
Durham E-Theses

Automating reuse support in a small company

Biggs, Peter J.

How to cite:

Biggs, Peter J. (1998) Automating reuse support in a small company, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5038/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5038/
 http://etheses.dur.ac.uk/5038/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Automating Reuse Support 
in a Small Company 

Peter J. Biggs 

The copyright of this thesis rests 
with the author. No quotation 
from it should be published 
without the written consent of the 
author and information derived 
from it should be acknowledged. 

PhD Thesis 

University of Durham 

Department of Computer Science 

Centre for Software Maintenance 

Supervisors: Cornelia Boldyreff and Keith Bennett 

1 3 JAl^ 1999 
August 1998 



/ 
Abstract 

Software engineering has been facing a crisis for several years now - there is more demand for new 

software than there is abihty to supply. Software reuse is a potential way to tackle the problems caused by 

the software crisis with its promises of increased productivity and cheaper development costs. Several 

software reuse successes have been reported, but these have been predominantly in large, well structured 

companies. However, there are numerous smaller companies that could also benefit from reuse i f it were 

made available to them. 

This thesis addresses these issues by implementing a reuse programme in a small company. An 

incremental approach to reuse introduction is adopted, following the Seven Steps to Success, and 

'lightweight' processes are recommended to support the reuse programme. A prototype tool set, ReThree-

C++, was developed to automate support for the reuse programme. 

The results of the case study are presented. The reuse programme was successfiil, with benefits to the 

company including both increased speed of production and fmancial gains from selling reusable 

components. The challenges faced are also identified. Details of the tool set giving automated support for 

reuse are also presented. The tool set is an approach to reuse repository control which also integrates 

information abstraction from C++ source code to generate class hierarchy charts and software 

docimientation automatically. It helps developers store, retrieve, understand and use reusable 

components. The usefiilness of the tool set is shown with an experiment and as part of the case study. 

The purpose of the thesis is to show that small companies can implement reuse, and that the method 

presented supports the introduction of a reuse programme. It concludes that although challenges were 

faced, great benefits can be gained by using the method with automated support for reuse in a small 

company. 

Automating Reuse Support 
in a Small Company 



Acknowledgements 

The author would like to thank Dr. Cornelia Boldyreff and Prof. Keith Bennett for their advice, assistance 

and encouragement as supervisors for this research. 

This work has been funded by the Engineering and Physical Sciences Research Council. 

The author would also like to thank Nigel Hope, Andrew Wilson, Steve Anderson, Sary Andiyapan and 

all the staff at Public Access Terminals for their help, support and conteibution towards this research. 

Thanks also to Richard Mortimer and Elizabeth Burd for their useful advice and support throughout the 

time of this research. 

This Ph.D. thesis is dedicated to Kenneth and Marian Biggs. My hfe is their success. 

Automating Reuse Support 
in a Small Company 



Declaration 

This thesis is solely the work of the author, and no part of the thesis has been submitted for a degree at 

this or any other imiversity. The copyright of this thesis rests with the author. No quotation from it should 

be published without his prior written consent and information derived from it should be acknowledged. 

i i i A utomating Reuse Support 
in a Small Company 



Table of Contents 

C H A P T E R 1: INTRODUCTION 1 
1.1 Overview 5 
1.2 Statement of Problem 6 
1.3 Context of Work 7 
1.4 Criteria for success 8 

C H A P T E R 2: T H E F I E L D O F SOFTWARE R E U S E 10 
2.1 Introduction 10 
2.2 Definitions of Software Reuse 10 
2.3 Motivations for Reuse 13 
2.4 Benefits of Reuse 14 
2.5 Issues in Reuse 16 
2.6 Technological Issues 17 
2.7 Organisational Issues 27 
2.8 Conclusions 30 

C H A P T E R 3: INTRODUCING T H E R E U S E PROCESS AND O T H E R TECHNIQUES TO 
SUPPORT S O F T W A R E R E U S E IN A SMALL COMPANY 32 

3.1 Introduction 32 
3.2 Small companies 33 
3.3 Introducing new technology and software process improvement 36 
3.4 Risk Analysis 45 
3.5 Techniques to support the introduction of reuse in a small company 46 
3.6 Conclusions 56 

C H A P T E R 4: SOLUTIONS ! 59 
4.1 Introduction 59 
4.2 Study of successful reuse programmes 60 
4.3 Introduction of Structured Processes 63 
4.4 Incremental Introduction of Reuse 64 
4.5 Encouraging ad-hoc Reuse 65 
4.6 Introduction of CASE Tools 66 
4.7 Conclusions 68 

C H A P T E R 5: R E U S E IN A SMALL COMPANY: T H E METHOD 70 
5.1 Introduction 70 
5.2 The Issues 70 
5.3 The Method 72 
5.4 Conclusions 81 

C H A P T E R 6: R E U S E IN A SMALL COMPANY: T H E P R A C T I C E 82 
6.1 Introduction 82 
6.2 The Company 82 
6.3 The Case Study 83 
6.4 Automated support for the reuse programme 94 
6.5 Conclusions 98 

Automating Reuse Support 
in a Small Company 



C H A P T E R 7: E V A L U A T I O N OF RESULTS 101 
7.1 Introduction 101 
7.2 Results of the Reuse Programme 101 
7.3 Tool set Evaluation 108 
7.4 Conclusions 125 

C H A P T E R 8: CONCLUSIONS 127 
8.1 Introduction 127 
8.2 Summary of Thesis 127 
8.3 Reuse in a Small Company Revisited 130 
8.4 ReThree-C++ - The Prototype Tool Set 132 
8.5 Analysis of the research 134 
8.6Further Work 136 
8.7 Final Analysis 137 

C H A P T E R 9: R E F E R E N C E S 141 

C H A P T E R 10: B I B L I O G R A P H Y 156 

APPENDIX A 162 
Al. Software Reuse Questionnaire ^62 

APPENDIX B 164 
Bl. ReThree-C++ • 
B2. Examples of Use 

APPENDIX C 181 
CI. ReThree-C++ Evaluation Questionnaire 181 

APPENDIX D 183 
DI. Group Task Descriptions JS3 
D2. Test Program 185 
D3. Class Information for Group 3 187 
D4. Instructions on the use of ReThree-C++for Group 4 211 

Automating Reuse Support 
in a Small Company 



List of Figures 

F I G U R E 7.1 - T H E RETHREE-C++ USER I N T E R F A C E 105 

F I G U R E 7.2 - E V A L U A T I O N OF T H E SPEED O F E X E C U T I O N OF RETHREE-C++ 109-111 

F I G U R E 7.3 - GRAPH SHOWING T H E SPEED OF E X E C U T I O N OF RETHREE-C++ 112 

F I G U R E 7.4 - T A B L E O F R E S U L T S F R O M C++ E X P E R I M E N T 116 

vi Automating Reuse Support 
in a Small Company 



Chapter 1: Introduction 

This chapter gives an overview of the research conducted in this thesis, including a statement of 

the problem to be addressed, and the context in which the research has been conducted. The title 

of the thesis is "Automating Reuse Support in a Small Company". The research has been fimded 

by the Engineering and Physical Sciences Research Council, and has been conducted at Durham 

University in conjunction with Public Access Terminals Ltd., a small software systems 

development company. 

Over the years smce the computer was first invented, there have been many different pieces of 

software written for various types of machine. Originally, all software was written from fu-st 

principles, with programmers deciding what was needed, then designing and coding the required 

system. With computers flooding the business world, the demand for high quality software has 

increased dramatically. However, the time taken to write software systems has not decreased 

significantly. This creates a problem: there is more demand for software than there is ability to 

supply. This problem is generally known as the software crisis. 

Software reuse (the use of previously written software in the development of new systems) is a 

potential way to tackle the problems caused by the software crisis, and has been a subject of 

research for several years now. The reuse of software is a popular concept in the software 

development industry, with its promises of increased productivity and cheaper development 

costs. Some successes have been reported, but these have been predominantly in large, well 

structured companies with the resources available to invest in reuse. This research is based on 

the thesis that smaller companies, which tend to rate low on the process maturity scale (a 

measure of the quality of the processes used within a company) and do not have the resources 

available to invest in long-term payback schemes, could also benefit from reuse i f it were made 

available to them. 

Automating Reuse Support 
in a Small Company 



The research proposes a method for introducing reuse into a small company which recognises 

that small companies do not have the processes in place or the resources available to carry out a 

ful l scale reuse programme. Using a combination of 'lightweight' processes and automated 

support for the reuse programme, the thesis recommends an incremental approach to the 

introduction of reuse which cuts the initial investment required and reduces the amount of time 

which passes before the benefits of reuse can be realised. 

A case study using the method is conducted in association with a small company. Using the 

working relationship with Public Access Terminals Ltd., this research considers the challenges 

which are imique to a small company and investigates the validity of the method in an industrial 

environment. This has enabled the research to address a real problem, which has not been very 

well considered in software reuse research, namely the combination of technical, organisational 

and logistical challenges which face a small company wishing to implement a software reuse 

programme. 

The research method has been based on Colin Potts' recommendations for using 'industry as a 

laboratory' [Pott93]. Potts suggests that research should address real problems faced by industry 

in order to facilitate improvements, rather than the common 'research-then-transfer' approach 

which is usually attempted with varying degrees of success. He recognises the importance of 

revolutionary research, but emphasises also the importance of evolutionary research. 

This chapter gives an overview of the structure of this thesis, followed by an overview of the 

research which has been performed, a statement of the problem addressed, the context in which 

the research has been conducted and criteria for success. 

Chapter 2 discusses the concepts of software reuse. It considers what software reuse is, why it is 

advantageous to do it, what technologies are currently available to support reuse, why reuse is 

not practised and the difficulties involved in the introduction of reuse into the software 

development process. 

Automating Reuse Support 
in a Small Company 



Chapter 3 looks at technologies which support the introduction of a reuse programme in a small 

company. First, there is consideration of how a small company is defined. This is followed by a 

section which looks at the techniques which can be used when changing the way in which a 

company works, covering the fields of organisational development and process improvement. 

The applicability of object orientation for reuse is considered and reverse engineering and 

software docimientation for reusable components are also investigated. 

Chapter 4 looks at some of the successtul reuse programmes which have been reported and then 

considers some of the altemative methods which were available for conducting this research. 

There are various approaches to the inttoduction of a software reuse programme in a small 

company. These alternatives are considered, along with the course of action which was chosen 

for this research. 

Chapter 5 describes the method which was chosen for the introduction of a reuse prograrrune in 

a small company, given as the Seven Steps to Success. It has been seen m other studies that the 

support of top level management is vital to the success of a software reuse programme. The 

initial work, therefore, involves presenting the case for reuse to the top level management. 

Following this, a study of the company's current working practices is conducted, which leads to 

recommendations being made to the company for techniques which would help the introduction 

of a reuse programme. These techniques are consolidated into a plan, including a pilot project to 

test the implementation of the techniques. The results of the pilot project are collected and 

studied to identify successes and shortcomings of the approach adopted. Based on the results of 

the pilot, a plan for reuse is formulated and implemented within the company with associated 

automated support. 

A case study implementing the Seven Steps to Success is described in Chapter 6. This study 

introduces 'lightweight' processes to the company, integrated with a tool set which aids the 

automation of some of the 'lightweight' processes suggested for the software reuse programme. 

Automating Reuse Support 
in a Small Company 



The method recommended for introducing reuse into the software development process makes 

reuse available without the large initial investment which is usually required for a successftil 

reuse programme. The tool set provides support for object-oriented design, reverse engineering, 

software documentation generation and support for a reuse repository in an integrated 

environment. The combination of tool support for these areas and the 'lightweight' processes 

help to reduce the initial effort required when introducing reuse into a small company. 

In Chapter 7, the results obtained from the case shidy are discussed. Success is identified in 

terms of benefits to the company, and the problems encountered are also identified. The tool set 

developed is evaluated as a part of this research and also by experimentation. The results of 

these evaluations are collected and considered. 

The final chapter of the thesis gives conclusions about the research carried out. The results of the 

research are discussed, along with criticism and further work. 

The purpose of this thesis is to investigate the practicality of implementing software reuse as part 

of the development of software within a small company, and to identify those features of the 

working practices studied which are unique to the small company environment. During this 

investigation, ways to improve the development strategies used in small companies are 

identified, and considered for their apphcability in this case study. 'Lightweight' processes with 

automated support for reuse are suggested and evaluated as ways to assist reuse in the small 

company environment. 

Software reuse is considered as a key topic for investigation due to the improvements in 

productivity and profitability which can be derived from the implementation of a software reuse 

programme. Of considerable interest is the actual process of introducing a reuse programme into 

an environment where there are no standard processes currently defined. The difficulties of this 

task are considered and ways to improve the introduction of reuse into such an environment are 

suggested. 

Automating Reuse Support 
in a Small Company 



This thesis approaches the challenges in software reuse by adopting a practical approach to the 

implementation of, and automation of support for, a reuse programme in a small company. It 

makes two important contributions to the field of software reuse research: 

1. A method for introducing reuse in a small company with a real case study of the 

implementation of a software reuse programme in such a company. The programme is 

described in terms of the recommendations made, the work done, problems encountered and 

success achieved. 

2. A practical, fast and simple to use tool for automating reuse support in a small company. 

This tool aids in storing and retrieving reusable components, as well as reverse engineering 

and re-documenting source code to provide information about the reusable components. 

1.1 Overview 

The benefits which the reuse of code can bring have interested many software development 

companies, and studies have been conducted considering the challenges facmg companies 

setting up a reuse programme. Both successes and failures have been reported, but the successes 

tend to be in large, well stiiictured companies with the resources available to invest m reuse 

[Bigg89b]. Smaller companies could also benefit from the reuse of their software i f the 

principles and techniques which support software reuse were made more available to them. 

This research attempts to make reuse available on a smaller scale by encouraging small company 

developers to design with reuse in mind. This wil l help to make reuse available 'in the small', 

where companies do not have the processes in place, or the time and resources, to support highly 

structured reuse frameworks. There is consideration of reverse engmeering and re-

documentation to allow developers to see how object-oriented (00 ) design and software 

documentation can aid them in understanding their previous developments. This wil l encourage 

more structured development processes and help in the maintenance and reuse of current code. 

5 Automating Reuse Support 
in a Small Company 



A study of several 0 0 design methods has been conducted, and their applicability to software 

reuse was considered. The study suggested a notation for representing the structure of a software 

system. This allows the ideas to be applied to C-H- source code, giving a diagrammatic 

representation of the classes within the code, as well as the structure of the inheritance hierarchy. 

The representation is associated with a system of using information taken from the static 

analysis of the source code to generate documentation for the code automatically, based on the 

comments within the code. This automatically generated documentation is used to index and 

classify code components for a reuse library. The integration of the tools for reverse 

engineering, re-documentation and reuse support form an integrated enviroimient automating 

support for reuse in a small company. 

1.2 Statement of Problem 

It has been shown that software reuse can offer great benefits to companies when used 

effectively. Many success stories have been quoted, from Raytheon's 50% increase in 

productivity due to a reuse rate of 60% [Lane84], to GTE's saving of $1.5 Million from a reuse 

factor of 14% [Prie90], to the Japanese software factories' claim of annual productivity increases 

of 20% by implementing a software reuse programme [Mats84]. 

It would be foolish to claim that software reuse is the solution to all the problems that have 

caused the current software crisis. Achieving software reuse on a level at which substantial 

benefits wi l l be gained is a difficult task, and requires a great deal of commitment and effort. 

Tracz [Trac88b] emphasises that "there is no free lunch when it comes to software reuse". There 

are, however, techniques which can help a company to maximise its resources and improve its 

productivity. It has been shown that reuse offers great benefits i f used effectively in the right 

environment; but this raises the questions: how are software reuse techniques best employed; 

and what is the right environment for software reuse to prosper? A l l the published examples 

quoted above have been large, well stmctured companies, with top level management support 

6 Automating Reuse Support 
in a Small Company 



for the reuse programme. This suggests that software reuse tends to prosper in such an 

environment; but what about the small, less structured companies, whose hvelihood depends on 

the ability to produce their product as quickly as possible, while trying to keep standards high 

and their maintenance costs low? To them, the benefits of software reuse could be invaluable. 

There are two major factors that inhibit reuse which wil l be considered in this research. The furst 

factor is classified as the technological issues in reuse. These include the lack of reusable 

components available to a developer (either because they do not exist, or they are not easily 

available), that the parts needed cannot be found, or cannot be understood or integrated into the 

current system even when they are found. The second factor includes managerial and 

sociological inhibitions, otherwise known as organisational issues. These are evidenced by the 

lack of processes to support reuse, the lack of commihnent to a reuse programme and the NIH 

(not invented here) syndrome, where developers are wary of using code that they have not 

written themselves. 

The research wil l address the fust factor by making reuse readily available through automated 

support for the reuse process. This wil l aid the identification, classification and retrieval of 

reusable components. Guidelines wil l also be made on introducing reuse in the small company 

environment using 'lightweight' processes, which are tested in practice in an mdusfrial 

collaboration. This addresses the second factor. 

1.3 Context of Work 

The basis of this research has been a method called "mdustry-as-laboratory", as recommended 

by Colm Potts [Pott93]. This involves bringing researchers into close contact with industry, so 

that real problems can be identified first-hand. He suggests one of the reasons that the current 
0 

state of practice m industry is so far behind the leading research being done in software 

engineering is that the "research-then-transfer" approach has been so predominant in the 

research community. 

7 Automating Reuse Support 
in a Small Company 



In line with this suggested research technique, a project has been undertaken in collaboration 

with a small software development company. Public Access Terminals Ltd. (P.A.T.). This 

allows the method for the inttoduction of reuse proposed within the thesis to be evaluated in 

practice. It has already been shown that there is a lack of reported research on software reuse 

within small companies. The examples quoted in section 1.2 are large companies whose 

structured processes have been updated to incorporate reuse. Small companies tend to have ad-

hoc and unsttiictured processes for software engineering, yet still have considerable success in 

the market place. 

There is also a lack of research being done into how reuse can be capitahsed upon in an 

environment where there are no sttiictured processes available with which to integrate a reuse 

programme. Interesting results have been gained from the work done with P.A.T. in their small 

industt-ial environment. It has been found that ad-hoc reuse is a standard practice. The problems 

often associated with reuse, such as the storage and reteieval of reusable components are much 

less significant because of the small scale on which their work is done, and the narrow domain 

of the software being developed. However, in order to achieve further benefits from reuse, it has 

been seen that more formalised 'lightweight' processes can be inttoduced. 

1.4 Criteria for success 

In evaluating the results of the method for implementing a reuse programme discussed in this 

thesis, the following criteria for success wil l be used. Three main issues wil l be considered: 

1. Is the method for inttoducing a reuse programme successftxl? Success for a reuse programme 

can be measured in many ways. However, the most clearly identifiable measure of success is 

identifying whether reusable components are built, and to what extent they are reused. 

Automating Reuse Support 
in a Small Company 



2. Does the method bring benefits to a small company? As identified later in section 2.4, 

benefits wil l be considered in terms of: 

• Increased speed of production 

• Financial benefits 

• Increased quality of software 

• Ease of mamtenance 

3. Does automated support aid a reuse programme? The automated support wil l be considered 

m terms of the benefits brought to a reuse programme and its usefuhiess within a small 

company. 

In order to measure these considerations, a reuse programme using the method was implemented 

m a small company. An experiment was also conducted to investigate the automated support for 

a reuse programme. The research wil l be considered successful i f all three questions posed 

above can be answered affumatively. 

Automating Reuse Support 
in a Small Company 



Chapter 2: The Field of Software Reuse 

2.11ntroduction 

This chapter gives an overview of the field of software reuse. It starts by defining what reuse and 

reusabihty are, then goes on to discuss why reuse is important and some of the motivations for 

doing it. The benefits which come from successful reuse are outlined, followed by the two major 

sets of issues which must be addressed in order for reuse to be successful. These are 

technological and organisational. Technological issues are discussed in detail, focusing first on 

the reuse of software components, then looking at the reuse of higher level components. The 

section on organisational issues considers some of the psychological, sociological and economic 

factors which can affect a reuse programme. The chapter fmishes with a review of the points 

from the survey of the field of software reuse which are important in this thesis. 

2.2 Definitions of Software Reuse 

The concept of software reuse has slowly developed over the past 30 years as time, research and 

experience have modified people's perception of the idea of reuse. The first recognised 

publication on reuse in software engineering is Mclhoy's [McI168] view foreseeing software 

development becoming the process of constructing software from standard interchangeable 

building blocks. He suggested that the software components industry should be comparable to 

the hardware components industry. He says: " I would like to see the study of software 

components become a dignified branch of software engineering. I would like to see standard 

catalogs of routines classified by precision, robustness, time-space requirements and binding 

time of parameters." This view mainly considers the reuse of source code. 

10 A utomating Reuse Support 
in a Small Company 



Freeman [Free83] expanded this view of reusability to cover a greater area of the software 

development process, when he said: "This leads us to defme the object of reusability to be any 

information which a developer may need in the process of creating software." He goes on to 

describe five main levels at which reusability should be considered, namely: code fragments, 

logical structures, functional architectures, extemal knowledge and environment-level 

information. 

In the Software Engineer's Reference Book, Hall and Boldyreff [Hall91] describe software reuse 

as "the use of a given piece of software in the solution of more than one problem". They go on 

to further clarify their view by explaining what they do not consider to be classified as software 

reuse: portability, maintenance and reconfigurability. 

Perhaps the simplest defmition of reuse was offered by Prieto-Diaz and Freeman [Prie87], when 

they stated that "Ideally, reuse is a matching process between new and old situations, and, when 

matching succeeds, duplication of the same actions". They suggest that two levels of reuse 

should be considered: "(1) the reuse of ideas and knowledge and (2) the reuse of particular 

artefacts and components". 

Hooper and Chester [Hoop91] state that: "Two possible defmitions of software reusability are: 

1) the extent to which a software component can be used (with or without adaption) in multiple 

problem solutions; 

2) the extent to which a software component can be used (with or without adaption) in a problem 

solution other than the one for which it was originally developed. 

Defmition 2 tends to suggest that reuse is incidental to the development process, whereas 

defmition 1 tends to suggest that reuse is a worthy goal in and of itself, and therefore requires 

plaiming and effort to achieve it." 

11 A utomating Reuse Support 
in a Small Company 



Tracz [Trac90] would argue that definition 1 above is the only definition of software reusability, 

saying that, "software reuse ... is the process of reusing software that was designed to be reused". 

He goes on to describe "software salvaging, that is reusing software that was not designed to be 

reused", which would be his description of definition 2 above. 

Yu [Yu91] defines reuse as "software engineering activities which focus on the identification of 

reusable software for straight import, reconfiguration, and adaption for new computing system 

applications". He goes on to describe the connection between reuse, re-engineering and reverse-

engineering: "Once successfully reverse-engineered usable parts from existing software systems 

and re-engineered these parts for a project specific adaptation, this success wil l then qualify for a 

case of apparent software reuse. Software reuse may depend on the reverse-engineering and re-

engineering technologies, although software can be written such that it can be easily reused 

without the need of these two technologies." 

Bollinger and Pfleeger [Boll90] expand on this view of reuse in their definition. "Reuse is the 

process by which software work products (which may include not only source code, but also 

products such as documentation, designs, test data, tools, and specifications) are carried over and 

used in a new development effort, preferably with minimal modification." 

For the purposes of this research, reuse is defined as the use of any previously written software 

work product in the development of a new software system, whether the work product has been 

specifically, designed for reuse, or salvaged from some previous development. 

There are many examples of software reuse already available in the software industry. Some of 

the more common are: the libraries associated with windowing systems, mathematical 

subroutine libraries and clip art. These are all software components that can be used with or 

without modification in numerous different applications. 

12 A utomating Reuse Support 
in a Small Company 



2.3 Motivations for Reuse 

The motivations for reuse are well summarised by Geary [Gear88]: "There is a finite limit to the 

amount of software that can be developed annually from first principles, but customers continue 

to make ever increasing demands for new software. Often, new software is similar to other 

software developed elsewhere, but with sufficient difference m design and fimction to make the 

existing software unsuitable for reuse in the new design without modification of either the new 

design or the module. Invariably, in this situation, the decision is taken to design new software. 

I f suppliers are to meet ever increasing demands, vast gains in productivity must be 

accomplished." 

Software reuse is an area of software development that is becoming increasingly significant. 

Arthur [Arth83] quotes Johann W. von Goethe, who said, "Everything has been thought of 

before, but the problem is to think of it again". This has been confirmed by software 

development practices. In a study done at the Raytheon Missile Systems Division of the U.S. 

Department of Defence, it was found that between 40-60% of their applications were doing 

essentially similar functions which could be standardised into a fairly small set of "standard 

reusable modules" [Lane79]. Kapur, quoted by Jones [Jone84], when studying commercial 

banking and insurance applications, noted that about 75% of the functions were common to 

more than one program. Jones goes on to make a tentative conclusion that "of all the code 

written in 1983, probably less than 15 percent is unique, novel, and specific to individual 

applications." 

There is one main aim in the implementation of a reuse programme, and that is increased 

productivity. The reason that software reuse is becoming such a popular concept is that it 

promises faster software development processes and decreased development costs. In a small 

company environment, the speed of production and time to market are critical factors for 

success. 

13 A utomating Reuse Support 
in a Small Company 



However, in spite of the interest shown in the reuse of software, there has not been a great deal 

of work- on the actual implementation of systems to support reuse. Maarek [Maar90] says 

"Although software reuse presents clear advantages for programmer productivity and code 

reliability, it is not practiced enough. One of the reasons for the moderate success of reuse is the 

lack of software libraries that facilitate the actual fmding and understanding of reusable 

components." DeMarco [DeMa84] estimated that in the average software development 

environment, only about 5% of code is reused. 

2.4 Benefits of Reuse 

There are four main areas where the introduction of a reuse programme can benefit a company 

willing to commit their time and resources to the success of the programme. These four areas 

are: 

• increased productivity 

• reduction of development costs 

• increased quality of software 

• ease of maintenance 

Each of these benefits wil l be considered in more detail in the following sections, with reference 

to reported reuse successes where available. 

2.4.1 Increased Productivity 

Reuse offers significant increases in productivity because software is simply being composed 

from what is currently available, rather than being produced from scratch. Therefore, every 

software component that is reused is one that does not require effort to produce. Jones [Jone86] 

reports productivity increases in the range of 50% for projects with high levels of reuse. 

Lanergan and Grasso [Lane84] tell how the Information Processing Systems Organisation of 

14 A utomating Reuse Support 
in a Small Company 



Raytheon's Missile Systems Division experienced a 50% increase in productivity through the 

standardisation of functions and logic structures into reusable modules. Matsumoto [Mats84] 

reports a 20% increase in productivity per year (measured in terms of lines of code per month) in 

the field of telephony and process control software, an area in which reuse sceptics doubted the 

possibility of reuse. Prieto-Diaz [Prie91] quotes Fujitsu's experience, in which they found that 

after introducing reuse techniques, the number of projects which were completed on schedule 

rose from 20% to 70%. 

2.4.2 Reduction of Development Costs 

Less effort and time in software production leads to a reduction of development costs. This has 

been shown in practice. In 1987, GTE [Prie90] achieved a reuse factor of 14% in their software 

development, which saved the company $1.5 Million in software development costs. They were 

predicting that by 1995, they would be experiencing a reuse factor of 50%, which would save 

them a total of $10 Million. 

2.4.3 Increased Quality of Software 

I f high quality components are being reused, then the resulting software should meet high 

standards. IBM achieved a reuse factor of 50% in their software development. They also found 

that, along with,this, they obtained an order of magnitude improvement in errors detected. 

2.4.4 Ease of Maintenance 

Tracz [Trac87a] claims that the greatest payoff from reuse is realised La ease of maintenance, 

and a corresponding reduction in maintenance costs. This is because, as mentioned in section 

2.4.3, i f high quality components are reused, the resulting system wil l be of a high standard. 

Also, reusable components should be well abstracted and documented, allowing them to be 

15 A utomating Reuse Support 
in a Small Company 



easily understood. He reports maintenance cost reductions of up to 90% when reusable code, 

code templates and application generators have been used to develop new systems. 

2.5 Issues in Reuse 

There are many reasons for the lack of reuse. Standish [Stan84] recognises that there are two 

main divisions to the issues associated with reuse, namely technological and organisational. 

Tracz [Trac90] focuses on three areas in reuse when he introduces "the three P's of software 

reuse: product, or what do we jeuse, process, or when do we apply reuse, and finally personnel, 

or who makes reuse happen." Basili et al. [Basi87] also consider the same three areas, further 

characterising them as "the reuse of knowledge that exists only within the minds of people 

(informal knowledge), reuse of specified plans on how to perform certain activities or structure 

and document certain products (schematized knowledge), and reuse of tools and products 

(productized knowledge)." 

It has been recognised that there are several pre-conditions which must be met in order for a 

developer to be able to incorporate a reusable component into their software system [Frak92]. 

These are: 

1. The component must exist. 

2. The component must be available to the developer. 

3. The developer must be able to find the component. 

4. Once found, the developer must be able to understand the component. 

5. Based on an understanding of the component; the developer must identify the component as 

being valid for the current system. 

6. The developer must be able to successfully integrate the component into the current system. 

It can be seen that the reuse of a component is no easy task. Many different techniques must be 

employed in order for these pre-conditions to be met. These include structured software 

16 A utomating Reuse Support 
in a Small Company 



„ engineering [Somm96] to provide reusable components (pre-condition 1), component 

repositories [Wolf92] to store software components (pre-condition 2), indexing and library 

searching techniques [Frak88],[Prie87] to facilitate repository searching (pre-condition 3), 

program comprehension to help in understanding the components (pre-condition 4), systems 

analysis to identify the component as one which wil l fit within the current system (pre-condition 

5) and finally structured interfaces and systems integration techniques to allow the developer to 

incorporate the component into their system (pre-condition 6). 

The next two sections wi l l consider the technological and organisational issues associated with 

reuse in more depth. 

2.6 Teclinological Issues 

The technological issues in reuse cover many different areas, ranging from domain analysis to 

the creation of reusable components to the storage and reuse of those components. Wirfs-Brock 

et al. [Wirf90] suggest that there are three types of software entities that can be reused: 

• components - these are atomic entities that can be used in a nimiber of different programs. 

Examples cited are lists, arrays, strings, radio buttons and check boxes. 

• frameworks - these are skeletal structures of programs that must be fleshed out to build a 

complete apphcation. A cited example is a windows system, which is a framework on which 

windows apphcations can be built reusing the windows principles on which the system is 

based. 

• applications - these are complete programs. Cited examples include word processors and 

spreadsheets. Modem spreadsheets are good examples of reusable applications, because 

they are generic enough to be used in many different apphcation domains. 

In this section on the technological issues in reuse, it is mainly the reuse of components and 

frameworks which wil l be considered. Hooper and Chester [Hoop91] state that reuse can be 

17 Automating Reuse Support 
in a Small Company 



considered on two levels: horizontal reuse and vertical reuse. Horizontal reuse is reuse across a 

broad range of application areas or domain, whereas vertical reuse is the reuse of components 

within a given domain. It is suggested that horizontal reuse, such as mathematical subroutines 

and input/output function libraries, has been the most successful form of reuse thus far; 

however, the greatest potential benefits are seen in vertical reuse. 

In order to capitalise on vertical reuse, domain analysis should fu-st be performed. Domain 

analysis is a technique in which an application domain is studied and the information gathered is 

analysed in order to understand the problem domain, and investigate the potential for reuse. 

Kang [Kang89] describes it thus: "Domain analysis is a phase of the software Ufecycle where a 

domain model, which describes the common functions, data and relationships of a family of 

systems in the domain, a dictionary, which defines the terminologies used in the domain, and a 

software architecture, which describes the packaging, control, and interfaces, are produced. The 

information necessary to produce a domain model, a dictionary, and an architecture is gathered, 

organized, and represented during the domain analysis." 

It is vitally important to include domain experts when conducting a domain analysis. These are 

people who work in the domain being studied. Their knowledge of the domain is therefore 

uru-ivalled. Without such domain expertise, it wil l not be possible to do the domain analysis in 

sufficient depth. Hutchinson and Hiiidley [Hutc88] report that the goals of their domain analysis 

were: 

to discover the functions that underwrite reusability, 

to focus the domain specialist's attention on reuse, 

to help the domain specialist ascertain reuse parameters, 

to discover how to redesign existing components for reuse, 

to organise a domain for reuse. 

18 Automating Reuse Support 
in a Small Company 



Once the domain analysis has been conducted, commonalities in the software development 

process can be discovered, and potential areas for reuse identified. Domain analysis is a pre-

. requisite for vertical reuse, or reuse in a single domain. Once the commonalities in development 

and, thus the potential for reuse, have been discovered, these can be capitalised on by the 

production of reusable components and their storage in an appropriate repository. Domain 

analysis is a costly process, but the benefits that can be derived from it are very worthwhile. 

There tend to be fewer domains to be analysed in a small company, and the domains are often 

narrow, making domain analysis an easier task. However, with the small amount of information 

available about the domains, it is much more difficult to cross reference the work being done to 

identify commonalities and capitalise on useful abstractions. Vertical reuse is the most obvious 

type of reuse in the small company environment. Horizontal reuse would be limited by the small 

number of domains under consideration. 

2.6.1 Reuse Technologies 

Biggerstaff and Richter [Bigg87] state that the approaches to reusability can be classified into 

two basic groups: composition technologies and generation technologies. The former are 

characterised by the fact that the components are atomic and, ideally, unchanged in their reuse. 

The latter are not so easily identifiable as entities, but their reuse is more a matter of execution 

than composition, as is the case of reusing design principles encoded in an apphcation generator. 

2.6.2 Composition technologies 

Moineau et al. [Moin90] note two main problems in the area of composition technologies: "the 

first is the specification or description of the component so as to allow easy retrieval and so that 

the user can understand it properly for future adaptation. The second problem is the definition of 

the composition principles by which components are combined into target systems." 

19 A utomating Reuse Support 
in a Small Company 



Burd and McDermid [Burd93a] conducted a study of the factors which limit the appeal of reuse 

to project managers and software developers. They found that these inhibiting factors include, at 

a technical level: 

• development - Knowing what kind of software is reusable, and equally difficult is knowing 

how to develop a software component which is potentially reusable. 

• storage - Once we have developed an item of reusable software, how, and where, should it 

be retained for future retrieval and reuse? 

• retrieval - I f we are to reuse software then we must be able to easily find what we require, 

matching what is available with our needs. 

• verification - How can we be sure that the component which we are proposing to reuse 

actually performs the functions that it claims it does in the environment in which we use it? 

• evaluation - How can we judge that the functions we require from our reusable unit and the 

functions that it provides are the same? 

• modification - I f our evaluations have shown that differences exist between the reuse units 

and our requirements then how do we perform the necessary modifications, and what effect 

wil l this have on the reusable unit including the results of previous verifications? 

• integration - What will the effect be on the reusable unit of attempting to integrate it in our 

development? 

These factors are very similar to steps leading to successful reuse given by Frakes [Frak92]. He 

considers that "every software lifecycle object that is created from scratch or is modified is, in a 

sense, a reuse failure". Each of the above factors wil l be considered in greater depth. 

Development 

There are two ways of producing reusable components: either extracting them from code aheady 

written, or designing them from scratch. As noted earlier, Tracz [Trac90] considers the former to 

be 'software salvaging' and emphasises the importance of planning for reuse. Biggerstaff and 

20 Automating Reuse Support 
in a Small Company 



Perils [Bigg89a] consider the size of reusable components. They note that small components wil l 

be less specific, and therefore more reusable. It would, however, take many of these small 

components to create a software system. It would also mean that a lot of work would be needed 

to integrate die large number of components required within the software system. On the other 

hand, i f the components are large, they wil l be more specific, and therefore less reusable. 

However, the benefits gained from the reuse of a single large component wil l be greater. 

Weber [Webe91] suggests that all reusable code should look alike, and recommends the 

'Canonic Software Component', which could be a standard for all software components. He 

goes on to suggest the idea of a Concurrently Executable Module (CEM), which has four 

constituent parts: the export interface, the body, the import interface and the common 

parameters. These should be standardised throughout all modules in a reusable library, in order 

to allow different parts to 'plug together'. This concept is often known as 'black-box' reuse 

[Prie93]. 

Storage 

The issues associated with storage are: what should be stored in a component library and how 

they should be stored. Wolff [Wolf92] claims diat the 80/20 rule applies to a software 

components library. He says "the rule applied to reuse says that 20% of the components will 

bring 80% of the reuse savings. Most of the other S0% of the reusable parts make the library and 

the tools acceptable to the developers." Therefore, within reason, it is wise to add as many 

components to the library as possible, provided they meet acceptable quality standards. 

In terms of how the components are to be stored, one of the most popular suggestions to have 

emerged is that of faceted classification. This is where the library space is dynamic, and 

components are assigned 'facets' dependent on their main features. It is the combination of these 

facets that is used to classify the component. I f no facet combination currently exists in the 

library space to support a new component, then a new section is added for it. Prieto-Diaz and 

21 A utomating Reuse Support 
in a Small Company 



Freeman [Prie87] extol the advantages of using this approach: "Faceted schemes are more 

flexible, more precise, and better suited for large, continuously expanding collections." 

Retrieval 

Geary [Gear88] suggests that effective methods of searching software libraries would be 

essential to software reuse: "A large library of software components would be too vast to 

commit to human memory. To be a success, a software component library must be supported by 

comprehensive search, retrieval and design tools that are able to assist the designer in creating a 

design that takes advantage of available components." Frakes [Frak88] says: "A ftindamental 

problem in software reuse is the lack of tools to locate potential code for reuse." He goes on to 

argue that information retrieval systems have the power and flexibility to ameliorate this 

.problem, Maarek [Maar90] discusses the differences between an Artificial Intelligence, or 

knowledge-based approach to reuse library support tools (such as [Prie87], [Alle89]) and an 

Information Retrieval approach. She notes that the A I approaches are often 'smarter' than the IR 

systems; however, they rely far more heavily on domain analysis, which can rapidly get out of 

hand as the library grows. She opts for the IR approach, considering that it "presents clear 

advantages over the A I approach in terms of human cost, portability and scalability." 

Although a significant amount of work has gone into researching this area of software reuse 

support, it is perhaps one of the less critical areas. The Japanese software factories claim that 

they have been achieving reuse factors of up to 85% using only simple keyword searching 

techniques on the components in their repositories [Stan84]. This would suggest that other areas 

hindering reuse need to be addressed as well as the retrieval issues associated with software 

libraries. 

In a small company, the size of the reuse repository is likely to be small, making overly 

complicated storage and retrieval procedures too cumbersome and time consuming. It would be 

better to have a repository that is simple to use and requires little effort to maintain. 

22 A utomating Reuse Support 
in a Small Company 



Verification 

This is a difficuh issue. It is very hard to prove that a particular software component does what 

the associated docunientation claims it does. However, without faith in the documentation, the 

time consuming process of inspecting the component in detail must be carried out. This is 

obviously not desirable. Frakes and Nejmeh [Frak88] recommend that with each component, 

reuse statistics and reuse reviews be kept. These would record how many times a component has 

been reused, and how the reusers felt about the component. I f the component has been reused 

successfully in a similar way to the current developer's intended use, the reviews would either 

instil or reduce confidence in the component, based on the experiences of others. 

Evaluation 

To evaluate the quality of a reusable component, Tracz [Trac87b] recommends keeping a 

maintenance record with each component, which would record such things as the type, date and 

severity of any problems discovered with the module, and whether those problems have been 

resolved. By considering such a record, a potential reuser wil l be able to gain a better 

appreciation for the quality of the component, or the lack thereof This technique, and the one 

described by Frakes and Nejmeh (referenced above) both rely heavily on the reusers and 

maintainers of a product to be conscientious in filling in the associated documentation when the 

component is reused/modified. Also, they would not help the first developer who wishes to reuse 

a particular component. 

Modification 

This is a very unportant issue in a reuse oriented environment, and can be considered to be an 

organisational issue as much as a technical one. I f it is discovered that a component within the 

repository requires a change, how should the change be done, and what should be done to 

23 Automating Reuse Support 
in a Small Company 



inform users of this change? The fust of these questions is a technical issue, and would be 

considered maintenance of the component. The second presents far more of a problem. Utilising 

Tracz's [Trac87b] idea of the maintenance record, future users will be informed of the change. 

However, what about those developers who have aheady reused the unmodified component. 

Should they be informed of the change, and i f so, what mechanisms should be used to inform 

them? Babisch [Babi86], in his book on Software Configuration Management, calls this scenario 

'the double maintenance problem'. He notes that changes must be made identically in all copies 

of the software to prevent a proliferation of multiple versions. He recommends the first principle 

of configuration management, which is "to avoid multiple copies of the same information". This, 

however, would defeat the purpose of reusable software. Three possible solutions are: 

1) to give no guarantee on any software taken from the repository. The software is 'sold-as-

seen', and once it has left the repository, the responsibility of the repository administrator 

and component creator end. This avoids the problem rather than solving it. 

2) make information concerning the change publicly available. It is then up to developers who 

have reused the component to fmd out about the change, and take necessary action i f they 

so desire. This would work only i f the information on changes to software in the library 

managed to reach all the users of the repository. 

3) keep track of all developers who have used a particular component, and inform them 

directly of any modification information. This is a far more complete approach, and the 

improved communication between users and administrators of the repository should mean 

that the repository wil l be more responsive to change. It would, however, be a huge 

configuration management problem for the repository administrators, and would create 

considerably more work for them. 

Integration 

Work has been done in the area of integration of components, such as the development of 

module intercormection languages. The Library Interconnection Language (LIL) proposed by 

24 A utomating Reuse Support 
in a Small Company 



Gougen [Goug86] is a good example. LIL is a language for defining the way in which software 

components should be 'plugged together'. Module interconnection languages will work only 

with components that are highly encapsulated and have well defined interfaces. 

2.6.3 Generation Technologies 

Biggerstaff and Perils [Bigg89a] distinguish three subclasses of generation based reuse systems: 

• Language based systems 

• Application generators 

• Transformational based systems 

Language based systems are those in which the specification language is "well defined, hiily 

represents a problem domain...and hides the details of implementation from its user." A prime 

example of a language based system is SETL [Schw86], a language which represents 

computations as operations on mathematical sets. 

Application generators are systems which caphire a commonality within architectural patterns, 

and reuse the pattern to produce instances of a particular application type. Prime examples of 

this kind of reuse are lex and yacc in the UNIX^ system. These are tools which have captured 

the commonalities in lexical analysis and compilation to provide a means by which apphcations 

of these types may be generated. 

Transformation based systems work on the principle of generating a product by successive 

application of ti-ansformation rules. Cheatham [Chea84] describes h-ansformation based systems 

as having two mam mechanisms for refining an absttact program into a concrete, executable 

program. The mechanisms are: defmition and transformation. The absti-act program must be 

defined in a machine processable form. Cheatiiam describes this as "providing a binding (or 

25 Automating Reuse Support 
in a Small Company 



value) for a procedure, type, data object, or what have you." The transformation is based on a set 

of transformation rules for "replacing some high-level construct by a (more) concrete construct 

that realises the intended fiinction." Cheatham has done experiments in two settings, rapid 

prototyping and custom tailoring. He found that the techniques are a valuable alternative to 

conventional programming techniques. 

The REFORM project generated a transformation tool [Bull94] for translating legacy code into 

an abstract wide spectrum language, then uses transformations to re-structure that code. The 

structured software can then be translated back into the original software language. Mortimer 

[Mort96] describes further work on the tool to include transformations for data structures. This 

allows legacy code to be reused by transforming it into structured software. 

2.6.4 Reuse of higher level components 

Source code is not the only object of reusability. Reuse can, and should, be done at higher levels 

of abstraction in software development i f real benefits are to be gained. Jacobson et al. [Jaco92] 

suggest that "what can give even higher productivity enhancement is reuse in other development 

phases. Other parts of the construction phase may benefit when reusing entire designs in several 

systems. Additionally, reuse should also be viewed as natural during analysis and testing." 

Atkinson [Atki91b] suggests two distinct activities that need to be considered in object-oriented 

design: "how to produce software components with maximum potential for reuse - design for 

reuse - and how to design new systems making the most effective use of such components -

design with reuse." Meyer [Meye94] agrees with this basic classification, calling the two 

categories "reuse consumers and reuse producers". He feels that the two are not disjoint groups. 

Tracz [Trac90] notes that software reuse generally ends by using code, but may start at higher 

levels of abstraction, depending on: 

UNIX is a trademark of Bell Labs. 

26 Automating Reuse Support 
in a Small Company 



1) how much effort an organisation is willing to invest in preparing products for reuse 

2) how effectively higher-abstraction products can be linked to available implementations 

3) how effectively implementations are generahsed 

4) how effectively the software process supports software reuse 

Chao [Chao93] questions the maturity of software reuse technology. He suggests that "the 

methodologies to implement reuse have not been fully developed, tools to support a reuse 

process are lacking, and standards to guide critical software reuse activities have not been 

established." 

It is much more difficult to reuse components at higher levels of abstraction. However, the 

benefits that can come from reuse of a high level component can make the extra effort 

worthwhile. For example, i f a design component is reused, then the code associated with that 

component can also be reused without any flirther work. However, for this type of reuse to be 

successful, there must be traceability between the different levels of abstraction [Mats84]. When 

traceability is maintained, code components meet their requirements, and are implemented as 

specified in their design, developers can be confident that they can incorporate the component 

into their system based on the specification of the component's functionality. These greater 

benefits are only available in a structured software development environment with well defmed 

processes for each stage of the software hfecycle. 

2.7 Organisational Issues 

The organisational issues of reuse are perhaps the more difficult to tackle. Tracz [Trac88a] notes 

that " i f one looks at the most-often-stated reasons why software is not reused, the overwhehning 

majority of them may be classified as psychological, sociological, or economic." He goes on to 

suggest that "the development of software reuse has been stimted by intra-company and inter­

company legal, contractual as well as political conflicts." 

27 Automating Reuse Support 
in a Small Company 



Chao [Chao93] feels that organisations "face numerous challenges to effectively implement and 

practice reuse. An organization must make a significant commitment to reuse because 

fundamental changes in the organization's software development approach will be needed and 

significant up-front costs for training and tools wil l be required. Further, uncertainties in legal 

policies, such as liability and intellectual property rights that currently hinder software reuse, 

need to be addressed, and acquisition policies need to be modified to better promote reuse." 

The introduction of a software reuse process into a company wil l require changes to be made in 

the attitudes and working practices currently in place. One of the main steps to achieving 

successful reuse is gaining ful l support of management and staff for the reuse process. 

Biggerstaff and Perils [Bigg89b] noted that one of the key similarities in all of the companies 

with a successful reuse programme covered in their book was that all had the backing and active 

support of top-level management. Fairley et al. [Fair89] noticed a similar trend in their study of 

six successful software reuse projects. Hooper and Chester [Hoop91] stress that "Top-level 

management must take positive action to make software reuse a reality. This means much more 

than just issuing an edict that software reuse wil l occur. It means committing the resources 

necessary to bring about a different way of approaching software development and maintenance 

- including a different process, tools, a well-trained staff, and an adequate initial library of 

reusable components." 

Software reuse does not come for free. Considerable resources must be made available to a reuse 

programme in order for it to succeed. This includes not only real capital resources, but also 

people, time, effort and commitment. Biggerstaff [Trac88b] says: "Software Reuse is like a 

savings account, before you can collect any interest, you have to make a deposit, and the more 

you put in, the greater the dividend." 

Wasserman [Wass91] recognises some other factors that inhibit the ful l scale introduction of a 

reuse programme are the "not invented here" syndrome, an absence of incentives for reuse, and 

28 Automating Reuse Support 
in a Small Company 



limited investment in reusability. The not invented here syndrome describes software 

developer's wariness of using code that they have not written themselves, often caused by a lack 

of trust in the software. Bott and Ratcliffe [Bott92] describe it in this way: "Technical staff are 

reluctant to believe that software from another source wil l be as efficient, effective or reliable as 

the software they could write themselves; this feeling is often reinforced by bad experiences 

with imported software. It is easy, however, to overestimate the magnitude of this problem." 

Baker and Deeds [Bake89] stress that governments should not get too involved in trying to 

ensure that the reuse of software is practised, such as providing approved reusable libraries. 

They further state: "Government should not tell corporations how to reuse software or make 

them use governmental libraries. I f reuse makes sense, they wil l do it." 

Cavaliere [Cava83], based on the experiences of the Hartford Insurance Group's reuse 

programme, makes the following recommendations: 

• Utilise tendencies among staff members to develop code-generation tools oriented to the 

organisation's needs. 

• Develop and maintain an automated index of all programs released into production. 

• Be prepared to make full-time staff resources available for the start-up phase and for 

ongoing support of a reusability programme. 

• Provide resources to measure productivity effects of reuse compared against a baseline; this 

is important to assess the value of reuse and to justify the necessary resource commitment. 

• Seek mechanisms for sharing reuse experiences and ideas. 

29 Automating Reuse Support 
in a Small Company 



Prieto-Diaz [Prie91] suggests a model for implementing a software reuse plan, which is divided 

into four stages: 

Stage 1: Initiation - reusable components are identified, stored, indexed and made available. 

Stage 2: Expansion - As more of the existing software is identified as being reusable, and as 

more reusable software is developed, the component repository is expanded. A more 

comprehensive classification scheme is introduced for the repository. 

Stage 3: Contraction - Redundant and ineffective components are identified and retired from the 

repository. The collection of components is streamlined, so that only the most useful remain. 

This prevents the repository from becoming unmanageably large. 

Stage 4: Steady State - As domain knowledge increases, existing components are gradually 

replaced by those more suited to the specific domain, i f required. Components that are designed 

for reuse should begin to emerge. 

Meyer [Meye87] believes that overemphasis on management issues is premature. "It's like 

expecting better hospital management to solve the pubhc hygiene problem 10 years before 

Pasteur came along! Give your poor, your huddled projects a decent technical environment in 

the first place. Then worry about whether you are managing them properly." 

2.8 Conclusions 

This chapter has given an overview of the field of software reuse, starting with definitions of 

reuse and reusability. The benefits which successful reuse can bring were identified, including 

results which have actually been seen in practice. This was followed by a description of the 

major issues m reuse - technological and organisational. The technological issues in reuse were 

described along with some suggested solutions to the problems raised. These included technical 

factors which much be addressed to make reuse possible and different technologies which are 

available for reuse. The organisational issues were also considered, including some of the 

psychological, sociological and economic issues that affect the success of a reuse programme. 

30 Automating Reuse Support 
in a Small Company 



It can be seen that there are many challenges facing a company wishing to benefit from reuse. 

Solving either the technological or the organisational problems discussed earlier wil l bring 

benefits to the company. However, it is only when both issues are addressed sensibly that the 

advantages which can be gained from the successful introduction of a reuse programme can be 

capitalised on. 

31 A utomating Reuse Support 
in a Small Company 



Chapter 3: Introducing the reuse process and other techniques 

to support software reuse in a small company 

3.11ntroduction 

This chapter looks at some of the techniques which can support the introduction of reuse into a 

small company. The following section defmes what is considered as a small company, and looks 

at some of the characteristics of small companies. The third section considers the effect that the 

introduction of any type of new technology can have on a company, and looks at ways in which 

this can be improved. It discusses how to change the way in which an organisation works, then 

looks specifically at software process improvement. Software process improvement considers 

the methods and techniques which should be used when changing the method of software 

development in a company. The fourth section considers risk analysis. This is closely tied to the 

previous section, as there wil l obviously be risks involved when introducing any new working 

practices into a company. 

The f i f th section considers techniques which will support the introduction of reuse into a small 

company. These include object-oriented methods, software documentation and reverse 

engineering. The first part of this section looks at object-oriented design. Object orientation has 

become increasingly popular over the past 10 years, with the development and inclusion of 

reusable components being frequently quoted as one of the benefits of using an object-oriented 

design method. This part of the section starts with definitions of object-oriented principles, then 

gives an analysis of the advantages and disadvantages of using an object-oriented design 

method, particularly in regard to how it would support a reuse programme. This is followed by a 

discussion of the relationship between object orientation and reuse. A more detailed survey of 

numerous object-oriented methods [Bigg95] was made available to Public Access Terminals 

Ltd. as part of the case study conducted in this research. 

32 Automating Reuse Support 
in a Small Company 



It has been seen in section 2.5 that in order for developers to be able to reuse a component, they 

must be able to understand the component and recognise it as being appropriate for their current 

system. Software documentation and reverse engineering can help in the understanding process. 

The section on software documentation wil l concentrate on ways to support the creation of 

documentation, as it has been seen (particularly in the case study associated with this research) 

that small companies who are low on the process maturity scale tend not to keep good software 

documentation. 

Another technology discussed is reverse engineering. It was noted in the definition of software 

reuse in section 2.2 that both components which have been designed for reuse and components 

which have been salvaged from previous developments are appropriate candidates for reuse. 

Reverse engineering, the abstraction of higher level information from program source code, can 

support the process of salvaging reusable components from previous developments. The 

information abstracted from reusable components can also help developers to understand how to 

reuse the components, an important part of the reuse process (see section 2.5). 

3.2 Small companies 

It is not easy to defme what is considered as a small company. Bums and Dewhurst [Bum86] 

state that "just what constitutes a 'small business' is open to debate and, even within the UK, 

differences in the quantitative definitions used by different government statistic-gathering 

agencies make comparison and conclusions difficult." Indeed, different countries have different 

formal defmitions for the term 'small company'. Andersson [Ande87] notes that number of 

employees is the most commonly used statistic to defme a small company "although, certain 

countries such as the U.K. have a more elaborate definition, taking into consideration aspects 

like branch of activity and tumover". He states that: "In the U.K., the range is 1-200 

employees". 

33 Automating Reuse Support 
in a Small Company 



In trying to define what constitutes a small company. Bums and Dewhurst go on to quote the 

1981 Companies Act, which adopted three separate criteria to define small frnns: 

"Small companies: One which for the financial year and the one immediately preceding it, two 

(at least) of these criteria apply: 

a) Turnover does not exceed £1.4m. 

b) Balance sheet total assets does not exceed £0.7m. 

c) Average weekly number of employees does not exceed 50." 

In another pubhcation, Bums and Dewhurst [Bum96a] quote the EC commission's "conditions 

to be met by a small firm wishing to qualify for state aid: 

a tumover not exceeding ECU 20 million (say £ 16 miUion), 

a net capital not exceeding ECU 10 million (say £8 million), 

a number of employees not exceeding 250." 

However, it is not just these statistics that define a small company. There is also the organisation 

stracture and culture of the company which sets it apart. Bums and Dewhurst [Bum96a] quote 

the Bolton Report from 1971 which "described a small business as follows: 

• In economic terms, a small firm is one that has relatively small share of its market. 

• It is managed by its ovraers or part owners in a personalised way, and not through the 

medium of a formalised management stmcture. 

• It is independent in the sense that it does not form part of larger enterprise and that the 

owner/managers should be free from outside control in taking their principal decisions." 

They later suggest that "Personalised management is, perhaps, the most characteristic factor of 

all. It implies that the ovmer actively participates in all aspects of the management of the 

business, and in all major decision-making processes." 

34 A utomating Reuse Support 
in a Small Company 



Chisnall [Chis87] also lists some of what he feels are the typical characteristics which set a small 

company aside from other types of business organisation. His list includes: 

Inadequate funding - Many entrepreneurs try to run their businesses on shoestring budgets. 

Flexibility - Small businesses have a particular characteristic which gives them a strong 

competitive edge: they are owner-managed, and decisions can be taken quickly. 

Specialization - Much of the success of small businesses lies in the fact that they develop 

products and services with high value-added content: in other words, they offer their customers 

quality goods which are directly related to their needs. 

Technical experience - Small technical frnns are often founded by enthusiastic experts with 

many years of technological experience behind them. However, they often lack good marketing 

know-how. 

Pratten [Prat91] studied numerous small frnns, and notes that "Throughout the interviews with 

managers the flexibility and responsiveness of small firms compared to large fmns was 

emphasised". 

This research rates the size of the company based on both its size and company culture, the four 

key criteria being: 

1. Owner managed [Bum96a] 

2. Up to 200 employees [Ande87] 

3. Specialisation in products and services [Chis87] 

4. Flexibility [Prat91] 

Public Access Terminals Ltd., the company associated with this research, fulfils all the 

appropriate criteria for a small company. 

35 A utomating Reuse Support 
in a Small Company 



3.3 Introducing new technology and software process improvement 

The principles of introducing a new technology into a company, or even new working practices, 

are very similar no matter what the technology or working practices are. The field of 

'introducing new working practices into a company' is referred to as organisational 

development. The goals of organisational development (OD) are usually consistent, no matter 

what the company does, or how it goes about achieving it. The aim of OD is to improve the 

working conditions and practices of the company on the assumption that these improvements 

wi l l also bring an improvement in productivity and profitability, and a happier workforce. OD 

often calls for process improvement, where a process is a defined set of working practices. 

Recommendations are made for improvements to working practices in order to meet the overall 

aims of the organisation. 

This section wil l first look at soiiie of the general principles involved in organisational 

development and wil l then consider some of the best methods which can be employed to ensure 

that the changes are successful and the goals of those changes are met. The section will also 

consider software process improvement - namely how the principles of organisational 

development and process improvement are applied to the development of software systems. 

3.3.1 Organisational development 

Organisational development, akeady defmed as the process of introducing new working 

practices into a company, is closely linked to process improvement, which is changing the 

processes which a company uses in order to improve their working practices. Both can be 

approached in many ways, using many different techniques. However, they have the same 

overall goals and share techniques in order to reach their goals. 

Albrecht [Albr83] suggests that there are four main phases to successful organisational 

development. "The four steps are really nothing more than the simplest logical progression in 

36 Automating Reuse Support 
in a Small Company 



problem-solving: figure out what the problem is, decide what you have to do to change things, 

put the " f ix" into effect, and then compare what happens with what you wanted to happen." 

More formally, he calls these the Assessment Phase, the Problem-Solving Phase, the 

Implementation Phase and the Evaluation Phase. 

Albrecht recommends that these phases can be carried out by either a staff specialist, an external 

consultant or an OD task force within the company. However, he feels that OD should never 

follow a rigid structure in the same way as other company processes. Indeed, he points out: 

"experience seems to show that the ad-hoc quality of OD is one of its key benefits." 

Assessing the current situation and working practices of an organisation must always be the first 

step before even considering any suggestions on how to improve the situation. There are many 

ways in which this assessment can be carried out. Perhaps the best way is to watch the company 

at work and document the results. However, this is a very time consuming exercise which must 

be done for every function within the whole company. It is easier to use information that is 

aheady available within the company. Although company processes may be standardised and 

documented, with a sti-ict set of company guidelines, talking with the staff involved in the 

company is the best way to get a true feeling of the company's current working practices. 

Bums and Stalker [Bum61] outline their method of assessment. "Our usual procedure, after the 

first interview with the head of a firm, was to conduct a series of interviews with as large a 

number of persons as possible in managerial and supervisory positions." 

Albrecht agrees that questionnaires and interviewing are useful ways to gather data about the 

organisation and its processes. He suggests that "the interviewer does best when he or she asks 

open-ended questions, listens for key themes and concems, and continues to develop the flow of 

information without "shopping" for certain kinds of answers, and without steering the people 

being interviewed too forcefully." 

37 A utomating Reuse Support 
in a Small Company 



Once the information has been gathered, the problem solving phase begins. Albrecht says that 

"The result of an effective OD problem solving phase is a realistic, workable, and promising 

plan of action for the implementation phase." This plan is built by considering the alternative 

approaches for development of the organisation. These ideas are then assessed and the more 

promising approaches are formulated into a plan of action. Albrecht suggests that developing a 

"realistic, stepwise plan for implementing the changes" is one of the key steps to success in this 

process. 

Implementation of the plan can be done in many ways. However, Babcock et al. [Babc90] 

suggest that "a product or technology that has evolved through a process of incremental 

improvement has an increased chance of enjoying successful transfer and widespread diffusion." 

This idea of incremental improvement wil l be considered in more detail later in the thesis. 

Albrecht warns of the "valley of despair", a term he uses to suggest that when implementing the 

plan, the situation always tends to get worse before it gets better. This is caused by the dismption 

to the company incident to the changes being put into place. Although people seem to dislike 

change, Albrecht claims that "people don't like change when they don't think the change will be 

good for them." Ensuring that employees understand the improvements that will come from 

their new working practices wil l encourage them during the difficult transitional period. 

In the evaluation phase, the results of the OD programme are measured and evaluated to get 

valuable feedback about how well the programme is performing and what improvements have 

been made. Albrecht says that "the primary purpose of the evaluation phase is to discover what 

course corrections we need to make." 

This is also a good time to encourage staff using positive feedback to inform them of the 

progress being made. Albrecht says that this has several advantages. "First, it focuses the 

attention on what is working, not on what isn't working. This tends to have a positive influence 

on overall morale and sense of optimism. Second, it tends to create a sense of expectation and 

38 A utomating Reuse Support 
in a Small Company 



confidence that things are going to get better. This ahnost invariably contributes in subtle ways 

to the commitinent people feel toward the organization, and things do tend to get better as a 

resuh. And third, the fact that management is giving positive feedback to the people in the 

organization tends to enhance the sense of "connectedness" people feel towards the executives." 

Another method for organisational development is described by Bumes [Bum96b]. He gives an 

overview of a method by Bullock and Batten [Bull85], who also developed a four-phase model 

of planned change. "The four change phases, and their attendant change processes, identified by 

Bullock and Batten are as follows: 

1 Exploration phase. In this state an organisation has to explore and decide whether it 

• • wants to make specific changes in its operations and, i f so, commit resources to 

planning the changes. The change processes involved in this phase are: becoming 

aware of the need for change; searching for outside assistance (a consultant/facilitator) 

to assist with planning and implementing the changes; and establishing a contract with 

the consultant which defines each party's responsibilities. 

2 Planning phase. Once the consultant and the organisation have established a contract, 

then the next state, which involves understanding the organisation's problem or 

concem, begins. The change processes involved in this are: collecting information in 

order to establish a correct diagnosis of the problem; establishing change goals and 

designing the appropriate actions to achieve these goals; and getting key decision­

makers to approve and support the proposed changes. 

3 Action phase. In this state, an organisation implements the changes derived from the 

planning. The change processes involved are designed to move an organisation from its 

current state to a desired future state, and include: establishing appropriate 

arrangements to riianage the change process and gaining support for the actions to be 

taken; and evaluating the implementation activities and feeding back the results so that 

any necessary adjustments or refmements can be made. 

39 Automating Reuse Support 
in a Small Company 



4 Integration phase. This state commences once the changes have been successfully 

implemented. It is concerned with consoHdating and stabilising the changes so that they 

become part of an organisation's normal, everyday operation and do not require special 

arrangements or encouragement to maintain them. The change processes involved are: 

reinforcing new behaviours through feedback and reward systems and gradually 

decreasing reliance on the consultant; diffusing the successfiil aspects of the change 

process throughout the organisation; and training managers and employees to monitor 

the changes constantly and seek to improve on them." 

3.3.2 Process maturity and process improvement 

Software process improvement follows the same principles as organisational development, but is 

more specific to the processes involved in software development. 

Sommerville [Somm96] describes process improvement as "understanding existing processes 

and changing these processes to improve product quality and/or reduce costs and development 

time." He goes on to suggest that there are a number of key stages in the process improvement 

process, namely: 

1. Process analysis 

2. Improvement identification 

3. Process change introduction 

4. Process change training 

5. Change tunmg 

The key work in the field of software process improvement is that performed by the Software 

Engineering Institute (SEI) at Camegie-Mellon University [Hump89]. The resuh of their work 

was the Capability Maturity Model (CMM), which attempts to assess the level of a company's 

capability based on the processes that they use. The SEI model defmes 5 levels of capability: 

40 A utomating Reuse Support 
in a Small Company 



1) Initial level - No effective management or project plans. Although the company many 

successfully develop software, this is due to the 'heroic efforts' of the employees, and there 

is no guarantee that software quality can be produced consistently. 

2) Repeatable level - The company has formal management, quality assurance and 

configuration control methods in place. Therefore, they can repeat projects at the same level 

of quality. However, there is no formal defmition of the processes used. 

3) Defmed level - The company has defmed their processes, and so has a basis for process 

improvement. The processes have formal procedures to support their use throughout the 

company's development lifecycle. 

4) Managed level - Again, the company has formal processes, but they also have a programme 

for measuring the quality of the processes being used and the products being developed. 

5) Optimising level - Metrics taken from process management are fed back into the company's 

process improvement programme to ensure that managed processes are improved to 

mcrease the company's overall performance. 

The CMM has been the basis for considerable fiirther work in software process improvement, 

for example, the ESPRIT BOOTSTRAP project [Koch93]. Otiier work in the same field, 

including SPICE, TickIT and STARTS, is summarised by Thompson and Mayhew [Thom97]. 

Similar work has also been done in the field of reuse and several different reuse maturity models 

have been suggested [Trac95], which have been incorporated into McClure's Reuse Readiness 

Assessment [McC197]. 

Although a great deal of work has gone into the CMM and it has been hailed as a step forward in 

the field of software process improvement, there are still some doubts about its validity. In their 

evaluation of the CMM, Bollinger and McGowan [Boll91] go as far as to say that "the current 

grading system is so seriously and fundamentally flawed that it should be abandoned rather than 

modified." 

41 A utomating Reuse Support 
in a Small Company 



Considerable time and resources are consumed when simply measuring a company's capability 

maturity, as a great deal of work must be done to investigate and measure the standard of the 

company's processes. There is also considerable paperwork involved in investigating, defining, 

documenting and implementing process improvement on the scale suggested by the SEI using 

the CMM and other maturity models. These factors contribute to the fact that small companies 

find the concept of quality assessment and process improvement prohibitive. There is also a fear 

that process definition and improvement wil l cause them to lose the flexibility that keeps them 

competitive within the marketplace. 

Humphrey [Hump93] suggests that "people need to be convinced of the effectiveness of new 

methods before they wil l change." It has already been stressed that this research wil l consider 

those companies which rate at the bottom level of any maturity model. This suggests that 

methods for successful process introduction and technology transfer methods are more 

interesting than measuring the company's current capability. Companies at these low levels will 

only be interested in improving their capability when the see the advantages of doing so, and it 

is hoped that the benefits of a reuse programme presented in the right way will encourage them 

to improve their working practices. 

3.3.3 Process assessment 

The term process assessment describes a variety of different ideas and techniques which can be 

used to investigate and analyse the way in which work is done. The recent research performed in 

the field of software process improvement has been based on earlier tried and tested methods in 

the business areas of organisational development and work study. This section describes this 

earlier work in an attempt to understand how companies can be studied in order to assess their 

current processes and identify areas for improvement. 

42 Automating Reuse Support 
in a Small Company 



Process assessment can be performed using what is known in the business world as a work 

study. Buckley [Buck85] describes work study as "a term which covers a number of techniques 

designed to improve the efficiency of the organisation and help in the control of costs." 

There are many different techniques which can be used as part of a work study. One of them is 

method study. Radford [Radf84] describes method study as "that part of work study that 

provides a systematic approach to improving the way in which work is done". 

Radford suggests that "the procedure of method study has been formalised into six steps as listed 

below.'' 

(1) Select work to be studied. 

(2) Record existing method of working 

(3) Examine critically the existing method. 

(4) Develop an improved method. 

(5) Install the improved method. 

(6) Maintain the unproved method." 

Buckley [Buck85] also confums the usefuhiess of using method study as part of work study. He 

says: "Method study is concerned with how the work is carried out. It looks at existing 

procedures with a view to improving them. In essence it asks the question, 'Is there a better way 

of doing this job?'" 

He goes on to describe method study in more detail, confirming the steps suggested by Radford. 

"The procedure has six stages namely: select; record; examine; develop; install; maintain." 

Buckley goes on to describe these steps in more detail: 

1. Select the job to be studied. 

43 Automating Reuse Support 
in a Small Company 



This selection should normally come from management. "Once a job has been selected and 

authority has been obtained for its investigation the most important task before moving on 

to the next stage is to inform all those who wil l be affected by the study. Explaining the 

reasons for the study prior to its commencement wil l prevent misunderstanding and increase 

the likelihood of worker co-operation." 

2. Record the present method. 

"A detailed analysis of present methods is necessary before we can move on to seeing what 

improvements are possible or desirable." 

3. Examine the existing methods. 

4. Develop the new improved method. 

"The existing method which we have now investigated forms the basis for our search for 

new improved methods.. .during this stage we carefully question all the we have recorded... 

Eventually, out of the critical examination wil l come the ideas for the improved method. 

These wil l be discussed with the management in the department concerned.. .At this stage it 

is also necessary to draw up a formal report which wil l outline: 

• the changes recommended; 

• the cost of those changes; 

• the savings which wil l result; 

• the time needed to institute the changes." 

5. Installation of the improved method. 

"Work study personnel must pay particular attention to two aspects of installation. First they 

must persuade everyone concemed of the need for change. A successful installation needs 

the co-operation of all staff Secondly the installation wil l involve considerable planning." 

6. Maintain the new method. 

"The introduction of the new method wil l not be without its difficulties, but it would be 

wrong for work study personnel to consider changes immediately. It wil l take some time 

before all employers are fully conversant with the new method and reach the expected level 

of productivity." 

44 A utomating Reuse Support 
in a Small Company 



The work in the field of method study presented here forms the basis of the development of the 

method used in this research, as defined in chapter 5. 

3.4 Risk Analysis 

Every new endeavour contains an element of risk. There wil l always be uncertainty as to 

whether the endeavour wi l l be successful. Risk is a measure of this uncertainty, and analysis of 

the risks involved should be considered before and during any project. This section wil l consider 

what risk is, how it can be analysed, and how the analysis can help risk managers to decide 

whether to continue with the project or discard it. 

Raftery [Raft94] defines risk along the following lines: "Risk and uncertainty characterize 

situations where the actual outcome for a particular event or activity is likely to deviate fi-om the 

estimate or forecast value. Risk can travel in two directions: the outcome may be better or worse 

than originally expected. These are known as upside and downside risks." 

He goes on to state that "some people like to distinguish between risk and uncertainty. The 

distinction is usually that risk is taken to have quantifiable attributes, whereas uncertainty does 

not." 

Sommerville [Somm96] suggests that "risks are a consequence of inadequate information. They 

are resolved by initiating some actions which discover information that reduces uncertainty." ' 

However, this simplistic view is not always practicable, as gathering the information required to 

reduce the risk may be more costly than the consequences of failure in the proposed 

undertaking. 

This is particularly important in the case of a reuse in a small company. This research considers 

the introduction of reuse into the software development methods of a small company. The risks 

associated with this undertaking are associated with the time, effort and resources which must be 

45 Automating Reuse Support 
in a Small Company 



committed to the reuse programme. Indeed, in the worse case, the downside risk is that the 

resources could be wasted and the time and effort expended on reuse simply end up delaying 

production of the company's software. However, on the other hand, the upside risks are that the 

considerable benefits of reuse described in section 2.4 could be made available to the company. 

This would increase their productivity and reduce their development and maintenance costs. The 

third option is to keep their current development methods. There are also risks associated with 

this. Public Access Terminals Ltd., the company associated with this research, have already 

discovered that in today's fast moving market, a company which stagnates and does not improve 

soon falls behind its competitors and fails anyway. 

The importance of risk analysis in this research is that the method presented for introduction of a 

reuse programme into a small company attempts at all stages to minimise the risk associated 

with the changes that are required for reuse. They also attempt to ensure that some benefits from 

reuse are reaped on a smaller time scale than is the case with large corporate reuse programmes. 

This enables the company to try reuse techniques, and, i f they don't work, to scrap them and try 

other new techniques or revert to their previous development methods. 

Another problem with attempting to reduce uncertainty by gaining further information is that 

there are no studies considering the introduction of reuse in a small company to gain further 

information from. This means that the amount of study involved in analysing and reducing the 

risks associated with this endeavour would be more expensive for the company than simply 

trying the techniques in practice. 

3.5 Techniques to support the introduction of reuse in a small company 

This section covers some of the techniques which wil l help in the introduction of reuse to a 

small company. One of the key points that has been seen in a small company such as Public 

Access Terminals is that they often do not employ a formalised design method. This means that 

each developer has a different way of designing and building software. This can create problems 

46 A utomating Reuse Support 
in a Small Company 



when trying to integrate software written by different developers, because the designs may not 

be compatible, The first of the techniques considered below is the use of an object-oriented 

design method. Object-orientation has been chosen for two reasons. The first is that its 

proponents claim that object-orientation supports reuse. Secondly, it has been seen within Public 

Access Terminals (and throughout other software development companies) that there is a move 

to develop using object-oriented languages such as C++. It makes sense to have a design method 

which supports the technology being used. The section wil l look at what object-oriented 

principles are, and how they support reuse. 

Another technique which it is felt wil l aid small companies is automatic generation of software 

documentation. In their efforts to produce software for their customers, dociunentation is always 

' the last priority for developers. In small companies, this is especially true, as it is often felt that 

writing documentation is a waste of valuable development time which could be used more 

productively. Techniques and tools to support the generation of documentation would be of 

great value to the company, and also to their reuse programme. 

In the same way, reverse engineering, which is the abstraction of higher level information from 

source code, is another technique to support reuse. Reverse engineering could be used to gain 

more information about • software which has been produced within the company. This 

information could aid developers when attempting to reuse that software in a new development. 

3.5.1 Object-Oriented Methods 

Definitions of Object-Oriented Principles 

The principles of object-oriented design have been derived from earher work on information 

hiding [Pam72], abstract data types [Lisk74] and, most significantly, work on object-oriented 

programming languages such as Smalltalk [Gold83] and Simula-67. 

47 A utomating Reuse Support 
in a Small Company 



Ghezzi et al. [Ghez91] summarise the current state of affairs in object-oriented design 

admirably. They say: "Unfortunately, the terminology of object-oriented methods is not well 

standardised, and there is not even agreement as to what object-oriented design really is." 

However, many of these views are rather too general to have any empirical evidence to support 

them. It seems that too often the benefits of the use of object orientation are assumed simply 

because they sound right, rather than because there is evidence to support the claims made. 

Sommerville [Somm89] gives a valuable word of warning: "It is unwise to be dogmatic about 

the design process and always to adopt an object-oriented approach irrespective of the system 

being developed. An object-oriented view of system design is not always the most natural." In 

the next edition of his book [Somm96], he clarifies this further: "No one method is 

demonstrably better or worse than other methods; the success or otherwise of methods often 

depends on their suitabihty for an application domain." 

Object orientation contains concepts that allow the real world to be modelled very effectively. 

The principles of encapsulation and inheritance also make it far more supportive of reuse than 

many other software design methods. However, object orientation is not the 'be all and end all' 

of software development techniques. It certainly has its limitations, and is not as effective in 

modelling some application areas. It is important to recognise this, and only to use object-

oriented techniques where they wil l achieve the best results. Although object-oriented 

programming languages exist, object-oriented design techniques can be apphed to most modem 

programming languages. 

Object-Oriented Design and Reuse 

Object-oriented methods have been promoted as inherently supporting reuse. Halladay and 

Wiebel [Hall93] state that "The most commonly touted benefit of OOP is reuse." Many authors 

have extolled the advantages of reusability in object orientation. Atkins and Brown [Atki91a] 

emphasise that reuse is one of the advantages that arises from an object-oriented approach, 

48 Automating Reuse Support 
in a Small Company 



specifically from direct support for abstraction. They suggest that the reuse of classes in a 

hierarchy and object libraries are specific examples of reuse that stem from object-oriented 

practices. 

Ince [Ince91] says that "Polymorphism allows a developer to build up a library of reusable 

objects, and contributes greatly towards the ability to develop reusable software." Wiener and 

Pinson [Wien88] consider that one of the main goals of object-oriented software development is 

"to shorten the time and lower the cost of development by using reusable software components 

in the form of baseline classes and by employing incremental problem solving using subclasses." 

Tsichritzis and Nierstrasz [Tsic89] seem to believe that, due to the heavy emphasis on reuse in 

object-oriented programming, "we can expect extremely large collections of reusable objects to 

be available to us." They feel that the problems of the future wil l be associated with managing 

such large collections of objects. They follow this with a suggestion that expert systems will be 

the appropriate tools for helping programmers to find their way through databases of reusable 

object classes. 

It has been seen, however, that among the object-oriented design methods available, there is a 

lack of explicit provision for reuse [Goss90]. Udell [Udel94] also expresses this opinion: "The 

traditional OOP vision was, at best, vague on the subject of reuse: Objects would appear as by­

products of software development, a market would emerge, and programmers would become 

producers and consumers of objects." This unstructured, and rather naive, view of reuse can be 

seen in many object-oriented texts. 

Meyer [Meye88] offers considerably more advice on the construction of reusable classes in his 

text. He suggests that: "A good object-oriented environment wil l offer a number of predefined 

classes implementing important abstractions. Designers wil l naturally look into these to see i f 

there is anything they can use...New applications, i f properly done, wil l also produce more 

specialized reusable classes. As object-oriented techniques spread, the number and abstraction 

level of available components grow." 

49 Automating Reuse Support 
in a Small Company 



Tello [Tell91] also questions the provision for reuse in object-oriented methods. He states: 

"some say that the key, advantage of OOP is the ability to reuse code for many different 

programs, but, by itself, this is not significantly different from library functions." Mullin 

[Mull89] would agree: "As most books available today on OOP say, one of the major benefits of 

objects is that they are reusable. So are C functions. The difference is that objects, representing 

both data structures and operations that can be performed on these structures, represent 

functional packages, requiring no additional work on the part of the programmer to use them. 

The packages are always uniform and they interact identically with other objects, regardless of 

the purpose of a given object." 

Raj and Levy [Raj 89] note that one of the problems with inheritance in object-oriented systems 

is that "classes are not automatically reusable". They suggest that for successful reuse, 

inheritance requires the use of a set of coding rules and a set of design rules. Johnson and Foote 

[JohnSS] would agree with this second point, presenting a set of 13 rules for designing reusable 

classes. 

Udell [Udel94] suggests that "object technology failed to deliver on the promise of reuse", but 

that componentware, in which components are encapsulated, or combined into a single, separate 

unit with a well defined interface, in order to make them reusable, is the way forward for 

reusability. 

Cox [Cox86] says: "Object-oriented programming can help to put reusability at the fore-front of 

a programmer's work. But it can't do it alone unless an information network is provided to help 

consumers discover useful code quickly and to understand how it applies to their needs." 

Winblad et al. [Winb90] note that: "Software reuse does not occur by accident, however - even 

with object-oriented programming languages. System designers must keep the advantages of 

reusability in mind, planning ahead to reuse what aheady exists and designing reusability into 

50 A utomating Reuse Support 
in a Small Company 



the new components they create. This requires that programmers adopt new programming 

behavior, values, and ethics. Borrowing classes created by others must be considered more 

desirable than implementing a new class. Reviewing existing code to identify opportunities for 

reuse must have priority over writing new code. Finally, programmers must create simple, 

reusable classes rather than complex, inscrutable classes. Simphcity is a major tenet of the 

general philosophy of object orientation." 

Jones [Jone92] considers that "object orientation may make a marginal difference in 

implementing reuse, but any major reuse program is largely a matter of wil l , not of 

technicalities." 

It is important to note that no one method, technology or technique wil l solve all the problems 

associated with reuse. There wil l always be complications, and these must be expected and 

planned for. Burd and McDermid [Burd92] note that: "Risks are involved in all software 

developments, however, often those projects which employ reuse are susceptible to greater risks 

than those which do not." However, with the potential support for reuse provided by the use of 

object-oriented techniques, these risks, and the difficulties involved in successful reuse, can be 

reduced. This view is confirmed by Burd [Burd93b]: "Object-oriented design displays the most 

promise as a re-use methodology...Object orientation on its own isn't sufficient to solve all the 

problems associated with re-use. This can be achieved only by providing well-defined support 

that enables re-use to be integrated into a suitable lifecycle model." 

Object orientation is far from being a panacea. Even when associated with reuse, it does not 

solve the problems typically associated with the software crisis. Hatton [Hatt95], in his study of 

defect rates using various programming languages and strategies, found that the defect densities 

recorded in object-oriented C++ systems were slightly worse than a comparable system written 

in conventional C code (2.4 defects per KLOC in C compared with 2.9 defects per KLOC in 0 0 

C++). He notes that the defects were also more difficult to find in the 0 0 system. He goes on to 

say that "unless object-orientated techniques lead to very considerable re-use, they are unlikely 

51 A utomating Reuse Support 
in a Small Company 



to improve system reUability significantly. They also seem to require much more specialist 

maintenance attention and are harder to debug in current implementations." 

There must be a significant amount of reuse achieved in an object-oriented system for the 

benefits of the adoption of object-oriented principles to be seen. Melo et al. [Melo95], in a study 

conducted in the University of Maryland, "provided significant results showing the strong 

impact of reuse on product productivity and, more particularly, on product quality in the context 

of object-oriented management information systems." It is interesting to note from their results 

that it was only when reuse rates of at least 40% were achieved that significant improvements 

were made in development productivity and the amount of rework required to debug the systems 

after testing. 

A study of several different object-oriented design methods [Bigg95] was written for Public 

Access Terminals to help them to determine which method would be of the most use to them. 

The study included details of each of the chosen methods and an worked example using the 

method, along with an analysis of each method. 

3.5.2 Software documentation 

It has been readily accepted throughout the software engineering community that documentation 

is a valuable aid to understanding software. However, useful documentation is not always kept. 

This is particularly true in small companies without structured processes, where the effort 

required to produce useful software documentation is often seen as far less productive than other 

work that could be done by the developers. The development teams are often small, and feel that 

there is sufficient experience and communication within the team to gain all the relevant 

information about the software without the need for documentation. This section looks at 

support which can be provided for software documentation in these situations. 

52 A utomating Reuse Support 
in a Small Company 



Literate Programming 

Literate programming is a phrase first used by Donald Knuth [Knut84]. He uses it to describe his 

system of software documentation called WEB. The essence of literate programming is that the 

source code and documentation of a program are tied together in one file. This is done by 

structuring the source code and comments using TEX commands as instructed by Knuth. The 

result wi l l be a file that.can be machine processed by the WEB system in two ways: 

1) TANGLE - this separates the source code from the WEB file in order to produce a file that 

can be compiled. 

2) WEAVE - this produces the 'pretty printed' version of the source code for the program. 

Features of the pretty printing are that: 

• keywords for the language are emboldened. 

• comments are interspersed through the code to annotate the source code listing. 

• an cross-referenced index of all the sections and variables used in the program is 

produced. 

The WEB system, to date, works with the languages Pascal, C and C++. 

The basis of literate programming is to provide an aid to program comprehensioii. The pretty-

printed version of the source code is far more readable, and, with the correct use of comments, 

far more understandable than wading through standard source code. However, it requires a lot 

more effort and skill to create a piece of WEB code than to produce a standard piece of 

commented source code. 

For its time, the literate programming principle was valid, but it is now beginning to become 

dated. This is especially marked in light of the new style of programming environments that are 

becoming available. Some of the keys to literate programming are the highlighting of keywords 

and comments and the indexing of variable names. Many new programming environments now 

53 Automating Reuse Support 
in a Small Company 



do this automatically. An example is the Microsoft* Visual Workbench for Visual C++ 

[Micr93a]: "Visual Workbench highlights language keywords, identifiers, comments, and strings 

in different colors. This feature is useful when leaming a language or viewing lengthy and 

complex source files." 

Childs and Sametinger [Chil96] describe a system for software documentation using object-

oriented prmciples on literate programs. This eases the process of reusing documentation. 

However, as it uses the principles of literate programming described above, it also suffers from 

the same drawbacks. 

Documentation Tools 

It has been estimated that software engineering organisations can spend as much as 20-30% of 

all their software development effort on documentation [Pres92]. The documentation process 

itself can also be quite inefficient. These factors often lead to poor standards of initial 

documentation, or poor maintenance on initially good documentation. Both lead to the same 

problem, which is that software documentation is useless to both maintainers and developers 

attempting to maintain or reuse software components (because either the documentation does not 

exist or is out of date). 

Documentation tools can help to alleviate these problems by automating support for 

documentation generation. Some CASE tools can automatically generate software 

documentation based on the information contained in internal repositories that have been 

generated during the lifetime of the project. Others support developers and maintainers in 

writing their own documentation by providing templates in which to place the appropriate 

information. 

Capers-Jones [Cape94] feels that things wil l change for the better with new technology. "The 

percentage of human beings who can write clearly is not very high. Therefore software user 

documentation is likely to remain marginal, except for software produced by large companies 

54 Automating Reuse Support 
in a Small Company 



with ful l technical writing, editing, and illustration departments. The emergence of multi-media 

technologies and graphical user interfaces are likely to change the nature and appearance of user 

documentation in fundamental ways." 

3.5.3 Reverse Engineering 

Reverse engineering is the process of abstracting information from software source or object 

code. Sommerville [Somm96] describes it as a "process of analysing software with the objective 

of recovering its design and specification. The software source code will usually be available as 

the input to the reverse engineering process. Sometimes, however, even this has been lost and 

the reverse engineering must start with the executable code." 

Bennett [Benn93] stresses that "Reverse engineering is seen as an activity which does not 

change the subject system, nor does it create a new system based on the reverse engineered 

subject system. It is seen as a process of examination and understanding (and of recording the 

results of that examination and understanding), not a process of change or replication." 

Chikofsky and Cross [Chik90] define reverse engineering as "the process of analyzing a subject 

system to identify the system's components and their inter-relationships, and to create 

representations of the system in another form or at higher levels of abstraction." 

For the purposes of this research, reverse engineering is defined as any technique which 

abstracts useful higher level information from a software system without modifying that system. 

Over the past 10 years, there have been so many different methods, techniques and tools 

developed for reverse engineering that they cannot all be considered in this chapter. The next 

section concentrates instead on the relationship between reverse engineering and software reuse. 

55 Automating Reuse Support 
in a Small Company 



Reverse Engineering for Reuse 

Frazer [Fraz92] states that the primary purposes of reverse engineering are "to provide an aid for 

comprehension and a basis for maintenance or future redevelopment". He goes on to suggest 

that one of the objectives of reverse engineering is to facilitate reuse. He states that "a major 

inhibiting factor in the rate of growth of the number of users embracing reverse engineering is 

the lack of integration of current tools and techniques." 

Several authors have recognised the importance of reverse engineering as a technology to 

support reuse (for example: work done in Logica [Walt92] and at the Centre for Software 

Maintenance, Durham University [MUOT92]) and some have suggested methods for extracting 

reusable components from software systems [Ning93], [Cimi95], [Neig96]. The latter tend to 

concentrate on program slicing, the extraction of fimctionally related code fragments from a 

software system. 

In this research, reverse engineering is used to provide information for both developers and 

maintainers about reusable components. It is, therefore, also related to the fields of program 

comprehension and software documentation. The information generated by reverse engineering 

reusable components can be used to help software engineers to understand the purpose of a 

software component. This understanding helps the developer to reuse the component. Reverse 

engineering is integrated with the other areas of software engineering considered to provide an 

integrated reuse support environment. 

3.6 Conclusions 

There are a lot of techniques which can be applied within the field of organisational 

development and process improvement. Those described in this chapter wil l be considered in 

greater detail in the next two chapters, where a method for the introduction of reuse into a small 

company wil l be presented, which is based on the work outlined in section 3.3. 

56 Automating Reuse Support 
in a Small Company 



There is also a lot of literature available on the subjects of reuse and object orientation. One of 

the reasons for this is that their influence stretches to every part of the software lifecycle, from 

requirements analysis through implementation and testing to maintenance. I f reuse is taken in its 

broadest sense, then anything from any part of the software lifecycle can, and should, be reused. 

In practice, this is very difficult and, in some situations, uneconomical. 

However, much of the literature on reuse tends to look at the subject either on a very large scale 

(covering every aspect of software production), or on an atomic scale (the reuse of components). 

It has been seen through the literature that object-oriented design principles are best suited to the 

principles of reuse, although explicit method support is sparse. It is, therefore, wise to encourage 

the use of object orientation as a design method to accompany a reuse programme. However, it 

is not wise to rely on the use of an object-oriented method to bring the benefits of reuse without 

any extra effort being required. Many different object-oriented design methods are currently 

available, each with a different emphasis. C++ is currently the most popular of the 'object-

oriented' languages. There is a problem with the fact that 0 0 design methods don't explicitly 

support reuse, although the principles of object-orientation do. 

In the automatic generation of documentation, it has been seen that literate programming is a 

useful concept, but one that has been subsimied by modem programming environments. Finther 

work on generating documentation from comments in the software's source code would be 

valuable, especially i f integrated in a reuse environment with information abstracted from the 

source code using reverse engineering. 

In conclusion, from the survey of literature in Chapters 2 and 3, the gap in the field of research 

that has been seen is that there is little provision for the setting up of a reuse programme in a 

small, unstructured company. It is felt that a method for introducing a reuse programme, 

integrated with an object-oriented design strategy, coupled with automatically generated 

information about the source code, wil l help to ameliorate this problem. It wil l make the 

57 Automating Reuse Support 
in a Small Company 



principles of reuse more accessible to such companies, because the investment of time and effort 

needed to benefit from reuse wil l be reduced. 

As previously discussed in section 3.4, it is important to minimise the risks that a small company 

wil l be taking when implementing a software reuse programme. As there is currently no further 

information available on software reuse in small companies, conducting further investigations 

into this area wil l not help to reduce uncertainty. Therefore, in the following chapters, a method 

wil l be developed which helps to minimise the risks taken by a small company when 

implementing a reuse programme. 

58 Automating Reuse Support 
in a Small Company 



Chapter 4: Solutions 

4.1 Introduction 

The goal of this research is the effective realisation of software reuse within a small company. In 

the case study associated with this research, Public Access Terminals Ltd. were motivated by a 

desire improve their software practices. There were several reasons for this desire to improve. 

The first is that the company recognised the impact of changes in the software market, and 

realised that they could no longer continue with their current software system. Customer 

demands meant major changes in both the product and its environment. Advances in technology 

meant that their product, which had previously been a market leader, was falling behind its 

competition. Realising that change was inevitable, the company wanted to start again, using 

better methods to develop better structured software. 

Secondly, the company realised the importance that the software market was placing on 

standards and were interested in International Standards Organisation and British Standards 

accreditation. This, again, would mean an improvement in their software development methods. 

Thirdly, the company had heard some of the benefits which could be gained from the success of 

software reuse, and were excited to gain these benefits for themselves. These, and other factors, 

led the company to become a part of a Teaching Company Scheme with Durham University, 

hoping to utilise the expertise of the university to help with these improvements. 

In order to identify an appropriate strategy for reuse introduction in the company, several other 

successfirl reuse programmes were studied. 

59 Automating Reuse Support 
in a Small Company 



4.2 Study of successful reuse programmes 

As discussed in Chapter 2, the realisation of software reuse depends on many factors. However, 

there have been several successful reuse programmes implemented in software companies, 

results of which have been made available through reports and papers. Section 1.1 identified 

some of the key reuse programmes which have been reported, along with the benefits that have 

been gained from the introduction of reuse into these companies. 

It has been shown that software reuse can offer great benefits to companies when used 

effectively. Some success stories have been quoted, and a few of these will be considered in 

more detail in this chapter. This wil l be in an attempt to discover commonalities shown across 

the companies, and identify whether the successes gained in these companies could be 

transferred to a small company. 

Raytheon 

The first of these companies is the Raytheon Missile Systems Division of the Department of 

Defence. Lanergan and Grasso [Lane84] studied over 5000 production COBOL source 

programs, and identified common categories for tasks performed in the programs. Three main 

types of function were identified, and were abstracted into standardised reusable logic structures. 

Developers could then use these structures when building new programs. When reusing the 

structures, the developers estimated that they achieved a 50% increase in productivity by 

averaging 60% reusable code. 

Although this is a great way to identify candidate reusable components, such a study would be 

very difficult to do in a small company. Small software development houses often only have a 

few different programs which they develop and maintain. In the case study associated with this 

research, the company has a single product. Studying such a small system for common 

60 Automating Reuse Support 
in a Small Company 



components would be difficuk, as there is not enough material to notice any general trends 

across programs. 

G T E 

The second case study considered is that of GTE. In his paper on the implementation of faceted 

classification for software reuse within GTE, Prieto-Diaz [Prie90] describes the system used for 

software component classification. He also describes the searching and retrieval support system, 

the librarian and organisational support and problems with the technology transfer. In discussing 

the usage experience for GTE's Asset Management Program (AMP), he calculates the reuse 

factor gained by dividing lines of code reused by the total lines of code produced by the 

organisation. He estimates that $1.5 Million was saved with a reuse factor of 14%. Prieto-Diaz 

stresses that "there must be a sfa-ong organisational commitment to reusability and an effective 

management structure to operate a reusability program...an organizational infrastiiicture is 

needed for a reuse system to succeed." He goes on to identify 6 groups which should be set up to 

support the reuse programme: the management support group, the library system, an 

identification and qualification group, a maintenance group, a development group, and a reuser 

support group. He then stresses that the role of the librarian is "critical for a successfiil reuse 

program." 

These are very valid suggestions when taken in context, but far outside the resources of a small 

company. It is very possible that a single software developer could constitute five of the six 

groups suggested, acting as librarian, component identifier and qualifier, developer, maintainer, 

and support group for the reuser, namely him(or her)self Such a situation would be absurd, and 

the extra workload added to the developer would probably cause them to scrap the idea of reuse 

as 'far too much work', and go back to their preferred development method. 

61 A utomating Reuse Support 
in a Small Company 



Fuchu Software Factory 

The third case study describes the software reusability measure in place at the Fuchu Software 

Factory, a part of the Toshiba Corporation in Japan. Matsumoto [Mats84] describes how the 

software processes used at Toshiba have been modified to support the reuse of software 

components. Components are described at three levels - the requirements level, the design level 

and the program level. Traceability is maintained through the levels, so that the component is 

designed and programmed to match the specification. Although there is no discussion of how 

reusable modules are located, Matsumoto indicates that, i f considered as assembler code, 

approximately 50% of lines of code are reused, which has led to an increase in factory 

productivity of more than 20% per year. 

This style of introducing reuse is very valuable, but rehes on the fact that there are processes 

already in place in the software development environment. When development processes are 

successful, they can be modified to introduce new practices and improve the software process 

[Cam95]. However, small companies often have no software processes in place. 

Other Examples 

Karissoh [Kari95] also quotes AT&T, Hewlett Packard, IBM, NEC, CAP and Ericsson as 

examples of companies with significant corporate reuse programmes. Al l of these are large 

companies with structured processes in place. Another key point made is that any reuse 

programme wil l only be successftil when it is supported by top-level management. This tends to 

suggest that this is the type of environment in which reuse can be made successful. However, 

although these large software development companies are a significant part of the computer 

industry, there are many smaller software development companies which do not fit into the same 

mould. 

62 Automating Reuse Support 
in a Small Company 



Chapter 3 looked at many different techniques which can be applied when inh-oducing a new 

way of working to a company. In the rest of this chapter, several alternatives to introducing a 

software reuse programme into a small company are suggested and considered. 

4.3 Introduction of Structured Processes 

Based on the success of the reuse programmes considered in the previous section, the most 

logical approach would be to intioduce reuse in the same way. The implementation of a reuse 

programme would follow the guidelines which have been made in many software publications. 

A good example of these is the book edited by Karlsson [Karl95], perhaps one of the most 

complete practical texts on the successfiil implementation of a software reuse programme. This 

also follows the process assessment and improvement techniques based around the Capability 

Maturity Model [Cam95] and the Reuse Maturity Models mentioned in section 3.3.2. 

This type of reuse programme implementation would be based on the fiill introduction of 

structured processes to the company. In essence, it would mean starting by introducing software 

development processes within the company, then bringing reuse in as a part of those processes. 

This would move the company towards the International Standards Organisation's 9000/9001 

and British Standards 5750 standardised process recommendations, inti:oducing reuse as a part 

of those standards. The company's software process would be studied, analysed, docimiented, 

implemented and improved by this widespread introduction of standardised processes 

throughout the company. Reuse would be an integral part of those processes, with the excellent 

recommendations which have been brought forward in many reuse texts being successfully 

implemented. 

Obviously, this would be the ideal solution. However, it is unlikely to work in practice. 

Intioducing this 'large-company' ideal would take a great deal of time and effort for both the 

management and the staff of any company. Indeed, for a small company which currently has no 

standardised practices, such an overhaul of working practice and environment would take a vast 

63 Automating Reuse Support 
in a Small Company 



amount of time and resources to implement. This is obviously time and money which is not 

spent developing software - the lifeblood of the company. It is a recognised fact that the 

introduction of any new working practice takes a large amount of up-front investment, however 

beneficial it may be in the long term. Often, a small company cannot afford that kind of 

investment, whether it be of money or time, because their resources are so much more limited 

than a large company. This is exactly what puts them off the idea of implementing a reuse 

programme - the fact that there is a large, up-front investment which may not pay for years to 

come. They cannot afford that kind of risk. As discussed in section 3.4, a method should be 

considered that reduces the risk faced by a small company when implementing a reuse 

programme. 

4.4 Incremental Introduction of Reuse 

The second suggested solution is that of the incremental introduction of software reuse. This is 

where reuse is the flagship to which the efforts of the company are directed. However, unlike the 

previous solution, the major changes required to implement a reuse programme are broken down 

into smaller steps. This is so that the benefits gained from reuse at each level of improvement 

can help to 'fund' the forthcoming changes that wil l be required to move to the next level. 

The end is the same as the previous solution, but the means to get there are quite different. Staff 

motivation can be radically improved by this approach. People seldom like change, particularly 

when they are comfortable with the environment that they are in. However, i f they can see the 

practical benefits which can come from change, they wil l be much more motivated to do what is 

required. The idea of using reuse as the flagship for these changes means that when the software 

developers do something to improve their software practices, they can actually see the benefits 

because it constitutes real productivity gains in their software development. A reuse repository is 

built, and developers can use software from it, which is a tangible benefit that they can see in 

practice. These perceived benefits from the reuse programme also help motivate the staff to 

actively participate in the programme. 

64 A utomating Reuse Support 
in a Small Company 



This seems ideal for a smaller company, as the amount of initial investment which would be 

required would be minimised, at the same time as maximising the benefits which can be 

obtained from reuse. Of course, there are disadvantages to this approach. The time scales for 

improvement are lengthened using this approach. This means that it would take the company 

longer to improve their capability maturity. It would also mean that the software development 

processes would be in a constant cycle of change. However, the fluidity of this method would 

allow a small company the flexibility that they require to develop the type of software that their 

customers require. Real stability in the company's processes would only come when the 

company had reached the higher levels of the CMM i.e. achieving a repeatable, defmed, 

managed software process. 

Perhaps the biggest benefit of this technique is the reduction in risk associated with the 

incremental changes in working practices. The changes would be implemented on a smaller 

scale, and those changes which are detrimental could be discarded before they caused serious 

damage to the company. On,the other hand, successful changes would benefit the company 

almost immediately while minimising the disruption caused by changing the company's 

development processes. 

4.5 Encouraging ad-hoc Reuse 

The third solution is perhaps the most practical from the software developer's point of view. The 

idea is simple - provide the developers with a practical, usable development environment which 

supports reuse, then let them get on with it. It is expected that reuse wil l be achieved as the 

developers learn more about their environment, and the resources that are available to them. As 

Meyer [Meye87] succinctly put it "Give your poor, your huddled projects a decent technical 

environment in the first place. Then worry about whether you are managing them properly." 

65 Automating Reuse Support 
in a Small Company 



Using this solution, the developers would be given a good technical environment in which to 

develop then software. The programming language would allow the developers to build their 

systems using the principles of structured software engineering which encourage the 

development of systems as reusable components. Valuable component libraries would be sought 

to support the development environment, allowing the developers to make use of the greater 

resources available to them. Standard development and project management tools would also be 

made available. However, no support would be given to the developers in the reuse process, as 

management do not have the time or resources to worry about the details of what happens in 

development. There would be no technical or organisational support for reuse, leaving the 

developers without guidance or instruction on how to benefit from the introduction of a reuse 

programme. I f reuse makes sense, the developers wil l surely do it, and gain the benefits which it 

brings. 

The limitations of such a solution have aheady been discussed in Chapter 2. It was seen that 

there are many factors which inhibit the introduction of software reuse, not all of which are 

technical. Tracz [Trac88a] stated that " i f one looks at the most-often-stated reasons why 

software is not reused, the overwhehning majority of them may be classified as psychological, 

sociological, or economic." A good technical environment cannot solve all the problems 

associated with the introduction of software reuse. Such factors as the not-invented-here 

syndrome must be addressed, and reuse should be measured and rewarded i f the greater gains 

that it can bring are to be reaUsed. By encouraging ad-hoc reuse, the developers will certainly 

gain from the measures suggested above, however, the ful l benefits of reuse wil l never be 

realised without top-level management support. 

4.6 Introduction of CASE Tools 

The fmal solution suggested is the introduction of Computer Aided Software Engineering 

(CASE) tools to support the introduction of reuse as part of the software development process. 

As with the third solution described in the previous section, the developers would be given a 

66 Automating Reuse Support 
in a Small Company 



quality technical environment, with access to reusable libraries. However, with this solution, 

CASE tools which support both stinctured software development and development with reuse 

would also be made available to the software developers. 

Many different types of CASE tool have been produced over the past 10 years, and each vendor 

promises improvements to programmer productivity through the use of their tool. By using 

CASE tools, some of the more mundane tasks carried out by the developers can be eliminated, 

leaving them free to concenh-ate on the more difficult, creative development tasks which a tool 

cannot do. Software tools have been proven to be effective in other engineering environments 

(such as CAD programs). By making the right tools available to software developers, their job 

can be simplified and enhanced, supporting them in the reuse process and allowing them greater 

opportunities to search for and incorporate reusable components. 

This solution is a good one, but alone, it is not sufficient to bring real benefits to a small 

company. CASE tools can be very effective when used correctly. However, they are just tools, 

and wil l only be of use when the correct tool is used with the right training in the right 

environment. A hammer and chisel in the hands of a baker wi l l be of no practical use; but, in the 

right hands, these simple tools can produce amazing results. 

Another problem with the infa-oduction of any tool is that, without any process to support its use, 

the tool is unlikely to be used effectively. Excellent CASE tools have been installed in software 

development companies, but have made no practical contribution to the staff because no-one 

knows how to use them. Such tools, however effective they are, end up as an expensive waste of 

resources. A process.to support the tool, and training in the use of the tool, are required to make 

it effective. 

67 A utomating Reuse Support 
in a Small Company 



4.7 Conclusions 

Several different options have been presented in this chapter for the introduction of software 

reuse into a small company. Each of the options has been discussed, particularly with reference 

to their validity for a small company. The first option was obviously the 'ideal' solution, but it 

was seen that the widespread introduction of structured processes (as recommended in the CMM 

and other maturity models) in a small company would probably be too large scale and resource 

intensive to be successful. There are very real benefits to this approach, which would be 

achieved in a smaller time scale than using the second suggested option. However, with the 

amount of resources which would have to be committed to the programme of process 

improvement, the risk is far, far greater that the company wil l collapse before the improvements 

start to pay off. The second option is more practical and far less risky, introducing reuse 

incrementally in the company, using the benefits at each level of improvement to 'fund' the next 

level. Encouraging ad-hoc reuse, the third option, was the most likely to be accepted by the 

company. However, this would not bring the scale of benefits that can be achieved by a properly 

organised reuse programme. It was felt that the introduction of CASE tools can be valuable, but, 

on their own, they are not likely to be used effectively. Of course, there is a fifth option, which is 

to make no changes, but as already discussed in section 3.4, this option has associated risks of its 

ovra. 

Based on the options available, the decision was made to follow the second option, attempting 

an incremental introduction of reuse in the case study with Public Access Terminals. As 

discussed, this option minimises the risk associated with the introduction of reuse into a small 

company. A method has been developed to facilitate the incremental introduction of reuse into a 

company, which is described in the next chapter. It was also felt that the benefits which can be 

gained from the use of CASE tools would be valuable in automating support for the reuse 

processes within the company. It was seen in Chapter 2 that it is only when both the 

technological and organisational issues in reuse are successfully addressed that the benefits of 

reuse can be capitalised on. In this case study, it was decided that the initial stages of the method 

68 Automating Reuse Support 
in a Small Company 



would be implemented first, so that some of the organisational issues could be addressed. Then, 

when the requirements for technical support for the programme could be clearly identified from 

tiie work aheady carried out, the technological issues could be addressed. In this way, the CASE 

tool developed would address the real needs identified during the first stages of the incremental 

reuse programme. The following chapter describes the method developed for introducing reuse 

to the company, with the steps to be followed and an identification of requirements for the 

CASE tools. 

69 Automating Reuse Support 
in a Small Company 



Chapter 5: Reuse in a Small Company: The method 

5.1 Introduction 

This chapter looks at the method for intioducing software reuse into a small company 

recommended as part of the thesis. The research has been conducted in conjunction with Public 

Access Terminals Ltd., a small software development company. The research method adopted is 

based on Potts' [Pott93] idea of using 'industiy-as-laboratory'. Potts suggests that most software 

engineering research has been following a 'research-then-transfer' methodology, and that this 

often fails to address significant real-life problems. He introduces the concept of 'industry-as-

laboratory', in which he recommends that "researchers identify problems through close 

involvement with industiial projects, and create and evaluate solutions in an ahnost indivisible 

research activity". 

In association with a small software company, the thesis explores the possibility of inti-oducing 

software reuse techniques into a company who are low on the process maturity scale. As such, 

they rely solely on the 'heroic' efforts of their employees [Curt92] to ensure that their products 

meet the demands of their customers and are competitive within the marketplace. This chapter 

describes the method for intioducing reuse that has been developed. The next chapter discusses a 

case study in which the method is implemented within a small company. 

5.2 The Issues 

It would be foolish to claim that software reuse is the solution to all the problems that have 

caused the current software crisis. Achieving software reuse on a level at which substantial 

benefits wi l l be gained is a difficult task, and requires a great deal of commitment and effort. 

70 A utomating Reuse Support 
in a Small Company 



Introducing reuse in a small company presents a different set of challenges to those faced by a 

large company. The larger scale of a big corporate reuse programme brings challenges 

associated with the size of the programme and the difficulties involved with changing the 

company's processes for structured software engineering. Many of the recommendations for 

software reuse considered in chapters 2 and 4 relate mainly to reuse programmes of this scale. 

For a small company, these considerations are significantly reduced. 

In comparison, small companies tend to have a small team of software developers (often not 

more than 10) who are solely responsible for the development and maintenance of the 

company's software product(s). The size and complexity of the products is significantly less 

than those built in a large software factory. This has an impact on software reuse. For example, 

the creation and maintenance of a large component library is one of the key issues discussed in 

software reuse research. However, for the small number of components which would be 

available within a small company, problems with storing and finding components are much less 

significant. 

Horizontal reuse is often, very difficult, due to the narrow domains in which small companies 

tend to concentrate their efforts. Vertical reuse, however, is more available because of the 

narrow domains. This is an area which can be exploited in a small company reuse programme. 

This research concentrates on those small companies where there are no structured software 

processes currently in place. For them, the benefits which reuse offers seem unattainable because 

of the emphasis on considerable up-front investment and formalised processes which are 

recommended for successful software reuse. 

As seen in Chapter 2, there are two main areas which must be considered for effective reuse 

within a company: technological and organisational [Stan84]. As technology has advanced, with 

the methods and tools to support reuse becoming available, the technological challenges facing 

reuse have been surpassed by the economic and organisational issues that face a company 

intending to implement a reuse programme [Trac88a]. 

71 Automating Reuse Support 
in a Small Company 



The challenges facing any small company considering a reuse programme can be categorised 

into five main areas: 

Initial investment - small companies do not have the time, money or resources to invest 

into a programme which does not have immediate retums. The risk is too great. It has 

aheady been shown in chapter 2 through experience that in order to gain the benefits of 

reuse, a considerable investment must be made first. 

Lack of defined processes - all the successful reuse programmes discussed in the previous 

chapter have shown how companies have changed their processes in order to incorporate 

reuse. Small companies tend not to have processes in place which can be altered for 

successful reuse implementation. 

Minimal resources - the development team in a small company is often only a few people 

sttong. They are busy with developing and maintaining the products which are essential to 

the company's continued existence. They do not have the time, money, tools and other 

resources to dedicate to any extra workload. 

Short time-scales - small companies tend to work to short, tight deadlines and short term 

goals. Long term investment which does not directiy increase the company's capital is not 

a viable proposition. A reuse programme falls into this category. 

Lack of experience - for a small company wishing to embark on a reuse programme, 

there are no examples of successful reuse programmes in other small companies for them 

to base their efforts around. Likewise, there are no examples of unsuccessful reuse 

programmes from which they could learn. 

5.3 The Method 

The method which has been developed as part of this research has been built to address the 

issues described in tiie previous section. One of the major challenges faced in developing the 

72 Automating Reuse Support 
in a Small Company 



method is that it must provide means for introducing a reuse framework into a small company, 

while reducing both the risk involved and the time taken before benefits are obtained. 

The method presented below is based on the principles of organisational development and 

process improvement described in chapter 3, as well as previous work done in the field of reuse 

infroduction, particularly by Karlsson et al. [Karl95] in the REBOOT project. The steps 

developed for this research have been adapted from the work done in the field of method study 

by Radford [Radf84] and Buckley [Buck85], as well as the other background investigation 

described in chapters 2 and 3. The following section describes the Seven Steps to Success when 

implementing a reuse programme. Each step of the method should be completed before moving 

on to the next stage and criteria are given in order to check whether the step has been 

successfully completed. , 

1) Gain the support of management and staff 

The fnst, and perhaps the most important, step in introducing a reuse programme is to gain the 

support of the company's top level management [Bigg89b]. This is crucial. The introduction of a 

reuse programme affects all parts of the software production process in the company. Therefore, 

the support of the high level management in charge of all aspects of development must be 

gained so that the programme wil l be supported and implemented, and to allow changes to 

company policy to be made as needed [Hoop91]. The method recommends a well prepared and 

realistic presentation to key members of the management and staff describing both the benefits 

which reuse can bring and the difficulties involved in creating a successful reuse programme. 

I f this type of support cannot be obtained, then the reuse mtroduction project should be 

abandoned until such time as the commitment level changes. The level of commitment can often 

be measured by whether management are prepared to be involved personally in the programme, 

and whether they are willing to commit time and resources to its success. Small companies are 

characterised by owner management, and it is important that these owner managers are willing 

not only to be committed to the reuse programme, but to be actively involved in its success. The 

73 Automating Reuse Support 
in a Small Company 



risk of failure without ful l management support is too great at this stage to attempt any further 

work in the reuse programme. 

2) Investigate the domain 

The next stage of the method is to gain an in-depth knowledge of the company and its current 

working practices. This can be done by studying not only the development methods used, but 

also the company's product and the viewpoint of the staff 

It is recommended that the company's development methods, and the viewpoint of the staff are 

investigated by conducting informal interviews of certain key members of staff. This should 

include the manager and members of the development team. A questionnaire should also be used 

to gain information about both the work of the company and the staff The investigation should 

not be an end in itself, but simply a means to reach the next step of the method. 

The programme should only be abandoned at this stage i f the level of commitment gained 

during step 1 has decreased during or after the investigation. 

3) Identify areas for improvement 

Target areas for improvement should be identified which would help the company to be 

successful in introducing a reuse programme. These areas should be determined using the 

investigation of the company conducted in the previous stage of the method. The target areas 

should be based on key areas in the company where changes in working practices could make 

the development environment more conducive to the growth of a reuse programme. 

However, major changes should be avoided initially. As concluded in the previous chapter, an 

incremental approach to implementation of the reuse strategy should be used. This is because, 

with an incremental approach to reuse, reuse techniques can be tried and proved on a small scale 

74 Automating Reuse Support 
in a Small Company 



before introducing major changes to the company [Prie91]. Also, reuse target areas can be 

identified where reuse wil l be most effective. 

Some suggested areas for improvement are: 

Planning - "The company that fails to plan, plans to fail". Without proper planning for 

software development, the potential benefits which can be gained from reuse cannot be 

maximised because opportunities for including reusable components may be missed. 

Design - The use of a design method which supports both building reusable components 

and including components in system development can be a great aid in the reuse 

programme. 

Resource Management - In order to implement a reuse programme, reusable components 

must be available to software developers. Resource management can help to make this 

happen. 

Documentation - Developers must be able to understand components in order to be able 

to reuse them. As seen in chapter 3, documentation can aid the understanding process. 

Although incredibly unlikely, it is possible that no areas for improvement can be identified. I f 

this is the case, then the programme should be abandoned at this stage. However, unless this is 

the case, the only other reason to abandon the program at this stage is i f the management and 

staff are not willing to invest their time and resources into making the suggested changes. Their 

commitment to change can be improved by using them as part of the identification of areas for 

improvement. Indeed, the greatest commitment is often shown when the staff involved in 

software development come up with the ideas for areas of improvement. Commitment levels can 

be gauged by discussing the proposed improvement areas with participating staff, and the 

programme should only proceed when their fu l l support is given and the appropriate resources 

are committed to the programme. 

75 Automating Reuse Support 
in a Small Company 



4) Define appropriate 'lightweight' processes 

Lightweight processes are defined as software processes which are informally defined in terms 

of recommended working practices for company staff, which are repeatable during the software 

development lifecycle. 'Lightweight' processes are proposed as part of this research to avoid the 

large amount of resources which must be committed and documentation which must be 

produced in a formalised process improvement scheme. They do not require formal defmition, 

training, documentation or management in order to achieve their objectives. These informal 

processes are the fnst step to formalising the software process, and as such, are expected to be 

subject to change and can be discarded i f unsuccessful. The informality of these processes 

makes them ideal for small companies, because improvements to their working practices can be 

tried and tested before the successful process recommendations are formally accepted. 

These 'lightweight' processes are based on the areas for improvement identified m the previous 

step. The 'lightweight' processes are manifest as a set of recommendations to the company's 

staff on working practices that wil l best support the reuse programme. As with the previous step, 

including the staff in the 'lightweight' process defmitions improves their commitment to change, 

and allows them to capitalise on their current best practice. These recommendations must also be 

directly linked to the benefits which reuse can bring to provide the motivation for their use. 

These recommendations should be presented to all those involved in the reuse programme. 

Again, only when the support of both the management and technical staff for the 

recommendations is assured should the progranmie proceed. 

5) Select a pilot project 

It is not wise to jump stiaight into a new development strategy that wil l change the way that the 

company works without first being assiu-ed that the sti-ategy is applicable to the company, its 

staff, its domain and its workmg environment. A pilot project allows the 'lightweight' processes 

to be tiried in practice. The pilot project wil l be a project that is indicative of the type of work 

76 Automating Reuse Support 
in a Small Company 



done within the company. It gives members of staff at the company hands-on experience with 

software reuse techniques. 

The pilot project is also a great opportunity to try out recommended reuse techniques to see how 

effective they are in a real situation. Not all techniques wil l be equally effective, and the pilot 

project should highlight those reuse techniques which wil l be of most benefit to the company. 

Although software reuse can offer major productivity gains when used in the right way in the 

right environment, it is not the solution to all problems. There wil l always be times when it will 

be more effective to v*T:ite new code than to try to fmd and reuse previously written code. The 

key is to recognise which techniques wil l be most effective in different development 

environments, and utiUse the most efficient development strategy in each case. The pilot project 

should also help to identify areas where tool support would assist the developers in achieving the 

goals of the reuse programme. 

An appropriate pilot project is one which is typical of the work done within the company. I f an 

appropriate project cannot be found, it may be wise to wait for a later opportunity rather than 

using a pilot project which wil l not allow the suggested techniques for reuse to be properly 

implemented. However, using an atypical project because it would allow the best results to be 

seen from the reuse programme is also not ideal, as it wil l give unrealistic results for the next 

stage of the method. During the lifetime of the project, the work being done should be monitored 

with respect to the 'lightweight' processes recommended, so that the results can be evaluated at 

the next stage. When the pilot project has been completed, move on to the next stage of the 

method. 

6) Based on tlie results of the pilot, make a plan for integrating reuse into the company 

It is important to learn from the experience of the pilot project, so that when reuse is integrated 

into the company as a whole, tried and proved techniques wil l be used. Members of staff can 

have confidence in the changes that wil l be made, because they have seen the success of the pilot 

77 Automating Reuse Support 
in a Small Company 



project. Once the results of the pilot project have been analysed, a new plan for the software 

reuse sti-ategy of the company should be drawn up based on these results. 

It is very important at this stage to identify what did and did not work well in the pilot project, 

and to consider how the problems highlighted by the pilot can be better addressed. The greater 

difficulties involved in the wider intioduction of reuse throughout the company mean that the 

reuse programme should only go ahead i f it is felt that the successes of the pilot can be 

tiansferred to other projects, and that the problems highlighted can be successfully addressed. 

The successful parts of the pilot project form the basis of the plan for more widespread reuse 

inttoduction. During the course of the project, areas where tool support would have assisted the 

project should also have been identified. These requirements can be used to procure or develop 

tools which meet the needs of the reuse programme. I f management and staff are still conunitted 

to the reuse programme, then further improvements to the programme can be identified and 

implemented by returning to step 2 of the method. 

In cases where the pilot project has completely failed to bring any benefits firom reuse, 

examination of the results of the project should be used to discover why. Failure will usually be 

caused by one of the following three reasons: 

a) the areas for improvement and 'lightweight' processes used did not address the right 

areas to help the company to capitalise on the benefits of reuse, 

b) the staff did not actually implement the 'lightweight' processes in their work or 

c) reuse is not an appropriate technique to achieve benefits in the company's current 

climate. 

I f either of the fust two reasons are identified, the method must be reapplied from step 1 before 

any progress can be made. I f the third is genuinely the reason for failure, and there is no scope 

78 Automating Reuse Support 
in a Small Company 



for reuse in the company's software development, then the reuse introduction programme should 

be abandoned at this point. 

However, i f the pilot project has been successfiil in bringing the benefits of reuse to the 

company, then the next step of the method should be followed only when the fiiU support of the 

management and staff of the company is received for the reuse plan. 

7) Incrementally implement the plan with automated support 

Once a plan has been formulated, it should be put into action. This seems obvious, but it is 

important to consider how the plan wil l be implemented. As described in the previous chapter, it 

was decided to use a method of introducing reuse ideas while gradually encouraging the 

improvement of development methods. 

The incremental approach was recommended in this research in order to allow the company to 

slowly change their working practices at the same time as fulfilling their customer's 

requirements. This wi l l give the staff a chance to get used to the idea of a reuse framework. It 

wi l l also allow the new development methods to mature and become a standard practice within 

the company without an extensive overhaul of current working practices. The progress of the 

reuse programme against the plan should also be measured, to identify how the programme is 

progressing, and to update the plan, i f necessary. 

Automated support is also a recommendation of the method. With tools to support the reuse 

programme, the impact of the Changes that need to be made can be reduced. The tools should be 

easy to use and provide support for creating, fmdmg and using reusable components. By this 

stage of the method, areas where tool support would assist the programme should have been 

identified. 

These areas should be used to defme the requirements for tools support. Typically, tools which 

wi l l assist the developers within a small company to understand; store and retrieve; and 

79 A utomating Reuse Support 
in a Small Company 



incorporate reusable components within their source code wil l be valuable in automating support 

for the reuse programme. These three areas are very important in order for developers to be able 

to achieve effective reuse (see section 2.5). 

Investigation was conducted into each of these three areas in order to identify what the tools 

would need to provide in order to address them. There have aheady been several tools 

developed for the retrieval of reusable components from a component library. Much of the work 

on these tools is in the identification of potential reuse candidates from a large collection of 

components. However, they always rely on the developers and/or the repository administrator to 

ensure that good information on the components stored within the library is available. No tools 

have been seen which support the automatic generation of information about components that 

are stored in a component library. 

The tool set proposed to support the reuse programme in tiiis research wil l concenti-ate on 

automatmg support for the reuse programme. The tools will integrate retrieval of reusable 

components with automatic generation of information about those components. 

The method developed is summarised below: 

Step Criteria for continuation Action if criteria has failed 

1. Gain the support of 

management and staff 

Full management support is 

obtained 

Abandon programme or attempt 

to increase level of support 

2. Investigate the domain Continued support for reuse 

programme 

Abandon programme or return to 

step 1 

3. Identify areas for 

improvement 

Appropriate areas are 

identified and agreed 

Abandon programme, revise 

selected areas or return to step 1 

4. Define appropriate 

'lightweight' processes 

Recommendations are fully 

accepted and supported by 

management and staff 

Abandon programme, revise 

'lightweight' processes or return 

to step 1 

80 Automating Reuse Support 
in a Small Company. 



5. Select a pilot project Appropriate typical project is 

found, supported and 

completed 

Wait for appropriate project, 

abandon programme or retum to 

step 1 

6. Based on the results of 

the pilot, make a plan for 

integrating reuse into the 

company 

Benefits obtained from pilot 

which can be transferred to 

whole company. Plan is fully 

accepted and supported. 

Abandon programme i f reuse 

techniques not appropriate for 

company or retum to step 1 

7. Incrementally 

implement the plan with 

automated support 

Reuse success transferred to 

all projects 

Abandon programme in areas 

where reuse is not successful 

5.4 Conclusions 

The method described in this chapter is based on the tried and tested business techniques 

described in chapter 3 as well as previous software reuse research. It was shown in chapter 4 that 

there have been several reported reuse successes in large companies. Based on the solutions 

discussed in the previous chapter, the method described uses a combination of 'lightweight' 

processes with automated support for the reuse programme to reduce both the effort and the risk 

involved in introducing reuse in a small company. Seven Steps to Success were presented for the 

introduction of reuse within a small company. 

However, without testing the method, the suggestions made in this chapter are simply that. The 

next chapter describes the implementation of the method at Public Access Terminals Ltd., a 

small software development company. The case study described tests the method discussed in 

this chapter. A description is also given of the development of a tool set which supports the 

reuse programme by automating some of the tasks required to allow reuse to be capitahsed on. 

Automating Reuse Support 
in a Small Company 



Chapter 6: Reuse in a Small Company: The practice 

6.11ntroduction 

This chapter discusses the implementation of the method described in chapter 5. A case study 

using the method has been conducted in association with a small software development 

company. The challenges faced in this environment are discussed, along with the incremental 

approach used for intioducing software reuse into the company. 

The development of a set of tools for automating support for the reuse programme is also 

described. The tool set integrates a reuse repository management tool with automatic processing 

of source code to generate information about the reusable software. 

6.2 The Company 

This case study has been conducted in association with Public Access Terminals Ltd., a small 

computer systems manufacturer who have a single product in the public access and security 

domain. Their system keeps information on all the people that are currently present at a 

particular location and can issue and check security badges. The software of the system is 

connected to specially designed hardware peripherals, as well as being networked across a site 

using LANs. The system considers many aspects of computing from database manipulation to 

interfacing with peripheral hardware devices to image handling. The company deals with both 

software and hardware, and uses technologies such as device drivers and networks. 

The company had realised that, with the pressure being applied to its product by customers and 

the competition, it was time to start using more stiructured software metiiods in their software 

development department. This, along with two teaching company scheme placements in 

82 ' Automating Reuse Support 
in a Small Company 



association with the University of Durham, encouraged the company to look to the expertise of 

the university in helping to improve its methods. 

6.3 The Case Study 

The method described in the previous chapter was used in association with P.A.T. Ltd. to 

attempt the infroduction of a software reuse programme. The company followed the Seven Steps 

to Success. Each of these steps as implemented in the case study is described below: 

1) Gain the support of management and staff 

In this case study, we gained the support of the high level management by giving a presentation 

on reuse, explaining how it could help their company and how best to utilise it. This presentation 

was given to the company's technical manager and key members of the hardware and software 

development teams. It was a good opportunity to present the case for reuse, stressing the benefits 

that it could bring to the company, and the approach for introducing reuse into a small company 

that we were recommending. It was also a good point at which to get feedback from the 

management on what they expected from the reuse programme, and how they wanted the 

company to change for the future. 

It was found that the management were very dubious of the reuse successes reported, as they all 

related to large corporations. They were not sure how the successes could be related to their 

company. Their key concerns can be summarised by one of the questions which was asked after 

the presentation: "We're only a small company and not very structured. Can we still do reuse 

and is it worth it?" 

There was considerable discussion of the challenges that would be faced when implementing a 

reuse programme within the company. This centred around the changes which would have to be 

made within the company and the resources that would be required. However, the management 

83 Automating Reuse Support 
in a Small Company 



feh that with the incremental approach recommended, the time and resources which would have 

to be committed to the reuse programme could be minimised. This gave them confidence that 

the benefits of reuse could be made available to them, and after discussion with the manager of 

the company's technical development department, it was with enthusiasm that the company 

agreed to continue with the proposed reuse intioduction project. 

2) Investigate the domain 

The next stage of the method is to gain a workmg knowledge of the company and its current 

working practices. This was done by conducting informal interviews of certain members of staff, 

including the technical manager and members of both the software and hardware development 

teams. A questionnaire (Appendix A) was distributed to each interviewee before the interview. It 

was not expected that the questionnaires should be filled in by tiie staff being interviewed. 

Rather, it served as a focal point during the interview to give each member of staff an idea of the 

type of question that would be asked, and the type of information being sought. Notes were 

taken during tiie interviews, and the interview with the technical manager was recorded, with 

permission, in order to study the information gained at a later time. 

It was found that the company's metiiods were very ad-hoc. The developers worked in tiie way 

that they found most suitable. Informal communication between the developers helped to clarify 

the interoperation of the various parts of the system that they were working on. The 

development team kept only one version of flieir software product, to which they made all 

alterations. This ensured that they did not have multiple differing versions of the software in 

different locations. Although it solved problems with software version management, it created a 

very difficult to understand, monolitiiic software system. 

They did not have a formalised process for development or maintenance. Their work was based 

very much on customer requests. When a new customer was obtained, they made additions to 

the product ( i f necessary) to cater for the new customer, then installed the new version of the 

software at the customer's site. Their customers often requested technical support and 

84 Automating Reuse Support 
in a Small Company 



modifications to the system, most of which were handled by the development team. There were 

no specified design methods used, each developer used his or her own preferred method of 

working. Little or no documentation was kept on the software, apart from the user manual. 

It was also found that the staff were keen to improve their development processes. They seemed 

-excited about the opportunity to move their system to a new operating system environment. 

They wanted to gain the benefits of reuse in the new project. This commitment encouraged both 

the management and staff to continue with the reuse programme. 

3) Identify areas for improvement 

The results of the interviews provided very valuable insights into the attitudes and working 

practices of the company's staff. The staff seemed keen to see the company become a more 

competent software house in the future. Formahsed methods, better planning and the 

introduction of structured processes were suggested as ways to achieve this. However, most of 

the company's current plans for the future were based solely on further modification and 

redevelopment of their software products. 

One of the key areas for improvement was a change to an improved operating system. Rather 

than using MSDOS, the company decided to move to Microsoft® Windows® as the operating 

system for their software. This would give them access to improved development environments 

with greater support for reuse. It was also seen that better planning for projects would enable the 

developers to recognise opportimities for reuse, rather than simply basing their development 

sfrategy on requests from customers. Along with this, using a structured design method could 

also aid the developers in reusing their software. 

To support the reuse programme, both management of software resources and software 

documentation would make reusable components easier to fmd and understand. As some of 

these areas for improvement were suggested by the staff at Public Access Termmals during the 

previous stage of the method, and they were involved in identifying what should be done to help 

85 Automating Reuse Support 
in a Small Company 



improve the company, there was little difficulty in receiving flieir full support for the 

improvements recommended. 

4) Define appropriate 'lightweight' processes 

Based on the results of the investigation, a stiategy for adopting software reuse techniques was 

recommended. Suggestions were made on how to set up a reuse programme witiiin the 

company, along with the amount of the developer's time would be needed to support flie reuse 

programme and what other resources would be required. The resources included a good 

technical environment and an area of the company's network set aside for reusable components. 

The company decided to use the Microsoft® Visual C++ development environment. 

Recommendations for 'lightweight' processes were made to support the introduction of 

stiaictured techniques for the following: 

Planning and reviews - It was recommended that meetings be held on a regular basis to 

ensure good communication within the company. It was suggested that during the initial 

stages of a new project, the meetings were used in order to plan the project in advance. 

Then, as the project advanced, these meetings could become more focused on technical 

issues and lower level design and implementation considerations. They would then become 

a chance to review what has been done so far and plan ahead for the next stages. 

Design - It was recommended that an object-oriented method of design be used to support 

the reuse programme. Object orientation was suggested as a design method because it 

supports reuse, and would allow for the provision of reusable design techniques and 

components in software development and maintenance. A survey of object-oriented 

methods was conducted [Bigg95], and made available to the company. This allowed the 

company to compare the different methods, and a decision was made to use the Object 

Modelling Technique (OMT) method described by Rumbaugh et al. [Rumb91]. The main 

reasons for tiiis decision were that, at the time, it was flie most popular of the standardised 

86 Automating Reuse Support 
in a Small Company 



0 0 methods in the software industry [Leac94] and there is considerable tool support for 

the method [Bigg95]. This move to an OO design method, tied in with a decision to move 

from a C style of programming to the f i i l l use of C++ as their main programming language 

for development, would give the developers both a sound design method and a good 

technical environment which both inherently support reuse. 

Resource Management - It was recommended that the'work done within the company be 

kept in a reuse repository. This would allow developers to have somewhere to store their 

reusable code. It was expected that the repository would be a centtal storage location to 

which all staff would have access. This repository would be where reusable code which 

had been written could be kept for inclusion in their software by any of the development 

staff 

Documentation - It was found in the company's software development process that when 

the pressure was on, documentation was invariably the first casualty. It was, therefore, 

recommended that a minimum level of documentation be kept in the company, with exfra 

documentation to be completed as needed. 

The areas described above were identified from the shidy conducted within the company as 

major target areas for improvement in order to support the reuse programme. These are the 

major areas of a company's process which wil l support a software reuse programme, and these 

areas were especially valid in the case of Public Access Terminals. 

After discussion with the manager of the technical development department, it was fek that the 

areas identified were appropriate for the company, and the reuse programme moved on to the 

next stage. 

87 Automating Reuse Support 
in a Small Company 



5) Select a pilot project 

A section of the ful l system, the FotoFile for grabbing images from a video camera, was chosen 

as the pilot project. Although the developers knew what fliey wanted flie software to do, tiie 

objectives for the system being developed sometimes changed quite dramatically. Often, a 

greater realisation of the work being done by competitors, and flie expectations of flieir 

customers, induced a change in the direction of the development. 

Originally, the plan was to develop the ful l security access system in Visual C++. The system 

included a database for storing details of personnel as well as other components which 

communicated with various peripheral devices. The FotoFile was one of these components, and 

it was originally expected to be built into the full system. 

During the course of flie pilot project, tight deadlines had to be met. These were caused by a 

teade show, at which the new version of flie software needed to be demonsfrated; and requests 

from new customers for the software to be modified. An estimation of the time it would take to 

complete the FotoFile was given, and it was expected fliat tiie project would be completed in 

time to be demonstiated at the ttade show. However, customer requests for modifications to the 

old system hampered the development of the new system. As the deadline approached, flie 

developers worked with less regard for the reuse recommendations made, in order to get flie 

software working in time. It was when the pressure was off that the recommendations were 

reviewed, and the code written was reconsidered in order to see i f it could be made more 

reusable. It was originally expected that the recommendations would be followed throughout tiie 

lifecycle of the pilot project. However, it was seen that the emphasis on reuse was giving the 

developers motivation to spend more time planning their code in advance. They were also 

encouraged to go back to tiie code once written and restincture it in order to make it more 

object-oriented and reusable. 

Considerable success was gained in the pilot project when the developers gained a greater 

understanding of the Object Linking and Embedding (OLE) features provided in Visual C-H-

88 A utomating Reuse Support 
in a Small Company 



under Microsoft® Windows®. After some investigation, it was found that the use of OLE would 

allow the FotoFile to be built as a stand alone object, rather than as an integrated part of the fiill 

system. OLE is a standardised mechanism for allowing data created by different Windows® 

appHcations to be integrated into a single file. These "compound documents" seamlessly access 

the different applications for creating and editing the various types of data they contain. 

;[Micr93b] 

The aims of the pilot project altered, the new goal becoming to make the FotoFile an OLE 

server. This allowed the development of the object to be achieved in complete isolation to the 

rest of the system. There were many advantages to this style of development. The developers did 

not need to know the details of the f i i l l system being developed in order to successfully complete 

their project. This was of great benefit to them, because, as has aheady been emphasised, the 

proposed system often changed in its objectives. It was, therefore, very useful to'have an 

encapsulated section of the system to work on. Once this stt-ategy was decided upon, the pilot 

project wjis successfully completed in 4 months. 

The greatest benefits derived from the pilot project were achieved when the company recognised 

an opportunity to enter the component market. Another company working on the same type of 

system, in consultation with one of the developers, were impressed with the FotoFile and saw it 

as a perfect addition to their ovra system. Using OLE, the FotoFile server was working 

successfully with their system in under 2 hours, which also impressed the company. A conttact 

was soon formed, in which the system providers gave a royalty to the component provider for 

every system sold which included their component. The value of the contract was considerable, 

and the royalties from the deal provided much needed capital to the company at a critical period 

for funding their further developments. 

The success which had been seen during the pilot project gave the staff and management 

confidence that the reuse programme would work for them, and they were very willing to 

continue with the reuse programme. In fact, their main concerns focused on where they could 

89 Automating Reuse Support 
in a Small Company 



apply the same techniques to achieve the same results rather than with the challenges that would 

be faced when implementing reuse on a broader scale. Such benefits from the pilot project 

cannot always be guaranteed but, in this case, the company's success encouraged the staff to 

continue with the reuse prograrnme. 

6) Based on the results of the pilot, make a plan for integrating reuse into the company 

In analysing the results of the pilot project, it was recognised by the development team that the 

FotoFile component developed would provide greater flexibility for the overall system. Due to 

the reuse strategy considered in the development of the FotoFile, the result of the pilot was that 

a reusable component was biiilt. 

This success allowed the company to reconsider their original plans for the development of the 

system. In the original plan, the ful l system was to be developed in Visual C-H-. However, as the 

main system was a database management tool for keeping information about the people 

currently at a particular site, it was recognised that using a database application generator for 

that section of the system would make the development much quicker and easier. As the 

FotoFile component developed would be easily integrated into a ful l system, the developers 

looked for a different development environment which would make the ful l system easier to 

implement. 

It was decided that the database would be developed in Microsoft® Access, rather than C-H- as 

originally planned. This was a considerable success in terms of the development of the entire 

system, as using an application generator such as Microsoft® Access meant that the overall 

system would be completed much more quickly than originally anticipated. The flexibility 

provided by the 'lightweight' processes within the reuse programme allowed the developers to 

change theii plans midway through the programme. 

Following the success of this component based development, another OLE server was also 

proposed to support the ful l database system. This component would follow a similar style of 

90 Automating Reuse Support 
in a Small Company 



development to the FotoFile. This was an object for designing and printing identification badges 

known as the Badge Server. This would complement both the FotoFile and the main database, 

allowing customised security badges to be designed and issued. 

Some success had been achieved in the case study thus far; however, there were two major 

problems which were identified during the course of the pilot project. These were the lack of 

experience in using an object-oriented design method, and the lack of tool support for the 

developers. 

It was felt that with suitable CASE tools, object-oriented development could be better employed, 

and it would be easier to collect written code into a reuse repository for use by other 

applications. At least two of the recommendations made to support the reuse programme could 

be aided by automation. These are resource management and documentation. One of the least 

successful of the 'lightweight' processes suggested for the pilot project was keeping software 

documentation. As has been mentioned, it was found that the developers tended to develop code, 

then go back to the code to try to abstract reusable components from it [Lane84]. Writing 

documentation after all the interesting work had been done was recognised as least important 

part of the programme in the eyes of the developers. 

Tools which aided this process by giving the developers information about their code would be 

valuable in the reuse programme. To support these improvements, it was also considered that 

tool support would aid the developers in implementing these 'lightweight' processes, 

particularly in the areas of documentation and implementing a reuse repository. I f these two 

processes could be tool assisted, the developers could concentrate more of their time on 

improving their system development using object-oriented design and communicating with 

planning and review meetings - where the more challenging work of software development is 

concentrated. The mundane tasks of software documentation at a minimirai level and the storage 

and retrieval of reusable components would be simpHfied by the introduction of tool support to 

automate these areas. 

91 Automating Reuse Support 
in a Small Company 



7) Incrementally implement the plan with automated support 

The plan for reuse at Public Access Terminals was to follow the same style of development 

which had been used in the pilot project to complete other components which would plug into 

the ful l software system. The same development methods would be used as recommended 

during step 4 of the reuse programme. Also, a set of tools would be developed to support the 

reuse programme. 

The first part of the plan was to implement the Badge Server. The code was again written in 

Visual C++, with the Badge Server being implemented as an OLE server. In this second project, 

the developers used the lessons they had learned from the pilot project in maximising the 

potential benefits available in the reuse programme. The developers were not only developing 

the component for reuse in the main system, but used reuse techniques in the developrrient of the 

component itself. 

In the finished product, there was a total of just over 20,000 lines of code. Of this code, 43% was 

inherited from the standard libraries available through the Microsoft® Foundation Classes 

(MFC). Of the remaining 57% of the code, 24% was automatically generated by the Visual C-H-

wizards. Of the remaining code which was written by the software developers, 31% was 

abstracted into reusable classes which were used throughout the application. This gives a total 

reuse factor of 70% for the whole project. These results were calculated by identifying which of 

the standard library classes were called by the source code and totalling the number of lines of 

code in those classes; then calculating the number of lines of code automatically generated by 

the application and class wizards in Visual C++; then measuring the number of lines of code in 

the classes that were abstracted out into the reuse repository. 

The second part of the plan was to implement the database and integrate the two components 

built during the reuse programme. This proved to be incredibly straightforward because of the 

92 Automating Reuse Support 
in a Small Company 



It was decided that the tool set should provide 3 main areas of fimctionality. 

1. Reverse engineering source code to an 0 0 design representation. 

2. Re-documenting soiu'ce code. 

3. Managing the storage and retrieval of reusable components. 

The fnst two functions would be aimed at helping developers to understand reusable code, and, 

through understanding, fmd it easier to reuse. The third function enables those developing for 

reuse to store the components for later retrieval, and those developing with reuse to search the 

component repository for suitable classes to reuse. The next section describes the tool set which 

automates support for a small company reuse programme developed as part of this research. 

6.4 Automated support for the reuse programme 

. Automated support for the reuse programme at Public Access Terminals was to be provided with 

a set of tools which would provide support in the three areas identified above. These areas are: 

understanding; storage and retrieval; and incorporation of reusable components. 

To provide maximum support for the reuse programme, the tool set was designed to function 

with C++. It was found that the class is the main object of reusability in C++, and that class 

libraries, when used effectively, can be very useful in building applications. Particular attention 

was paid to the operation of the Microsoft® Visual C++ development system, as this was the key 

system used at P.A.T. In designing the system, it was decided that the requirements discussed in 

chapter 5 would be best fiilfilled with a set of tools to generate information on C++ source code 

and use that information to store and retrieve reusable components. 

The information would be given in terms of an object-oriented design notation, and 

documentation of the code, which it had been seen that developers did not have time to write. A 

set of tools that could also aid in storing and retrieving reusable components, as well as giving 

94 Automating Reuse Support 
in a Small Company 



technology used. The ful l system was ready for the market ahead of schedule and was well 

received by the company's customers. 

The requirements for the set of tools to support the reuse programme were identified from the 

results of the pilot project, and in discussion with the technical staff at Public Access Terminals. 

The tool set was required to work with C++ software, which made use of classes and available 

component libraries. The results of the requirements analysis for the tool set are given in terms 

of the three areas identified earlier. 

• Understanding - From investigating available component libraries, it was foxmd that the 

mam aids to understanding a class library are: a class hierarchy chart describing the 

inheritance relations and structure of the class library; and documentation describing the 

purpose of each class and it associated services and attributes. (For example, see the Class 

Library Reference for the Microsoft® Foundation Class Library [Micr93c].) 

• Storage and Retrieval - Many different systems are used in the area of information systems 

for the storage and retrieval of data. However, many of the challenges to effective 

information retrieval for large data sets do not exist in this case. This system will be dealing 

with small sets of in-house company software components being stored for later retrieval 

when constructing new applications. Based on the factors discussed in section 2.6.2, and a 

previous project on the storage and retrieval of software documentation [Bigg93], it was 

decided to use a simple class information storage system with ER techniques for retrieval. 

• Incorporation of Reusable Components - Once a suitable reuse candidate has been found, 

there are two main factors which determine whether a developer can incorporate that 

component into their system. These are the quality of the component and the understanding 

which the developer has of the component. Although quality standards for software 

engineering can be recommended for component development, a tool cannot ensure that 

these are being adhered to. The first of these two is therefore outside the scope of this tool 

set. The second, however, can be assisted using the techniques described above. 

93 Automating Reuse Support 
in a Small Company 



information on those components, would be valuable to the developers in the reuse programme. 

The information about the components would be based on object-oriented design notation and 

documentation of the source code. 

The prototype tool set works on simple but effective principles. . One of the key criteria on which 

the development is based was making the tool set as fast and easy to use as possible. This is to 

enable the developers to use the tool set to aid reuse without the large overheads, previously 

discussed, which discourage small companies from incorporating reuse techniques. The 

development of the prototype tool set was achieved in three main stages, each stage being 

completed in consultation with the staff at P. A.T. 

6.4.1 Development of the Reverse Engineering Tool 

The fnst stage of development was to build a tool which would reverse engineer C++ source 

code to a diagrammatic depiction of the class inheritance hierarchy. It was decided to perform 

static analysis on C++ header files, reusing a previously written C++ parser called Docclass^ in 

the construction of the Reverse Engineering tool. The tool collects information about the classes 

contained in the code by parsing the C++ header file and reading in the appropriate information. 

The information is stored internally as a collection of objects containing class data. These 

objects are then formatted for output. The output format chosen was based on the Object 

Modelling Technique notation [Rumb91]. This is because it was found that, at the time, OMT 

was the most popular standardised 0 0 design method currently being used in software 

companies [Leac94]. It was decided to interface with a currently available, and popular, object-

oriented design tool called OMTool to display the results of the Reverse Engineering tool. 

In a very simple prototype form, this tool was given to the developers at P.A.T. They felt that 

the tool had potential to help them in seeing how their development was structured. They 

2 Docclass © 1993 Trumphurst Ltd. The source code is publicly available and has been used with the 
author's permission. 

95 A utomating Reuse Support 
in a Small Company 



interchange. The format chosen for the documentation produced was based on the structure of a 

maintenance document produced by one of the company's software developers. 

More complicated was the task of adding support for project or make files. This was 

accomplished as follows: each header file contained in the make file was processed in turn, the 

ful l collection of classes found being used for output to both formats. 

It was seen that both class hierarchies and documentation could be viewed by Web browsers 

such as Netscape, by using HTML and Java applets embedded within the Web pages. Again, 

using the information contained in the intemally stored collection of class data, new output 

procedures were written to support output to HTML and Java. The use of Web browsers could 

support software libraries over both intranet and the Internet, as well as having the advantage of 

allowing the power of the Web browser's searching facilities to be used on the software 

documentation. 

The new version of the tool was delivered to staff at P.A.T., who were impressed with the new 

interface, its ease of use, and the availability of automatically generated source code 

documentation. However, they felt that version information for the documentation would be 

useful, along with the proposed reuse support. 

6.4.3 Development of Reuse Support 

Classes could now be parsed and information output in three formats: OMTool class hierarchies, 

RTF documentation and Web pages. The final stage of the development was to build a reuse 

repository support tool into the tool set. There are many case tools which reverse engineer and 

re-document code. There are also tools which provide support for reuse libraries. None have yet 

been seen which integrate the two, allowing the information gained from reverse engineering 

and re-documentation to aid developers in reusing their code. 

97 • Automating Reuse Support 
in a Small Company 



suggested making the tool usable for projects as well as single source files, and making the tool 

easier to use. 

Once the prototype Reverse Engineering tool was working, it was incorporated into a Microsoft® 

Windows® 3.1 text processing program to allow the user to edit the source files before reverse 

engineering them. This provided a Graphical User Interface for the Reverse Engineering tool. 

Microsoft® Windows® was chosen for the application's operating environment, as this was the 

operating system in use at P.A.T. 

6.4.2 Development of the Re-Documentation Tool 

It was decided to use the comments from the source code to generate documentation about the 

code. It has been seen that software documentation can substantially aid a developer's 

understanding of software systems (as discussed in section 3.5.2). However, it has been reported 

that there is no significant difference in the effort required for programmers to understand code 

between commented and uncommented versions of source code when indentation and 

meaningful identifiers were present [Weis74]; It was, therefore, decided that using the comments 

to generate structured documentation is a valuable exercise in aiding program comprehension. It 

would also allow the developers to document their code by commenting it as they wrote it, and 

then use the tool to generate well structured documentation without any further effort. 

Developing support for automatic documentation generation was achieved using the information 

about the classes contained in the C-H-i- header files extracted by the Reverse Engineering tool. 

This included the comments associated with each class and its associated members. Based on the 

information extracted by the parser, it was a relatively simple task to incorporate a new output 

procedure which gave output to Rich Text Format. This format was chosen because of its text 

based nature, along with the availability of formatting codes to structure the documentation. It 

has also been recognised by Sommerville [Somm96] as a defacto standard for documentation 

96 A utomating Reuse Support 
in a Small Company 



The class information was now stored in a new format which allowed the generation of reuse 

repositories, containing information about each class and its functionality. These repositories can 

be built, added to, saved and searched for classes matching a search criteria. Again, based on 

research in the field of retrieval as well as previous work in this area [Bigg93], it was decided to 

use a boolean query language (which uses AND, OR and NOT connectives to create a list of the 

terms which are required) for building search criteria. This is because the system is designed for 

use by software engineers who wil l be used to the concept of boolean connectives and it is felt 

that these users wi l l appreciate the directness and specificity that a boolean search term would 

offer. 

The completed prototype tool set was delivered to the staff at P.A.T. The results of its use are 

discussed in the next chapter. 

6.5 Conclusions 

The case study has been a very useful view of the workings of a small company under pressure 

to meet customers change requests, and demands for new products. This is a considerably 

different environment to large, well structured software companies, with a different set of 

challenges. It has been seen that both technological and organisational improvements are 

required for the implementation of a reuse programme. This was as expected, although it has 

been seen that the introduction of reuse has encouraged and inspired the staff to improve their 

development ideas and processes. 

The method described in chapter 5 was implemented in full . At each stage, consideration of the 

results which had been obtained up to that point formed the criteria for moving on to the next 

stage, and it was only when the support of the management and staff was assiued that the reuse 

programme continued. Although there were difficulties, the method was not abandoned at any 

one of the seven steps, because the criteria for continuing through the method were met at each 

stage. 

98 Automating Reuse Support 
in a Small Company 



The organisational considerations for introducing reuse into any company have already been 

considered in depth in other projects. However, prior to this research, the unique challenges of a 

small company and the technology to support such a process introduction have received little 

attention. It was seen that, although reuse alone can offer significant benefits to the company, 

improvements in general development practices and software processes could help to maximise 

those benefits. It was considered that the 'lightweight' processes recommended were simply the 

fnst step in this improvement process. Based on the success of the pilot project using these 

recommendations, fiirther work should be done in further improving the company's 

development methods to capitalise on reuse. 

This chapter has also described the development of a set of tools to support reuse. Tools for 

reverse engineering and documentation generation have been integrated with a reuse repository 

support tool to aid in automating the reuse process. It was seen in Chapter 2 that technological 

support for a reuse programme can aid developers in capitalising on reuse. It was also seen in 

Chapter 3 that an integrated tool set could allow information absti-acted from source code to be 

used by software engineers in understanding the code. 

ReThree-C++ addresses these issues. The prototype tool set was developed after the initial 

stages of the incremental introduction of the reuse programme in P.A.T. so that the real needs 

identified during the programme could be addressed. The company's developers were also 

consulted throughout the development of the prototype, so that the tools would be well suited to 

assisting them in the reuse programme. The tool set was used by staff at the company, and an 

assessment of its use is given in the next chapter. 

The prototype tool set integrates the absti:action of useful information from the soince code of 

reusable components with reuse repository facilities. This allows developers to use the tool set in 

conjunction with their standard PC office tools to view the information generated. They can also 

easily add components to a reuse repository and search for reusable components. 

99 Automating Reuse Support 
in a Small Company 



It was seen that the introduction of new technology and the commitment of management and 

•y' staff to reuse can make a difference in the development process. Both can work independently to 

bring improvements, but applying the two together made a significant difference to both 

productivity and profitability. 

The next chapter evaluates the work described in this thesis, including a discussion of the results 

gained from the incremental introduction of a reuse programme at Public Access Terminals Ltd., 

and detailed evaluation of the prototype tool set. 

100 Automating Reuse Support 
in a Small Company 



Chapter 7: Evaluation of Results 

7.11ntroduction 

This chapter evaluates the results of the work described in this thesis. The results of the research 

which has been conducted are evaluated in two main sections. 

The fnst evaluates the results of the implementation of a software reuse programme at Public 

Access Terminals Ltd. The success of the incremental approach to implementing the reuse 

programme is considered, as well as the results of the reuse programme in the development of 

software within the company. 

The second section evaluates the integrated tool set, ReThree-C++, which has been built to aid 

the automation of reuse support within a small company. Its applicability within Public Access 

Terminals Ltd. is considered. The results of an experiment to test the validity of the CASE tool 

are also discussed, along with a consideration of the general operation of the tool set. 

7.2 Results of the Reuse Programme 

In considering the results of the incremental approach to implementing the reuse programme and 

the results of introducing a reuse programme as part of the software development process within 

Public Access Terminals Ltd., three main issues wil l be considered: 

1. The success of reuse within the programme. Success is measured simply by identifying 

whether reusable modules were built, and the extent to which reuse was achieved in the 

software developed. 

101 A utomating Reuse Support 
in a Small Company 



2. Benefits brought to the company by the reuse programme. As discussed in section 2.4, 

benefits wil l be identified in terms of: 

• Increased speed of production 

• Financial benefits to the company 

• Increased quality of software -

• Ease of maintenance 

3. The problems faced by the company in implementing the reuse programme. There will also 

be some consideration of the techniques and practices which were not adopted within the 

company. 

7.2.1 Success of the Reuse Programme 

The success of the reuse programme is to be measured by considering whether the method 

described in chapter 5 was successfully completed and by identifying whether reusable modules 

were built, and the extent to which reuse was practised in the company's software development. 

Using this criteria for success, it can be recognised that the reuse programme was successful. 

Each of the Seven Steps To Success were carried out, and at each stage, the criteria were met for 

moving on to the next stage of the method. 

Also, two significant areas of the company's software system were buih as reusable components, 

and each of these was integrated successfully into the ful l system. 

Implementing the 'lightweight' processes for reuse when building a software component (the 

Badge Server), the developers made a special directory for reusable C++ classes. In that 

directory, 16 classes were stored in 9 different files, each of which was made available to the 

whole system for reuse. The classes were abstracted from the software developed and made 

available as reusable classes. They were used throughout the system under development. 

102 Automating Reuse Support 
in a Small Company 



Simply having the reuse directory as a repository for reusable classes has been a success for the 

company. Whenever considering the reuse programme, the staff can readily see its influence by 

the existence of that directory and always refer to the reuse directory in discussing the 

programme. It is particularly beneficial when displaying the success of the programme to top 

level management, as there is a tangible representation of the programme in the classes 

contained in that directory. 

It must, however, be pointed out that the reuse directory came about after the system had aheady 

been built in prototype form. The developers were under a tight deadline to have a prototype of 

the system ready for display to their customers, and the reuse guidelines recommended were not 

really considered until after the working prototype had been developed. Then, using the 

guidelines for reuse, the developers reviewed their prototype, identified commonalities within 

the software, abstracted reusable classes based on those commonahties and fmally built the reuse 

repository with those classes. 

It was seen that a reuse factor of 70% was achieved in this project. It could be pointed out that 

achieving this level of reuse is a success. However, measuring a reuse factor is simply an 

estimation of the lines of code that have been reused in relation to the total number of lines of 

code in the project. There is no consideration of how difficult it was to identify, understand and 

incorporate those lines of code, or i f the reuse was valuable. It is far more interesting to identify 

the real benefits that have beeii brought to the company as a result of the reuse programme. 

7.2.2 Benefits to the company 

It was seen in.section 2.4 that there are four major areas in which benefits can be derived from a 

reuse programme. The benefits derived within P.A.T. from the reuse programme wil l be 

considered in these four major areas. 

103 Automating Reuse Support 
in a Small Company 



1. Increased speed of production 

Both the pilot project and the subsequent development in the reuse programme were built to 

meet specific deadlines. One of the difficulties of measuring whether the speed of production 

was increased by the implementation of the reuse programme is that in both cases, the 

requirements for the software changed as the software was developed. Any initial estimates of 

the time the software would take to build were based on the original understanding of the 

software's functionality. 

The pilot project {FotoFile) was built as a reusable component for the frill system being 

developed. It was completed in time for its deadline, and therefore, it can be concluded the reuse 

programme did not increase or decrease its speed of production. 

A prototype of the subsequent development {Badge Server) was built in time for its deadline, 

however, the reuse work was not conducted until after the deadline had been met. It can 

therefore be concluded that the reuse programme decreased the speed of production of this 

component. 

The real benefits came in the overall system. Due to the ease of integrating the reusable 

components into the main system, it could be built using a 4GL database generator (Microsoft® 

Access). This considerably increased the speed of development of the Windows® version of the 

software (as compared with the time it would have taken to build in Visual C++), as the main 

system was basically a database conti-ol system. The other, more unique parts of the system 

(including the FotoFile and Badge Server), could still be integrated into the ful l system because 

of the OLE properties built in as part of these reusable components. The flexibility to achieve 

this was only available because of the principles on which the reusable components were buih. 

104 A utomating Reuse Support 
in a Small Company 



2. Financial benefits to the company 

Two major fmancial benefits were gained, either directly or indirectly, as a part of the reuse 

programme. 

The first was due to the increased speed of production of the overall system, which was gained 

thanks to the flexibility given in the choice of development environment for the system as 

previously discussed. This enabled the company to release the Windows® version of the software 

earlier than was expected. This pleased current customers who were waiting for the updated 

version of the software, and also gave the company a better opportunity to compete with other 

software systems that vvere currently available. 

The second, more direct, benefit came from the opportunity to sell their image processing 

software {FotoFile) as a reusable component to another company. This contract brought a very 

large, previously unexpected, financial boost to the company, which helped to fund the further 

developments that were required both for the reuse programme and the system as a whole. 

3. Increased quality of software 

One of the advantages of the technology employed for building the two main reusable 

components {FotoFile and Badge Server) was that once the components had been built and 

tested successfully, they were easily incorporated into both the system being built by P.A.T. and 

the other system with which FotoFile was included. The quality of the components had been 

assured through testing, and, therefore, did not need fiulher consideration when building the full 

system. Testing time was not reduced for the components built, but, when testing the full 

system, the testing strategies employed needed only to be concerned with the database section of 

the system. This also helped in identifying where errors were occurring when interfacing the 

system with the components, as only the component interfaces needed to be tested. 

105 Automating Reuse Support 
in a Small Company 



4. Ease of maintenance 

As with testing, maintenance has been simphfied because the system has been broken down into 

smaller components. When a change request is received from a customer, it is easy to identify 

whether the change wil l affect the overall database system, the FotoFile or the Badge Server. 

The appropriate component can then be updated. The interfaces are generally not affected by 

such changes, therefore, no side effects.can be propagated to the other parts of the system. This 

contrasts a great deal with the earlier version of the system, which was monolithic and 

maintenance was a frill time task for the software developers. 

Maintenance has also been assisted by the tools supporting automatic generation of software 

documentation. It was seen near the end of the reuse programme that, when one of the 

developers left, he was asked to spend a few days writing a maintenance document for the 

software that he had written. However, i f the code had been properly commented, diis document 

could have been generated automatically in a matter of seconds. 

7.2.3 Problems facing Reuse Programme 

Some of the major problems which faced the incremental reuse programme are discussed below. 

1. Tight deadlines ^ 

One of the major difficulties which faced the reuse programme were the tight deadlines which 

had to be met by the software developers. It has been recognised that small companies are 

unique in their need to keep up with market trends, and succeed in every project that they 

undertake. Experimentation and prototyping are key to their success, because they help the 

developers to understand how systems can be implemented, and what their customers really 

want. 

106 A utomating Reuse Support 
in a Small Company 



P.A.T.'s business is dependent upon a single product. I f that product failed, then the company 

would cease to exist. It is, therefore, in the interests of the developers to ensure that their product 

succeeds. To do this, the product needs to be shown to be competitive in the marketplace. In the 

project undertaken, the developer's deadlines were demonstrations to potential and existing 

customers or trade fairs, the dates of which often cannot be changed. In order to meet these 

deadlines, the reuse guidelines and up-front investment recommended as part of the reuse plan 

were often ignored in favour of rapid prototyping as the deadline drew closer. However, the 

developers were prepared to improve their code based on the recommendations of the reuse 

programme when they had more time, and the pressure had subsided. 

2. Changing Requirements 

This is not an uncommon problem throughout software development companies. However, 

because this company are producing a software package rather than a bespoke system, there are 

many customers, each with different requirements from the product; This was one of the factors 

that had caused the monolithic growth of P.A.T.'s previous software system - each change 

request had simply been added to the ful l system. Better version control would have helped to 

alleviate this problem. Requests from customers also affected the reuse programme, as each new 

requirement for the new system would shghtly alter the system profile. Sometimes, this would 

affect the reusable components which were being buih, meaning that the original plans for them 

had to be modified. However, one of the advantages of the component based system was that a 

change in one component seldom had a radical effect on other parts of the system. 

3. Lack of Tool Support 

The 'lightweight' processes recommended in section 6.3 suggested that a minimum level of 

documentation and a reuse repository should be kept as part of the reuse programme. Again, it is 

a common problem that when the pressure is on, documentation is the fnst casualty. The staff at 

107 A utomating Reuse Support 
in a Small Company 



P.A.T. had not been used to writing documentation, and the reuse programme recommendations 

didn't really change anything. 

Also, there was no support for their reuse repository. The development team simply made a 

directory as a 'dumping ground' for reusable classes without any support for using those classes. 

There was only some acceptance of the ideas of using a structured 0 0 method for software 

design. This was partly due to lack of training in this area. However, it was felt that tool support 

could help automate the fnst two areas, and assist in the third. 

7.3 Tool set Evaluation 

This section evaluates ReThree-C++, the prototype tool set developed as part of this research. 

The evaluation wil l be given in four sections: 

1. Using the tool set to support reuse. 

2. An evaluation of the operation of tool set. 

3. An independent experiment conducted to test the usefiihiess of the tool set in reusing classes 

during software development. 

4. The tool set as used in Public Access Terminals Ltd. 

7.3.1 Using the tool set to support reuse 

108 Automating Reuse Support 
in a Small Company 



ReThiee Ctt -ABOUTBOX.H 
Elle Edit yiew Erojecl fieuse flpMons window Help 

ma 'Project: 

JJntitledl • 
pi aboutboxh: header file Version Number = 1.2 
II 
II This source code Is only Intended as a supplement to the 
// Microsoft Foundation Classes Reference and Microsoft 
// OulcldHelp and/or WInHelp documentation provided with the library. 
// See these sources for detailed information regarding the 
// Microsoft Foundation Classes product. 

const CString VERSION = "2.32"; 

mimimimmmiiimimmiimiimimmmiiiiiiiii 
II CBIglcon window version number = 1 
# This dass contains the big version of the application's Icon that Is used on the 
// splash window. 

class CBIglcon : public CButton 
{ 
//Attributes 
public: 

// Operations 
public: 

void SizeToContentO: // Resizes the standard Icon to fit In the designated area 

Figure 7.1 - The ReThree-C++ user interface 

The integrated Reverse Engineering, Re-Documentation and Reuse environment, ReThree-C-H-, 

can be used in several aspects of software development. It has three major modes of operation. 

Developing Components 

The first mode of operation is when a developer is building reusable components. It is expected 

that the developer wi l l build software using their chosen development environment. However, 

when assessing the component's applicability for reuse, the reverse engineering and 

documentation facilities can give the developer information about the component. The developer 

can also see how the component wil l appear to anyone who wishes to reuse it. Based on this 

information, the developer may decide that the component needs further development and take it 

back to his or her development environment. The developer may decide that the component is 

well designed, but requires more comments to explain how the component is to be used. This 

can be done with the text editing facilities available in the ReThree-C++ environment. Finally, 

when the developer is satisfied with the component's quality, it can be added to the current reuse 

repository. 

109 Automating Reuse Support 
in a Small Company 



Maintaining Components 

The second mode of operation is when a maintainer is trying to understand and maintain a piece 

of software. It has been estimated that 50%-90% of all maintenance effort is expended in simply 

understanding the software [Robs91]. The processing facilities of ReThree-C++ will give the 

maintainer information about the source code, including a class hierarchy chart and 

docimientation for the code. This information should help the maintainer to get an good idea of 

the purpose of the component. Based on this understanding, the maintainer can now look at the 

source code itself with a good idea of what to expect. One advantage of basing maintenance 

information solely on what is contained in the source code is that it helps to alleviate the 

problems caused by out of date documentation. This depends on the developers keeping current 

information in the source code about changes that have been made. Although this wil l not 

always be the case, developers are far more willing to update comments whilst changing the 

code dian they are to update documentation after the changes have been completed. 

Reusing Components 

The third mode of operation is when a developer is searching for a reusable component to 

include in their current system. It has been seen in section 2.5 that there are numerous pre­

conditions which must be met in order for a developer to be able to successfiiUy reuse a 

component. These pre-conditions are hsted below, along with the support which ReThree-C-H-

provides at each level. 

1. The component must exist. 

ReThree-C++ provides support to developers when preparing reusable components. 

2. The component must be available to the developer. 

ReThree-C++ enables developers to store components in a reuse repository. 

3. The developer must be able to find the component. 

ReThree-C++ offers searching facilities for finding components with a reuse repository. 

110 A utomating Reuse Support 
in a Small Company 



4. Once found, the developer must be able to understand the component. 

ReThree-C++ processes source code to give developers information about the components 

identified in terms of a class hierarchy and structured software documentation. 

5. Based on an understanding of the component, the developer must identify the 

component as being valid for the current system. 

The developer can use the information generated by ReThree-C++ to make this decision. 

6. The developer must be able to successfully integrate the component into the current 

system. 

This depends a great deal on the developer's current system. However, i f the component has 

been developed properly, the class hierarchy and documentation provided should aid the 

developer in the integration process. 

Specific examples of the use of ReThree-C++ to process a C++ source file are provided in 

Appendix B. 

7.3.2 Evaluation of the operation of ReThree-C-H-

This section presents results from the ReThree-C-H- tool set, applying the tools to various 

example programs, ranging from simple examples to real world class libraries. The tool set will 

be evaluated based on the following criteria: 

• Does the integrated approach resuU in a usable system? This will consider the tool set's user 

interface for ease of use and how much training is required to use the tool set. 

• How well does the tool set work on C++ code? This wil l consider such issues as speed, 

efficiency, reliability, and quality of results. 

• How does the tool set scale up to larger programs? Does the system remain 'fast enough' to 

be usable with large programs? 

• How usefiil are the searching facilities for reuse repositories? 

• What weaknesses does the tool set have? 

I l l Automating Reuse Support 
in a Small Company 



Usability 

The tool set was buih using a standard Microsoft® Windows® interface, which gives it a 

recognisable Graphical User Interface (GUI) for working in the Windows® 3.1 or 95 

environment (see figure 7.1). The tool set comes with on-line, context sensitive help to assist the 

user in understanding how to use the tools. The usability of ReThree-C++ has been measured by 

applying the tool set in two areas. 

The first is delivery of the tool set to staff at Public Access Terminals Ltd. (see section 7.3.4). 

The staff feU that the tool set was quite easy set up for use, and they learned how to use it very 

quickly. They felt that the help file was useful in leaming how to use the tool set, and referred to 

it frequently (see Appendix C). Little training was given to the staff, they had only seen a 

demonstration of the tool set. 

The second is the use of the tool set by undergraduates as part of the C++ reuse experiment 

conducted (see section 7.3.3). Some of the students were using the tool set to search for reusable 

classes which would assist them in writing the test program given. The students were given an 

overview of how to use the tool set (Appendix D4), and were left to write the program. Without 

training, all the students were successfully using the tool set to search for components within the 

hour allotted for the experiment. The students had few problems in using the tool set to find 

reusable classes, and did not need to use the help file. 

Speed of operation 

ReThree-C++ was tested on several different sizes of program to identify the speed of operation 

of the program. The time taken to execute the different tools which make up the integrated 

environment was measured and recorded. The results are shown in figure 7.2. 

112 A utomating Reuse Support 
in a Small Company 



ReThree-C++ Full Source -19 Files, 31 Classes, 1831 Lines of Code 

Type of Processing Performed Average Time 
(in seconds) 

Standard 
Deviation 

Reverse Engineering to OMTool Format 5.61 0.153 

Documentation to Rich Text Format 9.08 0.524 

Class Hierarchy and Documentation to Web Page 8.76 0.081 

Adding to Reuse Repository 3.04 0.349 

Searching Reuse Repository 0.48 0.117 

MFC Partial Source - 3 Files, 64 Classes, 4241 Lines of Code 

Type of Processing Performed Average Time 
(in seconds) 

Standard 
Deviation 

Reverse Engineering to OMTool Format 24.61 1.899 

Docimientation to Rich Text Format 37.45 1.843 

Class Hierarchy and Documentation to Web Page 33.72 1.035 

Adding to Reuse Repository 10.72 1.677 

Searching Reuse Repository 2.37 0.141 

MFC Partial Source - 4 Files, 114 Classes, 7468 Lines of Code 

Type of Processing Performed Average Time 
(in seconds) 

Standard 
Deviation 

Reverse Engineering to OMTool Format 46.20 5.098 

Documentation to Rich Text Format 74.75 5.456 

Class Hierarchy and Documentation to Web Page 68.23 4.175 

Adding to Reuse Repository 18.82 2.539 

Searching Reuse Repository 3.19 0.321 

114 Automating Reuse Support 
in a Small Company 



Single File - 6 Classes, 183 Lines of Code 

Type of Processing Performed Average Time 
(in seconds) 

Standard 
Deviation 

Reverse Engineering to OMTool Format 1.06 0.048 

Documentation to Rich Text Format 1.59 0.024 

Class Hierarchy and Documentation to Web Page 1.77 0.024 

Adding to Reuse Repository 0.49 0.052 

Searching Reuse Repository Negligible Negligible 

113 Automating Reuse Support 
in a Small Company 



MFC Full Source - 20 Files, 169 Classes, 12984 Lines of Code 

Type of Processing Performed Average Time 
(in seconds) 

Standard 
Deviation 

Reverse Engineering to OMTool Format 64.40 6.350 

Documentation to Rich Text Format 96.21 7.263 

Class Hierarchy and Documentation to Web Page 88.74 5.790 

Adding to Reuse Repository , 35.02 10.496 

Searching Reuse Repository 3.88 0.303 

Figure 7.2 - Results of evaluation of the speed of execution of ReThree-C++ 

It can be seen that the reuse repository support tool is the fastest of the tools, followed by the 

reverse engineering tool, then the dociunentation tool. It was expected that the generation of 

Web pages, which includes information from both reverse engineering and documentation of the 

source code, would be the slowest of the tools. This has been demonstrated in practice. During 

testing, it was noticed when the tools were mn on large software systems, the prototype would 

run progressively slower each time the system was processed. As this was seen with all the tools, 

it was suspected that this problem was caused by the C-H- parser, which is common throughout 

the tool set. The problem may have been caused by inadequate garbage collection in the parser. 

The next section shows how these results were used to test the scalability of the prototype tool 

set. 

Scalability 

To test the scalability of ReThree-C++, the relationship between the number of classes being 

processed and the time taken to process those classes was measured. 

115 Automating Reuse Support 
in a Small Company 



Execution Time based on Numtwr on Classes In Source Code 

-4— Reverse Engineering 

Hi—ReDocumentation 

Web Rages 

- x Adding to Repository 

HK—Searchhg Repository 

100.00 

90.00 

30.00 

ao 100 120 

timber of Classes In Sourc* Coda 

Figure 7.3 - Graph showing the results of evaluation of the speed of execution of ReThree-C-H-

It can be seen from figure 7.3 that the relationship between the increase of execution time and 

the number of classes in the soiu-ce code is approximately linear. With the cases used, the 

relationship between the number of classes and the size of the source code was also 

approximately linear, so using either as a measure did not affect the linear nature of results 

shown. 

Searching Repository 

ReThree-C++ uses boolean keyword searching when identifying classes relevant to the user's 

specified search term. It is very difficult to conclusively evaluate the searching facilities which 

ReThree-C-H- provides. This is because the indexing information used to search for relevant 

classes is taken directly from the coimnents in the C-H- source code. This means that when 

meaningful class names and descriptive comments are provided in the code, the results of 

searching the reuse repository are significantly better than when comments are not provided, or, 

worse still, misleading. It has been seen that this style of information abstraction from the source 

code is useful in encouraging developers to include meaningful comments within their code. 

This is because the comments that they include will directly affect the usefulness of the 

information provided for them by the tool set (see Appendix C ) . 

116 Automating Reuse Support 
in a Small Company 



Weaknesses of the tool set 

Several weaknesses have been discovered within the prototype tool set as it has been evaluated. 

1. The processing of the tool set gets considerably slower each time that a large project is 

processed during a single execution of the program. This compounds to the extent that the 

tool set eventually grinds to a hak. It is suspected that this is due to poor deallocation of 

memory resources used within the parser of the ReThree-C++ system, as the effect is seen no 

matter what type of processing is currently being conducted. 

2. The reuse repository searching facilities are not always effective. As discussed in the 

previous section, this could be attributed to the lack of meaningfiil comments within the 

source code. 

3. The tool set relies on an outdated application. OMTool has now been superseded by other, 

better OMT CASE tools, and is no longer easily available. This is always a hazard in 

interfacing with other applications. OMTool has not been upgraded for Windows® 95, and 

only those who aheady have it would be able to interface the tool set with this application. 

The reverse engineering facilities to OMT class hierarchies are, therefore, only available to a 

small subset of users. However, interfacing "to a new display tool would not entail significant 

effort. 

7.3.3 An experiment to test the use of ReThree-C-H-

This section gives an overview of an experiment conducted to test the usefuhiess of ReThree-

C++ in assisting developers to fmd and use reusable components. This experiment was 

conducted independently of the case study associated with this research to test the usefulness of 

the tool set to C++ developers. There are several steps [Pfle95] which were followed in the 

implementation of this experiment, which wil l be discussed. 

117 A utomating Reuse Support 
in a Small Company 



Conception 

The experiment was conceived to test the usefuhiess of the facilities provided by the prototype 

tool set in helping a developer to reuse available components. The idea was to get several 

different C++ developers viriting the same program m order to see how the type of information 

that was presented to them concerning available reusable classes affected die way in which they 

wrote the program. 

Design 

C++ programmers would be the subjects of the experiment. The experiment had two hypotheses: 

Null hypothesis: There is no difference in the code produced by programmers based on the 

amount of information provided to the programmers about reusable components. 

Alternative hypothesis: The amount of information provided to programmers about reusable 

components makes a difference to the code they produce. 

In order to test these hypotheses, an experiment was devised in which C++ programmers would 

write a program, each set of programmers having differing amounts of information about 

reusable classes which were available. A program was prepared to test two major areas of C-H-

programming - file handling and string manipulation (see Appendix D2). Visual C-H- was 

chosen as the programming environment, as classes to assist in writing this program were 

available in the Microsoft® Foundation Classes (MFC). It is expected that programmers who 

have more detailed information available about reusable classes wil l make use of those classes. 

It is also expected that the use of the reusable classes wil l make a difference in the time taken to 

write the program. 

Four groups of programmers would be identified. Group 1 would have no information about the 

reusable classes available - they would only have the C-H- programming environment (including 

on-line help), a C-i-l- reference manual, and a C library reference manual. Group 2 would have 

118 A utomating Reuse Support 
in a Small Company 



Execution 

Many of the subjects of the experiment had not used Visual C-H- before. However, the 

enviromnent was set up so that they could use both standard C and C-H- and the Microsoft® 

Foundation Classes within the same program. Each group was given an hour to complete a 

working version of the program. Details of the references used by each of the subjects was 

recorded as the experiment progressed. The researcher was careful to ensure that none of the 

students knew what the experiment was about until after their contribution had been completed. 

The results gathered during the execution of the experiment can be seen in figure 7.4. 

120 A utomating Reuse Support 
in a Small Company 



the same information as group 1, and would also have the Class Library Reference manual for 

die MFC (a 1000 page reference manual containing details of all the classes available in tiie 

MFC). Group 3 would have the same information as group 2, as well as die results of re-

documenting the appropriate MFC classes with ReThree-C-H-. Group 4 would have the same 

information as group 2, as well as ReThree-C-i~(- running on their machines, with the source of 

the MFC pre-loaded as a reuse repository for searching. 

It was expected.that group 3 would achieve the best resuUs in writing the program, as diey had 

the information about the required reusable classes on paper as part of their reference materials. 

This was based on the fact that the subjects in group 3 would have the relevant information on 

printed paper in front of them, and would not have to spend time searching for it in reference 

manuals, or using the tool set. 

Preparation 

The subjects chosen for the experiment were final year Computer Science undergraduates, each 

of whom had been through the previous year's course on OOD and C-H-. The students 

volunteered to take part in the experiment, and were asked to quahfy their skill at programming 

in C++. The students were then divided into four mixed ability groups. Different instructions 

were prepared for each group (see Appendix D l ) . The information for each group was also 

prepared. The reference books used were "Software Engineering with C++ and CASE Tools" by 

Michael J. Pont [Pont96], Visual C++'s "Run-Time Library Reference" [Micr93d] and Visual 

C-H-'s "Class Library Reference for the Microsoft Foundation Class Library" [Micr93c]. The 

other materials required were also prepared, including the class information generated by 

ReThree-C+-<- for group 3 (see Appendix D3), and instructions on the use of ReThree-C-H- for 

group 4 (see Appendix D4). 

119 A utomating Reuse Support 
in a Small Company 



Group 

|p
re

-t
es

t 
C+

+ 
Sk

ills
 ra

tin
g 

|p
os

t-
te

st
 C

++
 S

ki
lls

 ra
tin

g 

U
se

d 
C 

R
ef

er
en

ce
 

lu
se

d
 C

++
 R

ef
er

en
ce

 

lu
se

d 
M

FC
 

R
ef

er
en

ce
 

U
se

d 
To

ol
 R

es
ul

ts
 

lu
se

d 
To

ol
 

U
se

d 
H

el
p 

|u
se

d
 s

ta
nd

ar
d 

lib
 

U
se

d 
M

FC
 

C
la

ss
es

 

|u
se

d 
ow

n 
cl

as
se

s 

jo
oe

s 
pr

og
ra

m
 w

or
k 

In
rr

or
 c

he
ck

in
g 

Si
ze

 o
f s

ou
rc

e 
co

de
 

(L
OO

) 

Pr
ep

ar
at

io
n 

tim
e 

(m
in

ut
es

) 

« 
E 
'« 
t 
S 
CO 

E 

s 
c 
u. Es

tim
at

ed
 e

xt
ra

 ti
m

e 
ne

ad
ec

 

1 
1 -

u 

1 

3 
s 

1 
A 7 7 S U N 2 0 Y 2 5 47 5 14:16 15:16 60 120 7 8 
B 6 4 S U C 7 0 Y 0 8 130 180 15;20 16:20 60-75 120-135 7 5 
C 6 5 S U C 10 0 Y 2 8 149 0 14:22 15:42 15 95 5 4 
D 4 5 R U C 10 0 N 0 7 66 0 15:20 16:20 20-30 80-90 5 6 
E 3 3 S U N 1 0 N 0 3 56 0 14:10 15:11 60 120 5 8 
2 
F 7 7 S U N C 4 0 Y c 0 66 30 10:55 11:57 60 122 6 5 
G 6 6 U R S C 4 0 Y N 2 89 0 11:03 12:02 120 179 3 3 
H 
1 3 3 U U R C 5 0 N C 0 31 0 14:22 15:24 120 182 3 9 
J 
3 
K 7 7 N N N U MFC 0 10 N 3 9 74 0 11 05 12:05 60 120 5 3 
L 6 5 N N U U N 0 10 N 0 7 100 0 11 05 12:05 30 90 8 8 
M 6 4 N N N U N 4 6 N 0 4 65 10 11 05 12:05 30 90 5 9 
N 3 3 N N N U C/MFC 0 10 N 0 7 57 0 11 05 12:05 60 120 6 9 
0 3 4 U N N R N 6 0 N 0 0 53 10 11 05 12:05 120-180 180-240 6 7 
4 
P 

Q 6 6 N N U U U N 5 5 N 0 8 71 5 12:25 13:25 30 90 7 5 
R 5 5 N U N U U N 5 5 N 4 0 37 10 12:20 13:20 30 90 9 8 
S 
T 1 1 N U U U U N 0 10 N 0 0 29 0 12:25 13:25 Day Day 8 10 

Key 
Skills Rating 

1-10 Subject's rating of C++ skill (10 = excellent. 1 = poor) 

Resources 
N Resource Not Used 
S Resource Scanned for Infoimation 
R Resource Read 
U Resource Used 
C C/C++ Language Help 
MFC Microsoft Foundation Classes Help 
Program 
Resources Used 
0-10 Rating scale measuring extent to resource was used (10 = used exclusively, 0 = not used) 
Own Classes 
Y/N Y = Yes. subject wrote their own classes, N = No. subject did not write their own classes 
Program Waldng 
0-10, C Rating scale measuring extent to which program wDriied (10 = works as specified. 0 = does not compile, C - compiles, but gives no output) 
Error Checking 

0- 10 Rating scale measuring extent to which error checking Is employed (10 = excellent error checking, 0 = no emx checking) 

Feedback 
Usefulness of reference 
1- 10 Subject's rating of usefulness of reference materials provided (10 = very useful, 1 = no use) 

Figure 7.4 - Table of Results from C - H - experiment 

The first point to note is that none of the subjects actually finished the program specified. This is 

a reflection that the program was too difficult for the allotted time. In order to gauge the 

subject's feelings on how they were progressing with the program, each was asked to estimate 

how much more time would have been needed for them to fmish the program. 

121 Automating Reuse Support 
in a Small Company 



Unfortunately, not all the subjects who had signed up actually took part in the experiment. This 

makes it difficult to compare results between the groups, as there was not a uniform number of 

subjects in each group. Some subjects also expressed difficulty simply with remembering how to 

write code in G++, rather than difficulty in how to write this particular program. These two 

factors affect the overall discussion of the results of the experiment. Perhaps the most useful way 

to evaluate the results is to compare the two most skilled subjects from each group, and the least 

skilled subject from each group. 

In group 1, the two most skilled subjects (A&B) wrote their own classes to assist them in 

achieving the functionality requested by the program specification. Their mean estimated 

completion time was 127.5 minutes, with a standard deviation of 7.5 minutes. One of the two 

achieved a small measure of functionality. 

The two most skilled subjects in group 2 (F&G) again both wrote their own classes to assist 

them in achieving the functionality requested by the program specification. Their mean 

estimated completion time was 150.5 minutes, with no standard deviation. Neither achieved a 

reasonable level of functionality. 

The two most skilled subjects in group 3 (K&L) did not write their own classes to assist them in 

achieving the functionality requested by the program specification. Instead, they both used 

classes available as part of the MFC. Their mean estimated completion time was 105 minutes, 

with no standard deviation. One of the two achieved a small measure of functionality. 

The two most skilled subjects in group 4 (Q&R) did not write their own classes to assist them in 

achieving the functionality requested by the program specification. Instead, they both used 

classes available as part of the MFC. Their mean estimated completion time was 90 minutes, 

with no standard deviation. One of the two achieved a reasonable measure of functionality. 

122 Automating Reuse Support 
in a Small Company 



Perhaps the most interesting result is the use of classes made by these subjects. There was no 

significant difference between the two subjects under consideration from groups 1 & 2, in spite 

of the fact that the subjects in group 2 had access to the MFC reference book containing details 

of the reusable classes available. The subjects in both groups wrote their own classes. 

r 

By comparison, none of the subjects in groups 3 & 4 wrote their own classes, preferring instead 

to use the reusable classes provided by the MFC. This is a significant result. Groups 2, 3 and 4 

each had the same reference books available to them. Therefore, it must have been the other 
r 

reference materials which caused the subjects in groups 3 & 4 to choose to reuse classes rather 

than writing their ovra. As the other reference materials were directly produced by ReThree-

C++, it can be concluded that ReThree-C-H- assisted these programmers to reuse classes. 

Less significant is the time taken by the subjects in writing the program, because none of the 

subject actually completed a working version of the program. Based on the mean times 

calculated, it can be seen that the subjects in groups 3 & 4 were more confident that they could 

fmish writing the program in a shorter time scale. Without fiirther experimentation, it cannot be 

conclusively shown that reusing classes increased the productivity of the programmers. It was 

surprising, however, that the group 3 subjects (with the printed results of ReThree-C-H-) did not 

seem to do any better than the subjects in group 4 (who actually used the tool set). This may be 

due to the fact that the subjects in group 3 spent more time reading all the class reference 

materials provided (not all of which were directly relevant), whereas the group 4 subjects used 

the tool set to search for classes only when they encountered a need for a class to perform a 

function. This may have saved them time. 

Looking now at the least skilled programmers, it can be seen that there is no significant 

difference in the reuse of classes between the subjects (E, I , O & T). Both subjects O & T 

expressed a concern at their difficulty in simply writing any program in C-t-l-, not just this one. 

None of these subjects wrote their own classes in attempting a solution, and only one (subject T) 

123 Automating Reuse Support 
in a Small Company 



attempted to reuse the MFC classes. This seems to suggest that with inexperienced 

programmers, the level of information provided made very little difference. 

The small scale of this experiment provides interesting results, but the wide variance of C-H-

programming knowledge and experience obviously plays a considerable role in the results. 

7.3.4 Evaluation of the use of ReThree-C-H- at P.A.T. 

In line with the 'industry-as-laboratory' approach adopted by this research, the prototype tool set 

was developed in association with the staff at Public Access Terminals Ltd. This has enabled 

them to make suggestions about how they would like to see the tools developed to assist them in 

their work. 

The tools were made available to the company throughout the reuse programme as they were 

developed. This enabled the company to incrementally introduce the tools into the programme 

as needed. However, the integrated environment was not available until nearing the end of the 

programme. 

One of the major problems which has been experienced in evaluating the use of the tool set 

within the company is that the two C++ developers who were key members of the reuse project 

left the company before the ful l tool set was developed. Following this, the company began to 

use different programming languages to build their software system, which meant that the 

prototype tool set, when delivered, was less applicable to the company's current development 

needs. 

The staff at the company, however, have found that the tool set meets some of their needs very 

well. A questionnaire about the prototype was filled in by the company's technical manager 

(Appendix C). He said that the tool was easy to set up and use. He felt that the automatic 

generation of documentation was the most valuable tool for his work, and that the 

124 A utomating Reuse Support 
in a Small Company 



documentation produced was quite useful in helping him to imderstand the C-H- code processed. 

He also felt that the fact that documentation was based solely on the source code, and the 

comments within the code, would encourage programmers to tidy up their code and add 

comments. He also felt that having this documentation produced automatically would be very 

useful in keeping a minimum set of documentation about the code for the programmers and also 

the customers interested in information on, and quality assurance for, the software system. 

He also felt that the reuse repository facilities were usefiil, but that it was not always easy to fmd 

appropriate classes using the repository searching facilities. He feU that the processing facilities 

of the tool set were reasonably helpful in understanding the classes once found, but would have 

been more helpful i f there were better comments within the source code. 

Although he was not able to use the prototype on a live system, he used it on previously written 

C-i-l- code, and hoped to be able to use it on code ported to a 32 bit platform in the near fiiture. 

He thought that the tool set wil l prove to be very useful. 

7.4 Conclusions 

The research described in this thesis has been conducted in two main sections. Each section has 

been evaluated in this chapter. 

The fnst was the incremental introduction of a reuse programme at Public Access Terminals Ltd. 

It was noted that the programme had some success, but problems were encountered. The 

successes were identified in terms of: increased speed of production, fmancial benefits to the 

company, increased quality of software, and ease of maintenance. Problems were identified in 

terms of: tight deadlines, changing requirements and lack of tool support. However, it can be 

concluded that the benefits of the reuse programme far outweighed the problems and challenges 

faced. It could be considered that much of this success can be attributed to the new technology 

which the company adopted. New technology wil l only provide a platform for making 

125 Automating Reuse Support 
in a Small Company 



improvements. It is only, when the opportunities provided by this technology can be identified 

and exploited that benefits wil l be gained. 

The second section was the development of a prototype tool set (ReThree-C-H-) to assist 

programmers by automating reuse support in a small company. The tool set was evaluated by 

staff at Public Access Terminals Ltd. It was also evaluated as part of an experiment testing the 

difference that varying levels of information about reusable classes made to programmers when 

writing a program. Results from the operation of the tool were presented. Further discussion of 

these results wi l l be conducted in the next chapter. 

126 Automating Reuse Support 
in a Small Company 



Chapter 8: Conclusions 

8.1 Introduction 

This chapter summarises the thesis and reviews the work that has been conducted during this 

research. It also considers the results which have been achieved using the proposed method for 

incrementally implementing reuse in a small company in association with the prototype tool set 

which has been developed. These are assessed against the original goals of the thesis, which 

were: 

1. To show a real case study of the implementation of a software reuse programme in a small 

company. The programme wil l be considered in terms of the recommendations made, the 

work done, problems encountered and success achieved. 

2. To produce a practical, fast and simple to use tool for automating reuse support in a small 

company. This tool wil l aid in storing and retrieving reusable components, as well as reverse 

engineering and re-documenting source code to provide information about the reusable 

components. 

The research conducted is analysed to identify the lessons which have been learned, and to make 

recommendations for further work in this area of study. 

8.2 Summary of Thesis 

This thesis has evaluated the practical considerations involved in automating reuse support in a 

small company. Chapter 1 gave an overview of the thesis, introducing the research which would 

be described, along with a statement of the problem to be addressed. The real problem of 

introducing reuse in a small company, and providing tools to support the reuse process, was 

127 A utomating Reuse Support 
in a Small Company 



identified. The context in which the research would be conducted was given and an 'industry-as-

laboratory' approach was adopted. 

Chapter 2 looked at the field of software reuse, identifying some of the key areas in the field. 

Software reuse was introduced as a principle which could help to alleviate the current software 

crisis and the techniques with which reuse can be employed were discussed. Some of the 

benefits that can come from introducing a reuse programme were identified, as well as the 

challenges which wil l face a company trying to capitahse on the benefits which reuse can bring. 

Chapter 3 went on to look at how a small company is defmed and some of the techniques which 

wil l assist a small company when implementing a reuse programme. The fields of organisational 

development and process improvement were studied in order to provide a basis for developing a 

method for introducing reuse into a small company. Object-oriented methods, which are often 

associated with software reuse, were also considered. It was concluded that the mtroduction of 

object-oriented methods could help to support reuse, but that reuse is not exclusively an 0 0 

phenomenon. This was followed by a brief overview of the fields of reverse engineering and 

software documentation, and how they can be applied to reuse. 

In Chapter 4, several successful reuse programmes were considered. It was seen that reported 

reuse programmes were exclusively in large companies, and that the challenges which they 

faced in introducing reuse were often different to those that would be faced in a small company. 

A set of solutions to the problem of introducing reuse into a small company were identified. 

These solutions were: 

1. Introduction of structured processes 

2. Incremental introduction of reuse 

3. Encouraging ad-hoc reuse 

4. Introduction of CASE tools 

128 Automating Reuse Support 
in a Small Company 



Each was discussed, and it was argued that a combination of the incremental introduction of 

reuse with CASE tools to support the reuse programme would be the best approach for a small 

company. 

Chapter 5 summarised the method for introducing reuse in a small company which has been 

developed as part of this research. An incremental approach was stressed, along with 

'lightweight' processes and automated support for the reuse programme. These factors would 

help to reduce the risk in introducing reuse by reducing both the initial investment required and 

the time before benefits could be gained from reuse. The Seven Steps to Success were presented, 

including a pilot project to test the recommended techniques so that the company could leam 

what would be most successful for them and focus on those areas. At each step, criteria for 

assessing the readiness of a company to move on to the next step of the method were given. 

Ideas for tools to support the reuse programme were also presented. , 

Based on the method developed in the previous chapter. Chapter 6 described a case study using 

the method to implement a reuse programme in a small company. The work done in each of the 

seven steps was presented, with a discussion of the progress of the reuse plan at each stage. The 

development of ReThree-C-i-i- was described, with the input of the company's staff aiding the 

structure of the prototype tool set. 

Chapter 7 gave an analysis of the results of the research conducted. The incremental approach to 

reuse introduction in a small company was evaluated and the more and less successful parts of 

the programme were identified. Success was described in terms of the development and use of 

reusable modules. Benefits to the company were described as well as the problems facing the 

reuse programme. These were the pressure of tight deadlines, changing requirements and lack of 

tool support. ReThree-C^-l-, the prototype tool set, was first described then evaluated in three 

stages. First, the prototype was evaluated using the code-of the tool set itself and the Microsoft 

Foundation Classes as test examples. Secondly, an experiment to test the usefiihiess of the 

prototype tool set in aiding developers to reuse components was conducted and the results of the 

129 A utomating Reuse Support 
in a Small Company 



experiment in helping programmers to reuse code were analysed. Finally, an overview of its use 

within P.A.T. was given. 

8.3 Reuse in a Small Company Revisited 

The results gained from the case study have been varied. There have been some successes, but 

the challenges and difficulties encountered during the course of the project have also been 

interesting. Small companies are unique in their need to compete strongly within their chosen 

market, and succeed in every project that they undertake. Unlike larger companies, and even 

single project teams within a large organisation, a small company cannot afford to fail in any 

project, because the livelihood of the company, and every employee, depends upon keeping and 

improving upon their market share. In the company with which this project was associated, their 

business was dependent upon a single product. I f that product failed, then the company would 

cease to exist. This does not compare with even isolated parts of a large company, because 

although the project may fail and cause difficulty within the company, this would not generally 

cause the collapse of the business. The stakes are much higher in a small company, and their 

willingness to take unexplored risks is much smaller. 

Based on the evaluation of the reuse programme described in Chapter 7, there are several 

conclusions which can be drawn from the incremental implementation of a reuse programme 

conducted in the case study with Public Access Terminals Ltd. In spite of the risks that they 

faced, the company's staff were willing to attempt a reuse programme in order to gain the 

benefits of reuse. The fust conclusion is that the incremental approach to reuse was very 

successful in the company. The method for introducing reuse into a small company, based oh the 

work done in the fields of organisation development and process improvement, proved to be 

very successful. At each stage of the method, the progress of the method was discussed with the 

management and staff at the company and the criteria for continuation were met. The key areas 

of iising a pilot project to achieve real gains for the company whilst testing the 'lightweight' 

130 A utomating Reuse Support 
in a Small Company 



processes and incrementally introducing the programme with tool support were invaluable in the 

success of the reuse programme. 

This conclusion is based on the benefits gained by the company described in section 7.2.2. The 

company developed a better, more flexible system faster than expected. They also benefited 

fmancially by entering the component market and selling one of their reusable components to 

another company. This increase in profitability may never have been realised i f not for the 

company's emphasis on reuse. 

However, the benefits did not come without challenges. There were problems in the reuse 

programme which had to be addressed. The least successful of the 'lightweight' processes 

recommended was that the company keep a minimum level of documentation about their 

software. Documentation was always the first casualty when the pressure was on. This problem 

was recognised and was addressed by allowing developers to utilise the information which they 

had included as part of the source code (in the form of descriptive comments) as software 

documentation using the prototype tool set described in Chapters 6 and 7. This provides a 

feasible, convenient and easy way for the developers to keep a minimum level of 

documentation. This has been seen by the staff at P.A.T. as one of the major advantages of the 

prototype tool set, as seen in section 7.3.4. 

The planning and review meetings were successful initially. Although they started formally on a 

weekly basis, later in the programme, they were often on an informal basis as there were only a 

few people in the software development team who needed to meet at any one stage. The. 

emphasis on object-oriented principles and resource management were the more successful 

techniques in the company. However, it was the general emphasis on reuse which came with the 

techniques, supported by management, development staff and the author, which made the 

projects successful. The developers were highly skilled, and needed little training to understand 

the principles of reuse. More important were the motivation and opportunity to implement the 

principles with reuse as a clear goal. These came from the willingness of top level management 

131 A utomating Reuse Support 
in a Small Company 



to be involved in the reuse programme and the expertise of the author acting as a reuse 

consultant. 

After the successes which have been described, however, the reuse programme has taken a back 

seat in the company. This is due to many factors, not least of which is that the two members of 

staff who were the key developers in the reuse programme have left the company. Along with 

this, the company have since moved to different development languages and environments. 

However, it has been seen that the principles advocated as part of the reuse programme have 

given the company the flexibility to move to better environments. The prototype tool set which 

has been developed to support the reuse programme wil l still be of use to the company in both 

their maintenance work, and with proposed new developments (see Appendix C). This will 

enable the company to produce useful information about their previous software, as well as 

giving them guidance for future developments. 

To summarise, the challenges to introducing reuse in a small company have been met and 

overcome. The company have climbed the Seven Steps to Success and were clearly pleased with 

the very tangible benefits that they have gained from the reuse programme. 

8.4 ReThree-C++ - The Prototype Tool Set 

It was shown that ReThree-C-i-i- is a practical and useful prototype of an integrated tool set 

which can automate reuse support in a small company. It addresses one of the key failings of the 

reuse programme - lack of software documentation to describe reusable components - by 

automatically generating useful information from the company's source code. This information 

, is given as a class hierarchy and associated documentation, which can easily interface with 

standard desktop software packages. It also provides support when indexing and searching for 

reusable components. 

132 A utomating Reuse Support 
in a Small Company 



The validity of the prototype has been demonstrated through experimentation and analysis. 

Unfortunately, the prototype has not, as yet, been used in a live development environment as 

part of the case study. This is because the company have now moved away from C-i-i-

development. However, the staff are keen to gain the benefits which use of the prototype can 

bring in both the maintenance of their previously written code, and when embarking on new 

developments (see Appendix C). 

The experiment conducted also demonstrated very well that ReThree-C-H- supports developers 

and helps them to locate and use reusable components when building a software system. 

The ReThree-C-H- system is a step forward in automating reuse support for a small company. 

There are CASE tools which support reverse engineering to 0 0 formats, and software 

documentation generators supporting both word processors and Web browsers. There are also 

tools which support reuse libraries, allowing for the indexmg and retrieval of reusable 

components. Although some work is beginning to be done in this area of tool integration 

[Zigm95], there are still no tools available to small companies which integrate these concepts, 

supporting development throughout the reuse programme. ReThree-C-H- was shown to do this 

(see section 7.3). 

With their limited resources, both in terms of time and money, a small company could not afford 

to introduce a large CASE environment into their software development practices. They also 

could not afford the effort required to integrate a set of smaller tools. The ReThree-C-H- tool set 

integrates the tools identified in chapter 6 as being important in supporting software reuse. 

Two of the key failings of the prototype are its'problems with the repeated processing of large 

systems and its reliance on an outdated tool to display some of its results. With further work, 

these failings could be overcome, and the prototype made into a valuable production system. It 

is fast enough not to be cumbersome, and easy enough to use that little training is required. This 

has been shown both in the case study and the experiment conducted. 

133 A utomating Reuse Support 
in a Small Company 



The goals of the prototype tool set were that it should be a practical, fast and simple to use set of 

tools for automating reuse support in a small company. This tool set was to aid in storing and 

retrieving reusable components, as well as reverse engineering and re-documenting source code 

to provide information about the reusable components. These goals have been met. 

8.5 Analysis of the research 

This section of the thesis compares the work done with other work in the field, and considers the 

lessons that can be leamed from this research. 

As the interest in reuse has grown, more and more companies have attempted to implement 

reuse programmes with varying results. Successful examples are being quoted to show that 

implementing reuse is possible, and great benefits can be gained from it. However, it seems that 

more publications are now concentrating on the organisational difficulties of implementing a 

successful reuse programme rather than the technical issues considered previously. 

Books by McClure [McC197], Jacobson [Jaco97] and Leach [Leac97] all suggest methods and 

techniques which can be applied to reuse, quoting examples of successful companies which have 

applied the principles. Many companies described in these publications have started to recognise 

the advantages of adopting an incremental or evolutionary approach "to reuse introduction. 

However, these books consider only the difficulties faced by large companies. There are still no 

reuse programmes in small companies discussed. Techniques are considered in terms of their 

applicability to the company's software processes and the changes which would be apphed to 

those processes for successful reuse. Some tools are discussed with their applicability for reuse, 

but these are mostly either reuse repository or 0 0 tools. 

The combination of 'hghtweight' processes with an integrated tool set for reuse is unique to this 

research. The 'lightweight' processes are ideal for a company which currently has no software 

134 Automating Reuse Support 
in a Small Company 



processes. The tool set automates support for reuse and makes those processes easier to 

implement. 

Specifically, there are seven lessons which can be leamed from this research when implementing 

a reuse programme in a small company. 

1) As has been seen in other research, the support of management and staff are vital. This must 

be reassessed at every step of a reuse programme. In a small company such as Public 

Access Terminals Ltd., the staff were very concemed with the challenges involved in 

implementing a reuse programme. More small company success stories would help 

encourage them to make the changes required for reuse to prosper. 

2) Analysing the company's current working practices is an invaluable second step. I f you are 

travelling from one point to another, you must know where you are starting from and where 

you are going in order to plan your route. Therefore, the company must also have an idea of 

what they want to achieve from the reuse programme. 

3) Reuse wil l always require an investment before benefits can be gained. However, the use of 

'Hghtweight' processes helps to reduce the impact of the changes to working practices 

which must be made. It is the flexible nature of these processes which make them so 

suitable for a company entering an evolutionary stage of development and that enables them 

to reduce the risk of failure. The recommended processes must relate to the company's 

current working practices, as well as the reuse programme itself. 

4) A key to the success of small companies is the ability to be flexible. This enables them to 

meet their customers specific requirements. As was seen in the case study, reuse can aid the 

development of a flexible systern. Planning is important in the progress of the reuse 

programme, but you must plan to be flexible. Reuse can support this type of flexibility. 

5) Don't waste the developers' time by making them get involved with the mundane aspects of 

reuse. Automating support for reuse with a tool set which integrates repository control with 

automatic generation of software documentation reduces the time developers need to spend 

on administration. As has been seen at P.A.T., this encourages developers to write tidy, well 

135 Automating Reuse Support 
in a Small Company 



structured code, and leaves them free to concentrate on the more challenging and 

imaginative issues of developing for and with reuse. 

6) Small companies do not have the resources to invest in the techniques often recommended 

for the implementation of corporate reuse programmes. They must be treated separately. 

The work ethic is different in a small company, and reuse strategies must recognise and 

incorporate this. 

7) Make reuse available to everyone. The Seven Steps to Success described as part of the 

method for reuse introduction in this research are flexible enough to be applied to any 

company in any situation. 

Assessing the method itself which was described in chapter 5, one of the key weaknesses of the 

method is that it is very generalised and does not go into great detail about any of the steps. This 

leaves a great deal of work to be done by a company using the method to make it specific to 

their own needs. However, this is also one of the method's key strengths, because it allows the 

method to be very generic, meaning that it could be used for any technology introduction or 

process improvement and is not strictly limited to reuse. 

8.6 Further Work 

The incremental approach to the introduction of a reuse programme has proved to be successful 

in the case study associated with this research. To support these results, it would be very 

valuable to conduct further case studies, with two objectives: 

1. To provide further evidence that the incremental approach to reuse introduction allows 

companies to benefit from reuse both in the short term and in the long term. 

2. To investigate whether the successes gained using 'lightweight' processes in an incremental 

approach to reuse introduction can be transferred to other areas of process introduction (and 

improvement) within both small and large companies. 

136 Automating Reuse Support 
in a Small Company 



One of the main areas which this research has not been able to address is the use of the prototype 

tool set in a live development environment. Another case study with a different small company, 

allowing the tool set to automate reuse support within the company from the start of the 

programme, would be very valuable in confmning the value of this approach. 

There is also fiirther work which could be done with the prototype tool set. Some areas of 

interest would be: 

• Further development of the Java output from the tool set to support interactive class 

diagrams. The Java development language is progressing rapidly, and the possibilities for 

using this new language are increasing. A complete CASE tool for 0 0 design and reverse 

engineering C-H- code could be built in Java to support the processing of ReThree-C-H-. 

• Further development of the documentation output offered by the prototype. The tool set 

currently supports RTF and HTML output, but there are other formats which could be 

considered (e.g. LaTeX). 

• Support for other object-oriented languages. Since the prototype has been made publicly 

available, there has been interest in similar work for Ada 95 and Java. By incorporating 

different parsers, the same information could be generated for other languages. 

8.7 Final Analysis 

The criteria for success for this research as identified in Chapter 1 were given in terms of three 

questions: 

1. Is the method for introducing a reuse programme successful? The success of a reuse 

programme can be measured in many ways. However, the most clearly identifiable measure 

of success is identifying whether reusable components are built, and to what extent they are 

reused. 

137 A utomating Reuse Support 
in a Small Company 



2. Does the method bring benefits to a small company? As identified in section 2.4, benefits 

wil l be considered in terms of: 

• Increased speed of production 

• Financial benefits 

• Increased quality of software 

• Ease of maintenance 

3. Does automated support aid a reuse programme? The automated support will be considered 

in terms of the benefits brought to a reuse programme and it's usefiibess within a small 

company. 

Answering the first question: Yes, as seen in chapter 6, the method developed was successftilly 

applied at Public Access Terminals Ltd. At each stage of the method, the criteria for continuing 

were met, and real benefits were brought to the company as a result of implementing a reuse 

programme using the method. In the previous chapters, it has been seen that two main reusable 

components were built as part of the reuse programme introduced in the case study., Within the 

development of those components, a reuse factor of up to 70% was achieved by the developers. 

The answer to question 2 has more interest to a company considering embarking on a reuse 

programme. The benefits which P.A.T. have gained from reuse are much more important than 

the amount of code reused. The flexibility provided by the reusable components built allowed 

the system to be developed using an application generator for databases, which saved the 

developers the time required to write their ovm database system. This considerably speeded up 

production of the company's new system. Selling one of the components brought a very large 

contract to P.A.T., bringing much needed financial gain midway through the reuse programme. 

As seen in the previous chapter, there were also benefits to the company in terms of the quality 

and ease of maintenance of their system. 

The previous chapter discussed the success of the reuse tool set, which answers the third 

question. Its usefiilness was shown both by its introduction at P.A.T. and by experimentation. 

138 A utomating Reuse Support 
in a Small Company 



The experiment demonstrated that the tool set assisted programmers to develop with reuse when 

writing a program. Although the tool set was not used in a live development environment, when 

used on the company's previous and current developments, the company's technical manager 

believed it would be "very useful" (see Appendix C). 

A l l three of these questions have been answered affirmatively. The case study conducted at 

Public Access Terminals Ltd^ has provided interesting results in the field of reuse introduction in 

a small company which is low on the process maturity scale. It has been shown that a software 

reuse programme can be implemented in a small company. Although there were challenges, real 

benefits were achieved from the introduction of reuse within the company. Based on this case 

study, an incremental approach to software reuse using 'lightweight' processes, supported by 

useful and practical tools which can be easily integrated into a small company's development 

systems, is recommended for achieving success in a reuse programme. This addresses the 

organisational issues facing a reuse programme. 

The prototype tool set. has also been shown to be an effective method of automating support for 

the reuse programme. The integrated approach which the tool set adopts allows developers easy 

management of a software component repository, as well as automatically generating 

information about those components. These two factors help to solve the technological problems 

facing the successful introduction of a reuse programme. 

These two solutions, when combined, offer a practical, manageable method for introducing 

reuse and gaining real benefits from reuse without the costly up-front investment often needed in 

order for reuse to succeed. The incremental approach to reuse introduction allows benefits 

gained from the earlier stages of reuse to fund tiie further investment needed to improve the 

reuse programme, and the prototype tool set aids the process by providing much needed 

automated support. 

139 Automating Reuse Support 
in a Small Company 



The method described in this thesis is based on previous work done in the fields of 

organisational development, process improvement and software reuse. As has been shown 

throughout the thesis, there have been several reported reuse successes in large, structured 

software development companies. 

Although the work done with a small company must recognise the differences between the ethos 

and working practices of small and large companies, the overall structure of the method 

presented is based on the successful reuse case studies aheady reported. 

The major differences appear in the way in which the reuse programme is introduced and 

supported. The mcremental introduction of reuse is not unique, but the combination of the use of 

'lightweight' processes with automated support for the reuse programme is. It has been seen that 

both of these additions to the method have been successful m implementing reuse in a small 

company. 

140 A utomating Reuse Support 
in a Small Company 



Chapter 9: References 

[Albr83] Albrecht, K.; - Organisational Development: A Total Systems Approach to Positive 

Change in Any Business Organisation'; Prentice Hall; 1983 

[Alle89] Allen, B.P., Lee, S.D.; 'A knowledge-based environment for the development of 

software parts composition systems'; In: Proc. of the 11th ICSE; Pittsburgh, PA; May 1989; 

P104-112 

[Ande87] Andersson, T.D.; 'Profit in Small Firms"; Avebury; 1987 

[Arth83] Arthur, L.J.; 'Programmer Productivity - Myths, Methods, and Murphy's Law'; 

John Wiley and Sons; 1983 

[Atki91a] Atkins, M.C., Brown, A.W.; 'Principles of object-oriented systems'; In: Software 

Engineer's Reference Book; McDermid, J.A. (ed.); Butterworth-Heinemann Ltd.; 1991; P39/3-

39/13 

[Atki91b] Atkinson, C; 'Object-Oriented reuse, concurrency and distribution ': an Ada based 

approach'; ACM Press, Addison-Wesley, Reading, Mass.; 1991 

[Babc90] Babcock, J.D., Belady, L.A., Gore, N.C.; 'The Evolution of Technology Transfer at 

MCC's Software Technology Program: From Didactic to Dialectic'; In: Proceedings of the ll'^ 
i 

International Conference on Software Engineering; IEEE 1990; P290-299 

[Babi86] Babisch, W.A.; 'Software Configuration Management - Coordination for Team 

Productivity'; Addison-Wesley, Reading, Mass.; 1986 

141 A utomating Reuse Support 
in a Small Company 



r 

[Bake89] Baker, B., Deeds, A.; 'Industrial Policy and Software Reuse: A Systems Approach'; 

In: Proc. of the Reuse in Practice Workshop; Baido, J., Braun, C. (ed.); Software Engineering 

Institute, Pittsburgh, Penn; Jul 1989 

[Basi87] Basih, V.R., Rombach, H.D., Bailey, J., Joo, B.G.; 'Software Reuse: A Framework'; 

In: Proc. of the Tenth Minnowbrook Workshop (1987, Software Reuse); Blue Mountain Lake, 

N.Y.; July 1987 

[Bell92] Bell, D., Money, I . , Pugh, J.; 'Software Engineering - A Programmer's Approach 

(2nd Ed.)'; Prentice Hall, New Jersey; 1992 

[Benn93] Bennett, K.H.; 'An Overview of Maintenance and Reverse Engineering'; In: The 

REDO Compendium: Reverse Engineering for Software Maintenance; van Zuylen, H.J. (ed.); 

John Wiley and Sons; 1993 

[Bigg87] Biggerstaff, T.J., Richter, C ; 'Reusability Framework, Assessment, and Directions'; 

IEEE Software; Jul 1987; Vol.4 No.4 P41-49 

[Bigg89a] Biggerstaff, T.J., Perils, A.J., (ed.); 'Software Reusability. Concepts and Models, 

vol. F; A C M Press, Addison-Wesley, Reading, Mass.; 1989 

[Bigg89b] Biggerstaff, T.J., Perils, A.J., (ed.); 'Software Reusability. Applications and 

Experience, vol. IF; ACM Press, Addison-Wesley, Reading, Mass.; 1989 

[Bigg93] Biggs, P.J.; 'Information Retrieval Applied to Software Documents (Including 

Source Code)'; Final Year Project Report, Dept. of Computer Science, University of Durham; 

1993 

142 Automating Reuse Support 
in a Small Company 



[Bigg95] Biggs, P.J.; 'A Survey of Object-Oriented Methods'; Computer Science Technical 

Report 6/95; Dept. Of Computer Science, University of Durham; 1995 

[Boll90] Bollinger, T.B., Pfleeger, S.L.; 'The Economics of Reuse: Issues and Alternatives'; 

In: Proc. of the Eighth Aimual National Conference on Ada Technology, Atlanta; Mar 1990; 

P436-447 

[Boll91] Bollinger, T.B., McGowan, C; 'A Critical Look at Software Capability 

Evaluations'; IEEE Software; July 1991; Vol.8 No.4 P25-41 

[Bott92] Bott, F., Ratchffe, M. ; 'Reuse and Design'; In: Software Reuse and Reverse 

Engineering in Practice; Hall, P.A.V. (ed.); Chapman & Hall, London; 1992 

[Buck85] Buckley, M.W.; ' the Stiiicture of Business'; Pitman Publishing Ltd, London; 1985 

[Budd91] Budd, T., 'An Introduction to Object-Oriented Programming'; Addison-Wesley, 

Reading, Mass.; 1991 

[Bull85] Bullock, R.J., Batten, D.; 'It's just a phase we're going through: a review and 

synthesis of OD phase analysis'; Group and Organisation Studies; Dec 1985; Vol.10 P383-412 

[Bull94] Bull, T.; 'Software Maintenance by Program Transformation in a Wide Specti^m 

Language'; Ph.D. Thesis; Durham University; 1994 

[Burd92] Burd, E.L., McDermid, J.A.; 'Guiding Reuse with Risk Assessments'; University of 

York Technical Document YCS 183 (1.992); York; 1992 

143 Automating Reuse Support 
in a Small Company 



[Burd93a] Burd, E.L., McDermid, J.A.; 'Risk Management: the Key to Successftil Reuse'; In: 

Proc. of the Sixth Annual Workshop on Software Reuse; Poulin, J. (ed.); IBM Federal Systems 

Company, Owego, NY; Nov 1993 

[Burd93b] Burd, E.L.; quoted in 'Sphal of Success'; Peltu, M. ; Computing; 28 Jan 1993; P24 

[Bum86] Bums, P., Dewhurst, J. (ed.); 'Small Business in Europe'; Macmillan; 1986 

[Bum96a] Bums, P., Dewhurst, J. (ed.); 'Small Business and Entrepreneurship (2"'' Edition)'; 

Macmillan; 1996 

[Bum96b] Bumes, B.; 'Managing Change: A Strategic Approach to Organisation Dynamics 

(2"'' Edition)'; Pitman, London; 1996 

[Cam95] Camegie Mellon University, Software Engineering Institute; 'The Capability 

Maturity Model: Guidelines for Improving the Software Process'; Addison-Wesley; 1995 

[Cava83] Cavaliere, M.J.; 'Reusable Code at the Hartford Insurance Group'; In: Software 

Reusability. Applications and Experience, vol. I I ; Biggerstaff, T.J., Perils, A.J., (ed.); ACM 

Press, Addison-Wesley, Reading, Mass.; 1989; P131-141 

[Chao93] Chao, D.; 'Software Reuse: Major Issues Need to Be Resolved Before Benefits Can 

Be Achieved'; In: Proc. of the Sixth Annual Workshop on Software Reuse; Poulin, J. (ed.); IBM 

Federal Systems Company, Owego, NY; Nov 1993 

[Chea84] Cheatham, T.E.; 'Reusability through program transformations'; IEEE Transactions 

on Software Engineermg; Sept 1984; Vo.lO No.5 

144 A utomating Reuse Support 
in a Small Company 



[Chik90] Chikofsky, E.J., Cross, J.H.; 'Reverse Engineering and Design Recovery: A 

Taxonomy'; IEEE Software; Jan 1990; Vol.7 No. l ; P13-18 

[Chil96] Childs, B., Sametinger, J.; 'Literate Programming and Documentation Reuse'; In: 

Proc. of 4tii International Conference on Software Reuse; IEEE, Oriando, Florida; IEEE 

Computer Society Press; Apr 1996; P205-214 

[Chis87] Chisnall, P.M.; ' Small Firms in Action'; McGraw-Hill; 1987 

[Cimi95] Cimitile, A., De Lucia, A., Munro, M. ; 'Identifying Reusable Functions Using 

Specification Driven Program Slicing: A Case Study'; In: Proc. of International Conference on 

Software Maintenance; IEEE, Nice, France; IEEE Computer Society Press; 1995; P124-133 

[Cox86] Cox, B.J.; 'Object-Oriented Programming - An Evolutionary Approach'; Addison-

Wesley, Reading, Mass.; 1986 

[Curt92] Curtis, B.; 'Maintaining the Software Process'; IEEE Proc. of the Conference on 

Software Maintenance 1992; P2-8 

[DeMa84] DeMarco, T., Lister, T.; 'ContioUing Software Projects: Management, 

Measurement, and Evaluation'; Seminar Notes; Atlantic Systems Guild Inc.; 1984 

[Dijk79] Dijksfra, E.; 'Programming Considered as a Human Activity'; Classics in Software 

Engineering, Yourdan Press, New York; 1979 

[Fair89] Fairley, R., Pfleeger, S.L., Bollinger, T., Davis, A., Incorvaia, A.J., Springsteen, B.; 

'Final Report: Incentives for Reuse of Ada Components, vols. 1-5'; George Mason University, 

Fan-fax, VA; 1989 

145 A utomating Reuse Support 
in a Small Company 



[Frak88] Frakes, W.B., Nejmeh, B.A.; 'An Information System for Software Reuse'; In: 

Software Reuse: Emerging Technology; Tracz, W. (ed.); IEEE Computer Society Press; 1988 

[Frak92] Frakes, W.B.; 'Software Reuse: An Empirical Approach'; In: Annual Review of 

Automatic Programming; Elzer, P., Haase, V. (ed.); Pergammon Press, Oxford; 1992; Vol.16 

Part IIP41-44 

[Fraz92] Frazer, A.; 'Reverse Engineering - hype, hope or here?'; In: Software Reuse and 

Reverse Engineering in Practice; Hall, P.A.V. (ed.); Chapman & Hall, London; 1992 

[Free83] Freeman, P.; 'Reusable Software Engineering: Concepts and Research Directions'; 

In: Workshop on Reusability in Programming; Perils, A. (ed.); ITT Programming, Newport, RI; 

Septl983;P2-16 

[Gear88] Geary, K.; 'The practicalities of introducing large-scale software reuse'; Software 

Engineering Journal; Sept 1988; Vol.3 No.5 P175-176 

[Ghez91] Ghezzi, C , Jazayeri, M. , Mandrioh, D.; 'Fundamentals of Software Engineering'; 

Prentice Hall, New Jersey; 1991 

[Gold83] Goldberg, A., Robson, D.; 'Smalltalk-80: The Language and its Implementation'; 

Addison-Wesley, Reading, Mass.; 1983 

[Goss90] Gossain, S., Anderson, B.; 'An Iterative-Design Model for Reusable Object-

Oriented Software'; ECOOP/OOPSLA'90 Proceedings; Oct 1990; P12-27 

[Goug86] Gougen, J.A.; 'Reusing and Interconnecting Software Components'; IEEE 

Computer; Feb 1986; Vol.19 No.2 P16-28 

146 Automating Reuse Support 
in a Small Company 



[Hall91] Hall, P.A.V., Boldyreff, C ; 'Software Reuse'; In: Software Engineer's Reference 

Book; McDermid, J.A. (ed.); Butterworth-Heinemann Ltd., Oxford; 1991; P41/3-41/12 

[Hall93] Halladay, S., Wiebel, M. ; 'Object-Oriented Software Engineering'; R&D 

Publications Ltd., Prentice Hall, London; 1993 

[Hatt95] Hatton, L.; 'Bugs: Avoiding the avoidable and living with the rest'; In: Proc. of the 

9th European Workshop on Software Maintenance; Centte for Software Maintenance, Dept. of 

Computer Science, Durham University; 1995 

[Hoop91] Hooper, J.W., Chester, R.O.; 'Software Reuse: Guidelines and Methods'; Plenum 

Press, New York; 1991 

[Hump89] Humphrey, W.S.; 'Managing the software process'; Addison-Wesley, Reading, 

Mass.; 1989 

[Hump93] Humphrey, W.S.; 'The Personal Software Process - Rationale and Status'; In: 

Proceedings of the 8* International Software Process Workshop; Schaffer, W. (ed.); IEEE 

Computer Society Press, 1993; P102-103 

[Hutc88] Hutchinson, J.W., Hindley, P.G.; 'A Preliminary study of Large-Scale Software 

Reuse'; Software Engineering Joumal; Sept 1988; Vol.3 No.5 P208-212 

[Ince91] Ince, D.; 'Object-Oriented Software Engineering with C++'; McGraw-Hill, London; 

1991 

[Jack83] Jackson, M.A.; 'System Development'; Prentice Hall, New Jersey; 1983 

147 A utomating Reuse Support 
in a Small Company 



[Jaco92] Jacobson, I . , Christerson, M. , Jonsson, P., Overgaard, G.; 'Object-Oriented Software 

Engineering - A Use Case Driven Approach'; ACM Press, Addison-Wesley, Reading, Mass.; 

1992 

[Jaco97] jacobson, I . , Griss, M. , Jonsson, P.; 'Software Reuse: Architecture, Process and 

Organisation for Business Success'; Addison-Wesley, Reading, Mass.; 1997 

[John88] Johnson, R.E., Foote, B.; 'Designing Reusable Classes'; Joumal of Object-Oriented 

Programming; Jun/Jul 1988; Vol.1 No.2 P22-30, 35 

[Jone84] Jones, T.C.; 'Reusability in Programming: A Survey of the State of the Art ' ; IEEE 

Transactions on Software Engineering; Sept 1984; Vol.10 No.5; P488-494 

[Jone86] Jones, T.C.; 'Programming Productivity'; McGraw-Hill, New York; 1986 

[Jone92] Jones, R.; 'How applicable is the object-oriented approach to the IS environment?'; 

In: Software Reuse and Reverse Engineering in Practice; Hall, P.A.V. (ed.); Chapman & Hall, 

London; 1992 

[Kang89] Kang, K.C.; 'Features Analysis: An Approach to Domain Analysis'; In: Proc. of the 

Reuse in Practice Workshop; Baldo, J, Braun, C. (ed.); Software Engineering Institute, 

Pittsburgh, Penn.; Jul 1989 

[Karl95] Karlsson, E. (ed); 'Software Reuse: A Holistic Approach'; John Wiley & Sons; 

1995 

[Knut84] Knuth, D.E.; 'Literate Programming'; The Computer Joumal; 1984; Vol.27 No.2 

P97-111 

148 A utomating Reuse Support 
in a Small Company 



[Koch93] Koch, G.; 'Process assessment: The BOOTSTRAP approach'; Proceedings of 

Software Process Modelling in Practice; April 1993; P22-23 

[Lane79] Lanergan, R.G., Poynton, B.A.; 'Reusable code - The application development 

technique of the fiiture'; In: Proc. of Joint SHARE/GUIDE/IBM Applications Development 

Symposium; Oct 1979; P127-136 

[Lane84] Lanergan, R.G., Grasso, C.A.; 'Software Engineering with Reusable Design and 

Code'; IEEE Transactions on Software Engineering; Sept 1984; Vol.10 No.5 P498-501 

[Leac94] Leach, E.; 'The Likely Impact of Object Technology on Software Development & 

Maintenance'; In: Proc. of 8th European Software Maintenance Workshop; University of 

Durham; September 1994 

[Leac97] Leach, R.J.; 'Software Reuse: Methods, Models and Costs'; McGraw-Hill, New 

York; 1997 

[Lisk74] Liskov, B., Zilles, S.; 'Programming with Absti-act Data Types'; ACM Sigplan 

Notices; Apr 1974; Vol.9 No.4 P50-59 

[Maar90] Maarek, Y.; 'Indexing Software Components for Reuse by Using Natural-Language 

Documentation'; In: Proc. of the Third Armual Workshop: Methods and Tools for Reuse; 

Frakes, W. (Chair); CASE Center Technical Report Series; June 1990 

[Mats84] Matsumoto, Y.; 'Some Experiences in Promoting Reusable Software: Presentation 

in Higher Abstract Levels'; IEEE Transactions on Software Engineering; Sept 1984; Vol.10 

No.5 P502-513 

149 A utomating Reuse Support 
in a Small Company 



[McC197] McClure, C; 'Software Reuse Techniques: Adding Reuse to the Systems 

Development Process'; Prentice Hall, New Jersey; 1997 

[McII68] Mclhoy, M.D.; 'Mass-produced Software. Components'; In: Software Engineering 

Concepts and Techniques, 1968 NATO Conference Software Engineering; Buxton, J.M., Naur, 

P., Randell, B. (ed.); 1976; P88-98 

[Melo95] Melo, W.L., Briand, L.C., Basili, V.R.; 'Measuring the Impact of Reuse on Quality 

and Productivity in Object-Oriented Systems'; University of Maryland Technical Report CS-

TR-3395; Dept. of Computer Science, University of Maryland; Jan. 1995 

[Meye87] Meyer, B.; 'Reusability: The Case for Object-Oriented Design'; IEEE Software; 

Mar 1987; Vol. No. P50-64 

[Meye88] Meyer, B.; 'Object-Oriented Software Constraction'; Prentice Hall, New Jersey; 

1988 

[Meye94] Meyer, B.; 'Reusable Software: Base 0 0 Component Libraries'; Prentice Hall, New 

Jersey; 1994 

[Micr93a] Microsoft Corporation; 'Visual Workbench User's Guide'; Microsoft Corp.; 1993 

[Micr93b] Microsoft Corporation; 'OLE 2 Classes for the Microsoft Foundation Class 

Library'; Microsoft Corp.; 1993 

[Micr93c] Microsoft Corporation; 'Class Library Reference for the Microsoft Foimdation 

Class Library'; Microsoft Corp.; 1993 

[Micr93d] Microsoft Corporation; 'Run-Tune Library Reference'; Microsoft Corp.; 1993 

150 Automating Reuse Support 
in a Small Company 



[Moin90] Momeau, T., Abadir, J., Rames, E.; 'Towards a Generic and Extensible Reuse 

Environment'; SE90, Proc. of Software Engineering 1990; Hall, P.A.V. (ed.); Cambridge 

University Press; 1990; P543-569 

[Mort96] Mortimer, R.E., Bennett, K.H.; 'Maintenance and Absti-action of Program Data 

using Formal Transformations'; Proc. of 1996 International Conference on Software 

Maintenance; IEEE, Monterey, U.S.A.; IEEE Computer Society Press; Nov 1996; P301-310 

[Mull89] MuUin, M. ; 'Object-Oriented Program Design with Examples in C++'; Addison-

Wesley, Reading, Mass.; 1989 

[Munr92] Munro, M. ; 'Software maintenance, reuse and reverse engineering'; In: Software 

Reuse and Reverse Engineering in Practice; Hall, P.A.V. (ed.); Chapman & Hall, London; 1992 

[Neig96] Neighbours, J.M.; 'Finding Reusable Software Components in Large Systems'; In: 

Proc. of Third Working Conference on Reverse Engineering; IEEE, Cahfomia, U.S.A; IEEE 

Computer Society Press; Nov 1996; P2-10 

[Ning93] Ning, J.Q., Engberts, A., Kozaczynski, W.; 'Recovering Reusable Components 

from Legacy Systems by Program Segmentation'; In: Proc. of 1993 Working Conference on 

Reverse Engineering; IEEE, Maryland, U.S.A,; IEEE Computer Society Press; May 1993; P64-

72 

[Oxfo90] Illingworth, V., Glaser, E.L., Pyle, I.C. (ed.); 'Dictionary of Computing (3rd Ed.)'; 

Oxford University Press, Oxford; 1990 

[Pam72] Pamas, D.; 'On the Criteria to be Used in Decomposing Systems Into Modules'; 

Communications of the ACM; Dec 1972; Vol.15 No.l2 P1053-1058 

151 A utomating Reuse Support 
in a Small Company 



[Pfle95] Pfleeger, S.L.; 'Experimental Design and Analysis in Software Engineering'; 

Software Engineering Notes; Jan 1995; Vol.20 No.l P22-26 

[Pont96] Pont, M.J.; 'Software Engineering with C++ and CASE Tools'; Addison-Wesley, 

Reading, Mass.; 1996 

[Pott93] Potts, C; 'Software-Engineering Research Revisited'; IEEE Software; Sept 1993; 

Vol.l0No.5P19-28 

[Prat91] Pratten, C ; 'The Competitiveness of Small Firms'; Cambridge University Press; 

1991 

[Pres92] Pressman, R.S.; 'Software Engineering - A Practitioner's Approach (3rd Edition -

European Adaptation)'; McGraw-Hill, London; 1992 

[Prie87] Prieto-Diaz, R., Freeman, P.; 'Classifying Software For Reusability'; IEEE 

Software; Jan 1987; Vol.4 No.l P6-16 

[Prie90] Prieto-Diaz, R.; 'Implementing Faceted Classification for Software Reuse'; In: 

Proc.of 12th International Conference on Software Engineering; IEEE, Nice, France; Mar 1990; 

P300-304 

[Prie91] Prieto-Diaz, R.; 'Making Software Reuse Work: An Implementation Model'; 

Software Engineering Notes; Jul 1991; Vol.16 No.3 P61-68 

[Prie93] Prieto-Diaz, R.; 'Status Report: Software Reusability'; IEEE Software; May 1993; 

Vol.lONo.3P61-66 

152 A utomating Reuse Support 
in a Small Company 



[Radf94] Radford, J.D.; 'The Engineer and Society'; MacMillan Publishers, London; 1984 

[Raft94] Raftery, J.; 'Risk Analysis in Project Management'; Chapman & Hall; 1994 

[Raj89] Raj, R.K., Levy, H.M.; 'A Compositional Model for Software Reuse'; In: 

ECOOP'89 Proc. of the 1989 European Conference on Object-Oriented Programming; Cook, S. 

(ed.); Cambridge University Press; 1989; P3-24 

[Robs91] Robson, D.J., Bennett, K.H., Cornelius, B.J.; 'Approaches to Program 

Comprehension'; Joumal of Systems and Software; 1991; Vol.14 No.2 P79 

[Rumb91] Rumbaugh, J., Blaha, M. , Premerlani, W., Eddy, F., Lorensen, W.; 'Object-Oriented 

Modeling and Design'; Prentice Hall, New Jersey; 1991 

[Schw86] Schwartz, J.T., Dewar, R., Dubinski, E., Schonberg, E.; 'Programming with Sets: 

An Introduction to SETL'; Springer-Verlag, New York; 1986 

[Somm89] Sommerville, I . ; 'Software Engineering (3rd Ed.)'; Addison-Wesley, Reading, 

Mass.; 1989 

[Sonim96] Sommerville, I . ; 'Software Engineering (5th Ed.)'; Addison-Wesley, Reading, 

Mass.; 1996 

[Stan84] Standish, T.A.; 'An Essay on Software Reuse'; IEEE Transactions on Software 

Engineering; Sept 1984; Vol.10 No.5 P494-497 

[Tell91] Tello, E.R., 'Object-Oriented Programming for Windows'; John Wiley and Sons; 

1991 

153 Automating Reuse Support 
in a Small Company 



[Thom97] Thompson, H.E., Mayhew, P.; 'Approaches to Software Process Improvement'; 

Software Process - Improvement and Practice; 1997; Vol.3 P3-17 

[Trac87a] Tracz, W.; 'Software Reuse Myths'; In: Proc. of the Workshop on Software Reuse; 

Booch, G., Williams, L. (ed.); Rocky Mountain Inst, of Software Engineering, SEI, MCC, 

Software Productivity Consortium, Boulder, Colo.; Oct 1987 

[Trac87b] Tracz, W.; 'Reusability Comes of Age'; IEEE Software; Jul 1987; Vol.4 No.4 P6-8 

[Trac88a] Tracz, W.; 'Software Reuse Myths'; ACM Software Engineering Notes; Jan 1988; 

Vol.13 N0.1P17-21 

[Trac88b] Tracz, W.; 'Software Reuse Maxims'; ACM Software Engineering Notes; Oct 1988; 

Vol.13 No.4 P28-31 

[Trac90] Tracz, W.; 'Where Does Reuse Start?'; ACM Software Engineering Notes; Apr 

1990; Vol.15 N0.2P42-46 

[Tsic89] Tsichritzis, D.C., Nierstrasz, O.M.; 'Directions in Object-Oriented Research'; In; 

Object-Oriented Concepts, Databases, and Applications; Kim, W., Lochovsky, F.H. (ed.); ACM 

Press, Addison-Wesley, Reading, Mass.; 1989 

[Udel94] Udell, J.; 'Componentware'; Byte; May 1994; Vol.19 No.5 P46-56 

[Walt92] Walton, P.; 'The management of reuse'; In: Software Reuse and Reverse 

Engineering in Practice; Hall, P.A.V. (ed.); Chapman & Hall, London; 1992 

[Wass91] Wasserman, A . I . ; 'Object-Oriented Software Development : Issues in Reuse'; 

Journal of Object-Oriented Programming; May 1991; Vol.4 No.2 P55-57 

154 A utomating Reuse Support 
in a Small Company 



[Webe91] Weber, H.; 'The Integration of Reusable Software Components'; Journal of Systems 

Integration; 1991; Vol.1 P55-79 

[Weis74] Weissman, L.; 'Psychological complexity of computer programs: An experimental 

methodology'; ACM SIGPLAN Notices; 1974; Vol.9 No.6 P25-36 

[Wien88] Wiener, R.S., Pinson, L.J.; 'An Introduction to Object-Oriented Programming and 

C++'; Addison-Wesley, Reading, Mass.; 1988 

[Winb90] Winblad, A.L., Edwards, S.D., King, D.R.; 'Object-Oriented Software'; Addison-

Wesley, Reading, Mass.; 1990 

[Wirf90] Wirfs-Brock, R., Wilkerson, B., Wiener, L.; 'Designing Object-Oriented Software'; 

Prentice Hall, New Jersey; 1990 

[Wolf92] Wolff, F.; 'Long-term Conti-olling of Software Reuse'; Information and Software 

Technology; Mar 1992; Vol.34 No.3 P178-184 

[Yu91] Yu, D.; 'A View On Three R's (3Rs): Reuse, Re-engineering, and Reverse-

engineering'; ACM Software Engineering Notes; Jul 1991; Vol.16 No.3 P69 

[Zigm95] Zigman, F.J., Wilson, M.L.; 'Integrating Reengineering, Reuse and Specification 

Tool Envirormients to Enable Reverse Engineering'; In: Proc. of Second Working Conference 

on Reverse Engineering; IEEE, Ontario, Canada; IEEE Computer Society Press; Jul 1995; P78-

84 

155 A utomating Reuse Support 
in a Small Company 



Chapter 10: Bibliography 

[Abbo83] Abbott, R.; 'Program Design by Informal English Description'; Commimications of 

the ACM; Nov 1983; Vol.26 N o . l l P882-894 

[Aran91] Arango, G., Prieto-Diaz, R.; 'Part 1: Introduction and Overview, Domain Analysis 

Concepts and Research Directions'; In: Domain Analysis and Software Systems Modelling; 

IEEE Computer Society Press Tutorial, IEEE; 1991 

[Bank93] Banker, R.D., Datar, S.M.; Kemerer, C.F. Zweig, D.; 'Software Complexity and 

Maintenance Costs'; Communications of the ACM; Nov 1993; Vol.36 No.l 1 

[Bank94] Banker, R.D., Kaufmann, R.J., Wright, C, Zweig, D.; 'Automating Output Size and 

Reuse Metrics in a Repository-Based Computer-Aided Software Engineering (CASE) 

Environment'; IEEE Transactions on Software Engineering; Mar 1994; Vol.20 No.3 P169-187 

[Bilo91] Bilow, S.C.; 'Book Review: Object-Oriented Design'; Journal of Object-Oriented 

Programming; Oct 1991; Vol.4 No.6 P73-74 

[Booc86] Booch, G.; 'Object-Oriented Development'; IEEE Transactions on Software 

Engineering; Feb 1986; Vol.12 No.2 P211-221 

[Booc87] Booch, G.; 'Software Engineering with Ada (2nd Ed.)'; Benjamin/Cummings, 

California; 1987 

[Booc91] Booch, G.; 'Object-Oriented Design with Applications'; Benjamin/Cummings, 

California; 1991 

156 A utomating Reuse Support 
in a Small Company 



[Coad90] Coad, P., Yourdan, E.; 'Object-Oriented Analysis'; Yourdan Press, Prentice Hall, 

New Jersey; 1990 

[Coad91a] Coad, P., Yourdan, E.; 'Object-Oriented Design'; Yourdan Press, Prentice Hall, 

New Jersey; 1991 

[Coad91b] Coad, P.; 'Why use object-oriented development? (A management perspective)'; 

Journal of Object-Oriented Programming;' Oct 1991 

[Dunt90] Duntemann, J., Marinacci, C ; 'New Objects for Old Structures'; Byte; Apr 1990; 

P261-266 

[Evan90] Evans, R.A.; 'Criteria for an OOD method'; In: Object-Oriented Software 

Engineering; Anderson, B. (ed.); British Computer Society, London; 1990 

[Goss91] Gossain, S.; 'Book Review: Designing Object-Oriented Software'; Journal of 

Object-Oriented Programming; Mar/Apr 1991; Vol.4 No.l P82-84 

[Grah93] Graham, I ; 'Object-Oriented Methods'; Addison-Wesley; 1993 

[Hall92] Hall, P.A.V.; 'Software Reuse, Reverse Engineering and Reengineering'; In: 

Software Reuse and Reverse Engineering in Practice'; Hall, P.A.V (ed.); Chapman & Hall, 

London;1992 

[Hend93] Henderson, P.; 'Object-Oriented Specification and Design with C++'; McGraw-Hill, 

London;1993 

[Hoar72] Hoare, C.A.R., Dahl, O., Dijkstra, E.; 'Structured Programming'; Academic Press, 

London;1972 

157 A utomating Reuse Support 
in a Small Company 



[Hodg92] Hodgson, R.; 'Finding, building and reusmg objects'; In: Object-Oriented design; 

Robinson, P. (ed.); Chapman & Hall, London; 1992; P48-76 

[Hood93] Delatte, B., Heitz, M. , MuUer, J.F. (ed.); 'HOOD Reference Manual 3.1'; Masson, 

Paris; 1993 

[Horo89] Horowitz, E., Munson, J.B.; 'An expansive view of reusable software'; In: Software 

Reusability. Concpets and Models, vol. I ; Biggerstaff, T.J., Perils, A.J., (ed.); ACM Press, 

Addison-Wesley, Reading, Mass.; 1989; P19-41 

[Ince88] Ince, D.; 'Reusable Software - The False Frontier'; In: Software Development: 

Fashioning the Baroque'; Ince, D.; Oxford University Press; 1988 

[Kang87] Kang, K.C.; 'A Reuse-Based Software Development Methodology'; In: Proc. of the 

Workshop on Software Reuse; Booch, G., Wilhams, L. (ed.); Rocky Moimtain Inst, of Software 

Engineering, SEI, MCC, Software Productivity Consortium, Boulder, Colo.; Oct 1987 

[Knut94] Knuth, D.E., Levy, S.; 'The CWEB System of Stinchu-ed Documentation'; 

Addison-Wesley, Reading, Mass.; 1994 

[Lewi92] Lewis, J.A., Henry, S.M., Kafiira, D.G., Schuhnan, R.S.; 'On the relationship 

between the object-oriented paradigm and software reuse: an empirical investigation'; Journal of 

Object-Oriented Programming; Jul/Aug 1992; P35-41 

[Luba88] Lubars, M.D.; 'Code reusability in the large versus code reusability in the small'; In: 

Software Reuse: Emerging Technology; Tracz, W. (ed.); IEEE Computer Society Press; 1988 

158 Automating Reuse Support 
in a Small Company 



[Myer94] Myers, W.; 'Workshop explores large-grained reuse'; IEEE Software; Jan 1994; 

P108-109 

[Orms91] Ormsby, A.; 'Object-Oriented Design Methods'; In: Object-Oriented Languages, 

Systems and Applications; Blair, G., Gallagher, J., Hutchison, D., Shepherd, D. (ed.); Longman, 

London; 1991; P203-222 

[Reen92] Reenskaug, T., Andersen, E., Berre, A., Hurlen, A., Landmark, A., Lehne, O., 

Nordhagen, E., Ness-Ulseth, E., Oftedal, G., Skaar, A., Stenslet, P.; 'OORASS: seamless support 

for the creation and maintenance of object-oriented systems'; Journal of Object-Oriented 

Programming; Oct 1992; Vol.5 No.6 P27-41 

[Rent82] Rentsch, T.; 'Object-Oriented Programming'; SIGPLAN Notices; Sept 1982; Vol.17 

No.l2;P51 

[Robe93] Roberts, S.; 'Productivity Benefits in Major Maintenance projects: Reverse is the 

Wrong Direction'; In: Proc. of Reuse and Reverse Engineering For Productive Software 

Development; Unicom Seminars; 1993; P49-91 

[Robi92] Robinson, P.J.; 'Hierarchical Object-Oriented Design'; Prentice Hall, London; 1992 

[Rumb94] Rumbaugh, J.: 'Getting started: Using use cases to capture requirements"; Journal of 

Object-Oriented Programming; Sept 1994; Vol.7 No.5 P8-12,23 

[Sepp92] Seppanen, V.; 'Acquisition, organisation and reuse of software design knowledge'; 

Software Engineering Journal; Jul 1992; P238-246 

159 Automating Reuse Support 
in a Small Company 



[Shea93] Shearer, D.; 'Working Examples from the BT Corporate Reuse Program'; In: Proc. 

of Reuse and Reverse Engineering For Productive Software Development; Unicom Seminars; 

1993; P93-108 

[Shla92] Shlaer, S., Mellor, S.; 'Object Lifecycles: Modeling the Worid in States'; Prentice 

Hall; 1992 

[Smit90] Smith, J.D.; 'Reusability and Software Construction: C and 0++'; John Wiley and 

Sons; 1990 

[Stev91] Stevens, W.; 'Code Reuse'; In: Software Design, Concepts and Models; Stevens, 

W.; Prentice Hall, London; 1991 

[Walk92] Walker, I.J.; 'Requirements of an object-oriented design method'; Software 

Engineering Journal; Mar 1992; Vol.7 No.2 P102-113 

[Wass89] Wasserman, A . I . , Pircher, P.A., Muller, R.J.; 'An Object-Oriented Structured 

Design Method for Code Generation'; ACM Software Engineering Notes; Jan 1989; Vol.14 

No. l P32-55 

[Wass90] Wasserman, A . I . , Pircher, P.A., Muller, R.J.; 'The Object-Oriented Structured 

Design Notation for Software Design Representation'; IEEE Computer; Mar 1990; Vol.23 No.3 

P50-63 

[Webe93] Weber, H.; 'Uniformity and Invariance in Support of Re-Use'; In: Advances in 

Software Reuse; Prieto-Diaz, R., Frakes, W.B. (ed.); IEEE Computer Society Press; 1993 

[Wegn87] Wegner, P.; 'Varieties of reusability'; In: Tutorial: Software Reusability; Freeman, 

P. (ed.); IEEE Computer Society Press; 1987 

160 A utomating Reuse Support 
in a Small Company 



[Wegn90] Wegner, P.; 'Concepts and Paradigms of Object-Oriented Programming'; OOPS 

Messenger; Aug 1990; Vol.1 No.l P7-87 

[Wilk90] Wilkerson, B.; 'How to Design an Object-Based Application'; Develop; Apr 1990; 

PI 78-203 

161 A utomating Reuse Support 
in a Small Company 



Appendix A 

A1. Software Reuse Questionnaire 

Name? 

Position in Company? 

How long in Company? 

Your Work 

What does your work consist of? 

I f programming, what languages do you use? What compilers? 

Who provides the drive behind the work that you do (customers/company/self)? 

When you have a new idea, what process do you follow to get from the idea to the realisation of 

the idea? 

How do you write down the requirements/specification of new ideas and modifications? 

What design methods have you used? 

Do you conduct/participate in design reviews? 

What type of design do you think would be most suitable for your work? 

To what extent do you use an object-oriented methods? 

Do you ever use: Modularisation? 

Inheritance? 

Overloading? 

Class libraries/hierarchies? 

162 A utomating Reuse Support 
in a Small Company 



How easy do you fmd it to understand: your own code? 

a colleagues code? 

standard library code? 

To what extent do you document your code? 

How could understanding code be made easier? 

I f you need a fiinction/method, do you: look for it in the standard libraries/try to find someone 

else who has done it/write it yourself? 

I f another fimction doesn't do quite what you want it to do, do you: look for another/modify 

it/write it yourself from scratch? 

When writing a fiinction, do you ever consider that someone else may use it, and take steps to 

make it more generic/easier to use? 

The Company 

How would you describe the company at the moment? 

Where do you see the company going in the next few months? 

Where do you see the company going in the next few years? 

How do you think that software reuse could help the company achieve its goals? 

163 A utomating Reuse Support 
in a Small Company 



Appendix B 

B1. ReTfiree-C++ 

ReThree-C++ is an integrated reverse engineering and reuse tool set. It can be used to extract 

information from C++ source code and to create a repository of C++ classes for later retiieval. 

Using visualisation and re-documentation techniques, software documentation and class 

structure hierarchies for candidate software components are automatically generated from the 

software source code. The tool set can be divided into three main functions: 

1. Automatically reverse engineering C++ source code to give a visual class hierarchy 

representation in OMT object model format. 

2. Documenting C++ source code, based on the comments contained within the code, to 

provide automatically generated software documentation. 

3. Building, maintaining and searching a reuse repository of C++ classes which can be reused 

in later applications. 

ReThree-C++ is designed with small company developers in mind, who are under pressure to 

complete their coding to tight deadlines. Its purpose is to help them to achieve the benefits that 

reuse of code can bring without the large up-front investment that is usually required for reuse to 

be successful. In order to reuse code, it is necessary to have appropriate code available, as well 

as being able to fmd the code, modify it ( i f necessary) and integrate it into the current system. 

The principles of object-oriented design are useful for building reusable code in manageable 

components. However, there is little tool support for the process of making code reusable, 

storing it for later use, retrieving it when needed and understanding the structure of reusable 

components. ReThree-C++ addresses these problems. It is based solely on C-H- source code, and 

provides automatic reverse engineering and documentation of source code to help developers 

164 A utomating Reuse Support 
in a Small Company 



understand the structure of code to be reused. It also provides reuse repository support, allowing 

classes to be added to a reuse repository and providing search facilities for repositories. Classes 

that match the search criteria can be automatically reverse engineered and documented to help 

the developer imderstand the structure and purpose of the code. 

The source code is used as the base for all information generated so that the software engineers 

are encouraged to spend more time on developing and maintaining their code effectively. The 

commented source code can then be automatically converted into class hierarchies and 

documentation for the code. This automatic generation of information is done by static analysis 

of the source code in a few seconds. However, as the re-documentation is based on the 

comments contained within the source code, the information given about the classes, their 

services and their attributes, wil l only be as useful as the comments provided by the developers. 

Reverse engineering provides an Object Modelling Technique class hierarchy diagram of the 

classes described in the C++ source code. Documentation is taken from the comments in the 

source code which describe the functionality of the code. The system interfaces with Windows® 

tools, namely Word, OMTool and Netscape, to display the results generated in an informative 

fashion. The latter also has the advantage allowing the ful l power of the browser's searching 

facilities to be employed on the documentation. 

165 A utomating Reuse Support 
in a Small Company 



B2. Examples of Use 

ReThree-C++ has three different forms of output, all based on information taken directiy from 

C++ source code. Section B2.1 contains an example C++ header file (which is taken from the 

source of the ReThree-C++ system). Sections B2.2, B2.3 and B2.4 show the different types of 

output which ReThree-C++ gives based on that file. 

B2.1 Example Source Code 

// aboutbox.h : header f i l e Version Number = 1.2 

// 

// This source code i s only intended as a supplement t o the 

// Mi c r o s o f t Foundation Classes Reference and Microsoft 

// QuickHelp and/or WinHelp documentation provided w i t h the l i b r a r y . 

// See these sources f o r d e t a i l e d information regarding the 

// Micros o f t Foundation Classes product. 

const CString VERSION = "2.32"; 

////////////////////////////////////////////////////////////////////// 

// 

// CBiglcon window version number = 1 

// This class contains the b i g version of the a p p l i c a t i o n ' s icon t h a t 

i s 
// used on the splash window. 

//1/1/1/11/1111111111111111111111/11111111111111111111 III 1111111111111 

II -

class CBiglcon : p u b l i c CButton 

{ 
// A t t r i b u t e s 

166 A utomating Reuse Support 
in a Small Company 



p u b l i c : 

// Operations 

p u b l i c : 

v o i d SizeToContent(); 

// Resizes the standard icon t o f i t i n the designated area 

// on the splash window. 

// Implementation 

p r o t e c t e d : 

v i r t u a l v o i d Drawltem(LPDRAWITEMSTRUCT IpDrawItemStruct) ; 

// Draws the b i g icon t o the rectangle s p e c i f i e d on 

// the splash window, i n c l u d i n g a border and shadowing. 

//{{AFX_MSG(CBigIcon) 

afx_msg BOOL OnEraseBkgnd(CDC* pDC); 

// Background does not need t o be erased -

// t h i s f u n c t i o n does nothing. 

//}}AFX_MSG 

DECLARE_MESSAGE_MAP() 

}; 

11/1/1111111111111111/1111/1111/1111111111111111111111111111111111/111 

/ / 

11 CAboutBox d i a l o g , version number = 2 

// This d i a l o g contains i n f o r m a t i o n about the name and version number 

of 

// the current a p p l i c a t i o n . I t also gives information about the 

cur r e n t 

// system s t a t u s , i n c l u d i n g how much memory i s f r e e , whether the 

// computer has a maths co-processor and how much disc space i s f r e e . 

1111/111111111111111111/1111111111111111111111111111111111111111111111 

II 

167 Automating Reuse Support 
in a Small Company 



class CAboutBox : p u b l i c CDialog 

{ 

// Construction 

p u b l i c : 

CAboutBox(CWnd* pParent = NULL); 

// standard constructor w i t h no member i n i t i a l i s a t i o n 

// Dialog Data 

//{{AFX_DATA(CAboutBox) 

enum { IDD = iDD_ABOUTBOX }; 

// NOTE: the ClassWizard w i l l add data members here 

//})AFX_DATA 

// Implementation 

pro t e c t e d : 

v i r t u a l v o i d DoDataExchange(CDataExchange* pDX); 

// DDX/DDV support. This method i s c o n t r o l l e d by the VC++ 

// Class Wizard. 

CBiglcon m_icon; 
// self-draw button. A large version of the a p p l i c a t i o n ' s icon. 

// Generated message map functions 

//{{AFX_MSG(CAboutBox) 

v i r t u a l BOOL O n l n i t D i a l o g ( ) ; 

// Includes a l l the i n i t i a l i s a t i o n t h a t i s done when t h i s d i a l o g 

// i s c a l l e d . This method draws the b i g icon, gets the current 

// version number of the a p p l i c a t i o n , calculates current free 

// memory and disc space and whether a math co-processor i s 

// present. 

//}}AFX_MSG 

168 Automating Reuse Support 
in a Small Company 



DECLARE_MESSAGE_MAP() 

}; 

1111111111111111111111111111111111111111111111111111111111111111111111 

II 

II CSplashWnd d i a l o g , version number = 3 

// This d i a l o g i s c a l l e d when the a p p l i c a t i o n i s i n i t i a l i s e d t o give 

the • 

// user i n f o r m a t i o n about the a p p l i c a t i o n , i n c l u d i n g the version 

number 

// and copyright i n f o r m a t i o n . 

1111111111111111111111111111111111111111111111111111111111111111111111 

I 

class CSplashWnd : p u b l i c CDialog 

{ 

// Construction 

p u b l i c : 

BOOL Create(CWnd* pParent); 

// Returns an e r r o r i f - t h e splash window could not be created. 

// Dialog Data 
//{{AFX_DATA(CSplashWnd) 

enum { IDD = IDD_SPLASH }; 

// NOTE: the ClassWizard w i l l add data members here 

//}}AFX_DATA 

// Implementation 

p r o t e c t e d : 
v i r t u a l v o i d DoDataExchange(CDataExchange* pDX); 

// DDX/DDV support. This method i s c o n t r o l l e d by the VC++ 

// Class Wizard. 

169 A utomating Reuse Support 
in a Small Company 



CBiglcon m _ i G o n ; 

// self-draw button. A large version of the a p p l i c a t i o n ' s icon. 

CFont m_font; 

// l i g h t version of d i a l o g font 

// Generated message map functions 

//{{AFX_MSG(CSplashWnd) 

v i r t u a l BOOL O n l n i t D i a l o g ( ) ; 

// I n i t i a l i s a t i o n code f o r the d i a l o g . Draws the b i g version of 

// the icon and gets the current version number f o r the 

// a p p l i c a t i o n . 

//}}AFX_MSG 

DECLARE MESSAGE MAP() 

11 /111111111111 /1111111111111111111111 /11 /111 /111111111 /11111111111111 

// 

// CRengBox d i a l o g . Version Number = 1 

// This d i a l o g i s used t o ask the user i f they wish t o s t a r t the 

// appropriate v i s u a l i s a t i o n program f o r the processing t h a t has j u s t 

// been c a r r i e d out. 

1111 n/11/11111111111111111111111111/1/111111/111111//H1111111/111111 

// • 

class CRengBox : p u b l i c CDialog 

{ 

// Construction 

p u b l i c : 
CRengBox (CWnd* pParent = NULL)-; 

// standard constructor w i t h no member i n i t i a l i s a t i o n . 

// Dialog Data 

170 Automating Reuse Support 
in a Small Company 



/ / { {AFX_DATA (CRengBo'x) 

enum { IDD = IDD_RENGBOX }; 

CString m_sFileName; 

//}}AFX_DATA 

// Implementation 

pro t e c t e d : 

v i r t u a l v o i d DoDataExchange(CDataExchange* pDX); 

// DDX/DDV support. This method i s c o n t r o l l e d by the VC++ 

// Class Wizard. 

// Generated message map functions 

//{{AFX_MSG(CRengBox) 

v i r t u a l BOOL O n l n i t D i a l o g ( ) ; 

// I n i t i a l i s e s the d i a l o g w i t h the name of the source/make f i l e 

// which has j u s t been processed. 

//})AFX_MSG 

DECLARE_MESSAGE_MAP() 

}; 

171 A utomating Reuse Support 
in a Small Company 



B2.2 OMT Class Hierarchy Representation 

Object Model: reversec Sheet 1: ObjectModel 
Module Create Sheet Toolkit Browser About 

A 

CButton •Dia log 

A . 

CBiglcon 

SizeT eContent 
Drawl tern 
OnEraseBkgnd 

CAboutBox CSplashWnd CRengBox 

m_icon m_icon 
m_font 

Create 
DoDataExchange 
OnlnitDialog 

m_sFileName 

CAboutBox 
DoDatdExchange 
OnlnitDialog 

m_icon 
m_font 

Create 
DoDataExchange 
OnlnitDialog 

CRengBox 
DoDataExchange 
OnlnitDialog 

m_icon 
m_font 

Create 
DoDataExchange 
OnlnitDialog 

loaded module! 

This is displayed using the demonstration version of OMTool. The layout shown above is 

dkectly from ReThree-C++. OMTool is fiiUy interactive, meaning that the classes can be re­

arranged and updated as required. 

One of the disadvantages of interfacing with OMTool is that it has now fallen out of fashion, and 

has been replaced by better OMT CASE tools. This is always a danger when interfacing with 

'standard' desktop software. OMTool is not compatible with Windows* 95, and this type of 

class hierarchy generation is therefore limited only to users who have the software running 

under Windows* 3.x. 

An alternative is available for Wmdows* 95 users - the class hierarchies generated in Java for 

Web browsers. The results of this type of processing can be seen in section B2.4. 

172 Automating Reuse Support 
in a Small Company 



B2.3 RTF Documentation 

CButton 

Sub Classes: CBiglcon 

Location: C :\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H 

CBiglcon 

Version: 1 

Super Classes: CButton 

Location: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H 

Overview 

CBiglcon window version number = 1 This class contains the big version of the application's icon that is 
used on the splash window. 

Services 

Public Members 

void SizeToContentO 

Resizes the standard icon to fit in the designated area on the splash window. 

Protected Members 

virtual void DrawItem(LPDRAWITEMSTRUCT IpDrawItemStruct) 

173 Automating Reuse Support 
in a Small Company 



Source: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H Version: 1.2 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

Draws the big icon to the rectangle specified on the splash window, including a border and 

shadowing. 

afx msg B O O L OnEraseBkgnd(CDC* pDC) 

Background does not need to be erased - this function does nothing. AFX_MSG 

CDialog 

Sub Classes: CAboutBox CSplashWnd CRengBox 

Location: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H 

CAboutBox 

Version: 2 

Super Classes: CDialog 

Location: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H 

Overview 

CAboutBox dialog, version number = 2 This dialog contains information about the name and version 
number of the current application. It also gives information about the current system status, including 
how much memory is free, whether die computer has a maths co-processor and how much disc space is 
free. 

Services 

Public Members 

CAboutBox(CWnd* pParent = NULL) 

standard constructor with no member initiahsation 

174 Automating Reuse Support 
in a Small Company 



Source: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H Version: 1.2 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

Protected Members 

virtual void DoDataExchange(CDataExchange* pDX) 

DDX/DDV support. This method is controlled by the VC++ Class Wizard, 

virtual B O O L OnlnitDialogO 

Includes all the initialisation that is done when this dialog is called. This method draws the big 

icon, gets the current version number of the application, calculates current free memory and disc 

space and whether a math co-processor is present. AFX_MSG 

Attributes 

Protected Members 

CBiglcon m icon 

self-draw button. A large version of die application's icon. 

CSplashWnd 

Version: 3 

Super Classes: CDialog 

Location: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H 

Overview 

CSplashWnd dialog, version number = 3 This dialog is called when die appHcation is initialised to give 
the user information about die application, mcluding the version number and copyright information. 

175 Automating Reuse Support 
in a Small Company 



Source: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H Version: 1.2 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

Services 

Public Members 

B O O L Create(CWnd* pParent) 

Retums an error i f the splash window could not be created. 

Protected Members . 

virtual void DoData£xchange(CData£xchange* pDX) 

DDX/DDV support. This method is controlled by the VC++ Class Wizard. 

i 
virtual B O O L OnlnitDialogQ 

Initialisation code for the dialog. Draws the big version of the icon and gets the current version 

number for the application. AFX_MSG 

Attributes 

Protected Members 

CBiglcon m icon 

self-draw button. A large version of the application's icon. 

CFont mjont 

light version of dialog font 

176 A utomating Reuse Support 
in a Small Company 



Source: C:\PETEPROMEUSE\TESTREP\ABOUTBOX.H Version: 1.2 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

CRengBox 

Version: 1 

Super Classes: CDialog 

Location: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H 

Overview 

CRengBox dialog. Version Number = 1 This dialog is used to ask the user i f they wish to start the 
appropriate visualisation program for the processing that has just been carried out. 

Services 

Public Members 

CRengBox(CWnd* pParent = NULL) 

standard constructor with no member initialisation. 

Protected Members 

virtual void DoDataExchange(CDataExchange* pDX) 

DDX/DDV support. This metiiod is contioUed by die VC++ Class Wizard, 

virtual B O O L OnlnitDialogO 

Initialises the dialog widi the name of the source/make file which has just been processed. 

AFX MSG . 

177 Automating Reuse Support 
in a Small Company 



Source: C:\PETEPROJ\REUSE\TESTREP\ABOUTBOX.H Version: 1.2 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

Attributes 

Public Members 

CString m sFileName 

AFX DATA 

178 Automating Reuse Support 
in a Small Company 



B2.4 HTML and Java Web Page 

H] /Netscape: ReThree~C++ HTML Documentation 

File Edit View Go Bookmartcs Options Directory Window Hefpl 

' i t ' ' . 

Back H«ne Edit Beioad Open Prim 

CButton CDialog 

CBIgfcon 

SizeToContent 
Draw Item 
OnEraseBkgnd 

CAboutBox 

CflboutBox 
DoDataExchange 
OnlnltDialog 

CSplashWr»d 

m_icon 
m_font 

Create 
DoDataExchange 
OnlnitDialog 

CRengBox 

m_sFileName 

CRengBox 
DoDataExchange 
OnlnitDialog 

CAboutBox 
Version: 2 

Super Classes: CDialog 

Location: C;^PETEPROJ^REUSE^TESTREP^APOUTgOX,H 

CAboutBox dialog, vusion numbu = 2 Tbis dialog contains information about tht name and version mnnber 
of tbe current application. It also gives information about the current system status, including hov mudk 
memory is free, whether the computer has a maths co-processor and how much disc space is free. 

Attributes 
Protected Members 

[conmjcan 

self- draw button. A large version of the â ipUcation's icon. 

Services 
Public Members 

CAboiitBox(CWn4*pPwent - NULL) 

standard constructor w i ^ no member initiahsation 

Protected Members 

The Java applet, which draws the class hierarchy diagram shown in the upper frame, is a 

clickable, client-side image map, which allows the user to click on any of the classes shown. 

This causes the lower frame to fmd and display the documentation for that class. The HTML 

documentation in the lower frame is almost exactly the same as the RTF documentation shown 

179 Automating Reuse Support 

in a Small Company 



in B2.3. The only differences are that in die HTML version, the attiibutes are listed before die 

services of a class, and that there are links from the documentation to the source code where the 

location of the source is specified. 

180 A utomating Reuse Support 
in a Small Company 



Appendix C 

C1. ReTfiree-C++ Evaluation Questionnaire 

The information contained in this questionnaire wil l be used when evaluating the use of ReThree-C-H- as 
a reuse support tool. The results of the questionnaire will be used in academic research, so please be as 
open and honest as possible. 

When finished, please send to: Peter Biggs, Dept. of Computer Science, University of Durham, 

Durham, D H l 3LE, England. 

1. Ease of use 

a. How easy was it to set ReThree-C++ up for use? 

Easy 1 2 © 4 5 6 7 8 9 1 0 Hard 

b. How easy is it to use ReThree-C++ to process files? 

Easy 1 2 © 4 5 678910 Hard 

c. How quickly did you leam to use ReThree-C++? 

Very Quickly 1(1)345678910 Very Slowly 

d. How often did you use the ReTliree-C++ Help file? 

Never 1234567(1)910 Very Frequently 

e. How helpflil is the ReThree-C++ Help file? 

No Help 12345(1)78910 Very Helpful 

2. Using ReThree-C-H- to generate information about C-H- files 

a. Which feature of ReThree-C++ did you use most? 

Generating Documentation for Code Generating Web pages 

b. How helpful were the results of ReThree-C++ in understanding C++ code? 

NoHelp 1 23456 (2 )8910 . VeryHelpful 

c. Which feature of ReThree-C++ did you find most helpful when hying to understand C-H- code? 

Generating Documentation for Code / Generating Web pages 

181 A utomating Reuse Support 
in a Small Company 



d. Please comment on any experiences in processing C-i-t- code with ReThree-CH-)-; 

Quality depends very much on standard of documentation throughout the code -
useful in forcing programmer to tidy the code and add comments etc. 
Much of the output describes classes that are not necessarily implemented in a 
particular build of the target application. This is because ReThreeC-H- only examines 
the header files. I think there is a great potential for developing the Web output 
further, by improving the graphical representation, and allowing for more interaction 
with the various objects in the class diagram. 

3. Reusing with ReThree-C-H-

a. Did you use the reuse repository facilities of ReThree-C-)--!-? syES? NO 

b. I f so, approximately how many classes did you add to your repositories? 

50 

c. How easy was it to find appropriate classes when searching a reuse repository? 

Easy 1 2 3 0 5 6 7 8 9 1 0 Hard 

d. How well did you understand how to use the class, once found, using ReThree-C-(-)-'s processing 
options? 

Didn't understand 123 (3 )5678910 Understood very quickly 

(Due to lack of documentation in source code) 

e. How many times have you reused a class found and understood using ReThree-C-H-'s reuse 
repositories? 

0 

4. Further comments 

Please add any further comments about ReThree-C+-i-

/ was not able to test ReThreeC++ on a live development project, only on old C++ 
code. However, I expect to use it soon when code is ported to 32 bit platform. I believe 
it will prove to be very useful. 

182 Automating Reuse Support 
in a Small Company 



Appendix D 

D1. Group Task Descriptions 

C-H- Experiment 

Group 1 

Welcome to the C++ experiment. In the next hour, you wil l be asked to complete a working version of 

the attached C - H - program. You may use the two reference books provided. Please do not use your own 

reference books, as this wil l affect the results of the experiment. 

Group 2 

Welcome to die C++ experiment. In tiie next hour, you wil l be asked to complete a working version of 

the attached C++ program. You may use die three reference books provided. Please do not use your own 

reference books, as this wi l l affect the results of the experiment. 

Group 3 

Welcome to the C-i-i- experiment. In the next hour, you wil l be asked to complete a working version of 

the attached C - H - program. You may use the three reference books provided, as well as the class 

reference materials attached. Please do not use your own reference books, as this will affect the results of 

the experiment. 

183 Automating Reuse Support 
in a Small Company 



Group 4 

Welcome to the C++ experiment. In the next hour, you will be asked to complete a working version of 

the attached C++ program. You may use the three reference books provided, as well as the ReThree-C-H-

tool running on your machine. Details of how to use the tool are attached. Please do not use your own 

reference books, as this wi l l affect the results of the experiment. 

You wi l l be using Visual C++ to create a QuickWin application. This is very similar to writing C-H- for 

the GCC or G++ compiler. Use the project menu to compile, build and execute your program. 

Before you leave, please fill in the questions at the bottom of this page. Please be as honest as possible, as 

the responses wil l be used when evaluating the experiment. 

Questions 

1. How long did you spend reviewing C++ in preparation for this experiment? 

2. How difficuh did you fmd writing this program? 

Easy 1 2 3 4 5 6 7 8 9 1 0 Hard 

3. How useful did you fmd the reference materials provided? 

No Use 1 2 3 4 5 6 7 8 9 1 0 Very Useful 

184 Automating Reuse Support 
in a Small Company 



4. How would you now rate your C++ skills? 

Poor 1 2 3 4 5 6 7 8 9 1 0 Excellent 

D2. Test Program 

A program has generated a file which contains a list of file names (each on a separate line) followed by a 

search term (on the last line of the file). The programmers want to search all of the specified files for 

occurrences of the search term. They cannot specify how many files are to be searched each time dieir 

program is run. They want to automate the searching process with a program which gives the following 

output: 

"Search term" appears in 'file name' <no. of occurrences> times. 

For example: 

"int count" appears in 'testl.cpp' 12 times. 

Write a program to do tiiis using C-I-+. 

Programming Tips 

It is suggested that you open the file TEST1.DAT and read in the contents a line at a time. Save the list of 

file names read in (remembering to strip out any uimecessary characters such as spaces and new lines) 

until the end of the file is reached. 

185 Automating Reuse Support 
in a Small Company 



Then take the last item of the list as the search term, open each of the search files in turn, read in from the 

search file and see i f the search term appears. I f it does, increment the count. When the end of the search 

file has been reached, write out how many occurrences of the search term were foimd. 

I f any files cannot be opened, give an appropriate error message. 

186 Automating Reuse Support 
in a Small Company 



D3. Class Information for Group 3 

CStdioFile 

Super Classes: CFile 

Location: c:\petetest\mfch\afx.h 

Overview 

raw binary file CStdioFile A CStdioFile object represents a C run-time stream file as opened by the fopen 
function. Stream files are buffered and can be opened in either text mode (the default) or binary mode. 
Text mode provides special processing for carriage return-linefeed pairs. When you write a newline 
character (OxOA) to a text mode CStdioFile object, the byte pair (OxOA.OxOD) is sent to the file. When 
you read, the byte pair (OxOA,OxOD) is translated to a single OxOA byte. Several CFile member functions 
are over-ridden for this derived class. The CFile fimctions Duplicate, LockRange and UnlockRange are 
not implemented for CStdioFile. For examples of using this class, see the Class Library Reference for the 
Microsoft Foundation Class Library. To access CStdioFile, you must: #include <afx.h> 

Services 

Public Members 

CStdioFileO 

Constructors Standard constructor 

CStdioFile(FILE* pOpenStream) 

Constructor given a file pointer returned by a call to the C run-time fimction fopen. 

CStdioFile(const char* pszFileName, UINT nOpenFlags) 

187 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFX.H 

ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

Constructor given a string that is the path of the desired file, which may be relative or absolute. 
nOpenFlags specifies the sharing and access modes. These can be combined using the bitwise-
OR (I) operator. See the CFile constructor for a list of mode options. 

virtual void WriteString(LPCSTR Ipsz) 

writes a string to the file, like "C" fputs. The terminating null character (") is not written to the 

file. Ipsz specifies a pointer to a buffer containing a null terminated text string. Any newline 

character in Ipsz is written to the file as a carriage return-linefeed pair. 

virtual L P S T R ReadString(LPSTR Ipsz, UINT nMax) 

Reads text data into a buffer, up to a limit of nMax-1 characters (like "C" fgets). Reading is 

stopped by a carriage return-linefeed pair. If, in that case, fewer than nMax-1 characters have 

been read, a newline character is stored in the buffer. A null character (") is appended in either 

case. Ipsz is a pointer to a user-supplied buffer that wil l receive a null-terminated text string. 

ReadString returns a pointer to the buffer containing the text data, or NULL i f the end-of-file 

was reached. 

virtual ~ CStdioFileQ 

Destructor. Closes the file before destroying this object, 

void Dump(CDumpContext& do) 

virtual DWORD GetPositionO 

Over-ridden member function - see CFile for details. 

188 Automating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFX.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

virtual B O O L Open(const char* pszFileName, UINT nOpenFlags, CFileException* 

pError = NULL) 

Over-ridden member function - see CFile for details. 

virtual UINT Read(void FAR* IpBuf, UINT nCount) 

Over-ridden member function - see CFile for details. 

virtual void Write(const void FAR* IpBuf, UINT nCount) 

Over-ridden member function - see CFile for details. 

virtual L O N G Seek(LONG lOff, UINT nFrom) 

Over-ridden member ftmction - see CFile for details. 

virtual void AbortQ 

Over-ridden member function - see CFile for details. 

virtual void FlushQ 

Over-ridden member function - see CFile for details. 

virtual void Close() 

Over-ridden member function - see CFile for details. 

189 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFX.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

virtual CFile* DuplicateQ 

Unsupported 

virtual void LockRange(DWORD dwPos, DWORD dwCount) 

Unsupported 

virtual void UnlockRange(DWORD dwPos, DWORD dwCount) 

Unsupported 

Attributes 

Public Members 

F I L E * m_pStream 

stdio FILE rri hFile from base class is _fileno(m_pStream) 

CString 

Location: c:\petetest\mfch\afx.h 

Overview 

Non CObject classes Class CString A CString object consists of a variable-length sequence of characters. 
The CString class provides a variety of functions and operators that manipulate CString objects, making 
CString objects easier to use than ordinary character arrays. The maximum size of a CString object is 
MAXINT (32,767) characters. The CString class has built-in memory allocation capability. This allows 
string objects to grow as a result of concatenation operations. The overloaded const char* conversion 
operator allows CString objects to be freely substituted for character pointers in fimction calls. For 
examples of using this class, see the Class Library Reference for the Microsoft Foimdation Class Library. 
To access CString, you must: #include <afx.h> 

190 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFX.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

Sem'ces 

Public Members 

CStringO 

Standard constructor 

CString(const CString& stringSrc) 

construct from current CString 

CString(char ch, int nRepeat = 1) 

construct from a single character to be repeated n times 

CString(const char* psz) 

construct from a pointer to an array of characters 

CString(const char* pch, int nLength) 

construct from a pointer to an array of characters of length nLength 

-CStringO 

Destructor. Releases allocated memory used to store the string's character data 

191 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFX.H 

ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

int GetLengthO 

Returns the number of characters in this CString object (not including the null terminator) 

B O O L IsEmptyO 

Tests a CString object for the empty condition. Retums 0 i f empty, non-zero otherwise 

void EmptyO 

Makes this CString object an empty string and frees memory as appropriate 

char GetAt(int nlndex) 

Retums a single character specified by an index number, nlndex is a 0 based index of the 

character in the CString object 

char operator [] (int nlndex) 

same as GetAt 

void SetAt(int nlndex, char ch) 

Overwrites a single character specified by an index number. SetAt wi l l not enlarge the string i f 

the index exceeds the bounds of the existing string, nlndex is a 0 based index of the character in 

the CString object 

192 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFX.H 

ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

operator const char*() 

casts the CString object as a string pointer. 

const CString& operator=(const char* psz) 

reinitiahses the CString object with its new value the same as psz 

const CString& operator+=(const char* psz) 

joins a copy of psz on to the end of this CString object 

friend CString AFXAPI operator+(const CStringi& stringl, const CString& string2) 

adds two CString objects 

int Compare(const char* psz) 

Compares this CString object with another string, character by character. Returns 0 i f the strings 

are identical, -1 i f this CString object is less than psz or 1 i f this CString object is greater than 

psz 

int CompareNoCase(const char* psz) 

Compares this CString object with another string, character by character, ignoring case Retums 

0 i f the strings are identical, -1 i f this CString object is less than psz or 1 i f this CString object is 

greater than psz 

193 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFX.H 

ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

int Collate(const char* psz) 

Performs a locale specific comparison of two strings. Retums 0 i f the strings are identical, -1 i f 

this CString object is less than psz or 1 i f this CString object is greater than psz 

CString Mid(int nFirst, int nCount) 

Extracts a substring of length nCount characters from this CString object, starting at position 

nFirst (zero-based). The function retums a copy of the extracted substring. 

CString Mid(int nFirst) 

Extracts a substring from this CString object, starting at position nFirst (zero-based), extracting 

the remainder of the string. The fiinction retums a copy of the extracted substring. 

CString Left(int nCount) 

Extracts the first (that is, leftmost) nCount characters from this CString object and retums a copy 

of the extracted substring. I f nCount exceeds the string length, then the entire string is extracted. 

CString Right(int nCount) 

Extracts the last (that is, rightmost) nCount characters from this CString object and retums a 

copy of the extracted substring. I f nCount exceeds the string length, then the entire string is 

extracted. 

194 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFX.H 

ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

CString SpanIncluding(const char* pszCharSet) 

Extracts the largest substring that contains only the characters in the specified set pszCharSet; 

starts from the furst character in this CString object. I f the fu-st character of the string is not in the 

character set, then Spanlncluding retums an empty string 

CString Span£xcluding(const char* pszCharSet) 

Extracts the largest substring that excludes only the characters in the specified set pszCharSet; 

starts from the first character in this CString object. I f the fnst character of the string is in the 

character set, then SpanExcluding retums an empty string 

void MakeUpperO 

Converts this CString object to an uppercase string 

void MakeLowerO 

Converts this CString object to a lowercase string 

void MakeReverseO 

Reverses the order of the characters in this CString object 

int Find(char ch) 

Searches this string for the fu-st match of the character ch. Retums the zero-based index of the 

fu:st character in this CString object that matches the requested character; -1 i f the character is 

not found 

195 Automating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFX.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

int ReverseFind(char ch) 

Searches this string for the last niatch of the character ch. Retums the zero-based index of the 

last character in this CString object that matches the requested character; -1 i f the character is 

not found 

int FindOneOf(const char* pszCharSet) 

Searches this string for the first character that matches any character contained in pszCharSet. 

Retums the zero-based index of the fnst character in this CString object that is also in 

pszCharSet; -1 i f there is no match 

int Find(const char* pszSub) 

Searches this string for the first match of the substring pszSub. Retums the zero-based index of 

the furst character in this CString object that matches the requested substring; -1 i f the substring 

is not found 

char* GetBuffer(int nMinBufLength) 

void ReleaseBuffer(int nNewLength = -1) 

char* GetBufferSetLength(int nNewLength) 

int GetAUocLengthO 

196 Automating Reuse Support 
in a Small Company 



Source: C:\PETETESTMVIFCH\AFX.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

Protected Members 

void InitQ 

void AllocCopy(CString«& dest, int nCopyLen, int nCopylndex, int nExtraLen) 

void AIIocBuffer(int nLen) 

void AssignCopy(int nSrcLen, const char* pszSrcData) 

void ConcatCopy(int nSrclLen, const char* pszSrclData, int nSrclLen, const char* 

pszSrc2Data) 

void ConcatInPlace(int nSrcLen, const char* pszSrcData) 

static void SafeDelete(char* pch) 

static int SafeStrlen(const char* psz) 

197 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCmAFX.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

Attributes 

Protected Members 

char* m_pchData 

actual string (zero terminated) 

int mnDataLength 

does not include terminating 0 

int m nAllocLength 

does not include terminating 0 

198 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

CStringArray 

Super Classes: CObject 

Location: c:\petetest\mfch\afxcolI.h 

Overview 

CStringArray The CStringArray class supports arrays of CString objects. The string arrays are similar to 
C arrays but they can dynamically shrink and grow as necessary. Array indexes always start at position 0. 
You can decide whether to fix the upper bound or allow the array to expand when you add elements past 
the current bound. Memory is allocated contiguously to the upper bound, even i f some elements are null. 
For examples of using this class, see the Class Library Reference for the Microsoft Foundation Class 
Library entry for CObArray. To access CStringArray, you must: #include <afxcoll.h> 

Services 

Public Members 

CStringArrayO 

Constraction Constracts an empty CString pointer array. The array grows one element at a time, 

int GetSizeQ 

Retums the size of the array. Since indexes are zero-based, the size is 1 greater than the largest 

index. 

int GetUpperBoundQ 

Retums the current upper bound of this array. Because array indexes are zero-based, this 

function retums a value 1 less than GetSize. Retums -1 when the array contains no elements. 

199 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

void SetSize(int nNewSize, int nGrowBy = -1) 

Establishes the size of an empty or existing array; allocates memory i f necessary. I f the new size 

is smaller than the old size, then the array is truncated and all unused memory is released. 

nNewSize is the new array size (number of elements). Must be greater than or equal to 0. 

nGrowBy is the minimum number of element slots to allocate i f a size increase is necessary. 

void FreeExtraO 

Frees any extra memory that was allocated while the array was grown. This function has no 

effect on the size or upper bound of the array. 

void RemoveAllO 

Removes all the pointers from this array and deletes the CString objects. I f the array is aheady 

empty, the function still works. The RemoveAll function frees all memory used for pointer 

storage. 

CString GetAt(int nindex) 

Retums the array element at the specified index; NULL i f no element is stored at the index, 

void SetAt(int nindex, const char* newElement) 

Sets the array element at the specified index. SetAt wil l not cause the array to grow. Use 

SetAtGrow i f you want the array to grow automatically. 

200 Automating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

CStringi& ElementAt(int nlndex) 

Retums a temporary reference to the element pointer within the array. It is used to implement 

the left-side assignment operator for arrays. Note that this is an advanced function that should be 

used only to implement special array operators. Retums a reference to a CString pointer. 

void SetAtGrow(int nlndex, const char* newElement) 

Sets the array element at the specified index. The array grows automatically i f necessary (that is, 

the upper bound is adjusted to accommodate the new element). 

int Add(const char* newElement) 

Adds a new element to the end of an array, growing the array by 1. I f SetSize has been used with 

an nGrowBy value greater than 1, then extra memory may be allocated. However, the upper 

bound wi l l increase by only 1. 

CString operator[](int nlndex) 

CString«& operator[](int nlndex) 

These subscript operators are a convenient substitute for the SetAt and GetAt fimctions. The first 

operator, invoked for arrays that are not const, may be used on either the right (r-value) or the 

left (1-value) of an assignment statement. The second, invoked for const arrays, may be used 

only on the right. The Debug version of the library asserts i f the subscript (either on the left or 

right side of an assignment statement) is out of bounds. 

201 Automating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

void InsertAt(int nindex, const char* newElement, int nCount = 1) 

This version of InsertAt inserts one element (or multiple copies of an element) at a specified 

index in an array. In the process, it shifts up (by incrementing the index) the existing element at 

this index, and it shifts up all the elements above it. nCount is the number of times this element 

should be inserted (defaults to 1). ' 

void RemoveAt(int nindex, int nCount = 1) 

Removes one or more elements starting at a specified index in an array. In the process, it shifts 

down all the elements above the removed element(s). It decrements the upper bound of the array 

but does not free memory. nCount is the number of elements to remove. I f you try to remove 

more elements than are contained in the array above the removal point, then the Debug version 

of the library asserts. 

void InsertAt(int nStartlndex, CStringArray* pNewArray) 

This version inserts all the elements from another CStringArray collection, starting at the 

nStartlndex position. The SetAt fimction, in contrast, replaces one specified array element and 

does not shift any elements. 

-CStringArrayO 

202 Automating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

CStringList 

Super Classes: CObject 

Location: c:\petetest\mfch\afxcoll.h 

Overview 

CStringList The CStringList class supports lists of CString objects. A l l comparisons are done by value, 
meaning that the characters in the string are compared instead of the addresses of the strings. For 
examples of using this class, see the Class Library Reference for the Microsoft Foundation Class Library 
entry for CObList. To access CStringList, you must: #include <afxcoll.h> 

Services 

Public Members 

CStringList(int nBlockSize=10) 

Constructs an empty list for CString objects, 

int GetCountO 

Gets the number of elements in this hst. 

B O O L IsEmptyO 

Indicates whether this list contains no elements. Retums TRUE i f the list is empty, FALSE 

otherwise. 

CString& GetHeadQ 

203 Automating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

CString GetHeadQ 

Gets the CString pointer that represents the head element of this list. You must ensure that the 

list is not empty before calling GetHead. I f the list is empty, then the Debug version of the 

Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains 

elements. I f the list is accessed through a pointer to a const CStringList, then GetHead retums a 

CString pointer. This allows the function to be used only on the right side of an assignment 

statement and thus protects the list from modification. I f the list is accessed directly or through a 

pointer to a CStringList, then GetHead retums a reference to a CString pointer. This allows the 

function to be used on either side of an assignment statement and thus allows the list entries to 

be modified. 

CString& GetTailQ 

CString GetTailQ 

Gets the CString pointer that represents the: tail element of this list. You must ensure that the list 

is not empty before calling GetTail. I f the list is empty, then the Debug version of the Microsoft 

Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements. I f the list 

is accessed through a pointer to a const CStringList, then GetHead retums a CString pointer. 

This allows the function to be used only on the right side of an assignment statement and thus 

protects the list from modification. I f the list is accessed directly or through a pointer to a 

CStringList, then GetHead retums a reference to a CString pointer. This allows the function to 

be used on either side of an assignment statement and thus allows the list entries to be modified. 

204 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

CString RemoveHeadQ 

Removes the element from the head of the list and retums a pointer to it. You must ensure that 

the list is not empty before calling RemoveHead. I f the hst is empty, then the Debug version of 

the Microsoft Foimdation Class Library asserts. Use IsEmpty to verify that the list contains 

elements. 

CString RemoveTailQ 

Removes the element from the tail of the list and retums a pointer to it. You must ensure that the 

list is not empty before calling RemoveTail. I f the list is empty, then the Debug version of the 

Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the hst contains 

elements. 

POSITION AddHead(const char* newElement) 

Adds a new element to the head of this list. The hst may be empty before the operation. 

POSITION AddTail(const char* newElement) 

Adds a new element to the tail of this list. The list may be empty before the operation. 

void AddHead(CStringList* pNewList) 

Adds a list of elements to the head of this list. The list may be empty before the operation. 

void AddTail(CStringList* pNewList) 

Adds a list of elements to the tail of this list. The hst may be empty before the operation. 

205 Automating Reuse Support 
in a Small Company 



Source: C:\PETETESTMVlFCmAFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

void RemoveAllO 

Removes all the elements from this list and frees the associated CStringList memory. No error is 

generated i f the hst is aheady eriipty. 

POSITION GetHeadPositionO 

Gets the position of the head element of this list. Retums a POSITION value that can be used for 

iteration or object pointer retrieval; NULL i f the list is empty. 

POSITION GetTailPositionO 

Gets the position of die tail element of this hst; NULL i f die list is empty. Retums a POSITION 

value that can be used for iteration or object pointer retrieval; NULL i f the list is empty. 

CString& GetNext(POSITION& rPosition) 

CString GetNext(POSITION& rPosition) 

Gets the list element identified by rPosition, then sets rPosition to the POSITION value of the 

next entry in the list. You can use GetNext in a forward iteration loop i f you establish the initial 

position with a call to GetHeadPosition or Find. You must ensure that your POSITION value 

represents a valid position in the list. I f it is invalid, then the Debug version of the Microsoft 

Foundation Class Library asserts. I f the retrieved element is the last in the list, then the new 

value of rPosition is set to NULL. rPosition is a reference to a POSITION value returned by a 

previous GetNext, GetHeadPosition, or other member fimction call. 

206 Automating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

CStringi& GetPrev(POSITION& rPosition) 

CString GetPrev(POSITION& rPosition) 

Gets the list element identified by rPosition, then sets rPosition to the POSITION value of the 

previous entry in the list. You can use GetPrev in a reverse iteration loop i f you establish the 

initial position with a call to GetTailPosition or Find. You must ensure that your POSITION 

value represents a valid position in the list. I f it is invalid, then the Debug version of the 

Microsoft Foundation Class Library asserts. I f the retrieved element is the fu-st in the list, then 

the new value of rPosition is set to NULL. rPosition is a reference to a POSITION value 

retumed by a previous GetPrev or other member function call. 

CString& GetAt(POSITION position) 

CString GetAt(POSITION position) 

A variable of type POSITION is a key for the list. It is not the same as an index, and you cannot 

operate on a POSITION value yourself GetAt retrieves the CString pointer associated with a 

given position. You must ensure that your POSITION value represents a valid position in the 

list. I f it is invalid, then the Debug version of the Microsoft Foundation Class Library asserts, 

position is a POSITION value retumed by a previous GetHeadPosition or Find member fiuiction 

call. 

void SetAt(POSITION pes, const char* newElement) 

A variable of type POSITION is a key for the list. It is not the same as an index, and you cannot 

operate on a POSITION value yourself SetAt writes the CString pointer to the specified position 

207 Automating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 

ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

in the list. You must ensure that your POSITION value represents a valid position in the list. I f it 

is invalid, then the Debug version of the Microsoft Foundation Class Library asserts, pos is the 

POSITION of the element to be set. newElement is the CString pointer to be written to the list. 

void RemoveAt(POSITION position) 

Removes the specified element from this list. You must ensure that your POSITION value 

represents a valid position in the list. I f it is invalid, then the Debug version of the Microsoft 

Foundation Class Library asserts, position is the position of the element to be removed from the 

list, inserting before or after a given position 

POSITION InsertBefore(POSITION position, const char* newElement) 

Adds an element to this list before the element at the specified position. Retums a POSITION 

value that can be used for iteration or object pointer retrieval; NULL i f the list is empty. 

newElement is the object pointer to be added to this list. 

POSITION InsertAfter(POSITION position, const char* newElement) 

Adds an element to this list after the element at the specified position, position as a POSITION 

value retumed by a previous GetNext, GetPrev, or Find member function call. newElement is 

the object pointer to be added to this list. 

POSITION Find(const char* searchValue, POSITION startAfter = NULL) 

Searches the list sequentially to fmd the furst CString matching the specified CString. Defaults to 

starting at the HEAD of the list. Retums NULL i f not found 

208 Automating Reuse Support 
in a Small Company 



Source: C:\PETETEST\MFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

POSITION Findlndex(int nindex) 

Uses the value of nIndex as an index into the list. It starts a sequential scan from the head of the 

list, stopping on the nth element. nIndex is the zero-based index of the hst element to be found. 

Retums a POSITION value that can be used for iteration or object pointer retrieval; NULL i f 

nIndex is negative or too large. 

-CStringListO 

void Serialize(CArchive&) 

void Dump(CDumpContext&) 

void AssertValidO 

Protected Members 

struct CNode(CStringList) 

CNode* NewNode(CNode*, CNode*) 

void FreeNode(CNode*) 

209 A utomating Reuse Support 
in a Small Company 



Source: C:\PETETESTMVIFCH\AFXCOLL.H 
ReThree-C++ v 2.32 Documentation Generated at: 09:44 on 02/11/98 

Attributes 

Protected Members 

CNode* m_pNodeHead 

CNode* mjNodeXail 

intm nCount 

CNode* m_pNodeFree 

m_pBlocks 

intm nBlocliSize 

210 Automating Reuse Support 
in a Small Company 



D4. Instructions on tfie use of ReTiiree-C++ for Group 4 

ReThree'C++ 

ReThree-C-H- is an integrated reverse engineering, re-documentation and reuse tool set. It can be used to 
extract information from C + + source code, and to create a repository of C - H - classes for later retrieval. 
The tool set can be divided into three main functions: 

1. Automatically reverse engineering C - H - source code to give a visual class hierarchy 

representation in OMT object model format. 

2. Documenting C++ source code, based on the comments contained within the code, to provide 

automatically generated software documentation. 

3. Building, maintaining and searching a reuse repository of C-H- classes which can be re-used in 

later applications. 

This version of ReThree-C-H- has a reuse repository open which contains information about the 

Microsoft* Foundation Classes that are available for reuse within a C-H- program. 

When you wish to search for a class to reuse from the currently open repository, choose the S E A R C H 

menu item from the R E U S E MENU. You wil l then be asked for a search term with which to search the 

repository. You can use wildcard characters (*) and boolean operators (&, AND, |, OR, !, NOT) in the 

search term. 

I f any classes match the criteria specified, a list of these classes wil l be displayed in a dialog. The Search 

Results dialog displays a list of the classes that matched the search criteria specified, along with an 

211 Automating Reuse Support 
in a Small Company 



overview of the class. The dialog allows you to view information about any of the classes. Select a class 

in the list box, and you wil l see the class overview in the box below 

I f you want more information about the class, use one of the three buttons on the right of the dialog to 

view either a class hierarchy (using OMTool), documentation (using Word) or both (using Java 

compatible Netscape). 

View Hierarchy 

This button processes the file which contains your selected class and displays a class hierarchy based 

around that class using OMTool to display the class hierarchy diagram. 

View Documentation 

This button processes the file which contains your selected class and generates documentation for the 

class, and any specified associated classes, which can be viewed using Word for Windows®, or other 

RTF compatible application. 

View Web Page 

This button processes the file which contains your selected class and generates a class hierarchy 

and documentation for the class, and any specified associated classes, which can be viewed 

using Netscape 2.x, or other Java compatible Web browser (Java generated class hierarchies are 

only available when running ReThree-C++ under Windows® 95). 

212 A utomating Reuse Support 
in a Small .Company 


