W Durham
University

AR

Durham E-Theses

Automating reuse support in a small company

Biggs, Peter J.

How to cite:

Biggs, Peter J. (1998) Automating reuse support in a small company, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5038/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5038/
 http://etheses.dur.ac.uk/5038/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Automating Reuse Support
in a Small Company

Peter J. Biggs

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

PhD Thesis

University of Durham -
Department of Computer Science
Centre for Software Maintenance'

Supervisors: Cornelia Boldyreff and Keith Bennett

F R

EGLNS

s
i
L
) L

&

3 JAN 1999
August 1998

Abstract

Software engineering has been facing a crisis for several years now - there is more demand for new
software than there is ability to supply.‘ Software reuse is a potential way to tackle the problems caused by
- the softWare crisis §vith its promises of increased produc;tivity and cheaper development costs. Several
software reuse successes have been reported, but these have been predominantly in large, well structured
companies. Hdwever, there are numerous smaller companies that could also benefit from reuse if it were

made available to them.

This thesis addresses these issues by implementing a reuse programme in a small company. An
incremental approach to reuse introduction is adopted, following the Seven Steps to Success, and
‘lightweight’ processes are recommended to support the reuse programme. A prototype tool set, ReThree-

C++, was developed to automate support for the reuse programme.

The results of the case study are presented. The reuse programme was successful, with benefits to the
company including both increased speed of production and financial gains from selling reusable
components. The challenges faced are also identified. Details of the tool set giving automated support for
reuse are also presented. The tool set is an approach to reuse repository control which élso integrates
information abstraction from C++ source code to generate class hierarchy charts and softwareA
documentation automatically. It helps developers store, retrieve, understand and use reusable

components. The usefulness of the tool set is shown with an experiment and as part of the case study.

The purpose of the thesis is to show that small companies can implement reuse, and that the method
presented supports the introduction of a reuse programme. It concludes that although challenges were

faced, great benefits can be gained by using the method with automated support for reuse in a small

company.

i Automating Reuse Support
in a Small Company

Acknowledgements

The author would like to thank Dr. Cornelia Boldyreff and Prof. Keith Bennett for their advice, assistance

and encouragement as supervisors for this research.

b

This work has been funded by the Engineering and Physical Sciences Research Council.

The author woﬁld also like to thank Nigel Hope, Andrew Wilson, Steve Anderson, Sary Andiyapan and

all the staff at Public Access Terminals for their help, support and contribution towards this research.

Thanks also to Richard Mortimer and Elizabeth Burd for their useful advice and support throughout the

time of this research.

This Ph.D. thesis is dedicated to Kenneth and Marian Biggs. My life is their success.

ii Automating Reuse Support
in a Small Company

Declaration

This thesis is solely the work of the author, and no part of the thesis has been submitted for a degree at
this or any other university. The copyright of this thesis rests with the author. No quotation from it should

be published without his prior written consent and information derived from it should be acknowledged.

il Automating Reuse Support
in a Small Company

Table of Contents

CHAPTER 1: INTRODUCTION 1
L1 OVEFVIEW ...t ettt et et ettt et ettt et e s aa e s e s et e b e b et e et Rt ene s ane e e nrenee 5
1.2 StAtEMENT O PPOBIEML............oioiiiiiiiiiiiiiiettie et e 6
1.3 CONIEXLOf WOTK ...ttt e naen 7
1.4 GO IA fOF SUCCESS ...vvveeeeeieieieeee ettt sttt ettt sttt h et e b et st a ettt n et renae 8

CHAPTER 2: THE FIELD OF SOFTWARE REUSE 10
2.0 IUIPOUCHION ... v 10
2.2 Definitions of Software Reuse...............c.coooeovrvvrvcenrene. et et e 10
2.3 MOBIVALIONS JOF REUSEcooviviiiisirieeittetee ettt et 13
2.4 Benefits Of REUSE.........c.oeoue oottt e 14
2.5 ISSUES I ROUSE ...ttt st st r b 16
2.6 TeChNOlOGICAl ISSUES...........covcvcviiiiiiiicccctt et 17
2.7 Organisational Issuescccccocccuvevnnne, OO SO PSP SV O PP PTTOPRRTUPRUPRRROTORRR 27
2.8 CONMCIUSTONS ..ottt ettt ettt et et r e r e bbb sae e 30

CHAPTER 3: INTRODUCING THE REUSE PROCESS AND OTHER TECHNIQUES TO

SUPPORT SOFTWARE REUSE IN A SMALL COMPANY 32
3T THIPOGUCHION ...ttt et bbbt 32
3.2 SMAI COMPANIES ... et 33
3.3 Introducing new technology and software process improvement................ccooceueveveevnerssisinninnnson. 36
3.4 RiISK ARGIYSIS ...ttt s 45
3.5 Techniques to support the introduction of reuse in a small company................cc.ccoooveiiiiicnnns 46
3.6 CONCIUSIONS ...t ettt st ss s s aenstennienseenneanans DO

CHAPTER 4: SOLUTIONS 59
G L IRIFOAUCHION ...t ettt e 59
4.2 Study of successful Feuse PrOGrammes.............c.cocvceorcororoioiariiteiieniss s 60
4.3 INtroduction Of SUCIUPEA PYOCESSES..................coovecovvooeeeersessisses s s s sssssssi e 63
4.4 Incremental INtrodUcCtion Of REUSEcccocovvvimuiiiiiiiinicinienienecteert et 64
4.5 Encouraging Ad-ROC REUSE...............c.coccovviirimiviiiieiciiiceeee e 65
4.6 Introduction 0f CASE TOOIScocccviiiiiilniii e 66
4.7 CONCIUSTONS ..ottt ettt bbb bbbt ettt et b et bt 68

CHAPTER 5: REUSE IN A SMALL COMPANY: THE METHOD 70
ST INIPOAUCHION ..o 70
5.2 TRE ISSUCS..c...eeeeeeeeeeeeeeee e et et b bbb 70
S.3TREMEIROA. ...ttt et bttt a et ar e ena 72
5.4 CONCIUSIONS ...ttt ettt et h et a ettt enee e 81

CHAPTER 6: REUSE IN A SMALL COMPANY: THE PRACTICE 82
6.1 INtroductionccccooevevvninniniciniiiiicnieeinns et et et e e e 82
6.2 THE COMPANY ...ttt ettt sttt h s etk et ettt ettt e e 82
6.3 THE CASE STUAY ..ottt st sttt 83
6.4 Automated support for the reuse programme...............c.cccceeveenceneerans ettt 94
6.5 CONCIUSIONSc..oevooeeooeeeeeeee e 98

iv Automating Reuse Support

in a Small Company

CHAPTER 7: EVALUATION OF RESULTS . 101
7oA TIPOGUCHION ...ttt 101
7.2 Results of the Reuse Programme..................ccccccomeerrnnsiosieconcese oo sesss e senns 101
7.3 TOOI S€t EVAIUALION ...ttt ettt e en ettt 108
74 CONCIUSIONS ...ttt ettt et s ettt an ettt e s et ete s eae e s eaens 125

CHAPTER 8: CONCLUSIONS 127
S I THIPOAUCHION ...ttt sttt n e eaesees 127
8.2 Summary of Thesis............. Lttt et ekt et R et et b ek et b ettt et e e 127
8.3 Reuse in a Small Company ReVISIed................cccoveiioviieiisioiseiereee et ses st 130
8.4 ReThree-C++ - The Prototype TOOI Setc.ccoccmioiimiiiiniiect et 132
8.5 ANQIYSiS Of tRE TES@ATCH ...ttt et 134
8.6 FUPIREE WOTK ...ttt ettt et ae et aneene e 136
8.7 FINAL ANQIYSISe ettt ettt eat ettt n et ene e 137

CHAPTER 9: REFERENCES 141

CHAPTER 10: BIBLIOGRAPHY 156

APPENDIX A 162
Al Software Reuse QUESHIONAAITEcccovvciriiieuioiiiiieieeiceteiric st 162

APPENDIX B 164
Bl ReTRIEE-CHt ..ottt et [EUTURUOON 164
B2, EXAMPIES Of USE ..ottt ettt 166

APPENDIX C 181
Cl. ReThree-C++ Evaluation QUESHIONNAITE...............c.ccccouovumiariciiiricenierenne et 181

APPENDIX D 183
D1. Group Task DeSCHIPLIONSccocvvuerereenrireenieneirees s es st esie sttt 183
D2, TSt PPOZUAM ...ttt s ss s 185
D3. Class Information for Group 3 ..ot 187
DA4. Instructions on the use of ReThree-C++ for Group 4 ..o 211

v Automating Reuse Support

in a Small Company

List of Figures

FIGURE 7.1 - THE RETHREE-C++ USER INTERFACE 105

FIGURE 7.2 - EVALUATION OF THE SPEED OF EXECUTION OF RETHREE-C++......... 109-111

FIGURE 7.3 - GRAPH SHOWING THE SPEED OF EXECUTION OF RETHREE-C++.............. 112
FIGURE 7.4 - TABLE OF RESULTS FROM C++ EXPERIMENT 116
vi Automating Reuse Support

in a Small Company

Chapter 1: Introduction

This chapter gives an overview of the research conducted in t‘his thesis, including a statement of
the problem to be addressed, and the context in which the research has been conducted. The title
of the thesis is “Automating Reuse Support in a Small Company”. The research has been funded
by the Eﬁgineering and Physical Sciences Research Council, and has been conducted at Durham
7 University in conjunction with Public Access Terminals Ltd., a small software systems

development company.

Over the years since the computer was first invented, there have been many different pieces of
software written for various types of machine. Originally, all software was written from first
principles, with programmers deciding what was needed, then designing'and coding the required
system. With computers flooding the business world, the demand for high quality software has
increased dramatically. However, the time taken to write software systems has not decreased
signiﬁcantly. This creates a problem: there is more demand for software than there is ability to

supply. This problem is generally known as the.software crisis.

Software reuse (the use of previously written software in the development of new systems) is a
potential way to tackle the problems caused by the software crisis, and has beén a subject of
research for several years now. The reuse of software is a popular concept in the software
development industry, with its promises of increased productivity and cheaper development
costs. Somé successes have been reported, but these have been predominantly in large, well
vstructured companies with the resources available to iﬁvest in reuse. This research is based on
the thesis that smaller companies, which tend to rate low on the process maturity scale (a
measure of the quality of the processes used within a company) and do not have the resources
avéilable to invest in long-term payback schemes, could also benefit from reuse if it ;:vere made

available to them.

1 Automating Reuse Support
in a Small Company

The research proposes a method for introducing reuse into a small company which recognises
that small companies do not have the processes in place or the resources available to carry out a
full scale reuse programme. Using a combination of ‘lightweight’ processes and automated
support for the reuse programme, the thesis recommends an incremental approach to the
introduction of reuse which cuts the initial investment required and reduces the amount of time

which passes before the benefits of reuse can be realised.

A case study using the method is conducted in association with a small company. Using the
working relationship with Public Access Terminals Ltd., this research considers the challenges
which are unique to a small company and investigates the validity of the method in an industrial
environment. This has enabled the research to address a real problem, which has not been very
well considered in software reuse research, namely the combination of technical, organisational
and logistical challenges which face a small company wishing to implement a software reuse

programme.

The research method has been based on Colin Potts’ recommendations for using ‘industry as a
laboratory’ [Pott93]. Potts suggests that research should address real problems faced by industry
in order to facilitate improvements, rather than the common ‘research-then-transfer’ approach
which is usually attempted with varying degrees of success. He recognises the importance of

revolutionary research, but emphasises also the importance of evolutionary research.

This chapter gives an overview of the structure of this thesis, followed by an overview of the
research which has been performed, a statement of the problem addressed, the context in which

the research has been conducted and criteria for success.

Chapter 2 discusses the concepts of software reuse. It considers what software reuse is, why it is
advantageous to do it, what technologies are curr_ently available to support reuse, why reuse is
not practised and the difficulties involved in the introduction of reuse into the software
developmeﬁt process.

2 Automating Reuse Support
in a Small Company

- Chapter 3 looks at technologies which support the introduction of a reuse programme in a small
company. First, there is consideration of how a small company is defined. This is followed by a
" section which looks at the techniques which can be used when changing the way in which a
company works, covering the fields of organisational development and process improvement.
The applicability of object orientation for reuse is considered and reverse engineering and

software documentation for reusable components are also investigated.

Chapter 4 looks at some of the successful reuse programmes which have been reported and then
considers some of the alternative methods which were available for conducting this research.
There are various approaches to the introduction of a software reuse programme in a small

company. These alternatives are considered, along with the course of action which was chosen

for this research.

Chapter 5 describes the method which was chosen for the introduction of a reuse programme in
a small company, given as the Seven Steps to Success. It has been seen in other studies that the
support of top level management is vital to the success of a software reuse programme. The
initial work, therefore, involves presenting the case for reuse to the top level management.
Following this, a study of the company’é current working practices is conducted, which leads to
recommendations being made to the company for techniques which would help the introduction
of a reuse prograMe. These techniques are consolidated into a plan, including a pilot project to
test the implementation of the techniques. The results of the pilot project are collected and
studied to identify successes and shortcomings of the approach adopted. Based on the results of
the pilot, a plan for reuse is formulated and implemented within the company with associated

automated support.

A case study implementing the Seven Steps to Success is described in Chapter 6. This study
introduces ‘lightweight’ processes to the company, integrated with a tool set which aids the
automation of some of the ‘lightweight’ processes suggested for the software reuse programme.

3 Automating Reuse Support
in a Small Company

The method recommended for introducing reuse into the software development process makes
reuse available without the large initial investment which is usually required‘ for a successful
reuse programme. The tool set provides support for object-oriented design, reverse engineering,
software documentation generation and support for a reuse repository in an integrated -
environment. The combination of tool support for these areas and the ‘lightweight’ processes

help to reduce the initial effort required when introducing reuse into a small company.

In Chapter 7, the results obtained from the case study are discussed. Success is identified in
terms of benefits to the company, and the problems encountered are also identified. The tool set
developed is evaluated as a part of this research and also by experimentation. The results of

these evaluations are collected and considered.

The final chapter of the thesis gives conclusions about the research carried out. The results of the

research are discussed, along with criticism and further work.

The purpose of this thesis is to investigate the practicality of implementing software reuse as part
of the development of software within a small company, and to identify those features of the
working practices studied which are unique to the small company environment. During this
investigation, ways to improve the development strategies used in small companies are
identified, and considered for their applicability in this case study. ‘Lightweight’ processes with
automated support for reuse are suggested and evaluated as ways to assist reuse in the small

company environment.

Software reuse is considered as a key topic for investigation due to the improvements in
productivity and profitability which can be derived from the implementation of a software reuse
programme. Of considerable interest is the actual process of introducing a reuse programme into
" an environment where there are no standard processes currently defined. The difficulties of this
task are considered and ways to improve the introduction of reuse into such an environment are
suggested.

4 Automating Reuse Support
in a Small Company

This thesis approaches the challenges in software reuse by adopting a practical approach to the
implementation of, and automation of support for, a reuse programme in a small company. It

makes two important contributions to the field of software reuse research:

1. A method for introducing reuse in a small company with a real case study of the
implementation of a software reuse programme in such a company. The programme is
described in terms of the recommendations made, the work done, problems encountered and
success achieved.

2. A practical, fast and simple to use tool for automating reuse support in a small company.
This tool aids in storing and retrieving reusable cofnponents, as well as reverse engineering
and re-documenting source code to provide informatiqn aBout the reusable components.

\

1.1 Overview

The benefits which the reuse of code can bring have interested many software development
companies, and studies have been conducted considering the challenges facing companies
setting up a reuse programme. Both succésses and failures have been reported, but the successes
tend to be in large, well structured companies with the resources available to invest in reuse
[Bigg89b]. Smaller companies could also benefit from tﬁe reuse of their software if the

principles and techniques which support software reuse were made more available to them.

This research attempts to make reuse available on a smaller scale by encouraging small company
develdpers to design with reuse in mind. This will help to make reuse available ‘in the small’,
where companies do not have the processes in place, or the time and resources, to support highly
structured reuse frameworks. There is coﬁsideration of reverse engineering and re-
documentation to allow developers to see how object-oriented (OO) design and software
documentation can aid them in understanding their previous developments. This will encourage

more structured development processes and help in the maintenance and reuse of current code.

. 5 , Automating Reuse Support
' in a Small Company

A study of several OO design methods has been conducted, and their applicability to software
reuse was considered. The study suggested a notation for representing the structure of a software
system. This allows the ideas to be applied to C++ source code, giving a diagrammatic
representation of the classes within the code, as well as the structure of the inheritance hierarchy.
The representation is associated with a system of using information taken from the static
analysis of the source code to generate documentation for the code automatically, based on the
comments within the code. This automatically generated documentation is used to index and
classify code components for a reuse library. The integration of the tools for reverse
engineering, re-documentation and reuse support form an integrated environment automating

support for reuse in a small company.

1.2 Statement of Problem

It has been shown that software reuse can offer great benefits to companies when used
effectively. Many success stories have been quoted, from Raytheon’s 50% increase in
productivity due to a réuse rate of 60% [Lane84], to GTE’s saving of $1.5 Million from a reuse
factor of 14% [Prie90], to the Japanese software factories’ claim of annual productivity increases

of 20% by implementing a software reuse programme [Mats84].

It would be foolish to claim that software reuse is the solution to all the problems that have
caused the current sofMare crisis. Achieving software reuse on a level at which substantial
benefits will be gained is a difficult task, and requires a great deal of commitment and effort.
Tracz [Trac88b] emphasises that “there is no free lunch when it comes to software reuse”. There
are, however, techniques which can help a company to maximise its resources and improve its
productivity. It has been shown that reuse offers great benefits if used effectively in the right
environment; but this raises the questions: how are software reuse techniques best employed;
and what is the right envﬁoment for .software reuse to prosper? All the published examples

quoted above have been large, well structured companies, with top level management support

6 Automating Reuse Support
in a Small Company

for the reuse programme. This suggests that software reuse tends to prosper in such an
environment; but what about the small, less structured companies, whose livelihood depends on
the ability to produce their product as quickly as possible, while trying to keep standards high

"and their maintenance costs low? To them, the benefits of software reuse could be invaluable.

There are two major factors that inhibit reuse which will be considered in this research. The first
factor is classified as the technological issues in reuse. These include the lack of reusable
components available to a developer (either because they do not exist, or they are not easily
available), that the parts needed cannot be found, or cannot bg understood or integrated into the
current system even when they are found. The second factor includes managerial and
sociological inhibitions, otherwise known as organisational issues. These are evidenced by the
lack of processes to support reuse, the lack of commitment to a reuse programme and the N/H
(not invented-here) syndrome, where developers are wary of using code that they have not

written themselves.

~ The research will address the first factor by making reuse readily available through automated
support for the reuse procesis. This will aid the identification, classification and retrieval of
reusable components, Guidelines will also be made on introducing reuse in the small company
environment using ‘lightweight’ processes, which are tested in practice in an industrial

collaboration. This addresses the second factor.

1.3 Context of Work

The basis of this research has been a method called “industry-as-laboratory”, as recommended
by Colin Potts [Pott93]. This involves bringing researchers into close contact with industry, so
that real problems can be identified first-hand. He suggests one of the reasons that the current
s;ate of practice in industry is so far behind the leading research being done in software

engineering is that the “research-then-transfer” approach has been so predominant in the

research community.

7 Automating Reuse Support
in a Small Company

In line with this suggested research technique, a project has been undertaken in collaboration
with a small software development company, Public Access Terminals Ltd. (P.A.;F.). This
allows the metho'd for the introduction of reuse proposed within the thesis to be evaluated in
practice. It has already been shown that there is a lack of reported research on software reﬁse
within small companies. The examples quoted in section 1.2 are large companies whose
structured processes have been updated to incorporate reusé. Small companies tend to have ad-
hoc and unstructured processes for software engineering, yet still have considerable success in

the market place.

There is also a lack of research being done into how reuse can be capitalised upon in an
environment where there are no structured processes available with which to integrate a reuse
programme. Interesting results have been gained from the work done with P.A.T. in their small
industrial environment. It has been found that ad-hoc reuse is a standard practice. The problems
often associated with rel-lse, such as the storage and retrieval of reusable components are much
less significant because of the small scal;e on which their work is done, and the narrow domain
of the software being developed. However, m order to achieve further benefits from reuse, it has

been seen that more formalised ‘lightweight’ processes can be introduced.

1.4 Criteria for success

In evaluating the results of the method for implementing a reuse programme discussed in this

thesis, the following criteria for success will be used. Three main issues will be considered:

1. Is the method for introducing a reuse programme successful? Success for a reuse programme
can be measured in many ways. However, the most clearly identifiable measure of success is

identifying whether reusable components are built, and to what extent they are reused.

8 Automating Reuse Support
in a Small Company

2. Does the method Bring benefits to a small company? As identified later in section 2.4,
benefits will be considered in terms of:
o Increased speed of production
¢ Financial benefits
. Iﬁcreased quality of software
e Ease of‘maintenance
3. Does automated support aid.a reuse programme? The automated support will be considered
in terms of thg benefits brought to a reuse programme and its usefulness within a smal‘l

company. .

In order to measure these considerations, a reuse programme using the method was implemented
in a small company. An experiment was also conducted to investigate the automated support for
a reuse programme. The research will be considered successful if all three questions posed

above can be answered affirmatively.

9 Automating Reuse Support
" in a Small Company

Chapter 2: The Field of Software Reuse

2.1 Introduction

This chapter gives an overview of the field of software reuse. It starts by defining what reuse and
reusability are, then goes on to discuss why reuse {s important and some of the motivations for
doing it. The benefits which come from successful reuse are outlined, followed by the two major
sets of issues which must be addressed in order for reuse to be successful. These are
technological and organisational. Technological issues are discussed in detail, focusing first on
the reuse of software components, then looking at the reuse of higher level components. The
section on organisational issues considers some of the psychological, sociological and economic
factors which can affect a reuse programme. The chapter finishes with a review of the points

from the survey of the field of software reuse which are important in this thesis.

2.2 Definitions of Software Reuse

The concept of software reuse has slowly developed over the past 30 yéars as time, research and
experience have modified people’s perception of the idea of reuse. The first recognised
publication on reuse in software engineering is Mcllroy’s [McIl68] view foreseeing software
‘development becoming the process of constructing software from standard interchangeable
building blocks. He suggested that the ;oftware components industry should be comparable to
the hardware components industry. He says: “I would like to see the study of software
components becor.ne a dignified branch of software engineering. I would like to see standard
catalogs of routines classified by precision, robustness, time-space requirements and binding

time of parameters.” This view mainly considers the reuse of source code.

10 | Automating Reuse Support
in a Small Company

Freeman [Free83)] expanded this view of reusability to cover a greater area of the software
development process, when he said: “This leads us to define the object of reusability to be any
information which a developer may need in the process of creating software.” He goes on to
describe five main levels at which reusability should be considered, namely: code fragments,
logical structures, functional architectures, external knowledge and environment-level

information.

In the Software Engineer’s Reference Book, Hall and Boldyreff [Hall91] describe software reuse
as “the use of a given piece of software in the solution of more than one problem”. They go on
to further clarify their view by explaining what they do not consider to be classified as software

reuse: portability, maintenance and reconfigurability.

Perhaps the simplest definition of reuse was offered by Prieto-Diaz and Freeman [Prie87], when
they stated that ‘;.Ideally, reuse is a matching process between new and old situations, and, when
matching succeeds, duplication of the same éctions”. They suggest that two le.vels of reuse
should be considered: “(1) the reuse of ideas and knowledge and (2) the reuse of particular

artefacts and components”.
Hooper and Chester [Hoop91] state that: “Two possible definitions of software reusability are:

1) the extent to which a software component can be used (with or without adaption) in multiple
problem solutions;
2) the extent to which a software component can be used (with or without adaption) in a problem

solution other than the one for which it was originally developed.

Definition 2 tends to suggest that reuse is incidental to the development process, whereas
definition 1 tends to suggest that reuse is a worthy goal in and of itself, and therefore requires

planning and effort to achieve it.”

11 Automating Reuse Support
in a Small Company

Tracz [Trac90] would argue that definition 1 above is the only definition of software reusability,
saying that, “software reuse ... is the process of reusing software that was designed to be reused”.
He goes on to describe “software salvaging, that is reusing software that was not designed to be

reused”, which would be his description of definition 2 above.

Yu [Yu91] defines reuse as “software engineering activities which focus on the identification of
reusable software for straight import, reconfiguration, and adaption for new computing system
applications”. He goes on to describe the connection between reuse, re-engineering and reverse-
engineering: “Once successfully reverse-engineered usable parts from existing software systems
and re-engineered these parts for a project specific adaptation, this success will then qualify for a
case of apparent software reuse. Software reuse may depend on the revérse-engineering and re-
engineering technologies, although software can be written such that it can be easily reused

without the need of these two technologies.”

Bollinger and Pfleeger [Boll90] expand on this view of reuse in their definition. “Reuse is the
process by which software work products (which may include not only source code, but also
products such as documentation, designs, test data, tools, and specifications) are carried over and

-

used in a new development effort, preferably with minimal modification.”

For the purposes of this research, reuse is defined as the use of any previously written software
work product in the development of a new software system, whether the work product has been

specifically. designed for reuse, or salvaged from some previous development.

There are many examples of software reuse already available in the software industry. Some of
the more common are: the libraries associated with windowing systems, mathematical
subroutine libraries and clip art. These are all software components that can be used with or

without modification in numerous different applications.

12 Automating Reuse Support
in a Small Company

2.3 Motivations for Reuse

The motivations for reuse are well summarised by Geary [Gear88]: “There is a finite limit to the
amount of software thét can be developed annually from first principles, but customers continue
to make ever increasing demands for new software. Often, new software is similar to other
software developed elsewhere, but with sufficient difference in design and function to make the
existing software unsuitable for reuse in the new design without modification of either the new
design or the module. Invariably, in this situation, tﬁe decision is taken to design new software.
If suppliérs are to meet ever increasing demands, vast gains in productivity must be

accomplished.”

Software reuse is an area of software development that is becoming increasingly significant.
Arthur [Arth83] quotes Johann W. von Goethe, who said, “Everything has been thought of
before, but the problem is to think of it again”. This has been confirmed by software
development practices. In a study done at the Raytheon Missile Systems Division of the U.S.
Department of Defence, it was found that betwec?n 40-60% of their applications were doing
essentially similar functions whicﬁ could be standardised into a fairly small set of “standard
reusable modules” [Lane79]. Kapur, quoted by Jones [Jone84], when studying co.mmercial
banking and insurance applications, noted that about 75% of the functions were common to
more than one program. Jones goes on to make a tentative conclusion that “of all the code
written in 1983, probably less than 15 percent is unique, novel, and specific to individual

applications.”

There is one main aim in the implementation of a reuse programme, and that is increased
productivity. The reason that software reuse is becoming such a popular concept is that it
promises faster software development processes and decreased development costs. In a small
company environment, the speed of production and time to market are critical factors for

SucCcCess.

13 Automating Reuse Support
in a Small Company

However, in spite of the interest shown in the reuse of software, there has not been a great deal
of work- on the actual implementétion of systems to support reuse. Maarek [Maar90] says
“Although software reuse presents clear advantages for programmer productivity and code
reliability, it is not practiced enough. One of the reasons for the moderate success of reuse is the
lack of software libraries that facilitate the actual finding and understanding of reusable
components.” DeMarco [DeMa84] estimated that in the average software development

environment, only about 5% of code is reused.

2.4 Benefits of Reuse

There are four main areas where the introduction of a reuse programme can benefit a company

willing to commit their time and resources to the success of the programme. These four areas

are:

e increased productivity
e reduction of development costs
e increased quality of software

e case of maintenance

Each of these benefits will be considered in more detail in the following sections, with reference

to reported reuse successes where available.
2.4.1 Imcreased Productivity

Reuse offers significant increases in productivity because software is simply being composed
from what is currently available, rather than being produced from scratch. Therefore, every
software component that is reused is one that does not require effort to produce. Jones [Jone86]
reports productivity increases in the range of 50% for projects with high levels of reuse.
Lanergan and Grasso [Lane84] tell how the Information Processing Systems Organisation of

14 Automating Reuse Support
in a Small Company

Raytheon’s Missile Systerﬂs Division experienced a 50% increase in productivity through the
standardisation of functions and logic structures into reusable modules. Matsumoto [Mats84)
reports a 20% increase in productivity per year (measured in terms of lines of code per month) in
the field of telephony and process control software, an area in which reuse sce;;tics doubted the
possibility of reuse. Prieto-Diaz [Prie91] quotes Fujitsu’s experience, in‘which they found that
after introducing reusé techniques, the number of projects which were completed on schedule

rose from 20% to 70%.
2.4.2 Reduction of Development Costs

* Less effort and time in software prodﬁction leads to a reduction of development costs. This has
been shown in practice. In 1987, GTE [Prie90] achieved a reuse factor of 14% in their software
development, which saved the company $1.5 Million in software development costs. They were
predicting that by 1995, they would be experiencing a reuse factor of 50%, which would save

them a total of $10 Million.
2.4.3 Increased Quality of Software

If high quality components are being reused, then the resulting software should meet high
standards. IBM achieved a reuse factor of 50% in their software development. They also found

that, along with this, they obtained an order of magnitude improvement in errors detected.
2.4.4 ‘Ease of Maintenance

Tracz [Trac87a] claims that the greatest payoff from reuse is realised in ease of maintenance,
and a corresponding reduction in maintenance costs. This is because, as mentioned in section
2.4.3, if high quality components are reused, the resulting system will be of a high standard.

Also, reusable components should be well abstracted and documented, allowing them to be

15 Automating Reuse Support
in a Small Company

easily understood. He reports maintenance cost reductions of up to 90% when reusable code,

code templates and application generators have been used to develop new systems.

2.5 Issues in Reuse

Thefe are many reasons for the lack of reuse. Standish [Stan84] recognises that there are two
main divisions to the issues associated with reuse, namely technological and organisational.
Tracz [Trac90] focuses on three areas in reuse when he introduces “the three P’s of software
reuse: product, or‘ what do we reuse, process, or when do we apply reuse, and ﬁnﬁlly personnel,
or who makes reuse happen.” Basili et al. [Basi87] also consider the same three areas, further
characterisipg them as “Fhe reuse of knowledge that exists only within the minds of people
(informal knowledge), reuse of specified plans on how to perform certain activities or structure
and document certa.lin products (schematized knowledge), aﬁd reuse of tools and products

(productized knowledge).”

It has been recognised that there are several pre-conditions which must be met in order for a
developer to be able to incorporate a reusable component into their software system [Frak92].

These are:

1. The component must exist.

2. The component must be available to the developer.

3. The developer must be able to find the component.

4. Once found, the developer must be able to understand the com.ponent.

5. Based on an understanding of the component; the developer must identify the component as
being valid for the current system.

6. The developer must be able to successfully integrate the component into the current system.

It can be seen that the reuse of a component is no easy task. Many different techniques must be

employed in order for these pre-conditions to be met. These include structured software

16 Automating Reuse Support
in a Small Company

- engineering [Somm96] to provide reusable components (pre-condition 1), component
repositories [Wolf92] to stone ‘software components (pre-condition 2), indexing and library
searching techniques [Frak88),[Prie87] to facilitate repository searching (nre-condition 3),
program comprehension to help in understanding the components (pre-condi-tion 4), systems
analysis to identify the component as one which will fit within the current system (pre-condition
5) and finally structured interfaces and systems integration techniques to allow the developer to

incorporate the component into their system (pre-condition 6).

The next two sections will consider the technological and organisational issues associated with

reuse in more depth.

2.6 Technological Issues

The technological issues in reuse cover many different areas, ranging from domain analysis to
the creation of reusable components to the storage and reuse of those components. Wirfs-Brock

et al. [Wirf90] suggést that there are three types of software entities that can be reused:

" e components - these are atomic entities that can be used in a number of different programs.
Examples cited are lists, arrays, strings, radio buttons and check boxes.

e frameworks - thesé are skeletal structures of programs that must be fleshed out to build a
complete application. A cited example is a windows system, which is a framework on which
windows applications can be built reusing the windows principles on which the system is
based.

e applications - these are complete pfograms. Cited examples jnclude word processors and
spreadsheets. Modemn spreadshéets are good examples of reusable applications, because

they are generic enough to be used in many different application domains.

In this section on the technological issues in reuse, it is mainly the reuse of components and

frameworks which will be considered. Hooper and Chester [Hoop91] state that reuse can be

17 Automating Reuse Support
in a Small Company

considered on two levels: horizontal reuse and vertical reuse. Horizontal reuse is reuse across a
broad range of application areas or domain, whereas vertical reuse is the reuse of components
within a given domain. It is suggested that horizontal reuse, such as mathematical subroutines
and input/output function libraries, has been the most successful form of reuse thus far;

however, the greatest potential benefits are seen in vertical reuse.

In order to capitalise on vertical reuse, domain analysis should first be performed. Domain
analysis is a technique in which an application domain is studied and the information gathered is
analysed in order to understand the problem domain, and investigate the potential for reuse.
Kang [Kang89] describes it thus: “Domain analysis is a phase of the software lifecycle where a
domain model, which describes the common functions, data and relationsiﬁps of a family of
S);stems in the domain, a dictionary, which defines the terminologies used in the domain, and a
software architecture, which describes the packaging, control, and interfaces, are produced. The
information necessary to produce a domain model, a dictionary, and an architecture is gathered,

organized, and represented during the domain analysis.”

It is vitally important to include domain experts when conducting a domain analysis. These are
people who work in the domain being studied. Their knowledge of the domain is therefore
unrivalled. Without such domain expertise, it will not be possible to do the domain analysis in
sufficient depth. Hutchinson and Hindley [Hutc88] report that the goals of their domain analysis

were:

e to discover the functions that underwrite reusability,

e to focus the domain specialist’s attention on reuse,

e to help the domain specialist ascertain reuse paraméters,

e to discover how to redesign existing components for reuse,

e to organise a domain for reuse.

18 Automating Reuse Support
in a Small Company

2.6.1

2.6.2

Once the domain analysis has been conducted, commonalities in the software development

process can be discovered, and potential areas for reuse identified. Domain analysis is a pre-

. requisite for vertical reuse, or reuse in a single domain. Once the commonalities in development

and, thus the potential for reuse, have been discovered, these can be capitalised on by the
production of reusable components and their storage in an appropriate repository. Domain

analysis is a costly process, but the benefits that can be derived from it are very worthwhile.

There tend to be fewer domains to be analysed in a small company, and the domains are often
narrow, making domain analysis an easier task. However, with the small amount of information
available about the domains, it is much more difficult to cross reference the work being done to
identify commonalities and capitalise on useful abstractions. Vertical reuse is the most obvious
type of reuse in the small company environment. Horizontal reuse would be limited by the small

number of domains under consideration.
Reuse Technologies

Bigggrstaff and Richter [Bigg87] state that the approaches to reusability can be classified into
two basic groups: composition technologies gnd generation technologies. The former are
characterised by the fact that the components are atomic and, ideally, unchanged in their reuse.
The latter are not so easily identifiable as entities, but their reuse is more a matter of execution

v

than composition, as is the case of reusing design principles encoded in an application generator.
Composition technologies

Moineau et al. [Moin90] note two main problems in the area of composition technologies: “the

first is the specification or description of the component so as to allow easy retrieval and so that

_ the user can understand it properly for future adaptation. The second problem is the definition of

the composition principles by which components are combined into target systems.”

19 Automating Reuse Support
in a Small Company

Burd and McDermid [Burd93a] conducted a study of the factors which limit the appeal of reuse
to project managers and software developers. They found that these inhibiting factors include, at

a technical level:

¢ development - Knowing what kind of software is reusable, and equally difficult is knowing
how to develop a software component which is potentially reusable.

e storage - Once we have deveiéped an item of reusable software, how, and where, should it
be retained for future retrieval and reuse?

e retrieval - If we are to reuse software then we must be able to easily find what we require;
matching what is available with our needs.

e verification - How can we be sure that the component which we are proposing to reuse
actually performs the functions tﬁat it claims it does in the environment in which we use it?

e evaluation - How can we judge that the functions we require from our reusable unit and the
functions that it provides are thé same?

e modification - If our evaluations have shown that differences exist between the reuse units
and our reqﬁirements then how do we perform the necessary modifications, and what effect
will this have on the reusable unit including the results of previous verifications?

o integration - What will the effect be on the reusable unit of attempting to integrate it in our

development?

These factors are very similar to steps leading to successful reuse given by Frakes [Frak92]. He
considers that “every software lifecycle object that is created from scratch or is modified is, in a

sense, a reuse failure”. Each of the above factors will be considered in greater depth.
Development

There are two ways of producing reusable components: either extracting them from code already
written, or designing them from scratch. As noted earlier, Tracz [Trac90] considers the former to
be ‘software salvaging’ and emphasises the importance of planning for reuse. Biggerstaff and

20 Automating Reuse Support
in a Small Company

Perlis [Bigg89a] consider the size of reusable components. They note that small components will
be less specific, and therefore'more reusable. It would, however, take many of these small
components to c;edte a software system. 'It would also mean that a lot of work would be needed
to integrate the large number of components required within the software system. On the other
hand, if the components are large, they will be more specific, and therefore less reusable.

However, the benefits gained from the reuse of a single large component will be greater.

Weber [Webe91] suggests that all reusable code should look alike, and recommends the
‘Canonic Software Component’, which could be a standard for all software components. He
goes on to suggest 'the idea of a Concurrently Executable Module (CEM), which has four
constituent parts: the export interface; the body, the import interface and the common
parameters. These should be standardised throughout all modules in a reusable library, in order
to allow different parts to ‘plug together’. This concept is often known as ‘black-box’ reuse

[Prie93].
Storage

The issues associated with storage are: what should be stored in a component library and how
they should be stored. Wolff [quf92] claims that the 80/20 rule applies to a software
components library. He says “the rule applied to reuse says that 20% of the components will
bring 80% of the reuse savings. Most of the other 80% of the reusable parts make the library and
the tools acceptable to the developers.” Therefore, within reason, it is wise to add as many

components to the library as possible, provided they meet acceptable quality standards.

In terms of how the components are to be stored, one of the most popular suggestions to have
emerged is that of facetea classification. This is where the library spacé is dynamic, and
components are assigned ‘facets” dependent on their main features. It is the combination of these
facets that is used to classify the component. If no facet combination currently exists in the

library space to support a new component, then a new section is added for it. Prieto-Diaz and

21 Automating Reuse Support
in a Small Company

Freeman [Prie87] extol the advantages of using this approach: “Faceted schemes are more

flexible, more precise, and better suited for large, continuously expanding collections.”
Retrieval

Geary [Gear88] suggests that effective methods of searching software libraries would be
essential to software reuse: “A large library of software components would be too vast to
commit to human memory. To be a success, a software component library must be supported by
compfehensive search, retrieval and design tools that are able to assist the designer in creating a
design that takes advantage of available components.” Frakes [Frak88] says: “A fundamental
problem in software reuse is the lack of tools to locate potential code for reuse.” He goes on to
argue that infor'mation retrieval systems have the power and flexibility to ameliorate this
.problem. Maarek [Maar90] discusses the differences between an Artificial Intelligence, or
| knowledge-based approach to reuse library support tools (such as [Prie87], [Alle89]) and an
Information Retrieval approach. She notes that the Al approaches are often ‘smarter’ than the IR
systems; however, they rely far more heavily on domain analysis, which can rapidly get out of
hand as the library grows. She opts for the IR approach, considering that it “ppesents clear

advantages over the Al approach in terms of human cost, portability and scalability.”

Although a significant amount of work has gone into researching this area of software reuse
support, it is perhaps one of the less criticai areas. The Japanese software factories claim that
they have been achieving reuse factors of up to 85% using only simple keyword searching
techniques on the components in their repositories [Stan84]. This would suggest that other areas
hindering reuse need to be addressed as well as the retrieval issues associated with software

libraries.

In a small company, the size of the reuse repository is likely to be small, making overly
complicated storage and retrieval procedures too cumbersome and time consuming. It would be
better to have a repository that is simple to use and requires little effort to maintain.

2 Automating Reuse Support
in a Small Company

Verification

This is a difficult issue. It is very hard to prové that a particular software component does what
the associated docurﬁenté;tion claims it does. However; without faith in the documentation, the
time consuming process of inspecting the component in detail must be carried out. This is
obviously not desirable. Frakes and Nejmeh [Frak88] recommend that with each component,
reuse statistics and reuse reviews be kept. These would record how many times a component has
been reused, and how the reusers felt ab;>ut the component. If the component has been reused

successfully in a similar way to the current developer’s intended use, the reviews would either

instil or reduce confidence in the component, based on the experiences of others.
Evaluation

To evalgate the quality of a reus;clble component, Tracz [Trac87b] recommends keeping a
maintenance record with each component, which would record such things as the type, date and
severity of any problems discovered with the module, and whether those problems have been
resolved. By considering such a record, a potential reuser will be able to gain a better
appreciation for the quality of the component, or the vlack thereof. This technique, and the one
described by Frakes and Nejmeh (referenced above) both rely heavily on the reusers and
maintainers of a product to be conscientious in filling in the associated documentation when the
component is reused/modified. Also, they would not help the first developer who wishes to reuse

a particular component.
Modification

This is a very important issue in a reuse oriented environment, and can be considered to be an
organisational issue as much as a technical one. If it is discovered that a component within the
repository requires a change, how should the change be done, and what should be done to

23 Automating Reuse Support
in a Small Company

inform users of this change? The first of these questions is a technical issue, and would be

considered maintenance of the component. The second presents far more of a problem. Utilising

Tracz’s [Trac87b] idea of the maintenance record, future users will be informed of the change.

However, what about those developers who have already reused the unmodified component.

Should they be informed of the change, and if so, what mechanisms should be used to inform

them? Babisch [Babi86], in his book on Software Configuration Management, calls this scenario

‘the double maintenance problem’. He notes that changes must be made identically in all copies

of the software to prevent a proliferation of multiple versions. He recommends the first principle

of configuration management, which is “to avoid multiple copies of the same information”. This,

however, would defeat the purpose of reusable software. Three possible solutions are:

1)

2)

3)

to give no guarantee on any software taken from the repository. The software is ‘sold-as-
seen’, and once it has left the repository, the responsibility of the repository administrator
and component creator end. This avoids the problem rather than solving it.

make information concerning the change publicly available. It is then up to developers who
have reused the component to find out about the change, and take necessary action if they
so desire. This would work only if the information on changes to software in the library
managed to f;:ach all the users of the repository.

keep track of all developers who have used a particular component, and inform them
directly of any modification information. This is a far more complete approach, and the
improved communication between users and administrators of the repository should mean
that the repository will be more responsive to change. It would,' however, be a huge
configuration management problem for the repository administrators, and would create

considerably more work for them.

Integration

Work has been done in the area of integration of components, such as the development of

module interconnection languages. The Library Interconnection Language (LIL) proposed by

24 Automating Reuse Support
in a Small Company

2.6.3

Gougen [Goug86] is a good example. LIL is a language for defining the way in which software
components should be ‘plugged together’. Module interconnection languages will work only

with components that are highly encapsulated and have well defined interfaces.
Generation Technologies

Biggerstaff and Perlis [Bigg89a] distinguish three subclasses of generation based reuse systems:

e Language based systems
e Application generators

o Transformational based systems

Language based systems are those in which the specification language is “well defined, truly
represents a problem domain...and hides the details of implementation from its user.” A prime
example of a language based system is SETL [Schw86], a language which represents

computations as operations on mathematical sets.

Application generators are systems which capture a commonality within architectural patterns,
and reuse the pattern to produce instances of a particular application type. Prime examples of
tﬁis kind of reuse are lex and yacc in the UNIX1 system. These are tools which have captured
the commonalities in lexical analysis and compilation to provide a means by which applications

of these fypes may be generated.

Transformation based systems work on the principle of generating a product by successive
application of transformation rules. Cheatham [Chea84] describes transformation based systems
as having two main mechanisms for refining an abstract program into a concrete, executable
program. The mechanisms are: definition and transformation. The abstract program must be

defined in a machine processable form. Cheatham describes this as “providing a binding (or

25 Automating Reuse Support
in a Small Company

value) for a procedure, type, data object, or what have yog.” The transformation is based on a set
of transformation rules for “replacing séme high-level construct by a (more) concrete construct
that realises the intended function.” Cheatham has done experiments in two settings, rapid
prototyping and custom tailoring. He found that the techniques are a valuable alternative to

conventional programming techniques.

The REFORM project generated.a transformation tool [Bull94] for translating legacy code into
an abstract wide spectrum language, then uses transformations to re-structure that code. The
structured software can theﬁ be translated back into the original software language. Mortimer
[Mort96] describes further work on the tool to include transformations for data structures. This

allows legacy code to be reused by transforming it into structured software.
2.6.4 Reuse of higher level components

Source code is not the only object of reusability. Reuse can, and should, be done at higher levels
of absﬁaction in software development if real benefits are to be gained. Jacobson et al. [Jaco92]
suggest that “what can give even higher productivity enhancement is reuse in other development
phases. Other parts of the construction phase may benefit when reusing entire designg in several

systems. Additionally, reuse should also be viewed as natural during analysis and testing.”

Atkinson [Atki91b] suggests two distinct activities that need to be considered in object-oriented
design: “how to produce software components with maximum potential for reuse - design for
reuse - and how to design new systems making the most effective use of such components -

design with reuse.” Meyer [Meye94] agrees with this basic classification, calling the two

categories “reuse consumers and reuse producers”. He feels that the two are not disjoint groups.

Tracz [Trac90] notes that software reuse generally ends by using code, but may start at higher

levels of abstraction, depending on:

TUNIX is a trademark of Bell Labs.

26 _ Automating Reuse Support
in a Small Company

1) how much effort an organisation is willing to invest in preparing products for reuse
2) how effectively higher-abstraction products can be linked to available implementations
3) how effectively implementations are generalised

4) how effectively the software process supports software reuse

Chao [Chao93] questions the maturity of software reuse technology. He suggests that “the
methodologies to implement reuse have not been fully developed, tools to support a reuse
process are lacking, and standards to guide critical software reuse activities have not been

established.”

It is much more difﬁcul‘t to reuse components at higher levels of abstraction. However, the
benefits that can come from reuse of a high level component can make the extra effort
worthwhile. For example, if a design component is reused, then the code associated with that
component can also be reused without any further work. However, for this type of reuse to be
| successful, there must be traceability between the different levels of abstraction [Mats84]. When
traceability is maintained, code components meet their requirements, and are implemented as
speciﬁéd in their design, developers can be confident that they can incorporate the component
into‘ their system based on the specification of the component’s functionality. These greater
benefits are only available in a structured software development environment with well defined

processes for each stage of the software lifecycle.

2.7 Organisational Issues

The organisational issues of reuse are perhaps the more difficult to tackle. Tracz [Trac88a] notes
 that “if one looks at the most-often-stated reasons why software is not reused, the overwhelming
majority of them may be classified as psychological, sociological, or economic.” He goes on to
suggest that “the development of software reuse has been stunted by‘intra-company and inter-

company legal, contractual as well as political conflicts.”

27 . Automating Reuse Support
in a Small Company

Chao [Chao93] feels that organisations “face numerous challenges to effectively implement and
practice reuse. An organization must make a significant commitment to reuse because
fundamental changes in the organization’s software development approach will be needed and
significant up-front costs for training and tools will be required. Further, uncertainties in legal
policies, such as liability and intellectual property rights that currently hinder software reuse,

need to be addressed, and acquisition policies need to be modified to better promote reuse.”

The introduction of a software reuse process into a company will require changes to be made in
the attitudes and -working practices currently in place. One of the main steps to achieving
successful reuse is gaining full support of management and staff for the reuse process.
Biggerstaff and Perlis [Bigg89b] noted that one of the key similarities in all of the companies
with a successful 'reusc programme covered in their book was that all had the backing and active
support of top-level management. Fairley et al. [Fair89] noticed a similar trend in their study of
six successful software reuse projects. Hooper and Chester [Hoop91] stress that “Top-level
management must take positive action to make software reuse a reality. This means much more
than just issuing an edict that software reuse will occur. It means committing the resources
necessary to bring about a different way of approaching software development and maintenance
.- including a different process, tools, a well-trained staff, and an adequate initial library of

reusable components.”

Software reuse does not come for free. Considerable resources must be made available to a reuse
programme in order for it to succeed. This includes not only real capital resources, but also
people, time, effort and commitment. Biggerstaff [Trac88b] says: “Software Reuse is like a
savings account, before you can collect any interest, you have to make a deposit, and the more

you put in, the greater the dividend.”

Wasserman [Wass91] recognises some other factors that inhibit the full scale introduction of a

reuse programme are the “not invented here” syndrome, an absence of incentives for reuse, and

28 Automating Reuse Support
in a Small Company

limited investment in reusability. The not invented here syndrome describes software
developer’s wariness of using code that they have not written themselves, often caused by a lack
of trust in the software. Bott and Ratcliffe [Bott92] describe it in this way: “Technical staff are
reluctant to believe that software from another source will be as efficient, effective or reliable as
the software they could write themselves; this feeling is often reinforced by bad experiences

with imported software. It is easy, however, to overestimate the magnitude of this problem.”

Baker and Deeds [Bake89] stress that governments should not get too involved in trying to
ensure that the reuse of software is practised, such as providing approved reusable libraries.
They further state: “Government should not tell corporations how to reuse software or make

them use governmental libraries. If reuse makes sense, they will do it.”

Cavaliere [Cava83], based on the experiences of the Hartford Insurance Group’s reuse

programme, makes the following recommendations:

e Utilise tendencies among staff members to develop code-generation tools oriented to the
organisation’s needs.

e Develop an& maintain an automated index of all programs released into production.

e Be prepared to make full-time staff resources available for the start-up phase and for
ongoing support of a reusability programme.

e Provide resources to measure productivity effects of reuse compared against a baseline; this
is important to assess the value of reuse and to justify the necessary resource commitment.

o Seek mechanisms for sharing reuse experiences and ideas.

29 Automating Reuse Support
in a Small Company

Prieto-Diaz [Prie91] suggests a model for implementing a software reuse plan, which is divided

into four stages:

Stage 1: Initiation - reusable components are identified, stored, indexed and made available.
Stage 2: Expansion - As more of the existing software is identified as being reusable, and as
more reusable software is developed, the component repository is expanded. A more
comprehensive classification scileme is introduced for the repository.

Stage 3: Contraction - Redundant and ineffective components are identified and retired from the
repository. The collection of components is streamlined, so that only the most useful remain.
This prevents the repository from becoming unmanageably large.

Stage 4: Steady State - As domain knowledge increases, existing components are gradually
replaced by those more suited to the specific domain, if required. Components that are designed

for reuse should begin to emerge.

Meyer [Meye87] believes that overemphasis on management issues is premature. “It’s like
expecting better hospital management to solve the public hygiene problem 10 years before
Pasteur came along! Give your poor, your huddled projects a decent technical environment in

the first place. Then worry about whether you are managing them properly.”

2.8 Conclusions

This chapter has given an overview of the field of software reuse, starting with definitions of
reuse and reusability. The benefits which successful reuse can bring were identified, including
results which have actually been seen in practice. This was followed by a description of the
major issues in reuse - technological and organisational. The technological issues in reuse were
described along with some suggested solutions to the problems raised. These included technical
factors which much be addressed to make reuse possible and different technologies which are
available for reuse. The organisational issues were also considered, including some of the

psychological, sociological and economic issues that affect the success of a reuse programme.

30 Automating Reuse Support
in a Small Company

It can be seen that there are many challénges facing a company wishing to benefit from reuse.
Solving either the technological or the organisational problems discussed earlier.will bring
benefits to the company. However, it is only when both issues are addressed sensibly that the
advantages which can be gained from the successful introduction of a reuse programme can be

capitalised on. -

31 Automating Reuse Support
: in a Small Company

Chapter 3: Introducing the reuse process and other techniques

to support software reuse in a small company

- 3.1 Introduction

This chapter looks at some of the techniques which can support the introduction of reuse into a
small company. The following section defines what is considered as a small company, and looks
at some of the characteristics of small companies. The third section considers the effect that the
introduction of any type of new technology can have on a company, and looks at ways in which
this can be ‘improved. It discusses how to change the way in which an organisation works, then
looks specifically at software process improvement. Software process improvement considers
the methods and techniques which should be used when chénging the method of software
development in a company. The fourth section considers risk analysis. This is closely tied to the
previous section, as there will obviously be risks involved when introducing any new working
practices into a company.
The fifth section considers techniques which will support the introduction of reuse into a small
company. These include object-oriented methods, software documentation and reverse
engineering. The first part of this section looks at object-oriented design. Object orientation has
become increasingly popular over the past 10 years, with the development and inclusion of
reusable components being frequently quoted as opé of the benefits of using an object-oriented
design method. This part of the section starts with definitions of object-oriented principles, then
gives an analysis of the advantages and disadvantages of using an object-oriented design
metho.d, particularly in regard to how it would support a reuse programme. This is followed by a
- discussion of the relationship between object orientation and reuse. A more detailed suwéy of
numerous object-oriented methods [Bigg95] was made available to Public Access Terminals

Ltd. as part of the case study conducted in this research.

32 Automating Reuse Support
in a Small Company

It has been seen in section 2.5 that in order for developers to be able to reuse a component, they
must be able to understand the component and recognise it as being appropriate for their current .
system. Software documentation and reverse engineering can help in the understanding process.
The section on software documentation will concentrate on ways to support the creation of
documentation, as it has been seen (particularly in the case study associated with this research)
that small companies who are low on the process maturity scale tend not to keep good software

documentation.

Another technology discussed is reverse engineering. It was noted in the definition of software
reuse in section 2.2 that both c;)mponents which have been designed for reuse and components
which have been salvaged from previous developments are appropriate candidates for reuse.
Reverse engineering, the abstraction of higher level information from program source code, can
support the process of éalvaging reusable components from previous developments. The
information abstracted from reusable components can also help developers to understand how to

reuse the components, an important part of the reuse process (see section 2.5).

3.2 Small companies

It is not easy to define what is considered as a small coméany. Burns and Dewhurst [Burn86]
state that “just what constitutes a ‘small business’ is open to debate and, even within the UK,
differences in the quantitative definitions used by different government statistic-gathering
agencies make comparison and conclusions difficult.” Indee(i, different countries have different
formal definitions for the term ‘small company’. Andersson [Ande87] notes that number of
employees is the most commonly used statistic to define a small company “although, certain
countries such as the UK. have a more elaborate definition, taking int6 consideration aspects
like branch of activity and turnover”. He states that:. “In the UK., the range is 1-200

employees”.

33 Automating Reuse Support
in a Small Company

In trying to define what constitutes a small company, Burns and Dewhurst go on to quote the

1981 Companies Act, which adopted three separate criteria to define small firms:

“Small companies: One which for the financial year and the one immediately preceding it, two
(at least) of these criteria apply:

a) Turnover does not exceed £1.4m.

b) Balance sheet total assets does not exceed £0.7m.

c) Average weekly number of employees does not exceed 50.”

In another publication, Burns and Dewhurst [Burn96a] quote the EC commission’s “conditions '

to be met by a small firm wishing to qualify for state aid:

- aturnover not exceeding ECU 20 million (say £16 million),
- anet capital not exceeding ECU 10 million (say £8 million),

- anumber of employees not exceeding 250.”

However, it is not just these statistics that define a small company. There is also the organisation
structure and culture of the company which sets it apart. Burns and Dewhurst [Burn96a) quote

the Bolton Report from 1971 which “described a small business as follows:

e In economic terms, a small firm is one that has relatively small share of its market.

e It is managed by its owners or part owners in a personalised way, and not through the
medium of a formalised management structure.

e It is independent in the sense that it does not form part of larger enterprise and that the

owner/managers should be free from outside control in taking their principal decisions.”

They later suggest that “Personalised management is, perhaps, the most characteristic factor of
all. It implies that the owner actively participates in all aspects of the management of the
business, and in all major decision-making processes.”

34 Automating Reuse Support
in a Small Company

Chisnall [Chis87] also lists some of what he feels are the typical characteristics which set a small

company aside from other types of business organisation. His list includes:

Inadequate funding — Many entrepreneurs try to run their businesses on shoestring budgets.
Flexibility — Small businesses have a particular characteristic which gives them a strong
competitive edge: they are owner-managed, and decisions can be taken quickly.

Specialization — Much of the success of small businesses lies in the fact that they develop
products and services with high value-added content: in other words, they offer their customers
quality goods which are directly related to their needs.

Technical experience — Small technical firms are often founded by enthusiastic experts with
many years of technological experience behind them. However, they often lack good marketing

know-how.

~ Pratten [Prat91] studied numerous small firms, and notes that “Throughout the interviews with
managers the flexibility and responsiveness of small firms compared to large firms was

emphasised”.

This research rates the size of the company based on both its size and company culture, the four

key criteria being:

1. Owner managed [Burn96a]

2. Up to 200 employees [Ande87]

3. Specialisation in products and services {Chis87]
4. Flexibility [Prat91]

Public Access Terminals Ltd., the company associated with this research, fulfils all the

appropriate criteria for a small company.

35 Automating Reuse Support
in a Small Company

3.3 Introducing new technology and software process improvement

The principles of introducing a new technology into a company, or even new working practices,
are very similar no matter what the technology or working practices are. The field of
‘introducing new working practices into a company’ is referred to as organisational
development. The goails of organisational devélopment (OD) are us;1ally consistent, no matter
what the company does, or how it goes about achieving it. The aim of OD is to improve the
working conditions and practices of the company on the assumption that these improvements
will also bring an improvement in productivity and profitability, and a happier workforce. OD
often calls for process improvement, where a process is a defined set of working practices.
Recommendations are made for improvements to working practices in order to meet the overall

aims of the organisation.

This section will .first look at some of the general principles involved in organisational
development and will then consider some of the best methods which can be employed to ensure
that the changes are successful and the goals of those changes are met. The section will also
consider software process improvement — namely how the principles of organisational

development and process improvement are applied to the development of software systems.
- 3.3.1 Organisational development

Organisational development, already defined as the process of introducing new working
practices into a company, is closely linked to process improvement, which is changing the
processes which a company uses in order to imi:rove their working practices. Both can be
approached in many ways, using many different techniques. However, they have the same

overall goals and share techniques in order to reach their goals.

Albrecht [Albr83] suggests that there are four main phases to successful organisational

development. “The four steps are really nothing more than the simplest logical progression in

36 - Automating Reuse Support
in a Small Company

problem-solving: figure out what the problem is, decide what you have to do to change things,
put the “fix” into effect, and then compare what happens with what you wanted to happen.”
More formally, he calls these the Assessment Phase, the Problem-Solving Phase, the

Implementation Phase and the Evaluation Phase.

Albrecht recommends that these phases can be carried out by either a staff specialist, an external
consultant or an OD task force within the company. However, he feels that OD should never
follow a rigid structure in the same way as other company processes. Indeed, he points out:

“experience seems to show that the ad-hoc quality of OD is one of its key benefits.”

Assessing the current situation and working practices of an organisation must always be the first
step before even considering any suggestions on how to improve the situation. There are many
*ways in which this assessment can be carried out. Perhaps the best way is to watch the company
at work and document the results. However, this is a very time consuming exercise which must
be done for every functio'n within the whole company. It is easier to. use information that is
already available within the company. Although company processes may be standardised and
docul;xented, with a strict set of company guidelines, talking with the staff involved in the

company is the best way to get a true feeling of the company’s current working practices.

Burns and Stalker [Burn61] outline their method of assessment. “Our usual procedure, after the
first interview with the head of a firm, was to conduct a series of interviews with as large a

number of persons as possible in managerial and supervisory positions.”

Albrecht agrees that questionnaires and interviewing are useful ways to gather data about the
organisation and its processes. He suggests that “the interviewer does best when he or she asks
open-ended questions, listens for key themes and concerns, and continues to develop the flow of
information without “shopping” for certain kinds of answers, and without steering the people

being interviewed too forcefully.”

37 Automating Reuse Support
in a Small Company

Once the information has been ga}thered, the problem solving phase begins. Albrecht says that
“The result of an effective OD problem solving phase is a realistic, workable, and promising
plan of action for the implementation phase.” This plan is built by considering the alternative
approaches for development of the organisation. These ideas are then assessed and the more
promising approaches are formulated into a plan of action. Albrecht suggests that developing a
“realistic, stepwise plan for implementing the changes” is one of the key steps to success in this

process.

Implementation of the plan can be done in many ways. However, Babcock et al. [Babc90]
suggest that “a product or technology that has evolved through a process of incremental
improvement has an increased chance of enjoying successful transfer and widespread diffusion.”

This idea of incremental improvement will be considered in more detail later in the thesis.

Albrecht warns of the “valley of despair”, a term he uses to suggest that when implementing the
plan, the situation always tends to get worse before it gets better. This is caused by the disruption
to the company incident to the changes being put into place. Although people seem to dislike
change, Albrecht claims that “people don’t like change when they don’t think the change will be
good for them.” Ensuring that employees ;.lnderstand the improvements that will come from

their new working préctices will encourage them during the difficult transitional period.

In the evaluation phase, the results of the OD programme are measured and evaluated to get
valuable feedback about how well the programme is performing and what improvements have
been made. Albrecht says that “the primary purpose of the evaluation phase is to discover what

course corrections we need to make.”

This is also a good time to encourage staff using positive feedback to inform them of the
progress being made. Albrecht says that this has several advantages. “First, it focuses the
attention on what is working, not on what isn’t working. This tends to have a positive influence

on overall morale and sense of optimism. Second, it tends to create a sense of expectation and

38 Automating Reuse Support
in a Small Company

confidence that things are going to get better. This almost invariably contributes in subtle ways
to the commitment people feel toward the organization, and things do tend to get better as a
result. And third, the fact that management is giving positive feedback to the people in the

organization tends to enhance the sense of “connectedness” people feel towards the executives.”

Another method for organisational development is described by Burnes [Burn96b]. He gives an
overview of a method by Bullock and Batten [Bull85], who also developed a four-phase model
of planned change. “The four change phases, and their attendant change processes, identified by

Bullock and Batten are as follows:

1 Exploration phase. In this state an organisation has to explore and decide whether it
~ wants to make specific changes in its operations and, if so, commit resources to
planning the changes. The change processes involved in this phase are: becoming
aware of the need for change; searching for outside assistance (a consultant/facilitator)
to assist with planning and implementing the changes; and establishing a contract with

the consultant which defines each party’s responsibilities.

2 Planning phase. Once the consultant and the ofganisation have established a contract,
then the next state, which involves understanding the organisation’s problem or
concern, begins. The change processes involved in this are: collecting information in
order to establish a correct diagnosis of the probiem; establishing change goals and
designing the appropriate actions to achieve these goals; and getting key decision-
makers to approve and support the proposed changes.

3 Action p};asé. In this state, an organisation implements the changes derived from the
plénning. The change processes involved are designed to move an organisation from its
current state to a desired future state, and include: establishing appropriate
arrangements to manage the change process and gaining support for the actions to be
taken; and evaluating the implementation activities and feeding back the results so that

any necessary adjustments or refinements can be made.

39 Automating Reuse Support
in a Small Company

4 Integration phase. This state commences once the changes have been successfully
implemented. It is concemed with consolidating and stabilising the changes so that they
become part of an organisation’s normal, everyday operation and do not require special
arrangements br encouragement to maintain them. The change processes involved are:
reinforcing new behaviours through feedback and reward systems and gradually
decreasing reliance on the consultant; diffusing the successful aspects of the change
process throughout the organisation; and training managers and employees to monitor

the changes constantly and seek to improve on them.”
3.3.2 Process maturity and process improvement

Software process improvement follows the same principles as organisational development, but is

more specific to the processes involved in software development.

Sommerville [Somm96] describes process improvement as “understanding existing processes
and changing these processes to improve product quality and/or reduce costs and development
time.” He goes on to suggest that there are a number of key stages in the process improvement

process, namely:

1. Process analysis

2. Improvement identification
3. Process change introduction
4. Process change training

5. Change tuning

The key work in the field of software process improvement is that performed by the Software
Engineering Institute (SEI) at Camegie-Mellon University [Hump89]. The result of their work
was the Capability Maturity Model (CMM), which attempts to assess the level of a company’s

capability based on the processes that they use. The SEI model defines 5 levels of capability:

40 . Automating Reuse Support
in a Small Company

2)

3)

4)

5)

Initial level — No effective management or project plans. Although the company many

successfully develop software, this is due to the ‘heroic efforts’ of the employees, and there

“isno guarahtee that software quality can be produced consistently.

Repeatable level — The company has formal management, quality assurance and
configuration control methods in place. Therefore, they can repeat projects at the same levei
of quality. However, there is no formal definition of the processes used.

Defined level — The company has defined their processes, and so has a basis for process

improvement. The processes have formal procedures to support their use throughout the

company’s development lifecycle.

Managed level — Again, the company has formal processes, but they also have a programme

for measuring the quality of the processes being used and the products being developed.

. Optimising level — Metrics taken from process management are fed back into the company’s -

process improvement programme to ensure that managed processes are improved to

increase the company’s overall performance.

The CMM has been the basis for considerable further work in software process improvement,

for example, the ESPRIT BOOTSTRAP project [Koch93]. Other work in the same field,

including SPICE, TickIT and STARTS, is summarised by Thompson and Mayhew [Thom97].

Similar work has also been done in the field of reuse and several different reuse maturity models

have been suggested [Trac95], which have been incorporated into McClure’s Reuse Readiness

Assessment [McCl97].

Although a great deal of work has gone into the CMM and it has been hailed as a step forward in

the field of software process improvement, there are still some doubts about its validity. In their

evaluation of the CMM, Bollinger and McGowan [Boll91] go as far as to say that “the current

grading system is so seriously and fundamentally flawed that it should be abandoned rather than

modified.”

41 Automating Reuse Support
’ in a Small Company

Considerable time and resources are consumed when simply measuring a company’s capability
maturity, as a great deal of work must.be done to investigate and measure the standard of the
company’s processes. There is also considerable péperwork involved in investigating, defining,
‘documenting and ir_nplementing process improvement on the scale suggésted by the SEI using
the CMM and other maturity models. These factors contribute to the fact that small companies
find the concept of quality assessment and procéss improvément prohibitive. There is also a fear
that process definition and improvement will cause them to lose the flexibility that keeps them

competitive within the marketplace.

Humphrey [Hump93] suggests that “people need .to be convinced of the effectiveness of new
methods before they will change.” It has already been stressed that this research will consider
those companies which rate at the bottom level of any maturity model. This suggests that
methods for successfui process introduction and technology transfer methods are r;lore
interesting than measuring the company’s current capability. Companies at these low levels will
only be interested in improving their capability when the see the advantages of doing so, and it
is hoped that the benefits of a reuse programme presented in the right way will encourage them

to improve their working practices.
3.3.3 Process assessment

The term process assessment describes a variety of different ideas and techniques which can be
used to investigate ahd analyse the way in which work is done. The recent research performed in
the field of software process improvément has been based on éarlier tried and tested methods in
the business areas of organisational development and work study. This section describes this
earlier work in an attempt to understand how companies can be studied in order to assess their

current processes and identify areas for improvement.

42 - Automating Reuse Support
in a Small Company

Process assessment can be performed using what is known in the business world as a work
study. Buckley [Buck85] describes work study as “a term which covers a number of techniques

designed to improve the efficiency of the organisation and help in the control of costs.”

There are many differént techniques which can be used as part of a work study. One of them is
method study. Radford [Radf84] describes method study as “that part of work study that

provides a systematic approach to improving the way in which work is done”.

Radford suggests that “the procedure of method study has been formalised into six steps as listed

below.”

(1) Select work to be studied.

(2) Record existing method of working

(3) Examine critically the existing method.
(4) Develop an improved method.

(5) Install the improved method.

(6) Maintain the improved method.”

Buckley [Buck85] also confirms the usefulness of using method study as part of work study. He
says: “Method study is concerned with how the work is carried out. It looks at existing
procedures with a view to improving them. In essence it asks the question, ‘Is there a better way

of doing this job?””
He goes on to describe method study in more detail, confirming the steps suggested by Radford.

“The procedure has six stages namely: select; record; examine; develop; install; maintain.”

Buckley goes on to describe these steps in more detail:

1. Select the job to be studied.

43 Automating Reuse Support
in a Small Company

This selection should normally come frém management. “Once a job has been selected and
authority has been obtained for its investigation the most important task before moving on
to the next stage is to inform all those who will be affected by the study. Explaining the
reasons for the study prior to its commencement will prevent misunderstanding and increase
the likelihood of worker co-operation.”

Record the present method.

“A detailed analysis of present methods is necessary before vs}e can move on to seeing what
improvements are possible or desirable.”

Examine the existing methods.

Develop the new improved method.

“The existing method which we have now investigated forms the basis for our search for
new improved methods. ..during this stage we carefully question all the we have recorded...
Eventually, out of the critical lexamination will come the ideas for the improved method.
These will be discussed with the management in the department concerned. .. At this stage it
is also necessary to draw up a formal report which will outline:

e the changes recommended;

e the cost of those changes;

e the savings which will result; .

o the time_ needed to institute the changes.”

Installation of the improved method.

“Work study personnel must pay particular attention to two aspects of installation. First they
must persuade everyone concerned of the need for change. A successful installation needs
the co-operation of all staff. Secondly the installation will involve considerable planning.”
Maintain the new method.

“The introduction of the new method wiil not be without its difficulties, but it would be
wrong for work study personnel to consider changes immediately. It will take some time

before all employers are fully conversant with the new method and reach the expected level

of productivity.”

44 Automating Reuse Support
in a Small Company -

The work in the field of method study presented here forms the basis of the development of the

method used in this research, as defined in chapter 5.

3.4 Risk Analysis

Every n;aw endeavour contains an element of risk. There will always be uncertainty as to
whether the endeavour will be successful. Risk is a measure of this uncertainty, and analysis of
the risks involved should be considered before and during any project. This section will consider
what risk is, how it can be analysed, and how the analysis can help risk managers to decide

whether to continue with the project or discard it.

Raftery [Raft94] defines risk along the following lines: “Risk and uncertainty characterize
situations where the actual outcome for a particular event or activity is likely to deviate from the
estimate or forecast value. Risk can travel in two directions: the outcome may be better or worse

than originally expected. These are known as upside and downside risks.”

He goes on to state that “some people like to distinguish between risk and uncertainty. The
distinction is usually that risk is taken to have quantifiable attributes, whereas uncertainty does

not.”

Sommerville [Somm96] suggests that “risks are a consequence of inadequate information. They
are resolved by initiating some actions which discover information that reduces unceﬁamty.”
However, this simplistic vi'ew is not always practicable, as gathering the information required to
reduce the risk may be more costly than the consequences of failure in the proposed

undertaking.

This is particularly important in the case of a reuse in a2 small company. This research considers
the introduction of reuse into the software development methods of a small company. The risks

associated with this undertaking are associated with the time, effort and resources which must be

45 Automating Reuse Support
in a Small Company

committed to the reuse programme. Indeed, in the worse case, the downside risk is that the
resources could be wasted and the time and effort expended on reuse simply end up delaying
production of the company’s software. However, on the other hand, the upside risks are that the
considerable benefits of reuse described in section 2.4 could be made available to the company.
This would increase their productivity and reduce their development and maintenance costs. The
third option is to keep their current development methods. There are also risks associated with
this. Public Access Tenﬁnals Ltd., the company associated with this research, have already
discovered that in today’s fast moving market, a company which stagnates and does not improve

soon falls behind its competitors and fails anyway.

The importance of risk analysis in this research is that the method presented for introduction of a
reuse programme into a small company attempts at all stagesv to minimise the risk associated
with the changes that are required for reuse. They also attempt to ensure that some benefits from
reuse are reaped on a smaller time scale than is the case with large corporate reuse programmes.
This enables the company to try reuse techniques, and, if they don’t work, to scrap them and try

other new techniques or revert to their previous development methods.

Another problem with attempting to reduce uncertainty by gaining further information is that
there are no studies considering the introduction of reuse in a small company to gain further
information from. This means that the amount of study involved in analysing and reducing the
risks associated with this endeavour would be more expensive for the company than simply

trying the techniques in practice.

3.5 Techniques to support the introduction of reuse in a small company

This section covers some of the techniques which will help in the introduction of reuse to a
small company. One of the key points that has been seen in a small company such as Public
Access Terminals is that they often do not employ a formalised design method. This means that

each developer has a different way of designing and building software. This can create problems

46 Automating Reuse Support
’ in a Small Company

when trying to integrate software written by different developers, because the designs may not
be compatible. The first of the techniques considered below is the use of an object-oriented
design methoc—l. Object—o;ientation has been chosen for two reasons. The first is that its
proponents claim that object-orientation supports Teuse. Secondly, it has been ;een within Public
Acc_css Terminals (and throughéut other software development companies) that there is a move
to develop using object-oriented languages such as C++. It makes sense to have a design method
which supports the technology being used. The section will look at what object-oriented

principles are, and how they support reuse.

Another technique which it is felt will aid small companies is automatic generation of software
documentation. In their efforts to produce software for their customers, documentation is always
* the last priority for develbpers. In small companies, this is especially true, as it is often felt that
writing documentation is a waste of valuable development time which could be used more
productively. Techniques and tools to support‘ the generation of do.cumentation would be of

great value to the company, and also to their reuse programme.

In the same way, reverse engineering, which is the abstraction of higher level information from
source code, is another technique to support reuse. Reverse engineering could be used to gain
more information about- software which has been produced within the company. This

information could aid developers when attempting to reuse that software in a new development.
3.5.1 Object-Oriented Methods

Definitions of Object-Oriented Principles

The principles of object-oriented design have been derived from earlier work on information
hiding [Parn72], abstract data types [Lisk74] and, most significantly, work on object-oriented

programming languages such as Smalltalk [Gold83] and Simula-67.

47 Automating Reuse Support
in a Small Company

Ghezzi et al. [Ghez91] summarise the current state of affairs in object-oriented design
admirably. They say: “Unfortunately, the terminology of object-oriented methods is not well

standardised, and there is not even agreement as to what object-oriented design really is.”

However, many of these views are rather too general to have any empirical evidence to support
them. It seems that too often the benefits of the use of object orientation are assumed simply

because they sound right, rather than because there is evidence to support the claims made.

Sommerville [Somm89] gives a valuable word of warning: “It is unwise to be dogmatic about
the design process and always to adopt an object-oriented approach irrespective of the system
being developed. An object-oriented view of system design is not always the most natural.” In
the next edition of his book [Somm96], he clarifies this further: ‘No one method is
demonstrably better or worse than other methods; the success or otherwise of methods often

depends on their suitability for an application domain.”

Object oﬁentaﬁon contains concepts that allow the real world to be modelled very effectively.
The principles of encapsulation and inheritance also make it far more supportive of reuse than
many other software design methods. However, object orientation is not the ‘be all and end all’
of software development techniques. It certainly has its limitations, and is not as effective in
modelling some application areas. It is important to recdgnise this, and only to use object-
oriented techniques where they will achieve the best results. Although object-oriented
programming languages exist, object-oriented design techniques can be applied to most modern

programming languages.

Object-Oriented Design and Reuse

Object-oriented methods have been promoted as inherently supporting reuse. Halladay and
Wiebel [Hall93] state that “The most commonly touted benefit of OOP is reuse.” Many authors
have extolled the advantages of reusability in object orientation. Atkins and Brown [Atki9la]

emphasise that reuse is one of the advantages that arises from an object-oriented approach,

48 Automating Reuse Support
in a Small Company

specifically from direct support for abstraction. They suggest that the reuse of classes in a
hierarchy and object libraries are specific examples of reuse that stem from object-oriented

practices.

Ince [Ince91] says that “Polymorphism allows a developer to build up a library of reusable
objects, and contributes greatly towards the ability to develop réusable software.” Wiener and
Pinson [Wien88] consider that one of the main goals of object-oriented software development is
“to shorten the time and lower the cost of development by using reusable software components
in the form of baseline classes and by employing incremental problem solving using subclasses.”
Tsichritzis and Nierstrasz [Tsic89] seem to believe that, due to the heavy emphasis on reuse in
object-oriented programming, “we can expect extremely large collections of reusable objects to
be available to us.” They feel that the problems of the future will be associated with managing
such large collections of objects. They follow this with a suggestion that expert systems will be
the appropriate tools for helping programmers to find their way through databases of reusable

object classes.

It has been seen, however, that among the object-oriented design methods available, there is a
lack of explicit provision for reuse [Goss90]. Udell [Udel§4] also expresses this opinion: “The
traditional OOP vision was, at best, vague on the subject of reuse: Objects would appear as by-
products of software development, a market would emerge, and programmers would b-ecome
producers and consumers of objects.” This unstructured, and rather naive, view of reuse can be

seen in many object-oriented texts.

Meyer [Meye88] offers considerably more advice on the construction of reusable classes in his
text. He suggests that: “A good object-oriented environment will offer a number of predefined
classes implementing important abstractions. Designers will naturally look into these to see if
there is anything they can use..New applications, if properly done, will also produce more
specialized reusable classes. As object-oriented techniques spread, the number and abstraction
level of available components grow.”

49 Automating Reuse Support
in a Small Company

Tello [Tell91] also questions the provision for reuse in object-oriented metilods. He states:
“some say that the key advantage of OOP is thé ability to reuse code for many different
programs, but, by itself, this is not significantly different from library functions.” Mullin
[Mull89]~ would agree: “As most books available today on OOP say, one of the major benefits of
objects'is that they are reusable. So are C functions. The difference is that objects, representing
both data structures and opera.tions that can be performed on these structures, represent
functional packages, requiring no additional work on the part of the programmer to use them.
The packages are always uniform and they interact identically with other objects, regardless of

the purpose of a given object.”

Raj and Levy [Raj89] note that one of the problems with inheritance in object-oriented systems
is that “classes are not automatically reusable”. They suggest that for successful reuse,
inheritance requires the use of a set of coding rules and a set of design rules. Johnson and Foote
[John88] would agree with this second point, presenting a set of 13 rules for designing reusable

classes.

Udell [Udel94] suggests that “object technology failed to deliver on the promise of reuse”, but
that componentware, in which components are encapsulated, or combined into a single, separate
unit with a well defined interface, in order to make them reusable, is the way forward for

reusability.

Cox [Cox86] says: “Object-oriented programming can help to put reusability at the fore-front of
a programmet’s work. But it can’t do it alone unless an information network is provided to help

consumers discover useful code quickly and to understand how it applies to their needs.”

Winblad et al. [Winb90] note that: “Software reuse does not occur by accident, however - even
with dbject-oriented programming languages. System designers must keep the advantages of

reusability in mind, planning ahead to reuse what already exists and designing reusability into

50 Automating Reuse Support
in a Small Company

the new components they create. This requires that programmers adopt new programming
behavior, values, and ethics. Borrowing classes créated by others must be considered more
desirable than implementing a new class. Reviewing existing code to identify opportunities for
reuse must have priority over writing new code. Finally, programmers must create simple,
reusable classes rather than complex, inscrutable classes. Simplicity is a major tenet of the

general philosophy of object orientation.”

Jones [Jone92] considers that “object orientation may make a marginal difference in
implementing reuse, but any majbr reuse program is largely a matter of will, not of

technicalities.”

It is important to note that no one method, technology or technique will solve all the problems
associated with reuse. There will always be complications, and these must be expected and
planned for. Burd and McDermid [Burd92] note that: “Risks are involved in all software
developments, however, often those projects which employ reuse are susceptible to greater risks
than those which do not.” However, with the potential éupport for reuse provided by the use of
object-oriented techniques, these risks, and the difficulties involved in successful reuse, can be
reduced. This view is confirmed by Burd [Burd93b]: “Object-oriented design displays the most
promise as a re-use methodology...Object orientation on its own isn’t sufficient to solve all the
problems associated with re-use. This can be achieved only by providing well-defined support

that enables re-use to be integrated into a suitable lifecycle model.”

Object orientation is far from being a panacea. Even when associated with reuse, it does not
solve the problems typically associated with the software crisis. Hatton [Hatt95], in his study of
defect rates using various programming languages and strategies, found that the defect densities
recorded 'in object-oriented C++ systems were slightly worse than a comparable system ;vritten
in conventional C code (2.4 defects per KLOC in C compared with 2.9 defects per KLOC in OO
C++). He notes that the defects were also more difficult to find in the OO system. He goes on to

say that “unless object-orientated techniques lead to very considerable re-use, they are unlikely

51 Automating Reuse Support
in a Small Company

to improve system reliability significantly. They also seem to require much more specialist

maintenance attention and are harder to debug in current implementations.”

There must be a significant amount of reuse achieved in an object-oriented system for the
benefits of the adoption of object-oriented principles to be seen. Melo et al. [Melo95], in a study
conducted iq the University of Maryland, “provided significant results showing the strong
impacf of reuse on product productivity and, more particularly, on product quality in the context
of object-oriented management ipformation systems.” It is interesting to note from their results
that it was only when reuse rates of at least 40% were achieved that significant improvements
were made in development productivity and the amount of rework required to debug the systems

after testing.

A study of several different object-oriented design methods [Bigg95] was written for Public
-Access Terminals to help them to determine which method would be of the most use to them.
The study included details of each of the chosen methods and an worked example using the

method, along with an analysis of each method.
3.5.2 Software documentation

It has been readily accepted throughout the software engineering community that documentation
is a valuable aid }to understanding software. However, useful documentation is not always kept.
This is particularly true in small companies without structured processes, where the effort
required to produce useful software documentation is often seen as far less productive than other
work that could be done by the developers. The development teams are often small, and feel that
there is sufficient experience and communication within the team to gain all the relevant
information about the softwe;re without the need for documentation. This section looks at

support which can be provided for software documentation in these situations.

52 Automating Reuse Support
in a Small Company

Literate Programming

Literate programming is a phrase first used by Donald Knuth [Knut84]. He uses it to describe his
system of software documentation called WEB. The essence of literate programming is that the
source code and documentation of a program are tied together in one file. This is done by
structuring the source code and comments using TEX commands as instructed by Knuth. The

result will be a file that can be machine processed by the WEB system in two ways:

1) TANGLE - this separates the source code from the WEB file in order to produce a file that
. can be compiled.
2) WEAVE - this produces the ‘pretty printed’ version of the source code for the program.

Features of the pretty printing are that:

e keywords for the language are emboldened.
e comments are interspersed through the code to annotate the source code listing.
e an cross-referenced index of all the sections and variables used in the program is

produced.
The WEB system, to date, works with th;a languages Pascal, C and C++.

The basis of literate programming is to provide an aid to program comprehension. The pretty-
printed version of the source code is far more readable, and, with the correct use of comments,
far more understandable than wading through standard source code. However, it requires a lot
more effort and skill to create a piece of WEB code than to produce a standard piece of

commented source code.

For its time, the literate programming prihciple was valid, but it is now beginning to become
dated. This is especially marked in light of the new style of programming environments that are
becoming available. Some of the keys to literate programming are the highlighting of keywords

and comments and the indexing of variable names. Many new programming environments now

53 Automating Reuse Support
in a Small Company

do this automatically. An example is the Microsoft® Visual Workbench for Visual C++
~ [Micr93a]: “Visual Workbench highlights language keywords, identifiers, comments, and strings
in different colors. This feature is useful when learning a language or viewing lengthy and

complex source files.”

Childs and Sametinger [Chil96] describe a system for software documentation using object-
oriented principles on literate programs. This eases the process of reusing documentation.
However, as it uses the principles of literate programming described above, it also suffers from

the same drawbacks.

Documentation Tools

It has been estimated that software engineering organisations can spend as much as 20-30% of
all their software devel;)pment effort on documentation [Pres92]. The documentation process
itself can also be quite inefficient. These factors often lead to poor standards of initial
documentation, or poor maintenance on initially good documentation. Both lead to the same
problem, which is that software documentation is useless to both ‘maintainers and developers
attempting to maintain or reuse sofltware components (because either the documentation does not

exist or is out of date).

Documentation tools can help to alleviate these problems by automating support for
documentation generation. Some CASE 'tools can automatically generate software
documentation based on the information contained in internz;l repositories that have been
generated duril_lg the lifetime of the project. Others support developers and maintainers in
writing their own documentation by providing templates in which to place the appropriate

information.

Capers-Jones [Cape94] feels that things will change for the better with new technology. “The
percentage of human beilngs who can write clearly is not very high. Therefore software user
documentation is likely to remain marginal, except for software produced by large companies

54 Automating Reuse Support
in a Small Company

with full technical writing, editing, and illustration departments. The emergence of multi-media
technologies and graphical user interfaces are likely to change the nature and appearance of user

documentation in fundamental ways.”
3.5.3 Reverse Engineering

Reverse engineering is the process of abstracting information from software source or object
code. Sommerville [Somm96] describes it as a “process of analysing software with the objective
of recovering its design and specification. The software source code will usually be available as
the input to the reverse engineering process. Sometimes, however, even this has been lost and

the reverse engineering must start with the executable code.”

Bennett [Benn93] stresses that “Reverse engineering is seen as an activity which does not
change the subject system, nor does it create a new system based on the reverse engineered
subject system. It is seen as a process of examination and understanding (and of recording the

results of that examination and understanding), not a process of change or replication.”

Chikofsky and Cross [Chik90] define reverse engineering as “the process of analyzing a subject
system to identify the system’s components and their inter-relationships, and to create

representations of the system in another form or at higher levels of abstraction.”

For the purposes of this research, reverse engineering is defined as any technique which

abstracts useful higher level information from a software system without modifying that system.

Over the past 10 years, there have been so many different methods, techniques and tools
developed for reverse engineering that they cannot all be considered in this chapter. The next

section concentrates instead on the relationship between reverse engineering and software reuse.

55 Automating Reuse Support
in a Small Company

Reverse Engineering for Reuse

Frazer [Fraz92] states that the primary purposes of reverse engineering are “to provide an aid for
comprehension and a basis for maintenance or future redevelopment”. He goes on to suggest
that one of the object_ives of reverse engineering is to facilitate reuse. He states that “a major
inhibiting factor in the rate of growth of the number of users embracing reverse engineering is

the lack of integration of current tools and techniques.”

Several authors have recognised the importance of reverse engineering as a technology to
support reuse (for examnle: work done in' Logica [Walt92] and at the Centre for Software
Maintenance, Durham University [Munr92]) and some have suggested methods for extracting
reusable components from software systems [Ning93], [Cimi95], [Neig96]. The latter tend to
concentrate on program slicing, the extraction of functionally related code fragments from a

software system.

In this research, reverse enéineering is used to provide information for both developers and
maintainers about reusable components. It is, therefore, also related to the fields of program
comprehension and software documentation. The information generated by reverse engineering
reusable components can be used to help software engineers to understand the purpose of a
software component. This understanding helps the developer to reuse the component. Reverse
engineering is integrated with the other areas of software engineering considered to provide an

integrated reuse support environment.

3.6 Conclusions

There are a lot of techniques which can be applied within the field of organisational
development and process improvement. Those described in this chapter will be considered in
greater detail in the next two chapters, where a method for the introduction of reuse into a small

company will be presented, which is based on the work outlined in section 3.3.

56) Automating Reuse Support
in a Small Company

A There is also a lot c;f literature available on the subjects of reuse and object orientation. One of
the reasons for this is that their influence stretches to every part of the software lifecycle, from
requirements analysis through implementation and testing to maintenance. If reuse is taken in its
broadest sense, then anything from any part of the software lifecycle can, and should, be reused.

In practice, this is very difficult and, in some situations, uneconomical.

However, much of the literature on reuse tends to look at the subject either on a very large scale
(covering every aspect of software production), or on an atomic scale (the reuse of components).
It has been seen through the literature that object-oriented design principles are best suited to the
principles of reuse, although explicit method support is sparse. It is, therefore, wise to encourage
the use of object orientation as.a design method to accompany a reuse programme. However, it
is not wise to rely on thc? use of an object-oriented method to bring the benefits of reuse without
any extra effort being required. Many different object-oriented design methods are currently
available, each with a different emphasis. C++ is currently the most popular of the ‘object-
oriented’ languages. There is a problem with the fact that OO design methods don’t explicitly

support reuse, although the principles of object-orientation do.

In the automatic generation of' documentation, it has been seen that literate programming is a
useful concept, but one that has been subsumed by modern programming environments. Further
work on generating documentation from comments in the software’s source code would be
valuable, especially if integrated in a reuse environment with information abstracted from the

source code using reverse engineering.

In conclusion, from the survey of literature in Chapters 2 and 3, the gap in the field of research
that has been seen is that there is little provision for the setting up of a reuse programme in a
small, unstructured company. It is felt that a method for introducing a reuse programme,
integrated with an object-oriented design strategy, coupled with automatically generated

information about the source code, will help to ameliorate this problem. It will make the

57 Automating Reuse Support
in a Small Company

principles of reuse more accessible to such companies, because the investment of time and effort

needed to benefit from reuse will be reduced.

As previously discussed in section 3.4, it is important to minimise the risks that a small company
will be taking when implementing a software reuse programme. As there is currently no further
information available on software reuse in small companies, conducting further investigations
into this area will not heli) to reduce uncertainty. Therefore, in the following chapters, a method
will be developed which helps to minimise the risks taken by a small ;:ompany when

implementing a reuse programme.

58 Automating Reuse Support
' in a Small Company

Chapter 4: Solutions

4.1 Introduction

The goal of this research is the effective realisation of software reuse within a small company. In
the case study associated with this research, Public Access Terminals Ltd. were motivated by a

desire improve their software practices. There were several reasons for this desire to improve.

The first is that the company recognised the impact of changes in the software market, and
realised that they could no longer continue with their current software system. Customer
demands meant major changes in both éhe product and its environment. Advances in technology
meant that their product, which had previously been a market leader, was falling behind its
competition. Realising that change was inevitable, the compa;ny wanted to start again, using

better methods to develop better structured software.

Secondly, the company realised the importance that the software market was placing on
standards and were interested in International Standards Organisation and British Standards

accreditation. This, again, would mean an improvement in their software development methods.

Thirdly, the company had heard some of the benefits which could be gained from the success of
software reuse, and were excited to gain these benefits for themselves. These, and other factors,
led the company to become a part of a Teaching Company Scheme with Durham University,

hoping to utilise the expertise of the university to help with these improvements.
In order to identify an appropriate strategy for reuse introduction in the company, several other

successful reuse programmes were studied.

59 Automating Reuse Support
in a Small Company

4.2 Study of successful reuse programmes

As discussed in Chapter 2, the realisation of software reuse depends on many factors. However,
there have been several successful reuse programmes implemented in software companies,
results of which have been made available through reports and papers. Section 1.1 identified
some of the key reuse programmes which have been reported, along with the benefits that have

been gained from the introduction of reuse into these companies.

It has been shown that software reuse can offer great benefits to companies when used
effectively. Some success stories have been quoted, and a few of these will be considered in
more detail in this chapter. This will be in an attempt to discover commqnalities shown across
the companies, and identify whether the successes gained in these companies could be

transferred to a small company.

Raytheon

The first of these companies is the Raytheon Missile Systems Division of the Department of
Defence. Lanergan and Grasso [Lane84] studied over 5000 production COBOL source
programs, and identified common categories for tasks performed in the programs. Three main

types of function were identified, and were abstracted into standardised reusable logic structures.

s

Developers could then use these structures when building new programs. When reusing the
structures, the developers estimated that they achieved a 50% increase in productivity by

averaging 60% reusable code.

Although this is a great way to identify candidate reusable components, such a study would be
vvery difficult to do in a small company. Small software development houses often only have a
few different proérams which they develop and maintain. In the case study associated with this

research, the company has a single product. Studying such a small system for common

60 Automating Reuse Support
in a Small Company

components would be difficult, as there is not enough material to notice any general trends

acCross programs.

GTE

‘The second case study considered is that of GTE. In his paper on the implementation of faceted
classification for software reuse within GTE, Prieto-Diaz [Prie90] describes the system used for
software component classification. He élso describes the searching and retrieval support system,
the librarian and organisational support and problems with the technology transfer. In discussing
the usage experience for GTE’s Assét Management Program (AMP), he calculates the reuse
factor gained by dividing lines of code reused Aby the total lines of code produced by the
organisation. He estimates that $1.5 Million was saved with a reuse factor of 14%. Prieto-Diaz
stresses that “there must be a strong organisational commitment to reusability and an effective
management structure to operate a reusability program...an organizational infrastructure is
needed for a reuse system to succeed.” He goes on to identify 6 groups which should be set up to
support the reuse progr_amme:' the management support group, the library system, an
identification and qualification group, a maintenance group, a development group, and a reuser
support group. He then stresses that the role of the librarian is “critical for a successful reuse

program.”

These are very valid suggestions when taken in context, but far outside the resources of a small
company. It is very possible that a single software developer could constitute five of the six
groups suggested; acting as librarian, component identifier and qualifier, developer, maintainer,
and support group for the reuser, namely him(or her)self. Such a situation would be absurd, and
the extra workload added to the developer would probably cause them to scrap the idea of reuse

as ‘far too much work’, and go back to their preferred development method.

61 Automating Reuse Support
in a Small Company

Fuchu Software Factory

The third case study describes the software reusability measure in place at the Fuchu Software
Factory, a part of the Toshiba C01;poration in Japan. Matsumoto [Mats84] describes how the
software processes used at Toshiba have been modified to support the reuse of software
components. Components are described at three levels - the requirements level, the design level
and the program level. Traéeability is maintained through the levels, so that the component is
designed and programmed to match the specification. Although there is no discussion of how
reusable modules are locatéd, Matsumoto indicates that, if considered as assembler code,
approximately 50% of lines of code are reused, which has led to an increase in factory

productivity of more than 20% per year.

This style of introducing reuse is very valuable, but relies on the fact that there are processes
already in place in the software development environment. When development processes are
successful, théy can be modified to introduce new practices and improve the software process

[Carn95]. However, small companies often have no software procésses in place.

Other Examples

Karlsson [Karl95] also quotes AT&T, Hewlett Packard, IBM, NEC, CAP and Ericsson as
examples of companies with significant corporaté reuse programmes. All of these are large
compgnies with structuredA processes- in place. Another key point madel is that any reuse
programme will only be successful when it is supported By top-level management. This tends to
suggest that this is the type of environment in which reuse can be made successful. However,
although these large software development companies are a significant part_of the computer
industry, there are many smaller software development companies which do not fit into the same

mould.

62 . Automating Reuse Support
in a Small Company

Chapter 3 looked at many different techniques which can be applied when introducing a new
way of working to a company. In the rest of this chapter, several alternatives to introducing a

software reuse programme into a small company are suggested and considered.

4.3 Introduction of Structured Processes

~ Based on the success of the reuse programmes considered in the previous section, the most
logical approach would be to introduce reuse in the same way. The implementation of a reuse
prdgramme would follow the guidelines which have been made in many software publications.
A good example of these is the book edited by Karlsson [Karl95], perhaps one of the most
complete practical texts on the successful irnplementaﬁon of a software reuse programme. This

_ also follows the process assessment and improvement techniques based around the Capability

Maturity Model [Carn95] and the Reuse Maturity Models mentioned in section 3.3.2.

* This type of reuse programme implementation would be based on the full introduction of
structured processes to the company. In essence, it would mean starting by introducing software
development processes within the company, then bringing reuse in as a part of those processes.
This would move the company towards the International Standards Organisation’s 9000/9001
and British Standards 5750 standardised process recofﬁmendaﬁons, introducing reuse as a part
of those standards. The company’s software process would be studied, analysed, documented,
implemented and improved By this widespread introduction of standardised processes
throughout the company. Reuse would be an integral part of those processes, with the excellent
recommendations which have been brought forward in many reuse texts being successfully

.implemented.

Obviously, this would be the ideal solution. However, it is unlikely to work in practice.
Introducing this ‘large-company’ ideal would take a great deal of time and effort for both the
management and the staff of any company. Indeed, for a small company which currently has no

standardised practices, such an overhaul of working practice and environment would take a vast

63 Automating Reuse Support
in a Small Company

amount of time and resources to implement. This is obviously time and money which is not
spent developing software - the lifeblood of the company. It is a recognised fact that the
introduction of any new working practice takes a large amount of up-front investment, however
beneficial it may be in the long term. Often, a small company cannot afford that kind of
investment, whether‘ it be of money or time, because their resources are so much more limited
than a large company. This is exactly what puts them off the idea of implementing a reuse
programme - the fact that there is a large, up-front investment which may not pay for years to
come. They cannot afford that kind of risk. As discussed in section 3.4, a method should be
considered that reduces the risk faced by a small company when implementing a reuse

programme.

4.4 Incremental Introduction of Reuse

The second suggested solution is that of the incremental introduction of software reuse. This is
where reuse is the flagship to which the efforts of the corﬁpany are directed. However, unlike the
previous solution, the major changes required to implement a reuse programme are broken down
into smaller steps. This is so that the benefits gained from reuse at each level of improvement

can help to ‘fund’ the forthcoming changes that will be required to move to the next level.

The end is the same as the previous solution, but the means to get there are quite different. Staff
motivation can be radically improved by this approach. People seldom like change, particularly
when they are comfortable with the environment that they are in. However, if they can see the
practical benefits which can come from change, they will be much more motivated to do what is
required. The idea of using reuse as the ﬂagship for these changes means that when the software
developers do something to improve their software practices, they can actually see the benefits
because it constitutes real productivity gains in their software development. A reuse repository is
built, and de\}elopers can use software from it, which is a tangible benefit that they can see in
practice. These perceived benefits from the reuse programme also help motivate the staff to

actively participate in the programme.

64 Automating Reuse Support
in a Small Company

" This seems ideal for a smaller company, as the amount of initial investment which would Be
required would be minimised, at the same time as maximising the benefits which can be
obtained from reuse. Of course, there are disadvantages to this approach. The time scales for
improvement are lengthened using this approach. This means that it would take the company
longer to improve their capability maturity. It would also mean that the software development
processes would be in a constant cycle of‘ change. However, the fluidity of this method would
allow a small company the flexibility that they require to develop the type of software that their
customers require. Real stébility m the company’s processes would only come when the
company had reached the higher levels of the CMM i.e. achieving a repeatable, defined,

managed software process.

Perhaps the biggest benefit of this technique is the reduction in risk associated with the
incremental changes in working practices. The changes would be implemented on a smaller
scale, and those changes which are detrimental could be discarded before they caused serious
damage to the company. On the other hand, successful changes would benefit the company
almost immediately while minimising the disruption caused by changing the company’s

development processes.

4.5 Encouraging ad-hoc Reuse

The third solution is perhaps the most practical from the software developer’s point of view. The
idea is simple - provide the developers with a practical, usable development environment which
supports reuse, then let them get on with it. It is expécted that reuse will be achieved as the
developers learn mofe about their environment, and the resources that are available to them. As
Meyer [Meye87] succinctly put it “Give your poor, your huddled projects a decent technical

environment in the first place. Then worry about whether you are managing them properly.”

65 ‘ Automating Reuse Support
in a Small Company

Using this solution, the developers would be given a good technical environment in which to
develop their software. The programming langua;ge would allow the developers to build their
systems using the principles of s@cmred sof"tware‘ engineering which encourage the
development of systems as reusable components. Valuable component libraries would be sought
to support the developmeht environment, allowing the developers to make use of the greater
resources available to them. Standard development and project management tools would also be
made available. Howe;ver, no support would be given to the developers in the reuse process, as
management do not have the time or‘resourc'es to worry about the details of what happens in
development. There would be no technical or organisational support for reuse, leaving the
developers without guidance or instruction on how to benefit from the introduction of a reuse
programme. If reuse makes sense, the developers will surely do it, and gain the benefits which it

brings.

The limitations of such a solution have. élready been discussed in Chapter 2. It was seen that
there are many factors which inhibit the introduction of software reuse, not all of which are
technical. Tracz [Trac88a] stated that “if one looks at the most-often-stated reasons why
software is nof reused, the ovemhe@g majority of them may be classified as psychological,
sociological, or economic.” A good technical environment cannot solve all the problems
associated with the introduction of software reuse. Such factprs as the not-invented-here
syndrome must be addressed, and reuse should be measured and rewarded if the greater gains
that it can bring are to be realised. By encouraging ad-hoc reuse, the developers will certainly
gain from the measures suggested above, however, the full benefits of reuse will never be

realised without top-level management support.

4.6 Introduction of CASE Tools

The final solution suggested is the introduction of Computer Aided Software Engineering
(CASE) tools to support the introduction of reuse as part of the software development process.

As with the third solution described in the previous section, the developers would be given a

66 Automating Reuse Support
' in a Small Company

quality technical environment, with access to reusable libraries. However, with this solution,
CASE tools which support both structured software development and development with reuse

would also be made available to the software developers.

Many different types of CASE tool have been produced over the past 10 years, and each vendor
promises imprévements to programmer productivity through the use of their t(;ol. By using
CASE tools, some of the more mundane tasks carried out by the developers can be elirAninated,‘
4leaving them free to concentrate on the more difficult, creative development tasks which a tool
cannot do. Software tools have been proven to be effective in other engineering environments
(such as CAD programs). By making the right tools available to software developers, their job
can be simplified and enhanced, supporting them in the reuse process and allowing them greater

opportunities to search for and incorporate reusable components.

This solution is a goéd one, but alone, it is not sufficient to bring real benefits to a small
company. CASE tools can be very effective when used correctly. However, they are just tools,
and will 6n1y be of use when the correct tool is used with the right training in the right
environment. A hammer and chisel in the hands of a baker will be of no practical use; but, in the

right hands, these simple tools can produce amazing results.

Another problem with the introduction-of any tool is that, without any process to support its use,
the tool is unlikely to be used effectively. Excellent CASE tools have been installed in software
development compz;nies, but have made no practical contribution to the staff because no-one
knows how to use them. Such tools, however effective they are, end up as an exper;sive waste of
resources. A process.to support the tool, and training in the use of the tool, are required to make

it effective.

67 Automating Reuse Support
in a Small Company

4.7 Conclusions

Several different options have been presented in this chapter for the introduction of software
reuse into a small company. Each of the options has>been discussed, particularly with reference
to their validity for a small company. The first option was obviously the ‘ideal’ solution, but it
. was seen that the widespread introduction of structured processes (as recommended in the CMM
and other maturity modéls) in a small company would proBably be too large scale and resource
intensive to be successful. There are very real benefits to this approach, which would be
achieved in a smaller time scale than using the second suggested option. However, with the
amount of resources which would have to be committed to the programme of process
improvement, the risk is far, far greater that the company will collapse before the improvements
start to pay off. The second option is more practical and far less risky, introducing reuse
incrementally in the company, using the benefits at each level of improvement to ‘fund’ the next
level. Encouraging ad-hoc reuse, the third option, was the most likely to be accepted by the
company. However, this would not bring the sca]e of benefits that can be achieved by a properly
organised reuse programme. It was felt that the intro'duction of CASE tools can be valuable, but,
on their own, they are not likely to be used effectively. Of course, there is a fifth option, which is

to make no changes, but as already discussed in section 3.4, this option has associated risks of its

own.

Based on the options available, the decision was made to follow the second option, attempting
an incremental introduction of reuse in the; case study with Public Access Terminals. As
discussed, this option minimises the risk associated with the introduction of reuse into a small
company. A method has been developed to facilitate the incremental introduction of reuse into a
company, which is described in the next chapter. It was also felt that the benefits which can be
gained from the use of CASE tools would be valuablé in automating support for the reuse
processes within the compar;y. It was seen in Chapter 2 that it is only when both the
technological and organisz;tional issues in reuse are successful‘ly addressed that the benefits of

reuse can be capitalised on. In this case study, it was decided that the initial stages of the method

68 Automating Reuse Support
in a Small Company

would be implemented first, so that sc;me of the organisational issues could be addressed. Then,
when the requirements for technical support for the programme could be clearly identified from
the work already carried out, the te-chnological issues could be addressed. In this way, the CASE
 tool developed would address the real needs identified during the first stages of the incremental
reuse programme. The followiné chapter describes the method developed for introducing reuse
to the company, with the steps to be followed and an identification of requirements for the

CASE tools.

69 Automating Reuse Support
: in a Small Company

Chapter 5: Reuse in a Small Company: The method

5.1 Introduction

This chapter looks at the method for introducing software reuse into a small company
recommended as part of the thesis. The reseérch has been conducted in conjunction with Public
Access Terminals Ltd., a small software development company. The research method adopted is
based on Potts’ [Po_tt93] idea of using ‘industry-as-laboratory’. Potts suggests that most software
engineering research has been following a ‘research-then-transfer’ methodology,.and that this
often fails to address significant real-life problems. He introduces the concept of ‘industry-as-
laboratory’, in which he recommends that “researchers identify problems through close
involvement with industrial projects, and create and evaluate solutions in an almost indivisible

research activity”.

In asséciation with a small software company, the t};esis explores the possibility of introducing
software reuse techniques into a company who are low on the process maturit}'l scale. As such,
they rely solely on the ‘heroic’ efforts of their employees [Curt92] to ensure that their products
meet the demands of their customers and are competitive within the marketplace. This chapter
describes the method for introducjng reuse that has been developed. The next chapter discusses a

case study in which the method is implemented within a small company.

5.2 The Issues

It would be foolish to claim that software reuse is the solution to all the problems that have
caused the current software crisis. Achieving software reuse on a level at which substantial

benefits will be gained is a difficult task, and requires a great deal of commitment and effort.

70 Automating Reuse Support
in a Small Company

Introducing reuse in a small company presents a different set of challenges to those faced by a
large company. The larger scale of a big corporate reuse programme brings challenges
associated with the size of the programme and the difficulties involved with changing the
company’s processes for structured software engineering. Many of the recommendations for
software reuse considered in chapters 2 and 4 relate mainly to reuse programmes of this scale.

For a small company, these considerations are significantly reduced.

In. comparison, small companies tend to have a érﬂall team of software developers (often not
more than _10) who are solely responsible for the deyelopment and maintenance of the
company’s software product(s). The size and complexity of the products is significantly less.
than those built in a large software factory. This has an impact on software reuse. For example,
the creation and maintenance of a large component library is one of the key issues discussed in
software reuse research. However, for the small number of components which would be
available within a small company, problems with storing and finding components are much less

significant.

Horizontal reuse is often.very difficult, due to the narrow domains in which small companies
tend to concentrate their efforts. Vertical reuse, however, is more available because of the
narrow domains. This is an area which can be ex_ploited in a small company reuse programme.
This research concentrates on those small companies where there are no structured software
processes currently in place. For them, the benefits which reuse offers seem unattainable because
of the emphasis on considerable up-front investment and formalised processes which are

recommended for successful software reuse.

As seen in Chapter 2, there are two main areas which must be considered for effective reuse
within a company: technological and organisational [Stan84]. As technology has advanced, with
the methods and tools to support reuse becoming available, the technological challenges faciﬁg
reuse have been surpassed by the economic and organisational issues that face a company

intending to implement a reuse programme [Trac88a].

8

. 71 . Automating Reuse Support
in a Small Company

The challenges facing any small company considering a reuse programme can be categorised

into five main areas:

Initial investment — small companies do not have the time, money or resources to invest
into. a programme which does not have immediate returns. The risk is too great. It has
already been shown in chapter 2 through experience that in order to gain the benefits of
reuse, a considerable investment must be made first.

Lack of defined processes — all the successful reuse programmes discussed in the previous
chapter have shown how companies have changed their processes in order to incorporate
reuse. Small companies tend not to have processes in place which can be altered for
successful reuse implementation.

Minimal resources — the development team in a small company is often only a few people
strong. They are busy with developing and maintaining the products which are essential to
the company’s continued existence. They do not have the time, money, tools and other
resources to dedicate to any extra workload.

Short time-scales — small companies tend to work to short, tight deadlines and shdrt term
goals. Long term investment which does not directly increase the company’s capital is not
a viable proposition. A reuse programme falls into this category.

Lack of experience — for a small company wishing to embark on a reuse programme,
there are no exampleé of successful reuse programmes in other small companies for tﬁem
to base their efforts around. Likewise, there are no examples of unsuccessful reuse

programmes from which they could learn.

5.3 The Method

The method which has been-developed as part of this research has been built to address the

issues described in the previous section. One of the major challenges faced in developing the

72 Automating Reuse Support
in a Small Company

method is that it must provide means for introducing a reuse framework into a small company,

while reducing both the risk involved and the time taken before benefits are obtained.

The method presented below is based on the pﬁnciples of organisational development and
process improvement described in chapter 3, as well as previous work done in the field of reuse
introduction, particularly by-Karlsson et al. [Karl95] in the REBOOT project. The steps
developed for this research have been adapted from the work done in the field of method study
by Radford [Radf84] and Buckley [Buck85], as well as the other background investigation
described in chapters 2 and 3. The following section describes the Seven Steps to Success when
implementing a reuse programme. Each step of the method should be completed before moving
on to the next stage and criteria are given in order to check whether the step has been

successfully completed.

1) Gain the support of management and staff

The first, and perhaps the most impoxtént, step in introducing a reuse programme is to gain the
support of the company’s top level management [Bigg89b]. This is crucial. The introduction of a
reuse programme affects all parts of the software production process in the company. Therefore,
the support of the high level management in charge of all aspects of development must be
gained so that the programme will be supported and implemented, and to allow changes to
company policy to be made as needed [Hoop91]. The method recommends a well prepared and
realistic presentation t6 key members of the management and staff describing both the benefits

which reuse can bring and the difficulties involved in creating a successful reuse programme.

If this type of support cannot be obtained, then the reuse introduction project should be
ébandoned until such time as the commifmex-lt level changes. The level of commitment can often
be measured by whether management are prebared to be involved personally in the programme,
and whether they are willing to commit time and resources to its success. Small companies are
characterised by owner management, and it is important that these owner managers are willing

not only to be committed to the reuse programme, but to be actively involved in its success. The

73 Automating Reuse Support
in a Small Company

risk of failure without full management support is too great at this stage to attempt any further

work in the reuse programme.

2) Investigate the domain

The next stage of the method is to gain an in-depth knowledge of the company and its current
working practices. This can be done by studying not only the development methods used, but

also the company’s product and the viewpoint of the staff.

It is recommended that the company’s development methods, and the viewpoint of the staff are
investigated by conducting informal interviews of certain key members of staff. This should
include the manager and members of the development team. A questionnaire should also be used
to gain information about both the work of the company and the staff. The investigation should

not be an end in itself, but simply a means to reach the next step of the method.

The programme should only be abandoned at this stage if the level of commitment gained

during step 1 has decreased during or after the investigation. .

3) Identify areas for improvement

Target areas for improvement should be identified which would help the company to be
successful in introducing a reuse programme. These areas should be determined using the
investigation of the company conducted in the previous stage of the method. The target areas
should be based on key areas in the company w'here changes in working practices could make

the development environment more conducive to the growth of a reuse programme.

However, major changes should be avoided initially. As concluded in the previous chapter, an
incremental approach to implementation of the reuse strategy should be used. This is because,

with an incremental approach to reuse, reuse techniques can be tried and proved on a small scale

74 Automating Reuse Support
in a Small Company

before introducing major changes to the company [Prie91]. Also, reuse target areas can be

identified where reuse will be most effective.
Some suggested areas for improvement are:

Planning — “The company that fails to plan, plans to fail”. Without proper planning for
software development, the potential benefits which can be gained from reuse cannot be
maximised because opportunities for including reusable components may be missed.
Design — The use of a design method which supports both building reusable components
and including components in system development can be a great aid in the reuse
prograrhme.

Resource Manaéement — In order to implement a reuse programme, reusable components
must be available to software developers. Resource management can help to make this
happen.

Documentation — Developérs must be able to understand components in order to be able

to reuse them. As seen in chapter 3, documentation can aid the understanding process.

Although incredibly unlikely, it is possible that no areas for improvement can be identified. If
this is the case, then the programme should be abandoned at this stage. However, unless this is
the case, the only other reason to abanaon the program at this stage is if the management and
staff are not willing to invest their time and resources into making the suggested changes. Their
commitment to change can be improved by using them as part of the identification of areas for
improvement. Indeed, the greatest Acommitment is often shown when the staff involved in
software development come up witlll the ideas for areas of improvement. Commitment levels can
be gauged by diécussing the proposed improvement areas with participating stafﬂ and the
programme should only }‘)roceed when their full support is given and the appropriate resources

are committed to the programme.

75 Automating Reuse Support
' in a Small Company

4) Define appropriate ‘lightweight’ processes

Lightweight processes are defined as software processes which are informally defined in terms
of recommended working practices for company staff, which are repeatable during the software
development lifecycle. ‘Lightweight’ process;es are proposed as part of this research to avoid the
large amount of resources which must be committed and documentation which must be
produced in a formalised process improvement scheme. They do not require formal definition,
training, documentation or management in order to achieve their objectives. These informal
processes are the first step to formalising the software process, and as such, are expected to be
subject to change and can be discarded if unsuccessful. The informality of these processes
makes them ideal for small companies, because improvements to their working practices can be

tried and tested before the successful process recommendations are formally accepted.

These ‘lightweight’ processes are based on the areas for improvement identified in the previous
step. The ‘lightweight’ processes are manifest as a set of recommendations to the companyfs
staff on working practices that will best support the reuse programme. As with the previous step,
including the staff in the ‘lightwei_ght’ process definitions improves their commitment to changé,
and allows them to capitalise on their current best practice. These recommendations must also be
directly linked to the benefits which reuse can bring to provide the motivation for their use.
These recommendations should be presented to all those involved in the reuse programme.
Again, only when the support of both the management and technical staff for the

recommendations is assured should the programme proceed.

5) Select a pilot project

It is not wise to jump straight into a new development strategy that will change the way that the
company works without first being assured that the strategy is applicable to the company, its
staff, its domain and its working environment. A pilot project allows the ‘lightweight’ processes

to be tried in practice. The pilot project will be a project that is indicative of the type of work

76 Automating Reuse Support
in a Small Company

done within the company. It gives members of staff at the company hands-on experience with

software reuse techniques.

The pilot project is also a great opportunity to try out rec;)mmended reuse techniques to see how
effective they are in a real situation. Not all techniques will be equally effective, and the pilot
project should highlight those reuse techniques which will be of most benefit to the company.
Although software reuse can offer major productivity gains when used in the right way in the
right environment, it is ﬁot the solution to all problems. There will always be times when it will
be more effective to write new code than to try to find gnd reuse previously written code. The
key is to recognise which techniques will be most effective in different development
eﬁvironments, and utilise the most efficient development strategy in each case. The pilot project
should also help to identify areas where tool support would assist the developers in achieving the

goals of the reuse programme.

An appropriate ;;ilot project is one which is typical of the work done within the company. If an
appropriate project cannot be found, it may be wise to wait for a later opportunity rather than
using a pilot project which will not allow the suggested techniques for reuse to be properly
implemented. However, using an atypical project because it would allow the best results to be
seen from the reuse programme is also not ideal, as it will give unrealistic results for the next
stage of the method. During the lifetime o.f the project, the work being done should be monitored
with respect to the ‘lightweight’ processes recommended, so that the results can be evaluated at
the next stage. When the Vpilot project has been completed,‘ move on to the next stage of the

method.

6) Base(ri on the results of the pilot, make a plan for integrating reuse into the company

It is important to learn from the experience of the pilot project, so that when reuse is integrated
into the company as a whole, tried and proved techniques will be used. Members of staff can

have confidence in the changes that will be made, because they have seen the success of the pilot

77 - " Automating Reuse Support
in a Small Company

project. Once the results of the pilot project have been analysed, a new plan for the software

reuse strategy of the company should be drawn up based on these results.

It is vefy important at this stage to identify what did and did not work well in the pilot project,
and to consider how the problems highlighted by the pilot can be better addressed. The greater
difficulties involved in the wider introduction of reuse throughout the company mean that the
reuse programme should only go ahead if it is felt that the successes of the pilot can be

transferred to other projects, and that the problems highlighted can be successfully addressed.

The successful parts of the pilot project form the basis of the plan for more widespread reuse
introduction. During the coﬁrse of the projecf, areas where tool support would have assisted the
project should also have been identified. These requirements can be used to procure or develop
tools which meet the needs of the reuse programme. If management and staff are still committed
to the reuse programme, then further improvements to the programme can be identified and

implemented by returning to step 2 of the method.

In cases where the pilot project has completely failed to bring any benefits from reuse,
examination of the results of the project should be used to discover why. Failure will usually be

caused by one of the following three reasons:

a) the areas for improvement and ‘lightweight> processes used did not address the right

areas to help the company to capitalise on the benefits of reuse,

b) the staff did not actually implement the ‘lightweight’ processes in their work or
c) reuse is not an appropriate technique to achieve benefits in the company’s current
climate.

If either of the first two reasons are identified, the method must be reapplied from step 1 before

any progress can be made. If the third is genuinely the reason for failure, and there is no scope

78 Automating Reuse Support
in a Small Company

for reuse in the company’s software development, then the reuse introduction programme should

be abandoned at this point.

However, if the pilot project has been successful in bringing the benefits of reuse to the
. company, then the next step of the method should be followed only when the full support of the

management and staff of the company is received for the reuse plan.

7) Incrementally implement the plan with automated support

Once a plan has been formulated, it should be put into action. This seems obvious, but it is
important to consider how the plan will be implemented. As described in the previous chapter, it
was decided to use a method of introducing reuse ideas while gradually encouraging the

improvement of development methods.

The incremental apéroach was recommended in this research in order to allow the company to
slowly change their working practices at the same time as fulfilling their customer’s
requirements. This will give the staff a chance to get used to the idea of a reuse framework. It
will also allow the new development methods to mature and become a standard practice within
the company without an extensive overhaul of current working practices. The progress of the
reuse programme against the plan should also be measured, to identify how the programme is

progressing, and to'update the plan, if necessary.

Automated support is also a recommendation of the method. With tools to support the reuse
programme, the impact of the changes that need to be made can be reduced. The tools should be
easy to use and provide support for creating, finding and using reusable components. By this
stage of the method, areas where tool support would assist the programme should have been

identified.

These areas should be used to define the requirements for tools support. Typically, tools which

will assist the developers within a small company to understand; store and retrieve; and

79 Automating Reuse Support
in a Small Company

incorporate reusable components within their source code will be valuable in automating support
for the reuse programme. These three areas are very important in order for developers to be able

to achieve effective reuse (see section 2.5).

Investigation was conducted into each of these three areas in order té identify what the tools
would need to provide in order to address them. There have already been several tools
developed for the retrieval of reusable components from a component library. Much of the work
on these tools is in the identification of potential reuse candidates from a large collection of
components. However, Athey alwast rely bn the developers and/or the repository administrator to
ensure that good information on the components stored within the library is available. No tools
have been seen which support the automatic generation of information about components that

are stored in a component library.
The tool set proposed to support the reuse programme in this research will concentrate on
automating support for the reuse programme. The tools will integrate retrieval of reusable

components with automatic generation of information about those components.

The method developed is summarised below:

Step Criteria for continuation Action if criteria has failed
1. Gain the support of Full management support is Abandon programme or attempt
management and staff obtained ‘ to increase level of support
2. Investigate the domain Continued support for reuse Abandon programme or return to
’ programme : step 1
3. Identify areas for Appropriate areas are Abandon programme, revise
improvement identified and agreed selected areas or return to step 1
4. Define appropriate Recommendations are fully Abandon programme, revise
‘lightweight’ processes accepted and supported by ‘lightweight’ processes or return
management and staff to step 1
80 Automating Reuse Support

in a Small Company

5. Select a pilot project

Appropriate typical project is
found, supported and

completed

Wait for appropriate project,

abandon programme or return to

step 1

6. Based on the results of

the pilot, make a plan for

Benefits obtained from pilot
which can be transferred to

whole company. Plan is fully

Abandon programme if reuse
techniques not appropriate for

company or return to step 1

integrating reuse into the

company accepted and supported.

Reuse success transferred to Abandon programme in areas

7. Incrementally

implement the plan with all projects where reuse is not successful

automated support

5.4 Conclusions

The method described in this chapter is based on the tried and tested business techniques
described in chapter 3 as well as previoué software reuse research. It was shown in chapter 4 that
there ha\‘/e been several reported reuse succe;sses in large companies. Based on the solutions
discussed in the prgvious chapter, the method described uses a combination of ‘lightweight’
processes with automated support for the reuse programme to reduce both the effort and the risk
involved in introducing reuse in a small company. Seven Steps to Success were presented for the

introduction of reuse within a small company.

However, without testing the method, the suggestions made in this chapter are simply that. The
next éhapter describes the implementation of the method at Public Ac‘cess Terminals Ltd., a
small software development company. The case study described tests the method discussed in
this chapter. A description is also given of the devélopmcnt of a tool set which suppo;'ts the

reuse programme by automating some of the tasks required to allow reuse to be capitalised on.

81 Automating Reuse Support
in a Small Company

Chapter 6: Reuse in a Small Company: The practice

6.1 Introduction

This chapter discusses the implementation of the method described in chapter S. A case study
using the method has been conducted in association with a small software development
company. The challenges faced in this environment are discussed, along with the incremental

approach used for introducing software reuse into the company.

The development of a set of tools for automating support for the reuse programme is also
described. The tool set integrates a reuse repository management tool with automatic processing

of source code to generate information about the reusable software.

6.2 The Company

This case study has been conducted in association with Public Access Terminals Ltd., a small
computer systems manufacturer who have a single product in the public access and security
domain. Their system keeps information on all the people that are currently present at a
particular location and can issue and check security badges. The software of the system is
connected to specially designed hardware peripherals, as well as being networked across a site
using LANs. The system considers many aspects of computing from database manipulation to
interfacing with peripheral hardware devices to image handling. The company deals with both

software and hardware, and uses technologies such as device drivers and networks.

The company had realised that, with the pressure being applied to its product by customers and
the competition, it was time to start using more structured software methods in their software
development department. This, along with two teaching company -scheme placements in

82" Automating Reuse Support
in a Small Company

association with the University of Durham, encouraged the company to look to the expertise of

the university in helping to improve its methods.

6.3 The Case Study

The method described in the previous chapter was used in association with P.A.T. Ltd. to
attempt the introduction of a software reuse programme. The company followed the Seven Steps

to Success. Each of these steps as implemented in the case study is described below:

1) Gain the support of management and staff

In this case study, we gained the support of the high level management by giving a presentation
on reuse, explaining - how it could help their company and how best to utilise it. This presentation
was given to the company’s technical manager and key members of the hardware and software
development teams. It was a good opportunity to present the case for reuse, stressing the benefits
that it could bring to the compan;, and the approach for introducing reuse into a small company
“that we were recommending. It was -also a good point at which to get feedback from the

management on what they expected from the reuse programme, and how they wanted the

company to change for the future.

It was found that the management were very dubious of the reuse successes reported, as they all
related to large corporations. They were not sure how the successes could be related to their
company. Their key concerns can be summarised by one of the questions which was asked after
the presentation: “We’re only a small company and not very structured. Can we still do reuse

and is it worth it?”

There was considerable discussion of the challenges that would be faced when implementing a
reuse programme within the company. This centred around the changes which would have to be

made within the company and the resources that would be required. However, the management

83 Automating Reuse Support
in a Small Company

felt that with the incremental .approach recommended, the time and resources which would have
to be committed to the reuse progfamme could be minimised. This gave them confidence that
the benefits ‘of reuse could be made available to them, and after discussion with the manager of
the compaﬁy’s technical development department, it was with enthusiasm that the company

agreed to continue with-the proposed reuse introduction project.

2) Investigate the domain

The next stage of the method is to gain a working knowledge of the company and its current
working practices. This was done by conducting informal interviews of certain members of staff,
including the technical manager and members of both the software and hardware development
teams. A questionnaire (Appendix A) was distributed to each interviewee before the interview. It
was not expected that the questionnaires should be‘ﬁlled in by the staff being interviewed.
Rather, it served as a focal point during the interview to give each member of staff an idea of the
type of question that would be asked, and the type of information being sought. Notes were
taken during the iﬁterviews, and the interview with the technical manager was recorded, with

permission, in order to study the information gained at a later time.

It was found that the company’s methods were very ad-hoc. The developers worked in the way
that they found most suitable. Informal communication between the developers helped to clarify
the interoperation of the various parts of the system that they were working on. The
development team kept only one version of their software product, to which they made all
alterations. This ensured that they did not have multiple differing versions of the software in
different locations. Although it solved problems with software version management, it created a

very difficult to understand, monolithic software system.

They did not have a formalised process for development or maintenance. Their work was based
very much on customer requests. When a new customer was obtained, they made additions to
the product (if necessary) to cater for the new customer, then installed the new version of the

software at the customer’s site. Their customers often requested technical support and

84 Automating Reuse Support
in a Small Company

modifications to the system, most of which were handled by the development team. There were
no specified design methods used, each develof)er used his or her own preferred method of

working. Little or no documentation was kept on the software, apart from the user manual.

It was also found that the staff were keen to improve their development processes. They seemed
.excited about the opportunity to move their system to a new operating system environment.
They wanted to gain the benefits of reuse in the new project. This commitment encouraged both

the management and staff to continue with the reuse programme.

3) Identify areas for improvement

The results of the.interviews provided very valuable insights into the attitudes and working
practices of the company’s staff. The staff seemed keen to see the company become a more
competent software house in the future. Formalised methods, better planning and the
introduction of structured processes were suggested as ways to achieve this. However, most of
the company’s current plans for the future were based solely on further modification and

redevelopment of their software products.

One of the key areas for improve;nent was a change to an improved operating system. Rather
than using MSDOS, the company decided to move to Microsoft® Windows® as the operating
system for their software. This would give them access to improved development environments
with -greater support for reuse. It was also .seen that better planning for projects would enable the
developers to recognisé opportunities for reuse, rather than simply basing their development
strategy on requests from customers. Along with this, using a structured design method could

also aid the developers in reusing their software.

To support the reuse programme, both management of software resources and software
documentation would make reusable components easier to find and understand. As some of
these areas for improvement were suggested by the staff at Public Access Terminals during the
previous stage ot; the method, and they were involved in identifying what should be done to help

85 Automating Reuse Support
in a Small Company

improve the company, there- was little difficulty in receiving their full support for the

improvements recommended.

4) Define appropriate ‘lightweight’ processes

Based on the results of the investigation, a strategy for adopting software reuse techniques was
recommended. Suggestions v;ere made on how to set up a reuse programme within the
company, along with the amount of the developer’s time would be needed to support the reuse
programme and what other resources would be required. The resources included a good
technical eﬁvironment and an area of the company’s network set aside for reusable components.

The company decided to use the Microsoft® Visual C++ development environment.

Recommendations for ‘lightweight’ processes were made to support the introduction of

structured techniques for the following:

Planning and reviews - It was recommended that meetings be held on a regular basis to
ensure good communication within the company. It was suggested that during the initial
stages of a new project, the meetings were used in order to plan the project in advance.
~ Then, as the project advanced, these meetings could become more focused on technical
issues and lower level design and implementation considerations. They would then become

a chance to review what has been done so far and plan ahead for the next stages.

Design - It was recommended that an object-oriented method of design be used to support
the reuse programme. Object orientation was suggested as a design method because it
supports reuse, and would allow for the provision of reusable design techniques and
components in software development and maintenance. A survey of object-oriented
methods was conducted [Bigg95], and made available to the company. This allowed the ‘
compaﬁy to compare the different meth(-)c’is, and a decision was made to use the Object
Modelling Technique (OMT) method described by Rumbaugh et al. [Rumb91]. The main)

reasons for this decision were that, at the time, it was the most popular of the standardised

86 Automating Reuse Support
in a Small Company

OO methods in the software industry [Leac94] and there is considerable tool support for
the method [Bigg95]. This move to an OO design method, tied in with a decision to move
from a C style of programming to the full use of C++ as their main programming language
for development, would give the developers both a sound design method and a good

technical environment which both inherently support reuse.

Resource .;Wanagement - It was recommended that the'work done within the company be
kept in a reuse repository. This would allow developers to have somewhere to store their
reusab‘le code. It was expected that the repository would be a central storage location to
which all staff would have access. This repository would be where reusable code which
had been written could be kept for inclusion in their software by any of the development

staff.

Documentation - It was found in the company’s software development process that when
the pressure was on, documentation was invariably the first casualty. It was, therefore,
recommended that a minimum level of documentation be kept in the company, with extra

documentation to be completed as needed.

The areas described above were identified from the study conducted within the company as
major target areas for improvement in order to support the reuse programme. These are the
major areas of a company’s process which will support a software reuse programme, and these

areas were especially valid in the case of Public Access Terminals.

After discussion with the manager of the technical development department, it was felt that the
areas identified were appropriate for the company, and the reuse programme moved on to the '

next stage.

87 Automating Reuse Support
in a Small Company

5) Select a pilot prbject

A section of the full system, the FotoFile for grabbing images from a video camera, was chosen
as thé pilot project. Although the developers knew what they wanted the software to do, the
objectives for the system being developed sometixhes changed quite dramatically. Often, a
greater realisz;tion of the work being done by competitors, and the expectations of their

customers, induced a change in the direction of the development.

Originally, the plan was to develop the full security access system in Visual C++. The system
included a database for storing details of personnel as well as other components which
communicated with various peripheral devices. The FotoFile was one of these components, and

it was originally expected to be built into the full system.

During the course of the pilot pfoject, tight deadlines had to be met. These were caused by a
trade show, at which the new version of the software needed to be demonstrated; and requests
from new customers for the software to be modified. An estimation of the time it would take to
complete the FotoFile was given, and it was expected that the project would be completed in
time to be demonstrated at the trade show. However, customer requests for modifications to the
old system hampered.the development of the new system. As the deadline approached, the
developers worked with less regard for the reuse recommendations made, in order to get the
software working in time. It was when the pressure was off that the recommendations were
reviewed, and the code written was reconsidered in order to see if it could be made more
reusable. It was originally expected that the recommendations would be followed throughout the
lifecycle of the pilot project. However, it was seen that the emphasis on reuse was giving the
developers motivation to spend more time planning their code in advance. They were also
encouraged to go back to the code once written and restructure it in order to make it more

object-oriented and reusable.

Considerable success was gained in the pilot project when the developers gained a greater

understanding ' of the Object Linking and Embedding (OLE) features provided in Visual C++

88 Automating Reuse Support
in a Small Company

under Microsoft® Windows®. After some iIivestigation, it was found that the use of OLE would
allow the FotoFile to be built as a stand alone object, rather than as an integrated part of the full
system. OLE isla standardised mechanism for allowing data cieated by different Windows®
applications to be integrated into a single file. These “compound documents” seamlessly access
the different applications for creating and editing the various types of data they contain.

J[Micr93b]

The aims of the pilot project altered, the new goal becoming to make the FotoFile an OLE
server. This allowed the developmerit of the object to be achieved in complete isolation to the
rest of the system. There were. many advantages to this style of development. The developers did
not need to knovx; the details of the full system being developed in order to successfully complete
their project. This was of great benefit to them, because, as has already been emphasised, the
proposed system often changed in its objectives. It was, therefore, very useful to-have an
encapsulated section of the system to work on. Once this strategy was decided upon, the pilot

project was successfully completed in 4 months.

The greatest benefits derived from the pilot project were achieved when the company recognised
an opportunity to enter the component marketi Another company working on the same type of
system, in consultation with one of the developers, were impressed with the FotoFile and saw it
as a perfect addition to their own system. Using OLE, the FotoFile server was working
successfully with their system in under 2 hours, which also impressed the company. A contract
was soon formed, in which the system providers gave a royalty to the component provider for
every system sold which included their component. The value of ihe contract was considerable,
and the royalties from the deal provided much needed capital to the company at a critical period

for funding their further developments.

The success which had been seen during the pilot project gave the staff and management
confidence that the reuse programme would work for them, and they were very willing to
continue with the reuse programme. In fact, their main concerns focused on where they could

89 * Automating Reuse Support
in a Small Company

apply the same techniques to achieve the same results rather than with the challenges that would
be faced when implementing reuse on a broader scale. Such benefits from the pilot project
cannot always be guaranteed but, in this case, the company’s success encouraged the staff to

continue with the reuse programime.

6) Based on the results of the pilot, make a plan for integrating reuse into the company

- In analysing the results of the pilot project, it was recognised by the development team that the
FotoFile component developed would provide greater flexibility for the overall system. Due to
the reuse strategy considered in the development of the FotoFile, the result of the pilot was that

a reusable component was built.

This success allowed the company to reconsider their original plans for the development of the
system. In the original plan, the full system was to be developed in Visual C++. However, as the
main system was a database management tool for keeping information about the people
currently .at a particular site,. it was recognised that using a database application generator for
that section of the system would make the development much quicker and easier. As the
FotoFile component developed would be easily integrated into a full system, the developers
looked for a different development envko@ent which would make the full system easier to

impleinent.

It was decided that the database would be develop;:d in Microsoft® Access, rather than C++ as
originally planned. This was a considerable success in terms of the development of the entire
system, as using an application generator suéh as Microsoft® Access meant that the overall
system would be completed much ﬁore quickly than originally anticipated. The flexibility
provided by the ‘lightweight’ processes within the reuse programme allowed the developers to

change their plans midway through the programme.

Following the success of this component based development, another OLE server was also

proposed to support the full database system. This component would follow a similar style of

90 Automating Reuse Support
in a Small Company

development to the FofoFile. This was an object for designing and printing identification badges
known as the Badge Server. This would complement both the FofoFile and the main database,

allowing customised security badges to be designed and issued.

Some success had been achieved in the case study thus far; however, there were two major
problems which were identified during the course of the pilot project. These were the lack of
experience in using an object-oriented design method, and the lack of tool support for the

developers.

It was felt that with suitable CASE tools, object-or‘iented development could be better employed,
and it would be easier to collect written code into a reuse repository for use by other
applications. At least two of the recommendations made to support the reuse programme could
be aided by automation. These are resourcé management and documentation. One of the least
successful of the ‘lightweight’ processes suggested fpr the pilot-project was keeping software
documentation. As has been mentioned, it was found that the developers tended to develop code,
then go back to the code to try £o abstract reusable components from it [Lane84]. Writing
documentation after all the interesting work had been done was recognised as least imp;ortant

part of the programme in the eyes of the developers.

Tools which aided this process by giving the'developers information about their code would be
valuable in the reuse programme. To support these improvements, it was also considered that
tool support would aid the developers in implementing these ‘lightweight’ processes,
particularly in the areas of documentation and implementing a reuse repository. If these two
processes could be tool assisted, the developers could concentrate more of their time on
improving their system (ievelopment using object-oriented design and communicating with
planning and review meetings - where; the more challenging work of software development is
concentrated. The mundane tasks of software documentation at a minimum level and the storage
and retrieval of reusable components would be simplified by the introduction of tool support to
" automate these areas.

91 : Automating Reuse Support
in a Small Company

7) Incrementally implement the plan with automated support

The plan for reuse at Public Access Terminals was to follow the same style of development
which had been used in the pilot project to complete other components which would plug into
the. full software system. The same develo;;ment methods would be used as recommended
during step 4 of the reuse programme. Also, a set of tools would be developed to support the

reuse programme.

The first part of ti1e plan was to implement the Badge Server. The code was again written in
Visual C++, with the Badge Server being implemented as an OLE sérver. In this second project,
the developers used the lessons they had learned from the pilot project in maximising the
potential benefits available in the reuse programme. The developers were not dnly developing
_ the component for reuse in the main system, but used reuse techniques in the development of the

component itself.

In the finished product, there was a total of just over 20,000 lines of code. Of this code, 43% was
inherited from the standard libraries available through the Microsoft® Foundation Classes
(MFC). Of the remaining 57% of the code, 24% was automatically generated by the Visual C++
wizards. Of the remaining code which was written by the software developers, 31% was
abstracted into reusable classes which were used throughout the application. This gives a total
reuse factor'of 70% for the whole project. These results were calculated by identifying which of
the standard library classes were called by the source code and totalling the number of lines of
code in those classes; then calculating the number of lines of code automatically generated by
the application and class wizards in Visual C++; then measufing the number of lines of code in

the classes that were abstracted out into the reuse repository.

The second part of the plan was to implement the database and integrate the two components

built during the reuse prdgramme. This proved to be incredibly straightforward because of the

92 Automating Reuse Support
in a Small Company

6.4 Automated support for the reuse programme

It was decided that the tool set should provide 3 main areas of functionality.

1. Reverse engineering source code to an OO design representation.

2. Re-documenting source code.

3. Managing the storage and retrieval of reusable components.

The first two functions would be aimed at helping developers to understand reusable code, and,
through understanding, find it easier to reuse. The third function enables those developing for
reuse to store the components for later retrieval, and those developing with reuse to search the
component rei)ository for suitable classes to reuse. The next section describes the tool set which o

automates support for a small company reuse programme developed as part of this research.

Automated support for the reuse programme at Public Access Terminals was to be provided with
a set of tools which would provide support in the three areas identified above. These areas are:

understanding; storage and retrieval; and incorporation of reusable components.

To provide maximum support for the reuse programme, the ‘tool set was designed to function
with C++. It was found that the class is the main object of reusability in C++, and that class
libraries, when used effectively, can be very useful in building applications. Particular attention
was paid to the operation of the-Microsoft® Visual C;l-+ development system, as this was the ke);
system used at P.A.T. In designing the system, it was decided that the requirements discussed in
chapter 5 would be best fulfilled with a set of tools to generate information on C++.source code

and use that information to store and retrieve reusable components.

The information would be given in terms of an object-oriented design notation, and

documentation of the code, which it had been seen that developers did not have time to write. A

set of tools that could also aid in storing and retrieving reusable components, as well as giving

94 Automating Reuse Support
in a Small Company

technology used. The full system was ready for the market ahead of schedule and was well

received by the company’s customers.

The requirements for the set of tools to support the reuse programme were identified from the
results of the pilot project, and in discussion with the technical staff at Public Access Terminals.
The tool set'was required to work with C++ software, which made use of classes and available
component libraries. The results of the requirements analysis for the tool set are given in terms

of the three areas identified earlier.

e Understanding — from investigating available component libraries, it was found that the
main aids to understanding a class library are: a class hierarchy chart describing the
inheritance relati‘ons and structure of the class library; and documentation describing the
purpose of each class and it asso;:iated services and attributes. (For example, see the Class
Library Reference for the Microsoft® Foundation Class Library [Micr93c].)

e Storage and Retrieval - Many different systems are used in the area of information systems
for the étorage and retrieval of data. However, many of the challenges to effective
information retrieval for large data sets do not exist in this case. This system will be dealing
with small sets of in-house compan; software components being stored for later retrieval
when constructing new applicaﬁons. Based on the factors discussed in section 2.6.2, and a
previous project 6n the storage and retrieval of software documentation [Bigg93], it was
decided to use a simple class information storage system with IR techniques for retrieval.

e Incorporation of Reusable Components - Once a suitable reuse candidate has been found,
there are two main factors which determine whether a developer can incorporate that
component into their system. These are the quality of the component and the understanding
which the developer has of the coniponent. Although quality standards for software
engineering can be recommended for component development, a tool cannot ensure that

these are being adhered to. The first of these two is therefore outside the scope of this tool

set. The second, however, can be assisted using the techniques described above.

93 Automating Reuse Support
in a Small Company

- information on those componénts, would be valuable to the developers in the reuse programme.
The information about the components would be based on object-oriented design notation and

documentation of the source code.

The prototype tool set works on simple but effective principles.. One of the key criteria on which
the development is based was making the tool set as fast and easy to use as possible. This is to
enable the developers to use the tool set to aid reuse without the large overheads, previously
discussed, whic-h' discourage small companies from incorporating reuse techniques. The
development of the prototype tool set was achieved in three main stages, each stage being

completed in consultation with the staff at P.A.T.
6.4.1 Development of the Reverse Engineering Tool

The first stage of development was to build a tocl>1 which would reverse engineer C++ source
code to a di.agr_ammatic depic;tion of the class inheritance hierarchy. It was decided to perform
static analysis on C++ header-ﬁles, reusing a previously written C++ parser called Docclass? in
the construction of the Reverse Engineering tool. The tool collects information about the classes
contained in the code by parsing the C++ header file and reading in the appropriate information.
The information is stored internally as a collection of objects containing class data. These
objects are then formatted for output. The output format chosen was based on the Object
Modelling Technique notation [Rumb91]. 'fhis is because it was found that, at the time, OMT
was thé most popular standardised OO design method currently being used in" software
companies [Leac94]. It was decided to mtérface with a currently available, and popular, object-

oriented design tool called OMTool to display the results of the Reverse Engineering tool.

In a very simple prototype form, this tool was given to the developers at P.A.T. They felt that

the tool had potential to help them in seeing how their development was structured. They

2 Docclass © 1993 Trumphurst Ltd. The source code is publicly available and has been used with the
‘author’s permission. '

95 Automating Reuse Support
in a Small Company

interchange. The format chosen for the documentation produced was based on the structure of a

maintenance document produced by one of the company’s software developers.

More complicated was the task of adding support for project or make files. This was
accomplished as follows: each header file contained in the make file was processed in turn, the

full collection of classes found being used for output to both formats.

It was seen that both class hierarchies and documentation could be viewed by Web browsers
such as Netscape, by using HTML and Java applets embedded within the Web pages. Again,
using the information contained in the internally stored collection of class data, new output
procedures were written to support output to HTML and Java. The use of Web browsers could
support software libraries over both intranet and the Internet, as well as having the advantage of

allowing the power of the Web browser’s searching facilities to be used on the software

documentation.

The new version of the tool was delivered to staff at P.A.T., who were impressed with the new
interface, its ease of use, and the availability of automatically generated source code
documentation. However, they felt that version information for the documentation would be

useful, along with the proposed reuse support.
6.4.3 Development of Reuse Support

Classes could now be parsed and information output in three formats: OMTool class hierarchies,
RTF documentation and Web pages. The final stage of t}le development was to build a reuse
repository support tool into the tool set. There are many case tools which reverse engineer and
re-document code. There are also tools which provide support for reuse libraries. None have yet
been seen which integrate the two, allowing the information gained from reverse engineering

and re-documentation to aid developers in reusing their code.

97 ' Automating Reuse Support
in a Small Company

0

suggested making the tool usable for projects as well as single source files, and making the tool

easier to use.

Once the prototype Reverse Engineering tool was working, it was incorporated into a Microsoft®
Windows® 3.1 text processing program to allow the user to edit the source files before reverse
engineering them. This provided a Graphical User Interface for the Reverse Engineering tool.
Microsoft® Wi.ndc’)ws® was chosen for the _apr;lication’s operating environment, as this was the

operating system in use ét PAT.
6.4.2 Development of the Re-Documentation Tool

It was &ecided to use the comments from the source code to generate documentation about the
code. It has been seen that software documentation can substantially aid a developer’s
understanding of software systems (as discussed in section 3.5.2). However, it has been reported
that there is no significant difference in the effort required for programmers to understand code
between cc;mmented and uncommented versions of source code when indentation and
meaningful identifiers were present [Weis74]. It was, therefore, decided that using the comments
to generate structured 'documentation is a valuable exercise in aiding program comprehension. It
would also allow the developers to document their code by commenting it as they wrote it, and

then use the tool to generate well structured documentation without any further effort.

Developing support for automatic documentation generation was achieved using the information
-about the classes contained in the C++ header files extracted by the Reverse Engineering tool.
This included the comments associated with each class and its associated members. Based on the
information extracted by the parser, it was a relatively simp-IC task to iﬁcorporate a new output
procedure which gave output to Rich Text Format. This format was chosen because of its text
based nature, along with the availability of formatting codes to structure the documentation. It

has also been recognised by Sommerville [Somm96] as a defacto standard for documentation

96 Automating Reuse Support
in a Small Company

The class information was now stored in a new format which allowed the generation of reuse
repositories, containing information about each class and its functionality. These repositories can
be built, added to, saved and searched for classes matching a search criteria. Again, based on
research in the field of retrieval as well as previous work in this area [Bigg93], it was decided to
use a boolean query language (which uses AND, OR and NOT connectives to create a list of the
terms which are required) for building Asearch criteria. This is because the system is designed fori
use by software engineers who will bé used to the concept of boolean connectives and it is felt

that these users will appreciate the directness and specificity that a boolean search term would

offer.

The completed prototype tool set was delivered to the staff at P.A.T. The results of its use are

discussed in the next chapter.

6.5 Conclusions

The case study has been a very useful view of the workings of a small company under pressure
to meet customers change requests, and demands for new products. This is a considerably
different environment to large, well structured software companies, with a different set of
challenges. It has been seen that both technological and organisational improvements are
required for the implementation of a reuse programme. This was as expected, although it has
been seen that the introduction'of reuse has encouraged and inspired the staff to improve their

development ideas and processes.

The method described in chapter 5 was implemented in full. At each stage, consideration of the
results which had been obtained up to that point formed the criteria for moving on to the next
stage, and it was bnly when the support of the management and staff was ass.ured that the reuse
programme continued. Although there were difﬁculties, the method was not abandoned at any
one of the seven steps, because the criteria for continuing through the method were met at each

stage.

98 Automating Reuse Support
in a Small Company

The organisational considerations for introducing reuse into any company have already been
- considered in depth in other projects. Howe;rer, prior to this research, the unique challenges of a
small company and the technology to support such a process introduction have received little
attention. It was seen that, alth(/)'ugh reuse alone can offer significant benefits to the company,
improvements in general development practices and software processes could help to maximise
those benefits. It was considered that the ‘lightweight’ processes recommended were simply the
first step in this improvement process. Based on the success of the pilot project using these
recommendations, further work should be done in further improving the company’s

development methods to capitalise on reuse.

This chapter has also described the development of a set of tools to support reuse. Tools for
reverse engineering and documentation generation have been integrated with a reuse repository
support tool to ai& in automating the reuse process. It was seen in Chapter 2 that technological
support for a reuse programme can aid developers in cai)italising on reuse. It was also seen in
Chapter 3 that an integrated tool set could allow information abstracted from source code to be

used by software engineers in understanding the code.

ReThree-C++ addresses these.issues. The prototype tool set was developed after the initial
stages of the.incremental introduction of the reuse programme in P.A.T. so that the real needs
identified during the programme could be addressed. The company’s developers were also
consulted throughout the development of the i)rototype, so that the tools would be well suited to
assisting them in the reuse programmel The tool set was used by staff at the company, and an

assessment of its use is given in the next chapter. .

The prototype tool set integrates the abstraction of useful information from the source code of
reusable componenté with reuse repository facilities. This allows developers to use the tool set in
conjunction with their standard PC office tools t(; view the information generated. They can also
easily add components to a reuse repository and search for reusable components.

99 _ Autémating Reuse Support
in a Small Company

[N
*

It was seen that the introduction of new technology and the commitment of management and
staff to reuse can make a difference in the development process. Both can work independently to
bring improvements, but applying the two together made a significant difference to both

productivity and profitability.

The next chapter evaluates the work described in this thesis, including a discussion of the results
gained from the incremental introduction of a reuse programme at Public Access Terminals Ltd.,

and detailed evaluation of the prototype tool set.

100 Automating Reuse Support
in a Small Company

Chapter 7: Evaluation of Results
7.1 Introduction

This chapter evaluates the results of the work described in this thesis. The results of the research

which has been conducted are evaluated in two main sections.

The first evaluates the results of the implementation of a software reuse programme at Public
Access Terminals Ltd. The success of the incremental approach to implementing the reuse
programme is considered, as well as the results of the reuse programme in the development of

software within the company.

The second section evaluates the integrated tool set, ReThree-C++, which has been built to aid
the automation of reuse support within a small company. Its applicability within Public Access
Terminals Ltd. is considered. The results of an experiment to test the validity of the CASE tool

are also discussed, along with a consideration of the general operation of the tool set.

7.2 Results of the Reuse Programme

In considering the results of the incremental approach to implementing the reuse programme and
the results of introducing a reuse programme as part of the software development process within

Public Access Terminals Ltd., three main issues will be considered:

1. The success of reuse within the programme. Success is measured simply by identifying
whether reusable modules were built, and the extent to which reuse was achieved in the

software developed.

101 Automating Reuse Support
' in a Small Company

2. Benefits brought to the company‘ by the reuse programme. As discussed in section é.4,
benefits will be identiﬁed-in terms of:
e Increased speed of production
o Financial benefits to the company
e Increased quality of software
¢ Ease of maintenance
3. The problems faced by the company in implementing the reuse programme. There will also
be some consideration of the techniques and practices which were not adopted within the

company.
7.2.1 Success of the Reuse Programme

The .succe.ss of the reuse programme is to be measured by considering whether the method
described in chapter 5 was successfully completed and by identifying whether reusable modules
were built, and the extent to which reuse was practised in the company’s software development.
Using this criteria for success, it can be recognised that the reuse programme was successful.
Each of the Seven Steps To Success were carried out, and at‘each stage, the criteria were met for

moving on to the next stage of the method.

Also, two significant areas of the company’s software system were built as reusable components,

and each of these was integrated successfully into the full system.

Implementing the ‘lightweight’ processes for reuse when building a software component (the
Badge Server), the developers made a special directory for reusable C++ classes. In that
directory, 16 classes were stored in 9 different files, each of which was made available to the
whole system for reuse. The classes were abstracted from the software developed and made

available as reusable classes. They were used throughout the system under development.

102 Automating Reuse Support
in a Small Company

7.2.2

Simply ha\}ing the reuse directory as a repository for reusable classes has been a succe;ss for the
company. Whenever considering the reuse programme, the staff can readily see its influence by
the existence of that directory and always refer to the reuse directéry in discussing the
programme. It is particularly beneficial when displaying the success of the programme to. top
level rr.lanagement,. as there is a tangible representation of the programme in the classes

contained in that directory.

It must, however, be pointed out that the reuse directory came about after the system had already
been built in prototype form. The developers were under a tight deadline to have a prototype of
the system ready for display to their customers, and the reuse guidelines recommended were not
really considered until after the working prototype had been developed. Then, using the
guidelines for reuse, the deveiopers reviewed their prototype, identified commonalities within
the software, abstracted reusable classes based on those commonalities and finally built the reuse

repository with those classes.

It was seen that a reuse factor of 70% was achieved in this project. It could be pointed out that
achieving this level of reuse is a success. However, measuring a reuse factor is simply an
estimation of the lines of code that have been reused in relation to the total number of lines of
code in the project. There is no consideration of how difficult it was to identify, understand and
incorporate those lines of code, or if the reuse was valuable. It is far more interesting to identify

the real benefits that have been brought to the company as a result of the reuse programme.
Benefits to the company
It was seen in.section 2.4 that there are four major areas in which benefits can be derived from a

reuse programme. The benefits derived within P.A.T. from the reuse programme will be

considered in these four major areas.

103 Automating Réuse Support
in a Small Company

1. Increased speed of production

Both the pilot project and the subsequent development in the reuse programme were built to
meet specific deadlines. One of the difficulties of measuring whether the speed of production
was increased by the implementation of the reuse programme is that in both cases, the
requirements for the software changed as the software was developed. Any initial estimates of
' the time the software would take to Build were based on the original understanding of the

software’s functionality.

The pilot project (FotoFile) was built as a reusable component for the full system being
developed. It-was completed in time for its deadline, and therefore, it can be concluded the reuse

programme did not increase or decrease its speed of production.

A prototype of the subsequent development (Badge Server) was built in time for its deadline,
however, the reuse work was not conducted until after the deadline had been met. It can
therefore be concluded that the reuse programme decreased the speed of production of this

component.

The real benefits came in the overall system. Due to the ease of integrating the reusable
components into the main system, it could be built using a 4GL database generator (Microsoft®
Access). This considerably increased the speed of development of the Windows® version of the
software (as compared with the time it would have taken to build in Visual C++), as the main
system was basically a database control system. The other, m(;re unique parts of the system
(including the FotoFile and Badge Server), could still be integrated into the full system because
of the OLE properties built in as part of these reusable components. The flexibility to achieve

this was only available because of the principles on which the reusable components were buiit.

104 Automating Reuse Support
in a Small Company

2. Financial benefits to the company

Two major financial benefits were gained, either directly or indirectly, as a part of the reuse

programme.

The first was due Ato the inc?eased speed of production of the overall system, which was gained
thanks to the ﬂexibility giv:an in the choice of development environment for the system as
previously discussed. This enabled the company to release the Windows® version of the software
earlier than was expected. This pleased current customers who were waiting for the updated
version qf the software, and also gave the company a better opportunity to compete with other

software systems that were currently available.

The second, more direct, benefit came from the opportunity to sell their image processing
software (FotoFile) as a reusable component to another company. This contract brought a very
large, previously unexpected, financial boost to the company, which helped to fund the further

developments that were required both for the reuse programme and the system as a whole.

3. Increased quality of software

One of the avdvantages of the technology employed for building the two main reusable
components (FotoFile and Badge Server) was that once the components had been built and
tested successfully, they were easily inéorporated into both the system being built by P.A.T. and
the other system with which FotoFile was included. The quality of the components had been
assured through testing, and, therefore, did not need further consideration when building the full
system. Testing time was not reduced for the components built, but, when testing the full
system, the testing strategies employed needed only to be concerned with the database section of
the system. This also helped in identifying where errors were occurring when interfacing the

system with the comporients, as only the component interfaces needed to be tested.

105 - Automating Reuse Support
in a Small Company

4. Ease of maintenance

As with testmg, maintenance has been simplified because the system has been broken down into
smaller components. When a chaﬁg”e request is received from a customer, it is easy to identify
whether the change will affect the overall database system, the FotoFile or the Badge Server.
The appropriate component can then be updated. The interfaces are generally not affected by
.such changes, thércfore, no side effects.can be propagated to the other parts of the system. This
contrasts a great deal -with the earlier version of the system, which. was monolithic and

maintenance was a full time task for the software developers.

Maintenance has ‘aléo been assisted by the tools supporting automatic generation of spftware
documentation. It was seen near the end of the reuse programrne that, when one of the
developers left, he was asked to spend a few days writing a maintenance document for the
software that he had writteﬁ. However, if the code had been properly commented, this document

could have been generated automatically in a matter of seconds.
7.2.3 Problems facing Reuse Programme
Some of the major problems which faced the incremental reuse programme are discussed below.

1. Tight deadlines

One of the major difficulties which faced the reuse péogramme were the tight deadlines which
had to be met by the software developers. It has been recognised that small companies are
ﬁnique in their need to keep up with market trends, and succeed in every project that they
undertake. Experimentation and prototyping are key to their success, because they help the
developers to unde;rstand how systems can be implemented, and what their customers really

) want.

106 ' Automating Reuse Support
in a Small Company

P.A.T.’s business is dependent upon a single product. If that product failed, then the company
wguld ce‘;ise to exist. It is, therefore, in the interests of the developeré to ensure that their product
succeeds. To do this, the product needs to be shown to be competitive in the marketplace. In the
project undertaken, the developer’s deadlines were demonstrations to potential and existing
customers or trade fairs, the da_tes of which often cannot be changed. In order to meet these
deadlines, the reuse guidelines and up-frdnt investment recommended as part of the reuse plan
were often ignored in favour of rapid prototyping as the de;adline drew closer. However, the
developers wére prepared to- improve their code based on the recommendations of the reuse

prograMe when they had more time, and the pressure had subsided.
2. Changing Requirements

This is not an uncommon problem throughout software development companies. However,
because thi; company are producing a software package rather than a bespoke system, there are
many customers, each with different requirements from the product: This was one of the factors
that had caused the monolithic growtﬁ of P.A.T.’s previous s;)ftware system - each change
request had simply been add;:d to the full system. Better version control wo'uld have helped to
alleviate this problem. Requests from customers also affected the reuse prdgramme, as each new
requirement for the new system would slightly alter the system profile. Sometimes, this would
affect the reusable components which were being built, meaning that the original plans for them
had to be modified. However, one of the advantages of the component based system was that a

change in one component seldom had a radical effect on other parts of the system.

3. Lack of Tool Suppoft

The ‘lightweight’ processes recommended in section 6.3 suggested that a minimum level of
documentation and a reuse repository should be kept as part of the reuse programme. Again, it is

a common problem that when the pressure is on, documentation is the first casualty. The staff at

107 Automating Reuse Support
in a Small Company

P.A.T. had not been used to writing documentation, and the reuse programme recommendations

didn’t really change anything.

Also, there was no -support for their reuse repository. The development team simply made a
directory as .';1 ‘dumping ground’ for reusable classes without any support for using those classes.
There was only some acceptance of the ideas of using a structured OO method for software
design. This was partly due t-o lack of training in this area. However, it was felt that tool support

could help automate the first two areas, and assist in the third.

7.3 Tool set Evaluation

This section evaluates ReThree-C++, the prototype tool set developed as part of this research.

The evaluation will be given in four sections:

1. Using the tool set to support reuse.

2. An evaluation of the operation of tool set.

3. An independent experiment conducted to test the usefulness of the tool set in reusing classes
during softwgre develoi)ment.

4. The tool set as used in Public Access Terminals Ltd.

7.3.1 Using the tool set to support reuse

108 Automating Reuse Support
in a Small Company

Maintaining Components

The second mode of operation is when a maintainer is trying to understand and maintain a piece
of software. It has been estimated that 50%-90% of all mainten;mce effort is expended in simply
understanding the software [Robs91]. The processing facilities of ReThree-C++ will give the
maintainer information about the source code, including a class hierarchy chart and
documentation for the code. This information should help the maintainer to get an good idea of
the purpose of the component. Based on this understanding, the maintainer can now look at ﬁle
soﬁrce code itself with a good idea of what to expect. One advantage of basing maintenance
information solely on what is contained in the source code is that it helps to alleviate the
problems caused by out of date documentation. This depends on the developers keeping current
information in the source code about changes that have been made. Although this will not
always be the case, developers are far more willing to update comments whilst changing the

code than they are to update documentation after the changes have been completed.

Reusing Compohents

The third mode of operation is when a developer is searching for a reusable component to
inclqdc in their current system. It has been seen in section 2.5 that there are numerous pre-
conditiong which must be met in order for a developer to be able to successfully reuse a
component. These pre-conditions are listed below, along with the support which ReThree-C++

provides at each level.

1. The component must exist.
ReThree-C++ provides support to developers when preparing reusable components.
2. The component must be available t(; the developer.
ReThree-C++ enables developers to store components in a reuse repository.
3. The developer must be able to find the component.
ReThree-C++ offers searching facilities for finding components with a reuse repository.

110 Automating Reuse Support
in a Small Company

4. Once found, the developer must be able to understand the component.
ReThree-C++ processes source code to give developers information about the components
identified in terms of a class hierarchy and structured software documentation.

5. Based on an understanding of the component, the developer must identify the
component as being valid for the current system.
The developer can use the information generated by ReThree-C++ to make this decision.

6. The developer must be able to successfully integrate the component into the current
system.
This depends a great deal on the developer’s current system. However, if the component has
been developed properly, the class hierarchy and documentation provided should aid the

developer in the integration process.

Specific examples of the use of ReThree-C++ to process a C++ source file are provided in

Appendix B.
7.3.2 Evaluation of the operation of ReThree-C++

This section presents results from the ReThree-C++ tool set, applying the tools to various
example programs, ranging from simple examples to real world class libraries. The tool set will

be evaluated based on the following criteria:

e Does the integrated approach result in a usable ;ystem? This will consider 1he tool set’s user
interface for ease of use and how much training is required to use the tool set.

e How well does the tool set work on C++ code? This will consider such issues as speed,
efficiency, reliability, and quality of results.

e How does the tool set scale up to larger programs? Does the system remain ‘fast enough’ to
be usable with large programs?

e How useful are the searching facilities for reuse repositories?

e What weaknesses does the tool set have?

111 Automating Reuse Support
in a Small Company

Usability

The tool set was built using a standard Microsoft® Windows® interface, which gives it a
recognisable Graphical User Interface (GUI) for working in the Windows® 3.1 or 95
environment (see figure 7.1). The tool set comes with on-line, context sensitive help to assist the
user in understanding how to use the tools. The usability of ReThree-C++ has been measured by

applying the tool set in two areas.

The first is delivery of the tool set to staff at Public Access Terminals Ltd. (see section 7.3.4).
The staff felt that the tool set was quite easy set up for use, and they learned how to use it very
quickly. They felt that the help file was useful in learning how to use the tool set, and referred to
it frequently (see Appendix C). Little training was given to the staff, they had only seen a

demonstration of the tool set.

The second is the use of the tool set by undergraduates as part of the‘ C++ reuse experiment
conducted (see section 7.3.3). Som; of the students were using the tool set to search for reusable
classes which would assist them in writing the test program given. The students were given an
overview of how to use the tool set (Appendix D4), and were left to write the program. Without
training, all the students were successfully using the tool set to search for components within the
hour allotted fo'r the experiment. The students had few problems in using the tool set to find
reusable classes, and did not need to use the help file.

1

Speed of operation

ReThree-C++ was tested on several different sizes of program to identify the speed of operation
of the program. The time taken to execute the different tools which make up the integrated

environment was measured and recorded. The results are shown in figure 7.2.

112 Automating Reuse Support
in a Small Company

ReThree-C++ Full Source - 19 Files, 31 Classes, 1831 Lines of Code

Type of Processing Performed Average Time Standard
(in seconds) Deviation
Reverse Engineering to OMTool Format 5.61 0.153
Documentation to Rich Text Format 9.08 0.524
Class Hierarchy and Documentation to Web Page 8.76 0.081
Adding to Reuse Repository 3.04 0.349
Searching Reuse Repository 0.48 0.117

MFC Partial Source - 3 Files, 64 Classes, 4241 Lines of Code

Type of Processing Performed Average Time Standard
(in seconds) Deviation
Reverse Engineering to OMTool Format 24.61 1.899
Documentation to Rich Text Format 37.45 1.843
1 Class Hierarchy and Documentation to Web Page 33.72 1.035
Adding to Reuse Repository 10.72 1.677
Searching Reuse Repository 2.37 0.141

MFC Partial Source - 4 Files, 114 Classes, 7468 Lines of Code

Type of Processing Performed Average Time Standard
(in seconds) Deviation
Reverse Engineering to OMTool Format 46.20 5.098
Documentation to Rich.Text Format 74.75 5.456
Class Hierarchy and Documentation to Web Page 68.23 4.175
Adding to Reuse Repository 18.82 2.539
Searching Reuse Repository 3.19 0.321

114

Automating Reuse Support

in a Small Company

Single File - 6 Classes, 183 Lines of Code
Type of Processing Performed Average Time Standard
(in seconds) Deviation
Reverse Engineering to OMTool Format 1.06 0.048
Documentation to Rich Text Format 1.59 0.024
Class Hierarchy and Documentation to Web Page L.77 0.024
Adding to Reuse Repository 0.49 0.052
Searching Reuse Repository Negligible Negligible

113

Automating Reuse Support

in a Small Company

MFC Full Source - 20 Files, 169 Classes, 12984 Lines of Code

Type of Processing Performed Average Time Standard
(in seconds) Deviation
Reverse Engineering to OMTool Format - 64.40 6.350
Documentation to Rich Text Format 96.21 7.263
Class Hierarchy and Documentation to Web Page 88.74 5.790
Adding to Reuse Repository . 35.02 10.496
Searching Reuse Repository 3.88 0.303

Figure 7.2 - Results of evaluation of the speed of execution of ReThree-C++

It can be seen that the reuse repository support tool is the fastest of the tools, followed by the

reverse engineering tool, then the documentation tool. It was expected that the generation of

Web pages, which includes information from both reverse engineering and documentation of the

source code, would be the slowest of the tools. This has been demonstrated in practice. During

* testing, it was noticed when the tools were run on large software systems, the prototype would

run progressively slower each time the system was processed. As this was seen with all the tools,

it was suspected that this problem was caused by the C++ parser, which is common throughout

the tool set. The problem may have been caused by inadequate garbage collection in the parser.

The next section shows how these results were used to test the scalability of the prototype tool

set. .

Scalability

To test the scalability of ReThree-C++, the relationship between the number of classes being

processed and the time taken to process those classes was measured.

115

Automating Reuse Support

in a Small Company

Weaknesses of the tool set
Several weaknesses have been discovered within the prototype tool set as it has been evaluated.

1. The processing of the tool set gets considerably slower each time that a large project is
processed during a single e;xecuﬁon of the program. This compounds to the extent that the
tool set eventually grinds to a halt. It is suspected that this is due to poor deallocation "of
memory resources used within the parser of the ReThree-C++ system, as the effect is seen no
matter what type of processing is currently being conducted.

2. The reuse repository searching facilities are not always effective. As discussed in the
previous section, this could be attributed to the lack of meaningful comments ‘within the
source code.

3. The tool set relies on an outdated application. OMTool has now been superseded by other,
better OMT CASE tools, and is no longer easily available. This is always a hazard in
interfacing with other applications. OMTool has not been upgraded for Windows® 95, and
only those who already have it would be able to interface the tool set with this application.
The reverse engineering facilities to OMT class hierarchies are, therefore, only available to a
small subset of users. However, interfacing to a new display tool would not entail significant

effort.

7.3.3 An experiment to test the use of ReThree-C++
This section gives an overview of an experiment conducted to test the usefulness of ReThree-
C++ in assisting developers to find and use reusable components. This experiment was
conducted independenﬂy of the case study associated with this research to test the usefulness of
the tool set to C++ developers. There are several steps [Pfle95] which were followed in the

implementation of this experiment, which will be discussed.

117 Automating Reuse Support
in a Small Company

Conception

The experiment was conceived to test the usefulness of the facilities provided by the prototype

3
tool set in helping a developer to reuse available components. The idea was to get several
different C++ developers writing the same program in order to see how the type of information)

that was presented to them concerning available reusable classes affected the way in which they

wrote the program.

Design

C++ programmers would be the subjects of the experiment. The experiment had two hypotheses:

Null hypothesis: There is no difference in the code produced by programmers based on the
amount of information provided to the programmers about reusable components.
Alternative hypothesis: The amount of information provided to programmers about reusable

components makes a difference to the code they produce.

In order to test these hypotheses, an experiment was devised in which C++ programmers would
write a program, each set of programmers having differing amounts of information about
reusable classes which were available. A program was prepared to test two major are;is of C++
programming - file handling and string manipulation (see Appendix D2). Visual C++ was
chosen as the programming environment, as classes to assist in writing this program were
available in the Microsoft® Foundation Classes (MFC). It is expected that programmers who
have more detailed information available about reusable classes will make use of those classes.
It is also expected that the use of the reusable classes will make a difference in the time taken to

write the program.

Four groups of programmers would be identified. Group 1 would have no information about the
reusable classes available - they would only have the C++ programming environment (including
on-line help), a C++ reference manual, and a C library reference manual. Group 2 would have

118 Automating Reuse Support
in a Small Company

Execution

Many of the 51l1bjects of the experiment had not used Visual C++ before. However, the
environment was set up so that they could use both standard C and C++ and the Microsoft®
Fopndation Classes within tile same program. Each group was given an hour to c'omplete a
working versiron of the program. Detailé of the references used by each of the subjects was
recorded as the experiment progressed. The researcher was careful to ensure that none of the

students knew what the experiment was about until after their contribution had been completed.

The results gathered during the execution of the experiment can be seen in figure 7.4.

120 Automating Reuse Support
in a Small Company

the same information as group 1, and would also have the Class Library Reference manual for
the MFC (a 1000 page reference manual containing details of all the classes available in the
MFC). Group 3 would have the same information as group 2, as well as the results of re-
documenting the appropriate MFC classes with ReThree-C++. Group 4 would have the same
information as group 2, as well as ReThree-C++ running on their machines, with the source of

the MFC pre-loaded as a reuse repository for searching.

It was expected.that group 3 would achieve the best results in writing the program, as they had
the infon;lation about the required reusable classes on paper as part of their reference materials.
This was based on the fact that the subjects in group 3 would have the relevant information on
pﬁnted paper in front of them, and would not have to spend time searching for it in reference

manuals, or using the tool set.

Preparation

The subjects chosen for the experiment were final year Computer Science undergraduates, each
of whom had been through the previous year’s course on OOD and C++. The students
volunteered to take part in the experiment, an& were asked to qualify their skill ét programming
in C++. The students were then divided into four mixed ability groups. Different instructions
were prepared for each group (see Appendix D1). The information for each group was also
prepared. The reference books used were “Software Engineering with C++ and CASE Tools” by
Michael J. Pont [Pont96], Visual C++'s “Run-Time Library Reference” [Micr93d] and Visual
C++’s “Class Library Reference for the Microsoft Fbundation Class Library” [Micr93c]. The
other materials required were also prepared, including the class information generated by
ReThree-C++ for group 3 (see Appendix D3), and instructions on the use of ReThree-C++ for

group 4 (see Appendix D4).

119 Automating Reuse Support
in a Small Company

Unfortunately, not all the subjects who had signed up actuaﬂy took part in ‘the experiment. This
makes it difficult to compare results between the groups, as there was not a uniforn; number of
subjects in each group. Some subjects also expressed difficulty simply with remembering how to
write code in C++, rather than difﬁculty in how to write this particular program. These two
factors affect the oyerall discussion of the results of the experiment. Perhaps the most useful way
to evaluate the results is to compare the two most skilled subjects from each group, and the least

skilled subject from each group.

In group 1, the two most skilled subjects (A&B) wrote their own classes to assist them in
achieving the functionality requested by the program specification. Their mean estimated
completion time was 127.5 minutes, with a standard deviation of 7.5 minutes. One of the two

achieved a small measure of functionality.

The two most skilled subjects in group 2 (F&G) again both wrote their own classes to assist
them in achieving the functionality requested by the program specification. Their mean
estimated completion time was 150.5 minutes, with no standard deviation. Neither achieved a

reasonable level of functionality.

The two most skilled subjects in group 3 (K&L) did not write their own classes to assist them in
achieving the functionality requested by the program specification. Instead, they both used
classes available as part of the MFC. Their mean estimated completion time was 105 minutes,

with no standard deviation. One of the two achieved a small measure of functionality.

The two most skilled subjects in group 4 (Q&R) did not write their own classes to assist them in
achieving the functionality requested by the program specification. Instead, they both used
classes available as p)art of the MFC. Their mean estimated completion time was 90 minutes,

with no standard deviation. One of the two achieved a reasonable measure of functionality.

122 Automating Reuse Support
in a Small Company

Perhaps the mostA interesting result is the use of classes made by these squecm. There was no
significant difference between the two subjects under consideration from groups 1 & 2, in spite
of the fact that the subjects in group 2 had access to the MFC reference book containing details
of the reusable classes available. The subjects in both groups wrote their own classes.
¢

By comparison, none of the subjects in groups 3 & 4 wrote their own classes, preferring instead
to use the reusable classes provided by the MFC. This is a significant result. Groups 2, 3 and 4
each had the same reference books a\f/ailable to them. Therefore, it must have been the other
reference materials which caused the subjects in groups 3 & 4 to choose to reuse classes rather

than writing their own. As the other reference materials were directly produced by ReThree-

C++, it can be concluded that ReThree-C++ assisted these programmers to reuse classes.

Less signiﬁcant is the time taken by the subjects in writing the program, because none of the
subject aétually completed a working version of the prografn. Based on the mean times
calculated, it can be seen that the subjects in groups 3 & 4 were more confident that they could
finish writing the program in a shorter time scale. Without further experimentation, it cannot be
conclusively shown that reusing classes increased the productivity of the programmers. It was
surprisiﬂg, however, thlat the group 3 subjects (\;vith the printed results of ReThree-C++) did not
seem to do any better than the subjects in group 4 (who actually used the tool set). This may be
due to the fact that the subjects in group 3 spent more time reading all the class reference
materials provided (not all of which were directly relevant), whereas' the group 4 subjects used
the tool set to search f;)r classes only 'when they encountered a need for a class to perform a

function. This may have saved them time.

Looking now at the least skilled programmers, it can be seen that there is no significant
difference in the reuse of classes between the subjects (E, I, O & T). Both subjects O & T
expressed a concern at their difficulty in simply writing any program in C++, not just this one.

None of these subjects wrote their own classes in attempting a solution, and only one (subject T)

123 Automating Reuse Support
in a Small Company

attempted to reuse the MFC classes. This seems to suggest that with inexperienced

programmers, the level of information provided made very little difference.

The small scale of this experiment provides interesting results, but the wide variance of C++

" programming knowledge and experience obviously plays a considerable role in the results.

7.3.4 Evaluation of the use of RéThree-C-H- at P.A.T.

In line with the ‘industry-as-laboratory’ approach adopted by this research, the prototype tool set
was developed in association with the staff at Public Access Terminals Ltd. This has enabled
them to make suggestions about how they would like to see the tools developed to assist them in

their work.

The tools were made available to the company throughout the reuse programme as they were
developed. This enabled the company to incrementally introduce the tools into the programme
as needed. However, the integrated environment was not available until nearing the end of the

programme.

One of the major problems which has been experienced in evaluating the use of the tool set
within the company is that the two C++ developers who were key members of the reuse project
left the company before the full tool set was developed. Following this, the company began to
use different programming languages to build their software system, which meant that the
prototype tool set, when delivered, was less applicable to the company’s current development

needs.

The staff at the company, however, have found that the tool set meets some of their needs very
well. A questionnaire about the prototype was filled in by the company’s technical manager
(Appendix C). He said that the tool was easy to set up and use. He felt that the automatic

generation of documentation was the most valuable tool for his work, and that the

124 Automating Reuse Support
in a Small Company

documentation produced was quite useful in helping him to understand the C++ code processed.
He also felt that the fact that documentation was based solely on the source code, anc-i the
comments- within the code, would encourage programmers to tidy up their code and add
comments. He also felt that having this documentation produced automatically would be very
useful in keeping a minimum set of documentation about the code for the programmers and also

the customers interested in information on, and quality assurance for, the software system.

He also felt that the reuse repository facilities were useful, but that it was not always easy to find
appropriate classes using the repository searching facilities. He felt that the processing facilities
of the tool set were reasonably helpful in understanding the classes once found, but would have

been more helpful if there were better comments within the source code.

Although he was not able to use the prototype on a live system, he used it on previously written
C++ code, and hoped to be able to use it on code ported to a 32 bit platform in the near future.

He thought that the tool set will prove to be very useful.

7.4 Conclusions

The research described in this thesis has been conducted in two main sections. Each section has

been evaluated in this chapter.

The first was the incremental introduction of a reuse programme at Public Access Terminals Ltd.
It was noted that the programme had some success, but problems were encountered. The
successes were identified in terms of: increased speed of production, financial benefits to the
company, increased quality of software, and ease of maintenance. Problems were identified in
terms of: tight deadlines, changing requirements and lack of tool support. However, it can be
concluded that the benefits of the reuse programme far outweighed the problems and challenges
faced. It could be considered that much of this success can be attributed to.the new technology

which the company adopted. New technology will only provide a platform for making

125 ‘Automating Reuse Support
in a Small Company

improvements. It is only. when the opportunities provided by this technology can be identified

and exploited that benefits will be gained.

The second section was the development of a prototype tool set (ReThree-C++) to assist
programmers by automating reuse support in a small compahy. The tool set was evaluated by
staff at Public Access Terminals Ltd. It wa-s also evaluated as part of an experiment testing the
difference that varying levels of information about reusable classes made to programmers when
writing a program. Results from the operation of the tool were presented. Further digcussion of

these results will be conducted in the next chapter.

126 Automating Reuse Support
in a Small Company

Chapter 8: Conclusions

8.1 Introduction

This chapter summarises the thesis and reviews the work that has been conducted during this
research. It also considers the results which have been achieved using the proposed method for
incrementally imblementing reuse in a small company in association with the prototype tool set
which has been developed. These are assessed against the original goals of the thesis, which

were:

1. To show a real case study of the implementation of a software reuse programme in a small
company. The programme will be considered in terms of the recommendations made, the
work done, problems encountered and success achieved.

2. To produce a practical, fast and simple to use tool for automating reuse support in a small
c_ompaﬁy. This tool will aid in storing and retrieving reusable components, as well as reverse
engineering and re-documenting source code to provide information about the reusable

components.

The research conducted is analysed to identify the lessons which have been learned, and to make

recommendations for further work in this area of study.

8.2 Summary of Thesis

This thesis has evaluated the practical considerations involved in automating reuse support in a
small company. Chapter 1 gave an overvi;aw of the thesis, introducing the research which would
be described, along with a statement of the problem to be addressed. The real problem of
introducing reuse in a small company, and providing tools to support the reuse process, was

127 Automating Reuse Support
in a Small Company

identified. The context in which the research would be conducted was given and an ‘industry-as-

laboratory’ approach was adopted.

Chapter 2 looked at the field of software reuse, identifying some of the key areas in the field.
Software reuse was introduced as a principle which could help to alleviate the current software
crisis and the techniques with which reuse can be employed were discussed. Some of the
benefits that can come from introducing a reuse programme were identified, as well as the

challenges which will face a company trying to capitalise on the benefits which reuse can bring.

Chapter 3 went on to look at how a small company is defined and some of the techniques which
will assist a small company when implementing a reuse programme. The fields of orgariisational
development and process improvement were studied in order to provide a basis for developing a
method for introducing reuse into a small company. Object-oriented methods, which are often
associated with software reuse, were also considered. It was concluded that the introduction of
object-oriented methods could help to support reuse, but that reuse is not exclusively an OO
phenomenon. This was followed by a brief overview of the fields of reverse engineering and

software documentation, and how they can be applied to reuse.

In Chapter 4, several successful reuse programmes were considered. It was seen that reported
reuse programmes were exclusively in large companies, and that the challenges which they
faced in introducing reuse were often different to those that wouid be faced in ;1 small company.
A set of solutions to the problem of introducing reuse into a small company were identified.

These solutions were:

1. Introduction of structured processes
2. Incremental introduction of reuse
3. Encouraging ad-hoc reuse

4. Introduction of CASE tools

128 Automating Reuse Support
in a Small Company

Each was discussed, and it was argued that a combination of the incremental introduction of
reuse with CASE tools to support the reuse programme would be the best approach for a small

company.

Chapter 5 summarised the method for introducing reuse in a small company which has been
developed as part of this research. An incremental approach was stressed, along with
‘lightweight’ processes and automated support for the reuse programme. These factors would
help to reduce the risk in introducing reuse by reducing both the initial investment required and
the time before benefits could be gained from reuse. The Seven Steps to Success were presented,
including a pilot project to test the recommended techniques so that the company could leam
what would be most successful for them and focus on those areas’. At each step, criteria for
assessing the readiness of a company to move on to the ne);t step of the method were given.
Ideas for tools to support the. Teuse programme were also presented.
Based on the method developed in the previous chapter, Chapter 6 described a case study using
the method to implement a reuse programme in a small company. The work done in each of the
seven steps was presented, with a discussion of the progress of the reuse plan at each stage. The
development of ReThree-C++ v;/as described, with the input of the company’s staff aiding the

structure of the prototype tool set.

Chapter 7 gave an analysis of the results of the research conducted. The incremental approach to
reuse introduction in a small company was evaluated and the more and less successful parts of
the programme were identified. Success was described in terms of the development and use of
reusable modules. Benefits to the company were described as well as the problems facing the
reuse programme. These were the pressure of tight deadlines, changing requirements and lack of
toc;l support. ReThree-C++, the prototype tool set, was first described then evaluated in three
stages. First, the prototype was evaluated usiﬁg the code-of the tool set itself and the Microsoft
Foundation Classes as test examples. Secondly, an experiment to test the usefulness of the

prototype tool set in aiding developers to reuse components was conducted and the results of the

129 Automating Reuse Support
in a Small Company

experiment in helping programmers to reuse code were analysed. Finally, an overview of its use

within P.A.T. was given.

8.3 Reuse in a Small Company Revisited

The results gained from the case study have been varied. There have been some successes, but
the challenges and difficulties encountered during the course of the project have also been
interesting. Small companies are unique in their need to compete strongly within their chosen
market, and succeed in every project that they undertake. Unlike larger companies, and even
single project teams within a large organisation, a small company cannot afford to fail in any
project, because the livelihood of the company, and every employee, depends upon keeping and
improving upon their market share. In the company with which this project was associated, their
business was dependent upon a single product. If that product failed, then the company would
cease to exist. This does not compare with even isolated parts of a large company, because -
although the project may fail and cause difficulty within the company, this would not generally
cause the collapse of the busine‘ss. The stakes are much higher in a small company, and their

willingness to take unexplored risks is much smaller.

Based on the evaluation of the reuse programme described in Chapter 7, there are several
conclusions which can be drawn from the incremental implementation of a reuse programme
conducted in the case study with Public Access Terminals Ltd. In spite of the risks that they
faced, the company’s st-aff were willing to attempt a reuse programme in order to gain the
beneﬁts of reuse. The first conclu;ion is that the incremental approach to reuse was very
successful in the company. The method for introducing reuse into a small company, based on the
work done in the fields of organisation development and process improvement, proved to be
very successful. At each stage of the method, the progress of the method was discussed with the
management and staff at the company and the criteria for continuation were met. The key areas

of using a pilot projeét to achieve real gains for the company whilst testing the ‘lightweight’

130 Automating Reuse Support
in a Small Company

processes and incrementally introducing the programme with tool support were invaluable in the

success of the reuse programme.

This conclusion is based on the benefits gained by the company described in section 7.2.2. The
company developed a better, more flexible system faster than expected. They also benefited
financially by entering the component market and selling one of their reusable components to
another company. This increase in profitability niay never have been realised if not for the

company’s emphasis on reuse.

However, the benefits did not come without challenges. There were problems in the reuse
programme which had to be addressed. The least successful of the ‘lightweight’ processes
recommended was that the company keep a minimum level of documentation about their
software. Documentation was always the first casualty when the pressure was on. This problem
_ was recognised and was addressed by allowing developers to utilise the infor-mation which they
had included as part of the source code (in the form of descriptive comments) as software
documentation using the pr‘ototype tool set described in Chapters 6 and 7. This provides a
feasible, convenient and” easy way for the developers to keep. a minimum level of
documentation. This has been seen by the staff at P.A.T. as one of £he major advantages of the

prototype tool set, as seen in section 7.3.4.

The planning and review meetings were successful initially. Although they started formally on a
weekly l;asis, later in the programine, they were often on an informal basis as there were only a
few people in the software development team who needed to meet at any one stage. The.
emphasis on object-oriented principles and resourcé management were the more successful
techniques in the company. However, it was the general emphasis on reuse which came with the
techniques, supported by management, development staff and the author, which made the
projects successful. The developers were highly skilled, and needed little training to understand
the principles of reuse. More important were the motivation and opportunity to implement the

principles with reuse as a clear goal. These came from the willingness of top level management

131 Automating Reuse Support
’ in a Small Company

to be involved in the reuse programme and the expertise of the author acting as a reuse

consultant.

After the successes which have been described, however, the reuse programme has taken a back
seat in the company. This is due to many factors, not least of which is that the two members of
staff who were the ke}; developers in the reuse proéramme have left the company. Along with
this, the company have since moved to different develoﬁment languages and environments.
However, it_ has been seen that th; principles advocated as part of the reuse programme have
given the company the flexibility to move to better environments. The prototype tool set which
has been developed to support the feuse programme will still be of use to the company in both
their maintenance work, and with proposed new developments (see Appendix C). This will
enable the company to produce useful information about their previous software, as well as

giving them guidance for future developments.

To summarise, the challenges to introducing reuse in a small company have been met and
overcome. The company have climbed the Seven Steps to Success and were clearly pleased with

the very tangible benefits that they have gained from the reuse programme.

8.4 ReThree-C++ - The Prototype Tool Set

It was shown that Remee-C++ is a practical and useful prototype of an integrated tool set
which can automate reuse support in a small company. It addresses one of the key failings of the
reuse programme - lack of software documentation to describe reusable components - by
autométically generating useful information from the company’s source code. This information
is given as a class hierarchy and associated documentation, which can easily interface with
standard desktop software packages. It also provides support when indexing and searching for

reusable components.

132 Automating Reuse Support
in a Small Company

The validity of the prototype has been demonstrated through experimentation and analysis.
Unfortunately, the prototype has not, as yet, been used in a live development environment as
part of the case study. This is because the company have now moved away from C+'+
development. However, the staff are keen to gain the benefits which’use of the prototype can
bring in both the maintenance of their previously written code, and when embarking on new

developmenté (see Appendix C).

The experiment conducted also demonstrated very well that ReThree-C++ supports developers

and helps them to locate and use reusable components when building a software system.

The ReThree-C++ system is a step forward in automating reuse support for a small company.
There are CASE tools which support reverse engineering to OO formats, and software
documentation generators supporting both word processors and Web browsers. There are also
tools which support reuse libraries, allowing for the indexing and retrieval of reusable
components. Although some work is beginning to be done in this area of tool integration
[Zigm95], there are still no tools available to small companies which integrate these concepts,
supporting development throughout the reuse programme. ReThree-C++ was shown to do this

(see section 7.3).

With their limited resources, both in terms of time and money, a small company could not afford
to introduce a large CASE environment into their software development practices. They also
could not afford the effort required to integrate a set of smaller tools. The ReThree-C-++ tool set

integrates the tools identified in chapter 6 as being important in supporting software reuse.

Two of the key failings of the prototype are its’ problems with the repeated processing of large
systems and its reliance on an outdated tool to display some of its results. With further work,
these failings could be overcome, and the prototype made into a valuable production system. It
is fast en;)ugh not to be cumbersome, and easy enough to use that little training is required. This
has been shown both in the case study and the experiment conducted.

133 = -Automating Reuse Support
in a Small Company

The goals of the prototype tool set were that it should be a practical, fast and simple to use set of
tools for automating reuse support in a small company. This tool set was to aid in storing and
retrieving reusable components, as well as reverse engineering and re-documenting source code

to provide information about the reusable components. These goals have been met.

8.5 Analysis of the research

This section of the thesis compares the work done with other work in the field, and considers the

lessons that can be learned from this research.

As the interest in reuse has grown, more and more companies have attempted to implement
reuse programmes with varying results. Successful examples are being quoted to show that
implementing reuse is possible, and great benefits can be gained from it. However, it seems that
more publications are now concentrating on the organisational difficulties of implementing a

successful reuse programme rather than the technical issues considered previously.

Books by McClure [McCl197], Jacobson [Jaco97] and Leach [Leac97] all suggest methods and
techniques which can be applied to reuse, quoting examples of successful companies which have
applied the principles. Many companies described in these publications have started to recognise
the advantages of adopting an incremental or evolutionary approach to reuse introduction.
However, these books consider only the difficulties faced by large companies. There are still no
reuse programmes in small companies discussed. Techniques are considered in terms of their
applicability to the company’s software processes and the changes which would be applied to
those pr;)cesses for successful reuse. Some tools are discussed with their applicability for reuse,

"but these are mostly either reuse repository or OO tools.

The combination of ‘lightweight’ processes with an integrated tool set for reuse is unique to this

research. The ‘lightweight’ processes are ideal for a company which currently has no software

134 Automating Reuse Support
in a Small Company

processes. The tool set automates support for reuse and makes those processes easier to

implement.

Specifically, there are seven lessons which can be learned from this research when implementing

a reuse programme in a small company. ‘

l).

2)

3)

4)

5)

As has been seen in other research, the support of management and staff are vital. This must
be reassessed at every step of a reuse programme. In a small company such as Public

Access Terminals Ltd., the staff were very concerned with the chéllenges involved in

‘implementing a reuse programme. More small company success stories would help

encourage them to make the changes required for reuse to prosper.

Analysing the company’s current wbrking }-)ractices is an invaluable second step. If you are
travelling from one point to another, you must know where you are starting from and where
you are gbiné in order to plan your route. Therefore, the corhpany must also have an idea of
what they want to achieve from the reuse programme.

Reuse will always require an investment before benefits can be gained. However, the use of
‘lightweight’ processes helps to reduce the impact of the changes to working practices
which rﬁust be made. It is the flexible nature of these processes which make them so
suitable for a company entering an evolutionary stage of development and that enables them
to reduce the risk of failure. The recommended processes must relate to the company’s
current working practices, as well as the reuse programme itself.

A key to thc? success of small companies is the ability to be flexible. This enables them to
meet their customers specific requirements. As was seen in the case study, reuse can aid the
development of a flexible system. Planning is important in the progress of the reuse
programme, but you must plan to be flexible. Reuse can support this type of flexibility.
Don’t waste the developers’ time by making them get involved with the mundane aspects of
reuse. Automating support for reuse with a tool set which integrates repository control with
automatic generation of software documentation reduces the time developers need 'to spend

on administration. As has been seen at P.A.T., this encourages developers to write tidy, well

135 Automating Reuse Support
in a Small Company

structured code, and leaves them free to concentrate on the more challenging and
imaginative issues of developing for and with reuse.

6) Small companies do not have the resources to invest in the techniques often recommended
for the implementation of corporate reuse programmes. They must be treated separately.
The woric ethic is different in a small company, and reuse strategies must recognise and
incorporate this.

7) Make reuse available to everyone. The Seven Ste;;s to Success described as part of the
method for reuse introduction in this research are flexible enough to be applied to any

company in any situation.

Assessing the method itself which was described-in chapter 5, one of the key weaknesses of the
method is thgt it is very generalised anci does not go into great detail about any of the steps. This
.leaves a great deal of work to be done by a company using the method to make it specific to
their own needs. HoweYer, this is also one of the method’s key strengths, because it alows the
method to be very generic, meaning that it could be used for any technology introduction or

process improvement and is not strictly limited to reuse.

8.6 Further Work

The incremental approach to the introduction of a reuse programme has proved to be successful
in the case study associated with this research. To support these results, it would be very

valuable to conduct further case studies, with two objectives:

1. To provide further evidence that the incremental approach to reuse introduction allows
companies to benefit from reuse both in the short term and in the long term.

2. To investigate ~whether the successes gained using ‘lightweight’ processes in an incremental
approach to reuse introduction can be transferred to other areas of process introduction (and

improvement) within both small and large companies.

136 Automating Reuse Support
: in a Small Company

One of the main areas which this research has not been able to address is the use of the prototype
tool set in a live development environment. Another case study with a different small company,
allowing the tool set to automate reuse support within the company from the start of the

programme, would be very valuable in confirming the value of this approach.

There is also further work which could be done with the prototype tool set. Some areas of

interest would be:

. .Further developmeﬁt (;f the Java output from the tool set to support interactive class
diagrams. The Java development language is progressing rapidly, and the possibilities for
using this new language are increasing. A complete CASE tool for OO design and reverse
engineering C++ code could be built in Java to support the processing of ReThree-C++.

e Further development of the documentation output offered by the prototype. The tool set
currently supports RTF and HTML output, but there are other formats which could be
considered (e.g. LaTeX).

e Support for other object-oriented languéges. Since the prototype has been made publicly
available, there has been interest in similar work for Ada 95 and Java. By incorporating

different parsers, the same information could be generated for other languages.

8.7 Final Analysis

The criteria for success for this research as identified in Chapter 1 were given in terms of three

questions:

1. Is the method for introducing a reuse programme successful? The success of a reuse
programme can be measured in many ways. However, the most clearly identifiable measure
of success is identifying whether reusable components are built, and to what extent they are

reused.

137 Automating Reuse Support
in a Small Company

2. Does the method bring benefits to a small company? As identified in section 2.4, benefits
will be considered in terms of:
e Increased speed of production
¢ Financial benefits
o Increased quality of software
e Ease of maintenance
3. Does automated support aid a reuse programme? The automated support will be considered
in terms of the benefits brought to a reuse programme and it’s usefulness within a small

company.

Answering the first question: Yes, as seen in chapter 6, the method developed was successfully
applied at Public Access Terminals Ltd. At each stage of the method, the criteria for continuing
were met, and real benefits were brought to the company as a result of impleménting a reuse
~ programme using the method. In the previous chapters, it has been seen that two main reusable
components we.re built as part of the reuse programme introduced in the case study.‘\ Within the

development of those components, a reuse factor of up to 70% was achieved by the developers.

The answer to question 2 has more interest to a company considering embarking on a reuse
programme. The benefits which P.A.T. have gained from reuse are much more important than
the amount of code reused. The flexibility provided by the reusable components built allowed
the system to be developed using an application generator for databases, which saved the
developers the time required to write their own database system. This considerably speeded up
production of the company’s new system. Selling one of the Somponents brought a very large
contract to P.A.T., bringing much needed financial gain midway through the reuse programme.
As seen in the previous éhapter, there were also benefits to the company in terms of the quality

and ease of maintenance of their system.

The previous chapter discussed the success of the reuse tool set, which answers the third

question. Its usefulness was shown both by its introduction at P.A.T. and by experimentation.

138 Automating Reuse Support
in a Small Company

The experiment demonstrated that the tool set assisted programmers to develop with reuse when
writing a program. Although the tool set was not used in a live development environment, when
used on the company’s previous and current developments, the company’s technical manager

believed it would be “very useful” (see Appendix C).

All three of these questic;ns have been answered affirmatively. The case study conducted at
Public Access Terminals Ltd, has provided interesting results in the field of reuse introduction in
a small company which is low on the process maturity scale. It has been shown that a software
reuse programme can be implemented in a small company. Although there were challenges, real
benefits were achieved from the introduction of reuse within the company. Based on this case
study, an incremental approach to software reuse using ‘lightweight’ processes, supported by
useful and practical tools which can be easily integrated into a small company’s development

systems, is recommended for achieving success in a reuse programme. This addresses the

organisational issues facing a reuse programme.

The prototype tool set has also been shown to be an effective method of automaﬁng support for
the reuse programme. The integrated approach which the tool set adopts allows developers easy
management of a software comp;)nent repository, as well as automatically generating
information about those components. These two factors help to solve the technological problems

facing the successful introduction of a reuse programme.

These two solutions, when combined, offer a practical, manageable method for introducing
reuse and gaining real benefits from reuse without the costly up-front investment often needed in
order for reuse to succeed. The incremental approach to reuse introduction allows benefits
gained from the earlier stages of reuse to fund the further investment needed to improve the
reuse programme, and the prototype tool set aids the process by providing much needed

automated support.

139 Automating Reuse Support
in a Small Company

The method described in this thesis is based on previous work done in the fields of
organisational development, process improvement and software reuse. As has been shown
throughout the thesis, there have been several reported reuse successes in large, structured

software development companies.

Although the work done with a small company must recognise the differences between the ethos
and working practices of small and large companies, the overall structure of the method

presented is based on the successful reuse case studies already reported.

The major differences appear in the way in which the reuse programme is introduced and
supported. The incremental introduction of reuse is not unique, but the combination of the use of
‘lightweight’ processes with automated support for the reuse programme is. It has been seen that

both of these additions to the method have been successful in implementing reuse in a small

company.

140 Automating Reuse Support
' in a Small Company

Chapter 9: References

[Albr83] Albrecht, K.; ‘Organisational Development: A Total Systems Approach to Positive

Change in Any Business Organisation’; Prentice Hall; 1983

[Alle89] Allen, B.P, Lee, S.D.; ‘A knowledge-based environment for the development of
software parts composition systems’; In: Proc. of the 11th ICSE; Pittsburgh, PA; May 1989;

P104-112
[Ande87] Andersson, T.D.; ‘Profit in Small Firms”; Avebury; 1987

[Arth83] Arthur, L.J.; ‘Programmer Productivity - Myths, Methods, and Murphy’s Law’;

John Wiley and Sons; 1983

[Atki91a] Atkins, M.C., Brown, A.W.; ‘Principles of object-oriented systems’; In: Software
Engineer’s Reference Book; McDermid, J.A. (ed.); Butterworth-Heinemann Ltd.; 1991; P39/3-

39/13

[Atki91b] Atkinson, C.; ‘Object-Oriented feuse, concurrency and distribution : an Ada based

approach’; ACM Press, Addison-Wesley, Reading, Mass.; 1991

[Babc90] Babcock, 1.D., Belady, L.A., Gore, N.C.; ‘The Evolution of Technology Transfer at
MCC’s Software Technology Program: From Didactic to Dialectic’; In: Proceedings of the 12®

International Conference on Software Engineering; IEEE 1990; P290-299

[Babi86] Babisch, W.A.; ‘Software Configuration Management - Coordination for Team

Productivity’; Addison-Wesley, Reading, Mass.; 1986

141 Automating Reuse Support
in a Small Company

[Bake89] Baker, B., Deeds, A.; ‘Industrial Policy and Software Reuse: A Systems Approach’;
In: V.Proc. of the Reuse in Practice Workshop; Baldo, J., Braun, C. (ed.); Software Engineering

Institute, Pittsburgh, Penn; Jul 1989

"[Basi87] Basili, V.R., Rombach, H.D., Bailey, J., Joo, B.G.; ‘Software Reuse: A Framework’;
In: Proc. of the Tenth Minnowbrook Workshop (1987, Software Reuse); Blue Mountain La.ke,

N.Y.; July 1987

[Bell92] Bell, D., Morrey, I, Pugh,vJ.; ‘Software Engineering - A Programmer’s Approach

(2nd Ed.)’; Prentice Hall, New Jersey; 1992

[Benn93] Bennett, K.H.; ‘An Overview of Maintenance and Reverse Engineering’; In: The
REDO Compendium: Reverse Engineering for Software Maintenance; van Zuylen, H.J. (ed.);

John Wiley and Sons; 1993

[Bigg87] Biggerstaff, T.J., Richter, C.; ‘Reusability Framework, Assessment, and Directions’;

IEEE Software; Jul 1987; Vol.4 No.4 P41-49

[Bigg89a] Biggerstaff, T.J., Perlis, A.J., (ed.); ‘Software Reusability. Concepts and Models,

vol. I'; ACM Press, Addison-Wesiey, Reading, Mass.; 1989

[Bigg89b] Biggerstaff, T.J., Perlis, AJ, (ed.); ‘Software Reusability. Applications and

Experience, vol. II’; ACM Press, Addison-Wesley, Reading, Mass.; 1989

[Bigg93] Biggs, P.J.; ‘Information Retrieval Applied to Software Documents (Including
Source Code)’; Final Year Project Report, Dept. of Computer Science, University of Durham;

1993

142 Automating Reuse Support
in a Small Company

[Bigg95] Biggs, P.J.; ‘A Survey of Object-Oriented Methods’; Computer Science Technical

Report 6/95; Dept. Of Computer Science, University of Durham; 1995
[Boll90] Bollinger, T.B., Pfleeger, S.L.; ‘The Economics of Reuse: Issues and Alternatives’;
In: Proc. of the Eighth Annual National Conference on Ada Technology, Atlanta; Mar 1990;

P436-447

[Boll91] Bollinger, T.B., McGowan, C.; ‘A Critical Look at Software Capability

Evaluations’; IEEE Software; July 1991; Vol.8 No.4 P25-41

[Bott92] Bott, F., Ratcliffe, M.; ‘Reuse and Design’; In: Software Reuse and Reverse

Engineering in Practice; Hall, P.A.V.. (ed); Chapman & Hall, London; 1992
[Buck85] Buckley, M.W.; ‘The Structure of Business’; Pitman Publishing Ltd, London; 1985

[Budd91] Budd, T., ‘An Introduction to Object-Oriented Programming’; Addison-Wesley,

Reading, Mass.; 1991

[Bull85] Bullock, R.J., Batten, D.; ‘It’s just a phase we’re going through: a review and

synthesis of OD phase analysis’; Groupvand Organisation Studies; Dec 1985; Vol.10 P383-412

[Bull94] Bull, T.; ‘Software Maintenance by Program Transformation in a Wide Spectrum

Language’; Ph.D. Thesis; Durham University; 1994

[Burd92] Burd, E.L., McDermid, J.A.; ‘Guiding Reuse with Risk Assessments’; University of

York Technical Document YCS 183 (1992); York; 1992

143 Automating Reuse Support
' in a Small Company

[Burd93a] Burd, E.L., McDermid, J.A.; ‘Risk Management: the Key to Successful Reuse’; In:
Proc. of the Sixth Annual Workshop on Software Reuse; Poulin, J. (ed.); IBM Federal Systems

Company, Owego, NY; Nov 1993

[Burd93b] Burd, E.L.; quoted in ‘Spiral of Success’; Peltu, M.; Computing; 28 Jan 1993; P24 '

[Burn86] Burns, P., Dewhurst, J. (ed.); ‘Small Business in Europe’; Macmillan; 1986

[Burn96a] Burns, P., Dewhurst, J. (ed.); ‘Small Business and Entrepreneurship (2™ Edition)’;

Macmillan; 1996

[Burn96b] Burnes, B.; ‘Managing Change: A Strategic Approach to Organisation Dynamics

(2™ Edition)’; Pitman, London; 1996

[Carn95] Carnegie Mellon University, Software Engineering Institute; ‘The Capability

Maturity Model: Guidelines for Improving the Software Process’; Addison-Wesley; 1995

[Cava83] Cavaliere, M.J.; ‘Reusable Code at the Hartford Insurance Group’; In: Software
Reusability. Applications and Experience, vol. II; Biggerstaff, T.J., Perlis, A.J., (ed.); ACM

Press, Addison-Wesley, Reading, Mass.; 1989; P131-141

[Chao93] Chao, D.; ‘Software Reuse: Major Issues Need to Be Resolved Before Benefits Can
Be Achieved’; In: Proc. of the Sixth Annual Workshop on Software Reuse; Poulin, J. (ed.); IBM

Federal Systems Company, Owego, NY; Nov 1993

[Chea84] Cheatham, T.E.; ‘Reusability through program transformations’; IEEE Transactions

on Software Engineering; Sept 1984; Vo.10 No.5

144 Automating Reuse Support
in a Small Company

[Chik90] Chikofsky, E.J., Cross, J.H.; ‘Reverse Engineering and Design Recovery: A

Taxonomy’; IEEE Software; Jan 1990; Vol.7 No.1; P13-18

[Chil96] Childs, B., Sametinger, J.; ‘Literate Programming and Documentation Reuse’; In:
Proc. of 4th International Conference on Software Reuse; IEEE, Orlando, Florida; IEEE

Computer Society Press; Apr 1996; P205-214
[Chis87] Chisnall, P..M.; ‘Small Firms in Action’; McGraw-Hill; 1987

[Cimi95] Cimitile, A., De Lucia, A., Munro, M.; ‘Identifying Reusable Functions Using
Specification Driven Program Slicing: A Case Study’; In: Proc. of International Conference on

Software Maintenance; IEEE, Nice, France; IEEE Computer Society Press; 1995; P124-133

[Cox86] Cox, B.J.; ‘Object-Oriented Programming - An Evolutionary Approach’; Addison-

Wesley, Reading, Mass.; 1986

[Curt92] Curtis, B.; ‘Maintaining the Software Process’; IEEE Proc. of the Conference on

Software Maintenance 1992; P2-8

[DeMa84] DeMarco, T., ~ Lister, T.; ‘Controlling Software Projects: Management,

Measurement, and Evaluation’; Seminar Notes; Atlantic Systems Guild Inc.; 1984

[Dijk79] Dijkstra, E.; ‘Programming Considered as a Human Activity’; Classics in Software

Engineering, Yourdan Press, New York; 1979

[Fair89] Fairley, R., Pfleeger, S.L., Bollinger, T., Davis, A., Incorvaia, A.J., Springsteen, B,
‘Final Report: Incentives for Reuse of Ada Components, vols. 1 - 5°; George Mason University,

Fairfax, VA; 1989

145 Automating Reuse Support
in a Small Company

[Frak88] Frakes, W.B., Nejmeh, B.A.; ‘An Information System for Software Reuse’; In:

Software Reuse: Emerging Technology; Tracz, W. (ed.); IEEE Computer Society Press; 1988

[Frak92] Frakes, W.B.; ‘Software Reuse: An Empirical Approach’; In: Annual Review of
Automatic Programming; Elzer, P., Haase, V. (ed.); Pergammon Press, Oxford; 1992; Vol.16

Part I1 P41-44

[Fraz92] Frazer, A.; ‘Reverse Engineering - hype, hope or here?’; In: Software Reuse and

Reverse Engineering in Practice; Hall, P.A.V. (ed.); Chapman & Hall, London; 1992

[Free83] Freeman, P.; ‘Reusable Software Engineering: Concepts and Research Directions’;
In: Workshop on Reusability in Programming; Perlis, A. (ed.); ITT Programming, Newport, RI;

Sept 1983; P2-16

[Gear88] Geary, K.; ‘The practicalities of introducing large-scale software reuse’; Software

Engineering Journal; Sept 1988; Vol.3 No.5 P175-176

[Ghez91] Ghezzi, C., Jazayeri, M., Mandrioli, D.; ‘Fundamentals of Software Engineering’;

Prentice Hall, New Jersey; 1991

[Gold83] Goldberg, A., Robson, D.; ‘Smalltalk-80: The Language and its Implementation’;

Addison-Wesley, Reading, Mass.; 1983

[Goss90] Gossain, S., Anderson, B.; ‘An Iterative-Design Model for Reusable Object-

Oriented Software’; ECOOP/OOPSLA’90 Proceedings; Oct 1990; P12-27

[Goug86] Gougen, J.A.; ‘Reusing and Interconnecting Software Components’; IEEE

Computer; Feb 1986; Vol.19 No.2 P16-28

146 o Automating Reuse Support
in a Small Company

‘[Hall91] Hall, P.A.V., Boldyreff, C.; ‘Software Reuse’; In: Software Engineer’s Reference

Book; McDermid, J.A. (ed.); Butterworth-Heinemann-Ltd., Oxford; 1991; P41/3-41/12

[

[Hall93] Halladay, S., Wiebel, M., ‘Object-Oriented Software Engineering’; R&D

Publications Ltd., Prentice Hall, London; 1993

[Hatt95] Hatton, L.; ‘Bugs: Avoiding the avoidable and living with the rest’; In: Proc. of the
9th European Workshop on Software Maintenance; Centre for Software Maintenance, Dept. of

Computer Science, Durham University; 1995

[Hoop91] Hooper, J.W., Chester, R.O.; ‘Software Reuse: Guidelines and Methods’; Plenum

Press, New York; 1991

[Hump89] .Humphrey, W.S.; ‘Managing the software process’; Addison-Wesley, Reading,

Mass.; 1989

[Hump93] Humphrey, W.S.; ‘The Personal Software Process — Rationale and Status’; In:
Proceedings of the 8" International Software Process Workshop; Schaffer, W. (ed.); IEEE

Computer Society Press, 1993; P102-103

'

[Hutc88] l Hutchinson, J.W., Hindley, P.G.; ‘A Preliminary study of Large-Scale Software

Reuse’; Software Engineering Journal; Sept 1988; Vol.3 No.5 P208-212

[Ince91] Ince, D.; ‘Object-Oriented Software Engineering with C++’; McGraw-Hill, London;

1991

[Jack83] . Jackson, M.A.; ‘System Development’; Prentice Hall, New Jersey; 1983

147 Automating Reuse Support
in a Small Company

[Jaco92] Jacob§on, L., Christerson, M., Jonsson, P., Overgaard, G.; ‘Object-Oriented Software
Engineering - A Use Case Driven Approach’; ACM Press, Addison-Wesley, Reading, Mass.;

1992

[Jaco97] jacobson, 1., Griss, M., Jonsson, P.; ‘Software Reuse: Architecture, Process and

Organisation for Business Success’; Addison-Wesley, Reading, Mass.; 1997

[John88] Johnson, R.E., Foote, Bb.; ‘Designing Reusable Classes’; Journal of Object-Oriented

Programming; Jun/Jul 1988; Vol.1 No.2 P22-30, 35

[Jone84] Jones, T.C.; ‘Reusability in Programming: A Survey of the State of the Art’; IEEE

Transactions on Software Engineering; Sept 1984; Vol.10 No.5; P488-494
[Jone86] Jones, T.C.; ‘Programming Productivity’; McGraw-Hill, New York; 1986

[Jone92] Jones, R.; ‘How applicable is the object-oriented approach to the IS environment?’;
In: Software Reuse and Reverse Engineering in Practice; Hall, P.A.V. (ed.); Chapman & Hall,

London; 1992

[Kang89] Kang, K.C.; ‘Features Analysis: An Approach to Domain Analysis’; In: Proc. of the
Reuse in Practice Workshop; Baldo, J, Braun, C. (ed.); Software Engineering Institute,

Pittsburgh, Penn.; Jul 1989

[Karl95] Karlsson, E. (ed); ‘Software Reuse: A Holistic Approach’; John Wiley & Sons;

1995

[Knut84] Knuth, D.E.; ‘Literate Programming’; The Computer Journal; 1984; Vol.27 No.2

P97-111

148 Automating Reuse Support
in a Small Company

[Koch93] Koch, G.; ‘Process assessment: The BOOTSTRAP approach’; Proceedings of

Software Process Modelling in Practice; April 1993; P22-23

[Lane79] Lanergan, R.G., Poynton, B.A.; ‘Reusable code - The application development
technique of the future’; In: Proc. of Joint SHARE/GUIDE/IBM Applications Development

Symposium; Oct 1979; P127-136

[Lane84] Lanergan, R.G., Grasso, C.A.; ‘Software Engineering with Reusable Design and

Code’; IEEE Transactions on Software Engineering; Sept 1984; Vol.10 No.5 P498-501

[Leac94] Leach, E.; ‘The Likely Impact of Object Technology on Software Development &
Maintenance’; In: Proc. of 8th European Software Maintenance Workshop; University of

Durham; September 1994

[Leac97] Leach, R.J.; ‘Software Reuse: Methods, Models and Costs’; McGraw-Hill, New

York; 1997

[Lisk74] Liskov, B., Zilles, S.; ‘Programming with Abstract Data Types’; ACM Sigplan

Notices; Apr 1974; Vol.9 No.4 P50-59

[Maar90] Maarek, Y.; ‘Indexing Software Components for Reuse by Using Natural-Language
Documentation’; In: Proc. of the Third Annual Workshop: Methods and Tools for Reuse;

Frakes, W. (Chair); CASE Center Technical Report Series; June 1990

[Mats84] Matsumoto, Y.; ‘Some Experiences in Promoting Reusable Software: Presentation
in Higher Abstract Levels’; IEEE Transactions on Software Engineering; Sept 1984; Vol.10

No.5 P502-513

149 Automating Reuse Support
in a Small Company

[McC197] McClure, C,; ‘Software Reuse Techniques: Adding Reuse to the Systems

Development Process’; Prentice Hall, New Jersey; 1997

[Mcll68] Mcllroy, M.D.; ‘Mass-produced Software. Components’; In: Software Engineering
'Concepts and Techniques, 1968 NATO Conference Software Engineering; Buxton, J.M., Naur,

P., Randell, B. (ed.); 1976; P88-98

[MeloQS] Melo, W.L., Briand, L.C., Basili, V.R.; ‘Measuring the Impact of Reuse on Quality
and Productivity in Object-Oriented Systems’; University of Maryland Technical Report CS-

TR-3395; Dept. of Computer Science, University of Maryland; Jan. 1995

[Meye87] Meyer, B.; ‘Reusability: The Case for Object-Oriented Design’; IEEE Software;

Mar 1987; Vol. No. P50-64

[Meye88] Meyer, B.; ‘Object-Oriented Software Construction’; Prentice Hall, New Jersey;

1988

[Meye94] Meyer, B.; ‘Reusable Software: Base OO Component Libraries’; Prentice Hall, New

Jersey; 1994
[Micr93a] Microsoft Corporation; ‘Visual Workbench User’s Guide’; Microsoft Corp.; 1993

[Micr93b] Microsoft Corporation; ‘OLE 2 Classes for the Microsoft Foundation Class

Library’; Microsoft Corp.; 1993

[Micr93c] Microsoft Corporation; ‘Class Library Reference for the Microsoft Foundation

Class Library’; Microsoft Corp.; 1993

[Micr93d] Microsoft Corporation; ‘Run-Time Library Reference’; Microsoft Corp.; 1993

150 Automating Reuse Support
in a Small Company

[Moin90] Moineau, T., Abadir, J., Rames, E.; ‘Towards a Generic and Extensible Reuse
Environment’; SE90, Proc. of Software Engineering 1990; Hall, P.A.V. (ed.); Cambridge

University Press; 1990; P543-569

[Mort96] Mortimer, R.E., Bennett, K.H.; ‘Maintenance and Abstraction of Program Data
using Formal Transformations’; Proc. of 1996 International Conference on Software

Maintenance; IEEE, Monterey, U.S.A.; IEEE Computer Society Press; Nov 1996; P301-310

[Mull89] Mullin, M.; ‘Object-Oriented Program Design with Examples in C++’; Addison-

Wesley, Reading, Mass.; 1989

[Munr92] Munro, M.; ‘Software maintenance, reuse and reverse engineering’; In: Software

Reuse and Reverse Engineering in Practice; Hall, P.A.V. (ed.); Chapman & Hall, London; 1992

[Neigd6] Neighbours, J.M.; ‘Finding Reusablé Software Components in Large Systems’; In:
Proc. of Third Working Conference on Reverse Engineering; IEEE, California, U.S.A; IEEE

Computer Society Press; Nov 1996; P2-10

[Ning93] Ning, J.Q., Engberts, A., Kozaczynski, W.; ‘Recovering Reusable Components
from Legacy Systems by Program Segmentation’; In: Proc. of 1993 Working Conference on
Reverse Engineering; IEEE, Maryland, U.S.A,; IEEE Computer Society Press; May 1993; P64-

72

[Oxfo90] Illingworth, V., Glaser, E.L., Pyle, 1.C. (ed.); ‘Dictionary of Computing (3fd Ed.)’;

Oxford University Press, Oxford; 1990

[Parn72] Parnas, D.; ‘On the Criteria to be Used in Decomposing Systems Into Modules’;

Communications of the ACM; Dec 1972; Vol.15 No.12 P1053-1058

151 Automating Reuse Support
in a Small Company

[Pfle95] Pfleeger, S.L.; ‘Experimental Design and Analysis in Software Engineering’;

Software Engineering Notes; Jan 1995; Vol.20 No.1 P22-26

[Pont96] Pont, M.J.; ‘Software Engineering with C++ and CASE Tools’; Addison-Wesley,

Reading, Mass.; 1996

[Pott93] Potts, C.; ‘Software-Engineering Research Revisited’; IEEE Software; Sept 1993;

Vol.10 No.5 P19-28

[Prat91] Pratten, C.; ‘The Competitiveness of Small Firms’; Cambridge University Press;

1991

[Pres92] Pressman, R.S.; ‘Software Engineering - A Practitioner’s Approach (3rd Edition -

European Adaptation)’; McGraw-Hill, London; 1992

[Prie87] Prieto-Diaz, R., Freeman, P.; ‘Classifying Software For Reusability’; IEEE

Software; Jan 1987; Vol.4 No.1 P6-16

[Prie90] Prieto-Diaz, R.; ‘Implementing Faceted Classification for Software Reuse’; In:
Proc.of 12th International Conference on Software Engineering; IEEE, Nice, France; Mar 1990;

P300-304

[Prie91] Prieto-Diaz, R.; ‘Making Software Reuse Work: An Implementation Model’;

Software Engineering Notes; Jul 1991; Vol.16 No.3 P61-68

[Prie93] Prieto-Diaz, R.; ‘Status Report: Software Reusability’; IEEE Software; May 1993;

Vol.10 No.3 P61-66

152 Automating Reuse Support
in a Small Company

[Radf94] = Radford, J.D.; “The Engineer and Society’; MacMillan Publishers, London; 1984
[Raft94] Raftery, J.; ‘Risk Analysis in Project Management’; Chapman & Hall; 1994

. [Raj89] Raj, RK, Levy, HM,; ‘A Compositional Model for Software Reuse’; In:
_ ECOOP’89 Proc. of the 1989 European Conference on Object-Oriented Programming; Cook, S.

(ed.); Cambridge University Press; 1989; P3-24

[Robs91] Robson, D.J., Bennett, K.H., Comelius, B.J.; ‘Approaches to Program

Comprehension’; Journal of Systems and Software; 1991; Vol.14 No.2 P79

[Rumb91] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.; ‘Object-Oriented

Modeling and Design’; Prentice Hall, New Jersey; 1991

[Schw86] Schwartz, J.T., Dewar, R., Dubinski, E., Schonberg, E.; ‘Programming with Sets:

. An Introduction to SETL’; Springer-Verlag, New York; 1986

[Somm89] Sommerville, 1.; ‘Software Engineering (3rd Ed.)’; Addison-Wesley, Reading,

Mass.; 1989

[Somrﬁ96] Sommerville, I.; ‘Software Engineering (5th Ed.)’; Addison-Wesley, Reading,

Mass.; 1996

[Stan84] Standish, T.A.; ‘An Essay on Software Reuse’; IEEE Transactions on Software

Engineering; Sept 1984; Vol.10 No.5 P494-497

[Tell9o1] Tello, E.R., ‘Object-Oriented Programming for Windows’; John Wiley and Sons;

1991

153 Automating Reuse Support
in a Small Company

[Thom97] Thompson, H.E., Mayhew, P.; ‘Approaches to Software Process Improvement’;

Software Process — Improvement and Practice; 1997; Vol.3 P3-17

[Trac87a] Tracz, W.; ‘Software Reuse Myths’; In: Proc. of the Workshop on Software Reuse;
Booch, G., Williams, L. (ed.); Rocky Mountain Inst. of Software Engineering, SEI, MCC,

Software Productivity Consortium, Boulder, Colo.; Oct 1987
[Trac87b] Tracz, W.; ‘Reusability Comes of Age’; IEEE Software; Jul 1987; Vol.4 No.4 P6-8

[Trac88a] Tracz, W.; ‘Software Reuse Myths’; ACM Software Engineering Notes; Jan 1988;

Vol.13 No.1 P17-21

[Trac88b] Tracz, W.; ‘Software Reuse Maxims’; ACM Software Engineering Notes; Oct 1988;

Vol.13 No.4 P28-31

[Trac90] Tracz, W.; ‘Where Does Reuse Start?’; ACM Software Engineering Notes; Apr

1990; Vol.15 No.2 P42-46

[Tsic89] Tsichritzis, D.C., Nierstrasz, O.M.; ‘Directions in Object-Oriented Research’; In:
Object-Oriented Concepts, Databases, and Applications; Kim, W., Lochovsky, F.H. (ed.); ACM

Press, Addison-Wesley, Reading, Mass.; 1989
[Udel94] Udell, J.; ‘Componentware’; Byte; May 1994; Vol.19 No.5 P46-56

[Walt92] Walton, P.; ‘The management of reuse’; In: Software Reuse and Reverse

Engineering in Practice; Hall, P.A.V. (ed.); Chapman & Hall, London; 1992

[Wass91] Wasserman, A.L; ‘Object-Oriented Software Development : Issues in Reuse’;

Journal of Object-Oriented Programming; May 1991; Vol.4 No.2 P55-57

154 Automating Reuse Suppbrt
in a Small Company

[Webe91] Weber, H.; ‘The Integration of Reusable Software Components’; Journal of Systems

Integration; 1991; Vol.1 P55-79

[Weis74] Weissman, L.; ‘Psychological complexity of computer programs: An experimental

methodology’; ACM SIGPLAN Notices; 1974; Vol.9 No.6 P25-36

[Wien88] Wiener, R.S., Pinson, L.J.; ‘An Introduction to Object-Oriented Programming and

C++’; Addison-Wesley, Reading, Mass.; 1988

[Winb90] Winblad, A.L., Edwards, S.D., King, D.R; ‘Object-Oriented Software’; Addison-

Wesley, Reading, Mass.; 1990

[Wirfo0] Wirfs-Brock, R., Wﬂkerson, B., Wiener, L.; ‘Designing Object-Oriented Software’,

Prentice Hall, New Jersey; 1990

[Wolf92] Wolff, F.; ‘Long-term Controlling of Software Reuse’; Information and Software

Technology; Mar 1992; Vol.34 No.3 P178-184

[Yu91] . Yu, D.; ‘A View On Three R’s (3Rs): Reuse, Re-engineering, and Reverse-

engineering’; ACM Software Engineering Notes; Jul 1991; Vol.16 No.3 P69

[Zigm95] Zigman, F.J., Wilson, M.L,; ‘Integrating Reengineering, Reuse and Specification
Tool Environments to Enable Reverse Engineering’; In: Proc. of Second Working Conference
on Reverse Engineering; IEEE, Ontario, Canada; IEEE Computer Society Press; Jul 1995; P78-

84

155 Automating Reuse Support
in a Small Company

Chapter 10: Bibliography

[Abbo83] Abbott, R.; ‘Program Design by Informal English Description’; Communications of

the ACM; Nov 1983; Vol.26 No.11 P882-894

[Aran91] Arango, G., Prieto-Diaz, R.; ‘Part 1: Introduction and Overview, Domain Analysis
Concepts and Research Directions’; In: Domain Analysis and Software Systems Modelling;

IEEE Computer Society Press Tutorial, IEEE; 1991

[Bank93] Banker, R.D., Datar, S.M.; Kemerer, C.F. Zweig, D.; ‘Software Complexity and

Maintenance Costs’; Communications of the ACM; Nov 1993; Vol.36 No.11

[Bank94] Banker, R.D., Kaufmann, R.J., Wright, C., Zweig, D.; ‘Automating Output Size and
Reuse Metrics in a Repository-Based Computer-Aided Software Engineering (CASE)

Environment’; I[EEE Transactions on Software Engineering; Mar 1994; Vol.20 No.3 P169-187

[Bilo91] Bilow, S.C.; ‘Book Review: Object-Oriented Design’; Journal of Object-Oriented

Programming; Oct 1991; Vol.4 No.6 P73-74

[Booc86] Booch, G.; ‘Object-Oriented Development’; IEEE Transactions on Softwére

Engineering; Feb 1986; Vol.12 No.2 P211-221

[Booc87] Booch, G.; ‘Software Engineering with Ada (2nd Ed.)’; Benjamin/Cummings,

California; 1987

[Booc91] Booch, G.; ‘Object-Oriented Design with Applications’; Benjamin/Cummings,

California; 1991

156 Automating Reuse Support
in a Small Company

[Coad90] Coad, P., Yourdan, E.; ‘Object-Oriented Analysis’; Yourdan Press, Prentice Hall,

New Jersey; 1990

[Coad91a] Coad, P., Yourdan, E.; ‘Object-Oriented Design’; Yourdan Press, Prentice Hall,

New Jersey; 1991

[Coad91b] Coad, P.; ‘Why use object-oriented development? (A management perspective)’;

Journal of Object-Oriented Programming;"Oct 1991

[Dunt90] Duntemann, J., Marinacci, C.; ‘New Objects for Old Structures’; Byte; Apr 1990;

P261-266

[Evan90] Evans, R.A.; ‘Criteria for an OOD method’; In: Object-Oriented Software

Engineering; Anderson, B. (ed.); British Computer Society, London; 1990

[Goss91] Gossain, S.; ‘Book Review: Designing Object-Oriented Software’; Journal of

Object-Oriented Programming; Mar/Apr 1991; Vol.4 No.1 P82-84
[Grah93] Graham, I; ‘Object-Oriented Methods’; Addison-Wesley; 1993

[Hall92] Hall, P.A.V,; ‘Software Reuse, Reverse Engineering and Reengineering’; In:
Software Reuse and Reverse Engineering in Practice’; Hall, P.A.V (ed.); Chapman & Hall,

London; 1992

[Hend93] Henderson, P.; ‘Object-Oriented Specification and Design with C++7; McGraw-Hill,

London; 1993

[Hoar72] Hoare, C.A.R,, Dahl, O., Dijkstra, E.; ‘Structured Programming’; Academic Press,

London; 1972

157 Automating Reuse Support
in a Small Company

[Hodg92] Hodgson, R.; ‘Finding, building and reusing objects’; In: Object-Oriented design;

Robinson, P. (ed.); Chapman & Hall, London; 1992; P48-76

[Hood93] Delatte, B., Heitz, M., Muller, J.F. (ed.); ‘HOOD Reference Manual 3.1°; Masson,

Paris; 1993

[Horo89] Horowitz, E., Munson, J.B.; ‘An expansive view of reusable software’; In: Software
Reusability. Concpets and Models, vol. I; Biggerstaff, T.J., Perlis, A.J.,, (ed.); ACM Press,

Addison-Wesley, Reading, Mass.; 1989; P19-41

[Ince88] Ince, D.; ‘Reusable Software - The False Frontier’; In: Software Development:

Fashioning the Baroque’; Ince, D.; Oxford University Press; 1988

[Kang87] Kang, K.C.; ‘A Reuse-Based Software Development Methodology’; In: Proc. of the
Workshop on Software Reuse; Booch, G., Williams, L. (ed.); Rocky Mountain Inst. of Software

Engineering, SEI, MCC, Software Productivity Consortium, Boulder, Colo.; Oct 1987

[Knut94] Knuth, D.E,, Levy, S.; ‘The CWEB System of Structured Documentation’;

Addison-Wesley, Reading, Mass.; 1994

[Lewi92] Lewis, J.A., Henry, S.M., Kafura, D.G., Schulman, R.S.; ‘On the relationship
between the object-oriented paradigm and software reuse: an empirical investigation’; Journal of

Object-Oriented Programming; Jul/Aug 1992; P35-41

[Luba88] Lubars, M.D.; ‘Code reusability in the large versus code reusabili;ty in the small’; In:

Software Reuse: Emerging Technology; Tracz, W. (ed.); IEEE Computer Society Press; 1988

158 " Automating Reuse Support
in a Small Company

[Myer94] Myers, W.; “Workshop explores large-grained reuse’; IEEE Software; Jan 1994;

P108-109

[Orms91] © Ormsby, A.; ‘Object-Oriented Design Methods’; In: Object-Oriented Languages,
Systems and Applications; Blair, G., Gallagher, J., Hutchison, D., Shepherd, D. (ed.); Longman,

London; 1991; P203-222

[Reen92] Reenskaug, T., Andersen, E., Berre, A., Hurlen, A., Landmark, A., Lehne, O,
Nordhagen, E., Ness-Ulseth, E., Oftedal, G., Skaar, A., Stenslet, P.; ‘OORASS: seamless support
for the creation and maintenance of object-oriented systems’; Journal of Object-Oriented

| Programming; Oct 1992; Vol.5 No.6 P27-41

[Rent82] Rentsch, T.; ‘Object-Oriented Programming’; SIGPLAN Notices; Sept 1982; Vol.17

No.12; P51

[Robe93] Roberts, S.; ‘Productivity Benefits in Major Maintenance projects: Reverse is the
Wrong Direction’; In: Proc. of Reuse and Reverse Engineering For Productive Software

Development; Unicom Seminars; 1993; P49-91
[Robi92] Robinson, P.J.; ‘Hierarchical Object—Oriented Design’; Prentice Hall, London; 1992

[Rumb94] Rumbaugh, J.: ‘Getting started: Using use cases to capture requirements”; Journal of

Object-Oriented Programming; Sept 1994; Vol.7 No.5 P8-12,23

[Sepp92] Seppanen, V.; ‘Acquisition, organisation and reuse of software design knowledge’;

Software Engineering Journal; Jul 1992; P238-246

159 Automating Reuse Support
' in a Small Company

[Shea93] Shearer, D.; ‘Working Examples from the BT Corporate Reuse Program’; In: Proc.
of Reuse and Reverse Engineering For Productive Software Development; Unicom Seminars;

1993; P93-108

[Shla92] Shlaer, S., Mellor, S.; ‘Object Lifecycles: Modeling the World in States’; Prentice

Hall; 1992

[Smit90] Smith, J.D.; ‘Reusability and Software Construction: C and C++’; John Wiley and

Sons; 1990

[Stev91] Stevens, W.; ‘Code Reuse’; In: Software Design, Concepts and Models; Stevens,

W.; Prentice Hall, London; 1991

[Walk92] Walker, 1J.; ‘Requirements of an object-oriented design method’; Software

Engineering Journal; Mar 1992; Vol.7 No.2 P102-113

[Wass89] Wasserman, A.L, Pircher, P.A., Muller, R.J.; ‘An Object-Oriented Structured
Design Method for Code Generation’; ACM Software Engineering Notes; Jan 1989; Vol.14

No.1 P32-55

[Wass90] Wasserman, A.L, Pircher, P.A., Muller, R.J.; ‘The Object-Oriented Structured

Design Notation for Software Design Representation’; IEEE Computer; Mar 1990; Vol.23 No.3

P50-63

[Webe93] Weber, H.; ‘Uniformity’ and Invariance in Support of Re-Use’; In: Advances in

Software Reuse; Prieto-Diaz, R., Frakes, W.B. (ed.); IEEE Computer Society Press; 1993

[Wegn87] Wegner, P.; ‘Varieties of reusability’; In: Tutorial: Software Reusability; Freeman,

P. (ed.); IEEE Computer Society Press; 1987

160 Automating Reuse Support
’ in a Small Company

[Wegn90] Wegner, P.; ‘Concepts and Paradigms of Object-Oriented Programming’; OOPS

Messenger; Aug 1990; Vol.1 No.1 P7-87

[Wilk90] Wilkerson, B.; ‘How to Design an Object-Based Application’; Develop; Apr 1990;

P178-203

161 Automating Reuse Support
' in a Small Company

Appendix A

A1. Software Reuse Questionnaire

Name?
Position in Company?

How long in Company?
Your Work

What does your work consist of?

_ If programming, what languages do you use? What compilers?

Who provides the drive behind the work that you do (customers/company/self)?
When you have a new idea, what process do you follow to get from the idea to the realisation of
the idea?

How do you write down the requirements/spéciﬁcation of new ideas and modifications?

What design methods have you used?
Do you conciuct/participate in design reviews?
What type of design do you think would be most suitable for your work?
To what extent do-you use an object-oriented methods?
Do you ever use: Modularisation?
Inheritance?
Overloading?.

Class libraries/hierarchies?

162 Automating Reuse Suppart
in a Small Company

How easy do you find it to understand: your own code?
a colleagues code?
standard library code?
To what extent do you document your code?
How could understanding code be made easier?
If you need a function/method, do you: look for it in the standard libraries/try to find someone
else who has done it/write it yourself?
If another function doesn’t do quite \yhat you want it to do, do you: look for another/modify
it/write it yourself from scratch?
When writing a function, do you ever consider that someone else may use it, and take steps to

make it more generic/easier to use?
The Company

How would you describe the company at the moment?
Where do you see the company going in the next few months?
Where do you see the company going in the next few years?

How do you think that software reuse could help the company achieve its goals?

163 Automating Reuse Support
in a Small Company

Appendix B

B1. ReThree-C++

ReThree-C++ is an integrated reverse engineering and reuse tool set. It can be used to extract
information from C++ source~ code and to create a repository of C++ classes for later retrieval.
Using visualisation and re-documentation techniques, s_oftware documentation and class
structure ﬁierarchies for candidate software components are automatically generated from the

software source code. The tool set can be divided into three main functions:

1. Automatically reverse engineering C++ source code to give a visual class hierarchy
representation in OMT object model format.

2. Documenting C++ source code, based on the comments contained within the code, to
provide automatically generated software documentation.

3. Building, maintaining and searching a reuse repository of C++ classes which can be reused

in later applications.

ReThree-C++ is designed with small company developers in fru'nd, who are under pressure to
complete their coding to tight deadlines. Its purpose is to help them to achieve the benefits that
reuse of code can bring without the large up-front investment that is usually required for reuse to
be successful. In order to reuse code, it is necessary to have appropriate code available, as well

as being able to find the code, modify it (if necessary) and integrate it into the current system.

The principles of object-oriented design are useful for building reusable code in manageable
components. However, there is little tool support for the process of making code reusable,
storing it for later use, retrieving it when needed and understanding the structure of reusable
components. ReThree-C++ addresses these problems. It is based solely on C++ source code, and

provides automatic reverse engineering and documentation of source code to help developers

164 Automating Reuse Support
in a Small Company

understand the structure of code to be reused. It also provides reuse repository support, allowing
classes to be added to a reuse repository and providing search facilities for repositories. Classes
that match the search criteria can be automatically reverse engineered and documented to help

the developer understand the structure and purpose of the code.

The source code is used as the base for all information generated so that the software engineers
are encouraged to spend more time on developing and maintaining their code effectively. The
comimented source code can then be automatically converted into class hierarchies and
documentation fbr the code. This automatic géneration of information is done by static analysis
of the source code 1n a few seconds. However, as the r@-documentation is based on the
comments contained within the source codé, the information given about the classes, their

services and their attributes, will only be as useful as the comments provided by the developers.

Reverse engineering provides an Object Modelling Technique class hierarchy diagram of the
classes described in the C++ source code. Documentation is taken from the comments in the
source code which describe the functionality of the code. The system interfaces with Windows®
tools, namely Word, OMTool and Netscape, to display the results generated in an informative
fashion. The latter also has the advantage allowing the full power of the browser’s searching

facilities to be employed on the documentation.

165 Automating Reuse Support
in a Small Company

B2. Examples of Use

ReThree-C++ has three different forms of output, all based on information taken directly from
C++ source code. Section B2.1-contains an example C++ header file (which is taken from the
source of the ReThree-C++ system). Sections B2.2, B2.3 and B2.4 show the different types of

output which ReThree-C++ gives based on that file.
B2.1 Example Source Code

// aboutbox.h : header file Version Number = 1.2

/7

// This source code is only intended as a supplement to the

// Microsoft Foundation Classes Reference and Microsoft

// QuickHelp and/or WinHelp documentation provided with the library.
// See these sources for detailed information regarding the

// Microsoft Foundation Classes product.
const CString VERSION = "2.32";

JI111111777177000777070777117117770071771777777711177077171111177711177
S/

// CBiglcon window version number = 1

// This class contains the big vefsion of the application’s icon that
is

// used on the splash window.
J1111770070077770777777700770777717777777777777771777177717711777777777
//

class CBigIcon : public CButton

{

// Attributes

166 Automating Reuse Support
in a Small Company

public:

// Operations
public:
void SizeToContent():
// Resizes the standard icon to fit in the designated area

// on the splash window.

// Implementation

protected:
virtual void DrawI£em(LPDRAWITEMSTRUCT lpDrawItemStruct);
// Draws the big i;on to the rectangle specified on

// the splash window, including a border and shadowing.

//{{AFX_MSG(CBigIcon)

afx msg BOOL OnEraseBkgnd(CDC* pDC);

// Backgfound does not need to be erased -
// this function does nothing.

//}}AFX_MSG

DECLARE MESSAGE_MAP ()

}io

JIIII11100000771777117177171777777770771777011717171111711117717177717777
s

// ChboutBox dialog. version number = 2

// This dialog contains information about the name and version number
of

// the current application. It also gives information about the
current

// system status, including how much memory is free, whether the

// computer has a maths co-processor and how much disc space is free.

J111170007077777770007177710001707711777771707100711071177117711711777
/7

167 Automating Reuse Support
in a Small Company

class CAboutBox : public CDhialog
{
// Construction
public:
CAboutBox {CWnd* pParent = NULL);

// standard constructor with no member initialisation

// Dialog Data
// { {AFX_DATA (CAboutBox)
enum { IDD = IDD_ABOUTBOX };
// NOTE: the Classwizard.will add data members here

//}}AFX DATA

// Implementation
pfotected:
virtual void DoDataExchange (CDataExchange* pDX);

// DDX/DDV support. This method is controlled by the VC++

// Class Wizard.

CBiglIcon m_icoﬁ;

// self-draw button. A large version of the application’s icon.

// Generated message map functions

//{ {AFX_MSG (CAboutBox)

virtual BOOL OnInitDialog();

// Includes all the initialisation that is done when this dialog
// is called. This method draws the big icon, gets the current
// versiﬁn number of the application, calculates current free

// memory and disc space and whether a math co-processor is

// present.

//}}AFX_MSG

168 ’ Automating Reuse Support
in a Small Company

DECLARE MESSAGE MAP ()

}s

/////////(//
/7

// CSplashWnd dialog. version number = 3

// This dialog is called when the applicétion is initialised to give
the

// user information about the application, including the version
number

// and copyright information.
LI111777007701777777777777777777777707707777777777777777777777771777777
/

class CSplashWnd : public CDialog
{ .
// Construction
public:
BOOL Create (CWnd* pParent);

// Returns an error if-the splash window could not be created.

// Diaiog Data
//{{AFX_DATA (CSplashWnd)
enum { iDD = IDD SPLASH };

// NOTE: the ClassWizard will add data members here

//}}AFX_DATA

// Implementation

protected:
virtual void DoDataExchange (CDataExchange* pDX);

// DDX/DDV support. This method is controlled by the VC++

// Class Wizard.

169 Automating Reuse Support
in a Small Company

CBigIcon m icon;
// self-draw button. A large version of the application’s icon.
CFont m font;

// light version of dialog font

' // Generated message map functions

//{{AFX_MSG (CSplashWnd)

virtual BOOL OnInitDialog();

// Initialisation code for the dialog. Draws the big version of
// the icon and gets the curren£ version number for the‘

7/ application.

//}YAFX_MSG

DECLARE_MESSAGE_MAP()

}s

JIIIIIIIIIIII I 0111010101117171177717111171777777177
// ‘

// CRengBox dialog. Vefsion Number‘= 1

// This dialog is used to ask the user if they wish to start the

// appropriate visualisation program for the procéssing that has just
// been carried out.
/////7//
//

class CRengBox : pubiic CDhialog
{ .
// Construction
public:
| éRengBox(CWnd* pParent = NULL})y;

// standard .constructor with no member initialisation.

// Dialog Data

170 Automating Reuse Support
in a Small Company

//{{AFX_DATA (CRengBoXx)
enum { IDD = IDD RENGBOX };
CString m_sFileName;

//}}RFX DATA ’

// Implementation
protected:
virtual void DoDataExchange(CDatéExchange* pbX) ;
// DDX/DDV support. This method is controlled by the VC++
// Class Wizard.
// Generated message map functions
//{{AFX_MSG(CRengBox)
virtual BOOL OnInitDialog();
// Initialises the dialog with the name of the source/make file
// which has just been processed.
//}}AFX_MSG

DECLARE MESSAGE_MAP ()

171 Automating Reuse Support
in a Small Company

B2.3 RTF Documentation

CButton

Sub Classes: CBiglcon

Location: C:\PETEPRONREUSE\TESTREP\ABOUTBOX.H
CBigicon

Version: 1

Super Classes: CButton

Location: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H

Overview

CBiglcon window version number = 1 This class contains the big version of the application’s icon that is
used on the splash window.

Services

Public Members

void SizeToContent()

Resizes the standard icon to fit in the designated area on the splash window.

Protected Membefs

virtual void Drawltem(LPDRAWITEMSTRUCT IpDrawltemStruct)

173 ' Automating Reuse Support
' in a Small Company

" Source: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H Version: 1.2
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

Draws the big icon to the rectangle specified on the splash window, including a border and

shadowing.
afx_msg BOOL OnEraseBkgnd(CDC* pDC)

Background does not need to be erased - this function does nothing. AFX MSG

CDialog

Sub Classes: CAboutBox CSplashWnd CRengBox

Location: C:\PETEPROJNREUSE\TESTREP\ABOUTBOX.H

' CAboutBox

Version: 2

Super Classes: CDialog

Location: C:\PETI!?PROJ\REUSE\TEST REP\ABOUTBOX.H |
Overview

CAboutBox dialog. version number = 2 This dialog contains information about the name and version
number of the current application. It also gives information about the current system status, including
how much memory is free, whether the computer has a maths co-processor and how much disc space is

free.

Services

Public Members
CAboutBox(CWnd* pParent = NULL)

standard constructor with no member initialisation

174 Automating Reuse Support
in a Small Company

Source: C:\PETEPRONREUSE\TESTREPAABOUTBOX.H Version: 1.2
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

Protected Members

virtual void DoDataExchange(CDataExchange* pDX)
DDX/DDV support. This method is controlled by the VC++ Class Wizard.
virtual BOOL OnlnitDialog()

Includes all the initialisation that is done when this dialog is called. This method draws the big
icon, gets the current version number of the application, calculates current free memory and disc

space and whether a math co-processor is present. AFX_MSG

Attributes

Protected Members
CBigicon m_icon

self-draw button. A large version of the application’s icon.

CSplashWnd

Version: 3
Super Classes: CDialog

Location: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H

Overview

CSplashWnd dialog. version number = 3 This dialog is called when the application is initialised to give
the user information about the application, including the version number and copyright information.

175 Automating Reuse Support
in a Small Company

Source: C:\PETEPRONREUSE\TESTREPAABOUTBOX.H . Version: 1.2
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

Services

Public Members

BOOL Create(CWnd* pParent)

Returns an error if the splash window could not be created.

Protected Members .
virtual void DoDataExchange(CDataExchange* pDX)
DDX/DDYV support. This method is controlled by the VC++ Class Wizard.
virtual BOOL OnlnitDialog()

Initialisation code for the dialog. Draws the big version of the icon and gets the current version

number for the application. AFX_MSG

Attributes

Protected Members
CBiglcon m;icon
self-draw button. A large version of the application’s icon.
CFont m_font

light version of dialog font

176 Automating Reuse Suppor“t
in a Small Company

Source: C:\PETEPRONREUSE\TESTREP\ ABOUTBOX.H Version: 1.2
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

CRengBox

Version: 1
Super Classes: CDialog

L;)cation: CAPETEPROJNREUSE\TESTREP\ABOUTBOX.H

Overview

CRengBox dialog. Version Number = 1 This dialog is used to ask the user if they wish to start the
appropriate visualisation program for the processing that has just been carried out.

Services

Public Members

CRengBox(CWnd* pParent = NULL)

standard constructor with no member initialisation.

Prbtected Members
virtual veid DoDataExchange(CDétaExchange* pDX)
DDX/DDV suppoﬁ. This method is controlled by the VC++ Class Wizard.
virtual BOOL OnInitDialog()

Initialises the dialog with the name of the source/make file which has just been processed.

AFX_MSG

177 Automating Reuse Support
: in a Small Company

Source: C:\PETEPRONREUSE\TESTREP\ABOUTBOX.H . Version: 1.2
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

Attributes

Public Members

CString m_sFileName

AFX_DATA

178 Automating Reuse Support
in a Small Company

in B2.3. The only differences are that in the HTML version, the attributes are listed before the
services of a class, and that there are links from the documentation to the source code where the

location of the source is specified.

180 Automating Reuse Support
in a Small Company

Appendix C

C1. ReThree-C++ Evaluation Questionnaire

The information contained in this questionnaire will be used when evaluating the use of ReThree-C++ as
a reuse support tool. The results of the questionnaire will be used in academic research, so please be as
open and honest as possible.

When finished, please send to: Peter Biggs, Dept. of Computer Science, University of Durham,
Durham, DH1 3LE, England.

1. Ease of use

" a. How easy was it to set ReThree-C++ up for use?

Basy 1245678910 Hard

b. How easy is it to use ReThree-C++ to process files?

Easy 12345678910 Hard

¢. How quickly did you leamn to use ReThree-C++?
- VeryQuickly 1@ 345678910 VerySlowly

d. How often did you use the ReThree-C++ Help file?
Never 1234567® 910 Very Frequently

e. How helpful is the ReThree-C++ Help file?
No Help 12345@® 78910 Very Helpful

2. Using ReThree-C++ to generate information about C++ files

a. Which feature of ReThree-C++ did you use most?

Generating Documentation for Code v - Generating Web pages

b. How helpful were the results of ReThree-C++ in understanding C++ code?

NoHelp 1234568910 VeryHelpful

¢. Which feature of ReThree-C++ did you find most helpful when trying to understand C++ code?

Generating Documentation for Code v Generating Web pages

181 Automating Reuse Support
in a Small Company

d. Please comment on any experiences in processing C++ code with ReThree-C++:

Quality depends very much on standard of documentation throughout the code -
useful in forcing programmer to tidy the code and add comments etc.

Much of the output describes classes that are not necessarily implemented in a
particular build of the target application. This is because ReThreeC++ only examines
the header files. I think there is a great potential for developing the Web output
Sfurther, by improving the graphical representation, and allowing for more interaction
with the various objects in the class diagram.

3. Reusing with ReThree-C++

a. Did you use the reuse repository facilities of ReThree-C-++? @ NO

b. If so, approximately how many classes did you add to your repositories?

c. How easy was it to find appropriate classes when searching a reuse repository?

Basy 123@5678910 Hard

d. How well did you understand how to use the class, once found, using ReThree-C++’s processing
options?

Didn’t understand 123@ 5678910 Understood very quickly

(Due to lack of documentation in source code)

e. How many times have you reused a class found and understood using ReThree-C++’s reuse
repositories?

4. Further comments
Please add any further comments about ReThree-C++

I was not able to test ReThreeC++ on a live development project, only on old C++
code. However, I expect to use it soon when code is ported to 32 bit platform. I believe
it wxll prove to be very useful.

182) Automating Reuse Support
in a Small Company

Appendix D

D1. Group Task Descriptions
C++ Experiment

Group 1

Welcome to the C++ experiment. In the next hour, you will be asked to complete a working version of
the attached C++ pfogram. You may use the twb reference books provided. Please do not use your own

reference books, as this will affect the results of the experiment.
Group 2

Welcome to the C-++ experiment. In the next hour, you will be asked to complete a working version of
the attached C++ program. You may use the three reference books provided. Please do not use your own

reference books, as this will affect the results of the experiment.
Group 3.

Welcome to the C++ experiment. In the next hour, you will be asked to complete a workiﬁg version of
the attached C-++ program. You may use the three reference books provided, as well as the class
reference materials attached. Please do not use your 6wn reference books, as this will affect the results of

the experiment.

183 Automating Reuse Support
in a Small Company

Group 4

Welcome to the C++ experiment. In the next hour, you will be asked to complete a working version of
- the attached C++ program. You may use the three reference books provided, as well as the ReThree-C++
tool running on your machine. Details of how to use the tool are attached. Please do not use your own

reference books, as this will affect the results of the experiment.

You will be using Visual C++ to create a QuickWin application. This is very similar to writing C++ for

the GCC or G++ compiler. Use the project menu to corﬁpile, build and execute your program.

Before you leave, please fill in the questions at the bottom of this page. Please be as honest as possible, as

the responses will be used when evaluating the experiment.

Questions

1. How long did you spend reviewing C++ in preparation for this experiment?

.| Time:

2. How difficult did you find writing this program?

Easy 12345678910 Hard

3. How useful did you find the reference materials provided?

No Use 12345678910 Very Useful

184 : Automating Reuse Support
in a Small Company

4. How would you now rate your C++ skills?

Poor 12345678910 Excellent

D2. Test Program

A program has generated a file which contains a list of file names (éach on a separate line) followed by a
search term (on the last line of the file). The programmers want to search all of the specified files for
occurrences of the search term. They cannot specify how many files are to be searched each time their
program is run. They want to automate the searching process with a program which gives the following

output:

“Search term” appears in ‘file ﬁame’ <no. of occurrences> times.

For example:

“int count” appears in ‘testl.cpp’ 12 times.

Write a program to do this using C++.

Progi‘amming Tips

It is suggested that you open the file TEST1.DAT and read in the contents a line at a time. Save the list of

file names read in (remembering to strip out any unnecessary characters such as spaces and new lines)

until the end of the file is reached.

185 . Automating Reuse Support
in a Small Company

Then take the last item of the list as the search term, open each of the search files in turn, read in from the
search file and see if the search term appears. If it does, increment the count. When the end of the search

file has been reached, write out how many occurrences of the search term were found.

If any files cannot be opened, give an appropriate error message.

186 Automating Reuse Support
' in a Small Company

D3. Class Information for Group 3

CStdioFile
Super Classes: CFile
Location: c:\petetest\imfch\afx.h

Overview

raw binary file CStdioFile A CStdioFile object represents a C run-time stream file as opened by the fopen
function. Stream files are buffered and can be opened in either text mode (the default) or birary mode.
Text mode provides special processing for carriage return-linefeed pairs. When you write a newline
chéracter (0x0A) to a text mode CStdioFile object, the byte pair (0x0A,0x0D) is sent to the file. When
you read, the byte pair (0x0A,0x0D) is translated to a single 0x0A byte. Several CFile member functions
are over-ridden for this derived class. The CFile functions Duplicate, LockRange and UnlockRange are
not implemented for CStdioFile. For examples of using this class, see the Class Library Reference for the
Microsoft Foundation Class Library. To access CStdioFile, you-must: #include <afx.h>

Services

Publi-c Members
CStdioFile()
Constructors Standard constructor
CStdioFile(FILE* pOpenStream)
Constructor given a file pointer returned by a call to the C run-time ﬁmc-tion fopen.

CStdioFile(const char* pszFileName, UINT nOpenFlags)

187 Automating Reuse Support
in a Small Company

Source: C:\PETETESTWMFCH\AFX H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

Constructor given a string that is the path of the desired file, which may be relative or absolute.
nOpenFlags specifies the sharing and access modes. These can be combined using the bitwise-

OR (|) operator. See the CFile constructor for a list of mode options.
virtual void WriteString(LPCSTR Ipsz)

writes a string to the file, like "C" fputs. The terminating null character (*‘) is not written to the
file. lpsz specifies a pointer to a buffer containing a null terminated text string. Any newline

character in Ipsz is written to the file as a carriage return-linefeed pair.

-

virtual LPSTR ReadString(LPSTR Ipsz, UINT nMax)

Reads text data into a buffer, up to a limit of nMax-1 characters (like "C" fgets). Reading is
stopped by a carriage return-linefeed pair. If, in that case, fewer than nMax-1 characters have
been read, a newline character is stored in the buffer. A null character (*‘) is appended in either
case. Ipsz is a pointer to a user-supplied buffer that will receive a null;terrninated text string.
ReadString returns a pointer to the buffer containing the text data, or NULL if the end-of-file

was reached.
virtual ~ CStdioFile()
Destructor. Closes the file before destroying this object.

void Dump(CDumpContext& dc)

virtual DWORD GetPosition()

Over-ridden member function - see CFile for details.

188 Automating Reuse Support
in a Small Company

Source: C\PETETESTWMFCH\AFX.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

virtual BOOL Open(const char* pszFileName, UINT nOpenFlags, CFileException*

pError = NULL)

Over-ridden member function - see CFile for details.

virtual UINT Read(void FAR* IpBuf, UINT nCount)
:)

Over-ridden member function - see CFile for details.

virtual veid Write(const void FAR* IpBuf, UINT nCount)

Over-ridden member function - see CFile for details.

virtual LONG Seek(LONG IOff, UINT nFr(;m)

Over-ridden member function - see CFile for details.

virtual void Abort()

Over-ridden member function - see CFile for details.

virtual void Flush()

Over-ridden member function - see CFile for details.

virtual void Close()

Over-ridden member function - see CFile for details.

189 Automating Reuse Support
in a Small Company

Source: C\PETETESTWFCH\AFX.H .
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

virtual CFile* Duplicate()
Unsupported
virtual void LockRange(DWORD dwPos, DWORD dwCount)

Unsupported
virtual void UnlockRange(DWORD dwPos, DWORD dwCount)

Unsupported

Attributes

Public Members

FILE* m_pStream

stdio FILE m_hFile from base class is _fileno(m_pStream)

‘CString

Location: c:\petetest\mfch\afx.h
Overview

Non CObject classes Class CString A CString object consists of a variable-length sequence of characters.
The CString class provides a variety of functions and operators that manipulate CString objects, making
CString objects easier to use than ordinary character arrays. The maximum size of a CString object is
MAXINT (32,767) characters. The CString class has built-in memory allocation capability. This allows
string objects to grow as a result of concatenation operations. The overloaded const char* conversion
operator allows CString objects to be freely substituted for character pointers in function calls. For
examples of using this class, see the Class Library Reference for the Microsoft Foundation Class Library.
To access CString, you must: #include <afx.h>

190 Automating Reuse Support
in a Small Company

Source: C:\PETETEST\MFCH\AFX.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

Services

Public Members
_CString()
Standard constructor
CString(copst CString& stringSrc)
construct from current CString
CString(char ch, int nRepeat = 1)
construct from-a single character to be repeated n ti@es
CString(const char* psz)
construct from a pointer to anlarray of characters '
CStrihg(const char* pch, int nLength)
~ construct from a pointer to an array of characters of length nLength
~CString()

Destructor. Releases allocated memory used to store the string’s character data

191 Automating Reuse Support
in a Small Company

Source: C:\PETETESTWFCH\AFX.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

int GetLength()

Returns the number of characters in this CString object (not including the null terminator)
BOOL IsEmpty()

Tests a CString object for the empty condition. Returns 0 if empty, non-zero otherwise
void Empty()

Makes this CString object an empty string and frees memory as appropriate

char G;:tAt(int nIndex)

Returns a single character specified by an index number. nindex is a 0 based index of the

character in the CString object
char operator[](int nIndei)
same as GetAt

void Se}tAt(int nlndex, char ch)

Overwrites a single character specified by an index number. SetAt will not enlarge the string if
the index exceeds the bounds of the existing string. nIndex is a 0 based index of the character in

the CString object

192 Automating Reuse Support
in a Small Company

Source: C:\PETETEST\WMFCH\AFX.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

operator const char*()

casts the CString object as a string pointer.

const CString& operator=(const char* psz)

reinitialises the CString object with its new value the same as psz

const CString& operator+=(const char* psz)

joins a copy of psz on to the end of this CString object

friend CS;ring AFXAPI operator+(const CString& stringl, const CString& string2)

adds two CString objects

int Compare(const char* psz)

Compares this CString object with another string, character by character. Returns 0 if the strings
are identical, -1 if this CString object is less than psz or 1 if this CString object is greater than
psz

int CompareNoCase(const char* i)sz)

Compares this CString object with another string, character by character, ignoring case Returns
0 if the strings are identical, -1 if this CString object is less than psz or 1 if this CString object is

greater than psz

' 193 Automating Reuse Support
in a Small Company

Source: C\PETETESTWMFCH\AFX H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

int Collate(const char* psz)

Performs a locale specific comparison of two strings. Returns 0 if the strings are identical, -1 if

. this CString object is less than psz or 1 if this CString object is greater than psz
CString Mid(int nFirst, int nCount)

Extracts a substring of length nCount characters from this CString object, starting at position

. nFirst (zero-based). The function returns a copy of the extracted substring.
. CString Mid(int nFirst)

Extracts a substring from this CString object, starting at position nFirst (zero-based), extracting

the remainder of the string. The function returns a copy of the extracted substring.
CString Left(int nCount)

Extracts the first (that is, leftmost) nCount characters from this CString object and returns a copy

of the extracted substring. If nCount exceeds the string length, then the entire string is extracted.
CString Right(int nCount)
Extracts the last (that is, rightmost) nCount characters from this CString object and returns a

copy of the extracted substring. If nCount exceeds the string length, then the entire string is

extracted.

194 ' Automating Reuse Support
in a Small Company

‘Source: C\PETETESTWMFCH\AFX.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

CString SpanlIncluding(const char* pszCharSet)

Extracts the largest substring that contains only the characters in the specified set pszCharSet;
starts from the first character in this CString object. If the first character of the string is not in the
character set, then SpanIncluding returns an empty string

CString SpanExcluding(const char* pszCharSet)

Extracts the largest substring that excludes only the characters in the specified set pszCharSet;
starts from the first character in this CString object. If the first character of the string is in the
character set, then SpanExcluding returns an empty string

void MakeUpper()

Converts this CString object to an uppercase string

void MakeLower()

Converts this CString object to a lowercase string

void MakeReverse()

Reverses the order of the characters in this CString object

int Find(char ch)

Searches this string for the first match of the character ch. Returns the zero-based index of the
first character in this CString object that matches the requested character; -1 if the character is
not found

195 Automating Reuse Support
in a Small Company

Source: C:\PETETESTWMFCH\AFX.H
ReThree-C++ v 2.32: Documentation Generated at: 09:44 on 02/11/98

int ReverseFind(char ch)

Searches this string for the last niatch of the character ch. Returns the zero-based index of the
last character in this CString object that matches the requested character; -1 if the character is

not found

int FindOneOf(const char* pszCharSet)

Searches this string for the first character that matches any character contained in pszCharSet.
Returns the zero-based index of the first character in this CString object that is also in
pszCharSet; -1 if there is no match

int Find(const char* pszSub)

Searches this string for the first match of the substring pszSub. Returns the zero-based index of
the first character in this CString object that matches the requested substring; -1 if the substring

is not found

char* GetBuffer(int nMinBufLength)

void ReleaseBuffer(int nNewLength = -1)

char* GetBufferSetLength(int nNewLength)

int GetAllocLength()

196 , Automating Reuse Support
in a Small Company

Source: C\PETETESTWMFCH\AFX.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

Protected Members

void Init()

void AllocCopy'(CString& dest, int nCopyLen, int nCopylIndex, int nExtraLen) .
void AllocBuffer(int nLen)

void Assi‘gnCopy(int YnSrcLen, const char* pszSrcData)

void ConcatCopy(int nSrclLen, const char* pszSrclData, int nSrc2Len, const char*

pszSrc2Data)
void ConcatInPlace(int nSrcLen, const char* pszSrcData)
static void SafeDelete(char* pch)

static int SafeStrlen(const char* psz)

197 Automating Reuse Support
in a Small Company

Source: C:\PETETEST\MFCH\AFX.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

Attributes

Protected Members

char* m_pchData

actual string (zero terminated)

int m_nDataLength

does not include terminating 0

int m_nAllocLength

does not include terminating 0

198 Automating Reuse Support
in a Small Company

Source: CAPETETEST\MFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

CStringArray.

Super Classes: CObject

Location: c:\petetestimfch\afxcoll.h

Overview

CStringArray The CStringArray class supports arrays of CString objects. The string arrays are similar to
C arrays but they can dynamically shrink and grow as necessary. Array indexes always start at position 0.
You can decide whether to fix the upper bound or allow the array to expand when you add elements past
the current bound. Memory is allocated contiguously to the upper bound, even if some elements are null.
For examples of using this class, see the Class Library Reference for the Microsoft Foundation Class
Library entry for CObArray. To access CStringArray, you must: #include <afxcoll.h>

Services

Public Members

CStringArray()
Construction Constructs an empty CString pointer array. The array grows one element at a time.
int GetSize()

Returns the size of the array. Since indexes are zero-based, the size is 1 greater than the largest

index.
int GetUpperBound()

Returns the current upper bound of this array. Because array indexes are zero-based, this

function returns a value 1 less than GetSize. Returns -1 when the array contains no elements.

199 Automating Reuse Support
in a Small Company

Source: C\PETETEST\MFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

void SetSize(int nNewSize, int nGrowBy = -1)
Establishes the size of an empty or existing array; allocates memory if necessary. If the new size
is smaller than the old size, then the array is truncated and all unused memory is released.

nNewSize is the new array size (number of elements). Must be greater than or equai to 0.

nGrowBy is the minimum number of element slots to allocate if a size increase is necessary.
void FreeExtra()

Frees any extra memory that was allocated while the array was grown. This function has no

effect on the size or upper bound of the array.

void RemoveAll()

Removes all the pointers from this array and deletes the CString objects. If the array is already
empty, the function still works. The RemoveAll function frees all memory used for pointer
storage.

CString GetAt(int nIndex)

Returns the array element at the specified index; NULL if no element is stored at the index.

void SetAt(int nIndex, const char* newElement)

Sets the array element at the specified index. SetAt will not cause the array to grow. Use

SetAtGrow if you want the array to grow automatically.

200 Automating Reuse Support
in a Small Company

Source: C\PETETESTWMFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

CString& ElementAt(int nIndex)

Returns a temporary reference to the element pointer within the array. It is used to implement
_ the left-side assignment operator for arrays. Note that this is an advanced function that should be

‘used only to implement special array operators. Returns a reference to a CString pointer.
void SetAtGrow(int nIndex, const char* newElement)

Sets the array element at the specified index. The array grows automatically if necessary (that is,

the upper bound is adjusted to accommodate the new element).
int Add(const char* newElement)

Adds a new element to the end of an array, growing the array by 1. If SetSize has been used with
an nGrowBy value greater than 1, then extra memory may be allocated. However, the upper

bound will increase by only 1.

CString operator(](int nIndex)

CString& operator[](int nIndex)

These subscript operators are a convenient substitute for the SetAt and GetAt functions. The first
" operator, invokeld for arrays that are not const, may be used on either the right (r-value) or the
left (I-value) of an assignment statement. The second, invoked for const arrays, may be used
only on the right. The Debug version of the lib;ary asserts if the subscript (either on the left or

right side of an assignment statement) is out of bounds.

201 Automating Reuse Support
in a Small Company

Source: C\PETETESTWFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

void InsertAt(int nIndex, const char* newElement, int nCount = 1)

This version of InsertAt inserts one element (or multiple copies of an element) at a specified
index in an array. In the process, it shifts up (by incrementing the index) the existing element at
this index, and it shifts up all the elements above it. nCount is the number of times this element

}

should be inserted (defaults to 1).
void RemoveAt(int nIndex, int nCount = 1)

Removes one or more elements starting at a specified index in an array. In the process, it shifts
: down all the elements above the removed element(s). It decrements the upper bound of the array
but does not free memory. nCount is the number of elements to remove. If you try to remove
-more elements than are contained in the array above the removal point, then the Debug version

of the library asserts.
void InsertAt(int nStartIndex, CStringArray* pNewArray)

This version inserts all the elements from another CStringArray collection, starting at the
nStartIndex position. The SetAt function, in contrast, replaces one specified array element and

" does not shift any elements.

~CStringArray()

202 Automating Reuse Support
in a Small Company

" Source: C:\PETETEST\MFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

CStringList

Super Classes: CObject

Location: c:\petetestimfch\afxcoll.h

Overview

CStringList The CStringList class supports lists of CString objects. All comparisons are done by value,
meaning that the characters in the string are compared instead of the addresses of the strings. For
examples of using this class, see the Class Library Reference for the Microsoft Foundation Class Library
entry for CObList. To access CStringList, you must: #include <afxcoll.h>

Services .

Public Members
CStringList(int nBlockSize=10)
Constructs an empty list for CString objects.
int GetCount()
Gets the number of elements in this list.
BOOL IsEmpty()

Indicates whether this list contains no elements. Returns TRUE if the list is empty, FALSE

otherwise.

CString& GetHead()

203 Automating Reuse Support
in a Small Company

Source: C\PETETESTWFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

CString GetHead()

Gets the CString pointer that represents the head element of this list. You must ensure that the
list is not empty before calling GetHead. If the list is empty, then the Debug version of the
Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains
elements. If the list is accessed through a pointer to a const CStringList, then GetHead returns a
CString pointer. This allows the function to bc? used only on the right side of an assignment
statement and thus protects the list from modification. If the list is accessed directly or through a
pointer to a CStringList, then GetHead returns a referc;nce to a CString pointer. This allows the
function to be used on either side of an assignment statement and thus allows the list entries to

be modified.

CString& GetTail()

CString GetTail()

Gets the CString pointer that represents the tail element of this list. You must ensure that the list
is not empty before calling GetTail. If the list is empty, then the Debug version of the Microsoft
Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements. If the list
is accessed through a pointer to a const CStringList, then GetHead returns a CString pointer.
This allows the function to be used only on the right side of an assignment statement and thus
‘protects the list from modification. If the list is accessed directly or through a pointer to a
CStringList, then GetHead returns a reference.to a CString pointer. This allows the function to

be used on either side of an assignment statement and thus allows the list entries to be modified.

204 Automating Reuse Support
in a Small Company

Source: C\PETETEST\MFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

CString RemoveHead()

Removes the element from the head of the list and returns a pointer to it. You must ensure that
the list is not empty before calling RemoveHead. If the list is empty, then the Debug version of
the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains

elements.
CString RemoveTail()

[

Removes the element from the tail of the list and returns a pointer to it. You must ensure that the
list is not empty before calling RemoveTail. If the list is empty, then the Debug version of the
Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains
elements.

. POSITION AddHead(const char* newElement)
Adds a new element to the head of this list. The list may be empty before the operation.
POSITION AddTail(const char* newElement)
Adds a new element to the tail of this list. The list may be empty before the operation.
void AddHead(CStringList* pNewList)
Adds a list of elements to the head of this list. The list may be empty before the operation.

void AddTail(CStringList* pNewList)

Adds a list of elements to the tail of this list. The list may be empty before the operation.

205 Automating Reuse Support
-) in a Small Company

Source: C:\PETETESTWFCH\AFXCOLL.H .
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

void RemoveAll()

Removes all the elements from this list and frees the associated CStringList memory. No error is

generated if the list is already empty.
POSITION GetHeadPosition()

Gets the position of the head element of this list. Returns a POSITION value that can be used for

iteration or object pointer retrieval; NULL if the list is empty.
POSITION GetTailPosition()

Gets the position of the tail element of this list; NULL if the list is empty. Returns a POSITION

value that can be used for iteration or object pointer retrieval; NULL if the list is empty.

CString& GetNext(POSITION& rPosition)

CString GetNext(POSITION& rPosition)

Gets the list element identified by rPosition, then sets rPosition to the POSITION value of the
next entry in the list. You can use GetNext in a forward iteraﬁon loop if you establish the initial
position with a call to GetHeadPosition or Find. You must ensure that yoﬁr POSITION value
represents a valid position in the list. If it is invalid, then the Debug version of the Microsoft
Foundation Class Library asserts. If the retrieved element is the last in the list, then the new
value of rPosition is set to NULL. rPosition is a reference to a POSITION value returned by a

previous GetNext, GetHeadPosition, or other member function call.

206 Automating Reuse Support
in a Small Company

i

Source: C:\PETETESTWFCH\WFXCOLL.H .
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

CString& GetPrev(POSITION& rPosition)

CString GetPrev(POSITION& rPosition)

Gets the list element identified by rPosition, then sets rPosition to the POSITION value of the
previou; entry in the list. You can use GetPrev in a reverse iteration loop if you establish the
initial position with a call to GetTailPosition or Find. You must ensure that your POSITION
value represents a valid position in the list. If it is invalid, then the Debug version of the
Microsgft Foundation Class Library asserts. If the retrieved element is the first in the list, then
the new value of rPosition is set to NULL. rPosition is a reference to a POSITION value

returned by a previous GetPrev or other member function call.

CString& GetAt(POSITION position)

CString GetAt(POSITION position)

A variable of type POSITION is a key for the list. It is not the same as an index, and you cannot
operate on a POSITION value yourself. GetAt retrieves the CStriI_lg pointer associated with a
given position. You must ensure that your POSITION value represents a valid position in the
list. If it is invalid, then the Debug version of the Microsoft Foundation Class Library asserts.
position is a POSITION value returned by a previous GetHeadPosition or Find member function

call.
void SetAt(POSITION pos, coﬁst char* newElement)

A variable of type POSITION is a key for the list. It is not the same as an index, and you cannot

operate on a POSITION value yoursélf. SetAt writes the CString pointer to the specified position

207 . Automating Reuse Support
: in a Small Company

Source: C:\PETETESTWFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

in the list. You must ensure that your POSITION value represents a valid position in the list. If it
is invalid, then the Debug version of the Microsoft Foundation Class Library asserts. pos is the

POSITION of the element to be set. newElement is the CString pointer to be written to the list.
void RemoveAt(POSITION position)

Removes the specified element from this list. You must ensure that your POSITION value
represents a valid position in the list. If it is invalid, then the Debug version of the Microsoft
Foundation Class Library asserts. position is the position of the element to be removed from the

list. inserting before or after a given position
POSITION InsertBefore(POSITION position, const char* newElement)

Adds an element to this list before the element at the specified position. Returns a POSITION
value that can be used for iteration or object pointer retrieval; NULL if the list is empty.

newElement is the object pointer to be added to this list.
POSITION InsertAfter(POSITION position, const char* newElement)

Adds an element to this list after the element at the specified position. position as a POSITION
value returned by a previous GetNext, GetPrev, or Find member function call. newElement is

the object pointer to be added to this list.
" POSITION Find(const char* searchValue, POSITION startAfter = NULL)

Searches the list sequentially to find the first CString matching the specified CString. Defaults to

starting at the HEAD of the list. Returns NULL if not found

208 Automating Reuse Support
in a Small Company

:

Source: C:\PETETESTWFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

POSITION FindIndex(int nIndex)

Uses the value of nIndex as an index into the list. It starts a sequential scan from the head of the
list, stopping on the nth element. nIndex is the zero-based index of the list element to be found.
Returns a POSITION value that can be used for iteration or object pointer retrieval; NULL if

nlndex is negative or too large.

~CStringList()

void Serialize(CArchive&)

void Dump(CDump'Context&)

void AssertValid()

Protected Members

struct CNode(CStringList)

CNode* NewNode(CNode*, CNode*)

void FreeNode(CNode*)

209 Automating Reuse Support
in a Small Company

Source: C:\PETETESTWFCH\AFXCOLL.H
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98

Attributes

Protected Members

CNode* m_pNodeHead

'CNode* m_pNodeTail

int m_nCounf

CNode* m_pNodeFree

m_pBlocks

int m_nBlockSize

210 Automating Reuse Support
"in a Small Company

overview of the class. The dialog allows you to view information about any of the classes. Select a class

in the list box, and you will see the class overview in the box below

If you want more information about the class, use one of the three buttons on the right of the dialog to
view either a class hierarchy (using OMTool), documentation (using Word) or both (using Java

compatible Netscape).

View Hierarchy
This button processes the file which contains your selected class and displays a class hierarchy based

- around that class using OMTool to display the class hierarchy diagram.

View Documentation
This button processes the file which contains your selected class and generates documentation for the

class, and any specified associated classes, which can be viewed using Word for Windows®, or other

RTF compatible application.

View Web Page
This button processes the file which contains your selected class and generates a class hierarchy
and documentation for the class, and any specified associated classes, which can be viewed
using Netscape 2.x, or other Java compatible Web browser (Java generated class hierarchies are

only available when running ReThree-C++ under Windows® 95).
A

Automating Reuse Support
in a Small Company

