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Abstract 

A procedure is presented for detecting geometrical preferences, deformations and 

interconversion pathways between different geometries for the transition metal 

coordination sphere ML„. A discrepancy index [Rang(x)] was proposed initially to 

address the problems of dimensionality and permutation complexity in the systematic 

analysis of coordination sphere geometry with higher coordination numbers (n > 7). But 

it can also be used generally for the lower coordination numbers. 

A set of standard geometries for coordination numbers 2-9 are presented and the angles 

between the center point and each vertex for the polyhedra which are used to describe 

the coordination sphere geometries for coordination numbers 7-9 are idealised. These 

angles correspond to the metal-ligand valence angles in the coordination complex and 

are used as the standard values to measure the deviation of a real coordination sphere in 

the complex from these standard polyhedra. 

Geometry of each coordination sphere (ML7.9) from the Cambridge Structural Database 

(CSD) is identified by the calculations of Rang(x) values. Also the unique enumeration 

numbers of the ligands corresponding to each geometry can be derived over the n! 

ligand permutations. The different geometrical clusters and interconversion pathways 

from one to another are mapped in a designed two-dimensional plot. 

The symmetry coordinates and principal component analysis are initially applied in 

these higher coordination number systems. They not only map the clusters represented 

to those standard geometries in the different symmetric point groups but also provide 

and confirm the interconversion pathways between the different geometries. 

The other systematic study involves the analysis and correlation of the metal cr-u bond 

in the transition metal alkyne and alkene complexes from the CSD. Geometrical 

features of this specific bond are examined in the view of structure and some useful 

correlation between the key geometrical parameters are defined. 

Finally, X-ray crystal structure determinations are briefly described and the crystal 

structures of ten transition metal compounds in coordination numbers 4-6 are presented. 

xii 



Chapter 1 

Introduction 

The geometry of metal coordination spheres in metal complexes is a fundamental 

aspect of coordination chemistry. Knowledge of the coordination geometry provides the 

basis of orbital energies, bond properties of metal and ligand atoms and electron 

configurations of the metal atoms or ions etc. 

Crystal structures of transition metal coordination compounds determined by X-

ray diffraction techniques show the most direct picture of the coordination geometry and 

various geometrical polyhedra have been used to describe the structure of the 

coordination sphere for different coordination numbers. Then, what factors determine a 

given metal coordination geometry and a detailed mechanism for metal-ligand bonding 

can be modelled? Acquiring and accumulating knowledge from known 3D structures 

may lead to modification and development of the original basis and reiteration of the 

modeling experiments in the absence of adequate theoretical models. 

With the developments of X-ray diffraction techniques, much structural data on 

transition metal coordination complexes is available in the Cambridge Structural 

Database (CSD) (Allen and Kennard, 1993'). Recently, structural systematics on 

various organic molecular assemblies, ensembles, and all manners of structure 

aggregates have formed the basis of the subject of crystal engineering to predict and 

design new functional structures. The main aspects of these applications are presented 

in Chapter 2. 

Identifying recurring geometrical preferences of coordination spheres, 

deformations of metal complexes in various coordination environments from the 

standard geometry, and interconversion pathways between different geometries are 

major objectives of this work. The CSD can provide the source of the known 

crystallographic metal complexes structural data. However, the conventional methods 

used in organic systems are inadequate in coordination systems, especially for the 

higher coordination numbers, since the numbers of parameters to describe the geometry 

(metal ligand valence angles, L-M-L) rise rapidly with the increase of coordination 

number n. The research project presented in this thesis develops and programs a simple 

1 References appearing in this Chapter are given together with the references of Chapter 2 
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and general method to address the problems of complexity and the added difficulty of 

ligand permutations. In Chapter 3, the full definitions of standard geometries for 

coordination number from 2 to 9 are given. The difficulties and restrictions in using 

conventional techniques in multivariate analysis compared with the flexible organic 

systems are stated. 

In Chapter 4, the successful results of using the proposed method and combination 

of multivariate analyses are illustrated, which originally reveal the geometrical 

preferences, deformations and interconversion pathways in 7, 8 and 9-coordination. 

In Chapter 5, systematic analysis is applied in metal alkyne and alkene complex 

systems. A large number of metal 7t-bond complexes have been retrieved from the CSD. 

The metal 7i-bond interactions for CsC and C=C are investigated using database 

techniques. The resultant plots demonstrate the correlation of some key parameters that 

characterize the geometry of these complexes, strength of the metal-ligand interactions, 

etc. The coordination environmental effects to form the special a-n bond are 

systematically discussed. 

Some practical transition metal coordination crystal structures determined by X-

ray diffraction are presented in Chapter 6. Accurate structural data forms the basis 

required for structure correlation. In addition to the structure diagrams, the major 

geometrical parameters for the coordination sphere are listed. Special attention is drawn 

to the geometry of coordination spheres that are related to the interests described in the 

earlier chapters. 

Finally, further work that might be carried out with the study of higher 

coordination number sphere geometry is discussed in Chapter 7. Based on the obtained 

results, more interests are in interconversion pathways from one geometry to another, 

i.e. from n —> n+1 coordination. Such studies have been seen in lower coordination 

systems, e.g. reaction pathways from 4-coordination to 5-coordination, by investigating 

the geometrically similar reaction pathways involving the formation of a five-coordinate 

species (Cross, 1985). But, because of more variety in higher coordination geometries, it 

is more difficult to correlate the characterized geometrical parameters in the same 

manner. Preliminary work to explore such a reaction pathway from 6-coordination to 7-

coordination is investigated and given in this chapter. More effort in defining sensible 

geometrical parameters is needed and more effective analytical methods need to be 

developed. 

2 



Chapter 2. 

Structural Systematics: the Cambridge Structural 
Database 

2.1 From X-ray Structures to Database Research 

Determinations of crystal and molecular structures by X-ray diffraction techniques 

have become a routine method, with modern developments of computer techniques and 

a variety of methods for the solution of structures. X-ray crystal structures provide the 

three-dimensional geometry of molecules by giving bond lengths, valence angles and 

other parameters. It has proved to be a very successful method for chemists to 

understand the geometry of the three-dimensional atomic arrangements of molecules 

since this technique appeared in 1910's. A brief description of X-ray structure 

determination and some crystal structures will be presented in Chapter 6. 

From the crystallographic results using X-ray diffraction methods, the positions of 

the atoms in the crystal unit cell can be located. Thereafter, the structural parameters 

describing the molecular geometry can be derived easily. These parameters include bond 

lengths, bond angles, torsion angles and any other geometric parameters, which can be 

used to describe the molecular structure. In addition, non-bonded distances and angles 

describe inter- or intra-molecular non-covalent interactions. 

The properties of compounds depend upon their connectivity (two-dimensional or 

2D) structure and on their geometrical (three-dimensional or 3D) structure. Atomic 

connectivities are described by certain fixed bonding formations, but more detailed 

information is contained in the geometrical details. Thus, further valuable structural 

information can be derived from systematic studies of geometric structure. Usually 

configuration, conformation and the supramolecular interactions of molecules and any 

structure-reactivity relationships are interesting to chemists. Biochemists meanwhile are 

interested in structure-bioactivity relationships. In summary, further investigations of the 

relationship between three-dimensional structure and molecular properties could be 

obtained by applied systematic analyses of structure parameters. Theoretical calculations 

based on quantum mechanical theory can also provide useful information on chemical 

3 



bonding and interpretations for some physical and chemical properties o f compounds 

f rom the modeling o f special functional groups. But in practice, such calculations are 

still limited to the small model molecule, because of the limitation o f the computer and, 

in some cases, a lack o f the suitable parameters for modeling purposes. An 

experimentally determined molecular structure presents a real geometric arrangement in 

three dimensions, so when a defined function group or a molecular fragment is 

investigated in different bonding environments f rom large numbers of known structures, 

a preferred geometric conformation or bonding form may be found which usually 

represents a low energy state. That is, comparison o f several or many three-dimensional 

structures can also provide important insights. On the other hand, these sophisticated 

analyses of the three-dimensional properties o f molecules are o f great potential use to 

molecular modeling. Thus, it is necessary to establish fundamental tools for the study of 

structure-activity relationships f rom experimental data. 

In the early stage of using X-ray crystallographic techniques, the numbers of 

compounds that could be characterized by X-ray crystal structure analysis were limited 

because o f the restrictions o f the equipment and the theoretical basis of structure 

solution. Therefore, it was possible to discuss nearly all o f the determined structures in 

some detail. The earliest systematic study can be traced back to Pauling's "Nature of the 

Chemical Bond" (Pauling, 1940). A l l the information derived f rom this basis about the 

covalent bond, the ionic bond and the metallic van der Waals bond continued to be used 

for about half a century. Nowadays, the total number o f structure determinations of 

small organic molecules has reached 200,000 and is increasing at the rate of about 

15,000 per year. Such large sets o f data definitely provide a valuable source through 

which to correlate the geometrical results systematically. But it also raises the difficulty 

o f developing appropriate methods to search and organize the available data into a 

suitable form for systematic analysis. 

As the Cambridge Structural Database (CSD) expanded (Allen, Kennard, and 

Taylor, 1983), it made systematic studies on large numbers o f related structures 

possible. It not only provide automatic searching for a defined fragment or text etc., but 

also enabled statistical and numerical techniques to be applied to the large volumes of 

numerical data that may result f rom searches. Thus, use o f the CSD has greatly 

facilitated the survey o f large sets o f X-ray derived geometrical data. Random errors are 
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averaged out, real errors are usually identified as outliers f rom individual structures and 

then patterns may become obvious in such a survey. 

The combination of computational and experimental methods often provides a 

more complete result, particularly for simpler systems. In such studies, experimental 

observations are often used to compare with results from ab inito theoretical 

calculations. Often they gave consistent or similar distributions for the defined key 

parameters. For example, Allen, Harris and Taylor (1996) recently carried out a study of 

the conformations o f some simple molecular substructures that contain alkyl chains 

about their central C-C bonds or some C-S bonds. In the CSD study, the torsion angle 
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about this central bond was chosen as the key geometrical parameter to express its 

conformational preference in the crystalline state. The geometrical results are presented 

as a torsional histogram for all observations of this fragment in crystal structures. When 

these distributions are compared with energy profiles computed for relevant model 

compounds by ab initio molecular orbital methods, it shows that the most frequent 

occurrence o f real structures appears at similar angles wi th energy minimum from the 

distribution o f energy versus the conformation angle. One o f these substructures 
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involving a C-S bond is given in Figure 2.1. It shows the expected torsion angles 

representing anti, x ~180° and gauche, x ~75° ( t ~60° for C-C bond) conformations. 

This indicates good agreement between theoretical calculation and observations. 

Crystallographic conformations obviously represent energetically accessible forms and 

the peaks in their torsional distributions usually correspond to minima in their potential 

energy surface. 

Nevertheless, for more complicated systems, computational methods may only 

play a restricted role, due to the limitations stated above. Thus, systematic analysis of 

existing structures stored in crystallographic databases becomes a more direct way to 

acquire knowledge which can contribute significantly to the studies o f structure/activity 

relationships. 

2.2 Cambridge Structural Database 

The Cambridge Structural Database (CSD) stores experimental atomic coordinates 

for -190,000 organic and organometallic compounds as well as containing software 

facilities for search, retrieval, analysis and display o f these structure contents. There are 

about 10% of the total number added each year as new entries. In the 1995 version, the 

extraction o f defined structure parameters and three-dimensional coordinates for a 

particular interest f rom the database is carried out by identifying the defined atomic 

symbols and geometric relationships to neighboring atoms; the fragments to be searched 

could be defined in two-dimensional (2D), three-dimensional (3D) or bibliographic ( I D ) 

etc. information according to the needs o f problems. After the search step is finished, 

the defined parameters may be printed or further analyzed. 

2.2.1 Information Content of the C S D 

To retrieve structure information rapidly and effectively, three distinct types o f 

information for each crystallographic entry are stored in the CSD. These are 

conveniently categorized in terms of their "dimensionality" as illustrated in Figure 2.2. 
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I D Bibliographic Information 

These data fields include all o f the bibliographic material and some experimental 

information for the crystal structures, which concerns: chemical text, e.g. compound 

names, molecular formula etc., author's names and literature references, crystallographic 

cell dimensions and space group, and other simple text and numerical information for 

the particular entry. 

2D Chemical Connectivity 

The 2D diagram of the chemical connections is encoded as a connection table, in 

which atom and bond properties are defined. It records atoms as: atom sequence 

number, element type, the number o f connected non-hydrogen and number o f connected 

hydrogen atoms and the net charge; and indicates bond properties by different bond 

types, that is, 1 = single, 2 = double, 3 = triple, 4 = quadruple (metal-metal), 5 = 

aromatic, 6 = "catemeric link", 7 = delocalised double and 9 = 7i-bond. 

The most important searches o f the CSD involve the matching o f chemical 

substructural queries to the 2D connection tables stored in the database. Queries are 

entered via a 2D chemical drawing interface. 

3D Structural Data 

The 3D atomic coordinates, the space group symmetry, the covalent radii and the 

crystallographic connectivity established by using these radii are contained in this 

information field. Using all this information, a 3D molecular diagram can be 

represented. 

A l l o f these three forms constitute the basis o f storage o f the CSD, which has been 

extracted f rom the primary literature or provided by authors, wi th over 800 journals 

represented in the database. 
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2.2.2 Software Systems of the C S D 

The CSD provides a menu-driven interactive graphics software system for a 

variety o f computer platforms. 

• The Q U E S T 3 D has been designed for search and retrieval o f fragments or 

molecules to be investigated. The search input is based on the principle o f information 

being stored at three levels o f "dimensionality". The details are defined according to 

different requirements. 

The program provides multiple options for those 1D/2D/3D information fields. 

One o f the most commonly used definitions for the search is the location of 2D 

substructure, which may then be further constrained using wide variety o f 3D 

geometrical criteria. The search query can be constructed graphically and a number of 

separate queries can be combined. 

Generally, the program w i l l output files that contain user-defined geometrical 

parameters for any substructure found in the search process. Other types of files also 

contain the basic geometrical parameters and can be output selectively for connection to 

external software packages. 

• When the search process is done, hits that meet the requirements specified in the 

input search code are extracted f rom the CSD. The required geometrical parameters may 

output in the form o f a table, and the structures can be re-displayed on a computer 

graphics screen by the software P L U T O . The program PLUTO takes the coordinate 

data f rom the search as its input f i le . When displaying the three-dimensional structure 

on the graphics screen, it provides rotation and translation functions so that the user can 

view a structure f rom the best direction and also the bond lengths and angles can be 

calculated and displayed on the screen by clicking on the required atoms. It is also 

capable o f exploring the non-bonded networks presented in crystal structures. 

• The geometric parameter analysis program, V I S T A (VISTA 2.0), provides 

further facilities to display and manipulate three-dimensional structural images. VISTA 

reads table files that are automatically generated by QUEST when 3D parameters are 

defined for a CSD search. Some useful statistical procedures, such as histogram, 

scattergram, correlation/covariance and principal component analysis, are included. 

Thus, the CSD is not only a database to store structural information, but also provides a 
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fundamental tool for molecular geometric analysis. "Only in this way can we form 

classifications and recognize patterns o f structural behavior that may be interpreted in 

chemical terms" (Allen, Kennard and Watson, 1994). 

• IsoStar is a recently released program which provides experimental and 

theoretical information on non-bonded interactions. 

The IsoStar knowledge base contains information derived f rom the CSD and 

Broohaven Protein Data Bank (PDB) and molecular orbital calculations. Thus, the 

geometries, energies and frequencies o f occurrence o f different types of non-bonded 

contacts are presented in the form of scatterplots by the selection o f a "central group" 

and a "contact group" during the CSD non-bond search. It is therefore ideal for 

identifying unusual attractive interactions. This knowledge-based library of 

intermolecular interactions can provide as a useful tool in the f ie ld o f crystal engineering 

and rational drug design. 

2.3 An Overview on the Application of Cambridge Structural 
Database 

The CSD provides a reservoir o f crystal structures determined by X-ray or neutron 

diffraction methods, and each database entry is assigned by the reference code. It is 

usually simplified as "refcode". The refcode consists o f six alphabetic characters and i f 

more than one publication for the same compound under different experimental 

conditions can be found, such as low temperature or supersession o f a fu l l publication to 

the preliminary publication, a possible further two numeric digits is used to identify the 

differences. Based on features o f the three-dimensional structures one can use this rich 

source to derive information which is important to chemical or biochemical reactivity, 

by comparing analogous molecular geometries in various different crystal structures. For 

a simple instance, for chloroethanoic acid [shown in Figure 2.3(a) (Kanters and 

Roelofsen, 1976)], many example fragments can be found f rom a CSD search. Each 

individual structure has its own fixed arrangement for this molecule. However, when all 

molecular fragments f rom different crystal structures are compared, we can see not only 

a certain three dimensional arrangement which most fragments adopt, but also some 

deviations f rom this favoured form. Figure 2.3(b) gives a superposed plot o f twelve such 
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fragments (refcode: ACLMEN etc). It shows the possible conformational variability 

among these analogous molecules. It can be seen that the carboxyl group has smaller 

variability than the substituents on the a carbon, because of its more fixed vibration and 

rotation. For more complex systems, some other methods, e.g. statistical etc. can be 

used to assist in identifying and classifying the geometric preference and thereafter the 

optimal geometry is derived. Identifying such conformations is helpful to molecule 

modeling. 
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dia g r a m shows a s i n g l e m o l e c u l e (CLACET01) (b) a l i n e d r a w i n g o f 
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For a particular molecule of interest, a search procedure QUEST3D is carried out 

to find the defined full molecule or part of a chemical structure in the CSD crystal 

structures. Such a search procedure includes many search fields (CSD, 1992), but only 

some of them are commonly used. Usually, connectivity searches are used to search the 

precisely defined bonded fragment or molecule by drawing atomic connections in the 

drawing field. In this way, the exact structure described in the input code (such as in the 

2D-CONSTRAIN sub-menu, select an ATOM or BOND to display the properties of 

bonded atoms) can be obtained and also a variety of ranges of bonding parameters can 

be defined or calculated (in the 3D-CONSTRAIN sub-menu). Of particular interest, the 
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geometric parameters o f intermolecular interactions can be retrieved, e.g. hydrogen bond 

by specifying the hydrogen atoms 'bonded' to a given atom using distance criteria. The 

other method for search is to use text searches. Some search keywords are available in 

the T E X T sub-menu. As given above, they include compound names, formula, the 

names of authors or any item referring to the literature reference, such as year or journal 

name, and so on. Both these input searching codes can be used either independently and 

or together to give more restrictions to the search. 

There are several ways to output or present the results f rom the search. Except for 

those used in VISTA and PLUTO, one o f the possible outputs (GLIST) is to retrieve the 

geometric parameters, bond lengths and angles, in a formatted f i le *.gls, which not only 

give a conventional numeric values and also is ready for connection to an external 

program for further analysis, for example, for a seven-coordination tungsten complex 

(Umland and Vahrenkamp, 1982), W(CO)42P(CH3)3, it is represented by a Refcode, 

BOGBII in CSD. The geometric data are listed in Table 2.1. 

As the facilities are available in database and wi th the improvements of the 

database software, the interest in the systematic application o f chemical and 

crystallographic results by using the CSD as a basis, has been increased greatly since the 

late 1980's. 

Table 2.1 An o u t p u t form o f example BOGBII i n t h e * . g l s f i l e 

BOGBII geometric data 
Bond lengths 

Wl 11 2.845 Wl PI 2.564 Wl CI 2.058 Wl C2 2.061 
Wl C3 1.978 Wl I1C 2 .845 Wl C1C 2.058 PI C4 1.855 
PI C5 1.747 PI C5C 1.747 CI 01 1.078 C2 02 1.120 
C3 03 1.161 C1C 01C 1.078 

Bond angles 
11 Wl PI 90 5 11 Wl CI 156 4 11 Wl C2 77.3 
11 Wl C3 128 3 11 Wl I1C 86 5 11 Wl C1C 76.7 
PI Wl CI 76 3 PI Wl C2 163 1 PI Wl C3 121.0 
PI Wl I1C 90 5 PI Wl C1C 76 3 CI Wl C2 111.4 
CI Wl C3 73 3 CI Wl l i e 76 7 CI Wl C1C 115.7 
C2 Wl C3 75 9 C2 Wl nc 77 3 C2 Wl C1C 111. 4 
C3 Wl I1C 128 3 C3 Wl C1C 73 3 l i e Wl C1C 158.4 
Wl PI C4 112 0 Wl PI C5 119 9 Wl PI C5C 119.9 
C4 PI C5 101 5 C4 PI C5C 101 5 C5 PI C5C 99.1 
Wl CI 01 175 0 Wl C2 02 176 7 Wl C3 03 180.0 
Wl C1C 01C 175 0 Wl C1C 01C 175 0 
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2.3.1 Correlation Between the Specified Structure Parameters 

As is known, for a defined functional group, atoms are bound in a certain form. 

Usually, a set of standard bond parameters is given. Wi th different bonding 

environments and the effects of some other groups, the values vary, but they all wi l l fal l 

within some acceptable range. For a specified chemical bond, certain bond lengths occur 

more frequently than others do. I f the values of the various bond lengths are represented 

as a statistical result in a histogram, the peaks in the results indicate what the bond 

lengths ought to be for various types of such bonds. Normally, the histogram gives a 

distribution in which most structures have the central tendency around the certain value 

and the range of the values can be defined f rom the whole data set. Then, the dispersion 

of individual observations f rom the mean value can be inspected to f ind how the crystal 

structure represents the dispersion value. Thus, these systematic studies w i l l allow 

chemists to investigate how the structure affects the distribution. 

In the analysis of the retrieved data for systematic studies, the comparisons of 

many three dimensional structures for the specified parameter can be carried out, which 

could reveal some important structural features and common properties related to the 

structures. 

The average geometrical parameters for various atomic pairs and functional group 

are very helpful for chemist in a general sense and also invaluable in model building. 

Before the CSD appeared, there were some tables of these standard values published 

based on the structural data obtained before 1960 (Sutton, 1958, 1965). As a greater 

number and more accurately determined structural data were collected in the CSD, by 

examining those stored structural data, more complete tables of mean bond lengths for a 

wide variety of atom pairs and functional groups, which now represent standard values 

for these bonds, have been given (Allen, Kennard, Watson, Brammer, Orpen and Taylor, 

1987; Orpen, Brammer, Allen, Kennard, Watson and Taylor, 1989). 

The tables were built on several values. Through the CSD search on the defined 

bond types, the mean value d of distances between atoms in organic and organometallic 

compounds and complexes can be calculated as: 

n 
d - ^ d i / n 
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where dt represents the ith bond length of the observations and n is the total number of 

observations. In addition, other values, the sample median m, the sample standard 

deviation a, the lower quartile for the sample qi and the upper quartile qu are given 

together (Allen et al, 1987) to show the statistical results f rom the retrieval. Now, all 

these average geometries which include element H , B, C, N , O, F, Si, P, S, CI, As, Se, 

Br, Te, I and 682 different bond types in organic compounds and, for metal-ligand 

distances between the d- and /-block metals Sc-Zn, Y-Cu, La-Hg, Ce-Lu, Th-U and 

atoms H , B, C, N , O, F, Si, P, S, CI, As, Se, Br, Te and I of ligands in organometallic 

complexes, have been updated in International Tables for Crystallography, Volume C 

(1992). 

Obviously, it is important to have a correct definition for the bond type of interest. 

Thus, the effect of different chemical environment to each bond could be compared. For 

a certain bond type, the bond length or angle, due to, e.g. substitution and re-

hybridization on a defined atom, may deviate f rom the standard value. This can be seen 

easily in any individual crystal structure. The systematic analysis of many related 

structures can reveal how these substitutions and rehybridizations affect these geometric 

variations. Some examples can be found in the studies of substitutent-induced ring 

deformations in benzene (Domenicano, Vaciago and Coulson, 1975; Domenicano and 

Vaciago, 1979) and the effect of small-ring fusion on the geometry of benzene etc. 

(Allen, 1981). In the former example, the correlation of change of the specified angle 

versus electronegativity of substituted groups was given and showed the angular 

deformations of benzene dependent upon the electron-withdrawing or -donating ability 

of groups. And in the latter, a variety of mean geometry for monocycloalkeno-benzenes 

with different ring sizes (3-6) were investigated. The conclusion that small-ring fusion 

to benzene might cause partial double-bond fixation in the aromatic ring, was further 

confirmed in this study and the variation of geometric parameters on the benzene ring 

with different size ring were illustrated. The information derived f rom such studies can 

be correlated with theoretical calculations, reactivity, spectral properties, and other 

physical phenomena (Allen, Kennard and Taylor, 1983). 
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2.3.2 Relationships Between Conformation and Stability 

With a minimum potential energy, the spatial arrangements of atoms in a molecule 

give a stable conformation. In solid-state conformation, such arrangements are directly 

dependent on the specific chemical and crystallographic environment. From the 

crystallographic experiment, each structure represents a local minimum energy state and 

the information about the preferred conformation of molecule can be obtained. Thus, in 

a systematic study for an interesting substructure or fragment, by defining some 

structural parameters that can represent the molecular conformation, the various 

possible conformations for different molecules can be examined f rom the correlation of 

these parameters. Average or typical geometries for each fragment or molecule are 

derived. Meanwhile, clear correlation between geometric parameters and some 

chemical, physical or biological properties w i l l provide a sound basis of the structure 

correlation principle. 

Bond lengths and angles are considered to have only minor changes within 

different conformation. Torsion angles are usually used to describe the conformations, 

because they measure rotation about bonds. In a simple system, sometimes a single 

torsion angle distribution can express a clear conformational preference. A well-known 

example is 1,2-disubstituted ethanes. The substituent groups here include halogen atoms 

and S, Si etc. The single torsion angle is defined as x about the C-C bond. As x runs 

f rom 0° to ±180°, corresponding to a complete revolution of one substituent group with 

respect to the other. Obviously, when x=±180°, i.e. staggered conformation, it is always 

significantly more stable than the eclipsed conformation (x=0°), because in the former, 

the atoms are as far away from one another as possible and offer the least repulsive 

interaction. In the plot of one-dimensional potential energy versus torsion angle [Figure 

2.4(a)], the minimum energy occurs at this special angle value (Dunitz, 1983). Between 

these two extremes, there are other two possible conformation at x=60° and x=-60° 

respectively, which also have low energies. The polar histogram [Figure 2.4(b)] resulted 

f rom a CSD search and shows a clear preference for x to be 180° or close to ±60° which 

is in agreement with the distribution of potential energy. Since the potential energy at 

x=±180° is even lower than those at x=±60°, the relative population of the three peaks 

would indicate that staggered conformation is more preferred for the real crystalline 

state of molecules. This is further confirmation to the conformational knowledge base 
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and is useful in the study of their reactivity. 

The other system in which there is larger influence of conformational factors, is 

cyclic molecules. It becomes necessary to use more parameters to define the geometry of 

the chemical fragment. For an n-membered ring, the n intra-annular torsion angles are 

needed. The various conformations that a cyclic molecule may adopt depend mainly on 

changes in these torsion angles. Such a systematic study is actually a multivariate 

analysis. I f Ir experiment results could be found f rom the CSD and Ic parameters are 

used to described the geometry of each observation. These Ir x Ic elements can be 

directly generated by the CSD system through defining suitable parameters in the search 

query of QUEST3D. The matrix M(Ir,Ic) consisted by 7r row and Ic columns may be 

directly used for the geometry analysis. Also some new relevant variables could be 

derived f rom these Ir x Ic elements. The problem is that with increase of the number n, 

the dimension of the matrix M becomes large. This definitely brings some difficulty to 

the system. Unlike the above example in ethane, where only one parameter was defined 

and all the conformations are dependent on this significant value, the meaning of each of 

multivariable is usually not known. Therefore, the methods used in the simple system 

through selection of individual parameters or pairs of parameters are not suitable in this 

kind of system. But some multivariate analysis techniques can be used for the M-matrix. 

Covariance and Correlation 

One of the methods to analyze multivariate systems in the CSD is to measure the 

dependence between two parameters. This can be achieved through the calculation of 

their covariance C(x,y) and correlation R(x,y). The covariance is defined as: 

n 

C(x, y) = ^[(xi - xa)(yt - ya)]l n 
1=1 

in which, x, and y, are the ith observation values of two variables, and xa and ya are 

their mean values, respectively. When C(x,y) is normalized, the correlation coefficient R 

is given as: 
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R = 
C{x,y) 

The correlation coefficient is normally valued between -1 and + 1 , which reflects how 

two parameters are correlated. The closer to | 1 | is the absolute coefficient, the more 

correlated they are to each other. The sign gives negative or positive correlation, 

respectively. This technique is more commonly used than covariance, because the latter 

is sometimes diff icul t to interpret, since i t depends upon the units in which the two 

variables are expressed (Allen et al, 1994) Both of them are now available in the CSD 

(VISTA 2.0). 

(b) Principal Component Analysis, Factor Analysis and Cluster Analysis 

A l l of these three techniques are powerful tools in multivariate analysis. The f u l l 

details w i l l be given in later chapters and sections. The greatest advantage in using these 

methods is that the dimensionality of variables may be reduced dramatically. Geometric 

preference could be identified by the correlation of pairs of significant derived 

parameters. 

Several techniques have been used cooperatively in the analysis of cyclic 

conformations. For six-membered carbocycles, the major existing shapes to describe the 

conformations are boat and chair. Considering symmetry factors, PCA was applied on 

six intra-annular torsion angles and the first three principal components accounted for 

approximately the total variance (99.9%) (Allen, Doyle and Taylor, 1991a). Based on 

these three PC's scatterplots, major different conformations can be clearly located 

according to the PC's coordinates. Further, by using cluster analysis through the 

calculation of dissimilarity coefficients (Everitt,1980), a unique and asymmetric set of 

conformational clusters was obtained. Interpretation of these results showed that more 

detailed conformations between the two major ones, such as, half-chair, twist-boat etc., 

could be observed. Some modified techniques and practical applications (Allen, Doyle 
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and Taylor, 1991b,c) provided more detailed clusters in the identification of the 

conformations. Introducing the spherical coordinates (Cremer and Pople, 1975) and 

combining to apply with the statistical techniques (Allen and Taylor, 1991, Allen, 

Taylor and Auf der Heyde, 1991) made a more lucid interpretation of the PCA results in 

which the chemical meanings of the PC's and some torsion angle combinations become 

obvious. 

Similarly, these techniques stated above can be extended to apply to the medium 

rings of size seven and eight atoms. Wi th the increase in the size, the ring bonds become 

more flexible and more conformational shapes could be adopted. In the consideration of 

the symmetry in this system, enumeration and permutations of the torsion angles were 

carefully taken into account, which is also a key step for this system in order to carry out 

the multivariate analysis. 

For cycloheptane, there exist four kinds of shapes to describe the conformations, 

Twist-Chair(TC), Chair(C), Twist-Boat(TB) and Boat(B). They fall into two 

symmetries, C2 for TC and TB, Cs for C and B. There were several coordinate systems 

additional to Cremer & Pople's puckering (CP) coordinates for n-membered rings 

mentioned above to define the conformations of cycloheptane. The most representative 

is BPRS four coordinate set (Bocian, Pickett, Rounds & Strauss, 1975), which was 

given according to the D 7h symmetry of cycloheptane. The details about these 

coordinates are not given here, the importance is that through some transformations 

(Bocian and Strauss, 1977a) it is possible to map the conformation of a given 

cycloheptane, by plotting pairs of the given coordinates and the inter-conversion 

between the shapes could be characterized (Bocian and Strauss, 1977b). By using the 

CSD data for cycloheptane compounds, a set of more complete conformational 

mappings was obtained based on these coordinate systems (Allen, Howard and 

Pitchford, 1993). Meanwhile, symmetry deformation coordinates, dissimilarity 

calculations, PCA and cluster analysis were all used to identify the preferred 

conformations in the data sets. An interesting result is that PCA is closely related to the 

CP analysis. Moreover, when the rings contain hetero-atoms or have substitutions 

(Allen, Howard, Pitchford, Vinter, 1994; Allen, Garner, Howard and Pitchford, 1994), 

the symmetry becomes lower and the permutation number is reduced. The results 

derived f rom applying the above techniques have related well to conformational energy 

differences obtained f rom theoretical calculations. Expanded applications to cyclooctane 
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and related rings (Allen, Howard and Pitchford, 1996) also mapped and classified the 

observed conformations from the CSD. 

Systematic conformational analyses of both free and metal-coordinated 

unsaturated 12- (Raithby, Shields and Allen, 1997a) and 15-membered (Raithby, Shields 

and Allen, 1997b) oxa and thia macrocycles were also undertaken by using the CSD. 

The conformations existing in these species were classified by a symmetry-modified 

Jarvis-Patrick clustering technique and the classifications were visualized in 

conformational space by PCA plots. The possible geometry for the metal-coordination 

according to the size of metal ion and donor atoms were predicted and given, by 

comparisons of cluster populations and relative molecular mechanics energies, 

In summary, the investigation of three-dimensional ring system structures, 

displayed the intramolecular or intermolecular geometric properties by using cluster 

analysis of defined torsion angles (Allen & Taylor, 1991). Combining the techniques of 

principal component analyses and cluster analysis, further studies on conformational 

mapping and classification were carried out. This permitted the results to be more 

readily comprehensible (Allen, Doyle and Auf der Heyde, 1991) and provided some 

useful points for an analysis of a higher dimensional data set (Allen, Howard and 

Pitchford, 1993). As an example, the combined multiple analyses identified the major 

conformational forms of cycloheptane as chair, twist-chair, boat and twist-boat, and 

supplied two independent pseudorotation pathways in the defined four-dimensional 

conformational space. More complex analyses are needed for a particular study to derive 

information on the relative stability of various possible conformations. 

2.3.3 Reaction Pathways 

In the study of organic reaction mechanisms, theoretical calculations related to the 

minimal energy states are usually used. In an ideal case, in terms of the structural 

geometry of the compounds, a variety of geometries representing each step along a 

reaction pathway are expected to be obtained. The important clue to understand how a 

reactant converts to a product is one or more transition states, which are usually drawn 

as saddle points in the energy plots. Crystalline structures represent stable atomic 

arrangements. Carefully chosen crystal structures with geometries very similar to those 

of the transition states and the investigation of the change in "active" bond order, may 
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provide support and evidence for this study. Once "a correlation can be found between 

two or more independent parameters describing the structure of a given structural 

fragment in a variety of environments, then the correlation function maps a minimum 

energy path in the corresponding parameter space" (Murray-Rust, Burgi, and Dunitz, 

1975). In the examples of the ring system conformational study of the last section, it has 

been seen that some interconversions between conformations could be expressed from 

correlation plots of the defined parameters. The facilities provided by the CSD made it 

possible to draw structural correlations in more direct ways. 

The structure correlation method has been used to map reaction pathways for 

variety of different reactions. The most widely used correlation in the studies of ligand 

elimination from the tetrahedral L 3 M Y species (Murray-Rust, Burgi and Dunitz, 1978) 

or nucleophilic addition to a carbonyl (Cieplak, 1994) was Pauling's relation between 

bond length and bond number, », (Pauling, 1947), 

Adi = -c log m 

where Arf, is given as a difference of the specific bond length du e.g. M-Y, and the 

standard value. The bond number is related to the displacement D of central atom M 

from the plane of the three basal ligands L. The definition of variables is shown in 

Figure 2.5. In the case of R2C=0 fragments, Figure 2.5 is still used for the expression 

but carbon atom replaces M , other substitutions and the oxygen atom are located at L. 

The adding or eliminating atom is at Y. 

i 

i 
M 

\\\\" 
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F i g u r e 2.5 D e f i n i t i o n of geometric parameters f o r L3MY s p e c i e s r e l a t e d 
to P auling's formula. 
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From such a structural correlation, reaction pathway from sp2 to sp3 

transformations for nucleophilic addition to carbonyl was characterized. The elimination 

could be addressed as a geometric change from a regular tetrahedron (ti2 = 1) to trigonal 

planar molecule ( « 2 = 0). Conversely, a similar principle could be used to seek a 

reaction pathway from three-coordination metal complexes plus one extra ligand to 

form four-coordination complexes (Pitchford, 1994). In this way, Cu, Ag and Au three-

coordination complexes from the CSD were investigated. Suppose the fourth ligand 

attacks on the metal centre from an optimal geometric direction, i.e. that of orthogonal 

to the trigonal plane, the interaction distances dj of possible ligand atoms with the metal 

atoms were retrieved and plotted versus the distances D of the metal out of the trigonal 

plane. The results showed that the distance d; is inversely related to the out of plane 

distance D, and are consistent with the fitting curve from Pauling's formula. 

The longest interaction represents the initial attack position, which corresponds to 

the D value close to zero, and an effectively trigonal planar shape, while the shortest 

interaction reflects the completed reaction with a large D, which is closer to a 

tetrahedron. The other example is the investigation of a series of lactam derivatives 

(Allen, Kennard and Taylor, 1983) from four structures in the CSD. With the change of 

the halogen atom in the silyl group, the geometry at silicon follows an inversion 

pathway, which varies starting from a distorted tetrahedron (GEGDOL) with 

substitution of F atom, Si-0 is in the contact distance and not really bonded, through the 

CI and Br substitutions (FOGBEVI10, FUFXAF), Si atom passes through the equatorial 

plane of the trigonal bipyramid (both Si-0 and Si-X bonded). Finally, it is the/ 

u L 
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V 
M M M / 

L 

F i g u r e 2.6 B i m o l e c u l a r n u c l e o p h i l i c s u b s t i t u t i o n r e a c t i o n f o r a f o u r -
c o o r d i n a t e atom. 
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derivative (FUDYIB) with an inverted tetrahedron compared with the F compound, Si-

O bonded and Si-I in contact distance. This can be related to the associative nucleophilic 

substitution mechanism for a four-coordinate atom (shown in Figure 2.6). The 

geometric variations of the real structures in this group are shown in Figure 2.7. The Si-

X bond from F to / derivative could be considered as the leaving group X is broken, and 

a new bond, Si-O, is formed with the nucleophile (O). The intermediate or the transition 

state, may be seen as trigonal bipyramid (FOGBIM10, FUFXAF) with the leaving group 

X, and nucleophile O in axial positions. The final product of this reaction, is that the 

leaving group leaves from one side and the nucleophile adds to the other side of a 

an 10 Brfll 
FtB 

Sift) 

O r&O 

O™ o an Oil) as 
aa 

GEGDOL FUSYIB FUFXAF FOGBIM10 

F i g u r e 2.7 Geometry c o n v e r s i o n s f r o m F t o I s u b s t i t u t i o n i n l a c t a m 
d e r i v a t i v e s . 

trigonal group, so that an inversion of configuration occurs. Similar mechanisms on 

other substituent groups can be observed in different examples (Zobetz, 1988, 1990). 

If these are concerned with S^2 reactions, the correlation of some specified bond 

lengths and angles and their bond number n in the investigations of a series of 

compounds, particularly, Al, S, P, Sn, Si and Ge tetrahedral derivatives (Murray-Rust, 

Biirgi and Dunitz, 1975) represented a mechanism of Sni reactions. As a leaving group 

dissociated, the intermediate was envisioned as planar trigonal, so that a nucleophilic 

group could attack from either side. Thus, configuration isomers, inversion and 

retention, were obtained with respect to the reactions. Several other analyses of 
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chemical reaction pathways from the observed structural geometry have also been 

studied (Auf der Heyde and Nassimbeni, 1984; Ferretti, 1986). 

2.3.4 Intermolecular Interactions in Small Molecule Systems 

An important application in database systematic studies is to examine 

intermolecular interactions. Molecules or ions packing in a crystal provide a regular 

order such that the total free energy of the system is a minimum. The intermolecular 

forces, which usually include van der Waals interactions (Glusker et al, 1994), hydrogen 

bonding and so on, also determine this packing. For an ionic compound, it is packed to 

ensure that the charges should be balanced on its own and also in the whole crystal. 

Non ionic compounds will adopt more varied of ways to pack together according to 

their bond properties, but hydrogen bonding is a preferred way if the functional groups 

are capable of accepting or donating hydrogen bonds. For example, in the 

[HMBPT*]2[Si80i8(OH)2]-41H20 structure (Harris, Howard, Samadi-Maybodi, Yao and 

Smith, 1995), silicates are held together to form an octameric cubic cage 

[SigOigtOHh]6" and linked into a framework by hydrogen bonding to water molecules. 

Two triply charged cations [Ci8H3oN 3 ] 3 + balance the cage silicate anions to stabilize a 

host/guest system, (shown in Figure 2.8). 

The CSD provides facilities to search for non-bonded interactions. Many of the 

published papers on this subject are concerned with the geometrical properties of 

hydrogen bonding, since hydrogen bonding plays a crucial role in packing molecules in 

extended crystal structures. While X-ray and especially neutron diffraction provide the 

best way to determine experimental hydrogen-atom positions, the CSD contains a lot of 

such data, and systematic analyses by retrieving and using these data, will give more 

directly the overall pattern than by using other methods, such as quantum chemical 

calculations. 

In crystal structures, the distances X—A and H—A recognizing the hydrogen bond 

in the solid state are given (X the donor and A the acceptor atom). From the C-H - 0 

contact distances and related angles, a statistical study in the CSD (Taylor and Kennard, 

* HMBPT is 2,3,4,5,6,7,8,9-octahydro-2,2,5,5,8,8-hexamethyl-lH benzo(l,2c:3,4c':5,6c") tripyrrolium. 
(C 1 8H 3 0N 3) 3 + 
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F i g u r e 2.8 The n e t w o r k s t r u c t u r e o f compound 
[HMBPT] 2[Si 80 1 8(OH) 2] -41H20 
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1982) showed clear results about the interaction distances and preferred orientations. 

With different donor and acceptor atoms and hydrogen bonding environments, hydrogen 

bonds illustrate different chemical bonding properties. Searches on particular molecules 

or fragments of this subject and use of different definitions on the parameters and 

combinations of some other methods for this study, various geometric properties and 

patterns of hydrogen bonds, such as, the effects of lone pair directionality (Glusker & 

Murray-Rust, 1986) and orbital hybridization (Taylor and Kennard, 1984) to the 

hydrogen bond, could be characterized. 

The C-H—O hydrogen bond system had been well established from crystal 

structures and also from spectroscopic data (Desiraju, 1991). The proton donors are 

present in the three different hybridization states C(,sp7)-H, C(sp2)-R and C(sp3)-H. 

Since the hydrogen atoms are connected to different acidic carbon atoms, the hydrogen 

bond characters could be different. The CSD investigation on the mean C—O distances 

of these different species showed that shorter C-H --0 contacts are obtained for more 

acidic C-H groups (Desiraju, 1990). In C(sp')-H--0 and C(sp2)-H-0 interactions, a 

common hydrogen bond pattern can be often viewed, which is that molecules easily 

form networks by twofold screw symmetry (Bernstein, Etter and Leiserowitz, 1994), for 

example, a, P unsaturated ketone functional group. 

H 

i H / 

Sulfur S is one of the normal acceptor atoms in forming hydrogen bonds. The 

hydrogen-bond acceptor ability of sulfur in divalent Y-S-X and C=S systems (Allen, 

Bird, Rowland and Raithby, 1997a,b) have been studied using the CSD. The geometries 
2 3 

were defined by the parameters shown in Figure 2.8 (a) (b) for S(sp ) (C=S) and S(sp ) 

(Y-S-X), respectively. The CSD provided all the related structures based on this 

definition. The results indicated that with different kind of substitutions on C=S, the 
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hydrogen bond lengths span a wide range. By comparison with the similar bond in 

>C=0—H-0 and >C=0—H-N, it was shown that much weaker hydrogen bond existed 

in sulfur systems. According to the definition of geometrical parameters, the preferred 

directions of H-approach to S were clearly illustrated through the polar histograms of 

pairs of parameters. Meanwhile, ab initio calculations of residual atomic charges and 

electrostatic potentials were also in agreement with the crystallographic observations. 

H H 
dsH 

Y dsH 

0 e O D 
Ssr-

\ R, 
\ 

7 

b) a 

F i g u r e 2.9 D e f i n i t i o n s o f g e o m e t r i c p a r a m e t e r s f o r (a) S( s p ) and (b) 
S(sp J) 
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The direction from which hydrogen bonds approach sp and sp hybridized oxygen 

atoms have been investigated in a similar manner (Lommerse, Price and Taylor, 1997). 

The alkyl hydroxyl groups were chosen as hydrogen donor and oxygen atoms in 

carbonyl, ether, and ester groups as acceptors. The combinations of ab initio 

calculations for the electrostatic energy and contributions of the intermolecular energy 

terms in the hydrogen bonded model system have provided clear interpretations for the 

hydrogen bond characteristics of strength, geometry and directionality toward an 

acceptor molecule in different bonding environments. The work also showed the effects 

of a lone pair existing for acceptor oxygen atoms on the geometry of the formation of 

hydrogen bonds. 

Hydrogen bonds can be also observed in 0 ,N-H ••7t-acceptor systems (Viswamitra, 

Radhakrishnan, Bandekar and Desiraju, 1993). Acetylenic, olefinic and aromatic groups 

are all able to form hydrogen bonds. A crystal structural database survey and energy 
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calculations have characterized the H—C=C (midpoint) and phenyl (centroid) hydrogen 

bonds (Steiner, 1995a,b). 

Three-membered rings can be as C-H donor to the hydrogen-bond. A CSD study 

(Allen, Lommerse, Hoy, Howard and Desiraju, 1996) on the C-H protons of 

cyclopropane and derivatives forming C-H—O hydrogen bonds showed a bond strength 

ordering: C(sp')-H- O > C(ring)-H-0 similar or equal to C(sp2)-H-0 > C(sp3)-UO, 

agreed with the existing knowledge. The two interaction modes from edge or centre of 

the ring when the ring acts as the receptor of hydrogen bond were investigated. 

The hydrogen bond between N and H can be seen from a study on the hydrogen-

bond acceptor properties of N with geometry of the N(sp2) —> N(sp3) transition (Allen, 

Bird, Rowland, Harris and Schwalbe, 1995). The substructures were defined as 

Ri(X=)C -NPv2R.3, ( R 2 . R 3 = C(sp ) or H). The N atom undergoes a transition from sp to 

sp3 with gradual lone-pair formation on N. With the definition of the specific 

parameters, the change could be viewed from the variation of the relevant N—H 

geometry. 

The systematic analysis of other aspects of intermolecular distances of some non-

hydrogen bonds (Nyburg and Faerman, 1985) and molecular packing (Taylor, Mullaley 

and Mullier, 1990) were undertaken using the CSD. One of the interesting topics is that 

the analysis of geometry of intermolecular interaction between halogens and oxygen or 

nitrogen (Lommerse, Stone, Taylor and Allen, 1996). The CSD survey showed that C-

X - 0 , N interaction distances are within the van der Waals radii sum and occur 

preferentially along the directions of the extended C-X bond axis. While EVIPT (the 

InterMolecular Perturbation Theory; Hayes and Stone, 1984) calculations showed that 

these interactions mainly act by electrostatic effects but also that polarization, charge-

transfer, and dispersion contributions are all important. 

In summary, these studies can show the orientation preferences around certain 

functional groups and then the particular chemical and biological activity might be 

understood by the identification of the preferred intermolecular contacts. 
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2.3.5 Structural Correlation to Analyze and Predict Biological Activity 

Through the investigations of structural features of different active molecules, 

models of three-dimensional features required for a particular biological activity can be 

proposed. 

One of the challenges for chemists and biochemists is to design totally new 

structurally novel compounds based on three-dimensional criteria. It has been proved 

that research on the computer design or recognition of molecules predicted to have a 

specified property may be a useful way for pursuing this purpose. Creating and 

searching databases of three-dimensional structures of molecules is one part of such 

research. 

Study of protein structures is a direct way for exploring biological activity. As X-

ray diffraction techniques are applied in determination of protein crystal structures, 

interests in the exploitation of three-dimensional protein structures have increased 

greatly. An important application of protein structures is to understand the geometry and 

strengths of the non-bonded interactions between ligands and receptors, consequently 

providing further information for drug design. Because of the complexity of protein 

structures, it is hard to predict the geometric property of non-bonded interaction from 

theoretical methods. Experimental information is still the main source for the molecular 

model. However, the number of known protein structures that contain a coordinated 

small molecule is quite limited. Not enough high-resolution data are available and there 

is little structural diversity in the ligands. Therefore, most studies to date have 

considered small molecules in the CSD with the interaction of ligands in a protein-like 

environment as an alternative (Klebe, 1990). This readily gives comparison of the 

geometrical preferences of the trial fragment in small molecule crystal structures with 

those in protein environments. In consequence, the geometrical property of 

intermolecular contacts, including many interactions that are difficult to model or predict 

theoretically could be derived (Poulos, Finzel and Howard, 1987). 

In the example given in last section, the hydrogen bond O-H—O systems have 

similar biological environments to real protein-ligand interactions as the acceptor groups 

are frequently part of functional groups in protein ligands. The general modes of binding 

drugs to receptors can involve the geometric conformational studies and a deduced 

conformation of the active species. The importance is to find a suitable system as a 
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starting point for identifying the binding mode and thereafter the essential aspects that 

determine its binding affinity. Investigation of conformations of known ligand 

molecules can give some ideas about the basic prerequisites for receptor binding when 

the protein structure details are not known. 

In some particular cases, especially for the nonpolar ligand retinol (Klebe, 1994), 

the conformations in the crystal structures are indeed very similar to that adopted at the 

binding site. But, some small molecule ligands with several rotatable bonds are more 

flexible and can have a large variety of different low-energy conformations. It is hard to 

say which conformation would be adopted at a binding site, without the evidence from 

the protein-ligand structure data. Klebe's (1995) study on the comparisons of thirty-three 

compounds present both in the CSD and PDB (Protein Data Bank) with global energy 

minimum calculations by molecular mechanics indicated that flexible molecules are 

deformed when binding to protein and this happened as general phenomenon. The 

degree of deformation is dependent upon the number of rotators in the ligands. In this 

way, i f the target protein structures are available, the comparisons of the conformations 

of ligand molecules both in crystal packing and the environment of binding site certainly 

provide more reliable information (B6ehm and Klebe, 1996) for the protein-ligand 

interactions, and thereafter will stimulate the discovery of novel molecules to develop 

new alternative binding skeletons. 

Hydrogen bonds still play an important role in the protein-ligand interaction 

because various amino acid residues usually interact with functional groups of some 

molecule ligands in the hydrogen bond forms. The multiple hydrogen bonds features of 

water molecules connected with protein-ligand interactions (Poornima and Dean, 1995) 

were described by analyses of 19 high-resolution crystal structure of protein-ligand 

complexes. The water networks formed by these receptor/ligand interactions were 

considered to be providing the stability of the protein-ligand complex and are important 

for any site-directed drug design strategies. It is believed that with the increase in the 

numbers of structural data of experimental protein-ligand complexes, the studies on this 

area will be further developed. 
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Chapter 3. 

A General Method for Identifying and Classifying 
Metal Coordination Sphere Geometry 

3.1 Introduction 

In Chapter 2, the applications of the CSD are mainly concerned with organic 

molecular systems. The CSD also contains a lot of structural data of organometallic 

compounds and metal complexes. However, systematic studies on these structural 

parameters, especially involving transition metals, using the CSD's facilities have not 

been as frequent as studies in organic compounds. One of the major reasons is that the 

variety of metal atoms in their bonding and in these systems are usually harder to model 

computationally, than are the more fully understood organic systems. The same metal 

atom always has a wide variety of geometry, according to different bonding 

environments. Therefore, the previous form of systematic analysis is not always 

appropriate. But sometimes, investigations on the geometry of the ligands can still 

provide direct observations related to the structural properties (Mtilker and Mingos, 

1995). 

A desirable systematic treatment of metal complexes is to classify and identify the 

geometry for various coordination numbers. As is well-known, transition metals 

coordinate with ligands to form different polyhedra in which ligands occupy the vertex 

positions and the metal atom is at the centre. Although it is not yet possible to predict 

which shapes of transition metal complexes can be, it is clear that among the factors 

which determine them are (Sharpe, 1981): 

(a) the electronic configuration, oxidation state and energetically accessible orbital 

of the metal; 

(b) high-spin or low-spin character, which in turn depends on 

(c) the nature of the ligand; 

(d) size and steric effects. 

For example, four-coordination complexes are often classified as either 

symmetrical tetrahedral or square planar, but there are many complexes, which are 
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known to have distorted or intermediate geometry. A survey on such species could 

provide information which shows how the geometry of one is converted into the other, 

that is exploring the reaction pathways of coordination complexes as described in last 

chapter. Although some physical methods and theoretical calculations can often be 

used to assign structures of complexes, using X-ray diffraction is the unique method to 

determine such structures containing many atoms. Thus, the structure correlation studies 

may reveal information that might not have been accessible by any other methods. The 

studies, by using the CSD, have given a clear classification to molecular geometry of 3-

(Burgi, Murray-Rust, Camalli, Caruso and Venanzi, 1989), 4-(Murray-Rust, Burgi and 

Dunitz, 1978) and 5-coordination (Auf der Hyde and Burgi, 1989a,b,c). With the higher 

coordination numbers, there are more difficulties in using database facilities. In this 

present study, the project is concerned with the higher coordination numbers. The 

details about the studies and corresponding successful results wil l be presented in the 

following sections and chapters. 

3.2 The General Geometric Descriptions of Metal Coordination 
Sphere ML„ 

For a metal coordination sphere ML„, some ideal polyhedra are usually used as 

references to describe the geometry. In a simple coordination complex, this can be 

obtained by a direct view of the determined structure. An appropriate selection of 

coordinates for describing the geometry also gives a rather straightforward expression. 

The most convenient way is to use bond angle relationships, i.e. internal coordinates. 

For an /^-coordination complex, there are n(n-l)/2 valence angles to define the 

geometry. Let us look at four-coordination metal complexes again. The geometry of 

compounds can easily be classified as tetrahedron or square plane according to the 

definitions of parameters related to the angles between ligands (L) through metal (M), 

i.e. angles of ligand-metal-ligand, (Lj-M-Lj), 9y. These angles in an ideal tetrahedron (all 

109.5°) are obviously different from those in square plane geometry, (four 90° and two 

180°). A simple definition of the mean values of these angles wil l distinguish 

tetrahedral from square planar because the value for the former symmetry is 109.5° 

whereas for the later it is 120°. Some similar definitions for the specific angle sets for 

these two different geometries can also be easily found. 
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When the coordination number n is < 6, it is here called a lower coordination 

number. In all these complexes, the polyhedra used to describe their geometry have the 

fixed values for the angles between vertex and the central point, that is, corresponding 

to the bond angles between ligand and metal atoms as given above. In the cases of 

coordination number > 6 (higher coordination number, here), most corresponding 

polyhedra appear no fixed characteristic angles. However, these polyhedra are 

references to compare with the observed structures of metal complexes, these angles are 

idealized in this study so that they can be used as standard for this purpose. In practice, 

the definition for such a standard is not unique. Before the further analyses are given, 

some ideal polyhedra for describing the coordination geometry of coordination number 

2-9 wil l be illustrated in the following sections. It should be indicated that the 

coordination spheres in this study are only defined as those complexes of the transition 

metals and the coordination number is only counted as the same number as that of 

metal-ligand valence bonds. The complexes which the central atom has electron pairs 

and the electron pairs directly affect the coordination sphere geometry are not included 

because the interest is this study is in the bound geometry of transition metals 

coordination. 

3.2.1 Two, Three, Four and Five-Coordination 

In these coordinations, each ideal polyhedron has significant angles. It is easier to 

distinguish one from another by comparing either coordination sphere shapes or the 

angle values Qy. The simplest case is n=2. Only a linear shape can be adopted when two 

ligands (L) coordinate with a metal atom {M) in data set of this study. It is obvious that 

an ideal angle 6/2 is 180° and any real two-coordination complex structures that deviate 

from this value can be easily found from the comparison of the determined geometric 

parameters. 

In three-coordination, an ideal geometric description is trigonal planar with D3), 

symmetry. But some structures can be described in a distorted form that could be a T or 

Y-shaped planar or a pyramid with three equal M - L distances and the metal atom out of 

the plane, shown as in Figure 3.1. In these cases, the symmetry lowers to C^v and Cj v , 

respectively. 
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F i g u r e 3.1 Geometrical d e s c r i p t i o n i n 3-coordination 

For the geometric description of ML 4 sphere, there exist two ideal geometries. One 

is a tetrahedron and the other is a square plane. 

For five-coordination, there are also two major polyhedra to describe the geometry 

of the coordination sphere ML5. They are trigonal bipyramid (TBP) and square-based 

pyramid (SQP). The significant character in the former geometry is that two vertices are 

located opposite one another along the axial directions and three on the equatorial plane 

whereas the latter one has four vertices in a plane and one along a perpendicular axis. 

There are obviously distinct angles to express these two shapes. Any other geometry 

which has appeared in the real structures of ML j , can be considered as a distortions from 

either these two of modes. 

Six-coordination in metal complexes is mainly confined to a common geometry, 

the octahedron, which has regular angular values in the x,y and z directions. This is a 

preferred geometry for most metal atoms according to electron configuration and orbits 

in the metal ion or atom. However, although it is rare, the trigonal prism (TPR) also 

exists in hexacoordination, which has higher internal ligand repulsion energy. 
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3.2.2 Seven-Coordination 

In seven-coordination, there are three polyhedra that are called pentagonal 

bipyramid (PBP), capped octahedron (COC) and capped trigonal prism (CTP), shown 

as in Figure 3.2. A pentagonal bipyramid has two types of sites for ligands. Two sites 

are on axial positions, here numbered as / and 2, and five on an equatorial plane, as 3, 

4, 5, 6 and 7. The angles between the ligands through the metal atom have fixed values. 

It is the easiest identified shape among the three. The positions 1 and 2 have the loosest 

coordination environment and an idealized L]-M-L2 angle of 180°. The five equatorial 

ligands are in the same plane and thus the ideal angle between two adjacent ligands 

through the central atom is 72°. This shape has Dsh symmetry and the five-fold axis 

passes through positions / and 2. Unlike the PBP, the capped octahedron has no fixed 

values of angles between ligand through metal atom, L—M-Lj. The angles are variable 

in certain range with different ligand-metal distances. The molecule with this shape is 

usually characterized as C j v symmetry. The three-fold axis is considered to run through 

from position 3 to the centre of opposite triangular face. 

Capped trigonal prism is another polyhedron which L—M-Lj angles are also not 

fixed. Ideal geometry for this polyhedron is described as C?v symmetry. The two-fold 

1 

6 

1 

5 
7 

2 2 2 

PBP COC CTP 

F i g u r e 3.2 Geometrical d e s c r i p t i o n i n 7-coordination 
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axis runs through from position 2 to the midpoint of edge 1, 3. Distortion of the 

equatorial quadrilateral face from the ideal geometry can give C2 and Cs geometry. 

COC can be seen as an octahedron plus an extra atom off one face, while CTP can 

be seen a trigonal prism plus an extra atom off one rectangular face. Although they 

appear quite different in Figure 3.2, all of these polyhedra are actually very similar when 

viewed in a different perspective. Especially, the angles between COC and CTP are 

indistinguishable sometimes owing to their very similar range of angular change. In 

addition to the small differences in angles and energy (Thompson and Bartell, 1968) 

between them, real complexes often adopt geometries which deviate somewhat from the 

idealized ones. Thus, the description of complex structures in terms of one geometry or 

another is arbitrary. The same structure could be described in different ways and 

confusion often happen in literature. 

3.2.3 Eight and Nine-Coordination 

Geometry of eight-coordination largely falls into two common geometries: 

dodecahedron (DOD) and square antiprism (SQUP). The cube is another possible 

geometry but not commonly found in this kind of complex. It is more common in ionic 

solids with NaCl or CaF2 structures. Occasionally, bicapped trigonal prism and 

hexagonal bipyramid are also represented in octacoordinate complexes. 

The most common polyhedra used in eight-coordination are given in Figure 3.3 

accompanied by a cube for the comparison. The SQUP can be seen as a 45° twist of one 

square face of a cube with respect to another. And in DOD, there are two groups of 

atoms positioned at 1, 3, 5, 7 and 2, 4, 6, 8, which form two tetrahedra and interlock 

each other. The symmetry of this geometry is D^ . A 4 axis passes through 2-4 edge 

and 6-8 edge and the metal atom locates at the centre. 

There are two sets of geometric parameters to describe this different geometry 

(Kepert et al, 1978; Hoard, Hamor and Glick, 1968) and these definitions had been used 

in some work, but were restricted in their use. 

In the case of higher coordination number 9, the identification and classification 

between geometries becomes difficult because the angles between ligands through the 

metal atom are not easily distinguishable. Proper description of geometric changes is 
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F i g u r e 3.3 Geometrical d e s c r i p t i o n i n 8-coordination 

more complicated and ambiguous. One of the most possible geometry for 9-

coordination is tricapped trigonal prism (TTP), the other is capped square antiprism 

(CSA), shown in Figure 3.4. In the TTP, ligand positions 123 and 456 form the trigonal 

prism and 789 at the capping positions. These three groups all occupy the vertices of an 

equilateral triangle, respectively, and these three triangles have mutually parallel planes. 

While in CSA, atoms 1364 and 2759 constitute two parallel squares and the two square 

planes are twisted about each other by 45". In Figure 3.4, the position numbers were 

assigned in such a way that two geometries can be compared easily, that is, if a view is 

along the bond connected by position 8 and the central point in TTP, it has the same 

number order as that in the CSA. In practice, CSA is closely related to the TTP. The 

difference between these two geometries is mainly in some specific angle values that 

will be given later. 

Tricapped Trigonal Prism (TTP) 
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/ \ 
/ \ 
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6 
\ 

\ / _ 
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> 
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2 
Capped Square Antiprism (CSA) 

F i g u r e 3.4 Geometrical d e s c r i p t i o n i n 9 - c o o r d i n a t i o n 
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3.3 Application of Symmetry Deformation Coordinates 

3.3.1 Symmetry Considerations 

The given coordination polyhedra have in general ideal symmetry and are used as 

reference configurations to classify or identify the symmetry of real coordination 

complexes. In fact, many molecules exhibit significant deviations from these 

symmetries in the crystalline state. Thus, the observed points in the correlation patterns 

often appear around the expected value and fall in a certain limited range. Large 

deviations or distortions will be beyond the range. In order to describe the distortion of 

an observed structure away from a symmetric reference molecule with the same atomic 

connection or constitution, an expression in terms of a total displacement vector 

D = djPi = [dj(obs)- dj(ref)]pj was given (Murray-Rust, Biirgi and Dunitz, 1978), where 

dj(obs) and d j ( r e j ) are internal parameters of the observed and reference molecules, 

respectively, and the difference represents the displacement of the observed structure 

along the displacement coordinate Pj. 

Some other alternative coordinate systems could be also used in this expression. 

Al l of these systems can be derived from the symmetry. Therefore, for any further 

analysis using these coordinates, the symmetry factors existing in different geometry 

should be considered first of all. In Table 3.1, the symmetry point groups of various 

Table 3.1 Symmetry point groups of v a r i o u s polyhedra 

Coordination Polyhedra Symmetry Coordination Polyhedra Symmetry 

Trigonal plane D 3 h (C J V ) Pentagonal bipyramid D 5 h 

3 Y-shaped plane C 2 v 
7 Capped octahedron C 3 v 

T-shaped plane c 2 v 
Capped trigonal prism C 2 v ( C 2 , C s ) 

4 Tetrahedron T d 
Cube o h 

Square plane C 2 v 8 Dodecahedron D 2 d 

5 Trigonal bipyramid D 3 h 

Square antiprism D 4 d 

Square pyramid C 2 v 

Tricapped trigonal prism D 3 h 

6 Octahedron 

Trigonal prism 

o h 

D 3 h 

9 Capped square antiprism C 4 v ( C 2 v ) 
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polyhedra belonging to 3-9 coordination spheres are presented. The point groups in 

parentheses represent the possible symmetry when the ideal shape has some distortions. 

3.3.2 Symmetry Deformation Coordinates 

Symmetry coordinates are a linear combination of the internal coordinates of the 

molecule and a set of orthogonal and normal basis vectors are formed according to the 

irreducible representations of the point group of the reference molecule. They are 

usually applied in geometric analysis in terms of investigation of the displacement 

vector between the defined coordinates. 

As is already mentioned for the example of four-coordination, there are ten 

internal coordinates for a perfect tetrahedron (TJ) (four for bond length r j - r / , six for 

bond angles 6/2, Q13Q14, Q23, §24 and 834). Symmetry coordinates may be given as: 

Si = j ( n + n + 7-3 + r*)\ Sia = ^=(2012 - 613 - 0M - 023 - 024 + 2034); 

Sib = {(0i3 - 014 - 023 + 024); Sia = \(n + n - n - n ) \ 

Sib = \ ( r \ - n + n - 7 * 4 ) ; S3c = y ( n - n - n + 7-4); 

S4a = -£(912 -034); S4A = £ ( 0 1 3 -024); 

SAC = £ (014 - 023); 55 = ^(012 +013 + 014 + 023 + 024 + 034). 

I f the A8jj values (the difference between observed and idealized values) are used 

instead of the observed internal coordinates only in the formula, the deformation 

coordinates are given. 

By using this coordinate system, the deformations in the observed molecule away 

from the more symmetrical reference geometry can be described more accurately. It can 

tell us which types of distortion are expected to be coupled to other types. Especially 

with an increased number of atoms around a central atom, it is more difficult to use a 

list of internal coordinates for this description because the possible reference polyhedra 

are also more complicated and the differences in angular relationships become small. 

Thus possible overlaps of the angular ranges can occur and assignment can in fact 

become in-distinguishable. Whereas symmetry coordinates are considered from the 

symmetry of the molecule itself. "In transforming from dj to symmetry displacements, 
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the actual values of d/ref) are important only for the totally symmetric displacements 

since they cancel out for all the others"(Murray-Rust et al, 1978). In describing the 

molecular distortions in 4-coordination complex structures away from a reference 

polyhedron, tetrahedron (TD) and square plane (SP), the coordinates were calculated on 

the basis of the labeling permuted in the 24 different ways for four ligand atoms. The 

interest was particular in S ,̂ and S2b (Klebe and Weber, 1994), which related to the 

conversion from TD to SP geometry. Through the relationship of these two coordinates, 

the inter-conversion from TD to SP geometry was mapped. Some other successful 

applications of these coordinate systems can also be found in the examples given in last 

chapter, such as conformation of ring systems etc. 

3.4 Atomic Permutation 

After the idealized polyhedra are given, identification of the geometry of an 

experimentally determined coordination complex structure is usually carried out by the 

comparison of the observed structure with those idealized polyhedra as reference 

geometry. For this comparison, a unique labeling scheme for the ligand atoms sited on 

vertices of polyhedron is required. Thus, the comparison structure is expressed on the 

same scale as the reference. For example, for a PBP-like 7-coordinate complex, only 

when the ligands at the axial positions are defined as number 1 or 2 (see Figure 3.2), 

deviations from the idealized angles can present their smallest values. 

In a statistical study, identification of ligand number involves the permutation 

isomers, which will give all possibilities of the ligands over the polyhedral sites around 

the bound centre. Accompanied by symmetry coordinates, each such permutation isomer 

with the same absolute length of vectors are then classified to the same group. The 

isomers belonging to the group that has the shortest deformation vector are accepted to 

yield the final labeling scheme. It is obvious that each such group contains more than 

one possible labeled fragment which have the same length of deformation vectors but 

different in relative distribution of ligands to the polyhedra sites. For a simple example, 

PBP 7-coordination geometry is still chosen here. I f Z,, represents one of seven ligands 

and St one of seven sites of vertices (Drew, 1977), that is, L, locates at the site 5 „ and i f 

the basal sites (3, 4, 5, 6, 7) are fixed, there are still two possibilities for sites 1 and 2 to 
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have the same values i f On is used to describe the geometry 

{ 
L\ Li Li Li Ls Lt, Li 

\S\ 52 Si 54 55 56 ST J 
(a) and 

1'Li L\ Li LA LS LS LT^ 

\ 5 1 52 53 54 55 56 5 7 ^ 
(b) } . But 

for an isomer in which the axial and basal positions 1 and 3 are exchanged 

(c), different values from previous two isomers(a) and 
^ Li Li L\ L4 L5 Z,6 LT^ 

V 5 I 52 53 54 55 56 ST J 

(b) wil l be observed in the comparison of geometric parameters related to the 0 / 2 value. 

For a set of n ligands and sites represented as; 

f T\ f 

V 

L\ Li Li 
51 52 53 Sn J 

there exist n permutation isomers to distribute labels among the n ligands. Thus each 

seven-coordination complex entry in the data set wil l require a large number of 

permutations, 5040(7!), to assign the labeling scheme. Normally, on the basis of the 

final labeling scheme, comparisons with the reference polyhedral geometries can be 

derived and the deformations observed in the coordination complexes can be expressed 

in terms of symmetry deformation coordinates. 

In practice, such isomers with equal deformation vector length can be considered 

by the order of the point group that represents the reference geometry. The point group 

Dsh, corresponding to the geometry of PBP in 7-coordination, contains 20 symmetry 
2 3 

operations (E, 2C$, 2Cs , 5C2, a/,, 2Ss, 25j and 5a v). This means that for any starting 

arrangement of labels, 20 isomers which have the same deformation vector lengths will 

be generated from the operations of all these symmetry elements. Thus there are 252 

(71/20 =252) groups of such distortion equivalents. In order to avoid the random 

distribution in application of statistical technologies by choosing any one of these 

vectors by chance, Klebe (1994) indicated that "all examples labeled to produce the 

shortest deformation vector have either to be projected into the same asymmetric unit or 

symmetry expanded by applying all symmetry operations according to the point group 

of the reference structure". 

In the conformational characterization of ring systems, permutations have also been 

used. But in the ML„ system, permutation numbers («!) increase more quickly with the 

coordination number than those in the ring system. Permutation numbers for the MLn 
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coordination sphere (n=3-9) corresponding to the ring systems (n=3-9) are listed in 

Table 3.2 for comparison of the two systems. 

Table 3.2 P e r m u t a t i o n s o f atom l a b e l s i n c y c l i c systems and 
ML„ spheres 

C y c l i c systems C o o r d i n a t i o n spheres 

N (atom) £n (torsion) Permutations , N (aagle) ... Pennutatldns N (atom) £n (torsion) 

3 3 6 3 6 
4 4 8 6 24 
5 5 10 10 120 
6 6 12 15 720 
7 7 14 21 5040 
8 8 16 28 40320 
9 9 18 36 362880 

3.5 Multivariate Analysis in the ML„ Coordination System 

When using the CSD to carry out a systematic analysis, many hits or samples can 

be retrieved from the database for a defined parameter to describe the geometry of a 

molecule. Usually, more than one such parameter is used in the analyses of ML„ system. 

The defined parameters can have different values for different samples. I f the parameter 

is referred to as a variable, a number of samples for the defined parameters will 

comprise the multivariate data. The data may be arranged into a matrix with one column 

for the values of a given variable for all samples (numbered Ns); each row for a sample 

having the values of Nc variables. This matrix Q(NC,NS) could be either the same as the 

matrix M(Ir,Ic) generated directly from the CSD for the tabulated geometrical 

parameters, or derived from these parameters which correspond to the selection of those 

data from the CSD through the defined transformations. This data matrix is the basis for 

all multivariate data analysis methods. 

In last chapter, principal component analysis, factor analysis and cluster analysis 

and other multivariate analysis techniques were described briefly. They were applied to 

the systems which have multiple defined parameters to describe the geometries and no 
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knowledge about which parameter is more important in these descriptions (Murray-Rust 

& Motherwell, 1978a,b). Al l these three methods are basis techniques in statistical 

analysis. Before going further to see how these techniques were and will be applied in 

the ML„ system, we need to look at these techniques in more details. 

3.5.1 Principal Component Analysis (PCA) 

The multivariate matrix Q(NS,NC) is the starting point for a mathematical 

description of principal component analysis. PCA can find a new set of uncorrelated 

variables based on the original set of variables. From the original data set, there are Nc 

variables, let them be xj, X2, — XNC for each observation. A variance-covariance matrix 

of the xNc variables can be derived as an Nc x Nc matrix, let it be V, a vector a/ is found 

such that: a\Va\ is maximized with the condition that a\Ta\ = 1.0, Thus the first 

principal component is expressed as a linear combination of variables that gives the 
Nc Nc 

maximum variation: p\ - ^auxi; the second PC's, pi = ^anxt is found such that 

;=i 1=1 

ai Vai has the largest value with the conditions that ai -1.0 and ai a\ = 0.0. In 

this way, a complete set of PC's can be derived, which are linear combinations of the Nc 

observed variables so that they have maximum variation and are orthogonal to each 

other. Thus, a set of correlated variables is transformed to a new set of uncorrelated 

variables. 

The elements of the vectors a, are known as the principal component loadings 

which usually represent the relative influence of an original variable on the new 

component variables, and when it is applied to the systematic studies of molecular 

geometry, it may be important in the interpretation of the individual defined parameters. 

Meanwhile, the vectors a,, a2, —, aNccm be seen as the eigenvectors of the matrix V 

from the derivations of the a/ vectors. Each eigenvector corresponds to eigenvalue, A,j2. 

Therefore, the proportion of variation for the z'th PC's can be obtained by the formula: 

For each observation, PC's scores are generated. These values can be used to generate 

the PC scatterplots. 
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In practice, the first few PC's may account for most of the total variance, thus 

reducing the dimensionality of a data set. Once the number of significant PC's is 

identified, the scatterplots of pairs of PC's can explore the information containing in the 

original data set instead of using a large number of correlated variables in the original 

data set. 

Alternatively, the correlation matrix can also be used to find the PC's instead of the 

variance-covariance matrix stated above. There are similarity and specifics for both 

kinds of matrix from mathematical consideration (Chatfield et al, 1980), the details are 

not given here. 

Example ML4 

An example of applying PCA to ML4 coordination sphere geometry using the CSD 

is given in the following paragraphs. 

Investigating on CuL4 complexes (L = any atom except H, retrieved using the CSD 

search program QUEST3D), the CSD yields 127 observations. In order to decrease the 

chelate effect of ligands to the minimum to the coordination sphere geometry, the four 

ligands are all restricted to be unidentate in the search. The six L-M-L angles Q12, 6/3, 
Q14, Q23, Q24, and B34 (see Figure 3.5) are defined as the basic geometric parameters. 

With the considerations of the symmetry and label numbering on the CuL4, a full data 

matrix of 24 x 127 = 3432 fragments, six variable values for each fragment is obtained. 

PCA is applied to this data set and six PC's could be derived, in which the first two 

PC's, PC 1 and PC2 are degenerate. Each PC; and PC2 gave 47.2% of the total variance 

and two together accounted for 94.4% of the total variance in the data set, and a PCj 

accounting for a further 3.5% (Table 3.3). This implies that only the first two PC's, PCi 

and PC2, include most of the information for the CuL4 geometrical distribution, instead 

of the considerations from the six valence bond angle values. 

The PC 1 vs. PC2 plot is shown in Figure 3.6, which can be viewed as i f it is along 

the 5-fold axis of a tetrahedron. The interpretation of the plot simply gives that the 

central clusters around the origin are readily attributed to tetrahedral (TD) complexes, 

while the other obvious clusters related by the 3 axis (at~ -4.3, 0.0; 2.0, 3.8; and 2.0, 

-3.8) represent square planar (SP) complexes. Reference back to the CSD shows that the 

former arises from Cu(I) species and the latter from Cu(II). 
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Table 3.3 PCA o f CuL 4 sphere 1 

eigenvalue variance(%) Culm. Vanance(%) PC's 0 2 
47.2 2.832 47.2 1 
94.4 2.832 47.2 0 13 0 0 I) 97.9 0.209 3.49 14 23 24 
98.6 0.042 0.70 
99.3 0.042 0.70 
100.0 0.042 0.70 

0 34 

F i g u r e 3.5 D e f i n i t i o n o f 
v a l e n c e a n g l e s i n CuL 4 . 

In addition to the classification of two geometries in the CuL4 sphere f rom the PC-

plot, some other significant features related to the geometric changes in this system can 

be viewed f rom the map.One is that there are a number of the experimental observations 
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F i g u r e 3.6 PC2 v e r s u s PC2 f r o m 2 4 - f o l d e x p a n s i o n o f CuL4 ( u n i d e n t a t e ) . 
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which appear between the two common, and expected geometries, TD and SP, which 

will provide important information for the mapping of the geometrical changes that take 

place along the TD-SP inter-conversion pathway. In addition, the three symmetry-

related SP clusters reveal a range of distortions along an axis perpendicular to the inter-

conversion path, while the central TD cluster is represented as a relatively compact 

circle of data points. 

3.5.2 Factor Analysis (FA) 

Factor analysis is another statistical technique that may be used in systematic 

analysis of molecular geometric preferences. FA has a similarity to PCA, but there are 

also several differences between these two methods from mathematical and statistical 

considerations. 

We can still start from the original data set matrix M, which has Nc variables, x/, 

X2, •", XMC for each observation. It can be expressed as a linear function of a set of 

underlying factors F(Ns,Nm), (Nm<Nc), and a residual variant E, i.e. 

M = FSr + E 

Thus, each observed variable is: 

Xi = Si] f \ + Sil f l H h SiNmfNm + ei\ I = 1,2,- • -Nc . 

where {syj (i =l,2,—,Nc;j=l,2,—Nin) are factor loadings and e, for / = 1,2,—, Nc, are 

independent random variables. From the original data set, a covariance matrix on the TYC 

variables can be obtained. Through decomposition by eigen analysis of the covariance 

matrix, the factor scores (the values of the factors for an individual entry variable) and 

the loading Sy can be derived, in terms of a smaller number Nm, of unobserved variables. 

Similarly to the PCA, it also reduces the data dimension considerably since only a 

few factors are significant in the describing the variances. 
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3.5.3 Cluster Analysis 

Within a data set M(NS,NC), similarity exists among some objects, which form 

different groups such that individuals within a group are closely similar and those in 

different groups are dissimilar. Cluster analysis aims to classify these individuals to a 

set of clusters by measuring how "far apart" or how "close" pairs of individuals are. 

This will also depend upon the form of the Nc variables. The classification can be 

achieved by the measure of the distance or the similarity between two individuals in 

turn. The distance matrix can be constructed based on two objects, such as j and k and 

the elements of distance matrix, djk, are: 

where x,, and xu are the (j, #th and (k, i)th elements of M , s, is a standardization for z'th 

variable. D is a selected function, it could be a Euclidean distance, Euclidean square 

distance or absolute distance and so on (Krzanowski, 1988). In Chapter 2, it has been 

mentioned that modification have been used for this function to classify the geometry in 

six-membered ring systems. By using a select criterion on the djk values, a series of 

overlapping groups from individuals is produced and two clusters are merged to a larger 

cluster in a hierarchical form until a single cluster is achieved or vice versa. 

The other type of cluster analysis is a non-hierarchical method, in which a given 

number of clusters are formed and there is no requirement that the final clusters formed 

are from the previous clusters. The number of clusters is usually specified prior to the 

analysis. One of the commonly used methods is K-means clustering (Gordon, 1981). 

Al l of these are based on the measure of similarity of the objects. The 

classification can be also carried out using discriminate analysis (Chatfield et al, 1980). 

Both cluster analysis and FA have been combined for use in the geometric analysis 

of five-coordination (/metal complexes (Auf der Heyde and Biirgi, 1989b,c). Analyses 

were based on the symmetry deformation coordinates, which are represented by two sets 

of 72-dimensional deformation spaces for TPB {Dst,) and SQP (C2V), respectively (Auf 

der Heyde and Btirgi, 1989a). Cluster analysis showed that ideal TBP fragments 

a Nc 
djk = I S ] D(Xji I Si, Xki I si) 

1= 
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appeared in the centre of scatterplot diagram represented by two specified coordinate 

variables corresponding to the symmetry. Three other identical clusters which 

represented the distorted SQP's geometries surrounded the centre. Two types of 

distorted SQP geometries, conventional elevated and flattened SQP, were characterized 

in the centre and the bottom tip of the Y-shaped clustering pattern, respectively, which 

is one of the scatterplots based on the deformation coordinates derived from the SQP 

(C^v) symmetry. The other two clusters, which belong to permutationally equivalent 

TBP's, were also identified from the diagram. FA generated a group of factors also on 

the basis of symmetry coordinates. Mappings of the results showed that the distortions 

of the TBP and SQP follow an and Berry coordinate reaction pathway, that is, from 

tetra- to penta-coordination with attack of the fif th ligand from one of axial directions. 

Progression is from a flattened SQP to an elevated SQP, then transformation from the 

SQP to TBP and finally elimination of ligand at the opposite axial position to the attack 

site, according to the relative importance of symmetry coordinates. 

A question may be raised from these examples as: Can these techniques be used 

directly in the higher coordination number system in a similar manner? The facilities 

provided in the CSD for the application of symmetry-expanded PCA to 727 ML4 

fragments present no real computational problem. However, with the increase of the 

coordination number, the base of defined geometric parameters becomes larger. For 

seven-coordination, 21 valence L-M-L angles are needed compared with only 6 such 

angles in four -coordination. In this way, a huge number of multivariate data points will 

be generated by symmetry expansion for hundreds of the CSD retrieved experimental 

observations and each observed fragment will have 5040 points from Table 3.2. Such 

data set matrices definitely exceed the storage capacity of the CSD data analysis 

program VISTA. So the present database software can not be used simply as in the 

lower coordination systems. A method to address the problem so that the application of 

PCA or FA technique can be achieved in 7-coordination will be given in the following 

sections and related results in later chapters. 
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3.6 A Discrepancy Index Method for Higher Coordination Number 
M L n 

From previous sections, it can be seen that statistical techniques, e.g. PCA, would 

appear to be a useful method for detecting the geometrical preferences, deformations 

and inter-conversion pathways of metal coordination spheres. 

However, in a systematic study of n-coordination, a search from the CSD will 

always result in a significantly large data set, represented by a multivariate valence 

angle matrix with row numbers of (n! x Ns) and column numbers of k = n(n-l)/2 from a 

consideration of the full number of atomic permutational isomers. Such a data set 

becomes unfeasible for a 2D substructure search which assigns "any atom type" to 

ligand atoms, L, when the coordination number is greater than five. Thereafter the 

application of systematic PCA studies to general higher coordination polyhedra is also 

not feasible. The use of 3D geometrical search constraints (as stated in introduction 

section on the CSD) by either differentiating between examples of standard geometries, 

(e.g. giving angular ranges for TBP and SQP in ML 5 species), or restricting ligand atoms 

to the common types, will naturally reflect the user's preconceptions concerning 

permissible arrangements for a given archetype. Thus, this wil l eliminate heavily 

distorted variants and also examples of other possible archetypal polyhedra. In any 

general systematic study using the CSD, a ful l data set including every possibility for the 

given system is usually expected, and the meaningful results are explored as a 

knowledge acquisition process that does not depend on the preconceptions of the user. 

Only in this way, can new knowledge be discovered. 

3.6.1 Rang(x) Index 

By now, the well-known polyhedra with standard geometries for n-coordination 

(3-9) have been given, some examples of geometrical descriptions based on these 

polyhedra for lower coordination complexes (up to 5-coordination) have been 

demonstrated and some difficulties for such similar treatments in the case of higher 

coordination have been also stated. In order to avoid these difficulties or sort out the 

problems, a successful method which is based on the standard geometrical models, 

especially for 7-coordination, is proposed. Then, a suitable treatment is given so that 
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the geometrical distortions of the real complexes from these standard models can be 

viewed. 

In this study, exemplified for 7-coordination, a model was proposed based on the 

three idealized polyhedral forms given in §3.2.2. A simple discrepancy index for all L-

M-L angles is set out in the following Equation to measure how far a real observed 

complex deviates from the idealized model: 

2 
> 

where 6(Sld) represents the standard angle value in an idealized polyhedron, Q(0bs) is the 

relative angle from an observed complex. Rang values are calculated over all Np= n! 

ligand permutation for the different polyhedral forms x and the Rang value is expressed 

in the convenient form of a percentage. It is obvious that the smaller the Rang value, the 

closer to the proposed idealized polyhedron is the shape of the observed complex. 

Therefore, the final decision for the geometry of the complex is one with the smallest 

Rang value related to the standard model. The development in this system is to generate a 

more automatically and widely applicable program for use in the higher coordination 

number systems. 

3.6.2 A Program for Calculation of Rang(x) Values 

A formula for the calculation of discrepancy index Rang has been given in last 

section. This is a basic way to identify geometry of an ^-coordination sphere. From the 

criterion value of Rang, a deviation of the complex from the standard geometrical form 

can be measured numerically. For the different standards (PBP, CTP, SQP, etc), here 

defined as x, a set of discrepancy indices Rang(x) can be obtained. In the construction of 

a computer program, an important factor is that the atomic permutational symmetry of 

the ML„ system should be considered so that Rang(x) must be computed separately for all 

possible set of angles 0(Obs), that is, the nl permutations of 0j(Obs) [i=n(n-l)/2]. The 24 

permutations for ML4 are shown in Table 3.4 as an example. In doing so, these valence 

Rang(x) = 100-min 
[Oi(oAs) — 9i(jf</)]2 

2> (std) 
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angle permutations are derived and applied automatically and the minimum value of 

Rang(x) is generated. 

Normally, for an ^-coordination (n > 2), there exist two or more commonly 

observed archetypal polyhedra, e.g. the PBP and CTP variants of ML7 geometries, and 

the discrepancy index of a given experimental geometry from both of these standards, 

Rang(TBP) and Rang(CTP) can be computed and listed in an output file for further use in 

systematic analyses. 

An output for an example of a 7-coordinate complex (CEHZEU) resulting from 

the computer program is listed in Table 3.5. The complex is identified by the CSD 

refcode and with three Rang(x) values (expressed as percentage), the corresponding 21 

Table 3.4 The 24 p e r m u t a t i o n s o f atom l a b e l s i n an ML 
fragment 

Permutation 1 2 3 4 Permutation 1 2 3 4_| 
1 1 2 3 4 13 3 1 
2 1 2 4 14 3 1 4 2 
3 L 3 2 15 3 2 1 4 
4 1 4 2 16 3 2 4 1 
5 1 4 2 3 17 3 4 1 2 
6 1 4 3 2 18 3 4 1 

7 O 
c. 

1 3 4 19 4 x 2 3 
8 0 1 4 20 4 1 3 
9 3 1 4 21 4 2 1 

10 2 3 4 1 22 4 2 3 1 
11 £, 4 1 3 23 4 3 j_ 2 
12 2 4 3 1 24 4 3 2 1 

experimental valence angles are illustrated in a certain order. The program identifies the 

specific permutation of the observed valence angles that is closest to the fixed values 

used to define the standard archetype (JC) and by default, the specific enumeration of the 

atoms of the experimental CSD structure that gave rise to those angles. In this example, 

P2, PI, Cll, S4, S2, S3, SI are listed in the required order to enumerate ligand labels 1 

to 7 in PBP geometry (shown in Figure 3.7). It is obvious that the geometry of this 

structure is identified as PBP since Ran&(PBP) has the smallest value among three 
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Figure 3.7 C o n n e c t i v i t y diagram o f t h e c o o r d i n a t i o n sphere 
i n CEHZEU 

Table 3.5 An example o f o u t p u t f r o m t h e program (ML7) 

CEHZEU 
The smallest R-index i n PBP i s % : 3. 64; permutation number i s : 838 
The Order of Ligands P2 PI C l l S4 S2 S3 SI 
Angles (°) : 176. 5 
86.9 86. 6 97. 7 88.5 93.2 90. 1 90.8 83 . 5 95 0 88 1 
75.7 76. 0 143. 1 144.5 151.1 140. 5 68. 9 68 . 4 138 8 72 3 

The smallest R-index i n COC i s % : 13.24; 
The smallest R-index i n CTP i s % : 11.38; 
The Order of Ligands i n CTP: S3 C l l SI PI S4 P2 S2 
Angles (°) : 143.1 
72.3 95. 0 140. 5 88.5 68. 4 144 . 5 90.1 75 . 7 86 9 76 0 
88.1 68. 9 93. 2 138.8 90.8 176. 5 83.5 86 . 6 151 1 97 7 

The Order of Ligands i n COC: S2 S4 S3 SI P2 C l l PI 
Angles (°) : 151.1 
68.4 138. 8 97. 9 76.0 83.5 140. 5 68. 9 86 . 6 75 7 90 8 
72.3 88. 5 143. 1 95.0 93.2 144 . 5 88 .1 86 . 9 176 5 90 1 

Rangfx) values from the output. 

Finally, the design of the program is expressed in a flow chart shown in Figure 3.8. 
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Data retrieved from 
the CSD as observed 
angles in *.gls file 

Input 

Find n! possible arrangements 

of ligands and calculate R a n g ( x ) 

Output the smallest R a n g ( x ) 

value and the corresponding 

ligand enumeration 

1 

Determine best-fit geometry 

from R a n g ( x ) 

Further systematic analysis 

Ideal polyhedra 
/ * angles 

Plot Of RgngCPBP) 
vs. R a n g ( C T P ) 

Output the next 
smallest R a n g and 
order of ligands 

Figure 3.8 Flow c h a r t o f t h e p r o c e d u r e 
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3.6.3 The Standard Angles for the Idealized Polyhedra in Seven-Coordination 

The standard geometries represented by various polyhedra are given previously as 

is the basis for setting up the program to calculate the discrepancy index Rang(x) values 

in this study. It is necessary to give a set of standard angle values for each idealized 

reference polyhedron. In seven-coordination, for the most commonly used archetypes, 

PBP, COC and CTP (as shown in Figure 3.2), it is not difficult to determine the angle 

values in the case of PBP because the symmetry fixes all the angles between M-L 

bonds. However, attention should be paid to the COC and CTP modes, since there are 

no such fixed angles for both shapes. If certain restrictions are specified, a set of limited 

angle values in these two symmetry can be calculated, which are listed in the columns 4 

and 6 of Table 3.6, respectively. They are calculated based on the fact that all M-L 

distances are equal and two vectors formed by basal sites, 4, 5, 6, 7, i.e. L4-M-Le and 

Ls-M-L7_ are perpendicular to each other for CTP. In practice, there are no real 

complexes that can adopt such angles to form a stable coordination. In Drew's work 

(1977), the angles found in experimental complexes [W(CO)4Br3]~ and [Mo(CNR)7]2+ 

were quoted as reference angles for the COC and CTP symmetry, respectively. A 

preliminary comparison of the observed complexes from the CSD with these two sets 

5 

M M 

PBP COC CTP 

Figure 3.9 The PBP<=>COC<=>CTP i n t e r c o n v e r s i o n pathway: atomic movements 
m 7-coordination, atoms 1 and 3 are moved most i n t h i s 
d i s t o r t i o n 
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Table 3.6 S t a n d a r d a n g l e v a l u e s f o r PBP a n d CTP m o d e l s a n d 
some r e f e r e n c e v a l u e s 

Geometry COC CTP 

A n g l e ST DAG RE FAG CALAG RE FAG CALAG ST DAG 

180 0 160 4 180 0 144 2 1 3 5 . 0 1 4 1 . 8 

L1-M-L3 90 0 74 1 54 7 7 1 5 9 0 . 0 7 6 . 4 

90 0 112 8 90 0 118 9 138 . 6 1 2 7 . 3 

L i - M - L 5 90 0 112 8 90 0 118 9 138 . 6 127 . 3 

L i - M - L 6 90 0 76 6 90 0 75 1 7 5 . 5 7 6 . 4 

L i - M - L 7 90 0 76 6 90 0 75 1 75 . 5 7 6 . 4 

L 2 - M - L 3 90 0 125 3 125 3 144 2 1 3 5 . 0 1 4 1 . 8 

L 2 - M - L 4 90 0 76 6 90 0 82 0 9 0 . 0 7 6 . 4 

L 2 - M - L 5 90 0 76 6 90 0 82 0 9 0 . 0 7 6 . 4 

L 2 - M - L 6 90 0 89 6 90 0 82 0 9 0 . 0 7 6 . 4 

L 2 - M - L 7 90 0 89 6 90 0 82 0 9 0 . 0 7 6 . 4 

L 3 - M - L 4 72 0 74 1 54 7 75 1 7 5 . 5 7 6 . 4 

L 3 - M - L 5 72 0 74 1 54 7 75 1 7 5 . 5 7 6 . 4 

L 3 ~ M - L 6 144 0 125 5 125 3 118 9 138 . 6 127 . 3 

L 3 - M - L 7 144 0 125 5 125 3 118 9 138 . 6 127 . 3 

L 4 - M - L 5 144 0 112 8 90 0 99 9 9 0 . 0 8 7 . 7 

L 4 - M - L 6 144 0 160 4 180 0 164 0 1 8 0 . 0 1 5 2 . 7 

L 4 - M - L 7 72 0 76 6 90 0 78 7 9 0 . 0 8 5 . 9 

L 5 - M - L 6 72 0 76 6 90 0 78 7 9 0 . 0 8 5 . 9 

L 5 - M - L 7 144 0 160 4 180 0 164 0 1 8 0 . 0 1 5 2 . 7 

L 6 - M - L 7 72 0 89 6 90 0 99 0 9 0 . 0 8 7 . 7 

STDAG - S t a n d a r d a n g l e s u s e d i n t h e m o d e l s ; 
REFAG - V a l u e s f r o m l i t e r a t u r e ( D r e w , 1 9 7 7 ) ; 
CALAG - v a l u e s c a l c u l a t e d f r o m some r e s t r i c t i o n s . 

of angles as the standard angles showed that most complexes which do not belong to the 

PBP symmetry would fit well with these angles and give small Rang values. But for 

some complexes, the difference between these angles is so small that it is hard to say to 

which model they belong. 

In fact, these three idealized polyhedra can be inter-converted via ligand motion or 

edge stretching. One of the reaction pathways can be considered as follows and is shown 

in Figure 3.9. In this inter-conversion, starting from PBP, one of five ligands in the basal 

plane, atom 3 moves out of this plane towards the apical ligand 1. Meanwhile, ligand 1 

moves away from axial position and ligand 4, 5, 6, 7 relocate a little and may not be 
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coplanar, which transfers the geometry from the PBP to the COC. Further movement of 

the ligands 7 to J until they occupy sites symmetrically located above a plane formed by 

the ligands 4, 5, 6, 7, wil l finally result in CTP. The changes between COC and CTP are 

small and COC can be seen as an intermediate on the inter-conversion path from PBP to 

CTP. Therefore, in this study only two models are used to derive the relative Rang(x). 

One is PBP, the other is CTP-like geometry and its angles are obtained by an 

optimization technique. In this way, although two standard reference geometries are 

defined, a COC-like geometry can still be viewed as an intermediate through the 

reaction pathway from PBP to CTP and Rang values can be used here to investigate the 

changes of geometries. This will avoid the confusion in the identification between the 

COC and CTP that have appeared in the literature. The details wil l be given later. Table 

3.6 lists the standard values of angles for the PBP and CTP archetypes used in this 

study, accompanied with some literature values from Drew's work. 

3.6.4 The Standard Angles for the Idealized Polyhedra in Eight-Coordination 

The standard angles for eight-coordination are chosen for the three major 

geometries dodecahedron (DOD), square antiprism (SQUP) and cube (CUBE). Also 

those angles for first two geometries are variable in certain ranges for different 

coordinate environments. In particular, the steric constraints of ligands force the angles 

to distort from each other. For an average effect, a hard sphere model (Gillespie and 

Hargittai, 1991) is used, in which all ligand atoms ( I ) are considered as equal and 

unidentate and thus sit at the surface of the sphere. The metal atom (M) is at the centre 

and all M-L distances have the same length. Although this is not always a real case for 

most of the experimental complexes in higher coordination, they represent a set of 

idealized angles for the defined geometry. While the comparisons of the discrepancy 

index Rang(x) values on these standard angles for different geometries are carried out on 

the whole angle set, the deviation of angles from the standard ones due to the chelate 

groups in the ligand fragments can be averaged. 

The derived standard values for three geometries of eight-coordination are listed in 

the column headed STDAG of Table 3.7. The experimental angle values from three 

59 



Table 3.7 S t a n d a r d a n g l e s f o r g e o m e t r i e s i n e i g h t - c o o r d i n a t i o n 

GEOMETRY CUBE ¥ SQUP „ DOD 

Angle ST DAG REFAG1 ST DAG REFAG2 ST DAG REFAG3 

L j - M - L z 70 5 67 6 74 9 7 1 7 73 7 72 . 8 

L j - M - L a 109 4 1 0 1 0 118 5 116 4 138 9 1 3 9 . 7 

L ! - M - L 4 70 5 62 6 74 9 75 3 73 7 74 . 4 

109 4 115 1 142 6 144 0 97 1 9 5 . 8 

L ^ M - L g 70 5 74 7 74 9 78 5 73 7 7 5 . 1 

I n - M - L 7 109 4 109 6 74 9 77 2 97 1 97 . 9 

L i - M - L 8 180 0 175 0 142 6 139 9 147 4 1 4 5 . 2 

L 2 - M - L 3 70 5 63 7 74 9 73 5 73 7 74 . 4 

L 2 - M - L 4 109 4 1 0 1 3 118 5 113 0 73 7 70 . 3 

L 2 - M - L 5 180 0 175 3 142 6 142 7 147 4 1 4 5 . 2 

L 2 - M - L 6 109 4 109 2 142 6 144 0 126 8 1 3 0 . 2 

L 2 - M - L 7 70 5 75 3 74 9 78 7 73 7 7 5 . 1 

L 2 - M - L 8 109 4 114 7 74 9 77 5 126 8 1 3 3 . 8 

L 3 - M - L 4 70 5 70 9 74 9 7 1 9 73 7 72 . 8 

L 3 - M - L 5 109 4 1 1 1 7 74 9 77 5 97 1 97 . 9 

L 3 - M - L 6 180 0 172 9 142 6 139 9 147 4 1 4 5 . 2 

L 3 - M - L 7 109 4 112 9 142 6 142 1 97 1 9 5 . 8 

L 3 - M - L 8 70 5 76 8 74 9 77 2 73 7 7 5 . 1 

L 4 - M - L 5 70 5 77 3 74 9 78 2 73 7 7 5 . 1 

L 4 - M - L 6 109 4 1 1 1 2 74 9 77 2 126 8 1 3 3 . 8 

L 4 - M - L 7 180 0 172 1 142 6 144 3 147 4 1 4 5 . 2 

L 4 - M - L 8 109 4 112 4 142 6 142 1 126 8 1 3 0 . 2 

L 5 - M - L 6 70 5 75 4 74 9 7 1 7 73 7 74 . 4 

L 5 - M - L 7 109 4 106 7 118 5 113 0 138 9 1 3 9 . 7 

L 5 - M - L 8 70 5 62 3 74 9 73 5 73 7 72 . 8 

L 6 - M - L 7 70 5 64 2 74 9 75 3 73 7 72 . 8 

L 6 - M - L 8 109 4 108 0 118 5 116 4 73 7 7 0 . 3 

L 7 - M - L 8 70 5 75 4 74 5 7 1 9 73 7 74 . 4 

STDAG — Standard angles used in the program. 
R E F A G — Reference angles from observed structures of the C S D . 
R E F A G 1 — T B P Y U R ; R E F A G 2 — A C A C N P ; R E F A G 3 — L A S Y A F . 

complexes in the CSD, which have geometry close to one of the standard geometries, 

are also given (in the column headed REFAG). A l l these complexes are coordinated 

with bidentate ligands, some angles obviously deviate from the standard ones, but the 
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basic geometry can be easily identified from the Rang(x). Table 3.8 gives the calculation 

results of Rang(x) values on these three complexes. 

Table 3.8 Rang(x) v a l u e s ( % ) f o r t h r e e complexes i n 
t h e CSD as an example. 

R E F C O D E R a i l i , (CUBE) Ra„g(SQUP) R a l g (DOD) 

TBPYUR 4.89 21.17 17.48 

ACACNP 20.44 2.56 8.04 

LASYAF 19.45 8.54 2.42 

3.6.5 The Standard Angles for the Idealized Polyhedra in Nine-Coordination 

Similarly, in nine-coordination, standard geometries are also based on the hard 

sphere model, two geometries, tricapped trigonal prism (TTP) and capped square 

antiprism (CSA) are given in Table 3.9. 

Table 3.9 S t a n d a r d a n g l e s f o r t h e g e o m e t r i e s o f n i n e - c o o r d i n a t i o n 

Geometry TTP 

012 ©19 70 5 70 5 96 4 1 4 1 1 1 4 1 1 1 3 1 . 8 70 5 7 0 . 5 

023 2? 029 70 5 1 4 1 1 96 4 1 4 1 1 70 5 1 3 1 . 8 70 5 

034 => 0 3 9 
1 4 1 1 1 4 1 1 96 4 70 5 70 5 1 3 1 . 8 

045 ^ > 0 4 9 
70 5 70 5 1 3 1 8 70 5 70 5 

056 =3> 059 70 5 70 5 1 3 1 8 70 5 

067 => 069 70 5 70 5 1 3 1 8 

078 => 079 120 0 120 0 

089 120 0 
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Geometry CSA 

0 1 2 => 019 70 1 83 3 83 3 137 6 140 1 137 6 70 1 7 0 . 1 

9 2 3 => 0 Z 9 
70 1 137 6 108 6 137 6 70 1 125 7 70 1 

634 => 0 3 9 
140 1 137 6 83 3 70 1 70 1 137 6 

045 => 049 70 1 83 3 137 6 70 1 70 1 

e 5 6 
=> 0 5 9 

70 1 70 1 125 7 70 1 

067 => 069 70 1 70 1 137 6 

078 => 0 7 9 
125 7 108 6 

089 125 7 

It can be seen that the differences in angles between these two standard models 

become smaller, and thereafter it is more difficult to identify precisely the geometry 

from individual angles. Also it is obvious that Rang values wil l be closer for both 

standard geometries, but an identification is still expected, since there are larger 

differences on some specified angles than others and some extra criteria wil l be used to 

assist in identifying these two different geometries. 
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Chapter 4. 

Systematic Studies of Geometry of the Metal 
Coordination Sphere M L n Using Crystallographic 
Data 

4.1 Introduction 

The details of the procedure used in this systematic geometry study have been 

given in Chapter 3. The results from the use of this simple and general method on the 

known structures of ^-coordination (n = 3-9) complexes retrieved from the CSD are 

presented in this Chapter. These studies reveal their geometrical preferences, the 

deformations from the given idealized polyhedral geometries and the interconversions 

between polyhedral forms (Howard, Copley, Yao and Allen, 1998). The work not only 

provides a simpler way to express geometrical characteristics of coordination sphere in 

a systematic analysis, but also addresses the problems of dimensionality and of 

permutational complexity for higher coordination numbers (n =7-9). The results to be 

detailed in this Chapter will be emphasized for these higher coordination species, which 

can be considered as an update to general systematic studies in coordination chemistry. 

Also, those results for the lower coordination complexes are illustrated here to compare 

with some previous work (Murray-Rust, 1982, Taylor & Allen, 1994; Klebe & Weber, 

1994). Hopefully, all these successful results which show geometrical insights for the 

coordination sphere, M L n , will provide useful information towards knowledge 

engineering in coordination chemistry. 

4.2 Transition Metal Seven-Coordination 

In coordination chemistry, the configuration of d electrons in the transition metal 

elements, or the symmetry of d orbital with interaction of ligand orbitals, is usually 

used to predict the properties of coordination compounds. From this knowledge, some 

theory has been well established in the explanation and interpretation of how a 

coordination complex is formed, according to the number of d electrons and their 

arrangement in the relevant orbitals. This can be applied effectively to octahedral and 
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tetrahedral or square planar coordination geometries, corresponding to coordination 

numbers 6 and 4 because, for these two coordination numbers, preferred configuration 

depends only on the symmetry (Cotton & Wilkinson, 1988). In other coordination 

numbers, the optimum configuration is not determined by symmetry alone. But 

similarly, d orbitals can be also considered as split into a lower set and an upper set. 

Figure 4.1 illustrates d orbitals in 7 coordination for three different geometrical shapes 

(Speer et al, 1968). Compared with the orbitals in octahedra, it is obvious that the 

energy level difference between orbitals in a specific shape and between different 

shapes become smaller. feg and eg are further split into e"j, 62' and a/' in PBP, 62, a , 

b\ and a, 02 in CTP. Thus, it is more difficult to predict which geometrical form is 

more preferred simply from the electron configuration. 

a ' , (z 2 ) 

\e2'(x2-y2, xy) 

e"i(yz, zx) 

Di 

l2g 

a 2 ( s V ) 

\ \ a'(z2, xy) 
\ ? 

\ / bi[(x+y)z] 
*i / 
/ / 

/ * / 

:;"W(z2,xy) 

^i[(x-y)z] 

6-coord. Ou 7-coord. PBP D 5h 
6-coord. Oh 7-coord. CTP C2v 

F i g u r e 4.1 Energy l e v e l diagram f o r t h e d o r b i t a l s i n 7 - c o o r d i n a t i o n 
f i e l d compared w i t h an o c t a h e d r a l f i e l d i n 6 - c o o r d i n a t i o n . 

However, the metal oxidation states and the stereochemical requirements of the 

chelating ligands are probably the decisive factors for a metal to form a complex in this 

coordination number. There are no any reliable arguments in predicting the geometry of 

a particular complex. 
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4.2.1 Database Retrieval 

Seven coordination is another common coordination number in transition metal 

complexes. The structural data of seven-coordination transition metal complexes were 

retrieved from the CSD (updated version 1995) to examine the geometrical forms of 

real structures. The general chemical search facilities of QUEST were used. The 

chemical fragment to be examined was defined as a central atom, either all transition 

metals TR or specific individual metal M , and connected to seven non-metal elements 

of the p-block. The coordination number at the metal was restricted to be exactly seven 

by use of the command TOTAL-COORD-NO in 2D-CONSTRAIN. For the dataset in 

which all seven ligands are unidentate, the further 2D-constrain, NO-CYCLIC-

ROUTES and NO-LINKS are applied to the ligand atoms. Finally, for each entry, the 

geometrical parameters, bond lengths and bond angles were recorded as well as atomic 

coordinates for the further calculations. In addition, the search was also restricted by 

use of the CSD secondary search criteria (CSD User Manual, 1994) to ensure the 

structural data have high accuracy, that is, (a) error-free for all retrieved entries from the 

CSD; (b) no disorder in the chemical structure; (c) perfect consistancy between their 

chemical and crystallographic connectivity representations; (d) atomic coordinates 

available; (e) R < 10% for structures; (f) polymeric structure not formed and (g) 

"organometallic" compounds according to the CSD chemical class assignment. 

The CSD search using these definitions and restrictions revealed 460 "hits" 

including various transition metals in a wide variety of coordinated environments. But 

some of these have very strained or bulky ligands, such as, boron cages complexes. 

Such complexes deviate greatly from any idealized polyhedra due to the steric effect of 

these ligands and were rejected from the dataset. The final number of fragments used 

for the further calculation and analysis for various metals is listed in Table 4.1. 

It can be seen that seven-coordinate complexes can be found almost in all first 

transition series and part in early second and third transition series. The most numbers 

are observed in Mo(II), W(II) and Fe(III) complexes. The metals in second and third 

transition series and column 9, 10, 11, i.e. Rh, Ir, Pd, Pt, Ag and Au have not been 

found in this coordination number from the data search. It can be easily explained from 

the nature of these metals (Greenwood and Earnshaw, 1994). 

The dataset for seven-coordination in this study includes the complexes with 

seven metal-ligand bonds. Here the bound ligand atoms are located by the definition of 
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Table 4.1 Search r e s u l t s f o r s e v e n - c o o r d i n a t i o n i n t h e CSD 

M 

T 27 i f i 

3 0 

Cr Mc 

2 I rc 

t e 
Rh 2 6 0 

Pd J 0 

0 0 J 
Cd HQ 'n 

the CSD valence distance, no extra distance or angle restrictions are given so that all 

possible heptacoordination complexes rather than the author's subjective preference 

will be included in the CSD data. Normally, a single metal as the coordination centre is 

considered, the dimer or multi-metal centres are not included in the dataset except those 

metal atoms which can be well located at vertex position of any geometrical 

polyhedron. Also the complexes with lone pairs which occupy coordination sites are 

excluded. 

4.2.2 Basic Geometrical Identification and Classification of Seven-Coordination 
Complexes by Rang(x) Values 

The simple procedure which has been detailed in Chapter 3 was used to perform 

the comparisons of experimental structures with the idealized geometrical forms, using 

L-M-L valence angles to achieve the classification and identification of geometries of 

seven-coordination complexes. The criterion is the Rang(x) value. The geometrical 

description of a complex is identified by this value and structures with small differences 

from the standard model are classified as the same geometry as the standard one, that is, 

PBP, COC and CTP. 
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All the experimental structures are from the CSD search. The files containing 

bond angles, bond lengths and atomic coordinates from the search are input selectively 

to the program. The idealized model angles stored in the files are convenient to compile 

and further develop, as another input. The arrangements of ligands around the metal for 

each set of structural data input are automatically considered 5040 times in the program 

so that all the permutated isomers are included. The Rang value is calculated for each 

possibility, the smallest one is selected and output with the corresponding arrangement 

of ligands. Based on this permutation scheme, when a pair of axial ligands is located at 

the same sites as those in PBP model, the angle formed by two axial positions through 

the central atom is 180°. Therefore exchange of these positions will not affect the 

Rang(PBP) value. The equivalent isomers with the same smallest Rang value are those 

related by symmetry elements E, 2C5, 2C/, 5<rv and a), of the Dsh point group in PBP 

geometry. Operation Oh wil l exchange only the axial positions into each other. Another 

ten symmetry elements will derive ten equivalent isomers by re-arranging the equatorial 

ligands. In this way, there are in total twenty such equivalent isomers in the case of 

PBP. For example, HABLEB (Gao, Guery, and Jacoboni, 1993) is a complex 

[ZrF4(H20)20S(CH3)2]-2H20 with seven unidentate ligands, four fluorine atoms, two 

water molecules and a dimethylsulfoxide molecule, shown in Figure 4.2. 

F i g u r e 4.2 C o n n e c t i v i t y d i a g r am o f c o o r d i n a t i o n sphere i n h i t HABLEB 

OH2 

Zr 

O OH2 

CH3 

f r o m t h e CSD 
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Table 4.2 Ten e q u i v a l e n t isomers w i t h t h e s m a l l e s t Rang v a l u e f o r 
complex [ Z r F 4 (H 2 0) 20S (CH3) 2 ] • 2H 20 i n PBP form 

No. 
L i g a n d S i t e s Symmetry 

O p e r a t i o n No. 
1 2 3 4 5 6 7 

Symmetry 
O p e r a t i o n 

1 Fi F 4 F 2 
0 2 o 3 F 3 Oi E 

2 Fi F 4 F 2 o 3 o2 Oi F 3 a/ 
3 Fi F 4 F 3 Ox 0 3 F 2 o 2 

4 Fi F 4 F 3 o 3 Oi o 2 F 2 c 5

2 ' 

5 Fi F 4 Ox F 3 o 2 F 2 o 3 c 5

2 " 

6 Fi F 4 Oi 0 2 F 3 o 3 F 2 av 1 1 1 

7 Fi F 4 
0 2 F 2 Oi F 3 

0 3 

8 Fi F 4 0 2 Oi F 2 o 3 F 3 c5' 
9 Fi F 4 o 3 F 2 F 3 Oi o2 c 5" 
10 Fi F 4 o 3 F 3 F 2 0 2 Oi 

The calculations with the PBP standard gave the smallest Rang(PBP) value of 

2.44%, in which F\ and F4 are located at axial positions. Meanwhile, twenty equivalent 

isomers with the same Rang value are also derived within the permutation. Table 4.2 lists 

ten of them, the other ten can be generated by the symmetry operation an, that is, 

change F4 to Fi and vice versa. The first one is assigned to symmetry E as a reference, 

all others are generated by symmetry operations from this reference. In the case of the 

second model for CTP geometry, the symmetry elements in point group C2V are related. 

The smallest Rang(CTP) value will appear with those isomers in which ligands J, 2, 3 

are located at the same positions as the standard one. In the idealized model, apical sites 

1, 2, 3 and equatorial sites form two planes orthogonal to each other. Normally the 

equivalent isomers with the smallest Rang(CTP) value are related to symmetry elements 

E, C2, ov(yz) and ov(xz), which have four isomers. But with increasing deviation from 

this model, the number of such isomers wil l decrease. 

The Rmg calculation provides the numerical identification of the geometry of an 

observed complex. From the Rang value, the basic geometrical shape to which a 

complex belongs can be determined easily by comparing the derived values from the 

given archetypes. It is obvious that the smaller value of Rang(x) represents geometry 

closer to a standard form. From the overall results of this calculation, it can be said that 
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when the Rang(x) value is less than 10.0%, the observed coordination sphere illustrates a 

good match with a standard geometry. Therefore, the geometry can be identified as 

PBP or CTP. However, some complexes distort from these idealized geometries and 

give large Rang(x) value for both geometrical forms (x). In this case, a clear polyhedral 

form can not be assigned directly to the coordination sphere, but it may represent an 

intermediate state of interconversion between two geometrical forms. Detailed 

investigations on these complexes may map the interconversion pathway or reveal the 

influence of coordination environments to form the coordination geometry for a 

particular complex, which wil l be discussed in the later sections. Nevertheless, the 

closest geometry can still be found from the Rang(x) values and any particular distortions 

might be of great interest and importance in our systematic analyses. 

Referring the observed molecular geometry to one of idealized geometrical 

archetypes completes the description of coordination sphere geometry. 

The geometry PBP has characteristic angles and the difference in the calculation 

of the Rang(x) values from the CTP-like model is significant. But as was indicated in 

Chapter 3, there exists another geometry COC that is less different in the angles from 

the CTP form. This polyhedron has been considered as the intermediate in the 

interconversion from the PBP to CTP as shown in Figure 3.9. Although idealized angle 

values are not defined in the program, the COC can be still observed by viewing this 

conversion pathway. The scheme is described as follows: 

(1) Find the difference of each angle between two observed models, that is, 

A, = 9, (PBP)-9; (CTP) 

(2) Start from one model, PBP and change the angles by a small percentage of Aj, 

such as, 1% in each step, increase the change until the other model is achieved. 

(3) Calculate Rang0) value with respect to each step of angle change. 

(4) Plot Rang value against the angle change percent and find the lowest point that 

represents the smallest Rang(i) value in the plot. 

According to the geometries of the two models, Aj have different values 

corresponding to the different angles. For a large Aj, the amount changed in each step is 

also large. The direction of change, that is, addition to or subtraction from the starting 
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angle values, is dependent upon the sign of Aj value. Thus, the conversion of one model 

(PBP) to the other one (CTP) is obtained through a simulation of the motion of the 

ligands, by changing the related angles. The Rang value is still a criterion along this 

interconversion pathway. It is obvious that the smallest Rang value reflects the 

conformation of a complex compared with the proposed models. At this point, the 

description of the geometry can be expressed by the percentage of the angle movements 

from the PBP to CTP. 

In the program, the angles are designed to change starting from an idealized PBP 

model. For a complex with close to PBP geometry, all angles are close to those in a 

starting model, and then the smallest Rang value should appear at the beginning of the 

changing steps. As the angles move further towards the CTP model, the deviations 

between the observed angles and model ones are raised and the Rang value increases 

steadily. In contrast, for a CTP-like complex, the Rang value decreases as the angles 

move closer to the final model. Therefore, the smallest Rang value can be obtained in the 

end of this change process. In the case of the COC geometry, at the beginning of the 

angle change, it wil l show a larger Rang value because it has a larger deviation from the 

PBP. As the model continues to change, the Rang value decreases and the smallest Rang 

will appear at some point along the transformation from the PBP model to CTP. As the 

model moves further to the CTP after the smallest Rang value, the angles deviate from 

the model angles and the Rang value rises again. Since the angles in the COC are closer 

to the CTP than PBP, the changing curve will not be symmetrical with respect to the 

smallest Rang value. The smallest value representing the COC geometry will appear 

closer to the ideal CTP geometry. 

Figure 4.3 shows the typical curves that represent the three cases described above. 

The distribution is plotted as the Rang value versus the angle change that reflects the 

percentage change away from the PBP towards the CTP model. The Rang(x) calculations 

gave 2.44% in PBP and 12.6% in CTP for complex HABLEB, respectively. It is clearly 

classed as PBP geometry and it illustrates a line with positive slope. While results of 

calculation on complex BAVXUR provided Rang(x) values of 14.22% and 0.9% for 

PBP and CTP. It has a nearly perfect CTP polyhedron, and shows a line with negative 

slope in the plot. Complex CMPMOC has a geometrical form between these two 

models, with two Rmg values, 16.5% (PBP) and 7.6% (CTP), respectively. The 

reference Rang(COC) value for this complex is 1.8%. It gives the smallest Rang value at 

~ 72% of angle change, which represents an intermediate between PBP and CTP. Here 
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F i g u r e 4.3 Rang v a l u e ( % ) vs. a n g l e change(%) f r o m i d e a l PBP t o CTP 
geometry. 

it could be defined as COC geometry according to the proposed interconversion 

pathway. 

The procedure for identifying and classifying the geometry of a coordination 

sphere in each individual observed structure, that most closely approximates the 

idealized one, may be consequently summarised as two points: (i) calculate Rang(x) 

values from all possible n! permutations of the ligands as it appears originally in the 

angular data matrix and find that permutation which corresponds to the minimum 

deviation from one of the idealized geometrical forms; (ii) calculate Rang(i) value at 

each step needed to transfer one geometrical form to the other and the smallest value 

with angle change shows how the individual observed geometry will distort from the 

idealized one by the expression of a percentage change between two models. 
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The procedure was applied to all seven-coordination complexes retrieved from the 

CSD, it resulted in basic identification of geometry for these known structures by the 

Rang(x) values. For the structures without any chelate ligands, an Rang(x) < 10%, which 

corresponds to an idealized geometrical form, can be obtained and geometry can be 

classified directly. 

ML7 with all unidentate ligands 

Geometries of seven-coordination compounds in this category show the 

minimum influence from the ligand conformations. The main factors to make the 

geometry distort from the idealized one, are weak interactions between ions or 

molecular packing effects. For example, [NbF7] 2 " anion (Brown & Walker, 1966) is 

distorted from CTP because of K+—F interactions. Usually, there is no distinct deviation 

in the M-L bond angles from the standard angles. 

The CSD search gave 62 such compounds* and 67 fragments, which contain 

transition metals W, Mo, Zr, Ta, Re, Nb, Ti, Y, Cr, La and 7c. In these complexes, only 

10 compounds have seven identical unidentate ligands. The remaining complexes all 

have different unidentate ligands. For many molecules of this type, L—L repulsions are 

considered as a major factor in the choice of geometry (Drew & Wilkins, 1974). Table 

4.3 gives the results of Rang(x) calculations on these complexes together with the 

smallest Rang (denoted as SRang) which quantifies in the interconversion between PBP 

and CTP models (AC%). 

The results show that PBP geometry is not a favoured form for 7-coordinate 

unidentate complexes. Only six compounds (FINBAF, FINBEJ10, HABLEB, 

PEHJAN01, PIVVAR, TIMNIM) adopt this geometry, all have a <f configuration. 

Packing effects due to hydrogen bonds in these complexes seem to dominate the choice 

of geometry. They all have at least two halogens coordinated directly to the metal, of 

which two of them enter axial sites of the PBP. This is consistent with the theoretical 

calculation from the orbitals (Hoffmann, Beier, Muetterties and Rossi, 1977), in which 

the analysis of ML7 charge distribution in PBP showed apical ligands distinctly more 

negative, that is, better a acceptors should preferentially sit at the axial positions. These 

* The CSD 1995 version searched 47 M L 7 unidentate compounds and 48 fragments. As this section 
was being written , the CSD 1997 version came available, the number given here is the updated data 
from 1997 version. 
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Table 4.3 R e s u l t s o f Rang(x) c a l c u l a t i o n and i n t e r c o n v e r s i o n model 
f r o m PBP t o CTP f o r 60 u n i d e n t a t e complexes 

Refcod Compound (%) AC(%) 
PBP COC CTP SRang (%) 

BAVXUR W(CN tBu) 1-2PF 6 14 .2 7 . 32 0 . 94 0. 94 100. 0 
BAYFUC V(CO) 6(AuPPh 3) 16 . 7 6. 79 9. 68 6. 87 71. 0 
BEGSOV Cr (CN'BuJv^PFg 11 . 8 5. 09 6. 31 4 . 45 80. 0 
BEZFUH Mo(CNPh) 7-2PF 6 13 . 3 4 . 17 5. 57 3. 70 83. 0 
BOGBII W(CO) 4 (PMe3) I 2 14 . 5 1. 84 6. 53 3. 33 75 0 
BTOIRE Re(CNPh) 4Br 3 15 . 1 1. 75 6. 66 3. 30 66. 0 
BUTXAP W(CO) (CN'Bu) 4I 2-CHC1 3 14 . 8 2 . 65 6. 71 3. 18 74 . 0 
CIPWPB W(CO) 3(PMe 2Ph) 3I-BPh 4 14 . 3 4 . 99 2 . 99 2 . 36 92 0 
CIWYAI Cr (CO) 4 (SnPh 3) 3-NEt 4 14 .8 4 . 02 5 . 72 4 . 08 64 0 
CMPMOC Mo(PMeCl 2) 3Cl 4-CS 2 16 . 4 1. 79 7 . 57 4 . 07 71 0 
CMPPTC Tc(CO) (PMe2Ph) 3Cl 3-EtOH 15 . 6 1. 05 6. 84 2 . 88 72 0 
CUGSUS W (PMe 3) 3C1 4 14 . 8 2 . 79 4 . 78 1. 96 80 0 
CUKRIJ Ta (PMe 3) 3C1 4 14 .2 3. 96 3. 58 2. 11 87 0 
CUSMIM1 Ta(CO) 3(PMe 3) 3C1 11 . 9 8 . 10 4 . 61 4 . 61 100 0 
CGSMIM2* Ta(CO) 3(PMe 3) 3C1 11 . 5 8 . 36 5 . 35 5. 34 98 0 
CUYZEB Ta(CO) 3(PMe 3) 4-Ta(CO) 5PMe 3 14 . 3 4 . 70 5 . 74 6. 26 73 0 
DADVIN ZrF 7- 3 [C (NH2) 3 ] 12 . 0 8 . 12 3. 84 3. 82 99 0 
DAMTIU Mo(CO)2(OOCMe) 2(PMe 3) 3 11 . 8 7 . 35 5 . 26 4 . 96 93 0 
DAXHOZ Re (CO) 2(PMe 2Ph) 2Br 3 15 . 0 2. 62 6. 58 3. 53 66 0 
DEVYOS Nb (PMe 2Ph) 3Br 4 12 . 5 5. 59 3. 76 3. 22 92 0 
DUKCUH W(CO) 4Br 3- [HC(N iPr 2)OEt-

CH 2C1 2 

15 . 7 0. 75 6. 66 3. 11 74 0 

ENFZRB10 2ZrF 7 • 3NH3 (CH2) 2NH3- 2H20 12 .0 7 . 89 3. 75 3. 73 98 0 
ENFZRB11* 2ZrF 7 • 3NH3 (CH2) 2NH3- 2H20 13 .7 6. 93 3. 78 3. 54 94 0 
FINBAF Zr(NCMe ) 4 I 3 • Zr(NCMe) 5I 4 . 16 15 . 1 13 . 2 4 . 15 1 0 
FINBEJ10 Zr(NCMe) 4Br 3 • 

Zr(NCMe)Br 5•MeCN 
4 . 70 14 . 3 12 . 2 4 73 1 0 

GIFGAD W(C0) 3(NCMe) 2I 2 15 . 4 4 . 50 7 . 63 3 15 67 0 
GIFGAD10 W(CO) 3(NCMe) 2I 2 15 . 4 4 . 49 7 . 63 3 16 67 0 
GIJBUW Nb (PMe3) 3C1 4 14 . 5 3. 96 3. 66 2 32 88 0 
HABLEB Zr(H 20) 2(OSMe 2)F 4-2H 20 2 . 44 14 . 7 12 . 6 2 49 1 0 
HIBNOV Re (PMe2Ph) 2 (CNCy) 2 • C 6H 4C1 2 14 . 3 2. 64 6. 36 3 15 63 .0 

IBICMO Mo(CN tBu) 7-2PF 6 14 .2 7 . 34 0. 68 0 68 100 .0 
ICBICW W(CO) 2 (CN^u) 3 I 2 12 . 5 4 . 01 6. 12 4 07 79 .0 
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Table 4.3 contd. 

I C B I C W 0 2 W (CO) 2 (Ct^Bu) 3 I 2 14 . 6 2 . 71 5. 10 2 . 91 81. 0 
I C B I C W 0 3 Vi{CO)2{CntB\i) 3 I 2 

14 . 7 4 . 41 6. 27 4 . 56 73. 0 
JANG10 Mo(NO) (PMe 3) 3Cl 3 15 . 4 2 . 96 5. 19 3. 06 81. 0 
JEGSAP Mo (CO) (CN'Bu) (PMe 3) 3Cl 2 12 . 6 4 . 99 5. 75 5. 46 52 . 0 
KUDCAN Mo(CO) 2[P(OMe 3) ] 3 11 . 1 7 . 54 5. 42 5. 19 93. 0 

(SnBuCl 2)Cl 
LEPDIT W(CO) 4I 3-W(CO) 3I-C 2oH 4oS 4 14 . 3 2 . 06 6. 41 3. 34 76 0 
LEPDOZ W(CO) 4I 3-W(CO) 2(C 2 0H 4 0S 4) I 16 . 0 1. 31 7 . 10 3. 56 70 0 
MPPCMO10 Mo(PMe 2Ph) 3Cl 4-EtOH 15 . 4 1. 62 6. 75 2 . 79 72 0 
PEHJAN01 Y(THF) 5C1 2 • Y(THE) 2C1 4 2 . 45 14 . 6 12 . 5 2. 09 6 0 
PIBWUS T i ( C O ) 6 [ S n ( C 6 H n ) 3 ] • 12 . 9 6. 96 4 . 31 4 . 05 94 0 

K ( c r y s t a n d 2 . 2 . 2 ) 
PI WAR ZrF 7-(H 3NCH 2CH 2) 2NH 3-H 20 3. 26 14 . 8 12 . 8 2 00 2 0 
PSNCOV V(CO) 5(SnPh 3) 2-NEt 4 13 . 2 5. 33 4 . 20 3 29 89 0 
SABCUT W(CO) 3(SbPh 3)I 3-PPh 3-OEt 2 14 . 5 3. 44 6. 66 3 59 75 0 
SARNII W(CO) 4I 3-P tBu 3I 16 . 2 1. 04 7 . 36 3 73 72 0 
SODZUG Nb (CO) 3(Pme 3) 4- 14 . 7 4 . 75 6. 03 6 61 61 0 

Nb(CO) 5PMe 3 

TCDCPM M o ( C O ) 3 ( P e t 3 ) 2 C l 2 15 . 3 2. 19 6. 11 3 09 76 0 
TIMNIM Y(H 20) 2(NCMe) 2Cl 3 4 . 12 14 . 6 12 . 4 3 74 8 0 
TUNDIP W(CO) 3(PPh 3) (NCMe)I 2 13 .5 4 . 44 5 . 27 3 03 81 0 
VESSER W(CO) 2(PMe 3) 3 B r 2 12 .2 5 . 46 6. 28 5 59 50 0 
YEVDUY W(CO)3(NCMe) (SbPh 3)Br 2- 13 . 8 3. 30 5 . 89 3 88 71 0 

CH 2C1 2 

YEVFAG W(CO) 3(NCMe)(SbPh 3)Br 2- 14 . 1 2 . 80 5. 89 3 46 72 0 
CH 2C1 2 

YIDBES 2WF7 • W (Ci 0H 8N 2) 2F 4 • NCMe 12 . 1 9. 25 7 . 46 7 46 100 0 
YIDBES1* 2WF7 • W (C 1 0H 8N 2) 2F 4 • NCMe 11 .8 8 . 88 5. 49 5 49 100 0 
YOCSIS W (CO) 4C1 3- 18-crown-6-H 20 15 . 2 2 . 06 6. 41 3 20 67 0 

YOCSOY W(CO) 4Cl 3-C 1 2H 3 0N 2O 5 15 . 3 1. 86 6. 47 3 35 75 . 0 
YOCSOY1 W(CO) 4Cl 3-C 1 2H 3 0N 2O s 15 . 1 1. 73 6. 40 3 49 66 . 0 

YUNDUG W(CO) 3I 2 ( n 2-dppf) 15 . 4 3. 16 6. 53 3 87 67 . 0 

YUNMUP W(CO) 2(PEt 3) 2(CNCy)Br 2 14 . 1 3. 92 4 . 28 2 . 34 83 . 0 
YUNMUP1* W(CO) 2(PEt 3) 2(CNCy)Br 2 14 . 6 3. 51 4 . 98 2 . 50 81 .0 
YUVTOY W(CO) 3(NCEt) 2I 2 15 . 1 3. 95 6. 84 3 . 12 67 . 0 
ZABNEV W(CO) 3(NCEt) (AsPh 3) I 2 13 . 6 4 . 14 5. 91 3 .07 60 . 0 
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Table 4.3 contd. 

ZEQQAN La (OCHMe2) „I3 14 4 6 85 8 10 6 03 75 0 
ZOBGIG MoF7 • NCMe • N0 2 12 8 7 11 7 06 5 46 81 0 
ZOBGUS ZrFTCuH 2 4N 11 3 6 46 5 79 4 80 86 0 
ZOXCUK Zr (CO) 5(SnMe 3) 2-2 (C 2 0H 4 0O 1 0K) 14 1 6 68 3 65 3 49 96 0 

# Refcode w i t h s u p e r s c r i p t number means t h a t there i s more than one fragment 
i n the c r y s t a l s t r u c t u r e . 

sites are also the least crowded with respect to other ligands. In CTP form, the capping 

position (labeled 2 in Figure 3.2) has also the same effect. Thus, i f L—L repulsion is a 

major factor determining the geometry of the coordination sphere, when molecules 

contain one halide atom (X) or a bulky ligand, the X atom or large size ligand usually 

occupies this position to form CTP geometry. These examples can be seen in 

KUDCAN, PIBWUS, CIPWPB and CUSMIM etc. There are a total of 19 fragments 

having CTP or close to a CTP polyhedron. 

The results obtained from the theoretical treatment of the seven coordination 

sphere based on the hard sphere model indicated that the COC polyhedron is the 

energetically preferred geometrical form (Gillespie & Hargittai, 1991) but that the other 

two forms are only slightly higher in energy. So only small movements of the ligands 

through low energy barriers are required to convert one geometry into another, 

(Gillespie, 1992). The Rang(COC) values are also calculated from the reference angles 

as listed in Table 2.6 for comparison with other two geometries in this procedure. The 

most common geometrical form should be COC in this data set. 42 fragments have the 

minimum deviation from this polyhedral form, which has almost 65% population of the 

whole data set. It can be seen that the experimental complex structures are consistent 

with the theoretical prediction, when the chelate effect of ligands is considered to be 

minimum. 

Moreover, how these complexes are close to other two geometrical modes as 

intermediates between interconversion from PBP to CTP can be seen from the values 

listed in the last two columns. It is clear that these intermediates appear after 50% 

change from PBP to CTP model and most of them locate at 60% to -90%. When a Rang 
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value shows a > 90% change from PBP to CTP, it is considered that the coordination 

sphere has close to or perfect CTP geometry. Therefore, SRanga.nd AC values provide an 

unambiguous confirmation of the assigned coordination polyhedron. Indeed, a random 

or ambiguous geometry assignment between COC and CTP is postulated because these 

two forms are quite similar geometrically. For example, Ti(CO)6[Sn(C6Hio)3] + 

(PIBWUS, Ellis & Yuen, 1993) was initially assigned as a COC with the tin atom at 

the capping position of the octahedron. However, the present calculation shows a good 

match to the CTP form and the tin atom locates in the least crowned capping site of the 

rectangular face. Two other coordination spheres, W(CO)3(CN lBu)4l2 (CIPWPB, Drew 

& Wilkins, 1974) and Mo(CO)2[P(OMe)3]3(SnBuCl2)Cl (KUDCAN, Miguel, Perez-

Martinez, Riera & Garcia-Granda, 1991) were not clearly defined as COC or CTP 

geometries. In this study, their geometries can all be clearly identified as CTP, which 

give SRang values 2.99% and 5.42% with ,4 C of 92% and 93%, respectively. 

Nevertheless, there are some structures that do have a geometry close to two 

polyhedral forms, especially between COC and CTP. The calculations of Rang(COC) 

and Rang(CTP) gave only small differences between these two criteria. This can be 

found in compound Ta(PMe3)3Cl4 (CUKRIJ, Cotton, Duraj and Roth, 1984), which has 

3.96% [Rang(COQ] and 3.58% [Rang(CTP)], respectively. It is difficult to say which 

geometry CUKRIJ is closer to from these two discrepancy values only, but the results 

of SRang and 4̂C calculation provide a clear identification. SRang gives a smallest value 

of 2.11%) at 87% of AC. This means that in the interconversion pathway from PBP to 

CTP through COC, the geometry of the coordination sphere in this compound is indeed 

close to COC and CTP but more inclined to the CTP form. Similar examples can be 

seen in GIJBUW (Cotton, Diebold and Roth, 1985) and TUNDIP (Baker et al, 1996). 

In the latter one, it has less inclination to CTP, which has the smallest Rang(0 value at 

81% of ,4 C. 

The above results indicate that the Rang(x) value is a key factor in determining 

which polyhedral model can best be used to describe coordination sphere geometry. 

Then, it is important is to know what range the Rang(x) value falls into, only then can a 

complex be described by the geometry from which the relevant Rang(x) value is derived. 

Through investigation of all the data and combining the results from the Rang(x) and 

SRang and AC values, it is concluded that when SRang appears within the first or last 10% 

of AC, the geometry can be classified clearly as a PBP or CTP polyhedron. While for 

the SRang between 60% and 80% of AC, it could be COC geometry. For the SRang in 
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other ranges of AC, the geometry is usually regarded as close to two polyhedra. The AC 

value can show how close the geometry of a coordination sphere is to these polyhedra. 

Once a geometrical form has been assigned to a coordination sphere from the 

relevant Rang(x) value, a question may be raised as to which isomer (i.e. the 

arrangements of ligands) is the best expression in the description of geometry, with 

each contributor minimized over the 5040 possible ligand atom permutations? Is there 

another (or more than one) appropriate mapping of ligand atoms? A test from a 

calculation output which included the smallest and next smallest Rang(x) values for each 

complex in both PBP and CTP models showed that the smallest Rang(x) value for the 

corresponding isomers in the PBP form was identified from others. Similarly, there is a 

distinguishable Rang(x) value for the smallest and next smallest values in the case of 

CTP. This implies that the smallest Rang(x) in the procedure provides as a reliable 

criterion value. 

Ligands with Denticity >1, Preliminary Observations 

The use of this simple but effective procedure has readily identified the geometry 

of coordination sphere for all unidentate ligand complexes. Since no chelating effects 

are included in these species, the Rang values for all possible models are generally 

distinct from each other and therefore a geometrical form can easily be assigned to each 

coordination sphere. However, for the larger set of complexes with multidentate 

ligands, the geometry identification from the calculations wil l not be as simple. The 

effect of chelate ligands will become an important factor in the determination of 

geometry and distortions from idealized geometrical archetypes wil l often be observed. 

In these cases, Rang values for any geometry might be large and difficulty in geometry 

assignment will occur. Therefore, it is necessary to investigate further and classify the 

ligand type to see how much geometry is affected by different coordination 

environments in the systematic analysis. 

This procedure has been applied initially to all seven-coordination complexes 

with various types of ligands from the CSD. It is similar to those for complexes with 

all unidentate ligands, the geometry of most complexes can be identified and classified 

by the distinct Rang values. Unlike the all unidentate ligands case, the total numbers of 

complexes for three different geometries are more average. Of the 372 structural 

fragments in the data set, 126 (with Rang(PBP) < 10%) belong to the PBP geometry. 
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This proportion (~ 34%) for PBP in PBP, COC and CTP geometries is obviously 

increased compared with that (< 9%) in all unidentate ligands complexes. This implies 

that chelate ligands can change the geometrical preferences in coordination sphere, and 

details about this will be discussed later. For an overview, distributions of Rang values in 

the PBP and CTP are shown in Figure 4.4 (a) and (b) as histograms, respectively. 

' 

r n > 
k K I 

Hi ! h - m r- CI 1 
0 0 3 0 6 0 9 0 12 0 15.0 16 0 21 0 24 0 27 D 

Rang(PBP) RanofCTP) 

(a) (b) 

F i g u r e 4.4 # a n g-histograms f o r PBP (a) and CTP (b) 

Essentially, these bimodal distributions, with one peak close to the origin and the 

other at an Rang(x) of 15-20%, indicate the two major components whose relative 

frequencies can be obtained very simply by inspection, with the two peaks being 

connected by a series of data points with intermediate /? a„g-values, indicative of a 

geometrical interconversion pathway. Details of these will be explored by more 

complex multivariate analyses. 
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4.2.3 Comparison with the Potential-Energy surface results 

A theoretical calculation based on VSEPR theory (Valence Shell Electron Pair 

Repulsion) was used to treat the stereochemistry of coordination compounds having 

several coordination numbers (Kepert, 1987; Gillespie and Hargittai, 1991). In this 

model, the determining factor of geometrical choice of coordination sphere is that of 

repelling points on a 'sphere', formed by ligands about the metal atom. Each metal-

ligand bond is considered to act as a point. The total repulsion energy U can be 

expressed as a summation of the repulsion energies of every pair of metal-ligand bonds 

Uif. 

u 

and Ujj is inversely proportional to some power m of distance dy between them: 

a 
1 dm 

v 

where a is the proportionality constant. Al l the bonds are assumed equal (r) and using X 

to represent the numerical repulsion energy coefficient, thus, 

u = Y*advm = a X r " " ' • 
u 

Xisa function of m and the geometry of the coordination polyhedron and it can be seen 

as the sum of effects of individual ligand repulsion energy coefficients Yt for each 

ligand: 

i 

In this way, the minimum values for the repulsion energy coefficient X for the 

three geometrical polyhedra in seven coordination were given as 3.266 (PBP), 3.230 

(COC) and 3.231 (CTP) (Kepert, 1979). They are very similar. The calculation of the 

potential energy surface for some specified angles between ligands and the metal atom 
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resulted in a map projected onto the appropriate angle (f>B-(j>c* plane [shown here as 

Figure 4.5(a) for comparison], in which the locations of three geometries PBP, COC 

and CTP could be clearly indicated as P, O and T, respectively. The "reaction 

coordinates" were observed from the energy contour lines. It can be seen that the COC 

form is an intermediate between the PBP and CTP. It is obvious that the COC form in 

this energy plot is much closer in energy and geometry to the latter. This current 

calculation on Rang values also represents the same point as stated in last section. 

Considering the symmetry, a mirror plane is retained with this transformation 

from PBP to CTP. Al l the angles are relative to this plane and this plane can be, in fact, 

viewed equally from Figure 3.2, which is made up by positions 1, 3 and 2 (equivalent 

to A, B and C in Kepert's model). Therefore, the corresponding definitions for §B and 

<j)c in this labeling scheme are 823 and &n, respectively. 

The results for the geometry of observed coordination compounds based on the 

calculation of Rang values, present a perfect matching to stereochemical prediction by 

the potential energy surface. Al l the observed coordination spheres that have been 

identified as different geometrical forms appear along the energy minimum of a "moat". 

For the comparison with the potential energy surface plots, the ligand atoms at position 

1, 2 and 3 are also chosen as the starting atom in turn, so that each pair of such angles 

appears more than once on the corresponding 023-012 plots. Thus, very similar plots to 

that derived from the potential energy surface method are obtained. Figure 4.5 shows 

the plots of 023 against ©12 for (b) compounds with all unidentate ligands, (c) Fe 

complexes, with all kinds of ligands and (d) all seven coordinate complexes in the data 

set. As in the potential energy surface plot, PBP [P in (a)] occurs around three sites on 

the plots at: 0 [ 2 = 90°, 0 2 3 = 90°; 0, 2 = 180°, 0 2 3 = 90°; and 0 i 2 = 90°, 0 2 3 = 180°. CTP 

[C in (a)] lies around 0 i 2 = 144.2°, 0 2 3 = 71.5°; 0, 2 = 144.2°, 0 2 3 = 114.2°; and 0 1 2 = 

71.5°, 023 = 144.2°. COC [O in (a)] is considered as falling between these areas. The 

locations of PBP, CTP and COC could be indicated clearly and the interconversion 

between these geometries is observed from the energy contour lines. COC has a higher 

population in all unidentate ligand compounds as given in the last section and also 

shows here in (b). This implies that COC seems be energetically the most favorable 

form when the steric effects of the ligands are kept to the minimum. Whereas Fe ( a 

mixture of unidentate and multidentate) complexes have mostly either in PBP or CTP 

The <|> angular coordinates are defined as the angles between the bonds M-L^ and other M-L bonds 
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geometry. From a total o f 28 molecules, 25 belong to PBP and 3 to CTP. No clear COC 

form is observed in these complexes. Plot (c) shows that all the points locate around 

these two clusters. Finally, plot (d) illustrates a more complete geometry represented for 

all three polyhedral forms and intermediates between these forms. In addition, some 

extreme examples, probably with a larger chelate effect, are outside the minimum 

energy zone. 

The potential energy surface obtained f rom this point-charge model provided a 

prediction o f three geometries applied in the M L 7 o r n coordination sphere. Although a 

simple formula could be used in this theoretical calculation, it does depend upon some 

initial assumptions. Firstly, repulsion is determined by the power number m and the m 

is not known. The descriptions o f the three geometries are somehow dependent on the 

value o f m. While the three polyhedra have closely similar energies, therefore the m 

should be carefully estimated. Secondly, an important assumption in this model is that 

all M - L bonds have to be equal in length so that the individual repulsion energy 

coefficients F, could be derived and thereafter the total repulsion energy coefficients X . 

In practice, it is diff icul t to f ind seven equal M - L bonds in a real compound. When 

some M-Lj is distorted significantly f rom others, the predictions become less clear. This 

w i l l need a further classification according to the ligand types. In fact, in such a 

classification i t is diff icul t to include all possible cases and becomes very complicated 

with different coordinate sites. 

A comparison o f results showed that the distributions o f geometry f rom available 

crystallographic data, using the discrepancy index Rang value method are the same as 

predictions f rom the theoretical model. This means that the method given here also 

provides an accurate identification o f geometry for the seven-coordination sphere and it 

is obviously even simpler than a point-charge model. In this calculation for all seven-

coordination complexes [shown in Figure 4.5(d)], no special treatments o f the ligand 

type are needed, and those structures with large distortions f rom the standard polyhedra 

can be located easily on the plots. Therefore, further analysis o f the reasons why a 

structure deviates f rom standard geometry can be carried out based on these Rang values. 
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4.2.4 Vertex Index V R a n g ( x ) 

It has been seen that the deviations o f the observed structure f rom an ideal 

geometry can be reflected by a relevant Rang value. Influencing factors to the 

stereochemistry o f complexes also involve the nature o f ligands in addition to the metal 

atoms. As already shown, complexes wi th all unidentate ligands coordinated to the 

metal atom can more easily have closer geometry to the idealized models. But with bi-

or multi-dentate ligands, because o f the stereochemical requirements o f these chelating 

ligands, the distortion from the ideal geometries w i l l be more easily observed in the 

compounds. This w i l l directly affect the calculation o f Rang(x) therefore sometimes no 

significant index value f rom a symmetrical polyhedron is presented. 

In order to investigate the influence o f ligands on the formation o f different 

geometrical coordination spheres, a vertex VRang factor, which is again a discrepancy 

index between observed and idealized values, is used to examine how each ligand atom 

deviates f rom its idealized position. This value is actually similar to the Rang values used 

before. The difference is that each VRang represents distortions o f individual ligands, 

instead o f the whole complex as in Rang. Therefore, for each vertex VRang factor, only 

angles related to this vertex are compared with the proposed idealized ones. Similarly, 

the more a ligand deviates f rom the idealized vertex position, the larger is VRang. Thus, 

a VRane can be defined as: 

^ = 1 0 0 - 7=1 

7=1 

( i * j ) 

There are always six ligands adjacent to the specified ligand (i), six relative observed 

angles Bij(obs) are used to compare wi th the idealized values 0ij(Std)- Once the scheme is 

applied to the data set, the effects of each ligand on the geometry o f coordination sphere 

are clearly numerated f rom the VRang values. The results o f some iron seven-

coordination complexes are presented here as examples. Their Rang and F7? a n g values are 

listed in Table 4.4 and the structures are illustrated in Figure 4.6 (a). 
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Table 4.4 VRang indexes f o r some s e l e c t e d compounds 

REFCODE ^ang(%) (%) REFCODE 
PBP COC CTP 1 2 3 4 5 6 7 

APSCFE 2 . 90 15.1 13 1 
C l 2 C l i 0 2 Oi N5 N2 Ni 

APSCFE 2 . 90 15.1 13 
2.89 3.73 2 . 36 3.11 2. 90 2.58 2 .44 

GEZMED 12 . 1 14 . 5 13 2 o 8 0, o 5 0 4 C l i 0 3 Oi 
4 . 64 4 . 96 16.3 11. 4 11. 4 17 . 8 10.3 

JOCTOK 6.10 12 . 6 10 7 o 5 o 3 N3 N2 Ni Oi 0 7 JOCTOK 6.10 12 . 6 10 
8 . 50 7 .89 2 . 54 5. 99 7 .47 4 . 69 2.46 

LIEDFE 5 . 18 14 . 5 12 0 
0 4 Oi o 6 0 3 0 5 N2 Ni 

LIEDFE 14 . 5 12 0 
7 . 62 8 . 00 1. 02 4 . 37 2.33 4 .53 4 .42 

Complex APSCFE [FeCl 2(DAPS)]Cl H 2 0 (Palenik, Wester, Rychlewska & 

Palenik, 1976) has a nearly perfect PBP geometrical coordination sphere and all the 

valence bond angles L - M - L are very close to the standard values. The relative 

Rang(PBP) gives 2.90% and Rang(CTP) 13.7% and this clearly allows the FeL7 to be 

assigned as a PBP polyhedron. The f ive ligand atoms in 2,6-diacetylpyridine-

bis(semicarbazone) (DAPS) are coordinated with Fe(III) and all located on the 

equatorial plane. Since the conformation o f the molecule DAPS is suitable for forming 

a pentagon wi th Fe(IIJ) atom and the size o f Fe(III) can be fitted into the pentadentate 

hole, two chlorine atoms are located at the axial sites. Each ligand atom is nearly at an 

ideal vertex site o f PBP polyhedron, therefore, the VRang indices are also small (all o f 

them are < 4.0%). 

For complex GEZMED [Fe(N03)2(OPPh3)2Cl] (Tomi, Wah & Postel, 1988), it is 

diff icul t to see which polyhedral form is suitable for the description o f geometry f rom 

the Ra„g(x) values, where all three values are all greater than 10%. But the smallest one 

appears on the PBP. The VRang values indicate that the coordination sphere is a distorted 

PBP because o f the bidentate nitrate ligands. The calculation on this PBP Rang value 

showed that the corresponding oxygen atoms, 0\, O3, O4 and O5, o f two nitrate groups 

occupy sites in the equatorial plane. The chelated angles (50.3° and 56.1°) between two 
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oxygen and the Fe atoms (O-Fe-O') are considerably less than the standard angle of 

72.0° due to the strain in the bite angle. However two other unidentate ligands (O7 and 

Os) f rom triphenyl phosphine oxide locate at the uncrowded axial positions in the PBP 

wi th angle, Oj-Fe-Os, o f 170.5°. The oxygen atoms in the nitrate groups are obviously a 

dominant factor to make the geometry o f the complex distort f rom a PBP polyhedron. 
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J O C T O K L I E D F E 

F i g u r e 4.6 (a) S t r u c t u r e s f r o m t h e CSD f o r Fe 3 + complexes. 

The diagram o n l y shows t h e c o o r d i n a t i o n spheres. Chemical f o r m u l a e a re 
APSCFE: [Fe (DAPS) C l 2 ] CI-2H 20, GEZMED: [Fe (N03) 2 (OPPh3) 2C1] , 
JOCTOK: (NEt 4) 2[Fe(DTPA)] , LIEDFE: Li[Fe(0H2) (ETA)] •2H20, ETA=1,2-
E t h y l e n e d i a m i m e t e t r a - a c e t a t o . 
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The corresponding VRang indexes reflect this ligand influence. The two VRang indexes 

for the axial atoms are small, whereas those for the ligands on the equatorial plane are 

very large, especially for the oxygen atoms, O3 and O5, o f nitrates. 

Two other structures in PBP geometry wi th Refcode JOCTOK and LIEDFE 

(Finnen, Pinkerton, Dunham, Sands & Funk, 1991; Lind, Hamor & Hoard, 1964) are 

coordinated by multi-dentate ligands. The distortions brought about by the chelate ring 

are such that the ligands at axial positions (7 and 2) lean away f rom the standard line to 
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L A T M A U 

JTWRUC 

F i g u r e 4.6(b) S t r u c t u r e s f r o m t h e CSD f o r Mo 2 + complexes 

Chemical f o r m u l a e , DUCLES: Mo(CO) 2 ( PEt 3) 2(OOCH) (OCHO); 
GADTAG: Mo (CO) 2 (S 4Ci 4H 1 2) (PMe3) , S„C 1 4Hi 2=2, 3 : 8 , 9 - d i b e n z o - l , 4,7, 1 0 - t e t r a -

Thiadecane; JIWRUC: Mo (CO) 2 (r|2-dppm) (r|1-dppm) Br 2; 
LATMAU: Mo (CO) 2 (S 2CNEt 2) (HBpz 3) , HBpz 3=Hydrogen t r i s ( 1 - p y r a z o l y l ) b o r a t o . 
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each other. In both molecules, the angles Oox-Fe-Oox are 168.6° and 165.5°, 

respectively, which deviate considerably from the standard value. A l l these can be 

observed f rom VRang values in Table 4.4. The VRmg indexes for the axial ligands are 

clearly larger than others. 

In the Mo coordination spheres, the VRang values for some complexes [DUCLES, 

G A D T A G , JIWRUC and L A T M A U , as showed in Figure 4.6(b)], with CTP geometry 

are shown in Figure 4.7. It illustrates the similar influence of each ligand on the 

coordination sphere geometry. I t can be seen that the ligand atoms, O3 and O4 in 

DUCLES (Brower, Winston.Tonker and Templeton, 1986), Pi and P2 in JTWRUC 

(Shiu, Y i h , Wang and Liao, 1991), Sj and S2 in L A T M A U (Shiu, Lee, Wang & Cheng, 

1993) on the bidentate ligands, and S2 and S3 in G A D T A G (Shellmann, Keller, M o l l , 

Campana & Haase, 1988) on the tetradentate ligand all have larger distortions from the 

standard positions and also affect the neighbour atoms, especially those on the 

quadraplane. 
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4.2.5 Multivariate Analysis in M L 7 

By now, the geometry o f the ML7 sphere fragment for each extracted structural 

data on seven-coordinate complexes o f various transition metals has been identified in 

terms o f Rang(x) values. These Rang(x) values refer to the three idealized polyhedral 

forms, PBP, COC and CTP and the closest conformation is obtained over the 

calculation on 5040 possible permutations o f ligand atoms. This allows multivariate 

analysis to be carried out on the resultant i?-classified data set and mapping o f each 

geometrical cluster f rom relative coordinates reveals distortions f rom the ideal points 

and thereby the expected coordinates f rom one geometry to another are mapped out. In 

Figure 4.5, some maps on the specific pair o f angles have been given, which showed 

clusters belonging to different geometry and those conformations distorted most 

significantly f rom these clusters and may provide a reaction pathway for transformation 

between these polyhedral forms. Multivariate analysis is considered to be a more 

comprehensive analysis, because more complete geometrical descriptions are involved. 

Multivariate analysis w i l l result in the coordination geometries being expressed by 

means o f a set o f PC or FA factors for both PBP and CTP conformations. Thus, a single 

point represents a specific ML7 fragment in a PC's or factor scatterplot. Of course, the 

dimensional numbers in two different geometrical spaces (PBP-space and CTP space) 

are expected to be less than twenty-one (the number o f valence angles of an ML7 

fragment). In a PBP-space, an ideal PBP is at the centre and each structure is related to 

PBP and in a CTP-space, each structure is related to a CTP. 

As stated in the previous chapter, the multivariate analysis is greatly dependent 

upon the symmetry o f the geometrical spaces. These are D$h for PBP and C2V for CTP. 

Any real structure can appear as one o f its isomers related by symmetry operations o f 

the point group in both spaces. In order to obtain a complete data expression and 

represent the symmetries o f the geometrical spaces, each observed conformation would 

be expanded into 20 and 4 isomers according to the symmetry operation o f the point 

groups D51, and C2V, respectively. Therefore, a larger multivariate matrix w i l l be 

generated. 
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4.2.5.1 Symmetry in M L 7 

The observed molecular geometries for M L 7 spheres are referred to idealized 

PBPs and CTPs or COCs, o f and C2V or Q v symmetry, respectively. For each 

fragment whose geometry was determined by the Rang(x) value, there are 20 or 4 

possible isometric arrangements o f the ligands for the PBP and CTP, respectively. 

These isomers are related to each other by the symmetry operations o f the D$h and 

point groups. The starting point is f rom the ligand arrangements resulting from the 

smallest Rang(x) value, which represents a minimum distortion f rom either PBP or CTP. 

Since the order in which the i?-determined ligand lists is consistent wi th that in the 

reference geometry, this isomer is defined as number one by the symmetry operation E, 

any other symmetrical isomers being related to this one by a symmetry operation. 

Figure 4.8(a) and (b) illustrate symmetrical isomers related by corresponding symmetry 

operations in the two point groups, respectively. Any observed structure can be 

represented in either o f the 4 or 20 asymmetric units for the two different geometrical 

spaces. 

1 1 

CTv'(yz) 

av(xz) 

1 
1 

F i g u r e 4.8(a) Symmetry o p e r a t i o n s i n C2v 
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For a systematic analysis o f M L n systems, labeling the n ligands should ensure 

that the representative points are all restricted to the same asymmetric unit and not 

randomly distributed among the available subspaces. Indeed, wi th the i?-determined 

geometry method, the final order o f ligands related to a reference geometry brings a 

corresponding symmetry to the parameter space (Murray-Rust, 1982). This was 

achieved by n! permutation. The complete symmetry expanded data used in statistical 

analyses w i l l present all possible symmetry in the data distribution. Thus, in the M L 7 

case, each observed structure (or data point) is expanded by a factor equal to the order 

of the point group to which the structure is referred. In the PBP geometrical space, each 

observed structure is multiplied by 20 and in the CTP geometrical space, each data is 

expanded to 4. In doing so, an expanded data matrix is obtained for further multivariate 

analyses. It should be emphasized here that no 'new' data have been added, but that the 

existing data is expanded according to the related symmetry to f i l l the appropriate 

space. A l l these processes can be accomplished in the FORTRAN program. 

4.2.5.2 Symmetry Coordinates 

Some advantages o f using symmetry coordinates for describing a displacement o f 

an observed structure f rom the more symmetrical reference structures have been 

discussed in Chapter 2. Murray-Rust et al (1978, 1979) have generalized the approach 

to describe distortions f rom a reference structure o f any given symmetry. 

In the M L 7 system, it is more complex to express the symmetry coordinates with 

27-dimensional basic bond angle coordinates. For an N atom system, 3N-6 such 

coordinates normally result. There should be 18 internal coordinates for an M L 7 sphere 

(7 ligands plus a metal atom). I f only bond angles are considered, 11 independent 

symmetry coordinates should be obtained. Before these complete coordinates are given, 

we firstly visualize the symmetry properties of this system by specifying a simplified 

lower dimensional space instead o f using a 27-dimensional representation o f the angle 

coordinates. 

In the case o f seven-coordinated complexes, whatever polyhedral form the 

structure adopts among the three modes (PBP, COC and CTP), for an ideal geometrical 

form, it can be seen that the ligands at position 1, 2 and 3 (see Figure 3.2) are always 

kept on the same plane and have significant differences in the angles f rom those ligands 
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on the equatorial plane. Although the ligand at the position 3 in the polyhedron PBP has 

the same environment as other four ligands on the equatorial plane, it is perpendicular 

to the line formed by the positions 1 and 2. The special value o f 90° is an important 

criterion distinguishing the PBP from other modes. Therefore, an investigation can put 

emphasis on these three ligands to see how they can be used to describe distortions 

f rom the reference polyhedra o f a given symmetry. 

The ligands at the positions 1, 2 and 3 retain a C2V symmetry in these idealized 

geometrical modes (PBP and CTP) for the defined plane. Thus, a set o f symmetry 

coordinates for this symmetry w i l l be derived. I f the two-fold axis is aligned with the z-

axis (see Figure 4.9), the irreducible components can be written as: 

T e = 2Ai + B2 

So, the symmetry coordinates related to the angles are given as follows: 

*1 = ^ ( 0 ' 3 + 0 1 2 + 0 2 3 ) 

s3 =-j=(9n - 0 2 3 ) 

C2v E C 2 CTv(xz) CTv' (yz) 

A x 1 1 1 1 
A 2 1 1 - 1 - 1 
Bx 1 - 1 1 - 1 
B 2 1 - 1 - 1 1 

r 9 3 1 1 3 

F i g u r e 4.9 Symmetry i n C 2 v 
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The first two symmetry displacement coordinates sj and S2 transform as Aj, which 

are linear combinations o f the original set o f basic vectors derived directly f rom 

irreducible representation o f A], i.e. sja = On and S2a

 = X^i^n + 6 2 3 ) - The kernel 

symmetries are K.(Aj) = C2V, K(5^) = Cs(ov'). There are no co-kernel symmetries 

(McDowell , 1965). Since only three atoms are involved i n this symmetry coordinate 

system, there are only 6 different ways o f labeling these atoms. Starting with a set o f 

ligand arrangements corresponding to the smallest Rang value, the angles are expanded 

relative to these three atoms. A high symmetry cluster pattern in which three kinds o f 

geometries can be identified is yielded. In the case o f symmetry COC, the 

corresponding three ligands to those on the same plane only have symmetry Cs. But by 

using the symmetry coordinates resulting f rom Q v , this polyhedral form can be still 

visualized as an intermediate in the transformation between PBP and CTP. Three types 

of geometries can therefore be characterized in the two-dimensional subspace o f the 

symmetry coordinates. 

From the point o f view of vibrations, S2 and S3, the two coordinates represent the 

motions o f three ligands on the plane. S2 indicates that for the three angles on the plane, 

one increases while the other two reduce, or vice versa. This means that the ligands at 

position 1 and 3 move close to or apart f rom each other; S3 gives the changes o f the two 

angles related by a 2-fold axis or mirror plane perpendicular to the plane, one stretches 

and the other shrinks. This corresponds to distortions o f ligand 1 and 3 in the same 

direction. A l l these also represent geometrical change in three polyhedral forms. Thus, 

the S2 versus s3 plots show three clusters which belong to the three geometries in a 

similar pattern to the 623 - 612 plots arising f rom the discussions o f the potential energy 

surface (see Section 4.2.3). 

In Figure 4.10(a) for all unidentate ligand complexes, the PBP clusters are located 

around (s2 = 71.3, s3 = 0.0; s2 = -35.6, s3 = 61.8; s2 = -35.6, s3 = 61.8) and the CTP 

around (s2 = -58.9, s3 = 0.0; s2 = 29.4, s3 = -51.0; s2 = 29.4, s2 = -51.0). The COC form 

appears between these two forms. Figure 4.10(b) gives the plot for all seven-coordinate 

Fe complexes in the data set, which shows two major clusters in PBP and CTP forms in 

this data subset. Figure 4.10(c) includes all seven coordinate complexes. Since the 

symmetry of three ligand atoms is considered, all the points on the plots can be seen as 

related by a mirror plane that is perpendicular to the paper and parallel to the S2 axis and 
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through the origin o f axis s?. This can also be seen as a two-fold symmetry axis in two-

dimensions. 

A l l these coordinates are derived f rom the three atoms on the specific plane, by 

which the distortions and symmetry described are all dependent on the movements o f 

these three atoms. In order to investigate all contributions o f seven ligands to 

the distortions o f reference geometry, complete symmetry coordinates f rom all 21 

internal bond angles in an ML7 sphere are needed. 

Application o f group theoretical methods, as in the case given above, to the 

ML7 sphere, firstly in point group Dsh, by using the symmetry operations shown in 

Figure 3.8(a), gives the irreducible representation as: 

D 5 h 
E 2C5 2C 5

2 5C2 2S 5 2S 5
3 5o v 

r e 
21 1 1 3 11 1 1 5 

and irreducible components which can be written as: 

T e = 4A[ + 3 £ j + 3E2 + A2 + + E2 

The internal coordinates chosen for this problem are the 21 internal angles. 

Normally, for these 8 atom system (7 ligands plus one metal atom) system, there should 

be 3x8-6 = 1 8 genuine symmetry coordinates that can be derived. I f seven bond lengths 

are excluded (fixed), 11 independent coordinates should be obtained. As there are 21 

internal coordinates as start, an equal number (27) o f symmetry coordinates can be 

constructed according to the regulations given above, as to the derivation o f symmetry 

coordinates. Moreover, six o f them are actually not independent among these internal 

angles. Ten derived coordinates can be considered as redundant. Four o f these belong to 

the species A[, four to the species Ex and two to the species E2. Thus, the final results 

for various representations are (including bond lengths rj, r2, r3, r4, r5, r$ and r7.) are : 
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S i(4)= J j ( > 3 + r , +r5 +r6 +r1); 

S2(A[)=-^(rl+r2) 

s * ( A i } = v i o ' ( 0 n _ 0 2 3 } + ( 0 m ~ 0 2 4 } + ( 0 1 5 _ 0 2 5 } + ( 0 1 6 _ 0 2 6 } + ( 0 i ? _ 0 2 7 }' 

ssa ( E i ) = ^ | j h + (r4 + rs) cos co + (r6 + r7) cos 2co] 

S5b(E'\) = ^l(r5-r4)smco + (r6 - r 7 ) s in2<a] 

S6a(E'\) = ^[0i4 + ( 0

3 5 +e41)cosco + (956 + 0 6 7 )cos2(o] 

S6b(E\) = [(03 5 - 0 4 7 ) s i n w + ( 0 5 6 - 0 6 7 ) s i n 2co] 

14 +^24 + ^ 1 5 +Q2s)COSCO + (^16 +^26 +^17 + 02 7 )C°s2coJ 

S 7 *(£, ' ) = ^ [ ( 0 I 5 +^25 - 0 , 4 - 0 2 4 ) s i n « + ( 0 I 6 + 0 2 6 - 0 , 7 - 0 2 7 ) s i n 2 « ] 

5

8 f l ( ^ 2 ) = - j | [ 0 3 4 + ( 0 3 5 + 0 4 7 )cos2(o + ( 0 5 6 + 0 6 7 )coso) ] 

5 8 * ( £ 2 ) = - j y [ ( 0 3 5 - 0 4 7 ) s i n 2 a ) - ( 0 5 6 - 0 6 7 ) s i n < B ] 

5 9 a ( E

2 ) = ^ j h + (r4 + ^ 5 ) c o s 2fl) + (r 6 + r 7 ) cosa>] 

5 % ( ^ 2 ) = [ fo - r 4 ) s i n 2 © - (r 6 - r 7 ) s i n w ] 

^ . o a ( ^ ' ) = ^ [ ( 0 1 3 - 0 2 3 ) + (0,5 - 0 2 5 +0 i4 -024)cosa) + ( 0 1 6 - 0 2 6 + 0 1 7 - 0 2 7 ) cos2co] 
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Sm(E;) = ^=[(9l5 -025 - 0 1 4 + 0 2 4 ) s i n a ) + ( 0 , 6 - 0 2 6 -0„ +0 2 7 )s in2o>] 

Sua(K) = ^[<P» - ^ 2 3 ) + (0,5 - 0 2 5 +^14 - 0 2 4 ) cos 2co + (0 1 6 - 0 2 6 + 0 1 7 - 0 2 7 ) c o s a ) ] 

5 „ i ( £ ; ) = ^ [ ( 0 , 5 -025 - 0 , 4 + 0 2 4 ) s i n 2 a ) - ( 0 1 6 - 0 2 6 - 0 1 7 + 0 2 7 ) s i n o ) ] 

where oo 
2n 

The kernel (JT) and co-kernel (CoK) o f these representations are given as (Murray-

Rust, Burgi and Dunitz, 1979). 

D 51, 

r, K CoK 

A\ — 

E[ Cs(ah) C2V 

E2 Cs(Oh) c2v 

E'[ c, Cs(aV),C2 

E2 c, Cs(Gv),C2 

A l l these coordinates belonging to different representations can adopt such 

symmetries and w i l l be used later for the PCA analysis. 

In the same way, when the system is considered in C2V symmetry for the whole 

ML7 sphere, the irreducible representations can be obtained f rom the symmetry 

operations shown as in Figure 3.8(b) and are given as: 

C2v E c 2 
CTV (xz) <V (yz) 

r e 
21 3 3 5 

with the irreducible components : 
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T e = 84 + 4A2 + 45, + 5B2. 

The 11 independent symmetry coordinates f rom a linear combination o f bond 

angles, and subject to the condition o f orthonormality, are listed below: plus 7 

symmetry coordinates derived f rom bond lengths. 

SiW = ^(r4 +r5 +r6 + r 7 ) ; 54(4) = - ^ ( 2 0 1 3 - 0 1 2 - 0 2 3 ) 

Ss(A) = ^(eX6+ev+eu+e35); S6(Al) = - j = ( 9 4 6 + 6 5 1 ) 

SAAi) = -^(r* ~r5 +r6-r7); 

S\0 ( A l ) = 2 (̂ 24 ~ 2̂5 + 026 ~ 027 ) 

5 „ ( 5 , ) = | ( r 4 - r s - r 6 + r 7 ) ; S l l ( B \ ) ~ -(^16 _ 0 1 7 _ 0 3 4 + 0 3 5 ) 

SoC^i) = 2 ^ 2 4 ~ 0 2 5 ~ 0 2 6 + 0 2 ? ) ' 5 1 4 ( 5 2 ) = - ^ ( r , - r 3 ) 

^ 1 5 ( ^ 2 ) = ^ ( ^ 4 + r 5 - r 6 - r 7 ) ; 

Sn(B2) ~ 2^16 + 0 1 7 _ 0 3 4 _ 0 3 5 ) ; ^ l s C ^ ) =-(^24 + 0 2 5 _ 0 2 6 -02?) 

It can be seen that the symmetry coordinates corresponding to the three ligands on 

the specific plane given previously (S2 and S3) are also included in this symmetry 

coordinate set. The presentations o f these two coordinates, as shown in Figure 4.10, are 

indeed a part o f this complete coordinate set. Wi th respect to movements o f these 

ligands leading to a different geometry, the displacements along this pair o f symmetry 
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coordinates, which represent distortions f rom three reference geometries, were clearly 

visualized f rom the S3-S2 projections. 

The kernel symmetry o f representations in this point group are: 

A displacement along any single coordinate produces a configuration with the kernel 

symmetry. The displacements for some o f these symmetry coordinates corresponding to 

the bond lengths and angles are displayed in Figure 4.11. 

The symmetry coordinates related to the bond lengths are classified as two groups 

that correspond to ligands at apical and equatorial positions, respectively. S2 and S3 in 

Dsh, and Si, S2 and S14 in C2v are linear combinations o f the bond lengths connected to 

the apical positions, rj and r2 in Dsh, and plus in C2v. A l l o f the remainder are 

combinations o f equatorial bond lengths, tv, r j , rg and rj. 

Table 4.5(a) and (b) list the correlation matrices for those symmetry coordinates o f 

all 7-coordination complexes in the two point group spaces. As was stated previously, 

symmetry coordinates are constructed according to the irreducible representations o f the 

point group and orthonormality basis. Therefore, symmetry coordinates derived from 

different symmetry species should ideally be uncorrelated. The correlation between the 

symmetry coordinates may show whether the derived coordinates do in fact form a basis 

for the irreducible representation (Auf der Heyde & Burgi, 1989a). 

In this calculation, the symmetry coordinates f rom different symmetry species are 

clearly not correlated. The correlated ones all belong to the same symmetry species, 

which means that symmetry coordinates derived f rom both point groups in accordance 

with the conditions for forming the basis o f irreducible representation, and thereby all 

the analyses based on the symmetry coordinates w i l l be reliable. A l l the correlation 

coefficients between different symmetry species are zero, or small, and can be ignored 

here. So these values are omitted f rom the tables for simplicity. 

The correlation between symmetry coordinates can easily be explained by an 

investigation o f the particular distortion that pairs o f correlated symmetry coordinates 

represent (shown in Figure 4.11). In the C2v point group, o f more interest, it is the 

C2v 

r , 
A, 

A2 

B, 
B2 

K 
C2v 

c2 

Cs(av) 
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> 
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F i g u r e 4 . 1 1 Graphical representations of the 18 symmetry coordinates i n 

correlation o f 5/6 and Sp (R = 0.89), related to the symmetry species B2. Si6 represents 

that angle Go increases, resulting f rom ligand I moving towards the axial position and 3 

down to the quadrilateral plane. S17 is indicative o f angles above the quadrilateral plane 

increasing (634 and 635) and decreasing (636 and 637). These distortions represent the 
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transformation f rom C2V to D5/, symmetry, which is the reverse pathway of that shown in 

Figure 3.9. 

T a b l e 4 . 5 ( a ) C o r r e l a t i o n m a t r i x f o r s y m m e t r y c o o r d i n a t e s i n C 2 v 

A , B 2 

S i S 2 S3 s 4 s 5 s 6 

S j 1 . 0 0 

5 2 - 0 . 1 4 1 . 0 0 

5 3 0 . 6 1 - 0 . 2 3 1 . 0 0 

5 4 - 0 . 0 9 - 0 . 3 2 0 . 2 8 1 . 0 0 

5 5 - 0 . 0 6 - 0 . 1 2 0 . 0 3 0 . 0 5 

5 6 0 . 0 3 0 . 4 0 - 0 . 2 4 - 0 . 7 1 - 0 . 5 6 1 . 0 0 

S14 S 1 5 Sie S17 S I B 

S H 1 . 0 0 

S15 - 0 . 0 1 1 . 0 0 

S u - 0 . 5 0 - 0 . 0 8 1 . 0 0 

S n - 0 . 5 5 - 0 . 1 3 0 . 8 9 1 . 0 0 1 . 0 0 

Sia - 0 . 1 7 - 0 . 0 4 - 0 . 1 1 0 . 0 3 

A CO
 

S7 Se S9 Sio 

s 7 1 . 0 0 

s 8 0 . 0 1 1 . 0 0 

S 9 - 0 . 2 9 - 0 . 2 4 1 . 0 0 

S 1 0 - 0 . 1 0 0 . 4 5 - 0 . 4 6 1 . 0 0 

S n S12 S13 

S u 1 . 0 0 

512 - 0 . 0 4 1 . 0 0 

513 - 0 . 4 2 0 . 1 3 1 . 0 0 

(b) C o r r e l a t i o n m a t r i x f o r s y m m e t r y c o o r d i n a t e s i n D5h 

E i ' E 2 ' 
S 5 a Ssb S6a S6b S 1 a S7b Saa S -h S9a S9b 

s 5 a 1 . 0 0 Se. 1 . 0 0 

0 . 0 0 1 . 0 0 Ssb 0 . 0 0 1 . 0 0 

c £ 0 . 0 3 - 0 . 0 2 1 . 0 0 S9a 

S9b 

- 0 . 0 9 

0 . 2 9 

- 0 . 2 9 1 . 0 0 

0 . 0 0 1 . 0 0 
06a 
Seb 0 . 0 2 0 . 0 3 0 . 0 0 1 . 0 0 

S9a 

S9b 

- 0 . 0 9 

0 . 2 9 - 0 . 0 9 

1 . 0 0 

0 . 0 0 1 . 0 0 

S i , - 0 . 3 0 0 . 0 0 - 0 . 5 1 0 . 3 7 1 . 0 0 

S7b 0 . 0 0 - 0 . 3 0 0 . 3 7 - 0 . 5 1 0 . 0 0 1 . 00 

A i ' A 2 " E i " E 2 " 

S i s 2 S 3 s , SlOa Slob Sua Sub 

S i 1 . 0 0 S 3 
1 . 0 0 SlOa 1 . 0 0 Sua 1 . 0 0 

s 2 
0 . 4 9 1 . 0 0 s , - 0 . 1 9 1 . 00 S 1 0 b 0 . 0 0 1 . 0 0 Sub 0 . 0 0 1 . 0 0 

In the case o f Dsh, a major correlation involves pairs o f S$ and S?, which each 

consists o f two degenerates, that is, Sga and 5^; S?a and The distortions represented 

by these four symmetry coordinates are given in Figure 4.12. 5$ shows the in-plane 

vibrations of atoms on the equatorial plane, and S7 vertical to the plane. SVa also 
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indicates that the axial atoms 1 and 2 move towards the plane. The negative correlation 

with S6a {R = -0.51) implies that wi th this movement, atom 6 and 7 should not move 

close to each other, which is represented in S^. 

1 1 

6 

• //// */ / / / 
3 > 3 

4 

s 6 a s 6b s 7a 

F i g u r e 4 . 1 2 Graphical representations of S6 and S7 i n D5h (<̂ _ means 
l a r g e r c o e f f i c i e n t on corresponding angles) 

4.2.5.3 PCAandFA 

The principles o f PCA and FA and applications in the geometrical systems 

analysis for specific molecular fragments have been given briefly in the previous 

chapters. Both techniques have been also performed on the 21 valence angles o f the 

symmetry-expanded data matrix for ML7 sphere. The results given below show again 

that these techniques are a powerful tools in the analysis o f general geometrical effects 

for this system. 

The present CSD software is not available for doing PCA for the ML7 dataset due 

to the overlarge data matrix. The necessary label permutations for this systems analysis 

have been carried out in the Rang(x) program given before. From the determined 

geometry, 21 related valence angles are further expended by the symmetry operations 

and then the program is linked to the PCA or FA subroutine provided by the N A G 

Fortran library (G03AAF for PCA and G03CAF, G03CCF for FA) (NAG, 1997). Input 

matrix data is converted into a suitable form for these subroutines and some important 

parameters for doing these calculations are given in Appendix IV. This process can be 

expressed simply in a f low chart (Figure 4.13). Finally, the PC or factor scores etc., are 

returned and recorded in the same format as those required by plotting packages, such 
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21 angles 0^ from the 
determined geometry 
corresponding to the 

Rang(x) v a l u e 

No. of factors 
FA 

Type of input data 
(D/S)* 

Dermutation b y ^ \ . yes D 5 h or C 2 v 

symmetry 

1 n o 

9ij to X(N,NVAR) 
N: No. of observations 
NVAR: No. of variables 

9ij to X(N,NVAR) 
N: No. of observations 
NVAR: No. of variables 

PCA 

Choice of starting matrix 
types: correlation or 
covariance 

Output of eigenvalues, 
loadings and score etc. 

Plotting on the scores 

F i g u r e 4 . 1 3 Flow chart f o r adding PCA or FA t o the program 
D/S*: Correlation/Covariance m a t r i x as input data. 

as VISTA etc. 

Thus, any M L n data set can be prepared for PCA or FA directly wi th the Rang(x) 

program by selecting some key words. 

Dv, symmetry 

Firstly, let us look at PCA results on the 'all-unidentate-ligands' dataset in Dsh 

symmetry. PCA on the covariance matrix resulted in the first five PC's accounting for a 

total of 89.5% o f the sample variance and f ive further PC's raise the total o f 99.0% of 
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the sample variance. But the major variances appear in the first f ive PC's. It is obvious 

that the dimensionality is reduced compared wi th the 21 valence angles and 18-

dimensional symmetry coordinates systems. Table 4.6 lists the variance accounted for 

by the first ten PC's. 

T a b l e 4 . 6 PCA of a l l unidentate ligands ML7 dataset. Variance (%) 
accounted f o r by the f i r s t ten PC s 

PC s Pd PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PCio 
Variance(%) 22 . 7 22.7 18 . 3 18.3 7.5 3.6 3.6 0.7 0.7 0.5 
Cumul.var(%) 22 . 7 45.4 63.7 82.0 89.5 93.1 96.7 97 . 4 98.1 98 . 6 

The first four PC's occur as two degenerate pairs, which have 22.7% and 18.3% 

angular variances, respectively. From the f i f t h PC, the variance becomes small. This 

means that major geometrical effects would be associated wi th these f ive PC's. The PC-

scattergrams are shown in Figure 4.14(a,c), also accompanied by some symmetry-

coordinate scattergrams (b,d). High correlations are observed in these two coordinate 

systems. PC| and PC2 are related to S7a, S7b, and PC3, PC4 are equivalent to S n a and 

Siib, which belong to representations Ej' and E2" o f point group Dst,. In PC-plots, three 

geometrical clusters are coloured as red (PBP), yellow (COC) and blue (CTP). PC1-PC2 

and S7a-S7b plots, are both effectively views along the 1-2 axial-axial vector, PBP 

appears as the central density at 0.0, 0.0. CTP and COC are the 5-fold growth out o f the 

central density. 

The symmetry o f the space is 5m for the degenerate pair o f symmetry coordinates 

S7a(Ei') and S7b(Ei'). 2 axis is chosen here as one along r3 and perpendicular to the 5 

axis to preserve the C 2 V cokernel o f these degenerate representations. As was shown in 

Figure 4.12, the distortions represented by S7a and S7b have the same effects as the 

transformation f rom PBP to CTP via COC given in the Figure 3.9. So by deforming the 

ideal Dsh along S7a or PCi, finally the C2 V cokernel configuration becomes dominant. 

Using the symmetry expanded dataset, the PBP=>COC =>CTP pathway is mapped again 

in these scatterplots and it corresponds to each of the equatorial atoms being designated 

as atom 3. 
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The pair of symmetry coordinates Sn a (E 2 ") and Snb(E 2") has the symmetry of the 

space of 10m (Murry-Rust and Biirgi, 1979). The cokernel configuration for this pair is 

C s (a v ) . They have similar movements to those represented by S?a and S?b for the 

equatorial atoms but with lower symmetry. The average effect for the distortions on the 

axial atoms 1 and 2 are cancelled out by the distortions from different directions. The 

scatterplot of these two coordinates and the corresponding PC plot ( P C 3 vs. P C 4 ) 

shows that 10 symmetry related clusters (CTP/COC) surround the central density cluster 

(PBP). This is also regarded as a view along the axial-axial vector. 

P C 5 accounts for a smaller variance (-7%) but the scatterplot with P C 3 or P C 4 is 

interesting. There is no corresponding symmetry coordinates to P C 5 . It is an axis 

orthogonal to the P C 3 - P C 4 projection. From the PC loadings (Figure 4.15), it can be 

seen that the major contribution to this PC is 612 , which is an angular value which 

distinguishes between Dsh and C 2 v geometries. Again, the transformation for the PBP=> 

COC =>CTP can be observed along the P C 5 axis. With the angle 812 far away from the 

ideal value (180°) in Dsh, the points go up to the top ( C 2 v ) , and which are also those of 

the outer circle in the P C 3 - P C 4 plot [Figure 3.14(e)]. 

The PCA results give the angle loadings on each PC. Figure 4.15 shows the 

loadings on P C 1 - P C 5 . Compared with the expressions of symmetry coordinates given 

above, the correlations between the PC's and symmetry coordinates can easily be seen. 

The contributions of P C 3 and P C 4 all come from the angles above and below the 
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equatorial plane (i.e. By or 0 2 j, j = 3-7). PC 4 is negatively correlated to S n a and PC 3 to 

Sub- PCi and PC 2 are contributed to by almost all the angles. Symmetry coordinates 

S 7 are related to angles and Q2} (j = 3-7, the angles above and below the equatorial 

plane) while S6 are only related to the angles in the equatorial plane, 0jj, = 3-7). 

Therefore, P Q and PC 2 can be seen as linear combinations of S6 and S7. 

PCA was also performed on the larger dataset of 372 fragments involving all kinds 

of 7-coordination complexes. The same results as those presented above for all 

unidentate ligands complexes are obtained. The major difference is that because of 

complexes with chelate ligands, more distortion or intermediate points can be observed. 

Figure 4.16 shows these PC-scattergrams. 
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As a result, a few PC scatterplots involving the f ive PCs are sufficient to represent 

the major geometrical clusters and transformation between these geometries visually in 

angle space. Although the symmetry coordinates can yield similar results, it is 

complicated to derive these coordinates for high coordination numbers and in this case, 

18-dimensional coordinates need considering. Some of them in fact do not provide any 

useful information in this systematic analysis. 
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Q v symmetry 

A similar analysis was performed in C 2 V symmetry space to compare the results 

wi th those observed in D 5h symmetry space. This usually reveals how one ideal starting 

symmetry is distorted towards the other. In this study, attempts were made to f i t 

observed geometries approaching C 2 V symmetry into a Dst, framework (shown above) or 

vice versa (see below). 

PCA results in C 2 V symmetry on the dataset for 7-coordination shows that the first 

PC, PCi, accounts for a largest proportion (76.6%) o f the total angular variance, and the 

first ten PC's together account for 99% (Table 4.7). 

T a b l e 4 . 7 PCA of a l l unidentate ligands ML7 dataset. Variance (%) 
accounted f o r by the f i r s t ten PC's ( i n C2v) 

PC s Pd PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Variance(%) 76.6 8.0 4 .7 3.4 2 .1 1. 2 1.3 0.7 0.6 0.5 
Cumul.var(%) 76.6 84 . 6 89.3 92.7 94.8 96.0 97.3 98.0 98 . 6 99.1 

Symmetry B2 A i A2 B2 A i _* - - - -

* Symmetry i s only g i v e n to the P C i - PCs 

It is obvious that dimensionality is largely reduced here. The first few PC's w i l l be 

used as the axes to express the geometrical preferences, deformations and 

interconversion pathways between different polyhedra. From the loadings o f the PCA 

results, and comparing these with the symmetry coordinate expressions in point group 

C2v, PCi is related to the coordinates completely belonging to the representation B2 and 

the largest coefficient appears as 0.645 for Si6. It can be expressed as: 

PC, = 0.645S1 6 + 0.524S;5 -0.5075,', +0.1675, 7 -0 .139S 1 8 

where S]5 and S]7 are two redundant symmetry coordinates in B2. 

The symmetry for the other PCs are obtained in the same way. The large set 

contributions to P C 2 are S4 and S6; Ss and other redundant coordinates S9 in A2 have 
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large coefficients in PC3. PC4 is dominated by Sis and PC5 is mainly contributed to by 

some other redundant coordinates in the Aj representation. They can be written as: 

PC2 = 0.6445 6 -0 .6735 4 -0 .2255 5 -0 .2765 5 - 0 .2665 6 

PC, = 0.7575 9 -0 .7465 8 - 0.3855,0 -0 .02465, 

PC, = 0.8245 1 8 -0 .3175 1 6 -0.3965,' 7 -0.1855, , 

PC, = 0.5545 5 - 0 .5525 3 +0.4205 6 + 0.3995 6 -0.1855^ -0 .1265 5 -0.0325, 

A l l the redundant symmetry coordinates included in these expressions are: 

5, '(4) = ^ ( 0 . 2 +9,3 +^3 ) S i ( 4 ) = 1 ( 0 , 4 +0,5 +036 + 0 37 ) 

5 5 ( 4 ) = ± ( 0 2 4 + 0 25 + G26 + 921) 5 6 ) = - j = (0 4 5 + 0 6 7 ) 

^ ) = - 4 (047 + 056 ) • S 9 (A2 ) = 1 (0, 4 - 0, 5 + 0 3 6 - G 3 7 ) 
V 2 V 4 7 9 V 2 / 2 

' S ' l S ^ ) = ^="(045 -067) SU(B2) =^"(014 +015 _ 036 _ 037 ) 

which are considered so, because they are either dependent on those coordinates given 

in the the last section, such as, S6,S6,Sg,Si5,517, or the positive and negative deviations 

f rom the standard values in the expressions w i l l cancel each other for infinitesimal 

displacements, such as 5,, 5 3 and 5 5 . The deformations represented by these 

coordinates can also be found f rom Figure 4.11. A l l these linear combinations o f 

symmetry coordinates w i l l give meaningful interpretations to PCs. For example, PCi 

can be seen as a major equivalent to Si6, which reflects the distortions o f the atoms at 

positions 1, 2 and 3, accompanying with the distortions between these apical atoms and 

equatorial atoms represented by Si7' and the angles relocated, 645 and 067, represented 

by Si5'. These movements are also a tendency to a reverse o f the transformation f rom 

PBP to CTP form given in Figure 3.9. While P C 2 gives the difference in angular 

distortions between the equatorial atoms (Se) and apical atoms (S4). Figure 4.17 (a) is a 
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scatterplot of PC] against P C 2 . It can be seen that PQ shows a large difference for 

different symmetry isomers, especially for PBP complexes and P C 2 gives separate 

clusters for different geometries. Thus, the scatterplot displays a U shape. The bottom 

area arises from CTP complexes and the COC form spreads out along the curve. The 

PBP complexes are located at both ends of the open side, which are related by a mirror 

plane. Since all the observed geometries are fitted into C2V symmetry in this case, which 

is a lower symmetry compared with D 5 h , fewer less points and lower symmetry 

appeared on the PC-plots. The coordinates (in A2) in P C 3 cancell out by each other, so 

that all the values appear close to zero. A histogram of this component is shown in 

Figure 4.17(b). This will not identify different geometries but only represent deviations 

from any ideal polyhedra. A scatterplot of PC's with PCi [Figure 4.17(c)] gives another 

clear identification of clusters for PBP (two sides along PCi) and CTP/COC in the 

centre. 
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Factor Analysis 

Factor analysis is also applied to the same dataset. The results show no significant 

differences from those using PCA. The importance is the determination of the number 

of factors (m) that are suitable for this data set. In fact, m is often unknown and it is not 

easy to select the "correct" value of m (Chatfield and Collins, 1980). Different values 

have been tried sequentially. It is found that m = 5 in Dsh symmetry and m = 10 in C2V 

symmetry provide satisfactory results. In PCA, the components are derived as unique 

and not varied as the number of components included in the analysis. Unlike PCA, 

factors may change completely as m changes. 

The correlation matrix of the data set of 2/ basic angles works with FA in this 

study, and the maximum-likelihood estimation (Basilevsky, 1994) is used to estimate 

the factor loadings. This provides an advantage in that the scaling problem is free in a 

mathematical sense, while scaling problems may appear in principal component 

analysis because the principal components of a set of variables depend critically upon 

the scales used to measure the variables. 

Although it is usually considered that the factors in an w-factor model will not 

have loadings similar to the component correlations of the first m principal components, 

there is good agreement in the analysis of this dataset. Figure 4.18 gives the factor 

loadings of 21 angles in the first five factors in D51, symmetry. For comparison with the 

results for PCA loadings shown in Figure 4.15, the PC loadings are also plotted with the 

relative FAC loadings. They show very similar features for FAC3 and PC4, FAC4 and 

PC3, FAC5 and PC5, except-for larger absolute values of the coefficients for most angles 

in the FACs. Larger differences can be observed in the pairs FAC2 and PCi, and FAC2 

and PCi. These two factors have changed the sign of angles in the loadings and 

enhanced the effects of some angles, such as 845, 046 in FACi and 036, ©37 in FAC2. 

Plotting the data in the same way as the PCA results, Figure 4.19 illustrates the 

scattergrams of pairs of factors for all 7-coordination complexes in two symmetries Dsh 

[(a) and (b)] and C2V [Figure 4.19 (c)-(f)]. They present very similar identifiable clusters 

for three geometrical forms to those plots generated by PCA. Thus interpretations of 

these relationships may be obtained in the same manner as for PCA. An interesting 

feature of the FA results is focused on the scatterplot of FAC7 against FAC3 [Figure 

4.19(e) and (f)] in C2V symmetry. It not only provides clear clusters for PBP, COC/CTP 

complexes, as in other plots, but also identifies some special complexes with large 
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chelation effects. In this plot, a U shape curve shows that CTP geometry is located at 

the bottom with F A C 3 at -0.0, and along the edge of the curve, the deformation 

goes through COC and finally up to PBP at both ends of the U-shape. Some extreme 

complexes with very tight bite angle, for CTP complexes, appear at the top of the open 

side along the FAC7 axis (0.0, 0.48); for PBP complexes with this bidentate ligand in the 

equatorial plane, they are located at the top ends of both sides (-0.12, 0.44; -0.12, 0.44) 
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of the U shape as indicated in the Schematic plot at the right of the scatterplot (e). The 

distribution of FAC3 in Figure 4.19(f) shows that the geometry for the CTP and PBP has 

been clustered by this factor. 

The similarity of PCA and FA for this dataset can be quantified by a calculating of 

the correlation coefficients between the scores derived by these two techniques. Table 

4.8 lists correlation coefficients between PCA and FA scores for all 7-coordination 

complexes in Dsh symmetry. As already seen in PC and FA loadings, FAQ is highly 

negatively correlated to PC2 and FAC2 to PC 1. If an angle is taken as a measure of the 

correlation, it can be seen that is equivalent to -17.3° between the two axes. This means 

that there is a small axial rotation (-17.3° each) of the FAC1-FAC2 plot with respect to 

the PC1-PC2 plot. FAC3 and FAC4 are both correlated to PC3 and PC4, respectively. 

Therefore, these two pairs of axes may exchange with each other. It is obvious that the 

FAC plot for this pair has a larger axial rotation with respect to the PC-plot when 

compared with the first two factors. But since in the PC3-PC4 and FAC3-FAC4 plots, a 

higher symmetry is presented, this rotation of the axes is not as clearly observed as in 

the PCi-PC 2 and FACi-FAC 2 plots. 

Table 4.8 C o r r e l a t i o n c o e f f i c i e n t s between FA and PCA scores f o r 
a l l 7 - c o o r d i n a t i o n complexes i n D5h symmetry 

PCi PC2 PC3 PC, PC5 

FAC± 0.265 -0.955 0.000 0.000 0.000 
FAC2 -0.955 -0.266 0.000 0.000 0.000 
FAC 3 0.000 0 . 000 -0.680 0.732 0.000 
FAC 4 0.000 0.000 0.731 0. 680 0.000 
FAC 5 0.000 0.000 0. 000 0.000 0. 950 
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4.3 Eight-Coordination 

4.3.1 Geometry of Coordination Sphere by Rang(x) Calculations 

With an increase of coordination number, the available complexes are more 

commonly found for the lanthanide metals. This coordination number can also be found 

for some main group metals, e.g. Pb[3-(2-pyridyl)pyrazole]4[(MeO)2P02]2-H20 

(Psillakis et al, 1997) and In(COCPhCO)3(4-Me-pyridine)2-4H20 (Andras et al, 1993). 

In transition metals complexes, like K4[Zr(acac)4] H20 (Kojic-Prodic et al, 1978), 

Ta[S2CNMe2]4Cl CH2Cl2 (Lewis & Fay, 1976) etc, they are mostly restricted to 

compounds with bidentate ligands, which are usually P-diketonates (such as, 

acetylacetonate), XCS 2 ~ and N03~ etc. While in the lanthanide and actinide complexes, 

more ligand types can be observed. Therefore, to investigate the coordination 

environments of compounds in wide variety of ligand types, this study is focused on the 

data set of lanthanide and actinide complexes. 

The results from the CSD search revealed 254 eight-coordinated molecular 

fragments lanthanide and actinide with various ligand types, in which 51 hits and 55 

fragments have all unidentate ligands. For the transition metals data set, 146 fragments 

could be found. The search queries were as for the seven-coordination case except for 

assigning the coordination number for the metal atom to be exactly eight as a 2D-

constraint in the QUEST program. 

The RangM calculation were also performed on these data sets. The Rang(x) values 

for each of three idealised polyhedral forms (CUB, DOD and SQUP) (Figure 3.3) for 

eight-coordination metal sphere is obtained by the calculation over 40,320 possible 

ligand permutation for each complex. 

Firstly, the results from the Rang(x) values on all unidentate ligand complexes 

revealed that the geometry of square antiprism is slightly preferred for this form of 

complex, that is, more complexes have smaller R a n g values for the square antiprism. 

When the metals have eight identical ligands, such as, M(H20)8, the dodecahedron 

seems to be formed more easily. In MA4B4 complexes, two different types of ligands (A 

and B) can locate equally at the vertices of the two tetrahedra of the dodecahedron. It 

was considered (Kepert, 1978) that the dodecahedron has four sites from one 

tetrahedron associated with higher repulsive energy than those of the square antiprism, 

and four sites from the other tetrahedron associated with lower repulsive energy. 
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Therefore, the arrangement of two different types of ligand on these different sites may 

stablize the dodecahedron relative to the square antiprism. Rang calculations for the data 

set give: UCl4(NCMe)4 [CIHLIO, R^SQUP): 9.23%, Rang(DOD): 4.57%]; 

Th(NCS) 4[0=C(NMe 2) 2]4 [CNURTH, Ra„g(SQUP): 9.09%, RangiDOD): 3.18%]. An 

interesting example in this type of complex is U(NCS)4[0-P(NMe2)3]4 (BUCPOE). 

There are 4 independent molecules in the unit cell, two of them were described as the 

square antiprism geometry and the remaining two as deformed towards the 

dodecahedron because the latter do not have very good coplanarity of the two square 

faces in the SQUP (Kepert, Patrick and White, 1983). However, Ra„g calculations 

showed that two molecules have geometries close to the dodecahedron. Two pairs of 

RangiSQUP) and Ra„g(DOD) values are: 7.26%, 4.22% and 6.22%, 4.10%, respectively. 

Four NCS ligands locate at positions 1, 3, 5, 7 and four 0-P(NMe2)3 at 2, 4, 6, 8 as in 

those examples given above [Figure 4.20(a)]. The other two molecules are considered as 

intermediate between these two polyhedral conformations. The Rang values are: 

6.60%(SQUP), 6.98%(DOD) and 7.92%(SQUP), 7.49%(DOD), respectively. The 

structure shows better coplanarity of the two square faces in these two molecules. When 

the geometry of the coordination sphere is expressed in a square antiprism based on the 

RangiSQUP) calculation, it has the form shown in Figure 4.20(b). Since the ligand 

c c D c. C C 0 C Ssfcod*: BUCPOE 

(a) (b) 

F i g u r e 4.20 S t r u c t u r e BUCPOE i n DOD (a) and SQUP (b) 
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0-P(NMe2)3 is large compared with NCS, distortions of the dodecahedron towards a 

square antiprism increase the shortest 0. . .0 distances between the two ligands from 

2.936A [Rang(DOD): 4.10%] to 3.249A [Rang(DOD): 7.49%]. This will decrease the 

repulsion between the ligand atoms. 

Geometry obtained by the Ra,ig(x) calculations and the corresponding descriptions 

are apparently more accurate and reasonable. 

When two larger ligands with respect to others are included in a coordination 

sphere, i.e. the form of MA6B2 [such as, /wa-toluenesulfonato-0 (O-p-Tos) in 

M(H20)6(0-p-Tos)2 (Ohki, Suzuki, Takeuchi & Ouchi, 1988; Faithfull, Harrowfield, 

Ogden, Skelton, Third & White, 1992), it has been shown that the square antiprism is 

more stable, in terms of Rang values, than the dodecahedron because in the SQUP form, 

the two bulky ligands can sit at the vertices 2, 5 or 4, 7, respectively. This gives a 

greater separation for these two ligands relative to the position 5, 7 in the dodecahedron 

(see Figure 3.3), when this geometry is adopted. Table 4.9 lists Rang(x) values for square 

antiprism and dodecahedron for this type of complex in the data set. When p-Tos is 

changed to a larger ligand, e.g. 2-naphthalenesulfonato (Napt), the oxygen atoms can 

more easily deviate from the planes of the square faces in the square antiprism (Ohki, 

Suzuki, Nakamura, Shimoi and Ouchi, 1985). Thus, the geometry has a tendency to 

transform to the dodecahedron. Rang calculations give two similar values compared with 

those in the p-Tos complexes (see Table 4.9). 

Table 4.9 Rang(X) v a l u e s i n MA4B2 complexes 

[M(H20) 6 ( 0 - p - T o s ) 2 ] (O-p-Tos) • H20 [M(H 20) 6 (Napt ) 2 ] Napt •H20 

Refcode M3+ Rang ( SQUP ) % R^gtDOD)^ Refcode M3+ Rang ( SQUP ) % R^atDOD)*, 

GAKXUL Sm 3 . 69 7 . 64 DIYMUT Pr 4.53 6.34 
GAKYAS Gd 3.51 7 . 71 QQQBNP01 Eu 4.64 6 .25 
GAKYEW Dy 3 .51 7 . 66 DIYNEE Gd 4.56 6.30 
GAKYIA Ho 3.54 7 . 60 GAKZEX Dy 4.90 6.44 
GAKYOG Er 3 .45 7 . 72 D I Y N I I Er 4.51 6.48 
GAKYUM Yb 3 .48 7 . 66 DIYNOO Yb 4 . 64 6.33 
SUDDOK Lu 3 .61 7 . 56 
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Tetra-bidentate ligand complexes are the most common MLg coordination for the 

transition metals. General geometry can be found mainly in DOD and SQUP forms. 

Four bidentate ligands normally span the 1,6; 2,7; 3,8 and 4,5 edges in the 

dodecahedron. There are several types of bidentate ligands in the complexes, which can 

be classified according to the number of atoms between the two coordinated atoms. The 

most common ones are: S 2 C-X, OC=OC=OCO~, 0=CR(CH 2) nCR'=0 and N0 3' etc. 4, 

5, 6-membered chelate rings are usually formed in these complexes. The contact 

distances between the two bite ligand atoms directly affect the geometrical 

conformation of the coordination sphere. It is obvious that the shorter the distance, the 

more steric the effect. In Kepert's theoretical predictions of geometry for this type of 

complexes (Kepert, 1978), examination of the minima on the potential energy surfaces 

corresponding to three different geometries, shows that the relative stabilities of specific 

structures, depends on the choice of normalised bite b, which is defined as the distance 

between the coordinated atoms of the chelate divided by the metal-ligand atom distance. 

At low normalised bite values b, the dodecahedron is a dominant geometrical form 

for the complexes. As the normalised bite value is progressively increased, intermediate 

geometry that approximates the square antiprism appears, and for the larger normalised 

bite values it is possible to obtain a D4 square antiprismatic structure. In the Rang(x) 

calculations, no distance parameters are used. But the results for the assignments of 

geometry for each coordination sphere is in general agreement with the theoretical 

prediction based on the normalised bite b in the repulsion energy expression. For the 

complexes M ^ C - X ) ^ , 4-membered chelate rings are formed and normally have low 

normalised bite values and the corresponding Rang(x) calculations project all smaller 

values as being in the dodecahedral form. Table 4.10 (left part) lists these values for 

transition metal complexes. Since all these complexes have large Rang for the cubic 

geometry, Rang(CUB) is not given here. Also, the solvent molecules and other packing 

fragments in the structures are not included in the Table. 

With an increase in the number of atoms making up a chelate ring in the 

coordination sphere, the normalised bite values in six-coordination also increase greatly 

(Kepert, 1977). But in 8-coordination, this relationship is not as clear as in 6-

coordination (Kepert, 1978). The two geometrical forms for this type of complexe have 

been given in Figure 4.20. It can be seen that when the square antiprism is formed, the 

most common conformation is that two bidentate ligands sit on the two opposite edges 

of the square face, respectively. Therefore, fewer atoms (< 4) in the chelate rings, 
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always give a rectangle instead of a square, with the chelate sides shorter than the open 

sides. In this case, the dodecahedron is the best description. While with larger chelate 

rings, the lengths of edges on the square planes become closer to one another, the square 

antiprism is a dominant geometry. For example, in the complex V(S2CPh)4 DTBENV10 

Table 4.10 R^g v a l u e s i n M[S 2C-X] 4 and M[OCRCHCRO]4 t e t r a - b i d e n t a t e 
c o o r d i n a t i o n spheres 

Refcode Complexes* R . W (SQUP)% R.„ 8(DOD)% R e f c o d e Complexes* R„ 1 S(SQUP)% R.„,(DOD)% 

CIRJOC Mo[S 2 CC(CN) 2]4 3" 9.59 7.56 BOHROF Zr(SCMeCHCMeO) 4 4.43 7.06 

COWXER Mo[S 2 CNEt 2 ] / 8.86 7.02 BPHXHF01 Hf(OCPhNPhO)4 8.90 4.84 

DEBBIV Mo[S 2CNEt 2] 4* 9.88 6.11 CYSFAC10 Y(OCCF 3CH 2CCF 30)„ 8.00 2.00 

DEDRAP Nb[S 2 CNEt 2 ] 4

+ 10.7 7.88 F I Z L E F Nb(OCOCOO) 4

4' 3.59 7.69 

DETCMO Mo[S 2 CNEt 2 ] 4

+ 7.42 4.45 H Y Z C S C Sc(OCONHNH 2) 4 5.43 6.61 

DETCNB W[S 2 CNEt 2]4" 10.3 7.41 KOXHFP10 Hf(OCOCOO)4"- 8.91 4.24 

DIGBEA Mo[S 2 CNEt 2 ] 4

+ 10.8 7.90 NAOXZR Zr(OCOCOO) 4

4 ' 6.85 5.49 

DTBENV10 V[S 2CPh] 4** 9.60 3.91 PIVMNB10 Nb(OCBuCH 2CBuO) 4 2.97 8.24 

DTBZMO Mo[S 2C-Ph] 4 9.88 5.10 PPRDZR Zr(OCPhCH 2CphO) 4 2.53 7.95 

ETCMOC Ti[S 2 CNEt 2 ] 4 10.5 7.34 SROXAM Zr(OCOCOO) 4"- 8.97 4.33 

ETXANW W[S 2 CSEt] 4 10.4 6.82 ACACCE01 Ce(OCMeCH 2CMeO) 4 3.33 7.30 

JAXDOB Mo[S 2 C-C, 0 H 7 ] 4 7.70 7.21 ACACNP Np(OCMeCH 2CMeO) 4 2.56 8.06 

J K P I C Hf[OOCNPr i

2] 4 12.1 9.37 ACACTH01 Th(OCMeCH 2CMeO) 4 5.83 6.01 

JUVTUP W[S 2 CNMe 2 ] 4

+ 9.57 6.50 ACACUB U(OCMeCH 2 CMeO) 4 3.52 7.68 

MTCTAC10 Ta[S 2 CNMe 2 ] 4

+ 9.57 6.97 G A L Y O H Tb(OCMeCH 2CMeO) 4 4.29 7.95 

TDTAMO Mo[S 2CMe] 4 6.77 8.09 P1EUAC01 Eu(OCPhCH 2CmeO) 4 2.74 8.64 

VUSBUG W[S 2 CNEt 2 ] 4 * 9.67 6.12 TACT6HB Th(OCMeCH 2CMeO) 4 4.50 7.76 

Y A W K E M Mo[S 2 C-C 5 H,N] 4 9.31 6.74 TFPBOU U(OCPhCHCPhO) 4 9.61 1.79 

VUSDOC Re[S 2CNMe 2] 4 9.87 6.88 V A Y Y I D U(OCCF 3 CH 2 COOEt) 4 6.15 4.80 

* Only c o o r d i n a t i o n spheres a r e g i v e n 

(Bonamico et al, 1974), when a square antiprism is considered, the smallest difference 

between the long and short edges is 0.68A, whereas in Nb[COC( tBu)CH 2C( tBu)0] 4, 

PPRDZR (Chun et al, 1979), the largest difference is 0.12A. This is a common feature 

in this type of complex. With different substitutions on the bidentate ligands and 

coordination environments, one geometry could be distorted towards the other to form 
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an intermediate, such as, JAXDOB that has two similar Rang values. Figure 4.21 gives 

two other forms of the dodecahedron, in which CAMHFA has closer geometry to the 

DOD. These can be seen as a creasing of the rectangular faces of the square antiprism 

tending towards the dodecahedron. Both Rang values reflect the degree of the distortion 

of the square antiprism. However, sometimes they deviate from both geometries. There 

are some earlier criteria (Hoard et al, 1968; Leipoldt et al, 1980; Muetterties & 

Guggenberger, 1974; Corden et al, 1970) used to examine the distortion from each of 

those idealised geometries. Once the ligand labels are assigned by the Rang calculations, 

it is convenient to apply these methods. 

F i g u r e 4.21 Two o t h e r forms o f t h e dodecahedron i n M ( b i d e n t a t e ) 4 

The cube is a rare case in these complexes. However, there are two instances in 

this data set. One is NPFORM, Np(CHOO")4, tetrakis(Formato-0,0')-neptunium(iv) 

(Hauck, 1976), [Rang(CUB): 7.05%, Rang(SQUP): 17.6% and Rang(DOD): 13.3%], the 

other is TBPYUB, tetrakis-(2,2'-Bipyridyl)-uranium (del Piero, et al, 1975), 

[Rang(CUB): 4.89%, Rang(SQUP): 21.2% and Rang(DOD): 17.5%]. The first one is a 

greater distortion from the cube because of the tighter-bite ligand and the second is 

nearer to a regular cube. They both have the form shown in Figure 4.22, which is a view 

C F C F 

C F 

C F 

f C F C F 

N C F N 

C F 

CAMHFA Rang (SQUP) : 7.20% 
R ™ (DOD) : 3.55% 

KUPSUJ RgngtSQUP) : 6.85% 
R ^ (DOD) : 5.91% 
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M Figure 4.22 The s t e r e o c h e m i s t r y o f M ( b i d e n t a t e ) 4 

r e p r e s e n t e d as a cube 

from the top of the cube. Two pairs of bidentate ligands span the opposite edges of the 

upper and lower square planes and are located at different sides. These structures did 

not fit into any predictions and explanations from the theory based on the normalised 

bite. However, it is easy to identify them from the relevant Rang values. 

The hexagonal bipyramid is another possible geometry in 8-coordination. It 

mostly can be found in some d!° transition metals and main group metals, such as, 

HgCl2(18-crown-6) (CESZOP) and CdCl2(18-crown-6) (CESZUV, Paige & Richardson, 

1984). This polyhedron has the most unique set of angle values between the metal and 

donor atoms, so it is the easiest form that is distinguishable from the other geometries. 

A bicapped trigonal prism (BCTP), is sometimes considered independently, and is, 

in fact, an intermediate on the interconversion pathway from a dodecahedron to the 

square antiprism. In most calcium octacoordination complexes, the BCTP geometry can 

be approached (Klebe, 1994). 

The geometry for octacoordination can be classified in more detail according to 

various types of ligands (Kepert, 1978). In this work, the systematic analysis has also 

emphasised the relationships and correlation of specific geometrical parameters in PC-

plots as those in the systematic geometrical study of seven-coordination. The 

geometrical forms for all complexes in the whole data set are identified and classified 

and the interconversion pathways between different polyhedra are expected to be 

explored from the data located between these main clusters that correspond to the 

reference polyhedra. 

4.3.2 Interconversion Between the DOD and SQUP 

The dodecahedron and square antiprism are two major geometrical forms adopted 

by the transition metals and lanthanide 8-coordination complexes. In practice, these two 

geometrical forms can be interconverted and no real preference for either form can be 
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predicted because the difference in repulsive energy between the two forms is small. 

With diversification of coordination environments, some of the structures have 

geometries between these two polyhedral forms. These data are therefore useful to 

investigate the interconversion pathways between the DOD and SQUP. 

As in 7-coordination, Rang value calculations are also performed for the model 

transformation from the DOD to SQUP. Similarly, Rang values are recorded at each 

point. Thus, the geometrical change can be estimated from the relationship between the 

Rang values and each percentage point change for one model to the other. Figure 4.23 

ana 
14 

12 EUHFA 

10 
BOMJUl 

8 
CAMHFA 

CAZQUF 

ACACNP 

0 20 40 60 80 100 

Model Change (%) 

DOD 5>- SQUP 

F i g u r e 4.23 Rang(%) i n model change f r o m DOD t o SQUP 

shows some curves of this type, in which each curve represents the change of Rang 

values from the DOD to SQUP for each complex. The complex CEUHFA can be seen as 

a regular DOD the model changes to SQUP, Rang values increase greatly and the 

smallest value is at the beginning of the change; BOMJUl has some small distortions 

from the DOD form; While ACACNP has about 20% distortion from the SQUP. The 
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smallest Rang value for CAZGUF falls in the middle of the model interconversion route, 

which indicates an intermediate structure. 

In a transformation from the DOD to SQUP it is supposed that two edges linking 

two vertices belonging to different tetrahedra in the DOD are stretched, such as edge 15 

and 37 (see Figure 3.3). Figure 4.23 only reflects part of the interconversion pathway 

because the other pair, edge 17 and 35 could also be stretched. In this case, the model 

change needs considering in a different direction (Figure 4.24). Some complexes, e.g. 

FIZLEF, GEBPEI, GINROK and GAKXOF etc., which could not be fitted in Figure 

4.23, can be addressed in the other form of the plot, which is the mirror plot of Figure 

4.23. The mirror plane is perpendicular to the paper and through the Rang axis. 

2 4 2 4 2 

1 1 1 Stretch 15 & 37 Stretch 17 & 35 

5 8 8 8 

D O D 

1 

8 8 

SQUP1 SQUP2 

F i g u r e 4.24 I n t e r c o n v e r s i o n between DOD and SQUP 

In addition, the symmetry coordinates for 8-coordination in DOD (D2d) and SQUP 

(D4d) symmetry have been derived (see Appendix IT*) from 28 internal bond angles, L-

M-L, respectively. 

28 symmetry coordinates from 28 bond angles are given, 13 of them should be independent. 
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In Dtd symmetry, a pair of coordinates from representation Bj, Sio and Sn, 

represents the distortions of these edges corresponding to the relative angles in two 

tetrahedra of the DOD form: 

1 
S 1 0

 = ~ j ^ ( & i s ~&n ~&35 + ^ 3 7 ) ; 

The correlation of these two coordinates for the transition metal complexes data 

set is shown in Figure 4.25. All the DOD clusters are located at the centre (red) 

(0.0,0.0), which are close to two regular tetrahedra. As the angles are distorted towards 

SQUP, two kinds of conformations of the SQUP appear at both sides (blue) of the 

centre. This further confirms the interconversion pathway between the DOD and SQUP 
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F i g u r e 4.25 S 1 0 vs. Su i n D 2 d symmetry 

given in Figure 4.24. SQUP1 or SQUP2 represents the conformation stretched from the 

edge 17 and 35 or 75 and 37, respectively. 
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Again, Rang value calculations on transition metal and lanthanide and actinide 

complex data sets of 8-coordination provided a basic identification of geometry of each 

coordination sphere and based on this geometrical conformation, the labels of ligands 

are assigned automatically according to the label order given in the reference polyhedra. 

From these results, further systematic analysis can be canned out. 

4.3.3 PCA and FA in 8-Coordination Sphere 

Multivariate analysis by PCA and FA was also applied in these data sets to explore 

the geometrical diversity of the 8-coordination sphere. P C A was performed on the 28 

metal-ligand valence angles. Each fragment in the data set was expanded according to 

two symmetries D 2d and D4d for two reference polyhedra DOD and SQUP, respectively. 

P C A reduces the dimensions: the first ten PCs take account -90% of total variance in 

both symmetries and large variances are accounted for by the top five PCs. The PCA 

results from the lanthanide metal data set are listed in Table 4.11. 

In D2d symmetry, the first two PCs account for 50.9% of total variance in the data 

set and the third one 9.0%. The remainder account for 40% but each one for only a 

Table 4.11 V a r i a n c e p e r c e n t a g e t a k e n a c c o u n t f o r PCi-PCio 

D 2 d PCi PC2 PC3 PC4 PC5 PC 6 PC7 PC8 PC 9 PCio 
V a r . ( % ) 27.8 23.1 9.0~ 5.4 5.4 3 . 6 3 .5 2.8 2.8 " 2.7 

Cuml. V a r . 27 . 8 50.9 59.9 65.3 70.7 74.3 77 . 8 80.6 83.4 86.2 

D 4 d 

V a r . ( % ) 28.2 14.2 13 .2 13 .2 4.5 4.5 3.6 2.7 2.7 2.7 
Cuml. V a r . 28.2 42 .4 55.6 68.8 73 .3 77 . 8 81.4 84.1 86.8 89.5 

small percentage. In D4d symmetry, the top four have larger percentage variances and 

take account of 68.8% of variance in the total data set, PC3 and PC4 are a degenerate 

pair. 

With the appropriate selection of the number of the factors, FA can provide very 

similar results to PCA. Figure 4.26 gives the angle loadings of the PCs and FACs in D2d 

(a) and D4d (b) symmetry, respectively. It can be seen that the contributions of the angles 
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Loading in PC. (•) and FAC,(») Loading in PC,(«) and FAC2(») 
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F i g u r e 4.26 Angle l o a d i n g s i n PCs and FACs (a) D2d, (b) D 4 d 
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to the derived factors are enhanced in the FA results compared to the PCs. 

In D 2d, PCi is equivalent to FACi , PC2 is negatively correlated to FAC2, P C 3 to 

F A C 6 and PC4 is negatively correlated to FAC3. Whereas in D4d, equivalent pairs are: 

P C , - F A C 4 , PC2-FAC1, PC3-FAC3 and PC4-FAC5. 

From the given polyhedral models (Table. 3.7), the larger differences of angles 

between the DOD and SQUP can be found in those angles making up the two tetrahedra 

in the DOD, e.g. 813, 657, and 824, 868 etc. Whereas those angles between these two 

tetrahedra have almost no differences, such as, 614, 867, and 623,858 etc. For the geometry 

of a dodecahedron, when the ligand atoms at vertices 1, 3 are moved closer (i.e. 813 

reduced) and 2, 4 separated (824 increased), these four atoms tend to move to the same 

plane and the same feature also exists for vertices 5, 7 and 6, 8, which describes a 

tendency to convert from a dodecahedron to a square antiprism. 

Firstly, we will look at the results from D2d symmetry. From the angle loadings to 

FAC1/PC1, it can be seen that this factor/PC represents the distortions from the DOD to 

SQUP given above. F A Q is highly correlated to 613 and 857 and negatively to 624 and 

868. FAC2/ PC2 also reflects the same movements but the difference is that it represents 

all other angles of the tetrahedra, i.e. 615,817 and 835,637; 826, 82s and 646, 64s, which are 

related to those edges stretched in going from the DOD to SQUP, as discussed in the last 

section. A scatterplot of these two PCs is illustrated in Figure 4.27(a). Geometries are 

clearly classified by the clusters. SQUP is located at (8.8, ±8.35), DOD is around (8.84, 

8.8). The cube and hexagonal bipyramid structures are also along the FACi axis with 

F A C 2 at 8.8. 

From the angle loadings to the FACs, F A C i and FAC2 have an identical range of 

values for the linear combinations of relevant angles from each different geometries. A 

regular SQUP is 8.8 for F A C i and DOD is 8.8 for F A C 2 . But for P C 3 / F A C 6 and 

PC4/FAC3, the corresponding angles are those which are not distinguished in the DOD 

and SQUP forms. So they do not show sensible correlations with each other. For a 

geometry close to either of the reference geometries, a value of zero should be expected 

for these factors. A large value only indicates a more distortion from one of the 

reference polyhedra. Larger distributions of these two factors for this data set are given 

in Figure 4.28. No distinguishable values for different geometries can be seen from the 

distributions. But the scatterplot with PC2 [Figure 4.27(b)] shows how the molecular 

structures distort from the idealized geometry classed by F A C 2 along the F A C 3 axis. 
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F i g u r e 4.28 D i s t r i b u t i o n s o f FAC3 (a) and FAC6 (b) 

In the FA results, another factor FAC5 is a linear combination of symmetry 

coordinates S13 and S i 6 in representation fi2 of point group D 2d. S13 reflects the distortion 

of angles relative to two interpenetrating planar trapezia 5427 and 1386 (see Figure 3.3), 

which is an alternative and useful way of viewing the dodecahedron. Si6 corresponds to 

the movement of atoms at one tetrahedron (2468) towards the square planes. The 

scatterplot of FAC5 against FAC 2 [Figure 4.27(b)] also illustrates clear clusters for DOD 

and SQUP structures. The DOD cluster is at around FAC 5 = 0.0, while SQUP are placed 

on two sides with FAC5 ~ ±0.035. Distortions f rom the regular forms are observed along 

the FACi axis. 

More symmetry-expanded points are included in D 4d symmetry. Similarly, the 

clustering patterns observed in D 2 d symmetry w i l l emerge in more highly symmetric 

forms, because each fragment is forced to be considered in this higher symmetric form. 

The real structures that have large deviations f rom the defined symmetry may also be 

well separated f rom those with the symmetry as defined. Again, PCA results gave 

clustering patterns f rom the scatterplots of derived components, which identified 

different geometrical structures. A highly symmetric clustering pattern emerged in the 

plot of a pair of degenerate PCs, PC3 and PC 4 [Figure 4.29(a)], which can be seen as a 

view along the 4-fold symmetry of the D 4 d point group. Four well-separated clusters 

related by 4 symmetry are identified as DOD geometry and the large clusters placed in 
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the centre of the square cross forward by the SQUP. Figure 4.26(b) shows the 28 

internal angle loadings in these components. It is obvious that for an idealised SQUP 

geometry, the linear combinations of the angles give values of 0.0 for both components, 

±0.04 appear alternately for an idealised DOD geometry. All of the observed molecular 

geometries are aggregated around the centres of these clusters. Four clusters 

representing the DOD geometry, correspond to different conformations in this geometry. 

Examination of individual clusters in detail will indicate which cluster represents a 

relevant isomer (listed in Appendix II). Similar identification was carried out in the 

geometrical descriptions of the 5-coordination sphere (Auf der Heyde & Burgi, 1989). 

In this way, along each of the four lines that connect D O D and SQUP geometry, the way 

in which a geometrical form transforms to the other will be observed easily. For 

instance, starting from the SQUP in the centre, either of four DODs may potentially be 

formed, depending on which of atoms on the diagonal of the square planes moves 

during the distortion, to lead subsequently to the vertex atoms of the tetrahedra in the 

DOD. 

The plot of PC3 against PC2 [Figure 4.29(b)] gives a view from another direction. 

PC2 is considered as a perpendicular axis to the PC3-PC4 projection. The scatterplot 

shows 2-fold symmetry of the D4d point group. In this projection, four clusters for DOD 

structures are merged to two and situated on two sides of a U-shape and SQUP is 

located at the bottom centre of the U. The interconversion between these two geometries 

falls along the line of the U shape. 

Figure 4.29(c) shows the correlation of PC2 and P C i . It has similar features to the 

PC 3 -PC 2 plot . 

FA was also applied on the data set. With the selection of 12 factors, very similar 

results to the P C A in this symmetry were obtained. The corresponding factors to the top 

four PCs have been observed in the relationships of the angle loadings. It can be seen 

that FACi is equivalent to PC2, FAC4 to PCi . The other two pairs are: FAC3-PC3 and 

FAC5-PC4, in which PC4 is negatively correlated to FAC5. 

In D 2 a and D4d symmetries, PC/FA results have shown that the data set is clustered 

in terms of the geometry, i.e. a cluster for the DOD conformation and a cluster for the 

SQUP. The appearances of the clustering in the P C / F A C plots looks quite different in 

the different symmetries of the data spaces. In D4d symmetry, which represents the 

symmetry of a standard SQUP form, geometries that tends toward the SQUP will 

naturally assemble around the archetype D 4 d SQUP at the origin. On the other hand, 
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those structures that have geometries close to the DOD w i l l cluster around an archetype 

whose geometry is as close as possible to that of a perfect DOD (D2d)- These differences 

are caused by the symmetry expansion but the results are, in fact, similar. They give 

different expressions in the different symmetry data spaces. A l l CSD hits in the cluster 

representing a DOD in D2ci-space, can be found again in the corresponding clusters 

representing the DOD in D4 d-space. Similarly, the CSD reference codes appearing in the 

clusters representing SQUP in D2ci-space, are found again in the central cluster 
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representing the SQUP in D 4 d-space. When an existing geometry for a compound (e.g. 

D4d) is considered in the symmetry appropriate to another geometry (e.g. D2d), the 

symmetry of the data set simply does not accord with its existence. Thus, geometries 

approaching a SQUP conformation are forced to cluster around a C 2 v SQUP in the 

FAC2-FAC1 plot of D2d-space. It also shows that F A C 2 represents the symmetry of D 2 d 

and all geometries having the DOD conformation present around zero in this axis. 

Again, those compounds approaching the SQUP geometry aggregate around the single 

central cluster in D4d-space, which represents their own symmetry. 

The points located outside of any clusters represent geometry distorted greatly 

from either of the given reference geometries. If the detailed conformation of these 

complexes is examined, it is found that strained chelate rings are usually to be the cause. 
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4.4 Nine- Coordination Sphere 

Complexes with a coordination number of nine are also found mainly with 

lanthanide and actinide elements. Some transition metals like rhenium can form nine-

coordinate hydride compounds, e.g. ReH7(PPh3)2, (Howard, Mead & Spencer, 1983) 

and WH6[PPh(CMe3)2]3 (Gregson, Mason, Howard and Spencer, 1984), but most 

transition metal examples have multiple metal-core forms e.g. Co2Au2Ru2(|x -

CO)2(CO)io(PPh3)2 (Roland, Fischer & Vahrenkamp, 1983) or are coordinated with 

aromatic molecules, e.g. Cr(CO)3(Ti 6-fulvene) (Koch, Edelmam and Behrens, 1982). 

These complexes have special geometrical shapes and cannot be described by the 

polyhedral forms given in Chapter 3 for the mono-metal central coordination sphere. 

The C S D results gave a data set containing 265 lanthanide and actinide 9-

coordinate complexes with a wide variety of ligand types. Again, the searches were 

performed using the same bit-screen restrictions as those for 7- and 8-coordination 

compounds except T O T A L - C O O R D - N O was assigned as nine for the central atoms in 

the 2D-CONSTRAIN menu of Q U E S T . 

4.4.1 Geometry Identified by Rang(x) Values 

Lanthanides have complexes in their most stable trivalent state, and tetravalent for 

uranium and thorium, among those in the data set. Table 4.12 lists the numbers of metal 

complexes presented in the data set. It can be seen that the complexes which appear 

most frequently are those of Nd 3 + , L a 3 + , E u 3 + and G d 3 + . 

In the systematic analysis of 7- and 8-coordination geometry, Rang(x) calculations 

for each complex were used to provide a quantitative indication of the degree to which 

an observed structure deviates from an idealized polyhedral form. In this section, the 

same procedure is applied in this higher coordination system. 

As has been shown in Chapter 3, the nine coordinate geometrical sphere can be 

described principally by two polyhedral forms, the tricapped trigonal prism (TTP) and 

the capped square antiprism (CSA) (Figure 3.4). Examination and some discussions of 

these stereochemistries from different aspects can be also found in other work (Favas & 

Kepert, 1981; Guggenberger & Muetterties, 1976; Robertson, 1977). Although each 
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Table 4.12 Number o f t h e complexes f o r v a r i o u s m e t a l s i n t h e 
d a t a s e t 

Metal No. Metal No. 

La 29 Dy 17 
Ce 17 Ho 10 
Pr 12 Br 19 
Nd 31 Tm 5 
Sm 17 Yb 11 
EU 29 Lu 11 
Gd 29 Th 13 
Tb 10 U 5 

geometry accounts for the observed structures in different ways, it was shown that 

diff iculty usually arose in identifying exactly which archetypal form was the best 

description for a given structure, especially when strained ligands are included. Thus, 

the geometry was usually considered based on the ligand type. For instance, with 

unidentate and multidentate mixed complexes, for a CSA form, the unidentate ligand 

was often located at the capping position in the CSA form. This, in fact, is not always 

true f rom the current analysis. 

Then, what is the performance f rom the Rang(x) calculation? It has been indicated, 

f rom the angles given for these two idealized polyhedral forms, that the difference 

between the angles defining each archetype becomes smaller compared with those for 

the lower coordination numbers and so the Rang(x) values for different geometries may 

become indistinguishable. However, an advantage in using Rang(x) values to identify the 

geometry of a coordination sphere is that it always provides the closest geometrical 

conformation to a reference polyhedron and assigns ligand labels accordingly. This also 

provides the possibility to use further criteria to see how an observed structure deviates 

f rom either of the idealized polyhdral forms. This at least also provides a convincing 

starting point for each possible geometrical form, since drawing conclusions directly 

f rom the determined structure concerning the correct geometrical conformation for this 

coordination number, is indeed very diff icult and wrong assignments easily result. 

Normally, identification of the geometry by Rang(x) calculation does not need to 

consider the ligand types of complexes. Furthermore, in 9-coordination, an Rang(x) 
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calculation could indicate which individual compounds need to be examined. Firstly, 

the complexes with nine unidentate ligands are investigated. Again, this arrangement 

involves the least influence of the ligand conformations on the coordination sphere. 

However, unlike 7- and 8-coordination, there are varieties of ligands which can be 

selected for the unidentate ligands. Only water (H2O) lanthanide complex were 

structurally characterized for this kind of complexes. Nine equivalent unidentate ligands 

from the oxygen of H2O are restricted to the lanthanide nonahydrates 

[Ln(H 2 0) 9 ] (EtS0 4 )3 and [Ln(H 2 0)9](CF 3 S03)3 (Gerkin & Reppart, 1984; Harrowfield et 

al, 1983) and the hydride complex K 2 [ReH 9 ] (Knox & Ginsberg, 1964). The hydride 

complexes are not included in this data set. 

RangM values for T T P and C S A are listed in Table 4.13. The results show that the 

tricapped trigonal prismatic structure is preferred. The L n - 0 distances for the capping 

positions (7, 8 and 9) are longer than those at the trigonal prism (1-6), which are in 

reasonable agreement with this geometrical form. The common structure is shown in 

Figure 4.30 (also an ethyl sulfate fragment is included). 

011 

O I J OIK 

02B 02A 

01 

01A 01B 

F i g u r e 4.30 S t r u c t u r e f o r Ln(H 20) sphere 

In addition, there are several complexes with nine non-equivalent unidentate 

ligands. Two J-hydroxy-2-naphthoato (NAP2) substitute two H 2 0 molecules to form 

[La(H20)7(NAP2)2]NAP2H20 ( F I Y H O K ) and [Nd(H 20)7(NAP2)2]NAP2H 20 
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Table 4.13. Rang v a l u e s ( % ) i n geometry TTP and CSA 

[ L n ( H 2 0 ) 9 ] ( S O 3 C F 3 ) 3 [ L n ( H 2 0 ) 9 ] ( S 0 4 E t ) 3 

Refcode L n 3 + 
Rang (TTP) Rang (CSA) Refcode R m m o(TTP) R^,(CSA) 

BUWIX01 La 3 48 5 . 63 ZZZAQP01 3 . 95 5 . 80 
BUVWEU01 Ce 3 33 5 . 59 CIBSAH 3 . 78 5 . 76 
BUVWIY01 Pr 3 26 5 .57 APRETS02 3 . 71 5 . 74 
BUVWOE01 Nd 3 22 5 .56 ZZZAQS01 3 . 57 5. 70 
BUVWUK01 Sm 3 16 5 .53 DEYYIP 3 . 46 5 . 67 
BUVXAR11 Eu 3 09 5 .52 ZZZAQY01 3 . 39 5. 65 
BUWOD01 Gd 3 08 5 . 52 ZZZARA01 3 . 44 5. 65 
BUVXEV01 Tb 3 11 5 . 51 ZZZARD01 3 . 38 5. 63 
BUVXIZ01 Dy 3 16 5 .51 ZZZARG01 3 . 32 5 . 60 
BUVXOF01 Ho 3 17 5 . 50 HOESUL02 3 . 33 5. 61 

Er AERETS 3 . 30 5 . 60 
Tm ZZZARJ01 3 . 22 5 . 57 

BUVYEWOl Yb 3 53 5 . 54 ESULYB01 3 . 24 5. 58 
BUWUJ Lu 3 60 5 .58 ZZZARM01 3 . 32 5 . 57 

(FIYHUQ) (Ohki, Suzuki & Ouchi, 1987). The formation of hydrogen bonds between 

the coordination sphere and the NAP2 anion distorts the structure from the regular 

TTP. The best description for the T T P is that one coordinated NAP2 locates at a 

capping position and the other at one of the trigonal prism vertices. Free NAP2 forms 

the H-bonds with two coordinated H2O molecules. Similarity can also be found in 

complex hepta-aqua-bis(maleato)-gadolinium(III) maleate monohydrate (PEBDOP, 

Xue, Zhu & Yang, 1992). 

H E D M U Y has a coordination sphere of uranium with five H2O, two N=CCH3 and 

two Br, i.e. NH4[U(H20)5(NCMe)2Br2]Br2, (Zych et al, 1993). It was considered as an 

intermediate of the T T P and C S A , RangiTTP) = 4.81% and Rmg(CSA) = 4.28%. The best 

description for the T T P is that Bri , Oi , 0 2 B and B r i B , O i B , 0 2 locate at the vertices of 

two parallel triangle faces, respectively, N 2 , Ni and 0 3 at the capping positions. 

Other examples can be seen in Figure 4.31. All are considered to have the T T P 

form. RangiTTP) = 3.26% and R^CSA) = 4.91% for JOSSEP (Starynowicz, 1992) and 
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Rang(TTP) = 4.37% and Rang(CSA) = 5.28% for T A Z Y O I (Starynowicz, 1991). Bulky 

ligands are all located at the vertices of the trigonal prism. 

F i g u r e 4.31 C o o r d i n a t i o n spheres g e o m e t r i e s f o r JOSSEP and TAZYOI 

The potential energy surface for the M L 9 coordination sphere has been calculated 

(Kepert, 1981). The projection onto the plane is given in Figure 4.32(a), in which 

C is the C S A and T the T T P in this representation, and where the angles (|)B and <|>F in 

Kepert's paper correspond to 028 and 678 in this work, respectively (see Figure 3.4). 

There is no apparent potential energy barrier between these two geometries so it is easy 

to convert one to the other and also to be ambiguous in classifying the geometry for a 

determined structure. 

The data set is divided into three subsets according to the ligand types of the 

complexes: (i) with all nine identical unidentate ligands (U); (ii) with three bidentate 

ligands (B) and three unidentate ligands, MB3U3; (iii) with four bidentate ligands and a 

unidentate ligand, MB4U. In (i), there is no chelate effect to the coordination sphere 

geometry and in (ii) and (iii) the influences of ligands to the coordination sphere 

geometry could come from the chelate rings formed by the bidentate ligands. 

9 O 
0 o 15. 16 

o o o o 10 ~0, 13 
o 11 

so 
o Nd 7 

O Nd 14 
o 3 

;0 O 2 X o 
V 

12 

0 o .0 10 1 

o 15 O o 

O 

J O S S E P TAZYOI 

146 



150 

140 

130 -

OP 

120 -

110 -

100 
100 150 

Theta_28 
142.0 

138.0 

134.0 

130.0 

122.0 

118.0 

114.0 

° i ° i> 
o 

o o 

o 

° o 

o 

114.0 118.0 122.0 126.0 130.0 134.0 1 38.0 142.0 
Theta_78 

(b) 

F i g u r e 4.32 P r o j e c t i o n o f t h e p o t e n t i a l energy s u r f a c e (a) 
(re p r o d u c e d f r o m K e p e r t , 1981) and comparison 
f r o m t h e observed s t r u c t u r e s , MU9* (b) ; 

U — unidentate ligand; B — bidentate ligand 
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Figure 4.32 contd. MB3U3 (c) and MB4U (d) 
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Geometries for the 42 observed structural fragments of [M(unidentate)<)] retrieved 

from the CSD are identified by the Rans(x) values. The angles 028 and 8 7 8 corresponding 

to the <))b and ( j^ in Kepert's potential energy surface map, are plotted for M U 9 , MB3U3 

and MB4U complexes in Figure 4.32(b), (c) and (d), respectively and plots are in good 

agreement with the potential energy surface. There is actually no perfect CSA form in 

this kind of complex (i). Only a few have close geometry to this polyhedron, which can 

be seen as an intermediate close to the CSA. Most of them are clustered around the 

perfect TTP sites. Some structures between these two geometries represent the 

intermediates of these geometries. In the form of MB3U3, both TTP and CSA can be 

found. The most common conformation forms for the CSA and TTP in this data set, 

0 

o 3C 
C) 31 ) 

O 

La O ID 
b o O y o 

PEWJIK (TTP) DISFUG (CSA) 

Figure 4.33 Representatives of geometrxcal conformations i n MB3U 

identified by Rang(x) values, are presented in Figure 4.33. The three bidentate ligands 

and the prismatic ligands are related by 3-fold symmetry. 

In the MB3U3 data set, some multi-dentate ligand complexes also included, but the 

complexes always have three unidentate ligands except for the multi-dentate ligands. A 

cluster in the CSA area [Figure 4.32(c)], but separate f rom the cluster described above 

is, in fact, another form of coordination, which consist of three unidentate ligands and a 

pentadentate ligand. In this data set, they are ethylenediaminetetra-acetato complexes. 
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Only the CSA form can be formed here and the structural conformation is shown in 

Figure 4.34. 

N 

k 
i d 

11 
0 

ZAMHOK 

Figure 4.34 Geometrical form f o r M (pentadentate) U3 i l l ZAMHOK 

It is interesting that the capping position is not occupied by a unidentate ligand but 

by one atom of the multi-dentate ligand. Three unidentate ligands (H2O) are sitting on 

the same side. It w i l l allow the atoms on the square faces to be co-planar. 

N 

0 ;°2 
O, 0 ( 111 Nil N Er 

N ;N • / 0 N / 1 N 
N 

(b ( a 

Figure 4.35 S t r u c t u r a l representations of observed complexes i n 
CSA geometry from the CSD (a) JOPJIH; (b) CECLEB 
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From the composition of the coordination form M(octa-dentate)U, it is easy to see 

that the C S A is a suitable polyhedron for the coordination sphere. Because the 

octadentate ligands can span edges linking the two square faces of antiprism and the 

unidentate one locates at the capping position. A typical structure of this type complex, 

JOPJIH, is shown in Figure 4.35(a). Rang(TTP) and Rang(CSA) are: 6.27% and 3.68%, 

respectively. For M B 4 U complexes, the C S A geometry is more preferred [Figure 

4.32(d)]. It was considered that the same conformation as that for M(octa-dentate)U 

described above should be formed (Kepert, 1981). However, most observed structures 

can not have this arrangement for the coordination sphere. Normal conformation for this 

type complexes identified by the Rang(x) values is shown in Figure 4.35(b) 

It can be seen that two bidentate ligands span the edges of the two parallel square 

antiprismatic faces, one on the edge linking two atoms at the same square plane. The 

other contributes an atom as capping (N2) and one on the capping base square plane 

(Oi). In this structural conformation, if the unidentate ligand O100 from H2O molecule 

were considered as the capping atom, four bidentate ligands could not have the same 

conformation as JOPJIH, i.e. spanning the edges linking two parallel square faces of 

antiprism, which was previously predicted calculation (Kepert, 1981) for this kind of 

complex. 

4.4.2 Further Criteria in the Identification of Geometry for Chelate Ligand 
Complexes 

The geometry for most complexes having the defined coordination types given 

above have been identified by Rang(x) values. However, some complexes with chelate 

effects are usually in an intermediate state between the given reference polyhedra, T T P 

and CSA. Thus, Rang(x) calculation could not provide significant differentiation between 

T T P and CSA. This definitely gives difficulty in identifying the geometry for these 

complexes. Reference to the original publications for these complexes shows that they 

were mostly assigned by the subjective view of the structural projection illustrations. 

This actually included some random views and authors' interpretations, since with this 

coordination number and from different viewing directions, both geometries can be 

represented quite well. An example is shown in Figure 4.36. Rang(x) calculation for 
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complex K I T G O J [Ho(H 20)4(E0 4)*]Cl3 (Rogers et al, 1991) gave two values: 5.73% in 

T T P and 5.98% in CSA. From the diagram and these values, it is difficult to say which 

geometry it is really closer to. 

Figure 4.36 A s t r u c t u r e KITGOJ from the CSD i n both TTP and CSA 

However, Rang(x) values provided us with T T P as the closest conformation to 

either of the geometrical forms and from this conformation, the ligand labels could 

assigned. Thus, in the T T P form of K I T G O J , O 4 , O 7 , 0 9 and Og, 06, O 2 were assigned 

as the prismatic atoms and Oi , O3, O5 as the capping atoms. This definitely gives more 

accurate assignment than that obtained by eye and forms a basis for further geometrical 

analysis. 

With this aim, further criteria for identifying geometry of these complexes are 

designed and applied in the procedure. 

As is well known, for either of regular polyhedra, T T P or CSA, some idealized 

planes should be included. In TTP, there are three side planes of the prism, which are 

made up by vertices 1254, 1346 and 2356, and in C S A , two parallel square planes can 

be defined. Deviations for each atom included in these plane definitions for each 

complex are calculated and how much a given geometry distorts from the reference 

archetype might be found from these deviation values. It is obvious that the larger 

* E04—Tetraethylene Glycol 
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deviations represent the greater distortion from the defined polyhedron. Details of the 

application of this method to the lanthanide acyclic polyethylene glycol complexes are 

given as follows. 

A series of complexes with a different number of coordinated oxygen atoms of 

polyethylene glycol molecules (Rogers et al, 1991) has been included in the data set. 

The multidentate ligands are expressed according to the number of the oxygen atoms on 

the molecular chain. 

All these complexes have the same features as those in KTTGOJ namely, small 

differences in the two Rang(x) values. The deviations from the defined planes given 

above for each vertex atom are calculated and the average deviation values for three 

planes in the T T P are defined as di, d2, d3, and dj, ds for two planes in the CSA, 

respectively. All other coordination positions are occupied by unidentate ligands, H2O 

or halide atoms. Table 4.14 lists the results of the calculation for lanthanide EO4 

complexes. This series of complexes involves 12 lanthanide element ions and before 

complex KTTGAV (Tb 3 + ) , the coordination spheres are composed by Ln(H20)3(E04)Cl, 

i.e. a chlorine is coordinated directly to the metals. The remaining complexes all have 

the coordination form of Ln(H20)4(E04). When the C S A geometry was considered, it 

can be seen from Figure 4.36 that the capping position is occupied by an oxygen atom 

O3 from EO4 rather than by an expected unidentate ligand atom (H2O). But in chloride 

complexes (Ln = Ce - Gd), the capping position is occupied by oxygen atom of H2O. 

Since there is a tight ion pair in these complexes, the conformation of the alcoholic 

glycol is different from those complexes with four water molecules. The chlorine atom 

with two waters sits at one side of the acyclic chain of the EO4 and one water at the 

other side. While in Ln = Tb - Yb complexes, two water molecules locate each side of 

the acyclic chain of the EO4. Thus, the chloride ion, two alcoholic oxygen atoms and 

one water oxygen atom, form a capping base square face and one water oxygen sits at 

the capping position. However, all of these complexes have a geometry closest to the 

tricapped trigonal prism from the calculation of deviations from the defined planes, i.e. 

r v \ / h \ n =2 ( E 0 3 ) , n =3 ( E 0 4 ) , n = 4 ( E 0 5 ) 
HO O O H 
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Table 4.14. Deviations from the s p e c i f i c planes i n TTP and CSA 
f o r Ln (0H2) 3 (E04) CI or Ln (0H2) 4 (E04) spheres 

REFCODE Ln 3 + 
TTP CSA REFCODE Ln 3 + 

d i d 2 d 3 d 4 d 5 

KITDUM Ce 0.118 0. 041 0.135 0.041 0.236 

KITFAU Pr 0.112 0 . 041 0.130 0 . 041 0.238 

KITEEY Nd 0.104 0. 041 0.123 0.041 0.235 

KITFIC Sm 0.097 0. 044 0.114 0.044 0.233 

KITFOI Eu 0.095 0.040 0.114 0.040 0.230 

KITFUO Gd 0.087 0.041 0.108 0.041 0.232 

KITGAV Tb 0.122 0.037 0. 039 0.122 0.221 

KITGEZ Dy 0. 117 0.040 0.039 0.117 0.212 

KITGOJ Ho 0.115 0. 038 0. 041 0.115 0.206 

KITGUP Er 0.108 0. 036 0. 037 0.108 0.205 

KITHAW Tm 0.113 0. 032 0.035 0.113 0.198 

KITHEA Yb 0.103 0.037 0.041 0.103 0.197 

smaller dt values in the TTP. In the first set of these complexes (with chloride 

coordinated), the glycol oxygen atoms alternate along the acyclic chain from prismatic 

to capping sites and in the second set (with four waters coordinated), the glycol oxygen 

atoms alternate along the acyclic chain from capping to prismatic sites. All water 

oxygen atoms are at prismatic sites, whereas the former has one water oxygen atom 

capping one of the quadrilateral faces. 

Similarly, the deviation calculation was carried out on the EO3 and EO5 

complexes. The results are given in Table 4.15. All these complexes are, again, closest 

to TTP geometry. 

The distortions in the geometry of the coordinated ion increase from lutetium to 

lanthanum. The deviation value d3, which represents distortion of a complex from an 
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idealized T T P geometry correlates well with the ionic radius of the lanthanide ion. As 

shown in Figure 4.37, the distances of each coordinated atom, in complexes 

d 3 value 
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(b) 

Figure 4.37 d 3 value vs. radius of ions (a) and Rang(TTP) vs. 
Radius of ions 
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Ln[(H 20)3ClE04]Cl2 H 2 0 or Ln[(H 2 0)4E0 4 ]Cl3, from one of the idealized planes in the 

T T P polyhedral form decrease regularly with the ionic radius (Cotton & Wilkinson, 

1988) and show a linear dependence. It is interesting to note, however, that in a plot of 

the d3 value versus the ionic radius of the trivalent metal, a break occurs in the curve at 

the gadolinium and terbium ions, which changes(a) and D4d (b) symmetry, respectively. 

It can be seen that the contributions of the angles the coordination form from a chloride 

ion in the primary sphere to being replaced by a water molecule. The same correlation 

can be also seen in the plot of Ra„g(TTP) versus ionic radius, that is, the larger, earlier 

lanthanides are more distorted from the T T P geometry. 

The same trend in the change of geometry of the coordinated ion is also observed 

in other series of complexes, such as, for 9 water molecules coordinated to lanthanide 

ions, Figure 4.38 shows such correlation again with Rang(TTP) against radius of ions. 

f W T T P ) (%) 

La 

3.8 Pr 
Ce 

Nd Gd 
Tb • 

Ho Er Lu Eu 

Dy 
Yb Tm 

1.00 1.05 1.10 1.15 1.20 1.25 

Radius of ions 

Figure 4.38 R a n g ( T T P ) vs. radius of ions i n Ln ( H 2 0 ) 9 • 3 E t S 0 3 

It can be concluded that structures containing smaller ions are more likely to have 

T T P geometry than those of larger ions. 
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4.4.3 Symmetry Coordinates 

As in 7- and 8-coordination, geometrical distortions and interconversions between 

the two idealized polyhedral forms can also be mapped by the correlation of some 

significant symmetry coordinates. 

The symmetry coordinates are considered and can be derived in two symmetrical 

forms, D 3 h and Cw, which represent the two ideal geometrical symmetries, T T P and 

CSA, respectively. The total angle representations are: 

T e = 2 A.' + 2E' + A2 + E in D3h point group; 

r e = 3A. + Bl + B2 + E in C4V point group. 

The symmetry isomers for 9-coordination sphere in point group D3h(TTP) and 

C4v(CSA) are given in Appendix III. As the coordination number increases, the 

symmetry coordinates become more complicated. The experiences in the study of 7-

and 8-coordination sphere geometry showed me that it is not necessary to consider all 

coordintes. Meaningful results can be revealed by just small subset of the coordinates. 

Therefore, two pairs of these coordinates from two point groups (in representation E' of 

D3h and E of C4V) are presented as follows: 

and 

S2a ~ ^ (2̂ 12 ~ #13 ~ 2̂3 ~ 4̂6 ~ #56 + 2(945 ) 

I 

2 

in D 3h 
S2b -^(013 ~023 +#46 -#56) 

$2b ~ 2 ^ 2 S ^89 + ^58 ^ 

S2c =-̂ (̂ 13 _ 6 14 -^36+^46) 

in C 4 v 
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The choice pf these particular coordinates is because they represent the significant 

angular distortions in two geometries and these distortions could also result in the 

transformation of geometries. Figure 4.39 illustrates the angle distortions represented by 

these two pairs of symmetry coordinates. S2a and S2b represent the angle vibrations 

between prismatic atoms. These movements are equal to moving the vertex atoms of the 

prism away from an ideal trigonal prism. Figure 4.39(a) gives a view along the axis 

perpendicular to the triangle faces. While S2b and S2C show the distortions of atoms on 

the two parallel square planes in the C S A form. Figure 4.39(b) is a view along capped 

atom (8) to the metal. It shows that one square plane is distorted by the shrunken angle 

between atoms 1 and 4, 3 and 6, or stretched between atoms 1 and 3, 4 and 6; the other 

plane is distorted by the equivalent movements of atom 7, 9 and 2, 5, vertically above O 

and below ® the plane of the paper, respectively. 

® 1 4 

A < 

7 © © 9 

V 
2 5 3(6 

® 

(a) (b) 

Figure 4.39 V i s u a l i z e d representations of angle d i s t o r t i o n s from 
Symmetry coordinates S 2 a & S 2 b i n D3h (a) and S 2b & S2c 

i n C4v (b) . 

In the same manner applied in 7- and 8-coordination systems, all the CSD 

retrieved data for 9-coordination complexes are expanded in symmetry D3h and Q\s. 

Thus, each point is related by 12-fold symmetry in D3h and 8-fold symmetry in C4V. The 

scattergrams of S 2 a vs. S2b [Figure 4.40(a)] and S2b vs. S2C [Figure 4.40(b)] on the data 

set for all examples in 9-coordination complexes both map the geometrical 
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deformations and interconversion from one to the other polyhedral form. In Figure 

4.40(a), the central density is readily attributed to the T T P complexes. Other clusters 

related by 3-fold axes represent the C S A complexes. Whereas in C4V symmetry [Figure 

4.40(b)], C S A complexes are located at the centre and T T P complexes are related by a 

2-fold axis. Both plots have a number of the experimental observations that fall on lines 

connecting these two polyhedral forms, that is, a mapping of the geometrical changes 

that take place along T T P o C S A interconversion pathways in two different symmetry 

forms. In addition, there are some points on both plots located beyond the clusters, 

reference back to the details of the structures, it showed that all these complexes contain 

special ligands with large steric effects for the coordination sphere geometry. Some of 

the angles considerably deviate from those idealized angles due to the influence of the 

ligand conformation. For example, some crown ether complexes, Gd(EtOH)(18-crown-

6)C12]C1, BITZUZ10 (Forsellini et al, 1985), [Ce(H 20)Cl 2(18-crown-6)]Cl-H 20 

H A M Z E A (Rogers et al, 1993) and other macrocyclic complexes (JUVZIJ, Bligh et al, 

1992). 
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4.5 Geometrical Preferences and Coordination Environments 

In the previous sections, the overall geometrical preferences, deformation and 

interconversion pathways for data sets of 7-, 8- and 9-coordination spheres have been 

mapped based on the geometry identified from the discrepancy index Rang(x). The all-

unidentate ligand complexes always showed a clear geometry identification. However, 

most coordination spheres have more complex ligand types. With variety of ligand 

types, geometry may distort from the idealized polyhedral forms, To investigate the 

influence of the ligands, an index method has also been given. That is a measure of how 

an observed atomic position deviates from the idealized vertex position for a given 

polyhedral form. It provides geometrical information for each individual ligand. 

For a systematic study of the influences of ligand type the geometrical preferences 

of a coordination sphere, firstly, a plot of two Rans(x) values is produced. Figure 4.41 is 

a scatterplot of Rang(PBP)% against Rang(CTP)% for the complete 7-coordination data 

set. Two major clusters with Rang(PBP)% value close to zero and Rang(CTP)% to zero, 

respectively, indicate a well populated PBP and CTP. C O C appears between these two 

clusters and closer to the C T P cluster. A series of data points with intermediate Rang(x) 

values connect these clusters, which provide interconversion pathway of PBP <=$> CTP. 

It is interesting that not only a linear connection (A) is observed but also reveals 

interconvertions (B, C) between the PBP and C T P structures linked to a loose cluster of 

fragments for which both Rang(x) values are -15%. 

To examine the features provided on this plot, colour coding based on ligand 

denticity is applied and the coordinated ligand types are classed according to the 

number of unidentate ligands containing in the complexes. Colours red, green, yellow, 

blue, pink and black represent that there are 1, 2, 3, 4, 5 and 7 unidentate ligands in the 

complexes. The symbols • and A indicate that at least a four-member or a three-member 

chelate ring is included in a complex, respectively. Thus, data points can be located 

according to the ligand types in this classification. For examples, for the complexes with 

two unidentate ligands (green), they mainly populate the PBP area. 

Examination of the contributors shows that they arise mostly from the iron 

complexes, which have been discussed in previous sections (§4.2.3 and §4.2.4). The 

nature of the ligands makes it easy to form PBP geometry by arranging a penta-dentate 

ligand on the equatorial plane and two unidentate ligands at two axial positions. There 
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are two kinds of distortions f rom PBP geometry. One is along line C, the other is along 

line A. The former has a bidentate ligand lying in the pentagonal plane and the latter has 

one equatorial atom out of the plane. Complexes with a three-membered chelate ring 

contribute to the cluster that has two large Rang(x) values. For the complexes with 4 

unidentate ligands (blue), since three of them can be located at the apical positions of 

CTP/COC, most points can be found in this area. A l l unidentate ligand complexes are 

expressed in black. The details for this type of complexes have been given in the 

previous sections. The remaining classified complex with one (red), three (yellow) and 

five (pink) unidentate ligands have more varied geometry. Three possible geometries 

are adopted according to the chelate rings located on the equatorial plane or along the 

axis direction. They all have the same features as those represented in green, that is, the 

fragments which involve tight ligand bite angles (A) appear in the area with two large 

Rang(x) values and the fragments which have a bidentate ligand on the equatorial plane 

are distorted along line C. For the chelate rings with greater than 4-members symbolized 

as ( o ) , the chelate effect for the coordination sphere geometry is not very apparent. 

I f individual structures along the interconversion line f rom PBP to CTP (A) f rom 

the plot are studied, a clear conversion of geometry f rom one to the other can be 

observed. Figure 4.42 shows this change of geometry f rom the observed coordination 

sphere structures [ f rom structure DETKOC (PBP) to D O W K A B (CTP)]. Structure 

H A R V E B represents a COC geometry, which is at between PBP and CTP structures. 

This is in agreement with the interconversion pathway proposed in Figure 3.9. 

It can now be seen that the 2D Rang(CTP) vs. Rang(PBP) plot for the 7-coordination 

dataset not only presents all of the information detailed in the previous mappings by 

other techniques, e.g. PCA etc., but also allow us to classify the geometry according to 

different ligand types by colour coding. More importantly, the 2D Rang(x)-plot is in a 

simpler fo rm and is much easier to understand. 
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4.6 Rang(x) Index Applied to Lower Coordination M L n Systems (n =3, 
4, 5 and 6) 

The Rang(x) index method has been successfully applied in the higher coordination 

number system. The results in systematic study of ML„ sphere (n = 7, 8 and 9) 

geometry have shown that it not only provides geometry identification for a specific 

crystallographically observed coordination sphere, by a clear numerical measure of 

deviation of the observed structure f rom that of given idealized polyhedron, but also 

generates a unique atomic enumeration for each fragment. Thus, a multivariate data 

matrix can be formed and further multivariate analyses can be carried out, so that the 

geometrical properties in these systems can be mapped. 

For a general application of this method, the Rang(x) index method is also applied 

to the lower coordination sphere ML„ (n =3, 4, 5 and 6). As stated previously, the well-

known archetypal polyhedra used in the geometrical description of these coordination 

spheres all have specific defined angles and are easier to identify than those in the 

higher coordination number systems. 

The lower coordination number complexes are much more common than higher 

coordination number complexes. The CSD contains a lot of structure data for these 

complexes. To restrict the numbers of retrieved structures, the search may usually be 

run separately for specific metal atoms at the centre, or to locate all unidentate 

examples. The total coordination number for the central atom (transition metals only) 

are restricted to 3, 4, 5 and 6, accordingly. The results f rom the CSD search reveals that 

140 fragments in 3-coordination, 1306 in 4-coordination, 218 in 5-coordination and 

1157 in 6-coordination have all-unidentate ligand complexations. 

A l l Rans(x) values are calculated on these data sets. As in 7-coordination system, 

each calculation is over n! ligand permutations and minimized the Rang(x) value to the 

different idealized polyhedral forms as described in Chapter 3. 

4.6.1 2D Ra»g(x) Plots 

It is obvious that geometry for each coordination sphere can also be identified by 

the relevant Rang(x)% values for these lower coordination spheres. 2D Rang(x) plots are 

used again to elucidate geometrical preferences and distortions of these coordination 

spheres. The resulting plots for all-unidentate ligands 3, 4, 5 and 6-coordination data are 
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given in Figure 4.43 (a), (b), (c) and (d), respectively. 

As in the previous examples in 7-coordination, these plots reveal the two 

populated clusters for the given archetypal polyhedra and also provide an 

interconversion pathway between these two geometries along a line for each 

coordination sphere. 

In the case of 3-coordination, trigonal plane geometrical forms of in Y and in T 

shape are used in Rang(x) calculations. Data points with intermediate geometry connect 

these two extremes. Examination of the contributors along the line shows that the 

geometry transforms smoothly f rom one shape (Y) to the other (T) or vice versa. 

Although the observed structures differ with respect to the central atom and the nature 

of the ligands, they may be arranged in a sequence that vividly illustrates the smooth 

transition along the line provided on the plot f rom T (structure MEPHGC10) to Y 

(structure SOJVES) shape (Figure 4.44). 

Similar results can be also seen in 4-coordination data and 5-coordination data, 

which map geometrical forms of squar plane (SPL) and tetrahedron (TR) in 4-

coordination, and trigonal bipyramid (TBP) and square pyramid (SQP) in 5-

coordination, respectively. 

In 6-coordination, the octahedron (OCT) is obviously the favored geometrical 

form. Only one exception (JAMWOJ), 2Li(TMED)* Z r M e 6 (Morse & Girolami, 1989), 

has the geometry of a trigonal prism (PTR) [Rang(PTR) = 3.6 % ] . another five 

(BERDEH, KOFWEH, PDACCO, SONROC, Y U L G U H ) have distorted PTR forms, 

which mostly are caused by ligand conformations. A l l others were assigned as 

octahedral. 

4.6.2 Rang(x) spectra 

Rang(x) values, in fact, can be seen as a kind of dissimilarity measure which are 

usually used in the cluster analysis as given in Chapter 2. When torsional dissimilarity 

calculations were applied in the systematic study of conformation of a flexible 

substructure, a rapid visualization of the conformational complexity of a given chemical 

substructure could be obtained through the representation of the dissimilarity values as a 

simple histogram. Similarly, dissimilarity calculations on coordination sphere f rom 

* T M E D — tetramethylethylenediamine 
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L - M - L valence angles can also reveal the different geometries represented by different 

well-known archetypal polyhedra. Such representations were called "angular 

spectroscopy" (Allen, Bath and Willett, 1994). For this study, the RangM values, except 

for the 2D plots given above, can also provide a one-dimensional representation as a 

simple histogram as shown in Figure 4.45. It w i l l be called uRang(x) spectra". 

The Ra,,g(x) spectrum is a simple expression of the multivariate parameter space. 

The frequency of various values appearing in the histogram w i l l indicate geometry 

preferences for different polyhedral forms in coordination sphere. However, for an n-

coordination spheres, since the dimensionality to define each geometry is reduced f rom 

n(n-l)/2 to one, information for higher coordination numbers (n > 7) may lead to 

information loss and overlap of peaks for different geometries. Nevertheless, this can 

yet be regarded as a simple and effective representation of conformational or 

configurational diversity in MLn (n < 7) sphere geometry. 

As an example of Rang(x) spectrum, the details of tetracoordination spheres for 

some common metals (Cu, Co, N i , Pt and Zn) are given as below. 

4-coordination Cu sphere 

The data for this species is the same as that used in PCA in Chapter 2. There are a 

large number of complexes in the CSD. To restrict the number of examples retrieved 

from the CSD, all-unidentate ligand complexes are only involved in the data set (127 

fragments). Figure 4.45 illustrates histogram of Rmg(TR)% (a) and Rang(SPL)% (b). 
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Both histograms show the peaks corresponding to two major different geometries, 

one close to the origin and the other at a Rang(x) of 30-40%. The peaks indicate the 

frequencies of the major components represented by the relative Rang(x) values and the 

information presented in mappings by more complex multivariate analysis, e.g. PCA, 

concerning the transition f rom one to the other geometry, can also be visualized simply 

by the series points with intermediate Rang(x) values between the two major peaks. 

Furthermore, in these 4-coordination Cu species, the peaks for the tetrahedral geometry 

are broadly spread in both spectra, particularly that close to zero in the Rans(TR)% 

histogram [Figure 4.45(a)], which indicates a large number of distorted tetrahedral 

structures, while the peak for square plane is sharp in both histograms. This implies that 

a perfect square plane shape is easier to maintain once the coordination sphere adopts 

this geometry. 

4-coordination Co sphere 

The CSD retrieval provides 291 examples of tetracoordinate Co atoms. Figure 

4.45 (c) and (d) give the distributions of Rang(TR)% and Rang(SPL)%, respectively. 

Tetracoordinate Co(II) always exists in the d 7 configuration. From the 

considerations of d orbital energies, high-spin electron arrangements of d 7 have stable 

tetrahedral form and square planar complexes often occur for the low-spin state of 

Co(II). Thus, those complexes with halide and carbonyl etc. as ligands, which have 
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relative weaker ligand field, are easy to be found in the tetrahedral peaks (TR). A l l 

square planar complexes in SPL-peak are those ligands with stronger ligand field like 

- N H - etc. 

4-coordination N i and Pt spheres 

1078 N i complexes and Pt complexes were retrieved from the CSD. They all have 

(f electron configurations and exist in Ni( I I ) and Pt(II) forms in 4-coordination 

complexes. Both tetrahedron and square plane are found in 4-coordination N i spheres 

[Figure 4.45 (e), ( f ) ] , most o f them form square planar complexes. Tetrahedral 

complexes mainly contain ligands like -P, CO etc. Bulky ligands always make the 

complexes have the intermediate Rang(x) values. 

It was considered in the crystal field stabilization energy (CFSE) (Mackay & 

Mackay, 1981) that the larger AE values gained by heavier elements in CFSE extend the 

scope of formation o f square complexes. Thus, almost all complexes of Pt(II) are square 

planar [Figure 4.45 (g), (h)]. The exceptions are found in those complexes with 

chelating ligands in which a square plane is diff icul t to be formed, such as, structure 

CUTHEE, which has the closest tetrahedral geometry in the data set [Ra„g(TR) = 4.69%] 

and G A V F A K 0 1 [Rang(TR) = 8.44%] and so on. 

C 9 C M i e o o a : C U I H B B 6 C 0 C u v n t K O l 

CUTHEE ( L i n g et al, 1985) GAVFAK01 (Asker e t ml, 1990) 
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The 2D-Rang(x)% plot of P tL 4 data set (Figure 4.46) shows the effects of 

coordinated ligand environments to the geometries. Simple inspections of the CSD 

structures show that frarcs-coordinated forms normally have regular square planar 

complexes and as-coordinated complexes, especially those with bulky ligands, are 

distorted f rom an idealized square plane. The distortions of chelate complexes f rom a 

SPL are located along Rang(SPL)% axis, which shows that the smaller chelate ring 

results in larger distortion. 
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4-coordination Zn sphere 

The element zinc has the outer electronic configuration dws2 and has the 

common oxidation state of I I , corresponding to the loss of the two s electrons, i.e. d10 

electrons for Zn(II) . This d10 species, like Cu(I), readily adopts tetrahedral structures in 

4-coordinated complexes. The CSD data for Zn complexes shows that out of 499 

examples, 493 have perfect or close to perfect tetrahedral geometry. Six exceptions 

with a square planar coordinated sphere in this species, H A M C O N , H A M C U T , 

H A M G E H (Byrn et al, 1993), ZALJIG (Birnbaum et al, 1995), P I L M O M (Crociani et 

al, 1994) and L A Z G A U (Vogel et al, 1993) all coordinate with the porphyrin 

derivatives. The metal ions can f i t well the cavity provided by the porhyrin rings and 

are co-planar with four nitrogen atoms. The two peaks for these tetrahedral structures 

can be seen in both Rang(x)% distributions [Figure 4.45(i), ( j )] but Figure 4.45(i) 

illustrates a broader TR-peak which w i l l provide more details in the tetrahedral 

structures with the distortions. 

175 



0 0 5.0 10.0 15.0 20.0 25.0 30.0 35 0 40 0 45.0 
Ran0(TR)% 

TO j 
1 ! 

1 j j L 
SPL 

1 I 

0.0 5 0 10 0 15 0 20.0 25 0 30.0 35.0 40 

( i ) ( j ) 

F i g u r e 4.45 contd. ZnL 4 sphere ( i ) , ( j ) 

A l l these examples for selected metals in the 4-coordination spheres show a 

further application of RangM calculations. The I D representations of Rang(x) provide a 

quick visualization of coordination sphere geometrical diversity prior to some in-depth 

analysis. Each representative geometry and distortion forms in these species can be 

obtained very simply by inspection of the relative frequencies corresponding to the 

different geometries. The same expression in the Raug(x)% spectra can obviously be 

applied to other lower coordination number systems. 

4.7 Concluding Remarks 

A recent development and progress in crystallography is concerned with crystal 

engineering (Braga, Grepioni, and Desiraju, 1998), which is to design a new functional 

solid and predict an unknown molecular structure on the basis of systematic analyses on 

existing crystallographic structural data. It is indeed an example of knowledge 

acquisition and accumulation f rom the available information provided by the vast 

amounts of accurate crystallographic data. Although the term crystal engineering was 

originally drawn from the organic solid state photochemical reactions (Rabinovich & 

Schmidt, 1964), it is now frequently applied to a wide range of attempts to design 

molecular crystals having various functions. In coordination chemistry, metal 
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coordination sphere geometry is fundamental to an understanding of physical and 

chemical properties of complexes. 

In the absence of suitable theoretical models to answer such questions as: "what 

factors determine a given metal coordination geometry?" and "how do ligand 

conformations and other environmental factors affect the coordination sphere 

geometry?" Then identifying geometrical preferences of the known coordination 

structures for the transition metals in a series of complexes w i l l be an important crystal 

engineering strategy in the design of predictable coordination geometry and specific 

ligands or the polymeric networks formed by coordination bonds (Keller, 1997; Losier 

& Zaworotko, 1996). In this study, the acquisition of such knowledge is carried out by a 

simple but general computational procedure which gives a clear numerical measure of 

the deviation of a specific crystallographically observed coordination sphere geometry 

f rom that of a well-known archetypal polyhedron. 

The computer program to apply this method has provided an automatic procedure 

to f ind the closest geometrical form for each fragment to a given reference polyhedron. 

This has resulted f rom taking fu l l account of 2D atomic permutational symmetry so that 

all possible coordination isomers are included and so that i t is applicable in the case of a 

generalized MLn search fragment. The user only needs input the geometry parameters 

retrieved f rom the database. 

In Chapter 4.2, i t was shown that the discrepancy Rang(x) index method could give 

a clear identification in 7-coordination sphere geometry. The high dimensional 

parameter space in geometry representation can be captured in a single Rang(x) value. A 

quick visualization of 1D-Rang(x)% histogram distribution or 2D-Rang(x)% plots can 

easily and rapidly locate the geometrical clusters and thereafter f ind geometrical 

preferences and interconversion between the different forms. The further classification 

of the ligand types on the 2D-Rang(x)% plot, showed how these different types affect the 

coordination sphere geometry. This may provide useful information in the design of 

specific ligands. 

In the Rang(x) calculation for seven coordination, each fragment is minimized over 

5040 possible ligand permutation and thus a unique atomic enumeration is generated. 

This forms the basis for a multivariate data matrix and makes it possibile to apply more 

complex multivariate analyses to this system. Thus, in addition to the discrepancy index 

Rang(x) method, symmetry coordinates and PCA have been initially applied in 7-

coordination sphere geometry for a systematic study. Both methods mapped geometry 
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for this coordination sphere and f rom the maps, a proposed interconversion pathway of 

PBP<=>COC<=>CTP can be observed. Combining the results f rom the symmetry 

coordinates and PCA, this geometry change can be readily interpreted. 

For the results of 8-coordination sphere geometry in Chapter 4.3, the similar 

features to those in the 7-coordination case were again shown. The classification of 

ligand types was considered in more detail for this coordination sphere. I t showed that 

observed structures illustrate the same trends as those based on calculations of ligand 

bite distances in affecting the formation of a given coordination sphere geometry, 

although the distance between ligand-ligand or metal-ligand were not taken into account 

in the Rang(x) calculations to identify the geometry. PCA also appear as a useful tool for 

detecting the geometrical preferences, deformations and interconversion pathways of 

metal coordination spheres. 

Chapter 4.4 revealed some useful results for 9-coordination sphere geometry. 

Rang(x) values can be still effective to identify geometry of the coordination sphere 

which have no great chelating ligand effects. Since much greater number of geometry 

parameters are accumulated in one-dimensional parameter by using Rang(x) value 

representation compared with the lower coordination numbers, this reduction in 

dimensionality, sometimes, can lead to information loss and to overlap of peaks due to 

different geometries. Extra criteria were used to support further identification of 

geometry for these fragments. A series of complexes have been examined to see the 

influences of metals and coordination environments on the coordination sphere 

geometry. Some representative symmetry coordinates for this coordination sphere in 

symmetry D3h and C 4 V have been also successfully applied to map the geometry in this 

system. 

The implementations of the index method for lower coordination number data 

sets showed its generality as an automatic identification of geometry for an MLn sphere. 

The I D - or 2D plots provide an effective view of the diversity of geometries in these 

systems. The multi-dimensional descriptors of coordination sphere geometry can be 

represented in a simple form and f rom these representations, a wide variety of 

coordination environments can still be observed. This raises the possibility to use these 

representations routinely to identify and classify geometrical diversity before going to 

the more complex multivariate procedures. 
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The computational procedure and some analysis methods and the results f rom the 

systematic study of geometry on various M U spheres are expected to contribute as a 

basis for knowledge engineering in coordination chemistry. 
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Chapter 5 
A Database Study of Transition Metal Alkyne 
and Alkene Complexes 

5.1 Introduction 

Metal-alkene and -alkyne bonding in complexes was firstly characterized in terms 

of molecular orbital theory by Chatt et al (1953). Since then the wide applications of 

these kinds of complexes in organic synthesis, studies of various chemical properties 

and reactions of the complex have kept interest high. In structural chemistry, a lot of 

structures of complexes were characterized during the 1970s and 1980s(Mingos, 1982; 

Bruce, 1995). For example, crystal structure determinations of some platinum alkene 

complexes by X-ray and neutron diffractions (Love, Koetzle, Williams, Andrews and 

Bau, 1975; Howard, Spencer and Mason, 1983; Howard, Mitrprachon and Roy, 1982). 

Some theoretical calculations were applied to the specific bonding system (Frenking 

and Pidum, 1997; Albright, Hoffmann, Thibeault and Thorn, 1979) so that the bonding 

theory on this system was further developed. Based on structural knowledge, systematic 

comparisons on the geometrical characteristics of selected complexes (Ittel and Ibers, 

1982; Templeton, 1989) provided clear outlines of the interaction of unsaturated 

molecules with transition metals. However, because these studies were based on a 

manual literature search, the range of compounds was limited. The CSD also records 

large amounts of structural data on transition metal-alkene and -alkyne complexes. It 

will provide a wider basis for systematically investigating the geometrical properties of 

such complexes with various transition metals and double and triple bond derivatives. 

The work described includes a systematic analysis of the geometry of these kinds of 

complexes by firstly using the Cambridge Structural Database. 

The metal-alkene and -alkyne bond is usually described as involving a a-bond, 

donated from 7t-electron of the double or triple bond to an empty hybrid orbital on the 

metal and a Tt-bond formed from back donation from a filled hybrid orbital on the metal 

into the empty C=C 7t*-orbital. 
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For this special bonding form, the observed structural features on the geometry of 

the complexed alkene or alkyne is that the substituents on C=C or C=C are bent back 

from the C-sp2 plane in alkene and the C-sp1 line in alkyne. So the factors of interest are 

to: 

(1) address the structural features by finding correlations between specific structural 

parameters. 

(2) find the implication of the nature of the substituents on the bent-back angle. 

(3) investigate the interactions between the metals and C=C bond. 

(4) from all the correlations, i f possible, derive a predictable variation for the 

complexes in various levels of bonding in C=C, C=C and C-C, i.e. 

M I l l i n i u m 

R 

r 

R 

C 

M I I I I I I I I I I I I I I I M 

R R 

F i g u r e 5.1 The changes i n bond o r d e r f r o m t r i p l e t o s i n g l e bond i n 
m e t a l 7i-bond complexes 

Before further results from this study are given, a few individual structures of 

metal alkene complexes will be reviewed to show the basic structural characteristics of 

this kind of complex and therefore to understand the aims of this study. 

Zeise's salt, K[PtCl3C2H4] is one of the earliest published alkene complexes and 

the structure of anion has been examined by X-ray and neutron diffraction (Eller, Ryan 

and Schaeffer, 1977). According to the a-n bond scheme, the bonding orbitals are 

shown in Figure 5.2. An accurate quantum chemical calculation (Rosch, Messmer and 

Johnson, 1974) showed that major part the total bonding energy in Zeise's salt is 

contributed from the forward donation component (75%) and 25% from the back 

donation component. The X-ray structure gave that both M-C distances are equal but the 

C-C bond length [1.375(3)k] is longer than the 1.337(2)A of ethylene in the free state in 

gas phase. The hydrogen atoms in the ethylene are bent back from the original planar 
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M 

F i g u r e 5.2 The o r b i t a l s i n v o l v e d i n a-n bond i n 
a l k e n e complex 

alkene. The C=C bond is perpendicular to the PtCl3 plane, that is, the ethylene is bound 

perpendicularly to the square-plane, so that the G-n bond has the maximum orbital 

overlaps and relevant definite conformational preference is displayed as in Figure 5.3. 

However, the geometrical constraints imposed by the ligand can sometimes force the 

alkene to adopt the alternative conformation (Schilling, Hoffmann and Lichtenberger, 

1979), i.e. the alkene is parallel to the plane formed by other three ligands and the metal 

atom. 

In some alkene complexes, strong metal-ligand interactions dominate the 

coordination bond while ligand to metal donation is weak. The best representation of the 

structure is as a metallocyclopropane rather than an alkene complex, i.e. shown as 

Figure 5.3. 

ni\\\CF 
M 

CF 

F i g u r e 5.3 S t r u c t u r a l r e p r e s e n t a t i o n as a m e t a l l o c y c l o p r o p a n e 
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In this case, the C-C bond length is lengthened to almost the same as in ethane. 

This is equal to a re-hybridization of the alkene C atoms from sp to sp . In fact, there 

are a lot of structures whose C-C bond lengths occur between these two extreme cases. 

Similar structural characteristics to metal-alkene complexes can be also observed 

in the metal-alkyne complexes. They are often classified as two-electron or four-

electron donation according to the orientation of two sets of perpendicular /?7r-orbitals of 

the alkyne (Templeton, 1989). The difference is that i f the second 7i*-orbital, which is 

perpendicular to the first pair of 7t-orbital, interacts with additional metal d orbitals, 

additional pair of electrons can be back to this orbital so that the metal-alkyne bond 

could be strengthened significantly compared with that of a metal-alkene bond. 

In consequence, the formation of metal o-7i bond depletes the order of double and 

triple bonds so that the geometries of alkene and alkyne have been changed from the 

original planar and linear states. The levels of such change obviously depend upon a 

number of factors, firstly, the donation from metal d-electron to the empty n* orbital of 

ligand. Secondly the presence of electron withdrawing substituents on the C atoms of 

alkene or alkyne wil l increase the contribution, while the presence of electron donating 

substituents will increase the a-bond from 7t-electrons of C=C or C=C bonds to empty 

metal orbitals. Thirdly, the nature of the metal, such as its oxidation state and the 

presence of other ligands will also affect the bonding. The formation of a metal a-n 

bond also increases the 5 + charges on the C atoms so that metal-alkene complexes are 

often used in nucleophilic addition not in electrophilic addition as in the free alkene 

state. This reactivity is clearly affected by the bonding in alkene complexes. 

Nucleophilic attack is enhanced by an increase in a donation, while an increase in n 

back donation will enhance electrophilic attack. But this only gives a trend from 

nucleophilic to electrophilic attack. In practice, they are still in a region of electron 

density which nucleophilic attack may occur even if there is more 7t-bonding than o-

bonding (Hartley, 1969). 

The model given in Figure 5.2 has been applied for decades to explain a number 

of experimental observations as stated above. However, this model is not proper to 

quantify the distortion of the ligand in the complex or to predict details of the difference 

bonding properties of different ligands (Pidum and Frenking, 1995). So the modern ab 

initio quantum chemical methods have been used in some specific complex species to 
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validate the model (Nielson, Bayd, Clark, Hunt, Melson, Richard and Schwerdtfeger, 

1992; Widmark, Roos and Sirgbahu, 1985). 

From these studies, it has been shown that metal-ligand bond lengths, C-C 

(simplified C=C or C=C hereafter) bond lengths in ligands, ligand orientations and 

selected angles can provide useful information in revealing important geometric 

characteristics of these complexes. In the following sections, how these geometrical 

parameters are defined in the CSD search to meet the requirements of this study will be 

given. Correlation relationships derived from these definitions based on a large number 

of structural data show some meaningful results. 

5.2 Database Retrieval 

In attempting to examine the molecular geometry of metal 7t-bond complexes 

formed by alkene and alkyne, first, an appropriate model fragment must be defined so 

that suitable geometrical parameters for further analysis can be retrieved from the 

database. The fragments to be searched in this study are given according to their basic 

bond connections and shown in Figure 5.4 (a) metal-alkyne; (b) metal-alkene. 

Fragments consist of two parts of a general transition metal (TR) and alkyne or alkene 

7t-donation ligand. The interaction between metal atom and ligand is represented by the 

distances B 2 and B 3 . The bond type options 1 , 9 in the parentheses indicate that it is a 

single or n bond in CSD definitions. The C-C bond length is defined as Bi which is a 

double or triple bond (bond type 2 ,3 ) in metal-alkyne complexes and a single or 

double bond (bond type 1,2) in metal-alkene complexes, respectively. T 3 and T 4 are 

used here to specify that carbon atom in alkyne and alkene have a total coordination 

number 3 and 4, respectively, based on s/Z-hybridization in alkyne and sp2-

hybridization in alkene. R's are substituent groups on ligands, which include terminal H 

atoms and all p-block elements. 

The definition of the bent back angle, 84 and Q5, is easier in metal-alkyne 

complexes than in metal-alkene complexes. They can be found directly from the 

definition of angle, R-C=C because there is only one substituent on the C-atom. But in 

alkene complexes, there are two substituents on the C-atom, the angle, in fact, reflects 

the average deviation of these two substituents from the C-C sp2 plane. There are 

several different ways to describe the displacements. The best way here is to choose the 
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B , (1,2) TR 8,(2,3) TR 0 e i i 

X 
9 

( a ) ( b ) 

F i g u r e 5.4 Fragments d e f i n e d i n t h e CSD s e a r c h (a) m e t a l - a l k y n e 
(b) m e t a l - a l k e n e 

coordinates which are derived from the four torsion angles relating the central double 

bond and the substituents at each C-atom, which was used to describe the secondary 

amide group (Dunitz, 1979). In this definition, the four torsion angles about the C—C 

bond are shown in Figure 5.5 and 84 and 65 are defined as: 

0 4 =C0j - o ) 3 +7t = -a) 2 +co4 +7i(mod27t) 

0 5 = Q)2 -(1)3 + 71 = -to, + (0 4 + Tc(mod27t) 

where coi, G L > 2 , C O 3 and oo4 are four torsion angles, R2--C-C-Ri, R2'-C-C-Ri\ R2 -C-C-

Ri and/?2-C--C--/?/', respectively. 
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(a) (b) 

F i g u r e 5.5 Diagram r e p r e s e n t a t i o n s o f f o u r t o r s i o n a n g l e s (Oi, CO2,0)3 and 
co4 (a) and (b) t h e bend a n g l e s 6 4 and 05 a t two t h e C-atoms 
(Dunitz, 1979). 

Version 5.10 of the CSD (1995) was used to perform the fragment search, which 

recorded all required molecules and confirmed the geometrical parameters matched 

exactly with the definitions of substructures. General search restrictions ensured that for 

all retrieved entries, there were: 

(a) no residual numerical errors; 

(b) no disorder in the chemical structure; 

(c) no R values greater than 10%; 

(d) atomic coordinates available; 

(e) no polymer contained and 

(f) "organometallic" compounds according to the CSD chemical class assignments. 

In addition, there were a lot of conjugated dialkenes such as butadiene complexes 

resulting from the search of metal-alkene complexes, attention was restricted to 

complexes of monoalkenes. Conjugated dialkenes undergo substantial changes in bond 

lengths on coordination to a metal atom and therefore their complexes were not 

included in this study. Complexes with large steric effects that directly dominate the 

bent back angle, such as some cyclo-alkene complexes, were also excluded from the 

analysis. Finally, the CSD revealed 424 metal-alkyne and 373 metal-alkene complexes 

in an exactly defined environment. The numbers for different metals in both types of 

complexes are listed in Table 5.1. 
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Table 5.1 The Number o f M e t a l - A l k y n e and -Alkene Complexes f o r 
D i f f e r e n t M e t a l s R e t r i e v e d f r o m t h e CSD 

- _ I 
N 

... 

Alkyne 8 :»8 7 

2 8 K Alkene 

Alkyne 0 8 27 0 5 0 
Alkene 0 2 8 6 8 

! 

— 

Pt Ta Re OS 

Alkyne 128 31 0 1 7 

5G 14 Alkene 17 7 

In general, it is considered that metals with low oxidation states will enhance the 

formation of 7i-bond complexes because more electrons can be back donated. Thus 

metals on the right of the transition block tend to form more stable 7i-bond complexes 

than those on the left. But metals also need to provide an empty orbital with comparable 

energies to accept 7t-electrons from ligands, therefore, this kind complex is difficult to 

find for the metals in group 11 and 12. 

In the alkene complexes dataset, most compounds are pure hydrocarbon alkene 

which have no substituent groups in the neighborhood of the C=C double bond. There 

are also many complexes (115) which have one substituent on the carbon atom. But the 

number of complexes in which both hydrogens on the carbon atoms are substituted falls 

to 21. Whereas in alkyne complexes dataset, only eight complexes have pure 

hydrocarbon alkynes, most others contain functional group substituents. 

5.3 Data Analysis 

From both of the data sets for metal-alkene and alkyne, statistical results and 

correlation relationships can be obtained by using the VISTA 2.0 program provided by 

Cambridge Crystallographic Structural Database. Some new definitions related to the 

parameters retrieved from QUEST3D could be generated by the command CREATE in 

VISTA. The statistics for these parameters are summarized in the following sections. 
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5.3.1 Bend Back Angles and C-C Bond Lengths 

An important geometrical feature in these complexes is the reordering of alkyne 

and alkene, which is reflected in the bend back angle and the change in C-C bond 

lengths. An examination of the data sets reveals that most bond lengths of coordinated 

alkynes or alkenes are significantly longer than that of a free acetylene [1.181(2)A] or 

ethylene [1.337(2)A]. Moreover, with different substituents on unsaturated carbon 

atoms and different other ligands coordinated with the metal, the C-C bond lengths are 

also different. There are some significant variations in C-C distances. The distributions 

of these variations in alkyne and alkene complexes are shown in Figure 5.6 (a) and (b), 

respectively. The average C-C distances in the two datasets are 1.284(2)A (alkyne) and 

1.403(3)A (alkene). 

The distribution of values of the bend back angles for both complexes are listed in 

Table 5.2, which shows that the range of this angle for metal-alkyne complexes falls 

into 13.56° to 52.71°, mean value 36.81° and most complexes have bend back angle 

between 32.0° and 45.0°. The metal-alkene complexes showed a wider distribution 

range, from 0.0°to 67.09° for this angle and the mean value 24.78°. The value of 0.0° 

for the bent-back angle for this data set is contributed from those without substituted 

alkene molecules. X-ray structural determination may place the hydrogen atoms for 

these complexes at theoretical positions. Such positions only represent the normal 

positions in the free alkene state and so the bend back angle must be ignored. In 

consequence, this resulted in a large peak near zero degrees of bend back angle. 

However, there are still a lot of the hetero-atom substituented alkene metal complexes in 

the data set. The bend back angles can be derived from these determined structures. 

Overall, inspection of the distributions reveals that bending back has minimum effect 

for hydrogen atoms both in alkyne and alkene, also for phenyl groups alkyne (e.g. 

Table 5.2 D i s t r i b u t i o n v a l u e s o f bend back angle(°) 

Metal complex Mean Value Min. Value Max. Value SD N£ 

A l k y n e 36.85 13 .56 52 .71 0.36 424 

Alkene 24.78 0.00 67.01 1.03 373 

SD Standard D e v i a t i o n 
N f Number of fragments. 
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C=C bond l e n g t h i n a l k e n e complex (b) 

FAZFAN) which tries to keep planar conjugated stability. Values are greatest for 

halogen substituents, especially fluorine (e.g. SJDYUZ) in alkene and tertiary-butyl-

ammonium groups (e.g. BEFKUS) in alkyne, the latter is a bulkier substituent. 

These two distributions show that larger average bend back angle occurs in metal-

alkyne complexes, but metal-alkene complexes have wider distribution range. 
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The correlation of C=C bond length in alkyne complex and C=C bond length in 

alkene complex versus the related bend back angle are given in Figure 5.7 (a) and (b), 

respectively. 
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F i g u r e 5.7 C o r r e l a t i o n s o f C=C bond l e n g t h (a) and C=C bond l e n g t h 
( b ) v s . bent back a n g l e 0 i n m e t a l - a l k y n e and m e t a l -
a l k e n e complexes 
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In principle, the changes of both bend back angle and C-C bond length will reflect 

the level of re-organization in C=C bond or C=C bond order when they coordinate with 

metal atom. The larger these values, the greater the influence of the coordination n-

bond. Furthermore, the variations of C-C bond are proportional to that of the bend back 

angle. The relationships in Figure 5.7 (a) and (b) are consistent with the theoretical 

prediction. It is observed that the C-C distance relates approximately linearly to the 

bend back angle (correlation coefficients for alkyne complexes 0.68; for alkene 0.57), 

that is, the C-C bond lengths increase with the larger bend back angles. In the case of 

alkyne, this relationship is more obvious than that in alkene, as shown by larger 

correlation coefficient. Therefore it can be said that there exists a stronger interaction 

between metal and C=C bonds compared to C=C bonds. 

5.3.2 Interactions Between Metal and C-C Bond 

Firstly, the interactions between metal atom (TR) and the C-C bond in these kinds 

of complexes were examined by the basic geometrical parameters, angle C-TR-C and 

distances TR-C. In both alkyne and alkene complexes, there are common features for 

these angles and distances. Figure 5.8 (a) and (b) give distributions of angle C-TR-C as 

histograms in alkyne and alkene complexes, respectively. The distribution for alkyne is 

nearly symmetrical around 36.5°, and 38.2° for alkene. 

The distances between metal and two carbon atoms are mostly equal and have a 

direct linear relationship, shown in Figure 5.9 (a) and (b). Two factors may affect this 

relationship, deviations could occur in asymmetrical substituents, such as Cl2C=CCN2 

(CCYEPT, 2.096, 2.003A), or substituents with strain (YAWCH, 2.330, 2.575A) so that 

the two bond lengths show a significant difference. 

Nevertheless, these comparisons are based on the observed interatomic distances. 

Although the ligands are the same, i.e. alkyne or alkene, the metal atoms may be 

different for each fragment. Thus the bonds are not of the same scale, for example, for a 

metal atom with larger atomic radius it normally has a larger observed value. This will 

have a considerable impact on the comparison of these values for different kinds of 

metal atoms. For this reason, a standard or a scale should be considered so that the 

systematical analysis can be carried out. In order to put all interatomic distances 

between metal and carbon atoms on a common scale, a normalized distance [DMC, in 
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Equation (5.1)] is generated by subtracting the covalent radius of metal atom from the 

observed bond length. Therefore a "net" effect of interaction between metals and 

ligands can be investigated. 

DMC=dM-c~rM (5.1) 
ru 

where CIM-C is an average value of two M—C distances and TM is the standard value for 

covalent radius of metal atom, which is the same as those given in the CSD system 

(CSD, 1995). 

The results of comparisons on the normalized distances of different metals with 

the carbon atom are given in Table 5.3, which shows a main range of DMC values for 

different metals. 

Table 5.3 DMC v a l u e s f o r d i f f e r e n t m e t a l s 

Metal Alkyne Alkene 

N i 0 22 — 0. 28 0 30 — 0 39 
Cu 0 27 — 0 . 34 0 31 — 0 38 
Pt 0 34 — 0. 53 0 .33 — 0 51 
Pd * 0 36 — 0 48 
Mo 0 34 — 0. 48 0 .50 —• 0 72 
Nb 0 37 — 0. 54 * 

Co 0 39 — 0. 51 0 .48 — 0 59 
Rh 0 40 — 0. 44 0 .40 — 0 60 
Ta 0 41 — 0. 49 0 .54 — 0 69 
Cr 0 43 — 0. 45 0 .60 — 0 62 
V 0 43 — 0 57 0 .63 — 0 66 
w 0 44 — 0. 61 0 .56 — 0 79 
Re 0 46 — 0 63 0 .62 — 0 75 
Fe 0 47 — 0 60 0 .54 — 0 68 
Os 0 48 — 0 68 0 .58 — 0 66 
I r 0 53 — 0 60 0 .57 — 0 65 

* - N o t e n o u g h s t r u c t u r a l d a t a 
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It can be seen that metals in group 10, Ni, Pt, Pd and Group 11 metal Cu have the 

shortest distances for both kinds of complexes, which imply that a stronger interaction 

exists within these metal complexes. From the n back donation theory stated above, it is 

easy to explain this result. These metals are all rich in d7t-electrons, d8- d10 and Cu-

alkene complexes always appear as a single charged cation. The metals not only provide 

the energetically compatible empty orbitals but also have more chance for back 

donation of d-electrons to ligands. The 7t-bond plays a more important part in these 

complexes. They often form the complexes in oxidation states Ni(II), Pt(II), Pd(II), 

Pt(0), Pd(0) and Cu(I). 

It was considered (Chetcuti, 1995) that nickel is most preferential for simple n-

mono-olefin complexes. In the data set of this study the shortest DMC value is always 

for nickel complexes; platinum(II) can form a very large range of stable mono-alkene or 

mono-alkyne complexes which have a very similar range of DMC values. Especially 

due to their tremendous variety and their relative ease of formation in alkene complexes, 

they have come to be widely regarded as the characteristic representatives of transition 

metal 7t-bond complexes in their reactivity and their bonding behaviour. In the data set, 

the number of palladium alkyne complexes is much less than other two in group 10. In 

this study, only mono- alkene or alkyne are considered, while alkynes are very rapidly 

polymerized by Pd(II) (Hartley, 1969) and palladium (II) also oxidizes alkynes to 

carbonyl compounds. So palladium-alkyne complexes always exist in multi-alkyne 

forms. In this data set only two mono- complexes were "hit". In the case of alkene, 

dimeric halogen-bridged complexes are often formed. 

For the remaining metals in Table 5.3, the DMC values are more variable than 

those of metals in group 6. The statistical results listed in Table 5.3 represent ranges that 

most complexes fall in, with some overlaps. However, a trend can be seen from these 

results in that most metals have smaller DMC values in alkyne than in alkene complexes 

and they are distributed in two separate ranges. Again this confirms that alkynes interact 

more strongly with metal complexes than do alkenes. 

Figure 5.10 (a) and (b) gives the distributions of the DMC values in alkyne and 

alkene complex data sets. In both distributions, the metals (Ni, Pt, Pd Rh) in groups 9 

and 10, and Cu in low oxidation states have stronger binding with alkyne or alkene 

ligand, i.e. smaller DMC values. There are two peaks in the distribution of alkyne 

complex data, which illustrate high occurrence of Ni , Cu and Mo, W etc. as 
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representative metals. In the alkene complex data, three major peaks represent 

distributions of metal Ni, Cu; Pt, Pd, Rh etc and Fe, Ir, Mn etc. complexes, as expected. 

This could be explained from the nature of these metals, such as, oxidation states and 

electron configurations (Greenwood andEarnshaw, 1994). 

In addition, it is quite dependent on other coordinated ligands, especially when 

some other 71-acid ligands compete for the cteorbitals of the metals, the binding strength 

between the metal and alkyne or alkene will be decreased. Thus, a metal may have wide 

range of DMC values. The overlap for some metals in the range of DMC values can be 

seen in Figure 5.10. 

5.3.3 Influences of Substituents 

Based on the a-n bond model, metal-alkyne or metal-alkene interactions could 

also be affected by the substituents on the carbon atoms. It is obvious that electron-

withdrawing functional groups will enhance ^-electron back donation to 7t*-orbitals; on 

the other hand, introduction of electron-donating groups (e.g., -NR2, -OR) increases the 

donor character of the alkene and alkyne, so that this interaction becomes stronger. 

Some extreme examples can easily be found in the literature (Hartley, 1972; Jutzi, 

Siemeling, Miiller and Bogge, 1989; Hoffmann, Perez-Moya, Steigelmann and Riede, 

1992). The CSD can provide many more examples, for instance, in platinum-olefin 

complexes, electron-negative function group substituents -F (MPZBEP), - C F 3 

(OFBUPT), -C=0 (HEHGK) and -CN (FNCPPT) etc. all have shorter DMC values, n-

back bonding becomes more important with increasing electronegativity of the 

unsaturated molecule. However, the substituent is only one of the factors influencing 

the interaction. A few other coordination environments, such as, other ligands, except 

for alkyne or alkene, coordinated with metals, metal oxidation states etc., sometimes 

also play a vital role. Therefore, in order to investigate the influence of substituents on 

this interaction more systematically or to find a correlation with different substituents, 

these other coordination environments should be kept as consistent as possible. For 

example, a hydrocarbon alkene complex (GECHEB) appears to have stronger 

interaction than cyano substituents (TCEPTP10) owing to the different coordination 

environments, in which factors other than substituents have a larger influence. Since 

the restriction of substituent types and tremendous variety of ligands in these kinds of 

complexes, there is not yet a suitable systematic method to correlate this influence from 
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electron-withdrawing to electron-donation on the interaction between metal and C-C 

bonds in these data sets. Meanwhile, the lengthening of the bond C-C in the complexes 

is also rather insensitive to the nature of the substituents on unsaturated carbons. The 

comparison may still be carried out on individual cases. 

For example, molybdenum cyclopentadienyl (Cp) alkyne complexes (shown in 

the diagram below) with different substituents on alkene molecules, the increasing order 

of substituents in electronegativities is: -SiMe3 < -Ph < - C F 3 . The geometry parameters 

MeoSi 

. C P 
Ph. 

.Mo' 

P 

F 3 C , 

M e 3 S i ' Ph F , C 

N ^ 

^Mo'N y U P 

SORTRAU BALMIK BAMMOR 

corresponding to the re-order of C=C bond of alkyne, C-C bond length; interaction 

between the metal and C=C, M-C distance; and bent back angle, R-C-C are listed in 

Table 5.4. 

It can be seen that the stronger electron attracting group enhances the interaction 

between the metal and alkyne, i.e. shorter M-C distance, and the triple bond of alkyne is 

lengthened and there is a larger bend back angle. 

Table 5.4 I n f l u e n c e o f d i f f e r e n t s u b s t i t u e n t s t o t h e geometry-
p a r a m e t e r s 

Refcode C^C length ( A ) M-C d i s t a n c e ( A ) R-C==C angle(°) 

SOTRAU 1.248 2 .234 149 .3 
BALMIK 1.269 2 .143 146.9 
BAMMOR 1.282 2 .128 138 .2 
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With the same alkyne derivatives under different coordination environments on 

other coordinated ligands, the situations are more complex. For 4-coordinated 

tetrahedral complexes with alkene and alkyne 7t-bonding ligands, simple rules from 

structural patterns were suggested to distinguish the orientations of the ligands to the d 

orbitals responsible for forming n bonds and o bonds (Gibson, 1994a,b). 

A series of diphenylacetylene tungsten complexes are chosen here, whose 

common coordinated ligands are dichloro-bis(trimethylphosphine) and the other ligand 

is variable, shown as follows: 

PH 

I 
N 

C I 2 J I / 
W . 

( P M E 3 ) ' 2 \ , 

.PH 

PH 

'Bu 
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N r/ 
c i 2 J | / r 
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.PH 

PH 

L 2 \ J 
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P M « 3 PH 

( P M E 3 ) 2 \ \ 
PH 

C I 2 J 

( P P H 2 M E ) 2 - N 

PH 

YUKZOT WIJKOP WIJLEG 

All these complexes can be seen as 6-coordinated octahedra, in which the alkyne 

molecule, as a ligand, locates at one of vertices of the octahedron. There are two 

possible orientations for alkyne to compete metal-ligand n bonds with respect to other 

ligands coordinated to a transition metal. This is identified as (a) C=C bond is 

perpendicular to the coordinate axis and (b) C=C lies along the coordinate axis [shown 

in Figure 5.11(a) and (b)]. It is considered that the orientations of the 7r-bonding ligands 

for competitive effects in these complexes are relatively easier to understand than those 

in tetrahedral complexes because the alignment of the ligands along the coordinate axes, 

which gives a clearer symmetry indication for the interaction between Ji-orbitals of the 

ligands and the d orbitals (the t2g and eg sets) of the metal. 
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F i g u r e 5.11 Two o r i e n t a t i o n s o f a l k y n e i n o c t a h e d r a l complexes. 
(a)C=C bond i s p a r a l l e l t o L a l - L a 2 a x i s ; (b) C=C bond 
i s p e r p e n d i c u l a r t o t h e L a i - L a 2 a x i s . 

The phenylimido and /-butylimido in JAHNOV and WIJKUW were considered as 

4-electron donor ligands to the tungsten (Clark et al, 1989). Geometry in these 

complexes showed that 7t-acid imido ligands [placed at the L a i as in Figure 5.11] are cis 

to the alkyne and the C=C bond is along the trans P1-W-P2 [PI sites at Le2 and P2 at 

Le3 as shown in Figure 5.11(b)] axis on the equatorial plane of an octahedron. The W-N 

bond is perpendicular to the W-C=C plane. The role of imido n donation competing 

effectively with alkyne 7t± donation may decrease alkyne Ttj. to dn orbital and, in this 

orientation, the alkyne is suitably described as a 2-electron donor. The M-C distances 

are all over 2.1 A. Compared with imido, the carbene ligand (DUPMTK) has less 

competition for the vacant dn, and interaction between tungsten and alkyne becomes 

stronger. The W-C distances fall into the range for 4-electron donation. The orientation 

of the alkyne molecule is twisted from the equatorial plane constructed by L e i , Le2 and 

L e 3 . YUKZOT, WUKOP and WULEG are examples of typical tightly bound 4-electron 

donor alkynes, with stronger W-C interactions. In these complexes, the orientation of 

the alkyne molecule has C=C rotated 90° from the equatorial plane and parallel to the 

W-C=0 axis (WIJLEG), W-P (WUKOP) or W-Cl (YUKZOT) axis [i.e. M - U i in Figure 

5.11(a)]. Thus, it is beneficial for overlap of the n\\, 7t± and d orbitals. Figure 5.12 

illustrates the relationships of W-C interactions and C-C derealization in the alkyne 

ligands in this series of complexes. 
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5.3.4 From Triple Bond to Double Bond and to Single Bond 

The results above showed that both DMC values and C-C bond lengths reflect the 

interaction between the metal and C-C bonds. Can we then derive a correlation for these 

two parameters? I f the answer is obtained, the insight of the structures of complexes 

will be well understood from these specific parameters. It would be beneficial to derive 

simple rules, from which individual structures can be rationlized and predicted. In the 

surveys on a large number of complexes from the CSD, and comparison of the results 

from alkyne- and alkene-complexes, an approximately linear relationship for these two 

important parameters in both sets of complexes was given, which shows a changing 

trend of C-C bond in the strength of interactions between the metal atom and 

unsaturated C-C bonds. 

The trend cited in metal M-C bond distances has an inverse correlation with C-C 

bond lengths, that is, the C-C bond length is lengthened with stronger metal-ligand 
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interactions (with shorter DMC). This phenomenon has been observed in different metal 

complexes in which trends for bonding strength between the metals and ligands (related 

to M-C distance) and bond order (related to C-C distance) are given (see Figure 5.13). 

The linear relationships provided are very approximate, they only show a changing 
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trend between the two specific structural parameters. Probably, a better model to fi t 

these observed experimental data are needed (Schultz and Messmer, 1993; Karadakov, 

Gerratt, Cooper and Raimondi, 1993). 

It is interesting that most metals except Pt have their own interaction ranges for 

alkyne and alkene ligands. I f the bond length (DMC) is used to assess bond strength, the 

conclusion is given that alkyne interacts more strongly with metal complexes than do 

similarly substituted alkenes. This is in accord with theoretical predictions and as 

expected (Nelson, Wheelock, Cusachs and Jonassen, 1969; Jensen, Bove, Westberg and 

Ystenes, 1995; Kitanra, Sakaki and Morokuma, 1981). The strongest interaction with 

alkene is nearly equal to or greater than the weakest one with alkyne for most metal 

atoms. 

According to the model proposed in the previous section, with lengthening of C-C 

bond distance by the a-n interaction, the triple bond (C=C) in alkyne is considered as 

approaching a double bond (metallocyclopropene), corresponding to the strongest 

interaction in alkyne case in which the C-C bond length is closer to free C=C bond 

length. Similarly, the double bond (C=C) in alkene moves towards a single bond 

(metallocyclopropane). A scheme from triple bond to double bond and to single bond 

with the interaction strength between metal carbon bonds could be qualitatively 

summarized from the results of different metal complexes, shown as in Figure 5.14. As 

a consequence, the change of C-C bond order from 1 to 2 and to 3, corresponding to sp1, 

sp2 and sp3 hybridization changes of C atoms, respectively, can be seen as the triple 

bond C=C in alkyne is lengthened with the increase of interaction with metal, the 

resultant complex is considered as metallocyclopropene that has a C-C bond length 

closer to the free ethylene and is midway between sp1 to sp2 hybridization. When the 

double C=C bond has two substituents on each carbon atom, coordination with metal 

makes the bond lengths slightly longer. But the strength of interaction with metal is 

much weaker than that in metallocyclopropene. It is considered that the u bond 

dominates the coordination. Again, with the increase of interaction in this complex, a 

metallocyclopropane-like complex is formed, in which the carbon atoms are closer to 

sp3 hybrids. 

Finally, the increases in the bond lengths from a triple bond to a double bond and 

to a single bond for different metals are listed in Table 5.5. 
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Table 5.5 I n c r e a s e o f bond l e n g t h f r o m t r i p l e t o s i n g l e bond 

Metal TB (A) BS (A) 

N i 0.11 0.16 
Cu 0.09 0.05 
Pt 0.10 0.16 
Mo 0.09 0.14 
Co 0.03 0.08 
Ta 0.10 0.10 
W 0.10 0.17 
Re 0.10 0.08 
Fe 0.09 0 .11 
Ru 0 . 04 0.15 
I r 0.07 0.20 

T B - - T h e b i g g e s t d i f f . b o n d l e n g t h b e t w e e n C=C & [ C = C ] 
B S — T h e b i g g e s t d i f f . b o n d l e n g t h b e t w e e n C=C & [ C - C ] 
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In general, the C-C bond of alkynes is lengthened less upon coordination than that 

of alkenes. This might be interpreted as an indication that alkynes interact to a lesser 

degree (Ittel and Ibers, 1976). But the smaller lengthening of an alkyne molecule 

relative to an alkene molecule can still indicate a comparable change in bond order. 

5.4 Conclusion 

The broad geometrical features of transition metals alkyne and alkene complexes 

have now been well characterized by a systematic analysis of a large number of 

available structural data in the CSD. The difference of this study with other previous 

reviews is that the results are based on all possible known related structural studies 

rather than being restricted in a small samples by using the facilities provided by the 

CSD, several direct correlation relationships and mean values that represent geometrical 

characteristics of these kinds of complexes are given for the first time. From these 

results, the geometrical features and changes with different coordination environments 

become much clearer. This study is based on surveys of overall structural data, although 

an individual comparisons are easy to pick up. Therefore, the results reflect an average 

trend for these types of complexes. 

For the structural data, it is clear that with greater precision, the greater the 

contribution that these structural parameters make to the systematic analysis. From 

experiment, accurate locations of atomic positions by diffraction methods are important, 

especially the location of the H atoms in alkene complexes that directly affect the 

measurement of the bend back angle. Generally, neutron diffraction could provide much 

greater precision for the location of both the C and H atoms of an unsaturated molecule 

in the presence of a transition metal. As yet, very few such diffraction results can be 

included in this study. 

The other important factor to affect the geometrical features of alkyne and alkene 

molecules in complexes is the bound ML* system in which first M and then L is varied. 

Exploration of changes of these coordination factors with the unsaturated molecules 

through a systematic approach will result in valuable information. A more suitable 

method for defining parameters is needed to sort out the variety of definitions for the 

related parameters in the CSD. In addition, for different substituted alkyne and alkene 

molecules, ideally a systematic comparison should be carried out on a system in which 
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alkynes or alkenes are bound to the same M L X system. Clearly such systematic studies 

are dependent on new syntheses and structural data. 

These observed results are still based on the a-n bonding model. I f the overall 

understanding of the bonding of unsaturated molecules to transition metals is to be 

improved, additional experimental and theoretical work needs to be done. Before 

improvement of theoretical models from the calculations become available for this 

system, these observations are expected to provide a useful basis for further 

developments. 
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Chapter 6 

Crystal Structures of the Metal Complexes 

6.1 A Brief Summary of Crystal Structure Determination by X-ray 
Diffraction Techniques 

To understand a chemical molecular structure and characterize some special 

structural properties and functions from a series of molecules by structure correlation, it 

is important to have the reliable and accurate 3D atomic coordinate data. This has been 

achieved by X-ray diffraction methods. A detailed picture of a molecule presented in 3D 

is obtained by interpreting the diffraction of X-rays from molecules making up a crystal. 

For a crystallographer, a basic knowledge of X-ray diffraction theory is necessary 

although the modern instruments and computers can provide a fast and easy structure 

determinations without too much interaction from the user. But the knowledge and 

experience are always the essential assurance to gain correct and accurate structure data. 

The fundamental theory of X-rays crystallography has been developed for more 

that half century. Useful standard accounts can be found in some recent published 

textbooks (Giacovazzo et al, 1992; Glusker et al, 1994; McKie & McKie, 1986; 

Woolfson, 1997). This Chapter wi l l give a brief summary of some of the more 

important points in obtaining an accurate crystal structure determination. Some 

experimental results on the structure determinations of ten transition metal coordination 

complexes are given. Particularly, the geometry of coordination spheres in these 

complexes, which relate to the interests in this project, are described. 

6.1.1 X-ray Diffraction by Crystals 

X-rays were found to have a wavelength range that is compatible to the distances 

between adjacent atoms in crystalline solids. For crystallographic aims, a source of X-

rays is usually applied in the wavelength range 0.5-2.5A. When an X-ray beam passes 

through a crystal, the incident beam is diffracted by the electrons in the atoms. The 

regular arrangement of the atoms in three-dimensional space is repeated throughout the 

crystal. Thus, the diffraction caused by the atoms wil l be reinforced or weakened in 

certain directions. Once the diffraction pattern containing information about the 
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arrangement of the atoms, has been recorded, by analysis, both the crystal and 

molecular structures may be derived. 

An ideal crystal consists of some structural unit that is repeated in a perfectly 

regular way throughout the whole space occupied by the crystal. I f the structural unit is 

replaced by a point, the array of the points in space that is called a lattice, reflects the 

geometrical relations between the repeat units. The unit cell of the crystal structure 

forms a parallelepiped, which is described by three non-coplanar lattice basis vectors, a, 

b and c1 and three inter-axial angles a, p\ and y. The volume V of the unit cell is 

therefore given by V = a-b x c. For the primitive unit cell, in which a single lattice 

point is repeated, any point in the lattice can be defined by a position vector r =/?a + qb 

+ rc, where p, q and r are integer variables. However, for a non-primitive unit cell in 

which more than one lattice point is repeated, certain fractional values of/?, q and r may 

be allowed. The symmetry contained in any lattice may be characterized as belonging to 

one of 14 types of lattice, known as the Bravais Lattices. 

Every point in a crystal structure may be related to every other point by a set of 

symmetry elements, which include rotations, reflections, inversions and other symmetry 

operations. It has been proved that there are 32 different symmetry operations that can 

act on a point in three-dimensional space. These 32 arrangements result in 32 point 

groups. Every crystalline structure must belong to one of these point groups. 

I f symmetry elements, glide planes and screw rotations are also considered in 

three dimensions, then 230 space group can be derived by combining these symmetry 

operations with the 32 crystal classes. The symmetries present in all crystal structure 

analyses are based on these 230 space groups. The symmetry is an important 

consideration in crystallography. 

For a group of defined unit cell vectors, a, b and c, vectors a*, b* and c* can be 

derived, which are reciprocal to the first set in the sense that: 

a*a* = 1 a*b* = 0 
ba* = 0 b-b* = 1 
ca* = 0 c-b* = 0 

a-c* = 0 
b-c* = 0 
C'C* = 1. 

These reciprocal vectors are given by the following relationships: 

the vectors are represented by bold letters 
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a* -
bxc 

b* = cxa axb 
V V V 

where V is the volume of the unit cell as given previously, a, b and c are basis vectors 

having the dimensions of length, and a*, b* and c* are reciprocal basis vectors having 

the dimensions of reciprocal length. In the X-ray diffraction by a crystal, each atom 

within the crystal acts as a scattering centre, so that the waves scattered by different 

atoms interfere with one another. Constructive interference occurs between the waves 

scattered by all the unit cell in the crystal only, when the scattering vector has discrete 

values h such that: 

where h, k and / are integer. Therefore, the diffraction pattern of a crystal consists of 

series of reflections, with each reflection being specified by a particular scattering 

vector h(hkl). 

In the practical applications, it is of much concern how these diffraction patterns 

are recorded, interpreted and thereby the structure information involved in these 

diffraction patterns is revealed. These are also the major processes by which we 

determine a crystal structure using by X-ray diffraction techniques. It can be 

summarized very approximately as three main steps, that is data collection, structure 

solution and structure refinements and representation. 

The experiments on structure determination during this study were performed on 

X-ray diffractometers Rigaku AFC6S and Siemens Smart/CCD. The former one uses 

the conventional four-circle techniques for the data collection and Siemens one uses 

new developed techniques on the area detector so that faster overall process is achieved. 

6.1.2 Data Collection 

To ensure a high quality of diffraction crystal data, the first step is to have a good 

single crystal. A rapid and effective method of deciding i f a crystal is likely to be 

suitable for data collection is to examine the crystal under a microscope. In the 

magnification field of a microscope, crystals can be investigated as to whether they have 

a good shape. Selection is always preferred for those that are not curved and no small 

crystals attached to the surface. Meanwhile, the correct size of crystal is chosen (usually 

h(hkl) = ha* + kb* + /c* (6.1) 
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between 0.1-0.5 mm and < 1.0 mm in each of three dimensions). A further check for a 

single crystal is to use polarized light, i f the sample is transparent, a single crystal will 

extinguish the polarized light every 90° turn of the microscope stage. 

A good single crystal should diffract sufficient intensity too. The reflection points 

should have symmetric profile and not split or excessively broadened. And a sensible 

unit cell can be found by indexing of the first sets of reflections. 

For an air/water sensitive sample, the crystal selection should be treated under N2 

gas protection and immersed in an oil. Most of the crystal structures presented in the 

following section were treated in this way. The crystals are normally stuck to a thin 

glass fibre by glue and mounted on to a goniometer head on the <(> circle of the 

diffractometer and optically aligned in the centre of the diffractometer. After these, the 

crystal is ready to collect diffraction data. 

The diffractometer is designed to collect reflection intensity of crystal on the basis 

of the reciprocal relationship between a crystal lattice and its diffraction pattern, that is 

the Bragg equation: 

sinQ = -^—; (6.2) 

9 is the scattering angle, which represents the position of reflection spot on the 

diffraction pattern and dhu corresponds to the spacing of the hkl planes of the lattice. 

The reciprocal lattice can be derived so long as the crystal lattice (a, b and c) is 

known. Each point on the diffraction pattern can be expressed in reflection indices h, k, 

I, which are three unique integers as given in Eq. (6.1). 

In the traditional way, the unit cell of the crystal has to be determined first. Thus 

reciprocal cell parameters can be connected to diffractometer geometry. An orientation 

matrix is generated and then used in the control the diffractometer to find each 

reflection correctly because the diffractometer angles for any reflection can be 

calculated from this matrix. Therefore, having the correct cell parameters at the 

beginning is a key point to guarantee the quality of whole data collection for the four-

circle diffractometer. 

The cell parameters and orientation matrix are usually derived from the selected 

observed reflections. Different diffractometers have different strategies to do this. On 

Rigaku AFC6S diffractometer, a zig-zag search is used to ensure that maximum amount 
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of reciprocal space is scanned. Once a reflection is found, an ±00 centering routine is 

applied to centre diffracted beam to the Bragg reflection position and provide intensity 

profile of the reflection. After a set of such reflections have been found, the observed 

vectors Xj ±Xj which all correspond to reciprocal lattice points are included in a list. The 

three shortest non-coplanar vectors are selected as the basic reciprocal axes and the nine 

coordinates formed by the components of reciprocal cell axes on each of the 

diffractometer geometrical axes, are the nine elements of orientation matrix. Then hkl 

indices can be generated for all reflections from the determined reciprocal cell. A 

correction is necessary i f any simple fractional indices are found. Finally the 

conventional cell and metric symmetry can be determined automatically after least-

square refinement on the basis of all "genuine" reflections. 

The orientation matrix determined by SMART/CCD follows the same convention 

as the real-space method. In the conventional scintillation-counter program (Such as 

Siemens P4), this method firstly assigns three shortest non-coplanar JC vectors indices 

100, 010 and 001 to form a preliminary unit cell and then orientation matrix. From this 

sub-cell (a', b' and c'), which is not usually correct, a set of vectors t = «a' + vb' + wc' 

(u,v,w integral) can be generated with the maximum length limits, followed by 

computerizing test solution to find a true unit cell. The criterion for this is that t*x must 

be a integer with as low as possible residual for every reflection in the set. 

An area detector can provide a much larger set of initial reflections. Al l 

differences Xj - Xj between different vectors in the list are generated and repeats of many 

of these differences can be observed from the list of reflections. And averaging over the 

vectors improves the accuracy. However, unlike in the scintillation-counter, the matrix 

itself is independent of the setting angles of the frames used to determine it. Since the 

strategy in data collection is different for an area detector, the orientation matrix is not 

an essential step before data collection beginning for this machine. But a good reason to 

do this is to check whether or not a crystal is a real single crystal. 

Nevertheless, an orientation matrix plays so important role in AFC6S-kind 

diffractometer, the initial matrix and cell should be well determined. The reflections 

with higher Bragg angles are usually required so that the relative errors in setting angles 

are reduced (Arndt & Willis, 1966). 

Data collection on the diffractometer is a fully-automated procedure. So correctly 

setting various parameters to control it is basic assurance to obtain intensity data to 

maximum possible accuracy and precision in the minimum time and without errors. 
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There are several main points which need considering before setting up controlling 

parameters and data collection commences for AFC6S machine. 

(a) There are normally two scan types, co scan is used when a larger size of unit cell or 

wide reflection profiles are present. This scan can reduce the overlap between 

neighboring reflections, while the use of co/20 scan is beneficial for crystals having 

very low mosaic spread. 

(b) The detector apperture should be set appropriate to avoid being too wide which 

increases background and reduces the precision, or too narrow which will cause the 

reflection to be truncated. The same considerations are also used for the choice of 

scan width. 

(c) Collection speed is set to maximise/optimise the ratio of enough "observed" 

reflections 

(d) Decide the number of reflections to measure. This depends greatly on the 

maximum 26 limit. Obviously, the more reflections to be measured, the more time 

is required. For a Mo (Ka) radiation, the usual 26 upper limit is 50°, but not all 

crystals diffract to this angle. 

Some other factors include: selection of intensity standard reflections and care 

with weak reflections. 

Instead of a serial measurement of reflections in certain order, modern area 

detector diffractometers can measure a large number of reflections simultaneously. 

Unlike the traditional techniques, in which each reflection is recorded one at a time, an 

area detector records the whole of the intercepted diffraction pattern and not just the 

Bragg reflections. Thus, the whole of reciprocal space is observed. A major advantage 

of this machine is that the data collection process is greatly shortened. For a medium 

size crystal structure, data collection time could reduce from a couple days using a four-

circle diffractometer to less than 10 hours for an area detector. Since the ability to 

record a large fraction of the reflections which simultaneously cross the Ewald sphere, 

the whole hemisphere data can be recorded for any structure and there is no need to 

consider what Laue symmetry it is, which is normally used in the traditional method. 

This also provides an advantage to average on reflections when the equivalent 

reflections are merged on the real symmetry, thus improving the accuracy. The 

parameters to control the data collection are mainly concerned with maximum 26 

angle, detector swing angle, at which the frames in the scan series are to be collected, co 
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angle indicates the start of the frame series; frame width, that is, scan width of each 

frame to be acquired in degree; scan time - time in second spent on each frame. Once 

data collection starts, a full data set can be collected regardless of the crystal orientation. 

Data reduction 

From a diffractometer, raw integrated intensities of reflections are collected. For 

the further use of structure determination, relative structure factor amplitudes |F0(h)| or 

amplitude squares |F0(h)2| need to be extracted. In this procedure, several correction 

factors are necessary, which may arise from instruments and systematic errors into the 

diffraction process. 

(a) Lorentz and polarization corrections. These two factors are dependent on the 

experimental conditions of the intensity measurement. They correspond to corrections 

for instrument-geometry and X-rays beam polarisation when measuring each reflection. 

These corrections must be applied to every set of data. Because they both depend 

systematically on the Bragg angle 6, they can be set into data reduction programs, no 

operator input or interaction is actually needed. 

(b) When X-rays are incident on a crystal, the diffracted beam may have some decay 

due to the absorption of the crystal. The absorption is dependent on the contents of the 

unit cell and on the crystal morphology. Hence the absorption correction may be 

required to enhance the quality of the data. I f the incident beam has an intensity of k, 

the intensity of the diffracted X-ray (7) is : 

/ = V - . (6.3) 

where \x is the linear absorption coefficient (in mm"1) corresponding to the cell contents 

and the radiation used, t is the average crystal dimension (in mm). The absorption 

correction usually is larger with Cu radiation than Mo X-radiation. 

The common method used for the absorption correction is azimuthal (\|/) scan, 

where the crystal is rotated about the scattering vectors and a reflection wil l still remain 

in the diffraction position. The absorption effects may be measured from the variation in 

intensity observed. 

Usually, for this test, a few of reflections with % angle at ~90° is chosen because 

the movement of diffractometer at this angle corresponds to rotation about <(>, while at 
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other x values to a more complicated condition of circle movements. Once the 

absorption factors have been determined, it will be applied to all reflections. 

Some other possible corrections include decay correction, extinction and thermal 

diffuse corrections etc. They may be applied to individual crystal structures depending 

on the quality of crystal. 

Using an area detector, raw data is recorded in sequential frames. An integration 

method that is based on 3D profile algorithms is used (SAINT Software Reference 

Menu, 1995) to perform all the necessary steps to reduce the data. Finally, the same 

format as those provided by the conventional methods for all reflections in hkls, LP-

correction intensities and standard deviation can be obtained. An accurate orientation 

matrix is required at this stage. The reflections to determine the unit cell are chosen 

from all collected reflections. In addition, the position and shapes of reflection spots on 

the detector need to be considered and the correct X, Y beam centre and the sample-

detector distance should be given. 

6.1.3 Structure Determination 

A set of data with hkl indices, intensities [|F0(h)| or |F0(h)2|] and standard 

deviations (a) is generated as described above The next step is how to analyse the data 

and thereby reveal the structure, i.e. the atomic positions r in the unit cell. 

The unit-cell contents can be described in terms of electron density p(r) and 

expressed as Fourier transform of structure factors F(h): 

p(r) = l £ F ( h ) e x p ( - 27iih • r) (6.4) 
» h 

Atom coordinates wil l be located from the peak positions of p(r) values. Therefore, i f 

structure factors F(h) is known, p(r) can be calculated to draw up an electron density 

map in the unit cell. F(h) is a complex quantity and can be written as a combination of a 

magnitude |F(h)| and a phase represented by <|)(h): 

F(h) =| F(h) | e'*(h) (6.5) 

As given above, the magnitude part has been obtained from the dada collection, but no 

direct information for phase derives from the measurement of the data. Thus, to solve a 
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structure, it requires the solution of this "phase problem". Many contributions have been 

made in solving this problem in many decades (Patterson, 1934; Harker & Kasper, 

1948; Sayre, 1952; Woolfson, 1958; Karle & Hauptman, 1956; Karle & Karle, 1964: 

Debaerdemaeker et al, 1988). Now there are two major methods in use in the routine 

performance of small molecule structure solution. 

Patterson method 

Patterson function uses |F(h)| instead of F(h) in the electron density equation [Eq. 

(6.4)], thus: 

P ( u ) = h Y } F ( h ) I' exp(27rih • u) (6.6) 
» h 

which wil l show a map of interatomic vectors u and phase angles all disappear in this 

expression. 

Since |F(h)| depends on the scattering power while the scatter power are 

proportional to the atomic number, the interactions between heavy atoms wil l appear as 

distinguishable peaks in the resulting Patterson maps. This provides the possibility to 

derive the heavy atom positions from those strong vector peaks according to the 

symmetry elements in the unit cell. The remaining atoms may be further derived from 

these defined heavy atom positions by Fourier methods. This usually works well for the 

structures containing heavy atoms but for "equal" atom structures, e.g. most organic 

molecules, the maps can not be deconvoluted because no definite peaks can be located 

to any special atoms. 

Direct Methods 

Direct methods are more powerful for various molecular structure solutions. They 

seek to estimate the phases directly from the observed structure amplitudes by 

mathematical processes (Woolfson, 1977). 

Structure factor amplitudes and phases may have special relationships. Such 

relationships may be used and reveal the electron density map. When some 

mathematical constraints are applied on the electron density function p(r), the phase 
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values may be determined from the derived relationships based on the corresponding 

probability theory (Cochran & Woolfson, 1955). 

In the practical application, normalized structure factors E(h) are used instead of 

the structure factors F(h) to remove the effects of the atomic shape and thermal motion. 

Thus, atoms in the structure are considered as points, which wil l enhance one of the 

constraints used in this method, i.e. all the atoms in the unit cell are discrete. 

The other two useful constraints are (a) the electron densities in the unit cell has 

never a negative value and (b) maximum value of j p 3 (x)dV over the whole of the unit 

cell. From these, the phase relationships and tangent formula (Karle & Hauptman, 1956) 

could be derived. This latter allows the users to determine the phase values by setting up 

phase relationships from certain combinations of indices of reflections. Those strong 

reflections E(h) with acceptable reliability are used for phase determination. 

Random values (Yao, 1981) are assigned to all of the phases to be determined and 

the phase refinement procedure is repeated until a set of satisfied solution is reached. 

Finally, the correct set of phases is identified from the large number of incorrect 

phase sets by the designed figures of merit, which are quick tests for the quality of the 

phases. 

In the Patterson method, only the heavy atoms are located, while in direct 

methods, most of structure can usually be derived. From these known atomic positions, 

further Fourier refinement cycles are needed. The missing atoms are found and the 

known atoms are refined through the cycles, resulting in the complete structure. 

6.1.4 Structure Refinements 

A solved structure means having located all the atoms in approximate positions 

and assigned initial amplitudes for the thermal vibration for each atom. The following 

step is to refine these parameters to more accurate values so that the difference between 

observed structure factor amplitudes |F0(h)| or |F0(h) 2 | and calculated |Fc(h)| or |Fc(h) 2 | 

is a minimum, i.e. 
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R = 

X t i F 0 ( h ) | - | F c ( h ) | ) 2 

I | F 0 ( h ) | 2 

(6.7) 

or replace | F | by | F 2 | in the expression. This is an expression to test the reliability of 

the structure by the comparison of the calculated structure factors with those deduced 

from the experimental data. It is obvious that the smaller R values represent better 

agreement between the observed and calculated structure factors, thus indicate a 

satisfactory and reliable structure. 

The standard mathematical least-squares refinement techniques are used in the 

crystal structure refinements and a cyclic process of refinement is carried out until 

convergence is achieved. 

The advantage of using F 2 instead of F's is that all weak reflections can be 

involved in the refinements. These weak reflections also contain somehow important 

structural information. In all of the structures detailed below, SHELXL-93 (Sheldrick, 

1993) program, which is a least-square refinement program based on F 2, was used. 

Temperature factors of atoms are additional parameters required in the 

refinements, because a temperature factor term exp(-Bsin26/X2) should be included in 

the calculated structure factors when comparing them with observed structure factors. 

These parameters can also be good indicators of the quality of the model. The atoms in 

a crystal vibrate about their mean positions due to their having thermal energies. This 

thermal motion makes the electron density peak more diffuse and thus reduces the 

scattering power at higher angles so that a more rapid decline of the atomic scattering 

factors f(0) is observed. Since the square of mean vibration amplitude increases 

proportionally to the temperature, f'(Q) can be written in the form: 

/ ' (9 ) = /exp [ -5 (s in 2 e /A. 2 ) ] (6.8) 

where 9 is the Bragg angle of a particular reflection, f is the value of the atomic 

scattering factor at zero scattering angle, and B is the temperature factor. B is equal to 

2—2 — 2 

871 U , where U represents the mean square displacement of an atom from its 

equilibrium position which is assumed to be the same in all given directions. In practice, 
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the thermal vibrations of an atom in a crystal are not isotropic and one can describe 

them in terms of an ellipsoid of vibration in reciprocal space. Thus it can be expressed 

as: 

-^(Buh2 a*2 + B22k2b*2 + B33l2c'2 + 2B23klb*c + 2Buhlac* + 2Buhka*b*) or 

-2n2(Unh2 a,2 + U22k2b*2 + U33l2c'2 +2U23klb'c' +2Ul3Mac* +2Unhkab') (6.9) 

in which a*, b* and c* are reciprocal cell axes as given previously, and two formula are 

equivalent to isotropic B or U, respectively. 

Very large Uy value may indicate a disordered atom, or it may just be due to 

imprecise (high esd's) Uy parameters. 

Finally, for a complete structure, three coordinates (x,y,z) for each atom are listed 

in fractional forms with estimated standard deviation values in parentheses as well as 

displacements. From the coordinates, all corresponding geometrical parameters, e.g. 

bond lengths and angles etc. can be derived, together with a measure of their reliability. 

Three-dimensional structure diagrams can be produced. These also enable one to use the 

CSD for structure correlation studies. 

6.2 Determined Structures 

The crystal structures of ten metal complexes* in low coordination numbers have 

been determined by X-ray diffraction methods. The line diagrams are shown in Figure 

6.1. The details of the experiments and structures wi l l be given in the following 

sections. The coordination geometry for these individual compounds wil l be examined 

from the resultant geometry parameters. The atomic coordinates for each structure will 

be listed in Appendix I . 

Interest is mainly focused on the geometry of the metal coordination spheres. 

There are also other interesting structural features, which are not discussed in detail 

here. 

* I would like to take this opportunity to thank the persons who supplied these crystal samples. The names 
have been given in Acknowledgements. 
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Figure 6.1 Molecular c o n n e c t i v i t y diagrams used i n t h i s chapter 

I. Tri-carbony-trimethylcyanide-chromium [Cr(CO)3(CH 3CN)3CH 3CN] 

This structure shows a 6-coordination sphere of chromium. Six unidentate 

ligands (three CH3CN and three CO) are involved in the coordination sphere. There are 

no chelate effects so it has effectively an octahedral geometry (shown as Figure 6.2). 

The key parameters for this geometry are listed in Table 6.2. They all have close values 

to the standard ones in an octahedron, that is, valence angles between the metal (M) 

and ligands (L) , L - M - L , 90°, 180°. 
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Empirical formula CiiH 1 2N 40 3Cr 
Formula weight 300.2 
Temperature 150 (2)K 
Wavelength 0.71073A 
C r y s t a l system Orthorhombic 
Space group Pca2! 
Unit c e l l dimensions a = 12.4622(1)A a = 90 . 0° 

b = 8.2455(1)A (3 = 90 .0° 
c = 14 .7451 (2)A y = 90 .0° 

Volume 1515.16(3) A3 

Z 4 
Cr y s t a l colour Yellow 
Absorption C o e f f i c i e n t 0. 939 mm"1 

F(000) 660 
C r y s t a l s i z e 0.48 x 0.24 x 0.20 mm 
0 range f o r data c o l l e c t i o n 2.47 -> 27.45° 
Index range -16 <h < 15, -9 < k < 10,-19<1< 18 
Experiment device Siemens Smart CCD 
Ref l e c t i o n s c o l l e c t e d 10291 
Independent r e f l e c t i o n s 3447 [R i n t = 0.0352] 
Refinement method F u l l - m a t r i x l e a s t -squares on F2 

Data/restraints/parameters 3424/0/208 
Goodness-of-fit on F2 1.191 

F i n a l R ind i c e s [ I > 2 c ( I ) ] Rl = 0.0285, wR2 = 0.0610 
R ind i c e s ( a l l data) Rl = 0.0424, wR2 = 0.0763 
Largest d i f f . Peak and hole 0.205 and -0.273 eA~3 

There is a cyanide molecule as a solvent molecule and as shown in the packing 

in the unit cell, it forms a weak hydrogen bond with the oxygen atom of one of the 

coordinated carbonyl ligands [C=0(2)]. 
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Figure 6.2 Structure of Cr(CO)3(CH3CN)3•CH3CN 

Table 6.1 Bond lengths (A) and bond angles (°) f o r the 
co o r d i n a t i o n sphere i n I 

Cr (1) -C(4) 1.827 (2) Cr (1) -C(5) 1.848(6) C r ( l ) - C(6) 1.802(7) 
Cr (1) - N ( l ) 2.110(5) Cr (1) -N(2) 2.106 (2) C r ( l ) - N{3) 2.100(6) 
C(4)- Cr (1) -C(5) 88.5(3) C(4)- Cr (1) -C(6) 83.3 (4) C ( 4 ) - C r ( l ) - N ( l ) 95.9(3) 
C(4)- Cr (1) -N(2)178.2 (4) C(4)- C r ( l ) -N(3) 93.2(3) C ( 5 ) - C r ( l ) - C ( 6 ) 85.1 (1) 
C(5)- Cr (1) -N(l) 97.1(3) C(5)- C r ( l ) -N(2) 93.1(3) C(5)-Cr(l)-N(3)177.9(3) 
C ( 6 ) - Cr (1) -N(l)176.9(3) C ( 6 ) - C r ( l ) -N(2) 93.1(3) C( 6 ) - C r ( l ) - N ( 3 ) 96.2(3) 
N (1) -Cr (1) -N(2) 84.6(3) N (1) -Cr (1) -N(3) 81.5(1) N(2)-Cr(l)-N(3) 85.2(3) 
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II . Trans-bis[l,2-bis(dimethylphosphino)cycIopentanej-dichloroiron (II) 

This is another six-coordination complex, metal iron(II) coordinates with four 

phosphine atoms of 1,2-bis(dimethylphosphino) cyclopentane on the equatorial plane 

Empirical formula Ci8H,joCl2P2Fe 

Formula weight 507 .1 
Temperature 293 (2)K 
Wavelength 0.71073A 
C r y s t a l system Monoclinic 
Space group P2!/n 

Unit c e l l dimensions a = 7.996(2)A a = 90 . 0° 
b = 16.846(3)A P = 97 11 3) ° 
c = 9.076(2)A Y = 90. 0° 

Volume 1213.1(5) A3 

Z 2 
Cr y s t a l colour Green 
Absorption C o e f f i c i e n t 1.108 mm"1 

F(000) 536 
C r y s t a l size 0.75 x 0.55 x 0. 30 mm 
9 range f o r data c o l l e c t i o n 2.56 -> 25.00° 
Index range -9<h<9,-20<k<20, -10 < 1 < 1 
Experiment device Rigaku AFC6S 
Ref l e c t i o n s c o l l e c t e d 5057 
Independent r e f l e c t i o n s 2143 [R i n t = 0.0602] 
Refinement method F u l l - m a t r i x least-squares on F2 

Data/restraints/parameters 2142/0/140 
Goodness-of-fit on F2 1.141 
F i n a l R ind i c e s [ I > 2 a ( I ) ] Rl = 0.0356, wR2 = 0 0883 
R indices ( a l l data) Rl = 0.0555, wR2 = 0 0958 
Largest d i f f . Peak and hole 0.365 and -0.453 eA"3 

and two chlorine atoms in the axial positions. The coordination sphere is almost a 

perfect octahedron. The angles between two P atoms with the metal on chelate ring, 
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P(l)-Fe -P(2) 86.5°, is little smaller than the standard value of 90° . While angle of 

P(l)-Fe-P(2) #* is 3.5° greater than the standard value. 

The complex crystallizes in P2j/n and the metal atom sits at a special position of 

this space group. Half the molecule can be located in asymmetric unit and the other half 

can be found by the inversion centre in this symmetry. Two carbon atoms, C ( l ) and 

C(5), on the cyclopentane were found to be disordered. Each occupies 51% and 49%, 

respectively. This disorder has been shown in Figure 6.3 by dotted lines. The 

cyclopentane rings have a chair conformation. 

CI21) 

cm 
C4> P 2 C5A 

TT C(22 C3) Fe CD 
Ji. 

C(1A CI2) 
C P 

C12) 

Figure 6.3 A p l o t of complex Fe[1,2-bis(dimethylphosphino)cyclopentane] 2C1 
w i t h disorder model 

The major geometry parameters are listed in Table 6.3. 

Table 6.2 Bond lengths (A) and bond angles (°) f o r complex I I 

Fe(l) - P ( D 2.257 (1) Fe( l ) - P { 2 ) 2.258 (1) 
Fe(l) - Cl(6) 2.344(1) P ( D - Fe(1) -P ( D * 180.0 
P d ) - Fe(l)-P(2) 86.50 (3) P d ) - Fe(1) -P{2) * 93.50(3) 
P ( D - F e d ) - C l ( l ) 89.88 (3) P ( 2 ) - Fe(1) -C l ( l ) 89.91 (3) 
P ( 2 ) - Fe(1)-P ( 2 ) * 180.0 C l ( l ) - F e ( l ) - P ( l ) * 90.12(3) 
C l ( l ) -Fe(1)-P ( 2 ) * 90.12(3) C l ( l ) - F e ( l ) -CI ( 1 ) * 180.0 

* Symmetry transformations: -x, -y, -z + 1 
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I l l Dichloro-(dimethoxyethane)-bis(t-butylimido)-molybdenum(VI) 

This complex contains a bidentate ligand, dimethoxyethane, with two oxygen 

atoms coordinated to the metal Mo. The coordination sphere is a distorted octahedron, 

two chlorine atoms locate at the axial positions and the bidendate ligand and two t-

butylimido on the plane. Because of the chelate ring between the Mo and 

dimethoxyethane ligand and bulkier t-butylimido ligands, the axial atoms (CI) incline 

Empirical formula C12H28N202Cl2Mo 
Formula weight 399.22 
Temperature 150(2)K 
Wavelength 0.71073A 
C r y s t a l system Orthorhombic 
Space group Pbca 
Unit c e l l dimensions a = 9.864(1)A a = 90 .0 a 

b = 12.495(1)A P = 90 0 2 

c = 29.853 (4)A Y = 90. 0 2 

Volume 3 67 9.4(1) A 3 

p 
Li 

C r y s t a l colour 
o 
Yellow 

Absorption C o e f f i c i e n t 1.004 mm"1 

F(000) 660 
C r y s t a l s i z e 0.40 x 0.22 x 0.20 mm 
0 range f o r data c o l l e c t i o n 2 .47 -> 26.15° 
Index range - l l < h < l 2 , -15 < k < 1 5, 36<1<19 
Experiment device Siemens Smart CCD 
Ref l e c t i o n s c o l l e c t e d 14709 
Independent r e f l e c t i o n s 3340 [R i n t = 0.067 3] 
Refinement method F u l l - m a t r i x l e a s t -squares on F2 

Data/restraints/parameters 3340/0/257 
Goodness-of-fit on F2 1.211 
F i n a l R indices [ I > 2 o ( I ) ] Rl = 0.0453, wR2 = 0 . 1091 
R ind i c e s ( a l l data) Rl = 0.0508, wR2 = 0. 1132 
Largest d i f f . Peak and hole 0.510 and -0.509 eA"3 
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Figure 6 . 4 View of s t r u c t u r e I I I 

to the chelate ring, the angle of Cl(l)-Mo-Cl(2) is obviously smaller than the standard 

value 180° [158.96(4) ° ] . The angle between bidendate atoms 0(1) and 0(2) is also 

contracted to 68.9(1) °, considerably less than 90°. All these factors make this 

coordination geometry rather distorted from a regular octahedron. 

Table 6.3 Selected bond lengths(A) and angles(°) f o r s t r u c t u r e I I I 

Mo(1)-N(1) 1.726 (3) Mo (1)-N(2) 1.722 (3) 
Mo(l)-0(2) 2.380(3) M o ( l ) - C l ( l ) 2.409(1) 
Mo(l)-0(1) 2.397 (3) Mod) -CI (2) 2.427(1) 
CI(1)-Mo(1)-CI(2) 158 . 96(4) CI(1)-Mo(l) -N ( l ) 99.2(1) 
CI(1)-Mo(l)-N(2) 93 -6(1) CI (1) -Mod) -0(1) 79.4(1) 
CI(1)-Mo(l)-0(2) 83 .6(1) CI(2)-Mo(l) -N ( l ) 92.9(1) 
CI(2)-Mo(l)-N(2) 99 • 2(3) CI(2)-Mo(1) -0(1) 83.1(1) 
Cl ( 2 ) - M o ( l ) - 0 ( 2 ) 79 .4(1) N ( l ) - M o ( l ) - 0(1) 92.3 (1) 
N ( l ) - M o ( l ) - 0 ( 2 ) 160 .3(1) N(l)-Mo(1)- N(2) 107.1(1) 
N(2)-Mo(l)-0(1) 160 .1(1) N(2)-Mo ( 1 ) -0(2) 92.1(1) 
0(1)-Mo(1)-0(2) 68 .9(1) 
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IV Dichloro-bis(2,4,6-trifluoromethyl-phenylimido)-molybdenum(VI) 

Complex IV crystallises in the space group P1 . The coordination geometry of 

the Mo atom can be described as tetrahedral with two chlorine atoms and two 

phenylimido ligands located at the cis-position. The four M - L bond lengths all fall into 

the normal values for these ligands and the angle between two chlorine atoms 

E m p i r i c a l formula C18H4N2F18Cl2Mo 
Formula weight 757.07 
Temperature 150(2)K 
Wavelength 0.71073A 
C r y s t a l system T r i c l i n i c 
Space group Pi 
Unit c e l l dimensions a = 8.917(2)A a = 96 .78 ( 3 ) 2 

b = 9.078(2)A P = 104 .08 ( 3 ) 9 

c = 16.050(3)A y = 103 63(3) e 

Volume 1203.4(4) A3 

Z 2 
C r y s t a l colour Dark red 
Absorption C o e f f i c i e n t 0.919 mm"1 

F(000) 728 
C r y s t a l s i z e 0.44 x 0.32 x 0.24 mm 
0 range f o r data c o l l e c t i o n 2.35 -> 23.26° 
Index range -9<h<9, -10<k<9, -17 <1 < 14 
Experiment device Siemens Smart CCD 
Re f l e c t i o n s c o l l e c t e d 4622 
Independent r e f l e c t i o n s 3308 [R i n t = 0.0319] 
Refinement method F u l l - m a t r i x least-squares on F2 

Data/restraints/parameters 3308/0/382 
Goodness-of-fit on F 2 1.100 
F i n a l R ind i c e s [ I > 2 o ( I ) ] Rl = 0.0371, wR2 = 0.0955 
R ind i c e s ( a l l data) Rl = 0.0378, wR2 = 0.0962 
Largest d i f f . Peak and hole 0.931 and -0.755 eA"3 
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Cl(l)-Mo-Cl(2),l 15.5(1)°, is a little stretched from the standard angle for a perfect 

tetrahedron. But overall, the structure is a typical tetrahedral pattern. 

F 2 2 R51) 

C1B) C(2B> 
F43 

C23) C 3 
C14 F 5 3 

C24 F 13 C22 C2A) C 5 

CI25I 
C16) C(1A) C 2 

CI26 C F(33) 

C 1C) 
H62) N1 C(2C) N(2) 

F 3 Mo 
F63) 

CI 2) 

CI1) 

Figure 6.5 A view of the molecule Mo [NC6H2 (CF3) 3 ] 2C1 

Table 6 . 4 Selected bond lengths and angles f o r complex 
Mo[NC 6H 2(CF 3) 3] 2Cl 2 

Mo (1) - C l ( l ) 2.252(1) Mod)-CI (2) 2 .259(1) 
Mo (1) -N(2) 1.736(3) Mo (1)-N(1) 1.745 (3) 
C l ( l ) -Mo(1) -CI ( 2 ) 115.5(1) CI (1) -Mod) - N ( l ) 107 . 6(1) 
C l ( l ) -Mo(1) -N(2) 107.3(1) C l ( 2 ) - M o ( l ) - N ( l ) 108.9(1) 
Cl(2) -Mo(1) -N(2) 108.0(1) N(1)-Mo(1)-N(2) 109.3 (2) 

236 



V Bis(t-butylimido)-[l,2-bis(2,4,6-trifluoromethylphenyl)diphosphene]-

trimethylphosphine- Molybdenum 

Metal Mo in this complex has five coordinated ligands. It can be seen as a 

distorted square-based pyramid around the metal atom. The influence on the geometry 

E m p i r i c a l formula C29H31N2P3F18Mo 
Formula weight 938.41 
Temperature 150 (2)K 
Wavelength 0.71073A 
C r y s t a l system T r i c l i n i c 
Space group PI 
Unit c e l l dimensions a = 12.265(6)A a = 66 .45(4) 2 

b = 12.448(8)A P = 88 01 ( 4 ) 2 

c = 14.760(7)A Y = 66. 37 ( 4 ) 2 

Volume 1871(2) A 3 

Z 2 
Cr y s t a l colour Green 
Absorption C o e f f i c i e n t 0.539 mm"1 

F(000) 936 
C r y s t a l s i z e 0.80 x 0.75 x 0.40 mm 
9 range f o r data c o l l e c t i o n 1.56 -> 25.00° 
Index range -14<h< 13,-14 < k < 0, -17 < 1 < 16 
Experiment device Rigaku AFC6S 
Re f l e c t i o n s c o l l e c t e d 6583 
Independent r e f l e c t i o n s 6583 
Refinement method F u l l - m a t r i x l e a s t -squares on F2 

Data/restraints/parameters 6578/0/505 
Goodness-of-fit on F2 1. 032 
F i n a l R ind i c e s [ I > 2 o ( I ) ] Rl = 0.03 03, wR2 = 0.0799 
R ind i c e s ( a l l data) Rl = 0.0453, wR2 = 0.1044 
Largest d i f f . Peak and hole 0.893 and -0.633 eA"3 

for this coordination sphere is from the bidentate ligand, diphosphene, with tight bite 

angle, P(2)-Mo-P(3) 49.82(4)°. This angle is only about half of the normal value in this 

geometry. 
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Figure 6.6 S t r u c t u r e diagram of complex V 

On the other hand, the bulkier disphosphene ligand forces the other bond angles 

around the Mo to contract compared with analogue bis-imidomolybdenum alkene 

complex (Dyer et al, 1995), such that angle P(l)-Mo-N(l) is 101.9(1)° in the alkene 

and 95.99(9) °in the diphosphene complex, angle P(l)-Mo-N(2) reduce from 99.4(1) ° to 

95.58(9) °and angle N(l)-Mo-N(2) from 123.0(2) ° to 115.90(1) °. 

Table 6.5 Selected bond lengths(A) 
sphere of V 

and a n g l e s ( 9 f o r c o o r d i n a t i o n 

Mo(1)-N(2) 1.763 (3) Mo(1)-N(1) 1.757(3) 
M o ( l ) - P ( l ) 2.475 (2) Mo(l)-P(2) 2.538(2) 
Mod) -P(3) 2.588(2) N(2)-Mo(1) -P(D 95.6(1) 
N(2)-Mo(1) -P(2) 116.0(1) N (2)-Mo(1) -P(3) 110.3 (1) 
N(2)-Mo(1) -N( l ) 115.9(1) N (1)-Mo(1) -Pd) 96.0(1) 
N(1)-Mo(1) -P(2) 99.5(1) N (1)-Mo(1) -P(3) 132.8(1) 
P(1)-Mo(1) -P(2) 133.17(4) P ( l ) - M o ( l ) -P(3) 88.2(1) 
P(2)-Mo(l) -P(3) 49.82(4) 
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VI Dichloro-oxo-[l,l-bis(3,5-di-t-butyl-2-hydroxyphenyl)ethane]-tungsten 

This is the first crystal structure of al,l-bis(3,5-di-t-butyl-2-hydroxyphenyl)ethane 

tungsten complex. Tungsten coordinates with two oxygen atoms of hydroxyphenyl and 

forms an 8-membered chelate ring with the ligand, but the chelate effect on the 

geometry of coordination sphere is not obvious. A regular square-based pyramid can be 

observed (shown in Figure 6.7). 

Empirical formula C3oH4403Cl2W 
Formula weight 707.40 
Temperature 150(2)K 
Wavelength 0 .71073A 

C r y s t a l system Monoclinic 
Space group P2x/n 
Unit c e l l dimensions a = 14.582(3)A a = 90. 0 2 

b = 16.582(3)A P = 113 . 32 (3) 2 

c = 15.664(3)A Y = 90.0 o 

Volume 3478.1(1) A 3 

Z 4 
Cr y s t a l colour Black 
Absorption C o e f f i c i e n t 3.499 mm"1 

F(000) 1424 

C r y s t a l s i z e 0.60 x 0.40 x o.; 10 mm 
0 range f o r data c o l l e c t i o n 2 .74 -> 25 . 0 0 ° 

Index range - l<h< 17, -1 < k < 19, -18< I < 17 

Experiment device Rigaku AFC6S 
Ref l e c t i o n s c o l l e c t e d 7404 
Independent r e f l e c t i o n s 6114 [R i n t.= 0.038 5] 
Refinement method F u l l - m a t r i x leas b-squares on F2 

Data/restraints/parameters 6113/0/535 
Goodness-of-fit on F2 1. 032 
F i n a l R ind i c e s [ I > 2 o ( I ) ] Rl = 0.0338, wR2 = 0. 0749 
R indices ( a l l data) Rl = 0.0742, wR2 = 0. 0886 
Largest d i f f . Peak and hole 0.935 and -0.877 eA"3 
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Figure 6.7 Molecular s t r u c t u r e of complex V I 

All the bond lengths of M - L fall in the normal values compared with other 

analogous bonds in different compounds. Oxo oxygen 0(3) can be seen as at the apical 

position of the square-based pyramid and two chlorine and two oxygen at cis position 

respectively form the "square base". The angles between apical atom and base atoms 

[0(3)-W-L] are all close to the standard value 105.0° and the angles between base atoms 

also have good agreement in those standard values 86.0°. The largest deviation -3° is 

observed from the angle 0 ( l ) -W( l ) -0 (2 ) , 89.2(1) °. Therefore, this is a good example 

of a square-based pyramid. 

Table 6.6 Geometry parameters f o r W-coordination sphere i n complex VI 

W(D- C l ( l ) 2.332(3) W(1)-C1(2) 2.311(2) W ( l ) - 0(1) 1.857 (2) 
W(l) -0(2) 1.869(2) W(l)-0(3) 1.679(2) C l ( l ) -W(l) -Cl(2) 85.2(1) 
C l ( l ) -W(l) -0(1) 151.6(2) C K l ) - W ( l ) -0(2) 85.3(1) C l ( l ) -W(l) -0(3) 105.0(2) 
Cl(2) -W(l) -0(1) 87.4(2) Cl(2)-W(l) -0(2) 153.4(1) Cl(2) -W(l) -0(3) 103.3(2) 
0(1 ) - W ( l ) - 0(2) 89.2(1) 0(1)-W(D- 0(3) 103 .4 (2) 0(2) -W(D- 0(3) 103.2(1) 
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VII Dichloro-[bis(diphenylphosphino)-N,N'-dimethylethylenediamine-P,P']-
platinum 

The coordination number in this complex is four. It shows a clear square planar 

geometry for the coordination sphere of the metal Pt (Figure 3.8). The chelate ring (7-

membered) formed by two phosphorous atoms with the metal has a larger angle 

95.46(2)° than the other side formed by two chlorines, C l ( l ) - Pt(l) - Cl(2), 88.54(2)°. 

Empirical formula C 2 8H 3 0N 2P 2Cl 2Pt-CH 2Cl 2 

Formula weight 807 .40 
Temperature 150(2)K 
Wavelength 0 .71073A 

C r y s t a l system Monoclinic 
Space group P2i/n 
Unit c e l l dimensions a = 10.6635(1)A a = 90.0 a 

b = 16.8728 (2)A (3 = 95.10 ( 1 ) a 

c = 17.0720(2)A Y = 90.0 s 

Volume 3059.50(6) A 3 

Z 4 
C r y s t a l colour Colourless 
Absorption C o e f f i c i e n t 5 . 063mm"1 

F(000) 1584 
C r y s t a l s i z e 0.44 x 0.30 x 0.26 mm 
6 range f o r data c o l l e c t i o n 1.70 -> 27 .47° 
Index range -13 <h < 13, -21<k<21, -22<1<15 

Experiment device Siemens SMART 
Ref l e c t i o n s c o l l e c t e d 21902 

Independent r e f l e c t i o n s 6987 [R i n t = 0 .0215] 

Refinement method F u l l - m a t r i x least-squares on F2 

Data/restraints/parameters 6984/0/430 
Goodness-of-fit on F2 1.209 
F i n a l R ind i c e s [ I > 2 o ( I ) ] Rl = 0 .0213 , wR2 = 0. 0515 
R i n d i c e s ( a l l data) Rl = 0.0268, wR2 = 0. 0544 

241 



The geometry parameters are given in Table 6.7. Four ligands have good co-planarity 

(deviations less than 0.02(2)A from the least-square plane) and the Pt atom is out of the 

plane by 0.10(2) A. 

Table 6.7 Bond lengths(A) and a n g l e s ( 9 ) f o r c o o r d i n a t i o n sphere of V I I 

P t ( l ) - c i ( l ) 2.371(1) N i ( 1 ) - C I ( 2 ) 2 .367 (1) 
P t ( l ) -P ( D 2.250(1) N i ( l ) - P ( 2 ) 2.230(1) 

C l ( l ) - N i ( l ) -Cl(2) 88.54 (2) C I ( 1 ) - N i ( 1 ) - P ( l ) 85.98(2) 

C l ( l ) -Ni(1) -P(2) 175.70(2) C l ( 2 ) - N i ( l ) - P ( l ) 171.95(2) 
Cl(2) -Ni(1) -P<2) 89.60(2) P ( l ) - N i ( l ) - P ( 2 ) 95.46(2) 

Figure 6.8 P l o t of complex Dichloro-[bis(diphenylphosphino)-N,N'-
dimethylethylenediamne-P,P']-platinum 

CK2) CUD 
CI31I Pt( ) C 2 CI21I 

N(2I 

P2 P(1) 

C(1) 

CM II N(1) 

cm 
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VIII Bis(t-butylimido)-bis[2,4,6-tris(trifluoromethyl)phenyl]-molybdenum 

This structure has a distorted tetrahedral geometry with N-Mo-N and C-Mo-C 

angles of 110.6°and 138.3° respectively. The latter is considerably distorted from the 

standard angles of the tetrahedron due to the larger size of the fluoromethyl groups 

(Dillon, et al, 1997). Additionally, fluorines on two of the ortho-CF^ groups lie in close 

contact with the Mo centre with Mo - F distances of 2.467(3) and 2.476(3) A.The CSD 

Empirical formula C26H22N2F18Mo 
Formula weight 800.40 
Temperature 150 (2)K 
Wavelength 0 .71073A 
C r y s t a l system Monoclinic 
Space group C2/c 
Unit c e l l dimensions a = 18.721(7)A a = 90.0 a 

b = 18.622(8)A P = 92.66(3) 2 

c = 17 .652 (6)A Y = 90.0 9 

Volume 6147(4) A 3 

p 
Li 

C r y s t a l colour 
o 
Yellow 

Absorption C o e f f i c i e n t 0.557 mm"1 

F(000) 3168 
C r y s t a l size 0.40 x 0.30 x 0.20 mm 
0 range f o r data c o l l e c t i o n 2.74 -> 25.00° 
Index range -l<h<22, -l<k<22, -20 < 1 < 20 
Experiment device Rigaku AFC6S 
Ref l e c t i o n s c o l l e c t e d 6388 
Independent r e f l e c t i o n s 5422 [R i n t. = 0.1039] 
Refinement method F u l l - m a t r i x l e a s t -squares on F2 

Data/restraints/parameters 5387/0/506 
Goodness-of-fit on F 2 0.950 
F i n a l R ind i c e s [ I > 2 a ( I ) ] Rl = 0.043 8, wR2 = 0.1121 
R ind i c e s ( a l l data) Rl = 0.0882, wR2 = 0.1957 
Largest d i f f . Peak and hole 0.886 and -0.803 eA"3 
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Table 6.8 Bond l e n g t h s ( A ) and a n g l e s ( 2 ) f o r c o o r d i n a t i o n sphere o f V I I I 

M o ( l ) - N ( l ) 1.724(4) Mo(1)-N(2) 1.729(2) 
M o ( l ) - C ( l l ) 2.252(5) M o ( l ) - C ( 2 1 ) 2.241(3) 
M o ( l ) - F ( 1 6 1 ) 2.467 (3) Mo ( 1 ) - F ( 2 2 1 ) 2 .476(3) 
N ( l ) - M o ( l ) - N ( 2 ) 110.6(2) N ( l ) - M o ( l ) - C ( 2 1 ) 111.0(2) 
N ( l ) - M o ( l ) - C ( l l ) 93.6(2) C ( l l ) - M o ( l ) - C ( 2 1 ) 138.3(2) 
N ( l ) - M o ( l ) - F ( 1 6 1 ) 92.2(2) N ( l ) - M o ( l ) - F ( 2 2 1 ) 159.0(2) 
N ( 2 ) - M o ( l ) - F ( 1 6 1 ) 156.6(2) N ( 2 ) - M o ( l ) - F ( 2 2 1 ) 89.8(2) 
C ( l l ) - M o ( l ) - F ( 1 6 1 ) 71.8(2) C ( 2 1 ) - M o ( l ) - F ( 1 6 1 ) 74.1(2) 
C ( l l ) - M o ( l ) - F ( 2 2 1 ) 74.1(2) C ( 2 1 ) - M o ( l ) - F ( 2 2 1 ) 71.4(2) 
F ( 1 6 1 ) - M o ( l ) - F ( 2 2 1 ) 68.0(1) 

search on 114 Mo-F complexes shows that the mean value for Mo-F bond is 1.998A. 

Therefore, the Mo - F in this structure can be considered as weak interactions. The 

coordination sphere, indeed, can be seen as an intermediate transformed from a 

tetrahedron to octahedron by a reaction pathway 4+2 —• 6 (Drew, 1977). The major 

geometrical parameters are listed in table 6.8 and structure diagram is illustrated in 

Figure 6.9. 

C(3) 
FI121I 

NO FI261) 
FI142) C(4) 

Moll) 

C126AI N(1) C(11) C(14A1 
C<21) 

CI16A) 
F(161) 

FI2211 

CI22AI 
CI24A) 

FI241) 

F i g u r e 6.9 P l o t o f complex V I I I 
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IX Dichloro-bis(2,4,6-trifluoromethylphenylimido)-bis-pyridine-molybdenum 

Structure IX has also six coordinated ligands, a pair of nitrogen atoms from 

pyridine and the other from imido, two chlorine atoms sit at the trans-position (see 

Figure 6.10).The four N atoms can be seen located in the equatorial plane of octahedron 

E m p i r i c a l f o r m u l a C 2 aH 1 4N 4F 1 8Cl 2Mo 
Formula w e i g h t 915 .27 
Temperature 150(2)K 
Wavelength 0.71073A 
C r y s t a l system M o n o c l i n i c 
Space group P2 x/n 
U n i t c e l l d i mensions a = 8.841(1)A a = 90 . 0 2 

b = 17.120(2)A 3 = 96 77 ( 1 ) 9 

c = 2 1 . 634 (2)A Y = 90. 0 2 

Volume 3251.6(11) A 3 

Z 4 
C r y s t a l c o l o u r B l a c k 
A b s o r p t i o n C o e f f i c i e n t 0.863 mm"1 

F(000) 2030 
C r y s t a l s i z e 0.36 x 0.30 x 0.20 mm 

9 range f o r d a t a c o l l e c t i o n 1.52 23.26° 
I n d e x range -9< h < 7, -15 < k < 18, -21 < 1 < 24 

Experiment d e v i c e Siemens Smart CCD 
R e f l e c t i o n s c o l l e c t e d 12069 
Independent r e f l e c t i o n s 4582 [R i n t.= 0.0577] 
Refinement method F u l l - m a t r i x l e a s t -squares on F 2 

D a t a / r e s t r a i n t s / p a r a m e t e r s 4582/0/521 
G o o d n e s s - o f - f i t on F 2 1.277 
F i n a l R i n d i c e s [ I > 2 o ( I ) ] R l = 0.0434, wR2 = 0.0976 

R i n d i c e s ( a l l d a t a ) R l = 0.0477, wR2 = 0.1001 
L a r g e s t d i f f . Peak and h o l e 0.321 and -0.621 eA"3 

and CI atoms at axial positions. Since N( l ) , N(2) have shorter distances with Mo 

atoms (double bonds) than those of N(3), N(4), two CI atoms incline to N(3), N(4) side, 
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which gives the angle 157.4° for Cl(l)-Mo-Cl(2), and deviates considerably from 

standard angle of 180° in this geometry. The largest deviation on the plane is the angle 

between N ( l ) and N(2), N(l)-Mo-N(2) 102.4°. It may be caused by the bulky ligands. 

FI141) 

FI121) C(14) CI14A) 

C(34) CI12A) 

F(162) C(11) 
N(3) C(16A) N 1) 

Mod) 

CUD C(22A) CK2I 

FI223) 
C(42) 

N(2) 
N4 

CI21 

CI24) 

CI26A) C(44) 
C(24A) 

F1261) F(241) 

F i g u r e 6.10 S t r u c t u r e o f Mo (CSH5N) 2 [NC 6H 2 (CF 3) 3 ] 2 C 1 2 

Table 6.9 Bond l e n g t h s (A) and a n g l e s f o r t h e c o o r d i n a t i o n sphere 
i n s t r u c t u r e IX 

M o ( l ) - C l ( l ) 2.374(1) M o d ) - C l ( 2 ) 2 .378 (3) Mo (1) - N ( l ) 1.774(4) 

M o d ) -N(2) 1.775 (4) Mo (1) -N(3) 2.354(4) Mo (1) -N(4) 2.385(4) 
C l ( l ) - M o ( l ) - C I ( 2 ) 154.7(1) C l ( l ) -Mo(1) - N ( l ) 98.6(1) C l ( l ) -Mo(1) -N(2) 96.8(1) 
C l ( l ) -Mo(1) -N(3) 80.1(1) C l ( l ) -Mo(1) -N(4) 81.5(1) C l ( 2 ) -Mo(1) - N ( l ) 98.0(1) 
C l ( 2 ) -Mo(1) -N(2) 98.0(1) C l ( 2 ) -Mo(1) -N(3) 81.8(1) C l ( 2 ) -Mo(1) -N(4) 78.5(1) 
N ( l ) -Mo(1)- N(2) 102.4 (2) N ( l ) -Mo( 1 ) - N(3) 87.6(2) N ( l ) -Mo(1)- N(4) 168.9(2) 
N(2) -Mo(1)- N(3) 169.8(2) N ( 2 ) - M o ( 1 ) - N(4) 88.6(2) N(3) -Mo(1)- N(4) 81.5(1) 
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X . Bis(|ui2-methoxo)-tetra-bis(2,6-di»isopropylphenyl)imido-dimethyl-di-
molybdenum 

The crystal structure has shown that this is a dimer of a Mo complex. Two Mo 

atoms are bridged by two methoxy molecules. Each Mo atom coordinates with two 

imido ligands and a methyl molecule. Both Mo atoms have five-coordination ligands. 

Each Mo-coordination sphere can be described as square pyramid, in which N(2) or 

N(2A) are the apical atoms, N( l ) , 0(1), OQA) and C(3), or N(1A), 0(1), 0(1A) 

E m p i r i c a l f o r m u l a C52H46N4O2M0;, 

Formula w e i g h t 950.84 

Temperature 150 (2)K 
Wavelength 0 .71073A 

C r y s t a l system M o n o c l i n i c 
Space group P2!/c 
U n i t c e l l d i m e n s i o n s a = 1 2 . 6 2 9(1 ) A a = 90 . 0 9 

b = 1 0 . 1 8 8(2 ) A P = 97 6 7 ( 1 ) 2 

c = 2 0 . 5 2 9(2)A Y = 90. 0 2 

Volume 2617 .6 (9 ) A 3 

Z 2 

C r y s t a l c o l o u r Dark g r e e n 
A b s o r p t i o n C o e f f i c i e n t 0 .988 mm"1 

F(OOO) 1296 

C r y s t a l s i z e 0 .34 x 0 .26 x 0 .20 mm 

0 range f o r d a t a c o l l e c t i o n 1 .63 -> 2 6 . 0 7 ° 

I n d e x range -13< h < 15, -9 < k < 12, -25 < 1 < 23 

Experiment d e v i c e Siemens Smart CCD 
R e f l e c t i o n s c o l l e c t e d 11213 

Independent r e f l e c t i o n s 4500 [R i n t.= 0 .0486] 

Refinement method F u l l - m a t r i x l e a s t -squares on F 2 

D a t a / r e s t r a i n t s / p a r a m e t e r s 4500/0 /376 

G o o d n e s s - o f - f i t on F 2 1 .280 

F i n a l R i n d i c e s [ I > 2 a ( I ) ] Rl = 0 . 0494 , wR2 = 0 .1004 

R i n d i c e s ( a l l d a t a ) Rl = 0 . 0692 , wR2 = 0 .1263 

L a r g e s t d i f f . Peak and h o l e 0 .660 and - 0 . 4 9 9 eA"3 
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F i g u r e 6.11 View o f complex X. 

and C(3A) atoms constitute the square base. 

There is only half molecule contained in an asymmetric unit, the other half can 

be located by the inversion centre of P2i/c. The distance of Mo(l)-Mo(lA) is 

3.486(2)A, which is similar to other dimer of Mo complexes(Chisholm, Cotton, Extine 

and Kelly, 1978). The major deviations can be found on bridging oxygen atoms, which 

have a smaller and a larger angle with apical atom N(2), N(2)-Mo-0(l), 99.9(2)°; N(2)-

Mo-O(l)*, 117.6(2) °, compared with the standard ones. The angle between two oxygen 

atoms is also smaller, 68.7(1) °, than a normal value in a standard square pyramid. 

Table 6.10 S e l e c t e d bond l e n g t h s ( A ) and a n g l e s ( s ) f o r M o - c o o r d i n a t i o n 
sphere. The same v a l u e s i n t h e o t h e r h a l f m o l e c u l e . 

Mo(1)-N(1) 1.747(4) Mo(1)-N(2) 1.760(4) 

M o ( l ) - 0 ( 1 ) 2.163 (3) M o ( l ) - 0 ( 1 ) * 2.059(3) 
N(1)-Mo(1)-N(2) 108.0(1) N (1)-Mo(1) - 0 ( 1 ) * 96.2(2) 
N ( l ) -Mod) -0 ( 1 ) 152.0(2) N (1)-Mo(1) -C(3) 91.9(2) 
N ( 2 ) - M o ( 1 ) - 0 ( 1 ) * 117 .6 (2) N(2)-Mo(1) - 0 ( 1 ) 99.9(2) 
N ( 2 ) - M o ( l ) - C ( 3 ) 102.8(2) 0( 1 ) -Mod) -C(3) 83.3(2) 
0 ( 1 ) * - M o ( l ) - C ( 3 ) 133.5(2) 0 ( 1 ) - M o ( l ) - 0 ( 1 ) * 68.7(1) 

* Symmetry transformations used to generate equivalent atoms 1-x, -y, -z. 
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Chapter 7 

Further Work 

7.1 Geometry in Higher Coordination Number Spheres 

The geometry analyses of the higher coordination number transition metal 

complexes has now been completed up to the 9-coordination level. Two other even 

higher coordination numbers are also observed in lanthanide or main group metal 

complexes, that is, 10- and 12-coordination. The basic geometries for these two 

coordination spheres are shown in Figure 7.1. 

6 1 

9 
8 8 6 

10 
8 

10 10 

TRH BSAP SPC 

a 

F i g u r e 7.1 (a) Geometries i n 1 0 - c o o r d i n a t i o n 

Three polyhedral forms, bicapped square antiprism (BSAP), sphenocorona (SPC) and 

trirhombohedron (TRH) exist in 10-coordination and four, icosahedron (ICOH), 

bicapped pentagonal prism (BCPP), anticuboctahedron (ACOT) and cuboctahedron 

(COCT) exist in 12-coordination. 

With the increase of coordination number, the valence angles L-M-L have smaller 

differences. Rang(x) values may become unable distinguishable the different geometry 

models. This has been seen in 9-coordination, especially for those complexes with 
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ICOH BCPP 

A C O T C O C T 

F i g u r e 7.1 (b) Geometries i n 1 2 - c o o r d i n a t i o n 

multidentate ligands in which the valence angles, L-M-L are distorted due to the strains 

of the chelate rings. 

It can be seen that information might be lost using the single Rang(x) value as a 

criterion to involve more angle parameters. Appropriate methods which are more 

sensitive to the smaller difference within these geometries in higher coordination 

spheres must be explored or more relevant parameters for these higher coordination 

must be applied. The interplanar angle 8 between the dihedral planes in a polyhedron is 

another important geometrical parameter in characterizing different polyhedra. It seems 

to have a larger variable range than the conventional polyhedral angles. Using this value 

instead of the L-M-L angles may be more suitable for classifying the geometry of higher 

coordination. It may also be possible to extend this method to apply to geometry study 

of metal clusters or borane cages compounds. The importance in these applications also 

includes setting up standard geometries for different clusters or cages. 
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7.2 Study in Reaction Pathways 

Another interest using systematic analysis is to examine or confirm some given 

reaction pathways using the available structural information. The deformation of a 

molecule from ideal states may reflect the distortion which these fragments would 

undergo along a given reaction coordinate. 

The reaction mechanisms concerned with 7-coordination usually regards the 7-

coordination complexes as intermediates. A 7-coordination intermediate may arise 

during reaction of 6-coordination complexes when an extra bond is formed or during 

reaction related to 8-coordination complexes when a bond is broken. 

Considering a substituent reaction in a 6-coordination complex, one possibility is 

that the substituent ligand (Y) attacks to the 6-coordination complex X M L 5 to form a 7-

coordination intermediate, [XML5Y], and then X is eliminated and a new substituted 6-

coordination complex ML5Y is formed (Drew, 1977*). i.e. 

XML5 + Y d [XML5Y] ML5Y 

From the consideration of reaction pathways, the formation of idealized 7-

coordination geometries can be seen as the addition of an extra ligand to the regular 

octahedron. Attack of ligand along an edge (E) of the square plane of octahedron will 

result in the other four ligands, on the vertices coplanar with this new ligand, being 

slightly rearranged so that five ligands sit on the vertices of a pentagon, which forms a 

7-coordination PBP. Face attack (F) may generate either COC or CTP according to the 

movements of other vertices of the octahedron caused by the attack, shown as in Figure 

7.2 

Preliminary work to confirm this path has been undertaken by investigating the 

position of an extra non-bonded atom related to the central atom in 6-coordination 

complexes. This position is simulated as the optimal direction of the 7th atom attacking 

to the octahedron. 

* This reference has been given in Chapter 3 
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COC or CTP 

F i g u r e 7.2 O n e - l i g a n d a t t a c k s on o c t a h e d r o n t o g e n e r a t e 
PBP, COC o r CTP 

This was carried out through a CSD search of 6-coordination complexes with a 

non-bonded atom and defining its relevant angles and non-bonded distance to the 

central metal atom. The non-bonded distances are subsequently normalized by 

subtracting the sum of the covalent radii of the relevant bonded atoms. If a non-bonded 

atom lies in the square base plane of octahedron and has angle of zero with the metal 

atom, that means that the 7th atom is approaching the metal atom from the edge (E). 

The results have shown that all non-bonded atoms locate between 0° and 60° from this 

plane (shown in Figure 7.3), which shows that the majority of the contacts approach the 

metal centre along a vector between the quadraplane and a face center of octahedra, and 

thus forming either "PBP" or "COC/CTP" 6+1 coordinated compounds. 

Meanwhile, let us assume at the position 3 in 7-coordination species (see Figure 

3.1) is the final standing position of the attacking atom. Thus, the data for 7-

coordination species are also used together with the data of 6-coordination non-bonded 

species of Co complexes. For comparison, the angle of ligand 3 away from the 

equatorial plane is calculated and plotted with 6-coordination non-bonded contact data. 

It shows that they all fall into the same angle range. But in the case of 7-coordination, 

since ligand 3 is bound to the metal atom, they have shorter normalised distances and 

then appear in the inner circle. This has proved that the 6+1 coordination metal data 

coincide with the data that could be similarly derived for the metals that exist as exactly 

7-coordination. This means that it is possible to use these data to further explore the 

relationships from 6+1 coordination leading to 7-coordination by geometrical similarity. 

254 



+90 
.48 

.40 

.32 o 

.24 
J! 

16 3fc 
CP 

.08 
ao 

+/-180 .00 

-90 

F i g u r e 7.3 P o l a r s c a t t e r p l o t o f a n g l e v s. n o r m a l i s e d d i s t a n c e between 
t h e m e t a l atom and t h e non-bonded atoms i n 6 - c o o r d i n a t i o n 
s p e c i e s , and L 3 i n 7 - c o o r d i n a t i o n s p e c i e s . 

The further study will be to find a meaningful reaction coordinates system to map 

the reaction pathways. 

There also exist other possibilities of reaction pathways related to the 7-

coordination complexes, such as, 7+1 to 8-coordination or 8-1 to 7-coordination 

(addition/elimination reaction) and so on. Al l these are to be considered in the same 

manner as those in 6+1 to 7-coordination. 
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Appendix I. 

Atomic Coordinates 

Atomic coordinates for the structures given in Chapter 6. Ueq is equivalent 

isotropic displacement parameters (A 2), which is defined as: 

' j 

I . Tri-carbonyl-tris(methylcyanide)-chromium [Cr(CO)3(CH 3CN)3 CH 3 CN] 

Atom X y Z 

Cr (1) .1441(1) .3166(1) .7423 (2) .021 (1) 

0 ( 1 ) -.0252 (4) . 4086(8) .8752(3) .046(2) 

0 ( 2 ) -.0289(5) . 4087(9) .6088(3) .048(2) 

0 ( 3 ) .0405 (1) -.0116(2) .7413 (7) .052(1) 

N ( l ) .2667 (4) .2580(9) .8355 (4) .029 (1) 

N(2) .2150(1) .5485 (2) .7418(6) .028(1) 

N(3) .2649(4) .2550(9) .6491 (4) .029 (1) 

C ( l ) .3369(6) .2228 (10) .8805 (5) .035 (2) 

C(2) .2512(1) .6757(2) .7409(9) .027 (1) 

C(3) .3385(5) .2239(10) .6059 (5) .033(2) 

C(4) .0843(2) .1144 (2) .7393 (8) .030 (1) 

C(5) .0415 (4) .3757(9) .8265(4) .026 (1) 

C(6) .0448(6) .3722(10) .6591 (4) .033(2) 

C ( l l ) .4286(8) .1843(10) .9327(7) .055 (2) 

C(12) .2978 (2) .8380 (2) .7424(10) .038 (1) 

C(13) .4308(6) . 1800(10) .5452 (7) .050(20) 

C(01) -.2520(9) .2439(3) .4913(9) .048 (1) 

C (02) -.2502(9) .4197(3) .4912(9) .041 (1) 

N (01) -.2641(11) .1070(3) .4938 (11) .085 (2) 
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II . Trans-bis [1,2-bis(dimethylphosphino)cyclopentane] -dichloroiron 

Atom X y Z ueq 

F e ( l ) . 0000 . 0000 . 5000 .018 (1) 
P d ) .0655(1) . 1189(1) . 4078(1) .025 (1) 
P(2) .1490 (1) -.0542(1) .3298(1) .025(1) 
C l d ) .2451 (1) .0053 (1) .6706(1) .030 (1) 

C d l ) .1879(7) .1910 (2) .5240 (5) .066(2) 
C(12) -.0966(6) .1821(3) .3143(7) .089(2) 
C(21) .3383(4) -.1115 (2) .3862(5) .046(1) 
C (22) . 0461(5) -.1172(3) .1826(4) .059(1) 

C ( D * .2412 (12) .0963(4) .2967(10) .024 (2) 
C(5) . 1881(12) .0235 (4) .1967(10) .021(2) 
C(1A) .1497(13) .1005 (4) .2352 (10) .025 (2) 
C (5A) . 2699(15) .0312 (4) .2599 (10) .026(2) 
C(2) .2757 (7) .1584 (2) .1689(5) .060(1) 
C(3) .3836(5) .1079(2) .0779(4) .042(1) 
C(4) .3370(5) .0211 (2) . 1047 (4) .038(1) 

* C(l) occup. 51%, C(1A) occup. 49%; C(5) occup. 51%, C(5A) occup. 49%. 

I I I . Dichloro-(dimethoxyethane)-bis(t-butylimido)-molybdenum 

Atom X y Z ueq 

Mo (1) -.0053(1) .0890(1) .3570 (1) .027(1) 
C l ( l ) .0944(1) -.0807 (1) .3766 (1) .040(1) 
C l ( 2 ) -.0736(1) .2395(1) .3109(1) .036(1) 
0 ( 1 ) -.0451(3) -.0103(2) .2896(1) .031(1) 
0 ( 2 ) .1834(3) .1012 (2) .3076 (1) .033 (1) 
N ( l ) -.1683(3) .0669(3) .3759(1) .032(1) 
N(2) .0793(3) . 1573 (3) .3986(1) .033(1) 
C ( l ) -.1223(5) -.1088 (3) .2922(2) .038(1) 
C(2) .0729(5) -.0250(4) .2618(2) .039(1) 
C(3) .1503(5) .0779(4) .2617(1) .037(1) 
C(4) .2717 (5) . 1921 (4) .3118 (2) .042(1) 
C(01) -.2967 (4) .0766(3) .3996(1) .032(1) 
C ( l l ) -.2928 (5) .0042 (4) .4406 (2) .042(1) 
C(12) -.3163(5) .1934 (4) .4129 (2) .042(1) 
C(13) -.4116(5) .0408 (5) .3681(2) .047(1) 
C(02) .1232 (4) .1971(3) .4425 (1) .031 (1) 
C(21) .2747 (5) . 1720 (5) .4472 (2) .047 (1) 
C (22) .0990(60 .3167(4) .4434 (2) .046(1) 
C (23) .0423(5) .1395(4) .4786(2) .043(1) 
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Dichloro-bis(2,4,6-trfluoromethyl-phenylimido)-molybdenum 

Atom X y z ueq 

Mo (1) 0 .1508(1) 0 1313 (1) 0 2479 (1) 0 021 (1) 
CI (1) -0. 1063 (1) 0 1184 (1) 0 2439 (1) 0 037 (1) 
CI (2) 0 .2302 (2) -0 0807 (1) 0 2763 (1) 0 042 (1) 
N (1) 0 .2734 (4) 0 2895 (4) 0 3278 (2) 0 022 (1) 
N (2) 0 . 1737 (4) 0 1618 (4) 0 1464 (2) 0 020 (1) 
C (11) 0 . 3837 (5) 0 4329 (5) 0 3612 (2) 0 021 (1) 
C (12) 0 . 5457 (5) 0 4550 (5) 0 3628 (2) 0 023 (1) 
C (13) 0 . 6540 (5) 0 5999 (5) 0 3934 (3) 0 026 (1) 
C (14) 0 . 6033 (5) 0 7239 (5) 0 4243 (2) 0 024 (1) 
C (15) 0 .4453 (5) 0 7029 (5) 0 4249 (3) 0 026 (1) 
C (16) 0 .3350 (5) 0 5589 (5) 0 3943 (2) 0 023 (1) 
C (1A) 0 . 6044 (5) 0 3213 (5) 0 3325 (3) 0 031 (1) 
C (IB) 0 .7227 (6) 0 8796 (5) 0 4554 (3) 0 036 (1) 
C (1C) 0 .1635 (5) 0 5400 (5) 0 3950 (3) 0 027 (1) 
F ( l l ) 0 . 5735 (4) 0 2072 (3) 0 3764 (2) 0 045 (1) 
F(12) 0 .5343 (3) 0 2606 (3) 0 2474 (2) 0 038 (1) 
F(13) 0 . 7614 (3) 0 3630 (4) 0 3432 (2) 0 054 (1) 
F(21) 0 . 8527 (4) 0 8778 (4) 0 5137 (3) 0 086 (1) 
F(22) 0 .7611 (6) 0 9407 (4) 0 3916 (2) 0 094 (1) 
F(23) 0 . 6653 (4) 0 9825 (4) 0 4951 (3) 0 075 (1) 
F(31) 0 . 1107 (3) 0 4246 (3) 0 4341 (2) 0 039 (1) 
F(32) 0 . 0637 (3) 0 5099 (3) 0 3142 (2) 0 038 (1) 
F(33) 0 . 1435 (3) 0 6671 (3) 0 4366 (2) 0 049 (1) 
C(21) 0 .2175 (4) 0 2142 (4) 0 0751 (2) 0 020 (1) 
C(22) 0 .2051 (5) 0 3580 (5) 0 0556 (3) 0 023 (1) 
C(23) 0 .2432 (5) 0 4044 (5) -0 0179 (3) 0 027 (1) 
C(24) 0 .2934 (5) 0 3083 (5) -0 0722 (3) 0 028 (1) 
C(25) 0 . 3083 (5) 0 1673 (5) -0 0535 (3) 0 026 (1) 
C(26) 0 .2698 (4) 0 1184 (4) 0 0194 (3) 0 021 (1) 
C (2A) 0 . 1516 (5) 0 4642 (5) 0 1144 (3) 0 028 (1) 
C(2B) 0 .3282 (5) 0 3581 (5) -0 1528 (3) 0 039 (1) 
C(2C) 0 .2800 (6) -0 0380 (6) 0 0373 (2) 0 027 (1) 
F(41) 0 .2547 (3) 0 5087 (3) 0 1944 (2) 0 034 (1) 
F(42) 0 . 0074 (3) 0 3976 (3) 0 1237 (2) 0 035 (1) 
F(43) 0 . 1396 (4) 0 5925 3) 0 0833 (2) 0 041 (1) 
F(51) 0 . 3940 (5) 0 5073 4) -0 1415 (2) 0 076 (1) 
F(52) 0 .4300 (5) 0 2911 6) -0 1795 (3) 0 090 (1) 
F(53) 0 . 1983 4) 0 3241 5) -0 2191 (2) 0 076 (1) 
F(61) 0 .3874 3) -0 0300 3) 0 1133 (2) 0 034 (1) 
F(62) 0 .3240 3) -0 1162 3) -0 0247 (2) 0 040 (1) 
F(63) 0 . 1387 3) -0 1257 3) 0 0403 (2) 0 036 (1) 
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Bis(t-butylimido)-[l,2-bis(2,4,6-trifluoromethylphenyl)diphosphene]-
trimethylphosphine- molybdenum 

Atom X y z 
Mo (1) 0 .2089 (1) 0 2303 1) 0 3196 1) 0 015 1) 
P 1) 0 .2935(1) 0 1903 1) 0 1755 1) 0 022 1) 
P 2) 0 .1528(1) 0 4190 1) 0 3665 1) 0 018 1) 
P 3) 0 .3029(1) 0 3932 1) 0 2838 (1) 0 018 1) 
N 1) 0 .0641(2) 0 2487 2) 0 2865 2) 0 021 1) 
N 2) 0 .3057 (2) 0 0774 2) 0 4114 2) 0 020 1) 
C 1) 0 .2638(3) 0 5444 3) 0 1657 2) 0 019 1) 
C 2) 0 .1505(3) 0 6483 3) 0 1170 (2) 0 020 1) 
c 21) 0 .0301 (3) 0 6415 3) 0 1340 2) 0 024 1) 
c 3) 0 .1396(3) 0 7676 3) 0 0460 (2) 0 026 1) 
c 4) 0 .2398(3) 0 7880 3) 0 0152 (2) 0 030 1) 
c 41) 0 .2276(4) 0 9169 3) -0 0619 (3) 0 045 1) 
c 5) 0 .3526(3) 0 6858 3) 0 0526 (2) 0 027 1) 
c 6) 0 .3645(3) 0 5677 (3) 0 1255 (2) 0 022 1) 
c 61) 0 .4926(3) 0 4639 (3) 0 1598 (2) 0 029 (1) 
c 7) 0 .2213 (2) 0 3766 (3) 0 4936 (2) 0 018 1) 
c 8) 0 .1914(3) 0 2946 (3) 0 5797 (2) 0 021 1) 
c 81) 0 .0910(3) 0 2547 (3) 0 5732 (2) 0 024 (1) 
c 9) 0 .2452(3) 0 2559 (3) 0 6752 (2) 0 024 (1) 
c 10) 0 .3267(3) 0 3010 (3) 0 6897 (2) 0 024 (1) 
c 101) 0 .3874(3) 0 2582 (3) 0 7921 (2) 0 032 (1) 
c 11) 0 .3468(3) 0 3923 (3) 0 6093 (2) 0 024 (1) 
c 12) 0 .2934 (3) 0 4322 (3) 0 5130 (2) 0 021 (1) 
c 121) 0 .3144(3) 0 5434 (3) 0 4343 (2) 0 026 (1) 
c 31) 0 .2499 (3) 0 3306 (3) 0 0566 (2) 0 033 (1) 
c 32) 0 .4567 (3) 0 1093 (3) 0 1911 (3) 0 034 (1) 
c 33) 0 .2464 (3) 0 0817 (3) 0 1515 (3) 0 032 (1) 
c 51) -0. 0570(3) 0 2629 (3) 0 2641 (2) 0 026 (1) 
c 52) -0. 1003(3) 0 3410 (4) 0 1518 (3) 0 041 (1) 
c 53) -0. 1367(3) 0 3365 (4) 0 3213 (3) 0 037 (1) 
c 54) -0. 0575(3) 0 1301 (3) 0 2977 (3) 0 040 (1) 
c 71) 0 .3384(3) -0 0581 (3) 0 4799 (2) 0 026 (1) 
c 72) 0 .3788(3) -0 0780 (3) 0 5848 (2) 0 037 (1) 
c 73) 0 .4429(3) -0 1446 (3) 0 4451 (3) 0 038 (1) 
c 74) 0 .2302 (3) -0 0893 (3) 0 4787 (3) 0 034. (1) 
F 21) 0 .0348 (2) 0 5239 (2) 0 1593 (1) 0 029 (1) 
F 22) -0. 0208 (2) 0 6835 (2) 0 2022 (1) 0 033 (1) 
F 23) -0. 0503(2) 0 7192 (2) 0 0488 (1) 0 037 (1) 
F 41) 0 .1214 (3) 1 0073 (3) -0 0817 (4) 0 153 (1) 
F 42) 0 .3061 (4) 0 9537 (3) -0 0351 (2) 0 091 (1) 
F 43) 0 .2599(3) 0 9138 (2) -0 1476 (2) 0 065 (1) 
F 61) 0 .5029 (2) 0 3524 (2) 0 1593 (2) 0 038 (1) 
F 62) 0 .5685(2) 0 4984 (2) 0 0982 (2) 0 039 (1) 
F 63) 0 .5396(2) 0 4355 (2) 0 2511 (2) 0 040 (1) 
F 81) -0 .0110 (2) 0 3575 (2) 0 5195 (1) 0 034 (1) 
F 82) 0 .0639(2) 0 1975 (2) 0 6630 (1) 0 040 (1) 
F 83) 0 . 1145(2) 0 1721 (2) 0 5310 (2) 0 031 (1) 
F 101) 0 .5066(2) 0 2094 (4) 0 7988 (2) 0 108 (1) 
F 102) 0 .3675(2) 0 1655 (3) 0 8618 (2) 0 096 (1) 
F 103) 0 .3604 (3) 0 3503 (2) 0 8207 (2) 0 083 (1) 
F 121) 0 .3238(2) 0 6200 (2) 0 4749 (2) 0 044 (1) 
F 122) 0 .2262(2) 0 6218 (2) 0 3566 (1) 0 032 (1) 
F 123) 0 .4180(2) 0 5045 (2) 0 3978 (2) 0 038 (1) 
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Dichloro-oxo-[l,l-bis(3,5-di-t-butyl-2-hydroxyphenyl)ethane]-tungsten 

Atom X y Z ueq 

W ( l ) . 2 2 4 4 1) . 1 5 4 9 1) . 0 5 0 7 1) . 0 1 8 ( 1 ) 
C l ( 1 ) . 2 9 3 5 2) . 0784 1) . 1863 1) . 0 3 6 ( 1 ) 
C l ( 2 ) . 3 8 6 0 1) . 1 6 3 2 2 ) . 0 5 9 2 1) . 0 4 0 ( 1 ) 
0 ( 1 ) . 2 0 0 0 3) . 2 5 2 7 3) - . 0 1 2 1 3) . 0 2 3 ( 1 ) 
0 ( 2 ) . 1230 3) . 1 7 8 6 3) . 0 9 1 4 3) . 0 2 1 ( 1 ) 
0 ( 3 ) . 1706 (4) . 0 8 7 3 3) - . 0 3 4 4 3) . 0 2 8 ( 1 ) 
C ( 0 1 ) . 2 4 7 1 5) . 3134 4) . 1747 4) . 0 1 7 ( 1 ) 
C ( 0 2 ) . 3 3 4 5 (5) . 3 5 1 6 5) . 2 5 6 3 5) . 0 2 3 ( 2 ) 
C ( l ) . 1954 4) . 3 3 5 3 4) - . 0 0 1 2 (4 ) . 0 1 9 ( 1 ) 
C ( 2 ) . 1685 (5) . 3817 4) - . 0 8 2 0 (4 ) . 0 2 1 ( 2 ) 
C ( 3 ) . 1605 (5) . 4 6 5 2 4) - . 0 7 0 1 (5 ) . 0 2 1 ( 1 ) 
C ( 4 ) . 1768 (5) . 5 0 0 2 4) . 0 1 6 0 (4 ) . 0 2 0 ( 1 ) 
C ( 5 ) . 2 0 2 9 (5) . 4 4 9 9 4) . 0 9 3 0 (4 ) . 0 1 9 ( 1 ) 
C ( 6 ) . 2 1 3 9 (4) . 3667 (4 ) . 0 8 7 0 (4 ) . 0 1 8 ( 1 ) 
C ( 2 1 ) . 1 5 0 6 (5) . 3 4 5 5 (5 ) - . 1 7 7 2 (4 ) . 0 2 6 ( 2 ) 
C ( 2 1 A ) . 2 4 5 1 (6 ) . 3 0 2 8 (5 ) - . 1 7 3 3 (6 ) . 0 3 2 ( 2 ) 
C ( 2 1 B ) . 1 2 2 2 (7 ) . 4 0 9 9 (5 ) - . 2 5 3 3 (5 ) . 0 3 1 ( 2 ) 
C ( 2 1 C ) . 0 6 2 8 (6 ) . 2 8 5 6 (5 ) - . 2 0 5 7 (5 ) . 0 3 1 ( 2 ) 
C ( 4 1 ) . 1 6 6 1 (5 ) . 5 9 1 5 (4 ) . 0 2 6 2 ( 5 ) . 0 2 5 ( 2 ) 
C ( 4 1 A ) . 2 6 2 5 (6 ) . 6 2 4 5 (5 ) . 1012 ( 6 ) . 0 3 1 ( 2 ) 
C ( 4 1 B ) . 0 7 7 9 (6 ) . 6 0 7 1 (6 ) . 0 5 4 1 ( 6 ) . 0 3 5 ( 2 ) 
C (41C) . 1454 (9 ) . 6362 (5 ) - . 0 6 4 1 ( 6 ) . 0 4 1 ( 2 ) 
C ( 1 1 ) . 1020 (5 ) . 2 1 9 5 (4 ) . 1 5 7 6 ( 4 ) . 0 1 9 ( 1 ) 
C ( 1 2 ) . 1 6 1 1 (5 ) . 2 8 6 8 ( 4 ) . 2 0 0 6 ( 4 ) . 0 1 7 ( 1 ) 
C ( 1 3 ) . 1403 (5 ) . 3264 (4 ) . 2 6 8 4 ( 4 ) . 0 1 9 ( 2 ) 
C ( 1 4 ) . 0637 (5 ) . 3 0 0 6 ( 4 ) . 2 9 5 0 ( 4 ) . 0 1 9 ( 1 ) 
C ( 1 5 ) . 0 0 6 5 (5 ) . 2 3 5 0 (4 ) . 2 4 8 4 ( 5 ) . 0 2 1 ( 2 ) 
C ( 1 6 ) . 0 2 2 6 (5 ) . 1 9 3 1 ( 4 ) . 1785 ( 4 ) . 0 1 7 ( 1 ) 
C ( 1 4 1 ) . 0417 ( 5 ) . 3 4 1 1 ( 4 ) . 3734 ( 4 ) . 0 2 3 ( 1 ) 
C ( 1 4 A ) . 0 6 2 0 (7 ) . 2 7 9 6 ( 6 ) . 4 5 2 2 ( 6 ) . 0 3 6 ( 2 ) 
C ( 1 4 B ) . 1058 (7 ) . 4 1 6 0 ( 6 ) . 4 1 2 8 ( 7 ) . 0 4 3 ( 2 ) 
C ( 1 4 C ) - . 0 6 7 3 ( 6 ) . 3 6 8 0 ( 5 ) . 3354 ( 6 ) . 0 2 9 ( 2 ) 
C ( 1 6 1 ) - . 0 4 1 0 (5 ) . 1 1 9 0 (4 ) . 1308 ( 5 ) . 0 2 1 ( 2 ) 
C ( 1 6 A ) - . 1 3 0 3 (6 ) . 1082 (5 ) . 1 5 7 6 ( 6 ) . 0 3 1 ( 2 ) 
C ( 1 6 B ) . 0 2 3 3 (6 ) . 0 4 1 5 ( 5 ) . 1 6 0 7 ( 6 ) . 0 3 0 ( 2 ) 
C ( 1 6 C ) - . 0 8 2 7 (6 ) . 1 2 5 6 (5 ) . 0 2 4 2 ( 5 ) . 0 2 8 ( 2 ) 
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VII . Dichloro-[bis(diphenylphosphino)-N,N'-dimethylethylenediamine-P,P']-
platinum 

Atom X y Z ueq 

P t ( l ) . 5 7 2 6 1) . 3 7 8 6 ( 1 ) . 2018 (1 ) . 0 1 7 ( 1 ) 
C l ( l ) . 5 9 6 3 1) . 5 0 9 5 ( 1 ) . 2514 (1 ) . 0 2 6 ( 1 ) 
C l ( 2 ) . 3 5 3 0 1) . 3 9 0 4 ( 1 ) . 2 1 0 3 (1 ) . 0 2 7 ( 1 ) 
P ( D . 7 7 9 5 1) . 3 8 4 2 ( 1 ) . 1 8 5 6 (1 ) . 0 1 9 ( 1 ) 
P ( 2 ) . 5 4 2 1 1) . 2 5 9 2 ( 1 ) . 1 4 7 2 (1 ) . 0 1 9 ( 1 ) 
N ( l ) . 8467 2) . 3 0 4 0 ( 1 ) . 1 4 7 0 (2 ) . 0 2 2 (1 ) 
C ( 0 1 ) . 9 5 1 1 4) . 3 1 2 6 ( 2 ) . 0 9 6 5 (2 ) . 0 3 3 ( 1 ) 
N ( 2 ) . 6 4 8 1 2 ) . 1 9 1 9 ( 1 ) . 1 7 6 6 (2 ) . 0 2 2 (1 ) 
C ( 0 2 ) . 6 3 7 9 3 ) . 1 1 0 8 ( 2 ) . 1 4 6 0 ( 2 ) . 0 2 7 ( 1 ) 
C ( l ) . 8 6 9 3 3) . 2 3 4 4 ( 2 ) . 1 9 8 6 ( 2 ) . 0 2 4 (1 ) 
C ( 2 ) . 7524 3 ) . 2 0 8 0 ( 2 ) . 2 3 5 9 ( 2 ) . 0 2 2 ( 1 ) 
C ( 1 1 ) . 8 0 0 6 3) . 4 6 0 7 ( 2 ) . 1 1 2 6 (2 ) . 0 2 1 ( 1 ) 
C ( 1 2 ) . 8 7 6 3 3) . 5 2 7 3 ( 2 ) . 1 2 6 5 ( 2 ) . 0 3 0 ( 1 ) 
C ( 1 3 ) . 8894 3) . 5 8 1 1 ( 2 ) . 0 6 5 5 ( 2 ) . 0 3 7 ( 1 ) 
C ( 1 4 ) . 8268 3) . 5 6 9 5 ( 2 ) - . 0 0 7 7 ( 2 ) . 0 3 4 ( 1 ) 
C ( 1 5 ) . 7 4 9 0 3) . 5 0 4 3 ( 2 ) - . 0 2 1 2 ( 2 ) . 0 3 3 (1 ) 
C ( 1 6 ) . 7358 3) . 4 5 0 4 ( 2 ) . 0 3 8 7 ( 2 ) . 0 2 3 ( 1 ) 
C ( 2 1 ) . 8 8 0 5 3) . 4 0 7 6 ( 2 ) . 2 7 4 5 ( 2 ) . 0 2 1 (1 ) 
C ( 2 2 ) . 8 3 2 3 3 ) . 4 0 4 3 ( 2 ) . 3 4 8 1 ( 2 ) . 0 2 5 (1 ) 
C ( 2 3 ) . 9114 3) . 4 1 7 1 ( 2 ) . 4 1 6 3 ( 2 ) . 0 2 9 ( 1 ) 
C ( 2 4 ) 1 . 0 3 7 6 3) . 4 3 3 8 ( 2 ) . 4 1 1 4 ( 2 ) . 0 3 1 (1 ) 
C ( 2 5 ) 1 . 0 8 6 8 3) . 4 3 5 8 ( 2 ) . 3 3 9 0 ( 2 ) . 0 3 1 ( 1 ) 
C ( 2 6 ) 1 . 0 0 8 5 3) . 4 2 1 6 ( 2 ) . 2704 ( 2 ) . 0 2 8 ( 1 ) 
C ( 3 1 ) . 3 9 6 5 3) . 2 0 7 3 ( 2 ) . 1627 ( 2 ) . 0 2 4 ( 1 ) 
C ( 3 2 ) . 3 8 9 1 3) . 1 7 6 6 ( 2 ) . 2 3 8 4 ( 2 ) . 0 3 2 (1 ) 
C ( 3 3 ) . 2 8 9 6 4) . 1 2 7 8 ( 2 ) . 2 5 4 3 ( 3 ) . 0 4 0 ( 1 ) 
C ( 3 4 ) . 1 9 6 0 4) . 1 0 9 6 ( 2 ) • . 1 9 5 6 ( 3 ) . 0 4 3 ( 1 ) 
C ( 3 5 ) . 2 0 2 1 3) . 1 4 0 7 ( 2 ) . 1214 ( 3 ) . 0 4 0 ( 1 ) 
C ( 3 6 ) . 3 0 2 1 3) . 1 8 9 3 ( 2 ) . 1 0 4 3 ( 2 ) . 0 3 1 ( 1 ) 
C ( 4 1 ) . 5 4 1 5 3) . 2 7 4 0 ( 2 ) . 0 4 1 9 ( 2 ) . 0 2 3 ( 1 ) 
C ( 4 2 ) . 4 5 2 4 3) . 3 2 7 0 ( 2 ) . 0 0 6 2 ( 2 ) . 0 3 0 ( 1 ) 
C ( 4 3 ) . 4 5 9 4 4) . 3 5 0 4 ( 2 ) - . 0 7 1 1 ( 2 ) . 0 3 6 ( 1 ) 
C ( 4 4 ) . 5 5 3 6 4) . 3 2 1 5 ( 2 ) - . 1 1 3 7 ( 2 ) . 0 3 5 ( 1 ) 
C ( 4 5 ) . 6407 4) . 2 6 8 0 ( 2 ) - . 0 7 9 4 ( 2 ) . 0 3 3 ( 1 ) 
C ( 4 6 ) . 6 3 5 5 3) . 2 4 4 9 ( 2 ) - . 0 0 1 7 ( 2 ) . 0 2 6 ( 1 ) 
C ( 1 A ) 1 . 4 6 2 0 5) . 4 0 0 0 ( 3 ) . 4 0 9 5 ( 2 ) . 0 5 1 ( 1 ) 
C l ( 3 ) 1 . 3 8 1 1 1) . 4 2 0 8 ( 1 ) . 4 9 3 0 ( 1 ) . 0 4 5 ( 1 ) 
C l ( 4 ) 1 . 5 4 1 2 1) . 3 0 8 1 ( 1 ) . 4 1 7 6 ( 1 ) . 0 5 1 ( 1 ) 
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VIII . Bis(t-buty limido)-bis [2,4,6-tris(trifluoromethyl)phenyl] -molybdenum 

Atom X y Z ueq 

Mo (1) . 7 4 5 0 ( 1 ) . 6158 (1) . 2787 (1) . 0 2 3 (1 ) 
N ( l ) . 6 7 4 2 (2) . 6489 2) . 3 2 7 1 2) . 0 2 9 ( 1 ) 
N (2 ) . 8 1 5 7 (2) . 6 7 5 6 2) . 2 8 3 2 3) . 0 2 9 ( 1 ) 
C ( l l ) . 6 8 5 9 (3) . 6227 3) . 1 6 4 9 3) . 0 2 5 ( 1 ) 
C ( 1 2 ) . 6 8 7 7 ( 3 ) . 6 7 7 6 3) . 1 0 9 5 3) . 0 3 0 ( 1 ) 
C ( 1 3 ) . 6 5 0 2 (3) . 6734 3) . 0 4 0 1 3) . 0 3 2 ( 1 ) 
C ( 1 4 ) . 6 0 9 2 ( 3 ) . 6133 3) . 0 2 2 8 3) . 0 3 4 ( 1 ) 
C ( 1 5 ) . 6 0 5 2 (3) . 5 5 7 8 3) . 0 7 5 1 3) . 0 3 4 (1) 
C ( 1 6 ) . 6 4 2 8 (3) . 5 6 4 1 3) . 1451 3) . 0 2 7 (1) 
C ( 1 2 A ) . 7 3 4 3 ( 3 ) . 7 4 2 8 3) . 1211 3) . 0 3 5 ( 1 ) 
C ( 1 4 A ) . 5 6 9 2 (4) . 6085 4) - . 0 5 2 7 4) . 0 5 2 ( 2 ) 
C ( 1 6 A ) . 6 3 2 0 ( 3 ) . 5 0 3 3 3) . 1974 3) . 0 3 5 ( 1 ) 
F ( 1 2 1 ) . 7 2 7 5 (2) . 7 7 4 7 2) . 1888 2) . 0 3 9 (1) 
F ( 1 2 2 ) . 7 1 9 6 ( 2 ) . 7 9 4 3 2) . 0 6 9 0 2) . 0 4 6 (1) 
F ( 1 2 3 ) . 8 0 3 6 ( 2 ) . 7 2 7 2 2) . 1 1 6 0 2) . 0 4 0 (1) 

* F ( 1 4 1 ) . 5 2 3 0 ( 2 1 ) . 5 6 2 1 2 2 ) - . 0 5 7 4 14 ) . 1 7 0 (14 ) 
F ( 1 4 2 ) . 5 5 0 6 ( 1 2 ) . 6691 10) - . 0 8 0 2 (11 ) . 0 8 6 ( 7 ) 
F ( 1 4 A ) . 5 4 8 1 (11 ) . 5 4 3 2 7) - . 0 6 9 9 (10 ) . 0 7 2 ( 6 ) 
F ( 1 4 B ) . 5 1 5 9 ( 2 5 ) . 6 5 0 6 25 ) - . 0 5 9 4 (19 ) . 1 7 7 (18 ) 
F ( 1 4 3 ) . 6 1 6 2 ( 4 ) . 6052 4) - . 1 0 8 5 (3) . 1 1 4 ( 2 ) 
F ( 1 6 1 ) . 6 8 3 9 ( 2 ) . 5 0 0 2 2) . 2 5 4 0 (1) . 0 4 0 ( 1 ) 
F ( 1 6 2 ) . 5 7 1 3 ( 2 ) . 5 0 7 3 3) . 2 3 2 6 (2) . 0 6 5 ( 1 ) 
F ( 1 6 3 ) . 6 3 2 7 ( 3 ) . 4 3 9 8 2) . 1 6 4 0 (2) . 0 6 7 ( 1 ) 
C ( 2 1 ) . 8 0 6 4 ( 3 ) . 5 3 4 0 3) . 3 4 8 4 (3) . 0 3 1 ( 1 ) 
C ( 2 2 ) . 8 5 7 1 ( 3 ) . 4 9 2 7 3) . 3 0 9 9 (3) . 0 3 8 ( 1 ) 
C ( 2 3 ) . 9 0 2 2 ( 4 ) . 4 4 3 3 4) . 3 4 5 9 (4) . 0 5 2 ( 2 ) 
C ( 2 4 ) . 8 9 9 5 ( 3 ) . 4 3 1 8 4) . 4 2 2 7 (4) . 0 4 7 ( 2 ) 
C ( 2 5 ) . 8 5 0 4 (4) . 4 6 9 4 4) . 4 6 3 1 (4) . 0 4 5 ( 2 ) 
C ( 2 6 ) . 8 0 5 8 ( 3 ) . 5 1 9 3 3) . 4268 (3) . 0 3 3 ( 1 ) 
C ( 2 2 A ) . 8 6 6 9 (4) . 5 0 2 4 (4) . 2 2 8 2 (4) . 0 5 3 ( 2 ) 
C ( 2 4 A ) . 9 5 0 0 ( 5 ) . 3 7 9 5 5) . 4 6 1 4 (5) . 0 7 4 (2) 
C ( 2 6 A ) . 7 5 5 5 ( 3 ) . 5 5 8 0 (4) . 4 7 6 1 (3) . 0 4 2 ( 2 ) 
F ( 2 2 1 ) . 8 1 1 6 ( 2 ) . 5 3 8 3 2) . 1 9 2 5 (2) . 0 4 0 ( 1 ) 
F ( 2 2 2 ) . 9 2 4 5 ( 2 ) . 5 4 2 6 (4) . 2 1 3 2 (3) . 1 0 3 (2) 
F ( 2 2 3 ) . 8 7 3 4 (4) . 4 4 2 8 3) . 1901 (3) . 1 1 9 ( 3 ) 
F ( 2 4 1 ) . 9 5 4 4 ( 3 ) . 3 1 7 8 (3) . 4224 (4) . 1 0 6 (2) 
F ( 2 4 2 ) 1 . 0 1 4 2 ( 3 ) . 4 0 3 4 (3) . 4 6 8 0 (5) .1.44 (3 ) 
F ( 2 4 3 ) . 9 2 8 1 (4) . 3 5 6 1 (4) . 5 2 6 6 (3) . 1 2 0 ( 2 ) 
F ( 2 6 1 ) . 7 6 5 9 ( 2 ) . 6292 2) . 4751 (2) . 0 4 8 ( 1 ) 
F ( 2 6 2 ) . 6 8 6 6 ( 2 ) . 5 4 6 6 2) . 4551 (2) . 0 5 1 ( 1 ) 
F ( 2 6 3 ) . 7 6 2 6 ( 2 ) . 5 3 8 4 3) . 5493 (2) . 0 6 7 ( 1 ) 
C ( 3 ) . 6 1 6 2 ( 3 ) . 6 9 3 5 3) . 3 5 5 5 (3) . 0 3 6 (1) 
C ( 3 1 ) . 5 5 0 8 (4) . 6431 (5) . 3 6 0 6 (6) . 0 6 4 (2) 
C ( 3 2 ) . 6 3 5 9 ( 5 ) . 7 2 4 9 (6) . 4317 (5) . 0 7 8 ( 3 ) 
C ( 3 3 ) . 5 9 6 3 (4) . 7 4 9 5 (6) . 2 9 4 6 (6) . 0 6 1 ( 3 ) 
C ( 4 ) . 8 6 3 5 (3) . 7 3 0 7 (3) . 3 1 8 0 (3) . 0 3 9 (1) 
C ( 4 1 ) . 8 9 8 2 (4) . 7 7 3 0 (4) . 2 5 5 7 (4) . 0 4 5 ( 2 ) 
C ( 4 2 ) . 8 1 9 9 ( 5 ) . 7804 (4) . 3 6 7 3 (4) . 0 5 2 ( 2 ) 
C ( 4 3 ) . 9 1 9 5 (4) . 6901 5) . 3 6 6 4 (5) . 0 5 8 ( 2 ) 

* F ( 1 4 1 ) a n d F ( 1 4 2 ) a r e d i s o r d e r e d 
F ( 1 4 1 ) o c c u p . 57%; F ( 1 4 A ) o c c u p . 43%; 
F ( 1 4 2 ) o c c u p . 57%; F ( 1 4 B ) o c c u p . 43%. 
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IX. Dichloro-bis(2,4,6-trifluoromethylphenylimido)-bis-pyridine-molybdenum 

Atomic coordinates x, y, z ( * 104) and equivalent isotropic displacement Ueq (x 103) 

Atom X y Z ueq 

Mo ( 1 ) 9600 1) 8507 1) 8 6 9 6 1) 2 5 ( 1 ) 
C l ( l ) 8574 1) 9 2 4 1 1) 9 4 7 9 1) 34 ( 1 ) 
C l ( 2 ) 1 1 4 7 5 1) 8 1 8 3 1) 8 0 3 6 1) 33 ( 1 ) 
N ( l ) 9 3 0 3 4) 7 5 5 6 2 ) 8984 2) 27 ( 1 ) 
N (2 ) 8030 4) 8 6 2 0 2) 8 1 1 2 2) 24 ( 1 ) 
N { 3 ) 11764 4) 8 5 9 1 2) 9 4 4 0 2) 30 ( 1 ) 
C ( l l ) 8 8 8 6 5) 6803 3) 9 0 9 9 2) 27 ( 1 ) 
C ( 1 2 ) 9847 5) 6160 3) 9 0 1 5 2 ) 2 9 ( 1 ) 
C ( 1 3 ) 9 3 4 1 6) 5 4 0 5 3) 9 0 8 3 2 ) 36 ( 1 ) 
C ( 1 4 ) 7 8 9 9 6) 5 2 5 2 3 ) 9 2 5 2 2 ) 33 ( 1 ) 
C ( 1 5 ) 6987 6) 5 8 7 1 3 ) 9 3 7 3 (2 ) 34 ( 1 ) 
C ( 1 6 ) 7 4 5 0 5) 6 6 3 2 3 ) 9 3 1 1 (2 ) 2 9 ( 1 ) 
C ( 1 2 A ) 1 1 4 2 1 (6) 6 2 7 1 3) 8 8 3 0 (3 ) 3 9 ( 1 ) 
F ( 1 2 1 ) 1 2 2 7 7 (3 ) 5 6 2 3 2 ) 8937 (2 ) 62 ( 1 ) 
F ( 1 2 2 ) 1 2 1 8 6 (3 ) 6 8 5 1 2 ) 9128 (2 ) 4 5 ( 1 ) 
F ( 1 2 3 ) 1 1 3 8 1 (4 ) 6 4 0 9 2 ) 8 2 1 7 (2 ) 50 ( 1 ) 
C ( 1 4 A ) 7358 (6 ) 4 4 3 0 3) 9 2 8 1 (3 ) 4 3 ( 1 ) 
F ( 1 4 1 ) 8 4 5 1 (4 ) 3 9 4 5 2 ) 9 5 3 5 (2 ) 72 ( 1 ) 
F ( 1 4 2 ) 6913 (4 ) 4 1 3 9 (2 ) 8 7 1 8 (2 ) 62 ( 1 ) 
F ( 1 4 3 ) 6172 (4 ) 4 3 4 9 (2 ) 9 6 0 2 (2 ) 7 0 ( 1 ) 
C ( 1 6 A ) 6442 (5 ) 7284 (3 ) 9 4 7 0 ( 2 ) 3 6 ( 1 ) 
F ( 1 6 1 ) 7 1 5 1 (3 ) 7 7 3 8 (2 ) 9 9 2 5 ( 1 ) 4 1 ( 1 ) 
F ( 1 6 2 ) 5167 (3 ) 7 0 2 3 (2 ) 9 6 8 3 ( 2 ) 4 8 ( 1 ) 
F ( 1 6 3 ) 6 0 0 1 (3 ) 7754 ( 2 ) 8984 ( 1 ) 4 3 ( 1 ) 
C { 2 1 ) 6728 (5 ) 8 6 3 2 ( 3 ) 7 6 9 3 ( 2 ) 2 6 ( 1 ) 
C ( 2 2 ) 6378 ( 5 ) 8004 ( 3 ) 7 2 7 6 ( 2 ) 27 ( 1 ) 
C ( 2 3 ) 5067 ( 5 ) 8 0 1 0 ( 3 ) 6854 ( 2 ) 2 9 ( 1 ) 
C ( 2 4 ) 4034 ( 5 ) 8 6 1 9 ( 3 ) 6847 ( 2 ) 28 ( 1 ) 
C ( 2 5 ) 4 3 4 3 ( 6 ) 9 2 4 1 ( 3 ) 7 2 4 8 ( 2 ) 3 0 ( 1 ) 
C ( 2 6 ) 5 6 7 5 ( 5 ) 9259 ( 3 ) 7 6 6 2 ( 2 ) 2 4 ( 1 ) 
C ( 2 2 A ) 7424 ( 6 ) 7 3 1 3 ( 3 ) 7277 ( 2 ) 34 ( 1 ) 
F ( 2 2 1 ) 8 7 9 3 ( 3 ) 7 5 0 0 ( 2 ) 7 1 1 0 ( 2 ) 50 ( 1 ) 
F ( 2 2 2 ) 7 6 6 3 ( 4 ) 6966 ( 2 ) 7 8 3 0 ( 1 ) 5 1 ( 1 ) 
F ( 2 2 3 ) 6843 ( 3 ) 6760 ( 2 ) 6874 ( 1 ) 4 1 ( 1 ) 
C ( 2 4 A ) 2 6 2 1 ( 6 ) 8 6 0 6 ( 3 ) 6388 ( 2 ) 37 ( 1 ) 
F ( 2 4 1 ) 2 9 3 1 ( 4 ) 8 7 9 1 ( 2 ) 5 8 1 3 ( 1 ) 54 ( 1 ) 
F { 2 4 2 ) 1 9 6 1 ( 4 ) 7904 ( 2 ) 6 3 4 5 ( 2 ) 53 ( 1 ) 
F ( 2 4 3 ) 1 5 6 9 (3 ) 9117 ( 2 ) 6528 ( 1 ) 4 9 ( 1 ) 
C ( 2 6 A ) 5 9 3 3 (5 ) 9 9 5 6 ( 3 ) 8 0 7 6 ( 2 ) 34 ( 1 ) 
F ( 2 6 1 ) 5044 (4 ) 1 0 5 6 0 ( 2 ) 7874 ( 2 ) 5 9 ( 1 ) 
F ( 2 6 2 ) 5584 (4 ) 9 8 0 1 ( 2 ) 8654 ( 2 ) 5 9 ( 1 ) 
F ( 2 6 3 ) 7348 (3 ) 1 0 2 1 3 ( 2 ) 8144 ( 2 ) 4 8 ( 1 ) 
C ( 3 2 ) 1 1 6 5 2 ( 6 ) 8 3 2 3 ( 4 ) 1 0 0 1 1 ( 2 ) 48 ( 2 ) 
C ( 3 3 ) 1 2 8 4 1 (8 ) 8 3 5 3 ( 5 ) 1 0 4 8 7 ( 3 ) 63 ( 2 ) 
C ( 3 4 ) 1 4 1 8 5 ( 7 ) 8 7 0 0 ( 4 ) 1 0 3 7 8 ( 3 ) 54 ( 2 ) 
C ( 3 5 ) 1 4 3 2 3 ( 6 ) 8 9 7 5 ( 3 ) 9 7 9 6 ( 3 ) 4 1 ( 1 ) 
C ( 3 6 ) 1 3 1 0 3 ( 6 ) 8 9 0 5 ( 3 ) 9 3 3 9 ( 3 ) 34 ( 1 ) 
N ( 4 ) 1 0 4 6 4 ( 4 ) 9770 ( 2 ) 8 4 3 1 ( 2 ) 2 9 ( 1 ) 
C ( 4 2 ) 1 0 9 9 0 ( 5 ) 1 0 3 2 2 ( 3 ) 8844 ( 2 ) 3 1 ( 1 ) 
C ( 4 3 ) 1 1 6 1 0 ( 5 ) 1 1 0 1 3 ( 3 ) 8 6 7 2 ( 3 ) 37 ( 1 ) 
C ( 4 4 ) 1 1 6 8 2 ( 6 ) 1 1 1 6 5 ( 3 ) 8 0 5 5 ( 3 ) 39 ( 1 ) 
C ( 4 5 ) 1 1 0 7 5 ( 6 ) 1 0 6 1 9 ( 3 ) 7 6 1 8 ( 3 ) 36 ( 1 ) 
C ( 4 6 ) 1 0 4 8 3 ( 6 ) 9938 ( 3 ) 7 8 2 1 ( 2 ) 33 ( 1 ) 
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Bis(|x2-methoxo)-tetra-bis(2,6-di-isopropylphenyl)imido-dimethyl-di-molybdenum 

Atomic coordinates x, y, z ( x 104) and equivalent isotropic displacement Ueq (x 103) 

Atom X y Z ueq 

Mo ( 1 ) 1278 1) 474 1) 3 4 6 ( 1 ) 1 9 ( 1 ) 
C ( 3 ) 2 0 1 8 4) 1 6 4 1 6) - 3 6 4 ( 3 ) 2 9 ( 1 ) 
0 ( 1 ) - 1 8 7 2) 1 0 3 9 3) - 2 5 7 ( 2 ) 24 ( 1 ) 
N ( l ) 2 4 1 3 3) - 5 1 2 4) 515 ( 2 ) 23 ( 1 ) 
N ( 2 ) 1254 3) 1570 4) 1007 ( 2 ) 2 1 ( 1 ) 
C ( l l ) 3 3 5 0 3) - 1 2 5 0 5) 650 ( 2 ) 2 1 ( 1 ) 
C ( 1 2 ) 3 7 9 2 4) - 1 8 5 4 5) 129 ( 2 ) 2 6 ( 1 ) 
C ( 1 3 ) 4 7 3 9 4) - 2 5 4 7 6) 2 7 6 ( 3 ) 34 ( 1 ) 
C ( 1 4 ) 5237 4) - 2 6 6 3 (5 ) 920 ( 3 ) 30 ( 1 ) 
C ( 1 5 ) 4780 4) - 2 0 9 6 5) 1 4 2 1 ( 3 ) 27 ( 1 ) 
C { 1 6 ) 3 8 4 5 4) - 1 3 7 0 5) 1 3 0 6 ( 2 ) 23 ( 1 ) 
C ( 1 2 1 ) 3 2 4 1 (4 ) - 1 7 8 5 6) - 5 7 5 ( 2 ) 34 ( 1 ) 
C ( 1 2 A ) 3 9 5 0 (6 ) - 1 1 2 0 8) - 1 0 2 4 ( 3 ) 5 1 ( 2 ) 
C ( 1 2 B ) 2 9 1 5 (6 ) - 3 1 4 5 (8 ) - 8 3 0 ( 3 ) 52 ( 2 ) 
C ( 1 6 1 ) 3 3 4 8 (4 ) - 7 7 3 6) 1868 ( 2 ) 30 ( 1 ) 
C ( 1 6 A ) 2 8 4 9 (8 ) - 1 8 3 0 (9 ) 2 2 4 0 ( 4 ) 94 ( 3 ) 
C ( 1 6 B ) 4115 (6 ) 63 (9 ) 2314 ( 4 ) 90 ( 3 ) 
C ( 2 1 ) 1638 (4 ) 2 0 7 6 (5 ) 1628 ( 2 ) 2 1 ( 1 ) 
C ( 2 2 ) 2 3 7 7 (4 ) 3 1 1 8 (5 ) 1668 ( 2 ) 2 4 ( 1 ) 
C ( 2 3 ) 2764 (4 ) 3 6 0 5 (5 ) 2284 ( 2 ) 27 ( 1 ) 
C ( 2 4 ) 2 4 3 2 (4 ) 3 0 9 2 (6 ) 2 8 4 3 ( 3 ) 33 ( 1 ) 
C ( 2 5 ) 1687 (4 ) 2 0 8 5 (5 ) 2 7 9 8 ( 2 ) 27 ( 1 ) 
C ( 2 6 ) 1258 (4 ) 1568 (5 ) 2 1 9 2 ( 2 ) 2 1 ( 1 ) 
C ( 2 2 1 ) 2 6 9 5 (4 ) 3 7 1 0 (5 ) 1 0 4 5 ( 3 ) 33 ( 1 ) 
C ( 2 2 A ) 3774 (6 ) 4 4 1 6 (8 ) 1 1 4 1 ( 4 ) 55 ( 2 ) 
C ( 2 2 B ) 1817 (7 ) 4 6 1 5 (8 ) 734 ( 4 ) 5 9 ( 2 ) 
C ( 2 6 1 ) 384 (4 ) 5 3 6 (5 ) 2 1 2 8 ( 2 ) 27 ( 1 ) 
C ( 2 6 A ) 2 3 9 (6 ) - 1 1 4 (7 ) 2 7 8 6 ( 3 ) 4 1 ( 2 ) 
C ( 2 6 B ) - 6 8 4 (5 ) 1 1 2 6 (7 ) 1815 ( 3 ) 37 ( 1 ) 
C ( 0 1 ) - 4 5 0 (6 ) 2 3 4 0 (6 ) - 4 8 5 ( 4 ) 4 9 ( 2 ) 
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Appendix II 

Symmetry Isomers and Coordinates for 8-
Coordination Sphere in Point Groups D 2 d (DOD) 
and D 4 d (SQAP) 

Symmetry isomers in J>2d'. 

8 8 

:* 1 

1 1 

8 
1 \ 

6 8 

1 
2(i) 

1 
8 ; 

<-'2'(ii) 

7 <Jd(ii) 
ad(i) 

6 8 

1 

1 8 ; 

265 



Symmetry coordinates in D2(t'. 

Derived from 28 valence angles, L-M-L, where the reducible representation is: 

re=7Ai+A2+ 3B, + 5B2 + 6E, 

only 13 of the following coordinates are independent. 

a,-. sx = - ^ ( e 1 2 +e 1 4 + e 2 3 +e 3 4 +e 5 6 + e 5 8 + e 6 7 + e 7 8 ) 

S 2 = ^ ^ I S + 0 1 7 + e 3 5 + 0 3 ? ) ; 

^ 4 = ^ " ^ 1 8 + ^ 2 5 + 0 3 6 + 6 4 7 ) ; S 5 = ^ " ^ 2 6 + e 2 8 + 0 4 6 + ®At) > 

1 
5 6 = ^ ( ® U + 0 5 ? ) ; 5 7 ~ ^ ^ 2 4 + e 6 s ) ' 

^ 2 : ^ =-j=(Qn - 0 1 4 - 0 2 3 + 0 3 4 + 0 5 6 - 0 5 g - 0 6 7 + 0 7 8 ) ; 

S9 = _ 7 ^ ( e i 2 _ e i 4 " ^ 2 3 + 0 3 4 _ ^56 +658 + ^ 6 7 ~^7g) 
V8 

S\o = 2^15 ~017 +037-^ su ~2^26 ~®2S _ 0 " 6 + 0 4 8 ^ 

82- Sn =-j=(Qi2 + 0 1 4 + 0 2 3 + 0 3 4 - 0 5 6 - 0 5 g - 0 6 7 - 0 7 8 ) ; 

Su = 2^16 ~®21 + ^ 3 8 -^45-^' 5,4 = ^ ( 6 1 8 _ 0 2 5 + e 3 6 _ 0 4 7 ) ; 

s \ 5 = ^ ^ 1 3 _ 0 5 7 ) ; 
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E: < 
1 1 

V2' 
1 

1 
^20A ~ ^ ^ 2 5 _ ^ 4 7 ) 

1 

S22a ~ 0 7 s ) 

^22* ^ 5 8 ~ ^ « ) 
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Symmetry isomers in D4d: 

8 1 8 

8 *4 4* *1 
t 

1 8 

8 

1 8 

1 1 *2 
t 1 

8 8 *.8 8* 1 

6 8 
v 

<*d 

1 
1 

° d 

*.8 
8 8 

6 
2 i 

° d 
1 

8 6 

6* V *4 
2 iv) 2(m 

1 8 <*d 2(h) 

8 

8 

8 4V *1 2+ \5 *2 
1 f 

1 
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Symmetry Coordinates in D4d: Derived from 28 valence angles, L-M-L, where the 

reducible representation is: 

r e = 4Ai + 2B, + 2B2 + 3Ei + 3E2 + 3E3, 

only 13 of the following symmetry coordinates are independent) 

Af- S{ =-j=(Q]2 + 0 1 4 + 0 2 3 + 0 3 4 + 0 5 6 + 0 5 8 + 6 6 7 + 6 7 g ) ; 

52 ~ ^ ( ^ 1 5 + 0 1 8 + ^ 2 5 + ^ 2 6 +636 + ^ 3 7 + ^ 4 7 + 0 4 8 ) ' 

5 3 = ^ ( ^ 1 6 + 9 l 7 + 0 2 7 + 0 2 8 + 0 3 5 + 6 3 8 + 6 4 5 + 0 4 6 ) > 

5 4 = -(®13 + 0 2 4 + e 2 3 + 0 5 7 + 0 6 s ) 

Bl- S$ ~ ^ (^15 — © 1 8 " ^ 2 5 + 0 2 6 _ 0 3 6 + 6 3 7 ~ ^47 + ^ 4 8 ) ; 

S6 =-j=(QX6 - 0 1 7 + 0 2 7 - 0 2 8 - 0 3 5 + 0 3 g + 0 4 5 - 0 4 6 ) ; 

Bf- S1 --j=(Ql2 +0 1 4 + 0 2 3 + 0 3 4 - 0 5 6 - 0 5 g - 0 6 7 - 0 7 8 ) ; 

S S = 2 ^ 1 3 + 0 2 4 - 0 5 7 _ e 6 s ) ; 

Ef. 

1 4i 
S9a = ^ [ 0 1 2 _ 6 3 4 + ~ ( 0 5 6 + 0 5 8 ^ 6 7 

1 V2 ; 

^ 9 * = -[®U _ 0 2 3 _ ^ - ( 0 5 6 _ 0 5 8 + 0 6 7 "As)] 

1 V2 
^lOa = - [ 0 1 5 _ e 3 7 + — ( 0 1 8 + 0 2 5 _ 0 3 6 ~ 0 4 7 ) ] 

1 V2 ; 

5 1 0 A = ^ " t 0 2 6 _ 0 4 8 ( 0 1 8 _ 0 2 5 _ 9 3 6 + 6 4 7 ) ] 

1 V2 
^ l l a = - [ ^ 1 6 _ 0 3 8 - — ( 0 1 7 _ 0 2 8 _ 6 3 5 + 0 4 6 ) ] 

1 V2 
^11* = 2"[ 027 - © 4 5 - — ( 0 1 7 + 0 2 8 _ 0 3 5 " ^ X l 
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-( 012 _ 0 14 _ 0 23 + 6 3 4 ) 

^ ( e 5 6 - e 5 8 - e 6 7 + e 7 8 ) 

^ (9 , 5 _ e 2 6 + 0 3 7 - 6 4 s ) 

- ( 0 l g - 9 2 5 +G 3 6 - 0 4 7 ) 

1 

1 

(0 1 6 - 0 2 7 + 0 3 8 - 0 4 5 ) 

- ( 0 1 7 - 0 2 8 + 0 3 5 - 0 4 6 ) 

-934-^(056+658-967-978)] 

^ [ 9 1 4 -023 + ^ ( 9 5 6 - 058 + 9 67 - 9 7 8 ) ] 

^ [ 9 1 5 - 9 3 7 - ^ ( 0 1 8 + 9 2 5 - 0 3 6 - 0 4 7 ) ] 

^[026 -948 + ^ ( 9 , 8 - 9 , 5 - 0 3 6 + 9 ^ ) ] 

^[9,6-038 + ^ ( 9 , 7 -028 -035 +046)] 

| [ 0 27 - 9 4 5 - ^ ( 9 1 7 + 0 2 8 - 9 3 5 - 0 4 6 ) ] 
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Appendix III 

Symmetry Isomers for 9-Coordination Sphere in 
Point Groups D 3 h (TTP) and C 4 v (CSA). 

12 isomers in D3h symmetry 

5(2) 1(4) 2(5) 

A' 8 

1(4) 3 6 6(3) 2(5) 3(6) 41) 
8 8 

6(3) 3(6) 5(2) 

zK zK 
8 8 

T 
14 25) 5(2) 41 6(3) 63) 

8 

4(1) 

zK 
3 6 8 6(3) 

zK zK 8 8 

T 6(3) 5(2) 
25) 14) 41) 5(2) 

6(3) 1(4 25 

ZA zK 8 8 

52 4(1 3(6) 2(5) 14) 3 6 

8 



8 isomers in C4v 

2 's 1 *8 A S7 
4 

E 

1 1 

7 3 C 2 Z *8 '8 *8 

V 7 ^ 7 

7 
> 4 "8 "8 "8 

\ A 
S7 

272 



Appendix IV 
Parameters Used to Link to NAG Fortran Library for 
PCA (G03AAF) and FA (G03CAF, G03CCF) 
Calculations 

G03AAF performs a principal component analysis (PCA) on data matrix; both the 

principal component loadings and the principal component scores are returned. As 

G03AAF uses a singular value decomposition of the data matrix, it wil l be less affected 

by ill-conditioned problems than traditional methods using the eigenvalue 

decomposition of the variance-covariance matrix. 

Specification 

SUBROUTINE G 0 3 A A F ( M A T R I X , STD, WEIGHT, N , M, X , L D X , I S X , S, 
1 WT, NVAR, E L D E , P, L D P , V , L D V , WK, I F A L ) 

INTEGER N , M, L D X , I S X ( M ) , NVAR, L D E , L D P , L D V , I F A L 
REAL X ( L D X , M ) , S ( M ) , W T ( * ) , E ( L D E , 6 ) , P ( L D P , N V A R ) , 

1 V ( L D V , N V A R ) , W K ( N V A R * N V A R + 5 * ( N V A R - ) ) 
CHARACTER*1 M A T R I X , STD, WEIGHT 

Parameters 

1: MATRIX-CHARACTER* 1 

On entry: indicates for which type of matrix the principal component analysis is to be 

carried out. 

I f MATRIX = ' C or 'c', then it is for the correlation matrix. 

I f MATRIX = 'S' or V , then it is for a standardized matrix, with standardization 

given by S. 

I f MATRIX = ' U ' or 'u ' , then it is for the sums of squares and cross-products matrix. 

I f MATRIX = ' V or V , then it is for the variance-covariance matrix. 

2: STD-CHARACTER* 1 

On entry : indicates i f the principal component scores are to be standardized to have 

variance equal to 1.0. 

I f STD = 'S' or 's ' , then the principal component scores are standardized. 

NAG Fortran Library Introductory Guide 18, The Numerical Algorithms Ltd., Oxford, UK, (1997) 
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I f STD = ' U ' or 'u ' , then the principal component scores are unstandardized. 

3: WEIGHT-CHARACTER* 1. 

On entry: indicates i f weights are to be used. 

I f WEIGHT = ' U ' or 'u ' (Unweighted), then no weights are used. 

I f WEIGHT = 'W' or 'w'(Weighted), then weights are used and must be supplied in 

WT. 

4. N-INTEGER. 

On entry: the number of observations, n. N > 2. 

5: M-INTEGER. 

On entry: the number of variables in the data matrix, m. M > 1. 

6: X(LDX,M)-rea l array. 

On entry: X(zj) must contain the ith observation for the y'th variable, for i = 

1,2,...,n; j= 1,2,...,m. 

7: LDX-INTEGER. 

On entry : the first dimension of the array X as declared in the (sub) program from 

which G03AAF is called. LDX > N. 

8: ISX(M) - INTEGER array. 

On entry: ISX(/) indicates whether or not the jth variable is to be included in the 

analysis. I f ISX(/') > 0, then the variable contained in the jth column of X is included 

in the principal component analysis, for j = l,2,...,m. 

9: S(M) - real array. 

On entry: the standardization to be used, i f any. 

I f MATRIX = 'S' or 's', then the first m elements of S must contain the 

standardization coefficients, the diagonal elements of a. 

Constraint: i f ISX(/) > 0, then S(/) > 0.0, fo r ; = 1,2,.. .,m. 

On exit: i f MATRIX = 'S' or 's', then S is unchanged on exit. 

I f MATRIX = ' C or 'c', then S contains the variances of the selected variables. S(/) 

contains the variance of the variable in they'th column of X i f ISX(/') > 0. 

I f MATRIX = ' U \ 'u ' , ' V or V . then S is not referenced. 

10: WT(*) - real array. 

On entry: i f WEIGHT = 'W' or 'w' , then the first n elements of WT must contain 

the weights to be used in the principal component analysis. 

I f WT(/) = 0.0, then the z'th observations is not included in the analysis. The 

effective number of observations is the sum of the weights. 
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I f WEIGHT = ' U ' or 'u ' , then WT is not referenced and the effective number of 

observations is n. 

WT(Q > 0.0, for / = 1,2,... ,n and the sum of weights > NVAR + 1. 

11: NV AR - INTEGER. 

On entry: the number of variables in the principal component analysis, p. 

1 < NVAR < min(N-l,M). 

12: E(LDE,6) - real array. 

On exit: the statistics of the principal component analysis. 

E(/',l), the eigenvalues associated with the rth principal component, X{ , for i = 

1,2,...,/. 

E(/,2), the proportion of variation explained by the rth principal component, for / = 

1,2,...,/. 

E(/,3), the cumulative proportion of variation explained by the first rth principal 

components, for i =1,2,...,/. 

E(/',4), the x 2 statistics, for / = 1,2,...,/. 

E(/,5), the degrees of freedom for the % statistics, for /' = 1,2,...,/. 

I f MATRIX * ' C or 'c', the E(/',6), contains significance level for the % statistic, 

for i = 1,2,...,NVAR. 

I f MATRIX = 'C 'o r ' c ' , E(/,6) is returned as zero. 

13: LDE-INTEGER. 

On entry: the first dimension of the array E as declared in the (sub)program from 

which 

G03AAF is called. LDE > NVAR. 

14: P(LDP,NVAR) - real array 

On exit: the NVAR columns of P contain the principal component loadings, a,. The 

yth column of P contains the NVAR coefficient for theyth principal component. 

15: LDP-INTEGER. 

On entry: the first dimension of the P as declared in the (sub)program from which 

G03AAF is called. LDP > NVAR. 

16: V(LDV,NVAR) - real array. 

On exit: the first NVAR columns of V contain the principal component scores. The 

yth column of V contains the N scores for the yth principal component. 
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I f WEIGHT = ' W or 'w' , then any rows for which WT(z') is zero will be set to 

zero. 

17: LDV-INTEGER. 

On entry: the first dimension of the array V as declared in the (sub)program from 

which G03AAF is called. LDV > N . 

18: WK(NVAR*NVAR+5*(NVAR-1) - real array. 

19: IFAIL - INTEGER. 

On entry: IFAIL must be set to 0, - 1 , or 1. 

On exit: IFAIL = 0 unless the routine detects an error. 

G03CAF computes the maximum likelihood estimates of the parameters of a factor 

analysis model. Either the data matrix or a correlation/covariance matrix may be input. 

Factor loadings, communalities and residual correlations are returned. The factor 

loadings may be orthogonally rotated by using G03BAF and factor score coefficients 

can be computed using G03CCF. 

Specification 

SUBROUTINE G03CAF(MATRIX, WEIGHT, N, M, X, LDX, NVAR, ISX, NFAC, 
1 WT, E, STAT, COM, PSI, RES, FL, IDFL, IOP, 

IWK, 
2 WK, LWK, IFAIL) 
INTEGER N, M, LDX, NVAR, ISX(M), NFAC, LDFL, IOP(5), 

1 IWK(4*NVAR+2), LWK, IFAIL 
REAL X(LDX,M), WT(*) , E(NVAR), STAT(4), COM(NVAR), 

1 PSI(NVAR), RES(NVAR*(NVAR-1)/2), FL(LDFL,NFAC), 
2 WK(LWK) 
CHARACTER*1 MATRIX, WEIGHT 

Parameters 

1: MATRIX - CHARACTER* 1 

On entry: selects the type of matrix on which factor analysis is to be performed. 

I f MATRIX = 'D ' (Data input), then the data matrix wil l be input in X and factor 

analysis wil l be computer for the correlation matrix. 
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I f MATRIX = 'S', then the data matrix will be input in X and factor analysis will 

be computed for the covariance matrix. 

I f MATRIX = ' C , then the correlation/variance-covariance matrix wi l l be input in 

X and factor analysis computed for this matrix. 

2: WEIGHT - CHARACTER* 1 

On entry: i f MATRIX = 'D ' or 'S \ WEIGHT indicates i f weights are to be used. 

I f WEIGHT = ' U \ then no weights are used. 

I f WEIGHT = 'W' , then weights are used and must be supplied in WT. 

I f WEIGHT = ' C , then WEIGHT is not referenced. 

3: N-INTEGER. 

On entry: i f MATRIX = ' D ' or 'S' the number of observations in the data array X. 

I f MATRIX = ' C the (effective) number of observations used in computing the 

(possibly weighted) correlation/variance-covariance matrix input in X. N > NVAR. 

4: M-INTEGER. 

On entry: the number of variables in the data/correlation/variance-covariance 

matrix. M > NVAR. 

5: X(LDX,M)-rea l array. 

On entry: the input matrix. 

I f MATRIX = ' D ' or 'S', then X must contain the data matrix, i.e. X(i,j) must 

contain the /th observation for they'th variable, for /' = 1,2,... ,n;j = 1,2,... ,M. 

I f MATRIX = ' C , then X must contain the correlation or variance-covariance 

matrix. Only the upper triangular part is required. 

6: LDX-INTEGER. 

On entry: the first dimension of the array X as declared in the (sub)program from 

which G03CAF is called. I f MATRIX = ' D ' or 'S \ then LDX > N , i f MATRIX 

= ' C \ then LDX > M. 

7: NVAR-INTEGER. 

On entry: the number of variables in the factor analysis, p. NVAR > 2. 

8: ISX(M) - INTEGER array. 

On entry: ISX(/) indicates whether or not the y'th variable is variable in the factor 

analysis. I f ISX(/) > 1, then the variable represented by the y'th column of X is 

included in the analysis; otherwise it is excluded, for j = 1,2,...,M. ISX(/) > 0 for 

NVAR values of j. 

9: NFAC - INTEGER. 
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On entry: the number of factors, k. 1 < NFAC < NVAR. 

10: WT(*) - real array. 

On entry: i f WEIGHT = ' W and MATRIX = ' D ' or 'S \ WT must contain the 

weights to be used in the factor analysis. The effective number of observations in 

the analysis will then be the sum of weights. I f WT(i') = 0.0, then the z'th 

observation is not included in the analysis. I f WEIGHT = ' U ' or MATRIX = ' C \ 

WT is not referenced and effective number of observations is n. 

Constraint: i f WEIGHT = ' W \ then WT(/) > 0.0, for i = 1,2,...,n, and the sum of 

weights > NVAR. 

11: E((NVAR) - real array. 

On exit: the eigenvalues 9j, for i = 1,2,..,,p. 

12: STAT - real array. 

On exit: the test statistics. 

STAT(l) contains the value F(T). 

STAT(2) contains the test statistic, % . 

STAT(3) contains the degrees of freedom associated with the test statistic. 

STAT(4) contains the significance level. 

13: COM(NVAR) - real array. 

On exit: the communalities. 

14: PSI(NVAR) - real array. 

On exit: the estimates of for i = 1,2,...,p. 

15: RES(NVAR*(NVAR-1 )/2) - real array. 

On exit: the residual correlations. The residual correlation for the ith and jth 

variables is stored in RES((/-l)(/-2)/2+z), / < j. 

16: FL(LDFL,NFAC) - real array. 

On exit: the factor loadings. FL(z'j') contains A-ij, for i = \,2,...,p;j =1,2,...,k. 

17: LDFL - INTEGER. 

On entry: the first dimension of the array FL as declared in the (sub)program 

from which G03CAF is called. LDFL > NVAR. 

18: IOP(5) - INTEGER array. 

On entry: options for the optimization. There are four options to be set: 

iprint - controls iteration monitoring; 
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i f iprint < 0, then there is no printing of information else i f iprint > 0, then 

information is printed at every iprint iterations. The information printed 

consists of the value of FC¥) at that iteration, the number of evaluations of 

FC¥), the current estimates of the communalities and an indication of whether 

or not they are at the boundary. 

19: IWK(4*NVAR+2) - INTEGER array. 

20: WK(LWK) - real array. 

21: LWK-INTEGER. 

On entry: the length of the workspace. 

Constraints: i f MATRIX = ' D ' or 'S', then 

LWK > max((5xNVARxNVAR+33xNVAR-4)/2, 

NxNVAR + 7xNVAR + NVARx(NVAR-l)/2). 

I f M A T R I X = 'C',then 

LWK > (5xNVARxNVAR+33xNVAR-4)/2. 

22: IF AIL - INTEGER. 

On entry: IF AIL must be set to 0, -1 or 1. 

On exit: IF AIL = 0 unless the routine detects an error or gives a warning. 
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Appendix V. 

Publications, Attended Conferences, Seminars 
and Courses 

Publications: 

(1) Howard, J. K. A., Copley, R. C. B., Yao, J . W. and Allen, F. H., "Systematic 

analysis of metal coordination sphere geometry from crystallographic data: a general 

method for detection geometrical preferences, deformations and interconversion 

pathways", Chem. Commn., 2175, (1998). 

(2) . Bryce, M . R., Chalton, M . A., Yao, J.W. and Howard, J. A. K., "Synthesis and 

nitrosation reactions of 7r-extended l,3-dithiol-2-ylidene system", Tetrahedron, 54, 

3919-3928,(1998). 

(3) . Yao, J . W., Copley, R.C.B, Allen, F.H. and Howard, J.A.K. "Automated 

geometrical analysis of metal 9-coordination sphere from crystallographic data", 27th 

international school of crystallography, P64, May, 1998, Erice, Italy. 

(4) . Yao, J . W., Copley, R.C.B, Allen, F.H. and Howard, J.A.K. "An identification and 

classification of geometry of eight-coordination transition metal complexes using 

crystallographic data", BCA Annual Meeting CP15, April, 1997, University of Leeds, 

UK. 

(5) . Bricklebank, N. , Howard, J.A.K., Rawson, J.M. and Yao, J.W., "The first example 

of side-on bonding in a tertiary phosphine-dihaloga donor-acceptor complex", submitted 

to Angew. Chem. Int. Ed. Engl. (1998). 

(6) . Dillon, K.B., Gibson, V.C., Howard, J.A.K., Redshaw, C , Sequeira, L. and Yao, J . 

W., "Group 6 transition metal complexes containing the a-bonded 2,4,6-

tris(trifluoromethyl) phenyl("fluoromes") ligand", J. Organomet. Chem. 528, 179-183, 

(1997). 
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(7) . Yao, J . W., Howard, J. A. K., Allen, F. H. and Pitchford, N . A., "A database study 

on geometry of transition metal alkyne and alkene complexes", BCA Annual Meeting 

CP20, April, 1996, Univ. of Cambridge, UK. 

(8) . Dillon, K. B., Gibson, V. C, Howard, J. A. K., Sequeira, L and Yao, J.W., 

"Bis(imido) molybdenum(IV) complexes containing r|2-diphosphene ligands", 

Polyhedron, 15(23), 4173-4177, (1996). 

(9) Harris, R. H., Howard, J. A. K., Samadi-Mayodi, A. and Yao, J . W., " A new 

silicate clathrate hydrate: An X-ray diffraction and nuclear magnetic resonance study of 

a system with octameric silicate anions and trivalent cations", J. of Solid State Chem., 

120, 231-237,(1995). 

The author has attended Durham X-ray crystallography group seminars weekly to report 

the research results and discuss with other members during 1995-1998. 

Attended research conferences and presented results during the period of tuition of this 

thesis. 

(1) BCA 5 t h Intensive Course in X-ray Structure Analysis, 2-8 April, 1995, Aston 

Birmingham, (before the tuition term). 

(2) UK Charge Density Meeting, 15-17, December, 1995, Durham. 

(3) BCA Chemical Crystallography Group Autumn Meeting 1995, Structural 

Refinement, 17 November, 1995, Manchester. 

(4) BCA Annual Meeting, 1-4, April, 1996. University of Cambridge, Cambridge. 

Poster Presented: A Database Study of the Geometry of Transition Metals 

Alkyne and Alkene Complexes. 

(5) BCA Chemical Crystallography Group Autumn Meeting 1996, Dynamic 

Crystallography, 14 November, CCLRC Daresbury Laboratory. 

(6) BCA Annual Meeting, 14-17, April, 1997, University of Leeds, Leeds. 

Poster Presented: An Identification and Classification of the Geometry of Eight-

Coordination Transition Metal Complexes Using Crystallographic Data. 

(7) Databases for Macromolecular Crystallographers, 9-10, January, 1998, University 

of Reading, Reading. 
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(8) 27 International School of Crystallography, Implications of Molecular and 

Materials Structure for New Technologies, 28 May - 7 June, 1998, Erice, Sicily, 

Italy. 

Poster Presented: Systematic Analysis of Nine-Coordination Sphere Geometry 

Using Crystallographic Data. 

(9) ACA Annual Meeting, 18-23 July, Arlington, Virginia, USA. 

Lecture Presented: Systematic Analysis of Metal 7-Coordination Sphere 

Geometry from Crystallographic Data. 

Attended Seminars and lectures from invited speakers to University of Durham, 

Department of Chemistry. 

1995/1996 

(1) Prof. Dennis Tuck, University of Windsor, Ontario, Canada, "New Indium 
Coordination Chemistry", 4 October, 1995. 

(2) Prof. P. Lugar, Frei Univ. Berlin, FRG, "Low temperature Crystallography", 11, 
October, 1995. 

(3) Prof. R. Schmultzer, Univ. Braunschweig, FRG, "Calixarene-Phosphorus 
Chemistry: A new Dimension in Phosphorus Chemistry", 13, October, 1995. 

(4) Dr. Andrea Sella, UCL, London, "Chemistry of Lanthanides with 
Polypyrazoylborate Ligands", 15 November, 1995. 

(5) Dr. Bill Henderson, Waikato Univ., NZ, "Electrospray Mass Spectrometry - a new 
sporting technique", 10 January, 1996. 

(6) Prof. J.W. Emsley, Southampton Univ., "Liquid Crystal: More than Meets the 
Eye", 17, January, 1996. 

(7) Dr. Alan Armstrong, Nottingham Univ., "Alkene Oxidation and Natural Product 
System", 24 January, 1996. 

(8) Prof. E.W. Randall, Qeueen Mary & Westfield College, "New Perspectives in NMR 
Imaging", 28 February, 1996. 

(9) Prof. V. Balzani, (RSC Endowed Lecture), Univ. of Bologna, "Supramolecular 
Photochemistry", 12 March, 1996. 

282 



1996/1997 

(1) Prof. G. Bowmaker, Univ. Aukland, NZ, "Coordination and Materials Chemistry of 
the Group 11 and Group 12 Metals: Some Recent Vibrational and Solid State NMR 
Studies", 1 October, 1996. 

(2) Dr. P. Muntford, Nottingham Univ., " Recent Developments in Group IV Imido 
Chemistry", 30 October, 1996. 

(3) Dr. G. Resnati, Milan, Perfluorinated Oxaziridines: Mild Yet Powerful Oxidising 
Agents", 13 November, 1996. 

(4) Prof. J. Earnshaw, Dept. of Physics, Belfast, "Surface Light Scattering: Ripples 
and Relaxation", 20 November, 1996. 

(5) Dr. R. Templer, Imperial College, London, " Molecular Tubes and Sponges", 27 
November, 1996. 

(6) Prof. K. Muller-Dethlefs, York Univ., " Chemical Applications of Very high 
Resolution ZEKE Photoelectron Spectroscopy", 1 December, 1996. 

(7) Dr. C. Richards, Cardiff Univ., "Sterochemical Games with Metallocences", 11 
December, 1996. 

(8) Dr. Geert-Jan Boons, Univ. of Birmingham, "New Developments in Carbohydrate 
Chemistry", 12 February, 1997. 

1997/1998 

(1) Prof. W. Atkins, Dept. of Physics, Univ. of Bristol, "Advances in the Control of 
Architecture for Polyamides: from Nylon to Genetically Engineered Skills to 
Monodisperse Oligoamides", 8 October, 1997. 

(2) Prof. R. J. Puddephatt, Univ. of Western Ontario, Canada, "Organoplatinum 
Chemistry and catalysis", 22 October, 1997. 

(3) Dr. L. Spiccia, Monash Univ., Melbourne, Australia, "Polynuclear Metal 
Complexes", 20 November, 1997. 

(4) Prof. A. P. Davis, Dept. of Chemistry, Trinity College Dublin, " Steroid-Based 
Frameworks for Supramolecular Chemistry", 3 December, 1997. 

(5) Sir G. Higginson, Former Professor of Engineering in Durham and Retired Vice-
Chancellor of Southampton Univ., "1981 and all that", 10 December, 1997. 

(6) Prof. David Andrews, Univ. of East Anglia, "Energy Transfer and Optical 
Harmonics in Molecular Systems", 14 January, 1998. 
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(7) Prof. P. Fowler, Dept. of Chemistry, Strathclyde Univ., "Classical and Non-
Classical Fullerences", 4 February, 1998. 

(8) Dr. C. Jones, Swansea Univ., "Low Coordination Arsenic and Antimony 
Chemistry", 25 February, 1998. 

Completed Courses 

(1) Practical Nuclear Magnetic Resonance (PG3). 

(2) Synthesis Methodology in Organometallic and Coordination chemistry (PG5). 

(3) Advanced Mass Spectrometry (PG6). 
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