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Nomenclature 

C P Pressure coefficient, C = -—̂ f-

c Viscous damping coefficient 

Cc Critical viscous damping coefficient 

D Bending stiffness 

d Characteristic dimension 

E Young's modulus 

e Volumetric strain 

F External force 

f Frequency (Hz) 

G Shear elasticity modulus 

I Second moment of area 

k Stiffness 

L Vehicle length 

M Bending moment 

m Mass 

P Local static pressure 

Poo Free-stream static pressure 

Q Shear force 

r Frequency ratio, r = — 
CO 

n 
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Re Reynolds number, Re = - — 

T Natural period of vibration, T = 1/f 

x, § Displacement 

a Phase angle 

8 logarithmic decrement 

e Normal strain 

y Shear strain 

X Eigenvalue 

u Viscosity coefficient of f l u id 

_ . .. lateralstrain 
v Poisson ratio, v = 

axial strain 

p Density of materials 

a Normal stress 

t Shear stress 

u Vehicle velocity 

© Forced frequency (rad/sec) 

© d Damped natural frequency (rad/sec) 

© n Undamped natural frequency (rad/sec) 

© o d Overdamped natural frequency (rad/sec) 
£ Viscous damping ratio, Q = — 
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Abstract 

Full-scale wind tunnel experiments and analysis using CFD (Computational 

Fluid Dynamics) are already developed and applied to the research and 

development processes of current passenger vehicles/1) But f rom the 

viewpoint of the indoor aspiration noise during high speed driving, the 

vibration of a passenger vehicle's door frame is a major influence. The 

vibrational deformation gives rise to aspiration noise, which is airborne sound 

transmitted through the gap between the door panel frame and the sealing 

system mounted on the body panel. The optimised design of a passenger 

vehicle's door frame can lead us to the minimisation of aspiration noise. The 

optimisation is carried out by the finite element analysis of the vibration of the 

passenger vehicle's door panel assembly under steady-state sinusoidal 

dynamic air pressure. The commercial analysis package ABAQUS(5"9> is 

applied to all analyses i n this thesis. 

The thesis concludes wi th recommendations for door reinforcement 

configurations to reduce aspiration wind noise, but such an opt imum must be 

considered i n relation to the associated financial costs and weight penalties. 

n 



1. Introduction 

The process of modern vehicle design and manufacturing techniques causes 

engineers to consider not only the basic performance but also the safety and 

convenience for drivers and passengers. So improvements of the strength and 

stiffness of a vehicle structure and the installation of front or side air bags are 

provided against any k ind of collision and its effects. I n addition, any noise 

on driving (for example, engine noise, body vibrating noise, fr ict ion noise 

between inside trims, and wind noise) is now considered to be an important 

factor i n the assessment of a vehicle's performance. I n particular, wind noise 

has become a primary factor by which we can assess the quality and 

convenience when a vehicle is driven at a high speed. The powertrain noise 

has been more important i n the past, but developments i n the quality of 

automobiles have been made to reduce the powertrain noise substantially. 

This results i n the comparative importance of wind noise as a contributor to 

the total noise. 

A n optimisation for impact may suggest a different design. I n a design to 

resist side impact, the side impact safety bar and pad located i n the below door 

belt region and the reinforcement of the B-pillar lower part are the traditional 

solutions i n the body panel part. But the most important concept of the side 

impact safety i n the body panel part is to make the door panel and the side 

structure more absorptive against the impact, and more stiff as well. 

12 



The below door belt region 

Figure 1-1. A, B-pillar and the below door belt region of a vehicle 

Full-scale wind tunnel experiments and analysis using CFD are already 

developed and applied to the research and development processes of actual 

passenger vehicles/1) But f rom a viewpoint of indoor aspiration noise (which 

is defined as sound transmitted through the gap between the door panel frame 

and the sealing system mounted on the body panel) when a vehicle is driven at 

high speed, the vibration of a passenger vehicle's door frame becomes one of 

the primary factors.*2-3* At high speed, the door frame vibrates because of the 

pressure difference between the air inside and outside the passenger 

compartment. Therefore i f the door frame is optimally designed to prevent 

vibrational deformation over the appropriate frequency range, the aspiration 

noise should be reduced. Adding reinforcements to the door frame region 

makes the door panel more resistant to bending deformation, but i n 

13 



proportion to the addition of the reinforcement, the weight and the cost of the 

vehicle are increased. Therefore the optimisation to balance the addition of 

the reinforcement against the weight and the cost of the vehicle is very 

commercially significant. 

The optimisation may be carried out by the analysis of the vibration modes of 

the passenger vehicle's door panel assembly. A computational analysis, such 

as that used i n this research, not only saves time but also money in the step of 

prototype development. Finite element analysis provides a much more quick 

and cheap method of assessment than prototype tests or full-scale wind tunnel 

test. By use of such a computer system an engineer can modify possible 

solutions and f ind an appropriate f inal solution. 

The finite element method is a numerical procedure for the solution of 

differential equations. The major concept of the finite element method is that 

any continuous quantity, such as temperature, pressure, or displacement, may 

be approximated as a discrete model composed of a group of a piecewise 

continuous functions which are defined over a finite number of subdomains.w) 

The modelling and analysis are performed using commercial package 

ABAQUS(s-9). 

14 



2. Vehicle Door Design 

2.1. General Concept of Vehicle Door Design 

Vehicle door design has many aspects for consideration by the engineer*10*: 

• side impact safety ( in order to improve the safety of driver or passenger 

f rom the side impact, some sub-materials are used such as anti-impact bars 

and impact absorbing pads) 

• door frame stiffness 

• wind noise 

• opening-closing performance and endurance 

• outside panel dent 

• side door strength 

• door glass up-down durability which is related to the window regulator and 

glass run system 

• temperature resistance 

• sagging which is very related to hinge and hinge face panel stiffness are the 

items should be considered. 

I n addition, the manufacturability is the most important part of vehicle door 

design. 

• The formability of panels i n the press process 

• the possibility of tooling or assembly 

15 



• hemming possibility 

• whether i t is weldable or not 

• paint drain capability i n the painting process 

• and cost, weight, process reduction are all fundamental to 

manufacturability. 

In addition to the above, there are more details i n the vehicle door design, such 

as 

• the door opening system including inside, outside handle and latch, 

• door checker which controls the door opening angle, 

• door trims, 

• many sorts of electric switches, for example, the power window switches or 

outside mirror control switches, 

• the door sealing system usually made of rubber, 

• the corrosion problem, 

• and the opening gap and parting gap between the door and the side 

structure i n the completed vehicle condition. 

Each of these is very important to make the whole vehicle door. 

2.2. Typical Design Process of Vehicle Door 

A typical vehicle door design process is as follows : 

16 



1) Fix of exterior style line. 

2) Sample car inspection and advanced study. 

3) Door type determination, for example, f u l l door, frame door, hidden frame 

door, or frameless door. The difference between a f u l l door and a frame 

door is that a f u l l door does not have a separate frame part, but a frame 

door does. I n a hidden frame door the frame is hidden by a sealing system 

or the side window glass. When a door does not have a door frame i n the 

window region, the door is called a frameless door. 

4) Deciding whether new technology wi l l be applied or not. I f a new 

technology wi l l be applied, all processes which are related to 

manufacturability, patent and law should be considered i n advance. 

5) Door opening gap check and parting gap decision. The opening gap is very 

important i n every moving part. This must be checked in the step of 

exterior design. 

6) Determination of the window regulator type and the regulating trace. 

7) Determination of the sealing system. This is related to decide the door 

type. 

8) Door panel assembly and the interior trims design using CAD, this includes 

the fo l lowing: 

• Side impact safety such as anti-impact bar, absorbing pad, etc. 

• The passenger car door system crush test procedure as recommended 

bySAEJaeyJUNSo.^y 

• Manufacturing processes such as press, welding, hemming, paint drain, 

etc. 

17 



© The strength and stiffness of the door panel assembly. 

© Cost, weight, and process reduction. 

o The durability of the door glass up-down and the door opening-closing 

system. SAE J934a(12> shows the passenger vehicle door hinge systems, 

and the passenger car side door latch systems are shown on SAE 

J839b(*). 

• The convenience of assembly and installation. 

9) Prototype door making. 

10) Test of door assembly under all possible conditions ( 1 0 ) . Finite element 

analyses are carried out i n parallel w i th actual vehicle experiments. 

11) Continuous changes and improvements. 

12) Re-test. 

13) Pilot product entrance. 

14) Re-test. 

15) Final revision of drawing. 

16) Mass production in-line. 

I n this thesis, i t is assumed that wind noise increases wi th vibration 

amplitude, so the relationship between the air pressure and the vibrational 

deformation of the door panel is mainly considered. The SAE standard test 

procedure for sound level for passenger cars is presented i n SAE J986b ( 1 4 ) , and 

SAE J1030 ( 1 5 ) recommends the maximum sound level for passenger cars. 

18 



3. Theories 

3.1. Bending Theory of Thin Plate 

In one-dimensional system under Hooke's Law, the normal stress a and the 

normal strain e are expressed by<1 6 ) 

e = | (3.1.1) 
E 

where E is Young's modulus. 

Likewise, the shear stress x and the shear strain y may be given by 

y=^ (3.1.2) 

where G is the shear elasticity modulus. 

The relationship between Young's modulus E and the shear elasticity modulus 

G is presented by 

G = — ^ — (3.1.3) 
2(1 + v) 

where v is Poisson ratio which is shown as 

lateralstrain 
(3.1.4) 

axialstrain 

The shear elasticity modulus can be measured f rom torsion test, and Poisson 

ratio is obtained by using equation (3.1.3). 

Extending equation (3.1.1) to general case, Hooke's Law may be written as 

e x = - ^ ( o x - v ( a y + c z ) ) 
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e y = | ( a y - v ( o x + c z ) ) (3.1.5) 

e z = ^ ( c z - v ( c x + a y ) ) 

Likewise, the general expression of equation (3.1.2) using (3.1.3) may be 

written as 

2(1 +v) 
E v = — -x 

I xy c

 k xy 

y - = ^T^T- ( 3 , L 6 ) 

2Q + V) 

E 
Y = — - T 
' ZX t - , ZX 

Equation (3.1.5) and (3.1.6) can also be written as follows, 

vE E 
a x = 7 — -en e x 

x ( l + v ) ( l - 2 v ) 1 + v x 

vE E 
cj y — ~ ———e + : e v (3.1.7) 

( l + v ) ( l - 2 v ) 1 + v 

vE E 
-en e. (1 + v)(l - 2v) 1 + v 

E 
T x y = G Y x y = 2(l + v ) Y x y 

X y z = c ^ y z = 2 ( i 7 ^ Y y z ( 3 L 8 ) 

= G v E 

" ^ 2(l + v ) Y z x 

where 
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e = e x + e y + e 2 (3.1.9) 

which is called volumetric strain. 

Considering the plane stress system, stresses o z, x y z , and i zx are deleted, i.e. 

Oz = Tyz = Tzx = 0 (3.1.10) 

Thus equation (3.1.5) becomes 

e x = | ( o x - v o y ) 

e y = ^ ( o y - v o x ) (3.1.11) 

Solving equation (3.1.11) for stresses gives 

o x = T ^ r ( e x + v 6 y ) (3.1.12a) 

a, = - ^ - T ( e y + v e x ) (3.1.12b) 
1 - V v 7 

Figure 3-1 shows an infinitesimal element of a plate or shell which is under 

bending condition.^1 7) Note that this "element" should not be confused wi th a 

"finite element". The bending moments per uni t length M x + — - d x and 
8k 

c M v . , cM 
M v + — L d y , the torsion moments per umt length + L d x and 

dy dx 

21 



M + — — d y , and the shear forces per unit length Q + - ^ 2 L d x and 
3y 3x 

dQ 
Q + —— dy are applied to the shown surface of the element. 

dy 

y > v Z, W 

5MV 

M v + ^dy 

M x + -dx 
x ax 

dx 

Figure 3-1. An infinitesimal element of a thin plate under bending 

Symbols u, v, w are defined as displacements i n each direction x, y, z. 

The bending moments and the torsion moments per unit length may be 

obtained by integrating the appropriate stresses over the thickness-direction 

(z-direction). 

fh/2 E fh/2 / \ 
M = a xzdz = - E + V 6 v ) z d z 

x J-h/2 X 1 - V J-h/2^ y ' 

fh/2 E fh'2 / \ 
M v = o yzdz = [z + ve x lzdz 

y J-h/2 y 1 — V J _ h / 2 

M . 
fh/2 - E fh/2 

= - M = - T x vzdz = — Y x v Z d 2 

y* J-h/2 2(1 + v) J - h / 2 
xy 

(3.1.13) 
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where h/2 is half the plate thickness, and z is the distance f rom the neutral 

surface. 

The bending stresses which are located at distance z f rom the neutral surface 

maybe written as 

M x zdy 12M xz 
T h 3 

y 

M y zdx 12M yz 

h 3 

= Tyx = h 3 

(3.1.14) 

where I x and I y are second moments of area. 

The strains which change linearly along the thickness-direction may be given 

by 

a 2

w 

8„ = - Z -
dx2 

a 2 w 
8 y = _ Z ^ T dy2 

(3.1.15) 

Yxy = -2z 
a 2 w 
dx.dy 

Substituting equation (3.1.15) into equation (3.1.13), the moments can be 

expressed as 

( & 
M . = - D 

d2w a 2 w 
W + v a y 2 J 
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M y = - D 
d w d w 

• + v -^ay 2 a x 2 ; 

M*y = - M y x = D(l - v) 

where D is the bending stiffness written by 

Eh 3 

^ a V 
.dxdy) 

D = 
1 2 ( l - v 2 ) 

and h is the thickness of the infinitesimal element. 

(3.1.16) 

(3.1.17) 

Assuming a distributed load pdxdy is applied to the top surface of the element, 

the differential equations of the shear forces, bending and torsion moments 

maybe written as 

—— +— L + P = 0 
dx dy 

aM aMy n — — — - + Q V - 0 
ax ay y 

ay ax V x 

(3.1.18a) 

(3.1.18b) 

(3.1.18c) 

From equations (3.1.18b) and (3.1.18c), substituting Q x and Q y to equation 

(3.1.18a) 

a 2 M a2]vr a 2 M v 

24 



Substituting equation (3.1.16) to equation (3.1.19), the fourth order differential 

equation about a th in plate or shell shown as equation (3.1.20) is obtained. 

+ 2 
ax 4 dx2dy2 dy4 D 

d4w d4w _ p 
(3.1.20) 

3o2„ Fundamental Vehicle Aerodynamics 

I n aerodynamics, the researchers consider i n terms of what happens when air 

flows past a stationary vehicle, instead of the real situation where the vehicle 

moves through the air. This is done because, i n general, this is much easier to 

understand and describe the behaviour of the air f low than the actual 

condition. 

When a vehicle is placed i n a wind-tunnel, the relative speed of the air stream 

which is away f rom local changes caused by the presence of the vehicle is 

referred to as the free-stream speed. For the simple case of a vehicle driving i n 

windless conditions, the corresponding relative speed is simply the driving 

speed of the vehicle. 

The relationship between vehicle velocity u and local static pressure (such as 

air pressure) p under aerodynamic conditions is given i n the Bernoulli 

equation, which maybe stated ( 1 ) 

+—po 2 = Constant 
2 

(3.2.1) 

where p is the air density. 
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The air density p is 1.226kg/m3 at the standard atmospheric sea-leveU1 8 ) 

I n equation (3.2.1), the term ^P^ 2 means the dynamic pressure caused by the 

moving vehicle. 

The difference between the local static pressure at any point i n a flow and the 

static pressure i n the free stream depends on the dynamic pressure of the free 

stream. 

The pressure coefficient C P shows the above relationship by 

C p = - ^ f (3.2.2) 

where poo is the free-stream static pressure. 

To describe the pressure variation around a vehicle, i t is much more 

convenient to use the pressure coefficient rather than the actual pressure. 

Knowing the value of the pressure coefficient at a point, i t is simple to 

calculate the value of the actual pressure at any driving speed, using equation 

(3.2.2). 

When a car is driven, the behaviour of the boundary layer is greatly influenced 

by the pressure variation along the direction of flow. Other important factors 

are the speed, the density and viscosity of the air, and the geometric shape of 

the car. 
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The dependence of the f low patterns on speed, density, viscosity and length 

can be expressed by the Reynolds number Re as follows, 

where L is the vehicle length and ju is the air viscosity coefficient. 

The standard sea-level air viscosity coefficient is 1.78 x 10 5 kg/msec/ 1 ^ 

For fixed values of air density and viscosity, the Reynolds number is effectively 

dependent on the vehicle size and speed only. 

I f the Reynolds number is increased by increasing the speed of the vehicle, the 

f low transition position f rom laminar to turbulent moves forward, and the 

boundary layer becomes thinner. I t can be seen that the value of the Reynolds 

number is important i n determining the type of f low around the vehicle. 

Consider an infinitely long circular cylinder of diameter d, which is under a 

vortex shedding condition. Each time a vortex is shed f rom the cylinder, the 

pressure distribution around the cylinder is disturbed. The shedding of 

vortices alternately f rom the two sides of the cylinder produces alternating 

lateral forces. As a result, these lateral forces cause a forced vibration of the 

cylinder at the same frequency as the frequency of vortex shedding. 

MassejK19) shows the relationship between the frequency of vortex shedding 

and the vehicle speed using the Reynolds number i n the following empirical 

formula, 

Re = puL 
(3.2.3) 

19.7 
0.198 1 

Re u 
(3.2.4) 
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where f is the frequency of vortex shedding in cycles per second (hertz, Hz) 

and d is the characteristic dimension. 

f* d 
I n equation (3.2.4), the quantity is called the Strouhal number, after the 

u 

Czech physicist Vincenz Strouhal who first investigated the 'singing' of wires i n 

1878.M 

During normal driving condition, the Reynolds number is much larger than 

19 7 
the value 19.7, so the value of —— i n equation (3.2.4) is near to zero. 

Re 
Therefore the formula can be written as, 

— * 0.198 (3.2.5) 

The value of C p which is applied to this thesis is from Howel l ( 2 0 ) , who 

investigated the side load distribution on a Rover 825i i n a full-scale wind 

tunnel named MIRA, which has a cross section of 34.9m 2 (width 7.9m, height 

4.4m) and is 15.2m long, under cross wind conditions when the wind speed is 

lOOkm/hr (28m/sec). I t is the major concept of Howell's experiment that the 

pressure distribution over a vehicle surface under windy conditions is ruled by 

the aerodynamic yawing moment. 

The principal dimensions of Rover 825i are : length 4.67m, width excluding 

mirrors 1.73m, height 1.40m, frontal area 2.03m 2, and no spoiler. This is 

similar i n dimension to the Hyundai car which is the subject of this study, and 

therefore the pressure coefficients f rom Howell are used i n this work. 
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C p=0.5 is chosen for the pressure distribution i n this research. Although i n 

the below door belt region C p has a different value, a typical value of C p = 0.5 is 

found on the window glass part and this is chosen to simplify the pressure 

boundary condition. This is reasonable since the pressure i n the glass region 

is dominant is calculating the door frame deformation i n the vibrational 

modes of interest. 

These data are supported by Docton<21-22) who studied vehicle behaviour under 

cross wind conditions. 

The magnitude of the steady-state dynamic air pressure which is applied to 

the models may be calculated f rom equations (3.2.2), thus the value is 0.2363 

Pa (kg/m sec2) for the speed lOOkm/hr as considered by Howell. 

3.3° Vibration 

When a car is driven, a pressure difference arises between the inside and 

outside. The pressure difference is oscillatory at frequency ' f defined in 

equation (3.2.4), and this gives rise to forced vibration of the structural panels 

of the vehicle. 

A l l structures have their own natural frequencies, and according to the 

number of Degrees of Freedom (D.O.F) used to describe the mathematical 

model, a number of natural frequencies maybe determined. 
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3.3.1. SDOF Vibration System 

Figure 3-2 shows a single degree of freedom system which is under forced and 

damped vibration.^ 2 3" 2 5) 

This system may be defined by a differential equation of motion as follows, 

where m is the mass of the system, 

c is the viscous damping coefficient of the system, 

k is the stiffness of the system, 

x is the acceleration of the system, 

x is the velocity of the system, 

x is the displacement of the system, 

and F is the external force which is loaded to the system. 

x 

- w -
m 

—iD 
n n n 

Figure 3-2. SDOF forced and damped vibration system 

mx(t) + cx(t) + kx(t) = F(t) (3.3.1) 
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3.3.1.1. Free vibration system 

I f F(t) = 0 i n equation (3-3.1), the system is considered as a free vibration 

system under damping, so equation (3.3.1) can be replaced by 

mx(t) + cx(t) + kx(t) = 0 (3.3.2) 

The solution of equation (3.3.2) may be written wi th a standard fo rm as 

x(t) = Ae b t (3.3.3) 

where A is a constant defined by the init ial condition. 

Substituting equation (3.3.3) into equation (3.3.2), the equation of motion can 

be written as 

(mb 2 + cb + k) Ae b t = 0 (3.3-4) 

When the system is undamped, c is equal to zero, and equation (3-3-3) 

becomes 

x(t) = Ae"""' (3.3.5) 

where ron is the undamped natural frequency, because the system undergoes 

oscillatory motion at this frequency without decay. 

Thus equation (3-3-4) becomes 

( - m © n

2 + k ) A e i r a " t = 0 (3-3-6) 

Solving equation (3.3.6) gives 

k = m © n

2 (3.3.7) 

Therefore, the undamped natural frequency is obtained as 

CO n 
(3.3.8) 
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and the eigenvalue X is defined as 

X = c o n

2 = — (3.3.9) 
m 

Rearranging equation (3.3.4) wi th equation (3-3.9), 

b 2 + — b+CD n

2 =0 (3.3.10) 
m 

Therefore 

I f the value of the damping coefficient c is equal to zero, the motion of the 

system is undamped and equation (3.3.11) is 

b = ±ioon (3.3.12) 

Using equation (3.3.12), equation (3-3.3) maybe written as 

x(t) = Aje" 0"' + A ^ - 1 " " 1 (3.3.13) 

since 

e ± 1 < v = c o s o n t ± i s i n c o n t (3.3.14) 

then 

x(t) = B t s in© n t + B 2 cosoont (3.3.15) 

or 

x(t) = Bsin(cont + a) (3.3.16) 

where B = ^/b , 2 + B 2

2 and a is the phase angle. 

The constants B, Bi, and B 2 of equation (3-3-15) and (3.3.16) may be obtained 

f rom the init ial conditions such as the values of the displacement and velocity 
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at zero time. For example, i f the ini t ial values of displacement x(0) and 

velocity x(0) are substituted into equations (3.3.15), then 

B = ^BX

2 + B 2 
2 ' M l + x ( 0 ) 2 (3.3.17) 

v(fl„ J 

The unit of the natural frequency con is radians per second (rad/sec), so the 

frequency in Hz is given by 

f = ^ (3.3.18) 
2n 

And the natural period of vibration is 

1 2TC 
T = = — (3.3.19) 

r co 

Considering the damped motion when the viscous damping coefficient c of 

equation (3-3.11) is non-zero. 

If , c < 2ma)n 

C ' - co n

2 <0 (3.3.20) 
V2m 

I t can be seen f rom equation (3.3.11) that b wi l l contain imaginary terms giving 

rise to oscillatory motion. This is the underdamped condition. For this case 

the solution of equation (3.3.2) is 

x(t) = e"*=(C, sincodt + C 2 cos© d t ) (3.3.21) 

where coa is the damped natural frequency. 

If , c = 2mo n 
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( ^ ' - . ' - O (3.3.22) 

which describes the critical damping condition. I n this case the critical 

viscous damping coefficient c c is obtained as 

Co = 2m<on (3.3.23) 

and the viscous damping ratio C is defined as 

C = — = t ~ (3.3.24) 
c r 2m© „ 

c n 

When C has the very small value of C < 0 . 1 , the system is almost the same as an 

undamped system. Increasing the value of C to 1 , the system becomes 

critically damped and returns quickly to static equilibrium. 

Using equation (3.3.24), equation (3.3.21) becomes 

x(t) = e"Ca>n t(C, sinto dt + C 2 cos© d t ) (3.3.25) 

or 

x(t) = Ce-Qa" t sin(© d t + a) (3.3.26) 

where, & , C 2 and C are the arbitrary constants depending on the ini t ial 

displacement and velocity. 

Substituting equation (3.3.24) into equation (3.3.11), b maybe written as 

b = - O d n ± V ( C © N ) 2 - © N

2 (3.3.27) 

or 

b = - C © N ± iroa (3.3.28) 
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where 

c o ^ c ^ V T 7 ^ (3.3.29) 

Figure 3-3 shows that the amplitudes xi , x 2 , • • • x n , etc., occur i n successive 

time intervals T. 

x t 

CO 
n (0) x(0) 3TC 

CO 

CO 

2n 4n n t 
CO CO CO 

Figure 3-3. Free vibration response of damped system 

The ratio of successive peaks is obtained by combining equations (3.3.21) and 

(3.3.24), 

-ct/2m 

x n + i e 
-c(t+T)/2m 

_ e 2n?(<o„ /«>d) (3.3.30) 

The natural logarithm of this ratio is called the logarithmic decrement 5, 

8 = ln = 2nC, n (3.3.31) 

Substituting equation (3.3.29) i n equation (3.3.31) gives 

2 < 8 = (3.3.32) 
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when C, has a small value, 8 « 2nC,, therefore 

s 
C = — (3.3.33) 

2K 

If , c >2mo n 

i £ ) ' - ^ > 0 (3.3.34) 

which means the overdamped system. For this case equation (3.3.11) may be 

written as 

b = -Ccon + cood (3.3.35) 

i n which 

o>od = c o n > / C 2 - l (3.3.36) 

where £ > 1, and ©od does not represent a frequency since the overdamped 

system is not oscillatory. 

Therefore, the solution of the equation of motion becomes 

x(t) = e ^ - ' f E , s inh© o d t + E 2 cosh© o d t ) (3.3.37) 

where the constants Ei and E 2 are evaluated f rom the ini t ial conditions and the 

motion is not oscillatory, ©od 

3.3.1.2. Forced vibration system 

I n equation (3.3.1), i f external force F(t) is equal to FGsin(©t ± a) which has 

amplitude F Q and is applied as a steady state dynamic Sin function wi th a 

phase defined by angle a, the equation of motion maybe written as 
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mx(t) + cx(t) + kx(t) = F 0 sin(cot ± a) (3.3.38) 

where co is the forced frequency. 

Note that i n order to gain the values of natural frequencies, FD may be set to 

zero to represent a system under free vibration. 

The solution of equation (3.3.38) has two parts, 

x(t) = Xc(t) + x F ( t ) (3.3.39) 

Where Xc(t) is the complementary solution which is obtained f rom the solution 

of the equation of motion when the force is zero. This corresponds to the free 

vibration solution. XF( t ) is the particular integral which is the direct solution 

f rom equation (3.3.38). This states the specific behaviour of the system which 

is caused by the dynamic force. 

From equation (3.3.25), the complementary solution is 

x c ( t ) = e'Qa"t(Cl sincodt + C 2 coso d t) (3.3.40) 

To obtain XF ( t ) , assuming that 

x F ( t ) = C 3 coscot + C 4 sinrat (3.3.41) 

Substituting equation (3.3.41) into equation (3.3.38), and equating the 

coefficients of coscot and sincot separately, 

-mco2 C 3 + CC0C4 + k C 3 = F 0 (3.3.42) 

-m© 2 C 4 - c©C3 + k C 4 = 0 (3-3-43) 

Constants C 3 and C 4 can be obtained f rom equations (3-3.42) and (3.3.43), 

then substituting C 3 and C 4 into equation (3.3.41) gives 

37 



, . F 0 cos(cot-a) , n n A A . 
x F (t) = , \ 2 = (3.3.44) 

>/ (k-ma) 2 ) 2 " " + C CO 

and 

ceo , . 
tana = T (3.3.45) 

k - mco 

Substituting equation (3.3.24) into equations (3-3.44) and (3.3.45) gives 

F , cos(a)t-a) 
k V ( l - r 2 ) 2

+ ( 2 C r ) 2 

a = t a n - 1 [ - ^ y | (3-3-47) 
-1 - r 

where r is the frequency ratio defined as 

r = — (3-3.48) 
0 3 . 

therefore 

X( t) = Xc(t) + x F ( t ) 

^ • ' ( C , sincodt + C 2 coscodt) + ^ , C ° s ( c 0 t g L = (3.3-49) 
k

A / ( l - r 2 ) 2

+ ( 2 C r ) 2 

I n a system wi th damping, Xc(t) reduces quickly to zero and is usually 

neglected. Therefore, 

c o ^ t - q ) 
k

1 / ( l - r f + ( 2 C r ) ! 
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I n equation (3.3.50) i t should be noted that F D /k equals the displacement Xs of 

the system subjected to a static force F 0 . Thus 

, C ° s ( ( 0 t " a ) (3.3.51) 
x * > / ( l - r 2 ) 2

+ ( 2 C r ) 2 

The maximum value is when cos(cot - a) = 1, so equation (3.3.51) becomes 

(3.3.52) 

This is called the dynamic magnification factor. 

The importance of vibration i n structures arises mainly f rom the large values 

of x(t)/xs experienced i n practice when ro/con has a value near unity. This 

means that even a small harmonic force can produce a large amplitude of 

vibration.^2 5) This is the phenomenon which is known as resonance. And the 

resonant frequency for damped systems is co n yjl - 2C,2 . This is the frequency 

at which the magnification is greatest. The maximum value of x(t)/xs actually 

occurs at values of co/con less than unity. For small values of Q, equation 

(3.3.52) can be written as 

4 (3-3.53) 
S m a n •* 

Resonance is a phenomenon related to forced vibration, generated by some 

input force, whereas natural frequencies are phenomena of free vibration. 

Resonance is very important i n practice because i t involves large amplitude 
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response to excitation, and can cause serious problems such as a structural 

f a i l u r e . ^ 

3 . 3 . 2 . M D O F V i b r a t i o n S y s t e m 

Figure 3-4 shows a forced and damped mul t i degrees of freedom(MDOF) 

system. 

n n f n n ( •i n r 

Figure 3-4. MDOF forced and damped vibration system 

Equations of motion for the n masses maybe written as follows, 

First mass : mlxl + c,x, + k,x, - k 2 ( x 2 - x , ) - c 2 ( x 2 - x , ) = F, (3.3.54) 

jthmass: m j X j +0^, +k](xi - X j _ , ) - k J + 1 ( x J + 1 - X j ) - c J + 1 (x J + 1 - x j ) = F j (3-3-55) 

Last mass : m n x n + c n x „ + k n ( x - x n , ) = F„ 
n n n n n \ n n—1 / n 

where, Fi is the force which is loaded on mass mi, 

Fj is the force which is loaded on mass mj, 

and F n is the force which is loaded on mass m n . 

These equations maybe written i n matrix form^ 2 7) 

(3-3-56) 
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[M]{k} + [ C ] { i } + [ K ] { 5 } = {F} (3.3.57) 

where, i f n=3, for example, 

the mass matrix is 

m, 0 0 

[M] = 0 m 2 0 
0 0 m 

the damping coefficient matrix is 

[C] = 

( c , + c 2 ) - c 2 0 

- c 2 ( c 2 + c 3 ) - c 3 

0 

the stiffness matrix is 

[K] = 

( k 1 + k 2 ) 
( k 2 + k 3 ) 

0 

-k, 
0 - k , 

A n degrees of freedom system has n eigenvalues, which means the system has 

n natural frequencies. I f the viscous damping ratio C has small value, i t may be 

assumed that maximum forced response wi l l occur when eo is one of the 

natural frequencies. 

I f the system is i n undamped free vibration, equation (3.3-57) can be written as 

[ M ] { i } + [K]{x} = 0 (3-3-58) 

where 

{ i } = -co 2 {x} (3-3-59) 

can be stated for a simple harmonic motion. 
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Substituting equation (3.3.59) into equation (3.3.58) gives 

co 2 [M]{s}+[K]{x} = 0 

or 

[ K - c o 2 M ] { x } = 0 (3.3.60) 

Equation (3-3.60) represents a frequency eigenvalue problem, and the vector 

{ x } which corresponds to a particular mode of vibration is called an 

eigenvector. 

As i n the frequency eigenvalue analysis of a MDOF system, the solution to 

equation (3-3-60) can be found. This can be solved by recognising that, 

because of the zero right hand side, the only non-trivial solution to the system 

is one i n which 

Equation (3.3.61) is called the frequency equation which can be solved to f i n d 

the natural frequencies. 

The shape of each mode for each natural frequency can be defined by the 

eigenvector { x } . Considering an n degrees of freedom system, i f {<j>i} is the i th 

displacement eigenvector, then the mode shape is given by 

Therefore, a square mode shape matrix [<)>] may be written to include the n 

mode shapes by equation (3.3.63). 

| K - c o 2 M | = 0 (3.3.61) 

• 1 

2i (3-3-62) 
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<t>ll • - •,„" 

[•]=• 
<t>21 • " • * • •• <l>2n 

> 

" «t>n, • •• (t, 
T nn _ 

(3.3.63) 

I n a forced vibration system, the forced frequency influences to the forced 

response. I f the forced frequency is very close to one of the system natural 

frequencies, the resonance which is mentioned i n section 3-3.1.2 is occurred. 

The modal superposition method is that the displaced shape of a structure can 

be constructed by the sum of the free vibration mode shapes. For an n DOF 

system, there wi l l be n independent displacement patterns which are 

considered to be generalised coordinates Yi, Y 2 , Y n . Thus, by using the 

mode shape matrix [<J>], the local coordinates { x } which is considered 

previously may be writ ten as 

{*} = W m (3.3.64) 

Therefore, equation (3.3.57) may be given as 

[M][d>]{Y} + [C][d>]{Y} + [K][d>]{ Y} = {F} (3.3.65) 

By premultiplying by [<j>]T, the orthogonality properties of the mode shapes 

allow much simplification of the system. I n order to achieve the fullest 

simplification, i t is necessary to consider the damping matrix [C] . While i t can 

be shown that the mode shape vectors are orthogonal wi th respect to the mass 

and stiffness matrices, [ M ] and [ K ] , no such proof is available i n general for 

[C] . However, this can be overcome by making the assumption that [C] may 
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be constructed as the sum of [ M ] and [ K ] , multiplied by scalar coefficients. 

This is termed proportional damping, or Rayleigh damping, and extends the 

orthogonality properties to the damping matrix. I t can be seen that by 

considering the orthogonality relations, equation (3.3.65) reduces to a set of 

equations of the form 

M f t + C f t + K & = 0 (3-3.66) 

where Mi* = <t>iTM(bi is the generalised modal mass for mode i, and the 

generalised modal stiffness and damping terms are similarly constructed by 

replacing [ M ] wi th [C] and [ K ] respectively. is termed a modal participation 

factor, and this determines the contribution of mode i to the overall response. 

The importance of equation (3.3.66) is that all such equations for the different 

modes are uncoupled and may be solved independently. 
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4. Finite Element Method (FEM) 

4.1. General Concept of The Finite Element Method 

The finite element method(FEM) is a numerical solution procedure for the 

differential equations of physics or engineering. The FEM can be applied to 

various fields, for instance, the analysis of the frame structure of an aircraft or 

an automobile, a complicated thermal system, such as a nuclear power plant, 

or the analysis of all sort of f lu id dynamics. Other application areas include 

not only compressible gas f low but also electrostatics, lubrication problems, 

and the analysis of vibrating systems.^ 

The modern concept of the finite element method came f rom the approximate 

analysis of the structural elasticity problem which is discussed by 

Timoshenko( 2 8 ) . The term 'finite element' was wired by d o u g h ^ . I n the early 

1950s work using the FEM was first published by Turner, Clough, Martin, and 

Topp( 3 0 \ At the same time Argyris and Kelsey*31) presented the FEM in their 

publications. These publications led the significant development of the FEM 

among the researchers who worked principally i n structural mechanics. I n 

1963, Melosh02) contributed theoretically to the FEM by showing that the FEM 

was a variation of the Rayleigh-Ritz method. The FEM was applied to the 

Laplace and the Poisson equations, and thus Zienkiewicz and Cheung^33), 

Visser( 3 4\ Wilson and Nickel l ( 3 5 ) applied the FEM to conductive heat transfer 
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and some limited problems in f l u id mechanics i n their publications. I n 1969, 

Szabo and Lee^36) enlarged the range of applications for the FEM to the 

structural mechanics, heat transfer, f l u i d dynamics by using Galerkin's 

method or the least-squares approach. Nowadays wi th the development of 

both the numerical procedures and computer systems, the FEM has been 

applied to most engineering and industrial fields. 

The major concept of the f ini te element method is that any continuous 

quantity, such as temperature, pressure, or displacement, may be 

approximated as a discrete model composed of a group of piecewise 

continuous functions which are defined over a finite number of subdomains. 

The discrete model is composed as fo l lows^ : 

• Finite points i n the domain are identified. These points are defined as 

nodal points or nodes. 

• The value of the continuous quantity at each nodal point is denoted as a 

variable which is to be determined. 

• The domain is divided into finite subdomains named finite elements. 

These elements are connected at common nodal points and approximated 

according to the shape of the domain. 

• The continuous quantity is identified over each element by a polynomial 

that is defined i n terms of the nodal values of the continuous quantity. A 

different polynomial is defined for each element, but the element 

46 



polynomials are selected by virtue of the requirement that continuity is 

maintained across element boundaries. 

Several advantageous properties of the finite element method include^ : 

© The material properties i n adjacent elements do not have to be the same. 

This means that the method can be applied to bodies composed of several 

materials. 

® Irregularly shaped boundaries can be simplified using straight sided 

elements or matched exactiy using elements wi th curved boundaries. 

Therefore, the method is not l imited to simple shapes which have easily 

defined boundaries. 

9 The size of the elements can be varied. This property allows the element 

grid to be expanded or refined i n accordance wi th the need. 

® There are no difficulties i n applying boundary conditions such as a 

distributed load or zero displacement i n this method. Mixed boundary 

conditions can be easily applied and handled. 

• The above properties can be incorporated into one general computer 

program for a particular subject. For example, a general computer program 

for steady state dynamics is capable of solving problems of this type. Only 

the availability of computer memory and the computational costs are the 

l imit ing factors to solve a problem. 
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4=20 FSmte Elememilt Types aindl Shape FumnidtiitDiinis 

Instead of the real displacement, the approximate displacement <J> at any point 

wi th in an element may be expressed by an appropriate shape function, given 

the displacements at the element nodes. Because this is much easier than 

considering the real case to describe the deformation. For example, the three-

noded triangular element may be expressed as 

<|) = N1<1)1 +N 2<|) 2 +N3(t>3 (4.2.1) 

where <|>i, <J>2, <j>3 are the displacements at the three nodes, and Ni , N 2 , N 3 are the 

shape functions for nodes 1, 2 and 3 respectively. Developing equation (4.2.1) 

to the general case, an n-noded element may be written as 

<l) = 2N 1 ( t ) 1 (4.2.2) 

i=l 

The shape function is unity at the node to which i t refers only, and zero at all 

other nodes. 

I n general, equation (4.2.2) maybe written i n matrix fo rm 
M = [N]{d>e} (4.2.3) 

where {<]>} is a vector containing the displacement components at any point in 

the element, [N] is a shape function matrix, and is a vector containing 

the nodal displacements. The size of these matrices is dependent on both the 

number of nodes i n the element and the number of degrees of freedom for 

which the displacements are active. 
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I n general, the shape function is a polynomial, and its order is determined by 

the element type. 

I n 1972, Oden<37> classified finite elements into three groups defined as 

simplex, complex, and multiplex according to the order of the element 

polynomial. The simplex elements have an approximating polynomial that 

consists of the constant term plus the linear terms. The number of coefficients 

i n the polynomial is equal to the dimension of the coordinate space plus one. 

For an one-dimensional simplex element such as a line segment, the 

polynomial function may be written as 

<)) = a 1 + a 2 x (4.2.4) 

Figure 4-1 shows three types of the one-dimensional line element. 

(a) linear (b) quadratic (c) cubic 

Figure 4-1. One-dimensional line elements 

This element is normally used i n one-dimensional heat transfer problems and 

structural problems of welding or mounting conditions. 

The two-dimensional element has two general types. A triangular element 

may have a different number of nodes according to the order of the element. 

I n fact a 3-noded triangular element is a very poor element. I t is more 

common to see the 6-noded triangular element used. Likewise, the 8-noded 
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quadrilateral element is at least as common as the 4-noded linear quadrilateral 

element, though the 4-noded quadrilateral element is not as poor as the 3-

noded triangular element. 

The polynomial 

<b = ot, + a 2 x + a 3 y (4.2.5) 

is the simplex function for the two-dimensional triangular element. The 

polynomial is linear i n x and y and contains three coefficients because the 

triangle has three nodes. 

Three types of the two-dimensional triangular element are presented in figure 

4-2. 

o o o o 

(a) linear (b) quadratic (c) cubic 

Figure 4-2. Two-dimensional triangular elements 

And the interpolation polynomial for the tetrahedron is 

<|) = a, + a 2 x + a 3 y + a 4 z (4.2.6) 

The complex elements use a polynomial function consisting of the constant 

and linear terms plus second, third, and higher-order terms as they are 

needed. The complex elements can have the same shapes as the simplex 
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elements, but they have additional boundary nodes and may also have internal 

nodes. The primary difference between the simplex and complex elements is 

that the number of nodes i n a complex element is greater than one plus the 

dimension of the coordinate space. A n interpolating polynomial for a two-

dimensional complex triangular element (quadratic triangular element) is 

<j) = ax +a 2 x + a 3 y + a 4 x 2 + a 5 x y + a 6 y 2 (4.2.7) 

This equation has six coefficients, therefore, the element must have six nodes. 

I t is also complete through the second order terms. 

Considering a cubic triangular element, the interpolating polynomial is 

<|) = a, +a 2 x + a 3 y + a 4 x 2 +a 5 xy + a 6 y 2 + a 7 x 3 +a 8 x 2 y + a 9 xy 2 +a 1 0 y 3 

(4.2.8) 

The multiplex elements also use polynomials containing higher order terms, 

but the element boundaries must be parallel to the coordinate axes to achieve 

inter-element continuity. The element boundaries of the simplex and complex 

elements are not subjected to this restriction. 

The quadrilateral element is a multiplex element. And the rectangular element 

is a special case of the quadrilateral. 

Considering about the linear quadrilateral element, then the interpolation 

polynomial for the four-node rectangular element is 

<j> = a, +a 2 x + a 3 y + a 4 xy (4.2.9) 

The curvilinear coordinate system, £,r\, which is shown i n figure 4-3, is used 

instead of the natural coordinate system to describe the polynomial of the 

quadrilateral element.^ I n figure 4-3, the line segment £; = 1/2 is not parallel 
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to the r| axis, but i t connects points c and d which are the midpoints of the 

upper and lower chords bounded by £ = 0 and £ = 1. 

o 11 = 1 / 0 \ f 
\ T 1 = 0 / 

A \ 2 / 

U —J—6 
1 = 12 

0 * 

Figure 4-3. £TI curvilinear coordinate system 

This quadrilateral element is referred to as the linear quadrilateral because the 

interpolating polynomial is linear i n £ along lines of constant n and vice versa. 

Quadrilateral elements wi th 8 and 12 nodes are referred to as the quadratic 

and cubic elements because the interpolating polynomials are either quadratic 

or cubic, along lines of constant t, or constant r\. The interpolating 

polynomials for these two elements are 

<J> = 0^ + a 2 ^ + a 3 r i + a 4 ^ T i + a5^ 2 +a 6 r | 2 + a 7 £ 2 r | + a 8 4r | 2 (4.2.10) 

(|) = a 1 + a 2 ^ + a 3 T i + a 4 ^ T i + a5^ 2 + a 6 n 2 + a£2r\ + aifyc\2 

+ a 9 £ 3 + a 1 0 n 3 + a n ^ 3 n + a 1 2 ^ T i 3 (4.2.11) 

Figure 4-4 shows three types of the two-dimensional quadrilateral element. 
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o o L o o o 

o o o 
(a) linear (b) quadratic (c) cubic 

Figure 4-4. Two-dimensional quadrilateral elements 

The tetrahedron element and the parallelepiped(hexahedral) element are the 

common three-dimensional elements. 

The most stable element for the th in shell panel structure is the quadrilateral 

element. New element formulations are continually under development, for 

example, a new four-node quadrilateral element which can effectively describe 

the bending behaviour of th in plates is described by Roufaeil i n 1993- ( 3 8 ) The 

common quadrilateral element uses quadrilateral shape functions. Figure 4-5 

shows other particular types of a quadrilateral element which is constructed by 

triangular elements. 

Figure 4-5. Several types of the quadrilateral element constructed by triangular elements 
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4o3o Stiffness Matrix 

The mass and stiffness matrices for each element reflect the fact that degrees 

of freedom are shared between elements. For instance, i f two bar elements jo in 

at node 2, the displacement at node 2 becomes part of two sets of equations. 

These sets of equations need to be solved together to f i n d the displacement 

value which wi l l satisfy the equations for both elements. Considering the 

whole model, all of the stiffness and mass matrices need to be combined into 

one large set of simultaneous equations, which may be written i n matrix form 

such as follows, 

[ M ] { i } + [ C ] { i } + [K]{z} = {F} (4.3.1) 

where [ M ] , [C] and [ K ] are square matrices of size (n x n) for a n degree of 

freedom problem. Vectors { x } and { F } contain the displacements and forces 

considered at each degree of freedom. I n this respect the FEM looks similar to 

the MDOF vibration analysis procedures. But the difference comes i n the 

generality; the mass and stiffness matrices may be computed for a large 

number of standard shape elements i n FEM. A FEM software package such as 

NASTRAN or ABAQUS is supplied wi th libraries of many types of elements : 

bars, beams, triangular plane stress, quadrilateral plane stress, triangular and 

quadrilateral th in shells, thick shells, tetrahedral solids, wedge shaped solids, 

and hexahedral (cuboid) solids. These can be used wi th different orders 

(constant, linear, quadratic strain, etc.), and as such researchers have access to 

a wide choice of elements. 

54 



I f the system is i n undamped free vibration, equation (4-3.1) can be written as 

[ M ] { I } + [K]{x} = 0 (4.3.2) 

where 

{ i } = - © 2 { s } (4.3.3) 

can be stated for a simple harmonic motion f rom equation (3.3.8). 

Substituting equation (4-3.3) into equation (4-3-2) gives 

-co 2[M]{x}+[K]{x} = 0 

or 

[ K - © 2 M ] { x } = 0 (4.3-4) 

As i n the frequency eigenvalue analysis of a MDOF system, the solution to 

equation (4-3-4) can be found. This can be solved by recognising that, because 

of the zero right hand side, the only non-trivial solution to the system is one i n 

which 

| K - C O 2 M | = 0 (4.3.5) 

The element stiffness matrix may be derived easily by the method of virtual 

work/ 4 ) 

By using an expression for the displacements at any point i n the element, an 

expression for the strain at any point i n the element can be developed. Using 

equation (4-2.3), the matrix fo rm of the strain-displacement relationships for 

the two-dimensional case may be written as 
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{ e } = e y = [ S ] « = [ S I N ] { * . } 

Y x y , 

(4.3.6) 

where [S] is a matrix containing the differential operators required to obtain 

the strains f rom the displacements. By defining a matrix [ B ] which is derived 

by performing the proper differentiation of [ N ] , equation (4.3.6) can be 

written as 

From equation (3.1.1), the stress-strain relationships may be used to f ind the 

stresses at any point i n the element. I n a two-dimensional linear elastic case, 

the matrix fo rm of the stress gives 

where [ D ] is the elasticity matrix which relates the stress components to the 

strain components. 

By the principle of virtual work for nodal displacement vector {<j)e}, the internal 

work Wi is equal to the external work W E . Where, the internal work Wi may be 

obtained by integrating the virtual stresses {a} and the virtual strains {e} over 

the total volume of the element V. 

{8> = [ S I N ] { * . } = [ B ] { * . } (4.3.7) 

{ a } = a y = [ D ] { e } = [D][B]{<j)e} (4.3.8) 
T x y j 

f { e } T { a } d V W i (4.3.9) 
V 

Substituting equations (4.3.7) and (4.3.8) into equation (4.3.9) gives 
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W, = |([B]{<t»e})T[D][B]{d,e}dV (4.3.10) 

V 

Since {<j>e} contains the nodal displacements which are constant through the 

element, equation (4.3.10) can be rewritten as 

W t = {( | . e } T J[B] T [D][B]dV{( | ) e } (4.3.11) 

V 

The external work W E is defined as the product of the nodal displacements 

vector {<|>e} and the nodal forces vector { F } which is applied to the element 

W E = { < | > e } T { F } (4.3.12) 

Combining equations (4.3.11) and (4.3.12) gives 

{F} = j[B] T [D][B]dV{d> e } (4.3.13) 
V 

Defining the element stiffness matrix [ K ] as 

[K] = J[B] T [D][B]dV (4.3.14) 

V 

then equation (4-3.13) maybe written as 

{F}=[K]{<|> e } (4.3.15) 
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5. Experiment 

I n the case of an actual vehicle, the viscous damping ratio of the door panel 

has been obtained by a simple experiment as follows, 

Impact 
Accelerometer 

Oscilloscope 

Figure 5-1. Experiment for measuring oscillation 

The amplitude of each oscillation can be measured by oscilloscope, so the 

logarithmic decrement is obtained f rom equation (3.3.31). 

The amplitude of the second oscillation was found to be 60 percent of the first 

oscillation amplitude, f rom equation (3-3.31) 8 is 

8 = In 
V 60 J 

But there were some significant problems i n capturing and accurately 

visualising the transient acceleration response. The value of 60 percent was an 
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approximation based on noisy data and should be considered as perhaps 60 + 

10 %. 

Substituting 5 = 0.51 into equation (3.3-33), 

; = A = M«o.0 8 l 
2K 2K 

the viscous damping ratio 0.081 is obtained. 

The value of C was established through the decay i n oscillations of the 

fundamental mode, and I t may not be applicable over the entire frequency 

range. However this study is comparative i n nature and i t would be expected 

to have reached the same conclusions on reinforcement design even i f the 

value of C, which is adopted was slightly i n error. 

This experiment was carried out on the Durham hybrid vehicle. Although the 

value of viscous damping ratio is variable according to vehicles, the viscous 

damping ratio 0.081 was applied to all analyses i n this thesis. 
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6. Modelling and Analysis 

6.1. Modelling 

The original model and models of several reinforcement types have been 

produced using ABAQUS, commercial finite element code. Continuum 

elements, based on elasticity theory, are employed. 

The deformation mode is assumed to be linear-elastic; i n this case there are no 

plastic stresses and plastic strains. The case of inelastic deformation by 

repeated loading of air pressure is only occurred on fatigue crack. This is not 

considered in the scope of this research. 

I n the case of the vehicle's door panel, the model is defined using th in shell 

elements which can describe the stress and strain states adequately as 

described in section 3 .1 . ( 3 9 ) 

Thin shell t heo ry^ is the most appropriate to model the door panel assembly, 

which is constructed wi th th in panels including some spot welding points. 

Each panel of the assembly is divided into small th in shell elements. Welding 

points are modelled by using MPC(multi-point constraint)'s and a finite 

element discretisation of the door glass is fixed to the outer panel using further 

MPC's. MPC's are constructed by tying separate nodes of different parts to 

have identical displacement values. Most finite elements are the preferred 
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quadrilateral shape, but some parts are modelled by triangular elements 

unavoidably. A l l elements are quadratic i n order. 

The original CAD data of the door panel assembly are produced by CATIA 

which is the primary CAD software used in Hyundai. I n order to import the 

CATIA data into ABAQUS-Pre, the modelling tool of ABAQUS, the data were 

exported f r o m CATIA as IGES data i n advance. Then by importing the IGES 

data into ABAQUS-Pre, i t is ready for modelling. 

I n ABAQUS-Pre, the 'mesh-seed' function is generally applied to guide the 

finite element meshing, but i n some cases, according to the shape of particular 

part, the 'mesh' or 'element' function can be selected appropriately. 

I t is very important that the proper number and size of the elements should be 

decided i n terms of the purpose and accuracy of the analysis. This crucial 

aspect of f ini te element modelling is documented at great length i n many texts 

and wi l l not be described further here.^39) 

The material of the door window is glass, and for all structural panels, the 

material is steel. Unt i l recently, steel has continued to be the most general and 

useful material for a vehicle's structural panels i n view of the cost, structural 

strength and manufacturability. 

Figure 6-1 shows the vehicle door panel assembly which is studied i n this 

research. 
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Moulding mounting 
reinforcement 

Door frame 
reinforcement 

Door window glass 
Door hinge face 
reinforcement 

Door outer rail 

Door hinge 
mounting Door latch 

ft reinforcement mounting 

\> 
reinforcement 

ft 

Door inner panel Door outer panel 

glass 

Figure 6-1. Parts of the door panel assembly 

Each panel is given a thickness equal to the actual vehicle's door panel, wi th 

particular values as shown in table 6-1. 

Part name Panel thickness (mm) 
Door outer panel 0.8 
Door inner panel 0.8 

Door frame reinforcement 1.2 
Door outer rail 1.0 

Door hinge face reinforcement 1.4 
Door latch mounting reinforcement 1.0 
Door hinge mounting reinforcement 2.0 
Moulding mounting reinforcement 0.6 

Door window glass 4.0 

Table 6-1. Panel thickness of each part 
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The pipe reinforcements for side impact safety located in the below door belt 

region are not included in the model because they do not greatly influence this 

vibration analysis. The main concern is the vibrational deformation of the 

frame region only. 

It should be noted that finite element tests have shown that the natural 

frequencies for the door panel with and without these assembled parts are 

similar, and therefore it may be deemed reasonable to omit these parts from 

the model for the purposes of this research. This will be further detailed later 

in section 7.2. 

Figure 6-2 shows the finite element model of model 1 which is the original 

model before modifying the reinforcement. It contains 8448 thin shell 

elements and 8904 nodes. The numbers of nodes and elements of each parts 

and several reinforcements are presented in table 6-2. 

For table 6-2, reinforcement 6 does not have finite elements, because it was 

created by addition 1.2mm to the thickness of the door inner panel. 

For clarity, figure 6-3 shows the finite element models of the separate panels 

which make up the model. 
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Figure 6-2. Finite element model of the original model (model 1) 

Part name Number of nodes Number of elements 
Moulding mounting reinforcement 192 96 

Door frame reinforcement 1318 1047 
Door window glass 688 612 

Door hinge face reinforcement 809 749 
Door hinge mounting reinforcement 80 62 

Door inner panel 4122 3839 
Door latch mounting reinforcement 30 20 

Door outer panel 1849 1711 
Door outer rail 377 312 

MPC(multi-point constraints) 270 0 
Total in the original model 8904 8448 

Reinforcement 1 756 630 
Reinforcement 2 321 243 
Reinforcement 3 435 387 

Reinforcement 4, reinforcement 9 887 757 
Reinforcement 5 1712 1609 
Reinforcement 7 903 737 

I Reinforcement 8 450 231 

TaMe 6-2. The umamber off modes and elements off each part 
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Moulding mounting 
reinforcement 

Door frame 
reinforcement 

Door window glass 

Door latch mounting 
reinforcement 

SB 

i 

Door hinge face 
Door inner panel Door outer panel reinforcement 

> Door hinge mounting 
reinforcement Door outer rail 

1 

Figure 6-3. Finite element models of parts 

Figures 6-4 to 6-13 present the shapes of reinforcements for each model. 

Model 2 is the base model which is generated from the original model by 

removing the original frame reinforcement. 

The thickness of the reinforcements is 1.2mm, but for reinforcement 8 (model 

10), the thickness is 4.0mm. 

After analysing the basic model, several further cases were investigated 

according to various changes of the panel assembly's geometry and the 

thickness of reinforcing material. This will be used as a basis for determining 

an optimum solution of high dynamic stiffness and low weight. 
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Figure 6-4. Model 1 (original model ) 
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Figure 6-5. Model 3 (reinforcement 1) 
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Figure 6-7. Model 5 (reinforcement 3) 
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Figure 6-8. Model 6 (reinforcement 4) 
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Figure 6-9. Model 7 (reinforcement §) 
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Figure 6-11. Model 9 (Reinforcement 7) 
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Figure 6-12. Model 10 (reinforcement 8) 
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Figure 6-13. Model 11 (reinforcement 9) 
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6,2. Analysis 

The load and displacement boundary conditions are as follows : 

1. The load of air pressure acting as a distributed load applied to the whole 

area of the outer panel and glass, and its direction is normal to the panel 

and glass elements as shown in figure 6-14. 

2. Two points of door hinge mounting on A-pillar region and one point of 

door latch mounting on B-pillar region are fixed. (Figure 6-15) 

3. The loading is assumed to be of sinusoidal form and is applied at the first 

three natural frequencies for each model. It is assumed that the worst case 

for vibrational deformation of the door panel will be at a forcing frequency 

which coincides with one of the structural natural frequencies. 

Steady-state 
pressure 

Figure 6-14. Boundary condition of models (pressure loading) 
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Door hinges 

A 

Door latch 

Figure 6-15. Boundary condition of models (fixed area) 

Stress distributions and nodal displacements of several reinforcing 

configurations have been obtained by ABAQUS and graphs of the 

deformations built up. 

The first two or three modes of vibration are used as a basis for the dynamic 

stiffness analysis because generally the maximum deformation of the frame 

occurs in the first or second mode. It will be seen that the fourth and higher 

modes have much smaller amplitudes under forced vibration of the car door. 

Maximum stresses and displacements of the modes will be compared with 

each other. 

The values of Young's modulus, density, and Poisson ratio for steel and glass 

are shown on table 6-3. 

(Table 7-3) 
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| Value (unit) Steel Glass 1 
I Young's modulus (kg/mm-sec2) 2.068 x i o 8 6.5 x 107 

Density (kg/mm 3) 7.827 x 10-6 2.334 x 10-6 

1 Poisson ratio 0.3 0.183 1 

Table 6-3. Engineering values of steel and glassMO) 

(In this thesis, units kg/mm-sec2 and kg/mm3 are used instead of the standard 

units Pa (kg/m sec2) and kg/m3 because the door panel is designed by the mm 

length unit.) 
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7o Results and Discussion 

7 o l c Results 

Figures 7-1 to 7-9 show the contours of displacement and the deformed shapes 

(which are amplified by a factor of 20) of model 1 under forced vibration at 

each natural frequency. 

Figures 7-10 to 7-23 present the displacement contours of each model under 

forced vibration at the natural frequency where the maximum displacement 

occurs (see table 7-2). For contour figures, the largest deformation occurs in 

the red zone. The direction of the displacements which are shown in contour 

figures is Y-direction of the absolute coordinate system. For clarity, no 

contour scale is included in these figures, which are intended to show the form 

of the displacement. Table 7-1 shows the maximum displacement value for 

each model. 

Figure 7-20 and 7-21 are obtained by changing the thickness of reinforcement 

9 (model 11) to 1.5mm and 2.0mm each, and figure 7-22 is the result of the 

more detailed model which is generated from model 1. 

Figure 7-23 shows the displacement contour of model 2 with sealing system. 

(It is same as figure 7-10, see section 7.2 table 7-5) 
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Figure 7-1. Displacement contour of model 1 at the 1st natural frequency 
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Figure 7-2. Deformation quarter view of model 1 at the 1st natural frequency 
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Figure 7-3. Deformation rear view of model 1 at the 1st natural frequency 
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Figure 7-4. Displacement contour of model 1 at the 2nd natural frequency 
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Figure 7-5. Deformation quarter view of model 1 at the 2 nd natural frequency 

Figure 7-6. Deformation rear view of model 1 at the 2nd natural frequency 
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Figure 7-7. Displacement contour of model 1 at the 3rd natural frequency 

Figure 7-8. Deformation quarter view of model 1 at the 3rd natural frequency 
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Figure 7-9. Deformation rear view of model 1 at the 3rd natural frequency 
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Figure 7-10. Displacement contour of model 2 
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Figure 7-12. Displacement contour of model 4 
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Figure 7-14. Displacement contour of model 6 
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Figure 7-15. Displacement contour of model 7 
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Figure 7-16. Displacement contour of model H 
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Figure 7-17. Displacement contour of model 9 
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Figure 7-18. Displacement contour of model 10 
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Figure 7-19. Displacement contour of model 11 
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Figure 7-20. Displacement contour of nu l l 12 
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Figure 7-21. Displacement contour of m<KleI 13 

Figure 7-22. Displacement contour of more detailed model 
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Figure 7-23. Displacement contour of model 2 with sealing system 

The relationship between maximum displacements and maximum stresses is 

presented on table 7-1. The smallest maximum displacement is occurred on 

model 11 which has the smallest value of the maximum stress. 

Model Eigenmode Max. displacement (mm) Max. stress (kg/mm sec 2) 
1 1 6.171 3.6076E+05 
2 1 7.498 4.0607E+05 
3 2 3.298 1.6200E+05 
4 1 7.145 3.8792E+05 
5 2 3.397 1.2430E+05 
6 2 2.991 1.4865E+05 
7 1 6.863 3.9130E+05 
8 1 3.287 1.8794E+05 
9 2 3.227 1.4073E+05 
10 1 4.771 3.5357E+05 
11 1 2.525 1.0428E+05 

Table 7-1. Max. displacements and stresses of models 
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The maximum displacements and the natural frequencies of each model are 

listed in table 7-2. 

Model Eigenmodes Natural frequency (Hz) Max. displacement (mm) 
Eigenmode 1 24.3 6.171 

1 Eigenmode 2 42.2 1.541 
Eigenmode 3 43.6 1.103 
Eigenmode 1 25.6 7.498 

2 Eigenmode 2 30.2 1.571 
Eigenmode 3 44.5 3.562 
Eigenmode 1 35.2 1.229 

3 Eigenmode 2 39.3 3.298 
Eigenmode 3 47.4 3.02 
Eigenmode 1 28.6 7.145 

4 Eigenmode 2 33.0 1.735 
Eigenmode 3 45.7 3.37 
Eigenmode 1 31.4 3.013 

5 Eigenmode 2 33.6 3.397 
Eigenmode 3 46.0 3.484 
Eigenmode 1 38.9 2.638 

6 Eigenmode 2 40.1 2.991 
Eigenmode 3 46.6 3.12 
Eigenmode 1 28.2 6.863 

7 Eigenmode 2 33.7 1.31 
Eigenmode 3 45.6 3.474 
Eigenmode 1 32.1 3.287 

8 Eigenmode 2 37.4 0.821 
Eigenmode 3 48.8 3.094 
Eigenmode 1 33.2 1.011 

9 Eigenmode 2 38.3 3.227 
Eigenmode 3 47.7 3.191 
Eigenmode 1 28.8 4.771 

10 Eigenmode 2 31.5 1.892 
Eigenmode 3 45.7 3.453 
Eigenmode 1 35.6 2.525 

11 Eigenmode 2 38.3 2.26 
Eigenmode 3 46.1 3.339 
Eigenmode 1 37.1 2.12 

12 Eigenmode 2 40.1 2.237 
Eigenmode 3 46.3 3.293 
Eigenmode 1 39.3 1.711 

13 Eigenmode 2 42.8 2.166 
Eigenmode 3 46.4 3.186 

Table 7-2. Details of natural frequencies and max. displacements of models 



7o2<, Discussion 

Although the values of maximum displacement in table 7-2 seem high in 

comparison with our experience of door panel vibration, it should be 

recognised that they result from an extreme case, i.e. steady state forcing at a 

natural frequency causing a condition of resonance. In practice, this type of 

forcing is likely to occur for only a fraction of a second, causing displacements 

to be much smaller. 

Table 7-3 shows the displacements of the first ten vibration modes of model 11. 

The displacements of the fourth and higher modes are much smaller than the 

displacements of the first three modes. In addition, according to equation 

(3.2.5), when the car speed is lOOkm/h, the vortex shedding frequency in the 

outside mirror area is around 40Hz. Table 7-3 shows this to be in the range of 

the first three modes. For these two reasons, it is justifiable to use the first 

three modes for analysis of pressures oscillating as a result of air flow past a 

wing mirror. 

Eigenmode Natural frequency (Hz) Max. displacement (mm) 
1 35.6 2.513 
2 38 3 2.270 
3 46.1 3.320 
4 54.3 0.7041 
5 56.2 0.6251 
6 64.1 0.6462 
7 67.0 0.9606 
8 77.3 0.2479 
9 82.7 0.1638 
10 83.8 0.1533 

Table 7-3. Max. displacements under forced vibration at 
the first 10 natural frequencies for model 11 
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There are many parts below the door belt region in an actual vehicle, such as 

the side impact safety beam and the window glass regulator, which have not 

been included in the finite element model in this study. However, for one 

model a more detailed finite element study including these features has been 

run. Table 7-4 shows that the first two natural frequencies remained similar 

while some 10% change in the third natural frequency was observed. Since the 

model shapes were similar with and without these features, and assuming that 

the effects on displacements by neglecting these features will be the same for 

all models, the choice of an optimum design from the reduced set of models 

should remain valid. 

Model Eigenmodes Natural frequency (Hz) 
Eigenmode 1 24.3 

1 Eigenmode 2 42.2 
Eigenmode 3 43.6 

More Eigenmode 1 24.4 
detailed Eigenmode 2 43.6 
model Eigenmode 3 48.1 

Table 7-4. Comparison model 1 (original model) with more detailed model 

However, as can be seen from table 7-2, some models exhibit a maximum 

deformation when forced at the third natural frequency. In cases such as these 

the maximum deformation occurs in the below door belt region because of the 

characteristic form of the third mode shape. The study of the more detailed 

models has shown that these displacements are substantially overpredicted by 

the simplified models, and that when the structures such as the side impact 

safety beam are included the deformation is much reduced. For this reason, 
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the author has neglected any maximum displacements occurring when forced 

at the third natural frequency. 

The boundary conditions for the analysis included no consideration of the 

door seal. The sealing system provides some increased stiffness against 

vibrational deformation, but the influence is very small in comparison with the 

stiffness of the door panel. Thus the sealing system was omitted from the 

model. In verification, table 7-5 presents the finite element results which show 

no difference between the model 2 without a sealing system and the model 

with a sealing system. 

Model Eigenmodes Natural frequency (Hz) Max. displacement (mm) 

2 
Eigenmode 1 25.6 7.498 

2 Eigenmode 2 30.2 1.571 2 
Eigenmode 3 44.5 3.562 

Model 
with sealing 

system 

Eigenmode 1 25.6 7.498 Model 
with sealing 

system 
Eigenmode 2 30.2 1.571 

Model 
with sealing 

system Eigenmode 3 44.5 3.562 

Table 7-5. Analysis of model 2 (base model) about sealing system 

There is another variable to be considered which is called 'glass-run', 

representing the fixture running the glass along the frame, but the glass can be 

fixed to the frame tightly by the glass-run, constraining the glass against 

rotation relative to the frame. It is therefore reasonable to use a fixed type 

MPC to represent the glass fixing to the frame. 
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By modifying the reinforcements of the door panel the displacement of the 

door frame due to dynamic pressure is found to change, though different 

designs cause different results. 

Table 7-6 and figure 7-24 show the maximum displacements and weights of 

the models. From models 3, 4, and 5, it can be found that the effect of the B-

pillar reinforcement is much greater than that of the A-pillar reinforcement. 

It is also clear from figure 7-24 that there is an underlying reciprocal 

relationship between the weight of the door panel and its maximum 

displacement response. However, the relationship is not a simple one. 

The choice of quantitative criteria for selection of an optimum from the 

thirteen models is also a difficult problem. Moreover, different manufacturers 

will apply different criteria based on the market position of their vehicles. For 

example, a low volume of production luxury car might have model 13 as an 

optimum, whereas a high volume inexpensive car might have model 2 as an 

optimum. These are extreme cases, and a more balanced engineering 

approach would look for a reasonably low displacement in combination with a 

reasonably low weight. In view of this model 11 seems a more educated choice 

of an optimum for most vehicles. This design weighs almost 1kg less than the 

original (model 1), and has a maximum displacement of 2.525mm which 

compares very favourably with the original 6.171mm. In addition, the 

maximum stress has been reduced by a factor of 3.5, giving extra benefits in 

durability and fatigue resistance. 
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Model Max. displacement (mm) Eigenmode Natural frequency (Hz) Weight (kg) 
1 6.171 1 24.3 18.495 
2 7.498 1 25.6 15.901 
3 3.298 2 39.3 18.488 
4 7.145 1 28.6 17.591 
5 3.397 2 33.6 16.761 
6 2.991 2 40.1 18.884 
7 6.863 1 28.2 18.162 
8 3.287 1 32.1 21.062 
9 3.227 2 38.3 17.777 
10 4.771 1 28.8 17.686 
11 2.525 1 35.6 17.532 
12 2.237 2 40.1 17.95 
13 2.166 2 42.8 18.648 

Table 7-6. Max. displacements and weights of models 
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Figure 7-24. Graph for the max. displacements and weights of models 
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The reduction in displacement from 6.171mm to 2.525mm amplitude has a 

further, major significance in the reduction of aspiration wind noise. This 

results from the door seal design, a schematic cross-section of which is shown 

in figure 7-25. When the door is opened, the seal is of approximately circular 

cross section, but it compresses by an amount P (as shown on the right hand 

side of the figure) when the door is closed. In a typical vehicle door seal, the 

distance of compression p is chosen to be around 4 or 5mm. Thus the 

reduction of door vibration to a value below this may be seen to have a very 

substantial effect in noise reduction. 

Door panel 

O O 
Sealing system 

(a) Uncompressed (b) Compressed by door 

Figure 7-25. Compression of sealing system 
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8 0 Conclusions and Recommendations for Further Work 

A number of different designs for car door panel reinforcements have been 

assessed, using the finite element method, for dynamic stiffness performance 

and weight. This gives valuable information on the cost of bringing about 

reductions in wind noise. 

It is found to be more weight-effective to reduce the bending vibration 

displacement by reinforcing not the whole frame area but only the frame side 

regions. So if the frame reinforcement and outer rail are removed, and small 

reinforcements are added to only the B-pillar and A-pillar areas of the inner 

and outer panels, both weight reduction and increased stiffness may be 

achieved. 

It has further been found that the effect of the B-pillar reinforcement is much 

greater than that of A-pillar reinforcement. 

The door frame vibration may in general be reduced by increasing the 

reinforcements of the door frame side. But it is recognised that overweight 

brings some negative effects with respect to the cost and emissions. 

The design of a vehicle's door panel assembly is a complex process which 

should be considered from the production of the unit on line. The engineering 

designer aims to reduce the weight and the cost of vehicles, because the final 

aim of all those processes is creation of profits. Thus the improvements in 

wind noise performance must be considered in relation to the cost of bringing 
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them about. This research suggests a cost-effective optimum design (see 

figure 6-13 on page 69) to cut the displacement of bending vibration to 40% of 

the original while at the same time reducing the weight by almost 1kg. In 

addition, the maximum stress has been reduced by a factor of 3.5, giving extra 

benefits in durability and fatigue resistance. In order to achieve more noise 

reduction, increasing the weight and the cost may be required, and the 

modifications may cause many difficulties in line processes. 

In the future, by using a super computer, it will be possible to model and 

analyse not only the door panel assembly but also the more detailed features of 

the door including trims, mouldings, and sealing systems. Moreover engineers 

will be able to obtain the relationship between the overlap magnitude of the 

sealing system and the stiffness of the door panel assembly for many possible 

cases. They can use this information to design the door panel assembly and 

the sealing system optimally, decreasing the aspiration wind noise 

significantly. Taking a step forward, there can also be structural resonant 

vibration in panels such as the quarter outer panel, and it is possible to reduce 

the resulting noise by similar techniques. 

In addition, a fully coupled analysis which includes aerodynamics, structural 

vibration, and interior acoustics problem will be made possible. 
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