
Durham E-Theses

Electronic states and optical properties of quantum

well heterostructures with strain and electric �eld

e�ects

Ryan, Desmond Michael

How to cite:

Ryan, Desmond Michael (1997) Electronic states and optical properties of quantum well

heterostructures with strain and electric �eld e�ects, Durham theses, Durham University. Available at
Durham E-Theses Online: http://etheses.dur.ac.uk/5058/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5058/
 http://etheses.dur.ac.uk/5058/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


To 



Atque inter silvas Academi quaerere verum. 

Horace 65-8 B. C; 



Electronic States and Optical Properties of Quantum Well 

Heterostructures with Strain and Electric Field Effects. 

by 

Desmond Michael Ryan 

Submitted for the degree of Doctor of Philosophy 

Department of Physics, 

University of Durham 

September 1997 
The copyright of tliis thesis rests 
with the author. No quotation 
from it should be published 
widiout the written consent of the 
author and information derived 
from it should be acknowledged. 

2 AUG M 



ABSTRACT 

The aim of this work was to develop an envelope function method to calculate the 

electronic states and optical properties of complex quantum well heterostructures, 

and to demonstrate its effectiveness by application to some device structures of 

topical interest. In particular, structures have been considered which might form the 

basis of intensity modulators and polarization insensitive amplifier devices for light 

at a wavelength of 1.55 \im. 

The modulator structures considered all have the general form of two coupled 

quantiim wells of different widths as the active region. The application of an electric 

field in the growth direction is intended to result in a shift in the energy and spatial 

localisation of the confined states and produce an increase in the absorption 

coefficient at longer wavelengths than the zero field absorption edge. The 

effectiveness of certain structures is examined in terms of field induced absorption 

increase at 1.55 i^m. A system which shows a significant increase in absorption 

coefficient at this wavelength on application of a practical electric field has been 

identified as a possible candidate for an intensity modulator. 

In the case of the amplifier, the active region of the most promising structure 

considered consists of a stepped well which comprises two layers, one with tensile 

and one with compressive strain. It is known that the presence of the two oppositely 



strained layers can result in the TE and TM gain peaks appearing at similar photon 

energies. Our calculations show that a suitable choice of strain and layer widths can 

result in a small or zero difference between the TE and TM gains at 1.55 ^m, which 

can be important for the polarization insensitive operation of devices in optical 

commimications applications. 

In order to predict the optical properties of quantum well devices it is necessary to 

calculate the electron and hole states for a range of in-plane wavevectors. The 

calculations developed and carried out in this work are based on a multi-layer (eight 

band) k.p model including strain effects. The interfacial boundary conditions which 

result from approximations to Burt's exact envelope fiinction theory are included in 

the model. The effect of an electric field is modelled by including a potential energy 

term in each layer Hamiltonian which is equal to the average energy shift across the 

layer in question due to the presence of the field. The model has been developed with 

flexibility in mind and has applications beyond the specific devices considered in this 

thesis. 
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C H A P T E R ONE 

INTRODUCTION 

The development of the epitaxial growth techniques of molecular beam epitaxy 

(MBE) and metal-organic chemical vapour deposition (MOCVD) [1-4] have made 

possible the fabrication of very thin high quality semiconductor layers on a bulk 

semiconductor substrate. Normally, individual epilayer thicknesses range from 20 to 

as much as 2000 angstroms, although thicker and thinner layers are quite feasible. 

MBE and 'MOCVD also allow precise control of the chemical composition of the 

growing crystal providing the ability to grow successive thin layers of different 

elemental, compound or alloy semiconductors to form a heterostructure [1,2,8,9]. 

The growth of a thin (< 1000 angstroms) layer of narrow bandgap semiconductor 

between two wider bandgap semiconductor layers can result in the physical 

realisation of a finite square well potential where electrons exhibit quantum 

mechanical behaviour - a quantum well [10]. In some cases, AlGoAslGoAslAlGaAs 

for instance, both the holes in the valence band and the electrons in the conduction 

band experience a bandedge profile essentially equivalent to a square potential well. 

The carriers are free to move in the plane of the well, but are confined in the growth 

direction. The spatial confinement in the growth direction produces quantised energy 

levels [3,8,10]. I f carrier-carrier interactions are ignored and the effective mass model 

of carrier behaviour used, then the quantised energy levels relative to the bandedge 



are just a function of the well width, the depth of the well and the carrier effective 

mass in the barrier and well layers. For given barrier and well materials, the energy 

separation between the electron and hole levels can be tailored by adjusting the width 

of the well layer. This ability to tune the energy bandgap of the quantum well 

structure has important applications particularly in semiconductor lasers and light 

emitting diodes. The quantum well laser can be designed so that the emission 

wavelength corresponds to the wavelength of minimum loss and dispersion for silica 

based optical fibres which are used for long distance telecommimications. It is also 

possible to produce bulk materials with a continuous range of bandgaps by the 

process of alloying. For example the two binaries GoAs and AlAs can form the alloy 

Alfiai.^s, which has a bandgap determined by the relative ratio of the constituent 

binaries [3,4]. Hence alloys provide the means to grow quantum well structures of a 

fixed geometry but with different bandgaps and confining potentials. 

The growth of high quality semiconductor heterostructures was initially restricted to 

so called lattice matched systems, such as GaAs/AlGaAs, where the constituent 

materials have very similar lattice constants. However it is now possible to grow 

routinely high quality heterostructures made up of layers of semiconductors with 

different lattice constants. Misfit dislocations can be avoided in sufficiently thin 

layers when the crystal structure of each layer elastically deforms to produce 

matching of the lattice constant in the plane of each interface [3,11-14]. The resultant 

strain in semiconductor layers provides a further degree of control, particularly 

through the bandstructure where strain modifies the bandgap and produces splittings 



of degeneracies in the bandstructures such as that of the heavy and light hole bands at 

the top of the valence band and satellite valleys in the conduction band. For quantum 

wells, the presence of a compressively strained well layer results in a reduced in-

plane effective mass of the highest valence subband, which is heavy hole in 

character. This leads to a reduced threshold current for lasers based on compressively 

strained quantum wells [11,15]. The combination of thin layers from precision 

epitaxial layer growth techniques, semiconductor alloying and the incorporation of 

strain have resulted in the field of bandstructure engineering where devices with 

tailored electronic or optical characteristics can be grown [11]. Semiconductor 

heterostructures have also led to the discovery of new ftmdamental physical 

phenomena such as the quantum Hall effect [5,6,7]. 

In this thesis we describe the development of an envelope fiinction method to 

calculate the electronic states and optical properties of complex quantum well 

heterostructures and demonstrate its effectiveness by application to some device 

structures of topical interest. The structures considered are relevant to modulators 

and amplifiers which find application in optical communications systems [3,15]. 

Calculations of the optical response for both devices have been carried out in an 

attempt to predict device effectiveness. For the modulator, the active region consists 

of two coupled quantum wells of different widths [16]. The application of an external 

electric field in the growth direction results in a shift in the energy of the confined 

states (the quantum confined Stark effect [3]) and a change in the spatial localisation 

of the states. The change in the absorption of light with electric field at a wavelength 



of 1.55 i^m is the primary concern. In the case of the amplifier, the active region of 

the most promising structure considered consists of a stepped well which comprises 

two layers, one with tensile and one with compressive strain [17]. The presence of 

the two oppositely strained layers can resuh in the highest heavy hole and light hole 

subbands being at similar energies, and the energy separation between these and the 

lowest conduction subband being less than 0.8 eV. The polarization sensitivity of the 

gain at a wavelength of 1.55 \im is considered in this work. 

In order to predict the optical properties of the structures described above it is 

necessary to calculate the electron and hole states for a range of in-plane 

wavevectors. Our calculations are based on an eight band k.p method. Until recentiy 

the theory of envelope function behaviour at heterointerfaces had been contentious, 

but many of the issues have now been resolved by the development of an exact 

envelope function theory by Burt [18]. The required heterointerface boundary 

conditions are calculated for the eight band approach using an approximation to the 

exact envelope function theory and included in the k.p model of heterostructures 

[19]. The effect of elecfric field has been included by breaking the structure in to 

many thin slices where the electrostatic potential can be taken as spatially constant. It 

should be emphasised that the electronic structure calculation has been developed 

with flexibility in mind and has applications beyond the specific devices considered 

in this thesis. For example the bandstructure model could also be used to examine 

quantum well cascade lasers [3,20-22] and piezo-electric structures (when a 

zincblende crystal is strained in the (111) direction, a large internal field is generated) 



[23-25]. The model can also be applied to quantum well structures which require 

self-consistent calculations due to the effects of carrier charge such as modulation 

[3,7,26] and delta doped structures [27,28]. 

Chapter 2 describes the calculation of the electronic states of single strained quantum 

wells using a complex bandstructure approach based on the eight band k.p method. 

The interfacial boundary conditions which result from approximations to Burt's exact 

envelope fimction theory are calculated and included in the bandstructure model. The 

effects of these boundary conditions on the electronic states and bandstructure are 

compared to those derived from the more usual symmetrized Hamiltonian approach 

for a single tensilely sfrained quantum well. The chapter concludes with a 

demonstration of how the information on the bandstructure and the wave ftinctions 

can be used to predict the optical absorption of a quantum well structure. I f fiirther 

approximations are made, the k.p approach can be reduced to a much simpler one-

dimensional effective mass model which is particularly well suited to the rapid 

calculation of the energies and wave fimctions of the electronic states at zero in-plane 

wavevector. 

Chapter 3 describes the calculation of the elecfronic states and bandstructure of an 

asymmetric coupled quantum well system in an external applied elecfric field. The 

method of solution follows that for a single quantum well except that the active 

region is broken up into a finite nimiber of layers. The effect of the electric field is 

modelled by including a potential energy term in each layer Hamiltonian which is 

equal to the average energy shift in the layer in question due to the presence of the 



field. Solutions are found by matching the layer solutions at each interface. The 

model is applied to two coupled quantum well structures which have been proposed 

by GEC-Marconi as possible candidates for light intensity modulators at a 

wavelength of 1.55 ^m. The field dependent absorption spectra for the two structures 

are calculated and the results examined in terms of light intensity modulation at 1.55 

l^m. GEC-Marconi did attempt to grow the structures using MOVPE but 

unfortunately the grown devices deviated from the target specification. Nevertheless 

the comparison between the theoretical predictions and the experimental 

measurements that is presented is instructive. The state energies, envelope functions 

and relevant optical matrix elements are also calculated as a function of electric field 

using the one-dimensional effective mass model and are compared to those obtained 

from the k.p model. 

Chapter 4 examines the polarization sensitivity of the gain for two types of quantum 

well structure. The first is a single tensilely strained quantum well, but the second 

provides the basis for a more effective device and consists of a stepped well which 

comprises two layers, one with tensile and one with compressive strain. Three 

structures of the second type are examined. The net TE and TM gains, which include 

optical confinement effects and carrier dependent bandgap narrowing, are calculated 

for a range of carrier densities. The results are discussed in terms of the polarization 

sensitivity of the gain, the bandwidth over which the polarization sensitivity is 

acceptably low and the maximum achievable gain at 1.55 j^m. 

Chapter 5 presents the conclusions and suggestions for further work. 
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C H A P T E R TWO 

QUANTUM W E L L BANfDSTRUCTURE AND OPTICAL ABSORPTION 

2.1 Introduction 

The main subject of this chapter is the calculation of the electronic states of strained 

and unstrained semiconductor quantum wells. The chapter is concluded with a 

demonstration of how the information on the bandstructure and wave functions can 

be used to predict the optical properties of a quantum well structure, in particular the 

absorption coefficient. The electronic structure is calculated by applying Burt's 

envelope function formalism which provides a well defined treatment of wave 

functions at heterointerfaces. This approach is compared with an alternative by 

considering the bandstructure and wave functions for a tensilely strained quantum 

well. A much simpler one-dimensional effective mass model is also developed which 

is particularly suited to the rapid calculation of the confined electronic states at zero 

in-plane wavevector. The calculational methods discussed in this chapter form the 

basis of the theoretical study of quantum heterostructures in the remainder of the 

thesis. 

2.2 Bulk bandstructure 

The energy eigenfunctions of an electron moving in the periodic potential of a 

semiconductor crystal may be written in Bloch form 



v|; = « f r > ( 1 ) 

where u „k (r) is called the Bloch periodic part of the wave function for band n and 

has the periodicity of the potential. In the reduced zone scheme the wave vector k is 

required to lie in the first Brillouin zone. The Bloch periodic part for any given k in 

band n, may be expressed as a linear combination of the Bloch periodic parts of the 

infinite set of bands at some single value of wavevector kg : 

" nk (r) = Z c„ „(k-kQ} „„,k„ (r) (2) 
m 

In practice it is normally possible to obtain a satisfactory representation of u„if(r) 

while restricting the sum in eq (2) to a finite number (typically < 30) of terms. In 

particular when, as here, only states close to the edges of the conduction and valence 

bands are of interest, it is common to use eight basis fiinctions um^s.^ ( f ) where kg 

corresponds to the zone centre {kg = 0) and m to the heavy, light and spin split off 

valence bands and the conduction band for the two spin configurations. Combining 

eqs.(l) and (2) and substitution into the Schrodinger equation yields 

[ ^ V ^ - — * - V + 4̂  + K(r)]E c„nu„,o(r)=E„(k)Y. c„nu.,(r) (3) 

Multiplying on the left by u„o *(r) and integrating over the unit cell gives 

I £„(*)- £ „ ( 0 ) + 
2m 

Snm P i ^ nm 
m J 

Cmn = 0 (4) 

where 

Pnm= lu„o(.r)pumo(r)dr (5) 
vnilcell 

10 



Equations (2) - (5) define the k.p representation. The above set of eight equations can 

be written in matrix form as 

(H-X)c = 0 (6) 

where the eigenvalue A, represents the E„(k) in eq.(4) and H the remaining terms in 

the brackets. For each value E„(k) of the eigenvalue X there is an eigenvector c with 

components c„„, the coefficients in eq.(2), which define the wave function of the 

state in band n at wavevector k. 

Whilst we have limited our expansion in eq.(2) to eight basis functions it is found 

that interactions between these bands of interest and those that are energetically 

remote result in significant modifications to the respective bandstructures. In this 

work the interactions between the eight basis states and the remote bands are 

included perturbatively using the standard Lowdin approach [5]. 

The region of the semiconductor bandstructure of interest for optical devices 

considered here is that around the fundamental energy gap, which separates the 

occupied states from the unoccupied states of intrinsic material at absolute zero 

temperature. These states are derived from the outer, partially filled atomic shells of 

the constituent atoms. For example, in the case of the semiconductor GoAs the group 

/ / / element Ga has an outer shell 4s^4p^ and the group V element As has an outer 

shell 4s^4p^ and both play a role in forming the electronic states around the energy 

gap. The valence band maximum is derived from atomic p orbitals (dominated by As 

/7-states), and is split by the spin-orbit interaction into upper fourfold-degenerate 

11 



states (Fg) with7=3/2 and lower twofold-degenerate states (F;) with 7=1/2, where j is 

the total angular momentum quantum number. The states at the conduction band 

minimimi for a direct gap semiconductor (Fg) have wave fiinctions that are derived 

from atomic s orbitals (dominated by Ga 5-states). Therefore, it is appropriate to use 

the eight zone centre states (Fg F 7 & Fg) to form the basis set of the Hamiltonian 

(Table 1). 

| s t ) 

I ' l l 

Conduction 

"2 3 3\ 

2 ' 2 / 

Heavy hole 

«3 
J l | ( ^ . . - y ) i ) - J | | z t ) 

I ' l l 

Light hole 

M4 
^ p . i Y ) i ) . \ z ^ ) ] 2'2/ 

spin split off 

"5 

2 2 / 

Conduction 

"6 3 3\ 

2 ' 2 / 

Heavy hole 

«7 
- - - ) 2 ' 2 / 

Light hole 

"8 
- J l [ | ( ^ - / y ) t > - | z i ) ] 2 2 / 

spin split off 

Table 1: The basis set of the Hamiltonian, H, in eq. (6). 

where S denotes s type atomic orbitals 
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X,Y 8lZ denote p^ Py & p^ type atomic orbitals 

t & l indicate spin up and spin down 

j is the total angular momentum quantum number 

rUj is the z component of the total angular momentum quantum 

number 

With this basis the Hamiltonian follows [1,2,5,6] as given in Table 2. 

In Table 2 

]ei=k\^k\ (7) 

k, = k. + iky (8) 

k--k,-iky (9) 

As written, all wavevectors in Table 2 are expressed in units of where m is 

the free electron mass. That is any factor of wavevector should be multiplied by 

lAm correspond to the notation in the text. Also 

p=\y^'-"' ^^^^ 

Pkane^ -'-{AP,\x) ( H ) 

= energy of the edge conduction band (at the T point) 

E^ = energy of the edge valence band (at the F point) 

A = spin orbit splitting energy (at the F point) 

13 



4 

1 

4 
i 1 4 

\ 4 i 
• 4 i 
^ ?C i o 

: 1 \ 
i 4 

: | j - H j V ) 

< i 
\ + 1 

' ^ J r 
\ f C 
i 1 1 

4 

1 

^ 
; 1 4 
; : 4 .>c 

\ 4 

; 4 

: ^ 

\ 4 

1 

i 4 + 
; 4 3 ^ 

: ^ ^ 
I fS ITS 

; (N T 

o o 

®̂ ^ ̂
 4 2 ^ ; 4 

; ^ + ^ 

; 4 
; 4 

: ^ 

O o 

4 ^ 4 

1 1 

+ 
to 

^ i 4 

1 ] ^ 

4 

1 

4 
4 4 

1 -V : 
^ : ^ 

Y ; . b ^ ^ 
0 

1 

4 
4 

r r \ 

4 
w >ri • 0 

T 

4 
4 
PI 

1 
4 \ ^ i 

^ + \ 

4 ^ 4 ^ 
4 i 4 ; 

( N i l ; 

• 4 - . 

; 1 4 : 

; ^ L § ; 

^ 4 
1 4 

+ 
4 \ 

1 

' 4 ^ ^ : 
0 

i 4 \ 4 
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y^,/^^/^ are the modified Luttinger parameters and are related to the parameters 

yf (i = 1-3) originally defined by Luttinger [7] 

r , = r f - f (13) 

72, = / I s - f (14) 

where x = ^"^ f "̂"̂  =-P— is defined in terms of the bandgap Eg = Ec-
Eg 3 

The effective masses at the edges of the valence and conduction bands may be related 

to the modified Luttinger parameters by 

— = rr^r, (15) 
mhh 

— = s+x\ + — (16) 
mc ^ 2/-y 

— = ^1+2 /2+; ! : (17) 
mih 

— = r , - f (18) 

= X r 2 / 3 (19) 

where 

mhhui 

r = - ^ (20) 
A + E, 

nihh = heavy hole mass in the (001) direction 

rrtc = conduction mass in the (001) direction 

mih = light hole mass in the (001) direction 

msso = spin split off mass in the (001) direction 
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mhhui ^ heavy hole mass in the (111) direction 

Therefore, i f the five effective masses, Eg and A are known all the required 

parameters in the Hamiltonian can be calculated. 

The energy eigenvalues, E, and the corresponding eigenvectors of the k.p equation 

(4) can now be obtained numerically for any given wavevector, k. In application to 

quantimi well problems this normally involves fixing E, and ky and solving for k^. 

The Hamiltonian is written as 

(H^kf+HjK + Ho) (21) 

where Hg, Hj and H2 are independent of k^ 

The k,p equation is 

(H2kf + Hik, + (Ho-E))c = 0 (22) 

and can be turned into an eigenvalue equation for k^ by multiplying eq.(22) on the 

left by - H 2 ' , moving the first term to the right hand side and including the trivial 

relation k^c = k2C. 

1 c c 
1 = 

H2^m 
= (23) 

It is straightforward to show that i f is a solution to the above equation then so also 

are -k^, k* and -k* [6]. The matrix on the left hand side of eq.(23) is of order 16 and 

consequentiy 16 eigenvalues and eigenvectors can be obtained. Therefore, the 

general solution to eq.(23) at any particular E, k„ ky is of the form 

H/= S (24) 
' J 
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where the are constants and the indices / and j nm from 1 to 16 and 1 to 8 

respectively. Examination of the bulk bandstructure shows that there are only three 

distinct bands in the normal sense of the word (since the conduction band is coupled 

to the light hole band by a band of imaginary ^̂ 's in the forbidden bandgap for k^"^ ky 

=0) which provide twelve k^ eigenvalues. The bulk bandstructure for GaAs, atk^ = ky 

=0, is shown in Figure 1. The remaining four eigenvalues of the sixteen have large 

imaginary k^ values for all energies and in-plane wavevectors considered (and have 

been discussed by a number of authors [6,9,10,11]) and have an insignificant effect 

on the solutions to the quantum well structure. 

2.3 Strain effects 

A strained epitaxial layer can be produced by growing a thin layer of a 

semiconductor with bulk lattice constant ag on a thick semiconductor substrate with 

lattice constant a^ [12-14]. I f the epilayer is grown in the z-direction then it will 

experience a net biaxial strain, S||, in the x-y plane given by the expression 

Ell = Sxx = Eyy = (^r^eV^e (25) 

The layer wil l also relax in the growth direction resulting in a sfrain given by 

s, = - ^ 8 „ (26) 

where a is Poisson's ratio (approximately ^ for tetrahedral semiconductors). The 

energy stored per unit area, due to the sfrain field [15], is given by 

E,,,,,,= 2G(\^]sjh (27) 
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where, 

G = shear modulus of the epilayer 

h = thickness of the epilayer 

At some critical thickness the energy stored per unit area will equal the energy 

required to form dislocations and it is energetically favourable for the structure to 

relieve the strain through the formation of dislocations. However, below this critical 

thickness the structure wil l normally be stable. It has been predicted by [12-14,18] 

that = 90 angstroms for Sy = 1%, although the exact value depends on the material 

in question as well as the growth conditions [53-54]. However, it is sometimes 

possible to grow stable strained layers greater than the critical thickness [16], since 

the energy required to form a dislocation is greater than that required to propagate 

one that is already present. Therefore, i f good quality growth can be achieved, layers 

with a thickness-strain product of 200 angstrom-% can be grown [17,18]. 

For a layer grown in the z-direction in cubic material, the strain tensor is diagonal 

[19-22] and is given in eq.(28) in the S, X, YmdZ basis (Note: The strain terms are 

small compared to the spin orbit splitting energy and the Kane momentum matrix 

element and therefore the same basis set, as for the unstrained material, can be 

retained without modification [22]). 

cie:^ + £yy + £..) 0 0 0 

0 lSxx + r"i£yy + £zz) 0 0 

0 0 lEyy + m(S^ + Szz) 0 

0 0 0 lEzz + m{SxX-^Eyy) 
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where. 

Szz--2^S | | 
C u 

(29) 

1̂1 x̂x ŷy 

Ci2 & C;y are elastic modulii of the epilayer and c, / & m are strain-dependent matrix 

elements which are related to the Pikus-Bir deformation potentials a^, a^ and by 

[19-22] 

flc = c = conduction hydrostatic deformation potential (30) 

fltv = - - (/+2/7j) = valence hydrostatic deformation potential (31) 

6v = ^-Q-fn) ^ valence shear deformation potential (32) 

The strain dependent contribution to the Hamiltonian matrix of Table 2 (with the 

basis of Table 1) is straightforward to calculate and is given in eq.(33). 

IT _ 
^strain 

Z 0 

0 z 

where 

Z= 

c(£-xt + £-w + £-zz) 

2 

- ( £ x t + £>5- + 4 f n ) / ^ 

+ -i^e„'r'ieyy+2e^m 

— (exx + eyy-2£^^l-m) 

(33) 



At this point it is worth examining qualitatively the effects of the strain terms on the 

bulk bandstructure. When the natural lattice constant of the epilayer is larger than 

that of the substrate, the epilayer is imder biaxial compression (£|| is negative and 

hence ŝ z is positive). The hydrostatic strain component, 2S||+8zz, of the compression 

increases the mean bandgap, whilst the axial strain component, s^z-Ey, splits the 

degeneracy of the valence band maximum, pushing the heavy hole band to higher 

electron energy and the light hole band to lower electron energy [15]. The heavy hole 

band constitutes the valence bandedge and is now heavy along the growth direction 

but comparatively light in the x-y plane. When the lattice constant of the epilayer is 

smaller than the substrate lattice constant, the epilayer is under biaxial tension (£|| is 

positive and z^z negative). The hydrostatic component of the tension reduces the 

mean bandgap, whilst the axial component splits the degeneracy of the valence band 

maximum, pushing the light hole band to higher elecfron energy and the heavy hole 

band to lower electron energy. The highest band is the light hole band which is light 

along the growth direction but comparatively heavy in the x-y plane [15,23]. 

2.4 Complex bandstructure description of the electronic states of a quantum 

well 

A quantum well is a layer of narrow bandgap semiconductor grown between two 

larger bandgap semiconductors. The electronic states and bandstructure of a 

semiconductor quantum well may be obtained by generalising the standard text book 

approach to the solution of Schrodinger equation for a simple square well [55]. 
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Consider the quantum well layer to lie in the x-y plane. The wave function, of any 

energy eigenstate of the system can be written as a linear combination of all allowed 

bulk states for the three materials (left barrier, well and right barrier) at the relevant 

energy subject to appropriate boundary conditions. The linear combination of bulk 

states can be written, for each material, in the form 

v | ; ^=E Z^^F j f e ' * ' ' • ' |« r ) (34) 

where M= left barrier layer, well layer & right layer respectively 

Af^ = the coefficient specifying the contribution from each of the 16 

bulk states (/=1-16) for a particular energy and in-plane wave 

vector (for each region) 

Fji^ = the coefficient specifying the contribution from each of the 

zone centre states (/•=l-8) for the bulk state / (/=1-16) for a 

particular energy and in-plane wave vector (for each region) 

k , ^ = /ti^ i + j + kif k (35) 

where ktf and kf^ are real, representing a point in the in-plane 

bandstructure. kff may be real, imaginary or complex; hence 

the term complex bandstructure. Only bound states of the well 

are considered here for which kt is either imaginary or 

complex in the barriers. 

uf = zone centre basis functions (/=l-8) (36) 

Therefore, to determine v|/, we need to calculate the using equations which 

follow directly from applying the required boundary conditions. 
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The wave function, \|/, is the solution of Schrodinger's equation for the system and 

must be continuous at the both interfaces (left barrier/well interface and well/right 

barrier interface) and must be finite everywhere. The derivative of \\i must also be 

continuous and finite. The wave function can only be continuous at all points on the 

interfaces, r^^, i f the in-plane wave vectors ki^ i + i are the same in all three 

materials for all i in the sum of eq.(34). The finiteness of the wave function is 

guaranteed by ensuring that the exponentials in the linear expansion go to zero as \z\ 

becomes very large. This is achieved by restricting the wave function expansions to 

the terms containing eight of the sixteen ^̂ 's from the left barrier (the eight whose 

imaginary value < 0) and fi-om the right barrier (the eight whose imaginary value > 

0). The restriction on the expansion is made by choosing the to be zero for the 

terms that are not to be included 

The k.p method is formulated in terms of matrix elements and avoids the need for a 

knowledge of the explicit form of the wave functions of the zone centre basis states. 

Therefore to proceed further with the matching of wave functions at the boundaries it 

is necessary to assume that the zone centre Bloch states, | uY), are the same in each of 

the three materials, which is normally a reasonable assumption when both well and 

barrier materials are isoelectronic (that is both well and barrier materials are III-V 

materials such as GoAs). The assumption also implies that P,^^ has a similar value in 

all three regions and that this is the case for a number of materials shows this to be a 

good approximation. The continuity of the wave function across the interfaces 

together with the completeness and orthogonality of the \uj') means that the 
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coefficients of the Bloch states \uY) in eq.(34), the envelope functions 

Z Af^ Fjf e'*'" ' , must be continuous. This follows if we equate wave functions of the 
/• 

form of eq.(34) at an interface, multiply by uf * and integrate over the unit cell. 

The Schrodinger equation for the system also requires the continuity of — which 

implies that the normal derivatives of the envelope functions Y.aY Ff, e'*'" ''on each 

side of an interface are continuous. However, it is not possible to use an infinite set 

of basis functions to solve practical problems and a different approach is necessary 

when a small number of basis states is used as is normally the case in k.p 

calculations. One way to proceed is to adapt the approach described to the case of a 

finite basis set. In general the interface conditions for the Schrodinger equation are 

derived by integrating that equation across the relevant interface. A similar procedure 

can be adopted with the matrix equation of the k.p method [6,24,25]. The 

Hamiltonian of eq.(21) can be written as 

H={-H2f-,-iH,^ + Ho) (37) 

where has been replaced with the operator - —. 
/' & 

The terms Hg, Hj and H2 are dependent on z since the parameters of the Hamiltonian 

including the effective masses. Eg and A vary with layer material. As it stands the 

Hamiltonian is not Hermitian and it has been common practice [6,24,25] to rewrite H 

in a symmetrized form which is Hermitian and results in conservation of probability 

current across an interface 
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^^^^ 

This symmetrized form of the Hamiltonian is not unique and other forms have been 

examined by a number of workers [41-43]. However, it suffices for the discussion 

here because an unambiguous approach will be developed later in this Chapter. To 

obtain the interface matching condition corresponding to the Hamiltonian of eq.(38) 

we integrate the matrix form of the Schrodinger equation (as eq.(22) but with the 

symmetrized Hamiftonian of eq.(38)) an infinitesimal distance in the z-direction 

across the interface. I f the interface is at z = 0 this gives 

iHcdz = 3 ' , McY_l = 0 (39) 

where only non vanishing terms have been retained on the right hand side of the first 

equation. 

To obtain the allowed states of the quantum well it is necessary to write the boundary 

conditions explicitly in terms of the bulk states of the three layers. 

Continuity of the wave function gives 

at the left interface 

t A'" F'fi e""'"^ = Z Ar F; e'"''"' (40) 
/=i /•=i 

and at the right interface 

I A ^ ' F H e'*̂ -̂̂ *' - ZArF} e'*'̂ *' (41) 
i=9 i=l 

where the superscripts lb, w and rb denote left barrier, well and right barrier 

respectively. The z subscript on the wavevector has been dropped to simplify the 
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notation. Zi^ft is the position of the left barrier/well interface and z^jght that of the right 

interface. 

Equations (40) and (41) can be written in matrix form as 

W,,L=W^iW 

(42) 

where 

W,,R=W,,W (43) 

Wib(i,j) = F'I e''"''"' and W.^(i,j) = e'^""" are 8x8 matrices (44) 

WJij) = Fy e""'"" and W^iJ) = Fy e^''"^' are 8x16matrices (45) 

0) = Af and R (i) = Af are eight dimensional column vectors (46) 

and W (i) = A7 is a sixteen dimensional column vector 

The matrix equations (42) and (43) can be combined to give 

_ 0 Wrb\ W^A 

where B 

(47) 

(48) 

or. 

The boundary condition eq.(39) gives at the left interface 

llAf ZMt Fli ^'''"^ = ZA7 IMI Fl e'*-"̂  
;=1 m=l ;=1 m=l 

(49) 

(50) 

and at the right interface 

i=\ m=\ 

16 8 

iLAii: 
(=1 m=l 

(51) 
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where MjJ^ = component {j,m) of the integrated Hamiltonian, M, of eq.(39) 

for region R 

kj = the wavevector for the bulk state / (z= 1 -16) at a particular 

energy and in-plane wavevector for region R 

In matrix form, eqs.(50) and (51) are 

Dt,L = D,,W (52) 

D,,R = D,,W (53) 

which can be combined to give, 

(54) 
L " Vrb] IV^r} 

or, 

D,,,,B = D^,uW (55) 

The two boimdary conditions, equations (49) and (55), can now be combined to give 

W^eli' W,,rrDbarr'' ^we// W = W (56) 

or, 

iW^eli' fVbcrrDbarr' D^ell " W = 0 (57) 

where / is the identity matrix and 0 is the zero column vector. 

Dib 0 • B = W 
0 Drb 

Therefore, the quantum well states can be found by searching for the energies for 

which the determinant of the matrix (W^^n'' W^arr J^barr' ^weii - -0 vanishes. For such 

an energy the colunm vectors W and B, the wave function coefficients, can be 

calculated from eqs.(56) and (55) respectively, and completely specify the wave 

function for the particular energy and in-plane wavevector. 
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2.5 Burt envelope function theory 

The theory of the electronic states of quantum wells described above is unsatisfactory 

in at least two respects. First, it is necessary to assume that the basis functions of the 

k.p Hamiltonian are the same in the well and the barriers despite the fact that the 

theory starts with the implicit assumption that they are different. Second, the 

Hamiltonian is "symmetrized" during the analysis without any fiindamental 

justification. Burt [31-37] has shown how these problems can be avoided by using a 

single Schrodinger equation for the whole system and using that to derive equations 

which describe the wave functions at discontinuities in system properties which are 

designed to represent interfaces. 

To outline Burt's approach we follow the salient points in reference [34] and 

consider a one-dimensional semiconductor structure. This could be a simple bulk 

crystal or a lattice matched heterostructure. The electronic wave functions can be 

expanded in the form, 

^=1:FJ\UJ) (58) 
j 

where Uj are a complete set of linearly independent periodic functions with period 

equal to the lattice periodicity. A natural choice in a bulk crystal would be the Bloch 

periodic parts at the zone centre. In a heterostructure the crucial point to note is that, 

whatever the choice of Up the same functions are used throughout the system. The 

F„'s, the envelope functions, are functions of electron coordinate and can be 

expanded in terms of plane waves, with the wavevectors in question being restricted 

26 



to the first Brillouin zone. The expansion in eq.(58) is complete and unique. 

Substitution of eq.(58) into the Schrodinger equation gives after some algebra 

tn 
m L 

, .F„-i-Y.p^,^F„+Y^\ H„JzX)FJz')dz' = EF„(z) (59) 

where, 

H„JzX) = T„^^z-2) + V„JzX) (60) 

A f z - z ) = i l e"'̂ '""̂  (61) 
a k 

T„„=-\u:Tu„,dz (62) a 

V„m =-\u„Vu„dz (63) a 

Pnm= -\unP,U„,dz (64) a 

where T, V and p are respectively the kinetic energy, the potential energy and the 

momentum operators, a is the periodicity of the lattice and L the length of the 

structure. Away from interfaces H„JzX) = (T„^ + F„jAfz-z) = //„„Afz-z). 

For the case of the bulk crystal or well away from interfaces in a heterostructure 

eq.(59) becomes 

^-^P>.A^m+TH„„,F„-EF„ (65) 
2m dz^ m m dz „, 

When the microscopic potential changes abruptiy at interfaces and there are no built-

in or external fields eq.(65) can be used as the basis of a k.p theory of 

heterostructures. On each side of the interface solutions are found to eq.(65) in the 

form Z/„Mn and then matched at the interface. The matching conditions have to be 

27 



obtained from eq.(59) which in contrast to eq.(65) is valid throughout the structure, 

including the interfaces. Nevertheless Burt shows that when the envelope functions 

are slowly varying and the crystal potential V(z) is local, the last term on the left hand 

side of eq.(59) is well approximated by the value of H„„ for the material at position z, 

which we call H„^(z). 

Choosing u„ to be the zone centre eigenfunctions so that the crystal Hamiltonian in 

that basis is diagonal with elements E„, eq.(65) becomes 

Seeking solutions of the form 

F„ = Aj'^ (67) 

gives the same equation as k.p theory: 

Z [iE„+^-E:)Km+-Pn.\A„,=0 (68) 

In the three dimensional case eq.(66) becomes [35] 

-fy'F„(r) - i-I/;„„, V FJr) + I H„J'Jr) = EF„ (69) 
im m m m 

with the obvious generalisation of eq.(65). 

As in the conventional k.p theory the terms j in the sum of eq.(58) may be divided 

into two groups s and r, where the group s provide the dominant contributions and r 

the much smaller contributions corresponding to remote bands. The terms in the r 

group can be eliminated in favour of those in 5 by considering eq.(69) for n = r and m 

= s and ignoring the second derivative of the slowly varying F/r): 
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F, = (E-H,fU—Prs-^Fs+Hrs-F,) (70) 
J - m 

Substitution of the expression for F^ into eq.(69) yields 

^IV{r<: . ) -VF.(r ) ] + l — p,,-VFAr) 
2m s s m 

+ I.H'^}{E,r)FAr) + Z — P . . - V [ ( £ - i / ^ )-'//„•] FyW 

+ i: — {E-Hrry\PsrHrs+HsrPrs)-^FAr)^EFlr) (71) 
s,r m 

where, 

/ ! ? ( £ . O-ZSss- + -l.PsAE-HAr)]-'Prs (72) 
m r 

H^n (E, r) = H,,ir) + S Hsr (r)[E - Hrr (0 //„• (r) (73) 
r 

The fourth term on the left hand side of eq.(71) vanishes for the bulk case since H^^ 

and //„• are constant. To provide a suitable description of the states around the 

fundamental gap it is appropriate to use the states of Table 1 in group 5 and place all 

other states in group r. It is a good approximation to neglect the terms in eq.(71) 

involving H^^ since this matrix element is only an appreciable size when s and r have 

the same symmetry but such states are usually well separated in energy. Making this 

approximation eq. (71) reduces to 

2m s' . s' m 

+ i:HsAR)FAr)^EF,(r) (74) 

The equation may be written in the matrix form 

HssFAr) = EFAr) (75) 
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The Hamiltonian, in the S, X, 7 and Z basis, without spin is shown in Table 3 where 

1 V ' x\pJuj 

3mJ J Ej-Er 
(76) 

n 
1 yi5 XPy\Uj 

'imJ J Ej-Ev 
(77) 

1 Y^W^'^^rl 
6mJ J Ej-Ev 

(78) 

CO 
1 Y^{'\p^"j)(MPy^'') 

^"'^^ Ej-\(Es-E.) 
(79) 

3mJ j Ej-Es 
(80) 

The dimensionless quantities % and 6 are the same as those defined by Foreman [38]. 

Foreman treats the conduction band as a remote band and therefore includes it in the 

summation which defines a. However, the conduction band is treated explicitly here 

and does not appear in the sunmiation of eq.(76). 

It is instructive to compare the Hamiltonian of Table 3 to the one derived by Kane 

[1,2] which is shown in Table 4, where 

m 

r= ^(ct+25) 
m 

(81) 

(82) 

(83) 
m 
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B==^(o (84) 
m 

A^=Z^% (85) 
m 

The difference between the matrices is the ordering of k„ ky and k^ which is important 

in inhomogeneous systems and when the components of wavevector are replaced by 

differential operators. However, in a homogeneous system where a, 6, TT, Q and A, are 

independent of position the two Hamiltonians are identical. 

The Hamiltonian in the angular momentum basis set (Table 1) with spin included is 

shown in Table 5. The linear splitting terms due to inversion asymmetry of the 

zincblende structure, co, have now been dropped, which is equivalent to the common 

approximation 5 = 0 in k.p theory. The Kane (Table 2) and Burt (Table 5) 

Hamiltonians can be compared directly using the fact that the modified Luttinger 

parameters are related to a, 6 and n by, 

Yi = -l+2a+45+47r (86) 

Y2 = a+25-7i (87) 

y3 = cj-5+7r (88) 

I f we consider a, 5 and n to vary with z and to be replaced by - i — a particular 

difference between the two Hamiltonians arises. In Bmt's version the opposite spin 

light hole states couple as do the spin split off states but in the Kane matrix the 

elements representing this coupling vanish. 
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Now consider a discontinuous change in a, 6 and n, representing an interface. I f we 

wish to approach the problem by solving for the states on each side of the interface 

and then matching at the interface we can obtain the appropriate matching conditions 

from eq.(75). First, we must have that each F/r) is continuous otherwise the second 

derivative in the first term on the left hand side of eq.(74) would diverge, making it 

impossible for the equation to be satisfied. Second, integrating eq.(75) an 

infinitesimal distance across the interface (at z = 0) in the z direction yields 

Jh^^- dz Fs (r) =0 . The integrated symmetrized and Burt Hamiltonians are shown in 
-s y 

Table 6 and 7 respectively. Note that in the Burt Hamiltonian there is no need to 

make the rather ill-defined approximation that the basis functions are the same on 

each side of the interface, because thay are chosen to be the same throughout the 

structure. 

However, a new problem arises as a result of this choice of basis fimctions, namely 

the calculation of the Hamiltonian matrix in at least some parts of the structure. The 

usual choice of basis functions for a k.p Hamiltonian matrix is the zone centre states 

for the relevant bands and the established parameters have been derived with that 

implicitly assumed. But that is not possible for all parts of the heterostructure. For 

example i f we choose to use the zone centre states of the bands of the bulk material 

that makes up the well, these will differ from the corresponding states of the barrier 

material. The only really reliable procedure is to use a more fundamental 

bandstructure calculation, such as the pseudopotential method, to calculate the 

Hamiltonian matrix for the well and barrier materials. However, i f such an approach 
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is not available, expediency requires the use of the established Hamiltonian for each 

material, albeit with the implicit assumption of material specific zone centre basis 

states. Although at first sight this appears as unsatisfactory as the assumption made in 

association with the symmetrized boundary conditions, there is good reason to 

believe that it is a rather better approach [31,34]. First, strain apart, symmetry 

requires that the Hamiltonian matrix elements have the same functional dependence 

on wavevector, further the diagonal elements at = 0 must give the correct zone 

centre energies for the bands. Finally, although the parameter P should be the same 

throughout the structure i f the same basis states are used it normally does not vary 

greatly between the commonly used material and does not in any case appear in the 

interface matching conditions in the Burt formulation. 

To see the effects of the two different boundary conditions, the bandstructure is 

calculated for a 200 angstrom, InQ4jGaQ^3As/In(,j4GaQ 26^80,57?0.43 quantum well with 

0.44% tensile strain. The effects of strain in quantvim wells are discussed in 

[15,23,44-52]. The material parameters used for the calculation are shown in 

Appendix 1. The conduction bands are shown in Figure 2 for the Burt boundary 

conditions (which are indistinguishable on the scale of the diagram from the bands 

obtained using the symmetrized boundary conditions). The small energy differences 

at = 0 are given in Table 8. 
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State Eigen-energy (eV) for the 

Burt condition 

Eigen-energy (eV) for the 

symmetrized condition 

Conduction 1 0.79724 0.79711 

Conduction 2 0.83629 0.83585 

Conduction 3 0.89689 0.89613 

Table 8: The three lowest conduction subband energies calculated using the k.p method at 

kf=0 for the two boundary conditions for a 200 angstrom wide 0.44% tensilely 

strained quantum well. 

Figure 3 shows that the choice of boundary conditions is more significant for the 

valence bands but the differences are still minor. Table 9 presents the band states at 

A:||=0. The light hole states are at slightly lower energies with the Burt conditions, but 

the heavy hole energies are essentially identical which is expected since both the 

symmetrized and Burt integrated Hamiltonians show that this state is completely 

decoupled from all other states at = 0. The insensitivity of the subband structure to 

the interface matching conditions has also been found by Meney et al [40] when the 

lowest conduction band is included in the basis set along with the three valence 

bands. Much more significant discrepancies are found when the conduction band is 

excluded from the basis set. This is because when the conduction band is excluded it 

makes a large remote band contribution to certain matrix elements which are then 

incorrectly treated with the symmetrized matrix approach. 
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State Character Eigen-energy (eV) 

(Burt) 

Eigen-energy (eV) 

(symmetrized) 

Valence 1 light hole +0.00011 +0.00019 

Valence 2 heavy hole -0.02122 -0.02122 

Valence 3 heavy hole -0.02707 -0.02707 

Valence 4 light hole -0.03086 -0.03061 

Valence 5 heavy hole -0.03680 -0.03680 

Valence 6 heavy hole -0.05036 -0.05036 

Table 9: The six highest valence subband energies calculated using the k.p method at 

k^y=0 for the two boundary conditions for a 200 angstrom wide 0.44% tensilely strained 

quantum well. 

2.6 The wave function envelopes 

The real part of the envelope functions for the first confined conduction state at = 

0 are shown in Figure 4 (top) for the two boundary conditions. The two boundary 

conditions produce very similar differences at the edges of the well. The envelope 

function of the dominant state («/ in Table 1) displays a soft kink at both interfaces 

for the Burt condition and rather smoother behaviour for the symmetrized case. The 

light hole and spin split off components associated with this conduction state are 

generally small and combined are approximately 5 times smaller than the dominant 

conduction envelope function, as measured by the area enclosed between the z axis 

and the absolute value of the real part of the envelope functions. The envelope 
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Figure 4: Real part of envelope functions for the two lowest conduction subbands at l<^^ =0 calculated using the 
k.p method for the symmetrized (dotted) and the Burt (solid) boundary conditions. 



fimctions for the first excited state for the conduction subband at A;||=0 are shown in 

Figure 4 (bottom) and exhibit features similar to the first confined conduction state. 

The combined light hole and spin split off components associated with this 

conduction state are approximately 3 times smaller than the dominant conduction 

envelope function. 

The envelope functions for the lowest hole subband are shown in Figure 5 (top). It is 

predominantly light hole in character at the zone centre due to the tensile strain in the 

well. The dominant envelope function (associated with Uj) has only very small kinks 

at the interfaces compared to the conduction band and the envelope functions are 

almost identical for both boundary conditions. The conduction and spin split off 

components associated with this light hole state are generally small and combined are 

approximately 5 times smaller than the dominant light hole envelope function. The 

second hole subband is purely heavy hole in character at the zone centre and the 

relevant envelope function is shown in Figure 5 (bottom). The two boundary 

conditions produce identical results. Examination of the coupling terms in Table 6 

and 7 show that at A;|pO the Burt and symmetrized boundary conditions are identical 

with no coupling to any other bands. Figure 6 shows the envelope functions for the 

second heavy hole and second light hole subbands. The combined conduction and 

spin split of f components associated with the second light hole state are 

approximately 3 times smaller than the dominant light hole envelope function. 
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Figure 5: Real part of envelope functions for the two highest valence subbands at /C|| =0 calculated using the 
k.p method for the symmetrized (dotted) and the Burt (solid) boundary conditions. 
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Figure 6: Real part of envelope functions for the third and fourth highest valence subbands at k||=0 calculated 
using the k.p method for the symmetrized (dotted) and the Burt (solid) boundary conditions. 



In conclusion, the two boundary conditions produce almost identical conduction 

bandstructure. A measure of the difference is that the confined conduction states at 

1̂1=0 are slightly higher in energy by about 1 meV for the Burt conditions compared 

to the symmetrized conditions. There is also a similar discrepancy in the light hole 

bands at = 0 but the heavy hole bands are essentially identical. The valence 

subbands have significant but not major differences for the two boundary conditions 

0 , 
for wavevectors exceeding about 0.020 A . 

Examination of the wave functions for the = 0 states of the first few conduction 

and valence subbands demonstrate that the envelopes derived using both conditions 

are very similar and show reasonable behaviour. 

2.7 One-dimensional effective mass model 

It was shown in Section 2.4 that the electronic states and bandstructure of a 

semiconductor quantum well can be obtained by generalizing the standard text book 

approach [55] to the solution of Schrodinger's equation for a simple square well. 

Although this approach is straightforward in principle the multiband nature of the 

semiconductor does result in mathematical complexity and heavy computational 

demands in practice. Here we describe some approximations to the method which 

considerably simplify the calculations. They are particularly appropriate for k\\=0 and 

in that case produce results that agree well with the fuller calculations. 
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G 0 
0 G 

(89) 

where 

G= [2 

4 
0 (2 /2-ri)A :z + £ v + ^ 2 

- i f - -
0 

-iPk, 

-{^r2 + ri)kl + Ey + Ci iJly-^kl + Cs 

2y/2r2kl + C5 - / i * z + £ v - A + ^ 4 

(90) 

With this Hamiltonian the solution of the Schrodinger equation for the bulk, at any 

given energy, wil l lead to four doubly degenerate solutions, corresponding to 

conduction, heavy hole, light hole and spin split off bands. An approximate 

diagonalisation of G can be carried out to give where 

2 1 
4 

.Eg Eg+A. 

0 - ( r i - 2 r : ^ ^ + & < 2 

0 0 

0 

0 

0 0 0 

(91) 

To obtain the diagonal elements have been calculated by second order 

perturbation theory and the non-diagonal elements put equal to zero. The effective 

masses of each band can be identified in the diagonal elements as 

s + -
' 2 1 

— + 
m 

mc 

( r , - 2 r . ) = ^ 
mhh 

(92) 

(93) 
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nisso 

(94) 

(95) 

which are consistent with equations (15) to (19). 

In the case of a quantum well structure the respective Hamiltonians for the well 

and barrier materials define a well for each band through the difference of the 

relevant matrix elements at ^ 0 . The appropriate effective masses in the well and 

barrier follow from equations (92-95). Thus for each band we have a simple one-

dimensional problem of the form described by Figure 7. 

Energy 

Figure 7: A square well of depth V and width L. The difference between the relevant 

matrix elements of the respective Hamiltonians, (F' (eq. (91)), for the well and barrier 

materials at k=0 define Vfor each band. The appropriate effective masses in the well 

and barrier materials are given in eqs. (92-95) and L equals the width of the well layer. 

The general solution to the Schrodinger equation for the structure at energy E is 
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V|/ = VJ/,b + V j / ^ +\|/rb (96) 

where 

Vi/rb= £ e ' * " ^ + ^ e - ' * ' » ' (97) 

where lb, w and denote the left barrier, well and right barrier regions respectively, 

and 

m) = effective mass for region j 

Vj = potential energy for region j 

(98) 

1 The interfacial boundary conditions are that v|/ and — — v|/ are continuous. The latter 
mj 

follows directly fi-om the integration of the Schrodinger equation an infinitesimal 

distance in the z direction across an interface. The coefficients A and F are set equal 

to zero for E<0 to impose the condition that the wavefunction is finite everywhere. 

The matching conditions at the left interface are expressed in matrix form as 

1 1 
'kib -' kib 

mw m% . 

1 1 
[kw^ -ikw 

* * 
mw mw 

or 

Mib bib = M^i w 

and at the right interface as 

(99) 

Jk.L 
'C 'E 

ikwe"'^'- -ikwe-'''"'' 
D 

= ikrbJ''^'' -ikrbe-'''^'-
0 * * D * * 0 

mw mw mrb mrb 
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or 

M^w = M,,b,, (100) 

where L is tiie well vddth and z = 0 at the left interface. Equations (99) and (100) can 

be combined to give 

Kb = Kb' M^r Mj' M,k bit 

or 

brb^Nbi, (101) 

For the case of E<0, energy eigenvalues for the quantum well can be found 

numerically by looking for energies where the matrix element N22 = 0. When N22 * 0, 

an exponentially increasing component in the right barrier exists which implies 

violation of the condition that the wavefunction must be finite everywhere. The wave 

function corresponding to a particular eigenvalue can be calculated by setting B in 

eq.(97) to some arbitrary value (unity say) and then deducing all the remaining 

coefficients from eqs.(99) and (100). 

The wave function obtained in this way is the envelope function associated with the 

Bloch periodic part of the band under consideration. For example, in the case of the 

first conduction subband, cl, the envelope function, p f , multiplying the conduction 

basis state is determined using the element G// ' in equation (91) for the well and 

barrier Hamiltonians. The small light hole, Fi^\ and spin split off, F^J\ 

components associated with cl can be calculated approximately by perturbation 

theory on returning to using eqs.(89) and (90). The Schrodinger equation in matrix 

form is 
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G 0 
0 G 

c = Ec (102) 

Writing out explicitiy the third component of the left hand side gives 

G31 + Fi^' + G34 FJ' = E Fi^' (103) 

where the F, are the envelope functions. The third term on the left hand side can be 

neglected since it is the second derivative of F^j' - a slowly varying function with a 

generally small magnitude. 

~ ( £ _ G 3 3 ) V3 E\ilm dz 
(104) 

1 d 

(105) 

where the K appearing in G , / is replaced by the operator - — and 

= £ - G 3 3 = £. + Cl - (^v+ Q 

Similarly, an approximate expression for F^so' can be obtained by writing out the 

fourth component of the left hand side of eq.(102). It follows 

P cl ^ G4iFg' ^ _ [T P 
~ (£-G44) V3 £r + E'g+A\2m dz 

(106) 

and 

£ 7 + A = £ - G , , - 4 + C , - ( £ v + C4-A) (107) 

For the first light hole subband, Ihl, the small conduction and spin split off coupled 

components, F^^^ and F^^g"' respectively, can be calculated similarly to give M 

{E-Gu) 

f2_P_ l^dF'IH 
V3 £tV2/w 3 £* V2/W & 

(108) 

where 

-eX=E-Gu = E,+ C 3 - ( ^ c + <;I) (109) 

and 
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Ihl _ G43F{{;' + G 4 I F ? " (110) 

G 4 1 i s retained in eq.(l 10) since it can produce terms comparable to G^jF^ 

even though F,* ' « Fi^^' normally. Using eq.(108) for F^*'' gives 

ihi 

where 

ihi 1 M 

2m) d^z 
(111) 

(112) 

Table 10 compares the energy eigenvalues calculated using the full k.p method and 

the simpler effective mass approach for the first conduction, heavy hole and light 

hole states of a 200 angstrom quantum well with 0.44% tensile strain. 

State One-dimensional effective 

mass model 

k.p model with Burt 

boundary conditions 

Conduction 0.8078 eV 0.7972 eV 

Heavy hole -0.0218 -0.0212 

Light hole -0.00004 +0.00011 

Table 10: The energy eigenvalues at Ay =0 for the first conduction, heavy hole and light hole 

states of a 200 angstroms wide 0.44% tensilely strained quantum well calculated using the 

k.p method and the one-dimensional effective mass approach. 
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The corresponding envelope functions are compared in Figure 8. The main envelope 

functions obtained firom the effective mass model have been scaled to equal the value 

of the corresponding k.p functions at the centre of the well. The other envelope 

functions are calculated directly with no further scaling. It is apparent that all the 

effective mass envelope fiuictions generally show excellent agreement with those 

calculated using the k.p method, as do the energy eigenvalues. The discontinuities at 

the interfaces seen in the minor envelope functions in the effective mass approach 

arise from the spatial derivatives of the main envelope fiinctions with discontinuities 

in gradient at the interfaces - see the comment on wave function continuity after 

eq.(98), and the form of eq.(l 04). 

2.8 Calculation of the optical matrix elements 

In the presence of an electromagnetic field, the Hamiltonian for an electron in a 

periodic potential V(r) is given by 

H = ^(p^^A)\v{r) (113) 

The vector potential /4, of a monochromatic plane electromagnetic wave, is of the 

form 

A{r,f) =Ao cos(k.r - (ot) (114) 

and the resulting perturbation to the semiconductor Hamiltonian is written as 

W = K y - ' + e-"-]Ao-p (115) 
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Figure 8: Real part of envelope functions for the lowest conduction and two higtiest valence subbands at /(||=0 
calculated using 1D effective mass and k.p models. 



in the conventional approximations [61]. The exponential terms correspond to photon 

emission and absorption respectively. The transition rates are determined by Fermi's 

Golden Rule, which states that the probability per unit time that a perturbation of the 

form We^"^ induces a transition from state / with energy Ef to state / with energy Ej 

IS 

2JZ 
f 2m Ao-p\ s(Ej-Ei + ncD) (116) 

where AQ = Ag e, and e is a unit vector in the direction of the electric field. The rate at 

which optical transitions occur in semiconductors is obtained by calculating the 

squared optical matrix element 

Kf=\{i\e.p\f)' 

The optical matrix element between the quantum well states vj/j and i|/f is 

(117) 

21 22 

-co z\ Z2 
(118) 

where Z; and are the left and right heterointerfaces respectively, and 

V|/i= 2 I.A„,F„,„e"'"'-'\u„) (119) 

and 

(120) 

This form of the wave function was introduced in Section (2.4). Each of the three 

integrals in eq.(124) can be written as 

z=b 
1= \ li:i'LAiFle'"'''uj{r)e-pA„,F,„„e"'-'u„ir)d'r 

z=a / J f f i ^' 
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IC/>,/feV4'[;iAU}Wt/„(r) + «*(r)^-;7t.„(r)]rf3r (121) 
IJmn 

where k„ is the component of k^ along the electric field vector. Integrating over the 

x-y plane 

/ = {Area)Sk,^i,^, I Q„,A?,^,>, + (m;|^•/^lu„)fi^'(*™-^'')^afe (122) 
Ijmn •*—" 

where 

Area = area of x-y plane integrated over 

(A:zm-A:z/) 

+00 , > „ Tf^zm-^i/)"" 

f cfe = ^ ^ j ^ ^ (123) 

and w is the well width. The integrals for each of the three quantum well regions (left 

barrier, well and right barrier) can be determined fi-om the respective k.p envelope 

fiinctions and hence the squared optical matrix element is calculated from eq.(l 18). 

2.9 Calculation of the optical absorption coefficient 

The absorption coefficient resulting from electronic transitions between a valence 

state j and a conduction state / of a quantum well can be written as [6,56] 

ayihco) = l - Y ^ \MiJ\\f,-f,)S{Eij-nco)dki (124) 
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where 

[I = refractive index of the well material 

fici) = photon energy 

c = speed of light 

= well width 

My = optical matrix element between bands / and j (function of Ay) 

Ey = energy separation of states / and j at the same wavevector Ay 

& ^ = the Fermi occupation factors which are the probabilities that 

the states of the valence band and conduction band 

respectively are occupied by an electron at a given energy 

EQ = permittivity of free space 

In general optical absorption is the result of transitions between a number of bands 

and the absorption coefficient is obtained by summing the right hand side of eq.(124) 

over all the bands concerned 

aihw) = ^ayinco) (125) 
u 

I f it is assumed that the bands are isotropic in the x-y plane, then equations (124) and 

(125) can be re-written as 

« ( M = I M i j \ f , - f , ) S i E y - f i c o ) ^ d ^ (126) 

It is often convenient to change the variable of integration to energy 

a{nco) = S l ^ - ^ 4 ^ \Mihf,-f^5{Eij-mPiidEy (127) 

where 
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k\\ 
Pjj = the joint density of states = — 

dk\\ 

dE,j 
(128) 

Equation (127) predicts that transitions only occur when ha = Ey and the absorption 

displays a step like structure. However, experimental data invariably display a series 

of smoothed peaks with the rounding of the spectral features predominantly ascribed 

to electron-phonon interactions [57-60,62]. For example a transition of an electron 

from a valence to a conduction band state (due to the absorption of a photon) leaves 

an unoccupied state in the valence band. This state can be filled by another valence 

band electron as it undergoes scattering. Therefore, the hole formed in the valence 

band has a lifetime associated with it which is determined by the intraband scattering 

process, and this resuhs in a broadened spectrum. In common with some other 

workers [57-60,62] this type of scattering is included approximately in our model by 

replacing the energy delta fimction by a Lorentzian. The expression for the 

absorption coefficient is then written as 

ij -com'^ eo^ojc Lz 
My { f . - f , ) p y - ^ ^ dEu (129) 

where 

L(Eij-ha>) 

f intra 

and Tintra is the intraband relaxation time. For laser applications, where electrons and 

holes are injected into the conduction and valence bands respectively, the photon 

absorption rate can be less than the stimulated emission rate which results in a 
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negative absorption coefficient. Therefore in laser theory it is more usual to define 

the gain coefficient which is the negative of equation (129). 

In summary, this chapter has discussed the methodology for the calculation of 

quantum well bandstructure and electronic states. The interfacial boundary 

conditions which result from Burt's exact envelope function theory were calculated 

and included in the k.p bandstructure model. The effects of the boimdary conditions 

on the electronic states and bandstructure of a 200 angstrom quantum well with 

0.44% tensile strain were examined and compared to those derived from the usual 

symmetrized Hamiltonian approach. The results compared favourably with only very 

small energy shifts in the conduction and light hole confined states, and small 

modifications to the band effective masses at large in-plane wavevector. 

The calculation of the electronic states of a quantum well, at zero in-plane 

wavevector, using the simpler one-dimensional effective mass model was described. 

The calculated energy eigenvalues and envelope fimctions at zero in-plane 

wavevector for a 200 angstrom wide quantum well with 0.44% tensile strain agreed 

very well with those obtained from the full k.p model. 

The calculation of the optical matrix elements from the k.p envelope fiinctions was 

discussed. An expression for the absorption coefficient in terms of the bandstructure 

and state functions was presented. 
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C H A P T E R T H R E E 

A S Y M M E T R I C COUPLED QUANTUM W E L L MODULATORS 

3.1 Introduction 

In this chapter the k.p method for calculating the bandstructure presented in Chapter 

2 is developed to describe the case of coupled quantum wells in an applied electric 

field. The calculation of the absorption spectra from the bandstructure is also 

discussed. The model is applied to two structures that could form the basis of 

intensity modulators for light of wavelength 1.55 and the results are discussed in 

terms of the electric field dependence of the spatial confinement of the wave 

function, optical matrix elements and densities of states. The results of experimental 

studies of two similar structures are discussed briefly. In addition the behaviour of 

the bandedge energies, wave functions and optical matrix elements are examined 

using a one-dimensional multi-layer effective mass model, and the results of the 

simple calculational method are compared with those of the k.p method. 

3.2 Bandstructure of a multi-layer structure in an applied electric field 

The effects of an applied electric field can be incorporated into the method of 

bandstructure calculation described in Chapter 2 by including a potential term into 

each of the diagonal elements of the bulk Hamiltonian [1-3]. I f the field is uniform 
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and applied in the z direction the potential term is simply linearly dependent on z. 

The method adopted to solve for the electronic states is to break the well of the 

system up into a finite number of layers where the potential is taken as constant and 

equal to the average local value [4,5] as shown in Figure 1. The actual potential 

profile is approached as the number of layers is increased for a given structure. 

However, in practice the number of layers is kept to the minimum that provides an 

acceptable level of accuracy in the wave fimctions and energy eigenvalues of the 

electronic states of interest. 

E(eV) E . , (V/cm) 

Left Barrier 
Weil 

Right Barrier 
Step like 
Potential 
approximation 

z = o y 
Figure 1: A quantum well in an applied electric field. The well is broken into a number of 

equal width layers. The potential in each of the well layers is taken as constant and equal to 

the average local value. 

^ The model is simplified fiirther by ignoring the effect of electric field in the barriers, 

as shown in Figure 2. In general, for small field strengths, this has only a minor 
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effect on the calculated bound states because wave function penetration into the 

barriers is relatively small. However, it avoids the need to break the barriers into 

layers and the complications associated with the (normally insignificant) tunnelling 

through the friangular right barrier. 

E(eV) E.^ (V/cm) 

Left Barrier 

Well 

Step like 
Potential Right Barrier 

approximation 

z=0 

Figure 2: A quantum well in an applied electric field. The well is broken into a number of 

equal width lexers. The potential in each of the well layers is taken as constant and equal to 

the average local value. The effect of the electric field in the barriers is ignored. 

The procedure described in Chapter 2 can now be used to seek solutions to the 

Schrodinger equation for the quantum well system of Figure 2. The bandedge energy 

in each layer is known and hence bulk wave fionctions can be obtained for the same 

energy and in-plane wavevector in each layer. Allowed states occur when the wave 

functions can be matched at all the interfaces in the system while satisfying the 

boundary condition that the wavefunction goes to zero for z ±oo. For the left 

56 



barrier/left well layer interface the boundary conditions can be expressed in matrix 

form (see eqs.(49) and (52) of Chapter 2) as 

F^ 
L (1) 

(16x8)(8xl) = (16xl6)(16xl) 

where the subscripts indicate the layer number (0 being the left barrier and 1 being 

well layer 1) and the superscripts indicate the interface (right or left) for the layer in 

question. The dimensions of the matrices are indicated beneath the equation. 

Similarly, the interface conditions for the well layer 1/well layer 2 can be written as 

D 
W\ = 

Fh (2) 

(16xl6)(16xl) = (16xl6)(16xl) 

and for the m* interface 

f m-\ 

Pm-\. 
{Wm-\ = 

Di, 

I f the right barrier is the (n+1)"' layer the equation for the rightmost interface is 

w„, (3) 

[R (4) 

(16xl6)(16xl) = (16x8)(8xl) 

The matrix equations (l)-(3) can be combined and written as 

- 1 
F'2 

Ok 

F„-\ 
• I r 

Dl; 
(5) 

or 

F/l = 
Fioi 

_D,o,_ 
(6) 
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Equations (4) & (6) can be split and reconstituted to give 

\[w„] (7) 

and 

^ 0 Dm 
(8) 

Combining equations (7) & (8) 

Dtot 

D§ 

i-i 

(9) 

Therefore, solutions to the multi-layered structure occur when 

det 
FI 0 

.0 Fly 

Dtoi 
= 0 (10) 

This is similar to eq.(57) of Chapter 2 for a single quantum well in the absence of 

applied field. When eq.(lO) is satisfied the wave function coefficients for the barriers 

can be determined from eq.(9) and for the rightmost well layer from eq.(8). The 

coefficients for the remaining layers are determined from eqs.(3) to (2) (working 

backwards from nto 1). The wave function for the chosen in-plane wave vector and 

the energy determined by eq.(lO) is then completely specified. It is straightforward to 

extend the model to describe more wells and barriers, for example a structure with 

two coupled quantum wells. 

The one-dimensional effective mass model, developed in Chapter 2, has been 

similarly extended to allow the calculation of the electronic states of a multi-layered 

semiconductor structure in an applied electric field. 
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3.3 Calculated absorption spectra for asymmetric coupled quantum wells in 

an applied electric field 

High speed intensity modulation of 1.55 \im light, the wavelength at which minimum 

dispersion and absorption occurs for silica based fibres, is of primary importance for 

optical commimication [43]. Such modulation can be achieved by electric field 

effects in quantum well structures, and other applications of this technique include 

self-linearized modulators [44], wavelength selective detectors [45] and optically 

bistable switches [46]. Here we consider the potential of a double well structure to 

act as a modulator at 1.55 |im. In many cases, quantum well spatial light modulators 

are designed so that the lowest transition energy coincides with the photon energy of 

the light source in the presence of applied field, resulting in absorption. When the 

applied field is turned off the lowest energy transition shifts to larger energy resulting 

in little or no absorption of the incident light. Hence, in order to achieve strong 

modulation, large changes in absorption with electric field at the source wavelength 

must occur. 

Large shifts in the absorption edge wavelength with applied voltage, via the 

Quantum Confined Stark Effect [2,25-26], offer the possibility of modulation at low 

device drive voltage. Wide quantum wells manifest such shifts, but the absorption 

also decreases significantly with electric field because the optical matrix element 

between the ground conduction and valence states decreases due to their spatial 

separation [5,8,9,14,38]. However, it has been shown that the introduction of tensile 

strain into the well material results in a less field sensitive optical matrix element 

59 



[11,13]. Asymmetric (parabolic and triangular) quantum wells have also been 

examined by a number of authors [5,39,40-42]. Coupled identical quantum wells 

have also demonstrated improved modulator performance compared to the single 

square quantum well [7,17,54]. Coupled different quantum wells form an asymmetric 

structure and can manifest large absorption changes either via a strong Stark shift, 

resuhing from the large effective well width, or via an exchange of oscillator strength 

between the cl-hhl and normally forbidden cl-hh2 transitions with applied electric 

field. The latter effect derives from the extended nature of the groimd electron wave 

fiinction and the effective localisation of hhl and hh2 wave fiinctions to different 

quantum wells [14,51,55,56,58,62]. 

In particular GEC-Marconi proposed the following two structures to develop as the 

optical links for particle sensors in the European Large Hadron Collider Experiment 

at CERN [6,47]. 

18 3 * 

Structure 1 shown in Figure 3: n doped 1x10 /cm ) InP 1 1000 A undoped InP I 

100 A unstrained/%_53Gao^7^5/20 A InP 160 A IngjsGaoj^As I 

3000 A u n d o p e d d o p e d (~ \xW^lcm^)InP 

Structure 2 shown in Figure 4: n doped (~ IxlO'Vcm^) InP / 1000 A undoped InP I 
0 0 0 

60 A unstrained/«(, 55000^7/45/20 A InP 1100 A Ino^sGaQj^As I 

3000 A undoped InP Ip doped (~ Ixio'Vcm^) InP 

The n and p type dopings outside the active region resuU in a bandedge energy 

difference across the structure of about 1.25 eV which is equivalent to an electric 
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field of approximately 30 kV/cm. The electric field can be modified by the 

application of external bias to the structure. 

E(eV) 

1.25 eV 

undoped InP 

p doped 

n doped 
unstrained 
InGaAs 

z=0 

Figure 3: Structure 1 at zero bias. The n andp type dopings outside the active region result 

in a band edge energy difference across the structure of 1.25 eV which is equivalent to an 

electric field of 3x10'' V/cm. 

E(eV) 

undoped InP 

p doped 
InP 

1.25 eV 

n doped 
unstrained 
InGaAs 

z=0 

Figure 4: Structure 2 at zero bias. The n andp type dopings outside the active region result 

in a band edge energy difference across the structure of 1.25 eV which is equivalent to an 

electric field of 3x10^ V/cm. 
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Each structure was divided into nine layers (20 angstroms wide) for the purposes of 

calculating the electronic states using the method described in Section 3.2. The 

bandstructure was calculated for three different internal electric fields namely 30, 72 

and 150 kV/cm, equivalent to 0, 1.75 and 5 V reverse bias respectively. The material 

parameters and the band offsets used to calculate the bandstructure are shown in 

Appendix 2. Room temperature absorption spectra were calculated for each structure 

using eq.(129) from Chapter 2. A broadening energy T = 3 meV was used for all 

spectral calculations [17,33,59,60]. The calculated spectra for Structures 1 and 2 are 

shown in Figure 6. 

At zero bias an absorption shoulder appears for both structures at a wavelength of 

approximately 1.51 \im. For both structures the feature shifts to longer wavelengths 

with increasing bias, and the magnitude of the absorption coefficient decreases with 

increasing bias [1,2,7-14]. The wavelength shift of the absorption shoulder versus 

applied bias is depicted in Figure 5. 

1.56 I 

Applied voltage (Volts) 

Figure 5: The calculated wavelength shift of the absorption shoulder for Structures 1 and 2 

versus appliedfield. 
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Wavelength (microns) 

1.55 

1.60 

Cl-v4(hh) ci.^3(|f,) 

c1-v1{hh 

S 6000 

1.60 

Figure 6: Room temperature absorption spectra, calculated from the bandstructure and optical matrix 

elements generated using the k.p model, for Structures 1 and 2 for three values of applied bias. 



The absorpfion shoulder is at 1.55 \im at a bias of 3.7 V in both structures. Figure 7 

shows the absorption coefficient as a function of bias at 1.55 |j,m. At 3.7 V the 

absorption coefficient is in excess of 10̂  cm"' and is approximately 10% larger for 

Structure 2. At 5 V the absorption is virtually identical for both structures and has 

increased by a factor of 10 compared to the zero bias value. 

(A 
C 2000 
P 

m
ic

i 

1500 .. 
Ui 
U> > ^ 

T— 
*J 
n 

E 1000 .. 

c _o 500 
a. 

A
bs

oi
 

0 • 
0 2 3 

Applied voltage (Volts) 

Figure 7; The calculated change in the absorption coefficient at 1.55 fm for Structures 1 and 

2 versus applied field. 

Both structures provide a potential modulation mechanism for light at 1.55 ^m. At 

3.7 V the absorption at 1.55 ^m has increased by a factor 6 for Structure 1 and by a 

factor of 9 for Structure 2. Structure 2 has a better low voltage performance but the 

responses are virtually indistinguishable at 5 V. 

In subsequent sections this behaviour is examined in terms of bandstructure, wave 

functions, optical matrix elements and joint densities of states. 
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3.4 Bandstructure and wave functions for Structures 1 and 2 

The bandstructure and wave functions, for the three applied voltages, were calculated 

using the method described in Section (3.2). The four lowest conduction subbands, 

for Structures 1 and 2, are shown in Figure 8. At |̂=0 the subbands exist in 

degenerate pairs but split for k^fO due to the lack of inversion symmetry in the 

0 I 

quantum well structure. The splitting is small (~ 12 meV at |̂=0.07 A' with 5 V 

bias) and the discussion below considers the subbands as (near degenerate) pairs. The 

shift in the subband energies with increasing electric field are shown in Figure 9. As 

the applied electric field is increased the band energies decrease due to the tilting of 

the bandedge apparent in Figures 3 and 4 - this is the quantum confined stark effect 

(QCSE) [2,25,26]. 

The energy separation of the two subbands, for Structure 1, increases with increasing 

field. This can be understood by reference to Figure 10 and noting that the states of 

the lower conduction subband pair (cl) are localised in the v^der (100 angstrom) 

well whilst those of the second subband pair (c2) are largely localised in the narrower 

(60 angstrom) well. The shift in energy, which is approximately porportional to the 

well width in question, is larger for cl resuhing in an increased energy separation of 

the two subbands with increasing field. The shift in energy for cl in Figure 9 is 

essentially linear across the fiall range of applied voltage whilst the energy variation 

of c2 has a change in slope at approximately 1.5 V due to the field induced reduction 

of the 20 angstrom barrier between the layers and the resulting lower confinement. 
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Figure 8: Conduction bandstructure for Structures 1 (solid lines) and 2 (dotted lines) calculated using the k.p 
model for three values of applied bias. 
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Figure 9: Shift in conduction subband energies with increasing bias at =0, for k.p (solid lines) and one-
dimensional effective mass results (dotted lines) versus applied bias. 



structure 1 - c1 
0.08 

The right barrier/wide 
well interface 

0) 
Q. 
O 

The left barrier/narrow | 
well interface 

-135 

z (angstroms) 

Structure 1 - c2 

o 
> 

-135 

20 angstrom 
barrier layer 

1.75V 
-0.08 

z (angstroms) 

Structure 2 - c1 

The left 
barrier/wide well 
interface 

The right 
banier/narrow well 
Interface 

-0.06 
z (angstroms) 

Structure 2 - c2 
0.12 

o a. o 
> 

135 

-0.06 
z (angstroms)^ 

20 angstrom 
barrier layer 

Figure 10: Evolution of the fwo lowest conduction envelope functions (real part), for Structures 1 and 2 at 
/C|| =0, with increasing bias calculated using the k.p model. 



The shift in energy is now due to barrier penetration as well as the tilting of the band 

edge. As the applied field is increased fiirther the shift in energy of c2 begins to 

resemble that of cl since c2 penetrates ftirther into the wider well and begins to 

behave as the first excited state of this well [4,14,16,17,18]. The shifts in subband 

energies calculated using the one-dimensional effective mass model show good 

agreement with the results obtained from the k.p model and are also depicted in 

Figure 9. The electric field induced change in the envelope fiinctions for cl and c2, 

calculated using the k.p and the one-dimensional effective mass models, are depicted 

in Figures 10 and 11 respectively and show good agreement. 

The two lowest conduction subband pairs for Structure 2 are shown in Figure 8. As 

for Structure 1 the conduction subbands decrease in energy with increasing field. 

However, at approximately 0.75 V, the energy of c2 (mainly localised in the narrow 

well) falls below cl (mainly localised in the wide well). The energy separation 

between cl and c2 increases for fiirther increases in electric field. This behaviour is 

shown in Figure 9. The lowest energy subband, c l , has a change in slope at 

approximately 1.5 V due to the field induced reduction of the 20 angstrom barrier 

between the layers and the resulting lower confinement. The one-dimensional 

effective mass results show similar behaviour and are also depicted in Figure 9. The 

envelope fimctions for cl and c2 are shown in Figure 10. At zero bias cl and c2 have 

similar energies and both envelope fimctions are delocalised across the structure, 

although cl is slightly more confined in the wide well and c2 in the narrow well. In 

essence, cl is the symmetric state and c2 the anti-symmefric state of the near 

65 



resonant pair. At 1.75 V, the conduction states still show resonance behaviour but 

since they have changed their relative energy positions cl is now anti-symmetric 

whilst c2 is symmetric. At 5 V, the resonance effect is lost and cl has a strong tail in 

the narrow well while still mainly confined to the wide well. c2 is still strongly 

localised in the narrow well. The one-dimensional effective mass envelope functions 

for cl and c2 are shown in Figure 11 and are in good agreement with those calculated 

using the k.p model (see Figure 10). 

Figure 12 shows the valence bandstructure at three values of applied bias for 

Structure 1. As with the conduction band the lack of inversion symmetry means that 

degenerate pairs of subbands at ^pO are split elsewhere. Again the subbands are 

considered in (near degenerate) pairs in the discussion below. The bandedge energies 

are pushed dovm in energy (corresponding to an increase in hole energy) with 

increasing applied electric field and the overall separation of the bands increases 

[1,2,7,18]. The evolution of the band structure is complicated by the fact that both 

heavy hole and light hole bands are present and each state is either confined in the 

narrow or the wide well. In Table 1 the character of each band and its localisation 

(narrow well (L) or wide well (R)) is specified. The energy shift induced by the 

elecfric field for states localised in the narrow well is generally smaller than for those 

localised in the wider well, therefore the bands cross as the electric field is increased. 

In the absence of electric field the highest valence subband (that is the one with the 

lowest hole energy) would be of heavy hole character and localised in the wide well, 

but the built-in field at zero bias is sufficient to move this below the heavy hole 
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Figure 11: Evolution of the two lowest conduction envelope functions (real part), for Structures 1 and 2 at 
/C|| =0, with increasing bias calculated using the one-dimensional effective mass model. 
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Figure 12: Valence bandstructure for Structure 1 for three values of applied bias, calculated using the k.p 
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subband localised in the narrow well. The movement of the subbands with increasing 

electric field is shown in Figure 13. It is immediately apparent that there are two 

distinct sets of curves, each broadly exhibiting similar behaviour. 

0 Volts 1.75 Volts 5 Vohs 

1 - heavy hole (L) 1 1 

2 - heavy hole (R) 3 4 

3 - heavy hole (R) 5 7 

4 - light hole (R) 6 6 

5 - heavy hole (L) 2 2 

6 - light hole (L) 4 3 

7 - heavy hole (R) 7 8 

Table 1; The entries are interpreted as vl (at 0 V) remains as highest valence subbandfor all 

values of applied bias considered, whereas v2 (at 0 V) becomes the third highest valence 

subband at 1.75 Vand the fourth highest at 5 V. 

Three subband pairs show very little change in energy with increasing field and are 

found to be the states confined to the narrow well (vl, 5 & 6 in the zero bias column 

of Table 1). The other subband pairs show a much larger shift in energy with 

increasing field and the relevant states are confined in the wide well (v2, 3, 4 & 7). 

These four subband pairs exhibit very similar shifts, irrespective of character, with 

increasing electric field although subband pairs v3 & 4 cross at 5 V. Figure 13 also 

shows the shift in subband energies with increasing bias calculated using the one-
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Figure 13: Shift in valence subband energies with increasing bias for Structure 1, calculated using the k.p and 
one-dimensional effective mass models. 



dimensional effective mass model. These exhibit almost identical behaviour 

compared to those calculated using the k.p model. 

Figure 14 shows the evolution of the main character envelope functions for the three 

highest valence subbands with increasing bias which have been calculated using the 

k.p model at kf^Q. These three envelope fiinctions essentially remained confined in 

their respective wells, and only lean to the left with increasing bias. Figure 15 shows 

the same three envelope fimctions calculated using the one-dimensional effective 

mass model. 

The valence bandstructure for Structure 2 is shown in Figure 16. Table 2 shows the 

character of each band and its localisation (wide well (L) or narrow well (R)). 

0 Volts 1.75 Volts 5 Volts 

1 - heavy hole (L) 1 1 

2 - heavy hole (L) 2 2 

3 - light hole (L) 3 3 

4 - heavy hole (R) 5 6 

5 - heavy hole (L) 4 4 

Table 2: The entries are interpreted as vl (at 0 V) remains as highest valence subband for all 

values of applied bias considered, whereas v4 (at 0 V)- becomes the fifth highest valence 

subband at 1.75 V and the sixth highest at 5 V. 
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The shift in the subband energies at zero in-plane wavevector is shown in Figure 17. 

As for Structure 1, there are two distinct sets of curves each broadly exhibiting 

similar behaviour. The subband pairs that show little energy shift with increasing 

bias ( v l , 2, 3 & 5) have states localised in the wide well, whereas those that show 

large shifts (v4) have states localised in the narrow well. The shift in subband 

energies calculated using the one-dimensional effective mass model is also shown in 

Figure 17 and shows good agreement with those calculated using the k.p model. 

Figure 14 shows the evolution of the main character envelope functions for the three 

highest valence subbands with increasing bias which have been calculated using the 

k.p model at ^||=0. Unlike the equivalent states for Structure 1, these show a more 

pronounced shift with increasing bias. Al l three envelope fimctions, depicted in 

Figure 14, are localised in the wide well, and increasing bias causes a more 

pronounced shift to the left of this well. 

3.5 Optical matrix elements for Structures 1 and 2 

Figure 18 shows the variation with applied voltage in the squared magnitude of the 

optical matrix elements between states at |̂|=0 calculated using the k.p model for 

Structvire 1. The matrix elements are for TE mode of the radiation (electric field 

polarized in the plane of the well) and the magnitude squared is averaged over the 

four transitions between degenerate pairs of states at ̂ pO. 
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At zero bias the matrix elements between cl and vl-7 broadly fall into three 

behavioural groups. The largest matrix elements, cl-v2(hh) and cl-v4(lh), are 

between conduction and valence states confined in the wide well and are parity 

allowed. These matrix elements decrease with increasing bias due to increasing 

localisation on opposite sides of the well of the conduction and valence states. The 

matrix elements for c l - v l and cl-v5 are small since the valence states are confined in 

the narrow well whilst conduction state is confined to the wide well. The overlap of 

the conduction and valence states is also reduced by increased bias. The matrix 

elements for cl-v3 and cl-v7 are small, despite being localised in the wide well, 

since these transitions are parity forbidden. However, these matrix elements increase 

with bias [8-9,20-24,28] which can be understood with reference to Figures 10 and 

14. The conduction state, c l , localises to the right of the wide well with increasing 

bias whilst the valence state, v3, localises to the left of the wide well. The envelope 

function overlap between these two states begins to resemble a parity allowed 

transition with increasing bias resulting in an increase of the matrix element. 

The matrix elements between c2 and vl-7 behave in a similar maimer to those 

between c l and vl-7 and also show the three behavioural groups. Figure 19 shows 

the variation with applied voltage in the squared magnitude of the optical matrix 

elements between states at |̂|=0 calculated using the one-dimerisional effective mass 

model, and shows good agreement between the k.p and effective mass models at 

A:„=0. 
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Figure 19: The variation of the TE squared optical matrix elements with applied bias for Structure 1 calculated 
using the one-dimensional effective mass envelope functions at /C|| =0. 



Figure 20 shows the variation with applied voltage in the squared magnitude of the 

optical matrix elements between states at |̂|=0 calculated using the k.p model for 

Structure 2. At zero bias the matrix elements between c l and vl-5 broadly fall into 

three behavioural groups, as already seen for Structiire 1. The matrix elements for c l -

v l and cl-v3 are large at zero bias since they are localised in the wide well. They 

decrease with increasing bias due to localisation to different sides of the well. The 

matrix element for cl-v4 is small since c l is generally localised in the wide well 

whilst v4 is localised in the narrow well. This matrix element also decreases with 

increasing bias. The matrix elements for cl-v2 and cl-v5 are parity forbidden and are 

small at zero bias. However, these matrix elements increase with increasing bias for 

the same reason as described for similar parity forbidden transitions for Structure 1. 

The matrix elements between c2 and vl-5 are shown in Figure 20. The matrix 

element c2-v4 is the only significant transition and remains almost constant for the 

ful l range of applied bias considered. As shown in Figure 10 the part of envelope 

function c2 residing in the narrow well does not shift much with increasing bias. The 

envelope function for v4 remains strongly confined in the narrow well and it also 

does not shift appreciably with increasing bias resulting in an almost constant overlap 

between the respective envelope functions. The remaining matrix elements are small 

since the v 1,2,3 & 5 envelope functions are localised in the wide well, whilst c2 is 

localised in the narrow well. The overlap between these valence states and c2 is small 

at zero bias and decreases with increasing bias. Figure 21 shows the matrix elements 

calculated using the one-dimensional effective mass envelope functions. These agree 
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well with the optical matrix elements calculated using the k.p envelope functions at 

A:,|=0. 

3.6 Joint densities of states for Structures 1 and 2 

The joint density of states was calculated, using the k.p model, for the Structure 1 

band pairing cl-v2 at three values of applied bias and is shown in Figure 22 (see 

Section (2.9), Chapter 2). The values plotted are the average of the four possible 

singly degenerate pairings of the two subband pairs. The joint density of states close 

to the band edge increases with increasing bias. This increase is due to the change in 

effective mass of both the conduction and valence subbands with increasing bias. The 

conduction subbands become heavier with increasing bias, whilst the behaviour of 

the valence subbands is complicated by strong band mixing and changes in their 

relative position to the other subbands. At 5 V there is a singularity in the joint 

density of states at approximately ̂ ||=0.005 A " , which is a resuh of a turning point of 

the subband v2a (the upper of the spin spUt pair) which is 'electron-like' close to 

A;|l=0 [27] (see Figure 12). At large in-plane wavevectors, the joint density of states 

tends to a constant value at zero bias with only a small shift to higher values with 

increasing bias. 

The joint density of states was calculated, using the k,p model, for the Structure 2 

band pairing c l - v l at three values of applied bias and are also shown in Figure 22. 

The joint density of states close to the bandedge increases with increasing bias. At 

72 



1.0e+36 

9.08+35 

8.06+35 

O.Oe+00 
0.00 0.01 

1.0e+36 

9.0e+35 

8.08+35 

7.08+35 

-^.Oe+35 

O.Oe+00 

Structure 1 c1-v2 

7.06+35 

-6.08+35 

-i5.06+35 

4.08+35 

3.06+35 

2.06+35 

1.06+35 

0.02 0.03 0.04 
k|, (angstroms'^) 

0.05 

Structure 2 c1-v1 

0.00 0.01 0.02 0.03 0.04 
k|| (angstroms'^) 

0.05 

0.06 0.07 

^.08+35 
O 
°4.06+35 

3.06+35 

2.06+35 

.06+35 

-OV 
•1.75 V 
-5V 

0.06 0.07 

Figure 22: The average joint density of states for the transitions c1-v2 (Structure 1) and c1-v1 (Structure 2) for 
three values of applied bias. 



large in-plane wavevectors, the joint density of states tends to a constant value at zero 

bias. The joint density of states increases significantly with increasing bias for in-

0 [ 

plane wavevectors greater than ^i|=0.035 A . 

3.7 Discussion of the calculated absorption spectra for Structures 1 and 2 

The calculated absorption spectra for Structures 1 and 2 for three values of applied 

bias are shown in Figure 6. At zero bias both structures at zero bias are predicted to 

have little or no absorption at a wavelength of 1.55 \xm (see Figure 7). However for 

both structures with a bias close to 3.7 V the long wavelength absorption shoulder 

has shifted to 1.55 fxm, resulting in a significant increase in absorption at this 

wavelength. The transition responsible for this absorption shoulder is cl-v2 for 

Structure 1 and c l - v l for Structure 2. For both structures the states associated with 

the conduction and valence subbands in question are localised in the wide well (see 

Figures 10 and 14). Figure 23 shows the shift in wavelength for these two transitions 

with increasing bias calculated using the k.p and the one-dimensional effective mass 

models. The behaviour of the two transitions with applied bias shown'in Figure 23 is 

very similar to that of the long wavelength absorption shoulder in Figure 5. The c l -

v2 transition for Structure 1 shows a linear shift to longer wavelengths with 

increasing bias, whilst the c l - v l transition for Structure 2 shows a reduction at low 

bias before a near-linear shift to longer wavelengths. The latter behaviour is a result 

of the c l subband, which is in near-resonance with the c2 at zero bias, and is pushed 
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above the c2 subband at approximately 0.75 V. The resonance is lost for larger 

applied bias resulting in the linear shift in the transition wavelength. 

Transition wavelengths for c1-v2 (Str.1) & c1-v1 (Str.2) 
1.61 .Str.1 c1-v2 (k.p) 

. Str.1 c1-v2(1Deff mass) 

o 1.55 

2 3 
Applied voltage (Volts) 

Figure 23: The shift in transition wavelength for cl-\2 (Str. 1) and cl-vl (Str.2) with 

increasing bias calculated using the k.p and the one-dimensional effective mass models. 

The magnitude of the absorption shoulder in Figure 6 for Structure 1 at zero bias is 

larger than the corresponding featiire for Structure 2. This is a direct result of the 

larger optical matrix element for the cl-v2 transition of Structure 1 compared to the 

c l - v l transition of Structure 2 (as apparent in Figures 18 and 20). Note, figure 22 

shows that the joint densities of states for these two transitions are similar. 
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At 1.75 V, the absorption shoulder for Structure 1 has shifted to longer wavelengths 

and the magnitude of the absorption has decreased. The optical matrix element for 

the cl-v2 transition suggests that the absorption shoulder should be smaller but is 

mitigated to some extent by the general increase in the joint density of states at 1.75 

V for the transition. The absorption shoulder for Structure 2 at 1.75 V does not shift 

to longer wavelength compared to its zero bias value due to the field behaviour of the 

c l - v l transition shown in Figure 23. Whilst the absence of a significant wavelength 

shift is expected fi-om the calculations, the optical matrix elements for the transition 

suggest that the absorption should have declined significantly. The increase in the 

joint density of states at 1.75 V does not by itself account for the overall increase in 

absorption. However, analysis of Figures 9 and 17, which describe the shift in 

conduction and valence subband energies with increasing bias, show that the two 

transitions c2-v2 and c2-v3 at 1.75 V occur at the same wavelength as the transition 

c l - v l . Whilst the optical matrix elements for these two transitions are only about one 

tenth of the matrix element for the c l - v l transition, the combined effect is to increase 

the absorption by approximately 13% at this wavelength. 

At 5 V, the absorption shoulder for Structures 1 and 2 has shifted beyond 1.55 jim. 

The absorption magnitude of this feature is larger for Structure 1. This is principally 

due to the large joint density of states close to the bandedge seen in Figure 22 for c l -

v2. The transitions c2-v2 and c2-v3 no longer contribute strongly to the absorption 

shoulder of Structure 2 since they have been swept to much longer wavelengths at 5 

V, and indeed their respective optical matrix elements are essentially zero. 
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3.8 Comparison between theory and experiment 

In the previous sections, the calculated absorption spectra for Structures 1 and 2 at 

three values of applied bias have been discussed. The structures were originally 

proposed by GEC-Marconi as possible candidates for the particle sensor optical links 

for the European Large Hadron Collider Experiment at CERN. An attempt was made 

to grow the two structures by metal organic vapour phase epitaxy (MOVPE), and 

room temperature photocurrent spectra under applied bias were measured [6,47]. 

It was found using transmission electron microscopy that the grown structures had 

deviated from the target design. Measurements showed that the active region of 

Structure 1 was 

0 0 0 

n doped region/110 A InGoAs IIS A InP150-65 A InGoAs Ip doped 

region 

compared to the target 
0 0 0 

n doped region /100 A InGoAs 120 A InP 160 A InGoAs I p doped 

region. 

The measurements of the active region for Structure 2 gave 
0 0 0 

n doped region / 65 A InGoAs 125 A InP /110 A InGaAs I p doped region 

compared to the target 
0 0 0 " 

n doped region / 60 A InGaAs / 20 A InP /100 A InGaAs I p doped region. 

In addition, the ternary well material was found to be Ing ssGagj^As which results in a 

small compressive strain of 0.12%. 
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Despite the differences in well widths and well material it is instructive to compare 

the calculated spectra for the target structures with the measured spectra for the 

grown structures. Figure 24 shows the comparison for Structure 1 for three values of 

applied bias. Whilst the experimental spectra are shifted to longer wavelengths 

compared to the calculated ones, there is a general similarity between them. Each 

spectrum shows an absorption shoulder at long wavelengths (1.51 and 1.61 |j,m for 

the calculated and measured spectra respectively at zero bias). This feature shifts to 

longer wavelengths and the absorption magnitude decreases with increasing bias for 

both spectra. The calculated absorption shoulder shifts to 1.58 ^im at 5 V (a shift of 

0.07 }J,m), and to 1.69 [im in the measurements (a shift of 0.08 ^im). The difference in 

wavelength shift with increasing bias is a direct result of the difference in the wide 

well widths between the target and grown structures (100 and 110 angstroms 

respectively). As shown earlier in Figures 9 and 13, the shift in the subband energies 

with increasing bias is dependent on which well the associated states are localised in. 

The wider the well the larger is the wavelength shift with bias. Therefore, it is 

expected that the calculated absorption shoulder for a 110 angstrom wide well would 

shift to longer wavelengths by a fiirther 10% or approximately 0.08 )Lim at 5 V, in 

good agreement with measured value for the grown Structure 1. 

A one-dimensional effective mass calculation was carried out for the the grown 

Structure 1 for the three applied bias values. These results show that the energy 

separation of the cl-v2 transition at zero bias decreases by 22 meV, which pushes the 

calculated absorption shoulder out to 1.55 \im. It has already been demonstrated in 
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this Chapter that the one-dimensional effective mass model shows excellent 

agreement with the k.p model in predictions of the field dependent behaviour of the 

conduction and valence subband energies and the optical matrix elements. Hence the 

energy shift of the cl-v2 transition resulting from the wider structure can be used 

with reasonable confidence to predict the additional wavelength shift of the 

absorption shoulder in question. At 1.75 and 5 V, the calculated absorption shoulder 

shifts to 1.58 and 1.63 \im respectively. 

In addition, the bulk bandgap for unstrained InGoAs was calculated to be 0.764 using 

the method proposed by Krijn [35] (see Appendix 2) which is 14 meV larger than the 

generally accepted value of 0.75 eV (at room temperature). Without attempting to 

determine the exact effect this reduced energy bandgap has on the bandstructure, the 

general effect wi l l be to reduce the cl-v2 energy separation by 14 meV. Combining 

this energy shift with those calculated for the wider grown structure for the cl-v2 

transition, suggests that the absorption shoulder of interest appears at 1.58 at 0 V, 

1.60 |j,m at 1.75 V and at 1.66 \xm at 5 V. Whilst the agreement between the 

calculated and measured spectra is still not perfect, the majority of the wavelength 

shift for the grown structure has been accounted for. 

The remaining energy difference between the calculated and the measured spectra is 

approximately 13 meV for the three bias values considered. Gershoni et al [1] 

showed that their computed spectra for an InGoAslInP superlattice in an externally 

applied electric field were shifted to lower energies by 10 meV compared to the 
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experimentally measured spectra for a range of electric fields similar to ours. The 

authors believed that this energy difference might be attributable to excitonic effects. 

The other possibility is the fact that the experimentally determined spectra [61] are 

based on photocurrent measurements (as for the GEC-Marconi results), whilst the 

spectra predicted by Gershoni et al were for absorption. Photocurrent excitation 

spectra also include contributions from transport as well as carrier collection 

efficiency, which may depend on the carrier energy and field strength. The formation 

of different electric field domains, due to screening by residual carriers [48], may 

also contribute to the complexity of the experimental data, and some uncertainty in 

determining the electric field strength/voltage relationship for the device. 

The optical matrix element for cl-v2 at 5 V, for the grown Structure 1, calculated 

using the one-dimensional effective mass envelope fimctions is smaller than the 

corresponding matrix element for the target structure by 11%. This accounts, in part, 

for the smaller absorption magnitude of the corresponding feature in the measured 

spectrum, compared to the calculated. 

Figure 25 shows the comparison between the calculated and measured spectra for 

Stiuctvire 2 at three values of applied bias. As for Structure 1, the two spectra 

generally show the same features, but the measured spectrum is shifted to longer 

wavelengths. A one-dimensional effective mass calculation for the transition of 

interest was carried out for the grown structure which showed that the calculated 

absorption shoulder shifts to 1.56 \im at 0 V, 1.57 ^m at 1.75 V and 1.63 jam at 5 V. 
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When the energy shift due to the bulk bandgap estimation is included, the absorption 

shoulder moves to 1.59 i^m at 0 V, 1.6 |a,m at 1.75 V and 1.66 ^m at 5 V. The 

calculated spectra for Structure 2 are shifted to lower energy by approximately 9 

meV (at 5 V) compared to the measured spectra. 

The optical matrix element for c l - v l at 5 V, for the grown Structure 2, calculated 

using the one-dimensional effective mass envelope ftmctions is smaller than the 

corresponding matrix element for the target structure by 18%. This accounts, in part, 

for the smaller absorption magnitude of the corresponding feature in the measured 

spectrum, compared to the calculated. 

To conclude, the poor intensity modulation performance of the grown structures for 

light at a wavelength of 1.55 |am is a result of the increased width of the active 

region, coupled with a slightiy strained well material compared with the target 

structures. The confidence gained from the comparison between the calculated and 

measured spectra suggest that the proposed structures may perform significantly 

better as 1.55 |4,m light modulators. However, when the 14 meV shift due to the bulk 

bandgap overestimate is applied to the calculated spectra, the base of the absorption 

shoulder for Structure 1 at zero bias appears at 1.55 \xm. Application of a small bias 

should resuh in a large increase in absorption at 1.55 jam. On the other hand for 

Structure 2, the absorption shoulder appears at 1.55 [im. Application of bias will 

result only in a small change in absorption at 1.55 |j,m, although it is worth pointing 

out that application of a small forward bias may result in a large decrease in 
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absorption at this wavelength. Measured spectra suggest that the calculated results 

should be shifted to lower energy by approximately 10 meV to be realistic, however 

tiie authors [1] suggest that this shift is possibly an artefact of photocurrent 

measurements and may not exist (or at least be smaller) for direct light absorption 

measurements. 

Summary 

A multilayered k.p model was presented which allows the calculation of the 

electronic states and bandstructure for coupled quanttim wells in an externally 

applied electric field. 

This model was used to calculate the bandstructure and the optical matrix elements 

. for two asymmetric coupled quantum well structures which were proposed by GEC-

Marconi as possible candidates for intensity modulators for light at a wavelength of 

1.55 ^im. 

The conduction and valence energy eigenvalues, envelope functions and optical 

matrix elements for the same two structures were also calculated, at ^|=0, using a 

simpler one-dimensional effective mass model. The results from the two models 

compared favourably for both structures for applied voltages ranging fi-om 0 to 5 V. 
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The k.p bandstructure and optical matrix elements were used to calculate the electric 

field dependent absorption spectra for the two structures. The resuhs were discussed 

in terms of bandstructure, localisation of the conduction and valence states, optical 

matrix elements and joint densities of states. The calculated resuhs showed that for 

both structures the absorption of light at a wavelength of 1.55 |um was small at zero 

bias. At 3.7 V, the absorption at 1.55 ^m increases by a factor of 6 for Structure 1 

and 9 for Structure 2. These resuhs suggest that the two proposed structures show 

promise for light intensity modulators operating at 1.55 |j,m. 

Two similar structures were grown by GEC-Marconi and photocurrent spectra (at 

room temperatiu-e) were measured for bias values ranging from 0 to 5 V. The grown 

structures deviated froni the target dimensions and the well material was also found 

to be nominally strained. Nevertheless, a comparison between the calculated spectra 

and the measured spectra shows good agreement as regards spectral features and 

behaviour with increasing bias. The appearance of the absorption edge at longer 

wavelengths for both grown structures was reconciled with recourse to a one-

dimensional effective mass calculation. These results showed that the absorption 

edge for both structiires shifted to longer wavelengths. For the three applied voltages 

considered the calculated spectra for Structures 1 and 2 appear at a higher photon 

energy compared to the measured spectra. This shift has been observed by Gershoni 

etal[\]. The results suggest that Structure 1 shows the better potential as an intensity 

modulator for light at a wavelength of 1.55 |j,m. 
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C H A P T E R FOUR 
J-

POLARIZATION INSENSITIVE AMPLIFIERS 

4.1 Introduction 

Optical amplifiers are key devices in the operation of optical transmission systems, 

with applications in wavelength conversion, switching, signal processing as well as 

simple amplification. Multi-quantum well based devices satisfy most of the required 

attributes of a suitable amplifier such as high gain, optical output power and wide 

bandwidth, low noise, and energy consumption/drive current, and also offer the 

possibility to be integrated into photonic integrated circuits. However, in most multi-

quantum well structures the gain is highly polarization sensitive due to a) different 

cross-sectional lengths of the optically active region along the plane of the well and 

along the growth direction, and b) the nature of the highest valence subband. 

The first characteristic a) leads to a difference in optical confinement factors, Y-^^ and 

FTM , for TE and TM modes respectively. These factors can be equalised by using a 

thick active layer [35-37], a large optical cavity [38-39] or by returning to a bulk 

structure [40-42, 44-45]. The second characteristic b) dictates the polarization of the 

generated photons. In thin unstrained or compressively strained wells the highest 

valence subband is heavy hole in character but in a well with sufficient tensile strain 

the highest valence subband is light hole in character. This is important because of 



the effect on the bandedge density of states but also because the different optical 

matrix elements squared for the possible modes as shown in Table 1 [6,13]. 

Mode ' Matrix element squared 

c-hh c- lh 

TE 1 1 
2 6 

TM 0 2 
3 

Table 1: The relative values of the optical matrix elements squaredfor the different modes 

and transitions. 

In principle, polarization insensitivity can be realised by balancing the respective 

gain characteristics and optical confinement factors for TE and TM modes in an 

appropriate structure. A number of approaches have been used to try to achieve this, 

notably 1) a single tensile well [1-6], 2) a combination of compressive and tensile 

wells [19-27, 31-32], 3) tensile barriers and unstrained wells [14-17], and 4) tensile 

barriers and compressive wells [28-30, 33]. 

In this work the possibility of a polarization insensitive gain is investigated for two 

types of structure, namely a single tensilely strained well and a structure with a 

stepped well active region which comprises two layers, one with tensile and one with 

compressive strain. Room temperature gain calculations for both TE and TM modes 
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have been carried out, the polarization dependence in the 1.55 \im wavelength region 

of the spectrum is discussed, and design criteria are considered. 

4.2 The origin of polarization sensitivity in a quantum well structure 

In thin unstrained and compressively strained quantum wells the highest valence 

subband is heavy hole in character. In the k.p model discussed in Chapter 2 this 

subband is decoupled from all other subbands at = 0 and is made up of the bulk 

zone centre states U2 and (of Table 1, Chapter 2). It follows that electron 

transitions from a conduction subband state to a heavy hole state only produce 

photons with electric field vector polarized in the plane of the well (TE polarized). 

To a first approximation the coupling of the conduction band states to the light hole 

and spin split-off bands can be neglected and then the conduction subband states are 

made up of and zone centre states. In this approximation a calculation of the 

squared optical matrix element near k\f=0 yields [6,13] 

\M^f = ^\{s\pj^x)f (1) 

In tensilely strained wells the highest valence subband can be light hole in character 

and the dominant components near k\\ = 0 derive from the and u-j zone centre 

states. If the smaller contributions from the conduction and spin split-off states are 

neglected, electron fransitions from a conduction subband state to a light hole state 

produce photons with electric field vectors polarized in the well plane (TE) and the 

growth (TM) directions. The squared optical matrix element for the TE and TM 

transitions close to L = 0 are [6,13] 
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\uj=^\{s\pj^xf (2) 

| M ™ P = | | ( ^ | p » f (3) 

Away from kf^O substantial band mixing occurs in all subbands and the 

approximations made in the previous discussion are no longer valid. However it is 

generally the case that TE gain is dominant in unstrained and compressively strained 

quantum wells, whilst TM gain is dominant for tensilely strained quantum wells. 

The above arguments suggest that a structure which is sufficiently strained (for 

example ~ 0.2% tensile for InGaAs) such that the lowest heavy hole and light hole 

bands occur at the same energy would produce similar numbers of TE and TM 

polarized photons. However, the gain is also dependent on the joint densities of states 

and whilst it is possible to determine a structure with both the lowest heavy hole and 

light hole subbands occurring at the same energy, the effective masses (and hence the 

joint densities of states) are very different. The light hole subband mass is normally 

much larger than that for the heavy hole resulting in a larger density of states and 

hence larger TM gain [47-49]. A further complication is caused by the different 

power confinement factors for the two modes, with FTE being larger than F ™ (by a 

factor of -1.2). Therefore, the design of a structure that will yield equal net TE and 

TM gain requires a balancing of all these factors. 

One approach to the problem is to choose a structiire where the lowest light hole and 

heavy hole subbands are close in energy, and the energy separation between these 
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and the first conduction subband is less than 0.8 eV {= 1.55 |am). The TE and TM 

gains decrease in different ways above the bandedge and with suitable choice of 

materials , strain and well width the gain curves can be arranged to cross at or close 

to 0.8 eV. Whilst this can be achieved there are problems. First, the crossover point 

(photon energy of polarization insensitivity) moves with increasing device drive 

current due to the shift in the quasi-Fermi levels with increasing carrier density and 

bandgap narrowing. Second, there will always be a difference between the TE and 

TM gain on either side of the crossover point. Whilst the former can be overcome by 

designing the structure such that the crossover point occurs at 0.8 eV at a drive 

current that produces the required optical gain, the latter determines the wavelength 

stability of the amplifier. If the difference between the TE and TM gain changes 

rapidly around the crossover point, light with a slightly different wavelength will 

experience a significantly different gain for each polarization state. Therefore, a 

further requirement is for the gain slopes for both modes to be similar. 

4.3 Gain calculation 

The broadened spectral gain for the structure in question is calculated using the 

expression 

i j S o Mficoc Lz ^ ^ 

where all the symbols have been defined in association with eqs. (124) - (129) of 

Chapter 2. Note that the gain coefficient is the negative of the absorption coefficient 

(defined in eq.(129) of Chapter 2). The full width half maximum of the Lorentzian 
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broadening function, L, is taken as 6 meV as used by Yariv et al [50-53]. The Fermi 

occupation factors,/, and f^, for the conduction and valence bands states at energies 

and are defined by 

fc (Ec) = ^ (5) 
exp[(Ec-Fc)/ksT] + \ 

^ '̂̂  ̂  e x p [ ( £ , - ^ / ^ . r ] + l 

where, and are the relevant quasi-Fermi levels. 

The conduction quasi-Fermi level is calculated from the total density of injected 

electrons (n) using the relation 

1 + « 1 Ao k/ik 
« = — I lfAE)p.(E)dE= — S J — (7) 

whilst the valence quasi-Fermi level is calculated from the total density of injected 

holes (p) by 

P=~-L I il-fAE))Pj(E)dE = „ (8) 

where i and j are the subband labels, p, the subband densities of states and M , the 

subband edge energies. The integrations over the magnitude of the two dimensional 

wavevector, k, are evaluated numerically with the upper limit of the range restricted 

to a cut off value, kQ, above which the probability of a conduction/valence subband 

being occupied by an electron/hole is negligible. The condition of charge neutrality 

{n =p) is used in all the calculations. 
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4.4 A single tensilely strained quantum well 

The first structure examined, which we will refer to as Structure 1, was a 200 

angstrom 0.44% tensilely strained single quantum well in which the well material 

Ino,47Gao53As is sandwiched between two layers of InQ y4GaQ 26^50.57P0.43 (lattice 

matched to InP). The material parameters used to calculate the bandstructure are 

shown in Appendix 1. The calculated conduction and valence bandstructures, 

together with the band character, are given in Figure 1. 

Figure 2 (top) shows the calculated TE and TM gain spectra at room temperature for 

a range of carrier densities (optical confinement effects and bandgap narrowing not 

included). For all carrier densities and wavelengths considered, the TM gain is 

considerably larger than TE gain, due to the large optical matrix elements between cl 

to vl (Ih), and c2 to v4 (Ih) and the large joint densities of states [47-49]. Here the 

subbands are labelled according to the definition proposed in Section (3.4) of Chapter 

3. The TM peaks occur at approximately 1.55 & 1.43 |am respectively. The two 

features occurring at 1.51 & 1.43 îm in the TE specfra are primarily a result of the 

transitions cl to v2 (hh) and c2 to v3 (hh). 

The calculated net gain including optical confinement and bandgap narrowing is also 

shown in Figure 2 (bottom). The mode optical confinement factors were estimated 

from the refractive indices calculated using the formulae of sec.(14.6.2) of reference 

[8] and the method from reference [9-10]. This calculation was based on the structure 
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Figure 1: Bandstructure for Structure 1, calculated using ttie k.p model. The structure is symmetric which 
results in the conduction and valence subbands being doubly degenerate. 
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Figure 2: The calculated room temperature TE and TM gains for Structure 1. The bottom figure includes 
optical confinement effects and bandgap narrowing whereas the top figure does not 



InP I 500A Ino,74Gao,2(As0,57?0.43 I 200 A IngjyGao.ssAs I 500A 

Inoj4Gao,26^So,s7Po.43 I InP which yielded the values 0.025 & 0.021 for the TE and 

TM power confinement factors respectively. Bandgap narrowing was incorporated 

using data from [11] (see Appendix 3). The TE and TM gain curves do not cross for 

the wavelength range considered, but the difference between the two modes is at a 

minimum between 1.47 & 1.50 fxm. This is also the region where both the TE and 

TM gains reach maxima. 

Figure 3 shows the calculated net TE and TM gains (in decibels) [12] for both modes 

1 O T 

and the difference between the gains (in decibels) for a carrier density of 12x10 /cm 

for three different optical cavity lengths. The gain scales linearly with increasing 

cavity length [12] but the injection current required to achieve a particular gain will 

increase with increasing cavity length [28]. Therefore, the gain difference between 

the two modes, which is a minimum at a wavelength of 1.485 ^m, can be forced 

below 1 dB by choosing a cavity length of 125 .̂m or less. However, the use of a 

smaller cavity length also results in a reduction of device gain which is now 

approximately 10 dB at this wavelength. The polarization sensitivity for this device 

length is 2 dB or less between the wavelengths of 1.42 & 1.56 ^m. If the cavity 

length is increased to 375 |4,m, the gain achievable at 1.485 |am is now approximately 

27 dB but the sensitivity is just slightiy below 3 dB. Some authors have examined 

structures using a smaller amount of tensile strain [1-5, 7], but the wavelength at 

which the best polarization insensitivity occurs is still less than 1.55 ̂ im. 
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Figure 3: The calculated net TE, TM and (TM-TE) gain at room tehjperature for Structure 1 for three device 

lengths at a carrier density of 12x10^^/cm^. 



In conclusion a reduction in polarization sensitivity has been demonstrated but 

neither this work nor that of other workers has produced a design for a single 

tensilely strained InGaAs quantum well which can satisfy the key amplifier 

requirements of high gain and low polarization sensitivity in the 1.55 |j,m 

wavelength region of the spectrum. 

4.5 A stepped well active region which comprises two layers of opposite 

strain 

The second type of structure examined had a stepped well active region consisting of 

two layers of opposite strain [28-30, 33]. 

The first structure of this type, which we v^ll refer to as Structure 2, had 70 

angstroms of 0.9% tensilely strained IriojiGagsgAs and 80 angstroms of 1.1% 

compressively strained InojgGaojiAso.gPo.i as the active region sandwiched between 

two layers of InP. Figure 4 shows the strained conduction and valence band line-ups. 

tensile compressive 

hhband 
m band 

Figure 4: Shows the strained conduction, heavy and light hole bandedge line-ups for Structure 2 
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Figure 5 shows the bandstructure calculated using the k.p model. The material 

parameters are given in Appendix 4. Note that the spin degeneracy of the subbands 

found in symmetric wells is lifted away from AjpO in this structure. 

The dominant envelope functions for the two lowest conduction and three highest 

valence subband states at kf^Q are shown in Figure 6. The envelope function for the 

conduction subband, c l , exhibits some distortion from the form characteristic of a 

symmetric well as a result of the step at the tensile and compressive layer interface 

illustrated in Figure 4. However, the most significant differences are in the valence 

subband states. The valence states vl & 2 are heavy hole in character and are 

strongly confined to the compressive material where the heavy hole bandedge is 

highest in Figure 4. The envelope function for the highest light hole subband, v3, 

exhibits some distortion from the typical symmetric well form as a result of the step 

at the tensile and compressive layer interface. However, the dominant envelope 

functions associated with cl and v3 are generally delocalised across both the tensile 

and compressive layers. 

Figure 7 (top) shows the calculated TE and TM gains at room temperature for a range 

of carrier densities (no optical confinement effects or bandgap narrowing included). 

The T E peaks at 1.55 and 1.43 \im are due to the transitions cl to vl and c2 to vl 

respectively. The TM peak at 1.43 }J,m is due to the transition cl to v3. For all carrier 

densities considered («=4, 6, 8, 10, 12 & 20xlO'Vcm'') the TE and TM gain spectra 

are closest or cross at approximately 1.44 |j,m. This crossover wavelength does not 
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Figure 5: Bandstructure for Structure 2, calculated using the k.p model. The structure is asymmetric which 
results in the double degeneracy of the subbands being lifted fork,,>0. 
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Figure 7: The calculated room temperature TE and TM gains for Structure 2. The bottom figure includes 
optical confinement effects and bandgap narrowing whereas the top figure does not. 



shift much with increasing carrier density. The TE gain is generally larger than the 

T M gain for the wavelength region considered. However, for carrier densities above 

12xl0'^/cm^ the magnitude of the TM gain at 1.43 |xm approaches that of the TE 

peak at the same wavelength, resulting in a secondary crossover at approximately 

1.405 i^m. 

To estimate the net gain the power confinement factors were calculated using the 

results of references [8-10], and found to be 0.018 and 0.015 for the TE and TM 

modes respectively. Bandgap narrowing was included using the carrier density 

dependent values in Appendix 3. Figure 7 (bottom) shows the calculated net gain for 

a range of carrier densities. The wavelength of minimum sensitivity has shifted from 

1.44 to 1.48 ^m for carrier densities below 12xlO'Vcm^, and to approximately 1.5 

\im for larger carrier densities. 

Figure 8 shows the calculated net TE, TM and TE-TM gain (in decibels) for a range 

of cavity lengths for a carrier density of 12xl0'^/cm^. The maximum TE and TM 

gains occur between 1.40 and 1.49 |j,m. The point of minimum polarization 

sensitivity which occurs at 1.49 ^m is also close to the wavelength region of 

maximum gain. However, in order to keep the polarization sensitivity below 1 dB at 

1.49 |.im, the device length must be less than 250 microns. This resuhs in a maximum 

achievable gain of less than 10 dB for both modes at the wavelength of minimum 

sensitivity. The difference between the TE and TM gain also increases significantly 

for wavelengths above and below 1.49 \im. 
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Figure 8: The calculated net TE, TM and (TE-TM) gain at room temperature for Structure 2 for four device 

lengths at a carrier density of 12x10^^/cm^. 



The second structure of the opposite strain type, which we will refer to as Structure 3, 

comprised 150 angstroms of 1% tensilely strained IriQ jgGao siAs and 50 angstroms of 

1.2% compressively strained InosGagyisosPoj as the active region sandwiched 

between two layers of InP barriers. The bandedge alignments are similar to those in 

Figure 4. Figure 9 shows the calculated bandstructure. The material parameters are 

given in Appendix 5. 

Figure 10 shows the relevant envelope functions at ^pO for the two lowest 

conduction and three highest valence subbands. Again, the essential features of the 

behaviour can be understood in terms of the bandedge profile of the structure (Figure 

4). 

Figure 11 (top) shows the calculated TE and TM gains at room temperature for a 

range of carrier densities (no optical confinement effects or bandgap narrowing 

included). The T M gain dominates for wavelengths less than 1.48 [im. The TE peak 

at 1.47 \im is due to the transition c2 to v l , whilst the shoulder at 1.56 ^m is due to 

the transition c l to v l . The TM peak at 1.47 i^m is due to the transition cl to v2. The 

wavelength of minimum polarization sensitivity occurs between 1.47 and 1.48 |j,m, 

and does not shift greatly with increasing carrier density. The power confinement 

factors were calculated using references [8-10], and foimd to be 0.016 and 0.013 for 

the TE and TM modes respectively. The net gain as a fimction of carrier density is 

shown in Figure 11 (bottom). The wavelength of minimum polarization sensitivity is 
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18 3 ' 
at 1.5 |j.m for a carrier density of 4x10 /cm . This shifts to approximately 1.55 \imat 

18 3 
a carrier density of 20x10 /cm . 

Figure 12 shows the gain difference (in decibels) between the two modes as a 

l8 3 

fiinction of wavelength and optical cavity length at a carrier density of 12x10 /cm . 

The structure is polarization insensitive at 1.53 j^m for all cavity lengths considered. 

However, for small shifts in wavelength about this point the polarization sensitivity 

increases rapidly. The wavelength at which the device is polarization insensitive is on 

the long wavelength shoulder of the main gain peak. This results in a maximum gain 

of approximately 14 dB for a device length of 1000 microns. In reality, the maximum 

gain could be bigger due to larger spectral broadening of this gain peak. 

The third structure of the opposite strain type, which we will refer to as Structure 4, 

comprised 175 angstroms of 0.44% tensilely strained Ing29Gao,7iAs and 25 angstroms 

of 1.0% compressively strained Ino,78Gao.22^So.8Po.2 ^ the active region sandwiched 

between two layers of InP barriers. The bandedge alignments are similar to those in 

Figure 4. Figure 13 shows the calculated bandstructure. The material parameters are 

given in Appendix 6. 

Figure 14 shows the relevant envelope fimctions at kfQ for the lowest conduction 

and two highest valence subbands. Again, the essential features of the behaviour can 

be imderstood in terms of the bandedge profile of the structure (Figure 4). 
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Figure 15 (top) shows the calculated TE and TM gains at room temperature for a 

range of carrier densities (no optical confinement effects or bandgap narrowing 

included). The T M gain dominates for all wavelengths of interest. The TE peak at 

1.48 [im is due to the transition c l to v3. The TM peak at 1.51 |am is due to the 

transition c l to v2. The wavelength of minimum polarization sensitivity occurs at 

approximately 1.45 ^im and does not shift greatly with increasing carrier density. 

The power confinement factors were calculated using references [8-10], and found to 

be 0.025 and 0.021 for the TE and TM modes respectively. The net gain as a function 

of carrier density is shown in Figure 15 (bottom). The wavelength at which minimum 

sensivity occurs shifts from 1.48 i^m at low carrier density towards 1.51 |am with 

increasing carrier density. 

Figure 16 shows the gain difference (in decibels) between the two modes as a 

function of wavelength and optical cavity length at a carrier density of 12xl0'^/cm''. 

The polarization sensitivity is less than 1 dB between 1.486 and 1.504 [im for a 

cavity length of 250 microns. This is also the wavelength region of maximum gain, 

which results in a value of 10 dB for this cavity length. A gain of approximately 20 

dB could be realised for a cavity length of 500 microns, however the wavelength of 

minimum sensitivity (~ldB) is now 1.495 \im, and a small shift in wavelength about 

this point results in a significant increase in sensitivity. 
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4.5 Discussion 

Room temperature gain spectra have been calculated for two types of structure, 

namely a single tensilely strained quantum well (Structure 1), and a structure which 

had a stepped well active region which comprised two layers of opposite strain 

(Structures 2, 3 & 4). 

Structure 1 manifested low polarization sensitivity at 1.485 |xm, which is also the 

wavelength at which maximum TE and TM gain occurs. However, for a gain of 

approximately 27 dB the minimum polarization sensitivity is of the order of 3 dB for 

a cavity length of 375 microns. Further increases in tensile strain would push the 

point of ininimum sensitivity to even shorter wavelengths due to the increased 

separation of the heavy and light hole states caused by shear stress. Therefore, a 

structure solely incorporating a single layer of tensilely strained InGoAs material is 

not suitable for polarization insensitive amplifier applications at 1.55 nm. 

Structures 2, 3 & 4 showed varying degrees of performance. For Structure 2 it is 

possible to achieve a polarization sensivity of less than 1 dB at 1.49 ^m but to the 

detriment of the maximum gain which is only 7 dB for a device length of 250 

microns. Structure 3 shows polarization insensitivity at approximately 1.53 ym and it 

is possible to achieve a maximum gain at this wavelength of 14 dB for a cavity 

length of 1000 microns. For Structure 4, the polarization sensitivity is below 1 dB at 
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approximately 1.5 |j,m and it is possible to achieve approximately 20 dB at this 

wavelength for a cavity length of 500 microns. 

To highlight the relative performance of the four structures, the net TE, TM and TE-

TM gain has been calculated at or close to device saturation for a cavity length of 

250 microns and are shown in Figure 17. Structure 4 offers the best compromise of 

the structures considered. The polarization sensitivity is less than 1.5 dB between 

1.47 and 1.546 |am (a bandwidth of 66 nm), and indeed is almost zero between 1.5 

and 1.51 )am. The achievable gain for wavelengths between 1.47 and 1.546 ^m is 

approximately 12 dB. 

Another interesting result of this chapter is for Structure 2. A sixteen period 

superlattice version of Structure 2 has been examined experimentally [28,30,33], and 

results show that this structure has a polarization sensitivity of less than 1 dB 

between 1.5 and 1.585 |am (a bandwidth of 85 nm), and a maximum gain of 27 dB at 

1.55 )xm. Our calculated gain spectra, for a single period device, show both high 

polarization sensitivity and low maximum gain close to 1.5 \im. A one-dimensional 

effective mass calculation shows that for the superlattice there is a set of closely 

spaced conduction subbands at approximately halfway between the strained bulk 

conduction bandedges of both the tensile and compressive materials. The light hole 

subbands appear approximately halfway between the strained bulk light hole 

bandedges of both materials. The heavy hole subbands states are strongly confined in 

the compressive layer and essentially do not shift from the calculated energy for 
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highest heavy hole subband for the one period structure [29]. Combining the results 

from the one-dimensional effective mass model, the calculated energy of the highest 

heavy subband for the one period structure obtained from the k.p model and the band 

offsets calculated using reference [46] suggest that the TE and TM gain peaks should 

occur at 1.58 and 1.52 \\m respectively which is in reasonable agreement with the 

experimentally determined results. 

This 'hybrid bulk' device offers greater and near equal optical confinement for both 

the TE and TM modes. The photon energy of the TM gain peak is essentially 

determined by the strained bulk bandedge line-ups, rather than quantum confinement 

effects on the respective conduction and light hole subbands. However, the photon 

energy of the TE gain peak is partly dependent on the compressive layer width which 

determines the heavy hole subband energies. The incorporation of tensile and 

compressive strain (see Section (2.3) of Chapter 2) also result in similar joint 

densities of states between conduction and heavy hole subbands, and between the 

conduction and light hole subbands. This combined with the fact that the c to hh and 

c to Ih transitions are close in energy, produce very similar gain spectra close to the 

gain bandedge. 

This argument receives fiirther support from Godefroy et al [29], who examined a 

similar device to our Structure 4. Their structure was five periods of 140 angstroms 

of 0.5% tensilely strained 117046^00.54^5 and 67 angstroms of 1% compressively 

strained InosGagjAsojPo.s- Whilst the widths of the respective layers differ slightly 
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from ours the overall width of a single period of the active region is nearly the same 

(actually 207 angstroms compared to our 200 angstroms). The most significant 

difference between our structure and theirs is the difference in compressive layer 

width. Their wider compressive layer will result in the confined heavy hole states 

shifting in energy towards the strained bulk heavy hole bandedge, which acts to push 

the TE gain peak (see Figure 15) towards longer wavelengths. This also results in the 

wavelength of minimum sensivity moving towards 1.55 |a,m. Their results showed a 

polarization sensitivity of less than 1 dB between 1.515 and 1.575 \xm (a bandwidth 

of 60 nm), and a maximum gain of approximately 22 dB. The difference in 

compressive layer width does not account for the overall better performance of their 

device. The improvement mainly lies in the width of the structure as discussed for 

the comparison between Structure 2 and references [28,30,33]. 

The authors of references [14-17] examined multi-period structures using lattice 

matched InGoAs as the well material and tensilely strained barriers. The bandedge 

line-ups calculated using [46] showed that the conduction bandedge is lowest and the 

heavy hole and light hole bandedges are highest in the unstrained well material. 

However, the conduction and light hole states are still essentially delocalised across 

the whole structure, whilst the heavy hole states are strongly confined to the well 

material. Magari et al [17], showed that the TE gain peak appears at shorter 

wavelengths than the TM peak. This lends additional weight to the argument that the 

overall width of the structure determines the conduction and light hole subband 

energies and that the width of well material solely determines the heavy hole 
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energies. I f this were not the case then the expected gain spectra should show the TE 

peak at longer wavelengths than the TM peak by virtue of the fact that both the heavy 

hole and light hole bandedges are lowest and equal in the well material. The smaller 

effective mass of the light hole band in the well material should be manifested in the 

light hole energy being below that of the heavy hole energy, which would result in 

the T M peak being at a smaller wavelength compared to the TE peak. The device 

considered by Magari et al [17] showed very good polarization insensitivity at 1.55 

|im and a maximum gain of 27.5 dB. 

Summary 

In this chapter room temperature gain calculations for both TE and TM modes were 

presented for four quantiim well structures. The polarization dependence in the 1.55 

|um wavelength region of the spectrum was discussed for a single tensilely strained 

quantum and three structures which incorporated both tensile and compressive 

material as the active layer. The results showed varying degrees of polarization 

insensitivity and maximum achievable gain close to 1.55 ^m. Structure 4, which had 

175 angstroms of 0.44% tensilely strained InGoAs and 25 angstroms of 1% 

compressively strained InGoAsP demonstrated a polarization sensitivity of less than 

1.5 dB between 1.47 and 1.546 ^im, and a gain of 12 dB over this wavelength range 

(at device saturation). A similar structure with five periods has been examined 

experimentally by other workers and shows good polarization insensitivity and 

maximum gain at 1.55 |j,m. The comparison between the theoretical and experimental 
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results suggest that certain muhi-period devices reported in the literature demonstrate 

better polarization insensitivity and produce larger gain in the 1.55 /am region of the 

spectrum. Although their growth is more involved the multi-period structures should 

also be more tolerant to slight deviations in layer thicknesses than the case for a 

single period structure. 
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C H A P T E R F I V E 

CONCLUSION 

5.1 Summary 

A method for the calculation of the electronic states and bandstructure for a strained 

quantum well structure using the eight band k.p method has been presented. The 

interfacial boundary conditions which result from an approximation to Burt's exact 

envelope function theory were calculated and included in the model. The effects of 

these boundary conditions on the bandstructure and wave fimctions were compared 

to those derived from the more widely used symmetrized Hamiltonian approach for a 

strained quantum well. The resuhs showed that the Burt boundary conditions resulted 

in a very small shift in the conduction and light hole subband energies at zero in-

plane wavevector. The corresponding envelope fiinctions for both boundary 

conditions were virtually identical. For non-zero in-plane wavevector the effects are 

more pronounced but nevertheless did not result in any truly significant differences 

in the bandstructure. 

The calculation of the optical absorption properties of a quantum well structure from 

the bandstructure and wave functions has also been described. 
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A simpler one-dimensional effective mass model has been developed which allows 

the rapid calculation of the electronic energies and dominant envelope fiinctions at 

zero in-plane wavevector. The envelope functions of the other (minor) components of 

the wave fimctions were found by perturbation theory. The electronic energies and 

envelope fimctions calculated using the k.p and one-dimensional effective mass 

models generally showed excellent agreement. 

In Chapter 3, a multi-layer k.p model was developed which allows the calculation of 

the electronic states and bandstructure for coupled quantum wells in an extemally 

applied electric field. The bandstructure and electronic states were calculated for/two 

asymmetric coupled quantum well structures and for three values of applied bias. The 

two structures were proposed by GEC-Marconi as possible candidates for 1.55 jim 

light intensity modulators. The calculated absorption spectra for Structure 1, which 

had an n doped InP region/100 angstroms of lattice matched InGaAs/20 angstroms 

InP/60 angstroms of lattice matched InGoAsIp doped InP, showed that at zero 

applied bias the base of an absorption shoulder appears at 1.55 )Lim. Application of a 

small applied bias resulted in a large increase in absorption at this wavelength. The 

calculations for Structure 2, which had an n doped InP region/60 angstroms of lattice 

matched InGaAs/20 angstroms InP/lOO angstroms of lattice matched InGoAsIp 

doped InP, showed that a similar absorption shoulder extends through the 

wavelength of 1.55 ^im. However, the application of bias only results in a small 

change in absorption at this wavelength. These resuhs suggest that Structure 1 offers 

the better potential as an intensity modulator operating at 1.55 fim. 
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The theoretical results were also compared to experimental data, although it was 

recognised that the grown structures deviated from the target specifications. However 

the differences between the calculated and measured results were accounted for by 

recourse to a one-dimensional effective mass calculation based on the actual 

dimensions of the grown structure. As shown throughout the chapter, the resuhs 

obtained from the one-dimensional effective mass model compared favourably with 

those obtained using the k.p model in respect of the electric field behaviour of the 

subband energies, envelope functions and optical matrix elements. 

In Chapter 4, the polarization sensitivity of the gain for four optical amplifier 

structures was presented. Structure 1 was a 200 angstroms 0.44% tensilely strained 

InGaAs quantum well, and was predicted to produce a gain of approximately 27 dB 

and a polarization sensitivity of about 3 dB at 1.485 |xm for a cavity length of 375 

microns. However, neither this work nor that of other workers has produced a design 

for a single tensilely strained quantum well which can satisfy high gain and low 

polarization sensitivity at 1.55 ycm. 

The polarization sensitivity of the gain for three structures with a stepped well active 

region which incorporated both tensile and compressive material were calculated and 

presented. Structure 2 had 70 angstroms of 0.9% tensilely sti-ained InGaAs and 80 

angstroms of 1.1% compressively strained InGaAsP as the active region. The results 

showed a predicted maximum gain of 7 dB and minimum polarization sensitivity of 

less than 1 dB at 1.49 ]xvn. for a cavity length of 250 microns. Structure 3 had 150 
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angstroms of 1.0% tensilely strained InGoAs and 50 angstroms of 1.2% 

compressively strained InGoAsP as the active region. The results showed a 

maximum gain of approximately 14 dB and a zero polarization sensitivity at 1.53 |im 

for a cavity length of 1000 microns. The polarization sensitivity increases drastically 

for very small shifts in wavelength about 1.53 f^m. Structure 4 had 175 angstroms of 

0.44% tensilely strained InGaAs and 25 angstroms of 1.0% compressively strained 

InGaAsP as the active region. The resuhs showed a maximum gain of approximately 

12 dB and a polarization sensitivity of less than 1.5 dB between 1.47 and 1.546 |am 

for a cavity length of 250 microns (at device saturation). The polarization sensitivity 

is almost zero between the wavelengths 1.495 and, 1.52 (xm. 

Structure 3 offers the lowest polarization sensitivity and high gain at 1.53 i^m. 

However, the fact that the polarization sensitivity increases for even small shifts in 

wavelength about 1.53 |am make this device unsuitable as an amplifier candidate for 

an optical transmission system where signal pulses undergo wavelength dispersion. 

The resultant amplification could result in signal distortion. Structure 4, on the other 

hand, offers reasonable gain and low polarization sensitivity over a wide bandwidth. 

Whilst the polarisation sensitivity is not as low as can be achieved by Structure 3, an 

amplifier based on this structure would result in less signal distortion. 

Multi-period versions of Structures 2 and 4 have been grown by other workers. The 

experimental results show high gain and polarization sensitivity of less than 1 dB at 

1.55 |j.m, as well as wide bandwidths over which the polarization sensitivity is less 
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than 1 dB. The overall width of these structures result in the formation of a set of 

conduction and light hole mini-bands close to their respective strained bulk 

bandedges. The states associated with the heavy hole subbands are strongly confined 

to the compressive layer. One-dimensional effective mass calculations show that the 

energy separation between the conduction and heavy hole subbands, and the 

conduction and light hole subbands are almost equal resulting in the TE and TM gain 

peaks appearing at the same wavelength. The presence of tensile and compressive 

strain acts to equalise the joint densities of states for the c-hh and c-lh transitions 

which result in the similar behaviour of TE and TM gain peaks versus wavelength. 

These experimental results suggest that the best polarization insensitive amplifier 

device wil l be a multi-period structure incorporating both tensilely strained barriers 

and compressively strained wells. The wider structure also produces large and almost 

equal TE and T M optical confinement factors, which means that large gains can be 

achieved for small optical cavity lengths. 

5.2 Suggestions for further work 

The calculations presented in Chapter 3 show that an asymmetric coupled quantum 

well structure offers the possibility of intensity modulation of light at a wavelength 

of 1.55 |a,m. The results presented were for TE polarized light only. The inclusion of 

a tensilely strained layer in a similar structure may offer the possibility of 

polarization insensitive intensity modulation at 1.55 i^m. The multi-layer k,p model 

as it stands could be used to design such a structure. 
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The calculations presented in Chapter 4 examined the polarization sensitivity of 

single period stepped quantum well structures which incorporated both tensile and 

compressive layers. The calculated results showed that two of these single period 

devices displayed the required characteristics for polarization insensitive amplifier 

applications. However, experimental resuhs for muhi-period struchires showed much 

improved performance compared to the theoretical results for the single period 

structures. Whilst the improved performance of the multi-period structures was 

inferred by recourse to a much simpler one-dimensional effective mass model, a 

more accurate calculation is required to confirm the resuh. It is imlikely that the eight 

band multi-layer k.p model as it stands could be used to model such wide structiires 

due to numerical instability in the complex bandstructure approach which tends to 

become a problem for large structure widths. An alternative approach is to consider 

the structure as an infinite superlattice and make use of the periodicity of the system. 

The multi-layer k.p model has been developed with flexibility in mind and has 

applications beyond the specific devices considered in this thesis. These applications 

could include quantum well cascade lasers, piezo-electric structures and devices 

which require self-consistent calculations due to the effects of carrier charge. 
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APPENDIX ONE 

Room temperature material parameters used for bandstructure calculations in Chapter 

2 

Ino.47Gao.53As Ino.74Gao.26Aso.57Po.43 

E,(eV) 0.827 1.015 
A(eV) 0.321 0.237 
P 6.029 6.451 
s -17.081 -22.303 

Yi -4.321 -5.171 

Y2 -3.292. -3.568 

Y3 -2.703 -3.078 
c -7.035 -
m 0.662 -
1 -4.579 -

Ell 
0.0044 0 
-0.0043 0 

AE,off (eV) 0.120 0 

The material parameters for the four binary materials (InAs, GaAs, GaP and InP) 

were obtained from references [1,2]. Eg, A and AE^off(thc valence band offset), for 

the ternary/quaternary material in question, were calculated using the method 

proposed by Krijn [3]. A l l other ternary/quaternary material parameters are linearly 

interpolated from the binary values. P, s, yx^li and73 are calculated using eq.(15)-(20) 

in Chapter 2. 

[1] M . Silver and E. P. O' Reilly, IEEE J. of Quant. Elect., 31,1193 (1995) 

[2] O. Madelung, Ed., Landolt-Bomstein, New Series, Group I I I , Vol. 17 

(Springer, 1982) 

[3] M . P. C. Krijn, Semicond. Sci. Technol., 6,27 (1991) 
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APPENDIX TWO 

Room temperature material parameters used for bandstructure calculations in Chapter 

3 

Ino.53Gao.47As Ino.55Gao.45As InP 

Eg(eV) 0.764 0.743 1.35 

A(eV) 0.324 0.325 0.110 

P 5.980 5.961 5.812 

s -17.831 -18.035 -11.895 

Yi -4.689 -4.802 -1.830 

Y2 -3.485 -3.545 -1.808 

Y3 -2.883 -2.938 -1.358 

c - -6.861 -

m - 0.683 -

1 - -4.582 -

0 -0.0012 -

ẑz 0 0.0011 -

AE^off (eV) wrt In? 
valence bandedge 

0.336 0.341 0 
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The conduction and valence band offsets for structures 1 and 2 considered in 

Chapter 3 

Structure 1 

E(eV) 

p doped 
InP 

Ino.53Gao.47As 

0.25 e 

100 A 0.764 eV 

1.35 eV 

0.336 eV 

undoped InP 

n doped 
InP 

Structure 2 

E(eV) 

p doped 
InP 

Ino53Gao47As 

OCA 

0.25 eV 
0.764 eV 

.35 eV 

0.336 eV 
60 A'-.4 

undoped InP 

n doped 
InP 
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APPENDIX T H R E E 

Bandgap narrowing as a function of carrier density 

Carrier density 
(xlO^ /̂cm )̂ 

Carrier sheet 
density (xlO^ /̂cm )̂ 

Bandgap 
narrowing energy 

(meV) 
1 1.000 14.6 
2 1.587 20.3 
3 2.080 21.7 
4 2.520 22.9 
5 2.924 24.1 
6 3.302 25.2 
7 3.659 26.2 
8 4.000 27.2 
9 4.327 28.1 
10 4.642 29.0 
11 4.946 29.9 
12 5.242 30.7 
20 7.368 36.8 

The bandgap narrowing shown in the table above obtained from [1] 

[1] S. H. Park, J. 1. Shim, K. Kudo, M . Asada & S. Arai, J. Appl. Phys., 72,279 

(1992) 
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APPENDIX FOUR 

Room temperature material parameters used for bandstructure calculations for 

Structure 2 in Chapter 4 

Ino.41Gao.59As Ino.79Gao.2iAso.8Po.2 InP 

Eg(eV) 0.894 0.735 1.35 

A(eV) 0.320 0.302 0.110 

P 6.060 6.122 5.812 

s -16.135 -22.617 -11.895 

Yi -3.908 -5.817 -1.830 

Y2 -3.076 -3.996 -1.808 

Y3 -2.500 -3.415 -1.358 

c -7.166 -6.444 -

m 0.647 0.640 -

I -4.576 -4.577 -

0.009 -0.011 -

ẑz -0.008 0.012 -

AEvoff (eV) wrt InP 
valence bandedge 

0.304 0.319 0 
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APPENDIX F I V E 

Room temperature material parameters used for bandstructure calculations for 

Structure 3 in Chapter 4 

Ino.39Gao.6iAs I'*0.8Gao.2ASo.8Po.2 InP 

Eg(eV) 0.916 0.725 1.35 

A(eV) 0.320 0.302 0.110 

P 6.067 6.110 5.812 

s -15.778 -22.676 -11.895 

Yi -3.760 -5.862 -1.830 

Y2 -3.000 -4.021 -1.808 

73 -2.428 -3.437 -1.358 

c -7.210 -6.420 -

m 0.641 0.643 -

1 -4.576 -4.577 -

0.010 -0.012 -

ẑz -0.010 0.013 -

AE ôff (eV) wrt InP 
valence bandedge 

0.299 0.321 0 
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APPENDIX SIX 

Room temperature material parameters used for bandstructure calculations for 

Structure 4 in Chapter 4 

Ino.47Gao.53As Ino.78Gao.22ASo.8Po.2 InP 

Eg(eV) 0.827 0.744 1.35 

A(eV) 0.321 0.301 0.110 

P 6.029 6.134 5.812 

s -17.081 -22.552 -11.895 

Yi -4.321 -5.771 -1.830 

Y2 -3.292 -3.971 -1.808 

Y3 -2.703 -3.393 -1.358 

c -7.035 -6.468 -

m 0.662 0.637 -

1 -4.579 -4.577 -

0.0044 -0.010 -

-0.0043 0.011 -

AEvoff (eV) wrt InP 
valence bandedge 

0.320 0.316 0 

124 



APPENDIX SEVEN 

Calculation of the optical confinement factors 

The refractive index for GaJri/.^SyP/.y is estimated using the following equation [1] 

Eo Ei 7t 

2 £fl £ g £ ^ 

E\-E' 

where 

n = refractive index 

^Ed 

2 £0(^0 ^ l ) 

E = photon enei-gy 

£ 0 = 3.391 - 1.652.y + 0.863/ - 0.123/ 

y = As content 

£d = 28.91 -9.278^ + 5.626/ 

£ g = 1.35 - 0.72>' + 0 . 1 2 / = bulk energy gap 

In the above equations, the lattice-matched condition (to InP),y = 2.\97x, has been 

used. 

The TE power confinement factor for the active region of the structure in question is 

estimated using the method proposed in [2,3] by 

_ rNwtM 

where 

125 



= number of wells 

ty^ = well layer width 

Â b = number of barriers 

/b = barrier layer width 

- _ Nwtwnw+ Nbtbm 

i 

« w = refractive index of well material 

Wb = refractive index of barrier material 

= refractive index of cladding material {InP for structures 

examined in this thesis) 

X = light wavelength 

The T M power confinement factor for the active region of the structure in question is 

estimated using 

This equation is based on numerical solutions (to Maxwell's Equations for a planar 

waveguide) for a range of structures similar to those described in this thesis (See 

Appendix E of reference [4]). 

[1] T. P. Pearsall, GalnAsP Alloy Semiconductors, 362 (1982) 

[2] W. Streifer, D. R. Scifres and R. D. Bumham, Appl. Optics, 18, 3547 (1979) 

[3] D. Botez, IEEE J. Quant. Elect, QE17,178 (1981) 

[4] J. Singh, Semiconductor optoelectronics, McGraw-Hill (1995) 
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