,§) which is to be integrated within the closed interval [r1, ;] and depends on a parameter £.
If, say, the boﬁndary cohdition at r2'is g(r2,€) = h and is to be met by the variation of the
function g at r;, one can start with an initial guess for the parameter’s range at r;. Denote this
range = = {€ : {min < € < &max); then E corresponds to a range of values gz(€) = g(rs,£), € € =.
Given that h is'within the interval [g2(€min), 92 (€max)], ODe can find the value € that corresponds to

h=g, (é) by bisecting Z or by Newton’s method until the required accuracy is achieved.

Here, however, we have two parameters to vary (c and vo in (2.58) ) which are indirectly
dependent on each other and ’chereforé it is not obvious which method should be used t;) determine
both simultaneously and with efﬁc-iency. To find a systematic approach, we took two large ranges
for both ¢ and vy e.md put a grid on the range of vo. This grid typically consists of 200 points and
to find ¢ for each point we applied the shooting method described above. The boundary conditions
on the fields were always met by a subset of points on the grid vy. For this subset we obtained
. the energy Fcs (2.30) as a function of vo and used this information to place a finer grid around
the global minimum of E[vo].. This process was continued iteratively until the difference of v, for
shbsequent iterations was within the limit of the imposed precision (which was of order 10~°).
We obtained a quasi-periodical structure fof Ess dependent on vp, showing many local minima,
however the global minimum E,;, = E(vg™) was in all cases given by the local minimum closest
to vo = 0 with vg™» > 0.

The relaxation method, on the other hand, works on basis of the diffusion equation. Here the
fields are initially "‘guessed” and then undergo a dissipative time-evolution, determined by a linear
first-order time-derivative. This ensures that the energy is decreasing during time-evolution. If the
Euler-Lagrange egiuation (2.45) is written as F'(f,a,v) = 0, then the dissipative equation is given
by . s

df _
~D— = F(f,a,v), (259)

where D is a positive real coefficient which determines the rapidity with which the energy decreases. -

Similar expressions are used in the equations for a and v. Although the relaxation method is strictly
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defined only for elliptic differential equations, we could employ it successfully here. The initial fields
are chosen in such a way that their boundary conditions are satisfied and the boundary remains
' fixed as the fields “relax”. We used this method to solve the coupled set of equations (2.45)-(2.47)
on several grids containing between 700 and 2000 points. For the range of integration r € [0, T max]
we took 7. = 10 or r... = 15, dependeﬁt on the shape of the soliton. For both the shooting
method and the time ‘evolution in the relaxation method we used a fourth-order Runge-Kutta
integration routine. While the stepwidth for the shootipg method was typically dz = 0.01, the
gridspacihg dz in the relaxation method is related to the time-step dt by dz = dt?/2. We used

several values between dt = 10~3 and dt = 1075.

2.7. Numerical Results

In order to perform the numerical integration we had to fix the parameters in our model. Using
geometric units in which the energy and length are of unit one, we are left with 4 and & to .be
fixed. lHowever, the parameter space is in fact one-dimensional which can be verified by carrying '
out a rescaling z — xz, B — B/ @2. This leads to a redefinition of the coupling to the potential
which is the only remaining parameter. Thus we can fix p for all our computatiohs without loss
of génerality. We chopse‘u = /0.1, a value which allows to compare our numerical values with
the ones obtained in the Skyrme-Maxwell model [48] and in the gauged @P' model [40], where the

same value had been used.

We looked at the depeﬂdence oh k of so]utiolns of degree N = 1 and N = 2. This parameter
determines the streﬁgth of the CS-term and is propdrtiqnal to the squafe root of the inverse
coupling to the gauge field, Ax = Aa/ VK. ‘

Fig. 2.2 shows the dependence of the static energy or mass on «. Smail k, which corresponds to
strong coupling, leads to lighﬁer solitons for both thé ohe-soli_ton and the two-soliton. For large
& the energy E;ss tends to a constant but remains relatively close the the Bogomol’'nyi bound,
staying below 1.1 (in units of 4| N|) for the oﬁe—soliton and the two-soliton. Thus our solitons are
significantly lighter than gauged baby Si(yrmions, which for weak coupling tend to Esy = 1.546.

The energy gap arises partly due to the Skyrme term which is not present here.

It is particularly interesting to look at the relative energy per soliton. The energy difference
.AE = E? - 2E" can be interpreted as binding and exceés energy of the 2-soliton for AE < 0
and. AE > 0 respectively. In case AE < 0 the solitons form bound states while for AE > 0

we expect that solitons on tob of each other are unstable under perturbations and experiencé a
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repulsive force. From F ig. 2.2 it is clear that in our model both cases occur. For small s the
two-soliton is in an attractive regime as it is for large k, however there is an intermediate region
k!, < k < k" for which the 2-soliton configuration is unstable (in the sense that its decay is

cr

energetically favourable). Numerically we find that «{, = 0.632 and &*, = 2.215.

10 . 100

fig. 2.2: The energy Ecs (2.30) in units of 4x|N| as a function of the Chern-Simons coupling &
for N =1 (solid line) and N = 2 (dotted line). The plot includes the Bogomol'nyi bound (dashed

line).

In the limit of large & the gauge fields decouple and become very small when compared with
the matter fields. The étudy of ungauged sélitons in a model which uses the same potehtia.l showed
that pure matter forces-are attractive for two solitons [47). This is also the case here.- For very
small &, howevef, the magnetic flux tends to a constant. Increased couplihg (small K.)v leads to a
configuratioh which is strongér bound. The intefmediate range 'is a regime in which a repulsion
dominates the attracti;»re forces of matter and magnetic field. It is within this range that the electric
charge has its maximum value Qumax = @(Kmax), Where numerically &,.., = 0.75 (for N = —1) and

Kumax = 0.92 (N = —2), see Fig. 2.3.
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fig. 2.3: The electric charge @ (2.52) in units of 27| V| as a function of the Chern-Simons.coupling

parameter & for V =1 (solid diamonds) and N = 2 (triangles up).

In showing such a behaviour, CS-solitons resemble the vortices of the Abelian Higgs model where
a similar transition between repulsive and attractive regime occurs, depending on the strength of
the p(_)tential term. The shape of our soliton solution shows a strong dependence on «, which is
foreseeable by the: interpretation of  as a‘coupling parameter to thé gauge field. Increased magnetic
ﬂﬁx, as it occurs for small &, in the Skyrme-Maxwell model is known to cause more localized
configurations [48]. On the other end of the scale, for large x the electromagnetic interaction is
oﬁly very weakl'y coupled. If the asymptotic value x = is taken, the Lagrangian reduces to
the O(3)o-model term plus the potential term, such defining a configuration which is known to be
unstable against shrinkage due to the Hobart-Derrick theorem [17, 18]. Actually taking the limit

therefore leads to a different model.

Figs. 2.4-2.7 show the energy density, profile function and gauge field for several values of k.
In agreement with our expectations one sees that for large x the soliton becomes more lo‘calized..
This illustrates that-the potential term in the Lagrangian favours a shrinkage of the soliton. For
decreasing « the soliton tends to spread out and reaches its maximum width at & &~ 1. On the other

hand, for smaller x the soliton becomes more localized again. This can also be seen in Figs. 2.4-2.5.
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€ s00}\}

fig. 2.4: The energy density e (2.49) as a function of r for N = —1 and & = 0.3 (long-dashed),
& = 0.4 (dotted) and k = x', = 0.632 (solid).

For very small K, botﬁ the gauge ﬁelds a and v tend to‘functions that are singular at the
origin, in particular, a tends to —1 everywhere except at r = 0, which is fixed by the boundary
conditions. In that the behaviour of a is similar to the gauge field in the Skyrme-Maxwell model.
We conjecture that the origin of this coincidence is the particular ansatz chosen for the gauge field,
which leads té terms proportional to (a + 1)? in the energy density, thus making the value a = —1
exceptioné.l. The limit of strong coupling therefore also leads to a dynamically quantised flux

(2.52) and in addition implies via (2.52) that the electric charge vanishes for 5 — 0. From (2.58)

it follows that the electric and the magnetic field form a ring, a feature usually seen for 2-solitons.

4.0

3.0

10.0

fig. 2.5: The profile function f as a function of r for N = ~1 and k = nic, = 0.632 (solid),x = 2
(dashed), k = 0.4 (dotted). .
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~

We also looked at the solitoﬂs for N = -2 and its dependence on . The.2-soliton has the
shape of a ring, a familiar picture in maﬁy soliton theories in (2+1) and (3+1) dimensions. For
the same given coupling, the fields of the 2-soliton decay slower than those of the 1-soliton, which
can be understood from formula (2.54). Our numerical results show that v, depends strongly on
the coupling & but weak'ly on the topblogical charge N so that the effective mass k is smaller for
the 2-soliton and hence its expohential decay slower. '
In Figs. 2.8-2.10 we show the energy density, profile function and electromzignetic fields of the one-

and two-soliton. The coupling here is the lower critical coupling «!,.

~a

1.0 : i
00 - 2.0 40 6.0 8.0 10.0

r

fig. 2.6: The gauge field a as a function of 7 for N = —1 and & = &!, = 0.632 (solid),x = 2
(dashed), & = 0.4 (dotted). '
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3.0 - ; , .

fig. 2.7: The gauge field v as a function of r for N =-land k = KL, = 0.632 (solid),x = 2
(dashed), x = 0.4 (dotted). ' '
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fig. 2.8: The energy density e (2.49) as a function of r for & = !, = 0.632, N = —1 (solid) and
N = -2 (dashed).
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fig. 2.9: ' The profile function f as a function of r for £ = «!, = 0.632, N = —1 (solid) and N = -2
(dashed). »
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fig. 2.10: The radial-component of the magnetic field E; as a function of r for x = k!, = 0.632, "
N = —1 (solid) and N = —2 (dashed).
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2.8 Conclusions

We have studied classical static soliton solutions in an O(3)o-Chern-Simons system with ﬁnbroken
U(1) gauge symmetry. The solitons have an electric charge which shows a unique maximum
dependent on the cou;iling to the gauge field. The magnetic flux in the model is effectively quantised

in the limit of strong coupling while the angular momentum of the solitons is fractional such that

they can be seen as classical anyons.

In the case of two solitons sitting on top of eéch other, the model has a repulsive and two
'attra;:tive phases, dépending on the parameter which couples the gauge and matter fields. This
has interestihg consequences for interactions of multisolitons. In the repulsive regime they will pre-
sumably try to move away from.each other and for a finite region this would lead éo a configuration
similar to an Abrikosov-lattice with solitons in equidistant and fixed positions. Such configurations
occur in the description of type-II superconductors, although the theoretical description there is

given in a non-relativistic model.

In the ‘attra.ctive regime, however, solitons which afe not too widely separated from each other
will be likely to coalesce. In this context it is worth investigating whether the solitons of higher
winding number show a similar dependence on the coupling, in particular whether their criticai
couplings ! and " are of the same value as they are here. The inter-soliton forces at large and
medium distances will be dominated by the matter fields, Because the electromagnetic fields decay
faster by a factor of e 7. Thus, the interactions should be asymptotica.lly well described by the
dipole picture developed in [47]. A full numerical simulation of the time-dependent fields is not an
easy taék and one could therefore start with a study of truncated dynamics. As an example for
such an invefstigaﬁon it would be interesting ﬁo look at rotating CS-solitons. Due to the hedgehog
ansatz for tvhebmatter fields, a rotation in space is equivalent to a rotation in iso-space and thus it
can be imposed by making 6 a function of time. If one wants to take into account the back-reaction
to the matter fields, f(r) had to become time;dependent and would be deformed due to centrifugal
forces. Such investigations would also be interesﬁng in comparison to the ungauged spinning baby

Skyrmions described in [49].




Chapter 3

Self-.DuaI Solitons in a Gauged
O(3) c-model |

3.1 Introduction

The concept of self-duality is applied for the construction of a class of theories in which certain
terms in the action and their couplings are not free but constrained by relations between each
other. If these relations are satisfied — thus defining the self-dual fields — some positive valued
‘functionals (usually the potential energy) take their minima. The equations of motion at the point
of self-duality are reduced to first-order differential equations, which are more accessible to an

analytic investigation and, in some cases, can be solved explicitly.

Theé notion of self-duality (sd) origihates in Yang-Mills (YM-) field theory. Historically, Yang
and Mills introduced the idea of ma.kiﬁg the global S'U (2) iso-spin symmetry-of nuclear physics loca.'l..
It has later turned out that in four-dimensional Euclidean space pure YM-theory possesses classical,
finite-action solutions to the sd-equations. These solutions are called instantons. The YM-action,
on its own, does not deécribe any known physical system, but apart from its conceptual value
it is of course one of th’efuﬁdamental buildirig—blocks of the Standard Model. More interestingly,
from our vievx;point, YM-theory shows various relations to other important models with topological
soliton solutions. This is our main reason for describing it here in more detail (see also [50] for a

review).

The model is defined on X = IR?, the coordinates. of which are (z,, z2, 23, 24). The su(2) gauge

field A; = 3, Afoa/(2i), (a =1,2,3) is*in its adjoint representation and the field-strength is given
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by Fij = 8;Aj — 8;As + [Ai, A;], (here ij=1,2, 3,4), while o, denotes the Pauli matrices. Taking

" the coupling-strength to unity, the YM-action can be written as -
Sym = _/ d‘z Tr (F;;FY),

where the tracé is taken over the group index. Now the Bogomol’nyi trick is applied and introducing

the dual ﬁeld-strengﬁh F‘ij = €ijr Fri /2, the action is rewritten,
1 ‘ - .
S = _5/ d's T (Fy ¥ FJ) / d'z Tr ( FyFY) . (3.1)

To guarantee finite action, the gauge field A; at the boundary of the physical space X = S3,
has to be a pure gauge A; = U~14,U, where U = U (a) € SU(2) depends on a set of coordinates
a = (a1, as,a3), which parametrise S3,. Therefore U : S3 +» SU(2), which is topologically $3
and hence U falls into a homotopy class that corresponds to m3(S3) = Z. Consequently, the
configuration space of the theory is composed of disjoint subsets labeled by their integer-valued .
index ;avhich counts the winding of the gauge field at infinity. This also illustrates our earlier claim -
that YM-instantons are topologically of the same type as vortices in the Abelian Higgs model. 4
We denote the degree, often called Pontrjagfp index, by k. Its analytic expression is given by

a multiple of the second integral in (3.1). Therefore (3.1) yields:
Sym > clk|,

where c is the normalization constant, ¢ = 8m2. Within each topological sector labelled by k Svm

is absolutely minimized and the bound saturated at the pomts of self-duality
Fyj=+F;. (32)

The solution to this equation of index k = %1 is called the (anti-) instanton. Solutions to the
sd-equation are known for all £ and, being a minimum of the action, they also solve the Euler-
Lagrange equations of motion D;F}; = 8;F;; + [A;, F;;] = 0. The converse is in general not true,

there can be saddle-point solutions to the equations of motion which are not self-dual.

As mentioned above, one reason for thé interest in YM-theory stems from its manifold relations
to various other theories, which are usually established by some form of dimensional reduction.
Probably the most 1rnportant of these is the connection to three-dimensional Yang-Mills-Higgs
(YMH-) theory. In _essence, if the four-dimensional YM-fields are made independent of, say, z4

and A} is identified with the Higgs field ¢ in its adjoint representation, the theory is equivalent
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to YMH-theory in three space—dimensions which has — in the limit of vanishing Higgs potential

— self-dual soliton solutions known as BPS-monopoles.

Thé sdYM equations are"also related to the notion of integrability in lower dimensions. In
a space of signature (+,+,—,—), the sdYM equations can be dimensionally reduced.to (1+1)
~or (2+1) dimensions and reintefpreted as consistency conditions for systems of complex linear
differential equations. These systems often resémble the Cauchy-Riemann equations and thus
relate the problem to the theory of ‘holomorphic functions. - A prominent example where this

method can be applied is the chiral model (51, 52].

Our third example relates the sdYM-theory to the model we discuss in this chapter, that
is to self-dual Chern-Simons (sdCS-) theories. The SU (2)—deM equations, again reduced from
(2+2) dimensions, yield non-relativistic, non-Abelian sdCS equations in (2+1) dimensions, see
ref. [53]. The matter fields here are complex scalar fields . Non-relativistic sdCS-theories are
relevant in condensed matter physics, as indicated in chapter 2. Self-duality requires in this case
a fourth-order Higgs potential U(|¢|)un ~ |¢|4. The ‘rﬁ_atter equation 6f motion is the non-linear -
Schrodinger ec‘luationA and the sd-solutions are static solutions of the corresponding Euler-Lagrange
equations. For an Abelian gauge field these solutions are of zero energy [54]. Interestingly, the
sd-equations can be solved explicitly for an Abelian as well as for a non-Abelian gauge field [55].
In the Abelian case the equations can be combined to the Liouville equation, while in the more

general non-Abelian case they become Toda field equations.

‘Relativistic sdCS-theories, on the other .har.ld, do not have known analytic solutions.
Theée theories include a sixth-order potential with ‘degenerate symmetric/asymmetric vacua
which allows for (non-) topological solitons as well as for (non-) topological vortices:
U([¥h)a ~ [912(IvI? = [9]?)? [56, 57, 58]. In the sd-limit the Higgs’ mass equals the mass of the
gauge field. Abelian and non-AbeIia:n versions have been inQestigated and in both cases the Bogo-
mol’nyi bound is given by a U(1) charge. It would be interesting to know if non-Abelian models
with more complicated bounds, like a linear combination of various charges or BPS-type bounds,
can be constructed. To the best of our knowlédge this has not been done yet. In the non-Abelian
relativistic sdCS-model the Higgs- and gauge field spectra are rather rich and their masses can dif-
fer. Howevgr, foxi su(N)-valued gauge fields they are given as (integer or half-integer) multiples of
the same fundamental mass scale m = v?/, (K, being the CS-coupling). For completeness we also

' want to mention that these sd-models have been generalized to accommodate a Maxwell/Yang-

Mills term, thus giving the gauge field some true dynamics. To make such a model self-dual, ‘a
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neutral scalar field has to be introduced [59].

It is an amusing observation that for all those models the self-dual bound, or a mbdiﬁcation of
it, ﬁrovides a bound on the energy even if the couplings are perturbed. Take the energy functional
E[$, Aalsp = Y1) k{PEi[$, Aa] with positive definite E;[¢, A,] and let the sd-couplings k$° > 0
for all 7. For solutions of the sd-equations, denoted ((i, /ia), it holds in the N-soliton sector that
ESD[JS, Aa] = ¢~v > 0, where cv is a constant. Now use coupling constants which are different
from the sd-limit: & = k$°(1 £ p;/(1 + 1)), i > O for all i. Then one obtains for the energy
Ef =Y «fE: o

K3P s ’
:- ZEz > CN,

n
E: = ESD + Z 1
i=1

n

E- = L _F;
K Z 14+ p; :

=1

n =1 a
= .<H(1+Nk)) Do SsPE [ +u) . (3.3)

© \k=1 i=1 . J#i
n -1 n -1 5 n
- ao(flavm) + (Tlosm) S0 (Toem-1
k=1 “\k=1 i=1 J#1
n -1
> Cu (H'(1'+uk)> "
' k=1 ’

In both cases the bound is insaturable for non-trivial fields, because its saturation would imply

that each E; vanishes individually, which means that the fields are constant.

In this chapter we present a relativistic sdCS-theory which is based on the O(3) o-model [38].
It is similar to the relativistic scalar CS-Higgs- (CSH-) model discussed above in that it exhibits
a symmetric and an asyrﬁmetric vacuum which are degenerate. The gauged O(3) o-model has a
self-dual realization for Maxwell-dynamics, as shown by Schroers [42]. In this model the gauge
symmetry remé.ins unbroken, hence the ﬁux is not quantized and the topological bound is entirely
_due to.the topology of the matter fields. However, the gauged'0(3) o-model exhibits two conserved
charges: the t.opologically conserved degree of the matter field ¢ and\ the dynamically conserved
Noether charge arising from local gauge symmetry. In this chapter we pursue the idea to find a
self-dual model where the energy-bound is given by a linear combination of these two charges. For
the construction of this theéry we apply the Bogomol'nyi argument described above. In contrast to
the Bogomol’'nyi equations of the pure O(3) o-model, the self-dual equations in our model cannot
be solved aﬁalytically. Nevertheless, because théy are of first order, an analysis of them is more

accessible than one of the second-order Euler-Lagrange equations:
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The non-relativistic version of the theory discussed below is pdtentially interesting as a model

. for planarlferromaghets. In this context the ﬁeld ¢ is interpreted as a spin vector and the Euler-
Lagrange equations are the gauged Landau-Lifshitz equations. Such a model was investigated
very recently in.[60] where it was shown that it yields a variety of topological and non-topological
soliton solutions. If a background charge is included,. it turns out that for a specific value of this
chargé the soliton solutions are the same as those in the (non-relativistic) Abelian sdCS-theory, as

[y
Bl

discussed by Jackiw and Pi [61].

3.2 The Self-Dual Chern-Simons O(3) c-model

Our model is defined by the following Lagrangian on (2+1)-dimensional Minkowski space of sig-

nature (+,—,—):

£ =5 (Dad) (D°0) & 354,05, ~Un - 9), (34)

. where we omit the Lagrangian multiplier. ¢ is the 0(3) a-modei matter field introduced above
and A, € U(1), n = (0,0,1). With respect to the covariant derivative and the indices, we use the
same notation as in chapter 2. For the moment, we leave the sign of the Chern-Simons coupling
% arbitrary. Being interested in étatic sd-configurations, we consider the energy functional for

time-independent fields, which can be written as

Eesl4,0] = [ @2 3 (430 x 97 +(D19)* + (D26)") + Ulg). (35)

Gauss’ law yields A9 2 FxB/(n x ¢)%, B =8, A2 — 3A;. Using this to to eliminate Ao and

chosing the potential U(n - ¢) = [n x ¢|*(v — n - $)?/(25?), v > 0, we can rewrite the energy

SR 1 2, 1( KB _|nx¢l(v-n-9)\*
Balp = [ £2 500 x0x a0+ (g 7 A=) (35)

/d2¢(D‘1¢-¢xDz¢+_B(1—n-¢))j:(}/-1)/d2zB.

As shown in chapter 2, the second integral is proportional to deg{¢], the degree of the map
¢ : 5% 52, ‘The third integral gives a multiple of the magnetic flux ¢, which is due to Gauss’
law proportional to the electric charge and therefore conserved in time. The electric charge-density
is hére p = Ao(n x ¢)%. The integrand of the ﬁrst term in (3.6) clearly is positive deﬁrﬁte, from

which we derive the following bound on the energy:




-
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Ecs_ > 4m|deg[]| + (v — 1)|9]. (3.7

Here the sign ambiguities of x and in the square brackets in (3.6) were removed by taking the -
magnitude of dég[qb] and ¢. The energy bound (3.7) is a conserved quantity and therefore solutions

which saturate it will have the same Ecs throughout their time-evolution 1.

Due to the choice of the potential U, the model exhibits two or three degenerate vacua, de-

' pending on v. In radial coordinates (r, 8):

a) v>1, lim ¢(r)==%n, :
r—0co (38)

b) v<1, lime¢(r)=xn or lmn-¢g=v.
L TO0

T—+00

fig. 3.1: Higgs potential U = sin? r(v —cost)?, where ¢3 = cosr, r = /22 +y2 € [0,7]. v =0.1.

For v = 1 both cases coincide. We refer to the vacua ¢ = *+n as symmetric vacua and to

n- ¢ = v as an asymmetric vacuum.

!Note that Ecs is not simply the potential energy because it includes contributions from the temporal part of

the covariant derivative of ¢. .
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a) Topology for v > 1

This case gives rise to soliﬁon solutions with the degree of the map NV = deg[¢] being integer valued.

The gauge s-ymme.try remains un\broken and hence the flux is not quantized. If the degree N # 0,
we speak of topological solitons. For N = 0 there is no topologically preserved quantity, the energy
of the solutions is proportional to the flux which in turn is proportional to the #-component of the

gauge field at infinity. These are non-topological solitons.

'b) Topology for v < 1

This case allows for any of the three vacua where the symmetric phase is analogue to case a). In
the asymmetric phase the vacuum manifold of the field is a circle of radius v/1 — v in the. plane
$3 =v,ie o =limrooo P = (¢‘1x,', 2,,v). The model’s local U( 1)-symrﬁetry gets spontaneously
broken by the choice of the vécuum #L,, 92, and the magnetic flux is quantized. One can combine
#L.; ¢2, into a complex scalar field, ¢ = @2 +i¢2, and prdcged in the discussion analogously to
'th'e Abelian Higgs model of section 1.3, such that ¢ — vexp(iM8). The covariant derivative then

becomes D;p = 0;p + iA;p and for it to vanish at infinity, the §-component of the gauge field has

to satisfy:

13130 Ao(r,8) = i'?ijfl = —lrllaid)dlﬂ =M. (3.9)
Hence the boundary of the physical space (S.)) gets mapped onto the circle ¢35 = v and such
maps are classified by m;(S?) = Z, giving them an integer degree M. We call solutions of degree
. M > 0 topological vortices. Note thét the map ¢ is not surjective any longer and that one cannot
one-point compactify IR? to S2, because the fields at infinity are not constant. The notion of a
degree m,(5?) in the way we used it so far is therefore not applicable. However, formula (1.10) for
N produces a value of N < 1 which can be visualised as the fracti(_)n of target S? that is covered
by ¢. .

Hence there are two topolqgical charges of relevance in our model: 73(S%) for the symmetric
vacuum and 1 (S') for the asymmetric.vacuum of case b). We will discuss solutions to cases a)

and b) in detail below.

" To find these solutions, we study the Bogomol’nyi equations of our model. The static energy
functional '(3.6) is minimized and the.bound saturated if and only if the first integral vanishes.

This leads to the followingv sd-equations:
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Di¢p =F¢x D:¢,
B —4nx¢lv-n-¢)

K2

(3.10)

For further discussion it. is helpful to fephra.se these equatibns in terms of coordinates on the

complex projective space CP'. The coordinates of CP' are scalar fields depending on the coordinates

of the plane of lmotion, for which the complex variablés Ty =) +1iz2 and 2 = z; — izy are

introduced. Let W be such a complex field, related to ¢ through the stereographic projection from
- the south pole of S2 onto the C(;mplex plane: '

_ ¢1 +1igy .
W= T ds (3.11)

Then the Bogomol'nyi equations in terms of W are:

_ W] +3jw))

D1W=:F’LD2W, B— W)_"_" (312)

where the covariant derivative is now D;W = 8;W + iA;W. After some algebraic manipulations
these two equations can be rewritten as a second-order equation for W:

4W|(1+3|W|)

e (3.13)

Ozpe W+ 0, WO, _ W =

From this equation it is immediately clear that WV cannot be a (anti-) holombrphic function. We
did not succeed in solving this equation and to progress numerically we resort to an appropriate
ansatz for the fields. The same symmetry considerations as discussed in the previous chapter apply
for the matter fields and hence we make use of ansatz (2.42) again. We restrict ourselves further
‘and use for the gauge field the rotationally symmetric aﬁsatz Ag = na(r). Then the sd-equatioﬁs

(3.10) become

f =—na+1sinf,
(3.14)
.2 .
a =—T:22'f(u—cosf).

For the fields to be well-defined at the origin and for the energy to be finite, one has to imbose the
following boundary conditions, similar to (2.48):

a{0) =0, rlggo a(r) = oo, ) F(O) = mlﬁ, TIH& f(r) = mam, (3.15)
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for the symmetric phase and

lim cos (r)y=v (3.16)

r—co -

for the asymmetric phase.  In the symmetric phase, fields ¢ which satisfy these boundary conditions
are of degree N = (cos(mym) — cos(meom))n/2. For simplicity we restrict ourselvestom; =1,my =

0. In the asymmetric phase we find ® = —27M and N = —(v + 1)n/2.

The classical vacuum structure of the model is the starting point of any quantum mechanical

" approximation for the mass-spectra of the particles. We expand the potential for the fields close
to the vacuum and obtain for the symmetric vacuum ¢, = n a mass of mg = |[v — 1|/|| and
a massless gaugé boson. In the asymmetric phase the Higgs effect takes place. It gives a mass
(1 — v?)/|x] to the gauge field and to the Higgs particle (which corresponds to the ¢3-degree of
freedom). The fact that the masses of the scalar énd the vector particle are the same is not a
coincidence. In.the M > 1 sector of the configuration space the vortices do not exercise any
mutual forces, because if they did, their static energy would not be constant (unless repulsive and
attractive forces 'ca.ncel each other in the potential energy, which is unlikely). However, having a

- magnetic field and non-linear matter fields, it is not obvious how this effect occurs. The standard
interpretation for BPS-monopoles (where the Higgs and photbn .are massless in the sd-limit) is

- that in the Bogomol’nyi limit the attractive matter-forces are just compensated by the repulsive
g y ' P

magnetic forces [25].

The solutions to our model also have a non-vanishing angular momentum. It is determined by
the quadratic term in the action and the CS-term only and it does not depend on the potential.
Thei‘efore the angular momentum M in the sd-model is the same as in the non-sd-model of chapter 2,

¢f.(2.31) . In table 3.1 we summarize some of the features of the theory that. were mentioned so
far.
The energy-density (3.6) can be expressed in terms of our ansatz (3.14), which yields:

1 | nza’zl n%(a + 1) sin? sin? f(v — cos f)?
E[f,a] = §/d2z (f'2 +n2r2 Sl f + - ( r2) f,+ ( = 1)) . (3.17)

. For the numerical treatment it is important to know the asymptotic behaviour of the fields for

small r. We approximate the fields around the origin by a power series and obtain:

f = w+arl™,

W+1)a®  agai+r) o (3.18)

@ 262n|(jn] + 1)
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From this expansion it is clear that the magnetic field B = na’/r vanishes at the origin. Also note

that the powers are the same as for the non-sd-model discussed in the previous chapter, eq.(2.58).

v21 v<l
bw|  n )
‘I>. 2macon . 2T M
M TKNGoo (21 +aoo) —-TeM(2M - 1) - (3.19)
’ e 0 (1-v¥)/k
mg lv£1|/x (1-v?)/x
N ;n,O ~(v+1)n/2

Tab. 3.1 Characteristics of solutions in the self-dual Chern-Simons O(3) g-model.

3.3 Topological Solitons in the Range v > 1

In the parameter range v > 1 there are .two symmetric vacua, namely ¢, = £n. We concentrate
on ¢ = n, which has for boundary condition (3.15) a non-vanishing topological charge N = —n.
The self-dual equations (3.14) and the ‘boundary conditions- (3.15) constitute a well-defined
problem, >which can be discussed analytically. We prove, that there is a one-parameter family of
solutions for all » > 1,|N| > 1 and » = 1,|N| > 1. The proof requires several steps, in some of

which we follow Schroers [42].

a) limits on [ '
The profile function f is limited to the range [r,0). To prove this, we use in the vicinity of =:

f = f —n. Then (3.14) can be simplified to

f_INie+1) (3.20) .
it

If integrated over dr this gives In f=|N| [dr(a+1)/r, the left hand side of which clearly diverges

as f approaches zero, while the right hand side remains finite (as long as the upper limit of
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integration is finite). This means that if f > 7 for any value of r > 0, then it will be larger than
‘m for all r. But this excludes the possibility of meeting its boundary condition at infinity, hence

f<m If fis replaced by f, the above argument also shows, that f > 0, for all r, hence
0<f<r. (3.21)

b) limits on a
From (3.14) it follows, that a’ < 0 for all 7, hence a is a monotonically decreasing function.
Moreover, using 0 < sin® f(v — cos f) < (v + 1) it follows that a’' > —(v + 1)r/(|N|«?). Hence, for

a given R € [0, 00), by using the mean value theorem and (3.15), we find

1
"+ Vg < o(m) <o0. (3.22)
[N
¢) lower limit on a
Ifv> 1 it is easy to show that @ > —1. For if it became smaller than —1 at a certain R then
the derivative of f would change its sign so that f would increase. Since a is a decreasing function

for all r, f would increasé for all 7 > R and could not meet its boundary value at infinity. Hence

a>-1.

d) asymptotic behaviour .

The first three steps of the proof tell us that the boundary value for a, as, € (0, —1]. By ﬁsing
that f becomes small for large r, we approximate the fields in eq. (3.14) by a power series in 7.
For f we_ﬁnd f ~ fir~INl(as+1) fl'being positive and constant. This inserted into tllxe second
sd-equation yields a ~ |N|fZ(v — 1)r=2IVl(@=t1)+2 and a ~ |N| fE (v — D)r4INIC=+D+2 for y > 1

and v = 1 respectively. Hence, for a to converge, we find two cases:

1

w>m—l. (3.23)

V>1:a°°_> -1, Au=1":a

1
IN
While the first case rules out the possibility of a one-soliton solution due to the boundaries on a,
there is no such restriction for » = 1. It is interesting to note, that the result for » > 1 coincides
with the result for the sd-Skyrme-Maxwell system [42]. The case v = 1 was in fact discussed before
in ref. [62] as the first sdCS-O(3) o-model. However, to the best of our knowledge, the announced

numerical results of the model for v = 1 never appeared in print. We present our solutions in the

next section. .
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We solved equations (3.14) numerically by using a shooting method and show here the plots of
the energy density and the magnetic field for various values of v. For each v there may be (and

probably are) other solutions which satisfy the boundary conditions (3.15). They are labelled by

fheir flux.
It follows from (3.14) that the magnetic field has a minimum where
1
COS frmin = 5(1/ -V +3) (3.24)

and a saddle point at r = 0. In the plot of the proﬁle-function f(r), Fig. 3.2 we indicate f,;, ‘by a

vertical line.

4.0

fig. 3.2: Profile function f of the 2-soliton N =2. as a fuhct_ion of the radius r for various v > 1.

Solid line: v = 2, Dotted line: v» = 8, Dashed line: v = 20. The vertical dot-dashed lines indicate

the radii of ma.).cin'la.l‘ magnetic field according to (3.24), cf. Fig. (3.4).

Inserting (3.24) into the sd-equations gives:

Bix = B(.mein) = % (1 - 1—3/' (V + V2 + 3)) (l/ + #) . (3.25)

. For comparison with Fig. 3.4, the threé plotted values for v give

v 2 8 20
(3.26)

B... || —0.0422 | —0.1603 | —0.4002

Tab. 3.2 Minima of the magnetic field for v > L
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As mentioned above, the model also supports solutions whose vacuum is ¢ = —n. With
boundary .condition (3.15), the topological charge of such a configuration N = 0, but due to

the non-vanishing magnetic flux there is a non-zero bound on the energy and hence the self-dual

solutions cannot be deformed into the vacuum.
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fig. 3.3: Local energy density e, integrand of (3.6) of the 2-soliton N = —2 as a function of the

radius r for various v > 1.

Solid line: v = 2, for which the energy E' = 1.254e + 01 and aco = —8.996e — 02.

Dotted line: v =8, E = 4.602¢ + 01,2, = —2.381e — 01.
—2.541e — 01.

Dashed line: v = 20, E = 8.574¢ + 01,000

1 )
010} \ /
1} ’
A
VNS
1} o .
[
020 | '
' ;
v '
B ' B
. |‘ ‘,'
030 F b !
-
]
;
-0.40 | ¥
-0.50 .
0.0 10

20 3.0 4.0 5.0
‘ .

fig. 3.4: Magnetic field B pef soliton of the 2-soliton IV = —2 as a function of the radius r for

various v > 1. Solid line: v = 2, Dotted line: v = 8, Dashed line: v = 20.
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3.4 Topo_logical Solitons and Vortices for 0 <v <1

The range 0 < v < 1 exhibits all three vacua, one of which shows the spontanéous breakdown of the
U(1) gauge symmetry. As demonstrated above, the breakdown of ga.uge symmetry means that the
magnetic flux is topologically quantized. This can also easily be read off eq. (3.14), which implies
a;x, = —1 for f to converge. Also, the fields converge exponentially in the broken phase. These
solutions are the topological vortices, see Figs. 3.7-3.10. The profile function and energy-density
in the symmetric phase are displayed in Figs. 3.5-3.6. Like in so many other soliton theories, the

1-vortex is a lump while the 2-vortex is of toroidal structure.

The magnetic field has three extrema, which one can derive from (3.14): the saddle point at r =
0, a minimum where cos fni. = (v — V2 + 3)/3 and a maximum where cos f.... = (v+ V2 + 3)/3.

" For the value of the magnetic field at the extrema this implies

Bi=—4—n(1—§(u:l:-u2+-3)) <u; "22+3>, | (3.27)

where the upper'sign corresponds to the maximum and the lower sign to the minimum of the
magnetic fleld with B_ < 0 and B} > 0. In the symmetric phase the field will take both extrema,
see Fig. 3.9. However, for the asymmetric phase follows from the discussion above cos f € [-1,»)
and because v? < 1 implies that cos fm.. > v, there is no maximum of the magnetic field in this
phase, cf. Fig. 3.9. Forv =1 the. maximum is at infinity B,., = 0. Again, for comparison with

Fig. 3.6 and Fig. 3.9 we give the numerical values of the extrema:

v 0.5 . 1 0.01 0.5

_ . (3.28)
B || ~0.030 | —0.047 || —0.015 | —0.030

B... || —.0044 0 % %

Tab. 3.3 Minima of the magnetic field for v < 1.

It is also clear from (3.14) that the magnetic field will change its sign at cos f = v. For the
éymmetric phase ¢, = n it is therefore interesting to ask, if the magnetic flux integrates to zero.
Since we are dealing with a wholé family of solutions péfa.metrized by @, 50 in principle there is
a solution with oo = 0,(® = 0) for each N. |

'We fixed the CS-coupling « to 5.0 for all simulations;.
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3.5 Conclusions

We obtained static sd-solutioﬁs in a CS8-0(3) o-model in (§+1) dimensions. The vacuum structure
of the model allows for solitons and vortices which can be either topological or non-topological.
Due to thev Higgs-effect, the flux is quantized in the asymmetric phase where the topological charge
is non-integer. The elementary study of sdCS-solitons/ vértices undertaken in this chapter provides
a first step to a more general invesfigation of such solutions. In fact, much work on gauged sigma
~models has been done since this work was completed, often adapting ideas and techniques used in

' the Abelian Higgs model or scalar CSH-theories.

“An interesting problem is, whether one could ﬁnd solutions in this model with a topological
charge |[N| > 1 (in the symmetric phase, or [M| > 1 in the asymmetric phase) which are not on
top of each other. Of course, such solutions would not be radially symmetric any longer and their
energy-dénsity could peak at up to |V|(|M]) several distant points in the plane, (z1,...,zn|). It
is natural to identify these poiﬂts of maximal energy density with the positions of the ‘solitons. -
-These would bé the canonical coordinates on the N-soliton moduli space.' Due to the degeneracy
of their eﬁergy, there is no potential and hence there are no forces within such a configuration. In
principle, the N-soliton low-energy dynamics can be described by a moduli space apprbximation;
which is, however, a non-trivial task due to the lack of explicit solutions. For the Abelian Higgs
model it has been possible to to find a numerical scheme of comptiting the metric on the moduli
space which is largely based on the behaviour of the Higgs field around its zeros [28]. Hdwever, for
the scalar sdCS-theory any such attempts have failed so far.
| Related work has been done in [63], where the static sdCS O(3) o-model was studied for v = 1 and
awa'y‘from the self-dual limit. For two solitons on top of each other it was found that there is an
attractivé and a rebulsive phase depending on the coupling to the potential. In this, these results

resemble very much the Abelian Higgs model.

In models like ours, which show several disconnected and degenerate vacué, there is the possibil-
ity of domain wall solutions which connect these vacua. The scalar stSH-théory supports domain
walls as shown in [56]. In two space-dimensions the wall either separates two infinite regions and
is therefore infinitely long or it surrounds a finite region in space. In the latter case the stability of
the domain wall solutions against contraction or expansion is an interesting problem. Dynamically,
the energy for a given flux will be rrﬁnimized with respect to the radius of the enclosed domain.
It was found for the sdCSH that fhe resulting condii;ion on the fields is satisfied by sd—so.lutions,'

if the flux is large enough to stabilise the wall from collapse. It would be interesting to perform
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similar studies in our model.
| Recently, domain wall solutions in (1+1) dimensions have been studied on a dimensionally reduced
scalaf sdCS model [64] and very recently in the stS-O(3) o-model [65], a model equivalent to the
~ one discussed above, but for v = 1. These are sd-theories where the Bogomol’'nyi bound is given

by a BPS-like bound with the two involved charges being the topological and the Noether charge.

Self-dual models can then be generalized to models with N = 2 supersymmetry (no relation to
the N above), where the central charge gives the Bogomol’nyi bound. For the scalar sdCS-theory

this was. discussed in [66] and for the model discussed here in a recent publication [67].

Anothér popular idea is to generalize sd-gauged models by including an anomalous magnetic
moment interaction. This is usually done by including a term proportional to the (dual) field-
_strength in the covariant derivative. For the scalar sdCS-model one has to introduce such an
interaction to allow for simultaneous Méxwéll/ Yang-Mills interaction [68]. Alternatively, a neutral
scalar field can be introduced [59), as mentioned in the introduction to-this chapter. For the sdCS
O(3) o-model such anomalous interactions héve been studied by Ghosh [69], with the result that |
the matter equations reduce to the Liouville equation and hence they are integrable. Interestingly,

this implies that these solutions are scale invariant, unlike the ones discussed here.

Finally, one can generalize _the>target manifold of the model to PV (again, ‘no relation to the
N above) and the gauge gfoup to a non-Abelian one. The condition for obtaining a non-trivial
bound is to have at least a global U(1) symmetry left (38, 70, 71]. The gauge gfoup is a proper
" subgroup of § U(N + l)land the energy bound is given again by the linear combination of Noether
and topological charge. The vacuilm structure if such -mode]s is rich and depends on parameters

like the boundary value of the matter field and the representations of matter and gauge fields.

After much of the work of this ~cha,pt‘;er was completed, 1 became aware that similar results
have be obtained previously [72, 73]. The essence of this work and the one presented ﬁere — the
construction of a sd-potential and the numerical discussion using radially symmetric fields — is the

. same, although details of the exposition vary. In particular, both papers (72, 73] fail to mention

the absence of solutions for |N| =1,v > 1.
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fig. 3.5: The energy density e as a function of r for the one- and two-soliton in the symmetric
region, foo = 0. Solid line v = O.S,N = —1,; dotted line » = 0.5, N = —2. Long-dashed line .
v =1,N = —1; dashed line v =1, N = —2.
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fig. 3.6: The magnetic field B as a function of r for the one- and two-soliton in the symmetric
region, foo = 0. Solid line » = 0.5, N = —1; dotted line v-= 0.5, N = —2. Long-dashed line
v=1,N = —1; dashed line v = 1, N = -2,
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fig. .3.7: The profile function f as a function of r for the one- and two-soliton in the asymmetric
region, foo = arccosv. Solid line v = 0.01, N = —1; dotted line » = 0.5, N = —1. Dashed line
v =0.01, N = —2; Long-dashed line v = 0.5, N = —2. '
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fig. 3.8: The gauge field a as a function of r for the one- and two-soliton in the asymmetric
region, foo = arccosv. Solid line v = 0.01, N = —1; dotted line v = 0.5, N = —1. Dashed line
v =0.01, N = —2; Long-dashed line v = 0.5, N = -2.
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fig. 3.9: The magnetic field B as a function of r for the one- and two-soliton in the asymmetric
region, fo = arccosv. Solid line v = 0.01, N = —1; dotted line v = 0.5, N = —1. Dashed line

v =0.01, N = —2; Long-dashed line » = 0.5, N = -2.
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fig. 3.10: The energy density e as a function of r for the one- and two-soliton in the asymmetric
region, foo = arccosv. Solid line v = 0.01, N = —1; dotted line v = 0.5, N = —1. Dashed line

v =0.01, N = -2; Long-dashed line v = 0.5, N = -2.



Chapter 4

Static Sdlitons with Non-Zero

Hopf Number

‘The non-linear O(3) o-model in (3+1)-dimensional space-time is a scalar field-theory whose static
fields are maps IR3 U {00} = S%. They can be classified by a homotopy invariant called the Hopf
number. On general geonietrical grounds, soliton solutions: with higﬁer Hopf number are expected

to be of complicated, knotted structure. Knots are smooth embeddings of closed loops in IR® and '
are related to various problems in modern theoretical physics [32]. The systematic study of knots
was originally inspired in the 19th century by Kelvin’s idea of describing atoms as knots composed
. of ether [74], where the variety of distinct knots ‘was supposed to take account of the different
chemical elements. Kelvin's proposal resulted in an analysis of knots by Tait [75), which for many
years defined the essence of mathematical knot theory. Although there are many examples of
knotted structures 6n a macro- and mesoscopic scale, for a long time there were no further effoirts »
to find a microscoﬁic (that is atomistic) theory involving knots and knot theory remained of interest

mainly for pure mathematicians.

From the mc_)dern nuclear physics point of view, particles modelled by knotted configurations
are conceptually much in tﬁe spirit of Skyrme’s original intention to describe nucleons as vortices
in a mesonic fluid [4, 5], aithough of course the historic development was reverse and Skyrme was
reportedly influenced by Kelvin’s work. The recent interest in knot theory provides therefore a
nice example for ﬁﬁe cyclic evolution of science. This interest is largely fueled by work of Jones and
Witten, who outlined connec.tions of topological field theories, such as non-Abelian(Chern—ISimons'

theories, to knot theory and integrable models [32].
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With respect to elementary particles one can imagine that knotted structures find an application
in (cosmic and fuﬂdamental) string-theories, where the excitations of the string might be described
by vibrations of a knotted configuration [76]. There are also proposéls for knots in the description
of gluonic flux-tubes in QCD, which could confine quarks. At present, ‘these are just proposals
and no details have been worked out, but there are other — physical and biological — systems
where the occurrence of knotted structures seems more apparent. Examples for such systems are
DNA-chains [77], nematic liquid crystals or vortex structures in 3Ij£f: superfluid [78]. There are
clearly many interesting applications of knotted structures but only lit_;le -can be said so far about
promising field theoretical attempts to describe these configurations. The earliest proposal for a
model in which stable solutions with non-vanishing Hopf number can occur, goes back some time
to L.D. Faddeev [79]. It was shown later that the Hopf-number provides a lower topological bound
on the potehtial energy of the Faddeev model [80] However, despite several attempts which will
be described below, no actual solutions to the variational equations of this model were obtained.

_This is undoubtedly due to the fact that very little can be done analytically and most of the results.

will have to be due to numerical simulations.

In this chépter we mainly study classical static solutions of Hopf-number one and two. In the
next section we' give an introduction to the geometry of the Hopf map. This is followed by a
brief summary of previous work in the field. Our model is defined in section 4.3 where also an
. ansatz of azimuthal symmetry is introduced which is later used for numerical computations. In
section 4.4 we present our numerical results which are minima of the potential energy functional for
Hopf-number one and two. We discuss the shapes and binding energies of the solutions as well as
their relation to solitons in (241)-dimensional theories. Our model has a self-interaction coupling
parameter and we study fhe dependence 6f the energy on this coupling. In addition, the effect of
a symmetry-breaking potential term is described. In section 4.5 we give a simple approximation
for the excitation spectrum of a soliton slowly rotating around its axis of symmetry. We conclude

with section 4.6 where we also remark on possible further investigations.
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4.1 Geometry of the Hopf Map

In differential geometric terins, the Hopf map is the projection of the total space S® onto the base
S? with fibre S* [81]. If embedded in IR®, this fibration can be visualized as follows [82]. Consider
the two-dimensional unit-disc D, centred, say, at the origin in the z/y-plane and a foliation of

IR® U {00} into concentric tori about the z-axis, see Fig. 4.1. .

fig. 4.1: Concenttic tori in R®

A torus has two scales, the cross-section (or “tube diameter”) and the filament (mean radius).
Here the tori are arranged in such a way, that the radius of their cross-section approaches zero
as the mean radius tends to 8D = S, the boundary of the disc D. On the other hand, if the
mean radius tends to infinity, the cross section also tends to infinity and the meridian of the torus
becomes the z-axis. The intefsection of every torus with D is a loop. For a particular torus consider
a closed smooth trajectory which winds around its parallel and its meridian without intersecting
itself. This tra,jeétory is classified by m (S1 X S.l), ie. phe number of times it winds around the
meridian and the parallel, see Fig. 4.2. The fibration of 83 is then described by the set of such
trajectories with winding number (1,1) on each torus. The “field” (that is the projection onto
S5?) is constant along this trajectory (the ﬁbré). Now consider all the tori in IR?, then the fibre
aéproaches 8D as the cross-section approaches zero. Therefore the field is constant along 8D
which is identified with a point on target S2. Consequently, D can be one-point compactified to
an S?, and every point of this two-sphere has a fibre “attached” to it, because each fibre intersects
D once. Each of the ﬁbres. ié linkéd with every other fibre, because S° is a non-trivial bundle over

S2. An adequate picture is that any fibre intersects the surface spanned by any other one.
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fig. 4.2: Trajectory of winding number (1,1) on-the torus. The 52 valued field, indicted by a

vector of constant length, is constant along the fibre.

Hopf maps are classified topologically by 3 (S?), which is isomorphic to the group of integers.
This integer which labels the homotopy class is called the Hopf-number H and has an elementary
geometrical inferpretation. As explained above, the pre-image of ev-ery point of the target space
S? is isomorphic to a circle. It can be shbwn,’ that the Hopf-number equals the multiplicity by

which two arbitrary circles are linked.

H also has a differential geometric representation [13]: be ¢ the projection onto S? and be w
the normalized volume element of S%. The pullback ¢*w is necessarily exact since HZ,(S3) = 0.

Hence there is a 1-form A on S3 with ¢*w = d4 and H ~ [ AN dA.

In coordinate language, the dual of ¢*w is Bi. =¢€ijx ¢ 0j x O and

H= _(8;)2 /dé:cB-A. S (4.1)

There are several analytical expressions for the standard Hopf map. They are of course all

equivalent, but here seems to be the right place to compile a little selection:

1. Let z = (21 + 122,23 +124) € c?, |z|2 =1and ¢ € S%. Then

¢ = 2z10,2 : (4.2)
is the Hopf map, where g, (a = 1,2,3) are the Pauli matrices.

2. Let W € @P! = S? and the field 2 as above. Thus

o Atz . (4.3)
23+ 124
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The connection to the fields ¢ is given by stereographic projection onto the complex plane.

_ ¢ +ide .
W=tk (4.4)

By inserting (4.2) into (4.4) one obtains expression (4.3).

3. Let R € SO(3) and a function of the four-dimensional, space-dependent, unit vector n, =

(no,n). In components:

Rap = dap + 2(nanp — n25ab) — 2€45cn° Ng (4-5)

" If this matrix is applied to a constant-vector, say, ¢=(0,0, 1), the Hopf map is obtained and

one can identify ¢, = Rqsc®. A short calculation verifies that this map is equivalent to (4.2)

with ng being replaced by z;, n, by 2; and so on.

In the course of this chapter we are not just interested in the standard Hopf map but in a
map which “deforms” the standard Hopf map in such a way that its topology is preserved but the
fields correspond to a minimum of a positive valued functional. To achieve this, we let the field
z € 83 become s'paée—dgpendent, ie. z(r), r € IR3. For. finite energy, we will restrict ourselves to

configurations which tend to constants at spatial infinity. This allows us to compactify IR* U {0}

to S2, such that

z: S3m S8, (4.6)

This means that there are now two topological invariants to be considered: firstly the Hopf-

number arising from (4.2) and secondly the degree of (4.6), being characterized by 73(5%) = Z.

Diagrammatically this is described by

s3 = s
|¢
.
S
Denote the degree of the map z, k = deg [z]. Then a theorem in Algebraic Geometry states that
deg[¢ 0 2] = k deg[¢] = kH [8].
From the geometrical considerations given above it seems obvious that the problem is canon-

ically described by toroidal coordinates (7, 3,a,a). The map to more conventional cylindrical

coordinates (r, z, @) is given by: .
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= asinhg = asin g _ A7
" coshn —cos 3’ " coshn —cosf’ a=a (4.7)
The tori are labelled by 7, while their surface is parametrised by 3, e, the latter being the azimuthal

angle and the former the inner angle of the “tube”, see Fig. 4.3. Thus the range for each angle is

[0, 27].

1= const.

r=0
n=0p=r

ﬁg. 4.3: Toridal ceordinates (7, 8, @) and their relation to cylindrical coordinates.

The metric tensor of IR? is in toroidal coordinates

14

10 0
2
9ij = 72 0 1 0 s (48)
0 0 sinh®p

where 7 = coshn—cos 3. From this the metric determinant is easily read off \/He—tg| = a3sinhn/73.
Fig. 4.3 shows the coordinateé for constant a, which clearly corresponds to a plane. The surfaces
of constant 7, on the other hand, are tori, with the two degenerate éases of n = 0 (which yields the
z-axis or the sphere at infinity, depending on f3) and'n = oo (these “tori” are circles of radius a).
“Thus a is the meaxi radius of the circle of crosé—section Zero. The fields at this circle get mapped

to the south-pole of target S2. Using (4.7), we observe for 8 = const. that:

2 2

a a
r2sin’ B

sing8’

(sinh2 nsin® B+ (1 — coshp coé ,3)2) = (4.9)'

r? + (z—acotﬂ)2 =

Therefore. the surface of constant B is a sphere of radius a/sin 3, centered at z = acot 3.
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4.2 Early Work

There are some previous attempts to find soliton solutions which are topologically stable due to
their fields bein}g of non-zero H. The direct approach of solving the compleﬁe equatior;s of motion
for any such theory in three space dimensions involves finding solutions of a set of coupled PDE’s for
two functions (the coordinates on the target manifold), depending on the three space coordinates
each. This seems hopeless a;nalytically and is of considerable effort numerically. Therefore the
common strategy was so far to truncate the configuration space and to investigate only fields of
certain symmetries, which seem inherent to the problem. It will be explained below that the
résults obtained in these rhodels cannot be quantitatively correct. However, the discussion of these
theor1es glves a good introduction to the subject and pomts out relevant problems that should be

addressed which is why we mclude a review here

Following Faddeev’s initial proposal, some of the first applications where fields of non-zero
H have been investigated, are effective ﬁeldftheofies for three-dimensional ferromagnets [83] and
superfluid *He [78]. In such theories of Ginzburg-Landau type, the fields are‘ erder-para.meters and -
their time-evolution is governed by a first-order time-derivative of the fields. To first approximation,
>the static energy is expressed by second-order terms of the ﬁeld—gradient_. For a ferromagnet one
can formulate the theory in terms of the normalized magnetization n = M(r)/Moy, r € IR3, where
M, is the saturation magnetization. ‘To allow (semi-) localized configurations, the magnetization

has to be homegeneous as [r| — oe, thus one can one-point compactify IR® to S3. Since n? = 1:
n:S3— 52, o (4.10)
For an isotropic ferromagnet the first approximatiop to t_he»static energy is given by
V)« / &z (din)? . S @)

~ The minima of this functional are harmonic maps. As shown in ref. [84], all non-constant harmonic
maps are orthogonal projections IR® — IR?, followed by a harmonic map IR? — S$2 and therefore
have infinite energy. Consistently, simple scaling arguments along the line of. the Hobart-Derrick

theorem show that, without further cthtraints, the solutions are unstable against rescaling.

" Related work was performed by deVega [85], where toroidal configurations are investigated in
the general context of classical field-theory. The energy functional is there equivalent to (4.11) but

by contrast the fields are interpreted as free classical fields. The ring size of the torus is a parameter
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of the energy which has to be minimized with respect to it. Scaling arguments show that for a
functional of fype (4.11) this is the case when the ring size goes to zero. In this paper it was shown
“that the addition of a Skyrme-term provides the energy with beunds and the configuration.with
non-zero radius. Both the bounds and the radius are estimated numerically. For the computatlon,

an ansatz in toroidal coordinates (7, 3, @) with unit Hopf-number is proposed:
$1 +ido = sin f(n) 0¥, ¢3 = cos f(n). (4.12)

" The possible relevance of toroidal excitations (or “vortex excitations” as they are sometimes called)
in Wemberg-Salam Higgs theory was outlined in [86], where it was shown that the theory supports
conﬁguratlons for which the Higgs-field is expelled from a toroidal region. The model’s constituents
are two fields, the Higgs and a neutral vector boson. The latter gives rise to a non-zero flux which
is trapped inside the torus. It turns out that this flux is too strong for the vortex to be stable (i.e.
it overcomes the Higgs pressure which tends to collapse the vortex) and hence the vortex decays.

For the actual computation ansatz (4.12) was used.

Another interesting possible epplication for toroidal configurations in non-linear sigma models
was given in ref. [87]. There the Lagrangian was constructed as an effective chiral theory for the
) description of low-energy hadron dynamics — and in that attempt as being similar to the Skyrme

model. The hope was there to model possible superheavy fermions in the few TeV range as bound
“states of solitons. Consequently, some aspects of Hopf solitons (or Hopfions, as we will cell them)
in the Skyrme model were investigated [88, 89, 90]. It is interesting to see how the Hopfion fits
into the framework of the Skyrme model. The Skyrme model is an effective chiral model where the
static fields are maps U : IR® —» SU(2). They can be written in a quaternionic basis o, = (11,i0)

usmg the four-vector ¢, = (¢o, ¢)

U=o0.0". ' (4.13)

U'U = 1 implies ¢,¢* = 1 due to the algebraic propertieé of the Pauli matrices. From U a
conserved chiral current can be constructed L; = U f-8,-U . This current is invariant under left
transition 6U = €U, v-vhere € is an element of the algebra su(2). In terms of L; the potential energy
density V of the Skyrme model is

2

1 o
V=V2+V4=—%TI'L,'L1+—2-TI' [L,’,Lj] [L‘,LJ], : (414)
0

32e¢

where f and e are free parameters. For finite energy one has to impose the boundary condition

U — 1 (or to any other constant matrix) as r — co. Then IR® can be one-point compactified to
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5% and the Skyrmion’s ! static energy or mass, the integral over V, is bounded from below by a
. multiple of the homotopy index of 73(S%) = Z. This index B is interpreted as the baryon number

of the soliton and its integrand is given by

1 ijk ¢
B= 54—7T2-Tr e (LiLij) . (415)
In the Skyrme model, Hopfions can principally be constructed by restricting the field-manifold to
52, e.g. by setting ¢ = 0. This new model also possesses a lower topological bound on the potential

energy (the integral over (4.14)) but now the bound is given in terms of the Hopf-number [80]. It

holds

vV >clH|F, . ' (4.16)

with positive non-zero c [91].

The bafyon density B necessarily vanishes upon “Hopfization” (i.e. restriction of the target
bmanifold to 52).- Thus the soliton configurations can be fhought of as being composite of a
A Skyrmiori with B = H and an anti-Skyrmion with B = —H. In paper ref. [88], a hedgehog ansatz

is employed in the B = 1 sector to map IR® > S3. This is followed by a standard Hopf map (4.2).
More explicitly, be U = exp(if(r)a - 7), where 7 is the radial unit vector. Then a new field W(x)

can be defined, such that

W = ilUosU". | - (4.17)

The field W € SU (2) and from it a new current L; € su(2) can be constructed,

A}

Li=W'8,W =U(osLios — Li)U". (4.18)

o3 Lio3 describes a rotation of L; by 7 around the ¢ = 3 axes in iso¥space. This means that a U(1)
degree of freedom has been singled out in (4.18) and since SU(2)/U(1) = S?, it follows that W is
a map to S2. One can therefore think of this Hopf model as being a U(1)-gauged Skyrme model.

" A further attempt for a computation of a solution with H # 0 in the Skyrme model was made
in [92, 93] where again ansatz (4.12) was employed. There it was in addition suggested to generalize
the quartic term in (4.14) by using all possible forth-order Lorentz covariant terms and giving them

different couplings (although one of these couplings can be scaled away). Introducing couplings ¢,

and g2,

LThe soliton solution of topological charge one is called the Skyrmion. -
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Va=g Tr [Ly, Ly] [Lf, LJ] +g2 Tr (L:)*(L;)%.. . (419)

It was argued that for such a model, after “Hopﬁzation” the parameter ranges for g, and g, which

support hedgehog Skyrmions also support Hopfions [88]:

To find an adequate descriptidn of nuclear matter which is based on solitons, they have to be
quantised in the sense that quantum fluctuations around a classical configuration are computed.
The eigenvalues of the energy fluctuation tensor (the second variation of the energy with respect
to the fields) determine whether the soliton is in a stable state. The energy- of the fluctuations is
proportional to the squared frequency of the oscillations around the classical ground state, which
is given by fhe Hopf-soliton. For negative eigenvalues this freq;lency becomes imaginary and thus
the fluctuations grow e}cponentially in time, indicating an unétable configuration. This turns out
to be the case in for the (unit) Hopf-soliton in the Skyrme model as shown in [90]. This work also

uses ansatz (4.12).

However, all the previous work described so far suffers Ifrom an essential problem. It relies on
ansitze (4.12) and (4.17); however, it was shown in [89] that both ansitze are not consistent with
:the equations of motion, in the sense that these do not permit a consistent separation of the vari-
ables in the variational equations. Therefore the results obtained in these papers cannot be correct
quantitatively. On the other hand, solitons with a small Hopf-number (one or two) are expected
to exhibit some symmetry and both ansitze (4.12) and (4.17) might be good approximations to

the actual static solutions.

4.3 Hopf ,Mapé and Toroidal Ansatz

We are almost exclusively interested in static solutions and therefore we define our model by the

following potential energy functional on IR?, with V4 given essentially by (4.19) (we renamed the

couplings)

Vigl=A [ @21 @) + L 00 x 0,6 + £ (00 00" (420)

For gp = 0 t‘his is equivalent to the static energy of the Faddeev-Skyrmé mode] [35, 80]. The
vector'. 7/ is the 0O(3) o-model field introduced in chapter 1. The crqss-product is taken in field-
space and ‘the coordinate indices 7, j run from 1 to 3. For the reasons laid out in section 4.2 we
include the fourth-order terms in the field-gradient, more precisely the most general combination

of global O(3)-invariant fourth-order terms. The minimum energy configurations will then not be
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described by harmonic maps, but will be of a definite scale. The pararﬁeter A is a constant of
dimension energy/length and determines the model’s energy unit. Thé couplings g; and g, are
of dimension (length)?. The ratio g1/gz is the only physically relevant coupling since an overall
scaling of g; and g; can be absorbed by a rescaling of lengﬁh and energy units. Using (0;¢ x 0; <;z§)2
= (8:¢)* (8;¢)° — (8:¢ - 0;¢)° and the inequality :

2 (0:9:0;9)° 2 ) (0:9)" (8;0)° 2 D (Bid- 9;9)" (4.21)
ij ij ij

one sees that the allowed ranges for the cdupling constants are g2 > 0 and g; > —2g,. We prove
© the first inequality in the appendix to this chapter, while the second inequality is a version of the

Schwarz inequality for the vectors 8;¢.

As before for finité energy solutions we require ¢ — n as |x| = oo, where n is a constant unit

vector. Thus IR® can be one-point compactified to S and the fields ¢ are maps
¢: S S (a2

As mentioned above, it was proved in [80] that the energy eq. (4.20) has a lower topological bound

in terms of H. For g1 > 0 it is given by (4.16)

V > Ac|H|*/*, . (4.23)

where ¢ = /2g1(27)23%/8.
At this point it is instructive to look at the symmetries of the field. It was shown in ref. [91]

that the maximal subgroup of O(3)x ® O(3); under which fields with non—vanishing Hopf-number

can be invariant is

G = diag[0(2)x ® 0(2)1]. (4.24)

Here 0(2) x and O(2); denote rotations about a fixed axis in space and iéo—épace respectively. We
choose the 2- and' ¢3-axis as the axes of symmetry. According to the Coleman-Palais theorem we
expect to find the minimal energy solution in the class of G-invariant configurations 7). Therefore
we use the most general G-invariant ansatz, written in terms of two functions w(&1, &) and v(&y, &2)-
They depend on coordinates & and & which form an orthogonal coordinate system together with

 a, the angle around the z-axis:

g +igy = V1I=wR(6, GO ) gy = w(6y, &), (4.25)
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We have checked the consistency of this ansatz with the variational equations derived from (4.20).
The components ¢; and ¢, have to vanish along the é-axis for the field to be well-defined. This
is realized by setting ¢(0,0,2) = n = (0, 0, 1), which also defines the vacuum state of the theory.
- In order to describe a non-trivial map, ¢ has to be surjective. Hence there is at least one point
xo with ¢(x9) = —n. Under the action of G, x¢ represents a circle around the z-axis. We fix
our coordinate system such that this circle lies in the zy-plane and define initially a = |x|. On
every trajectory from the circle to the z-axis or infinity, w(£;, &) runs at least once from —1 to 1.

Therefore the surfaces of constant w are homeomorphic to tori, in agreement with the discussion

given above.

This structure prompts us to choose toroidal coordinates (r, z, @, a), see (4.7), and to identify
& =n,& = B. The function w(n, B) is subject to the boundary conditions w(0,8) = 1, w(o0, ) =
—1 and is periodic in 8. v(n, B) is an angle around ¢3 and can include windings around 3. Therefore
we set v(n, 8) = MB+ vo(n, B) where vo(B) : 8 — S! is homotopic to the constant map. Since v
is ill-defined for w = +1, it is not restricted by.any boundary coﬁdition’ at n =0, co.

The “potential” A and the “field-strength” B for this ansatz are given by

= - Apg=2-(M ) 1 A, =2- !
Ae asinhnN(w D, B q( +0o)(w+1), n 2av0(w+1)v,
B = 2T2 (w'(M + ) ) —"Ul w) B = - T—2 ! B R 2 T2 N .
a — a2 . Yo 0 - .1 8= 0.2 sinhn ) n= a2 Sinh'[’ w,

(4.26)

where the dot and prime denote derivatives with respect to 8-and 7 respectively. Note that the
field A is well defined on all of IR3. .The gauge has been chosen such that A, vénishes forn=20
(where the coordinate « is ill-defined) and analogously Ag vanishes for 7 = oo.

Eq. (41) then gives H = N M in agreement with the linking number interpretation of H given

above. The potential energy (4.20) of ansatz (4.25) is given by

. 3 i' 2 27.2
Viw(n, 8),v(n,B),a] =mA / dndp = s"h"{ﬁ"’) +(1-w?) ((vU>2+N—)

T w? a?sinh®p

, L/ N2.2 ’
S (ﬂ---—(V'w)2 + (Vw x Vv)2>

2 \a?sinh?p
g [(Vw)? - , N2 7P
* [1—w2+(1'w) (Vv) +azsinh2n .

(4.27)
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In toroidal coordinates the gradient includes a factor a=!. Hence the term quadratic in the gradients
is proportional to a while the quartic terms are inverse proportional to it. For soliton solutions,

the ‘energy functional has to be varied with respect to w,v and a.

4.4 N umerical Resﬁlts

The variational equaﬁions for eq. (4.27) are highly non-linear coupled PDE’s and numerically hard
to tackle. Therefore we solved the problem by a minimization of the potential energy functional
thich was discretized on an (7, ﬁ) grid. The search for the minimum in a high-dimensional space
is feasible using the NETLIB routine ve08 with an algorithm described in [94]. This method is
applicable if the objective function is a sum f(x) =} fi(x) of simpler functions f;, each of which
is non-constant only for a few components of the (multi-dimensional) vector x. Thus the Hessian
matrix is very sparse and can be updated locally. This saves a considerable amount of memory ‘

and time compared to a more naive implementation of a conjugate gradient search.

We obtain fiéld-configurations as displayed in Fig. 4.4 where the Hopf-number equals 1. In
"this plot the field ¢ is viewed from above the north pole of target S2. Iso-vectors in the northern
hemisphere terminate in a cross, those in the southern hemisphere in a dot. The toroidal structure

of the fields is clearly visible. Also note that the fields in the southern hemisphere span a torus

indeed.

There is an interesting interpretation of such configurations in terms of the O(3) o-model
in (2+1) dimensions, the solutions of which we call (anti-) baby Skyrmions. The fields in the
positive and negative z-halfplane of Figs. 4.4-4.6 are baby Skyrm_ions and anti-baby Skyrmions
respectively. This can be understood in the following way. Wilczek and Zee [41] show that a (2+1)-
' dimensional configuration of Hopf-number one can be produced by creating a baby Skyrmion/anti-
baby Skyrmion pair from the vacuum, rotating the (anti-) Sk_yrmibn adiabatically by 27 and then
annihilating the pair. In our model time corresp_ondé to the third space dimenéion, hence Figs. 4.4-
4.6 displays a “snapshot” at the time when the a.nti-béby Skyrmion is rotated by 7. Baby Skyrmions
are classified by a horhotopy invariant Q € Z due to m3(S%) = Z. The analytic expression for Q

is given by -

Q= %/ o016 x 02, | (4.28)

where 1 and 2 denote cartesian coordinates in IR?, see (1.10). The topological charge density is half

. the a-component of B (4.1). The integral over the whole plane vanishes because the contributions
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for negative and for positivé z‘exactly cancel. However, if integrated over the positive halfplane
“only (4.28) yields the baby Skyrmion number for ansatz (4.25):

1 2 oo a2 ) .
Q=8—7r/0 dﬁ/o dn 5 Ba=M, - (4.29)

where we use By of (4.26).

Next we turn to Hopfions of topological charge two. For parametrisation (4.25) there are two
ways of creating a Hopﬁoﬁ with H = 2, namely by setting either N or M to 2. Both cases
correspond to two Hopfions sitting on top of each other. In order to determine which configuration
represents the true ground state we computed their energies and found that the configuration with
N =2, M =1 yields the lower energy for all couplings. The interpretation of the H = 2 solutions’
in terms of a (2+1)-dimensional solitoh/ anti-soliton pair is equivalent to the one given above for

. the 1-Hopfion. Because the multiplicity of the azimuthal rotation is V = 2 for the 2-Hopfion, the
anti-baby Skyrmion in the negative z-halfplane (see Fig. 4.5) has a relative angle of 7 compared

to the anti-baby Skyrmion of Fig. 4.4.

It is instructive to investigate how the‘v‘.inclusion of a potential term U[@) alters the configuration.
Its energy can be lowered by rescaling x = Ax, (A = 0) under which U — A3U. This means that
the potential term induces a “shrinkage” of the configuration in the sense that the favoured position
of the fields is closer to their vacuum value. This effect is counter-balanced by the higher-order

derivatives in the energy functional (4.20), compare the discussion given in chaptér 1.

Any potential explicitly breaks the model’s global O(3) symmetry because O(3) acts transitively
on the target 'spacé. We chose U = m? [ d2z (1 — n- ¢), where the parameter m is of dimension
(length)~! and, in a quantum version of the theory, becomes the mass of the elementary excitations.
The minimum eperg& solution for m = 4 can be seen in Fig. 4.6. The tube-like region where the
field is invvthe southern hemisphere has clearly shrunk. Adding a linear potential term also means
l that the fields fall off exponentially at large distances. The reason is that the eguations of motion

become in the asymptotic limit those of the massive Klein-Gordon equation.

The fields of minimal energy correspond,.via (4.20); to distributions of the potential energy
which are displayed in Figs. 4.7-4.8. Despite the toroidal structure of the ﬁelds, we find that the
potential enefgy for tile Hopfion of H = 1is lump—éhaped, see Fig. 4.7. Although unexpected, this
is not entirely unlikely, becéuse the field changes far more réﬁidly within the disc |x| < a than
outside it. Hence the gradient energy, which determines the energy distribution can be concentrated

in the vicinity of the origin.
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If the potential term U becomes very large compared to the gradient terms one expects the
energy to become more localized around the filament where the fields are far away from the vacuum.

We observe this transition to a toroidal energy distribution at m = 4 for g, =1, g, = 0.

The energy distribution of the 2-Hopfion is of toroidal shape (for all m), as shown in Fig. 4.8.
It is a common feature in many soliton theories that solutions of topological charge two are tori,
notably for Skyrmions, baby Skyrmions and magnetic monopoles. The numerical values for the
potential energy V' are plotted in Fig. 4.9, which also shows the topological bound eq. (4.16). For
a pure Skyrme coupling we obtain energies of 197A and 2 * 158A for the 1-Hopfion and 2-Hopfion
respectively. Moreover, it turns out that for all couplings the 2-Hopfion has a lower energy per
. topological unit than the 1-Hopfion. It is interesting to ask whether the 2-Hopfion is in a stable
state or likely to decay intotwo Hopﬁons of charge one. The potential energy equals the negative
force ihtegrated from zero to infinity. The negative mass gap between the 2-Hopfion and two single
Hopfions therefore means that at least in a finite region in space the forces must be attractive. If
this attractive range includes the region of small r, the relative distance of the two Hopfions, then
the toroidal conﬁguratioh Fig. 4.8 is stable under perturbations. Naturally, tilefe can be a range
. of r in which the forces are repulsive, quever, an invéstigation of such interactions would require
.a full (3+1)-dimehsional simulation which is beyond our present means. Also note that the gap
between the energies per Hopfion is largest when the fourth-order terms are purely the Skyrme
term. On the ‘other hand, for g; — _-292; (i.e. g — 1) the energy of the quartic terms tends to
Zero. ‘Hence, by taking the limit the energy of the soliton.vanishes as a consequence of the above

mentioned Hobart-Derrick theorem.

4.5 Spinning Hopfions

Finally, we study the effect of a slow rotation around the axis of symmetry. For this we use a
Lorentz-invariant extension of our model into (3+1)-dimensional space-time. The energy of the
rotating Hopfion E = T + V, where V is the potential energy given by eq. (4.20) and T is the

kinetic energy funct-ional:-
Tio)=A [ &' @) + 5 09 x 09" + § @) G0 +0(09)]) . 430

In the spirit of a moduli space approximation we assume that the configuration does not alter its
shape due to the rotation (“rigid rotor”), i.e. it is given at any time by a static solution (see [7]

for a re{/iew on similar treatment of the Skyrmion). T is then given by, including second-order
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terms only, T = Jijw'w? /2, where Jij is the tensor of inertia. For simplicity, we restrict ourselves
to rotations around the z-axis, i.e. J = Jaq, w = wo. We then impose time dependence on the
azimuthal angle by @ = a + &t with constant velocity w. T leads to a term in the energy that is

proportional to w?:

J . .
E= sz +V, (4.31)

where terms O(w*) are neglected. Using (4.25), J is given by

_ g1 (Vw)?  go [ (Vw)? N2
Jl_27rA/ dndp [1+ 1zt (1_w2 + ((Vv)2+ m) (1——w2)>} (1-w?).
(4.32)

J can be measured explicitly on the individual solution. We plotted the values for H = 1 and
H =2 in Fig. 4.10. The moment of inertia per Hopfion is always larger for the H = 1 solution,

with an increasing gap for decreasing g. This should be compared with the dependence of V on g.

The functional V' (4.20) is invariant under o-rotations while the fields of ansatz (4.25) are
clearly not. Theréfore, upon quantization, the coordinate a describes a zero-mode and requires
treatment as a colleétive coordinate. This is similar to the problem of the rotating radially sym-
metric Skyrmion. In analogy to the Skyrme model we therefore use, as a first approximation, the
spectrum pbtair;ed by a straightforward quantization. The canonical momentum is | = i%, (h=1)
and the rotational energy T = —I2/2J. It is then trivial to solve the eigenvalue problem T = A4,
which gives Ap, = %

The rotations around the z;- and z3-axis are also zerb—modes of the potential energy. However,
because of the symmetry z — —z one would have to identify configurations that differ by an anéle

of m, which means that only even -e'ige'nva‘lues are allowed.

4.6 Concl‘usionsl

We have studied topological solitons in a generalized non-linear O(3) o-model in three space
dimensions. Phyéically one may think of them as a model for hadronic matter or topological
defects in a condensed matter system. By using a general ansatz for the fields we obtained explicit
numerical solutions for soliton number one and two. Ijnexpectedly, the energy of the 1-Hopfion

is distributed as a lump. We also observed that two solitons sitting on top of each other have a
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lower energy than two infinitely separated solitons, thus indicating an attractive range between

two lumps.

As far as the relation to knot theory is coAncerned, the 2-Hopfion is a torus which is the simplest
form of a knot, the so-called “unknot”. However, this .feature also occurs for Skyrmions and BPS-
mbnopoles.' Frém the numerical evidence of the 1-Hopfion we conclude that, although the field-
configuration of higher topological charges might be of knotted structure, the potential energy
distribution may well be of much simpler shape. To decide this, a genuine three-dimensional

simulation is necessary.

There are several interesting questions which remain unanswered. In particular, the stability
of Hopfions of higher topological charge deserves some scrutiny. It is worthwhile asking how
multi-solitons which sit on top of each other, or at least are very close, behave under induced

perturbations. In analogy to planar O(3) o-models there might be several decay channels into less

symmetric configurations [47].

At the opposite end of the scale, it would'be‘instrﬁ.ctive to look in gréater detail at the interac- -
tion potential of two or more well-separated Hopfions. This is also interesting in comparison to the
well-studied dynamics of Skyrmions and monopoles. Clearly, a first step in such an investigation
would be to determine the asymptotic fields of the Hopf soliton. It seems obvious that inter-soliton

forces will depend on the orientation of the Hopfions.

The complete description of -Hopfion dynamics would require a huge nurﬁerical effort which
can, however, possibly be reduced by an appropriate approximation scheme. For Bogomol’'nyi
‘'solitons, the low-energy behaviour can be approximated via the truncation of the dynamics to the
moduli space. Although our numerical results show that Hopfions are not of Bogomol'nyi type,
gi-ven that the static forces between them are weak, theré is a chance that their dynamics can be
déscribed by some kind of moduli space approximation, in analogy to Skyrmions (which are also
not of Bogomol'nyi type).. | |

Finally, it seems worth to study spinning Hopﬁoné in a more sophisticated way. This should

include -an assessment of the back-reaction of the rotation on the matter fields. From this one

expects a non-trivial shift of the energy levels in the rotation spectrum and possibly radiation of

excessive energy.
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Appendix

We prove that for ¢ € 52 holds:

-3 3
2 (8:p-0;0)" > Y (8:9)° (8;9)° . (4.33)
i,j=1 - i,7=1

To shorten the notation, we rename 6,¢ = a,9,¢ = b, 3¢ = c. Then we can write:

250 (Bigp - 0;9)° — T3, (0:0)° (0;0)° - o =

at+b4+ct +4 ((a.b)2 + (ac)? + (bc)?) — 2(a""b2 +a%c? + b%c?) ' =

v

1(a? = %)% + L(a® — *)? + 1(c? - b%)? +4 ((ab)? + (ac)? + (bc)?) — (a2b® + a2c? + b2c?)

4 ((ab)? + (ac)? + (b)?) — (@%? + a2¢* + B3c?) .
(4.34)

* Now we use that' a,b and c are vectors in a plane perpendicular to ¢». This means we can express
(ab)? as a?b? cos?® v, where 71 is the angle between a and b. Defining v, as the angle between b

and ¢ we can write the rhs of (4.34) as:”
a?b?(4cos? v, — 1) +a’c?(dcos® vo — 1) + b2c (4 cos® (1 +712) — 1). - (4.35)

The remainder of the proof is to show that this expression is positive definite. To accomplish thfs,
we assume without loss of generality, that & > b > ¢, from which follows that (4.35) is larger or

equal than

c*(4(cos® y1 + cos® 12 + cos’(m +12)) = 3) =T(m,72) - - (4.36)

I defines a surface in IR® which is parametrized by 7; and 5. It can be discussed using standard
calculus tools. This y_ields that.for 1,72 € [0,27), I' = 0 is the minimum at 43 = v = «/3 and
11 = 72 = 27/3. These cases differ by the transformation b = —b and correspond to a symmetric

arrangement of a, b, c.




Figures

fig. 4.4: Field conﬁguration in the zz-plane for H = 1,9, = 0.4, g2 = 0.4. The field is pfojected

into the ¢1¢p2-plane. A cross indicates ¢3 > 0, a dot ¢3 < 0. Therefore the vacuum state is denoted

by a cross only.

_!‘I I ™ lv'l'lvl'l 1 'l I.
= * * ' L | ' ¥ *
" 1 t f' K
+ ‘*‘1‘177,/" .
— . 1 f A
* 1 ‘{ ror 4
SRS \“\1. _rf,’ff,,' ,
AR \‘x " 77’ r 717,
AR IR R PRI LI RN o 45 S i
TSR NN a0 L S | P Ao
R R DN L N A Ry ’
RN Noa AN oo LI A W A .
PR NN T P
. -~ * ° . . 04_.,‘,,/" -
?kk " . ¢ o * - A"’—
o 'f'o—"'. e o Lo
. o’o’((.::.‘l‘.‘. .
= . * » d Y ~ L
. -"//5 “\t\\"' o
- .l"'(I ‘{ \\s".t ]
I * . » LY . x
= LI * x = x "
“’*t. s v ¢+ *
- s ¢t ".l l“"”l
e * ‘v-.“ L4 "’.’& *
- " -“'/, r‘\ ‘\"‘...:
‘. -4 - A / 71 \ \ls..' =
_. ¢ « A/),”’*\\\\._ » N
ot W '0)".... *0\0\ - W
[~ - *"—.—o“.o. 0% o T - »
"‘5. ‘O‘o. . o ..._r— -, -
——‘ \\t"ﬁ‘. . . ,'.—"/( "_
_'N' \\\‘l‘. oo ."’/‘/‘, "_
M NSy oe * x4 v?
AN v b C e/ < ¥
LIRS \\\ \;“‘JJJ /// PP
. \\\\\x 4 J// A,
s SAMN ANV W s,
— > (RY | ! L 4
. v 111 ‘
L LAY “l}ill 4 P
- Y \l ‘l 4 -
. * Y Y by 1 ‘4 4 .
- s ) | SO | 4 »
_ * * o S | ¢ s »
| l ] ls I | | | L sl 1 I
-1 0. 1
VA




Figures

82

Pt raxx mre

’+¢'~.. ti“.;,’

»
I“.” »

““*,,.a' .

» ,*,0"‘. ‘;"$,¥,'I

. “.,.,0'., “"o,,..r L

L.- L3 . * 3 4 A & et o ' " o
¢ 4 4%

fig. 4.5: Field-configuration of H = 2,9, =04, g2 =04.




Figures

Ll I 1 LA I‘l.l'l"1 bl 1 I o
- » * x =
* x
. . . >
- * » * LA x x * -
+ A » x L4 s

2 - - » % x x lk. x
+ * B L T T S . +
+ * . L4
+ . % » x ¥ M »
- . x x x -
+ . *’ - * x ¥ » .~ -
+ . * L. PO
- . . RN * —
e, + » ¥ * R
. s ¥ ¥ »
040.‘ “' y', “,0¢0_1
0*“ *“‘ ‘r f,'t ’+’0
-+ * Y t‘\\\ r’/” o * o+
4 + . T +
.t LR \ . 4 L a e .,
« +
1.—~ » “\\'\‘t ..,/;’ + ‘—-
A U N I L
-~ _ -
_.t~.‘.." .. ¢ f“‘“t;‘-
- v . —
» P "
-* » = * g (‘ ‘\‘—--. 5
L ]
x x ® 'P‘-’///J‘\\\.w"' *xow
‘ = "'p"(/ ‘ x \\"q"“ L
x g 4 My »
x "“ & & " »
- LN B 3 s b 0 x
. L S I I L B R
N O L L O A I B A
’ u-***"‘"""‘*'a'-
=
- x ,t""" LR A x -
. e * FX LR T S
*x = = ax? LY. * x x5 %
- - ».
R Y S DAL ]
- - .
o * /’71\.\0\ LA
1...*-—-1 » 8 ..n-.-'.‘i‘-
- = . =
» * +
L. Y - ~* 'r.’" . * * o
."t“\‘.'...r/""#

» . . +
U RN A2 AL
S *h 1Y 4 e Lot
. Q;\ 4 /40 +
. +
+ \\ X J 14 -

AGIE Y * 1 + " «- et
R A PO A R AT
“l:.n.'

e PRI A
+ *

. * * « X u x P o,

+ » » *

- * x x » -
+ % » x x *

+ * L4 -
_2‘ . L S TR R BT S . »
N + * s w . x « x * x

* *» » x ~» »
= . * a
* “ x x .R .
. " . «
._‘I * 2 x ~
Py ) S IO Sl B N B R A

fig. 4.6: Field-configuration with potential term, H = 1,91 =1,g2 =0,m = 4.



Figures 84

Hti

N
MK

\\\\\\\\\\\\\\\\\

NN

NRR
i’
"ll\\\\\\

i
114111
/11
H
1}
A
5
)

Z
7y
7147

7
)

Saaan
LTSS,
oS

127
i
]

T

by
5
¢
;"

g:
1y
“:‘
&
¢
W

%,
a7
77
111
[l

7

7

L
i
i
11

;

)

N

R
R

N

I}

Wi
’\\\\\\\\\\Q\\\Q\\\{\\\\\\\

%,

7

7
7
]
7l
i

7
7
[
/

7

%,
///
T
0
i
i
i
i

/7
i
’Ill
0
U
|

7
T
]
i
I
|

v/
o

A
7
7
U
/]
]

[
i
)
/]
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fig. 4.8: Potential energy density V for H = 2,91 = 0.4, g2 = 0.8 over r,z. The configuration is

torus-shaped:
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Chapter 5

Solitons in the C'P? Baby Skyrme
Model -

The invesfigations.in the previous chapters are ba.éed on the O(3) o-model and its modifications by
the introduction of gauge fields or hig’her—deriva,five terms. On a classical level aﬁd without gauge
field dynamics, the O(3) o-model is equivalént to the CP'-model. The natural generalizations
of these models to higher target-manifolds are the O(N + 1) g-models and the CPY~!-models
respectively, which, however, differ in their topology and in their soliton solutions for N > 2. The
non-linear O(N + 1) o-models are sﬁaightforward generélizations of the O(3) o-model. The fields
¢ are (N + 1)-component vectors, subject to ¢,¢® = 1 and thus taking values on SV. The action
is equivalent to (1.6) and is invariant under. global rotations ¢, — Ras#?, R € O(N + 1). Among
these models of barticular.interes't is the O(4) o-model with a Skyrme term in (34+1) dimensions :

it is equivalent to the SU (2)-Skyrme model, cf. (4.13), chapter 4.

One reason to work in enlarged target-sbaces is that in general there will be a greater number
of pai‘améters and thps possibly a richer variety‘ of static solutions and diverse time-evolutions. An
examp1e'wi1ich illustrates this are time-dependent lumps in the @P2-model. During av collision of
two solitons their energy densities overlap andithe‘y can form a ring or a lump, depending on some

internal parameters. In the CP'-model, all scattering goes through a toroidal state [95].

It is also interesting to see how lower-dimensional models and their solutions fit into an ex- -
tended theory, in particular, one can ask about the naAtureiof embeddings and their symmetry
transformations. Often solutions of a lower-dimensional model correspond to subspaces of the

parameter-space of solutions to the higher-dimensional theory. Another interesting aspect is that
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the number of possible terms in the action for a‘given set of conditions, such as Lorentz-invariance,
global symmetries or positivéﬁess, can increase with the dimension of the target-manifold, thﬁs
adding to the choice of models. These are some of the questions that we address in this chapter.
It is often difficult though, to examine all these problems for a general N and therefore a good
tactics is to start lopking at small N first, which can indicate more general features in an inductive

way. Consequently, we concentrate here on the CP?>-model, but first we review some known general

properties of the @~ -models.

The CPY~'-models in (2+1) dimensions are an obvious object of interest for various reasons.
Their static éolutions are known ané.lytically, which allows to quel their low-energy dynamics by
a,- moduli space approximation. This was in\}estigated some time ago by Ward [52] for the -
model, by Stokoe and Zakrzewski for P~ -model [96] and later more detailed for the @P*-model
“by Leese' [97]. For the P! baby Skyrme model a moduli space approximation was performed
by Sutcliffe [98]. It was generally found that in a head-on colliéion two solitons can scatter at
right. angles or back to back depending on the initial conditions, although the complete discussion
in [9l7] shows that the details are more subtle and other s;:attering angles are possible. Right angle
scattering of two solitons was also observed in studies on the dynamics of solitons in a @P*-model
by Piette et al in [95] _There the dynamics were altered by adding a term that involves three
derivatives which are contracted by an antiéyrnmetric tensor €5, thus making this term metric-
independent. Such a term resembles the Hopf-term of the CP*-model, but by contrast for TP? it is

not a total derivative and thus contributes to the equations of motion. Consequently, it alters the

dynamics of the solitons and this happens by giving them a non-zero angular momentum.

Anothé; interesting observation was made by Hindmarsh in [99]. There it was shown that the_
PV -model can be obtained from an extended Abelian Higgs model in (2+1) dimensions, where
the domain of the fields is €V For a specific choice of the gauge potential and in the limit of small
momenta, the model can be mapped to the TPV -'-model with a Skyrme ter._m. The Maxwell term

in the action of the Abelian Higgs model under this transformation corresponds to the Skyrme

term.

In this chapter we mainly study a related model, namely the @P?-model in (2+1) dimensions
with a Skyrme term. Here the solitons are stabilized by a potential and fourth-order terms in
the action, which are however, not unique for CP%. We find a family of analytic static one-soliton

solutions and study the two-soliton configuration numerically in a gradient-flow equation on the

moduli space.
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5.1 CPY-l-models Revisited

CPY~!-models are examples of theories where the field-space is given by a Grassmanian manifold.
This is a co_mplex_ manifold which describes an M-dimensional subspace of the N-dimensional
complex Euclidean space €. It can be written as a coset G(M, N):

Un)

TGO xUN <) (5.1)

- G(M, N) =

The complex projective spaces are the sets of lines through the origin in €" and correspond to
M = 1. The canonical coordinates on €V are the homogeneous or cartesian coordinates z =
(215..-,2n). According to the definition given above, €N~ can be described as the complex

space in which all the z that differ by a complex number are identified, z ~ Az,z # 0, € C.

Therefore

@{V-}=(¢N—{o})/¢f, 62

‘where €* is the group of non-zero complex numbers. In order to write the eV ;l-model in
terms of homogeheoﬁs ‘coordinates, one has to impose the equi\;alence relation 2 ~ Az. The
first step is to ﬁx. the magnitude of z by setting zfz = 1 which restricts the field to values on
§2N=1 = J(N)/U(N - 1). Geometrically, this sphere is a U(1)-bundle over base-space PV,
which illustrates formula (5.1) for M = 1. The second step is thus to impose local U (1)-gauge
invariance on the actipn which removes any dependence of the model on the corresponding phase.

Consequently, the usual quadratic expression c')azfaaz /2 in the Lagrangian is replaced by

£2= 5 (Der)! (D%) (5.3)

where the dagger indicates hermitian éqnjugation and the covariant derivative is
Doz =0,z +144z2. _ (5.4)
(d =0,1,2). The equations of motion for A, yield:

Ay = i218,2, | ‘ (5.5)

which also shows that the PV ~!-models are a non-linear theory. Although A, is not an ihdepen-.

_dent field and in particular not related to any electromagnetic interactions, because of the formal
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analogy, we will refer to it as a gauge field and generally adopt the notation of gauge theory.
The model (5.3) has a global SU(N)-symmetry, resulting in N2.— 1 conserved global charges and

the local U(1)-symmetry.

The projective space TP™ ! can also be described in terms of the inhomogeneous coordinates

W. In a region where z, # 0, they are defined as follows

21 oz -1 Za+1 ZN :
W= (wi,..., wnoy) = —,... 202,28 28 (5.6)
2 Zq 2q Za

which is by construction independent on the choice of the representative z of the equivalence class;
let 2, Z be elements of such class: Zy/Z, = A2p/A2, = 2p/2,. On a patch which includes z, = 0,
but z. # 0 one defines:

TR - 21 Ze—-1 Zel ZN
W (i, i) = 2, L Bl N 57)
: Z¢ Zc Ze Zc

In the regions, where both patches overlap, the transformation between the inhomogeneous coor-

dinates W and W is obtained by

W=, (5.8)

The.complex projective space Nt is a Kahler manifold. This implies that there is a her-
mitian metric 7,5 and associated with this metric is a closed, antisymmetric and real two-form

Q = 7,3dz* Adzb, dQ = 0. In terms of the cartesian coordinates on €V, 7,; is given by:

_ ap |2’ — za%

ab 1
|z

(5.9)

This expression is called the Fubini-Study metric and is the natural metric on N _.1, if embedded
in €V, ' '

The Kahler potential, which corresponds to (5.9), is patchwise defined. In a region U,, where

za # 0 it is
) 2 2 2 2 N
K;=m<—£-+”+-ﬁ >, ‘  (5.10)
2a 2q
such that ' .
' 8’K,
Tab = azaazb . (511)

" The imposition of the phase invariance for homogeneous coordinates is equivalent to changing the

metric on €V from the flat-space metric to the Fubini-Study metric, i.e.
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00 Z,0%2p0%0 aa;?aa"zbr“s , (5.12)

which can be verified by using (5.5). From the topological point of view the existence of solitons

in the CPV~'-model on IR? ié based on
- (@N“l) =Z, N>1. (5.13)

The non-triviality of this homotopy stems from the topology of maps from the (compactified) plane
to (P! subspaces of N Explicitly, the degree is given by

Q= é / Pre;; (Diz)' (D)2) . (5.14)

Here, to avoid confusion with the target-space dimension N, we changed our notation and we have
called the topological charge Q rather than N as before. Interestingly, there are two ways to look
at the topological charge in the @V ~-models. For finite energy, the covariant derivative has to-
vanish at spatial infinity V . ‘ '

lim D;z=0. (5.15)

|x] o0
For the'g'auge field this implies
A= ’i"z“ ,  Va. . o (5.16)

A; is real and independent on a, which leads to

ol 2 = 200, ~ (5.17)

where ze is a fixed unit-vector and 6 is the polar angle on IR?. In analogy to the Abelian Higgs
model, single-valuedness of z implies h(27) = h(0) + n, n € Z. Thus there is an associated
~ topological charge which stems from 7;(S') # 0 and counts the winding number of the gauge field

at infinity: .
0=1 ?4 94y = - (h(27) = h(0) =n (5.18)
- 27 St o= 27 - )
The relation to formula (5.14) can be established using Stokes’ theorem, the integrand of (5.14)
corresponds to the “magnetic field” Fi; = 014y — 02 4;.

-~ All the pure _CPN ~Lmodels are of Bogomol’nyi—type and the corresponding argument generalizes

almost trivially from CP!. The potential energy can be written as:
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1 » .
V[Z] = 5 /d2$ IDIZ + iDgZI2 F 4TI'Q . (519)

Minima are obtained for

(D1 £iD3)z=D12=0, (5.20)

where Dz indicates the derivative with respect to 4+ = z; £ izo. The n-soliton solutions to this

equation can be written in terms of (anti-) holomorphic functions Py:

z= , 5.21
Bl (521
where, in full geherality, for a holomorphic P,
Mizy—al) ... (s -ab)
Po=1 : : - (5.22)
Av(z4 —af’) (z+ — af))

It is interesting to ask, how many of the parameters (A;,af), (r,s =1...N;i =1...n) correspond
to physically distinct fields, in other words, we ask for the dimension of the n-soliton moduli space.
The way it is written above, P, has 2NV (n+1) real parameters. Two of these are redundant because
the model lives on the projqctive' space, i.e. z ~ \z; the U(1)-gauge degree of freedom and further
‘two real parameters, corresponding to a choice of the origin in IR? should also not be counted. The
multipliéativé factors in front of each component can be transformed to unity by using the global

SU(N )-sym_rﬁetry. This removes a further (2:7\/' — 2) degrees of freedom, leaving 2N7n — 1.

Skyrme terms

It has been mentioned before in this thesis tha',tA in space-dimensions greater than one there has
fo be a higher-order derivative term in the Lagrangian in order to allow non-siﬁg_ula.r solutions. If
one imposes the constraint that such a term respects the symmetries of the theory (global SU (N)
and local U(1)) and inclﬁdes only second-order terms of derivatives with respect>to any variable
(especially the t'ime-.derivative), one is left for PN _l-models with two generically different Skyrme -

terms which can be written in terms of the tensor Aqp [100]:

Anp = (Daz)f(Dgz) . (5.23)
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Note that A,3 = Aga and hence A is hermitian. Now we decompose A, into its real symmetric

and its imaginary antisymmetric part:

Fag= —i(Aap — Apa) - = —2Im (Aag) =i (z);zﬂ - z;z;,) = 8,45 - 9gAs = [D1,Dg]_,

Gap = Aup + Apa = 2Re(dap) =zlzp+2}za +24a4p . =[DL,Dg], ,
' (5.24)

such that A,g = (Gap +1Fap)/2. To shorten the notation we have introduced here z, = 9z/0z°.

F and G are manifestly gauge invariant and can be included in the Lagrangian as

1 | |
5= (TGP -5, Lf=;TrF. (5.25)

0| —

Giving the fourth-order terms different couplings pr and Hc respectively, the Nt Skyrme model

is defined by:

L.=Ly+ pcl§ + pely + poU. (5.26)

% is what is usually called the Skyrme term. For N = 2 it turns out that Ly and L are
equivalent [100]. This can be indicated by using the equivalence of the (P! and the O(3) g-model.
In the latter model the fields are three—cbmponent real vectors ¢ € S%. The relation to the z-fields
is given by the Hopf map ¢, = z'0,2, (a = 1,2, 3) where o, are the Pauli matrices, cf. (4.2). Then

the folloWing equalities hold:

(Tr G)* = 8%, (Badp - 0%¢)* ,

TG = 85, (0t 30)° (5.21)
Tt F? = 43 ,;(0a¢ x p¢)" .
To d_erive‘ this we»can use )
ool = 2664 J"_%“ N e 4(5i'§f'ﬁak" — omaiksim), - (5.28)
(q, b,e=1,2, 3) The equation £§ = L] is then equivalent to ﬁhe Lagrange identity:
(Batp - 0°9)" = (0a¢ 059)" = (9ab % Bp9)" - - (529)

It is interesting to ask for the geometrical interpretations of the fourth-order terms £§ and LE.

We showed above that the integral over the “field-strength” Fi is integer valued and counts the
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windings of the gauge field ét infinity. A priori there is no topological invariant related to G. As
a possible way of thinking about the geometry of the model (5.26) we remind ourselves of the
geometricalrway in which Manton described the potential energy in the Skyrme model [101]. The
. argument is very general and does not even require theAtarget—manifold to be a Lie-group; it applies
to any Riemannian manifold. Given a map f between two such manifolds M and A endowed with

orthonormal frames e’ and & respectively, the Jacobi matrix of the map f is
i = €L0; foR2. (5.30)

Using this, one defines a strain tensor D = JJ!, which is a measure of the local deformation
induced by the map. It is constructed in a way such that it carries only indices of the base-space.
Hence the nurﬁber of its invariants (eigenvalues) equals the dimension m of M, the physical space.
Manton showed, that the potential energy functional of the Skyrme model (where M = IR® and
N = 53) can be expressed in terms of eigenvalues of D. Geometrically, the quadratic term in the
energy is a measure for the distortion due to changes in the length of the local frame vectors while
.the Skyrme term indicates how the area spanned by two respective vectors gets deformed due to

the map. This is to say, the Skyrme term energetically favours isometries.

For the case of interest to us M = IR, N = €~ and f = z. Given, that x?&? = 79 is
the Fubini-Study metric on €, one finds that the potential energy can be expressed in a sim-
ilar fashion to the Skyrme model, wher_e Ai; plays the role of D;;. In two space-dimensions

Tr A)2 — Tt A% = 2det A and the potential energy that correéponds to L2 + L§ + L§ can be
4 4

expressed as

V= /d%%’_I‘rA+%det A (5.31)
5.2 The CP? baby Skyrme Model

Equipped with the general framework described above, we will now investigate a concrete example,

namely the CP? Skyrme model. According to (5.1), the CP2-manifold is described by

) A
w2 = T < U0 (5.32)

We define the inhomogeneous coordinates on the patch, where z; # 0, W = (22,33) /21 = (w,v),

related to the cartesian coordinates z = (z1, 29, 23) as follows:
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(L, w,v)

2= 5.33
V1+[w?+|v]? (5.33)
" In terms of W, the tensor A,g becomes:
1
Anp = i {(1 + [w]?) Bavg + (1 + |v|?) Dawp — Twibavp — u‘)vﬁawg} , (5.34)

where M =1+ |w|? + |v|? and W, = 0W/8z* for each component of W. The Lagrangian £, is,

in terms of W:

Ly = o—= {|wal* + |val® + lwav — vawl*} (5.35)

where the summation over a is assumed. The difference of the fourth-order terms is proportional
to

ALy = L5 - L = 4(AZAG — AqpdPe). (5.36)
For time-independent fields, this difference can be expressed in terms of W as follows :

Iwzlvzz - wzzvzllz . (5.37)

. 4
Ala=73m

Let W@ = W2 + iWg2, where the index a indicates the component (a = 1,2; W! = w, W? = v) then

ALy =0if
oW owg owe _ owg ' (5.38)

. 6.'1,‘1 ’ 622 ! 6.’1}2 61‘1 ’

which are the Cauchy-Riemann equations. Therefore the two fourth-order terms are identical for

static holomorphic functions and especially for solutions to the pure TP?-model. .

5.3 Solutions to the CP? Skyrme Model

We know that the sta:tic solutions of the pure CP*>-model are given in terms of rational functions
(5.22). The question naturally arises, whether one can find static aﬁalytic solutions to a model
which includes a Skyrme term.and a potential term. A systematic method is to use the freedom
in the choice of the potential and reconstruct it from the equations of motion for a given ansatz
of the fields. For @P* Skyrme models there is a slightly more elegant method; one can adapt the

.Bogdmol’nyi argument where the potential energy density is given by

V= % (Di2)! (D*2) + ‘;—FF& + pold (5.39)
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We rewrite the potential energy as

1 ' 2
‘/cpl = /d2$ 5 (Dlz +* ’L.l)QZ)Jf (DIZ + ’I:DQZ) -+ % (Flg +2 H—U\/17>
Br

(5.40)
#41Q ¥ Viuris [ & Vil

It can be shown that the lé.st term also describes the topology m3(S?) and is, in this sense, equivalent
to the topological charge @ [102). We know that the term Fi, is proportional to the topological
charge density (5.14), the pullback of the volume form on S2. Geometrically, multiplication with
the scalar function vI{ changes the “shape” of the target S 2 but not its topology and corresponds to
a renormalization of the volunié eleménﬁ'on target S2. Therefore one finds two self-dual equations,

the solutions of which saturate the modified Bogomol'nyi bound

Fio =52, /%Vll, Diz=FiDsz. (5.41)

Hr

From the first equation, a potential can be constructed for a given holomorphic field which will
automatically satisfy the second. In the CP!-model the field W consists of one complex component

w and for w = Az, the potential & = 8/(1 + |w|?)* was found to satisfy (5.41), [102].

For higher €PN-! N > 2, this trick does not work any longer, the term F»VU is in general
not a total derivative (or, in differential geometric terms, not a closed two-form). However, one
can, for a givén holomorphic field, construct a potential which satisfies the variational equations .

OF%  4py OU

AR (5.42)

L0 W,)

Solutions to these equations will not saturate the‘Bogon'lol’nyi bound and their stability or in-

stability will have to be shown be different methods. Returning to the (]:P_z-rhodel, for the field

w=Az4+—a), v=b, (5.43)

one finds the potential
v 4 _
_g(L+PF) (5.44)
(1+ [o]? + fw]?)* ’ '

By _ AP _
2,» /#F =T | (5.45)

together with the constraint
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This potential preserves the SU(2) x U(1) symmetry of the model. The potential energy of this
solution is given by V = 27r(1 +8/ BW) The parameter A is a measure of the size of the soliton
while a gives its position. The interpretation for b is less clear but; in a way, it describes how the
CP'-manifold spanned by w is embedded into @2: For constant b one observes that the solution
above is a (P! embedding because all that v does in this case is to renormalize the couplings and the
fields by a factor (1 + lvlf’). The discussion of section 5.1 tells us that, after fixing the origin ih the
plane (by, say, setting a = 0), the one-soliton moduli space is three-dimensional. Due to the residual
symmetry of the potential one can take A to be real. The time-evolution of such a single lump is
rather simple: unless it is pushed, it will sit there and possibly change its shape. One can study
the time-evolution of a single or multiple soliton configuration in a moduli space approximation.
This means that the dynamicsl of the full theory is truncated to the subspace of minimal energy
solutions. The motion of the soliton is then described by the geodesic motion of a point-particle
on the background of a Riemannian metric induced by the kinetic energy functional. Let £ be the
vector of the n{soliton solution parameter, Mn the n-soliton moduli space and L = T — V the

Lagrange function. The £ are the coordinates on My, while the metric gas(€) on M,, is defined

by

T = S0u(O)i. (5.46)

If one can neglect energy modes orthogonal fo the direction of zero-modes, the motion in the
" moduli space is a good approximation to the solution of the full variational equations. Picturely
. speaking, the dy'namics is described by a trajectory in the configuration space along the bottom
of the valley defined by the potential energy. As long as the energies of the solitons are small, the
solitons (;a,n'not;‘climb up the potential well too much and their true trajectories will sfay close to the
moduli spacé. Due to the Skyrme terms and the potential U, the original moduli space possesses
a potential and t.he. true energetic minima are subspaces of it (the quadratic term contributes only
an irrelevant constant to this poteritial). However, given that;- the forces between the individual
solitons are relatively weak, i.e. the moduli space is sufficiently flat, one can approximate the

low-energy dynamics in the spirit of a perturbation theory.

For a singlé lump,. however, the metric g,s(€) has'divergent components, unless one choosés
a compact domain for the theory. This means it requires infinite energy to change the solution
in the corresponding direction.. For the fields (5.43) given above, £ = (A, b, a) and the'divergent
direction corresponds 10 gax. One éan, however, study the soliton dynamics on Ma, the 2-soliton

moduli space, where the metric is finite. An ansatz for the 2-soliton field which has the correct
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asymptotic behaviour for a large a is given by

w= 2—/:1-(2:4. +a)(z4 —a), v=b. ‘ (5.47)
It is, however, not clear how this ansatz relates to a true minimum of the potential energy. A
way to study this problem numerically is the gradient-flow. In this procedure one starts with a
point in the moduli space which is not a global minimum of V' such that the two solitons exert a
mutual force given by the gradient of the potential in the moduli spa.&e\.ﬁ;l‘hey undergo a dissipative
. time-evolution which redutl:es.the potential energy until a fixpoint is reached for ¢ —+ oo. In practice
one will, of course, truncate after a finite time. This time-evolution corresponds to a flow down

the valley of potential energy with respect to the induced metric. The gradient-flow equations are:

gt = -2 . (5.48)

oge
For the 2-soliton configuration, there are three possibilities for the global minimum: the solitons
are infinitely separéted, coalesce or assume a stable state at a finite distance. For the actual
computation, we modify the expression (5.47) and decompose £ into magnitudes 1 and phases x

such that in polar coordinates z, = 7 exp(i6):
w = 720N LopoeiXa Ty = ghgeiXs (5.49)

The metric g.5(%¥, x),(a, b = 1,2,3) is hermitian which implies for its components

Q

[Vl [¥8] 9paws = Ixaxs - : (5.50)

‘The metric gets contributions from (Doz)?, GooGi: — G2, and F2.'1t can be computed in terms
“of hypergeometric functions and its explicit form is given in the appendix to this chapter. The
potential on the moduli space that corresponds to (5.26), is, for a given topological sector Q of the

configuration space, in polar coordinates (r,8):

4m)Q| + /drdor {Mm + puu}

VQ [1/’7 X] 472

8(1 + 93)* (o + pe)¥ir? + pu(1 +45)?) } .

4mlQl + /'drdﬂr { (1 + ¥t + 92 + 92 + 21212 cos(260 — x1 — x2))*
= , (5.51)
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Remember that for holomorphic static fields the two fourth-order terms are identicﬂ. The inte-
gration ranges over IR? and can be carried out explicitly. The result is presented in the appendix.
Note that the phases x, x2 only provide a shift in the angle of a n-periodic function whose range of
integration is [0, 2]. Therefore the result will not depend on x. This implies for the gradient-flow
that x.= 0 is a solution of (5.48) and thus we can restrict the discussion to the three-dimensional

problem:

_9VIY] , (5.52)

T
gab("p)dl - a¢a

Figures 5.1-5.3 show the potential V[1]. Note, that the ansatz of the fields can be written as

such that \/W is a measure for the separation of the lumps and a change of sign in 1) means
‘that the lumps move from the real to the imaginary axis and vice versa. The coordinate ¥y cannot
become zero during a time-evolution, because this wéuld imply a change of topologicél charge.
Correépondingly,_one sees a. divergent potential for ;. — 0 in Figs. 5.1 apd 5.2. The difference of

the two fourth-order terms is for ansatz (5.43):
4 2
A£4 = W ’a,'-lU‘(,Da' ’ (5‘54)

which implies that the metric is only different in their component gy, y,.

fig. 5.1: Potential V as a function of ¢ and 1. The third component 13 = 0, so this is the

potential of the CP! subspace. The couplings are pr = 0.01, uy = 0.1.
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5.3 Solutions to the CP2-Skyrmé Model

]|
=

-10

10 60

fig. 5.2: Potential V as a function of 41 and 3. In this plot ¥ = 0.1. The couplings are

pur =0.01, py =0.1.

fig. 5.3: Potential V as a function of ¥ and 3. In this plot ¥y = 0.1. The couplings are

pr = 0.01, py = 0.1
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\

5.4 Numerical Results and Outlook

We . studied the gradiént-ﬂow equations (5.52) numerically, where the potential energy
V =Vo+Vy+U with Vy = peF?%. We used a fourth-order Runge-Kutta method for the time-
evolution, where the metric g,, was diagonalized at each timesfep. We found that the two solitons
" always fepel. If initially placed at a certain distance (by chosing ¥, > 0), they started to move
apart and gradually slowed down. The potential energy V[¢] decreased and converged against
twice the energy of one soliton, as expected; see Fig. 5.5. If we placed the two lumps initially
on top of each other the potential energy had a maximum and a small perturbation was sufficient
to induce the decay into two separate lumps which repelled. The numerical errors due to the
truncation of floating point variables -are sufﬁci\ent to provide this perturbation. This is what we
show.in Figs. 5.6-5.7. Because the distance bet\;veen the lumps is proportional to /1), we expect
it. to converge only asymptotically. This behaviour is different from v, and 3 who are related to

the size of the solitons and approach constant values at a finite time, see Fig. 5.4.

The behavidur of 3 is interesting because it is a measure of how the CP'-submanifold, which
is described by w, is embedded into CP2. If initially put to zero, 13 remains at this value and the
fields do not leave tﬁe CP! subspace on which théy started. If 13 was initially non-zero, the force
that pushes the lumps apart increased and thus the time-evolution of 1, was accelerated. This is
also indicated in Fig. 5.3, where V is plotted as a function of wsj The gradient of the potential
grows with increasir_lg 3 for constant ¢. In addition, Figs. 5;2-5.3 also show the symmetry of V
under 13 — —13 and consequently no features can depend on the sign of ¢)3. We have verified this

numerically.

An important questlon is the stablhty of the one—sohton solution (5 43) for the potentla.l Uu.
Although the holomorphlc fields (5.43) minimize the quadratic term of the potentla.l energy Vs,
_there may be-fields which have a lower potential energy. They would have be non-analytic fields,
becausé the only possible an@lytic alteration is to replace 13 By Y34 + 14, which leads, via (5.51),
to a divergent V. The st’ability of the one-soliton against radially symmetric deformations has
been studied numerically [103] with the result that the configuration obtained by minimizing V is

equivalent to (5.43).

The results of this chapter should be seen as first results of an ongoing investigation. Several
mterestmg questions remain to be answered and various routes are open to do this. One can study
the motion of two (or more) solitons in a non-d1551pat1ve moduli space approximation which involves

the time-evolution of the metric g,5. From the results obtained so far we predict a repulsion or a
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back-to-back scattering for certain small impact paramenters. There will probably be a transition
to a 90° scattering if the impact parameter becorﬁes lérge enough. One can also drop the restriction
of a real £ and allow for non-constant x which will allow the solitons to move anywhere in the
plane of motion. It will be interesting to compare this to full simulations. Such simulations are

another project that is presently under way and the first results confirm the repulsion of lumps

that we have observed here.

The problems that lie ahead for the CP?-Skyrmions are manifold. First of all, their statics and
dynamics‘ are interesting in comparison to the ¢P1-splitons. Secondly, an unanswered question for
CP? is the difference in the dynamics due to the choice of the Skyrme term. For the two-soliton
field (5.47) we have observed that the metric gop only differs in one component (gy,y,), so the
time-evolution des.cribed by ‘Cf and £ will probably not be too distinct. Another problem lies at
hand. As mentioned above, one can think of the solitons on @P? as ‘being embedded CP' lumps, in
the sense that their topology is described by maps into P! submanifolds. It would be instructive
to gain a better understanding of the geometry of these embeddings and their relation to the
potential energy. . Manton’s interpretation of the potential energy of the Skyrmion in terms of
local deformations induced by the field also applies. to the @P'-model [49]. It might be possible to

exploit this idea for the ¢P2 Skyrme model further, with the addition that here deformation and

embedding should play a role.

Fina‘Hy, the choice of the potgntié,l U is free which has allowed us to construct a specific I/ for
a given field, this being done directly from the equations of motion. It would be interesting to
investigate if one can conclude from given fields directly which potential satisfies these equations.
In summary, there are many questions left to be answered, some that have been looked at in the

@P'-model and different ones that stem from the geometry of a larger target-space.
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fig. 5.4: Time-evolution of ratio r = /pu/pr(l + ¥2)/(4¥1%2). The initial values were 1, =
1.0, %2 = 0.0,v3 = 0.0 (solid line) and 91 = 1.5,%2 = 0.2,%3 = 1.0 (dashed line). The couplings

are ﬁu = 0.01 and e =0.1.
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fig. 5.5: Time-evolution of potential energy V in units of the theoretical value Vi = 4n(1 +

V2nupr)/3. The initial values were here ¢, = 1.0,9; = 0.0,%3 = 0.0 (solid line) and ¢; =
1.5,4b2 = 0.2, 43 = 1.0 (dashed line). The couplings are pu = 0.01 and pr = 0.1.
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fig. 5.6: Gradient-flow for two-soliton configuration after 2000 timesteps (top) and 12000 timesteps
(bottom). The initial values are ¢y = 0.05, ¢ = 0, 3 = 0.1. The couplings are ur = 0.1 and
pu = 0.01. ' '
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fig. 5.7 : Gradient-low for two-soliton configuration of Fig.5.6 after 14000 timesteps (top) and

40000 timesteps (bottom).
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Appendix
~ Potential
The potential on the moduli space can be written in terms of an auxiliary function L2 (2, 3),

‘defined as

Cim n+1 n+1 n+l - n+1 1 ;
Lm(¢2,¢3)=B< T ,2m — 1 >2Fl< 5 M g ;~T¥+§;1—El), (5.55)

where E = (1 + 92 — ¢2)/(1 + ¥2 + 92), such that |E| <-1. B is here the Beta-function and ,F}
the hypergeometric function. The potential on the moduli space V[t] can be expressed as a series

" in L%,. In the following expression m = 7/2 for all L and will be omitted.

Vil = 4r (1+43)"

p (B9IOLYT + 2498 (1 +4s” +392°) L3+

| 2495 (1492 +3u3) (1+ 9% +92) L +8 (1 +95° +¢_22)3¢1“ L*) + (5.56)
uu'(zplﬁ (1 +¢32)2 L1 4+ 34yt (1+55% + 310%) (1+452) Lo+
30 (L ta? o+ 30a) (L 9a® +2) (14+s7) Lo

.(1 + 1/)32 + ’(,/)22)3 (1 + 1/132)2 Ll)}

where gt = pp + lg.

Metric

We denote the six corhponen_ts of the metric as gap = Gyou,, (2,0 = 1,2,3) and express them
_generally as

9ab=Kap ) RELE, (5.57)

where R, (1) i$ a coefficient matrix that is given below.
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a=1, b=1, Ky=n(l+¢3)y?
R '
m 3/2 7/2
n
5 (| (1492 +¢3) 0
711 o p8(1+¥3)(1 4¢3 +¢3)°
9 3 0
11 0 2403 (1 + 93)(1 + ¥3 + ¥3)(1 + 393 + ¥2)
15 0 24pgt (1 + ¥3)(1 + 392 + ¢3)
19 .0 - 8uyf(1 + 93)
a=1, b=3, Kiz=—16n(1+v3)vdys
’ ‘ R13 -
m 3/2 7/2
n
5 || (1+93 —v3)/ (81 +¢3)) 0
7 0 w(1+ 93 +93)%(1 + ¢3 — 3¢3)2
9 (B(1+y2) 0
11 0 (1 +93)(1 + 492 + 9F) — 3yd)
15 || 0 w1 (3 4+ 593 + 3¢3)
19 0 ps
a=2, b=2, K22=47T(1+‘(,b§)21/112 .
. R22 '
m 3/2 7/2
n
1| (Q+v3 +93)/(4¥i(1 +43)) 0
3 0 p(l+ 93 +93)°
5 1/(4(1 + ¥3)) 0
7 0 (1 + 93 +93)%(3 + 3¢ + 19¢3)?
11 0 pi(3 + 392 + 19¢2)
15 0 s
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a=1, b=2,

Kz = —647(1 + 93) 93¢

R12
m - 3/2 7/2
n
5 | (16(1+y3)pi) 0
7 0 pbt
1 0 pR(2 + 203 + 392)
15 0 - p(1+ 93 +93)

Kas = 8m(1 + 93)*¢vpatps

R23
m 3/2 7/2 .
n . .
1 || =1+ 43 +93)/ (43 (1 +43)) 0
sl o —p(L+ 9} + 92)?
5 1/(4(1 + ¥3)) 0 .
7 0o (1 + 93 + 92)2(5 + 592 — 1193)?
11 0 ;u/)‘f(13 + 131,b§ + 51/)%)
15 0 puTYs
Ca=3, b=3, Ks=2r1ied
. |
m 3/2 7/2
L [ Q) +95) +45(1 +43) 0
IR A |
3 0 2p(1 + 5 +93)°
5 (1493 - y3)/(243) 0
T 0 p(+ 93 + 93) (201 + ¥3)® + v3 (592 — 9(1 + ¥3))
9 1/(293) | 0
11 0 C u29f(1+ 93 +93)(6 ~ 1193 + 693)
15 0 Y5 (2 + 3 +.293) -
19 0 -y




General Conclusions

The theories studied in this thesis describe various aspects of statics and dynamics of extended
objects in relativistic o-models, therefore it makes sense to look back and summarize what features

. they have in common and what future research might be of relevance to all of them.

Airribst all the objects discussed here are “textures” whiéh o'vx'/e their topological stability fo
the behaviour of the ﬁélds at the interior-of the physical space. The topological charge provides
a bound on the poten_tial energy and prevents the lumps of non-zero degree from decaying into
fadiation during their time-evolution. Thus all the models studied here can have solutions that

are’in principle suitable to model dynamical interactions.

Two areas of further study are of common interest to all of the theories, albeit for different
physical reasons. The first one of these is the inveétigatipn of solutions of higher topological degree,
especially ﬁon—ré,dially symmetric so]utions and their time-dependence. For the self-dual solutions
of chapter 3 this would be.interesting in comparison to the well-studied vortices of the Abelian Higgs
model. Perturbation theory around the self-dual point will lead to forces between the separated
lumps who will begin to move ﬁnder the influence of this force. For the Hopﬁon described in
chapter 4 the;é is, for higher topological charges, the possibility that knot-like structures occur:
the dynamics of “multi-knots” would be interesting in various contexts such as the behaviour
of cosmic strings and their scatteriﬁg. Open queé‘qions include the 'existénce of bound states, the
dynamics of.fotating Hopfions and generally the structure of the moduli space of the theory. These
are also. questions of interest to the CP? baby Skyrme model-of chapter 5. Furthermore, for the
Hopf-model one can think of an extended theofy which includes Skyfn_lions and Hopfions. Their
interactiohs could be diverse and promise a rich playground for investigations. Some topological

propertiés of such a theory have been looked at in [104].

The second area of interest that is shared between the models is a quantum mechanical de- '

scription of the solutions. We have not discussed such work at all here (apart from a brief aside in
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chapter 4), but clearly this ié a question 6f great interest. To construct a quantum field theory for
solitons is a hard task and the general a_mpproach uséd so far has involved the truncation of the the-
ory to a finite-dimensional system and quantization of the degrees of freedom in the moduli space.
" Semiclassical computations of fluctuations around the classical ground state have been performed
in the Skyrme' model, where one method involved the analysis of the vibrational normal modes
and the study of the Fourier spectrum of the fields after a pérthrbation-. Similar techniques should

be applicable to the models described in this thesis, especially \the Hopfions.

"Each of the theories that we discussed is iﬁteresting in its own right but they might also
provide ideas for investigatidns of the other models that we have studied. -For instance, it would
be interesting to look at a U(1)-gauged Hopfion and to compare it to a gauged Skyrmion. It would
also be instructive to see if one can construct a better-bound on the potentlal energy for such a
model. On the other hand it is an 1nterest1ng problem to impose an angular time-dependence on

the fields in the models of chapter 2 and 3, similar to the Hopfion or to Coleman’s @Q-balls.

To summarize, despite the obvious differences between the various models described in this
thesis, they represe_nt many interesting areas of research and provide inspiration for further inves-

tigations.
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