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ABSTRACT 

The thermal energy analyser (TEA) has been used as a detector to analyse five 

different types of samples of nitrosamines and organic nitrates. Results are 

presented for the analysis of nitrosodimethylamine in aqueous samples using 

capillary gas chromatography, with a detection limit of less than 20 ppb. Total 

nitrosamine content of personal hygiene products was determined using chemical 

denitrosation coupled to the TEA, with a similar lower limit. Nitroglycerin and 

pentaerythritoltetranitrate were analysed qualitatively in explosives residues. 

Attempts were made to quantify nitrosodiethanolamine in a dye, and nitroglycerin 

in blood, and the initial findings are presented. 
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C H A P T E R 1 : INTRODUCTION 

I . l Thermal Energy Analyser 

The Thermal Energy Analyser' (TEA) takes the substances eluted from the GC 

column and allows the qualitative and quantitative identification of nitrogen 

containing compounds by pyrolysing them at a strictly controlled temperature in a 

flash fiimace to produce nitric oxide (NO). This radical then passes into a cooled 

reaction chamber where it reacts with ozone produced in situ to form electronically 

excited nitrogen dioxide (NO2*). This can decay back to its grovmd state by 

chemilviminescence, emitting radiation of a characteristic wavelength which passes 

through a filter and is detected by a photomultiplier tube specifically designed to look 

at these wavelengths. The intensity of the emissions is proportional to the NO 

concentration, and therefore to the amount of nitroso-compound. The output is sent 

back to the GC software to be integrated and displayed as a peak area. 

Pyrolysis 

The TEA has two modes of operation depending upon the type of nitrogen compound 

to be detected. 



Nitrogen mode (Catalytic pyrolysis). 

This mode is used when an NH bond rather than an NO bond is present and requires 

the presence of oxygen in the pyrolyser. The oxygen reacts with the NH to produce 

the NO radical in the presence of a catalyst at high temperature (850°C). The catalyst 

is present in the pyrolyser in both modes of operation but has no action when oxygen 

is not present. 

: Nitroso mode (Non-catalytic pyrolysis). 

In this mode no oxygen is needed as the NO radical is produced by pyrolysis alone 

(provided the temperature is appropriate for the stability of the NO bond). 

The remainder of the parent nitrogen compound, and any other organic molecules or 

fragments wi l l not produce NO, and pass through the rest of the system undetected. 

For the purposes of this work Nitrogen mode was not used and subsequent 

discussions wil l be concerned only with operation in Nitroso mode. 

Optimisation of Pyrolysis temperature. 

For a particular compound, enough heat energy must be supplied to break the 

substrate to NO bond. The pyrolysis temperature varies beween different groups of 



compounds, and also within each group. Nitrosamines all pyrolyse below 500°C, 

whereas the nitrate esters Gtn and Petn produce NO at about 250°C and 750°C 

respectively, and nitroaromatics generally require temperatures of 800°C. For all 

these compounds there is an optimum temperature for pyrolysis at which the molar 

response is highest, but pyrolysis wi l l still occur to a lesser extent at slightly lower 

temperatures. The optimxim temperature can easily be found by injecting a standard 

solution of the compound to be studied and varying the pyrolyser temperature until 

the greatest response is obtained. This is then quantitative as long as the conditions 

are kept constant. 

Optimisation of TEA Internal Pressure and Ozone Flow 

To obtain the highest degree of sensitivity from the TEA the pressure must be 

carefully maintained. I f the pressure is too high the tiny fraction of NO2* that 

actually produce light quanta wil l be fiirther reduced by deactivation in two and three 

body collisions (see outline). The former can be made negligible and the latter 

eliminated by running at pressures of only a few millimetres of mercury, but i f the 

pressure is too low the NO2* wi l l pass through the system too quickly and is likely to 

decay after leaving the chamber, in which case it wil l not be detected. A compromise 

is made between the two factors. 

For our system it was found to be desirable to run at a total pressure of 1 mmHg. 

This required an ozone flow equal to a pressure of 0.6 mmHg, the rest of the pressure 



is made up by the flow of carrier gas from the GC, i.e. 1 ml/min for a 30 metre 

capillary column. 

Applications of the TEA 

The TEA can be used as a detector for gas or liquid chromatography, or in some cases 

the output gases from a reaction can be fed directly into the detector. Its major 

advantage is its selectivity for nitrogen compounds, this means that resolution is 

greatly increased, with the required compound often appearing as the only peak 

instead of amongst a forest of others. This in turn allows smaller amounts to be 

detected. Overall this means that less sample is needed, with less clean-up, it is easier 

to identify the peak of interest, and the problem of huge solvent peaks at the same 

retention time is avoided. 



Figure 1. How the Thermal Energy Analyser Works 
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1.2. Nitroglycerin 

Nitroglycerin (Glyceryl Trinitrate, Gtn) has two very different uses, it is both a 

powerful explosive and an effective vasodilatory drug. The first property was utilised 

by Alfred Nobel in his bid to find the 'ultimate deterrant to war', when he used Gtn to 

make dynamite. He failed in this respect, Gtn is still a popular explosive today (when 

used as dynamite) as it is relatively simple to make, but his work did lead to the 

discovery of Gtns medicinal properties. Workers in his explosives factory, including 

Nobel himself, suffered terrible headaches which were found to be due to the dilation 

of blood vessels in the brain caused by excessive GTN exposure. 

This prompted the first investigations into Gtn, and it was realised that it could be a 

useful medicinal tool when its effects were targeted correctly. Gtns therapeutic 

properties were first utilised in 1874, and its success has ensured that it is still used 

today to freat heart conditions such as angina pectoris and congestive heart failure. A 

number of other nifrate drugs (such as Isosorbide Dinfrate, Isdn and Pentaerythrytol-

tefranitrate, Petn) have also been found to be effective, and all are available in a 

variety of dosage forms and may be used in conjunction with one another. GTN is 

available in sublingual tablets and sprays to give an almost instant but short-lived rise 

in blood levels, suitable for immediate treatment, whilst slow release transdermal 

patches and ointments, oral capsules, or confroUed intravenous delivery can be used 

for a more prolonged prophylactic effect 



The effects and actions of Gtn are not yet fiilly understood, and there are many areas 

which require fiirther elucidation. The fate of Gtn in the body - where and how 

quickly it is metabolised, and the amounts and activites of the metabolites produced 

are important questions which have not been answered conclusively. The disposition 

of active species in the blood is also important when considering how effective a 

calculated dose of Gtn wil l be. Studies have shown that Gtn is rapidly degraded in 

the body to its di- and mono-nitrate metabolites. The liver is mainly responsible for 

3,4 

the high clearance rate of the drug by first pass metabolism, but Gtn is also lost in 

blood to a lesser extent. This happens in two distinct stages; firstly, a significant 

amount of Gtn is very rapidly bound by blood proteins, secondly, denitration occurs 

and metabolites are formed, which can themselves be distributed into the 

erythrocytes.^ Blood clearance is not of great overall importance in the body, but 

becomes more significant when samples are taken for analysis, and will be discussed 

later. On reading the literature, it is hard to draw any solid conclusions as to how 

haemodynamically active Gtn and its metabolites really are. Some of the conclusions 

put forward suggest that Gtn is the principal active molecule,^ ^whilst some suggest 

that it plays a fairly small role and the metabolites are more significant in causing 
8-10 

clinical effects. 

The relationship between dosage form and pharmacological effects has been widely 

studied, conclusions can be drawn from observation of patients physical responses to 



the drug as well as from analytical studies on blood samples. Early work in this area 

put forward the argument that oral Gtn is completely destroyed by first pass 

metabolism and therefore had no clinical utility. Subsequent work has proved that 

clinical effects are produced, although it is now thought these may be mostly due to 

10 

the activity of Gtn metabolites. The effects and duration of each of the dosage 

forms are now quite well documented,^ 'and the efficacy of new formulations can 

be tested against these results. 

It is known that Gtn exerts its beneficial effects by causing relaxation of the vascular 

smooth muscle, but the detailed mechanisms of how this occurs are not entirely 

known. The mode of action is thought to be via nitric oxide, which is the final active 

metabolite produced from Gtn, and has been shovm to produce clinical effects when 

6 

administered in vivo. Investigations into this may also shed some light on the 

problem of tolerance, a phenomenon which occurs in patients imdergoing continuous 

nitrate therapy, where clinical effects are seen to decline in response to a constant 

dosage. It is thought this may occur by metabolite inhibition of Gtn 

biotransformation, possibly due to the depletion of free thiol groups which may be 

necessary for this to take place, and investigations are ongoing. 

There is still much to be discovered about Gtn before it can be said that patients are 

really getting the maximum benefits from Gtn therapy, and as one pair of writers 



commented in their review of the Gtn literature in 1984^ "nitroglycerin assay is one of 

the great challenges of modem drug analysis". This is still true today. 

1.3. Pentaerythritoltetranitrate 

Pentaerythritoltetranitrate (Petn) has very similar chemical properties to 

Nitroglycerin, it too is a potent vasodilator and is often used in conjunction with other 

nitrate drugs to ease certain heart conditions. It is also a powerfiil explosive, most 

commonly used to detonate other explosives. It is chemically stable and in its pure 

form is a granular white powder which can be set off by fiiction. It is prepared 

simply by introducing pentaerythritol into concentrated nitric acid, cooling, 

precipitating with weaker nitric acid, and then recrystalising from acetone. 

Petn can be mixed with another explosive called RDX (cyclo-1,3,5-

trimethylene-2,4,6-trinitramine) to form Semtex. Particles of the two are bound with 

an adhesive to form a durable, pliable explosive. Semtex is insoluble in water and 

hence weathers well, it is odourless and does not show up on x-rays or in metal 

detectors and is therefore especially popular with terrorists, as well as with 

commercial explosives experts. It is also inexpensive - licensed blasters can buy it for 

£13/lb, and experts working on the Paris TWA jet explosion last year speculated that 

as little as 21bs of strategically placed Semtex could have caused the disaster. 

Because of its particulate nature, and the fact that it contains adhesive, even 

though Semtex appears to be a homogeneous material it tends to leave behind 



residues on contact. These can easily be transferred from one surface to another, and 

may remain for many months due to their insolubility in water. Experiments under 

controlled conditions have shown that after contact with Semtex, fraces may still be 

detectable after more than fifty successive hand prints.'*^ Traces like these may be 

swabbed of f with acetone and analysed, usually by GC with either TEA or MS, and 

detection limits as low as 100 picograms have been reported,^^ although 

modifications were made to the TEA to sharpen the peaks in this case. 

1.4. N-Nitrosamines 

N-Nifrosamines are a group of compounds which have come to public attention 

because of their carcinogenic properties. They were first discovered in 1863''* but as 

they are of use only in a limited number of reactions, were not considered to be of any 

great interest. Since the discovery of their toxicity in the 1950s, '̂ however, they have 

been widely studied and are often used as models for studying the mechanisms of 

carcinogenesis. It has been found that of the 130 or so nitrosamines known, at least 

80% of them are potent carcinogens, inducing tumours in a wide range of target cells 

and organs in nearly all animal species, including primates.''*''^''^ This has led to 

concern about human Nitrosamine exposure and the possible effects on humans, and 

has prompted a great deal of research into their occurrence in the environment and the 

workplace, and in commercial products. These studies have shown that there are 

many ways in which we come into contact with nifrosamines in our everyday lives. 

10 



They are found in items such as foods, beverages, tobacco, drugs, cosmetics and 

toiletries, detergents, industrial and agricultural chemicals and rubber products , and 

both the people that use these products, and those that are involved in their 

18~21 
manufacture are at risk of exposure. 

Nitrosamines are formed from a wide variety of precursors and nitrosating agents, 

making them fairly ubiquitous. Primary, secondary and tertiary amines, amine 

oxides, alkanolamides,and other amine type compoxmds can react with nitrite salts, 

nitrous acid, oxides of nitrogen or other nitrosamines, and depending on the precursor 

and catalysts present, nitrosation can occur in acidic, neufral or alkaline 

conditions.'" '̂̂ ^ 

R 'R"NH + HNO2 = R'R"NN0 + H20 

Humans are exposed to preformed nitrosamines in a number of different ways, 

including inhalation, dermal absorption and ingestion. Tobacco contains many 

volatile amines such as nicotine, which can be nifrosated either during the long curing 

process or on combustion, leading to high concentrations of nitrosamines.^^ Many 

cosmetic formulations such as creams, lotions, make-up and shampoos use 

alkanolamines like di- and triethanolamine to help form stable emulsions, and as 

nitrosating agents are often also present in these products, many contain nitrosamines 

such as Nitrosodiethanolamine (Ndela), some at levels of up to 48 ppm,̂ '*'̂ ^ and it has 

been shown that Ndela can be readily absorbed through the skin.'̂ ^ Certain rubber 

products can cause contamination of items which come into contact with them - foods 

11 



packaged in elastic rubber netting may contain nitrosamines which migrate from the 

netting into the food during storage and on cooking."^^ This also occurs in baby bottle 

nipples, where nitrosamines migrate into the milk during sterilisation.'^^ Foods such 

as meat and fish which are cured using nitrates can contain various nitrosamines, 

depending on which amines are present, due to nitrosation by nitrite produced by 

bacterial reduction of nitrate.''^''^ 

A number of industrial working environments have shown nitrosamine levels which 

give cause for concern. They may use products ah-eady contaminated with 

nitrosamines, or have a high nitrosating potential due to the presence of precursors 

and nitrosating agents in chemicals and the atmosphere. The highest levels are found 

in leather tanneries, where workers can be exposed to a daily dose of up to 440 

|j,g/person/day.'^ Metal workers using synthetic cutting fluids, and those involved in 

then- manufactiu-e can be exposed to high levels of Ndela by absorption through the 

skin. In the rubber industry nitrosamines are produced during the vulcanization 

process, and again contaminate both the working environment and the final product. 

Nitrosamines can also be synthesised in vivo, but little is known about this. In the 

acid environment of the stomach amines present in many foods can react with nitrite 

fi:om the food or present in swallowed saliva to form carcinogenic nitrosamines, and it 

28 has been suggested these may contribute to the pathogenesis of gastric cancer. 

12 



International standards for restriction of nitrosamine levels have been introduced, and 

as a result there has been an increasing demand for robust methods for routine 

quantitative analysis of a great variety of products and environments to ensure 

compliance. It is also essential to identify which nitrosamines are present were 

contamination exists, so changes in working practices or use of chemicals can be 

introduced to minimise or eliminate the risk of exposure. 

13 



C H A P T E R 2 : ANALYSIS OF ORGANIC NITRATES 

2.1. Nitroglycerin analysis in blood 

2.1.1. Previous work on GTN analysis in blood 

The history of GTN analysis has been frought with problems. Early attempts to 

analyse GTN used colorimetric methods, and were vmable to distinguish between 

organic and inorganic nitrates. Quantitative analysis did not begin in earnest until the 

late 'sixties, when gas chromatography with electron capture detection was first being 

investigated. Packed columns were used initially, but generally produced less than 

29 

perfect results as the sensitivity was quite low and analysis times very long. 

Chromatograms were often badly affected by interference peaks, and this problem 

was partly overcome by using non-polar solvents like hexane and pentane to try and 

exclude most of the relatively polar contaminants found in blood, but this meant 
29,30 

many repetetive extractions due to the low partition coefficient of GTN. A 

general detection limit of 0.5 ng/ml can be reached with this method when using 2 ml 
31 

samples with careful clean-up procedures and ideal operating conditions. 

Substituting capillary columns in place of packed columns gives extra 
10,32,24 

sensitivity but the amount of sample injected is smaller, hence better extraction 

techniques are needed to obtain a sufficient degree of concentration, and the problem 14 



of contamination is still not solved. Use of different solvents means that the 

concentrations of GTN and its metabolites in plasma can be determined seperately or 

simultaneously which can provide much information about GTN metabolism.'°' '̂̂ '̂ '̂  

A disadvantage of this technique is that GTN often partially decomposes in the hot 

injector port or on the heated column.̂ ^"^^ This problem can be solved in part by 

cryofocussing, ie. having a relatively cool injector port and a cool column and 

allowing the sample to slowly move onto the column to form a band before starting 

the temperature program. A compromise is made between the amount of 

decomposition and the amount of sample getting onto the column. This also allows 

the injection of slightly larger samples, up to a limit of about 5|al when the peak 

becomes too broad. 

Gas chromatography (packed or capillary) can be combined with mass spectrometry, 

and gives a better chromatogram with good linearity and a typical sensitivity of 0.05 

ng/ml. Unfortimately setting up a GC-MS system is expensive in terms of both time 

and money, and often requires synthesis of specific internal standards, which means 

38,39 
this method is not always suitable for routine clinical analysis. 

A real step forward in GTN analysis is the application of the thermal energy analyser 

(TEA), (see Chapter 1). This detector is specific and highly sensitive for nitrogen, 

which is a major breakthrough in reducing the problems of sample clean-up and 

chromatographic interference. The result is high quality chromatograms, with a 

15 



40-42 

detection limit of 0.05ng/ml. A minor disadvantage in using the TEA is that the 

peaks obtained are slightly broader than those produced by other detectors. 

Modifications to the TEA have been proposed and documented which resuh in 

sharper peaks,''' but in general this is only worth considering when working with 

peaks very close to the signal to noise ratio. The TEA can also be used as a detector 

for liquid chromatography, which has the advantage of eliminating partial 

decomposition of GTN found with GC. 

Even with the best analytical instruments available, GTN analysis can still be 

complicated by other factors, which must be taken into account when interpreting 

results. Sample handling is absolutely crucial, and the final result can vary widely 

depending on the procedures used. The key point is that GTN is rapidly degraded in 

whole blood at body temperature with a half life of 3 min at therapeutic 

concentrations^. The rate of degradation is slower at lower temperature, the half life 

being 27 min at 2°C, it is therefore essential to cool the sample and separate out the 

plasma containing GTN as soon as possible. A short delay may result in significant 

underestimation of GTN concentration. It is usual to take the sample directly into a 

chilled container, (which must contain heparin to prevent coagulation), centrifuge 

immediately (preferably in a refrigerated centrifuge and for as short a time as 

possible), remove the plasma and freeze in dry ice, the sample can then be kept for at 

least a month before analysis.̂ '̂ '*'̂ ^ When the sample is analysed it is recommended 

16 



that extraction of the sample should be started whilst the sample is still cold after 

thawing, and that heat should be avoided at all times during the procedure. 

Loss of GTN from blood can be reduced by adding chemical inhibitors or stabilizers. 

Previous methods used silver nitrate'''^ but whilst this stabilizes GTN, it also causes 

gelling whole blood samples making them difficult to work with, and there are 

worries that silver nitrate may nitrate glycerol found in the sample. A more 

satisfactory method of stopping GTN degradation is addition of iodoacetamide 

immediately after sampling, and when chilled as well the rate of degradation falls to 

zero due to inhibition of enzymes involved in GTN metabolism.^ 

A problem which was highlighted in the early days of GTN analysis is the adsorption 

of GTN by plastics.^ This was initially discovered when patients receiving 

intravenous GTN from plastic infiision sets were found to need much higher doses 

than expected to produce clinical results.'*^ Subsequent work showed that up to 85% 

of GTN was lost when delivered in this way, and similar losses occurred when stored 

in plastic containers, therefore GTN samples should be kept in glass at all times. This 

also means that results of some early GTN analyses should be regarded with caution 

when making comparisons. 

17 



2.1.2. Analysis of GTN in blood 

2.1.2.1. Experimental 

The aim of this piece of work was to develop a method that could be used for routine 

analysis of GTN levels in clinical blood samples. It was intended that the method 

would be developed in four stages : 

- optimising the chromatography to obtain the best possible detection limit 

and reproducible calibrations 

- using water spiked with GTN to develop a sample extraction that was 

reproducible and efficient 

- using spiked whole blood to make sure the method worked on 'real' 

samples 

- obtaining clinical samples to test for GTN content 

Due to lack of time only the first stage was completed, although one clinical blood 

sample was obtained and analysed, to give an indication as to whether the method 

was working yet, but unfortunately this did not prove very successful due to a number 

of complications. The preliminary findings are presented, along with suggestions for 

further investigations. 



Reagents 

GTN was kindly supplied by South Cleveland Hospital in two forms - Tridil® 

solution for intravenous infusion, 500 |ug/ml in an aqueous solution containing 10 % 

alcohol, and a metered sublingual spray formulated in alcohol, 400|ig/dose). 

Petroleum ether (boiling range 30 - 40°C) and toluene were from Sigma. Water was 

laboratory distilled 

1). Chromatography and calibration 

GC-TEA calibration standards were prepared by directing the GTN spray into toluene 

and diluting as necessary. Multiple solutions were made and compared to determine 

the reproducibility of the spray dosage. The reproducibility of the injected standards 

was ± 10 %, which takes into account the reproducibility of both the injection and the 

dosage of the spray. 

GC - TEA Conditions 

A 30 m X 0.32 mm I . D. DB 5.625 (5 % phenyl) methylpolysioxane capillary column 

with a stationary phase film thickness of 0.25 |J,m ( J & W Scientific, CA. USA) was 

used. The temperature was held at 45° Cfo r3 min and then temperature programmed 

at a rate of 50° C /min to 200° C and held for 5 min. The injector was operated in 

splitless mode for 3 min then in split mode with a split ratio of 20 : 1 for the rest of 

the run. An injection port temperature of 155° C was used. The carrier gas was 

19 



nitrogen at a flow rate of 1 ml/min. The TEA pyrolyser was set at 500° C and the 

interface at 225° C. The total internal pressure was 1 mmHg. 

2). Extraction procedure 

Petroleum ether was used for the exfraction. N-pentane or n-hexane are often 

favoured by many researchers, but cost considerations led to this choice of solvent, 

and although there may be a small difference in exfraction due to the branched 

isomers present in the petroleum fraction, this did not present a problem here. 

Tridil solution was diluted as needed at various levels down to 20 ppb and 5 ml 

aliquots used as test samples. 10 ml of pet. ether was added and the mixture was 

vortexed for 1 min, then placed in a -30°C freezer for 30 mins to freeze the aqueous 

layer. The ether layer was removed and evaporated under nifrogen to about 1 ml, then 

fransferred quantitatively to a graduated vial, 100 | i l of toluene was added and the 

solution concenfrated to 100 jal. 1 ̂ 1 was injected onto the GC - TEA. 

Blood sample 

The sample was taken from a patient receiving an infravenous dosage of 0.36 mg / 

hour of GTN (using Tridil solution), which is intended to give a blood concenfration 

of 80 ppb at equilibrium. 

For the analysis, a 5 ml sample was taken into a chilled tube, centrifiiged 

immediately and a gel plug used to separate the plasma and cells. The tube was kept 

on ice for the 30 min journey between the hospital and the laboratory, and analysed 

20 



immediately. Unfortunately no heparin had been added therefore the plasma had 

coagulated, and required further centrifugation for 15 min at 4000 rpm. 2.5 g of 

supematent were recovered, to which 10 ml of pet. ether followed by 5 ml of 

saturated brine were added. On addition of the brine the sample coagulated again and 

had to be centrifuged for a further 20 min. The aqueous layer was then frozen, and 

the sample was concenfrated in the same way as described above. 

2.1.2.2. Results 

See fig.2 

Trace A shows the result of an extraction on water spiked with GTN at 80 ppb, and 

gives a recovery of 50 %. Trace B shows the result of extracting the blood sample. 

The chromatogram shows a possible frace of GTN, but there is no peak which can be 

integrated. The chromatogram is very clean which is a positive sign, indicating that 

potentially the detection limit could be quite low. 

2.1.2.3. Discussion 

It was never expected that a perfect result would be obtained from this analysis as it 

would be unlikely that the method for extraction of spiked water samples would 

fransfer to blood samples without modifications, so this analysis was simply meant to 

show what progress had been made. There are obvious reasons why no GTN was 

detected. The fact that the plasma coagulated twice and had to be re-spun means that 

a large amount of GTN may have been bound up with the coagulated proteins and 

21 



spun down with them and therefore not been recovered in the supematent. GTN is 

metabolised in plasma to a small extent^, so the extra time spent at room temperature 

during centrifiigation wil l have reduced the content fiirther. Other investigators have 

used sodivim chloride to increase the partition coefficient of GTN into the solvent'^, 

and not encountered any problems, but it is possible that the coagulation occurred 

because the sample had to be re-centrifiiged before exfraction and had warmed up 

considerably before the addition of the NaCl solution. Further work on spiked blood 

samples is needed to solve these problems, possibly using iodoacetamide to inhibit 

GTN degradation. The analysis should be sfraightforward i f there are no 

complications due to coagulation, so heparin must not be forgotten, and sodium 

chloride probably should be forgotten, as it is only added to increase the extraction, 

and is not absolutely necessary. 
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2.2 Analysis of GTN and PETN in their explosive forms 

The analysis of GTN and PETN as explosives is much simpler than when dealing 

with samples in blood. In many cases traces of suspected explosives can simply be 

swabbed, brushed or vacuum filtered off a surface, dissolved in a suitable solvent and 

analysed directly,'*^ they may be mixed with other components, such as mixers like 

woodmeal, and these can often be identified under a microscope.''^ 

2.2.1. Experimental 

Four samples were provided for qualitative GTN/PETN analysis. 

Reagents 

Pure PETN crystals were supplied wdth the samples. GTN was kindly supplied by 

South Cleveland Hospital as a metered sublingual spray formulated in alcohol. 

Acetone supplied by BDH 

GC - TEA Conditions 

A 30 m X 0.32 mm I.D. DB 5.625 (5 % phenyl)methylpolysiloxane capillary column 

with a stationary phase film thickness of 0.25 ^m (J & W Scientific, CA USA) was 

used. The temperature was held at 45°C for 4 min and then temperature programmed 

at a rate of 40°C/ min to 200°C and held for a fiirther 4 min. The injector was 
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operated in splitless mode for 4 min , then split for the rest of the run with a split ratio 

o f20 : l . An injection port temperature of 170°C was used. The carrier gas was 

nitrogen at a flow rate of 1 ml/min. The TEA pyrolyser was set at 750°C and the 

interface at 275°C. The total pressure was 1 mmHg. 

2.2.2. Results 

An examination of the following chromatographs shows that samples 1,3, and 4 

contained PETN, and sample 2 contained GTN 
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GTN standard, and Sample 2, containing GTN 
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C H A P T E R 3 : ANALYSIS OF N-NITROSAMINES 

3.1. Previous nitrosamine analysis 

There axe so many N-nitrosamines occurring in such a wide variety of products 

and environments that the main challenge involved in their analysis is finding a 

suitable way to extract and clean-up the sample prior to analysis. Matrices such as 

soap, lipstick, rubber, air, bacon, gastric juice, and pesticides are just a few 

examples of those which come under scrutiny. The problem is usually finding a 

suitable solvent system for the extraction, but in some cases extra separation using 

column chromatography or ion exhange chromatography is necessary as well.^ 

Analysis by GC-TEA has been established as a firm favourite for looking at 

volatile nitrosamines, and there are many well documented methods spanning a 

period of nearly twenty years.̂ '̂'**''*̂  Non-volatile nitrosamines; which can't be 

analysed by GC or HPLC, can be analysed by reacting them chemically in a 

sealed vessel to produce nitric oxide, and passing this straight into the 

chemiluminescence detector,̂ '̂''̂  and this method is also useful for screening 

products for nitrosamines which may be present, although it does not distinguish 

between them. Some nitrosamines contain groups such as -OH which need 

derivatising before they can be run by GC, to prevent imwanted interactions with 

the column, and this requires an extra step in the work up of a sample.̂ " 

Nitrosamines are still being foimd in new places, so there will be a need for new 

methods in the fiiture. There is also a constant need for monitoring of products 
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and places that have been found to be contaminated, so established methods which 

are easy to use and commercially viable are always in demand. 

3.2. Analysis of N-Nitrosodimethylamine in aqueous samples 

Four samples were provided for analysis of Ndma content. The samples were 

water based but contained small amounts of other dissolved organic compounds 

which were not named. A level of less than 50 ppb was expected in all the 

samples and the results were to be quoted as less than a maximum. 

3.2.1. Experimental 

GC-TEA Conditions 

A 30 m X 0.32 mm I . D. DBWAX (polyethylene glycol) capillary column with a 

stationary phase f i lm thickness of 0.5 |J,m (J & W Scientific CA. USA) was used. 

The temperature was held at 75° C for 1 min and then temperature programmed at 

a rate of 25*̂  C/min to 200° C and held for 3 min. The carrier gas was nitrogen at a 

flow rate of 1 ml/min. The injector was operated in splitless mode for 0.65 mins 

and then in split mode with a split ratio of 20:1 for the rest of the run. An injector 

port temperature of 200° C was used. 

The TEA was operated in Nitroso mode, the pyrolyser was kept at 500° C and the 

interface at 225° C. The total pressure in the detector was ImmHg. 
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Reagents 

Al l water was laboratory distilled. Ether and toluene (HPLC Grade) and Ndma 

(99.7% purity) were supplied by Sigma. Nitrogen (Medical Grade) was from 

B.O.C. 

Calibration of GC - TEA 

A standard stock solution of 1000 ppm Ndma in toluene was made by adding 100 

mgs to 100 mis of solvent and shaking thoroughly. Aliquots were then diluted 

successively with toluene to 1 ppm, 100 ppb and 10 ppb. These standards were 

kept sealed in glass at 0-5 C in the dark. Injections of the standards were 

performed daily to ensure stability of the solutions and reproducibility of analysis. 

The day to day repeatability was within ± 10 % 

Extraction Procedure 

An aliquot of sample (30-50 mis) was shaken for two minutes with an equal 

amount of diethyl ether and allowed to settle, the ether layer was then removed and 

the procedure repeated twice. The ether layers were combined and evaporated 

down to approximately 10 mis on a rotary evaporator at 38 C, no vacuum was used 

as the equipment available did not allow sufficient control to a desirable level of 

vacuum which would not increase the vapour pressure of the Ndma to an 

unacceptable level. 1 ml of toluene was added then the sample was transferred 

quantitatively to a graduated vial and evaporated under a stream of nitrogen to 1 

ml. The addition of toluene meant that there was very little ether in the final 
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sample, and so the problems associated with injecting such a volatile solvent were 

avoided. 1 |̂ 1 was injected onto the GC -TEA. 

Determination of Extraction Efficiency 

The amount of sample available was limited, therefore most of the preparative 

work to determine the extraction efficiency was done using aliquots of water 

spiked with Ndma at various levels. A volatile solvent was required for the 

extraction to reduce Ndma losses during concentration. Ether was used in 

preference to Dichloromethane, which formed an emulsion when shaken with the 

samples and would not settle back into two separable phases. It was foimd that 

during the concentration stage, when the sample was taken down to less than 1 ml 

a large proportion of sample was lost, so the evaporation was curtailed at the 1 ml 

stage. As low levels of Ndma were expected in the samples, fairly large volumes 

(30-50 mis) had to be used in order to obtain a sufficient degree of concentration. 

Aliquots of water were spiked with Ndma fi-om 200 ppb down to 20 ppb and the 

extraction procedure above was followed (Table 1). Each of the samples were then 

spiked in the same manner to determine whether the traces of organic compounds 

present would affect the extraction efficiency. The spike was done at a higher 

concentration than was expected in the sample (200 ppb), to make sure the Ndma 

result would be easily quantifiable (Table 2). The samples were then analysed for 

Ndma content and the results were compared. 
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3.2.2. Results 

Table 1 : Results ftom water spiked with Ndma : 

Volimie Ndma Concentration Concentration Extraction 

H2O Added Recovered Factor Efficiency 

50 mis 200 ppb 3.1 ppm 50 31 % 

30 mis 50 ppb 220 ppb 15* 30% 

50 mis 20 ppb 280 ppb 50 28% 

(* Sample only taken to 2 mis) 

Table 2 : Resuhs from samples spiked with Ndma (50 fold concentration): 

Sample Ndma Concentration Extraction 

Added Recovered Efficiency 

1 200 ppb 5.1 ppm 51 % 

2 200 ppb 3.8 ppm 38% 

3 200 ppb 4.2 ppm 42% 

4 200 ppb 4.9 ppm 49% 
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Table 3 : Results of sample analysis: 

Sample Amoimt 

Recovered 

Efficiency 

Assimied 

Ndma in 

Sample 

1 

2 

3 

4 

37 ppb 

98 ppb 

91 ppb 

51 % 

38% 

42% 

49% 

2 ppb 

8 ppb 

4 ppb 

The chromatograms which follow show the results of the extraction of each of the 

four samples, in each case an arrow points to the retention time of Ndma. The 

spiked extraction for sample 1 is also shown to give a comparison. 

Sample 1 is much dirtier than the others, and may contain quite high levels of other 

nitrosamines which were not tested for in this case, the peak at ca 6.5 min is 

probably the CI2 alkyl-nitrosamine, and is present in a significant amount. 

Sample 2 also shows the peak at ca 6.5 min, but at a much lower level. There is no 

Ndma, the tiny peak at nearly 4 min is at a slightly later retention time and 

corresponds to the contaminant peak which appears after Ndma in the other 

samples. 

Samples 3 and 4 both show low levels of Ndma, and another contaminant, which 

appears to be decomposing on the column and forming a tail. 
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Sample 1 spiked at 200 ppb 
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The fact that the extraction efficiency is much less than 100 % is not a major 

problem, but it is the limiting factor determining the sensitivity of the method and 

means that the overall detection limit of the method is not as low as it could be. 

Further work on a more effective solvent which gives a better partition coefficient 

for Ndma could improve the method and allow even smaller amounts to be 

detected. 

The results show that at 200 ppb the spiked samples showed a 10 - 20 % greater 

Ndma extraction efficiency than from water spiked at these levels. Since in water 

the extraction efficiency was approximately the same over the range of 

concentrations tested, we may assume that this is the case in the samples, and that 

the extraction efficiencies for the spiked samples can be applied to the samples 
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themselves. This leads to the concentrations given in table 3 for the Ndma content 

of the samples. These figures, are calculated without rounding of intermediate 

nvmibers or incorporation of errors (other than the day to day reproducibility of 

injection of ± 10 %, which is intrinsically included). There is a small error in 

measurement of the final volume of the sample (± 2%), and also an inherent 

uncertainty in making assumptions about extraction efficiency, which was 

estimated to be ± 20%. A final resuh of less than 20 ppb Ndma was quoted for 

each of the samples. 

3.3. Analysis of apparent total nitrosamine compounds (ATNC) in personal 

hygiene products 

Five samples of personal hygiene products were provided for analysis of total 

nitrosamine content. The method used was a slightly modified version of that 

described in a collaborative study organised by the UK Cosmetic Toiletry and 

Perfijme Association (CTPA).'*^ This involves chemical denitrosation of N -

nitroso compovmds in a single reaction with HBr and acetic acid in n-propyl 

acetate as solvent. The nitric oxide released is passed directly into the thermal 

energy analyser (without going through the pyrolyser), and the results are fed to 

the GC as usual for integration. Samples are injected in a mixture of THF and 

water, depending on the type of matrix involved, but with a minimum of 10 % 

water to allow the action of sulphamic acid, a powerfiil nitrite scavenger which 

removes potential false positive interference from compovmds such as nitrite and 
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nitrite esters. Other N-nitroso species such as C- and S-nitroso compounds can 

also release NO when treated with Hbr, the risk of a false positive result is 

unlikely,'*^ and can be minimised by examining the formulation of a product to see 

i f the presence of these species is likely. In the case of this study the formulations 

were not known, and this uncertainty was accepted in the results. In these cases 

the results are referred to as apparent total nitroso compounds (ATNC). The 

denitrosation mixture has a finite lifetime determined by the amount of water 

injected into the system, and the type of sample being analysed, therefore there is 

a risk of getting a false negative result due to the reaction mixture being spent. 

This is avoided by injecting a standard after each sample to ensure the system is 

still working. 

3.3.1. Experimental 

Reagents 

Sulphamic acid, Sodium Nitrite and N-Nitrosodi-isopropylamine ( Ndipla, 97 % 

purity) were from Sigma, n-propyl acetate, HBr in acetic acid (33%> w/w), and 

THF were supplied by Fluka. Water was laboratory distilled. 

Denitrosation Apparatus and TEA 

See fig. 3 

This apparatus is designed to minimise the dead space between the reaction vessel 

and the detector so that the NO is sucked through the system as quickly as 

possible, to try and obtain sharp peaks. Two modifications were made to the 
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CPTA set-up. A piece of 0.53 mm O.D. megabore fiised silica capillary tubing 

was used to replace the original section of glass tubing which incorporated a 

length of 0.01 |um glass capillary, which was used to connect the system to the 

TEA and to control the flow rate. The larger diameter tubing still allowed a good 

vacuum to be obtained, and the added flexibility meant the apparatus was easier to 

handle. Initially the apparatus was set up using a spiral water cooled condenser, 

but this did not to stop the corrosive reactants from passing through the system 

and attacking the megabore tubing and septa. This was replaced with a cold finger 

condenser using dry ice/acetone which solved the problem, although the increased 

volume of the system due to the size of this led to a slight broadening of the NO 

peaks. This did not cause problems in this work, but may become significant 

when working quantitatively at the detection limit as integration of peak area 

would be more difficult. 

The flow rate through the megabore tubing allows a total internal pressure in the 

TEA of 1 mmHg to be sustained. 
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fig. 3. 
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Sample Preparation 

Solutions were made by suspending about 1 - 2 g (accurately weighed) of sample 

in 5 ml of a mix of 80%) THF : 20%» water. 500 mg of sulphamic acid was added 

and the mixture vortexed for 1 minute. The samples were centriftiged at 500 rpm 

for 5 min and a 250 |al aliquot was immediately extracted into a glass syringe and 

injected into the reaction vessel. Duplicate analyses were performed on each 

sample. 

Calibration 

Samples were calibrated against solutions of Ndipla at 100 and 200 ppb prepared 

using the same ratio of THF : water as was used for sample preparation, and the 

same injection volume. Within day reproducibility was within ± 1 0 % . 

Preliminary work using successive dilutions of the standards showed that below 

20 ppb the peak produced was of poor shape quality and could no longer be 

integrated accurately, although a rough estimate could be made, therefore 20 ppb 

was set as the limit of detection, below which any results could be quoted with a 

lesser degree of confidence. 

Verification of Method 

To show that the method was discriminating between NO releasing compounds a 

test was performed. A sample was prepared as normal, and treated with 

Sulphamic Acid (SA) and injected into the reaction mixture and a peak obtained 

for ATNC. Sodium nitrite was then added to the sample and it was injected again. 
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this time the peak produced was off-scale. The sample was then treated again with 

SA and injected, to produce the peak originally seen. This shows that the method 

does remove nitrites, and also that treatment with sulphamic acid does not 

interfere with the end result by affecting the Nitrosamines in any way. 

Assay Procedure 

The reaction flask was charged with 50 ml n-propyl acetate, 10 ml HBr in acetic, 

and a few antibumping granules, then purged with nitrogen and heated gentiy until 

the solvent was refluxing rapidly. Initially a rush of volatile components results in 

a very high baseline, which stabilises after about 30 min. The standard is injected 

twice to ensure the reaction system is working and stable. Samples can then be 

injected, alternating with the standard, until the standard fails to fall within the 

limits of reproducibility (either peak area or shape), when the reaction mixture 

must be renewed. This was generally after injection of about 1 ml of water. 

Figure 4 shows a typical chromatogram taken over the lifespan of one charge of 

the reaction vessel. Peaks 1, 5, 9, 12 and 15 are injections of standard and the rest 

are samples. It can be seen that the shape of the standard peaks can vary even 

though the area remains the same, this is also seen in the sample peaks. This is 

explained by the water present in the reaction vessel, which tends to collect at the 

bottom, taking with it the HBr reactant, and therefore making the solution non

uniform. This in turn leads to a non-uniform denitrosation reaction where a 

sudden bumping of the liquid may lead to a faster rate of reaction for a short time, 

as shown by peak 9. Peak 15 is losing its shape, showing that the mixture is 
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becoming exhausted, but samples 13 and 14 are still acceptable as the area of 

peak 15 falls within the reproducibility limits of ± 10 %. 

3.3.2. Results 

Sample ATNC of ATNC of 

Extract (ppb) Sample (ppb ) 

1 59 180 

2 116 365 

3 108 260 

4 3.2 <7.5 

5 <3 <10 

As the detection limit for this work is 20 ppb, samples 4 and 5 were quoted as 

having an apparent total nitrosamine content of less than 20 ppb. 
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Figure 4. 
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3.4 Analysis of N-nitrosodiethanolamine (Ndela) in a sample of 

dye 

The dye in question is a preparation of tris(2-hydroxyethyl)-2-nitro-

phenylenediamine, which is known to contain traces of nitrosamines as 

contaminants. This analysis aimed to quantify the amount of Ndela present, 

and the result was expected to be less than 100 ppb. This proved to be more 

difficult than first thought, and due to time restrictions this aim was not 

achieved, but the initial efforts are presented here. 

3.4.1 Experimental 

To analyse Ndela by GC it is necessary to mask the -OH group by 

derivatising it, as otherwise it would have a very strong interaction 

with the column and therefore an excessively long retention time. 

This is done by adding a silylating agent such as bis-

trimethylsilylacetamide (TMSA) and converting the -OH groups to 

trimethylsilyl groups which are not retained by the column. This 

analysis is complicated by the fact that the dye contains three -OH 

groups and two -NH groups, which would cause the dye to be 

retained on the column i f they were not masked, and cause long-

term contamination of the column. Any significant amounts of dye 

present during the silylation process would interfere, as the -OH 
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and -NH groups would react, possibly in preference to those of 

Ndela. For these reasons it was important to make sure that the 

solution to be silylated and injected was as free of dye as possible. 

Three different approaches were tried unsuccessfully : 

1. Simple solvent extraction 

Initially it was thought that it would be possible to extract the Ndela from the 

dye using a suitable solvent in which Ndela was soluble, but which did not 

dissolve the dye. It was hoped that the porous, granular nature of the dye 

would allow circulation of the solvent through the dye, aided by crushing it up, 

and that when stirred for long enough the extraction would be quantitative. 

However, a suitable solvent could not be found, as the solubilities of the dye 

and the nifrosamine were too similar, probably due to the number of -OH 

groups present in the molecules. 

2. Steam distillation and solvent extraction 

It was hoped that by choosing a suitable solvent with a boiling 

point similar to that of Ndela, a distillation could be performed 

such that the Ndela, which boils at 175-177°C, would be carried 

over with the solvent, and the dye, which boils at a much higher 

temperature, would remain behind. 100 ml of petroleum special 

with a boiling range of 180-220°C was used, to which 10 g of the 

46 



dye was added, which had been crushed to enable better removal of 

the nitrosamine. Approximately 80 ml was distilled over at 130°C, 

100 mmHg, and the distillate was then solvent extracted using 50 

ml of methanol, evaporated to dryness, silylated (500 ^il of TMSA 

added and heated to 70°C for 40 min) and injected onto the GC-

TEA. 

The first problem with this procedure was that the exfraction 

recovery rate was found to be only about 25 % after performing the 

distillation using petrol spiked with Ndela at 15 ppm, which means 

that at the levels expected in the dye, ie. less than 100 ppb, the 

recovery would probably be significantly lower and we would be 

very unlikely to be able to detect anything. The dye forms a 

sludge at the bottom of the vessel when heated, and it is likely that 

because of the two -OHs on the Ndela and 3 -OHs on the dye, the 

nitrosamine is mostly retained in the sludge, where it does not 

freely come into contact with circulating petrol. Another 

complication was that the petrol was slightly soluble in methanol, 

and therefore when concentrating down the extractant, it was found 

that about 3 ml of petrol remained. This limits the concentration 

factor which can be obtained and subsequently means the detection 

limit was higher. Water was substituted for methanol, as the petrol 

is much less soluble and evaporation to a few drops was possible. 

Unfortunately this meant the evaporation had to be done at a higher 

temperature which lead to greater losses of Ndela as a proportion of 
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it reaches its vapour pressure, and this increased as the voliraie of 

the solution decreased. 

A l l in all this pocedure was not effective enough to allow a 

sufficiently low detection limit to perform the analysis. 

3. Ion exchange chromatography 

A brief attempt was made to separate the Ndela fi-om the dye using 

a strongly acidic cation exchange resin, in the hope that the amine 

groups on the dye, when protonated in water, would be retained by 

the resin and the nitrosamine should pass through. Using water 

spiked vsdth Ndela it was possible to get a recovery of 50 % after 

concentration of the eluent and silylation. When the procedure was 

tried with the dye it was found that very little of the dye was 

retained on the resin - only ca.0.5 g on 500 g resin, which is a 

factor of 100 less than the expected amount calculated fi:om the 

activity of the resin, suggesting that only a small proportion of the 

dye is being ionised. This again meant that an adequate 

concentration factor could not be obtained. 

3.4.2. Discussion 

In the time available an effective method of analysis could not be 

found due to the similar solubilities of the two compounds. It is 

possible that column chromatography may work i f the correct 

combination of support and solvent could be obtained, but the 
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sample would stil need preparing for analysis by GC. High 

performance liquid chromatography may offer a solution to this 

analysis, as there would be no problem with the column i f the dye 

was injected, and no need for the tedious derivatisation, making the 

whole procedure much simpler . 
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