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Preface 

This thesis summarises work done by the author between October 1994 and 

April 1998 at the Department of Mathematical Sciences of the University of 

Durham and at CERN theory division under the supervision of David FairUe. 

No part of this work has been previously submitted for any degree at this or any 

other university. 

Chapter one serves as an introduction and no claim is made for originality. 

Chapters two, three and four are believed to contain mostly original work by the 

author with the obvious exception of the introductory sections. (Work that is 

not that of the author shall be properly acknowledged.) The material of chapter 

two is published in Physics Letters B403 (1997) 250; chapter three is based on a 

paper published in Physics Letters B409 (1997) 153 and the work presented in 

chapter four is due to appear in Nuclear Physics B. 

The copyright of this thesis rests with the author. No quotation from it 

should be published without his prior consent and the information derived from 

it should be properly acknowledged. 



Abstract 

This thesis is concerned with so called chiral gauge theories, also known as 

self dual gauge theories. In particular, the aim of this thesis to investigate the 

role that chiral gauge theories play in duality symmetries in lower dimensions 

through dimensional reduction. 

Chapter one serves as an introduction to the notions of duality in field and 

string theory. The problems of formulating well defined actions for self-dual 

gauge theories are introduced as well as a brief presentation of the different 

approaches used to over come these problems. 
Chapter two introduces dirnensional reduction and demonstrates how du­

ality symmetries arise from the dimensional reduction of self-dual theories in 
a variety of dimensions and on different compact spaces. Examples are pre­
sented where the couplings of the resulting theories are calculated explicitly 
in terms of the geometrical data of the compact space. The duality genera­
tors acting on these couplings are also calculated explicitly and related to the 
geometry/topology of the compact space. 

Chapter three deals with the idea of duality manifest actions and their 

relation to the self-dual theories in higher dimensions. Non-linear Born-Infeld 

type actions are introduced and again dimensional reduction is shown to play 

a role in the duality of the Born-Infeld action. This leads to a duality manifest 

version of the Born-Infeld action. 
Chapter four describes perhaps the main application of this thesis. The 

effective action of the M-theory five brane wrapped on a torus is identified 
with the effective action of the I IB D-3 brane dimensionally reduced on a 
circle (after some appropriate world volume dualizations). The I IB S-duality 
then arises as a result of the modular symmetry of the torus. 

The final chapter contains a brief summary and a hint of further directions 
for research that were outside the scope of this thesis. 



Acknowledgements 

First and foremost, I must acknowledge the encouragement and faith of my 

supervisor Professor David Fairlie. I have also benefited from discussions with 

Peter Bowcock, Ed Corrigan, Pat Dorey, Roberto Emparan, Ruth Gregory, Valya 

Khoze, Neil Lambert, Hong Liu, Ivo Sachs, John Schwarz. 

I have also received support from many people too numerous to list though 

Sharry Borgan, Alan Rayfield, Rob Bryan and Andrew Pocklington deserve a 

special mention. I would also like to thank Isobel Martin for continuous support, 

encouragement and incredible patience. 

This work was funded by Particle Physics and Astronomy Research council. 

I would like to dedicate this thesis to my parents. 



Contents 

1 Introduction 3 

1.1 Duality in field theory 4 

1.1.1 Global Questions 8 

1.2 Duality in u-models 14 

1.2.1 T-duality in string theory 16 

1.3 Self-dual/Chiral Gauge theories 23 

1.3.1 PST approach 27 

2 Dimensional reduction of self-dual theories 30 

2.1 Introduction 30 

2.2 Reducing self-dual p-forms 31 

2.3 A two form theory in 6 dimensions 34 

2.3.1 Compact space: a two torus 34 

2.3.2 Compact Space: a four manifold 38 

2.4 A four form theory in ten dimensions 40 

2.4.1 Summary 48 

3 Duality manifest actions and non-linear theories 49 

3.1 Introduction 49 

3.2 Duality manifest Maxwell theory in four dimensions 50 



3.3 Reduction of self-dual two form on K3 55 

3.4 Non-linear theories and duality 57 

3.4.1 Duality in Born-Infeld theory 57 

3.4.2 Non-linear self dual 2-form theory in six dimensions . . 60 

3.4.3 Dimensional Reduction on 62 

3.4.4 Conclusions 68 

4 The M-theory five brane and the IIB D-three brane 70 

4.1 Introduction 70 

4.2 The M-theory 5-brane 81 

4.3 The D-3 brane 92 

4.4 Conclusions 100 

5 Conclusions and further speculations 103 

A Differential forms 106 



Chapter 1 

Introduction 

The study of symmetries in nature is the heart of contempory theoretical 
physics. Geometry provides a natural and intuitive way of expressing these 
symmetries. New unexpected symmetries, known as dualities are now playing 
a central role. I t seems natural that a geometric understanding of these 
symmetries is available. This thesis will examine the role of chiral/self-dual 
gauge theories in providing a geometric description of the origin of these 
hidden duality symmetries. The main application of this will be in relating 
the M-theory five brane compactified on a torus, which contains on its world 
volume a chiral two form, with the IIB D-3 brane. The S-duality of the IIB 
theory will then arise as a result of the geometry of the compact space and 
the nature of the chiral gauge theory. We begain by introducing the notions 
of duality in field theory, sigma models and string theory. We then move on 
to introduce chiral gauge theories themselves. 



Duality in Geld theory / 

1.1 Duality in field theory 

We begin by considering an Abelian free p-form theory in D-.dimensions in 

the absence of sources. The action is given by: 

Where F = dA is the field strength associated with the potential, A 6 

A P ( M ^ ) . Where K^{M^) denotes the space of p-forms on and d is the 

exterior derivative. See appendix A for form conventions. The equations of 

motion and Bianchi identities are given respectively as follows: 

d*F{A) = 0 (1.2) 

dF{A) = 0 (1.3) 

One notes immediately that the Bianchi identity and equations of motion 

are interchanged for a potential whose field strength is the Hodge dual of 

F. That is for H — *F where H = dB, equations 1.2 and 1.3 become 

respectively: 
dH = 0 (1.4) 

d*H = Q (1.5) 

One can see that equation 1.4 which is the equation of motion for F is the 
Bianchi identity for H and vice versa for equation 1.5. We note that H G 
A ^ - P - ^ ( M ^ ) from the action of the Hodge dual and so 5 G A ^ - P - 2 ( M ^ ) . 

Hence a p-form potential is dual to a D-p-2 form potential. Recall that a 
p-form in D-dimensions has n degrees of freedom where 

„ = — ^ (1.6) 
( D - p ) ! p ! 
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However, these are not all physical degrees of freedom. The number of phys­
ical degrees of freedom of a massless field is associated with removing the 
longitudinal polarisations and so to calculate the physical degrees of freedom 
nphys we consider the number of degrees of freedom of a p-form in D — 2, 
hence, 

( D - 2 ) ! 
" i D - 2 - p ) l p l ^^•'^^ 

From this we see, as one would expect, that the number of physical degrees 

of freedom of a p-form and its dual, a D-2-p form are equal. In fact, both 

formulations must be physically equivalent as the equations 1.2 and 1.3 are 

equivalent to 1.4 and 1.5. We can move between these different, so called 

dual, descriptions using an action formalism as follows. First, in the action 

1.1 we replace the field strength F{A) which is a closed p-t-1 form with an 

arbitrary not necessarily closed p+1 form, F. We then impose its closure 

through the use of a Lagrange multiplier, B G A^~P~^{M^) SO that we add 

to the action the term: 

S, = {-iyldBAF (1.8) 

The sign in front of the constraint is simply a convenient convention. This 

then gives the so called parent action 

Sp= [ lFA*F + {-iydBAF (1.9) 

First we will show that Sp is equivalent to the action 1.1. Rewrite the as 

S, = { - l y J d{B A F) + {-l)^-^-^B A dF (1.10) 

The first term is a total derivative and can be ignored in topologically trivial 

situations. The equations of motion for B imply dF = 0 which we can 

solve locally, to give F = dA. Upon substituting this into the action Sp we 
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recover the action 1.1. This is a classical equivalence. In order to examine 
the equivalence at the quantum level i t is necessary to consider the partition 
function and integration over the fields to be eliminated. This is discussed 
later. 

Now we shall derive the dual description of S by varying the action S'p with 

respect to F. One sees the equation of motion for F implies that 

*F = ( - l ) (P+i ) (^ -^ )d5 (1.11) 

We then put this into the action 1.9 to recover the dual action: 

SD = II^^H{B)A*H{B) (1.12) 

where H = dB the field strength for B. 

We shall now describe an alternative way to demonstrate equivalence between 
the action and its dual. The following argument is found in [1]. This method 
may be more readily applied to other situations; in particular it allows us to 
generate dual target spaces in sigma models. This is known as T-duality and 
will be discussed later. The first step is to observe that the action 1.1, apart 
from the usual gauge symmetry A ^ A + dx, where x ^ A ' ' ~ ^ ( M ^ ) exhibits 
a global symmetry.. This trivial symmetry is given by: A A + C, where C 
is a closed p form. Now we wish to extend the action 1.1 in order to make 
this symmetry local. This is achieved as follows, taking now C G A P ( M ^ ) 
not to be closed. We see under: 

A^A + C (1.13) 

F ^ F + dC (1.14) 

We now introduce a new field strength 

G = F-D (1.15) 

where D G A'^~*'^{M^) transforms under 1.13 as follows: 

D^D + dC (1.16) 
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Should we now replace F in action 1.1 with G given by equation 1.15 we see 
that the action will be invariant under transformations 1.13, 1.14. This is 
because G is invariant. So we see that D acts like a gauge potential for the 
symmetry 1.13, 1.14 in that we have introduced i t and its transformation to 
keep the action invariant under 1.13,1.14. Now it is clear that the new the­
ory possessing the local symmetry is certainly not equivalent to the original 
theory. To recover an equivalent description of the original theory one may 
constrain D to be pure gauge. When a field is pure gauge, a gauge choice 
may be made to gauge i t away and so the original theory will be recovered 
with only the usual local symmetry for A. 

And so we introduce a new field B G A''"^"^ with field strength, H = dB. 

Then, to constrain D to be pure gauge ie. closed we add the following term 

to the action: 

Sc = { - i r [ H{B)AD (1.17) 

After integration by parts we obtain 
Sc = { - i y f d{BAD) + {-lf-P-'BAdD il.18) 

J 

Now the equations of motion of B imply that dD = 0. Again the total deriva­

tive term is topological and so as before we will ignore it for the moment. 

The fact that D is closed implies i t is pure gauge and so we may set D = 0 

without changing the physics. With D set to zero the action now only pos­

sess the original local symmetry and the original action 1.1 is recovered. To 

generate the dual action we can instead integrate out D. The equations of 

motion for D imply: 

D^F+{-iy+^*H (1.19) 

Substituting this into the action produces the dual action as before: 

SD = U H{B)A*H{B) (1.20) 

Or one may simply fix a gauge for A using 1.13 so that A = 0. Then 

integrating out D is the same as integrating out F from 1.9. To summarise. 
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we take a global symmetry and make i t local by introducing an additional 
gauge field. We then constrain this gauge field to be pure gauge through 
use of a Lagrange multiplier. After integrating out the new gauge field we 
express the action in terms of the Lagrange multiplier which we now call the 
dual field. 

1.1.1 Global Questions 

One can think of the field A as being a connection on a U( l ) fibre bun­

dle whose base space is M ^ . A non-trivial fibration will allow us to have 

monopoles. This view of monopoles and gauge theories follows [2] as op­

posed to the perhaps more physical approach of Dirac [3]. We briefly recall 

how this arises. Consider the magnetic charge given by the integral of the 

fiux through a closed cycle as follows: 

Where S''+^ is a closed p+1 cycle. We have = E + U and allow A^ 

to be the connection on T,"^ so 

Where we have used Stokes theorem: dto = /^^ co and that 5E+ = -dT,~, 
due to the orientation properties of the boundary operator. The difference 

between connections on overlapping patches will be given by the transition 

function that is A'^ — A" = dx- This implies 

(1.23) = [ dx 

The group element, G = e"-^ must be single valued. This constrains the 

periods of x to be integer multiples of 27r. Therefore, dx = 2TTn n G Z 

and so: 
g = 2-Kn neZ (1-24) 
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This is the Dirac quantization condition. It states that magnetic charge g, is 
an integral multiple of 27r, we have implicitly set the electric charge to 1 as 
no coupling appears in 1.1. As an aside, the magnetic charge 1.21 is related 
to the first Chern class, Ci(L) of the bundle, L,hy g = 27rci(L). 
I t is clear that the constraint dD = 0, which follows from integrating out 
B from the action 1.18, does not imply one can use transformation 1.16 to 
gauge i t away globally. Essentially, for D 6 HP'^^{M^), that is for D a 
representative of the p-|-l cohomology of M ^ , we will not be able to gauge 
away D even though dD = 0. First we note that the first term in the 
action 1.18, (the total derivative) actually constrains the periods of D to be 
integer multiples of 2iv. We then note that the transformation 1.14 allows a 
shift in the periods of F by integer multiples of 2n. Hence, any non-trivial 
D 6 iy^+^(M^, Z) may be removed from the action by a shift in F using the 
transformation 1.14. 

We now move to the specific case of electromagnetism in 4-dimensions. This 
is the action 1.1 with A e A^(M^). We are free to add total derivatives 
to the action without affecting the equations of motion. Consider the term 
^ fj^4 F AF. This term despite being a total derivative is important in the 
presence of monopoles. (See [4] and references therein for a discussion.) I t has 
been shown that the effect of this term is to charge the monopoles electrically 
so that they in fact become dyonic. In fact a fundamental monopole will 
carry electric charge ^ . Extending the arguments for Dirac quantization to 
include objects that carry both electric and magnetic charges (dyons) one 
finds the equivalent quantisation condition, due to Zwanziger [5] is 

£i92 — ^291 = 27Tnh n e Z (1.25) 

Where Ci is the electric charge carried by object i and gi is the magnetic 

charge carried by object i . From now on we will set h to be one. 

Reinstating the coupling and introducing the theta term in the action we 

have: 
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In order to repeat the duality procedure for this action described above we 
rewrite i t in the following way. 

S = - ^ [ 5 > { r F W A * F W } (1.27) 

Where we have introduced the complex coupling 

T = n+iT2 = ^ + i% (1.28) 

and the (anti-)self-dual field strength: 

F ( ^ ) - F±i*F (1.29) 

We can write the action 1.27 as: 

S = ^ [ A - f F ( - ) A (1.30) 
327r JM* ^ ' 

With the action in this form i t is then trivial to repeat the duality procedure 
given above by introducing a (anti-) self-dual field strength H^^^ for the 
Lagrange multiplier field B. This gives for the parent action: 

S , = — f r F W A * F W - f F ( - ) A * F ( - ) - i f W A F W + i / ( - ) A F ( - ) (1.31) 
^ 32TTJM* 

Therefore, after finding the equations of motion of F̂ "*") and substituting this 

into the action to express the action in term of the dual field strength we 

find: 

The result of this is that the dual theory has the same form as the original 
theory but with the complex coupling inverted. In the absence of the theta 
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term the dual theory has coupling e = 2 ^ which we remark is the same as 
the monopole charge. ^ 

Hence one can think of the dual theory as being a theory in which monopoles 

are the fundamental objects and electrons are the topologically non-trivial 

objects. This is what one would imagine from exchanging the roles of 

Bianchi identities and equations of motion when moving between dual pic­

tures. Hence, we have shown that 

T ^ — (1.33) 
T 

is a duality symmetry. We also know that there ought to be a trivial sym­

metry created by shifts in 5R{r} as F A F is a total derivative. In fact one 

can show that a shift 
r ^ r + 1 (1.34) 

leaves the partition function invariant. First note that the quantisation condi­

tion 1.24 implies FaF will be quantised in multiples of 4(27r)^, [1]. Therefore 

the 9 term in the action 1.26 will give a contribution of 6m, m € Z. There­

fore, 6 ^ 9 + 2n leaves the partition function invariant. Translating this 

invariance in terms of r we see that this corresponds to the transformation 

1.34. 

Combinations of these two generators gives an element of the group SL(2,Z). 

Where the group acts as a fractional linear transformation on r as follows: 

r - ^ — — (1.35) 
cr -f- a 

where a, 6, c, c? € Z and ad — bc= 1. 

In fact this is the modular group of the torus with modular parameter r . 
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A: 

Figure 1.1: torus 

Recall that a torus may be described as the complex plane modulo a lattice, 

A. The conformal part of the lattice is defined by the modular parameter r 

as shown in the figure 1.1. Any transformation of r that leaves the lattice 

invariant is a symmetry of the torus. The two independent transformations 

are given by 1.33 and 1.34. Geometrically one sees that the first generator 

essentially switches the definition of a and b cycles while the second is just 

a shift by a lattice vector. 

We will now move on to consider aspects of the quantum theory and the 

dualisation procedure. This follows arguments given in [1, 6]. Suppressing 

the overall normalization factor arising form the regularisation procedure and 

the factor of the volume of the gauge group, recall that the partition function 

for action 1.26 may be written as follows: 

Z{r) = ( r 2 ) 5 ( ' ' - * » ) I VAe-'^^^^ (1.36) 

Where bi = dim( Harm*(M^)) is the i-th Betti number. 

The term in front of the functional requires some explanation. This is added 

to remove the integration over the zero modes of the fields in the partition 

function. There will be bi zero modes of A and bo zero modes of the the 

gauge transformation parameter. The prefactor cancels the contribution to 

Z from integrating over these modes. 

So introducing the parent action 1.31 and after gauging away A we are left 

^The factor of 2 occurs because of the normalisation of the charge. The reason for this 
choice is that often the action 1.26 is envisaged as an effective theory of a spontaneously 
broken SU(2) theory. The monopoles are then of a't Hooft-Polyakov type [7] which have 
magnetic charge, gsu{2) = "^Qdirac 
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with: 

Z{T) = {T2)2^^'~'">^ I VD+VD'VB+VB'e-^^^^^'^^^ (1.37) 

(Note, the action in 1.36 and 1.37 is in Euclidean space.) We now integrate 

out D^. As the action is Gaussian, we see that integrating out D is the 

same as using the equations of motion for D to eUminate it from the action. 

Therefore, the integration produces the dual action 1.32. 

We now have to be concerned with the Jacobian factor. For each mode of 

D~ we will have T'^ and for each mode of D"*" we will have Therefore, 

after the integration the partition function will be, and removing zero modes 

as before: 

Z{T) = (r^y^i'^-'^^T-'^o-f-l'^-' IVB^VB-e-'-^^^"^^ (1.38) 

Where b"^ = dim( Harm^='=(M^)) is the dimension of the space of (anti-) self 

dual Harmonic two forms on M ^ . 

Recall from above that if we write the partition function 1.36 in dual variables 

we have: 

^(;) = ( H ^ ) * " ' " 7 ^ ^ ^ " * " " (^-^^^ 

We rewrite the prefactor as follows: 

. T , ^ | ( . : - . o ) ^ (1.40) 

The comparison with the prefactor for Z{T) implies: 

Z{T) = fhi'>o-b.+'>^)^^,{bo-b,+b-)z(l'^ (1.41) 
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Standard identities for the Euler characteristic:^ = £ ^ o ^ j ( ~ l ) * the 
Hirzebruch signature a = b'^ - b~ imply: 

Z{T) = fiix+<')r-4(^-<^)z(^^) (1.42) 

Hence we see that when quantum effects associated with non-trivial topology 

of the base manifold are taken into account the partition function is not 

duality invariant but instead acts like a modular form whose weights are 

given by the topological data of the M ^ . 

1.2 Duality in cr-models 

We begin with a discussion of bosonic a models. The fields are maps from a 

d-dimensional space M into a D-dimensional target space T. 

:M-^T (1.43) 

We return to component notation so as not to confuse operations in the base 

and target spaces. The action is given by; 

6 ' = / d'a^rj'^-'d.X'd^X'GuiX) (1.44) 

Where, {cr'^} /u = 0..c? — 1 are coordinates on M. r]^^ is the metric on M. 
We can interpret {X^} I = 0..D — 1 as coordinates on T with metric on T 
given by Gjj. The equations of motion of X^{(T) are given by: . 

D^'df.X^ = 0 (1.45) 

Where is the covariant derivative on T pulled back to M. The pullback 

given by = d^X^Di The equation of motion implies that X'{a) must be 

a harmonic function. Thus, X^ is a harmonic map from T to M. 

Assume that T has an isometry. This implies the Lie derivative of the metric 

G^iy in the direction of some vector field v{a) vanishes. That is 

^ G ^ . = 0, 6,X' = V (1.46) 
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One can show that the action 1.44 is invariant under the transformation 1.46 
provided F is a Killing vector. 

5 , S = j d''a^f^r]>'''d^X'duX'V''dK{Gij) + 2d^y'duX-'Gij (1.47) 

Which becomes 

5 , 5 = / d''a^r]'''d^X'd,X\V''dKGij + 2GKjdiV'') (1.48) 

After some manipulations we find 

5,S^ f d'^a^r]^''d^X'd,X^D^iVj) (1.49) 

This vanishes if v obeys the Killing equation D(/Vj) = 0. Hence, an isometry 

of the target space, T is also a symmetry of the action 1.44. 

We now wish to find the dual action. We proceed as before by introducing a 

parent action constructed in the same way as in the field theory case. This 

approach to duality in cr-models follows the discussion in [8]. First, we choose 

adaptive coordinates such that V — We rewrite the action in terms of 

= d^X° a sort of field strength associated with the field X^. To generate 

the parent action, W is taken to a generic field and a Lagrange multiplier 

term is introduced to constrain dW = 0. We will again ignore global issues. 

Hence we find the following parent action, up to total derivatives: 

Sp= [ d'^a^/^GooW^W^ + 2GoiW^'d^X' + Gijd'^X'd^X^ 

+e''^f^2..^'-2-PB^^„^^_^daWp (1.50) 

B e A'^-2(M'^) 

I f we integrate out B we recover the original action 1.44. If we integrate out 

W we obtain the following dual action: 

^G,^-^^]d^X'd^X^ (1.51) 
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Where H = dB is the field strength of B and * is the Hodge dual on M ' ' . 
Note, the field B does not have any immediate interpretation, as X did, 
as a coordinate on T. Thus the duality transformation associated with an 
isometry on T results in replacing a coordinate on T with a field on M. The 
transformation also results in a change in the couplings that were interpreted 
as the metric on T. Note that in the case of d=2 then B will be a scalar field 
and the duality transformation maps a scalar to a scalar. The form of the 
action is then left invariant only the couplings have changed. Interpreting 
the couplings as a metric on the target space one sees that the dual theory 
is again a cr-model with dual target space f whose metric may be read off 
from 1.51. 

1.2.1 T-duality in string theory 

We now wish to concentrate on the case that is relevant to string theory. 
No attempt will be made here to review the whole of string theory. One 
simply notes that a string action, in so called Polyakov form, has the form of 
an extended cr-model whose base space M is the 2-dimensional world sheet, 
with coordinates = (r, a), and the target space T has an interpretation 
as space time. The cr-model is extended in the sense that the fields X also 
couple to a two form background field B through a pull-back to the world 
sheet. We will assume we are working with a superstring theory whose critical 
dimension is 10 though in what follows we only deal with the bosonic part. 
We also assume that the strings are closed such that cr = cr -I- 27r. The string 
action is 

Sstring = ^ rfV(v^Ty^'^G/y(X) + e''^Bij{X))d,X'd.X' (1.52) 

(^) has an interpretation of the string tension and so has dimensions of 

{lenlthy • String theory is a conformal field theory. However, in order for the 

the above action to be conformally invariant, that is have vanishing beta 

function, i t is necessary to impose some constraints on the couplings G and 
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B [9]. Vanishing of the beta function to one loop implies that the couphng 
G obeys Einstien's equation and, that B is harmonic on T. This is precisely 
what one requires to interpret G as the space-time metric and B a background 
field. There is also an additional allowed term that couples the world sheet 
to a scalar field, known as the dilaton. 

S.., = l / ^ « < ^ ) (1,53) 

We now assume as before that T possess an isometry. For an isometry to 
be present, in addition to the Lie derivative of the metric vanishing, the Lie 
derivative of B and $ must vanish. I t is trivial to demonstrate that in the 
presence of such an isometry the action 1.52 is invariant under SyX^ — eV'. 
Where V is the Killing vector that generates the isometry. This is a global 
symmetry of the action. Global in this instance implies independent* of the 
world sheet (of course V may depend on space-time). As was seen in the 
field theory section,, given a global symmetry we may construct a dual action 
using the following method. First, make the symmetry local by introducing 
an additional gauge style field with appropriate transformation properties. 
Therefore, 

d^X' ^ D^X' = d^X' + A^V' (1.54) 

where under 
SvX^ = e{a)V' SyA^^-d^^e (1.55) 

We then constrain the curvature of A to vanish by introducing the Lagrange 

multiplier term: 

Sc , ̂ / df^YA^e^"" (1.56) 

This term includes a total derivative that constrains the periods of A to be 
integer multiples of 27r and a term that constrains A to be closed. Hence, 
integrating out Y allows us to recover the original action as A may be globally 
gauged away. (See discussion in field theory section about global issues.) To, 
generate the dual action first go to adaptive coordinates such that = VS°^. 
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Then use transformation 1.55 to set X° = 0.. Finally, integrate out A. To 
make contact with other conventions we go to complex coordinates (r, a) 
z, z, where z = a + iT, and introduce the background matrix that combines 
the metric and two form potential as follows: Eu = Gij{X) + Bij{X). I t is 
also natural to absorb the tension into the target space coordinates to give 
dimensionless fields X' = The action written in these variables after the 
gauging away of X° is 

S= — [ dhEijdX'BX^ + EojAdX^ + EiodX'A 
47r J E 

+AdY - AdY (1.57) 

And so we set X° = 0 and integrating out A, A to give the dual action: 

58) SD = ~ [ d'z{dY - dX'E,o)E^,\dY + EoiX') + EijdX'BX^ (1. 
47r 

We define coordinates on a dual target space T by taking Y = X° and 
j^i ^ rpî g (l̂ £ l̂ target space then has a metric and background field 

given by: 

Goo = Go^ = P^ Gij = Gi,-{G,,G,,-B,,Boi)-^ (1.59) 
Goo tjoo ^00 

GQ ~ 1 
-Boi = T^T" ^ij — ̂ ij + {GoiBoj — BoiGoj)-^ (1.60) 

These are known as the Buscher rules for T-dual string backgrounds, see [10]. 

As yet we have not considered any quantum considerations. Equivalence of 

the partition functions will determine whether the dual theories are equiva­

lent at the quantum level. For ease of exposition, consider the case Goi = 0 
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and Bij = 0. The partition function, after suppressing the overall normal­
ization from the regularisation, is given by 

ZG = (Goo)'/'"" / I?Xe^(^) (1.61) 

The term in front of the functional is to remove the integration over the 
zero modes. (Here we are assuming that GQO is a constant). To obtain to 
dual action introduce the parent action as before. Integrating out W from 
the parent action implies we must have a factor of {GQO)'^^^'"- to eliminate 
its zero mode. The action obviously transforms as expected by the classical 
calculation given that the integral is Gaussian. A comparison is then made 
with the partition function written in dual variables, to give: 

Z = {GOO)'"'-'^""ZD (1.62) 

Recall for a two dimensional surface, the Euler characteristic is given by 

X = 2bo - bi and so 1.62 becomes: 

Z = { G o o Y ^ ' ' ' Z i , (1.63) 

This is in the absence of the dilaton term. Including this term, one sees that i t 
is independent of the classical transformations and so the classical discussion 
goes through without change. Recall via the Gauss Bonnet theorem that 
^ = X- Hence the dilaton couples to the Euler number of the world 
sheet. (This is the origin, from the string theory point of view, of the dilaton 
as the loop counting parameter in string scattering calculations.) This term 
then allows us to exactly identify the partition function with the duality 
transformed partition function by inducing a duality transformation for the 
dilaton. Hence under duality one requires ^ : 

$ = $-/n(G'oo) (1.64) 

The duality is then at the level of the partition functions and so the two quan­

tum theories are therefore equivalent. I f the background field B is reinstated 

then there is no change and the dilaton transforms in the same way. 

^Sometimes the dilaton coupling is written with a factor of ^ and so the dilaton 
transformation will differ by a factor of two in this case. 
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The equivalence of the partition functions under duality was not true in the 
field theory case for a general manifold. The main reason it can work here is 
due to the ability of the dilaton to transform in such a way as to cancel the 
factor appearing in the partition function duals. 

As discussed above, the field equations for the background fields must corre­
spond to the vanishing of the beta-function. The shift of the dilaton ensures 
that the beta-function of the dual couplings also vanishes; without this shift 
the dual theory would not be consistent. (The Jacobian factor that induces 
the dilaton shift under duality is a one loop effect. This is what one would 
expect given that the shifted dilaton solves the background field equations 
that were derived from the one loop beta function.) 

Essentially we take the isometry to be related to a compact coordinate on T. 

That is X° = X^ + 27r. The duality transformation then takes 

R^R^'^ (1.65) 
R ' 

Thus, a string in a space-time propagating in a spacetime, x is dual 

and so physically equivalent to a string propagating in a space x where 

S has radius, R and has radius R. 

Now the duality group is actually bigger than the Z2. Integral shifts in 

leave the partition function invariant. (5^^, is analogous to the theta coupling 

in field theory). Hence the actually duality group is SL{2, Z). To generalize 

the above discussion to a larger number of isometrics abelian corresponding 

to a space time M'^ x r^°~^ follows very naturally. Now the duality group is 

0{d, d, Z). See [12] for a review. 

The above discussion brings out the connection between T-duality in string 
theory and S-duality field theory. We will now approach T-duality from an 
entirely different perspective, mostly following [12]. For simplicity we ignore 
B in what follows. Call X the coordinate of the circle. Consider the equations 
of motion of X from the sigma model point of view. X must satisfy the free 
wave equation. In a flat background, the solutions will naturally split up into 
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right and left movers. 

X{a, T) = Xjiia -r)+ X^ia + r) (1.66) 

Carry out a mode expansion 

Xnia -T)=XR- pn{a - r ) + z ^ ]aiS'^-^^ (1.67) 

XL{a ^r)=XL- PL{(y + r ) + ^ E ya,e '̂('̂ +^) (1.68) 

where a; = + â iz and 

= (1-70) 

The total momentum is, P = pi -\- PR. Where m, n G Z. Recall that for 
objects propagating on a circle of radius R, momentum must be quantized 
in units of ^ . This the origin of the ( | ) terms in 1.70; n is the quantum 
number associated with momentum around S^. The other term mi?, requires 
some further explanation. I t corresponds to the contribution from a string 
wrapping around the 5"̂  m times. Recall, for X = X -f- 27ri2 and cr = cr 4- 27r: 

/ dX = mR (1.71) 
V51 

where m is the winding number of the string around the 5^ The contribution 

to the Hamiltonian, H may be written as 

H = LoL + LOR (1.72) 

where 

LOR = IPI + Z<^-I^I (1-73) 
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^ 1=1 

These are conserved independently because of conformal invariance. Now we 

observe that under 
R^-^ m^n ' (1.75) 

LQR and LoL are invariant as 

PR 

R 

-PR PL^PL (1-76) 

under the transformation 1.75. 

From this we see that the T-duality transformation R ^ ^ must be ac­
companied by exchanging momentum and winding numbers for the string. 
This result indicates how an extended object such as a string behaves very 
differently in the presence of compact dimensions. Essentially one can ex­
change a momentum mode in a compact direction for a wrapping mode with 
a compensating change the geometry to leave the physics invariant. This 
result will be generalized in some small way when considering objects whose 
extension is in more then one dimension. 

As discussed above, the equations that imply the vanishing of the beta func­
tion become the field equations for the background spacetime. Via this 
method one may construct a low energy effective action for the string the­
ory. Varying this action with respect to the background fields implies the 
necessary equations of motion such that the beta-function for the cr-model 
vanishes. (Low energy implies stringy effects are suppressed.) I t is well known 
that this gives a supergravity action. For closed strings with N=2 supersym-
metries there two possibilities depending on whether the fermions are have 
the same or opposite chirality. I IA denotes that fermions have different chi-
ralities and IIB denotes they have the same chirality. This will be discussed 
in more detail later. I f we dimensionally reduce the I IA theory on a circle the 
resulting theory is simply type I I in 9 dimensions. (Spinors are non-chiral in 
9-dimensions.) Similarly, I IB theory dimensionally reduced on a circle must 
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also be type I I in 9 dimensions. So both type two theories when dimension-
ally reduced must give the same theory in 9 dimensions. By equating the I IA 
on with I IB on it is possible to identify how to move between diff"erent, 
physically equivalent descriptions of the single 9-dimensional theory. These 
different descriptions correspond to T-dual descriptions. One important ob­
servation is the dilaton shift that emerged from quantum correction to the 
duality transformation in the partition function now is a result of identifying 
the two classical theories after dimensional reduction. Hence the low energy 
eflfective actions seem to contain quantum information of the string at the 
classical level. 

1.3 Self-dual/Chiral Gauge theories 

A self-dual gauge theory is a standard p-form theory whose field strength is 

self-dual. That is 
H = *H (1.77) 

where H = dB and B G A ^ ( M ^ ) . By considering the properties of the Hodge 

dual we obtain the following restrictions (see appendix A for some properties 

of the Hodge dual): 

i f e A ^ / 2 ( M ^ ) ^ B e A(^/2-i)(^2)) (178) 

For a D-dimensional spacetime with Lorentzian signature, the Hodge dual 

acting on a D/2 form is unipotent only for 

D = 2 mod 4. (1.79) 

Case D=2: a scalar theory with dt(f) = dxcf) which implies there are only 

left moving modes. This is the origin of the name chiral. The self-duality 

condition in 2-dimensions is equivalent to projecting out right moving modes. 

Such (anti-)chiral scalars are the foundation of the Heterotic string which 

treats left and right moving modes differently. 
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Case D=6: a two-form theory in 6-dimensions. This theory will be discussed 
in detail later on. In particular as i t arises as the world volume theory on 
the M-theory 5-brane. 

Case D=10: a 4-form theory in 10 dimensions. This theory arises in the 

Ramond Ramond sector of the IIB string theory. This is the potential that 

couples minimally to the D-3 brane. 

No other cases will be considered as the next instance would be with D = 14 
which does not have any applications. However, i t is perhaps worth mention­
ing that one may alter these conditions by changing the signature and so work 
in Euclidean space or in spacetimes with two or more time like directions. 
(This observation is related to theories such as F-theory [15] where there 
is an SO(10,2) structure so allows for a self dual 5-form or the speculative 
S-theory with a S0( l l ,3) structure [16, 17]) 

There arise immediate problems when trying to naively write down an action 
for such a self-dual field theory. First observe that the field strength for 
potentials that meet the conditions given above 1.78, 1.79 are necessarily 
odd forms. The usual kinetic term for an action given by 1.1 would then 
identically vanish for H obeying the self duality equation 1.77, as 

H A * H = HAH = 0 (1.80) 

One might consider writing an action for general a generic H with the self-
duality appearing as a constraint on H through use of a Lagrange multiplier. 
This however proves fruitless as the Lagrange multiplier becomes propagating 
18, 19, 20, 21]. This is obviously unphysical. There are several approaches 

to these problems. First, it is not clear why one would require an action: 
the equations of motion present no difficulty being given by 1.77 and the 
Bianchi identity for B. One requirement for an action would be to quantize 
the system, most obviously, via a path integral formalism. This turns out not 
to be possible [22, 23]. Hence it is not clear whether an action makes sense. 
Another possibility is to have an action for a non-chiral field and then impose 
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the self-duality projection afterwards. I f an action is required then there are 
two possibilities. One possibility is not to have an action that is manifestly 
Lorentz invariant. Another possibility is to allow additional auxiliary fields 
in the action. (This is similar to the Lagrange multiplier approach but the 
action is set up to avoid the problem of extraneous propagating degrees of 
freedom.) 

The approach due to Verlinde [6] and based on a formulation of Henneaux 

20] is as follows. 

The action for a generic p-form field in its first order form is as follows: 

/ HAdB-{--[ HA*H (1.81) 

This action is akin to the parent actions that we used to generate dual theories 

in the previous sections. H G A^/2(M^) and 5 G A^/2-^(M^) are treated as 

arbitrary independent forms. The relationship between H and B only arises 

from taking the equations of motion of either field. 

Impose the self-duality constraint by the following projection equation: 

iv{H -dB)=0 (1.82) 

V is an auxiliary vector that projects out half of the degrees of freedom carried 

by B. These equations lead to a similar action approach to the Henneaux 

formulation ifV = ^. One may specify V and then insert the results of the 

projection 1.82 into the action 1.81. This results is a loss of manifest Lorentz 

invariance in the action 1.81. One may show that Lorentz invariance is still 

present but i t is not apparent at the level of the action. Defining forms as 

being parallel or perpendicular to V as follows: iyX-^ = 0 and iyX^^ ^ 0 

one may decompose AP{M^) = A P I I ( M ^ ) 0 AP- ' - (M^) Hence, we write for 

H = H^ + i / l l and similarly dB = dB^ + d f i l Substitute this into 1.82 we 

obtain that 
= dB^ (1.83) 

We may then insert this into the action 1.81. The result of this is that only 

i f l l is then free. dB" only appears in the action as a total derivative and 
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can be ignored. The result of this manipulation is that we have halved the 
number of degrees of freedom. The equations of motion of i / " then imply 

i?" = *dB^ (1.84) 

Combining 1.83 and 1.84 we see that 

= (1.85) 

This is equivalent to equation 1.77 with a particular direction singled out. 

For example, consider a two form theory with V = ^ in flat space. Note, in 

component form: H^^ is Hoij and is Hijk, where we have split up {x*^} into 

{a;°,a;*}. This inspires a natural generalization of the definition of electric 

and magnetic fields for p-form theories. The electric field being defined as 

E^i = i / O i j magnetic fields as B'^ = j/^^^^'Bkim- Therfore one sees 

that equation 1.85 becomes 
E'^ = B'^ (1.86) 

This is the non-covariant form oiH = *H. Indeed one can now make contact 

with the.Henneaux, Teitelboim action [20]. Their action is given by: 

S = ! E-B-B'' (1.87) 

Varying this action then implies the equation 1.86. Returning to equations 

1.81 and 1.82, i t is important to note that nothing physical depends on V. I t 

simply provides a projection direction for the equation 1.85. The Henneaux 

formulation which is not manifestly covariant corresponds to a particular 

choice of V. Other choices of V produce the same equation 1.86 Lorentz 

transformed. 

I t is possible to add sources and still maintain the chirality condition provided 
that the electric and magnetic charges are equal [24]. For definiteness we 
will consider the two form case in six dimensions. We recall that a two form 
couples to a string world sheet. The current associated with a string is: 

J'^'^ = e jj^X-xo)dX''AdX" (1.88) 
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Where E is a string world sheet X'^{T, a) is the embedding of the string into 
the in 6-dimensions. The magnetic string which would be akin to a Dirac 
monopole must now be constrained to have charge g — e. Then via the Wu-
Yang or Dirac arguments (see section on field theory) the usual quantization 
condition gives = nh. The current may be coupled minimally in the action 
as follows 

Ssource = f BA*J (1.89) 

provided one also redefines the electric and magnetic fields as follows: 

B'^ = y^''^H,im-G''^ (1.91) 

The 3-form G is completely determined by the current as follows: 

d*G = -J (1.92) 

1.3.1 PST approach 

This follows the work of [25] generalized for a p-form. Consider the Lorentz 
invariant action for the p-form B with field strength H = dB given by: 

1 r A * 
SpsT = - HA*H + ^uAdW (1.93) 

2 J MO 

where we have introduced an auxiliary fields u and W and defined if"*"'" = 
iuH'^ where H'^ satisfies the self duality condition 1.77. The action is invari­
ant under the following local transformations: 

SB = dx, 6W^d(j) (1.94) 
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these are the usual gauge transformations associated with a massless p-form 
field. There are also the following non-standard symmetries: 

5B = uA^ =-^V A « A i ? + ' " (5M = 0 (1.95) 
V? 

and 

5u = d^, 5B = -%H+'\ SW = j^H+'''AH+''' (1.96) 

The equations of motion of W imply u is closed. This implies locally that u 

is exact. I f one ignores global issues then one may write u = da where a is 

now an auxiliary scalar. (This is the usual way the action is written [25]). 

If one now chooses a time-like u such as by choosing a = t -we recover the 

Henneaux action. I f one chooses a space like u then one recovers a Henneaux 

type action but with space-like projection. Here we note that the u of the 

PST approach which enters as an auxiliary one form plays the same role as 

the V in the Verlinde approach. I t provides a projection direction. Therefore 

the action 1.93 is an action for a self-dual two form with manifest Lorentz 

invariance. The price for this is the addition of an auxiliary field. Finally 

with u constrained to be closed we write the action with W integrated out 

as: 
S=='- HA*H+t^-^LJ±— (1.97) 

2 JMD 2^2 

The action possesses the same symmetries as above but now with W absent 

and u closed. The first of the non-standard so called PST symmetries then 

becomes simply 
5B = uA^ (1.98) 

Therefore one may use this to gauge away half the degrees of freedom carried 

by B. To connect this with the previous formulation we write B = B^ -\-
Where ± and || are with respect to u. Hence, the gauge symmetry, 1.98 

allows a complete gauging away of E " . This is the same result as for the 

Verlinde approach where only B^ becomes physical. 
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To summarise, the PST formulation brings in a new gauge symmetry that 
implies 5" is pure gauge. The Verlinde approach uses a projection equation 
1.82 that means 5" is not present in the action except as in a total derivative 
term and so is not physical. Similarly, the Henneaux approach has being 
non physical through a non-covariant action. 

I t is possible to include the presence of sources in the PST approach much 

in the same way as with Henneaux et al. [26] First introduce the modified 

field strength: 

F = H + *G (1.99) 

where H=dB as before. G is defined to satisfy the following equation: 

d*G-j = 0 (1.100) 

where j is the current density. One now repeats the PST construction with 

F in place of H and add the term: 

^coupling -BA*j (1.101) 

A simple check demonstrates that with the usual gauge choice of u - dt we 

recover the Henneaux action in the presence of sources. 



Chapter 2 

Dimensional reduction of 
self-dual theories 

2.1 Introduction 

One of the first attempts at unification of the known forces was the the 

programme instigated by Kaluza and Klein [27] [28]. Their principal idea was 

that the local symmetries that are central to gauge theories might appear as 

the result of some hidden dimensions of space-time. The first case studied 

was that of 5-dimensional gravity where the vacuum is taken to be some 4 

dimensional manifold times a circle whose radius is assumed to be small. By 

small we mean that we can ignore variation of fields on such a length scale 

and so the derivatives of fields in the compact direction are taken to vanish. 

(One may take into account variations of the fields by carrying out a Fourier 

analysis of the fields on the circle. When this is done, one obtains an infinite 

tower of massive fields.) The zeroth mode ie. the constant mode corresponds 

to the massless field with higher modes corresponding to fields with mass. 

Taking just the zeroth mode, the 5-dimensional Einstein Hilbert action re­

duces to the 4-dimensional Einstein-Hilbert action together with a Maxwell 

action for electromagnetism with a scalar field. The U{1) gauge group now 

arises out of the geometrical symmetry of the compact space. 

30 
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Due to a number of problems, this program was abandoned until string theory 
appeared and required a critical dimension of 26 in the case of Bosonic strings 
and 10 in the case of Superstrings. In order to make contact with the empiri­
cal world i t was necessary to go from the critical dimension down to d=3-l-l. 
As such the notion of hidden compact dimensions of space time became a 
natural consideration for the string theory program. The 10-dimensional the­
ories however are now more complex; they include various Abelian p-form 
field theories as well as the gravitational sector. An approximation of the low 
energy theory of strings is the so called infinite tension limit where, a —> 0. 
In this limit the whole of the gravitational sector of the theory decouples 
and we are left with only the field theory sector. This leads us to consider 
Kaluza-Klein reductions of p-form gauge theories in the absence of dynamical 
gravity. 

This idea finds other applications when considering effective brane actions. 
Recall that the world volume actions of branes do not contain dynamical 
gravity. They do however contain field theories. D-branes have Abelian 1 
form potentials on the the world volume of the brane and the M-5 brane 
has a self-dual 2-form theory on its world volume. Therefore, simple field 
theories act as toy models for brane world volume theories. Wrapping branes 
on compact dimensions leads to considering dimensional reductions of p-form 
theories in the absence of dynamical gravity. (Wrapping a brane is also known 
as double dimensional reduction; the space time and world volume of the 
brane are both reduced, a la Kaluza and Klein leading to the interpretation 
of a wrapped object around the compact space.) In what follows we shall 
examine the dimensional reduction of free self-dual p-from theories. The 
applications to string theory will be highlighted, though the application to 
brane physics will not be explored until later. 

2.2 Reducing self-dual p-forms 

The theory we wish to consider is a self-dual p-from theory on a manifold 

M^^'^. To meet the self duality conditions given in the previous section we 
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require D + d = 2{p + 1) = 2 mod 4. In what follows we use the Verlinde 
approach to self-dual gauge theories described in the previous chapter. The 
action is repeated here for the readers convenience. 

2n J A dBAH + lHA*H (2.1) 

The prefactor of ^ is a normalisation that was not present in the action given 

in the previous section. Its presence will not effect the equations of motion 

but will be relevant for theta type terms that emerge after the reduction. 

The self duality constraint is given by 

K{H-dB)=^0 (2.2) 

where 
H G A''+^(M^+'^) B e A^(M^+^) (2.3) 

Here we also note that the field B is compact by this one means i t is a true 
U ( l ) theory and so B may have non-trivial periods. The manifold M^^'^ is 
taken to be a Cartesian product of a compact D-dimensional space which we 
label, and a d-dimensional space-time which we label A'̂ ''. Hence, 

M^+'^ = N'^xK^ (2.4) 

The metric on M ^ + ^ is taken to be the direct sum of the metric on iV^ 
and the metric on K^. This is a consistent truncation. I t truncates any 
fields charged with respect to the Kaluza-Klein vector fields. (In the absence 
of dynamical gravity these fields will be non-dynamical anyway.) We carry 
out the following decomposition on forms as follows (recall from above 
p + 1 ^ ^ ) : 

®[K\N'^) A A^ '+ ' -^ i^^) ® hP^^-\N'^) A A.\K^)] (2.5) 
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Where i runs from Otoi < d and i < D but omitting the case of i = d/2. The 
space has been split up according to the action of the Hodge star. The first 
term in the decomposition is Hodge self-dual. That is, elements in this space 
are mapped to other elements in this space under the Hodge star. The other 
spaces are paired so that an element in one space is mapped onto its pair 
under the hodge star and vice versa. Hence, the pair of spaces are Hodge 
self-dual. A self-dual theory must have a field strength that decomposes 
naturally in this way. 

We now carry out the Kaluza-Klein reduction for H and B keeping only the 

zero modes on the compact space K'^. This implies that the forms on the 

compact space must be harmonic. We denote { 7 / ( 9 ) } to be a canonical basis 

of harmonic q-forms on with / — l..b''{K^). This leads to a Kaluza-Klein 

ansatz for the system 2.1, 2.2 as follows: 

p+l bo 
^ = E E ^ / A 7 / ( 9 ) (2.6) 

q^O 1=1 

and 

B-EECi^viQ) (2.7) 
9=0 /=i 

where € A^+^-'^iN'^) and C^g e Ap-''{N'^). Recall, that B is compact, this 
implies is also compact. This is completely general. One may truncate 
the ansatz in anyway consistent with the decomposition given in 2.5. We now 
substitute this ansatz for H and B into the equations 2.1 and 2.2. The vector 
field v is so far unspecified. We recall that no physical quantities can depend 
on our choice of v. We have two distinct possibilities. One may choose v 
to lie in the compact space, or the space-time, A'''̂ . We have shown in 
the previous section that a choice of v in a space time direction will break 
the manifest Lorentz invariance of the theory. Hence, we will pick v to be a 
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global vector field in the compact space. Such a choice is not always possible. 
If the space has zero first Betti number then v will not exist globally. For the 
moment we will assume that such a choice exists. To get the reduced theory 
one makes a specific choice of v, and so obtain the equation H-^ — dB^ which 
we substitute into the action 2.1. is now dynamic but appears in the 
action only algebraically and so is an auxiliary field that may be integrated 
out. Therefore, i / " is integrated out to give the final reduced theory. We 
will carry out this procedure for a variety of specific cases. 

2.3 A two form theory in 6 dimensions 

2.3.1 Compact space: a two torus 

First we introduce the canonical basis of one forms on which we denote 
by a and b. These are Poincare dual to the non-trivial homology a,b cycles 
of the torus. The intersection matrix is given by: 

-a aAa aAb\ _ / 0 1 
bAa bAb]~[-l 0 

(2.8) 

and the period matrix is: 

_ /• / a A* a a A* 6 \ J_ / 1 n \ 2̂ 9) 
~JT2\bA*a bA*b)~T2\Ti | r | V ' M 

Where the torus has modular parameter r and volume normalised to unity. 

Following 2.6, 2.7 we have 

H = FDAa-\-FAb-\-G-^JAaAb (2.10) 

and 
B = ADAa-\-AAb-\-C + (t)aAb (2.11) 
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where F , F i 5 , C G A2(M4) , J,A,AD e A'{M^), (j) e A'^iM^) and G E 
A^M^). 

Now one needs to specify a choice for w. v is chosen such that i„a = 0. 

Inserting 2.11 and 2.10 into the projection equation 2.2 we obtain. 

F = dA G = dC (2.12) 

Where d is now an exterior derivative in 4 dimensions. The four dimensional 

action will now split up into two sectors as indicated by the decomposition 

2.5. The first will be a theory of the one form field, A and the other will be 

of the two form field C. 

We deal first with the one form action. This was considered by Verlinde in 

6] Substitute the equation 2.12 for F into the action 2.1 and factor out the 

integrals over the torus and space time: 

S = f a Ah -dA AFo + dAh dAo 

-\--( f aA*af FDA*FD+ I aA*b I FD A*dA 

+ [ bA*af dAA*FD+ i hA*h I dAA*dA) (2.13) 

The integrals over the compact space are then evaluated using 2.8 and 2.9. 

The term involving is a total derivative and so is thrown away. (The 

equation of motion from varying in the action 2.1 is, dF=0 which is 

solved by the equation 2.12 ) . The resulting action is: 

5 4 = / -dAAFji-^\{Fj,,dA)M A*{^!]\ (2.14) 
7M4 2 \^Aj 

FD is now auxiliary and so must be eliminated either in the path integral (the 

integral is Gaussian) or by substituting the equations of motion for FD into 



Reducing self-dual p-forms 36 

the action. Only the classical level will be considered so Jacobian factors in 
the partition function will be ignored. The equations of motion of give: 

FD = T2*dA-ndA (2.15) 

This identifies FD with the dual field strength. Inserting equation 2.15 into 

the action 2.14 we obtain the final form of the action: 

IM -T2F A* F-\-TiF A F (2.16) 

This is Maxwell theory in 4-dimensions with a theta term. Compare this 

action with that given in the field theory section 1.26. (Some overall factor 

of j~ is required to make the identification exact.) Should this procedure 

be repeated with iyb = 0 and then with F integrated out then one recovers 

the dual action. That is action 2.16 with r ^ Hence, one obtains the 

Maxwell action and its dual from the two form self-dual theory reduced on 

a torus by making different choices of v. 

Moving to the two form sector we repeat the procedure for the field G. 

Substitute the equation for G from the projection equation 2.2 into the action 

2.1. After factoring out and integrating over the torus one is left with: 

Sc= f JAdC + -dCA*dC + JA*J (2.17) 

J is auxiliary and can be eliminated leaving the final action for C: 

5c = - / dC A*dC (2.18) 
2 VM" 

This is independent of the choice of v. Recall, a one form theory couples 

to point like objects and a two form theory couples to strings. A string 

wrapping the a-cycle is electrically charged with respect to A and a string 

wrapping the b-cycle is electrically charged with respect to AD- We show 

this as follows. Let the spatial coordinate of the string is given by o. The 
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string is closed and a is chosen to have unit period, that is cr = a -I-1. Recall 
the coupling term in component form is given by 

S. coupling = [ J^'5^/> (2.19) 

where Ji^^ = Jj^e dX^^AdX^Six-xo). {X '^} are coordinates on M^. Reducing 

this on gives the following action: 

Scourung = I ^ r C , . + / ^ f ' A , , + f'A,2 (2.20) 

where X^ and X"^ are coordinates on the torus in the directions of the a 

and b cycles respectively. (They are taken to have unit periods). Note we 

have truncated the scalar which couples to j^'^ because it is removed by the 

self-duality projection. Thus we can identify Ai with A and A2 with AD. 
The current coupling to {A, AD) is given by the usual current coupling to a 

one form q J dX'^5{x — x'^) where q is 

q = { j dX\ j dX^) = {n,m) (2.21) 

where (n,m) are the winding numbers of the string around the a and b cycles 
of the torus [24]. Hence, the wound string is charged with respect to the 
four dimensional one form theory. The unwrapped string is neutral (as one 
would require for different decouphng sectors). However, we see from the 
equations of motion 2.15 that AD is the dual potential. This implies that 
electric coupling to AD is equivalent to magnetic coupling to A (and vice 
versa). Therefore states charged with respect to will be magnetically 
charged with respect to A. Hence, the self-dual string wrapped on cycles 
of provides a ful l dyonic spectrum of states by wrapping the (a,b) cycles 
(n,m) times to give dyonic states with charge (n, m). Under the SL(2,Z) 
transformation r these states will transfrom as follows: 

,m \c d j \m 
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One can see this geometrically considering the generators of SL{2, Z). Recall 
S-duality , r —> ^ is generated in the formalism described above by swapping 
the a and b cycles of the Kaluza-Klein torus. The above shows that the 
string wrapped around the a and b cycles corresponds to the electric and 
magnetically charged particles, hence it is no surprise that swapping a and b 
cycles interchanges electric and magnetic charges from the four dimensional 
point of view. 

One notes that for a string with tension, T the mass of the charged particles 
in the four dimensional theory will have a spectrum given = r^|Z|^ where 
Z = (n-hrm). This formula is essentially iension x length (Oscillator modes 
are neglected because the Kaluza Klein ansatz keeps only zero modes). It is 
interesting that this is the same formula that arises for BPS states in Super 
Yang-Mills theory. This method of producing dyonic states by wrapping the 
self dual string has been applied in string theory by [31] and [30]; where 
dyonic p-branes were produced from wrapping self-dual p-|-l branes around 
appropriate cycles and truncating the neutral non-wrapped branes. 

2.3.2 Compact Space: a four manifold 

One can obtain a cr-model by reducing the self-dual 6-dimensional theory 
down to d=2 on an internal four manifold denoted M ^ , [6]. Assume that 

has an even intersection form, and 6"̂  = 6". As usual the reduction on 
the compact space is imposed by taking only the zeroth Fourier mode such 
that fields forms on Af* are taken to be harmonic. We introduce a basis for 
harmonic forms on as follows. The set { a j } is a basis of self dual two 
forms on and the set is a basis of anti self dual two forms on M ^ , 
where i = l..b^{M'^). The canonical basis will have intersection form: • 

L= f a,AP^= 51 (2.23) 
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The period matrix is given by: 

r f a . A* aj a. A* \ _ f G,, - BuG'^ \ 

The world sheet will be denoted by S. We introduce n \ n f e and 

X^ XP G A°(E) Follow a similar Kaluza-Klein ansatz for H and B as before 

with: 

H = aiAW + p' A n f , B = aiAX' + l3' A X f (2.25) 

V is chosen such that 
iyp' = 0, Vi (2.26) 

The existence of such a F is an assumption, not all manifolds will admit a 

global choice for V. This then implies that H ' = dX^. Inserting this into the 

action 2.1, and carrying out the integrals over the four dimensional surface 

using the data from the intersection and period matrices one obtains the 

following action: 

r 1 fdX^\ 
S2= n f A dX' + -{dXm^)M A * f ^ (2.27) 

2 J 

n f remains auxiliary in the action 2.27 and must be eliminated. Its equation 

of motion becomes: 
n f = Gij*dX' - BijdX' (2.28) 

After substituting this equation into the action 2.27 to eliminate H ^ one 

obtains the following action: 

5 2 - / dX' A *dX^Gij + dX' A dX^Bij (2.29) 

One can interpret this action as a a-model with a 62/2 dimensional target 

space. This target space will have metric Gij and background field Bij. 
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It is important to recall that this metric from the point of view of the 6-
dimensional theory is the metric on the space of Harmonic two forms. I t is 
not the metric of the compact space. A simple observation concerning the 
dimensions of the relative spaces shows the surprising feature of this system. 
From the point of view of the original 6-dimensional theory the compact 
space is 4-dimensional however from the point of view of the cr-model the 
target space is 62/2 dimensional. How should one interpret this? In fact 
this sort of ambiguity will play a central role in understanding string and M-
theory dualities when looking at branes on compact spaces. We will simply 
outline how this works. Recall from the review of T-duality in string theory 
that there was an ambiguity in the geometry of the compact space that arose 
from exchanging momentum modes with winding modes of the string. Here 
we have a similar situation. The data from the period matrix of two cycles 
corresponds to the wrapping of non-trivial two periods of H on the two cycles 
of the compact space. I t is this period matrix that becomes the metric in 
the dual a-model. Hence this is really another example where momentum is 
exchanged for a winding of the field. More formally, recall that the winding of 
the string was associated with representatives of the first cohomology on the 
target space, H^{T, Z) which we exchanged for momenta on the dual target 
space, T. In the 6-dimensional case we have representatives of / f ^ ( M ^ , Z ) 
corresponding to non-trivial fluxes through 2-cycles of M ^ , that we exchange 
for momenta in the cr-model. Thus, we are identifying periods of the two 
form field C around non-trivial two cycles, Ej of M ^ , with X\ 

2.4 A four form theory in ten dimensions 

We now move to the next case of a self dual four form theory in ten dimensions 
32]. To reduce down to 4-dirhensions, the compact space is taken to be 6 

dimensional. The simplest case, though of little phenomenological interest, 
will be a six torus. We note that under the decomposition given in equations 

2.5 we can have fields in the paired space that transform under the duality 
transformation as well as fields in the first self-dual space. We shall begin 
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our analysis with fields in the first space. I t is necessary to have a basis of 
H^{T\ Z) Let { 7 / } be such a basis. / = 1 to 63(T^) where 63(T^) is the 3rd 
Betti number of T^. A canonical basis is chosen such that the intersection 
matrix 

Qij = 7 J (2.30) 

is antidiagonal. The period matrix is: 

GIJ = j 7/ A* 7 J (2.31) 

Where, the { 7 / } are the basis of 3-forms in T^. For a torus, the three form 

basis may be written in terms of a product of the one form basis. The action 

in 10 dimensions is given as before by: 

5 i o = / dCAH+\l HA*H (2.32) 

with also the self duality equation: 

iy{H -dC) = 0 (2.33) 

Taking zero modes of the fields on implies the usual Kaluza-Klein ansatz 

for the fields. 

20 20 

H ^ ^ F ' j j , C = Y,A'v (2.34) 
1=1 1=1 

where F^ e A^(M^) and A^ e A^(M^). We then proceed as before. Picking 

out a particular v and then decomposing the 3-form basis, { 7 / } into parallel 

and perpendicular parts via the equations: iyja 7^ 0 for in the space parallel 

to V and i y j i = 0 for ji in the space perpendicular to v. From now on the 

indices a,b will indicate 7 parallel and i,j will indicate 7 perpendicular. This 

projection decomposes the 3 form basis into 10 parallel and 10 perpendicular 
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basis 3-forms. Hence, when we substitute the ansatz 2.34 into the self duality 
equation 2.33 we arrive at 10 equations: 

= dA\ (2.35) 

First compactify M ^ " on x which involves substituting in the ansatz 
2.34 into the action 2.32. The necessary integrals over are given by the 
period and intersection matrices 2.31 2.30. We then arrive at a 4-dimensional 
action. We then substitute in the equations 2.35 derived from the self duality 
equation 2.33 for a particular choice of v. This gives the action: 

^4 = / dA'' A F'Qai + \ l dA'' A* dA''Gab + 2F' A* dA'^Gia + F' A* F^Gu 

(2.36) 

As before we must now integrate out the auxiliary fields, F\ Again, the 

integrals will be Gaussian. Doing the integration, or equivalently eliminating 

from the action 2.36 using the equations of motion gives the following action 

for an Abelian gauge theory: 

Si = j dA" A dA^Gab.+ dA" A* dA\ab (2.37) 

Where the coupling matrices r and cr are given by: 

Tab = Gab + QaiG'^Qjb ' GaiG^'Gjb (2.38) 

(Tab = QaiG'^Gib + GaiG'^Q.b (2-39) 

The raised indices indicate the inverse matrix, such that G"'' = G~^ and not 
the parallel components of Gj}. Note that apart from the usual curvature 
squared term there is also a topological term that is a generalization of the 
theta term for a U( l ) gauge theory. To see how the couplings r and a 
transform under, duality one considers a different choice of V and examine 
how the action transforms. This will be discussed later when we calculate 
the more general case discussed below. 
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Before, we noted that i t may be possible to construct theories that are self 
dual that contain fields of different form rank (We mean the rank of the 
fields after compactification; before compactification i t is clear that the fields 
must have the same rank). These fields will live in the sum of paired spaces 
discussed earlier. As such, the ansatz considered previously may be viewed 
as a degenerate case; in which the pair of the space is the space itself. We 
now move on to consider the case where we have a sum of fields that live in 
such a pair of spaces. Replace the ansatz 2.34 with the following: 

/ f - ^ ^ V + ̂ V (2.40) 
I 

C-5^aV + ft'j^/ (2.41) 

where 

A ^ e A ^ ( M ^ ) B'^k\M^) aeK\M^) b e A.^{M^) (2.42) 

and {/ / /} is the canonical basis of H'^{T^, Z) and {vi} is the canonical basis 
of H'^{T\Z). Note b'^{T^) = b\T^) = 15, hence, 1=1..15. As before we 
construct the period matrices associated with both bases. Let G be the 
period matrix of the 4-form basis, { / i /} and F be the period matrix of the 
2-form basis {^i}- There will also be an intersection matrix Q defined by: 
Qij = Jj,6 HI Auj which in the canonical basis will be antidiagonal. We now 
define parallel and perpendicular bases for both the 2 and 4 forms as before. 
The indices a,b indicate parallel 2-form and i,j indicate perpendicular 2-form. 
a, b denotes parallel 4-form and i,j denotes perpendicular 4-forms. I t can be 
seen for any given one form there are 5 parallel and 10 perpendicular 2-forms 
and 10 parallel, 5 perpendicular 4-forms. Hence substituting in the ansatze 
2.40, 2.41 into the self duality equation 2.33 we have for a particular choice 
of ;̂ a set of 15 equations: 

A^ -da^ = 0 (2.43) 
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B'' - = 0 (2.44) 

We compactify SM^O as before, performing the necessary integrals which 
introduce the period and intersection matrices defined above. Then sub­
stitute in the self duality equations 2.43, 2.44 into the compactified action. 
After throwing away irrelevant total derivatives, we integrate out all auxiliary 
fields, B^ and A^. This leaves, the following 4-dimensional action: 

^4 = / I [da^ A* da\i + db" A* db''Tab] - da^ A db^a-ab, (2.45) 
J 2 

where we have the following couplings: 

f-ai - G,i + QaiF'^Qfb - G ^ G - i (2.46) 

Tab = Fab + Qai<^^Q~,b ' FaiF''Fjb (2.47) 

a-ab = QaiF'^Fjb + G ^ Q - , . (2.48) 

The action contains the usual kinetic terms for scalar fields and two form 

fields. There is also the topological term which is a generalization of the 

theta term that couples the scalar and two form fields. 

Note that i f G = F then we have the same equation for the coupling as before, 

2.46, 2.47. This confirms that the previous case is a degenerate version of 

the more general situation in which we have a paired space. Also, one can 

easily check that this formula for the coupling of the Abelian gauge theory in 

terms of the period matrix of the compactified space reproduces the simple 

result. In this instance the period matrix is two dimensional and so the 

perpendicular and parallel parts are one dimensional and hence no matrix 

inverses are involved. 

Now we wish to construct the generators for the duality transformation for 
the theory described above. We follow the previous S-duality example, by 
choosing different directions for v and then determining how the theory 
changes. I t is obvious from equations 2.45 and 2.46, 2.47, 2.48 that only the 
coupling matrices change when a different direction for v is chosen. Hence, 
the duality related theories will have the same form of the action with only 
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the couplings being different. This implies of course that the equations of 
motion of the duaUty related theories will only differ by the value of the cou­
pling matrices given in the action. The equations of motion for the action 
2.45 are simply the free field equations for scalar, one form and two form 
fields. Also each field strength has the usual Bianchi identity. The topolog­
ical coupling between the scalar and two form fields will be transparent to 
the classical equations of motion but will play a role in the partition function 
(by analogy with the usual theta term). 

We will now consider a concrete example where the is taken to be a Carte­

sian product of three orthogonal each one with area one. (Orthogonal tori 

implies that the metric of the would be of block diagonal form, each block 

being 2x2, corresponding to the metric on each torus which would be related 

to r its modular parameter). Obviously, b^{T^) = 6, so there are six possible 

choices for v. Each choice will give a duality related theory. 

The coupling constant matrices were calculated explicitly for each choice of 

V. These gave: 

For V — al (corresponding to the a cycle of the 1st torus) 

T = -r^diagCT22, V i i , V22, V i i , V22) (2.49) 

T = l © 9 o o ' ? 2 3 

©1 8 ^diagCTn/T22, ^11,^22) 
{^^22) 

(2.50) 

a = (2.51) 
'̂r22 

The direct sum refers to blockdiagonal decomposition of the matrices. M is 

a 5 X 10 matrix which has a 4 x 4 identity matrix in the last block and zeros 
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elsewhere. "'Tij refers to the i j th element of the period matrix of the a th 
2-torus. This shows how the moduli of the tori combine to give the coupling 
constants for the 4 dimensional theory. The coupling matrices calculated for 

different choices of v can be related to the above couphng matrices (calculated 

for V lying in the al direction), as follows: 

For V = bl (corresponding to the b cycle of the first torus) 

V22 ^ V u (2.52) 

For V. = a2 (corresponding to the a cycle of the second torus) 

\ j ^ 'nj (2.53) 

For v = b2 

V n O V22 (2.54) 

V12 ^ V12 (2.55) 

For V = a3 

• (2.56) 

For V — b3 

V i i ^ V22 (2.57) 

V12 ^ V12 (2.58) 

These form a set of duality generators that act on the couplings of the theory. 

Note, the transformation TU ^ T22 is equivalent to the imaginary part of 
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r So the duality generators we have above correspond to the obvious 
generalization of the coupling inversion duality generator of SL(2,Z). 

The difference between the S-duality (coupling constant inversion) and the 

transformations we describe above is that part of the coupling constant ma­

trix is left invariant by the duality transformation. In the terms of our scheme 

for calculating these generators, this is a result of having cycles that contain 

both projection directions. These are left invariant by the duality transfor­

mation; cycles that contain neither are of course projected out and so do 

not appear. The cycles that contain one of the directions are those that are 

transformed under duality. Simple counting of the number of 2 and 4 cycles 

with these properties confirms this picture. To determine the other genera­

tors it is necessary to look at the theta type coupling, a and determine the 

generators that corresponds to the SL(2,Z), T T + 1 Following the same 

arguments that lead the theta term being invariant in the partition function 

under T r -\- m (where m is integer), we conclude that a a + m leaves 

the partition function invariant. In terms of r this is equivalent to 

Vi2 Tu + mV22 (2.59) 

(for V chosen to be the a direction of the 1st torus) and 

Vi2 -^^ ri2 + m V n (2.60) 

(for V chosen to be in the b direction of the 1st torus). 

Considering combinations of these generators allows one to construct the 

duality group. In fact the generators given above are over complete. For 

example, transformation 2.55 can be formed by composing 2.52 and 2.53. 

The minimal set of the above will be given by 2.52, 2.53, 2.56 and 2.59. 

These generate as one would expect 5L(2,Z) x SL{2,Z) x SL{2,Z). Note, 

using the techniques in chapter 1, one could dualize the two form fields into 

scalars. This dual action would then have the appearance of a cr-model. 

The base space would be four dimensional and the target space would be 15 

dimensional. The metric would be given by the period matrices of 2-forms 

and 4 forms on T^. 
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2.4.1 Summary 

One concludes from this analysis that a p-form theory on M^, dimensionally 
reduced on a compact space denoted by has a D-d dimensional reduced 
space-time with b^{K'^) p-q form Abelian gauge theories. If the original p-
form theory is self dual then one has half the number. The couplings for 
these theories are given by the relevant period and intersection matrices for 
the compact space. Self-dual theories have a natural set of duality generators 
formed by considering different self-duality projections in the compact space. 



Chapter 3 

Duality manifest actions and 
non-linear theories 

3.1 Introduction 

Duality in field and string theory as presented in the introductory chapter 
is a hidden symmetry. Hidden implies that the symmetry is not manifest in 
the action. I t emerges from either manipulations of the partition function or 
from considering symmetries of the equations of motion and Bianchi iden­
tities. Often i t is stated that S-duality in Maxwell theory is not present as 
a symmetry of the action. I t is not quite correct that the Maxwell action 
is not duality invariant, because one cannot vary the field strength, F as an 
independent variable. One must vary the gauge potentials and so know how 
the gauge potential transforms under duality. This is done in a paper by 
Henneaux and Deser [24], [33]. This is in contrast with the Lorentz symme­
try under which the action is manifestly invariant. In constructing self-dual 
theories this problem has in some way been already addressed. Consider the 
case of free Maxwell theory in 4-dimensions. This theory is known to be 
invariant under F -> *F, that is in terms of electric and magnetic fields, 
E ^ B, B ~E. In attempting to introduce this symmetry at the level 
of the action we are faced with the same choice as when trying to construct 
self-dual theories: either break manifest Lorentz invariance or introduce aux-

49 
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iliary fields. In this chapter we shall explore the first approach, sacrificing 
Lorentz invariance for duality invariance. This was first explored by Schwarz 
and Sen in [34] and then extended for Born-Infeld theory by [35] and others 
in [38], [36, 37]. It should be stressed that it is only the loss of manifest 
Lorentz symmetry in the action. The theory is still Lorentz invariant i t is 
just that this symmetry is now hidden. This hidden Lorentz symmetry is 
equivalent to the status if the duality symmetry in the usual formulation. 

I t has been discussed how to move between the Verlinde approach and the 
Henneaux approach for self dual theories by making a specific choice for 
the projection direction V. V in the time direction implies the usual Hen­
neaux form. In the previous section where there were hidden dimensions 
V was taken to lie in the compact space so that the reduced theory would 
be Lorentz invariant. Should V be taken to lie in the reduced space time, 
for example in the time direction then we would recover the dimensionally 
reduced Henneaux formalism. Lorentz invariance would be broken as before 
but the duality symmetry would be manifest. 

3.2 Duality manifest Maxwell theory in four 
dimensions 

Instead of the approach followed in [34], the action with manifest duality will 
be derived from dimensional reduction of the Henneaux action for a self dual 
two form in six dimensions. Thus we consider the theory on = x T^; 
with a 6-dimensional metric that is a direct sum of the and metrics. 
The usual Kaluza Klein reduction is used, taking only zero modes of the 
fields on the torus. Recall the Henneaux action in component form is: 

E'^'B^, - B^^B^, (3.1) 

Where = 1..5, are the spatial components of M^. The field strength. 
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H = dC allows one to define electric and magnetic fields as follows: 

E,, = Ho,., B'^^^y^'^-^'^H^p, (3.2) 

Harmonic one forms on are introduced as before, {a, b} with period and 

intersection matrix given by 2.8 and 2.9. The two form C is then decomposed: 

C = AiAa + A2Ab (3.3) 

This truncates the possible two form field. Inserting this into 3.2 and 3.1, 

one finds the following action. (Where the integrals over the torus have been 

done using the period, M and intersection matrix, L.) 

S = [ &• B^Lij - B^ • &Mr' (3.4) 

Where E^ is the usual electric field in 4-dimensions for gauge potential Ai 
and B^ is the usual magnetic field in 4-dimensions for gauge field Ai and Dot 
denotes a three dimensional dotproduct of a spatial three vector. Lorentz 
invariance is certainly not manifest; the action being expressed in terms of 
magnetic and electric fields in a non Lorentz invariant way. However, it is 
duality manifest in the following sense. Ai and A2, which will shown to 
be duals appear in the action on the same footing. We will examine the 
duality invariance of this action 3.4 after first demonstrating its equivalence 
to the Maxwell action. Note that the duality invariant form requires the 
introduction of more gauge fields. It is possible however to eliminate one of 
these fields in favour of the other, in doing so one returns to the usual from 
of the action. Observe, the action 3.4 has two local symmetries : 

SAi = x\ = W (3.5) 

The second is the usual gauge invariance but the first is an extra local sym­

metry not usually present. Using this one may choose so that: 

Al = 0 (3.6) 
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Note that AQ only appears in the action in a total derivative term so the 
equations of motion are obviously unchanged. The equations of motion for 
the field now give: 

V{B'M-^^ -E^) = 0 (3.7) 

This is independent of time derivatives of A'^ which means that A'^ may be 

treated as auxiliary. Hence we can use its equation of motion to eliminate it 

from the action. Solving the above equation implies: 

-E^ = V(t) (3.8) 

Using the remaining gauge invariance in •0^ one can remove the term 

leaving the equation: 
B'M-^^ = E' (3.9) 

I f one sets M to be the unit matrix then we may observe that the above 

equation sets the magnetic field of to be equal to the electric field of A^. 
This is what one would expect from dual potentials. Substituting equation 

3.9 into the action 3.4 we get: 

. / J _ ( i i .E'-B'- B') + ^ E ' • B' (3.10) 

Note that Gauss' Law is now a consequence of the Bianchi identity for the 

dual potential. Inserting the values of M^^ in terms of the modular pa­

rameter of the torus, r into the above and rewriting in a Lorenz invariant 

form using the field strength F associated with the gauge potential A^, this 

becomes: 

S = [ -T2FA*F + nFAF (3.11) 

Which is of course the usual Maxwell action with theta term. 

This is the action produced by eliminating A^. I f instead one eliminates A^, 

i t is no surprise that this produces the S-dual action: 
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5 = / -^FA*F-^FAF (3.12) 

where now F is the field strength associated with the potential A"^. 

This is very similar to the Verlinde approach where eliminating potentials 

that are associated with the a,b cycles of the torus produce the Maxwell 

action or its dual. Returning to the action 3.4, one can check that the action 

is manifestly symmetric under the following 51/(2, R ) transformation: 

'AA (AA f a b\ 
uj ^ , uj = , (3.13) 

,A2 \A2 \ c d , 

aT + b , , , , 
T -)• -, ad -bc = l (3.14) 

CT + d ^ ' 

Under transformation 3.14 the period matrix M transforms as follows: 

M uMuj'^ (3.15) 

Note that u is SL{2, R ) so that 

U'^LLO = L (3.16) 

Now note that 

= L^ML (3.17) 

So the action 3.4 may be written (suppressing i,j indices): 

S= f Lij& - B\LFML)ij • & (3.18) 

The action is now manifestly invariant given the identities: 3.15, 3.16 and 

transformation of the fields given by 3.13. The 51/(2, R ) duality is a classical 

result, by considering the invariance of the partition function one would 

expect that the duality only persists for the SL{2, Z) sub group. 
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The action 3.4 is also manifestly symmetric under rotations. However, due 
to the special role of time, the action does not appear to be invariant under 
Lorentz boosts. Taking M to be the identity, one sees that in the A^ = 0 
gauge, the action is invariant under [34] : 

6Ai = x'v'^d^Al + V • xLijc/Pd^Ap (3.19) 

where v is an arbitrary 3-vector. Using the equations of motion 3.9, the 

above transformation becomes: 

5Al = x^v^^d^Al + V • xdoAl (3.20) 

which is the usual transformation law of Aj^ in the A j = 0 gauge. Thus 

the Lorentz symmetry is restored at the level of the equations of motion. 

Hence, as stated in the introduction the Lorentz symmetry is now the hidden 

symmetry. 

This construction generalises in a number of obvious ways. By carrying out 

the dimensional reduction process described in the previous chapter on a va­

riety of manifolds for the diflferent self dual theories one may recover a host 

of duality symmetric actions. We shall not repeat the calculation for the 

examples given in the previous chapter. Instead one notes that formalism 

allows one to dimensionally reduce on manifolds that previously were forbid­

den because of topological considerations. Recall that in the previous section 

one required the existence of a global vector field v, on the compact space 

so that one could carry out the self duality projection in a direction in the 

compact space and recover a manifestly Lorentz invariant theory. If we are 

not worried about the reduced theory being manifestly invariant then there 

is no reason why the projection direction should be taken in the direction 

of the compact space. For compact manifolds that do not admit globally 

defined vector fields we are forced into this route. Hence, in these instances 

one uses the Henneaux formalism to carry out dimensional reduction instead 

of the Verlinde formalism we used previously. One interesting application is 

the reduction of the self-dual two form in six dimensions on a K3 manifold. 
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3.3 Reduction of self-dual two form on K3 
The starting point will be the Henneaux action in six dimensions, see action 

3.1. First it is necessary to recall some facts about K3 surfaces [39 . 

;̂  = 24, a = b+ -b- = -16, 

b\K') = b^{K') = l, b'{K')=b'{K') = 0, b\K')^22. (3.21) 

Where x is the Euler characteristic, a the Hirzebruch signature and b'^{K^) 
are the Betti numbers. It is Ricci flat and so makes a suitable compactifi-

cation manifold. (Despite being Ricci flat, it has half the number of Killing 

spinors of flat space.) As usual one introduces a basis for H'^(K3, Z) which 

we denote by {7/} , where 1=1..22. As b^{KS) = 0 there are no harmonic 1 

forms or 3 forms on K3. This fact is related to the lack of a global vector 

field on K3. The periods of these fornis provides the data through which one 

may specify the K3 surface. 

A K3 surface has intersection form that is even and self dual. Recall some 

general properties of the intersection form and period matrix, [39]: 

L - ^ = L ^ ^ = # (E , ,E^) , L'J = G'^LKJ, L'J,L''J = 5'J (3.22) 

The eigenvalues of L^j are ± 1 corresponding to elements of IF^{K3,Z). 
Where H^{K3, Z) denotes the space of (anti) self dual harmonic 2 forms on 
K3. The dimension of this space is denoted 6^. Note that b'^ = b'^ + b~, 
and so using the properties listed in 3.21 above one may deduce 6+ = 3 and 
b~ — 19. This implies that the signature of L is (3,19). Thus L is a self dual 
even lattice with signature (3,19). I t is known that such a lattice, unique 
upto isomorphisms is given by [39 

L = -Es ®-Es®U®U®U (3.23) 

Where £̂ 8 denotes the 8 x 8 Cartan matrix of the Lie algebra of Eg and 

U=(l J] (3.24) 
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So with M*^ = X K3, we reduce the action 3.1 as follows. To take the 
zero modes in the Kaluza Klein reduction one takes the fields on K3 to be 
Harmonic and so: 

C = X ' A 77 (3.25) 

Where is a compact scalar on M ^ . Therefore the electric and magnetic 

fields will be given by: 

E = drX^ A 77, B = d^X^ A (*77) (3.26) 

where (r, a) are coordinates on M ^ . 

Inserting the 3.26 into the action 3.1 and then evaluating the K3 integrals 

using the period and intersection matrices produces the reduced action: 

S2= [ drX'd.X'Lij - d.X'd.X'Mu (3.27) 

How should one interpret this action? I t is obviously a sort of string action as 
it has the from of a 2-dimensional sigma model. First one takes the equations 
of motion of X^ and observe they imply (up to gauge transformations), [14]: 

MdaX - LdrX = 0 (3.28) 

Multiplying the above equation by produces: 

daX - M-^LdrX = 0 (3.29) 

One then uses the above properties of the basis of (anti) self dual that 

M~^LX^ = ±X^. This implies the above equation decomposes into: 

d^X'-drX' = 0, M'^LX' = +X\ 2 = 1..3 (3.30) 

d^X"" ^drX" = M-^LX" ^ -X", a = 1..19 (3.31) 

One may write these more succinctly by introducing the projection operator: 

Pli = \{6j±L''^Mu) (3.32) 
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P± projects on to the b"^ dimensional subspace of X^. As before, define 
d± = l{da±dr)- Therefore the equations 3.30 and 3.31 may be written [40]: 

P^d-X = 0 P-d+X = 0 (3.33) 

These are the equations of motion for (anti) chiral scalars. Recall d-X = 0 
is the equation for a left mover and d+X = 0 is the equation for a right 
mover. Therefore, P+ projects out right movers and the P_ projects out 
left movers. Thus the above equations describe 3 right movers and 19 left 
movers. Recall that the heterotic [41, 42] string reduced on T" has n right 
movers and 16+n left movers, from the Narain lattice [43]. Thus we have 
recovered the (anti) chiral bosons of the Narain lattice of the heterotic string 
on T^. This is in fact not at all the complete picture because there are no 
Virasoro constraint conditions, nor dilaton, nor the remaining 7 ordinary 
bosons. To rectify this and obtain the correct action for the heterotic string 
it will be necessary to begin with a different action than just the simple free 
self-dual two form theory in six dimensions [40]. This will have a natural M-
theory interpretation that will be introduced later. The duality group will 
be associated with the modular transformations of the K3 surface. Note that 
the Moduli space for the Heterotic string on T^, associated with the Narain 
lattice is identical to the moduli space of K3 surfaces [39 . 

3.4 Non-linear theories and duality 

3.4.1 Duality in Born-Infeld theory 

So far all the theories examined have been free theories with simple actions 
that give linear equations of motion. Now we wish to move on to describe 
duality in a non-linear theory. The theory under consideration will be Born-
Infeld theory [44]. This has an action given by the following: 

S = [ d'^x- J-det{r)^^ + F^,) (3.34) 
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Where rjfj,^, = dm^(—1,1,1,1) the Lorentz metric in 4 dimensions and F^^ 
is the antisymmetric field strength given as usual by the exterior derivative 
of a one form A^. The negative sign in the square root occurs because the 
determinant is negative. The original motivation behind the theory was to 
reformulate Maxwell's theory so as to avoid having infinite fields at the origin 
of an electric point like source, such as an electron [44]. There are a number 
of interesting solutions to the equations of motion, see [45] for a review. The 
reformulation proved fruitless however and the theory did not receive much 
attention until the advent of string theory. As shown by a number of authors 
46], the effective action of open string theory is of Born-Infeld type. This 

is related to the action for a D-brane [47], [48], [49], [50], [51] which is of so 
called Dirac-Born-Infeld type through a sequence of T-dualities. 
To dualize this action we follow the methods described in chapter 1. The 
field strength F will be taken to be a generic two form that is constrained to 
be closed by the introduction of the Lagrange multiplier term: 

^F A F^ (3.35) 

where F^ = dA^ as usual. Integrating out AD implies F is closed and hence 
one recovers (locally) 3.34. To obtain the dual action, one integrates out F. 
For the free theories discussed so far the equation of motion of F yielded a 
linear relation between F and F^. This will not be the case here. One uses 
the following identity (true for any antisymmetric tensor F): 

det{rj^, + F,,) = det{v){l - l-trF^ + ktrF^f - ]trF') (3.36) 

to obtain the following equation of motion for F: 

yj-det{r]fj,^ + 
(3.37) 
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One remarks that the above equation becomes at first order in F, the usual 
equation relating a field strength with its dual, F = *F^. I t is surprising 
given the complexity of the relation 3.37 that when it is inverted and used to 
eliminate F one recovers the same form of action for F^. So that the dual 
action becomes: 

SD = j^^ d'x - ^-det{r]^, + F^ (3.38) 

This has been reported in [52], [53]. One can also add a theta type term to 

the action and introduce a coupling for F so that the action to quadratic 

order in F corresponds to the action 1.26 given in Chapter 1. As before one 

introduces a complex coupling which is denoted here as A = Ai -|- iA2. I t 

appears in the action as follows: 

S = d'x - ]l-det{r)^, + y/xiF,,) + ^ A i F A F (3.39) 

Under the duality transformation described above the dual action is of the 

same form but now the complex coupling is inverted: 

A ^ (3.40) 

The shifting of Ai by a constant is also a classical symmetry. Combining 
these generators produces the usual SL{2,K). Born-Infeld with complex 
coupling as given above was shown to posses 51/(2, R ) in [36], [37]. (By 
considering the partition function one would only expect that the SL{2, R ) 
would be broken to SL{2, Z) as usual, however the integral is not Gaussian 
so this cannot be proven explicitly. Replacing rj by a general metric leaves 
the duality transformation untouched [52], [45 . 

We have shown in the previous chapter how duality can result from dimen­

sional reduction of some self-dual theory on a compact space. The duality 

symmetry emerges from the geometry of the compact space. One would like 

to extend this idea to include include such non-linear theories. I t is clear 
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that i t is impossible to get a non-linear theory from a linear one through di­
mensional reduction. So to derive the Born-Infeld theory one would require 
a parent theory that is also of a similar non-linear form. (The parent theory 
is the theory before dimensional reduction out of which the four dimensional 
Born-Infeld theory and its dual must be produced.) 

As we require the parent theory be self-dual, i t must be a D = 2 mod 4 
dimensional theory. The duality group exhibited here is the modular group 
of the torus, and so i t is natural to imagine that the origin of the Born-Infeld 
theory is some non-linear self-dual theory in six dimensions dimensionally 
reduced on a torus. This is in fact the case as first reported in [35]. Actually 
i t is worth while considering what is meant by duality in a non-linear theory. 
The conditions derived for the existence of a self dual theory given in Chapter 
1 are really only valid for a linear dual theory. That is one where the dual 
is given by the Hodge star. However for the theory we wish to consider 
this is not the case; the duality relation is of the form given by equation 
3.37. However, one assumes that to quadratic order in the fields the action 
will approximate to the usual Yang-Mills action and the duality relation at 
this order will be the usual Hodge star. With these assumption one may 
extrapolate the coriclusions for the existence of the linear theory to the non­
linear theory. 

3.4,2 Non-linear self dual 2-form theory in six dimen­
sions 

The starting point will be the action determined recently, [77], [56] in the 

context of searching for the M-theory five brane action. The full 5-brane 

action will be introduced in the next chapter. Consider the following six 

dimensional Born-Infeld type action. 
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( f x 
M6 \ 

- * < ( G ^ + ' 4 = ) - ^ ^ ^ 4 J ^ (3 .41) 

G^j, is the metric in six dimensions and H € h?{M^), v e A ^ ( M ^ ) . We define 

H by the following: 

H = *{HAv) (3.42) 

Where * is the Hodge dual acting in 6 dimensions. H G A^(M^) is the field 

strength of the Abelian potential B € A^(M^) defined by the usual relation 

H = dB. 

The field v is constrained to be closed ie. dv = 0. I t is a completely auxiliary 

field introduced to preserve the manifest Lorentz invariance in the action. 

Usually the above action is wri t ten wi th w = da so that the closure of v is 

t r iv ia l , however, in what follows we w i l l take v to be on which obviously 

has non-tr ivial first cohomology. Hence, the constraint condition on v is lef t 

unsolved. 

The properties of this action are discussed in detail in [77]. There are two 

symmetries that w i l l prove relevant to the following analysis. One is the 

usual gauge symmetry for an abelian potential, SB = dx- The other is the 

non t r i v i a l gauge symmetry introduced by the new auxiliary field : 

5B = 'ipAv (3.43) 

where ip G A ^ ( M ^ ) is the gauge parameter. 

Note that despite the presence of i in the argument of the determinant 3.42 

the action is real. This is because H is antisymmetric and so only occurs 

i n the expansion of the determinant in even powers. Also H is a, degenerate 

mat r ix of rank four so the polynomial under the square root w i l l be order four 

in H. (To see this observe that H has the zero eigenvector, v, by definition 

3.42 and so its determinant w i l l vanish.) 
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3.4.3 Dimensional Reduction on 

Now, we w i l l double dimensionally reduce this action on a torus, keeping 

only the zero modes. Thus: —> x T^. The metric G, is taken to be 

given by the following direct sum: 

G = 77 © TT (3.44) 

where TT is the metric on the torus and r] the metric in four dimensions. (This 

is taken to be flat .) This is in fact a truncation (consistent) where we do 

not consider the possible Kaluza-Klein fields corresponding to the compact 

dimensions (of which there should be two). Our ansatz for the gauge field 

B is again truncated. We have only included a part that couples to the 

conformal part of the torus. The reason for this truncation is that we are 

t ry ing to recover the Born-Infeld action which has only one-form potentials. 

Hence, 

Y,B = A'Ajr ^ _ H = '£F'A^r (3.45) 

where e A ^ ( M ^ ) , = dA^ and 7/ are the canonical one forms associated 

w i t h the non t r iv ia l homology one cycles one the torus. Hence, they form a 

basis for H^{T'^,Z). There are two such one cycles, hence I = 1,2. This is 

just a renaming of the basis used previously, wi th 71 = a and 72 = b. 

Now we have two natural possibilities for the auxiliary field v. I t can be 

chosen such that v G A^(T^) orv e A ^ ( M ^ ) . We w i l l look at the consequences 

of both choices. Though of course, both possibilities must be physically 

equivalent. I n the first instance, we find the following for H: 

H = *F^*{jiAv) (3.46) 

where the Hodge star in front of F acts in M'^ and the Hodge star in front of 

the parentheses acts in T^. This gives H e A ^ ( M ^ ) . We can now factorize 

the determinant, using 

det{A ®B)= det{A)det{B). (3.47) 
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So that 

[ d ' x ! So — A / t T 
T2 \ 

-det{r)ap +1— 

^ F ^ ^ ' ^ F V ( 7 / A ^ ) * ( 7 j A* v) 
4y2 (3.48) 

To investigate this action we w i l l now make a gauge choice for v. A natural 

choice is to take v e H^{T'^, Z). So suppose we choose v to be 7̂ ,. The local 

symmetry 3.41 then allows us to gauge away one of the fields, A^. I t only 

remains to evaluate the terms in the action such as 7^ A 7/ and 7z, A* 7/. 

We can evaluate these using an explicit basis for H^{T'^, Z). These terms are 

proportional to the volume form Q, as follows: 

MjjQ, Lij^ .o.QN 
7/ A* 7J = 7/ A 77 = - y - (3-49) 

where V = 1^2 0. and M j j and L j j are the period and intersection matrices 

defined as follows: 

M 
I / 7 i A * 7 i 7 i A * 7 2 \ i n n \ 3̂ 5Q^ 

7 T 2 V 7 2 A * 7 I 72 A* 72/ r2 VTi r J 

i „ = / T , A 7 . = ( _ ° i J) (3.51) 

We substitute in 3.49,3.50,3.51 into 3.48 and integrate over the torus. The 

area of the torus is then shifted into the argument of the determinant. We 

now carry out a global space-time scaling to absorb this factor as follows: 

X' = V - ^ / ' X , 77/,̂  = ^/Vr^ap (3.52) 
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This then gives the following action: 

S = l^^ d'x - ^-det{i^p + i*F^pu,) - ^e'^^'^^F.^F^pp (3.53) 

Where uj and p depend on the specific choice of v. Note that after the scaling 

ui and p become independent of the torus. The two independent choices for 

V give the following: 

v = j2 =^ w = p = Ti (3.55) 

Redefining, F' = i*F allows us to identify the action 3.53 wi th the Born-

Infeld action given in 3.34. W i t h this identification we then compare the 

action 3.53 for diflFerent choices of v w i t h the action 3.39 and its dual implied 

by 3.40. For choice ?; = 71 we identify 3.53 wi th 3.39 and for = 72 we 

identify 3.53 w i t h the dual theory. These identifications imply simply that 

we must identify the complex coupling, A wi th the modular parameter of the 

torus, r . That is, 

A = r (3.56) 

The duality transformation that inverts A is then given by making a different 

choice for v. Hence, we see how duality becomes a gauge symmetry of this 

theory. This result is identical that of the linear theory discussed in Chapter 

2. The Verlinde auxiliary field v was used to provide a projection direction 

in the compact space. In this formalism the PST field v provides us w i th a 

gauge symmetry that allows us to gauge away the degrees of freedom removed 

by the Verlinde projection. Thus i t is no surprise that the different choices 

of V give the S-dual related theories. 

The other possibility mentioned above is that v € A ^ ( M ^ ) . Note, that once 

such a choice is made, manifest Lorentz invariance is broken as v picks out 

a direction in space time. We w i l l go immediately to the obvious choice 
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V = dt. Other choices for v, w i l l not be related by duality as in the previous 
case but by Lorentz transformations. We use the same ansatze as before for 
the metric and the two form gauge field B, however now we find that the 
matr ix , G + iH does not decompose into block diagonal form and so the 
determinant w i l l not immediately factorise. Hence, we explicitly expand out 
the determinant using the following identity (where Hfj,^ is an antisymmetric 
tensor in 6 dimensions of rank 4): 

det{G^^ + iHf,^) = detG{l + hrH^ + I [trH'^f - \trH^) (3.57) 
2 8 4 

We now define the magnetic and electric field strengths in the usual way: 

fii = ^e/'F^fc, Ei = F,o (3.58) 

where j = 1, 2,3. We now substitute in the E and B fields into the action 

expanded out using the above identity. We also have used the period and 

intersection matrices of the torus as before and integrated over the torus. We 

also make the same scaling of the metric so to absorb the factor f rom the 

area of the torus. 

S = [ d^x^/^tJ-P{B, M) + ElB''' - EfB^' (3.59) 

P{B, M) = l + BlB^'MY} + \B',B''B}B^mr;MEk 

-^BlB'^'B^B^'^MrlMzk (3.60) 

(Where we have used the identity: M " ^ = L'^ML.) This may be wri t ten in 

a more succinct way i f one notes the following [57]. From the definition of 
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the determinant (detM = +1) 

LijdetM = Mf^LKuM^'j, (3.61) 

we can obtain the following result 

LijLr^K = MYlMj], - MjkMjl. (3.62) 

The quartic terms in the action may be wri t ten as follows: 

^B'.B'^'B^B^^iMflMjk - MT^MJI) (3.63) 

Using the identity 3.62 this can be writ ten: 

\{BlLjjBj){B^'LLKB^^), (3.64) 

which is equal to the following: 

\{e'='BlLuBif. (3.65) 

This gives the final form for the manifestly dual action: 

S = j^^ d ' x ^ f ^ - { l + BliL^ML)ijBJ^ + ^{e^^'^BjLuBiy) (3.66) 

I t is this action that we claim is the Born-Infeld equivalent of the Schwarz-Sen 

action. I t has also been derived in [38] f rom a careful Hamiltonian analysis 

of the Born-Infeld action. Note, the action 3.66 is manifestly dual under the 

SL(2, R ) transformations given in 3.13, 3.14, 3.15 just as for Maxwell theory. 

The two magnetic fields, B^ and B^ appear i n the action symmetrically. (Ob­

viously, a choice of space-like v would give a pair of electric fields.) These 
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fields are related to each other by S-duality, as we w i l l show when we demon­
strate the equivalence of the above action to Born-Infeld. Several authors, 
using very different approaches to those described here, have produced dual­
i ty manifest actions for Born-Infeld theory [58]. This prompts the question 
whether a six dimensional self dual theory could be l i f ted f rom their result. 
We w i l l now go to the case where r = z as this w i l l ease our calculation 
greatly. We w i l l reinstate the couplings later. We w i l l now follow the method 
of described in the previous section [34], to show that this action gives the 
Born-Infeld in 4-dimensions [35]. First use gauge invariance to set — 0. 
Then, as discussed in one of the field becomes auxiliary and may be 
eliminated in favour of the other. Let us work in the concrete case where we 
w i l l eliminate f rom the action . We find the equation of motion for by 
varying the action (setting M equal to the identity): 

V A{M{B\B^)-E') = 0 (3.67) 

Where 

^ 1 + (51)2(52)2 - (51 • 52)2 + (51)2 + (52)2 

w i t h 5 being a vector in 3 dimensions. We can solve this by wr i t ing 

M{B\B^) - = Vi; (3.69) 

We s t i l l have some gauge symmetry left 5A^ = V x to eliminate Vip. Leaving 

the equation: 

M{B\B^)-E^ = 0 (3.70) 

The equivalent equation in Schwarz Sen approach to Maxwell theory is simply 

B^ = E^, which greatly facilitates the calculation and explicitly shows that 

the pair of Electric and Magnetic fields are related by duality. 
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The next step is to solve this equation for B'^. After some manipulations we 
find 

^ ' ^ ( ^ ' • ^ ' ) ^ ' (3.71) 
1/1 + (fil)2(B2)2 _ (51 . 52)2 + (51)2 + (52)2 

As a simple check we can see that this equation for B'^ reduces to to Maxwell 

case to first order in fields. 

We now substitute this into the action (9) and find: 

S = [ d^Xy/^f^Jil + (51)2 _ (51)2 _ (^1 . 51)2) (3 72) 

This becomes after rewrit ing in terms of a four dimensional determinant: 

S = [ d^xJ-det{r]iau + F^^) (3.73) 

This is of course the Born-Infeld w i th t r iv ia l background fields. I f we reinstate 

the coupling and repeat the above procedure we see that we get the expected 

coupling dependence. That is, we recover the action 3.40. 

We generate the dual theory by repeating the process but instead we integrate 

out A^ instead of A^. This gives the same action but (as expected) w i th the 

coupling inverted. So in this description of the theory, duality is a symmetry 

of the action. The two duality related theories are given by eliminating 

different fields f rom the action. I t is a nice check that the two routes, one 

w i t h V i n the compact space and one wi th v in space time give (as they 

obviously should) the same results. 

3.4.4 Conclusions 

We have shown how duality manifest actions of a Schwarz Sen type arise 

naturally f rom the dimensional reduction of self-dual theories. In particular, 

we have shown that this idea extends to non-linear theories of a Born-Infeld 

type. Again the duality symmetry of the theory arises f rom the modular 

symmetry of the torus. 
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One might speculate how the duality manifest Born-Infeld theory presented 
here might be related to other formulations. In [60] a duality symmetric 
action was presented that involved an infinite number of auxiliary fields. 
This is based on the approach of Mclain, Wu and Yu [59] for chiral scalars 
and generalised in [61] for p-forms and developed by [63]. I t has been shown 
62] that one may obtain the a PST type action f rom this approach, that is 

an action w i t h only one auxiliary field, by a consistent truncation (or gauge 
fixing) of the Mclain Wu action. Therefore i t seems natural that the above 
action presented here before v is fixed might be related to that presented 
in [60] via the same process [64]. We have not presented the Mclain, Wu 
approach for chiral fields and so w i l l not pursue this connection. 



Chapter 4 

The M-theory five brane and 
the I IB D-three brane 

"...Is that the end?" 

"No, let me think. We need a closing wi th a pointe." 

"A what?" 

"Yes, an act of the intellect that expresses the inconceivable 

correspondence between two objects, beyond all belief..." 

Umberto Eco, The Island of the Day before. 

4.1 Introduction 

There is a great deal of literature on M-theory and string dualities, citing all 

the relevant work i n this enormous field is outside the scope of this thesis. For 

a review one may consult [65, 66, 67, 68]. Type I I strings are closed strings 

w i t h N = 2 supersymmetry in ten dimensions. There are two possible N = 2 

theories in ten dimensions. There is a non-chiral theory, I I A in which the the 

spinors have both left and right chiralitites and a chiral theory, I I B in which 

there are two spinors of the same chirality. (The chirality operator is given 

by p i i , the product of the ten gamma matrices.) The low energy effective 

70 
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theory of type I I strings is N = 2 A , B supergravity. The bosonic sector parti­
tions naturally into two parts, the so called Neveu-Schwarz, Neveu-Schwarz 
sector and the Ramond, Ramond sector. The Neveu-Schwarz, Neveu Schwarz 
sector (denoted f r o m now on as NS) contains a two form potential and its 
electromagnetic dual a six form potential. (This is true of both A and B 
type supergravities.) The Ramond, Ramond sector (denoted RR) however 
contains odd fo rm potentials for I I A and even forms for I I B . The RR sector 
in the supergravity action does not couple to the dilaton as does the NS 
sector (in the string frame). This is symptomatic of the RR states being 
non-perturbative f rom the string theory point of view. A fundamental string 
couples electrically to the NS two form, through the usual minimal coupling. 
As such the string is a fundamental NS object. 

The object that couples to the 6-form potential must be a 5-brane (assuming 

the usual minimal coupling). This is known as the solitonic 5-brane. The 

name solitonic implies that one should be able to find i t as a solution of the 

supergravity equations of motion (with fields finite at the core of the solution) 

and indeed that is the case. One also notes that its tension is proportional 

to l/g^tring- ^his is typical of solitons, for example the ' t Hooft-Polyakov 

monopole has a mass proportional to I/QYM-

The R R potentials couple to so called D-branes [47, 48, 49, 50, 51]. As a 

p-form potential couples to a p-1 brane one infers that there are even dimen­

sional D-branes in I I A and odd dimensional D-branes in I I B . These branes 

are also solutions of the supergravity equations of motion that break half the 

supersymmetries (such states are known as BPS). Their existence can usu­

ally be deduced f rom the existence of central charges in the supersymmetry 

algebra. As these solutions break half the supersymmetries one expects that 

an effective action for these solutions, to be given by a zero mode analysis, 

w i l l have 8 on-shell supercharges. Recall that a Weyl/Majorana spinor in ten 

dimensions has 16 real components, put t ing i t on shell halves the number of 

components leaving 8 real components. Thus we require for the effective ac­

t ion of the D-brane a field content w i th 8 bosonic and 8 fermionic (on-shell) 
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degrees of freedom. One can check that this conspires nicely to produce a 
vector mult iplet on the brane. The scalar fields of the multiplet have the ob­
vious interpretation of being Goldstone bosons corresponding to the broken 
translation modes. Hence for a p-dimensional D-brane there are 10-p scalar 
fields. A vector field in p dimensions carries p-2 on shell degrees of freedom. 
Hence one observes a that single vector field plus the (10-p) scalars corre­
sponding to the (10-p) transverse dimensions gives the requisite 8 bosonic 
degrees of freedom on the D-brane. (This independent of p, the dimension 
of the brane). The zero mode origin of the vector field is not so clear f rom 
this perspective. 

The origin of the vector field on the D-brane is slightly more apparent i f one 

examines D-branes f rom a slightly different approach. I f one considers open 

strings, the usual boundary conditions are Neumann boundary conditions-

that is, daX'^\a=o,7T = 0. As was discussed in chapter one, string theory 

possess a so called T-duality. The result of T-duality on a open string 

w i t h Neumann boundary conditions is to exchange i t for Dirichlet bound­

ary conditions- that is drX^\o=o,TT = 0. This implies that the ends of the 

string are fixed on some hyper plane. This plane one interprets as the D-

brane. The field on the brane that couples to the end of the strings w i l l be 

the vector field. Note that i t is defined only on the brane; i t is not a pull 

back f r o m some field in the ambient space-time on to the brane. 

I n analogy w i t h the Green Schwarz string, [70] we wish to describe the effec­

tive action of a D-brane in a manifestly space-time supersymmetric covariant 

way. This is achieved by considering the brane embedded in a super-space 

using supersymmetric invariant one forms. Thus, as shown in [71, 72] the 

D-brane action (in a flat superspace background), in the string metric may 

be given by: 

S = -e-1> yJ-detiGf,, + 7-^,) + e-'^Iwz (4.1) 
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Where Gf^u is the induced metric on the brane given by: 

G^, - n;;n;;77/j (4.2) 

n j = d^x' - dv'd^e (4.3) 

are space-time coordinates, and 6 are space time spinors. They are 16 

component Majorana and Weyl spinors, spinorial indices are always sup­

pressed. There are two of them for N = 2 supersymmetry as discussed above 

w i t h chirality dependent on whether the theory is I I A or I I B . Thus 6", 

a = 1,2, the a index is often suppressed wi th an implici t sum over this 

index. I n the I I B case, the indices w i l l be contracted wi th rs and r i . 

^fiv — F^i, — bfii/ (4-4) 

where F = dA is the field strength of the vector field A on the brane. 

b = -eTuTMcieidx^ + \ev^de) (4.5) 

(For the I I B theory the F n is replaced by rs. This is true in the expres­

sions that follow as well as above.) h is such that its exterior derivative is a 

superinvariant. That is one may check: 

db = deA F H H ^ F M A dO (4.6) 

From this one sees that the variation b under supersymmetry is exact. Hence 

its variation may be cancelled by a suitable SUSY transformation of A. Thus 

the combination !F = F — b is also a SUSY invariant. One notes that b is 

the usual term added to the Green Schwarz string to add K, invariance to 

the action. The second term in the action 4 .1 , Iwz is added to ensure the K 

symmetry of the D-brane action. I t is most naturally given, as was the case 

for the string, by a SUSY invariant defined in one dimension higher than the 

brane dimension. Decomposing into positive and negative chirality spinors. 

One may write the action as for the I I A theory: 
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= [ dOe^C''^^ ''""^^^dO (4.7) 
JMO+1 X-sxrij -cosJ J 

5M̂ +̂  = M^, where is the D-brane world volume. 7 = H^F/, is the 

induced gamma matr ix on the world volume. 

(A similar expression exists for the I I B theory where the matr ix acts on the 

two sorts of spinors rather than on the different chiral spinors.) 

One may write Iwz as the integral of an exact form and then use Stokes 

theorem to obtain an action on - M ^ . This w i l l be a much more complicated 

expression though is always derivable f rom the simpler Iwz form up to exact 

pieces. The action on the brane is denoted by the formal expression: 

e^AC (4.8) 

Where C is is a formal sum of forms given by J2i C'(i) where C(i) is a form of 

rank i , where C(i) w i l l have an expression in terms of X' and 9 that may be 

read off f rom 4.7. 

Note that i f one sets all fermions to zero and makes a coordinate choice such 

that brane coordinates and spacetime coordinates coincide then the D-brane 

action becomes the so called Dirac Born-Infeld action: 

[ -Jdet{r]^^ d^(l)%(l)^Gij + F^^) (4.9) 

Where i= l , . . ,10-p . This is the same as the Born-Infeld action considered 

before only w i t h the addition of the scalars corresponding to fluctuations in 

the brane in transverse directions. 

Recall that I I A and I I B string theories are T-dual. That is there is an 

equivalence of I I A string theory on times a circle of radius R and I I B 

string theory on times a circle of radius To make this picture consistent 

one must see how the D-branes of the two theories match up. First consider 

wrapping a D-brane on a circle of radius R. To wrap the brane one identifies 
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the brane and space-time coordinate associated wi th the circle and then 
carries out a simultaneous Kaluza-Klein reduction. The fields are taken to 
be independent of the circle coordinate; that is we take only zero modes. 
This means that the brane is not charged wi th respect to the space-time 
Kaluza-Klein vector field. The result w i l l be a brane of one less world volume 
dimension in 9 dimensions. We now consider a so called direct reduction of a 
D-brane in the other type I I theory. By direct reduction one implies that the 
brane is not wrapped around the compact direction in space-time. As such 
one simply separates out through a coordinate choice the tenth, compact 
dimension of radius R. The result of this w i l l be to pull out a compact scalar 
on the world volume of the D-brane corresponding to fluctuations in the 
tenth, compact direction. Note that f rom the nine dimensional point of view 
the information regarding the chirality of the spinors is lost because there 
are no Weyl spinors in nine dimensions. One may now identify the wrapped 
brane and the directly reduced brane. On the wrapped brane: 

• A ^ (A<̂ j 
b (&(2),&(i)) 

{u\c') 
C(o -> (Ci,C(,_i)) (4.10) 

A n d similarly for the non-wrapped brane: 

A A 

b {b^2),b(i)) 

H^ ^ (n\d<^ + c") 

q , ) ^ ( a , q , _ i ) ) (4.11) 

Af t e r some manipulations of the reduced actions one can show that the fol ­

lowing identifications of the fields are required to identify the the reduced 

brane w i t h the wrapped brane. Wr i t ing the wrapped brane fields on the left 

and the unwrapped fields on the right: 

A = A, 
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(̂2) = h) 

H^ = H ' 

C( i - i ) = C(j), 3 = i - l 

C(j) = C(i_i) , j = 

R ^ I (4.12) 

Thus given a nine dimensional theory, there is in ambiguity in the l i f t ing to 

ten dimensions. One can l i f t to either I I A or I I B . I t is ambiguity that is the 

T-duali ty between I I A and I I B theories on a circle. This notion generalises to 

other situations. For example one may identify the type two theory reduced 

on a K3 w i t h the heterotic string reduced on T^. 

I t is known that I I A supergravity may be obtained f rom N = l supergravity in 

eleven dimensions. Recall eleven dimensional spinors are 32 component Ma-

jorana spinors. Dimensionally reducing eleven dimensional supergravity on a 

circle, one decomposes the spinors into chiral and anti-chiral parts according 

to the action of F^^ to give I I A supergravity in D=10. The string coupling 

emerges f rom the compactification radius of the eleventh dimension. I t is 

for this reason that the the eleven dimensions are not apparent f rom string 

perturbation theory. Small string coupling implies small radius. The eleven 

dimensions only become apparent at strong coupling where perturbation the­

ory breaks down. Thus i t is said that eleven dimensional supergravity is the 

low energy eflFective action of some theory that is equivalent to the strong cou­

pl ing l i m i t of I I A string theory. This theory is often called M-theory. In what 

follows we w i l l often mix up M-theory, which is st i l l not properly formulated 

and eleven dimension supergravity. Just as one labels I I A , B supergravities 

in ten dimensions f rom their string theory origins. Recall that the bosonic 

sector of eleven dimensional supergravity contains, along wi th the graviton, 

a three fo rm potential and its magnetic dual a six form potential. Solutions 
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of the supergravity effective equations allow a membrane which is charged 
electrically with respect to the 3-form and a five brane which is charged with 
respect to its six form electromagnetic dual. These solutions are BPS and 
so break half the number of supersymmetries. We therefore require 8 on-
shell fermionic and bosonic degrees of freedom. There are eight transverse 
directions to the membrane and so there is no requirement to add any world 
volume fields other than the scalars that arise naturally from the pull back 
of the space-time metric on to the world volume. Thus the effective world 
volume theory of the membrane will be given by: 

S= [ -Jdet{G,,)-b^^) (4.13) 

Where 6(3) is the puUback of the three form potential on to the brane as is 

usual for minimal coupling. G^j, is the pull back of the space-time metric 

on to the membrane. By choosing coordinates one sees that Gfj,^ — r}^^ -h 

d^(f)'d^(j>'gij, where i,j=1..8. 

The M-theory five brane [22, 55, 74, 75, 76, 84] however will require additional 
world volume fields, just as did the D-branes. Note that there are 5 transverse 
directions to the five brane hence there are 5 scalars on the world, volume. 
This leaves a deficit of 3 bosonic degrees of freedom. This can be made up 
by adding a self dual two form potential living on the world volume of the 
brane. (Note, this field is not the pull back onto the brane of any field in 
the eleven dimensional supergravity.) Recall that a two form in 6 dimensions 
has six physical degrees of freedom. The self-duality constraint halves this 
number to give the requisite three. In fact, it can be shown that the field 
content forms a tensor multiplet on the brane. As noted above the origin 
of the vector field on the D-brane may be thought of as a result of a string 
ending on the D-brane; the string ends couple to the vector field. There is 
a similar situation in M-theory. The five brane is analogous to a D-brane in 
that a membrane may end on a five brane. The boundary of a membrane 
will be a string which must couple to a two form potential in the five world 
volume. 

I t is evident that the I IA D-branes and the fundamental string must come 
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from a reduction of the M-theory membrane and five brane on a circle. This 
may be demonstrated for the D-2 brane as follows. Consider doing a world 
volume duality on the vector field on the D-2 brane. Its dual is a compact 
scalar. This scalar may then be identified with the scalar field on the M-
theory membrane that is associated with fluctuations in the compact eleventh 
dimension. Thus the D-2 brane is the direct reduction of the membrane with 
a scalar field on the brane dualized. A similar origin has been proven for 
the D-4 brane. The M-5 is wrapped on a circle and its two form potential 
is dualized on the world volume to give a vector field. This can then be 
identified with the vector field on the D-4 brane. In each case after reduction 
(either direct or wrapped) there is a world volume dualization of one of 
the fields on the world volume that allows the M-theory/IIA duality to be 
identified. 

I t is not possible to obtain IIB supergravity from any compactification of 

D = l l supergravity because of the chiral nature of the IIB supergravity. 

However, if one reduced the eleven dimensional supergravity down to nine 

dimensions by dimensionally reducing on a torus, T^, then one would ob­

tain the sarrie nine dimensional theory that allowed us to identify I I A / I I B 

T-duality. Therefore, one may construct a M-theory/IIB T-duality by such 

a reduction process. Again one would anticipate i t being necessary to world 

volume dualize to identify the appropriate fields in the different pictures. 

The M-theory 5-brane has also been related to the heterotic string. A double 

dimensional reduction of the 5-brane on K3 has been identified with the 

heterotic string compactified on [40]. This also produced a reformulation 

of the heterotic string in which the Narain duality was manifest in the action. 

This is related to the calculation presented in chapter 3 where the dimensional 

reduction of a chiral two from on K3 produces, 3 chiral and 19 anti-chiral 

scalars. 

This chapter will involve the relationship between M-theory and I IB string 

theory. As the discussed above, reducing M-theory on a torus ought to be 

identified with the I IB theory reduced on a circle. For example the 11-
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dimensional membrane wrapped around one cycle of the torus will be identi­
fied with the I IB fundamental string and the membrane wrapped around the 
other cycle will be identified with the D-string. I IB string theory is conjec­
tured to posses an SL(2,Z) S-duality that exchanges RR states for NS while 
inverting the string coupling. As such, the IIB SL(2,Z) duality which mixes 
Ramond Ramond and Neveu-Schwarz sectors may be seen as a geometrical 
consequence of the torus in the M-theory picture. More concretely, under 
the SL(2,Z) transformations, the R-R and NS-NS two forms transform as 
an SL(2,Z) doublet while the axion-dilaton undergoes an SL(2,Z) fractional 
linear transformation and the R-R 4-form is left invariant. 
The IIB string theory also possesses other branes apart from the fundamental 
string and D-string. The theory also contains a self-dual D-3 brane, a D-5 
brane and a solitonic 5-brane. The self-dual three brane, so called because it 
couples to the self-dual, SL(2,Z) inert, Ramond Ramond 4-form, will be the 
main topic of this chapter. In particular, we will investigate its relationship to 
the M-theory 5-brane. For completeness we state that the D-5 and solitonic 
5-brane couple magnetically to the R-R, NS-NS two forms respectively and 
so should transform into each other under SL(2,Z). This is investigated in 
80]. I t would be interesting to see how these five branes are related to the 

M-theory 5-brane and how their duality properties appear. (However, we 
wil l not do so here). 

Given the relationship between M-theory and IIB, we expect the M-theory 

5-brane wrapped on the torus to be identified the direct reduction of the 

I IB self-dual three brane after an appropriate world volume dualization [71 . 

(By direct reduction we imply that the brane's world volume is not reduced). 

The duality properties of the 3-brane should then arise as a consequence of 

the modular symmetry of the torus in the M-theory picture. 

In [35] this identification was carried out for the Born-Infeld action ie. in the 

absence of R-R fields and without reference to the background space-time. 

This is related to the calculation presented in the previous chapter only there 

the scalar field was truncated. Here we will include the R-R fields as well 



M-theory and D-branes 80 

as the embedding in a superspace background and make the identification 
in 9-dimensions. This identification of M theory and IIB string theory has 
been discussed in detail for the low energy effective theories in [81] and with 
a view to extended objects in [82, 83 . 

First we will introduce our notation and describe the M5-brane action. No 

efforts will be made to compare our results with the interesting and indeed 

powerful 5-brane approach [84, 85, 86] based solely on the equations of mo­

tion. We will then carry out the double dimensional reduction on T^. Fol­

lowing this we will describe the the direct reduction of the IIB three brane on 

S^. To compare the two actions i t will be necessary to make world volume 

duality transformations of some of the fields on the brane. 

This duality procedure, for the case given above is far from trivial. We will 

make a variety of truncations that will enable us to construct the dual actions 

for the truncated cases. These duality transformations are of a similar type 

as those described in some detail in [52, 53, 78 . 

The point of the transformations is that we will be able to identify the du­
alized reduced 5-brane with the reduced D-3 brane. In doing so we will be 
able to explicitly identify the fields and construct the SL(2,Z) duality prop­
erties of the IIB theory from the M-theory picture. In particular, the SL(2,Z) 
transformation of the three brane will arise out of a gauge choice made on 
the 5-brane world volume. This is in precise analogy with the discussion of 
chapter two where the S-duality arose from diff'erent choices of v for the self 
duality projection. 

The M-theory/type I I relationship is summarised in figure 4.1. D-denotes 
world volume dualization, W denotes wrapping, R denotes direct reduction 
and S denotes S-duality. implies dimensional reduction on a circle. 
implies dimensional reduction on a torus. 
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IIA String, D=10 

M-Theory, D=l 1 

D HB String, D=10 

Type I I String, D=9 

5-Brane 

D-4 Brane D-3 Brane 

3 Brane 

Figure 4.1: M-theory/typell dualities 

4 . 2 T h e M - t h e o r y 5 - b r a n e 

The kappa symmetric action for the 5-brane [55, 76] is as follows. We work 
with a fiat Minkowski background, using a metric, rj = diag{—l, -1-1,+1,..). 
The 9 coordinates are 32 component Majorana spinors and are 11-
dimensional space-time coordinates {M,N = 0..9,11). We will follow [76 
and use the convention where the Cliff"ord algebra for the F matrices is 
ipMpATj _ 2r/^^. The global supersymmetry transformations may writ-
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ten as: 
50 = e, 6X^ = eV^e. (4.14) 

The action is written in terms of the following supersymmetric invariant one 

forms 
d9, = dx^ + er'^de (4.15) 

where d = da^^dp,; the exterior derivative pulled back to the brane. are the 

coordinates of the brane, fi = 0..5. (We use the convention that da^^ is odd 

with respect to the grassmann variables so that d6 = d a ' ' = -d^Oda'^). 

The action will also contain a world volume self dual two form gauge field, 

B whose field strength is as usual given hy H = dB. In order to ensure 

supersymmetry this is extended as follows; 

n = H - h (4.16) 

where 63 is the 11 dimensional 3-form potential pulled back to the brane 

defined as follows: 

63 = hvMNdeidx^dx'' + dx^ev^do + \ev^deev^de) (4.17) 

We are implicitly assuming wedge products for forms unless stated otherwise. 

The action for the 5-brane will be written as follows: 

S = - I d^x det(G,o + ^ 4 ^ ) - + S^, (4.18) 

where: 

1 ,d/357po-
n,o = ^G,^G,^-^H^,,v, (4.19) 

and 
Gf,o = Ufli^rjMN (4.20) 
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G = detGfio; v is a completely auxiliary closed one form field introduced to 
allow the self-duality condition to be imposed in the action while maintaining 
Lorentz invariance ^ See the references [55] for a discussion on this Lorentz 
invariant formulation. 

The Swz is the so called Wess Zumino part of the action that is introduced 
to ensure the kappa symmetry of the action and in analogy with the usual 
Wess-Zumino type action may be written more conveniently as an exact form 
over a manifold whose boundary corresponds to the five brane world volume. 
That is: 

S w z ^ f l j (4.21) 

where dlj = 0 and = which implies locally we may write = dOe-

Thus we can write Swz as an integral over the world volume, Swz — SM^ ^6-

ly = -^ndei)i}de - -^de^p^de (4.22) 

where ij; = F^^^H^ the induced Gamma matrix. Integrating we find: 

^le = C,-hnAh (4.23) 

where 63 is the same form that appears in combination with H above. (We 
will not need an explicit form for Ce). This action has been shown to have 
all the properties required of the 5-brane [76]. Apart from the usual gauge 
symmetries associated with the gauge potential B and the background field 
C, this action has additional local, so called PST symmetries one of which 
we will use later to eliminate half the degrees of freedom of the two form 
gauge field. 

(55 = X A t; (4.24) 

^Usually the action 4.18 is written with v = da; however this is only locally correct as 
V is constrained to be closed but not necessarily exact. 
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This will be the action that we will double dimensionally reduce on T^. And 
so we send, ^ x and M^^ xT^. We will identify 

iX'\X') = ia\a') = {y\y') (4.25) 

Where {y^,y'^) are the coordinates on the space-time torus. In these coordi­
nates we will identify — y^ -\- 1 and y^ = y'^ + 1. Despite reducing to 9 
dimensions we will not decompose the spinors as i t will be convenient in what 
follows to leave them. We will drop all functional dependence of the fields on 
the compact coordinates, that is taking only the zero modes. m,n — 0..8 will 
be the non compact space-time indices, i,j = 1,2 will be torus coordinate 
indices and = 0..3 will be the coordinates of the non-wrapped 5-brane 
world volume. The space-time metric will be written as 

VMN Vmn © Vij (4-26) 

This truncates the space-time Kaluza Klein fields associated with the torus. 

This is because we are only interested in the M-5 brane/D-3 relationship. 

Such Kaluza-Klein fields in the M-theory picture are associated with the 

wrapped D and fundamental string in I IB. We will take rj^n to he flat 

Minkowski metric and take the metric on the torus to be given by 

rjijdy'^dy^ = -{dy^®dy^-\-ndy'^®dy^-\-Tidy^®dy^ + \T\'^dy^®dy^) (4.27) 
T"2 

r = Ti -I - iT2 is the complex structure of the torus and V is the area of the 

torus. The reduction of the brane metric G from 4.20 follows. 

Gf^pdaf^ 0 da' = ( n - n > ^ „ + CiCirji^)da'' ® da' 

-\-Ci^da'' ®dy' + Cj^dy^ ® da" - f r]ijdy' ® dy^ (4.28) 

Where 
C; = -9T)rd^,e (4.29) 
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FT are the Gamma matrices on the torus. As we have identified the space-
time coordinates {X^^,X^) with (y^, y^) the torus coordinates we have (Fj,, Tj,) -
(F^^, F^). Now the background three form potential will reduce as follows: 

'̂3 = fe(3) + k2)idy' + \i)dy^ A dy"^ . (4.30) 

Where 

&(3) = \9Tmnd6{dX'^dX'' + dx'^ev'de + \ev"'ddev''d9) 

+-eVmTTid9{dX"'erT,de - f \9V'^d99rTd9) + \9VTijd9{9V'Td99T{d9lA.Zl) 
2 3 D 

,̂(2), = -9VTiTnd9{2dX'' + 9T''d9) + \9VTijd99VUe (4.32) 
2 2 

b(i) = 9VTi2d9 (4.33) 

As usual Tpq implies F[pFq], where square brackets on the indices mean an-

tisymmetrisation (without any weighting factor). Similarly, we reduce the 

world volume gauge field as follows: 

B = 5(0) dy' A dy^ + B^,)i A df + 5(2) (4.34) 

so that the we may write for'H = H-b 

•H^J + T^^dy' + Cdy^^dy'^ (4.35) 

Where we have defined: 

J = d5(2) - &(3) JP, = d5(i)i - 6(2)e £ = d5(o)-6(i) (4.36) 

We now need to determine whether the auxiliary one form will be in only 

or in only. The two choices are physically equivalent. The restriction 

simply corresponds to a partial gauge fixing. In what follows we will take v 

to be a member of the first cohomology on T^. We will consider the specific 
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choices v = dy^ and v = dy"^. These two independent gauge choices are what 
will eventually generate the S-duality on the 3-brane. Should we put v in M ^ , 
for example v = dt then the SL(2,Z) symmetry of the 3-brane will become 
manifest in the action but we will lose manifest Lorentz invariance. This 
will give an action of type given in [34], [35] and discussed in the previous 
chapter. The relationship between the formulation of the reduced action and 
the different gauge choices for the PST one form was discussed in the previous 
chapter. For now we will take the torus to be have r — 1 and V = 1; we will 
reinstate the dependence on V and r when required. So with the specific 
gauge choice 

V = dy'^ (4.37) 

this implies: 

fli^o ^ ^ * ^ * j u i ^ ^ (4.38) 

Therefore, 

n,u = * T , , ^ c , - c ; T ^ + * j ' / C p - c , + c , - c , c , - c ; T ' " ' - c , y ; j , } (4.39) 

n^^i = m i { * J ' + c , - c ; j ' ' ) - d ^ T ^ - c , ; m , - c . - Q ; J ' ' C , , (4.40) 

iiij = G.^C^J'T^' - J " (4.41) 

^2 = 1 + [c^f (4.42) 

Where we use the notation C^-C^ = C^%C^ and * is the Hodge dual in 4 

dimensions. Combining the above equations with the reduced metric 4.28 we 

have for, M, the matrix inside the determinant of action 4.18: 
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M - ( G „ , + C ^ - a + - r ^ ^ = ) d a ^ 0 da'' 

+(%•+ / =)do'®du^ (4.43) 

Importantly, we remark that M occurs in the action only in the determinant 

and so we are allowed to manipulate M in anyway that leaves the determinant 

invariant. Our goal will be to compare with the D-3 brane, hence i t is natural 

to express the above as a four dimensional determinant. Using the well known 

identities: 

det{^ j)=det[ \ j ] (4.44) 

and 
det{A 0 5 ) = det{A)det{B) (4 .45) 

We have 

detM = det{Mij)det{M^^ - M 5 ( M - ^ ) ^ W , V ) (4.46) 

which gives after numerous cancellations: 

detiM,^ = dem,)det(G^. . , 5 . ^ ^ ^ ^ 

( P , 5 . + C 2 / ^ % C 2 / ^ % ) A 
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Where 

= * J M - (4-48) 

and explicitly. 

We will now turn to reducing the Wess-Zumino term. First, we note that 

^ ^ {7P,^TiC\TT^dy') (4.50) 

Using this and the reduction for H we calculate the reduced WZ terms by 
substituting these into Ij. Doing the reduction for is equivalent to doing 
the reduction for Q,Q provided that the compact space has no boundary, which 
is of course the case for a torus. We produce for I5 where 51̂ 2̂ 5 = / M S h and 
dM^ = M ^ . Taking care with factors this produces: 

h = -^de^i;'rTi2de - ^T^iide^Vrjide + derTiC'rTj]de) 

-^-JdeVrude + \\i)de['iP'' ^ I};VTIC^ -h VTkC^TTmC'^)de (4.51) 

Next, we will examine the P5Tterm, the second term in action 4.18. Upon 

dimensional reduction this term naturally splits into a sum of two parts. The 

first part /p5T> consists of terms that look like terms in the Wess-Zumino 

term and a total derivative (corresponding to the theta term). The second 

part, Iplj, is distinct and will be associated with a term arising from dualizing 

the J field. 

i?sT = ^ \ { : F , ^ J ' , + J ^ Ci,H'{v) (4.52) 

I^l^ = ^P^:F^^^^C"U)^-2l^ - (4.53) 
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where 
Y\v) = le^^^-G'-^^. - (4.54) 

F A F is a theta type term that may contribute. In fact it is this term that 

we will later identify with the axion coupling in the 3-brane. For a specific 

choice of w = dy^, we may gauge away L and Fj but this will not gauge 

away the fields 6(i) and bi^2) that must be kept. And so we integrate the 

Wess-Zumino terms and combine them with the relevant PST terms using, 

d{n - I?ST) = h- (4.55) 

And so in terms of fields'given in 4.31, 4.32, 4.33 this gives the interaction 

term for the reduced action: For choice dy^: 

n = \A) + h i 2 ) i A J ' - * P A \ x ) - \ ^ T AT (4.56) 

For choice v = dy"^: 

n = 6(4) - 6(2)2 A T - * P A 6(1) -I- \TIJ' A T (4.57) 

Here we remark that the index % is associated with the torus coordinates 

{y*}, see equation 4.32. Now, so that we may compare with the D3-brane 

we will rewrite the above expression in terms of orthonormal coordinates y^ 
on the torus. Using the equation, 

= e3(2)7 (4.58) 

where 

V ri 0 
Si = \ — T2 \Tl T2 

(4.59) 

is the zweibein of the torus whose metric is given by 4.27. We then carry out 

a space time, Weyl scaling 

X' = XT]"!^ 9' = 97]'/'' (4.60) 
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We will discuss the relevance of this scaling later. And so when we substitute 
this into the above, we find: For v = dy': 

a = 6(4) -^(2)2 A 6(2)1 - ^^^(2)1 A 6(2)1 + -^hn AJ'-r]l*PAb(^i) ~ ^ 1 ^ - ^ ^ ^ 

and 

(4.61) 

= ^ 6 ( 2 ) 1 + x/̂ 6(2)2 (4.62) 
VT2 

For V = dy'^ 

SI = 6(4) - v^6(2)2 A:F- T]I*P A 6(1) + ^TiF A F (4.63) 

and 
= F - -^6(2)1 (4.64) 

We remark that all the terms in Q, depend on either r or 77 so they form 

essentially independent couplings. This will be true when we consider the 

first part of the action, see below. We also have the extra term, which 

becomes for the choice v = dy^: 

r(2) _ f c^^i) ("4 65) 

Consider the truncation where one sets ^ = 0. (This is a consistent trun­

cation). We will also explicitly reinstate the general metric 77̂  of the torus 

and leave the auxiliary field v unspecified. (Apart from the fact that it is a 

closed one form on the torus.) This gives for the first part of the action: 



The M-theory 5-brane ^ 91 

55-2 = - / / ^ ^^l-det{G^, + ia'ivYF^^^, - /?(z;)*J/J,)-t-^FiAF,7^^(?;) 

(4.66) 

where Q:*(?;) and (5{v) and 7('i;)*'' are constants that remain to be evaluated 

and will be dependent on our choice o{v. 

However, before evaluating them we will put the inside the determinant. 

This becomes rj^ inside the determinant. We will then carry out a Weyl 

scaling as before, see equation 4.60 so that we absorb this factor into the 

rescaled metric. That is 

= G,.773 (4.67) 

We then rewrite the action in this rescaled metric taking care with factors of 

T]. The integral is trivial. 

We will use the symmetry given by equation (5) to eliminate half the degrees 

of freedom contained in the gauge fields. For the choice v = dy^ we gauge 

away F^^L) and L12. This leaves only one vector gauge field in the action, with 

field strength F, and one two form gauge field, with field strength J. The 

PST part of the action will then contribute a total derivative that we shall 

be able to identify i t with an axion coupling. We will now write the action 

in its final form as follows: 

55-2 = - / J-det{G'^^ + ia{v)*F,, - /5*J/J.) + ^F^ A F^Y'i^) (4.68) 

We now consider the two natural independent gauge choices for v and eval­

uate the coefficients, a, /? and 7 . 

For V = dy^: 

a ^2 |r ̂  

for V = dy"^-

a = ^2 ^ = rf'^ l = Ti (4.70) 
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Note that the vector fields couple only to the complex structure of the torus. 
That is the couplings are completely determined by the shape of the torus 
and are independent of its size. Different choices of v give different couplings. 
The opposite is true for the two form fields. The coupling for the two form 
field is independent of the choice of v and is dependent only on the area of 
the torus. Note that this is frame dependent statement that is reliant on 
the Weyl rescaling. Combining r = r i -h iT2 we see the different choices of 
V generate the transformation r ^ in the vector field couplings. This 
corresponds to one of the generators of SL(2,Z) the modular group of the 
torus. The other generator will arise from an integral shift in r i which will 
cause a trivial shift in the total derivative term. Later when we compare 
with the 3 brane on S', we will identify the complex structure of the torus 
with the axion-dilaton and the area of the torus will be related to the radius 
of the compact dimension as given in [82 . 

4.3 The D-3 brane 

Starting with the 10 dimensional IIB three brane action in 10 dimensions 
53],[71] we will directly reduce the action on a circle. We have two space-time 

spinors, 9", a = 1,2. These are Majorana, Weyl spinors in 10 dimensions 
with the same chirality. The natural group acting this index is SL(2,R). In 
the actions below, following the conventions in [71, 72], we will combine these 
spinors using the Pauli matrices ra and T I . The indices labelling the different 
spinors will be suppressed (as will the actual spinor indices). We will also 
take 27rQi' = 1. The action (in the Einstein frame) is written: 

where 

Ss = - [ dV\/-dei(G^^ + e-tjT^^) + [ h (4.71) 

J^^F-eh (4.72) 
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where 

b = -eTzVmde{dX'^ + Uv^dO) (4.73) 

and F is the field strength of an abeUan vector field A. As before, 

G^, = YV;iilgmn (4.74) 

The Wess-Zumino term is given by: 

h = -dOnnij^de + dOnJ^^de = did + e^C2 A J") (4.75) 
6 

and we may add a term coupling to the axion as follows: 

Itd^^lCoFAF (4.76) 

We w i l l reduce this action directly implying we w i l l not identify any of the 

brane coordinates w i t h the compact dimension. Hence, we w i l l write = 

-\- 1 = (j) and so decompose the background metric Qmn -> gmn © 

where R is the circumference of the compact dimension. That is as before 

we truncate out the space time Kaluza Klein field. (On the M-theory side 

this corresponds to truncating the wrapped membrane). Therefore, 

n - = ( n - , n j ) (4.77) 

where = d^(l) + C'^ and C'^ = -OT^d^O. This gives for the induced world 

volume metric: 

^ G,, + R\d,(t> + C';){dA + CD (4.78) 

The world volume gauge field is left invariant. The NS 2 form 

h ^ b - dn'^^de{d(f) + hv^de) (4.79) 

which we w i l l write as 

b-^b + b^Ad<f) (4.80) 
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where corresponds to the NS two form reduced to a one form in 9 dimen­
sions. I t is this field that a wrapped fundamental string would couple to. 
The Wess-Zumino part becomes: 

h = ld0T3TiiP^de + dOTiT-ipde + IdOTsniP^xde + dOT^Txde (4.81) 
6 z 

where x = {dcj) + C")r9 So the final reduced action for the three brane be­

comes: 

53,(51) = - / d'a^-det{G,, + e=^T,, - 6£a,]</. + R^{d,<i> + C'^){d,<f> + CD) 

+ / ICoF AF + Ci + e^C2AT + R''{C3 + CRAT)Ad(l) (4.82) 

We wish to compare the wrapped 5-brane wi th different choices of v w i th 

the 3-brane and its S-dual. The S-dual 3-brane is determined by dualizing 

the vector field on the brane using the same method as described below for 

dualizing the scalar field. This has been carried out in [53], hence we simply 

quote the result: 

.1 
= - j d'ay -det{G,. + ^c2\l^2^f,^) + ^(4) - ^(2) ^ ^ 

- \Coe^bAb + e h A T - ^ ^ ^ ^ ^ ^ T A J ^ (4.83) 

and J'={F + e-tC(2) + 62 Cob) 

The direct reduction would follow as before. The items to note are the, as 

expected, inversion of the the coupling A -> ^ where A = Co + ie""^ and the 

slightly altered fo rm of !F and the Wess Zumino terms. 
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I n order to exactly identify the reduced 3-brane action wi th the 5-brane 
wrapped action we w i l l first need to do a world volume duality transformation 
on the field (j). This is i n the spirit of [78] whereby world volume dual actions 
are associated w i t h the M-theory picture of the brane. To do this we follow 
the techniques of [52, 53, 78] and discussed in chapter one. 
We w i l l first deal w i t h the bosonic truncation before moving on to consider 
the more general case. This gives the standard Dirac Born-Infeld action. 

S = - j d^a^-det{G^^ + F^, + R^d^(j)d,(}>) (4.84) 

We w i l l dualize the scalar field (j) by replacing its field strength d(j) w i th / and 

then adding an additional constraint term to the action = Hf\{d^ — l). H 

is a lagrange multiplier ensuring that / = dcf). To find the dual we first find 

the equations of motion for (j) and solve. This implies dH — 0 which means 

we may locally write H = dB. Then we must find the equations of motion 

for / and solve in terms of H. We simplify the problem by working in the 

frame in which F is in Jordan form wi th eigenvalues fx and f2- k are the 

components of / and hi are the components of the dual of H. The equations 

of motion for I are: 

^^ = ^ T O ^ ^ ^ ' ^ ^ - W m ^ ^ ^ " (4.85) 
V-detM V-detM 

h, = ^^J^hR' h = ^=j%kR' (4-86) 
\/-detM V - d e t M 

where 

M ^ , = Of,, + F^, + R\L (4.87) 

We then invert these equations to solve for k. The solutions are: 

^J-detM R ^J-detM ^ 
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, _ + ^3 , _ (1 + /I) h, 
'3 - / - ^ M - / _ (4.89) 

\l-detM^ ^J-detM^ 

Where 

M ^ . = G^ . + - ^{*H),i*H), (4.90) 

When we substitute these equations into the action we find, reinstating dila-

ton dependence and the axion term: 

91) SD = - j d'a^-det[G^, + ie=^*F^, - ^{*H)^{*H),) + ^COFAF (4. 

The axion term goes through untouched. Note how the radius which acts as 

a coupling for the scalar field is inverted in the dual action. We are now in 

a position to compare the dualized, directly reduced on S^, JIB D-3 brane 

action w i t h the double dimensionally reduced on T^, M5 brane action. 

I n fact, we shall compare the reduced three brane wi th the wi th the vector 

fields dualized and non dualized w i t h the wrapped 5-brane wi th the two dif­

ferent gauge choices described above. And so we compare equations 4.91,4.83 

w i t h 4.68, 4.69, 4.70 given above. 

In doing so must identify the fields and the moduli of the two theories ap­

propriately. When we compare wi th the usual M-theory predictions given 

in [82] concerning the relationship between the moduli of the I I B theory in 

9 dimensions w i t h the geometrical properties of the torus used in the M -

theory compactification we have agreement. The scaling of the metric given 

in equation 4.67 implies 

G j , = ^ r e a ( T 2 ) ^ G j (4.92) 

From both the coefficient in front of F in the determinant and the coefficient 

in f ront of the F AF term, we identify the axion-dilaton of the I I B theory (in 

the 10 dimensional Einstein frame) wi th the complex structure of the torus. 

A = Co + ie-'^ = r (4.93) 
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From comparing the coefficient in front of *H, the radius of the the 10th 
dimension in I I B becomes: 

RB = Area{TYl (4.94) 

Where have identified the gauge field on the reduced 5-brane wi th the gauge 

field on the reduced D-3. The dualized scalar on the D-3 brane becomes 

identified w i t h the three form on the reduced M-5 brane. 

We w i l l reinstate the truncated fields and attempt to identify these fields 

between the dual pictures. The duality transformation now becomes a great 

deal more complicated; i t is essentially the terms involving b^ that prevents us 

f r o m dualizing the 3-brane action as above. We could however take advantage 

of the fact that the dualized action ought to be our reduced 5-brane action 

by carrying out the following consistency check. We can obtain an algebraic 

expression for H f r om the equations of motion of f rom the reduced three 

brane. Instead of inverting these equations to obtain an expression for L we 

may simply insert our expression for H into the reduced 5-brane action and 

check that this action is the same as the original three brane action. This 

is essentially the method used in [53] to check the relationship between the 

5-brane and 4-brane. This is algebraically extremely involved in this case and 

does not provide much insight. However, for the case in which the b^ = 0 

can be dealt w i th directly. Recall, the integrated Wess-Zumino term: 

C{4) + C(2) AJ'+ (C(3) + A JP) A # • (4.95) 
iW4 

W i t h the b^ term vanishing f rom the determinant in 53^(51) we can see that 

the first term in the action is of the same form as that for the case ^ = 0 

already considered. As already described, we replace d(f> in the action wi th a 

generic one fo rm L and add the constraint H A (dcj) — L). Then integrating 

out (f) implies H is closed and we are left wi th the term —H A L. Before we 

simply integrated out L leaving an action in terms of H. Now we w i l l combine 

the terms outside the square root that are linear in L as follows: 

S = - { H - C(3) - A J-) A (L + C") - {H - C(3) - A :^) A C" (4.96) 
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We can now integrate out the combination L+C which appears in the action 
in favour of = ( i f - C(3) - C^ AT) using equations 4.89. This gives the 
following dual action, (reinstating R dependence): 

S = -J-det{Gf,, + i*T^, - ^*'H^*n,) + C^,) + C^2)AT-^nAC' (4.97) 

By comparing 4.97 w i t h 4.64, corresponding to the case v = dy'^, we make 

the following identifications to equate this action wi th the reduced 5-brane 

action. Wr i t ing I I B fields on the left and M-fields after scaling and converting 

to orthonormal frame, see 4.58, 4.60, on the right: 

•6(4) = C(4) 6(3) = C(3) 6(2)1 = b 6(2)2 = C(2) (4.98) 

= C^ 6(1) = C J = H F = F (4.99) 

To make these identifications which are very natural we have set C^ = 0 on 

the 5-brane side, this significantly simplifies the 5-brane action. 

For the case v — dy^ we compare wi th the S dual action 4.83 after reduction 

and set C^ = 0 on the 5-brane side to make the corresponding simplification 

required in order to dualize the scalar field. See equations 4.61, 4.69, 4.70 

and 4.83. The identifications required to equate this action are the same as 

above w i t h C^ = 6^. This is a requirement of consistency. 

We now wish to consider cases where the duality transformation of the scalar 

field differs f rom above because of the interaction term wi th the 6^ field 

(or C ^ in the S-dual case) inside the determinant. Using the technique 

described above, once we know how the the Dirac Born Infeld part in the 

brane action transforms under duality we can recover how the f u l l brane 

action including the Wess-Zumino terms transforms. Hence in what follows 

we drop the Wess-Zumino terms as the duality transformation to include 

them follows immediately. (This is essentially because adding terms that are 

linear in dualizing field does not change the form of the dual action.) 
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First, we consider the approximation whereby the Born-Infeld term is re­
placed w i t h a Yang-Mills term. This gives, keeping only the scalar corre­
sponding to compact direction: 

S = -\T^.r^ + \d^W^ ~ \F^%dA<^ - ^-^Id.x^b^'^'d^H (4.100) 

We now dualize 0 following the same procedure as before to obtain the fol ­

lowing dual action: 

(4.101) 

Should we make the same approximation to the 5-brane action, ie. replacing 

the first term by a field strength squared term, we find that we recover 

directly the above action. Note the peculiar factor ^̂ _̂ _̂ ĵ;̂ 2̂  in front of the 

action which comes in the 5-brane case f rom the ^ factor is a result of 

dualizing the scalar field in the D3 brane. The final term in the action is 

identified w i t h I'psx-

Constructing the dual action directly for the f u l l D B I action 4.82 is difficult 

as discussed above. However, w i t h the rather specific case of vanishing T we 

can construct the dual theory exactly. 

A n d so for the reduced D3 brane, wri t ing out the determinant exactly we 

have:' 

5 i = - I ^ ' ( l + d^4>d^<\> - {b^d^^Y + (6^9'̂ </>)2) (4.102) 

Add ing the usual constraint term and and integrating out ^ we have the 

following equations of motion for l^: 

^ + (4 ,03 ) 
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which we can invert to give an expression for l^: 

^ ( 1 + (6«)2)(1 + (6«)2 - i / 2 _ {bR . * H f ) 

Inserting this in the action 4.102 provides the dual: 

(4,05) 

which we may write as follows: 

where 

Q = 
1 + jb^y - {b^ • *Hf 

^] 1 + w 
(4.107) 

This is identical to the reduced 5-brane action wi th T set to zero, see equation 

3.70, once we make the following identifications: 

P, = *H, = bl (4.108) 

This again is consistent w i th 4.99. 

4.4 Conclusions 

We have shown that the action 4.18 for the M theory five brane, under double 

dimensional reduction on a torus produces the self-dual three brane of I I B 
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directly reduced on a circle. The S-duality of I I B becomes transparent as the 
modular symmetry of the torus. The diflFerent gauge choices for v G H^{T'^) 
correspond to different S-dual formulations of the 3-brane. The identifica­
t ion of the modul i and the fields of the two theories has been shown to be in 
agreement w i t h work considering the ambient supergravity [81] and the iden­
t i f icat ion of the string wi th the partially wrapped membrane [82]. In order to 
make this identification i t was necessary to dualize the scalar corresponding 
to fluctuations in the compact direction. This duality transformation acts 
non-tr ivial ly on the action. I n fact, in the most general case the dual action 
is extremely diff icult to construct explicitly; even proving the equivalence 
w i t h the reduced 5-brane which ought to be an algebraic exercise proves to 
be diff icul t due to the complexity of the duality transformation. However, 
by making approximations to the Born-Infeld part or by truncating fields we 
explicit ly construct dual actions to the reduced three brane in these cases. 
I t should be noted that the results are essentially classical and wi th a very 
specific choice of world volume topology for the 5-brane, hence we do not 
encounter the problems reported in [22, 23 . 

Recently, there has been an attempt to rewrite the 5-brane action wi th an 

auxiliary metric as one does for the string so as to make the action linear 

89]. This essentially shifts the complexity of the action into the equations of 

motion for the auxiliary metric. Again the duality transformation becomes 

di f f icul t to implement exactly. 

One of the aspects not explored explicitly in this chapter is the role which 

the five brane may have in a reformulation of the three brane in which the 

S-duality of I I B is manifest, as reported in the recent work [90, 91]. In [35], 

by taking i ; to be a one form in instead of an action was produced 

that has the S-duality manifest [34],[37],[38].(Recently this has been explored 

in detail for the five brane, [87]. The disadvantage wi th this approach is that 

the Lorentz invariance is then not manifest. I t is not clear i f a connection 

can be made between these two approaches. I t would be interesting i f one 

could give some physical interpretation to the auxiliary field v which plays a 
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crucial role i n encoding the self-duality condition in the action. We remark 
that other relevant work regarding the five brane in an action formulation 
and its relationship to duality is given in [92],[93], [94 . 



Chapter 5 

Conclusions and further 
speculations 

This thesis has attempted to demonstrate the role of self dual, also known 

as chiral, gauge theories in duality symmetries. The dimensional reduction 

of these theories provides a geometric interpretation of S-duality that allows 

a K'aluza-Klein type understanding of the duality symmetry. From this per­

spective, the duality arises f rom the geometric properties of the compact 

space. This has been explored for both two form and four form self dual 

theories on a variety of spaces. This has also been applied to non-linear 

Born-Infeld type theories and in doing so has inspired a reformulation of the 

Born-Infeld theory to allow the duality symmetry to appear manifestly in the 

action. 

Perhaps the most natural application is to the M-theory, I I B string theory 

relationship. The I I B self-dual D-3 brane is shown to emerge after double 

dimensional reduction (wrapping) of the M-theory five brane and a world 

volume dualization of the two form field. The S-duality of the I I B theory is 

now a consequence of the modular symmetry of the torus. The relationship 

between the PST formulation of the five brane and the different S-dual de­

scriptions of the three brane is discussed in detail along wi th the necessary 

world volume dualization of the f u l l non-linear, supersymmetric theory. 
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I t would be interesting to consider a more complicated surface other than 
a simple torus on which to wrap the five brane. In particualar, i t has been 
shown that the effective theory of N = 2 super Yang-Mills arises f rom the 
five brane-truncated to quadratic order in field strengths- and wrapped on a 
Riemann surface [95, 96]. This Riemann surface may then be related to the 
Seiberg-Witten curve of the corresponding gauge theory. So far this has not 
been derived in an action formalism of the five brane. One of the reasons 
for this is that to a generic Riemann surface does not meet the requiste 
topological restrictions. One way round this might be to choose v to lie in 
a space-time direction and then derive a duality manifest version of super 
Yang-Mills f rom which one would have to perform the sort of elimination 
carried out in chapter 3, section 3.2 . 

I n this discussion there has been no attempt made to obtain results valid 

at the quantum level. As such the duality symmetry obtained is only true 

classically and may not be preserved by the part i t ion function. In fact as has 

been shown in [22, 23] and briefiy mentioned in the introductory chapter, the 

duali ty symmetry for Yang-Mills theory is not a symmetry of the part i t ion 

funct ion once global properties are taken into account. In the discussion 

presented here i t was shown that often global properties are necessary in 

formulat ing self-dual theories. One example of this would be the requirement 

of a non-vanishing first Bet t i number. In fact i t is well known that part i t ion 

functions for self-dual gauge theories are particularly problematic [22, 23 . 

Recently, a five-brane part i t ion function has been presented wi th the required 

modular properties [97], though the approach there does not use any action 

for the five brane. Elsewhere [98] there have been attempts to study the 

diffeomorphism anomaly that arises in eleven dimensions as a result of the 

presence of the five brane, the anomaly could only be resolved wi th certain 

topological restrictions, (such as the existence of a global vector field on 

the 5-brane submanifold). This is suggestive of the connection between the 

problems of the diffeomorphism anomaly induced by the five brane and the 

diff icul ty in forming a part i t ion function f rom an action describing a self-dual 
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gauge field. Related ideas are discussed in [99 . 

I t has demonstrated how classical S-duality of the D-3 brane arises f rom 

the dimensional reduction of the M-5 brane. As the D-3 brane action after 

suitable quadratic approximation is meant to be N = 4 super Yang-Mills one 

expects that the D-3 brane part i t ion function (though i t is not entirely clear 

what such a par t i t ion function means for a D-brane) w i l l transform under 

S-duality as a modular form whose weights are dependent on the global 

properties of the three brane. This leads to the natural speculation that the 

lack of three brane part i t ion function modular invariance is related to the 

diffeomorphism anomaly of the five brane. One might imagine that there 

is some term that has been missed f rom the three brane action that would 

cancel the S-duality anomaly and restore the S-duality to a f u l l quantum 

symmetry for the 3 brane. Such a term might be related to terms required 

to cancel the 5-brane anomaly. This is highly speculative and is intended to 

be the subject of future work. 



Appendix A 

Differential forms 

We present our conventions for forms as follows. 

A p-form F on a d-dimensioal manifold, M'^. Is given by: 

F = ^ F ^ i ^ 2 . . M p f ^ ^ ^ ' ^ dx^"^ ^ - dx"" (A.l) 

Where {dxi^} are a set of basis one forms on the manifold and {x^} are 

a set of dual basis vectors. Note, f ^ d x " = 5^. 

We denote the space of p-forms on M'^ by AP(M'^) 

The wedge product between basis one forms is defined as follows: 

dx^ A da;" = dx^ ® dx" - dx" ® dx^" (A.2) 

and in general for A G AP(M'^) and B G A « ( M ' ^ ) : 

AAB = ^Ai^,..^^B^,..,^]dx^'' A .. A dxf"" A dx"' A .. A dx"' (A.3) 

where square brackets denote complete antisymmetrisation. 

That is 

Ai^B,] = l{A^B,-B,A^) (A.4) 
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A[^B^Cp] = ^{A^B,Cp-A^BpC^-A^B^Cp-\-A^BpC^ + ApB^C^-ApB^Cf,) 

(A.5) 

etc. 

The exterior derivative, acts as follows: 

dF = ^d[,,F,,,,„,^^,]dx''^ A dx^^ A • • A dx''^^^ (A.6) 

The inner product on a p-form F is a contraction wi th a vector v is denoted 

as follows: 

ivF = j-^v^F^,,..,^_,dx''' A dx-"^ A .. A dx''"'' (A.7) 

where v = v^x^ 

We take the total ly antisymmetric tensor to be defined wi th indices up. 

This means the Hodge dual is defined as follows: 

{*F)fj,ifj,2..tj.p — J^^^^^9^^ll'l9^J•2l'2••9^lpl^p^'^'^''^'''^'''^^'^^'''''^F^^^ (A.8) 

where g^,^ is the metric on and g = detg^j^^ 

Remark that 

**F = ( - l ) P ( ^ - i ) + ^ F (A.9) 

where M'^ has signature s. 
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