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Abstract 

The analysis of hadronic events in high-energy electron-positron annihilation often relies 

upon the clustering of individual hadrons into energetic jets. By solving our theory of strong 

interactions, Quantum Chromodynamics (QCD) perturbatively, we may make theoretical 

predictions for these mult i jet configurations. 

In this thesis we provide some calculational tools which are useful for evaluating terms 

in the perturbative series beyond leading order. These include a convenient method of 

dealing wi th one-loop integrals containing tensor denominators and universal factorization 

formulae for matrix elements where two particles are unresolved, which are relevant at the 

2-loop (next-to-next-to-leading order) level. In particular we concentrate on the case of 

the next-to-leading order corrections to 4 jet production (and related processes) and apply 

our techniques to obtain explicit results in electron-positron annihilation which are then 

compared wi th experimental data. 
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Chapter 1 

A Review of QCD 

1.1 Introduction 

The advent of the 1960's saw a revolution in the field of particle physics. A k i n to the 

world of chemistry before Mendeleev, there had been a proliferation in the number of so-

called elementary particles, w i th strongly interacting hadrons being produced in many high 

energy experiments worldwide. Lacking structure and thus predictive power, the subject 

was revitalized in 1964 by the independent proposals of Gell-Mann and Zweig [1 . 

The key idea was that hadrons were not themselves fundamental objects, but instead 

formed as bound states of quarks, spin 1/2 point-like particles. By building hadrons f rom a 

quark-antiquark pair (mesons, such as the pion) or three quarks (baryons, for example the 

proton) this new theory was able to bring order to the particle zoo. Just as was the case 

for its forerunner, this new 'Periodic Table' successfully predicted the existence of hitherto 

unknown elements of the theory such as the Q~ baryon. Direct evidence for quarks was to 

come only a few years later w i t h the deep inelastic scattering experiments of SLAC-MIT in 

1968 [2]. 

Despite the apparent in i t ia l success of the quark model, i t was s t i l l confronted wi th some 

puzzling problems, not all of which are well understood today. The most immediately appar­

ent of these was the implic i t violation of Fermi statistics. Some of the baryons appeared to be 
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symmetric under the interchange of two identical quarks, contradicting the anti-symmetric 
nature of the spin 1/2 constituents. The resolution of this dilemma involved the introduction 
of a further conserved quantum number - colour. 

The assignment of colour states to individual quarks led to further postulates. By de­

manding that we only observe combinations of quarks that are colourless, we obtain strict 

experimental bounds. As well as predicting the known combinations in mesons and baryons, 

we also find that we should never discover lone quarks and that they are always confined. 

Although free quarks have never been observed experimentally, the precise mechanism for 

the confining process is not yet fu l ly understood. 

The implementation of the above qualitative description of quarks is of course far f rom 

straightforward. In particular, i t is necessary to introduce the concept of a quantum field 

theory to describe the quark states, w i th the strong force mediated by bosonic particles 

(similar in many respects to the photon) called gluons. Both the quarks and gluons are 

intrinsically linked by their colour quantum numbers, which are described mathematically 

w i t h reference to the group SU{3). I t is the theory based on this group, commonly referred 

to as Quantum Chromodynamics (QCD), that wi l l be the subject of this thesis. 

The aim of this chapter is to proceed f rom the basic Lagrangian density of QCD, in terms 

of quark and gluon fields, to a point where we may begin to consider real applications to 

experiment. I n section 1.2 we present the quantum field theory of QCD by outlining the 

derivation of some of the terms in the Lagrangian and then describing how their interpreta­

t ion leads to the Feynman rules. The theory that we build requires a further ingredient, that 

of renormalization. We discuss this, and its relation to the key QCD concepts of a running 

coupling and asymptotic freedom in section 1.3. In making predictions pertubatively, rather 

than solving the f u l l theory, we necessarily introduce an ambiguity due to renormalization. 

The chapter concludes in section 1.4 wi th a discussion of the choice of resolution of this 

ambiguity, illustrated by the real example of the average value of 1-Thrust. 
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1.2 The Gauge Theory of QCD 

In this thesis we shall be interested in the application of the perturbative SU{3) model of 

QCD, working in particular f rom a direct application of the Feynman rules to physical pro­

cesses. I n this section we shall briefly sketch the development of QCD as a gauge theory, f rom 

the Lagrangian containing the fundamental fields through to its perturbative implementation 

in a diagrammatic form. 

1.2.1 Quarks and Gluons 

The Lagrangian density which describes the quark content of QCD is expressed simply as, 

^quark = ^ Qfi^p- m f l ) q f , ( l . l ) 
/ 

where ^ is a shorthand notation for the contraction a^j'^ and the gamma matrices satisfy 

the Cl i f ford algebra relation, 

{7^7 '^} = 25'^^ (1.2) 

In equation (1.1), each flavour of quark is represented by a triplet of fields in colour space, 

qf{x) = q f { x ) , 

w i t h the conventional colour superscripts of r(ed), g(reen) and b(lue). The independence 

of our physical observations f rom these internal colour degrees of freedom means that we 

should be free to perform any rotation of the colour fields into one another. By insisting that 

this requirement be satisfied at every point separately, we obtain a local SU(3) symmetry. 

Mathematically, this means that the Lagrangian density should be invariant under any local 

SU{?>) transformation V{x), which can be parametrized by, 

V{x) = exp{i9{x)-t), 

where 9{x) • t = 9°-{x)t°- and are the generators of SU{Z). Since V{x) is a unitary matrix, 

i t is clear that the generators t° are traceless and they must also satisfy a set of commutation 
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relations, 

t'',t''] = if''^H^, (1.3) 

w i t h the coefficients /"''^ often referred to as the structure constants of the group. Under 

this SU{3) rotation, the quark fields transform as, 

qf{x) ^ V{x)qf{x), 

so uni tar i ty ensures that the quark mass term — E / in the Lagrangian (1.1) is invari­

ant. However, the kinetic term requires more subtlety and we must ensure that the covariant 

derivative transforms in the correct manner to cancel out the rotation of the quark fields, 

D,{x)qf{x) ^ V{x)D,{x)qf{x). 

I n order to do this, we must include a new vector gauge field .4^ (which wi l l eventually 

represent the gluon degrees of freedom) in the definition of D^, 

D^ = d^l + igf^A^. 

Having thus constructed a Lagrangian representing the matter content of QCD, we now 

tu rn to the dynamics of the gauge particles. We can implement a kinetic term by constructing 

the field strength tensor of the gluon field, F^^, which is given by the commutator of two 

covariant derivatives, 

Df,, D^]qf{x) = [d^l + igt • A^, d^l + igt • A^]qf{x) 

= igt-Fi,^qf{x), 

where F^^, is given by, 

C = d,Al - d.Al - gr'^^A^Al. (1.4) 

Note that this is exactly what we would have obtained in constructing a gauge theory for 

QED, except for the additional non-Abelian th i rd term. We must now form a gauge-invariant 

quantity f rom the field strength, which is done by simply taking the trace ^ (with a convenient 

normalization) to give, 

-Cgiuon = -•^Fa'^P^- (1-5) 

^Unlike in QED, F^^ is not itself gauge invariant because of the gluon self-interactions. 
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1.2.2 Gauges and Ghosts 

I n order to sensibly define our theory, i t is also necessary to add two additional terms to 

the Lagrangian. The technical reasons for these terms are best understood by performing 

quantization in the functional integration approach and using the trick due to Faddeev and 

Popov[3 . 

Wi thou t the addition of the first term, propagation of the gluon field is not well-defined. 

To solve this ambiguity, we introduce a gauge-fixing term, which also contains a free (gauge) 

parameter ^, 
>Cgauge-fixing = - ^ ( a M ^ ) ' . (1.6) 

The parameter ^ specifies the covariant gauge to be used, although other choices of gauge 

fixing are possible (for example, axial gauges where one also specifies a vector n'^). This is 

not specific to QCD: we would perform the same trick in QED for the photon. We may 

freely work in any gauge that we desire, wi th any physical observable necessarily being 

gauge-independent. Some choices of the gauge parameter ^ (and their common names) are, 

^ = 0, e = i , e = oo. 
(Landau gauge) (Feynman gauge) (Unitary gauge) 

The final ingredient is the ghost term, which represents unphysical degrees of freedom. 

Wi thou t this explicit term, longitudinal gluons would be allowed to propagate, violating 

our physical observations. To remedy this, we can introduce a complex ghost field 77 which 

couples to gluons via the term, 

>Cghost = ax (̂i?,W. (1-7) 

I t sufiices to know that rj is a scalar field, yet satisfies Fermi statistics, a further sign of its 

unphysical nature. 
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1.2.3 The Q C D Lagrangian 

To summarize, the f u l l Lagrangian density for QCD is given by, 

^QCD — -̂ quark + •̂ gluon "I" -̂ gauge-fixing "f" -̂ ghost; 

where the individual terms are given by equations (1.1), (1-5), (1.6) and (1.7) respectively. 

Having explicitly wri t ten down the Lagrangian, we now proceed to make some remarks about 

its significance. 

• There is no possible gauge invariant mass term for the gluon, but quark masses can be 

naturally admitted. 

• By examining equations (1.4) and (1.5) we see that the Lagrangian includes (non-

Abelian) terms which are cubic and quartic in the gluon field These would not be 

present in QED and lead to gluon self-interactions. 

• To proceed to the calculation of physical observables, we divide the Lagrangian into a 

free piece CQ and an interacting one £ / , and consider the action which is defined by, 

S ^ i j C d^x. 

The interacting theory can now be solved perturbatively as an expansion in the strong 

coupling g. 

A convenient book-keeping device for calculating the terms in the perturbative expan­

sion is provided by the Feynman rules. One can calculate transition probabilities f rom 

in i t i a l to final states by summing over the set of topologically distinct diagrams which 

represents all possible interactions. In this language, terms in the free action SQ lead 

to propagators in momentum space (lines in a diagram), whilst <S/ leads to interactions 

between quarks and gluons via momentum-conserving vertices. 
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1.2.4 The Feynman Rules 

The f u l l Feynman rules for QCD external lines, propagators and interactions are shown in 

Figure 1.1. In this thesis we shall always work wi th spin-summed and averaged matrix 

elements (for final and in i t ia l states respectively) so the extra spin label on the spinors and 

polarization vectors has been omitted. 
In addition, when including diagrams wi th loops one must also: 

• integrate over the loop momentum i w i th the measure /(i''^/(27r)'': 

• include a factor of —1 for each quark or ghost loop; 

• mul t ip ly by a factor of 1/n! for a loop of n identical gluons. 

By using these rules and summing over all the relevant diagrams, one obtains the amplitude 

iM. 

In order to calculate the squared matrix elements for a process, we also require the 

following sums, 

u{p)u{p) = + m, v{p)v{p) = ^ ~ m., e^e"* = -g''", 
spins spins pols. 

where the gluon polarization sum assumes use of the Feynman gauge (^ = 1). Following 

these replacements we can simply use the usual rules for the traces of gamma matrices, all 

easily derived f rom the Clifl5"ord algebra relation (1.2). The rules presented here include a 

mass for the quark, although in many applications this can be neglected. Working at scales 

sufficiently high above the quark masses (true for all but the top quark at Q = Mz), the 

approximation of a zero mass greatly simplifies calculations. We shall adopt this approach 

throughout the remainder of the thesis. Finally, we note that in the squared matr ix elements 

we always obtain an even power of g, so i t is usual to always consider a perturbative expansion 

in powers as defined by. 
„2 
" (1.8) 



CHAPTER 1. A REVIEW OF QCD 

Incoming lines Outgoing lines 

^ U{p) ^ U(p) 

v(p) v(p) 

Propagators Vertices 

i (p'-m'+ie) A 
i i 

Pi.a.M 
- g r " ((PrP2)'g'^ 

±(g^'^(1-^)p"p7p2)5^^ 4 H P 2 - P 3 ) X ' 

P b \ 

% / -yf'=«f'^4gp"g^^-g''"g^''' 

Figure 1.1: The Feynman rules for QCD, using the usual convention of {solid, springy, 
dashed} lines to represent {quarks, gluons, ghosts}. Unless otherwise stated, the momen­
t u m flow along a line is p in the direction indicated by the arrow alongside i t . The gluon 
propagator is given in a covariant gauge specified by the parameter ^. In the triple gluon 
vertex, all momenta are outgoing. For fermion lines, the arrow on the line itself indicates 
the direction of fermion fiow. 
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1.3 Renormalization 

Within a quantum field theory such as QCD, we require renormalization to remove ultraviolet 

divergences that are naturally present. These divergences are associated with higher order 

terms in the perturbative expansion of any physical observable. For example, consider the 

one-loop ('bubble') integral with two internal lines and external momentum k, 

dH 

In the ultraviolet limit ^ —> oo the integral X is (logarithmically) divergent. We may renor-

malize by introducing an upper cut-off on the integral, at the momentum scale = say, 

or by dimensional regularization, continuing to of < 4 dimensions. Ultimatel}', either method 

introduces an additional scale ^ - the renormalization scale - upon which our observable 

must depend at any given order in perturbation theory. 

By calculating the counterterms to Greens functions - terms in the perturbative expan­

sion - in a particular renormalization scheme we may determine the dependence on the 

parameter ii. In QCD at the 1-loop order, this amounts to the calculation of the diagrams in 

Figure 1.2. However, the dependence of an observable R upon the scale is entirely spurious 

- the physical observable cannot be dependent upon the artificially introduced unphysical 

parameter / i . By truncating the perturbative series rather than solving the whole theory we 

have introduced this extra dependence. This has the important eff"ect known as the running 

coupling. 

1.3.1 The Running of as 

We shall consider a dimensionless observable R, so that at all scales Q in which we are 

interested any other scales are small (for instance, the quarks have masses m with rr? jQ'^ <C 

1). The independence of R from yu is expressed by, 

d\x \ d\x d[i das J 
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~rcc -rro 

~rro; rrro xrrrff^rrrrp 

Figure 1.2: The 1-loop contributions to the renormaUzation counterterms for the gluon and 
fermion self-energies and the gluon-fermion vertex. These diagrams are sufficient to calculate 
the renormalization scale dependence of any physical observable at the one-loop level. 

where R = R{Q/ii,as) since it can only depend upon the dimensionless ratio Q/jj, and the 

coupling at the renormalization scale, as = as(/i)- We can re-express this equation in terms 

of the scale Q and the function f5{as) = /J^das/dn, yielding, 

\ dQ das J 

We now introduce a reference momentum scale Qo and define the new variables t and rj by. 

= e 
dr] 

Qo " ' das /3{as)' 

Noting that we have dR/drj = dR/dt we may introduce the new function R! via, 

R{Q|^x,as)^R!{Q,|^M,r1 + t) = R! Qo/f^., I > 

where a% is an arbitrary lower limit. By setting t = 0 in this formula we also obtain, 

dx 
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By equating these two expressions we find that we may relate the observables at two different 
energy scales provided that we modify the coupling. 

f^s dx dx 
R{Q/^, as) = R{Qo/l^, as) subject to ^ = + 

The constraint can itself be re-cast in the form of a difi^erential equation for the coupling, 

Q^^0^ = /3ids) with as = as. (1.9) 

Thus the strong coupling as is a function of the energy scale at which it is evaluated and runs 

according to the function (3{as) which can be calculated from the diagrams in Figure 1.2. 

Such a calculation yields the result, 

^, , ( l l i V - 2 n i . ) 2 

= -Poal + ..., (1.10) 

where (. . .) represents the terms omitted due to working only at one-loop order. The expres­

sion in 1.10 represents the crucial conclusion. In QCD with Uf < 17 flavours of light quark, 

the coupling decreases as the energy scale is increased. This is known as asymptotic freedom 

and has many consequences for experimental observation which will be discussed further in 

chapter 2. This behaviour is in stark contrast to QED, where the coupling becomes weak at 

high energies (corresponding to P{a) = ^ o;̂  -1- . . . ) . 

0:5 from Experiment 

In theory then, it should be possible to make a number of experimental observations at diff'er-

ent energy scales Q and thus extract measurements of as{Q) over a broad range of Q. Such 

measurements could then be compared with the theoretical prediction of equation (1.9), to 

confirm that the coupling does indeed run as we expect. At leading order in the perturbative 

expansion, it is simple to solve (1.9) with equation (1.10) to obtain, 

=, , " f ' l (1.11) 
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Since we know that the coupling diverges as we decrease the energy scale, it is convenient 
to introduce a parameter A equal to this scale, near which perturbation theory becomes 
unreliable. This enables us to write an alternative form for the running, 

/ ?o log( f j 

Although these two forms of the running are equivalent (simply different boundary conditions 

for the differential equation 1.9), use of each varies from application to application. As a 

test of the strong coupling, the use of A is often disfavoured. This parameter has a definition 

which changes order-by-order in perturbation theory, takes different values as one changes 

the number of quark flavours and also has the unphysical interpretation of being the scale 

at which the coupling diverges. For these reasons, it has become conventional to instead 

convert all measurements of as{Q) into a value at Q = Mz by running the coupling to this 

scale. This supposedly provides a more physical observable than A. By choosing as{Mz) we 

are sufficiently far away from quark thresholds (and hence non-zero mass effects) and also 

close to the asymptotic region where perturbation theory should apply {as ~ 0.1). Beyond 

these theoretical considerations, we can also make very accurate measurements due to the 

very high statistics at LEP on the Z-pole. 

A recent compilation of data on measurement of the strong coupling (at varying values of 

Q) is shown in Figure 1.3. Despite encompassing a wide range of energy scales, from deeply 

inelastic lepton-nucleon scattering at Q = 1.6 GeV up to e+e" annihilation at Q = 133 GeV, 

all extracted values are consistent and provide a world average of [4], 

^ ^ ( M ^ ) = 0.118 ±0.004. (1.12) 

1.4 Scale Choice and Uncertainty 

In the discussion of the running of the strong coupling above - and in all the determinations 

mentioned so far - we have assumed that the argument Q in asiQ) is the experimental energy 
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DIS [Bjorken sum rule] 
DIS [GLS sum ru le ] 

T [ R h n d ] 

QQ [1P,2S-1S] 
ppn-y+X 
D I S [ l y ] 

QQ [ I P - I S ] 
D I S [ M ] 

00 [decay] 
e e [shapes, Q=10] 
p ^ b b f X 
D I S [ je ts] 
e'e" [cThad] 
e*e [shapes, Q=35] 
e*e~ [shapes, 0=58] 
e^e [shapes, resum] 
pp-W+jels •̂ 
e*e [ f r agmen ta t i on ] 
Z° [r->hadrons] 
Z° [shapes] 
Z° [shapes, resum] 
e e [shapes, resum] 

1 1 1 ! I I I . ' M I I 

0.10 0.12 0.14 
«s(Mz) 

Figure 1.3: ]\4easurements of as{Mz) in the MS scheme, extracted from experiments at 
energy scales in the range 1.6 - 133 GeV. The figure is reproduced from reference [4 . 
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scale of the process. This choice is normallj' referred to as the physical scale. It is usuallj' 
motivated by naturalness arguments and the fact that if we choose a scale fj. far from it then 
equation 1.11 introduces large logarithms of the form \og{fj,/Q). When comparing values of 
as{Mz) extracted in this way from the same observable at leading and next-to-leading order, 
i t is clear that there will be some discrepancy. The lowest order determination requires a 
larger (smaller) value of as if the NLO coefficent is positive (negative). In order to try to 
assess the effect of higher order perturbative terms, the scale is often allowed to vary from 
Q/2 to 2Q and this uncertainty dominates all determinations, including the world average 
in 1.12. As more orders of perturbation theory are included, the dependence upon the 
renormalization scale should decrease and thus the determination becomes more accurate. 

1.4.1 The Thrust Distribution 

As an example, consider the 3-jet like observable thrust (T), which is defined b}', 

T = m a x - — — — , (1.13) 
Ek\Ph\ 

with the sum running over all particles in the event. Thrust describes the spread of jets 

within an event, such that T = 1 for events with two back-to-back particles and T = 1/2 

for completely spherical events. Since T is fully inclusive, the averaging means that it is free 

of the large kinematical logarithms which afflict distributions in jet observables close to the 

two-jet region. 

Since three jet production requires gluon emission from a quark, it is usual to consider 

the variable < 1 — T >, whose perturbative expansion begins with one factor of 0:5. At 

next-to-leading order < 1 — T >, measured at centre-of-mass energy = M | , is given by, 

<1-T>=A 
2TT 

where /?o is given by equation 1.10 and we have written the result as factors multiplying a 

series in as/27r, the strong coupling with a common normalization. These scale-independent 

coefficients have the numerical values A = 2.10 and B = 40.74 for five light quark flavours. 
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To demonstrate the dependence upon the renormalization scale, the leading order and 

next-to-leading order variation of < 1 - T > with ji is shown in Figure 1.4. The curves are 

3.09 

0.03 

D.02 

D.Ol 

Figure 1.4: The dependence of the average value of 1-Thrust, < 1 - T > upon the renor­
malization scale at leading (solid line) and next-to-leading order (dotted). 

shown according to the two-loop running of as, which corresponds to an extra term in the 

/^-function, /5 = -f^oa^ " / ^ i ^ l + • • •> where /?i = (153 - 19nF)/127r2. The value of as at 

Q = Mz is chosen to agree with the central value of the current world average in 1.12. 

I t is clear that the lowest order curve is simply a scaled version of the one-loop running 

of as and thus tends to zero as the renormalization scale grows (asymptotic freedom), whilst 

diverging as —>• 0. In contrast, at next-to-leading order the additional logarithmic term 

dominates for small values of fi and we see a characteristic turn over and negative divergence. 

However, in the region / i = 0.05Mz to [j, - lOMz the curve is relatively flat and thus any 

extraction of the strong coupling using the physical scale in the conventional manner will 

attribute a smaller error to the measurement than at leading order. 

We now discuss two other possible methods of choosing the renormalization scale and 

illustrate them with our example of < 1 — T > . 
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The Principle of Minimal Sensitivity (PMS) 

This method of choosing the scale [5] attempts to reproduce the behaviour of the full per­

turbative series. That is to say, at any given order of perturbation theory we try to choose 

the scale such that the dependence upon /j. is as small as possible. So in our thrust example, 

we impose, 
a < 1 - T > ^ 

where < 1 - T > is given by the NLO expansion in 1.14. Graphically, this corresponds to 

finding the position of the local maximum in Figure 1.4. It is straightforward to carry out 

this diff'erentiation and use the running of 0:5 to determine the scale that this condition picks 

out. Retaining all the hext-to-leading terms (dropping 0(Q; |)) we find that the PMS scale 

^ P M S jg given by, 

M + - fi + 27r.4/3olog ^ = 0 . (1.15) 
TX \ \Mz ) j 

Fastest Apparent Convergence (FAC) 

An alternative method of choosing the scale [6] is to stipulate that all the coefficients beyond 

lowest order va. as vanish. That is to say, at NLO we choose the scale such that the LO 

and NLO predictions coincide, ie. the point where the lines cross in Figure 1.4. We notice 

that this scale appears to be very close to that obtained from the PiVlS requirement above. 

From equation 1.14 it is clear that for the FAC scale we simply require the second term in 

parentheses to vanish. In fact, this is a very similar condition to that for the PIV-IS scale and 

by combining the two statements we find, 
,,PMS 
^ = e-f'-l^^l ^ 0.85. • 

So in general we find that the FAC and PMS scales are very close to one another at next-to-

leading order^, differing by approximately 15%. However, these scales may be very difl^erent 

from the physical scale (depending on the coefficents A and B for each observable), as is the 

case for < 1 - T > . 

^It can be shown that the scales also remain similar at next-to-next-to-leading order [7]. 



CHAPTER 1. A REVIEW OF QCD 17 

1.5 Summary 

By tracing the development of QCD from a quantum field theory through to some important 

consequences of its non-Abelian gauge group, in this chapter we have reviewed some of the 

most important aspects of the theory of quarks and gluons. Although a proper derivation 

of the Feynman rules and their implications is beyond the scope of this thesis, we have 

nevertheless outlined their application and significance. 

We have concentrated, as we shall do throughout the remainder of the thesis, on a 

perturbative solution of QCD in powers of the strong coupling g. An important consequence 

of this is that we must renormalize order-by-order, introducing an extra (artificial) mass scale 

/ i . This leads to a coupling which runs with energy and vanishes in the high-energj' limit 

(a property known as asymptotic freedom). In addition, all our perturbative predictions 

depend upon the scale ^, which we are free to choose as we see fit - although there are a 

number of common prescriptions. 

In the following chapter we will see how we may implement this theory in practice, to 

match our theoretical model with the experimental reality. 



Chapter 2 

Hadrons, Partons and 
Next-to-Leading Order 

2.1 Introduction 

We have seen in the previous chapter how a proper formulation of QCD leads, via the concept 

of renormalization, to the idea of asymptotic freedom. The experimental consequences of 

this result - and the theoretical predictions we may make based on it - will be the subject 

of this chapter. Reconciling this picture of the real world with our theoretical predictions 

involving bare states of just partons - quarks and gluons - is our first goal in section 2.2. 

A key concept in analysing hadronic final states is that of a jet, the properties of which 

we can only fully expose by working in higher orders of perturbation theory. The connection 

between jets and partons beyond lowest order will be the outlined with the simplest example 

in section 2.3. This basic calculation reveals a further source of divergences in QCD -

those caused by vanishing momenta, infrared behaviour. These need to be regulated in some 

manner and section 2.4 describes the method that we will use throughout this thesis, namely 

dimensional regularization. 

The infrared properties of matrix elements are intimately linked to the products of colour 

factors to which they are proportional. In section 2.5 we describe a convenient method 

18 
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of decomposing amplitudes according to their colour factors and illustrate their singular 
behaviour. The numerical combination of terms once the singular pieces have been isolated 
is the topic of section 2.6, where we describe a variety of methods in common use. 

We conclude the chapter with a discussion of further reasons for making predictions 

beyond lowest order (section 2.7) and give an example of a precision measurement that 

benefits from a NLO 4-jet analysis, the determination of the QCD colour factors (section 2.8). 

2.2 Hadrons and Jets 

In an experiment where we observe, for instance, an electron-positron pair annihilating to 

form hadrons, we might imagine that the final state would be difficult - perhaps impossible 

- to characterize. Classifying events containing of the order of 30 hadrons and making 

comparisons with parton level perturbative QCD would then be problematic. 

However, examining a typical event such as that shown in Figure 2.1 shows that this 

is not the case. This end-on view taken from the SLAC-SLD experiment clearly shows 

that the individual hadron tracks are highly collimated, with three areas of the detector 

unpopulated by hadrons. Each cluster of hadrons contains one highly energetic particle, 

with many low energy, soft hadrons radiated very close to it . Thus hadronic events may be 

classfied according to the number of such clusters of energetic particles, which are referred 

to as jets. 

2.2.1 Jet Algorithms 

In order to quantify exactly the meaning of a jet, it is necessary to introduce a jet finding 

measure dij which represents the distance between the two hadrons i and j in an event. 

It is typically scaled by the square of the total energy visible in the final state, producing 

the dimensionless variable = dij/E^^^. Then the outline of a typical algorithm to assign 

hadrons to jets might be: 
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Run 12637, EVENT 6353 
8-JUL-1992 10:14 

Source; Run Data P o l : L 
T r i g g e r : Energy Hadron 
Beam C r o s s i n g 1964415082 

Hi 

Figure 2.1: A typical 3-jet event observed by the SLD experiment at SLAC. This end-on 
view of the detector shows the hadron tracks curved in the magnetic field as they travel from 
the centre to the rings of calorimeters arranged concentrically around the beam. 
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1. Initially label each hadron as a separate jet. 

2. Calculate the quantity yij for each pair of jets i and j. 

3. I f yij is sufficiently small, yij < z/cut for at least one pair then jets i and j should be 

combined into one. 

4. Repeat from step 2 until all jets have yij > ycut-

This skeleton clearly leaves much scope for variation. The choice of the jet-defining 

measure yij and the method of recombination used in step 3 will be discussed shortly. In 

addition to this our picture of an event changes according to how broad we allow a single jet 

to be - the choice of the parameter y^ut- As ycut approaches zero, we allow very narrow jets, 

until eventually all hadrons are identified as separate jets. Conversely, increasing the value 

of ycut produces broader jets with far fewer multi-jet events. 

We now detail some of the most common variants of this clustering algorithm and discuss 

some of the features and merits of each. 

J A D E [8 

This method chooses the measure to be simply, 

2EiEj{l-cos9^J) 
El^ 

in the centre-of-mass frame of the event. Here the hadrons have energies Ei and Ej and 

Oij is the opening angle between their directions. If the particles were massless then the 

energies and momenta could be related so that yij = (p^ + pj)^/£'^ig, the invariant mass of 

the pair. Although particularly simple, we shall see that theoretical predictions based on 

this algorithm suffer from spurious clusterings. 



CHAPTER 2. HADRONS, PARTONS AND NEXT-TO-LEADING ORDER 22 

Durham [9 

An attempt to improve the theoretical properties of the JADE algorithm led to the introduc­

tion of the Durham, or /cx-algorithm. In this variant, the measure is replaced by something 

which more closely resembles the relative transverse momenta of the pair of hadrons, at least 

at small angles, 
2mm{ElE]){l-cose^j) 

El, V I S 

Geneva [10] 

Another possibility to avoid the problems of mis-clustering the hadrons is to use the measure, 

_ 8E,Ej{l -cose.j) 

Since this depends upon the energies of the partons i and j in both the numerator and 

denominator, this can be more prone to measurement error than the two alternatives above 

(which rely on the total energy, which can be more precisely measured). However, it is 

expected that this algorithm is particularly sensitive to the number of light fermion flavours 

and could thus prove an efficient tool to search for new physics effects beyond the Standard 

Model. 

2.2.2 Local Parton-Hadron Duahty 

The crucial observation in connecting theory and experiment is the hypothesis of local 

parton-hadron duality [11]. We have seen that experimentally events tend to be composed 

of a small number of jets of hadrons, with the majority of the energy and momentum being 

carried by a single hadron within each jet. The concept of LPHD extends this further by 

postulating that in fact the quantum numbers and momentum flow of the produced hadrons 

closely follow those of the partons that initiated the jets. If one further supposes that the 

effects of hadronization - the process whereby the quarks and gluons cluster to form hadrons 
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- are small, one should obtain a reasonable agreement between theory and experiment by 
associating one jet with each parton. 

With this assumption, one can now apply the jet algorithms given above both at the 

hadron level and in the theoretical parton calculation (where now E^-^^ = s, the total available 

energy squared). Typically one uses matrix elements where the partons are massless, so 

the measures simplify, but lead also to a further ambiguity in how the partons should be 

combined into jets. 

Recombination - E , EO and P 

Even having chosen a measure, there is still further variation possible in the way in which the 

hadrons are combined into a jet. To examine the differences we shall consider the clustering 

of partons i and j to form a jet k, i -\- j ^ k. 

The simplest choice - the E-scheme - assigns the momentum and energy of the jet k to 

the sum of those of i and j. So E^ = Ei + Ej and Pk= Pi+ Pj- Although this is manifestly 

Lorentz invariant, we see that pi = [pi +PjY = 2pi -pj / 0. This creates a mis-match when 

comparing with matrix elements calculated using massless partons. 

In order to solve this problem, two alternatives have been proposed. The P-scheme 

simply re-assigns the energy of the cluster in order to retain a zero mass, Pk = Pi + Pj and 

Ek = \pk\- However, we see that now we have maintained Lorentz invariance at the cost 

of violating energy conservation. The final choice, the EO-scheme chooses instead to break 

momentum conservation, Ek = Ei-\- Ej with Pk = Ek{pi + •Pj)/\Pi + Pj • 

Experimental results are commonly presented in all these schemes and we must be sure 

to match our theoretical procedure with the hadron level clustering. 
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2.3 Jets and Partons 

In the preceeding section we have argued that, to first approximation, we can identify the 

partons of a matrix element calculation with the observed jets of an experiment, provided 

that we also match the jet definitions used in both analyses. This means that to compute 

an n-jet cross-section at lowest order we must calculate all the tree-level Feynman diagrams 

involving n partons in the final state and then integrate over the region of phase space which 

has Hij > ycut for all pairs of partons i and j . We now wish to examine how this situation 

alters in higher orders of perturbation theory. 

2.3.1 Jets at Next-to-Leading Order 

I t is instructive to consider the case of 2-jet production (in e+e~ annihilation) as a simple 

example to illustrate the generic features of jet calculations beyond leading order. The tree-

Figure 2.2: The lowest order (left) and next-to-leading order (right) Feynman diagrams for 
the production of 2 partons in e+e" annihilation. The momenta of the particles are incoming 
and outgoing for initial and final state particles respectively, whilst the arrows on the electron 
and quark lines represent the direction of fermion flow. 

level and 1-loop diagrams for the production of 2 partons - a quark-antiquark pair - via a 

virtual photon are shown in Figure 2.2, where for simplicity we have taken the intermediate 

particle as a virtual photon (whereas in fact a Z^-hoson also couples to both electrons and 

quarks). The loop diagram is simple to evaluate, yet we find that the result is not finite but 

contains infrared divergences. The solution to this problem lies in the transition from partons 
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to jets. We know that if two partons have a small invariant mass then (in the JADE scheme) 
they will cluster to form a jet, with one of them appearing to be unresolved. So our 2-jet NLO 
result should also contain an infrared singular piece representing a 3 parton configuration 
with one unresolved particle. The two diagrams for 3 parton production, e+e~ qqg are 
shown in Figure 2.3 and are easily evaluated to give the kinematic dependence, 

3 parton ~ — + — + „ „ , ' 
\^Q9 '^99 ^Qg^qg / 

in terms of the Mandelstam invariants Sij = {pi +PjY- From this explicit form, we can see 

Figure 2.3: The two lowest order Feynman diagrams for three parton production, e"*"e 
qqg. The gluon simply couples to the quark-antiquark line either side of the photon. 

that there is clearly a divergence in the limit where one parton is unresolved, say Sqg —> 0. 

In fact, there are two types of unresolved infrared singularity: 

• either Sqg —>• 0 or Sqg —> 0, in which case the gluon is collinear with the quark (anti-

quark); 

• or, both of these invariants vanish simultaneously and the gluon is soft, Eg ~ 0. 

If we can find a suitable way of isolating the singularities in the 2 parton (virtual) and 3 

parton (real emission) contributions, we will find that the divergences exactly cancel, yielding 

a finite result. This is a specific case of the cancellation theorems of Bloch and Nordsieck [12 

and Kinoshita, Lee and Nauenberg [13], which guarantee that this situation is extended to 

all orders in perturbation theory and for any number of final state particles. 
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2.4 Dimensional Regularization 

We first consider how we may isolate the singularities in the matrix elements. The crucial 

point to note is that in the virtual (loop) terms, the divergences are only present because 

we are working in exactly four dimensions. 

Dimensional regularization [14] is the name given to any scheme used to regulate diver­

gences by continuing away from 4 and into D dimensions. This should be an intermediate 

device only and at the end of our calculation we will want to take the limit —>• 4. As op­

posed to alternative regularization prescriptions (such as imbuing particles with a fictitious 

mass), this procedure respects unitarity and preserves gauge invariance. 

Originally this idea was proposed in order to handle the ultraviolet behaviour of loop 

integrals, with the loop momenta being continued to D < A dimensions. In fact by simply 

continuing to D = 4 — 2e dimensions without the constraint of e > 0 we can also regulate 

infrared divergences. 

However, in fact we may choose a number of schemes since, in addition to continuing the 

loop momenta into D dimensions, we may specify the dimensionality of both the external 

particle momenta and the polarizations (external and internal). The original method of 

t 'Hooft and Veltman was to leave all quantities in four dimensions apart from the internal 

gluon polarizations which were taken as D dimensional. 

In practice other choices may be more useful. Although the quark helicities are insen­

sitive to the choice of dimensions, the dimensionality can have important consequences for 

the gluon polarization. For supersymmetric calculations it is imperative to use the same 

dimension for the polarizations of both quarks and gluons, in order to preserve the Ward 

identities of the theory. So-called 'dimensional reduction' was introduced in order to fulfil 

this condition. Four common schemes are illustrated in Figure 2.4. In this thesis, we shall 

most often use conventional dimensional regularization, the popular variant of t'Hooft and 

Veltman's original scheme. 
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The practical difference between the schemes rests in distinguishing the origin of metric 

tensors gf^" that appear in one-loop amplitudes. Such tensors arising directly from loop 

integrals with two or more tensor numerators are D dimensional, whilst those resulting from 

spin indices in the Feynman rules depend upon the corresponding polarization dimensions. 

ijjjj^ d 3 ,6̂  

Conventional dimensional regularization 

jjjjj^ d 

t'Hooft-Veltman regularization 

4 

4 
n 

Original dimensional reduction Modem dimensional reduction 

1̂  

Figure 2.4: A diagrammatic representation of four common variants of dimensional regu­
larization. The number of dimensions used for the polarization of gluons is shown within 
the gluon loop (internal gluons) and adjacent to the emitted gluon (external gluons). The 
circled number shows the dimensionality of the momenta of external particles. Internal 
particle momenta are continued into D dimensions, whilst all quark polarizations are in 4 
dimensions. 

2.5 Colour Structure of QCD Amplitudes 

So far we have demonstrated the types of infrared divergences that may occur in next-to-

leading order jet calculations and the means by which they may be exposed. In this section 

we will discuss a decomposition of the matrix elements - according to their colour factors 
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- which makes the singularities simple to isolate. To this end, we make a division of the 

diagrams involved in a given QCD process into a piece representing the colour structure and a 

purely kinematical factor. Having done this, it is possible to group together diagrams which 

have the same colour structure, which has several advantages. The remaining colourless 

subamplitudes represent, for example, colour ordered gluon emission off a quark line. Such 

amplitudes have nice factorization properties when two partons become coUinear or a gluon 

soft. 

As an example, consider the matrix elements for the tree-level process qq gg. Labelling 

the colours of the quark (antiquark) by i ( j ) and gluons a, b, the relevant diagrams and their 

associated colour factors are shown in Figure 2.5. The total amplitude M is simply the sum 

of these three diagrams. 

prrrrrrrp a 

rrrrrrro b 

rrrrrrrp b 

•rrrrrrrp a 

cC a 

Figure 2.5: The tree-level diagrams for the process qq -> gg, each divided into a colour factor 
multiplying a purely kinematical piece Mi, z = 1, 2 or 3. 

By using the identity [T",T''] = ifabcj^c ^^^^^ ĵ̂ g diagram involving the triple-

gluon vertex can be written as a combination of terms with the colour structure of the first 

two. In this way we find, 

M = {T''T%{Mi + Ms) + {T'T%iM2 - M,). (2.1) 

In fact, this colour structure is true for any process where these are the only coloured 

particles. We may add initial or final state colour neutral particles, or switch these partons 

between the initial and final states, whilst still retaining the same decomposition. If we do 
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so, the kinematical pieces Mi simply contain more diagrams corresponding to the addition 
of the colourless particle(s) in all possible positions in Figure 2.5. 

2.5.1 Colour Algebra 

Having made a decomposition of an amplitude into kinematical pieces multiplying factors 

of generators and structure constants, we wish to construct squared matrix elements. By 

this we mean either forming the product MM^ (all that is necessary at tree-level) or an 

interference MaM.1. In this case we need a set of rules for evaluating products of colour 

factors. As well as employing the identities for the eigenvalues of the Casimirs of the gauge 

group, we shall also need the Fierz identity. This identity also provides a useful pictorial 

rule which can often be quickly applied in simple cases or as a cross-check, eliminating the 

need to resort to tedious algebra. 

2.5.2 Casimir Colour Charges 

Fundamental properties of any gauge group are the eigenvalues of the Casimir operators. At 

this point, we shall simply introduce the eigenvalue equations and defer a discussion of their 

experimental determination and relevance until section 2.8. 

The three quadratic Casimirs of SU{N) are given in Figure 2.6, together with the colour 

diagrams by which they can be represented. These diagrams lead to the interpretation of 

the Casimir factors as colour charges, by analogy with the electric charge. For the gauge 

group SU{N) we find the following values for the colour factors CA and Cp, 

N^ - 1 

^^ = ''' ^- = ^ -
whilst TR is simply a normalization factor which we choose to be TR = 1/2. 
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CF (T^) ik ( ^ k j = CF 5ij 

ab 

Figure 2.6: The definitions of the Casimir factors (colour charges) in the gauge group SU{N). 
Repeated indices are summed over the iV^ — 1 (N) values of a, c, d {i, j, k) of the adjoint 
(fundamental) representation. 

2.5.3 The Fierz Identity 

Let us consider an element of SU{N) in the adjoint representation, 

M,j = a5,, + j:p^T^^, (2 .2) 

where a runs over the A'' generators of SU{N). Since the generators are traceless, we may 

determine a by taking the trace of this equation, yielding t r M = aN. Similarly, we fix the 

coefficients P'^ by first multiplying by T** and then taking the trace, 

t r ( M r ' ' ) = 5 ] /3" t r ( r" r ' ' ) = ;^/?"TH(5'" ' = TRP'', 
a a 

where we have used the Casimir definitions of section 2.5.2 to introduce TR. SO the decom­

position in equation 2.2 above becomes, 

Mrj = ^ ( t r M ) ( 5 , , + Y : ^ t r ( M r ' ^ ) T ; ^ . 
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Alternatively, writing out the contracted indices explicitly we obtain. 

Since this equality is true for arbitrary Mij we now choose to write it in the form, 

/ 1 a a\ 

V -'̂  a J 

so that it is clear that we must have, 

(2.3) 

This equality is known as the Fierz identity and can be used to express the colour flow 

along a gluon between two quark fines (T^^jT^i) as simpler quark colour flows (Su,...). This 

is illustrated in Figure 2.7. 

1/N 

Figure 2.7: The pictorial version of the Fierz identity of equation 2.3. 

2.5.4 Factorization of Matrix Elements 

Returning to our example of two gluon production from a quark-antiquark pair, we now wish 

to illustrate the singular behaviour of the matrix elements. To do so, i t is easy to use the 

Fierz identity described above to calculate the squared matrix elements from equation 2.1, 

Here we have written only the leading colour contribution and dropped the sub-leading 

term of order l/N"^. Since each of the two terms in equation 2.4 represents a colourless 
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subamplitude where the gluons a and b are emitted in an ordered way from the quarks, it is 

often convenient to write these as. 

\Mi + M , f = S{Q;a,b;Q) \M2-M3f= S{Q;b,a;Q) 

This notation then easily extends to multiple gluon production, where the ordered sub-

amplitudes have particularly simple singular limits. For example, in the limit where gluon 

u is soft, we have the QED-like factorisation into an eikonal factor multiplied by the colour 

ordered amplitude with gluon u removed, but the ordering of the hard gluons preserved. So 

for an amplitude involving gluons 1 . . . n, 

2 2 

S{Q; l,...,a,u,b,...,n;Q) Saub{Sab, Sau, Sub) S{Q;l,... ,a,b,... ,n;Q) , (2.5) 

with the eikonal factor given by, 
4Sa6 (2.6) 

Similarly, in the limit where two particles become coUinear, the sub-amplitudes factorise. For 

example, if gluons a and b become coUinear and form gluon c, then only colour connected 

gluons give a singular contribution. We shall give a full discussion of colour connectedness 
2 

in chapter 7, but for now it suffices to observe that in our simple example of S{Q; a, b; Q) , 

gluon a is colour connected to Q and gluon b because the contributing diagrams contain 

propagators of SQa and Sab, whilst Q is not connected to 6. For example, 

S{Q; l,...,a,b,...,n;Q) -> Pgg^giz, Sab) S{Q: 1,... ,c,... ,n;Q) (2.7) 

For particles that are not colour connected, there is no singular contribution as SQ;, 0, 

and, when integrated over the small region of phase space where the coUinear approximation 

is valid, give a negligible contribution to the cross section. Here z is the fraction of the 

momentum carried by one of the gluons and, after integrating over the azimuthal angle of 

the plane containing the collinear particles with respect to the rest of the hard process, the 

collinear splitting function Pgg-^g is given by. 

99^9 {Z, S) = -Pgg^giz). (2.8) 
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The function Pgg^g{z) is one of the Altarelli-Parisi splitting kernels [15] (with colour factors 
removed), which are given by, 

0 + z 2 - e ( l - z ) 2 \ 
Pqg^qi^) — 1 - Z 

'z' + jl-z^-e' 
1 - e 

P (z) - r i ± f l ± l l ^ ' l (9 9) Pgg^g{^) - _ ^) j> l - ^ i 

with the symmetry relation, Pgq-,q{z) = Pqg-^q{l - z). This factorization of the matrix ele­

ments is universal and process independent and occurs when any single particle is unresolved. 

2.6 Cancellation of Singularities 

By using the technique of dimensional regularization as discussed in a section 2.4, infrared 

divergences appear as poles in e. For the calculation of an n-jet cross-section at next-

to-leading order, the phase space integration of the n -\- I parton terms leads to 1/e poles 

corresponding to collinear singularities and double 1/ê  divergences from soft gluon emission. 

These must be cancelled against the poles that are extracted from the D-dimensional one-

loop integrations in the virtual contribution. 

The differences between the most widely-used methods for cancellation of infrared diver­

gences are best illustrated by a simple one-dimensional example. The original formulation 

of Kunszt and Soper [16] considers the toy integral, 

X = \\ml^j^^~x'M{x)--^M{Q)Y (2.10) 

In this equation, M{x) represents the n -h 1 parton matrix elements, which are integrated 

over the extra phase space relative to the n-parton contribution M{0). x is an invariant 

controlling the collapsing of the n + 1 parton configuration into an n jet state: as x ^ 0 two 

partons become collinear or a single gluon soft. The explicit 1/e singularity in the virtual 

term is typical of that found in dimensional regularization, as is the regularizing (as a; —> 0) 
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.x'̂  term under the integral. Note that in this example we have neglected any additional 
weight corresponding to the n jet observable being measured. 

I . 

We now consider in turn how each of the common methods applies to our test integral 

• Subtraction. 

This is the method originally used by Ellis, Ross and Terrano (ERT) to calculate 

NLO corrections to 3-jet like quantities in e+e" annihilation [17]. The technique is to 

explicitly add and subtract a divergent term such that the new n -I-1 parton integral 

is manifestly finite, 

X = i i n i | ^ ' ^ a ; ' = ( ^ > ( ( x ) - > f ( 0 ) ) - f A ^ ( 0 ) J ^ ' ^ a ; ^ - ^ A 4 ( 0 ) 

= ^ (^M{x) - M{0)y (2.11) 

Here we have used the dimensional regularization convention of 0*̂  0 as e —>• 0 in 

evaluating the integral JQ ^ = [x^]l ~ V^- Although this procedure appears to 

be straightforward, the difficulty lies in extracting the singularity from the analogue of 

!Q ~ x^. Indeed, this integration must be carried out separately for every process under 

consideration. However, in contrast to some of the alternative techniques, the subtrac­

tion method introduces only one extra theoretical cutoff^ and requires approximation 

of neither the matrix elements nor the phase-space. 

Recently various implementations of the subtraction method have been introduced in 

order to describe general processes in a more universal manner [18, 19 . 

• Slicing. 

The severe process-dependence of the original cancellation procedure developed by 

ERT led to the proposal of the universal phase-space slicing method [20, 21]. The 

price to be paid for this extra portability is the introduction of an artificial theoretical 

In practice, we cannot integrate numerically from the lower limit of zero and instead we replace this 
with a small cut-off parameter 5. 
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parameter((5) which controls the approximations made in this approach. In terms of 
our example integral, the goal is to choose 5 <C 1 such that M{x) M{0) is a good 
approximation for x < 5. Then we can isolate the singularity of the integral by making 
a division into two regions, 

dx , . ,, , . dx 

e 

/ —M{x) +A^(0)log^. (2.12) 

To arrive at the final line we employ the expansion = e^^°^^ = 1 -h elog5 - f . . . . 

The universal approximations of the phase-space and matrix elements in soft and 

collinear limits lend this method its process-independence. The arbitrary parameter 

6 should clearly not affect the final result, but the implicit cancellation of (possibly 

large) logarithms of 5 in 2.12 can lead to numerical instabilities. Although we would 

like to minimize this problem by taking S as large as possible, we are constrained by 

the goodness of approximation condition 6 <^1. 

Hybrid subtraction. 

The final method draws elements from each of the above techniques, where again the 

driving inspiration is the universality of the approach. Instead of the single scale(5) 

used so far, we introduce two scales, 6 and A. In the region 0 < x < 5, we adopt the 

slicing procedure, while in the range 5 < x < A we add and subtract an analytically 

integrable set of universal terms, E{x), to eq. (2.12), 

J - —Mix) + M{0) \ogiS) - —E{x) + —E{x), (2.13) 
JS X J5 X Js X 

which on rearrangement yields, 

X - / ' — (Mix) - E{x)e{A - x)) -h r —E{x) +MiO) log{5). (2.14) 
J 6 X J 6 X 

Because we explicitly add and subtract the same quantity, there can be no dependence 

on A which can therefore be taken to be large. However, the slicing approximation 
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requires 5 —>• 0. For this approach to be useful, two conditions must be satisfied. 
First, the second term in eq. (2.14) must be evaluated analytically without making 
any approximation in the phase space and should produce a term — A^(0) log(5) from 
the lower boundary that explicitly cancels the third (slicing) term. This allows the 
limit 5 0 to he taken (inasmuch as that can be achieved numerically). Second, 
M{x) ^ E{x) as X -> 0 and more usefully E{x) is smooth and as close to M{x) as 
possible over the whole range of a; < A, so that the first term in eq. (2.14) can be safely 
evaluated numerically. This is the technique that we shall adopt later in the thesis, 
when we return to this discussion in the context of the process e'^e~ —> 4 jets. 

2.7 Motivation for NLO and Beyond 

Having discussed the various techniques that we may employ to calculate next-to-leading 

order cross-sections (and related observables) we now turn to the benefits that performing 

such a task may bring. We also consider the further advantages of investigating even higher 

order terms in the perturbative expansion. 

Much of our understanding of strong interaction physics can be gleaned from comparison 

of experimental data with a lowest order perturbative calculation. Qualitatively, this can be 

understood by considering a simple perturbative expansion for an observable R in powers of 

R{as{Q)) = Aas{Q) + Bal{Q) + .... 

Typically we might choose the physical scale Q ~ Mz at LEP, where we have 0:5 ~ 0.1. 

With the naive supposition of roughly equal coefficents A, B,..., a simple geometrical series 

sum shows that the true answer differs from the lowest order calculation by a mere 10%. Of 

course, in reality there is no reason to suggest that the coefficients truly behave in this way. 

Even if this were so, there are a number of reasons why we may still be interested in a higher 

order prediction: 

• Although the shape of a distribution may be successfully described, the normalization 
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is uncertain. We are free to choose the scale for as in any fashion (see chapter 1), 
typically so as to best fit the experimental data. Apart from the 'physical scale' 
argument, any other choice relies on a NLO calculation. 

• In QCD, higher orders include more quantum mechanical modelling of soft gluon ra­

diation within the event. Therefore they give a more accurate picture of such qualities 

as jet shape and structure. 

• Increased theoretical precision means that we can match experimental errors and thus 

together improve our understanding of and trust in QCD as the correct theory for the 

strong interaction. For instance, measurement of the colour factors (group weights) 

comfirms that the relevant symmetry group is SU(3) (see section 2.8). 

• We need a good knowledge of the expectations of perturbative QCD, not only to 

search for new physics beyond the SM, but also to observe new non-perturbative effects. 

Expected features such as power corrections, which are invisible in perturbation theory, 

may be hard to distinguish from genuine possible higher-order contributions. A better 

knowledge of the perturbative expansion can only help to solve this ambiguity. 

In practice, computations beyond NLO are unavailable for many observables. For processes 

involving more than 5 partons or 4 partons and a vector boson, even the NLO contribution is 

currently unknown. In this thesis we shall predominantly concentrate on the NLO corrections 

to processes involving 4 partons and a vector boson - in particular as applied to e+e" 4 jets 

- with some attention paid to extending the methods that have been developed at NLO to 

next-to-next-to-leading order (NNLO). 

2.8 Determination of the QCD Colour Factors 

A measurement of the colour factors of QCD truly tests the dynamics of the strong inter­

action. As the eigenvalues of the Casimir operators of the underlying gauge group of the 

theory, they can test the SU{3) symmetry proposed for QCD. We may thus distinguish 
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between different gauge groups and we are sensitive to new particles that may be present in 
more exotic theories. 

Four-jet observables are particularly well suited to a study of the colour factors. Although 

both 2- and 3-jet studies have been made (see for example Ref. [22]), the essential non-Abelian 

nature of QCD only manifests itself at tree-level for the first time when considering 4 jet 

production. Despite the greater fraction of 2- and 3-jet events, here the triple gluon vertex 

does not appear at all in the theoretical calculation, or only appears at next-to-leading order 

and is thus suppressed by an extra factor of as- In addition we also become sensitive to 

particles such as light gluinos (supersymmetric fermionic partners of the gluons, with a mass 

~ 1 GeV), favoured by some theorists (for a discussion of some of the implications of such 

particles see Ref. [23]). The tree-level diagrams representing 4 jet production with gluinos 

simply mimic extra quark flavours - with the gluinos coupling to a gluon emitted from a 

quark-antiquark pair - and correspond to the shift np ^ rip -\- 3. 

In this application, i t is convenient to include a factor of Cp for each occurence of the 

strong coupling 0:5 in the expression for the 4-jet observable being studied. We can then 

arrange the remainder of the expression as a collection of kinematic factors multiplying ratios 

of the group Casimirs. Thus at leading order we have, 

where CTQ is the 2-jet cross-section and A, B and C are the kinematic weights from the 

Feynman diagrams for the two contributing processes e+e" —>• qqgg and e^e~ —> qqQQ. O 

represents any 4-jet observable, typically chosen so as to maximize differences between A, B 

and C. Having chosen a selection of suitable observables, it is simple to fit the experimental 

data to the theoretical prediction in the form (2.15) and thus extract the colour ratios CA/CP 

and TR/CF. A fit of this fashion is performed in [24], yielding the result, 

^ = 2.11 ±0 .32 , ^ = 0.40 ±0.17 , 
Cp Cp 

to be compared with the SU(3) prediction of CA/CP = 9/4 and TR/CP = 3/8. This 

determination and the predicted values of the ratios for a selection of symmetry groups are 

shown in Figure 2.8. 
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9 Abelian gluon model, U(1)-
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Figure 2.8: A determination of the QCD colour factors by the OPAL collaboration, together 
with the actual values corresponding to some common gauge groups. The figure is taken 
from reference [24 . 
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It can be seen that this measurement rules out some of the (more exotic) possible gauge 
groups, but clearly SU(3) is not singled out by this analysis alone. By performing a next-
to-leading order analysis of the same data, the confidence-level contours corresponding to 
those of Figure 2.8 would be dramatically shrunk [25 . 

2.9 Summary 

In this chapter we have seen how the concept of local parton-hadron duality (LPHD) may 

be employed to make hadron level predictions from parton level theoretical calculations. 

We have demonstrated that to make sense of the definition of a jet beyond the lowest order 

in perturbation theory, we must combine matrix elements from a number of different sources 

in order to render the cross-section finite. At next-to-leading order, this involves calculating 

the real and virtual matrix elements (sections 2.3 and 2.5) in a suitable renormalization 

scheme (section 2.4) and then combining them suitably during phase-space integration (sec­

tion 2.6). A next-to-leading order prediction can then be a very useful tool for improving 

our understanding of QCD (sections 2.7 and 2.8). 

In the following chapters, we shall demonstrate how all these techniques may be applied 

to the calculation of the process e+e" 4 jets at next-to-leading order. 



C h a p t e r 3 

O n e - L o o p I n t e g r a l s 

3.1 Introduction 

As has been outlined in previous chapters, the calculation of higher orders in perturbation 

theory is a necessary ingredient in our search for a more complete description of the physical 

world. At next-to-leading order, one of the hurdles which we must overcome is the evaluation 

of one-loop integrals which arise directly from a Feynman diagram approach. The matrix 

elements for a given process at one-loop order will in general contain many of these integrals, 

in different configurations corresponding to the diagrams involved. 

Often these integrals need to be performed in an arbitrary dimension in order to isolate 

any infrared and ultraviolet divergences that may be present [14]. The basic one-loop tensor 

integral in D dimensions for n external particles scattering with outgoing momenta pi. n 

internal propagators with masses Mi and m loop momenta in the numerator can be written, 

• • • ' J J 7̂̂ /̂2 (̂ 2 _ + q,)^ - M | ) •••{{£ + q^-iY - M ^ ) ' 

where m = 1 , . . . , n and, 

<zf = E P ^ 90̂  = 9̂  = 0. (3.1) 

This is represented diagrammatically in Fig. 3.1. 

41 
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Figure 3.1: The generic n-point one-loop integral. The arrows indicate the direction of the 
flow of momentum, which is conserved at each vertex on using the relations (3.1). The mass 
of each internal propagator is shown in parentheses. 

The scalar integral is denoted I ^ [ l ] , with the tensor integrals I^f^'^' .. .£^'^] arising from 

both traces over spin lines involving vertex factors 7'' and propagators in the Feynman 

rules. In the standard approach to such integrals [26] one utilises the fact that the tensor 

structure must be carried by the external momenta or the metric tensor g'^". For example, 

the simplest non-trivial tensor integral in D dimensions has a single loop momentum i^^. I t 

reads, 

I n r i ^ E ^ ^ P i ' (3-2) 
i=i 

using momentum conservation to eliminate one of the momenta. It is the calculation of 

the formfactors Cj that embodies the difficulty of these integrals. The more traditional 

methods, together with subsequent improvements and innovations will be outlined briefly 

in section 3.2. It will be argued there that all these methods suffer from the presence of 

'fake' singularities. That is, the integrals will appear to have poles in certain kinematical 

variables, whose residues are in fact zero. Apart from reducing the chances of numerical 

instability, elimination of these apparent singularities provides a natural and compact method 

of evaluating the tensor integrals and reduces the size of the final matrix element expressions. 
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Although the derived functions will ultimately be used for the specific calulation of the 
process 7* —>• 4 jets, this chapter addresses the question of how such finite functions might 
be generated for arbitrary processes. Closely following the notation and approach of Bern, 
Kosower and Dixon relationships will be derived between integrals with polynomials of Feyn­
man parameters in the numerators as well as between integrals with fewer parameters but 
in higher dimensions. The basic definitions and notations are introduced in section 3.3 and 
the recursive relations for integrals with up to four Feynman parameters in the numerator 
are presented along with the dimension shifting relation of [27, 28]. These expressions are 
valid for arbitrary internal and external masses and for general kinematics. However, mak­
ing sense of these relations with respect to the singular limit depends on the actual integral 
itself; i.e. on n and the specific values of the kinematic variables. The remaining sections 
describe a series of explicit realisations of the three, four and five point integrals relevant for 
the one-loop corrections for the decay of a virtual gauge boson into four massless partons, 
which will be the topic of chapter 4. 

3.2 Tensor Integral Reduction 

Recall the formfactor decomposition of the simplest tensor integral (3.2), 

I n n ^ E ^ ^ P ^ (3-3) 

In the original form of Passarino-Veltman reduction, the formfactors Cj are determined by 

multiplying both sides by all possible momenta and rewriting i.pi as a difference of 

propagator factors. In other words, 

^•P^ = \ W + - Ml,) - ((£ + q,.,f - ) + {Ml, - M f + qU " 

which thus reduces the tensor integral to a sum of scalar integrals, 

E c,p,.p^ = \ -.I„^if [1] + {Ml, -M^ + qU - ql)m 
3=1 ^ 
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Here, I^l^i^[l] represents the "pinched" loop integral with the (n— 1) propagators remaining 
after the ith propagator factor has cancelled. 

The formfactors are then obtained by algebraically solving the system of (n-1) equations. 

This introduces the (n — 1) x (n — 1) Gram determinant, 

(where i and j run over the (n — 1) independent momenta), into the denominator. Each 

formfactor is a sum over the scalar integrals present in the problem multiplied by a kinematic 

coefficient that may be singular at the boundary of phase space where the Gram determinant 

vanishes. Typically, 

where the sum runs over the n possible pinchings and where a and P^n are coefficients 

which are functions of the kinematic variables. Since, in many cases, the formfactors Cj are 

actually finite in the limit A„ —> 0, there are large cancellations and there may be problems 

of numerical stability. 

The basic approach has been modified in a variety of ways, including the introduction of 

a system of (n — 1) reciprocal vectors (and the associated second rank tensor w^" playing 

the role of g^"^) to carry the tensor structure [29, 30, 31] where, 

— ^ ^Pl Pn/^n, 

SO that, 

Vi.pj = 6ij. 

This simplifies the identification of the formfactor coefficients, but does not eliminate the 

Gram determinants. In fact, in both approaches, the number of Gram determinants gener­

ated is equal to the number of loop momenta in the numerator of the original integral. 

A different approach has been suggested by Davydychev [32], who has identified the 

formfactors directly as loop integrals in differing numbers of dimensions and with the loop 

propagator factors raised to different powers. Tarasov [33] has obtained recursion relations for 



CHAPTER 3. ONE-LOOP INTEGRALS 45 

one-loop integrals of this type, so that a complete reduction is possible. HoweA^er, in relating 
the formfactor loop integrals to ordinary scalar loop integrals in 4 (or close to 4) dimensions, 
the Gram determinant once again appears in the denominator as in equation (3.4). 

Finally, Bern, Kosower and Dixon have used the Feynman parameter space formulation 

for loop integrals to derive explicit results for the scalar integrals including the scalar pen­

tagon [27, 28]. The formfactors of the momentum space decomposition are directly related 

to Feynman parameter integrals with one or more Feynman parameters in the numerator. 

One can see this by introducing the auxiliary momentum V^, 

p'^ = - x : ^ m ? r , (3.5) 

so that after integrating out the loop momentum, the tensor integral for a single loop mo­

mentum in the numerator can be expressed in terms of the external momenta (/f (see also 

Appendix A) , 

I ^ r ] ^ I n [ ^ 1 = -EI^[^^+lk'^• 

Here, I^[xi] represents the scalar integral with a single factor of Xi in the numerator. By 

comparing with equation (3.2), we see that, 

n 

Cj — — ^ I„ Xi . 

DilTerentiating with respect to the external kinematic variables, yields relations between 

integrals with polynomials of Feynman parameters in the numerator and the usual scalar 

integrals. Once again, the Gram determinant appears in the denominator, and the final result 

for the formfactor Cj combines n-point integrals with the pinched (n — l)-point integrals as 

in equation (3.4). 

The presence of the Gram determinant is, in some ways, no great surprise. In the 

limit A„ —>• 0, the {n — 1) momenta no longer span an (n — l)-dimensional space, the 

(n — 1) equations of the Passarino-Veltman approach are no longer independent and the 

decomposition is invalid. Stuart [34] has made modifications to the basic approach to account 

for this, the main observation being that for A„ = 0, the scalar n-point integral can be written 
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as a sum of scalar (n — l)-point integrals. As a consequence, there are large cancellations 
between scalar integrals with differing numbers of external legs in the kinematic limit of 
vanishing Gram determinants. For loop corrections to processes such as quarkonium decay, 
where the two heavy quarks are considered to travel collinearly and share the quarkonium 
momentum, one can eliminate the Gram determinant singularities completely using the 
method of Stuart [34 . 

However, for more general scattering processes where the collinear limit may be ap­

proached, but is not exact, numerical problems as A„ —̂  0 may remain. Furthermore, we 

might imagine a method which clearly retains the simple structure of the A„ = 0 case as 

this limit is smoothly approached. 

Therefore, in this chapter the scalar integrals will be combined into functions that are 

well behaved in the A„ —>• 0 limit. The formfactors will be written as, 

- ( m + t P'Jn^T\^]] + finite, 
\ rn=l J 

where "finite" represents terms that are manifestly well behaved as A„ —>• 0, and the group­

ing (• • •) vanishes with A„. Such groupings combine a variety of dilogarithms, logarithms 

and constants together in a non-trivial way. In fact, for higher rank tensor integrals, with 

higher powers of Gram determinants in the denominator, it becomes even more desirable 

to organise the scalar integrals in this way. It is possible to construct these well behaved 

groupings by brute force, making a Taylor expansion of the scalar integrals in the appro­

priate limit. However, the functions presented in this chapter are generated systematically 

and naturally arise by considering the scalar integral in Z) 4- 2 or higher dimensions^ and/or 

by differentiating the scalar integrals with respect to the external kinematic variables. The 

approach taken here is therefore to re-express the formfactor coefficients in terms of functions 

that are finite as A„ — 0 , explicitly cancelling off factors of the determinant where possi­

ble. The one-loop matrix elements for physical processes will^then depend on these finite 

combinations, which can themselves be expanded as a Taylor series to obtain the required 

^It will not prove necessary to explicitly compute the scalar integrals in higher dimensions, since they 
will be obtained recursively from the known scalar integrals in D = 4 - 2e dimensions. 
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numerical precision. An additional improvement is that the physical size of the resulting 
expression is significantly reduced because the scalar integrals have been combined to form 
new, more natural functions. 

Of course, one-loop amplitudes may also contain spurious singularities other than those 

directly arising from Gram determinants. Such singularities may occur as one or more of 

the external legs becomes lightlike or as two external momenta become collinear. However, 

since the new finite functions are obtained by differentiating the scalar integrals, they cannot 

contain additional kinematic singularities beyond those already present in the scalar integral. 

This helps to ensure that only genuine poles - those allowed at tree level - are explicitly 

present in the one-loop matrix elements. Once again, this helps to reduce the size of the 

expressions for the amplitudes. 

3.3 General Notation 

The basic integral is the rescaled one-loop integral in D dimensions 

I ^ [ l ] = ( - l ) " r ( n - D/2) f <rx,5{l - Y.^,) 

</ 0 • 

Dl2-n 

'y ^ SijXiXj 
i,3=l 

(3.6) 

Here, the Feynman parameters Xi have been introduced and the loop momentum has been 

integrated out (see Appendix A). The symmetric matrix Sij contains all the process specific 

kinematics and reads, 
{Mf + M f - (g._i - g,-0^) 

^i3 - 2 
It is now beneficial to perform the projective transformation of t'Hooft and Veltman [35], 

am A 
Xi = a^ai = — , 2^ Mi = 1, 

and further to introduce the constant matrix pij such that, 

c -
aiaj 

^Note the definition of I here differs from that of [27, 28] by a factor of (-1)". 
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The parameters a, can be related to the kinematic variables present in the problem, while 
Pij is considered independent of the a,. Provided that all oij are real and positive the scalar 
integral is now given by, 

n-D r _ 1 D/2-n 

UiUj In [ l ] = ( - i m n - D / 2 ) f (ru,5{l-Y.Ui) fn« i l f E « . ^ ; 

(3.7) 

In the approach which we shall introduce, the most useful quantity will be the rescaled 

integral I , which is related to the basic integral I by. 

In = f f i l ^ - (3.8) 

Crucially, in I the only dependence on the parameters ctj lies in the factor E j ^ i CijUj. 

3.3.1 Basic Results 

From the above equations (3.7) and (3.8) it is clear that differentiating with respect to ttj 

brings down a factor of the rescaled Feynman parameter under the integral, 

[ n - D ) Otti 

where the notation is obvious. With repeated differentiation, it is possible to generate all 

integrals with Feynman parameters in the numerator. 

The second step of Bern, Kosower and Dixon's work [27, 28] is to relate the n-point 

integral with one Feynman parameter in the numerator to a collection of scalar n and (n—l)-

point integrals, 

= ^ E - V^m) 1^1T\1] + (3-10) 
^^^n m=l V A„ / An 

where A„, ji and % are defined by^, 

/ n \ 2 n n n 
A„ = n = E = E ^j^j = E 

\i=l / i,i=l 3=1 j=l 
^Note that the definition of 7 coincides with 7 of [27, 28]. 
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and, 

Nn = ^(det 7 7 ) ^ . 

In later sections, explicit examples using this notation will be worked through. Equa­

tion (3.10) is the analogue of the formfactor reduction in momentum space of [26] and 

is easily obtained by integration by parts. The summation over m represents all possible 

pinchings of the n-point graph to form (n — l)-point integrals. As expected from other reduc­

tion methods, the Gram determinant appears in the denominator. However, equations (3.9) 

and (3.10) are equivalent and since, with a few notable exceptions, the scalar integrals have 

a Taylor expansion around A„ = 0, the act of differentiation will not usually introduce a 

singular behaviour. Therefore, we might expect that the n-point and (n — l)-point integrals 

combine in such a way that the A„ 0 limit is well behaved. 

3.3.2 Finite Functions 

This conspiracy can best be seen by considering the n-point integral in D -\- 2 dimensions 

27, 28, 33], 

{n-l-D/2){n-D){n-D-iy''dajdai 

^ ^If[1] + lJn^T\^]] • (3-11) {n-D-1) A„ V^""^ • 2iVn„=i 

By comparison with (3.10), this earlier equation can now be recast in a more useful form, 

Inh] = ^ f ( « - ^ - min^l] ~ t V^Jn^T\l]] • (3.12) 

It is important to note that there are no Gram determinants visible in this equation. They 

have all been collected into the higher dimensional n-point integral. It is clear that if I ^ [ l ] 

is finite as A„ 0, then so is l f " ' ' ^ [ l ] and therefore so is I f [ f l i ] - This confirms that the 

apparent divergence as A„ -)• 0 is fake. Furthermore, I f """^[l] is an excellent candidate for a 

finite function - it is well behaved as the Gram determinant vanishes and is easily related to 

the Feynman parameter integrals via equation (3.11). Of course, it may still be divergent as 

e ^ 0 and the dimensionally regulated poles remain to be isolated. 
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By applying the derivative approach, this can easily be extended to two or more Feynman 
parameters in the numerator, 

P r . . i - 1 ^In[^i] 
"^^^•^ - ( n - D - 1 ) da, 

= 1 / . , ^ i ^ ^ [ i ] , dj.iD^2.,. 1 v „ di^Vji]] 

2Nn y da, ^ 5 a / " ^ ̂  - D - 1) '̂ "̂  j ' 

Using equation (3.9) and the identity, 

yields, 

= ^ - ^ - 2)7J^^[%] + % i r ^ [ l ] - E ^.ml^Jr^[a,]) . (3.13) 

2^v„ \ y 

Note that i^J7^[l] does not depend on a^, and therefore. 
| ^ 0 ) r , i . < T [ 1 ] _ „ 
l„- i [%•] - = 0. 

Consequently, the m = j term in the summation vanishes. 

Differentiation has not produced any new Gram determinants and we can treat these 

integrals as new well behaved building blocks, or substitute for them using equation (3.12) 

with D replaced by D + 2, 

I n M = T ^ f ( ^ - i ^ - 2 ) ( n - D - 3 ) W ^ + 4 [ l ] + 2A^„?7.,ir^ 

- { n - D - 2 ) ± j.VjJn^'^"'\l] - 2Â n E V^JnV[a3] • 
m=l m = l / 

The scalar integrals for D -h 4 dimensions can be obtained recursively from equation (3.11). 

Replacing the factors of in equations (3.12) and (3.13) and the analogous equations 

for three and four Feynman parameters in the numerator, gives, 

l^[x^] = ^ - ^ - l )7 i l^-^ ' [ l ] - E V^ma.aX^T\l]] , (3-14) 
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i f M . ] = l ^ ( { n ~ D - 2 ) j d ^ + ' [ x , ] + v,,a,a,l^+'[l] 

n \ 
Vimai'^mln-Thxj] , (3.15) 

m = l 

I f [x^XjXk] = ^ ( { n - D - 3)yil^+^[xjXk] + rj^ja^ajl^+^[xk] + VzkaiCXkln^^lxj] 

n \ 
(3.16) 

m = l / 

l^lxiXjXkXi] = — — { n - D - ^)^il^+'^[xjXkXi] + riijaiajl^^'^[xkXi] + r]ikaiakl'^^'^[xjXi 

n \ 
+%Q;jQ;;lf+^[a;jXfc] - ^ r]i,naiarnln-'i\^3^kXi\]- (3.17) 

m = l / 

Once again, no Gram determinants are apparent and these equations may be solved by 

recursive iteration. These are our main results and their use will be made clear with the 

explicit examples in the following sections. 

Before proceeding to the explicit examples, we note that the full tensor structure in 

momentum space is simply obtained from the Feynman parameter integrals by introducing 

the auxiliary momentum defined in equation (3.5). With an obvious notation (and after 

integration of the loop momentum) the tensor integrals can be written, 

^ i f [ p ' ' ] , 

i f [ « ^ ] I f [ ^ ^ ' ' ^ i - ^ i f + ' [ 5 n , 

i f [ r r r ] in[P^v''v<']-\\^^^[{gVY''''i 

where { a . . . hY^'"^"^ is the usual Passarino-Veltman notation [26], and indicates a sum over 

all possible permutations of Lorentz indices carried by a... J). For example, 

{gVY""^ = g^'^VP -f g'^f'V^ + g'^^V. 

Throughout the next sections, the simplifying choice = 0 is made. Such integrals are 

relevant for a wide range of QCD processes involving loops of gluons or massless quarks. In 
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particular, all the results presented will be applicable to the process 7* —> 4 jets at next-to-
leading order, as described in chapter 4. The approach can be straightforwardly extended 
to include non-zero internal masses [28 . 

The strategy is to isolate the ultraviolet and infrared poles from the tensor integrals, 

leaving the finite remainder in the form of groups of terms that are well behaved in all of 

the kinematic limits. In real calculations where groups of tensor integrals are combined, this 

grouping will often cancel as a whole. Alternatively, i f the kinematic coefficient allows, the 

determinant can be cancelled off for all of the terms in the function. This approach is well 

suited to treatment by an algebraic manipulation program, once the raw integrals have been 

massaged to isolate the poles in e and to group the terms. As will be shown in the explicit 

examples, this is usually straightforward. 

3.4 Three Point Integrals 

In processes where the internal lines are massless, there are only three types of triangle graph 

described by the number of massive external legs. For the one-loop corrections to five parton 

scattering [36, 37, 38], only the graphs with one and two massless legs occur. For processes 

involving a gauge boson such as Z ^ 4 partons, graphs with all external legs massive or 

off-shell contribute. 

First, consider triangle integrals with exiting momenta pi, P2 and p^ as shown in fig. 3.2 

and all internal masses equal to zero. Mi = 0. Throughout, (and the Feynman parameter 

X2) are systematically eliminated using momentum conservation so that p^ = —{pi +P2) ; 

pj = [pi +P2y = S12 and, 

V^ = -{1-X,)P1-X,P^,. 

The ful l tensor structure with up to three loop momenta in the numerator can therefore be 

derived from loop integrals with up to three powers of Xi or X3 in the numerator. 
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P1 +P2 

«3 

«1 

P1 +P2 

Pi 

«2 

Figure 3.2: The triangle graph and each of the three pinchings obtained by omitting the 
internal line associated with for m = 1, 2 and 3. In each case, the internal line is shrunk 
to a point and the momenta at either end are combined. The relation between the external 
momenta and the cvj can be seen by cutting the loop; a^aj = —l/p^ where p is the momentum 
on one side of the cut and a j , aj are associated with the cut lines. 

3.4.1 Three IVIassive Legs 

As a first step, consider the general case, p\, pi, Si2 ̂  0, where the scalar integral in four 

dimensions is known to be finite. Here the ai parameters can be determined by, 

aia2Pl = - 1 , a2Q!3P2 = - 1 ' Q ;IQ ;3SI2 = - 1 , 

while, 

A , 

As = - p l - P 2 - s ^ 2 + 2p?P2 + 2p^Si2 + 2p^Si2, 

al + 2aia2 + 2aiaz + 2a20Lz. 

From the definition of the matrix r], we see that. 

- 1 1 1 

1 - 1 1 

1 1 - 1 

= 1. 
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The variables 7 always appear in the following combinations. 

PUPI + S U - P I ) * = I 

5I2(P1 + P ? - S12) 1 = 2 

PUPI + S U - P I ) « = 3 

Scalar Integral 

The scalar triangle integral for all external masses non-zero is finite in four dimensions 

39, 27, 30] 

l3[ l ] = -jl== flog(a+a-) log ( l ^ ^ ) + 2Li2(a+) - 2Li2(a-)) , (3.18) 

where Li2 is the usual dilogarithm function and a"*" are two roots of a quadratic equation, 

± _ S U + P I - P I ± V - A g 

0/ — 
2Sl2 

Although l3[ l ] appears to diverge as A3 0, this is not the case. As noted by Stuart [34], 

in this limit, the triangle graph reduces to a sum of bubble graphs, 

hm I3 1 = •—5 2 log ~Y ,—2 2 l ° g ~Y •' 
As-^o S I 2 + P \ - P I \ P I ) S12 +pi-Pi \ P i ) 

and there is a well behaved Taylor series in A3. 

Tensor Integrals in D = 4 

The tensor integral can be easily written in terms of higher dimensional scalar integrals and 

bubble scalar integrals using eqs. (3.14-3.16). For one Feynman parameter in the numerator, 

this gives, 
3 

2 
m = l 

^For scalar integrals in Z? = 4 - 2e or £> = 4 dimensions, we omit the superscript D. 
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Immediately a problem is apparent - the coefficient of the scalar integral in (6 — 2e) dimen­
sions, ji, is singular as one or more of the external momenta become lightlike. Although the 
divergence as the Gram determinant vanishes has been removed, it appears to have been re­
placed by a divergence as the invariants vanish^. However, these divergences cancel between 
the triangle and bubble contributions and the tensor integral itself is well behaved and finite 
in all kinematic limits and is therefore a better choice for a finite function. 

In fact, since the triangle scalar integral is finite in 4 dimensions, it is convenient to 

generate the tensor structure directly from derivatives of the scalar integral. However, in 

order to use equation (3.10), the two point integral for external momentum p (and internal 

masses Mi = 0) is also needed. This is given by, 

= r ( 2 - O T / 2 - l ) ( _ ^ y , - . , 3 , , ) 

For pinching m = 1, 2 or 3 of fig. 3.2 and D = 4 — 2e, 

f M - [ '^^ \ T M n 1 _ cr ( Oim \ ^ 

' ^ ^ " I n L c J ^ ^ ^ ' J - e ( l - 2 e ) l , n L « J ' 
where the usual product of Gamma functions obtained in one-loop integrals Cp is given by, 

^ r ^ ( i - 6 ) r ( i + 6) 

^ r ( l - 2e) • 

Rewriting equation (3.10) for the case D = 4, n = 3 and i = 3 and adding, 

^ Y W r n - ^ - - — 1 ^ ^ 1 = 0 , 
2 ^ 1 V As y 0̂ 2 

gives, 

i3[a3] = i f 7 3 l 3 [ l ] + \ E ( 7 3 7 . - ^3™A3) ̂  (r [1] - I ? ) [ l ] ) ) 

A 3 V ^ m = i M i a ' 'J 

= i f 7 a i 3 | l l - ^ l o g ( ^ ^ 5 ) + 2 l o g ( ^ ) ) + 0 { . ) . (3.20) 

Alternatively, this could be obtained by differentiation of equation (3.18). By trivial replace­

ment of factors of a, we find, 

l3[^3] = ^{p\{si2+pl-pi)h[l] + { P \ + P I - Si2)log {'4] - 2Pilog f ^ l \ 3 . 2 1 ) 
^ 3 V yP'i J \PiJ/ 

^Problems in this hmit are to be expected since even the scalar integral itself is not finite as pf -> 0. 
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Integrals with higher powers of Feynman parameters can now be generated by direct differ­
entiation of I3[a3], 

All of these functions will be finite in the e —)• 0 limit, and can be considered as building 

blocks in constructing the tensor structures for box and pentagon integrals. In fact, because 

they are obtained by differentiating a function well behaved as A3 0, they are also finite 

in this limit. Therefore, they tie together the dilogarithms from the triangle integrals and 

the logarithms from bubble integrals in an economical and numerically very stable way. 

These functions are also directly generated in tensor structures for box graphs (equa­

tions (3.14-3.17) with n = 4) and will naturally cancel in Feynman diagram calculations 

involving both triangle and box graphs. 

Finite Functions 

For general calculations with pl^^O and pi ^ 0, we introduce the notation, 

Lco(pi,P2) = l 3 [ l ] , Lc2n-i(pi,P2) = H^^], Lc2„(pi,P2) = l3[a;ia;3]= (3-22) 

for LC0...5. The symmetry properties of the triangle function imply that the analogous func­

tions for X i •<->• X3 (or Q!i -H- 0:3) are just obtained by exchanging pi and P2- In dealing 

with box graphs, integrals with X2 in the numerator will naturally arise. In these cases, we 

systematically eliminate them using Ei^^j = 1. Explicitly, we find, 

hixixs] = ('^PI{SI2 + P I - PDHX^] + PI{SI2 + P I - pl)h[xi. 

- P I P I U I ] - PI log + P I + P I - ^n] , (3.23) 
\P2 J } 

^ UPI{S,2 + P I - P I M X S ] + P%[1] - {si2 - PD log ( ' j ) - 2pi] (3.24) 
2 A3 y \P2 J J 

h[xixl] = i^plisu + P I - pDUxj] + 6pl{si2 + P I - Pi)l3[^1^3] 
DA3 \ 

-3plplh[x,]+p%[x,]-pl\og + P I - S I 2 ; (3.25) 
\P2j I 
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10 ' ' 10 " lO '" 10-' 10-8 10-̂  10-« 10-= 10'' 10-̂  10-2 10 ' 10° 
A3/a5'̂  

Figure 3.3: The finite functions for the triply massive triangle graph with Si2 = 1, pj = 0.2 
as a function of A 3 / A ^ ^ ' ^ where A^^^ = — (s i2 — P?)̂ . The functions have been evaluated 
using double precision Fortran. The dashed lines show the approximate form for the function 
in the limit A 3 —)• 0, retaining only the first term of the Taylor expansion. 

-j-^a V \P2 / J 

1 ( ^12 

By expanding as a series in A 3 , these functions can be evaluated near the singularity 

with arbitrary precision. For example, 

l i ^ I r^2| ^ { S U + P I - P I ) 2p{ 

Aŝ O ^ ^ 3Si2(Si2 - Pi - P2) 3Si2(Si2 - Pi - PIY 

^ _ ( 3 5 i 2 J 2 M ± ^ l 0 g 
Qsn{si2 - Pi - P2) \P2 / 

To illustrate this, fig. 3.3 shows the various functions at a specific phase space point, 

5^2 = 1, Pi = 0.2 and letting pi vary in such a way that A 3 —> 0. This corresponds 

to PI -> 0.135. We see that as this limit is approached, the numerical evaluation of the func­

tion using double precision (an intrinsic numerical precision, acc, of roughly lO"^'') becomes 

uncertain. For this particular phase space point, functions with a single Gram determinant in 

the denominator (Lci) remain stable until A^/Af^^ ~ 10"^ while those with more powers of 
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the Gram determinant break down correspondingly sooner - at Aa/A^^^ ~ 10~̂  for Lc2 and 
Lc3 and A^/A^^'^ ^ 10"'* for LC4 and LC5. In general, numerical problems typically occur 
when As/A™^" ~ (acc)^/^ where N is the number of Gram determinants in the denominator 
of the function. Other phase space points yield a similar behaviour. 

The unstable points represent a rather small proportion of the allowed phase space. 
However, problems may arise using adaptive Monte Carlo methods such as VEGAS [40 
where the phase space is preferentially sampled where the matrix elements are large. Finding 
an anomalously high value for the matrix elements in a region of instability would cause the 
Monte Carlo integration to focus on that region giving unpredictable results. 

Of course, these instabilities could be handled by a brute force increase in numerical 

precision. While possible, this has the disadvantage of producing significantly slower code, 

and, since in all cases, the approximate form obtained by making a Taylor expansion about 

A3 = 0 and keeping only the constant term works well where the numerical instabilities begin, 

this is not an attractive solution. In fact, the approximation is reliable for A3 < lO^^A^*''. 

Explicit forms for the approximations are collected in Appendix C. 

Scalar Integrals in Higher Dimensions 

We now turn to the scalar triangle integrals in higher dimensions. They appear in the g^^ 
part of the general Lorentz structure and recursively in the determination of l^^'^~^^[xi...Xi . 
Unlike the triangle in four dimensions, these integrals are ultraviolet divergent due to the 

presence of the various pinchings - bubble integrals. A function that can usefully be used 

as a building block of matrix element calculations, must be finite as both A3 -> 0 and 
e ^ 0 and we must first isolate the poles in e. Although equation (3.11) suggests that the 

ultraviolet pole structure involves A3, this is easily shown not to be the case. Adding terms 

proportional to, 

2 V m=l / "2 
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to equation (3.11) for n = 3, D = 4 — 2e we see, 

(1 -e ) A3 V r i a ^ ^ 2na / 
where the divergence as e —)• 0 lies exclusively in the last term. Reinserting the factors of a 

and the definition of l2[l] in D = 4 - 2e dimensions we find, 

I f - ' m = Lci5(pi,P2) - I + 3) cr, (3.27) 

where, 

-pUsi2 + pi-pl)iog{^] 
\P2JJ 

= l{plh[xi]+plh[x3]). (3.28) 

In a similar fashion, the e pole structure can be removed from the triangle scalar integral 

in D = 8 — 2e and D = 10 — 2e dimensions yielding two more functions that are finite as 

both A3 0 and e 0. Explicitly we find, 

I3 1 - Lc2s[Pi,P2) — + — Cr, (3.2yj 
24 \ e 6 y 

TD=lO-2el.^ _ r , . „ N {pf + Pt + 42 + PIPI + P^U + pjsn) ( ( - 3 1 2 ^ ' 17\ 

I3 [1] - Lcss{PuP2)-- + 
(3.30) 

where the finite functions are defined by, 

Lc25(Pi,P2) = 7 ^ (2plplsn^Cis{puP2) - I fpt(si2 +/>2 -Pi) log 
4A3 \ b \ \Pi / 

+Pt{si2+Pl-Pl)^0g -f +2plplsn , (3.31) 
\P2j ) ) 

LC3s(Pl,P2) = ^ ('2p\p\sx2\-^2s{P\.P2) - ^ [p\{Sl2^p\ ' p\) log . o 
DA3 \ bU V VPi 

S12 
!pJP2Sl2LC25iPl,P2j - ^ lHlSi2 +P2 -PiJiOg 1 3 V 

^P\{s,2^p\-P\) log ('-4] + +P2 + ̂ 12)))- (3.32) 
\P2 ^ J I 
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Although these functions have been obtained via equation (3.11), they are still related to 
derivatives of the basic scalar integral in D = 4 — 2e, and are therefore finite in the A3 —> 0 
limit. We can see this by examining the same phase space point as before, 512 = 1, Pi = 0.2 
and varying A3. As expected, the Lc„5 show a similar behaviour to the Lc„ functions 
- numerically breaking down at larger and larger values of A3 as the number of Gram 
determinants increases, and being well described by the first term in the Taylor expansion 
as this happens. For completeness, we collect the limiting approximations in Appendix C. 

Tensor Integrals in Higher Dimensions 

For triangle loop integrals with three loop momenta in the numerator, it is also necessary to 
know the D = 6 — 2e integral with a single Feynman parameter in the numerator. Rather 
than differentiating the ultraviolet divergent lf^^~^'^[l] , we can evaluate it in terms of the 
D = 4 - 2e tensor integrals of section 3.1.1. Using (3.13) for D = 4 - 2e, we see that, 

i 3 [ a i a , ] + i3[a3a,] = ^ f - ( 3 - 2e){ji + 73)l3''='"'1%] + iVij + V^j)it'~''[^] 

3 ^ \ 

- iVlm + ?73m)i2™ [̂aj] ; 
m=l / 

which, for j = 1, 3,̂  simplifies using, 

Vij + Vsj = 0. 

The same equation simplifies the sum over bubble pinchings so that only m = 2 contributes, 

while 7i + 73 = 2Q;2. Restoring the factors of a and using, 

T(2)r 1 T(2)r 1 1 f (-^12)"' , 
I2 = I2 [3:3] = - ^ — + 2 cr. 

yields. 
T6-2.r 1 l / 2 T r i ^ 2 T r A 1 { - S 1 2 ) - ' , 8\ 

I3 FjJ = o Pih[xiXj\+P2h[xzXj\ - - + - Cr. (3.33) 
o \ / 0 \ e 6 

Later, we will see that constructing the tensor integrals for box graphs can also generate 

l3~^^[^i] ^ ^ ' i higher dimensional triangle integrals with more parameters in the numerator. 

'Since the Feynman parameters add to one, the case j = 2 is of little interest. 
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In each case, we use similar tricks with equations (3.14-3.17) to rewrite them in terms of 
the four dimensional integrals with the ultraviolet pole made explicit. 

3.4.2 The Two-Mass Triangle 

We will also be interested in triangle graphs where one or more of the external momenta is 

lightlike. Here, we first focus on the case, pi ^ 0. In D = 4 - 2e dimensions, we have the 

well known result, 

= (izfiiriziz^) , (3.34) 

e2 \̂  si2 -Pi J 
where the superscript indicates that only two of the three legs are massive. For this choice 
of kinematics the rescaled integral can be written, 

Crnaia,Y-{aia,r\ (3.35) 
\ as - ^2 / 

with, 
aia2pl = - 1 , a!iQ;3Si2 = - 1 , 

and 
A 3 = - ( 0 1 3 - ^ 2 ) , 

so that the singular limit is Q!3 0 : 2 . Because A 3 makes no reference to cti, % contains a 

row of zeroes, 

Vij 

^ 0 0 0 ̂  

0 - 1 1 

and therefore N3 = 0. Consequently, care is needed in applying the equations of section 2. 
In addition, since the scalar integral for three massive legs is finite (and the results in the 
preceding subsections have been explicitly derived in D = 4), one cannot just set p | —> 0. 

In fact, it is easiest just to bypass the problem and generate the whole tensor structure 

by direct differentiation of the scalar integral with respect to 0:3 and ai. It is easy to see 
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that, 

r K ] - A i r i i ] + + C l o g ( I ) + D , 
where A,B,C and D are polynomials in 1/Q;3 and 1/(0:3 — 0:2)• Unlike the all massive 

case discussed before, the scalar integral is singular as e —> 0. As a general rule it is not 

necessary to be particularly careful with double poles in e, since they must either cancel 

or form the infrared poles of real matrix elements. However, it is possible for the integrals 

to be multiplied by factors of e - from expanding factors of dimension - and the resulting 

logarithms should occur in combinations that are finite as as —>• 0:2- It is easy to see that, 
log ( ^ ) 
as - ai 

is finite. So, to tie the logarithms and constants together in combinations that are well 

behaved in the a^ a^ limit, we use the fact that derivatives of this function are also well 

behaved, and introduce the functions, 

Lcr(pi,P2) = - lim (e X ̂ [ x r ^ ] ) , (3.36) 

for n = 1,..., 4. In terms of invariants, 

T 2m/ X /^PlLc^-l(Pl,P2) - ^ ^ \ 
Lc;™(pi,p2) = - 2 ' " ^ 2 (3.37) V 5l2 - P\ 

with, 
log { ^ ) 

Lc?-(pi,P2) = - ^ . (3.38) 
512 — P\ 

These functions, or functions closely related to them, have appeared in next-to-leading order 

matrix element calculations [36, 37, 38, 31]. The explicit forms for Ig^fxiXj] appearing in 

the momentum expansion are well known and are collected in Appendix B. 

Although these functions are rather simple, they still contain numerical instabilities as 

p\ 5i2. This can be seen in Fig. 3.4 where we show Lĉ ™ for the specific phase space point 

syi — 1 and let p\ approach S12. While a single inverse powers of (si2-p?) is handled correctly, 

higher powers cause problems. As can be seen from the figure, a suitable approximation is 

obtained by the first term in the Taylor expansion, 

lim Lc^"^(pi,p2) = 
p f ^ « i 2 np{ 
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(S,2-Pl)/S,2 

Figure 3.4: The finite functions for the triangle graph with two external masses with Si2 = 1 
evaluated in double precision Fortran as a function of ( s i2 -pD/su- The dashed lines show 
the approximate form for the function in the limit pj Si2, retaining only the first term of 
the Taylor expansion. 

for n > 1. 

The other configuration of triangle graph that appears is where two of the momenta are 

lightlike, pi = pi = 0. Once again, the tensor structure can be generated by differentiation 

or canonical Passarino-Veltman reduction. Here, there is only one scale in the problem 

so there can be no logarithms and it is neither possible nor necessary to introduce well 

behaved functions. The explicit forms for the Feynman parameter integrals appearing in 

the momentum expansion are well known and for the sake of completeness are given in 

Appendix B. 

This concludes our discussion of triangle graphs. For the case of three massive external 

legs (and internal masses set equal to zero) the four dimensional tensor integrals are finite as 

e —̂  0 and are given by the functions Lcq...5(^1,^2) defined in (3.18,3.21,3.23-3.26), while the 

ultraviolet divergent part g^i, part, i f ^®~̂ [̂1] is expressed in terms of a similar function (Lci^) 

with the pole isolated (3.28). For the tensor structure in the simpler case with one lightlike 
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leg, it is useful to group the logarithms and constants using the functions Lcl"^^{pi.p2) (3.38, 
3.37). 

For the more general case where the internal masses are non-zero, the same procedure can 

be utilised. The matrix 77 has slightly more entries and there are more scales in the problem. 

However, the grouping together of triangle graphs and bubble integrals into functions well 

behaved in the A3 —>• 0 limit and the isolation of the ultraviolet singularities can be made 

explicit in the same way. 

3.5 Four Point Integrals 

For one-loop corrections to five parton scattering, box graphs with at most one massive 

external leg occur. However, for processes involving a massive vector boson and four massless 

partons, we can obtain box graphs with a second massive external leg by pinching together 

two of the partons. There are two distinct configurations according to the positions of the 

massive legs; the adjacent box graph and the opposite box graph. The box graph is shown 

in fig. 3.5 for outgoing momenta pi, p2 and p^. Throughout this section, we will assume 

that {pi + P2 + PzT = •5123 7̂  0. In the adjacent two mass case, PI = PI — 0 and pi ^ 0, 

while for the opposite box, PI = PI = 0 and pi ^ 0. Unfortunately, the raw scalar integrals 

for these two cases behave rather diflPerently. The adjacent box is finite in the limit that 

A4 —̂  0, while the opposite box diverges as A4 —>• 0. In this section, we work through these 

two configurations and rewrite the tensor integrals in terms of well behaved functions and 

explicit poles in e. 

3.5.1 The Adjacent Two-Mass Box 

We first consider the adjacent box with pl= PI = 0 and all internal masses equal to zero. As 

in the triangle case, we systematically eliminate one of the momenta, P4 = —{Pi + P2 + P3)•. 
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Figure 3.5: The box graph and each of the four pinchings obtained by omitting the internal 
line associated with for m = 1, 2, 3 and 4. 

and one of the Feynman parameters, = 1 — Xi — X2 — X4, so that, 

V'' = -{1-Xi)p'i2+X2pf^-X,p^,. 

The related integrals with pj 7^ 0 and pi = 0 are obtained by pi <H- p3 (and the indices i and 

j in ai and rjij transform as 1 -o- 4 and 2 o 3). 

For this kinematic configuration, the a parameters are defined by, 

aiOiA 5i23 = - 1 , aia2 P? = - 1 

Q:IQ;3 S12 = - 1 , a2a4 S23 = - 1 , 

while, 
0 1 o\ 

0 0 - 1 1 

1 - 1 2 - 1 

1 - 1 

and, 

A4 = 2S23 ((Sl23 - Sl2)(Sl2 " P?) - S12523) 
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The coefficients ji always appear in the following combinations which are directly related to 
the conventional variables. 

-523 i = 1 

Si23 - Si2 1 = 2 

5123 + P ? - ^ 2 3 - % ^ ^ = 3 

PI - Sl2 

The scalar integral in D = 4 — 2e can be written [30, 27], 

= J {{a2a,y + 2{aia3Y - {aia2Y - (aia.Y) + 2Ldo(pi,P2,P3) + 0(e), (3.39) 

where, 

Ld,(p,.p„P3) = Li . ( l - - L i . ( l - 5̂) H. 1 log ( l o g ( ^ ) . (3.40) 

In constructing the tensor integrals in D = 4 —2e, we see from equations (3.14-3.17) that 

the box integral in higher dimensions is needed. In fact, in = 6 — 2e, the box integral is 

infrared and ultraviolet finite. This can be seen by inspection of equation (3.11) and noting 

that the pinchings with m = 1,2 and 4 in the expression. 

f{m) 

are proportional to 1/ê  and, when combined with the appropriate 7 factor, precisely cancel 

with the pole structure of the box integral. The final pinching (m = 3) corresponds to the 

triangle graph with three massive external legs which is itself finite. Altogether, we find that 

the adjacent box integral in D = 6 is, 

TD=6rn 2si2S23 , . \ , ( , 2 2p?Si23\ ^ , A 
I4 [IJ = X Ldo(pi,P2,P3) + 7; 5i23+Pi-S23 LCo(Pi,P23) 

A 4 \ Z \ Si2 J / 

= Ldi5(pi,p2,P3), (3.41) 
where Lco(pi,P23) = l3[l] is defined in equation (3.18). Because of the finiteness properties 

of the three mass triangle, we will find repeatedly that the m = 3 pinching should be treated 

differently from the other three. 
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Scalar Integrals in Higher Dimensions 

For higher dimensions, we just reuse equation (3.11), noting that the triangle pinchings 

in D = 6 - 2e reintroduce ultraviolet poles. These can easily be isolated by adding and 

subtracting combinations of scalar integrals as in section 3.1.2. Explicitly, 

If=«-2^[1] = Ld25(Pi,P2,P3) + | f ^ ^ ^ + ^ ) , (3.42) 

TD-10-2eril TA ( ^ , CT{SI2S + SI2 + S2S+P\) ({-Si2s)~' , 107^ 
If- l°^^[l] = Ld35(Pl,P2,P3) + \ - ^ - ^ ^ ) - ' ^ ^ - ^ ^ ^ 

I f — [ 1 ] = L d . ( . i , . 2 , . 3 ) . | £ ( ^ ^ . f ) , (3.44) 

where, 

0 9 9 4 2 2 2 512523 

P = sf23 + + S23 + Pi + snsSn + S123S23 + S123P1 + S12P1 + S23P1 + • 

The finite parts of the higher dimension boxes are given by, 

Ld25(Pl,P2,P3) = -^Jx^f5i2S23Ldis(pi,P2,P3) 
/ 2 2p?Si23\. / X 

+ Sl23+Pi-S23 LCi5(pi,P23) 
\ S12 / 

^523^^ /5123 
2 

/5i23\ , , /5123A Pi, Al23^^ 
'g + 512 log - IT log , (3.4t)) 

V 523 / V S12 / 2 \Pl 
Ld35(pi,P2,P3) = -^^X^(5l2523Ld25(pl,P2,P3) 

+ f S123 +Pi - 523 - ) LC2s(;?l,P23) 

+ ^ log f £1^) + log f ̂ ) - ^ log f ^ ) ,(3.46) 
^ 24 ^ V 523 / 12 ^ V S12 / 24 ^ V ; 12 ; ' 

Ld45(Pl,P2,P3) = -^^X^(5i2523Ld3s(Pl,P2,P3) 

+ f 5123 - 523 - ^ ^ i ^ ) LC35(pi,P23) V ^12 / 

, 2̂3 1 (S12Z\ , 5^2, /5i23\ p\ , (Sl2z\ 
+ 3 6 0 ) + 1 8 0 U J - 360 ' "H^J 
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r —1—1—i—1— 
L c l 2 s x l O ^ 
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L d 3 s x l 0 3 _ 3 / i 

1 L d i s i 
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| j L c l 4 s x 1 0 ^ l 

1 1 1— I 1 

f "W-

' lO '^ 1 0 " 1 0 ' ° 10-' 10-^ 10-' 10-* 10-5 10" 10-̂  10-2 ,gO 

Figure 3.6: The finite functions for the box graph with two adjacent massive legs as a function 
of A4/A™^'' where A^'''' = 2si2S23(si23 - 5i2 - 523)- The phase space point is S123 = 1, 
S12 = 0.4, S23 = 0.08 and pi altered so the limit is approached and the functions have been 
evaluated in double precision Fortran. The dashed lines show the approximate form for the 
function in the limit A4 0, retaining only the first term of the Taylor expansion as given 
in Appendix C. 

512523(5123 + 1̂2 + 2̂3 + P l ) ' 
720 

(3.47) 

The D = 6 - 2e and D = 8 - 2e box integrals explicitly appear in the momentum space 

tensor structure with one and two factors of ^ ^ j , respectively. All of these integrals appear 

either directly or indirectly in the tensor box integrals of equations (3.14-3.17). 

Once again, all of these functions are well behaved as A4 —> 0 and group a variety 

of dilogarithms, logarithms and constants together in a non-trivial way. This is shown in 

Fig. 3.6 for a particular point in phase space; S123 = 1, 5i2 = 0.4, S23 = 0.08 with pi 

varying so the A 4 ^ 0 limit is approached. We see that although Ldis, with a single inverse 

power of the Gram determinant, is numerically stable, the functions with more powers of 

Gram determinant in the denominator break down at much larger values of A4. In all 

cases, the function is well approximated by the first term of the Taylor expansion provided 

A4 < 10"^A™^ .̂ These approximations are collected in Appendix C. 
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Tensor Integrals 

Armed with the integrals in D > 4, we return to the tensor integrals and use equations (3.14-

3.17) as the starting point. Rewriting equation (3.14) ioi n = 4, D = 4 — 2e and noting that 

we have eliminated so that i = 1,2 and 4 only, we have. 

H^i] = -7J f "^ [ l ] - H r]imaiarJr\i.-
m=l 

The factor aiam multiplying the triangle pinchings will always produce a factor of 1/s. For 

triangle graphs with at least one massless leg (pinchings m = 1,2 and 4), the contribution 

is 1/ê  and will combine with similar poles from other Feynman diagrams. On the other 

hand, the m = 3 pinching (corresponding to the triangle graph with momenta pi and p2s 

flowing outwards) is finite and, provided the value of s is related kinematically to that 

triangle pinching, there may be a possibility of cancellation with other triangle Feynman 

graphs. However, for the case i = 1 and m = 3, the associated invariant mass is Si2-

This term cannot combine with any other naturally generated triangle graph with the same 

kinematics. Therefore, we group this term with the box integral, by adding and subtracting, 

m=l 

SO that, 

with, 

U[X,] = jMl{Pl,P2,P,) - E V^mCy^^m " , (3.48) 
m=l 

Ldi(pi,p2,P3) = - {lf='[l] + i f [1]) . (3.49) 

The only non-zero entries in r]im for « ^ 3 and m 7̂  3 are ? = 2, m = 4 or z = 4, m = 2 

corresponding to aiam = —1/523 which is appropriate for li^^fl • 

For integrals with more Feynman parameters it is convenient to introduce the following 

functions, 

l^dni,...in-,{Pi,P2,P3) = - | n l f = ^ [ x i i ...a;i„_J + l f [xii (3.50) 
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for n = 2,3 and 4. Suppressing the arguments of Ld„, and using equations (3.15-3.17), we 
find, 

h[XiX,] = 7iLd2, - 7]^j(XiaJLdl + - VMam{I3™'K] - i f (3.51) 
^ m=l 

h[xiXjXk] = J^Ld3jk - -Vzjaiajl^Ld2k + i f [â fcjj - -riikaiaki^Ld2j + i f [ajjjj 

- X] Vimaiaml i f ^ [ x j X f c ] - i f [rCjXfc] i, (3.52) 
m=l 

I4[a;j3;ja:;t3;;] = jiLd^jki - ^rjijaiajl^Ld^ki -+ i f [a;A;a;;]| - ^VikaiO^k^l^dsji + l^^^XjXi]^ 

-^Vil(^i<^l^^d3jk+lf\xjXk]^ - Y Vim.f^i'^m^l'r^XjXkXl] - i f [aJj-XfeX;] | . 

(3.53) 

Since we have systematically eliminated x^ using the delta function, i, j, k and / run 

over 1, 2 and 4. This guarantees that the coefficients of the form rjijaiaj are only non­

zero for i = 2 and j = 4 (or vice-versa). In these cases, ri2AOi2a.i = — I/S23, which is again 

appropriate for the m = 3 pinching to form a completely massive triangle, i f [1]. Altogether, 

equations (3.48,3.51-3.53) are sufficient to completely describe the tensor structure of the 

adjacent box. 

However, in order to determine the Ldni^...i^_i combinations, we need tensor integrals 

for D = 6 — 2e dimensional box graphs with two or more Feynman parameters. These can 

be obtained from equation (3.15) once the D = 6 — 2e box integral with a single Feynman 

parameter, i f ^^"^^[xi] is known. This can be derived by differentiating (3.9) which indicates 

that i f ' ^ ' ^ ^ f x i ] is also finite as e -)• 0. To see this, we reuse equation (3.14) and our usual 

trick of adding and subtracting combinations of the m = 3 pinching in Z) = 6 — 2e, 

14^^='-'^^ = 7.(-(3-2e)lf=«-2^[l]-l3^=^-^^(^)[l]) 
4 

riimaiam (I3 [Ij - I 3 l l j j • 
m=l 

Both brackets are separately finite. First, the divergent part of i f ^ ^̂ [1] precisely cancels 

against that of i f "^" '̂̂ ^^•'[1]. Second, all triangles in D = 6 — 2e dimensions have 1/e poles 
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and the difference of any two, is either zero or a log. Further differentiation does not change 
the finiteness properties of the i f "̂""̂ ^ tensor integrals. 

The Ld„ii.,.i^_i combinations are also well behaved in certain kinematic limits. For ex­

ample, I f " ' ' [ l ] and are finite as Si2 ^ 0 or S23 -> 0. Just as difl^erentiating functions 

which are finite as e —> 0 does not introduce poles in e, neither can it introduce poles in the 

kinematic invariants S12 or S23. As an example, consider the function Ld24 given by, 

^(i24{Pl,P2,P3) = — {3Ld2s{Pl,P2,P3) + LCi5 (pi , P23)) " — L C i ( p 3 , P l 2 ) 
512523 523 

P^ 
+ — LCi{p23,Pl), 

523 

which appears to contain a pole in S12. In the S12 0 limit, A4 -2s235i23Pi and 

Ld25 ^ 25235l23Pl l^Cis{pi, P23) -> -\l^Cis{Pl, P23), 
OIA4 o 

so that, 

and therefore, 

lim {3Ld2s{pi,P2,P3) + l^Cis{pi,P23)) ^ 0, 
512̂ 0 

lim Si2 X Ld24{PuP2,P3) 0. 
512̂ 0 

Similarly, Ld24 contains no power-like divergences'' in the S23 0 limit and, with a little 

more work, it can be shown that, 

lim S23 X Ld24(pi,P2,P3) 0. 

Once again, these functions combine dilogarithms, logarithms and constants in a highly non-

trivial way to form well behaved building blocks. Explicit forms for the Ldnii...i„_i functions 

for n = 1, 2 and 3 are given in Appendix B. 

•^Although these functions do not behave as inverse powers of the vanishing kinematic variables, they do 
contain logarithms of S12 and 523- This is because the e -> 0 hmit has already been taken, and the order of 
taking the two limits does not commute. For next-to-leading order calculations, we only approach the hmit 
Sij —0 and e can safely be taken to zero first. 



CHAPTER S. ONE-LOOP INTEGRALS 72 

3.5.2 The One-Mass Box 

The higher dimension and Feynman parameter integrals for the one-mass box integral ob­

tained by taking pf 0 can also be constructed in a similar way. For this kinematic 

configuration, the a parameters are defined by. 

while, 

dia^ si23 = - 1 , aiQ;3 5i2 = - 1 , Q!2a4 523 = - 1 , 

^ 0 0 1 0 ^ 

Vij 
0 0 - 1 1 

1 - 1 0 0 

\0 1 0 0 J 
, N4 = l 

and. 

In terms of invariants. 

A 4 ' " = 2Si2523 (5i23 - 5l2 - 523) . 

7i 
m=i a, 

-523 i = 1 

5l23 - 5i2 i = 2 

5l23 - 523 i = 3 

- 5 i 2 i = 4 

The scalar integral can be written, 

i f [1] = ^ (2(^1^3)^ + 2(a2a4)^ - 2 (a ia4 )^) + 2Ldl"'{puP2,P3) + 0{e), (3.54) 

where. 

Ldl-{PUP2,P3) = Li2 f l - - ) + Li2 f l - - ) + log f - ) log 

V as J \ a2) \as) 

As expected, in JD = 6 — 2e dimensions, the scalar integral is finite, 

'[1] 

a2/ 6 

Tlm ,£)=:6r-| i 
4̂ 

^ '^^ '^^Ldr(Pl ,P2,P3)^Ld}™(pi ,P2,P3) . 
Ai™ 

(3.55) 

(3.56) 
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In higher dimensions, the scalar integrals satisfy analagous equations to (3.42-3.44) wi th 
—> 0, and finite parts given by, 

(3.57) 

L d - ( . . , . 2 , P 3 ) = - g 5 ( . , 2 . . 3 L d - ( , . , . . P 3 ) ^ - | l 0 g ( ^ ) 4 l 0 g ( ^ ) 

+ ^ ) , (3.58) 

L d - ( p „ p „ P 3 ) = - S i ^ . . « . 3 L d S f e , p . . P 3 ) + | i l O g ( ^ ^ ) + | | l O g ( ^ ) nPuP..P^) = - ^ ( 5 : . s . 3 L d - ( ; . i , P 2 , P 3 ) + | ^ l o g ( ^ 

^12523(5123 + Sl2 + ^23)^ 
720 J' 

(3.59) 

The stability of these functions as A4'" ^ 0 is illustrated in fig. 3.7 for a particular point 

in phase space; S123 = 1, 5i2 = 0.3, wi th S23 varying so the l imi t is approached. The maximum 

possible value of occurs when S23 = (S123 - 5i2)/2; i.e. ' " ^ = 512(5123 - SnY 12. As 

before, LdJ^ , w i t h a single inverse power of the Gram determinant, is numerically stable. 

However there are numerical instabilities for the other functions wi th more powers of Gram 

determinant in the denominator. In all cases, the function is well approximated by the first 

term of the Taylor expansion provided A4™ < 10"̂ A4'" 

Tensor Integrals 

Unlike the Pi 7̂  0 case, the scalar triangle pinchings all contain infrared poles and there is 

no benefit in absorbing the m = 3 piece in the tensor integrals. Therefore we introduce, 

Ld^u....„-.(Pi>P2,P3) = -nlT'''='[x^, .. (3.60) 

for n = 1, 2, 3 and 4. Using equations (3.14-3.17) wi th n = 4 and D = 4 - 2e we find, 

I ^ N = T ^ L d ^ - ^ : ^ ^ m « ^ « „ I ^ ^ [ l ] , (3.61) 
m=l 
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1 1 1 1 1 1 r 1 1 ! 1 

Ldig' 

-
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, , , i 

Ldlg'xS.IO" 

10-'^ 1 0 " 10-'° 10-5 10-= 1 0 ' 10-^ 10= 10"" 10-2 10-2 10 ' 10° 

Figure 3.7: The finite functions for the box graph wi th one massive leg as a function of 
b}^IIS}-^ The functions have been evaluated in double precision Fortran. The dashed 
lines show the approximate form for the function in the l imi t A j " " 0, retaining onl j ' the 
first term of the Taylor expansion as given in Appendix C. 

(3.62) 

m=l 
1 

4̂ '^i^ h'^l 

E V^ma^»mlt\xM, (3-63) 
m=l 

Vim(^iami-3 [XjXkXi. (3.64) 

m=l 

As in the previous section, the Ld^™ , , functions are finite as e ^ 0 and contain no 
"mi . . . ln - l 

power-like divergences in the Su -)• 0, S23 0 and A4'" -> 0 limits. For convenience, explicit 

forms are given in Appendix B. 
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3.5.3 The Opposite Two-Mass Box 

The two mass box graph where the massive legs sit on opposite sides is a special case because 

the scalar integral itself is not finite as A"^^ —>• 0. We must therefore proceed wi th care. To 

make best use of the symmetry under pi f-^ pa, i t is convenient to write, 

V^ = ~{1- X,)P1 - (X3 + x,)p^ - X,PI. 

Under this flip symmetry, X\ Xi^, xi ^3 and 

V^-^-V^-p^^-p'-^-p^^ 

I n this kinematic configuration, the a parameters can be defined by, 

aia4 Sl23 = - A , 0L20Lj,p\ = -1 

aiaz Si2 = - 1 , a2Q;4 S23 = - 1 , 

where A is an extra kinematic variable that ensures that the are independent, 

W i t h this choice of Ofj, 

Vij : i - A ) 

V 

. S12S23 

0 0 1 - 1 

0 0 - A 1 

1 - A 0 0 

- 1 1 0 0 

Each row of rj naturally couples together two of the pinchings (triangles) of this box, so we 

might expect such structure to dominate the integrals. The associated Gram determinant is 

given by, 

A f ^ = 2(si2S23 -^2^123)513 
2(1 - A)si3 

where, 

Si3 = S123 - S12 - S23 +P2) 
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and, 

p i - 523 * = 1 

5l23 - 5i2 « = 2 

5l23 - 523 « = 3 

p i - 5i2 ^ = 4 

H - ^ = ( l - A ) ^ 

We note that the presence of the Gram determinant is synonymous both wi th a factor of 

(1 - A) and S13. 

The scalar integral for the opposite box in D = 4 - 2e is given by, 

= g [{a^a^r + («2«4)^ - («2«3)^ - ( « i a 4 ) ^ A - ) + L d r ( P i = P2,P3))+0(e) , 

(3.65) 

where the finite part Ldo can be wri t ten, 

Ldo°^^(pi,P2,P3) = Li2 (1 - A) + Li2 ( 1 

- " ^ ( - | ) - " ' ^ - S ) ^ ' - ( | ; ) ' - ( S ^ ) - P - ) 

As A —)• 1, there is a manifest singularity in l4^^[l] since, 

Ld7^(Pi,P2,P3) - log f—) log ( — . 

This double logarithm can never combine wi th lower point scalar integrals to form a combi­

nation well behaved as A ^ ' ' 0. In fact, i t is easy to see f rom fig. 3.5 that the only scalar 

integrals which are available by pinching are the triangle integrals wi th one and two massive 

legs. These are pure poles in e and cannot be combined wi th the finite parts of the opposite 

box integral. There is no appropriate function which can generate the double logarithm as 

A ^ 1 and consequently no finite function can be formed. Since the matrix elements are in 

general finite in the l im i t of vanishing Gram determinants, all occurences of Ldo^^ divided 

by the determinant must vanish. 

On the other hand, in £) = 6 —2e, the opposite box is not only finite as e ^ 0 as expected, 

but also as A -> 1. This is because Â^̂  is effectively (A4^^)^ and its presence in the numerator 
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of equation (3.11) removes the Gram determinant f rom the denominator. Consequently, we 
see that, 

i r ""='-''[1] = --l^dr{Pi,P2,P3), (3.67) 
Sl3 

which, since, 

km L(io{puP2,P3) = ^ S12 log + S23 log - P2^og 
^"^0 S12S23 - P2S123 V \S12J V S23 / \P2 J ) 

+0{s\,), (3.68) 

is also finite as S13 0. 

So in dealing wi th the tensor decomposition of the opposite-mass box we are faced wi th 

poles in S13, which we must protect, but also denominators of (1 — A) which may or may 

not be protected. However, we know that for physical processes that are finite as —> 0, 

there must be cancellations amongst the various tensor integrals so that no terms containing 

Ldo/A4' ' ' ' remain. Therefore we always choose to leave one factor of (1 — A) exposed when 

mult ipl ied by box functions, so as to facilitate the cancellation of these terms. We therefore 

introduce a set of functions in the same way as for the one-mass box, eq. (3.60), 

Ld:^f...^„_.(Pi,/>2,P3) = -nir''='[x,,.. .a:,„_J, (3.69) 

for n = 1, 2, 3 and 4. This leads to equations for the integrals wi th additional Feynman 

parameters also very similar to the one-mass case. In fact, the only difference f rom equa­

tions (3.61)-(3.64) is an extra factor of (1 - A)~^ throughout the r.h.s., due to the diflference 

in A^4. So, for example, we find, 

i r [ ^ ^ ] = f 7 ^ L d r - E mmC^^c^J^\^\\ • (3.70) 

Notice here that the function Ld^^'' is multiplied by the factor 1/(1 - A) (one power is 

cancelled by 7i) , as claimed above. Again, the functions Ld°^^ ^ are finite as e —> 0 and 

contain no power-like divergences as S13 -> 0. Explicit forms of the functions relevant for up 

to three tensor numerators are given in Appendix B. 

There s t i l l appear to be problematic terms (divergent as A 1) in the tensor reductions 

which correspond to the remaining triangle-like pinchings of the opposite box. However, 
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these terms are the only ones that would survive in the e ^ 0 limit of the tensor integral 
multiplied by e. Since these terms will naturally be produced in the calculation of a physical 
process, we expect that the resulting single logarithms occur in groups that are finite as 
A -> 1. We therefore introduce the auxiliary functions, 

Lcd„(pi,p2,P3) = -YuniexirK]) 

^ (5i2Lc^(pi2,P3) - PILCI^{P2,P,)) (3.71) 
A 

for n = 1 , . . . ,4 and, 
2Sl3 , f 512523 \ 

Lcdo(pi,P2,P3) = -xm^^og -2 • (3-72) 
^4 \P2Si23J 

Because these functions contain only a single power of the Gram determinant, they are not 

diflacult to evaluate numerically. 

In summary, the situation for box integrals is very similar to that for triangle graphs. 

When the scalar integral is finite as A4 ^ 0, differentiating - or equivalently adding factors of 

Feynman parameters - does not introduce kinematic singularities. Hence natural groupings 

of box and triangle integrals arise that are finite as A4 —)• 0. Furthermore, the infrared 

and ultraviolet singularities can be isolated easily. Although we have explicitly worked 

through a subset of kinematic configurations relevant to certain QCD processes, this method 

is systematic and can be applied to processes with more general kinematics (and particularly 

non-zero internal masses). 

3.6 Five Point Integrals 

In this section we consider five point integrals with only one external mass. The outflowing 

lightlike momenta are denoted pi, i = 1,... ,4 while the fifth p5 = -P1234 is massive, pf 7̂  0 

as shown in fig. 3.8. The auxiliary momentum is then, 

V = - ( 1 - xi)p'^ - (1 - x i - X2)p^ - {Xi -F X5)p^ - X5PI 
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We can make the choice, 

w i th , 

ttlttS •51234 = - A , Q;2Q;4 523 = - 1 

aias Si2 = - 1 , a2a5 S234 = - 1 

Q;IQ!4 S123 = - 1 , as^s 534 = - 1 , 

1 ° 
(1 - A ) = n Q;i(Si23S234 " S23Sl234)-

"3 i=i 

As in the opposite box integral, A is an extra kinematic variable that ensures the ai are 

independent. I t is the same variable that occurs in the third pinching which forms an 

opposite box configuration. The matrix r]ij is given by, 

/ 1 1 - A 

A - 1 

- 1 

- 1 1 

1 - A A - 1 (1 - A)2 

1 1 - 2 A A - 1 

1 -1 

and the normalisation factor is, 

1 - A 

N. = l - \ . 

1 

1 - 2 A 

A - 1 

1 

- 1 

- 1 

1 

1 - A 

- 1 

1 

The 7i are rather lengthy, but can be read off f rom The scalar pentagon integral is by 

now well-known in D = A [41, 35, 29] and in D = 4 - 2e [30, 27, 28] and can be wri t ten in 

terms of these variables as. 

1 
27V. 

(3.73) 
5 m=l 

The five pinchings and the momenta associated wi th each is illustrated in fig. 3.8. The l imi t 

N5 ^ 0 corresponds to the vanishing of the Gram determinant associated wi th the m = 3 

pinching. The scalar integral for this pinching is not well behaved in this l im i t and so should 

not be expected to combine wi th the other pinchings. Therefore, we separate i5[ l ] according 

to the pole structure in e and N^. We identify the function Lci which is finite as both Â 5 -> 0 
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Pi +P2*P3'^P4 

"2 
"3 

P2 

P3 

P4 

«5 

« 4 

P2+P3 

P4 

P1+P2 

P3 

P4 

P3+P4 

Figure 3.8: The pentagon graph and each of the five pinchings obtained by omit t ing the 
internal line associated wi th am for m — 1,2,3,4 and 5. For box pinchings, the entering 
momentum is fixed by momentum conservation. 

and e 0 and does not depend on the opposite-box pinching, m = 3, plus a combination of 

scalar box integrals containing all the infrared poles and the remaining ^ 0 singularities, 

= f ^ c ^ 3 « ^ / ^ , ) L e i - - ^ 7 3 l S ' ^ [ l ] - « 2 « 4 ( l f [1] + I?^[1]) 

- 1 ^ 3 (ailS^)[l] - a 2 l f [1] - + a , t [ l ] ) , (3.74) 

where = (1 , — 1 , 0 ,1 , —1) and. 

Lei = 
aia2oe4a^ 

2N; 5 m=l 
(3.75) 

Apply ing equation (3.14) and noting that I f = ^ is both infrared and ultraviolet finite, the 

integrals w i t h one insertion are also determined in terms of box integrals in D = 4 — 2e 

dimensions, 

15 k ! 
1 

J:v^Jr\l]+o{e). 
2 i V 5 ^ i 

(3.76) 
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Making the same separation as before. 

1 5 
lr,[xi] = (ASAIKI) Lei - 7 ^ 7 " c^iOim {Vim - i^ii^m) + ^ (e ) , (3-77) 

where the bracket mul t ip lying the scalar box integral is always proportional to N^. 

Similarly, using the usual formula for two Feynman parameters (3.15) and concentrating 

all of the A 5 dependence into Q J , where, 

we find, 

Ua^a,] = i r [ l ] + x ^ E 7 X = ^ ' ^ " ^ 1 l ] 
\ ^^^^ m=l / 

E ( ^ - 7 , - %7n .)if=^•^'"^[1] - ^ E ^ . " ^ r H a . 
5̂ m=l -^ 'Om=l 
A 5 i f - « [ i ] 

N 5 
5 / / . ^ M ^ . J"^) 

1_ ^ 7j ^^m 7m?7̂ , |0=6,(m) j-^j _ ^ ^ . ^ f M f ^ ^ ] . (3.79) 

' 2 A ^ 5 ^ i W "^-^ 

To simplify the non-c,j terms (and eliminate one power of ^^5), we have rewritten some of 

the variables appropriate to the pentagon integral in terms of those appropriate to the box 

pinchings, 77-™^ and 7 - ™ \ using the relations [28], 

(m) _ Vmm'yi — Vimjm (m) _ ^mm^tj ~ VimVjm 

~ 2N5 ' "^'^ ~ 2iV5 

Bern, Dixon and Kosower have shown [27, 28] that I5 drops out of the calculation of any 

gauge theory amplitudes by using the identity [30], 

E ^ r ^ f Q + i . + i ^ k f , (3-80) 

where g^^^' represents the metric tensor in D = 4. Since, 

= E h[x^+^x,+,Wq;^ - llf=%'''^i (3.81) 
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a//terms proportional to in l5[ajaj] can be moved into the existing ^ ^ ' ^ J piece. Inspection 
of equation (3.79) indicates that the correct term to reshuffle is —A5l|[l]/A^5 rather than 
merely I f = ^ [ l ] . Retaining only the terms, 

g terms — I5 [ i j^^ — 2̂  Cj+i^+i 

1 1 / 1 5 \ 

= - ^ i 5 ^ = ^ [ i ] p ' ' - ^ + \ ( r ^ [ 1 ] + ^ E T^if=^'^"^^[1]] < 4 r 

- TXT ^ 7^14''=''^"'^[1]/"^^ + 0(e) . (3.82) 
^̂ ^5 rn=l 

As expected the I f ^ ^ [ l ] terms precisely cancel. Here the flniteness of I f = ^ [ l ] and i f ' ^ ^ f l ] has 

been used to ensure that this term generates only 0{e) corrections when replacing g'^^^' w i th 

the dimensionally regularised g'^^^^. The remaining piece should not contain any kinematic 

singularities associated wi th lower-point Gram determinants, in particular A's, as i t originates 

f r o m the well-behaved l f = ^ . This is indeed the case and we write, 

^^2 = ^ j : i X = ' ' ^ ' ^ M - (3.83) 

The pentagon integrals w i th three insertions can be obtained by direct differentiation of 

equation (3.79). We find, 

/ 1 5 \ 
Iska^afc] = I5 [«fc] + ^ E ( W 4 11] + 27„l4 

/ I ^ (in) (m) \ 

'mm • 6 A ^ 5 ^ i V " V 
/ (m) _ M \ \ 

- •— I 4 '[l]-r]jml\ [aiak] + cyclic i,j,k.(3.84) 
^ Vmm J J 

Since the CIJ term is obtained by differentiating C j j l f ^ ^ f l ] , i t must be finite as both N5 0 

and e —> 0 and we introduce the finite function, 

Le3, = ^ E + 2jml4^''^'^\xk]) • (3.85) 
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Recalling that, 

2 
5 

t,j,k=l 

+ \ | E Is'^^^x.+i]^'^''^^.?,^* + cychc i , j , k | , (3.86) 

and keeping only the Cij terms in equation (3.84) we find, 

terms = ht'[xk+iV'^^q'k' ~ {ifi^k^i] + l^^^k) E Q+i , ,+ i9 f 

= - ^ L e 3 , ^ ' ' ^ ' ' ^ ? f + 0(6) . (3.87) 

As in the previous case, the finiteness of the coefficient of g^l^' has been used to promote i t 

to the f u l l D = 4 — 2e metric tensor. 

The tensor integrals w i th four and five insertions may be obtained by further differentia­

t ion, and the same trick used to rewrite the Cjj terms as a contribution to the metric tensor 

structure. In this way, all vestiges of the pentagon in £) = 6 — 2e and higher dimensions can 

be removed, along w i t h the inverse powers of A 5 . 

The functions introduced in this section, Lei , Le2 and Les^, only contain a single power of 

the Gram determinant. Consequently, they can be evaluated without numerical problems. 

To illustrate this, we choose a representative phase space point, S1234 = 1, S123 = 0.4, S234 = 

0.3, Si3 = 0.1 and use the variable S23 to control A, The sixth variable S24 is chosen to lie 

wi th in the physical region defined by the pentagon Gram determinant, A5 < 0. Fig. 3.9 

shows the functions Lei and Le2 together wi th Less. In each case, we see that the A —> 1 

l i m i t is smoothly approached indicating that the function is intrinsically well behaved in 

that l i m i t . 
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Figure 3.9: The finite functions for the pentagon graph wi th one external mass and evaluated 
in double precision Fortran as a function of 1 — A. Because the functions only contain single 
inverse powers of (1 — A), no numerical problems are evident. 

3.7 Summary 

In this chapter we have developed a new strategy for evaluating one-loop tensor integrals. 

I t avoids the usual problems associated wi th the presence of Gram determinants. Such 

Gram determinants arise when the tensor integrals are expressed in terms of the phj'sical 

momenta and generate false singularities at the edges of phase space. In addition to creating 

numerical instabilities, they tend to increase the size of the one-loop matrix elements. Our 

approach is to construct groups of scalar integrals which are well behaved in the l imi t of 

vanishing Gram determinant (A„ -> 0), and which can be evaluated wi th arbitrary precision 

by making a Taylor series expansion in A „ . In fact such combinations arise naturally by 

either differentiating wi th respect to the external parameters - essentially yielding scalar 

integrals w i t h Feynman parameters in the numerator - or by developing the scalar integral 

in D = 6 - 2e or higher dimensions. Evaluating these new integrals is straightforward - they 

are just linear combinations of the known scalar integrals in D = 4 or D = 4 - 2e. As such, 

they combine the dilogarithms, logarithms and constants f rom different scalar integrals in 
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an extremely non-trivial way. As a bonus other spurious kinematic singularities are also 
controlled - they appear in the denominator of the finite functions, which are well behaved 
in the singular l imi t . Although the number of basic functions has increased, the number of 
di logari thm evaluations has not, since the functions are generated recursively. Furthermore, 
because the Gram determinant singularities are not genuine, by grouping integrals in this 
way, the expressions for one loop integrals are compactified. 

To illustrate the approach for specific integrals, we have applied the method to 3-, 4- and 

5-point integrals where the internal masses have been set equal to zero. These tensor integrals 

are relevant for a range of QCD processes where the quark and gluon masses are negligible. 

For more general processes wi th arbitrary internal masses and external kinematics, the rele­

vant combinations of scalar integrals can be obtained using equations (3.11,3.14-3.17). As a 

by-product we have shown how all the Gram determinants associated wi th pentagon graphs 

can be eliminated. 

In chapter 4 we w i l l make use of the basic 1-loop functions defined here to calculate the 

matr ix elements for the next-to-leading order corrections to e"'"e~ 4 jets. The relevant 

partonic processes contain all the mass configurations of the integrals (up to the pentagon 

level) described in this chapter. The sheer number of diagrams involved in the calculation wi l l 

make the grouping of terms described in this chapter highly desirable, in order to compactify 

both the intermediate algebra and the final result. 



Chapter 4 

Partonic Matrix Elements 

4.1 Introduction 

As has been discussed in chapter 2, mult i- jet events in electron-positron annihilation have 

long been a source of v i ta l information about the physics of the strong interaction. In 

particular, the study of four-jet production can give us both a firmer test of QCD (through 

determination of the colour factors of the gauge group) and a window on possible new physics 

(for instance, the signature of a ' l ight ' gluino). 

To progress beyond the simplest Born level identification of each jet wi th a single parton, 

we must compute the next-to-leading order corrections. Such a calculation naturally divides 

into the 3 distinct areas which have already been briefly outlined in chapter 2. I n particular, 

for the case of 4 jet production in e"'"e~ annihilation, these are: 

• V i r t u a l contributions 

The 4 jet rate receives next-to-leading order vir tual contributions f rom the two sub-

processes e+e~ qqgg and e+e" qqQQ. The 0{a%) terms arise f rom the interfer­

ence of one-loop w i t h Born level amplitudes. 

• R e a l contributions 

The soft and collinear divergences of the vir tual corrections, manifest as poles in e 

86 
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in dimensional regularization, cancel wi th the phase space singularities f rom the real 

contributions. These are the 5-parton Born level processes which contain an extra 

radiated gluon, namely e+e~ -> qqggg and e+e" —> qqQQg. 

• N u m e r i c a l combination 

For the above mentioned cancellation to take place, the four and five parton matrix 

elements must be suitably combined. Isolating the infrared divergences and cancelling 

them in an efficient manner by Monte Carlo methods is the final step in the 4 jet 

calculation. 

In this chapter we shall concentrate on the explicit calculation of the matrix elements for 

the partonic processes relevant for both the vir tual and the real contributions. The vir tual 

matr ix elements have long proved a 'bottle-neck' for QCD calculations, partly due to the 

large number of contributing diagrams and also because of the appearance of one-loop dia­

grams w i t h five external legs. In particular, we wi l l describe a suitable colour decomposition 

of the contributing Feynman diagrams and the resulting squared matrix elements. The vir­

tual matr ix elements w i l l consist of a finite piece (composed of the special functions of the 

previous chapter) and infrared and ultraviolet poles. Discussion of the implementation of the 

cancellation of the infrared poles between real and vir tual terms is deferred unti l chapter 5. 

In discussing the calculation of the matrix elements, we shall focus on the QCD current, 

namely the sub-process 7* partons. In other words, the leptonic current e"*'e" -> 7* is 

factored out of the amplitudes. Such a factor is elementary to restore and in fact wi l l often 

be a common factor, such as when normalizing the result of a calculation to the lowest order 

e'^e" —> qq results. Moreover, the matr ix elements may then also be directly implemented 

in general purpose next-to-leading order Monte Carlo programs for the processes e^p -> 

e"̂  4- 3 jets and pp ^ V + 2 jets. 

Note that due to the difficulty involved in defining 75 away f rom four dimensions, we have 

restricted ourselves to the channel e+e" 7* -> 4 jets, rather than including an interme­

diate Z boson. The mixed vector-axial coupling of the Z presents problems in conventional 

dimensional regularization, which is the scheme used throughout our calculation here. We 
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also choose to neglect contributions where the boson couples to a closed fermion loop. Both 

of these contributions are in fact very small, because of cancellations between up- and down-

type quarks and kinematical constraints. 

The first stage in the calculation of the vir tual corrections is to make a systematic organi­

zation of the contributing diagrams into groups which have the same colour factor. Having 

made this division at the amplitude level in lowest and one-loop order, we calculate the 

relevant squared interference. This procedure is very similar for both sub-processes and we 

present the calculation of the colour structure for each in turn in sections 4.2 and 4.3. A 

subtlety involved in 'squaring' the amplitudes involving more than one gluon is described 

in section 4.4. The implementation of the loop integral formulae of chapter 3 is outlined 

in sections 4.5 and 4.7, whilst the isolation of the infrared and ultraviolet poles is detailed 

in section 4.6. Comparison of the results presented here wi th those obtained f rom a very 

different approach [42, 43, 44] follow in 4.8. Finally, the structure of the 5 parton tree level 

matr ix elements is given in sections 4.9 and 4.10. 

4.2 The 2-Quark, 2-Gluon Sub-Process: 7* qqgg 

We first consider the process, 7* —)• qqgg in some detail. Momenta are labelled as, 

7*(Pi234) -> q{pi) + q{P2) + g{p?,) + p(P4), (4.1) 

and the photon momentum is systematically eliminated in favour of the four massless parton 

momenta. 

The colour structure of the matr ix element at tree-level (n = 0) and one-loop (n = 1) is 

rather simple and we have, 

X { ( T « ^ T « ^ ) , , , , 4 " ) ( 3 , 4 ) + (T"^T'^3)^^^^_4(")(4^3) + ^-5,^J,,,^A^\2,A)^ , (4.2) 

where C i , C2 are the colours of the quarks and 0 3 , 0 4 the colours of the gluons. The arguments 
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of indicate a permutation of the momenta of the external gluons. At lowest order, 

4 ° ^ ( 3 , 4 ) = 0, (4.3) 

while at one-loop we find, 

4 ^ ^ 3 , 4 ) = i v 4 ' ^ ( 3 , 4 ) - ^ 4 ^ ^ ( 3 , 4 ) , (4.4) 

4^^(3 ,4) = 4^^(3 ,4) = 4 ^ ( 4 , 3 ) . (4.5) 

The functions A^^^{i,j), a = A, B,C represent the contributions of the three gauge invariant 

sets of Feynman diagrams shown in Figs. 4.1, 4.2 and 4.3 respectively. The derivation of this 

decomposition is simple application of the colour algebra rules given in chapter 2. 

At leading order, the squared matrix elements were first obtained in [17]. The colour 

structure is, 

Y: \M^'^\' = ^ ( A T ^ - i ) A | r ( 3 , 4 ) + r ( 4 , 3 ) - ^ r | , (4.6) 
spins 

where. 

and, 

r ( 3 , 4 ) = ^ | 4 " ^ ^ ( 3 , 4 ) 4 " ^ ( 3 , 4 ) , (4.7) 
spins 

r = E I ( 4 ° ^ ' ( 3 , 4 ) + 4 ° ^ ^ ( 4 , 3 ) ) ( 4 ° ^ ( 3 , 4 ) + 4 ' ' H 4 , 3 ) ) |. (4.8) 
spins 

The 3-gluon vertex contributions to ^ i °^ (3 ,4 ) and 4 ° ^ (4, 3) enter with opposite sign, so T 

(with no arguments) is the contribution from the pure QED-like diagrams. 

The relevant squared matrix elements are the interference between the tree-level and 

one-loop amplitudes, 

V 2 |M(°) tMW| = 'M(^) (iv^ - i ) i v 
spins 4 V 27r / 

X | £ ^ ( 3 , 4 ) + £ ^ ( 4 , 3 ) - ^ ( £ ^ + £ B ( 3 , 4 ) + £ B ( 4 , 3 ) - £ C ) + ^ ^ B | , (4.9) 

with, 

£ , ( 3 , 4 ) = E ^Ai'^H^^)A?\3,^), (4-10) 
spins 
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Figure 4.1: The classes of Feynman diagrams relevant for the function ^ ^ ^ ( 3 , 4 ) . Reading 
clockwise round the diagram and starting from the quark (pi) at the top, we encounter gluon 
(ps) before gluon {p^) and end at antiquark (^2)- The solid circle indicates the possible 
positions for attaching the off-shell photon to the quark-antiquark pair. Diagrams (a), taken 
with both permutations of gluons 3 and 4, contribute to the piece £.4 while the permutation 
shown in (a)-l-(b) gives the contribution to £ ^ ( 3 , 4 ) . Diagrams with self-energy corrections 
on the external lines are zero in dimensional regularisation and have been omitted. 
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Figure 4.2: The classes of Feynman diagrams relevant for the function ^^^(3,4) Reading 
clockwise round the diagram and starting from the quark (pi) at the top, we encounter gluon 
(pa) before gluon (^4) and end at antiquark (^2)- The solid circle indicates the possible 
positions for attaching the off-shell photon to the quark-antiquark pair. Diagrams (a), taken 
with both permutations of gluons 3 and 4, contribute to the piece £ 3 while the permutation 
shown in (a)+(b) gives the contribution to £^(3 ,4) . 
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Figure 4.3: The classes of Feynman diagrams relevant for the function AQ^ when taken with 
both permutations of the gluons. Reading clockwise round the diagram and starting from 
the quark (pi) at the top, we encounter gluon (ps) before gluon (^4) and end at antiquark 
(^2) - The soUd circle indicates the possible positions.for attaching the off-shell photon to 
the quark-antiquark pair. 

for a = A, B and the QED-like structures, 

= E » (^L^)t(3,4) + ^(i)t(4^3)) ( 4 °H3 ,4 ) + 4"^(4,3)) . (4.11) 
spins 

Note that the function £/i(3,4) contains some finite terms proportional to np/N due to the 

fermionic vertex and self-energy corrections in Fig. 4.1. Hence the squared matrix elements 

are described by 5 independent The Ca{3, 4) are symmetric under the exchange pi o p2 

andpz ^ p4 while the Ca are symmetric under either pi O p2 orpa o p^. 

4.3 The 4-Quark Sub-Process: 7* qqQQ 

The calculation described in this section was first carried out by the authors of [45]. In 

repeating the computation, some simplification of the final results was found and the method 

is presented here for completeness. 
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In the four quark final state we produce two pairs of (possibly non-identical) quarks, qq 
and QQ, with corresponding quark charges and eg. Again the momentum of the virtual 
photon is eliminated in favour of the massless quark momenta, which are labelled as, 

7*(Pi234) ^ q{Pi) + q{p2) + Q{P3) + Q{P4). (4.12) 

The colour decomposition of the tree-level (n = 0) and one-loop (n = 1) amplitudes 

analogous to equation (4.2) is, 

-,2 / ^ ^2n 

2 \47ry 

X |^,, , ,^,3,, (^4"^(l ,2) + 4"^(3,4) + ^ ( 4 ' ' ) ( l , 4 ) + 4"^(3=2)) 

- Sc^cAsc. ( ^ ( 4 " ^ ( L 2 ) - f 4 " ^ ( 3 , 4 ) ) + 5 , Q ( 4 " ^ ( l , 4 ) + 4 " ^ ( 3 , 2 ) ) ) } , (4.13) 

where the colours of the quarks are labelled by q , i = 1 , . . . , 4. Here there are many diagrams 

which appear similar, but in which the vector boson couples to diff'erent quark lines. For 

identical quarks, the vector boson may couple to the pairs qq, QQ, qQ and Qq, whilst in 

the non-identical case only the first two pairs are allowed. This is represented by the delta 

function, Sqq — 1 for identical quarks and zero otherwise. The arguments of Ai indicate 

which quark line is attached to the vector boson (by specifying the momenta labels of the 

quark-antiquark pair) and hence which quark charge that function is proportional to. The 

generic structure given above simplifies at tree level, 

A?{^,J) = AP{^,J), (4.14) 

while at one-loop we find the more complicated expressions, 

A?{i,j) = NA'i\i,j)-^{2A^}\i,j) + A^^\z,j)), (4.15) 

Ai'\i,j) = N{A^i\t,j)-A^^\t,j))-^{A^i\i,j) + A^i\i,j)). (4.16) 

Al l the contributing Feynman diagrams have again been divided into three gauge invariant 

sets, represented by the functions A^^\i,j), a = A,B,C. These diagrams are illustrated 

in Fig. 4.4. The contribution from the fermion loop in the fourth diagram of Fig. 4.4(c), 
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which is proportional to the number of flavours np, is included in the leading colour part 
Ac- There is a set of diagrams which is not included here, namely that which includes 
diagrams containing closed fermion triangles. However, this contribution must vanish by 
Furry's theorem. Although this amplitude is not itself zero, the symmetric phase space 
integration over the final state ensures that this QED result extends to the gluonic case 
when calculating the contribution to a 4 jet cross-section. 

At lowest order the squared matrix elements are [17], 

spins 

X 

where, 

I ( r ( l , 2; 1, 2) + r ( l , 2; 3, 4)) + ^ ( r ( l , 2; 1, 4) + T{1, 2; 3, 2)) | 

+{1 o 3, 2 o 4) + S,Q{2 O 4) + 5gQ{l o 3), (4.17) 

r ( z , j ; f c , 0 = El̂ °̂̂ (̂̂ '̂ M '̂"(̂ ,OI- (4-18) 
spins 

The relevant next-to-leading order squared matrix elements are the interference between 

the tree-level and one-loop amplitudes. 

spins 

X 

+5, 

E2|Al(° ) tA^(^) | = ^ ( ^ ) (A^^-1) 

( £ c ( l , 2 ; l , 2 ) + £ c ( l , 2 ; 3 , 4 ) ) 

- ^ ( 2 £ ^ ( 1 , 2; 1, 2) + 2£^(1 , 2; 3,4) + £ B ( 1 , 2; 1, 2) + £ ^ ( 1 , 2; 3,4))j 

,Q ( £ c ( l , 2; 1,4) + £ c ( l , 2; 3, 2) - £ ^ ( 1 , 2; 1,4) - £^ (1 , 2; 3, 2)) 

- ^ (^CA{1, 2; 1,4) + CA{1, 2; 3, 2) + £ ^ ( 1 , 2; 1,4) + £ ^ ( 1 , 2; 3, 2))] | 

+ (1 o 3, 2 o 4) -t- 5,Q(2 O 4) - f 5,Q(1 O 3), (4.19) 

with, 

C,{t,r,k,l)=Y: \A^:^K^,J)A^'\k,l)\. (4.20) 
spins 
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Figure 4.4: The classes of Feynman diagrams relevant for the different colour structures. The 
solid circle indicates the possible positions for attaching the olT-shell photon to the quark-
antiquark pair Group (a) contributes to A^}\i,j), (b) to 4 ^ ^ , j ) and group (c) to the 
leading colour amplitude A''^\i,j). Diagrams with self-energy corrections on the external 
lines are zero in dimensional regularisation and have been omitted. 
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Using the symmetry properties of the Feynman diagrams, we find that, 

£ , ( 1 , 2; 3, 2) = £„(1 , 2; 1,4)(pi o p2,P3 ^ PA), (4.21) 

so that for this sub-process the squared matrix elements are described by 9 independent £„ . 

4.4 Gluon Polarization Sums 

In QED, the sum over photon polarization states is straightforward to perform. A direct 

consequence of the Ward identity is that, in the Feynman gauge, 

E ^ -9'", (4.22) 
spins 

is a valid replacement. This may be used for any number of initial or final state photons. 

When working within QCD this is only true for processes involving a single gluon. With 

more than one gluon, the presence of the triple-gluon vertex allows non-physical, longitudi­

nal degrees of freedom to propagate, which can be compensated for by additional diagrams 

involving loops of ghost particles. To illustrate an alternative resolution (first used in [46]), 

consider a process involving two gluons of momenta pi and p2, with corresponding polariza­

tion vectors and 63 • The amplitude for such a process may be written as, 

M = 4e^,M,., (4.23) 

where the uncontracted form of the matrix elements, satisfies the Ward identities, 

p'AM,. = e'ip^.M,. = 0. (4.24) 

So at the amplitude level, we must obtain zero when replacing one or other of the gluon 

polarization vectors by the corresponding momentum. However, to legitimately make the 

replacement in equation (4.22), we need the more stringent conditions, 

p'iM,u=P2M,, = 0. (4.25) 
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Inspecting the form of the triple-gluon vertex for two external gluons (Fig. 4.5) and the 
Feynman rules from chapter 1, 

{2p^ + p^Yg^' - (pi + 2p2r9'''' + {P2 - PiYg^": (4-26) 

we find two terms that will vanish only by transversality, e{p) • p = 0, namely PiQ'^'' - PIQ"''-

These terms are therefore admitted by equation (4.24) but not by (4.25). 

Pi (eft 

• (P1+P2) / / ^ 

< c' 
xrrrrrrrSl 

P2 (£2) 

Figure 4.5: The triple gluon vertex for two external gluons pi and p2-

Thus use of the sum (4.22), without the addition of ghost diagrams, is allowed providing 

we use a modified form of the three-gluon vertex for two external gluons, 

2p'{g^p - 2p^,g^'> + {p^ - p.Yg^r (4.27) 

So, having replaced the relevant three-gluon vertices in our diagrams with the modified 

form (4.27), all the boson polarization sums (ie. for the off-shell photon and the two gluons 

in our particular case) may be performed with the simple replacement (4.22). 

4.5 Loop Integrals 

I t is now an arduous but well-defined task to calculate the 14 required functions relevant for 

the next-to-leading order corrections to 7* -)• 4 jets. After adding up the relevant diagrams 



CHAPTER 4. PARTONIC MATRIX ELEMENTS 98 

prescribed by the colour structure and 'squaring' with the polarization sums and external 
triple gluon vertices as above, it remains to perform the usual algebra. FORM [47] is used 
repeatedly to perform D-dimensional traces and to handle the lengthy expressions that are 
generated. 

As discussed in the previous chapter, the loop integrals which are generated in this way 

may contain tensor numerators, deriving from terms such as i"^ and i • p. The simplest form 

of reduction possible involves a re-writing of numerator factors thus, 

P{i + p)^ 2P{i + p)^ • ^ ' ' 

The tensor numerator is removed and replaced by a combination of scalar integrals with 

either none or one of the propagators cancelled through. Such a trick may clearly only be 

used when the momentum p in the numerator can be related to those in the propagators. In 

the case of pentagon diagrams, where all momenta are present in the propagators, this type 

of reduction results in no pentagon tensor integrals. 

Thus these simple cancellations lead to an instant reduction of the number of loop con­

figurations that need to be calculated. In particular, we require only the scalar pentagon 

integral and box (triangle) tensor integrals with at most three (two) loop momenta in the 

numerator. This is a primary motivation for calculating the squared matrix elements rather 

than the individual amplitudes. We have seen in the previous chapter how these tensor 

reductions can be carried out and the special functions that need to be introduced in order 

to describe all these integrals (collected in Appendix B). 

4.6 Pole Structure 

Working in dimensional regularisation with 4-2e spacetime dimensions, it is straightforward 

to remove the infrared and ultraviolet poles from the functions £„ . These are the singulari­

ties which are expected to cancel with those from the corresponding 5-parton configurations 

containing an extra gluon and those generated by ultraviolet renormalisation. This can-
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cellation relies upon the factorization into pole terms 1/e, 1/ê  multiplying the tree-level 
amplitudes. 

In particular, for the sub-process 7* qqgg we find, 

£ . ( 3 , 4 ) = f - ^ - ^ - ^ - | ^ ) r ( 3 , 4 ) + £ . ( 3 , 4 ) , (4.29) 

= + 1 ( _ ^ _ ^ _ ^ _ | ^ ) ( T + T ( 3 , 4 ) - T ( 4 , 3 ) ) 
2 V 2 e / 

+ ^ f - ^ - ^ - ^ - I — ) + ^(4^ 3) _ ^(3^ ^ (4.30) 
2 V 2 e J 

£ B ( 3 , 4 ) = ( - ^ - ^ ^ ) r ( 3 , 4 ) + £ B ( 3 , 4 ) , (4.31) 

Cs = { - ' ^ - l ' ^ ) r + C s , (4.32) 

£ c = 4 f - ^ - ^ + ^ + ^ ) ^ ^ + ' ^ (3 ,4 ) -r (4 ,3) ) 

+ 1 f _ ^ _ ^ + ̂  + ̂ ) (r+r(4,3) - r(3,4)) £ c . (4.33) 

where we have introduced the notation, 

V J r(l - 2e) 

Similarly, the poles isolated from the sub-process 7* qqQQ are, 

£ . ( l , 2 ; z , j ) = ( + ^ - ^ - ^ + ^ ) r ( l , 2 ; ^ , j ) + >C.(l :2;2, ;) , (4-35) 

£ s ( l , 2 ; ! , i ) = ( - ^ - ^ - ^ ) r ( l , 2 ; ! , , ) + £ B ( l , 2 ; ! , i ) , (4.36) 

£ c ( 1 . 2 ; . , i ) = ( - ^ - % + | ^ - | | ^ ) r ( l , 2 ; , , , ) + £ o ( l , 2 : > . i ) . ( 4 . 3 7 ) 
V e'' e-' o e oiV e J 

This pole structure is in agreement with the expectations of ref. [21] and reproduces that 

;iven in [31, 48 . 
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4.7 Reduction Relations 

In determining the finite pieces, £ , we are concerned to ensure that the singularity structure 

matches that of the tree-level functions. Upon examining the tree-level matrix elements for 

the qqgg sub-process and in terms of the generalised Mandelstam invariants, 

Sij = ipi + P j f , Sijk = {pi + Pj + P k f , Sijki = [pi + Pj + Pfc + P/)^ (4.38) 

T contains single poles in S13, S23, 514 and S24 while T(3,4) has poles in S13, S34 and S24. 

In addition, both T and T(3,4) contain double poles in the triple invariants S134 and 5234-

As discussed in the previous chapter, the tensor reduction employed automatically protects 

possible singularities due to Gram determinants. However, it is possible to generate apparent 

singularities in double or triple invariants such as S12 or 5123. These poles do not correspond to 

any of the allowed infrared singularities and the matrix elements are finite as, for example, 

S12 —>• 0 or S123 —>• 0. In fact, it is straightforward to explicitly remove such poles using 

identities amongst the combinations of scalar integrals. For example, the identity, 

—^^22{Pl2,PZ,Pi) = -Ld2l(pi2,P3,P4) +Ldi (p i2 ,P3 ,P4) + LCi(pi2 ,P34), (4.39) 
Sl23 

relating the functions for box integral functions with two adjacent masses is useful to elim­

inate poles in S123. A complete list of such identities for all the loop integral functions is 

given in Appendix D. The finite pieces can then be written symbolically as, 

i 

where the coefficients Pi{s) are rational polynomials of invariants multiplying the finite 

functions L^, which are well-behaved in all kinematic limits. Any denominators of the corre­

sponding tree-level matrix element are allowed in the coefficient Pi(s), with any additional 

fake singularities protected by L j . 

Typically the coefficient of a given function contains C(IOO) terms for the qqgg sub-

process (and 0(30) for qqQQ), comparable with the size of the tree-level matrix elements. 

The number of functions is rather large, of O(IOO), but is a minimal set which protects 
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all the kinematic limits and is therefore numerically stable. Although the expressions for 
the individual Ca are in closed form, they are still rather lengthy and may contain many 
hundreds of terms in total. Therefore, rather than explicitly list each of these functions, it is 
more useful to provide FORTRAN code which can return the value of any of these functions 
at a specific phase-space point. However, to stress the analytic nature of these results, one 
of the smaller four-quark functions, £ c ( l , 2; 1, 2) is presented in full in Appendix E. 

4.8 Comparison of Matrix Elements 

The above calculations were also performed (contemporaneously) by another group, consist­

ing of Bern, Dixon, Kosower and Weinzierl (BDKW) [42, 43, 44]. However, their choice of 

method was clearly different to the one presented here. In particular, the main differences 

were: 

• 'Squaring' of amplitudes. 

We chose to compute the interference of the tree-level with the one-loop amplitudes 

in order to simplify considerably the tensor integrals involved. BDKW instead worked 

directly in the helicity amplitude approach, where in particular the helicities of the 

initial electron and positron are specified. 

• Dimensional regularization. 

Treating all particles in D dimensions as we have done is the conventional scheme. 

This is not suitable for a helicity calculation, where the external particles should be 

kept in 4 dimensions. BDKW therefore used the dimensional reduction scheme, as 

described in chapter 2. 

• Loop integrals. 

Rather than using a conventional Feynman diagram approach and reducing the inte­

grals as we have done, BDKW appealed to the analytic structure of the amplitudes and 

general results such as unitarity. These tools allowed them to completely reconstruct 

the amplitudes directly from certain specific collinear limits. 
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Given these major differences, direct comparison of the final spin-summed matrix ele­

ments at specific points in physical phase space is a highly non-trivial check of both ap­

proaches. By averaging over the initial electron and positron directions, summing over 

helicity combinations and numerically squaring the amplitudes, the BDKW results can be 

compared with the matrix elements presented here. For the two specific points in phase 

space given in Table 4.1, the comparison is shown in Table 4.2 [49 . 

Invariant Point 1 Point 2 

su 0.0140351646 0.406021454 

Sl3 0.0648812165 0.0621334973 

Si4 0.144051806 0.0709877341 

523 0.119662557 0.211110091 

S24 0.0284402186 0.247534016 

S34 0.628929035 0.00221319515 

Table 4.1: The phase space points used for the comparison in Table 4.2. 

The results obtained from each calculation for both of the sub-processes are clearly in 

very good agreement. 

4.9 The 2-Quark, 3-Gluon Current 

Since we shall later be interested in the behaviour of the five parton matrix elements in soft 

and coUinear limits, we shall present the colour decomposition in rather more detail than the 

four parton ones above. In particular we will endeavour to always write the matrix elements 

in terms of colourless subamplitudes where the colour quantum number flows are clear. 

The two quark-three gluon current <Ŝ  may be decomposed according to the colour struc-
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Colour factor Source Point 1 Point 2 

N qqQQ 10.1502095 11.718672 

10.1502120 11.718774 
1 

iV qqQQ -13.869213 -51.3942815 

-13.869226 -51.3947206 

N X Up qqQQ 6.46323291 0.0812643912 

6.46323267 0.0812645416 
np 
N qqQQ 4.2077780 2.05627511 

(fermion loop) 4.2077794 2.05627466 

1 qqQQ -1.47205477 1.96450861 

(identical) -1.47205426 1.96450796 
1 qqQQ 1.47454064 5.74016623 

(identical) 1.47454122 5.74016476 

1 QQ99 -4.84091715 -13.4359536 

-4.84091714 -13.4359535 

n-F 
N QQgg -0.00111172722 -0.0170968872 

(fermion loop) -0.00111172717 -0.0170968799 
1 21.5573194 7.24466256 

21.5573192 7.24466266 
1 QQgg -15.1560743 -0.432338074 

-15.1560739 -0.432338183 

Table 4.2: Numerical comparison of the matrix elements presented in this thesis with those 
obtained by the BDKW group. The matrix elements are divided according to the sub-process 
from which they originate and their colour weight. In each row, the uppermost number is 
that obtained using the squared matrix elements of this chapter, whilst the lower is the one 
produced by the helicity amplitudes for e+e" -> qqQQ [42, 43] and e+e" -> qqgg [44, 43 . 
The comparison is made for the two four-parton phase space points characterized by the 
invariants in Table 4.1. 
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ture [50], 

S'^iQ,;l,2,3;Q2)^teg' E {T'''T'^'T'^')c.c,S,{Qul.2.3:Q,), 
P(l,2,3) 

(4.41) 

where S^{Qi; 1, 2, 3; Q2) represents the colourless subamplitude where the gluons are emitted 

in an ordered way from the quark line. By summing over all permutations of gluon emission, 

all Feynman diagrams and colour structures are accounted for. 

The squared matrix elements (again using the polarization sums and triple-gluon vertex 

of section 4.4) are simply. 

'N' 
N 

iV2 ^ lS,{Qul,2,3;Q2)V'^ 
P(l,2,3) ^ 

+ 5^ (g i ; i , 2 ,3 ;Q2)^ ' ^" 

' ^ '5^(Qi;l,2,3;Q2)^^'^" 

+ N4 
(4.42) 

with representing the lepton current e+e ^ 7 * . In the last two terms, the tilde indicates 

that that gluon should be inserted in all positions in the amplitude. In other words, 

S^iQi; 1, 2,3; Q^) = <S^(Qi; 1, 2,3: Q,) + S,{Qi; 1,3, 2; Q^) + S^{Qi: 3,1, 2; ^ 2 ) - (4-43) 

In this case, gluon 3 is effectively photon-like and the contribution from the triple and quartic 

gluon vertices drops out. 

4.10 The 4-Quark, 1-Gluon Current 

The four quark-one gluon current may be decomposed according to its colour structure in a 

similar fashion, 
3 

V{Qi,Q2;Q„Q4;i) = ^^^ 

X T^:cA3cMQuQ2;QZ,QA; i ) + iQi ^ Qs,Q2 ^ QA) - ( Q i ^ Q^) - (Q2 ̂  QA) •. 
(4.44) 
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Qi 

I 
•msmsss^ 3 

WffMMiRRP 

Figure 4.6: The diagrams included in the colourless subamplitude Sfi{Qi\ 1, 2, 3; Q^j. In each 
diagram, the gluons are emitted in an ordered fashion, such that reading clockwise from the 
quark at the top (Qi) we encounter gluons 1, 2 and 3 in that order before reaching the 
antiquark {Q^)- The off-shell photon can be attached to the quark line in the positions 
indicated by the solid circle. 
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where the exchanges are understood to apply to the colour labels as well. The colour ordered 

sub-current can be written, 

%{QI,Q21Q3,QA'A) = SQIQ2^Q3Q4'T'^{QI,Q2',Q3,Q4A) 

(4.45) 

where, 

rf{Qi,Q2;Q3,Q4-A) = i;^4lQ3;Q2) + ^^^^(QaiQalQi;i;Q4)- (4-46) 

Here, SQ^Q. = 1 if quarks i and j have the same flavour. The functions A'^'^'' and B^''^^ 

describe Feynman diagrams where the gauge boson couples to the Q1Q2 pair. However, in 

the colour flows along the gluon connecting the two quark pairs, so that Qi and 

are the endpoints of a colour line (and similarly and Q2) while in B^"'^'^, no colour is 

transmitted between the quark pairs and now Qi and Q2 form the endpoints of a colour line 

(and similarly and Q^). In each case, the gluon may be emitted from any position on the 

colour line. 

Squaring the four quark-one gluon amplitude and summing over colours yields. 

111 ^ = e 

%{Qu Q2; ^3, Q 4 ; 1)^'^! + \%iQi, QA\Q3> Q 2 ; 1)^^ 

5f t (r , (gi ,Q2;Q3,Q4;i)^^ + 7;(<53,Q4;Qi,Q2;i)^'') {%{QI.:q,-MZ.Q2A)V'')'' 
2 
iV 

(4.47) 

or equivalently. 

X 

\ 2 ) \ ) 

T,^{QuQ2;Q3,Q4-A)V'' 
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+^^3?(r/(gi,Q2;Q3,Q4;i)^'^) {r,^{QuQ2;Qz,Q,;i)v''f 

+{QI^Q:^,Q2^Q4)+5Q,Q.{QI^Q3) + SQ2QAQ2^Q,) • (4-48) 

Here we have introduced the shorthand notation, 

r,{Qi,Q2;Q3,Q,;i) = r/(gi,Q2; ^ 3 , ^ 4 ; i) + T/(Q3,Q4;Qi,Q2; i) 

= rf{Qi,Q,;Qs,Q,;l) + TfiQs,Q,:QuQ4A)- (4-49) 

Note that in the case of identical quarks, there is an extra symmetry factor of 1/4 multipljdng 

the matrix elements. 

4.11 Summary 

In this chapter we have presented the calculation of the squared matrix elements for the 

partonic sub-processes relevant for the next-to-leading order corrections for 7* -> 4 jets. 

The lowest order matrix elements for both qqgg and qqQQ are both simple to obtain, whilst 

the one-loop virtual corrections are considerably more complicated. The colour structure of 

the 5 parton processes 7* qqggg and 7* qqQQg is more involved and there are many 

diagrams, but evaluation of the matrix elements is straightforward. 

By grouping the Feynman diagrams according to their colour structure, we find that 

the one-loop matrix elements can be described by 14 independent functions. Working in 

conventional dimensional regularization in D = 4 — 2e dimensions, we have isolated the 

single and double poles in e which are proportional to the lowest order matrix elements. The 

remaining finite pieces are algebraically lengthy but do not contain any spurious singularities. 

By this we mean that the finite terms contain only the kinematic denominators present in the 

corresponding tree-level terms and that we have used the functions of chapter 3 to protect 

the Gram determinant A -> 0 limits. The full results are not presented here, although an 
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Figure 4.7: The Feynman diagrams contributing to the colour ordered sub-currents 
(a) ^«^«=(Qi; l ;Q2lQ3;54) , (b) A'^,^^^{Qi;QM;l;Q,), (c) B^^<^^{Q,;l-MQz:Q,) and 
(d) B^^'^^{Qi;Q2\Qz;l;Q4)- In each diagram, the ofF-shell photon couples to the quark-
antiquark pair Q1Q2 in one of the positions represented by a solid circle. The second quark 
line is oriented in the opposite direction, so that in each case the quark is located towards 
the bottom-right of the diagram. 
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example function is presented in Appendix E. The numerical implementation of these results 
will be presented in chapter 5. 

In order to make a proper study of e+e" 4 jets at next-to-leading order accuracj^, we 

must now show how these matrix elements may be implemented with an efficient Monte 

Carlo phase space integration. This, together with discussion of the cancellation of infrared 

divergences between the real and virtual terms, will be the subject of chapter 5. 



Chapter 5 

Implementation of the Matrix 
Elements 

5.1 Introduction 

We have now assembled all the matrix elements that are necessary for the calculation of the 

process e+e~ 4 jets at next-to-leading order. In this chapter we will see how these may be 

implemented to yield predictions for physical observables. Essentially this means combining 

the four and five parton contributions in a sensible way whilst integrating over the relevant 

phase space in a Monte Carlo fashion. 

In the first instance we re-examine the matrix elements in the light of the phase space 

integration. Partial cancellations between some of the terms mean that some of the matrix 

elements may be dropped in a numerical implementation. Moreover, many of the additional 

terms of chapter 4 that are generated by symmetry operations can be simply included merely 

by counting the numbers of permutations. The use of arguments such as these to massage 

the partonic matrix elements into a more amenable form is the subject of sections 5.2-5.5. 

The remainder of the chapter is devoted to the cancellation of the infrared singularities 

between the real and the virtual contributions to the cross-section. Elaborating on the basic 

outline of chapter 2, we follow the hybrid subtraction scheme and illustrate its application in 

110 
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our case. In particular, we identify the relevant antenna subtraction terms and slicing con­
tributions and show that the exposed singularities cancel. We then present (finite) formulae 
for the four and five parton contributions which may be directly implemented in a Monte 
Carlo integration. 

5.2 Four Quarks 

We first study the implementation of the four-quark matrix elements of section 4.3. This is 

best illustrated by the example of the tree level matrix elements, with the more complicated 

loop corrections following this discussion. 

5.2.1 Tree Level 

In the calculation of the matrix elements in chapter 4 we provided a complete set of func­

tions T{i,j;k,l) , where the off-shell photon couples to the quark lines Qi,Qj and Qk-.Qi-

However, in a numerical implementation of these matrix elements we can reduce the number 

of evaluations that need to be made by appealing to the phase space integration to restore 

some of the symmetries. In addition we find that some of the contributions will vanish by 

application of Furry's theorem. 

Neglected Contributions 

The class of squared diagrams that we will neglect is that corresponding to T ( l , 2; 3,4) and 

its symmetries, where the photon couples to a different quark line in each amplitude. Two 

of the squared diagrams that contribute to this piece are shown in Figure 5.1. I t can be seen 

that one term is obtained from the other by simply reversing the direction of the fermion 

loop involving Qs and Q 4 . Since this loop is cut, these diagrams do not cancel, as would be 

the case by Furry's theorem for an uncut loop. Instead, the cancellation only takes place 

after phase space integration. 
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Figure 5.1: Two of the total of four squared diagrams that contribute to the function 
T ( l , 2 ;3 ,4 ) . The dotted lines cut the on-shell quark lines to indicate the corresponding 
Feynman diagrams, with the labels indicating the (anti-)quarks at each cut. 

Symmetries 

In equation 4.17 of chapter 4 we only explicitly wrote down a small number of the functions 

that contribute to the matrix elements at lowest order, with the remainder being generated 

by symmetry. Here we appeal to that same symmetry and phase space integration to simply 

replace all the extra terms generated by the symmetry by copies of the original. In doing 

so, we also note that the term T ( l , 2; 3, 2) is generated by the symmetry pi o p2., Ps PA 

acting on T ( l , 2 ; 1,4). 

At this point it is useful to consider the different factors that will apply to terms in the 

matrix element which are relevant for identical and non-identical quarks. We shall always 

sum over all np flavours of quark for each quark line, in addition noting that terms involving 

identical quarks will acquire an identical particle factor of 1/4. 

For terms in the matrix elements which are only present when dealing with identical 

quarks it is then clear that we must attribute a factor of /4. Those terms which appear 

in both cases, 8qQ = 0 and 6qQ = 1, are slightly more complex. We can choose a pair of 
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non-identical quarks in np{nF — l ) / 2 ways. In addition, the identical quark contribution 

enters twice for every single occurence of the non-identical term - once for 6qQ = 0 and again 

(with a symmetry) for 5qQ = 1. Hence the total factor is nF{np — l)/2 + 2xnF x 1/4 = n^/2. 

In particular, we have, 

r ( l , 2; 1, 2 ) + (1 symmetry) — > 2 x n | / 2 = n^, 

r ( l , 2 ;3 ,4 ) 0, 

T ( l , 2; 1, 4) + (3 symmetries) 

(4 symmetries from ?"(1,2; 3, 2)) — > 8 x 71^/4 = 2nF. (5.1) 

5.2.2 One-Loop 

The one-loop matrix elements are very similar in structure to the lowest order result. We 

will again appeal to the same types of symmetry argument to reduce the number of function 

evaluations and also neglect contributions similar to those dropped above. 

Neglected Contributions 

We will again neglect the squared diagrams where the photon couples to a different quark line 

in each amplitude, namely functions of the form £a ( l i2 ;3 ,4 ) . Although the corresponding 

tree-level function T( l ,2 ;3 ,4) vanished after phase space integration, according to Furry's 

theorem, the one-loop functions do not. However, the sum over the quark couplings together 

with some phase space cancellation related to that at tree-level, means that this neglected 

piece is small [51]. 
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Symmetries 

Using the symmetry of the diagrams and the appropriate factors for sums over quark flavours, 

we find that the extra symmetries can be replaced by factors as follows, 

£ a ( l , 2; 1, 2) + (1 symmetry) 2 x n | / 2 = n | , 

£ Q ( 1 , 2; 1, 4) -I- (3 symmetries) 

+ (4 symmetries from £«(1,2; 3,2)) —> 8 x np/i = 2nF. (5.2) 

5.3 2 Quarks, 2 Gluons 

The implementation of the matrix elements for the production of a quark-antiquark pair 

together with two gluons given in section 4.2 is more straightforward. There are no neglected 

contributions and it only remains to utilize the symmetries of the matrix element functions. 

5.3.1 Tree Level 

The tree level squared matrix elements are described by the two functions T(3,4) and T (with 

no arguments). The function T(4, 3) is related by the symmetry operation interchanging the 

two gluons and will be restored by phase space integration. The sum over quark flavours 

generates a factor of and the gluons provide an identical particle factor of 1/2. Hence we 

find, 

T ( 3 , 4 ) ( 1 symmetry) —^ 2xnF/2 = nF.. 

T npl2. (5.3) 
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5.3.2 One-Loop 

The situation at the one-loop level is very similar. The functions £^(3,4) and behave in 

the same way as the tree-level functions T(3,4) and T, 

£a(3, 4) + (1 symmetry) —> 2 x nir/2 = np, 

jCa n^/2. (5.4) 

5.4 Combined 4 Parton Cross-Sections 

By putting together the factors in the 4 parton matrix elements given in equations (5.1) 

and (5.3) we can write the implemented form for the lowest order matrix elements for four 

jet production. In doing so, it is convenient to normalize the result by the lowest order result 

for 7* qq. This is simply calculated, yielding, 

ao = e^NnF—, (5.5) 

where s is the centre-of-mass energy squared. In this equation the factor N x np results 

from the sum over quark colours and flavours, with the electromagnetic coupling supplying 

a further ê . Hence we have, 

_ ( M ! f ^ V f ^ U r ( 3 4 ) - - L r + ^ r f i 2 - i 2 ) - f A r ( i 2 - i 4 ) l 

ao " s [ 2 7 r ) [ N ^ j|^^(3,4) ^ ^ ^ 7 + ^ / (1, 2,1, 2)-f / (1, 2 , 1 , 4 j | 
(5.6) 

Similarly the next-to-leading order 4-parton contribution to the cross-section can be obtained 

by examining equations (5.2) and (5.4) together with the form for the matrix elements given 

in chapter 4. The result is, 

^ = — [ - 2 ^ ) ( , - ^ V ^ j ( ^ ^ ( 3 ' ^ ) - ^ ( ^ ^ + 2 £ B ( 3 , 4 ) - £ c j + ^ £ B 

+ ^ Ceil, 2; 1 , 2 ) - ^ {2CA{1, 2; 1, 2) + £ ^ ( 1 , 2; 1, 2)) (5.7) 

+ ^ ( £ c ( l , 2; 1,4) - £ ^ ( 1 , 2; 1,4)) - ^ ( £ ^ ( 1 , 2; 1,4) -t- £^(1 ,2; 1,4))^ . 
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5.5 5 Parton Expressions 

In this section we summarize the symmetries of the five parton matrix elements for the two 

sub-processes and combine them in a form which is more suitable for numerical implemen­

tation. 

5.5.1 The 2 quark, 3 gluon Sub-Process 

The style of decomposition used for the matrix elements given in chapter 4 is again imple­

mented in a straightforward manner when only one quark-antiquark pair is produced. After 

integration, all the permutations of the gluons are equivalent and it remains to include the 

quark sum (np) and the identical particle factor 1/3!. This results in, 

S^{Qul,2,3;Q2) ^ 6 x n̂ ^ x 1/3! = n^, 

<S^(gi;l,2,3;Q2)|' 6 x x 1/3! = n^ ,̂ 

S,{Qi;l,~2,~3;Q2)' ^ x 1/3! = np/6. (5.8) 

5.5.2 The 4 quark, 1 gluon Sub-Process 

The structure of the matrix elements in this case is very similar to that obtained for four 

quark production without the additional gluon. In particular, there is again the division of 

terms into those that are relevant only for identical flavour quarks, and those applicable to all 

flavours. In addition, the diagrams are characterized by the quark charges that the photon 

couples to in each half of the interference. As explained in the preceeding discussion of the 

virtual corrections to the four quark process, we neglect the functions which are interferences 

of diagrams where the photon couples to different quark charges. The discussion of the 

factors attached to each term in the matrix elements also carries through from section 5.2.1. 

Straightforward application of these rules yields the following factors, 

^?^^^(Qi;l ;^4lQ3;^2) ' + ( l symmetry) ^ 2xnl/2 = n% 
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Q4IQ3; 1; Q2) ' + (1 symmetry) 

l3'^"^'{Qi; l;Q2\Qz;Q4)f + (1 symmetry) 

B?"^HQuQ2\Q^, 1;Q4)|' + (1 symmetry) 

^?^^nQi;i;Q4lQ3;Q2) + ^?^'^HQi;Q4iQ3;i;Q2)|' 

+ (3 symmetries) 

K(^J>«nQi;i;Q4l^?3;Q2))(^.^''^^(^3i;i;^4lQ3;g2))^ 

-I- (3 symmetries) 

J?(^J^«^(gi;l;g4iQ3;g2) + ^?^^HQi;Q4lQ3;l;g2)) 

-h (15 symmetries) 

X 

2 X nl/2 = np, 

2 X nl/2 = Up, 

2 X n%/2 = n | , 

4 X nl/2 = 2nl, 

4 X np/4: = Up, 

(5.9) 

16 X np/4: = Anp. 

5.5.3 Combined 5 Parton Cross-Section 

I t is now easy to combine the expressions for the matrix elements with the combinatorial 

factors to produce the form convenient for numerical evaluation. The final result is, 

LO 

<7o s V 2 7 r / \ A ' J \ 2) 

+ 
N 
nF_ 
iV3 

S^{Qul,2,~3;Q,) 
2 1 /A^2 ^ 1' 

iV4 + 6 5^(Qi;i,2,3;Q2) 

^ ^ ' ^ H Q i ; 1; Q4|(53; Q 2 ) | ' + l-^J^'^HQi; Q4IQ3; 1; Q2) 

2 
>l«^«^(Qi;l;Q4|Q3;Q2) + ^?«^(Qi;Q4lQ3;l;Q2) 

+ 2 ( K(^?^^nQi;i;Q4lQ3;Q2))(^.^^^n<5i;i;Q4lQ3;Q2))^ 

+ 5?(^J^«^(Qi;i;Q2|g3;Q4))(^?^'^^(Qi;i;Q2lQ3;Q4))^ 

+ 5?(ylJ^^HQi;Q4lQ3;i;Q2))(^?^^^(Qi;Q4lQ3;i;Q2))^ 
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- 2 f ^ ^ ^ ) (5? (^?«^( (5 i ; i ;Q4lQ3;Q2) + ^ ? ' ^ H Q i ; Q 4 l Q 3 ; i ; Q 2 ) ) (5-10) 

(^«^«^(Qi; 1; Q4) + Q2IQ3; 1; QA?) 

5.6 Cancellation of Infrared Singularities 

As we have seen in chapter 2, in both the soft and collinear limits, the colour ordered squared 

amplitudes factorise into a squared amplitude containing one less parton multiplied by a 

factor that depends on the the unresolved particle and the two adjacent 'hard' particles. We 

view the two 'hard' particles as an antenna from which the unresolved parton is radiated. It 

therefore makes sense to divide the phase space in a similar way and to treat the subtraction 

term as the singular factor for the whole antenna integrated over the unresolved phase space. 

Clearly the choice of the subtraction function E{x) in equation 2.14 requires some care, as 

does the integration over the phase space variables x. 

5.6.1 Phase Space Factorisation 

Let us consider an (n + 1) particle phase space described by momenta pi with pj = 0 for 

i = 1,... ,n . I f the total centre of mass energy is Q, then let us denote the phase space by, 

dPS{Q'^;Pi,... ,Pn)- As discussed above, we wish to relate the full (n + 1) particle phase 

space to an n particle phase space whenever one of the original {n+l) particles is unresolved. 

Let the unresolved particle be labelled by u and the two adjacent hard particles by a and b, 

then the phase space can be factorised as, 

dPS{Q'-p,, ..:,Pn)= dPS{Q^;pi, . . .,Paub, . . . , P n ) ^ dPS{Saub;Pa,Pu,Pb), (5.11) 

where Paub = Pa + Pu + Pb and = Saub- To factorise the phase space into an n particle 

phase space multiphed by a factor containing integrals over the unresolved invariants Sq„ 

and Sub that appear in the singular limits of the matrix elements, we multiply the r.h.s. of 
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eq. (5.11) by, 

dPS{SAB;PA,PB) I I dPS{SAB;PA,PB), (5-12) 

where particles A and B have momenta PA and PB such that, Paub = PAB = PA + PB, 

p2 = p | = 0 and Saub = SAB- In other words, 

dPS{Q';p„...,Pn) = dPS{Q';p^,...,PAB,..-,Pn)^dPS{sAB;PA.,PB)xdPS^^"^ 

(5.13) = dPSiQ';p,, ...,PA,PB,...,Pn)x dP5^-"s. 

As desired, we have the phase space for an final state containing n lightlike particles multi­

plied by dP5^'"s. Working in four-dimensions and after integration over the Euler angles, 

dPS{ ^aub] PaiPui Pb) 

J dPS{sAB\PA,PB) 

2^aubdXaudXubdXcib5{^ — X^u " ^ub ~ ^ab), (5.14) 

where Xij = Sij/Saub- For this to work, a mapping must exist that determines PA and PB for 

a given set of momenta pa, Pb and p„. Many choices are possible [19, 52] and we choose the 

symmetric mapping of [52], 

PA 

PB 

1 + 

l - p -

5„6(1 + p - 2ri) 

^ab "I" ^au 

gtt6(l + P - 2ri) 

Sab ~l~ ^au 

Pa + riPu + 1 - P + 
Sa«(l - p - 2ri) 

Pb; 

Pa + (1 - ri)pu + - 1 + P 
_ Saujl- p - 2 r i ) 

Sab + S„6 
(5.15) 

where, 

and. 

Sub 

Sau "t" Sub 

P = 
'slb + {Sau + Sub)Sab + 4 r i ( l - ri)SauSub 

(5.16) 

(5.17) 
SabSaub 

Note that this transformation approaches the singular limits smoothly. For example, as 

Sau 0, then r i -)• 1, p -> 1 and PA ^ Pa + Pu, PB Pb-
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5.6.2 Antenna Factorisation of the Matrix Elements 

Having factorised the phase space, we now wish to find the analogues of the subtraction 

functions E{x) discussed in chapter 2. These functions should ideally be valid over the 

whole of the antenna phase space dPS'̂ '"^ and, in the soft and collinear regions must match 

onto the relevant singular limits. In other words, for a given (n + 1) particle amplitude, in 

the limit where particle u is unresolved. 

a,u,b,...)V'' -^Aaub S^{...,A,B,...)V'' (5.18) 

where we have replaced the antenna comprising a, u, b by the hard partons A and B to 

obtain an n particle amplitude. The antenna function Aaub depends on the momenta of the 

radiated particles a, b and u, but the n particle amplitude I^S^V^p does not. 

The leading colour contribution to an observable cross section from an (n -t- 1) particle 

final state with a particular colour ordering is proportional to. 

1 
S^{. ..,a,u,b,.. .)V'' J(„+i) dPS{Q'-.. .,Pa,Pu,Pb, •••), (5.19) 

where the observable function J(n+i) represents the cuts applied to the {n + 1) particle phase 

space to define the observable. Using the factorisation of the matrix elements defined in 

eq. (5.18), when particle u is unresolved we should subtract, 

'g'N' 
A, aub S^i. ..,A,B,...)]/'' dPS{Q';.. .,Pa,Pu.,Pb, •••): (5.20) 

from the {n + 1) particle contribution and, using the phase space factorisation of eq. (5.13), 

add, 

^ A « 6 d P 5 ^ - g S,{...,A,B,...)V'^' J^n)dPS{Q':...,PA..PB,..-)., (5.21) 

to the n particle contribution where both the observable function J and matrix elements 

S^V'^l'^ depend only on the momenta of the n remaining hard partons. Note that for any 

infrared safe observable, in the limit that one particle is unresolved, J^n+i) Jin)' In the 

subtraction term eq. (5.20), we use the transformations of eq. (5.15) to map the momenta 
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Pa, Pu and pb defined in the {n + I) particle phase space onto the momenta p^ and ps used 
in the n-particle matr ix elements and observable functions. In eq. (5.21), all dependence on 
the momenta of particles a, b and u may be integrated out to give the antenna factor, J", 

:FAB{SAB) = ( ^ ] f Aaub dPS''^\ (5.22) 
\ 2 J J 

mul t ip ly ing the n particle cross section (for a given colour ordered amplitude), 

S,{- ..,A,B,...)V^' dP5(Q2;... . . . ) . (5.23) 
V ^ / 

The f u l l set of subtraction terms is obtained by summing over all possible antennae. 

The Dali tz plot for the {AB) —>• aub phase space is shown in Fig. 5.2. In the hybrid scheme 

we are implementing, we use the slicing method of [21] in the region min(5a,ij s^b) < ^, and 

the subtraction scheme in the region, 5 < min(sa„, s^j) < A . In the slicing region, the phase 

space and soft and collinear approximations to the matr ix elements are kept in D = 4 — 2e 

dimensions to regularise the singularities present when either invariant vanishes. Using the 

approach of [21], there are three separate contributions (a) soft gluon when max(sa„, Sub) < ^, 

(b) a and u collinear when Sau < ^ but Sub > S and (c) b and u collinear when s„t < ^ but 

Sau > S. 

Before turning to the explicit forms for the antenna subtraction terms, we note that while 

quarks are only directly colour connected to one particle - a gluon or antiquark, gluons are 

directly connected to two particle - the gluon (or quark) on either side. Therefore,while 

the quark (or antiquark) appear i n a single antenna, gluons appear in two. This gives an 

ambiguity in how to assign the collinear singularities of a pair of gluons to each antenna. 

Later we w i l l exploit this ambiguity to make the antenna functions Aaub for different pairs 

of hard partons finite simpler. 

Quark-Antiquark Antenna 

Let us first consider a system containing a quark, antiquark and a gluon. This is produced 

by an antenna comprising, of a hard quark and antiquark pair that decays by radiating a 
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ANTENNA SUBTRACTION 

SLICING 

Figure 5.2: The phase space for the decay (AB) aub. The cut mm{Sau; Sub) = ^ w i th 
5 = 0.1 Saub is shown as a soUd hne while min(sa„, s„t) = A is shown as a dashed line for 
A = 0.25 Saub- The region mm{sau,Sub) < S defines where the sHcing approach is utilised, 
w i t h the soft and collinear regions demarked by dotted lines. Antenna subtraction is applied 
when 6 < min{sau, Sub) < ^• 

gluon. Any function that has the correct soft gluon and collinear quark/gluon singularities 

in the appropriate l im i t is satisfactory. Here the hard particles in the antenna are Q and Q 

which radiate to form q, q and the gluon g. A suitable choice for the antenna function is, 

\S,iq;g;q)V''\' Aqgq — 
\S,iQ;Q)V^^\ 

X au ^ub o,i)Xduij \ (5.24) 
^aub ^ -^ub -^au 2'a«'^u6 ^ 

Because this is proportional to the three parton matr ix elements, \S^{q;g;q)V'^\'^, i t auto­

matically contains the correct soft and collinear limits. Furthermore, i t is smooth over the 

whole three particle phase space and singularities only appear in the Sau ~^ 0 and s„6 —>• 0 

l imits . 

Expl ic i t ly integrating over the antenna phase space for S < min(sa„,s„6) < A we find, 

. 2 j i ' 
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= U 3 ^ J M U ^ A fAUo(5). (5.25) 

The 5 independent function J^^^ is given by, 

Quark-Gluon Antenna 

For antenna made of a quark Q and gluon G, there are two possible ways of radiating. Either 

a gluon can be radiated so that a quark-gluon-gluon system is formed, or the gluon may split 

into a antiquark-quark pair. This latter possibility is subleading in the number of colours 

and the discussion of situations like this is deferred to sec. 5.6.2. 

For a quark-gluon-gluon system, produced by a quark-gluon antenna there is a less obvi­

ous choice of antenna function, particularly since the singularity that is produced when the 

gluon splits sits in more than one antenna. If , in the collinear l imi t , the gluon splits into an 

unresolved gluon u which carries momentum fraction z and a hard gluon b w i th momentum 

fract ion 1 — z, the antenna function should naively be proportional to Pgg^g which is sin­

gular as z ^ 0 and z 1. This corresponds to singularities as both s„(, 0 and Sab 0. 

However, because the collinear singularity sits in more than one antenna - the two gluons 

also occur in a second antenna where the role of the two gluons is reversed - we can make 

use of the = 1 supersymmetric identity to rewrite Pgg^g as, 

^99^9 ~ ^qg^Q + PgQ^q ~ ^QQ-^9- (5-27) 

The soft singularities as z ^ 0 are contained in Pgq^q while those as 2 -> 1 are in Pqg-^q- We 

therefore divide Pgg^g amongst the two antennae such that Pgq^q sits in the antenna where 

gluon u is unresolved. The ^ —> 1 singularities are placed in the antenna where the role of 

the two gluons is reversed. The remaining Pg -̂̂ g may be divided between the two antennae 

according to choice. W i t h a slight modification due to the Pqq-^g term, the antenna function 

used for the QQ antenna has the correct l imits, so that, 

A99 = A99 - — • (5-28) 
^aub \-^ub-^aub J 
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This is again smooth over the whole three particle phase space wi th singularities only appear­
ing in the Sau ~^ 0 and Sub 0 l imits. In particular, as z ^ 0, the collinear l imi t matches 
onto the soft l im i t which would not have been the case i f we had divided the soft/collinear 
singularities equally between the two antenna. 

Af te r integrating over the antenna phase space for 5 < min(sau, Sub) < A we find, 

•rQGySQG) - \ ~ 2 ~ ] J '^^^ 

V 27r / V \SQGJ 6 \SQGJJ ^ \SQGJ 

w i t h the 6 independent function J^QQ is given by, 

^U-) = ( ^ ) ( - ' " ' W + ^ - T + 9 
flO ^ x^\^ / l - a ; \ \ 

+ - - 2 x + - - - In . a.30 
V6 2 Q ) \ X J ) 

Antennae containing a gluon and an antiquark are described by, 

Agm = A99i(^^b)^ (5-31) 

and. 

Gluon-Gluon Antenna 

For antenna comprising only gluons, we repeat this SUSY inspired trick for each of the 

resolved gluons so that, 

A . . = Am - — + • (5-33) 

Note that Kosower [52] has proposed an antenna factorisation for gluonic processes, 

^Kosower _ ^ (i^aubiXgub ~ ^ab) + ^l.b)'^ 

Saub V •^au-^ub'^ab-^sub J 
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which, in the u/b collinear l imi t regenerates the fu l l Pgg-,g split t ing function, as well as the 
soft l imits . 

Integration of the antenna function Aggg over the whole of the subtraction region yields, 

^GG(SGG) = V -^999 dPS''"' \ z J J 

= I n ' - F - - I n + ^GG 5.35 

V 27r ; V \SGGJ 6 \SGGJJ \SGGJ 

w i t h the S independent function is given by, 

. , , fasN\ / , 2 / X 23a; 2x'^ 2x^ • ^ ^ 

/ I I „ x^ x^\, / l - 3 ; \ \ 
+ ^ - 2 x + — - — In . (t).36) 

V 6 2 3 J \ X J J ^ ^ 

Antenna w ĥere a Quark-Antiquark Pair Merge 

There are also configurations when two (or more) colour lines are present, one ending in an 

antiquark the other starting wi th a quark of the same flavour. Here the matrix elements 

have the form, 

S^{...,a,q\q,b,...)V^\\ (5.37) 

I n the collinear l i m i t , the quark-antiquark pinch the two colour lines together to form a 

single colour line, 

S^{...,a, q\q, b,.. .)V^\' ^ Pqq-,g{z, Sqq)\S,{. ..,a,G,b,.. .)V>'\\, (5.38) 

w i t h Pgq^Giz, s) given by eqs. (2.8) and (2.9). There is no soft singularity, nor is there any 

dependence on the type of adjacent parton, a or b. Clearly, the quark-antiquark pair can 

sit in two antennae, (a, q, q) and (g, g, b) and we have some freedom of how to assign the 

singularities to the antennae. There are two obvious choices. Either we divide the singular 

contribution equally over the two antennae, or, we place the z'^ part of Pqq^g{z) in one 

antenna and the {1 — z)'^ part in the other (as we did wi th the three gluon antenna before). 
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While there appears to be no preference, we follow this latter route so that the antenna 
funct ion vanishes as the unresolved particle becomes soft, 

A , . = — ( , (5.39) 

and 

Aqqb — A.aqq{Xaq ^ Xqb, Xaqq ^ Xqqb)- (5.40) 

Following this procedure and integrating over the whole of the subtraction region yields, 

- ( 2 f £ ) f - l l n ( ^ ) ) + ^ , ' - ( A ) , (5.41) 
V 27r / \ 6 ySaGj J VSaG/ 

and, 

^asGb) = K S M . (5.42) 

The factor of arises because each of the np quark flavours may contribute. The 5 inde­

pendent funct ion is, 

- f - ^ ^ - - \ ( - ' - - + i - i - ( l - i ] l n ( ' - ^ ] ] . (5.43) 
V 2 7 r y V 3 6 9 V6 6 / \ x 

5.6.3 Leading Colour Contribution to e+e —̂  4 jets. 

As a pedagogical example, we consider the leading colour contribution relevant for e'^e~ -> 

4 jets. A t leading order in the number of colours, only the two quark and two gluon process 

contributes and, at lowest order, we can read off the cross section f rom equation 5.6, 

(To ~ s iV2 j V 27r j 
X S,{Q,;GuG2;Q2)V^'Ji4)dPSiQ';QiG,,G2,Q2), (5.44) 
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where we have switched notation f rom that of chapter 4 by wri t ing, 

r(3,4) = IS.iQuGuG^-MV'f. (5.45) 

Similarly, the leading colour contribution f rom the five parton bremstrahlung process can be 

read f rom equation 5.10, 

da5 

(^0 
(5.46) 

Note that projects the five parton momenta onto the four jet like observable. 

For this colour ordering, there wi l l be three contributing antennae, {qi, 91,92)-, {91,92,93) 

and {§2, 93, 92) where in each case the parton in the middle is unresolved. In the first antenna, 

{Pqi,Pgi,p92} {PQI'PGI} according to eq. (5.15), the slicing cuts are mm{sq,g^, Sg^g.,) < 6 

and the subtraction occurs over the range 5 < min{sq^g^, Sg^g^) < A . Similar transformations 

and cuts act over the other two antenna. 

Slicing Contribution 

For the five parton matr ix elements of eq. (5.46), the sum of infrared singularities f rom the 

three antennae in the slicing approach gives a contribution to the four particle final state 

which can be read directly f rom eq. (3.79) of ref. [21], 

(5.47) d a f - = i?(Qi;G'i,G2;Q2W LO 

Retaining only the leading colour contribution (i.e. dropping the contributions f rom the 

four quark process proportional to the number of quark flavours). 

R{QuG,,G2;Q2) = 
^ f l / 4 V V , 2 I Sij 

+ 

1 

as\ 2bo 1 

+ 
197 

18" 
TT 

/ 4 V 
2TVJ e r ( l - e ) 1, 6 

+ 0{e) + 0{6), 
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w i t h (at leading order in the number of colours) bo = UN/6 and where the sum runs over 
the pairs of adjacent (colour connected) hard partons, i j = QiGi, G1G2 and G2<52-

Subtraction Term 

Since there are three antennae, we subtract three antennae factors, such that the total 

subtraction term is, 

d a - ' ' {27ry f N ' - l \ fasN\' , _ 
= . , 0 H T ^ (iPSiQ';qi,gi,g2,g3:q2) 

ao s \ N^ J \ 2Tr J 

X Aq,g,g^S^{QuGl,gz;q2)V'' J ( 4 ) 
\ 

+ Ag,g,g,\S^,{quGl,G2\q2)V'''\ J ( 4 ) 

, , K ( g i ; g i , G 2 ; Q 2 ) ^ 1 J{A) • (5-48) 
/ 

Here, we have used the mappings {Pqi, P31 , Pgj} —> {PQDPGI} according to eq. (5.15) for the 

first antenna. We recall that the subtraction occurs over the range 5 < mm{Sq^g^, Sgig^) < A 

and that the observable function J4 is applied to the momenta for Q i , Gi, 53 and 2̂- Similar 

procedures are applied to the other antennae. 

However, we must add these terms back to the four parton contribution. Here i t is 

simplest to re-identify each of the four particle momenta wi th the momenta relevant for 

tree level. I n other words, for the first antenna, { ^ 9 1 , ^ 3 1 , ^ 9 2 } ~^ { P Q D P G I } as before and 

Pg3 -> PG2, P92 ~^ • This is safe to do since we integrate over the whole four particle phase 

space. Altogether, we have, 

d a f ^ = {TQ,G, + TG^G, + .F^^QJ dcT̂ LO. (5.49) 

Virtual Contribution 

The leading colour vir tual matr ix elements can simply be read f rom equation 5.7. In terms 

of cross sections we have, 

da7 = V{Qv, G i , G2\Q2)d^[° + da^'^"''^ (5.50) 
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wi th , 

1 V,finite /r) \5 / 7y2 -i\ , T\! 

= ^ ( ^ ^ j (^) ^^(^ î'G2) J(4) c i P 5 ( Q ' ; p c ? i , P G i , P G 2 , P g J , (5.51) 

and the divergent factor V given by, 

w n - r r - o i - ^ ^ ^ ^ U ^^^^^^^^ ^ ^ ^ ^ ' ^ ' l ^21 i / ( g i , G „ G 2 , Q 2 ) - ( ^ J ^ ^ - 2 ^ J - ^ ' - '^^ 

Next-to-Leading Order Cross Section 

Assembling the various pieces, and applying coupling constant renormalisation, 

a . A ^ / ^ U i . J ^ ^ J 4 ^ V ,5.53, 

the N L O four parton contribution is, 

d a f o = d a 4 ^ + d a f + d a f ^ 

= A ' (Qi ;G ' i ,G '2 ;Q2)d^4° + da^""'' '> (5-54) 

where dioY^ and du^'^"'**^ are given by eqs. (5.44) and (5.51) respectively wi th the replacement 

OLs oisifJ.)- The factor K is the sum of the divergent one-loop factor (eq. (5.52)), the slicing 

factor (eq. (5.48)) and the subtraction term (eq. (5.49)), 

K{Qy;GuG2;Q2) = V{QuGuG2;Q2) + R{QuGuG2]Q2) 

+-^QIGI (SQIGI) + - ^ G i G a l ^ G i G s ) + - ^ G a Q s ^'^GoQj^ 

las{ll)N\ /197 TT^ 
~ V 27r ; V 18 ^ 2 

^ A \ / A \ ^ A ^ 

2 ' 

2 

l ^ j Wo J V*c,« 

+ ( ^ f ^ ) 2 M o g ( ^ ) . (5.55) 
\ 27r ; \ y y 
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Similarly, the five parton leading colour contribution to four jet-like observables is ob­
tained f rom eqs. (5.46) and (5.48), 

evaluated w i t h the running asin). By construction this is finite as any one particle becomes 

unresolved. In the slicing regions, da^^° = 0, while the phase space regions over which the 

subtraction terms are applied are implici t in the definition of the antenna functions. 

Note that the four-dimensional l imi t of all cross sections may be taken wi th impunity 

now that the singularities have cancelled. Furthermore, there is no dependence in K on the 

slicing parameter 6 which may also be taken as small as desired. The subtraction parameter 

A remains, and both daf^'^ and daf^^ individually depend on i t . However, the sum of both 

contributions is independent of the choice of A . The precise value of A can be made bearing 

in mind the numerical stability and speed of the final computer code. For small A , there 

may be sizeable cancellations between the four and five parton contributions, while for large 

A more CPU time is required to evaluate the subtraction terms. 

5.6.4 Sub-Leading Contribution to the Cross-Section 

I t is straightforward to extend this approach to deal wi th all the sub-leading contributions 

to the cross-section. Here we detail all the necessary subtraction and slicing terms to render 

the f u l l four and five parton contributions finite. 

Five Parton Contribution 

I t is simplest to first identify the antennae that wi l l contribute to each colourless subam-

plitude. The fo rm of the five parton matrix elements is such that these are easily read off 

f rom equation 5.10. The subtraction terms are divided into pieces corresponding to the four 

parton matr ix elements that are subtracted. 

daf^ 

(^0 

W ( N ' - l ] f a s N \ ' 2. ^^ 
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X A" 
2m^ ^ N ^ ^ N^ 

A' (5.57) 

w i t h the antenna terms given by, 

= Aq,g,g,\S,{QuGi,gs;q2)V''f + Ag,g,g,\S,{quG,,G2;q2)V>'\ 

S29392 SAQi;9i,G2;Q2)V>''+'^(^Aq,q,q, IS^Q,; G^., g2; q2)V''f 

+ Aqmg Gi, G2; q2)V^\' + Aq,q,q, \s^{q^; g,, G2; Q2)V^^ 

+ Ag<im \SMi.G^,G2;q2)V>'f^ - ~Aq,g,q, \S^{qi;Gi,G2;q2)V''\\, 

A' = Aq,g,g, S^{Qi;Guh;q2)V' + A Q19192 
2 

S,{Qi;h,Gi;q2)V^ 

+ Ag,g,q, S^{quGi,h;Q2)V'' +Ag,g,q, S,{quh,Gi;Q2)V>' 

+ ^ U 3 f 4 . - . | 5 . ( Q i ; 5 i , G 2 ; Q 2 ) V ^ A, 

A i 9 i ? 2 Sf,{Qi;~g2,~gi;Q2)y^ 

919394 

2 

S,{Qv,~gi,G2;q2)y^ 

A' = Aqjgq^ + A, 

Aq,g,q,\s,iQi;gi,h;Q2)V'' + ^ 1 9 3 9 2 S,{Qugir92;Q2)y'' 

1 
93992 i V 2 

(2-^91594 + 2w4, 93992 

- 2Aq^gq^ - 2Aq^gq2 + A i 9 9 2 + -^93994)^ 7'( l> 2; 1, 2), 

A''' = i^qigqs, + -^94992 ~ ^ ^ ( - ^ 9 1 9 9 2 + -^93994 + -^91994 + '^93992 

A 1 9 9 3 - A - 4 9 9 - 2 ) n i , 2 ; l , 4 ) . (5.58) 

Four Parton Contribution 

By examining equation 5.6, we see that the lowest order cross section for e+e" 

similarly be wr i t ten as, 

,L0 d(J^° = d(J4„ 2 ^ 2 4c ^ '^'^^'^ ' 

4 jets can 

(5.59) 
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where each term da^^ contains matr ix elements multiplied by the four-parton phase-space 
factor, 

ao s \ N-^ J \ ZTT J 

w i t h the mat r ix elements given (in the notation of chapter 4) by. 

Ma = r(3,4) = \S^{Qi;Gu G2 : Q2)V^'\' , M, = r = \S,{Qu Gi , 62 : Q2)V''f 

A^e = T ( l , 2 ; l , 2 ) , M , = Til,2;l,i). (5.61) 

Following the same steps as we have explicitly demonstrated for the leading colour piece, we 

can write the f u l l four parton next-to-leading order contribution to the cross-section as, 

1 ^ 

_L0 
LO 46 

= {( /C(Qi; G„ G2; Q2) - -^JCiQi; Q2)}dal^ 

- ^ {lC{Qi;GuQ2) + / C ( Q i ; G 2 ; Q 2 ) " ( l + ^) / C ( Q i : Q 2 ) } d a 

+ + / C ( Q 3 ; ^ 2 ) - ^ l o g + f 

- ^ UlCiQ.-M + 2/C(Q3; Q,) - 2/C(Qi; ^ 3 ) - 2}CiQ,: Q,) + /C(gi; Q 2 ) 

+ | / c ( g i ; Q 3 ) + / c ( Q 2 ; Q,) - ^ log + 1 

- ^ f / c (Qi ; Q,) + / C ( Q 3 ; ^ 4 ) + m i l Q A ) + ^ ( < ? 3 ; Q2) - HQi; Q 3 ) 

- . ( « . « . ) . 3 . o . ( f | f . ) ) . | ( - 1 5 . ? , o . ( f | | . ) ) ) a < 

+ d a ^ « ° ' * ^ (5.62) 

The finite term dcrj'*^"'*^ represents the functions C of chapter 4 and is easily read oflf 

f r o m equation 5.7, as are the extra logarithm terms that appear above. The factors of 

(31/9 - 10nF/9iV) are due to the self-energy insertions which are included in the pieces 

Ceil, 2; B y inspecting the form of the 5 parton matr ix elements i t is straightforward 
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to deduce the subleading combinations of /C factors needed, which are given by the slicing 
terms f rom eq.(3.79) of [21] w i th n = 1 and n = 0 respectively, added to the integrated 
antenna subtraction terms given earlier, 

10, (SQa\ 10, /Sc5 

. ( t ^ ) M o . ( | ) , 

In addition, the function for two quarks (or antiquarks) in an antenna is identical to that 

for a quark-antiquark pair. 

IC{Qi;Qj) = lC{Q = Qi;Q = Qj)- (5-65) 

5.7 Summary 

In this chapter we have bridged the gap between the theoretical matrix element calculations 

of chapter 4 and a numerical implementation of them suitable for making physical predic­

tions. By appealing to the symmetries of the matrix elements (ultimately, of the Feynman 

diagrams themselves) we may reduce the number of function evaluations that are necessary 

and thus decrease the required CPU time. More importantly, we have shown how the ma­

t r i x element and phase space singularities may be cancelled between the four and five parton 

contributions. 

By using a version of the hybrid subtraction scheme based on the radiation of a soft 

parton f r o m an antenna of two hard particles, we have identified all the relevant subtraction 

and slicing terms that are necessary to render both partonic pieces finite. The resulting 

contributions to the cross-section are summarized in equations 5.58 and 5.62. 
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The following chapter w i l l now be devoted to the study of a particular program wri t ten 
using this approach, EERAD2. By performing Monte Carlo integrations over the appropriate 
phase spaces, we can obtain predictions for a variety of four-jet like quantities that are well 
defined in perturbation theory. 



Chapter 6 

Four Jet Predictions at NLO 

6.1 Introduction 

Electron-positron colliders, in particular those at both CERN and SLAC, have provided 

much precision data wi th which to probe the structure of QCD. This is particularly valuable 

data because the strong interactions occur only in the final state and are not entangled wi th 

the parton density functions associated wi th beams of hadrons. In addition to measuring 

mult i - je t production rates, more specific information about the topology of the events can 

be extracted. To this end, many variables have been introduced which characterize the 

hadronic structure of an event. For example, we can ask how planar or how collimated 

an event is. I n general, a variable is described as n-jet like i f i t vanishes for a final state 

configuration of n - 1 hadrons. W i t h the precision data f rom LEP and SLC, experimental 

distributions for such event shape variables have been studied and have been compared where 

possible w i t h theoretical calculations. Generally speaking, leading order (LO) predictions 

successfully predict the general features of distributions, but can be improved by resumming 

kinematically-dominant logarithms, by including more perturbative information or both. A 

next-to-leading order (NLO) treatment of three-jet like variables was first performed in [17, 

20] and systematically completed in [53]. Armed wi th such calculations, one can extract 

a value for the strong coupling as either directly f rom the event shape distributions [54] 

or f rom the energy dependence of their average value [55]. Alternatively, one can study the 

135 
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group parameters of the gauge theory of the strong interactions, as we have already discussed 

in chapter 2. 

Having assembled all the relevant matrix elements in chapter 4 and described a suitable 

numerical implementation of them in chapter 5, we are now ready to compute next-to-

leading order predictions for four-jet like observables. In section 6.2 we give the definitions 

of a selection of these infrared safe observables that may be safely calculated in perturbation 

theory. These are all non-zero only for event configurations which contain at least four 

resolved particles and so may be predicted only by considering the process e~^e~ -» 4 jets. 

The theory of the preceeding two chapters is used to construct the Monte Carlo pro­

gram which we refer to as EERAD2. Section 6.3 demonstrates the consistency of this pro­

gram by comparing some results wi th those produced by two other four jet programs MENLO 
PARC [51, 56] and DEBRECEN [57]. In particular, we compare the thrust minor and D param­

eter distributions as well as the four jet rate as a function of the jet resolution parameter 

y c u t -

I n the remainder of the chapter we present next-to-leading order coefficients for the 

differential distributions of the narrow jet broadening and light hemisphere mass and the 1/4 

distr ibut ion for the J A D E algorithm. We compare these wi th experimental data f rom the 

D E L P H I collaboration. 

6.2 Four Jet Shape Variables 

The sorts of variables we are interested in are four-jet like, since they can only be non-zero 

for final states i n which there are four or more particles. They rely on the hadronic final 

state having some volume and, when the event is coplanar, the observables are identically 

zero. In the following definitions, the sums run over all N final state particles, k = 1,..., N. 

Pk is the three-momentum of particle k in the c m . frame, wi th components p\, i = I,... ,Z. 

(a) C and D parameters. 



CHAPTER 6. FOUR JET PREDICTIONS AT NLO 137 

We first construct the linear momentum tensor, 

\Pk & ^ = (6.1) 

with eigenvalues Aj for z = 1, 2, 3. The normalisation is such that E = 1. For planar 

events one of the eigenvalues is zero. The C and D parameters are defined by, 

D = 27A1A2A3, ( 6 . 2 ) 

and, 

(:7 = 3(AiA2 + A2A3 + A3Ai). (6.3) 

D is only non-zero for four parton events, while for C < 0.75, three parton events 

contribute. Only the region C > 0.75 should be considered four jet like. 

(b) Thrust minor, Tminor-

We first define the thrust, major and minor axes (n i ,n2 ,n3 ) by, 

T. = m a x ? | i ? i ^ , (6.4) 
J2k \Ph\ 

where n2 is constrained by ni • ^2 = 0 and = fii x ̂ 2. 

(c) Light hemisphere mass, m\/s. 

The event is separated into two hemispheres Hi, H2 divided by the plane normal to 

the thrust axis n i , as defined above. Particles that satisfy pi.fii > 0 are assigned to 

hemisphere Hi, while all other particles are in H2. Then, 

2 
m | ^ 1 

mm \ Pk • (6-5) 

(d) Narrow jet broadening, Bmin-

Using the same division into hemispheres as above, we define. 
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(e) Jet transition variable yf . 

The yf variable denotes the value of the jet resolution parameter ?/cut at which an event 

changes from a four jet event to a three jet event where the jets are defined according 

to algorithm S. We consider the three algorithms already previously discussed (see 

chaoter 2): the JADE-EO {S = J), Durham ( 5 = D) and Geneva {S = G) algorithms. 

Of these variables, the D distribution has been considered in [57, 58] and the C, Tminor and 

distributions have been studied in [25 . 

The differential cross-section for one of these four-jet variables (O4) at next-to-leading 

order can then be parametrized by two coefficients (just as for the 3-jet variable 1-Thrust, 

equation 1.14 of chapter 1), 

1. O, ̂  = f ) ' Bo. + f ̂ ) 72A log 1 Bo. + Co.) . (67) 
(Jo dOA \ 2ir J \ ZTT J \ \Q 

The parameters BQ^ and C04 represent the leading and next-to-leading scale-independent 

factors for the observable O4. The coupling as is calculated at renormalization scale /j,, 

extra dependence on which enters through the first coeflScient of the beta-function, Po = 

(33 — 2nF)I 6. (Jo represents, as in the previous chapter, the lowest order 2-jet cross-section, 

e^e" qq. 

6.3 Monte Carlo Comparison 

As a check of the numerical results. Table 6.1 shows the predictions for each of the three 

Monte Carlo programs for the four jet rate for three jet clustering algorithms; the JADE-

EO [8], Durham-E [9] and Geneva-E [10] algorithms. We show results with as{Mz) = 0.118 

for three values of the jet resolution parameter ycut- There is good agreement with the results 

from the other two calculations. 

As a further comparison with the program DEBRECEN, we also compare the differential 

distributions for the D parameter and thrust minor. For each observable O 4 , the coefficients 
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Algorithm ycut MENLO PARC DEBRECEN EERAD2 

Durham 

0.005 

0.01 

0.03 

(1.04 ±0.02) • 10"^ 

(4.70 ±0.06) • 10^2 

(6.82 ± 0.08) • 10-^ 

(1.05 ±0.01) • 10-1 

(4.66 ±0.02) • 10-2 

(6.87 ±0.04) • 10-3 

(1.05 ±0.01) • 10-1 

(4.65 ±0.02) • 10-2 

(6.86 ± 0.03) • 10-3 

Geneva 

0.02 

0.03 

0.05 

(2.56 ±0.06) • 10-^ 

(1.71 ±0.03) • 10"^ 

(8.58 ±0.15) • 10-2 

(2.63 ±0.06) • 10-1 

(1.75 ±0.03) • 10-1 

(8.37 ±0.12) • 10-2 

(2.61 ±0.05) • 10-1 

(1.72 ±0.03) • 10-1 

(8.50 ± 0.06) • 10-2 

JADE-EO 

0.005 

0.01 

0.03 

(3.79 ±0.08) • 10"^ 

(1.88 ±0.03) • 10-1 

(3.46 ± 0.05) • 10-2 

(3.88 ±0.07) • 10-1 

(1.92 ±0.01) • 10-1 

(3.37 ±0.01) • 10-2 

(3.87 ±0.03) • 10-1 

(1.93 ±0.01) • 10-1 

(3.35 ±0.01) • 10-2 

Table 6.1: The four-jet fraction as calculated by the program described in this chapter, 
EERAD2 and the alternatives MENLO PARC and DEBRECEN. Results are shown for the different 
jet recombination schemes and varying ?/cut- The rate is normalized by the 0{as) total 
hadronic cross-section, which is related to the 2-jet cross-section by (Jtot = -̂ o (1 + CUS/TT). 

and C04 of equation 6.7 are presented in Tables 6.2 and 6.3. The results are tabulated for 

the same bins as used in the papers [58] and [25], with each bin labelled by its central value. 

The errors associated with each bin are those estimated by the Monte Carlo integration. 

In Figures 6.1 and 6.2 we show the same results, normalized by the corresponding results 

from DEBRECEN. Ideally we should obtain a straight line at unity, but in reality the Monte 

Carlo errors mean that the errors associated with each point should simply encompass this 

ideal. We see that this is the case for each of the distributions, with the agreement deteri­

orating slightly towards the tails. This just reflects the fact that each program is biased to 

place more Monte Carlo weight (and thus smaller errors) where the cross-section is largest, 

which corresponds to the observable O4 being small (approaching the 3-jet region). 
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EERAD2/DEBRECEN 

0.1 0.2 0.3 D.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 6.1: Comparison of the differential distribution of the D parameter, as calculated 
by the programs EERAD2 and DEBRECEN. Each point represents the ratio EERAD2/DEBRECEN, 
with the dotted line showing perfect agreement. 

EERAD2/DEBRECEN ^ 

0 0.05 0.1 

Figure 6.2: As for Figure 6.1, but for the distribution of thrust minor, T^ 
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D BD CD 

0.06 (2.33 ±0.01) •10^ (1.27 ±0.01) • 10̂  
0.10 (1.48 ±0.01) •102 (8.47 ±0.07) • 10=̂  
0.14 (1.03 ±0.01) •102 (6.43 ±0.08) • 10̂  
0.18 (7.71 ± 0.07) •10^ (4.88 ± 0.08) • 103 
0.22 (5.86 ± 0.04) •10^ (3.83 ± 0.07) • 10̂  
0.26 (4.70 ± 0.04) •W (3.01 ± 0.04) • 10̂  
0.30 (3.73 ±0.03) •10' (2.45 ± 0.04) • 10̂  
0.34 (2.97 ± 0.03) •W (1.97 ±0.03) • 10^ 
0.38 (2.44 ±0.03) •10^ (1.53 ±0.05) • 10^ 
0.42 (1.98 ±0.02) •10^ (1.38 ±0.05) • 10̂  
0.46 (1.61 ±0.02) •10^ (1.13 ±0.03) • 10̂  
0.50 (1.32 ±0.01) •10^ (8.35 ±0.23) •102 
0.54 (1.06 ± 0.01) •10^ (6.85 ±0.16) •102 
0.58 (8.48 ±0.10) •10° (5.44 ±0.18) •102 
0.62 (6.88 ±0.09) •10° (4.40 ±0.11) •102 
0.66 (5.44 ±0.08) •10° (3.60 ±0.09) •102 
0.70 (3.99 ±0.06) •10° (2.66 ±0.07) •102 
0.74 (3.04 ±0.03) •10° (2.04 ±0.09) •102 
0.78 (2.25 ± 0.03) •10° (1.51 ±0.03) •102 
0.82 (1.58 ±0.02) •10° (1.03 ±0.04) •102 
0.86 (9.99 ± 0.11) 10-1 (6.63 ±0.29) •10^ 
0.90 (5.72 ± 0.07) 10-' (4.02 ±0.15) •10^ 
0.94 (2.50 ±0.03) 10-' (1.69 ±0.06) •101 
0.98 (5.29 ±0.05) 10-2 (2.95 ±0.15) •10° 

Table 6.2: The leading and next-to-leading order coefficients for the D parameter. 

6.4 Further Results 

We now present the results for the differential distributions of the remainder of the four-jet 

observables, namely the narrow jet broadening B^in, the light jet mass m\/s and the four 

jet resolution parameter in the JADE scheme, y{. 

As we have explained in chapter 5,. EERAD2 uses hybrid subtraction to isolate infrared 

singularities, which involves introducing the two parameters 5 and A to control the slicing 

and subtraction cuts. By running the program with different values of these parameters. 
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i t is straightforward 'to verify that the results are independent of them. For the tables and 
plots presented here we have used the values, 

5 = 10-^ and A = 10-^ 

The next-to-leading order coefl^cients for the further variables are presented in Tables 6.4 -

6.6. These coefficients may be inserted into equation 6.7 with a suitable choice of scale fj, and 

strong coupling as- We may present the canonical comparison by choosing the physical scale 

l_i = Mz, as{Mz) = 0.118 and comparing with data from the DELPHI collaboration [59]. 

Predictions for the light jet mass, narrow jet broadening and jet resolution in this scheme 

are shown as the solid lines in Figures 6.3-6.5. These are to be contrasted with the lowest 

order predictions which are represented by the dashed lines and which lie substantially lower 

than the data. In all the distributions, i t can be seen that the inclusion of the next-to-

leading order terms increases the theoretical prediction by a factor of approximately 100% 

throughout most of the range. 

As we have discussed in chapter 1, although results for jet distributions are typically 

presented at the physical scale, i t may be theoretically advantageous to consider other choices 

of scale. Since for many of the distributions the physical scale yields NLO corrections which 

are large but still lie well below the datai, such considerations seem even more pertinent. 

Given that at present the evaluation of the NNLO corrections to 4-jet like quantities seems 

rather infeasible we should attempt to utilize our NLO knowledge in as complete a manner 

as possible. 

At this point it is worthwhile to recall the discussion of chapter 1, where we considered 

different schemes for choosing the renormalization scale. Where the data lies above our 

prediction with the physical scale, clearly a smaller scale fi is preferred, where asifJ.) would 

be larger. In the case of the thrust distribution, we found that both the FAC and PMS scales 

naturally selected such a smaller scale and a similar treatment here may be beneficial. 

^In fact, this is the case for all the distributions except the jet resolution j/4 in the JADE scheme. 
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o Delphi (Charged) 
• Delphi (Charged and Neutral) 

NLO 
- - • LO 

Figure 6.3: The Bmin distribution at next-to-leading order (solid line), compared with the 
lowest order result (dotted line). The open circles (boxes) show the charged (charged and 
neutral) data from the DELPHI collaboration. 
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10̂  

o Delphi (Charged) 
• Delphi (Charged and Neutral) 

NLO 
LO 

ml/s 

Figure 6.4: As for Figure 6.3, but for the light mass distribution. 

- 1 — I — 1 — 1 — j -

o Delphi (Charged) 
o Delphi (Charged and Neutral) 

NLO 
LO 

0 0.02 0.04 0.06 0.08 0.1 0.12 

Figure 6.5: As for Figure 6.3, but for the yi distribution. 
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6.5 Summary 

In this chapter we have introduced a selection of four-jet observables and made next-to-

leading order predictions for them using the program EERAD2 which is based upon the work 

of chapters 3-5. 

For some of the observables, such as the jet rates, thrust minor and the D parameter, 

where next-to-leading order results were already available, EERAD2 provides consistent re­

sults. The remaining distributions are presented in the form of tables of scale-independent 

coefficients and plots with the strong coupling 0:5 evaluated at the physical scale. At this 

scale, the next-to-leading order corrections are large, but typically leave the perturbative 

prediction still well below the DELPHI data. 

This concludes our discussion of the calculation of this 4 jet process. We now turn our 

attention briefly to the consideration of infrared singularities and factorization when applied 

at next-to-next-to-leading order. 



CHAPTER 6. FOUR JET PREDICTIONS AT NLO 146 

T • 
minor 

BT 
-'- minor 

minor 

0.03 (1.95 ±0.02) • 10^ (7.48 ±0.10) • 10^ 
0.05 (1.06 ± 0.01) • 10̂  (5.45 ± 0.09) • 10^ 
0.07 (6.83 ± 0.04) • 102 (3.94 ± 0.04) • 10̂  
0.09 (4.69 ±0.03) •102 (2.82 ±0.05) • 10̂  
0.11 (3.32 ±0.02) •102 (2.08 ± 0.03) • lO'* 
0.13 (2.43 ±0.02) •102 (1.47 ±0.01) • lO'* 
0.15 (1.79 ±0.01) •102 (1.14 ±0.01) • 10^ 
0.17 (1.37 ±0.01) •102 (8.52 ±0.17) • 10̂  
0.19 (1.03 ±0.01) •102 (6.56 ±0.13) • 10̂  
0.21 (7.84 ±0.07) •10^ (4.77 ±0.23) • 10̂  
0.23 (6.01 ±0.06) •10^ (3.58 ±0.18) • 10̂  
0.25 (4.65 ± 0.05) •10^ (2.54 ±0.08) • 10̂  
0.27 (3.63 ±0.04) •10' (1.94 ±0.04) • 10^ 
0.29 (2.76 ±0.03) •10' (1.41 ±0.06) • 10^ 
0.31 (2.17 ±0.02) •10' (1.14 ±0.04) • 103 
0.33 (1.70 ±0.02) •10' (7.05 ± 0.42) • 102 
0.35 (1.28 ±0.02) •10' (5.16 ±0.24) • 102 
0.37 (9.62 ±0.13) •10° (3.48 ±0.12) • 102 
0.39 (6.96 ±0.11) •10° (2.50 ±0.15) • 102 
0.41 (5.17 ±0.07) •10° (1.73 ±0.11) • 102 
0.43 (3.62 ±0.06) •10° (1.12 ±0.06) • 102 
0.45 (2.45 ±0.04) •10° (6.19 ±0.78) • 10̂  
0.47 (1.60 ±0.03) •10° (2.83 ± 0.22) • 10̂  
0.49 (9.38 ±0.12) • 10-' (1.46 ±0.28) • 10̂  
0.51 (5.08 ±0.10) • 10-' (7.98 ±1.50) • 10° 
0.53 (2.17 ±0.04) • 10-' (1.35 ±0.68) • 10° 
0.55 (6.41 ±0.13) • 10-2 (-1.44 ±0.15) •10° 
0.57 (4.90 ± 0.20) • 10-3 (-2.97 ±0.28) 10-' 

Table 6.3: The leading and next-to-leading order coefficients for 
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BB 
-'-'min 

0.0150 (1.19 ±0.01) • 103 (3.31 ±0.06) • lO" 
0.0250 (7.07 ±0.07) •102 (2.51 ±0.02) • 10̂  
0.0350 (4.75 ± 0.05) •102 (1.91 ±0.02) • lO'* 
0.0450 (3.42 ± 0.03) •102 (1.40 ±0.01) • 10̂  
0.0550 (2.51 ±0.02) •102 (1.06 ±0.02) • 10^ 
0.0650 (1.86 ±0.02) •102 (7.99 ± 0.07) •103 
0.0750 (1.42 ±0.01) •102 (6.25 ±0.08) • 103 
0.0850 (1.09 ±0.01) •102 (4.82 ±0.08) • 103 
0.0950 (8.33 ± 0.06) •101 (3.58 ± 0.09) • 103 
0.1050 (6.37 ±0.06) •lOi (2.77 ±0.08) • 103 
0.1150 (4.72 ± 0.04) •lOi (2.13 ±0.04) • 103 
0.1250 (3.42 ±0.03) •101 (1.39 ±0.02) • 103 
0.1350 (2.45 ±0.02) •101 (1.06 ±0.02) • 103 
0.1450 (1.64 ±0.02) •101 (6.91 ±0.11) •102 
0.1550 (9.90 ±0.09) •10° (4.30 ±0.14) •102 
0.1650 (4.85 ±0.06) •10° (2.12 ±0.08) •102 
0.1750 (1.71 ±0.03) •10° (7.01 ±0.21) •IQi 
0.1850 (4.29 ±0.06) 10-1 (1.62 ±0.06) •lOi 
0.1950 (5.61 ±0.13) 10-2 (1.18 ±0.14) •10° 
0.2050 (4.16 ±0.22) 10-4 (9.68 ± 5.46) 10-3 

Table 6.4: The leading and next-to-leading order coefficients for the narrow jet broadening 
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m\/s Bml/s 

0.0150 (3.26 ±0.07) •102 (1.38 ±0.02) • 10" 
0.0250 (1.88 ±0.03) •102 (8.71 ± 0.08) • 103 
0.0350 (1.24 ±0.02) •102 (5.92 ± 0.07) •103 
0.0450 (8.46 ±0.11) •lOi (4.07 ±0.06) • 103 
0.0550 (6.01 ±0.08) •101 (3.08 ±0.08) •103 
0.0650 (4.27 ±0.05) •101 (2.10 ±0.04) • 103 
0.0750 (3.11 ±0.05) •lOi (1.60 ±0.03) • 103 
0.0850 (2.14 ±0.03) •101 (1.09 ±0.02) • 103 
0.0950 (1.44 ±0.02) •101 (7.43 ±0.16) •102 
0.1050 (8.94 ±0.11) •10° (4.84 ±0.15) •102 
0.1150 (5.26 ±0.08) •10° (3.19 ±0.06) •102 
0.1250 (2.38 ± 0.04) •10° (1.68 ±0.05) •102 
0.1350 (8.49 ±0.24) 10-1 (6.34 ±0.24) •101 
0.1450 (2.45 ±0.06) 10-1 (1.78 ±0.05) •101 
0.1550 (4.46 ±0.14) 10-2 (3.89 ±0.20) •10° 
0.1650 (1.70 ±0.13) 10-3 (1.97 ±0.20) 10-1 
0.1750 - (8.98 ±3.09) 10-^ 

Table 6.5: The leading and next-to-leading order coefficients for the light jet mass m\ls. 
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yi ^yi 
0.0075 (5.97 ±0.03) •102 (1.74 ±0.04) • 10̂  
0.0125 (3.65 ±0.02) •102 (1.32 ±0.02) • 10'̂  
0.0175 (2.45 ±0.02) •102 (9.68 ±0.12) • 103 
0.0225 (1.80 ±0.01) •102 (7.86 ±0.12) • 103 
0.0275 (1.30 ±0.01) • 102 (5.83 ±0.14) • 103 
0.0325 (1.03 ±0.01) •102 (4.97 ±0.13) • 103 
0.0375 (7.96 ± 0.08) •10^ (3.85 ± 0.08) • 103 
0.0425 (6.19 ±0.06) •10' (2.82 ±0.06) • 103 
0.0475 (4.91 ±0.05) •10' (2.27 ±0.07) •103 
0.0525 (3.93 ± 0.04) •10' (1.95 ±0.08) • 103 
0.0575 (3.12 ±0.03) •10' (1.47 ±0.03) • 103 
0.0625 (2.48 ±0.02) •10' (1.22 ±0.04) • 103 
0.0675 (1.94 ±0.02) •10' (9.47 ±0.41) •102 
0.0725 (1.57 ±0.02) •10' (7.70 ± 0.26) •102 
0.0775 (1.19 ±0.01) •10' (5.92 ± 0.33) •102 
0.0825 (9.40 ±0.10) •10° (4.16 ±0.18) •102 
0.0875 (7.08 ±0.11) •10° (3.45 ± 0.20) •102 
0.0925 (5.39 ±0.06) •10° (2.51 ±0.08) •102 
0.0975 (3.87 ±0.07) •10° (1.85 ±0.09) •102 
0.1025 (2.85 ±0.04) •10° (1.46 ±0.08) •102 
0.1075 (2.00 ±0.04) •10° (1.00 ±0.09) •102 
0.1125 (1.31 ±0.03) •10° (5.93 ±0.40) •10^ 
0.1175 (8.14 ±0.15) 10-' (5.19 ±0.46) •10^ 
0.1225 (5.28 ±0.12) 10-' (2.45 ±0.16) •10^ 
0.1275 (3.12 ±0.07) 10-' (1.44 ±0.14) •10^ 
0.1325 (1.63 ±0.03) 10-' (7.68 ± 0.57) •10° 
0.1375 (9.22 ±0.18) 10-2 (4.32 ±0.37) •10° 
0.1425 (4.32 ±0.11) 10-2 (2.36 ±0.20) •10° 
0.1475 (1.62 ±0.04) 10-2 (7.92 ± 1.18) • 10-' 

0.1525 (5.14 ±0.17) 10-3 (2.34 ±0.22) • 10-' 

0.1575 (1.03 ±0.03) 10-3 (4.15 ±0.77) • 10-2 

0.1625 (6.42 ± 0.34) • 10-^ (3.73 ±0.60) • 10-3 

0.1675 (8.16 ±4.91) •10-' (-1.07 ±0.97) • 10-6 

Table 6.6: The leading and next-to-leading order coefficients for the jet resolution parameter 
yf , where the superscript denotes that the jets are defined according to the JADE algorithm. 



Chapter 7 

Double Unresolved Factorization 

7.1 Introduction 

In this chapter we now return to the calculation of the five parton matrix elements of 

chapter 4 and consider some other uses of those results. There, and in subsequent chapters, 

we concentrated on their specific application to 4-jet production. In this chapter we will 

use these matrix elements to illustrate a more general feature of QCD amplitudes, that of 

factorization in soft and collinear limits. As a specific example, we will show how we may 

introduce new factorization functions that would play a role in the NNLO calculation of the 

process e^e" 3 jets. 

The soft gluon and collinear parton limits of multiparton scattering amplitudes are well 

known. As discussed in chapter 2, colour-ordered n parton sub amplitudes factorize into 

(n — 1) parton amplitudes with the unresolved particle removed, multiplied by eikonal (soft) 

factors, 
45ac 

) = (7.1) 

or Altarelli-Parisi (collinear) splitting functions (equations 2.9). 

In this chapter, we shall extend the factorization of multiparton scattering amplitudes to 

include all the cases where two particles are considered unresolved (pictured in Figure 7.1). 

150 
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There are a variety of different configurations, comprising: 

(a) two soft particles, (b) two pairs of coUinear particles, 

(c) three collinear particles, (d) one soft and two collinear. 

> Double 
wffs^^ijs- >- Unresolved x WM^'^'^'^^ 

%, Factor 

Figure 7.1: An illustration of the double unresolved factorization from an (n + 2) particle 
state into one containing only n resolved particles. The hard part of the process remains 
unchanged while two of the gluons are unresolved by one of (a)-(d) described in the text. 

Such configurations are relevant for calculations at next-to-next-to-leading order and 

beyond, and in particular we will present suitable double-unresolved approximations for 

the e^e- 5 partons matrix elements, relevant for the calculation of e^e- —>• 3 jets at 

NNLO. A brief discussion of the calculational structure of this process follows in section 7.2. 

Sections 7.3 and 7.4 are organised according to whether the two unresolved particles are 

colour connected or not. The precise meaning of what colour connected means will be given 

in sect. 7.3. In the unconnected case, the singular limits are obtained by merely multiplying 

single unresolved factors. However, when the particles are colour connected, the structure 

is more involved (sect.. 7.4) and we give explicit formulae detailing the double unresolved 

singular factors for all of the configurations (a)-(d) above. In each case we write down 

expressions for the double unresolved limits of the five parton process. 

7.2 Three Jet Production at NNLO 

One of the next steps in theoretical perturbative QCD calculations is to evaluate the next-

to-next-to-leading order corrections to the three-jet rate. Current analysis of three jet events 

and other hadronic event shapes gives a global average value of the strong coupling constant 
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as [54], 

as{Mz) = 0.121 ±0.005. 

Together with LEP/SLC data and hadronic events from the next linear collider, NNLO input 

would play a role in reducing this error on as(Mz) to the 2-3% level. 

However, to accomplish this, several ingredients are necessary. As has been extensively 

discussed in preceding chapters, the calculation of any n-jet observable at the one-loop level 

requires the evaluation of both real (n ± l)-parton and virtual n-parton matrix elements. 

At two loops, there is a still greater number of contributing partonic processes. These are 

illustrated in Figure 7.2 for the case of three jet production, where we consider all the possible 

cuts of a relevant 0{ag) 3-loop diagram. There are four types of contribution: 

(a) 2-loop, 3 partons 

The interference of the 2-loop with tree-level 3-parton diagrams forms the first con­

tribution. Evaluation of these matrix elements appears to be a major hurdle, since 

even the scalar two loop box integrals with massless internal and external legs are not 

known analytically. Some progress towards the evaluation of these formidable integrals 

has been made in [60, 61 . 

(b) 1-loop, 3 partons 

A second category of matrix elements is formed by the interference of the 1-loop 3 

parton matrix elements with themselves. These are known amplitudes and their im­

plementation should not be problematic. 

(c) 1-loop, 4 partons 

The matrix elements of chapter 4 form a third contribution, when one of the partons 

is unresolved. The singularities must be systematically isolated when either a gluon is 

soft or two partons are collinear. In ref. [62], Bern et al., have developed appropriate 

splitting functions for one-loop processes where two external particles are collinear. 

(d) Tree level, 5 partons 

Finally, two particles may be unresolved, again leading to infrared singularities that 
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must be analytically isolated and then numerically combined with all the above con­

tributions. In order to extract all the singularities, we must first find suitable approx­

imations to the five parton matrix elements with two particles unresolved. This is the 

problem which we shall address later in this chapter, extending the earlier study of 

multiple soft gluon emission by Berends and Giele [63 . 

(b) 

I ''is ' I 

Figure 7.2: A 3-loop diagram which, when cut in all possible ways, shows the partonic 
contributions that need to be calculated for e'^e~ —> 3 jets at next-to-next-to-leading order. 
Writing the ^-loop, ra-parton amplitude as Ml^\ the dashed lines represent the cuts that 
correspond to the following squared interferences of amplitudes: (a) ^^3°^ x M f \ , (b) Ms'^ x 
Mi'\ (c) M f ^ X M['^ and (d) > f f X M f \ 

Of course, much work still remains to be carried out before a genuine NNLO prediction 

may be made. Not least of these is analytically integrating the double unresolved approxi­

mations over the appropriate regions of phase space. However, the approximations presented 

in the remainder of this chapter provide a first step in this direction. 

7.3 Colour Unconnected Double Unresolved 

In the cases where the two unresolved particles are not colour connected, the factorisation of 

the amplitudes involves the well-known functions describing single soft and collinear emission. 
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We first describe what is meant by colour connected and colour unconnected. 

7.3.1 Colour Connection 

We have seen how tree level matrix elements can be decomposed into colour ordered sub-

amplitudes which have nice factorisation properties in the infrared limits. Therefore it is 

useful to view the matrix elements in terms of the colour structure associated with the 

subamplitudes. For example, in chapter 4, we introduce the two quark-three gluon sub-

amplitude S^(Qi; 1, 2, 3; Q2), which is associated with the colour structure (T'^'T^^T'^^jccj-

This is a colour antenna that ends on the quark/antiquark colour charges Ci and 02 with 

ordered emission of gluons with colour a i , . . . , 03 . Within this colour antenna, gluon 1 is 

colour connected to the quark Qi and gluon 2, but not to the antiquark Q2 or to gluon 3. 

I t is easy to re-interpret the colour connection in terms of the singularity structure of the 

matrix elements: particles a and b are colour connected when the matrix elements have a 

pole in the invariant Sab- In cases involving more than one quark-antiquark pair there can be 

many colour antennae. For example, the four quark amplitude A'^^'^'-{Qi; l;Q4\Q3',Q2) in 

chapter 4 describes a process with two separate colour antennae. In general, the particles in 

one antenna are not colour connected to the particles in one of the other antennae. However, 

there is one case where particles in adjoining antenna can usefully be thought of as colour 

connected. This is when there is an antiquark at the end of one antenna and a like flavour 

quark at the beginning of another, 

A{...,Q\Q,---)-

When this quark-antiquark pair are collinear, they combine to form a gluon G, which then 

connects, or pinches together, the two separate colour antennae, so that, 

|^(..., Q\Q,.. . )p ^ P,,^G{Z, SQQ)\A{. ..,a,G,b,.. . )p. 

This is illustrated diagrammatically in Figure 7.3. A useful definition of colour "connected" 

therefore includes these antennae pinching configurations along with the more straightfor­

ward colour connection within a single antenna. Al l other cases are colour "unconnected". 
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Q . . Q 

a ^ b 

^ ^ 

Figure 7.3: The pinching together of two antennae which gives rise to the factorization of 
equation 7.3.1. 

7.3.2 Two Collinear Pairs 

Two pairs of particles may become collinear separately, but with the particles in one or 

both of the pairs themselves not colour "connected". In these cases, there are no singular 

contributions containing both of the vanishing invariants. For instance, i f partons {a. d} and 

{b, c} are collinear then, 

A{..., a, c , c / , . . . ) 1̂  less singular. (7.2) 

By this we mean there is no contribution proportional to 1/sadSbc and once again, when 

integrated over the small region of phase space relevant for this approximation yields a 

negligible contribution. 

The situation where two pairs of colour "connected" particles are collinear is also rather 

trivial. I f partons a and b form P, while c and d cluster to form Q, so that P and Q are 

themselves colour unconnected, then, 

|^(. ..,a,b,...,C,d,...)f ^ Pab^p{Zl, Sab) Pcd^Q{z2, Scd) \A{.. . , P, . . . , Q, . . .)\\ (7.3) 

Here, zi and Z2 are the momentum fractions carried by a and c respectively. A similar result 

holds if either of the pairs involves particles in separate antennae, but which are able to 

undergo antenna pinching. The collinear splitting functions are related to the (colourless) 
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Altarelli-Parisi splitting kernels by eq. (2.8) which, in the conventional dimensional regular-

isation scheme [14] with all particles treated in D = 4 — 2e dimensions, are given by (2.9) of 

chapter 2. As before, azimuthal averaging of the collinear particle plane is understood. 

Double Collinear Limit of e"'"e" 5 Partons 

In this limit where two pairs of partons are simultaneously collinear, the five parton matrix 

elements factorise into the three parton matrix elements multiplied by a combination of 

products of collinear splitting functions. Summing over all possible unconnected double 

collinear limits, for the two-quark currents we find. 

S,{Q^;1,2,3;Q2)V^ 

\S,iQr; 1,2,3; Q2)V' 

{PQII-^QPTQ^^Q + PQI3^QP2Q2-^Q + PQII^QP^QO.^Q 

+PQI^^QPI2^G + PI2^GP3Q^^Q) 

.slv^ 

P(l,2,3) 
i-^Q^2Q2^Q 

(7.4) 

whilst the only contributing pieces for the four-quark process are, 

r / ( Q i , Q 2 ; Q 3 , Q 4 ; l ) ^ ' ' ' ^ {PQ^I^QPQ,QS^G + PIQ,^QPQ,Q.^G)\KV'' 

rfiQi,Q,;Q3,Q2-A)V'' {PQ.I^QPQ^ + PIQ,->QPQ 

r,{Qi,Q2;Q3,Q4A)V' [PQII^QPQ^Q^^G + PIQ2-*QPQ4Q3-^G 

+PQ.I^QPQ,Q,^G + PIQ,-.QPQ.Q^-.G) (7-5) 

For brevity we have dropped the arguments of the splitting functions. Explicitly, for np 

flavours of quark, we find. 

3! 

'g'^NV (N'^-i slv^ ^2 I \ N^ ^ 

PQI1^QP2Z^G + P^iQ^-^qPn-^G + PQII^QPSQ^^Q 

2nF 
1^ PQII^QPQ.QS^G - ^ [PQII-^QP2Q2^Q + PQI^^QP2Q^^Q) (7.6) 
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Note also that the identical gluon factor 1/3! is eliminated since each term in the sum over 
permutations produces an identical contribution. I t is interesting to review the origin of 
the factor of np- There are npinp — l ) / 2 contributions from two unUke pairs of quarks, 
each of which generates two sets of singular limits - that indicated plus the symmetric term 
{Qi -(->• Qz^Qi ^ QA)- In addition there are np like-quark pair contributions, which after 
the symmetries have been applied yield four singular Umits. However, the identical quark 
contribution is multiplied by the identical particle factor 1/4 so that the net result is, 

^ ^ x 2 - F n / r x 4 x - = tip. 

2 
One factor oinp is absorbed into the three parton matrix elements <S|)V , while the other 

appears as an explicit factor. 

7.3.3 Triple Collinear Factorisation 

If three collinear particles are colour "unconnected" then there is no singularity. So if a, b 

and c all become collinear, 

X ( . . . , a,..., 5,.. . , c,.. .)p finite, (7.7) 

and there is no singular contribution involving the invariants Sab, Sbc or Sa6c- As before, 

because the region of phase space where the triple collinear limit is valid is extremely small, 

this gives a negligible contribution to the cross section. When two of the three collinear 

particles are colour "connected" we find a singular result, 

\Ai...,a,...,b,c,...)\^ -^l/sbc- (7.8) 

However, when integrated over the triple collinear region of phase space that requires Sab-, Sbc 

or Sabc all to be small, we again obtain a negligible contribution that is proportional to the 

small parameter defining the extent of the triple collinear phase space. We therefore ignore 

contributions of this type. 



CHAPTER 7. DOUBLE UNRESOLVED FACTORIZATION 158 

7.3.4 Soft/Collinear Factorisation 

Two particles may be unresolved if one of them is a soft gluon and another pair are collinear. 

When the soft gluon g is not colour connected to either of the colour "connected" collinear 

particles c and d, factorisation is straightforward, 

|2 A{...,a,g,b,...,c,d,...)\'^ Sagbisab, Sag, Sbg)Pcd^p{z, Scd) ..,a,b,...,P,...)\' 
(7.9) 

Soft/Collinear Limit of e+e 5 Partons 

In the soft/coUinear limit, the five parton matrix elements again factorise into a singular 

factor multiplying the squared two-quark current relevant for three parton production. 

S,iQul,2,3;Q,)V^ 

S,{Q,;1,2,~3-Q,)V^ 

IS^V^ 

{SQ.nPsQ^^Q + PQI3^QSI2Q, + Pn-,GSQ^3Q^) [S^V^" 

(7.10) 

Note that for iS^((5i; 1, 2, 3; Q2)V^ , the soft and collinear limits are considered to be over­

lapping and will be dealt with in section 7.4.2. 

In the four-quark current case, the soft/coUinear limit has only two colour-unconnected 

contributions. The first is given by, 

r,'^{Qi,Q4;Qs,Q2-A)y' SlV^" (7.11) 

whilst the limit of, T,j.{Qi,Q2iQz,QiA)V^ ^, again involves both unconnected and con­

nected factors and therefore discussion of this will also be deferred until section 7.4.2. The 

other subamplitudes vanish in the unconnected soft/coUinear limit. 

Applying these limits to the ful l five parton matrix elements is straightfoward and, after 

removing identical particle factors where necessary, we find, 

3! + 
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X 
j V ^ - 1 

Â 2 j {SQ^UPSQ^^Q + PQ,1^QS23QJ - JPPI2-^GSQ^2.Q2 

+ ^ 9 - P - (7.12) 

7.3.5 Two Soft Gluons 

When two unconnected gluons are soft, the factorisation is again simple [63]. For gluons gx 

and g2 soft we find, 

x | ^ ( . . . , a, c ,d , . . . )p , (7.13) 

so that the singular factor is merely the product of two single soft gluon emission factors 

given by eq. (7.1). Note that 6 = c is allowed. 

Double Soft Limit of e+e~ 5 Partons 

The sum over the unconnected double soft limits of the colour ordered subamplitudes can 

be easily read off, 

|2 
S,{Qx-X2,3-Q2)V>^ 

S,{Qx-,W;Q2)V^ 

S,{QuW;Q2)V' 

('5QI125Q^3Q^ + SQ^3Q^S^2Q2) 

^ 9 E '̂ QilQ2'̂ '3i2Q2 (7.14) 
f(1,2,3) 

There is no contribution from the four-quark matrix elements. Inserting these limits into 

the ful l five parton matrix elements yields, 

s'v^wf^v^\'=('-^y\s^v'^^' 
3! 

VV^ 

X SQi\2S23Q^ - {^Qi^^^Qi3Q2 + ^Qi3Q2^l2Q2) 

27V4 j ^Qi^Q2^Qi'iQ2 (7.15) 
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where once again the sum over permutations is eliminated by the identical particle factor. 

7.4 Colour Connected Double Unresolved 

The factorisation that occurs when the two unresolved particles are colour "connected" is 

necessarily more involved than that in section 7.3. In particular, we will need to intoduce 

new functions to describe this factorisation. 

7.4.1 Triple Collinear Factorisation 

When three colour "connected" particles cluster to form a single parent parton there are 

four basic clusterings, 

ggg G, qgg -> Q, 

gqq G, qqq Q, 

and the colour ordered sub-amplitude squared for an n-parton process then factorises in the 

triple collinear limit, 

| ^ ( . . . , a, 6, c , . . . ) p -> Pabc-.p\A{..., P , . . . ) I ' - (7-1) 

As before, partons able to undergo antenna pinching are considered to be colour connected, 

so that there may be contributions from amplitudes such as A{... ,a,b\c....). The triple 

collinear splitting function for partons a, b and c clustering to form the parent parton P is 

generically, 

Pabc-^p{w, X, y, Sab, Sac, Sbc, Sabc), (7-2) 

where w, x and y are the momentum fractions of the clustered partons, 

Pa = wpp, pb = xpp, Pc^ypp, with l o - f x - h y = 1. (7.3) 

In addition to depending on the momentum fractions carried by the clustering partons, 

the splitting function also depends on the invariant masses of parton-parton pairs and the 
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invariant mass of the whole cluster. In this respect, they are different from the splitting 
functions derived in the jet-calculus approach [64], and implemented in the shower Monte 
Carlo NLLJET [65], which depend only on the momentum fractions. 

The triple collinear splitting functions Patc^p are obtained by retaining terms in the full 

matrix element squared that possess two of the 'small' denominators Sab-, Sac, Sbc and Sabc-

As before, we consider the explicit forms of the 7* four and five parton squared matrix 

elements and work in conventional dimensional regularisation, with all external particles 

in D = A — 2e dimensions. Similar results could be derived using hehcity methods or by 

examining the on-shell limits of the recursive gluonic and quark currents of ref. [66 . 

Although the splitting functions are universal, and apply to any process involving the 

same three colour connected particles, for processes involving spin-1 particles, there are 

additional (non-universal) azimuthal correlations due to rotations of the polarisation vec­

tors. These angular correlations do not contribute to the underlying infrared singularity 

structure and vanish after all azimuthal integrations have been carried out and we therefore 

systematically omit them. A discussion of the methods used to obtain the correct azimuthal 

dependence is contained in Appendix F. 

Strong Ordering 

A further check on our results is provided by the strong-ordered limit, where the particles 

become collinear sequentially rather than at the same time. In the limit where one of the 

double invariants is much smaller than the triple invariant, the triple collinear function should 

factorize into the product of two (usual) Altarelli-Parisi splitting functions, plus azimuthal 

terms [67 . 

As a concrete example, consider the splitting (123) ^ 1 2 3 where S12 <C S123, with the 

particles carrying momentum fractions w, x and y of the parent momentum P. In the 

strong-ordered picture this corresponds to two consecutive splittings into fractions a and 6, 

as shown in Fig. 7.4. 
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Figure 7.4: Consecutive splittings in the strong-ordered approach. The momentum carried 
by the intermediate parton (q) is Q. 

Thus we expect, 

P{123)-,12 3{w,X,y) = ^ (P{123)^q3{a)Pq-^12{b) + ^{123)^123{a,b)) , (7.4) 
•5l2Sl23 ^ 

where $ 1 2 3 (a, b) represents angular correlations. In fact we know that these angular correla­

tions are only present when the intermediate parton in the strong-ordered picture is a gluon 

and $ 1 2 3 ( 0 , 6) = 0 otherwise. 

From the relations, 

we find that we should set. 

Pi = wP = bQ, 

P2 = xP = {l~b)Q, 

p, = yP={l-a)P, 

Q = aP, 

a = l - y , b=- . (7.5) 
1 - y 

We also have S23/S13 = (1 - b)/b so that, 

Sia = 6Si23, S23 = (1 - ^)5i23-
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By using these substitutions we can make comparisons with the expectations of the strong-
ordered approach and thus provide further checks on the functions describing triple collinear 
emission which we shall present in the remainder of this section. 

Three Collinear Gluons 

Firstly, examining the sub-amplitudes for multiple gluon scattering, we find that the colour-

ordered function Pggg-^o is given by, 

Pabc^G{w, X, y , Sab, Sbc, Sabc) = 8 X | 

^ {l-e){xsabc-{l-y)sbc)' ^ 2{l-e)sbc ^ 3(1 - e) 

+ 1 A l - y ( l - y ) ) ^ ^x^ + xy + y^ ^ x w - x ^ y - 2 ^ x \ 

SabSabc\ yw{l-w) 1-y 2/(1-?/) ( l - y ) , 
1 / 2 2{2 - w + w^){x^ + w{l - w)) ^ J_ ^ 1_ 

2sabSbcy'^ 2/(1-2/) ^ yw^ {l-y){l-w)J j 
+ {sab ^ Sbc, w ^ y) -\- azimuthal terms. (7.6) 

This splitting function is symmetric under the exchange of the outer gluons a and c, and 

contains poles only in Sab and Sbc-

Two Gluons with a Collinear Quark or Antiquark 

There are two distinct splitting functions representing the clustering of two gluons and a 

quark which depend on whether or not the gluons are symmetrised over. In the unsym-

metrised case, there will be poles in Sg-^g^, due to contributions from the triple gluon vertex 

which are not present in the QED-like case. For the pure QCD splitting we find. 

Pqgi92^Qi.'^ 1 Vl Sqgi, Sgg2, Sgig2, Sqgig2) — 4 X ^ 

J { l - y ) ' + w{l-x)-2y\ f 2{1 - y){y - w) \ 

SmSg9i92\ \ 2 / (1-w) y V 2 / ( 1 - ^ ) / J 
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+ 
1 f,-^ (1 - y)^2 - y ) + x^ + 2xw-2-y\ ^ ^^{xw - y - 2yw)^ 

y{l-w) J y{l-w) J 

2{xSqg-^g^ (1 w)Sqg^) 1 (A ^qgi , / I A^gig2 

\ *91S2 99192 •̂ 99192 \ *9l92 ^?9i / / ) 

while for the QED-like splitting where one or other or both gluons in the colour ordered 

amplitude are symmetrised over, 

Pqgi92^Q{'^) ^} •^991' '^992) '^99192) = 4 X | 

+ -— —(l + w^-e{x^ + xy + y'^)-e^xy) 
"^Sqg^Sqg^ Xy 

+ ^- ^ (w{l - x + e^xy) + (1 - yf - e(l - y){x^ + xy + y^) + e'^xy) 
•^991'^99192 -^y 

- f ( i - ^ ) 7 ^ - ^) I + (^.pi ^ ^ . . 2 , ^ ^ y)- (7.8) 
•̂ 99192 \ *992 / ) 

The function Pqg\g-2^Q can be interpreted as the relevant triple collinear splitting function 

with one or both of the gluons replaced by photons. As such, this result echoes that found 

in [68] for Pqg^^q. Using charge conjugation, we see that the functions representing clustering 

of two gluons with an antiquark are simply, 

Pgig-iq^Q^'^-' ^' Vi "^9192) •^929' '^919' ^9l92q) ~ Pq9i92^Qiy^ ^1 '^992) '^991' '^9192' ^91929); 

"^9"I9"29->Q(^'^5'^929'•5919'^91929) ~ Pqg~ig~2^Qiy->^j'^-^q92y^q9i^^gi92q)- (7-9) 

A Quark-Antiquark Pair with a Collinear Gluon 

Similarly the clustering of a gluon with a quark-antiquark pair into a parent gluon again has 

two distinct functions. For example, there is a singular contribution from the four quark 

matrix elements when Q^, and the gluon cluster, 

rj'{QuQ2;Q3,Q4-A)V'' = ^ ? ^ ^ ( Q i i i ; Q 4 | ( 5 3 ; Q 2 ) ^ " + ^ ? ' ^ H Q 3 ; Q 2 l Q i ; i ; Q 4 ) l ^ ' ' " 
2 
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Here, the singular contribution comes entirely from the first A term where combining Q^, 
Qj, pinches the two colour lines together. Explicit evaluation yields, 

Pggq^ci'^, ^, 2/) Sgg, Sqq, Sggg) = 4 X 1̂  

•'• fA^9Q . M ^\^gQ I /Q 2 {xSgqq — {1 — w)Sgq) 2 
4 ^ - f - ( l - e ) ^ + ( 3 - e ) -

S^qq \ Sqq Sgq J s|gS^^g(l 

+ 

SgqSggq \W{1 -W) (1 - e)w{l - w) ) 
y f X {{1 - wY - w^) 2x^ {1 ~ yw - {1 - y){l - w)y 

SgqSqq \ w{l - w) (1 - e)w{l - w) 
1 il^w^ + Axw) 2x [wix - y) - yil + w))\\ . , , , ^, 

- f ^ — ^ + — f \ , — ^ \ + azimuthal terms 7.10 
SqqSgqq \ w[l - w) (1 - e)w[l - w) J ) 

Again applying charge conjugation yields the further relation, 

Pqqg-^Gi}^, 2/) '^99! '^99' ^QQg) — Pggq^GijJ, Sgq, Sqq, Sggg), (7.11) 

describing instances where the gluon is colour connected to the quark rather than the anti­

quark. 

There is a further contribution when the quark-antiquark and gluon combine to form a 

photon-like colour singlet. This occurs when, 

In this case the singular contribution is produced by the second B term and is due to the 

entire Qs; 1; Q 4 antenna pinching to form a gluon which is then inserted in a symmetrised 

way (i.e. with a tilde) into the remaining colour antenna. This QED-like splitting function 

is given by. 

Pqgq-^di'^^ ^ ' ^ ' '^99' ^99 ' '^99' '^999) — 4 X | 

^^99- V ^ 9 9 J SgqSggV 

1 + 22; + e -
^qg^qgq \ ^) 

2(1 _ y)\ ] 
> + {sqg -H' Sgq, w -H- y) + azimuthal terms.(7.12) 
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A Quark-Antiquark Pair with a Collinear Quark or Antiquark 

Lastly, we consider the clustering of a quark-antiquark pair (QQ) and a quark (q) to form 

a parent quark q' with the same flavour as q. The splitting function depends upon whether 

or not the quarks are identical, 

jnon-ident. ^QQ nident. P- = P" qQQ-^q' ^ qQQ-^q' 
' p idei (7.13) 

where SgQ = 1 for identical quarks. I f quarks Qi, and are clustered to form Q, then 

we find a non-identical quark contribution. 

r^^iQ3,Qi;QuQ2;m' A'i^'^^iQ,; 1; Q2\Qu Q,)V'^ + ^ ^ ^ ^ Q i ; Q,\Qs; 1; Q2)V'' 

, pnon—ident. 

with. 

qQQ 
( 1 - ^ ) + 

2s QQ 

' l - f a ; ^ -h (3 : + tt;)^ - 6 ( 1 - ^ ) . (7.14) 

The singular contribution is now generated by the square of the second A term; pinching Qj, 

and together connects the two colour antennae together and combining with Q i ensures 

that the vector boson couples to a flavour singlet Q1Q2 pair. Precisely the same function 

describes the triple collinear limit of the functions. We find that in the same limit, 

r / ( Q i , Q 4 ; Q 3 , Q 2 ; i ) ^ ^ " ^ ~ ^ " ^'""'^ B^^^'^\Q^-l-Q2\Qz-,Q,)V^ + B'i^'^^{Qz-,Q,\Qv,l-,Q2)V>' 

, pnon—ident. 

where this time the first term alone contributes. Here Q3 and Q 4 combine to form a photon 

which clusters with Qi. As before, charge conjugation generates the associated function for 

an antiquark combining with a quark-antiquark pair. 

(7.15) 
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When the flavours of the clustering quarks are the same, there is an additional contri­
bution coming from the interference terms of the four-quark matrix elements. For instance, 
when Q i , and Q3 combine, 

3^(r/(Q3,Q4;(5i,^2;i)v^^) {r,''{Q3,Q,;Qi,Q2;i)v^f 

- ^?^^(Q3;i ;Q2lQi;Q4)^^(^?'^^(Q3;i ;Q2lQi;Q4)i '^'^)^ 

, ^ pident. 
^ 2 QiQiQs-^Q 

2 

where, 

PqQQ^q'i''^' ^' ^' ^qQ^ ^QQ^ ^qQo) — 4 X | 

iq-Q \'QQ J 2 S ^ Q 5 Q Q V ( l - 2 / ) ( l - ^ ) V ( 1 - ^ ) JJ 

W 9 Q Q V ( I - 2 / ) ( 1 - ^ ) V ( i - y ) ( 1 - w ^ ) ) ) ] 
+ ( 5 , Q ^ S Q Q , 2 / ^ ^ « ) - ( 7 . 1 6 ) 

Here, there are poles in the matrix elements when clusters with both and Qi and the 

triple collinear function is symmetric under q ^ Q. 

The iV = 1 S U S Y Identity 

These triple-coUinear splitting functions, like the ordinary Altarelli-Parisi splitting kernels, 

can be related by means of an N = 1 supersymmetry identity. In unbroken supersymmetric 

theories, the masses of gluon and gluino are identical thereby ensuring that the self-energies 

of the two particles are equal. By considering all two particle cuts of the one-loop diagrams 

contributing to these self-energies, we obtain a relation between the colour stripped Altarelli-

Parisi kernels, 

Pgg-,g{z) + Pqq^g{z) = Pqg^q{z) + Pgq-,q{z). ( 7 . 1 7 ) 

Here the quark plays the role of the gluino. Note that in conventional dimensional regular­

isation the number of degrees of freedom for the gluon and gluino are no longer equal and 
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the supersymmetry is broken. Therefore this result is not true away from four dimensions^ 

Similarly, by considering the three particle cuts of the relevant two-loop contributions to the 

self energies (as in Figure 7.5), and omitting the invariants in the arguments of the functions, 

we find, 

/ \ 
Pggg^cia, 6, c) + 2Pgqq_,G{a, b, c) + Pqgq^oia, 6, c) 

P{a,b,c) \ / 
(7.18) 

Y: 2Pqgg_Q{a, b, c) + Pqgg^Qia, b, c) + 2P-'^_;g-* («, b, c) + P!;^l%{a, 6, c) , 
P(a,b,c) V / 

provided we set e = 0. This non-trivial relation between the splitting functions is a further 

check on the results presented in this section. 

"(r(r(r(r = I 

Figure 7.5: A diagrammatic representation of the equality between the gluon and gluino 
self-energies in A" = 1 SUSY. The dashed lines represent the three-particle cuts that lead to 
the relation between the triple collinear splitting functions given in equation 7.18. 

Triple Collinear Limit of e+e 5 Partons 

Examining the two-quark currents in the triple collinear limit is now straightforward. Sum­

ming over all triple collinear limits, we find, 

S,{Qi;l,2,3;Q2)V^ 

S,iQul,2,3;Q2)V'' 

S,{Qul,2,3;Q,)V^ 

—>• P. 23(3, 4Q) slv^ 12-^Q + -Pl23 -̂G 

12->g + Pl2Q2^Q + PQI'IZ^Q + ASQJ-^Q) S^V^ 

+ p 23Q2 
P(l,2,3) 

(7.19) 

^ Other variants of dimensional regularisation where the gluon and gluino degrees of freedom are equal, 
such as dimensional reduction discussed in chapter 2, preserve the symmetry, and therefore the relation, for 
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The four-quark current contributions are more complicated, but in each case yield factors 

multiplying the two-quark current, 

I nnon-ident . I pnon-ident. \ 

2 V 3 V 4 

jnon-ident. jnon-ident. 

I p i_ pnon—ident. . pnon—ident. '\ 

V _ ^ /' pident. , pident. , pjclent._ . p jident. 

^ ( r / ( Q i , Q 2 ; Q 3 , Q 4 ; 1)^'^) ( r / i Q i , Q 2 ; Q 3 , Q 4 ; 1)^^)^ 

, _ ^ / pident. , pjdent._ <?3T//i (7.20) 

Combining these limits and eliminating the identical particle factors where appropriate pro­

vides the triple collinear singular factor for the five parton squared matrix elements, 

1 S'V^^' + slv^ 

1 
+ ^ \̂ MQ4Q3^G +-̂ Q4Q3l->G ^2^Q3l(34^G 

np /^-^ ~ l \ /pnon-ident. ^ pident. , pjion-ident^ L pĵ s"*-— _ 7.21) 

7.4.2 Soft/Collinear Factorisation 

We now examine the configurations where one gluon is soft and two particles are collinear. 

In this case, the sub-amplitudes factorise as. 

Ai...,d,...,a,b, c,. . .)p ^ \A{...,d,...,P,...)\' (7.22) 
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where gluon a is soft, partons b and c are collinear and either colour connected or able to 
undergo antenna pinching. Parton d is the adjacent colour-connected hard parton in the 
antenna containing the soft gluon. If a is symmetrised over (a, so QED-like) then d is the 
quark in that colour-line; otherwise d is simply the parton adjacent to a. In this limit the 
collinear partons form parton P and carry momentum fractions, 

Pb = xpp, = (1 - X)PP, (7.23) 

and we write the soft/coUinear factor as, 

Pd;abc{x, Sab, Sbc, Sabc, Sad, Sbd, Scd)- (7.24) 

To determine the limiting behaviour, we again consider the explicit forms of the 7* —> 

four and five parton squared matrix elements. Al l terms that possess three of the 'small' 

denominators Sab, Sad, Shc and Sabc contribute in the soft/collinear limit. Similar results 

could be derived using helicity methods or by examining the on-shell limits of the recursive 

gluonic and quark currents of ref. [66]. Alternatively, these limits can be obtained directly 

from the triple collinear limits of sect. 5.1, by keeping only terms proportional to l/w and 

subsequently replacing l/w by {sbd + Scd)/sad, 1/(1 - w) hy 1 and y by 1 - x. 

In fact, in this limit we find a universal soft factor multiplied by a collinear splitting 

function, 

Pd;abc{x, Sab, Sbc, Sabc, Sad, Sbd, Scd) = Sd-abc{x, Sab, Sbc, Sabc, Sad, Sbd, Scd)Pbc-^p{x, Sbc), (7-25) 

where, 
c, , X 2(s6d + Scd) / , ( S a 6 + f S 6 c ) \ 
Sd;abc{z, Sab, Sbc, Sabc, Sad, Sbd, Scd) = — Z + . [(-^b) 

SabSad \ Sabc / 

A similar result holds for gluon c becoming soft, 

| ^ ( . . . , a, 6, c,..., e,.. .)p PabcMi- •.,P,...,e,...)\', (7.27) 

where, 
Pabc;e = Pd;abc{a O C, 0? O c). (7.28) 
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In the case that b is soft the matrix elements do not possess sufficient singularities since the 

collinear particles a and c are not directly colour-connected, 

| ^ ( . . .,a, b, c,...) less singular. (7.29) 

Here, there may be two powers of the small invariants in the denominator, but, when inte­

grated over the appropriate (small) region of phase space this yields a vanishing contribution. 

On the other hand, for QED-like subamplitudes where the gluons are symmetrised there is a 

non-zero contribution when either gluon is soft. Note that in all cases where the soft particle 

is a quark or antiquark, there is also no singular contribution. 

Soft/Collinear Limit of e+e" -> 5 Partons 

For the specific case of the two-quark currents, the sum over all soft/collinear limits is easily 

obtained, 

|2 
S,{Qul,2,3;Q,)V^ 

S,{Q,; 1,2,3; Q2)V^ 

S,{Qul,2,~3;Q,)V'' 

(-P(9il2;3 + ^ Q i ; 1 2 3 + -^1235^2 ^ ^l^SQi) 

(-PQI;12Q2 + ^lQi3{Q2 + ^3Qil;2 

+PQI;3Q22 + ^ O i l 2 ; Q 2 + ^ZQi'^^) ^l^^" 

H ( ^ i Q i 2 ; Q 2 + P Q I W ) 
P(l,2,3) 

(7.30) 

The only non-vanishing contributions in the soft/collinear limit from the four-quark currents 

are, 

r / ( Q i , g 2 ; Q 3 , Q 4 ; i ) ^ ' ^ | ^ K ; I Q 4 Q 3 + ̂ q.q.hqJ 
r,{QuQ2;Q3,Q4-A)v' 

'^Qr,iQ2Qi ^Q3-AQiQ2 ^QiaQ2Qi^QI^QIQT) 
(7.31) 

where the second term also includes both the unconnected sbft/collinear contribution and 

interferences amongst the various subamplitudes. This is akin to the case of single soft gluon 
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emission where we have, 

A{...,a,g,b,...) Pa • e Pb-e 
,Pa-Pg Pb-Pg, 

Ai:..,a,b,...)., 

and therefore, 

3? {A{. ..,a,g,b,...,c,d,...)) {A{... ,a,b,... ,c, g,d,.. .))^ 

~^ ~2 ^^'^SC ~ Sagd - Sbgc + Sbgd) \A{..., a, 6,. . . , c, d, . . .)p. 

Here, the soft factors are generated by the interference of the two eikonal factors. 

' Pa-€. Pb-^ \ (Pc-(-* Pd • e* \ 

pols ,Pa-Pg Pb-Pg J \Pc ' Pg Pd ' Pg , 

Adding up these limits for the five parton squared matrix elements gives. 

1 
3! + 

X PQI12;3 + ^ Q i ; 1 2 3 + ^123;Q2 + Pu23Q.2 

1 1 
{PQV,12Q2 + -̂ Qil2;Q2 + P3Qil;2 + -P3Q22;l) + {P'lQii^Qi + PQi;2Q2i) 

2nF 

QsQi^G + PQIAQ^QS PQi;iQ3Qi ^Qi-.^Q^Qs + '̂ Q2;iQ3Q4) .(7.32) 

7.4.3 Two Soft Gluons 

Finally, we consider the contributions where two colour connected gluons are simultaneously 

soft. This was first studied by Berends and Giele [63] and we include this contribution here 

for the sake of completeness. Similar results have been discussed by Catani [69]. For gluons 

b and c soft the colour ordered subamplitudes factorise, 

A{...,a,b,C,d,...,)\'^-^ Sabcd{Sad, Sab, Scd, Sfcc, Sabc, Sbcd) \ A{..., a, d,.. . ) f . (7.33) 
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where the connected double soft gluon function is given by, 

8sL 
Sabcd{Sad, Sab, Scd, Sbc, Sabc, Sbcd) — 

S abS bcdS abcS cd 
^8Sad ( 1 ^ 1 ^ 1 _ 4 

Sbc ^SabScd SabSbcd ScdSabc SabcSbcd 
) + ^ f i ^ + î -l)\(7^34) 
/ Sh^ \Sahc Shed / '6c '•-Sabc Sbcd 

Here a and d are the hard partons surrounding the soft pair and may either be gluons or 

quark/antiquarks. In four dimensions, the double soft factor can be extracted from [63] by 

squaring and summing the helicity amplitudes for two adjacent soft gluons. Alternatively, 

it can be obtained by explicitly taking the double soft limit of squared matrix elements for 

processes involving more than two gluons. 

Double Soft Limit of e+e -> 5 Partons 

As before, for the specific case of the two-quark currents, the connected double soft limit is 

easily obtained and summing over all contributions we find. 

S,{Qr;l,2,3;Q,)V^ 

S,{Qul,2,~3;Q,)V'' 

S,{Q,;1,2,~3;Q,)V^ 

slv^ 
s. gil20: 

less singular. (7.35) 

Combining these limits yields the double soft singular factor for the full squared matrix 

elements, 

1 
3! 5QI123 + '5i23Q2 - ^2^Q,12Q2 (7.36) 

7.5 Summary 

In this chapter we have discussed the factorisation properties of squared tree level QCD 

matrix elements when two particles are unresolved. These properties allow the analytic 

isolation of the infrared singularities from (n - I - 2) parton scattering processes that would be 

vital in a next-next-to-leading order calculation of a n-jet-like quantity. 
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At next-to-next-to-leading order, this knowledge is required for the analytic isolation 
of infrared singularities of (n + 2) parton scattering processes and subsequent numerical 
combination with the one-loop (n - I - 1) parton (single unresolved particle) and two-loop n 
parton contributions. 

The unresolved particles may be either soft gluons or groups of collinear particles or 

combinations of both. There are four double unresolved cases; two soft gluons, three si­

multaneously collinear particles, two independent pairs of collinear particles and one soft 

gluon together with a collinear pair. In section 7.3 we reviewed the (trivial) factorisation 

that occurs when the unresolved particles are colour "unconnected". Such factorisation is 

well known and involves only the familar eikonal and Altarelli-Parisi splitting kernels used 

to describe single unresolved emission (see the introduction). 

When the unresolved particles are all colour "connected", we find a similar factorisation. 

In section 7.4 we introduced new functions to describe the triple collinear and soft/collinear 

limits in addition to recalling the known double soft gluon limits of Berends and Giele [63 . 

These functions are universal and apply to general multiparton scattering amplitudes. As a 

check on our results, we find that the triple collinear splitting functions obey an expected 

A'" = 1 SUSY identity. In addition, in the strong ordered limit, where one particle is much 

more unresolved than the other, these factors become simple products of single unresolved 

factors, one associated with each unresolved particle. 

To illustrate the use of these double unresolved approximations, we have examined the 

singular limits of the tree level matrix elements for e+e" 5 partons [70]. In each case, we 

find that in the singular limit, the matrix elements can be approximated by a singular factor 

multiplying the tree level e+e" 3 parton matrix elements. As we discussed in section 7.2, 

these approximations are part of the ingredients in the calculation of the 0 ( Q ; | ) corrections 

to the three jet rate in electron positron annihilation. However, much work still remains 

to be carried out. One important ingredient is to analytically integrate the approximations 

over the unresolved regions of phase space. A first step in this direction has been carried out 

in ref. [68] where the hybrid subtraction method of [71] has been used to evaluate the double 
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unresolved singular contributions associated with a photon-gluon-quark cluster. There is in 
principle no reason why this approach should not be extended to the more general cases 
discussed here. 



Chapter 8 

Conclusions 

8.1 Summary 

In this thesis we have provided a number of calculational techniques that are relevant for 

a wide variety of QCD corrections in electron-positron annihilation (and other related pro­

cesses). In addition we have shown how some of these methods may be implemented by 

detailing the calculation of the next-to-leading order corrections in four-jet production. 

For such a calculation, where the number of contributing Feynman diagrams is large 

and the tensor structure of each very complex, performing the necessary one-loop integrals 

provides potential difiiculties. In particular, the tensor structure of the matrix elements 

means that a decomposition into scalar integrals multiplied by kinematical coefficients is very 

lengthy and algebraically complex. Moreover, such a process results in spurious singularities 

- with zero residue - when both certain invariants and Gram determinants vanish. In order to 

control these singularities, we have seen in chapter 3 that it is natural to work with a basis of 

integrals larger than the set of scalar ones. By extending the basis to include also integrals 

in higher dimensions and integrals with additional factors of Feynman parameters in the 

numerator, we automatically protect the spurious poles. These integrals are simply obtained 

from the scalar integrals and a tensor decomposition in terms of them is straightforward. 

In chapter 4 we have outlined the calculation of all the matrix elements necessary for 

176 
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calculating four-jet observables at next-to-leading order. This comprises the four parton 

matrix elements at both lowest ( C ( Q ; | ) ) and one-loop ( 0 ( Q : | ) ) orders for the sub-processes 

7* Q^99 and 7* -> qqQQ and the five parton C ( Q ; | ) amplitudes squared where we include 

an additional gluon. In each case it is convenient to use a colour decomposition to re-write 

the matrix elements in terms of colourless subamplitudes. For the virtual terms we used 

the integrals of chapter 3, which appear as terms in the 14 independent functions Ci that 

are sufficient to describe the one-loop finite contribution. Each of these functions is rather 

lengthy, but suitable for FORTRAN encoding in an analytic form. 

With the matrix elements calculated, it remains to implement them in a suitable phase 

space Monte Carlo. By making use of the symmetries of the four and five parton contributions 

of chapter 4, we wrote down more compact expressions in chapter 5. Before any integration 

can take place, ultraviolet and infrared poles must be isolated and either absorbed into 

the running coupling or cancelled. Using a hybrid of the commonly-used subtraction and 

slicing techniques, we exposed the five parton singularities as poles in e and showed that 

they cancelled with the corresponding four parton infrared divergences of chapter 4. This 

approach relies on a factorization of the matrix elements in terms of antennae of particles, 

where a soft gluon is radiated from two colour-adjacent hard partons. 

To complete our discussion of the 4 jet calculation, in chapter 6 we presented results 

obtained using the numerical approach described in chapter 5. This program - EERAD2 

- yielded results for known 4 jet observables, such as the D-parameter and the four-jet 

fraction, that are consistent with those of other available Monte Carlos. We also presented 

some new results for distributions that have so far not been considered, such as the narrow 

jet broadening (-Bmin) and light jet mass { m f / s ) . In general, using the renormaUzation scale 

equal to the physical scale yields next-to-leading order corrections of approximately 100%, 

which still lie significantly below the data. 

Finally, as a further use of the five parton matrix elements, we investigated the factor­

ization that occurs when two particles become unresolved simultaneously. After suitable 

azimuthal integration, we discovered a set of universal factorization functions that are the 
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natural extensions of the eikonal and Altarelli-Parisi factors describing soft and collinear 

single unresolved emission. There are a variety of configurations where two particles are un­

resolved, the most new and interesting of which are those where three particles are collinear 

and those where two are collinear and one gluon is soft. Such double unresolved contributions 

would be relevant in any QCD calculation at next-to-next-to-leading order. As an example, 

we showed the singular contributions to the process e+e" 5 partons, which could be used 

in a NNLO analysis of 3 jet production. 

8.2 Outlook 

This thesis has primarily been concerned with the theoretical, technical aspects of next-to-

leading order calculations. Although this culminates with physical predictions of various 

observables, much work still remains to be done in order to fully take advantage of these 

results.. 

In particular, the phenomenology of four jet production is still under-developed. With 

the next-to-leading order corrections appearing so large - at the physical scale - and j^et 

(for the most part) so unsuccessful in describing the data, we may question the merit of our 

results. Yet this is no different from the situation for 3 jet-like observables, such as thrust. 

There, by choosing a smaller scale or by including non-perturbative power corrections, the 

apparent discrepancy was remedied and even held up as a triumph of QCD. Such studies 

have yet to be carried out for four jet-like observables. 

It now appears that the next-to-leading order QCD corrections for virtually all interesting 

processes have been calculated. Naturally then, attention turns toward the next step up 

the perturbative ladder. I t is as yet unclear whether extensions of existing technology will 

suffice, or whether this next step will require the introduction of novel calculational methods. 

Whichever proves to be the case, much progress is to be expected in this direction in the 

near future. 



Appendix A 

Feynman Parametrization 

In this appendix we shall derive the form of the scalar integrals assumed throughout chap­

ter 3. We consider a one-loop integral with n external legs carrying momenta pt and n 

internal propagators of mass Mi. We shall always work in dimensional regularization by 

continuing away from 4 and into D dimensions. Note that the calculations performed in this 

thesis are carried out with the simplifying assumption of Mi=0 for all propagators. This is 

valid for a wide range of QCD calculations involving loops of gluons and massless quarks 

(or, more precisely, at sufficiently high centre-of-mass energy s that m^/s <C 1). 

Straightforward application of the Feynman rules to an n-point diagram yields the start­

ing form of the scalar integral, 

f d^l 1 
In [1] = j , ^ D / 2 (^2 _ M l ) { { i + q,Y - M l ) •••{{^ + qn-iY - Ml) ^-^-^^ 

where. 

The normalization factor of Z T T ^ / ^ is chosen for later convenience. We begin by using Feynman 

parametrization to combine all the propagator factors into a single denominator. The general 

identity which we wish to use is, 
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where each of the Ai is one of the propagators and Ui — 1 for all i. Each propagator 

corresponds to one of the Feynman parameters Xi, which are constrained by YliXi = 1. 

Direct application of this identity then yields, 

where we have used the constraint on the Feynman parameters where necessary and per­

formed a shift in the loop momentum, 

^ L'^ = + V^. (A.4) 

The auxiliary momentum V = - E"=i a;i+igf is exactly that introduced in chapter 3 to 

decompose the tensor structure of loop integrals, whose origins are seen in the change of 

variables here. After completing the square in this fashion, the remainder can be written as 

a quadratic in the Feynman parameters, 

A = ^ XiXjQi^i • qj_i - Xiql_^ + ^ XiM"^ 
i,j i i 

= \ Y . ^i^3 M + - ( Q , _ I - g^_i)') 

= Y.^,x,S,,. (A.5) 

Integrations of the form in equation (A.3) can easily be evaluated by performing a Wick 

rotation to Euclidean space. This is equivalent to using the identity, 

I d ^ 1 ^ rin-D/2) 

J ^7^^ /2 ( /2 - A)« ^ ' r ( n ) ^ ' 

The desired form of the scalar integral (eq. 3.6) is then directly obtained, 

I ^ [ l ] = ( - l ) " r ( n - D/2) f d^x,8{l -Y^xi) 
Jo J 

ijXiXj 

D/2-n 

(A.7) 



Appendix B 

Finite Functions 

This appendix collects explicit forms for all the finite functions of chapter 3 which are relevant 

for the calculation of the matrix elements for 7* 4 jets at next-to-leading order. 

B . l Triangle Integrals 

In this section, we collect together explicit forms for the triangle graphs which appear as 

building blocks in the box graphs. We fix the kinematics according to fig. 1, so that momenta 

Pi and p2 are exiting, with ps determined by momentum conservation. There are two distinct 

cases, according to whether one or two of the external masses are zero. 

B.1.1 The One-Mass Triangle 

Here we provide explicit results for the case pj — pi = 0. There is an additional symmetry 

under the exchange pi -H- p2 and xi ^ x^. Insertions involving X2 can be eliminated using 

Xi + X2 + X3 = 1. 

The D = 4 - 2e scalar and tensor integrals are given by, 

= ^ t ^ , (B.l) 
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APPENDIX B. FINITE FUNCTIONS 182 

•••3 F i J — •'-3 F 3 j — [Xi\ — Zlg [0:3] = h Z Cr, 
S12 V e 

( B . 2 ) 

ll^-[x^x,] = 3l'r[xlx,] ^ 3ll^[x^xl] = ( B . 3 ) 
^<5l2 

while, the necessary integrals in D = 6 - 2e dimensions read, 

j i ^ , D = 6 - 2 e j ^ j ^ _ 1 ( izfiaC + a ' j c r , ( B . 5 ) 
2 \ e / 

ir '^=«-^^[x,] = I f ' ^ - ^ - ^ ^ [ x s ] = + ( B - ^ ) 

B.1.2 The Two-Mass Triangle 

When two of the external legs are massive, pi = 0 but 512, pj 7^ 0, the divergent integrals 

read, 

S12 - P i / 

r [ . 3 ] = - 2 L c - ( p . . . ) - - ( ; ; ^ r [ l ] , ( B . 8 ) 

(Sl2 - P l )2 

T2mr^3i _ ^ ^ T r ^ ' " r » . n - l I ^^^^ - 2 p f ) 2mMi 
^3 F3J - V ^ < ^ 4 l P l ) P 2 j + o / „ „2\5 / „ „2\3^3 i-̂ J 3 ^ V . . . . . . 2(512 - P ? ) ^ ( ^ 1 2 - P ? ) 3 

P ± - , 
3(512 - P ? ) 2 (5 ,2 - P ? ) 2 ( S 1 2 - P ? ) ' 

'^'^^^^ ' ^ ^ ^ ] c r , ( B . I O ) 

while, 

I'rix^] = 2l'r[xl] = 3lf^[xl] = L c ^ ( p i , p 2 ) , ( B . l l ) 

I f [ a ; i a ; 3 ] = 3l3^'"[x?X3] = ^ L c f ( p i , p 2 ) , ( B . 1 2 ) 

l 3 " [ 3 : i ^ 3 ] = \l^cf-{PuP2). ( B . 1 3 ) 
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The functions Lc'^{pi,p2) are defined by equations (3.37,3.38). 
The D = 6 — 2e dimension integrals read, 

ir'^='-''[l] = UplLcr{p,,p,)-(t^ + 3 ] c r ] , (B.14) 

ir'^---[.,] = UplLcl-{p,,p2)-(^-^^ + l ] c r ] , (B.15) 

^ ' ^ - - - [ x s ] = l(plLcr{p,,p,)-(t^ + ^]cX (B.16) 

The corresponding integrals for the case pj = 0, pi 0 can be obtained by using the 

above formulae with the substitutions, 

Pi^P2, (B.r7) 

The limit pi 0 may also be safely taken. For example, using the fact that in this limit 

Lc'^{pi,P2) -> l / ( n - l ) / s i 2 and observing that all of the triangle loop integral contributions 

proportional to 1/ê  trivially drop out in eqs. (B.8)-(B.10), we see that, 

T2mr n] , -rlmr n 
•••3 ["''3 J ^ •'•3 1-̂ 3 • 
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B.2 Box Integrals 

Here we collect together explicit forms for the the finite functions appearing in the box 

integrals. We fix the kinematics according to fig. 3.5, so that momenta pi, p2 and p^ are 

exiting, with p^ determined by momentum conservation. 

B.2.1 The Adjacent Two-Mass Box 

We first focus on the case where two of the adjacent external legs are massive, pi ^ 0 and 

PIJ^O. 

For integrals with a single Feynman parameter in the numerator, we have, 

Ldi{pi,P2,P3) = - (Ldis(pi,P2,P3) + Lco(pi,P23)), (B.l) 

where the box function in D = 6, Ldis is given by equation (3.41). When there are two 

Feynman parameters in the numerator, we eliminate x^ using xi + X2 + x^ + X4 = 1 so there 

are only three relevant functions. Explicitly, we find, 

2 
Ld2l{pi,P2,P3) = (3Ld2s(Pl,P2,P3) +Lcis(pi,P23)) - Lci(;)23,Pi), (B.2) 

S12 

Ld22(Pl,P2,P3) = ^ ( 3 L d 2 s ( P l , P 2 , P 3 ) +LCis(pi,P23)) 
S12S23 

-'-^Lc'r{puP2) + — L c i ( p 2 3 , P i ) , (B.3) 
S23 S23 

Ld24(Pl,P2,P3) = ^ ( 3 L d 2 s ( p i , P 2 , P 3 ) + LCi5(pi,P23)) 
•512S23 

- ^ L c ^ ( p i 2 , P 3 ) + ^ L C i ( p 2 3 , P l ) . (B.4) 
S23 523 

The all massive triangle integral function in D = 6 - 2e, LC15 is given by equation (3.28), the 

box integral function in D = 8 - 2e is given in equation (3.45) while the remaining triangle 

functions are given in Appendix B and equations (3.21-3.26). The functions for adjacent box 

integrals with three insertions of Feynman parameters contain the box in D = 10 - 2e (3.46) 

and triangle in D = 8 - 2e (3.31).. Al l integrals can be obtained in terms of the following 
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four functions, 

Lcl3u(pi,P2,P3) = - ^ (5L(l3s(Pl,P2,^3) +LC25(Pl,;?23)) 

+ ^ ^ ^ ^ i ^ L c 3 ( p 2 3 , P i ) + -Lc,{p„p,s)], (B.5) 

Ld3i4(pi,P2,P3) = ^-^^ ^ ( 5 L d 3 5 ( p i , P 2 , P 3 ) +LC2s(Pl,P23)) 
S12S23 

+ ̂ ^LC3(p23,Pl) - ^LC2(pi ,P23) 
S12S23 S12 

- | ^ L c ^ ( p i 2 , P 3 ) , (B.6) 
23 

Ld322(Pl,P2,P3) = - f ^ ^ ^ ^ ^ Y - 2 ^ ^ ( 5 L d 3 5 ( P l , P 2 , P 3 ) +LC2s(Pl,P23)) 
V •512-523 
•Sl23(Sl2Sl23 +P?Si23 - 2^25^2). / n •512 T 2m 

523 2 LC3 (P23 , Pi) - 7̂  ^^-T (Pl: P2 ) 

Si2(Si2 - 5123). 2m/ X , Sl23(Sl23 " 2Si2) 
, 2 'Lc^(pi2 ,P3) + ^^^^ ^̂ ^ "^"LC2(pi,P23) 
25^3 S12S23 23 

" " " " • L C ^ ( P I , P 2 ) , (B.7) 
(p|gl2 + S12523 - S12S123) T 2m 

2s2 '23 / 

Ld344(pi,P2,P3) = - ( ^ ^ ^ ^ f - 2 ^ ( 5 L d 3 5 ( p i , P 2 , P 3 ) + LC2s(pi,P23)) 
V 1̂2̂ 23 

S12S23 S12S23 

^ ^ 1 2 ( | 2 ^ L c ^ ( p i 2 , P 3 ) + | ^ L c r ( p i 2 , P 3 ) • (B.8) 
Ŝ23 Ŝ23 

B.2.2 The One-Mass Box 

For this kinematic configuration, only P4 7̂  0 and there is a ' f l ip ' symmetry, so that functions 

related to the parameter 2:4 are obtained f rom those related to a;i, by p i i—^ P3. The box 

integrals in higher dimension are given by equations (3.56-3.59), and, 

Ld}'"(pi,p2,P3) = - L d } - ( p i , p 2 , P 3 ) . (B.9) 



APPENDIX B. FINITE FUNCTIONS 186 

For two and three insertions, we find, 

LdlTiPuP2,P3) = - — (6Ld^5(Pl>P2,P3) + 523Lc^(p23 = P l ) ) , (B-IO) 

Ldl^{pi,P2,P3) = Ld'r{puP2,P3)-hdlTiPl,P2,P,), ( B . l l ) 

and, 

LdlTAPl,P2,Ps) = -^U0Ldl'^{puP2,Pz) + lslM"'{p23..Pl) 

+ l,SuS2sLcr{p23,Pi)], (B.12) 

LdlZ{puP2,P5) = —UoLdl^{pi,p2,p,) + lsl,Lc'r{p2,,p,) 

+ ^ 4 L c ^ ( p i 2 , P 3 ) Y (B.13) 

LdJ^2(pi,P2,P3) = Ld^n(Pi = P2,P3) + Ld}™(pi ,p2 ,P3) -2Ld^r (P i = P2,P3). (B.14) 

B.2.3 The Opposite-Mass Box 

Again, this kinematic configuration possesses a ' f l ip ' symmetry, so that functions related 

to the parameter X4 are obtained f rom those related to X\. by pi \—\ pz- In addition, we 

find that any insertion involving the factor 3:1X4 may be manipulated so as to cancel off the 

protected factor of (1 — A). Therefore the only required box functions are, 

LdriPuP2,P3) = — L d r ( P l , P 2 , P 3 ) , (B.15) 
5l3 

Ld^f(Pl,P2,P3) = — ( (p^-S23)Ldr(P l ,P2 ,P3) + S23Lc^(p23,Pl) 

- p ^ L c f ( p 2 , P i ) + l o g ( ^ ) ) , (B.16) 
\ S12 / / 

Ld3??(Pl,P2,P3) = {{pI - S23)Ld2f (pi,P2,P3) + ^323^4'^ {p23, Pi) 
Si3 V 2 

-lpll^crip2,p,) + l \ o g ( ' - ^ ) ) . (B.17) 
Z Z V Si2 / / 



A p p e n d i x C 

L i m i t s 

In this appendix, we collect together suitable expansions of the various functions presented 

in chapter 3 in the l im i t A„ —>• 0. These expressions represent the leading term in the 

expansion of the functions as a Taylor series in A„ and should be evaluated for A „ < 5. 

where 5 can be determined numerically. Typically, 5 ~ 10"^Aj:^^'' where A^^'^ is the largest 

value the Gram determinant can achieve. In general, for a given numerical precision, acc the 

numerical problems occur when A ^ (acc)^/^ where A'̂  is the number of Gram determinants 

in the denominator of the function. 

C . l The Three-Mass Triangle 

In the l im i t that A3 —> 0, we have, 

Lco(pi,P2) ^ 7r^2—(plisi2+pl-pl)\og(^]+pl{sn + p l - p l ) i o g ( ^ \ ] , 
ZP1P2S12 \ \Pl / \P2 / / 

(C . l ) 

Lci5(Pi,P2) ^ 9̂  \Ptisn+pl-pl)logl^] +pt{si2+pl-pl)log(~ 
i.ZPlP2Si2 \ \Pl / \P2 J 

+2plplsr2], (C.2) 
/ 

LC25(Pl,P2) ^ .onMo ?^?(Sl2+P2-P?)l0g +P2isu+Pl-Pl)^0g 
\.lKiPlP2Si2\ \Pl J \P2 J 

187 
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+ + (C.3) 
2 

Lc35(Pi,P2) ^ T^^T^lks— Pl{su+pl-pl)log[^]+pl{sn+pl-pl)log 

2p\p2Si2 , 2 , „4 , „4 , „ „2 , „ _2 , „2„2 

1fiSni;;27- (P?(«12 +P2 - P?) log ( ^ I +P^(Si2 +P? - P^) log ( ^ 

9 
{s\2+p\+p\ + si2p\ + snpl+p\pl) , (C.4) 

L c i b i , P 2 ) ^ 3pf (̂ 12 + Pi - p f ) ( ^ ^ " " ( t ) + - ^ tLcob i ,P2 ) ) , (C.5) 

^ ' ' ^ ' ' ' ' ' ' ' ^ 6pi(.12 + P f - P i ) ( -^^^(^^^ -P2)LC3(Pl,P2) 

+sn-pl + Spy2^Cr{pi,p2)-ptLci{p2,Pi)+pl\og — , (C.6) 

" - ' ' ^ ' " ' ' ' ^ ^ 5pf(si2 + P i -P? ) ( ^ ^ " " " ^ ^ ( t ) - ' (C-^) 

'^'^^' '^' ' '^^ ^ 15pi(5i2 +P? - P i ) (-6^^^^^^ -P^)LC5(Pl,P2) 

+si2 - P2 + 5piP^Lc3(pi,P2) - 4piLc2(pi,p2) +P2 log I ^ ) I , (C.8) 
\P2 J / 

1 / ^S^9\ 2p2 \ 
LC5(P1,P2) ^ 7^2/, ^ ^ 2 2̂N ( S l 2 - P ^ ) l 0 g + ^ - 3ptLC3 (pi , P2) - (C.9) 

'Pll'512-r P2 — P i j \ \ P 2 / / 

C.2 The Adjacent Two-Mass Box 

I n the l im i t A4 0, we have, 

Ldo(pi,P2,P3) -> - J fsi23 +P? - 523 - ^ ^ ^ ^ ) LCo(pi,P23), (C.IO) 
/ V S12 / 

Ldis(pi,P2,P3) — f fsi23 +P? - S23 - ^ ^ i ^ ^ LCi5(pi,P23) 
S12S23 VV S12 / 

S23 , / S123 , , 
2 V S23 

5 l 2 l 0 g f — J - y l o g , ( C . l l ) 
V 5i2 / Z \ Pi J / 

/ N - 1 , 2 2p2si23\, . . 
Ld25(Pl,P2,P3) T7, S123+P1-S23 LC25(Pl,P23j 

12512S23 VV S12 / 

,523, fSl2z\ , 2 , fSl23\ P t , M l 2 3 \ ^ „ 
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(C.12) 

^d3s{pi,P2,P3) zr^Z-^ f (si23 +P? - S23 - ^ ^ ^ - ^ ) LC3s(pi,P23) 

I8OS12S23 VV S12 / 

4 i o g ( ^ p ) + 4 l o g ( ^ ) - f l o g f e ) 
2 V S23 / V S12 / 2 \Pi J 

|Si2S23(Sl23 + S12 + 523 + P?)) : (C-13) 

- 1 , .2 „ 2P?s 
Ld45(Pl,P2,P3) ^ XTTT-^ ( ( Sm + " §23 - ^ ^ ^ i ^ ) LC45(pi,P23) 

840Si2S23 VV 5 1 2 / 
_^st3 , ^ _ f Sl23\ . A .^ JSi23\ Pf , ̂  „ Al23 1 /5i23\ • 4 , /Si23\ Pf , ^ 

+ ^5i2S23(Si23 + ^2 + + Pi + •5l235l2 + 5123̂ 23 

+ 5123P? + 512P? + 523P? + ^ ) ) . (C.14) 

I n this last equation, we have used the finite part of the three mass triangle graph in D = 

12 - 2e. Forp2, pi ^ 0, 

Lc4s(Pi,P2) = ^ 2plplsnLc3s{PuP2) - ^ pUSU + pI - pD^og - j 
0ZA3 \ 04U \ \Pl / 

f S \ 
+Pl{si2+P\-Pl)l0g 

VP2 / 

+ ^^^^{P\+Pt + Sl2+Plsn+Pls^2+Py2)]]. (C.15) 

C.3 The One-Mass Box 

Finally, in the l im i t A^™ -> 0, we have, 

LdJ"^(pi,P2,P3) ^ 0, (C.16) 

Ld}^(Pl,P2,P3) — ( 5 2 3 l 0 g ( ^ ) + . 1 2 l 0 g ( ^ ) ) , (C.17) 
S12S23 V V S23 / V 5x2 / / 

Ld^5(Pl,P2,P3) ^ 7 ^ ( 4 l 0 g ( ^ ) + 5 ? 2 l 0 g ( ^ ) + S i 2 5 2 3 ) , (C.18) 
IZS12S23 V V S23 / V S12 / / 

T jlmr \ ~^ f 3 ^ fSl23\ , 3 1 f Sn3\ 
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+ ^5i2S23(Si23 + Sl2 + S23)) , (C.19) 

1 / 2 2 2 Si2S23\ 
+ 7:5l2S23 5i23 + S^2 + 523 + 5123512 + S123S23 + g"iz^^d "̂̂ 123 ' "12 ' "23 ' "i^d^iVi I 'JlZi'^Zi I cy J 

(C.20) 



A p p e n d i x D 

R e d u c t i o n R e l a t i o n s 

Afte r all the reductions of the one-loop integrals are complete, and the relevant expressions 

have been inserted into the matrix elements, several relations between the functions may 

be exploited to further reduce the algebraic size of the answer. A simple example of this is 

given by the symmetry relation for the box integral wi th two opposite massive external legs, 

L d r ( P l , P 2 , P 3 ) = L d ° P P ( p 3 , P 2 , P l ) . 

Al though this is not useful in an individual tensor reduction, i t can obviously lead to can­

cellation of terms in the matr ix element where integrals wi th pi ps may also be present. 

Compactification may also arise f rom cancellation of Gram determinants when integrals f rom 

different sources are combined. Useful identities are straightforwardly obtained by repeated 

use of equations (3.14)-(3.17) or by inspection. 

D . l The Three-Mass Triangle 

The two symmetry identities relevant for these integrals are, 

LC2(p2,Pl) = LC2(pi,P2), 

Lco(p2,Pi) = Lco(pi,P2). ( D . l ) 

191 
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There are also a number of identities which relate the triangle functions when multiplied by 
a part ial Gram determinant, 

(Si2 - P i -P2)LC3(P1,P2) = 2plLC2{pi,P2)-plLCi{pi,P2) + l l 0 g ( ^ ] , 
2 V P 2 / 

3 1 1 
( s i2 - P ? -P2)Lc2 (p i ,P2) = 2p^Lc3(pi,P2) - 2P2 Lci(pi ,P2) ' "P i Lcj(^2,Pi) + 2 = 

( s i 2 - P ? - P 2 ) Lc i (p2 ,P i ) = 2 p 2 L c i ( p i , p 2 ) - P 2 L c o ( p i , p 2 ) + log ^ , (D.2) 

p^LCi(p2,Pl) = ^ (5l2 -P? -P2)LCi (p i ,P2) +PlLCo(pi ,P2) - l o g — • 

2 V V P2 / / 

D.2 The Adjacent Two-Mass Box 

This configuration of masses has no symmetry relations. The identities for cancelling factors 

of the Gram determinant read, 

/ 
(Si2 - P?)(Sl3 - P?)Ld344(Pl,P2,P3) = P?S23Ld344(Pl, P2, Ps) + Sl2 X 

\ 
(5l2 -P?)(LC3(pi,P23) - LCi(pi,P23) 

•5l2 \ 
-Ld24(pi ,P2,P3)) -p?LC2(p23 ,Pl) + - ^ L c ^ " ' ( p i 2 , Ps) , 

^ / 
/ 

(Sl2 - P?)(S13 - P?)Ld322(Pl,P2,P3) = P?S23Ld322(Pl, P2, P3) + Sl2 X 
\ 

(Si3 -pD X (^Ld22(pi,P2,P3) - LC3(pi,P23) " LC3(p23,Pl) 

-2LC2(P1,P23) +LCi(pi ,P23) +LCi (p23 ,P l ) 

+ S23 (^Ld22(Pl,P2,P3) + 2Lc3(pi,p23) 

+ 2LC2(pi,P23) - 3LCi(pi,P23) - LCi(p23 ,Pl) + LCo(pi,P23) 

/ I 1 (P\23 
+p\ LC2 (Pl, P23) - LCi (P23, Pi) - 7:LC^™ ( p i , P2) + LCJ™ ( p i , P2) - - log — 

V 2 ^ \ P12 ^ 
/ 

(Si2 - pI){SI3 - P?)Ld3i4(Pl,P2,P3) = P?S23Ld3i4(pi,P2, Ps) + 5i2 X 
V 

523 (-Ld24(Pl,P2,P3) + LC3(pi,P23) + LC2(pi,P23) - LCi(pi,P23)) 
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1 l \ 

- (5123 - 5 i 2 ) L C 2 ( p i , P 2 3 ) - - 5 I 2 L C } ' " ( p i 2 , P3) + " j , 
/ 

(Sl2 - P ? ) ( 5 l 3 -P?)Ld31l (P l ,P2 ,P3) =P?S23Ld3i i (p i ,P2 ,P3) + 5i2 X 
V 

-S23 (Ld2l(pi,P2,P3) + LC2(pi,P23)) + (5l2 - p ? ) L C 3 ( p 2 3 , P l ) " o I ^ 1 1 ' 
\Pl J J 

/ 
(Sl2 -P?)(5l3 -P?)Ldi (pi ,P2 ,P3) =P?523Ldi(pi,P2,P3) + 5 i 2 X 

V 
\ 

Ldo(pi,P2,P3) + (512 - Si3)LCo(p23,Pl) • (D-3) 
/ 

The functions representing one insertion of a Feynman parameter may be more simply related 

by part ial factors of the Gram determinant, 

(5l3 -P?)Ld24(Pl,P2,P3) = -(512 -P?)Ld22(pi,P2,P3) - 523Ld24(Pl, P2, P3) 

+ ^ (2LCi(pi,P23) + LCi(p23 ,Pl) - LCo(pi,P23)) = 

(S12 - P?)Ld22 (Pl, P2, P3) = 5i2 ( -Ld21 (Pl, P2, P3) + Ld 1 ( p i , P2, P3) + LCi ( p i , P23)) , 

(Sl3 -P l )Ld2 l (p i ,P2 ,P3) = -S23 (Ld22(pi,P2,P3) +Ld2l(pi ,P2,P3)) 

+S12 (Lci(p23,Pi) - Lc}"'(pi ,P2)) , 

(Si2 -P i )Ld2 i (p i ,P2 ,P3) = 523Ld24(pi,P2,P3) - 5i2 (LCi(P23,Pi) " Lc}™(pi2 , P3)) (0-4) 

D.3 The One-Mass Box 

The straightforward symmetry identities which follow directly f rom the definitions (3.5.2) 

and (3.60) are, 

Ld^S(P3,P2,Pi) = LdJn(Pi>P2,P3), 

Ld^r4(P3,P2,Pl) = Ld^r4(Pl>P2,P3), 

Ld^™(p3 ,P2,Pl) = Ld^r(Pl>P2,P3), 

Ldr (P3 ,P2 ,P l ) = Ldr (p i ,P2 ,P3) , 

LdJ"^(P3,P2,Pi) = LdJ™(pi,P2,P3). (D.5) 
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The further relations useful when a relevant invariant multiplies one of the finite functions 
are given by, 

Si3LdJr4(Pl>P2,P3) = -5i2Ld^^(pi,P2,P3) + ^ (5l2Lc?'"(pi2, P3) - 523LC?'"(p23, Pl) + l ) , 

5l3Ld^n(Pl,P2,P3) = -523Ld^r(Pl,P2,P3) + J f 5 2 3 L c f (^23, Pl) + log ( — \ - ^̂ S23-bC2 iP23,PlJ + log y — J 

Si3Ld^r(Pl,P2,P3) = -523Ld^'"(pi,P2,P3)+ 5 2 3 L c ^ ( p 2 3 , P l ) + l 0 g ( — ) , 
V 5i2 / 

S23Ld27'(p3,P2,Pl) = 5i2Ld2^(pi,P2,P3) + 523LCi"(p23, Pl) - 5i2Lc^™(pi2, P3) 

SnLd'r{pi,P2,Pz) = ^LdJ™(pi,P2,P3)- (D-6) 

D.4 The Opposite Two-Mass Box 

The scalar integral possesses symmetry under exchange of the two light-like external legs. 

Therefore we have, 

Ld r (P3 ,P2 ,P i ) = Ldr (P i ,P2 ,P3) , 

Lcdo(p3,P2,Pi) = Lcdo(pi,P2,P3)- (D.7) 

Recall that there are two types of function specifically introduced to describe the tensor 

decomposition of this configuration of box. One type of reduction relation relates only one 

set of these, 

Sl3Lcd„(pi,P2,P3) = -(512 - P 2 ) L c d „ _ i ( p i , P 2 , P 3 ) + L 4 ™ ( P 2 , P 3 ) - L c f (pi2,P3), P - S ) 

f o r n = 1 , . . . , 4. Partial cancellation of factors of the Gram determinant yields the identities, 

2s?3 ^ , , . 2si3 f , 9 x . , / N , 1 fPns^ 
^oppLd3n(Pl,P2,P3) = ^ (^-(523 -P2)Ld2l (p i ,P2 ,P3)+ 2 l 0 g y p ^ ^ 

^-Lcd2(p3,P2,Pl), 
2 

25?3-r , , ^ 2Si3 f , 2 N T J ^ ^ , 1 fPl^^W 
- ^ L d 2 l ( p i , P 2 , P 3 ) = - ( 5 2 3 - P 2 ) L d i ( p i , P 2 , P 3 ) + l 0 g — 
A4 ^4 V \ / / 

+Lcdi (p3 ,P2,Pi) , (D-9) 

(Si2 -p?)Ld2l(pi ,P2,P3) = (523 -P2)Ld2l (p3 ,P2 ,Pl ) + 5l2Lc?'"(pi2,P3) 

-523Lc?'"(p23,Pl)-
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D.5 The One-Mass Pentagon 

The pentagon function which arises in the scalar and first-rank tensor integrals changes sign 

under reversal of order of the legs, 

Lei(p4,P3,P2,Pi) = -Lei(pi ,p2,P3,P4)- (D-10) 



Appendix E 

Explicit Form of Cdh 2; 1,2) 

This appendix gives the explicit form of one of the four-quark finite functions. In contrast 

to the notation adopted throughout Chapter 3 and Appendices B, C, D here all the particle 

momenta are light-like, p,̂  = 0 for i = 1 , . . . 4. For this reason, the superscripts on the finite 

functions have been dropped, w i th the arguments of the functions themselves indicating the 

relevant mass configuration. 

This example also explicit ly demonstrates the correspondence of the singularity structure 

to the tree-level matr ix elements. The relevant tree-level ampitude squared is T ( l , 2 ; l , 2 ) , 

which contains only double poles (at most) in the invariants S34, S134 and S234. Therefore 

these are the only denominators allowed in £ c ( l ) 2; 1,2). 

>Cc( l ,2 ; l , 2 ) = 

( - 9 6 S12 Si3 - 136 S12 S34 + 40 Si3 - 40 S13 S14 - 272 S13 S23 - 40 S13 S24 - 56 S13 S34 + 40 Su S23 

+16 Su S34 - 80 S23 s34 - 80 S24 S34) / ( S34 S134) + (160 S12 S13 + 160 5i2 S13 S34 

+80 S12 S34 + 160 Si3 S23 + 160 Si3 S24 + 160 S13 S23 S34 + 160 S13 S24 S34 + 80 S23 Sg 

+80 S24 534) / ( S 3 4 S134) + Ldo(pi ,P4,P23)(32 S12 Si3 - 64 S12 S14 + 16 S13 

- 1 6 Si3 Su + 64 5i3 S23 + 48 S13 524 + 32 Si3 534 - 80 5i4 523 - 64 5i4 524 - 32 5i4 534 

+ I6524S34 + I 6 5 3 4 ) / ( 534 5134) + L d o ( p 2 , P 3 , P 4 ) ( - 6 4 S i 2 S 3 4 + 64 5i2 5i3S24 

+ 64 Si2 Si4 523 - 16 S12 5i4 S34 - 32 5i2 523 ^34 - 32 5i2 524 S34 - 48 5i2 534 + 32 S13 524 

^̂ 4 

196 
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-16 Si3 Si4 S23 - 16 Si3 S14 S24 " 32 Si3 S23 524 - 16 S13 S23 S34 + 32 S13 24 

-hl6 Si3 S24 534 + 16 5̂ 4 523 + 32 Si4 S23 - 32 Si4 S23 S24 - 16 Si4 S23 534) / ( S34 S2345l34 ) 

+ ( - 8 0 s^2 534 - 80 S12 Si3 S23 - 120 S12 Si3 S34 - I - 80 S12 Su S23 - 40 S12 S14 S34 

- 4 0 S12 S34 - 40 S23 - 40 S34 + 40 S13 S14 S34 + 80 S13 S23 + 120 S13 S23 S34 

+40 Si3 S34 + 40 S23 + 80 Si4 S23 + 40 5 ^ S23 534) / ( S34 S234 S134 ) 

+Ldo (p i ,P4 ,P3 ) (32s i2 5i3 + 6 4 S i 2 S l 4 + 32S12S34 + 16Si3 - I6S13S14 - 32Si3S23 

+48 s i3 S24 + 32 Si3 534 + 80 s i4 S23 + 64 S14 S24 + 64 S24 534 + 16 534) / ( S 1 3 4 ) 

+LCi (p23,Pl4 ) (16 5i2 S34 + 16 S12513S34 + 16 512 5i4 534 - 32 5i2 524 S34 - 16 Sn s'^ 34 

+ 16 5i3 Si4 S34 + 16 Si3 524 534 + 16 5i4 524 S34 + 16 S14 534 - 16 534 S34 - 16 S24 534) / 

( 534 5134 ) + Ldo(p2,P3,Pl4)(32 S12 Si3 + 16 Si3^ + 16 5i3 5i4 " 32 S13 S23 + 48 S13 524 

+32 Si3 534 - 32 5^4 - 16 5i4 523 + 32 Si4 524 + 32 5i4 S34 - 32 S23 S34 + 16 S24 534 

+ 16 534) / ( 5 3 4 S 1 3 4 ) + L d o ( p i , P 4 , P 3 ) ( - 1 2 8 S i 2 5i3 5i4 - 64 5i2 S13 534 

-128 5i2 5i4 534 - 32 5i2 534 - 128 5i3 S14 523 - 128 5i3 5i4 524 - 64 S13 S23 534 

- 6 4 5i3 524 534 - 128 5i4 523 534 - 128 5i4 524 534 - 32 S23 534 - 32 S24 534) / ( 534 5̂ 34 ) 

+ L d o ( p 2 , P 3 , P l 4 ) ( - 6 4 5i2 5i3 S14 - 32 S12 5i3 534 + 64 512 5̂ 4 + 32 5i2 S14 534 

+32 S12 S34 - 32 5i3 5i4 - 32 5i3 534 - 32 S13 S14 523 - 96 S13 5 ^ 524 - 64 S13 514 534 

- 3 2 5i3 523 534 - 64 5i3 S24 534 - 32 5i3 5̂ 4 + 32 5̂ 4 + 96 5?4 523 + 32 5̂ 4 S24 

+32 5^4 534 + 64 Si4 523 S34 - 32 5i4 S24 534 + 32 523 534) / ( 5̂ 4 5^34 ) + LCi ( p i , P34) 

( - 9 6 S12 Si3 + 24 S12 534 - 96 5i3 523 - 96 5^3 524 - 128 5̂ 3 S34 + 56 S13 523 S34 

- 5 6 5i3 524 534) / ( 534 S134 ) 

+LC2(pi ,P234) ( 32 5^3 523 + 32 S?3 524 - 16 S13 S34 - 16 5̂ 4 S34 ) / (534 5134) + LCs(p2, P34) 

( - 1 6 5i2 534 - 16 5i2 5i3 523 + 16 S12 5i4 523 + 16 5i3 533 + 16 5i4 S23 ) / ( S34 S134 ) 

+Ldi (p i ,P4 ,P23) 

( - 3 2 5i2 534 - 16 5i2 5i3 534 - 16 5i2 5i4 534 - 32 5i2 523 534 + 3 2 5i2 S24 S34 + 16 S12 534 ) 

/ ( 534 5134 ) + L d i (P2, P3, P 4 ) ( - 3 2 5i2 534^ + 16 5i2 S13 534 + 48 5i2 S14 523 534 

- 1 6 5i2 S23 534 + 16 5i3 5i4 523 534 - 16 5^4 533 + 16 5i4 sj^ 534) / ( 534 5234 5i34 ) 
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-fLcd2(pi,P34,P2) ( - 3 2 513 523 - 32 5i3 533 S24 - 32 5i4 S23 - 32 S14 S23 524 ) / S34 ^134 

+Ld2l(p4 ,P3,P2) ( - 3 2 5i2 5i4 534 + 16 5i4 523 ^34 ) / ^34 5234 S134 + Ld22(pi, P4, P23) 

( - 1 6 S12 S24 534 - 16 5i3 524 *34 + 32 S14 S23 524 534 + 16 5i4 534 534 ) / ( 534 5234 ^134 ) 

+Ldi (p i ,P4 ,P3) ( - 1 6 512 5^4 + 16 514523S34) / S34 5134 + Ldo(p2,P3,P4)(-32 512 513 

- 6 4 S12 5i4 - 32 5x2 534 - 16 5i3 + 32 5i3 523 + 16 5i3 524 - 16 5i3 S34 - 16 S14 523 

- 6 4 5x4 524 - 32 514 534 - 16 524 S34 - 16 5 3 4 ) / ( 534 S134 ) + L d i ( p i , P4, P23) 

(32 S12 523 834 - 32 S12 524 534 + 16 5i2 5i3 523 534 - 48 5i2 5i3 524 ^34 

-1-48 5i2 5i4 523 S34 - 16 5x2 ^14 §24 534 + 32 5x2 ^23 534 + 32 5x2 ^23 524 S34 

+ 16 5x2 S23 534 + 64 5x2 S24 •S34 + 48 5x2 S24 - 16 ^3 ^24 S34 + 16 5x3 5x4 ^23 ^34 

- 1 6 5x3 Sx4 S24 534 + 32 5x3 ^24 534 + 16 5x3 S24 ^34 + 16 5̂ 4 523 S34 

- 3 2 5x4 523 S24 S34 - 16 5x4 ^23 S34) / ( ^34 ^234 S134 ) + LCo(px4, P23) ( -32 5̂ 2 S34 

- 1 6 5x2 SX3 S34 - 16 5x2 Sx4 ^34 + 96 5x2 S24 S34 + 48 5x2 534 - 16 5i3 534 - 16 5i3 523 ^34 

- 1 6 5i3 524 S34 - 16 5i3 534 + 16 S14 523 S34 + 16 5x4 S24 534 + 16 S14 534 -|- 16 523 S34 

- 1 6 524 534 - 16 524 534) / ( S 3 4 5 1 3 4 ) +LCi(pi,P234)(16 5i3 523 + 32 5^3 524 

+48 5^3 S34 - 32 5i3 5i4 534 + 32 5i3 523 ^34 + 96 5x3 ^24 ^34 + 16 S14 523 + 48 S14 534 

-M6 514 523 534 - 16 5x4 524 534 " 32514534) / ( 534 5i34 ) -t-LCi (p2, P34) (48 5i2 534 

+48 5i2 Si3 S23 - 8 5i2 5i3 534 - 48 5i2 5i4 523 + 40 5i2 5i4 534 + 40 5i2 534 + 24 5^3 S23 

- 4 8 5i3 523 + 40 5i3 523 534 " 24 5i4 523 " 48 5i4 533 + 24 5i4 S23 534) / ( 534 5134 ) 

+LCi(p2,Pl34)(112 5i3 523 - 16 5i3 S24 + 112 5i3 5x4 523 - 16 5x3 5x4 524 

+ 160 5x3 523 534 + 80 5x4 523 S34 + 16 5x4 S24 S34 + 16 S23 534 + 16 524 534) / ( 534 S134) 

+LCx (P3, P14) ( - 1 6 5x2 534 - 16 5x4 523 534 - 32 5x4 534 - 32 523 534 - 16 524 534 ) / S34 5x34 

+LCx(p4,P23) 

( - 1 6 5x2 5x4 534 + 32 5x2 534 - 16 5x3 5x4 534 - 32 5x4 523 534 - 48 S23 534 + 16 5̂ 4 ) 

/ ( 5 3 4 5 1 3 4 ) +LCx(px4 ,P23)(-16 5x2 5x3 534 - 16 5x2 534 - 16 5i3 534 - 16 5x3 523 534 

- 1 6 5x3 534 - 16 5x4 523 534 + 16 523 534 - 16 524^ 534) / ( 534 5x34 ) 

+Lcd2(p2,P34,Pl) ( - 3 2 Si3 523 - 32 5x3^ 524 - 32 S13 5x4 523 - 32 5i3 5x4 524 ) / 534 5x34 
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+ L d o ( p i , P 4 , P 2 3 ) ( - 9 6 524 S34 - 3 2 S i 3 523 - 32 5i2 5̂ 4 - 64 5^2 534 - 64 S13 S34 
- 3 2 5i3 534 - 32 S34 - 32 5i3 523 + 96 5i4 523 + 32 5i4 523 - 64 5i2 S13 523 
- 9 6 5i2 Si3 534 + 64 5i2 5i4 523 - 32 5i2 5i4 S34 + 32 5i3 S14 534 - 96 5i3 523 534 
+ 9 6 5i4 523 534 - 96 5i3 S24 534 + 32 S14 S24 S34 + 32 S14 534 - 64 S24 534 + 32 523 534 

- 9 6 Si3 S23 524 + 32 Si4 523 524 - 32 523 S24 534) / ( 534 5234 5i34 ) 

+LC2(pi , P34) ( 32 S12 5^3 

+ 16 5̂ 3 523 + 16 5̂ 3 S24 + 32 5^3 534 ) / 534 S134 

+ L e i ( p i , P 4 , P 3 , P 2 ) ( 3 2 S i 3 523 - 32 5̂ 4 523^ - 16 5^3 523 + 32 512 514534 - 32 5i3 S23 534 

- 1 6 5i3 523 534 - 32 5̂ 4 523 534 + 64 5i3 5i4 533 + 32 S13 533 S34 - 128 S14 S23 524 

+ 16 Si4 S23 534 - 16 5i3 5i4 523 + 16 5i3 5i4 523 - 32 5i3 5i4 523 534 + 16 5i4 S23 

- 6 4 5i4^ 524 ~ 16 5i2 523 534 - 16 S12 5̂ 4 534 + 16 S14 534 534 + 32 5̂ 2 5i4 S34 

- 4 8 5i2 5i3 523 534 + 32 5i2 5i4 S23 534 + 48 S12 5i4 524 S34 - 32 S12 5̂ 3 S23 - 32 5i2 5i4 S23 

- 6 4 S12 5i4 524 - 32 5i4 524 534 + 16 5i4 S24 534 + 16 5i2 5i3 5i4 534) / ( 534 5l34 ) 

+LC2(p2,Pi34) ( 3 2 513 523 + 32 Si4 523^) / 534 5134 + Lcdo (pi ,P34,P2)(-48 S12 5i3 534 

+ 3 2 5i2 5i4 534 + 32 5i2 534 - 48 5^3 523 S34 + 32 5^3 524 534 - 128 S13 5i4 S23 534 

- 1 9 2 Si3 523 534 - 80 Si3 524 534 - 48 5̂ 4 S23 534 - 112 5i4 S23 534) / ( 534 5i34 ) 

+ L c d i ( p i , P 3 4 , P 2 ) ( - 1 1 2 513^ 523 - 80 5i3 S23 524 - 128 5i3 S14 553 - 64 S13 5i4 523 524 

- 1 7 6 Si3 523 534 - 112 5i3 523 524 534 - 16 S14 553 + 16 5i4 S23 524 - 112 5i4 533 534 

- 4 8 5i4 523 524 534) / ( 5345134) + Lcd i (p2 ,P34 ,P l ) ( -16Si3 523 - 16 5^3 524 

- 3 2 Ŝ 3 5i4 523 - 32 5i3 5i4 524 - 80 S13 523 S34 - 80 S13 S24 534 - 16 5i3 S14 523 

- 1 6 5i3 5i4 524 - 16 5i3 5i4 523 534 - 16 S13 5i4 524 534) / ( 534 S134 ) 

+Ldi(p2,P3 ,P4) ( - 1 6 512 514 S34 - 16 5i2 534 + 16 5i4 523 + 16 5i4 523 534) / 534 S134 

+Ldi(p2 ,P3 ,P l4) ( l 6S i2 5i3 534 + 16 512 514 534 + 16 5i2 S34 ) / 534 5134 + Ldi(p2: P3, P H ) 

(16 S12 Si3 534 + 16 5i2 5i3 534 - 16 5i2 5̂ 4 534 - 16 S12 5i4 534 + 16 5^3 524 534 

- 1 6 Si3 5i4 523 534 + 16 5i3 5i4 524 534 + 16 S13 524 534 - 16 5i4 523 534 - 16 5i4 523 534) 

/ ( 5 3 4 5 m ) + L d 2 4 ( p i , P 4 , P 2 3 ) 
( 48 S12 524 534 + 16 5i2 534 + 32 5i2 5i3 S24 534 - 32 S12 S14 523 S34 ) / ( 534 S234 5i34 ) 



APPENDIX E. EXPLICIT FORM OF Cc(1,2; 1,2) 200 

+Ld2x(pi,P4,P23) ( 16 5x4 533 534 -|- 32 5x4 S23 524 534 + 16 5x4 524 534 ) / 534 S234 5x34 
+ 16Ld2x(p2,P3,P4) 5x2 534 / 534 5234 5x34 

-1- log f ^ ^ ^ \ ( 16 S12 534 + 16 5x4 534 + 32 523 S34 + 32 524 534 ) / S34 5x34 
V 5x4 / ' 

+ log ( ) ( - 3 2 5x2 5i3 534 - 32 5x3 S23 534 - 32 5x3 524 534 ) / 534^ 5̂ 34 + log ( ^ ^ ] 
V 5x4 / ' V 523 / 

( - 1 6 5x2 5x3 534 + 16 5x2 5x4 S34 - 16 5x2 S34 + 16 5x3 5x4 534 + 16 5x3 523 534 + 16 5x3 534 

+ 16 5x4 523 534) / ( S34 5234 5x34 ) log ( ^ ^ ) ( 32 S23 534 + 16 524 534 - 16 534 ) / 534 5x34 

+log f ? ^ ^ (16 5x2 5x3 534 - 16 5x2 5x4 534 + 16 5x2 S34 - 16 5x3 5x4 S34 - 16 5x3 523 534 
V 534/ 

- 1 6 5x3 534 - 16 5x4 523 534) / ( 534 5234 5x34 ) 

+ l 0 g ( — ^ ( 32 5x2 5X3 S34 + 32 5x3 523 534 + 32 5x3 524 534 ) / 534 5134 + log f ^ ^ j 
V 534 / ' \ 534 / 

(48 S12 Si3 + 72 5i2 534 - 24 5^3 + 24 513 514 + 144 513 523 + 24 513 S24 + 40 513 S34 

- 2 4 Si4 523 - 24 523 534 + 48 524 534 + 48 S34) / ( 534 5i34 ) + log ( ^ ^ ] (48 S12 534 
' V 5234 / 

+48 5i2 5i3 523 + 88 5i2 5x3 S34 - 48 5x2 5x4 523 + 8 5x2 5x4 534 + 40 5x2 534 + 24 5i3 523 

+ 24 5^3 534 - 40 5i3 5i4 S34 - 48 5i3 533 - 88 5x3 523 534 - 40 5x3 534 - 24 5̂ 4 523 

- 4 8 5x4 523 - 40 5x4 523 534) / ( 534 5234 5x34 ) 

+ l 0 g ( ^ ^ \ ( 80 5x3 534 - 48 5x4 534 - 64 523 534 - 64 524 534 - 16 534 ) / 534 5x34 

V 5234 / ' 
- l o g ( ^ ^ ) ( 32 5x2 534 + 64 5x3 S34 + 48 5x4 534 - 40 523 534 + 16 524 534 + 64 5̂ 4 ) 

V 5x34 / 

534 5x34 + log [ ^ ^ ) ( -96 5x2 5x3 - 64 S12 5x3 S34 - 48 5x2 S34 - 96 S13 523 - 96 5i3 524 
V 5x34 / 

64 5x3 523 534 - 64 5x3 S24 534 - 48 523 S34 - 48 524 S34) / ( 534 5^34 ) . 



Appendix F 

Azimuthal Correlations 

In considering the tr iple collinear l imits of chapter 7, i t is important to consider azimuthal 

correlations between polarization vectors whenever there is a propagating spin-1 particle. 

These considerations are even evident at the double collinear level when one considers the 

spl i t t ing g —>• gg. Universal factorization in this collinear l imi t is only true after azimuthal 

averaging. 

I n such cases, the usual approach to collinear limits is not sufficient. When identifying 

the singular behaviour of the matr ix elements in the collinear region, i t is normal simply 

to introduce a momentum fraction for each collinear particle, = ZiP. However, these 

relations are only true exactly in the collinear l imi t , when all particles travel along a given 

direction. However, we are really studying the singular behaviour as an invariant s — 0 , 

not the exact l im i t of s = 0. This discrepancy manifests itself as extra powers of invariants 

in the denominator of the matr ix elements squared. By allowing the collinear particles 

some rotat ion around the collinear direction we may recover the true behaviour. A proper 

formalism should suitably expand all factors in the numerator - including angular factors -

before the collinear l i m i t is taken. The spli t t ing function factorization of matr ix elements is 

then only true after all azimuthal integrations have been carried out. 

In this appendix we show explicitly how the azimuthal terms may be implemented - first 

in the simple case of two collinear particles and then by extending the results to the triple 

201 
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coUinear case of chapter 7. 

F . l Two Collinear Particles 

We first consider the case of a coUinear pair in a final state of four on-shell particles. The 

particle momenta w i l l be wri t ten Pi, i = 1 , . . . ,4 and we use the generalized Mandelstam 

variables Sij = (pi Particles 3 and 4 are chosen to be collinear, wi th the combined 

momentum, j9(34) in the ^-direction in the centre-of-momentum frame, 

P(34) = iEs4,0,0,a)., 

where S34 = ^^34^ = E^^ - 0?. By introducing a transverse momentum px = a;£'34 sin ^ = 

(1 — a;)£^34 sin^ ' , we can write the momenta of the individual particles as, 

P3 = (x£'34, PT sin (j), PT COS (p, xE^^ cos 6), 

Pi = ((1 - x)E34, -pT sin (f), -pT COS (1 - x)Eu cos 9'). 

Here x is the usual momentum fraction and 0 the azimuthal angle which w i l l be integrated 

over. Now consider the two other final state particles, which are not collinear. We represent 

these generically by, 

p i = ( £ 1 , 0 , a, 6) , 

P2 = {E2,0,-a,-b- a), 

so that the combined momemtum balances ^(34) and S1234 = {Ei + E2 + E^i^. The on-shell 

conditions for pi and p2 require that, 

El = a' + b\ El = a^ + {b + a)'. (F . l ) 

To relate the matr ix elements to the 3-particle state represented by 1, 2 and (34) we introduce 

the further variables, 

yn = {p,+p2f = {E, + E2)'-a\ 

yn = {Pi + Pm? = 2£;i^34 - 2&a + S34, 

y2z = {P2 + P{M)f = '^E2EM + 2a{b + a) + S34. 
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I t is now simple to re-write the 4-particle variables Sij in terms of these new variables. For 
example, 

Si3 = 2 p i • p3 = 2XE1E34 - 2apT cos ( f ) - 2bxEu cos 6 

= x{yi3 — szi) — 2apTC0S(j) + 2bx{a — E34COS6), (F.2) 

and, 

S23 = 2p2 • pz = 2xE2Ez4 + 2apT cos 0 + 2(6 + a)xEu cos 8 

= x{y23 — Su) +'2apTC0S(f) ~ 2{b + a)x{a — E34COS9). (F-3) 

In order to complete the connection between the two sets of variables, we need expressions 

for PT, a and b. We first consider 9 and 9' small (effectively dropping terms of order p^) to 

find, 

S34 = 2pz • Pi = £^34 - [xEzi cos ^ + (1 - x)Ezi cos 9'f 

= El,[xd'' + {\-x)e'^) 

= E,,pTe, (F.4) 

where we have also introduced the opening angle Q = 9 + 9'. This is simply obtained via, 

Q ^ PT ^ PT _ PT 

xEu ' ( 1 - ^ ) ^ 3 4 x{l-x)Ez4' 

which then yields the simple relation, 

p% = x{\ - X)SM-

By using this equality and the on-shell condition for p^, namely p^ = x^El^{l — cos^ 0) we 

find that the coefficient of the b term in eq. (F.2) can be re-written as, 

2 x ( a - ^ 3 4 C O S ^ ) = ~ { l - 2 x ) . 

•C'34 

In fact, we find that all the terms which are explicitly of order 534 or higher can be dropped 

when we substitute the l imits such as (F.2) or (F.3) into the matrix elements. Therefore we 

need only concentrate on an expression for a. 
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When we now take the collinear l imi t we wi l l have climated all the double poles in S34 
in the matr ix elements. Therefore in order to derive an expression for a in terms of these 
variables we are able to neglect further terms of order S34. We first note that we have 
a = Eu + 0(834) and hence that, 

yn = 2Es4{Ei-b), 

y23 = 2E34{E2 + b + E34), 

2/13+2/23 = 2£'34£'i234! 

where £^^34 = 2/123 = • Equation ( F . l ) implies that, 

a' = (E,-b)iE^ + b) = ^ { E , + b), 

= {E2-b-E34){E2^b + E34) 

2 £'34 
2/23 

( £ 1 2 3 4 - ( £ 1 + ^ ) - 2 ^ 3 4 ) . 
2£'34 

Combining these two equations enables one to solve for a ,̂ yielding, 

^2 ^ /122/132/23 5) 

(2/13 + y23)^ 

This is a general result, which in particular w i l l also be true when 3 particles are combined 

to lie coUinearly in the ^-direction. 

F.2 Three Collinear Particles 

The generalization of this formalism to 3 collinear particles is straightforward. We introduce 

a transverse momentum PTI for each particle i = 3, 4, 5 , which balances against the cluster 

of the other two. So, for example, we have, 

P3 = {wE34^,PT3Sm(j)3,PT3COS^3,wE34'^COSe3) , 

P(45) = ((1 - U ; )£345 , -Pr3Sin03,-Pr3COS03 ,P45COS^3), 
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wi th PTS = wEsibSinOs = j945sin^3. The momentum fractions for 3, 4 and 5 are w, x 
and y {= 1 — X — w) respectively, whilst transverse momentum conservation implies that 
Ei=3 PTZ COS = 0. 

Using S45 = p^45) we find that, to first order in 545, 

P45 = (1 - w)Eu5 - ^'^\ • 
2(1 - w)Eu5 

Expanding for small 9s and ^3 as before we also have, 

S345 = £^^45 - (wEu5 + Pib - ^PTS'^Z^ ; 

where the opening angle 63 = 3̂ + 3̂ is given by, 

WE345 P45 W [ l - W)Ez45 

Combining these two equations yields the identity, 

PTI = W{{1- W)S345 - S45) • (F.6) 

We must now relate the 5-particle variables to the 3-particle ones, in analogy to the 

reduction f rom 4 to 3 particles in the single unresolved case. These identities are easily 

obtained and we find, for example, 

Si3 = 2pi • ps = 2wEiEs4^ - 2apT3 cos ̂ 3, 

yi3 = {Pl + P345)̂  = 2pi • p(345) + S345 = 2£^iE345 + S345. 

When we now take the double unresolved l imi t of the 5 parton matrix elements we may 

employ the substitutions. 

Si3 = w{yi3 - S345) - 2apT3 cos < 3̂, 

S23 = w{y2z - 5345) + 2apr3 cos (/>3, 

where we have here neglected terms proportional to b f rom the outset. 
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