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Preface 

This thesis is derived from research done by the author between November 1993 and 

January 1997 at the University of Durham, financially supported by an Engineering 

and Physical Sciences Research Council studentship. No part of it has been submitted 

previously for any degree at any university. 

In chapter 1 the sine-Gordon system of nonlinear partial differential equations is intro­

duced. For this system and with iV £ Z, P, Q € E the sets of initial-boundary value 

problems Ayv and Bp,Q are defined. No claim of originality is made for any of the 

material concerning the set Ajy. However, it is believed that all the results regarding 

the set Bp,g are original to this thesis. The starting point for this whole investigation 

was the author's paper [1]. 

The copyright of this thesis rests with the author. No quotation from it should be 

published without his prior written consent, and information derived from it should be 

acknowledged. 
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Abstract 

This thesis investigates the integrability of the sine-Gordon system of nonlinear partial 

differential equations when the dependent variables are subject to some very particular 

boundary conditions. In chapter 1 the sine-Gordon system is introduced and, with 

N G Z, G 1 , the sets of initial-boundary value problems A/v and B p ^ are defined. 

In the set A AT the spatial variable x is unbounded and the boundary conditions are fixed 

by initially choosing the topological charge N. This set of problems is the one usually 

associated with the sine-Gordon system. In the set B ^ Q the spatial coordinate is 

constrained to the semi-line (—oo,0] and there exists two boundary parameters P,Qd 

R to be chosen a priori. It is the study of this second set of initial-boundary value 

problems for arbitrary P, Q which forms all the original work of this dissertation. 

The study presented here is primarily concerned with the development of three separate 

inverse scattering methods for solving these sets of initial-boundary value problems. 

The first of these is developed in chapter 3 and is applicable to a subset of the problems 

in AM- The method is the one usually associated with the sine-Gordon system and 

studies the asymptotics of the initial data as x —> ±oo. It is included in this thesis 

for completeness and as background for the original material which follows. Next, in 

chapters 4 and 5, the inverse scattering methods appropriate to initial-boundary value 

problems in subsets of B^o and Bp^^o are constructed. In these cases it is important to 

realise that it is only possible to study the asymptotics of the initial data as x —» —oo. 

Once these three methods have been formulated they are used to find soliton solutions 

and infinite sets of integrals of motion for these boundary value problems. When a 

boundary is present at x = 0 the interaction of the solitons with this boundary is 
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studied. These topics are addressed in chapter 6. Finally in chapter 7 the question 

of the integrability of both sets of problems is addressed. By interpreting the various 

inverse scattering methods in terms of canonical coordinate transformations of phase 

space it is seen that the existence of such methods can be viewed as a constructive 

proof of the integrability of these boundary value problems. 
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Chapter 1 

Introduction 



1.1 Subject overview 

This thesis concerns the theory of integrable nonlinear partial differential evolution 

equations for variables dependent on two spacetime coordinates G D C K 2 . Such 

systems are often called 1 + 1 dimensional integrable field theories in the theoretical 

physics literature. 

One of the main techniques for solving initial-boundary value problems for these equa­

tions is the inverse scattering method. This involves a nonlinear change of variables 

(phase space coordinates) which is invertible and which makes the equation(s) linear 

and explicitly solvable. It is the existence of such a transformation that prompts the 

use of the term 'integrable'. Many of the systems solved in this way possess a Hamilto-

nian structure. That is, the equations defining them are infinite-dimensional analogues 

of Hamilton's equations in classical mechanics. In such cases the inverse scattering 

method can be interpreted as a canonical transformation with respect to this struc­

ture so that the variables which linearise the system have the meaning of action-angle 

variables. 

Since its inception in the pioneering work [2], the inverse scattering method has been 

used to solve many different integrable equations of this type. Examples of these are 

the well known Korteweg-de Vries, nonlinear Schrodinger and sine-Gordon systems. 

Originally the method was developed to solve problems for which phase space is related 

to the functional class of 'rapidly decreasing' C valued functions. In this case one is 

able to calculate the multi-soliton solutions known to applied mathematicians for many 

years. The original solutions to initial-boundary value problems of this type for the 

Korteweg-de Vries, nonlinear Schrodinger and sine-Gordon systems are to be found in 

[2, 3, 4] respectively. 

Then, approximately 20 years ago, the method was successfully modified to accommo­

date phase spaces related to the functional class of (quasi)periodic C valued functions. 

The resulting theory was termed finite gap integration [5] and using this the analogue of 

soliton solutions were calculated. As opposed to the solitons, however, these solutions 

are expressed in terms of theta functions common in algebraic geometry, and so were 
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given the name finite gap or algebro-geometric solutions. 

In addition to the many explicit solutions calculated for these equations, the inverse 

scattering method provided the key to a construction of a complete set of action-

angle variables for such systems. In many cases, however, this construction required 

a truncation of the original phase space to a space defined in terms of the scattering 

data of the problem. This will be explained in more detail in subsequent chapters. 

The integrability of any of these equations when subject to specific 'local' boundary 

conditions is a much more open question and has received considerable attention in 

the mathematical literature over the past decade. One would not expect any set of 

boundary conditions to preserve integrability and the question of how to categorise 

those which do is an interesting question which has only been partially answered. The 

study of this problem was initiated in [6] which contained important steps in fit t ing 

such 'integrable boundary conditions' into the r-matrix (Hamiltonian) picture of the 

inverse scattering method. However, this work provided no clue as to how to modify 

the theory so as to explicitly solve the resulting problems. Such a modification was 

first developed for systems defined on the semi-infinite interval, x € (—oo,0] with the 

dependent variable(s) decreasing 'rapidly' as x —> -co and satisfying an integrable 

boundary condition at x = 0. These are related to the case when x € R with the 

dependent variables rapidly decreasing as |.T| —> oo. Therefore it is not surprising that 

there exists multi-soliton solutions to these problems. The literature developing this 

semi-infinite inverse scattering method is extensive but a few key references are [7]. 

The situation when space is finite eg x G [—1,0] with the dependent variable(s) sat­

isfying an integrable boundary condition at each end is far less clear. Once again the 

original results [6] are useful but the calculation of explicit solutions to the problems 

requires far more work. Only in the last five years has progress been made for a small 

number of systems, specifically the nonlinear Schrodinger equation and the sine-Gordon 

system. These were solved by appropriately adapting the finite gap integration theory 

for the (quasi)periodic problem to the particular system at hand. To do this similar 

ideas to those for semi-infinite boundary value problems were used [8]. 

13 



Despite such progress, the analysis of integrable partial differential equations on a semi-

infinite or finite spatial interval is at an early stage and much work has still to be done. 

Besides a thorough development of inverse scattering techniques to these problems it 

remains to investigate how certain conjectured properties of integrable systems (eg the 

Painleve tests) must be modified when boundaries are present. 

Following this general discussion of integrability and the inverse scattering method, the 

rest of the thesis will concentrate on the study of two particular types of boundary value 

problems for the sine-Gordon system. The reasons for this particular specialisation 

are two-fold. In the first instance the problems of Type Ajv have a long history of 

applications to many branches of physics. Secondly, over the last few years many 

applications of the problems of Type Bp tg to condensed matter systems with boundaries 

and impurities have been recognised and theoretical physicists are currently studying 

the quantum field theory associated with this set of problems. 

A subset of the problems of Type A/v are known to be integrable and a thorough 

analysis of these was carried out more than 20 years ago [4]. However the situation is 

far less clear for problems of Type Bp;Q and only partial results have been obtained for 

these systems. In the following sections the two sets of problems are stated in fu l l and 

some of the known results regarding them are given. From this information an open 

problem regarding the integrability of the set B ^ Q is identified for further investigation. 

1.2 Init ia l -boundary value problems of T y p e Ajv 

This set of problems is the one usually associated with the sine-Gordon system. There 

exists an extensive literature discussing the underlying mathematics of these and their 

applications to physics. A precise statement of the problems is given by the definitions 

below. In addition some comments regarding them are made which should be kept in 

mind during subsequent chapters. 
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Notation 1.1 For a , i 6 1 let. <S(R, a, 6) be the set of smooth functions f : R —> R 

which have the asymptotics 

l im /'(.-r) = 6 , l im /'(x) = a rapidly in x. (1.2.1) 

TVie /erm 'rapidly in x ' is to indicate that all the spatial derivatives of f decay faster 

than any power of x as x —• ±oo. In addition let <S'(R, a, a) C <S(R, a, a) denote the 

subset of functions which satisfy the involution f ( x ) = f(—x) Vx G R. Finally let 

MN = S{R, 0, 2KN) x <S(R,0,0) and A^Q d= <S'(R,0,0) X «S'(R,0,0). 

With this notation it is possible to define a set of initial-boundary value problems for 

the sine-Gordon system which are parameterised by elements of the phase space A4N-

The study of these problems forms a major part of this thesis. 

Definition 1.2 With N 6 Z, an 'initial-boundary value problem of Type A/v is the 

problem of determining the functions <p, w : (x,t) i—> R with (x,t) € R 2 which satisfy: 

• the sine-Gordon system 

dtp 

dw d2f 
Ik^dx* 

• the boundary conditions 

(<p(-,t),m(-,t))eMN V t e R . (1.2.3) 

• the 'initial' conditions 

(¥>(- ,0) ,c7(- ,0) = (<pN,v>o) e M N . (1.2.4) 

From this definition it is clear that specifying the initial data (IPN,WQ) € M.N for some 

N £ is equivalent to specifying a particular problem of Type A/v. 

There are a couple of technical remarks which need to be made regarding these initial-

boundary value problems. 
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• The question of existence and uniqueness of the solution to arbitrary problems 

of Type A/v remains unanswered throughout this thesis. That is, for arbitrary 

((/?/v,G7o) £ M.N, does there exist a unique solution to the problem of Type AJV 

which satisfies (1.2.4). 

• It may be the case that the boundary conditions in definition 1.2 are redundant, i.e 

once an element of is chosen as initial data then the dynamics of the problem 

may leave this space invariant and the imposition of boundary conditions is not 

needed. 

Such technicalities are not really in the spirit of this thesis. However, regarding the first 

of these comments, since one of the aims of this thesis is to explicitly solve problems 

of this Type it will be assumed that all such problems possess a unique solution. For 

a subset of these problems, to be introduced in chapter 3, it will be seen that the 

assumption is indeed valid. 

1.2.1 Physical applications and quantum field theory 

A detailed discussion of the many applications the set Aw have to physics would take 

many pages and is beyond the scope of this thesis. However, a few key applications are 

to the modelling of Josephson junctions in condensed matter physics [9], optical pulse 

propagation through a dielectric medium [10] and elementary particles [11]. Excellent 

background reading regarding these applications is [12]. 

The interaction of elementary particles is described by quantum field theory. The quan­

tum field theory associated with the set UiVez Ajv has many very interesting properties 

and remains an active area of research to this day. Probably the most intriguing re­

sult regarding this quantum field theory is its strong-weak coupling 'duality' with the 

massive Thirring model of Majorana fermions [11]. In addition the model is 'quantum 

integrable'. By definition this means that there exists an infinite number of opera­

tors in the theory which mutually commute with one another and with the quantum 

Hamiltonian. This infinite family constrains the system sufficiently so that the exact 
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solution (in the sense of quantum field theory) can be conjectured using factorised 

S-matrix/bootstrap/form factor techniques [13]. 

1 . 2 . 2 Inverse scat ter ing theory for problems of T y p e AN 

The inverse scattering theory for a subset of the problems of Type AN was formulated 

in [4] the subset being defined by a reduced phase space M.N c M.N- When restricted 

to this phase space, the inverse scattering method becomes an invertible transforma­

tion of 'coordinates' and, in terms of the transformed set, the time evolution is easily 

determined. 

From this solution emerged an interpretation of the excitation spectrum in terms of 

relativistic field theory and it was the semiclassical quantisation of this analysis that 

led to the concept of an integrable quantum field theory. 

The inverse scattering method for solving this subset of problems is explained in detail 

in chapter 3. This explanation follows closely that given in [14]. 

1.3 Init ia l -boundary value problems of T y p e B p g 

In this section a set of initial-boundary value problems for the sine-Gordon system 

with x G (—oo,0] is defined. Al l the subsequent analysis concerning these problems is 

original to this thesis. 

Notation 1.3 For P,Q £ 1R and denote by ( f , g ) a pair of smooth functions / , g 

(—oo,0] —» R which satisfy the boundary conditions 

d f 

x=0 d x 
+ P sin — Q cos —— = 0, 

dx x=0 
+ > c o s M + | 9 ( 0 ) s i n M . 0 , 

l im fix) = lim g(x) = 0 rapidly in x. 
X—* — CO X—• — o o 

Let «A/p,Q denote the space of such pairs of functions. 
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It is now possible to define the set of initial-boundary value problems for the sine-

Gordon system which are parameterised by elements of the phase space Afp,Q-

Definition 1.4 With P, Q € R an 'initial-boundary value -problem of Type BpTQ ' is the 

problem of determining the functions tp, w : (x,t) i — • R with (x,t) (E (—oo,0] x R which 

satisfy: 

• the sine-Gordon system 

3^ 
~--sm<p V ( i , t ) 6 ( - o o , 0 ] x R . (1.3.1) 
oxi 

• the boundary conditions 

(v(-,t),w(-,t))eAfp,Q wteR. (1.3.2) 

• the 'initial' conditions 

M-,0),n7(-,0)) = (<PP,Q,WP,Q) € M P , Q . (1.3.3) 

Once again it is clear that specifying the initial data (<fP,Q, wP,Q) f ° r some P, Q G R is 

equivalent to specifying a particular problem of Type B ^ Q . 

Regarding the existence and uniqueness of solutions to problems of this Type, the same 

comments as those made for problems of Type can also be made here. The same 

assumptions as made in section 1.2 will also be made for the problems Bp tg. However, 

it will be seen in chapters 4 and 5 that, for a subset of the problems of this Type, the 

assumption that a unique solution exists is indeed a valid one. 

dip 

~dt 
dw 

~dt 

1 . 3 . 1 O n the integrabi l i ty of the set B P Q 

It was in the theoretical physics literature that the question of the integrability of the 

set Bp,Q was first considered. In [15] the first nontrivial integral of motion (i.e. not the 

Hamiltonian) was constructed. As a consequence of this, the system was conjectured to 
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possess an infinity of such integrals an infinite subset of which then survive quantisation. 

In short, the quantum theory associated to the set B ^ Q was assumed to be quantum 

integrable. 

In addition to this result and conjecture Ghoshal and Zamolodchikov [15] (following 

the original idea of Cherednik [16]) went on to develop S-matrix / bootstrap ideas for 

systems with a single spatial boundary by exploiting the factorisation of scattering when 

space is semi-infinite. (It is unclear whether or not analogous ideas can be developed 

when space is finite although this is commonly assumed when dealing with periodic 

systems). Having developed these techniques Ghoshal and Zamolodchikov went on to 

apply them to the conjectured integrable quantum field theory associated to B ^ Q and 

calculated so-called reflection matrices for the interaction of the quantum solitons with 

the x = 0 boundary. With these results the concept of an integrable boundary quantum 

field theory was introduced as a new object of study for integrable field theorists and 

as a result the investigation of such systems has recently become quite fashionable. 

The conjecture of the classical integrability of the problems was further supported in 

[17] where a particular element of B ^ Q was solved. This 'kink' solution was found 

using Hirota's method and allowed the calculation of a 'time delay' experienced by a 

kink when it interacts with the boundary. A semiclassical quantisation of these results 

was found to agree with the ful l quantum results of [15]. 

This evidence certainly seems compelling and to many researchers in the field the 

existence of a nontrivial 'higher' conservation law or a soliton solution to a particular 

problem would count as a proof of the integrability of the whole set. This is not the 

point of view taken in this thesis and it is only through the development of an inverse 

scattering method for (a subset of) such problems that their integrability can rigorously 

be proved. 

1.3.2 Inverse scat ter ing theory for problems in B p i 0 , Bo,Q 

Subsets of the problems with P and/or Q equal to zero have already been studied 

in the mathematical literature. The set Bp i 0 was first considered in [6] where the r-
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matrix approach to the inverse scattering method was used to construct an infinite 

number of involutive integrals of motion. Following this the inverse scattering method 

was modified to solve a subset of the problems of Types Bp,o and BO,Q. The required 

modifications were deduced by using 'gauge transformations' to constrain solutions to 

problems of Type Ayv [7]. These ideas will be explained in detail in the subsequent 

chapters. 

1.4 A n open question requiring further study 

It is clear from the section 1.3 that much work has been done and many results obtained 

for problems of Type B ^ Q . Much of this is due to the original paper [15] which, as 

was stressed earlier, made the assumption of the integrability of this set of problems. 

Meanwhile, as explained in subsection 1.3.2, there exist well developed techniques for 

the incorporation of Bp^) B 0 , Q into the inverse scattering method. Putting these results 

together it is natural to ask the question: 

For general P, Q £ R can an inverse scattering method be developed for solving problems 

of Type Bp_Q thus proving that that such a set form an integrable system ? 

It is the study of this problem that forms all the original work contains in this thesis. 

1.5 Motivat ion and objectives 

This section is of a more subjective nature. It is here that I want to explain my 

motivation for studying the problem detailed in the previous section for a PhD thesis 

and the objectives I wished to achieve as a result. 

In the first instance, I was determined to do research in the broad field known as 

mathematical physics and to achieve a reasonable degree of mathematical rigour as 

regards my results. Also, I wished to work in an area which draws upon results from 

many different disciplines of mathematics. Thus the field of integrable systems in 

general and the inverse scattering method in particular was a very natural place to 
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look for some open problems. The underlying theory of this method calls upon results 

from analysis, algebra, geometry and physics and it is the way these ideas come together 

to solve concrete equations in applied mathematics that attracted me to the study of 

inverse scattering theory. 

Then, just prior to me starting my research, the paper [15] appeared and, as a result, 

the subject of integrable boundary field theories was becoming fashionable amongst 

the theoretical physics community. In [15] the relationship between boundary condi­

tions and integrability was raised as an interesting and open problem. In addition the 

integrability of the set B p ^ was conjectured. 

At the same time I read an interview article with Professor Stephen Smale where 

he advised PhD students to study a narrow subject in depth rather than a broad 

one without understanding. This comment and the conjectured integrability of Bp,g 

became fixed in my mind and when I discovered that there existed some background 

material on questions of this type to get me started I had found the subject of my 

thesis. 

Why concentrate on these particular problems ? The question of their integrability 

and the inclusion of such systems into the scheme of inverse scattering is a very neat 

and concise one. Also, this set of problems have been shown to have applications to 

condensed matter physics and as a result are currently a fashionable area of research. 

The main objecti ve of my PhD research into the mathematical content of such problems 

was to develop my own understanding of the concept of integrability. When considering 

mechanical models (no dependence on x) there is a specific definition of an integrable 

Hamiltonian system and there exist theorems about the properties of these. However, 

no such definitions and theorems exist when considering problems depending on x 

(partial differential equations) and to some extent an integrable system of this type 

means different things to different people. This is a less than ideal situation for a 

mathematical term to find itself in. As a result I was determined to fix my own 

definition of integrability for these systems and to investigate to what extent some 

particular problems were able to meet this criterion. 
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With these ideas and objectives in place it was natural to turn my attention to the 

inverse scattering method which, at the present time, provides the best setting in which 

to address such problems. 

1.6 Thes i s outline 

The study of the sets Ajv and B ^ Q occupy chapters 2-7 of this thesis. Chapter 8 

poses some interesting problems which require further investigation. Al l the results 

concerning the set B ^ Q are original to this thesis. 

The contents of each of the eight chapters is as follows: 

1. This chapter has been an introduction to some of the literature and ideas with 

which this thesis is concerned. Initial-boundary value problems of Types Ajv and 

BpTQ have been defined and an open question regarding the latter set has been 

identified. This question provides the main direction of research for this thesis. 

2. In this chapter the problems of Types AN and B ^ Q are 'linearised' and the 

resulting linear systems are solved by the Fourier transform method. The main 

ideas underlying this solution are important for later chapters when developing 

the inverse scattering method for solving the ful l nonlinear problems. Also, the 

relationship between the two sets of linear problems should be kept in mind to 

help with the subsequent analysis. 

3. The inverse scattering method is developed for solving a subset of the problems 

of Type AN - this subset being defined by a restricted phase space Aijv C M-N-

The whole chapter mirrors very closely the formulation presented in [14]. 

4. The inverse scattering method developed in chapter 3 is modified to solve a subset 

of the problems of Type B^o- Once again this subset is defined by a restricted 

phase space J\p$ C J\fp,o- The analysis leading to this modification is presented 

in some detail. It is not particularly elegant but along with the similar results of 

chapter 5, it forms the backbone of the original work contained in this thesis. 
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5. This chapter mirrors chapter 4 but instead considers the set of problems B ^ Q ^ O 

Only the main results are presented as the working follows that presented in the 

previous chapter. 

6. The inverse scattering method formulated in chapter 3 and its subsequent modi­

fications in chapters 4 and 5 are used to solve some particular problems of Type 

Ao, A±i , Bp to, B^Q^O- Some of the properties of these 'soliton' solutions are 

studied and compared with the results of [17]. 

7. This chapter introduces the reader to the theory of finite dimensional integrable 

systems. A rigorous definition of 'integrability' is developed and this is formally 

extended to the infinite dimensional Hamiltonian systems AN and B ^ Q . The 

direct and inverse scattering transforms, (two of the three stages in the inverse 

scattering method), can then be interpreted as coordinate transformations for 

the phase spaces MN, NP,Q- In terms of the new coordinates (scattering data) 

the initial-boundary value problems can be solved explicitly so that the sets of 

problems defined by these phase spaces form integrable systems. Following this, 

an infinite set of integrals of motion for these systems are constructed and a brief 

discussion of the 'action-angle' coordinates for the space M.N is given. 

8. Some interesting open problems regarding the sine-Gordon system are discussed. 

To conclude, it is the intention of this thesis to give a detailed description of the current 

state of inverse scattering theory for the sine-Gordon system. Therefore it should be 

mentioned that much of the analysis in chapters 2-7 is of a highly technical nature. 

This thesis is not an easy read. 
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Chapter 2 

The method of Fourier transforms 

for solving the linearised problems 
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2.1 Introduct ion 

The inverse scattering method can be viewed as a nonlinear extension to the method 

of Fourier transforms for solving initial-boundary value problems for linear partial dif­

ferential equations. Indeed, when a nonlinear equation solvable by inverse scattering 

method has a 'coupling' parameter in front of its nonlinear part, i t reduces to the 

method of Fourier transforms as this parameter approaches zero. 

In order to develop the ideas of chapters 3,4 and 5 it will be helpful to consider the 

Fourier transform method applied to the linearised forms of the initial-boundary value 

problems of Types AN and Bp,Q. By doing this many of the ideas of the fu l l inverse 

scattering method for solving the nonlinear problems can be seen much more clearly 

and the difficulties in certain aspects of its formulation can be identified. Also, the way 

the inverse scattering method must be modified in order to solve the nonlinear initial-

boundary value problems of Type B ^ Q is made more transparent by first considering 

the relationship between the linearised forms of these problems and the linearisations 

of those of Type AN-

2.2 T h e classical Fourier transform 

Definition 2.1 A function f : R —* C is called absolutely integrable if \f(x)\dx 

Definition 2.2 For any absolutely integrable function f , define its Fourier transform 

Definition 2.3 A sequence of functions (/„) is said to converge uniformly to F on an 

interval I if for each e > 0 there exists a number N depe nding on e but not on x, such 

that | /„(x) — F(x)\ < e for all n > N and all x G / . 

exists. 

f b y 
CO 

/(*) = / /(*) 
J — oo 

ikx dx 
CO 

(2.2.1) 
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Lemma 2.4 For an absolutely integrable function f let 

fM(k)= / f(x)e-thxdx, 
J-M 

then fM(k) converges uniformly to / (fc) . 

Definition 2.5 A function f : R —> C is called piecewise smooth if all its derivatives 

exist and are continuous except (possibly) at a set of points x ^ a ^ , . . . such that any 

finite interval contains only a finite number of the X{, and if the function and all its 

derivatives have, at worst, finite jump discontinuities there. 

Remark 2.6 All elements o/<S(R; 0,0) are absolutely integrable and piecewise smooth. 

Theorem 2.7 (Inversion Theorem) / / / is absolutely integrable, continuous, and 

piecewise smooth, then 

fix) = IT r fWeikxdx. (2.2.2) 

Notation 2.8 For a, b G C let T(R; a, b) be the set of smooth complex valued functions 

f of a single real variable which have the asymptotics 

l im fix) — b , l im fix) — a rapidly in x. (2.2.3) 
X—t + OO X—• — CO 

In addition let T(R;a,a) C T(R;a,a) be the subset of functions which satisfy the 

involution f i x ) = /(—x) Vx G R. 

Proposition 2.9 According to definition 2.2 and remark 2.6, if f G <S(R;0,0) then 

/ G T ( R ; 0 , 0 ) . 

The proofs of many of these results are to be found in [18] and the references therein. 

2.3 Solving the linearised form of the set A 0 using 

Fourier transforms 

The sine-Gordon system as it appears in definition 1.2 does not possess a coupling 

constant in front of its nonlinear part. This is also the case for the Korteweg-de Vries 
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equation when written in its standard form [19]. However, as with this equation, 

i t is possible to introduce an arbitrary non-zero coupling into problems for the sine-

Gordon system by scaling the dependent variables. The introduction of this parameter 

is essentially a trivial one since all solutions for an arbitrary coupling can immediately be 

related to those when this parameter is set equal to one. Despite this, the introduction 

of a parameter in this way makes it possible to linearise these problems by considering 

the limit as the coupling tends to zero. 

To include the parameter G R into this set of problems define new dependent variables 

(3TL) = F (9?, w) and substitute these into the bulk sine-Gordon systems of definitions 

1.2, 1.4. Therefore ($(•,*), n(-, *)) G MN/P V* G R. With this parameter in place it is 

possible to consider the linearised forms of the problems of Type A # . Considering /? —*• 

0 in this set (obviously rewritten in the new variables (<fr,n)) forces the specialisation 

to N = 0 and a Taylor expansion shows that to order /? they reduce to solving an 

initial-boundary value problem for the linear Klein-Gordon equation with phase space 

Mo- That is the problem of determining the functions $, n : R 2 —• R which satisfy: 

• the Klein-Gordon system 

— = n 
dt ' 

^ - = ^ - < D Vx, i € R. (2.3.1) 
Ot ox2 

• the boundary conditions 

($ ( - ,<) , I I ( - ,< ) )€Mo Vt G R. (2.3.2) 

• the ' initial ' conditions 

($(-,0),n(-,0)) = (<p0,w0) G Mo- (2.3.3) 

Notice that Mo is an infinite dimensional real vector space as required by the linearity 

of the problem. 

For an arbitrary initial condition (fo,voo) G Mo this linearised problem is solved by 

using the results of section 2.2 in three well defined stages outlined in the following 

three subsections. 
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2.3.1 Stage 1: the direct F o u r i e r t r a n s f o r m 

Definition 2.10 With (/,<?) G Mo denote by f,g the Fourier transforms of f,g re­

spectively. Let dFt denote the 'direct Fourier transform' map 

dFt : M0 -» f (R; 0,0) x f (R; 0,0), 

defined by 

dFt(/,s) = (/,$). 

From theorem 2.7 and remark 2.6 it is obvious that the inverse of this map exists. For 

consistency with later chapters it will be convenient to call this the 'inverse Fourier 

transform' map iFt = f ( d F t ) - 1 . 

Apply the map dFt to the initial configuration (C^O,G?O) by defining 

$(fc,0) = F <po{x)e-lkxdx, tl(k,0) = r Wo{x)e~lkxdx. (2 .3 .4) 
J — oo J — oo 

The pair ($(•, 0), II(- , 0)) = dFt(</?o, ^o) are said to constitute the 'initial Fourier data' 

for the problem. 

2.3.2 Stage 2: the t ime evolut ion of the F o u r i e r d a t a 

Suppose the solution ($,11) to the problem (2.3.1)-(2.3.3) is already known. Applying 

dFt to the pair (<&(•, t), II(- , t)) at a general time i G K gives 

r ( $« - $ M + $)e-ikxdx = 0, r ( n „ - n r a + H > - < ^ = 0 (2.3.5) 
J — CO J — i>J 

V£,fc G R with subscripts denoting differentiation. Integrating by parts, using (2.3.2) 

and the uniform convergence of the integrals to take the differentiations under the 

integral signs, shows the time evolution of the Fourier data for this solution to be 

governed by the equations 

d2<f>(k,t) 
dt2 

d2fl(k,t) 

= -(fc 2 + i )$ (M) 

dt2 
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Note that these equations are linear and once the initial conditions (2 .3 .4 ) have been 

imposed they have the solution 

t) = {k2 + 1)- 1 / 2 II(A; , 0 ) sin(fc'2 + l ) l / 2 t + ${k, 0 ) cos(£ 2 + l)l'2t 

n ( M ) = n(^,o)cos(fc2 + i)1/2t - (k2 + iy^(k,o)sm(k2 + ly'H, (2 .3 .7) 

so that by construction ($(-, t)II(- ,*)) G f ( R ; 0 , 0 ) x f ( R ; 0 , 0 ) V/ G R. 

Definition 2.11 Let qt denote the bijective map 

qt : f (R; 0 , 0 ) x f (R; 0 , 0 ) -> t ( R ; 0 , 0 ) x t ( R ; 0 , 0 ) , (2 .3 .8) 

such that 

ft:(d(.,o),n(.,o))^(*(-,<),ft(.,0), 

toif/i $(•,*)> ft(-,f) $wen 6t/ ( 2 . 3 . 7 ) . 

2.3.3 Stage 3: the inverse F o u r i e r t r a n s f o r m 

Having deduced how the initial Fourier data must evolve in time, act with the inverse 

Fourier transform iFt on this time evolved data in order to find the solution ($ , I I ) . In 

particular 

<!>(x,t) = — <$>(k,t)elkxdk, (2 .3 .9) 

so that 

$ ( 3 , t) = — { $ ( * , 0 ) cos((A:2 + l ) 1 / 2 t ) 

+ (k2 + l)- 1/ 2fE(/fc, 0 ) sin((fc2 + 1 ) 1 / 2 * ) } elkxdk. (2 .3 .10) 

Repeating this for U(x,t) shows H(x,t) = $t(x,t) which must be the case by construc­

tion. 

Thus the stages 1-3 have enabled the calculation of the pair ($(•, t ) , II(- , t)) which evolve 

from the initial configuration (<fo,wo) according to the linearised form of the problems 
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dFt 
( i p 0 f w 0 ) ($(-,o),n(-,o)) 

T 

($( . ,*) ,n(- ,0) 
iFt = (dFt) - i 

Tt = time evolution governed by the linear problem (2.3.1)-(2.3.3) 

qt = time evolution governed by the linear o.d.e's (2.3.6) 

Figure 2.1: The Fourier transform method for solving the linearised form of 

problems in the set A 0 

of Type A 0 . The method of solution can be expressed as the commutative diagram in 

figure 2.1. 

It should be mentioned that the transformations dFt (stage 1) and iFt (stage 3) can 

be applied to tpo, (resp. $(-,£)) and n 7 0 , (resp. I l ( - , i ) ) separately. The direct (resp. 

inverse) Fourier transforms does not mix this data together which is a reflection of 

the linearity of the problem. When solving the fu l l nonlinear problem with /3 ^ 0 

using the inverse scattering method it will be seen that there exists an analogous 

diagrammatic representation for this solution also. However, it is no longer the case that 

the 'coordinates' and 'momentum' can be transformed independently in the nonlinear 

analogue of the direct Fourier transform or that the set that replaces the Fourier data 

at time t can be separated and the inverse transformation applied to these individual 

pieces. 

In conclusion, solving linear problems of this Type by the Fourier transform method 

can be thought of as determining the time evolution map Tt of figure 2.1. From the 

above analysis this transform can be written as the composite map 

T t = iFt o Q o dFt. (2.3.11) 
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2.4 T h e linearised form of the problems B p o 

This section shows how the method of Fourier transforms can be used to solve the 

linearised form of initial-boundary value problems in the set 3p,Q by considering the 

problems with P 6 R, Q = 0 in general and by concentrating on those with P, Q = 0 

in particular. As with the earlier material in this chapter, the analysis presented here 

is designed to make the results and ideas of chapters 4 and 5 more transparent. 

Notation 2.12 For P £ R let f : R —*• R be a smooth function which satisfies the 

boundary conditions 

= °) + = o. 

lim f(x) = 0 rapidly in x. 
X—» — oo ' 

Let Cp denote the infinite dimensional real vector space of such functions and J\fP"1 =f 

CP x Cp. 

The vector space J\fl

P

ln results from Afp/p,Q/p by carrying out the linearisation procedure 

(J3 —> 0) described for the set of problems Ao in the previous section. Note that, just as 

N was forced to be zero in section 2.3, this process forces the specialisation to Q — 0, 

and reduces the set Bp,o to a set of initial-boundary value problems for the linear 

Klein-Gordon equation with phase space Mpn. An element of this set is the problem 

of determining the functions $, I I : ( — oo,0] x R ^ R which satisfy: 

• the Klein-Gordon system 

dt ' 
dTL d2$ 

l t = d x ^ ' ^ V ( I ) t ) e ( - o o , 0 ] x R . (2.4.1) 

e the boundary conditions 
( $ ( - , i ) , n ( - , t ) ) e . A / £ n V * € R . (2.4.2) 

• the ' initial ' conditions 

($(-, 0), II(- , 0)) = ( V pw) € Ml

P

in. (2.4.3) 
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2.4.1 So lv ing the l inear ised form of the problems in Bo o 

This subsection starts with some fairly obvious but important results. 

Lemma 2.13 The vector spaces <S'(R, 0,0) and Co are isomorphic. An arbitrary func­

tion f G <S'(R, 0,0) satisfies the 'symmetry relation' f ( x ) = f(—x) Vx G R . Using this 

relation it can be seen that a unique element of Co can be constructed by restricting 

the domain of f . Similarly from an arbitrary function g G Co a unique element of 

«S'(R,0,0) results by defining g(-x) = g(x) Va; G R " U {0} . 

Therefore ($,11), the solution to (2.3.1)-(2.3.3) for some (</?0,^o) G Mo, which satisfies 

($(;t),n(->i))zM'0 Vt G R, (2.4.4) 

so that in particular 

(<po,w0) G M'0, 

is such that the restriction 

( * ( - , t ) , n ( - , 0 ) l ( - o o , o ] e < B V ^ G R . 

It follows that the restriction of ($,1T) to the domain x G (—oo,0] solves (2.4.1)-(2.4.3) 

with the initial conditions 

In terms of the Fourier data ($(•, t), II(- , t)) constructed from ($(•, t), I I (- , t)) at a gen­

eral time t G R using dFt, (2.4.4) translates into 

($(-,*),ft(-,<)) G M'0 Vt G R. (2.4.5) 

When $, I I evolve according to the Klein-Gordon system (2.3.1), the time evolution of 

this Fourier data is given by the map <;t (see definition 2.11). This leaves M'0 invariant 

so that if some initial Fourier data in this space is given, it will generate time evolved 

Fourier data which is also in this space. This is due to the x —• —x invariance of the 

problem (2.3.1)-(2.3.3). 
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Notat ion 2.14 Let i F t ^ ^ o] denote the map i F t with the parameter x restricted to 

the semi-infinite interval (—oo,0]. 

Given an element of M.'Q as in i t ia l Fourier data, then the composite map i F t l ^ ^ 0 ] o Q 

applied to this produces a solution to the linearised fo rm of a problem of Type B 0,o-

This completes the development of stages 2 and 3 in the Fourier transform method for 

solving problems of the fo rm (2.4.1)- (2.4.3) when P = 0. I t remains to develop the 

first stage of such a method and i t is this formulation that is addressed below. 

The inverse Fourier transform map iFt^-o^o] takes the f o r m 

i F t | ( _ O O i 0 ] : M'0 - < n , 

and stage 1 of the Fourier transform method is the construction of 

dFtlf.oo.oj = f ( i F t l ^ ^ o ] ) 1 . 

To do this, fix ( V , € Moin and use lemma 2.13 to deduce a unique element ((p0, Wo) G 

M.'0. Then apply d F t to this to find in i t ia l scattering data in this space also. That is, 

in obvious notation, 

($(- ,0 ) ,n ( - ,0)) = d F % o , t * o ) = 2 f° C\p(x),%(x))coa(-)xdx. 
J — oo 

This procedure gives a map : A/ j j" 1 —• M'0 and by theorem 2.7 i t is the inverse of 

dFt^-oo.oj. Therefore 

dFt |(_oo i 0] : A/jS'n - > M o , 

is given by 

d F t | ( _ c o , 0 ] ( ' V , 0 ^ ) = 2 f (°v(x)Mx))cos(-)xdx, 

which is the well known cosine transform. 

The result of these considerations is that the solution to the linearised fo rm of in i t i a l -

boundary value problems of type Bo,o is 

1 t°° r -
*(x,t) = — / U(k,0)cos((k2 + l ) ^ t ) 

Z7T J-co 

+ {k2 + 1)-V2fl{k, 0) sin((jk 2 + \ Y l 2 t ) } elkxdk, (2.4.6) 
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I I = $ 4 , w i t h the in i t ia l Fourier data given by 

/

o rO 
°ip{x) cos kxdx, n(Jk,0) = 2 / ^ ( x ) cos kx dx, (2.4.7) 

- oo J — oo 

and O , ^ ) e J V f . 

2.4.2 Constraining the Fourier data so as to solve the lin­

earised problems in Bp̂ o.o 

Of crucial importance to all the considerations of the previous subsection was lemma 

2.13, which related A^8™ to A4'0. When considering the linearised fo rm of the problems 

of type Bp^o.o i t is not clear that there exists an analogue of this lemma relating the 

whole of Afp^o t ° some subspace of Mo- So, i t is unclear just how to proceed in order 

to isolate a subset of Fourier data, which is invariant under Q , and which is appropriate 

to a solution of these problems. 

However, i t is possible to make some progress by virtue of (2.3.10), the closed fo rm of 

the general solution to the linearised problems of type Ao. Using this i t is possible to 

deduce the generalisation of the constraint (2.4.5) when P ^ 0. Demanding that $ , as 

given by (2.3.10), be an element of Cp forces 

(ik + P) *(Jfc, t)dk = 0 \/t 6 R. (2.4.8) 
-co 

A n identical equation for H(k,t) obviously follows and a subset of solutions are those 

pairs ( $ , I I ) such that 

( f c ( -M) .n ( -M)) = j jj^((*(M),n(M)) V M € R- (2-4.9) 

I t should be noted, however, that there may exist (P(p,pm) € Afptn such that ( $ , I I ) , 

the solution to (2.4.1)-(2.4.3) may have Fourier data satisfying (2.4.8) but not (2.4.9). 

According to (2.3.7) i f the relation (2.4.9) holds at t = 0 i t w i l l continue to do so at all 

other times, so that i F t ^ . ^ o ] o Q applied to such in i t ia l data w i l l solve (2.4.1)-(2.4.3) 

for some (p<p,pw) € Ml

P

m. 

This is as much as w i l l be said about the linear problem of this Type. Wi thou t a result 

such as lemma 2.13 to relate A4.Q to A / p ^ 0 i t is not easy to formulate the analogue of the 
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cosine transform which produces in i t i a l data satisfying (2.4.9) at t = 0 thus completing 

the development of a Fourier transform method for solving a subset of these problems. 

2.5 Concluding remarks 

The Fourier transform method for solving a system of linear part ial differential equa­

tions involves 3 separate stages. Indeed i t can be expressed as a commutative diagram 

such as figure 2.1. 

When modify ing the results of section 2.3 so as to be applicable to initial-boundary 

value problems w i t h a: £ (—oo,0] i t is necessary to make the following changes: 

• restrict to z £ (—oo,0] by introducing iFt | (_oo i 0 ]. 

• translate the boundary conditions at x = 0 into symmetry relations such as 

(2.4.9) for the Fourier data. The t ime evolution map qt must leave these relations 

invariant. 

• using a result such as lemma2.13 construct a map dFt^-o^o] such that for Fourier 

data which respects the symmetry relations, dFt^-o^o] = fiFt^-c^o]) 

A l l the points should be absorbed before proceeding to chapters 4 and 5. I n these 

chapters identical ideas are re-encountered as modifications of the f u l l inverse scattering 

method developed in chapter 3. 
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Chapter 3 

The inverse scattering method for 

solving problems of Type 
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3.1 Introduction 

A n initial-boundary value problem of Type AJV is defined by a pair of functions 

(<£>yv,ro0) £ MN- For such a pair, the associated problem is to determine the func­

tions ip, w : (x,t) i • R wi th (x,t) G 1R2 which satisfy: 

• the sine-Gordon system 

Vx,teR. (3.1.1) 

• the boundary conditions 

(<p(;t),w(-,t))e M N yteR. (3.1.2) 

• the ' i n i t i a l ' conditions 

(y>(-,0),tJ7(-,0) = (<PN,&O) € M N . (3.1.3) 

This chapter contains a detailed analysis of the inverse scattering method for solving 

a subset of these problems - the subset being defined by the restricted phase space 

•SA.7v C M.N• As w i t h the Fourier transform method, for solving the linearised f o r m 

of the set Ao and studied in chapter 2, the inverse scattering method w i l l t u rn out to 

be composed of three stages. Section 3.2 details the first these which w i l l t u rn out to 

be the nonlinear analogue of the direct Fourier transform d F t . A t a f ixed value of the 

t ime parameter < 6 R the 'direct scattering transform' is constructed as the map 

dst : | J M2P+N —>• VNMO&2-, 
pel 

the set P/vmod2 being called the space of 'scattering data'. This scattering data is 

analogous to the Fourier data introduced in chapter 2. 

In section 3.3 the 'inverse scattering transform' is constructed as the map 

ist : ( J X>^ 0d2 U ^ 2 P + ( J , 
i-GN p& 
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w i t h 

U ^?mod2 C £>9mod2, 

and in section 3.4 i t is shown that once the domain of dst is suitably restricted then 

actually ist = ( d s t ) - 1 which justifies its name. 

Section 3.6 translates the t ime evolution of (<p(-,t),w(-,t)) as dictated by the sine-

Gordon system into a t ime evolution for the scattering data dst(<p(-,t),m(-,t)). In 

terms of this data the evolution is governed by a set of linear ordinary differential 

equations which are easily solved in terms of the in i t ia l scattering data d s t £ * ? o ) to 

define the t ime evolution map rt. 

Section 3.7 pieces together the maps dst, ist, rt to fo rm the inverse scattering method 

for solving a subset of A j y . I t should be clear f rom this construction why the inverse 

scattering method is a nonlinear analogue of the Fourier transform method. Some 

features of this method are also discussed. 

3.2 The direct scattering transform for problems 

of Type A;y 

In section 3.7 i t w i l l be seen how the direct scattering transform can be thought of as a 

nonlinear analogue of the direct Fourier transform and as such w i l l f o r m the first stage 

in a solution to a subset of the initial-boundary value problems in the set A J V . 

For the moment, however, the transform w i l l be developed as the map 

dst : [ J M2P+N -> £ W o d 2 (3.2.1) 
pel 

for arbi trary N G Z , and w i t h 2}jvm od2 the space of 'scattering data'. 

Throughout this section suppose that the t ime parameter t £ R is fixed and that 

(<p(-,t),zu(-,t)) is an arbitrary element of MN- From these functions construct the C 
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valued mat r ix 

U(x,t,\) = — lw(x,t)<T3 + U + s i n — - — < n + ( A - -J c o s — - — a 2 I , 

(3.2.2) 

where A (E C \ { 0 } is the so-called spectral parameter and 

def / 0 1 \ def / 0 -i \ d e f / l 0 \ 

a i = { l 0 J ' ^ = { i 0 J ' ^ = { 0 - 1 J • ^ 3 - 2 - 3 ) 

Next, define the transition matr ix T(x,y,t, X) to be the unique 2 x 2 mat r ix solution 

of the in i t i a l value problem 

dT 
— (x,y,t,\) = U(x,t,\)T(x,y,t,\), T(y,y,t,X) = I , (3.2.4) 
ox 

where II is the 2 x 2 unit matr ix . So T(x,y,t, •) is analytic in C \ {0} but has essential 

singularities at A = 0, oo and satisfies 

T(x, z, t, X)T{z, y, t, A) = T(x, y, t, X) => T(x, y, t, A) - T ' ^ y , x} t, A). (3.2.5) 

In addition 

— detT(x,y,t,X) = t r U (x, y,t,X) det T(x, y, t, X) = 0, (3.2.6) 
ox 

and therefore det T(x, y, t , A) = det T ( y , y, t, A) = 1 so that the transition mat r ix is uni-

modular. The reality of the pair (<p(x,t),m(x,t)) and the fo rm of the mat r ix U(x,t, X) 

imply the involutions 

f ( x , y, t, X) = a2T(x,y, t, A)cr2, 

T{x, y, I, - A ) = a3T{x, y, t, X)a3. (3.2.7) 

The Jost functions T±(x,t,X) are defined for A € R \ { 0 } and are bui l t f r o m the 

transition mat r ix according to 

T ± ( ; M , A ) d = f l i m T(x,y,t,\)E±{y,\), (3.2.8) 
y—*±oo 

with 

E±{xtX) = \ ^ ) N ± ( ] I ) exp ( ^ ( A ) * ^ ) , (3.2.9) 
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and ki(\) = 4 — x ) ' ^+ = ^> = ^- T n e s e unimodular matrices satisfy 

dT±(x,t,\) 
dx 

and have the asymptotic behaviour 

U{x,t,\)T±{x,t,\), (3.2.10) 

T±(ar,<,A) -»• £ ± ( M ) , as x - » ± 0 0 . (3.2.11) 

Next postulate the integral representations 

T+(x,t,\) = n(x,t)E_(x,\) + n(x,t) ( V p ^ ^ + ^ r ^ i M ) ) E_{y,\)dy 

T_(x,t,\) = Q(x,t)E-(x, A) + £ ^ ( M ) (rl-\x,y,t) + \ ^ \ x , y, *)) E.(y,X)dy, 

(3.2.12) 

wi th 

= exp (^^Uj . (3.2.13) 

Substituting these into (3.2.10), (3.2.11) yields a system of linear part ial differential 

equations for the kernels T±*^2\x,y,t). This system is presented in [14] and can be 

related to a system of linear Volterra integral equations which determine T±?'^2\x, y,t) 

uniquely. These solutions can be found explicit ly by exploiting the absolute convergence 

of iterations for such equations when (<p(',t),w(-,t) G M.N-

This argument can then be reversed so that the existence of this unique set F±*'^2\x,y, t) 

through the Volterra integral equations proves the existence of the integral represen­

tations (3.2.12). More details of this idea plus explicit formulae for the (technically 

simpler) nonlinear Schrodinger equation are to be found in [14]. 

From (3.2.12) i t is possible to deduce the following properties of the columns T±\x, t, •), 

/ = 1,2 of T±(x,t, •). The columns T^\x, t, -),T+\x, t, •) can be analytically continued 

into the upper half of the A plane, whereas T+\x, f, •) , T^\x, t, •) can be continued into 

the lower half. They also possess the asymptotic behaviour 

e - ^ > ( x , u ) = ^ n ( x , o ( l ) + o ( ^ ) 

e*T?\x, t, A) = - L f t ( x , t) ( j ) + 0 ( J j ^ ImA > 0, 
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e ^ T l 2 ) ( a ; , t, A) = ^ ( * , 0 ( J ) + O ( j ^ j ImA < 0, (3.2.14) 

as |A| —> oo. Similarly for |A| —• 0 the columns satisfy 

e i k r l V U ) = - j f - \ x , t ) ( I ) + 0 ( | A | ) 

e - ^ T { 2 ) ( . - r , i , A ) = t ^ - n - \ x , t ) ( * ) + 0 ( | A | ) I m A > 0 , 

e ^ T ^ M ) = L ^ f t - i ( a ; > i ) ( 1 j + 0 ( | A | ) 

e - 4 T T r l 2 ) ( a ; ^ , A ) = ^ \ - l { x , t ) ^ J j + 0 ( | A | ) ImA < 0. (3.2.15) 

The involutions (3.2.7) give the relations 

f £ \ x , t , \ ) = ia2Tl2)(x,t,\) 

f j ^ \ x , t , X ) = ia2T^(x,t,X) 

f t 2 ) ( x , t , - X ) = - ^ a ^ ^ i 1 ' 2 , ( . ^ ; , ^ , A ) , (3.2.16) 

where A is restricted to lie in the appropriate domain of analyticity. 

Next, use the Jost functions to construct the reduced transition mat r ix T(\,t) for 

A G R \ { 0 } according to 

T(\,t) = T71(x,t,\)T4x,t,\)= l i m E71(x, X)T(x,y, t, X)E_(y, A). (3.2.17) 

This mat r ix is unimoduiar, independent of x and satisfies the involution 

T(X,t) = a2T(X,t)a2 (3.2.18) 

which ensures that i t has the fo rm 

subject to the constraint 

| a ( A , i ) | 2 + \b(X,t)\2 = 1 V A e R . (3.2.20) 
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From (3.2.17) the ' transition coefficient' a(-,t) can be defined by 

a(- , t ) d = f det ( r l 1 , ( x , i , - ) , 4 2 ) ( x , i , - ) ) , (3.2.21) 

which implies that i t has an analytic continuation into the upper half plane such that 

a(-X,t) = a(X,t). (3.2.22) 

In addition i t has the asymptotics 

a(X,t) = 1 + 0 ( j ^ J , | A | - + o o 

a(\,t) = ( - l ) N + 0(\\\), | A | - 0 . (3.2.23) 

Similarly the transition coefficient 

b(-, t) = det (Tl%, t, • ) , T i ^ x , f , • ) ) , (3-2.24) 

has no analytic continuation away f rom R \ { 0 } but satisfies the involution 

b{-X,t) = b(X,t) V A G R . (3.2.25) 

Also the relation (3.2.24) and the integral representations (3.2.12) imply that 

l i m 6(A,*) = 0 rapidly in A. (3.2.26) 
|A|-»0,oo 

Now make the following definition regarding the structure of the transition coefficient 

a(-,t). 

Notat ion 3.1 At time t G E let the function a(-,t): 

• have rii(t) G N 1 zeroes Xi(t),..., Xni(t)(t) satisfying 

Re(A i(<)) = 0, j = l , . . . , m ( < ) . 

Therefore Xj(t) = inj(t) with Kj(t) > 0. 

throughout this thesis it is assumed that 0 G N . 
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• have n2(t) 6 N zeroes A n i ( t ) + 1 ( i ) , . . . , Xni(t)+n2(t)(t) satisfying 

Re(\j(t)) > 0, Jm(Xj{t)) > 0, j = n i ( t ) + 1 , . . . ,m(<) + n2(t). 

The involution (3.2.22) implies that 

(Ki(t)+n2(t)+l{t) = f —XrnW+lit)), • • • , ( ^n 1 ( i )+2n 2 (< ) (^) = ~ (t)+n 2(t) ( 0 ) ' 

are the zeroes such that 

Re(Aj(<)) < 0, ha(Xj(t)) > 0, j = m(t) + n2(t), • • •, + 2n2(t). 

• have n3(t) € N zeroes Xni^+2n2(t)+i(t), • • •, \ni(t)+2n2(t)+n3(t){t) which are real and 

positive. The involution (3.2.22) implies that 

(Xni{t)+2n2(t)+n3(t)+l(t) — —Xni(t)+2n2{t)+l{t)),..., 

• • • > (^n i ( i )+2n 2 ( t )+2n 3 ( t ) (^ ) = ~ Ki(t)+2n2{t)+n3(t){t)) i 

are the zeroes which are real and negative. 

The total number of zeroes of the transition coe fficient a( -,t) is therefore n(t) =f ni(t) + 

2n2(t) + 2n3(t). 

A t the points Xj(t), j = 1 , . . . n(t) i t can be seen f r o m (3.2.21) that 

det ( T I 1 ^ - , t, Xj(t)), Tl2\x, t, Xj{t)j) = 0, (3.2.27) 

which implies 

T{_}\x, f, Xj(t)) = ^(t)Ti2)(x, t, X&)), ; = ! , • • • , n(t), (3.2.28) 

thus defining the normalisation coefficients 

TiC*) = 7 j (*) , j = 1 , . . . , n i ( i ) , 

7fe(<) = 7 f c + n 2 ( 0 ( 0 , * = + I , - • - ,n i (<) + n 2 ( t ) , 

7 ,(f) = 7/+n 3(t)(*). 1 = n i W + 2 n 2 ( 0 + 1 , . . . , m(<) + 2n 2(<) + n 3 ( 0 -

(3.2.29) 
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Definit ion 3.2 At time ( 6 1 and for a given N G Z let (a(-,t),b(-,t)) denote a 

pair of transition coefficients so that they possess the properties (3.2.20)-(3.2.26) de­

duced above. In addition suppose the function a(-,t) has ni(t) + 2n2(t) -\-2n3(t) zeroes as 

specified by notation 3.1 and let 71 ( i ) , . . . ^ni(t)+2n2{t)+2n3(t)(t) be the associated normal­

isation coefficients satisfying (3.2.28), (3.2.29). Define the sets V ^ j ^ { t ) , n 3 { t ) , V N m o d 2 

by 

l ^ W . ^ W . - s W <M { ( „ ( . , i ) , 6 ( . , t ) : 7 l ( * ) , . . . , 7 ^ ( 0 + 2 ^ ( 0 + 2 - 3 ( 0 ( 0 ) } , (3-2.30) 

£ V m o d 2 == [ J ^/Vmod2- (3.2.31) 

This allows the definit ion of a map 

dst : M N T ) N M O D 2 , (3.2.32) 

given explicit ly by 

d s t ( ¥ > ( - , * ) , G 7 ( - , < ) ) = ( a ( ; t ) , b ( ; t ) : 7 l (t), . . . , 7 n , ( 0+2n 2 (0+2n 3 ( t ) ( 0 ) - (3.2.33) 

However, the above considerations hold identically i f TV is replaced by 2p + iV for 

arbitrary p € Z. Therefore the domain of dst can be extended, 

dst : ( J M 2 P + N -> 2>jvmod2, (3.2.34) 

as promised in the introductory remarks to this section. 

3.2.1 Some subsets of £>/vmoci2 

To enable a clear formulat ion of the inverse scattering transform as stage 3 of the inverse 

scattering method i t is convenient to constrain the funct ion a(-,t) and the normalisation 

coefficients 75 (t),... ,1m(t)+2n2(t)+2n3(t)(t) to have some particular properties. These 

pick out the subset i>%™£(t) C V ^ ^ { t ) ' ° which in tur n is used to specify a subset 

of configurations 

(^(• ,<) , t!7(- , i ) ) e M N C M N . 
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Defini t ion 3.3 Let the space ^ ] v m o d 2 ^ ^ ^Nmodi^0 be comprised of scattering data 

( a ( - , 0 , 6 ( - , 0 : Ti(*), • • • ^ ( t R ^ o W ) € ^ i ^ 2 ^ ' 0 (3-2.35) 

• i/ie number n(t) = rii(t) + 2ri2(t) is finite. 

• all the n(t) zeroes of a(-,t) are simple. 

• none of the normalisation coefficients 7 i ( i ) , • • •, 1ni(t)+2n2{t)(t)
 a r e zero. 

For the set ^ N m o d 2 2 ^ there exists a particularly nice representation due to the following 

corollary to definit ion 3.3. 

C o r o l l a r y 3.4 For the scattering data (3.2.35) which satisfies the constraints of def­

inition 3.3 the transition coefficient a(-,t) can be uniquely determined in terms of the 

coefficient b(-,t) and the zeroes A x ( t ) , . . . A n i ( t ) + 2n 2 (* ) (^ ) t° be 

a ( A ' ^ - l \ \ + i K j { t ) J } t ) + 1 A - Xk(t)' X + Xk(t) 127ri J-oo , - X d \ 

(3.2.36) 

when I m A > 0. This formula can then be analytically continued down to the real line 

using the Sochoki-Plemelj formula for generalised functions, 

1 1 = p.v. —-—- + iirSi^jj, — A). (3.2.37) 
\i — A fj, — A — iO — A 

The proof of these results is to be found in [14]. 

Therefore, i t follows f r o m the asymptotic expression (3.2.23) and the involution (3.2.25) 

that n\{t), the number of purely imaginary zeroes of a(-,t) is such that 

m(f) = N (mod 2). (3.2.38) 

As a result of corollary 3.4, for m(t) G 2N + N mod 2, n2(t) £ N , the set 2 ? ^ d 2 ( 0 

can be represented as the set 

{(&(•,*) : K3{t),l3{t)-j = l . . . , n i ( * ) : Xk(t), 7fc(*); k = m(<) + 1 . . . , m(*) + n2(t))} . 

(3.2.39) 

45 



Due to this simple representation i t w i l l be useful to define the subspace MN C MN 

as follows. 

Definit ion 3.5 For arbitrary N 6 Z let the space 

( J M2P+N C ( J M2Q+N (3.2.40) 
P<EZ <?ez 

6e i/ie inverse image of the map dst, 

dst - l 

( u v « m o d 2 
o62N+JVmod2,reN pel 

(3.2.41) 

3.2.2 Some results regarding the restriction of dst to MN 

The reason for this subsection is two-fold. Firstly, the analysis developed here is used 

in subsection 3.2.3 to prove that, when restricted to a suitable domain, the map dst is 

injective. In addition, subsection 3.3.1 uses these facts to formulate a map ist which, 

for suitable restrictions on the domain/range, is deduced to be the inverse of dst in 

section 3.4. 

For a configuration (ip(-,t),m(-,t)) £ MN so that d B % ( . , < W , * ) ) € V n

N ^ f ] for 

some n.\{t) £ 2N + N mod 2, n2{t) £ N , the relation (3.2.17) can be rewrit ten as 

G+(x,t,X)G-(x,t,X) = G(x,t,X) V A G R (3.2.42) 

w i t h , in obvious notation 

G+(x, t, A) = a(A, i ) e - * M * > ~ 3 ( r ( i > ( X ) 4 ) A), T+\x,t, A)) 

G.(x,t, A) = ( r j 1 ^ , t, A), T ! 2 ) ( . T , t, A)) eik>W"», 
2ik^x>xb(X,t) 1 e G(x,t, A ) 

2 < A * ( ' X H ( A , < ) 1 
(3.2.43) 

The matrices G±(x, t, A), G(x,t, A) have the following properties: 

1) The mat r ix G(x,t,X) is Hermit ian and due to (3.2.26) satisfies, 

G(x,t,-X) = G(x,t,X), l i m Glx,t,X) = l 
|A|-0,oo 

rapidly in A. (3.2.44) 
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2) The matrices G+(x, t, A) and G-(x,t, A) admit an analytic continuation into the up­

per and lower half planes respectively, and in these domains they satisfy the involutions 

Gl(x,t,X) = G-(x,t,\), 

G+(x, t, —A) = iG+(x, t, A)<7i 

G-(x,t,-\) = -i<TiG-{x,t,\). (3.2.45) 

3) In their domains of analyticity G±(x,t,X) have the asymptotic behaviour 

G+(x,t,X) = e - ^ - \ x , t ) ( l + 0 ( | A l " 1 ) ) , 

G-{x,t,X) = Sl(x,t)£ ( l + 0 ( | A | - x ) ) (3.2.46) 

as |A| —> oo and 

G+(x, t, A) = ( - a s f e - ^ i x , t) ( I + 0 ( | A | ) ) , 

G-(x, t, A) = fi-1^, t)£(-a3)N (K + 0 ( | A | ) ) (3.2.47) 

as |A| -» 0 w i t h S = ^ ( 1 + id). 

4) The matrices G+(x, t, X) and G-(x,t, A) are nondegenerate in their domains of ana­

ly t i c i ty except for the points A = Xj(t) and A = A j ( f ) , respectively, where 

I m G + ^ . U j f t ) ) = N?(x,t), KeTG-{x,t,Xj(t)) = N f ( x , t ) , j = l , . . . , n ( < ) . 

(3.2.48) 

The N*{x,t) and N~(x,t) are one-dimensional subspaces in C 2 spanned respectively 

by the vectors 

U U ) - ( * , r ° )• 
where t j ( x , t ) = f e i ( A ' ( < ) ~ ^ ) \ ( 0 and n(t) = + 2n 2 (*). 

Notice that f r o m (3.2.2), (3.2.8), (3.2.43) i t follows that the original configuration 

(<p(-,t),w(-,t)) can be recovered f r o m the matr ix G+(x,t, A) according to 

tp(x, t) = 2 arcsin t r ^zo"i ^ + (x, i , l ) G ' + ( x , i , 1)^ 

t u ( x , i ) = 2 t t r ( ( 7 3 - ^ - ( x , t , l ) G + ( x , i , l ) j . (3.2.50) 

This results of this subsection w i l l be relied upon heavily in subsections 3.2.3, 3.3.1. 
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3.2.3 dst is injective (when its domain is suitably restricted) 

In this subsection i t wi l l be proved that the map 

dst : [ J M 2 p + N - > J ^ ' m o d 2 (3-2.51) 
pGZ 9e2N-k/Vmod2,reN 

is injective (i.e 1-1). Consider two configurations 

(y>( - , i ) ,a7( - ,* ) ) € M N , (<p'{;t),w\-,t)) € MN> 

such that N = N' (mod 2) and suppose that under the map dst both these lead to 

the same element of ^ j v m o d ^ ^ denoted by 

(&(•,<) : K j ( t ) , ~ f j ( t ) ; j = l . . . m ( f ) : Xk{t),7k{t);k = n^t) + I .. . n i { t ) + n2{t)). 

The relation (3.2.42) implies 

G+(xtt,\)G-{x,\) = G'+{x,t,\)G'_(x,\) V A e R , (3.2.52) 

where G'±(x, t, A) are the matrices which result f r o m the replacement (</>(•, t), w(-,t)) —> 

((p'(-,t),w'(-,t)) in the construction of the matrices G±(x,t,X) defined by (3.2.43) . 

From this i t follows that 

V(x,t,\) = G , ; 1 ( . T , i , A ) G , ,

+ ( x , ^ , A ) = G-{x,t,\)G'l\x,t,\) VA e R, (3.2.53) 

w i t h the left hand side analytic in the upper half plane except at A = \j(t), and the 

right hand side analytic in the lower half plane except at A = Xj(t),j = 1 , . . . ,n( t f ) . 

In the neighbourhood of A = Xj(t) the matrices G+(x,t,\), G'7.1(x,t, A) have the ex­

pansions 

G+(x,t,X) = A(x,t) + 0(\X-XJ(t)\) 

G?(x,t,\)= +0(1), (3.2.54) 

w i t h 

A(x, t)B(x, t) = B(x, t)A(x, t) = 0. (3.2.55) 
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Since ImA(x,t) = ImG+(x,t, Xj(t)) = Nj~(x,t) i t follows that the subspace Nj~(x,t) 

is contained in KerB(x,t) and both spaces being one dimensional they must coincide 

wi th each other: 

N f ( x , t ) = KevB{x,t). (3.2.56) 

There is a similar expansion for G'+(x,t,X), G'^1 (x,t, X) so that 

lmA'(x,t) = N f { x , t ) = KevB{x,t). (3.2.57) 

I t is clear that the residue of G^1(x, t, X)G'+(x, t, X) equals B(x, t)A'(x, t) and therefore 

vanishes. As a result ty(x,t,X) has no singularities at A = Xj(t),Xj(t) and hence is an 

entire funct ion. From (3.2.47),(3.2.46) i t follows that 

y(x,t,Q) = Sl-l(x,t)Sl'(x,t) 

V(x,t,oo) = n{x,t)Sl'-\x,t). (3.2.58) 

Hence by the famous Liouville theorem [20] 

tt2{x,t) = n'2(xyt) V.T G R , (3.2.59) 

so that 

<p(;t) = <p\.,t) (3.2.60) 

an obvious consequence of which is N = N1. The identi ty (3.2.60) implies ty(x,t, X) = 

I so that G±(x,t,X) = G'±(x,t, A) Vz, A G R. Therefore using (3.2.50) i t follows 

that (<y?(-, t ) , t ) ) = (<p'(-,t),m'(-,t)) and i t is proved that dst(<p(-,t),m(-,t)) ^ 

dst(<p'(-, t),w'(-,t)) for any two distinct (</?(•, t ) , ro(-, *)) , (</?'(-, f ) , OT /(-, <)) G U p e z « M p 

f r o m which i t follows that the map given by (3.2.51) is injective. 

3.3 The inverse scattering transform for a subset 

of the problems in Ajy 

In this section a map ist is constructed such that for arbitrary < G R and ni(t) G N , 

•• U K(t)L.2 ^ U M 2 Q + N I I T ) . (3.3.1) 
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In section 3.7 i t w i l l be seen how this map can be thought of as a nonlinear analogue of 

the inverse Fourier transform and as such forms the th i rd and final stage in a solution 

to some of the initial-boundary value problems in the set A/v. 

The transformation ist takes the fo rm of a two parameter (x,t) f ami ly of mat r ix 

Riemann-Hilbert problems often studied in analytic funct ion theory. I n this section 

there w i l l be no restriction on the parameter x G K.. However, for fu ture work i t is 

important to notice that the transformation is 'pointwise' so that the domain of can 

be restricted at w i l l . This observation was also made in chapter 2 regarding the in­

verse Fourier transform. There the linearised fo rm of the problems in the set Bp,o were 

solved by restricting the domain of the parameter x appearing in this map to (—oo,0]. 

This idea w i l l be adopted once more in chapters 4 and 5 but this t ime for the inverse 

scattering transform ist in order to to solve the f u l l nonlinear problems in the set B / > Q . 

3.3.1 T h e formulat ion of ist 

Let 

{a(;t),b{-,t) : 7 1 ( f ) , . . . , 7m(t)+2»2(t)(0)> (3.3.2) 

be some element of X>"J fyZdl w i t h nx(t),n2(t) G N and n(t) = n a ( i ) + 2n2(t). A t this 

point i t w i l l not be specified whether there exists a (</?(•, t), w(-, t)) G M-N, N G 2Z + 

n\(t) mod 2 such that dst (y( - , t), w(-, t)) equals (3.3.2). However in section 3.4 i t w i l l 

be seen that such a configuration does exist and that, in some suitable domains/ranges, 

ist is i n fact the inverse of dst. 

From the scattering data (3.3.2) and the results of subsection 3.2.2 construct the mat r ix 

G(x, t, A) and the subspaces N f ( x , t). These now constitute the input data for a f ami ly 

of Riemann-Hilbert problems parameterised by the spacetime coordinates (x,t) G R 2 . 

These problems are to f ind the matrices g±(x, t,\) satisfying 

G(x,t,\)=g+{x,t,\)g-{x,t,\) V A G R , (3.3.3) 

such that g±(x, t,\) extend analytically into the domains ± I m A > 0 and are nonde-

generate i n these domains except for points A = Xj(t) and A = A 7 ( t ) , respectively, 
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where 

Img+(x,t,\j(t)) = N+(x,t), Ker <jr_(x,i, A,-(i)) = N~(x,t), j = l , . . . , n ( * ) -

(3.3.4) 

Also, they are required to be normalised according to 

g+(x,t,\) = £-1Cl-\x,t) ( l + O d A I " 1 ) ) , 

g-(x,t,\) = £l(x,t)E(l + 0{\\\-lj) (3.3.5) 

as |A| —> oo and 

g+(x,t,\) = (-a3rW£-1n(x,t)(I + 0(\\\)), 

g-(x,t,\) = f r 1 O M ) £ ( - < 7 3 ) n i ( 0 ( H - 0 ( | A | ) ) (3.3.6) 

as |A| —> 0, £ = ^ j ( I + i(J\) w i th Q(x,t) constrained to be diagonal, continuous and to 

satisfy 

l i m n(x,t) = I . (3.3.7) 

From this information i t is possible to make the following assertions: 

1") For the fami ly of Riemann problems stated above there exists a solution g±(x, t, A) 

such that 

g+(x,t, A) = g-(x,t. A), 

g+(x,t, - A ) = ig+(x,t,X)<T! 

g-(x,t,\) = -i<Tig-(x,t,-X), (3.3.8) 

VA e C such that ImA > 0. 

2") This solution is unique. 

3") The matrices F±(x,t,\) constructed f rom this solution according to 

F+(x,t,\) = g - 1 ( x , t , \ ) e - l k l { X ) x < 7 \ F.(x, A) = g_(x,t, A ) c - « * ' < A ) * * 3 (3.3.9) 

satisfy the auxiliary linear equation 

^ ( x , *, A) = I t)a3 + (A + I ) sin + (a - I ) cos ^ < r 2 ) ^(s, t , A), 

(3.3.10) 
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wi th w(x, t),(p(x, t) G R and the mat r ix funct ion Cl taking the f o r m 

(l(x,t) = exp ^ ^ K ^ j • (3.3.11) 

4") The pair of functions (<p(-,t),w(-,t)) are an element of A4jv for some N (E Z such 

that TV = m(<) (mod 2). 

Proofs of assertions 1" — 4" are to be found in [14] and so w i l l not be reproduced here 

but i t should be mentioned that the proof of assertion 2" mirrors the analysis (3.2.52)-

(3.2.60). I t is clear f r o m assertion 3" that the pair ((p(-,t),w(-,t)) can be extracted 

f r o m the solution according to 

<p(x,t) = 2 arcsin t r ^ia\ ^+ (x, t, l)g+(x, t, 1)^ (3.3.12) 

t!7(x,<) = 2 i t r (a3^-(x,t,l)g+(x,t,l)^j . (3.3.13) 

A more convenient representation for the funct ion <£>(•,£) can be found by investigating 

the assertion 1". In [14] this assertion is proved by mapping the Riemann problems onto 

a fami ly of simpler problems wi th a single normalisation at A = oo. This family is closely 

related to the one which arises when developing the inverse scattering transform for 

the nonlinear Schrodinger equation and existence/uniqueness theorems for its solutions 

can be proved. 

Let g±(x, i , A) be a solution of the family of Riemann problems 

G(x,t,\) = g+{x,t,\)g.(x,t,\), (3.3.14) 

where 

a) the matrices g±{x,t,X) extend analytically into the half planes ± ImA > 0 and are 

normalised to I at A = oo, 

g±(x,t,X) = l + 0 ^ j . (3.3.15) 

b) As for g±(x,t, A) the ma t r i cesg±{x , t , X) are required to be nondegenerate everywhere 

except A = Xj(t) and A = Xj{t), respectively, and 

1mg+(x,t,\j(t)) = N f ( x , t ) , Ker g_(x, t, X3(t)) = N~(x, t), j = l , . . . , n ( £ ) . 

(3.3.16) 



In [14] i t is established that for each set of t ime dependent scattering data there exists a 

unique solution g±(x, t, A) satisfying det g+(x,t, A) — a(A, t). In addition to this, and as 

a consequence of the structure of the input data the solution satisfies det g+(x, t, 0) = 

a (0 , f ) = ( - l ) n i ( < ) , the involutions 

gl{x,t,X) = g~(x,t, A) 

g±{x,t,-\)=g±(x,t,\) (3.3.17) 

and the relation 

g+(x,t,0)g.(x,t,0) = L (3.3.18) 

Using these results and the asymptotic fo rm of g+(x,t, A) as x —> — oo the mat r ix 

Cl2(x, t) = £(-a3)ni(t)g+{x,t, 0 ) £ _ 1 (3.3.19) 

can be deduced to have the fo rm 

fr{x, t) = exp [ ^ ^ - a ^ j , (3.3.20) 

so that fl(x,t) can be uniquely determined to have the fo rm (3.3.11) due to the re­

quirement (3.3.7). 

I t is now clear that the matrices 

g+(x,t,\) = g+(x,t,X)S'1n'1(x,t), 

g-(x,t,\) - £l(x,t)£g-(x,t,\) (3.3.21) 

provide a solution to the Riemann problem in question in terms of the Riemann problem 

w i t h the standard normalisation. This solution is unique by virtue of the uniqueness 

of the g±(x, t, A) for a given set of scattering data, as the input of the problem. 

As g±(x,t,\) can be expressed in terms of the solutions g±(x,t,\) i t is much less 

laborious to calculate <p(x,t) directly f rom these simple solutions using 

exp ( ^ f ^ a ^ = £(-a3pWg+(x,t,Q)£-\ (3.3.22) 

w i t h the condition 

l i m ( f i x , t) = 0, 
X —• — CO 

53 



rather than to follow steps (3.3.21), (3.3.12). This observation w i l l be exploited in the 

later chapters where some explicit expressions for g±(x,t,\) are given. Using (3.3.22) 

i t w i l l be shown that these lead to the 'mult i-soli ton' solutions to specific problems. 

This completes the construction of the transform ist given by (3.3.1). From the details 

of this formulat ion and assertions 1" — 4", all of which are proved in [14], i t is clear that 

this map is injective. As a f inal point, and for the benefit of the next section, i t w i l l be 

useful to make the following definition. 

Def in i t ion 3.6 For arbitrary t £ R and ni{t) £ N define the subset jCiN c MN 

implicitly in terms of the image of the map ist. That is, 

U M 2 Q + N I ( T )

 d= f ist ( U T%$Ln) • (3.3.23) 

I t should be stressed that this definition only gives M.^ impl ic i t ly i n terms of the 

specific f o r m of a subset of scattering data. 

3.4 ist = (dst) - 1 

I n section 3.2 the map 

dst : | J M 2 P + N -• V 
pel, 

was constructed for N 6 Z w i t h 

U M 2 P + N

 d ^ f dst" 1 ( U n r

m o d 2 ) , 
p6Z \g€2N+7Vmod2,r-€N / 

and such that the restriction 

dst : ( J M2P+N • ( J ^ m o d 2 -
peZ (7G2N+iVmod2,7-eN 

In section 3.3 the map 

: U ^!tod2 ^ U M 2 Q + M T ) , 
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was formulated for t G R, ni(t) G N and 

u ^ + n . ( o = » t f u ^ ( : , , L d 3 ) . 

The purpose of this section is to make assertion V" below. 

1"') For an arbitrary element of ^ " ^ j m o d i denoted 

(a(-,t),b(-,t) : 7 i ( * ) > • • • ' 7 n , ( * ) + 2 , l 2 ( 0 ( < ) ) ' 

let g±(x,t, A) be the solution to the Riemann problem (3.3.3)-(3.3.7). Then: 

© the matrices F±(x,t,\) constructed f r o m g±(x,t,\) according to (3.3.9) satisfy 

the auxiliary linear problem (3.3.10) (assertion 3"). 

• these matrices are composed of the t ime dependent Jost solutions T±(x,t,\), 

(which are defined by the asymptotics (3.2.11)), of the auxiliary linear problem 

(3.3.10) as 

F+(x, f, A) = — ( t P ( x , t , A), 4 3 ) (x, t, A)) 

F - ( X ) t , \ ) = (4 1 ) (x,t ,A),rl 2 ) (a: , i ,A)) , (3.4.1) 

where a(X,t) is given in terms of the input scattering data by (3.2.36). Of 

course, these solutions w i l l obey the involutions already deduced in section 3.2 

eg. T±(x,t, - A ) = —<T3T±(x,t, A)<r 2 , . . . . 

• the time dependent reduced transition matr ix constructed f rom the Jost solu­

tions according to (3.2.17) has transition coefficients a(-,t),b(-,t) and normali­

sation coefficients 71 (2 ) , . . ."fni(t)+2n2{t){t) at the zeroes \i(t),... Xni{t)+2n2(t){t) of 

the transition coefficient a(-,t). 

This assertion is proved in [14]. By applying ist then dst in turn at an arbitrary t ime 

t G IR i t shows that A4N C M.N and that for configurations (<p(-,t),m(-,t)) G M.N the 

maps dst and ist are in fact the inverse of one another. 
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3.5 A brief recap of the results so far 

Before moving on to the t ime dependence of the scattering data i t is a good idea to 

recap and clarify the results obtained for the maps dst and ist. 

For (</>(•, t ) , t)) € M.N a set of Jost solutions T±(x,t,X) are fixed uniquely by 

dT±{x,t,\) 
— = U{x,t,X)T±(x,t,X), 

T±(x, t, X) —> E±(x, A), as x —> ± 0 0 , (3.5.1) 

where U(x, t, A), E±(x, A) are given by (3.2.2), (3.2.9) respectively. From these Jost 

solutions follows a set of scattering data which is unique for different pairs T±(x,t, A). 

The determination of this data constitutes the direct scattering transform dst. 

Now consider the inverse scattering transform ist. Given the set of scattering data 

just constructed, the map ist allows T±(x,t,X) to be reconstructed and therefore 

((/?(•, t), tu(-, t)) can be determined f r o m the differential equation (3.5.1). 

The relevance of these direct and inverse scattering transforms to the initial-boundary 

value problems of Type AN w i l l become evident when the t ime evolution of (<p(-,t), w(-, t)) 

as governed by the sine-Gordon system (3.1.1) is translated into a t ime evolution for 

the scattering data which results f r o m an arbitrary set of Jost solutions. This is the 

subject of the next section. 

3.6 The time evolution of the scattering data 

In this section the t ime evolution of the scattering data dst(c£>(-, t), w(-,t)) w i l l be stud­

ied when ((/?, w) are forced to evolve according to the initial-boundary value problem 

of Type A AT which is defined by the in i t ia l conditions 

M - , 0 ) , r o ( - , 0 ) ) = ((pN,&o)-

The result w i l l be the bijective t ime evolution map 

Tt '• ^Nmod2 *• ^Nmod25 (3.6.1) 
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f r o m a set of ' i n i t i a l ' scattering data dst(</?w, roo) to a set of ' t ime evolved' scattering 

data dst(<£>(-, t), m(-, t)). 

It is Tt which replaces the t ime evolution map st introduced in chapter 2 for the linearised 

problems and as such forms the second stage in the inverse scattering method for solving 

problems in the set A # . There is, however, one crucially important similari ty between 

Tf and <;t. Namely, both of them result f r o m solving Cauchy problems for a set of linear 

ordinary differential equations ((2.3.7) in the case of q). 

3.6.1 T h e zero curva ture representat ion for the s i n e - G o r d o n 

equat ion 

Let (<^,cc) be the solution to the problem of Type A^v defined by the in i t i a l data 

(<PNT^O) £ -M.N- From this construct the C valued matr ix V(x,t,\) 

W( 1 \\** 1 ( f y , ,s
 1 A - VOM) v O M ) \ 

A ) = Ti W X ' t ) G * V A J S m - 2 - * 1 V A J C ° S " I " " 2 ) • 

(3.6.2) 

This and the matr ix U(x,t,X) defined in (3.2.2) must satisfy a remarkable relation 

given by the following proposition. 

Propos i t ion 3.7 As a result of 

~Jr = d x ^ ~ S m i f ' V.T , < 6 R , (3.6.3) 

it follows that 

( ^ ~ ^ + [ C / ' y ] ) = ° ' V A e C \ W - (3-6-4) 
Therefore the overdetermined system of linear equations 

%- = U(x,t,\)f 
ox 

?£ = V { x , t , \ ) f , (3.6.5) 

for a C 2 valued column vector f are compatible. 
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I t should be noted that variants of (3.6.4) also hold for all other equations solvable by 

the inverse scattering method. 

The linear system (3.6.5) have a natural geometric interpretation. The mat r ix functions 

U, V may be considered as local connection coefficients in the t r iv i a l vector bundle 

R 2 x C 2 where the space-time R 2 is the base and the mat r ix / takes values in the 

fibre C 2 and A is a subsidiary complex parameter. Equations (3.6.5) show that / is a 

covariantly constant vector while (3.6.4) amounts to saying that the (U, V) connection 

has zero curvature. For this reason a representation of a nonlinear equation in the f o r m 

(3.6.4) is called a 'zero curvature' representation. 

Let ifi denote any 2 x 2 complex valued matr ix of rank 2 which solves 

^ = U(x,t,X)j> (3.6.6) 
ox 

^ = V ( * , t , A ) V , (3.6.7) 

V(x,£) G R 2 , A G C \ { 0 } . A l l such solutions are related by a change in normalisation 

il>(x,t,X) —> tp{x,t, X)N(X) w i t h N(X) an arbitrary matr ix . Also, (3.6.6), (3.6.7) imply 

d 
— det?/> = trU(x,t,X)detip = 0 
ox 
d 

— detV' = txV(x,t, X)detip = 0. (3.6.8) 

3.6.2 D e t e r m i n i n g the evolut ion of the sca t ter ing d a t a 

The transition matr ix introduced in section 3.2 can be uniquely constructed f r o m any 

solution ip a s 

r ( .T, 2 / ,£ ,A) = ^ ( x , £ , A ) ^ - 1 ( y , £ , A ) , (3.6.9) 

so that w i t h (y,cp) a solution to the sine-Gordon equation T(x,y,t,X) must satisfy 

8T 
—(x, y, t, A) = V(x, t, X)T{x, y, t, A) - T(x, y, t, X)V(y, t, A). (3.6.10) 
ot 

I t then follows that the t ime evolution of the Jost solutions is given by 

^ ( x , t, A) = V{x,t, X)T±(x, t, A) - - ( A + A " 1 )T±(x, t, X)a3 VA G R \ { 0 } , (3.6.11) 
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so that 

^ j H * , t, A) = V(x, t , A J T l ^ f x , i , A) - I ( A + A " 1 )T?](x, t , A) 

aa->(2) i 

- ^ - ( x , i , A) = i , A)42)(.r, i , A) + - ( A + A _ 1 ) r { 2 ) ( a ; , t, A), (3.6.12) 

w i l l hold VA € C \ { 0 } such that ImA > 0. 

The reduced transition mat r ix T(X,t) satisfies 

dt (A , t ) = ^ ( A + ^ ) [ ( 7 3 , r ( A , 0 ] , V A € R \ { 0 } , (3.6.13) 

so that the t ime dependence of the transition coefficients is governed by the linear 

ordinary differential equations 

-£(\,t) = 0 I m A > 0 (3.6.14) 

— ( A , t) = + A " 1 )6(A, t) A e R. (3.6.15) 

Obviously, since (<^(-, 0), w(-, 0)) = (</>jv, WO), the in i t ia l data appropriate to these equa­

tions are the transition coefficients a(-, 0), &(•, 0) appearing in 

(a(-,0),6(-,0) : 7 i (0)» -• • >7n,(o)+2n 3(o)+2n 3(o)(0)) = f d8t(tpN,w0), (3.6.16) 

so that 

a(\,t) = a(A,0) I m A > 0 , (3.6.17) 

b(\,t) = eK A +x)'6(A,0) A G R . (3.6.18) 

From the first of these i t follows that the number and position of the zeroes of a(-,t) 

remains fixed as (ip, w) evolve according to the problem defined by in i t i a l data (<^/v, c^o), 

nl(t) = nt(0) V t G R i = 1,2,3 

A j(<) = A i (0 ) , VteR j = l , . . . , n ( 0 ) . 

So, (3.2.28) becomes 

T^(x, t, A,(0)) = 7;(*)4 2 )K *, ^- (0)) , j = 1,.. •, n(0) , (3.6.19) 
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and consistency of this w i t h (3.6.12) implies the linear ordinary differential equations 

for the t ime evolution of the normalisation coefficients 

^ ( 0 = | ( A i ( 0 ) + Xj'miAt), j = !>•••> n(0) (3.6.20) 

and once again the normalisation coefficients appearing in (3.6.16) must be taken as 

in i t i a l data so that 

l3{t) = e K A j ( O ) + w ) ^ . ( 0 ) , j = 1 , . . . ,n (0) . (3.6.21) 

3.6.3 T h e t ime evolut ion m a p rt 

Defini t ion 3.8 Fort 6 R let rt,t G R denote the bijection 

^yi i (0),n2(0),n3(0) i - 1 (0),7i 2 (0),ra 3 (0) , Q „ 0 0 ^ 

/ r om i/ie initial scattering data defined in (3.6.16) to the time evolved data given by 

(3.6.17), (3.6.18) and (3.6.21). That is, 

Tt • (a(-,0),6(-,0) : 7 l ( 0 ) , . . . , 7 n , ( 0 ) + 2 n 3 ( 0 ) + 2 n 3 ( 0 ) ( 0 ) ) i -» 

(a(-,t),b(-,t) : 7 ! (* ) , . . . , 7 r a i ( 0 )+2n 2 (o )+2n 3 (o ) (0 ) - (3.6.23) 

3.7 Piecing together the inverse scattering method 

The results of the three preceeding sections can now be pieced together to f o r m the 

inverse scattering method for solving a subset of the problems in the set Ajv-

Defini t ion 3.9 For N <G Z let A/v denote the subset of problems of Type A^ which 

have an initial condition in the subspace M.^ C MN-

In sections 3.2-3.6 i t has been proved that when the in i t ia l data (v?w,t*7o) is an element 

of jCiN then the image of the composite map ist o T< O dst is such that 

(<p(-,t),m(-,t)) = (ist ort odst)(y>jv,o7o), 
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I TV * 

dst 

ist = (dst) 1 

^/Vmod2 

Afmod2 

T< = f t ime evolution map denned by a nonlinear problem of Type AN 

Tt — bijective t ime evolution map governed by a set of linear o.d.e's 

Figure 3.1: T h e inverse scattering method for solving problems in AN 

is also an element of MN arid the resulting functions tp, w : (x, t) H-f R solve the in i t ia l -

boundary value problem of Type AN w i th in i t ia l data (</>(•, 0), w(-, 0)) = (</?/v,o7o). 

Notice that, although dst was formulated for arbitrary in i t i a l data in MN, the inverse 

map ( if one exists) was not and, as a result, attention must focus on the subset MN-

As w i t h the method of Fourier transforms studied in chapter 2 the t ime evolution map 

T T : M N ^ M N , 

giving the solution to the set of problems AN as 

(<p(-,t),w(-,t)) = Tt(ipN,w0), 

can be expressed by the commutative diagram in figure 3.1. 

However, this is not quite the whole story. I t remains to recall that in definit ion 3.6 

MN is only defined impl ic i t ly in terms of the map ist applied to a subset of Z V m o d 2 -

Currently, the only way to deduce an element of MN-, (which can then be used as in i t i a l 

data), is to choose suitable scattering data in I ^ o d 2 f ° r s o m e <iS r £ N and then to 

apply the inverse scattering transform ist to this. In other words, the inverse scattering 

method developed in this chapter cannot be used to solve the problem in the set AN 

defined by in i t ia l data (<^> ,̂U7o) for any (<fN,^o) G MN given a priori ! But , i f i t is 
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only required that the in i t i a l configuration be deduced a posteriori then problems in the 

set A j v can be solved by applying the composite map ist o r t to appropriate elements 

of the space of in i t ia l scattering data. This wi l l be seen explici t ly in chapter 6 where 

sets of soliton scattering data wi l l be chosen at t = 0 and the resulting solutions found 

by applying ist o rt to these. 

This completes a detailed discussion of the inverse scattering method for 'solving' some 

elements of the set A AT. 
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Chapter 4 

The inverse scattering method for 

solving problems of Type B p 0 
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4.1 Introduction 

I n chapter 3 the inverse scattering method was developed for solving a subset of the 

initial-boundary value problems of Type Ajv- In this chapter the method is developed 

so that i t can be used to solve a subset of the problems of Type Bp^o- Chapter 5 

continues this development so that some of the problems of Type B ^ Q ^ O can also be 

solved in this way. 

Recall f r o m chapter 1 that an initial-boundary value problem of Type B p ) 0 is defined 

by a pair of functions (v?p,o, £*7p,o) £ A/p,o- The problem associated w i t h this pair is to 

determine the functions <p, w : (x, t) t-> R wi th (x,t) <E (—oo,0] x R which satisfy: 

• the sine-Gordon system 

V(x ,£ ) € ( - o o , 0 ] x R. (4.1.1) 

• the boundary conditions 

(<p(.,t),m(-,t))eAfPfi V i e R . (4.1.2) 

• the ' i n i t i a l ' conditions 

(¥>(•, 0), 0)) = (</>P)0, wp,o) € A/P,O. (4.1.3) 

This chapter formulates the inverse scattering method for solving a subset of these 

problems - the subset being defined by a restricted phase space A/p,o C Afp,o. 

d v j d 2 i p 

4.2 Certain solutions to problems of Type Â y also 

solve problems in B^o 

The purpose of this section is to show how the solutions to certain problems in the set 

A;v also solve problems of Type B ^ Q . 



For some N £ 1* suppose (</?, w) is the solution to the initial-boundary value problem 

of Type A7v defined by the in i t i a l conditions 

(¥>(•,0),G7(-,0)) = {ipN,w0) G M N . 

According to the results of chapter 3 i t follows that at any t ime t G R the pair 

(<p(-,t),w(-, t)) is an element of MN and so 

ds%>(- , f ).<*(•,<)) = (*(•,*).&(•><) : 7 i ( * ) . - - - . 7 n 1 ( 0 + 2 » a w ( < ) ) € ti%£%li)
 (4.2.1) 

for some rti(t) G 2N + A mod 2, n 2 (2) G N , ??.(£) = n1(t) + 2n2(t) and a(- ,£) determined 

by b(-,t) and a set of simple zeroes 

{Ai (<) , . . . , Xni(t)+2n2(t){t)} , 

by (3.2.36). 

I n addition let </3, VJ : R 2 —> R be defined by 

(<p(x,t),w(x,t)) = (<p(-x,t),w{-x,t)), V* G R, 

so that (<y5, a?) also satisfy the sine-Gordon system (1.2.2). 

4.2.1 The zero curvature representation and gauge transfor­

mations 

Suppose that U(x, i , A), V{x, t, A), (resp. {/(#, 2, A), V^s, A)) are the matrices intro­

duced in (3.2.2), (3.6.2) and constructed f r o m (<p(x, t),m(x, t)), (resp. (<p(x, t), w(x, t j)). 

Since both (tpiw) a n d solve the sine-Gordon equation (1.2.2) i t follows f rom 

proposition 3.7 that the systems of linear equations 

?f = U ( x , t , \ ) f , 
ox 

^ = V ( x , t , \ ) f , 

?f = U(x,t,\)L ox 

^ = f / ( . r , Z , A ) / , (4.2.2) 
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are compatible \/x,t G R, A G C \ { 0 } . 

As explained in section 3.6, the matrices (U(x, t. A), V(x, t, A)), {U{x1t, A), V^(.T, A)) 

can be regarded as local connection coefficients in the t r iv ia l vector bundle R 2 x C 2 . A 

local change of linear frame in the fibre induced by matr ix Q(x, t, A) 

/ - / = Q f , (4.2.3) 

is accompanied by the transformation 

dg 
Ox 

v = ^ + gvg-\ (4.2.4) 

The zero curvature condition is invariant under such gauge transformations. 

Let tp,ip denote any 2 x 2 matrices of rank 2 which solve 

^ = £/(*, i,A)0, ox 

^ = V(x,t,\)i(>, 

?£ = V(x,t,\)h (4.2.5) 

Wx,t G R, A G C \ { 0 } . A l l the solutions to these equations are related by a change in 

normalization 

ij>{x,t,\) -> ij>(x,t,\)N(\), 

tj>(x,t,\) - • ip(x,t,X)N{X), 

w i t h iV(A), N(X) arbitrary 2 x 2 matrices. Therefore let ij>(x,t, \)N(\), $(x,t,\)N(\) 

denote the general solution to (4.2.5). 

4.2.2 Constraining solutions by demanding a gauge relation 

Throughout the rest of this section suppose that N(X), N(X) can be chosen so that 

iJ>(x,t1\)N(\)N-1(\)ip-1{x,t,\) = L{x,t,X) \/x,t G R, A G C \ { 0 } , (4.2.6) 
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where 

L(x,t,X) = ( (A 2 - A - 2 ) c o s a 1 ( ; T , i ) + a 2 (x ,^ ) ) K 

+i ( (A 2 + A _ 2 ) s i n a i ( . x , i ) + a 3 ( x , t f j a3 

+i ((A - A ^ K O M ) + (A + \ ~ 1 ) f i ( x , t ) S j a, 

+i ((A + A " 1 ) ^ * , * ) + (A - A - 1 ) / 2 ( x , i ) ) <r2, (4.2.7) 

for some functions a,-, d j , / j , ?' = 1 , . . . , 3, j = 1,2 such that V f G 1R 

di(0,<) = l i m d!(x,t) = l i m / 2 ( x , < ) = 0. (4.2.8) 

This constraint is the same as demanding that tp[x, t, A)iV(A) and 0(x, t, X)N(X) can be 

related by a gauge transformation of the fo rm (4.2.7), (4.2.8). The matrices ijj(x,t, A) 

and tp(x,t,X) are calculated according to subsection 4.2.1 and consistency of (4.2.6) 

and (4.2.7) forces all the coefficients to be real valued w i t h < i i ,d 2 'even' in the variable 

x and a a , a 2 , a 3 , / i , / 2 'odd' . 

Demanding that relations (4.2.6), (4.2.7) hold amounts to imposing a constraint on the 

solution (<p,w). The consequences of this w i l l be studied in the next subsection. 

4.2.3 Solutions which meet the constraint also solve a prob­

lem in Bpo 

The solutions to problems of Type A/v which satisfy the constraint (4.2.6), (4.2.7) for 

some choice of N(X), N(X) also solve an in i t ia l boundary value problem of Type Bp,o 

for some P € R. To see this substitute (4.2.6) into (4.2.5) so that for all x,t <E R, A € 

C \ { 0 } , the functions a,i,dj,fj, i' = 1 , . . . , 3, j ' = 1,2 and any admissible solution must 

satisfy 

dL 
— ( x , f , A ) = U(x,t,X)L(x,t, A) - L{x,t,X)U(x,t,X), 
Ox 

— (x,t,X) = V(x,t,X)L(x,t,X) - L(x,t,X)V(x,t,X), (4.2.9) 
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and other relations which result f r o m additional differentiations. Some of these con­

straints are 

dip 
fa 

(x,t) = di(x, t) cos 
'<P(-x,t) + (p(x,tY 

— d2(x, t) sin 
'<p(-x,t) + <p(x,ty 

4 ( . , t ) M - x , t) + t*(x, *)) sin J ^ t o M l ) 

- | ( x , * ) ( * ( - * , *) + * ( x , *)) COS + ? 

5^2 

dt 
ddi 
dt 

(x,t) = ~{x,t) ( s i n ^ ( x , 2 ) - s i n | ( - x , i ) ) 

(x, t) = — (x, t) [cos - ( x , t) - cos ^ ( - a ; , *) 

so that on defining P € R by 

the functions y>, must satisfy 

dm 

dx 
(x,t) 

da 

x=0 

(x,t) 

P=d2(0,t) 

+ P s i n | ( 0 , < ) = 0, 

( 4 . 2 . 1 0 ) 

( 4 . 2 . 1 1 ) 

x-0 

P V 
+ — zv(0,t)cos M 0 , < ) = 0 V ( G R . ( 4 . 2 . 1 2 ) 

Fixing t £ K i t follows that upon a restriction of the domain to x (= (—oo,0] , 

M - , < W - > * ) ) l ( - o o , o ] € A ^ p i 0 , ( 4 . 2 . 1 3 ) 

w i t h P = d 2 ( 0 , 0 -

So, i f a solution to an initial-boundary value problem of Type AN is such that constraint 

( 4 . 2 . 6 ) , ( 4 . 2 . 7 ) , ( 4 . 2 . 8 ) can be made to hold by an appropriate choice of N(X), N(\) 

then i t w i l l also satisfy the differential equations ( 4 . 2 . 9 ) and so solve a problem of Type 

B p , 0 for some P e l . 

4.2.4 The constraint picks out subspaces of scattering data 

In this subsection t G K is fixed and at this t ime the constraint ( 4 . 2 . 6 ) , ( 4 . 2 . 7 ) , ( 4 . 2 . 8 ) 

is reformulated as a constraint on the scattering data ( 4 . 2 . 1 ) . 
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The transition matr ix bui l t f r o m ((p(-,t),m(-,t)) is uniquely constructed f r o m any ip 

according to 

T(x,y,t,X) = ip(x,t, A)'0_ 1(?/,i, A ) . 

As a consequence of U(x,t,X) = U(—x,t,X) and the involution — o^t /^T, t, A - 1 ) < T 2 = 

U(x, t, X) i t follows that the constraint (4.2.6), (4.2.7), (4.2.8) can be rewrit ten in terms 

of this transition matr ix as 

T(x, y,t, A ) = j ( - x , t, A _ 1 ) T ( - . T , - y , £, X'1)j~1(-y,t, A - 1 ) Vx, y, G R , A G C \ { 0 } , 

(4.2.14) 

wi th 

i ( x , i , A ) = f < r 2 I (x ,« ,A) . (4.2.15) 

In tu rn this relation coupled w i t h the involution T+(x,t,X) = —o-3T+(x,t,—X)a2 for 

the Jost solution implies that for A G R \ { 0 } , 

r + ( a : , t , - A - 1 ) = - ( r 3 j - 1 ( x , t , A - 1 ) T _ ( - a ; > f , A ) r 1 ( < , A - 1 ) , (4.2.16) 

where 

j i t . X - 1 ) ^ 1 - l i m ^ e x p ^ A - A ^ V l ^ i X - - * ^ 

r ^ - J / , ^ A - X ) ( l + i ^ e x p ( - | ( A - A " 1 ) ^ ) . (4.2.17) 

As a result of (3.6.11) for the t ime evolution of T±(x, t, A ) , the relation (4.2.16) continues 

to imply (4.2.9) and therefore (4.2.13). 

To proceed i t is necessary to consider the cases of TV odd/even separately. 

N odd 

W i t h N G 2 Z + 1, 

dBt(<p(-tt)M',t)) = ( a ( - , < ) , 6 ( - , 0 : 7 i W , - - - , 7 n l W + 2 n 2 ( 0 W ) G £>r ( ' W ' \ (4.2.18) 

for some m(t) G 2N + 1, n2(t) G N . 
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From a detailed analysis of (4.2.9) i t is possible to deduce that a,\, a2, a3, d2l f \ must 

have the asymptotics 

irN 
ax{x,t) -»• T 2 ^ , a2{x,t) 0, a3(x,t) -* ± i N + l f o , 

fi{x,t) —> ±iN+1(A~1 - A ) , d2(x,t) —> 0, a : - > ± o o Vf € R, (4.2.19) 

w i t h # , 6 R, A G R + . 

Using the equality d e t £ ( 0 , i , A ) = det L ( + o o , i , A) implied by (4.2.6) i t follows that 

03 = 2, 

L{0,t,X) = {\ + \ - 1 ) ( { \ - \ - l ) I + iP<72), (4.2.20) 

L ( + o o , f , A) = ?

W ( A + A - J ) ( ( A + A - 1 ) ^ + ( A " 1 - A)<r a), (4.2.21) 

and P2 = (A + A - 1 ) 2 so that \P\ is constrained to be > 2. The matr ix j ( t , A _ 1 ) as 

defined by (4.2.17) is found to be 

jti A - ) = »((A + A - > , + ( A - - A K ) 
' (A + A-')((A + A-')2 + ( A - ' - A ) > ) ' ' > 

so that both Z(0, t, A) and j(£, A - 1 ) are independent of t. 

Now consider the Jost solutions evaluated at x = 0. Denoting these by 

™ < ^ = { t t S $ <*-2-23> 

the constraint (4.2.16) translates into the relations 

, ( A - A - 1 M _ ( A ^ ) - P 6 _ ( A , Q 
a + ( " A ' * ) = A + A - t + i A - i A - i 

x _ P a _ ( A ^ ) - ( A - A - 1 ) c _ ( A , t ) 
M ~ A ? t ) ~ A + A-* - zA + . -A - i 

^ ( A - A - 1 ) 6 - ( A , f ) + Prf_(A,<) 
C + ( _ A ' ' } ~ A + A - i + t A - i A - i 

( A - A - 1 ) a - ( A , t ) + P c - ( A , Q 
d + ( _ A ' ' } ~ A + A - i - i A + t A - i 

(4.2.24) 

to be satisfied VA € R \ { 0 } . 

In sections 3.2, 3.6 i t was deduced that a_(-,t),C-(-,t),b+(-,t),d+(-,t) extend analyti­

cally into the upper half of the complex plane whereas c+(- ,£) ,£>_(• , t ) ,eL(- , f ) 
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extend analytically into the lower half. The relations (4.2.24) are consistent w i t h this 

analytic continuation so that they can be understood to hold for all A in the appropriate 

domains of analyticity. As a result 

sign(P)b+{iA,t) - id+(iA,t) = 0 

s ign(P)a_(i A, t) - ic_(iA, t) = 0. (4.2.25) 

The transition coefficient a(-,t) is defined in the domain ImA > 0 as 

a(X,t) = a-(\,t)d+(\,t) - c _ ( A , t ) 6 + ( A , i ) , (4.2.26) 

so that (4.2.24) imply that this coefficient satisfies the symmetry condition 

a ( - \ - \ t ) = -h(X)a(X,t), (4.2.27) 

w i t h 
, m d g f ( A + ? ; A ) ( A - ? A - 1 ) 

h { X ) ~ ( A - i A ) ( A + i A - i ) ' ( 4 - 2 ' 2 8 ) 

For A £ R the transition coefficient b(-,t) is given in terms of the coefficients appearing 

in (4.2.23) by 

b(X,t) = c-(X,t)a+(X,t) - a-(X,t)c+(X,t) 

= b+(-X,t)d-(-X,t) - d+{-X,t)b-(-X,t), (4.2.29) 

so that (4.2.24) imply 

b(X,t) = -b(X-\t). (4.2.30) 

Now recall that since (<p(-,t),w(-,t)) G MN i t follows that for ImA > 0 the coefficient 

a(X,t) can be expressed in terms of b(X,i) and its zeroes 

(Al ( i ) , . . . , Xni(t) + 2n2(t){t)} , 

through the dispersion relation ( 3 . 2 . 3 6 ) . Therefore by (4.2.25), (4.2.27), (4.2.29) i t is 

required that 

a(tA,*) = 0, a ( i A ~ \ * ) ^ 0 , 
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and the sequence of purely imaginary zeroes of a(-,t) must take the fo rm 

i % 
\ x ( t ) , A n i (()(*) = i A , iK2(t),..., i K m ( t ) ( t ) , — — , . . . , — , (4.2.31) 

wi th m(t) — m ^ ~ 1 , As for the set of zeroes 

)(*)}, 

which have real and imaginary parts greater than zero; let t ing 

denote the subset which do not lie on the unit circle |A | 2 = 1 i t follows f r o m (4.2.27), 

(4.2.30) that the integer na(t) must be even and that this set must take the fo rm 

| A n i ( t ) + i ( t ) , . . . , K1(t)+na(t)/2{t), T • 777, • • • , T 777 \ • 

However, denoting by 

the subset which do lie on the circle |A | 2 = 1, symmetry conditions (4.2.27), (4.2.30) 

do not imply any constraints on the position of these zeroes and ni(t) can be odd or 

even. 

The set of zeroes 

{ - A r a i ( t ) + i ( i ) , . • • , - A n i ( i ) + n a ( < ) ( * ) } , 

which have positive imaginary part, negative real part and which do not lie on the 

circle |A | 2 = 1 take the fo rm 

| _ A n i ( t ) + i ( £ ) , . . . , -A n i ( t )+n a (<) /2 ( i )> — T 777, • • • , ~ T 777 i 5 

where as before the ?t,2(^) — n a ( t ) zeroes in this domain which do lie on the circle |A | 2 = 1 

are not constrained. 

The above reasoning shows that for each zero \ j ( t ) , j = 2 , . . . ,ni(t) + 2n2{t) present 

in the scattering data (4.2.18) there must exist another one given by — YJi)-
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By (3.6.19), (4.2.24)-(4.2.25) the normalization coefficients associated w i t h all the ze­

roes must satisfy (in obvious notation), 

l l A ( t ) G R\ { 0 } , (4.2.32) 

l x A t ) ( t h _ x ; i { t ) ( t ) = - 1 \ j ( t ) + iA. (4.2.33) 

Now using notation 3.1 and (3.2.29) for the normalization coefficients, (4.2.33) implies 

that na(t) = n2(t) G 2N. 

So when N is odd the constraint (4.2.6), (4.2.7), equivalently expressed as (4.2.16), 

implies that the scattering data (4.2.18) must be an element of a subspace of p™ 1 '* ' ' " 2 ' ^ 

This subspace is defined below. 

Defini t ion 4.1 For arbitrary t G E fix m(t) G 2N + 1, n2(t) G 2N, A G R+ and let the 

subspace j^"™^*''™2'*) Q <f)nx(t),n2(t) ^ e n o ^ e s e t s of scattering data 

(a(-,t), &(•, t) : 7 i ( 0 , • • •, T m M + W O ) € V n ^ { t \ 

such that 

• in their domains of analyticity the transition coefficients a(-,t),b(-,t) satisfy 

b(\,t) =-b(\-\t) 

, (X-iAVX + iA-1) , x , . 
a ( A ' < ) = - ( A + i A ) ( A - i A - i ) ^ - A '*>' 

so a(iA,t) = 0 and unless A = 1, for all the Xj(t) ^ iA such that a(Xj(t),t) = 0 

it follows that a( — A j 1 (£),£) = 0 also. 

• the normalization coefficients at these zeroes are such that 

7iA(<) € R \ { 0 } , 7 A J W W 7 - A - i ( < ) ( * ) = - 1 ^ W ^ i A . 

In the next subsection i t w i l l be seen how the inverse scattering transform ist can be 

used to prove that all scattering data in this subset leads to Jost solutions satisfying 

(4.2.16) and therefore (4.2.9), (4.2.13). However, to complete this subsection i t remains 

to tu rn to the case when N is even. 
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N even 

W i t h N G 2Z, 

dst(^( . ,*) , rc7( . , i ) ) = ( a ( - , t ) , 6 ( ^ 0 : 7 i ( ^ ^ (4-2.34) 

for some m{t) G 2N, n 2 ( i ) G N. 

From (4.2.9) follows the asymptotics, 

ai(x,t) - • -F~^~? ^ ( M ) -> 0, a 3 ( x , t ) -»• 0, 

d2(x,t) -> i ^ + r 1 ) , Z i O M ) -+ 0, x ^ ± o o G R , (4.2.35) 

w i t h 

£G<C : |£| = 1 or £ G R \ { 0 } . 

In addition there exists the constraint 

P2 = (Z + C1)2- (4.2.36) 

In this case the relations (4.2.24) are replaced by 

/ x - i , v _ ( A - A - M r f - t A , * ) " ^ - ^ , * ) 
A - A - 1 - i£ - i ^ - 1 

fc+C-A-1,*) 
^ _ P a _ ( A , t ) - (A - A - 1 ) c _ ( A , i ) 

c + ( - \ - \ t ) = 

A - 1 - A - i£ - i ^ - 1 

( A - A - 1 ) 6 _ ( A , t ) + P ^ _ ( A , t ) 

A - A - 1 - i£ - i f - 1 

d f - A - 1 t) ~ (A ~ A ~ 1 ) a _ ( A , t ) + Pc_(A,£) 

to be satisfied VA G R \ { 0 } . Using these in place of (4.2.24) the subsequent rea­

soning mirrors that detailed for the case of N odd and the constraint (4.2.6), (4.2.7) 

implies that the scattering data (4.2.34) must be an element of one of two subspaces 

of O'" 2 '*' depending on whether Im(£) = 0 or not. These spaces are defined below. 

Defini t ion 4.2 For arbitrary t G R fix n\(t) G 2N, n 2 ( i ) G 2N and parameter f G 

R \ { 0 } . Let the subspace ^"iW'™ 2 '*' ^- <p™i(0,̂ 2(0 ^ e n o ^ e s e f s 0 f scattering data 

« , * ) , & ( • , * ) : 7 i ( 0 ) - - - , 7 « 1 ( * ) + 2 n 2 ( i ) ( * ) ) € T>OL{T)'N2(T), 
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such that 

in their domains of analyticity the transition coefficients a(-,t),b(-,t) satisfy 

b(\,t) 

a(X,t) = a ( - A - V ) 

A - A ^ + i t f + r 1 ) 6 ( A - \ t ) , 
_ A - A - > - t ^ + f - 1 ) . 

so that for all the \ j ( t ) such that a(Xj(t),t) = 0 it necessarily follows that 

a( — X j 1 ( t ) , t ) = 0 also. However since n,\(t) £ 2N it follows that a(i,t) ^ 0. 

• the normalisation coefficients at these zeroes are such that 

w ^ - A ^ o + itf + r 1 ) 
7 A J ( o ( 0 7 _ A - 1

W ( F ) x j ( t ) - x j 1 ( t ) - i ( c + ^ ) 

Alternatively i f £ £ C : |£| = 1, Im(£) ^ 0 the scattering data must be an element of 

the subspace ^ 1 ^ ' n 2 ^ given by the following definition. 

Defini t ion 4.3 For arbitrary t £ l fix n i ( f ) G 2N, ri2{t) G N and parameter 

£ € C : |£| = 1, l m ( 0 ^ 0. 

Let the subspace ^ 1 ^ < R I 2 ^ Q j y n ( t ) , n 2 ( t ) ^ e n o f e s e ^ s Qf scattering data 

(a(-,t),b(;t) : 7i(0>--->7n 1 (t)+2n 2 (o( i )) € 2?0 

such that 

• in their domains of analyticity the transition coefficients a(-,t),b(-,t) satisfy 

a(A,t) = a ( - A - 1 , f ) 

" A - A - i + i (e + r 1 ) ' 
6(A,<) 

so £/*a£ /o r a// the Xj(t) such that a(Xj(t),t) = 0 it necessarily follows that 

a( — A j 1 ( t ) , ^ ) = 0 also. However since ni(t) G 2N it follows that a(i,t) ^ 0. 

• the normalisation coefficients at these zeroes are such that 

7A i (t)(<)7-A- I (t)(0 = 
A . w - A - ^ + ^ + r 1 ) 

[ \ J ( t ) - X - l ( t ) - z ^ + ^ ) \ 
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This subsection is now complete. I t has been shown that some of the problems of Type 

Ajv have solutions which also solve a problem in the set Bp,o and that the scattering 

data of these solutions at a fixed t ime t must take a particular fo rm. 

In the next subsection the converse question w i l l be addressed. I t w i l l be established 

that given scattering data in one of the subspaces J-^W'"2^^ j r M O . M 4 ) ^ -pni(t),n2(t) ^ e n 

there does exist a relation such as (4.2.16), (4.2.7), (4.2.8) for the Jost solutions con­

structed f o r m this data and so relations (4.2.9), (4.2.13) hold. 

4.2.5 Subspaces of scattering data imply the constraint 

In the previous subsection i t was established that i f a constraint such as (4.2.16), 

(4.2.17) is satisfied by a pair of Jost solutions then this implies (4.2.13) and the scat­

tering data constructed f r o m these solutions must be an element of one of the subsets 

^ i W ^ f f l ^ M i l f t l ^ i W ^ I ^ T h e c o n s t r u c t i o n G f subsection 4.2.4 also ensures that 

given 

( „ l (\\ hi ni • ~ ~ l ( \ \ \ CL T n l ( 0 ) < n 2 ( 0 ) <r-ni(0),n2(0) j-nx (0),n2(0) 

then 

(a(;t),b(;t) : 7l(<)>--->7n1(0)+2n2(0)(*)) = 

rt(a(; 0), &(-, 0) : 7 i ( 0 ) , . . . , 7n I(o)+2n a(o)(0)) (4.2.38) 

is an element of ^ f - ^ W ^ i W ^ W ^ ^ ^ l 1 1 ) respectively. 

In this subsection the results of sections 3.3, 3.4 are used to prove that for arbitrary 

(a(-,0),6(-,0) : 7 l ( 0 ) , . . . , 7 n ^ o , + 2 n 2 ( o ) ( 0 ) ) G ^ A

( 0 ) ' " 2 ( 0 ) , 

the Jost solutions to the auxiliary problem (3.3.10) which are constructed f r o m the 

t ime dependent data following f rom (4.2.38) satisfy the relation 

T+ix^-X'1) = - c r 3 L _ 1 ( a : , * , \~1)<j2T-(-x,t,\)j~1(t,\~~l), X e R \ { 0 } 

(4.2.39) 
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wi th 

J ( M ) = ( A + A - ) ( ( A + A - ) 2 - t - ( A - 1 - A ) 2 ) ( 4 - 2 ' 4 0 ) 

and L(x,t,X) taking the fo rm (4.2.7), (4.2.8) for some functions 01,2,3,^1,25/1,2- As a 

result of (4.2.38) these Jost solutions w i l l evolve in t ime according to (3.6.11) and so 

the matr ix L(x,t,X) w i l l satisfy (4.2.9). So, fixing I 6 l a relation such as (4.2.39), 

(4.2.40) w i l l imply (4.2.13). Similar analysis can also be carried out for the subspaces 

^ r ni(t) ,n 2 (t)^nyt) ,n 2 ( i )^ c o n c i u s i o n r e m a i n s the same. 

A t a particular t ime i 6 R construct the mat r ix G(x,t,X) f r o m the scattering data 

(a(- ,<) ,6(- , f) : 7 i (^) , - - - ,7n 1 (o )+2 n 2 (o) (^) according to (3.2.43) and for A € R \ { 0 } 

define 

A{X) = a(A)<72 = - ( (A 2 + 1 ) (A- 1 + tA^X'1 - z A " 1 ) ) " 1 a2. 

Since the scattering data (a(-, t), 6(-, t) : 7 i ( i ) , • • •, 7m(o)+2n2(o)(^)) is an element of 
^ ( o w o ) . t foUows t h a t 

G(x,* ,A) = A(X)G(-x,t,-X-1)A~1{X), XeR. (4.2.41) 

Therefore, according to subsection 3.3.1, there must exist a mat r ix funct ion L(x,t,-) 

which is regular throughout C \ {0} wi th a double pole at A = 0 such that the solution 

to the fami ly of Riemann-Hilbert problems (3.3.3) satisfies 

g+(x,t,X) — —A(X)g+(—x1t1—X'1)a2L(x,t,—X)o-3 ImA > 0, 

g-{x,t,X) = -a3L-1(x,t,-X)a2g4-x,t,-X-l)A-1(X) I m A < 0. (4.2.42) 

Using det g+(x, t, A) = a(X,t) i t follows that 

L(x,t,X) = -<r^L\x,t,X)az. (4.2.43) 

Analy t ic i ty and the asymptotics (3.3.5), (3.3.6), (3.3.11) constrain L(x,t,X) to have 

the fo rm 

L{x,t,X) = £ Lp(x,t)Xp, (4.2.44) 
p=-2 

wi th 

L2(x,t) = exp( ia i (x , i ) (T3) , 

L _ 2 ( x , t) = - exp ( - i a x (x , t)a3), (4.2.45) 
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and ai(x,t) expressed in terms of 

(tp{-,t), n?(-, *)) = f ist(a(-, t), b{-,t): 71(f), • • •, 7»i(o)+2n2(o)(<))> 

as ar{x,t) = 5(«^(-a:,*) - ¥>(M))-

Assertion 1'") in section 3.4 ensures that the Jost solutions T±(x,t,X) to the auxil­

iary linear problem (3.3.10) follow f rom the columns of g±(x,t,X) according to (3.3.9), 

(3.4.1). Therefore rewri t ing (4.2.42) in terms of these solutions (and remembering that 

the scattering data is an element of J F ^ " 2 ^ ) { o l l o w s (4.2.39), (4.2.40). I t remains 

to deduce that L(x,t,X) does indeed have the fo rm (4.2.7), (4.2.8). A t order A ± 2 this 

is already evident f rom (4.2.45). However, to deduce the structure of the remaining 

coefficients i t is necessary to use the involutions satisfied by T±(x, t, A), the asymptotics 

of these solutions (3.2.11) and their unimodularity. For A 6 R \ {0} the involutions 

T±(x,t,\) = a2T±(x,t,X)o-2, 

T±(x, t, - A ) = -iaiT±(x, f, A) (4.2.46) 

imply 

L(x, t, - A ) = a3L{x, t , A)cr3, (4.2.47) 

L(x,t,X) = c r ^ x ^ - A ) ^ . (4.2.48) 

These relations i n conjunction w i t h (4.2.43), (4.2.44), (4.2.45) imply that L(x,t,X) has 

the fo rm (4.2.7). Finally 

d e t T ± ( i , * , A ) = 1 

T±(x,t,X) —» E±(x,X), as x —> ± 0 0 , 

enforce the conditions (4.2.8). 

Similar arguments hold for the subspaces yr^W'^i0)^ ^ M O J . M 0 ) s o ^hat an s c a t t e r i n g 

data in ^ ( O . ^ f O ^ ^ O . ^ O ^ ^ O . n a t O l e a d g ( y i a t h e m a p i s t ) t o a p a i r o f f u n c t i o n s 

((p{-,t),w(-,t)) satisfying (4.2.13). 

W i t h this conclusion i t is t ime to use these results to develop the inverse scattering 

method for solving a subset of the problems of Type B p i 0 -
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4.3 The inverse scattering method for solving prob­

lems of Type B p $ 

In this section the results of chapter 3 and section 4.2 wi l l be used to develop the inverse 

scattering method for solving a subset of the problems of Type B p ^ . 

In chapter 3 i t was seen how the inverse scattering method could only be applied to the 

problems of Type A/v which are defined by in i t ia l data i n the subspace A4N C MN-

However, at the present t ime, M.M can only be defined impl ic i t ly in terms of scattering 

data (see definit ion 3.6). U n t i l this subspace is realised in terms of pairs of functions 

(</>,£<7) the direct scattering transform dst is, to some extent, redundant. In section 3.7 

i t was mentioned how the composite transform ist o rt could be used to solve problems 

of Type A AT by an appropriate choice of scattering data at t = 0. The in i t i a l conditions 

leading to this solution can then be deduced a posteriori. 

This reasoning repeats itself when considering the initial-boundary value problems of 

Type B p ) 0 . Therefore i t makes sense to formulate the inverse scattering transform 

( i s t l f -oc^] ) first in subsection 4.3.1 so that the space A/p,o C Ap,o which is the analogue 

of At7v is introduced immediately. The direct scattering transform ( d s t l ^ ^ o ] ) which 

follows in subsection 4.3.2 w i l l then be formulated entirely in terms of this subspace. 

From the results of chapter 3 and section 4.2 i t w i l l be clear that ( i s t l ^ ^ ] ) and 

(ds t l^eo o]) are the inverse of one another. As has already been mentioned the t ime 

evolution map r f introduced in section 3.6 leaves the subspaces j r 7 1 ^ ' ) ' 7 ^ * ^ ^ i ( t ) , n 2 ( t ) 

and j r ^ i W ' " 2 ^ ) invariant. This w i l l be developed more explici t ly in subsection 4.3.3 

wi th the result that the inverse scattering method for solving problems of Type Bp,o 

can be pieced together as in subsection 4.3.4. 
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4.3.1 The inverse scattering transform for a subset of prob­

lems in Bpo 

I n chapter 3 the inverse scattering transform was formulated as the injective map 

i s t j U ^ o J = U ^ P + ? , 
\ r e N / pez 

for arbitrary q £ N . Using the results of section 4.2 i t is now possible to develop some 

restrictions on ist so that i t can be used as the th i rd stage in a solution to some of the 

problems of Type B p ^ . 

Recall that at any t ime t £ R the inverse scattering transform ist comprises a one 

parameter fami ly (x) of Riemann-Hilbert factorization problems. When considering 

initial-boundary value problems of Type Ayv i t is necessary to consider x £ R. However, 

due to the 'pointwise' nature of the transform, the appropriate domain for x when 

considering the problems of Type B p ^ is the semi-line (—oo,0]. 

Defini t ion 4.4 LeHstl^o^o] denote the map ist with the parameter x restricted to the 

semi-line ( —oo,0]. 

This definition and the results of section 4.2 make i t possible to state the following 

lemma. 

L e m m a 4.5 Fix t £ R, nx(t) £ 2N + 1, n2(t) £ 2N, A £ R + and let 

( a ( - , i ) , 6 ( - , i ) : ^ ( t ) , . . . , y n i i t ) + 2 n 2 ( t ) ( t ) ) £ f ? f < n ^ \ 

then 

(<?(•, < ) , G 7 ( - , * ) ) | ( _ o o l 0 ] = f ist | (-oo ,0] H ' , * ) : 7l(0>--->7ni(t)+2n 2(i)(0) , 

is an element of A f P f i with P = i n ^ + 1 ( A + A " 1 ) and n(t) = ni(t) + 2n2(t). 

I t follows f r o m section 4.2 that 

(<p(;t),w(;t)) = i s t (a(-,t),b(-,t) : 7l(*),... 
(*)) , 
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will satisfy the constraint (4.2.6), (4.2.7) for some P — d2(0,t) G R and the Jost solu­

tions following from this will obey (4.2.16), (4.2.17). As a result the reduced transition 

matrix constructed form (ip(-,t),w(-,t)) can be written as 

T(\,t) = -j(t,-\)T:\0,t,-\-1)j(0,t,-\)<r3T-{0,t,\), (4.3.1) 

so, recalling the form of the transition matrix in terms of the coefficients a(-,t), b(-,t), 

the involutions which these coefficients satisfy and the form they must take so that the 

scattering data is an element of J T ^ ' W ^ it follows that 

J U ' > \ 0 -h(l)a(l,t) ) ' 

a(l,t) = ( i ) n W - \ l - ?;A)(1 + IK)'1. (4.3.2) 

Evaluating (4.3.1) at A = 1 yields P = (\-A-l-2i)a(l,t) so that P = ( i^W+^A+A" 1 ) 

which is consistent with the constraint P2 = (A + A - 1 ) 2 deduced earlier. Lemma 4.5 is 

proved. 

Identical reasoning with ^™*W,n2W replacing ^ ^ ' n 2 ^ leads to: 

Lemma 4.6 Fix t G R, m(t) G 2N, n2(t) G 2N and a parameter ( 6 l \ { 0 } . Let 

(o(-, 0, t) : 7 i ( t ) , • • •, 7n1(0+2na(o(<)) G ^ ( t ) > n a ( t \ 

M-,0> n 7 ( ' .*))l(-oo ,o] = f i s t l^^oj (a(-, *),&(•,*) : 7iC0> • • • , 7 n 1 ( * ) + 2 n a ( « ) ( * ) ) > 

is an e/emeniJ o/Afp.o unto i 3 = « n ( i )(£ + and n(<) = n^t) + 2n2(t). 

Finally with ĵ "™1 *̂)'™2 '̂ replacing jr^1)^^) ^ j s n o w possible to prove: 

Lemma 4.7 Fix t G R, ni(i) G 2N, G N a».d a parameter 

i G C : 1̂1 = 1, lm(0 ^ 0. 

Lei 

( a ( - , i ) , 6 ( - , 0 : 7 i ( i ) , - - - i 7 n i ( « ) + 2 n 2 ( t ) (0) 
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then 

(¥>(•,<)> ^(->*))l(-oo,0] =f i s t l ( - o o , 0 ] : 7 l ( < ) > " - » 7 n 1 ( t ) + 2 n a ( t ) ( * ) ) > 

15 art element of A f p f i with P = inM(£ + £ _ 1 ) and n(t) = ni(<) + 2n 2(t). 

The results of lemmas 4.5 - 4.7 can be collected together in proposition 4.9. First it is 

necessary to make the following definition. 

Definition 4.8 Given A <G R + or£ € C : |£| = 1, Im(£) ^ 0 define the sets of scattering 

data TK-I A S 

^ = u ( ^ o 2 r u ^ o , p 4 ) -

Proposition 4.9 Given A G R + or £ G C : |£| = 1, Im(f) ^ 0 Men 

ist(_OO)0] : J~\ ^—^ Af(A+A-i),o U ^-(A+A- .̂O, 

ist(_oo>0] : T[ ^—^ A f ^ + i - i ) f i U jV_(^+^-i) |0. 

The proof of this proposition can be pieced together using lemmas 4.5 - 4.7 and the 

results of chapter 3. Just as with definition 3.6 where the subspace jCijy was introduced, 

the following definition is of crucial importance regarding the problems of Type Bp i 0-

In effect the subspaces introduced in this definition define the subset of problems in 

B / J O which can be solved by the inverse scattering method. 

Definition 4.10 Define the respective subspaces 

• A ^ A + A - ^ . O J ^ - ( A + A - J J . O , ^ " ' I ^ ^ I W " 1 ) * -^'-(A+A^),0, N^+t-^fi, 

by the images of the map ist(_oo 0 ] . Namely, 

• ^ ( A + A - 1 ),0 U A/lfA+A-M.O =f i s t l ( - oo ,0 ] ( ^ A ) , 

j i l ; ( + £ - 1 ) f l U ^ ( w - . ) , o = ist|(_OOi0] ( ^ ) • (4.3.3) 
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This completes the formulation of two separate restrictions for the map ist^-o^o]. In 

subsection 4.3.4 it will be seen how these are to become the third stage in a solution 

to a subset of the problems of Type B^o - this subset being defined by the subspace 

4.3.2 The direct scattering transform for a subset of prob­

lems in Bp a 

In definition 4.8 the subsets 

were introduced According to proposition 4.9 and definition 4.10 the restriction of the 

inverse scattering transform ist^-o^o] to these subsets yields an element of Np$ with 

P given in terms of A or £. 

This subsection is not concerned with a general formulation 

dstl^oo.o] : Mpfl VQ U X>I, 

but only with the restricted transforms 

ds t^^o] : AfP,o -> FK, ^ , (4.3.4) 

with the parameter in the image fixed in terms of the given P e l . 

At time t G R let (y>(-, t), w(-,t) G Afp,o for some P G R. For x < 0, A G R\ {0} use this 

data to construct the Jost solution T_(a;,i,A) according to the prescription outlined in 

chapter 3 and define the matrix 

ii(A) d^ f - i ( A + A-X)((A - A " 1 ) ^ + Pa3). (4.3.5) 

To proceed it is necessary to consider the cases |P| < 2, |P| > 2, \P\ = 2 separately. 
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1̂ 1 < 2 

For f € C : |£| = 1, lm(() ^ 0 let 

. m d r f »«A - A - > T - u + r > 2 ) 
J 2 ( A ) " ( A + A - t ) ( ( A - A - i ) 3 + (e + e - 0 2 ) ' ( } 

and, with A (E R \ {0}, define the Jost solution T+(0,£, •) by 

T + ( 0 , t , - \ - 1 ) ^ ^ ( X - ^ T ^ t ^ ^ i X - 1 ) . (4.3.7) 

With this definition the free parameter £ must be chosen so that T + (0,i ,-) meets 

certain requirements. These are to ensure that it is compatible with the analysis of 

chapter 3 and so with the construction of a set of scattering data in (t)mod2 f ° r s o m e 

ni(t), n2{t) G N. Namely, the parameter £ must be chosen so that: 

1. det T+(0, t, A) = 1 VA e R \ {0}. 

2. the columns of 7+(0, i,-) have the appropriate analytic properties. 

3. the resulting T±(0,t, •) lead to scattering data in ^™)(jjmod2 with n i ( t ) , n2{t) € N. 

It is straightforward to deduce that the first requirement forces (£ + £ - 1 ) 2 = P2• How­

ever, this does not determine £ uniquely and constraints 2 and 3 must also be imposed. 

Defining 

it follows from (4.3.7) that 

4 , ( A - A - 1 ) ( / _ ( A , 0 - P 6 _ ( A ^ ) 
° + ( ~ A A - A - 1 - i£ -

Pa-(X,t)-(X-X-')c4X,t) 
M _ A > T } - A - * - A - if -

(X-X^)b_(X,t) + Pd_(X,t) 
C + M ' < ) = A - A - i - if - if 
, , x - i . (A-A- 1 )«_(A,0 + Po-(A^) (4.3.9) 

for all A € R \ {0}. Now demand that b+(-,t), d+(-,t) have analytic continuations into 

the half plane Im( A) > 0 so that with 

^ I (|P| + iv/4^P^) , (4.3.10) 
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it follows that 

&+(«?,*) = 0 d+(iti,t) = 0, 

b+(iti-\t) = Q d + ( i t f - \ t ) = 0. 

Therefore, if either of 6+(zt?±1, t) = 0 then (3.2.21) implies that the transition coefficient 

a(-,t) is such that a(i,d±1,t) = 0. However, in addition to this, (3.2.28) implies that 

ji-g±i(t) must become unbounded so that requirement 3 would be violated. Therefore 

it is required that b+(i'd±1,t) ^ 0. 

With 

f (A,<) = f Pa.(\,t) - (A - A~1)c_(A,t), (4.3.11) 

it is clear that 

?(iti,t) = 0 & f ( i t ? - 1 , 0 = 0 , 

so it is only necessary to consider the two possibilities f( i i?, i) = 0 or t(i'd,t) ^ 0. 

Since 

it follows that if ((p(-,t),w(-,t) is such that r(ii9,i) = 0 then £ must be chosen to 

ensure + + £ + £ _ 1 = 0 also. It is sufficient to make the definition £ = f 

Alternatively, if (<p(-,t),w(-,t) is such that t(i'd,t) ^ 0 then £ must be chosen so that 

d + i?"1 + £ + £ _ 1 ^ 0 also and £ = f i? is required. 

All this reasoning ensures that the Jost solutions T±(0,t, A) meet the requirements 1-3 

stated above. The scattering data associated with (<p(-,t),zu(-,t)) is then found using 

these Jost solutions in the standard manner. By construction this data has all the 

required properties. 

The above formulation constitutes a map dst^-oo.o] such that 

dstlf-oco] : -A/p,o —>• (J ^o,-rf c F-di 

if (<p(-,t),w(-,t)) is such that T(id,t) = 0. Alternatively, 

dst^oo^] : Ap, 0 -> [J foq/ C 
7,rGN 
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if (<p(-,t),w{;t)) is such that f(it?,<) ^ 0. 

\P\ > 2 

There now exists an added complication. In addition to determining the form that a 

parameter must take it is also necessary to distinguish between two possible definitions 

of the Jost solution T + (0 , i , •). 

For ( e R \ { f l , l } let 

and for A 6 K + \ {1} let 

d_ef »((A + A - > t + (A" 1 - A)q a) 
J 3 { ' (A + A-1)((A + A - 1 ) 2 + ( A - A " 1 ) 2 ) - 1 J 

The Jost solution T+(0,t, •) is defined by either 
T + C O . ^ - A - ^ ^ i r ^ A - ^ r . ^ t . A ^ - ^ A - 1 ) , (4.3.15) 

or 

T+(0, t, - A " 1 ) = j a - 1 (A- 1 ) r_(0 1 f, AJia-^A"1), (4.3.16) 

depending on the particular choice of ((p(-,t),w(-,t)). This is explained as follows. 

With two possible definitions of T+(0, •) it must be deduced which one is appropriate 

(and, in addition, the form of the parameter f or A), such that the previously specified 

criteria 1-3 are met. Requirement 1 simply amounts to the parameter £ (resp. A) being 

such that (f + r 1 ) 2 = P2 (resp. (A + A " 1 ) 2 = P2). 

Suppose •d solves t? + $~l = \P\ and that one of the three possibilities 

f ( i i M ) = 0, f ( i i 9 _ 1 , 0 = 0 (4.3.17) 

f(ii?,<) = 0, f(i^-\t)^0 (4.3.18) 

f ( i t f , t ) = 0, f ^ i T 1 , * ) # 0, (4.3.19) 

is satisfied. Since |P| ^ 2 these relations distinguish i? from Once again defining 
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it follows that the definition (4.3.15) leads to 

M - A - ' . ' ) ^ . , . ^ . ^ , , (4-3.21) 

whereas the alternative definition (4.3.16) yields 

^ - A " - ^ A + A - F + - A - ( 4 - 3 - 2 2 ) 

Using exactly the same reasoning as with the case of \P\ < 2 it follows that for the 

second and third of the criteria to hold, (4.3.17) implies that (4.3.15) must be chosen 

and that f ==f —d. However if (4.3.19) is satisfied then (4.3.15) is the correct defi­

nition once more but this time with f = f d. Finally, if (</?(•, t), t)) is such that 

(4.3.18) holds then it is necessary to choose (4.3.16) as the definition of the Jost solu­

tion T +(0,t,-) with A = f Thus the appropriate Jost solution can be deduced and 

the pair T±(0,t,-) are such that requirements 1-3 are satisfied. The scattering data 

associated with ((p(-,t),m(-,t)) follows in the standard manner and, by construction, 

it is of the required form. 

The above formulation constitutes a map dst|(_oo,o] such that 

dst|(_ooi0] : Afp,o —• IJ Fo,r-d C 
9,r€2N 

if (v>(-,«),t37(-,i)) is such that f(ii?,<), f( i t? - 1 ,*) = 0. Alternatively, if (<p(-,t),w(;t)) 

is such that f(ii?,<), f^ ' i ? - 1 , / ) ± 0 then 

dst^.oo^] : Ap,o —> U fo} C 
g,r62N 

Finally, if (ip(-,t),vu(-,t)) is such that r(ii?,f) = 0 whereas r(ii?,t) ^ 0 then 

dst|(_ooi0] : ATpfl -» [J ^ i j 1 , r C J^. 
g,rG2N 

It remains to examine the situation when \P\ = 2. This is done as follows. 
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1̂ 1 = 2 

When considering (ip(-,t),w(-,t)) G Ap,o such that |JP| = 2 there is a further level 

of complexity in the determination of the form of the map dst^-o^o]. Defining the 

matrices 

= (A + A - 1 ) 3 ' (4.3.23) 

*(A) = ixTx^f ' (4-3-24) 

i«(A) = ( A _!7 - i ) ' » t 4 - 3 - 2 5 ) 

it must be deduced which of the three definitions 

T+iO^-X-')^ ^ ( X - ^ T ^ X ^ i X - 1 ) , (4.3.26) 

^ ( C ^ - A - ^ ^ i r ^ A - ^ r . ^ ^ A ^ - ^ A - 1 ) , (4.3.27) 

^ ( C ^ - A - ^ ^ j ' r ^ A - ^ r ^ O ^ ^ ^ - ^ A - 1 ) , , (4.3.28) 

is appropriate for a construction of the necessary scattering data. That is which of 

these three possible definitions is such that requirements 2 and 3 are satisfied. Defining 

f (A , f ) d= Pa-(\,t) - (A - A- 1)c_(A,t), 

f(A,<) d= f ^ ~ ( V ) - (A - X - ^ i K t ) , (4.3.29) 

the result depends on which of 

f ( M ) ^ 0 , (4.3.30) 

f ( i , * ) = 0, f ( i , 0 = 0, (4.3.31) 

f( t ,*) = 0, f ( M ) ^ 0 „ (4.3.32) 

is satisfied for a given ((p(-,t),w(-,t)). 

If (</?(•, t),w(-,t)) is such that (4.3.30) occurs then (4.3.26) must be chosen as the defini­

tion of the Jost solution T+(0,t, •) so that requirements 1-3 are satisfied. Alternatively, 

if (4.3.31) occurs then (4.3.27) must be chosen as the appropriate definition. Finally, 

if (tp(-,t),w(-,t)) is such that (4.3.32) holds then (4.3.28) must be selected as the defi­

nition of the Jost solution at x = 0. 
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Following on from these ideas the scattering data for ((p(-,t),zu(-,t)) can be calculated 

as detailed in chapter 3. By construction it has all the required properties so that the 

map dstlf-oo.o] takes the form 

dst|(-oo,o] : JVpto | J ^o^x C T\, 

if (ip(-,t),w(-,t)) is such that t(i,t) / 0. Alternatively, if (ip(-,t),w(-,t)) is such that 

f(M)> t{i,t) = 0 then 

dstlj.oo^] : Afp,o -> [ J ^o,i C T\. 
9,re2N 

Finally, {<p{;t),m(;t)) is such that T{i,t) = 0, t(i,t) ^ 0 then 

d s t l ^ : A f P f i ^ U ^ C f i . 

This completes the formulation of the map d s t ^ . ^ ] for all possible ((p(-,t),w(-,t)) € 

Np,o with P £ I . From the analysis presented in chapter 3 and section 4.2 it is easily 

deduced that the maps dstl^^o] and ist|(_oo,o] a r e such that 

ist^-oo.o] = (dstl^oo.oj) . 

4.3.3 Time evolving the scattering data 

With (tp(-,t),w(-,t)) € Afpfi this subsection will study the time evolution of the scat­

tering data 

(a(-,t),b(-,t) : 7 i ( < ) > - - - > 7 n 1 ( t ) + 2 n 2 ( t ) ( * ) ) ^ d s t | ( _ 0 0 i o ] ( ¥ > ( - , < ) i G 7 ( , > * ) ) ±̂«»(P)> F*(Ph 

(4.3.33) 

when (9, tx;) is forced to evolve according to an initial-boundary value problem of Type 

Bp> 0. For the sake of brevity only the situation with |P| < 2 (=>• ^.^(P)) be 

considered, the results for \P\ > 2 [J--d(p]) following trivially. 

For P G ( 2 , - 2 ) let (tp,m) be the solution to a problem of Type Bp,0- The equation 

governing the time evolution of the Jost solution T_(0,£,A) constructed from (ip,w), 
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follows from (3.6.2)-(3.6.11). That is 

dT 1 

- ^ ( 0 , * , A ) - y(0,i,A)r_(0,t,A) - - ( A + A ^ T ^ O ^ A ) ^ VA € R \ { 0 } . (4.3.34) 

The Jost solution T+(0,t,X) is defined by (4.3.7) with £ = ±t?(P) already determined. 

Using this definition and (4.3.34) it is straightforward to deduce that T+(Q,t, A) evolves 

in time according to 

BT 1 
-Qf(0,t,X) = V(0,t,X)T+{0,t,X) - - ( A + X-v)T+(0,t,X)a3 VA G R \ {0}. (4.3.35) 

Note that use has been made of (<p(-,t),zu(-,t)) G A/p,o in deriving this equation and 

that by construction the Jost solutions T±(0,t,X) evolve exactly as they did before 

when considering problems of Type A/v-

The differential equations for the time evolution of T±(0,t, A) are consistent with the ap­

propriate analytic continuations and imply that the transition coefficients a(-,t),b(-,t) 

appearing in (4.3.33) evolve in time according to 

~ ( X , t ) = 0 I m A > 0 

At 

^ ( A , * ) = ^(A + A-1)6(A,<) A G R , 

so that the transition coefficients at any time T G R can be deduced from those at time 

t according to, 

a(X,T) = a(X,t) ImA > 0, 

6(A, T) = e ' ^ x + ^ { t - T ) b ( X , t) A G R . 

From these equations it follows that ni(T), (ri2(T)), the number of purely imaginary 

zeroes of the coefficient a(-,T), (the number of zeroes of a(-,T) with positive real and 

imaginary part), is such that 

W-1.2CO = "1,2(0> 

and the position of these zeroes is given by 

Xj(T) d= Xj(t), ; = l , . . . , n ( r ) , 

with n(T) = m(T) + 2n2(T). 
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The normalisation coefficients at the zeroes Xj(t) are defined by 

T[1\0,t,\j(t)) = i j ( t ) T l 2 \ 0 , t , \ j m J = 1, ••-,»(*), 

and (4.3.34), (4.3.35) imply that these coefficients must evolve in time according to 

^ ( 0 = + A71(*))7i(0, J =
 ! ? • • • ) n(<). 

Therefore, at any time T G R, the normalization coefficients 7 i (T ) , . . . , -)n{r){T) are 

given by 

7i ( r ) = e V > u / 7.;V), J = l , . . . , n ( T ) . 

To summarise, so far in this subsection it has been deduced that if the pair (<p, w) solves 

a problem of Type Bp> 0 and is such that T), m(-, T)) G Mpto at any time T then 

(</?(•, i ) , t)) G A/p,o for all times t G R. In addition it can be seen that the ordinary 

differential equations governing the time evolution of the scattering data (4.3.33) are 

identical to those appearing in subsection 3.6.2 when considering problems of Type AJV 

and which were used in subsection 3.6.3 to define the time evolution map rt. 

Therefore, using these observations, it is clear that with 

(<p(-,0),w(-,Q)) = {(ppfl^pfl) G A/p,0, 

so that 

(a(-,0),6(-,0) :7i(0) , . . . ,7n,(o)+2n 2 (o)(0)) = dst| ( _ O O ) 0 ](^P, 0 ,wp,o), (4.3.36) 

then the bijective time evolution map r t gives the evolution of initial scattering data 

appropriate for a solution to some of the problems of Type Bp ) 0. Necessarily rt is such 

that 

rt : P'±$(P) > ^±-&(p)- (4.3.37) 

This completes the development of a time evolution map for the initial scattering data 

(4.3.36) when P G (2, —2). Identical reasoning for problems with \P\ > 2 leads to Tt 

once more but in place of (4.3.37) there is the bijection 

Tt • f$(P) ^—^ ^(P). (4.3.38) 
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4.3.4 Piecing together the inverse scattering method 

Piecing together subsections 4.3.1-4.3.3 leads to the inverse scattering method for solv­

ing a subset of the problems in the set Bp^. 

Definition 4.11 For P £ R let Bpo denote the subset of problems of Type Bpo which 

have an initial condition in the subspace A/po C A/po-

It has been proved that when the initial data (y>p,Oj &p,o) is an element of Afpfl then 

the image of the composite map ist^oo o] o rt o dst^.^] is such that 

(<?(•, t),w(-,t)) = (istlf-oo.o] O Tt O dst^oo^X^po^po), 

is also an element of Mpp and the resulting functions tp, w : (x, t) n-» R solve the initial-

boundary value problem of Type B p 0 with initial data (</?(•, 0), w(-, 0)) = (yp,o, £^p,o)-

The time evolution map 

T; : AfP,0 -> tfPfl, 

giving the solution to the set of problems Bpo as 

(<p(-,t),w(-,t)) = T't(<pPfi,wPi0), 

can be expressed by the commutative diagram in figure 4.1. 

Recall from definition 4.10 that A/po is only defined implicitly in terms of the map 

ist^-oo^] applied to T-g(p) or F^py Therefore, the inverse scattering method developed 

in this chapter cannot be used to solve the problem in the set B p 0 defined by initial 

data (yp,o,ccpo) for any (fp,o, tcpo) £ -A/p.o given beforehand. This is identical to the 

situation for problems of Type AJV discussed in chapter 3. But, if it is only required 

that the initial configuration be deduced once a solution is known then solutions to 

problems in the set Bpo can be solved by applying the composite map ist|(_oo)0] o rt to 

appropriate elements of the space of initial scattering data. This idea will be adopted in 

chapter 6 where sets of soliton scattering data will be chosen at t — 0 and the resulting 

solutions found by applying ist^-o^o] o rt to these. 
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A/p,o 
dstl (-00,0] 

•7±i?(P)> ?HP) 

T : 

ist^-oo^] = (dstl^^o]) 
•?±tf(P)' FHP) 

T't = f time evolution map denned by a nonlinear problem of Type Bp,0 

rt = bijective time evolution map governed by a set of linear o.d.e's 

Figure 4.1: The inverse scattering method for solving problems in B p 0 

This completes the development of the inverse scattering method for solving the initial-

boundary value problems in the set Bp,o-
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Chapter 5 

The inverse scattering method for 

solving problems of Type Bpg_^ 0 
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5.1 Introduction 

Throughout this chapter suppose that Q £ R \ {0} and recall from chapter 1 that 

an initial-boundary value problem of Type B ^ Q is the problem of determining the 

functions w : (x,t) H-> R with (x,i) £ (—oo,0] x R which satisfy: 

• the sine-Gordon system 

G 7 , 

^--sin<p V(x,<) £ (-oo,0] x R. (5.1.1) 
ax 2 

• the boundary conditions 

{<p{;t),w(;t))eJVPiQ ViGR. (5.1.2) 

• the 'initial' conditions 

(¥>(•,OW-,0)) = (¥>P,Q,^P,Q) e MP,Q. (5.1.3) 

Following on from chapter 4 this chapter develops the inverse scattering method for 

solving a subset of the problems of this Type - the subset being defined by a reduced 

phase space A/"P,Q C A/p g. The analysis follows very closely that formulated for solving 

problems in the set Bp,o but is more complicated. As a result, only the most important 

changes to the results of chapter 4 will be detailed here. It is hoped that with these 

pointers the reader can fill in the gaps appropriately. 

dip 
~dt 
dm 
~~dl 

5.2 Certain solutions to problems of Type A^v also 

solve problems in B ^ Q 

For some N £ Z suppose (</?, w) is the solution to the initial-boundary value problem 

of Type A/v defined by the initial conditions 

(v?(-,0),tz7(-,0)) = (ifNlzu0) G MN-
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According to the results of chapter 3 it follows that at any time t G R the pair 

(<£>(•, t), w(-, t j ) is an element of A4jy and so 

c l s t ^ t ) , = («(•,*)>*(•><) = 7i«), . . . ,7»,(0+a»2w(*)) G X > ^ ( t ) ( 5 . 2 . 1 ) 

for some n^{t) G 2N + N mod 2, n 2 (i) G N, n(t) = ni(f) + 2n 2(i) and a(-,t) determined 

by b(-,t) and a set of simple zeroes 

by (3.2.36). 

In addition let <£, cib : R 2 —> R be defined by 

(<p(x,t),w(x,t)) = ((p(-x,t),w{-x,t)), V< G R, 

so that (<p,m) also satisfy the sine Gordon system (1.2.2). 

5.2.1 Constraining solutions by demanding a gauge relation 

In place of the gauge constraint (4.2.6), (4.2.7), (4.2.8), constrain (<p,w) by demanding 

that there exist iV(A), N(X) such that 

xP{x:t,X)N{X)N-1(X)tp-1(x,t,X) = L{x,t,X) Vx,t G R, A G C \ {0}, (5.2.2) 

with 

L(x, t, A) = f ((A2 - A - 2 ) cos <) + a 2(x, *)) 11 

-B ((A2 + A - 2 ) sin ai(x, i) + a3(x, t f j cr3 

+t ((A - X-'WxJ) + (A + A" 1 ) / ! ^ ,* ) ) <ri 

+i ((A + A - 1 ) ^ , t) + (A - A- x)/ 2(a;, tj) <r2, (5.2.3) 

for some matrix coefficients a,-, of,, f j , i = 1 , . . . , 3, j = 1,2 such that Vf G R 

^ ( 0 , 0 ^ 0 . (5.2.4) 

With 

Pd^d2(0,t), Q = <*i(0,*)^0, (5.2.5) 
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equations (4.2.10) imply the constraint 

x=0 

+ i 3 s i n | ( 0 , i ) - Q c o s | ( 0 , i ) = 0 , 

dm 
dx 

x,t) 
x=0 

+ ^ts7(0,<)cos^(0,<) + ^ G 7 ( 0 , * ) s i n ^ ( 0 , f ) = 0 V i G R, (5.2.6) 

so that , f ix ing f £ R and restricting to the domain to x G (—oo,0], 

(^(•,0,^(-,i))l (-oo,o] € - V p , q , (5.2.7) 

w i t h P = d2(0,t), Q = di(0,<) 7̂  0. 

Therefore, i f a solution to an initial-boundary value problem of Type AN is such that 

constraint (5.2.2), (5.2.3), (5.2.4) can be made to hold by an appropriate choice of 

N(\), N(\) i t w i l l also solve a problem of Type B ^ Q for some P, Q G R. 

5.2.2 The constraint picks out subspaces of scattering data 

For the rest of this section f ix t G R. According to (4.2.16), (4.2.17) the gauge constraint 

translates into the relation 

T + ( x , t , - \ - 1 ) = - a 3 r 1 ( ^ , ^ A - 1 ) r _ ( - a ; , i , A ) r 1 U , A - 1 ) , (5.2.8) 

w i t h A G R \ { 0 } , j(x, t, A) d = a2L{x, t, A) and 

A " 1 ) = { ^ e x p ( | ( A - A - 1 ) ^ ) (1 - ivM-iv*) 

Once again i t is necessary to consider the cases of N even/odd separately. 

N odd 

W i t h N G 2Z + 1, 

. (5.2.9) 

dst(v>(-,*),G7(-,<)) = (a(-,t),b(-,t) : 7 i ( t ) , - • •>7m(«)+2n2(t)(*)) e A ,"1 (*),"2(«) (5.2.10) 

for some m ( f ) G 2 N + 1, n 2 ( t ) G N . 
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From a detailed analysis of (4.2.9) i t is possible to deduce that the coefficients of the 

matr ix L(x,t,\) must have the asymptotics 

a i ( x , t ) - a3(x,t) - ±iN+1((u + u - 1 ) ( X + X'1) - 2) 

D L { X ^ ) ^ L N + l e { { u j + u ; - l ) _ { x + x - l ) ) j 

a2(x,t), d2(x,t), f h 2 { x , t ) -+ 0, x^±oo V< G R, (5.2.11) 

w i t h 

e = ± l , cue (0,1), X € C : | x | = l , I m / Y ^ 0 . 

From these asj'mptotics, det L(0, t, A) = det L(oo, t, A) implies that 

Q 2 = ( I m ( x ) ) V - 0 2 

P 2 = ( R e ( X ) ) 2 ( a ; + c t ; - 1 ) 2 , (5.2.12) 

the matrices j ( 0 , i , A - 1 ) , j ( i , A - 1 ) taking the fo rm 

j ( 0 , *, A " 1 ) = ? P ( A + A " 1 ) ! - (A 2 - A " > 2 - Q(X - A - > 3 , 

0 - p - ^ - A - 1 ) \ 
- P - \ \ - 1 ) o ; ' 

w i th 

p(X) d ^ f i((A - A " 1 ) - ze(u; + o T 1 ) ) ^ - A " 1 ) + 2 t c R e ( X ) ) , 

and clearly both j ( 0 , i , A 1 ) and J ( i , A *) are independent of t. 

In place of (4.2.24) there exist more complicated relations such as 

= (P(A + A " 1 ) - iQ{\ - A - 1 ) ) a _ ( A , Q - (A 2 - A " 2 ) C _ ( A , t ) 
+ [ ' j (A - A - 1 - it(uj + cu _ 1 ))(A - A - 1 + 2ieRe ( x ) ) 

(A 2 - A - 2 ) a , ( A , t ) + (P(A + A - 1 ) + zQ(A - \-*))c-{\,t) 
+ [ ' j (A - A - 1 - ie(io + cu- 1))(A - A - 1 + 2z'eRe(x)) 

(5.2.13) 

to be satisfied VA G E \ { 0 } . Once again these are compatible w i t h the analytic 

continuation of a_(-, t), c_(-, t), b+(-, t), d+(-, t) into the upper half of the complex plane 

and so can be understood to hold for all A in this domain. 

Proceeding as in chapter 4 i t is found that the constraint (5.2.2), (5.2.3), (5.2.4) forces 

the scattering data (5.2.10) to be an element of a subspace of ^p™ 1^'™ 2^. This subspace 

is the analogue of that introduced in definition 4.1 and is given by: 
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Defini t ion 5.1 For arbitrary t £ R fix ni(t) £ 2N + 1, n 2 ( i ) G N and parameters 

e,p = ±l, u£ (0,1), x € C : | x l = 1, l m \ ^ 0 . 

Lei i/ie subspace J\*}^™2^,p C P j 1 ' ' ' ' " 2 ' 1 ' denote sets of scattering data 

(a(-,<), = 7 i ( 0 , . - - 7 ^ ( 0 + ^ ( 0 ( 0 ) € 

swc/i i/iaf 

• in their domains of analyticity the transition coefficients a(-,t), b(-,t) satisfy 

b(X,t) = -

a (A, i ) = - a ( - \ ~ \ t ) 

( ( A - A ' 1 ) - i ( w + ))((A - A " 1 ) + i ( x + x - 1 ) ) 
0 ( A " \ * ) , 

.((A - A-*) + t(w + w - i ) ) ( ( A - A - i ) - i ( x + X " 1 ) ) . 

so a(i,t) = 0 and /or all the \ j ( t ) such that a(\j(t),t) = 0 z7 follows that 

a ( - A 7 1 ( t ) , i ) = 0 a/so. 

the normalisation coefficients at these zeroes are such that 

7 a j ( * ) ( < ) 7 _ a ; 1 ( O ( < ) = 

•((A,-(0 - A J 1 ^ ) ) - i (u + ^ - 1 ) ) ( ( A , ( i ) - A " 1 ^ ) ) + i ( X + X - 1 ) ) 
l ( (A,-(0 - X j \ t ) ) + i ( w + u - i J X M t ) - A " 1 ^ ) ) - i ( x + X " 1 ) ) ] ' 

and 

sign(7,-(*)) = p. 

W i t h this result i t is t ime to move on to the case of TV even. 

/V even 

W i t h N £ 2Z, 

d s t ( < ^ < ) , i u ( ^ ) = ( « ^ ^ (5-2.14) 

for some n^t) £ 2N, n2(t) £ N . 

From (4.2.9) and the equality 

det L(oo, t, A) = det L(—oo, A) = det L(0, t, A), 
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there follows the asymptotics 

a i ( x , t ) - T ^ f , a2(x,t) - ±iNe(ri-rl-1)(t + C ' ) 

d2(x,t) - z N ( £ + T 1 ) , f2(x,t) - i ^ e f o " 1 - 7,) 

a3(x,t), d1{x,t), / ^ f ) 0 (5.2.15) 

as .T —> ± o o V* € R w i t h 

e = ± l , 7 6 ( 0 , 1 ) £ € C : |£| = 1, I m ^ 0, 

and the constraints 

P 3 = (Re(0) 2 ( '? + ' / - 1 ) 2 

g ^ H O ) 2 ^ - ? - 1 ) 2 . (5.2.16) 

This t ime the matrices appearing in (5.2.8) take the f o r m 

j(0,t, A " 1 ) = iP (A + A " 1 ) ! - (A 2 - A " > 2 - Q(A - A - 1 ) < r 3 , 

i ( M _ 1 ) = , - ^ ( A - 1 ) 0 

w i t h 

q(X) i ((A + A - 1 ) - iefo - r ? - 1 ) ) ( ( A - A - 1 ) + 2iRe ( 0 ) , 

and once again both j(0,t, A - 1 ) and A - 1 ) are independent of t. 

In place of (4.2.24) there exist a set of relations similar to those for N odd. I n particular 

M - A " \ * ) = 

d + ( - \ - \ t ) 

(P(A + A " 1 ) - zQ(A - A - 1 ) ) a _ ( A , ^ ) - (A 2 - A ' 2 ) C - ( A , * ) 
(A + A - 1 - i t ( r / _ 1 - ?/))(A - A - 1 + 2 i R e ( £ ) ) 

(A 2 - A - 2 ) a _ ( A , i ) + (P(A + A - 1 ) + iQ(\ - A - 1 ) ) c _ ( A , i ) 
(A + A - 1 - ie(V-1 - j])){X - A - 1 + 2iRe (£)) 

(5.2.17) 

to be satisfied VA £ R \ {0} . These are compatible w i t h the analytic continuation of 

a_(-, f ) , c_(-, t), &+(•, t), ef+(-, t) into the upper half of the complex plane and so can be 

understood to hold for all A in this domain. 
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Once again, proceeding as i n chapter 4, i t is found that the constraint (5.2.2), (5.2.3), 

(5.2.4) forces the scattering data (5.2.14) to be an element of a subspace of x^'W'™ 2 '*'. 

This is the analogue of those subspaces introduced in definitions 4.2 and 4.3. I t is given 

by: 

Defini t ion 5.2 For arbitrary t G R fix rii(t) G 2N, n2(t) G N and parameters 

e,g = ±l, rie (0,1), UC : |£| = 1, I m ^ 0. 

Let the subspace J-q1}^'^2^'8 C X>q1^'T12^ denote sets of scattering data 

(«(•,*), b(-,t) : 7i(<),---7n 1(*)+» a(t)(<)) € I ) 0

n i ( t W t ) , 

such that 

• in their domains of analyticity the transition coefficients a(-,t), b(-,t) satisfy 

a(X,t) 

b(X,t) = 

A + A - 1 - - 7 ] - 1 ) 

a { - \ - \ t ) 

b(\-\t), 
L A - A - i - z ( e + ^ ) J 

so a(ir)~£,t) = a(i,t) = 0 and for all the \ j ( t ) ^ ir]~e such that a(\j(t),t)) = 0 it 

follows that a(—Aj1(i),f) = 0 a/so. 

• the normalisation coefficients at these zeroes are such that: 

' A j ( * ) - A 7 i ( o + i ( i + r 1 r 
7A>(t)(<)7-A- 1(t)(*) = 

L A j ( t ) - A 7 1 ( 0 - i « + ^ - 1 ) J 

/o r Xj(t) ^ in e and 

V . ( < ) € R \ { 0 } , sign(7,-(*)) = 

This subsection is now complete. I t has been shown that some of the problems of Type 

A j v have solutions which also solve a problem in the set B ^ q ^ o and that the scattering 

data of these solutions at a fixed t ime t must take a particular fo rm. 



5.2.3 Subspaces of scattering data imply the constraint 

Just as in subsection 4.2.5 i t can be shown (using assertion 1"' of section 3.4) that 

given scattering data in one of the two subspaces J r i ^ ' ^ 2 ^ ' p , J ^ 1 ^ j , ^ 2 ^ , e then there 

does exist a relation such as (5.2.8), (5.2.3), (5.2.4) for the Jost solutions constructed 

f r o m this data and so relation (5.2.7) holds. 

5.3 The inverse scattering method for solving prob­

lems of Type Bp,q 

In chapter 3 i t was seen how the inverse scattering method could only be applied to the 

problems of Type Ajv which are defined by in i t ia l data in the subspace MN c MN-

When developing this method in order to solve problems in the set B p j 0 , this drawback 

prompted the formulat ion of the inverse scattering transform ist |(_oo,o] a n d the subspace 

Np,o C Np,o before introducing the direct scattering transform dst^oo^] (see chapter 

4). This reasoning repeats itself here when developing the method to solve problems of 

Type Bp i Q ^o-

5.3.1 The inverse scattering transform for a subset of prob­

lems in Bpg 

In chapter 3 the inverse scattering transform was formulated as the injective map 

i s t ( U ^ o d 2 ) = [ j M 2 p + g , 
V e N / p e s 

for arbitrary q € N . In chapter 4 the notation ist^-o^o] was introduced to denote this 

map w i t h the parameter x restricted to the semi-line (—oo, 0]. Following on f r o m these 

results i t is now possible to develop some different restrictions on ist^-o^o] so that i t 

can be used as the t h i r d stage in a solution to some of the problems of Type Bp,Q. 

Lemma 4.5 is replaced by: 
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L e m m a 5.3 Fix i G R, n 1 ( i ) G 2N + 1, n 2 ( 0 G N and parameters 

e,p = ±l, w e (0,1), x € C : 1x1 = 1, I m x / 0 . 

Let 

(a(;t),b(;t) : 7 l W , - " , 7 n 1 ( i ) + 2 r l 2 ( i ) W ) € 

then 

(t),n2(t),p 
X ' 

(</>(•, 0;C T(->0)l(-oo,o] = f istl^^,,] (a(-,t),b(;t) : 7 i ( ' ) . - - - » 7 ^ ( 0 + 2 ^ ( 0 ( 0 ) > 

is an element of Afp,Q with 

P = inW+1Re{X)(uJ + uJ-1) 

Q = ep\(lm(X))(u>-<*>-% 

and = « i ( 0 + 2n 2 (0-

The proof of this lemma follows by exactly the same methods as those used in order to 

prove lemma 4.5. Identical reasoning wi th J^*}^2^'6 replacing F^}^£2^'P leads to: 

L e m m a 5.4 Fix t G R, n j ( 0 G 2N, n 2 ( 0 £ N and parameters 

e,g = ±l, 17 € ( 0 , 1 ) , £<EC : |£| = 1, I m ^ 0. 

(a( . ,0,&(-.0 = 7 i ( 0 , - • . , 7 n l ( 0 + 2 n 2 ( 0 ( 0 ) € ^ 2 f ( < ) ' e , 

(v?(-,0, w(-,0)|(-oo,o] = f ist l^^Q] (a(-,t),b(-,t) : 7 l (0>--->7n , (0+2n a (0(0) > 

is an element of NP,Q with 

P = tn^Re(0(v + V~r) 

Q=-ee\hn(0(v-V~1)l 

and n(t) — n-i(t) + 2n 2 (0 -
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The results of lemmas 5.3 and 5.4 can be collected together in proposition 5.6. First i t 

is necessary to make the following (rather horrible) definition. 

Defini t ion 5.5 With 

e,p = ±l, to 6 (0 ,1) , x € C : |x| = l , I m x ^ O , 

define the subset 

by 

p,q€N 

f t - P 4S.f I I (-r-2p+l,9,p . . s p 2 p + l , q , p . . s p 2 p + l , q , - p . . ^ 2 p + l , q , - p . . ^ 2 p + l , q , - p . . ^ - 2 p + l , q - p 

p , q m 

, .-£-2p+l,ij,p , . ^-2p+l,9,p . . - r - 2 p , q , p . . s p 2 p , q , p , , ^ 2 p } q - p 
u - r l , - e , w , x U l , - e ,u ; , -x U ^0,e,w,x U ^0,e,w,-x U ^0 , - e ,w ,x 

, , s p 2 p , q , - p I i r r ~ 2 p , q - p , , s p 2 p , q , - p . . s p 2 p , q , p . , - r - 2 p , q , p \ / c o i \ 
u * r 0 , - e , w , - x U - r0,e,w,x U • r 0 ,e ,w, -x U 0,-e,u;,x U O - c . w - x J \ O . D . ± ; 

In chapter 3 i t was seen that for arbitrary n i ( i ) G N , 

i s t : U ^n!(l)mod2 — ^ U • ^ 2 , + n 1 ( t ) -
r6N 9€Z 

Therefore: 

Propos i t ion 5.6 Choosing parameters 

e,p = ± 1 , u, G (0,1), x e C : I x l = 1, I m x + 0, 

ist|(_oo,o] : Q%X U M-A,B U ^ . - B U j V - ^ - f l , 

wh ere 

A = 

5 = 

R e(x ) ( u ; + a;- 1 ) 

I m(x ) ( w - u T 1 ) (5.3.2) 

The proof of this proposition is easily pieced together using the results of chapter 3 and 

lemmas 5.3 and 5.4. Next introduce the subspace J\fpQ^0, 

104 



Defini t ion 5.7 With 

e,p = ±l, o;G (0,1), x e C : 1x1 = 1, I m x / 0 , 

let 

A = Re(x)(o; + a ) - 1 ) B = Im(x)(w - w ) 

and define the four subspaces Af±A,±B, •N"±A,^B via the image of the map ist^-o^o]-

Namely, 

AfA,B U A f - A t B U AfA,-B U Af-A,-B = i s t | ( _ 0 0 , o ] ( ^ i

p

x ) . 

This completes the development of a restriction of the transform ist^-o^o]. From 

the discussions of earlier chapters i t is evident how this w i l l f o r m part of the inverse 

scattering method for solving a subset of the problems in Bp,Q-£o; the subset being 

defined by the reduced phase space Jvp,Q- Notice that the analysis appearing in this 

chapter mirrors that developed ( in more detail) in chapter 4 for the problems w i t h 

Q = 0. This w i l l continue to be the case throughout the rest of this chapter. 

In the next subsection attention is turned to a formulat ion of the direct scattering 

transform. 

5.3.2 The direct scattering transform for a subset of prob­

lems in Bpg 

I n definit ion 5.5 the subset 

^u;',x C [J £"pmod2' 
p,?eN 

was introduced. According to proposition 5.6 and definition 5.7 the restriction of the 

inverse scattering transform ist^-o^o] to this subset yields an element of Jvp,Q w i t h P 

and Q given in terms of w, x> P-

In this subsection the direct scattering transform d s t ^ - ^ ] is developed so that 

dst^oo .o] :ttp,Q — > Q % X 
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w i t h the parameters in the image fixed in terms of the given P, Q G R. When consid­

ering the set of problems of Type B p ^ i t was found that dst^-o^o] must be formulated 

separately for the cases |P | < 2, \P\ > 2 and |P | = 2. However, when Q ^ 0 no such 

complications arise and i t is possible to develop d s t ^ ^ ] in a single stage. 

A t t ime * G R let (y>(-, t ) , w{; t) € AP,Q for some P G R, Q € R \ { 0 } . For x < 0, A G 

R \ { 0 } use this data to construct the Jost solution T-(x,t,\) as outlined in chapter 3 

and define the matr ix j i ( A ) by 

j i ( A ) d ^ f _ Z ( ( A 2 - A _ 2 ) (7 i + P(A + A - > 3 - zQ(A - A " 1 ) ! ) . (5.3.3) 

For 

let 

e = ± l , w 6 ( 0 , 1 ) , x € C : |x | = l , I m x ^ O , 

w i t h 

p 2 (A) d ^ i((A - A " 1 ) - it(u + LO-r))((X - A " 1 ) + 2«eRe(x)) , 

p 3 (A) = f i((A + A " 1 ) - Ze(co - u ; - 1 ) ) ( (A - A - 1 ) + 2 iRe(x)) , (5.3.5) 

and, depending on the choice of (<p(-,t),w(-,t), define the Jost solution T+(0, i , - ) by 

either 

r + ^ ^ - A - ^ ^ i f ^ A - ^ r - ^ t . A ^ - ^ A - 1 ) , (5.3.6) 

or 

T + i O ^ - X - ^ ^ j ^ X - ^ T . i O ^ X ^ i X - 1 ) . (5.3.7) 

To determine which definition is appropriate, and the fo rm the parameters e,u>, x must 

take, i t is necessary to demand: 

1. detT+(0,* ,A) = 1 VA G R \ { 0 } . 

2. the columns of T + ( 0 , < , •) have the appropriate analytic properties. 

3. the resulting T±(0,t, •) lead to scattering data i n ^ " J ^ j m o d ^ w ^ h rii(t), n2(t) G N . 
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Denning 

and 

wi th 

r ( A , f ) = f (P(A + A - 1 ) - iQ(X - A" 1 ) )a_(A,<) - (A 2 - A " 2 ) c _ ( A , t ) , 

f ( A , Z ) = (A 2 - A- 2 )«_(A,*) + (P(A + A " 1 ) + iQ(\ - A - 1 ) ) c _ ( A , i ) , 

D = ^ ( P 2 + Q2 + [{Q2 - P2 + 4 ) 2 + 4 P 2 Q 2 ] 1 / 2 ) , 

i t follows that 

r ( t w , / ) = 0 & T{iu>,t) = 0. 

To deduce the appropriate definition for T+(0,t,-) notice that (5.3.6) implies that for 

A e R \ { 0 } , 

, , , _ i ,x d e f . r ( A , o 
6+(-A ,t) = i 

d + ( - \ - \ t ) t { -

P 2 ( - A - ! ) 

r (A , t ) 

whereas (5.3.7) yields 

, , . _ i , def . r ( A , f ) 

p 3 ( - A " 1 ) 

Therefore, w i th 
P 

u + cu 
+ i 

p 3 ( - A " 1 ) ' 

Q 
U) — u 

consider the eight possibilities, 

(5.3.8) 

(5.3.9) 

(0 T(iuj,t) = 0, r(iu;" - \ t ) = o, r(tt?,<) = o, 

(ii) T(iu,t) = 0, T(iu)~ "\f) = 0, 

(Hi) T(iu;,t) = 0, T(iu)~ r(i#,t) = o, 

(iv) T(iu,t) = 0, F(iu>~ r ( « M ) ^ o , 

(v) r ( i w , o # o , T(iu' - 1 , / ) = 0, r(ti?,<) = o, 
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{vi) 

(vii) 

(vii) 

T(iu>,t)^0, 

T(iw,t) ^ 0, 

r ( z w _ 1 , f ) = o, 

r ( i u r \ * ) ^ o , 

T(iuj-\t) + 0, 

i W ) ^ o , 

r ( i # , * ) = o, 

r(£t? , t ) ^ o, 

depending on the particular configuration (ip(-,t),w(-,t)). By demanding the con­

straints 1-3 i t is easy to deduce that i f ((p(-,t),w(-,t)) is such that (i) holds then i t is 

necessary to choose definition (5.3.6) w i th e = 1 and x = The scattering data can 

then be found in the standard manner and, by construction, this data has all the ap­

propriate properties. Imposing criteria 1-3 when (<p(-,t),m(-,t)) is such that (ii) holds 

shows (5.3.6) to be the correct definition once more, but this t ime wi th e = 1, x — 

The f o r m of T + ( 0 , t , •) for all eight scenarios can be summarised as: 

(ii 

(Hi 

(iv 

(v 

(vi 

(vii 

(viii 

W i t h this reasoning 

(«" 

(ii 

(in 

(iv 

(v 

(vi 

(vii 

(viii 

(5.3.6 

(5.3.6 

(5.3.7 

(5.3.7 

(5.3.7 

(5.3.7 

(5.3.6 

(5.3.6 

wi th e = 1, x = — ^5 

wi th e = 1, % = 

wi th e = — 1 , x = 

wi th e = — 1 , x — 

with e = 1, x — ~ 

wi th e = 1, X

 = ^> 

wi th e = — 1 , x = 

wi th e = — 1, x — 

dst 

dst 

dst 

dst 

dst 

dst 

dst 

dst 

|(-co,o] : Np,Q 

I(-00,0] : -Np,Q 

|(-oo,o] : N p , Q 

|(-oo,o] : Np,Q 

|(-oo,o] : NP,Q 

I(-00,0] : Jvp,Q 

I(-00,0] : Np,Q 

|(-co,0] : -A/P,Q 

^ > l , s i g n ( Q ) 

/ - » l . s i g n ( Q ) 
»u/,i9 ? 

,->-l,sigii(Q) 

' 

^ j - l ^ i g n f Q ) 

p \ , - s i g n ( Q ) 

^ , l , - s i g n ( Q ) 

y u , i j ' 
^ - 1 , - s i g n ( Q ) 

yM,-d •> 
^ - l , - s i g n ( Q ) 
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These eight possibilities constitute a transformation f r o m (ip(-,t),w(-,t)) € Afp,Q to 

some element of a set of scattering data. From the analysis presented in chapter 3 and 

the results of section 5.2 i t is easily deduced that the restricted maps dst^-o^o] and 

ist^-o^o] developed in subsections 5.3.2, 5.3.1 respectively are such that 

ist^-oco] = ( d s t ^ o o ^ j ) . 

5.3.3 Time evolving the scattering data 

W i t h (q>(-,t),w(-,t)) € A/p.Q^o this subsection outlines the determination of the t ime 

evolution of 

(5.3.10) 

when {ip,w) evolves according to an initial-boundary value problem of Type B ^ Q ^ O -

For P e R, Q 6 R \ { 0 } let (<p,w) be the solution to a problem of Type B P i Q . The 

equation governing the t ime evolution of the Jost solution T_(0, t, A) constructed f r o m 

8T 1 
- ^ ( 0 , * , A ) = V(0,<,A)T_(0,<,A) - - ( A + A - ^ T . O U A ) ^ VA e R \ { 0 } . (5.3.11) 

W i t h the Jost solution T+(0,t,X) defined by either (5.3.6) or (5.3.7), (e, p, to,x a r e 

already determined in terms of P and Q), i t must evolve in t ime according to 

f)T 1 
^ ± ( 0 , i , A) = V(0 , / , A ) T + ( 0 , t , X) - - ( A + A - \ ) T + ( 0 , f, X)a3 VA € R \ { 0 } . (5.3.12) 

The proceeding analysis is identical to that appearing in subsection 4.3.3 for the prob­

lems w i t h P € (—2,2), Q = 0. Once again i t is deduced that the map rt gives the 

evolution of the in i t i a l scattering data when (ip, w) solves a problem of Type Bp tQ, and 

that this map is a bijection 

~t(P,Q),p{P,Q) 1 - 1 r e(P,Q),p(P,Q) r - Q -IQ\ 
T< • y«,(P,Q),x(P,Q) ^ yu(P,Q),x(P,QV [ 0 . 6 . L6) 

This completes the development of the th i rd and final stage required for an inverse 

scattering solution to some of the initial-boundary value problems in the set B^Q^O-

In the next subsection this method w i l l be pieced together. 
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5.3.4 Piecing together the inverse scattering method 

Subsections 5.3.1, 5.3.2, 5.3.3 lead to the inverse scattering method for solving a subset 

of the problems in the set B p ^ o -

Defini t ion 5.8 For P £ R, Q G R \ { 0 } let B p ^ denote the subset of problems of Type 

Bp ) (5 which have an initial condition in the subspace Afp,Q C NP,Q-

When the in i t ia l data (y>p,Q, ^P,Q) is an element oiMpTQ then the image of the composite 

map ist^-o^o] o rt o d s t ^ ^ ] is such that 

(<p(-,t),m(-,t)) = (istlf.oo.o] OTtO dst|(.oo^o])(<^P,Q, G7P.Q), 

is also an element of JVP,Q and the resulting functions <p, w : (x, £) i—> R solve the in i t ia l -

boundary value problem of Type BP,Q w i th in i t ia l data (</?(•, 0), 0)) = (<ppTQ, mP^Q). 

The t ime evolution map 

T ; : Afp.g ^ A ^ Q , 

giving the solution to the set of problems B ^ Q as 

can be expressed by the commutative diagram in figure 5.1. 

v . . . • i 

Once again, recall that Afp,Q is only defined impl ic i t ly i n terms of the map ist^-o^o] 

applied to ^ (PQJ '^P 'Q)- So, as before, the inverse scattering method developed here 

cannot be used to solve the problem in the set Hp,Q defined by in i t ia l data {<PP,Q, &P,Q) 

for any (<pP,Q, &P,Q) £ NP,Q given beforehand. This is identical to the situation for 

problems in A # , Bp,o discussed in chapters 3 and 4. However, arbitrary solutions to 

problems in the set B ^ Q can be found by applying the composite map ist^-o^o] o rt to 

appropriate elements of the space of in i t i a l scattering data. The particular problem for 

which this is the solution can then be deduced by setting t = 0. This idea is developed 

in the next chapter. 

This completes the development of the inverse scattering method for solving the in i t i a l -

boundary value problems in the set BP,Q^ 0 - In the next chapter the analysis presented 
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P,Q 

T : 

MI P,Q 

dstL_ (-00,0] 

istlf-oo.o] = (ds t^oo^] ) 
- 1 

re(P,Q),p(P,Q) 

V»(P,Q),X(P,Q) 

-,<L{P,Q),P{P,Q) 

'w(P,Q),x(P,Q) 

T't = f t ime evolution map denned by a nonlinear problem of Type BpQ^o 

rt = bijective t ime evolution map governed by a set of linear o.d.e's 

Figure 5.1: T h e inverse scattering method for solving problems in BPQ^O 

in chapters 3-5 w i l l be used to f ind explicit solutions for some of the problems in AJV 

and Bp TQ. 

I l l 



Chapter 6 

Soliton solutions 
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6.1 Introduction 

In this chapter the solutions to particular initial-boundary value problems in the sets 

A/v , B p ^ and B P , Q ^ O are found using the inverse scattering method developed i n chap­

ters 3, 4 and 5 respectively. As has already been seen, this method involves three dis­

t inct stages in order to solve the problem defined by the in i t ia l configuration condition 

((pN,zv0) G MN, ( r e s p ^ ^ Q , t^p.g) £ A/p,g)- However, as has already been explained, 

a description of A4N, {ATP.Q) m terms of such pairs of functions is unknown at the 

present t ime and as a result the first stage of the method (the maps dst, dst^.^]) 

cannot be used. 

These problems can be avoided, however, i f i t is only required that the in i t i a l configu­

rat ion defining a solution is deduced a posteriori and not specified a priori. This idea is 

possible since the space of scattering data which single out A^/v , (AP,Q) can be defined 

precisely. Therefore, in order to find solutions to problems in the sets Ayy, Bp,o and 

Bp,Q^o i t suffices to choose an element of the appropriate set of scattering data at t ime 

t = 0 and to apply the composite map ist o rt, (ist^oo o] o rt) to this. 

6.2 The inverse scattering transform applied to 

soliton scattering data 

The inverse scattering transform ist was formulated at arbitrary x , t 6 R in section 

3.3 and was represented as the map (3.3.1). In section 3.7 i t was explained how ist 

constitutes the th i rd stage in the inverse scattering method for solving init ial-boundary 

value problems of Type A j v . Chapters 4 and 5 proceeded to develop this method so 

that i t could be used to solve problems of Type B ^ Q . The modificat ion of the th i rd 

stage, i.e the map ist, simply required a restriction of the parameter x to the semi-line 

(—oo,0] and this restriction was denoted i s t l^^gj . 

This section gives a detailed application of the map ist to the scattering data 

(a(-, t) ,6(-,t) = 0 : 7 iW,- • • ,7n l (o +2n 2( t)W) € ^ g ^ d t (6-2.1) 
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for some iii(t), ri2(t) £ N and n(t) = n\(t) - f 2n.2(t). I t is only in the cases when 

b(-,t) = 0, ( 'soliton' scattering data), that the inverse scattering transform can be 

executed analytically. 

When b(-,t) = 0, (3.2.43) yields G(x,t,X) = I so that the solution to the standard 

Riemann problem (3.3.14) can be wri t ten as 

g+(x, t, A) = E(x, t, A), g. (x, t, A) = E " 1 ^ , <, A). (6.2.2) 

The matr ix E^(x,t,X) = E~1(x^t,X) is constrained to be analytic in the upper half A 

plane, to have the asymptotic (3.3.15) and to satisfy 

5 - x ( x , t,\j(t))N~(x, t) = E\x,t, Xj{t))Nf{x, *) = 0, j = 1 , . . . , n(t), (6.2.3) 

where the subspace N~~(x,t) is defined by (3.2.49). From these constraints i t follows 

that the mat r ix E~1(x,t, A) can be resolved into partial fractions as 

~-i(x,t,\) = l + f , £ ^ , (6-2.4) 

w i t h some matr ix coefficients Aj(x,t). Asymptotically expanding this representation 

as A —• Xj(t) yields 

E(x, t, A) = Bj(x,t) + 0 ( |A - X,(t)\), (6.2.5) 

so that Aj{x,t)Bj(x,t) = Bj(x,t)Aj(x,i) = 0. This together w i t h lmBj(x,t) = 

Nj~(x,t) implies that the matrices Aj(x,t) are rank one and can be represented as 

A3(x,t) = z J ( x , t ) ( N - ( x , t ) ) \ (6.2.6) 

w i t h 

= ( ) , ( ^ ( x , 0 ) f = ( 7 ; 0 M ) , 1 ) , (6-2.7) 

Substituting (6.2.6) into (6.2.4) and then into (6.2.3) gives a system of linear algebraic 

equations for the unknowns pj(x.t), qj(x,t). These can be represented as 

M(x,t)p(x,t) = -y(x,t) 

M(x,t)q(x,t) = - 1 , (6.2.8) 
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where M ( x , t) is the n(t) x n(t) matr ix wi th entries 

the n(t) component column vectors p(x,t), q(x,t), 7(0;, £) take the f o r m 

/ Pi(x,t) \ 
p(x,t) = etc. (6.2.10) 

\ Pn(t)(x,t) J 

and 1 denotes the n(t) component column vector wi th 1 i n each entry. 

From (6.2.6), (6.2.7) and (6.2.8) i t is straightforward to construct the matrices Aj(x,t) 

and so the solution E ( x , t , A ) to the standard Riemann problem (3.3.14) according to 

(6.2.4). From this solution an element of M N can be deduced using (3.3.22), (3.3.13) 

and the requirement that 

l i m <p(x,t) = 0. (6.2.11) 
X—• — 00 

I n this section i t has been seen how the inverse scattering transform map ist can 

be applied to the soliton scattering data (6.2.1). These results w i l l be used in the 

subsequent sections when finding 'soliton solutions' to the particular problems in the 

sets Ayv, B P , Q which are defined by in i t ia l scattering data of this fo rm. 

6.3 Single soliton solutions to problems of Type 

A 0 , A ± i and B P i Q 

This section considers the solutions to problems of Type A 0 , A±i and Bp ,Q for par-

ticular in i t i a l conditions ((p0,zn0) £ Mo, (<p±i,&?o) G -M±i and (^p,g,rop,g) € Np,Q-

These conditions are the ones for which the scattering data dst(y 0 , c^o), dst(^>0,^±i) 

or dstI(-00,0](fP,Q 1 WP,Q) i s such that 6(-,0) = 0 and o(-,0) has a single zero Aj(0) such 

that I m Ai(0) > 0, Re Aj(0) > 0. Because of the structure of this in i t i a l scattering data, 

the solutions which result f r o m applying ist o r 4 , (ist^-o^o] o r t ) to i t are called single 

soliton solutions. The characteristics of these solutions are very different depending on 

whether ReAi(O) = 0 or not. 
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6.3.1 Single soliton solutions of 'kink' type which solve prob­

lems in A±i 

Fixing ei = ± 1 and fti(O), |7 i (0) | € R + suppose (</? e i,tu 0) 6 M t l is such that 

dst( V e i ,c7o) = (a(A,0) = 6(-,0) = 0 : 7 i ( 0 ) - - C I | T I ( 0 ) | ) • 

Applying ist o rt to this data (see (6.2.2)-(6.2.11)) gives the solution 

<p(x, t) = 4ei arctan 
l 7 i ( M ) l 

2 ( ( t t 1 ( 0 ) ) 2 - l ) 7 i ( M ) , f i q n 

7 i ( x , < ) = exp { - i [(/d(O) + ^ ( O ) " 1 ) x + (/d(O) - KxtO)- 1 ) * ] } 7 i ( 0 ) , 

and the principal branch of arctan a; is taken. Therefore w(x,t) = ipt(x,t) as i t must 

be by construction and 

x — vt — X\ \ 
(p(x,t) = 4ei arctanexp 

P =

1 - M ° ) ) 2

 H < i 
i + («i(o))»' M < i 

z 1 = V T ^ l o g | 7 i ( 0 ) | . (6.3.2) 

There exists a natural interpretation of this solution as a relativistic particle moving to 

the right w i t h velocity v and whose centre of inertia coordinate at t = 0 is x\. I t is called 

a soliton solution of 'k ink ' type and carries the topological charge N — e\. Particular 

solution w i t h N = 1 are often referred to as 'kinks' whilst those w i t h N = — 1 are 

'antikinks ' . This interpretation w i l l be explored more closely i n subsection 7.5.4 where 

the mass, energy and momentum of the particle w i l l be calculated using a set of 'trace 

identities' for the problems of Type Aw-
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6.3.2 Single soliton solutions of 'breather' type which solve 

problems in the set A q 

Fix Ai(0) £ C such that ImAi(O), ReAi(O) > 0 and 7 X (0) € C and consider the in i t ia l 

configuration ((p0,mo) £ Ado such that 

ds%o,n7o) = (« (A ,0 ) = • X T ^ j } ' = 0 : ^ ( ° ) ) " ( 6- 3- 3) 

Proceeding exactly as before gives w(x,t) = <pt(x,t) and the solution 

<p(x,t) = 4arctan V , r f (6.3.4) 
V ^ C cosh 

wi th 

C = ReA 1 (0 ) , v = lm\l(0), v= j + j^j ' , ^ = a r g 7 i ( 0 ) , (6.3.5) 

= U / n xi> ^ = ari = — — log |7x(0)|. (6.3.6) 
|Ai (0) | | A a (0) | u; 2 

This soliton solution is specified by four real parameters and describes a particle-like 

solution w i t h internal degrees of freedom. I t is called a soliton of 'breather' type. Along 

w i t h the translational motion of a relativistic particle w i t h velocity v and in i t i a l centre 

of inert ia coordinate x\, the breather oscillates in both space and t ime w i t h frequencies 

2 , J"* 2 respectively. The parameter <f>-[ plays the role of an in i t i a l phase. The 

mass, energy and momentum of this type of particle are also calculated using trace 

identities in subsection 7.5.4. 

6.3.3 Single kink type solutions to problems in B p 0 

Fixing £i = ± 1 and A, |7 i (0) | € E + then according to definition 4.1 the scattering data 

( a ( A < ° ) = = 0 : 7i(0) = - e i | 7 i ( 0 ) | ) , 

is an element of J-^. Applying the composite transform ist^-o^o] ort to this data gives 

the solution w = (pt w i th 

f x — vt — X\\ 
<p(x,t) = 4ei arctanexp , 1 

V v i - u 2 / 
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1 - A 2 , , 

X l = Vl - « 2 l o g | 7 l | , (6.3.7) 

Va; £ ( — 0 0 , 0 ] , t £ R. This is a kink or antikink (depending on the choice of ei) moving 

wi th a fixed velocity. According to lemma 4.5 the function ip satisfies the boundary 

condition 

Y x M - (A + A - 1 ) sin ^ ( 0 , 0 = 0 Vf G R, (6.3.8) 
x=0 2 

and i t is straightforward to verify that this is indeed the case. The boundary condition 

satisfied by w follows directly. 

Depending on sign(t>) this solution can be interpreted as a soliton (particle) of kink type 

either being emitted f r o m or absorbed by the boundary at x = 0. The energy of this 

particle is found in subsection 7.5.4 using a different set of trace identities applicable 

to problems of Type B ^ Q . 

6.3.4 Single breather type solutions to problems in Bpo 

Fixing parameters A G (—2,2), a £ (0, | ) such that sin a > y and 71 (0) £ C such that 

, 2 s i n a + v4 

W°>l = w T T 
i t follows f r o m definition 4.3 that the scattering data 

( A — ie~ia \ — i p i a \ 

is an element of J^'^ wi th 
1 

Therefore 

fl(A'°) = X~+i^ ' A + ie->°' 6 ( ' , 0 ) = ° 1 7 l ( 0 ) ) ' 

is such that w = tpt and 

( s'm(t cos a + S\) \ 
¥?(ar,<) = 4arctan t a n a , 6.3.9) 

\ cosh(sina(.T — x\) J 
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w i t h 

xi = 7T- l oS [TT- A ' </>i e 0,27r). 
2 s m a \2smcv — A J 

According to lemma 4.7 this funct ion satisfies the boundary condition 

T x { x ^ 
- A s i n | ( 0 , i ) = 0 VteR, (6.3.10) 

x=0 ^ 

and the boundary condition satisfied by w follows directly. 

This solution w i l l be termed a 'boundary-breather' soliton solution to the sine-Gordon 

system on the semi-line x £ (—oo,0]. I t is clearly a stationary soliton of breather type 

when regarded as a solution on the whole line x £ R, but when space is restricted to 

the semi-line (—oo,0] i t is a t ime dependent solution which remains localized in the 

vic ini ty of the x = 0 boundary. 

R e m a r k 6.1 It follows from (6.3.8) that there only exists a (yp,o, rop,o) £ Ap,o which 

evolves into a single soliton solution of kink type (6.3.7) xohen P < —2. When \P\ < 2 

there are no single soliton solutions of this type but there are ones of boundary breather 

type (6.3.9). Finally, when P > 2 there does not exist a problem in B p ^ which has a 

single soliton as its solution. 

6.3.5 Single soliton solutions to problems in B ^ Q ^ O 

I t follows f r o m definitions 5.1, 5.2, 5.5 that the only single soliton scattering data in 

Gu?x has the fo rm 

(a(A,0) = 6(-,0) = 0 : 7 l ( 0 ) = /> | 7 i ( 0 ) | ) , 

w i t h fixed parameters 

e,p = ±l, LO £ ( 0 , 1 ) , X e C : |x| = l , I m x ^ O , 

and 

| 7 l (o ) | = ( / ( ^ x ) ) f ) , 
ft ^ ( c u + u > - 1 - 2 ) ( 2 + X + X " 1 ) _ TO+ 

( w + w - i + 2 ) ( 2 - x - X - ) 6 * • 
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Applying the map (istl^^o] o rt) to this data gives w = 0 and 

<p(x,t) — ip(x) = 4/)arctan exp(,T — .Ti), 

x1=t-\ogf(uJ,x), (6.3.11) 

V;c G (—oo,0]. According to lemma 5.3 this funct ion satisfies the boundary condition 

ox 
- Re(x)(w + OJ-1) sin | ( 0 ) - ep\lm{X)(«> ~ cos | ( 0 ) = 0. (6.3.12) 

x=0 

R e m a r k 6.2 Notice that, in contrast to the Q = 0 case there is sufficient freedom in 

the choice of the parameters e,p,u,x s o a s t° realise a single soliton solution which 

satisfies the x = 0 boundary condition for all possible choices of boundary parameters 

P e l , Q e R \ { 0 } . 

6.4 Multi-soliton solutions to problems of Type 

Bpg and boundary scattering 

This section considers certain properties of the solutions to problems of Type B ^ Q 

defined by particular in i t ia l conditions {<PP,Q,V?P,Q) £ -A/p,Q- These in i t i a l configurations 

are such that the transition coefficient a(-,0) appearing in dst|(_O O ) 0](v ; iF,Q, WP,Q) N A S 

mult ip le simple zeroes { A ^ O ) , . . . , A n ( 0 ) (0 )} satisfying ImAj(O) > 0, Re Aj(0) > 0 V j = 

l , . . . , n ( 0 ) and the transition coefficient b(-,0) = 0. These solutions are termed the 

n(0) soliton (multi-soliton) solutions to the problems on the semi-line. 

6.4.1 Kink scattering from the boundary when Q = 0 

Consider the scattering data 

H = • î SP- «••<»s °: ̂  - *<°>=• 
(6.4.1) 

w i t h parameters K(0) G (0,1), e2 = ± 1 , a l j 2 £ R- Fixing a parameter A G R and 

defining 
1 £ = - ( A + \ A 4 ^ 4 ) , 
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i t follows f r o m definition 4.2 that for this data to be an element of FQ'® the parameters 

e2, o-i i 0-2 must satisfy 

' 4 0 ) + (/c(0))"1 + A\ 
&2 = sign 

Ol + «2 = log 

*c(0) + ( / c (O) ) - 1 - A J ' 

AC(0) + ( K ( O ) ) " 1 + A 

«(0) + K o ) ) - 1 - A 
(6.4.2) 

Constraining these three parameters in this way and applying the composite transform 

(ist^.o^o] O T ( ) to the data (6.4.1) gives w = (pt and 

/ (x+vt) . \ ( (x-vt) i \ 
e 2 e X P l - y C T + a 2 J - e X P l ~ v ^ + Q l j 

1 + e 2exp ( - y = p = + ai + a 2 ) 
t) — 4 arctan (6.4.3) 

V ( x , * ) e (-°° ,o] x R> w i t n 

so that 

e2 = sign 

a i + «2 = log 

l - ( « ( 0 ) ) a 

i + K 0 ) ) 2 ' 

' 4 - A 2 ( l - ^ 2 ) ' 

K{2-As/T=tf)\ 

| 4 - A 2 ( l - u 2 ) h 

v ( 2 - A v T ^ 2 ) 2 / ' 

By lemma 4.6 the funct ion (f satisfies the boundary condition 

dip 

(6.4.4) 

dx CM) 
1=0 

A s i n | ( 0 , < ) = 0 V< G 

Now consider the asymptotic x,t —* —oo in the solution (6.4.3). Since v > 0 i t follows 

that 

<p(x,t) ~ 4 arctan exp —===. — a\ I , 
V v l - v 2 / 

(6.4.5) 

as x,t —» —oo, w i t h a\ =f a\ + logu . Therefore, by comparison wi th (6.3.2), i t can be 

seen that asymptotically as x,t —• —oo the solution (6.4.3) represents a kink moving 

to the right w i t h speed v. I t is useful to rewrite (6.4.5) as 

'x-v(t + AM 
<p(x,t) ~ 4 arctan exp 

x / T ^ 2 
x, t —* —oo, (6.4.6) 

where 
* def \ / l - W 2 . 

A i = a i . 



The asymptotic x —> — oo, t —+ oo yields 

((x + vt) \ 
<p(x,t) ~ — 4e2 arctan exp , — a 2 , (6.4.7) 

so that in this l i m i t (6.4.3) coincides wi th the fo rm of a single soliton of kink type 

moving to the left w i t h speed v and possessing topological charge (—e2). Rewrit ing 

this asymptotic as 

tp(x,t) ~ —4e2 arctan exp (—. ^ r -^ - ] x,—t —> —oo, (6.4.8) 
V V l - v 2 J 

w here 
def \ / l - v2 „ 

A 2 = a 2, 

and comparing w i t h (6.4.6) i t is straightforward to identify the ' t ime delay' experienced 

by the incoming kink at t = — oo as a result of its interaction w i t h the boundary at 

x = 0 as 
J \ - v2 

A = A i + A 2 = (ai + a 2 ) . 
v 

From (6.4.4) i t follows that this can be wri t ten in terms of the speed v > 0 and the 

boundary parameter A as 

The topological charge of the reflected (anti)kink depends on these parameters accord­

ing to 

Outgoing = sign ( A 2 ( l - v2) - 4)) . 

There are a couple of points to note regarding the preceeding analysis: 

• since 0 < v < 1 i t follows that choosing A G (—2,2) for the boundary parameter 

w i l l always cause the incoming kink to reflect as an antikink and i t is only when 

\A\ > 2 that a. diagonal component to the 'boundary scattering ma t r ix ' appears. 

• when A is fixed such that \A\ > 2, the t ime delay A develops a logarithmic 

singularity at velocities satisfying v2 — ^-gr-- This reflects the existence of single 

fixed velocity kink solutions such as (6.3.7) at this value of boundary parameter, 

which can either be emitted f r o m or absorbed by the boundary at x = 0 without 

violating energy conservation. 
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6.4.2 Kink scattering from the boundary when Q ^ 0 

Fixing parameters 

0eR+, P = ±I, o i , o 2 e R , n e (0 ,2x) \ { T T } , 

and consider the scattering data 

/ A - i A 2 - 2iX cosh 5 - 1 x „ \ 
( ° < A ' 0 » = i n ' A » + « A c o s h e r 6 ( ' ' ° » s 0 : * = * = * = • 

(6.4.10) 

where, for the moment, £3 = ± 1 , a 3 £ R remain arbitrary. Defining 

def in def 
X = - e ' , w = e , 

i t follows f r o m definition 5.1 that this data w i l l be an element of J?7f i'e

0^_x w i t h e = ± 1 

if the parameters e3, a3 are chosen to satisfy 

tanh \(6 + v) tanh \(0 - v) \ 
e3 = sign tanh | ( # + ip) tanh | ( # — ip) / 

tanh |(6> + v) tanh | ( 0 - j / ) 
a3 + a2-e\og ""TV/1" ' """T ?/1 T ^ T • (6.4.11) 

5 tanh + tanh §(0 - i ^ ) 

Constraining e3, a 3 in this way and applying the composite transform i s t l ^ ^ o ] 0 Tt 

gives a rather complicated expression for <p(x,t) and w(x,t). However, i t follows f r o m 

lemma 5.3 that the funct ion ip satisfies the boundary condition 

+ 2 cos p cosh v sin TT(0, t) — 2ep\ sin sinh v\ cos ^ ( 0 , t ) = 0 Vt £ R. 
X=0 

Just as in the previous subsection when considering a solution w i t h Q = 0, the asymp-

totics of x, ±t —> — 0 0 of this solution can be studied and the t ime delay A deduced. 

The results of this analysis are: 

• as x,t —> - c o the solution <p(x,t) has the fo rm of a (right-moving) kink wi th 

velocity v = tanh 0. 

• as x, —t —> — 0 0 the solution takes the fo rm of a soliton of kink type moving w i t h 

velocity —v. The topological charge of this reflected (ant i)kink is 

•^outgoing — sign 
' t a n h § ( g + t / ) t a n h § ( f l - i / ) \ 

tanh \{0 + ip) tanh \(6 — ip) J 
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• the t ime delay A experienced by the soliton due to its interaction w i t h the bound­

ary at x = 0 is given by 

t a n h \ { 9 + j / ) t a n h \ { 0 - u) I I 0 
A = — — log I t anh 2 0 t anh 2 -

smh 0 \ 2 tanh \ {0 + ipi) tanh \ {6 — i/J-) 

I t must be mentioned that this solution was first found in [17] using r funct ion methods. 

6.4.3 Regarding the existence of boundary-breathers 

I n subsection 6.3.4 a two parameter family ( a , ^ ) of single 'boundary-breather' solu­

tions were found. These solve a two parameter family of initial-boundary value prob­

lems of Type B P ,o w i t h P € ( - 2 , 2 ) . 

Multi-boundary-breather solutions w i l l be defined as being generated by scattering 

data in the subsets J-'^, Q^p

x (see definitions 4.8, 5.5) which have zeroes of the 

transit ion coefficient a(-,t), (i.e a(Xj(t),t) = 0)) such that Re(Aj(£)) ^ 0 and \Xj(t)\2 = 

1. However i t can be seen that: 

• the set Th. does not contain any elements which have zeroes of this type. 

• as was seen in subsection 6.3.4 some elements of T'^ do possess such zeroes but 

they must all satisfy the constraint Im(Aj(<)) > Re(£) . 

• certain elements of also have zeroes of this fo rm but this t ime they are 

constrained by the inequality lm(Xj(t)) > Re(x)-

These comments show that i f Q = 0 and \P\ > 2 there do not exist any soliton 

solutions of boundary-breather type which solve an initial-boundary value problem in 

Bp to. However, as soon as Q is perturbed away f r o m zero then such solutions can exist 

for all values of the parameter P. The Q —> 0 l im i t of the solutions to the problems 

w i t h Q 7̂  0 wi l l be studied in the next section but this does not affect the results found 

here. 

124 



6.5 Investigating the Q —> 0 limit of the solutions 

to problems of Type B p $ 

Up to now the problems of Type B ^ Q w i t h Q = 0 have been considered separately 

f r o m those w i t h Q / 0. This section explains why this is necessary and reasons as to 

why the Q —> 0 l im i t of the Q ^ 0 analysis actually reproduces the same solutions as 

those found using the Q = 0 results when this l im i t is taken sufficiently carefully. 

According to proposition 5.6 the Q —> 0 l im i t of the subset of scattering data 

corresponds to either w 1 or x - » i h However, in these l imi ts the normalization 

coefficient -)i(t) becomes either unbounded or equal to zero and the formulat ion of 

the inverse scattering transform ist and therefore its restriction ist^-o^o] forbids such 

situations. Therefore, i t is comforting that the analysis of chapters 4 and 5 naturally 

differentiates between the cases Q = 0, Q ^ 0. 

Once solutions to problems of Type B ^ Q ^ O have been found by applying ist|(_ooi0] o rt 

to elements of Q^p

x i t is then possible to examine the Q —> 0 l i m i t expl ici t ly i n these 

formulae. For certain solutions (i.e choices of e, Re(x) = ±1) this l i m i t is 'sick' and the 

resulting expression no longer satisfy the asymptotic boundary condition as x —• — oo. 

However, in other cases this l i m i t is well defined and the solutions found agree w i t h 

those resulting directly f r o m the Q = 0 analysis (without the transition coefficient 

a(- , t ) having a zero at \{t) — i). 

I t is satisfying to see that, although the inverse scattering theory for solving problems 

in the set Bp,q w i t h Q = 0 is distinct f r o m that developed for the problems w i t h Q ^ 0, 

the 'non-sick' l imi ts of the solutions to the latter reproduce the solutions to the former 

- the sick l imi ts corresponding to a violation of the boundary condition <p(x,t) —> 0 as 

x —> —oo. 

The points outlined above wi l l now be illustrated by considering the simplest exam­

ple of the static (ant i)kink solution (6.3.11) which satisfies the boundary condition 

(6.3.12). When u> —> 1 or x ~* ~ 1 s o that Q —> 0 in this boundary condition i t follows 

that f(u>,x) ~^ 0- Alternatively, when x —> 1, f(w,x) ~* 0 0 • The centre of inertia 
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coordinate for this kink solution is x = xi = | l o g / ( u ; , x ) and allowing this to tend 

to —oo clearly violates the imposed boundary condition <f(x) —* 0 as x —> —oo. So, 

when considering the l imi ts w —> 1 or x —> — 1 i t is necessary to choose the solution 

w i t h e = — 1. The l im i t \ 1 requires e = 1 and the solution to the Q = 0 problem 

resulting f r o m these l imi t ing procedures is the 'zero soliton' solution <p = 0 - the static 

soliton disappears infini tely far 'behind the wal l ' . 

Such reasoning can be repeated to study how the scattering solution of subsection 6.4.2 

reduces to that of subsection 6.4.1 when certain parameters in the former are correctly 

chosen so as to preserve the asymptotic boundary condition as x —>• — oo when the 

Q —> 0 l i m i t is taken. For these solutions, i t is found that when e = 1 i n subsection 

6.4.2 the Q —> 0 l i m i t forces P > 2 whereas when e = — 1 this l i m i t forces P < 2, and 

in these l imi ts the solution reduces to that of subsection 6.4.1 w i t h P = — A. 

scattering data (a(-,t),b(-,t) : 7 i ( 2 ) , . . . , 7ni(t)+2n 2(t)(0) s u c n that: 

• the number n(t) = ni(t) + 2n2(t) is finite. 

• all the n(t) zeroes of a(-,t) are simple. 

• none of the normalisation coefficients 7 i ( i ) , •. • 5 7 n 1 ( t ) + 2 n 2 ( t ) ( i ) a r e zero. 

Recall also that all the solutions found so far in this chapter have scattering data w i t h 

these properties but that the t h i r d restriction was formally relaxed in some of the 

analysis of section 6.5. 

Consider the scattering data (6.3.3) leading to the solution (6.3.4) and suppose <f>i = 0 

so that the solution reads 

6.6 Relaxing the constraints on a(-,£) 

Recall f r o m chapters 3-5 that the subspaces M.^ and Jvp,Q are defined in terms of 

w\ (t—vx) 

sin Vl-v2 V tp(x,t) = 4arctan 
C cosh ( W2(X — Vt — X\ ) 

V l - V 2 
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Now take the l i m i t Xi(0) i i n this formula to find 

<p(x, t) —> 4 arctan 
t 

( 6 . 6 . 1 ) 
cosh (a; — X\) 

and the scattering data ( 6 . 3 . 3 ) becomes 

dst(tpo,w0) a ( A , 0 ) = 
A - i 
A + i 

2 
, 6 ( - , 0 ) = 0 : 7 i ( 0 ) = 7 i ( 0 ) ) 

Therefore, at least on a formal level, a solution to a problem of Type A 0 has been 

constructed for which the transition coefficient a(-,t) does not just have simple zeroes. 

This is perhaps not too surprising as the observant reader w i l l have noticed that this 

requirement was only imposed in chapters 3-5 for notational simplicity. Finally notice 

that ( 6 . 6 . 1 ) also solves a problem of Type B _ 2 t a n h x i , o upon a restriction of x to the 

semiline (—oo, 0 ] . 
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7.1 Introduct ion 

In this chapter the concept of an integrable mechanical system is developed, first for 

ordinary differential equations (finite dimensional phase spaces) and then for partial 

differential equations (infinite dimensional phase spaces). Having formulated this no­

tion in a precise way it is possible to make the assertion at the end of subsection 7.4.1. 

Namely, that the restricted phase spaces .Mjv, Afp,Q define an integrable sine-Gordon 

system. 

Section 7.5 is a construction of an infinite set of 'local integrals of motion' for the sine-

Gordon systems A;y, Bp,Q, (this is often taken as a definition of integrability). A set of 

'trace identities' is then constructed for these integrals. Section 7.6 briefly introduces 

the idea of action-angle coordinates for the phase space of an integrable mechanical 

system. 

7.2 Ana ly t i ca l mechanics and finite dimensional 

integrable systems 

7.2.1 Mechanical systems 

One of the basic problems in classical mechanics is to solve Newton's equations of 

motion for a mechanical system with n degrees of freedom. Namely, 

^ ( t ) = - Q ^ V f a W > ' • •' »»(*))' * = ! , . . . , « (7-2.1) 

for real valued functions {y^} of a time variable f 6 R. At any time t the set {yk{t)} 

are to be thought of as coordinates on an n dimensional manifold Wn(t) called the 

configuration space. As a consequence of the time translation invariance of the system 

(7.2.1), the form of Wn[t) is independent of t so that W n ( i ) = W n for all t € R. 

The system (7.2.1) can be derived from the Lagrangian function L : TWn —• R. which, 
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when written in terms of the coordinates {yk(t)} takes the form 

L = ];itvl{t)-VWt),...,yn(t)), (7.2.2) 
9 
" k=i 

by applying the Lagrange equations 

d dL dL 
ifc = l , . . . , n . (7.2.3) 

dtdyk(t) dyk(ty 

Since (yi(t),... ,yn(t)) is a tangent vector to W n , it follows that the 'generalized mo­

mentum' 

^ W - - ^ ) ) = ( ^ ) - - 5 ^ ) ) - < 7 ' 2- 4 ' 
is a cotangent vector. Therefore the system (7.2.1) can be written as 

-^{t) = yn+k{t) 

and the 'phase space' with coordinates ( j / i ( i ) , . . . ,y2n(t)) is the 2n dimensional cotan­

gent bundle T*Wn(t) = T*W n V< G R. 

7.2.2 Integrable systems and symplectic geometry 

The theory of finite dimensional integrable systems can be expressed in the language of 

symplectic geometry and this allows a formulation of some very general results regarding 

their properties. Those integrable systems which are mechanical in nature then appear 

as special cases of this general formalism. 

Definition 7.1 Let M2n be a 2n, n € N dimensional real manifold. A symplectic 

structure on M2n is a closed nondegenerate differential 2-formu2: 

dw2 = 0 and V£ € TM2n ^ 0 3V e TM2n : u2(£, n) ^ 0, (7.2.6) 

with TM2n the tangent space to M2n at the point x. The pair (M2n,uj2) is called a 

symplectic manifold. 

One of the major reasons for introducing such manifolds is made clear by following 

theorem. 
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Theorem 7.2 The cotangent bundle T*Wn{= T*Wn(t) Vi € R) has a natural sym-

plectic structure. In the local coordinates {yp(t) : p = 1 , . . . , 2n} defined above, this 

symplectic structure is given by 
n 

u2(t) = ] T dyk{t) A dyn+k(t). (7.2.7) 
k=i 

The proof of this theorem and many more details regarding the rest of this section are 

to be found in the classic textbook [21]. 

There exists a natural isomorphism / between 1 forms and vector fields on a symplectic 

manifold ( M 2 n , u j 2 ) . This is defined by the relation 

^ ( n j u 1 ) =u\n) (7.2.8) 

for all n € TM2n. 

Definition 7.3 Let (M2n,u2) be a symplectic manifold and let F i , F2 be huo functions 

: M2n —> R. Denote the algebra of such functions by A. The symplectic structure gives 

a natural map : 

(FuF2)Pb = u;2(IdF2, IdFx). (7.2.9) 

This is called the Poisson bracket of the functions F i , F2. 

The properties of the exterior derivative and the skew symmetry of the wedge product 

imply the following theorem. 

Theorem 7.4 The Poisson bracket is skew symmetric, 

(F1,F2)Pb + (F2,F1)Pb = 0, 

and satisfies the Jacobi identity 

((Fx, F2)pb, F3)pb + ( (F 2 , F3)Pb, F ^ + ((F 3 , F X ) P 6 , F2)ph = 0. 

In addition it has the properties 

( F l 5 F2F3)Pb - (F 1 ? F2)pb F 3 - F 2 ( F l 5 F3)Pb = 0, 

( J{F,),K{F2))Pb = J '(Fi) (FuF2)Pb K'{F2). 
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It follows from theorem 7.4 that the Poisson bracket of two arbitrary functions F\, F2 : 

M2n —• R can be calculated once the 'fundamental' Poisson brackets between a set 

of coordinate functions t/, : M2n —> R, i — 1 , . . . ,2n are known. For the mechanical 

systems discussed above (7.2.7), (7.2.9) lead to the 'canonical' form for the coordinates 

{yk(t) : k = l , . . . , 2 n } , 

(yi(t),yj{t))pb = (yn+i(t),yn+j(t))Pb = 0 (yl+n(t),yJ(t))Pb = StJ, i j = 1 , . . . , n . 

(7.2.10) 

With this definition of the Poisson bracket, the concept of a Hamiltonian system can 

be introduced. 

Definition 7.5 At an arbitrary time t € K let {yP(t) : p = 1... 2n} be coordinates on 

M2n(= M2n(t) Vi G R) where (M2n,u2(t)) is a symplectic manifold. A set of first order 

ordinary differential equations is said to form a Hamiltonian system if there exists a 

function H : M2n —> R such that the system possesses a Hamiltonian structure, i.e it 

can be represented as 

^jL(t) = (H,yp(t))pb p = l , . . . , 2 n (7.2.11) 

Vt € R. These are Hamilton's equations of motion for the system and H is called the 

Hamiltonian function. 

Using the symplectic structure of T*W n defined in theorem 7.2 it is possible to rewrite 

the mechanical system (7.2.5) in the Hamiltonian form 

^ ( t ) = (H,yp(t))pb p = l , . . . , 2 n , (7.2.12) 

\/t € R with the Hamiltonian function expressed in coordinates as 

H(Vl(t),..., y2n(t)) = \ E vl+Jt) + V(yi(t),..., yn(t)). (7.2.13) 
z k=i 

Following these preliminaries it is possible to define an integrable Hamiltonian system 

of ordinary differential equations. 
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Definition 7.6 A (finite dimensional) Hamiltonian system is said to be integrable by 

quadratures ('integrable') if there exists a set of coordinates {Yq(t) : q = 1 , . . . , 2ra} for 

the manifold M2n(t) such that on making the transformation yp(t) = yp({Yq(t)}) the 

system (1.2.11) decouples and so can be solved, up to the evaluation of integrals and 

the inversion of functions, by a separation of variables. 

This is a precise definition of the integrability of a Hamiltonian system. With a couple 

more definitions it is possible to formulate one of the most important results regarding 

systems of this type i.e Liouville's theorem. This is one of the major theorems of 

analytical mechanics and can be used to establish the integrability of Hamiltonian 

systems. 

Definition 7.7 A function F : M2n —• R is a first integral of a Hamiltonian system 

with Hamiltonian function H if the Poisson bracket (H, F)pb = 0 £ R. Two func­

tions Fi, F2 are said to be 'in involution' if (Fi , F2)Ph = 0 Wt £ R. All first integrals 

are therefore in involution with the Hamiltonian function. 

Definition 7.8 The n functions F i , . . . ,Fn £ A are independent at y{t) £ M2n if the 

n 1 forms dF\,..., dFn £ TM2^ are linearly independent. Equivalently this amounts 

to the requirement 

where k = 1 , . . . , n, p — 1 , . . . , In so that the left hand side of this equation represents 

the rank of an n x 2n matrix. 

Theorem 7.9 (Liouville) If in a Hamiltonian system with n degrees of freedom and 

configuration space M 2 n ( = M2n{t) Vi £ R), n first integrals in involution are known 

which are independent on a dense subspace of M2n, then the system is integrable by 

quadratures. 

A detailed proof of this theorem and much more information regarding finite dimen­

sional mechanical systems is to be found in [21]. 

OF 
rank n oyP(t) y(t) 

(7.2.14) 
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7.3 Mechanica l systems and the sets A^v and B ^ g 

In this section it will be seen how boundary value problems of Types Ajv and Bp,Q can 

formally be viewed as mechanical systems of ordinary differential equations each with 

a continuous infinity of degrees of freedom parameterised by x G E (x G R~ U {0}) as 

opposed to n G N. The phase spaces of these systems are clearly of infinite dimension. 

It will also be seen that these problems have a Hamiltonian structure. 

7.3.1 T h e sets A^r, Bpg can be viewed as infinite dimensional 

mechanical systems 

With t £R fixed and ((,£>(-, f ) , cu(-, t)) G MN, the set {{ip{x, t), w{x, t)) can, at 

least on a formal level, be regarded as coordinates on the infinite dimensional 'cotangent 

bundle' T*<S(R;0,27riV) d = M N . 

Comparing the sine-Gordon system 

—{x,t) = m[x,t) 

~dt^X,t' = 'dx2 X ' - ~ s m ( ^ ^ ' ^ ' (7.3.1) 

with (7.2.5) it is clear that the set Ajv takes the form of a mechanical system with 

phase space MN-

Identical reasoning with the problems of Type Bp,g leads to a definition of the cotangent 

bundle A/p,Q with coordinates {(ip(x,t),w(x,t)) : x G R _ U {0} j . Once again the sine-

Gordon system can be thought of as a mechanical system but this time with the infinite 

dimensional phase space Mp%Q. 

This formal identification with the n —y oo limit of a mechanical system can be con­

tinued with the introduction of functional differential forms and vector fields on these 

'cotangent bundles'. However, such concepts are not needed for this thesis and so will 

not be mentioned further. The interested reader is referred to [22, 23]. 
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7.3.2 T h e Hamiltonian structure of A # , Bpg 

The notion of a Poisson bracket and Hamiltonian function can be formally extended to 

infinite dimensional mechanical systems such as A/v and Bp,Q. For arbitrary functionals 

F X , F 2 : M N ^ C , 

F 3 , F 4 : t f P i Q ^ C , 

define the Poisson brackets ( F i , F 2 ) p 6 , (F 3 ,F 4 )p & by 

F ) d±{ r ( 8 F i 8F2 S F i 6F2 ) d 
{ u 2 ) p b J-oo\6w(x,t)6(p(x,t) 6<p(x,t)6w(x,t)J 

( p def f° ( SF3 6F4 6F3 8F4 \ 
1 3' 4 ) p b ~ J-00 \6w(x,t)6<p(x,t) M ^ t j M x , ^ 1 } 

This definition is a formal generalisation of the Poisson bracket resulting from (7.2), 

(7.3). The Poisson brackets between coordinates can be formally written as 

(w(x,t),w(y,t))Pb = 0, (<p(x,t),tp(y,t))Pb = 0, (w(x,t),(p(y,t))Pb = S(x - y), 

(7.3.3) 

for x,y in the appropriate domain. The form of these fundamental Poisson brackets is 

due to the functional derivative being formally defined as a derivative ' in the direction 

o f the Dirac 6 'function' which is neither a function nor a regular distribution. There­

fore, a rigorous formulation of these ideas along the lines of section 7.2, and including 

the introduction of a Jacobi identity, must be carried out in terms of such generalised 

functions [18]. These important points will re-emerge in section 7.6 when discussing 

the construction of a set of action-angle coordinates for the phase space M.^. 

For the sine-Gordon mechanical systems defined by phase spaces MN-, (resp. NP,Q) 

Hamilton's equations of motion take the form 

^ O M ) = (H, <p{x, t))Pb, ^ ( x , t) = (H, w(xtt))Pb, (7.3.4) 

with H : MN (NP,Q) —*• R the Hamiltonian functional 

H[<p(-,t)M;t)] = / 

2 

^w2(x, t) + i ( | ^ ( x , t) I + 1 - cos <p(x,t) dx, (7.3.5) 
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for the system defined by M.^ and 

J — c 

1 2 I fdip \ 2 

-m (x, t) + - I — [x, t) I + 1 - cos (p(x, t)dx 

-2Q sin | ( 0 , t) - 2P cos | ( 0 , t), (7.3.6) 

for the system defined by Afp,Q-

7.4 T h e sets Ajy and B p g are integrable systems 

In this section the definition 7.6 is extended to include infinite dimensional mechani­

cal systems which have the same form as those introduced in section 7.3. I t is then 

straightforward to deduce that the existence of the inverse scattering methods devel­

oped in chapters 3, 4 and 5 is a proof that the sets of sine-Gordon problems defined by 

the restricted phase spaces M.N, J\p,Q are infinite dimensional integrable systems. 

Definition 7.10 Let M°°(= M°°{t) \/t € R) be some infinite dimensional function 

space with coordinates {(ip(x,t),w(x,t)) : i G D C l j at time t. Suppose that M°° is 

the phase space of some mechanical system expressible as 

^ { x , t) = (H, <p(x, t))Pb, ^ ( x , t) = (#, zo(x, t))Pb V< € R, 

for some Hamiltonian functional H. This system is said to be integrable by quadratures 

('integrable') on M°° if there exists a set of coordinates for this space such that, in 

terms of these, Hamilton's equations of motion decouple and so can be solved, up to the 

evaluation of integrals and the inversion of functions, by a separation of variables. 

7.4.1 M.N and J\p,Q define integrable sine-Gordon systems 

The direct/inverse scattering transform dst/ist developed in chapter 3 and the restric­

tions made in chapters 4 and 5 can be viewed as (invertible) coordinate transformations 

for the phase spaces M.^, ^vp,Q- In terms of the new coordinates (essentially the real 

and imaginary parts of the scattering data), the time evolution is governed by a set 
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of decoupled linear ordinary differential equations which can easily be solved to define 

the time evolution map Tt. Therefore, the existence of the transformations ds t / is t 

and dstl j-o^oj/istlf-o^o] and the form of the time evolution map r t prove that the sine-

Gordon systems defined by the restricted phase space MN and J\pTQ are integrable. 

7.5 A n infinite set of first integrals for A^r, &P,Q 

and their trace identities 

As has already been seen in section 7.2 there is a deep relationship between the number 

of first integrals of a Hamiltonian system and its integrability. Unfortunately, for infinite 

dimensional Hamiltonian systems such as those defined by the sets A^r, &P,Q there is 

no analogue of Liouville's theorem 7.9 in order to prove integrability. In spite of this, 

the integrability of the sine-Gordon system with restricted phase spaces M.N and J\p,Q 

has been established directly in section 7.4. 

In this section an infinite number of first integrals of motion are constructed for the 

integrable Hamiltonian systems A ^ and B ^ Q . Subsection 7.5.1 concerns the set A/v 

and the first integrals are found to be 'local' i.e they have the form 

/

oo 
gp(<p(x,t),w(x,t))dx p e Z , (7.5.1) 

-oo 

where gv is a real valued function of <p(x,t), w(x,t), ipx(x,t), mx(x,t), <pxx(x,t),.... 

The Hamiltonian functional (7.3.5) is clearly of this form. 

Subsections 7.5.2 and 7.5.3 consider the sets Bp,o and B ^ Q ^ O respectively. Once more 

an infinite set of local integrals are constructed for these systems. In both cases these 

integrals have the form 

Ip[<f(-,t),w(-,t)}= / gv(y(x,t),w{x,t))dx + hp(^p(0,t),-oj(0,t)) p G Z , 
J —CO 

(7.5.2) 

with gp a complex valued function of ip(x,t), zu(x,t), <px(x,t), wx(x,t), tpxx(x,t),... 

and hp a complex function of y(0 , t ) , w(0,t), tpx(0,t), zux(0,t), (pxx(0,t),.... The real 
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and imaginary parts of these integrals can then viewed as distinct real valued first 

integrals for the systems Bp ) 0 , B^Q^O-

7.5.1 F irs t integrals for the set AN 

Let (a(-,0),6(-,0) : 7 i (0 ) , • • •,7»,(o)+2«2(o)(0)) be a general element of Tf][JJj^S for 

some ni (0), n 2(0) € N. Define n(0) = m(0) + 2n2(0) and 

O T V , ^ ) = f ist(a(-,0),6(-,0) : 71 ( 0 ) , . . . , 7m(o)+2n 2(o)(0)), 

where N € Z is such that N = 7i(0) mod 2. By definition the pair (t/'Af? ^ 0 ) is an 

element of MN-

For the integrable sine-Gordon system Ajv there exist two infinite families of first inte­

grals. These can be constructed by considering an asymptotic expansion of the reduced 

transition matrix T(A,0) as A —> 0,oo, which is constrained to have the form (3.2.19). 

When ((fiN,Wo) evolve in time according to the sine-Gordon system the evolution of 

a(-,0), fr(-,0) is given by the time evolution map r t . That is 

a(X,t) = a(A,0) ImA > 0, 

6(A,*) = e*( A + *H(A,0) A e K , 

and it is the time independence of the diagonal elements of T(A, 0) that will be crucial in 

constructing the time independent first integrals. It will only be necessary to consider 

the family of integrals resulting from the |A| —> 00 asymptotic as the family resulting 

from the |A| —> 0 expansion can immediately be deduced. 

From (ifN, wo) construct the transition matrix T(x, y, 0, A) as detailed in chapter 3 and 

suppose that as |A| —• 00 the asymptotic form of this matrix can be written as 

T(x, y, 0, A) = Q{x) ( I + W(x, A)) exp Z(.x, y, A) ( I + W(y, A) )" 1 O" 1 (y) (7.5.3) 

modO( |A | _ °°) , where W(x, A) is an off diagonal matrix and Z(x,y,\) is a diagonal 

matrix satisfying Z(x,x,\) = I and 

H(x) = exp I a3 I . 
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From (3.2.4) it follows that Z(x,y,X) and W(x,X) must be related through 

Z(x, y, A ) = i («(x ' )a 3 + ( A - i e - ' ^ ^ ^ ) < r 2 I * V , A ) ) c/x', (7.5.4) 

where 

9(x)d^wo(x) + ^ ( x ) . (7.5.5) 
ax 

This relation is consistent with the requirement that Z(x, y, A ) , W(x, A ) be diagonal 

and off diagonal respectively. In addition (3.2.4) implies that W(x, A ) satisfies the 

differential equation 

dW 1 A 1 

- g - = ^ 0 - 7 3 ^ + - (<r 2 - W ^ W ) - ^ ( ^ e ! ™ _ ^ < j 2 e ! ^ ^ P F ) . (7.5.6) 

Now suppose that the matrix W(x, A ) has the asymptotic expansion 

^2. W (x) 
^ ( ^ ) = £ ^ (7-5-7) 

m=0 

as | A | —> oo where, by virtue of (3.2.7), 

Wm(x) =( 0 " f ^ ( a ; ) ) . (7.5.8) 

Substituting this into (7.5.6) yields 

w0(x) = i, (7.5.9) 

wm+i(x) = -2i^^(x) - 0{x)wm(x) = ^ 5ZtWAr(a;)«j m + 1 _fe(a;) 

_ ^ ^ ( x J ^ - f c - x C x ) - - e ' ^ ^ ^ , ! , (7.5.10) 
^ yk=0 

so that, by (7.5.4), Z(x,y, A ) has the asymptotic expansion 

Z ( x , ? / , A ) = ^ 3 + ! ^ — ^ — , (7.5.11) 

as | A | — > oo with 

z m (*, t / ) = i fX(wm+1(x') - e-^^wm^(x'))dx'. (7.5.12) 
4 Jy 
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To derive the asymptotic expansion of the reduced transition matrix T(A,0) the limits 

x, —y —» oo must be taken as prescribed by (3.2.17). The matrices Wm(x), m > 1 

vanish as \x\ —> oo so that as |A| —> oo 

T(A,0) = e p ( A ) + 0 ( | A r ° ° ) , (7.5.13) 

where 

V W - ^ A H ; - ^ 1 ) . (7.5.14) 
\m=\ 

and 

h{x,y) = zi(x,y) - j(a; - y), 

zm(x,y) = zm(x,y), m > 1. (7.5.15) 

From (7.5.9)-(7.5.12) it follows that 

P(A) = ± (7-5.16) 
m = l A 

with 

/ , [ w , ^ o ] = - j + 1 - cosifiN(x)^ dx, (7.5.17) 

and for arbitrary m > 1 

/ m [ ^ ^ o ] = 7 [°° (wm+i(x) - e ^ ^ W i ^ ) ) dx. (7.5.18) 
4 •/ —oo 

The unimodularity of T(A, 0) implies that tr P(A) = 0 so that the quantities Im[(pN, wo] 

are real. 

Notice that the diagonal property of -P(A) is in agreement with (3.2.26). Comparing 

(7.5.13)-(7.5.16) with (3.2.19) leads to 

l o g « ( A , 0 ) = ! £ y ^ l , (7.5.19) 
m = l 

as |A| —> oo. 
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To derive the asymptotic expansion of T(A,0) as |A| —> 0 it suffices to use the invari-

ance of £/(a:,0,A) as defined by (3.2.2), under the transformations w0 —> Wq,<pn ~^ 

—ifN,\ —» —^. Denoting by T(x, j / ,0 ,A) the transition matrix constructed from the 

initial configuration (</3_;v, cibo) *== (—^Ni^o) it follows that 

r ( x , y , 0 , - ^ ) =T(x,y,0,X). (7.5.20) 

Therefore, the |A| —> oo expansion of T(A,0) yields 

CO 
loga(A,0) = i J2 I ~ m [ f N , ^ m (7.5.21) 

m=0 

as |A| —• 0 with 

Io[<PN,mo] = irN (mod 2ir) 

I - m [ p N ^ 0 ] = (-l)mIm[-<pN,w0], 772 = 1,2,.... (7.5.22) 

Using the involution a(—A,0) = a(A,0), A G t it follows that all the { / 2 m [ < ^ j V , ^ o ] } 

with ra G Z \ {0} are identically zero. 

Now suppose that (9?, w) is the solution to the problem of Type AJV defined by the initial 

condition ((fN,zuo) £ M.N- According to the analysis of section 3.6, when (tf^,Wo) 

evolves into (<f,zu) the transition coefficient a(-,0) evolves as a(-,t) = o(-,0) Vi G R. 

Therefore (7.5.19), (7.5.21) imply that 

Im[<p(-,t),m(-,t)} = Im[<pN,w0], V m e Z , < e R , (7.5.23) 

so the infinite set of functionals {hm+i : ra G Z) are the nontrivial, time independent 

first integrals for the integrable system A /v- These integrals clearly have the form 

(7.5.1) and the Hamiltonian functional (7.3.5) can be constructed from the set { / 2 m + i } 

according to 

H[^(-,t),w(-,t)} = 2(I^(-,t),w(-^)}-lM-,t),H-M- (7-5.24) 

The conserved 'momentum' functional P[(p(-,t),w(-,t)] takes the form 

(7.5.25) 
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Finally, recall that the coefficient a(-,t) is given in terms of the coefficient &(•, t) and a set 

of simple zeroes by the dispersion relation (3.2.36). Substituting this into (7.5.19) and 

(7.5.21) and expanding as A —> oo, 0 respectively gives the so-called 'trace identities', 

1 A 0 0 

sign(2m + l ) / 2 m + 1 [ ^ ( - , * ) , w ( - , * ) ] = - / l o g ( l - | 6 ( A , 0 ) | 2 ) A 2 m ^ A 
7T JO 

2( — l ) m n i (°) 
T E(^(o)) 

2 m + l 

2 m + . J = 1 

cy- »i(0)+n 2(0) _ 

^ f - y £ ( A , ( 0 ) ) 2 m + 1 - ( A , ( 0 ) ) 2 m + \ 
' A;=ni(0)+1 

(7.5.26) 

for all < 6 R, m 6 Z. These will be used in subsection 7.5.4 to find energies, masses and 

momenta for the particle-like soliton solutions previously found in chapter 6. Attention 

is now turned to a construction of an infinite set of first integrals for the integrable 

sine-Gordon system defined by the phase space MpyQ. 

7.5.2 F ir s t integrals for the set Bpo 

To construct an infinite set of first integrals for the integrable sine-Gordon system 

defined by the phase space J\/p,o it is necessary to consider the three cases, 

(\\ U (\\ • ~ (C\\ ~ e T n l ( ° ) . n 2 ( 0 ) -r-"l(0),?i2(0) .£-«i(0),n 2(0) (a ( - , (JJ ,0 ( - ,Uj . 7 l ( U ) , . . . , 7 n 1 ( 0 ) + 2 n 2 ( 0 ) ( U j ) € A .A ' «MU ' 

separately from one another. 

T-.ni(Q),n2(0) 
J~ 1,A 

For some A € E + , n x(0) € 2N + 1, n 2(0) € 2N let the scattering data (a(-, 0), &(•, 0) : 

7 i ( 0 ) , . . . , 7n 1(o)+2n 2(o)(0)) be a general element of ^ ^ ' n 2 ^ ° \ According to lemma 4.5, 

(<*>(•, 0),a7(-,0)) d= ist| (_O O i 0 ] (a(-,0),6(-,0) : 71 ( 0 ) , . . . , 7n1(o)+2n2(o)(0)) , 

is an element of A f P f i with P = z"(°>+1(A + A " 1 ) and n(0) = m(0) + 2n 2(0). 

From (<£>(-, 0), w(-,0)) construct the transition matrix T(0, ?/, 0, A) as outlined in chapter 

3 with y < 0. By (7.5.3) this matrix has the asymptotic expansion 

T(0, y, 0, A) = ft(0) ( I + W(0, A)) exp Z(0, y, A) ( I + W(y, A))" 1 O " 1 ^ ) , (7.5.27) 
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mod 0 ( | A | - ° ° ) as | A | -> oo with 

n ( x def / i<fi(x ,0) \ 
il(x) = exp I 0 3 I . 

Calculating the Jost solution T_(0,0, •) from T ( 0 , y , 0 , A ) in the usual way it follows 

from the results of chapter 4 that the reduced transition matrix can be written in 

terms of this solution as 

r(A,o) = j 3 ( - A ) r r 1 ( o , o , - A - 1 ) J 1 ( - A ) r _ ( o , o , A ) , (7.5.28) 

with 

jx(A) d ^ - i ( A + A - X ) ( ( A - A _ 1 ) < T I + Pa3), 

• m d e f ? ; ( ( A + A - 1 ) a 1 + ( A - 1 - A ) q 2 ) 
M X ) ~ (A + A-i)((A + A - ^ + ( A - A - i ) a ) ' ( ? ' 5 9 ) 

Alternatively, 

with 

(j2rl(0,0,A- 1)L(A)r_(0,0,A) = M(A)T(A,0), (7.5.30) 

L(A) = f -o-2ji(X)a3, 

M(A) d^ f (A + A"X)((A + A - > 3 - ^ A " 1 - A)I) . 

Now recall that limA^o,oo b(X, 0) — 0 rapidly in A so that an asymptotic expansion of 

the left hand side of (7.5.30) must be diagonal modulo (9(|A|~°°) terms as |A| —> oo and 

modulo (9(| A|°°) terms as |A| —• 0. This is indeed the case since (</?(•, 0), ru(-, 0)) 6 % • 

As opposed to the set of problems studied in the previous subsection, the relation 

(7.5.30) only leads to a single infinite set of first integrals. The asymptotic expansions 

of this equation as |A| —*• 0, oo coincide and so they do not give different sets of integrals 

of motion as was the case for AJV- To find the asymptotic expansion of the left hand 

side of (7.5.30) as |A| —• oo rewrite this equation as 

a 2 r l (0 ,0 , -A)L(A)r_ (0 ,0 ,A) = M(A)r(A,0) , 

where T1(0,0, •) is the Jost solution constructed from (—¥>(•, 0), w(-, 0)). The asymp­

totic expansions of 71(0,0, •) and T_(0,0, •) can be deduced from (7.5.27) and 

T(0,y, 0, A) = IT^O) ( l + 14>(0, A)) exp Z(0, y, A) ( l + W(y, A)) Q(y), 
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modO(|A| °°) as |A| —• oo, the functions W, Z resulting from W, Z by making the 

replacement (ip(-,0),w(-,0)) —> (—</?(•, 0), ca(-, 0)). 

In place of (7.5.13) there is the relation 

M(A)T(A,0) = A 2 <r 3 e Q ( A ) + 0(|Ar°°), (7.5.31) 

as |A| —> oo with 

/ m ^( - ,0 ) , r* ( - ,0 ) ] 
?(A) = £ 

m = l A m 

/„,[<?(•, 0),tu(-,0)] = l im ( i m ( 0 , y ) - ( - i r i m ( 0 , ? / ) + ^ m ( ^ ( 0 , 0 ) , 0 7 ( 0 , 0 ) ) , 
\t/->--co / 

and hm a function of <^(0,0), cc(0,0), <pxx(0,0), cc^O, 0), <fXxxx(0,0) Using 

tr Q(X) = log ( - A - 4 det M(A)) , 

it can be seen that { / 2 m - i } a r e real valued functionals whereas { / 2 m } have an imaginary 

component. 

Wi th / (A) = f A~2(A + A-X)((A + A" 1 ) - i ( A " a - A)) the asymptotic expression (7.5.19) 

is replaced by 
1 i\ n\ 1 1 f{\\ • ̂  ^m [y(- ,0) ,^( - ,0)] / v , q o ^ log a(A, 0) + log / (A) = 1 2^ , (7.5.32) 

m = l 

as |A| —> 00. 

Now suppose that is the solution to the problem of Type Bp j 0 defined by the 

initial condition (</?(•, 0), w(-, 0)) € A/p,o- According to the results of chapter 4, when 

(</?(•, 0), w(-, 0)) evolves into (</?(•, i ) , o?(-, £)) the transition coefficient a(-,0) evolves as 

a{-,t) = a(-,0) V< e R. Therefore (7.5.32) implies 

/m[v?(-,f), = / m b ( - , 0 ) , t 7 j ( - , 0 ) ] , V m e N + 1 , f € R , (7.5.33) 

and so the real and imaginary parts of the infinite set of functionals | / T O : m G N + 1 j 

are the time independent first integrals for the integrable system defined by the space 

^M(O),«2(O) T h e g e i n t e g r a l s c i e a r i y have the form (7.5.2) and -2h[p{; 0), tu(-, 0)] is 
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found to be the Hamiltonian functional 

H[<p(-,t)M;t)]= f 
J—c< 

^vu2(x, t) + ^ £) j + 1 - cos (p(x, t)dx 

_ 2 i n ( ° ) + 1 ( A + A - 1 ) cos ^ ( 0 , f ) . (7.5.34) 

Substituting / ( A ) and the dispersion relation (3.2.36) into (7.5.32) and expanding as 

|A| —> oo, this Hamil tonian can be wr i t ten in terms of &(•, 0), A and the zeroes of a(-, 0) 

as 

2 
H[<p{;t),w{->t)\ = — / M l - I K A , 0 ) | 2 ) ^ A 

7T JO 
ni(0) n i (0 )+n 2 (0 ) 

+ 4 £ («;(<>)) + 8 ]T Im(A f c (0)) - 2(A - A " 1 ) . 
j = l /c=n!(0) + l 

(7.5.35) 

The higher 'trace identities' can be found in a similar manner but a simple closed f o r m 

for these such as (7.5.26) does not exist. 

J 0, 
•ni(0),n 2(0) 

For some ( 6 1 \ { 0 } , n i (0 ) , n 2 (0) G 2N suppose the scattering data (a(-, 0), &(•, 0) : 

7 i ( 0 ) , . . . , 7ni(o)+2n2(o)(0)) is an element of ^™^0)'™2(°). According to lemma 4.6, 

M - , 0 ) , G 7 ( - , 0 ) ) = f i s t l ^ ^ oj (a(- ,0),6(-,0) : 71 ( 0 ) , . . . , 7n 1(o)+2n 2(o)(0)) , 

is an element of j \ f P f i w i th P = i n<°'(£ + and n(0) = n i (0 ) + 2n 2 (0) . 

Once again the results of chapter 4 imply the relation (7.5.30) but this t ime w i t h 

M(A) d = (A + A - J ) ( ( A - A " 1 ) ^ + i(t + r 1 ) ! ) -

A n infini te set of first integrals follow f r o m (7.5.30) in exactly the same way as before. 

These are identical in fo rm to those deduced for the subspace jF" 1 ^ 0 ' '™ 2 ^' but instead 

of making the replacement P = i " ' °^ + 1 (A + A - 1 ) this boundary parameter is given by 

P = zn<°)(£ + £ - x ) . The Hamiltonian functional 

H[<p(-,t)M;t)] = f 

- ^ ( e + r^cosfCO,*), (7-5-36) 
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can be wr i t ten in terms of 6(-,0), £ and the zeroes of a(-,0) as the trace identi ty 

2 r<=° 
H[<p(-,t)M;t)] = — / log ( l - IMA,0) | 2 )dA 

ni(0) n i (0 )+n 2 (0 ) 

+ 4 2 («i(0)) + 8 J ] M A * ( 0 ) ) - 2(£ + r 1 ) -
J = l /5=rn(0) + l 

(7.5.37) 

-£-ni(0),n 2 (0) 
0,g 

Identical reasoning to above but w i th m ( 0 ) G 2N, n 2 (0) G N , £ G C : |£| = 1, Im(£) ^ 

0 and the scattering data (a(-, 0), 6(-, 0) : 71 ( 0 ) , . . . , 7 n i (o)+2n 2 (o)(0)) an element of 

J F Q ^ ° ' ' " 2 ' ° \ leads to first integrals and trace identities which have exactly the same 

form as those found for ^ M 0 ' ' " 2 ^ 0 ) . 

V - / 

7.5.3 First integrals for the set B/>Q^O 

To construct an infini te set of first integrals for the integrable sine-Gordon system 

defined by the phase space JVP}Q^.0 the two situations, 

must be considered separately. 

-pni(0),n2(0),p 

For arbitrary ?ii(0) 6 2N + 1, n 2 (0) G N and parameters 

t,p = ±l, w G ( 0 , l ) , x € C : |x| = l , I m x ^ O , 

suppose that 

( a ( ^ 0 ) > 6 ( ^ 0 ) : 7 l ( 0 ) , . . . , 7 n 1 ( o ) + 3 » a ( o ) ( 0 ) ) e ^ £ ! ^ ^ O ) , ' ' • 

According to lemma 5.3, 

(¥>(•, 0 ) , G 7 ( - , 0 ) ) d = i s t l ^ oj (a(-,0),6(-,0) : 7 i ( 0 ) , . . . , 7n 1(o)+2n 3(o)(0)) , 
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is an element of J\p,Q w i t h 

P = inW+1Re(X){u + LU-1) 

Q = ep\Qm(X))(u-u-1)l 

and n(0) = m ( 0 ) + 2n 2 (0) . 

Using this scattering data as a starting point, the construction of subsection 7.5.2 can 

be repeated to f ind an infini te set of first integrals for these problems. The Hamil tonian 

functional has the fo rm 

J—<x 
l-w\x, t)+l- fex, t ) ) + 1 - cos <p(x, t) dx 

-2in^+1Re(X)(u + u-1) cos £ ( 0 , t) - 2 £ / £ >|Im( X )(u; ~ ^ ) \ s i n £ ( 0 , f ) , 

(7.5.38) 

and the trace identi ty for this functional is 

2 r°°. 
# [ * > ( • , * ) , « * , * ) ] = — / log( l - |6 (A,0) | 2 )^A + 4 ^ ( (« i (0) ) 

ni (0 )+n 2 (0 ) 

+ 8 ]T lm(\k(0)) + 2c(u + u ' 1 - 2Re (x ) ) . 
fc=ni (0)+l 

(7.5.39) 

-r-nj(0),ra2(0)>P 
- r 0 ,e ,w,X 

Finally, consider n i (0 ) G 2N, n 2 (0 ) G N and parameters 

e,p = ±l, cue (0,1), x € C : |x| = l , I m x / 0 , 

and suppose that 

(a(-, 0), 6(-, 0) : 7 i ( 0 ) , . . . , jni (o)+2n2(o) (0)) e FZZ\ H (0 ) ,n 2 (0 ) ,p 

Lemma 5.4 shows that 

( v ? ( - , 0 ) , ^ ( - , 0 ) ) d ^ i s t | ( _ ^ 
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is an element of Afp,Q w i t h 

Q = -ep\(lm(X))(Lo-u-% 

and ra(0) = n^O) + 2n 2 (0) . 

The Hamil tonian functional 

H[<p(-,t)M;t)]= [° 
J —EX. 

dx 

-2zn^Re(x)(^ + u T 1 ) cos | ( 0 , *) + 2ep\Im(X)(u - a;" 1)! sin | ( 0 , 

(7.5.40) 

satisfies the trace identi ty 

H[<p(.,t),w(;t)} = — / l o g ( l - | 6 ( A , 0 ) | 2 ) ^ A + 4 £ ( " i ( 0 ) ) 
7T Jo , = 1 

m (o) 

ni (0 )+n 2 (0) 

+ 8 2 M M O ) ) - 2(e(w- 1 - u>) + 2Re( X ) ) . 
fc=m (0)+l 

(7.5.41) 

7.5.4 Soliton solutions revisited 

As was seen in subsection 7.5.f, when considering problems of Type A;v the Hamil to­

nian and momentum functionals 

H[<p(;t)M;t)] 

/
°° 0<p 

w{x,t)—(x,t) dx, 
-oo OX 

1 2 1 (dtp \ 
-w [x,t) + - I -Q^\x,t) J +1-cos ip(X,t) 

dtp 

dx, 

(7.5.42) 

are independent of the t ime t at which they are evaluated. For the relativistic particles 

of k ink type (6.3.2), 

pk = ( 7 - 5 - 4 3 ) 
8 

\J\ — v2' \/l — v2' 

so that a static soliton of kink type has an energy, to be identified w i th its mass 

Mj t , which is equal to 8 units. Notice that relativistic energy-momentum relation 

H2 = Pi + M | holds by virtue of the Poincare invariance of the problems A/v-
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Evaluating the Hamiltonian and momentum functionals for the breather solution (6.3.4) 

yields 

= - 7 = = = s i n a r g A i , Pb = —===== sinarg A 1 ; (7.5.44) 
V I — v V I — v 

so that the mass of the breather is equal to 16 sin arg Ai units and H% = P fc

2 + 

M 2 . Notice that the mass of a particle of breather type is less than twice the mass 

of a particle of kink type. Often the breather is interpreted as a bound state of a 

k ink /an t ik ink pair. 

Turning to the problems of Type Bp ;Q, the solution (6.3.7) is to be interpreted as a 

soliton particle of kink type either being emitted f r o m or absorbed by the boundary at 

x — 0. The speed of this soliton is such that the Hamiltonian functional for the particle 

+ boundary system, 

H[<p{-,t)M;t)] = ^ s ( ^ O M ) ) + ^ ( | ^ ) ) + l - c o s ¥ > ( M ) dx 

+2(A + A - 1 ) c o s | ( ( M ) , (7.5.45) 

remains conserved throughout the emission (absorption) process. Note that these pro­

cesses can be made to occur at an arbitrary t ime by choosing 71 (0) appropriately. Us­

ing the trace identities (7.5.34)-(7.5.37) i t is found that the solution (6.3.7) has energy 

2(A + A - 1 ) , the same as the 'vacuum' solution (<p,zv) = (0,0). Indeed, this degeneracy 

of the Hamil tonian functional is common when considering the set of problems Bp,Q 

for general P, Q G R. 

For the solution (6.3.12) the Hamiltonian 

Hy(.,t),w(-,t)] = j ^ ^ ( ^ ( x , t ^ + I ^ ( x , ^ + l - c o s y > ( z l < ) } dx 

+2Re( X ) (u ; + a T 1 ) cos | ( 0 , t) - 2e/>|Im(x)(w - u T 1 ) ! sin | ( 0 , f ) , 

(7.5.46) 

is equal to 2[2 + e((u> + a;" 1) - (x + X " 1 ) ) ] -
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7.6 Action-angle coordinates for integrable mechan­

ical systems 

This section introduces the concept of action-angle coordinates for the phase space of 

an integrable mechanical system. The next subsection develops these ideas for f in i te di­

mensional phase spaces by introducing canonical coordinate transformations. Theorem 

7.12 asserts the existence of a set of action-angle coordinates for the phase space of a 

f ini te dimensional integrable system. Subsection 7.6.2 briefly discusses the construction 

of action angle coordinates for the phase space MN-

7.6.1 Finite dimensional integrable mechanical systems 

The ideas of section 7.2 and in particular the results of theorem 7.9 can be extended 

by exploiting canonical transformations of the manifold ( M 2 n , c u 2 ) . 

Defini t ion 7.11 A canonical transformation of a symplectic manifold ( M 2 n , u 2 ) is 

a differentiate mapping g : M2n —>• M2n which preserves the 2 form ui2, namely 

g*(uj2) = UJ2 where g* is the pullback map induced by g. If in terms of coordinates 

this transformation is expressed as g : yp i—> Y p , p = 1 , . . . , 2n then ui2\^Ypj — u 2 \ { y p ) • 

Using these transformations theorem 7.9 can be extended to give another of the major 

theorems regarding integrable systems. 

T h e o r e m 7.12 ( A r n o l d ) Under the hypothesis of Liouville's theorem, at any time 

t G K. there exists a canonical transformation to coordinates ( / ^ ( i ) , #jt(i£)), k = 1 , . . . ,n 

such that the first integrals depend only on the set {/&(£)}. 

This theorem has far reaching consequences for the Hamiltonian systems which satisfy 

the hypothesis of Liouville's theorem and so are integrable. This can be seen by con­

sidering mechanical systems so that M 2 n = T * W " and the symplectic f o r m at t ime 

t G K is given by (7.2.7). As was deduced in section 7.2 these lead to the fundamental 
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'canonical' Poisson brackets for the coordinate functions {yp(t) : p = 1 , . . . , 2n} , 

(yi{t)>yj(t))pb = (yn+i{t),yn+](t))pb = 0 ( y t + n ( t ) , y j ( t ) ) P b = % , i,j = l,...,n. 

(7.6.1) 

Let F(, i = 1 , . . . , n represent the n first integrals which appear in the hypothesis of 

Liouville 's theorem. Clearly the Hamiltonian funct ion must be a linear combination of 

these. Theorem 7.12 says that there exists a canonical transformation to new momen­

t u m coordinates {/;(£)}, 

m y P ( t ) } ) = W ) , ^ = l , . . . , n (7.6.2) 

and that there exists the 'canonically conjugate' variables 

9i(t) = Oi({yP(t)}), i = l , . . . , n (7.6.3) 

such that 

u2{t) = Yjd6i{t) Adli(t). (7.6.4) 
i=l 

In terms of these new coordinates the fundamental Poisson brackets become 

( ^ ) , 0 , ( * ) ) P 6 = (It,(t)I3(t))Pb = 0 0;(*))P6 = StJ, i, j = l , . . . , n . 

(7.6.5) 

Since, in these new coordinates, the Hamiltonian funct ion has the f o r m H = H({Ii(t)}) 

Hamilton's equations of motion for the system are 

^ ( t ) = {H{{Ij(t)}),Ii{t))pi> = 0, 
jn 

= (H{{Ij{t)}),0i{t))Pb = fi{{Ij{t)}), i, J = l , . . . , n (7.6.6) 

for some functions /,-. The first set of equations is a statement that the {Ii{t)} are 

constant functions of the t ime variable. This observation allows the second set to be 

integrated so that in terms of the new coordinates {h(t), Ok{t)} the t ime evolution 

takes the simple fo rm , 

Ii(t) = a,-

Oi{t) = fi({<xj})t + Pi, ?: = l , . . . , n (7.6.7) 

151 



and the {a; , /3;} are fixed by the in i t ia l conditions. 

Thus the t ime evolution can be completely determined, i n principle, by canonically 

transforming to a set of coordinates {Ik(t),$k{t)} which linearise Hamilton's equations 

of motion and the sets which have this property are called action-angle coordinates. 

I t is necessary to include the words ' i n principle' in the above statement because in 

practice i t may be impossible to the determine the canonical transformation to these 

variables and subsequently to invert the solution to obtain the evolution as 

yp(t) = yP{{a3), {&},<), p = 1 , . . . , 2n. (7.6.8) 

Theorems 7.9, 7.12 only assert the existence of solutions. The actual construction then 

involves various ingenious procedures. 

7.6.2 Action-angle coordinates for MN 

For i G R the pair (ip(-,t),vv(-,t)) £ jCiN has 'coordinates' {(tp(x,t),w(x,t)) : x 6 R } . 

These coordinate functionals satisfy the canonical Poisson bracket relations 

(m(x, t), w(y, t))Pb = 0, (<p{x, t), <p{y, t))Pb = 0, {w(x,t), ip(y,t))Pb = 6{x - y), 

(7.6.9) 

w i t h i , i / G K . 

Let A and B be two matr ix functionals, i.e 2 x 2 matrices whose elements are C valued 

functionals. Defining 

<-4' *>»=/_: fe&o8
 w h > - 8 <" < 7 ' 6 - i o ) 

then the transition matr ix T(x,y,t,\) constructed f rom (</?(•,/), w(-, t)) w i t h y < x 

satisfies 

( T ( x , y, t, A) ® T(x, y, t, fi))Pb = [r(A, / / ) , T(x, y, t, A) <g> T(x, y, t, /<)], (7.6.11) 

w i t h the classical r- matrix 

r(A, n) = f ~ ^ \ 2 _ ^ + ^ 2 ) a 3 ® °"3 + 2A^(cri <g> ax + cr2 ® cr2)] . 

152 



Next introduce the scattering data 

(a(-,t), &(•, t) : 7i(*), • • •, lni(t)+2n2(t)(t)) = dst(v?(-, t), &(-,t)). 

I t follows f r o m (7.6.11) w i th X,p > 0 and the generalized funct ion identi ty 

e i ( A - x - " + ? > 
l i m p.v. = ±iic6(\- u), (7.6.12) 

y->±<x> X — jX 

which holds for such A, / / , that the variables 

p(X,t) d ^ f - - | ^ ( A , 0 | 2 ) , d== - a r g 6 ( A , t ) , A G R + U { 0 } , 

P j ( t ) d = f - 8 1 o g ( - z A , ( t ) ) , 9 i(<) t f log | 7 j ( i ) | , j = 1 , . . . ,m(<) , 

= - 1 6 l o g |A*(*)| , i7fe(«) = log |7fe(0l, = m ( t ) + 1 , . . . , + n2(t), 

and 

= 16arg Xk(t), <f>k(t) = arg7fc(i), A; = r i i ( i ) + 1 , . . . , n x ( i ) + n2(t), 

fo rm a canonical family, i.e. they satisfy 

(p(\,t),<f>(fi,t))pb = 8(X - fi), X,p > 0, 

(pi{t), qj(t))pb = Sij, (&(<)> vii^Pb = (ek{t), 4>i{t))pb = SM, 

where i,j = 1 , . . . ,ni(t) and k,l = rii(t) + 1 , . . . , n j ( £ ) + n2(t). Therefore the direct 

scattering transform dst previously developed in chapter 3 can be regarded as a canon­

ical coordinate transformation of the phase space M.^. This construction is of a rather 

formal nature requiring the use of generalized function identities. 

In addition the infini te set of local integrals {l2m+i} constructed in subsection 7.5.1 

depend only on the 'action' coordinates p(X,t), Pj(t), £k(t), 0k{t), according to 

1 r00 

sign(2l + l)I2l+1[<p(;t)M;t)] = - j / p(Kt)^2l+1dX 
4 Jo 
2 ( - l ) 21+1 

e s 
l-l nx(t) 

21+T ^ 
3 = 1 

a ni(t)+n2(t) 07 i 1 4 4—» 21+1 e . II + 1 
._ Y e—iS-^Osin——Pk(t , 
21 + 1 , . , 16 e k K h 

(7.6.13) 
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w i t h m G Z. I t is clear that the map dst can be viewed as a transformation to an 

inf ini te set of action-angle coordinates for M N . In terms of these coordinates the 

dynamics of the sine-Gordon system is linear and therefore easily solvable. The map 

ist is interpreted as the inverse coordinate transformation. 

154 



Chapter 8 

Some further lines of study 
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8.1 Open problems for the sine-Gordon system 

This chapter briefly discusses some open questions connected w i t h the work of this 

thesis. I t is hoped that the interested reader w i l l be encouraged to study such matters. 

8.1.1 The phase spaces MN and J\p,Q 

By now i t should be clear that the major problem wi th the inverse scattering methods 

developed in chapters 3-5 is the realization of the phase spaces A4N <Z A4N and Jvp,Q C 

A/p,Q in terms of pairs of in i t i a l data t u 0 ) , (resp. [<fip,Q, wp^)). Some ideas as to 

how such a construction might be attempted are developed in [14] for one of the phase 

spaces appropriate to the nonlinear Schrodinger equation. However, this question has 

yet to receive any attention when considering the spaces M.N, Afp,Q-

8.1.2 Action-angle coordinates for NP,Q 

A n interesting (and much easier) problem is the construction of a set of action-angle 

coordinates for Afp,Q by proceeding in a similar fashion to subsection 7.6.2. Some results 

in this direction have already been obtained by the author. Let C and D be two mat r ix 

f u n c t i o n a l , i.e. 2 x 2 matrices whose elements are maps : J\p,Q —» C and define 

W i t h this definit ion the transition matr ix T(0 , y,t, A) constructed f r o m (</?(•, i ) , w(-, t)) G 

NP,Q satisfies 

(T(0 , y,t, A) ® T{0, y,t, p))Pb = [r(A, p), T(0 , y, i , A) <g> T(0 , y, *, fi)}, (8.1.2) 

w i t h (obviously) y < 0. Recalling that 

L(0 , f, A) = (A 2 - A " 2 ) I + iQ(X - A " 1 ) ^ + iP{\ + A " 1 ) ^ , 

i t follows that the matr ix 

T(y, t, A) d ^ f T ' (0 , y, i , A " 1 ) ^ , t, X)T(0, y, t, A), 
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satisfies 

( T ( y , t, A) ® T ( y , i , /0)P 6 = [r(A, fi), T(y,t, A) ® T ( y , t, fi)} 

+(K ® T ( y , f, ^ ) ) r t 2 ( A , A t _ 1 ) ( T ( y , i , A) <g> I ) 

- ( T ^ ^ A J O i y M A , ^ - 1 ) ^ ® ^ , * , / * ) ) , (8.1.3) 

wi th (C ® £>) < 2 d = C <g> so that 

( t r T ( y , i , A ) , t r T ( y , i , ^ ) ) P t = 0. 

The relation (8.1.3) along w i t h the generalized funct ion identi ty (7.6.12) are the ap­

propriate starting points for a formal construction of the action-angle coordinates for 

NP,Q • I t is anticipated that this calculation can be done without too much diff icul ty. 

8.1.3 The sine-Gordon system on a finite spatial interval 

In [6, 8] the sine-Gordon system wi th x G [—1,0] is studied w i t h the phase space 

variables (</?(•,£), cc(-, £)) subject to the nonlinear boundary conditions 

£ ( x , « ) 
ox x=0 

= P l S i n £ ( 0 , i ) , ^ ( * , < ) 
2 ox 

dw 
dx 

(x,t) 
x=0 

Pi if 
—w(Q,t)cos - ( 0 , i ) , 

dw 
ox 

x,t) 

x=-l 

x=-l 

P 2 s i n ^ ( - U ) , 

y r o ( - l , f ) c o s ^ ( - 1 , * ) , 

(8.1.4) 

w i th P i ) 2 G R. In [6] an infini te set of local integrals of motion are found for this 

system using a relation similar to (8.1.3). Following on f r o m this, the inverse scattering 

method for solving initial-boundary value problems of this type was developed in [8]. 

The basis of this development is the f ini te gap integration technique already applicable 

to quasiperiodic problems. The boundary conditions (8.1.4) were incorporated into 

this technique by exploiting the idea of ' t r iangularity of V(0,t,\oy at some points 

Ao G C. This condition can then be shown to manifest itself as a certain (anti) involution 

requirement for a Riemann surface. 

A generalization of these results by introducing more general boundary conditions, w i t h 

terms such as cos ^(0 , f ) and Q 2 cos TT( — 1 , i ) added onto the respective conditions 
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for <p, has yet to be fu l l y achieved. However, in [1] i t is seen how an inf ini te set of 

integrals of motion can be constructed for this system in exactly the same way as 

[6]. Also i t can be shown that the ' t r iangularity of V(0,t, X0y method continues to 

work as a starting point in the development of an inverse scattering method for solving 

these initial-boundary value problems, and that these more general boundary conditions 

lead to another (anti)involution requirement for a Riemann surface. Much work is s t i l l 

needed to finish this construction. 
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