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ABSTRACT 

Large Distance Expansion in the Schrodinger 

Representation of Quantum Field Theory 

Marcos Donizeti Rodrigues Sampaio 

This thesis is concerned with an approach to Quantum Field Theory in which 
the states are constructed from their large distance behaviour. The logarithm of the 
vacuum functional is expandable as a local quantity in any quantum field theory 
in which the lightest physical particle has a non-zero mass. This local expansion 
satisfies its own form of the Schrodinger equation from which its coefficients can 
be determined. We illustrate for (j)\^i-theovy that our local expansion incorporates 
correctly the short distance behaviour as contained in the counterterms of the Hamil-
tonian. A Feynman diagram expansion of the vacuum functional is also presented. 
The amplitudes are calculated and their large distance expansion are in good agree­
ment with our semi-classical solution of the Schrodinger equation. Some applications 
of this formalism to the study of the Schrodinger functional are also suggested. 
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Introduction 

I t is clear that quantum field theory (QFT) is the most successful paradigm from both a 

theoretical and experimental standpoint. Symmetry principles have always been the main 

ingredient in formulating quantum field theories. The Standard Model of particle physics 

is the most prominent example. I t is also a consensus that we must go beyond QFT to find 

the answer for the problem the quantisation of gravity, for example. A new framework, 

richer in symmetries such as String Theory, wil l have to be exploited, presumably having 

QFT as a low energy limit. This does not mean at all that we have exhausted QFT 

as a source of information about physical phenomena. To the contrary, there are many 

unsolved problems in physics which should be clarified by QFT in its most elementary 

setting. For example, in QCD, perhaps our most complete field theory, there remains 

to be developed an analytical framework to control its infra-red sector where we cannot 

use perturbation theory in the couphngs. This is essential to understand the mechanism 

responsible for confinement and other low-energy phenomena in QCD so that it can be 

crowned as the theory of strong interactions. 

However, the arsenal of non-perturbative methods is scarce and most of the informa­

tion in the non-perturbative limit comes from numerical computations by formulating the 

theory on a lattice. Analytical approaches usually provide more physical insight than nu­

merical simulations and often the interplay between the two approaches is very profitable. 

The Schrodinger representation in QFT and the language of wave functionals have 

given encouraging results as an analytical framework to study physics beyond perturba­

tion theory. For example, Mansfield [1] showed that within a continuum strong coupling 

expansion of the Yang-Mills vacuum functional, the leading order term leads to confine­

ment via a kind of dimensional reduction resulting from the local nature of the logarithm 

of the vacuum functional. This has been generalised in [24] to the case of the Wheeler-De 
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Wit t equation to look for a new phase in quantum gravity beyond the Planck scale. 

Generally speaking, i t was shown in [2] that, at large distances, the vacuum functional 

of any quantum field theory whose lightest physical particle is non-zero undergoes a sig­

nificant simplification: for slowly varying fields its logarithm becomes a local functional 

of the fields. I t is local in the sense that it reduces to a single spatial integral of a sum 

of terms, each of which is constructed from the field and a finite number of derivatives 

evaluated at the same spatial point. This expansion is expected to converge for fields that 

vary slowly on the scale of the lightest particle in the theory which it describes. This is 

in contrast to a very non-local expression which we would get if it was evaluated for more 

rapidly varying fields. 

Although this approach has been shown to be successful in studying the confining 

properties of Yang-Mills theories since the first term in the local expansion exhibits con­

finement, in order to evaluate physical quantities we should compute more coefficients 

in the local expansion. To calculate the so called low-hadron spectrum, which involves 

heavier particles and therefore more rapidly varying fields, the local expansion can still be 

useful. That is because by exploiting the analyticity properties of the vacuum functional 

under complex scalings, it is possible to reconstruct it for arbitrary fields. 

The coefficients of the local expansion are, in principle, determined by the Schrodinger 

equation. However, care must be exercised because this equation depends explicitly on 

short distance effects via an ultraviolet cut-off whereas the local expansion is valid only for 

fields characterised by large length scales. Again analyticity properties of the Schrodinger 

equation enable us to construct a version of this equation satisfied by the local expansion. 

This reduces the eigenvalue problem of the Hamiltonian to a set of algebraic equations. 

For theories that are massive at the classical level these equations may be solved semi-

classically. As a bonus, this set of equations offers the possibility of solution within a new 

scheme which holds for theories that are massless at the classical level, but acquire mass 

quantum mechanically. This new approach to the solution does not rely on the smallness 

of the couphng constant and hence offers the possibihty of solution beyond perturbation 

theory. 

This thesis is organised as follows: In chapter 1, we give an overview of the Schrodinger 

representation in QFT and present a few examples. In chapter 2, we demonstrate the sim-
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plification of the vacuum functional at large distances and show how it can be reconstructed 

from its large distance, local expansion. We construct the Schrodinger equation satisfied 

by the local expansion and discuss the approaches to its solution in chapter 3. Chapters 

4, 5 and 6 contain the main results of this thesis. In chapter 4 we show for ^f^j-theory 

that the short distance behaviour contained in the counterterms of the Hamiltonian is 

correctly reproduced by our approach to the Schrodinger equation in which the vacuum 

state is.constructed from its large distance expansion. In chapter 5, we obtain the vac­

uum functional of (/»|^|-theory by using its Feynman diagram interpretation. We evaluate 

some amplitudes and find out that, in the limit of slowly varying fields, they are in good 

agreement with the results which we have obtained by solving the Schrodinger equation. 

In chapter 6, we argue that the Schrodinger functional can be locally expanded for small 

time, even if the theory is massless. We also illustrate how we could reconstruct the 

Schrodinger functional from its small time expansion. Finally we obtain the leading order 

short time behaviour of the Yang-Mills-Schrodinger functional within a local expansion 

in the fields. In appendix A, we study the analyticity properties of the kinetic term in 

the Schrodinger equation and in appendix B we present a computer programme which 

was useful to generate the algebraic equations that determine the coefficients of the local 

expansion. Throughout this thesis, we have adopted the unit system such that 7i = c = 1, 

except where they are explicitly written. 



Chapter 1 

The Schrodinger Representation 
in Quantum Field Theory 

1.1 Introduction 

The Schrodinger Representation in Quantum Field Theories (SRQFT) is a natural exten­

sion of ordinary Quantum Mechanics in which we start out with a Hamiltonian operator 

and canonically quantise by postulating commutation relations between the coordinate 

operators and their conjugate momenta. The coordinate Schrodinger representation is 

achieved by representing the diagonal position operator with its eigenvalues and using a 

differential representation of the commutators by replacing the conjugate momenta with 

derivatives. Coordinate representations of state vectors are called wave functions. The 

Schrodinger equation becomes a diflferential equation whose solutions, the eigenfunctions 

of the Hamiltonian diflPerential operator, represent possible states of the system. The 

dynamics thus resides in the states rather than in the field operators . 

For a field theory in the Schrodinger representation we have, in principle, only to 

substitute the word function by functional. Differential representations for the canonical 

commutators are achieved by replacing the conjugate momenta with functional derivatives. 

Coordinate representations of the state vectors are wave functionals. The Schrodinger 

equation becomes a functional differential equation whose solutions represent possible 

states of the system. In this sense, together with the Path Integral formalism, the SRQFT 

constitutes a functional representation of field theory. 

Although the SRQFT is an old concept, only recently it has been used as a tool to work 

out field theoretic results instead of the Green's function method for Fock space matrix 
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elements of Heisenberg picture operators. This is partially due to technical complications 
that one has to face. Solving the (Schrodinger ) functional differential equation for a field 
theory can be a highly non-trivial task, in the first place . Furthermore, in contrast with the 
Heisenberg picture, we miss the explicit Lorentz covariance. This apparent lack of Lorentz 
covariance stems from the fact that quantum states are represented by wave functionals of 
the fields on space-like surfaces, the Schrddinger equation describing the evolution of the 
wave functional between successive surfaces. Thus, while the field configiurations on that 
surface carry the representations of internal symmetry groups, as well as isometry groups 
of the surfaces themselves, the symmetries of the background space-time metric, such as 
the Poincare group, are affected. This is because the latter involves motions or distortions 
of the surfaces in the space-time whereas the fields defined thereon generally carry no 
information about the surface location or orientation with respect to the background 
space-time ^. 

Another difficulty in using a wave functional description of quantum field theories lies 

in describing their renormalisation properties. Indeed, infinities can be more easily isolated 

within the framework of causal Green's functions in the Heisenberg formalism. The renor­

malisation features of the SRQFT were firstly addressed in a seminal work by Symanzik 

[5] in which the Schrodinger picture was established in a mathematically well-defined way 

for the scalar cf)'^ theory in (3 -I- l)-dimensions. He showed, in perturbation theory, that the 

wave functional defined through a functional integral is finite as any ultraviolet cut-off is 

removed i f in addition to the usual ones, (two) additional counterterms are introduced in 

the Lagrangian. This results from additional infinities that occur owing to the presence 

of an extra boundary (at t = 0), where the interpretation of the wave functional as a 

probability amplitude is given. 

For time-dependent problems, the renormahsation was firstly studied in [23] in the 

context of time-dependent variational equations for Gaussian trial wave functionals, en­

visaging cosmological applications. 

Despite the difficulties appearing from the technicalities mentioned above, there are 

^ A different formulation of the problem which aimed at establishing a covariant way to quantise quantum 
field theory in the Schrodinger representation was originally proposed by Dirac [56] using parametrised 
field theory (see also [26]). The basic idea was to raise the status of the space-time coordinates (called 
embedding variables) to dyneimical variables. In this sense, the wave functioned turns out to depend on 
the field configurations on the surface and the embeddings X". Then one can talk about symmetry groups 
that involve motions of the three-surfaces themselves. 
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many problems, especially those involving changes in the ground state properties, in which 
our intuitive understanding is better served in a wave functional Hamiltonian framework. 
For instance, in the case of bosonic fields, the Schrodinger representation is a direct gen­
eralisation from ordinary quantum mechanics to the infinite number of degrees of fireedom 
that constitutes a field. This suggests the possibihty of using the physical/mathematical 
intuition acquired in quantum mechanics to analyse field theoretic problems ^. For exam­
ple, i f we recall that while the Green's function formalism contains all the information to 
calculate objects like transition rates, S-matrix elements, etc. of systems in equilibrium 
(where the initial data are superfluous), it is in the Schrodinger representation that we 
can deal with the problem of following the evolution of a system in time from a definite 
initial configuration (a pure or mixed state) [18]. This concerns many cosmological prob­
lems such as the time evolution of the inflation-driving-field and details of (thermal) phase 
transitions which might have given risen to structures like cosmic strings [10],[12],[8]. 

The SRQFT is the ideal framework to describe anomalies and large gauge transfor­

mations [37]. In the case of anomalies, the basic idea is to consider the Schrodinger wave 

functional represented as a path integral and detect the anomaly in the non-invariant 

measure. Alternatively, after properly defining the action of the transformation opera­

tors upon the wave functional, one can study their commutators and find out about the 

appearance of anomalous terms [33]. 

In a formulation of quantum field theory similar to quantum mechanics, one could 

think of applying techniques which we learned from the latter to the former. The varia­

tional method is the obvious candidate. The Gaussian variational method in the functional 

Schrodinger picture has shown to be a good guide for the study of some non-perturbative 

aspects of scalar and fermionic theories as well as for the description of quantum scalar 

fields in an external electromagnetic background [11],[12],[21],[22]. For example, in [11] 

it was shown that the Gaussian approximation gives better results than the 1/iV approx­

imation, N being the number of fermion flavours, in describing the dynamical breaking 

of parity (chiral) symmetry in the (2 -I- l)-dimensional Thirring Model. Also, in non-

equilibrium (finite temperature) quantum field theory, which is important to study the 

early universe cosmology, the density matrix p describing a system in a mixed state satis­

fies the quantum Liouville-Von Neumann (LVN) equation dp/dt = i[p, H] i f we assume an 

^For a review, see [15] . 
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isoentropic time evolution with the time dependence governed by the Hamiltonian H (for 
example, via a time-dependent metric). This equation can only be solved for problems 
that are described by quadratic Hamiltonians but for more general Hamiltonians, observ­
ing that the LVN equation can be derived from a variational principle [57], a Gaussian 
approximation for the density matrix can be used as an approximation. The resulting 
variational equations lead to a set of self consistent equations that unlike perturbation 
theory, reflect some of the non-linearities of the ful l quantum theory [58],[59],[8]. 

The development of an analytical non-perturbative framework to study the low en­

ergy phenomena in non-abelian gauge theories is highly desirable. Quantum gauge field 

theories have been successfully tested for high energy phenomena, where the interaction 

can .be treated in a perturbative way (and a linearisation can be carried out) within the 

framework of path integrals, for example. Asymptotic freedom enable us to perform quan­

titative perturbative calculations of observables which are sensitive to the short distance 

(or large momentum transfers) structure of QCD. However, at large distances the couphng 

becomes large (infrared slavery) and the perturbative expansion senseless. Consequently, 

perturbation theory fails to reproduce the low energy phenomena. Among them, we can 

mention the quark confinement problem and chiral symmetry breaking in QCD (which are 

the mechanisms responsible for the spectrum of the low lying hadron states). Obtaining 

a consistent picture of the vacuum of strongly coupled gauge theories constitutes one of 

the major problems in quantum field theory. 

On the other hand, the arsenal of non-perturbative methods is very limited. One of 

them is the numerical approach of Wilson's Lattice Gauge Theory, which has provided con­

siderable progress in the matter. The great advantage of this formalism is that the theory 

is quantised in a gauge invariant way. The price to be paid is that the continuous nature 

of the space-time is spoilt and the connection with continuum field theory is estabhshed 

only numerically. The idea is to regularise the theory by discretising the Euclidean space 

time to a cubic lattice with periodic boundary conditions and solve the resulting integrals 

by Monte Carlo methods [74],[19]. Lattice calculations have given evidence that QCD and 

Yang-Mills theories are confining: a non-zero value of the string tension can be numerically 

calculated. However, the available computational power has limited a complete analysis 

based on a lattice field theory. Moreover, to get some insight into the physics behind the 

low-energy phenomena, one should develop analytical methods, capable of solving the low 
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energy sector of QCD starting from first principles. 

The Hamiltonian formulation of Yang-Mills theory has given profitable contributions 

in this sense although the exact solution of its vacuum functional is still lacking. The 

functional differential equation satisfied by the Yang-Mills vacuum functional is very hard 

to solve, partially because of its non-abelian character. However, approximate vacuum 

functionals have been suggested, valid in the strong- coupling limit or long-wavelength 

configurations [46],[1],[43],[44] (which is the domain where the low hadron-spectrum orig­

inates) as well as interpolating forms between long and short-wavelength configurations 

[41]. They find support in strong couphng expansions in the lattice where the computa­

tions can be more satisfactorily made in lower dimensions (e.g. in 2 -I- 1-dimensions), and 

the results extrapolated to the physical dimensions via arguments of dimensional reduction 

[1],[60],[61],[62]. 

Successfully applied to some problems in quantum field theory , the variational ap­

proach presents more difficulties when applied to gauge fields. I t is very hard to find a set 

of wave functionals which are both gauge invariant and amenable to analytic calculation. 

I t can actually be shown that it is not possible to write a Gaussian wave functional which 

satisfies the constraint of gauge invariance although some alternatives have been suggested 

to remedy the problem [13]. 

The pioneer work on the Schrodinger functional equation for Yang-Mills theories was 

done by Feynman [16]. He considered (2 -I- l)-dimensional Yang-Mills theories with a view 

to explaining the confinement of gluons. This was among his last important papers. For 

a review of his paper, see also [17]. He considerably simplifies the problem of QCD to 

set grounds for his arguments. The ful l problem involves 104 functions: six flavours of 

quarks, each with three colours, each of which are represented by a Dirac spinor with four 

components plus thirty-two functions representing eight gluon vector fields each with foin: 

components. The first simplification was to restrict to gluons only and ignore quarks. 

As Feynman says, there are indications, from studies of asymptotic freedom and related 

matters, that in the confinement problem the effects of quarks, if anything, work slightly 

against the greater effects of gluons. The other simplification was to work with SU{2) 

instead of the 5J7(3) gauge group. This is motivated by the fact that this simplified model 

does present the feature of colour confinement, and a sufficiently intricate and interesting 
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vacuum structure. This reduces the problem to three gluon fields which amounts to 6 
different functions i f we work in the temporal gauge, in which the time-like component of 
the potential is set to zero, and in (2 + l)-dimensions. About whether such simplification 
is realistic, we also respond using Feynman's words:"... the ease of visualisation is so 
much greater that I think i t is worth the risk !". To summarise the results, Feynman gave 
qualitative arguments in support of the existence of a finite gap in the energy spectrum 
of the Yang-Mills Hamiltonian above the ground state vacuum, so that the first excited 
state is a massive excitation, presumably a glueball. This is intrinsically connected to the 
non-abelian character of the theory. In the case of QED, such a mass gap can be made 
arbitrarily small so that the excitation is a massless "gluon" (photon). 

As discussed by Jackiw in [15] we can heuristically put the problem as follows: in 

quantum mechanics, the energy eigenfunctions '^E{'}) for a system with an energy gap 

differ from those where there is no gap in the sense that, in the latter case, the dynamical 

variable q can become arbitrarily large. This becomes clear i f you recall that the firee 

motion of a particle in an unbounded region possesses a continuous spectrum (there is no 

gap and thus the energy can be as close as you want to the fundamental state) whereas if 

the region is bounded (for instance, a double well), and therefore q is hmited, a gap exists 

and the spectrum is discrete. In field theory we observe that, in electrodynamics, a long 

wavelength vector potential corresponding to a low energy photon with energy arbitrarily 

close to the vacuum exists. Feynman argues and presents some rough calculations to prove 

that, for non-abelian gauge theories, such "large configurations" are either gauge equivalent 

to "small" ones, or damped by the magnetic potential energy. On more mathematical 

grounds, this problem was approached by Atiyah, Singer and Hitchin in [63], where they 

study the metric on the space of Yang-Mills configurations. 

Another important field of application of SRQFT is quantum gravity. Since Quantum 

General Relativity is non-renormalisable at perturbative level, one has to develop non-

perturbative methods provided the theory is viable at all. Remarkable progresses have 

been achieved in canonical quantum gravity in recent years by using the Schrodinger 

picture. For instance, a class of exact solutions for the constraint equations (Wheeler-De 

W i t t equation) has been calculated [24],[25],[64] . 

In the next sections, we present an introduction to the formalism of SRQFT illustrated 
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with a few examples and discuss some of its applications. 

1.2 Scalar Fields 

For bosonic fields, the functional Schrodinger representation is a simple generalisation of 

quantum mechanics. Fermionic and gauge fields theories are more complicated than scalar 

field theories because of the anticommutators and gauge degrees of freedom, respectively. 

The Lagrangian density for the scalar field 0 reads 

£ = \d^4>d^<i> - U{4>) = ^ ( 0 ' - (V<^)2) - U{4>\ (1.1) 

where the dot represents differentiation with respect to time. The field canonically conju­

gate to 4> is 

= 0 = TT 
dcf> • 

(1.2) 

and then the Hamiltonian density becomes 

•H = 7r4>-C = \^^ + + U{4>) (1.3) 

which enables us to write the Hamiltonian as 

H = j Hd?^= jd?^ (̂ TT^ + i (V0)2 + u m (1.4) 

By complete analogy to quantum mechanics, we can canonically quantise the theory by 

treating the fields as operators and imposing the equal-time commutation relations: 

[<^(x , f ) ,7 r (x ' , i ) ]=^53(x-x ' ) , 

[<^(x,t),<^(x',i)] - 0 , 

[7r(x,i),7r(x',i)] = 0 . (1.5) 

In the coordinate Schrodinger representation, we take the basis-vectors of the state vector 

space to be the eigenstates of the field operator ^ on a fixed time hypersurface [t, say) 

with eigenvalues (/^(x), namely ^ 

4>{x)W{^))=^{^)\^{^)) (1.6) 

^Notice that the set of field eigenvalues is independent of the value of f labelling the hypersurface. 
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where now (p is an ordinary scalar function and the eigenstates satisfy the usual 
orthonormality and completeness relation: 

(¥p(x)|(^'(x)) = 5[p-p'] 

lvcp\<pix)){<p{x)\ = i (1.7) 

The coordinate Schrodinger representation of a generic state 1̂ ") is the wave functional 

a functional of the eigenvalue 

* M = (1-8) 

and an inner product is defined through functional integration, that is 

( * i | ^ 2 ) = / Vp-^l[cp]<52H . (1.9) 

Also 

0 '/'(x) 
. 6 (1.10) 
"5(/j(x) 

constitutes a functional difi'erential representation of the equal time commutators. The 

action of any operator composed by the canonical variables on the state ('I') is 

Oi^,7r)\^)^0{cp,^—)^<p] (1.11) 

and the dynamical equation is the functional Schrodinger equation for time dependent 

funct ional 

,H{<p^^^)m=^p^m (1.12) 

which, for time independent Hamiltonians, a separation of variables trivialises the time 

dependence '^tl'p] = e~'^^*'^[ip] and we are left with the functional eigenvalue problem 

H{p,-^-~Mp] = E<b[p]. (1.13) 

For the free case, U{<t)) = ^rn^cf? and the Hamiltonian can be written as 

which has the same structure as the simple harmonic oscillator. We can try to solve it for 

the ground state wave functional and therefore assume that the functional has no nodes 
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and is positive everywhere. Thus we may expect that the ground state is described by a 
Gaussian wave functional 

*o[¥'] =A^e-2/'^'^'^'yvMG{x,yMy) ^-^^^^ 

which substituted back into (1.14) yields ̂  

I d W y ^ ( G ' ( x , x ) 5 ( x - y ) - ^ (x)G2(x ,y)^(y) + + m'M-x))^o[^] 

We arrive at a set of equations for Eq and G, namely 

G2 (x ,y ) = (_v2 + m 2 ) J ( x - y ) 

\TrG = \ j d^K G(x ,x) (1.16) 

The equations above can be easily solved by using the Fourier transformation method 

which results 

G(x - y) = - — j j d'p P (--y) ^ p 2 + m 2 

£̂ 0 = Jd'x - ^ J d'p i V^p2 + m2 (1.17) 

So, the vacuum wave functional for the scalar theory is given by 1.15 with G calculated 

above and E represents the well-known zero-point energy of the free scalar field. In the 

momentum space, i t reads 

vfo[(^] = AA'e-i/2/<^'p/(2'^)'v(p)v(-pK (1J8) 

where Wp = a/P^ + The normalisation constant jV' is determined by the usual re­

quirement jV<f'^l[ip]'*iiQ[0\ — 1 with Dip = Y[pd(Pp/{27t)'^ which gives 

1/4 
(1.19) 

In complete analogy with quantum mechanics, we can define creation and annihilation 

operators 

a(p) = ^ j d ' ^ e+^^-^--y\uy'{p)H^)+iu-'^'{p)7r{x)) 

x/2, 

j t (p) = ^ j d ' x (c^'/ '(p)0(x) - iuj-"\pMx)) (1.20) 

""The bilocal kernel G(x,y) regulaxises the product of two functional derivatives at the same spatial 
point in 1.14 which is ill defined. 
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satisfying [a(p), a^P')] = (27r)^5(p-p')- The Hamiltonian written in these variables reads 

with G(p,p ' ) = u;(p)(27r)353(p-p') . 

Excited states can be constructed by applying the ladder operators on the ground 

state wave functional. Their functional coordinate representation is achieved by using the 

functional derivative representation of the momentum operator resulting 

a(p) - ^ / r f ^ x e + ^ ' ' ( - ^ ' ( . ; ^ / 2 ( p ) v . ( x ) + i u ; - V 2 ( p ) ^ ) 

aHv) = -^Jd'^ e-^^-^--y^{uy\pMx)-zu-'/Hp)^) (1-22) 

with the property a{p)^o['^] ~ 0 . The first excited state is = 7V'a^(pi)^'oM, which 

represents a state with one scalar particle of mass m, momentum p i and energy uJp^. 

As we have seen, the functional Schrodinger representation of the scalar field has the 

same structure as quantum mechanics. In principle, one could obtain information about 

the quantum field theory using similar techniques we find in quantum mechanics. However, 

unlike the free case, for interacting theories the Schrodinger equation cannot be solved in 

a closed form in general. As the variational method in quantum mechanics provides a very 

good approximation for certain problems, one expect to be able to apply i t to quantum 

field theories as well. The scheme is as follows: the dynamical equations are obtained 

as the condition that some quantity be stationary against arbitrary variations. This can 

be implemented approximately by choosing the quantities to be varied to have a specific 

form, e.g. a Gaussian wave function(al), parametrised by certain unknown parameters 

which wi l l be varied. In this way one might arrive at a set of self consistent equation, 

solvable for those parameters. 

1.3 Variational Approximations in the Schrodinger Picture 

Action principles rule the dynamics of the theories which they govern. For example, in 

classical mechanics the equations of motion are derived by Hamilton's variational prin­

ciple which requires stationarising the classical action Sdas = I dt L{q,q) , such that 

5Solas I^(lit) — 0 with the variation 6q{t) vanishing at the endpoints that define the action. 

The quantum analogue is called Dirac's action principle. I t instructs to stationarise the 
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following action-like quantity 

j dt{^,t\idt-H\<I>,t) = I dtdx<i>*{x,t){idt - H)'^ix,t) (1.23) 

wi th the constraint = 1 which leads to the time-dependent Schrodinger equation. 

In [31] i t was shown that we can get a variational definition for the efi'ective action 

r [ ^ ] , the generating functional of l-particle-irreducible (IPI) diagrams, by minimising 

I dt{^^,t\idt-H\<If+,t) (1.24) 

where the states ( ^ - , i | and | ^ + , t) are constrained so that the matrix element of the fixed 

time Schrodinger picture operator ^(x) is. given by 

{^-,m^,t) = 1 (1.25) 

and also the boundary condition these states tend to the ground state of H as t ^ ±oo. 

The physical theory is recovered when we remove the constraints by solving 

j ^ = 0 (1.26, 

The effective action can also be defined as the Legendre transform of the functional gen­

erator of connected Green's functions W[J], 

T[ip] = W[J]- I dxip{x)J{x) 

where (p{x) = 5W[J]/SJ{x) {J is the source term) and dT[(p]/5(p{x) = -J{x). As a conse­

quence, the physical solutions which require vanishing of J, correspond to the stationary 

points of r and also to the removal of the constraints. Moreover, ip{x) is also the vacuum 

expectation value of the quantum field (p in the presence of a source J , 

ip{x) = m{x)\o)j 

so 

Sip{x,t) 
= o^^,{x) = m{^m 

0{x) = ipoix) 
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The effective potential ^ V^fj is derived from the effective action assuming a constant 
background (p{x) = const, i.e (p{x) is independent of the space time point (translation 
invariance), 

v^ffM fdx = -r[(p] _ (1.27) 
J tp=const 

where the infinite volume factor comes from the space time integrations. 

Dirac's variational principle can then be used to obtain approximations by restricting 

the variation of the trial wave functional \I' to the subspace of Gaussian trial states. In 

the following, we wil l explicitly write h factors. 

The most general Gaussian state can be written [31] 

<i>t[p] = N{t)exp(- [ {<f{x)-(p{x,t))n{x,y,t){ip{y)~ip{y,t)) 
^ Jxy 

+^n{x,t){pix)-(p{x,t))) (1.28) 

where N{t) is a normalisation constant and the integration in space / d^x was abbreviated 

as . I t wi l l be convenient to separate the variational function Q into real and imaginary 

parts [31]: 

fi = ^ G ' - i ( x , y , t ) - ^ S ( x , y , i ) . (1.29) 

Then variational parameters are (p, n, G and E. The physical meaning of the parameters 

of this wave functional is brought out by the following averages, considering ( ' I ' I ' f ) = 1: 

m4>{^m = ^ ( x , i ) 

(*|7r(x)|^') = 7r(x,t) (1.30) 

whereas the average value of the operator i{d/dt) gives 

m-^-^m -Jji'^' + S(x ,y , t)Giy,x,t) (1.31) 

showing that the imaginary part of the covariance function Cl plays the role of canonical 

conjugate momentum to the'real part [8]. 

Now let us study the theory given by the Hamiltonian (1.4) with U{(j)) = ^^'^ + 

^(j)"^ within the context of the variational approximation for the Gaussian trial state. 

Substituting 1.28 into the Dirac's variational principle leads to 

r [^ ,7r ,G,S] = j dt{%idt-H\<i)^ jdtj^ | ^ [ ^ f < ^ _ ! ^ _ i ^ _ C / ( ^ ) 

'̂ Also called generating functional of 1-PI Green's functions at zero energy and momentum. 
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+h[{i:G){x,x,t) - 2(EGE)(x,x , i ) - {^G~H^,^,t) - \vlG{x,y,t)^=y 

+\u^^Hip)G{x,x,t)] - jG{x,x,t)G{x,x,t)U^'H^)^ (1.32) 

where V{(p) denotes the classical potential, {(p) = ^ and we used the matrix notation 

(^ .B)(x ,y) = f^A{x,z)B{z,y). We immediately recognise the the 0{h'^) term as being 

the classical action. The variational equations with respect to the variational parameters 

6T/5<p = 0, ST/STT = 0, 5T/5T, = 0 and 5r/5G = 0 give, respectively, the following set of 

equations [8],[27] 

n{x,t) = 0{x,t) 

Hx,t) = (vl^-U^'H(p) - ic/(3)(<p)G(x,x,i)) 

G'(x,y, i ) = 2 ( (GS)(x ,y , i ) + (SG)(x ,y , t ) ) 

t{x,y,t) = ^G-\x,y,t)-2J:\x,y,t) - i ( - + C/(2)(< )̂ 

+ ^U^'H{'p)Gix,x,t))s'{x-y). (1.33) 

This equations can be used to determine the vacuum of (̂ " -̂theory in this approximation 

[59],[27]. For this purpose, we assume translation invariance, which implies that ip is 

homogeneous and consequently the kernels can be expressed as a fourier transform 

considering that, for the vacuum functional, the kernels are time-independent. Therefore 

(1.33) results TT E = 0 and 

= „ . + | ^ . + | / | ^ < 5 ( p ) . (1.35) 

Notice that when ^ = 0, it reduces to the free vacuum functional (1.18). Since (1.35) is 

self-consistent for ^, it retains some of the non-hnearities of the ful l quantum theory. 

Of course these statements are meaningful only upon renormalisation of the ultraviolet 

infinities. To illustrate this, we proceed to calculate the (renormalised) effective potential, 

defined according to (1.27). Hence, for a homogeneous background, translation invariance 

impHes 0 = 0 = 7f, G = 0 = S, which with (1.32) and (1.33) enables us to write 

Veff{<P) = \m'(p' + + J g - H X , X ) + jgG{x,x)G{x,x), (1.36) 

is usually called eflfective mass. 
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where G satisfies the equation 

^ G - 2 ( x , y ) = ( - V 2 + m' + + niG{x,x))5^x - y ) . (1.37) 

which using (1.34) determines G to be just (1.35). Hence the effective potential can be 

rewritten as [27] 

V,M^) = i m V + | ^ ^ - ^ ( M 2 - m ^ - | ^ ^ ) ^ 

r _ f d-^'^ d^P 1 and 
(27r)3 2 |p | 

The effective mass written in terms of h and I2 becomes 

The theory possesses two divergent quantities / i and /2 so we need to renormalise i t . This 

can be achieved by redefining its two independent parameters namely the mass and the 

coupling constant (m and g). The effective potential becomes finite using the following 

renormalisation prescription 

dVeff 
dM^ Ao 9R 

d^Veff 1 
d(M2)2 Ao ~ ^9R 

(1.40) 

which can be rewritten with Ve/f from (1.38) and (1.39) as 

m p 1 
9R 9 2 

- = - + \l2. (1-41) 
9R 5 2 

^^^^ = - 2 ^ + 64;^^[^" A ^ - 2J ^ ' - ' ' ^ 

and the effective mass 

M ^ = „ | + | ^ ^ + _ | ^ M ^ , n ^ (1.43) 

Hence, 

''This is the same renormalisation prescription that has been used in the large-iV approximation for this 
model [35] 
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The result above reflects some nonUnearities of the theory and can be used, for instance, to 
study its symmetry breaking mechanism. However, in quantum field theory the Gaussian 
approximation is far from reproducing the accuracy which is achieved when applied to 
quantum mechanical problems, as it was insightfully discussed by Feynman in [20]. The 
results which can be derived in this approximation are qualitatively equivalent to the 
large-A'' expansion and suffer from the same shortcomings. For example, while in quantum 
mechanics the energy level of the atoms could be predicted with great accuracy within 
the variational method using Gaussian states, in quantum field theory, although it is 
reasonably effective to determine the existence of bound states, it leads to a vanishing 
binding energy [27]. 

1.4 Fermionic Fields 

The coordinate representation of fermionic operators presents some peculiarities owing 

to their anticommuting character. This leads us to introduce anticommuting functions in 

analogy with the Grassman numbers. In other words, we deal with the infinite-dimensional 

l imit of the Grassman algebra {r?, T ? } = Q,{d/dT),T]} — 1, {d/drj,d/dr}} = 0, J drj = 0 and 

J dri ri = 1. We shall briefly discuss its main features in this section, following the original 

work on the functional representation for fermionic quantum fields by Floreanini and 

Jackiw [30]. 

A spin 1/2 field theory can be described by the Lagrangian 

C = '-i^a^d.i; - C/(V) = JVV- - (1-44) 

with q;° = i , {a\a^} = 25'^^ and if) is a, hermitian field satisfying the (equal time) anti-

commutation relations 

{M^),M^')} , =SabS\x~x'). (1.45) 

Let us illustrate the problem of finding a functional representation for the quantum fermion 

field in its most elementary setting. Consider a massless Weyl-Majorana field in two space-

time dimensions. I t is described by a hermitian {ip^ = ip), one component spinor field for 

which the anticommutation relations above simplify to {ip{x),ip{y)} = 5{x — y). We can 

consider our functional space as consisting of functionals ^'[u] of a Grassman field u{x) 

such that at fixed time {u{x),u{y)} = 0 and each functional is associated with a ket. 



Chapter 1: Schrddinger Representation in QFT 19 

1$) '^[u]. The question is how to define the action of the operator 'ip{x) on this space. 
Since the field operators are their own momentum conjugates, they cannot be represented 
by their eigenvalues as we did for the scalar field. Instead we try a linear combination of 
their eigenvalues and the functional differential operators with respect to them, viz. 

V'(x)|*) = (au{x)+l3j^)nu] (1.46) 

The equal time commutation relations require that aP = 1/2 and hence we choose a = 

0 = l/y/2. The Grassmanian character of the fields require careful treatment for the 

inner products. In order to gain some intuition, let us follow Jackiw [30] and consider the 

problem on a space {x} consisting of two points i = 1,2 on which two fermion operators 

are defined, satisfying {'4>{i),'4'{j)} = hj- A state | $ / ) is represented by a functional of 

u{i) that can be expanded in a four dimensional basis 

= /o + / i ^^ ( l ) '+ f2u{2) + h2u{l)u{2) (1.47) 

The inner product with another state \^g) defined in a natural way as 

= 9lh + 9lh + 92/2 + ffi*2/i2 = (1-48) 

can be expressed as 

(*g| ' i ' / ) = j d\<l!l[u]<l! j[u] (1.49) 

if 

( * , | -> * ; [n ] = 31*2 + 52^^(1) - 51*^(2) + 50*^^(1)^(2) (1-50) 

because only the Grassmanian integral / d'^uu{l)u{2) = 1 is non-vanishing. In fact, since 

the Grassman delta function is given by ^^(•u-'u) = (u ( l ) - ' i i ( l ) ) (u (2 ) -u (2 ) ) , / d'^u6'^{u-

u)-^[u] = *[n],-(1.50) can be written as 

Thus the adjoint of u{i) is 5/6u{i) and 1/V2{u{i) + 5/6u{i)) is hermitian as it should be. 

The dualisation can be formulated analytically by introducing the auxiliary variables u{i) 

and an auxiliary dual functional ^g[u] defined by the natural formula 

^g[^] =9*0+ 9MI) + 52^i(2) + 51*2^(2)^(1) • (1-52) 
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Therefore (1.50) can be written as ^ 

wi th J d'^uu(2)u{\) — 1 being the only non-vanishing integral. The generalisation to 

field theory is immediate. Given ^[u], construct ^[u] by complex conjugating scalars and 

replacing u{x) by u{x). Then the dual of '^[u] is 

<^*[u] = j DKe/'^^"(^'"(^)*[u]. (1.54) 

1.5 Gauge Field Theories 

In spite of being a bosonic theory, gauge field theories present some peculiar characteristics 

because of the gauge degrees of freedom. I t turns out that the Schrodinger representation 

is particularly good to deal with them as we illustrate in this section. 

Firstly let us set up our conventions. The vector potential ^4^ may be presented as an 

element of the gauge's group Lie's algebra, 

= gA^Ta (1.55) 

T ] = -Ta, [Ta,Tb] = fabcTc, tvTaTb = -^ab where the group indices run from 1 to the 

dimension of the group (iV^ - 1, for SU{N)) and the Lagrangian density reads 

jr = - I f ' ^ - F , ^ , = ^trF'^'^F^^ (1.56) 

F;, = d^Al-d.AI + gfabcA'^Al 

F^, = gF%Ta = d^A,-d,A^ + [A^,A,] (1.57) 

The theory is invariant under local gauge transformations effected by an element U of the 

gauge group: 

A^-^ Al = U-^A^,U+ U-^d^,U, (1.58) 

F^, ^ F^i, = U-'F^,U. (1.59) 

The Euler-Lagrange equations follow by varying in (1.56) 

d^F^'' + [A^, F'^n = D^F'^'' = 0, (1.60) 

*Also known as Berezin integral. 
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and F^u satisfies the Bianchi Identity 

DaFp^ + DpF^a + D^Fap = 0 (1.61) 

The Hamiltonian formulation of Yang Mills theory is usually done in the temporal (or 

Weyl) gauge in which the temporal component of the gauge potential is set to zero. This 

is convenient in the canonical formalism since the momentum conjugate to AQ vanishes. 

The canonical variables are the gauge potentials Al and their conjugate momenta 

< = s ^ = ^ ° ' = * < - <'-«^' 

The Hamiltonian coincides with the energy (the zero-zero component of the stress energy 

tensor 0°°) and can be written as 

H = jd^y^H^^I d^x tr{E^ + B2) (1.63) 

where 

n = iridoAl-C, 
El = F f - - < = - 4 and 

B'a = -Y^'Fty (1.64) 

The (equal time) canonical commutation relations 

[El{x, t), Alix', t)] = iSabS'^S'ix - x') (1.65) 

leads naturally to a functional differential representation for the colour eletric field, namely 

acting on funct ional of A\. Since Ao = 0, the Gauss Law (the time component of the 

Yang-Mills equation of motion) cannot be obtained neither by varying the Lagrangian, 

nor as a Hamiltonian equation. We can see from (1.60) that its time component is a fixed 

time constraint between canonical variables, namely 

Ga = (D .E) , = 0 (1.67) 

Therefore the Gauss Law has to be imposed as a constraint on the physical states of the 

theory and wil l result in an additional functional differential equation which, in addition 
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to the Schrodinger equation, has to be satisfied by the wave functionals ^'[A]. I t turns out 
that the Gauss law constraint implies that the wave functionals representing the physical 
states are gauge invariant. To see this, we start by recognising that the theory in the 
Weyl gauge has a residual symmetry under time independent local gauge transformations 
U = e9'"{x)T'' ^ under which the gauge choice = 0 is preserved, whose infinitesimal form 

U = 1 + r(x)r" is 

5A'^ = --^{D'e)a (1.68) 

which is generated by G = D^Ei and is conserved as it can be read off from the commu­

tators: 

IIHJ d̂ x r ( x ) G a ( x ) ] = 0, 

4 / ^ V ) G 6 ( y ) , A U x ) ] = M ^ ( x ) . (1.69) 

Moreover, it satisfies an algebra that follows from the group Lie algebra: 

z[G ,(x), Gb(y)] = gfabcGc{x)6{x - y) (1.70) 

The above is a very important relation. I t enables us to impose the condition on the 

physical states 

G\^lnys=0 (1.71) 

The problem is that (1.71) actually represents an infinite number of equations, one for 

each spatial point x since G is also the generator of a local symmetry. Hence questions 

concerning integrability, for instance, arise. Such questions can be answered by analysing 

the commutator of two constraints since, as G generates the symmetry transformation, 

one expects their commutator to follow the Lie algebra (1.70). I f this relation holds, 

the constraints are consistent (technically called first class) and the constraint equations 

are integrable, at least locally [29]. Generically speaking, anomalous terms could appear 

owing to the infinities of a local quantum field theory (ultraviolet divergencies), and in 

many cases they are essential to render the quantum theory meaningful as it is the case 

of the (quantum) symmetry breaking of undesirable symmetries present at classical level 

[33] 

'For example, for the anomalous chiral Schwinger Model, an equivalent equation to (1.70) holds with 
Poisson brackets at classical level but acquires a quantum extension (anomaly) at quantum level, obstruct­
ing the Gauss' law. However, the suitably constructed quantum theory which removes this obstruction 
leads to the expected massive excitations in this model [36] 
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In view of (1.70), (1.71) translates into a functional differential equation for the physical 
wave functionals 

which amounts to say that ^'[A] is invariant under spatial gauge transformations. To see 

this, recall that a change in the wave functional by a variation in its argument reads 

Using (1.68), we get dA^ = -^{d'^9a + gfabc^ldc) which taken into the equation above, 

after an integration by parts gives 

<5*[A] Id'x9^{d,j^^-gUcAlix)j^)nA] (1.74) 

which for e„ # 0 implies (1.72). 

A class of finite gauge transformations is obtained by exponentiating the generator 

of infinitesimal transformations F = f d'^x d°'{x)Ga{x.) [34], namely e'^ . Therefore, 

the invariance of the physical states under the finite transformations which are formed by 

iterating the infinitesimal version is expressed by 

e'^l*) = 1̂ ') (1.75) 

or in terms of the wave functional 

e '̂̂ *[A] - *[A'] (1.76) 

where A' is the gauge transformation of A. This applies only to those finite gauge trans­

formations which are obtained by iterating (exponentiating) the infinitesimal one. For 

this class of transformations U is deformable to the identity. They are referred to as 

"small gauge transformations". I t remains to verify what happens to a broader class of 

gauge transformations, i.e. those which are not formed by iterating an infinitesimal one 

(so called large gauge transformations). This issue is related to a vast topic in gauge field 

theory, concerning its topological properties. Here we restrict ourselves to show how some 

concepts can be more easily understood within the functional Hamiltonian formalism, 

particularly the 9 angle in (3 + l)-dimensional gauge theories. 
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1.5.1 (9-angle i n Yang-Mi l l s Theory 

We start our discussion with Yang-Mills theories in the 3-dimensional space time. One 

can add to the Lagrangian a Chern-Simons term. This term gives mass to the vector fields 

yet the equation of motion is gauge covariant. The Lagrangian density is 

£ = l^trFi'-F^, - ^ e / ^ - f r ( F ^ , A , - ^ A ^ A . A , ) , (1.77) 

where fl has the dimension of mass and fi/g'^ is dimensionless This mass term is believed 

to carry a topological significance which is seen from studying quantisation. There is also 

a beautiful connection with Yang Mills theories in 4 space-time dimensions (considered at 

high temperatures) [32]. Roughly speaking, because of the periodic boundary conditions 

imposed on the fields, finite temperature field theory in the imaginary time formaUsm fives 

in X and the radius of 5^ is given by 1/T. In the limit when T ^ oo, 5^ collapses 

leaving a three dimensional space Wi th this in mind, there are grounds to make a 

connection between the four dimensional structures responsible for the 9 vacua and those 

leading to the mass term in three dimensions, thus lending support to the conjecture that 

the latter arises from the former in a high temperature reduction. 

Consider a finite gauge transformation (1.58) in (1.77). The action changes by 

/ d^xC ^ / d^xC + ^ [d^x [e'^^'^da tr[dpUU-'A^]) + ^w{U), (1.78) 
J J Q J Q 

where 

w{U) = ^ j d \ e^^^trldaUU-^dpUU-^d^UU-^] • (1.79) 

I f we restrict the gauge transformations that tend to the identity at the spatial and tem­

poral infinity lirrix-^ooU[x) = ± 1 the A-dependent surface integral above vanishes. The 

other term can also be transformed into a surface integral once the integrand is rewritten 

as a total derivative. As a matter of illustration we introduce a explicit parametrisation 

for U and choose SU(2) as the gauge group: 

U{x) = e '̂̂ '̂̂ (-) 

= ^ , 0, = ne\. (1.80) 

^°The fact that the mass term is a world scalar (independent of the metric) is an evidence for its 
topological nature. 

"Plus a dimensionful rescaling of the coupling constant g^Tg 
^^This restriction is made in order to avoid convergence problems in (1.78) and also reflects an assumption 

of space time uniformity. See [28] for a complete discussion. 
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Therefore 'w{U) is written as 

w{U) = j d^x daw'' = - j ^ I d^x e''^^e'''"dc,[9''dpe%9'{\e\ - sin\e\)] (1.81) 

which although being a surface integral, can be shown to take integer values which char­

acterise the so called homotopy class to which U belongs . Only for the homotopically 

trivial class (that in which U can be continuously deformed to the identity), w{U) does 

vanish 

Let us analyse the consequences of this results to the quantised version of the theory. 

We have seen that the action (1.78) is not gauge invariant and changes by 

p. X (STT^) X w{U) =p.x (STT^) X integer . (1.82) 

However, in the quantum theory it is the exponential of the action that should be gauge 

invariant, that is exp{i f d^xC). Therefore a change in the action makes a consistent 

quantum theory only if it is an integral multiple of 27r and we are led to the quantisation 

condition 

47r-^ = n (n , integer) (1.83) 
r 

The Euclidean formulation leads to the same conclusion [32]. We can also give a Hamilto-

nian derivation of the quantisation rule, based on the response of the system to (spatial) 

two-dimensional gauge transformations. I t turns out that (1.83) is a consequence of the 

Gauss' law as a necessary condition for its global integrability. In contrast to the four 

dimensional Yang-Mills theory, in three space-time dimensions static gauge transforma­

tions have zero winding number [28], in other words, there is only one homotopy class for 

the two-dimensional gauge function U. They are all "small" and can be implemented by 

exponentiating the infinitesimal generator The Euler Lagrange equations which follow 

from (1.77) are 

D^F>^-' + ^ ' - ^ = 0 (1.84) 

'•̂ A little of mathematical terminology will be useful in what follows. The gauge functions U with large 
distance asymptotes ± / provide a mapping of the 3-sphere 5^, which is equivalent to the three speice 
once the points at infinite are identified, into the gauge group. Such mappings fall into disjoint homotopy 
classes labeled by integers, and gauge functions belonging to different classes cannot be continuously 
deformed in one another. Particularly only those which belong to the zero class are deformable to the 
identity. For example, consider a mapping SU{2). Since the three parameters that specify this 
group also form a 5^ space, we have 5^ ->• 5^, mathematically expressed as 11^(517(2)) = 11^(5^) = Z 
(group of integers under addition). It is also true that n"(5") = Z and n"(S™') = 0, for n < m, meaning 
that all mappings can be deformed into a single mapping (i.e. the topology is trivial) [66] 

'''Physically this means that there is no fl-angle in two spatial dimensions and mathematically that 
n^(5'") = 0, m > 2 
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Because of the mass term, the canonically conjugated momentum acquires an extension, 
namely < = -El + fl/{2g'^)e^^ Ai in the Weyl gauge. A modified form of the Gauss' law, 
has to be imposed in the physical states, as the time component of (1.84) 

(D.E)„ + i i ^ = 0 (1.85) 

has an extension. In canonical variables, this equation writes as 

Ga = -[JJiTr }a + -2 7^ • 

I t can be shown that this Ga commutes with the Hamiltonian and satisfies the Lie algebra 

(1.70), which guarantees the local integrability of the Gauss's law. Gi^"^) = 0 translates 

into 

( £ . . ; ^ ) « [ A ] - 4 ^ ^ * ( A 1 = 0, (1.86) 

or upon iteration 
^-i /d '^xfl< 'G„,pj^^^^[A]_ (1.87) 

The left hand side of (1.87) can be written as 

g - - J d x« Ga^^^j ^ e ' ~ " ^ v p [ A ^ ] ^ * [ A ^ ] = e ~ ' ^ ^ ^ ' [ A ] (1.88) 

VL{e) = ^ j d^^e'Hr{d^UU-^A^) - j • (1.89) 

where , is the time component of tZ;'̂  defined as in (1.81)^^. As we know from quantum 

mechanics that whenever a symmetry transformation on a canonical variable changes the 

Lagrangian by a total time derivative of a function, that function appears as a phase in 

the transformation law for the quantum mechanical state. Therefore, in oiu- case, 

L^L-ii'4^m] • (1.90) 
dt\ g"" J 

Finally, the quantisation of the mass comes as follows: Although the Gauss's law is locally 

integrable as it is guaranteed by the commutators of Ga, we wil l have to examine its global 

integrability. Mathematically speaking, the statement that 11̂  is non-trivial implies that 

the space of gauge functions U defined on the two space is not simply connected [66]. Now 

consider a 3-dimensional \J which is not deformable to the identity. We can view [/ is a 

family of two dimensional matrices depending on the spatial two vector x and a parameter 

r such that as r —)• ±oo, ?7 -> I [34]. In other words, we have a loop that starts and ends 

'^For 5(7(2) it would be -l /(167r') /d?y.e'H'''"'tdiQ^djd''{\e\ - sin\Q\). 
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at the identity yet it cannot be deformed to the identity by hypothesis. I f we follow (1.88) 
as r varies from —oo to +oo, with C/ = I at the endpoints, the phase factor must be unity 

or equivalently 

^ Q { e ) = dr ^n{9) = 27rn (1.91) 
g^ -oo g^ y_oo dr 

The integral in the expression above can be identified with w{U) which is itself an integer. 

Therefore we arrive again at the quantisation condition (1.83) as a constraint so that the 

Gauss' law is globally integrable. 

Let us turn our attention to the four space time dimensional case. For small gauge 

transformations (those for which U is deformable to the identity, the physical content of 

(1.76) is that the wave functionals are gauge invariant: 

^ [ A ' ] = * [ A ] . (1.92) 

However, for gauge transformations which cannot be deformed to the identity or, i f you like, 

that cannot be composed by iterating an infinitesimal gauge transformation, one cannot 

assert that the wave functional remains invariant when these "large" gauge transforma­

tions are performed. Let us call Qn the operator which implements a gauge transformation 

in the n*'̂  homotopy class to which U belongs. Thus, we say that only Go bas the rep­

resentation ê .̂ Qn is unitary and commutes with the Hamiltonian, since it generates a 

symmetry transformation. From general quantum mechanical principles, we conclude that 

the physical states are eigenvectors of Qn, with an eigenvalue which is a pure phase: 

g„^'[A] = * [ A ' ] = e-^^"*[A]. (1.93) 

Owing to the additive nature of the gauge function's homotopic characterisation, it is clear 

that 0n = n6. 

This is the origin of the 0 angle, which appears naturally in a Hamiltonian formulation 

of the theory. I t is possible to remove the phase from the transformation law above, 

provided we find a functional of A , which we call w{A), that changes by n when a gauge 

transformation in the n^^ homotopy class is performed, i.e. 

u ; ( A ' ) - u ; ( A ) + n . (1.94) 

^^The first term in (1.89) vanishes when U = 1. 
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We start out by writing 

^ ' [A] = e-'^"'(^)$[A] (1.95) 

where ^ ' [A] is invariant against all gauge transformations 

a„$[A] = $[A'] = $ [ A ] . (1.96) 

Such functional can indeed be constructed and it is 

^ ( A ) = J ^ l d ' ^ e'''tr[F^,Ak - ^AA.Ak]. (1.97) 

We have already seen that gauge transformations change w{A) according to (1.78). There, 

w{U) "labels U homotopy classes and is an integer number. Now, a universal phase factor 

can be removed from all the wave functionals at the cost of adding a total time derivative 

to the Lagrangian. I f the quantum theory based on the functionals is obtained from a 

Lagrangian Lxj, = J d^x £ , the one based on the functionals $ = e"'̂ '"^-'̂ ) '̂ is obtained 

from the Lagrangian 

L . = / d 3 x £ + e ^ ^ . (1.98) 

We can be shown that 

where *F'^'' = ^e^'^'^^F^p is the dual strength tensor. This enables us to define a new 

Lagrangian 

C^-\Fli^F% + ^e*F^'^F%, (1.100) 

and since the second term is a total divergence, 

*Fli^F% = d.X'^ 

= e^''^^nr[FapA^-'^AaApA^], (1.101) 

it does not change the equations of motion. w{A) = —-^ J d^x X " , is exactly the winding 

number defined before. In summary, the ^-angle in Yang-Mills theories is present even 

by imposing gauge invariance on the wave functionals^^. I f we recall that the theory in 

3 space-time dimensions is the high temperature limit of the theory in 4, and that the 

coupling rescales like g ^ gT we see that the quantisation condition for the mass term of 

the three dimensional theory leads to 

2 
H = ^n(xnT (1.102) 

^The 9 term in the Lagrangian is CP odd and thus it could be a source of CF-violation in nature. 
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and therefore we can say that a non vanishing mass term (3-dimensional space time) pre­
sumably arises from a non vanishing 9 (4-dimensional space time) and the discontinuities 
in the former for the three dimensional model are suggestive of different phases in the 
latter. 

1.5.2 B R S T S y m m e t r y in the Schrodinger Representat ion 

When we quantise a gauge field theory, for instance in the path integral formalism, we have 

spurious infinities which reflect the integration over equivalent gauge configurations. A 

way out this problem is the Faddeev-Popov functional integral procedure which is basically 

a selection of one representative from every set of gauge equivalent potentials (orbit) [55]. 

This is done by a modification in the integration measure which, exponentiated, amounts 

to additional terms in the Lagrangian which includes anticommuting scalar fields called 

"ghosts". Despite the gauge invariance of this (effective) Lagrangian being broken by 

gauge fixing terms and the Fadeev-Popov ghosts, it is still invariant under a well known 

class of transformations of the fields called Becchi-Rouet-Stora Transformations {BRST). 

The Schrodinger representation is particularly good in dealing with gauge degrees of 

freedom and in understanding the relation between quantisation procedures between dif­

ferent gauge-fixing conditions [67]. In [39], it was shown that the BRST quantisation 

of gauge field theories could be carried out solely within the Schrodinger picture. They 

showed that BRST symmetry can be considered as the residual gauge symmetry of the 

gauge fixed Lagrangian and hence the correct form of the Hamiltonian/Lagrangian comes 

out naturally from this formalism. This interpretation has given a new insight in under­

standing the origin of the BRST symmetry as well as provided a new method of obtaining 

the BRST structure of a theory [40]. Let us illustrate these arguments in their simplest 

setting. 

For simplicity, consider the abelian gauge theory Lagrangian density: 

£ = -lF^"'F^^. (1.103) 

Let us adopt the covariant gauge for which the gauge potential satisfies the gauge-fixing 

condition 

d^A" - a{x) = 0, (1.104) 
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where a{x) is a arbitrary scalar function. The gauge fixing condition can be translated 
into the insertion of Lagrangian multipUers, namely 

C = C + ^ro^^tA'' + ^air^, (1.105) 

where a is a gauge parameter, and treating all the variables in the equation above on equal 

footing (independent). Nevertheless, £ is still invariant under Ai^ ^ A^ + id^x where 

X satisfies d^j,d^x = 0- This residual degree of freedom should not affect any physical 

information. This condition translates into the wave functional formalism as 

^j,hysW{-X.) + id''x[-^,t),t] = ^^Hys[A^{-^)A- (1-106) 

Now, we write x (x , f) — Xr]{x,t), where A is an infinitesimal Grassman number and ry a 

Grassman variable. The condition (1 .106) written in terms of these variables reads: 

I d'x d'^vMj^^%nys[A^{x),t] = 0, (1 .107) 

with r]{x, t) satisfying the equation d^d^^r]{-x., i) = 0 which is considered as an additional 

variable to those in £ . This equation can also be written as 

V = -i'f], 

V + iV^T] = 0. (1.108) 

The equation of motion for rj can be included as part of the Euler Lagrange equations by 

writing the Lagrangian as 

Cnev; = jC.-V{rj- iV) - fji^ + i^^v), (1-109) 

which is the correct form of the Lagrangian including the gauge fixing and ghost terms. 

Prom the equation above, we obtain the Hamiltonian 

H = Jd^x [Hgauge ' \aT^l - ^ f lV-A - iVV - iVr].Vri\. (1.110) 

The (anti) commutation relations 

[TT^{X),A^{X!)] = -i g^y5^{x-x!), 

{ry(x),P(x')} = - ^ J ^ ( x - x ' ) , 

MX),:P(X ')} = - z < 5 ^ ( x - x ' ) , ( 1 .111) 
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render functional derivatives as representatives for the operators, 7r^(x) = i5/5A'^(x), 
'P(x) = -i6/5r]{x.), V{x) = -i5/Sfj{x) ,which allow us to write (1.107) as 

n^pkys[A^;t] = 0, 

^} = jd^x [-iPno + TjV.E], 

and we immediatelly recognise the operator J? as the BRS charge operator, and the 

condition above is nothing but the BRS condition over the physical states [68] The 

same can be done for the non-abelian theory. 

1.5.3 A b e l i a n Gauge T h e o r y V a c u u m Funct ional 

The ground state wave functional for the photon field theory is exactly solvable. In (3-1-1)-

dimensions, adopting the temporal gauge, the Hamiltonian is written 

H = ]^j d^x (E2 + B2) , , (1.112) 

where Ei{x) = -Ai{x), B ( x ) = V A A ( x ) . In the coordinate Schrodinger representation, 

where the operator Ai{x) is diagonal, Ei[x) = i6l6Ai{x) is the differential representation of 

the equal-time commutators. Hence we obtain the following form for eigenvalue problem: 

\ h ' - ^ - j m - = ^ * i A i - (1.113) 

The Gauss' law constraint on the physical states is simpler than in the non-abelian case. 

I t is written as 

and its physical content can immediatelly be brought out. The change in the wave func­

tional due to a abelian gauge transformation for which 6Ai = —did can be calculated 

as 

^ ^ [ A ] = - j d^^ 
(5^ [A] 
5A,{x) 
5* [A] 

= j S x V . ^ ^ ( x ) ' (1.115) 

^^The anticommuting character of the varible 77 which was introduced to realise the degrees of freedom 
is important to assure the commutation of the operator Q with the Hamiltonian. If one have chosen a 
tensor variable, Q would not commute with H and hence it would be impossible to realise the residual 
symmetry transformations. 
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where in the last step we integrated by parts. I t is obvious that the Gauss' law impHes 
gauge invariance and that ^ [ A ] depends only on the transverse components of A . In other 
words, only ^ ' [ A T ] is gauge invariant (physical). 

The Hamiltonian can be rewritten as 

hij = -^^6^j+didj, (1.116) 

from which we clearly see it is quadratic and therefore it is simply the Hamiltonian of the 

infinite dimensional harmonic oscillator. Since we are looking for the ground state, we 

try a wave functional with no nodes and positive everywhere 'So[A] = J\fe~^^-^^ {Af is a 

normalisation constant). The Schrodinger equation becomes 

On dimensional counting basis, we claim that W is quadratic in A, resulting in a Gaussian 

wave functional for the vacuum 

W=^-jd^x d'y A'ix)wi,{x,y)A^y). (1.118) 

I f we take (1.118) back into the Schrodinger equation we get 

j d^z Wik{x,z)wkj{z,y) = him6^{x-y) (1.119) 

which we solve by using the Fourier transform method to obtain 
d^p e^p-(^-y) 

(1.120) . , , ( x , y ) = ( - V % + 5 . 5 , ) / ^ ^ 3 

Finally, the vacuum functional can be written as 

= ^ , . , ( _ _ L / . 3 , , 3 , M ^ ) , , , , , , 

which is explicitly gauge invariant. The excited states can be constructed by acting with 

functional representation of the creation operator on (1.121) as we did for the scalar fields. 

1.5.4 Y a n g - M i l l s V a c u u m Funct ional ( Y M V F ) 

As we pointed out in the introduction, the biggest difficulty in analysing the strong inter­

action resides in its large distance behaviour where perturbation theory cannot be applied. 
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In this sense, phenomena like confinement, and the bound state spectrum are poorly un­
derstood. A l l these problems concern the ground state of a non-abelian gauge theory 
whose physical understanding is of major importance. In this sense, as far as analytical 
approaches are concerned, the SRQFT has become a good framework to deal with these 
problems, at least within the standard model although we still lack a complete analysis 
of the matter owing to some difllculties which have motivated our work. 

The difficulty in applying, for example, a variational ansatz to solve the Schrodinger 

equation for the ground state of a non-abehan gauge theory starts with the fact that it 

is impossible to write down a Gaussian wave functional which satisfies the constraint of 

gauge invariance as can be easily verified. The Gaussian wave functional 

* [ A ] = e-^/''''^ '^'y [>l?(^)-C;'(x)] {G-^n^{x,y) [A^jiyyC^iy)] -̂ 22) 

transforms under gauge transformations (1.58) as ^ ' (A) -> * ( A ^ ) . In the Abelian case, 

it is sufficient to take diG~j^ = 0 to satisfy the Gauss' law constraint (1.72). However, in 

the non-abelian case, due to the homogeneous piece in (1.58), no gauge invariant Gaussian 

wave functional exists Following Feynman [20], another obstacle that arises is what 

he called the "sensitivity of the variational procedure to high frequencies". In contrast to 

abelian gauge theories, Yang-Mills theories are non-linear and consequently the high and 

low momentum modes are coupled. On the other hand, the vacuum expectation value of 

the energy and other intensive quantities is dominated by high momentum fluctuations 

(there are infinitely more ultraviolet modes than modes with low momentum). So, for 

example, in the search for information involving low momentum modes, even if we have a 

good approximation for the wave functional in this region, if the ultraviolet part is slightly 

incorrect the minimisation of the energy may have nothing to do with the dynamics of the 

low momentum modes themselves. Moreover, physical information beyond the Gaussian 

trial faces the problem of calculability of the resulting functional integrals. 

A lot of physics would emerge from the solution of the non-abelian analogue of equation 

(1.113) (see (1.62) - (1.66) ) , 

'^There has been some progress in understanding non-perturbative aspects in the context of supersym-
metric gauge theory [76] 

^"Some attempts have been made to remedy this problem, for instance projecting the Gaussian wave 
functional onto the gauge invariant sector [13]. 
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subjected to the Gauss' law constraint that the wave functionals are gauge invariant. K 
regularises the product of two functional derivatives at the same (spatial) point, which is 
ill-defined Unfortunately, it is much easier to formulate this equation than to solve it. 

Notwithstanding, approximate forms of the YMVF have been constructed for particu­

lar configurations of the fields. They have been useful to verify confinement and give some 

estimates for the mass of the glueballs. The latter are bound states formed by strong self 

interaction of gluons. Bag Models, Instanton Gas Models and Lattice simulations place 

the lightest glueball mass in the range 1.5 l.^GeV 2̂ [75],[62](for a review, see [70]). 

I t is believed that the low hadron spectrum originates mainly from long-wavelength 

excitations, that is field configurations for which A ( x ) varies slowly in comparison with 

the confinement scale [61]. This is also the large distance or strong-coupling limit, in 

an infrared enslaving theory. In this limit, i t was firstly suggested by Greensite that the 

Y M V F has the form [46] 

/ /• \ 
*o[A] = exp - /z / d^xtr {Fij{x)f (1.124) 

V •' J 

where Fij is the magnetic component of the colour field strength. Notice that the probabil­

ity density looks like e~^ with S being the Euchdean classical action in one dimension 

lower (dimensional reduction). A lattice version of (1.124) was obtained in a strong cou­

pling expansion for the gauge group SU{2) in (2 -|- 1) dimensions [43] and in (3 + 1) 

dimensions [44]. I t was verified that ^(/3), where /? is the conventional coupling that 

enters the Wilson action {P oc l/g^), behaves like constant x P, in the strong coupling 

region and scales correctly in the continuum limit (weak coupling) as required by the 

renormalisability of the theory. 

A continuum strong coupling expansion of the Y M V F was derived by Mansfield [1] 

and gives (1.124) as the leading order ground state with / i = •y/g^ and 7 a constant which 

depends on the number of colours. 

I t is instructive to compare (1.124) with the abehan wave functional (1.121). I t includes 

a factor A ( x — y) = l / | x — y p which reflects that the system has an infinite correlation 

length, i.e. i t is conformally invariant. Clearly (1.124) is not the correct vacuum functional 

for all scales. Because of asymptotic freedom, we expect that the true vacuum resembles 

•^'It obviously has the property /im«-4.oK"''(x,y; e) = 5(x - y)5"''l. 
•̂̂ The mass of the proton is « 0.94GeV 
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(1.121) at short distances. Rather (1.124) is the effective vacuum functional in the strong 
coupling l imit . 

A simple interpolating form which contains the two limiting cases, namely short and 

large wave-length configurations, was proposed by Arisue in [41]. In (3 + l)-dimensions i t 

writes: 

^o[A] = exp(- [d'xd'ytr[Fij{x)V{x,y)F^j{y)V{y,x)]^j^-^] (1.125) 
\ |x — y| y 

where is a Wilson line (a gauge connector between the points x and y) and ^ represents 

the correlation length for the field strength in the vacuum. I f we take Fij{y) and V{y,x) 

and expand y around x, after an integration over y, we arrive at [41] 

/ r r \ 
vI'o[A] = exp - HQ / d^xtr{F^jf ~ fi2 / d^xtr{DiF,jf + ... (1.126) 

\ J J J 

in which the dots stand for higher covariant derivative terms. We see from (1.126) that for 

sufficiently low momenta and small amplitudes ( i.e, a slowly varying field configmation) 

the covariant derivative can be neglected and (1.124) recovered. He also used a Monte 

Carlo simulation of SU{2) in (2 - f 1) dimensions to calculate the expansion coefiicients 

HQ — (0.91 ± 0.02)/^^ and ^2 ~ -(0.19 ± 0.05)/g^, where g is te renormalised coupling 

constant. The correlation length, which is related to the mass gap, is written in terms of 

these coefficients as ^ = A/(—2/i2)/Mo-

In [1] it was shown that (1.124) leads to confinement (the Wilson loop satisfies an area 

law [74]) via a kind of dimensional reduction from (3-1-1) to ( H - l ) dimensions. Yang-Mills 

theory in 2 dimensions is manifestly "infrared slaving" even in perturbation theory because 

the Coulomb potential in 2 dimensions increases linearly for large distance sepaxations 

[71]. Greensite in [20], based on the concept of magnetic disorder which establishes that 

confinement is associated with disorder in the field strength Fij, argues that (1.124) is the 

wave functional with maximum possible disorder in Fij for small amplitude fluctuations. 

Despite the success in describing confinement, in order to calculate the glueball spectrum 

we would have to include more rapidly varying fields in 1.126 as we will discuss in section 

2.2. 

23v(x,y) = Vexp{iJ^ A(x').(ix') . 
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1.6 Renormalisable Theories in the Schrodinger Represen­
tation 

I t was relatively recently that the question of renormahsability of quantum field theory in 

the Schrodinger representation was studied from a more rigorous and formal standpoint 

[5]. This is partially because isolating and renormalising divergences in quantum field 

theory is effected more conveniently in the Lorentz covariant Green's function formaUsm. 

As the language of wave functionals started to provide significant contributions to field 

theoretic problems, the issue of their renormahsability became crucial. 

When Symanzik set off to solve this problem, he was initially motivated by a spe­

cial two-dimensional case, namely the relativistic string model in which the Schrodinger 

wave functionals are the primary objects of physical interest [52] and the problem of the 

ultraviolet finiteness of the Casimir force in renormalisable quantum field theories which 

would follow from a mathematically well defined proof of the existence of its Schrodinger 

representation. 

Here we briefly discuss some ideas contained in [5] which will be important in the next 

chapters. We suggest [6] for an introduction to [5]. 

As we discussed in the first sections, in the Schrodinger representation we work with 

wave functionals of a time-independent, c-number field ip{x) (see equations (1.5)-(1.13))'^^, 

namely ^'[(p]. Its interpretation is that |^'[(/']p is proportional to the probability for the 

quantum field <^(x) to assume the value (p{x) at the time t, (our space-like quantisation 

hypersurface) which we conventionally choose to be f = 0. In other words the operator 

(^(x, 0) is diagonal in the Schrodinger representation, viz. 

<^(x,0)1'[(p] = ¥'(x)*[<p] (1.127) 

and choosing the equal time commutation relations between the operator ^ and its canon-

ically conjugated momentum TT also at t = 0 gives 

. ir(x,0)vl'[<p] = - z ^ * [ ( p ] (1.128) 

as a coordinate representation for the momentum. The dynamics of the system is governed 

by the time-dependent Schrodinger equation (1.12) in which the Hamiltonian is also defined 

'̂'We will be talking about scalar fields but our arguments generalise to fermions and gauge fields. 
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on the hypersurface t = Q. Hence we can say that the Schrodinger equation is the relation 
that the wave functional has to satisfy upon (smooth local) deformations of the boundary 
i = 0, which is represented by time differentiation [9]. Then, after finding the solution 
'^ti'Ai boundary takes the form of a quantisation surface t = Q from where the solution 
can be extended to the whole plane making use of the time evolution operator ê *̂. 

The wave functionals can also be represented as functional integrals, their argument 

being the boundary value of the field. To see that, consider the matrix element 

{^\e-'^"y), (1.129) 

the Euclidean propagation kernel for going from a field configuration at Euclidean time t = 

0 to another at Euclidean time t = —T, also known as Schrodinger functional. According 

to Feynman, this can be represented as 

|T?</)e-^^[^l (1.130) 

in which the fields satisfy boundary conditions 4>(x,t = 0) = cp and ^{x,t = -T) = 

tp' and SE is the Euclidean action for the D + 1-dimensional volume (where 0 lives), 

bounded by space-like surfaces a time T apart. By inserting a complete set of eigenstates 

of the Hamiltonian i?, {[^^n)} into the Schrodinger functional we arrive at its spectral 

representation. As T —)• oo, this is dominated by the contribution of the ground state, 

(He -^^| (p' ) = E * n M * ; [ ¥ ' > " ' ' ^ " 
n 

Assuming that (/?' vanishes at T = oo and normalised the vacuum energy such that = 0 

enables us to write 

•qi^^p] = j p,/,e-^^t*l (1.131) 

with (f){t = 0) = (/?. In summary, the Schrodinger functional naturally leads to the concept 

of a quantum field theory on a manifold with boundaries. 

Since perturbative renormalisability of quantum field theory is usually estabUshed 

using power counting in the momentum space, in the case of the Schrodinger functional 

this is no longer feasible as translation invariance is lost in the time direction. In other 

words we cannot rely on Lorentz invariance in our task to renormalise the theory. A priori, 
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i t is not clear i f a renormalisable quantum field theory in the compact space time manifold 
remains renormalisable in the presence of a boundary. We present below a summary 
of Symanzik's results regarding this matter and some of their imphcations for our work 
[5],[6],[7],[53]. 

• Symanzik studied the Schrodinger functional of (j)^ scalar field theory in perturba­

tion theory in (3 -|- l)-dimensions. He found that the Schrodinger functional, and 

therefore the wave functional, is finite as any cut-off is removed provided that be­

sides the usual renormalisation procedure for the divergences that occur in the bulk 

of the space-time, two new counterterms are introduced. These counterterms are 

needed because of additional divergences that result from the boundary conditions 

and are proportional to the local composite fields (j>dt4> and (j? integrated over the 

hyperplanes at i = 0 and t = -T 

• These new divergences appear because the field operators which are diagonalisable 

in the sense of the Schrodinger representation differ from the usual renormalised field 

operators by (in perturbation theory, logarithmically) divergent factors, similarly as 

the renormalised field operators themselves differ by such factors from the "bare" 

field operators. That is to say, relation (1.127) does not hold, but there is a substitute 

limt^Qa{t)^{x)^{^p\ = (^(x)^'[(p] (1.132) 

where a{t) is a singular coefficient given to first order by 

a{t) = 1 - g/(647r2)[/n(/i2i2) + ;„(47r) _ r ' ( l ) + 2] + 0{g'^), 

where fx is the normalisation mass in the minimal subtraction scheme of dimensional 

regularisatiofi. 

• Consequently, the argument of the vacuum functional (1.131), i.e the boundary 

•values of the scalar field must be renormalised in a way that differs from the usual 

quantum field theory without boundaries. In (1.131) the boundary condition reads 

</.(x,0) = Z,(/p(x) (1.133) 

where Zg denotes a new renormalisation constant, which is needed to cancel the extra 

ultraviolet divergences introduced by the boundary aXt = 0. Within the dimensional 

regularisation scheme, in 4 - e dimensions one finds Zg = \ - {g/32n'^]l/e + O(g^). 

^In dimensional regularisation only <pdtcl> suffices. 
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• This is believed to be the case for a generic renormalisable quantum field theory: 
The wave functionals are finite as any cut-off is removed when they are constructed 
as functional integrals, after the inclusion of a finite number of additional bound­
ary counterterms. These are local polynomials in the fields and their derivatives, 
integrated over the boundary. Furthermore they must respect the symmetries of 
the theory and have canonical dimension less than or equal to three in a (3 -I- 1)-
dimensional theory. 

• In the case of Yang-Mills theory there are no local gauge invariant composite field 

of dimension three or less if invariance under parity is assumed. This was confirmed 

in SU(N) Yang-Mills theory to one loop order in pertmrbation theory in [7]. In the 

language of the eigenvalue problem expressed by the Yang-Mills Schrodinger equa­

tion, this amounts to say that it is sufficient to regulate the divergences introduced 

by the laplacian and renormalise thein in a way that both the wave functional and 

the eigenvalues are finite as any cut-off is removed. 

• For QCD, Sint in [50] studied the Schrodinger functional to one loop order of per­

turbation theory. Using dimensional regularisation and heat kernel techniques to 

determine the divergences, he verified that they are partly canceled by the usual 

renormalisations of the quark mass and the couphng constant in QCD. An addi­

tional divergence could be absorbed in a multiplicative renormalisation of the quark 

boundary fields whose corresponding boundary counterterm is a local polynomial in 

the fields in agreement with Symanzik expectations. 



Chapter 2 

A Large Distance Expansion for 
the Vacuum Functional 

For fields that vary slowly on the scale of the inverse of the mass of the lightest physical 

particle, the logarithm of the vacuum functional of a quantum field theory has a derivative 

expansion in terms of local functions. This is the basis of a scheme in which, by studying its 

analyticity properties under complex scalings, the vacuum functional can be reconstructed 

for arbitrary fields from its local expansion. 

2.1 Introduction 

As we discussed in the introductory chapter, whilst asymptotic freedom has led to an accu­

rate determination of the Lagrangian of the standard model from high energy experiments, 

there are only a few analytical tools enabling us to calculate with that Lagrangian at low 

energies, where the semi-classical expansion is no longer valid. Therefore, the computation 

of the so called low-hadron spectrum, for example, can only be done numerically using 

lattice gauge field theory. Analytical studies may provide more physical insight into these 

problems and the interplay between analytical and numerical approaches can certainly 

assist either approach in obtaining new methods and results. In this and the following 

chapters we discuss an approach to quantum field theory in which states are constructed 

in the Schrodinger representation from their large distance behaviour as i t was proposed 

by Mansfield in [2]. 

At large distances the logarithm of the vacuum functional, /n^'o[(^] - In e^[<^l = W[ip], 

undergoes a significant simplification for any theory in which the Ughtest physical mass 

40 
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is non-zero. I t can be expanded in a sum of local functionals in the sense that i t can be 
reduced to a single spatial integral of a sum of terms each of which is constructed from 
the field and a finite number of its derivatives evaluated at the same spatial point. 

In order to probe the internal structure of particles which are characterised by much 

shorter scales, such large distance expansion appears to be useless. However, it is one of 

the purposes of this chapter to show that this large distance expansion can be used to 

understand physics at all length scales since it may be used to reconstruct the vacuum 

functional, "^[(p] say, for arbitrary (^(x). This chapter is based on references [2] and [3]. 

2.2 Local nature of the vacuum functional at large distances 

Let us firstly concentrate on scalar fields, for simplicity. In section (1.6) we showed how to 

build a functional integral representation for the vacuum functional ^'o[¥']) where if was 

the boundary value of the field at i = 0. In what follows, it will be convenient to introduce 

a different formulation so to make the (p dependence more explicit, since it will appear in 

the functional integral. For this purpose, let us define a bra (D|, D for Dirichlet, which 

has the property of being annihilated by the field operator (p, 

{D\^=^0. (2.1) 

Thus we can represent {ip\hy 

{^\ = {D\exp{^ I d^HxM^)) (2.2) 

so that 

^ {cp\=t{^\n{x), (2.3) 
5(/p(x 

and using the canonical commutation relations and (2.1) we also recover ((/?|^(x) = 

(p{x){(fi\. Hence, we can write 

{ip\e-'^^\ip') = ( i) |e ' / ' i^-(x,o)^(x)g-T^g-»/dx#(x,-T)v' '{x) |p^^ (2.4) 

which in turn can be written EIS a functional integral ^ 

^Since TT = <p, TT is represented in the functional integral by <p plus terms coming from the time derivative 
acting on the T-ordering because the functional integral represents T-ordered terms. This leads to terms like 
fdxT.dx2'pixi)ip{x2)5{xi-X2)S{Q) = /<p (̂x)<5(0). Because it is local, this additional term can be canceled 
hy an opposite and equal counterterm in the functional integral which amounts to simply discarding this 
divergence. We will come back to this issue when we discuss the Feynman diagram expansion of the 
vacuum functional. 
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j V4> exp{-SE + j di^ 0(x, 0) ̂ ( x ) - j dx 4>{x, -T) <^'(x)} (2.5) 

and the variable ^ defined on the Euclidean semi-plane t < 0 now satisfies boundary 

conditions <^(x, 0) = ^(x , - T ) = 0 as i t is implied by (Z)|. Taking T to infinity where cp' is 

assumed to vanish, lead us to a functional integral representation of the vacuum functional 

on the Euclidean space-time t <Q: 

Hence, in a semi-classical expansion, W[ip] is a sum of Euclidean connected Feynman dia­

grams in which </? is the source for 4> on the boundary where ^ vanishes. They are obtained 

by contracting boundary values of the field with vertices using a propagator yielding a very 

non-local result. The only major difference from the usual Feynman diagrams in free space 

is that the propagator vanishes when either of its arguments lies on the boundary. More­

over, a formal proof that W[(p] is a well defined quantity (is finite as any cut-off is removed) 

has been constructed by Symanzik [5] for theory, as we discussed in section (1.6). 

We can expand W[ip\ as 

W[ip] = Y . I d''xi...d''xnV^''\x^,...,Xn)^[xi)...ip[Xn) (2.7) 

which reflects its non-local character (here D is the space-time dimension). Now suppose 

that the lightest physical particle of the theory has a mass m. We want to study W[ip\ 

for fields that vary slowly in space on the scale of 1/m. In other words let us choose 

to examine W when the Fourier transform of (/? vanishes for momenta greater than the 

mass. I f we expand the propagators used to contract the boundary fields as l/(p'^ - fm^) = 

l/m? -p^/rn^ + {p^Y/m^ + ... which, in space time, gives an expansion in derivatives of 

delta functions 

(-^2 ^ ^ 2 ) - i ^ O ( ^ _ _ t ' ) ^ ( l - - ^ + ^ - . . )5^(x - x ')5(i - t') . (2.8) 
^ TTli TTt TTt ' 

Using this, we are able to write a local expression for W\(p\ and since it is connected, it 

reduces to a single spatial integral of a sum of terms which are composed of powers of the 

field and a finite number of its derivatives calculated at the same point in contrast with 

a non-local expression which we would have i f we evaluated i t for more rapidly varying 

fields. Then (2.7) for slowly varying fields simplifies to 
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+ C2</?^(V¥'.V¥5)2 + . . + c/2</'^VVvV + -- + e2</'^V2vV + " ) (2.9) 

The coefficients of this expansion ai^hi, etc., are dimensionful constants which in principle 

can be determined by the Schrodinger equation which W satisfies. Also this local expansion 

has to obey the symmetries of the theory i t describes. For example, in the local expansion 

we have written down only terms which are even under 9? —>• —ip assuming that this is an 

unbroken symmetry of the action. 

Let us give some specific examples of this simplification. Consider a free massive scalar 

field theory in D + 1 dimensions. In the Schrodinger representation the Hamiltonian is (see 

(1.14)) 

H = - ^ A + j d^^\ (V(P • V(p + m V ' ) , (2.10) 

where A is the (unregulated) laplacian / of'^x^-^^^^^. The vacuum functional hcis the form 

ê ^ = exp{~ J ipG(f} as we showed in (1.15), with G given by (1.16) and (1.17) . Choosing 

G = — A / — + ensures that is a normalisable eigenstate of the Hamiltonian with 

an eigenvalue E which is proportional to the functional trace of G. For a complex scalar 

field in a time-independent gauge potential background, we have only to replace V with a 

covariant derivative. The simplification of the vacuum functional to a local expansion is 

achieved by expanding G as -{m - V^/2m - (V^)^/(8Tn^) + . . . to obtain 

m o „ , . / ^ » x ( = „ ^ + - j ^ ( V V ) ^ + ..) (2.11) 

which converges with the support that Fourier transform of ip lies within < m^, that 

is, when the field varies slowly in space on the scale of the inverse of the mass. The same 

is true for an interacting theory in which the lightest particle has non-zero mass since 

massive propagators are exponentially damped at large distances. Hence, in configuration 

space, Feynman diagrams are small except when all their points are within a distance of 

!^ 1/m of each other. 

The Lagrangian density for a free massive Dirac field can be written in terms of two 

component Weyl spinors {u,v} in the chiral representation cis 

C = i{u^u + v^v — u^a.Vu + v^a.'^v^) — Tn{u^v + v^ii) (2.12) 

Choosing to diagonalise u and so that u\u,v^} = u\u,v^}, v^u,v^) = v^\u,v^) ( u,v^ 

are Grassman numbers) the canonical anti-commutation relations can be represented by 
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ut = S/5u, V = 5/5v^ and the adjoint is with respect to a weighted inner product that 
yields the resolution of the identity as 

1 = I \u,v^)V{ulu,vlv)ef'^'''^'''''-'"'^\u,v^ . (2.13) 

The Hamiltonian in this representation reads 

H = [ d^-x.{ - ^ia.Vu + vha.V-^ + mU'^u + (2.14) 
J \ 6u Sv' V JuJuT// 

Assuming that the wave functional has the form \ I ' = {u,v^O) — exp J d^xv^Gou, the 

Hamiltonian gives us 

H<b= (^J d^x{v^{GD,icr.V}u + m(v^u-v^GDGDu)) + mTr{GD))'^ (2.15) 

which is E"^ with E = mTriGo) provided { G ^ ^ a . V } -1-m-mGr.Gz? = 0. This has the 

solution 

GD = I — - (2.16) 

Taking the minus sign corresponds to filling the Dirac sea so that all the other states have 

energy greater than the vacuum. The local form of the vacuum functional can be obtained 

by expanding G in powers of V^/m? which will converge for slowly varying u,v^. 

In pure Yang-Mills theory, there is no mass term in the Lagrangian. Notwithstanding, 

a non-zero glueball mass is expected to be generated quantum mechanically and therefore 

the fu l l propagator of the gauge potential A will again be expandable in powers ofp^/m? 

for small in comparison with the mass of the hghtest glueball^. In 3 -I - 1-dimensions, 

we would have 

W[A] = ln<i![A] = j d^x{aitrB.B/A + a2trDAB.DAB/A^ 

+ a3iT-B.(BAB)/A^ + a 4 i r B . B B . B / A ^ - l - . . . (2.17) 

where we only included gauge and parity invariant terms. The unknown coefficients Ci 

are now dimensionless and assumed to be finite as the cut-off is removed. B is the colour 

magnetic field V A A -I- A A A and A is a renormalization group invariant mass. Since the 

mass depends non-perturbatively on the coupling constant, this expression wil l not result 

from working in a finite order in standard perturbation theory. The coefficients ai are 

'̂ This is in contrast to the Abelian Gauge theory where W can be calculated exactly to give W -
J d x̂d ŷ B(x).B(y)/(x - y)^ which is conformally invariant and cannot be expanded in terms of 

local quantities. 
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in principle obtainable from a Yang-Mills-Schrodinger equation. This expansion is very 
useful to study large distances effects in which the dominant term is expected to be the 
one with the fewest number of derivatives, namely 

* [ A ] « e " i / ' ^ ' ^ * ' - S - S / ^ . (2.18) 

As we discussed in section (1.5.4), this term leads to an area law for the Wilson loop via 

a kind of dimensional reduction, and thus indicates that this approach is a good starting 

point for computation of low-energy processes in that theory. The first two terms in this 

expansion have been studied in lattice gauge field theory (see section (1.5.4)). 

In order to get reliable results concerning, for instance, the low hadron spectrum, 

we wil l need to compute more terms in the local expansion of W. Although this local 

expansion has shown to be successful in describing laxge Wilson loops, it is only expected 

to converge for slowly varying fields on the scale of the lightest glueball mass. Thus it 

cannot be accurate for the computation of the glueball spectrum, for example, as this 

involves heavier particles and hence more rapidly varying fields. However, the analyticity 

properties of the vacuum functional under complex scalings provide an ingenious way to 

resum the local series so as to reconstruct the vacuum functional for arbitrary fields as we 

shall see. 

2.3 Reconstructing the Vacuum Functional from its Large 
Distance Behaviour 

We wil l start the discussion with an example. Let us return to the Hamiltonian of the free 

scalar field (2.10). We regulate the laplacian by introducing a momentimi cut-off e, 

(2.19) 

where ip{p) = J d^x ip{x) exp — ip • x. The vacuum energy density £ = E/V is now 

well-defined and diverges as the cut-off is removed 

where k is the area of the unit sphere in D dimensions divided by 2(27r)^. On the other 

hand i f we apply the laplacian to our local expansion of W(2.11), we get 

J^AW - f (m p' [P^? \ f an ,22n 
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(where a „ = km^+^T{\)/{V[2,l2 - n)V{n + 1){D + 2n))). Notice that this expression 
appears to have divergencies of increasing order as e - ) • 0 unlike (2.20) which correctly 
gives the behaviour of the vacuum energy as the cut-off is removed. This is because the 
local expansion holds only for slowly varying fields, i.e. (p(p) for which <m?. Therefore 
the expression (2.21) only makes sense for em? > 1, that is, large e. In other words, the 
operation of removing the cut-off does not commute with expanding in local quantities 
even for the free theory. We can remedy this so as to use the large e expansion in order to 
obtain the right one as it goes to zero by resumming the large e-series. In order to agree 
with our future notation, let us scale e e' — es. Now e' plays the role of cut-off and we 
can set e = 1. Define the continuation of the vacuum energy to the complex s plane by 

This is analytic throughout the complex s plane with the negative real axis removed 

because of the square root. For |s|m^ > 1, it has a large s expansion identical to (2.21). 

Let C be a key-hole shaped contour which runs under the negative real axis up to s = 

So, (so > l / " ^ ^ ) ' around the circle of radius so centred on the origin and back to s = -co 

running right above the negative real axis. Consider the integral 

/(A) = R{X,s)£{s) = / -e'^£{s) (2.23) 

Figure 2.1: Contour of integration 

The integral e^s"'ds is a representation of the factorial function [48] and evaluates 

to 

J _ [ s n, _ j -sm{nn)T{n + 1) i f n > 0 

Therefore 1(A) can be computed using the large s expansion to give 

5 o r ( n + l + Z)/2) i ; ; ^ ^ j ^^-^^^ 

Now the value of the integral does not change if we collapse the contour C to an arbitrarily 

small circle centred on s = 0 and a countour that just surrounds the negative real axis. 
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By taking A to be real, positive and very large, the contribution from the negative real 

gixis becomes exponentially suppressed away from the vicinity of the origin and thus the 

integral is determined for £{s) for small s. I f the function £{s) was finite at the origin, we 

would have obtained £{0) up to exponentially suppressed terms. 

An approximation scheme emerges i f we truncate the series to a finite number of terms 

and work with a large value of A. Since (2.24) is an alternating series, the error involved 

in truncating it to , say n = iV, is less than the absolute value of the term iV - | - 1 , that is 

(2.25) 
r ( iV + 2 + Z)/2)m2^+2+-D 

which for large iV behaves as (eA/m^Ar)^^^^^^/^)/^ Since we want to take A large, 

let us set A = Nfi^. Then the truncation error goes to zero with large N provided the 

A^-independent mass-scale n is smaller than the particle mass m. 

3-

1 1 ' 
2.5-

Coo 

2-

1.5-

J 
1-

0.5-

0 0 ' ' ' 4 10 15 20 25 

Figure 2.2: Resummation of the large s expansion 

In figure(2.2) we plot the series (2.24) for Z? = 1 truncated to n = 20 (curve Ci) , 

n = 30 (curve C^) and n = 50 (curve C3) so as to illustrate that the resummation of the 

large-5 series (2.21) correctly reproduces the small-s behaviour of the energy density (2.20) 

which is expressed by curve Coo- The departure of the curves from the correct behaviour 

is because of the error involved in truncating the series to a certain order. 
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In summary, this shows that we can extract information about the high momentum 
cut-off theory by working to a finite order, iV, with the local expansion of the vacuum 
functional valid for slowly varying fields. Using similar arguments, we now illustrate how 
the vacuum functional can be reconstructed from its large distance expansion. 

Consider the (1 - f l)-dimensional scalar theory. Define a scaled field ^^{x) = ( f i ^ ) -

We can prove that W[(/7^] extends to an analytic function in the complex s plane with 

singularities only on the negative real axis (at least within an expansion in powers of ip). 

First of all, in building up our proof it will be convenient to rotate coordinates in (2.6) 

in order to get a functional integral over the Euclidean space-time x > 0, -co < i < oo: 

^w[ip'] ^ g-5^+/dt0'{o,i)^Mt) . (2.26) 

where the prime signifies a derivative with respect to x and 5^; is the Euclidean action for 

the rotated space-time. This can be reinterpreted as the time ordered vacuum expectation 

value 
rp(^Qr^Jdt4>'{Q,t)v'{t)^Qr^ (2.27) 

where (QT \ is the ground state of the rotated Hamiltonian H'^. I f we expand the exponential 

in powers of ip^ and fourier transform the sources we get 

/

+00 rtn rt2 I r " 

dtn / dtn-\... dti —— / dkn... dki exp{i hU) x 
„ -oo J-oo J-co {^T^} J j 

,p^kn) ...(p'{k,) (O'-|0'(O)e-(^"-*"-')^7'(O) 

_ _ _ e-('3-'^)^'<^'(O)e-(*2-*i)^'0'(O)|O''). (2.28) 

from which the time integrals can be computed. After some algebra we obtain the result 

oo . n 
^ J2 / dkn..dk, {p{kn) . . . (p{k,) ^(^ k,) X 

Vrm^'iO) rurJ^^n-,^Ji^) ••• 0 '(O)—^1—-<^'(0) |0 ' -) . (2.29) 

where we used that ^^{k) = \/s(p{\/sk). Now we take s to be complex. Since the eigen­

values of the Hamiltonian JH''" are real, the singularities occur for s on the negative real 

axis. The same holds for the connected part W[ip^] as any additional singularities could 

not cancel between connected and disconnected pieces. 

A similar construction can be generalised to study the analyticity properties of the 

Yang-Mills vacuum functional in 3 - I - 1-dimensions. Following the same reasoning as for 
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the scalar field we can use the following functional representation of the Yang-Mills vacuum 
functional 

J)J^^-SE[A]-S,[A,A] (2:30) * [ A ] = / : 

where S[A] is the Yang-Mills action in the Weyl gauge AQ = 0 in the Euclidean space time 

with coordinates (x, t) and i < 0, 

S[A] = - ^ Jd^xdttr (^A^ + {V AA + AAA)^) . ( 2 . 3 1 ) 

The boundary term in the action is chosen to be 

Sb[A, A] = - j , I d'xtr [{A-A)- A) \t=o (2.32) 

in order to satisfy some desired properties. We leave the boundary value of A to be 

freely integrated over, i.e. we wil l not impose a condition such as ^ ( x , 0 ) = 0 cis we did 

for the scalar field. We wil l also assume that at spatial infinity the source A is a pure 

gauge A ~ g{x)~^'Vg{x). Put this way, ^ [ A ] is invariant under the gauge transformation 

6i^A = VLO + [A, Lj], since the effect of varying the source A may be compensated by gauge 

transforming A. As LJ cannot depend on time, this is the residual gauge symmetry of S[A] 

that preserves the gauge condition AQ — 0. Moreover, functionally differentiating with 

respect to the source leads to an insertion of A which, in Minkowskian time, leads to the 

Schrodinger representation of the canonical momentum represented by the non-Abelian 

electric field, E = —ig'^5/SA. 

The only additional complication is that this time we have to work in three spatial 

dimensions. By studying separately the analyticity under complex scaling of the field in 

each dimension , i t is easy to show that ^ '[A' ' ] for A*(x) — - ^ A ( ^ x ) continues to an 

analytic function of s on the complex plane with the negative real axis removed, just as 

in the scalar field theory case. 

Having studied the analyticity properties of the W under complex scalings, we are 

ready to show how its local expansion, valid for slowly varying fields, can be used to 

construct the vacuum functional for arbitrary fields. 

For a scalar field ip, define the integral 

/ ( A ) = ; ^ /" -^e'^^-'^W[cp^] , (2.33) 
2m Jc s — 1 



Chapter 2: A Large Distance Expansion for the VF 50 

where C is a very large circle centred on the origin in the complex s plane, beginning 
just below the negative real axis and ending just above. On C, the scaled field (p^{x) = 
<p{-^) ~ y^{0)- Hence i t varies slowly with x and we can use our local expansion. Now 
we can use the Cauchy theorem to relate the large s behaviour to the s = 1 value. I f 
we collapse the contour to a small circle around s = 1, which contributes to W [</?], and a 
contour C" surrounding the negative real axis, when 3?(A) > 0 the latter is exponentially 
suppressed. In other words, for large |5| we can use the local expansion and elsewhere on 
C" the integrand of (2.33) is bounded. Therefore we can formally write 

W[cp] = limx^oo^ j ^ e ^ ( ^ - i ) T ^ [ < ^ ^ ] (2.34) 

which is expressed in terms of its local expansion. In practice, as we show in the next 

chapters, we can truncate the series to a finite number of terms and work with a finite 

value of A to obtain a very good approximation. 

For example, a local expansion of the vacuum functional for the 1 - I - 1-dimensionaI ip'^ 

theory written in terms of the scaled field is 

W[<p'] = j dx(a,{^'f + a2{ip"f + a,{^')\^''f + ...) 

= {ai^s<p^ + a2^^{^'f + az^^{ipf{^'f+ ...). (2.35) 

This can used to expand the vacuum functional '^[p^] in inverse powers of s — 1, with 

coefficients that depend on the original configuration, say [̂</?], such that ^[p^] ^ '^{s — 

1)-"T/;[(^]. Thus 

2m Jisl^oo s - l ^ ^ r ( n + 1) ^ ' 

and, for large A, 

Let us illustrate that for the vacuum functional a a free massive scalar field theory in 

(1 + l)-dimensions. The vacuum functional for the scaled field reads 

vlr[y,̂ ] = e-^/ '^^^^-^'+' '" ' '^ (2.38) 

which expanded in inverse powers of (5 - 1) yields the local series: 
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Also 

2mJcs-l 4-v/7r ^ n ! ( n - 1 / 2 ) y J ^ ' 

whose integrals exist for all n provided that the field has a momentum cut-off A but the 

integral wi l l converge for all A and A because of the n! in the denominator. We can write 

(2.40) as 

2^11 J \ V A ^0 VA V j j 

as one can check by expanding the exponentials, which is, in turn 

I dx ^ x / - V 2 + m2yp + ^ [dxip ( H d X ^ g-A(i-vVm2)\ ^ (2.42) 
2 J 4^ivJ \Jx / 

Notice that (2.42) tends to W[ip] for A -> oo. Moreover, the error in expressing W[ip] by 

the series (2.40) for A large, is given by the last integral in (2.42) and is exponentially 

suppressed. 



C h a p t e r 3 

A Schrodinger Equation for the 
Local Expansion 

In constructing the Schrodinger equation satisfied by the local expansion of the vacuum 

functional, we have to bear in mind that short distance effects expressed by a cut-off 

are present, whereas our local expansion holds only for large distances. This apparent 

contradiction can be solved by scaling the cut-off as well as the field and using Cauchy's 

theorem to build the Schrodinger equation that acts directly on that local expansion. In 

this chapter we construct such a Schrodinger equation for the scalar theory and set 

the grounds for its semi-classical solution. 

3.1 Introduction 

As we argued in the previous chapter, the logarithm of the vacuum functional of a quantum 

field theory is in general a non-local quantity. I f the field varies slowly on the scale of the 

inverse of the mass of the lightest physical particle, it can be simplified to a local expansion 

which for a scalar theory in 1 -|- 1 dimensions we generically write as 

w = I dxY,Bj,..,,M^y°ip'{xyK..ip^^){xy-. (3.1) 

The coefficients of this expansion Bjg,,,j^ are constant if we assume translation invariance 

and finite as the ultraviolet cut-off is removed [5]. The knowledge of the local expansion 

was shown to be sufficient to reconstruct W for generic fields [3]. This is nice as we know 

that particle structure is characterised by length scales smaller than mg ^ and so we could 

not use our local expansion to probe this scale. For this purpose, we have to know the 

^jo - jn which are in principle computable from the Schrodinger equation that the vacuum 

52 
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functional satisfies. However, as we have already learnt from the vacuum energy density 
for the free scalar field (see equations (2.20) and (2.21)), expanding in local quantities 
does not commute with removing the cut-off. In other words, the Schrodinger equation 
depends explicitly on short distance effects via the cut-off whereas our local expansion 
is only valid for fields characterised by large length scales. We cannot simply substitute 
the local expansion into the Schrodinger equation and expect to satisfactorily take the 
limit in which the cut-off is removed. To remedy this, we can again exploit the analyticity 
properties of the Schrodinger equation under complex scalings: by scaling the cut-off as 
well as the fields, the Schrodinger equation extends to an analytic function with cuts 
on the negative real axis. Thus, we can use Cauchy's theorem to build a version of the 
Schrodinger equation which can act directly on our local expansion [2],[4]. 

As a result, we show in this chapter that the eigenvalue problem of the Hamiltonian 

leads to an infinite set of algebraic equations for the coefficients -Bjg -in- This set of 

equations can be solved in two approaches: the usual semi-classical expansion and a new 

approach, as proposed in [2], which does not rely on the smallness of the coupling constant 

and thus offers the possibility of solution beyond perturbation theory. 

Clearly our framework has firstly to be tested within a semi-classical expansion so as 

to show that i t is able to reproduce its standard results. 

3.2 (j)'^ Theory in (1 + l)-Dimensions 

We adopt as a toy theory to expose our arguments. I t wi l l be convenient in many 

ways. Obviously it turns out to be the simplest interacting theory capable of illustrating 

our framework. Furthermore, for ^3^^ theory, Symanzik [5] proved that the Schrodinger 

wave functionals are finite as the cut-off is removed when they are constructed as functional 

integrals defined on a space-time with boundaries if, in addition to the usual renormal-

isation counterterms, a further field renormalisation is performed to take into account 

the divergences associated with the boundary. The surface counterterms were calculated 

within perturbation theory but since ^p\^i is not asymptotically free, these are not rehable. 

So, we work, instead, in (1 - I - l)-dimensions where the theory is super-renormahsable and 

there are no further divergencies associated with the boundary, in which case there is no 

extra field renormalisation. Moreover, the laplacian, which requires point splitting akeady 
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for the free theory, in the renormalisable (3 -1- 1)-dimensional interacting theory also in­
volves factors that depend logarithmically on the point splitting distance, while no such 
factors are needed in either free field or super-renormalisable theory [52],[2]. This situa­
tion is not unrealistic since for Yang-Mills theories in four dimensions, there are no gauge 
invariant local counterterms on the three dimensional boundaries so that the renormali-
sation of the Schrodinger functional is the same as in the usual case without boundaries 
[7] and, in an asymptotically free theory, the behaviour of those logarithmic factors as the 
argument goes to zero can be obtained from the renormalisation group [51]. 

In a super-renormalisable theory, the number of divergent diagrams is finite. In the case 

of </>i+i, only mass renormalisation is required ^. There is only one mass counterterm due 

to the divergent tadpole diagram comprising the contribution to the self-energy of lowest 

order in the coupling constant. This mass counterterm can be evaluated analytically 

either in the framework of perturbation theory or, equivalently, by normal ordering the 

Hamiltonian with respect to the perturbative vacuum. In this task, we employ Wick's 

theorem: expanding the powers of the field in a sum of normal-ordered terms with more 

and more self contractions so as to separate the convergent term (with no contractions) 

from the divergent ones (with at least one contraction). The latter are just the negative of 

the required counterterms. Thus, we wil l be able to calculate the exact cut-off dependence 

of the renormalised parameters. 

Let us start by writing the normal-ordered fpi^i Hamiltonian, represented by 

•.H := j d x : Q(7r(x)2 + ^'{xf - M^ip{xf) + ^<p'^ : . (3.2) 

In order to make explicit the cut-off dependence, define the Hamiltonian written for a 

momentum cut-off e 

= jdx Q ( 7 r , + (^f + M\e)^l) + - ^(e)) (3.3) 

where the cut-off fields are 

ipeix) = j dyge{x,y)ip{y), Tt^ix) = j dyg,{x,y)Tr{y) 

with the momentum cut-off 

Q.{x,y)=[ ^e'^^--y) (3.4) 

'in addition, we have to subtract the constant infinite zero-point contribution from the Hamiltonian. 
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According to our plan, we want to define divergent quantities M^(e) and £{e) such that 
linie^oHe^ - H'i. We write 

^ < - < * < < * < W I ° > = ^ i < v i ^ ^ (3.5, 

to formally represent the logarithmically divergent tadpole in 1 -f- 1-dimensions which 

coincides with the vacuum expectation value of p^ or a self contraction of the field. Next 

we rewrite He as 

H, = j d x Q ( 7 r , + + M^PI) + \ { M \ e ) - M^)pl + ^ p j - f (e)) , (3.6) 

and we call the free part as 

He' = ldx [l{n, + pf+M'p^^ (3.7) 

which i f normal-ordered yields 

Up = y'jP^+M^, i.e. the subtraction of the constant infinite zero point energy. The next 

step is to write the product of fields in terms of normal ordered quantities 

= 1 ((MH.) - M ^ ) + \ T ) : : +1 : : ^ ^ l ^ T , + | T , ^ (3.9) 

Now substituting (3.7),(3.8) and (3.9) into (3.6), enables us write 

+ | { 6 T , : v J : + 3 r , 2 ) - f ( e ) ) . (3.10) 

where : := : : +g/4! : <p^ , from which we calculate the exact cut-off dependence 

of M(e) and £{e) to be 

M^e) = M' + hSM' - 4 / ? ^ = f ^ > (3-11) 

(3.12) 

In (3.11) and (3.12), we made explicit the h dependence and represented the ambiguity in 

the choice of the counterterms (subtraction point) by SM'^ and 5£ which is resolved, as 

usual, by renormalisation conditions ^. 

^£,M'\d£ and JM^ remain finite as the cut-off is removed. 
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3.3 A Set of Independent Local Functionals 

The most general local derivative expansion for the vacuum functional of a scalar in­

teracting theory is (3.1). We further assume parity invariance and that ip —>• —(p is 

an unbroken symmetry of the Lagrangian which restricts both the total number of (/?'s 

and the total number of derivatives to be even. Moreover, the expansion functions 

(pio^p'^^cp"^'^are related by partial integration so we can specify a linearly indepen­

dent basis by insisting that the power of the highest derivative be at least two ^. So, 

for example, / dx ip{x)(p"{x){(p"'(x))"^ is a basis vector but neither / dxip'^{x){ip"{x))'^ nor 

/ dx ip{x)^(p"{x) are basis vectors. The former breaks tp -> —tp symmetry and the latter, 

since the power of the highest derivative is one, can be reduced to a basis vector by means 

of integration by parts, namely J dx ip{xY[ip'[x))^. A basis vector so defined cannot be 

reduced to another basis vector by partial integration and therefore we have a well defined 

basis. 

3.4 The Schrodinger Equation 

Having defined the Hamiltonian for theory (3.6), we proceed to construct the 

Schrodinger equation satisfied by the vacuum functional, which we express as ex-p{W[ip]lh). 

In the coordinate Schrodinger representation, the canonical momentum is represented by a 

functional differentiation TT = -ihS/6(p{x), so the kinetic term leads to the product of two 

functional derivatives at the same point which we regulate by introducing a momentum 

cut-off < 1/e. 

The Schrodinger equation is lim^^oEei'p] — 0 where 

= -^A,V^ + jdx(^- [ - ( ^ ) \ip'^ + M\e)ip'^ + - £ie)^ (3.13) 

and 

A , = / d x d y f ^M^-y) f ^ / dp2^ ^\ (3.14) 
J 7p2<i/^27r 5ip[x)5ip{y) V < i / e 6ip[-p)5ip(p) 

where ip{p) = / dxip{x)exp{—ipx). 

Suppose that we evaluate Fjc^] for slowly varying (p, i.e. a (p whose fourier transform 

is non-zero only for momenta less than mo, the mass of the lightest physical particle, say. 

^We can formally prove it by induction [53]. 
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Then i t w i l l reduce to a sum of local functionals of (p : 

FM ^ J d x J 2 fjoM^M^y^'i^V' • • • </'^"^(x)^" (3.15) 

I t is impor tant to notice that (3.15) is not the same expression that would be obtained 

i f we acted on the local expansion (3.1). The former correctly includes differentiation 

w i t h respect to the fourier modes of w i t h momenta i n the range TTIQ < < 1/e, absent 

f r o m the latter. 

The solution to this problem is to scale the cut-off e -)• es as well as the field (^(x) 

(/)^(x) = ^{-^)- Doing so, {AseW)[ipg] (see appendix A ) , as well as M̂ (se) and £{se) 

extend to an analytic func t ion i n the complex s plane w i t h singularities ly ing on the 

negative real axis and the same is true of the coefficients of the linearly independent 

expansion functions, / j o . . . j „ i n (3.15). Therefore, the contour integral 

ds 

can be calculated by collapsing the contour to a small circle about the origin and a contour 

along the cut on the negative real axis. Let us call the latter as contour C. When |s| is 

large, the scaled field ip^ is slowly varying and the scaled cut-off l / (se) is less than mo. 

Therefore (AseM^)[<P5] can be calculated by acting w i t h A^e directly on the local expansion 

of W, (3.1). Furthermore, as the real part of A tends to inf ini ty , the contr ibut ion f r o m 

the cut tends to zero due to the exp(As) factor. The contr ibut ion f r o m the circle about 

the or ig in is controlled by the small e behaviour of fjo...j„{e). As e —>• 0 this vanishes due 

to the Schrodinger equation and, i n perturbat ion theory, the Feynman diagram expansion 

gives an asymptotic expansion of /jo...j„(es) i n positive powers of y/es, namely 

fAies) = fA + f\V^s + f l e s + f l {^sf + ... (3.17) 

where A expresses a group of indices and some dimensionful constants. The action of 

the resummation operator i?(A, s) = l / (27ri) /^^ exp(As)/s on (3.17) yields 

/ . U / i v 1 ^ + 0 + / 3 ^ » ( ^ ) J j + ^,.. (3.18) 

Thus, i f instead of s imply i?(A, s)/A(es) we use (^R{X, s)Vn\s^ /^(es) we have 

/ U 0 + / l e ( ^ ) i + . . . (3.19) 
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f r o m which we conclude that the inclusion of VTTXS i n (3.16) w i l l ensure that the con­

t r i b u t i o n f r o m the origin w i l l be of order 1/A rather than 1 / y/X which w i l l improve our 

resummation. Henceforth we redefine (3.16) as 

As the product se now plays the role of cut-off, rather than e alone, we take e to be finite 

and equal to unity. 

The Schrodinger equation leads to an infini te set of algebraic equations expressed by 

l i m I , „ , , . . , „ ( A ) = 0 (3.21) 
A—>oo 

where 

T In , -gp.̂ A , ^0,0,2, \ 
lQ = -8[X)-n~= B2 + —k~ + —77;— + ... 

y 6 • w J 

I V V 3 10 j 

/o,2 = 452̂ 0,2 - (̂ 2,2 + 25o,4A + + . 

3252̂ 0,0,2 + le^o^i ^ V A / p ^ / ^ 5 l , 0 , 3 -Bo,4 A + . . . 

J 4v .̂Bo,o,..,j„=:2 5o,o,..,j„-^=2 

ô,...,.n=2 - 2̂  r(n + i /2) \ p i i 
3 

( 2.B2,Q,..,j„=2 2(5i,o,i,o,..,j„=2 - 5o,2,0,..,j„=2)A2 
" " l r (n + l ) ^ 3r(n + 2) 

k-1 ^ 

hk = E B(o,n)B{o,k-{n+i)) ( " - A;)(n + 1) - n - = x 
n V n=0 

2(fc + l)(2/c-M)5(o,fc) + ^ p ( n ) % , f c ) A " A; > 3. (3.22) 

V n=l I 
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w i t h 

^-(A) = - i - / ^e'^V^s €{s) = £ h-6{Xr , (3-23) 
2TnJ\s\=oo s Y 

!(A) = — / -e^'V^s MHs) = M^ + n M \ X f . (3.24) 
27ri yis|=oo 5 >|=00 

Also, for the ease of notation, i n the last line of (3.22) we call ^(r,^) the coefficients in the 

subset 

W = J2 [dxB^r,s)v'W^'^'' (3.25) 
r,s •' 

of W, which i n our usual notat ion rewrite 

B{r,s) = B2T,0,...,js=2 , B[r,Q) = B2r+2 (3.26) 

and p(n) = 2/{T{n + l ) ( 2 n + 1)). 

I n appendix B , we show a computer programme which constructs the I jo . . . j„ given the 

local expansion as an input . 

Summarizing, we have an equation for the coefficient of each independent local funct ion 

of (f (basis vectors). A n approximation scheme emerges f r o m working to a finite order i n A 

and taking A large, but finite, i n the same fashion as we d id for the vacuum energy density 

of the free scalar theory. These equations may be solved semi-classically by first ignoring 

the power series i n A. This amounts to ignoring the laplacian in the Schrodinger equation 

(3.13) and solving the resulting Hamilton-Jacobi equation as a local expansion. This local 

expansion is possible because the f u l l solution for the Hamilton-Jacobi equation is the 

Euclidean action on shell and the classical theory is massive. We can iteratively compute 

the quantum corrections to the coefficients by substi tuting the leading order values into 

3.5 The Hamilton-Jacobi Equation 

We proceed to study some properties of the equations which determine the leading order 

values of the coefficients Bjgj^,,,j^. Neglecting the 7i-dependent terms in (3.22) amounts 

to solve the so called Hamilton-Jacobi equation for a local expansion i n the fields, f r o m 

which one can obta in the classical values of the coefficients of such expansion. 

For the tp'^ scalar field theory i n two dimensions, the Euclidean action reads 

SE = I d^xLEi<P,d^,<p) (3.27) 
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and the Hamilton-Jacobi equation for a time-independent potential is 

/ f ( ^ , ^ ) = 0 , (3.28) 

w i t h the Euclidean Lagrangian density given by 

J^E = \{^'+ f") + + (3.29) 

and 

so that (3.28) becomes 

I f we expand W i n the vacuum funct ional ' I ' = i n a Ti-series 

(3.32) 
n=0 

the equation (3.13) to order TL° collapses to 

which tells us that WQIH can be represented by 5 ^ as expected. I f we evaluate the 

Hamilton-Jacobi equation for the scaled field ip^ then for large s the field varies slowly 

i n space. So we can employ the local expansion (3.1) to obtain a set of linear algebraic 

equations for the (classical) coefficients .Bjoii i n which is jus t the 0{h?) pieces of the 

equations (3.22) that f r o m now on we call I^Qj^,„j^, and then use the analytici ty properties 

to obtain an approximate vacuum funct ional for arbi t rary as we described i n the previous 

chapter. 

3.5.1 Some P a r t i c u l a r Leading Order Coefficients 

Let us examine i n more detail the subset of independent local functionals of the fo rm 

(3.25) as i t w i l l be possible to obtain analytic formulae for the leading order coefficients 

-^(rs) ^ defined as (3.26). This is because the 0{h^) system of equations which determine 

such coefficients comprises only terms of the fo rm B^^jy 

"The superscript 0 denotes a 0{h'^) quantity . 
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The classical equations are basically determined by / dx {SW/5ip{x))^. A n exercise of 
integrat ion by parts shows that the 0(? i°) equation correspondent to / dx ip^'^ifh)^ ^ 

^ { V ) = 0 ' (3-34) 

contain only terms coming f r o m similar local functionals, that is f r o m 

nk.MMM) H ( j ^ / . - . < " ' = ) . / . -V<«') . (3.35, 

I n determining a part icular /"^^^^ f r o m / dz J^kukMh ^ i ' 2̂, 2̂), we constrain (3.35) 

to yield the same number of fields and number of derivatives, 

2m -h 2 = 2fci - I - 2 - H - 2A;2 + 2 - 1 =^ m = A;i /:2 (3.36) 

and 

Using 

and 

2li +2l2 = 2n^li+l2 = n. (3.37) 

Idx^''<p^^y' = 2V' -V( ' ) ' + 2 ( - ) ' ^ (v^'V^'))^^^ (3.38) 

n 
^ iAix)B{x)) = J : '':]A(--'HX)B^'HX) (3.39) 

k=o \'^J 

we can show that 

nki,h,k2j2)=4 (k,k2 ¥;2'=i-v '̂̂ -̂v '̂'̂ %('̂ '̂+ 

+fc2(-)'v2..-i^(;,)2^ p l V ^ 2 / = , ^ ( / , - . ) ^ ( ; , + . ) ^ ^ 2 ) + 

i=o V v 

( ' ;)(^"')"-v"- 'g ( ' ; ) ( ^ - . ) < ' . - v < ' - » ( 3 . 4 0 , 

and thus 

( / d ^ ( ^ 2 m ^ W ' ) / ( ° ^ , „ ) = / ( i z X ] ^ ( ^ i ' ' i ' ^ - ^ i ' " - ' i ) = 0 (3-41) 

•̂̂  / y ^̂^̂^ 
where we should also include terms f r o m the classical potential when i t is the case. 

We are ready to determine by examing the terms shown i n (3.40). The first 

t e rm is A;iA;2(/3 '̂"''̂ (̂ ('̂ ^V '̂̂ ^^ and contributes to 1°^^^) if h = 0 or h = n ^ k = 0 as 

[ dz<p'^{z)<p^-y\z) J ] H ( m - A ; i ) ( 5 [ ' , ^ , o ) 5 ( V . . , n ) + ^ ( f c , , n ) ^ ( l - . , , o ) ) • (3-42) 
ki 



Chapter 3: A Schrddinger Equation for the Local Expansion 62 

I n the second term, i f h 7̂  0, the only contr ibut ion comes f r o m I2 = n, that is 

/ d V " ^ ( z ) ( ^ ( " ) ^ . ) ; ^ ( m - A;i)B«,^_o)^f^-fe.,n) > (3.43) 

and i f I2 = 0, i t becomes 

A ; 2 ( - ) > 2 f c 2 + l ^ (<^2A:i)(n-0^(n+0 (344) 

i=0 \ ^ 

which contributes to „) w i t h 

n - l 

n-1 

/dz^'^{z)<p^-^\z)Y,{Yl U (-r^"2fci(m-/.0 + ( m - A ; i ) ( 2 m + l ) ) 5 f , ^ , „ ) 5 ( V , , , 0 ) 
J fci i=o v v 

(3.45) 

and the t h i r d t e rm (which is obtained f r o m the second by interchanging the indices 1 2) 

contributes w i t h a similar term. The last term contributes according to the value of k . 

I f Zi = 0 i t gives 

• d V " ^ ( z ) < ^ W ' ( ^ ) J2 ( X : ( i ) ( - ) ^ + " 2 ( m - h) + (2m + l))4,o)Am-..,n) (3-46) 

whereas i f = n we have 

/dzv'^{z)>p^^^\z) ('']{-y^-2h + (2m + 1 ) ) S ? , ^ , „ ) B ( V , ^ , 0 ) (3-47) 

and finally for 0 < Zi < n the only contr ibut ion is of the f o r m 

/ d V " ^ ( z ) < p W ^ ( z ) ^ B'^kMBtm-kr,n-l,) • (3-48) 

The calculation above is impor tant to test the results of our computer programme which 

includes calculating J{6W/6(p)'^ f r o m a general set of local independent functionals W 

and then a routine for integration by parts and reduction to a basis vector element (see 

appendix B ) . 

The set of equations of the f o r m I^- can be systematically solved to render analytical 

formulae for a l l the leading order coefficients of the f o r m -Bj'^ n) defined by (3.25). For 

example, the classical equations which determine the B^^^y can be wr i t t en as 

•fS),n) = E ^ ( V ) ^ ( V ^ ) (3.49) 
*;=0 

for > 2. The coefficients and B'^^Q^I) are determined by the equations h and /o,2 

i n (3.22): 

f - 2 ( 5 f o , o ) ) ^ = 0 

i - 45 (%)5°o , i ) = 0 (3.50) 
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which give B^QQ^ = —1/2 ^ and B^QI-^ = —1/4, where we have adopted a mass scale so 

that M = 1. We can wri te (3.49) i n a power series fo rm as 

H ^{0,n) ^ " - ( - ^ ( 0 , 0 ) ) ^ + 2-B('o_o)-6('o,i) z 
\n=0 / 

by the vanishing of each coefficient of z, and hence solve for B^Q to give 

B{o,n) 
1 1/2' 

n 
n = 2 ,3 ,4 , . . 

(3.51) 

(3.52) 

I n this way, we have determined a l l the classical values for the expansion coefficients 

fdxB^g^^ (^(")^ I t w i l l also be useful to determine fdxB^-^ .^^ (^^(^(n)^ Equation I4 

i n (3.22) determines 5 ( \ „) = - f f / 9 6 whereas for n = 1,2,3, . . . , we have to solve the 

equations 

(̂1,1) = 2 B ° o o j 5 ( \ 1) + 5B^o^^)B°^Q) = 0 , 

^{1,2) = 2-S['o,o)-^(°i,2) + -^('o,i)-^('i^i) + 6Bfo^2)B°ifi) = 0 , 

-̂ (1,3) = 2^(o,o)-^('i,3) + B^o,i)B{i,2) + ^{o,2)B(i,i) + SS^o gjBj ' i 0) =^ 0 , (3.53) 

etc.. I f we redefine 

-"(0,0) 

RO 

-"(1.0) fi^{l>0) ' (3.54) 

equation (3.53) becomes 

(3.55) 

-^(o,o)-^(i,i) + -^(o,i)-^(°i,o) - 0! 

so 60 I S O 60 1 60 6 0 _ A 

^{0,0)^(1,2) + -O(0,l)-t'(l,l) + •0(0,2)^(1,0) - U ' 

^{0,0)^(1,3) + -^(°0,l)-^{'l,2) + -^(°0,2)-^('l,l) + •^(0,3)-^('l,0) = 0> 

which, i n t u r n , can again be expressed as the vanishing of each coefficient of z i n the 

product of the power series: 

IZ-^(0,n)^" ^{l,m) ='^(°0,0)^(°1,0)- (3-56) 
Vn=0 '̂ m=0 

We can solve for 5 ° ^ by using the standard formulae of inversion and product of power 

series [49], which yields, after undoing (3.54), 

RO -
B(l,n) - - 16 

^(°o,i) 
- 1 

0 

^{0,2) 
R O 

R O 

^(0,n-2) 
RO 
^(0,n-3) 

^{0 ,n-l) 

^ fo ,n-2) 

^(°o,i) 

(3.57) 

^We took the negative root for normalisabihty. 
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and therefore we were able to find a formula for B^-^ i n terms of B^^ = —3/96 and 
the previous B^Q^^) which are known to be (3.52). I n a similar fashion we can find the the 
classical coefficients of / dx B*^^ (^^(^(")^. The equations which determine such coefficients 
are 

-^(2,0) = 2(5°i ,o))^ + ^B°2fi)B^o,o) = 0) 

^{2,1) = I f i S f i o)-^fi , i ) + ^B^o,o)B(2,i) + 305fo i )^[ '2 0) = 0 , 

^?2,2) = '^^^{1,0)^{1,2) + + 6 5 j , , 0 ) ^ { 2 , 2 ) + ^ ( 0 , 1 ) ^ ( 2 , 1 ) + ^^^^0,2)^(2,0) = 0 , 

^(2,3) = o)5(\ 3) -f- 2 5 | \ 2) + o)-B(2,3) + 2^(o,i).B(°2,2) 

+ '^B^o,2)Bl2,i) + 30^°o3 )5°2 ,o ) = 0, (3.58) 

etc. , which i f this t ime we redefine 

Blofl)- \B°m ' 

^{2,0) 15-^(2,0) ' (3-59) 

allows us to wr i te those equations as 

/oo \ 2 /QO \ / ° ° \ 
J2 A"l,n)̂ " + 2 E B'^0,m)^^ E^(2,0^' - ( ^ ( 1 , 0 ) ) ' " 25j'o,o)^f2,o) = 0 (3.60) 

\ n = 0 / \m=:0 / \ ; = 0 / 

where each coefficient of z must separately vanish. I f we set (Zlm=o-^(o m) '^ ' " ) ~ 

Em=Qpmz'^ as well as ( E ^ = o ^ f i , „ ) ^ " ) ^ = Er=o7n^" we can formal ly wri te , after sub­

s t i tu t ing back the original values of B'^^ O)JB^I O) -^(2,0) > 

1 - ~ 1 " 
B{2,n) = 9 ( ( - ^ a . O ) ) ^ + 2^|'oo).B°2 0 ) ) ^ „ - - ^ /3fc7n-fc 

k=0 

n > 1. Using the formulae for inversion and product of power series f r o m the mathematical 

l i terature [49], we can calculate al l the B^^ n) • 

3.6 Solving the Schrodinger equation 

As we have discussed earlier, the equations (3.22) can be solved to determine the co­

efficients w i t h i n the standard semi-classical scheme. Clearly a loop expansion 
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amounts to a weak coupling expansion: one can rescale the field so that the factor appear­
ing in the pa th integral is l/{g'^ti) that is 

f ^ ^ • P-«2> 

Then, i f we expand the logari thm of the vacuum funct ional i n powers of h like 

W = Y , n^'-^W"", = W° , (3.63) 
n=0 

the Schrodinger equation to 0{h) is wr i t t en as lime^oF^[ip] = 0 w i t h 

V2 J \ d(p J \ dip J J 

where 

y / ' = ldx\Mnef'p'{x)-£{ef 

WHf] = E / ' ^ ^ 4 , . . . , . n ¥ ^ ° ( ^ ) - - - ( ¥ ' ^ " ^ ) ' " . (3.65) 

which illustrates that quantum corrections to the coefficients Bjg^,,,j^ can be obtained 

i terat ively by subst i tuing the leading order solutions into the laplacian. 

For theories which are massless at the classical level, the semi classical approach is 

not applicable w i t h i n our framework. Notwithstanding, i f there is quantum mechanical 

generation of mass, as is believed to be the case for some theories of physical interest like 

Yang-Mil ls , then our local expansion does make sense (for fields that vary slowly on the 

scale of the lightest glueball, i n the case of Yang-Mills theory) but another method than 

the semi-classical approach has to be employed to solve the resulting algebraic equations. 

I n [2] i t was suggested a new method to solve these equations which basically consists 

of t runcat ing the expansion in A for each linear independent expansion funct ion at certain 

order, say A ^ , the error being estimated by studying the asymptotic behaviour of 

for large s and iV using equation (A. 18). I n this approach there is no expansion parameter 

as the approximat ion consists of working w i t h a large but finite value of iV and A and 

therefore i t is a non-perturbative scheme since i t does not rely on the smallness of the 

coupling constant. 

F ina l ly the particle spectrum can also be calculated i n a similar fashion [2]. The one-

particle wave func t iona l corresponding to the lightest physical particle i n the theory can 
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be thought to have the f o r m of a pre-factor P mul t ip ly ing the vacuum funct ional ^ . For 
slowly varying fields, i t can be wr i t t en as an integral of a local func t ion 

P = J dx{ip + aiip^ + a2<p^ + ... + bi^ip'^ + b2^(p"^ + ... + c i ( ^ V ^ + • . . ) . (3.66) 

The Schrodinger equation which determines these expansion coefficients is linear i n P 

1 f e^Wl r SP 6W \ 

and i n principle can also be solved by the method proposed i n [2]. 



C h a p t e r 4 

Short Distance Properties from 
Large Distance Behaviour 

I t is impor tan t to show that our framework effectively reproduces the results that can be 

obtained w i t h i n the standard approach of semi-classical expansion. I n particular, since 

physical states are bui l t out of their large distance behaviour, i t is crucial to verify i f 

this formal ism correctly incorporates the short distance behaviour as contained in the 

counterterms of the Hamil tonian, which we demonstrate i n this chapter. We also point 

out a curious s impl i f icat ion vaHd for the Sine-Gordon and Sinh-Gordon wave funct ional 

and i l lustrate how the vacuum funct ional can be reconstructed f r o m its local expansion 

val id for slowly varying fields. 

4.1 Introduction 

We are discussing an approach to quantum field theory in which the physical states are 

constructed out of their large distance expansion. We showed i n the previous chapter that 

such expansion for the vacuum funct ional satisfies its particular f o r m of the Schrodinger 

equation f r o m which the expansion coefficients can be calculated, for example, w i t h i n the 

standard semi-classical expansion. We have also seen that f r o m the knowledge of its local 

expansion, val id only for slowly varying fields on the scale of the inverse of the mass of the 

lightest physical particle i n the theory, i t is possible to reconstruct the vacuum funct ional 

for an a rb i t ra ry field configuration using its analyticity properties under complex scaling. 

Furthermore a new scheme, originally proposed in [2], offers the possibihty of solution 

beyond per tu rba t ion theory i n the couplings for the expansion coefficients. However, 

67 
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before this is at tempted, i t is essential to demonstrated that oiu: formalism, which starts 
off w i t h a large distance expansion, gets the right short distance behaviour as is contained 
i n the counterterms present i n the hamiltonian. I n other words, we want to study how the 
renormalisation of the ultraviolet (short distance) infinities are described i n our approach 
which we w i l l i l lustrate i n the context of (^^ .̂̂  theory. 

I n the previous chapter we determined the explicit cut-off dependence of the coun­

terterms for ipj^i theory, expressed by the relations (3.11) and (3.12). The ambiguity in 

the choice of the counterterms represented by 5M'^ and 6£ is to be resolved, as usual, by 

renormalisation conditions. There is a natural way to do this i n our context. Notice that 

the counterterms only enter IQ and I2 i n (3.22). I f these are fixed then these equations 

determine the coefficients -Bjo, •Jn ^ind the energy eigenvalue, £ , which are themselves fi­

nite as the cut-off is removed. Alternat ively we could choose the values of two of these 

quantities, B2 and £ for example, and then think of the equations JQ = 0 and 72 = 0 as 

determining the counter-terms. So we w i l l take 

B . = - f . (4.1) 

which is its classical value, and 

£ = 0 (4.2) 

as our renormalisation conditions. The advantage of imposing the renormalisation condi­

tions on £ and B2 is that we are free to solve (3.22) for the remaining without 

first computing the A-dependence of the counter-terms which i n a more general context 

can only be done i n per turbat ion theory. 

4.2 The Mass Subtraction 

I n the semi-classical approach, the equations (3.22) may be solved by first ignoring the 

terms propor t ional to h i n order to calculate the leading order coefficients Bj^ ^^. A l ­

though the resulting equations are quadratic i n these coefficients they are readily solved by 

s tar t ing w i t h the coefficients of local functions of the lowest dimension and number of (p. 

I n chapter 3 we showed how to get exact formulae for the leading order coefficients of local 

functions of the f o r m / dxip'^"'{x)(p^'^^\x) and gave explicit expressions for .Bo,o,...,o,j„=2i 

J55,o,...,o,j„=2 and 5^,o...o,j„=2 (please see equations (3.52), (3.57) and (3.61)). W i t h the 
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help of our computer programme showed in appendix B , we could also solve the resulting 
equations which determine the leading order coefficients of more generic basis functions. 

Thus we can wri te , to leading order ^ 

128^^ ^ 256^ 1024^^ ^ 256^ 1024^^ ^ 

^ ;9^V" + + ^ M ^ " " - ^ , 9 ^ + (4.3) 
2048''"^ ^ ' 1024' '" ' ' ' ' 2048"' ' " 4096' 

We start by showing that our large distance expansion correctly gives the short distance 

behaviour as contained i n the divergent mass subtraction given by M'^[\) which occur only 

i n I2 (3.22). Using the values which we have calculated for 52_o,...,o,j„=2 S^t the 0{h) 

expression 

y 2 ( A j - 2 + ^ ^ 2 9^y^^ 1 9 2 ^ 1280 43008 ^^"^^ 

where M'^{\)^, as given by (3.24), is expressed by 

M^Xf = S M ^ - 9 ^ ( l + T {-ir^'T{m)X"'+'] , (4.5) 
V4 ^ 0 / 

w i t h 
, , r ( m + 3/2) 

^ ( " ^ ) ^ 4 y ^ ( 2 m + 3)(r(m + 2 ) )2- ^'"^^ 

The RHS of equation (4.4) vanishes as A -> 00 but i n the spir i t of our method we hope 

to get a good approximation i f we truncate the series and take A as large as the truncation 

w i l l allow, i.e. small enough for the first neglected term to be insignificant. 

Now since / ( A ) is of order 1/A for large A (3.19), the accuracy of this approximation is 

greatly improved i f we per form a fiu:ther contour integration, amounting to a resummation 

of the series i n A. Notice that i f we substitute X — l / y / s i n (4.4), l 2 ( l / y / s ) is a funct ion 

that is analytic i n s w i t h a cut on the negative real axis that we wish to evaluate as s 

tends to zero f r o m real positive values. Thus we define 

7(A) = / -e^'^V^sIis-'^') (4.7) 
27rj y|s|=oo s 

for which HmA^oo (A) = 0 and hence, to order h, (4.7) translates into 

'We have chosen our mass scale so that M = 1. 
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where 

5(A) = 
^/A / 1 A ^ r ( 3 / 4 ) A^ A^V2r(3/4) ' 
v / ^ l l 6 r ( 3 / 4 ) 967r ^ 960r(3/4) 53767r 

and 

^ ^ ^ ^ " 8 " r ( ( m + 2) /2 + l / 4 ) 

(4.9) 

A^ '+ i (4.10) 

The terms i n 5(A) now decrease more rapidly than the corresponding terms i n / ( A ) . 

Since 1(1/^/s) behaves asymptotically as x/s for small s this resummation has the effect 

of e l iminat ing the leading t e rm so that / ( A ) is now of order 1/A^. Further resummations 

are only efficacious given a sufficient number of terms in the truncated series for the extra 

gamma functions in the coefficients to be noticeable. 

I n fig.(4.1) we plot , the series 5(A) truncated to 13 terms, — (X)^/{2g), their sum, 

and the l i m i t of this sum as A -> oo, (which we obtain exactly i n the section 4.5 as 

- l / ( 8 7 r ) ~ - 0 . 0 3 9 8 ) . 

--

• -

5(A) 

^^{X)-M'^{Xf/2g 

n 0 d fi 

-M^Xf/2g 

k 10 12 1< 

Figure 4.1: The Mass Subtraction 

Clearly neither 5(A) nor -M^(A)^/(2g) are constant for large A but their sum is, to 

a good approximat ion for A > 2. This shows that our large-distance expansion correctly 
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reproduces the short-distance effects encoded in M'^{e)^. The departmre f r o m this constant 

value for A > 11 is due to the error involved in truncating the alternating series S'(A) to 

13 terms. 

I f we denote by Sn the S'(A) series truncated to n terms minus M'^ {X)'^/{2g) then 

i n fig. (4.2) we show Sn for n = 4,5,8,9,12,13. This figure illustrates the resummation 

process and is a high-resolution plot of fig.(4.1), so to speak. Notice that S{X) being 

an al ternating series, the direction of the departure of a curve f r o m the correct value is 

associated w i t h tak ing an even or odd number of terms in this series. 

Lambda 

Figure 4.2: Truncating 5(A) 

Each t runcat ion provides a good approximation to 5(A) up to a value of A which is 

large enough for the highest order te rm to be a significant f rac t ion of the whole. TaJsing 

this to be one per cent gives an estimate of 5(oo) w i t h an error that ranges f r o m three 

per cent (five terms) to half a per cent (13 terms). 
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4.3 The Energy Subtraction 

We proceed to check that our large distance expansion correctly reproduces the energy 

subtract ion which is expressed by the equation Jo = 0 in (3.22), 

1 r fi^^R 4 . ^ o . 2 A B o ^ 
-B0,0,...,jn=2 + . . • j . 

(4.11) 

To order 0 { f i ) , i t can be wr i t t en as 

/»(A) = - £ » ( A ) + ; i ^ ( i : l M A" 
= - ^ ' ^ ( A ) + 7i5'^(A) (4.12) 

r(n + l)(2n + l) 
where, f r o m (3.23), 

2m J\s\=oo s \ 2 yp2<i/^ 27r " ^ 
(4.13) 

I n fig. (4.3) we plot - ^ ' ^ ( A ) , 5 ' ' (A) truncated to 12 terms, and their sum as expressed 

i n (4.12) which vanishes as i t should, reflecting the normal-ordering of the Hamil tonian. 

The departure f r o m 0 at A = 8 again reflects that we have truncated the series. 

S ^ { X ) - £ ^ { X ) 

Figure 4.3: The 0{h) Energy Subtraction 

I n order to analyse the 0{?i'^) energy subtraction, we need to calculate the 0[h) part 

of W[ip] that is quadratic i n (p. We obtain this f r o m the equations /o,2 = 0,7o,o,2 = 0 , . . . , 
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having imposed the renormahsation condition B2 = —M/2. For example, in determining 
BQ 2J the first order correction of the coefficient of / dx ip'^{x), we have to solve the equation 

7^2 = 4(525^2) + (^2,2 + 25o°4A + pl,^,X + . . . ) (4.14) 

(see (3.64)). 

We use the re-summation described earlier, truncate the series in A so that they include 

contributions from coefficients of functionals of (p of dimension less than 26, and taJce A 

so that the last included term is one per cent of the value of the truncated series [4]. We 

also use Stieltje's trick of halving the contribution of the last included term to improve 

the accuracy of the approximation [54]. This gives the estimate 

1000 
/ dx (QM^'^ - 6.02(̂ "2 + 5.40(^"'2 - 4.91<f""^ + 4.54(^(^)2 

-4.24(^(^)2 ^ 4.01,̂ (7)2 _ 3.7V^'^' + 3.58</p(̂ )2 - 3.34(^(i°)2 + . . . ) (4.15) 
/ 

In the next sections, we obtain W2 exactly. Rounding the exact results to three 

significant figures gives 

W^ = ^ l dx(^d.Q3ip'^ - 5.97ip"^ + 5.33(/p"'2 - 4.84(/?""2 + 4.45(^(^)2 

-4.14(/.('')2 + 3.89(/p(̂ )2 - 3.68</p(«)2 + 3.50^(^)2 - 3.34<^(i°)2 + ...] (4.16) 
/ 

which shows that our approximate results are good to a few per cent. 

Figure (4.4) shows the effect of substituting this estimate into the 0{h^) contribution 

to IQ. The top curve. A, is the estimate of the re-summation of the series in A, whilst the 

bottom curve, B, is the 0{ti^) contribution to the re-summation of ^(A) evaluated using 

(3.12) with SM'^ = g/{4TT). Neither of these curves appears to tend to a constant for large 

A whereas their sum, represented by the middle curve, C, provides a good approximation 

to a constant value for A larger than four until A is suflSciently large that the approximation 

of the infinite series by just ten terms breaks down. The straight line in the figure is the 

value 0.0052 which would be obtained by truncating the series at fifty terms using the 

expression for W2 which we wil l present later. 
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0 . 0 0 8 

0 . 0 0 6 

0 . 0 0 4 

0 . 0 0 2 

Figure 4.4: The 0{h^) Energy Subtraction 

4.4 Four Field Terms 

Having proved that our large distance expansion correctly reproduces the short distance 

effects present in the counterterms of the Hamiltonian, we can proceed to evaluate the one 

loop correction to the expansion coefficients of higher number of fields. For the coefficients 

of local functions containing four fields, we start by calculating their leading order values 

which are obtained, as we have described before, by neglecting the 0{h) part of the equa­

tions (3.22). Such equations can be obtained with the help of the computer programme 

(appendix B) and readily solved to give 

1000 
r ( 

-7.81</?V"^ - 30 .3 /V"^ - ll-7ip'p"'-' + 4.88(^V"^ - 22.7^5 

+36.6(^'V"" + 40.0<^<p'V"" - 3.42</PV""' + • • • ) (4-17) 
/ 

Following the same reasoning as we described for the calculation of the two-field terms, 

the 0{h) contribution is ([4]) 

„2 

-"4 

9^ 
10000 

f da; (4. 02ip^ - 20.0(^ - 7.96(/j'^ 
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+17.4<^V"' + 83.8(^'V"' + - 15.6<^V"" + 87.7yj"^ 

-129(/p'V"" - 164(/p( '̂V"'2 + 14.0<pV""' + • • • ) (4.18) 

There are things to note. Firstly there is a proliferation of local functionals of the 

same dimension and number of as these increase. So, for example, there is a unique 

local functional with just two ip for any dimension, but there are two hundred and seven 

with twelve ip and dimension twelve. Secondly the ratio of the 0{?i) corrections to any 

two coefficients of functionals containing the same number of and the same dimension 

is approximately the same as the ratio of the tree-level values [4]. For example the ratio 

of the O(^) coefficients of (^^(^"^ and ĉ "* is -17.4/7.96 ~ -2 .19 . . . whereas the ratio of 

the corresponding tree-level values is exactly —2. Given that our estimate is probably 

only good to a few per cent i t is not clear at this stage whether the one-loop ratios are 

exactly equal to the tree-level ratios, but we will investigate this with greater accuracy in 

the next section. We wil l now compare these results with those obtained by solving the 

Schrodinger equation without first expanding in terms of local functions which is fairly 

easy to solve for low orders of an expansion in powers of <p and h. 

4.5 Direct Semi-Classical Solution 

The Schrodinger equation hme-).o-FeM = 0 can be solved without resorting to a local 

expansion in the fields. In this section we compute some exact formulae for the coefl5cients 

of two and four field basis functions in order to evaluate the precision of our method. 

Let us expand the logarithm of the vacuum functional as 

oo . 
= ^ dPl--- dp2n^(pi) • • • ^{p2n)'^2n{PU • • • ,P2n)S{pi + ••• + P2n) (4.19) 

where the T are unknown functions ^. 

The action of the laplacian on (4.19) is symbolically expressed by A£pF[<^] = J2^^2n 

where Ar2n is 

/ 2'Kdq / dpz.Jp2n2ri{2n-l)ip{p3)..ip{p2n)'r2n{q,-q,P3,--,P2n)S{P3 + --+P2n)- (4-20) 
Jq^<l/t J 

^We have derived a formal expression for F (equation (2.29) with s = 1) but here we will expand it in 
powers of h. 
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Likewise, we write 

with r2n o equal to 

Smrnr J dp2-dV2ndk2..dk2m ^{p2)-^(P2n)v^{k2)-Hf^2m)^iP2 + ••+ P2n + k2 + •• + hm) 

X r 2 „ ( - ( P 2 + •• + P 2 n ) , P 2 , .•,P2n)r2m(-(^2 + •• + hm),k2, .., k2m) (4-22) 

We want to find the F's for a certain number of fields in (4.19) as an expansion in 

powers of h. Let 

r 2 n = E^"^r2\^ r t ; = ro„, (4.23) 

To tree level, the Schrodinger equation yields 

o r ° + 2ro o ro -f 2ro o + r ° o ro -1-... = I (^ip'^ + M^ip^ + ^^p"^ . (4.24) 

The term quadratic in ip is 

r ° o = y dp87r(r°(p, -p))Mpm-p) = / + M'MPM-P) (4.25) 

so i f we take the negative root for normalisability of the vacuum functional we get 

, _ v y ^ , (4.26) 
47r 47r 

Then it is straightforward to show that 

/271 \ 

r 2 o r 2 n = - / dpi . . . dp2nHPl) • • •'PiP2n) ^ ^ ^ ( p i ) r2„(pi , . • • ,P2n)(^(Pl + • • • + P2n) 
(4.27) 

which can be used to calculate F^ since 

F° o F° = I / dx^Hx) = I n ( / ^ ' ^ ( P O ) 2ir6{i:p,) (4.28) 

and therefore 

F^(pi,. . . ,P4) - (27r)3(4!)(a;(pi) + . . .+a;(p4))" ^^'^^^ 

The terms of higher order in (p, for which there are no contributions from the potential, 

give, generically, 

E r L ° r L = o (4.30) 
n+m—ri 
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where 77 > 4 is a constant such that starting with 77 = 4 we can determine all the r2T]-2-
For example, to determine Fe to leading order we have to solve ry = 4, that is 

o r ° + r ° o + o po = o. (4.31) 

and using (4.22) we get 

r ^ ( 
dp,... dpeHPi) • • • <^(P6)5(EP^) 487rr§(-pi ,pi)rg(pi , . . . ,pe)+ 

•' 1=1 \ 
\ 

+ 32TTrl{-pi -P2-P3,P1,P2,P3)^1{-PA~P5-P5,P4,P5,P6) = 0 (4.32) 
/ 

By substituting 

r § ( - f . . p O ^ ^ E 5 ^ (4.33) 

in the equation above and using (4.29) we finally get 

9 J 1 -S< 
^"^^''•"•'^'^ i4\)H7r^ZLl'^iPi)^\MPl + P 2 +P3)+^ipi)+'^ip2)+U>{j)3)) 

X i I (4-34) 
{Uj{p4 +P5 +P6) +(^(^4) +W(P5) +W(P6)) J 

where the S symmetrises the momenta. The equations (4.30) can be solved recursively as 

r ^ . ( P l , - . - , P 2 r ) = 

47r r - l 

I:r-^{P^)^2 
^ n(r + 1 - n ) S | r ^ „ ( - ( p 2 + • . • +P2n),P2, • • • ,P2n) 

^T\r+l-n)i-iP^n+2 + ••• + P2{r+l-n)),P2n+2, • • • ,P2(r+l-n))} (4-35) 

I f we expand r2 and in positive powers of the momenta we exactly reproduce (4.3) 

since no resummation is involved in either approach to the tree level result. 

The order h contribution to the Schrodinger equation is 

E o r^m + E + / dx {2£'^ - (M^) = 0. (4.36) 
n,m n 

Using (4.20) and (4.22) in (4.36) enables us to write the term quadratic in ip as the 

limit as € ^ 0 of 

+ 2.(p)r^(p, -p) + 4 - J = 0 (4.37) 

which can be solved to give 
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that is 

and for p = 0 we get F2 = 3/(327r2M) - dM'^/{87iM). The renormalisation condition that 

fixes B2 at its classical value requires that F2(0,0) = 0, which determines 

SM^ = £?/(47r), (4.40) 

but i f instead we had chosen a renormalisation condition such that SM'^ = 0 then we 

immediately read off the first correction to B2, 

Bl = 7~ • (4.41) 
iDTT 

Setting p = 0 in (4.37) and taking the limit as e —>• 0 is meant to give the same result as 

taking the Hmit X ^ 00 in (4.8) when we identify F2(0,0) = B2/{2ir). This gives the value 

—g/{8iT) quoted earlier that agrees well with the large A behaviour of 5(A) — M^{X)'^/2g. 

More particularly, 5(A) should be obtained from the large e expansion of 

by applying the two contour integral re-summations, which is formally written as 

_ A /• dsS-'^'e''' f dss-'/^e'/^H{s) (4.43) 
47r J\s\=oO J\s\=oo 

which does in fact coincides with (4.9). 

Since the large A behaviour corresponds to small e, we can use (4.39) to investigate 

this. Thus for small e 

^^'^ = Jo ^ n u ( , ) ( ( . ( g ) + M ) j 
^ ^ 2 

= V M - 1 + e - VM - x/e + ^ + ••• (4.44) 

which leads to the power law corrections to the large A behaviour described earfier. The 

prior knowledge of this small e would have been useful to find an alternative resummation 

procedure in which we would try to cancel the power law corrections so as to get the exact 

result given by e = 0. For example, for the small e behaviour described above, the linear 

combination 

[R{X,e) + 2R{X,e)Xe)Gie) (4.45) 
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with R{X, e) given by (2.23) would subtract the square root correction and increase the 
convergence. This is because 

i ? ( A , e)G(e) = VM - -^T{l/2) + 0 + 0 + . . . (4.46) 
VATT 

whereas 

2R{X,e)XeGie) = ^ ^ ^ ( ^ + 0 + 0 + ... . (4.47) 
V ATT 2 

Expanding (4.39) in positive powers of leads to the exact results for the W2 quoted 

earlier 

/ ^ r t ( p , - p ) ( ^ ( p ) ¥ ' ( - p ) = 

'̂ ''1^48 ^ 160 ^ 896 ^ 2304 ^ 22528 

693<^(«)2 1 0 0 1 ^ ^ 6 4 3 5 ^ 1 0 ^ ^ V 43) 
^~53248~^ 81920 557056 9961472 22020096 J 

The 0{h) contribution to the part of W[ip] that is quartic in ip is obtained from 

2r^ o F ^ + 2F0 O F^ + AFg = 0. (4.49) 

Using the equations (4.20) and (4.34), the last term on the left hand side can be expressed 

as 

^ ^ 6 = TTirf-T / dq [ dpidp2dp^dpi^p{px){p(p2)(p{p2,)^{Pi)5{pi + .. +PA) X 

1 . f _2/5 + 
{MQ) + '^(P^)) ^ 1 (MQ) + 2uj{pi))iuj{p2 +P3 +P4) + 0J{P2) + W(P3) + '^(P4)) 

3/5 1 
{u{pi +p2-q)+ i^{q) + w(pi) -I- u}{p2)){u}[q + P2+ PA) +'^{q) + '^(Ps) + ^ ( ^ 4 ) ) J 

(4.50) 

which together with (4.27)and (4.29), enable us to solve (4.49) for F4 to give 

r$ '(pi , . . . ,P4) = ^2;r)34!7rEt'^fe)^U 2u[q) + Y.U(pi) (~2a;(g)(a;(g) + u;(pi)) 

+ {u{q) + cj(pi) + u(p2) + w(9 + p i + P2))(w(g) + w(p3) + w(P4) + ^{-q + P3 + P4)) 

1 1 (4.51) 
2uj{pi)Y:MPi) 
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Notice that this expression has to be symmetrised in the momenta, which has been symbol­

ised by S. For instance, i f we write the second term in the parenthesis as F(pi,p2,P3,P4) 

then 

Si^(pi,P2,P3,P4) = ^(^(Pl ,P2,P3 ,P4) +F(p3,p4,Pi ,P2) 4-i^(pi,P3,P2,P4) 

+ F{p2,P4,Pl,P3) + F(pi,p4,P2,P3) + i^(P2,P3,Pl,P4)) , (4.52) 

and that the last term in the curly brackets originates from the 5M'^ term in (4.39). 

Expanding (4.51) in powers of the momenta and integrating over q numerically en­

able us to write an exact expression for the first order corrections to the four field basis 

functions, that is 

.2 
j dxU.mip^ - 19.45(/?2<̂ /2 _ 7.96iy,'4 

10000 
-M6.27(^2^'/2 ^ 85.78(̂ '2(p"2 + 33.66(p(^"^ - 14.15(/p2^"/2 

12.65(/;2^////2 ^ 84 76(̂ "4 - 150.7^^"^"'^ - m.Oip'^<p"'^ + . . ] . (4.53) 
/ 

From this it is clear that our previous estimate was quite good, but that the observation 

that the ratios 
B h 

(4.54) 

are the same for coefficients of functionals of the same dimension and number of fields is 

only approximate since 

P4 = -0.03814 (4.55) 

P2,2 = -0.1245 (4.56) 

4 = -0.2038, p2,o,2 = -0.2082 (4.57) 

Po,2,2 = -0.2834, ̂ 1,0,3 = -0.2872, p2,o,o,2 = -0.2898 (4.58) 

p2,o,o,o,2 = -0.3701, po,o,4 = -0.3734, pi,o,i,2 = -0.3769, po,2,o,2 = -0.3799. (4.59) 

These ratios can, however, be explained by observing that the dominant contribution 

to (4.51) comes from the the term originated in the mass renormalisation prescription, 

hSM'^, which was fixed by imposing B2 = 0. I f instead we had chosen our renormalisation 

conditions KSM"^ = 0 then it would have been absent in that expression. 
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We can easily calculat the effect of this choice on the ratios using dimensional analysis. 
The coefficient of a basis function of dimension D, i.e. with a total of D derivatives, reads, 
in terms of the dimensionful parameters of the theory, 

BD = B I ^ ^ + B I ^ ^ + . . . , (4.60) 

where 5 ^ and B^ are dimensionless constants. Hence 

,,^_BU!l±mL,Oif^^, (4.61) 

having chosen our mass scale such that M = 1, which allows us to write the ratio p as 

B'h {D + 1)SM^ D + 1 
' ^ ^ M 2 = ^ ^ - ^ 

where in the last equaUty p is the ratio for the renormahsation condition 6M'^ = 0. Thus 

P4 = -0.00165 (4.63) 

P2,2 = -0.00513 (4.64) 

po,4 = -0.00486, p2,o,2 = -0.00926 (4.65) 

Po,2,2 = -0.00488, pi,o,3 = -0.00868, p2,o,o,2 = -0.0113 (4.66) 

P2,o,o,o,2 = -0.0120, po,2,o,2 = -0.0220, pi,o,i,2 = -0.0188, po,o,4 = -0.0153. (4.67) 

The advantage of this choice is that the one-loop corrections to the coefficients Bjg^„j^ 

for functionals containing four fields are now significantly smaller. The same is true for 

the coefficients corresponding to two fields, with the exception of B2- This suggests that 

a more effective choice of renormalisation condition which would reduce the size of the 

one-loop corrections, would be to fix B^ at its classical value, rather than B2 [4]. 

4.6 Sinh-Gordon Model 

From the standpoint of perturbation theory (/?^-theory is 'close' to a theory that is quite 

special, namely the Sinh-Gordon theory which has an infinite number of conserved quanti­

ties that imply the absence of particle production, it is interesting to calculate the vacuum 

functional for this case. The potential of the Sinh-Gordon theory may be taken to be [45] 

V = -2 cosh(/3(/) exp - — / — ^ = 
/32 \̂  An Jo u(p) J 

^ ' \I5^ 2 4! 6! y \̂  47r io w(p) ] 
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Apart from the replacement g M ^ ^ ^ the Sinh-Gordon potential leads to the same 
expressions for the tree-level values of F2,F4 and the one-loop result F2. The tree-level Vg 
is modified by the term in the potential 

6\{2nrZt<^iPi) 

this, together with the 5M'^(p^ term in V modifies the one-loop value Ff 

^ r'^ - f^'^' ( Hdq ( '-]+-] (4 70) 

so that for the sinh-Gordon model 

n J 
^ , , , 57r-22 2 ,2 22757r- 8952 ,4 , 65l7r - 2768 2 ,,2 

W.^ = ^-ldx[^^ + - i 2 8 F ^ ^ 8 6 0 1 6 ^ ^ + 172032 ^ ^ 

10417057r - 4243072 ,2 ,,2 6895357r - 2920448 ,,3 
M M (pep 

41287680 ^ ^ 82575360 
139057r - 58624 2 ,,,2 , ^ . 

^ 3932160 

' ' 8.2893(p* - 15.647(pV" - 6.6791(p" 
10000 

+13.3743(pV"^ + 74.818^'V"^ + 29.0731y7(p"3 - 12.0941(pV"^ + •. • (4.71) 
/ 

The ratios of the one-loop coefficients to their tree-level values for this model are 

P4 = -0.07958 (4.72) 

P2,2 = -0.1001 (4.73) 

/9o,4 = -0.1710, p2,o,2 = -0.1712 (4.74) 

Po,2,2 = -0 .2471 , pi,o,3 =-0 .2481, p2,o,o,2 =-0.2477. (4.75) 

Note that again the ratios are approximately the same for coefficients of functionals of the 

same number of fields and dimension, however this cannot be explained away as simply 

the effect of mass or coupling renormalisation. I f we had taken 5M'^ = 0 we would have 

obtained ^ 

PA = -0.1194 (4.76) 

P2,2 = -0.06035 (4.77) 

po,4 = -0.05162, p2,o,2 = -0.05183 (4.78) 

^For this model, equation (4.62) becomes po = PD - {D - l ) / (87r). 



Chapter 4-' Short Distance Properties from Large Distance Behaviour 83 

Po,2,2 = -0.04820, pi,o,3 = -0.04915, p2,o,2 = -0.04875. (4.79) 

which are approximately constant for coefficients of functionals of the same number of 

fields and dimension. These coefficients would, with a change of sign, apply to the Sine-

Gordon model as well. 

4.7 Reconstructing the Vacuum Functional 

We finish this chapter by illustrating how we can reconstruct the vacuum functional from 

its large distance expansion, as we discussed in section 2.3, using some of the results we 

derived in this chapter. 

Let us concentrate on the quadratic part of the logarithm of the vacuum functional, 

dp<p{pM-p)T{p,-p) (4.80) / 
Applying the formula (2.34) in the expression above, is equivalent to writing 

F2(p, - p ) = hm - i - / - ^ e ^ ( - i ) y i F 2 ( p / x / i , -p/V~s) (4.81) 
A-foo 2m J\s\=oo s - I 

Since |s| is large on the contour we can use the local expansion F2(p, -p) = Eo° "-nP^^-

Shifting 5 we get 

l im / ^ e ^ ^ v / m f ; a „ - ^ ^ = l im S{p, A) (4.82) 
A^oo 2in J\s\=oo S ^ [S + 1)" A->oo 

Expanding the (s -I - 1) factors in powers of I / 5 enables the integral to be done, yielding a 

power series in A. For example, at tree-level 

2mJ\sl=ooS-l^ yP + ' - 2 ^ n ! ( 2 n - l ) 0 F " 

This series converges for all positive A. We get an approximation by truncating the 

expansion by including terms up to and including A^~^/^, say. This requires a knowledge 

of the local expansion only up to terms in ((p^^'(x))^. To demonstrate this approximation 

we have plotted in fig. (4.5) the series (4.83) truncated at iV = 12, Su-

The value of A is chosen so that the last term included is one per cent of the value 

of the series. We have also plotted V p T T , and the expansion of y/^Tl in powers of 

C truncated to fourteen terms. The ful l series fails to converge for p^ > 1, and this 

is reflected in the fact that the truncated series ceases to be a good approximation for 
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v/p2-M 

Figure 4.5: Tree-level vacuum functional: r2(p, —p) 

p2 > 1. However, 5i2, which is a resummation of this series is a very good approximation 

for a much larger range of momenta. 

The one-loop correction, Ff , may be treated in the same way. In fig. (4.6) we have 

plotted arcsinh(p)/p. The small p expansion, C is again only good for p2 < 1. Our 

approximation that re-sums this series, 5i2 provides a good approximation only over a 

slightly larger range. The accuracy of this approximation is greatly improved by further 

re-summations, just as we did for the Laplacian. Let us define the resummation operator 

acting on a function of A and p to be 

(4.84) 

Then the curve R12 shown in fig. (4.6) results from applying R twice to 5i2, and provides 

a good approximation to arcsinh(p)/p for values of p up to about p = 5. Since the 

effect of applying R^ to a term in 5i2 that is proportional to A" is simply to divide it by 

r ( n / 2 - I - l ) r ( n / 4 - t -1) . . . r (n /2P -I-1) further apphcations would have no significant effect 

when we take just twelve terms in the expansion. 
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^^^^^\>--—_ 
c 

Rl2 

arcsinh(p)/p 

Figure 4.6: One-loop vacuum functional: r2(p, - p ) 



Chapter 5 

Feynman Diagram Expansion of 
the ( p f j ^ i Vacuum Functional 

Representing the vacuum functional as a functional integral enables us to derive its semi-

classical solution within the conventional approach to quantum field theory based on the 

language of Feynman diagrams. The advantage of this formalism is obviously the gain of 

pictorial insight as well as the possibility of associating simple general rules to the diagrams 

and therefore reduce the problem to the calculation of integrals over the space-time. 

5.1 Introduction 

In section 2.2, we obtained a functional integral representation for the vacuum functional 

of a scalar theory from the Feynman path integral representation of the Schrodinger func­

tional. Let us recall that expression here: 

* [ ( p ] = e^^M = I p0e-SE[0)+/da .0(x,O)^{x) ^ j ^^^-SS+SB (5.1) 

The Euclidean action SE[(t>] is defined on the half plane t < 0 where the field ^ satisfies 

boundary condition (p{x, 0) = 0 . The logarithm of the vacuum functional W[(p] can be 

seen as a sum of connected Feynman diagrams in which tp is the source for (p on the 

boundary, where (p vanishes. 

A stationary phase approximation to (5.1) reproduces the semi-classical, /i-expansion. 

Hence we can formally write 

W[ip] = -SE[<Pciass] - HDetAo) " . . . (5.2) 

where (pdass is the on-shell classical field evolving from a fixed value, say zero, in the 

86 
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infinite Euclidean past, to the value cp at i = 0. AQ stands for the second derivative of SE 
evaluated for the classical field and the dots represent multi-loop terms. Prom this the 
resemblance to the well-known effective action description of quantum field theory is clear. 
The novelty in our description of the vacuum functional is the presence of the boundary, 
where the field satisfies Dirichlet boundary conditions and has a source term SB-

In this chapter, we develop a Feynman diagram picture of the (t)\j^i theory vacuum 

functional, which can be suitably extended to Sine-Gordon models. In this approach, 

we reproduce some of the results which were obtained from the (exact) semi-classical 

solution of the Schrodinger equation in chapter 4. We also rely on Symanzik's work 

which establishes the finiteness of the wave functional as any cut-oflF is removed. For (fA 

theory in two dimensions, no additional field renormalisation associated with possible new 

divergences due to the boundary is necessary, although it is in (3 -I - 1) dimensions. Thus 

we should only face the usual renormalisation procedure which involves the divergences 

that occur in the bulk of the space-time. For any scalar theory in two dimensions with no 

derivative interactions this is rather simple: the only ultra-violet diagrams that occur in 

any order of perturbation theory comprise the graphs that contain a closed loop consisting 

of a single internal line, that is, two fields at the same vertex contracted with each other 

[45]. In this case, the ultra-violet divergence can be removed by normal-ordering the 

Hamiltonian as we have seen for (t>\j^i theory. As a matter of illustration, we show in fig.5.1 

two loop diagrams for theory. The diagram (a) is ultra-violet divergent whereas (6) 

is finite. 

(a) 

Figure 5.1: Diagram (a) is UV divergent. Diagram (6) is convergent 
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5.2 Feynman Diagrams on the Boundary 

Let us staxt by establishing our notation. As we wil l be working in two dimensions 

throughout this chapter, let us take the vertical direction as the time-like direction and 

the horizontal direction as the space-like direction. Therefore P = {t, x) is any point in 

the Euclidean half-plane with t in the range - co <t<0 and —oo < x < oo, t = 0 being 

the equation which defines the boundary. 

In constructing the Feynman diagram expansion of W[ip], the only major difference 

from the usual Feynman diagrams encountered in free space is that the propagator vanishes 

when either of its arguments lies on the boundary. Such a propagator can be constructed 

using the method of images as 

GDix,y) = Goix,y) - Goix,y) = Go{x,y) - Goix^y) (5.3) 

where x = ( i , x ) , x = ( - t , x ) and Go is the free space propagator. Notice that on the 

boundary t = 0, GD, which we henceforth call Dirichlet propagator, vanishes. Further­

more, because of the breaking of translation symmetry in the time-like direction, we may 

have non-conservation of the momentum component in this direction. In other words, the 

boundary might affect the "energy" conservation. 

We write the Euclidean action for (pj^i theory on the half-plane as 

and since only mass renormalisation is required because of the divergent tadpoles, we 

cut-off the momentum integration with I / 5 in 

M\s) = M 2 - I / , (5.5) 
2 7p2<i/, (27r)2p2 + M2 

p2 - I - M 2 = £̂ 2 .̂ p2 .̂ j^2_ make connection with equation (3.11) by performing one 

of the integrals over the momenta to yield (3.11) with dM"^ = 0. 

The source term is 

SB = J dxip{x)ct>{{),x) = J dxdtipix)^it,x)6{t) (5.6) 

which fourier-analysed using 
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gives 

SB = I iEp H-p)kE, p ) . (5.8) 

Prom this we see that, in momentum space, a factor oiiEp accompanies the source ^(—p). 

Likewise, we fourier-transform the Green's function 

for the free space propagator and 

/ dVye-^^^^'>y^GoU,y) = ' ^ ^ ) ; ^ ' ^ m V ^ ^ ^ (5-10) 

for the image propagator. We graphically represent the Dirichlet propagator shown in 

fig.5.2 as a sum of the free space propagator (full hne) and the image, energy non-

conserving propagator (dashed Une). 

> — = —< ) + - - < > - - • 
q p q p q p 

Figure 5.2: Dirichlet Propagator 

We can start writing the Feynman rules in the momentum space for the Feynman 

diagram expansion of the (pl+i theory vacuum functional. W[ip] is a collection of connected 

Feynman diagrams with the "legs" attached to the boundary for which 

• at each interaction point X we associate a factor g (coupling constant); 

• at each source field placed on the boundary, we write / j^^(p{—p)iEp 

• a propagator is composed by two pieces, as shown in fig.5.2. For each propagator 

we associate a factor ^r^j^ 

• The mass counterterm is given by (5.5); 

• A symmetry factor sj is to be associated to a diagram. I t comprises the product 

of three different numbers: the expansion factor of the exponential in (5.1), the 

different ways of contracting the source fields with the vertices (which reflects how 

well the factors of 1/4! in 5/4! have been canceled at each vertex) and the number 

of topologically distinct diagrams. 
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When the diagram involves loops, the Feynman rules in the momentum space are not 

as straightforward as they are in the free space. Let us work out a few examples. Consider 

the simplest graph in the diagrammatic expansion of W[(p], shown in fig.5.3(a) 

(a) (b) 

Figure 5.3: (a) Tree-level two-field diagram 

For this diagram, we can use our Feynman rules to write 

-Sf (fi-pM-cO E p E , ^ ^ [S'ip + q)+ S{p + q)6iEj, - E,)) (5.11) 

2 + M 2 • 
(5.12) 

where we adopt the following convention 

dp 

Jp JEp Jp J-oo 2n J-oo 27r 

j ~ ( j ~ f dt r d-K (5.13) 

First of all, we learn from this simple example that when a propagator ends on the bound­

ary it equals two times the free space propagator, viz. 

which is schematically represented in fig.5.4 

2 

P 

Figure 5.4: 

Notice, however, that the Ep integral in (5.12) is not convergent. I t can formally be 

written as 

/•°° dEp ( E^ \ _ p dEp f 
y_oo (27r) [Ej + p^ + M y ~ J-oo (27r) ^ E^ + p^ + M2 
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= m - ^ ^ (5.15, 

The origin of 5(0) is in the construction of our path integral representation of W (please 

see section 2.2). We started by representing the vacuum functional as the matrix element 

* M = m = {DyS'"^''^\Q) (5.16) 

As operators, n = (j), but in the passage from (5.16) to a functional integral representation, 

which is written in terms of c-numbers, TT is represented by ^ plus terms coming from the 

time derivative acting on the T-ordering, because the functional integral represents T-

ordered products: 

T (7r(x , i)7r(x', t')) = ^ t ( < ^ ( x , i)<^(x', t')) - i<5(x - ^)5{t - f ) (5.17) 

(in Minkowski space) [55]. This leads to a term like 

j dxdx (p{x)ip{x')6{x - x')6{0 - 0) (5.18) 

but because this is local, i t may be canceled by an equal and opposite counterterm, 

— / dxA(p^ (x) say, which amounts to simply discarding this divergence [2]. Alternatively, 

and perhaps more satisfactorily, we can place the source term not at f = 0, but at small, 

distinct times ti, and finally taking the Umit ti -> 0. This replaces the integral in (5.15) 

by 

y_oo(27r)£;2 + p2 + M 2 ' • ^^•^^> 

The factor e^^^^ regularises the divergence and in the complex Ep-plane, for e > 0 we caji 

close the countour integral in the upper half plane to get the result - \ / p ^ + Hence, 

the diagram represented in fig.5.3(a) corresponds to the expression 

- ~ I dpip{p)(p{-p)^Jp^ + (5.20) 

where s/ = 1/2, which reproduces obtained in chapter 4 as we expected. 

The Feynman rules in the coordinate space for the diagram in fig.5.3(a) give 

s , l d x , d x M ^ . M ^ 2 f - ^ l ^ (5.21) 

since the normal (time) differentiation bends the leg of the propagator to the boundary. 

The property that when one end of the Dirichlet propagator is on the boundary i t equals 

twice the free space propagator is easily seen in the coordinate space since 

dGD{xi,X2) ^ r,dGo{xi,X2) 22) 
dti dt\ 
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Using (5.9) and that 

dGDixi,X2) 
dtidt2 

= / 2El 

(5.21) becomes 

Sf I dxidx2</p(xi)(^(x2)^2^2 

gip.(xi-X2) 

p2 + M2 ' 

„ip.(xi-X2) 

(5.23) 

(5.24) 
,p p 2 + M 2 

which reduces to (5.12) after integrating over the coordinates. Acting on (5.24) with the 

laplacian 

A , = / d^'dy' f p - e ^ ' ^ i ^ ' - y ' ) ^ — (5.25) 
J iq2<i/5 (27r) Sip{x')6(p{y') 

gives the negative of the 0{h) vacuum energy density. The action of the functional deriva­

tives in the laplacian has the efi'ect of coalescing the legs of the diagram shown in fig.5.3(a), 

so to speak, to produce the bubble shown in fig.5.3(b) . 

5.3 Tree Level Feynman Diagrams 

Figure 5.5: Tree Level Diagrams up to ip 

The Feynman rules in the coordinate space applied to the first diagram in fig.5.5 yield 

16^5/ / 
7X1 X 2 X 3 X 4 I 5 

, , , , , , , s dGo{xi,X5) dGo{x2,X5) dGojxz, X 5 ) dGoix^,X5) 
Vi^lM^^M^M^A) gf^ gf^ Qf^ 

(5.26) 

where the normal derivatives are always calculated at U - 0. Using that 

dGo{xi,X5) 
= I iE 

t5=0 

J{xi-xz)pi 
(5.27) 

etc., and writing the fields in the momentum space, enables us to write (5.26) as 

1 6 9 s / / ^(pi)^(p2)^(P3)^'(P4)£^l-£^2-S3-B4 X 
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g - i ( £ ; i + £ ; 2 - h S 3 + B 4 ) « 5 g - i { P l + P 2 + P 3 + P 4 ) X 5 

The integrals over and X 5 can be calculated to yield delta functions in the momenta. 

However, notice that the ^5 integration runs from - 0 0 to 0 : 

/

O roo roo 

g-i(Ei+E2+E3+E4)ti _ / ^f^gi{Bi+E2+E3+E4)ts ^ / g-i{Ei+E2+E3+E4)ts 
-00 Jo Jo 

(5.29) 

where in the first equality we changed variables —> —t^ and in the second, we used that 

Ei,E2,E^, Ei -El, ~E2, -Ez, -E^ is a symmetry of (5.28). Hence 
dh e-'^E^+E^+E^+E,)t, ^ 27r^^^^ ^E2 + Ez + E^) (5.30) 

J—<x> 2 

and (5.28) becomes 

1 6 ^ ^ / ^ / ^{p.Mv^mPmv^)EiE2E,E,^^^^^^^f^^^ (5.31) 

The integrals over Ei... E5 are readily computed in the complex Ei-plane, using the 

residue's theorem, 

r d a i ' ( r d E ^ _ E ^ ^ \ ] _ _ J _ 
y_oo 27r j [ J 2n (Ej + a.2) J / " 16 . 

with u'^ — pj + M 2 . Using these results in (5.31), with s/ = -1 /4 ! is just obtained in 

chapter 4. 

The action of the laplacian (5.25) on the tree-level, four-legged diagram reads 

\{2'!ry4\ J yxi...x4 Ej=i^j I 
(5.33) 

and results 
— n( r gip3(x3-X4) 

1 2 - f / / ¥ . ( X 3 ) < ^ ( X 4 ) — - . (5.34) 
2^3 Jqi<l/s P̂3X3X4 + W3 

The factor 12 is the number of possibilities of acting the two functinal derivatives on the 

four fields. This expression corresponds to the term AF^ in (4.37) and is graphically 

represented in fig.5.6. Expanding in powers of the momenta amounts to expanding (p{x4) 

around X 3 , that is 

Z £ ^ / / ^ ( , 3 , ( 5 l ^ , ( - ) ( , 3 ) £ ! ! ! r l (5.35) 
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X 3 

Figure 5.6: The laplacian on the 99^ tree diagram 

and using J de{ixf''e'^'= - 2TT6^^''HX) and J dxip{x)<p(^''\x) = (-)"/da;(^(")'(a;) we can 

write an expression for the laplacian term in the Schrodinger equation correspondent to 

the derivatives of the quadratic term, in a local expansion: 

For the six-legged diagram represented in fig.5.5, the Feynman rules give 

2 f t \ 1 . dGD{xi,xj) dGD{x2,X7) dGnixs^xr) 
s / r / ip{xi)..ip{xe) 

dG{x4, xs) dGn{x5, xj) dGjxe, xg) 
xGo{xr,^s)—g^^ m T - ^^-^'^ 

J-x.i..-KeX7Xs Jpi-pr 

Jp ix i ipexeJ{Ei+E2+E3-E7)t7pi{E4+E5+E6)ta(p-iE7ts JE7ta\ ^ /r oo\ 

e ..e e e [e e i ^ j ^ ^ ^ s + ^ s ^̂ "̂ Ĵ 

When neither end of the propagator is on the boundary t = 0, the image charge breaks 

energy conservation leading to more complicated expressions. However, for this diagram, 

there occurs a simplification, owing to its symmetry properties, such that we end up with 

delta functions in both momentum components. So, if we integrate over iy, we get 
/° e'^E,+E2+Es-Er)tr^^^ ^ ^S{Ei + E2 + E3 - E 7 ) (5.39) 
J—00 2 

because (£^1 + E2 + E3- Ej) -{Ei + E2 + E3 - Ej) is a symmetry of (5.38). On the 

other hand, the integral over can be simplified if we notice that 

/•° ^-t{E4+E,+E,-Er)ts^f^ ^ _ ^-i{E,+E,+Ee+Er)ts^f^ (5 40) 
7—00 J-00 

in (5.38). Thus, the integrals over t j and ts give a factor proportional to 

^^6{Ei +E2 + Ez- E7)6{E4 + E^ + Ee+ E7) (5.41) 
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Finally, integrating over X 7 , xs, £^7 and pr, reduces (5.38) to 

-g22^(27r)'s/ / (p{pi)..(p{p^) Ei..E^ 
Jpi-P6 

(5.42) 
YlUipf + M^){{Er +E2 + ^ 3 ) 2 + (pi -h P 2 + P 3 ) 2 + M 2 ) 

A laborious exercise of integration over the Ei variables enable us to write a final 

expression for this 6-field tree diagram which just coincide with Fg calculated earUer as 

it should. The symmetry factor for this diagram simplifies to 10/6! where the factor 10 

comes from the counting of topologically distinct diagrams (i.e. labeling each leg with 

momentum pi and counting the number of distinct ways this can be done) [55]. 

5.4 Loop Diagrams 

From fig.5.7 we can work out the first order correction to the two field coefficient B2 

defined in (3.1). The diagram shown in fig.5.7(a) represents the expression 

where 

dGD{x\,xz) , _ ,dGD{x2,X3) r .oi^D[xuX3) 
SfQ / ( / j (xi)(^(X2) ^ GD[X3,X3 dt2 

GD{X3,X3) = / 
(1 - e^'''^') 

2 + M 2 P3 PZ 

( a ) ( b ) 

(5.43) 

(5.44) 

Figure 5.7: 

This diagram is divergent due to the factor GD{X3,X3). Since this propagator does 

not touch the boundary, it has an energy non-conserving contribution represented by the 

exponential in (5.44). We regulate this integral by restricting the space-hke component 

of the momentum such that < 1/s just as we did for the laplacian in the Hamiltonian 
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(5.5). The divergence is then cancelled by a counterterm represented in fig.5.7(b) which 

is due to 0{h) terms in M^(s). This process is schematically represented in fig.5.8 . 

+ 4 + 4 

Figure 5.8: 

Therefore, the finite part of equation (5.43) yields, after integrating over X 3 and t^, 

Snhjg [ ip{p,)(p{p2)EiE2d{p,+p2)S{E,+E2-2E,) \ (5.45) 

The remaining integrations can be performed to lead to the simplified expression 

By setting M = 1 and p i = 0 we can calculate B2 to be 5/(167r), with Sf = -1 /4 , in 

agreement with equation (4.41). 

The first order correction to the four-field part of W, earlier represented as F^, is given 

by the diagrams illustrated in fig.5.9(a), (b) and (c) . 

The first of these diagrams translates into 

dGoixi^x^) dGD{x2,x5) 

1 (5.46) 

A . ^ g h f I ¥'(xi)..<^(x4)-

dGD[x2„XQ) dGD{x4,x6) 
GD{X5,X6)GD{XQ,X5)- dU 

(5.47) 
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Figure 5.9: Four-field one-loop diagrams 

which is written after substituting the expressions for the propagators as 

g^S^^'h^ f ip(pi)..ipip4)El..E4 e-'^5(pi+P2+P6-p5)g-XX6(p3+p4+P5-P6)x 

p-it5iEi+E-2-E5)(f,-itsEe _ JhEe] p-ite{E3+E4-Ee) („~itgEs _ pitgEs) 

x~ ^- V - ^ T -o (5-48) 

This expression is finite because the bubble in fig.5.9(a) does not introduce divergences 

in 1 -f- 1 dimensions. A tedious exercise of integration enable us to compute (5.48). We 

transcribe below the main steps of this calculation. 

We start by integrating over X 5 and xe in order to get the delta function in the 

momenta in the space-like direction. This introduces a factor proportional to J(pi -I- P2 + 

P6 - P5)'^(P3 + P4 + P5 - Pe)- Then we integrate over p6 to get (5(pi + P2 + P3 + P4)- The 

integral over is can also be done to reduce (5.48) to the computation of 

g h ^ ; h \ ^ f < (̂P1)..< (̂P4) E1..E4 5 ( ^ Pj)6{Ei +E2 + Ee- E,) x 
Jpi..piE6 

J°oo ^̂ 6 e-''<^^^^+^^hin{teEs)sin{teEe) 

UUipl + M2) (̂ 62 + (p3 + P4 + P5)2 + M2) 

The £̂ 3 and E4 integrals can be readily performed to give the factor 

p- |*6 | ( t^3+ 'J4) 

(5.49) 

and the integral over t^, 

(W3 + UJ4) 

dtGe^^^'^'^^'hin{t6E5)sin{t6Ee) = 

1 1 
2 I (a;3 + W4)2 + (£;5--E6)2 {u^ + Ui)^ + {Es + E^Y 

(5.50) 
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After a lengthy calculation, the integrations over Ei, E2 , E5 and Ee , together with the 

result above, simplify (5.49) to 

A r = 4 n s f f ^(pi) . .^(p4) ^ ( E p . ) ^ ^ ^ ' " " ^ " - ' x 

(0)3 + U J 4 + U J 5 + u)){uJi + U J 2 + O J 5 + w)(En=l + 2t^5)(E^=l '^n + 2tl') ^^'^^^ 

where u = V(P3 + P4 + Ps)''̂  + M'^. 

Yet, there is another 4-legged-0(^)-diagram to be included fig.5.9(b) and the countert­

erm diagram associated to the renormalisation of the tadpole fig.5.9(c). Similarly to the 

two-field bubble diagram calculation fig.( 5.7), the sum of these two diagrams amounts to 

the expression 

A2 = g^sf2^ f ( ^ ( P 1 ) . . ( ^ ( P 4 ) E1..E4 e - ' ' ' 6 ( P l + P 2 + P 3 + P 6 ) g - t X 5 ( p 4 - P 6 ) 

Jpi..pQXsX% 

-it6{El+E2+E3), -iteEe _ it6E6\p-ME4-2Es-E6) I / r C O N 

where we used our already familiar Feynman rules for Feynman diagrams on the Dirichlet 

boundary. The integrations over X 5 and xg together with an integration over pg give the 

expected momentum conservation in the space-like direction, 5(En=iPn)) whereas the 

integrations over the time-like coordinates are similar to the previous case. Having done 

the integrals over Ei to E^, we get to the following simplified version of (5.52): 

A. = -'^isf [ H P M P . ) , , . j f " ' " ; ! , ^ 4 (5-53) 
^ 7pi-P5 '^5(w4+W5)(En=l'^n + 2a;5)En=l'^n 

There are 3 topologically distinct diagrams associated to fig.5.9(a) [38] and 4 distinct 

diagrams associated to fig.5.9(b) (the bubble placed at any of the four legs). The overall 

symmetry factors ŝ "̂  and s^^ are respectively equal to 1/16 and 1/12. The sum A\ + A2 

exactly reproduces the expression for F^ we have got earlier by solving the Schrodinger 

equation semi-classically although the Feynman diagram method has demanded consider­

ably more work. 

Finally, the extra (j)^ term in the potential of the Sinh-Gordon model (see section 4.6) 

generates the diagram in fig.5.10. 

Its analytic expression, after subtracting the counterterm represented in fig.5.10(b) 

reads 

g(2vr)2 / ^(pi) . .^(p4) / ^ ^ - ^ P " ^ . (5.54) 
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( a ) ( b ) 

Figure 5.10: Six point interaction for the Sinh-Gordon model 

for which the symmetry factor is 1/96. This gives the modifications to the if^ results 

described in section 4.6. 



Chapter 6 

Applications to the Schrodinger 
Functional 

By exploiting the analyticity properties of the Schrodinger functional, we show how a small 

time, local expansion in the fields can be used to construct the ful l functional. We also 

obtain the leading short-time behaviour of the Yang Mills Schrodinger functional within 

a local expansion in the fields. 

6.1 Introduction 

The Schrodinger functional for a quantum field (p in D + 1 space-time dimensions is the 

matrix element of the Euclidean time evolution operator between eigenkets of the field 

restricted to a D dimensional space-like surface with coordinates x . I t can be written as 

a functional integral 

{ip\e-''^\ip) = I V(pe-'^^^^ = ^ r [ p , (p] (6.1) 

where SE is the Euclidean action for the D + 1 dimensional volume bounded by space-like 

surfaces, a time T apart, and < (̂x, 0) = ( ^ ( X ) , < ^ ( X , T ) = </3(x) and the corresponding 

Hamiltonian. Hence, the Schrodinger functional can be regarded as a euclidean quan­

tum field theory, defined on a space time manifold with boundaries and (inhomogeneous) 

Dirichlet boundary conditions for the quantum fields. 

Inserting a basis of eigenkets of the Hamiltonian in (6.1) shows that, at large times, it 

is dominated by the eigenket of lowest energy, 

((ple-^lv, ' ) ^ n^Wy]e--'^^ , (6.2) 

100 
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where ^'[c^] = (¥'|0) is the vacuum functional. 

As we have described in the previous chapters, the logarithm of the vacuum functional 

(ln'^[tp] = W[(p]) is, in perturbation theory, a sum of connected Feynman diagrams and 

in general a non-local functional. I f (p varies slowly on a length scale of the inverse of the 

lightest mass in the theory, W[ip] reduces to a sum of local functionals. Therefore, the 

study of the scaling and analyticity properties of W has enabled us to reconstruct i t from 

its local expansion whose coefficients are determined by a suitably constructed Schrodinger 

equation. I n other words, we have translated the eigenvalue problem of the Hamiltonian 

into an infinite set of algebraic equations for the coefficients of the local expansion. By 

truncating the expansion, we have a new approximation scheme which offers the possibility 

of solution beyond perturbation theory in the couplings [2]. This scheme is especially 

adequate for theories in which mass is generated quantum mechanically. 

For theories that are classically massive, the local expansion appears already within 

the framework of standard semi-classical perturbation theory but for Yang-Mills theory 

for example, which is classically massless, the leading order contribution to W does not 

reduce to a local expansion for slowly varying fields. Nonetheless quantum effects generate 

a non-zero mass-gap and so the fu l l expression for W does have such an expansion, as has 

been seen in Monte-Carlo simulations of lattice gauge theory [43],[44],[41]. In principle 

this wi l l be determined by solving the Schrodinger equation, but in practice the construc­

tion of this equation to a sufficient order to generate reliable results is some way off: it 

involves the construction of a Laplacian that respects gauge invariance and is amenable 

for computations. I t would have been useful to study this local expansion using stan­

dard semi-classical techniques. As we cannot, we will study instead the the Schrodinger 

functional 

$,[A,A'] = (A|e-^-/'^|A') , 

H[A,E] = - ~ jd^xtriB^ + 'E') (6.3) 

where E = - A , B = V A A + A a A , A - A^^T^, tr{T^T^) = ~5^^ , [ T ^ , T ^ ] = jABCrj^c 

and we work in the Weyl gauge, AQ = 0. 

Again, the logarithm of this functional, W r̂ [A, A'] is a sum of connected diagrams, and 

is non-local, but having introduced the length-scale r (which acts as an infi:a-red cut-off) 

into the problem results in a local expansion for fields that vary slowly, even within the 
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semi-classical expansion. In other words we can compute the Schrodinger functional for 
the short-time behaviour using both a local expansion, and semi-classical pertvubation 
theory. This enables us to compare the efficacy of solving the problem in two different 
ways, i.e. by solving the Hamilton-Jacobi equation for the derivative expansion and by 
evaluating the leading order contribution to the functional integral. The result of the 
semi-classical calculation is useful as i t will still be a good leading order approximation 
to the fu l l expression for times that are small in comparison to the inverse of the lightest 
glueball mass. Furthermore we can show that by studying its analyticity properties, one 
can reconstruct the Schrodinger functional from its small time expansion [65],[3],[4]. 

6.2 Reconstructing the Schrodinger Functional 

Consider the free scalar theory in 1 + 1 dimensions. The Hamiltonian is written 

H = Jdx^ljr^ + ^'^ + m V ) - (6-4) 

We can adopt the following ansatz for the Schrodinger functional, 

^r[^,ip] = l[D{p,T)e'^^^'''^^ (6.5) 
p 

where W can be written as 

Wr[ip,(p] = J dp ip{p)^{-rp)ri(p,T) +J dp ip{p)ipi-p)T2ip,T) 

+ I dp (pip)ipi~p)T3ip,T) (6.6) 

since the Hamiltonian is quadratic. (p{p) is the Fourier transform of (p{x) and D ( P , T ) is 

proportional to {det{-dl +1^'^))"^ where u> = p'^ + m?. This is in complete analogy with 

the harmonic oscillator path integral [38]. We can fully determine $ since it satisfies the 

Schrodinger equation in the momentum space. 

- 2 ^ - 2 = 0 (6.7) 

(where the dot stands for differentiation with respect to r ) with initial condition 

limr^Q^r[^, ¥>] = 5[ip - (p] . (6.8) 
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Moreover since Wr[(^, ^ ] = Wr[^, ¥?] we have Fi = Fs. Taking (6.6) into the Schrodinger 
equation yields a set of coupled differential equations, namely 

87rriF2 - 2r2 = 0, 

27rr^ - 2 r i = 0 and 

2 T T V I ~ ~ = 0 . (6.9) 

The first of these equations is a non-linear Riccati type differential equation {y — a^y^+b^ = 

0), which in turn can be linearised by the change of variables y = b/a + 1/z and easily 

solved to give the well known results 

F i = 
Lj (e-2'^^ + 1) 

F i = 4 7 r ( e - 2 ^ ^ - l ) ' 

r2 = 
w, 4e-'^^ 

r2 = 47r (e-2'̂ ^ - 1) ' 

D = / " (6.10) 

As a final check, note that in the limit r ^ oo, r2 vanishes whereas F i and D allow us to 

rewrite the Schrodinger functional as 

l[i^)y'e--f'exp{ I ̂ ^i^'ip) + ^ H P ) ) ) (6.11) 

from which, i f we recall (6.2), we can read off the vacuum functional 

= M - \ ^ ^ ( P ) ^ ( ~ P ) ) (6.12) 

and the vacuum energy density SQ = J dpuj/2. 

Notice that a small r expansion of F i , for example, leads to a local derivative expansion 

in the fields which makes sense when the field varies slowly on the scale of T , even when 

m = 0, namely / dp ^pTiip = J dx {-^ip'^{x)~^ip''^ + ^(p"'^ + ..) . As a matter of illustration 

let us suppose that we want to construct the Schrodinger functional out of a small time, 

local expansion in the fields. Taking (6.8) into account, we can start out with 

W = Jdk(^ j{ip{k)<p{-k) - 2^p[k)ip{-~k) + (p{k)(p{-k)) + {biTk^ + b2T^k* + . . ) X 

X {ip{k)ipi-k) + ip{k)ip{-k)) + {coTk^ + ciT^k^ + ..)ip{kM-k)) (6.13) 
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and expansion coefficients 60,61, etc. are determined by the Schrodinger equation. For 
instance, the terms which depend only on ip can be solved to give 

j d k ^ cpik) ( - i - h'r + U'T' - ..)<pi-k) . (6.14) 

I f (6.1) is evaluated for a scaled Euclidean time r = t / y / s , it extends to an analytic function 

of s with cuts restricted to the negative real axis. Therefore, we can use Cauchy's theorem 

to related the large-s, or equivalently, small-r behaviour to the 5 = 1 value: 

$ , = l i m - i - / ^ e M ^ - i ) $ ^ . (6.15) 
A^oo zm J\s\-oQ s — 1 sTs 

The exponential term removes the contribution from the cut as A 00 and the small-r 

expansion of can be used in the right hand side of (6.15). An approximation scheme 

in which one works with a finite number of terms and a large but finite value of A in this 

series has been shown to be successful [4]. Following these steps (6.14) can be evaluated 

to give 

. ( n - 2 ) ( n - 4 ) . . l l ( n - 2 ) ( n - 4 ) . . l 1 (n - 2)(n - 4)..3 1 3 , ^ . . „ . ^ ^ „ / 2 , ^ 

V(n + l ) ( n - l ) . . 4 i ( n - l ) ( n - 3 ) . . 2 6 ( n - 3 ) ( n - 5)..2 360 ^ " ^ ^ ^ n ^-J 

(6.16) 

where have set k = I. The graph in fig:(6.1)illustrates the resummation of the small T 

expansion. 

The curve A is (6.16) truncated to 14 terms. The value of A is chosen so that the last 

term included is one per cent of the value of the series. This curve should be compared with 

the curve B which is the plot of 47rri, the function to which the series should converge, 

and finally curve C is is a plot of (6.14) also truncated to 14 terms so as to show that by 

means of the re-summed series for small r we can reconstruct the Schrodinger functional 

for any r . 

For abelian gauge field theory we would have obtained similar results. The basic differ­

ence is that we should also impose gauge invariance under spatial gauge transformations 

so as to satisfy the Gauss's law constraint. This constraint introduces some complications 

in defining the path integral representation of the Schrodinger functional, more specifi­

cally in the definition of the measure. Roughly speaking, we have an infinity coming from 

integrating gauge equivalent components of the gauge potential. For the abehan gauge 
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Figure 6.1: Resummation of the small r expansion 

fields, this infinite is easily factored out and absorbed into the normalisation whereas for 

the non-abelian case this is healed by the well known Faddeev-Popov prescription. As we 

are mainly interested in the gauge potential dependence of the Schrodinger functional, we 

wil l not worry about this subtlety in our present analysis. 

Thus we can write 

W (27r) 
+ A T ( p ) A T ( - p ) r i ( | p l , r ) . 

= f - ^ A T ( p ) A T ( - p ) r i ( | p | , T ) + A T ( p ) A T ( - p ) r 2 ( | p | , r ) 

where AT is the transversal, physical component of the gauge potential, namely 

A T ( P ) - A ( p ) r ; ^ 

(6.17) 

(6.18) 

Substituting (6.17) into the Schrodinger equation He^ + de^jdr = 0 where H is the 

abehan version of (6.3), we get the same expressions for F i and r2 as we obtained for the 

free scalar field. As before, the large r limit gives us the free photon vacuum functional 

M, TAl ^ / ( p A A ( p ) ) . ( p A A ( - p ) ) 

which, in the coordinate space, becomes 

^o[A] ~ exp{-^- I d'x I d V B ( x ) . B ( y ) A ( x - y ) } 

with A ( x - y ) = l / (27r2 (x -y )2 ) . 

(6.19) 

(6.20) 
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6.3 Leading Order Yang-Mills Schrodinger Functional 

We follow the same scheme for the differential equation approach to l^r [A, A ' ] . satisfies 

the Schrodinger equation with initial condition 

-h^^r[A, A ' ] = H ^r[A, A ' ] , hm * , [ A , A ' ] = 6[A - A ' ] (6.21) d_ 
dn 

In the Schrodinger representation the Yang-Mills electric field is represented by 

(6.22) 

so that 

H = ( - 1 % ^ A + g-^B) , A . / d^x ^ • ^ 
and 

B = - - ' l d'^trB" . (6.23) 
2 

The Schrodinger equation must be regularized as the kinetic term A contains two func­

tional derivatives acting at the same point of space, however this will not affect the leading 

order calculation, since if we set Wr[A, A ' ] = w[A,A']l{'hg^) the Schrodinger equation 

reads: 

- S 9 ^ A » + | ( / r f > x ; j ^ ^ ^ ) + S + ^ = 0 . (6.24) 

Neglecting the 0{hg^) term leads to the Hamilton-Jacobi equation which we now solve in 

a derivative expansion subject to the conditions that w[A, A'] be real and invariant under 

simultaneous time-independent gauge transformations of A and A ' and that u;[A, A ' ] = 

u ; [ A ' , A ] . 

I f we order the local expansion of w according to the mass dimension of local function-

als, then the first gauge invariant term is 

j d \ trA^ a{T) , (6.25) 

where ^ = A — A ' . Since the only length-scale in this classical problem is r this enters w 

multiplied by 1/T, leaving possibly a constant to be determined. This term wil l enable us 

to fit the initial condition since as r becomes small expr~^ / d^x trA^ ~ 5[A — A']. Next 

we must include dimension four fields, for example 

j d^x trB'^ 6(T) (6.26) 
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which is needed to cancel a similar term in the Hamiltonian. Notice that such term does 
not contain A ' and hence violates the symmetry of interchanging A ' and A . We wil l 
soon impose this symmetry within our ansatz and thereof obtain relations between the 
coefficients of its terms. The Hamilton-Jacobi equation generates cross-terms from these 
two functionals of the form 

/ . 3 . ' ^ ^ ( x ' ) ^ ^ ( x ' ) ) [ j ^ ^ \ / ^ V ^ ^ ( x ' ) ^ ; ( x ' ) ) (6.27) 
5^^(x) 

(2 < | x ) (^.V^P^Ix) (6.28) 

where 

which results, in a shortened notation 

' d ^ x i r A D B L . (6.30) 

This is a gauge-invariant dimension four term that should be included in the expansion of 

w (as too should all further terms generated by repeated apphcations of / d^x A • bjbK). 

By making use of the following relations 

/ d3x ^ ^ ( x ) . ^ / d3x ' A t v t f B ^ \ , = 

I d'x Api^Bf]:, + / / ^ ' ^ ^ ;^(x)A;^ ,^(x ,y)^^(y) , (6.31) 

where 

= + f ' ^ X ^ . B X SH^ - y) 

= iV^?K^+F^f)U5'{K-y); (6.32) 

I d^x ' >t^(x') . 11 d'x d'y ^ ^ ( x ) A ^ , ^ ( x , y ) X 5 ( y ) = 

21 Jd'x d'y Ai{x)Ki^{x,y)A^{y) + 6 J d'x {D,A.)^{[A„A.])\ ; (6.33) 

j d^x ' A^{x') • j { D , A . f [ A , M \ = 

31 d^x {D^A,)^{A^,A,]\ + I d'x [A^,A,]^[A^,Au]\ (6.34) 
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we exhaust the terms up to dimension four whilst our ansatz is enlarged to 

Wr[A, A'] = j d^x tr {A^a/r + r + A VB CT 

+ j d^y A{x) • A(x ,y ) • ^ ( y ) dr+ DA-[A,A]eT 

+ [A,A]-[A,A] f T} (6.35) 

in which the r dependence was inferred by dimensional analysis, leaving arbitrary con­

stants to be determined. We start out by imposing w[A, A'] = w[A', A]. Since wlA, A'] — 

w[A,A], this condition can be equally expressed as 

W[A,A] = W[A',-A] . (6.36) 

To build the right hand side of (6.36), we expand each term of (6.35) in the primed 

variables which results : 

J d^x trBX = J d^x tr{B'% + 2 A- V'B% + j d^y A{x) • A'(x, y) • A{y) 

+ 2DlAu[A^,A,h + ^[A^,A,][A^,AM , (6.37) 

I d^x trA -VB = j d^x tr{A • V'B'\^ + j d^y A{x) • A'(x, y) • ^ ( y ) 

+ 3 D'^A,[A^,A,]U + [A^,,A,][A^,A,]U} , (6.38) 

11 d^x d^y tr A{x) • A ( x , y ) • .A(y) = / / ^^^^ tr A{x) • A ' (x ,y ) • ^ ( y ) 

+ jd^x tr{ 6DlA^[Ai,,A^]U 

+ 3[A^,Au][A^.AM , (6.39) 

Id^x tr Df,A^[A^,Au]\x = Id^x trD'^AAA,A^]\:, + [A^„A^][A^,Au]\x} • (6.40) 

Therefore, in order to preserve (6.36), we must have 

c = - 6 

e = h - ^ d . (6.41) 

Finally, i f we substitute (6.35) into the Hamilton-Jacobi equation the remaining coef­

ficients are determined leading to our final result for W: 

Wr[A,A'] = ^ [d^x tr{-— - T + A-VB T 

- I d'yA{x)-Aix,y)-Aiy) ^ + DA-[A,A]^ 

- [A,A]-[AA]^}. (6.42) 
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We wi l l now compute this expression using a different method, so as to gauge the 
efficiency of the above approach. The functional integral representation of Wr[A.out, Ai„] 
leads to a saddle-point approximation in which this is given to leading order by minus the 
Euclidean action 

^ j d^x dt (E'^(x) . E^(x) + B ^ ( x ) • B^ (x ) ) (6.43) 

where, in the temporal gauge, 

E = - A , B = V A A + A A A . (6.44) 

The fields A are required to be on-shell, i.e. they satisfy the Euler Lagrange equations 

A = - Z ? A B , £ ' A B = V A B - h A A B + B A A (6.45) 

subject to the boundary conditions that at A ( x , 0) = Ai„ and A ( x , r ) = Aout- We want 

to calculate SE as an expansion in dimension of the fields but since the coupling constant 

is dimensionless in (3 -I- l)-dimensional space-time, this is the same as an expansion in 

increasing powers of r . I f we expand the gauge potential as a power series in t 
00 

A ( x , t ) = ^ A „ ( x ) i " , (6.46) 
71=0 

the Euler Lagrange equations turn into 
oo 

^ ( n + l ) (n + 2 ) A „ + 2 ( x ) = - D A B . (6.47) 
n=0 

Thus Ain = Ao and by calling Aout simply A and ^ = A - AQ , we can express A i as 

A i = ^ - T A 2 - A 3 - . . . . (6.48) 

So AQ and Ai are determined by the boundary conditions while the others A-^ wil l be 

determined in terms of them using (6.47) . To calculate the other terms, we equate 

powers of t on both sides of (6.47) to obtain 

Ao = Ai„ 

A i = - A 2 T - A 3 r2 - A 4 T3 - As - ©(r^) , 
T 

A 2 = - ^ Do A Bo , 

A3 = - ^ { Do A (Do A ^ ) -t- ^ A Bo + Bo A ^ } , 
DT 

A4 - - { Do A ( ^ A ^ ) + ^ A (Do A ^ ) + {Do ^ A) h A] , 

A 5 = - ^ { ^ A (>^ A ^ ) + ( ^ A .4) A ^ } . (6.49) 
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where we neglected terms of C>(L~") n > 4 and DQ ^ = V A -I -AQ A -|- A AQ . The 
subscript 0 denotes that the gauge potential has been taken as AQ , and A — Agut — Ai„. 
Thus the magnetic and eletric terms in the Yang Mills action can be rewritten, after some 
considerable algebra, as 

B • B = Bo-Bo + ^ {2 {Do A A)- Bo} 

+ ^ {{Do A A) • {Do AA) + 2Bo • ( ^ A ^ ) } + ^ {2{Do A A) • {A h A)] 

+ Y^{{AAA)-{AAA)} (6.50) 

(for which, to the order that we are working, it has been sufficient to take J4I = )̂ and 

E - E = ^ A - A + A-{DohBo) 

+ J ^ • {Do A (Do A ^ ) + ^ A Bo Bo A ^ } 
O 
^ ^ • {Do A (>4 A ^ ) + (Do A ^ ) A ̂  + ^ A (Do A A)] 
D 

+ ^ A - { ^ A (.4 A ^ ) + ( ^ A ^ ) A ^ } . (6.51) 

Finally using the following identities in (6.50) and (6.51), 

D ^ ^ = (5„5^^ + f'^^^At) , (6.52) 

(D A Vf^ = e„^, D ^ ^ I / / = P ^ / y / , (6.53) 

X! ^oiPi ̂ "/̂ '̂  - ^hii ~ hf ^n>) ' (6.54) 
a 

(€a/37 ^If^A^f = (DaAp - D^Ac^f , (6.55) 

D^^ = (V A A + A A A ) ^ = e^0^ {d^A^ + ^ A ^ A ^ / ^ ^ ^ ) , (6.56) 

(A A V ) ^ = (V A A ) ^ = ^ea^,4 /^""^ , (6.57) 

where V is any vector field with both a gauge group and a space-time index, after an inte­

gration over the time variable we arrive at the same expression as previously for W^T[A, A ' ] 

(6.42). As a final check note that when the initial and final gauge fields are identified .A = 0, 

our expression reduces, as it should, to - T / d^x B^/(2p^), i.e. minus the Euclidean action 

evaluated for a time-independent potential. 

To conclude, we have shown how the analyticity properties of the Schrodinger func­

tional can be used to reconstruct it from a small time ( r ) expansion, , 1/r acting as an 
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infra-red regulator. The next step is to incorporate loop corrections to our analysis. For 

this task, we have to construct a regulated laplacian in order to "point-split" the ill-defined 

product of two functional derivatives at the same spatial point so that the Hamiltonian 

operator has a finite action on our local expansion. For example, A acting on —tr A'^(x) is 

proportional to ^(0) which is meaningless. In other words, we have to build a suitable ker­

nel such that the new regulated laplacian respects the symmetries of theory, such as gauge 

invariance and the underlying geometry of the Hamiltonian operator, and is amenable for 

calculations. As a result we wil l inevitably end up with an arbitrariness which is necessary 

to separate the finite part from the quantities that diverge as we remove the cut-off. In 

a renormalisable theory, this arbitrariness can be absorbed into (bare) coupling constant, 

so that the physical quantities wil l not depend on i t . Because of Symanzik's results [5], 

we know that the wave functional wil l be finite as any cut-off is removed. 

We have also computed the local expansion of the leading order term in the semi-

classical expansion of the Schrodinger functional for Yang-Mills theory using two different 

approaches, the first by substituting our local expansion directly into the Hamilton-Jacobi 

equation, the second by computing the on-shell Euclidean action. I t turned out that 

the former approach was far more efficient. The result describes the leading short-time 

behaviour. 

Recently, the Schrodinger functional has been used to define the running coupfing 

constant at a length scale T in pure Yang-Mills theories which is accessible for calculations 

on the lattice from perturbative to non-perturbative scales [42]. A continuum small time 

expansion could be a precious guide for any lattice result. 



Chapter 7 

Conclusions and Outlook 

In general the vacuum wave functional ^[(/p] = expW [̂(/3] is a non-local object. As we 

illustrated in chapter 5 for 4>j_^.i-iheoT:y, W[(p] is a sum of connected Euclidean Feynman 

diagrams in which can be interpreted as the source for (p on the boundary. However, in 

a theory in which the Ughtest physical particle has non-zero mass, say mo, its logarithm is 

expandable in terms of local functionals if the fields vary slowly on the scale of l/mQ. This 

simplification is the basis of a scheme to solve the eigenvalue problem of the Schrodinger 

equation for the wave functionals. Let us briefly recall our motivations. In Yang-Mills 

theory a local expansion of the vacuum functional is justified by the presumed generation 

of a mass gap. This results in confinement via arguments of dimensional reduction. That 

is to say, the term of lowest dimension in the large distance expansion of the logarithm 

of the vacuum functional, leads to a confining area law for the Wilson loop [1]. This 

commends the local expansion as a tool for studying the large distance behaviour in that 

theory. To go further so as to obtain physical quantities (e.g. the string tension) we would 

have to compute more coefficients in the local expansion. On the other hand, we also 

have discussed in this thesis that this local expansion is suitable to understand physics on 

all length scales because analyticity arguments show that functionals for arbitrary field 

configurations can be reconstructed from their local expansion. In principle, this may 

enable us to extract the light hadron spectrum from the local expansion. 

The coefficients of the local expansion are in principle obtained by solving the Schrodinger 

equation. However, as we demonstrated in the simple case of the free scalar theory (eqns. 

(2.20) and (2.21)), the Hamiltonian, or more particularly the laplacian, fails to repro­

duce the correct short distance behaviour. I t leads to divergences of increasing order 
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according to the dimension of the term in the local expansion. This is not surprising as 
the ultraviolet cut-off contained in the laplacian is a short distance object whereas our 
local expansion refers to slowly varying fields and in principle could not tell about the 
ultraviolet behaviour. Our claim, as we explained in section 3.4, was that because of the 
analyticity properties under complex scahng of the cut-off and the fields we could resum 
the cut-off dependence of the laplacian and get the correct short distance behaviour, in 
the same spirit as we did for equation (2.21). In other words, our expectation was that 
after resumming the divergences that appear by acting with the Hamiltonian on the local 
expansion and therefore reducing the eigenvalue problem to a set of algebraic equations for 
its coefficients, they would be finite or could be made finite by the usual renormalisation 
procedure and perhaps a further field renormalisation according to Symanzik [5]. 

In chapter 4 we verified in the context of -theory that our large distance expansion 

gets the right short distance behaviour as contained in the counterterms of the Hamilto­

nian. We studied the mass and energy subtraction. The approximation scheme consisted 

in truncating the series of local functionals to a certain order. Having obtained some exact 

semi-classical results in which no resummation is involved, we verified that oiu: expansion 

coefficients agree to within a few percent when the series is truncated to about ten terms. 

Similar accuracy was found for the mass and energy subtraction. In addition to this, we 

found a curious simplification that occurs for the Sine-Gordon and Sinh-Gordon models. 

We verified, up to four fields, that the ratios of the coefficients of the one loop corrections 

to the coefficients of the local functionals to their tree level values are approximately the 

same for functionals of the same dimensions. At this stage, i t is not clear for us the 

mechanism responsible for this simplification, i f any. 

An elegant description of the vacuum functional in terms of Feynman diagrams was 

presented in chapter 5. The amplitudes were calculated and reproduce the semi-classical 

results obtained by a direct semi-classical solution of the Schrddinger equation for <^i+i-

theory. 

With in the usual semi-classical solution of theory, the Schrodinger equation ap­

proach brings no novelty. However, Mansfield in [2] suggested a new approach to solve 

the algebraic equations, as we briefly discussed in section 3.6, which presents two remark­

able characteristics. Firstly it can be applied to theories in which mass is generated only 
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at quantum level and hence that cannot be solved semi-classically within oiu: approach. 
Secondly i t does not rely on the smallness of the coupling constant. In order to develop 
this approach we wi l l have to improve our computer program shown in appendix B so as 
to generate a sufficient number of equations. This approach could be useful for studying 
the spectra of other field theories where the semi-classical approach is not useful, such as 
Toda field theories in the strong couphng limit. 

For Yang-Mills theory an additional technicality occurs. I t requires the construction 

of a suitable laplacian that respects gauge invariance and the underlying geometry of the 

Hamiltonian operator. Apart from this, the formulation of the eigenvalue problem should 

be pretty similar to the ^''-theory. No additional boundary counterterms are needed for 

Yang-Mills theories as we discussed in section 1.6. 

Finally, in chapter 6 we presented some applications of this formalism to the Schrodinger 

functional for which i t is possible to carry out a semi-classical analysis as the time serves as 

an infrared cut-off. We obtained the leading order short time behaviour of the Yang-Mills-

Schrodinger functional within a local expansion in the fields. This preliminary calculation 

sets the grounds for a more detailed analysis that brings in the quantum corrections. We 

have also shown how a small time expansion of the Schrodinger functional can be used 

to reconstructed the Schrodinger functional for arbitrary time based on its analyticity 

properties. 



Appendix A 

Analyticity of {AsW)[(ps, 

Here we sketch the proof that (AseW^)[¥'s] extends to an analytic function in the complex 

s plane with the negative real axis removed [2]. Consider the matrix element 

{ip\n{x,t)n{x',t')\Q). (A . l ) 

We soon wil l take t = t' = 0 and then integrate against JpZ^i^^ dp/{2Tr)exp{ip{x — x')), in 

order to get ( A j *)[(/;]. 

In a similar way as we did for the study of the analyticity of the vacuum functional 

(see chapter 2), it wi l l be helpful to make the (p dependence of ((^| expUcit by defining a 

representation with the bra (D| (D for Dirichlet): 

(^1 = (Dle^/'^^^^^)*^^), (A.2) 

We also need the identity 

T {Hx, t) 7r(x', t')) = {^{x, t) ^(x ' , t')) - i6{x - x')5{t - t') (A.3) 

(Minkowski space). Using the standard relationship between functional integrals and time 

ordered products, we can express (</?|e~''°^|D) as 

where we dropped a term coming from a delta function in time. I t has no effect in what 

follows [2] and it can be subtracted by an equal and opposite counterterm in the lagrangian 

as we have seen in chapter 5. |D) implies Dirichlet boundary conditions ^ = 0 at times 0 

and to- Similarly we can write for the time ordered Green's function 

T{ip\e-'^°"ip{x,t)ip{x',t')\D) = I Vipe'^^'^^+I'^''^'^'^^ip{x,t):p{x',t'). (A.5) 
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Using (A.3), rotating to Euclidean space and taking the limit to oo yields, for 0 > t > i ' , 
{ip\7r{x,t)7rix',t')\0) = 

- J Z?<^e-^^t^]+/ '̂ ^('̂ ^) (^^{x, t)(p{x', t') - 6{x - x')5{t - t')) (A.6) 

wi th (p defined on the Euclidean half plane t < Q and (p(a;,0) = 0. To obtain 

((/?|-n-(x, 0) 7r(2:', 0)|0) we can, for example, take the limit as t, i ' t 0 keeping t > t', in 

which case the 6 functions wil l not contribute [2]. We also rotate the coordinates so that 

the points {x,0) and (x',0) differ by the Euclidean time T = \x — x'\. Hence (A.6) can be 

rewritten as 

12?(^,e-^^^t'^l+/'^*^'^'-(^;(0,a; + r)<^;(0,a;), (A.7) 

in which (pj. is defined for all t {—oo < t < oo) and a; > 0, and reinterpreted as the time 

ordered expectation value of fields which evolve according to a rotated hamiltonian on the 

half line a; > 0: 
TE{Or\eI'^"'^'^^'^''''^ip'{0,x + T)<p'{0,x)\Or) (A.8) 

where |0r) is the vacuum of the rotated hamiltonian. In order to evaluate (A.8), expand 

the exponential 

j d t ^ ' P ' m = ^ 1 ( r ^ d t ^ { W { O A ) y (A.9) 
ji 71.. \J—cx> / 

Suppose 

tn > tn-1 > ...>tp>T> fp_ i > ...>tg>0> tg-i > ...>t2>ti. 

Then a combinatorial factor cancels the n! and making the Euclidean time dependence 

explicit enable us to write (A.8) as a sum of terms of the form 

/ dt-a dtn-l--- dtp dtp-i... dtg dtg-i... dti ip{tn) .. • ip{ti) 
JT -IT JT JO JO J-OO J-OO 

(0n¥' 'e--^'-(*"-'"- '^(^'.. . e--^'('''-^)(^'e-^'(^-*''-')(^'... 

g-H.i,^/giy.t,_i w _ _ ^'e-Hr(t2-ii)<^'|0-) (A.iO) 

We fourier transform the sources to evaluate the time integrals 

^{U) = ^ l d k t (p{k)exp {ikiU). ( A . l l ) 

After integrating over a;, this gives a delta function conserving the total momentum 6{YJ h) 

and for ti with i < q gives insertions of {Hr + i I ] h)'^ whereas for i > p gives insertions 
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of {Hr — i-Yl, For example, the ti- integral is 

dh e'^^'^e-^^^'^-'^^ - , (A.12) 

that contributes to the i2-integral 

dt2e«*'+*='^+^^^'^<^'---^ (p'm (A.13) 
J~oo {Hr+iki) 

where the integral evaluates to exp{i{ki + + Hr)t3)/{HT + i{ki + k2)). 

On the other hand, the tn,tn-i, etc. integrals may be performed by first changing the 

variables 

t ' ^ = t n - T , C l = * n - l - T . . . (A.14) 

and using that dx JQ dyf{x)g{y) = dy dxf{x)g{y) to get 

( )/0n(2,' m' . . . ^- ^'gWfcn+fcn-l+...+fcp)-H.)Tx 
"^{Hr-ikn) ^ {Hr-i{kn + kn-i + ...kj,)) 

Jo Jo 

The remaining integrals ( t j ,p < i < q) can be done by inserting a complete base of 

eigenkets of the Hamiltonian between each operator. This leads to a sum of products of 

energy denominators of the form {Ei - E2 - iY. kj)~^ multiplied by exponentials of r 

of the form exp — {Ei — iJ2kj), so that we have the r dependence exphcit as a sum of 

integrals over the spectrum of Hr : 

I dEdki ... dk^k,)... <f{kn)6{Y^ ki) [po + Pie'"' + p2e''̂ * '̂+'-̂ "̂ + ••) e"^" (A.16) 

In order to obtain l^s'^[<A we integrate against /p2<i/^ dpl{2'K)exp{ip{x-x')) to get a sum 

of terms of the form 

Now evaluate for the scaled field (p^{x) = f { ^ ) which is, in the momentum space, <p^{k) = 

f{ky/s)y/s. Also, as we want to study the s dependence, let us set p = ql\/s, and we take 

<p^{k) to vanish outside \k\ < K <^ 1. This enable us to scale the ki integrals to get 
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The functions pj acquire a dependence on s via the energy denominators that can be 
written after scaling of ki as l / { { E i — E2) — «(Z)^)/v^)- Now we take s to be complex 
to conclude that (A^'f) [(/?•,] and hence (AsFP )̂[</?s], since any additional singularities could 
not cancel between connected and disconnected pieces, extends to an analytical function 
in the whole complex plane excluding the real negative axis. 



Appendix B 

Computer Program 

I n this appendix, we briefly recall the problem of calculating the coefficients of the local 

expansion of the logarithm of the theory vacuum functional, W. Then we discuss 

some of the algorithms that we have used to construct a program in ©MAPLE, which 

has helped us to obtain some of the results described in chapter 4. Finally, we comment 

on the efficiency of the program and the software in executing our initial objectives. 

B . l The Problem 

The local expansion of W (3.1) satisfies its own form of the Schrodinger equation as 

we explained in section 3.4. The resulting algebraic equations for the coefficients of the 

local expansion which we called /jo - in = 0 (3.22) can then be solved semi-classically, as we 

illustrated in chapters 3 and 4, and within a new scheme that does not rely on pertmbation 

theory in the coupling [2]. Furthermore, it can be applied to theories which are massless 

at classical level such as Yang-Mills. In either approach to the solution of the equations, 

it is desirable to generate both a large number of equations and a large number of terms 

in each of them. These equations are generated by the Schrodinger equation satisfied by 

the local expansion. I t basically comprises two terms which we call by convenience A and 

B, namely the laplacian 

A = A.Wiocai = ( [ d x d y [ ^ e ^ P i - y ) - A - W i o c a l (B.l) 
\J Jp-'<i/s2iT Sip{x) 6(p{y)J 

and 2 

(5^"! . (B.2) 
J \ 5ip{x) J 
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The latter generates the 0{1i^) terms in (3.22) whereas the former, after applying the 
resummation operator, gives the A-dependent terms. 

We have elaborated a computer program using ©Maple programming language to 

calculated the two pieces A and B having Wiocai as an input. We were mainly motivated 

by the sophisticated library that is offered by this software which in principle should make 

our routines for algebraic computations not too lengthy. I t turned out that as the size of the 

input increased, a few library routines failed to produce the expected results. We also had 

problems of memory inefficiency and lack of speed with the computers we had available. 

Roughly speaking, the limit that we reached in obtaining reliable results was with a set 

of basis vectors up to dimension D = 6 and F = 6 fields, the number of dimensions 

corresponding to the number of derivatives. This was useful to some calculations in chapter 

4 which allowed us to compute 0{h) corrections to some 2-fieId and 4-fieIds coefficients in 

order to perform the energy and mass subtraction. 

For example, for F = 6 and D = 8, our program failed to execute the operations 

in a reasonable time. The major problem comes from the term B, which is non-hnear. 

There are 30 basis vectors up to F = 6 and D = 8. The product {dWiocaiM^)^ contains 

5885 terms which should be reduced to basis vectors via integration by parts in order to 

extract the leading order terms of the equations = 0. The laplacian also failed to 

give reliable results as the dimension became large (D > 12). In summary, the algorithms 

which we present below should be adapted to another programming language (perhaps 

C"'"'''), particularly for the task of solving the problem non-perturbatively according to the 

scheme proposed in [2]. 

B.2 The Program 

I n this program, we have translated a general basis vector 

j dx (B.3) 

into a sequence 

[[0, io] , [ l , J i ] , - , [n , j„]] . (B.4) 

In calculating A and B we have used a common set of procedures. Basically, a routine 

which performs functional differentiations and other routines which act after the opera-
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tions encoded in A and B are performed, resulting in a sum of terms that might contain 
reducible elements. The latter are elements that can be transformed into basis-vectors 
via integration by parts. As we discussed in section 3.3, a linearly independent basis is 
specified by insisting that the power of the highest derivative be at least two. Thus we 
create a procedure to read these elements and identify the reducible ones, which wiU go 
through another routine that perform the integration by parts. 

B.2.1 Root Program for A 

GE is the input functional, lapl initiates the procedure of diflFerentiations. G is the first 
functional derivative and D{G) is the second. PI is the regularised action of the laplacian 
on the functional, with momentum cut-off 1/s. elen consists of a set of routines which 
are common to B, which we will explain soon. Fwtini is a subroutine which takes PI 

through elena in order to tranform the reducible elements into basis-vectors. The result 
is a collection of terms which depend on the cut-off s, which we shall finally re-sum. 

lapl:= proc(GE) 
local 

j , aux 1, df xim, resuit, f i n a l , k, PI,RPI, in2, r r r , in3, r r r r , G, inp2, r, inp3, r r , FWT; 

fdiffyCf,a,y); 

in2[30]:=D(GE); 
for r r r from 30 by -1 to 1 do 

in2[rr r - l ] : = s u b s ( d i f f (f (a) ,a$rrr)=gg[rrr](a),in2[rrr] ); 
od; 

i n 3 [ 0 ] : = i n t ( i n 2 [ 0 ] , a = - i n f i n i t y . . i n f i n i t y ) ; 

for r r r r from 1 to 30 do 
i n 3 [ r r r r ] :=subs(gg[rrrr] (y)=dif f (f (y) ,y$rrrr) , i n 3 [ r r r r - l ] ); 

od: 
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f d i f f y C f , y , x ) ; 

G :=in3[30]; 

inp2C35]:=expand(D(G)*exp(I*p*(x-y))) ; 
for r from 35 by -1 to 1 do 

inp2[r-1] :=subs(diff(f(y),y$r)=g C r ] ( y ) , i n p 2 [ r ] ) ; 

od; 

inp3[0] :=int(iiip2[0] ,y=-infinity. . i n f i n i t y ) ; 

for r r from 1 to 35 do 
inp3[rr] :=subs(g[rr] (x)=dif f (f (x) ,x$rr) ,inp3[rr-l] ); 

od; 

PI:=expand(int(inp3[35],p=-s-(-1/2)..s-(-l/2))); 
FWT:=fwtini(PI); 
RETURN(FWT); 

elena:=proc(qq) 
local QQ1,EE,RR,WW,AA,FINAL; 
WW:=master(expand(QQ),30) ; 
EE:=compare(WW); 
RR:=masal((op(l,EE))); 
AA:=mega(RR); 
FINAL:=AA+masal(op(2,EE)); 
RETURN(FINAL); 
RETURN(WW); 
end; 

f wt ini:=pro c(inp1) 
local 1, var 1, var2, var3, var4, varS, vaire, var7, varS, i, inpl 1, var22; 
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1:=0; 
var7[0]:=0; 
elen(O):=0; 
inpll:=sorte(inpl,40); 
varl:=subs(s=l/LL"2,inpl); 
var2:=subs(l/sqrt(Pi)=l,varl); 
var22:=simplify(svibs(x=t,var2)); 
var3: =subs (csgn(conjugate (LL) )=1, sorte(collect (var22,LL) ,40)); 
for i from 0 to nops(inpll)-1 do 
1:=1+1; 
var4[i] .•=coeff (var3,LL"(2*i+l)); 
var5[i]:=elena(sorte(var4[i],40)); 
var6[i]:=var5Ci]*l/s-((2*i+l)/2); 
var7[l] :=var7[l-l]+var6[i] ; 
var8[l] :=var8[l-l] ,var5[i] ; 

od; 
RETURN(var7[1]); 
end; 

B.2.2 Root Program for B 

The root program is called elen. It commands the product of the two functional derivatives 
of W and send the result through the auxiliary routines so to turn all the elements into 
an irreducible form. 

elen:=proc(HHH) 
local QQl,EE,RR,AA,FINAL,Qq,n,sell,sel2; 
f d i f f ( f , x , 4 0 ) ; 
VC:=expand(D(HHH)); 
imnp2[35]:=VC; 

for r from 35 by -1 to 1 do 
imnp2 [r-1] : =subs (d i f f (f (x),x$r) =gg [ r ] (x), imnp2 [ r ] ) ; 
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od; 

imnp3[0] :=expand((int(imnp2[0] ,x=-infinity. . i n f i n i t y ) ) "2); 

for r r from 1 to 35 do 
imnp3[rr] .•=subs(gg[rr] ( t ) = d i f f (f (t) ,t$rr) ,imnp3[rr-l] ) ; 

od; 

QQ:=sorte(imnp3[35] ,40); 
WW:=master(QQ,40); 
EE:=compare(WW); 
RR:=masal(op(l,EE)); 
AA:=mega(RR,40); 
FINAL:=AA+masal(op(2,EE)); 
sell:=master(FINAL,40); 
RETURN(sell); 
end; 

B.2.3 Auxiliary Routines 

We present the auxiliary routines for calculating A and B. f d i f f defines the functional dif­
ferentiations, sorte organizes an expression in increasing order of the derivatives, master 

is a routine to translate (B.3) into (B.4) with the help of the subroutines f a f f , which 
reads the number of derivatives, and pow which reads the power, compare reads an input 
and separates it into two sets: basis-vectors and non-basis-vectors, masal is the inverse of 
master. Finally mega reduces non-basis-vectors to basis vectors via a kind of integration 
by parts. We illustrate the results of the program and a few routines in the end. 

• fdiff 

fdiff:=proc(F,X,n) 
local i ; 
D(x):=0; 
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for i from 1 to n do 
D(diff(F(X),X$i)):=Dirac(i,X-t); 
D(F(X)):=Dirac(X-t); 
D(z[i]):=0; 

od; 
RETURN(FDifferentiation_defined); 

end; 

• sorte 

sorte:=proc(inpl,n) 
local l , i ; 
1:=0; 
var2[0]:=f(t); 
for i from 1 to n do 
1:=1+1; 

v a r 2 [ l ] : = v a r 2 [ l - l ] , d i f f ( f ( t ) , t $ i ) ; 

od; 
v a r l : =sort ( i n p l , [vaLr2 [1] ] ); 
RETURN(var1); 
end; 

• master 

master:=proc(inpl,n) 
local i n p 2 , i l ; 
inp2:=NULL; 
i f type(inpl,'+') then 

for i l to nops(inpl) do 

inp2:=inp2, [pow(op(il,inpl),n)]; 

od; 
e l i f type(inpl,'*') then inp2:=[pow(inpl,n)]; 
e l i f type(inpl,'**') then 
inp2: = [ f a f f (opd.inpl) ,n) ,op(2,inpl)] ; 



Appendix B 126 

e l i f type(inpl,'numeric') then inp2:=[[inpl,'number']]; 
e l i f type(inpl,'function') then inp2:=[faff(inpl,n),1]; 
else ERROR('Wrong format for us!'); 
f i ; 

RETURN([inp2]); 
end; 

• faff 

faff:=proc(q,n) 
local inpl,inp2,inp3,l,i; 
1:=0; 
inp2C0]:=MULL; 
for i from 1 to n do 
1:=1+1; 

i f q = d i f f ( f ( t ) , t $ i ) then 
i n p l [ i ] : = i ; 
e l i f q=2[i] then i n p l [ i ] : = z [ i ] ; 
else inpl[i]:=NULL; 
f i ; 
i n p 2 [ l ] : = i n p 2 [ l - l ] , i n p l [ i ] ; 

od; 
i f inp2[n]=NULL and q=f(t) then inp3:=0 
else inp3:=inp2[n] f i ; 
RETURN(inp3); 
end; 

pow 

pow:=proc(q,n) 
local inpl,inp2,inp3,ind2,i,j,l,k; 
1:=0; 
k:=0; 
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inp2[0]:=NULL; 

i f type(op(l,q).numeric) and nops(q)<>l then 
i f nops(q) =2 and t 3 r p e ( o p ( 2 , q ) , ) then 
inp2[nops(q)-l]:=[faff(op(l,op(2,q)),n),op(2,op(2,q))] 
e l i f type((q/(op(l,q))).'*') then 

for i from 2 to nops(q) do 
k:=k+l; 
i f type(op(i,q),'**') then 
inpl[i]:=(faff(op(l,op(i,q)),n),op(2,op(i,q))); 
else i n p l [ i ] : = (faff(op(i,q),n),1); 

f i ; 
i n p 2 [ k ] : = i n p 2 [ k - l ] , [ i n p l [ i ] ] ; 

od; 
else inp2Cnops(q)-l]: = [faff(op(2,q),n),1] ; 

f i ; 
inp3: = ( [op ( 1 , q) ,' number' ] , inp2 [nops (q) - 1 ] ) ; 
e l i f nops(q)=l and type(q,numeric) then 
inp3:=([q,'number']); 
else 

i f type(q,'~') then inp2[nops(q)]:=[faff(op(l,q),n),op(2,q)] 
e l i f type(q, '*') then 

for j from 1 to nops(q) do 
1:=1+1; 
i f type(op(j,q),'**') then 

inpl[j]:=(faff(op(l,op(j,q)),n),op(2,op(j,q))); 
else i n p l [ j ] : = ( f a f f ( o p ( j , q ) , n ) , 1 ) ; 

f i ; 
i n p2[l] :=inp2[l-l] , [ i n p l [ j ] ] ; 

od; 
else inp2[nops(q)]: = [faff(q,n),1] ; 

f i ; 
inp3:=inp2[nops(q)] 
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f i ; 
RETURN(inp3); 
end; 

• compare 

compcire: =proc (inpl) 
local varO,var 1,var2,var3,vcLr4,var5,varl 1, i l , 1; 

1:=0; 
var3[0]:=NULL; 
varll[0]:=NULL; 
i f nops(inpl)=l and nops(op(l,inpl))=l and nops(op(l,op(l,inpl)))=2 

and op(2,op(l,op(l,inpl)))=number then 
vcLr4: = 'Number' ; 
var5:=op(l,op(l,op(l,inpl))); 

e l i f nops(inpl)=l then 
i f nops(op(l,inpl))=1 and type(op(2,op(l,op(l,inpl))),'numeric') 

then i f op(2,op(l,op(l,inpl)))=1 and 
type(op(l,op(l,op(l,inpl))),'numeric') then 

var4:='It i s 1'; 
var5:=op(l,inpl); 

else var4:='It is not 1'; 
var5:=op(l,inpl); 
f i ; 

e l i f nops(op(l,inpl))>l and op(2,op(nops(op(l,inpl)),op(l,inpl)))=l 
and type(op(l,op(nops(op(l,inpl)),op(l,inpl))),'numeric') then 
var4:='It is 1'; 
vax5:=op(l,inpl); 

else var4:='It i s not 1'; 
var5:=op(l,inpl); 

f i ; 
e l i f nops(inpl)>1 then 
for i l from 1 to nops(inpl) do 

1:=1+1; 
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i f nops(op(il,inpl))=l and nops(op(l,op(il,inpl)))=2 and 
op (2,op(1,op(i1,inpl)))=number then 

var2[il]:='Number'; 
v a r l [ i l ] : = o p ( i l , i n p l ) ; 

e l i f nops(op(il,inpl))=l and nops(op(l,op(il,inpl)))=2 and 
type(op(2,op(l,op(il,inpl))),'numeric') 

then 
i f op(2,op(l,op(il,inpl)))=l and 

type(op(l,op(l,op(il,inpl))),'numeric') then 
v a r 2 [ i l ] : = ' I t is 1'; 

v a r l [ i l ] : = o p ( i l , i n p l ) ; 
else v a r 2 [ i l ] : = ' I t is not 1'; 

v a r l [ i l ] : = o p ( i l , i n p l ) ; 

f i ; 
e l i f op(2,op(nops(op(il,inpl)),op(il,inpl)))=l and 

type(op(l,op(nops(op(il,inpl)),op(il,inpl))),'numeric') then 
v a r 2 [ i l ] : = ' I t is 1'; 
v a r l [ i l ] : = o p ( i l , i n p l ) ; 

else v a r 2 [ i l ] : = ' I t is not 1'; 
v a r l [ i l ] : = o p ( i l , i n p l ) 

f i ; 
v ar3[l] :=var3[l-l] ,var2[il] ; 
v a r l l [ l ] : = v a r l l [ l - l ] , v a r l [ i l ] ; 

od; 
var4:=var3[1]; 
var5:=varll[1]; 

f i ; 

sas: = [[var4],[var5] ] ; 

11:=0; 
kl:=0; 
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varl3[0]:=NULL; 
var14[0]:=NULL; 
varll:=op(l,sas); 
varl2:=op(2,sas); 
for i l l from 1 to nops(varll) do 

i f o p ( i l l , v a r l l ) = ' I t i s 1' then 
11:=11+1; 

v a r l 3 [ l l ] : = v a r l 3 [ l l - l ] , o p ( i l l , v a r l 2 ) ; 
e l i f o p ( i l l , v a r l l ) = ' I t is not 1' then 

kl: = k l + l ; 

v a r l 4 [ k l ] : = v a r l 4 [ k l - l ] , o p ( i l l , v a r l 2 ) ; 

f i ; 
od; 
va r l 5 : = v a r l 3 [ l l ] ; 
varl6:=varl4[kl]; 
v a r l 7 : = [ [ v a r l 5 ] , [ v a r l 6 ] ] ; 
RETURN(var17); 
end; 

masal 

masal:=proc(inpl) 
local varO,varl,iO,l; 
1:=0; 
varl[0]:=0; 
i f nops(inpl)<>1 then 

for iO'from 1 to nops(inpl) do 
1:=1+1; 

varl[l]:=varl[1-1]+masa(op(iO,inpl)); 

od; 
varO:=NULL; 

e l i f nops(inpl)=1 then 
varO:=masa(op(l,inpl)); 
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varl[0]:=NULL; 
f i ; 
RETURN(varO,varl[1] ) ; 
end; 
dif:=proc(inpl,n) 
local v a r l ; 
i f n=0 then varl:=inpl; 
e l i f nOO and type(n,numeric) then 

va r l : = d i f f ( i n p l , t $ n ) ; 
e l i f type(n,indexed) then 

varl:=n; 

f i ; 
RETURN(varl); 
end; 

masa:=proc(inpl) 
local v a r l ; 
1:=0; 
v a r l [ l ] : = 1 ; 
i f nops(inpl)=1 then 

i f op(2,op(l,inpl))=number then varO:=op(l,op(l,inpl)); 
else varO:=dif(f(t),op(l,op(l,inpl)))~op(2,op(l,inpl)); 

f i ; 
v a r l [ l ] •.=NULL; 

e l i f nops(inpl)<>l and op(2,op(l,inpl))=number then 
for i from 2 to nops(inpl) do 
1:=1+1; 
v a r l [ l ] : = o p ( l , o p ( l , i n p l ) ) ; 
v a r l [ l + l ] : = v a r l [ l ] * d i f ( f ( t ) , o p ( l , o p ( i , i n p l ) ) ) " o p ( 2 , o p ( i , i n p l ) ) ; 

od; 
varO:=NULL; 
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e l i f nops(inpl)<>l and type(op(2,op(l,inpl)).numeric) then 
for i from 1 to nops(inpl) do 
1:=1+1; 

v a r l [ l + l ] : = v a r l [ l ] * d i f ( f ( t ) , o p ( l , o p ( i , i n p l ) ) ) - o p ( 2 , o p ( i , i n p l ) ) ; 
od; 

varO:=NULL; 
f i ; 
RETURN(varO,varl[1+1]); 
end; 

• mega 

mega:=proc(A,n) 
local q,p,up,uq,varl,var2,11,var3,varOO,T2,1,var11,T3,T,B; 
#A:="nbvs"; 
B:=A; 
with(student); 
11:=0; 
var3[0]:=0; 
while BOO do 

i f type(B,'+') then 
T:=op(l,B) ; 
else T:=B; 
f i ; 
TM:=op(l,master(T,n)); 

# with(student); 
1:=0; 
var2[0]:=NULL; 
q:=TM[nops(TM)][1] ; 
p:=TM[nops(TM)-l] [1] ; 
uq:=TM[nops(TM)] [2] ; 
up:=TM[nops(TM)-l] [2] ; 
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i f q=p+l then 

varOO:=-diff(product('op(j,T)','j'=1..(nops(T)-2)),t)* 
diff(f(t),t$p)-(up+1)/(up+1); 
varll:=sorte(expand(varOO),n); 
11:=11+1; 

v a r 3 [ l l ] : = v a r 3 [ l l - l ] + v a r l l ; 
B:=B-T; 

else 
T2:=intparts(Int(T,t),product(op(j,T),j=l..(nops(T)-l)))-
op(l,intparts(Int(T,t).product(op(j,T),j=l..(nops(T)-l)))); 
T3:=-sorte(expand(sorte(op(l,-T2),10)),n); 
T4:=compare(master(T3,n)); 

# gives nbv and bv separatedly 
i f op(2,T4)<>NULL then 
11:=11+1; 

var3[ll]:=var3[ll-l]+masal(op(2,T4)); 

f i ; 
T5:=masal(op(l,T4)); 

B:=B-T+T5; 
f i ; 

od; 
RETURN(var3[11]); 
end; 

B.3 Examples 

Suppose that we have 

A:=zil{xf + Z2 (^i{x)]\z3f{x)' + z , f { x f f | - f ( x ) ) ' (B.5) 
\ox J \ax J 

To execute we write 

B:=elen(A); 
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to get 

B:=64zsz,f{t)' (^^{t)^ -Az^fitf ( | f ( 0 ) ' 

+ 48z2Z3f{tf ( ^ f ( 0 ) ' + 16^i^4f(0' (^f (O) ' 

-l^2Z4 ( ^ f ( 0 ) ' + 8zi.2r2 ( ^ f ( 0 ) ' + 16^3'f(0 
2 / q2 \ 2 

+ 4z42f (0 ' ' f | ^ f ( 0 l + 1 6^lZ3f ( 0 ' + 8-^2^4f(i)' ( | 2 f ( * ) 

92 

and to execute A, 

C:=lapl(A); 

to get 
4 . 4 ( | f ( 0 ) V 2 4 . 3 f ( 0 ^ + 4 . i ^^4f(0^ + ^^2 

Finally let us illustrate how Mega works. It reduces a set of non-basis vectors to basis 
vectors via a series of integration by parts, that is 

NBV:= z [ l ] * f ( t ) - 3 * d i f f ( f ( t ) , t , t ) + 
z [ 2 ] * f ( t ) * d i f f ( f ( t ) , t , t , t , t ) + z [ 3 ] * f ( t ) - 2 * d i f f ( f ( t ) , t ) * d i f f ( f ( t ) , t , t , t ) ; 

NBV := 

BV:=mega(NBV); 

/a \2 \2 / Q2 \2 
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