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ABSTRACT 

Synthesis, Characterisation and Properties of Some Well-Defined Comb Graft 

Copolymers 

This thesis describes studies directed to the ring opening metathesis polymerisation of 

macromonomers and mesogenic monomers to produce graft copolymers and side 

chain liquid crystalline polymers respectively. The necessary background information 

relevant to the work described in this thesis is presented in chapter-1 and consists of 

four sections; namely, descriptions of metathesis polymerisation, anionic 

polymerisation, synthesis of graft copolymers and synthesis of side chain liquid 

crystalline polymers. The synthesis of the end capping reagent exo-5-norbomene-2-

carbonyl chloride is described in chapter-2. The synthesis and characterisation of exo-

5-norbomene-2-poly(styrylcarboxylate) macromonomers by living anionic 

polymerisation is discussed in chapter-3. Chapter-4 reports the synthesis, 

characterisation and properties of graft copolymers prepared by ring opening 

metathesis polymerisation of exo-5-norbomene-2-poly(styrylcarboxylate) 

macromonomers. Chapters-5 describes the synthesis of the mesogenic monomer; (5)-

(-)-2-methylbutyl-4-(4-(10-(3-cyclopentenylmethoxy) decyloxy) phenylcarbonyloxy) 

benzoate, suitable for ring opening metathesis polymerisation to produce side chain 

liquid crystalline polymer. The attempted synthesis of side chain liquid crystalline 

polymer by ring opening metathesis polymerisation of the mesogenic monomer; (5)-(-

)-2-methylbutyl-4-(4-(l 0-(3-cyclopentenylmethoxy) decyloxy) phenylcarbonyloxy) 

benzoate is reported in chapter-6. Finally chapter-7 summarises the conclusions and 

makes some suggestions for ftature work. 
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C H A P T E R ! 

G E N E R A L INTRODUCTION 



1.1 AIMS AND O B J E C T I V E S 

The aim of the work described in this thesis is to synthesise and to characterise well 

defined comb graft copolymers. Two different types of comb graft copolymer are 

discussed. One involves synthesis of polystyrene macromonomers carrying a 

norbornene unit at the chain end by living anionic polymerisation and subsequent 

living ring opening metathesis polymerisation (ROMP) of these macromonomers 

using well defined Schrock initiators. This approach gives graft copolymers with 

polynorbomene backbone chains carrying polystyrene grafts. The other type involves 

a study of the ring opening metathesis polymerisation of a cyclopentene unit attached 

to a mesogenic molecule in an attempt to produce side chain liquid crystalline 

polymers where the backbone is a low Tg hydrocarbon polymer. 

The main aim of the work reported is to extend the range of methodology in polymer 

synthesis with prime emphasis on precision and control. It is widely accepted that 

greater control over polymer structxare, i.e. molecular weight, polydispersity and 

microstructure, will lead to better control of properties and fiinctions. At present this 

type of control in polymer synthesis can only be achieved by employing living 

polymerisation techniques. Therefore living anionic and ring opening metathesis 

polymerisation procedures were used to synthesise these comb graft copolymers. The 

main purpose of this chapter is to present the necessary background information for 

the work described in this thesis. Thus this chapter is divided into four parts; namely, 

descriptions of metathesis polymerisation, anionic polymerisation, synthesis of graft 

copolymers and synthesis of side chain liquid crystalline polymers. In general only 

information relevant to the work described in this thesis is discussed in detail, 

information on related topics can be found in the literature cited. 

1.2 O L E F I N METATHESIS 

1.2.1 Definition and Historical Background 

Olefin metathesis is a catalytically induced bond reorganisation process and involves 

exchange of carbon-carbon double bonds. For an acyclic olefin, this leads to exchange 

of alkylidene units. This was first reported by Banks and Baily in 1964 and termed 

'olefin disproportionation'.' 



RiCH CHRi CHRi CHRi 

+ + 
R 2 C H = C H R 2 ^HR2 CHR2 

Figure 1.1 General reaction scheme for the metathesis of an acyclic olefin 

For a cyclic olefin, the metathesis reaction leads to ring scission and the formation of 

an unsaturated linear polymer. 

— f = C H ( C H 2 ^ C H = 4 
• C H = C H n 

Figure 1.2 General reaction scheme for the metathesis of a cyclic olefin 

The first example of an olefin metathesis involving a cyclic olefin (in fact only 

recognised as such some years later) was reported by Anderson and Merkling in a 

Dupont patent in 1955.̂  They successfiilly polymerised norbomene using a mixture of 

titanium tetrachloride and ethylmagnesium bromide. Calderon et al. demonstrated that 

disproportionation of acyclic olefins and ring opening polymerisations are one and the 

same chemical reaction. Accordingly, these types of reactions were named 'Olefin 

Metathesis'.̂ "^ 

1.2,2 Metathesis Initiators 

In general the catalysts for olefin metathesis and ring-opening metathesis 

polymerisation are based on the transition metals of groups IV to IX of the periodic 

table. However, Mo, W, Re and Ru compounds have been shovra to be the most 

generally effective catalysts. Metathesis catalysts can be divided into two major 

categories; namely, the ill-defined dual component systems, known as 'classical 

initiators', and 'well-defined' initiators. The well-defined initiators include transition 

metal carbenes, and metallocyclobutanes, both were predicted by Chauvin when he 

proposed his original mechanism for metathesis. Various aspects of metathesis have 



been reviewed,'"^^ most comprehensively in a recent book 'Olefin Metathesis and 

Metathesis Polymerisation' by Ivin and Mol.^'' Therefore apart from a brief description 

of classical initiators, the remainder of this section is devoted to well defined initiators 

since they are of specific interest to the work discussed in this thesis. 

1.2.2a Classical Initiators 

Catalysts for a classical initiating system can either be homogeneous or heterogeneous 

and always contain a transition metal compound. Many of the commonly used catalyst 

systems are based on the chlorides, oxides or oxychlorides of Mo, W or Re. Although 

these compounds are sometimes effective by themselves, more commonly they 

require activation by a co-catalyst usually an organometallic compound or a Lewis 

acid. In some cases a third component called a promoter, is used as well. These 

promoters often contain oxygen; examples include Oj, EtOH and PhOH. 

Some typical homogeneous catalyst systems are WCl6/EtAlCl2/EtOH, WOCl4/Me4Sn, 

ReClj/EtjAl/Oj. Examples of heterogeneous supported catalyst systems include 

M0O3/C0O/AI2O3, W03/Si02, Re207/Al203. 

However these classical initiators suffer from many disadvantages:-

• the precise nature of the active site at the metal centre is not known, 

thus the system is ill-defined, 

• the metal carbene must be generated before initiation and 

subsequent propagation can commence and this process usually 

proceeds in a very low yield, 

• the activity of a given initiating system is dependent upon its 

chemical, thermal and mechanical history, and upon the order and 

the rate of mixing of the catalyst, co-catalyst and monomer, 

• they have limited tolerance towards fimctional groups in the 

monomer or solvent, 

• there is a lack of control of molecular weight and molecular weight 

distribution due to intra- or intermolecular reactions with the double 

bonds, and 

• they display an element of irreproducibility. 



1.2.2b Well-Defined Initiators 

In 1964 Fischer reported the first stable metal carbene species that was shown to be 

capable of inducing olefin metathesis.^' 

C = W ( C O ) g 

CH3O/ 

Figure 1.3 Fischer carbene 

These heteroatom stabilised carbenes were shown to be reactive for the ring opening 

olefin metathesis polymerisation of highly strained olefins. Then in 1974 Schrock 

reported a second class of transition metal complexes.̂ ^ The first of these so called 

'Schrock alkylidenes' to be reported was [Ta(CHCMe3)(CH2CMe3)3] which was active 

for alkene metathesis, but not for ROMP. To date alkylidene complexes have also 

been prepared for Ti, Zr, Nb, Mo, W and Re largely in an effort to understand and 

control the olefin metathesis reaction they often catalyse.̂ ^ 

The first example of the living polymerisation of a cycloolefin was the polymerisation 

of norbomene by titanacyclobutane complexes (figure 1.4) reported by Grubbs.̂ ^ 

(a) (b) 

Figure 1.4 Grubbs' well-defined titanacyclobutane initiators 

In this case the polymerisation proceeds without termination or chain transfer to give 

polynorbomene with a narrow molecular weight distribution. The reaction is 

terminated by adding a ketone (typically benzophenone) or an aldehyde. 

However, there are some drawbacks associated with this initiator system. 

Titanacyclobutanes require a temperature of 50''C in order to ring-open even 



norbomenes and they are very reactive towards functionalities owing to the highly 

electrophilic nature of the metal centre, this also makes them difficult to prepare and 

handle. 

Kress and Osbom prepared the first well characterised tungsten alkylidene complexes 

of the type W(CH-t-Bu)(OCH2-t-Bu)2X2, (X=halide).^^"^° Although these were inactive 

themselves, they formed highly active complexes on addition of a Lewis acid co-

catalyst such as GaBr3. 

^BuCH2a^ 

^BuCH20^ 

Br 

\J\I=^ / GaBfo 
! B U 

Br 
Figure 1.5 Osbom's well-defined tungsten initiator/co-catalyst 

Schrock and co-workers introduced well-defined tungsten and molybdenum initiators 

with bulky alkoxide and arylimido ligands of the type M(CHR)(NAr)(0R')2 , i \ 31-36 

M = WorMo 

'j* R = CMe3orCMe2Ph 

,. M = C R' = CMeg . CMe2C F3 or CMe(C F3)2 

R'O 

Figure 1.6 Well-defined Schrock initiators 

The four co-ordination of these complexes allows a relatively small substrate to attack 

the metal to give a five co-ordinate intermediate metallocyclobutane complex, while 

bulky alkoxide and imido ligands prevents decomposition reactions that destroy the 

alkylidene ligand or intermolecular reactions that might result in ligand scrambling to 

give inactive complexes. 

The living nature of polymerisations initiated by these complexes has been partly 

attributed to their relative inactivity towards unactivated double bonds {i.e. the 



internal olefins present in the polymer chain). However, the most important feature of 

these compoimds is that the identity of the active site on the initiator is known and can 

be studied by nmr during the course of initiation and propagation. Since the 

polymerisations are living, termination is achieved by adding a suitable capping 

reagent (an aldehyde, typically benzaldehyde or pivaldehyde) which cleaves the metal 

from the polymer chain in a controllable manner by a Wittig-like reaction. The 

polymers produced have very narrow molecular weight distributions which is typical 

of a well behaved living polymerisation. 

Also the activity of the initiator can be altered by substituting the methyl groups on 

the alkoxide ligands with the more electronegative trifluoromethyl groups leading to a 

more active initiating system. The increased reactivity is believed to be due to the 

trifluoromethyl groups withdrawing electron density from the metal centre making it 

more electrophilic and a better acceptor for the incoming Tr-donor olefin. This effect is 

illustrated for the tungsten initiator by the observation that when R' is OCMe(CF3)2 

the initiator will readily metathesise acyclic olefins, but when R' is 0-t-Bu it does not 

react readily with acyclic olefms.^' ""̂ ^ Also by changing the alkoxide ligands, the 

stereochemistry of the resulting polymer can be altered. It has been found that the 

polymerisation of 2,3-bis(trifiuoromethyl)norbomadiene using bis-t-butoxide Mo 

initiator gives high trans polymers whereas the hexafluoro-t-butoxide initiator gives 

high CIS polymers. "'^^ 

The molybdenum initiator is much less reactive than the tungsten analogue^^ and 

tolerates certain fiinctional groups. On the other hand, the tungsten initiator does not 

tolerate any ftanctional groups well due to its high reactivity and although 

polymerisation may be initiated, well defined polymers of fimctionalised monomers 

are not formed. The ability of well-defined Mo catalysts to tolerate fianctionalities 

have allowed the synthesis of redox-active polymers,^^ side-chain liquid crystal 

polymers,''"''''' metal clusters,''̂  star block copolymers,''^ semiconductor clusters,'" 

electroluminiscent polymers'*^ and conducting polymers."' 

These initiators are not conformationally or structurally rigidly fixed. The presence of 

syn and and rotamers^""" where in the syn rotamer, the alkylidene substituent points 

towards the imido nitrogen atom and in the anti rotamer, the alkylidene substituent 

points away from the imido nitrogen atom is well established. It has been suggested 



that there is a relationship between the polymer cis/trans content and the ease of 

alkylidene rotamer isomerisation. In mixtures of initiators with different alkoxy 

ligands, intermolecular ligand exchange occurs faster than propagation allowing 

control over the cis/trans ratio in the product polymer.̂ '̂̂ " 

N N I / R I I / H 
, . M = C , M = C ^ 

R'o"y \ H R ' o y ^ R 
R'O R'O 

syn anti 

Figure 1.7 Syn and Anti rotamers of Schrock initiators 

Recently Gmbbs and co-workers reported the synthesis of the first well-defined Ru 

based olefin metathesis initiators which are able to initiate living ring-opening 

metathesis polymerisation of strained cyclic olefins, even in the presence of protic 

solvents such as ethanol and water.""'^ 

:Ru=J \ ph . R u = ^ \ph / R L I = ^ 
CK 1 OK I OK 

PPh3 P R 3 PR3 

R=Cy, /-Pr 

Figure 1.8 Grabbs' well-defined mthenium initiators 

1.2.3 Living Polymerisation 

A living polymerisation is a chain polymerisation which proceeds in the absence of 

the kinetic steps of termination or chain transfer. Thus once total conversion of the 

monomer has been attained, the growing polymer chain still remains active. Some of 

the important features of living polymerisations are '̂'̂ ":-



• the polymerisation proceeds until all of the monomer has been 

consiimed and further addition of monomer results in continued 

polymerisation, 

• the number average molecular weight (Mn) is a linear function of 

conversion and thus the molecular weight can be controlled by the 

stoicheiometry of the reaction, 

• the number of polymer molecules (and active centers) is a constant 

and is independent of conversion, 

• the polymers produced have narrow molecular weight distributions, 

• block copolymers can be prepared by sequential monomer addition, 

• chain-end functionalised polymers can be prepared by use of 

appropriate initiators and terminating reagents. 

1.2.4 The Mechanism of Olefin Metathesis and Ring Opening Metathesis 

Polymerisation 

According to the 'pair-wise' mechanism proposed by Bradshaw, it was thought that 

two double bonds came together in the vicinity of the transition metal site and that the 

orbitals of the transition metal overlapped with those of the double bonds in such a 

way as to allow exchange to occur via a weakly held cyclobutane type complex.^' This 

pair-wise mechanism has now been abandoned in favour of one proposed by Herrison 

and Chauvin in which a metal-carbene complex is the propagating species.* . 62 

M ] = C H R [iyi]_QHR [lyi] C H R 

+ + 
R ^ C H = C H R 2 R i H C — C H R 2 RiHC CHR^ 

Figure 1.9 Herrison and Chauvin's mechanism of olefin metathesis 

The process involves reversible [2+2] cycloaddition of the olefinic carbon-carbon 

double bond to a metal carbene species to form a metallocyclobutane which then ring 

opens either non-productively (degeneratively) to regenerate the original reaction 

mixture or productively to form a new olefin and a new metal carbene. 



In ring opening metathesis polymerisation, since the carbon-carbon double bond is 

enclosed within a ring, repetition of this cycle of productive metathesis results in an 

unsaturated polymer chain. 

-CHR 
M]—C 

H 

> 
R 

M ] C H R 

M C H R 

Figure 1.10 Mechanistic pathway of ring opening metathesis polymerisation 

A l l the above steps are reversible, so the outcome of the metathesis of acyclic alkenes 

and ring opening polymerisation depends on reaction conditions, such as temperature, 

concentration, reaction duration, the nature of the olefin and the nature of the 

propagating polymer chain end. 

The Herrison and Chauvin mechanism has now become well established. The 

metathesis polymerisation of strained cyclic olefins initiated by stable 

metallocyclobutanes derived from Tebbe reagent was one of the earliest examples that 

supported this mechanism.̂ '̂̂ -̂'"'* The simultaneous occurrence and interconversion of a 

tungsten metal carbene and tungsten metallacyclobutane during the ring opening 

polymerisation of norbomene by the W(CH-t-C4H9)(OCH2-t-C4H9)2Br2/GaBr3 catalyst 

which has been observed by nmr is another example that supports this mechanism." 

More recently Schrock and co-workers have identified a metallocyclobutane fi-om the 

reaction of a tungsten carbene initiator and a fluorinated norbomadiene derivative by 

imir spectroscopy. 37 

10 



NAr 

r.r- 'BuO W 
' B U O ^ 

W(CH-t-Bu)(NAr)(0-t-Bu)2 ̂  
QOC/toluene 

Figure 1.11 The metallocyclobutane identified by Schrock and co-workers 

They also reported the first observable circumstance where metallacycle formation is 

reversible for a norbomene derivative. The monomer 5,6-dichloro-5,6-

dicarbonatonorbomene reacts with Mo(CH-t-Bu)(NAr)(0-t-Bu)2 to give the 

metallacycle shown below which was identified by X-ray crystallography.When the 

metallacycle was heated, the monomer was regenerated along with the starting 

neopentylidene complex. 

NAr 

CI 

CP 
B̂uO Mq 

Mo(CH-t-Bu)(NAr)(0-t-Bu)2 ^ ' B U O ^ 

Figure 1.12 The first observable system where metallocyclobutane formation is 

reversible 

Schrock and co-workers also isolated a metal carbene species, namely the first 

insertion product of a potential polymerisation reaction, by reacting a well-defined 

molybdenum metal-carbene with the norbomadiene derivative shown below. The 

stmcture of the 1:1 adduct was established by X-ray crystallography." 

Me. Me 
Me,̂  ^Me 

CO,Me (t-BuO)2(NAr)Mo 
Mo(CH-t-Bu)(NAr)(0+Bu), 

COzMe MeOjC C02Me 

Figure 1.13 The first insertion product isolated by Schrock and co-workers 

11 



1.2.5 Termination 

This is an irreversible reaction that destroys the propagating metal-carbene leading to 

termination of polymerisation. In ring opening metathesis polymerisation where 

metal-carbenes are the propagating species, termination is achieved by adding an 

aldehyde or a ketone which then undergoes a Wittig-like reaction to yield metal-oxide 

and the end capped polymer. This also enables fiinctional groups to be introduced at 

the chain end by capping with substituted aldehydes or ketones.̂ * 

'P H-

RCH= 

P= Polymer chain 

R C H 

Figure 1.14 Termination mechanism in ring opening metathesis polymerisation 

1.2.6 Chain Transfer 

The propagating metal-carbene can react intramolecularly with one of the double 

bonds in the same polymer chain to produce a cyclic oligomer and transfers the active 

species as shown below. This intramolecular chain transfer reaction is also described 

as a 'backbiting' reaction. 

C H C h K " " ^ 
-I- \ 

M 

Figure 1.15 Intramolecular chain transfer in ring opening metathesis polymerisation 

The chain carbene can also react intermolecularly with a double bond in a different 

polymer chain to produce a linear polymer chain and transfer the active species as 

shown below. 

12 



t 
M ] = C H ^ ^ [ M 

+ 

Pp=Polymer chain 

Figure 1.16 Intermolecular chain transfer in ring opening metathesis polymerisation 

These chain transfer reactions are not terminating reactions, since they do not destroy 

the propagating species. However, these reactions lead to broad molecular weight 

distributions and lack of molecular weight control. On the other hand cross metathesis 

between acyclic olefins and an active chain end results in the formation of a linear 

polymer and transfer of the active species. This reaction can be used to control the 

molecular weight of the polymer produced from a cyclic monomer. Here the acyclic 

olefin is termed a 'chain transfer agent'. Styrene and substituted styrenes have been 

investigated as chain transfer agents for living ring opening metathesis polymerisation 

systems.̂ '̂̂ ^ These chain transfer agents can also be used to introduce fiinctionalities 

to the polymer chain end. 

1.2.7 Tliermodynamic Aspects of Ring Opening Metatliesis Polymerisation 

For an addition polymerisation or any other reaction to occur the change in the Gibbs 

free energy (AG) must be <0. This change is expressed as a function of the enthalpy 

change (AH), the entropy change (AS) and the temperature in K. 

AG = AH-TAS 

For polymerisations the entropy (AS) is always negative since the monomers are 

combined with each other into macromolecules resulting in a reduction of their 

freedom. This makes the entropy term (-TAS) positive, and for a favourable reaction, 

the change in enthalpy has to be larger than or at least equal to the TAS component. 

The temperature where AG = 0 is called ceiling temperature, and above this 

temperature, the polymerisation reaction does not take place. 
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In general the most favourable conditions for ring opening metathesis polymerisation 

of cycloalkenes are high monomer concentration, low temperature and high pressure. 

The enthalpy change (AH), is dependent on the ring strain. Therefore for highly 

strained 3,4,8 and higher membered monocyclic rings and for bicyclic rings, the 

enthalpy change is high (i.e. negative) and polymerisations go to completion at normal 

temperatures and monomer concentrations. 

For monomers with low ring strain, that is 5, 6 and 7 membered rings, the reaction 

entropy is a major determining factor, since the reaction enthalpy is low. The AG of 

polymerisation may also be sensitive to chemical factors such as the nature of 

substituents and their position on the ring.̂ "* Lower temperatures and higher monomer 

concentrations should favour polymerisation since this makes the entropy term -TAS 

smaller. 

1.2.8 Microstructure of Polymer Chains 

The way that the monomer unit is incorporated into the polymer chain determines the 

microstructure, that is the frequency and distribution of the isomeric repeat imits, of 

the resulting polymer.^ '̂ '̂ '' The microstructure of a polymer can be controlled in 

favourable cases by changing the catalyst system and the reaction conditions, so that it 

may be possible to synthesise a polymer with the required microstructure and 

associated physical properties for a specific application. 

The 3-main factors which define the microstructure of polymers obtained by ring 

opening metathesis polymerisation are, 

• cis/trans double bonds, 

• head/head and head/tail placements, and 

• tacticity 

For a bicyclic monomer such as norbomene, the double bonds formed during the ring 

opening metathesis polymerisation can either be cis or trans. 
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Figure 1.17 Cis/Trans double bond effects in polymers of bicyclic monomers 

Also unsymmetrically substituted monomer can result in polymers with head-head, 

head-tail or tail-tail stmctures. 

TT HH TH/HT 

Figure 1.18 Head/Tail effects of an unsymmetrically substituted monomer 

Tacticity effects may also arise from meso and racemic dyads as shown below. 

cis-isotactic 
(cis vinylenes and repetition 
of meso dyads) 

cis-syndiotactic 
(cis vinylenes and repetition 
of racemic dyads) 

trans-isotactic 
(trans vinylenes and repetition 
of meso dyads) 

trans-syndiotactic 
(trans vinylenes and repetition 
of racemic dyads) 

Figure 1.19 Tacticity effects of bicyclic monomers 
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The carbon atom cc to the double bonds are chiral and they may have the same or 

opposite chiralities, for chiral centres at equivalent positions in the repeat unit this 

results in meso and racemic dyads respectively. Sequences of racemic dyads results in 

syndiotactic polymer, while sequences of meso dyads results in isotactic polymer. A 

statistical distribution of dyads gives an atactic polymer. 

1.3 ANIONIC POLYMERISATION 

Anionic polymerisations proceed via metal organic reactive sites; carbanions or 

oxanions, with their metallic counterions for electrical neutrality. In general the 

monomers best fitted for anionic polymerisation are those bearing an electron 

withdrawing substituent, to polarise the double bond and/or stabilise the propagating 

chain end. The solvents used in anionic polymerisation reactions have a significant 

influence on the propagation step. I f the solvent is able to release a proton, it may 

react with the active site and terminate its growth. Thus on the basis of the type of 

solvent used, anionic polymerisation is divided into those carried out in proton 

donating solvents and those carried out in the absence of any proton donating 

compounds, the latter being living anionic polymerisations. 

1.3.1a Anionic Polymerisation Carried Out in Protic Media 

Anionic polymerisation carried out in protic media are characterised by a competition 

between chain growth and chain transfer to solvent. I f the new anion formed upon 

transfer to solvent is unable to reinitiate (by reaction with monomer), no 

polymerisation can take place. However, there are cases in which the anions 

originating from the solvent upon transfer can react with the monomer. The 

polymerisation of styrene in liquid ammonia initiated by sodium or potassium amide 

(figure 1.20) is an example of this type of reaction.* '̂̂ ' 
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Dissociation of sodium amide into its ions: 

NaNH2 •> Na® + NHf 

Initiation, assuming that the NHj ' ions are the only initiating species: 

NHf + M ^ NH2Mf 

Chain propagation: 

NH2—Mf + M NH2—Mgl 

Transfer to solvent: 

NH2—Mf + NH3 -> NH2-M/H + NHf 

Figure 1.20 Anionic polymerisation of styrene in liquid ammonia (where M 

represents styrene) 

1.3.1b Anionic Polymerisation in Aprotic Media 

The chief feature of anionic polymerisation in aprotic solvents is that they involve 

only two reactions; initiation and propagation (figure 1.21). Spontaneous transfer or 

termination wil l not take place, i f proper systems and adequate reaction conditions are 

chosen. Thus the polymerisation is living. 

Initiation 

R®Na® + C H 2 = C H *• R—CH2—CH®Na® 

R' R' 

Propagation 

R—CH2—CH®Na® + nCH2 = C H *- R-fcH2—CH^CH2—CH®Na® 

R R R R 

Figure 1.21 General reaction scheme for a living anionic polymerisation 
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The active sites retain their reactivity for times that are long as compared to the 

duration of the polymerisation process. As a consequence, anionic polymerisation will 

easily proceed to complete conversion of monomer, and the polymer chain still 

remains active. Thus, fiarther addition of monomer will result in an increase in 

molecular weight. I f initiation is fast enough with respect to propagation, the number 

of polymer chain present in the reaction medium is equal to the number of initiator 

molecules introduced. Consequently, the number average degree of polymerisation is 

given by the mole ratio of monomer consumed to initiator: 

DPn = _ A [ M ; 

This leads to 'Poisson-type' very narrow molecular weight distribution. 

1.3.2 Anionic Polymerisation Initiators 

Anionic polymerisation reactions can be initiated by three different classes of 

initiators;*" 
• aromatic complexes of alkali metals, 

• Alkali metals, and 

• organometallic compounds, mainly organolithium 

These three types of initiator operate by one of the following mechanisms; 

• direct addition of an anion to the monomer, or 

• by initial electron transfer to form a radical anion 

1.3.2a Aromatic Complexes of Alkali Metals 

These are initiators formed by the reaction of polycyclic hydrocarbons with alkali 

(and alkaline earth) metals. A typical example occurs in the polymerisation of styrene 

initiated by sodiimi naphthalene.™ 



on + Na Na* 

C H 2 = C H 

Na"" + OD, 
C H 2 = C H 

Na* 

C H 2 = C H Na* OH—CH2—CH2—OH Na* 

Na* 

Figure 1.22 Polymerisation of styrene by sodium naphthalene 

The reaction involves transfer of an electron from the alkali metal to naphthalene to 

form a naphthalene anion radical. Addition of styrene to the system leads to electron 

transfer from the naphthalene anion radical to the monomer to form a styryl radical 

anion. Dimerisation of the styryl radical anion leads to form a dicarbanion capable of 

propagating from both ends. 

1.3.2b Alkali Metals 

Initiation involves direct electron transfer from an alkali metal to the monomer, 

followed by dimerisation of the monomer radical anion to form the propagating 

dianion.̂ "'̂ ''̂ ^ The initiation is heterogeneous and is also dependent on the surface area 

of the metal. 

1.3.2c Organoalkali Metal Compounds 

Of the organoalkali metal compounds which can initiate polymerisation of vinyl and 

other monomers, the most versatile are the organolithium type, since these are soluble 

in both polar and non-polar solvents.^" Also they can be used under conditions which 

avoid undesirable side reactions, which are prevalent with the more basic metals. The 

initiation involves direct nucleophilic attack (figure 1.23) rather than electron transfer 
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to the monomer. This leads to a monofunctional chain growth reaction, which results 

in a better control of molecular weight distribution than the dianionic propagation 

involved in initiation by electron transfer. 

Initiation 

e I :® RLi + C H 2 = C H R i *- R C H 2 — L i 

Propagation 

RCH2—(^®Li® + nCH2=CHRi >• R-(CH2—CHRi^CH2—(j:® Li® 

Figure 1.23 General reaction scheme of an anionic polymerisation initiated by 

organolithium initiators 

Styrene and dienes are the most thoroughly investigated monomers in homogeneous 

anionic polymerisation. This is partly because of their importance in technology and 

the fact that they can be prepared relatively free of side reactions using lithium alkyl 

initiators in hydrocarbon solvents such as hexane, cyclohexane and benzene, where 

the active centers remain stable for several weeks at room temperature in carefully 

purified systems. 

The straight chain alkyls, ethyllithium and «-butyllithium do not initiate the 

polymerisation of styrene and the dienes rapidly. In contrast, branched chain alkyls, 

notably j-ec-butyllithium and /^er/-butyllithium produce very narrow molecular weight 

polymers particularly in benzene as solvent.'^ 

Most of the vinyl monomers having polar substituents participate in various side 

reactions with the organolithium initiators. For instance, in the polymerisation of 

methyl methacrylate, beside initiating the polymerisation through the vinyl group, the 

organolithium compound also reacts substantially with the carbonyl function present 

in the monomer. The product of the reaction at the carbonyl function can eliminate 
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lithium methoxide and form butyl isopropenyl ketone which could also react with the 

growing chain. 

OCH3 

C = 0 

C 4 H 9 — C H , — C ® Li® 

C4H9Li C H o = C 

CHc 

OCH3 
I 

C4H9—C—0®Li® 

C H 2 = C 
C H . 

a - initiation leading to 
normal chain propagation 

b - side reaction 

t 

C4H9 

C = 0 

C H o = C CHsOLi 

C H , 

Figure 1.24 Anionic polymerisation of methyl methacrylate using butyllithium as 

initiator 

Oxiranes (ethylene oxide and propylene oxide) are another group of monomers of 

interest to the work described in this thesis. Although bases such as sodium and 

potassium alkoxides can initiate polymerisation of ethylene oxide by ring opening, 

lithium alkoxides are poor initiators, presumably because of their lower basicity. On 

the other hand, lithium carbanions reacts readily with ethylene oxide to form the 

alkoxide by ring opening, but any subsequent chain growth reaction is very slow.̂ " 

Propylene oxide is relatively inert to alkali metal initiators including organolithiums 

as well.'^° 
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In anionic polymerisation, the growing carbanions (or carbanion pairs) are extremely 

reactive towards traces of oxygen, water or carbon dioxide and great care must be 

taken in purification and drying of the solvent and the monomer, and in handling the 

initiator solutions. '̂'̂ ^ Polymerisations must be carried out under a blanket of high 

purity nitrogen or under vacuum. Even residual moisture on the walls of the 

polymerisation vessel causes initiator destmction. This can be circumvented by 

washing the vessel with a living polymerisation solution or initiator solution before 

polymerisation. 

1.3.3 Solvents and Gegen-ion 

Both the solvent and the gegen-ion have a pronounced influence on the rates of 

anionic polymerisation. In general, solvents to be used in living anionic 

polymerisation must meet the following requirements^^ :-

• they must be aprotic to prevent transfer and termination, 

• they must be free of any electrophilic fimction which may react with 

the carbanionic sites, and 

• they must allow polymerisation to proceed in homogeneous phase, 

i.e. they should dissolve the polymer. 

Thus the range of solvents suitable for anionic polymerisation is severely restricted. 

Among non-polar solvents, «-hexane, cyclohexane and benzene are most commonly 

used as they are inert with respect to the active species. Lithium organic sites 

generally associate in non-polar solvents, but owing to the high rates of 

aggregation/dissociation, this does not affect the molecular weight and polydispersity 

of the polymer produced.^" Toluene has been used in a number of cases, but it could 

give rise to transfer reactions.'^ The best polar solvents are tetrahydrofiiran (THF) and 

dimethoxyethane (DME).'^ Polymerisation rate generally increases with increasing 

polarity of the solvent. 

The propagating species in anionic polymerisation are ion-pairs and depending on the 

solvent, temperature and counter-ion, they can be present in several forms: 
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(pSMt®), (R^Mt®) (R®//Mt®) (R®) + (Mt®) 

ion-pair intimate solvent free-ions 
aggregate ion-pair separated 

ion-pair 

Figure 1.25 Various forms of ion-pairs 

The increasing polarity of the solvent alters the distance between the ions from an ion-

pair aggregate through an intimate pair, solvent separated pair to a state of complete 

dissociation. Chain propagation significantly depends on the separation of the two 

ions and this separation will also controls the mode of entry of an adding monomer. 

Thus free-ions propagate faster than a tight ion pair. Also the gegen-ion itself can 

influence both the rate and stereochemical course of the reaction. 

1.3.4 Monomers 

In general monomers susceptible to anionic polymerisation can be divided into two 

main classes; vinyl or diene monomers and cyclic monomers. Vinyl or diene 

monomers include those olefins having substituents that stabilise the negative charge 

when the monomer is incorporated in the active centre. They comprise the majority of 

monomers used and include non-polar monomers such as styrene, butadiene and 

isoprene and polar monomers such as vinyl pyridine, acrylates and vinyl ketones. In 

these cases charge delocalisation provides the necessary stabilising force. However, 

vinyl monomers having polar substituents are less usefiil because the high carbanionic 

reactivity tends to produce side reactions with the polar substituents. 

Among the cyclic monomers, oxiranes, cyclic sulfides, cyclosiloxanes, lactones and 

lactams have been polymerised anionically. The active chain ends in these systems are 

heteroatoms (i.e. oxygen, sulfur etc.) and exhibit different reactivities. Thus the 

growing chain in the polymerisation of a cyclic oxide is an alkoxide, which is a 

considerably weaker base than a carbanion. Therefore the propagation reaction is 

considerably slower than those of the vinyl monomers and generally require the more 

basic counterions (K^, Cs"") for reasonable rates.* 60 
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1.3.5 Applications of Living Anionic Polymerisation 

The lack of spontaneous transfer and termination reactions in living anionic 

polymerisation can be utilised to introduce various functional groups to the chain end, 

to synthesise block copolymers, macromonomers, graft copolymers, network 

polymers and for chain extension processes. The interest is further enhanced by the 

fact that the molecular weight can be chosen at will and the narrow molecular weight 

distribution of polymers produced. 

In general termination of living anionic polymerisation is achieved by induced 

deactivation of active site by protonation. For this purpose water, alcohols, acids etc. 

can be used. In most cases the deactivation reaction (or 'killing') is very fast and goes 

to completion. 

CM OH 

M^wCH2—(ĵ H® Na® *• ^'CHj—(j)H2 + CH30®Na® 

R R 

Figure 1.26 Induced deactivation of active site by protonation 

Similarly various functional groups can be introduced to the living chain end. For 

example hydroxyl groups can be introduced to the chain end by reaction of the living 

polymer with oxirane (ethylene oxide) under conditions designed to avoid 

polymerisation of the latter monomer (namely; low temperature and Li* or Na* are 

better counterions than K* for this purpose). Only one oxirane unit is added, the 

reaction goes to completion and protonation of the alkoxide gives the required alcohol 

function at the chain end.''' 

Y7 
CH2—CH® Li® >• CH2—(j)H—CH2—CH2—Li"^ 

R R 

CH2—CpH—CH2—CH2—OH 

R 

Figure 1.27 Introduction of hydroxy group to the living chain end. 
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Functional groups can also be introduced at the polymer chain end by using a 

functionalised initiator. These will be discussed further in relation to macromonomer 

synthesis via living anionic polymerisation later in this chapter. 

1.4 G R A F T C O P O L Y M E R S 

A graft copolymer is a polymer consisting sequences of one monomer attached to the 

backbone of the polymer of the second monomer. The simplest case of a graft 

copolymer can be represented by the following structure; 

AAAAAAAAXAAAAAAAXAAAAAAAXAAAAAA 

B B B 
B B B 
B B B 
B B B 
B B B 
B B B 
B B B 
B B B 
B 
B 

B 

Figure 1.28 Schematic representation of a graft copolymer 

where a sequence of 'A' monomer units is referred to as the main chain or backbone, 

the sequence of 'B' units is the side chain or graft, and 'X' is the unit in the backbone 

to which the graft is attached. There are 3-main techniques for preparing graft 

copolymers; 

• 'grafting onto' method, 

• 'grafting from' method, and 

• via macromonomers 

The first two methods involve preparing the backbone first and then introducing the 

side chains. The macromonomer method involves preparing the side chain first and 

terminate with a polymerisable unit, then creating the backbone via polymerisation of 

the polymerisable group at the chain end. 

25 



1.4.1 Grafting From Method 

This involves propagation of monomers from an initiating group on the polymer 

backbone (figure 1.29). 

+ Monomer (B) 

preformed polymer (A) grafts of polymer (B) 
backbone 

* -initiating sites 

Figure 1.29 Schematic representation of'grafting from' method 

The monomer can be polymerised by any o f the traditional modes of polymerisation. 

Backbones for free-radical graft copolymerisation require the presence of an atom or 

group that can be abstracted or displaced by another radical, by radiation o f sufficient 

intensity or by mechanical degradation. Although free-radical graft copolymerisation 

methods are the simplest, oldest and most widely used, the least specific grafting sites 

and the most poorly defined branches result." Backbones for ionic or condensation 

polymerisation require a reactive site or fimctional group capable of participating in 

specific chemical reactions. The products are relatively well-defined and the 

properties of the branches can be controlled." Thus graft copolymer synthesis by 

anionic method involves the production o f anionic centers on the polymer backbone 

by direct metallation or metal halogen interconversion on halogen containing 

polymers. For example, by incorporating small amounts of /7-chlorostyrene into a 

polystyrene backbone, the chloro-group can be removed in the presence o f sodium-

naphthalene in THF (figure 1.30). The active polymer chain is then reacted with the 

desired monomer to produce side chains o f the grafted polymer.'^ 
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>AAAAAAAA/^Q|-|2 Q|-|>AAAA/W 
Na-Naphthalene^ 

CI Na 

Monomer 

«A.VWWWQ[- |2—Q|- |vwww 

Figure 1.30 An example of graft copolymer synthesis by the 'grafting from' method 

1.4.2 Grafting Onto Method 

In 'grafting onto' method, a reactive ftinctional group on the polymer backbone is 

coupled with a preformed polymer chain containing a suitable reactive functional 

group on its end. 

-Y 

chain-end lunctionalised 
polymer (B) 

preformed polymer (A) 
backbone 

grafts of polymer (B) 

Y-reacti\fi functional group 

Figure 1.31 Schematic representation of'grafting onto' method 
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Ionic polymerisation methods are most suitable for preparation of the graft unit, since 

polymers with controlled structures and reactive chain-end ftmctionality can be 

prepared.^' Backbone fiinctionalities that can be used for anionic grafting onto 

reactions include electrophilic functionalities such as esters, anhydrides, benzylic-

halides, nitriles, and pyridine groups. Although quantitative coupling is difficuft, this 

method is fairly controllable. 

For example, poly(styrene-g-ethylene oxide) graft copolymer has been made by the 

reaction of living polyethylene oxide with a partially chloromethylated polystyrene 

backbone (figure 1.32).'' 

'^~^'^'^~^CH2—CH2—O® K® + CI—CH2-
living polyethylene oxide ' ' QHj 

Kci + ^ CH2—CH2—O—CH2—{^^^)—( j^H 

polyethylene oxide 

fH2 

H 

H2 

polystyrene backbone 

Figure 1.32 An example of graft copolymer synthesis by the 'grafting onto' method 

1.4.3 Macromonomer Method 

A macromolecular monomer, abbreviated as macromonomer, is a short polymer chain 

fitted with a polymerisable group at the chain end.̂ '' In the 1970's Milkovich and 

colleagues developed the macromonomer method of preparing graft copolymers. They 

synthesised various macromonomers by end capping living anionic polymers with 

electrophiles possessing a polymerisable group and patented these polymers 

(macromonomers) under the trade mark 'Macromer®'. 
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Preparation of graft copolymers by the macromonomer method has several advantages 

compared with conventional methods, molecular weight and number of graft units can 

be controlled and combination between backbone and graft copolymer chains can be 

selected for desired purposes. Anionic polymerisation, cationic polymerisation, group 

transfer polymerisation and radical polymerisation have been used to synthesise 

macromonomers. Living ionic polymerisation methods provide control over 

molecular weight, molecular weight distribution and ftinctionalisation of chain ends in 

the synthesis of macromonomers; thus living ionic polymerisation has been widely 

employed to synthesise well defined macromonomers."''''^" 

Anionic methods of synthesising macromonomers can be divided into two types, 

namely anionic initiation and end-capping of polymeric anions. Functional initiators 

are used in the first method, where the fimctional group remains unreacted after 

polymerisation. In the second method, a functional terminating group is used to end-

cap the living anionic chain. 

For example, />-vinylbenzyllithium has been used as an initiator in the anionic 

polymerisation of styrene to produce p-styryl terminated macromonomers (figure 

1.33). '̂ However, one of the major drawbacks of this method is that chain end 

unsaturated ftmctional groups could become involved in the polymerisation, leading 

to complex topologies and/or networks.^" 

CH2=CH CHjLi nCH 

C H2= C H — C H; -CH2—CH 

Figure 1.33 Anionic polymerisation of styrene using a functionalised initiator. 

On the other hand, with the end-capping method, conventional anionic polymerisation 

can be directly employed and macromonomers with high fiinctionality can be 
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produced."''''^° Styrene is the monomer of choice because of its anionic 

polymerisability and availability. Milkovich reacted the anionic living end of 

polystyrene with ethylene oxide and then end-capped the resulting product with 

ftinctional electrophiles to avoid side reactions of unreacted groups with carbanions. 

Asami and colleagues reported that direct end-capping reaction of living carbanions 

could be performed by selecting appropriate solvents and counter-ions.*^ 

Monomer Functional Terminating Agent 

CH2=CH O / I ^ 
/ \ 1 CH2=CH-Si—CH2CI 

CH-, 

0 
CH3 

/ CH2=CH-Si—CI 

CH, 

CH2=C ^ ^ C H 2 C I 

-COCI 

CH2=CHCH2Br 

CH2=CH CH2CI 

O (fH3 

CH2=C—COCI 

C H 2 = C H ^ ^ ^ ^ C H 2 C I 

Table 1.1 Examples of monomers and ftmctionalised capping reagents used in anionic 

polymerisation to synthesise macromonomers. 80 
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In general, majority of macromonomers are subjected to free-radical polymerisation to 

obtain graft copolymers. This is because of its versatility and its tolerance towards 

most fimctional groups. However, the free-radical process is generally of little use 

whenever well-defined structures are required. Recently, well-defined graft 

copolymers have been prepared by ring opening metathesis polymerisation of 

macromonomers.This involves the synthesis of macromonomers by living anionic 

polymerisation with a ring open polymerisable group at the chain-end and then living 

ring opening metathesis polymerisation of macromonomers using well-defined 

metathesis catalysts to get well-defined graft copolymers. Since both macromonomer 

and graft copolymer synthesis involves living polymerisation, this gives control over 

molecular weight and molecular weight distribution of side-chains and the backbone 

chain of graft copolymer. This is the main subject of this thesis and this method of 

graft copolymer synthesis will be discussed in detail in chapter-4. 

1.4.4 Applications of Graft Copolymers 

Graft copolymers can be used as surface modifying agents, compatibilisers for 

polymer blends, thermoplastics, medical materials and in various other 

applications."'™'^"'^" However, the chief interest in graft copolymers originates from 

their properties as surface modifying agents. When a polymeric material is coated 

with a graft copolymer, the backbone of which is of the same chemical nature, the 

grafts (that are incompatible) wil l accumulate on the surface, thereby modifying it. 

Such graft copolymers can be used as antistatic agents, surface humidifiers, dye 

binding intermediates, adhesives and lubricants. 

One of the early applications of graft copolymers prepared by the macromonomer 

method was for use as dispersing agents in non-aqueous emulsion coatings produced 

by ICI. The graft copolymer consisted of the grafted segment from the 

macromonomer soluble in the media and the main chain insoluble in the media. The 

steric repulsion of the grafted polymer chain prevented coagulation of the resulting 

polymer particles giving rise to stable polymer dispersion with a high solid content." 

The properties of polymer blends depends on the compatibility between the respective 

polymers used. Thus in immicible cases, block and graft copolymers are used as a 

compatibiliser to overcome the incompatibility. For example, mixtures of polystyrene 

31 



and polybutadiene are incompatible and will form separate phases when mixed. 

However, incorporation of poly(butadiene-g-styrene) graft copolymer to the 

polystyrene-polybutadiene mixture stabilises the two phases. Here, the polybutadiene 

portion of the graft may be thought of as being 'solubilised' in the rubber particle with 

the whole particle being 'anchored' to the polystyrene matrix by the polystyrene 

portion of the graft. This process forms the basis for the preparation of high impact 

polystyrene (HIPS).'' 

Similarly, cellulose acetate is incompatible with polystyrene; even a few percent of 

one polymer mixed with the other gives white opaque films upon casting from 

solvents. However, addition of even a small amounts of the graft copolymer 

poly(styrene-g-cellulose acetate) results in formation of a clear transparent film.^ 77 

1.5 LIQUID C R Y S T A L L I N E POLYMERS 

The liquid crystalline state was first discovered by an Austrian botanist, Friedrich 

Reintzer, in 1888. He noted that cholesteryl esters had some unusual melting 

properties. Although these crystals had sharp melting points, the melt was opaque and 

upon heating to higher temperatures the opacity disappeared suddenly to give a 

normal clear liquid. This intermediate state was later termed 'mesophase'. Since 

mesophases have properties associated with both crystals and liquids, they are called 

'liquid crystals'. Although liquid crystalline compounds have been known for more 

than 100 years, liquid crystalline polymers have gained prominence only in last 30 

years. Various aspects of liquid crystalline polymers have been widely reviewed'*'^\ 

The following is a brief description about mainly the synthetic aspects of liquid 

crystalline polymers since one of the objectives of the work described in this thesis 

was to synthesise well defined side chain liquid crystalline polymers. 

The liquid crystalline states or mesophases can be divided into 3 main categories; 

• nematic, 

• smectic, and 

• cholesteric 
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The nematic mesophase describes an approximately parallel array of polymer chains 

or chain segments in a liquid crystalline domain but with no special order with regard 

to end groups or chain units. This type of molecular organisation is illustrated in 

figure 1.34a. 

(a) (b) 

/ / M / / / / / / / / m w 

(c) (d) 

Figure 1.34 Schematic representation of mesophases: (a) nematic; (b) smectic A; (c) 

smectic C and (d) cholesteric. 

The smectic mesophase possesses a nematic type of order plus some additional order 

because of the alignment of end groups or chain units giving rise to a layered structure 

where the layers stack one on top of the other. There are several variations of smectic 

mesophase. The two most common variants are known as smectic A and smectic C 

and are shown in figure 1.34b and 1.34c. In smectic A the director (the preferred 

orientation of the mesogens) lies along the layer normal. In smectic C the director of 

each layer is inclined to an angle oo to the layer normal, this angle being identical for 

all layers. 

The cholesteric mesophase has nematic type order with a superimposed spiral 

arrangement of nematic layers (figure 1.34d). The class is called 'cholesteric' because 

this particular type of liquid crystalline order was first observed in esters of 

cholesterol. This type of ordering is also called 'chiral nematic' and can be found in 
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mesogenic systems containing a chiral center. Similarly, chiral smectic C (S'J can 

also be prepared with a mesogenic system containing a chiral centre to give a spiral 

arrangement. 

Various methods are available to identify liquid crystal mesophases and generally 

they are used in a complementary fashion to get reliable information. These include;^'' 

• Polarising Microscope- The liquid crystalline phases are identified 

by observing the characteristic textures developed in thin layers of 

the polymer when viewed through a microscope using a linearly 

polarised light source. 

• Differential Scanning Calorimetry (DSC)- This is used to detect 

thermotropic mesophase transition temperatures. 

• X-Ray Diffraction- Debye-Scherrer powder technique provides 

reliable information on the number of phases present. 

• Miscibility Studies- The type of phase formed in a polymer liquid 

crystal is identified by examining the manner in which it mixes 

with a small molecule mesogen of known mesophase type. 

1.5.1 Lyotropic and Thermotropic Liquid Crystalline Polymers 

Liquid crystals can be divided into two major classes; lyotropic and thermotropic, 

depending upon whether the mesophase is observed by variation of solvent content or 

by variation of temperature. The thermotropic liquid crystalline polymers can be 

further subdivided into main chain and side chain liquid crystalline polymers. Various 

possible arrangements of mesogens in a polymer chain are illustrated in figure 1.35. 
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Main Chain Side Chain 

(rigid rod) 

(with side groups) 
(single mesogenic units as side chains) 

(different size mesogenic monomer) 

(Icinks - unsymmetrical links) 

(flexible spacer) 
(paired mesogenic units as side chains) 

(disk-like mesogens) 
(laterally oriented mesogenic units) 

(cross-shaped mesogens) (disk-like mesogens) 

Combined Main and Side Chain 

(side chain attached to main chain spacer) (side chain attached to main chain mesogen) 

Figure 1.35 Schematic representation of various possible arrangements of mesogens 

in polymer chain structures. 

1.5.2 Lyotropic Liquid Crystalline Polymers 

Lyotropic liquid crystalline polymers are formed by dissolving mesogenic polymer 

molecules in a suitable solvent. The addition of solvent reduces the crystalline melting 

points to managable levels. The development of liquid crystalline solutions depends 

on the molar mass of the molecules, the solvent and the temperature, but most 

importantly on the structure of the polymer, which should be quite rigid. One of the 

most important groups of lyotropic synthetic polymers is the aromatic polyamides'l 

The rigidity of these polymers makes them inherentiy less soluble in common 

solvents. Thus the aromatic polyamides require the more aggressive, strong, 

protonating acids (H2SO4, CF3SO3H, CH3SO3H) or protic solvents such as 
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dimethylacetamide or N-methyl pyrrolidone in conjunction with LiCl or CaClj in 2-

5% to effect solution. 

A number of polyamides have become commercially successfiil because of the very 

high tensile strength of the fibres that can be spun from the nematic solution. One of 

the most significant of these aramid fibres is poly(p-phenylene terephthalamide) or 

Kevlar. 

1.5.3 Thermotropic Main Chain Liquid Crystalline Polymers 

Thermotropic liquid crystalline polymers are materials which shows liquid 

crystallinity in a particular temperature range without the addition of any solvents. 

Many of these polymers are polyesters and are prepared by condensation 

polymerisation or ester interchange reaction in the melt. Among the commonly used 

monomer units are hydroxybenzoic acid, terephthalic acid, 2,6-naphthalene 

dicarboxylic acid, 2-hydroxy-6-naphthoic acid and 4,4'-biphenol. The polymers 

prepared from monomers of this kind tend to be very insoluble and have high melting 

points and mesophase ranges; for example, poly(p-hydroxybenzoic acid) melts at 

~883K. This makes them difficult to process. Therefore various methods have been 

used to modify the polymer chain in order to reduce the melting points and these 

include; 

• incorporation of flexible spacer units, 

• copolymerisation of several mesogenic monomers of different sizes 

to give a random and more irregular structure, 

• introduction of lateral substituents to disrupt the chain symmetry, 

and 

• synthesis of chains with kinks, such as unsymmetrically linked 

aromatic units. 

1.5.4 Thermotropic Side Chain Liquid Crystalline Polymers 

The side chain liquid crystalline polymers consists of two components; the mesogenic 

moieties and the polymer main chain to which they are attached. Mesogens may also 

be incorporated into both main chains and side chains. Cross-linking of side chain 
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liquid crystalline polymers leads to mesogenic thermosets or elastomers. Also 

mesogenic monomers that do not form mesophases leads to mesomorphic liquid 

crystalline polymers upon polymerisation.''" These polymers are generally produced 

by free-radical addition polymerisation, condensation polymerisation or by modifying 

a preformed polymeric backbone. Thus side chain liquid crystal polymers with 

poly(acrylate)s, poly(methacrylate)s, poly(siloxane)s and poly(phosphazene)s'^"" 

backbones have been prepared. However, the above methods of polymerisations lack 

control over molecular weight and molecular weight distribution. These short comings 

have been overcome by employing living cationic polymerisation,^*"'"^ group transfer 

polymerisation""" and more recentiy living ring opening metathesis polymerisation.'"'' 

Schrock et al. and Grubbs et al. have synthesised side chain liquid crystal 

polymers with fairly rigid poly(norbomene) backbones and more flexible 

poly(butadiene) backbones respectively by living ring opening metathesis 

polymerisation; an example of a norbomene monomer is shown below, 

poly(butadiene) backbones would be produced from polymerisation of cyclobutene or 

cycloocta-l,5-diene derivatives. 

C 0 2 ^ C H 2 ) ; r O ^ ^ ! H ^ ) ^ O M e 

CO2R 

R = - 1 C H , ^ 0 ^ ( P > ^ ) - 0 M e 

Figure 1.36 Synthesis of a side chain liquid crystalline polymer by ring opening 

metathesis polymerisation. 
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The extent to which a mesophase can develop in side chain liquid crystalline polymers 

is influenced by the flexibility of the backbone chain and whether the mesogen is 

attached directly to the chain or is pushed further away by the insertion of a flexible 

spacing imit. The direct attachment of a mesogenic group to the backbone (without a 

spacer group) does not always leads to liquid crystalline polymers. This is accounted 

for by steric hindrance imposed by the main chain on the packing of mesogenic 

groups. As a result, most polymers of this type are amorphous.̂ " However, Ringsdorf 

and co-workers found that insertion of a flexible spacer between the rigid mesogen 

and the polymer backbone is necessary to preserve the liquid crystalline phase 

behaviour of the mesogen.'°^''°' The flexible spacer partially decouples the motions of 

the polymer backbone and the mesogens, and enables the mesogens to become 

organised into liquid crystalline domains. 

Polymer Phase Transitions^ (K) 

Segment A (end group) 

(j:H3 

- { C H 2 

(cH"vo-<n>-^°KQ 

CH3 
- ( S i — 

A 

-OCH3 

•OCeHis 

-OCH3 

•OC6H,3 

g 369 n 394 i 

g410s451 i 

g288 n 334i 

g 288 s 385 i 

Segment B (spacer group) 

B (j;H3 i 

- ( C H 2 — c - ^ i i 

-CN g361 n580i 

g 324 s 607 i 

f g = glassy; n = nematic; s = smectic; i = isotropic 

Table 1.2 The effect of structtire (spacer and end group) on the type of mesophase and 
90 

transition temperature. 
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The effect of structure on the type of liquid crystal organisation and transition 

temperatures is shown in table 1.2. Segment A at the end of the mesogen favours 

nematic organisation i f short (CH3, OCH3, CN etc) or smectic i f long. Likewise, the 

spacer group (segment B) influences the nature of the liquid crystalline phase, shorter 

(2-6) units favouring nematic ordering and longer units favouring more stable smectic 

phase.'' Shibaev et al. first synthesised the chiral smectic C (S*c) phase side chain 

liquid crystalline polymers with the chiral centre in its side chain (figure 1.37).'"'•"'' 

This was also the first example of a ferroelectric side chain liquid crystal polymer. 

9H3 

C O 2 — ( C H 2 ) t ^ C 0 2 - / Q \ — C 0 2 ^ Q V 
CH3 

Figure 1.37 First ferroelectric chiral smectic C side chain liquid crystalline polymer 

Applications of ferroelectric side chain liquid crystalline polymers are expected in the 

area of display devices, pressure and temperature sensors i.e. as piezoelectric and 

pyroelectric devices and in non-linear optics.^ '̂*''̂  In 1993, Idemitsu Kosan 

demonstrated the first ferroelectric side chain liquid crystalline polymer display.'^ 

This consisted of a layer of ferroelectric side chain liquid crystalline polymer (2^m) 

constrained between two plastic substrates (each lOOfim thick). This type of display is 

expected to provide robustness and flexibility that is found in no other display type 

and advantages in the ease of processing. 

An objective of the work reported here was to produce a similar side chain 

ferroelectric liquid crystal polymer based on a flexible hydrocarbon backbone. The 

reason for this target being associated with the long term stability and operating 

temperature of the material in device applications. 
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2.1 INTRODUCTION 

This chapter describes the synthesis of 5-norbomene-2-carboxyUc acid as a mixture of 

exo and endo adducts, the separation of the endo adduct from the exolendo mixture via 

iodolactonisation and the conversion of the exo-acid into its acid chloride. The acid 

chloride obtained was used as an end capping reagent for living anionic polystyrene to 

produce well-defined polystyrene macromonomers. The macromonomer synthesis is 

described in the next chapter and the ring opening metathesis polymerisation of the 

macromonomers is the subject of chapter-4. 

2.2 Synthesis of 5-Norbornene-2-Carboxylic Acid 

There are two possible ways in which Diels-Alder addition of cyclic dienes with 

unsymmetrical dienophiles can occur. These are designated endo and exo addition and 

are illustrated in figure 2.1 for the addition of acrylic acid to cyclopentadiene which is 

the reaction of interest in this work. In this reaction as in many cases, mixtures of exo 

and endo addition products are formed.""""^ The endo adducts are the products of 

kinetic control and are favoured by relatively short reaction times and low 

temperatures whereas the exo adducts are the products of thermodynamic control and 

are favoured by high temperature and long reaction times.'" 

COOH 

H O O C — c 

Endo addition 
COOH 

COOH 

Exo addition 

Figure 2.1 Schematic representation of exo and endo addition in the Diels-Alder 

reaction of cyclopentadiene with acrylic acid 

Many reactions of this kind are reversible and the Diels-Alder adducts dissociate into 

their components upon heating. This reversibility is required i f the exo product is 

desired, thus the use of high temperature and extended reaction times in carrying out 
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additions may permit repeated dissociation and recombination with the resultant 

formation of the thermodynamically more stable adduct at the expense of the 

kinetically favoured stereoisomer.'" 

Three different procedures were found in the literature for the synthesis of 5-

norbomene-2-carboxylic acid. The standard procedure is the addition of acrylic acid to 

cyclopentadiene.""""^ This procedure gives primarily endo adduct contaminated by 

exo isomer. The highest percentage of exo isomer that has been reported to have been 

obtained by this method is about 30%. Ivin et al. achieved this by adding freshly 

distilled cyclopentadiene to acrylic acid in cyclohexane at reflux temperature."^ The 

yield of this reaction is almost 100%. 

C H 2 C H C O O H 

C yclo hexa ne/Reflux COOH 

COOH 
exo ~ 30% endo ~ 70% 

Figure 2.2 Synthesis of 5-norbomene-2-carboxylic acid from cyclopentadiene and 

acrylic acid 

The next method involves the use of dicyclopentadiene instead of cyclopentadiene."'' 

In this case a mixture of dicyclopentadiene and acrylic acid is heated to 160°C in a 

pressure reaction vessel without any solvent. This procedure gives about 45-60%) exo 

acid but the overall yield from this method is only about 50-60%). 

CH2CHCOOH 

I6OOC COOH 

COOH 

exo ~ 47% endo ~ 53% 

Figure 2.3 Synthesis of 5-norbomene-2-carboxylic acid from dicyclopentadiene and 

acrylic acid 
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The third procedure, reported by Roberts and Trumbull, increased the exo content by 

alkaline isomerisation of the e«Jo-methyl 5-norbomene-2-carboxylate ester followed 

by saponification."^"'"^ This procedure gives a mixture of 60%) exo and 40%) endo 

acids. The overall yield of this method is 62%). 

CH2CHCO2CH3 
Ether/lce-bath 

COoCHo 

Alkaline 
Isomerisation 

COoCHo 

C O 2 C H 3 

endo - 40% 

COOH 

exo - 60% 

Saponification 

COOH 

encfo - 40% exo - 60% 

Figure 2.4 Synthesis of 5-norbomene-2-carboxylic acid by alkaline isomerisation and 

saponification of eot/o-methyl 5-norbomene-2-carboxylate ester 

For the purpose of the work described in this thesis 5-norbomene-2-carboxylic acid 

was synthesised by two of the above procedures; the method of Ivin et al. and the 
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method using a mixture of dicyclopentadiene and acrylic acid. The method involving 

alkaline isomerisation of the endo-methyl 5-norbomene-2-carboxylate ester was not 

attempted. 

The advantage of synthesising 5-norbomene-2-carboxylic acid by the addition of 

cyclopentadiene and acrylic acid is that the reaction is fast and goes to almost 100% 

completion. Also the product can be used in the following step without any further 

purification. The major drawbacks of this method is that it requires freshly distilled 

cyclopentadiene, obtained by thermal cracking of dicyclopentadiene and the exo 

content is low. The exo content can be improved by using dicyclopentadiene instead 

of cyclopentadiene and carrying out the reaction in a pressure reaction vessel. The 

drawback of this method is that since 50% excess of acrylic acid is used, the crude 

product mixture has to be distilled to remove the excess acrylic acid. Also some 

polymers/oligomers were found as side products in the reaction mixture. These were 

not identified. The exo contents formed in both of these methods were determined by 

'̂ C nmr spectroscopy."^ 

2.3 lodolactonisation of Endo Acid 

Pure exo acid was obtained after removal of the endo isomer via iodolactonisation of 

exo/endo acid mix tu re . "^ ' " 'Th i s was achieved by adding 10%) aqueous NaOH 

followed by NaHCOj and aqueous I j /KI solution to the acid mixture to precipitate the 

endo acid as the iodolactone (figure 2.7). The endo acid precipitates as a dark 

brown/black oil. After removing bulk of the iodolactone precipitate from the 

separating funnel, final traces of the precipitate were removed by extracting with 

small portion of chloroform. The aqueous layer was then treated with \0% aqueous 

NajSjOj to remove excess iodine, acidified and extracted with chloroform to give the 

exo acid. The crude exo acid was used in the following step without any further 

purification. In the '̂ C nmr spectrum (figure 2.6) no carbonyl carbon signal was 

observed for the endo acid which occurs at 181.5ppm indicating that all the endo acid 

has been removed by this procedure; figure 2.5 shows the spectrum of the endo/exo 

mixture where both endo (181.5ppm) and exo (183.0ppm) carbonyl carbon signals are 

clearly seen. 
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COOH 

COOH 
exo 

NaOH(aq/NaHC02 

endo 

UKi l(aq) 

COOH 

exo 

lodolactone 
complex 

Figure 2.7 Separation of endo isomer from the exo/endo mixture by iodolactonisation 
of endo acid 

2.4 Conversion of Exo Acid into Acid Chloride 

The exo acid was converted into acid chloride by refluxing with oxalyl chloride."' 

After removing the excess oxalyl chloride, the crude acid chloride was distilled to 

give pure exo-5-norbomene-2-carbonyl chloride as a foul smelling liquid. 

CICOCOCI 
COOH Reflux COCI 

Figure 2.8 Reaction scheme for the synthesis of exo-5-norbomene-2-carbonyl 

chloride 

47 



2.5 E X P E R I M E N T A L 

Al l chemicals were bought from Aldrich Chemical Co. Ltd. and used as received 

without any further purification. Cyclopentadiene was obtained by pyrolysis of 

dicyclopentadiene at 180°C. 

2.5.1 Synthesis of £jco-5-Norbornene-2-CarboxyIic Acid 

Method-1: Acrylic acid (103ml, 1.5mol), few crystals of hydroquinone and 

cyclohexane (450ml) were placed in a 1 litre 2-neck round bottom flask fitted with a 

condenser, with a drying tube attached to it and a pressure equalising dropping funnel. 

The mixture was refluxed using a stirrer/heater mantle, and freshly prepared 

cyclopentadiene was added slowly to the refluxing mixture under vigorous stirring so 

as to maintain the reflux from the heat produced by the reaction while the mantle 

heating was turned off. At the end of cyclopentadiene addition, the solution was left 

stirring vigorously for 10-20minutes and filtered to remove any polyacrylic acid 

formed. Finally solvent was removed using a rotary evaporator to give exo/endo-5-

norbomene-2-carboxylic acid (211.4g, 98.2%)). The product contained approximately 

24%o exo-acid as determined by '̂ C rmir spectroscopy. This was used in the following 

step without any further purification. 

Method-2: Dicyclopentadiene (198g, 1.5mol) and acrylic acid (324g, 4.5mol) with 

some hydroquinone was placed in a 2 litre pressure reaction vessel equipped with an 

overhead stirrer and a thermocouple to measure the internal temperature. The sealed 

reaction vessel was heated to 160°C for 2 hours (or until a sudden increase in 

temperature to above 200°C due to exothermic reaction was observed). Finally the 

mixture was allowed to cool down to room temperature overnight. The product was 

obtained as a yellowish viscous liquid. This was distilled under vacuum to remove 

excess acrylic acid and to obtain pure 5-norbomene-2-carboxylic acid as a colourless 

viscous liquid. The '̂ C nmr showed it consisted of a 47%) exo and 53% endo isomer 

mixture. The 'H and '̂ C nmr spectroscopic characterisation of this mixture is recorded 

below following the literature assignments."^ 
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• 'H nmr:-(CDCl3) 5(ppm) 1.25-1.55 (m, H, and U,^), 1.9 (m, H3, and UJendo), 2.24 

(m, Hj/exo), 2.9-3.0 (m, H,), 3.1 and 3.25 (2s, HJ, 5.9-6.2 (m, H5 and HJ and 12.1 

(bs, H,). 

• "C nmr:-(CDCl3) 5 (ppm) 28.96 {C^lendo), 30.18 {C,lexo\ 41.54 {CJexo), 42.43 

(Cj/endo), 43.07 (Cj/exo), 43.22 (CJendo), 45.56 (C^/endo), 46.25 (C^/exo), 46.57 

(C,/exo), 49.59 (Cy/endo), 132.31 (C^Wo) , 135.58 (C^/exo), 137.73 (C./endo), 

137.97 (Cj/exo), 181.49 (C./endo), and 182.99 (Cg/exo). 

COOH 

2.5.2 Separation of and Endo Acids 

The crude exo/endo acid mixture (72g, 47% exo as determined by '̂ C nmr) was placed 

in a separating fiirmel (21) and neutralised with 10%) aqueous NaOH solution and 

sodium bicarbonate (36g) was added. The mixture was shaken thoroughly and 

aqueous I j / K I solution (1-1.5 litres, prepared by dissolving lOlg of I j in 2000ml of 

water containing 200g of KI) was added in portions with shaking until the resulting 

mixture remained the colour of the IjfKl solution, i.e. black/pink. The solution was 

shaken occasionally over a period of an hour. The iodolactone of the endo acid 

precipitates as a dark brown/black oil. After removing bulk of the iodolactone fi-om 

the separating funnel, final traces were removed by extracting with chloroform 

(3x50ml). The remaining aqueous layer was then treated with 10%) aqueous NajSjOs 

to remove excess iodine (the solution becomes colourless), acidified with H2SO4 

(1.8M) and extracted with chloroform (4x200ml). The chloroform extract was dried 

over anhydrous MgS04 and filtered. The solvent was removed using a rotary 

evaporator to give exo-5-norbomene-2-carboxylic acid (30g, 41.6%)). The '̂ C nmr 

spectrum of the crude exo acid showed no signal (around 181.5ppm) corresponding to 

the endo acid (figure 2.6).The crude exo acid was converted to acid chloride without 

any further purification. 
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2.5.3 Synthesis of £jco-5-Norbornene-2-Carbonyl Chloride 

The crude exo-5-norbomene-2-carboxylic acid (46.95g, 0.34mol) and oXalyl chloride 

(80ml, 0.91mol, 2.7 equivalents) were placed in a 250ml round bottom flask fitted 

with a refiux condenser and a drying tube. The evolution of gas starts immediately, 

indicating that the reaction is taking place. After the evolution of gas has subsided 

(approximately 1 hour) the mixture was refluxed (70°C) for about 2 hours in an oil 

bath. The excess oxalyl chloride was then evaporated using a rotary evaporator and 

distilled (35°C/3mmHg) to give pure exo-5-norbomene-2-carbonyl chloride (27g, 

50.7%)). The following 'H and '̂ C nmr spectroscopic assignments were made with the 

aid of COSY and HETCOR spectra (appendix 2-figure A2.5 and A2.6). 

• 'H nmri-fCDCls) 5(ppm) 1.40-1.55 (bm, 3H, and W,^), 2.01 (m, H 3 J , 2.73 (m, 

H2), 2.98 (s, H4), 3.28 (s, H,), 6.12 (q, H,) and 6.21 (q, H^) 

• ''C nmr:-(CDCl3) S(ppm) 31.19 (C3), 41.84 (CJ, 46.26 (C,), 46.87 (C,), 56.29 (C2), 

134.84 (Cg), 139.00 (C5) and 176.56 (C3). 

3 H - ^ 7 / H b 

3 / H a 
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CHAPTER-3 

SYNTHESIS OF MACROMONOMERS BY LIVING ANIONIC 

POLYMERISATION 



3.1 INTRODUCTION 

This chapter describes the synthesis of exo-5-norbomene-2-(polystyrylcarboxylate) 

macromonomers by living anionic polymerisation and their characterisation. The 

synthesis involves anionic polymerisation of styrene followed by capping with 

propylene oxide and exo-5-norbomene-2-carbonyl chloride to give well-defined 

macromonomers suitable for ring opening metathesis polymerisation. These 

macromonomers are used to synthesise well-defined comb-graft copolymers by ring 

opening metathesis polymerisation which is described in chapter-4. 

3.2 Synthesis of £!xo-5-Norbornene-2-(PoIystyryIcarboxyIate) Macromonomers 

Macromonomers can be prepared in many ways™'™ as discussed earlier in chapter-1. 

However, methods based on living polymerisations are the best way to produce well-

defined macromonomers, since this allows control of the molecular weight, molecular 

weight distribution and the introduction of functional groups at chain ends.^''" "'^° For 

these reasons exo-5-norbomene-2-(polystyrylcarboxylate) macromonomers were 

prepared by living anionic polymerisation. 

Previous work in this particular area includes the synthesis of an exo/endo mixture of 

5-norbomene-2-(polystyrylcarboxylate) macromonomers by Norton and McCarthy'^" 

and of 5-norbomene-2,3-trans-bis(polystyrylcarboxylate) macromonomers by Feast 

and co-workers,^^ both sets of monomers were used to synthesise comb graft 

copolymers by ring opening metathesis polymerisation. In both cases the 

macromonomers were synthesised by living anionic polymerisation. In the former, 

living polystyrenes were capped with an exo/endo mixture of 5-norbomene-2-

carbonyl chloride to produce the macromonomers as a mixture of exo and endo 

isomers in which each norbomene imit carries a single polystyrene chain. In the latter, 

living polystyrenes were capped with 5-norbomene-2,3-trans-dicarbonyl chloride to 

produce the macromonomers in which each norbomene unit carries two polystyrene 

chains (figure 3.1). 
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n C H 2 = C H sec-BuLi 
Benzene 

- B u — C H 2 — C H - | j ^ C H 2 — C H Li 

Propylene oxide 

CH3 
© © 

S - B U - + C H 2 — C H - | — C H 2 — C H - O Li 
' Jn 

COCI 

COCI 

CH3 O 

s- B u — C H2—C H — C H2—C H—O—C'., 
L Jn 

O CH, 

C — 0 — C H — C H , -CH2—CH s-Bu 
' Jn 

Figure 3.1 Reaction scheme for the macromonomers synthesised by Feast and co

workers 

Recently Fontanille et al. reported the synthesis of the exo/endo mixture of 5-

norbomene-2-(polystyrylcarboxylate)s and a new exo/endo mixture of 5-norbomene-

2-(poIyethyleneoxidecarboxylate) family of macromonomers.'̂ '"'̂ ^ Apart from 

synthesising these macromonomers by end capping living polystyrene and ethylene 

oxide with the mixture of exo/e«i/o-5-norbomene-2-carbonyl chloride, they also used 

novel norbomene based initiators to anionically polymerise styrene and ethylene 

oxide, thereby introducing the norbomene unit at the beginning of the chain (figure 

3.2 and 3.3).'̂ '̂'̂ ^ In this case the purpose of using a fimctionalised inifiator approach 

was to avoid an ester link between the norbomene unit and the rest of the 

macromonomer chain. This is necessary because the presence of an ester link could 

inhibit complete hydrogenation of the final graft copolymer products prepared by ring 
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opening metathesis polymerisation of these macromonomers. Also the sensitivity of 

the ester ftinction to hydrolysis could prevent the use of these graft copolymers 

certain applications. 

m 

CH2OH pph3/CCl4 ^ ^ 2 ^ ' Li/ether 
CHjLI 

(1) nCH2CHPh 

CgHsm/IEDA 

(2) MeOH 

^ ^ ^ ^ - ^ C H 2 — C H 2 — C H - ^ H 2 — C H 2 

Figure 3.2 Synthesis of exo/enJo-5-norbomene-2-(polystyrene) macromonomer 

mixture using a fimctionalised initiator 

CH2OH ph„CH"K* 

THF 

CH20-K* 

CH20 

(1) n Y 

(2) PhCH2Br 

n 

Figure 3.3 Synthesis of exo/e«i5?o-5-norbomene-2-(polyethylene oxide) 

macromonomer mixture using a fianctionalised initiator 

The present work described here is a continuation of the work carried out by Feast and 

co-workers and involves synthesising exo-5-norbomene-2-(polystyrylcarboxylate) 

macromonomers by capping living polystyrene with exo-5-norbomene-2-carbonyl 

chloride. The synthesis was carried out in close analogy to the method described by 

Feast and co-workers^' and the reaction scheme is outlined in figure 3.4. 
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n C H , = C H sec-BuLi 
Benzene j - P c H 2 — C H - -

L 2 I Jr 
s -BuH - C H p — C H - | — C H o — C H Li 

^ ' Jn-1 ^ ' n 
Propylene oxide 

J — ( s - B u - f - C H 2 — C h j i ^ C H j — 9 H - O Li 

n 
-Cl 

CH, 

COCI 

s - B u - f c H o — C M CHo—CH—O—C 

CH, O 

Figure 3.4 Reaction scheme for exo-5-norbomene-2-(polystyrylcarboxylate) 

macromonomer synthesis 

Styrene was anionically polymerised at room temperature in benzene using sec-

butyllithium as initiator. A sample of the living polymer was then withdrawn, 

terminated by adding nitrogen degassed methanol and the resulting polystyrene was 

analysed by GPC. The methanol was nitrogen degassed in order to remove CO, which 

could cause coupling of polystyryllithium leading to higher molecular weight 

products and an inaccurate analysis." The concentration of active ends in the 

polystyryllithium solution was calculated from the number average molecular weight 

(Mn) of the quenched polystyrene sample. The living polystyrene was then capped 

with propylene oxide (slight excess). The above capping reaction is complete within 5 

minutes and can be monitored by the replacement of the red colour associated with the 
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propagating polystyryl chain ends by an orange/yellow colour. Since the rate of 

reaction of lithium alkoxide with propylene oxide is much slower than that of 

polystyryllithium, the above procedure is expected to give polystyrylisopropyl 

alkoxide in which the product results almost exclusively from the addition of only one 

propylene oxide unit.^' Also propylene oxide was chosen instead of ethylene oxide as 

described in some literature^''''^'' because of its ease of purification and handling. This 

reaction was carried out in order to cap the strongly basic polystyryl anion. The 

resulting lithium 2-polystyrylisopropyl alkoxide is less reactive than polystyryllithium 

and this eliminates the possibility of side reactions resulting from polystyryl anion 

attack on the carbonyl fianction present in the final product exo-5-norbomene-2-

(polystyrylcarboxylate) macromonomer.^''^''''^° Finally neat exo-5-norbomene-2-

carbonyl chloride (slight excess) was added to the above solution under vigorous 

stirring. Again the reaction can be monitored by a colour change, in this case from an 

orange/yellow to a whitish colour. The mixture was stirred overnight. The product 

was then precipitated by adding to 10-fold excess of methanol, recovered by filtration 

and purified again by dissolving in THF or toluene and reprecipitating in methanol. 

The product was dried in a vacuum oven at 50°C for 3-days. In this way a series of 

macromonomers with different polystyrene block lengths were prepared. 

3.3 Characterisation of Macromonomers 

Al l the macromonomers were characterised by gel permeation chromatography 

(GPC), 'H nmr spectroscopy and infrared spectroscopy (IR). Table 3.1 gives the GPC 

analysis results for polystyrene homopolymers and final product macromonomers. 

The 'graft length' in table 3.1 means the approximate number of styrene units in the 

macromonomer. The GPC results indicates that these macromonomers have a very 

narrow molecular weight distribution (PDI). 
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Sample Polystyrene Homopolymer Macromonomer Sample 

Mn PDI Mn i FDI Graft Length^ 

1 1300 1.10 1460 1.08 12 

2 1390 1.09 1600 1.08 13 

6 1325 1.07 1560 1.05 13 

11 - - 1550 1.10 13 

12 - - 1650 1.12 14 

3 2110 1.10 2250 1.05 20 

4 2370 1.06 2590 1.05 22 

13 - - 2200 1.08 19 

5 3400 1.04 3540 1.04 32 

8 3270 1.10 3445 1.06 31 

9 3385 1.07 3580 1.06 32 

10 - - 4740 1.08 44 

14 4790 1.06 4930 1.08 46 

7 - - 10,170 1.13 96 

15 - - 13,230 1.08 127 

t no. of styrene units 

Table 3.1 GPC analysis results of the macromonomers prepared 

Macromonomer 
Mn= 1560 
PDI= 1.05 

Polystyrene 
homopolymer 

Mn = 1325 
PDI = 1.07 

— I 1 1 1 

20.00 22.00 24.00 26.00 
Retention time (minutes) 

Figure 3.5 A typical GPC trace of a macromonomer and polystyrene homopolymer 
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T" 
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Figure 3.6 A typical "H nmr spectrum of a macromonomer (Mn = 2590) 

The end capping reaction of living polystyrene was confirmed by nmr spectroscopy. 

The ' H nmr spectra of macromonomers are similar to those described in the 

literature*' '̂ " and show olefmic resonances around 6.0-6.2ppm due to norbomene 

which are resolved from the aromatic protons due to polystyrene (6.35-7.35ppm). 

From the 'H nmr of macromonomers it is possible to calculate the styrene:norbomene 

molar ratio by integration of the aromatic (6.35-7.35ppm) and olefmic (6.0-6.2ppm) 

proton resonances.*' '"" For low molecular weight macromonomers (upto about 3500), 

these values agree within experimental error with that calculated from GPC analysis 

as shown in the table 3.2. With higher molecular weight macromonomers (Mn 

>4000), the olefinic resonances in the 'H spectrum becomes less clearly observable 

(see Appendix A3-for 'H nmr spectra of all macromonomers) and thus similar 

calculations do not provide any useful information. Figure 3.7 shows infrared 

spectrum of a polystyrene homopolymer and a typical macromonomer. The I R spectra 

are generally very similar but those of the macromonomers exhibit ester C=0 

stretching at 1726 cm"' and ester C-0 stretching at 1179 cm'' and agree with those of 

analogous materials described in the literature.*' '̂ " 
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Mn of Maeromonomer 

(GPC) 

Styrene :Norbornene Molar Ratio Mn of Maeromonomer 

(GPC) GPC NMR 

1460 12.5:1 15.6:1 

1600 13.9:1 14.8:1 

1560 13.5:1 14.8:1 

2250 20.1:1 21.4:1 

2590 23.4:1 24.0:1 

3540 32.5:1 31.3:1 

3445 31.6:1 35.6:1 

3580 33.0:1 27.9:1 

Table 3.2 Styrene:Norbomene molar ratio calculated from NMR and GPC methods 

for some low molecular weight macromonomers 

10.41-.,. ,., ^^•^^•'•Hr'^'-'-'S 
ST ' ^ V 

Polystyrene homopolymer 

( 1 

- 0 . 6 l J 

Macromonomer 

A A m .a L. 
i U i 1 N 

I us 

•1000 3300 3000 26C0 2000 
i 

1500 1000 

i ! 

cm-' 500 

Figure 3.7 Typical IR spectra of a macromonomer and polystyrene homopolymer 

59 



3.4 E X P E R I M E N T A L 

All chemicals were bought from Aldrich Chemical Co. Ltd. Sec-butyllithium (1.3M) 

was used as received. Benzene, styrene and propylene oxide were purified as 

described below. £xo-5-norbomene-2-carbonyl chloride was synthesised as described 

earlier in chapter-2. The anionic polymerisation reaction was performed in a specially 

designed apparatus ("Christmas Tree," see figure 3.8) using a conventional high 

vacuum line. The capping reaction of living polystyrene was carried out in an inert 

atmosphere (dry nitrogen) filled glove box. 

3.4.1 Purification of Solvents and Reagents 

a) Styrene 

Styrene (325ml) was washed with 10% aqueous NaOH (3x125ml) and deionised 

water (3x125ml) in a separating funnel and dried over CaClj overnight. After filtration 

it was distilled under nitrogen (66°C/45 mmHg). Distilled styrene (125ml) was placed 

in single-neck round bottom flasks (250ml) with a large oval shape P.T.F.E. coated 

stirrer bar and CaHj powder was added. This was cormected to the vacuum line and 

degassed periodically by freeze-thawing over several days until the pressure of the 

frozen material was of the order of 10"̂  mmHg. 

b) Benzene 

In a separating funnel benzene (400ml) was first washed with concentrated H2SO4 

(3x50ml) followed by deionised water (2x50-100ml), saturated NaHCOj solution 

(50ml) and again with deionised water (100ml). This was then azeotropically distilled 

in order to remove bulk of the water. Finally this was distilled under atmospheric 

pressure, placed in a single-neck round bottom flask (500ml) containing a large oval 

shaped P.T.F.E. coated stirrer bar and cormected to the vacuum line with CaH, as the 

drying agent and degassed periodically by freeze-thawing over several days until the 

pressure of the frozen material was of the order of 10"̂  mmHg. 

c) Propylene Oxide 

Propylene oxide was degassed and stirred over CaHj overnight and distilled under 

vacuum into an ampule and handled in the glove box. 
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3.4.2 Preparation of the Anionic Polymerisation Apparatus 

Anionic polymerisation reactions were carried out in a specially designed apparatus 

("Christmas Tree") shown below. Anionic polymerisation reactions are moisture and 

air sensitive and require rigorous purification to remove all impurities. Therefore 

before each polymerisation the apparatus was cleaned as described below. 

Figure 3.8 Schematic view of the anionic polymerisation apparatus 

• Flask-A: Holds the living polystyrene 'wash' solution to clean the entire apparatus. 

• Flask-B: Benzene is distilled out from living polystyrene solution in flask 'A' into 

this. 

• Flask-C: (also called 'side-arm C) Used to withdraw living polymer samples for 

analysis. A small amount of living polymer solution is placed in this flask and 

terminated by injecting methanol through the opening marked 'Y'. 

• Flask-D: Main reaction flask where polymerisation is carried out. Initiator is 

injected into the flask through the opening marked 'X'. 

• M: Greaseless 'O' ring ball joint. Cormects to vacuum line for degassing the 

apparatus and vacuum transfer of benzene. 

• N: High vacuum sliding joint. The ampule containing styrene is connected through 

this and vacuum transferred into 'D'. 

• 1-5: Youngs taps (interchangeable P.T.F.E. 'O' ring taps). The purpose of the 

Youngs tap (4) is to isolate the contents of flask 'D'. from the rest of the apparatus 
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during polymerisation or when the rest of the apparatus needs to be degassed, for 

example before vacuum transferring styrene into flask 'D' as described above via 

'N'. 

• X and Y: Small opening (closed with Suba seal/8 mm o.d.) used to inject initiator 

solution, capping reagent etc. 

A living polystyrene wash solution was prepared using styrene (0.5g in 10ml of 

benzene) and .sec-butyllithium as initiator in the same way as described below (section 

3.4.3), except the living polystyrene was not terminated/capped. This is then stored in 

the side arm flask 'A' for regular cleaning purposes before polymerisation. 

After each polymerisation reaction, the apparatus was washed with toluene (x2), 

methanol (x2) and acetone. The apparatus was then connected to the water pump 

through the opening 'X' (while 'Y' is closed with a Suba-seal) and by slowly opening 

and closing Youngs taps T and '2' traces of acetone were removed from the apparatus. 

Then the opening 'X' was also closed with a Suba-seal and the whole apparatus was 

degassed overnight under high vacuum. The entire apparatus was then gently warmed 

using a hot air gun while it is still connected to the vacuum pump in order to remove 

traces of moisture. After allowing it to cool down, the apparatus was disconnected 

from the vacuum line while it is under vacuum and washed with living polystyrene 

wash solution in the following manner. 

The living polystyrene wash solution in flask 'A' was released into rest of the 

apparatus and the entire apparatus was washed. The wash solution was then placed 

back in flask 'A'. A small amount of benzene was then distilled out of wash solution 

into flask 'B' by gently warming flask 'A' and cooling flask 'B'. Flask 'A' was then 

closed and the entire apparatus was washed with benzene. The benzene solution was 

then placed back in flask 'A' and the process was repeated (x6) until all traces of living 

polystyrene has been removed (when the colour of benzene solution remains 

unchanged/colourless after washing the entire apparatus). Final traces of benzene 

solution were placed back in flask 'A' by cooling flask 'A' in liquid air and gently 

warming the rest of the apparatus with a hot air gun. The apparatus was then 

connected to the vacuum line and degassed for 15 minutes. While the apparatus is 
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under vacuum, flask 'C was closed since this is used only to withdraw polymer 

samples. 

3.4.3 Anionic Polymerisation of Styrene and Macromonomer Synthesis 

A typical synthesis is described below. Styrene (12.72g, 122.13mmol) was first 

distilled from CaHj under vacuum into a pre-weighed ampule. According to the 

amount of styrene to be used, benzene (86g) was distilled under vacuum from CaH, 

directly into the reaction flask ('D'). Styrene was then vacuum transferred from the 

ampule into the reaction flask ('D'). Soon after the mixture has thawed, sec-

butyllithium (2.57ml, 3.34mmol) was injected into the reaction flask through the 

Suba-seal ('X') using a gas-tight syringe. Upon the addition of the initiator, the colour 

of the reaction mixture changes instantaneously to orange/red. The mixture was 

shaken thoroughly and placed in an ice-bath for about an hour. 

A small amount of living polystyrene (2ml) was then placed in the side arm ('C') and 

capped with methanol and precipitated from methanol to obtain a sample of 

polystyrene homopolymer. 

The remaining living polystyrene was transferred into a 250ml round bottom flask and 

propylene oxide (0.77g, 13.25mmol, in excess) was added with vigorous stirring. 

After stirring for about an hour, exo-5-norbomene-2-carbonyl chloride (0.88g, 5.62 

mmol, 1.5 equivalents) was added and the mixture was stirred overnight. The product 

was precipitated by adding to methanol (10-fold excess) and reprecipitated from 

toluene into methanol. The resulting product was finally dried in a vacuum oven at 

50°C for 3-days to give macromonomer as a pure white powder (12.08g, Mn=3540, 

PDI=1.04). 
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CHAPTER-4 

RING OPENING METATHESIS POLYMERISATION OF 

MACROMONOMERS AND CHARACTERISATION OF 

POLYMERS 



4.1 INTRODUCTION 

In this chapter, the synthesis of graft copolymers by ring opening metathesis 

polymerisation of macromonomers is described along with their characterisation. The 

exo-5-norbomene-2-(polystyrylcarboxylate) macromonomers prepared by living 

anionic polymerisation were ring opened polymerised using well-defined Schrock 

molybdenum initiators. The well-defined graft copolymers thus produced consisted of 

a polynorbomene backbone chain carrying a single polystyrene graft in each 

cyclopentane ring. 

4.2 Graft Copolymer Synthesis 

As discussed earlier in chapter-1, graft copolymers can be prepared by 'grafting onto', 

'grafting from' and macromonomer method. However, the macromonomer method of 

synthesising graft copolymers provides greater control over the main chain and side 

chain molecular weights and the graft density."'*"'*" Generally, macromonomer 

method of graft copolymer synthesis involves homopolymerisation or 

copolymerisation of macromonomers by free radical polymerisation. Although the 

free radical method tolerates various functional groups, it is not suitable for the 

synthesis of well-defined graft copolymers. This can only be achieved by employing 

living polymerisation techniques at both stages; i.e. to synthesise macromonomers and 

to polymerise the macromonomers to produce graft copolymers. In this way, control 

over side chain and the backbone chain can be achieved. Therefore the work described 

here involves living ring opening metathesis polymerisation of well-defined 

macromonomers synthesised by living anionic polymerisation to produce graft 

copolymers. 

The earliest work on the coupled anionic and ring opening metathesis polymerisation 

to produce graft copolymers was reported by Norton and McCarthy.'^" They ring 

opened copolymerised a mixture of exo/e/7(io-5-norbomene-2-(polystyrylcarboxylate) 

macromonomers synthesised by living anionic polymerisafion, norbomene and oct-1-

ene to produce graft copolymers (figure 4.1). However, they employed a classical ring 

opening metathesis initiator WCl6/SnMe4, for the polymerisation process. The graft 

copolymers prepared were relatively ill-defined and the yield of the polymerisation 

process was very low. The acyclic olefin, oct-l-ene, was present as a chain transfer 
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agent to limit the molecular weight of the products so as to have processable 

materials; simple polynorbomenes are relatively easily cross-linked and high 

molecular weight materials tend to become insoluble through cross-linking during 

storage and/or manipulation. 

X s - B u — C H , — C H CH,—CH,—O—C 
L T Jn II 

o 

+ y 

WCl6/SnMe4 
Chlorobenzene 

s - B u — C H , — C H C H2—C H2—O—C 
L I Jn II 

o 

Figure 4.1 Reaction scheme of poly(norbomene-g-styrene) graft copolymer 

synthesised by Norton and McCarthy 

However, it was Feast and co-workers who used for the first time well-defined 

metathesis initiators to synthesise graft copolymers via macromonomer method.*^ '"'' 

They ring opened polymerised 5-norbomene-2,3-trans-bis(polystyrylcarboxylate) 

macromonomers having molecular weights in the range of 1200-5000 {i.e. 6-25 

styrene units in each polystyrene graft) using well-defined molybdenum Schrock 

inifiators. They used Mo(CHR)(NAr)(OR')2, where R is CMcj or CMejPh, Ar is 2,6-

diisopropylphenyl and R' is CMcj as the initiator. The reaction scheme is shown in 

figure 4.2. They synthesised a range of graft copolymers by varying the 

macromonomer to initiator molar ratio. The graft copolymers produced had relatively 

narrow molecular weight distribution according to GPC analysis. 
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C H , O O C H , 
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s - B u — C H 2 — C H C H 2 — C H — O — C ' . , > C — O — C H — C H 2 — C H 2 — C H s-Bu 
L I Jn X L I Jn 

\ 

M o i = C H R 

C H , O O C H , 

r "I I II II I r 1 
s - B u — C H 2 — C H C H 2 — C H — O — C > C — O — C H — C H 2 — C H2—C H s-Bu 

L I -In X L I Jn h ( ^ J [ M o ^ = C H - -CHH=CHR 
Jx 

s - B u - P c H 2 — C H ^ C H 2 — C H — O — C 
Jn 

Q PhCH= =C 

PhCHO 

C H , O O CH3 

C — O — C H — C H 2 - - C H 2 — C H - j — s - B u 

CHH=CHR 

[ M o ] = Mo(NAr)(OCMe3)2 and R = C M e j or CMe2Ph 

Figure 4.2 Reaction scheme of the graft copolymer synthesised by Feast and co

workers 

However, when they increased the macromonomer to initiator molar ratio beyond a 

certain limit, they observed that the polymerisation stops before complete 

consumption of macromonomers . In this case the GPC trace shows two peaks; 

one due to product graft copolymer and the other due to unreacted macromonomer. 

Similarly, as they increased the polystyrene graft length, the threshold value of 

macromonomer to initiator molar ratio at which polymerisation stops before complete 

consumption of macromonomers gradually drops. The results are summarised in table 

4.1. For example, polymerisation of the macromonomer with 6 styrene units in each 

polystyrene graft goes to completion up to a macromonomer to initiator molar ratio of 

about 26 and stops at 30 equivalents before complete consimiption of 

macromonomers. On the other hand with 10 and 14 styrene units in each polystyrene 
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graft, the polymerisation goes to completion only up to about 16 and 9 equivalents 

respectively giving rise to graft copolymers with shorter polynorbomene backbones. 

With 25 styrene units in each polystyrene graft, the polymerisation does not go to 

completion even at 5 equivalents. This indicates that as the polystyrene graft length 

increases, the polynorbomene backbone chain length decreases. Since these limits are 

independent of the duration of reaction and the chain ends remain living (see below), 

they attributed this phenomenon to steric hindrance at the growing chain end. 

Mn of Macromonomer Graft Length^ [M]/[I] Ratio* No. of Peaks in GPC 

1200 6 10 1 

26 1 

30 2 

1600 8 10 1 

13 1 

15 1 

20 1 

25 2 

2100 10 7 1 

16 1 

20 2 

2800 14 9 1 

10 2 

12 2 

5000 25 5 2 

11 2 

t No. of styrene units + Macromonomer to initiator molar ratio 

Table 4.1 GPC analysis results for graft copolymers prepared from di-substituted 

macromonomers by Feast and co-workers 

They demonstrated the living nature of these polymerisations by adding a comonomer 

to the polymerisation mixture which had been shown to have gone to completion 

according to GPC analysis (i.e. only one peak is observed in the GPC trace indicating 
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that all the macromonomer has reacted) and following the course of the 

polymerisation reaction by 'H nmr. When they added the comonomer, 

bis(trifluoromethyl)norbomadiene to the polymerisation mixture after all the 

macromonomer has been consumed, a new propagating alkylidene signal 

characteristic of poly[bis(trifluoromethyl)norbomadiene] appeared, confirming the 

living nature of these polymerisations. This also indicates that tapered and block 

copolymers can be prepared. 

Similarly, when they added bis(trifluoromethyl)norbomadiene to the polymerisation 

mixture that was shown to exhibit two peaks in the GPC, due to product graft 

copolymer and unreacted macromonomer, the macromonomer peak disappears. This 

indicates that incorporation of a small, less sterically hindered monomer in the chain 

eliminates the steric hindrance effects and then the unreacted macromonomer in the 

mixture participates in fiorther polymerisation. This further confirms that the 

polymerisation of macromonomers beyond a certain macromonomer to initiator molar 

ratio stops before complete consumption of macromonomers as a consequence of 

steric hindrance and not as a result of the deactivation of the initiator. 

Similar work has also been reported by Fontanille et a/.'̂ '"'" They used 

Mo(NAr)[OCMe(CF3)2]2(CH-t-Bu) initiator to ring open polymerise exo/endo-5-

norbomene-2-(polystyrylcarboxylate) macromonomers having molecular weights 

2700, 4800 and 11,000, up to a macromonomer to inifiator molar ratio of 100. The 

graft copolymers produced had relatively narrow polydispersity. In the case of the 

macromonomers having molecular weights 4800 and 11,000, they observed 2-5% 

unreacted material in the GPC traces of the graft copolymers with the same retention 

time as macromonomers. They attributed this to unfunctionalised polystyrene 

homopolymers. 

Fontanille et al. also ring opened polymerised exo/e«i/o-5-norbomene-2-(polyethylene 

oxide) macromonomers having molecular weights 1500, 2800 and 4700 (figure 4.3). 

Initially they used Mo(NAr)(OCMe3)2(CH-t-Bu) as initiator. However the yields were 

very low and they attributed this to very low reactivity of the initiator. In contrast, 

Mo(NAr)[OCMe(CF3)2]2(CH-t-Bu) initiator polymerised the macromonomers having 

molecular weights of 1500 and 2800 in toluene to complete conversions at 20 and 25 

macromonomer to initiator molar ratios respectively. Although the graft copolymers 
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produced showed narrow polydispersity, they reported that the molecular weights 

obtained using a laser light scattering detector connected to the outlet of the GPC were 

well above the target molecular weights based upon macromonomer to initiator molar 

ratios. 

M o ^ C H C M e , 

CHCMe3 

PhCHO 

PhCH -CHCMeg 

Mo] = Mo(NAr)[OCMe(CF3)2]2 

Figure 4.3 Reaction scheme of poly(norbomene-g-ethylene oxide) graft copolymer 

synthesised by Fontanille et al. 

They suggested that since both electron-rich oxygen atoms and carbon-carbon double 

bonds of the macromonomer compete for co-ordination to the transition metal 

carbene, a large amount of the initiator may become entrapped within polyethylene 

oxide chains and so would not be available for the co-ordination to the 

macromonomer olefinic unsaturation. This leads to rather low efficiency of the 

initiator when it is used to polymerise polyethylene oxide macromonomers. When 
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they polymerised the macromonomer, Mn=4800, in toluene, the polymerisation did 

not proceed beyond 30% conversion. With very high molecular weight 

macromonomers, i.e. Mn=l 1,000, no polymerisation was observed at all. However, 

when the solvent was changed to 1,2-diethoxyethane (which is similar to polyethylene 

oxide chains), the polymerisation of macromonomer, Mn=4800, proceeded to almost 

complete conversion (90%). They suggested that this is because the use of a solvent 

that is a stronger base than the repeating units of polyethylene oxide prevents the co

ordination to the metal by the oxygen atoms of the polyethylene oxide chains and 

allows the polymerisation to proceed to completion. 

The work described here is a continuation of the work carried out by Feast and co

workers and involves synthesising graft copolymers having a polynorbomene 

backbone chain carrying one polystyrene graft in each cyclopentane ring. Since there 

is only one graft unit attached to norbomene, it is expected to lower the steric 

hindrance to formation of graft copolymers with longer grafts and backbone chains. 

Also the work involves systematically increasing the macromonomer to initiator 

molar ratio for a range of macromonomers having molecular weights between 1400 

and 13,200 {i.e. from 12 to 127 styrene units in the polystyrene graft), in order to 

study the steric hindrance effect at the growing chain end. For this purpose 

Mo(NAr)(OCMe3)2(CHR) initiator, where R is CMe3 or CMe2Ph, was used to ring 

open polymerise pure ejco-5-norbomene-2-(polystyrylcarboxylate) macromonomers. 

The reaction scheme is given in figure 4.4. Initially the ring opening metathesis 

reactions were investigated on an nmr tube scale and later scaled up to obtain 

sufficient polymeric material for characterisation. 
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s - B u - • C H 2 — C H - C H 2 — C H — O — O 

C H . O 

M o ^ C H R 

[Mo]==CH 

s -Bu — C H 2 — C H — 
L ^ I Jn 

- C H o — C H — O — C 

CHc 

CHR 

PhCHO 

PhCH 

s - B u — C H 2 — C H 

CH4=CHR 
X 

- C H o — C H — O — C 

Mo] = Mo(NAr)(OCMe3)2 and R = CMeg or CMe2Ph 

Figure 4.4 Reaction scheme for the synthesis of graft copolymers 

4.2.1 NMR Tube Scale Polymerisation 

In a typical nmr scale polymerisation, macromonomer (10-equivalents) was dissolved 

in benzene-dg (600|J,1) and added to a stirred solution of initiator (~10mg) in the same 

solvent (400|al). The polymerisation mixture was then transferred into a screw cap 

nmr tube and 'H nmr spectra were recorded at various times after mixing and analysed 

in order to understand the process. 
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Figure 4.5 A typical 'H nmr spectrum of an nmr scale polymerisation after adding 10 

equivalents of macromonomer (Mn=1460) 

The ' H nmr spectrum shows two broad unresolved signals at 11.44 and 11.62ppm 

characteristic of the propagating alkylidenes (figure 4.5). These signals could be due 

to head or tail insertion of macromonomer to the active site [(a) and (b) in figure 4.6] 

leading to head-tail, tail-tail or head-head placements of repeat units in the polymer 

chain. The broad unresolved nature of these nmr signals could be due to complexity of 

the slightly differing environments of the nuclei. Also another signal was observed at 

11.31 ppm characteristic of initiator alkylidene. On further addition of macromonomer 

to the polymerisation mixture, the intensity of this peak gradually diminishes (figure 

4.7). This indicates that the rate of propagation for this system is faster than the rate of 

initiation. This also agrees with the literature findings that, for norbomenes and mono-

substituted norbomenes the rate of propagation is faster than the rate of initiation.'^ 

73 



Ar 
N 

. .Mo=c; 
*BuO' ' / 
*BuO 

CMesPh 

H 

CO2R 

Ar 
N 

*BuO' ' / 
tSuO 

.MoH=C 
CMe2Ph 

CO2R 

Ar 
N 

*BuO' ' / 
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R= Polystyrene chain CO2R 

Figure 4.6 Head (a) and tail (b) insertion of macromonomers at the active site in 

living ring opening metathesis polymerisation 
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Figure 4.7 Alkylidene regions of the 'H nmr spectrum of an nmr scale polymerisation 

at different macromonomer (Mn=1460) to initiator molar ratio 
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Finally the living polymerisation mixture was capped with benzaldehyde and the 

resulting graft copolymer was analysed by GPC. The GPC results (table 4.2) revealed 

a relatively narrow polydispersity for these graft copolymers even though the rate of 

propagation was faster than the rate of initiation. 

Macromonomer Graft Copolymer 

Sample Mn PDI Graft 

Length^ 

[M]/[I] 

Ratio* 

Mn PDI 

1-9 1460 1.08 12 10 14,950 1.10 

1-4 40 24,870 1.39 

3-6 2250 1.05 20 10 19,330 1.09 

3-3 30 38,045 1.17 

5-4 3540 1.04 32 10 26,060 1.09 

t no. of styrene units + macromonomer to initiator molar ratio 

Table 4.2 GPC analysis results for nmr scale polymerisation reactions 

4.2.2 Preparative Scale Polymerisation 

In a typical preparative scale polymerisation, macromonomer (l-3g) was dissolved in 

benzene (5-10ml) and added in 3-5 equal portions at 15-20 minutes intervals to a 

stirred solution of initiator (10-30mg) in the same solvent (l-2ml) at room 

temperature. After stirring for about 4 hours the reactions were terminated by adding 

an excess of benzaldehyde. The polymerisation mixture was stirred for further 30 

minutes and precipitated by pouring the mixture into an excess of methanol. The 

polymer precipitates as a white powder. The polymer was recovered by filtration, 

washed several times with excess of methanol and dried in a vacuum oven at 50°C. 

These polymeric samples were ftirther purified by reprecipitating from THF into 

methanol and finally drying under vacuum at 50''C for 3-days. In this way 

polymerisations were carried out with macromonomers of Mn 1500, 2250, 3500, 

10,200 and 13,200. In some cases, in order to get larger quantities of polymeric 

material, the polymerisations were carried out on a 20-30g scale. 
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4.3 Characterisation of Graft Copolymers 

Al l graft copolymers were characterised by gel permeation chromatography (GPC), 

differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). 

Figure 4.8 Diagrammatic representation of the polymer microstructure 

The polymer microstructure is represented diagrammatically in figure 4.8. Since exo-

5-norbomene-2-carbonyl chloride was used to synthesise the macromonomer, the 

polystyrene chain in the macromonomer and in the graft copolymer have the same 

'exo' configuration. However, the possibility of head-tail additions, cis and trans 

vinylene units and meso or racemic dyads means considerable microstructural variety 

is possible. Also the presence of polystyrene grafts fiirther complicates the 'H and '̂ C 

nmr spectra. Therefore due to the complexity of these spectra, it was not possible to 

interpret them in terms of microstructural detail, as is often possible for polymers 

produced by ring opening metathesis polymerisation. A typical set of 'H and '̂ C nmr 

spectra of graft copolymers is shown in figure 4.9 and 4.10. The signals observed in 

both 'H and '̂ C nmr spectra of these graft copolymers are primarily due to 

polystyrene chains. In the '̂ C nmr spectrum polynorbomene ring carbons are expected 

to appear around 30-50ppm and some of these signals seems to overlap with that from 

polystyrene methylene and methine carbons and the rest can not be observed clearly 

and are difficult to assign with certainty. The vinylic carbons of the backbone chain 

are expected around 130-140ppm, but can not be seen clearly in the spectrum. 
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Graft copolymer 

unreacted macromonomer 
or dead polystyrene 

homopolymer 

Macromonomer 

-r T T 15.00 20.00 25.00 
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Figure 4.11 A typical GPC trace of a graft copolymer and the corresponding 

macromonomer (sample 9-1 in table 4.4) 

Typical GPC records for a graft copolymer and a macromonomer are shown in figure 

4.11. Analysis of the GPC results for all these graft copolymers indicates a narrow 

polydispersity. However, all GPC traces showed a small peak at the same retention 

volume as that of the starting macromonomers. Since the proportion of this unreacted 

material is very small, it was difficult to identify by analysis of the olefinic signals in 

the ' H nmr spectrum of the graft copolymer product, i f this minor component was due 

to unreacted macromonomer the olefinic signals should be resolved from the aromatic 

hydrogens and polymer chain vinylenes. Therefore, in order to find out whether this 

small peak is due to unreacted macromonomer or dead polystyrene homopolymer, a 

graft copolymer sample was subjected to fractionation in order to separate the product 

graft copolymer from the unreacted material. Attempts to separate all the graft 

copolymer from the unreacted material in the sample by fractionation failed but a 

residue which was considerably enriched with this minor product was obtained. After 

removing the bulk of the graft copolymer from the sample by fractionation, the 

residue was analysed by 'H nmr and GPC. The GPC trace of the sample before 
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fracfionation and the residue (after fractionation) is shown in figure 4.12. Since the 

bulk of the graft copolymer has been removed, the relative intensity of the small peak 

in the initial graft copolymer sample has increased in the residual sample indicating a 

much greater proportion of this unreacted material. Because of this high proportion of 

unreacted material in this residue, its 'H nmr should confirm whether it is unreacted 

macromonomer or dead polystyrene homopolymer. No olefmic signals in the 6.0-6.2 

ppm region (see figure 3.6) due to norbomene in the unreacted macromonomer was 

observed in the 'H nmr spectrum (figure 4.13). Thus it can be concluded that this 

small peak with the same retention time as that of macromonomer is in fact due to 

dead polystyrene homopolymer. This also agrees with the assumption reported by 

Fontanille et al. who also observed a similar small peak with the same retention 

volume as that of macromonomer in their graft copolymer samples of exo/endo-5-

norbomene-2-(polystyrylcarboxylate) macromonomers and suggested that this could 

be dead polystyrene homopolymers without any reported experimental 

mvestigation. 121 

graft copolymer 

Residue after 
fractionation 

Graft copolymer 
sample before 
fractionation j 

is'.oo 

unreacted macromonomer or 
dead polystyrene 

homopolymer 

unreacted macromonomer or 
dead polystyrene 

homopolymer 

20.00 22.00 24.00 
Retention time (minutes) 

26.00 

Figure 4.12 GPC traces of the graft copolymer sample (sample 5-5 in table 4.4) 

subjected to fractionation 
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Figure 4.13 'H nmr spectrum of the residual graft copolymer after fractionation 

The GPC results for all the graft copolymers prepared are tabulated in Tables 4.3 to 

4.5. Here the graft length means the number of styrene units in the polystyrene graft. 

In some cases, two peaks were observed in the GPC trace; one due to product graft 

copolymer and another due to unreacted macromonomer (not dead polystyrene 

homopolymer). This is reported under the 'number of peaks' column. Al l these results 

indicate a narrow polydispersity for the graft copolymers prepared. However, these 

GPC data yielded no useful quantitative information since the numerical values for 

molecular weight are calculated with reference to calibration with linear polystyrene 

standards, and the hydrodynamic volume to molecular weight relationship for these 

comb-graft copolymers is, as yet, unknown. 
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Macromonomer Graft Copolymer 

Sample Mn PDI Graft [M]/[I] Mn PDI No. of 

Length' Ratio* Peaks 

1-11 1460 1.08 12 8 13,645 1.07 1 

1-10 10 15,130 1.20 1 

1-7 40 38,035 1.10 

6-1 1560 1.05 13 50 60,440 1.13 

6-2 60 72,985 1.16 1 

6-3 120 101,590 1.28 

11-1 1550 1.10 13 200 277,230 1.51 

3-4 2250 1.05 20 30 36,310 1.07 1 

3-5 40 44,780 1.06 1 

3-7 40 48,175 1.13 1 

3-8 50 60,590 1.10 

13-1 2200 1.08 19 200 see figure 4.14 2 

no. of styrene units J macromonomer to initiator molar ratio 

Table 4.3 GPC analysis results of graft copolymers prepared from macromonomers 

with Mn around 1500 and 2250 

Table 4.3 gives GPC analysis resuhs of graft copolymers prepared from 

macromonomers having molecular weights around 1500 and 2250. Polymerisation of 

macromonomers with a molecular weight of 1550 goes to completion even at 200 

equivalents (i.e. macromonomer to initiator molar ratio of 200). The broadening of 

molecular weight distribufion at 120 and 200 equivalents (samples 6-3 and 11-1) 

could be due to mixing efficiency at such a high macromonomer to initiator molar 

ratios. On the other hand, faster rate of propagation than initiation for these systems 

could also have contributed to this broadening effect. Similarly, macromonomers with 

a molecular weight of 2250 were polymerised up to 50 equivalents. However, 

attempts to polymerise the macromonomer Mn=2200 at a ratio of 200 equivalents of 

macromonomer to one initiator resulted in a very broad partially resolved bimodal 

molecular weight distribution with a high molecular weight shoulder and an unreacted 

macromonomer peak (figure 4.14). 
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Figure 4.14 GPC trace of the graft copolymer prepared with 200 equivalents of the 

macromonomer Mn=2200 

As discussed earlier for di-substituted norbomene macromonomers, the presence of an 

unreacted macromonomer peak suggests that the polymerisation reaction stops due to 

steric hindrance at the growing chain end before complete consumption of 

macromonomers. On the other hand, the molecular weight of the high molecular 

weight shoulder peak is approximately twice that of the main lower molecular weight 

graft copolymer peak. Therefore the high molecular weight shoulder could be due to 

bimolecular dimerisation of the living polymer induced by the impurity, dioxygen, 

introduced unintentionally at the termination stage. This effect was first reported by 

Feast et al. and the mechanism for this reacfion is given in figure 4.15 below.'" 

Another possible .explanation for the appearance of this high molecular weight 

shoulder could be due to mixing efficiency, since the rate of propagation for these 

systems is much faster than the rate of inifiation. This is less likely since it should just 

lead to broadening rather than the observed resolved shoulder at twice the molecular 

weight of the main peak. In practice, both effects may be operating. 
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Figure 4.15 The mechanism for the bimolecular dimerisation of living polymers 

Macromonomer V Graft Copolymer 

Sample Mn PDI Graft [M]/[I] Mn PDI No. of 

Length^ Ratio* Peaks 

5-3 3540 1.04 32 10 23,865 1.06 1 

5-5 10 23,110 1.09 1 

5-1 20 37,035 1.07 1 

5-2 30 47,515 1.08 1 

5-7 50 76,390 1.16 

9-1 3580 1.06 32 50 74,335 1.16 

8-1 3445 1.06 31 100 130,780 1.13 

14-1 4930 1.08 46 100 271,550 1.31 

t no. of styrene units J macromonomer to initiator molar ratio 

Table 4.4 GPC analysis results of graft copolymers prepared from macromonomers 

with Mn around 3500 and 5000 

Table 4.4 gives the GPC analysis results of graft copolymers prepared from 

macromonomers having molecular weights around 3500 and 5000. In this case 

polymerisation of the macromonomers with molecular weights of 3445 and 4930 goes 

to completion even at a macromonomer to initiator molar ratio of 100. Again 
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broadening of molecular weight distribution at 100 equivalents of macromonomers in 

sample 14-1 could be due to mixing efficiency and faster rate of propagation than 

initiation. However, no attempt was made to polymerise beyond macromonomer to 

initiator molar ratio of 100 for these two macromonomers. Some of these 

polymerisations were repeated and the GPC analysis results are also included in table 

4.4 (sample 5-3 and 5-5, 5-7 and 9-1). In total these results are self consistent and 

indicate a reasonably well controlled living polymerisation; thus, for the same 

macromonomer, the macromonomer to initiator molar ratio determines the molecular 

weight and up to quite high molecular weights the polydispersity remains low. 

Macromonomer Graft Copolymer 

Sample Mn PDI Graft [M]/[I] Mn PDI No. of 

Length^ Ratio* Peaks 

7-3 10,170 1.13 96 15 99,975 1.09 1 

7-1 20 107,740 1.12 1 

7-2 30 178,610 2.01 2 

15-3 13,230 1.08 127 5 63,200 1.13 1 

15-2 10 82,695 1.11 1 

15-1 15 117,610 1.11 2 

t no. of styrene units : : macromonomer to initiator molar ratio 

Table 4.5 GPC analysis results of graft copolymers prepared from macromonomers 

with Mn of 10,170 and 13,230 

Table 4.5 gives GPC analysis results for graft copolymers prepared from 

macromonomers having molecular weights of 10,170 and 13,230. In the case of the 

macromonomer with a molecular weight of 10,170, the polymerisation goes to 

completion only up to 20 equivalents. At 30 equivalents of macromonomer, the GPC 

trace shows two peaks, one due to product graft copolymer and another prominent 

peak with the same retention time as that of macromonomers (i.e. unreacted 

macromonomer) indicating that the polymerisation stops before complete 

consumption of macromonomers. Similarly, macromonomers with a molecular weight 

of 13,230 goes to completion only up to about 10 equivalents. At 15 equivalents, the 
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GPC trace shows a significant unreacted macromonomer peak indicating that the 

polymerisation again stops before complete consumption of macromonomers. All the 

GPC traces of graft copolymers prepared from macromonomer Mn= 13,230 are shown 

in figure 4.16. The GPC traces of graft copolymer prepared from macromonomer 

Mn=10,170 are given in Appendix-4. As discussed earlier in this chapter, the 

appearance of an unreacted macromonomer peak is probably due to steric hindrance at 

the growing chain end causing the polymerisation to stop before all the 

macromonomer is consumed as the length of polystyrene grafts are increased. 

Graft copolymer 

Macromonomer : Initiator 
molar ratio = 15:1 

unreacted macromonomer 

Macromonomer : Initiator 
molar ratio =10:1 

Macromonomer : Initiator 
molar ratio = 5:1 

Macromonomer 

dead polystyrene 
^ homopolymer 

dead polystyrene 
homopolymer 

lo'.oo IS'.OO 20.00 
Retention time (minutes) 

25.00 

Figure 4.16 GPC traces of graft copolymers prepared from the macromonomer 

Mn=13,230 

86 



As mentioned earlier, polymerisation of macromonomers with a molecular weight of 

1550 (i.e. 13 styrene units) goes to completion at 200 equivalents. Similarly, 

macromonomer with a molecular weight of 3445 goes to completion even at 100 

equivalents. This produces relatively long polynorbomene backbone chains while the 

polystyrene grafts are relatively short. On the other hand, when the macromonomer 

molecular weight is 10,170 or 13,230, polymerisation goes to completion only up to 

20 and 10 equivalents respectively. Beyond this stage polymerisation stops before 

complete consumption of macromonomers. This leads to very short polynorbomene 

backbone chains while the polystyrene grafts are relatively long. Therefore as 

discussed earlier in this chapter for di-substituted norbomene macromonomers, as the 

polystyrene graft length increases, the polynorbomene backbone chain lengths 

obtained for these graft copolymers gradually decreases. 

However, in contrast to two polystyrene grafts on the same norbomene unit, with one 

polystyrene graft on the norbomene unit, graft copolymers with relatively long 

backbone and side chains can be prepared. For example, with the disubstituted 

norbomene macromonomer having 14 styrene units in each graft, the polymerisation 

goes to completion only up to a macromonomer to initiator molar ratio of 9 and at a 

ratio of 10, the polymerisation stops before complete consumption of 

macromonomers. On the other hand, with the mono-substituted macromonomer 

having 13 styrene units in the graft, the polymerisation goes to completion even at a 

macromonomer to initiator molar ratio of 200. Again this is probably due to lowering 

of steric hindrance when there is only one polystyrene graft instead of two attached to 

the same norbomene unit. As observed by 'H nmr, when there is only one polystyrene 

chain attached to norbomene unit, the macromonomer can add head or tail to the 

propagating chain end. This, in tum, reduces the steric hindrance at the growing chain 

end and give rise to high molecular weight graft copolymers. 
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Macromonomer Graft Copolymer 

Sample GPC [M]/[I] GPC DSC TGA 

Mn Ratio^ Mn PDI Tg/°C Td/°C* 

1-10 1460 10 15,130 1.20 79.67 389 

1-7 40 38,035 1.10 82.04 380 

6-1 1560 50 60,440 1.13 79.59 379 

6-2 60 72,985 1.16 80.05 380 

11-1 1550 200 277,230 1.51 84.17 388 

3-4 2250 30 36,310 1.07 89.26 392 

3-5 40 44,780 1.06 89.63 395 

3-8 50 60,590 1.10 87.87 399 

5-5 3540 10 23,110 1.09 94.54 -

5-1 20 37,035 1.07 95.10 408 

5-2 30 47,515 1.08 95.25 407 

9-1 3580 50 74,335 1.16 93.55 405 

8-1 3445 100 130,780 1.13 93.77 402 

14-1 4930 100 271,550 1.31 91.97 407 

7-3 10,170 15 99,975 1.09 101.13 414 

7-1 20 107,740 1.12 101.91 417 

7-2 30 178,610 2.01 101.06 410 

15-3 13,230 5 63,200 1.13 100.17 409 

15-2 10 82,695 1.11 100.00 420 

15-1 15 117,610 1.11 99.57 412 

t macromonomer to initiator molar ratio 

Table 4.6 DSC and TGA results of the 

{ for 2% weight loss 

graft copolymers prepared 

The DSC and TGA results for graft copolymers are listed in table 4.6. Al l the DSC 

traces are recorded in Appendix-4. In all cases, only one Tg was observed for these 

graft copolymers. This indicates that the polynorbomene and polystyrene segments do 

not undergo phase segregation. The Tg of these graft copolymers shows there is an 

overall increase in Tg on going from graft copolymers containing short polystyrene 

chains to longer polystyrene chains with very short polynorbomene backbone chains. 



Thus graft copolymers having polystyrene grafts with 14 styrene units have Tg around 

80°C while those having 100 or more styrene units have a Tg of about 100°C. The Tg 

o f polynorbomene is 35°C and that o f polystyrene is 100°C. Thus it seems likely that 

the Tg process observed is primarily associated with polystyrene grafts in these 

systems. A similar trend was also observed in relation to thermal decomposition 

temperatures, using 2% weight loss as an arbitrary criterion for degradation. As the 

polystyrene chain length o f the graft copolymer increases, the thermal decomposition 

temperature also increases. 

In conclusion, the work described here indicates that when there is only one 

polystyrene graft attached to the norbomene unit, steric hindrance at the growing 

chain end can be significantly reduced by head/tail addition. This in turn allows the 

preparation o f very high molecular weight graft copolymers having longer 

polynorbomene backbone chains and relatively long polystyrene grafts than the di-

substituted macromonomers investigated previously. Polymerisation of 

macromonomers Mn=10,170 and 13,230 at different macromonomer to initiator molar 

ratio indicates that beyond a certain macromonomer to initiator molar ratio, these 

polymerisation reactions also stops before complete consumption of macromonomers. 

As described by Feast and co-workers for the di-substituted macromonomer,^'' '''' this 

is likely to be due to steric hindrance at the growing chain end. However, the 

threshold value for macromonomer to initiator molar ratio at which the polymerisation 

stops before complete consumption o f macromonomers for these systems is 

significantly higher than that for di-substituted macromonomers with similar amount 

o f styrene units in the polystyrene graft. Similarly, the results also indicates that there 

is a relationship between the polystyrene graft length and the polynorbomene 

backbone chain length. Thus, macromonomers having shorter polystyrene grafts allow 

production of graft copolymers having long polynorbomene backbones and vice 

versa. The broadening o f the molecular weight distribution of graft copolymers 

prepared at very high macromonomer to initiator molar ratios could be due to a 

combination o f mixing efficiency effects and the faster rate o f propagation than 

initiation. 
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4.4 E X P E R I M E N T A L 

A l l the chemicals were bought from Aldrich Chemical Co. Ltd. The ROMP initiators, 

Mo(N-2,6-i-Pr2C6H3)(CHR)(OR')2, where R is CMe^Ph or CMej and R' is CMe„ were 

prepared by Dr. Ezat Khosravi. Benzene-d^ used in nmr scale polymerisations was 

dried over phosphorus pentoxide and vacuum transferred. Benzene used in preparative 

scale polymerisations was purified and dried as for anionic polymerisation (section 

3.3.1b). Benzaldehyde was distilled directly into an ampule containing molecular 

sieves (type 4A). A l l manipulations involving polymerisation reactions (solvent, 

initiator and macromonomer) were carried out in an inert atmosphere (dry nitrogen) 

filled glove box. 

4.4.1 A Typical N M R Scale Polymerisation 

Mo(N-2,6-i-Pr2C6H3)(CHCMe2Ph)(OCMe3)2 initiator (12.7mg, 0.023mmol) and exo-

5-norbomene-2-(polystyrylcarboxylate) macromonomer (Mn = 1460, 335.8mg, 10-

equvalents) were dissolved in benzene-dg (400)^1 and 600|li1 respectively) in separate 

sample vials. The macromonomer solution was then transferred into the initiator 

solution and stirred for 25 minutes. The mixture was transferred into a screw cap nmr 

tube and analysed by ' H nmr spectroscopy. After analysing by ' H nmr, the 

polymerisation mixture was placed back in the sample vial, more macromonomer 

(335.8mg in 600)il o f CgDg, 10-equivalents) was added, stirred and transferred again 

into the nmr tube and analysed by ' H nmr spectroscopy as before. The above process 

was repeated 3-times (or until no more unreacted initiator can be observed in the ' H 

nmr spectrum) with fiirther additions o f macromonomer (335.8mg in 600^1 of C^D^, 

10-equivalents) into the initial polymerisation mixture and each time analysing by ' H 

nmr. Finally the polymerisation mixture was capped with benzaldehyde and after 

stirring for 30 minutes, precipitated by pouring into methanol (10-fold excess) to 

obtain the graft copolymers. 

4.4.2 A Typical Preparative Scale Polymerisation 

Mo(N-2,6-i-Pr2C6H3)(CHCMe3)(OCMe3)2 initiator (41.8mg, 0.086mmol) was 

dissolved in benzene (3ml) in a sample vial and placed in a single neck round bottom 

flask (250ml). The vial was washed with benzene (30ml) and added to the initiator 
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solution. £'xo-5-norbomene-2-(polystyrylcarboxylate) macromonomer (Mn=3500, 

30g, 100 equivalents) was dissolved in benzene (80ml) and added to the initiator 

solution in 5 equal portions at 15-20 minutes interval under vigorous stirring. After 

adding all the macromonomers, the mixture was stirred for fiarther 3 hours. This was 

then capped with benzaldehyde (10-fold excess). After stirring for 30 minutes, the 

mixture was precipitated by pouring into methanol (10-fold excess). The precipitate 

was recovered by filtration, washed with excess methanol and dried in a vacuum oven 

at 50°C. Finally, the polymer was reprecipitated f rom THF into methanol and dried in 

a vacuum oven at 50''C for 3 days to give graft copolymer as a white powder. 

4.4.3 Controlled Fractionation of Graft Copolymers 

This was done in order to find out i f the small peaks with the same retention volumes 

as that the starting macromonomers observed in all GPC analysis traces of graft 

copolymers was due to unreacted macromonomer or dead polystyrene homopolymer. 

The graft copolymer sample (2g) was dissolved in toluene (200ml i.e. 1% solution) in 

a beaker and transferred into a two-neck separating funnel (21) with an overhead 

stirrer. The separating fiannel was then immersed in a thermostated water bath. The 

solution was stirred vigorously using the overhead stirrer. While stirring, methanol 

was added until the solution tumed cloudy. Then the temperature was raised to about 

30°C (water bath) and left stirring until the solution became clear. Finally stirring was 

stopped and the stirrer paddle (P.T.F.E.) was raised above the solution level to prevent 

any polymer sticking onto it on cooling. The solution was allowed to cool-down 

slowly by reducing the water bath temperature by 1-2°C in every 2 hours or so. Also a 

'cooling-coil ' was used to cool the solution to about 18°C overnight. On slow cooling, 

a small layer o f polymer rich solution separated at the bottom of the separating ftxnnel. 

This polymer rich solution was drained into a sample vial and added to a large excess 

o f methanol to precipitate the polymer. To the remaining solution in the ftmnel, more 

methanol was added while stirring until the solution went cloudy. This was then 

warmed up to 30°C. While warming more methanol was added (dropwise) until the 

solution went cloudy again, as on warming solution becomes clear. When the 

temperature has reached ~30°C and the solution has become clear, stirring was 

stopped and the solution was allowed to cool down ovemight as before, a second 
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polymer rich layer was collected and precipitated. The above procedure was repeated 

until no more clear polymer rich layer could be observed at the bottom of the 

separating fimnel. In this case up to 7 samples (over 10 days) were collected and 

analysed by GPC. The GPC traces indicated those samples to be 'pure' high 

molecular weight graft copolymer. In this way bulk o f the graft copolymer was 

removed from the initial polymer sample. 

The remaining polymer solution (residue) in the separating ftinnel was then 

transferred into a round bottom flask and the polymer recovered by evaporating the 

solvents (toluene and methanol) using rotary evaporator. The residue was dried in a 

vacuum oven at 50°C and analysed by GPC and ' H nmr spectroscopy. 

92 



C H A P T E R S 

SYNTHESIS OF A POTENTIALLY RING OPEN 

POLYMERISABLE MESOGENIC MONOMER 



5.1 I N T R O D U C T I O N 

This chapter describes the synthesis and characterisation o f a mesogenic monomer 

suitable for ring opening metathesis polymerisation to produce a side chain liquid 

crystalline polymer. In this case, cyclopentene is used as the ring open polymerisable 

functional group, so that a side chain liquid crystalline polymer with a flexible 

backbone chain could be produced. The attempted polymerisation o f this mesogenic 

monomer w i l l be the subject o f next chapter. 

5.2 Monomer Synthesis 

The structure of the ring open polymerisable mesogenic monomer to be synthesised is 

shown in figure 5.1. 

Q ^ C H 2 - 0 - f C H 2 t O - ^ | ^ ^ C 0 2 ^ ( ^ ^ C 0 2 - C H 2 -
CHoCHo 
J 
OH 
C H 3 

Figure 5.1 The mesogenic monomer, (5)-(-) 2-methylbutyl 4-(4-(10-(3-

cyclopentenylmethoxy)decyloxy)phenylcarbonyloxy)benzoate to be synthesised 

It consists o f a mesogenic unit with a chiral centre at one end linked to a cyclopentene 

ring via a flexible spacer. Therefore the synthesis involves preparing a suitable 

fiinctionalised cyclopentene unit, in this case 4-hydroxymethyl cyclopentene and then 

linking the mesogenic unit via the spacer to the cyclopentene unit. The reaction 

schemes for the synthesis o f 4-hydroxymethyl cyclopentene and the final mesogenic 

monomer are given in figure 5.2 and 5.3. 

CO2H *- l ^ y ^ C H z O H 

Figure 5.2 Route to the synthesis o f 4-hydroxymethyl cyclopentene 
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f^^^CH20H + B r - f C H 2 V B r 

r ^ C H 2 - 0 - e C H 2 V B r 

HO-^^^)-C02CH3 

T / \ 
/7=:\ H O - Y O V c O z H + HO—CH2-CH 

[ ^ ^ C H 2 - 0 4 C H 2 V 0 ^ ( ^ _ 2 ) - C 0 2 C H 3 \ : = ^ 

CH2CH3 

P ^ ^ ^ C H 2 - 0 - f C H 2 V 0 - < ( ^ ^ C 0 2 H H O ^ ( ^ ^ ) - C 0 2 - C H 2 - C H 
CH2CH3 

P y - C H 2 - 0 - e C H 2 V O ^ ^ ^ C 0 2 ^ ^ y - C 0 2 - C H 2 - C H 
CH2CH3 

'CH 
I 

CH3 

Figure 5.3 Route for the synthesis o f the mesogenic monomer 

5.2.1 Synthesis of 4-Hydroxymethyl Cyclopentene 

As shown in figure 5.2, the synthesis o f 4-hydroxymethyl cyclopentene involves first 

synthesising the diester, dimethyl 3-cyclopentene-l,l-dicarboxylate and then 

converting it to 3-cyclopentenecarboxylic acid by hydrolysis and decarboxylation, and 

finally reducing to the required alcohol. In the literature several different methods are 

reported for the synthesis o f 3-cyclopentenecarboxylic acid. These are summarised 

below. The major difference among these different procedures is the overall yield o f 

the final product. 

The method reported by Murdock and Angier involves cycloalkylation o f diethyl 

malonate wi th c/5-l,4-dichloro-2-butene to give diethyl 3-cyclopentene-1,1-

dicarboxylate along with the isomeric diester (diethyl 2-vinylcyclopropane-l,l-

dicarboxylate), followed by hydrolysis and decarboxylation to give 3-cyclopentene 

carboxylic acid.'^^ The overall yield o f this procedure is 19-33%. 
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C 

H CH2CI 

C O z E t 
/ 

CH2 

C O j E t 

Na 
EtOH 

C O z E t 

COoEt 
,CO,Et 

C O j E t 

side product 

(1) Hydrolysis 

(2) Decarboxylation 

COoH 

Figure 5.4 Murdock's scheme for the synthesis o f 3-cyclopentenecarboxylic acid 

Meinwald and Gassman used c/5-l,4-dibromo-2-butene instead o f c/5-l,4-dichloro-2-

butene, but the yields were again very low.'^' Schmid and Wolkof f produced diethyl 

3-cyclopentene-1,1-dicarboxylate by thermal rearrangement o f diethyl 2-

vinylcyclopropane-l,l-dicarboxylate at 400-425°C.'^*'^' They prepared diethyl 2-

vinylcyclopropane-1,1-dicarboxylate from diethyl malonate and rra«5-l,4-dichloro-2-

butene. However, the overall yield from diethyl 2-vinylcyclopropane-1,1-

dicarboxylate to 3-cyclopentenecarboxylic acid was low (32%). 

ClHzC^ 

c 
\ H 2 C I 

COzEt 

CH2 

COzEt 

Na 
EtOH 

COzEt 40(M25°C, 

C02Et 

COzEt 

COzEt 

(1) Hydrolysis 

(2) Decarboxylation 

CO2H 

Figure 5.5 Schmid and W o l k o f f s route to synthesise 3-cyclopentenecarboxylic acid 
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Cremer and Blankenship prepared 3-cyclopentenecarboxylic acid from 

cyclopentadiene in 5-steps in 19% overall yield. 

(1) 40% Peracetic acid _ 
(2) LiALH^Ether ' OH TsOCI 

Pyridine OTs NaCN 
HMPA ON 

Hydrolysis 

CO2H 

Figure 5.6 Cremer's route to 3-cyclopentenecarboxylic acid 

Green et al. found that the formation o f vinylcyclopropane in the condensation 

between cz5-l,4-dichloro-2-butene and malonic ester to be highly sensitive to changes 

in the base, the solvent and to a lesser extent functional groups (C02Me, C02Et, CO2-

t-C4H9, CN) o f the malonic ester. They modified the Murdock's procedure by using 

dimethyl malonate instead of diethyl malonate and synthesised 3-

cyclopentenecarboxylic acid in 70%) overall yield with lithium hydride as base and 

N,N-dimethylformamide as solvent.'^^ 

C02Me H^ ^CHzCI 

9 
II + CH2 

. / C02Me 

LiH 
DMF 

COzMe 

COoMe 

(1) Hydrolysis 
(2) Decarboxylation CO2H 

H CH2CI 

Figure 5.7 Green's route to 3-cyclopentenecarboxylic acid 

Recently, Grubbs et al. synthesised the diester, diethyl 3-cyclopentene-1,1-

dicarboxylate by ring closing metathesis o f diethyl diallyl malonate using a ruthenium 

catalyst.'^^ The reaction is very fast and goes to almost completion. 
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E t O z C ^ ^ C O j E t EtOsC^ ^COgEt 

[Ru] Catalyst 

H2C CH2 

+ CH2=CH2 CD2CI2 

Ck I / — < 
[Ru] = \ R u = / \ p h 

c r 
PCya 

Figure 5.8 Grabbs' ring closing metathesis reaction to produce diethyl 3-

cyclopentene-1,1 -dicarboxylate 

For the purpose o f the work described in this thesis Green's procedure was adopted to 

synthesise 3-cyclopentenecarboxylic acid. Thus c/5-l,4-dichloro-2-butene was 

condensed with dimethyl malonate to give dimethyl 3-cyclopentene-1,1-

dicarboxylate. Since this procedure also produces a small amount o f 2-

vinylcyclopropane-1,1-dicarboxylate (5% according to the literature, but varying 

significantly) as a side product, the cmde product was recrystallised fi-om «-hexane to 

obtain pure dimethyl 3-cyclopentene-1,1-dicarboxylate. For analytical purposes, a 

small sample was further purified by sublimation. 

The dimethyl 3-cyclopentene-1,1-dicarboxylate was then hydrolysed to give 3-

cyclopentene-l,l-dicarboxylic acid. This was converted to 3-cyclopentenecarboxylic 

acid without fiirther purification by heating to 180°C. The cmde product was then 

distilled under reduced pressure to obtain pure 3-cyclopentenecarboxylic acid. Finally 

3-cyclopentenecarboxylic acid was reduced to 4-hydroxymethylcyclopentene using 

li thium aluminium hydride as reducing agent.'^^ Again the resulting cmde product was 

vacuum distilled to give pure 4-hydroxymethylcyclopentene. 

5.2.2 Synthesis of 10-Bromodecyl 3-Cyclopentenylmethyl Ether 

The synthesis o f 10-bromodecyl 3-cyclopentenylmethyl ether was carried out with 

minor variations to that reported in the literature for analogous reactions. It involves 

phase transfer catalysed substitution o f dibromodecane by 4-
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hydroxymethylcyclopentene.'*''''^^ I n this case tetrabutylammonium bromide was used 

as phase transfer catalyst. One o f the advantages o f using the phase transfer catalyst 

for this type o f reaction is that it does not require heating or dry solvents and it only 

involves simply stirring the reaction mixture overnight. However, for this particular 

reaction, the yields o f this reaction was relatively low (40%). Since dibromodecane 

was used in excess (50%) in this reaction, it was necessary to remove this in order to 

prevent it reacting in the following step with methyl 4-hydroxybenzoate. Therefore 

the crude product mixture was passed through a silica gel column using hexane as 

eluent. Once all the excess dibromodecane had been removed, the product was eluted 

with 5% ether in hexane and then distilled to give 10-bromodecyl 3-

cyclopentenylmethyl ether. 

CH2OH . B r ^ C H 2 V B r hexane7NaOH(3,)' ( ^ C H 2 - 0 4 C H 2 ^ B r 

Figure 5.9 Reaction scheme for the synthesis o f 10-bromodecyl 3-

cyclopentenylmethyl ether 

5.2.3 Synthesis of 4-(10-(3-Cyclopentenylmethoxy)Decyloxy)Benzoic Acid 

The 10-bromodecyl 3-cyclopentenylmethyl ether was then condensed with methyl 4-

hydroxy benzoate to give methyl 4-(10-(3-cyclopentenylmethoxy)decyloxy)benzoate 

under standard Williamson conditions using potassium carbonate as the base and N , N -

dimethylformamide as solvent.'^^ The methyl 4-(10-(3-cyclopentenylmethoxy) 

decyloxy)benzoate was then directly hydrolysed without fiirther purification to the 

corresponding acid, 4-(10-(3-cyclopentenylmethoxy)decyloxy)benzoic acid,'^* which 

was purified by recrystallisation f rom ethanol. 
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f ^ ^ C H 2 - 0 - f C H 2 V B r HO- -C02Me 

K 2 C O 3 / D M F 1000c 

C H2—0- f C H 2 ^ 0 — ( ^ ^ ) ^ C 0 2 C H, 

80% EtOH (aq) KOH/reflux 

f ^ > - C H 2 - 0 - e C H 2 V O ^ Q ) - C 0 2 H 

Figure 5.10 Reaction scheme for the synthesis o f 4-(10-(3-cyclopentenylmethoxy) 

decyloxy)benzoic acid 

5.2.4 Synthesis of (5)-(-) 2-Methylbutyl 4-Hydroxybenzoate 

Two different types o f procedure can be found in the literature for the synthesis of (5)-

(-) 2-methylbutyl 4-hydroxybenzoate. One involves direct esterification of 4-

hydroxybenzoic acid and (S)-(-) 2-methyl 1-butanol (figure 5.11)'" '-'̂  and the other 

method involves protecting the hydroxy (OH) fiinctional group in 4-hydroxy benzoic 

acid and deprotecting after esterification to yield (5)-(-) 2-methylbutyl 4-

hydroxybenzoate (figure 5.12).'^^ 

According to the literature, (S)-(-) 2-methylbutyl 4-hydroxybenzoate has been 

synthesised in high yield by direct esterification of 4-hydroxybenzoic acid with (S)-(-) 

2-methyl 1-butanol using 1,3-dicyclohexylcarbodiimide (DCC) and 4-

dimethylaminopyridine (DMAP) in THF as solvent.'" However, when the reaction 

was carried out according to the method described in the literature, it was found that it 

was diff icul t to purify the product. Therefore the reaction was carried out using p-

toluene sulfonic acid as catalyst in benzene by azeotropic distillation.'^^ The extent of 

the reaction can be followed by the amount o f water collected and no side products are 

formed. Although the product looked pinkish in colour, no attempt was made to 
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remove the colour and this material was used in the following step without any further 

purification. 

HO-

CHoCH-j 
J 

-CO2H + HO—CH2—OH 

PTSA 

CHc 

CeHs/reflux 

HO-

CHoCHo 
J 

-CO2—CH2—CH 

CH3 
Figure 5.11 The direct esterification method to synthesise (S)-(-) 2-methylbutyl 4-

hydroxybenzoate 

CH2CH3 

C H 2 — 0 ^ ( ) ; ^ C 0 2 H + HO—CH2—CH 
I 

CH, 

-CH2—o-

H^ 

CH2CH3 

-CO2—CH2—CH 

CH3 

H 2(g) Pd/C 

H 0 ^ ( Q ^ C 0 2 -
CHoCHo 

J 

CH2—CH 

CH3 
Figure 5.12 Functional group protection method to synthesise (S)-(-) 2-methylbutyl 4-

hydroxybenzoate 
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5.2.5 Synthesis of (5)-(-) 2-Methylbutyl 4-(4-(10-(3-Cyclopentenylmethoxy) 

Decyloxy)Phenylcarbonyloxy)Benzoate 

The final esterificafion between 4-(10-(3-cyclopentenylmethoxy)decyloxy)benzoic 

acid and (S)-(-) 2-methylbutyl 4-hydroxybenzoate was carried out using 1,3-

dicyclohexylcarbodiimide (DCC) and 4-dimethylamino pyridine (DMAP) in 

dichloromethane.'"'"" The crude product was purified by silica gel column 

chromatography using 10%) ethyl acetate in hexane as eluent to give pure (S)-(-) 2-

methylbutyl 4-(4-(l 0-(3-cycIopentenylmethoxy)decyloxy) phenylcarbonyloxy) 

benzoate as white crystals in 5.8%) overall yield. 

f ^ C H 2 - 0 - f C H 2 V O ^ ^ ^ C 0 2 H + H O ^ ^ ^ C 0 2 - C H 2 - C H 

DCC/DMAP 

CH2CH3 

I 

CH3 

CH2Cl2/reflux 

CH' 

f ^ C H 2 - 0 - f C H 2 V 0 H ; ^ ^ C 0 2 - < ^ ^ C 0 2 - C H 2 - C H 

CH2CH3 

'CH 
I 

CH3 

Figure 5.13 Reacfion scheme for the synthesis o f (S)-(-) 2-methylbutyl 4-(4-(10-(3-

cyclopentenylmethoxy)decyloxy) phenylcarbonyloxy) benzoate 

5.3 Optical Micrographs of Mesogenic Monomer 

In order to identify the presence of any liquid crystalline phases, a thin layer sample o f 

the mesogenic monomer was viewed through a microscope using a linearly polarised 

light. The optical micrographs taken at room temperature and at various stages o f 

heafing are shown in figure 5.14 and 5.15. These micrographs indicates that upon 

heating the monomer the solid crystal changes directly to an isotropic liquid without 

any intermediate stage. This suggests that the mesogenic monomer is not a liquid 

crystalline material. However, i t is possible that after polymerisation the side chain 

mesogens might display liquid crystallinity even though the monomer does not.'" 
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Figure 5.14 Polarising optical micrographs of the mesogenic monomer taken at room 

temperature (magnification x20) 
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Figure 5.15 Polarising optical micrographs of the mesogenic monomer taken at (a) 

29°C (b) 30°C (c) 32°C and (d) during cooling (magnification x20) 
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5.4 E X P E R I M E N T A L 

A l l the chemicals were bought f rom Aldrich Chemical Co. Ltd. N ,N-

dimethylformamide (water <0.005%), lithium hydride, lithium aluminium hydride 

(95%), 1,10-dibromodecane (97%), tetrabutylammonium bromide (99%), methyl 4-

hydroxybenzoate (99%), (S)-(-) 2-methyl 1-butanol (99%), ;7-toluene sulfonic acid 

monohydrate (98.5%), 1,3-dicyclohexylcarbodiimide (99%) and 4-

dimethylaminopyridine (99%) were used as received. Dimethyl malonate and cis-1,4-

dichloro-2-butene were distilled prior to use. Diethyl ether was dried over sodium-

benzophenone until i t turned purple. 

5.4.1 Synthesis of Dimethyl 3-Cyclopeiitene 1,1-DicarboxyIate 

N,N-dimethylformamide ( l l i t re) and dimethyl malonate (89.0Ig, 0.67mol) were 

placed in a three necked round-bottom flask (21itre), fitted with a reflux condenser, 

nitrogen inlet and a Suba-seal. The apparatus was purged with dry nitrogen and the 

mixture was cooled in an ice bath. Lithium hydride (13.5g, 1.7mol, 2.5 equivalents) 

was then added to the stirred reaction mixture. After the evolution o f hydrogen ceased 

(approximately 2 hours), cz5-l,4-dichloro-2-butene (91.67g, 0.73mol, 8% excess) was 

added and the mixture was allowed to warm to room temperature. The reaction 

mixture was stirred for 88 hours at room temperature. The resulting mixture was then 

divided into two portions and 500ml o f water was added to each portion. After fizzing 

had subsided, each portion was extracted with 20% ether in hexane (4x200ml). The 

combined organic layer was washed with water (500ml) and brine (500ml). This was 

dried over anhydrous magnesium sulfate, filtered and the solvent was removed under 

vacuum to give dimethyl-3-cyclopentene-l,l-dicarboxylate as a white solid/powder 

(74.86g, 60.3%). A n analytical sample was obtained by sublimation. 

• Mpt. 55.6-60°C, after sublimation 62-63°C. 

• Elemental analysis-Calculated/Found(%): C-58.69/58.69; H-6.57/6.63 

• Mass spectrum-(EI): 184amu ( M ^ , 152 (M^-CH30H), 124 (M^-HCOOCHj) and 65 

(C3H3^). 

• IR-(cm"'): 3020 (vinylic C-H stretching), 2963 (saturated aliphatic C-H stretching), 

1725 (ester C = 0 stretching), 1438 (C-H deformation), 1255 (ester C-0 stretching) and 

703 (out-of-plane C-H deformations o f the cis-CH^CH double bond). 

105 



• nmr-(CDCl3) 6 (ppm): 3.03 (s, 4H, and H4), 3.74 (s, 6H, Hg and H9) and 5.64 

(s. H i and H2). 

• " C nmr-CCDClj) 5 (ppm): 40.95 (Cg and Cg), 52.85 (C3 and C4), 58.76 (C5), 127.80 

(C, and C2) and 172.66 (C^ and C7). 

3 6 8 
1 , . ^ ,C02CH3 

U 4 CO2CH3 

5.4.2 Synthesis of 3-Cyclopentene 1,1-Dicarboxylic Acid 

Dimethyl-3-cyclopentene-l,l-dicarboxylate (61.5g, 0.33mol) and 80% aqueous 

ethanol (650ml) were placed in a round-bottom flask (1 litre) fitted with a reflux 

condenser. Potassium hydroxide (26.2g, 0.47mol, 1.4 equivalents) was then added to 

the stirred reaction mixture. The mixture was stirred for 18 hours at 70-80°C and then 

concentrated by removing ethanol under reduced pressure. Water (400ml) was added 

and the mixture was washed with 20% ether in hexane (200ml). The resulting mixture 

was cooled in an ice bath. This was then acidified with concentrated sulfuric acid and 

extracted with ethyl acetate (3x200ml). The organic layer was dried over anhydrous 

magnesium sulfate, filtered and the solvent was removed under reduced pressure to 

give 3-cyclopentene 1,1-dicarboxylic acid as a whitish brown solid (52.2g, 0.33mol. 

100%). The material obtained was used as the starting material for the following step 

without fiarther purification since the diester was confirmed to be converted 

completely by JR. 

• IR-(cm"'): -3000 (broad/O-H stretching of carboxylic acid), 1713 (C=0 stretching 

of carboxylic acid), 1406 ( 0 - H deformation), 1292 (C-0 stretching of carboxylic 

acid), 932 ( 0 - H deformation) and 688 (out-of-plane C-H deformations of the cis-

CH=CH double bond). 

5.4.3 Synthesis of 3-Cyclopentenecarboxylic Acid 

3-Cyclopentene-1,1-dicarboxylic acid (63.46g, 0.41mol) was placed in a round-

bottom flask (250ml) fitted with a reflux condenser which was attached to a gas 

bubler. This was then heated in an oil bath to 180°C until the evolution of gas ceased 
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(VA hours). The residual oil was distilled under reduced pressure (68°C/<lmmHg) to 

give 3-cyclopentenecarboxylic acid as a colourless oil (27. Ig, 59.5%). 

• Elemental analysis-Calculated/Found(%): C-64.27/63.92; H-7.19/7.31 

• nmr-(CDCl3) 6 (ppm): 2.69 (d, 4H, H3 and H4), 3.16 (m, H5), 5.67 (s, H, and H,) 

and 11.90 (bs,H6). 

• " C nmr-(CDCl3) 5 (ppm): 36.23 (C3 and C4), 41.44 (Q), 128.93 (C, and C,) and 

183.08 (Q). 

COOH 

5.4.4 Synthesis of 4-Hydroxymethyl Cyclopentene 

Ether (90ml) was placed in a three necked round-bottom flask (250ml) fitted with a 

reflux condenser, pressure equalising dropping funnel and a nitrogen inlet and then 

lithium aluminium hydride (1.94g, O.OSmol, 1.5 equivalents) was added. 3-

Cyclopentenecarboxylic acid (5.1g, 0.045mol) in dry ether (20ml) was then slowly 

added to the mixture while stirring so as to maintain a gentle reflux. After the addition 

was completed, the reaction mixture was heated to reflux for two hours. The reaction 

mixture was then cooled in an ice-bath and excess LiAlH4 was quenched by dropwise 

addition of water (1ml) followed by 40% aqueous NaOH (5ml) under vigorous 

stirring over a period of 1-2 hours. The mixture was filtered and the filtrate was dried 

over anhydrous MgS04. The solvent was then removed under reduced pressure and 

the crude product was distilled under vacuum (70°C/1 l-12mmHg) to give 4-

hydroxymethyl cyclopentene (3.24g, 72.5%). 

• Elemental analysis-Calculated/Found(%): C-73.43/72.10; H-10.27/10.33 

• Mass spectrum-(EI): 98 amu ( M ^ , 80 (M^-H20) and 67 (M^-CHjOH). 

• nmr-(CDCl3) 5 (ppm): 2.05-2.20 and 2.35-2.55 (bm, 6H, H3, H4, H5 and 

Hg/hydroxy), 3.5 (d, 2H/ether, HJ and 5.65 (s, H, and Kj). 

• " C nmKCDClj ) 5 (ppm): 35.51 (C3 and C4), 39.15 (C5), 67.03 (Q) and 129.48 (C, 

and C2). 

3 

CH2OH 
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5,4.5 Synthesis of 10-Bromodecyl 3-Cyclopentenylmethyl Ether 

4-Hydroxymethyl cyclopentene (10.3g, 0.105mol), 1,10-dibromodecane (63,5g, 

211.6mmol, 2equivalents) and tetrabutylammonium bromide (17g, 52.7mmol, 0.5 

equivalents) were dissolved in cyclohexane (80ml) in a round bottom flask (250ml). 

Then 50% w/w aqueous sodium hydroxide (50.75g) solution was added and the 

resultant two-phase mixture was stirred vigorously at room temperature for 23 hours! 

The reaction mixture was then poured into water (180ml) and the organic layer was 

separated. The remaining aqueous layer was extracted with ether (3x100ml). The 

combined organic solution was washed with dilute hydrochloric acid (120ml) and 

water (100ml), dried over anhydrous magnesium sulfate and the solvent was removed 

to give a pale yellow crude oil. The excess dibromodecane in the crude product was 

removed by silica gel column chromatography using hexane as eluent. Once all the 

excess dibromodecane has been removed, the product was eluted using 5% ether in 

hexane as solvent. The resulting crude product was fractionally distilled under 

reduced pressure to yield 10-bromodecyl 3-cyclopentenylmethyl ether as a colourless 

liquid (12.24g, 38.6mmol, 36.7%). The 'H and '̂ C nmr characterisation of this 

compound was made with the aid of COSY and HETCOR spectra (appendix-5). 

. ' H nmr-(CDCl3) 6 (ppm): 1.20-1.43 (bm, 12H, H,. ,^ , 1.56 and 1.85 (bm's, 4H, Hg 

and H,5/cannot identify which one is which), 2.06-2.10 and 2.44-2.49 (bm, 2x2H, H3 

and H4), 2.55 (bm, H5), 3.31 (d, 2H, H^), 3.40 (t, 4H, H^ and H,^) and 5.65 (s, H, and 

H,). 

• " C nmr-(CDCl3) 5 (ppm): 26.13, 28.14, 28.72, 29.34, 29.40, 29.45, 29.64, 32.80 

(C8.,5), 34.04 (Cis), 35.98 (C3 and CJ, 36.66 (C5), 71.01 (C,), 75.22 (C^) and 129.49 

(C, and C2). 

C H 2 — o -
7-16 

-(CH2),-^Br 

108 



5.4.6 Synthesis of Methyl 4-(10-(3-Cyclopentenylmethoxy)Decyloxy)Benzoate 

Methyl 4-hydroxybenzoate (6g, 39.4mmol) and potassium carbonate (7.84g, 

56.7mmol, 1.5 equivalents) were dissolved in N,N-dimethylformamide (60ml) in a 

two neck round bottom flask (250ml) fitted wi th a reflux condenser coimected to a 

nitrogen inlet and a pressure equalising dropping funnel. The mixture was then heated 

to lOO^C. 10-bromodecyl 3-cyclopentenylmethyl ether (12g, 37.8mmol) was then 

added dropwise wi th stirring over a period o f 10 minutes. Five hours later more 

potassium carbonate (5.2g) was added. After stirring for further 17 hours, the reaction 

mixture was cooled and poured into water (300ml). This was extracted with ether 

(4x50ml), dried over anhydrous magnesium sulfate and solvent removed to yield 

methyl 4-(10-(3-cyclopentenylmethoxy)decyloxy)benzoate as brownish white crystals 

(15.42g, 39.68mmol). The crude product was hydrolysed without fiirther purification. 

5.4.7 Synthesis of 4-(10-(3-Cyclopentenylmethoxy)Decyloxy)Benzoic Acid 

Methyl 4-(10-(3-cyclopentenylmethoxy)decyloxy)benzoate (15.42g, 39.68mmol, 

crude), potassium hydroxide (6.7g, 119.4mmol, 3 equivalents) and 80% aqueous 

ethanol (200ml) were placed in a round bottom flask (500ml) fitted with a reflux 

condenser. This was refluxed with stirring for one hour. The reaction mixture was 

then cooled and ethanol was removed in the rotary evaporator and diluted with water 

(400ml). The mixture was acidified with concentrated hydrochloric acid and extracted 

with ether (4x100ml). After drying over anhydrous magnesium sulfate, the solvent 

was removed to yield the crude product as a white solid/powder. This was 

recrystallised f rom aqueous ethanol to yield 4-(10-(3-cyclopentenylmethoxy) 

decyloxy)benzoic acid as white crystals (11.16g, 29.8mmol, 78.8%). An analytical 

sample was obtained by ftjrther recrystallisation fi-om ethanol. The ' H and '^C nmr 

characterisation o f this compound was made with the aid o f COSY, HETCOR and 

DEPT spectra (appendix-5). 

• Mpt: 73-74°C. 

• Elemental analysis-Calculated/Found(%): C-73.76/73.52; H-9.15/9.18 

• Mass spectrum-(CI): 374 amu ( M ^ , 357, 277 

109 



• IR-(cm-'): -3475 (O-H stretching o f carboxylic acid), 2920 and 2852 (saturated 

aliphatic C-H stretchings), 1678 (C=0 stretching o f carboxylic acid), 1605 and 1514 

(benzene ring), 940 ( 0 - H deformation) and 846 (/?-disubstituted benzene ring). 

• ' H nmr-(CDCl3) 6 (ppm): 1.30 (bs, lOH, H^-H.j), 1.45 (bm, 2H, H,4), 1.57 (bm, 2H, 

Hg), 1.80 (bm, 2H, H, , ) , 2.06-2.10 and 2.40-2.50 (bm, 2x2H, H3 and H4), 2.55 (bm, 

H5), 3.31 (d, 2H, H,) , 3.41 (t, 2H, H,) , 4.01 (t, 2H, H.^), 5.64 (s, H , and H2), 6.93 (d, 

H,8 and H,,) and 8.06 (d, H20 and Hj , ) -

• " C nmr-(CDC13) 5 (ppm): 25.96, 26.16, 29.08, 29.33, 29,45, 29.48, 29.51 and 

29.65 (C8.,5), 36.01 (C3 and C4), 36.66 (C^), 68.26 (C„) , 71.06 (C,), 75.25 (C^), 114.16 

(C,3 and C19), 121.39 (C22), 129.52 (C, and C2), 132.30 (C20 and C2,), 163.63 (C,^) and 

171.65 (C23). 

18 20 

5 i . . ^ , Z - ' f . ^ 1 7 / P ^ \ 2 2 23 
C H 2 — O — ( C H 2 ) i - r O - H ( ) ^ C 0 2 H 

19 21 

5.4.8 Synthesis of (5)-(-) 2-MethyIbutyl 4-Hydroxybenzoate 

4-Hydroxybenzoic acid (7.83g, 56.6mmol), (S)-(-) 2-methyl 1-butanol (10.37g, 

117.6mmol, 2 equivalents), p-toluene sulfonic acid monohydrate (0.5g, 2.63mmol, 

5%) and benzene (60ml) were placed in a round bottom flask (100ml) fitted with a 

Dean-Stark apparatus. This was then refluxed until the calculated amount o f water 

was collected. The reaction mixture was then diluted with ether (40ml) and washed 

with 5% aqueous sodium bicarbonate (22ml) and water (25ml). After removing the 

solvent, the excess (S)-(-) 2-methyl 1-butanol was removed on the vacuum line, to 

give (S)-(-) 2^methylbutyl 4-hydroxybenzoate as a pale pink viscous liquid (9.84g, 

47.25mmol, 83.5%). This was used in the following step without any ftirther 

purification. The ' H and '^C nmr characterisation o f this compound was made with the 

aid o f COSY and HETCOR spectra (appendix-5). 

• IR-(cm"'): 3445 (broad/phenolic O-H stretching), 2963 and 2877 (saturated aliphatic 

C-H stretching), 1682 (ester C = 0 stretching), 1608 and 1514 (benzene ring) and 851 

(p-disubstituted benzene ring). 
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. ' H nmr-(CDCl3) 5 (ppm): 0.94 (t, 3H, H,) , 1.01 (d, 3H, H4), 1.27 and 1.52 (m, 2H, 

H2), 1.84 (m, H3), 4.09-4.22 (m, 2H, H5) 6.93 (d, H,o and H „ ) , 7.95 (d, H, and Hg) and 

7.6 (bs, H,2). 

. " C nmr-(CDCl3) 6 (ppm): 11.30 (C,), 16.52 (C4), 26.14 (C2), 34.30 (C3), 69.72 (C5), 

115.38 (Cio and C „ ) , 122 17 (C7), 131.92 (C^and C,) 160.71 (0,2) and 167.51 (C^). 

2 1 
10 8 (:h2-ch3 

6 5 
'2—Ch2 H O ^ ( ) >^C0o—CHo—C-H 

5.4.9 Synthesis of (5)-(-) 2-Methylbutyl 4-(4-(10-(3-Cyclopentenylmethoxy) 

Decyloxy)Phenylcarbonyloxy)Benzoate 

4-(10-(3-cyclopentenylmethoxy)decyloxy)benzoic acid (5g, 13.35mmol), (S)-(-) 2-

methylbutyl 4-hydroxybenzoate (3.06g, 14.7nimol, 1.1 equivalents), DCC (3.58g, 

17.35mmol, 1.3 equivalents) and D M A P (0.24g, 2mmol, 15%) were dissolved in 

dichloromethane (100ml) in a two-neck round bottom flask fitted with a reflux 

condenser attached to a nitrogen inlet. This was heated under reflux with stirring for 

68 hours. The reaction mixture was then cooled in the freezer for half an hour and the 

precipitate was filtered fi-om the solution. The solution was then washed with dilute 

hydrochloric acid (1x5 0ml), saturated sodium bicarbonate (1x5 0ml) and water 

(1x100ml). This was dried over anhydrous magnesium sulfate and solvent removed to 

yield the crude product as a pink colour viscous liquid. This was purified by silica gel 

column chromatography using 10% ethyl acetate in hexane as eluent to yield (5)-(-) 2-

methylbutyl 4-(4-(l 0-(3-cyclopentenylmethoxy)decyloxy) phenylcarbonyloxy) 

benzoate as a white solid (5.80g, 10.27mmol, 77%). The ' H and '^C nmr 

characterisation o f this compound was made with the aid o f COSY, HETCOR and 

DEPT spectra (appendix-5). 

• Mpt: 33-34°C. 

• Elemental analysis-Calculated/Found(%): C-74.44/74.33; H-8.57/8.69 

• IR-(cm"'): 2927 and 2850 (saturated aliphatic C-H stretchings), 1715 (ester C=0 

stretching), 1605 and 1512 (benzene rings) and 846 (p-disubstituted benzene ring). 
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• ' H nmr-(CDC13) 5 (ppm): 0.96 (t, 3H, H34), 1.01 (d, 3H, H35), 1.31 (bs, I I H , i.e. 

lOH due to H9.13 and I H due to overlapping of H33), 1.42-1.62 (bm, 5H, i.e. 4H due to 

Hg and H,4 and I H due to overlapping of H33), 1.82 (bm, 3H, H,5 and H32), 2.06-2.11 

and 2.40-2.50 (bm, 2x2H, H3 and H4), 2.55 (bm, H5), 3.31 (d, 2H, H^), 3.41 (t, 2H, 

H7), 4.04 (t, 2H UJ, 4.10-4.24 (bm, 2H, H3,), 5.65 (s, H, and H2), 6.96 (d, H.g and 

H,,), 7.27 (d, H25 and H2,), 8.12 (t, H20.2, and H,,.,,). 

• "C nmr-(CDCl3) 5 (ppm): 11.31 (C34), 16.54 (C35), 25.97, 26.15, 26.18, 29.07, 

29.34, 29.46, 29.48, 29.51, 29.68 (Cg.,; and C33), 34.31 (C32), 36.01 (C3 and C4), 36.69 

(C5), 68.34 (C,a 69.63 (C3,), 71.04 (Q), 75.25 (C,), 114.36 (C.g and C„), 121.03 

(C22), 121.81 (C25 and C 2 6 ) , 127.93 ( C 2 9 ) , 129.52 (C, and C2), 131.10 (C27 and C 2 8 ) , 

132.37 (C20 and C21), 154.71 (C24), 163.73 (C,^), 164.40 (C23) and 165.97 (C30). 

18 20 25 27 
33 34 
CH2~CH3 

4 19 21 26 28 35_ 
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C H A P T E R - 6 

T H E A T T E M P T E D S Y N T H E S I S O F S I D E - C H A I N L I Q U I D 

C R Y S T A L L I N E P O L Y M E R S 



6.1 I N T R O D U C T I O N 

This chapter describes the attempted synthesis of side chain liquid crystalline 

polymers via l iving ring opening metathesis polymerisation. The fianctionalised 

cyclopentene monomer, (5)-(-) 2-methylbutyl 4-(4-(10-(3-cyclopentenylmethoxy) 

decyloxy)phenylcarbonyloxy)benzoate (mesogenic monomer) shown in figure 6.1 

was subjected to polymerisation attempts using Schrock molybdenum and Grubbs 

ruthenium well defined metathesis initiators to produce a side chain liquid crystalline 

polymer with a flexible backbone chain. 

Figure 6.1 The structure o f the mesogenic monomer 

CHoCHo 
J 
OH 

I 
CH3 

6.2 Polymerisation of Mesogenic Monomer 

Recent advances in the synthesis o f well defined metathesis initiators, some of which 

also tolerate various fiinctional groups has enabled the synthesis of polymers with a 

variety o f functional groups to be carried out by ring opening metathesis 

polymerisation. As discussed earlier in chapter-1, side chain liquid crystalline 

polymers are generally produced by free radical polymerisation, condensation 

polymerisation or by modifying a preformed polymeric backbone. However, these 

methods o f polymerisations lack control over molecular weight and molecular weight 

distribution. Therefore the objective o f the work described here was to synthesise well 

defined side chain liquid crystalline polymers by living ring opening metathesis 

polymerisation. Schrock et at.'^'^'** and Grubbs et a/.''" have reported the synthesis of 

well defined side chain liquid crystalline polymers with polynorbomene and 

polybutadiene backbones by living ring opening metathesis polymerisation. The work 

reported here involves polymerisation o f a cyclopentene based mesogenic monomer 

(figure 6.1). A n outline o f the polymerisafion process is shown in figure 6.2. 
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y'^ R* R 

PhCHO 

CH2CH3 

R* = - 0 Hg-O-f C H g ^ O — ( ^ ^ ) — 0 0 2 — ( ^ ^ C O 2 - C H 2 - C H 
C H 3 

Figure 6.2 The outline o f the proposed polymerisation o f mesogenic monomer 

As discussed in section 1.2.7, AG of polymerisation o f monomers with low ring strain, 

such as 5, 6 and 7 membered rings, is sensitive to chemical factors such as the nature 

o f the substituents and their position in the ring.^'' Since the work reported here 

involves ring opening metathesis polymerisation of a substituted cyclopentene which 

also has a very low ring strain, it was necessary to analyse some of the previous work 

involving polymerisation of cyclopentene and substituted cyclopentenes by well 

defined metathesis catalysts in order to gain some insight into the types of catalysts 

and reaction conditions required to polymerise the mesogenic monomer. 

Previous work involving the polymerisation o f cyclopentene and substituted 

cyclopentene using well defined initiators has been carried out by Suguwara,'"*" 

Dounis,'"^ Schrock and co-workers.'''''''''^ Suguwara polymerised cyclopentene using 

Mo(N-2,6-/-Pr2-C6H3)(OCMe3)2(CHCMe3); (t-butoxy-Mo or Mo-t-Bu), Mo(N-2,6-/-

Pr2-C6H3)(OCMe2CF3)2(CHCMe3); (trifluorinated t-butoxy-Mo or M0-F3) and W(N-

2,6-/-Pr2-C6H3)(OCMe3)2(CHCMe3); (t-butoxy-W or W-t-Bu) initiators."' The 

trifluorinated t-butoxy-Mo initiator polymerised cyclopentene much faster than t-

butoxy-Mo initiator. On the other hand t-butoxy-W initiator produced bimodal 

distribution in all cases. The effect o f solvent on polymerisation was also investigated. 

The polymerisation seemed to proceed faster in toluene than in chloroform, and in the 
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case o f THF, the polymerisation was very slow and produced bimodal polymer 

distribution. Overall chloroform was found to be the best solvent. Since the polymers 

produced using trifluoro t-butoxy-Mo and t-butoxy-Mo initiators had polydispersities 

around two under all conditions, Suguwara concluded that these polymerisations 

proceed in a classical chain growth manner rather than through a living well defined 

process. Although the t-butoxy-W initiator produced bimodal distribution, it had a 

narrow molecular weight distribution polymer as the major component and thus it was 

concluded that this initiator led to a well defined living polymerisation process, with a 

side reaction leading to the minor product. 

Contrary to these observations, Schrock and co-workers polymerised cyclopentene in 

toluene at -40''C using t-butoxy-W initiator to give narrow distribution mono-modal 

polymer.'"'*'''*^ They also observed the replacement o f the nmr signal o f the initiator 

alkylidene by that o f the propagating alkylidene. Therefore, they concluded that this 

reaction proceeds in a living manner. Similar results were also obtained by Dounis 

when he polymerised cyclopentene using t-butoxy-W initiator.'''^ Again the polymer 

produced were mono-modal and showed narrow molecular weight distribution 

indicating a l iving polymerisation process. These discrepancies may indicate some 

problem with the quality o f W-initiator available to Suguwara. 

Suguwara also polymerised 4-methylcyclopentene."'^ In this case neither the t-butoxy-

M o nor t-butoxy-W were able to polymerise 4-methylcyclopentene even though they 

polymerised cyclopentene. The trifluorinated t-butoxy-Mo initiator polymerised 4-

methylcyclopentene, but the reaction was very slow (20%> yield at -55°C after 4 

hours). However, Mo(N-2,6-/-Pr2-C6H3)[OCMe(CF3)2]2(CHCMe2Ph); (hexafluorinated 

t-butoxy-Mo or Mo-Fg) initiator polymerised 4-methylcyclopentene significantly 

faster (51%o yield at -55''C in 15 minutes). These results suggests that the 

polymerisation o f 4-methylcyclopentene is thermodynamically much less favourable 

than that o f cyclopentene. Also, all the polymers produced showed polydispersities 

around 2, and thus he concluded that these polymerisations proceeds via a classical 

chain growth manner rather than a well defined living process, as was observed for the 

polymerisation o f cyclopentene using molybdenum centered initiators. 

On the basis o f above results for the polymerisation o f cyclopentene and 4-

methylcyclopentene, it was decided to use trifluoro and hexafluoro t-butoxy-Mo 
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initiator to polymerise the cyclopentene based mesogenic monomer in chloroform as 

solvent. However, in one instance, Grubbs ruthenium based well defined initiator, 

RuCl2[(C6H,,)3P]2(CHPh) was also used in an attempt to polymerise this cyclopentene 

based mesogenic monomer. Different types of well defined initiators used in an 

attempt to polymerise this monomer are shown in figure 6.3. As discussed earlier in 

chapter-1, low reaction temperature and high monomer concentration work in favour 

of polymerisation of less strained monomers, such as 5,6 and 7 membered 

cycloalkenes. Therefore all polymerisations were carried out at low temperature (-

55°C) and high initial monomer concentration. 

C H 3 — C — O — M o = C 
Mo(N-2,6-/-Pr2-C6H3)(OCMe2CF3)2(CHCMe3) 

(trifluorinated t-butoxy-Mo or M0-F3) 

n 
CH3 ^ ^CMesPh 

CF3 C O Mo 0 Mo(N-2,6-/-Pr2-C6H3)[OCMe(CF3)2]2(CHCMe2Ph) 
CF3 9 H 

I (hexafluorinated t-butoxy-Mo or Mo-FJ 
CH3 C CF3 

C F 3 

Ck I RuCl2[(C,H„)3P]2(CHPh) 

PCya 

Figure 6.3 Types of well defined metathesis initiators used for the polymerisation 
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In a typical polymerisation, the monomer, initiator and the terminating reagent 

(benzaldehyde or ethyl vinyl ether) were dissolved in chloroform (approximately 

0.5ml each) in separate sample vials and transferred into separate ampules. These 

were then cooled to the required temperature in the cooling bath. Then the monomer 

solution was cannular transferred imder a positive nitrogen pressure into initiator 

solution. After stirring the mixture for the prescribed period, the terminating reagent 

was added to quench the ' l iving polymer'. The mixture was stirred for about an hour 

and then allowed to warm to room temperature. The solution was then added drop-

wise to excess methanol (10-fold excess) to precipitate and recover any polymer that 

may have formed. In some cases, in order to maximise the initial monomer 

concentration, the solvent in the initiator solution was removed under vacuum before 

adding the monomer solution. In the case o f copolymerisation involving cyclopentene 

and the mesogenic monomer, both were dissolved together in chloroform and added 

to the initiator solution. 

6.3 Results of Attempted Polymerisation 

The results o f all the polymerisation reactions are given in table 6.1 below. 

No. Monomer Initiator [ M ] / [ l ] 

Ratio^ 

Solvent Temp. 

CQ 
Duration Comments 

1 mesogen* M0-F3 41 CHCI3 -55 22 hrs. no polymer 

2 mesogen* Mo-Fg 40 CHCI3 -55 24 hrs. no polymer 

3 4-methyl-

cyclopentene 

Mo-Fg 475 CHCI3 -55 35 mins. Polymer 

4 mesogen* Mo-Ffi 41 CH2CI2 -90 1 hr. no polymer 

5 mesogen* Mo-Fg 42 CHCI3 -55 1 hr. no polymer 

6 cyclopentene 

/mesogen* 

Mo-Ffi 233/60 CHCI3 -55 5 hrs. no 

copolymer 

7 mesogen* Ru CH2CI2 -50 1 hr. no polymer 

monomer to initiator molar ratio % only cyclopentene polymerises, see text 

mesogenic monomer 

Table 6.1 Results o f the attempted polymerisation o f the mesogenic monomer 
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• Reactions No. 1 and 2 

Initially, trifluoro t-butoxy-Mo initiator was used in an attempt to polymerise the 

mesogenic monomer in chloroform at -55°C (reaction-1). However, even after 22 

hours, no polymer was formed. Therefore the reaction was repeated under the same 

conditions using hexafluoro t-butoxy-Mo initiator (reaction-2). Again no polymer was 

formed even after 24 hours. The ' H nmr spectra (appendix-6) o f both polymerisation 

mixtures after passing through a column of neutral alumina to remove the residual 

initiator showed the presence of olefinic protons o f cyclopentene indicating that no 

polymerisation has taken place. 

• Reaction No. 3 

In order to rule out that non-polymerisability o f the mesogenic monomer is due to 

impurities in the solvent or the ineffectiveness o f the experimental procedures, a 

sample o f 4-methylcyclopentene was subjected to polymerisation following the work 

o f Suguwara.'"^ As expected, the polymerisation worked and the polymer produced 

showed a narrow molecular weight distribution (Mn=280,600; PDI=1.47). The GPC 

trace o f this polymer is shown in figure 6.4. Thus, this reaction confirmed the 

effectiveness o f the experimental procedures and the purity o f solvents used in the 

polymerisation. 

Mh = 280,600 
P D I = 1.47 

10.00 15.00 
Retention time (minutes) 

20.00 

Figure 6.4 The GPC trace of poly(4-methylcyclopentene) 
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• Reaction No. 4 

The polymerisation o f less strained monomers are favoured by lower temperatures. 

Therefore the polymerisation o f the mesogenic monomer was attempted at -90°C 

instead o f -55°C. In this case the solvent was changed from chloroform to 

dichloromethane since chloroform freezes at -64°C. However, due to very high 

concentration o f the polymerisation mixture, it tends to freeze at this temperature and 

thus the reaction was unsuccessful and no polymer was formed. 

• Reaction No. 5 

Since the polymerisation o f less strained monomers are also favoured by very high 

monomer concentration, the mesogenic monomer was again subjected to 

polymerisation using hexafluoro t-butoxy-Mo initiator at -55°C in chloroform. In this 

case in order to increase the initial monomer concentration, the solvent used to 

dissolve the initiator was completely removed under vacuum before adding the 

monomer solution to the initiator solution. In this way a very high initial monomer 

concentration was achieved. However, no polymer was formed after allowing the 

polymerisation reaction to proceed for an hour. 

• Reaction No. 6 

A l l attempts to homopolymerise the mesogenic monomer using trifluoro and 

hexafluoro molybdenum initiator failed. Therefore copolymerisation of the mesogenic 

monomer with cyclopentene was attempted using hexafluoro t-butoxy-Mo initiator to 

see whether the propagating alkylidene resulting with the reaction of cyclopentene 

initiates the polymerisation o f the mesogenic monomer. 

The GPC trace o f the polymer recovered after precipitation showed two peaks (figure 

6.5); one corresponding to the high molecular weight polymer and another with the 

same retention time as mesogenic monomer. After a single reprecipitation (from THF 

into methanol), the GPC trace showed only one peak, that o f the high molecular 

weight polymer. The '^C and ' H spectra of the reprecipitated polymer sample 

confirmed that it was poly(pentenylene). However, ' H and '^C nmr spectra of the 

reprecipitated polymer showed some signals (very low in intensity) corresponding to 

the mesogenic monomer. Therefore in order to check whether this is due to traces of 
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the unreacted mesogenic monomer, the polymer sample was again reprecipitated. 

Even after the second reprecipitation, the signals corresponding to the mesogenic 

monomer remained unchanged. Al l the '̂ C and 'H nmr spectra are given in appendix-

6. The 'H nmr spectrum (figure 6.7) of the polymer sample after 2 reprecipitation 

cycles clearly shows signals due to benzene rings of the mesogenic monomer (6.96, 

7.27 and 8.12ppm), methylene protons next to ether oxygens (3.31, 3.41, 4.04 and 

4.10-4.24ppm) and methyl groups (0.96 and l.Olppm). However, signals 

corresponding to the vinylic (5.65ppm), methylene (2.06-2.11 and 2.40-2.50ppm) and 

methine (2.55ppm) protons of the cyclopentene ring are missing (compare the 'H nmr 

spectra in figure 6.6 and 6.7). This suggests that a very small proportion of the 

mesogenic monomer might have been incorporated into the poly(pentenylene) 

polymer chain. One possible explanation is that initially the hexafluoro-Mo initiator 

initiates the polymerisation of cyclopentene. The resulting new propagating alkylidene 

then reacts with the mesogenic monomer and after inserting a single monomer unit 

into the growing poly(pentenylene) chain, the polymerisation stops due to the 

inactivity of the new propagating alkylidene unit leaving bulk of the mesogenic 

monomer unreacted. This leads to an unreacted mesogenic monomer peak in the GPC 

trace which upon reprecipitation disappears. 

polymer 
After reprecipitation 

Q 

polymer 
Before reprecipitation 

unreacted mesogenic 
monomer 

15.00 20.00 25.00 
Retention time (minutes) 

Figure 6.5 The GPC traces of copolymerisation reaction between cyclopentene and 

the mesogenic monomer 
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CH2~CH3 

J L I J l ib 
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Figure 6.6 The 'H nmr spectrum of the mesogenic monomer 

vinylic «nylic methylene 
H H H H 

allylic 

benzene rings 
(8CH) 

CHCI, 

H H H H 
allylic 

Poly(pentenylene) 

methylene next to 
ether oxygen 
(4CHj) r*" r -

methylene 

methyl 
(2CH3) 

J i 
M ' ' ' ' I 

7 6 
1 i i [ T" 

- | — 1 — i — 1 — i — 1 — r -
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Figure 6.7 The 'H nmr spectrum of the polymer prepared by copolymerising 

cyclopentene and the mesogenic monomer after 2 reprecipitation cycles. 
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• Reaction No. 7 

As a final attempt to homopolymerise this monomer, the well defined Grubbs 

ruthenium initiator was used. The colour of the polymerisation mixture remained 

purple throughout the polymerisation indicating that the initiator is living. Only after 

adding the terminating reagent ethyl vinyl ether, the colour gradually changes to 

orange colour. However, again no polymer was formed. 

Therefore all attempts to polymerise the mesogenic monomer using trifluoro- and 

hexafluoro t-butoxy-Mo initiator and ruthenium initiator failed. Al l these results 

suggests that the polymerisation of the mesogenic monomer is thermodynamically not 

favourable. Also the type of substituent and its position in the ring may have 

contributed to this effect. 
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6.4 E X P E R I M E N T A L 

Cyclopentene, chloroform (99.9+% HPLC grade), calcium hydride, benzaldehyde, 

neutral alumina were purchased from Aldrich Chemical Co. Ltd. Dichloromethane 

and phosphorous pentoxide were bought from BDH Chemicals. The ring opening 

metathesis initiator Mo(N-2,6-/-Pr2C6H3)(OCMe2CF3)2(CHCMe3) was prepared by Dr. 

Ezat Khosravi in the IRC laboratories and Mo(N-2,6-/-Pr2C6H3) 

[OCMe(CF3)2]2(CHCMe2Ph) was bought from Strem Chemicals Inc. The 

RuCl2[(C6H,,)3P]2(CHPh) metathesis initiator was prepared by Dr. David Snowden at 

IRC laboratories. He also provided the terminating reagent ethyl vinyl ether. 4-

Methylcyclopentene was previously prepared and purified by Dr. K. G. Suguwara. 

Chloroform was dried and degassed over phosphorous pentoxide and vacuum 

transferred into ampules. Cyclopentene was distilled under atmospheric pressure (bpt. 

44°C), dried and degassed over calcium hydride and vacuum transferred into ampules. 

Dichloromethane was purified as described below. Neutral alumina was dried at 

200°C in the vacuum oven overnight. The solvents for polymerisation were passed 

through a short column (approximately 10cm) of oven dried neutral alumina before 

use. Benzaldehyde was purified as described earlier in chapter-4. The solutions of 

initiator, monomer and terminating reagent were prepared in an inert atmosphere (dry 

nitrogen) filled glove box. The polymerisation reactions were carried out under 

nitrogen using a conventional vacuum line and in a special cooling bath or in 

acetone/dryice, acetone/liquid air bath. The ampules used in these polymerisation 

reactions were specially designed so as to have a long neck (approximately 15cm) and 

only the base of the ampule containing the polymerisation mixture was immersed in 

the coolant. This was necessary in order to prevent any air leaks due to shrinkage of 

P.T.F.E. Youngs taps at very low temperatures. 

6.4.1 Purification of Dichloromethane 

In a separating funnel dichloromethane (200ml) was first washed with concentrated 

sulfuric acid (3 x 30ml) followed by de-ionised water (1 x 50ml), saturated sodium 

bicarbonate (1 x 30ml) and again with de-ionised water (1 x 50ml). This was initially 

dried over calcium chloride overnight, filtered and fiarther dried and degassed over 

calcium hydride and vacuum transferred into ampules. 
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6.4.2 A Typical Polymerisation 

A typical example of the procedures adopted for the polymerisation of the mesogenic 

monomer and 4-methylcyclopentene is described below. 

The initiator Mo(N-2,6-/-Pr2C6H3)(CHCMe2Ph)[OCMe(CF3)2]2 (17.8mg, 0.023mmol) 

was dissolved in chloroform (0.5ml) in a sample vial and transferred into an ampule. 

The mesogenic monomer (793.4mg, 1.405mmol, 60 equivalents) and cyclopentene 

(370mg, 5.432mmol, 233 equivalents) were dissolved together in chloroform (1ml) in 

a sample vial and transferred into another ampule. Similarly, benzaldehyde 

(approximately 200mg) was dissolved in chloroform and placed in a separate ampule. 

The solvent used to dissolve the initiator was then removed fi-om the ampule under 

vacuum. Al l 3 ampules were then placed in the cooling bath and cooled to -55°C. At 

the same time the ampules were coimected separately to the vacuum line while they 

are still closed with Youngs taps and evacuated. The Youngs taps were then opened 

under a positive nitrogen pressure and replaced with Suba seal caps. Then the 

monomer solution was cannular transferred into the initiator ampule under nitrogen 

pressure. The reaction mixture was stirred for 5 hours and terminated with 

benzaldehyde by cannular transferring the benzaldehyde solution under nitrogen 

pressure into the ampule containing the polymerisation mixture. After stirring for 

about 1/4 hours, the polymerisation mixture was allowed to warm to room 

temperature. Finally, the polymerisation mixture was added drop wise into methanol 

(10-fold excess). The precipitated polymer was filtered and dried in the vacuum oven 

at room temperature overnight. 

In the case of polymerisation reactions 1 and 2 (table 6.1) where no polymer was 

formed, the polymerisation mixture in methanol was passed through a short column 

(4cm) of oven dried neutral alumina to remove bulk of the residual initiator and the 

eluted solution was concentrated and analysed by 'H nmr (appendix-6) for any signs 

of polymerisation. 
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CHAPTER-7 

CONCLUSIONS AND PROPOSALS FOR FUTURE WORK 



7.1 CONCLUSIONS 

7.1.1 Ring Opening Metathesis Polymerisation of Macromonomers to Produce 

Graft Copolymers 

The work described in this thesis indicates that well defined poly(norbomene-g-

styrene) graft copolymers can be prepared by living ring opening metathesis 

polymerisation of well defined exo-5-norbomene-2-(polystyrylcarboxylate) 

macromonomers, synthesised by living anionic polymerisation. Since both 

macromonomer synthesis and polymerisation of macromonomers to produce graft 

copolymers involve living polymerisation techniques, the above procedure allows 

control over molecular weight and molecular weight distribution of both the graft 

chains and the backbone chains and the graft density. The initiation and propagation 

steps of ring opening metathesis polymerisation of macromonomers can be followed 

by 'H nmr spectroscopy which confirms that the polymerisation is living. The nmr 

scale polymerisations indicate that for this system the rate of propagation is faster than 

the rate of initiation. Since there is only one polystyrene graft attached to the 

norbomene unit, steric hindrance at the growing chain end can be significantly 

reduced by head/tail addition. This in turn allows preparation of very high molecular 

weight graft copolymers having longer polynorbomene backbone chains and 

relatively long polystyrene grafts than the di-substituted macromonomers investigated 

previously. Polymerisation of macromonomers at different macromonomer to initiator 

molar ratio indicates that beyond a threshold value of macromonomer to initiator 

molar ratio, these polymerisations stop before complete consumption of 

macromonomers, due to steric hindrance at the growing chain end. However, the 

threshold value of macromonomer to initiator molar ratio at which the polymerisation 

stops before complete consumption of macromonomers for these systems is 

significantly higher than that for di-substituted macromonomers with similar amount 

of styrene units in the polystyrene graft. Similarly, the results also indicates that there 

is a relationship between the polystyrene graft length and the polynorbomene 

backbone chain length. Thus, macromonomers having shorter polystyrene grafts allow 

production of graft copolymers having long polynorbomene backbones and vice 

versa. The broadening of molecular weight distribution of graft copolymers prepared 

at very high macromonomer to initiator molar ratios could be due to a combination of 
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mixing efficiency effects and the faster rate of propagation than initiation. DSC 

analysis of these graft copolymers indicate that polynorbomene and polystyrene 

segments do not undergo phase segregation. Also the Tg process observed seems to be 

primarily associated with polystyrene grafts in these systems. 

7.1.2 Attempted Synthesis of Side Chain Liquid Crystalline Polymers by Ring 

Opening Metathesis Polymerisation 

The potentially mesogenic monomer, (5)-(-)-2-methylbutyl-4-(4-(10-(3-

cyclopentenylmethoxy) decyloxy) phenylcarbonyloxy) benzoate was successfiilly 

prepared. Although the monomer did not exhibit any mesophases, it was expected to 

exhibit liquid crystallinity upon polymerisation. However, all attempts to polymerise 

this monomer using Schrock molybdenum and Grubbs ruthenium well defined 

initiators failed. The lower ring strain associated with cyclopentene ring, the type of 

substituent attached to the ring and the position of the substituent on the ring could all 

have contributed to the non-polymerisability of this monomer. 

7.2 PROPOSALS FOR FUTURE WORK 

The work described in this thesis involved synthesising well defined graft copolymers 

with polynorbomene backbone chain and polystyrene grafts. This work illustrated that 

coupled living anionic and living ring opening metathesis polymerisation allows to 

synthesise well defined graft copolymers with control over molecular weight and 

molecular weight distribution of graft and backbone chains, and graft density. Thus 

this synthetic route has the potential to prepare a variety of well defined graft 

copolymers with different combinations of backbone and graft chains. This can be 

achieved by changing the type of monomer and the capping reagent/fiinctionalised 

initiator used in anionic polymerisation to produce a ring open polymerisable 

macromonomer. Thus it would be worth exploring the potential of this synthetic route 

to prepare well defined graft copolymers with polyethylene backbone chains and 

polystyrene or polyethylene oxide grafts. This requires synthesising polystyrene or 

polyethylene oxide macromonomers with a mono-cyclic alkene such as cyclobutene 

or cyclooctene as the ring open polymerisable ftanctional group. These 

macromonomers can either be prepared by end capping living polystyrene or 
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polyethylene oxide or by employing a functionalised anionic initiator (figure 7.1). The 

subsequent living ring opening metathesis polymerisation of these macromonomers 

should yield the graft copolymer with a poly(alkenamer) backbone chain. 

Hydrogenation of this graft copolymer should yield the desired well defined 

poly(ethylene-^-styrene) or poly(ethylene-g-ethylene oxide) graft copolymers. Since 

macromonomers with a range of ring open polymerisable mono-cyclic rings 

(cyclobutene, cyclooctene etc.) can be prepared, this procedure also allows control of 

the graft density along the graft copolymer backbone chain. The graft copolymers 

described in this thesis were synthesised employing Shrocks molybdenum initiators, 

namely Mo(N-2,6-i-Pr2-C6H3)(OCMe3)2(CHR) where R is either CMe3 or CMe2Ph. 

However, it would be worth attempting to ring open polymerise these 

macromonomers using Grubbs ruthenium initiator RuCl[(C6H,|)3P]2(CHPh), due to its 

greater tolerance towards ftanctional groups, lower cost and tolerance towards 

moisture. 

R = CH2CI and CO2CI (as an end capping reagent) or 

CH2Li/K (as a functionalised initiator) 

Figure 7.1 Functionalised cyclobutenes and cyclooctenes that could be used to 

synthesise ring open polymerisable macromonomers 

In the case of the attempted side chain liquid crystalline polymer synthesis, the 

primary objective to use a cyclopentene ring as the ring open polymerisable unit was 

to produce a side chain liquid crystalline polymer with a low Tg hydrocarbon 

backbone chain. Although cyclopentene based mesogenic monomer can not be ring 

open polymerised, the desired objective could be achieved by substituting 

cyclopentene with cyclobutene or cyclooctene to give a flexible, low Tg hydrocarbon 

polymer backbone. 
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APPEN D IX ! 

GENERAL PROCEDURES, EQUIPMENT AND 

INSTRUMENTATION 



G E N E R A L E X P E R I M E N T A L PROCEDURES 

The glove boxes used throughout this work were either the modified Miller Howe dry 

box or MBraun MB 150B-G dry box. Both were fitted with freezers (-20 to -40°C). 

The inert gas was oxygen-free nitrogen and the working conditions were 2-6 ppm 

oxygen and 5-7 ppm water in the former and <lppm oxygen and water in the latter. 

Apparatus was transferred in and out of the box via vacuum/nitrogen ports. 

The vacuum/nitrogen lines were fitted with Yoimgs valves and greaseless joints to 

allow handling of materials either under nitrogen or under vacuum. Dry oxygen-free 

nitrogen was supplied through a gas bubbler (silicone oil) and either a molecular sieve 

or P2O5 column. Vacuum was provided by an Edwards silicone oil diffusion pump 

(63mm) connected to an Edwards 5 two stage backing pump for anionic 

polymerisation work and for all other work Edwards 5 two stage pump was used. 

The thermostated cooling bath used for the polymerisation of mesogenic monomer 

was a HAAKE F3-Q model and the cooling fluid was silicone oil (sil. 100, 60°C to -

75°C). 

INSTRUMENTATION AND PROCEDURES FOR MEASUREMENTS 

• NMR- 'H, '^C, COSY, HETCOR and DEPT spectra were recorded either on a 

Varian VXR 400 nmr spectrometer at 399.953 MHz ('H) and 100.577 MHz ('^C) or 

Varian Gemini nmr spectrometer at 199.532 MHz ('H) and 50.289 MHz (''C). 

Deuterated chloroform or deuterated benzene was used as solvent. Al l the nmr spectra 

given in this thesis were recorded at 399.953 MHz ('H) and 100.577 MHz ('^C) unless 

it is stated in the text. 

• INFRARED SPECTRA were recorded on a Perkin Elmer 1600 series FTIR. The 

spectra were recorded as solvent (chloroform) cast films (macromonomers) or KBr 

discs. 

• E L E M E N T A L ANALYSIS were carried out on a Exeter Analytical, Inc. CE-440 

elemental analyser. 
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• MASS SPECTRA were recorded either on a VG analytical model 7070E mass 

spectrometer or VG TRIO 1000 mass spectrometer coupled to HPS 890 SERIES I I gas 

chromatography. 

• G E L PERMEATION CHROMATOGRAPHY (GPC) analyses were performed 

on chloroform solutions using a Knauer HPLC pump (Model 64), Waters Model R401 

differential refractometer detector and 3 PLgel columns with pore sizes of 10^ 10̂  

and 10^A (column packing PLgel 5^m mixed styrene-divinyl benzene beads). The 

sample solutions (concentration 0.2%) were filtered through a Whatman WTP type 

0.2|am filter to remove any particulate before injection. The columns were calibrated 

using Polymer Laboratories polystyrene standards (162-770,000amu). 

• D I F F E R E N T I A L SCANNING C A L O R I M E T R Y was carried out using a Perkin 

Elmer DSC 7 differential scanning calorimeter over the temperature range of 25°C-

200°C (heating rate 10°C min'). 

• T H E R M O G R A V I M E T R I C ANALYSIS was performed using a Stanton Redcroft 

TG 760 thermobalance. TGA traces were recorded by increasing the sample 

temperature from 20°C to 650''C by lO^C per minute under a nitrogen atmosphere and 

the 2% weight loss temperature was taken as the decomposition temperature. 
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