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Abstract

The analysis of hadronic events in high-energy electron-positron annihilation often relies
upon the clustering of individual hadrons into energetic jets. By solving our theory of strong
interactions, Quantum Chromodynamics (QCD) perturbatively, we may make theoretical

predictions for these multijet configurations.

In this thesis we provide some calculational tools which are useful for evaluating terms
in the perturbative series beyond leading order. These include a convenient method of
dealing with one-loop integrals containing tensor denominators and universal factorization
formulae for matrix elements where two particles are unresolved, which aré relevant at the
2-loop (next-to-next-to-leading order) level. In parficular we concentrate on the case of
the next-to-leading order corrections to 4 jet production (and related processes) and apply
our techniques to obtain explicit results in electron-positron annihilation which are then

compared with experimental data.
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Chapter 1

A Review of QCD

1.1 Introduction

The advent of the 1960’s saw a revolution in the field of particle physics. Akin to the
world of chemistry béfore Mendeleev, there had been a proliferation in the number of so-
called elementary particles, with strongly interacting hadrons being produced in many high
energy experiments worldwide. Lacking structure and thus predictive power, the subject

was revitalized in 1964 by the independent proposals of Gell-Mann and Zweig [1].

The key idea was that hadrons were not themselves fundamental objects, but instead
formed as bound states of guarks, spin 1/2 point-like particles. By building hadrons from a
quark-antiquark pair (mesons, such as the pion) or three quarks (baryons, for example the
proton) this new theory was able to bring order to the particle zoo. Just as was the case
for its forerunner, this new ‘Periodic Table’ successfully predicted the existence of hitherto
unknown elements of the theory such as the Q= baryon. Direct evidence for quarks was to

come only a few years later with the deep inelastic scattering experiments of SLAC-MIT in

1968 [2].

Despite the apparent initial success of the quark model, it was still confronted with some
puzzling problems, not all of which are well understood today. The most immediately appar-

ent of these was the implicit violation of Fermi statistics. Some of the baryons appeared to be
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symmetric under the interchange of two identical quarks, contradicting the anti-symmetric

nature of the spin 1/2 constituents. The resolution of this dilemma involved the introduction

of a further conserved quantum number — colour.

The assignment of colour states to individual quarks led to further postulates. By de-
manding that we only observe combinations of quarks that are colourless, we obtain strict
experimental bounds. As well as predicting the known combinations in mesons and baryons,
we also find that we should never discover lone quarks and that they are always confined.
Although free quarks have never been observed experimentally, the precise mechanism for

the confining process is not yet fully understood.

The implementation of the above qualitative description of quarks is of course far from
straightforward. In particular, it is necessary to introduce the concept of a quantum field
theory to describe the quark states, with the strong force mediated by bosonic particles
(similar in many respects to the photon) called gluons. Both the quarks and gluons are
intrinsically linked by their colour quantum numbers, which are described mathematically
with reference to the group SU(3). It is the theory based on this group, commonly referred
to as Quantum Chromodynamics (QCD), that will be the subject of this thesis.

The aim of this chapter is to proceed from the basic Lagrangian density of QCD, in terms
of quark and gluon fields, to a point where we may begin to consider real applications to
experiment. In section 1.2 we present the quantum field theory of QCD by outlining the
derivation of some of the terms in the Lagrangian and then describing how their interpreta-
tion leads to the Feynman rules. The theory that we build requires a further ingredient, that
of renormalization. We discuss this, and its relation to the key QCD concepts of a running
coupling and asymptotic freedom in section 1.3. In making predictions pertubatively, rather
than solving the full theory, we necessarily introduce an ambiguity due to renormalization.
The chapter concludes in section 1.4 with a discussion of the choice of resolution of this

ambiguity, illustrated by the real example of the average value of 1-Thrust.
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1.2 The Gauge Theory of QCD

In this thesis we shall be interested in the application of the perturbative SU(3) model of
QCD, working in particular from a direct application of the Feynman rules to physical pro-
cesses. In this section we shall briefly sketch the development of QCD as a gauge theory, from
the Lagrangian containing the fundamental fields through to its perturbative implementation

in a diagrammatic form.

1.2.1 Quarks and Gluons

The Lagrangian density which describes the quark content of QCD is expressed simply as,

Lauark = Y_ Qs (1P —m1)gy, (1.1)
7

where ¢ is a shorthand notation for the contraction a,y* and the gamma matrices satisty

the Clifford algebra relation,
{v*,7"} = 29" (1.2)

In equation (1.1), each flavour of quark is represented by a triplet of fields in colour space,
s

b )
4y (z)

z)

)

qr(z) =

[y

with the conventional colour superscripts of r(ed), g(reen) and b(lue). The independence
of our physical observations from these internal colour degrees of freedom means that we
should be free to perform any rotation of the colour fields into one another. By insisting that
this requirement be satisfied at every point separately, we obtain a local SU (3) symmetry.
Mathematically, this means that the Lagrangian density should be invariant under any local

SU(3) transformation V(z), which can be parametrized by,
V(z) = exp(if(z) - 1),

where 0(z) -t = %(z)t* and t® are the generators of SU(3). Since V (z) is a unitary matrix,

it is clear that the generators t® are traceless and they must also satisfy a set of commutation
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relations,
[t°, 8] = i f*ete, (1.3)

with the coefficients f2° often referred to as the structure constants of the group. Under
this SU(3) rotation, the quark fields transform as,
gs(z) = V(2)gs (),

so unitarity ensures that the quark mass term — 3~ m;q@sq; in the Lagrangian (1.1) is invari-
ant. However, the kinetic term requires more subtlety and we must ensure that the covariant

derivative D,, transforms in the correct manner to cancel out the rotation of the quark fields,

D,(z)qy(2) = V() Du(z)gs(2)-

In order to do this, we must include a new vector gauge field A} (which will eventually

represent the gluon degrees of freedom) in the definition of D,

D, = 8,1 +igt*A®.

Having thus constructed a Lagrangian representing the matter content of QCD, we now
turn to the dynamics of the gauge particles. We can implement a kinetic term by constructing
the field strength tensor of the gluon field, Fj,, which is given by the commutator of two

covariant derivatives,

[Dua DI/]Qf(x) = [8ﬂ1 + th ’ AIH (9,,1 + th ) A’J]qf(x)

igt - F, qp(2),

where F};, is given by,

F, = 0,4, - 0,A, - gf“bCAZA,ﬁ. (1.4)
Note that this is exactly what we would have obtained in constructing a gauge theory for
QED, except for the additional non-Abelian third term. We must now form a gauge-invariant
quantity from the field strength, which is done by simply taking the trace 1 (with a convenient

normalization) to give,
1
Egluon =—-F"F;

- a v
4 2

(1.5)

1Unlike in QED, FZ, is not itself gauge invariant because of the gluon self-interactions.
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1.2.2 Gauges and Ghosts

In order to sensibly define our theory, it is also necessary to add two additional terms to
the Lagrangian. The technical reasons for these terms are best understood by performing

quantization in the functional integration approach and using the trick due to Faddeev and

Popov|3].

Without the addition of the first term, propagation of the gluon field is not well-defined.
To solve this ambiguity, we introduce a gauge-fizing term, which also contains a free (gauge)
parameter &,

L:gauge—ﬁxing = _% (aﬂAZ)Q . (16)

The parameter € specifies the covariant gauge to be used, although other choices of gauge
fixing are possible (for example, axial gauges where one also specifies a vector n#). This is
not specific to QCD: we would perform the same trick in QED for the photon. We may
freely work in any gauge that we desire, with any physical observable necessarily being

gauge-independent. Some choices of the gauge parameter £ (and their common names) are,

£=0, £=1, § =00
(Landau gauge) (Feynman gauge) (Unitary gauge)

The final ingredient is the ghost term, which represents unphysical degrees of freedom.
Without this explicit term, longitudinal gluons would be allowed to propagate, violating
our physical observations. To remedy this, we can introduce a complex ghost field n which

couples to gluons via the term,
Lapos = 0un® (D). (L.7)

It suffices to know that 7 is a scalar field, yet satisfies Fermi statistics, a further sign of its

unphysical nature.
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1.2.3 The QCD Lagrangian

To summarize, the full Lagrangian density for QCD is given by,
£QCD = £quark + Egluon + »Cgauge—ﬁxing + Eghost;

where the individual terms are given by equations (1.1), (1.5), (1.6) and (1.7) respectively.

Having explicitly written down the Lagrangian, we now proceed to make some remarks about

its significance.

e There is no possible gauge invariant mass term for the gluon, but quark masses can be

naturally admitted.

e By examining equations (1.4) and (1.5) we see that the Lagrangian includes (non-
Abelian) terms which are cubic and quartic in the gluon field A5. These would not be

present in QED and lead to gluon self-interactions.

e To proceed to the calculation of physical observables, we divide the Lagrangian into a

free piece £y and an interacting one L, and consider the action which is defined by,
s=i[Lds

The interacting theory can now be solved perturbatively as an expansion in the strong

coupling g.

e A convenient book-keeping device for calculating the terms in the perturbative expan-
sion is provided by the Feynman rules. One can calculate transition probabilities from
initial to final states by summing over the set of topologically distinct diagrams which
represents all possible interactions. In this language, terms in the free action Sp lead
to propagators in momentum space (lines in a diagram), whilst S; leads to interactions

between quarks and gluons via momentum-conserving vertices.
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1.2.4 The Feynman Rules

The full Feynman rules for QCD external lines, propagators and interactions are shown in
Figure 1.1. In this thesis we shall always work with spin-summed and averaged matrix
elements (for final and initial states respectively) so the extra spin label on the spinors and

polarization vectors has been omitted.

In addition, when including diagrams with loops one must also:

e integrate over the loop momentum ¢ with the measure [ d*¢/(2m)*;
e include a factor of —1 for each quark or ghost loop;

e multiply by a factor of 1/n! for a loop of n identical gluons.

By using these rules and summing over all the relevant diagrams, one obtains the amplitude
M.
In order to calculate the squared matrix elements for a process, we also require the

following sums,

Supap) =g+m, Y upup)=F-m, 3 e =—¢g",

spins spins pols.
where the gluon polarization sum assumes use of the Feynman gauge (€ = 1). Following
these replacements we can simply use the usual rules for the traces of gamma matrices, all
easily derived from the Clifford algebra relation (1.2). The rules presented here include a
mass for the quark, although in many applications this can be neglected. Working at scales
sufficiently high above the quark masses (true for all but the top quark at Q = Mz), the
approximation of a zero mass greatly simplifies calculations. We shall adopt this approach
throughout the remainder of the thesis. Finally, we note that in the squared matrix elements
we always obtain an even power of g, so it is usual to always consider a perturbative expansion

in powers of ag defined by,
2

g
= 1.8
as 47 ( )
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Incoming lines Outgoing lines

5" ) % )
N %(p) N )

()(3' Q(; *
e #(p) & o
Propagators Vertices
. a,u
- '(p+m) 6i' (b\: -Ig y.u T'a
T (pPmPHe) N )
i
P21
—_— . G fabc ((p _p )p uv
-i 2, ab S g 1P2
R U GNP Bt
P patp  DabY (P3-P1)'g"*)
ap
_ iy o
P b c
a,un by _i~2 abe cde; vo _up uc vp
‘%\;@é@ ia? ace bde(gpcguv pc’g\p
decb
mﬁ%w-@““@Ww%%

Figure 1.1: The Feynman rules for QCD, using the usual convention of {solid, springy,
dashed} lines to represent {quarks, gluons, ghosts}. Unless otherwise stated, the momen-
tum flow along a line is p in the direction indicated by the arrow alongside it. The gluon
propagator is given in a covariant gauge specified by the parameter £. In the triple gluon
vertex, all momenta are outgoing. For fermion lines, the arrow on the line itself indicates
the direction of fermion flow.
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1.3 Renormalization

Within a quantum field theory such as QCD, we require renormalization to remove ultraviolet
divergences that are naturally present. These divergences are associated with higher order
terms in the perturbative expansion of any physical observable. For example, consider the

one-loop (‘bubble’) integral with two internal lines and external momentum £,

4

o~ | F
In the ultraviolet limit £ — oo the integral Z is (logarithmically) divergent. We may renor-
malize by introducing an upper cut-off on the integral, at the momentum scale 2?2 = ;i say,
or by dimensional regularization, continuing to d < 4 dimensions. Ultimately, either method
introduces an additional scale p — the renormalization scale — upon which our observable

must depend at any given order in perturbation theory.

By calculating the counterterms to Greens functions — terms in the perturbative expan-
sion — in a particular renormalization scheme we may determine the dependence on the
parameter 4. In QCD at the 1-loop order, this amounts to the calculation of the diagrams in
Figure 1.2. However, the dependence of an observable R upon the scale y is entirely spurious
— the physical observable cannot be dependent upon the artificially introduced unphysical
parameter y. By truncating the perturbative series rather than solving the whole theory we

have introduced this extra dependence. This has the important effect known as the running

coupling.

1.3.1 The Running of oy

We shall consider a dimensionless observable R, so that at all scales ¢ in which we are

interested any other scales are small (for instance, the quarks have masses m with m?/Q? K
1). The independence of R from p is expressed by,

R (8 das 0.
@‘(@*E%)R‘O’
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Figure 1.2: The 1-loop contributions to the renormalization counterterms for the gluon and
fermion self-energies and the gluon-fermion vertex. These diagrams are sufficient to calculate
the renormalization scale dependence of any physical observable at the one-loop level.

where R = R(Q/p, as) since it can only depend upon the dimensionless ratio @/u and the
coupling at the renormalization scale, ag = ag(p). We can re-express this equation in terms

of the scale ) and the function 8(as) = pO0as/0u, yielding,

(—Qi + ﬁ(ds>i) RQ/ s a5) = 0.

6@ aas
We now introduce a referen'ce momentum scale Qg and define the new variables ¢ and 7 by,
Q@ _ dn 1
®Qo ’ das  B(as)

Noting that we have OR/dn = OR/dt we may introduce the new function R’ via,

R(@/pa5) = R @i +) = B (Qfi [ 505 +2).

where o is an arbitrary lower limit. By setting ¢ = 0 in this formula we also obtain,

R(Qo/mas) = B (ol [ 505,
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By equating these two expressions we find that we may relate the observables at two different

[
oy Bz)
The constraint can itself be re-cast in the form of a differential equation for the coupling,

0as(Q)
oQ

Thus the strong coupling a is a function of the energy scale at which it is evaluated and runs

energy scales provided that we modify the coupling,

R(Q/p,as) = R(Qo/p,&s)  subject to / * ﬂd_

according to the function B(as) which can be calculated from the diagrams in Figure 1.2.
Such a calculation yields the result,

Blas) = -~ oy

—Booz+ ..., (1.10)

where (...) represents the terms omitted due to working only at one-loop order. The expres-
sion in 1.10 represents the crucial conclusion. In QCD with np < 17 flavours of light quark,
the coupling decreases as the energy scale is increased. This is known as asymptotic freedom
and has many consequences for experimental observation which will be discussed further in

chapter 2. This behaviour is in stark contrast to QED, where the coupling becomes weak at

high energies (corresponding to f(a) = &= o +...).

as from Experiment

In theory then, it should be possible to make a number of experimental observations at differ-
ent energy scales @ and thus extract measurements of ag(Q)) over a broad range of ). Such
measurements could then be compared with the theoretical prediction of equation (1.9), to
confirm that the coupling does indeed run as we expect. At leading order in the perturbative

expansion, it is simple to solve (1.9) with equation (1.10) to obtain,

25(Qo) . 1.11
1+5010g(g“> as(Qo) (A

as(Q) =
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Since we know that the coupling diverges as we decrease the energy scale, it is convenient
to introduce a parameter A equal to this scale, near which perturbation theory becomes
unreliable. This enables us to write an alternative form for the running,

_

Bo log <%) .

Although these two forms of the running are equivalent (simply different boundary conditions

as(Q) =

for the differential equation 1.9), use of each varies from application to application. As a
test of the strong coupling, the use of A is often disfavoured. This parameter has a definition
which changes order-by-order in perturbation theory, takes different values as one changes
the number of quark flavours and also has the unphysical interpretation of being the scale
at which the coupling diverges. For these reasons, it has become conventional to instead
convert all measurements of as(Q) into a value at @) = My by running the coupling to this
scale. This supposedly provides a more physical observable than A. By choosing ag(Mz) we
are sufficiently far away from quark thresholds (and hence non-zero mass effects) and also
close to the asymptotic region where perturbation theory should apply (as ~ 0.1). Beyond
these theoretical considerations, we can also make very accurate measurements due to the

very high statistics at LEP on the Z-pole.

A recent compilation of data on measurement of the strong coupling (at varying values of
@) is shown in Figure 1.3. Despite encompassing a wide range of energy scales, from deeply
inelastic lepton-nucleon scattering at @ = 1.6 GeV up to ete™ annihilation at @ = 133 GeV,

all extracted values are consistent and provide a world average of (4],

as(Mz) = 0.118 + 0.004. (1.12)

1.4 Scale Choice and Uncertainty

In the discussion of the running of the strong coupling above - and in all the determinations

mentioned so far - we have assumed that the argument @ in as(Q) is the experimental energy
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Figure 1.3: Measurements of ag(Mz) in the MS scheme, extracted from experiments at
energy scales in the range 1.6 — 133 GeV. The figure is reproduced from reference [4].
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scale of the process. This choice is normally referred to as the physical scale. It is usually
motivated by naturalness arguments and the fact that if we choose a scale p far from it then
equation 1.11 introduces large logarithms of the form log(x/Q). When comparing values of
as(Mjz) extracted in this way from the same observable at leading and next-to-leading order,
it is clear that there will be some discrepancy. The lowest order determination requires a
larger (smaller) value of as if the NLO coefficent is positive (negative). In order to try to
assess the effect of higher order perturbative terms, the scale is often allowed to vary from
@/2 to 2Q) and this uncertainty dominates all determinations, including the world average
in 1.12. As more orders of perturbation theory are included, the dependence upon the

renormalization scale should decrease and thus the determination becomes more accurate.

1.4.1 The Thrust Distribution

As an example, consider the 3-jet like observable thrust (T°), which is defined by,

T = max M, (1.13)
n Yk |kl
with the sum running over all particles in the event. Thrust describes the spread of jets
within an event, such that T = 1 for events with two back-to-back particles and ' =1 /2
for completely spherical events. Since 7 is fully inclusive, the averaging means that it is free
of the large kinematical logarithms which afflict distributions in jet observables close to the

two-jet region.

Since three jet production requires gluon emission from a quark, it is usual to consider
the variable < 1 — T >, whose perturbative expansion begins with one factor of as. At

next-to-leading order < 1 — T >, measured at centre-of-mass energy @* = M3, is given by,

<1-T>=4A (%@) + <B+27rA5010g( a )) (a;g‘))z, (1.14)

27 A/[Z

where f, is given by equation 1.10 and we have written the result as factors multiplying a
series in ag/27, the strong coupling with a common normalization. These scale-independent

coefficients have the numerical values A = 2.10 and B = 40.74 for five light quark flavours.
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To demonstrate the dependence upon the renormalization scale, the leading order and

next-to-leading order variation of < 1 — T > with y is shown in Figure 1.4. The curves are

<1-T>

mu/M_2

Figure 1.4: The dependence of the average value of 1-Thrust, < 1 —T > upon the renor-
malization scale p at leading (solid line) and next-to-leading order (dotted).

shown according to the two-loop running of cg, which corresponds to an extra term in the °
B-function, B = —fyak — a3 + ..., where §; = (153 — 19np)/1272. The value of as at

@ = My is chosen to agree with the central value of the current world average in 1.12.

It is clear that the lowest order curve is simply a scaled version of the one-loop running
of s and thus tends to zero as the renormalization scale grows (asymptotic freedom), whilst
diverging as u — 0. In contrast, at next-to-leading order the additional logarithmic term
dominates for small values of 11 and we see a characteristic turn over and negative divergence.
However, in the region p = 0.056M5; to u = 10My the curve is relatively flat and thus any
extraction of the strong coupling using the physical scale in the conventional manner will

attribute a smaller error to the measurement than at leading order.

We now discuss two other possible methods of choosing the renormalization scale and

illustrate them with our example of <1 -7 >.
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The Principle of Minimal Sensitivity (PMS)

This method of choosing the scale [5] attempts to reproduce the behaviour of the full per-
turbative series. That is to say, at any given order of perturbation theory we try to choose

the scale such that the dependence upon  is as small as possible. So in our thrust example,

we impose,
0<1-T>

0log i
where < 1 — T > is given by the NLO expansion in 1.14. Graphically, this corresponds to

finding the position of the local maximum in Figure 1.4. It is straightforward to carry out
this differentiation and use the running of as to determine the scale that this condition picks
out. Retaining all the next-to-leading terms (dropping O(a$)) we find that the PMS scale

uFMS s given by,

Bo ptMs
ApBy + — (B + 2w Afy log ( P )) = 0. (1.15)

Fastest Apparent Convergence (FAC)

An alternative method of choosing the scale [6] is to stipulate that all the coefficients beyond
lowest order in ag vanish. That is to say, at NLO we choose the scale such that the LO
and NLO predictions coincide, ie. the point where the lines cross in Figure 1.4. We notice
that this scale appears to be very close to that obtained from the PMS requirement above.
From equation 1.14 it is clear that for the FAC scale we simply require the second term in

parentheses to vanish. In fact, this is a very similar condition to that for the PMS scale and

by combining the two statements we find,

S
‘LL—FAE —e M 0~ (.85.

So in general we find that the FAC and PMS scales are very close to one another at next-to-
leading order?, differing by approximately 15%. However, these scales may be very different

from the physical scale (depending on the coefficents A and B for each observable), as is the

~case for <1 T >.

2Tt can be shown that the scales also remain similar at next-to-next-to-leading order [7].
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1.5 Summary

By tracing the development of QCD from a quantum field theory through to some important
consequences of its non-Abelian gauge group, in this chapter we have reviewed some of the
most important aspects of the theory of quarks and gluons. Although a proper derivation
of the Feynman rules and their implications is beyond the scope of this thesis, we have

nevertheless outlined their application and significance.

We have concentrated, as we shall do throughout the remainder of the thesis, on a
perturbative solution of QCD in powers of the strong coupling g. An important consequence
of this is that we must renormalize order-by-order, introducing an extra (artificial) mass scale
. This leads to a coupling which runs with energy and vanishes in the high-energy limit
(a property known as asymptotic freedom). In addition, all our perturbative predictions
depend upon the scale p, which we are free to choose as we see fit ~ although there are a

number of common prescriptions.

In the following chapter we will see how we may implement this theory in practice, to

match our theoretical model with the experimental reality.



Chapter 2

Hadrons, Partons and
Next-to-Leading Order

2.1 Introduction

We have seen in the previous chapter how a proper formulation of QCD leads, via the concept
of renormalization, to the idea of asymptotic freedom. The experimental consequences of
this result — and the theoretical predictions we may make based on it — will be the subject
of this chapter. Reconciling this picture of the real world with our theoretical predictions

involving bare states of just partons — quarks and gluons — is our first goal in section 2.2.

A key concept in analysing hadronic final states is that of a jet, the properties of which
we can only fully expose by working in higher orders of perturbation theory. The connection
between jets and partons beyond lowest order will be the outlined with the simplest example
in section 2.3. This basic calculation reveals a further source of divergences in QCD -
those caused by vanishing momenta, infrared behaviour. These need to be regulated in some

manner and section 2.4 describes the method that we will use throughout this thesis, namely

dimensional regularization.

The infrared properties of matrix elements are intimately linked to the products of colour

factors to which they are proportional. In section 2.5 we describe a convenient method

18
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of decomposing amplitudes according to their colour factors and illustrate their singular
behaviour. The numerical combination of terms once the singular pieces have been isolated

is the topic of section 2.6, where we describe a variety of methods in common use.

We conclude the chapter with a discussion of further reasons for making predictions
beyond lowest order (section 2.7) and give an example of a precision measurement that

benefits from a NLO 4-jet analysis, the determination of the QCD colour factors (section 2.8).

2.2 Hadrons and Jets

In an experiment where we observe, for instance, an electron-positron pair annihilating to
form hadrons, we might imagine that the final state would be difficult - perhaps impossible
- to characterize. Classifying events containing of the order of 30 hadrons and making

comparisons with parton level perturbative QCD would then be problematic.

However, examining a typical event such as that shown in Figure 2.1 shows that this
is not the case. This end-on view taken from the SLAC-SLD experiment clearly shows
that the individual hadron tracks are highly collimated, with three areas of the detector
unpopulated by hadrons. Each cluster of hadrons contains one highly energetic particle,
with many low energy, soft hadrons radiated very close to it. Thus hadronic events may be

classfied according to the number of such clusters of energetic particles, which are referred

to as jets.

2.2.1 Jet Algorithms

In order to quantify exactly the meaning of a jet, it is necessary to introduce a jet finding
measure d;; which represents the distance between the two hadrons ¢ and 7 in an event.
It is typically scaled by the square of the total energy visible in the final state, producing

the dimensionless variable y;; = d;;/E%,. Then the outline of a typical algorithm to assign

hadrons to jets might be:
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1. Initially label each hadron as a separate jet.
2. Calculate the quantity y;; for each pair of jets ¢ and j.

3. If y;; is sufficiently small, y;; < yeue for at least one pair then jets + and j should be

combined into one.

4. Repeat from step 2 until all jets have v;; > yeus.

This skeleton clearly leaves much scope for variation. The choice of the jet-defining
measure y;; and the method of recombination used in step 3 will be discussed shortly. In
addition to this our picture of an event changes according to how broad we allow a single jet
to be — the choice of the parameter y.,;. AS Yeu approaches zero, we allow very narrow jets,
until eventually all hadrons are identified as .separate jets. Conversely, increasing the value

of yeus produces broader jets with far fewer multi-jet events.

We now detail some of the most common variants of this clustering algorithm and discuss

some of the features and merits of each.

JADE (8]

This method chooses the measure to be simply,

QEZEJ(I — COS 0”)
Yijg = 2 3

vis

in the centre-of-mass frame of the event. Here the hadrons have energies F; and Fj; and
6;; is the opening angle between their directions. If the particles were massless then the
energies and momenta could be related so that yi;; = (pi + p;)*/E%, the invariant mass of
the pair. Although particularly simple, we shall see that theoretical predictions based on

this algorithm suffer from spurious clusterings.
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Durham [9]

An attempt to improve the theoretical properties of the JADE algorithm led to the introduc-
tion of the Durham, or k,-algorithm. In this variant, the measure is replaced by something

which more closely resembles the relative transverse momenta of the pair of hadrons, at least

at small angles,

2min(E?, E7)(1 — cos 6;)
Yij = 52 .

vis
Geneva [10]

Another possibility to avoid the problems of mis-clustering the hadrons is to use the measure,

o §EZEJ(1 — COS 92])
YiT 9T (Ei+E)

Since this depends upon the energies of the partons ¢ and j in both the numerator and
denominator, this can be more prone to measurement error than the two alternatives above
(which rely on the total energy, which can be more precisely measured). However, it is
expected that this algorithm is particularly sensitive to the number of light fermion flavours

and could thus prove an efficient tool to search for new physics effects beyond the Standard

Model.

2.2.2 Local Parton-Hadron Duality

The crucial observation in connecting theory and experiment is the hypothesis of local
parton-hadron duality [11]. We have seen that experimentally events tend to be composed
of a small number of jets of hadrons, with the majority of the energy and momentum being
carried by a single hadron within each jet. The concept of LPHD extends this further by
postulating that in fact the quantum numbers and momentum flow of the produced hadrons
closely follow those of the partons that initiated the jets. If one further supposes that the

effects of hadronization — the process whereby the quarks and gluons cluster to form hadrons
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— are small, one should obtain a reasonable agreement between theory and experiment by

associating one jet with each parton.

With this assumption, one can now apply the jet algorithms given above both at the
hadron level and in the theoretical parton calculation (where now E%_ = s, the total available
energy squared). Typically one uses matrix elements where the partons are massless, so
. the measures simplify, but lead also to a further ambiguity in how the partons should be

combined into jets.

Recombination - E, EO and P

Even having chosen a measure, there is still further variation possible in the way in which the
hadrons are combined into a jet. To examine the differences we shall consider the clustering

of partons i and j to form a jet k, i + 7 — k.

The simplest choice — the E-scheme — assigns the momentum and energy of the jet k to
the sum of those of i and j. So Ej = E; + E; and p; = §; + p;. Although this is manifestly
Lorentz invariant, we see that p? = (p; + p;)® = 2p; - p; # 0. This creates a mis-match when

comparing with matrix élements calculated using massless partons.

In order to solve this problem, two alternatives have been proposed. The P-scheme
simply re-assigns the energy of the cluster in order to retain a zero mass, py = p; + p; and
Ey = |pi|. However, we see that now we have maintained Lorentz invariance at the cost

of violating energy conservation. The final choice, the E0-scheme chooses instead to break

momentum conservation, Ey, = E; + E; with py, = Ex(9; + §;)/|ps + 05]-

Experimental results are commonly presented in all these schemes and we must be sure

to match our theoretical procedure with the hadron level clustering.
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2.3 Jets and Partons

In the preceeding section we have argued that, to first approximation, we can identify the
partons of a matrix element calculation with the observed jets of an experiment, provided
that we also match the jet definitions used in both analyses. This means that to compute
an n-jet cross-section at lowest order we must calculate all the tree-level Feynman diagrams
involving n partons in the final state and then integrate over the region of phase space which
has y;; > Yeus for all pairs of paftons ¢ and j. We now wish to examine how this situation

alters in higher orders of perturbation theory.

2.3.1 Jets at Next-to-Leading Order

It is instructive to consider the case of 2-jet production (in e*e™ annihilation) as a simple

example to illustrate the generic features of jet calculations beyond leading order. The tree-

o
O
D
220999992
o)

oD

0l
[
0j

Figure 2.2: The lowest order (left) and next-to-leading order (right) Feynman diagrams for
the production of 2 partons in ete™ annihilation. The momenta of the particles are incoming
and outgoing for initial and final state particles respectively, whilst the arrows on the electron
and quark lines represent the direction of fermion flow.

level and 1-loop diagrams for the production of 2 partons — a quark-antiquark pair — via a
virtual photon are shown in Figure 2.2, where for simplicity we have taken the intermediate
particle as a virtual photon (whereas in fact a Z%-boson also couples to both electrons and
quarks). The loop diagram is simple to evaluate, yet we find that the result is not finite but

contains infrared divergences. The solution to this problem lies in the transition from partons
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to jets. We know that if two partons have a small invariant mass then (in the JADE scheme)
they will cluster to form a jet, with one of them appearing to be unresolved. So our 2-jet NLO
result should also contain an infrared singular piece representing a 3 parton configuration
with one unresolved particle. The two diagrams for 3 parton production, ete™ — ¢gg are
shown in Figure 2.3 and are easily evaluated to give the kinematic dependence,
ME g~ (224 232 4 2t}
Sgg  Sqg Sq95q9

in terms of the Mandelstam invariants s;; = (p; + pj)Q. From this explicit form, we can see

e q e q
% g g

(\.QGG

e g ot 3

Figure 2.3: The two lowest order Feynman diagrams for three parton production, ete™ —
qGg. The gluon simply couples to the quark-antiquark line either side of the photon.

that there is clearly a divergence in the limit where one parton is unresolved, say sqy — 0.

In fact, there are two types of unresolved infrared singularity:

e cither s,y — 0 or sz — 0, in which case the gluon is collinear with the quark (anti-

quark);

e or, both of these invariants vanish simultaneously and the gluon is soft, B, ~ 0.

If we can find a suitable way of isolating the singularities in the 2 parton (virtual) and 3
parton (real emission) contributions, we will find that the divergences exactly cancel, yielding
a finite result. This is a specific case of the cancellation theorems of Bloch and Nordsieck [12]
and Kinoshita, Lee and Nauenberg [13], which guarantee that this situation is extended to

all orders in perturbation theory and for any number of final state particles.
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2.4 Dimensional Regularization

We first consider how we may isolate the singularities in the matrix elements. The crucial
point to note is that in the virtual (loop) terms, the divergences are only present because

we are working in exactly four dimensions.

Dimensional regularization [14] is the name given to any scheme used to regulate diver-
gences by continuing away from 4 and into D dimensions. This should be an intermediate
device only and at the end of our calculation we will want to take the limit D — 4. As op-
posed to alternative regularization prescriptions (such as imbuing particles with a fictitious

mass), this procedure respects unitarity and preserves gauge invariance.

Originally this idea was proposed in order to handle the ultraviolet behaviour of loop
integrals, with the loop momenta being continued to D < 4 dimensions. In fact by simply

continuing to D = 4 — 2¢ dimensions without the constraint of € > 0 we can also regulate

infrared divergences.

However, in fact we may choose a number of schemes since, in addition to continuing the
loop momenta into D dimensions, we may specify the dimensionality of both the external
particle momenta and the polarizations (external and internal). The original method of
t’Hooft and Veltman was to leave all quantities in four dimensions apart from the internal

gluon polarizations which were taken as D dimensional.

In practice other choices may be more useful. Although the quark helicities are insen-
sitive to the choice of dimensions, the dimensionality can have important consequences for
the gluon polarization. For supersymmetric calculations it is imperative to use the same
dimension for the polarizations of both quarks and gluons, in order to preserve the Ward
identities of the theory. So-called ‘dimensional reduction’ was introduced in order to fulfil
this condition. Four common schemes are illustrated in Figure 2.4. In this thesis, we shall

most often use conventional dimensional regularization, the popular variant of t’Hooft and

Veltman’s original scheme.
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The practical difference between the schemes rests in distinguishing the origin of metric
tensors g*” that appear in one-loop amplitudes. Such tensors arising directly from loop
integrals with two or more tensor numerators are D dimensional, whilst those resulting from

spin indices in the Feynman rules depend upon the corresponding polarization dimensions.
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[ “\
s do 3
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Conventional dimensional regularization t’Hooft-Veltman regularization

1227 c4 oy c4
SN SO VT
"\

Q Q
& & o\
e 40 3 e 40 3
3 3 3 3
[ (22} \» [}
Original dimensional reduction Modern dimensional reduction

Figure 2.4: A diagrammatic representation of four common variants of dimensional regu-
larization. The number of dimensions used for the polarization of gluons is shown within
the gluon loop (internal gluons) and adjacent to the emitted gluon (external gluons). The
circled number shows the dimensionality of the momenta of external particles. Internal
particle momenta are continued into D dimensions, whilst all quark polarizations are in 4
dimensions. ‘

2.5 Colour Structure of QCD Amplitudes

So far we have demonstrated the types of infrared divergences that may occur in next-to-
leading order jet calculations and the means by which they may be exposed. In this section

we will discuss a decomposition of the matrix elements — according to their colour factors
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— which makes the singularities simple to isolate. To this end, we make a division of the
diagrams involved in a given QCD process into a piece representing the colour structure and a
purely kinematical factor. Having done this, it is possible to group together diagrams which
have the same colour structure, which has several advantages. The remaining colourless
subamplitudes represent, for example, colour ordered gluon emission off a quark line. Such

amplitudes have nice factorization properties when two partons become collinear or a gluon

soft.

As an example, consider the matrix elements for the tree-level process ¢g — gg. Labelling
the colours of the quark (antiquark) by ¢ (j) and gluons a, b, the relevant diagrams and their
associated colour factors are shown in Figure 2.5. The total amplitude M is simply the sum

of these three diagrams.

CC a
rrrrrrrna (‘(T(T(Tr‘b C(‘(
(151 (‘;&
COOCCTEe b COOCEETD g ‘?;%
b
] j i
(T*T°); M, (T°T%); My i (T°)*° M3

Figure 2.5: The tree-level diagrams for the process ¢ — gg, each divided into a colour factor
multiplying a purely kinematical piece M;, 1 =1, 2 or 3.

By using the identity [T, T%] = if®°T° we see that the diagram involving the triple-
gluon vertex can be written as a combination of terms with the colour structure of the first

two. In this way we find,
M = (TT®);;(My + Ms) + (T°T*)i;(Mz — Ms). (2.1)

In fact, this colour structure is true for any process where these are the only coloured
particles. We may add initial or final state colour neutral particles, or switch these partons

between the initial and final states, whilst still retaining the same decomposition. If we do
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so, the kinematical pieces M; simply contain more diagrams corresponding to the addition

of the colourless particle(s) in all possible positions in Figure 2.5.

2.5.1 Colour Algebra

Héving made a decomposition of an amplitude into kinematical pieces multiplying factors
of generators and structure constants, we wish to construct squared matrix elements. By
this we mean either forming the product MM (all that is necessary at tree-level) or an
interference M, M]. In this case we need a set of rules for evaluating products of colour
factors. As well as employing the identities for the eigenvalues of the Casimirs of the gauge
group, we shall also need the Fierz identity. This identity also provides a useful pictorial
rule which can often be quickly applied in simple cases or as a cross-check, eliminating the

need to resort to tedious algebra.

2.5.2 Casimir Colour Charges

Fundamental properties of any gauge group are the eigenvalues of the Casimir operators. At
this point, we shall simply introduce the eigenvalue equations and defer a discussion of their

experimental determination and relevance until section 2.8.

The three quadratic Casimirs of SU(N) are given in Figure 2.6, together with the colour
diagrams by which they can be represented. These diagrams lead to the interpretation of
the Casimir factors as colour charges, by analogy with the electric charge. For the gauge

group SU(N) we find the following values for the colour factors C4 and CF,

N? -1
:N = .
CA ) CF IN

whilst Ty is simply a normalization factor which we choose to be T =1 /2.
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Figure 2.6: The definitions of the Casimir factors (colour charges) in the gauge group SU(N).
Repeated indices are summed over the N2 — 1 (N) values of a, ¢, d (i, j, k) of the adjoint
(fundamental) representation.

2.5.3 The Fierz Identity

Let us consider an element of SU(N) in the adjoint representation,
Mz] - a(sz] + Zﬂa ij) (22)

where a runs over the N generators of SU(N). Since the generators are traceless, we may
determine o by taking the trace of this equation, yielding trM = aN. Similarly, we fix the
coefficients 3% by first multiplying by 7° and then taking the trace,

tr(MT") = Zﬁ“tr (T°T") = Zﬁ“T 8% = T,

where we have used the Casimir definitions of section 2.5.2 to introduce T. So the decom-

position in equation 2.2 above becomes,

1 1 .
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Alternatively, writing out the contracted indices explicitly we obtain,

1

Mi]‘ = NMkk(Sij + — Z -AlllchlT(;"

Since this equality is true for arbitrary M;; we now choose to write it in the form,
1
My | 60k — N(Skléij Z Ty
_ so that it is clear that we must have,
a a ]' ¢
a

This equality is known as the Fierz identity and can be used to express the colour flow
along a gluon between two quark lines (T3T}) as simpler quark colour flows (8, ...). This

is illustrated in Figure 2.7.
i | ‘ [ | i |
%rfrrrrr/+ o= Tg \\(/ - IN + +
i k i '

" Figure 2.7: The pictorial version of the Fierz identity of equation 2.3.

2.5.4 Factorization of Matrix Elements

Returning to our example of two gluon production from a quark-antiquark pair, we now wish
to illustrate the singular behaviour of the matrix elements. To do so, it is easy to use the

Fierz identity described above to calculate the squared matrix elements from equation 2.1,

CrN?
M= ZE (|M1+M3[ + My — M +0< )) (2.4)

Here we have written only the leading colour contribution and dropped the sub-leading

term of order 1/N2. Since each of the two terms in equation 2.4 represents a colourless
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subamplitude where the gluons a and b are emitted in an ordered way from the quarks, it is
often convenient to write these as,

2 2

M+ M =[8(@Qia, Q) M- Mo =[S(@Qi5,0;Q)|

This notation then easily extends to multiple gluon production, where the ordered sub-
amplitudes have particularly simple singular limits. For example, in the limit where gluon
u is soft, we have the QED-like factorisation into an eikonal factor multiplied by the colour

ordered amplitude with gluon u removed, but the ordering of the hard gluons preserved. So

for an amplitude involving gluons 1...n,

2 _
‘S(Q; 1,...,a,u,b,...,n; Q)l — Suub(Sabs Saus Sub) IS(Q; 1,...,a,b,...,m; Q)|2, (2.5)
with the eikonal factor given by,
430,()
Sau abs Sauy Sub) — . 2.6
b(S by Sau; S b) S St ( )

Similarly, in the limit where two particles become collinear, the sub-amplitudes factorise. For
example, if gluons a and b become collinear and form gluon ¢, then only colour connected
gluons give a singular contribution. We shall give a full discussion of colour connectedness
in chapter 7, but for now it suffices to observe that in our simple example of |S (Q;a,b; _Q_)|2,
gluon a is colour connected to @ and gluon b because the contributing diagrams contain
propagators of sg, and s4, whilst @ is not connected to b. For example,

2

(@1, b,.._,n;@)’2 — Pyyosg(2, 5at) ‘S(Q;l,...,c,...,n;@)| (2.7)

For particles that are not colour connected, there is no singular contribution as ses — 0,
and, when integrated over the small region of phase space where the collinear approximation
is valid, give a negligible contribution to the cross section. Here z is the fraction of the
momentum carried by one of the gluons and, after integrating over the azimuthal angle of
the plane containing the collinear particles with respect to the rest of the hard process, the

collinear splitting function Py, is given by,

2
Pygrg(2,5) = gPyg—w(Z)- (2.8)
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The function Pyy4(z) is one of the Altarelli- Parisi splitting kernels [15] (with colour factors

removed), which are given by,

Pyoo(s) = <1+z2—e(1—z)2>;

1—2

Pt = (EHEE),

Prle) = (1 + zz4(1+—(1z)— z)“) ’

with the symmetry relation, Py,_4(2) = Pyg—q(1 — 2). This factorization of the matrix ele-

(2.9)

ments is universal and process independent and occurs when any single particle is unresolved.

2.6 Cancellation of Singularities

By using the technique of dimensional regularization as discussed in a section 2.4, infrared
divergences appear as poles in e. For the calculation of an n-jet cross-section at next-
to-leading order, the phase space integration of the n + 1 parton terms leads to 1 /€ poles
corresponding to collinear singularities and double 1/¢? divergences from soft gluon emission.
These must be cancelled against the poles that are extracted from the D-dimensional one-

loop integrations in the virtual contribution.

The differences between the most widely-used methods for cancellation of infrared diver-
gences are best illustrated by a simple one-dimensional example. The original formulation
of Kunszt and Soper [16] considers the toy integral,

7= lim{ 01 9T e M(z) - lM(O)}. (2.10)

e—0 €T €

In this equation, M(z) represents the n + 1 parton matrix elements, which are integrated
over the extra phase space relative to the n-parton contribution M(0). z is an invariant
controlling the collapsing of the n+ 1 parton configuration into an n jet state: as z — 0 two
partons become collinear or a single gluon soft. The explicit 1/e singularity in the virtual

term is typical of that found in dimensional regularization, as is the regularizing (as z — 0)
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z¢ term under the integral. Note that in this example we have neglected any additional

weight corresponding to the n jet observable being measured.

We now consider in turn how each of the common methods applies to our test integral

e Subtraction.

This is the method originally used by Ellis, Ross and Terrano (ERT) to calculate
NLO corrections to 3-jet like quantities in e*e™ annihilation [17]. The technique is to
explicitly add and subtract a divergent term such that the new n + 1 parton integral

~ is manifestly finite,

7 = limf Oliifxf(M(x)—M(O))JrM(O) Oli—xaf—%M(O)}
_ /:%‘f(/\/t(x)-M(O)). (2.11)

Here we have used the dimensional regularization convention of 0° — 0 as ¢ — 0 in

evaluating the integral [j % z¢ = [z]} /e = 1/e. Although this procedure appears to

be straightforward, the difficulty lies in extracting the singularity from the analogue of
! dz ¢ Tndeed, this integration must be carried out separately for every process under
0 ¢

consideration. However, in contrast to some of the alternative techniques, the subtrac-

tion method introduces only one extra theoretical cutoff’ and requires approximation

of neither the matrix elements nor the phase-space.

Recently various implementations of the subtraction method have been introduced in

order to describe general processes in a more universal manner (18, 19].

e Slicing.
The severe process-dependence of the original cancellation procedure developed by

ERT led to the proposal of the universal phase-space slicing method [20, 21]. The

price to be paid for this extra portability is the introduction of an artificial theoretical

In practice, we cannot integrate numerically from the lower limit of zero and instead we replace this
with a small cut-off parameter 4.



CHAPTER 2. HADRONS, PARTONS AND NEXT-TO-LEADING ORDER 35

parameter(d) which controls the approximations made in this approach. In terms of
our example integral, the goal is to choose § < 1 such that M(z) ~ M(0) is a good
approximation for z < ¢. Then we can isolate the singularity of the integral by making

a division into two regions,

T ~ li_gré{/éli—xfo(x)+M(0)/06£i—xxﬁ—%M(O)}
N li_r)%{/;i—xxej\/l(x)JrM(O)g—%M(O)}
N /61‘1_5”/\4(3;) 1+ M(0) log . (212)

To arrive at the final line we employ the expansion §¢ = e€!8% = 1 4 elogd + .. ..
The universal approximations of the phase-space and matrix elements in soft and
collinear limits lend this method its process-independence. The arbitrary parameter
6 should clearly not affect the final result, but the implicit cancellation of (possibly
large) logarithms of ¢ in 2.12 can lead to numerical instabilities. Although we would
like to minimize this problem by taking § as large as possible, we are constrained by

the goodness of approximation condition § < 1.

e Hybrid subtraction.

The final method draws elements from each of the above techniques, where again the
driving inspiration is the universality of the approach. Instead of the single scale(d)
used so far, we introduce two scales, § and A. In the region 0 < z < J, we adopt the
slicing procedure, while in the range 6 < z < A we add and subtract an analytically

integrable set of universal terms, F(z), to eq. (2.12),

T~ | 1 ‘i—g”/w(x) + M(0) log(s) ~ | : %E(m) + * d%E(a:), (2.13)
which on rearrangement yields, .
I~ /51 515 (M(z) — E(z)0(A — ) + /JA Ci—xE(:c) + M(0) log(9). (2.14)

Because we explicitly add and subtract the same quantity, there can be no dependence

on A which can therefore be taken to be large. However, the slicing approximation
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requires § — 0. For this approach to be useful, two conditions must be satisfied.
First, the second term in eq. (2.14) must be evaluated analytically without making
any approximation in the phase space and should produce a term —AM(0) log(d) from
the lower boundary that explicitly cancels the third (slicing) term. This allows the
limit 6 — 0 to be taken (inasmuch as that can be achieved numerically). Second,
M(z) ~ E(z) as z — 0 and more usefully E(z) is smooth and as close to M(z) as
possible over the whole range of z < A, so that the first term in eq. (2.14) can be safely
evaluated numerically. This is the technique that we shall adopt later in the thesis,

when we return to this discussion in the context of the process ete™ — 4 jets.

2.7 Motivation for NLO and Beyond

Having discussed the various techniques that we may employ to calculate next-to-leading
order cross-sections (and related observables) we now turn to the benefits that performing
such a task may bring. We also consider the further advantages of investigating even higher

order terms in the perturbative expansion.

Much of our understanding of strong interaction physics can be gleaned from comparison
of experimental data with a lowest order perturbative calculation. Qualitatively, this can be
understood by considering a simple perturbative expansion for an observable R in powers of

Qg,

R(as(Q)) = Aas(Q) + Bag(Q) + ...
Typically we might choose the physical scale @ ~ Mz at LEP, where we have ag ~ 0.1.
With the naive supposition of roughly equal coefficents A, B, ..., a simple geometrical series
sum shows that the true answer differs from the lowest order calculation by a mere 10%. Of
course, in reality there is no reason to suggest that the coefficients truly behave in this way.
Even if this were so, there are a number of reasons why we may still be interested in a higher

order prediction:

e Although the shape of a distribution may be successfully described, the normalization
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is uncertain. We are free to choose the scale for g in any fashion (see chapter 1),
typically so as to best fit the experimental data. Apart from the ‘physical scale’

argument, any other choice relies on a NLO calculation.

e In QCD, higher orders include more quantum mechanical modelling of soft gluon ra-
diation within the event. Therefore they give a more accurate picture of such qualities

as jet shape and structure.

e Increased theoretical precision means that we can match experimental errors and thus
together improve our understanding of and trust in QCD as the correct theory for the
strong interaction. For instance, measurement of the colour factors (group weights)

comfirms that the relevant symmetry group is SU(3) (see section 2.8).

e We need a good knowledge of the expectations of perturbative QCD, not only to
search for new physics beyond the SM, but also to observe new non-perturbative effects.
Expected features such as power corrections, which are invisible in perturbation theory,
may be hard to distinguish from genuine possible higher-order contributions. A better

knowledge of the perturbative expansion can only help to solve this ambiguity.

In practice, computations beyond NLO are unavailable for many observables. For processes
involving more than 5 partons or 4 partons and a vector boson, even the NLO contribution is
currently unknown. In this thesis we shall predominantly concentrate on the NLO corrections
to processes involving 4 partons and a vector boson — in particular as applied to ete™ — 4 jets
— with some attention paid to extending the methods that have been developed at NLO to
next-to-next-to-leading order (NNLO).

2.8 Determination of the QCD Colour Factors

A measurement of the colour factors of QCD truly tests the dynamics of the strong inter-
action. As the eigenvalues of the Casimir operators of the underlying gauge group of the

theory, they can test the SU(3) symmetry proposed for QCD. We may thus distinguish
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between different gauge groups and we are sensitive to new particles that may be present in

more exotic theories.

Four-jet observables are particularly well suited to a study of the colour factors. Although
both 2- and 3-jet studies have been made (see for example Ref. [22]), the essential non-Abelian
nature of QCD only manifests itself at tree-level for the first time when considering 4 jet
production. Despite the greater fraction of 2- and 3-jet events, here the triple gluon vertex
does not appear at all in the theoretical calculation, or only appears at next-to-leading order
and is thus suppressed by an extra factor of ag. In addition we also become sensitive to
particles such as light gluinos (supersymmetric fermionic partners of the gluons, with a mass
~ 1 GeV), favoured by some theorists (for a discussion of some of the implications of such
particles see Ref. [23]). The tree-level diagrams representing 4 jet production with gluinos
simply mimic extra quark flavours — with the gluinos coupling to a gluon emitted from a

quark-antiquark pair — and correspond to the shift np — ng + 3.

In this application, it is convenient to include a factor of Cg for each occurence of the
strong coupling as in the expression for the 4-jet observable being studied. We can then
arrange the remainder of the expression as a collection of kinematic factors multiplying ratios

of the group Casimirs. Thus at leading order we have,

1 gt0 _<asCF)2< Ca Tn
Uoda et =\ o A(O)+CF B(0O) +'Cp

where op is the 2-jet cross-section and A, B and C' are the kinematic weights from the

(O)) do, (2.15)

Feynman diagrams for the two contributing processes ete™ — ¢dgg and e*e™ — qqQQ. O
represents any 4-jet observable, typically chosen so as to maximize differences between A, B
and C. Having chosen a selection of suitable observables, it is simple to fit the experimental
data to the theoretical prediction in the form (2.15) and thus extract the colour ratios Cs/Cp
and Tr/Cr. A fit of this fashion is performed in [24], yielding the result,

Ca

Tr
— =2.114+0.32 — =0.404£0.17,
CF ’ CF

to be compared with the SU(3) prediction of C4/Cr = 9/4 and Tr/Crp = 3/8. This

determination and the predicted values of the ratios for a selection of symmetry groups are

shown in Figure 2.8.



CHAPTER 2. HADRONS, PARTONS AND NEXT-TO-LEADING ORDER 39

I L L
3 F ‘ Abelian gluon model, U(1)3 B
w ;
@) ]
\u — 68% C.L.
'._
e 95% C.L
2 r LTHA,_SO(z) 4
"._SO(N)
. 62 ]
1L aum v SO(3), e QcD = Su(3)
T et e/ su@.sp2) 1
so() i’ -
SO(5), F4 -——"é'a
A N
€6
' SU(4)
0 ~._,; .......................................
H 1 i !
0 1
CA/ Cr

Figure 2.8: A determination of the QCD colour factors by the OPAL collaboration, together
with the actual values corresponding to some common gauge groups. The figure is taken

from reference [24].
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It can be seen that this measurement rules out some of the (more exotic) possible gauge
groups, but clearly SU(3) is not singled out by this analysis alone. By performing a next-
to-leading order analysis of the same data, the confidence-level contours corresponding to

those of Figure 2.8 would be dramatically shrunk [25].

2.9 Summary

In this chapter we have seen how the concept of local parton-hadron duality (LPHD) may

be employed to make hadron level predictions from parton level theoretical calculations.

We have demonstrated that to make sense of the definition of a jet beyond the lowest order
in perturbation theory, we must combine matrix elements from a number of different sources
in order to render the cross-section finite. At next-to-leading order, this involves calculating
the real and virtual matrix elements (sections 2.3 and 2.5) in a suitable renormalization
scheme (section 2.4) and then combining them suitably during phase-space integration (sec-
tion 2.6). A next-to-leading order prediction can then be a very useful tool for improving

our understanding of QCD (sections 2.7 and 2.8).

In the following chapters, we shall demonstrate how all these techniques may be applied

to the calculation of the process ete™ — 4 jets at next-to-leading order.



Chapter 3

One-Loop Integrals

3.1 Introduction

As has been outlined in previous chapters, the calculation of higher orders in perturbation
theory is a necessary ingredient in our search for a more complete description of the physical
world. At next-to-leading order, one of the hurdles which we must overcome is the evaluation
of one-loop integrals which arise directly from a Feynman diagram approach. The matrix
elements for a given process at one-loop order will in general contain many of these integrals,

in different configurations corresponding to the diagrams involved.

Often these integrals need to be performed in an arbitrary dimension in order to isolate
any infrared and ultraviolet divergences that may be present [14]. The basic one-loop tensor
integral in D dimensions for n external particles scattering with outgoing momenta p;, n

internal propagators with masses M; and m loop momenta in the numerator can be written,

D {3 Um
e g [ 2 .t

i (@ = M) (0 + 1) — M) (€ + Gm)? — M)’

where m = 1,...,n and,
7
g =1, g =g =0. (3.1)
=1

This is represented diagrammatically in Fig. 3.1.

41
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Figure 3.1: The generic n-point one-loop integral. The arrows indicate the direction of the
flow of momentum, which is conserved at each vertex on using the relations (3.1). The mass
of each internal propagator is shown in parentheses.

The scalar integral is denoted IP[1], with the tensor integrals I [¢#t ... ¢#m] arising from
both traces over spin lines involving vertex factors v and propagators # in the Feynman
rules. In the standard approach to such integrals [26] one utilises the fact that the tensor
structure must be carried by the external momenta or the metric tensor g*”. For example,
the simplest non-trivial tensor integral in D dimensions has a single loop momentum £*. It

reads,
n—1
2[4 = > el (3.2)

j=1
using momentum conservation to eliminate one of the momenta. It is the calculation of
the formfactors ¢; that embodies the difficulty of these integrals. The more traditional
methods, together with subsequent improvements and innovations will be outlined briefly
in section 3.2. It will be argued there that all these methods suffer from the presence of
‘fake’ singularities. That is, the integrals will appear to have poles in certain kinematical
variables, whose residues are in fact zero. Apart from reducing the chances of numerical
instability, elimination of these apparent singularities provides a natural and compact method

of evaluating the tensor integrals and reduces the size of the final matrix element expressions.
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Although the derived functions will ultimately be used for the specific calulation of the
process v* — 4 jets, this chapter addresses the question of how such finite functions might
be generated for arbitrary processes. Closely following the notation and approach of Bern,
Kosower and Dixon relationships will be derived between integrals with polynomials of Feyn-
man parameters in the numerators as well as between integrals with fewer parameters but
in higher dimensions. The basic definitions and notations are introduced in section 3.3 and
the recursive relations for integrals with up to four Feynman parameters in the numerator
are presented along with the dimension shifting relation of [27, 28]. These expressions are
valid for arbitrary internal and external masses and for general kinematics. However, mak-
ing sense of these relations with respect to the singular limit depends on the actual integral
itself; i.e. on n and the specific values of the kinematic variables. The remaining sections
describe a series of explicit realisations of the three, four and five point integrals relevant for
the one-loop corrections for the decay of a virtual gauge boson into four massless partons,

which will be the topic of chapter 4.

3.2 Tensor Integral Reduction

Recall the formfactor decomposition of the simplest tensor integral (3.2),
121+ = Z c;pY. (3.3)

In the original form of Passarino-Veltman reduction, the formfactors c; are determined by
multiplying both sides by all possible momenta p;, and rewriting £.p; as a difference of

propagator factors. In other words,

Lpi= [((€ +qi)? = ME) = ((C+ qimn)® — MP) + (M — M + g — %2)] ;

l\DIi—'

which thus reduces the tensor integral to a sum of scalar integrals,

[ (i+1)[1] P )[ 1]+ (M12+1 - Mf + qi2_1 - qiz)Ir?[l]] .

n—1 n—1

l\.’)l»——l

Z Cip;-Pi =
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Here, I, Dby )[1] represents the “pinched” loop integral with the (n — 1) propagators remaining

after the sth propagator factor has cancelled.

The formfactors are then obtained by algebraically solving the system of (n—1) equations.

This introduces the (n — 1) x (n — 1) Gram determinant,
A, = det(2p; - p;),

(where 7 and j run over the (n — 1) independent momenta), into the denominator. Each
formfactor is a sum over the scalar integrals present in the problem multiplied by a kinematic
coefficient that may be singular at the boundary of phase space where the Gram determinant

vanishes. Typically,
OIS ly

¢j ~ Zﬁmnl

'fl n

(3.4)

where the sum runs over the m possible pmchmgs and where o and f3,, are coeflicients
which are functions of the kinematic variables. Since, in many cases, the formfactors ¢; are

actually finite in the limit A, — 0, there are large cancellations and there may be problems

of numerical stability.

The basic approach has been modified in a variety of ways, including the introduction of
a system of (n — 1) reciprocal vectors v}’ (and the associated second rank tensor w*” playing

the role of g"*) to carry the tensor structure [29, 30, 31] where,

L __  P1Pi—1MUPi+1---Pn
v, =€ Ep

so that,

v;.pj = 0ij.
This simplifies the identification of the formfactor coefficients, but does not eliminate the
Gram determinants. In fact, in both approaches, the number of Gram determinants gener-

ated is equal to the number of loop momenta in the numerator of the original integral.

A different approach has been suggested by Davydychev [32], who has identified the
formfactors directly as loop integrals in differing numbers of dimensions and with the loop

propagator factors raised to different powers. Tarasov [33] has obtained recursion relations for
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one-loop integrals of this type, so that a complete reduction is possible. However, in relating
the formfactor loop integrals to ordinary scalar loop integrals in 4 (or close to 4) dimensions,

the Gram determinant once again appears in the denominator as in equation (3.4).

Finally, Bern, Kosower and Dixon have used the Feynman parameter space formulation
for loop integrals to derive explicit results for the scalar integrals including the scalar pen-
tagon [27, 28]. The formfactors of the momentum space decomposition are directly related
to Feynman parameter integrals with one or more Feynman parameters in the numerator.

One can see this by introducing the auxiliary momentum P*,
n—1
PH = Z Ti14) (3.5)
i=1

so that after integrating out the loop momentum, the tensor integral for a single loop mo-
mentum in the numerator can be expressed in terms of the external momenta ¢/ (see also
Appendix A),
n—1
0] = I[P = = 3 lmigalel
=1

Here, IP[x;] represents the scalar integral with a single factor of z; in the numerator. By
comparing with equation (3.2), we see that,
n
¢ =— 3 1Dz
i=j+1
Differentiating with respect to the external kinematic variables, yields relations between
integrals with polynomials of Feynman parameters in the numerator and the usual scalar
integrals. Once again, the Gram determinant appears in the denominator, and the final result
for the formfactor ¢; combines n-point integrals with the pinched (n — 1)-point integrals as

in equation (3.4).

The presence of the Gram determinant is, in some ways, no great surprise. In the
limit A, — 0, the (n — 1) momenta no longer span an (n — 1)-dimensional space, the
(n — 1) equations of the Passarino-Veltman approach are no longer independent and the
decomposition is invalid. Stuart [34] has made modifications to the basic approach to account

for this, the main observation being that for A, = 0, the scalar n-point integral can be written
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as a sum of scalar (n — 1)-point integrals. As a consequence, there are large cancellations
between scalar integrals with differing numbers of external legs in the kinematic limit of
vanishing Gram determinants. For loop corrections to processes such as quarkonium decay,
where the two heavy quarks are considered to travel collinearly and share the quarkonium
momentum, one can eliminate the Gram determinant singularities completely using the

method of Stuart [34].

However, for more general scattering processes where the collinear limit may be ap-
proached, but is not exact, numerical problems as A,, — 0 may remain. Furthermore, we
might imagine a method which clearly retains the simple structure of the A, = 0 case as

this limit is smoothly approached.

Therefore, in this chapter the scalar integrals will be combined into functions that are

well behaved in the A, — 0 limit. The formfactors will be written as,
1 n
n m=1

where “finite” represents terms that are manifestly well behaved as A, — 0, and the group-
ing (---) vanishes with A,. Such groupings combine a variety of dilogarithms, logarithms
and constants together in a non-trivial way. In fact, for higher rank tensor integrals, with
higher powers of Gram determinants in the denominator, it becomes even more desirable
to organise the scalar integrals in this way. It is possible to construct these well behaved
groupings by brute force, making a Taylor expansion of the scalar integrals in the appro-
priate limit. However, the functions presented in this chapter are generated systematically
and naturally arise by considering the scalar integral in D + 2 or higher dimensions! and/or
by differentiating the scalar integrals with respect to the external kinematic variables. The
approach taken here is therefore to re-express the formfactor coefficients in terms of functions
that are finite as A,, — 0, explicitly cancelling off factors of the determinant where possi-
ble. The one-loop matrix elements for physical processes will then depend on these finite

combinations, which can themselves be expanded as a Taylor series to obtain the required

17t will not prove necessary to explicitly compute the scalar integrals in higher dimensions, since they
will be obtained recursively from the known scalar integrals in D = 4 — 2¢ dimensions.
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numerical precision. An additional improvement is that the physical size of the resulting
expression is significantly reduced because the scalar integrals have been combined to form

new, more natural functions.

Of course, one-loop amplitudes may also contain spurious singularities other than those
directly arising from Gram determinants. Such singularities may occur as one or more of
the external legs becomes lightlike or as two external momenta become collinear. However,
since the new finite functions are obtained by differentiating the scalar integrals, they cannot
contain additional kinematic singularities beyond those already present in the scalar integral.
This helps to ensure that only genuine poles - those allowed at tree level - are explicitly
present in the one-loop matrix elements. Once again, this helps to reduce the size of the

expressions for the amplitudes.

3.3 General Notation

The basic integral is the rescaled one-loop integral in D dimensions?,

n D/2—n

i,j=1
Here, the Feynman parameters z; have been introduced and the loop momentum has been
integrated out (see Appendix A). The symmetric matrix S;; contains all the process specific

kinematics and reads,

(M?+ M} — (gi-1 — ¢;-1)°)

ij =
2
It is now beneficial to perform the projective transformation of t’Hooft and Veltman [35],
o -
T = 00 = > u =1,
=1 ilj i=1

and further to introduce the constant matrix p;; such that,

S — Pij
g = -
OG0y

2Note the definition of I here differs from that of [27, 28] by a factor of (—1)™.
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The parameters «; can be related to the kinematic variables present in the problem, while

pi; is considered independent of the ;. Provided that all ; are real and positive the scalar

integral is now given by,

n—D D/2—n
1 n n n
D[] = (-1)"T(n~ D/2)/0 d"u;0(1 = uj) (H aj) (Z %’uj) [Z Pz‘juiuj} :
i j=1 j=1 ij=1
(3.7)
In the approach which we shall introduce, the most useful quantity will be the rescaled

integral I, which is related to the basic integral I by,
10 = (]‘[ aj) ib. (3.8)
j=1

Crucially, in I the only dependence on the parameters o; lies in the factor Doje1 Q.

3.3.1  Basic Results

From the above equations (3.7) and (3.8) it is clear that differentiating with respect to «;

brings down a factor of the rescaled Feynman parameter a; under the integral,
1 o2

(’I’L — D) Bai ’

where the notation is obvious. With repeated differentiation, it is possible to generate all

(3.9)

1Pla] =

integrals with Feynman parameters in the numerator.

The second step of Bern, Kosower and Dixon’s work [27, 28] is to relate the n-point

integral with one Feynman parameter in the numerator to a collection of scalar n and (n—1)-

point integrals,

A ‘ 1 " ;Yz’s'm 3D (m) ’?i“D
1Plas) = - — i | Lot (1] + -1 [1], 3.10
Plod = g 3 (527 - ) P01+ 2200 (310

7 m=1

where A, 4; and 7;; are defined by?,

R n 2 n n n
A, = (H ai) An =) Mooy =D 05% = D%
1=1 j=1 j=1

=1

3Note that the definition of 4 coincides with -y of [27, 28].
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and,
N, = %(det 77)ﬁ

In later sections, explicit examples using this notation will be worked through. Equa-
tion (3.10) is the analogue of the formfactor reduction in momentum space of [26] and
is easily obtained by integration by parts. The summation over m represents all possible
pinchings of the n-point graph to form (n—1)-point integrals. As expected from other reduc-
tion methods, the Gram determinant appears in the denominator. However, equations (3.9)
and (3.10) are equivalent and since, with a few notable exceptions, the scalar integrals have
a Taylor expansion around A, = 0, the act of differentiation will not usually introduce a
singular behaviour. Therefore, we might expect that the n-point and (n — 1)-point integrals

combine in such a way that the A, — 0 limit is well behaved.

3.3.2 Finite Functions

This conspiracy can best be seen by considering the n-point integral in D + 2 dimensions
[27, 28, 33],

1 821D (1]
(n—1-D/2)(n—D)(n—D— )”” B, Oc;

B (n—ll>—1)2iv <ID[1] + 2Nn Zl%n D(m)[l]) (3.11)

By comparison with (3.10), this earlier equation can now be recast in a more useful form,

((n — D — )51 Z Tim D<m>[1]> (3.12)

) =

if[ai] = ON

It is important to note that there are no Gram determinants visible in this equation. They
have all been collected into the higher dimensional n-point integral. It is clear that if 1P[1]
is finite as A, — 0, then so is I°*2[1] and therefore so is 1?[a;]. This confirms that the
apparent divergence as A, — 0 is fake. Furthermore, I?+?[1] is an excellent candidate for a
finite function - it is well behaved as the Gram determinant vanishes and is easily related to
the Feynman parameter integrals via equation (3.11). Of course, it may still be divergent as

¢ — 0 and the dimensionally regulated poles remain to be isolated.
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By applying the derivative approach, this can easily be extended to two or more Feynman

parameters in the numerator,

- 1 A0 [a,]
Plasa;] = nt
J (TL - D - 1) aOéj
1 AIP+[1] 8% +p 1 LAY | A b1
Ai n 'LI +2 1 _ )
2Nn (7 80éj + Baj n [ ] (’I’L -D- 1) mgl nzm 8a]

Using equation (3.9) and the identity,

% _
8a] - 771];
yields,
- 1
1P[a;a;] = A ((n ~ D — 2)%IP+2(a,] 4 ;12471 Z . | ) : (3.13)

Note that if_(T)[l] does not depend on «,,, and therefore,

Consequently, the m = j term in the summation vanishes.

Differentiation has not produced any new Gram determinants and we can treat these
integrals as new well behaved building blocks, or substitute for them using equation (3.12)

with D replaced by D + 2,

% 1
Plaa;] = I ((n -D-2)(n—-D - 3)%%ID+4[1] 4 2NR%ID+2[1]
m=1 m_l

The scalar integrals for D + 4 dimensions can be obtained recursively from equation (3.11).

Replacing the factors of ; in equations (3.12) and (3.13) and the analogous equations

for three and four Feynman parameters in the numerator, gives,

1 n m
Bl) = g (0= D= DU - X mmoin21), (3.14)
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1
Pl = g (0= D - 20 ]+ oy 4200
. i} )
- Z mmaiamln_({”) [wj]), (3.15)
m=1
1
Plvzjze] = oV <(n — D — 3)IP%[m,] + mijeuc 10 [zh] 4+ i lD (x4
- Z nimaiamlf_(T)[xjka, (3.16)
m=1
1
If[xiiﬁjﬂ?kl‘l] ON. ((’I’L - D - 4)%If+2[$jxkxl] + nijaiajlf”[xkxl] + nikaiakl,?”[xjxl]
+ngcuoql D2 zimy) — > nzmalamlf (m )[xjxkxl}> (3.17)
m=1

Once again, no Gram determinants are apparent and these equations may be solved by
recursive iteration. These are our main results and their use will be made clear with the

explicit examples in the following sections.

Before proceeding to the explicit examples, we note that the full tensor structure in
momentum space is simply obtained from the Feynman parameter integrals by introducing
the auxiliary momentum P* defined in equation (3.5). With an obvious notation (and after

integration of the loop momentum) the tensor integrals can be written,
L] — I[P, |
o] - 2P - %ID“[Q’“’],
1P[ererpr) — 1P[P*PYP?] — ID+2[{g’P}“””]
i) - DPHPPIPY] - PGPy 4 12 {gg1 ),

where {a...b}#1# is the usual Passarino-Veltman notation [26], and indicates a sum over

all possible permutations of Lorentz indices carried by a...b. For example,

{gP}P = g™ PP 4 g"PPH + gPH P,

Throughout the next sections, the simplifying choice M; = 0 is made. Such integrals are

relevant for a wide range of QCD processes involving loops of gluons or massless quarks. In



ot
[\

CHAPTER 3. ONE-LOOP INTEGRALS

particular, all the results presented will be applicable to the process v* — 4 jets at next-to-
leading order, as described in chapter 4. The approach can be straightforwardly extended

to include non-zero internal masses [28].

The strategy is to isolate the ultraviolet and infrared poles from the tensor integrals,
leaving the finite remainder in the form of groups of terms that are well behaved in all of
the kinematic limits. In real calculations where groups of tensor integrals are combined, this
grouping will often cancel as a whole. Alternatively, if the kinematic coefficient allows, the
determinant can be cancelled off for all of the terms in the function. This approach is well
suited to treatment by an algebraic manipulation program, once the raw integrals have been
massaged to isolate the poles in € and to group the terms. As will be shown in the explicit

examples, this is usually straightforward.

3.4 Three Point Integrals

In processes where the internal lines are massless, there are only three types of triangle graph
described by the number of massive external legs. For the one-loop corrections to five parton
scattering [36, 37, 38], only the graphs with one and two massless legs occur. For processes
involving a gauge boson such as Z — 4 partons, graphs with all external legs massive or

off-shell contribute.

First, consider triangle integrals with exiting momenta p;, po and p3 as shown in fig. 3.2
and all internal masses equal to zero, M; = 0. Throughout, p; (and the Feynman parameter
1) are systematically eliminated using momentum conservation so that ps = —(p1 + p2),
p3 = (p1 + p2)® = 512 and,

Pt = —(1 - z1)pY — z3ph.
The full tensor structure with up to three loop momenta in the numerator can therefore be

derived from loop integrals with up to three powers of z; or z3 in the numerator.
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Figure 3.2: The triangle graph and each of the three pinchings obtained by omitting the
internal line associated with a,, for m = 1,2 and 3. In each case, the internal line is shrunk
to a point and the momenta at either end are combined. The relation between the external
momenta and the o; can be seen by cutting the loop; ooy = —1/ p? where p is the momentum
on one side of the cut and ¢, o; are associated with the cut lines.

3.4.1 Three Massive Legs

As a first step, consider the general case, p?, p3, s12 # 0, where the scalar integral in four

dimensions is known to be finite. Here the o; parameters can be determined by,
2 =-1 s=-1 =-1
QP = — 1, Qo3P = — 4, Q1038512 = — 1,

while,

2

Aj -pl — ps — sy + 2pip5 + 2p3s1o + 2p3s1a,

Il

A; = —aof - os — ag + 2000 + 20003 4 20003.

From the definition of the matrix 7, we see that,
-1 1 1

Mij = 1 -1 1, N3 =1
1 1 -1
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The variables v always appear in the following combinations,

pp?+s12-pd) i=1
Y .
o of

s12(Py+pi—s12) 1=2 -
pi(p3+s12—pj) i=3

Scalar Integral

The scalar triangle integral for all external masses non-zero is finite in four dimensions
(39, 27, 30] ,

1—at

L[] = —— <1og(a+a—)1og<1

— a_) + 2Lig(a™) — 2L12(a‘)> , (3.18)

= =
where Liy is the usual dilogarithm function and a* are two roots of a quadratic equation,

ot = s12 + 13 —pi /1Ay
2519 '

Although I5[1] appears to diverge as Ay — 0, this is not the case. As noted by Stuart [34],

in this limit, the triangle graph reduces to a sum of bubble graphs,

. 2 S12 2 (512>
lim [l = ———5——=log | % | + ———=——3log| = |,
Ag—0 3[ ] S12 +pf—p§ g(p%) 812 +p%_p% & p%

and there is a well behaved Taylor series in Aj.

Tensor Integrals in D =4

The tensor integral can be easily written in terms of higher dimensional scalar integrals and

bubble scalar integrals using eqs. (3.14-3.16). For one Feynman parameter in the numerator,

this gives,

B B 13 =4-2¢(m
=] = —(1 = I [1] = 5 Y Memeuamly = 1]

m=1

4For scalar integrals in D = 4 — 2¢ or D = 4 dimensions, we omit the superscript D.



Ut
[y

CHAPTER 3. ONE-LOOP INTEGRALS

Immediately a problem is apparent — the coefficient of the scalar integral in (6 — 2¢) dimen-
sions, v;, is singular as one or more of the external momenta become lightlike. Although the
divergence as the Gram determinant vanishes has been removed, it appears to have been re-
placed by a divergence as the invariants vanish®. However, these divergences cancel between
the triangle and bubble contributions and the tensor integral itself is well behaved and finite

in all kinematic limits and is therefore a better choice for a finite function.

In fact, since the triangle scalar integral is finite in 4 dimensions, it is convenient to
generate the tensor structure directly from derivatives of the scalar integral. However, in
order to use equation (3.10), the two point integral for external momentum p (and internal
masses M; = 0) is also needed. This is given by,
I'(2-D/2)T*DJ2 - 1)

(D -2)
For pinching m = 1,2 or 3 of fig. 3.2 and D = 4 — 2e,

1—¢
i(m) 1] = Cm I(m) 1 cr Cm ,
] (—a) = o (e

where the usual product of Gamma functions obtained in one-loop integrals cr is given by,
o = I?(1—€e)T'(1+¢)
['(1 — 2¢)
Rewriting equation (3.10) for the case D =4, n = 3 and ¢+ = 3 and adding,

% 5 <n3m - 'W") )3 = o,

m=1 A3

()7, (319

L[] =

gives,

ig[ag] =

3
(%I:a + %mzz:l (5’3’7m - 773mA3> % (Igm)[l] - 152)[1]))

= 2 () Z1og (2) 4 2105 (2) ) + 010) (3.20)

3
Alternatively, this could be obtained by differentiation of equation (3.18). By trivial replace-

ment of factors of «, we find,
1 S
I3[zs] = (pl(slg + pi — pf)I3[1] + (p? +p§ — s12) log (—123> — 2p? 1log ( >>(3 21)
A3 D3 Vi

5Problems in this limit are to be expected since even the scalar integral itself is not finite as p? — 0.
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Integrals with higher powers of Feynman parameters can now be génerated by direct differ-
entiation of I3[as),

I3[z;2%] = —W}—m (H a) aiaggi—iig[ag‘].
All of these functions will be finite in the ¢ — 0 limit, and can be considered as building
blocks in constructing the tensor structures for box and pentagon integrals. In fact, because
they are obtained by differentiating a function well behaved as Az — 0, they are also finite
in this limit. Therefore, they tie together the dilogarithms from the triangle integrals and

the logarithms from bubble integrals in an economical and numerically very stable way.

These functions are also directly generated in tensor structures for box graphs (equa-
tions (3.14-3.17) with n = 4) and will naturally cancel in Feynman diagram calculations

involving both triangle and box graphs.

Finite Functions

For general calculations with p? # 0 and p3 # 0, we introduce the notation,
LCo(pl,pz) = 13[1], LC?n—l(pbPQ) = Is[flfg], LC?n(plapQ) = Is[wlx;’{], (3-22)

for Leg 5. The symmetry properties of the triangle function imply that the analogous func-
tions for z; ¢> z3 (or oy ¢ ag) are just obtained by exchanging p; and p,. In dealing

with box graphs, integrals with z, in the numerator will naturally arise. In these cases, we

systematically eliminate them using Y, z; = 1. Explicitly, we find,

1
Lizizs] = ——|203(s12 + p? — p3)ls[zs] + P2 (512 + 15 — P})Is[21]
275
S
—p2p3ls[1] — p3 log (p%) + i+ ph— 312> , (3.23)
2
1 3
Ig[mg] = 2—A3 (327%(512 + pg - p%)ls[l"s] +P‘1II3[1] - (512 - pg) log (;}%) - 21’?) (3-24)
1
Is{ziz5] = 62, (417%(312 + 92 — p2)L3[23] + 6p2(s12 + P5 — Pi)Is[7123]

s )
—3p?p21s|z3) + pylazi] — p3log (ﬁ) +pi — 812); (3.25)
5
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Figure 3.3: The finite functions for the triply massive triangle graph with s = 1, p?=0.2
as a function of Az/AP®™ where AT® = —(s1, — p})®. The functions have been evaluated

using double precision Fortran. The dashed lines show the approximate form for the function
in the limit A3 — 0, retaining only the first term of the Taylor expansion.

1 5192
Iifz;] = 3N, (527%(512 +p3 — p)ls[a3] + 2p1Ts[z3] — (512 — p3) log (ﬁg) - P%)3-26)
By expanding as a series in Aj, these functions can be evaluated near the singularity
with arbitrary precision. For example,

(s2+pi—p3) 2p} o (ilg)
3s12(812 — pi—p3)  3s1a(s12 — P —p3)? i

(3s12 — 3p2 + p3) 812

2 5 lo — -
6s12(s12 — pi — P3) p3

: 2
Alirgo To[z3]

To illustrate this, fig. 3.3 shows the various functions at a specific phase space point,
s12 = 1, p? = 0.2 and letting p3 vary in such a way that Az — 0. This corresponds
to p2 — 0.135. We see that as this limit is approached, the numerical evaluation of the func-
tion using double precision (an intrinsic numerical precision, acc, of roughly 10~'*) becomes
uncertain. For this particular phase space point, functions with a single Gram determinant in

the denominator (Lc;) remain stable until Az/AP* ~ 10~ while those with more powers of
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the Gram determinant break down correspondingly sooner - at Asz/AFa* ~ 107 for Lc, and
Lcs and Az/APa ~ 107 for Ley and Les. In general, numerical problems typically occur
when Az/ATP** ~ (acc)'/"N where N is the number of Gram determinants in the denominator

of the function. Other phase space points yield a similar behaviour.

The unstable points represent a rather small proportion of the allowed phase space.
However, problems may arise using adaptive Monte Carlo methods such as VEGAS [40]
where the phase space is preferentially sampled where the matrix elements are large. Finding
an anomalously high value for the matrix elements in a region of instability would cause the

Monte Carlo integration to focus on that region giving unpredictable results.

Of course, these instabilities could be handled by a brute force increase in numerical
precision. While possible, this has the disadvantage of producing significantly slower code,
and, since in all cases, the approximate form obtained by making a Taylor expansion about
A; = 0 and keeping only the constant term works well where the numerical instabilities begin,
this is not an attractive solution. In fact, the approximation is reliable for Az < 1073AJ~.

Explicit forms for the approximations are collected in Appendix C.

Scalar Integrals in Higher Dimensions

We now turn to the scalar triangle integrals in higher dimensions. They appear in the g,
part of the general Lorentz structure and recursively in the determination of 177472z, ..2).
Unlike the triangle in four dimensions, these integrals are ultraviolet divergent due to the
presence of the various pinchings - bubble integrals. A function that can usefully be used
as a building block of matrix element calculations, must be finite as both Az — 0 and
¢ — 0 and we must first isolate the poles in €. Although equation (3.11) suggests that the

ultraviolet pole structure involves As, this is easily shown not to be the case. Adding terms
proportional to,

1 (4 S 1 59
- —E mOm | —157 (1] =0,
2<A3 ’)’C¥>a22[] 0,

m=1
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to equation (3.11) for n = 3, D = 4 — 2¢ we see,

~

T L~ T (qmgy @ As ()
i) = s (i 3 2 (0 - 1P) + 1000

where the divergence as € — 0 lies exclusively in the last term. Reinserting the factors of «

and the definition of I[1] in D = 4 — 2¢ dimensions we find,

—6-2¢ 1 ((—512)"¢
13D_6 2 [1] = LClS(pl;p?) - '2— <(—222— + 3) cr, (327)
where,
4 _ 1 2 2 2 512
Leis(pr,p2) = 2pipssials[l] — pi(s12 + p5 — pi)log | =
QA pi
]
—p3(s12 + pi — p3) log ( 12))
pQ
1
= 3 (pfla[ﬂfﬂ +P§I3[ﬂ73]) - (3.28)

In a similar fashion, the € pole structure can be removed from the triangle scalar integral

in D =8 —2¢ and D = 10 — 2¢ dimensions yielding two more functions that are finite as

both Az — 0 and € — 0. Explicitly we find,

2 2 —€
8% +p3+s -8 19
[7°87%[1] = Leos(pi,p2) — (v 1;24 1) <( 22) + E) cr, (3.29)
4 4 2 2,2 2 2 _ —€ 17
[P=10-2[1] = Less(py,pa) — (! + p3 + 5%y + pips + pisiz +p3si2) [ (—s12) 10
360 € 5
(3.30)
where the finite functions are defined by,
Leas(pr,p2) = A 2p2pasiaLers(pr, pa) — 5 \P pi(s12 + p3 — pi) log | —
3 P
$19
+p5(s12 + p? — p3) log (;2—) + 2pfp§slg>) , (3.31)
2
1 S12
LC3S(101;102) = 6A (2p1p2512LC25 p1,p2 - ( 812 +P2 pl) log ( )
P1
+pg(312 -1—101 p2 log (—2> ppo 12 +p§ + 512)>>. (3.32)
D2
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Although these functions have been obtained via equation (3.11), they are still related to
derivatives of the basic scalar integral in D = 4 — 2¢, and are therefore finite in the A3 — 0
limit. We can see this by examining the same phase space point as before, s;, =1, pi = 0.2
and varying Aj. As expected, the Lc,s show a similar behaviour to the Lc, functions
- numerically breaking down at larger and larger values of A; as the number of Gram
determinants increases, and being well described by the first term in the Taylor expansion

as this happens. For completeness, we collect the limiting approximations in Appendix C.

Tensor Integrals in Higher Dimensions

For triangle loop integrals with three loop momenta in the numerator, it is also necessary to
know the D = 6 — 2¢ integral with a single Feynman parameter in the numerator. Rather
than differentiating the ultraviolet divergent I?=%~2¢[1], we can evaluate it in terms of the

D = 4 — 2¢ tensor integrals of section 3.1.1. Using (3.13) for D = 4 — 2¢, we see that,

- . 1 X D .
I3[aia] + I3[asa;] = = —(3—2¢)(51 + 73)1:?‘6 2 [a;] + (mj + 773]-)15 6=2¢1)
o2

- Z (nlm + an)iém) [aj]> )

m=1
which, for j = 1,3,° simplifies using,
Mmj + 135 = 0.

The same equation simplifies the sum over bubble pinchings so that only m = 2 contributes,

while 4 + 43 = 2. Restoring the factors of o and using,

1 _ —e
17 2)) = I [z3] = 5 (—( 822) + 2) cr,

yields,
€

1 1 ((—s12)7¢ 8
I8-%[z;] = 3 (pfls[mmj] +pgl3[$3$j]> 6 (& + g) cr- (3.33)

Later, we will see that constructing the tensor integrals for box graphs can also generate

I§7%[z,] and higher dimensional triangle integrals with more parameters in the numerator.

6Since the Feynman parameters add to one, the case j = 2 is of little interest.
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In each case, we use similar tricks with equations (3.14-3.17) to rewrite them in terms of

the four dimensional integrals with the ultraviolet pole made explicit.

3.4.2 The Two-Mass Triangle

We will also be interested in triangle graphs where one or more of the external momenta is

lightlike. Here, we first focus on the case, pj — 0. In D = 4 — 2¢ dimensions, we have the

well known result,

gy _ ( (—s12) - <—p%>—€> | .34

& S12 — Pt
where the superscript indicates that only two of the three legs are massive. For this choice

of kinematics the rescaled integral can be written,

Zm(1] = % <(alai — EZIQQ)E) : (3.35)
with,

aranpt = -1, ajazsi = —1,
and

As = —(aa - 012)2,

so that the singular limit is a3 — ao. Because Az makes no reference to ;, 7;; contains a

row of zeroes,

0 0 O
iy — 0 -1 1 3
0 1 -1

and therefore N3 = 0. Consequently, care is needed in applying the equations of section 2.
In addition, since the scalar integral for three massive legs is finite (and the results in the

preceding subsections have been explicitly derived in D = 4), one cannot just set p2 = 0.

In fact, it is easiest just to bypass the problem and generate the whole tensor structure

by direct differentiation of the scalar integral with respect to a3 and ;. It is easy to see
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that,
(ara3)° o3

Brfag] ~ AR + B 4 Clog (a—2> +D,
where A, B,C and D are polynomials in 1/a3 and 1/(a3 — ay). Unlike the all massive
case discussed before, the scalar integral is singular as ¢ — 0. As a general rule it is not
necessary to be particularly careful with double poles in €, since they must either cancel
or form the infrared poles of real matrix elements. However, it is possible for the integrals
to be multiplied by factors of € - from expanding factors of dimension - and the resulting

logarithms should occur in combinations that are finite as ag — ay. It is easy to see that,

. log (22
e x I3™[1] = % + O(e),

is finite. So, to tie the logarithms and constants together in combinations that are well
behaved in the a5 — a5 limit, we use the fact that derivatives of this function are also well

behaved, and introduce the functions,

L™ (py,p2) = — lim (e x B™(z57"]), (3.36)
forn =1,...,4. In terms of invariants,
QLCQT-T_L 7 1
Lea™(p1,pa) = — (pl 1P ng) "‘1>, n>?2 (3.37)
S12 — D1
with,
log (%fz)

Lei™ (o1, p2) = (3.38)

—
S$12 — P1

These functions, or functions closely related to them, have appeared in next-to-leading order
matrix element calculations [36, 37, 38, 31]. The explicit forms for I3™[z;z;] appearing in

the momentum expansion are well known and are collected in Appendix B.

Although these functions are rather simple, they still contain numerical instabilities as
p? — s12. This can be seen in Fig. 3.4 where we show Le2™ for the specific phase space point
$192 = 1 and let p% approach s;5. While a single inverse powers of (s15 —p?) is handled correctly,
higher powers cause problems. As can be seen from the figure, a suitable approximation is

obtained by the first term in the Taylor expansion,

lim Lc2™(pr, po) = —,
Pf—*sm n (pl p2) np%
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Figure 3.4: The finite functions for the triangle graph with two external masses with s;2 =1
evaluated in double precision Fortran as a function of (sj2 — p3)/s12. The dashed lines show
the approximate form for the function in the limit p? — $12, retaining only the first term of

the Taylor expansion.

forn > 1.

The other configuration of triangle graph that appears is where two of the momenta are
lightlike, p? = p2 = 0. Once again, the tensor structure can be generated by differentiation
or canonical Passarino-Veltman reduction. Here, there is only one scale in the problem
so there can be no logarithms and it is neither possible nor necessary to introduce well
behaved functions. The explicit forms for the Feynman parameter integrals appearing in

the momentum expansion are well known and for the sake of completeness are given in

Appendix B.

This concludes our discussion of triangle graphs. For the case of three massive external
legs (and internal masses set equal to zero) the four dimensional tensor integrals are finite as
¢ — 0 and are given by the functions Lcg_s(p1, p2) defined in (3.18,3.21,3.23-3.26), while the
ultraviolet divergent part g,, part, Iy =°~%[1] ié expressed in terms of a similar function (Lc;s)

with the pole isolated (3.28). For the tensor structure in the simpler case with one lightlike
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leg, it is useful to group the logarithms and constants using the functions Lc2™, (py, p2) (3.38,

3.37).

For the more general case where the internal masses are non-zero, the same procedure can
be utilised. The matrix 7 has slightly more entries and there are more scales in the problem.
However, the grouping together of triangle graphs and bubble integrals into functions well
behaved in the Ay — 0 limit and the isolation of the ultraviolet singularities can be made

explicit in the same way.

3.5 Four Point Integrals

For one-loop corrections to five parton scattering, box graphs with at most one massive
external leg occur. However, for processes involving a massive vector boson and four massless
partons, we can obtain box graphs with a second massive external leg by pinching together
two of the partons. There are two distinct configurations according to the positions of the
massive legs; the adjacent box graph and the opposite box graph. The box graph is shown
in fig. 3.5 for outgoing momenta p;, p, and ps3. Throughout this section, we will assume
that (p; + p2 + p3)? = si23 # 0. In the adjacent two mass case, ps =p2=0and p? #0,
while for the opposite box, p? = p2 = 0 and p3 # 0. Unfortunately, the raw scalar integrals
for these two cases behave rather differently. The adjacent box is finite in the limit that
A, — 0, while the opposite box diverges as A4, — 0. In this section, we work through these

two configurations and rewrite the tensor integrals in terms of well behaved functions and

explicit poles in e.

3.5.1 The Adjacent Two-Mass Box

We first consider the adjacent box with p3 = p3 = 0 and all internal masses equal to zero. As

in the triangle case, we systematically eliminate one of the momenta, ps = —(p1 + p2 + p3),
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Figure 3.5: The box graph and each of the four pinchings obtained by omitting the internal
line associated with «,, for m = 1,2, 3 and 4.

and one of the Feynman parameters, 3 = 1 — 27 — o — 24, S0 that,

Pt = —(1 — 21)phy + zoph — z4D5.

The related integrals with p? # 0 and p? = 0 are obtained by p; <> p3 (and the indices i and

J in o; and 7;; transform as 1 <> 4 and 2 < 3).

For this kinematic configuration, the o parameters are defined by,

while,

and,

0y S123 = —1, 041021?% =-1
o103 812 = —1, apoy So3 = —1,
0 0 1 0
0 0 -1 1 .
Mij = , Ny=3
1 -1 2 -1
0 1 -1 0

Ay = 2593 ((5123 — 512) (512 — P%) - 512523) .
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The coefficients «y; always appear in the following combinations which are directly related to

the conventional variables,

— 893 1=1

Yi _ ) 8123 — S12 1=2
Mj=1 S123 + PT — 523 — ij% =3
PP — 1 i=4

The scalar integral in D = 4 — 2¢ can be written [30, 27,
c
I,[1] = 6—{; ((ap0u)® + 2(cas)® — (0n02) — (ray)€) + 2Ldo(p1, P2, p3) + O(e),  (3.39)

where,

1
Ldo(p1, p2, p3) = Liz (1 - %> ~ Lip (1 - %> + - log (“22‘4) log (91) . (3.40)
3 (85)) 2 Qa3 (8]

In constructing the tensor integrals in D = 4 — 2¢, we see from equations (3.14-3.17) that
the box integral in higher dimensions is needed. In fact, in D = 6 — 2¢, the box integral is
infrared and ultraviolet finite. This can be seen by inspection of equation (3.11) and noting
that the pinchings with m = 1,2 and 4 in the expression,

4
L1+ 3 417 [1),
m=1
are proportional to 1/e and, when combined with the appropriate 4 factor, precisely cancel
with the pole structure of the box integral. The final pinching (m = 3) corresponds to the
triangle graph with three massive external legs which is itself finite. Altogether, we find that

the adjacent box integral in D = 6 is,

_ 28198 1 2p%s
=1 = - 2728 [ Ldo(p1, p2, 3) + = | 123 + 18 — 503 — 17123 Leo(py, p23)
Ay 2 S12
= LdlS(plaanp3)7 (341)

where Lcg(p1, pes) = I3[1] is defined in equation (3.18). Because of the finiteness properties

of the three mass triangle, we will find repeatedly that the m = 3 pinching should be treated
differently from the other three.
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Scalar Integrals in Higher Dimensions

For higher dimensions, we just reuse equation (3.11), noting that the triangle pinchings
in D = 6 — 2¢ reintroduce ultraviolet poles. These can easily be isolated by adding and

subtracting combinations of scalar integrals as in section 3.1.2. Explicitly,

. or [(—spps)-c 11

1978211 = Ldas(p1, p2,p3) + _62 (Lfi + ?) ’ 342
) 4 42 _ —¢ 107

I4D_10H26[1] _ Ld3s(p1,p2,p3) n Cr(8123 8;;;— $23 pl) <( 81:3) + 20 ) (3 43)
o P ((—s123)7 | 129

D=12-2¢ - L o 35 -

D) = Laustor ) + o (2 4 o ) o

where,

5128
2 2 2 4 2 2 o . 512523
P = 575 + S73 + S35 + P + 5123812 + S123823 + S123P] + S12P7 + S23P7 + 5

The finite parts of the higher dimension boxes are given by,

8198
Ldzs(pl,Pz,Ps) = - ;)223 (512823Ld15(P1,p2aP3)
4
2p5s
+ <8123 + p? — 593 — —%ﬁ) Leis(pr, p2s)
12
2
523 123 P 5123 _
528, ( ) I ( )——10 s123 ) ) 3.45
+2 0g 523 + s12l0g 512 9 g o ( )
S108
Ldss(p1,p2,p3) = — 51)223 <$12523Ld25(P1;P27P3)
4
2p2s
+ <S123 +p} — 593 — p; 123) Leas(p1, p2s)
12
5123 812 5123 S123 512523
lo <—> lo ( > lo 4 512928 ) (3 46
24g523 12 B\, 24gp1 1 ) {3:46)
. oo .
Ld4s(p1,292ap3) = - ;223 (812323Ld35(p17172;p3)
4
Ip2s :
+<S123 + P2 — 593 — p; 123>LC35(p1,p23)
12

3
S123 819 8123 P1 5123
52 1, ( >+—1 (w> log [ 512
360 %8\ G,/ T 180 B\%n/ 360 °\ 47
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Figure 3.6: The finite functions for the box graph with two adjacent massive legs as a function
of Ay/AT™ where AP* = 2815893(5123 — S12 — 523). The phase space point is s123 = 1,
$12 = 0.4, s93 = 0.08 and p? altered so the limit is approached and the functions have been
evaluated in double precision Fortran. The dashed lines show the approximate form for the
function in the limit A4 — 0, retaining only the first term of the Taylor expansion as given

in Appendix C.

S12503(S123 + S12 + 523 + i) ,
. 3.47
+ 720 (3.47)
The D = 6 — 2¢ and D = 8 — 2¢ box integrals explicitly appear in the momentum space
tensor structure with one and two factors of g, respectively. All of these integrals appear

either directly or indirectly in the tensor box integrals of equations (3.14-3.17).

Once again, all of these functions are well behaved as Ay — 0 and group a variety
of dilogarithms, logarithms and constants together in a non-trivial way. This is shown in
Fig. 3.6 for a particular point in phase space; sjo3 = 1, 512 = 0.4, sp3 = 0.08 with p?
varying so the A4 — 0 limit is approached. We see that although Ld;s, with a single inverse
power of the Gram determinant, is numerically stable, the functions with more powers of
Gram determinant in the denominator break down at much larger values of A4. In all
cases, the function is well approximated by the first term of the Taylor expansion provided

A4 < 107*AMa% These approximations are collected in Appendix C.
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Tensor Integrals

Armed with the integrals in D > 4, we return to the tensor integrals and use equations (3.14-
3.17) as the starting point. Rewriting equation (3.14) for n = 4, D = 4 — 2¢ and noting that

we have eliminated z3 so that ¢ = 1,2 and 4 only, we have,

4
Lz = —7%IP=%[1] = 3 mimaiana 1S [1).

m=1
The factor o;a,, multiplying the triangle pinchings will always produce a factor of 1/s. For
triangle graphs with at least one massless leg (pinchings m = 1,2 and 4), the contribution
is ~ 1/e? and will combine with similar poles from other Feynman diagrams. On the other
hand, the m = 3 pinching (corresponding to the triangle graph with momenta p; and pa3
flowing outwards) is finite and, provided the value of s is related kinematically to that
triangle pinching, there may be a possibility of cancellation with other triangle Feynman
graphs. However, for the case ¢ = 1 and m = 3, the associated invariant mass is sy2.
This term cannot combine with any other naturally generated triangle graph with the same

kinematics. Therefore, we group this term with the box integral, by adding and subtracting,

4
Z nimaiamlgg)[l] = 7ili(i3)[1]:

m=1
so that,
! m)g1 _ 1)
Lilz;] = %Ld1(p1, P2, Ps) — Y Mim@iQm <13 [1] - I3 [1]) ; (3.48)
m=1
with,
Ld = — (12=501) + 1{'11]) . (3.49)
1(P1;p2ap3) 4 3

The only non-zero entries in 7;, for i 2 3 and m #3 arei =2, m=4ori =4, m =2

corresponding to oy, = —1/s93 which s appropriate for I§3){1].

For integrals with more Feynman parameters it is convenient to introduce the following

functions,

Ldml...z'n_l(Pl,p2>P3) = —{”L?ZG[% . -ﬂfin-l] + IgS)[xil .- ~$in_1]}a (3-50)
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for n = 2,3 and 4. Suppressing the arguments of Ld,, and using equations (3.15-3.17), we
find,

4
I4[£Ci$j] = ’)’iLde — nijoziaj{Ldl + I?)[l]} — Z nimaiam{lgm) [ZE]] — Igg)[il?]]}l (351)

m=1

1 1
I4[.’L’il’j:17k] = /)/ZLd3]k — §nz~jaz-aj{Ld2k + I§3)[a:k]} — i’ﬂikaiak{Lde + IgB)[ZL']]}

4
— Z mmazam{lgm)[xjxk] — I§3)[x]$k]}, (352)
m=1
1 3) 1 (3)
Lilzizjzrr] = yLdajm — gnijaiaj{LdSkl +13 [ﬂ?kxz]} - g'ﬂikaiak{Ld?)jl +13 [ZEjiUl]}

1 4 m
——T)ilOlz‘Oél{Ldgjk + Igg)[xjask]} — Z nlmazam{lg )[ZEjZEkiL‘l] — Igs)[a:jxkxl]}.

3 m=1
(3.53)

Since we have systematically eliminated z; using the delta function, 4, j, k£ and [ run
over 1, 2 and 4. This guarantees that the coefficients of the form 70,05 are only non-
zero for ¢ = 2 and j = 4 (or vice-versa). In these cases, mpscpay = —1/523, Which is again
appropriate for the m = 3 pinching to form a completely massive triangle, Ig?’) [1]. Altogether,
equations (3.48,3-.51—3.53) are sufficient to completely describe the tensor structure of the

adjacent box.

However, in order to deterrﬁine the Ld,;, ;,_, combinations, we need tensor integrals
for D = 6 — 2¢ dimensional box graphs with two or more Feynman parameters. These can
be obtained from equation (3.15) once the D = 6 — 2¢ box integral with a single Feynman
parameter, [=7%[z,] is known. This can be derived by differentiating (3.9) which indicates
that IP=%7%[z,] is also finite as ¢ — 0. To see this, we reuse equation (3.14) and our usual

trick of adding and subtracting combinations of the m = 3 pinching in D = 6 — 2¢,
=) = (-6 - 201071 - 7))

4
— 3 it (27071 < 0.

m=1

-

Both brackets are separately finite. First, the divergent part of I?=*~%[1] precisely cancels

against that of I} =" *®)[1]. Second, all triangles in D = 6 — 2¢ dimensions have 1/¢ poles
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and the difference of any two, is either zero or a log. Further differentiation does not change

the finiteness properties of the IP=%72¢ tensor integrals.

The Ld,;, . 4,_, combinations are also well behaved in certain kinematic limits. For ex-

ample, IP=[1] and I'[1] are finite as s, — 0 or sy3 — 0. Just as differentiating functions

which are finite as € — 0 does not introduce poles in ¢, neither can it introduce poles in the

kinematic invariants s;» or ss3. As an example, consider the function Ldgs given by,

2(p% - 812) (

812523
2

p
+—LLe; (D23, P1),
5923

s
Ldos(p1, p2,p3) = 3Ldas(p1, D2, p3) + Leis(pr, pas)) — ;ELC1(P3,Z712)
23

which appears to contaih a pole in $19. In the s15 — 0 limit, Ay — —28935123p7 and

2
25935123P]
———LCls

1
30, (P1,p23) — —*Lcls(plap%);

LdQS — 3

so that,
lim (3Ld25(p1,p2,p3) + LC15(p1,p23)) — 0,

5190

and therefore,

lim s1o X Ldaa(p1, p2, p3) — 0.

312—>0

Similarly, Ldgs contains no power-like divergences” in the so3 — 0 limit and, with a little

more work, it can be shown that,

1im0 93 X Ldoa(p1, p2,p3) = 0.

$23—
Once again, these functions combine dilogarithms, logarithms and constants in a highly non-
trivial way to form well behaved building blocks. Explicit forms for the Ldyi,..4,_, functions

for n = 1,2 and 3 are given in Appendix B.

7 Although these functions do not behave as inverse powers of the vanishing kinematic variables, they do
contain logarithms of s;2 and ss3. This is because the € — 0 limit has already been taken, and the order of
taking the two limits does not commute. For next-to-leading order calculations, we only approach the limit
s;; — 0 and € can safely be taken to zero first.
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3.5.2 The One-Mass Box

~I
[S]

The higher dimension and Feynman parameter integrals for the one-mass box integral ob-

tained by taking p? — 0 can also be constructed in a similar way. For this kinematic

configuration, the o parameters are defined by,

00y S123 = —1, o3 s = —1, ooy Sz = —1,

while,

0 0 1 0

0 0 -11 1

Mij = , Ny=3,

1 -1 0 0

0 1 00
and,

In terms of invariants,

( .
—523 t=
Y J 5193 — 812 1 =2
H;%:l ] 5193 — 893 1=3
— 3812 1=4

The scalar integral can be written,

A C m
L"1] = 6—1; (2(er03) + 2(apu)€ — 2(anay)®) + 2Ldg™ (p1, 2, p3) + O(e),

where,

2
. (87 . (84 (07 « T
) = 1) o1 32) e () () -

Qg 2

As expected, in D = 6 — 2¢ dimensions, the scalar integral is finite,

2812893

i Ldo” (p1, p2; ps) = LAy (pr, P2, po).
4

L= =
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In higher dimensions, the scalar integrals satisfy analagous equations to (3.42-3.44) with

p? — 0, and finite parts given by,

m 8198
Ld%s (p1,p2,p3) = — 32133 <812823Ld1s (p1, P2, p3) + s23l0g < ) + 519 log 123 )
4 893
7
812523 5123 s? 8123
LA™ (p1, po,ps) = Ld 2 ( ) 512 (
15 (p1, D2, P3) Alm (512823 25 (D1, D2, P3) + 12 0g 523 19 log 512
512523 -
+ 12 >, (3.58)
512823 5123 s 8123
LA™ (py po.ps) = — Ldl™ (p,. 53 4, ( ) VN ( )
$19523(S123 + S12 + S23) -
+ 720 ) (3.59)

The stability of these functions as Af™ — 0 is illustrated in fig. 3.7 for a particular point
in phase space; 5193 = 1, 519 = 0.3, with sp3 varying so the limit is approached. The maximum
possible value of AI™ occurs when sg3 = (5193 — 812)/2; 1.6 A™ ™ = 515(s123 — 512)°/2. As
before, Ld;, with a single inverse power of the Gram determinant, is numerically stable.
However there are numerical instabilities for the other functions with more powers of Gram
determinant in the denominator. In all cases, the function is well approximated by the first

term of the Taylor expansion provided AJ™ < 1073Aj™ max,

Tensor Integrals

Unlike the p? # 0 case, the scalar triangle pinchings all contain infrared poles and there is

no benefit in absorbing the m = 3 piece in the tensor integrals. Therefore we introduce,

1m,D=6

Ldm iy, (D1, D2, p3) = —nly (Tiy - Zip 4], (3.60)

forn =1, 2, 3 and 4. Using equations (3.14-3.17) with n = 4 and D = 4 — 2¢ we find,

4
I}lm[%] = yLdi™ - z mmaiamlgm)[l], (3.61)

m=1
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Figure 3.7: The finite functions for the box graph with one massive leg as a function of
AJ™/AI™ max The functions have been evaluated in double precision Fortran. The dashed

lines show the approximate form for the function in the limit Aj™ — 0, retaining only the
first term of the Taylor expansion as given in Appendix C.

4
I"xiz;] = wldy) — Mo Ldy™ — ) nimaiamlgm)[xj], (3.62)
m=1
Ilm _ Ldlm 1 Ldlm 1 Ldlm
izl = vldgl - o ittty — 5Nk ik LCo;
4
— 3 Dimin 1S [, (3.63)
m=1
im 1m 1 1m 1 im 1 im
I4 [a:ixja:ka:l] = %Ldzljkl - gmjaiadegkl - gmkaiadesﬂ e gﬂilaia[Ld‘:}jk
4
-y mmaiozmlgm) [z;2k2]. (3.64)
m=1

As in the previous section, the Ld}ﬁ"f...in_l functions are finite as ¢ — 0 and contain no

power-like divergences in the s — 0, sp3 — 0 and AJ™ — 0 limits. For convenience, explicit

forms are given in Appendix B.
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3.5.3 The Opposite Two-Mass Box

The two mass box graph where the massive legs sit on opposite sides is a special case because
the scalar integral itself is not finite as Ag” — 0. We must therefore proceed with care. To

make best use of the symmetry under p; <> p3, it is convenient to write,
Pt = —(1—z1)py — (x3 + 24)ph — 24D}
Under this flip symmetry, z1 <> x4, T2 <> 3 and

Pt — —P* —py —ph — .

In this kinematic configuration, the « parameters can be defined by,

_ 2 _
Q104 S123 = —A,  pazp; = —1

003 812 = —1, 0oy o3 = —1,

where A is an extra kinematic variable that ensures that the «; are independent,

)= 812317%'
. 5125823
With this choice of «;,
0 0 1 -1
0 0 =X 1 1
= (1= ) o M=o
1 = 0 0
-1 1 0 0

Each row of n naturally couples together two of the pinchings (triangles) of this box, so we

might expect such structure to dominate the integrals. The associated Gram determinant is

given by, (1o

o 2(1 — S13

APP = 2(512893 — P55123)S13 = ——f———,
i=1 Qi

where,

2
813 = S123 — S12 — S23 + D3,
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and,
2 .
Py — S23 =1

S123 — S12 =2

4% S = (1-2) _
Hj:l @ S193 — S23 1= 3

L p% — 812 1=4
We note that the presence of the Gram determinant is synonymous both with a factor of

(1= )) and s13.
The scalar integral for the opposite box in D = 4 — 2¢ is given by,

I (1_3:\5 Cg ((01043) + (az0)® — (az03)" — (a1a4)€/\_6) + Ldgpp(PhpQ,P:a))‘*‘o(f);
(3.65)

where the finite part Ldy can be written,

. . a
Ld§P (py, p2,ps) = Liz(1—A)+Lip (1 - Xc_y_> + Lis <1 - /\—oj;>

—Li, (1 — a—s) Lis (i — a_> + log (/\a ) log </\622) (3.66)

As A — 1, there is a manifest singularity in 1??[1] since,

«

0 «
Ld§” (p1, p2, p3) — —log <a—:> log <.§) ,.

Gy

This double logarithm can never combine with lower point scalar integrals to form a combi-
nation well behaved as AP — 0. In fact, it is easy to see from fig. 3.5 that the only scalar
integrals which are available by pinching are the triangle integrals with one and two massive
legs. These are pure poles in € and cannot be combined with the finite parts of the opposite
box integral. There is no appropriate function which can generate the double logarithm as
A — 1 and consequently no finite function can be formed. Since the matrix elements are in
general finite in the limit of vanishing Gram determinants, all occurences of LdgP” divided

by the determinant must vanish.

On the other hand, in D = 6 —2¢, the opposite box is not only finite as € — 0 as expected,

but also as A — 1. This is because Ny is effectively (AF7)? and its presence in the numerator
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of equation (3.11) removes the Gram determinant from the denominator. Consequently, we

see that,

0, =6—2¢ 1 0
I4pp p=6=2 [1] = _S—lngOpp(plaanpP}): (3-67)

which, since,

. S13 5123 S123 5123
lim Ldy(p1, po, = s12lo (—) + so3lo (———) — p2log [ —=
s13—0 o{p1, P2 P2) §12503 — P5S123 ( 12708 S12 %08 523 P2 o8 P}

+0(s3%,), (3.68)

is also finite as s,3 — 0.

So in dealing with the tensor decomposition of the opposite-mass box we are faced with
poles in s;3, which we must protect, but also denominators of (1 — A) which may or may
not be protected. However, we know that for physical processes that are finite as A" — 0,
there must be cancellations amongst the various tensor integrals so that no terms containing
Ldg/AF? remain. Therefore we always choose to leave one factor of (1 — A) exposed when
multiplied by box functions, so as to facilitate the cancellation of these terms. We therefore

introduce a set of functions in the same way as for the one-mass box, eq. (3.60),

LA . (p1,p2,ps) = —nIPPP "z, o @, ), (3.69)

nil...zn_l

for n = 1, 2, 3 and 4. This leads to equations for the integrals with additional Feynman
parameters also very similar to the one-mass case. In fact, the only difference from equa-
tions (3.61)-(3.64) is an extra factor of (1 — A)~2 throughout the r.h.s., due to the difference
in Ny. So, for example, we find,
4

I9P[z] = (1—_1/\—)2 (’yiLdgp” - mZ::l nimaiamlgm)[lo . (3.70)
Notice here that the function LdS"® is multiplied by the factor 1/(1 — A) (one power is
cancelled by 7;), as claimed above. Again, the functions Ld;5’ ; | are finite as ¢ — 0 and

contain no power-like divergences as s;3 — 0. Explicit forms of the functions relevant for up

to three tensor numerators are given in Appendix B.

There still appear to be problematic terms (divergent as A — 1) in the tensor reductions

which correspond to the remaining triangle-like pinchings of the opposite box. However,
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these terms are the only ones that would survive in the ¢ — 0 limit of the tensor integral
multiplied by e. Since these terms will naturally be produced in the calculation of a physical
process, we expect that the resulting single logarithms occur in groups that are finite as

A — 1. We therefore introduce the auxiliary functions,

Ledy(pr,p2,p3) = — lg% (e x Ii™[z}])
=~y (et - el )
= %Z% (512LC,21m(p12,P3) - p3L0§m(p2,p3)) ) (3.71)
forn=1,...,4 and,
Ledo(p1; p2, p3) = ngi’::’ log (;;;zz) : (3.72)

Because these functions contain only a single power of the Gram determinant, they are not

difficult to evaluate numerically.

In summary, the situation for box integrals is very similar to that for triangle graphs.
When the scalar integral is finite as Ay — 0, differentiating - or equivalently adding factors of
Feynman parameters - does not introduce kinematic singularities. Hence natural groupings
of box and triangle integrals arise that are finite as Ay, — 0. Furthermore, the infrared
and ultraviolet singularities can be isolated easily. Although we have explicitly worked
through a subset of kinematic configurations relevant to certain QCD processes, this method
is systematic and can be applied to processes with more general kinematics (and particularly

non-zero internal masses).

3.6 Five Point Integrals

In this section we consider five point integrals with only one external mass. The outflowing
lightlike momenta are denoted p;, i = 1,...,4 while the fifth ps = —pio34 is massive, p2 # 0

as shown in fig. 3.8. The auxiliary momentum is then,

Pt = —(1—a2)pt — (1 — zy — 32)ph — (T4 + T5)P5 — T5P.
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We can make the choice,

Q05 81234 = —A,  Qa0y So3 = —1
ajaz Si2 = —1, o5 8934 = —1
Q104 8123 = —1, 305834 = —1,
with,
1 5
(1 - )\) = a_ H ai(81238234 - 82381234)-
3 =1

As in the opposite box integral, A is an extra kinematic variable that ensures the ¢; are
independent. - It is the same variable that occurs in the third pinching which forms an

opposite box configuration. The matrix 7;; is given by,

1 -1 1-2 1 -1
11 A-1 1-2x 1
= 1-XA A=1 (1-XA% A—-1 1-2X [,
1 1-2x A-1 1 -1
-1 1 1-)2 -1 1

and the normalisation factor is,
N5 — 1 - /\

The +y; are rather lengthy, but can be read off from 7;;. The scalar pentagon integral is by
now well-known in D = 4 [41, 35, 29] and in D = 4 — 2¢ [30, 27, 28] and can be written in

terms of these variables as,

J
A1) + O(e). (3.73)

I5[1] = A
m=1

The five pinchings and the momenta associated with each is illustrated in fig. 3.8, The limit
N5 — 0 corresponds to the vanishing of the Gram determinant associated with the m = 3
pinching. The scalar integral for this pinching is not well behaved in this limit and so should
not be expected to combine with the other pinchings. Therefore, we separate ig,[l] according

to the pole structure in ¢ and N5. We identify the function Le; which is finite as both N5 — 0
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Figure 3.8: The pentagon graph and each of the five pinchings obtained by omitting the
internal line associated with ¢, for m = 1,2,3,4 and 5. For box pinchings, the entering
momentum is fixed by momentum conservation.

and € — 0 and does not depend on the opposite-box pinching, m = 3, plus a combination of

scalar box integrals containing all the infrared poles and the remaining N5 — 0 singularities,
° L1 @1 4 1
15[1} = Z Q3¢ Ky L61 - W’)’3I4 [1} — oYy (I4 [1] + 14 [1])
i=1 5

1 .
50 (o 1[1] = P[] — 0l [1] + 05 1P[1]) , (3.74)
where «; = (1,—1,0,1,—1) and,

5
Ley = — 1224%0 §~ o ™), (3.75)
2N

m=1

Applying equation (3.14) and noting that IP=® is both infrared and ultraviolet finite, the
integrals with one insertion are also determined in terms of box integrals in D = 4 — 2¢

dimensions,
5

2N 4o

A

f5a:) = Mimds " [1] + O(e). (3.76)
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Making the same separation as before,

1 5
Isfa:] = (asaim) Ley = 5= D it (im — Kitim) 1{™1] + O(e), (3.77)
5 m=1

where the bracket multiplying the scalar box integral is always proportional to /Vs.

Similarly, using the usual formula for two Feynman parameters (3.15) and concentrating

all of the A5 dependence into ¢; ;, where,

A Qi YiYi
Cij = QQCi 5 = 2—]\7—; (nij - A—J> ) (3.78)
5]

we find,

. o ane 1 .. m
Ig,[aiaj] = Ci,j IsD_G[l] + — Z ID =6.( )[1]
2N5

1 D=6,(m)
4Ng T; nzm% nzf)'m) [1] 2N5 mz__ 77]m14 [az]
. AP
= —ci’jT
R
— 1 ml lagl ) - 3.7
"IN, mz::l (( Thm ") = minl e (379)

To simplify the non-¢; ; terms (and eliminate one power of Ns), we have rewritten some of
the variables appropriate to the pentagon integral in terms of those appropriate to the box

pinchings, 771(]7" ) and 4™ using the relations [28],

y(m) _ NMmmYi — TlimYm n(m) _ Nmm iz — ThimTljm
’ 2N5 ’ “ 2Njs '

Bern, Dixon and Kosower have shown [27, 28] that I¢ drops out of the calculation of any

gauge theory amplitudes by using the identity [30],

4
o 1 i
Z qul(];hci+1,j+l — 59&]“1, (380)

17.7:1
where gf‘ l]“ 7 represents the metric tensor in D = 4. Since,

1
Is[¢Her] = L;[PHPH] — §I?=6[1]gmm

5
N N
= > Is[$i+1$j+1]Qle5]—515_6[9mu’]: (3.81)
5,5=1
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all terms proportional to ¢; ; in I; [aia;] can be moved into the existing g**/ piece. Inspection
of equation (3.79) indicates that the correct term to reshuffie is —AsI&[1)/N5 rather than

merely 1P=%[1]. Retaining only the c;; terms,

» 1opoorny mns  AsIP=P[1] & L
g"¥ terms = —ZI7"1)g"M — 55TH > @i Ciin
5 i,jzl

= LPS[i]ge ID:“DHLXSI wld 0 ) gf
2 2 \° 2N; o=
1 O\ D=6 m), sy

= I 2 tmle g+ O(e). (3.82)

m=1

As expected the IP=6[1] terms precisely cancel. Here the finiteness of IP=6[1] and I?=%[1] has
been used to ensure that this term generates only O(¢) corrections when replacing g ’] I with
the dimensionally regularised g#i*/. The remaining piece should not contain any kinematic
singularities associated with lower-point Gram determinants, in particular N, as it originates
from the well-behaved 1278, This is indeed the case and we write,

1L D=6,(m)
Ley = — mld 1]. 3.83
s = g3 3 ) (359)

The pentagon integrals with three insertions can be obtained by direct differentiation of

equation (3.79). We find,
d D=6,(m) = D=6,(m)
o 5 ol 211

_+.
nzm 7m77( ) $D=6,(m)
L ) I (]

(mmngk 77— 77” nkm) ;= 6’(m)[l] — njmfflm) [aiak]> + cyclic i,j,k.(3.84)

mm

fg,[(tiajak] = Cz] (I? 6

6N5m 1

Since the ¢ ; term is obtained by differentiating ¢; ;J¥=°[1], it must be finite as both N5 — 0
and € — 0 and we introduce the finite function,

1 D=6,(m) D=6,(m) _
Lesk = o3 > (ormmd? = 1) + 2910~ ) (3.85)

m=1
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Recalling that,

Is[gﬂigujguk] — IS[Pﬂi’Pl‘j’Pﬂk] _ 11526[{gp}“iﬂjﬂk]

2
5
= — 3 Limaziazeald q g
iyjk=1
5
{Z 8[zpyr]ght gl + cyclic i,j,k} : (3.86)
and keeping only the ¢; ; terms in equation (3.84) we find,
» 1.pes _ 4
g gt terms = I [ze4ilg™ g - (I5D_6[$k+1] + Legk) > Cirngndhi e gt
ij=1
1., » 1, ,
= 51?_6[33“1]9“’”] qr - 3 (I?*G[xk“] + Le3k) gﬁ]ﬂjq;:k
1
= —iLeg,kg“"“jq,’:’“ + O(e). (3.87)

As in the previous case, the finiteness of the coefficient of gfffj” 7 has been used to promote it

to the full D = 4 — 2¢ metric tensor.

The tensor integrals with four and five insertions may be obtained by further differentia-
tion, and the same trick used to rewrite the ¢; ; terms as a contribution to the metric tensor
structure. In this way, all vestiges of the pentagon in D = 6 — 2¢ and higher dimensions can

be removed, along with the inverse powers of As.

The functions introduced in this section, Le;, Le; and Les;, only contain a single power of
the Gram determinant. Consequently, they can be evaluated without numerical problems.
To illustrate this, we choose a representative phase space point, s1a34 = 1, 123 = 0.4, S234 =
0.3, s;3 = 0.1 and use the variable sp3 to control A. The sixth variable s94 1s chosen to lie
within the physical region defined by the pentagon Gram determinant, As; < 0. Fig. 3.9
shows the functions Le; and Ley together with Less. In each case, we see that the A — 1

limit is smoothly approached indicating that the function is intrinsically well behaved in

that limit.
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Figure 3.9: The finite functions for the pentagon graph with one external mass and evaluated
in double precision Fortran as a function of 1 — A. Because the functions only contain single
inverse powers of (1 — A), no numerical problems are evident.

3.7 Summary

In this chapter we have developed a new strategy for evaluating one-loop tensor integrals.
It avoids the usual problems associated with the presence of Gram determinants. Such
Gram determinants arise when the tensor integrals are expressed in terms of the physical
momenta and generate false singularities at the edges of phase space. In addition to creating
numerical instabilities, they tend to increase the size of the one-loop matrix elements. Our
approach is to construct groups of scalar integrals which are well behaved in the limit of
vanishing Gram determinant (A, — 0), and which can be evaluated with arbitrary precision
by making a Taylor series expansion in A,. In fact such combinations arise naturally by
either differentiating with respect to the external parameters - essentially yielding scalar
integrals with Feynman parameters in the numerator - or by developing the scalar integral
in D = 6 — 2¢ or higher dimensions. Evaluating these new integrals is straightforward - they
are just linear combinations of the known scalar integrals in D =4 or D =4 — 2. As such,

they combine the dilogarithms, logarithms and constants from different scalar integrals in
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an extremely non-trivial way. As a bonus other spurious kinematic singularities are also
controlled - they appear in the denominator of the finite functions, which are well behaved
in the singular limit. Although the number of basic functions has increased, the number of
dilogarithm evaluations has not, since the functions are generated recursively. Furthermore,
because the Gram determinant singularities are not genuine, by grouping integrals in this

way, the expressions for one loop integrals are compactified.

To illustrate the approach for specific integrals, we have applied the method to 3-, 4- and
o-point integrals where the internal masses have been set equal to zero. These tensor integrals
are relevant for a range of QCD processes where the quark and gluon masses are negligible.
For more general processes with arbitrary internal masses and external kinematics, the rele-
vant combinations of scalar integrals can be obtained using equations (3.11,3.14-3.17). As a

by-product we have shown how all the Gram determinants associated with pentagon graphs

can be eliminated.

In chapter 4 we will make use of the basic 1-loop functions defined here to calculate the
matrix elements for the next-to-leading order corrections to ete™ — 4 jets. The relevant
partonic processes contain all the mass configurations of the integrals (up to the pentagon
level) described in this chapter. The sheer number of diagrams involved in the calculation will
make the grouping of terms described in this chapter highly desirable, in order to compactify

both the intermediate algebra and the final result.



Chapter 4

Partonic Matrix Elements

4.1 Introduction

As has been discussed in chapter 2, multi-jet events in electron-positron annihilation have
long been a source of vital information about the physics of the strong interaction. In
particular, the study of four-jet production can give us both a firmer test of QCD (through
determination of the colour factors of the gauge group) and a window on possible new physics

(for instance, the signature of a ‘light’ gluino).

To progress beyond the simplest Born level identification of each jet with a single parton,
we must compute the next-to-leading order corrections. Such a calculation naturally divides
into the 3 distinct areas which have already been briefly outlined in chapter 2. In particular,

for the case of 4 jet production in e*e™ annihilation, these are:

e Virtual contributions

The 4 jet rate receives next-to-leading order virtual contributions from the two sub-
processes ete™ — qdgg and ete” — ¢qQQ. The O(a}) terms arise from the interfer-

ence of one-loop with Born level amplitudes.

¢ Real contributions

The soft and collinear divergences of the virtual corrections, manifest as poles in €

86
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in dimensional regularization, cancel with the phase space singularities from the real
contributions. These are the 5-parton Born level processes which contain an extra

radiated gluon, namely ete™ — ¢gggg and e*e™ — ¢gQQg.

e Numerical combination
For the above mentioned cancellation to take place, the four and five parton matrix
elements must be suitably combined. Isolating the infrared divergences and cancelling
them in an efficient manner by Monte Carlo methods is the final step in the 4 jet

calculation.

In this chapter we shall concentrate on the explicit calculation of the matrix elements for
the partonic processes relevant for both the virtual and the real contributions. The virtual
matrix elements have long proved a ‘bottle-neck’ for QCD calculations, partly due to the
large number of contributing diagrams and also because of the appearance of one-loop dia-
grams with five external legs. In particular, we will describe a suitable colour decomposition
of the contributing Feynman diagrams and the resulting squared matrix elements. The vir-
tual matrix elements will consist of a finite piece (composed of the special functions of the
previous chapter) and infrared and ultraviolet poles. Discussion of the implementation of the

cancellation of the infrared poles between real and virtual terms is deferred until chapter 5.

In discussing the calculation of the matrix elements, we shall focus on the QCD current,
namely the sub-process v* — partons. In other words, the leptonic current ete™ — y* is
factored out of the amplitudes. Such a factor is elementary to restore and in fact will often
be a common factor, such as when normalizing the result of a calculation to the lowest order
ete™ — ¢q results. Moreover, the matrix elements may then also be directly implemented
in general purpose next-to-leading order Monte Carlo programs for the processes efp —

e + 3 jets and pp — V + 2 jets.

Note that due to the difficulty involved in defining 5 away from four dimensions, we have
restricted ourselves to the channel efe™ — 7* — 4 jets, rather than including an interme-
diate Z boson. The mixed vector-axial coupling of the Z presents problems in conventional

dimensional regularization, which is the scheme used throughout our calculation here. We
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also choose to neglect contributions where the boson couples to a closed fermion loop. Both

of these contributions are in fact very small, because of cancellations between up- and down-

type quarks and kinematical constraints.

The first stage in the calculation of the virtual corrections is to make a systematic organi-
zation of the contributing diagrams into groups which have the same colour factor. Having
made this division at the amplitude level in lowest and one-loop order, we calculate the
relevant squared interference. This procedure is very similar for both sub-processes and we
present the calculation of the colour structure for each in turn in sections 4.2 and 4.3. A
subtlety involved in ‘squaring’ the amplitudes involving more than one gluon is described
in section 4.4. The implementation of the loop integral formulae of chapter 3 is outlined
in sections 4.5 and 4.7, whilst the isolation of the infrared and ultraviolet poles is detailed
in section 4.6. Comparison of the results presented here with those obtained from a very
different approach [42, 43, 44] follow in 4.8. Finally, the structure of the 5 parton tree level

matrix elements is given in sections 4.9 and 4.10.

4.2 The 2-Quark, 2-Gluon Sub-Process: v* — ¢dgg

We first consider the process, v* — gggg in some detail. Momenta are labelled as,

v*(pr2za) = q(p1) + G(p2) + g(p3) + g(pa), (4.1)

and the photon momentum is systematically eliminated in favour of the four massless parton

momenta.

The colour structure of the matrix element at tree-level (n = 0) and one-loop (n = 1) is

rather simple and we have,

2n
MO = e M) — g2 (&)

nv3va A

n 1 n
x @O AV B ) + (T T AT (43) + eabunns AT 3 9}, (42

where ¢y, ¢ are the colours of the quarks and a3, a4 the colours of the gluons. The arguments
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of A; indicate a permutation of the momenta of the external gluons. At lowest order,

AP(3,4) =0, (4.3)
while at one-loop we find,
1
A“)( 1) = AV3,4) = 4D (4,3). (4.5)

The functions AW (4, 7), @ = A, B, C represent the contributions of the three gauge invariant
sets of Feynman diagrams shown in Figs. 4.1, 4.2 and 4.3 respectively. The derivation of this

decomposition is simple application of the colour algebra rules given in chapter 2.

At leading order, the squared matrix elements were first obtained in {17). The colour

structure is,

Z MO a 3(N2 - 1)N{T(3, 4)+7T(4,3) — %T} (4.6)
where,
= 3 [A(3,440(3,4), (47)
and,
T=3 | (AP + A(4,3)) (AP (3,4) + AP (4,3)) | (4.8)

The 3-gluon vertex contributions to A§°’(3, 4) and A (4,3) enter with opposite sign, so T

(with no arguments) is the contribution from the pure QED-like diagrams.

The relevant squared matrix elements are the interference between the tree-level and

one-loop amplitudes,

4
T o MOt ) = 2 (O‘;N) (N> - 1)N
spins g
1
X {EA(3,4) + £A(4, 3) - %(EA -+ £3(3 4) + EB(4 3) ﬁc) + WK,B}, (49)
with,
La39) = X RAVIG,940(3,4) (4.10)

spins
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Figure 4.1: The classes of Feynman diagrams relevant for the function AQ)(?), 4). Reading
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clockwise round the diagram and starting from the quark (p;) at the top, we encounter gluon

(p3) before gluon (ps) and end at antiquark (p;). The solid circle indicates the possible
positions for attaching the off-shell photon to the quark-antiquark pair. Diagrams (a), taken

with both permutations of gluons 3 and 4, contribute to the piece £4 while the permutation

shown in (a)+(b) gives the contribution to £4(3,4). Diagrams with self-energy corrections
on the external lines are zero in dimensional regularisation and have been omitted.
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Figure 4.2: The classes of Feynman diagrams relevant for the function Ag) (3,4) Reading
clockwise round the diagram and starting from the quark (p;) at the top, we encounter gluon
(ps) before gluon (py) and end at antiquark (ps). The solid circle indicates the possible
positions for attaching the off-shell photon to the quark-antiquark pair. Diagrams (a), taken
with both permutations of gluons 3 and 4, contribute to the piece £p while the permutation

shown in (a)4(b) gives the contribution to Lp(3,4).
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Figure 4.3: The classes of Feynman diagrams relevant for the function .A(Cl) when taken with
both permutations of the gluons. Reading clockwise round the diagram and starting from
the quark (p,) at the top, we encounter gluon (ps) before gluon (p,) and end at antiquark
(p2). The solid circle indicates the possible positions for attaching the off-shell photon to

the quark-antiquark pair.

for « = A, B and the QED-like structures,
Lo=Y R(ADI3,4)+ AVH(4,3)) (A (3,4) + A (4,3)). (4.11)
spins
Note that the function £4(3,4) contains some finite terms proportional to np/N due to the
fermionic vertex and self-energy corrections in Fig. 4.1. Hence the squared matrix elements
are described by 5 independent L,. The £,(3,4) are symmetric under the exchange p; < p2

and ps <> ps while the £, are symmetric under either p; <> pa 07 ps < pa.

4.3 The 4-Quark Sub-Process: v* — ¢q7QQ

The calculation described in this section was first carried out by the authors of [45]. In

repeating the computation, some simplification of the final results was found and the method

is presented here for completeness.
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In the four quark final state we produce two pairs of (possibly non-identical) quarks, ¢
and QQ, with corresponding quark charges e, and eg. Again the momentum of the virtual

photon is eliminated in favour of the massless quark momenta, which are labelled as,

Y*(p1234) — q(p1) + @(p2) + Q(p3) + Q(pa). (4.12)

The colour decomposition of the tree-level (n = 0) and one-loop (n = 1) amplitudes
analogous to equation (4.2) is,

2 2n
() — i pqm) — %95 (&)
M <M 2 \dm

X { Sereaeses (A&"’(L 2) + AM(3,4) + %‘JV—Q (A, 4) + A, 2)))
1 n n n n
Surstse (5 (A1) + AP (3,4)) + 6o (A(1,4) + 463,2) ) | (413)

where the colours of the quarks are labelled by ¢;, i = 1, ..., 4. Here there are many diagrams
which appear similar, but in which the vector boson couples to different quark lines. For
identical quarks, the vector boson may couple to the pairs ¢g, QQ, ¢Q and Qg, whilst in
the non-identical case only the first two pairs are allowed. This is represented by the delta
function, §,o = 1 for identical quarks and zero otherwise. The arguments of A; indicate
which quark line is attached to the vector boson (by specifying the momenta labels of the
quark-antiquark pair) and hence which quark charge that function is proportional to. The

generic structure given above simplifies at tree level,
A0, 5) = A6, 5), (4.14)

while at one-loop we find the more complicated expressions,

APG5) = NADG, ) — - (24900,5) + 4D (0,), (4.15)
ADG,5) = N(4P65) - ADG9) - 5 (AP @A)+ AP 6). (416)

All the contributing Feynman diagrams have again been divided into three gauge invariant
sets, represented by the functions A\ (3,5), @« = A, B,C. These diagrams are illustrated
in Fig. 4.4. The contribution from the fermion loop in the fourth diagram of Fig. 4.4(c),
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which is proportional to the number of flavours np, is included in the leading colour part
Ac. There is a set of diagrams which is not included here, namely that which includes
diagrams containing closed fermion triangles. However, this contribution must vanish by
Furry’s theorem. Although this amplitude is not itself zero, the symmetric phase space
integration over the final state ensures that this QED result extends to the gluonic case

when calculating the contribution to a 4 jet cross-section.

At lowest order the squared matrix elements are [17],

2,4
Z IM(0)|2 - € g (NZ _ 1)
spins 4
x { (T(l, 2:1,2) + T(1,23, 4)) + ‘S‘IWQ <T(1, 2:1,4) + T(1,2;3, 2))}
+(143 3,23 4) +0,0(2 ¢ 4) + d40(1 < 3), (4.17)
where,
Ti,gi k1) = 32 1AM, 5)AD (6, D) (4.18)

spins

The relevant next-to-leading order squared matrix elements are the interference between

the tree-level and one-loop amplitudes,

2.4
OF Aq(1) :%<M) 2 _
32821/\4 MO = I (S5 (N2 - 1)
x {[(50(1,2;1,2)+cC(1,2;3,4))

_ ng (2£A(1, 2:1,2) +2La(1,2:3,4) + £5(1,2;1,2) + L5(1,2;3, 4))]

1
+6qQ [N <£C(17 2a 1)4) + EC(L 27 3) 2) - ‘CA(la 2) 174) - EA(L 2, 3; 2))

1
— (a0, 20,4) + La(L23,2) + Lo(L2 14 + £3(1,2;3,2))]}
(145 3,2 4) +8,0(2 ¢ 4) + 0g0(1 & 3), (4.19)
with,
Lali,Gik, 1) = > 1AV (5, 5) A (k, D)- (4.20)

spins
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Figure 4.4: The classes of Feynman diagrams relevant for the different colour structures. The
solid circle indicates the possible positions for attaching the off-shell photon to the quark-
antiquark pair 4, j. Group (a) contributes to A(Al)(z',j), (b) to Ag)(i,j) and group (c) to the
leading colour amplitude A(Cl) (i,7). Diagrams with self-energy corrections on the external
lines are zero in dimensional regularisation and have been omitted.
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Using the symmetry properties of the Feynman diagrams, we find that,
Ea(]v 27 37 2) - Ea(la 2) 17 4)(p1 & P2, P32 p4)7 (421)

so that for this sub-process the squared matrix elements are described by 9 independent L.

4.4 Gluon Polarization Sums

In QED, the sum over photon polarization states is straightforward to perform. A direct
consequence of the Ward identity is that, in the Feynman gauge,
> e = —g", (4.22)
spins
is a valid replacement. This vmay be used for any number of initial or final state photons.
When working within QCD this is only true for processes involving a single gluon. With
more than one gluon, the presence of the triple-gluon vertex allows non-physical, longitudi-
nal degrees of freedom to propagate, which can be compensated for by additional diagrams
involving loops of ghost particles. To illustrate an alternative resolution (first used in [46]),

consider a process involving two gluons of momenta p; and ps, with corresponding polariza-

tion vectors €, and eg. The amplitude for such a process may be written as,
M = eies M, (4.23)
where the uncontracted form of the matrix elements, M, satisfies the Ward identities,
pies My, = efps M, = 0. (4.24)

So at the amplitude level, we must obtain zero when replacing one or other of the gluon
polarization vectors by the corresponding momentum. However, to legitimately make the

replacement in equation (4.22), we need the more stringent conditions,
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Inspecting the form of the triple-gluon vertex for two external gluons (Fig. 4.5) and the

Feynman rules from chapter 1,
(2p1 + p2) 9" — (01 + 2p2)" 9" + (P2 — 1)’ 9", (4.26)

we find two terms that will vanish only by transversality, e(p) - p = 0, namely p5g"* — pig”’.

These terms are therefore admitted by equation (4.24) but not by (4.25).

p1 (gY)
¢
-(P1+p2) 41
P Q
frrrrrrrré\
\12\0
P2 (e2)

Figure 4.5: The triple gluon vertex for two external gluons p; and p,.

Thus use of the sum (4.22), without the addition of ghost diagrams, is allowed providing

we use a modified form of the three-gluon vertex for two external gluons,
2py " — 2p5g" + (p2 — 1) 9" (4.27)

So, having replaced the relevant three-gluon vertices in our diagrams with the modified
form (4.27), all the boson polarization sums (ie. for the off-shell photon and the two gluons

in our particular case) may be performed with the simple replacement (4.22).

4.5 Loop Integrals

It is now an arduous but well-defined task to calculate the 14 required functions relevant for

the next-to-leading order corrections to yv* — 4 jets. After adding up the relevant diagrams
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prescribed by the colour structure and ‘squaring’ with the polarization sums and external
triple gluon vertices as above, it remains to perform the usual algebra. FORM [47] is used
repeatedly to perform D-dimensional traces and to handle the lengthy expressions that are

generated.

As discussed in the previous chapter, the loop integrals which are generated in this way
may contain tensor numerators, deriving from terms such as 2?2 and ¢-p. The simplest form

of reduction possible involves a re-writing of numerator factors thus,

. 2 _ p2 2
tp _(kp)-C-p (4.28)

2+p)?  22(+p)

The tensor numerator is removed and replaced by a combination of scalar integrals with
either none or one of the propagators cancelled through. Such a trick may clearly only be
used when the momentum p in the numerator can be related to those in the propagators. In
the case of pentagon diagrams, where all momenta are present in the propagators, this type

of reduction results in no pentagon tensor integrals.

Thus these simple cancellations lead to an instant reduction of the number of loop con-
figurations that need to be calculated. In particular, we require only the scalar pentagon
integral and box (triangle) tensor integrals with at most three (two) loop momenta in the
numerator. This is a primary motivation for calculating the squared matrix elements rather
than the individual amplitudes. We _have seen in the previous chapter how these tensor

reductions can be carried out and the special functions that need to be introduced in order

to describe all these integrals (collected in Appendix B).

4.6 Pole Structure

Working in dimensional regularisation with 4 — 2¢ spacetime dimensions, it is straightforward
to remove the infrared and ultraviolet poles from the functions £,. These are the singulari-
ties which are expected to cancel with those from the corresponding 5-parton configurations

containing an extra gluon and those generated by ultraviolet renormalisation. This can-
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cellation relies upon the factorization into pole terms 1/, 1/€® multiplying the tree-level

amplitudes.

In particular, for the sub-process v* — ¢ggg we find,

£4(3,4) = (—1} P PSP 7,y + £43,9) (4.29)
La = +% (—%—%—-733’—4—§P1234> T +7(3,4) — T(4,3))
%(—%—%—@—WW“) (T +T(4,3) — T(3,4)) + L, (4.30)
L5(3,4) = (—%—2 - gpf“) T(3,4) + Lp(3,4), (4.31)
Lo = +5(-2- P D P (T4 73,9 - T(4,9)
(-l Pay B By (T - TE A+ Lo (439

where we have introduced the notation,

P - (47“})5 T2(1 - e)I(1 + 2 (4.30)

—Sg I'(1— 2e¢)

Similarly, the poles isolated from the sub-process v* — qqQQ are,

P P P . 4 . o
La(1,21,5) = (+—7}” Tt —23) T(1,2,5) + £a(1,24,5),  (4.35)
. P P 3P o A .
LB(172;7'7.7) = <_?;2_6—24_ 634)T(1a2;7'7.7)+LB(1:2;7'a])7 (436)
N P Po 2P 2np Py A y ,
Lco(1,250,7) = (‘6—2 ~ 2 T3 T WT) T(1,2;%,5) + Le(1, 254, 5)- (4.37)

This pole structure is in agreement with the expectations of ref. [21] and reproduces that

given in [31, 48].
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4.7 Reduction Relations

In determining the finite pieces, L, we are concerned to ensure that the singularity structure
matches that of the tree-level functions. Upon examining the tree-level matrix elements for

the gggg sub-process and in terms of the generalised Mandelstam invariants,
sy =i +p)%  suk=(Eitpi+ee)’, sym = 0+ i+ o+ )% (4.38)

T contains single poles in si3, a3, S14 and ssy while 7(3,4) has poles in s13, s34 and sy.
In addition, both 7 and 7(3,4) contain double poles in the triple invariants s134 and ss3s.
As discussed in the previous chapter, the tensor reduction employed automatically protects
possible singularities due to Gram determinants. However, it is possible to generate apparent
singularities in double or triple invariants such as sy, or s;93. These poles do not correspond to
~any of the allowed infrared singularities and the matrix elements are finite as, for example,
s19 — 0 or s193 — 0. In fact, it is straightforward to explicitly remove such poles using
identities amongst the combinations of scalar integrals. For example, the identity,

(8123 - 812)

5123

Ldas(p12, p3, pa) = —Lda1 (p12, 3, pa) + Ldi(p12, ps, pa) + Lei(piz, p3e),  (4.39)

relating the functions for box integral functions with two adjacent masses is useful to elim-
inate poles in sj23. A complete list of such identities for all the loop integral functions is

given in Appendix D. The finite pieces can then be written symbolically as,
£= 3 B(s)L, (4.40)

where the coefficients P;(s) are rational polynomials of invariants multiplying the finite
functions L;, which are well-behaved in all kinematic limits. Any denominators of the corre-
sponding tree-level matrix element are allowed in the coefficient P;(s), with any additional

fake singularities protected by L.

Typically the coefficient of a given function contains (0(100) terms for the gggg sub-
process (and O(30) for ¢gQQ), comparable with the size of the tree-level matrix elements.

The number of functions is rather large, of O(100), but is a minimal set which protects
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all the kinematic limits and is therefore numerically stable. Although the expressions for
the individual £, are in closed form, they are still rather lengthy and may contain many
hundreds of terms in total. Therefore, rather than explicitly list each of these functions, it is
more useful to provide FORTRAN code which can return the value of any of these functions
at a specific phase-space point. However, to stress the analytic nature of these results, one

of the smaller four-quark functions, L£¢(1,2;1,2) is presented in full in Appendix E.

4.8 Comparison of Matrix Elements

The above calculations were also performed (contemporaneously) by another group, consist-
ing of Bern, Dixon, Kosower and Weinzierl (BDKW) [42, 43, 44]. However, their choice of

method was clearly different to the one presented here. In particular, the main differences

were:

e ‘Squaring’ of amplitudes.
We chose to compute the interference of the tree-level with the one-loop amplitudes
in order to simplify\ considerably the tensor integrals involved. BDKW instead worked
directly in the helicity amplitude app‘roach, where in particular the helicities of the

initial electron and positron are specified.

e Dimensional regularization.
Treating all particles in D dimensions as we have done is the conventional scheme.
This is not suitable for a helicity calculation, where the external particles should be

kept in 4 dimensions. BDKW therefore used the dimensional reduction scheme, as

described in chapter 2.

e Loop integrals.
Rather than using a conventional Feynman diagram approach and reducing the inte-
grals as we have done, BDKW appealed to the analytic structure of the amplitudes and

general results such as unitarity. These tools allowed them to completely reconstruct

the amplitudes directly from certain specific collinear limits.
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Given these major differences, direct comparison of the final spin-summed matrix ele-
ments at specific points in physical phase space is a highly non-trivial check of both ap-
proaches. By averaging over the initial electron and positron directions, summing over
helicity combinations and numerically squaring the amplitudes, the BDKW results can be
compared with the matrix elements presented here. For the two specific points in phase

space given in Table 4.1, the comparison is shown in Table 4.2 [49].

Invariant || Point 1 Point 2
S12 0.0140351646 | 0.406021454
513 0.0648812165 | 0.0621334973
S14 0.144051806 | 0.0709877341
So93 0.119662557 | 0.211110091
894 0.0284402186 | 0.247534016
S34 0.628929035 | 0.00221319515

Table 4.1: The phase space points used for the comparison in Table 4.2.

The results obtained from each calculation for both of the sub-processes are clearly in

very good agreement.

4.9 The 2-Quark, 3-Gluon Current

Since we shall later be interested in the behaviour of the five parton matrix elements in soft
and collinear limits, we shall present the colour decomposition in rather more detail than the
four parton ones above. In particular we will endeavour to always write the matrix elements

in terms of colourless subamplitudes where the colour quantum number flows are clear.

The two quark-three gluon current 32 may be decomposed according to the colour struc-
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Colour factor Source Point 1 Point 2
N GQQ 10.1502095 11.718672
10.1502120 11.718774
~ q7QQ -13.869213 -51.3942815
-13.869226 -51.3947206
N x np q7RQ 6.46323291 | 0.0812643912
6.46323267 | 0.0812645416
nE q7QQ@ 4.2077780 2.05627511
(fermion loop) 4.2077794 2.05627466
1 q7QQ -1.47205477 1.96450861
(identical) - -1.47205426 1.96450796
% ¢dQQ 1.47454064 5.74016623
(identical) 1.47454122 5.74016476
1 9499 -4.84091715 -13.4359536
-4.84091714 | -13.4359535
ne 9499 -0.00111172722 | -0.0170968872
(fermion loop) | -0.00111172717 | -0.0170968799
L 9499 21.5573194 7.24466256
21.5573192 7.24466266
L qdgyg -15.1560743 | -0.432338074
-15.1560739 | -0.432338183

103

Table 4.2: Numerical comparison of the matrix elements presented in this thesis with those
obtained by the BDKW group. The matrix elements are divided according to the sub-process
from which they originate and their colour weight. In each row, the uppermost number is
that obtained using the squared matrix elements of this chapter, whilst the lower is the one
- produced by the helicity amplitudes for ete™ — qgQQ (42, 43] and ete™ — ¢ggg [44, 43].

The comparison is made for the two four-parton phase space points characterized by the

invariants in Table 4.1.
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ture [50],

32(@1) ]-a 2> 3, QQ) = ieg?) Z (TalTazTa3)C1czsu(Ql; 1; 27 3, @2): (441)
P(1,2,3)

where S,(Q1; 1,2, 3; Q,) represents the colourless subamplitude where the gluons are emitted
in an ordered way from the quark line. By summing over all permutations of gluon emission,

all Feynman diagrams and colour structures are accounted for.

The squared matrix elements (again using the polarization sums and triple-gluon vertex

of section 4.4) are simply,

R 2a7\ 3 2
S = <92N> (NN 1)
— 1 ~
x [ > (lsu(czl;l,z,s;@»v“ﬁ - l8u(@u 1,25 QQ)V“\?)
P(1,2,3)

<N2+1

N ) [S.(@151,2, 3;@2)V“]2], (4.42)

with V* representing the lepton current ete™ — *. In the last two terms, the tilde indicates

that that gluon should be inserted in all positions in the amplitude. In other words,
Su(@1;1,2,3;,Q5) = Su(@151,2,3,Qy) + 8,(Q1:1,3,2,Q,) + Su(@Q133,1,2,G). (443)

In this case, gluon 3 is effectively photon-like and the contribution from the triple and quartic

gluon vertices drops out.

4.10 The 4-Quark, 1-Gluon Current

The four quark-one gluon current may be decomposed according to its colour structure in a

similar fashion,

~ _ _ 3

T2 (Q1,Qy;Qs, Qs 1) = z’%—
- T2245c3c27:¢(Q1,@2;Q3,§4; 1)+ (@« Q3,Qy ¢ Q) — (@1 & Q3) — (@, & Q) |,
(4.44)
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Figure 4.6: The diagrams included in the colourless subamplitude S, (Q1; 1,2, 3; @,). In each
diagram, the gluons are emitted in an ordered fashion, such that reading clockwise from the
quark at the top (@) we encounter gluons 1, 2 and 3 in that order before reaching the
antiquark (@,). The off-shell photon can be attached to the quark line in the positions

indicated by the solid circle.
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where the exchanges are understood to apply to the colour labels as well. The colour ordered

sub-current can be written,

E(Ql’@2;Q3’@4;1) = 6Q1Q26Q3Q4 (Q1>Q27Q37Q4: )
+ 6@3@25621@4 (Qh Q2 @3, Q4 1), (4.45)

where,

EA(Qh@g;Qg,Qﬁl) = ASIQQ(Q1;1;@4|Q3;@2)+A§3Q4(Q3;@2|Q1;1;@4)
TE(Q1, 05 Q5,Qu1) = BY9(Q1;1;Q41Q5 Q) + BF(Q3;Q2|Q1; 1, Q). (4.46)

Here, 0g,q, = 1 if quarks 1 and j have the same flavour. The functions ASIQ? and BSIQ?
describe Feynman diagrams where the gauge boson couples to the @@ pair. However, in
A9:@2 the colour flows along the gluon connecting the two quark pairs, so that @: and @,
are the endpoints of a colour line (and similarly @3 and @,) while in BE‘QQ, no colour is
transmitted between the quark pairs and now @; and @), form the endpoints of a colour line

(and similarly @3 and @,). In each case, the gluon may be emitted from any position on the

colour line.

Squaring the four quark-one gluon amplitude and summing over colours yields,

~ 2 g*N SN2 -1
vl = (5 (F

o [ 00085020 + 101 B 2

- %R (7:(Q1, Qo3 @3, Qi DV* + Tu(Qs, Qs Qu, Qs DV*) (T(Q1, Qs @3, Qo 1)‘/”)1}
+(Q1 > Q3,Qy < Qy), (4.47)

or equivalently,

2 ¢*N\° (N2 -1
‘7;5‘/“} :62( 2 ) ( N?

X |:[7:LA(Q17C—2—2;Q3:—Q4;1)V“(2
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+% OEB(Ql,@b Q3;@25 1)vu‘2 - \?ﬂ(QI;QZ;Qb’;@t}; 1)‘/“|2)

26, = 1ol Q Q
+ 299 (7401, Ty @5, T DV) (T2(Q1, Qs 0, Qs V)|

N?+1 _ _ _ B B B
_ ( 2]\; )(5Q2Q4m (TM(QI; Q2§ Q3. Qy; I)V“) (Tll.(Qla Qu; Qs, Qy; 1)‘/u)f

+(Q1 © Q3,Q, 0 Q) + 80,05 (@1 & Qs) +30,0,(@5 @4)}- (4.48)
Here we have introduced the shorthand notation,

Tu(@,05Q5,Q51) = TAQL Q@5 Qu1) + T(Q5,Qu 01, 01)
= TP(Q1, Q@5 Q1) + T,(Q5, Q2 Q1. Qs ). (4.49)

Note that in the case of identical quarks, there is an extra symmetry factor of 1/4 multiplying

the matrix elements.

4.11 Summary

In this chapter we have presented the calculation of the squared matrix elements for the
partonic sub-processes relevant for the next-to-leading order corrections for v* — 4 jets.
The lowest order matrix elements for both ¢ggg and ¢gQ@ are both simple to obtain, whilst
the one-loop virtual corrections are considerably more complicated. The colour structure of
the 5 parton processes v* — ¢@ggg and v* — gGQQyg is more involved and there are many

diagrams, but evaluation of the matrix elements is straightforward.

By grouping the Feynman diagrams according to their colour structure, we find that
the one-loop matrix elements can be described by 14 independent functions. Working in
conventional dimensional regularization in D = 4 — 2¢ dimensions, we have isolated the
single and double poles in € which are proportional to the lowest order matrix elements. The
remaining finite pieces are algebraically lengthy but do not contain any spurious singularities.
By this we mean that the finite terms contain only the kinematic denominators present in the
corresponding tree-level terms and that we have used the functions of chapter 3 to protect

the Gram determinant A — 0 limits. The full results are not presented here, although an
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Figure 4.7: The Feynman diagrams contributing to the colour ordered sub-currents
(a) Angz(Ql;l;@ﬂQ%@O: (b) ASIQ2(Q1;@2|Q3;1;@4); (c) BEIQZ(Q1;1;62|Q3;@4) and
(d) B92(Q1;@,|Qs;1;Q,). In each diagram, the off-shell photon couples to the quark-
antiquark pair Q;Q, in one of the positions represented by a solid circle. The second quark
Jine is oriented in the opposite direction, so that in each case the quark Qs is located towards
the bottom-right of the diagram.
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example function is presented in Appendix E. The numerical implementation of these results

will be presented in chapter 5.

In order to make a proper study of ete™ — 4 jets at next-to-leading order accuracy, we
must now show how these matrix elements may be implemented with an efficient Monte
Carlo phase space integration. This, together with discussion of the cancellation of infrared

divergences between the real and virtual terms, will be the subject of chapter 5.



Chapter 5

Implementation of the Matrix
Elements

5.1 Introduction

We have now assembled all the matrix elements that are necessary for the calculation of the
process eTe” — 4 jets at next-to-leading order. In this chapter we will see how these may be
implemented to yield predictions for physical observables. Essentially this means combining
the four and five parton contributions in a sensible way whilst integrating over the relevant

phase space in a Monte Carlo fashion.

In the first instance we re-examine the matrix elements in the light of the phase space
integration. Partial cancellations between some of the terms mean that some of the matrix
elements may be dropped in a numerical implementation. Moreover, many of the additional
terms of chapter 4 that are generated by symmetry operations can be simply included merely
by counting the numbers of permutations. The use of arguments such as these to massage

the partonic matrix elements into a more amenable form is the subject of sections 5.2 - 5.5.

The remainder of the chapter is devoted to the cancellation of the infrared singularities
between the real and the virtual contributions to the cross-section. Elaborating on the basic

outline of chapter 2, we follow the hybrid subtraction scheme and illustrate its application in

110
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our case. In particular, we identify the relevant antenna subtraction terms and slicing con-
tributions and show that the exposed singularities cancel. We then present (finite) formulae

for the four and five parton contributions which may be directly implemented in a Monte

Carlo integration.

5.2 Four Quarks

We first study the implementation of the four-quark matrix elements of section 4.3. This is
best illustrated by the example of the tree level matrix elements, with the more complicated

loop corrections following this discussion.

5.2.1 Tree Level

In the calculation of the matrix elements in chapter 4 we provided a complete set of func-
tions T (4,5; k,1) , where the off-shell photon couples to the quark lines @i, Q; and Qx, Q-
However, in a numerical implementation of these matrix elements we can reduce the number
of evaluations that need to be made by appealing to the phase space integration to restore

some of the symmetries. In addition we find that some of the contributions will vanish by

application of Furry’s theorem.

Neglected Contributions

The class of squared diagrams that we will neglect is that corresponding to T(1,2;3,4) and
its symmetries, where the photon couples to a different quark line in each amplitude. Two
of the squared diagrams that contribute fo this piece are shown in Figure 5.1. It can be seen
that one term is obtained from the other by simply reversing the direction of the fermion
loop involving ()3 and Q,. Since this loop is cut, these diagrams do not cancel, as would be
the case by Furry’s theorem for an uncut loop. Instead, the cancellation only takes place

after phase space integration.
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Figure 5.1: Two of the total of four squared diagrams that contribute to the function
7(1,2;3,4). The dotted lines cut the on-shell quark lines to indicate the corresponding
Feynman diagrams, with the labels indicating the (anti-)quarks at each cut.

Symmetries

In equation 4.17 of chapter 4 we only explicitly wrote down a small number of the functions
that contribute to the matrix elements at lowest order, with the remainder being generated
by symmetry. Here we appeal to that same symmetry and phase space integration to simply
replace all the extra terms generated by the symmetry by copies of the original. In doing
so, we also note that the term 7(1,2;3,2) is generated by the symmetry p, < pa, ps <> ps
acting on 7(1,2;1,4).

At this point it is useful to consider the different factors that will apply to terms in the
matrix element which are relevant for identical and non-identical quarks. We shall always
sum over all np flavours of quark for each quark line, in addition noting that terms involving

identical quarks will acquire an identical particle factor of 1/4.

For terms in the matrix elements which are only present when dealing with identical
quarks it is then clear that we must attribute a factor of np /4. Those terms which appear

in both cases, 6,0 = 0 and é,0 = 1, are slightly more complex. We can choose a pair of



CHAPTER 5. IMPLEMENTATION OF THE MATRIX ELEMENTS 113

non-identical quarks in ng(np — 1)/2 ways. In addition, the identical quark contribution
enters twice for every single occurence of the non-identical term — once for é,o = 0 and again

(with a symmetry) for 6,0 = 1. Hence the total factor is np(np—1)/2+2xnpx1/4 = nZ/2.
In particular, we have,

7(1,2;1,2) + (1 symmetry) — 2 X n}p/2=n},
7(1,2;3,4) — 0,
T(1,2;1,4) + (3 symmetries)
+ (4 symmetries from 7(1,2;3,2)) — 8 x np/4=2np. (5.1)

5.2.2 One-Loop

The one-loop matrix elements are very similar in structure to the lowest order result. We
will again appeal to the same types of symmetry argument to reduce the number of function

evaluations and also neglect contributions similar to those dropped above.

Neglected Contributions

We will again neglect the squared diagrams where the photon couples to a different quark line
in each amplitude, namely functions of the form £,(1,2;3, 4). Although the corresponding
tree-level function T'(1,2;3,4) vanished after phase space integration, according to Furry’s
theorem, the one-loop functions do not. However, the sum over the quark couplings together

with some phase space cancellation related to that at tree-level, means that this neglected

piece is small [51].
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Symmetries

Using the symmetry of the diagrams and the appropriate factors for sums over quark flavours,

we find that the extra symmetries can be replaced by factors as follows,

L£a(1,2;1,2) + (1 symmetry) — 2 X n%/2 =nj,
L,(1,2;1,4) + (3 symmetries)
+ (4 symmetries from £4(1,2;3,2)) — 8 xnp/4=2np. (5.2)

5.3 2 Quarks, 2 Gluons

The implementation of the matrix elements for the production of a quark-antiquark pair
together with two gluons given in section 4.2 is more straightforward. There are no neglected

contributions and it only remains to utilize the symmetries of the matrix element functions.

5.3.1 Tree Level

The tree level squared matrix elements are described by the two functions 7(3,4) and 7 (with
no arguments). The function 7 (4, 3) is related by the symmetry operation interchanging the
two gluons and will be restored by phasé space integration. The sum over quark flavours

generates a factor of np and the gluons provide an identical particle factor of 1/2. Hence we

find,

T(3,4) + (1 symmetry) — 2 Xnp/2=np,
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5.3.2 Omne-Loop

The situation at the one-loop level is very similar. The functions £,(3,4) and £, behave in

the same way as the tree-level functions 7(3,4) and T,

L,(3,4) + (1 symmetry) — 2 X np/2=np,
Lo — np/2 (5.4)

5.4 Combined 4 Parton Cross-Sections

By putting together the factors in the 4 parton matrix elements given in equations (5.1)
and (5.3) we can write the implemented form for the lowest order matrix elements for four
jet production. In doing so, it is convenient to normalize the result by the lowest order result
for v* — ¢¢. This is simply calculated, yielding,
2 S 5 &

oo =€ Nnp oy (5.5)
where s is the centre-of-mass energy squared. In this equation the factor NV X np results
from the sum over quark colours and flavours, with the electromagnetic coupling supplying
a further e?. Hence we have,

LO 5 9 9

o O ey (Tt [ S B

o s <27r v TG - omT+ T 5L2) + 5T, 21,4) ).
(5.6)

Similarly the next-to-leading order 4-parton contribution to the cross-section can be obtained

by examining equations (5.2) and (5.4) together with the form for the matrix elements given

in chapter 4. The result is,

NLO 5 3 2
g, _ (27)° fasN N® -1 1 1
= - = < o ) e ,CA(3,4)— W(EA+2EB(3,4)—£0) +§N—4£B

oy} S
neg . nr . . _
+ o7 Lo(1,21,2) ~ 55 (2£4(1,2:1,2) + £5(1,2;1,2)) (5.7)

2
+ m(‘CC(l? 21, 4) - EA(L 2; 1, 4))

- %(EA(la 21 ]-7 4) -+ ‘CB(L 2> ]-7 4))) .
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5.5 5 Parton Expressions

In this section we summarize the symmetries of the five parton matrix elements for the two

sub-processes and combine them in a form which is more suitable for numerical implemen-

tation.

5.5.1 The 2 quark, 3 gluon Sub-Process

The style of decomposition used for the matrix elements given in chapter 4 is again imple-

mented in a straightforward manner when only one quark-antiquark pair is produced. After

integration, all the permutations of the gluons are equivalent and it remains to include the
quark sum (np) and the identical particle factor 1/3!. This results in,

— 2

[8.,(@1:1,2,3Q,)[ = 6xnpx1/3=np,

‘S;L(Qh 1) 2> 33 @2)

‘S[L(Qlﬂ L é: 3) GQ)

2
’ — 6xnpx1/3l=np,
2
" = e x1/3!=np/6. (5.8)

5.5.2 The 4 quark, 1 gluon Sub-Process

The structure of the matrix elements in this case is very similar to that obtained for four
quark production without the additional gluon. In particular, there is again the division of
terms into those that are relevant only for identical flavour quarks, and those applicable to all
flavours. In addition, the diagrams are characterized by the quark charges that the photon
couples to in each half of the interference. As explained in the preceeding discussion of the
virtual corrections to the four quark process, we neglect the functions which are interferences
of diagrams where the photon couples to different quark charges. The discussion of the
factors attached to each term in the matrix elements also carries through from section 5.2.1.

Straightforward application of these rules yields the following factors,

e
‘Afle?(Ql; 1;Q4IQ3;Q2)| + (1 symmetry) — 2 xny/2=np,
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—_ 2
A99(Q1;Q4|@3;1;@,)| + (1 symmetry)

)
lBngz(le 1;Q,|Qs; Q4)'2

)

(

2 x n%/2 =nk,

L

+ (1 symmetry) 2 x n%/2 = nk,

2 2

2 X nh/2 = nk,

l

|B,?1Q2(Q1;@2|Q3;1;Q4‘ + (1 symmetry)

A9 (Q1;1; Q4] Qs; @) + AT 1;624|Qs;1;@2)|2
+ (3 symmetries) — 4 x n%/2 = 2n%,
R(AZ2(Qy; 1;§4|Q3;@2))(391Q;‘(Q1; 1;Q41Qs; @)
+ (3 symmetries) — 4 X np/4 =np,
R(AP9(Q1;1;QulQs: Q) + AL ?(Q1; Q41Q5 15 Q)
x (AD94(Q1;1;0,1Q5 Q) + A (Qu; Q) Qs 1;@4)2)T (5.9)

+ (15 symmetries) — 16 x np/4 = 4dnp.

5.5.3 Combined 5 Parton Cross-Section

It is now easy to combine the expressions for the matrix elements with the combinatorial

factors to produce the form convenient for numerical evaluation. The final result is,

LO 3 2 _ _
= (2:)7 (=5) (NN 1) (!Su(Ql;l,z,&Qg)\?

%|SII(Q1§1>2,3§@2)[2+1 <N2+1> |S 1’5735@2)’2

6

”WF (’,451622(@1; 1;@4|Q3;C§2)| + | A9 (Q1; ul@s; 1;@2)‘2>
- 00 (|500(Qus1 20w @) + |8 @Rl 1)
_ i - [AD9 (Qu; 1; il Qs Q) + AP (Qu; Qul@s; 1;@2)‘2>
(A fle?(Ql,1,Q4IQ3,Q2))(391Q4(Q1>1aQ4|Q3’Q2))
(AL (Q1;1;Q,]Qs; Qo)) (B9 (@1 1; Q2lQ3; Q)
(A2 (Q1;Q,]Q5: 1; @) (B9 (Q1; Qs Q5 1; Qo))
(A9 (Q1; 0,1Qs: 1,0,)) (B (Qu; Q@3 1, 00))

(®
+R BY1@:
+ R
+R
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N2
_2< +1

Iz )(%(ASIQ2(Q1§1§@4IQ3§@2)+ASIQ2(Q1§@4IQ3§1§@2)) (5.10)

x (A994(Q1;1;0,1Q5 Q) + AZ%(Qu; Qs 1;@4)2)1))

5.6 Cancellation of Infrared Singularities

As we have seen in chapter 2, in both the soft and collinear limits, the colour ordered squared
amplitudes factorise into a squared amplitude containing one less parton multiplied by a
factor that depends on the the unresolved particle and the two adjacent ‘hard’ particles. We
view the two ‘hard’ particles as an antenna from which the unresolved parton is radiated. It
therefore makes sense to divide the phase space in a similar way and to treat the subtraction
term as the singular factor for the whole antenna integrated over the unresolved phase space.
Clearly the choice of the subtraction function F(z) in equation 2.14 requires some care, as

does the integration over the phase space variables z.

5.6.1 Phase Space Factorisation

Let us consider an (n + 1) particle phase space described by momenta p; with p? = 0 for
i=1,...,n . If the total centre of mass energy is ¢, then let us denote the phase space by,
dPS(Q%p1,...,ps). As discussed above, we wish to relate the full (n + 1) particle phase
space to an n particle phase space whenever one of the original (n+1) particles is unresolved.
Let the unresolved particle be labelled by u and the two adjacent hard particles by a and b,

then the phase space can be factorised as,

dsgy C
dPS(Q2§p1> s 7pn) = dPS(QQ;ply -y Pauby - - - apn) 2(;_1) dPS(Saub;pa:pu;pb)) ('3']-1)

where pous = Po + Pu + Pp and pfwb = s, To factorise the phase space into an n particle
phase space multiplied by a factor containing integrals over the unresolved invariants Sg,

and s, that appear in the singular limits of the matrix elements, we multiply the r.h.s. of
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eq. (5.11) by,

dPS(saB;Pa,PB) //dPS(SAB;PA,PB)> (5.12)
where particles A and B have momenta p4 and pp such that, p,ue = pap = pa + Ps;
p4 = p% = 0 and S4up = Sap. In other words,

ds X
dPS(Q%pi,...,pn) = dPS(Q%p1,....PaBs---,Dn) 2:9 dPS(saB;pa,pp) x dPS™"8

= dPS(Q%p1,...,Pa,DB;---,Pn) X APS™"E. (5.13)

As desired, we have the phase space for an final state containing n lightlike particles multi-

plied by dPS®"e. Working in four-dimensions and after integration over the Euler angles,

dPS(Saub;pa:puapb)

JdPS(sap;pa,pB)
1 .
= @saubdxaudxubdxaw(l — Loy — Tup — Lap)s (5.14)

dpsene =

where x;; = $;;/Squ- For this to work, a mapping must exist that determines ps and pp for
a given set of momenta p,, P, and p,. Many choices are possible {19, 52] and we choose the

symmetric mapping of [52],

1 sw(l+ p — 27) 1 Sau(l — p — 27)
= - |1+p+ +rpy+ |l —p+ ,
PA 9 l: p Sap + Sau Pa 1Pu 9 P Sab T s Do
1 Sup(1+ p— 2r1) 1 Sau(l—p— 2r1)]
= —|1—p— wt+ (1 —1 +=11+p- ,
be 2 [ P Sab + Sau P ( l)pu 2 P Sab + Sub Py
(5.15)
where,
Sub
rn=—-m (5.16)
Sau + Sub
and,
2 —
_ \/sab + (Sau + Sub)Sab + 471(1 — 1) SauSub (5.17)
SabSaub

Note that this transformation approaches the singular limits smoothly. For example, as

Squ — 0, then 7, = 1, p — 1 and p4 — Pg + Du, PB — Po-
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5.6.2 Antenna Factorisation of the Matrix Elements

Having factorised the phase space, we now wish to find the analogues of the subtraction
functions F(z) discussed in chapter 2. These functions should ideally be valid over the
whole of the antenna phase space dPS%" and, in the soft and collinear regions must match
onto the relevant singular limits. In other words, for a given (n + 1) particle amplitude, in
the limit where particle u is unresolved,

1SuC a0, OV = A |l A, BV (5.18)

where we have replaced the antenna comprising a,u,b by the hard partons A and B to
obtain an n particle amplitude. The antenna function A,,, depends on the momenta of the

radiated particles a, b and u, but the n particle amplitude |S,V*|?* does not.

The leading colour contribution to an observable cross section from an (n + 1) particle

final state with a particular colour ordering is proportional to,

N2 -1 2\ 2 _
( N ) (92 ) IS“(' 50, U, b, .)V"‘ Tty dPS(Q%; ..., Do, Pus Dby - - ), (5.19)
where the observable function J(,1) represents the cuts applied to the (n+1) particle phase
space to define the observable. Using the factorisation of the matrix elements defined in

eq. (5.18), when particle u is unresolved we should subtract,

2N n+1 9 )
(%) Aaub ’Su( . ,A,B, )V“" ‘7(7,‘) dPS(QQ, 3 Pa; Pu; Pbs - ) (020)

from the (n + 1) particle contribution and, using the phase space factorisation of eq. (5.13),
add,

2 =
. * T dPS(@Q% .- paps, ), (5:21)

92N n+1 .
(——) Awuy APS*™ |S, (..., A, B, .. )V*
to the n particle contribution where both the observable function J and matrix elements
|S,V#|? depend only on the momenta of the n remaining hard partons. Note that for any
infrared safe observable, in the limit that one particle is unresolved, Jin+1) — Jn). In the

subtraction term eq. (5.20), we use the transformations of eq. (5.15) to map the momenta
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Pa, Py and p, defined in the (n + 1) particle phase space onto the momenta pA and pp used
in the n-particle matrix elements and observable functions. In eq. (5.21), all dependence on

the momenta of particles a, b and u may be integrated out to give the antenna factor, F,
' N )
Fap(sap) = (9—2—> /Aaub dPS®"8, (5.22)

multiplying the n particle cross section (for a given colour ordered amplitude),

(2]
[N]
W
~

2N n 0
(9—2—> ‘Sﬂ(...,A,B,...)V“’ T dPS(QZ;,..,pA,pB,...). (5.

The full set of subtraction terms is obtained by summing over all possible antennae.

The Dalitz plot for the (AB) — aub phase space is shown in Fig. 5.2. In the hybrid scheme
we are implementing, we use the slicing method of [21] in the region min(sgu, Sup) < 6, and
the subtraction scheme in the region, § < min(sy, Sys) < A. In the slicing region, the phase
space and soft and collinear approximations to the matrix elements are kept in D =4 — 2¢
dimensions to regularise the singularities present when either invariant vanishes. Using the
approach of [21], there are three separate contributions (a) soft gluon when max(Sqy; Sup) < 0,

(b) a and u collinear when sq < & but sy, > & and (c) b and u collinear when s < § but

Squ > 0.

Before turning to the explicit forms for the antenna subtraction terms, we note that while
quarks are only directly colour connected to one particle - a gluon or antiquark, gluons are
directly connected to two particle - the gluon (or quark) on either side. Therefore,while
the quark (or antiquark) appear in a single antenna, gluons appear in two. This gives an
ambiguity in how to assign the collinear singularities of a pair of gluons to each antenna.
Later we will exploit this ambiguity to make the antenna functions A, for different pairs

of hard partons finite simpler.

Quark-Antiquark Antenna

Let us first consider a system containing a quark, antiquark and a gluon. This is produced

by an antenna comprising. of a hard quark and antiquark pair that decays by radiating a
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Figure 5.2: The phase space for the decay (AB) — aub. The cut min(seu; Sup) = 0 with
§ = 0.1 844 is shown as a solid line while min(sgy, sys) = A is shown as a dashed line for
A = 0.25 S4u. The region min(sgy, su) < ¢ defines where the slicing approach is utilised,
with the soft and collinear regions demarked by dotted lines. Antenna subtraction is applied
when § < min(Sgy, Sup) < A.

gluon. Any function that has the correct soft gluon and collinear quark/gluon singularities
in the appropriate limit is satisfactory. Here the hard particles in the antenna are Q and @

which radiate to form ¢, g and the gluon g. A suitable choice for the antenna function is,

1S, (g; 9; ) VH|?

Agoq 27
i |5,.(Q; @)VH[?
2 au u 2 a U 5
_ (:1; T ZabTa b) ‘ (5.24)
Saub \ Tub Tou Zoulub

Because this is proportional to the three parton matrix elements, |S,(g; g; @)V “|2, it auto-
matically contains the correct soft and collinear limits. Furthermore, it is smooth over the
whole three particle phase space and singularities only appear in the s4 — 0 and 8, — 0

limits.

Explicitly integrating over the antenna phase space for § < min(Sqy; Swp) < A we find,

2
g N in
}-QG(SQG) = ( 9 >/~Aqgé dpPSe
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- (=) (m? (%) i (%)) o (%@) +0(6). (5.25)

The § independent function F é@ is given by,

Fog(z) = (‘fff) <~ In? (z) + 57:” — 2Lis(z) + (g — 2z + g) In (1 — m)) (5.26)

Quark-Gluon Antenna

For antenna made of a quark @ and gluon G, there are two possible ways of radiating. Either
a gluon can be radiated so that a quark-gluon-gluon system is formed, or the gluon may split
into a antiquark-quark pair. This latter possibility is subleading in the number of colours

and the discussion of situations like this is deferred to sec. 5.6.2.

For a quark-gluon-gluon system, produced by a quark-gluon antenna there is a less obvi-
ous choice of antenna function, particularly since the singularity that is produced when the
gluon splits sits in more than one antenna. If, in the collinear limit, the gluon splits into an
unresolved gluon u which carries momentum fraction z and a hard gluon b with momentum
fraction 1 — 2z, the antenna function should naively be proportional to Py, which is sin-
gular as z — 0 and z — 1. This corresponds to singularities as both s,, — 0 and sq — 0.
However, because the collinear singularity sits in more than one antenna — the two gluons
also occur in a second antenna where the role of the two gluons is reversed — we can make

use of the N = 1 supersymmetric identity to rewrite Py, as,

(5.27)

Pygsg = Fagoq + Pogsq — Pygog-

The soft singularities as z — 0 are contained in Py, while those as z — 1 are in Pgg_,. We
therefore divide P,,,, amongst the two antennae such that Py, sits in the antenna where
gluon u is unresolved. The z — 1 singularities are placed in the antenna where the role of
the two gluons is reversed. The remaining Py, may be divided between the two antennae
according to choice. With a slight modification due to the Pz, term, the antenna function

used for the Q@ antenna has the correct limits, so that,

2 z2, .
Aggg = Aqggr — (__> : (5.28)

Saub \ TubZaub
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This is again smooth over the whole three particle phase space with singularities only appear-
ing in the s, — 0 and sy, — 0 limits. In particular, as z — 0, the collinear limit matches
onto the soft limit which would not have been the case if we had divided the soft/collinear

singularities equally between the two antenna.

After integrating over the antenna phase space for § < min(say, sus) < A we find,
2N .
Fac(sqe) = (gT) /Aqgg dpS*e

) B e() e

with the ¢ independent function Fj is given by,

A . asN 9 192 22 2 .
ng(CL‘) = <—2;—> (— 11’1 (.’E) + T - E + 3 - 2L12($)
10 22 28 11—z
— = — ——]1 . 5.30
+<6 2a:+2 6>n< " )) (5.30)

Antennae containing a gluon and an antiquark are described by,
Aggg = Aggq(a ¢ 1), (5.31)

and,

Gluon-Gluon Antenna

For antenna comprising only gluons, we repeat this SUSY inspired trick for each of the

resolved gluons so that,

2 T2 T2 _
Aggq = Agez — ( ==+ . ) : (5.33)

Saub \ TubTaub Toulaub

Note that Kosower [52] has proposed an antenna factorisation for gluonic processes,

A Kosower _ 4 ((xaub(xaub — Tap) + be)2> (5.34)
= , .
999 Saub ZauTubTab sub
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which, i_n the u/b collinear limit regenerates the full Py,_,, splitting function, as well as the

soft limits.

Integration of the antenna function 4,4, over the whole of the subtraction region yields,
2N .
Fec(sce) = (%) /Aggg dpPS™ne

asN ) o f 6 11 ] " < A ) o
- m? () + S (- 2 .
( o ( n <SGG> + 6 n sco + ‘7:GG P (D 3:))
with the § independent function F5; is given by,

N 23 222 223
selo) = (%) (— In? (z) + == = == + ~o- = 2Lix(a)

2T

Antenna where a Quark-Antiquark Pair Merge

There are also configurations when two (or more) colour lines are present, one ending in an
antiquark the other starting with a quark of the same flavour. Here the matrix elements
have the form,

2

[Su(-.. -, alg,b, .. V¥ (5.37)

In the collinear limit, the quark-antiquark pinch the two colour lines together to form a
single colour line,

2 2 -
S0l 0,310, b, IV = Prgog(2520)[Sul- -0, G, JVH] (5.38)

with P,,c(z, s) given by egs. (2.8) and (2.9). There is no soft singularity, nor is there any
dependence on the type of adjacent parton, a or b. Clearly, the quark-antiquark pair can
sit in two antennae, (a,q,q) and (g, q,b) and we have some freedom of how to assign the
singularities to the antennae. There are two obvious choices. Either we divide the singular
contribution equally over the two antennae, or, we place the z? part of Pj,_,,(2) in one

antenna and the (1 — z)? part in the other (as we did with the three gluon antenna before).
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While there appears to be no preference, we follow this latter route so that the antenna

function vanishes as the unresolved particle becomes soft,

2 T2,
e ] (5.39)
Sagq \ZqqTagq
and,
Aggy = Aagq(Tag = Tgb, Tagg € Tagh)- (5.40)

Following this procedure and integrating over the whole of the subtraction region yields,

2
f:c?(saG) = (g nF) /Aaéq dpSene

2
. asnp 1 ) PrA A .
- ( om )(_61n <8a0>) + Fat (saG>’ (5-41)
and,
Fei (5ap) = Fals (60)- (5.42)

The factor of np arises because each of the np quark flavours may contribute. The ¢ inde-

pendent function is,

FrEA(z) = Fer®(z)

() (3 e

5.6.3 Leading Colour Contribution to ete™ — 4 jets.

As a pedagogical example, we consider the leading colour contribution relevant for ete™ —
4 jets. At leading order in the number of colours, only the two quark and two gluon process
contributes and, at lowest order, we can read off the cross section from equation 5.6,
dof®  (2n)° <N2 - 1) (aSN)2
oo s N? 2
)SN(Ql;GI;GQ;@Q)VuF u7(4) dPS(Q2;Q1G1,G2;@2), (5-44)

X
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where we have switched notation from that of chapter 4 by writing,

T(3,4) = |S.(Qi; G1, G @)V (5.45)

Similarly, the leading colour contribution from the five parton bremstrahlung process can be

read from equation 5.10,

do or) (N2 =1\ [asN\? 2
—00—5 = (S) ( e )(;W) 1S, (a13 91, 92, 95: @)V*| Ts) APS(Q% 01, 91, 92, 95, B2)-
(5.46)

Note that Js projects the five parton momenta onto the four jet like observable.

For this colour ordering, there will be three contributing antennae, (1, g1, 92), (91, g2, 93)
and (g, g3, G2) where in each case the parton in the middle is unresolved. In the first antenna,
{Pays Pars Paa} — {Pa1spc,} according to eq. (5.15), the slicing cuts are min(sg, g, Sgrge) < 0
and the subtraction occurs over the range 6 < min(sg, g, Sg1g,) < A. Similar transformations

and cuts act over the other two antenna.

Slicing Contribution

For the five parton matrix elements of eq. (5.46), the sum of infrared singularities from the

three antennae in the slicing approach gives a contribution to the four particle final state

which can be read directly from eq. (3.79) of ref. [21],

daili“ = R(Qy; G17G2§@2)daclfo' (5-47)

Retaining only the leading colour contribution (i.e. dropping the contributions from the

four quark process proportional to the number of quark flavours),

ey (0% N 1 1 47r'l,l,2 ¢ Sii
mose6s) = (5 ) mamg [S1a () o (7))
3 (dmp®\" 197
2e< 5 ) T8 ”}
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with (at leading order in the number of colours) by = 11N/6 and where the sum runs over

the pairs of adjacent (colour connected) hard partons, ij = Q1G1, G1G2 and G2Q,.

Subtraction Term

Since there are three antennae, we subtract three antennae factors, such that the total

subtraction term is,

dog®  (2n)7 (N> =1\ rasN\? 2 7
== e < o > dPS(Q% a1, 91, 92, 93, G2)

B 2
Su(QﬁGl,ga;QQ)V“' \7(4)

X ( Agg100

2
+ Agigags|Su(a1; G, Ga; %)Vﬂi Jay

— 2
Su((h; g1, Go; Qz)Vﬂ\ \7(4) ) (5-48)

+ "49292(72

Here, we have used the mappings {pq,, g, Pg:} — {Pg:,Pc, } according to eq. (5.15) for the
first antenna. We recall that the subtraction occurs over the range § < min(sgg,, 8g1g,) < A
and that the observable function J; is applied to the momenta for @1, G1, g3 and g. Similar

procedures are applied to the other antennae.

However, we must add these terms back to the four parton contribution. Here it is

simplest to re-identify each of the four particle momenta with the momenta relevant for

tree level. In other words, for the first antenna, {py,, g, Pg.} — {pg,,Pc,} as before and

Pgs = PGys Pgo = P, This is safe to do since we integrate over the whole four particle phase

space. Altogether, we have,

dUZUb = (leGl + Fe,6, + ]:G2§2) dai‘o. (5.49)

Virtual Contribution

The leading colour virtual matrix elements can simply be read from equation 5.7. In terms

of cross sections we have,

do) = V(Q1; G1, Go; Q,)dot® + daX’ﬁnite, (5.50)
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with,

doy it (27)5 (N2 — 1Y) fasN\? . .
oo = s N2 ( o ) EA(GlaGQ) t7(4) dPS(QZ;leapGl;pGQ:paz): (Dbl)

and the divergent factor V' given by,
asN> (_P(SQ161) _ Plsayg,)  Plscia) §P(Q2)> (

ot
Ut
[\]
p—

V(Qi G G @) =

2 €2 €2 €2 2 €

Next-to-Leading Order Cross Section

Assembling the various pieces, and applying coupling constant renormalisation,

() (). e

the NLO four parton contribution is,

(&4
ot
w
S

da}fLO = da}{ + do,i“b + dazhce

= K(Q;G1, Gy @,)dos + doy i, (5.54)

where doL© and do finite o re given by eqgs. (5.44) and (5.51) respectively with the replacement
as — ag(p). The factor K is the sum of the divergent one-loop factor (eq. (5.52)), the slicing
factor (eq. (5.48)) and the subtraction term (eq. (5.49)),

K(Q1;G1,G%Qy) = V(Q1;G1, G2 Q) + R(Q1;G1,G2; Q)

.+fQ1G1 (SQIGI) -+ fGIGQ (8G1G2) + ‘FG2§2(SG262)

as(p)N 197 + 77_2
2m 18 2
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Similarly, the five parton leading colour contribution to four jet-like observables is ob-

tained from egs. (5.46) and (5.48),
dod© = dgs — dot®, (5.56)

evaluated with the running ag(p). By construction this is finite as any one particle becomes
unresolved. In the slicing regions, do)“© = 0, while the phase space regions over which the

subtraction terms are applied are implicit in the definition of the antenna functions.

Note that the four-dimensional limit of all cross sections may be taken with impunity
now that the singularities have cancelled. Furthermore, there is no dependence in K on the
slicing parameter § which may also be taken as small as desired. The subtraction parameter
A remains, and both do)*© and dol'© individually depend on it. However, the sum of both
contributions is independent of the choice of A. The precise value of A can be made bearing
in mind the numerical stability and speed of the final computer code. For small A, there
may be sizeable cancellations between the four and five parton contributions, while for large

A more CPU time is required to evaluate the subtraction terms.

5.6.4 Sub-Leading Contribution to the Cross-Section

It is straightforward to extend this approach to deal with all the sub-leading contributions

to the cross-section. Here we detail all the necessary subtraction and slicing terms to render

the full four and five parton contributions finite.

Five Parton Contribution

It is simplest to first identify the antennae that will contribute to each colourless subam-
plitude. The form of the five parton matrix elements is such that these are easily read off
from equation 5.10. The subtraction terms are divided into pieces corresponding to the four

parton matrix elements that are subtracted,

dof®®  (27) <N2 - 1) (asN

3
) aPS(@s..) T

oo S N2 2
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a 1 ng .. 2 -
x (A - A A +ﬁAd>, (5.57)

with the antenna terms given by,
A = AQ1y1g2 |SM(Q1§ G1, 93; (jQ)Vuiz + A919293 ISLL(‘h; G1, G; c72)Vu|2 A
_ 2 n
SM(Q1;917G2;Q2)V“ + ‘N£<-Aq1<i4q3 lSu(Ql;thQ;Cb)V“'z
. B _ 2
+ Agigs 1Su(a1; G, G @)V + Agaas |Su@r; 91, G QQ)V”’
_ 1 _
+ Ag@ma ISM(QH G1,Gy; QQ)Vu|2) - mAmgztb IS;L(QIQ G1, Go; QQ)V”? ;
~ ~ _ 2 - ~ _
Su(Q1;G1,93;Q2)V“' +Aq1g192 Su(Ql;g:a,Gﬁfh)V”
L 2 - 2
Su(q1; G, 95 Q)VH| + Agugare S(q13 35, Gr; Qo) V|
2np I — 2 o= 2
+ T('A%(hqz 83 81, Gos Q)VH| + Agua Su(@13 31, Gos )V )
1 1
- g (1 + ﬁ) <‘A4191172

: = 2
Su(Q1§91;93;Q2)Vu‘ +-Aq193§2

+ "492931?2

‘2

b _
A = AQIQIQZ

+ 'Ashgrzl?z

}2

S, (Q1; G2, G3; Q) V*

I — 2
+ Aq1g2ti2 SM(QIQ g1, 923 QZ)VM‘ ) ;

1
AC = (Aqlg(j4 + Aqggqg - (2"4415]54 + 2"4(]39‘72

N2
— 2A4190, = 2Aqi92: + Agioze + Aqsgth))T(la 2;1,2),
A = (Aqqu + Agiga. — %(Aqu@ + Agsgas + Aqga + Agson
— Agigas — Athgziz)) T(1,2;1,4). (5.58)

Four Parton Contribution

By examining equation 5.6, we see that the lowest order cross section for ete™ — 4 jets can
similarly be written as,

b
2N?

Ut

ot

o)
p

ng 2
dog? + FF dot® + = doy?, (5.

LO _ 4.LO
doy” =doy; ¢ T 32
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where each term dokO contains matrix elements multiplied by the four-parton phase-space

factor,
do}®  (2m)° (N? -1\ fasN 2 5 3
el ( . ) M, T dPS(Q%.. ), (5.60)
with the matrix elements given (in the notation of chapter 4) by,
— 2 ~ ~ —_— 2
Ma=T(3,4) = |8,(Q1;G1, G2 : Q)V*| My =T =[84(Q1; 1, Go : Q) V|
M. =T(1,2;1,2) , My =T(1,2;1,4). (5.61)

Following the same steps as we have explicitly demonstrated for the leading colour piece, we

can write the full four parton next-to-leading order contribution to the cross-section as,

Aol = do¥ +doS® + dofi
- {(lC(Ql; G, Go;Qy) — %K(Ql;@)} dogy
_ 5% {/C(Ql; G1; Q) + K(Q1;G2; Q) — (1 + %) (ng@)} o0
{ (@1:Q)) +K(@5: ) — 5 log ( 354) +5

N2 (2’C(Q1;@4) + 2K(Qs3; ) — 2K(Q1; Q3) — 2K(Qy; Q) + K(Qn; Q2)

+ K(Qs; Q4)+3log( 334)) +7;V—F(—199+310 ( ‘854))}@};’

o 3
+ K@@ + k@i 00 - s (52 ) + 5
]\1,2 ( (Q1;@y) + K(Qs,Q,) + K(Q1;@y) + K(Qs; Q) — K(Q1; Q3)
~ K(Q4;Q4) + 3log ( g§4>> + HFF (——199 + g log (%)) } dafff
+d0’X ﬁnlte' (562)

The finite term. doy ™" represents the functions L of chapter 4 and is easily read off
from equation 5.7, as are the extra logarithm terms that appear above. The factors of
(31/9 — 10np/9N) are due to the self-energy insertions which are included in the pieces

Lc(1,2;1, 7). By inspecting the form of the 5 parton matrix elements it is straightforward
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to deduce the subleading combinations of K factors needed, which are given by the slicing

terms from eq.(3.79) of [21] with n = 1 and n = 0 respectively, added to the integrated

antenna subtraction terms given earlier,

7'l'2 /L
Ko - (SE) (22 s (2) e (2)
G
S

QG
() (50}
+ (a;;“ )> by log (S—D , (5.63)
K(@Q) = <gs—gb73—N> {% + %2 +Foz (%) — glog (8(/%6) } (5.64)

In addition, the function for two quarks (or antiquarks) in an antenna is identical to that

for a quark-antiquark pair,

K(QiQy) = K(Q = QiQ = Q;)- (5.65)

5.7 Summary

In this chapter we have bridged the gap between the theoretical matrix element calculations
of chapter 4 and a numerical implementation of them suitable for making physical predic-
tions. By appealing to the symmetries of the matrix elements (ultimately, of the Feynman
diagrams themselves) we may reduce the number of function evaluations that are necessary
and thus decrease the required CPU time. More importantly, we have shown how the ma-

trix element and phase space singularities may be cancelled between the four and five parton

contributions.

By using a version of the hybrid subtraction scheme based on the radiation of a soft
parton from an antenna of two hard particles, we have identified all the relevant subtraction
and slicing terms that are necessary to render both partonic pieces finite. The resulting

contributions to the cross-section are summarized in equations 5.58 and 5.62.
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The following chapter will now be devoted to the study of a particular program written
using this approach, EERAD2. By performing Monte Carlo integrations over the appropriate

phase spaces, we can obtain predictions for a variety of four-jet like quantities that are well

defined in perturbation theory.



Chapter 6

Four Jet Predictions at NLO

6.1 Introduction

Electron-positron colliders, in particular those at both CERN and SLAC, have provided
much precision data with which to probe the structure of QCD. This is particularly valuable
data because the strong interactions occur only in the final state and are not entangled with
the parton density functions associated with beams of hadrons. In addition to measuring
multi-jet production rates, more specific information about the topology of the events can
be extracted. To this end, many variables have been introduced which characterize the
hadronic structure of an event. For example, we can ask how planar or how collimated
an event is. In general, a variable is described as n-jet like if it vanishes for a final state
configuration of n — 1 hadrons. With the precision data from LEP and SLC, experimental
distributions for such event shape variables have been studied and have been compared where
possible with theoretical calculations. Generally speaking, leading order (LO) predictions
successfully predict the general features of distributions, but can be improved by resumming
kinematically-dominant logarithms, by including more perturbative information or both. A
next-to-leading order (NLO) treatment of three-jet like variables was first performed in [17,
20] and systematically completed in [53]. Armed with such calculations, one can extract
a value for the strong coupling ag either directly from the event shape distributions [54]

or from the energy dependence of their average value [55]. Alternatively, one can study the
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group parameters of the gauge theory of the strong interactions, as we have already discussed

in chapter 2.

Having assembled all the relevant matrix elements in chapter 4 and described a suitable
numerical implementation of them in chapter 5, we are now ready to compute next-to-
leading order predictions for four-jet like observables. In section 6.2 we give the definitions
of a selection of these infrared safe observables that may be safely calculated in perturbation
theory. These are all non-zero only for event configurations which contain at least four

resolved particles and so may be predicted only by considering the process ete” — 4 jets.

The theory of the preceeding two chapters is used to construct the Monte Carlo pro-
gram which we refer to as EERAD2. Section 6.3 demonstrates the consistency of this pro-
gram by comparing some results with those produced by two other four jet programs MENLO
PARC [51, 56] and DEBRECEN [57]. In particular, we compare the thrust minor and D param-

eter distributions as well as the four jet rate as a function of the jet resolution parameter

Yeut -

In the remainder of the chapter we present next-to-leading order coefficients for the
differential distributions of the narrow jet broadening and light hemisphere mass and the y,
distributidn for the JADE algorithm. We compare these with experimental data from the
DELPHI collaboration.

6.2 Four Jet Shape Variables

The sorts of variables we are interested in are four-jet like, since they can only be non-zero
for final states in which there are four or more particles. They rely on the hadronic final
state having some volume and, when the event is coplanar, the observables are identically
zero. In the following definitions, the sums run over all N final state particles, k=1,...,N.

7 is the three-momentum of particle & in the c.m. frame, with components pt, i =1,...,3.

(a) C and D parameters.
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We first construct the linear momentum tensor,

pipl
o = =2 ol 6.1
o lpi 61
with eigenvalues A; for ¢ = 1,2, 3. The normalisation is such that 3> A; = 1. For planar

events one of the eigenvalues is zero. The C' and D parameters are defined by,
D =27\ A, (6.2)

and,
C - 3()\1)\2 —+ /\2/\3 -+ /\3)\1). (63)

D is only non-zero for four parton events, while for C < 0.75, three parton events

contribute. Only the region C' > 0.75 should be considered four jet like.

Thrust minor, Tinor-
We first define the thrust, major and minor axes (i1, 7i2, fi3) by,
5
T, = max MﬁTkl’ (6,4)
& >k |7k

where iy is constrained by 7i; - 7o = 0 and 7l = 71, X 7.

Light hemisphere mass, m7 /s.

The event is separated into two hemispheres Hy, H, divided by the plane normal to
the thrust axis 7;, as defined above. Particles that satisfy p;.7i; > 0 are assigned to

hemisphere H;, while all other particles are in H,. Then,
2
2
mr l o -
== . Z:%g ( Z pk) . (60)

Narrow jet broadening, Bmin.

Using the same division into hemispheres as above, we define,

o D X T
Buin = min 2 pecH lpli nl (6.6)
=12 23 |Pk]
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() Jet transition variable y.

The yJ variable denotes the value of the jet resolution parameter yey; at which an event
changes from a four jet event to a three jet event where the jets are defined according
to algorithm S. We consider the three algorithms already previously discussed (see

chaoter 2): the JADE-EO (S = J), Durham (S = D) and Geneva (S = G) algorithms.

Of these variables, the D distribution has been considered in [57, 58] and the C, Thinor and

yP distributions have been studied in [25].

The differential cross-section for one of these four-jet variables (O4) at next-to-leading

order can then be parametrized by two coefficients (just as for the 3-jet variable 1-Thrust,

equation 1.14 of chapter 1),

1 d 2 3 2
-0 d(i _ (a;;“)) Bo, +‘(0‘52§r“)> (250 log (-é‘?) Bo, + 004) . (6.7)

The parameters Bp, and Cop, represent the leading and next-to-leading scale-independent

factors for the observable O,. The coupling as is calculated at renormalization scale f,

extra dependence on which enters through the first coefficient of the beta-function, By =

(33 — 2ny)/ 6. 0p represents, as in the previous chapter, the lowest order 2-jet cross-section,

ete” — qq.

6.3 Monte Carlo Comparison

As a check of the numerical results, Table 6.1 shows the predictions for each of the three
Monte Carlo programs for the four jet rate for three jet clustering algorithms; the JADE-
E0 [8], Durham-E [9] and Geneva-E [10] algorithms. We show results with as(Mz) = 0.118
for three values of the jet resolution parameter yeus. There is good agreement with the results

from the other two calculations.

As a further comparison with the program DEBRECEN, we also compare the differential

distributions for the D parameter and thrust minor. For each observable Oy, the coefficients
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Algorithm | yey | MENLO PARC DEBRECEN EERAD?2
0.005 | (1.040.02) - 107! | (1.05 £ 0.01) - 107! | (1.05£0.01) - 107"
Durham | 0.01 | (4.70 £0.06) - 1072 | (4.66 + 0.02) - 1072 | (4.65 £ 0.02) - 107>
0.03 | (6.82£0.08)-107% | (6.87 +0.04) - 1073 | (6.86 + 0.03) - 107>
0.02 | (2.56 +£0.06) - 107! | (2.63 £ 0.06) - 10~ | (2.61 £ 0.05) - 10~
Geneva -| 0.03 | (1.71£0.03) - 10-! (1.75 4 0.03) - 107! | (1.72 £ 0.03) - 107"
0.05 | (8.58 4 0.15)- 1072 | (8.37 £ 0.12) - 1072 | (8.50 £ 0.06) - 10~
0.005 | (3.79 £ 0.08) - 107" | (3.88 £0.07) - 10~ | (3.87 £0.03) - 10"
JADE-E0 | 0.01 | (1.8840.03)-107" | (1.92+0.01)- 107" | (1.93£0.01) - 10"
0.03 | (3.46 +0.05) - 1072 | (3.37 £0.01) - 1072 | (3.35£0.01) - 10~

Table 6.1: The four-jet fraction as calculated by the program described in this chapter,
EERAD2 and the alternatives MENLO PARC and DEBRECEN. Results are shown for the different
jet recombination schemes and varying yc.. The rate is normalized by the O(as) total
hadronic cross-section, which is related to the 2-jet cross-section by oy, = go (1 + as/m).

Bo, and Cy, of equation 6.7 are presented in Tables 6.2 and 6.3. The results are tabulated for
the same bins as used in the papers [58] and [25], with each bin labelled by its central value.

~ The errors associated with each bin are those estimated by the Monte Carlo integration.

In Figures 6.1 and 6.2 we show the same results, normalized by the corresponding results
from DEBRECEN. Ideally we should obtain a straight line at unity, but in reality the Monte
Carlo errors mean that the errors associated with each point should simply encompass this
ideal. We see that this is the case for each of the distributions, with the agreement deteri-
orating slightly towards the tails. This just reflects the fact that each program is biased to
place more Monte Carlo weight (and thus smaller errors) where the cross-section is largest,

which corresponds to the observable O, being small (approaching the 3-jet region).
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Figure 6.1: Comparison of the differential distribution of the D parameter, as calculated
by the programs EERAD2 and DEBRECEN. Each point represents the ratio EERAD2/DEBRECEN,
with the dotted line showing perfect agreement.
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Tmin

Figure 6.2: As for Figure 6.1, but for the distribution of thrust minor, Tminor-
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[ D | By | Cp |
0.06 | (2.33+0.01)-10% [ (1.27 £0.01) - 10*
0.10 | (1.4840.01)-10% | (8.47 £0.07) - 10
0.14 | (1.03+0.01)-10% | (6.43 £0.08) - 10°
0.18 | (7.71£0.07) - 10" | (4.88 £0.08) - 10
0.22 | (5.86+£0.04)-10" | (3.83£0.07)10°
0.26 | (4.70 +0.04) - 10* | (3.01 £0.04) - 10°
0.30 | (3.73+0.03)- 10" | (2.45£0.04) - 10°

1 0.34| (297+0.03)-10" | (1.97£0.03) - 10°

10.38 | (2.44+0.03) 10" | (1.53 £0.05) - 10°
0.42 | (1.98+0.02)-10" | (1.38 £0.05) - 10°
0.46 | (1.61+0.02)-10* | (1.13£0.03) - 10°
0.50 | (1.32+0.01)-10" | (8.35+0.23) - 10°
0.54 | (1.06%+0.01)- 10" | (6.85%0.16) - 10
0.58 | (8.48+0.10)-10° | (5.44 £0.18) - 10
0.62 | (6.88£0.09)-10° | (4.40£0.11) - 10
0.66 | (5.44+0.08)-10° | (3.60 £ 0.09) - 10
0.70 | (3.99+0.06) - 10° | (2.66 & 0.07) - 10
0.74 | (3.04+0.03)-10° | (2.04 £ 0.09) - 10
0.78 | (2.25+0.03)-10° | (1.51 £0.03) - 10
0.82 | (1.58+0.02)-10° | (1.03 & 0.04) - 10
0.86 | (9.99 +0.11) - 107! | (6.63 £ 0.29) - 10!
0.90 | (5.72+0.07) - 107! | (4.0240.15) - 10'
0.94 | (2.50 +£0.03) - 107 | (1.69 & 0.06) - 10
0.98 | (5.29 4 0.05) - 1072 | (2.95 £ 0.15) - 10°

Table 6.2: The leading and next-to-leading order coefficients for the I) parameter.

6.4 Further Results

We now present the results for the differential distributions of the remainder of the four-jet
observables, namely the narrow jet broadening Bpin, the light jet mass m? /s and the four

jet resolution parameter in the JADE scheme, yi.

As we have explained in chapter 5, EERAD2 uses hybrid subtraction to isolate infrared
singularities, which involves introducing the two parameters § and A to control the slicing

and subtraction cuts. By running the program with different values of these parameters,
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it is straightforwardfto verify that the results are independent of them. For the tables and

plots presented here we have used the values,
§=10"°% and A=10""

The next-to-leading order coefficients for the further variables are presented in Tables 6.4 -
6.6. These coefficients may be inserted into equation 6.7 with a suitable choice of scale 1 and
strong coupling aig. We may present the canonical comparison by choosing the physical scale
1= Mgz, ag(Mz) = 0.118 and comparing with data from the DELPHI collaboration [59].
Predictions for the light jet mass, narrow jet broadening and jet resolution yy in this scheme
are shown as the solid lines in Figures 6.3 — 6.5. These are to be contrasted with the lowest
order predictions which are represented by the dashed lines and which lie substantially lower
than the data. In all the distributions, it can be seen that the inclusion of the next-to-
leading order terms increases the theoretical prediction by a factor of approximately 100%

throughout most of the range.

As we have discussed in chapter 1, although results for jet distributions are typically
presented at the physical scale, it may be theoretically advantageous to consider other choices
of scale. Since for many of the distributions the physical scale yields NLO corrections which
are large but still lie well below the data', such considerations seem even more pertinent.
Given that at present the evaluation of the NNLO corrections to 4-jet like quantities seems

rather infeasible we should attempt to utilize our NLO knowledge in as complete a manner

as possible.

At this point it is worthwhile to recall the discussion of chapter 1, where we considered
different schemes for choosing the renormalization scale. Where the data lies above our
prediction with the physical scale, clearly a smaller scale p is preferred, where () would
be larger. In the case of the thrust distribution, we found that both the FAC and PMS scales

naturally selected such a smaller scale and a similar treatment here may be beneficial.

1In fact, this is the case for all the distributions except the jet resolution y4 in the JADE scheme.
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102 —— ————— ]
o Delphi (Charged) -]
a Delphi (Charged and Neutral) |

1/0pad do /dBpin

0.2

Figure 6.3: The By, distribution at next-to-leading order (solid line), compared with the
lowest order result (dotted line). The open circles (boxes) show the charged (charged and

neutral) data from the DELPHI collaboration.
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Figure 6.5: As for Figure 6.3, but for the y; distribution.
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6.5 Summary

In this chapter we have introduced a selection of four-jet observables and made next-to-
leading order predictions for them using the program EERAD2 which is based upon the work

of chapters 3-5.

For some of the observables, such as the jet rates, thrust minor and the D parameter,
where next-to-leading order results were already available, EERAD2 provides consistent re-
sults. The remaining distributions are presented in the form of tables of scale-independent
coefficients and plots with the strong coupling as evaluated at the physical scale. At this
scale, the next-to-leading order corrections are large, but typically leave the perturbative

prediction still well below the DELPHI data.

This concludes our discussion of the calculation of this 4 jet process. We now turn our
attention briefly to the consideration of infrared singularities and factorization when applied

at next-to-next-to-leading order.
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[‘Tmiﬂor ‘ Tminor CTminor

0.03 | (1.95+0.02)-10° | (7.48£0.10) - 10
0.05 | (1.06+0.01)-10° | (5.45+0.09)-10*
0.07 | (6.8340.04)-10% | (3.94+0.04)-10*
0.09 | (4.69+0.03)-10% | (2.82+0.05)-10*

011 | (3.3240.02)-10% | (2.08£0.03) - 10*
0.13 | (243£0.02)-10% | (1.47+0.01)-10*
0.15 | (1.79+0.01)-10% | (1.14+0.01)-10*
0.17 | (1.37£0.01)-10% | (8.52+0.17)-10°
0.19 | (1.03+0.01)-10% | (6.56 £0.13)-10°
0.21 | (7.84£0.07)-10" | (4.77£0.23)-10°
0.23 | (6.01+£0.06)-10" | (3.58+£0.18)-10°
0.25 | (4.65+0.05)-10" | (2.54+0.08)-10°
0.27 | (3.63+£0.04)-10' | (1.94+0.04)-10°
0.29 | (2.7640.03)-10' | (1.41+0.06)-10°
0.31 | (2.1740.02)-10" | (1.14£0.04)-10°
0.33 | (1.7040.02)-10' | (7.05=+0.42)-10°
0.35 | (1.28+0.02)-10* | (5.16+0.24) - 10°
0.37 | (9.62+0.13)-10° | (3.48+£0.12)-10°
0.39 | (6.96+0.11)-10° | (2.50£0.15) - 10°
041 | (5.1740.07)-10° | (1.73£0.11)-10°
0.43 | (3.6240.06)-10° | (1.12+0.06) - 10
0.45 | (2.4540.04)-10° | (6.19+0.78) - 10"
0.47 | (1.6040.03)-10° | (2.83+0.22)-10'
0.49 | (9.38+£0.12)-107 | (1.46 £0.28) - 10
0.51 | (5.0840.10)- 107" | (7.98 £1.50) - 10°
0.53 | (2.17+0.04) - 107" | (1.35410.68) - 10°
0.55 | (6.41+£0.13)-1072 | (~1.44£0.15) - 10°
0.57 | (4.90+0.20)-1072 | (—2.97 £0.28) - 10"

Table 6.3: The leading and next-to-leading order coefficients for Tininor-
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’7Bmin ‘ BBmin I CBmi" |

0.0150 | (1.19+0.01)-10° | (3.31+0.06) - 10*
0.0250 | (7.0740.07)-10? | (2.51£0.02) - 10*
0.0350 | (4.7540.05)-10% | (1.91+0.02) - 10
0.0450 | (3.4240.03)-10% | (1.40=£0.01) - 10*
0.0550 | (2.51 4 0.02)-10% | (1.06 £ 0.02) - 10*
0.0650 | (1.86 4 0.02)-10% | (7.99 £ 0.07) - 10
0.0750 | (1.4240.01)-10% | (6.25£0.08) - 10°
0.0850 | (1.09 & 0.01)-10% | (4.82+0.08) - 10°
0.0950 | (8.33 4 0.06) - 10 | (3.58 £0.09) - 10°
0.1050 | (6.37 +0.06) - 10! | (2.77 £0.08) - 10°
0.1150 | (4.7240.04)-10' | (2.13+0.04) - 10°
0.1250 | (3.4240.03)-10' | (1.39+0.02)-10°
0.1350 | (2.45+0.02) - 10 | (1.06 +0.02) - 10°
0.1450 | (1.6440.02)-10' | (6.91+0.11) - 10
0.1550 | (9.90 & 0.09) - 10° | (4.30 £ 0.14) - 10
0.1650 | (4.85+0.06) - 10° | (2.12+0.08) - 10
0.1750 | (1.7140.03)-10° | (7.01+0.21)- 10"
0.1850 | (4.29 4 0.06) - 107! | (1.62 £ 0.06) - 10’
0.1950 | (5.61 +0.13) - 1072 | (1.18£0.14) - 10°
0.2050 | (4.16 & 0.22) - 10™* | (9.68 £5.46) - 10~°

Table 6.4: The leading and next-to-leading order coefficients for the narrow jet broadening
Bmin-
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rm%/s l Bm2 /s Cm%/s
0.0150 | (3.26 +£0.07) - 10° | (1.38£0.02) - 10*
0.0250 | (1.88 +0.03)-102 | (8.71+0.08)- 103
0.0350 | (1.2440.02) -10% | (5.92+0.07) - 103
0.0450 | (8.46 £0.11)-10' | (4.07 +0.06) - 10°
0.0550 | (6.0140.08)-10' | (3.08+0.08) - 103
0.0650 | (4.27+0.05)-10" | (2.10 £ 0.04) - 103
0.0750 | (3.1140.05)-10' | (1.60 +0.03) - 103
0.0850 | (2.1440.03)-10* | (1.09+0.02) - 10°
0.0950 | (1.44 £0.02)-10" | (7.43+0.16) 10?
0.1050 | (8.94+0.11)-10° | (4.84 £ 0.15) - 107
0.1150 | (5.26 £ 0.08) - 10° | (3.19 % 0.06) - 10
0.1250 | (2.38+0.04) - 10° | (1.68 4 0.05) - 10
0.1350 | (8.49 + 0.24) - 1071 | (6.34+ 0.24) - 10!
0.1450 | (2.45 + 0.06) - 1071 | (1.78 £ 0.05) - 10!
0.1550 | (4.46 £0.14) - 1072 | (3.89 % 0.20) - 10°
0.1650 | (1.70 % 0. 13) 1073 | (1.97 +0.20) - 10~
0.1750 (8.98 £ 3.09) - 10~¢
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Table 6.5: The leading and next-to-leading order coefficients for the light jet mass m? /s.
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I Vi | By Cyy
0.0075 | (5.97 £ 0.03) - 10? (1.74 £ 0.04) -10*
0.0125 | (3.65+ 0.02) - 102 (1.32 £ 0.02) - 104
0.0175 | (2.45+0.02) 102 | (9.68+0.12)-10°
0.0225 | (1.80+0.01)-102 | (7.86+0.12)-10°
0.0275 | (1.30 £ 0.01) - 102 (5.83 £ 0.14) - 10®
0.0325 (1.03 +0.01) - 102 (4.97 0.13) - 103
0.0375 | (7.96+0.08) - 10! | (3.85+0.08)-10°
0.0425 | (6.19 £ 0.06) - 10! (2.82+ 0.06) - 103
0.0475 | (4.91 +0.05) 10" | (2.2740.07)-10°
0.0525 | (3.93%0.04) 10" | (1.95+0.08)-10°
0.0575 | (3.120.03) 10" | (1.47+0.03)-10°
0.0625 | (2.48+0.02) 10" | (1.2240.04)-10°
0.0675 | (1.94+0.02) 10" | (9.47+0.41)-10°
0.0725 | (1.57 +0.02) 10" | (7.70+0.26) - 10
0.0775 | (1.19% 0.01) - 10! (5.92 + 0.33) - 102
0.0825 | (9.40=£0.10)-10° | (4.1640.18) - 102
0.0875 | (7.08£0.11)-10° | (3.45+0.20) - 102
0.0925 | (5.39% 0.06) - 109 (251 £ 0.08) - 10?
10.0075 | (3.87£0.07)-10° | (1.85+0.09) - 10°

0.1025 | (2.85+ 0.04) - 10° (1.46 £ 0.08) - 10?
0.1075 | (2.00 £0.04) - 10° | (1.00 % 0.09) - 102
0.1125 | (1.31 £ 0.03) - 10° (5.93 £ 0.40) - 10!
0.1175 | (8.14 % 0.15) - 107! | (5.19 4 0.46) - 10!
0.1225 | (5.28 +0.12) - 107! | (2.45+0.16) - 10!
0.1275 | (3.12+0.07) - 10°! | (1.44 4 0.14) - 10!
0.1325 | (1.63+£0.03)- 107! | (7.68+0.57) - 10°
0.1375 | (9.22+0.18)- 1072 | (4.3240.37) - 10°
0.1425 | (4.32+0.11)- 1072 | (2.36+0.20) - 10°
0.1475 | (1.62 £ 0.04) - 1072 (7.92 & 1.18) - 1071
0.1525 | (5.14+0.17) - 1073 | (2.3440.22) - 107!
0.1575 | (1.03£0.03)- 1073 | (4.15+0.77) - 1072
0.1625 | (6.42 £ 0.34) - 10~ (3.73 £ 0.60) - 103
0.1675 | (8.16 £ 4.91) -1078 (—1.07+ 0.97) .10

Table 6.6: The leading and next-to-leading order coefficients for the jet resolution parameter
yJ, where the superscript denotes that the jets are defined according to the JADE algorithm.



Chapter 7

Double Unresolved Factorization

7.1 Introduction

In this chapter we now return to the calculation of the five parton matrix elements of
chapter 4 and consider some other uses of those results. There, and in subsequent chapters,
we concentrated on their specific application to 4-jet production. In this chapter we will
use these matrix elements to illustrate a more general feature of QCD amplitudes, that of
factorization in soft and collinear limits. As a specific example, we will show how we may

introduce new factorization functions that would play a role in the NNLO calculation of the

process ete™ — 3 jets.

The soft gluon and collinear parton limits of multiparton scattering amplitudes are well
known. As discussed in chapter 2, colour-ordered n parton sub amplitudes factorize into

(n — 1) parton amplitudes with the unresolved particle removed, multiplied by eikonal (soft)

factors,

48,
7.1
Sabsbc, ( )

or Altarelli-Parisi (collinear) splitting functions (equations 2.9).

Sabc(saw Sab, Sbc) =

In this chapter, we shall extend the factorization of multiparton scattering amplitudes to

include all the cases where two particles are considered unresolved (pictured in Figure 7.1).

150
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There are a variety of different configurations, comprising:

(a) two soft particles, (b) two pairs of collinear particles,

(c) three collinear particles, (d) one soft and two collinear.

o
& Double

omé;ggm —>»  Unresolved x Qo
Co, Factor

Figure 7.1: An illustration of the double unresolved factorization from an (n + 2) particle
state into one containing only n resolved particles. The hard part of the process remains
unchanged while two of the gluons are unresolved by one of (a)-(d) described in the text.
Such configurations are relevant for calculations at next-to-next-to-leading order and
beyond, and in particular we will present suitable double-unresolved approximations for
the ete~ — 5 partons matrix elements, relevant for the calculation of ete” — 3 jets at
NNLO. A brief discussion of the calculational structure of this process follows in section 7.2.
Sections 7.3 and 7.4 are organised according to whether the two unresolved particles are
colour connected or not. The precise meaning of what colour connected means will be given
in sect. 7.3. In the unconnected case, the singular limits are obtained by merely multiplying
single unresolved factors. However, when the particles are colour connected, the structure
is more involved (sect. 7.4) and we give explicit formulae detailing the double unresolved

singular factors for all of the configurations (a)-(d) above. In each case we write down

expressions for the double unresolved limits of the five parton process.

7.2 Three Jet Production at NNLO

One of the next steps in theoretical perturbative QCD calculations is to evaluate the next-
to-next-to-leading order corrections to the three-jet rate. Current analysis of three jet events

and other hadronic event shapes gives a global average value of the strong coupling constant
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as [54],
as(Myz) = 0.121 + 0.005.

Together with LEP/SLC data and hadronic events from the next linear collider, NNLO input

would play a role in reducing this error on ag(Mz) to the 2-3% level.

However, to accomplish this, several ingredients are necessary. As has been extensively
discussed in preceding chapters, the calculation of any n-jet observable at the one-loop level
requires the evaluation of both real (n 4 1)-parton and virtual n-parton matrix elements.
At two loops, there is a still greater number of contributing partonic processes. These are
illustrated in Figure 7.2 for the case of three jet production, where we consider all the possible

cuts of a relevant O(a2) 3-loop diagram. There are four types of contribution:

e (a) 2-loop, 3 partons
The interference of the 2-loop with tree-level 3-parton diagrams forms the first con-
tribution. Evaluation of these matrix elements appears to be a major hurdle, since
even the scalar two loop box integrals with massless internal and external legs are not

known analytically. Some progress towards the evaluation of these formidable integrals

has been made in [60, 61].

¢ (b) 1-loop, 3 partons
A second category of matrix elements is formed by the interference of the 1-loop 3

parton matrix elements with themselves. These are known amplitudes and their im-

plementation should not be problematic.

e (c) 1-loop, 4 partons
The matrix elements of chapter 4 form a third contribution, when one of the partons
is unresolved. The singularities must be systematically isolated when either a gluon is
soft or two partons are collinear. In ref. [62], Bern et al., have developed appropriate

splitting functions for one-loop processes where two external particles are collinear.

e (d) Tree level, 5 partons

Finally, two particles may be unresolved, again leading to infrared singularities that
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must be analytically isolated and then numerically combined with all the above con-
tributions. In order to extract all the singularities, we must first find suitable approx-
imations to the five parton matrix elements with two particles unresolved. This is the
problem which we shall address later in this chapter, extending the earlier study of

multiple soft gluon emission by Berends and Giele [63].
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Figure 7.2: A 3-loop diagram which, when cut in all possible ways, shows the partonic
contributions that need to be calculated for efe™ — 3 jets at next-to-next-to-leading order.
Writing the ¢-loop, n-parton amplitude as M(nl), the dashed lines represent the cuts that
correspond to the following squared interferences of amplitudes: (a) Mgo) X Mgz), (b) Mgl) X

M () MO x MP and (d) MD x M.

Of course, much work still remains to be carried out before a genuine NNLO prediction
may be made. Not least of these is analytically integrating the double unresolved approxi-
mations over the appropriate regions of phase space. However, the approximations presented

in the remainder of this chapter provide a first step in this direction.

7.3 Colour Unconnected Double Unresolved

In the cases where the two unresolved particles are not colour connected, the factorisation of

the amplitudes involves the well-known functions describing single soft and collinear emission.



CHAPTER 7. DOUBLE UNRESOLVED FACTORIZATION 154

We first describe what is meant by colour connected and colour unconnected.

7.3.1 Colour Connection

We have seen how tree level matrix elements can be decomposed into colour ordered sub-
amplitudes which have nice factorisation properties in the infrared limits. Therefore it is
useful to view the matrix elements in terms of the colour structure associated with the
subamplitudes. For example, in chapter 4, we introduce the two quark-three gluon sub-
amplitude S,(Q1;1,2, 3;Q,), which is associated with the colour structure (T T2T%) ., -
This is a colour antenna that ends on the quark/antiquark colour charges c¢; and c; with
ordered emission of gluons with colour ai,...,as. Within this colour antenna, gluon 1 is
colour connected to the quark @, and gluon 2, but not to the antiquark @, or to gluon 3.
It is easy to re-interpret the colour connection in terms of the singularity structure of the
matrix elements: particles a and b are colour connected when the matrix elements have a
pole in the invariant sq. In cases involving more than one quark-antiquark pair there can be
many colour antennae. For example, the four quark amplitude A1 (Qy; 1;Q,|Q3;Q,) in
chapter 4 describes a process with two separate colour antennae. In general, the particles in
one antenna are not colour connected to the particles in one of the other antennae. However,
there is one case where particles in adjoining antenna can usefully be thought of as colour

connected. This is when there is an antiquark at the end of one antenna and a like flavour

quark at the beginning of another,
A(..,QlQ,...).

When this quark-antiquark pair are collinear, they combine to form a gluon G, which then

connects, or pinches together, the two separate colour antennae, so that,
|A(..,Q|Q, .. )2 = Puoc(z, sQ§)|A(. ..,a,G,b,.. )%

This is illustrated diagrammatically in Figure 7.3. A useful definition of colour “connected”
" therefore includes these antennae pinching configurations along with the more straightfor-

ward colour connection within a single antenna. All other cases are colour “unconnected”.
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Figure 7.3: The pinching together of two antennae which gives rise to the factorization of
equation 7.3.1. :

7.3.2 Two Collinear Pairs

Two pairs of particles may become collinear separately, but with the particles in one or
both of the pairs themselves not colour “connected”. In these cases, there are no singular
contributions containing both of the vanishing invariants. For instance, if partons {a, d} and

{b,c} are collinear then,
A(...,a,...,b,...,¢,...,d,...)|* = less singular. (7.2)

By this we mean there is no contribution proportional to 1/s.q4ss. and once again, when
integrated over the small region of phase space relevant for this approximation yields a

negligible contribution.

The situation where two pairs of colour “connected” particles are collinear is also rather
trivial. If partons a and b form P, while ¢ and d cluster to form @, so that P and Q are

themselves colour unconnected, then,
|A( -5 Gy b7 -y Gy da . )|2 - Pab—)P(Zla sab) Pcd—)Q(ZQa scd) ’A( <oy P, ey Q, .. )|2 (73)

Here, z; and 2, are the momentum fractions carried by a and ¢ respectively. A similar result
holds if either of the pairs involves particles in separate antennae, but which are able to

undergo antenna pinching. The collinear splitting functions are related to the (colourless)
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Altarelli-Parisi splitting kernels by eq. (2.8) which, in the conventional dimensional regular-
isation scheme [14] with all particles treated in D = 4 — 2¢ dimensions, are given by (2.9) of

chapter 2. As before, azimuthal averaging of the collinear particle plane is understood.

Double Collinear Limit of eTe~ — 5 Partons

In this limit where two pairs of partons are simultaneously collinear, the five parton matrix
elements factorise into the three parton matrix elements multiplied by a combination of
products of collinear splitting functions. Summing over all possible unconnected double

collinear limits, for the two-quark currents we find,

_ 2 2
Su(@1;1,2,3;Q)VH — (PQ11—>QP23—>G + PoiisePsg,mg + P12—+GP3§2_,§) ’Szvu‘ ;
. 2
S.(@1;1,2,3; Q)VH| — (PQ11—>QP2§2—>§ + PQ13—>QP2§2—>§ + PQ11—>QP352—>5
2
+Pg,350P 126 + P12—>GP3§2_,§) |3§’,V“ ;

- o~ o~ — 2 2
S.(Q:1,2,30)v = 3 PonsePig,g |sf’;w| , (7.4)

P(1,2,3)

whilst the only contributing pieces for the four-quark process are,
2 e:
| ) sivel
2

3
vl

} Ql; QQa Q3, Q4a V“ (PQ11—>QP Q,Q3—G + P1Q4—>QPQ2Q1—>G
'7; Qla @47 Q37 @27 1)VM'

771#(@17 @2) Q3> @4) 1)Vﬂ\

2

(PQ11—>QP Q,Q3—G + PIQZHQPQa:Qs—)G)
2

(PQ11—>QP Q,Q3—G + Ple—‘)QPQ4Q3"’G

2
3 -
+PouePg,00m0 + PigaFaea) [SV!] - (79)

For brevity we have dropped the arguments of the splitting functions. Explicitly, for np

flavours of quark, we find,

sl oz = (28) (52)

X (PQ11—>QP23—>G + Pig,ghie-c + Pon-oePig, -0

2np 1
+—]_V‘PQ11—>QPQ4Q3—>G 2N2 (PQll——)QPQQ ) + PQ13—>QP2Q _)Q)) (7'6)
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Note also that the identical gluon factor 1/3! is eliminated since each term in the sum over
permutations produces an identical contribution. It is interesting to review the origin of
the factor of ng. There are np(np — 1)/2 contributions from two unlike pairs of quarks,
each of which generates two sets of singular limits - that indicated plus the symmetric term
(@1 & Q3,Q, & @,). In addition there are np like-quark pair contributions, which after
the symmetries have been applied yield four singular limits. However, the identical quark

contribution is multiplied by the identical particle factor 1/4 so that the net result is,

np(ng — 1) 9

><2+npx4><Z:nF.

e |2
One factor of np is absorbed into the three parton matrix elements lSﬁV “‘ , while the other

appears as an explicit factor.

7.3.3 Triple Collinear Factorisation

If three collinear particles are colour “unconnected” then there is no singularity. So if a, b

and c all become collinear,

~J
=1
SN

IA(...,a,...,b,...,c,...)|2-—>ﬁnite, (7.

and there is no singular contribution involving the invariants Ses, Sec OT Sabe- As before,
because the region of phase space where the triple collinear limit is valid is extremely small,
this gives a negligible contribution to the cross section. When two of the three collinear

particles are colour “connected” we find a singular result,
JA(..,a,...,b,¢, . )P = 1/ spe. (7.8)

However, when integrated over the triple collinear region of phase space that requires Sgp, Sbe
or Sge all to be small, we again obtain a negligible contribution that is proportional to the
small parameter defining the extent of the triple collinear phase space. We therefore ignore

contributions of this type.
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7.3.4 Soft/Collinear Factorisation

Two particles may be unresolved if one of them is a soft gluon and another pair are collinear.
When the soft gluon g is not colour connected to either of the colour “connected” collinear

particles ¢ and d, factorisation is straightforward,

|A(...,a,9,b,...,¢,d,...)|°> = Sags(Sabs Sag» Sbg) Pears P (2, sea) AL .. a,b, ..., P )
(7.9)

Soft /Collinear Limit of ete™ — 5 Partons

Tn the soft/collinear limit, the five parton matrix elements again factorise into a singular
factor multiplying the squared two-quark current relevant for three parton production,
5.0i1,2,30)V" = (SainPig,-g+ Pens0Sxa,) savef”
Su(@131,2,3, @)V"l2 ~ (Squ2Pig,g + Pais-aSig, + Pi25650,33,) ’53‘”“|2~
(7.10)

oo x 2
Note that for ‘S,L(Ql; 1,2,3; QQ)V“| . the soft and collinear limits are considered to be over-
lapping and will be dealt with in section 7.4.2.

In the four-quark current case, the soft/collinear limit has only two colour-unconnected
contributions. The first is given by, ‘

TB(Q1, 0 Qs, O VV*| = Sy 15 P, syl 7.11

' w (QlaQ4’Q37Q2a1) ‘ — Q11§2 QS—Q_4_;G‘ 1 | 5 ( . )

whilst the limit of, ’7}(@1,@@@3,@4; 1)V“’2, again involves both unconnected and con-

nected factors and therefore discussion of this will also be deferred until section 7.4.2. The

other subamplitudes vanish in the unconnected soft/collinear limit.

Applying these limits to the full five parton matrix elements is straightfoward and, after
removing identical particle factors where necessary, we find,
2
Liaseni2 . 1asoul? (PN s ul?
_ H Sy/plT — | 2 3171
3!|suv ] +|7;v 1 = ( 5 |82V \
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N? -1 1
x [( e ) (San12Pig,5 + PoiseSug,) - Nz T122650,33,

ng ‘ .
+]_\/‘—3_SQ11§2PQ3§4—>G} : (712)

7.3.5 Two Soft Gluons

When two unconnected gluons are soft, the factorisation is again simple [63]. For gluons g,

and g soft we find,

I-A( -4, 91, ba -3 G g2, d, o )|2 _> Sag1b(sab> Sag:> Sbgl)chgd(Scd; Scgs Sdgz)

xJA(...,a,b,...,c,d,..)J, (7.13)

so that the singular factor is merely the product of two single soft gluon emission factors

given by eq. (7.1). Note that b = ¢ is allowed.

Double Soft Limit of ete~ — 5 Partons

The sum over the unconnected double soft limits of the colour ordered subamplitudes can

be easily read off,
5@ L2 3TV = SouSyg, SV
lS“(Ql; 12, 3;@2)‘/“]2 - <5Q112SC213§2 T SQ13§25122§2) ‘ngu|

~ o~ o~ — 2
8,(@1;1,2,3,Q,)v svel. (7.14)

2
3

‘2

1
- 5 Z SQ11§25Q1262
P(1,2,3)

There is no contribution from the four-quark matrix elements. Inserting these limits into
the full five parton matrix elements yields,
2
Liasoul?  1asoul2 (9PN 185002
_ u Syl (220 3y
sl 7zl = (%) 18w
1
x SQ112523§2 - ]_VE <SQ112Sle@2 + SQ13§251262)

N?+1 -
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where once again the sum over permutations is eliminated by the identical particle factor.

7.4 Colour Connected Double Unresolved

The factorisation that occurs when the two unresolved particles are colour “connected” is
necessarily more involved than that in section 7.3. In particular, we will need to intoduce

new functions to describe this factorisation.

7.4.1 Triple Collinear Factorisation

When three colour “connected” particles cluster to form a single parent parton there are

four basic clusterings,

999 — G, q99 — Q,
9q9 — G, qqq — Q,

and the colour ordered sub-amplitude squared for an n-parton process then factorises in the

triple collinear limit,
A(..,a,b,¢,.. ) > = Papesp|A( .., P, .. I (7.1)

As before, partons able to undergo antenna pinching are considered to be colour connected,
so that there may be contributions from amplitudes such as A(...,a,b|c,...). The triple

collinear splitting function for partons a, b and c clustering to form the parent parton P is

generically,

Pabc__;P(w, Ly Y, Sabs Sacs Sbes Sabc); (72)

where w,  and y are the momentum fractions of the clustered partons,
Po=wpp,  Dy=71pp, Pc=ypp, Withw+z+y=1 (7.3)

In addition to depending on the momentum fractions carried by the clustering partons,

the splitting function also depends on the invariant masses of parton-parton pairs and the
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invariant mass of the whole cluster. In this respect, they are different from the splitting
functions derived in the jet-calculus approach [64], and implemented in the shower Monte

Carlo NLLJET [65], which depend only on the momentum fractions.

The triple collinear splitting functions Py, p are obtained by retaining terms in the full
matrix element squared that possess two of the ‘small’ denominators Sgp, Sec; Sbe and Sgpe-
As before, we consider the explicit forms of the v* — four and five parton squared matrix
elements and work in conventional dimensional regularisation, with all external particles
in D = 4 — 2¢ dimensions. Similar results could be derived using helicity methods or by

examining the on-shell limits of the recursive gluonic and quark currents of ref. [66].

Although the splitting functions are universal, and apply to any process involving the
same three colour connected particles, for processes involving spin-1 particles, there are
additional (non-universal) azimuthal correlations due to rotations of the polarisation vec-
tors. These angular correlations do not contribute to the underlying infrared singularity
structure and vanish after all azimuthal integrations have been carried out and we therefore

systematically omit them. A discussion of the methods used to obtain the correct azimuthal

dependence is contained in Appendix F.

Strong Ordering

A further check on our results is provided by the strong-ordered limit, where the particles
become collinear sequentially rather than at the same time. In the limit where one of the
double invariants is much smaller than the triple invariant, the triple collinear function should
factorize into the product of two (usual) Altarelli-Parisi splitting functions, plus azimuthal

terms [67].

As a concrete example, consider the splitting (123) — 123 where s;5 < $123, With the
particles carrying momentum fractions w, ¢ and y of the parent momentum P. In the
strong-ordered picture this corresponds to two consecutive splittings into fractions a and b,

as shown in Fig. 7.4.
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p1 (W)

P2 (%)

p; (¥)

Figure 7.4: Consecutive splittings in the strong-ordered approach. The momentum carried
by the intermediate parton (q) is Q.

Thus we expect,

1

5125123

Paagy—s123(w,z,y) = (P(123)—>q3(a)Pq—>12(b) + ®(123)5123(a, b)> ; (7.4)

where ®53(a, b) represents angular correlations. In fact we know that these angular correla-
tions are only present when the intermediate parton in the strong-ordered picture is a gluon

and ®43(a,b) = 0 otherwise.

From the relations, .

b = wP = bQ:
po = zP=(1-0)Q,
p3 = yP=(1-a)P,

we find that we should set,
a=1-y, b=-—-. (7.5)

We also have sp3/s13 = (1 — b)/b so that,

513 = bs123, s93 = (1 — b)s193.
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By using these substitutions we can make comparisons with the expectations of the strong-
ordered approach and thus provide further checks on the functions describing triple collinear

emission which we shall present in the remainder of this section.

Three Collinear Gluons

Firstly, examining the sub-amplitudes for multiple gluon scattering, we find that the colour-

ordered function Py, is given by,

Pabc—%G(wa Z,Y, Sab; Sbe, Sabc) =8 X {

(1 =€) (z850c — (1 — y)5pc)? N 2(1 — €)spe N 3(1 —¢)

_|_
SZbS(QLbC (1 - y)2 Sabsgbc 2Sz2zbc

N 1 ((1—y(1—y))2_2332+:1:y+y2 :Ew—:vQy—2+26 x )
SabSabe yw(l - w) 1- Yy y(l - y) (1 - y)

N 1 <3$2_2(2—w+w2)(x2+w(1—w))+_1_+ 1 )}
25abSbe y(1-y) yw  (1-y)(1-w)

+  (Sap € Spe, W <> y) + azimuthal terms. (7.6)

This splitting function is symmetric under the exchange of the outer gluons a and ¢, and

contains poles only in s, and sp.

Two Gluons with a Collinear Quark or Antiquark

There are two distinct splitting functions representing the clustering of two gluons and a
quark which depend on whether or not the gluons are symmetrised over. In the unsym-
metrised case, there will be poles in s, 4,, due to contributions from the triple gluon vertex

which are not present in the QED-like case. For the pure QCD splitting we find,

Pyg16:+0(W, T, Y, Sqg15 Sags» Sgrgas Sqg192) = 4 X {

P ((l—e)<lzw2+1?1(1_;§")2)+2e (%Jrll_;g}))

399159192

N _1_<(1_6) ((1—y)3+w(1—$)—2y> _6<2(1—y)(y—w) _x) _sz)

5991599192 y(1 —w) y(1—w)
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N 1 <(1_6) <(1—y)2(2—y)+$3+2xw—2—y> 26(zw—y—2yw))
59192549192 y(1 —w) y(1 — w)
2 (zs — (1 = w8,y ) 1
+ (1-¢) ( : > ( . ) ggl) + <4 T (1) 4 (3 e)>) },(7.7)
Sglgzsqmgz( - w) Sg919: \ Sqig2 Sqq

while for the QED-like splitting where one or other or both gluons in the colour ordered

amplitude are symmetrised over,

qu~1g~2—>Q(w7 T, Y, Sq915 Sqg2» nglg2) =4 X {

1 w
+ (1 4+ w? - e(2® + 2y + ¢*) — €2y
2549, Sqg, TY ( )
1 1
+ ———= (w -z +euy)+ (1)’ — (1 - y) (& + 2y +y°) + Eay)

899159192 XY

(-9 ((1 _ E)Sﬂ _ 5>} 1 (Sgg1 € Sgg2, T > Y)- (7.8)

2
81191 g2 8092

The function Py 4,¢ can be interpreted as the relevant triple collinear splitting function
with one or both of the gluons replaced by photons. As such, this result echoes that found
in [68] for P,g,—¢. Using charge conjugation, we see that the functions representing clustering

of two gluons with an antiquark are simply,

Pgwyj—)@(w7 Z,Y: 591925 89201 S914 Sglgzti) = P‘IQIQZ_)Q(y’ T, W, 54925 84915 Sg192> Sglgzt?):

Pg}g’g(j—)@(w’ L5 Y5 59205 S 89192!7) = P4§1§2—+Q(y’ T, W; Sqgz> Sggr> 59192‘7)' (7'9)
A Quark-Antiquark Pair with a Collinear Gluon

Similarly the clustering of a gluon with a quark-antiquark pair into a parent gluon again has
two distinct functions. For example, there is a singular contribution from the four quark
matrix elements when @Q,, Q3 and the gluon cluster,

IEA(Q1,@23Q3,@431)VH‘2 ‘2

= |AZ9(Q1;1;QulQ5 Qo) V" + AT (Q3; Qs]Qu 1 @V

2
— P00 [sﬁw[ :
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Here, the singular contribution comes entirely from the first A term where combining Q.

@3 pinches the two colour lines together. Explicit evaluation yields,
Pyag6 (W, , Y, 545, Sag, Sgqq) = 4 ¥ {

_ b (4@ F(1-e2 (3 €)> 2 (@90 — (1 — w)3eq)°

S3aa \ Sag Soq 5%,5254(1 — w)?
’ 1 (w(<11_—yu)f> TyTRwTes Qﬁ Z>y)<(y w>))
e L e
+ S(jqig(jq <(1 —;83__‘_5;“}) 2 (zigx__e)y;(l _(1 ;L w))) } + azimuthal terms(7.10)

Again applying charge conjugation yields the further relation,
Pigg-c(W, %, Y, g5 Sag> Sa09) = Poag—6 (s T, W, Sgq, Saq, Sdag) (7.11)
describing instances where the gluon is colour connected to the quark rather than the anti-

quark.

There is a further contribution when the quark-antiquark and gluon combine to form a

photon-like colour singlet. This occurs when,
— _ 2 — — — — 2
I75(Qs. @ Qu @ DVH| = [BP9(Qs Q4101 Qo) V* + B (Q1; 0alQs; 1, Q) V|
3 2
— PQ31§4—->C:' ‘S#V"l .
In this case the singular contribution is produced by the second B term and is due to the
entire Qs;1; @, antenna pinching to form a gluon which is then inserted in a symmetrised

way (i.e. with a tilde) into the remaining colour antenna. This QED-like splitting function

is given by,

quq._;é’(w; T, Y, Sq> S Sdgs Sqaq) = 4 X {

1 5 1 T+ 2w
- ((1-e)fﬂ+1> + ((1+x2)— y)
s Sqg Sgq3qg I—e

q9q

1

SqgSqgq

2(1 -
(1 +2z+€— ( y))} + (849 ¢ Sgq, W > y) + azimuthal terms(7.12)

(1-¢
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A Quark-Antiquark Pair with a Collinear Quark or Antiquark

Lastly, we consider the clustering of a quark-antiquark pair (QQ) and a quark (g) to form
a parent quark ¢’ with the same flavour as ¢. The splitting function depends upon whether

or not the quarks are identical,

. ) .
_ __ pnon—ident. 9Q pident.
Figgue = PqGQ—m’ TN Pigase (7.13)

where J,o = 1 for identical quarks. If quarks @1, Q3 and @, are clustered to form @, then
we find a non-identical quark contribution,

2 — — — — 2
= A% (R 1L, BV + A %(Qu Q4lQs; 1 T V|

nog_ﬁident. 3171 2
= Podies-a [sivel

.EA(Q& @47 Qla @2) 1)VIL

with,

. 1 25 =
—ident.
Fifas (WY, 8,2, 57 Sq0q) = 4 X {_ : <(1 —9* —qf>
5" = S
9QQ QQ

2<xSqQ§_ (1 —w)5q§)2 1 <1+x2+(:17+w)2 — €1 —u;))} (7.14)
52@653426(1 — w)? 8055400 (1-—w) S
The singular contribution is now generated by the square of the second A term; pinching ()3
and @, together connects the two colour antennae together and combining with ¢, ensures
that the vector boson couples to a flavour singlet @,@, pair. Precisely the same function

describes the triple collinear limit of the 72 functions. We find that in the same limit,
© = B2 (Qui 1 QlQs @)V* + BE% Q5 Qul@s; L@V

. 2
non—ident. 3171
= Pog.as-a savef

‘EB(QM—Q_4; Q37@2; 1)‘/“

where this time the first term alone contributes. Here @3 and @, combine to form a photon
which clusters with ;. As before, charge conjugation generates the associated function for

an antiquark combining with a quark-antiquark pair,

non—ident. __ pnon—ident.

PEQG—WI (’U), z,Y, S3Q; SQaa saQa) - quQQ_)q/ (’LU, z,Y, Sqaa sQaa SqQ@)' (715)
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When the flavours of the clustering quarks are the same, there is an additional contri-
bution coming from the interference terms of the four-quark matrix elements. For instance,

when @1, @, and @3 combine,

R (EA(Q:’,,Q;; Q1, Qy; 1)V“) (EB(Q&@@ Q1, Qy; 1)‘/”)T
~ A33Q4(Q35 L @2|Q1§ @4)‘/# (333%(@3; L; GQ'QI; @4)Vu)f
1 ident. 2
- —§Ple§4Q3—>Q ]SﬁV“‘ )

where,

ident.

P@Q—w’ (w,2,y, 540> S SqQQ) =4x {

SgQa Qe 25500 —y)(1 - w) (1 - w)
1 14 22 2z . (1 - w)? ) 9z .
i SQ@SqQ6<(1—y>+<1—w) ((1—y) tlra) s gyt )))}
+ ($q§ N SQqr Y < w)' (7.16)

Here, there are poles in the matrix elements when @, clusters with both @3 and @, and the

triple collinear function is symmetric under g <+ Q.

The N =1 SUSY Identity

These triple-collinear splitting functions, like the ordinary Altarelli-Parisi splitting kernels,
can be related by means of an N = 1 supersymmetry identity. In unbroken supersymmetric
theories, the masses of gluon and gluino are identical thereby ensuring that the self-energies
of the two particles are equal. By considering all two particle cuts of the one-loop diagrams
contributing to these self-energies, we obtain a relation between the colour stripped Altarelli-

Parisi kernels,
Pygosg(2) + Pagosg(2) = Pygosg(2) + Pyyg(2). (7.17)

Here the quark plays the role of the gluino. Note that in conventional dimensional regular-

isation the number of degrees of freedom for the gluon and gluino are no longer equal and
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the supersymmetry is broken. Therefore this result is not true away from four dimensions!.
Similarly, by considering the three particle cuts of the relevant two-loop contributions to the
self energies (as in Figure 7.5), and omitting the invariants in the arguments of the functions,

we ﬁﬁd,

Z (ngg_,g(a, b,¢) + 2P,;6(a,b,¢) + Pyzscla, b, c)) = (7.18)
P(a,b,c)
Z <2qug—>Q (a’a b, C) + PQ§§—>Q(G'> b, C) + QP;qC:Z:CIQdem'(aa b, C) + PJ(;(?EEQ(G; b, c)) )
P(a,b,c)

provided we set € = 0. This non-trivial relation between the splitting functions is a further

check on the results presented in this section.

1 1

1 1

(V17 | i

SR : .\ / :

%, 2 2,1 2, '

\gl \9/I ‘9/| 1
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Figure 7.5: A diagrammatic representation of the equality between the gluon and gluino
self-energies in N = 1 SUSY. The dashed lines represent the three-particle cuts that lead to
the relation between the triple collinear splitting functions given in equation 7.18.

Triple Collinear Limit of ete~ — 5 Partons

Examining the two-quark currents in the triple collinear limit is now straightforward. Sum-

ming over all triple collinear limits, we find,

‘Su(Ql; 1,2,3; 2)V”\ — (PQ112—'>Q + Piasse +P23§2_@) iSﬁV“r,

5,001,230V > (Ponsse + Pug,a + Patisg + Prig, o) |s3vel,

[S4(@1; 1,?,3,@2)1/“’2 - % > (Pasissg + Prg,oa) |33V“|2. (7.19)
P(l‘,2,3)

10ther variants of dimensional regularisation where the gluon and gluino degrees of freedom are equal,
such as dimensional reduction discussed in chapter 2, preserve the symmetry, and therefore the relation, for

D #4.
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The four-quark current contributions are more complicated, but in each case yield factors

multiplying the two-quark current,

TAQL Ty @5 T DV = (Pigorme + Paonoe

non—ident. non—ident. 31/ 2
PQ2Q3Q4“>Q PQSQ)QI—*Q) IS ! !

pnon-— ident. + pron- ident. ) |S3‘//.L‘2
7] 3

7.7 (Qu Qs @5, @ YV ' = (Parig,-c + Q20,0 ' 1 2104Qs-Q
T non—ident. non—ident.
(Ql:QQaQ3;Q47 V ' ( Q11Q _’G+PQ2Q3Q4—>Q+ Q1‘Q-4Q3—>Q

o . non—ident. non—ident. 3171 2
+PQ31Q4_’G+PQ Q1Q,-Q PQ3Q2Q1—>Q) IS“‘ I ’

R (Tu(@1, @2 Q0. Qi V) (Tw(@1, Qs @3, @ V)
% Pyt assa + Possiorsa + Pooca,oa+ Pooa,a) |53Vﬂ|2’
R (TMQu, GQ;Qg,@; V) (T2(Q1, Qo @a, Qs V)’
3 (Pia o+ P ) IS0 (7:20)
Combining these limits and eliminating the identical particle factors where appropriate pro-

vides the triple collinear singular factor for the five parton squared matrix elements,
2
Ligsoul2 |4 2 PN\ aac,,12
—_ [z Sy/u|” — 3y
3!4sﬂv "+ |72V = ( 5 S
N2 -1

N?2 -1
X [P123—>G + <—N2—> (PQ112—>Q + P12§2—>§) - ( INA ) (PQ113—>Q + Pi?@z—@)
ng

1
+t <P1Q4Q3—>G+PQ4Q31—>G NQPQsi@;—’é)

2
F N°—1 non—ident. 1 ident. non—ident. 1 ident.
F < N2 ) (PQ164Q3_')Q - NPQ1Q4Q3—>Q + PQ2Q3Q4_)Q NPQ‘)Q3Q _)Q 721)

7.4.2 Soft/Collinear Factorisation

We now examine the configurations where one gluon is soft and two particles are collinear.

In this case, the sub-amplitudes factorise as,

IAC.d . abe . )P = PaaselAC . d,e o Py )R (7.22)
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where gluon a is soft, partons b and c are collinear and either colour connected or able to
undergo antenna pinching. Parton d is the adjacent colour-connected hard parton in the
antenna containing the soft gluon. If a is symmetrised over (@, so QED-like) then d is the
quark in that colour-line; otherwise d is simply the parton adjacent to a. In this limit the

collinear partons form parton P and carry momentum fractions,
p=1zpp,  P.= (1 —1x)pp, (7.23)
and we write the soft/collinear factor as,
Pr.obe(, Sab, Sbes Sabes Sads Sbds Sed)- (7.24)

To determine the limiting behaviour, we again consider the explicit forms of the y* —
four and five parton squared matrix elements. All terms that possess three of the ‘small’
denominators Sgp, Sed, See and Sgp. contribute in the soft/collinear limit. Similar results
could be derived using helicity methods or by examining the on-shell limits of the recursive
gluonic and quark currents of ref. [66]. Alternatively, these limits can be obtained directly
from the triple collinear limits of sect. 5.1, by keeping only terms proportional to 1/w and

subsequently replacing 1/w by (Spq + Scd)/Saa, 1/(1 —w) by 1 and y by 1 — z.

In fact, in this limit we find a universal soft factor multiplied by a collinear splitting

function,
Pd;abc(xy Saby Sbey Sabes Sads Sbds Scd) = Sd;abc(xa Sabs Sbes Sabes Sads Sbds Scd)Pbc—)P(:E; 3bc); (720)

where,

2(Spq + Scd Sb+ZSb)
Sd;abc(za Saby Sbes Sabey Sads Sbds S_Cd) - '(_—C) z+ (a—_—f— . (726)

SabSad Sabe
A similar result holds for gluon ¢ becoming soft,

A a,b,c e )2 = Pael A Py ey ) (7.27)

where,
Puopee = Prape(a 3 c,d > €). (7.28)
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In the case that b is soft the matrix elements do not possess sufficient singularities since the

collinear particles @ and ¢ are not directly colour-connected,
|A(...,a,b,¢,...)|* — less singular. (7.29)

Here, there may be two powers of the small invariants in the denominator, but, when inte-
grated over the appropriate (small) region of phase space this yields a vanishing contribution.
On the other hand, for QED-like subamplitudes where the gluons are symmetrised there is a
non-zero contribution when either gluon is soft. Note that in all cases where the soft particle

is a quark or antiquark, there is also no singular contribution.

Soft /Collinear Limit of ete™ — 5 Partons

For the specific case of the two-Quark currents, the sum over all soft/collinear limits is easily

obtained,

— 2 2
'Su(Ql; 1,2,3; QQ)VM‘ - (PQ112;3 + P23 + Progg, + P1;23§2) ‘Sij“I ,
~ 2
‘Sﬂ(Ql; 1,2,3; Q2)V”‘ - (PQl;lzéz + Pigisg, T Daue
2
+Pouag,2+ Paa, + Pigyz) [SIV!]

’SN(Q“LQ’:;;@)W’Q - (Z (Piaisa, + Fauiai) ’53‘/#'2' (7.30)
P(1,2,3

The only non-vanishing contributions in the soft/collinear limit from the four-quark currents

are,

|7L (Q1,Qy;Q3,Qy; 1)V ' ( Pong,es T Fa,em; Q4) |83V“|2,
lT Q17Q25Q3;Q45 V ‘ _)( Q11§2PQ3§4—>G+SQ31§4PQ1§2—>G

+PQ1§1§4Q3 B PQ1§1Q3§4 - P§2§1§4Q3 + PQ2,1Q3Q4

- P P

Q4:1Q:1 + Q4a1Q1Q°) ‘Szvﬂr’ (7'31)

+P0,13,0: — Fasn0.g,

where the second term also includes both the unconnected soft/collinear contribution and

interferences amongst the various subamplitudes. This is akin to the case of single soft gluon
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emission where we have,

Al a,0,b,...) = (p“'e - p"'e)A(;..,a,b,...),
Do - Dy Do * Pg

and therefore,

R(A(..,a,9,b,...,¢,d,.. ) (A(..,a,b,...,¢,9,d,..))

1
— —5 (Sagc - Sagd - Sbgc -+ Sbgd) I.A( a0, cd, .. )IQ

Here, the soft factors are generated by the interference of the two eikonal factors.
5 (pa~6 B pb~6> <pc-6* _ pd-6*>
pols \Pa"Pg  Pb" Py Pc-Dg Dd-Dg

Adding up these limits for the five parton squared matrix elements gives,

|2

sl v = (5l

x {PQ112;3 + Poii2s + Py g, + Py,

1 1
7 (Povuem, + Posag, + Prava + Pign) + i (P, + Pauass)

27’LF
+— Tana,es

27”&1:'

- N3 (SQ1162PQ3§4—>G + PQ1§1§4Q3 - PQ]§1Q3§4 - P_

Q23164Q3 + P_2;1Q354) ] (732)

7.4.3 Two Soft Gluons

Finally, we consider the contributions where two colour connected gluons are simultaneously
soft. This was first studied by Berends and Giele [63] and we include this contribution here
for the sake of completeness. Similar results have been discussed by Catani [69]. For gluons

b and c soft the colour ordered subamplitudes factorise,

IA( sy Gy b) C, d7 S )|2 - Sabcd(sad; Sabs Scdy Sbes Sabes Sbcd) IA( L d; .. )l2 (733)
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where the connected double soft gluon function is given by,

8s2
ad
Sabcd(sad, Sabs Scds Sbey Sabes Sbcd) =
SabSbedSabeScd
8Sud 1 1 1 4 8(1—¢€) /s s 2
ab d
+ ( + + — )+(2)( +C—1>.(7.34)
Sbe SabScd SabSbed ScdSabe SabeSbed She Sabe Sbed

Here @ and d are the hard partons surrounding the soft pair and may either be gluons or
quark/antiquarks. In four dimensions, the double soft factor can be extracted from [63] by
squaring and summing the helicity amplitudes for two adjacent soft gluons. Alternatively,
it can be obtained by explicitly taking the double soft limit of squared matrix elements for

processes involving more than two gluons.

Double Soft Limit of eTe~ — 5 Partons

As before, for the specific case of the two-quark currents, the connected double soft limit is

easily obtained and summing over all contributions we find,

2 2

‘SM(Ql; 1,2,3; Q2 V“’ (SQ1123 + 51236 ) ‘SﬁV“' 3
2

'S,LL(QI) 17 a3 QQ Vﬂ‘ — SQ 12Q ISS‘/u’

ISH(Ql; 1,2,3;Q,) V“’Q — less singular. (7.35)

Combining these limits yields the double soft singular factor for the full squared matrix

elements,

3'i55V”' +\T5Vﬂ| _< ) |53Vﬂ] [SQ1123+5123@2—%5Q11252 . (7.36)

7.5 Summary

In this chapter we have discussed the factorisation properties of squared tree level QCD
matrix elements when two particles are unresolved. These properties allow the analytic
isolation of the infrared singularities from (n + 2) parton scattering processes that would be

vital in a next-next-to-leading order calculation of a n-jet-like quantity.
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At next-to-next-to-leading order, this knowledge is required for the analytic isolation
of infrared singularities of (n + 2) parton scattering processes and subsequent numerical
combination with the one-loop (n + 1) parton (single unresolved particle) and two-loop n

parton contributions.

The unresolved particles may be either soft gluons or groups of collinear particles or
combinations of both. There are four double unresolved cases; two soft gluons, three si-
multaneously collinear particles, two independent pairs of collinear particles and one soft
gluon together with a collinear pair. In section 7.3 we reviewed the (trivial) factorisation
that occurs when the unresolved particles are colour “unconnected”. Such factorisation is
well known and involves only the familar eikonal and Altarelli-Parisi splitting kernels used

to describe single unresolved emission (see the introduction).

When the unresolved particles are all colour “connected”, we find a similar factorisation.
In section 7.4 we introduced new functions to describe the triple collinear and soft/collinear
limits‘in addition to recalling the known double soft gluon limits of Berends and Giele [63].
These functions are universal and apply to general multiparton scattering amplitudes. As a
check on our results, we find that the triple collinear splitting functions obey an expected
N =1 SUSY identity. In addition, in the strong ordered limit, where one particle is much
more unresolved than the other, these factors become simple products of single unresolved

factors, one associated with each unresolved particle.

To illustrate the use of these double unresolved approximations, we have examined the
singular limits of the tree level matrix elements for e*e™ — 5 partons [70]. In each case, we
find that in the singular limit, the matrix elements can be approximated by a singular factor
multiplying the tree level eTe™ =3 parton matrix elements. As we discussed in section 7.2,
these approximations are part of the ingredients in the calculation of the O(al) corrections
to the three jet rate in electron positron annihilation. However, much work still remains
to be carried out. One important ingredient is to analytically integrate the approximations
over the unresolved regions of phase space. A first step in this direction has been carried out

in ref. [68] where the hybrid subtraction method of [71] has been used to evaluate the double
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unresolved singular contributions associated with a photon-gluon-quark cluster. There is in

principle no reason why this approach should not be extended to the more general cases

discussed here.



Chapter 8

Conclusions

8.1 Summary

In this thesis we have provided a number of calculational techniques that are relevant for
a wide variety of QCD corrections in electron-positron annihilation (and other related pro-
cesses). In addition we have shown how some of these methods may be implemented by

detailing the calculation of the next-to-leading order corrections in four-jet production.

For such a calculation, where the number of contributing Feynman diagrams is large
and the tensor structure of each very complex, performing the necessary one-loop integrals
provides potential difficulties. In particular, the tensor structure of the matrix elements
means that a decomposition into scalar integrals multiplied by kinematical coefficients is very
lengthy and algebraically complex. Moreover, such a process results in spurious singularities
— with zero residue ~ when both certain invariants and Gram determinants vanish. In order to
control these singularities, we have seen in chapter 3 that it is natural to work with a basis of
integrals larger than the set of scalar ones. By extending the basis to include also integrals
in higher dimensions and integrals with additional factors of Feynman parameters in the
numerator, we automatically protect the spurious poles. These integrals are simply obtained

from the scalar integrals and a tensor decomposition in terms of them is straightforward.
In chapter 4 we have outlined the calculation of all the matrix elements necessary for

176
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calculating four-jet observables at next-to-leading order. This comprises the four parton
matrix elements at both lowest (O(e%)) and one-loop (O(ad)) orders for the sub-processes
v* — ¢ggg and v* — ¢@QQ and the five parton O(a}) amplitudes squared where we include
an additional gluon. In each case it is convenient to use a colour decomposition to re-write
the matrix elements in terms of colourless subamplitudes. For the virtual terms we used
the integrals of chapter 3, which appear as terms in the 14 independent functions L; that
are sufficient to describe the one-loop finite contribution. Each of these functions is rather

lengthy, but suitable for FORTRAN encoding in an analytic form.

With the matrix elements calculated, it remains to implement them in a suitable phase
space Monte Carlo. By making use of the symmetries of the four and five parton contributions
of chapter 4, we wrote down more compact expressions in chapter 5. Before any integration
can take place, ultraviolet and infrared poles must be isolated and either absorbed into
the running coupling or cancelled. Using a hybrid of the commonly-used subtraction and
slicing techniques, we exposed the five parton singularities as poles in € and showed that
they cancelled with the corresponding four parton infrared divergences of chapter 4. This
approach relies on a factorization of the matrix elements in terms of antennae of particles,

where a soft gluon is radiated from two colour-adjacent hard partons.

To complete our discussion of the 4 jet calculation, in chapter 6 we presented results
obtained using the numerical approach described in chapter 5. This program — EERAD2
— yielded results for known 4 jet observables, such as the D-parameter and the four-jet
fraction, that are consistent with those of other available Monte Carlos. We also presented
some new results for distributions that have so far not been considered, such as the narrow
jet broadening (Bpi,) and light jet mass (m?/s). In general, using the renormalization scale
equal to the physical scale yields next-to-leading order corrections of approximately 100%,

which still lie significantly below the data.

Finally, as a further use of the five parton matrix elements, we investigated the factor-
ization that occurs when two particles become unresolved simultaneously. After suitable

azimuthal integration, we discovered a set of universal factorization functions that are the
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natural extensions of the eikonal and Altarelli-Parisi factors describing soft and collinear
single unresolved emission. There are a variety of configurations where two particles are un-
resolved, the most new and interesting of which are those where three particles are collinear
and those where two are collinear and one gluon is soft. Such double unresolved contributions
would be relevant in any QCD calculation at next-to-next-to-leading order. As an example,
we showed the singular contributions to the process eTe™ — 5 partons, which could be used

in a NNLO analysis of 3 jet production.

8.2 OQOutlook

This thesis has primarily been concerned with the theoretical, technical aspects of next-to-
leading order calculations. Although this culminates with physical predictions of various
observables, much work still remains to be done in order to fully take advantage of these

results..

In particular, the phenomenology of four jet production is still under-developed. With
the next-to-leading order corrections appearing so large — at the physical scale — and yet
(for the most part) so unsuccessful in describing the data, we may question the merit of our
results. Yet this is no different from the situation for 3 jet-like observables, such as thrust.
There, by choosing a smaller scale or by including non-perturbative power corrections, the
apparent discrepancy was remedied and even held up as a triumph of QCD. Such studies

have yet to be carried out for four jet-like observables.

It now appears that the next-to-leading order QCD corrections for virtually all interesting
processes have been calculated. Naturally then, attention turns toward the next step up
the perturbative ladder. It is as yet unclear whether extensions of existing technology will
suffice, or whether this next step will require the introduction of novel calculational methods.

Whichever proves to be the case, much progress is to be expected in this direction in the

near future.



Appendix A

Feynman Parametrization

In this appendix we shall derive the form of the scalar integrals assumed throughout chap-
ter 3. We consider a one-loop integral with n external legs carrying momenta p; and n
internal propagators of mass M;. We shall always work in dimensional regularization by
continuing away from 4 and into D dimensions. Note that the calculations performed in this
thesis are carried out with the simplifying assumption of M;=0 for all propagators. This is
valid for a wide range of QCD calculations involving loops of gluons and massless quarks

(or, more precisely, at sufficiently high centre-of-mass energy s that mg /s K 1).

Straightforward application of the Feynman rules to an n-point diagram yields the start-

ing form of the scalar integral,

b dPe 1
R e e e ey v M

where,

[
¢ =, g =aq) =0.
7j=1

The normalization factor of iw?/? is chosen for later convenience. We begin by using Feynman
parametrization to combine all the propagator factors into a single denominator. The general

identity which we wish to use is,

N Oy Y S PO o L .
Al A TLD0s) Jy e (Zx 1) (s ziA) e (A.2)
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where each of the A; is one of the propagators and v; = 1 for all . Each propagator
corresponds to one of the Feynman parameters z;, which are constrained by >, z; = 1.

Direct application of this identity then yields,

12[1] = T( /ﬁﬁ/m@<z@ >_%ZW (A.3)

where we have used the constraint on the Feynman parameters where necessary and per-

formed a shift in the loop momentum,
H— LF = PE (A4)

The auxiliary momentum P* = — 3" z;,1q" is exactly that introduced in chapter 3 to
decompose the tensor structure of loop integrals, whose origins are seen in the change of
variables here. After completing the square in this fashion, the remainder can be written as

a quadratic in the Feynman parameters,
A = inqul'—l “Qj—1 — Zmiqzz_l +> oM
= zmzxj <M2+M (Q'l, 1~ g5- 1)2)

szx] i5- . ) (A5)

Integrations of the form in equation (A.3) can easily be evaluated by performing a Wick

rotation to Euclidean space. This is equivalent to using the identity,

r dPl 1 wL(n—=D/2)  poy
/mD/2 v—ap TV T 8 e (A-6)

The desired form of the scalar integral (eq. 3.6) is then directly obtained,

D/2—n
(1] = (—1)"T(n — D/2) / 26 ( 1—2% {Z SZ]zszJ . (A.7)

J=1



Appendix B

Finite Functions

This appendix collects explicit forms for all the finite functions of chapter 3 which are relevant

for the calculation of the matrix elements for v* — 4 jets at next-to-leading order.

B.1 Triangle Integrals

In this section, we collect together explicit forms for the triangle graphs which appear as
building blocks in the box graphs. We fix the kinematics according to fig. 1, so that momenta
p; and p, are exiting, with p; determined by momentum conservation. There are two distinct

cases, according to whether one or two of the external masses are zero.

B.1.1 The One-Mass Triangle

Here we provide explicit results for the case p? = p3 = 0. There is an additional symmetry

under the exchange p; < p, and z; < z3. Insertions involving z5 can be eliminated using

T1+ X9+ 23 = 1.
The D = 4 — 2¢ scalar and tensor integrals are given by,

m Cr (_8 )_6
L") = 22—4_3122 : (B.1)
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L™z = ™ [ws] = 237" [z] = 2L™[22] =

L™ [z125] = 3" [zlz;] = 3" [1123) =

Lr[23] =T[5 = -

L <(—812)—6 + 2) cr,

819 €

1

2812:

3812 € 6

while, the necessary integrals in D = 6 — 2¢ dimensions read,

Iém,D:G—Qe [1]

L <(—S”)—6 + 3) er,

2 €
_ - 1 ((=s12)7° 8
I;m,D_G—Ze[xl] _ Iém’D—G—QE[{Bg] — _6 (( 522) + g) cr.

B.1.2 The Two-Mass Triangle

! <(_812)_6 + E) cr,
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When two of the external legs are massive, pf = 0 but s;5, p? # 0, the divergent integrals

read,
o —€ _ (__m2)—¢€
Igm[l] _ c_g (( 512) (2171) > ’
€ 12 — D1
cr (—812)° i
I2™[zs] = —2Lc2™(py,po) — — - I5™(1],
3 [ 3] 2 (pl pQ) c (812_;0%) (812 _p%) 3 [ ]
1 (—512)™¢ (512 — 3p3)
I2™[22] = —3Lc2™(py, 4+ ——c
3" e 2" (P1,12) 2(s12 — p?) e 2(s12 — p?)?
+—]f11-2-213m[1];
(312 —P1)
11 (512 — 2p3) P 2
IQm 111'3 — __chm , + — ™1
3 ! 3] 3 ¢ (p1,p2) 2(s12 —P%)Q (512 —P%)g ’ g
_(—812)_€ ( 1 _ P% 4 27‘11 )CI‘
€ 3(s12—p1)  2(s12-p1)?%  (s2—-p1)3)
while,

157 [21] = 213" 7] = 315" (]

I"[z133] = 313" [z3xs] =

"z 23]

chm(pl 3 p2)7
1 m
iLCg (p17p2):

1
chgm(phpZ)'

(B.10)

—~

B.11)
B.12)

—~

(B.13)
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The functions Lc2™(py, py) are defined by equations (3.37,3.38).

The D = 6 — 2¢ dimension integrals read,

62 1 " —812)"°
LmP] = 3 <PfLC§ (p1,p2) — ((—2‘2_)“ + 3) CF) ; (B.14)
. D—6—%¢ 1 m —512)7¢ 8 -
I§ D=6-2 [T1] = 6 <p§ch (p1,p2) — <(—z2—) + 5) cr) ’ (B.15)
. D=6—2¢ 1 m —512)7¢ 8
Ig D=6-2 (3] = 6 <P§Lc§ (p1,p2) — <(——2—2)-— + §) cr) . (B.16)

The corresponding integrals for the case p? = 0, p3 # 0 can be obtained by using the

above formulae with the substitutions,
P1 & Do, T1 & T3 (B.17)
The limit p? — 0 may also be safely taken. For example, using the fact that in this limit

Lc2™(py, p2) — 1/(n—1)/s12 and observing that all of the triangle loop integral contributions

proportional to 1/e2 trivially drop out in eqs. (B.8)-(B.10), we see that,

I"[25] = 3™ (x3).
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B.2 Box Integrals

Here we collect together explicit forms for the the finite functions appearing in the box
integrals. We fix the kinematics according to fig. 3.5, so that momenta p;, p, and p; are

exiting, with p, determined by momentum conservation.

B.2.1 The Adjacent Two-Mass Box

We first focus on the case where two of the adjacent external legs are massive, p? # 0 and

P #0.

For integrals with a single Feynman parameter in the numerator, we have,

Ldi(p1,p2,p3) = — (Ldis(p1, p2, p3) + Leo(pr, pas)) (B.1)

where the box function in D = 6, Ld;s is given by equation (3.41). When there are two
Feynman parameters in the numerator, we eliminate z3 using z; + 22 + 23 + 4 = 1 so there

are only three relevant functions. Explicitly, we find,

2
Ldoy (p1,p2,p3) = . (3Ldas(p1, P2, p3) + Leis(p1, pes)) — Lei(pas, i), (B.2)

2(s123 — S12) (
512523

8 8
—ﬁchm(pl,pg) + —12—3Lc1(p23,p1), (B.3)
S93 §23

2(19% - 512) (
512523

Ldos(p1,p2,p3) = 3Ldas(p1, P2, p3) + Leis(pr, po3))

Ldas(p1, po,p3) = 3Ldys(p1, P2, p3) + Leis(pr, pas))

2
S p
—ﬁchm(pu,ps) + —chl(P23,P1)- (B.4)
S93 523

The all massive triangle integral function in D = 6 — 2¢, Le, 5 is given by equation (3.28), the
box integral function in D = 8 — 2¢ is given in equation (3.45) while the remaining triangle
functions are given in Appendix B and equations (3.21-3.26). The functions for adjacent box
integrals with three insertions of Feynman parameters contain the box in D = 10 — 2¢ (3.46)

and triangle in D = 8 — 2¢ (3.31). All integrals can be obtained in terms of the following
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four functions,

12
Ldsii(p1,p2,p3) = — (ST (5Lds3s(p1, P2, p3) + Leag(p1, p23))
12

519 + 12 s 5
+ML03(ng,p1) + 8—23]402(171:1723))7 (B:5)
12

$12

12(1’% - 812)
Ldsia(p1,p2,p3) = s (5Ldss(p1, p2, p3) + Leas(p1, pos))
12
4 2
D S12 — P
—Lcs(pas, p1) — (s12 = p1) 1)Lc2(p1,p23)
812523 512

S
_#chm(pl%pif): (BG)
593

2
_ (12(5123 — S12)
2 2
512523

+

Ldsoe(p1,p2,p3) = (5Ld3s(p1, p2, ps) + Leas(p1, pas))

123 (8128123 + PIs123 — 2p2s12) S12
L =2 Les(pas, p1) — ——Le3™ (1, p2)
512833 2593

812(512 - 8123) 2m 8123(8123 - 2812)
—_—.I C . +
28%3 1 (p12,p3) $§12593

(p?812 + S12523 — S125123) _
+ : 282 LC%m(pl)pQ) 3 (Bf)
23
3 (12(512 - pi)?
3%23%3

Le, (Pl; P23)

Ldsaa(p1,p2,03) = (5Ld3s(p1, p2, p3) + Leas(pr, p23))

2 2__25 4 2_5
+p1(p1 12)Lc2(p1’p23)+p1(p1 12)LC3(

2
812523 512553

512(812 = D3) . om s -
42208 2Py g ) 121 (pu,Ps))- (B:3)
323 2823

p23;P1)

B.2.2 The One-Mass Box

For this kinematic configuration, only p? # 0 and there is a ‘flip’ symmetry, so that functions
related to the parameter x, are obtained from those related to z;, by p1 +— ps. The box

integrals in higher dimension are given by equations (3.56-3.59), and,

Ldim(php?;pii) = _Ld%?(plap%p?»)' (Bg)
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For two and three insertions, we find,

m 1 m m
Ldy (p1, p2, ps) = “E (GLdés (p1, P2, ps) + saslct (p23;p1)); (B.10)
Ld;gn(phpmp;) = Ld%m(phpmps)—Ld%n(pl,m,ps); (B.ll)
and,
1m 1 1m 1 2 2m
Ld311(p17p27p3) = _ST 60Ld3g (pl,pg,p3)+§SQ3Lcl (p23;p1)
12
1
+§312323L03m(p237171)>, (B.12)
1m 1 1m 1 2 2m
Ld314(p1,p2,p3) = - 60Ld;¢ (p17p2>p3)+"'823LC1 (p23;p1)
$12523 2
1
"‘55%211(3%7”(2012, p3)> ; (B.13)

Ld;gé(pl,pmm) = Ld;gnl(l?bpmps) + Ld%m(Pl,P2,P3) - 2Ld%71n(291;p2,p3)- (B-14)

B.2.3 The Opposite-Mass Box

Again, this kinematic configuration possesses a ‘flip’ symmetry, so that functions related
to the parameter z, are obtained from those related to z;, by p; «— ps;. In addition, we
find that any insertion involving the factor z1z, may be manipulated so as to cancel off the

protected factor of (1 — A). Therefore the only required box functions are,

Ld{" (p1, p2, p3) = E%Ldgpp(m,m,p?,), (B.15)
Ldot?(p1,p2,p3) = é ((p% — 593) LAY (p1, p2, p3) + sasLci™ (pas, p1)
—p3Lei™ (p2, p1) + log (%)) , (B.16)
Ld3} (p1,p2,p3) = —51; ((P% — 523)Ld3i" (p1, P2, p3) + %8231103"1(2723,201)
— P 1) + 5 log (22). (B.17)



Appendix C
Limits

In this appendix, we collect together suitable expansions of the various functions presented
in chapter 3 in the limit A, — 0. These expressions represent the leading term in the
expansion of the functions as a Taylor series in A, and should be evaluated for A, < 9,
where 6 can be determined numerically. Typically, § ~ 107*A™** where A js the largest
value the Gram determinant can achieve. In general, for a given numerical precision, acc the
numerical problems occur when A ~ (acc)/" where N is the number of Gram determinants

in the denominator of the function.

C.1 The Three-Mass Triangle

In the limit that Az — 0, we have,

1
Leo(pr,p2) — 55— (P?(Slz +pj — p) log (p_12> + p3(s12 +p; —p3)log (p_%2>>
1

2pip5S12
(C.1)
Lers(pi, p2) ! (:04(8 + Pl p)log< 1)ﬂv(s + p? pz)log(m)
S ) a0 9 2 Gy 12 NG
R 12p2p8syp \| 202 T P2 Pl 2 Lo P2
+2p§p3812> , (CZ)
Leas (1, p2) — ! (p6(s +p3 p)log( >+p(s +p? pQ)IOg(S”)
25\ M1y V2 Tanm 9 9 12 12 NG
120p3p3sia \ " 2 P} 2 Lo P

187
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2,2
+&p—§‘g(312 +pi+ p%)), (C.3)
Less(pr, pa) — - pS(s12 + p3 — p)log + pS(s10 + 2) 1o 512
s T680pg \P 012+ P2~ P08 | G | palone vt =)o
2p2p2s
+—1§2JZ(3%2 + P} + P; + S120% + S1205 + Pip3) | (C.4)
Le(prpe) — 1 (( 2)1 ( )+2 Leolpups)),  (C5)
1(p1, P2 s19 —p3)lo p? — piLco(p1, , 5
(s + P —p2) \ 2 PR 12 1 PiColpn P
1
Lealppe) = (—4193(812 +pf — p3)Les(pr, p2)

+819 — P% =+ 31732931401(1?1,272) P1L01 (p2,p1) + Pz log (p_22>> (C.6)
2

1
Les(p1, — —py)l + p? — 2piL C.7
3(p1,p2) 502 (512 + 12 — P2) ((512 p3) log <p2> p} — 2piLe (1, P2)> (C.7)
1
Les(py, — —6p3(s10 + p? — p2)Les(py,
4(p1,p2) 15p%(812+p%—p§)< p3 (812 + Py — p3)Les (p1, p2)

S
o= 55+ SpLes (o) — anLca(o ) + o (3 ). 09
2

1 512 2pt
L — —p3)1 =1 3piL . (C9
cs(p1, p2) TP g ((812 p>) log <p2 ) T3 piLes(pr,p2) |- (C.9)

C.2 The Adjacent Two-Mass Box

In the limit A4 — 0, we have,

1 20%s
Ldo(p1,p2,P3) — —5 <8123 ‘HD% — 823 — p; 2123> LCo(pl,P%), (C.lO)
1
-1 2p?s
Ldis(p1,p2,p3) — <<8123 + pf — S93 — ! 123) Leys(pr, po3)
512523 S12
2
s
+S£l < ) + 312 Iog< 123) - &log (1—223>> , (C.11)
S23 S12 2 Pi
-1 2p 51923
Ldos(p1,p2,03) — S123 + pf — §p3 — —= : Leos(p1, po3)
12512823 812

2 4
833 <5123) < 123) Dy S123
MEZN lo —1
+ 5 0g - + s 12 0g - 5 0g o + S12823
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(C.12)
-1 21025123
Ld , D2, - — 2 _ - = L ,
3s(p1, P2, D3) 18051555 ((8123 + Py — S23 51y cas(p1, P2s)
523 ( 123) 3 ( 123) (5123>
lo + 5%, log [ — l
2 823 12108 S12 2 o8 P1
1
+ZS12823(8123 + 812 + 893 +pf)) ) (C.13)
-1 21728123
Ld . D2, - ———— [ s123+p? — 593 — Leas(p1,
4s(p1 b2 p3) 840512523 (( 123 T D7 23 519 45(271 P23)
4 3
So3 (8123> (5123> Dy (5123)
+—=1lo + st log (== ) — Hlog | =2
2 & S93 12108 512 2 8 pi
1 .
+5512823(8323 + S%Q + 853 + p‘ll + S123512 + 5123523
8128
+8123PF + S12% + S23pT + —HQﬁ)) : (C.14)

In this last equation, we have used the finite part of the three mass triangle graph in D =

12 — 2¢. For p?, p3 # 0,

1 1 S
Leas(pr,p2) = 2p?pasiaLiess (1, p2) — P3(s12 + p5 — p}) log —122
8A 840 41

812
+p5(s12 +p1 p3) log (p )
5

2p3p3sia
9

+ (0 + ph + 52, + pPsy + plss + pfpa)). (C.15)

C.3 The One-Mass Box

Finally, in the limit A}™ — 0, we have,

Ldy™(p1,p2,p3) — O, (C.16)
-1 )
Ldi3 (p1, p2,03) — <523 log (ﬁﬁ) + s12log (ﬂ2>> ; (C.17)
812523 S23 812
-1
Ld%?(Pl,pQ,pa) — . (833 10g< 123) + S1o 10g< ) + 512523> (C.18)
12519593 5923 512
-1 §12 123
Ldl%(py, pa, - — ( 3.1 ( >+ lo ( )
38 (Pl D2 p3) 180512503 §o3 108 523 512 108 512
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1
+ZS12523(5123 + s12 + 823)) ; (C.19)

-1 5123 5123
Ldl™ 5 o ( 4] (——) 4] (—)
48 (p1,p2,D3) 84051259 So3 108 523 + 81 l0g 512

1 2 2 2 512523
+—$12823 S1923 =+ 812 + So3 + S123512 + 81238923 + .

9 2
(C.20)



Appendix D

Reduction Relations

After all the reductions of the one-loop integrals are complete, and the relevant expressions
have been inserted into the matrix elements, several relations between the functions may
be exploited to further reduce the algebraic size of the answer. A simple example of this is

given by the symmetry relation for the box integral with two opposite massive external legs,

Ldg™ (p1, p2, ps) = Ldg™ (ps, pa, 1)

Although this is not useful in an individual tensor reduction, it can obviously lead to can-
cellation of terms in the matrix element where integrals with p; <> p; may also be present.
Compactification may also arise from cancellation of Gram determinants when integrals from

different sources are combined. Useful identities are straightforwardly obtained by repeated

use of equations (3.14)—(3.17) or by inspection.

D.1 The Three-Mass Triangle

The two symmetry identities relevant for these integrals are,

Lea(po, ;1) = Lea(pr, p2),
Leg(pe, 1) = Leo(pi, p2). (D.1)

191
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There are also a number of identities which relate the triangle functions when multiplied by

a partial Gram determinant,

(312 - Pf - p§) LC3(P1ap2) =
(s12 — p} — p3) Lea(pr, po) =

(s12 — pi — p3) Lei(po,p1) =

pf LC1(P2,P1) =

1 s
210% Lea(p1, pa) — P% Ley (p1, p2) + B log (2%22) )
2

3 1 1
2p3 Les(pr, pa) — -2-173 Ley (p1, p2) — =p% Lei(pa, p1) + 5

9
S
2p5 Ly (p1, p2) — 3 Leo(pr, p2) + log (ﬁ) , (D.2)
1
1 s
5 ((812 — p; — p3) Lei (1, p2) + p} Leo(pr, p2) — log (p%")) :
2

D.2 The Adjacent Two-Mass Box

This configuration of masses has no symmetry relations. The identities for cancelling factors

of the Gram determinant read,

(s12 — P?) (813 — P})Ld344(p1, P2, P3) = P2523Ld34a (D1, P2, P3) + $12 ¥ (

(512 - p%)(LC3(p1ap23) - LCl(p1,P23)

s
—Ldaa(p1,p2,p3)) — PiLea(pas, p1) + =L

9 C%m(p125p3)>7

(812 - Pf)(sl?, - p%)Ld322(p1,p2,p3) = p%523Ld322(p17P2,P3) + S12 X (

(513 — p7) x (Ld22(p1,p2,1)3) — Les(pi, pos) — Les(pas, p1)

—2Lco(p1, p2s) + Liei (p1, pos) + LC1(P23,p1))

+893 (Ldm(;l)l;pmpa) + 2Lcs(p1, pa3)

+2Lcy(p1, pas) — 3Lei(p1, pos) — Ler (pa3, p1) + LCO(P1=P23)>

D12

1o im 1 P
+p% (LC2(p1’p23) B Lcl(p237p1) - §LC% (pl)pQ) + Lcim(pl;pQ) - 5 108; <£>>>,

(512 - p%)(313 - P%)Ld314(p1,p2ap3) = pf523Ld314(p1,p2,p3) + 812 X (

93 (—Ldaa(p1, p2, p3) + Les(pr, pos) + Liea(pr, pos) — Ler(p1, pas))
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1 1
— (5123 — $12)Lea(pr, pas) — isuLcim(pm,ps) + 5)

(512 - p%)(sl?, - p%)Ld311(P1,P27P3) = p%823Ld311(p1,p2;p3) + S12 X (

—s23 (Lda1 (p1, P2, ps) + Lea(p1, pas)) + (512 = pi)Lcs(pas, 1) — 9 log (i)’u)>
1

(5‘12 - pf)(sls - p%)Ldl(PhPmps) = pr{)523Ld1(p1,p2,p3) + S12 X <

Ldo(p1, P2, p3) + (512 — 813)L00(p23,1?1)>- (D.3)

The functions representing one insertion of a Feynman parameter may be more simply related

by partial factors of the Gram determinant,

(s13 — P)Ldaa(pr, P2, p3) = —(s12— pf)de(pl,pz;ps) — 593Ldag(p1, P2, P3)
2 (2Lt (p1, pas) + Lea (pas, pr) — Leo(pr, p2s)) 4
(s12 — p})Ldaa(p1, p2,p3) = s12 (—Lda1(p1, p2, ps) + Ldi(p1, P2, p3) + Lea(pr, pas))
(813 — p%)Ldm(pl,pQ,Ps) = —593 (Ldaa(p1, p2, p3) + Ldz (1, P2, P3))
+512 (LC1(P23,p1) - LC}m(Pl;m)) ;
(512 — P)Lds1 (p1,p2,8) = s25Lddaa(pr, P2, p3) — 512 (Lea (pas, p1) — L™ (paz, ps) ) (D.4)

D.3 The One-Mass Box

The straightforward symmetry identities which follow directly from the definitions (3.5.2)
and (3.60) are,

Ldiliz}l P3, P2, 01 = Ld311(p17p27p3 3
374

Ld3’ff1 D3, P2, P1,P2,P3);

)

)

Ld271n P1, D2, D3);
d,™(p3, P2, P1 )
)

( )

( )
Ldgg' (ps, 2, 1) = (

( ) = Ld{™(p1,p2,p3),

( ) (

dom P3; P2, 1 Ld(l)m Pi1,P2,D3)- (D-5)
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The further relations useful when a relevant invariant multiplies one of the finite functions

are given by,

1
513Ldzlaﬁ(171,p2ap3) = -—812Ld%;n(p1,p2,173) + 5 (812L0fm(1712,p3) - 823LC§m(P23;P1) + 1) ;
im 1m 1 2m 5123
313Ld311(p1,p2,p3) = —s93Ldy] (p17p27p3) +§ 823LC2 (p23>171) + log S >) ;
12
Ldlm - _ Ldlm L 2m 1 5123
s13Ldgy" (1, P2, P3) s23Ld;™(p1, P2, p3) + S23Lci™ (p2s, p1) + log p ;
12

523Ld§;n(p3ap27pl) = 812Ld§§n(P1;p2;p3) + 523LC%m(p23,p1) - 812LC§m(p12,p3),

1
s13Ldy™(p1,p2,ps) = SLdg™ (P12, 3)- (D.6)

D.4 The Opposite Two-Mass Box

The scalar integral possesses symmetry under exchange of the two light-like external legs.
Therefore we have, |

Ldgpp(p37p2’p1) = Ldgpp(pl)p27p3)a

Ledo(ps, p2,p1) = Ledo(p1, p2,p3)- (D.7)

Recall that there are two types of function specifically introduced to describe the tensor
decomposition of this configuration of box. One type of reduction relation relates only one

set of these,

sizLedn(pr, P2, p3) = — (512 — p%) Ledp—1(p1, p2, p3) + chlm(pQ;Pa) - Lcim(pu;lf?s); (D.8)

forn = 1,...,4. Partial cancellation of factors of the Gram determinant yields the identities,
252 2513 9 D123
Aopp Ld311(p1>p27p3) = A—Zpﬁ (‘(323 - Pz) Ldy; (p1>P2ap3) log (p12 ))
1
+§LCd2(p3ap27 pl);
25 2 2813 D123
Aopp Ld21(p1,1727103) = W ( (523 — PQ) Ldl(plapZaPB) + log <p12
+LCd1(p3ap2,p1)7 (Dg)

(512 — p3) Ldoy (p1, po, p3) = (823 — pa) Lda1 (3, o, p1) + 512L.¢2™ (P12, P3)

—823LC%m (P23> Pl)-
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D.5 The One-Mass Pentagon

The pentagon function which arises in the scalar and first-rank tensor integrals changes sign

under reversal of order of the legs,

Le1(p4, ps, p2, 1) = —Le1(p1, p2, p3, pa)- (D.10)



Appendix E

Explicit Form of L~(1,2;1,2)

This appendix gives the explicit form of one of the four-quark finite functions. In contrast
to the notation adopted throughout Chapter 3 and Appendices B, C, D here all the particle
momenta are light-like, p? = 0 for ¢ = 1,...4. For this reason, the superscripts on the finite
functions have been dropped, with the arguments of the functions themselves indicating the

relevant mass configuration.

This example also explicitly demonstrates the correspondence of the singularity structure
to the tree-level matrix elements. The relevant tree-level ampitude squared is 7(1,2;1,2),
which contains only double poles (at most) in the invariants ss4, $134 and sa3q. Therefore

these are the only denominators allowed in L£¢(1,2;1,2).

L£c(1,2:1,2) =
(—96 512 513 — 136 512 534 + 40 sf:,, — 40 813 S14 — 272 513 803 — 40 513 S04 — 56 13 534 + 40 514 523
+16 514 534 — 80 503 34 — 80 S94 S34) /( 52,8134 ) + (160 s12 5%, + 160 512 513 534
+80 519 5§4 + 160 sf3 So3 + 160 5%3 S94 + 160 S13 S93 S34 + 160 513 So4 S34 + 80 523 5§4
+80 594 52,) /( 52, 5%, ) + Ldo(p1, pa, p23) (32 812 513 — 64 512514 + 16 52,
—16 813 514 + 64 513 523 + 48 513 So4 + 32 513 534 — 80 814 823 — 64 514 824 — 32 S14 S34
+16 594 534 + 16 53,) /( s2,5134) + Ldo(p2, p3,pa)(—64 57, 534 + 64 512 513 524

2 2
+64 512 S14 S23 — 16 812 814 S34 — 32 812 893 834 — 32 812 S24 S34 — 48 512 S34 + 32 S13 524

196
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—16 513 514 S23 — 16 513 514 824 — 32 813 893 So4 — 16 813 523 534 + 32513 53,

+16 813 S04 S34 + 16 82, 593 + 32 514 533 — 32 514 823 S24 — 16 814 S23 S34) /( 82, 59345134 )
+(—80 5%, 534 — 80 812 513 823 — 120 819 513 834 + 80 512 514 S23 — 40 512 514 S34

—40 519 55, — 40 835 503 — 40 825 534 + 40 513 S14 834 + 80 513 555 + 120 513 Sp3 S34

+40 813 83, + 40 83, 523 + 80 514 553 + 40 514 $23 534) /( 52, 5934 5134 )

+Ldo(p1, pa, P3) (32 812 513 + 64 812 514 + 32 512 534 + 16 575 — 16 513 514 — 32 813 523
48 515 524 + 32513 534 -+ 80 514 525 + 64514 24 + 64 54 534 + 16 53,) /(534 5134)
+Lc) (P23, p14) (16 8% 834 + 16 812 513 834 + 16 812 814 834 — 32 812 S24 534 — 16 512 534
+16 S13 S14 S34 + 16 S13 524 534 + 16 514 Soq 534 + 16 514 524 — 16 55, 834 — 16 594 52,) /
(834 8134) + Ldo(p2,p3,P14)(32 512 513 + 16 s13° + 16 513 514 — 32 513 503 + 48 513 524
+32 513 534 — 32 si; — 16 574 S93 + 32 814 S24 + 32 S14 S34 — 32 S93 S34 + 16 894 S34

+16 53,) /( 52, 5134) + Ldo(p1, pa, p3)(—128 512 813 514 — 64 512 513 S34

—128 512 S14 S34 — 32 81255, — 128 513 514 523 — 128 513 S14 S24 — 64 813 S23 S34

—64 813 594 S34 — 128 814 593 S34 — 128 $14 So4 S34 — 32 So3 334 — 32594 83,) /( s§4 sf34 )
+Ldo(pa, P3, 14)(—64 $12 513 514 — 32 512 S13 534 + 64 512 57, + 32512 S14 534

+32 819 5§4 - 32 sfg S14 — 32 sfg, 834 — 32 813 S14 523 — 96 S13 S14 S24 — 64 S13 514 S34
—32 513 S23 534 — 64 S13 Sos 534 — 32513 52, + 3255, + 96 52, 893 + 32 574 S04

+32 534 S34 + 64 514 S23 534 — 32 514 So4 S34 + 32 Sa3 334) /( 334 5%34 ) + Lei(pr, paa)
(—96 519 825 + 24 515 55, — 96 525 593 — 96 52, 594 — 128 5%, 534 + 56 513 S23 S34

—56 513 524 534) /( $34 5134)

+Lco(pr, pasa) (32525 593 + 32 8% 504 — 16 535 834 — 16 574 534) / (52, s134) + Lea(p2, pas)
(—16 82,534 — 16 512 13 S23 + 16 512 14 523 + 16 513 555 4 16514 555 ) /( 534 S134)
+Ld: (p1, P4, pa3)

(—32 52, 534 — 16 519 513 534 — 16 512 S14 34 — 32 512 S23 534 + 32 512 S24 534 + 16 512 534)
/( s2, s134) + Ldy(py, p3, pa)(—32 83, 534% + 16 812 813 534 + 48 812 514 S23 S34

2 2 .2 2 2
-16 512 523 834 + 16 813 S14 5923 S34 — 16 514 So3 + 16 514 So3 834) /( 834 5234 S134 )
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+Lcds(py1, P3a, P2) ( —32 813 855 — 32 513 833 So4 — 32514 555 — 32514 553 So4 ) / 52, S134

+Ldo1(pa, p3, P2) (—32 s12 514 554 + 16 57, 503 S34) / 52, 8934 S134 + Ldoa (D1, Pa, P23)

(=16 512 534 834 — 16 51352, S34 + 32 514 523 S04 534 + 16 514 534 534 ) /( 52, 8934 S134 )

+Ld1(p1, s, p3) (—16 $12 534 + 16 S14 523 534) / s34 S134 + Ldo(p2, D3, p4)(—32 512 513

—64 512 514 — 32512 S34 — 16 873 + 32513 523 + 16 513 524 — 16 513534 — 16 514 523

—64 514 524 — 32514 S34 — 16 524 534 — 16 53,) /( s34 8134) + Ldi(p1, pa, pas)

(32 5%2 S23 S34 — 32 5%2 S24 S34 + 16 S12 S13 S23 S34 — 48 512 $13 S24 S34

+48 515 514 S23 534 — 16 512 514 24 S34 + 32 512 553 S34 + 32 512 523 S04 S34

+16 S12 593 534 + 64 512 55, 534 + 48 512 524 55, — 16 575 524 S34 + 16 513 514 523 534

—16 513 S14 S24 S34 + 32 813 834 S34 + 16 513 So4 s§4 + 16 334 $93 S34

—32 514 S23 S24 534 — 16 514 523 534) /( S34 S234 s13¢) + Lco(p1a, pas)(—32 575 S34

—16 819 813 S34 — 16 S12 514 S34 + 96 819 So4 S34 + 48 519 334 - 16 sf3 S34 — 16 513 S93 S34

—16 813 S24 S34 — 16 813 334 + 16 514 S23 S34 + 16 814 S04 S34 + 16 814 534 + 16 393 534

—16 52, 534 — 16 594 53,) /( 52,5134 ) + Ley(p1, Dasa) (16 535 593 + 32 875 504

+48 5%, 34 — 32 513 514 S34 + 32 513 Sag 534 + 96 513 Sa4 34 + 16 57, 523 + 48 53, s34

+16 514 93 S34 — 16 514 94 S34 — 32 514 534) /( 52,5134 ) + Lci(pa, p3a) (48 875 534

+48 519 513 593 — 8 519 513 534 — 48 512 514 S23 + 40 812 814 S34 + 40 512 854 + 24 575 523

—48 513 555 + 40 513 893 834 — 24 5%, 593 — 48 S14 855 + 24 514 S23 S34) /( 52,5134 )

+Lc1 (D2, Praa) (112 825 593 — 16 875 594 + 112 513 S14 523 — 16 513 S14 524

+160 513 S23 534 + 80 S14 So3 S34 + 16 514 S04 S34 + 16 523 534 + 16 594 554) /( 534 5134)
4Ly (ps, pua) (—16 51952 — 16 514 593 834 — 32 514 534 — 32 823 534 — 16 504 85, ) / $54 5134

+Lci (4, pa3)

(—16 519 S14 S34 + 32 519 53, — 16 513 514 534 — 32 14 823 534 — 48 59353, + 16 s5,)

/(834 134 ) + Ly (prg, po3) (—16 512 813 S34 — 16 s12. 534 — 16 533834 — 16 13 Sa3 S34

—16 51355, — 16 514 S23 534 + 16 893 53, — 16 S94” 534) /( 534 134 )

+Ledy (P2, Pag, p1) (—32 835 503 — 32 813 S04 — 32 535 S14 523 — 32 §35514 524 ) / 834 5134
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+Ldo(p1, P4, P23) (—96 S04 85, — 32 513 553 — 32 510 52, — 64 52, 534 — 64 513 53,

—-32 333 S34 — 32 334 — 32 ng So3 + 96 814 353 + 32 sf4 893 — 64 812 513 So3

—96 512 513 534 + 64 512 514 523 — 32 512 514 S34 + 32 513 514 534 — 96 513 523 S34

+96 514 593 S34 — 96 S13 S04 S34 + 32 S14 S04 S34 + 32 514 334 64 324 $34 + 32 523 $34
—96 513 523 S24 + 32 S14 523 524 — 32 593 S4 534) /( $34 5234 S134)

+Lca(p1, D34) (32 512 875 + 16 52, 593 + 16 82,5 594 + 32 525 534 ) / 534 8134
+Le1(p1, pa, D3, 02)(32 825 525 — 3255, 593> — 16555 593 + 32519 S14 55, — 32 575 S23 a4
—16 513 893 s§4 — 32 5%4 $93 S34 + 64 813 S14 833 + 32 813 533 534 — 128 334 $23 824

+16 514 533 S34 — 16 333 S14 S23 + 16 813 5%4 S93 — 32 513 S14 So3 S34 + 16 s‘;’4 $03

—64 514° 324 — 16 813 S93 534 16 519 sﬁ $34 + 16 514 324 534 + 32 s12 S14 534

—48 519 513 593 S34 + 32 512 514 S23 S34 + 48 519 S14 24 534 — 32 812 813 S23 — 32 S12 S14 S23
—64 515 52, 524 — 3252, S04 534 + 16 514 S04 524 + 16 512 513 514 S34) /( 534 5134 )
+Lca(p2, P13a) (32 513 535 + 32 514 523°) / 534 5134 + Ledo(p1, paa, p2) (—48 512 513 554
+32 519 514 534 + 32 819 534 48 313 S93 S34 + 32 513 S94 S34 — 128 813 514 So23 S34

—192 513 593 55, — 80 513 524 52, — 4857, S23534 — 112514 503 524) /( 834 S134)

+Led, (p1, pag, p2) (—112 513° 525 — 80575 823 54 — 128 513 514 555 — 64 813 514 S93 S24
—176 S13 525 534 — 112 513 523 S24 534 — 16 82, 523 + 16 574 803 524 — 112 514 Shg S34

—48 514 593 524 534) /( s2y5134) + Ledi (P2, paa, 1) (—16 535 503 — 16 535 504

—-32 sf3 S14 So3 — 32 sfg, S14 So4 — 80 sf3 So3 S34 — 80 sf3 S94 S34 — 16 513 3%4 $23

—16 513 85, So4 — 16 513 S14 523 S34 — 16 513 S14 S24 S34) /( 5345134 )

+Ld1 (2, p3, Pa) (—16 512 514 534 — 16 512 53 + 16 57, S35 + 16 514 523 534) / S34 S134
+Ld, (p2, 3, P1a) (16 512 513 834 + 16 512 514 534 + 16 512 53, ) / s34 134 + Ld1(p2, p3, D14)
(16 512 52, 534 + 16 512 513 524 — 16 512 834 S3a — 16 512 514 534 + 16 $75 824 834

—16 513 514 523 534 + 16 513 514 524 S34 + 16 513 504 53 — 16 574 523 534 — 16 514 523 534)
/( $34 5334 ) + Ldaa(p1, P, P23)

2 2 2 2
(48 57, S04 534 + 16 575 834 + 32 812 S13 524 S34 — 32 S12 514 523 534 ) /( S34 5234 S134 )
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+Lda1 (p1, Pay P23) (16 S14 853 S34 + 32 S14 503 S04 S34 + 16 514 534 534 ) / 53,5234 S134

+16 Lday (p2, P3, pa) S35 Sa4 / 554 5234 5134

S
+ IOg ( ;234) ( 16 512 534 +16 514 S34 + 32 S93 S34 + 32 894 S34 ) / 834 5134
14

51234 51234
+ log ( sl ) (—32512813 34 — 32813 S23 S34 — 32 813 S24 S34 ) / 8342 5334 + log < 5 )
14 23

(—16 812 813 S34 + 16 812 814 S34 — 16 S12 S§4 + 16 S13 S14 S34 + 16 S13 823 S34 + 16 513 S§4

S
+16 S14 593 834) /( S§4 8934 S134 ) 10g ( ;234) (32 823 S34 + 16 S94 S34 — 16 534 ) / Sg,; 5134
23

S
+10g <ﬂ> (16 512 8513 S34 — 16 819 814 S34 + 16 812 S§4 - 16 813 514 S34 — 16 513 823 534

534
2 2
—16 513 S34 — 16 514 523 834) /( 834 5234 5134 )

s . 51234
+10g (51_34) (32 512 513 S34 =+ 32 513 S23 S34 + 32 813 S24 S34 ) / 834 5‘%34 -+ IOg ( s34 )
34

48 812 8§13 + 72 812 834 — 24 S% + 24 513 S14 + 144 813 So3 + 24 813 894 + 40 513 S34
3

S
—24 814 S93 — 24 893 834 + 48 So4 S34 T+ 48 534) /( 5%4 S134 ) + IOg < 31234> (48 8%2 534
234

2 2
+48 512 513 S23 =+ 88 812 513 534 — 48 S12 S14 S23 + 8 512 514 S34 + 40 512 S34 + 24 813 S93
2 2 2
+24 8%3 S34 — 40 513 S14 S34 — 48 513 So3 — 88 513 593 S34 — 40 513 S34 — 24 S14 523
2 2
—48 514 553 — 40 514 593 534) /( S34 5234 5134 )

S .
+10g ( 81234) (80 813 S34 — 48 S14 S34 — 64 893 834 — 64 S94 S34 — 16 834 ) / 834 S134
234

—log <Zlﬂ> (32 812 S34 + 64 513 S34 —+ 48 814 S34 — 40 S23 S34 —+ 16 894 S34 + 64 834)
134

$1234 2 2 2 2
/ 3§4 5134 + log ( p (—96 s12 573 — 64 512 S13 34 — 48 512 554 — 96 573 523 — 96 573 524
134

2 2 2 2
—64 513 S23 S34 — 64 513 S94 S34 — 48 8§93 S34 — 48 S94 834) /( S34 5134 )



Appendix F

Azimuthal Correlations

In considering the triple collinear limits of chapter 7, it is important to consider azimuthal
correlations between polarization vectors whenever there is a propagating spin-1 particle.
These considerations are even evident at the double collinear level when one considers the

splitting ¢ — gg. Universal factorization in this collinear limit is only true after azimuthal

averaging.

In such cases, the usual approach to collinear limits is not sufficient. When identifying
the singular behaviour of the matrix elements in the collinear region, it is normal simply
to introduce a momentum fraction for each collinear particle, p; = z;P. However, these
relations are only true ezactly in the collinear limit, when all particles travel along a given
direction. However, we are really studying the singular behaviour as an invariant s — 0,
not the exact limit of s = 0. This discrepancy manifests itself as extra powers of invariants
in the denominator of the matrix elements squared. By allowing the collinear particles
some rotation around the collinear direction we may recover the true behaviour. A proper
formalism should suitably expand all factors in the numerator - including angular factors -
before the collinear limit is taken. The splitting function factorization of matrix elements is

then only true after all azimuthal integrations have been carried out.

In this appendix we show explicitly how the azimuthal terms may be implemented - first

in the simple case of two collinear particles and then by extending the results to the triple

201
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collinear case of chapter 7.

F.1 Two Collinear Particles

We first consider the case of a collinear pair in a final state of four on-shell particles. The
particle momenta will be written p;, « = 1,...,4 and we use the generalized Mandelstam
variables s;; = (p; + pj)*. Particles 3 and 4 are chosen to be collinear, with the combined

momentum, pPsq) in the z-direction in the centre-of-momentum frame,

p(34) = (E34a O: Oa Of),
where s34 = p%34) = F2, — o?. By introducing a transverse momentum pr = zE3sinf =
(1 — 2)E3ssin#', we can write the momenta of the individual particles as,
ps = (vEs34,prsing, prcos¢, xEzcos),
ps = ((1—x)Es, —prsing, —prcosd, (1 — z)Ezq4 cosb’).

Here z is the usual momentum fraction and ¢ the azimuthal angle which will be integrated

over. Now consider the two other final state particles, which are not collinear. We represent
these generically by,
= (Ela Oa a, b) )
P2 = (E27 07 —a, —b— a) )
so that the combined momemtum balances p(z4) and sio34 = (Ey+ Ey + FE34)?. The on-shell
conditions for p; and p, require that,
E? = a® + b7, Ef=d*+(b+a) (F.1)
To relate the matrix elements to the 3-particle state represented by 1, 2 and (34) we introduce
the further variables,
ya = (p1+p)? = (B + Ey)* - o,
vz = (p+ppyy)’ = 2E1E3 — 2bo + s34,
Yoz — (p2 +p(34))2 = 2E2E34 + 204(1) + CM) + S34.
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It is now simple to re-write the 4-particle variables s;; in terms of these new variables. For
example,
S13 = 2p1 cP3 = 2.’13E1E34 - 2apT COSs ¢ — 2b$E34 cosf
= z(y13 — S34) — 2apy cos ¢ + 2bz(a — F34 cosb), (F.2)
and,

So3 = 2p9-ps3 =2xE9F34 + 2aprcos ¢ + 2(b+ o)z E3y cosb
= (ys3 — S34) + 2apr cos d — 2(b+ a)z(a — E34cos8). (F.3)

In order to complete the connection between the two sets of variables, we need expressions
for pr, a and b. We first consider # and §' small (effectively dropping terms of order p3) to

find,

S34 — 2p3 Py = E324 - [ZEE34 cos + (]. - .’L')E34 COS 0112
= FEZ <x02 + (1 - :1:)0'2)
= E34prO, (F.4)

where we have also introduced the opening angle © = # + ¢'. This is simply obtained via,

br Pr pr
@ = —+ = ;
ZEE34 (1 - :C)E34 13(1 — CE)E34

which then yields the simple relation,

P2 = z(1 — z)s34.

By using this equality and the on-shell condition for ps, namely p2 = 2?E3,(1 — cos®§) we
find that the coefficient of the b term in eq. (F.2) can be re-written as,
2z(a — B34 cos6) = 8—34—(1 — 2%).
E34
In fact, we find that all the terms which are explicitly of order s34 or higher can be dropped

when we substitute the limits such as (F.2) or (F.3) into the matrix elements. Therefore we

need only concentrate on an expression for a.
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When we now take the collinear limit we will have elimated all the double poles in s34
in the matrix elements. Therefore in order to derive an expression for a in terms of these
variables we are able to neglect further terms of order s3;. We first note that we have

a = E34 + O(s34) and hence that,
s = 2E3(Ey —b),
Yoz = 2E34(Ey+b+ Esy),

Y13 + Y3 = 2E34Fi934,
where Elyyy = Y123 = ﬁyl—i“%ﬁ Equation (F.1) implies that,

a2 = (B —b)(E +b) = 22 (B, +b),

a2 = (EQ——b—E34)(E2+b+E34)
_ Y= (Bs — b — Eyy)

= Zyl;il (E1234 - (E1 + b) b 2E34).

Combining these two equations enables one to solve for a?, yielding,

2 Y12Y13Y23 -
a° = = F5
(Y13 + y23)? (:5)

This is a general result, which in particular will also be true when 3 particles are combined

to lie collinearly in the z-direction.

F.2 Three Collinear Particles

The generalization of this formalism to 3 collinear particles is straightforward. We introduce
a transverse momentum pr; for each particle ¢ = 3,4,5 , which balances against the cluster

of the other two. So, for example, we have,

ps = (wE345,prssin @3, prs cos 3, wEsys cosbs)

pusy = ((1 — w)Esss, —prssin ¢s, —prj cos @3, pas cos 03) ,



[N}
)
(621
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with pry = wEss8in0;3 = pyssinfy. The momentum fractions for 3, 4 and 5 are w, z

and y (= 1 — z — w) respectively, whilst transverse momentum conservation implies that

Z?:3 pr; cos ¢; = 0.

Using s45 = P?45) we find that, to first order in s43,

S45
=(1-w)Eyy— ——2
Pas ( 'U)) 345 2(1 — ’IU)E345

Expanding for small 85 and 65 as before we also have,

1 2
5345 = E§45 - (UJE345 + D45 — §PT3@3) ;

where the opening angle ©3 = 03 + 65 is given by,

Prs Prs Pr3
O = 4+ 2= — 2 4 O(845).
57 Wy pis w(l —w)Eas (545)

Combining these two equations yields the identity,
pri = w (1 — w)s35 — Sas) - (F.6)
We must now relate the 5-particle variables to the 3-particle ones, in analogy to the

reduction from 4 to 3 particles in the single unresolved case. These identities are easily

obtained and we find, for example,

S13 = 2p1-ps = 2wk F34s — 2apr; cos P3,

yi3 = (p1+ Pass)’ = 2py * D3as) + 8345 = 2F1 E3g5 + S345.

When we now take the double unresolved limit of the 5 parton matrix elements we may

employ the substitutions,

s13 = w(y13 — Ssa5) — 2apr3 COS Ps,

S93 = w(Yas — S3a5) + 2apr3 COS P3,

where we have here neglected terms proportional to b from the outset.
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